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Abstract 

The interrelations between projective and conic connections on Cm structures are 

studied. An Einstein quaternionic manifold of rank p is associated with a twistor space 

equipped with holomorphic distribution, whose Fr6benius form has rank precisely p. 
This construction is inverted, establishing one-to-one correspondence between local 

Einstein quaternionic manifolds of given rank and the twistorial data consisting of 
twistor space, distribution on the twistor space and its Fr6benius form of the same 

rank. 
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Statement 

Chapter 1 covers some basic material such as sheaf theory, cohomology, analytic fam- 

ily and moduli space. This material can be found, for example, in [MerOO), [Kod62], 

[Kod80], [We1911, [WW90]. 

Chapter 2 covers conic structures and conic connections, which can be found, for 

example, in [Man97]. Section 3.2 of Chapter 3 is the joint work of the author and S. A. 

Merkulov. The rest of the Chapter includes material on conformal 3-manifolds, which 

can be found, for example, in [Bry9l], [CT96], [HM991, [Tod921. Chapter 4 covers 

quaternionic structures. The material can be found elsewhere, such as in [BE91] and 
[PR84]. 

Chapters 5 and 6 are the original work of the author, with the exception of the 

instances indicated within the text as well as the material in the Section 5.1 and 

Theorem 5.2.1, which can be found in [Man97]. 
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Overview 

0.1 0 verview 
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Let M be an n-dimensional complex manifold and Va fixed n-dimensional complex 

vector space (typically, V= C11). Let 7r : L*M )M be the holomorphic bundle of 

V-valued coframes, whose fibres ir-1(t) consist, by definition, of all C-linear isomor- 

phisms e: Tt M)V, where TtM is the tangent space at tEM. The space L*M 

is a principal right CL(V)-bundle with the right action given by Rg(c) = g-' o 6. If 

G is a closed complex subgroup of GL(V), then a complex G-structure on M is a 

principal holomorphic subbundle 9 of L*M with structure group G. Given an affine 

connection 17 on a simply connected complex manifold M, the set ! 9" of all points 

in the bundle of V-valued coframes L*M which can be connected to a fixed point 

uE L*M by a horizontal curve is a principal right subbundle of C*M whose struc- 

ture group G,, is a Lie subgroup of CL(V), called the (restricted) holonomy group of 

at u. The conjugacy class of Gu in GL(V) does not depend, in fact, on the choice 

of u, and any representative GC CL(V) of this conjugacy class is called, by abuse of 

language, the holonomy group of 7. The holonomy group G can also be represented 

at any particular point pEM as the set of all linear automorphisms of the associated 

tangent space TpM which are induced by parallel translation along p-based loops. 

Holonomy turns out to be one of the most informative characteristics of an affine 

connection on a smooth connected manifold M. The notion of holonomy group was 

introduces by Elie Cartan in 1920s [Car261 who used it to classify all Riemannian 

locally symmetric spaces. 
If a connection is (locally) symmetric, then its holonomy group, if irreducible, 

equals essentially the (local) isotropy group. In 1955 Berger [Ber55] gave necessary 

conditions for irreducible Lie subgroup GC End(V), where V is real or complex 

finite dimensional vector space, to occur as the holonomy group of a torsion-free 

affine connection which is not symmetric. ' The case of locally symmetric connections 

is equivalent to the classification problem of symmetric spaces which was solved long 

11956 Hano and Ozeki [110561 showed that any (closed) Lie subgroup GC End(V) can occur as 
the holonomy of some affine connection, generally with torsion; 
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time ago ( see [Car26] [Ber57]) 
. Berger then classified the groups satisfying this 

conditions. The first ("metric") part of this classification consists of all holonomy 

groups which leave some symmetric bilinear form invariant: SO(n), U(M), SU(m), 

Sp(k), Sp(k)Sp(l), G2, Spin(7). The connections with one of these holonomies are 

always Levi-Civita connections of a (pseudo-) Riemannian metric on M. 

The second (" non-metric") part of Berger's classification was stated to contain all 

remaining holonomy groups, up to a finite number of missing terms. These "missing 

terms" were later called exotic. Non-emptiness of the list of the exotic holonomies, 

was established by Bryant [Bry9l]. In [CMS961 Chi et al. discovered an infinite family 

of exotic holonomies, thus showing the incompleteness of non-metric part of Berger's 

list. Finally, the holonomy problem was solved by S. Merkulov and L. Schwachhofer 

in [MS99]. 

Any Riemannian manifold is locally the product of symmetric spaces and/or man- 

ifolds with holonomy groups appearing on the metric part of Berger's list. The case of 

SO(n) corresponds to "generic" geometry. Of the remaining six types of Riemannian 

geometry, three 
[U(m), SU(m), Sp(k)] 

correspond to Kdhler manifolds of varying degrees of speciality, while G2 and Spin(7) 

only occur in dimensions 7 and 8 respectively. Which leaves the very interesting 

family of quaternionic-lfdhler manifolds, i. e. 4n-manifolds, n>2 with holonomy 

group 
Sp(k)Sp(l) := Sp(k) X SP(I)/Z2- 

In 1982 Salamon has shown that if M is a quaternionic manifold 2, the total 

space of the associated bundle Z is a complex manifold, thus constructing a twistor 

space. (see [Sa1861) 

When can we reverse this construction? 
Let Z be a complex (2n + l)-dimensional manifold equipped with a holomorphic 

2A quaternionic manifold is defined by a G-structure admitting a torsion-free connection, where 
G denotes the maximal subgroup CL(n, H)GL(1, H) of GL(4n, R) 
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contact structure which is a maximally non-degenerate rank 2n distribution DC TZ. 

Let X be a rational curve embedded into Z transversely to D and with normal bundle 

N == C2n 0 0(l). Then the 4n-dimensional Kodaira moduli space M comes equipped 

with the induced torsion-free affine connection satisfying natural integrability condi- 
tions. Ward (1981) showed that in the case n=1 the Kodaira moduli space M has an 
induced complex Riemannian metric satisfying the self-dual Einstein equation with 

non-zero scalar curvature. The case n>2 has been investigated by LeBrun (1989), 

Pedersen and Poon (1989), and Bailey and Eastwood (1991) who proved that the 
Kodaira moduli space M comes equipped canonically with a torsion-free connection 

compatible with the induced complexified quaternionic-Kiihler structure on M. This 

inverts the construction of Salamon's (1982) in quaternionic-MihIer case, who asso- 

ciated a contact (2n + l)-dimensional manifold Z to any quaternionic-Kdhler 4n-fold 

M. 

What happens if we lose the condition for the structure to be contact? 
It is also well-known that hyperKiihler manifolds (i. e. the ones equipped with a 

torsion-free Sp (n) -structure) give rise to integrable codimension 1 distributions on the 

associated twistor spaces and vice versa, see N. Hitchin, A. Karlhede, U. Lindstr6ra 

and M. Ro6ek [HKLR87]. 

Let Z be a (2n + l)-complex manifold equipped with a codimension 1 holomorphic 

distribution, DC TZ. Assume also that Z contains a rational curve X, which is 

transversal to D and 
(C2n(l). 

Consider the associated R6benius form 4)D : A'D ) TZID. In general it has rank 

p, 0<p< 2n. Rom the discussion above, we know that the case p= 2n corresponds 
the quaternionic-Kiihler geometry, while the case p=0 corresponds to hyperKahler 

geometry. 
One of the main questions which we address and answer in this thesis is which 

geometry corresponds to the generic value of p? 
We begin this work by recalling some basic facts, theorems and definitions in 
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Chapter 1. Section 1.1 consists of detailed introduction to the language of the 

sheaf theory. Apart from definitions and basic facts about sheaf mappings and exact 

sequences of sheaves, we construct space etal6, quotient sheaf and look at the notions 

of direct and inverse image of sheaves. In Section 1.2, we recall some definitions and 

theorems of cohomology theory. There are no proofs given. Section 1.3 contains 

the statement of Kodaira's seminal theorem. In this chapter we used the book by S. 

Merkulov, [MerOO]. 

In Chapter 2 we give the definition of a connection on a fibration, comparing 

it with connections on a vector bundles and connection along the base and looking 

at its curvature and integrability conditions. Then, in Section 2.2, we discuss the 

definition and examples of conic structures. 
Another theme of our studies is the conic and projective geometry of Bryant's ex- 

OtiC G3-connections, and their natural generalization G,,,, for any Tn > 3. In Chapter 

3 we apply the language of conic structures developed in the previous chapter to the 

research of geometry of conformal 3-manifolds. Then these methods also used to look 

at G,, structures, which are natural "torsion" generalizations of exotic G3-structures. 

The main result of Chapter 3 is Theorem 3.2.1, which studies interrelations 

between projective and conic connections. 
In Chapter 4 we turn to quaternionic geometry and study basic invariants of 

associated conic structures. This chapter is of an auxiliary nature, and most of the 

material is well-known, though in a differential language. 

In Chapter 5 we prove two new results. The first one is Theorem 5.2.1, which 

identifies Manin's obstructions [Man97] with certain torsion invariants of a general 

almost quaternionic structure. The result is then used in proving Theorem 5.3.1, 

which is one of the central results of the thesis. This theorem associates to an Einstein 

quaternionic manifold with rank AAB == p, a twistor space Z, equipped with distri- 

bution DC TZ, whose n6benius form, 4)D : AID TZID, has rank precisely 

P. 
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In Chapter 6 we invert the construction of Theorem 5.3.1, thus establishing a one- 

to-one correspondence between local quaternionic Einstein manifolds with rank AAB 

and the twistorial data (Z, DC TZ, rank (I)D --` P) - 
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Chapter I 

Basic Facts And Definitions 

As a language of sheaves is widely used throughout this work, it is logical to start by 

recalling some useful definitions, facts and notations of the sheaf theory. It is followed 
by a brief overview of homological algebra of sheaves. The Chapter ends with a short 
list of various algebraic and geometric facts and propositions, including Kodaira's 

analytic family theorem, which are going to be used through out the thesis. As the 

material is standard, no proofs are given, although the necessary cross references 
provided. 

1.1 Sheaf Theory 

Here -%ve used some material from the forthcoming book [MerOO]. For more detailed 
look into the sheaf theory, see also [VVW90] and [Wel9l) 

1.1.1 Presheaf 

presheaf on a topological space M is a covariant functor 

Y: Top(M) ) Ab, 

from the category of open sets of M to the category of Abelian groups. Equivalently, 

one can write this down as follows 

11 
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Definition 1.1.1 A presheaf T over a topological space M is 

(a) an assignment to each non-empty open set UCM of a set Y(U) 

(b) a collection of mappings (called restTiction homomorphisms) 

u rv 

for each pair of open sets U and V such that VCU, satisfying 

1. ru = id on U 

2. for WCVCUr' =rv oru TV wV 

Visually, this structure can be represented by a diagram 

wcvc 

. 
ct . 27 

t 

4v- UV 

12 

If T and g are presheaves over M, then a morphism (of presheaves) h: 'F )9 
is a collection of maps hu : T(U) 9(U) for each open set U in X such that the 
following diagram commutes: 

. F(U) )9 (U) 

tru ru vcucm. 

vtv 
. F(V) 9(V) 

.F is said to be a subpresheaf of 9 if the maps hu above are inclusions. 

Example 

Let M be a complex manifold, and assume that O(U) is the space of all holomorphic 
functions defined on an open subset UCM. Take ru : O(U) O(V) to be the v 
usual restriction of a holomorphic function to an open subset VCU. The result is a 
Presheaf OM of holomorphic functions on M. 
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Sheaf 
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Definition 1.1.2 A presheaf. F on a topological space M is called a sheaf if for every 

open set UCM and every collection Uj of open subsets of M with U=U Uj, Jc' 

satisfies 

1. Axiom sj: If s, tE F(U) and ruu, (s) = ruýi (t) for all i, then s=t. 

Axiom S2: If si G. F(Uj) and if for ui n uj z54 0 we have 

ui Ui 
ru,, u, 

(si) = Tuinuj (SA 

for all i then there exists an sE F(U) such that ru = U, si for all i. 

Morphisms of sheaves (or sheaf mappings) are simply morphisms of the underlying 

presheaves. When a subpresheaf of a sheaf F is also a sheaf, then it is called a subsheaf 

of '9. 

1.1.3 Stalks 

Let. F be a presheaf of Abelian groups on a topological space M. Consider an arbitrary 

point xEM and a system, 1, of all open subsets of M which contain x. I is a partially 
ordered set with respect to the following relation: U<V 4=> UCV. The direct limit, 

lim-'F(U), 
UEI 

is an Abelian group called the stalk of the presheaf J: ' at x. In other words, F is the 

quotient of the disjoint union of Abelian groups, 

U JF(U)1 
UEI 

with respect to the following equivalence relation: fE T*(U) and gE F(V) are 
equivalent, f -., g, if and only if there is an open set W such that xEWCUnV 
and f Jjv = gllv. 
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For an open set UCM and a point xEU there is a canonical homomorphism 

of Abelian groups, r., : F(U) ) . 7: ý, which associates to an element fE F(U) its 

equivalence class with respect to the equivalence relation -.,. The image r--(f) is 

called the genn of f at x. 

1.1.4 Exact sequences 

Let 7- :F)9 be a morphism of sheaves of Abelian groups on a topological space 
M. For each point x (=- M, it induces a map of stalks 

j7 

which is a homomorphism of Abelian groups. 
A sequence of morphisms of sheaves on M, 

.FT)g 
is called exact if, for every xEM, the associated sequence of homomorphisms of 
Abelian groups, 

Y7 
Tx O"x 

x) 'Hx, ) gx 
is exact, i. e. Keru,, = 

ImT.,,. 

A sequence of morphisms of sheaves on M, 

Tj 72 -rn-1 JC», ) -T2 ) ... ) J'n-1 ) Jý� n>3, 

is called 

I. exact at the term Fi, iG 12, 
. .., n- 1} if the sequence 

-Fi-i 
) 

-Ti 
Ij 41; 

is exact. 

exact if it is exact at every term Fj with i C- J2,. 
- ., n- 1}. 
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An exact sequence of the form 

0) JF ll )G0, )U) 

is called a short exact sequence. 

1.1.5 Space etale 

15 

There is a canonical construction which associates to any presheaf Y on a topological 

space a sheaf, denoted by Jý and called space etaI6. 
First, let us consider a set, 

1.971 =U 'F� 
xeu 

the disjoint union of stalks. It comes equipped with the natural projection, 

7r: I. F1 ) 

f -4 X. 

For each open set UCM and an element f (=- F(U), let us construct a set 

[U, f] := 1rx(f) Ix E U} C JYJ. 

