PhD thesis.

https://theses.gla.ac.uk/1052/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given
Parallel Programming using Functional Languages

Paul Roe, M.Eng. (York)

A thesis submitted for the degree of Doctor of Philosophy

Department of Computing Science, University of Glasgow.
February 1991

© Paul Roe 1991
Acknowledgements

I am greatly indebted to Simon Peyton Jones, my supervisor, for his encouragement and technical assistance. His overwhelming enthusiasm was of great support to me. I particularly want to thank Simon and Geoff Burn for commenting on earlier drafts of this thesis. Through his excellent lecturing Colin Runciman initiated my interest in functional programming. I am grateful to Phil Trinder for his simulator, on which mine is based, and Will Partain for his help with LaTex and graphs. I would like to thank the Science and Engineering Research Council of Great Britain for their financial support. Finally, I would like to thank Michelle, whose culinary skills supported me whilst I was writing-up.
The Imagination

the only nation worth defending
a nation without alienation
a nation whose flag is invisible
and whose borders are forever beyond the horizon
a nation whose motto is why have one or the other
when you can have one the other and both
a nation whose badge is a chrysanthemum of sweet wrappings
maybe
a nation whose laws are magnificent
whose customs are not barriers
whose uniform is multiform
whose anthem is improvised
whose hour is imminent
and whose poetry does not have many laughs

John Hegley, 1990
Contents

1 Introduction 1
 1.1 Functional programming 1
 1.2 Parallel programming 4
 1.3 Parallel functional programming 5
 1.4 This thesis .. 8

2 Parallel machines 12
 2.1 Parallel computer architecture 12
 2.2 Managing parallelism 13
 2.3 Conservative versus speculative parallelism 14
 2.4 Distributed machines: task and data placement 15
 2.5 Shared memory machines: GRIP 16
 2.6 Scheduling: Eager's result 17
 2.7 The target machine 18

3 Parallel functional programming 19
 3.1 A parallel functional language 20
 3.2 Implicit expression of parallelism 24
 3.3 Explicit expression of parallelism 31
 3.4 Algorithm classes and programming paradigms 32
 3.5 Conclusions .. 40

4 The experimental set-up 42
 4.1 The simulators .. 42
CONTENTS

7.8 Sets ... 171
7.9 Examples of bags use 173
7.10 Summary 176
7.11 Conclusions 177

8 Performance analysis and debugging 178
8.1 Introduction 178
8.2 Simple analysis 181
8.3 Formal performance analysis 192
8.4 Using the semantics 203
8.5 Abstract simulation 213
8.6 Debugging 227
8.7 Summary 234
8.8 Conclusions 235

9 Further work 237
9.1 Expressing parallelism and parallel algorithms 237
9.2 Parallelism control 244
9.3 Performance 247

10 Conclusions 249
10.1 A parallel functional language 249
10.2 Squigol 250
10.3 Parallelism control 250
10.4 Bags .. 251
10.5 Performance 251
10.6 A final comment 252
Summary

It has been argued for many years that functional programs are well suited to parallel evaluation. This thesis investigates this claim from a programming perspective; that is, it investigates parallel programming using functional languages. The approach taken has been to determine the minimum programming which is necessary in order to write efficient parallel programs. This has been attempted without the aid of clever compile-time analyses. It is argued that parallel evaluation should be explicitly expressed, by the programmer, in programs. To do achieve this a lazy functional language is extended with parallel and sequential combinators.

The mathematical nature of functional languages means that programs can be formally derived by program transformation. To date, most work on program derivation has concerned sequential programs. In this thesis Squigol has been used to derive three parallel algorithms. Squigol is a functional calculus for program derivation, which is becoming increasingly popular. It is shown that some aspects of Squigol are suitable for parallel program derivation, while others aspects are specifically orientated towards sequential algorithm derivation.

In order to write efficient parallel programs, parallelism must be controlled. Parallelism must be controlled in order to limit storage usage, the number of tasks and the minimum size of tasks. In particular over-eager evaluation or generating excessive numbers of tasks can consume too much storage. Also, tasks can be too small to be worth evaluating in parallel. Several program techniques for parallelism control were tried. These were compared with a run-time system heuristic for parallelism control. It was discovered that the best control was effected by a combination of run-time system and programmer control of parallelism.

One of the problems with parallel programming using functional languages is that non-deterministic algorithms cannot be expressed. A bag (multiset) data type is proposed to allow a limited form of non-determinism to be expressed. Bags can be given a non-deterministic parallel implementation. However, providing the operations used to combine bag elements are associative and commutative, the result of bag operations will be deterministic. The onus is on the programmer to prove this, but usually this is not difficult. Also bags' insensitivity to ordering means that more transformations are directly applicable than if, say, lists were used instead.

It is necessary to be able to reason about and measure the performance of parallel programs. For example, sometimes algorithms which seem intuitively to be good parallel ones, are not. For some higher order functions it is possible to devise parameterised formulae describing their performance. This is done for divide and conquer functions, which enables constraints to be formulated which guarantee that they have a good performance. Pipelined parallelism is difficult to analyse. Therefore a formal semantics for calculating the performance of pipelined programs is devised. This is used to analyse the performance of a pipelined Quicksort. By treating the
SUMMARY

performance semantics as a set of transformation rules, the simulation of parallel programs may be achieved by transforming programs. Some parallel programs perform poorly due to programming errors. A pragmatic method of debugging such programming errors is illustrated by some examples.
Chapter 1

Introduction

1.1 Functional programming

This thesis contributes some ideas for programming parallel computers using functional languages. This chapter separately discusses the advantages of functional programming and the problems of parallel programming. Subsequently the benefits of parallel programming with functional languages are described. Lastly the content of the whole thesis is outlined, along with the contributions which have been made.

1.1.1 Why functional languages?

Functional languages are programming languages which express computation in terms of pure functions. A program is expressed as a function from its input to its output. These languages are radically different from imperative languages and they are currently the subject of much research. Functional languages have several important advantages over conventional imperative ones. Many have advocated functional programming and the following references are recommended [1, 7, 56, 110].

Perhaps the most important advantage they have, as described by John Hughes [56], are their powerful facilities for modular design. In particular higher order functions enable common patterns of computation to be captured. This may be at a relatively low level such as a function for applying another function element-wise across a data structure or it may be the abstraction of a whole algorithm, for example a generic branch and bound algorithm. Conventional imperative languages do not include such powerful abstraction facilities. It is not that conventional languages have fewer abstraction facilities; it is that their facilities are less general. For example in languages like Pascal it is not possible to write generic list processing functions. This is due to limitations of the type system and limitations of procedural abstraction. Conventional languages are much more limited in the kind of abstractions which may be defined and used. The better the abstraction facilities a language offers, the more ways there are of breaking up (and hence solving) a problem. Abstraction facilities are the key to modularisation and hence to programming in the large. Thus functional languages are good for programming in the large.

There are at least two other benefits of functional programming languages. The first is that
CHAPTER 1. INTRODUCTION

they are mathematically tractable and hence they can be reasoned about more easily than
conventional languages. This also makes program derivation much easier. The second benefit is
that functional programs are amenable to parallel evaluation. This is the subject of this thesis;
the basis for this is discussed in Section 1.3.

1.1.2 The language

The language used throughout this thesis to express programs is based on Miranda; Bird and
Wadler's book provides an excellent introduction to functional programming in this style of
language [11]. The examples used in this thesis are all quite simple and they should be easily
understood with a little knowledge of a modern functional language. The key aspects of the
functional language are:

- it is purely functional; there are no side effects, such as assignment
- it is polymorphically typed
- it is lazy
- it is curried

Some features of the language are now sketched. The language uses layout to indicate the
scoping of identifiers and all valid program lines commence with a chevron, for example:

> power4 x = y * y
> where
> y = x * x

The function power4 raises a number to the fourth power. The definition of y is local to the
expression y * y; the layout expresses this.

Lists are a commonly used data type. The empty list is represented by [] and the infix function
for appending a single element onto the front of a list is represented by :. Lists may be written
thus [1,2,3] which is a shorthand for 1:(2:(3:[])). Functions on lists may be defined by
cases. For example the higher order function map, which applies a function to each element in a
list, may be written thus:

> map :: (*->**) -> [*] -> [**]
> map f [] = []
> map f (x:xs) = f x : map f xs

The first line shows the type of map; it is optional and indicates that map takes a function from
* to ** and a list of *s and produces a list of **s. The type variables * and ** are universally
quantified: they range over all types. Patterns such as [] and x:xs are matched against the list

1Miranda is a trademark of Research Software Limited.
argument of map. If \(x:xs \) matches the list argument, then \(x \) will be bound to the head of the list and \(xs \) will be bound to the tail of the list. An example use of map is: to raise all the numbers in the list \([1,2,3,4]\) to the power four, the expression \(\text{map power4} \ [1,2,3,4] \) could be used.

Function composition is denoted by the infix \(. \) combinator. For example a function to calculate sine to the power four is: \(\text{power4} \ . \ \text{sin} \).

Two useful list operators are \# and \(!\). The \# operator determines the length of a list, for example \(\# [99,100,101] \) is 3. The \(!\) operator is an infix operator for indexing lists, for example \([33,34,35,36]\) \(!1\) is 34 (list indexing starts from 0).

Equations may be guarded. For example a function, \(\text{filter} \). An application such as \(\text{filter} \ p \ 1 \) returns a list of all the elements from 1 which satisfy the predicate \(p \):

\[
\begin{align*}
& \text{filter} \ : \ \left(* \to \text{bool} \right) \to \left[* \right] \to \left[* \right] \\
& \text{filter} \ p \ [] = [] \\
& \text{filter} \ p \ (x:xs) = x: \text{filter} \ p \ xs, \ p\ x \\
& \quad = \text{filter} \ p \ xs, \ \text{otherwise}
\end{align*}
\]

The expression \(p \ x \) is a guard; the expression it guards \((x: \text{filter} \ p \ xs) \) is only returned if the guard is true. Patterns and guards are tested sequentially from the top equation downwards, until a match and true guard are found. The \text{otherwise} guard represents a default guard, taken if none of the other guards are true.

List comprehensions are also available (these are analogous to set comprehensions in Zermelo-Frankel set theory). For example the \text{filter} function could have been defined thus:

\[
\begin{align*}
& \text{filter} \ p \ 1 = [x | x \leftarrow 1; \ p \ x]
\end{align*}
\]

The list comprehension \([x | x \leftarrow 1; \ p \ x]\) may be read as: the list of \(x \)'s such that each \(x \) is drawn from 1 and \(p \ x \) is true. The expressions \(x \leftarrow 1 \) and \(p \ x \) are \textit{qualifiers}; \(x \leftarrow 1 \) is a \textit{generator} and \(p \ x \) is a \textit{filter}.

Algebraic data structures like lists and trees can be defined. Binary trees may be defined thus:

\[
\begin{align*}
& \text{bintree} \ * \ ::= \ \text{Node} \ \left(\text{bintree} \ * \right) \ (\text{bintree} \ *) \\
& \quad \ \quad \text{Leaf} \ *
\end{align*}
\]

The \text{Node} and \text{Leaf} values are constructors like \text{cons} (:) and \text{nil} ([]) are for lists. Notice that the type variable * means that \text{bintree}'s may be defined of any type, for example trees of numbers, trees of lists etc. However each instance of a \text{bintree} must be homogeneous.

A function to sum a tree of numbers may be written thus:

\[
\begin{align*}
& \text{treesum} \ ::= \ \text{bintree} \ \text{num} \to \text{num} \\
& \quad \text{treesum} = \text{treereduce} \ (+)
\end{align*}
\]
CHAPTER 1. INTRODUCTION

Notice how this function is only valid for bintree's of numbers (num). The reduction function on bintrees, treereduce, is defined as:

\[
\text{treereduce} :: (* \rightarrow * \rightarrow *) \rightarrow \text{bintree} * \rightarrow \\
\text{treereduce} f \text{ (Leaf } x) = x \\
\text{treereduce} f \text{ (Node } l r) = f \text{ (treereduce } f \text{ } 1) \text{ (treereduce } f \text{ } r)
\]

This higher order function is useful for defining reductions over binary trees.

A $ symbol may be used to show that a function or constructor is being used as an infix operator, for example: (Leaf 1) $Node (Leaf 2).

1.2 Parallel programming

There are good reasons why parallel machines are becoming common and hence parallel programming is becoming necessary. Parallel machines can be built which are cheaper than sequential machines offering the same raw performance. Also the highest absolute performance can only be achieved with parallel machines. Unfortunately programming parallel machines is much more difficult than programming sequential ones.

To write a parallel program a programmer must organise a parallel computation [10, 68, 95]. This involves: partitioning a program into tasks; mapping tasks onto a parallel machine, possibly dynamically; and arranging for tasks to safely communicate. All but the last issue are discussed in Chapter 2. However, the biggest problem associated with parallel programming is that of correctness.

Difficulties arise due to the asynchronous nature of many parallel machines; such machines are usually programmed with non-deterministic parallel languages. For example networks of transputers may be programmed using the occam programming language [75]. Deterministic parallel languages may be reasoned about in the same way as sequential languages. This is because there is a sequential execution order for a deterministic parallel program, which always gives the same result as its parallel execution. However for non-deterministic languages this is not true; in particular all possible execution orders of a program must be considered. Reasoning about non-deterministic parallel programs is often couched in terms of two program properties: safety and liveness. Safety properties are analogous to partial correctness issues. They state the answers a program should produce, if it terminates. Liveness properties state that if something is supposed to happen, then eventually it will. For example a task wishing to communicate eventually will do so. These are similar to total correctness issues; a program should eventually terminate and produce the correct result. The worst breach of liveness is deadlock. Informally, deadlock arises when a collection of tasks hold resources, a cycle of demands for resources exists and no preemption occurs. In such a situation no machine progress can be made and the machine becomes locked up.

Parallel programs' non-determinism also means that testing them is even less useful than testing sequential programs. Deadlock may not be revealed by testing and deadlock may occur on some program runs and not on others, with identical data. Debugging in general becomes very difficult since program results may not be duplicable. For these reasons many formal
methods for reasoning about and deriving parallel programs have been developed [45, 72, 82, 102]. Unfortunately these are all complex reflecting the inherent complexity of these kinds of parallel languages.

1.3 Parallel functional programming

1.3.1 Parallel evaluation

Functional programs may be evaluated in parallel [91]. Parallelism is achieved by evaluating function applications and their arguments in parallel. As mentioned in the previous section, the asynchronous behaviour of parallel machines means that they are usually programmed using non-deterministic languages. This makes programs' correctness difficult to prove. What of functional languages? A superficial answer is that the parallel evaluation of functional languages must be determinate since functions are determinate. However the non-deterministic evaluation of a functional language will result in a non-deterministic reduction order and this could in theory yield incorrect or indeterminate results.

A theorem is needed which states that the order in which reductions are performed always yields equivalent results. A suitable theorem exists for the untyped lambda calculus:

\[
\text{Church-Rosser (I) theorem:} \\
\text{if } E \text{ may be reduced to } M \\
\text{and if } E \text{ may be reduced to } N \\
\text{then there exists an expression } T \text{ such that} \\
M \text{ may be reduced to } T \text{ and} \\
N \text{ may be reduced to } T
\]

A corollary of this means that all sequences of reductions which reduce an expression to a normal form, will result in the same value (some renaming may be necessary). Any parallel reduction may be viewed as a particular sequence of reductions: a particular interleaving of several concurrent reductions. Thus providing a parallel reduction terminates it will always yield the same value; that is the parallel reduction will be determinate. Furthermore the value will be the same as if sequential lazy (normal order) reduction had been employed. Unfortunately the untyped lambda calculus is not a good basis for the functional language being used here. The functional language used here is typed, has delta rules, uses combinator reduction (not beta reduction) and reduces expressions to WNF. Burn [20] has gone some way to extending the classical lambda calculus results in order to prove the safety of evaluating functional languages in parallel.

Certainly, it is necessary to ensure that a parallel reduction terminates if a sequential normal order reduction would do so. This may be achieved by only evaluating expressions in parallel whose results will definitely be required. Chapter 3 discusses this issue further.

What about deadlock? Although terminating parallel reduction is deterministic, the reduction order itself is still non-deterministic. As previously stated deadlock can only arise when there are a set of tasks holding resources and a cycle of resource demands exists. To understand how this may arise parallel graph reduction must be understood.
Parallel graph reduction is the abstract execution mechanism which the functional language is presumed to use. A functional expression may be represented as a graph. For example consider the contrived expression bound to res:

\[
\begin{align*}
\text{res} & = x + y \\
\text{where} & \\
x & = 1 + 2 \\
y & = x + 3
\end{align*}
\]

The graphical representation of this is shown in Figure 1.1. The @ symbols represent function applications, left sub-graphs are functions and right sub-graphs are arguments. Notice how shared expressions are represented by shared graph nodes. Recursive expressions are represented by cyclic graphs. Evaluation proceeds by reducing graphs; for example \(+ \) reduces both of its arguments to numbers, then the redex (node) is overwritten with the result of the addition, see Figure 1.2.

Graph reduction is the process of locating redexes and reducing them by overwriting them with their values. Parallel graph reduction involves multiple tasks performing concurrent graph reduction. To prevent several tasks from reducing the same redex (node) a mutual exclusion mechanism is needed. This is achieved by tasks marking redexes. Thus in the previous example (Figure 1.1) the outermost \(+ \) may reduce its arguments in parallel. (There is not much achieved by doing this here but it illustrates parallel graph reduction.) Therefore tasks will be created to evaluate the graphs corresponding to the arguments of \(+ \) (\(x \) and \(y \)). The process of creating a task will be referred to as sparking. Each task will mark redexes it encounters to prevent other tasks from reducing them. Any task encountering a marked redex will block until the redex
becomes unmarked; once unmarked the task will *resume*. Tasks unmark redexes (nodes) when they reduce (overwrite) them and they release any tasks blocked on that redex.

In the example, the task evaluating y may block if the task evaluating x has not completed before it tries to access x. This is shown in Figure 1.3. Node marking has been shown by subscripting the appropriate node with X or Y to indicate which task is reducing which redex. Once the X task has evaluated x the $@x$ node will be overwritten with 3 and unmarked; then the Y task can resume and perform its reduction.

Now the deadlock question can be addressed. In parallel programming terms marking redexes corresponds to holding resources (mutual exclusion). Trying to evaluate redexes corresponds to demanding resources. Thus deadlock corresponds to a cycle of demands for redexes. However such a cycle is meaningless. It means that a value is dependent upon itself, for example:

$$ a = a + 1 $$
This equation has no solution; the value of \(a \) is dependent upon \(a \) and it is therefore undefined. In a parallel interpreter this may give rise to deadlock, if the arguments to + are evaluated in parallel. A sequential implementation may loop indefinitely or some implementations may detect such self dependencies. Crucially, cyclic dependencies are the only way deadlock may arise. Thus deadlock can only arise in a parallel functional language for a program whose value is undefined.

1.3.3 The advantages of parallel functional programming

The advantages of parallel programming with functional languages are summarised below. These are in addition to the general advantages of functional programming, previously mentioned.

- Functional programs designed for parallel evaluation may be reasoned about in the same way as sequential functional programs.

- Parallel functional programs, unlike other parallel programs, need no communication, synchronisation or mutual exclusion to be specified explicitly. This all occurs implicitly in the program graph.

- Deadlock can only arise when the result of a program is undefined.

The determinacy of parallel functional programs means that all the techniques applicable to sequential functional programming are applicable to parallel functional programming. In particular parallel functional programs are amenable to transformation just as sequential functional programs are.

1.4 This thesis

This section is a summary of the main results and contributions of this thesis. The basis of this work is a particular approach to parallel functional programming. This assumes an underlying machine model which is described in Chapter 2, along with various other proposed models. Essentially this is a shared memory MIMD machine: a generalisation of the locally available machine, GRIP [92]. The model uses a dynamic scheduling discipline; results by Eager give conditions necessary for good program performance, using such a scheduling discipline.

The functional language used for expressing parallel algorithms is described in Chapter 3. It uses a parallel combinator for explicitly expressing parallel evaluation; it is argued that this is both necessary and desirable. Furthermore, it is argued that implicit detection of parallelism, via strictness analysis, in functional programs is extremely difficult to do and indeed undesirable. The parallel functional language, and its assumed underlying machine model, are used throughout this thesis. Chapter 3 also discusses how different parallel programming paradigms may be used with language. It is shown that several classes of algorithms may be expressed using the language, except for non-deterministic algorithms.

To determine the effectiveness of example programs, written in the parallel language, a simulator was used. This is described in Chapter 4.
CHAPTER 1. INTRODUCTION

One of the nicest features of functional programs are their amenability to transformation. Squigol is an impressive algebraic style of program derivation and transformation. Chapter 5 investigates the suitability of Squigol for parallel program derivation; previously it has mainly been used for sequential algorithm derivation. It was discovered that some aspects of Squigol are specifically orientated towards deriving sequential algorithms. However other aspects were found to be naturally suited to parallel algorithm derivation. This is discussed and it is demonstrated by three derivations of parallel algorithms: an all shortest paths graph algorithm, an n-queens algorithm and a greedy algorithm.

Since the assumed machine is a shared memory one, task placement is unimportant; hence it is performed at run-time. However task size (granularity), the number of tasks in the machine and storage use are important issues. The target machine (an idealisation of GRIP) tries to control task granularity by using run-time heuristics. It is shown in Chapter 6 that to some extent this works; however for effective control this should be combined with various programmed techniques for controlling tasks granularity.

As previously mentioned it is impossible to express non-deterministic algorithms in standard functional languages; even if their results are deterministic. Chapter 7 considers the introduction of bags (multisets) into functional languages. These admit a non-deterministic implementation but put an onus on the programmer to prove that they are used determinately. Usually such proofs are straightforward. Bags make some algorithms easier to write and more efficient than would otherwise be possible. An implementation is sketched together with a proof that an intermediate implementation (a rewriting system) is correct.

Chapter 8 considers the performance of parallel functional programs. It is shown by analysing some simple algorithms that writing efficient parallel programs is more difficult than it first appears. For corroboration, the results of analyses are compared with simulation results. The analysis of algorithms which use pipelined parallelism is shown to be considerably more difficult, and hence error prone, than analysis of other parallel algorithms. To this end, a formal semantics is developed for reasoning about pipelined parallelism. This may be used to generate recurrence relations and hence to analyse pipelined programs, as is demonstrated.

The penultimate chapter (9) discusses further work. In particular some ideas on speculative parallelism, non-determinism, hybrid parallel and sequential algorithms and reasoning about parallel performance are discussed.

1.4.1 Thesis contributions

The following contributions have been made by this thesis:

Parallel programming

Contrary to some authors expectations I argue that parallelism should be explicitly expressed. In support of this I propose a simple parallel functional language. Extensive examples of parallel functional programs are given throughout this thesis. In particular the use of parallelism abstractions is expounded, especially divide and conquer ones.
Squigol

A considerable amount of work exists on the Squigol methodology for program derivation. I develop and extend this work to parallel algorithms. In particular I demonstrate that homomorphisms are divide and conquer algorithms, that some Squigol optimisations are inherently sequential and I illustrate the use of parallel operators and rules via three example derivations.

