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ADbstract

The interrelations between projective and conic connections on G,, structures are
studied. An Einstein quaternionic manifold of rank p is associated with a twistor space
equipped with holomorphic distribution, whose Frobenius form has rank precisely p.
This construction is inverted, establishing one-to-one correspondence between local
Einstein quaternionic manifolds of given rank and the twistorial data consisting of
twistor space, distribution on the twistor space and its Frobenius form of the same

rank.
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Statement

Chapter 1 covers some basic material such as sheaf theory, cohomology, analytic tam-
ily and moduli space. This material can be found, for example, in [Mer00], [Kod62],
Kod80], [Wel91], [WW90). |

Chapter 2 covers conic structures and conic connections, which can be found, for
example, in [Man97]. Section 3.2 of Chapter 3 is the joint work of the author and S. A.
Merkulov. The rest of the Chapter includes material on conformal 3-mé.nifolds, which
can be found, for example, in [Bry91], [CT96], [HM99], [Tod92]. Chapter 4 covers
quaternionic structures. The material can be found elsewhere, such as in [BE91} and
IPR84|.

Chapters 5 and 6 are the original work of the author, with the exception of the
instances indicated within the text as well as the material in the Section 5.1 and
Theorem 5.2.1, which can be found in [Man97|.
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0.1 Overview

Iet M be an n-dimensional complex manifold and V a fixed n-dimensional complex
vector space (typically, V = C"). Let w : L*M — M be the holomorphic bundle of
V-valued coframes, whose fibres 7~(¢) consist, by definition, of all C-linear isomor-
phisms e : ;M — V, where T; M is the tangent space at ¢ € M. The space L*M
is a principal right GL(V)-bundle with the right action given by R,e) =g loe If
G is a closed complex subgroup of GL(V), then a complex G-structure on M 1s a
principal holomorphic subbundle G of £L*M with structure group (G. Given an afline
connection 7 on a simply connected complex manifold M, the set G, of all points
in the bundle of V-valued coframes £*M which can be connected to a fixed point
u € £*M by a horizontal curve is a principal right subbundle of L*M whose struc-
ture group Gy is a Lie subgroup of GL(V'), called the (restricted) holonomy group of
7 at u. The conjugacy class of G,, in GL(V') does not depend, in fact; on the choice
of u, and any representative G C GL(V) of this conjugacy class is called, by abuse of
language, the holonomy group of 7. The holonomy group G can also be represented
at any particular point p € M as the set of all linear automorphisms of the associated
tangent space T, M which are induced by parallel translation along p-based loops.

Holonomy turns out to be one of the most informative characteristics of an affine
connection on a smooth connected manifold M. The notion of holonomy group was
introduces by Elie Cartan in 1920s [Car26] who used it to classify all Riemanman
locally symmetric spaces. |

If a connection is (locally) symmetric, then its holonomy group, if irreducible,
equals essentially the (local) isotropy group. In 1955 Berger [Berb5| gave necessary
conditions for irreducible Lie subgroup G C End(V), where V is real or complex
finite dimensional vector space, to occur as the holonomy group of a torsion-iree
affine connection which is not symmetric.! The case of locally symmetric connections

is equivalent to the classification problem of symmetric spaces which was solved long

11956 Hano and Ozeki [H(_)56] showed that any (closed) Lie subgroup G C End(V') can occur as
the holonomy of some affine connection, generally with torsion;
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time ago ( see [Car26] [Ber57]) . Berger then classified the groups satisfying this
conditions. The first ("metric”) part of this classification consists of all holonomy
eroups which leave some symmetric bilinear form invariant: SO(n), U(m), SU(m),
Sp(k), Sp(k)Sp(1), Gz, Spin(7). The connections with one of these holonomies are
always Levi-Civita connections of a (pseudo-)Riemannian metric on M.

The second (” non-metric”) part of Berger’s classification was stated to contain all
remaining holonomy groups, up to a finite number of missing terms. These "missing
terms” were later called exotic. Non-emptiness of the list of the exotic holonomies,
was established by Bryant [Bry91]. In [CMS96] Chi et al. discovered an infinite family
of exotic holonomies, thus showing the incompleteness of non-metric part of Berger’s
list. Finally, the holonomy problem was solved by S. Merkulov and L. Schwachhofer
in [MS99].

Any Riemannian manifold is locally the product of symmetric spaces and /or man-
ifolds with holonomy groups appearing on the metric part of Berger’s list. The case ot
SO(n) corresponds to ”generic” geometry. Of the remaining six types of Riemannian

geometry, three
[U(m), SU(m), Sp(F)]

correspond to Kahler manifolds of varying degrees of speciality, while G and Spin(7)
only occur in dimensions 7 and 8 respectively. Which leaves the very interesting

family of quaternionic-Kdihler manifolds, i.e. 4n-manifolds, n > 2 with holonomy

group
Sp(k)Sp(1) := Sp(k) x Sp(1)/Zs.

In 1982 Salamon has shown that if M is a quaternionic manifold 4, the total
space of the associated bundle Z is a complex manifold, thus constructing a twistor
space.(see [Sal86))

When can we reverse this construction?

Let Z be a complex (2n + 1)-dimensional manifold equipped with a holomorphic

2A quaternionic manifold is defined by a G-structure admitting a torsion-free connection, where
G denotes the maximal subgroup GL(n, H)GL(1, H) of GL(4n,R)
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contact structure which is a maximally non-degenerate rank 2n distribution D C T'Z.
Let X be a rational curve embedded into Z transversely to D and with normal bundle
N = C** ® O(1).Then the 4n-dimensional Kodaira moduli space M comes equipped
with the induced torsion-iree afline connection satisfying natural integrability condi-
tions. Ward (1981) showed that in the case n = 1 the Kodaira moduli space M has an
induced complex Riemannian metric satisfying the self-dual Einstein equation with
non-zero scalar curvature. The case n > 2 has been investigated by LeBrun (1989),
Pedersen and Poon (1989), and Bailey and Eastwood (1991) who proved that the
Kodaira moduli space M comes equipped canonically with a torsion-free connection
compatible with the induced complexified quaternionic-Kahler structure on M. This
inverts the construction of Salamon’s (1982) in quaternionic-Kahler case, who asso-
ciated a contact (2n + 1)-dimensional manifold Z to any quaternionic-Kéahler 4n-fold
M.

What happens if we lose the condition for the structure to be contact?

It is also well-known that hyperKahler manifolds (i.e. the ones equipped with a
torsion-free Sp(n)-structure) give rise to integrable codimension 1 distributions on the
associated twistor spaces and vice versa, see N. Hitchin, A. Karlhede, U. Lindstrom
and M. Rodek [HKLRS8T]. '

Let Z be a (2n4-1)-complex manifold equipped with a codimension 1 holomorphic
distribution, D C T'Z. Assume also that Z contains a rational curve X, which is

transversal to D and
Dlx ~ C2n(1).

Consider the associated Frobenius form ®p : A°D — T'Z/D. In general it has rank
p, 0 < p < 2n. From the discussion above, we know that the case p = 2n corresponds
the quaternionic-Kahler geometry, while the case p = 0 corresponds to hyperKahler
geometry.

One of the main questions which we address and answer in this thesis is which
geometry corresponds to the generic value of p?

We begin this work by recalling some basic facts, theorems and definitions in
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Chapter 1. Section 1.1 consists of detailed introduction to the language of the
sheaf theory. Apart from definitions and basic facts about sheaf mappings and exact
sequences of sheaves, we construct space etalé,quotient sheat and look at the notions
of direct and inverse image of sheaves. In Section 1.2, we recall some definitions and
theorems of cohomology theory. There are no proofs given. Section 1.3 contains
the statement of Kodaira’s seminal theorem. In this chapter we used the book by S.
Merkulov, [Mer00].

In Chapter 2 we give the definition of a connection on a fibration, comparing
it with connections on a vector bundles and connection along the base and looking
at its curvature and integrability conditions. Then, in Section 2.2, we discuss the
definition and examples of conic structures.

Another theme of our studies is the conic and projective geometry of Bryant’s ex-
otic Ga-connections, and their natural generalization G,,, for any m > 3. In Chapter
3 we apply the language of conic structures developed in the previous chapter to the
research of geometry of conformal 3-manifolds. Then these methods also used to look
at G,, structures, which are natural ”torsion” generalizations of exotic G3-structures.

The main result of Chapter 3 is Theorem 3.2.1, which studies interrelations
between projective and conic connections.

In Chapter 4 we turn to quaternionic geometry and study basic invariants of
associated conic structures. This chapter is of an auxiliary nature, and most of the
material is well-known, though in a differential language.

In Chapter 5 we prove two new results. The first one is Theorem 5.2.1, which
identifies Manin’s obstructions [Man97] with certain torsion invariants of a general
almost quaternionic structure. The result is then used in proving Theorem 95.3.1,
which is one of the central results of the thesis. This theorem associates to an Einstein
quaternionic manifold with rank A4 = p, a twistor space Z, equipped with distri-

bution D ¢ TZ, whose Frobenius form, ®p : A*°D — T'Z/D, has rank precisely
D.
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In Chapter 6 we invert the construction of Theorem 5.3.1, thus establishing a one-

to-one correspondence between local quaternionic Einstein manifolds with rank A p =

~ p and the twistorial data (Z,D C T'Z,rank ®p = p).




Chapter 1

Basic Facts And Definitions

As a language of sheaves is widely used throughout this work, it is logical to start by
recalling some useful definitions, facts and notations of the sheaf theory. It is followed
by a brief overview of homological algebra of sheaves. The Chapter ends with a short
list of various algebraic and geometric facts and propositions, including Kodaira’s
analytic family theorem, which are going to be used through out the thesis. As the
material is standard, no proofs are given, although the necessary cross references

provided.

1.1 Sheaf Theory

Here we used some material from the forthcoming book [Mer00]. For more detailed
look into the sheaf theory, see also [WW90] and [Wel91]

1.1.1 Presheaf
A presheaf on a topological space M is a covariant functor
F :Top(M) — Ab,

from the category of open sets of M to the category of Abelian groups. Equivalently,

one can write this down as follows

11



Basic Facts And Definitions 19

Definition 1.1.1 A presheaf F over a topological space M 1is
(a) an assignment to each non-empty open set U C M of a set F(U)

(b) a collection of mappings (called restriction homomorphisms)
ry : F(U) — F(V)
for each pair of open sets U and V such that V C U, satisfying
1. 75 =id on U
2. forWCV CU,ry, =rjyory

Visually, this structure can be represented by a diagram

W —=5 vV —S55 U

Ll

Vv U

FW) & F(V) < FU).

If 7 and G are presheaves over M, then a morphism (of presheaves) h: F — G
is a collection of maps hy : F(U) — G(U) for each open set U in X such that the
following diagram commutes:

F(U) —— G(U)
lrg Y VCUCM.
F(V) » G(V)

J- 1s said to be a subpresheaf of G if the maps hy above are inclusions.

Example

Let M be a complex manifold, and assume that O(U) is the space of all holomorphic
tunctions defined on an open subset Y C M. Take r¥ : O(U) — O(V) to be the
usual restriction of a holomorphic function to an open subset V' C U. The result is a

presheaf O, of holomorphic functions on M.
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1.1.2 Sheat

Definition 1.1.2 A presheaf F on a topological space M 1is called a sheaf if for every
open set U C M and every collection U; of open subsets of M with U = |JU;, F

satisfies
1. Aziom sy: If s,t € F(U) and ry (s) =y, (t) for all i, then s = t.

2. Aziom sy: If s; € F(U;) and if for U; N U; # 0 we have

U; Uj
TU:HUJ' (Si) — TUjﬂUj (SJ)

for all i then there exists an s € F(U) such that ry, = s; for all i.

Morphisms of sheaves ( or sheaf mappings) are simply morphisms of the underlying

presheaves. When a subpresheatf of a sheaf F is also a sheaf, then it is called a subsheaf
of F.

1.1.3 Stalks

Let F be a presheaf of Abelian groups on a topological space M. Consider an arbitrary
point £ € M and a system, Z, of all open subsets of M which contain z. 7 is a partially
ordered set with respect to the following relation: U < V < U C V. The direct limit,

—
Fr = limF(U),
Uel

1s an Abelian group called the stalk of the presheaf F at z. In other words, F; is the

quotient of the disjoint union of Abelian groups,

| FU)/ ~.,

el

with respect to the following equivalence relation: f € F(U) and g € F(V) are
equivalent, f ~, g, if and only if there is an open set W such that z e W CUNV

and flw = glw.
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For an open set U C M and a point £ € U there is a canonical homomorphism
of Abelian groups, r, : F(U) — F,, which associates to an element f € F(U) its

equivalence class with respect to the equivalence relation ~,. The image 7.(f) is

called the germ of f at x.

1.1.4 Exact sequences

Let 7 : 7 — G be a morphism of sheaves of Abelian groups on a topological space

M. For each point z € M, it induces a map of stalks
Tzt Fz — Gy

which is a homomorphism of Abelian groups.

A sequence of morphisms of sheaves on M,

f—T+g U—J»H,

1s called exact if, for every z € M, the associated sequence of homomorphisms of

 Abelian groups,

Tr Ox
F:B ! ga: o > H.T.'j

1s exact, i.e. Kero, = Im7,.