A topology can be introduced on ITI by declaring a subset of F open if and only 
if it is a union' or a finite intersection of subsets of the form [U, f]. The topology 
is well-defined. Clearly, every element of I. F1 is contained in, at least, one subset of 
the form [U, f]. Assuming that eE [U, f] n [V,, q] one has that if x= 7r(e), then 
x c- UnV and e= rx(f) = r,,, (g). In other words, f -x g means that there is an 
open neighbourhood WcUnV of the point x and an element hE F(W) such that 
f 11v = gj jv = h. Thus, eE [W, h] g [U, f] n [V, g]. 

Therefore, T now can be regarded as a topological space with the topology de- 

scribed above. 

Proposition 1.1.1 The natural projection, 7r: I. F1 )M is a local homeomoTphism. 
'possibly infinite 
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Proof. For any e (E I. F1 there is an open set [U, f] C I. F1 containing e. The map 

7r, as follows from definitions, is open and continuous. Since 7r((U, fl) U, then it 

was shown that e has an open neighbourhood [U, f] such that 7r U is a 
homeomorphism onto its image. 0 

A (continuous) section of a covering space 7r I. F1 M over an open subset 
UCM is, by definition, a (continuous) map o, U JYJ such that 7r o o- = Id. 

Let F(U, J. Fj) denote the set of all continuous sections of I. F1. If I. F1 is space etal6 

associated to a presheaf of Abelian groups F, then F(U, JYJ) is an Abelian group. 
The sheafl : F1 associated, to a presheaf of Abelian groups F is defined as follows: 

(i) for an open subset UCM,. F(U) := F(U, ITI); 

(ii) for every pair of open subsets vCU, ru : ýý(U) ; ý'(V) is the usual restriction V 
of maps. 

This gives rise to a functor, 

(D : Presheaves(M) ) Sheaves(M) 

.F 
from the category of presheaves on a topological space M to the category of sheaves 
on the same space. 

Theorem 1.1.1 If F is a sheaf on a topological space, then (1) :F Jý is an 
isomorphism. 

Proof. It has just to be checked that, for any open subset UCM, the map 
(DU : F(U) ) , 

ý'(U) is a bijection. 
At first, it can be shown that 4ýu is injective. Let assume fl, f2 E F(U) to be 

such that % (fl) = -% (f2). The map 4)U sends fl, f2 into a section, Ul i U2, of the 
associated space etal6, 

Uk: U ITI 
k 

x rx (fk)) 
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and, therefore, the equality 4)u(fl) = (Du(f2) implies r., (fl) = rý(f2) for all xEU. 
This means that f, -., f2 and, hence, there is an open neighbourhood VCU of the 

point x such that fjjv f2jv. Since this is true for every xEU, we can cover U by 

such sets Vi that filvi f2lv,. By axiom (si) (see 1.1.2), this means that f, = f2. 
Next, it has to be shown that -cDU is surjective. Assume ac r(u, IJC"I). Then for 

every xEU there is an open neighbourhood VCU of x and an element f Cz F(V) 

such that u(x) = r., (f). Thus we get two local sections, uv and (Dv(F), of I. F1 

over V which coincide at x. Since both sections are locally inverse to the local 

homeomorphism 7r : I. F1 M, they must coincide in some open neighbourhood 
WCV of X) 

0,11V = IT)lv(f 1w). 
This is true for any xEU, therefore, there is a covering U by open sets Wi and a 
family of elements fi E F(Wi) such that 

cr I Tvi = "D Ivi (f I i) - 
Then 

"Divinwj(filwinivj) = "Divimvj(fjlwinwj) = uwinivj) 

and due to the fact that the maps "Divinlvj are injective, 

filivinivj = fjlwinivj. 

By axiom (S2) (see 1.1.2), there is an element fE F(U) such that f fi. There- 
fore, 

d)u (f )1 Ivi =e Ivi (f 1 Ivi) = ulvi, 

which finally implies that -(Du(f) = a. 0 

1.1.6 Kernels and quotients 
Let T: F)9 be a homornorphism of sheaves of Abelian groups on a topological 
space M. For any open subset UCM, let us define an Abelian group 

k: = Ker 7-u:. F(U) ) 9(u). 
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The family of such subgroups together with the restrictions mapsru : AC(U) k (V) v 
induced by restriction maps on Y forms a presheaf of Abelian groups. This presheaf 
is actually a sheaf and it's called the kernel of the morphism -r. 

Similarly, one constructs another family of Abelian groups, 

-T: = -17(U)1-ru(9(U))j U is open in M, 

which together with the restriction maps induced from ! g, forms a presheaf of Abelian 

groups. Although, this presheaf may not, in general, be a sheaf, this problem can be 

easily fixed via space eta16. Thus one gets a sheaf ± on M, called quotient sheaf and 
denoted by ! 9/. F. 

The morphism -r :F gives rise to an exact sequence, 

7 g1,77 ) 

which is a visual summary of both constructions. 

1.1.7 Direct and inverse images of sheaves 
Let f: M3N be a continuous map of topological spaces. 

Given a sheaf Y of Abelian groups on M, -vve define the family of Abelian groups, 

f,,, 77(U) := F(f -1 (U)), U is open in N, 

which together with restriction maps induced from 77, forms a presheaf of Abelian 

groups on N. It can be easily checked that f,, (. F) satisfies both sheaf axioms S, and 
S2 and, hence, defines a sheaf on N called the direct image or pushforward of F. 

Given a sheaf !9 of Abelian groups on N, we construct a sheaf f* (9), of Abelian 

groups on M in four steps: 

a. to any open subset UCM we associate a partially ordered set -Tu whose 

elements are open subsets V of N such that f -'(V) Q U; the relation is defined 
by V, :! ý V2 ý* V, g V2. There is a natural contravariant functor F from the 



Basic Facts And Definitions 19 

category -Tu to the category of Abelian groups represented by a commutative 
diagram 

V, V2 V3 

Ft Ft Ft 

V2 
rV3 

! g( V, 
! 9(Vl) V. V2 2 (V3) 

- 

b. using (1u, F) and the direct limit procedure we associate to U an Abelian group 

f-, (g)(u): = limýgm VElu 

c. the family of Abelian groups f-'(! 9)(U) together with the restriction maps 
induced form g form a presheaf of Abelian groups on M which, in general, is 

not a sheaf. 

d. applying the functor 4) to the presheaf defined in c. Nve obtain a sheaf on M 

called the inverse image or pullback of the sheaf 9 and denoted by f* (9). 

Therefore, in this section the definitions of presheaf and sheaf were given; construc- 
tion of a sheaf from a presheaf via space etal6 was described; stalks, exact sequences 
of sheaves and presheaves were considered as well as their kernels and quotients were 
presented along with the direct and inverse images of sheaves. 

1.2 Cohomology 

As it was shown in the sections above, to a certain extent, sheaves can be viewed as 

a next step generalization of such concepts as vector bundles, inheriting most of its 

structure. In this section the key theorems concerning homological algebra of sheaves 
are recalled. The material of the section constitutes the main results of cohomology 
theory of sheaves. The detailed view of the theory can be found in various t extbooks 
on Cohomology, while the material of the section is based on (Kod80]. 
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Let R be a ring with unity. The chain complex (g, 0) consists of a collection IcJiEZ 

of left R-modules and R-homomorphisms ci-I <-a-' ci such that Oi-jai = 0. 

c Ci-2 ci-I C, Ci+i, 

02 = 

where Oi is called a boundary map. 
We say that c is concentrated on [k, 1] if ci =0 for i< k2 i>1. Kernel of the 

boundary map, Ker ai = Zj(g) = Zi, is called an i-cycle. Image, Im ai+l = Bj(g) 

Bi, is referred to as an i-boundary. 

Since a' = 0, we have Bi g Zi. Hence we can define Hj(g) = Zj1Bj, called the 
i-th homology group (modulelsheaf) of the chain complex. c is said to be exact at C, 
if Hi(! g) = 0, i. e. Zi Bi. If c is exact everywhere it is said to be acyclic. 

A chain map is a collection JOj}j, 2z of R-homomorphisms 

Oi : Ci Ci such that the following diagram commutes for any i: 

C', Ci 

oi-I 
tt 

ci, ci 

Here some theorems linking the exact sequences and the cohomology theory can 
be recalled. Proves can be found in [Kod80]. 

Theorem 1.2.1 The exact sequence of sheaves 0) L' i)Lh)L1, )0 induces 
the exact sequence of cohomology groups 

ih 0 H'(L') H'(L) ) HO(L") H'(L') 
45' Hq(fl) Hq (L) h) Hq (L") Hq+l (L) 

Theorem 1.2.2 An exact commutative diagram of sheaves 
i h If ) )c Ic )0 

ot 'P" 
t 

k 1/ 
-L- 4 'T 1- )0 
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induces an exact commutative diagram of cohomology groups: 

0 HO(L') i HO(L) h) HO(L") H'(L) 

lp, 
t 

ot 10 "t . 0, 
t 

0 HO(7-4) j 
Ho (r) 

ký 
HO('2-11) Hl('Tl) 

Hq-l(, C) h) Hq-1 (L") Hq(, C') Hq (L) 

Ot 0" 
t 

. 0, 
t 

ot 

H q-1 k q- 1 (, y") Hq(T') I Hq(7-) (T) H 

1.3 Analytic family and moduli space 
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Let Y and M be complex manifolds and let 7r, :YxM)Y and ir2: YxM 
M be the natural projections. An analytic family of compact submanifolds of the 

complex manifold Y with the moduli space M is a complex submanifold F ----> YxM 

such that the restrictions of the projection 72 on F is a proper regular map (regularity 

means that the rank of the differential of v := 721F :F)M is equal to dim M at 
every point). Thus the family F has the structure of double fibration 

F 

A 
// \v 

YM 

where ft -= ir, 
IF. For each tEM the compact complex submanifold Xt = It o 

v-'(t) --ý Y is said to belong to the family M. 
Let us denote the normal bundle TAIB ITB of a complex submanifold B of a 

complex manifold A by NBIA- 

If F --ý YxM is an analytic family of compact submanifolds, then, for any tEM, 
there is a natural linear map (Kodaira 1962), 

kt: TtM )HO(Xt, Nx, ly), 
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from the tangent space at t to the vector space of global holomorphic sections of 
the normal bundle Nxly = TYjx, ITXt to the submanifold Xt --4Y, which can 
be described as follows. First, one can note that the normal bundle of the em- 
bedding v-1(t) --+ F is trivial and thus there is a canonical map pt : TtM 
HO (1-"-l Mi Nv-1 (t)IF). Then a composition dv o pt gives the desired map kt for the 

differential of v maps global sections of N, -i(t)IF to global sections of NX, ly. 
An analytic family F ---+ YxM of compact submanifolds is called complete if the 

Kodaira map kt is an isomorphism at each point t in the moduli space M. It is called 
maximal if for any other analytic family P ---+ Yx 1ý1 such that v-1(t) = for 

some points tCM and iE 1ý1 there is a neighbourhood 0C of the point i and 
a holomorphic map f: CJ M such that P-1 (? ) = v-1 (f for every PEU. 

Here the equality v-1(t) means that Mo v-1(t) and Tz o P-1(i) are the same 
submanifolds of Y. 

In 1962 Kodaira [Kod62] proved the following important theorem. 

Theorem 1.3.1 (Kodaira) If X --4Y is a compact complex submanifold with nor- 
mal bundle N such that H1 (X, N) = 0, then X belongs to the complete analytic family 
jXt :t C= M} of compact submanifolds Xt of Y. The family is maximal and its moduli 
space of complex dimension dim(cH'(X, N). 



Chapter 2 

Conic Structures and Conic 

Connections 

2.1 Connection on a fibration 

In this Chapter a (holomorphic) distribution is defined and, subsequently, the no- 
tion of a connection on a fibration is introduced. The conditions for existence of 
such a connection are considered. Following these, connections on vector bundles 

and connections along a distribution on the base are both defined. It is followed 
by definitions of curvature and integrability of a distribution. These are our basic 

technological tools. 
The material of this Chapter based mainly on (Man97]. 

2.1.1 Distributions and connections on a fibration 

Definition 2.1.1 A (holomorphic) distribution on a manifold F is a subsheaf D of 
tangent sheaf TF which is a locally direct summand. 

Distribution is said to be integrable if D is a subsheaf of Lie algebras, i. e. for any 
X, Y ED 

[X, Y]modD = 0. 

23 
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Being locally free D has an associated vector bundle which we sometimes denote 

by the same symbol, D. The rank of this vector bundle is called the rank of the 

distribution D. A local section is called a vector field tangent to the distribution. 

Definition 2.1.2 

1. (a) By a fibration 7r :FM we mean a morphism which is a submersion of 

complex manifolds. 

2. (b) By a connection on a fibration (F, ir) we mean a distribution DC TF for 

which the morphism d7r in the exact sequence 

0) TFIM ) TF dr) Z* (TM) )0 

induces ýn isomorphism D-2ý-47r*(TM). 

From the above exactsequence (2.1) it follows that a connection on a fibration is 

equivalent to giving a direct sum decomposition 

TF = TFIM ED 7r* (TM)) 

and its dual 

QlF = WFIM (D 7r*(Q'M). 

Such a decomposition corresponds to a splitting of d: OF ) PIF into the differen- 

tials in the horizontal and vertical directions: 

dh=i9: OF )7r*(Q'M), d,: OF )WFIM. 

Rom the geometrical point of view, this can be interpreted in the following terms: 
if n= dimM, then at each point xEFa connection (on a fibration) singles out a 
d-dimensional tangent subspace of horizontal directions, which d7r projects isomor- 

phically onto the tangent space at 7r(x) E M. 
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2.1.2 Obstruction to the existence of a connection 
In general, let 

lý: 0)S ") D -L. >, ý ) 
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be an exact sequence of sheaves on complex manifold F. By a splitting of the above 
sequence one means a morphism h: §)D such that its composition with j gives 
an identity on §, joh= id, ý. Then D=S@h(, §), and j is an isomorphism on h (,. §). 

The difference of two splittings, 

hi - 
h2: S 

maps S to the kernel of j. If this kernel is identified with S, then 

hi - 
h2 E Hom(iý, S). 

Conversely, if h is such a splitting and fE Hom(, ý, S), then h+iof is another splitting. 
Thus, the set of splittings is either empty or is, in fact, a principal homogeneous space 
for the group Hom(ý, S). 

Clearly, these notions can be localised. If the morphism i is a direct sum imbed- 
ding, then there is a sheaf of splittings which is a principal homogeneous space for 

the sheaf Hom(ý, S). This sheaf can be used to construct the characteristic class 

c(N) E Hl (F, Hom(, ý, S)), 

which is the obstruction for a global splitting of N. 