Control of parallelism

There have been many different proposals in the literature for controlling parallelism. I show that for good control of parallelism (task numbers, storage use and task sizes) explicit control of parallelism is necessary, see Chapter 6. I propose various techniques for controlling data parallelism and divide and conquer parallelism. Experiments have been performed to measure the effectiveness of these techniques and to compare the best of them with a simple run-time heuristic for controlling parallelism.

Non-determinism

Pure functional languages are insufficiently expressive to implement many useful parallel algorithms. I have explained one way to extend a pure functional language: by adding non-deterministic bag structures, see Chapter 7. This proved effective; in particular bags enabled some algorithms proposed by Arvind [6] to be expressed which cannot be expressed in a pure functional language. The implementation of bags' non-determinism is difficult; hence this was semi-formally developed via non-deterministic rewriting systems.

The performance of parallel programs

The performance of parallel programs is nearly as important as their semantic correctness. There is a vast literature on the latter topic but very little on the former. I address the former in Chapter 8. I propose that to debug the performance of parallel programs different levels of abstraction are required; this is demonstrated via several examples. In particular some programs are analysed at an abstract level and some others are simulated.

To reason about programs performance at a very abstract level, analysis is required. There have been several proposals for analysing the performance of parallel strict programs. However such programs do not admit pipelined parallelism, an important form of evaluation. I have, therefore, developed a non-standard semantics for calculating the performance of pipelined programs.

Hybrid algorithms

The goal of writing parallel programs for MIMD machines is not simply to obtain a program with maximal parallelism. In particular some parallel algorithms are not efficient sequential ones. Thus, hybrid parallel and sequential algorithms are sometimes needed. The scan function analysed in Section 8.2.3, the greedy algorithm derived in Section 5.6 and the dc5 combinator used in Section 6.6 demonstrate this.
Non-determinism and proof obligations

A general principle used to aid algorithm expression is the introduction of non-deterministic combinators into the language which may easily be proven deterministic. For example the par combinator of Section 3.1, the bhom function of Chapter 7, the choose function of Section 9.1.3 and the bb function of Section 9.1.1.
Chapter 2

Parallel machines

This chapter surveys some parallel machines and discusses the parallelism issues which arise from them. In particular this chapter describes the machine to be used throughout the rest of this thesis. It is necessary to describe the target machine since any parallel programming language must be based on certain assumptions about the underlying machine. This is basically a generalisation of a locally-available multiprocessor: GRIP [92].

2.1 Parallel computer architecture

The architecture of parallel computers was a 'hot' research area a few years ago. Now its popularity has diminished as parallel machines are becoming commercially available. Nevertheless there are fundamental differences between the two major classes of parallel computer architecture. These classes are SIMD (Single Instruction stream, Multiple Data stream) and MIMD (Multiple Instruction stream, Multiple Data stream) architectures. The architectures have the same power and may simulate one another. However their differences mean that they are best suited to different kinds of algorithm. Also they differ in how parallelism must be organised for them to work efficiently; thus different approaches to programming them are needed.

SIMD machines are array processors. They typically consist of a large collection of small processing elements. The same instruction is performed by all processing elements in synchrony. This means that the evaluation of programs on SIMD machines is usually deterministic, and hence programs may be reasoned about in the same way as sequential ones. SIMD machines are well suited to regular problems operating on large data sets. An example of a SIMD machine is the Connection Machine [46]. This was developed at MIT and it is intended to be programmed in Lisp. Hudak and Mohr have shown how graph reduction may be performed on SIMD machines by using a fixed set of combinators [53]; however in practice this is very inefficient. Also, O'Donnell has investigated the programming of SIMD machines using functional languages [85].

MIMD machines consist of cooperating processors each executing their own programs. These programs need not be the same and they are usually executed asynchronously. The non-deterministic evaluation of programs means that MIMD machines are harder to program than SIMD or sequential machines. However, as stated in the previous chapter, this is not true for functional languages. This thesis only considers MIMD implementations of functional lan-
guages, of which there have been many proposals. MIMD machines may be sub-divided into two classes: shared memory (tightly coupled) machines and distributed (loosely coupled) machines. The essential difference between these two types of MIMD machines is that, memory access (communications cost) is constant for shared memory machines whereas for distributed machines the processor network topology affects memory access. Examples of shared memory functional language implementations are: ALICE, Buckwheat, Flagship, GRIP and the \(\nu \)-G-machine \([31, 38, 92, 63, 118]\). Examples of distributed machines are Alfalfa, the HDG-machine the Nijmegen group’s machine and ZAPP \([38, 71, 111, 25]\). For the purpose of this thesis the assumed target machine is a shared memory MIMD one.

This thesis does not concern itself with any particular execution model for functional languages; other than the assumptions made about parallel graph reduction in Section 1.3.2. For more information on implementation details \([88]\) is recommended.

2.2 Managing parallelism

Managing parallelism is important in order to make a parallel program run efficiently on an MIMD machine. Control may be effected by the program or via heuristics incorporated into the run-time system. The following issues have important efficiency implications (for MIMD machines):

task and data placement: tasks and data should be arranged so as to minimise communication costs whilst maintaining parallelism. The placement of tasks and data should preserve task and data locality. The communication characteristics for shared memory machines mean that locality is less important than it is for distributed machines.

scheduling: this is the task of assigning tasks to idle processors. If there are more tasks than idle processors, a choice must be made to determine which tasks to schedule (run) on the idle processors; this is almost always performed by the run-time system. The difficulty with scheduling is that different schedules (orders of task execution) may result in different execution times.

task granularity and the number of tasks: these are related. Task overheads, such as communication costs, mean that there is a minimum size of task which is suitable for parallel evaluation. One measure of task size is the ratio of communications cost to execution cost. Also since tasks consume storage it is undesirable to generate many more tasks than there are processors.

The first two issues are described in this section, whilst the latter issue is investigated in Chapter 6, where several different methods for programmer control of task granularity and the number of tasks are considered. Before describing strategies for task and data placement, and scheduling, two important types of parallelism are discussed.
Conservative versus speculative parallelism

Conservative parallelism is the term given to parallel evaluation where the results of all tasks are required. Conversely, speculative parallelism may produce tasks whose results are not required. Speculative parallelism is useful, and more general than conservative parallelism; however it is considerably harder to manage.

In particular, parallel search algorithms often require speculative evaluation. Typically, a search space is concurrently searched until a desired element is found. Once the element has been found all other search tasks become redundant; however it is not known a priori which task will discover the element. Thus the parallel evaluation is speculative. For example to calculate in parallel the first \(n \) prime numbers, using the sieve of Eratosthenes, many numbers are speculatively sieved in parallel. Another example is the \(n \)-queens problem. To calculate a single solution to this, in parallel, many different partial solutions must be generated in parallel. Burton discusses speculative searching algorithms in [23].

The implementation difficulties of speculative parallelism arise because conservative tasks (those whose results are required) must be given priority over speculative tasks, or at least a fair scheduling discipline must be used. Otherwise the situation can arise where all a machines processors are evaluating speculative tasks, none of which terminate. Thus no progress will be made, although a result may exist. Further complications arise because speculative tasks may become conservative tasks or speculative tasks may need to be garbage collected (killed). In contrast the situation is far simpler if all parallelism is conservative because then any schedule will produce the same result from a program, if it exists.

Hudak describes a sophisticated scheme to manage speculative parallelism [49]. It is a graph-based scheme which executes in a distributed fashion, concurrently with parallel graph reduction. However it has not been implemented and it appears to be quite complicated and costly.

A similar scheme to Hudak’s has been advocated by Partridge [87]. This manages speculative parallelism on a distributed machine. His scheme uses a storage garbage collector to collect garbage tasks. A priority system is used to ensure that normal order reduction is simulated and to ensure that the amount of redundant computation is minimised. Once again there is a lack of empirical evidence to support the scheme.

An alternative and simpler approach has been proposed by many researchers, for example [43, 121]. This uses a notion of fuel; fuel corresponds to a quantity of evaluation which may be performed on a task, after which it is pre-empted. Some, known, conservative tasks may be given an infinite amount of fuel. This seems an interesting approach but again there is a lack of empirical evidence to support it.

The implementation difficulties of speculative parallelism are so great that few functional language implementations support it. Therefore no programs are described in this thesis which require speculative parallelism, unless specifically stated otherwise. Managing general speculative parallelism is not a problem which is specific to functional languages (compare speculative parallelism with garbage collection for instance).
2.4 Distributed machines: task and data placement

The dominant parallelism management issues for distributed machines are task and data placement. Although such machines are not the subject of this thesis, several interesting ideas, which have been proposed, are discussed in this section.

2.4.1 ZAPP

The ZAPP project focussed on divide and conquer algorithms [25]. This restriction meant that a run-time heuristic was sufficient to effectively control task and data placement. Initially a program was loaded onto a single processor. Tasks were produced and these were subsequently stolen by neighbouring processors. Thus tasks diffused from the original root processor. This ensured a reasonable degree of locality for divide and conquer algorithms’ tasks.

2.4.2 Sarkar’s system

Sarkar [100] has investigated the automatic partitioning and scheduling of programs at compile-time. This was performed with SISAL programs from which static networks of tasks were extracted. Thus, the programmer has no control over locality or granularity. SISAL is a first order single assignment language. The actual partitioning and scheduling is performed on GR, a graphical representation of SISAL or any other first order language. GR does not express a program’s semantics, instead it contains estimates of a program’s performance characteristics. These estimates include the program’s parallelism, execution time, communications costs and synchronisation points. GR is limited in the kind of parallelism it can express since it is intended for compile-time analysis.

Complementing GR is a performance model of the target machine. This contains information on processor execution times, scheduling and communications overheads. Algorithms are used for partitioning (splitting a program into tasks) and scheduling at compile-time. These algorithms try to optimise the mapping of a GR program representation onto particular machine model.

Sarkar’s system performs well for static programs where computation does not vary much for different inputs. It is unsuitable for programs whose computation is very input dependent. Since static analysis of higher order languages is much harder than for first order languages; it is also unsuitable for these.

2.4.3 Caliban

Paul Kelly has proposed an extension to Miranda to support the explicit mapping of tasks to processors, called Caliban [70]. The programmer specifies a static network of tasks which are mapped onto a distributed machine, rather like occam [75]. In Caliban, function definitions may be augmented with clauses specifying task placements, where tasks correspond to functions. Networks of stream-processing functions may be constructed which are statically mapped onto a loosely-coupled architecture. These connection specifications are written in a functional style; however a formal semantics for them has yet to be defined. Thus task sizes and task locality are completely determined by the programmer.
2.4.4 Para-functional programming

Para-functional programming has been devised by Ildak [54]. Essentially, a dynamic network of tasks is specified by the programmer. This is dynamically mapped onto a computer's architecture at run-time. Annotations in a program are used to specify that certain expressions constitute tasks and that they should be evaluated in parallel. They also are used to specify particular processors on which expressions (tasks) should be evaluated. This processor addressing may be absolute or relative, for example: \texttt{exp \$on left($self$)} means that \texttt{exp} should be evaluated on the processor to the left of the current processor. A semantics for Ildak's para-functional language is described in [51] (the original semantics as given in [54] is erroneous).

Just as with Caliban, locality and task granularity is completely determined by the programmer. This strategy encompasses all programs which can be written in Caliban. It is well suited to problems with a regular structure. However for problems with an irregular task distribution, an adaptive run-time heuristic may be better. For example it is difficult to efficiently map an irregular tree of tasks (unknown at compile-time) onto an architecture, using explicit task placement instructions. This scheme has not yet been implemented and there are many remaining questions; for example what happens if multiple tasks are mapped onto the same processor?

2.4.5 Concurrent CLEAN

The Nijmegen group are investigating the distributed implementation of a functional language, based on graph rewriting [111]. The intermediate language they use, Concurrent CLEAN, has annotations to denote sequential and parallel evaluation. The novel part of their approach is language annotations to control graph copying. When a task is created, its graph must be copied onto another processor. Copying is the norm and annotations determine how much graph should be copied by preventing the copying of graph they annotate. As a general rule only graph in WHNF should be copied. These annotations do not strictly prevent copying, rather they defer copying until the graph becomes evaluated. Once evaluated, graph whose copying has been deferred, is copied. These annotations allow the creation of arbitrary process network topologies and they support synchronous and asynchronous process communication. They claim that such copying control is necessary for efficient distributed implementation.

2.5 Shared memory machines: GRIP

GRIP is a shared memory MIMD machine [92]. As previously mentioned task and data placement on shared memory machines are not as important as on distributed machines. Thus task and data placement on shared memory machines, such as GRIP, are usually performed by run-time heuristics.

An important feature of GRIP is that it uses an \textit{evaluate-and-die task model} [91]. This means that sparking an expression does not reserve the expression for evaluation by the new task; the expression will be evaluated by the first task requiring its value. This mechanism tends to coalesce tasks and hence it can increase the granularity of parallelism. This is discussed further in Section 6.3.1.
In addition GRIP discards sparks once it becomes loaded beyond a certain limit; this prevents the machine from becoming flooded with tasks.

2.6 Scheduling: Eager's result

For run-time scheduling to work well a program's performance must not be too dependent upon scheduling. This section describes some work which determines conditions under which this holds.

Eager et al. [36] have analysed the performance of parallel programs running on a machine with run-time scheduling. Their results are quite abstract; they provide bounds on the performance of a parallel program using only a few simple measures.

Some terms are now defined. *Speedup* is defined to be the ratio of sequential execution time to parallel execution time for a program run on an n-processor machine. Thus the best possible speedup for a program run on an n-processor machine is n (linear speedup). The measure used to characterise parallel programs is their *average parallelism*; this has several equivalent definitions, including: the speedup given an unbounded number of processors, and the average number of processors that are busy during the execution of a parallel program, with an unbounded number of processors available. The former measure is used in some performance analyses in Chapter 8. The latter measure is used in the experimental simulator, Chapter 4.

The following result has been used a great deal in this thesis:

2.6.1 Eager's speedup theorem

Let A be the average parallelism of a program and let $S(n)$ be the speedup with n processors. Then for any work-conserving scheduling discipline:

$$S(n) \geq \frac{n \times A}{n + A - 1}$$

A work-conserving scheduling discipline is one that never leaves idle a task that is eligible for execution when there is a processor available. The assumed target machine does have a work-conserving scheduling discipline; however GRIP does not, since it may discard sparks (tasks).

A simple corollary of this is that if $A \gg n$ then a good speedup will result. Thus a program is well suited to run on an n-processor machine with run-time scheduling if $A \gg n$. If it is not the case that $A \gg n$ then scheduling becomes much more important and an explicit scheduling discipline is desirable. In general explicit scheduling is not practical, except in the extreme case when no scheduling needs to be performed. That is, when a static network of tasks are statically mapped one-to-one onto a machine's processors. When this occurs the following usually holds: $A \approx n$. However as previously mentioned the subject of this thesis is mainly MIMD machines with run-time scheduling; therefore it is required that $A \gg n$. Notice that to obtain a good speed-up there must be many more tasks than processors. This contends with the parallelism management issue of not swamping the machine with tasks.
2.7 The target machine

The assumed target machine for all programs in this thesis is a MIMD shared memory one, an idealisation of GRIP [92]. It is assumed that task and data placement are performed by the machine's run-time system. Thus no task or data placement information is specified by programs. Most importantly it is assumed that an evaluate-and-die task model is used; however unlike GRIP no sparks are discarded. Therefore all that programs need to specify is: what to spark? Throughout this thesis, unless otherwise stated, this will be the target machine. However, remarks will also be made on the implications of discarding sparks, like GRIP does.
Chapter 3

Parallel functional programming

This chapter describes a particular approach to parallel functional programming. Any parallel programming language must be based on certain assumptions about the underlying machine. The intended target machine for programs in this thesis is described in the previous chapter.

The philosophy behind my approach to parallel programming with functional languages has been to find the minimum necessary to write efficient parallel functional programs for the target machine. In particular it was desired to relieve the programmer from as much parallelism organisation as possible, whilst not relying on any as yet unproven compile-time analyses. The underlying assumptions of my approach to parallel functional programming may be summarised thus:

- The programmer must devise a parallel program and annotate it to indicate which expressions are suitable for parallel evaluation.
- The target machine is assumed to be an MIMD one with a shared memory. Task and data placement are performed by its run-time system. Thus the programmer is responsible for addressing the question what to spark? but not where or when to execute tasks.
- No automatic partitioning, scheduling, parallelisation or task placement is performed by the compiler. Rather the programmer and run-time system are responsible for performing these tasks.

It is argued that automatic detection of parallelism using strictness analysis is not sufficient alone to produce efficient parallel programs. Furthermore it is argued that the explicit expression of parallelism is in any case very desirable.

After describing the parallel functional language and arguing for the explicit expression of parallelism, parallel algorithms and programming paradigms are discussed. It is shown that functional languages are well suited to implementing some algorithms but not others. In particular functional languages cannot express non-deterministic algorithms.
3.1 A parallel functional language

This section describes how the functional language is extended so it can express parallel algorithms. To achieve this, a parallel and sequential combinator are used. The semantics and operational behaviour of these combinators are discussed. Lastly, an algebraic technique for removing some redundant sparks is presented.

3.1.1 A parallel combinator

It is necessary to express in programs what to spark. New syntax, such as annotations, could be added to the language, but for simplicity and economy of concepts, a parallel combinator (par) is used:

\[
\text{par} :: \ast \rightarrow \ast \\
\]

Informally, \(\text{par}\) sparks its first argument and returns its second argument. It is the only source of parallelism in the language. Tasks are only evaluated to \(\text{WINF}\); greater evaluation may be achieved by using multiple pars to evaluate the components of data structures. A benefit of having a parallel combinator is that no changes to the front end of a compiler are necessary, since \(\text{par}\) may be treated as a function syntactically and semantically. (An alternative method for expressing parallelism, due to Burn, is described in Section 3.2.3.)

A typical parallel expression might have the form: \((\text{par } e_1 . \text{par } e_2 . \ldots . \text{par } e_n) \exp\). The meaning and evaluation of the expression have been separated: the meaning is \(\exp\) and all the expressions \(e_1\) through to \(e_n\) are sparked. Other combinators could have been chosen, for example a parallel apply combinator; however \(\text{par}\) was found to be the easiest to use.

What should the semantics and operational behaviour of \(\text{par}\) be? There are several alternatives:

1. The \(\text{par}\) combinator could be strict in its first argument: \(\text{par } \perp x = \perp\). Operationally \(\text{par } x y\) sparks \(x\) and then evaluates \(y\). The application \(\text{par } x y\) is only overwritten with the value of \(y\) when \(x\) has completed. This is necessary to ensure strictness. The problem with this behaviour is that it is overly-synchronous and it does not permit pipelined parallelism. For pipelined parallelism with lists, an expression like \(\text{par } h (\text{par } t (h:t))\) is required to return the cons value before the evaluation of \(h\) and \(t\) have completed. This cannot happen with this particular version of \(\text{par}\).

2. The \(\text{par}\) combinator could be non-strict in its first argument: \(\text{par } \perp x = x\). Operationally \(\text{par } x y\) must spark \(x\) and then return \(y\). However since \(x\) may not terminate, parallelism may be speculative. As previously mentioned, speculative parallelism is very general but very difficult to implement, see Section 2.3.

3. The meaning of \(\text{par}\) could be non-deterministic; that is \(\text{par } \perp x\) may be \(\perp\) or \(x\). This behaviour arises from most practical implementations of \(\text{par}\) because scheduling is not usually fair. In such cases, if \(x\) blocks then it is possible for non-terminating tasks to prevent \(x\) from ever being resumed, especially if \(\perp\) creates many non-terminating tasks.
The second option is chosen for the meaning of par, that is par \(x \ y = y \). However par will be implemented non-deterministically, as per the third option. This implementation of par is not generally valid for all uses of par, but it does mean that par may be efficiently implemented, and it will not needlessly constrain parallelism.

Two operationally different pars are discussed, both of which behave non-deterministically. It is assumed that unless otherwise stated all programs and results in this thesis use a par which always sparks its first argument. In addition the GRIP implementation of par, which may or may not spark its first argument is discussed. When the GRIP implementation of par is discussed it will be referred to by phrases such as "if a GRIP-like spark discarding strategy is used".

In order for the non-deterministic implementations of par to respect the semantics of par, the way in which par is used must be constrained. In particular it must be ensured that the first argument of par is defined, unless the result, the second argument, is undefined. This par constraint may be formulated thus:

\[
\text{For all applications of par } x \ y, \text{ the following must hold: } x = \bot \Rightarrow y = \bot.
\]

The latter condition is just a reformulation of strictness; this is explained in Section 3.2.1. This represents a constraint on how par may be used. If this constraint is met then the non-deterministic implementations of par will respect par's semantics.

The constraint on how par may be used can either be a proof obligation for programmers using par, or it can be verified mechanically using, for example, a strictness analysis (see Section 3.2.1). Alternatively if pars are automatically placed then this constraint must always be met. For example the pars in the following two programs do not satisfy the constraint:

\[
> \text{funny1 } = f \ 0 \\
> \quad \text{where } f \ n = \text{par } (f \ (n+1)) \ n
\]

In order for funny1 to be a valid program the par in it must satisfy the constraint. However the expression \(f \ (n+1) \) does not satisfy the par constraint. Thus the par in funny1 does not satisfy the constraint and hence funny1 is not a valid program.

\[
> \text{funny2 } = \text{par } (\text{error } "\text{FAIL"}) \ "\text{OK}"
\]

The error function is similar to bottom: it causes the program to be aborted, and its first argument to be output. Thus since "OK" definitely terminates, this par also does not satisfy the constraint.

In [40] it was recognised that two forms of parallelism annotation are required: one for function definitions and one for function applications. These may both be expressed using par. For example a function \(f \ x = \text{exp} \) which should spark its argument may be written:

\[
> f \ x \quad = \text{par } x \ \text{exp}
\]
An application \(\text{app} = g \ \text{exp} \) whose argument \(\text{exp} \) should be sparked may be written:

\[
\begin{align*}
\text{app} &= \text{par} \ e \ (g \ e) \\
\text{where} \ e &= \text{exp}
\end{align*}
\]

In both cases the \text{par} constraint must be satisfied.