A sequence of morphisms of sheaves on M,

T1 T2 Th-=2 Th-1
F1 — r JFa - S . — n—l_n"_*"f.n:n'\"&

1S called

1. exact at the term F;,i € {2,...,n — 1} if the sequence

Ti-1 T3 )
fi—l I -ﬁ > 1+1
1S exact.

2. eract if it is exact at every term F; with i € {2,...,n — 1}.
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An exact sequence of the form

is called a short exact sequence.

1.1.5 Space etalé

There is a canonical construction which associates to any presheaf F on a topological
space a sheaf, denoted by F and called space etalé.

First, let us consider a set,

IF | = U Fz,
the disjoint union of stalks. It comes equipped with the natural projection,

m: | F| — M

fw'—_—'}z-

For each open set U C M and an element f € F(U), let us construct a set

U, f] == {r=(f)lz € U} C |F].

A topology can be introduced on |F| by declaring a subset of F open if and only
if it is a union! or a finite intersection of subsets of the form U, f|. The topology
1s well-defined. Clearly, every element of || is contained in, at least, one subset of
the form (U, f]. Assuming that e € [U, f] N [V, g] one has that if z = w(e), then
r€UNV and e = rz(f) = rz(g). In other words, f ~, g means that there is an
open neighbourhood W C U NV of the point z and an element h € F(W) such that
flw = glw = h. Thus, e € [W,h] C [U, f]N 'V, gl.

Therefore, 7 now can be regarded as a topological space with the topology de-

scribed above.

Proposition 1.1.1 The natural projection, 7 : |F| — M is a local homeomorphism.

A —

possibly infinite
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Proof. For any e € |F| there is an open set [U, f] C |F| containing e. The map
w, as follows from definitions, is open and continuous. Since 7w ([U, f]) = U, then it
was shown that e has an open neighbourhood U = [U, f] such that 7 : U — U is a
homeomorphism onto its image. (3

A (continuous) section of a covering space 7w : |F| — M over an open subset
U C M is, by definition, a (continuous) map ¢ : U — |F| such that 7 o o0 = Id.
Let T'(U, | F|) denote the set of all continuous sections of |F|. If |F| is space etalé
associated to a presheaf of Abelian groups F, then I'(U, [F|) is an Abelian group.

i

The sheat, 7, associated, to a presheaf of Abelian groups F is defined as follows:

(i) for an open subset U C M, F(U) := I(U, | F|);

(ii) for every pair of open subsets v C U, 7Y : F(U) — F(V) is the usual restriction

of maps.

This gives rise to a functor,

® : Presheaves(M) —— Sheaves(M)
.7: — ﬁ:

from the category of presheaves on a topological space M to the category of sheaves

on the same space.

Theorem 1.1.1 If F is a sheaf on a topological space, then ® : F — F is an

1somorphism.

Proof. It has just to be checked that, for any open subset U C M, the map
Oy : F(U) — F(U) is a bijection.

At first, it can be shown that ®y is injective. Let assume fi, fo € F(U) to be
such that ®y(f;) = ®y(f2). The map Py sends fi, fo into a section, oy, 09, of the

assoclated space etalé,

gL . U — IFI k"‘l?

r — T‘.’E(fk)!
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and, therefore, the equality ®y(f1) = ®y(f2) implies r-(f1) = rz(f2) for all z € U.
This means that f; ~; f, and, hence, there is an open neighbourhood V C U of the
point = such that f;|y = fa|v. Since this is true for every z € U, we can cover U by
such sets V; that fi]y, = fao|v,. By axiom (s;) (see 1.1.2), this means that f; = f5.
Next, it has to be shown that ®y is surjective. Assume o € I'(U, [F]|). Then for
every z € U there is an open neighbourhood V' C U of z and an element f € F(V)
such that o(z) = rz(f). Thus we get two local sections, oy and ®y(F), of |F|
over V which coincide at z. Since both sections are locally inverse to the local

homeomorphism 7 : |F| — M, they must coincide in some open neighbourhood
W CV of z,
olw = Pw(flw).

This 1s true for any x € U, therefore, there is a covering U by open sets W; and a

family of elements f; € F(W;) such that

olw; = Pw;,(f:).
Then
(I)lViﬂWj (fi‘WiﬂTer) — (I)IViﬂIVj (fjthﬂWJ) — JW{ﬂle:

and due to the fact that the maps ®y,qw; are injective,

f‘ihViﬂ‘Vj - fj‘W,‘_ﬂ‘Vj‘

By axiom (s2) (see 1.1.2), there is an element f € F(U) such that f|,. = f;. There-

fore,
Sy (f)lw; = Qw,(flw:) = ow,,

which finally implies that &y (f) = 0. O

1.1.6 Kernels and quotients

Let 7 : F — G be a homomorphism of sheaves of Abelian groups on a topological

space M. For any open subset U C M, let us define an Abelian group

K :=Ker 1y : F(U) — G(U).
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The family of such subgroups together with the restrictions maps r¥ : K(U) — K(V)
induced by restriction maps on F forms a presheaf of Abelian groups. This presheaf
is actually a sheaf and it’s called the kernel of the morphism 7.

Similarly, one constructs another family of Abelian groups,
1 :=FU)/mw(G(U)), U is open in M,

which together with the restriction maps induced from G, forms a presheaf of Abelian
groups. Although, this presheaf may not, in general, be a sheaf, this problem can be

easily fixed via space etalé. Thus one gets a sheaf Z on M, called quotient sheaf and
denoted by G/F.

The morphism 7 : 7 — G gives rise to an exact sequence,

0 — K +F — G —— G/F — 0,

which is a visual summary of both constructions.

1.1.7 Direct and inverse images of sheaves

Let f : M — N be a continuous map of topological spaces.

Given a sheaf F of Abelian groups on M, we define the family of Abelian groups,
fFWU) = F(f1(U)), U is open in N,

which together with restriction maps induced from F, forms a ﬁresheaf of Abelian

groups on V. It can be easily checked that f,(F) satisfies both sheaf axioms S; and

S2 and, hence, defines a sheaf on IV called the direct image or pushforward of F.
Given a sheaf G of Abelian groups on N, we construct a sheaf f*(G), of Abelian

groups on M in four steps:

a. to any open subset U C M we associate a partially ordered set Z;; whose
elements are open subsets V of N such that f~'(V) D U, the relation is defined
by Vi £ Vo & Vi C V,. There is a natural contravariant functor F' from the
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category Zy to the category of Abelian groups represented by a commutative

diagram

b. using (Zy, F') and the direct limit procedure we associate to U an Abelian group

-1 TR
fO)IU) = lim G(V)
c. the family of Abelian groups f~'(G)(U) together with the restriction maps

induced form G form a presheaf of Abelian groups on M which, in general, is

not a sheatf.

d. applying the functor ® to the preéheaf defined in ¢. we obtain a sheaf on M
called the inverse image or pullback of the sheaf G and denoted by f*(G).

Therefore, in this section the definitions of presheaf and sheaf were given; construc-
tion of a sheaf from a presheaf via space etalé was described; stalks, exact sequences
of sheaves and presheaves were considered as well as their kernels and quotients were

presented along with the direct and inverse images of sheaves.

1.2 Cohomology

As it was shown in the sections above, to a certain extent, sheaves can be viewed as
a next step generalization of such concepts as vector bundles, inheriting most of its
structure. In this section the key theorems concerning homological algebra of sheaves
are recalled. The material of the section constitutes the main results of cohomology
theory of sheaves. The detailed view of the theory can be found in various téxtbooks

on Cohomology, while the material of the section is based on {KKod80].
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Let R be a ring with unity. The chain complez (¢, 0) consists of a collection {¢; }icz

of left R-modules and R-homomorphisms ¢;_; & ¢; such that d;_10; = 0.

0i—1 0; Oi+
. ¢ Ci—g ¢ — G- & G — (4,

52 =0,

Ilg

where 0; is called a boundary map.

We say that ¢ is concentrated on [k,I] if ¢; = 0 for ¢ < k,7 > [. Kernel of the
boundary map, Ker 8; = Z;(c) = Z;, is called an ¢-cycle. Image, Im 0,41 = Bi(c) =
B;, is referred to as an i-boundary.

Since 8% = 0, we have B; C Z;. Hence we can define H;(c) = Z;/B;, called the
i-th homology group (module/sheaf) of the chain complex. c is said to be ezact at ¢;
if Hi(c) =0, i.e. Z; = B;. If ¢ is exact everywhere it is said to be acyclic.

A chain map ¢ : (¢, 0) — (g’,@’) is a collection {¢;}icz of R-homomorphisms
o; . c; — c; such that the following diagram commutes for any :

| el

/

; 0 ’

1
. {-_——_ Cil — C.i < 4 & & &

Here some theorems linking the exact sequences and the cohomology theory can

be recalled. Proves can be found in [Kod80].

Theorem 1.2.1 The ezact sequence of sheaves 0 —s L’ L £ — 0 induces

the exact sequence of cohomology groups

0 — HYL) —— HOL) s Oy 2 HYL) —

: . : . (1.1)
2 HY(L) —— HYL) 2 HyL"y L HeY(L) s .

Theorem 1.2.2 An exact commutative diagram of sheaves

0 — >£'—£——+£-h

» L
I SR
K

J

y ()

0 —— T - y T ——— T ——5 0
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induces an exact commutative diagram of cohomology groups:

0 > HY(L') —— HYL) —— H(L") 2 HY(L) ——

R R R

0 — HYT) 2 HYT) 4 mo(7T") -2 HY\(T) -

. —— H?Y(L) =, Ho! (L") 2, H(L) — H(L) L

d dl d d

. —— HYT) = HYT") £ YTy 2 HY(T) -t

1.3 Analytic family and moduli space

Let Y and M be complex manifolds and let m; : Y x M — Y and m: Y X M —
M be the natural projections. An analytic family of compact submanifolds of the
complex manifold Y with the moduli space M is a complex submanifold FF — Y x M
such that the restrictions of the projection 7 on F' is a proper regular map (regularity
means that the rank of the differential of v := my|p : FF — M is equal to dim M at

every point). Thus the family F' has the structure of double fibration

F
SN
Y M

where p = m; |p. For each ¢ € M the compact complex submanifold X; = p o
v~1(t) — Y is said to belong to the family M.
Let us denote the normal bundle T'A|, /TB of a complex submanifold B of a

complex manifold A by Np; 4.
It /' — Y X M is an analytic family of compact submanifolds, then, for any t € M,

there is a natural linear map (Kodaira 1962),

kt . EM — HO(XI;:N)QIY)!
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from the tangent space at ¢ to the vector space of global holomorphic sections of
the normal bundle N,y = TY|y /TX,; to the submanifold X; — Y, which can
be described as follows. First, one can note that the normal bundle of the em-
bedding v~!(t) — F is trivial and thus there is a canonical map p, : TTM —
H(v~(t), Np-1¢ir)- Then a composition dv o p, gives the desired map k; for the
differential of v maps global sections of N,-14yF to global sections of N, y.

An analytic family F' <— Y x M of compact submanifolds is called complete if the
Kodaira map k; is an isomorphism at each point ¢ in the moduli space M. It is called
mazimal if for any other analytic family F' < Y. x M such that »~1(t) = &~1(¢) for
some points t € M and £ € M there is a neighbourhood U C M of the point ¢ and
a holomorphic map f : U — M such that &~}(#) = v~! (f(#')) for every I’ € U.
Here the equality v~1(¢) = ©7'(t) means that por~1(t) and 1o »~1(¢) are the same
submanifolds of Y. '

In 1962 Kodaira [Kod62] proved the following important theorem.

Theorem 1.3.1 (Kodaira) If X — Y is a compact complé:z: submanifold with nor-
mal bundle N such that H'(X, N) = 0, then X belongs to the complete analytic family

{X::t € M} of compact submanifolds X; of Y. The family is mazimal and its modul

space of complex dimension dimcH®(X, N).



Chapter 2

Conic Structures and Conlic

Connections

2.1 Connection on a fibration

In this Chapter a (holomorphic) distribution is defined and, subsequentiy, the no-
tion of a connection on a fibration is introduced. The conditions for existence of
such a connection are considered. Following these, connections on vector bundles
and connections along a distribution on the base are both defined. It is followed
by definitions of curvature and integrability of a distribution. These are our basic

technological tools.
The material of this Chapter based mainly on [Man97].

2.1.1 Distributions and connections on a fibration

Definition 2.1.1 A (holomorphic) distribution on a manifold F' is a subsheaf D of

tangent sheaf T'F' which is a locally direct summand.

Distribution is said to be integrable if D is a subsheaf of Lie algebras, i.e. for any
X, Y eD
X, Y|modD = 0.

23
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Being locally free D has an associated vector bundle which we sometimes denote
by the same symbol, D. The rank of this vector bundle is called the rank of the

distribution D. A local section is called a vector field tangent to the distribution.

Definition 2.1.2

1. (a) By a fibration 7 : FF — M we mean a morphism which is a submersion of

complex manifolds.

2. (b) By a connection on a fibration (F,n) we mean a distribution D C TF for

which the morphism dr in the exact sequeﬁce
0 — TF/M — TF 25 7*(TM) — 0 (2.1)
induces an fédmomhism D—=7*(TM).

From the above exact sequence (2.1) it follows that a connection on a fibration is

equivalent to giving a direct sum decomposition
TF=TF/M & n*(TM),

and its dual
QF =Q'F/M @ w*(Q'M).