Proposition 2.1.1 

1. The obstruction to the existence of a connection on the fibration (F, 7r) on the 

complex manifold M is the class 

C(F, 7r) E Hl (F, 7r*Q'M 0 TFIM). 
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2. If c(F, 7r) = 0, then the group 

HO(F, 7r*Q'M 0 TFIM) = HO(M, Q'M 0 7r,, (TFIM)) 

acts transitively and effectively on the set of all connections. 

Proof. Explicitly, let us consider the sequence of sheaves 
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Hom(ý, lý): 0 )HOM(ý, S) )Hom(ý, D) )0. 

This sequence is exact when N splits locally. Let us set c(R) = J(id. §), where J is the 
boundary homomorphism, 

)Hl(FHom(jý', S)). 

Choose an open covering on F= UUj. If we have splittings 

Djui 

on the pieces of this covering, then the Cech cocycle 

(hiluinui - hiluinui) 

represents the class of c(N). If c(lý) =0 then HI(M, Hom(, ý, S)) acts transitively and 

effectively on the settings. El 

2.1.3 Connections on a vector bundle 

Suppose that 7: F)M is a vector bundle. Let -'F be the locally free sheaf of 
holomorphic sections of 7r. Then the sections of F* are functions on F. At every point 

of F we have a local coordinate system, part of which is lifted from M. The other part 

of this local coordinates system consists of a basis of sections of F* which are linearly 

independent at the point. On F we consider the sheaf S(. F*) of functions which are 

polynomial along the fibres of 7r. Any connection on F is uniquely determined by its 

action on S(Jc*). We say that the connection is compatible with the vector bundle 

structure if any local vector field X of the connection takes S'(. F)* to S'(. P) for all 
i>0. 
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2.1.4 Connections on a fibration along a distribution on the 

base 

Let 7r :F)M be a fibration, let DE TM be a distribution on the base, and set 
ToF = 

(d7r)-'(-7r*D). A connection on F along D is defined as a splitting of the exact 
sequence 

0) TFIM ) ToF 
dr 

)D )0. (2.2) 

Similar to Section 2.1.3, one can introduce the sheaf of coefficients of such a con- 
nection, i. e., -x* (D* 0 TFIM), and also define a compatibility with various additional 
structures, such as a vector bundle structure on F. 

Suppose that F)M is a vector bundle, F* is the dual sheaf of holomorphic 

sections on F, and P(-T*) is the corresponding relative projective space. Mirther, let 

us assume that we have local coordinates (x') on M, and that in the domain of the 
definition of these coordinates the sheaf F* is trivialised by a basis of sections pa). 
A trivialisation of any vector bundle, i. e., a choice of isomorp hism F -2L+ FO xM 
compatible with 7r, automatically determines a connection D= TFIFO on the bundle 
( these are the vector fields which are vertical relative to projection onto the fibre). 
Using this connection as our "origin" , we can describe all of the other connections by 

giving a section of the sheaf of coefficients. In this situation, the sheaf of coefficients 
is also trivialised by the choice of (Xa ) and w', and it is the resulting expansion which 
leads to the generalised Christoffel symbols. Thus the following proposition holds: 

Proposition 2.1.2 ([Man97]) The following structures are equivalent: 
(a) A connection on a vector bundle F)M which is compatible with the vector 
bundle structure. 
(b) A covariant differential V :. F F(& Q1M, i. e. a C-linear morphism of sheaves 
satisfying Leibnitz'formula V (af avf+f0 da, where a is a local function and 
f is a local section of _F. 
(c) A pair consisting of a connection D on the bundle Pm(. F*) M and a connec- 
tion on the vector bundle F3 PAf (-T*) along the distribution D. 
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2.1.5 Integrability and Curvature 

The Fr6benius form of a distribution DC TF is defined as the map 

(1): DxD) TFID, 

which is given by 

28 

(P(X, Y) = [X, Y]modD. 

Obviously, one gets (D(X, Y) = -, cb(Y, X). Also, using the Leibnitz formula a bilin- 

earity of 4) can be deduced as follows: 

[aX, YJ = aXY - Y(aX) 

= aXY - aYX - (Ya)X 

= a[X, Y]modD 

Hence, the R6benius form, (D, can be regarded as a mapping from A2 D to TFID, 

or as a section of the corresponding sheaf: 

, (b (=- HO(F, A2 D* 0 TFID). 

If D is a connection on 7r :F)M, then we call 7r. (A'D* 0 TFID) the curvature 

sheaf, and we call 7r,, (, cD) the curvature of D. 

Integrability of D is equivalent to the vanishing of 4). Locally, the integrability of 
the distribution is given via Fr6benius theorem: 

Theorem 2.1.1 Holomorphic R6benius theorem 

The following conditions are equivalent: 
(a) The distribution DC TF is integrable. 
(b) Each point xEF has a neighbourhood with local coordinate system (xa), 

a=1, ..., m, such that D is freely generated in this neighbourhood by a subset of the 

coordinate vector fields (i. e. by 91,9Xa ,a=1, ..., d= rankD). 

(The proof of the above can be found in [Ste65]). 
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2.2 Conic Structures and Conic Connections 

The second section is dedicated to the conic structures and conic connections. Some 

useful examples are presented in detail. The curvature and integrability conditions 
are considered. The material of this section is based on a book by 1. Manin [Man971. 

2.2.1 Introduction 

Conic structures is a very useful language for the description of various classic ge- 

ometry structures. They also turn out to be the only effective means of describing 

supergravity models and its cousins in various dimensions, i. e. when moving from 

classical geometry to supergeometry. Moreover, conic structures are essential for 

quantizing Hamilton systems with constraints. It turns out that Dirac's constraints 
can be explicitly solved, when lifted from the base to an appropriate conic structure. 
Such a trick of lifting was crucial in theories like Quantum Twistor Particle Theory 

and Quantum Twistor String Theory. 

2.2.2 Definition of a Conic Structure 

Let M be a complex manifold, TM its tangent bundle and let d>0 an integer. 

Definition 2.2.1 A complex closed submanifold FC GM(d; TM), such that the pro- 
jection 7r :F)M is a submersion, is called d-conic structure. 

In other words, for any xEM, F determines -a set of distinguished d-dimensional 
(complex) tangent directions in T., M corresponding to the points 7r-1 (x) C Gm (d; T. , M). 

Examples: 

1. Full conic structure 

Full conic structure by definition is a relative Grassmanian 

Cm (d; TM). 
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It is clear to see that the fibre of the natural projection 7r :FM is just the usual 
Grassmanian G(d, T, 

., 
M). 

2. Almost quaternionic structure 

Let M be a complex manifold of dimension 2k. Assume k is even. An almost 

quaternionic structure on M is an isomorphism defined as follows: 

TM )S G), ý, 

where S and .§ are holomorphic vector bundles of rank k and 2, respectively. Now it 

will be shown that the relative projective line Pm(S) has a canonical k-conic structure. 
Take 

i F= Pm(, ý) ý+ G(k; TM); F= Pm(, ý) 7) M. 

A single point of F is a one dimensional subspace (line) in ý(x), xEM. Its tensor 

product with S(x) is a k-dimensional subspace which lies in S(x) 0, §(X) = TM(x) 

. This determines a k-conic structure, which plays a.. very important role in the 

quaternionic geometry (see Chapter 4). 

Explicitly, let x1, ..., X2k be coordinates in some neighbourhood UcM, and let 

eA} be a local frame of S, f eA} a local frame of ý, 7rA the associated coordinates in 

S, 7r A the associated coordinates in ý, A=I.... 
) 
k; A=1,2. 

Then, one has 
AA 09a) ý ýoa (I)CA 0 eA, 

and 
-1 )=(, a a, (P eA (D eA AA a 

AA a where aa for some smooth functions ýPa I ýOAAI 5ý7- 
For any pE Pm(,. §): 

7r(P) =f X',..., X 2kl c 00 

and 
7r-, (X) = POP) ý-- P, 
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The coordinates 7r-4 defined above serve as homogeneous coordinates on P', so p 
Pm(S) can be described (up to scalar multiplication) as 

[y 7rAeAl 

Then, the map F --+ G(k, TM) is explicitly given by: 

i: F --> C(k, TM), 

p= [E 7r-4eÄ] ) span(-ffÄWý AÄ d9 a]* 

Thus, the mapping 
i: p ) SOP ) IE 7F 

A 
eA (9 eAl 

can be described as follows 

span[W-'(7r4eA 0 e-A)l 

span (7rAýP-l (eA 0 eA)l 

span(7rA ýOAA19-), 

where A=k; A=1,2. 

In other words, i(p) = spanfal.... I ak} , where 

OýA 7r 
Aa 

AAaa' 

Let us note, that in a specific neighbourhood U= f7r6 ý ý4 01) 

1 
aA : -` 

I(PA6 + -' (PAi I all 
7ro 

Also it can be easily seen, that DAA =E ýOAADII form basis in TM, SO CeA are linearly 
independent. Therefore, i(p) is k-dimensional subspace of TM, i(p) --+ G(k, TM). 
Thus, F is a conic structure. 

3. G3 structure 
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Let S be a standard 2-dimensional representation of space GL(2, C). Then GL(2, C) 

naturally acts on symmetric tensor product G)3S. If p: GL(2, C) ) GL(4, C) is the 

associated representation, we can define a subgroup G3 = p(GL(2, Q of GL(4, C). 
Let M be a complex 4-manifold and 7r: L*M )M the holomorphic coframe bun- 
dle whose fibres L* = 7r-'(t) consist of all C-linear isomorphisms e: C' Q' M. tt 
The space L*M is naturally a principal right GL(4, C)-bundle, where the right action 
Rq: L*M ) L*M is given by R_q(e) =eog. A G3-structure on M is, by definition, 

a principal subbundle of L*M with the group G3. It is clear that G3-structure is 

equivalent to a local factorisation of the tangent bundle into symmetric cube 

TM =o 
3s 

of locally defined vector bundle S of rank 2. Though such a vector bundle may fail to 

exist on the whole of M, the projectivised vector bundle Pm(S) is well-defined glob- 
ally. This G3 structure has been very popular recently in connection with holonomy 

problem (cf. Bryant [Bry9l], Hugget and Merkulov [HM99] ). 
Let us assume that M is a complex manifold with G3-structure such that S exists 

on the whole of M; it is called a spinor bundle on M. A linear connection V on 
S is called a spinor connection on M. Any spinor connection on M induces, via 
isomorphism TM = 03 S, an affine connection with holonomy in G3; moreover, any 
affine connection on M with holonomy in G3 arises in this way, at least locally. By 

a torsion tensor of a spinor connection we mean the torsion tensor of the associated 
affine connection. 

There is a canonical injective bundle map, i: PM(S*) Gr(2, Q'M), which 
can be unambiguously neighbourhood by the isomorphism i*(U) = v*(S*)(-2) 

V*(S*) 0 OA-2), where OF(-2) = [OF(- 1)]02, OF(-1) stands for the tautological 

sheaf on Pm(S*) and U is the relative tautological vector bundle on Gr (2,01M). 

Thus Pm(S*) is naturally a 2-conic structure F on M. 

This 2-conic structure plays a crucial role in the understanding of G3-exotic 
holonomies (see Chapter 3). 
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2.2.3 Conic connection 

Let F be a d-conic structure on the manifold M. 

Definition 2.2.2 A distribution of c-dimensional tangent planes in F is called tan- 

gent to the conic structure if for any xEF the projection of the tangent plane at this 

point onto TM(x) is the d-dimensional subspace corresponding to x. 

Definition 2.2.3 By a conic connection on F one calls a distribution of d-dimensional 

tangent planes which is tangent to the conic structure. 

Rom the definitions it is obvious that conic connection is given by distribution 
Dc TF. A conic connection, DC TF, is said to be integrable if it is integrable as a 
distribution, i. e. the R6benius map, 

DoD) TFID, 

xoy ) [X, Y]modD, 

is zero. 
Suppose that S is a tautological sheaf on Gm (d; TM) and SF is its restriction to 

F. SF C g*(TM), where 7F: F)M. Starting with the exact sequence 

03 TFIM ) TF ) g*(TM) )0 

one shall compute the coefficient sheaf of conic connections. For any point pEF one 
has an exact sequence of linear spaces: 

0) TF1M1p ) TpF "*) T, (p)M 3 0. (2.3) 

The point p can be considered as a d-dimensional subspace Sp of T, (p)M. Then from 

formulae (2.3) the exact sequence of linear spaces can be obtained 

0) TF1M1p 3 7r. -'(Sp) ý Sp ) 0, 

and, hence, the associated sequence of locally free sheaves 

0) TFIM ) ? F'-'1(SF) 3 SP ý 0. 
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Denote 7r. -'(SF) as TF, then one can write the following commutative diagram 

0 TFIM TF 7l* ) 7F* (TM) 0 
111 

7r. 0 TFIM Tj e SF 

A conic connection on F is a splitting of the lower horizontal exact sequence. 
Therefore, if V, and V2 are two different conic connections, then, see Section 2.1.2, 

Vl - V2 
= I-I0 (F, TFIM 0 Sý). 

A choice of local coordinates (x') in M trivialises TM, F, and the coefficient 
sheaves. The sheaf of coefficients of conic connections is 7rO(TFIM 0 Sý). 

For computational reasons it is useful to compare this sheaf, ir. O(TFIM 0 Sý), 

with the connection coefficient sheaf on the full Grassmanian Gm (d; TM) ) M. 

Proposition 2.2.1 (a) The sheaf of connection coefficients on the fibration GM(d; TM) 
M is E21 M0 sl (TM) = f2l M0 (f2l M0 TM)o. Its local sections are characterised by 
the Christoffel symbols "with no second trace": 

rb 
-a ab ý Wab) 

-'ý 
rcb o dx 

Oxc 

(b) Th em ap 

fconnections on the fibration} ) ffull conic connections} 

is sutjective and has the following appearance on the coefficients: 
d=1 

Q'MO(Q'MOTM)o ý(02plM) 0 TM)o; 

>1 

Q'M 0 (QlM 0 TM)o ý ((D2(f2lM) 0 TM)o (D (A 2plM) OTM)o. 

ProoL As in Manin [Man971. 
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2.2.4 Curvature and curvature sheaves 

Connection on a fibration 

Let F 7r) M be a fibration, and DC TF be a connection on a fibration. In other 
words, one has an isomorphism d7r : D--! -+7r*TM. The curvature'l) of D is an element 
of 7r. (A'D* 0 TFID), which can be decomposed as follows: 

, gt(A2 D* o TFID) = 7r. (A 2 7r*(9'M) 0 TFID) 

= q2M 0 7r. TFID. 

So, the curvature is a 2-form on the base M with values in the sheaf TFID of the 

vertical vector fields of the fibration. 