3.1.2 A sequential combinator

In addition to \text{par} a sequential combinator, \text{seq}, is needed. The \text{seq} combinator is strict in both arguments; operationally, it evaluates its first argument to \text{WNIINF}, then discards it and returns its second argument.

\[
\text{seq} :: * \rightarrow ** \rightarrow **
\]

\[
\begin{align*}
\text{seq} \ x \ y &= y, \ \text{if} \ x \neq \perp \\
&= \perp, \ \text{if} \ x = \perp
\end{align*}
\]

At first it seems curious that a sequential combinator is needed for expressing parallel evaluation. There are three reasons for needing \text{seq}. Firstly for strict operators whose order of argument evaluation must be changed. For example (assuming left to right argument evaluation) consider:

\[
\cdots \text{par} \ x \ (\text{if} \ \text{cond} \ \text{then} \ \text{seq} \ y \ (x+y) \ \text{else} \ \text{seq} \ z \ (x-z)) \cdots
\]

The un-sparked variables in the arithmetic expressions must be evaluated before trying to evaluate the sparked variables. Otherwise evaluation might block on the sparked variables and parallelism will be lost. If the evaluation order of strict operators is specified then some, but not all, \text{seq} combinators may be removed; for example with left to right evaluation, the example above may be rewritten:

\[
\cdots \text{par} \ x \ (\text{if} \ \text{cond} \ \text{then} \ y+x \ \text{else} \ \text{seq} \ z \ (x-z)) \cdots
\]

Secondly, \text{seq} may be used for evaluating data structures 'further' than \text{WNIINF}. The \text{par} combinator can be used in place of \text{seq} but sometimes this is not desirable because the tasks produced are too small to be useful. For example a parallel map for binary trees:

\[
\begin{align*}
\text{bintree} * &::= \text{Node} \ (\text{bintree} *) \ (\text{bintree} *) | \\
&\quad \text{Leaf} *
\end{align*}
\]

\[
\begin{align*}
\text{treemap} \ f \ (\text{Leaf} \ x) &= \text{seq} \ \text{res} \ (\text{Leaf} \ \text{res}) \ \text{where} \ \text{res} = f \ x \\
\text{treemap} \ f \ (\text{Node} \ l \ r) &= \text{par} \ ml \ (\text{par} \ mr \ (\text{Node} \ ml \ mr)) \\
&\quad \text{where} \\
&\quad ml = \text{treemap} \ f \ l \\
&\quad mr = \text{treemap} \ f \ r
\end{align*}
\]
The seq ensures that the application \(f \ x \) is performed before it is required (demanded). If the seq was omitted evaluation of treemap would stop at Leaves. The seq could be changed to a par; this might improve performance by allowing pipelined parallelism to occur. However it could also be detrimental, since it could create many small tasks. Depending upon the context in which treemap was used it might not be necessary to spark both ml and mr.

Thirdly, sometimes it is desirable to guarantee evaluation. This can be useful for a GRIP-style system wherepars may not spark their first arguments. For example consider the treemap function above, a likely behaviour for GRIP is this: initially GRIP will not discard sparks, then once it becomes loaded with tasks, it will discard sparks. When sparks are discarded then the results of previously sparked tasks will be (Node ml mr) where ml and mr are unevaluated closures. It would be far better for ml and mr to be evaluated albeit sequentially.

This can be achieved by using a new form of par, defined using par and seq, newpar:

\[
\texttt{> newpar } x \ y = \texttt{par } y \ (\texttt{seq } x \ y)
\]

The newpar combinator is strict in both arguments. It has the advantage over par that there is no constraint on how it may be used. This is because the par in newpar always satisfies the par constraint because the first argument to par, \(y \), is always evaluated by seq.

The treemap function may be rewritten:

\[
\texttt{> treemap } f \ (\text{Leaf } x) = \texttt{seq } \texttt{res } (\text{Leaf } \texttt{res}) \ \texttt{where } \texttt{res } = f \ x \\
\texttt{> treemap } f \ (\text{Node } l \ r) = \texttt{newpar } ml \ (\texttt{newpar } mr \ (\texttt{Node } ml \ mr)) \\
\texttt{> } \\
\texttt{> } \\
\texttt{> } \\
\texttt{> ml } = \texttt{treemap } f \ l \\
\texttt{> mr } = \texttt{treemap } f \ r
\]

The problem with using newpar, or putting seqs directly into treemap, is that pipelined parallelism is prevented. Each Node constructor is not built until both ml and mr have been evaluated. Thus, none of the result of treemap will be returned until the whole result has been evaluated. For this reason newpar is not used. In Section 9.1 this and some other drawbacks of using par and seq combinators to explicitly express parallelism are discussed.

The seq combinator is not a new idea. It has been used in sequential functional languages for controlling evaluation order, for example to control functions' input and output behaviour.

3.1.3 Removing redundant parallelism

Sometimes it is possible to remove redundant sparks, which may have been inadvertently inserted into programs. This may be performed by using algebraic reasoning, which ensures only redundant pars are removed. As an example consider Quicksort:

\[
\texttt{> qsort } [] = [] \\
\texttt{> qsort } (e: r) = (\texttt{par } qlo \ . \ \texttt{par } qhi) \ (qlo ++ (e:qhi)) \\
\texttt{> where}
\]
> \[q_{\text{lo}} = \text{qsort} \{ x \mid x < -r; x < e \} \]
> \[q_{\text{hi}} = \text{qsort} \{ x \mid x < -r; x \geq e \} \]

All \text{par} applications in \text{qsort} satisfy the \text{par} constraint; since if either \(q_{\text{lo}} \) or \(q_{\text{hi}} \) is undefined then the whole result must also be undefined.

There is some redundant sparking in this function since only one task need be sparked per recursion. This can be removed, and it can be guaranteed that it is safe to do so, by using some algebraic reasoning.

The following rules preserve meaning and operation, providing the \text{pars} satisfy the \text{par} constraint. Idempotency and the append rule reduce the number of tasks which are sparked, whilst maintaining the same parallel performance.

\[
\begin{align*}
\text{par } x \cdot (\text{par } y \cdot \text{par } z) &= (\text{par } x \cdot \text{par } y) \cdot \text{par } z & \text{associativity} \\
\text{par } x \cdot \text{par } y &= \text{par } y \cdot \text{par } x & \text{commutativity} \\
\text{par } x \cdot \text{par } x &= \text{par } x & \text{idempotency} \\
\text{par } 1 (1 ++ m) &= 1 ++ m & \text{++ rule}
\end{align*}
\]

These rules may be proved using the techniques outlined in Section 8.3. Note that, these rules do not preserve operational behaviour if \text{par} is given a GRIP-like implementation which may discard sparks.

The second \text{qsort} equation may be simplified thus:

\[
\begin{align*}
(\text{par } q_{\text{lo}} \cdot \text{par } q_{\text{hi}}) (q_{\text{lo}} ++ (e: q_{\text{hi}})) &= (\text{par } q_{\text{hi}} \cdot \text{par } q_{\text{lo}}) (q_{\text{lo}} ++ (e: q_{\text{hi}})) & \text{by \text{par} commutativity} \\
&= \text{par } q_{\text{hi}} (\text{par } q_{\text{lo}} (q_{\text{lo}} ++ (e: q_{\text{hi}}))) & \text{composition def. (preserves parallelism)} \\
&= \text{par } q_{\text{hi}} (q_{\text{lo}} ++ (e: q_{\text{hi}})) & \text{by ++ rule}
\end{align*}
\]

Hence \text{qsort} maybe rewritten:

\[
\begin{align*}
> \text{qsort } [] &= [] \\
> \text{qsort } (e:r) &= \text{par } q_{\text{hi}} (q_{\text{lo}} ++ (e: q_{\text{hi}})) \\
& \quad \text{where} \\
& \quad q_{\text{lo}} = \text{qsort} \{ x \mid x < -r; x < e \} \\
& \quad q_{\text{hi}} = \text{qsort} \{ x \mid x < -r; x \geq e \}
\end{align*}
\]

3.2 Implicit expression of parallelism

Programming languages used for programming parallel computers may roughly be divided into two types, depending upon whether they express parallelism explicitly or not. Languages without explicit parallelism expression either were not intended for parallel evaluation, or they were designed to have implicit parallelism extracted from them. The best example of the former are the so-called ‘dusty-deck’ Fortran programs. These are Fortran programs which were originally written for a sequential computer and which subsequently have been mechanically analysed to extract parallelism. Although there has been some success with extracting parallelism from
"dusty-deck" programs mostly this has only been fine-grained parallelism resulting from local "innermost" computations. In particular DO loops operating element-wise over arrays; such computations are common in scientific programs. This is reasonable for SIMD machines such as vector processors, but for MIMD machines a much larger grain of parallelism is required. This needs a more sophisticated global analysis of programs which is much more difficult to do. Often such large-grain parallelism simply is not present.

Most declarative languages contain no explicit expression of parallelism even if they are intended for parallel evaluation. The intention is that implicit parallelism should be mechanically extracted from programs. However, almost all imperative languages designed for programming parallel machines do have explicit parallelism expression, for example Ada and occam. This is because it is generally much more difficult to identify parallelism in programs written in these languages.

It has been said that: functional programs are "inherently" parallel, for example in [44]. However, this is blatantly untrue! Parallelism is inherent in an algorithm not in the language in which an algorithm is expressed. Sequential and parallel algorithms may be written in both functional and imperative languages. A simple example of a sequential algorithm in a functional language is:

\[f \, n \, l = \text{foldl} \, (-) \, n \, l \]

The function \(f \) subtracts all the elements of \(l \) from \(n \). The functional dependencies are such that each subtraction must occur in sequence. A parallel algorithm may be obtained by transforming this one.

\[f \, n \, l = n - \text{fold} \, (+) \, l \]

The elements of \(l \) are added together and then they are subtracted from \(n \). The \text{fold} function need not specify any sequencing of additions. In reality a special representation of lists may be required, for example balanced trees. This parallelism relies on the associativity and commutativity of plus (minus has neither property). Reductions and parallelism are discussed further in Section 5.3.

A common belief is that strictness analysis may be used to parallelise functional programs. The idea is to evaluate a function's strict arguments in parallel. In the following sections strictness analysis will be described and it will be explained why it is not sufficient to produce efficient parallel programs. In the last section, Burn's evaluation transformers will be discussed; these are an attempt to alleviate some of the problems which result from using strictness analysis to determine parallelism. Of great importance is the desired goal; this is not to produce parallel programs. The goal is to produce efficient fast programs; parallelism is not sought for its own sake!

3.2.1 Strictness analysis

Strictness analysis is a mechanical procedure for determining whether a function is strict or not. A function \(f \) is strict if and only if:
\[f \bot = \bot \]

The relevance of strictness analysis to parallel evaluation\(^1\) is that if only functions' strict arguments are evaluated in parallel then the resulting parallelism will be conservative. This is because strict functions require their arguments values\(^2\). Strictness also satisfies the \texttt{par} constraint (see Section 3.1.1). There are two basic forms of analysis suitable for strictness analysis: forwards analysis, usually an abstract interpretation \([21, 62]\), and backwards analysis \([59, 117]\). Davis surveys the area strictness analysis in \([33]\). Strictness analysis using these two techniques will now be briefly described.

Abstract interpretation involves the abstraction of a language's standard values to abstract ones. Abstract values approximate standard ones. Evaluation may be performed with abstract values to yield approximate results. These approximations are arranged to be safe (under approximations) to the standard results. Thus a function will only be determined strict if it really is strict. This safety is proven via a formalisation of the relationship between standard and abstract values. Abstract interpretation is a forwards analysis because it is performed in the usual evaluation direction using abstract functions and values.

For example, all ground values might be represented by the abstract values 1 and 0, representing possibly defined and definitely undefined values respectively. Then the abstraction of operators like plus, which is strict in both arguments, will be the \texttt{and} function. That is, the result of plus is only defined if both of its arguments are defined. To determine whether a function is strict, its abstract value is applied to 0. If the result of the application is 0 then the function is strict; this is the same as the definition of strictness given above.

Backwards analysis uses contexts which represent the amount of information needed by an expression. Essentially backwards analysis involves the propagation of a context for an expression into its sub-expressions. For strictness analysis, backwards analysis addresses the question: if an expression occurs in a strict context then in what context do its sub-expressions occur? For example if \(e_1 + e_2\) occurs in a strict context, then both \(e_1\) and \(e_2\) also occur in strict contexts. Thus the analysis proceeds backwards into expressions sub-components.

Both abstract interpretation and backwards analysis have some problems coping with certain features of functional languages. These are summarised below:

\begin{itemize}
 \item \textbf{higher order:} forwards analysis works for higher order functions \([21]\). However backwards analysis has really only been applied to first order functions, though a possible extension is given in \([59]\).
 \item \textbf{polymorphism:} there has been some progress on both abstract interpretation and backwards analysis of polymorphic functions \([3, 60, 61]\); however there are still some remaining problems.
 \item \textbf{data structures:} forwards analysis cannot analyse all the patterns of data structure strictness that backwards analysis can.
\end{itemize}

\(^1\)Strictness analysis can also be used to improve the efficiency of sequential programs.

\(^2\)Except in degenerate cases like \(f = \lambda x. \bot\) which fail to terminate anyway.
In general, when it can be used, backwards analysis gives more information than forwards analysis. Perhaps the biggest problem with both analyses is that of cost. Both forwards and backwards analyses generate recursive functions which must be solved (fixpoints found). At present calculating fixpoints is very costly [28].

3.2.2 Strictness analysis and parallelism

It is true that strictness analysis may find some expressions in a functional program which can be evaluated in parallel. However there are several problems involved with trying to do this. Firstly, strictness analysis is only approximate and therefore it will not always be able to detect expressions which may be evaluated in parallel. This is particularly true for data structures, for which many complex patterns of strictness are possible.

Secondly, some expressions may be too small to be worth evaluating in parallel. Furthermore evaluating small expressions in parallel may be detrimental to programs' performance. To analyse this automatically some form of complexity analysis is needed. This can be used to determine the complexity of an expression and hence whether it is large enough to be a task. The complexity of an expression is likely to be dependent on its input data; in this case a run-time test for task candidacy must be made. In general this is extremely difficult to do.

Thirdly, some shared expressions may be sparked more than once. The re-sparking of expressions can consume machine resources and hence be detrimental to performance. Evaluation transformers (described in the next section) or an evaluation analysis, such as [1G), can prevent some re-sparking; however, these both have costs associated with them.

Some of these efficiency issues, such as task size, are investigated in Chapter 6. Thus strictness analysis must be combined with several other analyses in order for it to extract useful parallelism from functional programs. To illustrate these and other potential problems consider Quicksort:

```plaintext
> qsort :: [num] -> [num]
> qsort [] = []
> qsort (e:r) = qsort (fillo r) ++ (e:qsort (filhi r))
>   where
>   fillo = filter (<e)
>   filhi = filter (>=e)
```

This function will be used as an example to show the information given by strictness analysis. For simplicity only the top level expression of the second equation will be analysed, which consists of monotypes first order function applications.

The following contexts will be used to describe strictness: L and S will represent lazy and strict contexts for integers. A lazy context means that an expression may or may not be evaluated to WINF. A strict context is one in which an integer expression will be evaluated to WINF. For lists of integers, the contexts IIIT, T, S, and L will represent: head and tail strict, tail (spine) strict, strict (to WINF) and lazy, respectively. Below are tables representing how contexts may be propagated. These tables show the degree to which a function's arguments may be evaluated, given that the function application occurs in a certain context.
For example in a tail strict context (T) an application of fillo will be head and tail strict (HT) in its argument.

Assuming that an application of qsort occurs in at least a strict context (L), the top level applications of the second qsort equation can be labelled thus:

$$\text{HT} (\text{HT} \text{++} (\text{HT} \text{qsort} (\text{HT} \text{fillo} r))) (\text{HT} (\text{HT} \text{qsort} (\text{HT} \text{filhi} r)))$$

Notice how small the original expression is and how many annotations have been generated (the filter functions have not been shown!). Worse still, in general functions will have many different annotations according to the context in which they occur. Thus many function versions may be required.

The problem with these annotations is that many of them are redundant with regards to parallelism, and different operational interpretations may be given to them. The annotations could be interpreted as indicating the amount of parallel evaluation possible; for example HT could mean that all a lists elements may be evaluated in parallel. Equally, annotations could be interpreted as meaning the amount of sequential evaluation possible (call by value evaluation). For example the parallel interpretations of @HT and @S are shown below:

$$\text{HT} \text{fil} = \text{ht} \text{fil}$$
$$\text{S} \text{fx} = \text{sfx}$$

$$\text{ht} \text{fil} = \text{par} (\text{p} \text{1}) (\text{f} \text{1})$$
$$\text{p} \text{[]} = ()$$
$$\text{p} (\text{x}:\text{xs}) = \text{par} \text{x} (\text{p} \text{xs})$$
$$\text{sfa} = \text{par} \text{a} (\text{f} \text{a})$$

Thus the qsort expression could be validly transformed to:

$$\text{ht} (\text{ht} (\text{++}) (\text{ht} \text{qsort} (\text{ht} \text{fillo} r))) (\text{ht} (\text{s} (: \text{e})) (\text{ht} \text{qsort} (\text{ht} \text{filhi} r)))$$

However this expression generates many redundant tasks; that is many tasks are generated which do little or no evaluation. Producing redundant tasks may greatly impede a machine. Tasks consume storage and they require communication resources if evaluated on another processor. A GRIP-like machine which employs dynamic control of task numbers, will discard tasks once it becomes heavily loaded. If a machine becomes loaded with redundant tasks crucial parallel tasks may be discarded. A more operationally efficient transformation would be:
 CHAPTER 3. PARALLEL FUNCTIONAL PROGRAMMING

\[
s ((++) (qsort (fillo r))) ((ss (:) e) (qsort (filhi r)))
\]

Where:

\[
> \text{ss } f \ a = \text{seq } a \ (f \ a)
\]

This does not generate redundant tasks, although it still does generate some very small tasks for example \(qsort \ [\]\). This problem is discussed further in Chapter 6. Producing too many tasks and producing too small tasks is a real problem, for example see [39]. This demonstrates that transforming an expression into an operationally efficient parallel one requires much more than just strictness information. Either additional complex analyses or manual help are required.

As a further example consider the filter expressions in \(qsort\); since filter is used in a head and tail strict context (HIT), these filterings could be performed in parallel:

\[
> \text{parfilter} :: (* \rightarrow \text{bool}) \rightarrow [*] \rightarrow [*]
\]

\[
> \text{parfilter } p \ [] = []
\]

\[
> \text{parfilter } p \ (x:xs) = \text{par rest } l
\]

\[
> \text{where}
\]

\[
> \ l = x:\text{rest}, \quad p \ x
\]

\[
> \quad = \text{rest}, \quad \text{otherwise}
\]

\[
> \text{rest } = \text{parfilter } p \ xs
\]

However, for most MIMD machines this granularity of parallelism (the size of tasks which are produced) will be too small. The tasks which are produced will not be worth evaluating in parallel. Nevertheless they will consume storage and communication resources, and for a GRIP-like machine which discards tasks, they may prevent other more worthy tasks from being evaluated.

3.2.3 Evaluation transformers

Burn has proposed evaluation transformers to solve some of the problems with using strictness analysis to determine parallelism [18, 19, 20, 71]. Evaluation transformers solve the problem that different amounts of evaluation may be possible in different contexts. For example in the context of \(\sum \ exp\) all the elements of the list \(\exp\) may be evaluated in parallel. In the context of \(\# \ exp\) only the spine of the list may be safely evaluated; this yields no parallelism and hence should be done sequentially. For a first order language the different contexts in which expressions occur may be statically determined. However for a higher order language, the contexts in which expressions occur may be data dependent and hence not statically determinable. For example consider the \text{apply} function:

\[
> \text{apply } f \ a = f \ a
\]

The context in which the second argument to \text{apply} occurs, that is the amount of evaluation which may be performed on the second argument, depends on the first argument. In general this can only be determined dynamically; if this is not done parallelism may be lost.
Evaluation transformers propagate evaluators. Evaluators are similar to the strictness contexts and parallel functions (ht and s) of the previous section. Evaluators and rules for propagating (transforming) them are derived by an abstract interpretation. Some evaluators may be statically determinable, whilst others may need to be dynamically determined at run-time. Propagating evaluators dynamically at run-time gives more information and hence potentially more parallelism than only utilising statically determinable evaluators. However there is an implementation overhead associated with propagating evaluators at run-time. Only utilising statically determinable evaluators yields less information and hence potentially less parallelism than propagating them at run-time. However there is no implementation overhead associated with static evaluators. In addition, if evaluators are propagated at run-time and program graph nodes are marked with evaluators, some re-sparking may be prevented.

A similar effect to evaluation transformers may be achieved by just using par and seq. Functions may be given an extra parameter which corresponds to an evaluator. These evaluator arguments can be passed between functions and transformed as necessary. For example the papply function below is parameterised so that in different contexts it may evaluate its second argument to different degrees:

```haskell
> papply f e a = par (e a) (f a)
> p1 [] = ()
> p1 (x:xs) = par x (p1 xs)
```

Thus if apply was applied to a hyper-strict function on lists of integers, f, the following apply function could be used: \texttt{papply f pl exp}. This would evaluate all the elements of the list \texttt{exp} in parallel. It seems difficult to implement evaluation transformers, in their full generality, using this method. If evaluation contexts were expressed in this way then those such as \texttt{papply f pl exp} which are statically determinable, could be specialised using partial evaluation. This would remove the need, in some expressions, to propagate evaluators, just as occurs with Burn's statically determinable evaluation contexts.

The prevention of re-sparking cannot be efficiently achieved using par and seq since this requires graph nodes to be marked with evaluators. These node markings must be updated when a node is evaluated by an evaluator. However it may be possible to achieve this effect at compile time by performing some manipulation of expressions; see for example Section 3.1.3, where an algebraic method for removing some redundant pars is presented.

Evaluation transformers are unproven. It is unclear whether evaluators are capable of capturing enough forms of parallel evaluation, especially for different data structures, to be useful. In order to use evaluation transformers in their full generality an implementation such as described by Burn in [19] is probably necessary. However for a more limited use of evaluation transformers seq and par may be sufficient.

If evaluation transformers are incorporated into a run-time system, then they can prevent some re-sparking, which could not be prevented by using just par and seq. However, neither evaluation transformers nor par and seq can prevent the creation of all small tasks.

Evaluation transformers were originally designed to be used with programs containing implicit parallelism. It maybe possible to use evaluators for explicitly expressing parallelism in a similar way to par and seq. However this thesis investigates how well a simpler approach works.
3.3 Explicit expression of parallelism

The previous section has argued that just using strictness analysis to determine the parallelism in programs, is unlikely to produce efficient parallel programs. This section argues that it is in any case positively desirable to express parallelism explicitly. In the context of the parallel functional language previously presented, the explicit expression of parallelism means that pars and seqs should be inserted into programs by the programmer. The onus is on the programmer to prove that applications of par satisfy the par constraint (the par proof obligation).

Notice that by requiring parallelism to be expressed explicitly the original advantages of using functional languages generally, and specifically for programming parallel computers, have been retained: there is still no need to specify communications, and deadlock is not a problem.

Burton, Hudak and the Nijmegen group have also proposed explicit parallelism expression [22, 54, 111]. However their main aim was to program distributed machines and thus to address locality issues, rather than what to spark, which this thesis addresses. Hughes has also suggested explicit concurrency; however his main aim was to reduce the space usage of functional programs [58]. His \(\text{II} \) combinator is an infix version of the par combinator used here.