Such a decomposition corresponds to a splitting of d : O — Q' F into the differen-

tials in the horizontal and vertical directions:
dp, =0:0p — (U M),d, : Op — Q'F/M.

From the geometrical point of view, this can be interpreted in the following terms:

if n = dimM, then at each point x € F' a connection (on a fibration) singles out a

d-dimensional tangent subspace of horizontal directions, which dm projects isomor-

; phically onto the tangent space at w(z) € M.
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2.1.2 Obstruction to the existence of a connection

In general, let

N:O—-—%S-—‘E—%D-LS'———)O

be an exact sequence of sheaves on complex manifold F. By a splitting of the above
sequence one means a morphism h : S — D such that its composition with 5 gives
an identity on S, jo h = idg. Then D =S & h(S’), and 7 is an isomorphism on h(S’)
The diftference of two splittings,

hl — h2 . g — D,
maps S to the kernel of 7. It this kernel is identified with .S, then
h1 — hy € Hom(S, S).

Conversely, if & is such a splitting and f & Hom(S’ ,9), then h+iof is another splitting.
Thus, the set of splittings is either empty or is, in fact, a principal homogeneous space
for the group Hom(S, S).

Clearly, these notions can be localised. If the morphism i is a direct sum imbed-
ding, then there is a sheaf of splittings which is a principal homogeneous space for

the sheaf Hom(S, S). This sheaf can be used to construct the characteristic class
c(R) € HY(F, Hom(S, S)),
which is the obstruction for a global splitting of N.

Proposition 2.1.1

1. The obstruction to the existence of a connection on the fibration (F,7) on the

complex manifold M 1is the class

c(F,7) € H'(F,7*Q'M @ TF/M).
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2. If c(F,w) =0, then the group
HYF 7 Q*M Q TF/M) = HY(M,Q'M ® m,(TF/M))
acts transitively and effectively on the set of all connections.

Proof. Explicitly, let us consider the sequence of sheaves
Hom(S,R) : 0 — Hom(S, S) — Hom(S, D) — Hom(S,S) — 0.

This sequence is exact when R splits locally. Let us set ¢(®) = d(ids), where ¢ is the

boundary homomorphism, |
§ : H(F, Hom(S, S)) — H(F, Hom(S, 5)).
Choose an open covering on F' = UU;. If we have splittings
h; : S|ly. — Dlu.
on the pieces of this cpvering, then the Cech cocycle

(hi l Uu;nU; — hj‘UéﬂUj)

represents the class of ¢(R). If ¢(R) = 0 then H°(M, Hom(S, S)) acts transitively and
effectively on the settings. [

2.1.3 Connections on a vector bundle

Suppose that m : F' — M is a vector bundle. Let F be the locally free sheaf of
holomorphic sections of 7. Then the sections of F* are functions on £'. At every point
of F' we have a local coordinate system, part of which is lifted from M. The other part
of this local coordinates system consists of a basis of sections of 7* which are linearly
independent at the point. On F' we consider the sheaf S(F*) of functions which are
polynomial along the fibres of m. Any connection on F' is uniquely determined by its
action on S(F*). We say that the connection is compatible with the vector bundle
structure if any local vector field X of the connection takes S*(F)* to S*(F*) for all
i > 0.
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2.1.4 Connections on a fibration along a distribution on the

base

Let w : I — M be a fibration, let D € TM be a distribution on the base, and set
ToF = (dm)~'(7*D). A connection on F along D is defined as a splitting of the exact

sequence
0 — TF/M — ToF -2 D — 0. (2.2)

Similar to Section 2.1.3, one can introduce the sheaf of coefficients of such a con-
nection, i.e., m,(D*®@TF/M), and also define a compatibility with various additional
structures, such as a vector bundle structure on- F.

Suppose that F' — M is a vector bundle, F* is the dual sheaf of holomorphic
sections on F', and P(F*) is the corresponding relative projective space. Further, let
us assume that we have local coordinates (z%) on M, and that in the domain of the
definition of these coordinates the sheaf J* is trivialised by a basis of sections (w?®).
A trivialisation of any vector bundle, i.e., a choice of isomorphism F — Fyx M
compatible with 7, automatically determines a connection D = T'F'/Fy on the bundle
( these are the vector fields which are vertical relative to projection onto the fibre).
Using this connection as our "origin” , we can describe all of the other connections by
giving a section of the sheaf of coefficients. In this situation, the sheaf of coefficients
Is also trivialised by the choice of (z?) and w?, and it is the resulting expansion which

leads to the generalised Christoffel symbols. Thus the following proposition holds:

Proposition 2.1.2 ([Man97]) The following structures are equivalent:

(a) A connection on a vector bundle F —s M which is compatible with the vector
bundle structure.

(b) A covariant differential 7 : F — FQQ!M, i.e. a C-linear morphism of sheaves
satisfying Leibnitz’ formula 7(af) = a v f + f ® da, where a is a local function and
f s a local section of F. .

(c) A pair consisting of a connection D on the bundle Pp(F*) — M and a connec-

tion on the vector bundle F' — Pp(F*) along the distribution D.
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2.1.5 Integrability and Curvature

The Frobenius form of a distribution D C T'F is defined as the map

:DxD-—TF/D,
which is given by
' P(X,Y)=[X,Y|modD.

Obviously, one gets ®(X,Y) = —®(Y, X). Also, using the Leibnitz formula a bilin-

earity of ® can be deduced as follows:
[aX,Y] = aXY —Y(aX)

= aXY —aYX — (Ya)X
a|X,Y|modD

Hence, the Frébenius form, @, can be regarded as a mapping from A*D to TF/D,

or as a section of the corresponding sheaf:
® € H(F,N*D* @ TF/D).

If D is a connection on 7 : F — M, then we call 7, (A°D* ® TF/D) the curvature

sheaf, and we call 7,(®) the curvature of D.
Integrability of D is equivalent to the vanishing of ®. Locally, the integrability of

the distribution is given via Frobenius theorem:

Theorem 2.1.1 Holomorphic Frobenius theorem

The following conditions are equivalent:

(a) The distribution D C T'F is integrable.
(b) Each point x € F has a neighbourhood with local coordinate system (z°),

a=1,..,m, such that D 1is freely generated in this neighbourhood by a subset of the
coordinate vector fields (i.e. by 0/0z*,a = 1,...,d = rankD ).

(The proof of the above can be found in [Ste65]).
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2.2 (Conic Structures and Conic Connections

The second section is dedicated to the conic structures and conic connections. Some-
useful examples are presented in detail. The curvature and integrability conditions

are considered. The material of this section is based on a book by I. Manin [Man97].

2.2.1 Introduction

Conic structures is a very useful language for the description of various classic ge-
ometry structures. l'hey also turn out to be the only effective means of describing
supergravity models and its cousins in various dimensions, i.e. when moving from
classical geometry to supergeometry. Moreover, conic structures are essential for
quantizing Hamilton systems with constraints. It turns out that Dirac’s constraints
can be explicitly solved, when lifted from the base to an appropriate conic structure.
Such a trick of lifting was crucial in theories like Quantum Twistor Particle Theory

and Quantum Twistor String Theory.

2.2.2 Definition of a Conic Structure

Let M be a complex manifold, TM its tangent bundle and let d > 0 an integer.

Definition 2.2.1 A complez closed submanifold FF C Gp(d; TM), such that the pro-

jection w: FF — M 1is a submersion, s called d-conic structure.

In other words, for any x € M, F determines a set of distinguished d-dimensional
(complex) tangent directions in T, M corresponding to the points 7~1(z) C Gup(d; To M).
Examples:

1. Full conic structure

Full conic structure by definition is a relative Grassmanian

F = GM(d; TM)
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It is clear to see that the fibre of the natural projection 7 : F' — M is just the usual

Grassmanian G(d, T, M).
2. Almost quaternionic structure

Let M be a complex manifold of dimension 2k. Assume k is even. An almost

quaternionic structure on M is an isomorphism defined as follows:
0:TM — S®S,

where S and S are holomorphic vector bundles of rank k and 2, respectively. Now it
will be shown that the relative projective line Pys(.S) has a canonical k-conic structure.

Take
F = Py(S) = G(k; TM); F = Py (S) = M.

A single point of F' is a one dimensional subspace (line) in S (z),z € M. Its tensor
product with S(z) is a k-dimensional subspace which lies in S(z) ® S(z) = TM(z)
This determines a k-conic structure, which plays a_very important role in the

quaternionic geometry (see Chapter 4).

Explicitly, let z, ..., 2% be coordinates in some neighbourhood U C M, and let
{ea} be a local frame of S, {e,;} a local frame of S, 74 the associated coordinates in
S, 74 the associated coordinates in S A=1,... kA=1,2

Then, one has

©(0,) = gofA(x)eA ®e4,

and

AA _
9% 4 where 0, = 53,

for some smooth functions ¢
For any p € Py (S):
m(p) = {z5,---, 75 } €M

and
N z) = P(S,) =~ P,
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The coordinates 74 defined above serve as homogeneous coordinates on P!, so p €

Pas(S) can be described (up to scalar multiplication) as

p=[) mle,)
Then, the map F'— G(k,TM) is explicitly given by:
i F — Gk,TM),
D= [Z e il — span['ert,oaA 10a)].

Thus, the mapping
1:p— SQ®p— [ZTTABA®6A]

can be described as follows

span[p~! (mles ® € 4)]

1(p)

span[mp ! (ea ® e,)]

Span(WAgoiA(%),

where A=1,...,.k;A=1,2.

In other words, i(p) = span{ay,...,ax}, where

g = ZwAcpiAaa.
Let us note, that in a specific neighbourhood U = {Wé # 0},

1
-
aq = [phs + -ﬁ@ii]aa.

Also it can be easily seen, that D,; = ) v’ A&; form basis in T'M, so a4 are linearly
independent. Therefore, #(p) is k-dimensional subspace of TM, i(p) — G(k,TM).

Thus, F'is a conic structure.

3. (G5 structure
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Let S be a standard 2-dimensional representation of space GL(2, C). Then GL(2, C)
naturally acts on symmetric tensor product ©°S. If p: GL(2,C) — GL(4,C) is the
associated representation, we can define a subgroup G5 = p(GL(2,C)) of GL(4,C).
Let M be a complex 4-manifold and 7 : L*M — M the holomorphic coframe bun-
dle whose fibres L; = w~(t) consist of all C-linear isomorphisms e : C* — Q! M.
~ The space L*M is naturally a principal right GL(4, C)-bundle, where the right action
Ry : L*M — L*M is given by R,(e) =eog. A Gs-structure on M is, by definition,
a principal subbundle of L*M with the group Gs. It is clear that Gs-structure is

equivalent to a local factorisation of the tangent bundle into symmetric cube
TM = ®°S

of locally defined vector bundle S of rank 2. Though such a vector bundle may fail to
exist on the whole of M , the projectivised vector bundle Py, (S) is well-defined glob-
ally. 'This G3 structure has been very popular recently in connection with holonomy
problem (cf. Bryant [Bry91|, Hugget and Merkulov [HM99] ).

Let us assume that M is a complex manifold with Gs-structure such that S exists
on the whole of M; it is called a spinor bundle on M. A linear connection 7 on
S is called a spinor connection on M. Any spinor connection on M induces, via
isomorphism TM = ®°S, an affine connection with holonomy in (73; moreover, any
affine connection on M with holonomy in G arises in this way, at least locally. By
a torsion tensor of a spinor connection we mean the torsion tensor of the associated
afline connection.

There 1s a canonical injective bundle map, i : Py (S*) — Gr(2,Q'M), which
can be unambiguously neighbourhood by the isomorphism i*(U) = V*(5*)(—2) =
v*(5*) @ Op(—2), where Op(—2) = [Or(—1)]®", Op(—1) stands for the tautological
sheat on Pp(5*) and U is the relative tautological vector bundle on Gr (2, Q1 M).
Thus P (S*) is naturally a 2-conic structure F' on M.

This 2-conic structure plays a crucial role in the understanding of Gs-exotic

holonomies (see Chapter 3).
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2.2.3 Conic connection
Let F' be a d-conic structure on the manifold M.

Definition 2.2.2 A distribution of c-dimensional tangent planes in F' is called tan-
gent to the conic structure if for any x € I the projection of the tangent plane at this

point onto T'M(z) is the d-dimensional subspace corresponding to .

Definition 2.2.3 By aconic connection on F' one calls a distribution of d-dimensional

tangent planes which is tangent to the conic structure.

From the definitions it is obvious that conic connection is given by distribution
D CTF. A conic connection, D C T'F, is said to be integrable if it is integrable as a

distribution, 1.e. the Frobenius map,

D®D — TF/D,
X®Y — [X,Y]modD,

1S Zero.

Suppose that S is a tautological sheaf on Gp(d; T M) and Sr is its restriction to
F. Sp Cc m(TM), where m: F — M. Starting with the exact sequence

0 — TF/M — TF —s 7*(TM) — 0

one shall compute the coeflicient sheat of conic connections. For any point p € F one

has an exact sequence of linear spaces:
0 — TF/M|, — T,FF = TyyM — 0. (2.3)

The point p can be considered as a d-dimensional subspace 5, of Ty, M. Then from

formulae (2.3) the exact sequence of linear spaces can be obtained
0 — TF/M|, — 7. (Sp) — S, — 0,
and, hence, the associated sequence of locally free sheaves

0 — TF/M — 77(Sp) — Sp — 0.
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Denote 7, ' (Sr) as T, F, then one can write the following commutative diagram

0 — TF/M —— TF —— 7*(TM) —— 0

l l l

0 — >TF/M—-——+TCF—E*—> SF — 0.