Full conic connections 

Let G= Gm (d; TM) )M be the relative Grassmanian on a complex manifold M, 

and let S be tautological sheaf. The sheaf A'S* OTG/D, %vhich contains the curvature 
of the full conic connection DC TG seems explicitly to depend on D. However, it can 
be represented as an extension of two sheaves which no longer depend on D: after 
factoring TG d7r) 7*(TM) by D d'r) S, one obtains the following exact sequence 
(zero if d= 1): 

0 )A 
2S* 

(9 TGIM )A 
2S* 

(9) TGID ß) A 2S* 0 ý* 
) 0) 

where, ý* = 7r*(TM)ID. 
For d>1 the integrability condition splits into two parts. Let 4ý0 E H'(M, A 2S* (g 

= (Q2M 0 TM)o be the 7r*(, 6)-image of the FY6benius form. The first condition 

for integrability is that (Do = 
If this condition holds, then 

4) G Hl)(M, ir, (A 2S* o TGIM)) C Q2MO sl(TM). 

This element, which is true curvature, must also vanish. 
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General conic connection . 
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Let F)M be a d-conic structure on a complex manifold M. Let Dc TF be 

a d-conic connection on F. Its curvature lies in the sheaf A2 S* 0 TFID. Again, 

A 2S* 0 TFID can be represented as an extension of two sheaves which no longer 

depend on D: after factoring TF dir ) 7r*(TM) by D dr) SF, the following exact 

sequence (zero if d= 1) is obtained: 

0)A 2Sý 0 TFIM )A 
2Sý 0 TFID ß) A 2S* (9 

$ý 
)0 

For d>1 the integrability condition splits into two parts. Let 'Do E HO(M, A 2SpD 

Sp) = (Q2M 0 TM)o be the -7r*(, 8)-image of the R6benius form. The first condi- 
tion for integrability is that (Do = 0. If (Do = 0, then the true curvature -(D lies in 
Ho (M, 7r., (A 2, ýF (9 TFIM)). 

2.2.5 An example of conic connection 

G3-structure 

Here ive use the notation introduced in Section 2.2.2, Example 3. Since 

S* = V*(S 0 (A 2S)(D2 )(-2) F 

and 
TFIM = v* (A 2 S*)(2), 

the conic connection coefficient sheaf on F is isomorphic to 

05 2s (D G)3s*. v*- (TFIM 0 Sý) = (D S* 0A 

A projective connection on F= Pm(S*) determines a splitting of the exact sequence 

0) TFIM 3 TF v) v* (TM) ) 

that is a morphism -y : v*(TM) ) TF such that dv o -y = id. Then, restricting -y 
to the subsheaf Sp C v*(TM), one gets a conic connection on F. Rom the exact 



Conic Structures and Conic Connections 

sequence which relates coefficient sheaves of projective and 2-conic connections, 

0) v*(S* 0A 2S*) )TFIMov*(2'M) )TFIM(gSý 

it is clear that the map 

lprojective connections on Pm(S*)} ) Iconic connections on F} 
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is surjective with its kernel given by sections of S* 0 A2S* . Hence, the kernel of the 
surjection 

flinear connections on Sl -ý+ fco nic connections on Fj 

consists of arbitrary sections of S* 0A 2S* @ E)3S*. Using this freedom, together with 
it is not hard to check that there exists a unique 2-conic connection D on F, called 

the distinguished 2-conic connection, such that the set pr-1 (D) contains a (necessarily 

unique) linear connection V whose torsion tensor is a section of 07S* 0 (A 2 S)02 C 
TM 0 Q2 M. Then, this section is nothing but the invariant torsion of the G3- 

structure. The vanishing of this section is a necessary and sufficient condition for 

the G3-structure to admit a torsion-free connection. 



Chapter 3 

Conic connections on 
G? n-structures 

Here we study first applications of the conic geometry. We start with a conic inter- 

pretation of the well-known conformal geometry in 3 dimensions and then use it as a 
launching pad for investigation of some new geometric structures. 

3.1 Conic Connections On Conformal 3-manifold 

The section considers the canonical 2-conic structure on conformal 3-manifold, distin- 

guishing a 2-conic connection and calculating its curvature sheaf. Also a correspon- 
dence between the conic and projective connections is considered in Section 3.1.6. 
The definitions, theorems and computations in paragraphs 3.1.1 and 3.1.2 are based 

on papers of K. P. Tod [Tod921 and Cheng-chih Tsai [CT96]. 

3.1.1 Weyl and Einstein-Weyl Manifold 

A Weyl space is a smooth manifold M equipped with 
(1) a conformal class of metrics, [gabl, 

(2) affine torsion-free connection D (called the Weyl connection 

38 
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which are compatible in the sense that the connection preserves the conformal class of 

metrics, i. e. in local coordinates, a chosen representative g for the class of conformal 

metrics is written as gab and the Weyl covariant derivative is written as D,,. Then, 

the compatibility condition becomes 

Dagbc ý Wagbc 

for some 1-form w=w,, dXa. 

The Ricci tensor for Weyl connection is defined as 

Wab 
--` 

Wcdxdbi 

where Wd is the curvature of the Weyl connection. abc 

Weyl manifold M is Einstein- Weyl if and only if the symmetric part of the Ricci 

tensor is proportional to conformal metric, i. e. 

W(a b) : -- 
1 

Wgab- 
3 

Proposition 3.1.1 

W(ab) = Rab + V(aWb) - WaWb + gab(VkWk + WkWk) I 

where Rab is the Ricci curvature for metric connection Va- 

ProoL Standard calculations following [CT96]. 

3.1.2 Conformal 3-manifold 

Let S be a standard 2-dimensional representation of space GL(2, C). Then GL(2, C) 

naturally acts on 3-dimensional (D2S, thereby defining the hornomorphism: 

GL(2, Qi GL(G) 2S) 1 
-2-- CL (3, C). 

It is a well known fact that Imp in GL(3, C) is precisely the 3-dimensional conformal 

group CO (3, C) ý-- SO (3, C) x C*. 
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Therefore, if M is 3-manifold equipped with a conformal structure [gabj) then 

there exists, at least locally, a rank 2 vector bundle, S)M, with the following 

isomorphism: 

(P: TM ) (D 
2s. 

Though such a vector bundle may fail to exist on the whole of M, the projectivised 

vector bundle Pm(S) is well-defined globally. So if one is interested in a local geometry 

of A it can be assumed, by shrinking M as necessary, that S and isomorphism 

v: TM 3 (D'S are defined globally on M. 

Note, that conformal class of metrics [gab] can be easily reconstructed from the 

data (S, W: TM ) (D'S). 
Indeed, there is a canonical decomposition: 

2122 4S* 2S*)02 QMc: -(D 
(G) S*) = (D ED(A 

I 

where ýb is the dual of G)2W : (D2 TM ý (D2((D2S). Since dimS = 2, the bundle 
(A 2S* )02 has rank 1. Hence, its image in (D2qIM under the inverse map, 

S*)o 
2ý 

(j)2QI 

is a line bundle. This is precisely an equivalence class (conformal) metrics 
(gabl, It is 

easy to check that [gab] 
are non-degenerate. 

3.1.3 A Canonical 2-conic Structure 

Let M be a complex 3-manifold equipped with a conformal structure, in other words 
there is an isomorphism, ýp : TM 22 O'S. Consider a relative projective line F= P(S), 

7r :F)M. There is a canonical embedding i: F GrM(2; TM), which 

supplements F with a 2-conic structure. This embedding iF ---+ GrM(2; TM) is 

uniquely neighbourhood by the condition that the pullback i*(S) is locally given by 

i (S) = 7r* (S) (- 1) 
1 

where S is the tautological bundle on Grm (2; TM). 
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A conic connection on F is a splitting of 

0) TFIM ) ZF )L)0, 

where L= 7r* (S) (- 1) 
- 

Note that since fibres of 7r are projective lines, one has an isomorphism: 

TFIM = 7r* (A 2S)(2). 

Hence, the coefficient sheaf of 2-conic connections given by 

7r* (TFIM (9 Sý) = 7r* (7r* (A 2S) 
(9*7r*(S*)(3) --: - A 2S (S) S* (g (D3S *= So 0 3s*. 

There is an exact sequence 

7r* (S) ) TFIM(-1) 3 
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where TFIM(-1) = 7r*(A2S) (1) and by 0(-1) one means the tautological sheaf on 
F= P(S). 

3.1.4 2-conic Structure in Local Coordinates 

Let f X'J be the local coordinates on M, eA denote a local frame of S, A=1,2. Thus, 

the isomorphism ýo: TM G)2S is given by: 

AB V(aa) ý Wa (X)eA 0 eB, 

= ýoa W(e-A (D eB) ABoa) (3.2) 

AB 1 
where functions W. and WAB uniquely represent W and its inverse ýo- - 

The embedding i: F) GrM(2; TM) is defined as follows: 

[7rAj span [7rA (PA' B 

A single point in F is a one dimensional subspace (line) in S(x), xGM. The symmet- 

ric tensor product of this line and S(x) is in (DS(x) = TM(x) and 2-dimensional. 
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This realizes a point in F as a 2-plane in TM and, hence, determines a 2-conic 

structure. 
Let [7r A] 

= [7ro, 
70] be the homogeneous coordinates on P1. Explicitly, let pES. 

E 7rA A[ A] Then p=P CA for some 7r . NOW 7rý form homogeneous coordinates on P(S). 
Thus [p] E P(S). 

1 31 7r([P]) = fxol 
.... X0 E 

7r-, (x) = P(SP) ý-- P'. 
So [p] is determined by the numeric data: (A, x27x30,7r']), where (7rA]. 

00 07 
17r 

[7rA] = [7ro, 7r'j = [1,7ro/7r'] U (7r'/7ro, 1]. 

So, pE Pm(S) can be described (up to multiplication) as 

7r 
A 

e-A . 

The realization of p as a 2-plane, Le. the inclusion 

-4Gr(2, TM), 

is then described as follows: 

SOP ) span (E VA eA (D eB), 

i(p) = span[ýo-'(7FA eA (D eB)l = span[7r A (P-l(e-A G) eB)l = span(7rA ýOABOO) 

where A= 11 2. 
So7 i(p) = spanfal, a2l, where 

aA = 
TR Baa 

ýOAB a* 

In a sPecific neighbourhood U= j7rl ýA 0}, 

I 
aA [WAD + To WAII49a- 

Note, that D(AB) : -- E ýOABaa form basis in TM, so aA are linearly independent. 
Therefore, i (p) is a 2-dimensional subspace of TM, i (p) "C (2, TM). 
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3.1.5 2-Conic Connection 

The projection 7r :F)M gives us the exact sequence 

0) TFIM ) TF ) 7r*(TM) ) 0, 

where TFIM is the sheaf of vertical vector fields and 7r*(TM) = 7r*(G)2S) .A pro- 
jective connection on F= P(S) is a splitting of this extension. There is a canonical 

sequence: 

0 )0(-1) ) 7r*(S) ) TFIM(-1) ) 0. (3.3) 

Since the fibres of 7r are CP', one can deduce that the sheaf of 7r-vertical vector-fields, 
TFIM, is isomorphic to 7r*(A 2S) (2). Rom this and (3.3): 

0ý 7r*(S)(-J) 
j* 

) 7r*((D2S) 3 7r* (A 2S)02 (2) ) 0. 

The map j defines a subsheaf 
T, F --+ TF 

via the following commutative diagram: 
0 
t 

7r*(A 
2S)(8)2 (2) 

t 

0 TFIM TF 

=t 
t 

0 TFIM TF 
t 

0 

0 

7r*(A 2S)02(2) 

I 

7r*(TM) 

3.1.6 Conic vs Projective Connections 

) 

) 

The main goal of this section is to understand a 2-conic connection in terms of projec- 
tive line connections on S. The question to answer is which of this 2-conic connections 
come from the projective connections. 
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Consider the following exact sequence 

0) 7F*(S)(-1) 3 7r*«D2S) 3 7r*(A 2S)02 (2) ) 

or 

7r*(A 
2S*)02 (-2) ) 7r*(S*) ) Sý = 7r*(S*)(1) ) 

or 
0) TFIM 0 7r* (A 2S*)02 (-2) )TFIM(&7r*(Q'M) 

, TFIM 0 7r* (£ý) )0 
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Note that TFIM 0 7r'(A 
2S*)02 (-2) = 7r*(A 

2S*). 

This exact sequence relates the coefficient sheaf, TF1MOv*(Q1M), for projective 

connections on P(S) = F, and the coefficient sheaf, TFIM 0 7r*(, Cý), for 2-conic 

connection on F. 
Since ir*(-7r*(A'S*) = 0, one has an exact sequence: 

A 2S* e (S (2) S*)o (8) (D2s* PT') A 2S (8) S* 0 (D3S* )0. 

Let us note that 
(S 0 S*)o (g 02S* =A 2S (g G)2S* (D (D2s* 1 

(3.4) 

which gives us the coefficients of projective connections. And also note that 

2S (D S* 0 G)3S* (3.5) 

corresponds to the coefficients of the 2-conic connection. 
It is clear that the dimension of (3.4) is equal to 9, while the dimension of (3.5) 

is 8. This implies that the map from projective spinor connections on S to 2-conic 

connection on F is su7jective. Thus, the following theorem holds: 

Theorem 3.1.1 Any 2-conic connection on conformal 3-manifold M can be pulled 
back to a spinor connection. In other words, any such a connection is induced by a 
projective connection on S. 
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3.1.7 Curvature of a 2-Conic Connection 

Let TC TF be a 2-conic connection. Then dr : TF -x*(TM) and d7r :T 
, 
CF ý-- 7r*(S)(1). 

Curvature of this connection is a global section of A2 L* (9 TFIT, which fits in F 

the exact sequence: 

2r* 220 
v* (A 2S)02 0 )TFIMOA F )A£FOTFIT )ALF 

Note that 

TFIM 0A2 L* = 7r* (A2 (S) (2) 0 g* (A 2 (S*))(2) = OF (4) F 

and 
-ir* (A 2S)02 (2) = -7r*(TM)ICF = 7r*(A 2 (S*)) (2) 0 7r*(A 

2(S*))02 (2). 

Therefore, the sheaf of "curvature tensors" fits into the exact sequence 

03 OF(4) )A 
2£* 0 TFIT ) 7r*(A 

2(S» 0 OF (4) 3 F 

which implies 

4S* 
ý 7ro (A 2£* 0 TFIE) 'po) A 2S (S) (D4S* e 

where 7r. '(A'L* 0 TFIT) is a sheaf of 2-conic connection curvatures. F 

Hence, the obstruction for conic connection being integrable can be understood 
in two stages: 

0) 4D, (R7) E G)4S* ) R' ) 4)o(Rv) ) 0, (3.6) 

(Do(RT) EA 2S 12) (D4S*. 

If 4)o(R') = 0, the remaining obstruction will be, as follows from (3.6), an element 
4), (R') E G)4S. 