3.3.1 A scenario

There are are compelling reasons to believe that explicit parallelism expression is desirable. Programming in all its forms, from conventional programming through to sophisticated program derivation, consists of refining a high level problem specification (possibly in the programmers head) to an executable algorithm. The parallel programmer must ultimately produce a parallel program and this is, not surprisingly, a major consideration in the programs design.

Without explicit parallelism expression one can imagine the following programming scenario: a programmer designs a parallel functional program for a parallel machine. Throughout the algorithms development, parallelism has been uppermost in the programmers mind. The resulting program is fed into a compiler. The compiler then carefully analyses the program to re-discover the programmers parallelism. It is evident from this that the programmer should know where the parallelism is in their program but cannot communicate this to the compiler. Most likely the programmer will comment various parts of the program with their intentions like "evaluate elements of the list xyz in parallel". Unfortunately the programmer can but hope that the compiler will discover this parallelism.

Of course a compiler may discover more parallelism than a programmer intended, but this is sheer luck and I do not believe in programming by luck! When writing parallel programs, parallel evaluation is not just a desirable optimisation that a compiler may discover; it is a fundamental property of programs.

3.3.2 Parallelism declaration

Lack of parallelism documentation or lack of explicit parallelism expression could result in a programmer (or compiler) unwittingly removing parallelism. This may arise because often much more efficiency is achievable with a sequential algorithm on a sequential machine.
than with a parallel algorithm on a sequential machine. For example for accumulate (also known as scan or parallel prefix), an algorithm exists which on a parallel machine with n processors has $O(\ln n)$ time complexity. The same algorithm if run sequentially has complexity $O(n \ln n)$. However a simple $O(n)$ purely sequential algorithm does exist. Thus, a programmer or a compiler might inadvertently transform the parallel algorithm to the sequential algorithm. This would result in a much more sequentially efficient algorithm at the expense of removing all parallelism. The performance of accumulate is discussed further in Section 8.2.3.

This destroys the idea that a computer may be regarded as a black box which a programmer knows nothing about. The programmer and compiler must both know what is in the box, at least whether it is a parallel or sequential machine, and the program must express this too.

Another example illustrating this point is sorting. On a sequential machine the two main issues in choosing a sorting algorithm are the input size and its distribution (how sorted the input is likely to be). For a parallel machine these are important too, but also the number of processors compared to the input size is important. If the number of processors is large then a parallel sort like bitonic merge sort (see for example [93]) may be appropriate. However, each individual processor should execute a more efficient sequential sorting algorithm since bitonic merge sort is not an efficient sequential algorithm. The parallel algorithm should be used to distribute work across processors, each of which does efficient sequential sorting. Again this is discussed further in Section 8.2.3.

A further point supporting the case for explicit parallelism expression is related to a more general functional language problem. When functional languages are said to be 'declarative' what is really meant is that they are declarative in meaning; that is programs declare the values which they compute. One could argue that imperative languages are declarative too. They are declarative operationally, because they declare how to compute values (not what the values are).

There have been two approaches to functional languages' lack of operational specification, which leads to inefficient implementation and makes reasoning about their operation difficult. The first approach is to develop analyses to extract the required operational information automatically, for example strictness analysis and in-place-update analysis. The second approach is to augment functional languages with explicit operational information. One horrible extreme of this is having assignment, like in ML. The other extreme are extensions to functional languages which do not compromise them: for example Wadler's linear type system [116]. The parallelism extensions I propose, par and seq, do not unduly compromise functional languages.

3.4 Algorithm classes and programming paradigms

This section describes parallel algorithm classes and parallel programming paradigms. In particular the suitability of the parallel functional language to these classes and algorithms, is discussed. Quinn's classification of algorithms is explained and the difficulty of expressing certain algorithms is highlighted. The last two sections discuss two parallel programming paradigms; both are suited to parallel functional programming.
3.4.1 Quinn’s algorithm classification

Quinn in his book [93] describes a useful classification of parallel algorithms for MIMD machines:

partitioned: these algorithms divide a problem up into sub-problems which are solved in parallel. All sub-problems are solved using the same procedure. The sub-problem solutions are combined to form the problem solution; divide and conquer algorithms are typical partitioned algorithms. In general partitioned algorithms are very synchronous and hence they are sometimes termed synchronous algorithms.

pipelined: these algorithms consist of a sequence of tasks, each of which solves a different problem. The tasks are connected so that the output of one task feeds the input of another task. This type of parallel algorithm gives an increased *throughput* over a sequential algorithm. An example of a pipelined algorithm is a parallel compiler where all the phases are performed in parallel: lexing, parsing, code generation and code optimisation are all separate tasks. Synchronisation in a pipelined algorithm is implicit and arises between producers and consumers of data.

relaxation: these algorithms are also termed asynchronous or non-deterministic algorithms. They are characterised by being able to work with the most recently available data. Thus task synchronisation is minimised. Relaxation algorithms may be similar to partitioned or pipelined algorithms; the key point is their ability to work with different amounts of information about the problem being solved. Many relaxation algorithms require some form of speculative parallelism. An example of a relaxation algorithm is the parallel union-find algorithm, described in [93]; this may be used to solve many graph problems. Banâtre et al. have a discipline of programming based on relaxation algorithms [8]. These are specified as non-deterministic rewriting systems.

Often algorithms contain parts from different classes of parallel algorithms. For example, the top level an algorithm may be expressed as a pipelined algorithm; however, individual tasks in the pipeline may be partitioned algorithms. A signal processing algorithm may typically have this structure.

Any functional language may naturally express partitioned parallel algorithms, such as divide and conquer algorithms. For example a function for summing the leaves of a binary tree (*treesum*) may be written thus:

```haskell
> bintree * := Node (bintree *) (bintree *) | Leaf *
>
> treereduce f (Leaf x) = x
> treereduce f (Node l r) = par l1 (par rr (f l1 rr))
>
> where
> l1 = treereduce f l
> rr = treereduce f r

> treesum = treereduce (+)
```
The proof obligation associated with \texttt{par} means that \texttt{treereduce} is valid program if \(f \) is strict in both arguments or if \(f \) is total and the input tree is completely defined.

To express pipelined algorithms a functional language must have non-strict data structures, for example streams. (This is a rarely-mentioned advantage of lazy languages over strict ones.) Pipelined algorithms rely on evaluation with only partial information. A consumer task (function) must be able to do some evaluation with only partial information (for example part of a list) produced by some producer task.

The sieve of Eratosthenes for generating all the prime numbers less than one thousand is an example of a pipelined algorithm:

\begin{verbatim}
> primes = par (forcespine sp) sp
> where
> sp = sieve [2..1000]

> sieve [] = []
> sieve (p:nos) = par (forcespine filtnos) (p:sieve filtnos)
> where
> filtnos = filter pred nos
> pred n = n mod p /= 0

> forcespine [] = []
> forcespine (x:xs) = forcespine xs
\end{verbatim}

Since \texttt{sp} in \texttt{primes} is completely defined, the \texttt{par} in \texttt{primes} satisfies the \texttt{par} constraint. The \texttt{sieve} function occurs in at least a tail strict context, hence the \texttt{par} in \texttt{sieve} also satisfies the \texttt{par} constraint.

This program uses \texttt{sieve} to successively filter multiples of prime numbers from a list of the first thousand numbers. Each prime number filtering is performed in parallel. Thus consecutive \texttt{sieve} operations form a pipeline. The program is expressed so that it may form part of a pipeline; \texttt{primes} become available as they are generated. Notice how \texttt{forcespine} is used to force each filtering; this is required because \texttt{par} only evaluates its first argument to \texttt{WINF}. This is another example of where sequential evaluation is needed in a parallel program. (A parallel filter would have produced too small tasks.) This algorithm is quite complex; often pipelined algorithms are more complex than partitioned ones. A simulator/debugger is useful for debugging the performance of such algorithms (see Section 8.6).

Relaxation algorithms are inherently problematical for functional languages due to their non-determinism. Functional languages are inherently deterministic because expressions denote unique values. The theoretical implications to programming language semantics of non-determinism have been widely studied, for example [102]. Some interesting practical solutions to the problem have been proposed by: Burton (improving values), John Hughes (sets) and LeMétayer (gamma model). Chapter 7 discusses these proposals and a limited form of non-deterministic construct is proposed for functional languages. Section 9.1.1 also discusses some more ideas concerning non-determinism.

The implementation difficulty of algorithm classes correlates with their amount of synchronisation. Partitioned algorithms are easy to implement in any language; pipelined algorithms are a
little harder to implement. Relaxation algorithms, assuming they can be expressed, are hard to implement; in particular detection of termination can be non-trivial, see Section 7.6.2 and [8].

Also in correlation with the synchronisation of the various algorithm classes, is the difficulty of reasoning about algorithms performance. The performance of partitioned algorithms is relatively easy to reason about. Pipelined algorithms are harder to reason about. In Section 8.3 a semantics to formalise reasoning about pipelined parallelism is presented. The performance of relaxation algorithms is notoriously hard to reason about; often this is because the performance of relaxation algorithms is unpredictable!

3.4.2 Carriero and Gelernter’s paradigm

Carriero and Gelernter in [26] present three parallel programming methods based on three conceptual classes of parallelism. These classes of parallelism roughly correspond to the three classes of algorithm previously described. The conceptual classes are:

result parallelism: with this class of parallelism each task produces one piece of the result. This corresponds closely to the class of partitioned algorithms.

specialist parallelism: here each task performs one specific kind of activity. This corresponds closely to the class of pipelined algorithms.

agenda parallelism: a global agenda is kept and each task performs an operation according to the current agenda. This paradigm has similarities with the relaxation class of algorithms.

With each of the above conceptual classes of parallelism there are three associated parallel programming methods:

live data structures: here data structures are transformed by tasks into a result data structure.

message passing: this style involves the splitting of a problem into its logical parts; resulting tasks communicate using message passing. Thus tasks are specialised.

distributed data structures: this lies between the extremes of live data structures and message passing. A group of data objects and tasks exist. Tasks can perform many activities on data objects. Tasks actively look for data objects on which to perform a given activity. Data objects may be shared, which is how tasks communicate.

To explain these three methods of parallel programming, an example is used (taken from [26]). Consider a naive n-body simulator. On each iteration of the simulation, forces between all objects are calculated and the new object positions are determined. The live data structure solution to the problem consists of a matrix representing objects and their positions. A function to calculate a new matrix of positions is defined. This function implicitly creates tasks to determine the new position of each object from the old matrix of object positions.

The message passing approach entails simulating each object with a task. Thus there is a logical connection between tasks and the problem being solved. Each task computes a single object’s
current position throughout the simulation. At the start of each iteration, processes inform each other of their current object positions. Effectively each task models an object.

The distributed data structure approach concentrates on an agenda of activities to be performed. Each task computes the new position of an object. Thus tasks repeatedly look for objects and calculate their new positions. A master task can be used to ensure that tasks calculate new positions in the correct order.

The methodology is to determine which conceptual class of parallelism is naturally suited to the problem being solved. Then an algorithm is written using the associated programming method. If the algorithm is inefficient or not suited to the architecture being used, it is transformed to a better one. This transformation may change the algorithm to use a different style of parallelism. The paper [26] discusses the relationships between the three programming styles in terms of data and tasks; with this information transformation of an algorithm between styles is possible.

To demonstrate that this methodology can be used for functional programs, the problem of generating all the primes less than \(n \) will be considered. There are two natural ways to solve this problem. The first way is to use message passing. This solution uses the sieve of Eratosthenes, see Section 3.4. A pipeline of sieves are used to generate the primes; each sieve specialises in one prime. The second natural way to solve this problem is with live data structures. This paradigm involves each task transforming a data structure into a result data structure. Starting with an initial list of numbers from 2 to \(n \) each number may be tested in parallel to determine primality. A number is prime if no prime less than or equal to its root divides it exactly. This algorithm may be encoded thus:

\[
> \text{prim } ((p,\text{srq}:p) : ps) \ x = \begin{cases} \[] & \text{if } x \mod p = 0 \\ \[(n,n+n)] : \text{srq} > n & \\ \text{prim } ps \ n, & \text{otherwise} \end{cases}
\]

> \text{pflatmap } f \ [\[] = \[]

> \text{pflatmap } f \ (x:xs) = \text{par } rest (f \ x ++ \text{rest})

> where

> \text{rest} = \text{pflatmap } f \ xs

> \text{primes'} = (2,4) \ : \ \text{pflatmap } (\text{prim } \text{primes'}) \ [3..n]

> \text{primes} = \text{map } \text{fst} \ \text{primes'}

Using the semantics of \text{par} it can be proven that for the the context in which \text{pflatmap} occurs in \text{primes'}, the rest value in \text{pflatmap} is completely defined. Thus the \text{par} in \text{pflatmap} satisfies the \text{par} constraint.

In [26] a distributed data structure algorithm is developed from a Linda version of the above algorithm. Rather than just testing a single number for primality each task tests the primality of numbers within an interval. This increases the granularity of parallelism; similar techniques are described in Chapter 6. A shared pointer indicates the next interval of numbers which must be tested. Tasks non-deterministically access this pointer to get an interval of numbers to test. Each task increments the pointer to the next block of numbers to be tested. This is quite a low level algorithm and is difficult to implement in a functional language, due to the non-determinism. A simple way is to change the definition of \text{parflatmap} to increase the granularity
of tasks which are generated.

In general distributed data structure algorithms can only be written in functional languages such that tasks have a deterministic schedules of operations to perform. For example in a functional version of this distributed data structure algorithm, it would be necessary to specify which task would test which interval of numbers. Sometimes this is acceptable but it can often mean that an algorithm is considerably slower than a comparable non-deterministic algorithm.

3.4.3 Cole’s algorithmic skeletons

Murray Cole has proposed the use of algorithmic skeletons for expressing parallel algorithms [29]. Essentially these are abstractions representing generic parallel algorithms. He describes several skeletons which may be used to express a variety of parallel algorithms. In a functional language the algorithmic part of a skeleton corresponds to a higher order function [30]. Some example higher order functions which express algorithmic skeletons are shown later. The skeletons Cole describes express a selection of algorithms from all the previously mentioned algorithm classes.

There are three reasons why algorithmic skeletons aid programming; all these stem from parameterised design. Firstly a library of skeletons means less work for a programmer. If a skeleton can be used, only bits of a program relevant to the particular instance of the algorithm need be written: the parameters of the algorithm skeletons. Secondly if static task placement is performed a general placement scheme may be devised for skeletons; thus placement only need be calculated once. For complicated algorithms a parameterised placement scheme may be required. Thirdly for some algorithmic skeletons their complexity (performance) may only require analysing once. Thus a formula may be constructed which expresses an algorithm’s parallel complexity as a function of its parameterised parts’ complexities, for example see Section 8.2.2.

Algorithmic skeletons are useful for all types of programming; however given the additional problems of designing parallel algorithms they seem particularly useful.

Another advantage of parallelism abstractions (algorithmic skeletons) is that they factor out parallelism; thus preventing programs from becoming cluttered with pars. Lots of pars distributed throughout a program can obscure its meaning and operation. This is no new problem specific to \texttt{par} and its standard solution is abstraction. Thus function abstractions may be used to express common patterns of parallel computation; just as they are used to express common patterns of sequential computation.

As previously mentioned the implementation of \texttt{par} is not fully general; thus \texttt{par} can only be used in certain contexts. This must be ensured by the programmer via the proof obligation associated with \texttt{par}. When parallelism abstractions are constructed using \texttt{pars}, \texttt{par} proof obligations carry over to the abstractions. Thus parallelism abstractions usually have proof obligations associated with them.

For example a combinator to evaluate the elements of a list in parallel:

\begin{verbatim}
> parlist :: (*->***) -> [*] -> [*]
> parlist f 1 = par (p 1) 1
> where
> p [] = ()
\end{verbatim}
P (x: xs) = par (f x) (p xs)

The first argument to parlist f 1 is a function which is used to force the evaluation of each element of the list. The proof obligation associated with parlist is: f must always be total and in addition either the elements of 1 must be defined as far as f will evaluate them, or the strictness context in which parlist occurs must be at least that implied by f on list elements. For example a list of lists of integers (exp) could be fully evaluated in parallel by:

> 1 :: [[num]]
> 1 = parlist (parlist id) exp
> id x = x

The proof obligation amounts to: either exp must be totally defined or 1 must be used in a hyper-strict context.

A selection of other parallelism abstractions which have been found useful is shown below. Parallel apply:

> pap :: (*->**) -> * -> **
> pap f a = par a (f a)

The proof obligation is: either a must not be undefined or f must be strict.

A conditional parallel combinator:

> condpar :: bool -> * -> ** -> **
> condpar c = par, c
> = seq, otherwise

The proof obligation is the same as par, either the second argument to condpar must not be bottom or if the second argument is bottom then so must be the third argument.

A parallel filter:

> parfilter :: (*->bool) -> [*] -> [*]
> parfilter p [] = []
> parfilter p (x: xs) = par rest 1
> where
> 1 = (x:rest), p x
> = rest, otherwise
> rest = parfilter p xs

The proof obligation for parfilter is: either p must be total and all the list elements must be defined as far as p evaluates them, or the strictness of the context in which parfilter is used must be at least as great as that implied by p.

A general parallel map:
> parmap :: (*->**) -> (**->*) -> [***] -> [*]
> parmap ff f l = parlist ff (map f l)

The proof obligation for parmap is: ff must be total, and either all the list elements must be
defined as far as ff evaluates them, or the strictness of the context in which parmap is used
must be at least as great as that implied by ff.

A general parallel flatmap:

> parflatmap :: ([*] ->**) -> (**->[*]) -> [***] -> [*]
> parflatmap ff f [] = []
> parflatmap ff f (x:xs) = par rs (par (ff r) (r ++ rs))
> where
> r = f x
> rs = parflatmap ff f xs

The proof obligation for parflatmap is: ff must be total, and either all the list elements must
be defined as far as ff evaluates them, or the strictness of the context in which parflatmap is
used must be at least as great as that implied by ff.

Although many of these abstractions operate on lists similar abstractions may be defined for
trees and other data structures. If parallelism abstractions are used extensively then there is
a danger of re-sparking. One solution to this is for an implementation to mark program graph
nodes with the degree to which they have been evaluated, as mentioned in Section 3.2.3.

A more general and more complex parallelism abstraction is a divide and conquer combinator:

> divconq :: (*->(*,*)) -> (**->**->**) -> (**->bool) -> (**->**) -> * -> **
> divconq div comb isleaf solve =
> f where
> f x = solve x, isleaf x
> . = par sprob1 (par sprob2 (comb sprob1 sprob2)), otherwise
>
> where
> (p1,p2) = div x
> sprob1 = f p1
> sprob2 = f p2

The div function divides a problem into two smaller sub-problems. The results of sub-problems
are combined using comb. The isleaf function tests whether a problem can be solved directly
and solve solves a small problem directly.

The proof obligation for divconq is: either comb must be strict in both arguments or all functions
must be total and the input must be completely defined.

For example the treesum function in Section 3.4 may be written thus:

> treesum = divconq div (+) leaf solve
where

\[\text{div}(\text{Node } l \, r) = (l, r) \]
\[\text{leaf}(\text{Leaf } x) = \text{True} \]
\[\text{leaf}(\text{Node } l \, r) = \text{False} \]
\[\text{solve}(\text{Leaf } x) = x \]

This satisfies the proof obligation since + is strict in both of its arguments.

Sequential abstractions can be useful too, for example:

\[\text{seqlist } f \, [] = () \]
\[\text{seqlist } f \, (x:xs) = \text{seq } (f \, x) \, (\text{seqlist } xs) \]

This sequentially forces the evaluation of a list; the degree to which elements are evaluated is determined by the function \(f \).

Using parallel abstractions also means that sophisticated abstractions for certain architectures may be designed. For example efficiency issues relevant to a particular architecture may be incorporated into the abstractions; this is discussed in Chapter 6. Thus abstractions also make programs more portable and free the programmer from knowing some architectural details.

Cole used algorithmic skeletons to express (non-functionally) some relaxation algorithms. One approach to the problem of expressing such algorithms in a functional language is to provide the programmer with several relaxation algorithm skeletons as primitives. These abstractions could be implemented non-deterministically, and there would be proof obligations associated with them to ensure that their results were deterministic. This is discussed further in Section 9.1.1.

3.5 Conclusions

It has been said that functional languages are inherently parallel; however, it has been shown here that this is not the case. This is further supported by the results of Chapter 8.

Many people have proposed strictness analysis as a method of parallelising functional programs. Here it has been argued that strictness analysis is not sufficient for producing efficient parallel programs, and this has been demonstrated by an example. The results of Chapter 6 also support this claim. Furthermore it has been argued that it is highly desirable to explicitly express parallelism in programs. To accomplish this a simple parallel functional language has been developed. Usually parallel evaluation need only be specified in a few places within a program.

For efficiency it is desirable to remove redundant sparks from programs. This may be achieved by using algebraic reasoning. In particular laws are used which preserve programs operational behaviour and meaning. This has been demonstrated by an example.

Several paradigms for writing parallel programs have been proposed by others. It has been shown how these paradigms are suitable for use with the parallel functional language. In particular the use of parallelism abstractions is advocated, and throughout this thesis they are used. Although
the functional language may express several different forms of parallel algorithm it cannot express non-deterministic algorithms.
Chapter 4

The experimental set-up

A simulator was used to test, verify and experiment with parallel functional programs. This gave information on a program's runtime behaviour, including: the execution time and the average parallelism.

An alternative to using a simulator would have been to use a real implementation, which would have given 'real' results. However, apart from the locally-available machine, GRIP, not being 'up and running' at that time, there were two reasons for favouring a simulator. Firstly, a simulator can yield more abstract results than a real machine. Results from a simulator will be less likely to be affected by specific aspects of a particular implementation and hence they will be more applicable to a variety of implementations. Also abstract results are easier to interpret than those from a real machine. Secondly, generating runtime statistics from a simulator is much easier than extracting them from a real implementation.

4.1 The simulators

Two simulators were written; the first was written in LAIL, a functional language, and the second was written in Pascal\(^1\). The simulators both work in the same way; which is now described.

The simulators use concurrent interpreters to simulate parallel evaluation. They both operate on FLIC programs [90]. FLIC is essentially a sugared lambda calculus, with local definitions and efficient data structure operations. FLIC programs are produced from LML programs via an LML compiler. Thus although programs are shown in a Miranda style throughout this thesis, they were translated into LML in order to run them. (LML was not used for exposition due to its verbosity.) The evaluation mechanism used by the interpreters is supercombinator graph reduction. This is performed on lambda-lifted FLIC, produced from the LML compiler. For an excellent description of supercombinator graph reduction see [88].

What of parallelism? The interpreters simulate the parallel graph reduction which is described in Section 1.3.2. It was desired to have as abstract results as possible; therefore it is assumed that only reductions take any time to perform and that every reduction takes unit time, despite reductions having different sizes in reality. No overheads which would occur on a real machine,

\(^1\)This was based on a simulator written by Phil Trinder, to whom I am grateful.
such as communications, blocking and resuming, were simulated: the sole activities of interest were reductions.