A conic connection on F' is a splitting of the lower horizontal exact sequence.

Therefore, if V; and V; are two different conic connections, then, see Section 2.1.2,
Vi~Ve=HF,TF/MQ® S}).

A choice of local coordinates (z*) in M trivialises T'M, F', and the coefficient

sheaves. The sheaf of coefficients of conic connections is 72(TF/M ® S§).

For computational reasons it is useful to compare this sheaf, #%(TF/M ® S),

with the connection coefficient sheaf on the full Grassmanian Gy (d; TM) — M.

Proposition 2.2.1 (a) The sheaf of connection coefficients on the fibration G p(d; TM) —>
Mis QM @sl(TM)=QMQ (WM QTM)y. Iis local sections are characterised by

the Christoffel symbols "with no second trace”:

s,
(Fas) =F§b®d33b®5:gga Loy = 0.

(b) The map
{connections on the fibration} — {full conic connections}

1s surjectwe and has the following appearance on the coefficients:
d=1

QIM X (QIM®TM)0 — (92(Q1M) @TM)(],
d>1

QM@ (QA'M @ TM)y — (O*(Q'M) @ TM), & (N2(Q'M) @ TM),.

Proof. As in Manin [Man97].
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2.2.4 (Curvature and curvature sheaves

Connection on a fibration

Let ' — M be a fibration, and D C TF be a connection on a fibration. In other
words, one has an isomorphism dnw : D—#*T'M. The curvature ® of D is an element

of m.(A*D* ® TF/D), which can be decomposed as follows:

m.(AN°D*® TF/D) = =, (A*7n*(Q'M)Q TF/D)
= QO*M @ n,TF/D.

S50, the curvature is a 2-form on the base M with values in the sheaf T'F/D of the

vertical vector fields of the fibration.

Full conic connections

Let G = Gp(d; TM) — M be the relative Grassmanian on a complex manifold M,
and let S be tautological sheaf. The sheaf A2S*®TG/D which contains the curvature
of the full conic connection D C T'G seems explicitly to depend on D. However, it can
be represented as an extension of two sheaves which no longer depend on D: after

factoring TG <, *(T'M) by D <7, S, one obtains the following exact sequence

(zero if d = 1):
0 — A25* @ TG/M — A2S* ® TG/D -2+ A28* @ §* — 0,

where S* = 7*(T'M)/D.
For d > 1 the integrability condition splits into two parts. Let ®q € H(M, A25*®
5*) = (Q*M ® TM), be the m.(8)-image of the Frobenius form. The first condition

for integrability is that &5 = 0.
If this condition holds, then

® e H'(M,n,(A*S*®@TG/M)) C O*M @ sl(TM).

This element, which is true curvature, must also vanish.
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(General conic connection .

Let /' — M be a d-conic structure on a complex manifold M. Let D Cc TF be
a d-conic connection on F. Its curvature lies in the sheaf A2S* ® TF/D. Again,
A°S* ® TF/D can be represented as an extension of two sheaves which no longer
depend on D: after factoring T'F 4, ™ (TM) by D LR Sr, the following exact

- sequence (zero if d = 1) is obtained:
0 — A2SE @ TF/M — A2S5 @ TF/D 25 A28* @ 55 — 0

For d > 1 the integrability condition splits into two parts. Let ® € H°(M, A2S5:®

A};) = (Q°M ® TM), be the w,(0)-image of the Frobenius form. The first condi-
tion for integrability is that @9 = 0. If &5 = 0, then the true curvature ® lies in
HO(M, 7. (A25r @ TF/M)).

2.2.5 An example of conic connection

(G3-structure

Here we use the notation introduced in Section 2.2.2, Example 3. Since
Sk =v*(S ® (N*S5)®")(-2)

and
TF/M = v*(A\*S*)(2),

the conic connection coefficient sheaf on F' is isomorphic to

V(TF/M @ St) = 0°S* @ A2S @ 03S*.

A projective connection on F' = IPps(S*) determines a splitting of the exact sequence
0 — TF/M — TF — v*(TM) — 0,

that is a morphism v : v*(T'M) — TF such that dv oy = id. Then, restricting «

to the subsheaf S; C v*(T'M), one gets a conic connection on F. From the exact
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sequence which relates coefficient sheaves of projective and 2-conic connections,
0 — v*(S*@A°S*) — TF/M @ v* (8 M) — TF/M ® St — 0,
1t 1s clear that the map
{projective connections on Pp(5*)} — {conic connections on F}

s surjective with its kernel given by sections of S* ® A25*. Hence, the kernel of the

surjection
{linear connections on S} £ {conic connections on F}

consists of arbitrary sections of S* ® A*S* @ ®35*. Using this freedom, together with
(*), it is not hard to check that there exists a unique 2-conic connection D on F, called
the distinguished 2-conic connection, such that the set pr~—!(D) contains a (necessarily
unique) linear connection 7 whose torsion tensor is a section of ©75* ® (A25)®” C
TM ® Q°M. Then, this section is nothing but the invariant torsion of the G-
structure. 'The vanishing of this section is a necessary and sufficient condition for

the GG3-structure to admit a torsion-free connection.



Chapter 3

Conic connections on

Gm~structures

Here we study first applications of the conic geometry. We start with a conic inter-
pretation of the well-known conformal geometry in 3 dimensions and then use it as a

launching pad for investigation of some new geometric structures.

3.1 Conic Connections On Conformal 3-manifold

The section considers the canonical 2-conic structure on conformal 3-manifold, distin-
guishing a 2-conic connection and calculating its curvature sheaf. Also a correspon-
dence between the conic and projective connections is considered in Section 3.1.6.

The definitions, theorems and computations in paragraphs 3.1.1 and 3.1.2 are based
on papers of K.P. Tod [Tod92] and Cheng-chih Tsai [CT96].

3.1.1 Weyl and Einstein-Weyl Manifold

A Weyl space is a smooth manifold M equipped with

(1) a conformal class of metrics, [gqs],

(2) affine torsion-free connection D (called the Weyl connection ),

38
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which are compatible in the sense that the connection preserves the conformal class of
metrics, i.e. in local coordinates, a chosen representative g for the class of conformal
metrics is written as g,;, and the Weyl covariant derivative is written as D,. Then,

the compatibility condition becomes

D adbc — Walbe

for some 1-form w = w,dz°.

The Ricci tensor for Weyl connection is defined as
Wap = Wfdb;

where W4 _ is the curvature of the Weyl connection.

Weyl manifold M 1s Einstein- Weyl if and only if the symmetric part of the Ricci

tensor is proportional to conformal metric, i.e.

1
W(ab) — gwgab'

- Proposition 3.1.1
W(ab) = Rgp + V (aWp) — Walp 1 gab(kak + wkwk)a
where Ry, 1s the Ricct curvature for metric connection /..

Proof. Standard calculations following [CT96].

3.1.2 Conformal 3-manifold

Let S be a standard 2-dimensional representation of space GL(2,C). Then GL(2,C)

naturally acts on 3-dimensional ®*S, thereby defining the homomorphism:
p: GL(2,C) —s GL(®%S) = GL(3,C).

It is a well known fact that Imp in GL(3,C) is precisely the 3-dimensional conformal

group CO(3,C) ~ SO(3,C) x C*.
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Therefore, if M is 3-manifold equipped with a conformal structure [g.], then
there exists, at least locally, a rank 2 vector bundle, S — M, with the following

iIsomorphism:
0:TM — &°S.

Though such a vector bundle may fail to exist on the whole of M, the projectivised
vector bundle Py (S5) is well-defined globally. So if one is interested in a local geometry
of M, it can be assumed, by shrinking M as necessary, that S and isomorphism
©: TM — ©*S are defined globally on M.

Note, that conformal class of metrics [g,3] can be easily reconstructed from the
data (S, : TM — ©2%5).

Indeed, there is a canonical decomposition:
®2QIM é 62(628*) — @48* @(Azst)®2,

where ¢ is the dual of ®%p : @*TM — ©*(®2%S). Since dimS = 2, the bundle

(A25*)®° has rank 1. Hence, its image in ©@*Q'M under the inverse map,
(A25*)®" — 2O M,

is a line bundle. This is precisely an equivalence class (conformal) metrics (gqs]. It is

easy to check that {g.| are non-degenerate.

3.1.3 A Canonical 2-conic Structure

Let M be a complex 3-manifold equipped with a conformal structure, in other words
there is an isomorphism, ¢ : TM = ©*S. Consider a relative projective line F' = P(S),
m : FF — M . There is a canonical embedding 7 : F — Grp(2;TM), which
supplements F' with a 2-conic structure. This embedding 7 : F' «— Grpy(2;TM) is
uniquely neighbourhood by the condition that the pullback i*(S) is locally given by

i(S) = 7*(5)(—1),

where S is the tautological bundle on Grp(2;TM).
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A conic connection on F is a splitting of
0 —TF/M — T,F — L — 0,

where £ = 7*(5)(—1).

Note that since fibres of 7 are projective lines, one has an isomorphism:
TF/M = 7*(A*S)(2).
Hence, the coefficient sheaf of 2-conic connections given by
T (TF/M ® Si) = m,(7*(A*S) @ T*(S*)(3) = A’S @ S* ® @°S* = § @ ®°S*.
There is an exact sequence
0 — O(-1) — #*(S) — TF/M(-1) — 0,
where TF/M(—1) = 7#*(A?S)(1) and by O(—1) one means the tautological sheaf on

F =P(S).

3.1.4 2-conic Structure in Local Coordinates

Let {z%} be the local coordinates on M, e4 denote a local frame of S, A = 1,2. Thus,
the isomorphism ¢ : TM = ©2%S is given by:

0(0,) = ©?°(z)es O eg, (3.1)
p(ea © ep) = Y} g0a, (3.2)

where functions 2% and ¢%p uniquely represent ¢ and its inverse 1.
The embedding 7 : F' — Grp(2; T M) is defined as follows:

[ﬂ“i] — span[:rrAgoﬁ 50a).

A single point in F is a one dimensional subspace (line) in S(z),z € M. The symmet-

ric tensor product of this line and S(z) is in ®*S{x) = TM(z) and 2-dimensional.
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This realizes a point in F' as a 2-plane in M and, hence, determines a 2-conic
structure.
Let [74] = [x° 7!] be the homogeneous coordinates on P!. Explicitly, let p € S.

Then p = 3 w/les for some 4. Now [72!] form homogeneous coordinates on P(S).
Thus [p] € P(S).
w([p]) = {zp, ..., 75} € M,
mH(z) = P(S,) ~ P,
So [|p] is determined by the numeric data: (z},z2, z3, [, 7']), where [74).

(4] = [x°, 7] = [1,7r°/7r.1] U [r' /7Y 1].

S0, p € Pp(S) can be described (up to multiplication) as

D = Zw“‘e 4.
The realization of p as a 2-plane, i.e.the inclusion
D <, Gr(2,TM),
1s then described as follows:
p—5S5Op— Span(z wAeA ©® eB),

i(p) = span[go"l('JrAeA ®ep)| = span[WAga‘l(eA ®ep)] = span(wA(ijaa),

where A =1, 2.

So, ¢(p) = span{ay, az}, where

§ : B

In a specific neighbourhood Y = {#° s 0},

1
o (/)
aq = [P + }E‘Pil]@“'

Note, that Dapy = ) ¢%g0, form basis in TM, so ay4 are linearly independent.
Therefore, i(p) is a 2-dimensional subspace of TM, i(p) — G(2,TM).
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3.1.5 2-Conic Connection

The projection 7 : ' — M gives us the exact sequence
0 —TF/M —TF — 7" (TM) — 0,

where T'F'/M is the sheaf of vertical vector fields and n*(T'M) = n*(®2%5). A pro-

Jective connection on F' = [P(S) is a splitting of this extension. There is a canonical

sequence:

0 — O(-1) — 7*(S) — TF/M(-1) — 0. (3.3)

Since the fibres of 7 are CPP!, one can deduce that the sheaf of 7w-vertical vector-fields,
TF/M, is isomorphic to 7*(A%S)(2). From this and (3.3):

0 — 7(8)(—1) 2= m*(0%8) — 7*(A28)®*(2) —> 0.

‘The map j defines a subsheaf |
I.F—TF

via the following commutative diagram: -
0 0
m*(A%5)%%(2) w*(A25)%%(2)

| T

0 — TF/M —s  TF  —— (TM) —— 0

=T T Tj*

0 —— TF/IM —— T.F — 7*(S)(~1) —— 0

T T

0 0

3.1.6 Conic vs Projective Connections

The main goal of this section is to understand a 2-conic connection in terms of projec-

tive line connections on S. The question to answer is which of this 2-conic connections

come from the projective connections.
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Consider the following exact sequence
0 — 7°(S)(=1) — 7*(O*S) — 7*(A25)®%(2) — 0
or
0 — 7*(A°S*)®*(—-2) — 7*(S*) — Sp = 7*(S*)(1) — 0
or
0 — TF/M ® 7 (A°S*)®%(-2) — TF/M ® 7 (' M)
= TF/IM ® T (LE) — 0
Note that TF/M ® 7*(A25*)®°(—2) = 7*(A2S*).
This exact sequence relates the coefficient sheaf, TF/M @ w*(Q! M), for projective

connections on P(S) = F, and the coefficient sheaf, TF/M ® n*(L}), for 2-conic

connection on F.