Thus, the calculation above have proved the following: 
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Theorem 3.1.2 The obstruction for the integrability of a distinguished 2-conic con- 
nection is the symmetric part of the Ricci tensor, WABCD- 

Let us note that the freedom of choice for a conic connection is the sheaf A'S 0 
S* (D' S*- Using some of this freedom one can make 4)0(R7), which corresponds to 
torsion, disappear. But this condition) (Do(R7) =0 defines a whole class of 2-conic 

connection, distinguished connections, which differ from each other by the section of 
G)'S* = Q'M. In other words, this condition defines the family of Weyl-connection 
(torsion-free and conformal). 

3.2 G,, -structures 
Here the technique used for a conformal 3-manifold is applied to more general case. 

3.2.1 Basic Definitions 

Consider a complex manifold M, such that its tangent bundle TM is isomorphic to 
the m-th symmetric product of a rank 2 vector bundle S on M, i. e. 

w: TM ý--- G)'S. 

Note, that in this particular case dimM =m+1. If m=2 this becomes a 3- 
dimensional conformal structure studied in previous section. If m=3 this is a so 
called exotic (33-structure, extensively studied in the context of holonomy problems. 
The case m=3 shall be studied in more detail below/later. 

This datum, TM ý--- (DS, gives a rise to a host of conic structures on M, which 
can be parameterised by an integer kGf1, ... 1 ml - 

If U,,, 
-k+l is a tautological line bundle on Gm(m-k+1, TM), then one canonically 

defines an embedding: 

ik : IP(S) Gm(m -k+1, TM) 
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by the condition on the pullback, 

-,,: 7r*((Dm-kS) 

Each such embedding ik gives rise to an m-k+l-conical structure on the projective 
"spinor" bundle P(S). 

3.2.2 m-conic connection 

The purpose of this subsection is to understand m-conic (k = 1) structure in more 
detail. In particular, one wants, if possible, to establish the relation between the 

m-conic connection on P(S) and a projective connection on the same space, P(S). 

Theorem 3.2.1 Let P(S) c G(m, TM) be a m-conic structure on an m+1 -dimensional 
manifold with an isomorphism TM G)'S. Then 

1. if m=3 the sheaf of projective connection coefficients coincides with the coef- 
ficient sheaf of 3-conic connection, 

A 2s o o3s* o o2s* 
) 

or, in other words, a 3-conic connection on F is equivalent to a projective 
connection on P(S). 

2. if m>4 an m-conic connection is not equivalent to a projective connection on 
P(S); moreover, the obstruction for a conic connection is to be representable by 

a projective connection lies in 

HO(M, (A2S*)02 0 om-4S*) 

ProoL Consider M with TM = O'S, dim M=m+1. Let i: F= P(S) --4 
Grm(m; TM), be an m-conic structure. If U is a tautological bundle on GrM(m; TM), 
then 

== 
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Therefore, the coefficient sheaf of m-conic connection can be described as: 

7r, (Lý 0 TFIM) = 7r,, (7r*((D'-lS*)(1) (g, 7r*(A2S) (2)) =A 
2S (D (j) M-1 F S* 0 (D 3s*. 

Since 
0) 7r* (A 2S*)(_1) 

ý 7r* (S*) e0 (1) )03 

one has 

7r*(A'S*)"(-m) ) 7r*«D, s*) ) Z* «DM-IS*)(1) )0 

and hence 

0) -7r*(A'S*)O'-'(-m + 2) ) TFIM 0 ir*(Q'M) 

) TFIM 0 £F 
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where TFIM 0 7r*(Q'M) = 7r*(A 2SO QrnS*)(2) is the coefficient sheaf for projec- 

tive connection, and TFIM 0 L* = 7r*(A2S (D (Dn-'S*)(3) is the sheaf of m-conic F 

connection coefficients. The associated long exact sequence degenerates into 

lcoefficient sheaf of proj. connection} 

) lcoefficient sheaf of conic connection} ) Om-4S (S) A 2SO(m-2) 
) ..., 

where we used isomorphism 

7r. 1 (A 2S(8)(m-1) (-m + 2)) = G), -4S 0A 2S(2)(m-2). 

Finally, the isomorphism 

(D m-4S (g A2S(g(m-2) = (A2S*)02 (2) G)m-4S* 

completes the prooLD 
As in the previous case, G2, the obstruction to integrability of m-conic connec- 

tion can be described by two steps. The first obstruction is an element (DO(RT) (E 

HO (F, 7r* (TM) ILF (D A2, C* ), i. e. F 

2S)Om 27r* q)o(RT) E r(M, 7r* (A (M) A ((Dm-'S*)(2)), 
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i. e. 
(I)o(R') E (A 2S)m OA 2((i)m-lS*) (D (i)m+2S* 

7 

In other words, the first obstruction lies in a" torsion " part. 

3.3 G3 structure 

Let S be a standard 2-dimensional representation of space GL(2, C). Then GL(2, C) 

naturally acts on symmetric tensor product (D'S. If p: GL(2, C) ) GL(4, C) is the 

associated representation, we can define a subgroup G3 = p(GL(2, Q of GL(4, C). 
Let M be a complex 4-manifold and 7r : L*M )M the holomorphic coframe bundle 

whose fibres L* = 7r-'(t) consist of all C-linear isomorphisms e: C' Q'M. The tt 
space L*M is naturally a principal right GL(4, C)-bundle, where the right action 
Rg: L*M ) L* M is given by Rg (e) =eog. A G3 -stru cture on M is, by definition, 

a principal subbundle of L*M with th group G3- It is clear that G3-structure is 

equivalent to a local factorisation of the tangent bundle into symmetric cube 

TM=o 3s 

of locally defined vector bundle S of rank 2. Though such a vector bundle may fail 
to exist on the whole of M, the projectivised vector bundle PM(S) is well-defined 
globally. These C3 structures have been very popular recently in connection with the 
holonomy problem (cf. works by Bryant [Bry9l] and Hugget and Merkulov [HM99]. 

Let us assume that M is a complex manifold with G3-structure such that S exists 

on the whole of M; it is called a spinor bundle on M. A linear connection V on 
S is called a spinor connection on M. Any spinor connection on M induces, via 
isomorphism TM = (D3S, an affine connection with holonomy in G3; moreover, any 

affine connection on M with holonomy in G3 arises in this way, at least locally. By 

a torsion tensor of a spinor connection we mean the torsion tensor of the associated 
affine connection. 



Chapter 4 

Quaternionic Structures 

In this Chapter the notion of a quaternionic structure is reminded and connections 

on quaternionic structures are investigated. Using the torsion and curvature tensors 

some of the invariants of quaternionic structures are established. The results of this 

chapter are to be used in Chapters 5 and 6. 

4.1 Quaternionic Structures 
In this section different ways of defining quaternionic and almost quaternionic struc- 
tures are considered. Although both concepts were mentioned in the Section 0.1 and 
defined via the notions of holonomy and structure groups, it is useful to consider an 

equivalent definition, arising from the spinor structure of the tangent space of under- 
lying manifold. It gives us almost direct access to the calculations of corresponding 

coefficient sheaves in local coordinates. 

4.1.1 Definition 

Let M be a 2k-dimensional complex manifold, where k>1. 

Definition 4.1.1 A manifold with almost quaternionic structure is a four-tuple (M, S, S, 

in which M is a complex manifold, S and ý are locally free sheaves on M of ranks 

50 
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k>1 and 2, respectively, and 

TM )S0, ý 

is an isomorphism. I 

4.1.2 Equivalent definition 

51 

This definition can be paraphrased as a reduction of the structure group of manifold 
M. Consider 2k-dimensional vector space (C2k = (Ck 0 C2 

. Then GL(k, C) acts in the 

usual way on (Ck , and let GL(2, C) act on the right, by inverses, on C2 
. The combined 

induced action on C2k will generate a subgroup PCjk, 21 C GL(2k, C). Further, there 

will be a (k + 2)-fold cover 

S(CL(2, C) x GL(k, Q) PCjk, 2} c GL(2k, C) I 

where the' S' means that 2x2 and kxk matrices which follow are to have determi- 

nants, whose product is 1. In other words, S(GL(2, C) x GL(k, Q is the subgroup 
of SL(p + q, C) consisting of matrices of the form: 

*0 (0 
*). 

The action on C" is exactly the adjoint action on matrices of the form 

(1 0) 

X1 A quaternionic structure as defined above is a reduction of the general GL(2k, C)- 

structure group to PCf k, 21, together with the lifting to the left-hand group above. In 
the case of four dimensions, the reduction is equivalent to a conformal structure, since 

CO(4, C) ý-- GL(2, C) x SL(2, C), 

while the lifting is connected with the existence of spin structure. 
'There is another definition of an almost quaternionic structure, see [BE91], where one can also 

ask for a fixed isomorphism a: AkS ýA2, ý. 
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4.1.3 Torsion of an almost quaternionic structure 

Let M be a complex 2k-dimensional manifold equipped with an almost quaternionic 
structure. Choose any linear connections, Vo,, 70, on the bundles S and S: 

N7o: S)S0 QW, 

vo: S )SOQ 1 M. 

Consider the induced tensor product connection on TM, V= Vo 0 V-0. Locally, the 
isomorphism (p: TM )S0ý and its inverse V-1 :S (9 ý3 TM are given by 

V(OJ = ea4(X)eA 0 eÄ, 

=a V-'(CA (D eA) AAaal 

where (9,, eA are local frames in S, S respectively and e 
AA 

e-ý are holomor- ax, i eA) 
a1 AA 

phic functions. 

Let Vo :SS0 Q'M be represented by functions rA : aB 

70a�eA '-- -raA(X)eB- 'a 

Similarly, let -0 (D Q'M be represented by P" v 
aA* 

The affine connection V: TM TM(DQIM induced by VO and VO is described 

by following functions: 

ýP-1[(VOOVO)aMab)] 

1 [, qaeAA eA (9 e-A +e AA(, 749a AA eA 0 (7aaeA)l ýo bb eA) (D eA + eb 

(e AA 
ed AAFB d AAP'ý ed t9d) - l9a b AAad - eb aA BAad - eb 

aA Ab 

So, the coordinate symbols of the induced connection are 

Fd : -- (aae AA) 
edÄ-e AA rB edB. ed ab bAb1 aA BÄ 

+ 
aA Afil- 

This connection on TM will generally have torsion, that is given a scalar field 

on M, for which the following is valid: 

2 Vt,, Vb]f .. ý Tcb Vc 
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for some tensor T. lb = -Tb,,. 

Also, one can use W to move torsion from TM to S (D, ý, meaning: 

T OQ2MD d 2(S* 0 M T. b 
ýo 3 TADA15Bb ES0ý0A 

So) 

Tdab 
al . e, - T' -- TCC c 6AA6Bf3 CC ab AABb" 
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Since, A 2(S*(Dý*) 
= (2)2S* OA 2, ý* EDA 2S*O(D21ý*' this skew tensor can be decomposed 

into sum of two terms 

C TC'7 FC6 'ý'C * 
AABB ABAB T-, L"Af3ABI 

where there are the symmetries 

FCC - FC6 ABAB (AB)[Ai3i - 

PCC Fcc £'ÄfiAB (Ä, Ü) [AB] * 

The following theorem is due to Bailey and Eastwood [BE911. 

Theorem 4.1.1 The totally trace-free parts of FCC. and P90 are independent ABAB ABAB 

of the original choice of connections, and are, hence, invariants of the almost quater- 
nionic structure. 

Let us note, that FAýB`ý, AIý is 'totally trace-free' if all possible traces on the upper indices, 

e. g. FAC. vanish. ABAb' 

ProoL By definition: 
Tc ric 

- 
ric 

a'b ab ba- 
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Using the formulae (4.1) TACACBj3 can be calculated as follows: 

=a. eb DD) c DD) 
AABB AA , Bb C6 f ((19,, ee- (abe ec Tcc ec b Db a Db) 

DD (riR ec + rfl, ý. 
ec + eDD R -eb aD , RD aD DS a 

(rbDeRtý +r 
bbecD. 

01 

=eaeb 
cc 

- 
abeCC 

AA Bb(aaeb 
_jDjp 

R 
ea . 

JCJC a jCX(7N BB 
(raD 

AA R ddD + Pa'DeAA 
DlJs J 

+jDjl? Rb 
. 
6CjC b 

. 
6C69) AA 

(rbDe 
BB R ddD+ 

f'§. 
e bD BB DS 

ICC FC a. jq _ FC. a jC 
AABB aB AA B aB AA B 

+r, C eb b C, 
Aý + Pý7 eA bA BA' bA BJý 

6 

a ., 
b cc). where IACA6B 

b 
((9a eCC bo-a AA Bb -a 

Further on, it can be easily checked, that 

2 FACACB j3 =2 F(CACB) 
IAb 

eaba, 4eb 
cc CC) 

jj (i9,, ecc - i9becc) +e AAeB baB AdaaeB 
abea 

+Fc (Jqec 6qec cA A BB B BA) + rc (Vec J7ec A) cB A AB BA 

ucuc +fe7 (5cec b+ 6Aýe L' e cA BAC- 
f6 Cec c 

Bb cbA AA+6A BA) 

and 

2PAcAdBj3 = 2P(CA(Býj 
(Ab) 

ab cc CC) ab 
. 

(a eCd -e qbeCC` = eAAeBb(aaeb Obea 
BAe AB aBa) 

+ 
cA e cB 

rc (JB(7e'BA + JAC 
Bb) - ]PC (JB(7ecAA + JAce'Ab) 

c, (3 AB 
Ce'b 

- JB BA Cec 
b) - 

+f6 Oce' A- bcec A) + fcýýA (JA 
BA 

Using the symmetric/anti-symmetric notation, this can be rewritten as 

2 FAC'ý CC) a. b irC Cc. ic 
'ABb = (, 9,, ecc 6ee, e (4.2) b- (9be-a (AA B) B c(A B)[A3 

+' 
B] c[A (AB] B)) 

C6 Cc CC) a b,,, +FC c 2 FA jq -C 6c [A e c[Ae (4.3) ABb = (aaeb 19bea eAB 'BI(A B) - rc(Aec[Ah) BI) 

where brackets and square brackets denote respectively symmetrisation and anti- 
symmetrisation on the corresponding indices. 
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According to formulas (4.2) and (4.3), the trace-free parts of FC'7 - and PC6 
AABB AABB 

would be the trace-free parts of 

ab f3 +aeb cc 
- i9becc) AAeB BA AiXalleb a 

and 
V b'ý 

_, a b cc CC) 
,e- 19bea A'AeB BA , Af3)(19aeb 

which are independent of the original connections. 
Any change in the original connections can be written as fC 'ýC C 

where aB -- B+ 
OaB) 

QC is an arbitrary tensor and coefficients with'tilde re resent coefficients after the aB p 

coordinate change. Then, as can be seen from the formulas (4.2) and (4.3) above, the 
difference between F, b and PC6 

- will lie in the trace parts, i. e. the change in C6 
AAB AABB 

connection will affect only the trace parts of torsion. 
Therefore, the trace-free part of FCC is independent of the original choice of AABb 

connections. 0 

Lemma I Given an almost quaternionic manifold (M, S,, ý, ýo), there exists'a pair of 
connections on S and S* such that the induced affine connection is torsion-free. 