Parallel graph reduction was simulated by interleaving concurrent reductions. To implement this the interpreters maintained a queue of tasks. During every machine cycle (time unit) each task performed a single reduction. By limiting the task queue size different numbers of processors could be simulated.

4.1.1 The LML interpreter

The first version of the interpreter was written, purely functionally, in LML; unfortunately this had to be abandoned for reasons of efficiency, which will become apparent. The basic part of the interpreter, an evaluation function, was written in a continuation passing style. Each task was represented as an evaluation continuation. Applying a task to the program graph resulted in a new graph and a new continuation. These represented the change in state of the graph and task, after performing one reduction. Single reductions, performed by each task, were interleaved to simulate concurrency. The graph was essentially a store which was implemented by a binary tree. This lead to the following inefficiencies:

- slow access time to graph nodes. This was due to inefficient node addressing and tree traversal overheads.
- part of a new tree (graph) had to be constructed after each reduction: no destructive update could really be implemented
- space-leakage caused by laziness; for an explanation of this phenomena see [89].

The last problem was partially cured by enforcing the strictness of the binary tree graph representation. This would have been much easier if strict data structures could have been defined. The latter two problems meant that the interpreter used too much space to be practical. Nevertheless writing the LML program was very enjoyable. Also, in retrospect, debugging the LML simulator of correctness errors proved much easier than debugging the Pascal program. This was despite not having any debugging tools for the LML program and having used a window based debugger (dbx) for the Pascal program.

The LML program would have been viable if the following facilities had been available:

1. tools were available for locating space leaks and for generally examining the storage use of programs.
2. some kind of linear data structures (preferably arrays) were available, which were implemented using destructive updating. For example the linear logic extensions to functional languages proposed by Wadler [116].

A curious result of writing the interpreter is that I can claim to be one of the few people to have written a garbage collector in a purely functional language! Also curious is the fact that the concurrent interpreter is very sequential. This is due to the sequential threading of the graph through the evaluation function, and the exact interleaving of tasks' reductions which is specified.
4.1.2 The Pascal interpreter

The Pascal interpreter was used to generate all the experimental results shown in this thesis. It is quite inefficient, but it can, of course, perform destructive updating of the program graph. The important design decisions made for the interpreter, which affect the experimental results, are described below. These are in addition to the basic policy of only measuring concurrent graph reductions.

Two new terms are used: useless tasks are defined to be those which when run, discover that their graph is either already in WHNF or that another task is evaluating their graph. In either case such tasks are redundant and may be discarded. Active tasks are those tasks which actually run, that is they are not blocked, during a specified time unit.

- Task scheduling from the global task queue is always performed FIFO. This is only relevant when there are more tasks which can be run than there are processors.
- Tasks are always sparked by par, they are never discarded (unlike GRIP).
- Before running each newly-sparked task, they are checked to see if they are in WHNF or whether another task is already evaluating their graph. Any tasks for which this is true (useless tasks), are discarded. This checking takes one time unit.
- Tasks only mark graph nodes once they start to reduce them (like GRIP); in particular when tasks are initially sparked they do not mark nodes. This corresponds to an evaluate-and-die evaluation model. Essentially any task can reduce any redex not already evaluated or being evaluated, see Section 2.5 and [91].
- Storage is allocated in nodes and hence store statistics are measured in terms of node numbers. Nodes correspond to applies, numbers, supercombinators, constructors etc.
- The output of each constructor or atom takes one time unit.
- No cost is associated with scheduling.
- FLIC is augmented with, primitive, par functions. Like all other primitive functions these require one time unit to reduce; thus sparking, evaluating a par, requires on time unit.

In Chapter 7 a bag data structure is proposed and an implementation is sketched. Bags were implemented in the Pascal simulator to test some of the proposed ideas. The implementation closely follows that described in Chapter 7.

4.2 The LML interpreter versus the Pascal interpreter

The interpreters are roughly of the same size, the LML interpreter is approximately 2500 lines long and the Pascal interpreter is approximately 3000 lines long. The Pascal interpreter is approximately an order of magnitude quicker and more space efficient than the LML one. Much of the time spent running the LML interpreter is spent garbage collecting. Overall the LML interpreter is more modular and more sophisticated than the Pascal one.
4.3 The information collected and graphs

Two forms of information are produced from program results: tabular information and graphs. Unless otherwise stated all results shown in this thesis are for simulations using an unbounded number of processors. This is because such results are easy to interpret, there are no scheduling issues, and Eager's result can be used (see Section 2.6).

The following tabular information is collected (note that all experimental results shown in this thesis include any time spent outputting any results, unless stated otherwise):

- **execution time**: this represents the execution time with the specified number of processors.
- **average parallelism**: this measurement indicates the average number of tasks which were active. When an infinite number of processors are simulated, Eager's result can be used with this result.
- **work done**: this is the total number of reductions which were performed. If a parallel program is run on a single processor this would be equal to the execution time.
- **maximum no. of tasks**: this is the maximum number of tasks which were concurrently active (including the main task and checking useless tasks).
- **total number of tasks**: this is the total number of tasks which were executed (not including the main task or useless tasks).
- **average task length**: a task's length is the total amount of time for which it was active, not including any time for which it was blocked. Thus the average sparked task length is the average total time for which tasks were active (not including the main task or useless tasks).
- **the number of useless tasks**: the total number of useless tasks was recorded.

Three types of graph have been plotted:

- **parallelism profiles**: these are plots of the number of active tasks against time (machine cycles). For some results these graphs contain a long output 'tail' during which the result was output. Where necessary such details are taken into consideration.
- **store profiles**: these are plots of the number of nodes in use against time. To determine the number of nodes in use a garbage collection was forced before each sampling. Sometimes these profiles are plotted on the same axes as parallelism profiles.
- **task length distributions**: these are bar charts showing the distribution of task lengths. The right-most bar shows all tasks longer than the labelled length. The main task and useless tasks do not appear in these statistics.

Typically experimental programs were less than 100 lines long and data sets consisted of approximately 1000 elements. This generally yielded an average parallelism of 10 to 500. It was usually assumed that tasks with lengths of approximately 100 reductions were small tasks. Task length distribution graphs were plotted for the range of tasks lengths 0 to 400 in intervals of 50.
Chapter 5

Squigol

5.1 Introduction

Squigol is the popular name given to the Bird-Meertens formalism, a concise mathematical methodology for program derivation. In essence, Squigol is a functional calculus based on map and reduce. This chapter explores how Squigol may be used to derive parallel functional programs. Much of this chapter applies existing Squigol work to the derivation of parallel algorithms. Previously Squigol has only been used for deriving sequential algorithms and hardware descriptions.

In some respects Squigol is similar to Backus's FP [7]; they are both algebraic approaches to program transformation. However, unlike FP, Squigol is typed and it is in general more flexible than FP. Bird and Meertens jointly developed Squigol and the following references are highly recommended: [14, 80]. Many people are currently working on Squigol and although there is a consensus on most of Squigol, some aspects are treated differently by different people: notably non-determinism. Thus Squigol should not be regarded as a standardised calculus; usually it is customised to suit the particular class of problems being solved. Here Bird's flavour of Squigol from [14] will be used.

The next section describes some basic Squigol; the following section looks at the parallel aspects of Squigol and finally three examples are developed: a parallel shortest paths algorithm, a parallel n-queens algorithm and a parallel greedy algorithm.

It should be noted that it is unclear just how general Squigol is for sequential or parallel program derivation. However, certainly a large class of optimisation algorithms are amenable to derivation using Squigol.

5.2 Basics

This section describes some basic Squigol concepts. Much of what is described is general to sequential and parallel program derivation.

A Squigol derivation starts with an inefficient specification. The specification is repeatedly
transformed by applying algebraic identities and theorems, until an efficient algorithm is derived. Often the initial specification and final program are quite simple, and the derivation is quite complex. Since programs are derived using algebraic identities and theorems, programs will be correct with respect to the specification from which they were derived. One of the Squigol goals is to calculate algorithms without using induction.

Like FP, the language used for Squigolling is based on combinators. Thus, it is rather like functional programming using combinators as much as possible. Unlike functional programming, functions are assumed to be total, to facilitate algebraic manipulation. A consequence of this is that data structures are finite. Despite this the language does not specify any evaluation order. A drawback of this approach is that the language does not have a formal semantics, unlike functional programming or FP. In particular derivations only guarantee partial correctness.

Squigol is not even necessarily constructive; in particular function inverses may be used to specify other functions. Also fictitious values may be used, for example \(\infty \) and \(-\infty\).

The notation used is similar to that of a curried functional language; functions are curried and composition is denoted by an infix dot for example \(f \cdot g \). Function application binds more tightly than other operators; thus \(f \circ b \) is \((f \circ a) \circ b \). Expressions' types may be written in a straightforward way, for example: if \(f :: \beta \rightarrow \gamma \) and \(g :: \alpha \rightarrow \beta \) then \(f \cdot g :: \alpha \rightarrow \gamma \).

5.2.1 Data structures and homomorphisms

Rather than developing rules for several different data structures, generic binary structures will be considered instead: the Boom hierarchy [80]. This is a family of finite binary structures \(\text{Struct} \) with the following operations, for a type \(\alpha \):

- \(\text{empty} :: \text{Struct} \alpha \)
- \(\text{unit} :: \alpha \rightarrow \text{Struct} \alpha \)
- \(\text{join} :: \text{Struct} \alpha \rightarrow \text{Struct} \alpha \rightarrow \text{Struct} \alpha \)

For all such structures \(\text{empty} \) is the identity element of \(\text{join} \). According to the laws bestowed upon \(\text{join} \), different data structures result:

<table>
<thead>
<tr>
<th>associative</th>
<th>commutative</th>
<th>idempotent</th>
<th>resulting data structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>binary tree</td>
</tr>
<tr>
<td>(\checkmark)</td>
<td>(\times)</td>
<td>(\checkmark)</td>
<td>list</td>
</tr>
<tr>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
<td>bag (multiset)</td>
</tr>
<tr>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
<td>set</td>
</tr>
</tbody>
</table>

In algebraic terms the above operations and laws do not fully characterise these data structures. Many algebras satisfy these operations and laws. For example for sets the following operations work: \(\text{empty} = \text{false}, \text{unit} = \lambda x. \text{true} \) and \(\text{join} = \text{or} \). A full characterisation is that each instance of \(\text{Struct} \) (for example lists) must be initial in that class of algebras. This means that there exists a homomorphism from the data structure to all other algebras in the same class.

Homomorphisms may be defined on these data structures, \(\text{Struct} \), thus:
In order to make sense \otimes must have at least the algebraic richness of \textit{join} and 1_\otimes must be the identity element of \otimes. For example the number of elements in a tree, list or bag may be calculated by taking: $1_\otimes = 0$, $f\,a = 1$ and $\otimes = +$. However the size (cardinality) of a set cannot be calculated in this way since $+$ is not idempotent, that is: $|A \cup B| \neq |A| + |B|$.

By having a generic view of the previous data structures general rules applicable to all of them may be developed. However to ease reading the conventional notations for trees, lists, bags and sets will be used, for example: $[\,]$, $\{\cdot\}$ and $\{\}$ will be used for lists, and $\{\}$, $\{\cdot\}$ and \cup will be used for sets; in place of \textit{empty}, \textit{unit} and \textit{join}. In particular notice that $\{\cdot\}$ and $\{\}$ are functions for constructing singleton lists and sets. Much of the Squigol work has concentrated on lists and these will feature most in the forthcoming text.

Homomorphism are not used directly, rather they serve as a basis for the calculus of map and reduce. Map (\ast) is defined thus (for any \textit{Struct}):

\[
\begin{align*}
 f \ast \text{empty} & = \text{empty} \\
 f \ast (\text{unit } a) & = \text{unit } (f\,a) \\
 f \ast (\text{join } x\,y) & = \text{join } (f \ast x)\,(f \ast y)
\end{align*}
\]

Reduce ($/$) is defined thus (for any \textit{Struct}):

\[
\begin{align*}
 \otimes/\text{empty} & = 1_\otimes \\
 \otimes/(\text{unit } a) & = a \\
 \otimes/(\text{join } x\,y) & = (\otimes/x)\otimes(\otimes/y)
\end{align*}
\]

An important property is that every homomorphism on \textit{Struct} may be factored into a composition of map and reduce, and vice versa. A homomorphism h:

\[
\begin{align*}
 h \text{ empty} & = 1_\otimes \\
 h \,(\text{unit } a) & = f\,a \\
 h \,(\text{join } x\,y) & = h\,x \otimes h\,y
\end{align*}
\]

is equal to: $h = \otimes/ \cdot f\ast$.

For example:

\[
\begin{align*}
 \text{sum} & = +/ & \text{for trees, lists and bags} \\
 \text{all } p & = \&/ \cdot p\ast & \text{for trees, lists, bags and sets} \\
 \# & = +/ \cdot (\text{K 1})\ast & \text{for trees, lists and bags} \\
 K\,c\,x & = c
\end{align*}
\]
The function K is used for constructing constant functions and the function $\#$ is the size function, for example the length function on lists.

There are many laws and rules concerning map and reduce. The most important rules are called promotion rules. Promotion rules allow functions to be transformed without using induction; which is a goal of using Squigol. For example:

<table>
<thead>
<tr>
<th>map promotion</th>
<th>reduce promotion</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f^* \cdot \oplus / = \oplus / \cdot (f^)^$</td>
<td>$\otimes / \cdot \oplus / = \otimes / \cdot (\otimes /)^*$</td>
</tr>
</tbody>
</table>

These rules hold for all data structures in the family \textit{Struct}. A general rule for promotion of operators into binary structures can be formulated although it is not done so here, see [81]. Recent work by Malcolm has extended the ideas of homomorphism and promotion to any arbitrary data structure [76].

5.2.2 Other operators

This section briefly describes some other common operators, which will be used later in the examples. There are many rules which relate these operators and some of these rules will be described here.

Notice that for lists reduce does not specify any direction of reduction. Nevertheless, directed reductions can be useful for lists. Two directions are possible: left to right reduction (\textit{foldl} in functional programming) has the following form: $\otimes \mathcal{F}_\times$ and is defined informally:

$$\otimes \mathcal{F}_\times [a_1, a_2, \ldots, a_n] = ((e \otimes a_1) \otimes a_2) \otimes \cdots \otimes a_n$$

and right to left reduction (\textit{foldr}), which is defined thus:

$$\otimes \mathcal{F}_\times [a_1, a_2, \ldots, a_n] = a_1 \otimes (a_2 \otimes \cdots \otimes (a_n \otimes e))$$

Directed reductions may also be defined without seed starting values. Also, they may be defined on bags and sets, but this is not often very useful.

Specialisation lemmas exist which allow homomorphisms to be rewritten as directed reductions, for example:

\textbf{Left reduction specialisation lemma:}

$$\oplus / \cdot f^* = \otimes \mathcal{F}_\times$$

where $a \circ b = a \circ f \ b$ and $e = 1_{\otimes}$

Accumulations may be defined on lists. These are usually referred to as scan or prefix in the functional programming world. Accumulations are generally directed. They exist with and without seed starting values, as do directed list reductions. Left accumulate without a seed is denoted $\otimes / \#$ and defined as:
\(\oplus # [a_1, a_2, \ldots, a_n] = [a_1, a_1 \oplus a_2, \ldots, ((a_1 \oplus a_2) \oplus a_3) \oplus \cdots \oplus a_n] \)

Right accumulate without a seed is denoted \(\oplus # \) and defined as:

\(\oplus # [a_1, a_2, \ldots, a_n] = [a_1 \oplus (a_2 \oplus \cdots \oplus (a_{n-1} \oplus a_n)), \ldots, a_{n-1} \oplus a_n, a_n] \)

The McCarthy conditional form is used when manipulation of conditionals is required:

\(h = (p \rightarrow f, g) \)

This is equivalent to:

\[
\begin{align*}
h \ x &= f \ x, \quad p \ x \\
&= g \ x, \quad \text{otherwise}
\end{align*}
\]

Filtering is achieved by filter denoted by \(\mathsf{pa} \), for example for lists:

\(\mathsf{pa} = \mathsf{++} / (p \rightarrow [\cdot], \mathsf{K}[\cdot])* \)

This may be defined on trees, lists, bags and sets.

Selection is denoted by \(\downarrow f \) and \(\uparrow f \):

\[
\begin{align*}
a \downarrow f \ b &= a, \quad f \ a \leq f \ b \\
&= b, \quad f \ a \geq f \ b
\end{align*}
\]

The \(\uparrow f \) function is similar. When \(| \) or \(\downarrow \) have no function subscript it is assumed that they operate directly on numeric arguments, and they then denote max and min. Fictitious identity elements for \(\downarrow f \) and \(\uparrow f \) may be used. In an program these values often correspond to exceptions. Notice also the deliberate underspecification of \(\downarrow f \) in the case that \(f \ a = f \ b \). Non-determinism in specifications is a big issue in Squigol, see [14, 34, 80]. It is discussed no further here.

Another useful operator is cross product \(\times_\oplus \), informally:

\[
[a, b] \times_\oplus [c, d, e] = [a \oplus c, b \oplus c, a \oplus d, b \oplus d, a \oplus e, b \oplus e]
\]

It is defined on lists thus:

\[
\begin{align*}
x \times_\oplus [] &= [] \\
x \times_\oplus [a] &= f \ast x \quad \text{where } f \ z = z \oplus a \\
x \times_\oplus (y ++ z) &= (x \times_\oplus y) ++ (x \times_\oplus z)
\end{align*}
\]

This may be defined on any \textit{Struct}. In particular \(\times_{\text{pair}} \), where \(\text{pair } a \ b = (a, b) \), is the cartesian product function. Cross product is often used where in a functional program list comprehensions would be used.
5.3 Parallel Squigolling

The previous section described basic Squigolling which has been predominantly used for deriving sequential algorithms. However much of the Squigol methodology applies equally well to parallel algorithm derivation. This section discusses aspects of parallel Squigolling, including those aspects suited and unsuited to parallel algorithm derivation, an important parallel algorithm (parallel prefix) and a way of annotating expressions to make their intended operational behaviour explicit.

5.3.1 Survey

Some Squigol researchers have used Squigol for producing hardware descriptions (circuits). Circuits are inherently parallel and thus the techniques employed are also suitable for parallel algorithm derivation. For example Geraint Jones has produced an impressive derivation of the fast Fourier transform from a Fourier transform specification [64]. Sheeran has a relational version of Squigol which is used for transforming circuit descriptions [104]. By using a relational Squigol, manipulation of component connections is simplified, since directionality is not specified.

However, much of this work is concentrated on VLSI design where connectivity issues dominate. The hardware descriptions which are produced consist of component (process) networks. This is fine for situations where a static mapping of tasks to processors (circuit elements) is considered. However for the kind of system under consideration here, this is not the case. The static process networks produced for hardware purposes are more akin to Kelly's Caliban [70] and occam than parallel algorithms designed for dynamic scheduling machines.

5.3.2 Deriving parallel algorithms

Parallel algorithms may be derived in the same way as sequential algorithms. Thus parallel algorithm derivation consists of a sequence of steps during which an inefficient problem specification is transformed into an efficient algorithm. In general the specifications used as the starting point for all derivations are parallel. This is because specifications should be as abstract as possible and therefore they should not specify particular evaluation orders; they should admit many different evaluation orders. This is certainly true of non-constructive specifications!

Each step in a derivation consists of applications of algebraic identities and theorems. Some identities and theorems used for sequential algorithm derivation preserve or improve parallel performance, while others do not. The most important rules, promotion rules, do preserve parallel performance. (This could be proved using the performance semantics of Section 8.3.) Sometimes parallel algorithms can be derived from parallel specifications by a sequence of steps each of which successively improve the algorithms' parallel performance. Very rarely are parallel algorithms derived via sequential algorithms.

However as explained in Chapter 8 maximal parallelism is not always sought from algorithms. An extreme example would be to solve an NP complete problem using an exhaustive search algorithm; with an infinite number of processors this would have polynomial complexity. In practice machines only have finite numbers of processors and therefore sequential costs of parallel
algorithms become important too. Since if the number of concurrently active tasks a program produces exceeds the number of processors a machine has, then effectively the parallel algorithm will be run sequentially on individual processors. Thus it is necessary to assess a parallel algorithms sequential performance in addition to its parallel performance.

One way to approach this is: if a parallel algorithms performance differs greatly from an optimal sequential algorithm then a hybrid algorithm should be used. A parallel algorithm should solve the problem 'across' processors and sequential algorithm should be used on individual processors. For example see the performance analysis of parallel prefix in Section 8.2.3. The parallel and sequential parts of a hybrid algorithm may be independently derived and then combined together. Hybrid algorithms often appear as parallel programming paradigms where interpreters for a problem are run on each processor of a MIMD machine, for example the agenda parallelism of Linda [26]. For many problems this hybrid approach is not required since a parallel algorithm is quite efficient when run sequentially.

5.3.3 Homomorphisms and divide and conquer algorithms

An important aspect of Squigol with respect to parallel algorithms, is its emphasis on homomorphisms. Homomorphisms are often good parallel algorithms because they correspond to a limited class of divide and conquer algorithms. If a divide and conquer algorithm is described by the following scheme:

\[
D\&C \ p = \begin{cases}
\text{solve} \ p, & \text{leaf} \ p \\
\text{combine} \ (D\&C \ x) \ (D\&C \ y), & \text{otherwise} \\
(x, y) = \text{divide} \ p \end{cases}
\]

The applications \((D\&C \ x)\) and \((D\&C \ y)\) can be evaluated in parallel.

For a homomorphism \(\otimes/f*\) roughly speaking \(f\) is the solve function, \(j^{-1}\) is the divide function and \(\otimes\) is the combine function. A similar observation has been made by Mou and Hudak [83]. They investigated divide and conquer algorithms by taking an algebraic view, considering general morphisms between algebras. They were interested in discovering how general D&C algorithms were and looking at their performance and communication properties. As shown in Section 8.2.2 not all D&C algorithms are good parallel algorithms. Nevertheless D&C is a very useful parallel programming paradigm.

5.3.4 Representation of data structures

Much of the work on Squigol has concentrated on list data structures. In a parallel setting the implementation of lists, and other data structures, is important. In particular the conventional cons cell representation of lists only allows sequential access to lists' elements, which can prevent parallelism. An exception to this is if an expensive function is to be mapped in parallel over a list.

List homomorphisms are described thus:
In order to evaluate a function like length \(f = K \, 1 \) and \(\otimes = \oplus \) in parallel, lists should be represented as balanced binary trees or arrays. If the combining function \(f \) is sufficiently expensive then a list representation may be translated to one more suitable for parallel evaluation, before application of the homomorphism. Similar representation considerations apply to bags and sets.

5.3.5 Directed reductions are sequential

Not all of the work on Squigol is applicable to parallel algorithm derivation. Much of the work on Squigol has concentrated on lists and sequential list optimisations. In particular the directed reduction operators are sequential. Directed reductions are often used to optimise homomorphisms by making use of their directionality: for example the Greedy algorithm in [13].