Since wl(n*(A2S*) = 0, one has an exact sequence:
0 — A’S* — (S @5 ® %S = AS® 5" ® %S — 0.
' Let us note that
(S® 5 ® OS* = A28 @ ©*S* ® ©*S7, (3.4)
which gives us the coeflicients of projective connections. And also note that
NS ®S*QE%S” (3.5)

corresponds to the coeflicients of the 2-conic connection.
It is clear that the dimension of (3.4) is equal to 9, while the dimension of (3.5)
is 8. This implies that the map from projective spinor connections on S to 2-conic

connection on F' is surjective. Thus, the following theorem holds:

Theorem 3.1.1 Any 2-conic connection on conformal 3-manifold M can be pulled
back to a spinor connection. In other words, any such a connection is induced by a

projective connection on S.
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3.1.7 Curvature of a 2-Conic Connection

Let 7 C TF be a 2-conic connection. Then dr : TF — #*(TM) and dn : T —
,CF — W*(S)(l).
Curvature of this connection is a global section of A2L} ® T'F/T, which fits in

the exact sequence:
0 — TF/MQANLy — NLp®TF/T — AL @ m*(A25)%%(2) — 0.
Note that
TFIM @ N°L% = 7*(A*(5)(2) ® 7;*(/\2(8*))(2) = Op(4)

and
1 (A*S)®%(2) = 7" (TM)/Lr = 7*(A*(5*))(2) ® T (A*(S*))®*(2).

Therefore, the sheaf of ”curvature tensors” fits into the exact sequence

0 — Or(4) — N LEQTF/T — w*(A%(S)) ® Or(4) — 0,
" which implies
0 — O*S* — (AN LL@TF/T) 25 A2S @ 045 — 0,

where 7)(A%L} ® TF/T) is a sheaf of 2-conic connection curvatures.

Hence, the obstruction for conic connection being integrable can be understood

in two stages:
0 — ®&;(RY) € 0°S* — RT — ®y(RV) — 0, (3.6)

®o(R") € A°S ® ©*S*.

If ®(R™) = 0, the remaining obstruction will be, as follows from (3.6), an element
®,(R7) € 8.

Thus, the calculation above have proved the following:
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Theorem 3.1.2 The obstruction for the integrability of a distinguished 2-conic con-

nection 15 the symmetric part of the Ricci tensor, Wagep.

Let us note that the freedom of choice for a conic connection is the sheaf A2S ®
5* ®° S§*. Using some of this freedom one can make ®,(RV), which corresponds to
torsion, disappear. But this condition, ®o(RV) = 0 defines a whole class of 2-conic
connection, distinguished connections, which differ from each other by the section of
©%S* = Q'M. In other words, this condition defines the family of Weyl-connection

(torsion-free and conformal).

3.2 (G,,~structures

Here the technique used for a conformal 3-manifold is applied to more general case.

3.2.1 Basic Definitions

Consider a complex manifold M, such that its tangent bundle 7'M is isomorphic to

the m-th symmetric product of a rank 2 vector bundle S on M, i.e.
@:TM = ™S,

Note, that in this particular case dimM = m 4+ 1. If m = 2 this becomes a 3-
dimensional conformal structure studied in previous section. If m = 3 this is a so
called ezotic Gi3-structure, extensively studied in the context of holonomy problems.
The case m = 3 shall be studied in more detail below/later.

This datum, TM = ©@™S, gives a rise to a host of conic structures on M, which
can be parameterised by an integer k € {1, ...,m}. |

It U k41 1s a tautological line bundle on Gy (m—k+1,TM ), then one canonically

defines an embedding:

i : P(S) = Gp(m — k + 1, TM)
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by the condition on the pullback,
§* Un-t41) = 7 (@™ES) (k).

FKach such embedding ;. gives rise to an m—k-+1-conical structure on the projective
”spinor” bundle P(S).

3.2.2 m~conic connection

The purpose of this subsection is to understand m-conic (¥ = 1) structure in more
detail. In particular, one wants, if possible, to establish the relation between the

m-conic connection on P(S) and a projective connection on the same space, P(S).

Theorem 3.2.1 LetP(S) € G(m,TM) be a m-conic structure on an m-+1-dimensional
manifold with an isomorphism TM = ®™S. Then f

1. if m = 3 the sheaf of projective connection coefficients coincides with the coef-

ficient sheaf of 3-conic connection,
A2S® @38* ® @28*,

or, wn other words, a 3-conic connection on F is equivalent to a projective

connection on P(S).

2. if m > 4 an m-conic connection is not equivalent to a projective connection on

P(S); moreover, the obstruction for a conic connection is to be representable by

a projective connection lies in
H°(M, (A*S*)%% @ 0™ *5%).

Proof. Consider M with TM = @™S,din M = m+ 1. Let i : F = P(S) —

Grar(m; T'M), be an m-conic structure. If U is a tautological bundle on Gr m(m; TM),
then

Lr = i*(U) = 7 (@™ 1S)(=1).
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Therefore, the coefficient sheaf of m-conic connection can be described as:
T (LEF Q@ TF/M) = 7 (7* (O™ 15*)(1) ® 7*(A*S)(2)) = A2S @ O™ 15" ® @35*.

Since

0 — 7 (A%S*)(-1) — 7*(S*) — O(1) — 0,
one has
0 — 7*(A%S*)®" (—m) — 7*(O™S*) — 7 (O™ 15*)(1) — 0
and hence
0 — 7% (AZSH)®" " (=m + 2) — TF/M @ 7*(Q' M)
— TF/M ® L3 — 0,

where TF/M @ (' M) = 7*(A*S ® @™S*)(2) is the coefficient sheaf for projec-
tive connection, and TF/M ® L} = 7*(A*S ® ©™15*)(3) is the sheaf of m-conic

connection coeflicients. The associated long exact sequence degenerates into
0 — {coeflicient sheaf of proj. connection} —

— {coefficient sheaf of conic connection} — @™ 45 @ A25®™-2) _,

where we used isomorphism
mH(A2S8M=D(_m +2)) = O™ 1S @ A258(m-2),
Finally, the isomorphism
O™ 1S ® A2S8(M=2) = (A25+)8% @ @m—15*

completes the proof.[]

As in the previous case, G, the obstruction to integrability of m-conic connec-

tion can be described by two steps. The first obstruction is an element ®y(R™) &
HOYF,m*(TM)/Lr ® N2L%), i.e.

Do(R") € T(M, 7 (A*5)°™(m) @ A*m*(O™18%)(2)),
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1.€. *
(I)O(RT) c (/\QS)m ® /\2(®m—18*) ® ®m+28*,

In other words, the first obstruction lies in a ” torsion ” part.

3.3 (3 structure

Let S be a standard 2-dimensional representation of space GL(2,C). Then GL(2,C)
naturally acts on symmetric tensor product ©°S. If p : GL(2,C) — GL(4, C) is the
associated representation, we can define a subgroup Gs = p(GL(2,C)) of GL(4, C).
Let M be a complex 4-manifold and 7 : L* M — M the holomorphic coframe bundle
whose fibres L} = 7~!(t) consist of all C-linear isomorphisms e : C* — Q!M. The
space L*M is naturally a principal right GL(4,C)-bundle, where the right action
Ry L*M — L*M is given by R,(e) =eog. A Gs-structure on M is, by definition,
a principal subbundle of L*M with th group G3. It is clear that Gs-structure is

equivalent to a local factorisation of the tangent bundle into symmetric cube
TM = ®°S

of locally defined vector bundle S of rank 2. Though such a vector bundle may fail
to exist on the whole of M, the projectivised vector bundle Py;(S) is well-defined
globally. These G5 structures have been very popular recently in connection with the
holonomy problem (cf. works by Bryant [Bry91] and Hugget and Merkulov [HM99].

Let us assume that M is a complex manifold with G3-structure such that .S exists
on the whole of M; it is called a spinor bundle on M. A linear connection Y7 on
o is called a spinor connection on M. Any spinor connection on M induces, via
isomorphism T'M = ®°S, an affine connection with holonomy in Gs; moreover, any
affine connection on M with holonomy in Gj arises in this way, at least locally. By
a torsion tensor of a spinor connection we mean the torsion tensor of the associated

affine connection.



Chapter 4

Quaternionic Structures

In this Chapter the notion of a quaternionic structure is reminded and connections
on quaternionic structures are investigated. Using the torsion and curvature tensors
some of the invariants of quaternionic structures are established. The results of this

chapter are to be used in Chapters 5 and 6.

4.1 (Quaternionic Structures

In this section different ways of defining quaternionic and almost quaternionic struc-
tures are considered. Although both concepts were mentioned in the Section 0.1 and
defined via the notions of holonomy and structure groups, it is useful to consider an
equivalent definition, arising from the spinor structure of the tangent space of under-
lying manifold. It gives us almost direct access to the calculations of corresponding

coeflicient sheaves in local coordinates.

4.1.1 Definition

Let M be a 2k-dimensional complex manifold, where k£ > 1.

Definition 4.1.1 A manifold with almost quaternionic structure is a four-tuple (M, S, S , O)

in which M is a complez manifold, S and S are locally free sheaves on M of ranks

o0
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k> 1 and 2, respectively, and

0: TM —S®S

is an isomorphism. 1

- 4.1.2 HEquivalent definition

This definition can be paraphrased as a reduction of the structure group of manifold
M. Consider 2k-dimensional vector space C** = C* @ C2. Then GL(k,C) acts in the
usual way on C*, and let GL(2, C) act on the right, by inverses, on C2. The combined
induced action on C** will generate a subgroup PC{k, 2} C GL(2k, C). Further, there
will be a (k + 2)-fold cover

S(GL(2,C) x GL(k,C)) — PC{k,2} C GL(2k,C),

where the ¢ § ¢ means that 2 x 2 and k x k matrices which follow are to have determi-
nants, whose product is 1. In other words, S(GL(2,C) x GL(k, C)) is the subgroup
of SL(p + q,C) consisting of matrices of the form:

(20)

The action on C?* is exactly the adjoint action on matrices of the form

(x1)

A quaternionic structure as defined above is a reduction of the general GL(2k, C)-
structure group to PC{k, 2}, together with the lifting to the left-hand group above. In

the case of four dimensions, the reduction is equivalent to a conformal structure,since
CO(4,C) ~ GL(2,C) x SL(2,C),

while the lifting is connected with the existence of spin structure.

"There is another definition of an almost quaternionic structure, see [BE91], where one can also
ask for a fixed isomorphism a : A¥S —» A2S.
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4.1.3 Torsion of an almost quaternionic structure

Let M be a complex 2k-dimensional manifold equipped with an almost quaternionic

structure. Choose any linear connections, g, @0, on the bundles S and S:
Vo - S — S X QIM,
vﬂo . S' — S' X QIM

Consider the induced tensor product connection on T'M, 7 = Vo ® @0. Locally, the
isomorphism ¢ : TM — S ® S and its inverse p~1: S ®8 — TM are given by

p(0a) = eaAA(w)eA ® ey
P (ea®ey) = €S ;0a,

where 0, = 33ﬂ, eq, e, are local frames in 5, S respectively and e” are holomor-

< ’ AA
phic functions.

Let Vo: 65— 56 ® Q' M be represented by functions I'2;:

Similarly, let 7 : S— S® MM be represented by f‘f i
The affine connection 7 : TM — TM ®Q!M induced by 7, and v, is described

by following functions:

Vo.0h = 90_1[(V0 & {79)3 ©(0s)]

_ AA _d AA AATB od
— (8aeb 6 8d—eb FaAeBAad—eb F A ABad)

So, the coordinate symbols of the induced connection are

ab = (3 6 ) AA — eb A[FGABBA - PB AB]' (4.1)

This connection on T'M will generally have torsion, that is given a scalar field f

on M, for which the following is valid:

2 V[a Vb]f b Ve f
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for some tensor T3 = —T,.
Also, one can use @ to move torsion from TM to S ® 5’, meaning:
TM®VM 3T 2+ TPP e 5035 ®AXS* @ 5*).

AABB

S0,

d a b c c __ mCC
Tab *€446BBCcctab = TAABB'

Since, A2(S*®5*) = ©25*®@A2S5* D A25*®G2S5*, this skew tensor can be decomposed
into sum of two terms
cCc __ el - CC
TAABE =F ABAB T I ABAB?

where there are the symmetries

CC _ pCC
I apip = I, (AB)[AB])’
WCC  _ [RCC
I ABAB F (AB)[AB]*

The following theorem is due to Bailey and Eastwood [BE91].

Theorem 4.1.1 The totally trace-free parts of ng ip and Fgg 45 @re independent

of the original choice of connections, and are, hence, invariants of the almost quater-

nionic structure.

Let us note, that FEC is ‘totally trace-free’ if all possible traces on the upper indices,

BAB
AC :
e.g. I, 2 ip vanish.

Proof. By definition:

C c c
ab — *ab Fba'
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Using the formulae (4.1) TCC . can be calculated as follows:

AABB
TEEBB = €, € bBB ecet(( ﬂet?D) Cpp (868DD)GC )
—ey (P aDeRD +FSD €ns) +‘?'DD(F bDeRD+F bHEDS) )
= e AeBB( — Gbecc)

~ géD(FQDeAA6§6MD+I‘ €A 0D 60)

+5§59 (I‘fDe;BagéddD + I‘bD BBcsgaC)

_ jCC C e
= I {ps —Tan€%408 — Losel408
b §C 4 [C. b
+Tsaepp0s + Loienplh,
c¢  _ oo, cC
where 175 . =% €5 .(0.ef¢ — 8,eS°).