Proof. Easily follows from the above calculations. 

Definition 4.1.2 A scale on an almost quaternionic quadruple (M, S,,. §, W) is a 
choice of a pair (E, 9) of nowhere vanishing sections: 

E= r(M, A kS*), g= F(M, A 2, ý*). 

The following theorem is due to Bailey and Eastwood, [BE911. 

Theorem 4.1.2 Given a scale on (M, S,, §, W), there are unique spinor connections: 

vo: S )S(E)Qlm) 

'70: S So Q'M. 
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such that 

vo (6) = ýo (g) = 
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and the torsion tensors, FCC. 
- and PCC of the induced affine connection are ABAB ABAf3l 

totally trace-free. 

Definition 4.1.3 A quaternionic structure on a 2k-dimensional complex manifold 
N is an almost quaternionic quadruple (M, S,, ý, ýo), such that its invariant trace-free 
parts of FC6 (, and PCý7- 

- are zero. ABA ABAB 

4.1.4 Torsion and curvature tensors 

Torsion 

In local coordinates the torsion tensor can be expressed as follows 

Tc AA 
_ rA e 

BA 
_ rA e AB) c bd = (Ö[bedj 

[bB dj [bÜ al eAÄ* (4.4) 

Using formulas (4.2) and (4.3) and the fact that 

Tcc FCC -cc 
AABB 4 AABb + FAABf3l 

torsion can be rewritten as 

Tcc ea, eb cc CC) 
AABB AA Bj3(aaeb abe, 

66 AAB4ý3 - rAAi36C + ]PBCbA 
A+ 

]PBIýB'A- 6AC (4.5) 

Trace free parts of torsion 

2FCC)[Ä, üj ---z 
(L9aeCC d9beCC)e a 

fÄe 
b rc 

e- 6c (AB b-a (A B c(Ael ), üj - B)[Ä B] c[Ä (AÜJ B) 

a eb + Ic ec 2Fcc ecc ecc)e äý) - rc - ec - bc IABJ(Äfi) : (& 
b-ba [A(A B]B) c[A B] (Ä c(A [AB) BI 

'Race free part of F(CACB)[Af3j is 

cc CC) ab RO(FCC)[Abl) = ao((a. e abe e (Ae (AB ba [A Bib) ý ol 
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since rank ý=2. While 
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'n-0 CC CC) a. eb P[CACIWO = r[YO((aa6b 
- abea e [A(A BIB) (4.6) 

4.1.5 The flat model 

Let T be ak+2 dimensional complex vector space, together with a chosen volume 
form eEA k+2 (T). Then M= Gr(2, T), the Grassmanian of 2-dimensional subspaces 
of T, has a natural almost quaternionic structure which can be constructed as follows. 

There is the trivial bundle T=TxM over M. Denote by ý the tautological 

sub-bundle of T, whose fibre is the subspace of T defined by the point in the base. 
One can now define the bundle SA on M by the exactness of 

It is a well known fact that the tangent bundle T of a Grassmanian is canonically 
isomorphic to the bundle of homomorphisms from the tautological bundle to its com- 
plement, so it results in 

T= S* ok 

Therefore, Gr(2, T) has a canonical almost quaternionic structure. 
Alternatively, one also can define M as the homogeneous space SL(T)/P where P 

is the subgroup consisting of matrices of the form 

* 

* 

By general arguments, the tangent bundle to any homogeneous space GIP is the 
homogeneous bundle induced from the Adjoint representation of P on g/p where g 
and p are the Lie algebras of G and P respectively. This directly gives the quaternionic 
reduction of structure group discussed in Section 4.1.2. 

It is now possible to set up a flat space twistor correspondence. There is a double 
fibration on the flag manifold F= F(1,2, T), the parameter space of one dimensional 
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subspaces; inside two dimensional subspaces of the k+2 dimensional complex vector 
space T: 

F(L) 21T) 

\ 
Y= P(T) M= Gr(2, T), 

where P, the twistor space of M, is the projective space of T, and the maps 'forget' 
the appropriate subspace. 

4.1.6 The Curvature of an induc6d affine connection 
Thinking behind the formulas and calculations in this Chapter is largely based on a 
book by W. Rindler and R. Penrose [PR84] and works of T. Bailey and M. Eastwood 
[BE911. 

Let (M, S,, §, W) be an almost quaternionic manifold. And let VO, V^ 0 be spinor 
connections on S and ý, respectively, and also let V be the associated induced affine 
connection. Its curvature tensor, in local coordinates, is given by 

Td 
, ýb 

Vgd 
(9, = 

Rdb,:, 9d. 

There is an associated "spinor" curvature: 

DD abc DD d 
(PAA(PBbP wR AABbC(ý ' CC d abc 

Since the holonomy algebra of the affine connection V lies in sl(2, C) ED gl (k, C), 
the spinor can be decomposed as a direct sum as follows 

DD 
AABi3C& 

xDD jAb](AB)C + H(Ab)[ABICW, 

-b DD +[H(' C AB)[Abl(ý + fC[jABj(Af3)6ljý, 

Let us choose a scale, 6 --` E[A ... B) it : -- gAb, and assume that the affine connection 
V preserves them, so that 

ve = 0, ve = 
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Then the its holonomy algebra of this affine connection lies in sl(2, C) ED sl(k, C). 
Hence 

XL?. ý.. vD 
JAB](AB)C EAB"(AB)C) 

HD -b 
(AB)[Ai3]6 gAbH (AB)CI 

for some tensors X, fl. 

With this in mind, one can write down some symmetries of the curvature quanti- 
ties: 

VD yD C 
"AbABC `[Ab](AB)CI 

XABABC = 0) 

HP. = HE! - WC. = 0) ABABC (AB)[ABICI ABABC 

where the left-hand equations are immediate consequences of the definitions, and 
the other two follow from VAAEB M :` 

These two quantities can now be decomposed into irreducibles. The conventions 
are as follows: 

VD - QD + VD jD D jD "ABC - ABC 'ABC + SAB 
c- 

kSC(AJý) 
- 2AC(A B)) 

D 5D 
Bp OP - 

AÄÜABÖC + kA fiC[A - 
2(I)ÄfiC[A HLABC 

ABABC ABABC Ä B] 

where the quantities introduced above have the property that if they have a possible 
trace, then they are totally trace-free. This also implies the following: 

xFD = qfD ABC (ABC) 

VD - yD yD -0 II 'ABC - (AB)C) I(ABC) - 

SAB :: --: S(AB) 

AAB= A[ABI 

ED -0 AbABC - (Af3)[ABC] 

OP. E)Dý 
ABABC ý (Af3)[ABIC; 

6Aý)B[ABCJ 

AAbAB = A(Ab)[AB] 

4)AbAB ` (D(Ah)(AB)' 
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There is the Bianchi symmetry for the induced curvature on T, 

d Td Týd = 0, [abc] + V[a bc) + Tl' [ab c]e 

which provides numerous, relationships between the above curvature quantities and 
two irreducible parts F and P of the torsion. 

Curvature 

Recalling formula (4-4), let us denote 

AC AA 
_ rA e 

BA .rA. 
e 

AB) 
6c bd = (Obed 

bB d- bB d AÄI 

or 
AC VAA c 

bd -"bd eAA, 

Thus Vbed ý Abcdec and Tb'd = A' . It follows that [bd] 

Va(Vbed) --` Va(Abcdec) ý OaAbcdec + Abcd '7a ec. 

Curvature tensor is defined as 

[Va7 Vbjed ý ±Racbdec. 

Looking closer it can be seen that 

[Va, Vb]ed :ý Va(JAbfdef) - Vb(Af ef ad 
) 

0,1(17ýbcd)ec + lý4fdIýýcaf ec- Ob(1ýýcad)ec 
- 'ýýafdlýl'bf ec 

This means that the tensor can be rewritten as 

ccc 
abd ý I[abld + I[abld- 

where Ic cc Af AC Ijabld* For [ab]d = a[a(Ab]d) and [. bld [bd alf , 
Firstly, let us take a look at c 

time being the anti-symmetrisation on indices a and b shall be omitted. Thus 1[cabld 

can be written as 
cfc* VAA vDD 
acbd = eAAeDD`bd "ad 



Quaternionic Structures 

Using the fact that ef JM it's easy to check that AAef AA 

ef ef 
DD 

_ ]pD j)? 
_ rD. aD 

AA 
4b 

AAalef aA A aA A' 

Also note that 

cf DD f DDoa(ec 
_jDjDa 

(, c -e , . 6) = eDbe AA(aaef 
)= 

AAef 'D AAaD 

enabling us to rewrite i2 as 

lb, XAA + ec Z) rb jADXbAA 
ad -(ec b]pD 

jd 'acbd 
aA D aA DAbd 

AA BA rA. eAB). + a, (e 'd A bB _d AA)ab(ed 
) -911(eA'A)FA - 19" (ec bBe A) 

Now, let us consider 1,1, 

ic AAj c XbAA] j- Ob[e 
d [abld ý aa[6cAAXbd 

AA d 

A c A) 
A)rA eBA - 

O[a c ]pA AB Ola(e 
dA b]B 'd 

(6 
, je AA) 

Dbj (e - O[a(ec 
AA) d 

ec BA a[a(r A)- ec -e 
A B, (]pA 

AAed bjB AA d 
a[a 

blf3 

c BA)rA 
DAbýTA. e AAa[a(ed bJB - ecAAa[a(ed )" b]B' 
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'abld and 
'[ab]d ( note that the last three terms in formula fo Adding both I[ r i[ca and the I CC I(abld I 

first three terms on the formula for I[Cabld cancel each other out) and slightly changing 
the notation we get, 

c rC 6CXAA 6C VAA Rabd ý -(ec + ec - lpý7 - C6 faA A bld CC [aA A-"bld 

cB CB C + ec, ýedCa(a(rbCjB)+6C6ed 19(a(rbjj3) 
c BC) CB +6 afa (ed rbC]B + ecC6afa(e C 

.1 C6 d) rb] f, 

Now consider RCC d CCR 

abDb :ý eDbec ccibd* 
It follows from above that 

PCC CFC, d AA + ipA 5B64 + riA 5A B 
abDb Ä [aA(eDbabl(ed b]B DD b]fi 

c ]pCÄ(ed AA) + ]pA 5DB6, A + 
Ä. A5B ÖA 

[a Db 
Ob] (ed 

b]B r 
b]A 

-ö) 

+ L' 
ü 

BB +5D6"g9[a(IPC 
b), Ü D b]B) + ÖDC5b19a] (FC 

+e d BC) C CB) C 
Db 

(O[a (ed rbl 
B+ 

a[a (ed r'blä 
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After some calculations it can be shown that 
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T? CC 
- 6CrC ]pA C rC iFA. C(Ofar c )+6DC(a[a]PbCl 

abDb -b [aA bJD + JD + 6b (4.7) [aA b]D D bJD b 

which in turn can be rewritten as 

Roo 6CRC (74bD) 
'abDD D abD 

+ 6D 

for some suitable tensors Cb and RI 
kCb 

abD 

Also, note that 

Rcc. a. eb -.. DCC 
AABBDD AA , BB " "abDD 

and 
Rcc 6CRC -+ 6(7 PC -- AABBDD D AABBD D"AABBD* 

Curvature quantities associated with conic and projective connections 

When calculating the Fr8benius form for conic or projective distribution on quater- 
nionic manifold (Chapter 5), curvature tensor arises naturally. It might be useful to 

write down some of these formulas at this stage. 
if ea = i9a + ri,. -a -7r'ý '9 ea are the spanning vectors of the distribution aC a7rD I( 

CAA 

associated with projective connection on S, see Chapter 5) it can be checked that 

[eal eb] RD 
abO7r -D 

(97r 

Consider 

abab+abb 
feb(e 

a [eAAea7 eB, 01 =e AAeBb 
[ea) eb] AAea(CBi3)eb e-B 

AA) ea i 

cc which, with the help of the fact that e. = ec eco, can be rewritten as 

ababcc+ pD. IeAAea) e beb] =e A'Oa(e' b)ec -e bab(C e BABB AA) -AABBC 
197rb 

= -(e ab i9a e C(ý 
-eba AA Bb b BtýeAAabeac6)eCO 

.000 +RýABb(ý7r 
agb 

(4.8) 
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In case of zero-torsion according to (4.5) 
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(e ab 
bOae 

cc 
-eb 6e 

a CC) 
e rc - 6q + rc -- 6C - ]PC - 6q - ]PC - . 6c (4.9) AAeB bB AAObp-a CC - AAB B AAB B BBA A BBA A 

eai eb eb], thus resulting the following formula for le'AA 
Bb 

le a Ca, eb beb] 6(ý + r6 AAb AA B AA B 
(FCBbA 

A BbA - 'ýCAA - 1ý6 A)eC6 

60 
+ RLBf367F 

o97rb 
(4.10) 

4.1.7 Curvature in the quaternionic case 

Assume now (M, S,, ý, W, 6, t) is a quaternionic manifold with fixed scale, and V is 

the unique affine connection on M which satisfies the conditions of Theorem 2 and 
has a zero torsion. 

R DJ? [(, pD 
- 2A jD YAb + 2jD AABbCd ABC C(A B) [A(')B]cAf3 C 

JjD 2AABJ1ý9f3)6 
C) AB66Ab (A 

where 
D. jD 
AAB, ÜC = (, pD 

c- 2AC(A 5D )gÄü +2 ")BICÄÜ 
AB B) [A 

and 
R D. 

.. =(DD eA6_ 2AAB jD - (4.12) AABBC AB(ý (AEf3X! - 

q, D The three curvature quantities, ABC) 
q)ABAb and AAB appearing above have the 

following properties: 

qfD = qjD ABC (ABC)) q'ACBC = 0) (4.13) 

(DABAb = 4)(AB)(Abp AAB = A[AB]- (4.14) 

4.1.8 Einstein Quaternionic Structure 

Definition 4.1.4 A quaternionic manifold (M, S,, ý, ýp, E, e) with a fixed scale is called 
Einstein if ýD = 0. 
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Lemma 2 VAAABC =0 for an Einstein quaternionic structure. 

Definition 4.1.5 A Ricci flat scale on a quaternionic manifold is a scale for which 
both (D =0 andA=O. 