Any parallelism which may be possible with directed reductions may be factored out as a map thus:

\[
\otimes f_e = \otimes f_e \cdot f * \quad \text{where} \quad a \otimes b = a \otimes (f b)
\]

(This assumes no parallelism can result from evaluating the input list; this may not be the case if expressions are evaluated lazily.)

As previously mentioned, often homomorphisms are good parallel algorithms. However not all functions on lists are homomorphisms, and directed reductions can express more functions than homomorphisms can. (The specialisation lemma, previously mentioned, states that all homomorphisms can be expressed as directed reductions.) For example the function \textit{prefix} which takes the longest initial segment of a list satisfying a predicate \(p \); for example:

\[
\text{prefix } \text{even } [2, 4, 1, 6, 8] = [2, 4]
\]

Note this \textit{prefix} is \textit{not} the same as parallel prefix (scan/accumulate). A sequential \textit{prefix} function may be defined thus:

\[
\text{prefix } p = \otimes f_{[1]}
\]

where

\[
a \oplus x = [a] \oplus x, \quad p \, a
\]

\[
= [1], \quad \text{otherwise}
\]

However \textit{prefix} cannot be defined as a homomorphism on lists and hence parallelised in the obvious divide and conquer way. The following lemma allows some directed reductions to be expressed as parallel algorithms by generalising them:
Parallel directed reduction lemma:
If: \(\forall \alpha, \beta, \gamma: \oplus :: \beta \rightarrow \alpha \rightarrow \alpha \)
\(f :: \alpha \rightarrow (\alpha, \gamma) \)
\(g :: \beta \rightarrow \alpha \)
\(\otimes :: (\alpha, \gamma) \rightarrow (\alpha, \gamma) \rightarrow (\alpha, \gamma) \)
\((a \oplus b) = \text{fst} (f (g a) \otimes f b) \)
\(1_\otimes = (e, ?) \)
? denotes any value and \(\otimes \) is associative

Then: \(\oplus e = \text{fst} \cdot \otimes \cdot (f \cdot g)* \)

This lemma may be used to parallelise prefix. Although it has been previously stated that it is rare to derive parallel algorithms from sequential algorithms; there are many existing algorithms and derivations involving directed reductions, hence this lemma allows some degree of algorithm, and derivation, re-use.

A parallel version of the above prefix function may be formulated thus:

\[
(x, xb) \otimes (y, yb) = (x \oplus y, yb), \quad xb
\]
\[
= (x, false), \quad \neg xb
\]
\[
1_\otimes = ([], true)
\]
\[
f x = (x, all p x)
\]
\[
g x = [x], \quad p x
\]
\[
= [], \quad \neg p x
\]
\[
h = f \cdot g
\]

The \(h \) function may be simplified to yield the following program:

\[
h x = ([x], true), \quad p x
\]
\[
= ([], false), \quad \neg p x
\]

\[
\text{prefix } p = \text{fst} \cdot \otimes \cdot h*
\]

The function \(\otimes \cdot h* \) is a generalisation of prefix. The first component of this expression is equal to prefix; the second component is a boolean indicating whether all elements of the list satisfy \(p \) that is \(\text{snd} \cdot \otimes \cdot h* = \& \cdot p* \). Thus the definition of \((x, xb) \otimes (y, yb) \) concatenates the prefixes of the two lists \(x \) and \(y \) if \(p \) holds for all elements of \(x \), that is \(xL \) is true.

It is interesting to note that \((?, false)\), that is any pair whose second component is false, is a left zero of \(\otimes \). The value \(z \) is a left zero of an operator \(\otimes \) if and only if for all \(x, z \otimes x = z \). This means that parallel evaluation of \(\otimes \) can be cut short when a list element is encountered which does not satisfy \(p \); since no list elements to the right of the element need be tested. This is a form of speculative evaluation, see Section 2.3.
From this it may be concluded that some of Squigol is orientated towards using sequential optimisations, such as directed reductions. Hence some new rules and theorems, like the one above, are needed for coping with these kinds of situations.

5.3.6 Parallel prefix (scan)

An important algorithm is parallel prefix (also known as accumulate and scan) [47]. In this section a parallel and sequential prefix function (\$\#\$) are defined. If \$ is associative then \$\# may be defined by the homomorphism \$ below:

\[
\odot / \# = \odot / \cdot [\cdot] * \quad \text{where} \quad a \odot b = a \oplus ((\text{last } a) \ominus) * b
\]

The function last selects the last element of a list; note, for this to work, last [] must equal 1\$. For a list of length n on an n processor machine this may be evaluated in \(O(\ln n)\) time, assuming the list is represented as a balanced binary tree. With one processor this has complexity \(O(n \ln n)\). However a more efficient sequential algorithm may be derived:

\[
\odot / \cdot [\cdot] *
\]

= using the left reduction specialisation lemma
\(\odot \neq [1] \) where \(a \oplus [b] = a \ominus [b] \)

Simplifying \(a \ominus [b] \)

= using \(\odot \) def.
\(a \oplus ((\text{last } a) \ominus) * [b] \)

= using map def.
\(a \oplus [\text{last } a \ominus b] \)

Thus, left accumulate may be expressed as:

\[
\odot / \# = \odot / \neq [1] \quad \text{where} \quad l \oplus x = l \oplus [\text{last } l \ominus x]
\]

This is an optimal sequential algorithm which has complexity \(O(n)\). Thus to implement left accumulate efficiently on a MIMD machine a hybrid parallel and sequential algorithm is required. These complexities are calculated and discussed in Section 8.2.3.

5.3.7 Parallel annotations

Sometimes it is desirable to be explicit about the sequential or parallel evaluation of expressions. This is to make explicit to the reader the intended evaluation of an algorithm. One way to
achieve this is to annotate expressions. This is useful for monitoring the parallelism throughout a derivation and to ensure that the derivation results in a performance improvement. Furthermore it may be possible to construct a semantics to enable a formal complexity analysis to be performed, like that in Section 8.3. This would require the identification of expressions parallel or sequential evaluation.

Parallel annotations are very useful in situations where the parallel evaluation of an expression is not obvious. Often many expressions may be evaluated in parallel but the parallel evaluation of some expressions are more important than others, with respect to the overall performance. Hence expressions whose parallel evaluation is crucial to the performance of an algorithm should be annotated.

To this end two forms of parallel annotations are introduced: \circ_\parallel and $f *_\parallel l$. The former is used to annotate a binary operator. For example if it is desired to indicate that plus should evaluate it operands in parallel then $+_\parallel$ should be used; parallel sum may be denoted thus: $+_\parallel$. The latter annotation ($*_\parallel$) denotes a parallel map; f is applied to all the elements of l in parallel. It is assumed that parallel map causes the evaluation of all f applications to weak normal form.

Rules can be formulated which equate the operational behaviour of the two annotations, for example:

$$++_\parallel \cdot f^* = ++ / f*_\parallel$$

This assumes a lazy evaluation strategy (parallel evaluation is propagated) and that no benefit arises from performing just appends in parallel. It states that concatenating a list of lists together in parallel, which is formed from a map operation, is operationally and semantically equivalent to performing the map in parallel. This is because performing each concatenation in parallel causes the evaluation of each f application in parallel. Of course the correctness of rules such as these may only be proven within an operational semantics, which assumes some kind of operational behaviour, for example the semantics described in Section 8.3.

These annotations and assumptions about evaluation assign an explicit operational meaning to operators in the language. This is necessary in order to express algorithms intended for MIMD machines; where the differentiation between sequential and parallel evaluation is important.

5.4 Example: all shortest paths

In this section a parallel algorithm for calculating the shortest paths between all vertices in a directed graph is derived. In common with most Squigol derivations some theory is initially developed. This is used in the derivation of an algorithm to solve the problem. The theory is general to all problems in the same class as the problem being solved. The algorithm appears, without derivation or proof, in [4].

The crucial decision for graph problems is how to represent the graph. The method chosen here is to represent graphs as adjacency matrices. Adjacency matrices are in turn represented by quadrees [120]. This provides a uniform representation for highly connected and sparsely connected graphs. Also quad-tree matrix representation is easily implemented and parallelisable in a
functional programming language. The derivation is independent of the matrix representation. It just relies on certain properties of matrix operations.

The next section discusses matrices in general, some matrix operations and some laws concerning these operations.

5.4.1 Matrices

Three operations will be required on matrices:

map: which will be denoted by \ast as before. This maps a function pointwise across all elements of a matrix.

zip: this will be denoted ∇_\oplus, meaning zip with \oplus. This produces a matrix whose elements are the pointwise combination with \oplus of the two operand matrices. For example ∇_+ is matrix addition. (Zip may be usefully defined on lists too.)

multiply: this is a generalised matrix multiply denoted by $(\otimes, \oplus)(\odot)$ (a binary operator which takes two parameters in addition to its operands). Rather than dot products being formed by multiplication and addition they are formed by \otimes and \oplus. Thus the dot product of (a_1, \ldots, a_n) and (b_1, \ldots, b_n) is $(a_1 \otimes b_1) \oplus \ldots \oplus (a_n \otimes b_n)$. For example $(\times, \oplus)(\odot)$ is the standard matrix multiplication.

All of these three matrix operations are highly parallel and throughout the derivation it will be assumed that they are evaluated in parallel. Since this parallel evaluation is fairly obvious no parallel annotations will be shown. However parallel annotations could have been added to the definitions.

The implementation of matrices using quad-trees is now described; this has been proposed by Wise [120]. Matrices will be represented as quad-trees. These are a variation on the binary trees previously discussed (binary trees could be used to represent vectors). Quad-trees may be defined, in a similar manner to algebraic data types in functional programs:

$$\text{matrix } \alpha = \text{Scalar } \alpha + \text{Quad } (\text{matrix } \alpha) (\text{matrix } \alpha) (\text{matrix } \alpha) (\text{matrix } \alpha)$$

There are no laws associated with these operations, the algebra is free as with all functional programming data structures. However it will be assumed that all quad-trees have the same shape. This constraint may be relaxed so that sparse matrices may be efficiently represented. Sparse graphs may then be represented by sparse adjacency matrices. To do this the matrix data type may be augmented with a nil value. The nil value acts as an identity and zero element in an analogous way to zero for numeric matrix addition and multiplication. Where a whole sub-tree contains only zero values, the whole sub-tree may be represented by a single nil value.

The matrix operations are defined thus, map: $\ast : (\alpha \rightarrow \beta) \rightarrow \text{matrix } \alpha \rightarrow \text{matrix } \beta$

$$f \ast (\text{Scalar } b) = \text{Scalar } (f \, a)$$
$$f \ast (\text{Quad } a \, b \, c \, d) = \text{Quad } (f \ast a) (f \ast b) (f \ast c) (f \ast d)$$
Zip: if $\oplus : \alpha \rightarrow \beta \rightarrow \gamma$ then $\nabla_\oplus :: \text{matrix } \alpha \rightarrow \text{matrix } \beta \rightarrow \text{matrix } \gamma$

\[
(\text{Scalar } a) \nabla_\oplus (\text{Scalar } b) = \text{Scalar } (a \oplus b)
\]
\[
(\text{Quad } a \ b \ c \ d) \nabla_\oplus (\text{Quad } w \ x \ y \ z) = \text{Quad } (a \ nabla_\oplus w) (b \ nabla_\oplus x) (c \ nabla_\oplus y) (d \ nabla_\oplus z)
\]

Multiply: if $\otimes : \alpha \rightarrow \beta \rightarrow \gamma$ and $\oplus : \beta \rightarrow \beta \rightarrow \beta$ then $\langle \otimes, \oplus \rangle :: \text{matrix } \alpha \rightarrow \text{matrix } \beta$

\[
(\text{Scalar } a) \langle \otimes, \oplus \rangle \langle \text{Scalar } b
angle
\]
\[
(\text{Quad } a \ b \ c \ d) \langle \otimes, \oplus \rangle \langle \text{Quad } w \ x \ y \ z\rangle = \text{Quad } p \ q \ r \ s
\]

where

- $p = (a \langle \otimes, \oplus \rangle x w)$
- $q = (a \langle \otimes, \oplus \rangle x x)$
- $r = (c \langle \otimes, \oplus \rangle x w)$
- $s = (c \langle \otimes, \oplus \rangle x x)$

There are some useful properties that ∇_\oplus and $\langle \otimes, \oplus \rangle$ obey. The ∇_\oplus operator is associative, commutative and idempotent if \oplus is. The $\langle \otimes, \oplus \rangle$ operator is associative if \otimes and \oplus are; like numeric matrix multiplication it is not in general commutative. Also similarly to numeric matrices zero and identity matrices may be defined.

Several rules will be required concerning multiply:

Multiply-map rule:
\[
(f * A) \langle \otimes, \oplus \rangle \langle f * B \rangle = A \langle \otimes, \oplus \rangle B
\]

where
\[
a \otimes b = (f a) \otimes (f b)
\]

Proof, by induction on A and B:

case $A = \text{Scalar } a$ and $B = \text{Scalar } b$

* and $\langle \otimes, \oplus \rangle$ def.s

LHS = $\text{Scalar } ((f a) \otimes (f b)) = \text{RHS}$

case $A = \text{Quad } a \ b \ c \ d$ and $B = \text{Scalar } w \ x \ y \ z$

LHS = $\text{Quad } p \ q \ r \ s$ and RHS = $\text{Quad } i \ j \ k \ l$

where

- $p = ((f * a) \langle \otimes, \oplus \rangle \langle f * w \rangle)$ $\nabla_\oplus ((f * b) \langle \otimes, \oplus \rangle \langle f * y \rangle)$
- $= \text{by the induction hypothesis}$
- \[
(a \langle \otimes, \oplus \rangle x w) \nabla_\oplus (b \langle \otimes, \oplus \rangle x y)
\]
- $= i$ for the RHS

\[q = \text{etc.} \]
Map-multiply rule (I):
If \(a \odot b = f (a \odot b) \)
\(a \oplus b = f (a \odot b) \)
then:
\[
A (\odot, \oplus) B = f * (A(\odot, \oplus) B)
\]
where
\(a \odot b = (f a) \odot (f b) \)

Map-multiply rule (II):
(with the above definitions from rule (I))
If:
\[
f (a \odot b) = f ((f a) \odot (f b))
\]
then:
\[
A (\odot, \oplus) B = f * (A(\odot, \oplus) B)
\]

Proof of Map-multiply rule (I):
\[
A (\odot, \oplus) B = f * (A(\odot, \oplus) B)
\]
\(a \odot b = f (a \odot b) \)
\(a \oplus b = f (a \odot b) \)
\(a \ominus b = (f a) \odot (f b) \)
by induction on \(A \) and \(B \):

case \(A = Scalar a \) and \(B = Scalar b \)

* and \((\odot, \oplus) B \) def.s

LHS = Scalar \((f (a \odot b)) \) = RHS

case \(A = Quad abcd\) and \(B = Quad wxyz \)

LHS = Quad \(pqrs \) and RHIS = Quad \(ijk \)

where
\[
p = ((f * a) (\odot, \oplus) (f * w)) \nabla (f * (b (\odot, \oplus) y))
\]
= by the induction hypothesis
\[
(f * (a (\odot, \oplus) w)) \nabla (f * (b (\odot, \oplus) y))
\]
= * distributes into \(\nabla \) and \(\ominus \) def.
\[
f * ((a (\odot, \oplus) w) \nabla (b (\odot, \oplus) y))
\]
= i for the RHIS

\(q = \) etc. \(\square \)

5.4.2 Graphs, relations and paths

Rather than starting with the shortest paths problem a simpler, related, problem will be solved first: the connected components problem. This can then be used as a basis for solving the all shortest paths problem. The connected components problem is to find between which vertices of a graph there are paths (of any length). If a graph is viewed as a relation between vertices \(R \) and \(v_1 R v_2 \) if and only if there is an edge between \(v_1 \) and \(v_2 \). Then the problem of finding the
connected components is equivalent to finding the reflexive transitive closure of \(R \). Assuming that \(R \) is reflexive this is equal to \(R^n \) where \(n \) is the order of the relation.

An adjacency matrix implementation of a graph is related to the relational view of a graph thus, if \(R \) is the relation and \(M \) is the matrix: \(\forall i, j : i R j \Leftrightarrow M[i, j] = 1 \). Thus if relation composition can be defined on matrices (which may be viewed as an implementation of a relation) then the connected components problem may be solved by calculating the transitive closure, using the formula above.

Relation composition, using a matrix representation of relations, is equal to \((and, or)x \). If matrices (relations) are used to represent graphs then the connected components of a graph may be calculated thus:

\[
\begin{align*}
\text{power } n \ f &= f^n \\
\text{con} &= \text{power } (\ln n) \ (\text{sqr } ((\text{and, or})x)) \\
\text{sqr } \odot x &= x \odot x
\end{align*}
\]

(The function \(\ln \) is logarithm to the base two and \(n \) is the order of the relation, a power of two.) The function \(\text{sqr } ((\text{and, or})x) \) composes a relation with itself. Thus \(\text{con} \) composes a relation with itself \(\ln n \) times to compute \(R^n \), where \(n \) is the order of the relation.

By adapting this algorithm all the paths between pairs of vertices may be enumerated. This may be used as the basis for a specification for the shortest paths problem; by enumerating all the possible paths between pairs of vertices and then selecting the shortest of those paths:

\[
(\downarrow_{\text{shortest}}/) \ast \text{power } (\ln n) \ (\text{sqr } (x, U)x) \cdot \{\cdot\}^*
\]

The value \(n \) is the number of vertices in the graph; the width of the matrix, a power of four. The operator \(\downarrow_{\text{shortest}} \) gives the shortest of two paths. Paths are represented as lists of edges. To represent unconnected nodes a special list representing infinite paths is required: \(\infty \). The value \(\infty \) behaves as a zero with respect to + and as an identity element for \(\downarrow_{\text{shortest}} \).

\[
\begin{align*}
\infty + p &= \infty \\
p + \infty &= \infty \\
p \downarrow_{\text{shortest}} \infty &= p \\
\infty \downarrow_{\text{shortest}} p &= p
\end{align*}
\]

The operator \(x, U \) takes two sets of paths and forms the cartesian product of the two; thus generating all possible combinations of paths. If \(AB \) is the set of all paths from \(A \) to \(B \) and \(BC \) is the set of all paths from \(B \) to \(C \) then \(AB \times, U \ BC \) is the set of all paths from \(A \) to \(C \).

The basic idea is to promote \((\downarrow_{\text{shortest}}/) \ast \) into \text{power}. In addition to the multiply rules the following properties of \text{power} will be required (note that composition binds less than application):

\textbf{Power rule 1:}

If \(n > 0 \) then

\[
f \cdot g = f \cdot g \cdot f \Rightarrow f \cdot \text{power } n \ g = \text{power } n \ (f \cdot g)
\]

\textbf{Power rule 2:}

\[
f \cdot g = g \cdot h \Rightarrow \text{power } n \ f \cdot g = g \cdot \text{power } n \ h
\]
5.4.3 The derivation

In this section the all shortest paths algorithm is derived. The rules concerning power and \((\text{and}, \text{or})\) are used to progressively transform the specification into an efficient parallel algorithm. The function the is only defined on singletons; it the inverse of \(\{\cdot\}\), the singleton set constructor.

The specification

\[
(\text{shortest} /) \ast \cdot \text{power} (\ln n) (\text{sqr} \langle x_\#, \cup \rangle \cdot \{\cdot\})
\]

\[
= \text{since the} \ast \cdot \{\cdot\} \ast = \text{id}
\]

\[
\text{the} \ast \cdot (\{\cdot\} \cdot \text{shortest} /) \ast \cdot \text{power} (\ln n) (\text{sqr} \langle x_\#, \cup \rangle \cdot \{\cdot\})
\]

\[
= \text{power rule 1 since } n > 0
\]

\[
\text{the} \ast \cdot \text{power} (\ln n) ((\{\cdot\} \cdot \text{shortest} /) \ast \cdot \text{sqr} \langle x_\#, \cup \rangle \cdot \{\cdot\})
\]

\[
= \text{map-multiply rule (II)}
\]

\[
\text{the} \ast \cdot \text{power} (\ln n) (\text{sqr} \langle \ominus, \oplus \rangle \cdot \{\cdot\})
\]

where

\[
a \ominus b = (\{\cdot\} \cdot \text{shortest} /) (a \times_\# b)
\]

\[
a \oplus b = (\{\cdot\} \cdot \text{shortest} /) (a \cup b)
\]

It is desired to use power rule 2 to simplify the previous expression. The following sub-derivation concerns the precondition of power rule 2: \(f \cdot g = g \cdot h\). For the previous expression \(f \cdot g\) is

\[
\text{sqr} \langle \ominus, \oplus \rangle \cdot \{\cdot\}.*
\]

From this an expression analogous to \(g \cdot h\) is derived.

\[
(\text{sqr} \langle \ominus, \oplus \rangle \cdot \{\cdot\}) A
\]

\[
(\{\cdot\} \ast A) \langle \ominus, \oplus \rangle \{\cdot\} \ast (\{\cdot\} \ast A)
\]

\[
= \text{multiply-map rule}
\]

\[
A \langle \ominus, \oplus \rangle \{\cdot\} \ast A
\]

\[
a \ominus b = (\{\cdot\} \cdot \text{shortest} /) (\{a\} \times_\# \{b\})
\]

\[
= (\{\cdot\} \cdot \text{shortest} /) (\{a ++ b\}) = \{\cdot\}(a ++ b)
\]

\[
\text{map-multiply rule (I)}
\]

\[
\{\cdot\} \ast (A \langle \#, \ominus \rangle \{\cdot\} \ast A)
\]

where

\[
a \ominus b = \{a\} \ominus \{b\} = \text{shortest} / (\{a\} \cup \{b\}) = a \text{ shortest } b
\]

\[
(\{\cdot\} \ast \text{sqr} \langle \#, \text{shortest} \rangle \{\cdot\}) A
\]

Now using the result of the sub-derivation:

\[
\text{sqr} \langle \ominus, \oplus \rangle \cdot \{\cdot\} \ast = \{\cdot\} \ast \text{sqr} \langle \#, \text{shortest} \rangle \{\cdot\}
\]

power rule 2 can be applied to the previous expression:
CHAPTER 5. SQUIGOL

\[\text{the* \cdot power} \ (\ln \ n) \ (sqr \ \langle\otimes, \oplus\rangle) \cdot \{\cdot\}^* \]

where
\[a \otimes b = (\{\cdot\} \cdot \text{shortest} /) \ (a \times_{+} b) \]
\[a \oplus b = (\{\cdot\} \cdot \text{shortest} /) \ (a \cup b) \]

= using power rule 2 and the sub-derivation result
\[\text{the* \cdot \{\cdot\}^* \cdot power} \ (\ln \ n) \ (sqr \ \langle\oplus, \shortest\rangle) \]

= using \[\text{the* \cdot \{\cdot\}^* = id} \]
\[\text{power} \ (\ln \ n) \ (sqr \ \langle\oplus, \shortest\rangle) \]

Intuitively to find the shortest path from \(a\) to \(b\), for each \(x\) the shortest path from \(a\) to \(x\) is found and concatenated with the shortest path from \(x\) to \(b\). This yields a set of paths from \(a\) to \(b\); the shortest of these is the shortest path from \(a\) to \(b\).