Further on, it can be easily checked, that

2F EEBB = 2F (iCB)[AB]
= % 160 5(8ae7C — 0eCC) + €2 ;b 1 (9,e5C — 3,eCC)
+F ‘ﬁ Es“ég GBA)+F 553 €A 50 AA)
+FC A(0p€yp + 04eq) — (‘5 €4 T 0aep
and
2F EEBB = QF[gg](AB)
= eAA BB( aeb —abeCC)—eBA AB(@ e —(95656)
(53 BA ‘554} €pp) — 5g Caq T 50 €as)
C_c

(5A63A 05€5%4) +P 1(04ep, — 05€s 5)-

Using the symmetric/anti-symmetric notation, this can be rewritten as

CC CC C eC
21 AABB — (aﬂ — Ope, )e(AA B)B - I c(AeB)[A53] [A (AB]éB)’ (4.2)
CC’ CC C C eC

where brackets and square brackets denote respectively symmetrisation and anti-

symmetrisation on the corresponding indices.
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According to formulas (4.2) and (4.3), the trace-free parts of FEEBB and F‘EEB A

would be the trace-free parts of
a _b a b CC CC

and
a _b b CC CC
(€465 — €paCas)(0ats ™ — Obey ")
which are independent of the original connections.

Any change in the original connections can be written as I'C, = I + 0%, where
(g is an arbitrary tensor and coefficients with tilde represent coefficients after the
coordinate change. Then, as can be seen from the formulas (4.2) and (4.3) above, the

. CC =rele; . . e . .
difference between F Aigp and Frr 3 Wil lie in the trace parts, i.e. the change in
connection will affect only the trace parts of torsion.

Therefore, the trace-free part of FC¢

AARE is independent of the original choice of

connections. [

Lemma 1 Given an almost quaternionic manifold (M, S, S, @), there exists a pair of

connections on S and S* such that the induced affine connection is torsion-free.
Proof. Easily follows from the above calculations.

Definition 4.1.2 A scale on an almost quaternionic quadruple (M,S,S,¢) is a

choice of a pair (g,€) of nowhere vanishing sections:
e = [(M, A*S*),é = (M, N\25*).
The tollowing theorem is due to Bailey and Eastwood, [BE91].

T'heorem 4.1.2 Given a scale on (M, S, 5’, @), there are unique spinor connections:
Vo - S — S® QIM,

%0:3_}1§®91M.
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such that |
Vo(€) = @0(5) =0

and the torsion tensors, ng i ond F Anin Of the induced affine connection are

totally trace-free.

Definition 4.1.3 A quaternionic structure on a 2k-dimensional complexr manifold
N is an almost quaternionic quadruple (M, S, S , ), such that its invariant trace-free

cC cC
parts of F -, . and FABAB are zero.

4.1.4 'Torsion and curvature tensors

Torsion
In local coordinates the torsion tensor can be expressed as follows

Ty = (Bpeq” — rngegA —~ T edP)es (4.4)
Using formulas (4.2) and (4.3) and the fact that

CC CC CC
TAABB = FAABB T FAABB’

torsion can be rewritten as

Toins = €ichs(@aes® — 8650
C <C C <C ¢
=T AAB(SB AAB(SB T FBBAé T FBBA(SA (4.5)
Trace free parts of torsion
CC | CC b C C €
21 (AB)[AB] = (Bae — Obe, )B(A[A B)B] C(ABB)[A(SB] ) c[A (AB]‘SB)
CC | CC CC C ~C oC
2F[AB](AB) (&;66 — Obe, )e[A(A B|B) +Fc[AeB](A55) vy [AB)JB]
Trace free part of FCC is

(AB)[AB]

CC b
Tro(F o az) = Tro((BaeC — B¢ )€1 iCrz) = 0.
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since rank S = 2. While

Trg(ﬁ'[gg] v B)) = Tro((B,e5C — 6befO)eE4( AebB] B))' (4.6)

4.1.5 The flat model

Let T be a k + 2 dimensional complex vector space, together with a chosen volume
form e € A¥#(T). Then M = Gr(2, T), the Grassmanian of 2-dimensional subspaces
of T, has a natural almost quaternionic structure which can be constructed as follows.

There is the trivial bundle 7 = T x M over M. Denote by S the tautological
sub-bundle of 7', whose fibre is the subspace of T defined by the point in the base.

One can now define the bundle S on M by the exactness of

0—-—-—>5'——§T—>S-——+0.

It is a well known fact that the tangent bundle 7" of a Grassmanian is canonically

i1Isomorphic to the bundle of homomorphisms from the tautological bundle to its com-

plement, so it results in

T=5"®3G.

Therefore, Gr(2,T) has a canonical almost quaternionic structure.

Alternatively, one also can define M as the homogeneous space SL(T)/P where P

1s the subgroup consisting of matrices of the form

(0)

By general arguments, the tangent bundle to any homogeneous space G /P is the
homogeneous bundle induced from the Adjoint representation of P on g /p where g
and p are the Lie algebras of G and P respectively. This directly gives the quaternionic
reduction of structure group discussed in Section 4.1.2.

It is now possible to set up a flat space twistor correspondence. There is a double

fibration on the flag manifold F' = F(1,2,T), the parameter space of one dimensional
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subspaces inside two dimensional subspaces of the k + 2 dimensional complex vector

space ‘I |
F(1,2|T)

vl N
Y =P(T) M = Gr(2,T),

where P, the twistor space of M, is the projective space of T, and the maps ‘forget’

the appropriate subspace.

4.1.6 The Curvature of an induced affine connection

Thinking behind the formulas and calculations in this Chapter is largely based on a

book by W. Rindler and R. Penrose [PR84| and works of T. Bailey and M. Eastwood
[BEO1]. |

Let (M, S, S, ) be an almost quaternionic manifold. And let 7, 60 be spinor
connections on S and S , respectively, and also let 7 be the associated induced affine

connection. Its curvature tensor, in local coordinates, is given by

2 Val Vlea T ab V8, 6 Rabcad.

There is an associated ”spinor” curvature:

DD
Ry ipice = WAA‘PBB‘PCC‘Pd Rabc

Since the holonomy algebra of the affine connection v lies in s/(2,C) @ gl(k, C),

the spinor can be decomposed as a direct sum as follows

DD
RAABBCC'

D D
X [AB](AB)C H(AB)[AB]C](s'

[ (AB)AB|C T X [AB](AB)C](SC

Let us choose a scale, € = €[4 p),€ = €45, and assume that the affine connection

7 preserves them, so that
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Then the its holonomy algebra of this affine connection lies in sl(2,C) @ si(k, C).
Hence
D __a..vD
X[AB](AB)C = EABX_(AB)G:.
2! — 2.. gD
H (AB)[AB|C — capt (AB)C?
for some tensors X, H.

With this in mind, one can write down some symmetries of the curvature quanti-

ties:
D _ vD C _
XABABG =X [AB)(AB)C? XABABG =0,
D _ Db r7C __
HABABC = I (AB)[ABJ|C? HABABG =0,

where the left-hand equations are immediate consequences of the definitions, and
the other two follow from 7 4 e5.1r = 0.
These two quantities can now be decomposed into irreducibles. The conventions

are as follows:
Xasc = Yapc + Yipe + 54885 — kSc(adh) — 2AcadB),

D _ D D . D . D D
Hipapc = Yigasc T ©ipapc T Aiapdc + kAABC[A‘SB] — Zq’ABC[AJB]:
where the quantities introduced above have the property that if they have a possible

trace, then they are totally trace-free. This also implies the following:

lIIgBC = ‘1'8150)

Yibo = Y(QB)CS YEE;BC) =0

SAB = S(AB)
Aap = Ajap
EEBABC = E&B)[ABG]
OEBABC — e&é)[AB]C; eﬁB[ABO] =0

Aigas = AiB)ap)

®isaB = PaB)aB)-
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There is the Bianchi symmetry for the induced curvature on 7,
d
R[abc] T V[GTbc] T T[ach e =0,
which provides numerous relationships between the above curvature quantities and

two irreducible parts F and F of the torsion.

Curvature

Recalling formula (4.4), let us denote
bd = (3bedAA — FfBefA - ngefB)eiA,

or

c AA ¢
bd = Apd €4 4-

Va(Vde) = Vn(AgdBC) = 3aAgdec T Agd Va €

-~ Curvature tensor is defined as

[Vm Vb]ed - i-Rcbde:::

Looking closer it can be seen that

Va) Vblea = Va(Az{def) —Vz:'(A 4€1)
= Oa(Apg)ec + /—\f A"’fec—é?b( d)€c AafdAbfec

This means that the tensor can be rewritten as

abd = Lapja + fﬁzb]d-

where I¢, ; = 0a(A},) and I [ b = A[b 1Bq s Firstly, let us take a look at I[ab] 4. For
time being the anti-symmetrisation on indices a and b shall be omitted. Thus I[ab] 4

can be written as

A:bd = 6:’;‘4 X X
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Using the fact that eﬁ Aejfv N = 6% 61’-;’ it’s easy to check that

f DD _ f DD D D
eAAXad —eAAc'?aef F 6 --—-I1 8A
Also note that

€pi AA(a e?D) - AAef 700 (6DD) = —0 5D86(BCDD)=

enabling us to rewrite I, as

[

Ga = —(e TR0 XA + 8 TP, 62 X AA

+ 0a(€,)00(e8") — Ba(€5 ) Topel ™ — Bu(e, )T ed?).

1 c .
Now, let us consider I, ;:

Tone = Oules i X - Byl x4

(',:J)[ﬂ(t'il‘c A)ab](eﬁf“) — a[a( e’ -)FﬁBegA —_ G[a(e )F;}B AB
eC BA

— €44€4 6 (Fb]B) _eAAedBa (Fb]B)

BA
- eAAa[ﬂ(ed )Fb]B — €349(e B)Fb]B

Adding both I, ; and I apja ( note that the last three terms in formula for I abjq @nd the
first three terms on the formula for / ab)a cancel each other out) and slightly changing

the notation we get,

aa = —(egeTEA05 X1 +600FFA5§X i
+ egeed“d (Fb]B)+eCC as b]B)

-+ .BCC [a(ed )Fb]B"I‘eCC. [a(e )FSB)

Now consider RCC . = ed . ¢CCRe

abDD ppCe flgpd- It follows from above that

RCC . — 6CF[M (6250 (e54) + Tipd564 + Fb]BJgJB)
+05TL i(eppu(ed™) + Tfpdha4 + Tz 6h08)
+656%0,a(LS ) + 65620, (Fb]B)

+epp(Djale C)Fb]B + 0 (effB)I‘b]B)
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After some calculations it can be shown that
CC _ CprC 1A ' ] ' '
Reop = 9pTiaaltip + 00T 4T + 05 (0uThp) + 05 (81l p)s (4.7)
which in turn can be rewritten as

CC _ CpC C pC
I DD — 6DRabf) T 5DRabD:

Q

for some suitable tensors R% . and be D

abD
Also, note that

cC = _ ,a b pCC
Ry ipepDd = €ai€Bal0bD
and
CC  _sCpC . . sGRO
RAABBDD — 5DRAABBb + 5DRAABBD'

Curvature quantities associated with conic and projective connections

When calculating the Frobenius form for conic or projective distribution on quater-
nionic manifold (Chapter 5), curvature tensor arises naturally. It might be useful to
~write down some of these formulas at this stage.

Ife, = 0, + I‘fc,ﬂc-a— ( e; j€a are the spanning vectors of the distribution

OnD?
associated with projective connection on S, see Chapter 5 ) it can be checked that
R o
_pb _C
[63, eb] Rabcﬂ' 871-5
Consider

[8?41463, 6;,365] —= BZABE)BB[BQ, eb] + eleea(ebBB;)eb — ebBBeb(eiA)ea,

which, with the help of the fact that e, = e$“e,z, can be rewritten as

C

a c — b . C D C"“""“a
eAAé?a(eBB)Ec eBBab(eAA)BC+RAABEéW aﬂ'D

(o8 b cC b - ,a CcC .
(€ 4p50:85 — epnpes i0hes )eces

I

€.46e €p 0]

: ‘W.“_r (4.8)
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In case of zero-torsion according to (4.5)

a _b cC b a CCy, ._T1TC £C C <C C sC_1C sC
(BAAB aaeb — € eAAﬁbea )BCC—PAAB(‘;B—I-PAAB(SB—PBBA(SA FBBAéA (49)

BB BB
thus resulting the following formula for [e%, ;e,, ebB 5€b)5
a b _ (TC. € . TC. sSC_1C . 5C_1C . .sC\, .
Caacarepperl = (Uppad4 +Tppa0a —Typ05 —Thas0p)ece
. . O
D C
+ Rpissc™ 35 (4.10)

4.1.7 Curvature in the quaternionic case

Assume now (M, S, S , 0, €,€) is a quaternionic manifold with fixed scale, and ¥ is

the unique affine connection on M which satisfies the conditions of Theorem 2 and

has a zero torsion.