Theorem 4.1.3 Given a quaternionic manifold (M, S,, ý, W, -, 6), such that the as- 
sociated affine connection, V, has A =ýA 0, and if there eXiStS eBC E r(m, A2 ) 

satisfying VAAeBC = 0, then (M, S,, ý, W, e, 6) is Einstein and eAB = CAAB for some 
constant C. 

ProoL VAAeBC =0 implies that 

eD[A(I)BICÄfi - P-C[A")B]D. Äh = 

If it is antisymmetrized on indices DAB one obtains 

6[DA4'ýB]cAb ý-- 

which can only hold if (DABAb = 0. Thus (M, S, ý, w, --, 9) is Einstein. 

Also, the torsion-free condition and VAAeBC =0 imply that 

q, D+ TE 
- 2AC(AeB)D + 2AD(ACB)C : -- ABCeED ABDe-CE 

The terms involving AAB in this equation are as a consequence of the symmetries listed 

in equations (4.13) and (4.14), in a different irreducible representation from the terms 

XpD involving ABC. Hence, the terms involving AAB must vanish independently. But 
these constitute essentially just the antisymmetric product on the space of two index 

antisymmetric objects, and thus vanishes if and only if AAB and 6AB are proportional. 
Since by hypotheses AAB 54 0 the proof is complete. 0. 

4.1.9 Quaternionic Kiffiler and hyper-Kiihler manifolds 
Definition 4.1.6 A complex quaternionic Kdhler structure on an almost quater- 

nionic manifold (M, SI, ý2k, W) of dimension 4k is the following set of data: 
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(a) a pair of non-degenerate sections _- EA 2S*, gG A2ý*; 

(b) a pair of linear connections 

vo: s )S(2)Q'M, 

vo: S )S(DQ'M 
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such that 70(E) 0, VO(9) = 0, and the torsion T,, b of the associated induced connec- 
tion V= Vo 0 VO is zero. 

Theorem 4.1.4 QBE91]) On a quaternionic Manifold, there is natural one to one 
correspondence between compatible quaternionic lfdhler metrics that are not hyperKdhler, 

and Einstein scales for which AAB is of full rank. 

Conclusion 

In this chapter a deeper look at conic structures in particular case of quaternionic 

and almost-quaternionic manifolds Nvas taken. Invariants of the conic structures were 
investigated via considering the torsion and curvature týnsors of a conic connection 

on the structure. 



Chapter 5 

Twistor geometry of quaternionic 
Einstein manifold 

5.1 Coordinates and coefficients 
The local coordinates (Xa ) are chosen on 4k-dimensional manifold M equipped with 

quaternionic structure, along with a local trivialisation of the sheaves S and ý by sec- 
tions 7r A and 7FA, respectively, where A=1, ..., 2k; A=1,2. A quaternionic structure 
is determined by 16k 2 functions e on M which describe the spinor decomposition: 

, p-'(dXa) =aA0 Ir 
A 

AA7r 

or, in dual bases, 

ea Oa (7FA (D 7rA) AA 

The choice of coordinates trivialises several fibrations and gives us a reference point 
for describing all possible connections be means of their coefficients. 

66 
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In particular, a covariant differential V: S)S0 Q'M on S can be described 

using the coefficients rAc or rA N, 
as follows: BCB BCO ý -c . 

A=rA B , 7w Bc7F (2) dxc, 

(ids (g ý0-1)(77rA) = FA 
C6 (D 7r 

B (D 7r 
c (9) 7r 

6 
B 

The differential V induces a projective connection on the fibration F= PN[(S*) 7,, 

M. This connection depends only on the traceless part of rAc (the convolution with B 

respect to A and B). All connections on this fibration can be obtained in this way. 
F has a 2k-conic structure, c: F Gm (2k, TM), uniquely defined by the fact 

that 
c*(St.. t) = 7r*OT-1). 

A connection on F, in turn, induces a 2k-conic connection on F: 

7r* (S*) (- 1) C 7r* (S*) 0 7r* (S*) = 7r* (TM). 

The conic connection is the lifting to TF of the subsheaf 7r*(ý*)(-1): 

0) TFIM ) TF dr) 
Z* (TM) ) 0. 

(Note that 7r*(TM) contains 7r*(, 
§*)(-l). ) 

Thus, the projective connection on F, which gives a lifting of all of . 7r*(TM), in 

particular gives a lifting of the subsheaf. The corresponding mapping on connection 

coefficient sheaves is surjective; it can be described as a symmetrisation with respect 

to BC in the coordinates. In fact, this mapping is actually 7r,, (a), where a is the 

morphism in the exact sequence 

0) TFIM & Q'FIM(l) 0 7r*(ý) 3 TFIM 0 7r* (S 0, ý) 

TFIM 0 -7r* 
(, ý) (1) ) 0. 

The typical fibre of 7r is CP' and 

TFIM 0 Q'F1M(I)jcpl = 0(2) 0 0(-2) 0 0(1)ý-- 0(l). 
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Which implies that 
H' (CIPI, 0 (1» = 

The surjectivity of 7r. (a) follows because 7r. (TFIM 0 Q'FIM(l)) = 0. This, in turn, 

follows from the exact sequence 

0) 0(-l) -) 7r*(ý) ) TFIM(-l) ) 

tensor multiplied by Q'FIM(2): 

0 )Q'FIM(l) )7r*(S*)OQ'FIM(2) )TFIM(DQ'FIM(l) )0. 

Since 7r. '(QIIM(l)) =0 and 7r. '(TFIM 0 Q'FIM(l)) =0 one has 

0) S* 0 7r. (WFIM (2» (TFIM 0 WFIM (1» ) 0) 

and then, using the sequence 

0) Q'FlM(2) ) 7r*(S)(1) ) 0(2) ) 0, 

one obtains 
7r,, (Q'FIM(2)) = Ker (S 0Sý G)2 (S)) =A 2S. 

Finall the kernel of 7r. (a) consists of the traceless symbols rA which are anti- Y, BC& 
symmetric in BC, and this means that 7r,, (a) can be identified with symmetrisation. 

Let us now summarise the description derived above. Stipulating the obstructions 
to the existence of the connections vanish, the following surjective maps are obtained, 

all of which are defined invariantly: 

lconnections on S} ) lconnections on the fibration PAf (S*)} 

fc- conic connection on M. I 

WA )ý (]pA d JBArc6) (FA mod jAFCJýý + rA 
BCO BCOMO BCO B [BCIO). 

However, the arrows in the reverse direction (for example if one wants to describe 

c-conic connections by choosing traceless anti-symmetric symbols which determine a 
connection on S) depend on a coordinate system. 
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5.2 Manin obstructions and torsion 

Let M be a 2k-dimensional (complex) manifold , such that TM E3S0ý, where 
S,, ý are of dimensions k and 2. A local trivialisation of the sheaves S and 'ý is chosen 
by the choice of sections 7r A and gA, resp ectively, where A=1, k; A=1,2. A 

quaternionic structure is determined, as above, by functions e on M: 

W-l(dXa) =aA (9 7r 
A 

AA7r 

or, in dual bases, 
aI CAA19a : -- (ýP*)- (ITA 

The choice of coordinates trivialises several fibrations and gives us a reference point 
for describing all possible connections be means of their coefficients. 

Let h: 7r* (S*) (- 1) ) TF be a k-conic connection. Then, its Fr6benius form (D 
has a canonically defined quotient (Do(h) = d7r((D(h)). It can be seen as 

(Do(h) : 7r*(A 2S* (-2)) ) 

So, if X and Y are two local sections of S*(-l), 

(Do(h)(X, Y) = dv[lt(X), h(Y)]mod 7r*(S*)(-I). 

d)O(h) can be split into two irreducible components: 

4)o(h) = (D'(h) + ýD2 (h), 00 

(Dl(h) C (S* A 2S)o 0 (G)2ý 0 0 

4)2 C i(S) 0 ((D2, ý (g S)o O(h) 

where i: S) S*OA 2S is determined by the formula i(ir A) ý 7rB 0 7rB A 7rA. 

Here V and (p2 are called the first and second Manin obstructions, respectively. 00 

Theorem 5.2.1 (a) The first Manin obstruction, (P01(h), does not depend on the 

choice of h. (b) There exists a unique 2k-conic connection h for which the second 
Manin obstruction is zero, i. e. (p2 = 0. It is the only 2k-conic connection which can 0 
be integrable. Such a connection will be called a distinguished conic connection. 
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Proof. Let dim M= 2k and TM be isomorphic to S (9 rankS = k, ranký =2 

(p: TM ) soý. 

Explicitly, let xII... IX 
2k be coordinates in some characterised UCM, and let 

eA} be local frame of S, feA} local frame of ý, 7rA coordinates in S, 7rA coordinates 
in 

Also, 

a)= 
eAA ýO(aXa a 

(X)eA 0 eA, 

ý0-1(eA (9 eA) ea AAaa- 

If h: -7r*(S)(-l) ) TF is a k-conic connection. 

7rAeAA, 

where 
eAA =: ea. ýaa 

b60 
A+r AA(ý7r a7rD 

By definition, 

(Do(h) = dir((D(h)) = dg[h(X), h(Y)Imod7r*(S)(-I). 

Then, 

, cDo (h) (2) (7rA 
, 7rB) = d7r [h (7rA) (1), h (7rB) (1)] mo d7r* (S) (1). 

Taking (5.1) into account, let us consider 

(5.1) 

&T[h(7FA)(1), h(7TB)(1)1 = d7r[7r A 
eAA) 7r 

B 
eBb] 

= d7r (7r A (eAA 7rB )eBb _ 7rB (eB 
'1ý7A 

)eAA 

AB +7r 7r [eAAi eBf3l)* (5.2) 

From (4.8) it follows that 

A 66b bb6! jArb dT[h(7rA)(1), II(VB)(1)] 
--": 7r 7r 

. 6F 6e"& a, - 7r 7r b Bf36e'AA(9c AA B 

-7r 
A 

7r 
B (C ab 

ba"e cc -cb abecc)ec - a, AAeB b Bbe'AA a cc C" 
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It is clear then that 

= 7FA7rb(ea _ eb d7r [h (7FA) (1), h (7FB) (1)] mod 7r* (S) (1) 
, AAaclecBb _Bf3abecAA)ac 

A iý! jbb bc. a_B, Cj4 Dc. ac. 7r r 
A(AC) e BB c7 7T Dr B(BC) e AA 

Making the substitution 0, ='eccec 0 e(ý, it can be checked that C 

AbabCC CleC (D 66, (Do (h) (2) = 7r 7r [(a. ebC6 - abeý()eAAeBb + "A(AB)JB - rCB(Af3)6A 
a 

or 

where 

71 

, bo (h) (2) = 7FA 7r 
B-=CC 

(Äü)ec 0 eü, (5.3) [AB] 

a. b CC + ]PC 5C Cee 
[aeb, (5.4) 2"': 7 ICA Bj (AA Bb) [A(A Blf3) [A(Af3) Bl' 

It is manifest from the formulas (5.3) and (5.4) that -10)(h), i. e. the totally trace free 0 
part of (Do(h), does not depend on variation of the original spinor connection, 17C 

AAfr 
and hence is an invariant of quaternionic structure. Moreover, the totally trace free 

part of (Do(h) will be 

cc CC)e ab -cDo (h) = Týo((Oaeb Obea 
[A(AeB]b))' 

In Chapter 4 one of the invariants of quaternionic structure was established, namely 
totally trace free parts of torsion. Referring to formula (4.6), Nve see that 

(P(')(h) = 'Iýo( ý! (5-5) 0 
P[CAB](Ai3)) 

Now, 

4)(2) CC) abCC 5c] 0 
(h) = JC[(ig,, ecýý - abe eAAe C- 'ýB A ba Bb + "A(Ab)jý 

(Af3) 

, j)(2) (h) (2) = ea eb 
B(ý 

- Oae B6 + kF6 rc 0 AA Bj3(aaeb a AAb - AAf3 

since jBjC 
- rank S=k. CB- 
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Therefore, the integrability condition (D (2) (h)(2) =0 holds if and only if 0 

ab (a eBC BC). k)]Fc ab -a AAi3 eAAeBB aea 

The conic connection, 

such that 

Aaa + rD. A C_ (7rA) (1) =e AA'r AA6 ýT 7F 
a7rD) 
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r, D. ab BD BD) (5.6) AA(ý 1---k: 
eAAeB6(Oaeb - (9aea 

is the distinguished (integrable) connection in the body of the theorem 5.2.1.0 

5.3 R-om Einstein quaternionic manifold to distri- 

butions on twistor space 
Let us consider a quaternionic structure on M, dim M= 4k. F= P(, ý), given a suit- 

able covering F can be described in homogeneous coordinates [7r A] 
. 

Any connection 
S Q'M defines a projective connection on P(, ý). In other words, it 

defines a distribution of rank 4k: 

D 4k 4k+l 

P'r C TF 

or, equivalently, can be described via the operator 

OF (1) OF (1) 0 D; *r 

As it was shown above (theorem 5.2.1), F also has a distinguished conic connection, 
D 2k CD 4k C TF such that D 2k is integrable. Consider the following composition: F pr IF 

I id oa 
V: OFM (9(1) (9 Dp*r ý OF (1) (9 D F*) 

where a is a surjection in 

pr 
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Locally, a conic connection can be described as 

Aa+ 
Pa A FC. (X) 7rB DF span 17T (e 

AAaa A aB a7rc 

Let us denote: 

eAA KAAaa +eaC (X) 7B AAraB 
097rc 
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In such a notation Dpr = span (eAA), 

Since DF is integrable, by Fr6benius theorem there exists a twistor space Z, dim Z 

2k + 1, parameterizing its foliation leaves, i. e. we have a double fibration : 

F =1P() 
p/\ 7r 

Z M, 

Let us define a rank 2k locallY free sheaf, EF2k, on F by the exact sequence 

D 2k 
)D 

4k 
)E 

2k ) F pr 14' 

For our purposes we need a subsheaf of Abelian groups on pIk given by, F 

IV E EF2klC,, f) ED 2k, for all wED 
2k}, 

FF 

2k where D is an arbitrary representative of v in Dpr .Y is defined properly since the 

distribution D 2k is integrable. F 

Proposition 5.3.1 Y is a sheaf of Oz-modules. 