Although this is a simple algorithm, which appears very similar to the specification, it is not obvious that it is correct with respect to the specification. By formally deriving the algorithm it is guaranteed that the algorithm is correct, and also some useful theory concerning \(\langle\otimes, \oplus\rangle\) has been developed, which may be useful for deriving other algorithms.

5.4.4 The functional program

The Squigol algorithm may be translated into a parallel functional program, as shown. An additional optimisation of memoising path lengths has been used to avoid their recalculation. Thus a path is represented as a list of edges and the overall path length.

```haskell
> matrix *= Scalar * |
> Quad (matrix *) (matrix *) (matrix *) (matrix *)
> multiply f g
> = h
> where'
> h (Scalar a) (Scalar b) = seq r (Scalar r) where r = (f a b)
> h (Quad a b c d) (Quad w x y z) =
> par r1 (par r2 (par r3 (seq r4 (Quad r1 r2 r3 r4))))
> where
> r1 = mzip' g (h a w) (h b y)
> r2 = mzip' g (h a x) (h b z)
> r3 = mzip' g (h c w) (h d y)
> r4 = mzip' g (h c x) (h d z)
>
> mzip' f x y = par x (seq y (mzip f x y))
```

```haskell
> mzip f (Scalar a) (Scalar b) = seq r (Scalar r) where r = (f a b)
> mzip f (Quad a b c d) (Quad w x y z) =
> par r1 (par r2 (par r3 (seq r4 (Quad r1 r2 r3 r4))))
```
where
r1 = mzip f a w
r2 = mzip f b x
r3 = mzip f c y
r4 = mzip f d z

> weight == num
> vertex == num
> edge == (vertex, vertex)
> path := Uncon | Con weight [edge]

> shortest Uncon y = y
> shortest x Uncon = x
> shortest (Con wa a) (Con wb b) = Con a, wa <= wb
> = Con b, otherwise

> join Uncon x = Uncon
> join x Uncon = Uncon
> join (Con wx x) (Con wy y) = Con (wx+wy)(x+y)

> power 0 f = id
> power n f = f . power (n-1) f
> sqr f x = f x x
> shortestpaths = power (log2 num_vertices) (sqr (multiply join shortest))

In order for the pars in multiply, mzip and mzip' to satisfy the par constraint, it is sufficient for these functions to occur in contexts where all of their result matrix is required. The application of multiply in shortestpaths occurs in such a context.

5.4.5 Experimental results

Using the experimental set-up described in Chapter 4; the following results were obtained from running the shortestpaths program. These results show that the algorithm is highly parallel.

<table>
<thead>
<tr>
<th>Input size (number of vertices)</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed-up (average parallelism)</td>
<td>13</td>
<td>54</td>
<td>215</td>
</tr>
</tbody>
</table>

5.5 Example: n-queens

This derivation is of a parallel algorithm for the n-queens problem. This problem is a little more artificial than the other problems. However there are some useful applications for this algorithm, it is a good example derivation and some useful theory is generated 'along the way'.
5.5.1 Road map

This derivation of a parallel n-queens algorithm essentially consists of four parts:

- The high level parallel specification: the specification consists of a search space enumeration and the subsequent filtering of that search space to find solutions to the n-queens problem.
- A refinement of the specification: the specification enumerates a large search space; this step refines the specification by reducing the size of the search space.
- A lemma about \(p \& \text{perms} \): the major step in the derivation of the parallel algorithm is the application of the perms-filter lemma. This lemma allows the filtering of permutations to be combined with their generation. It is a general lemma, not specific to the problem being solved.
- Application of the lemma to the refined specification: this enables the generation of the n-queens search space and the subsequent searching (filtering) of that search space to be combined.

5.5.2 The specification

A parallel specification for the n-queens problem is shown below:

\[
\begin{align*}
\text{queens } n &\quad = \text{safe } \&\text{comb } n \text{ all.pos} \\
\text{safe } s &\quad = (\text{all } \cdot \text{+} /s \cdot \text{sp } s^*) \text{ s} \\
\text{where} \\
\text{sp pos} &\quad = ((\text{-} \cdot \text{check pos}^*) s) (s - [\text{pos}]) \\
\text{check } (i, j) (m, n) &\quad = (i = m) \lor (j = n) \lor (i + j = m + n) \lor (i - j = m - n) \\
\text{all} &\quad = \&/ \\
\text{all} &\quad = \&/
\end{align*}
\]

The specification generates the set representing all possible placements of \(n \) queens on a board: \(\text{comb } n \text{ all.pos} \). This set of placements is filtered to remove all placements containing mutually attacking queens. The \(\text{safe} \) function determines whether a set of queen positions (a placement of \(n \) queens) are mutually safe. The \(\text{comb } n \text{ s} \) function produces the set of all combinations of \(n \) elements from \(s \). The value \(\text{all.pos} \) is a set of pairs of integers representing all the positions on an \(n \times n \) chess board. A position is represented as a row number by column number pair. Notice that \('-' \) has been overloaded; it represents subtraction of numbers and lists. List subtraction is defined thus:
\[
\begin{align*}
x &= [0] \\
x &= (x + [b]) + y \\
\text{remove } b &= [0] \\
\text{remove } b &= (x + [a]) + y \\
\text{all}.pos &= \{1..n\} \times_{\text{pair}} \{1..n\} \\
\text{pair } a & b = (a, b)
\end{align*}
\]

The operator \(\times_{\text{pair}} \) is cartesian product.

This is a highly parallel specification; both the combinations generation and the filtering may be evaluated in parallel. Since there are several expressions which may be evaluated in parallel, the appropriate operators have been labelled as parallel.

Using reduce promotion and \(\cdot \) distributivity \(\text{safe} \) can be rewritten thus:

\[
\text{safe } s = (\text{all} \cdot \text{sp } s \cdot_{\text{II}}) \cdot s \\
\text{where} \\
\text{sp } pos = (\text{all} \cdot (\neg \cdot \text{check } pos) \cdot_{\text{II}}) \cdot (s - \text{[pos]})
\]

(As previously stated promotion conserves parallelism.)

The \(\text{comb} \) function may be realised thus:

\[
\text{comb } n = (\emptyset \cdot \text{take } n) \cdot \cdot \text{perms}
\]

The \(\text{perms} \) function takes a list and produces a set of all the permutations of the input list. (For this to work \(\text{all}.pos \) must be a list not a set of board positions.) The \(\text{take } n \) function takes the first \(n \) elements of a list.

Permutations (\(\text{perms} \)) may be generated in parallel thus:

\[
\text{perms } l = \text{mkset} (\text{power } \# l \cdot g \cdot [l]) \\
\text{where} \\
g &= \text{mkset} (\text{power } \# l \cdot f) \\
f y &= ((y + b) \cdot [l]) \cdot_{II} (l - y)
\]

For any binary operator \(\otimes \), \(a \otimes b = b \otimes a \). The function \(\text{mkset} \) maps a list to a set (\(\text{mkset} : [\alpha] \rightarrow \{\alpha}\)).

The sequential complexity of \(\text{comb all}.pos \) is \(O(n^2) \), since \(\text{all}.pos \) has size \(n^2 \) and \(\text{perms } l \) has complexity \(O(n!) \). At best we can only expect a linear speed-up with \(P \) processors; which given the problem's complexity is not going to be very much!
5.5.3 Specification refinement

Despite the parallelism in the specification, it is very inefficient — as has been shown. Hence, the specification will be refined to reduce the search space ($oldSS = comb\ all_pos$); whilst not increasing the cost of its generation.

The n-queens lemma:

$$\forall n \in Nat, s \in queens n : fst * s = snd * s = \{1..n\} \land |s| = n$$

Proof by contradiction (omitted).

This states that the safe n queens must all lie on different rows and different columns. Thus to place n queens on an n by n board the queens row positions must form the set $\{1..n\}$ as must their column positions. To ease the derivation of a constructive specification the size of s is made explicit.

This may be re-expressed thus:

$$\forall n \in Nat : queens n \subseteq newSS \land newSS = \{s : fst * s = snd * s = \{1..n\} \land |s| = n\}$$

Also (lemma):

$$newSS \subseteq oldSS \text{ where } oldSS = comb\ n\ all_pos$$

(proof omitted)

If $newSS$ can be generated as efficiently as $oldSS$ then this will be a more efficient space to search. That is, below would be an efficient n-queens solution:

$$queens\ n = safe \circ newSS$$

Can $newSS$ be generated efficiently? To attempt this a constructive definition for $newSS$ is required. Such a definition will be synthesised:
newSS

= definition
{s : fst * s = snd * s = {1..n} & |s| = n}

= since there are no duplicates a list abstraction can be used (|s| = n)
(mkset · mkset *) [l] mkset (fst * l) = mkset (snd * l) = {1..n} & #l = n

= mkset⁻¹{1..n} = mkset (perms [1..n]) if ∀l ∈ mkset⁻¹{1..n} : #l = n
(mkset · mkset *) [l] fst * l ∈ (perms [1..n]) & snd * l ∈ (perms [1..n])]

= fst * l = fst (unzip l) similarly for snd
(mkset · mkset *) [l] unzip l = (a, b) & a ∈ perms [1..n] & b ∈ perms [1..n]

= unzip⁻¹ = zip
(mkset · mkset *) zip * [(a, b)] a ∈ perms [1..n] & b ∈ perms [1..n]

= [(a, b)] a ∈ A & b ∈ B = A ×ₚair B
(mkset · mkset *) (zip * ((perms [1..n]) ×ₚair (perms [1..n]))))

= do not generate duplications
newSS = (mkset · mkset *) ((zip · pair [1..n]) * (perms [1..n]))

The n-queens algorithm may now be expressed:

queens n = (safe a · mkset · mkset * · (zip · pair [1..n]) * (perms [1..n]))

= map filter swap
queens n = (mkset · mkset * · (zip · pair [1..n]) * · (safe · zip · pair [1..n])a) (perms [1..n])

Since no duplicates are generated (all elements originate from perms) we will omit the mkset
operations. If necessary the mkset operations can be added according to any context in which
queens is used.

queens n = (zipc [1..n] * · (safe · zipc [1..n])a) (perms [1..n])

zipc a b = zip (a, b)

This new search space (newSS) may be generated as efficiently as the old search space (oldSS)
since both use perms. The new search space, newSS, has sequential complexity O(n!). This is
not much better than oldSS. However it does allow an important optimisation to be used, which
is described in the next subsection.

Later the safe position independence lemma will be required:

The safe position independence lemma:
∀i, j, n ∈ Nat : j - i ≥ n ⇒ (safe · zipc [1..n] = safe · zipc [i..j])
This states that the safety of queens on a board is only dependent upon their relative, not absolute, row positions.

The zip used by zipc is not the same as the one used in the refinement. This new zip is larger, that is, it is defined for more elements, such as pairs of unequal length lists.

The check function may be simplified since in this refined specification queens can not be placed on the same rows:

\[
check' (i, j) (m, n) = (j = n) \lor (i + j = m + n) \lor (i - j = m - n)
\]

5.5.4 The perms-filter lemma

This lemma is general to problems of the form: \(p \cdot \text{perms} \cdot l \). If \(p \) is suffix closed, that is: \(\forall x, y : p (x \mathbin{+\!+} y) \Rightarrow p y \) and \(p \) holds for the empty list, then:

\[
p \cdot \text{perms} \cdot l = \text{power} \ #l (\delta \cdot g) \ []
\]

where

\[
g = ++\|/ \cdot f^*
\]

\[
f y = ((y \mathbin{+\!+} \cdot [])) *\| (l - y)
\]

The \(\delta \) predicate must satisfy:

\[
p ([e] \mathbin{+\!+} x) = p x \& \delta ([e] \mathbin{+\!+} x)
\]

The intention is that candidate results are tested piece-wise as they are generated and discarded if necessary. This reduces the number of elements which need be tested; since only elements with suffixes which satisfy the predicate are generated. An alternative way of understanding this is: the permutations form a tree of suffixes, with the resulting permutations at the leaves. The expression \(p \cdot \text{perms} \cdot l \) generates the whole tree of suffixes then prunes the leaves (permutations). This lemma permits branches to be pruned, thus pruning several leaves in one go.

This lemma improves the parallel efficiency of problems having the aforementioned form. The expression \(p \cdot \text{perms} \cdot l \) generates the permutations in parallel and then filters them. Each filtering is done in parallel. The optimised version: \(\text{power} \ #l (\delta \cdot g) \ [] \) generates elements in parallel exactly as \(\text{perms} \) does. It combines the filtering with elements generation though. For all successful n-queens results the number of comparisons performed is \(n^2 \) in both cases. These comparisons, applied to each result, may be performed in parallel or sequence for both algorithms; the important fact being that the cost is the same for them both. Also for both algorithms, the results will have been tested in parallel. The total number of tasks created will be smaller in the optimised case though. In other words this lemma preserves the useful parallelism of the \(\text{perms} \) filtering, whilst discarding redundant parallelism (searching).

The equation may be simplified:
\[\delta a \cdot g \]
\[= \text{def. of } g \]
\[\delta a \cdot ++_{||} / \cdot f^{*} \]
\[= \text{filter promotion} \]
\[++_{||} / \cdot (\delta a) \cdot f^{*} \]
\[= \ast \text{ distributivity} \]
\[++_{||} / \cdot (\delta a \cdot f)^{*} \]
\[= \text{introducing the definitions } f' = \delta a \cdot f \text{ and } g' = \delta a \cdot g \]
\[g' = ++_{||} / \cdot f'^{*} \]

\[f' y = (\delta a \cdot ((y \tilde{+} \text{[.]})*_{||}) (l - y) \]
\[= \text{a definition} \]
\[(++_{||} / (\delta \rightarrow [\text{-}], K [\text{-}]) \ast_{||} \cdot (y \tilde{+} \text{[.]})*_{||}) (l - y) \]
\[= \ast \text{ distributivity and } (p \rightarrow f, g) \cdot h = (p \cdot h \rightarrow f \cdot h, g \cdot h) \]
\[(++_{||} / (\delta \cdot (y \tilde{+} \text{[.]}) \rightarrow y \tilde{+} \text{[.]} \cdot [\text{-}], K [\text{-}])^{*_{||}}) (l - y) \]
\[= \text{introducing the definition } h y = (\delta \cdot (y \tilde{+} \text{[.]} \rightarrow y \tilde{+} \text{[.]} \cdot [\text{-}], K [\text{-}]) \]
\[(++_{||} / h y \ast_{||}) (l - y) \]
\[= \ast_{||} \text{ law} \]
\[f' y = (++_{||} / h y \ast) (l - y) \]

Therefore, \(h \) may be rewritten thus:

\[h' y e = [\text{-}], \neg \delta x \]
\[= [x], \text{ otherwise} \]
\[\text{where } x = [e] ++ y \]

Thus:

\[\text{power } \# l (\delta a \cdot g) [\text{-}] = \text{power } \# l g' [\text{-}] \]

Note, that this is still general to any problem having the form: \(p \cdot \text{perms } l \) and where \(p \) is suffix closed. In fact similar lemmas hold for predicates which are prefix and segment closed.

5.5.5 Application of the lemma

In this section the perms-filter lemma is applied to the refined n-queens specification. This is possible because \(\text{safe} \cdot \text{zipc } [1..n] \) is suffix closed.
All that remains is to calculate δ which has the form: $p (x + [e]) = p x \& \delta (x + [e])$. In this case δ must satisfy:

$$(\text{safe} \cdot \text{zipc} [1..n]) ([p] ++ r) = (\text{safe} \cdot \text{zipc} [1..n]) x \& \delta ([p] ++ r)$$

Manipulating:
$$(\text{safe} \cdot \text{zipc} [1..n]) ([p] ++ r)$$

$= \text{zipc} \text{ def. and } \#r < n$
$$\text{safe } ([[1,p]] ++ \text{zipc} [2..n] r)$$

$= \text{safe } \text{ def.}$
$$(\text{all} \cdot sp * ||) (\text{zipc} [2..n] r) \& (\text{all} \cdot sp * ||) [[[1,p]]]$$

where

Simplifying $sp pos = (\text{all} \cdot (\neg \cdot \text{check}' pos)* ||) (l - [pos])$

$= \text{since } l \text{ contains no duplicates, and}$

if $x + y$ contains no duplicates, then $(x + y) - [e] = (x - [e]) + (y - [e])$

$sp pos = a pos \& b pos$

$a pos = (\text{all} \cdot (\neg \cdot \text{check}' pos)* ||) ((\text{zipc} [2..n] r) - [pos])$

$b pos = (\text{all} \cdot (\neg \cdot \text{check}' pos)* ||) (((1,p)] - [pos])$

thus:
$$(\text{all} \cdot a* ||) (\text{zipc} [2..n] r) \& (\text{all} \cdot b* ||) (\text{zipc} [2..n] r) \& (\text{all} \cdot sp* ||) [[[1,p]]]$$

$= \text{safe } \text{ def.}$
$$(\text{safe} \cdot \text{zipc} [2..n] r) \& (\text{all} \cdot b* ||) (\text{zipc} [2..n] r) \& (\text{all} \cdot sp* ||) [[[1,p]]]$$

$= \text{safe } \text{ position independence lemma}$
$$(\text{safe} \cdot \text{zipc} [1..n]) r \& \underbrace{(\text{all} \cdot b* ||) (\text{zipc} [2..n] r)}_c \& \underbrace{(\text{all} \cdot sp* ||) [[[1,p]]]}_d$$

Thus:
$$(\text{safe} \cdot \text{zipc} [1..n]) ([p] ++ r) = (\text{safe} \cdot \text{zipc} [1..n]) r \& \delta ([p] ++ r)$$

where

$\delta ([p] ++ r) = c \& d$

simplifying b in order to simplify c

$b pos = (\text{all} \cdot (\neg \cdot \text{check}' pos)* ||) (((1,p)] - [pos])$
= since \((1, p) \not\in (\text{zipc} \[2.. n\] r)\)
\((\text{all} \cdot (\neg \cdot \text{check'} \ pos) * \|) [(1, p)]\)

= * and all def. (all = &/)
\(\neg\text{check'} \ pos \ (1, p)\)

= check' is commutative
\(\neg\text{check'} \ (1, p) \ pos\)

Therefore
\(c = (\text{all} \cdot (\neg \cdot \text{check'} \ (1, p)) * \|) \ (\text{zipc} \[2.. n\] r)\)

simplifying \(d\)
\(d = (\text{all} \cdot \text{sp} * \|) [(1, p)]\)

= * and all def.
\(\text{sp} \ (1, p)\)

= sp def.
\((\text{all} \cdot (\neg \cdot \text{check'} \ (1, p)) * \|) (l - [(1, p)])\)

where
\(l = [(1, p)] ++ \text{zipc} \[2.. n\]\)

= def.
\((\text{all} \cdot (\neg \cdot \text{check'} \ (1, p)) * \|) \ (\text{zipc} \[2.. n\] r)\)

Therefore
\(c = d = (\text{all} \cdot (\neg \cdot \text{check'} \ (1, p)) * \|) \ (\text{zipc} \[2.. n\] r)\)

Hence:
\(\delta \ (r ++ [p]) = (\text{all} \cdot (\neg \cdot \text{check'} \ (1, p)) * \|) \ (\text{zipc} \[2.. n\] r)\)

The definition of \(h\) was:
\(h \ y \ e = [], \neg \delta \ x\)
\(\quad = [x], \ otherwise\)
\(\quad \ where \ x = [e] ++ y\)

After performing some pattern matching, \(\delta\) may be re-written as \(\delta'\):
\(\delta' \ r \ p = (\text{all} \cdot (\neg \cdot \text{check'} \ (1, p)) * \|) \ (\text{zipc} \[2.. n\] r)\)

and \(h\) becomes:
\(h' \ y \ e = [], \neg \delta' \ y \ e\)
\(\quad = [e] ++ y], \ otherwise\)

Doing a few simplifications the final algorithm becomes:
CHAPTER 5. SQUIGOL

\[
\text{queens } n = \text{ power } n \ g' \ [\[] \\
\text{where} \\
g' = ++_\| / \cdot f' \\
f' y = (++_\| / \cdot h' y*) ([1..n] - y) \\
h' y e = [], \ \delta' y e \\
\quad = [[c] ++ y], \ \text{otherwise} \\
\delta' r p = (\exists \cdot \text{check'} (1, p) *\|) (\text{zipc} [2..n] r) \\
\text{check'} (i, j) (m, n) = (j = n) \lor (i + j = m + n) \lor (i - j = m - n) \\
\text{exists} = \lor /
\]

Notice how some partial evaluation of \(\delta'\) and \(\text{check}'\) could be done.

5.5.6 The functional program

The parallel functional program below is a simple translation of the Squigol algorithm. The specialisation lemma has been used to rewrite list homomorphisms as directed reductions.

\`
> queens n = power n g' [\[]
> where
> g' = foldl gg []
> where
> gg a b = par a (x++a) where x = f' b
> f' y = foldl ff [] ([1..n]--y)
> where
> ff a b = par a (x++a) where x = h' y b
> h' y e = [], \ \delta' y e
> \quad = [e:y], \ \text{otherwise}
> delta' r p = (\exists \cdot \text{parlist id} . \text{map} (\text{check'} (1, p)))
> (\text{zipc} [2..n] r)
> check' (i, j) (m, n) = (j=n) \lor (i+j=m+n) \lor (i-j=m-n)
> exists = foldl (\lor/) False
\`

The pars in \(\text{gg}\) and \(\text{ff}\) satisfy the \text{par} constraint since the expressions they spark occur in the results of these functions, and the entire results of these functions are required. The \text{parlist id} expression satisfies the \text{parlist} proof obligation since it is used in a head and tail strict context (\text{exists}). For a real machine the parallelism in \(\delta\) may be too fine to be used, see Chapter 6.
5.5.7 Experimental results

Using the experimental set-up described in Chapter 4; the following results were obtained. These show that the algorithm is highly parallel.

<table>
<thead>
<tr>
<th>Input size (number of queens)</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed-up (average parallelism)</td>
<td>8</td>
<td>52</td>
<td>228</td>
</tr>
</tbody>
</table>

5.5.8 Discussion

The n-queens derivation occupies almost six pages. This may seem excessively long, however two pages of this concerns the perms-filter lemma. This is quite general and it is applicable to any problem having the required form. Thus, as with the other derivations, this derivation has generated some theory enabling other similar problems to be easily solved. It is also worth noting that the initial specification of n-queens is very abstract.

The specification, and hence algorithm, generate all the solutions to the n-queens problem. The algorithm could be used to generate a single solution to the n-queens problem by selecting a single element from the result. However to implement this efficiently in parallel is difficult since speculative evaluation is required. This is because not all solutions are required and it is not possible to tell which partial solutions will lead to final solutions.