Rgfi)sécé — [(‘DEBC — 2AC(A5g))5AB + 25[?4®B]CAB]53

+[(I)§Bé€AB — 2AAB5&§B)G]58,

- where
R, ipsc = (Yasc — 2Mc(adp))é i + 2004 % pic s (4.11)
and
Ry inse = Phpein — 2hanSliépc (4.12)

The three curvature quantities,U% 5., ® , 545 and Agp appearing above have the

following properties:

‘1’ch = ‘I’&Bc): Vepc =0, (4.13)
C piB = (I)(AB)(AB): Aap = Aap)- (4.14)

4.1.8 Einstein Quaternionic Structure

Definition 4.1.4 A quaternionic manifold (M, S, S, 0,¢, ) with a fized scale is called
Einstein 2f ¢ = 0.
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Lemma 2 7 ,Asc = 0 for an Einstein quaternionic structure.

Definition 4.1.5 A Ricci flat scale on a quaternionic manifold is a scale for which
both ® =0 and A = 0.

Theorem 4.1.3 Given a quaternionic manifold (M, S, S ,©,€,€), such that the as-
sociated affine connection, V7, has A # 0, and if there ezists egc € T'(M, /\25'*)
satisfying \J 4 sesc = 0, then (M, S, 5’, ©, €,€) is Finstein and eag = CAap for some

constant C.
Proof. v/ ,4iepc = 0 implies that

ep[a®p)cis — €cla®ppap = 0.

If it is antisymmetrized on indices DAB one obtains

epA®pcap =0,

which can only hold if ®,5:5 = 0. Thus (M, S, S, ¢, €, £) is Einstein.

Also, the torsion-free condition and 74 epc = 0 imply that

‘I’EBCGED - ‘I’EBDBGE — 2AC(AEB)D + 2AD(AGB)C = 0.

The terms involving A 45 in this equation are as a consequence of the symmetries listed
in equations (4.13) and (4.14), in a different irreducible representation from the terms
involving W25-. Hence, the terms involving A4p must vanish independently. But
these constitute essentially just the antisymmetric product on the space of two index
antisymmetric objects, and thus vanishes if and only if A 45 and e4p are proportional.

Since by hypotheses A p # 0 the proof is complete. .

4.1.9 Quaternionic Kahler and hyper-Kahler manifolds

Definition 4.1.6 A complex quaternionic Kéhler structure on an almost quater-
nionic manifold (M, S?, 5’2’“, @) of dimension 4k is the following set of data:
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(a) a pair of non-degenerate sections € € N2S*, & € N25*:

(b) a pair of linear connections
Vo:9 — S®O'M,
‘@0 .5 — 8 ®‘QIM
such that s7o(€) = 0,7y(€) = 0, and the torsion TS, of the associated induced connec-

tion V = Vo & {70 1S Zero.

Theorem 4.1.4 ([BE91]) On a quaternionic manifold, there is natural one to one

correspondence between compatible quaternionic Kdhler metrics that are not hyperKdhler,

and FEinstein scales for which Asg s of full rank.

Conclusion

In this chapter a deeper look at conic structures in particular case of quaternionic
and almost-quaternionic manifolds was taken. Invariants of the conic structures were

investigated via considering the torsion and curvature ténsors of a conic connection

on the structure.



Chapter 5

Twistor geometry of quaternionic

Einstein manifold

5.1 Coordinates and coefficients

The local coordinates (%) are chosen on 4k-dimensional manifold M equipped with
quaternionic structure, along with a local trivialisation of the sheaves S and S by sec-

tions 74 and ?TA, respectively, where A =1, ..., 2k; A = 1,2. A quaternionic structure

is determined by 16k* functions e on M which describe the spinor decomposition:

p 1 (dz?) = €% ;7" ® A

or, In dual bases,
€440a = (") (ma @ m4)-

The choice of coordinates trivialises several fibrations and gives us a reference point

for describing all possible connections be means of their coeflicients.

60
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In particular, a covariant differential v : S — S ® Q'M on S can be described

A —

A .
noe = €l Be as follows:

using the coefficients I'g, or T
vw? =TI'4.m° ® dz°,

(ids ® ™) (v7t) =4 s @ 7P @ 1€ @ 7€

The differential 7 induces a projective connection on the fibration F' = Pj(S*) —
M. This connection depends only on the traceless part of I'4, (the convolution with
respect to A and B). All connections on this fibration can be obtained in this way.

F' has a 2k-conic structure, ¢ : F' — Gjy(2k,T'M ), uniquely defined by the fact
that
C*(Smut) = 71'*(5'*)('—'1)

A connection on F) in turn, induces a 2k-conic connection on F':
7 (S*)(—1) C 7*(5*) @ w*(S*) = 7* (T M).
The conic connection is the lifting to TF of the subsheaf 7*(5*)(—1):

0 — TF/M — TF % 7*(TM) — 0.

(Note that 7*(TM) contains 7*(5*)(—1).)

Thus, the projective connection on F, which gives a lifting of all of #*(T'M), in
particular gives a lifting of the subsheaf. The corresponding mapping on connection
coefficient sheaves is surjective; it can be described as a symmetrisation with respect
to BC in the coordinates. In fact, this mapping is actually m,(a), where « is the

morphism in the exact sequence

0 — TF/M @ Q'F/M(1) @ 7*(5) — TF/M@n*(S®35)
TF/M ® 7*(S)(1) — 0.

The typical fibre of 7 is CP! and

TF/M @ Q' F/M(1)|on = O(2) ® O(—2) ® O(1) = O(1).
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Which implies that
H'(CP',0(1)) = 0.

The surjectivity of m,(a) follows because 7} (T F/M ® Q' F/M(1)) = 0. This, in turn,

follows from the exact sequence
0 — O(-1) — 7*(S) — TF/M(-1) — 0
tensor multiplied by Q'F/M(2):
0 — Q' F/M(1) — m(SHQQVF/MQ2) — TF/M® Q' F/M(1) — 0.
Since 7%(Q1/M (1)) = 0 and 7} (TF/M & Q'F/M(1)) = 0 one has
0 — S*@m (U F/M(2)=n.(TF/M®Q F/M(1)) — 0,
and then, using the sequence
0 — Q'F/M(2) — 7*(S)(1) — O(2) — 0,

one obtalns
T (U F/M(2)) = Ker(S ® S — ©*(S)) = A*S.

A )
BCC?

symmetric in BC, and this means that m,(a) can be identified with symmetrisation.

Finally, the kernel of 7, () consists of the traceless symbols I’ which are anti-

Let us now summarise the description derived above. Stipulating the obstructions
to the existence of the connections vanish, the following surjective maps are obtained,

all of which are defined invariantly:
{connections on S} — {connections on the fibration Py;(S*)} —

{c — conic connection on M.}

(T4oe) — (Tgoemod 05T ge) — (T4 opmod 65T 66 + F%C}O)'

However, the arrows in the reverse direction (for example if one wants to describe
c-conic connections by choosing traceless anti-symmetric symbols which determine a

connection on 5) depend on a coordinate system.
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5.2 Manin obstructions and torsion

Let M be a 2k-dimensional (complex) manifold , such that TM +— S ® S, where
S, S are of dimensions &k and 2. A local trivialisation of the sheaves S and S is chosen
by the choice of sections 7 and 'rr“i, respectively, where A = 1,... . k;A =1,2. A
quaternionic structure is determined, as above, by functions e on M:
o (dz?) = % s @
or, in dual bases,
€50 = (¢") 7 (ma ® m4)-
The choice of coordinates trivialises several fibrations and gives us a reference point

for describing all possible connections be means of their coefficients.

Let h : 7#*(5*)(—1) — TF be a k-conic connection. Then, its Frobenius form &
has a canonically defined quotient ®o(h) = dn(®(h)). It can be seen as

Qo(h): 7 (A*S*(-2)) — w"(TM)/m*(S*)(-1).
So, if X and Y are two local sections of S*(—1),
Oo(R)(X,Y) = dn[h(X), h(Y)]mod «*(S5*)(—1).
®o(h) can be split into two irreducible components:
Do(h) = Do(h) + Po(h),
Ba(h) € (S* ® A2S)o ® (@5 ® S*)o,

d2(h) € i(S) ® (%S ® ),

where 7 : S — S* ® A2S is determined by the formula i(74) = 75 @ 7% A 4.

Here ®; and @ are called the first and second Manin obstructions, respectively.

Theorem 5.2.1 (a) The first Manin obstruction, ®y(h), does not depend on the
choice of h. (b) There exists a unique 2k-conic connection h for which the second
Manin obstruction is zero, i.e. ®5 = 0. It is the only 2k-conic connection which can

be integrable. Such a connection will be called a distinguished conic connection.
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Proof. Let dim M = 2k and TM be isomorphic to S ® S ( rankS = &, rankS = 2
) o: TM — SQ®S.
Explicitly, let z!,...,z%" be coordinates in some characterised U C M, and let

{ea} be local frame of S, {e;} local frame of S, 74 coordinates in S, 74 coordinates
in S.

Alsé,
0 AA
(‘0(8;1;11) = (,0(83) = €4 (‘T)BA €4,
pea®es) = €50

If h:7*(S)(—1) — TF' is a k-conic connection.

h(a)(1) = whe 5, (5.1)
where 5
a D C
cad = €% + 1 46™ 5

By definition,
Po(h) = drw(P(h)) = da[h(X), h(Y)|modn™*(S)(—1).
Then,
Do(R)(2)(ma, mp) = dr[h(ma)(1), h(mp)(1)|modm*(S)(1),
Taking (5.1) into account, let us consider

B

drlh(ma)(1), h(m)(1)] = dn[nte s, ™ epp]

I

dr(m(e a7 )eps — 75 (egpm)ens

+rinPles i epp)). (5:2)
From (4.8) it follows that

drlh(ma)(1), h(wg)(1)] = = AgCsBrD e .5, — wBrOSATD . e .0,

D' AAC®BB D' BBC®AA
Bloa b b ole:
S (€4 a€pp0acs  — eppelilhes )ecs
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It is clear then that
dr|h(m4)(1), h(7g)(1)lmod 7*(S)(1) = WAWB(GGAA WChi — ef’Bsabe;A)ﬁc
CSBPD . e CSAPD . oo
+rhm 5DFA(AC) €p 30 — T 5DFB(BC) €440

Making the substitution 8, = eCCec ® e, it can be checked that

Bo(h)(2) = w77 [(Buey’© — Ohey ©)e s€5% 5 + I‘A(AB)cS Fg(AB)ég]eg R es,

or
Do(h)(2) = m*7PECS, isec ® e (5.3)
where
—CC
220 BIAB) = €la(A B]B)a[ es] b] ° + F[A(AB)(SB] (5:4)

[t is manifest from the formulas (5.3) and (5.4) that (I)( ) (h), i.e. the totally trace free

part of ®o(h), does not depend on variation of the original spinor connection, I'C e

and hence is an invariant of quaternionic structure. Moreover, the totally trace free

part of ®g(h) will be

g (h) = Tro((0ae§’” — BeSC)e?, i€h))-

In Chapter 4 one of the invariants of quaternionic structure was established, namely

totally trace free parts of torsion. Referring to formula (4.6), we see that

Dy (h) = Tro(FG % i) (5.5)

Now,

(D((Zl2)(h) 50[( aeb abeCC)BAA “BB +PA(AB)5C B(AB) ]

O (h)(2) = €4 4C BB(aaebBC DaeC) + AFAAB - FﬁAB

since 050% = rank S = k.
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Therefore, the integrability condition (I)f)z)(h) (2) = 0 holds if and only if

(1—k)0G . = e ieb - (BaefC — 8,e5).

The conic connection,

0
h(ma)(1) = € w40, + T3y omm Caﬂ.fj:

such that

1 . ] .
I‘ﬂAC — keAAef’BC(@aefD — ﬂefD) (5.6)

is the distinguished (integrable ) connection in the body of the theorem 5.2.1. [

5.3 From Einstein quaternionic manifold to distri-

butions on twistor space

Let us consider a quaternionic structure on M, dim M = 4k. F' = P(S), given a suit-

able covering F' can be described in homogeneous coordinates [74]. Any connection

”~,

v S — S ® QM defines a projective connection on .P(S’) In other words, it
defines a distribution of rank 4k:

ak 4k+1
D, CTF™",
or, equivalently, can be described via the operator
6 : OF(].) — OF(].) ® D

As it was shown above (theorem 5.2.1), F' also has a distinguished conic connection,

D# C D;f C TF, such that D% is integrable. Consider the following composition:
v : Op(1) — O(1) ® D}, <% Op(1) ® D,

where « is a surjection in

D;ri}D}——J»O
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Locally, a conic connection can be described as

o g . O
Dr := span {WA(eAAC% T GAAFSBCE)?TB'&T_&)}

Let us denote:
a a C. B.
eqq = (€500 + €5 L p(z)n” —

In such a notation D, = span (e,44)-

Since Dy is integrable, by Frobenius theorem there exists a twistor space Z,dim Z =

2k + 1, parameterizing its foliation leaves, i.e. we have a double fibration :
F =P(S)

YN
Z M,

Let us define a rank 2k locally free sheaf, E%*, on F by the exact sequence

0—>D%k—aD;ff—+ = — 0.

For our purposes we need a subsheaf of Abelian groups on E%° given by,
Y = {v € E¥|L,9 € D, for all w € DF},

where v 1s an arbitrary representative of v in Df:,,’?. Y is defined properly since the

distribution D%’ is integrable.
Proposition 5.3.1 Y s a sheaf of Oz-modules.