Proof. Suppose, that wED 4k is such that Pr 

2k Lpw E DF (5.7) 

for any pE D1k. We claim that w gives rise to a vector field v on Zlk+l. Indeed for F 

any fG Oz Nve have 

(pw - wp) o /-t-' (f )=so ft-, (f ), 
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where s= Lpw ED 2k 
. But so p-1(f) =0 and po 1-t-1(f) = 0, since s, p E DFi 

F 

meaning that po (w o 1-t-1 (f 0. This on the other hand implies that there exists 

gE Oz such that 1-t-'(g) = wlt-'(f). It is easy to check that this is a vector field, i. e. 
Leibnitz rule is satisfied. 0 

Theorem 5.3.1 Let M be an Einstein quaternionic rnanifold with 

rank AAB 
--` 

Then there exists a rank 2k distribution Dc TZ on the associated twistor space Z 

such that 

1. Y= 1-t-'(D); 
2. The rank of Fr&benius form of D is equal to p. 

Proof. To check when (5.7) holds it is appropriate look at the Lie derivative of a 

general vector QAA eAA c Dp, along basis vectors, irA eAAj of DF, : [-7rA eAAi QBb eBA 
So, take any vE EF and let f) = QAAe AA be its arbitrary lift to Dp,. In order to 

get explicit description of Y it is sufficient to solve the following equation 

17r A 
eAÄIQ"eBÜlmod (span 7rÜeCCI'7F Ä0Ä)=0. (5-8) 

, 97r 

First, 

[7r A 
eAA, QBB 6Bi3l = (7rA eAAQBB)eBb -Q 

Bb(eBi37rA )6AA + 7FAQBb 16AA 
1 eBb] 

Recalling (4.10), (gA eAA) QBb eBb) can be rewritten as 

A QBB (7rA (QBB]pC, ý, ), 7rD6A)ec, ý7 7T eAA e-Bf3l eAACC)eciý B 

" 7r 
AQBB(6(7]pC bcrc. )eC6 

A BbA + ýALCFCMM - 6BqrACA'B -B AAb 

" 7rAQBBRD AABb(ý7rC a7rb 

AcceC6 +, TAQBBRb 6ab (5.9) A AABf36! 7r 

where 
Acc = 7FAe + 7rAQBB(jqrC. _ jCrC. - 6CPC. .N A AAQCC A BBA Jý AAB BL AABP 
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Recalling 4.12, i. e. 

T? D. q)D - 2AABOýej3)02 
"AABBC AB6eAb (A 

and the fact that M is Einstein, i. e. the curvature tensor 4) D- vanishes by definition, ABC 

the last term in the (5.9) can be rewritten as 

TAQBB jD- (9 AQB 
-2 

AAB ebo7F 27r 19, 
AB a7rD a7rD 

b BB A ý! 49 
-2QBBAAB9b(ý7rC7r 2Q AABeAO7r 7r -- 

a7rD 07rD 

-2QBbAABtj3(ý7ro7rb 
'9 

(97rf) 

In other Nvords, 

AQBb b6 (9 
7r R AABf36! 7r 

i97rb 
mod (span 7F ec6,7r 

agA 

Now, let us consider the equation, 

7rCeC, ý7,, 7rA_ Accecomod (span )= A 97rA 
(5.10) 

Note that if ACO satisfies the equation above, then any expression of the form ACC + AA 

WC 7r C 
would also be a solution. Therefore solving (5.10) is equivalent to funding a A 

solution for 

Acc7romod (IrA 19. )=0. (5-11) A 
197rA 

To simplify the left-hand side of this equation one might use the fact that 

(eAAQCC)7rO ý e-AA(Qcc7F6) - QCCeAA7rO, 

Thus (5.11) becomes 

A A(QB(j rc AQCBiC. 
. 7r. - 7rAQCCrD. Eebo 

7T eAA(QC07TO) - 71- 70 AAB - 7r AAB C AAk7r 

The last two terms can be rewritten as 

-7T 
AQCBrC 

1ý7rDj, )e7 _ 7FA Q CCrD. EE,,, 
= 7rA QCCFAA(WrD 7FA QCCFAAbo7rD 

AA AAt7r 

= IrAQCCrE D 
AAk66b7r 
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-7rA Q cc rD AAb7r(ý* 

Thus (5.11) can be rewritten as 

0 -= 7T 
A 

e-AA(QCC7r6) - 7rA (Q BC 
7r, ý! )r 

C. 
- 7r 

A (QCCV(ý) rD. (5.12) 
AAB AA& 

It is clear from (5.12) that the space of solutions for (5.11), and thus for (5.8), 

will be of rank 2k. 

Now, assume that Q, and Q2 are such that [Qj, X] c DFi [Q27 X1 c DF, for any 
XE DF. On the other hand we have an identity 

[[Ql i Q2]) X] + [[Xj Qll i Q2] + [[Q2) X] i Qll : -- 

Since [X, Q11 E DF; it follows that [[X, Q11) Q21 E DF- Similarly, [[Q2, X11 Q11 E DF- 

Therefore, [ [Q1) Q21 i X1 E DF for any XE DF. 

So) if Qc(j7r6 satisfies the equation above, then [DF, Q1 is in DF But then [[Q1, Q21, DF1 

is also in DF, SO if Q1) Q2 satisfy the above condition, then [Q1 
i Q21 also satisfies, 

[DF, Qjmod(w a) 
097r 

is in DF. 

Thus it was shown that Y is a locally free p-'(Oz) module. of rank 2k. It 

follows from Proposition 5.3.1 that there exists a rank 2k distribution DC TZ on 
the associated twistor space Z such that Y= 1-t-'(D), thus proving the first part of 
the theorem. 

Now, let fa, a=1,2k be a basis of local sections of D 2k 
over Z2k+l. On F 

QAA (QAA it can be interpreted. as vector fields 
. eAA with a eAA) satisfying (5.12). The 

operator which computes the Fr6benius form of D 

DoD L: = TZID 
fa 0A (I)ab --'- [f, fbjmod D, 

when lifted to F, corresponds to CoMpUting [QAA eAA) QBB eBb] E TFand then pro- ab 
jecting the result to TFIM along the sheaf of vertical fields, 

AA Blý 
r 

(5-13) (Dab --` 
[Qa e-AA) Qb eBf3lmod Dp4k 



Tivistor geometry of quaternionic Einstein manifold 77 

Since 

[QAA QBB (QAA (QBB C96CO + QAAQBB 
a eAA) b eBi3l : --ý a eAAQbCC)eCO -b eBbQa ab 

IeAA, eBA) 

it follows from (4.10) that 

(I)ab = QAAQBBR D. 
ab AABi3O7r -a7rD' 

Again using (4.12) and the fact that the curvature tensor (pD vanishes for Einstein AB(ý 

manifold, we get 

QAA D 'ýDab : --: -2 Q3BAAB(JAZf3O+6j? ýfAO)7rC b) abB 
i97r 

or 
4)ab = 2QAAQBBAABJb 7r ab(: 4 B) 07FD 

It is clear from the formulae above that 

rank (%b = rank AAB, 

thus finishing the proof. 0 



Chapter 6 

Inverse Construction 

Theorem 6.0.2 Let Y be a (2n + 1) -dimensional complex manifold equipped with a 

rank 2n distribution DC TY such that 

1. the Fr6benius fonn 

(P :A2D)L TYID 

XoY) [X, Y]modD (6.2) 

has rank p, 0<p< 2n, 

2. A 2nD -- L(&n 

Assume that X ---4 Y is a rational curve (CP1) embedded into Y with the normal 
bundle N= C" 0 0(1) transversally to D. 

Then the associated Kodaira moduli space M of all deformations of X inside Y 

(while remaining transversal to D) has canonically a structure of an Einstein quater- 

nionic manifold with the curvature AAB such that 

rankAAB = rank(D = 

Proof. The cases p=0 (hyperKiihler structure) and p= 2n (quaternionic 

Kdhler structure) are well known ([HKLR871 and [LeB89], respectively). Thus from 

now on one may assume that 0<p< 2n. 
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Since X is transversal to D, the quotient map 0, 

0: TY ) L, 

provides an isomorphism Ljx ý-- TX. Hence 

Lix = 0(2). 

Assume, there exists a line bundle L111 on Y such that 

1/2)02 
= L. 

79 

The assumption is weak. Such a bundle always exists at least on any sufficiently small 

tubular unambiguously of X inside Y (see [LeB89]) 
. Then, 

L 1121X 
= o(j). 

Consider the following double fibration: 

F 

A/\ 
y 

associated with Kodaira deformation problem, see Introduction, Section 1.3, and let 

us define the following locally free sheaves on the moduli space M, 

,ý=: v. ojt*(Ll12), 

v. ol-t*(D 0L 1/2) 

By definition of vO,: 
1. The fibre of ý over tEM is 

St =H0 
(v- I (t), p* (Ll/2)) ý_ (C2, 

for any tEM. Thus 9 is a rank 2 vector bundle on M. 
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2. The fibre of S over tEM is 

St = HO(v-1 (t), /-t* (D 0 

= HO(CP', C2n 0 o(j) 00(-l)) 

= HO(CIP', (C2n) = (C2n, 
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since Dlc,, = (C2n (2) 0(1) and L- 1/2 

, dual of L 1/2, is isomorphic to 0(-1). Thus S is ICp1 ICp1 
a rank 2k vector bundle on M. Also, by the Kodaira theorem see Section 1.3, 

TtM = HO(Xt, Nt) 

= HO(Xt, Dl,,, ) 

= HO(Xt, D0 L-1/2 OL 1/2 
Ix, Ix') 

= St 0 HO(Xt, L 1/2 
ixt 

= st 0, ýt- 

Thus the moduli space M comes canonically equipped with an almost quaternionic 

structure. 
Now, there is the following commutative diagram of exact sequences: 

00 

1T 

l, t*(L*) WFIM 
TI 

(0, Y) Q'F Q'F1 Y 
1tt 

p*(D*) V. (w M) E2'F/ Y 
tt 

00 
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The lower exact sequence implies the long exact sequence: 

0 vO/f(D*) )> v(fZ'F/Y) 

But 

v*tt*(D*) = (6.3) 

since the typical fibres of those sheaves, respectively, are given by 

H0 (P 1 D*lp) =Ol H'(Pl, (C2n( _1)) = 0, 

H'(P', D*lp) =O, HO(Pl, (C2n( _l)) = 0. 

Thus, 

Q'M = v. O(Q'FIY). 

There is a relative de Rham differential on F, dFly: 

dFly: li*(D 0 L- 1/2) dF 

ý /-t* (D 0 L- 1/2) (2) QlFly 

Note, that its kernel is given by: 

Ker dF 
--` [t- 1 (D 0 L- 1/2) 

Taking the 0-th direct image of dFly and using (6.3) one obtains the derivation V: 

V: vo*IL* (D 0 L-112) ) vop*(D 0 L-112) 0 vo*(Q'FIY) 

or, equivalently, 

V: S)S0 QIM, 

i. e. a linear connection on S. 

Note that the sheaf v. '(A'D* 0 L) is isomorphic to A'S. Indeed, the typical fibre 

of v. 'I-t*(A'D* 0 L) is given by 

HO(P, A 2(C2n(l))* 0 0(2)) = (A 2C2n)*. 



Inverse Construction 82 

The Fr6benius form (D defines a global section of the sheaf A'D* 0 L, and hence of 
the subsheaf 

/-t-'(A 2 D* 0 L) C tt*(A D* 0 L). 

Since this subsheaf is precisely the kernel of dFly, one concludes that 

F(M, A 2S*) 

is covariantly constant, i. e. 

VSA = 0. 

Now, let us consider the sheaf A 2n (D 0 L-1/2)*. It is easy to check that it is 

actually a trivial vector bundle on Y: 

2n (D (D L-1/2) =A 
2n D(DL -n = L' (D L-' = Oy. 

Thus, there exists a non-vanishing section -y E F(y' A2n (DOL- 1/2)). It is defined up 

to a multiplication by a global function fE r(Y, Oy). However, r(Y, Oy) =C since 

fIxt = const and, for any yCY, tangents to Xt passing through y span the whole 

tangent space TyY. 

Thus, Ey is well defined up to a constant. Then Ey gives rise to a non-degenerate 

section E of 
A 2nS* 

= V*Otl*(A2n (D 0 L-1/2)*). 

Since dFlylL*(6y) = 0, it is clear that 

VE == 0. 

In conclusion, we have shown that rank 2n bundle S comes naturally equipped 

with a triple (, 7, A, E), where V is a linear connection, AG F(M, A 2S), EE r(M. A 2nS*) 

are such that 

VE = VA = 

Let us now study the geometric structure induced on the rank 2 vector bundle k 

Firstly, we notice that the fibration on F can be identified with the relative projective 
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line IPA, There is a commutative diagram: 

00 

0 TFI Y TF (TY) 0 

=111 
0 TFI Y (D) 0 

0 0, 
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which defines rank 4n distribution bC TF and a line bundle L)F. 

Since for any tCM, Xt is transversal to D, the distribution b is horizontal. 

Thus b defines a projective connection on S-, f v- P, 
J. Note, that the bundle A'9* 

comes canonically equipped with non-degenerate holomorphic section 9, constructed 
by LeBrun [LeB89]. There is a 9-parallel holomorphic section E of A 29* constructed 

as follows: the Wronskian 

(9(LI/2) X O(jl/2) 
-1 

(Sl)S2) ) si 0 dp(82) - S20 dp(Sl)) 

where dp :0 O(L' ') is differentiation up the fibres of v is independent of the 

choice of local trivialisation used for differentiating sections of L1/2 
. 

Taking direct 

image sheaves, we obtain an object: 

z: 0(, ý) x 0(9) ) 
which may be interpreted as EE F(M, A'. ý') 

Here, the projective connection Vp, has a unique lift to linear connection V on 

S, such that the covariant derivative of ýý vanishes, i. e. 

VE = 
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In summary it was shown that moduli space M comes equipped with the following 

properties: 
1. an almost quaternionic structure 

TM =S0, ý) 

where rankS = 2n, ranký = 2; 

2. the scale 
(E F(M, A 2nS*), jE F(M, A 2g*)); 

3. a rank 0<p<n section 

AG F(M, A 2S*); 

4. a pair of linear connection on S and ý which satisfy 

VE = 0, Vi = 0, VA = 

The data 4 induces an affine connection on TM. The torsion of this induced 

affine connection on TM, as it was shown independently by LeBrun [LeB89] and 
Merkulov [Mer97], is determined by the second order infinitesimal neighbourhood of 

the embedding X -+ Y. 

The latter in turn is controlled by the cohomology group H1 (X, N0 (D2 N*) (see 

Merkulov [Mer97]). As N= (C2n(j) in our case, this group vanishes, which implies 

that the induced connection is torsion-free. Therefore, the curvature tensor for this 

connection is completely described by three tensor fields: 

ip D qj D 
ABC ý (ABC)) 'IJACBC --"ý 

ol 

(DABAb -= (1)(AB)(Ab)) AAB = A[ABI- 

as described in section 4.1.8. 

Since VA = 0, and by theorem 4.1.3 

(1)ABÄ, Ü ý 
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in other Nvords, M is Einstein, and 

AAB ' CAAB 
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for some constant c. This completes the proof. 0 
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