Proof. Suppose, that w € DS is such that
Lo,w € D (5.7)

for any p € D%. We claim that w gives rise to a vector field v on Z%%!, Indeed for

any f € Oz we have
(pw — wp) o u™H(f) = s 0 (),
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where s = L,w € D%. But so u™!(f) = 0 and po u™'(f) = 0, since s,p € Dp,
meaning that po (w o u~(f)) = 0. This on the other hand implies that there exists
g € Oz such that p='(g) = wu~'(f). It is easy to check that this is a vector field, i.e.
Leibnitz rule is satisﬁe‘d. Ll

Theorem 5.3.1 Let M be an Einstein quaternionic manifold with
rank Aap = p.

Then there exists a rank 2k distribution D C T'Z on the associated twistor space Z
such that

1. Y = p~(D);

2. The rank of Frobenius form of D is equal to p.

Proof. 'To check when (5.7) holds it is appropriate look at the Lie derivative of a
general vector Q4%¢ 44 € D, along basis vectors, 7€ 4 4, of D, : [m ABAA: QBBBBB]-

S0, take any v € Er and let 7 = QAAB 44 be its arbitrary lift to D,.. In order to
get explicit description of Y it is sufficient to solve the following equation

. . O

C 4__—)=0. (5.8)

A BB
%€ 44, Q" "epp]mod (span = eciy T 5 A=

First,
[m%e14, Q% epp] = (1€, 4QP)eps — QPP (egpm™)ess + 7 Q7% [eqs eps).
Recalling (4.10), [r4e 44, QBBe, ;] can be rewritten as

[mes4,@%Pepp]l = (m%€44Q%C)ece — (QPPTS 551707 )ece:

+ QPP 4+ 050G 54 — 05T 545 — 98T Gan)ece

BBA

|
"
> 0)

Q)
D

Q)

Q
-+
=

.

&

o
ve
~y
-
=
lQ
o
N/

where
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Recalling 4.12, i.e.

D D -
RAABBC (I)ABCSAB ZAAB 5( A€ B)C»

and the fact that M is Einstein, i.e. the curvature tensor &L . vanishes by definition,

ABC
the last term in the (5.9) can be rewritten as

0

onD

¢ 0

orh

. ) a . 8

orD oD
0
—90QBBA 4 pé ;o mCmP —.
Q ABC B 3D
In other words,
~AnBB ~C 0 G i 0
Q) RAABBC aﬂrj:’mod (span T eqnn, T . —) = 0.
Now, let us consider the equation,
. . . a
AS%e,smod (span 7%z, WAZ_)——;{) = 0. (5.10)
iy

Note that if AE{C satisfies the equation above, then any expression of the form Agé +
wff?ré would also be a solution. Therefore solving (5.10) is equivalent to funding a

solution for

i 0
omn
To simplify the left-hand side of this equation one might use the fact that

AS wcmod (7" =—) =0. (5.11)

(BAAQCG)T"C' — eAA(QCO”Té) — QCCEAAWC-
Thus (5.11) becomes
' ' ' ' C A CC E A
0 = WABAA(QCC’?TC') —_ WA(QBC'JTC)FE;AB — TFAQ BI‘AAB ), FAAE’FT € pe:
The last two terms can be rewritten as

ANCB D~ ANCC E= _ ACC‘ ...D _AnhCCp ... D

_ A CC D
= Q FAAE€CD7T
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_ __AnCCrD .
= —7() FAADWC'

Thus (5.11) can be rewritten as
0 =me,4(Q%me) — T Q)T i, — 7H(QCme)TE - (5.12)

It is clear from (5.12) that the space of solutions for (5.11), and thus for (5.8),
will be of rank 2%. '

Now, assume that ); and @, are such that [y, X| € Dp, [Q2, X| € Dp, for any
X € Dpg. On the other hand we have an identity

[[QI: Q2]a X] T [[Xa Ql]: Q2] + [[Q2;X], Ql] = ().

Since [X, Q1] € Dr, it follows that [[X, @], Q2] € Dp. Similarly, [[@2, X], Q1] € Dr.
Therefore, [|Q1,Q2|, X| € D for any X € Dr.

So, if QCC’]TC satisfies the equation above, then [Dg, @] is in D But then (@1, Q2], DF]
is also in Dp, so if Q, ) satisfy the above condition, then [Q, Q2] also satisfies,

Dr, Q]mod(wé%

is in Dpg.

Thus it was shown that Y is a locally free p='(Oz) module. of rank 2k. It
follows from Proposition 5.3.1 that there exists a rank 2k distribution D C 1T'Z on
the associated twistor space Z such that Y = u~!(D), thus proving the first part of

the theorem.

Now, let f,,a = 1,...,2k be a basis of local sections of D% over Z%**!. On F
it can be interpreted as vector fields QA4e , ; with (Q44e, ;) satisfying (5.12). The

operator which computes the Frobenius form of D

D®D — L:=TZ/D
fa®fb — (I)ab= [fa:fb]mOd D:

when lifted to F', corresponds to computing [Qé“ie AAs Qfge gzl € TFand then pro-
jecting the result to T'F'/M along the sheaf of vertical fields,

Bop = [Q7 €44, Qp Peplmod Dy (5.13)
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Since

Q%44 Q5 Pepp] = (Qi e sQF )ece — (@5 PeppQy©)ece + Q2 Qs leas epsls

it follows from (4.10) that

__ NAAANBB pD C 0
Pap = Qo™ @y " Hysippe™ 55

D vanishes for Einstein

Again using (4.12) and the fact that the curvature tensor ®°/_ .

manifold, we get

0

Do = —2Q5° QP Aap (67 Epe + 05 40 )" it

or
. . . O
DQgp = QQaAAQbBBAAB(SaWB)W-

It is clear from the formulae above that

rank ®,, = rank Agp,

thus finishing the proof. [



Chapter 6

Inverse Construction

Theorem 6.0.2 Let Y be a (2n + 1)-dimensional complez manifold equipped with a
rank 2n distribution D C TY such that

1. the Frobenius form

®:AN°D— L=TY/D (6.1)
X®Y — [X,Y|modD (6.2)

has rank p, 0 < p < 2n,

2. N*"D ~ [®n

Assume that X — Y is a rational curve (CP') embedded into Y with the normal
bundle N = C** @ O(1) transversally to D.

Then the associated Kodaira moduli space M of all deformations of X wnside Y
(while remaining transversal to D) has canonically a structure of an Einstein quater-

nionic manifold with the curvature Aap such that

rankA 45 = rank® = p.

Proof. The cases p = 0 (hyperKahler structure) and p = 2n (quaternionic
Kihler structure) are well known ([HKLRS87] and [LeB89], respectively). Thus from

now on one may assume that 0 < p < 2n.
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Since X is transversal to D, the quotient map &,
0:TY — L_:-
provides an isomorphism L, ~ T'X. Hence
L|x = O(2).
Assume, there exists a line bundle L'/? on Y such that
(LY2)®2 = [

The assumption is weak. Such a bundle always exists at least on any sufficiently small
tubular unambiguously of X inside Y (see [LeB89|) . Then,

LY?|x = O(1).

Consider the following double fibration:

LN
Y M,

associated with Kodaira deformation problem, see Introduction, Section 1.3, and let

us define the following locally free sheaves on the moduli space M,

S =: v (LV?),
S =:%0u*(D ® L/?).

By definition of v°:
1. The fibre of S over t € M is

S, = H(v™'(t), n"(L'/?)) = C,

for any ¢t € M. Thus S is a rank 2 vector bundle on M.
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2. The fibre of S over t € M is
S, = H(v\(t), u*(D ® L™/?))

= HY(CP',C>* ®@ O(1) ® O(—1))
— HO(CPI, CQn) — CQn,

since D), = C**® O(1) and L2 dual of LY?, is isomorphic to O(—1). Thus S is

a3 et ?
a rank 2k vector bundle on M. Also, by the Kodaira theorem see Section 1.3,

T,M = H°(X,, N
= H°(X;, D)
= H(X, D@L "L
= S ®H(X,, L}’)
= 5 ®5.

Thus the moduli space M comes canonically equipped with an almost quaternionic

structure.

Now, there is the following commutative diagram of exact sequences:

0 0
T ]
pr (L) —— QIF/M

T T

0 » 1 (QY) »  QUF » QIF]Y —— 0

| | |

0 - » u*(D*) —— v (M) — QIF/Y » 0

T T

0 0
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The lower exact sequence implies the long exact sequence:

0 — vp* (D) > (M) —— (QUF]Y) —
— v, 1" (D) >

But
vop(D*) =0, vip*(D*)=0, (6.3)
since the typical fibres of those sheaves, respectively, are given by

HY(P!, D*|p) =0, HO(P!,C2*(—1)) =0,
H'\(P!, D*|s) =0, HO(P!,C2(~1))=0.

Thus,
QM =V} (Q'F/Y).

There is a relative de Rham diflerential on F, dp/y:
dryy 1 0 (D ® L~1/2) oF, (D L) QlFY
Note, that its kernel is given by:
Ker dp = p~1(D ® L™1/?)
Taking the 0-th direct image of dr/y and using (6.3) one obtains the derivation :
V :yppt (D@ L7Y?) — vop* (D ® L7%) @ 15 (' F/Y)

or, equivalently,

v:S — SQO'M,

i.e. a linear connection on S.

Note that the sheaf v2(A°D* ® L) is isomorphic to A%S. Indeed, the typical fibre
of ) u*(A*D* ® L) is given by

H(P, A*(C**(1))* ® O(2)) = (A°C™)*.
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The Frobenius form @ defines a global section of the sheaf A2D* ® L, and hence of
the subsheaf _
Y AD*® L) C p*(A*D*® L).

Since this subsheaf is precisely the kernel of dr/y, one concludes that
A=yt () € T(M,A°SY)

is covariantly constant, 1.e.

VsA = 0.

Now, let us consider the sheaf A?*(D ® L~1/2)*. It is easy to check that it is

actually a trivial vector bundle on Y:
AN DL Y)=A"DRL™=L"® L™ =0Oy.

Thus, there exists a non-vanishing section ey € I'(Y, A2*(D ® L~/2)). It is defined up
to a multiplication by a global function f € I'(Y, Oy). However, I'(Y, Oy) = C since
fix, = const and, for any y € Y, tangents to A; passing through v span the whole
tangent space 1,Y.

Thus, ey is well defined up to a constant. Then gy gives rise to a non-degenerate

section € of
A2nS* — V?ﬂ*(/\zn(D R L—1/2)*)_

Since dp/yp*(ey) = 0, it is clear that
vE = 0.

In conclusion, we have shown that rank 2n bundle S comes naturally equipped
with a triple (Y7, ), €), where ¥/ is a linear connection, A € I'(M, A%S), e € I'(M.A*"S*)

are such that

Ve =VA=0.

Let us now study the geometric structure induced on the rank 2 vector bundle S.

Firstly, we notice that the fibration on F' can be identified with the relative projective
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line PM(S' *). There is a commutative diagram:

0 > TF)Y —— TF  —— p(TY) — 0

I
—
—
—

D
T
0
which defines rank 4n distribution D C T'F and a line bundle L — F.

Since for any ¢ € M, X; is transversal to D, the distribution D is horizontal.
Thus D defines a projective connection on S, {%pr}. Note, that the bundle A2S*
comes canonically equipped with non-degenerate holomorphic section €, constructed
by LeBrun [LeB89]. There is a S-parallel holomorphic section & of A2S* constructed

as follows: the Wronskian
W - O(f,l/z) X O(fjl/z) — O

(81, 82) — 51 X dp(Sg) — 8§79 ® dp(Sl),

where d, : @ — O(L'?) is differentiation up the fibres of v is independent of the
choice of local trivialisation used for differentiating sections of LY/2, Taking direct

image sheaves, we obtain an object:
£:0(8) x O(S) — O

which may be interpreted as € € I'(M, A2S5?).

Here, the projective connection ¥/, has a unique lift to linear connection v on

it

S, such that the covariant derivative of € vanishes, i.e.

vE = 0.
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In summary it was shown that moduli space M comes equipped with the iollowing
properties:

1. an almost quaternionic structure
TM =S5®S,

where rankS = 2n, rankS = 2:
2. the scale
(e € T(M,A*™S*), & € T(M, A25*));

3. a rank 0 < p < n section
A € T(M, A2S*);
4. a pair of linear connection on S and S which satisfy
ve = 0,7 =0, 7\ = 0.

The data 4 induces an affine connection on T'M. The torsion of this induced

affine connection on TM, as it was shown independently by LeBrun [LeB89} and

Merkulov [Mer97], is determined by the second order infinitesimal neighbourhood of

the embedding X — Y.

The latter in turn is controlled by the cohomology group H(X, N ® ®*N*) (see
Merkulov [Mer97]). As N = C?*(1) in our case, this group vanishes, which implies
that the induced connection is torsion-free. Therefore, the curvature tensor for this

connection is completely described by three tensor fields:

\IIEBC — lI’&Bc')a ‘I’gsc — Y

D pip = Puapyany NaB = Aap).

as described 1n section 4.1.8.

Since 7\ = 0, and by theorem 4.1.3

(I’ABAB = 0,
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in other words, M is Einstein, and
AaB = CAap

for some constant ¢. This completes the proof. [
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