5.6 Example: A parallel greedy algorithm

This section consists of the derivation of a parallel greedy algorithm and a description of this algorithm's use. The algorithm computes a maximal or minimal partition of a list, such that each sub-list satisfies a given predicate. For example a list may be partitioned into a minimal number of sublists, such that each sublist is sorted. A similar problem is solved in a different manner by Bird in [13]. Bird's algorithm is more general than the one presented here; however it is not parallel.

The derivation is split into four parts:

- the specification of the problem.
- a general greedy lemma for use in the main derivation.
- a proof that the greedy lemma is applicable to the specification
- the main derivation of the parallel greedy algorithm from the specification. The major step in this derivation uses the greedy lemma.

5.6.1 The specification

The problem is to compute the minimum partition of a list, such that each element of the partition satisfies a predicate p. This may be formally specified as:
\[
\downarrow \#/ \cdot \text{all } p \triangleleft \cdot \text{parts}
\]

Where \textit{parts} is defined thus:

\[
\begin{align*}
\text{parts} &= \cdot \otimes \cdot [[\cdot]]^* \\
\odot a \odot b &= a \times_{\odot} b ++ a \times_{\odot} b \\
(as ++ [a]) \odot ([b] ++ bs) &= as ++ [a ++ b] ++ bs
\end{align*}
\]

The function \textit{parts} computes all the partitions of a list. For example \textit{parts} \([1,2,3]\) is:
\([\{[1],[2],[3]\}, \{[1],[2,3]\}, \{[1,2],[3]\}, \{[1,2,3]\}]\). The filter \textit{all } p \triangleleft \textit{ removes all partitions which contain elements not satisfying } p. The selection \(\downarrow \# / \) selects the minimal partition. Only minor changes are necessary in the derivation and the resulting algorithm in order to compute the maximal partition of a list rather than the minimal one.

5.6.2 A greedy lemma

The main derivation requires the application of a lemma. This lemma allows the selection and filtering of partitions to be combined with partitions generation. This lemma states that for any function \(g :: [\alpha] \rightarrow \alpha\) and operator \(\odot :: [\alpha] \rightarrow [\alpha] \rightarrow [\alpha]\), providing:

\[
g \cdot \odot / = g \cdot \odot / \cdot ([\cdot] \cdot g)^*
\]

then:

\[
g \cdot \odot / = \odot / \cdot g^*
\]

where \(x \odot y = g([x] \odot [y])\)

Proof, by induction, of: \((g \cdot \odot /) l = (\odot / \cdot g^*) l\)

case \(l = [v]\):

LHS = \(gv = \text{RHS}\)

case \(l = x ++ y\):
LHS =
\[g((\Theta/x) \Theta (\Theta/y)) \]

= using the precondition
\[g([g(\Theta/x)] \Theta [g(\Theta/y)]) \]

= inductive hypothesis
\[g([\Theta/g \ast x] \Theta [\Theta/g \ast y]) \]

= fold using \(\Theta \) def.
\[(\Theta/g \ast x) \Theta (\Theta/g \ast y) \]

= map and reduce folding
\[(\Theta/ \ast g\ast) (x + y) \]

= RHS

\(\Box \)

5.6.3 Proof of the greedy lemma's applicability

To use the greedy lemma in the forthcoming derivation, the precondition of the lemma must hold. This means that for \(g = \downarrow \# / \cdot \text{all } p \), the following must be true:

\[g \cdot \Theta/ = g \cdot \Theta/ \cdot ([\cdot] \cdot g)* \]

Since this holds for singletons, only the following constraint is required:

\[g (x \otimes y) = g ([g x] \otimes [g y]) \]

= def. of \(\otimes \)
\[g (x \times_+ y \uplus x \times_\Theta y) = g ([g x] \times_+ [g y] \uplus [g x] \times_\Theta [g y]) \]

= since for any \(\Theta, [a] \times_\Theta [b] = [a \otimes b] \)
\[g (x \times_+ y \uplus x \times_\Theta y) = g ([g x \uplus g y] \uplus [g x \otimes g y]) \]

= filter and reduce promotion
\[g (x \times_+ y) \downarrow \# g (x \times_\Theta y) = g [g x \uplus g y] \downarrow \# g [g x \otimes g y] \]

This will be proved by proving that:

1. \(g(x \times_+ y) = g [g x \uplus g y] \)
2. \(g(x \times_\Theta y) = g [g x \otimes g y] \) or \(\# g(x \times_+ y) \leq \# g(x \times_\Theta y) \)

Under these two rules the previous equality becomes a refinement. This is because in general for any function \(h, \downarrow_h [u, v] \) is un-specified in the case that \(h u = h v \). A refinement of \(f \) is
a function which respects the ordering of \(f \) but which may impose an additional ordering on values which are equal under \(f \). Refinements are denoted by \(\sim \); for example if \(h \ u = h \ v \) then \(1_h[u, v] \sim u \) or alternatively \(1_h[u, v] \sim v \). Refinements are discussed further in \([13, 14, 80]\). For the equality in question, (1) and (2) will mean that:

\[
g(x \times_{+} y) \downarrow \# g(x \times_{+} y) \sim g[x \oplus y] \downarrow \# g[x \oplus y]
\]

This means that the greedy lemma in the main derivation will result in a refinement.

Proof of (1), \(g(x \times_{+} y) = g[x \oplus y] \)

\[
g(x \times_{+} y)
\]

\[
= \text{ since } g = g \cdot [\cdot] \cdot g \\
g(\cdot[\cdot] \cdot g)(x \times_{+} y)
\]

\[
= \text{ def. of } g \text{ and filter promotion} \\
g[\downarrow \# (\forall p x \times_{+} \forall p y)]
\]

\[
= \text{ since } \downarrow \# \text{ distributes through } \oplus, \text{ use cross-distributivity } \oplus / \cdot \otimes / = \otimes / \cdot \oplus / \\
g[(\downarrow \# (\forall p x) \oplus (\downarrow \# (\forall p y))]
\]

\[
= \text{ def. of } g \\
g[g x \oplus y]
\]

\[
= \text{ RHS}
\]

Proof of (2), first part, \(g(x \times_{\otimes} y) = g[x \otimes y] \)

\[
g(x \times_{\otimes} y)
\]

\[
= \text{ def. of } g \\
\downarrow \# (\forall p \cdot (x \times_{\otimes} y))
\]

assuming \(p \) is segment closed, that is:

\[
p(x \oplus y) \Rightarrow p x \& p y
\]

then:

\[
(\forall p \cdot (s \otimes t)) = (\forall p \cdot s) \oplus (\forall p \cdot t)
\]

and hence:

\[
(\forall p \cdot (x \times_{\otimes} y)) = (\forall p \cdot ((\forall p \cdot s) \times_{\otimes} (\forall p \cdot y))
\]

therefore:
\[\downarrow \# \/ \text{all } p < (\text{all } p < x \times \Theta \text{ all } p < y) \]

= since \(g = g \cdot [\cdot] \cdot g \)
\[
(g \cdot [\cdot] \cdot \downarrow \# \/ \text{all } p <) (\text{all } p < x \times \Theta \text{ all } p < y) \]

= assuming \(\text{all } p (\downarrow \# \/ (\text{all } p < x \times \Theta \text{ all } p < y)) \)
\[
(g \cdot [\cdot] \cdot \downarrow \# \) (\text{all } p < x \times \Theta \text{ all } p < y) \]

since \(\downarrow \# \) distributes through \(\Theta \), using cross-distributivity
\[
(g \cdot [\cdot]) (\downarrow \# \/ \text{all } p < x \quad \downarrow \# \/ \text{all } p < y) \]

= def. of \(g \)
\[g \) [g x \oplus g y] \]

= RHS

Proof of (2), the second part. Discharging the assumption \(\text{all } p (\downarrow \# \/ (\text{all } p < x \times \Theta \text{ all } p < y)) \)
\[
\neg \text{all } p (\downarrow \# \/ (\text{all } p < x \times \Theta \text{ all } p < y)) \Rightarrow \# g (x \times \# y) \leq \# g (x \times \Theta y) \]

Since \(\downarrow \# \/ (x \times \Theta y) = \downarrow \# \/ x \oplus \downarrow \# \/ y \)
\[
\neg \text{all } p (\downarrow \# \/ (\text{all } p < x \times \Theta \text{ all } p < y)) \Leftrightarrow \# (g x \oplus g y) < \# (g (x \times \Theta y)) \]

Therefore:
\[\# (g x \oplus g y) < \# g (x \times \Theta y) \Rightarrow \# g (x \times \# y) \leq \# g (x \times \Theta y) \]

= since \(g (x \times \Theta y) = [g x \# g y] \) and factoring out \(\# g (x \times \Theta y) \)
\[
\# (g x \oplus g y) < \alpha \Rightarrow \# [g x \# g y] \leq \alpha \]

= factoring out \(g x \) and \(g y \)
\[\# (x' \oplus y') < \alpha \Rightarrow \# [x' \# y'] \leq \alpha \]

= using def. of \(\oplus \)
\[
\# (as \# [a \# b] \# bs) < \alpha \Rightarrow \# (as \# [a] \# [b] \# bs) \leq \alpha \]

This is always true.

\[\Box \]

5.6.4 The main derivation

The derivation of the parallel greedy algorithm from the problem specification is presented here. The use of the greedy lemma means that the resulting algorithm is a refinement of the specification.
\[
\downarrow_p / \cdot \text{all } p \cdot \text{parts} \\
= \text{parts definition} \\
\downarrow_p / \cdot \text{all } p \cdot \otimes / \cdot [\cdot]**
\]

= using the greedy lemma
\[\otimes / \cdot (\downarrow_p / \cdot \text{all } p \cdot \otimes / \cdot [\cdot])** \]

where \(a \otimes b = (\downarrow_p / \cdot \text{all } p \cdot (a \otimes [b])\)

= \(p\) holds on singletons and map distributivity
\[\otimes / \cdot (\downarrow_p / \cdot [\cdot])**
\]

= for any operator \(\Theta\), \(\Theta / \cdot [\cdot] = \text{id}\)
\[\otimes / \cdot [\cdot]**
\]

Simplifying \(a \otimes b\)
\[\downarrow_p / \cdot \text{all } p \cdot (a \otimes [b])\]

= def. of \(\otimes\)
\[\downarrow_p / \cdot \text{all } p \cdot ([a] \times_\Theta [b] ++ [a] \times_\Theta [b])\]

= since \([x] \times_\Theta [y] = [x \otimes y]\)
\[\downarrow_p / \cdot \text{all } p \cdot ([a \times_\Theta b] ++ [a \otimes b])\]

= since \(\#(a \otimes b) < \#(a \times_\Theta b)\)
\(a \otimes b, \text{ all } p(a \otimes b)\)
\(a \times_\Theta b, \text{ all } p(a \times_\Theta b) \& \neg \text{all } p(a \otimes b)\)
\[\downarrow_p / [], \text{ otherwise}\]

Since all \(p(a \times_\Theta b)\) always holds, by virtue of the fact that \(p\) holds on singletons, this may be written thus:
\[(as \times_\Theta [a]) \otimes ([b] \times_\Theta bs) = as \times_\Theta [a \times_\Theta b] \times_\Theta bs, \text{ all } p(as \times_\Theta [a \times_\Theta b] \times_\Theta bs)\]
\[(as \times_\Theta [a] \times_\Theta [b] \times_\Theta bs, \text{ otherwise}\]

Furthermore since \(p\) holds for \(as\) and \(bs\), all \(p(as \times_\Theta [a \times_\Theta b] \times_\Theta bs)\) may be simplified to \(p(a \times_\Theta b)\).

The final Squigol algorithm is:
\[\otimes / \cdot [\cdot]**\]

where
\[(as \times_\Theta [a]) \otimes ([b] \times_\Theta bs) = as \times_\Theta [a \times_\Theta b] \times_\Theta bs, \text{ all } p(a \times_\Theta b)\]
\[(as \times_\Theta [a] \times_\Theta [b] \times_\Theta bs, \text{ otherwise}\]

5.6.5 The functional program

To test the parallel greedy algorithm an implementation was coded in the parallel functional language. The problem of run length encoding was used for the test. Run length encoding
CHAPTER 5. SQUIGOL

encodes runs of equal values as a pair of the value and the number of occurrences. For example the string (list of characters) "aaabbac" would be encoded thus [(‘a’,3),(‘b’,2),(‘a’,1),(‘c’,1)]. In Squigol the problem may be solved using the derived algorithm thus:

\[h \ast \circ / \cdot \text{[[[:]]]} \ast \]
\[\text{where } \quad h \left([c]++r\right) = (c, 1 + \#r) \]
\[p \left([a]++r\right) \left([b]++s\right) = a = b \]

The function \(\circ/ \cdot \text{[[[:]]]}\ast\) minimally partitions lists, for example the string “aaabbac” would be partitioned thus: [“aaa”,“bb”,“a”,“c”]. The \(h\ast\) function encodes runs as pairs, representing a run as a value and its number of occurrences.

To implement this efficiently either arrays, or a clever representation of lists, are required. The latter was chosen because arrays were not available; also a naive array implementation would consume a lot of storage. The implementation difficulty is caused by \(\circ\) accessing elements at both ends of lists. Clearly implementation using ordinary cons lists will be very inefficient. If trees are used, access to elements will be at best logarithmic. The solution employed represents the top level list, the list of partitions, as a tree. Partitions are represented by a special queue (mqueue). These queues consist of either one (One), two (Two) or many elements (Queue). In the latter case the end most elements were stored separately from the middle elements. The middle elements were stored as a tree. The key to this working is that only end elements are ever accessed, elements in the middle of a list are not accessed. The program is shown below:

\[
\text{> tree } \ast \quad ::= \text{Node (tree } \ast \text{) (tree } \ast \text{) | Leaf } \ast \\
\text{> mqueue } \ast \ast \quad ::= \text{One } \ast \text{ | Two } \ast \ast \text{ | Queue } \ast \ast \ast \\
\text{> tmap f (Leaf x)} \quad = \text{seq y (Leaf y) where } y = f x \\
\text{> tmap f (Node l r)} \quad = \text{par rr (seq ll (Node ll rr))} \\
\text{ where} \\
\text{> l1 = tmap f l } \\
\text{> rr = tmap f r} \\
\text{> treduce f (Leaf x)} \quad = x \\
\text{> treduce f (Node l r)} \quad = \text{par rr (seq ll (f ll rr))} \\
\text{ where} \\
\text{> l1 = treduce f l } \\
\text{> rr = treduce f r} \\
\text{> fun :: mqueue (*,num) (tree (*,num)) -> } \\
\text{> mqueue (*,num) (tree (*,num)) -> } \\
\text{> mqueue (*,num) (tree (*,num))} \\
\text{> fun (One a) (One x)} \quad = \text{seq q (One q), } \quad \text{pred a x}
\text{> } \quad = \text{Two a x, } \quad \text{otherwise}
\text{> } \quad \text{where } q = \text{comb a x} \]
> fun (One a) (Two x z) = seq q (Two q z),
> = Queue a (Leaf x) z,
> where q = comb a x
> pred a x otherwise

> fun (One a) (Queue x y z) = seq q (Queue q y z),
> = Queue a (Node (Leaf x) y) z,
> where q = comb a x
> pred a x otherwise

> fun (Two a c) (One x) = seq q (Two a q),
> = Queue a (Leaf c) x,
> where q = comb c x
> pred c x otherwise

> fun (Two a c) (Queue xy z) = seq q (Queue a (Leaf q) z),
> = Queue a (Node (Leaf c) (Leaf x)) z,
> where q = comb c x
> pred c x otherwise

> fun (Two a c) (Two x z) = seq q (Queue a (Leaf q) z),
> = Queue a (Leaf c) (Leaf x) z,
> where q = comb c x
> pred c x otherwise

> fun (Queue a b c) (One x) = seq q (Queue a b q),
> = Queue a (Node b (Leaf c)) x,
> where q = comb c x
> pred c x otherwise

> fun (Queue a b c) (Two x z) = seq q (Queue a (Node b (Leaf q)) z),
> = Queue a (Node b (Node (Leaf c) (Leaf x))) z,
> where q = comb c x
> pred c x otherwise

> fun (Queue a b c) (Queue x y z)
> = seq q (Queue a (Node b (Node (Leaf q) y)) z),
> = Queue a (Node (Node (Leaf c) (Leaf x))) y) z,
> where q = comb c x
> pred c x otherwise

> pred (x, n) (y, m)
> = x = y

> comb (x, n) (y, m)
> = seq nm (x, nm)
> where nm = n + m

> sing x
> = One (x, 1)

> pargreedy :: tree * -> mqueue (*, num) (tree (*, num))
> pargreedy = treduce fun . tmap sing

In order for the par in treduce to satisfy the par proof obligation it is sufficient for the function argument of treduce to be strict in both of its arguments. The function fun is strict in both of its arguments thus the treduce application in pargreedy is valid. In order for the par in tmap...
to satisfy the \texttt{par} proof obligation, it is sufficient for \texttt{tmap} to occur in a context which is strict in \texttt{tree} elements. In \texttt{pargreedy}, \texttt{tmap} occurs in such a context.

The function \texttt{fun} corresponds to \bigcirc. The \texttt{h} function has been promoted through \bigcirc so that the intermediate lists representing runs are directly represented as the value and its number of occurrences. The pattern matching in \texttt{fun} will compile into very efficient code in a modern implementation. Many \texttt{seqs} were needed in the \texttt{fun} function. These could be removed if the \texttt{tree} used in \texttt{mqueue} could be defined as being strict. It is not possible to simply force the evaluation of \texttt{mqueue} further than \texttt{WOINF} in \texttt{treduce} since it is unknown what must be evaluated. It is not known how much of the \texttt{tree} argument of \texttt{mqueue} must be forced. The implementation of lists using \texttt{mqueues} and \texttt{trees} is quite complicated. A good way to formalise this translation would be to use abstract data types together with abstraction maps and commuting diagrams, as described in [11].

The parallel greedy algorithm is very complex. Therefore to assess its performance fairly an efficient sequential algorithm was also used in experiments. This is based on the sequential greedy algorithm derived in [13]. This uses conventional lists rather than \texttt{trees} and \texttt{mqueues}.

\begin{verbatim}
> seqgreedy :: [*] -> [(*, num)]
> seqgreedy (x: xs) = sg x 1 xs

> sg :: * -> num -> [*] -> [(*, num)]
> sg e n [] = [(e, n)]
> sg e n (x:xs) = (e, n): sg (e, n) (n+1) xs, otherwise
> = (e, n):sg e (n+1) xs, x = e

This program appears to be much simpler than the parallel greedy algorithm. An important observation is that most of the additional complexity of the parallel greedy algorithm is involved in implementing an efficient data structure for parallel evaluation. If arrays were available they could simplify the parallel greedy program. However using trees rather than arrays may make parallel implementation more efficient: particularly anticipatory data prefetching via pointers.

5.6.6 Experimental results

The parallel and sequential greedy algorithms were run on three lists of data, containing 512, 2048 and 8192 characters. Each interval of 16 characters in the lists contained the same value. The results obtained were:

\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
Input size & 512 & 2048 & 8192 \\
\hline
Speed-up (average parallelism) & 30 & 39 & 43 \\
\hline
Speed-up (efficient sequential algorithm) & 4.7 & 6.3 & 6.9 \\
\hline
Ratio of extra work & 6.4 & 6.2 & 6.2 \\
\hline
\end{tabular}
\end{center}

The average parallelism speed-up represents the speed-up, over the program's sequential execution, given an unbounded number of processors. The average parallelism speed-up figures are the speed-up compared to the same algorithm run sequentially. The efficient sequential algorithm
speed-up figures are the speed-up compared to the efficient sequential algorithm. These figures show good speed-up although the parallelism does not seem to increase linearly with the input size. This should be the case since the algorithm is essentially a D&C algorithm with combining operator (⊙) which has constant time complexity. (See Section 8.2.2 for more information on this result.)

The speed-up compared with the efficient sequential algorithm is poor. For example with an input size of 2048, the parallel greedy algorithm utilises on average 39 processors to achieve a performance 6.3 times that of the efficient sequential algorithm. The ratios of extra work performed by the parallel greedy algorithm compared to the sequential greedy algorithm, are almost constant. These figure reveal that the parallel algorithm performs a total of at least six times the amount of work the sequential algorithm performs.

The speed-up of the parallel algorithm over the efficient sequential algorithm could be increased in a number of ways:

1. Expand the \texttt{comb} and \texttt{pred} functions inline and hence decrease the total amount of work the parallel algorithm has to do.

2. Increase the amount of parallel evaluation. The experimental results do not include the output time of the data structures. However the parallelism profile reveals that much of the resulting \texttt{mqueue} has to be evaluated (built) by the output driver. This could be overcome if strict data structures could be defined. Using \texttt{seqs} would have the same effect; however this would seriously obscure the program. Results of putting some extra \texttt{seqs} in the program to force the evaluation of the \texttt{tree} data structures earlier, resulted in a significant improvement of speed-up over the efficient sequential algorithm.

3. A hybrid algorithm could be used. This would reduce the total amount of work the parallel algorithm had to perform. In particular it would reduce the total amount of work when little performance gain was achieved by parallel evaluation: either because partitions are short or because all the machine's processors are busy. Thus for building partitions of short sub-lists, or when all processors were utilised, the efficient sequential algorithm would be used. Larger partitions would be constructed concurrently using the parallel algorithm.

5.6.7 Discussion

The derivation has produced a parallel algorithm. However the algorithm is more complex than its efficient sequential counterpart. The reason for this is the complicated data structure which is necessary for parallel implementation. Fundamentally the algorithm is capable of good speed-up, since it is a D&C algorithm and the combining operation can be efficiently implemented, however achieving this is difficult. If arrays were available these might remedy this situation. Often it seems that data structures used in parallel algorithms must be implemented very carefully in order to achieve good speed-up. The ability to define strict data structures would be very useful for this program.
5.7 Summary

Initially this chapter has described the basic aspects of Squigol; subsequently these have been built on with a view to the derivation of parallel algorithms.

The majority of this chapter consists of three example derivations of parallel algorithms: an all shortest paths algorithm, an n-queens algorithm and a greedy algorithm. For each derivation parallel operators and associated laws have been developed. Experiments have verified that the derived programs are indeed parallel. The experiments have revealed that some parallel algorithms are not efficient sequential algorithms.

For deriving parallel algorithms several important observations have been made. It has been shown that Squigol specifications are usually parallel; this is true of all the specifications in this chapter. Also, it has been shown that homomorphisms correspond to divide and conquer algorithms. Much of the Squigol work has concentrated on list data structures; lists must often be represented as balanced trees or arrays in order for functions on them, such as homomorphisms, to be evaluated in parallel. For example the parallel greedy algorithm represents a nested list using two different structures. Despite this, many Squigol optimisations performed on lists, such as directed reductions, are inherently sequential.

To aid the operational reading of Squigol expressions the use of parallel annotations has been proposed. These annotations have been experimented with in the n-queens program derivation.

5.8 Conclusions

The main conclusions of this chapter are:

- Squigol may be used to derive parallel algorithms, and this has been demonstrated via three examples.

- A derivation starts with an abstract parallel specification and this is progressively refined to an efficient parallel algorithm. No intermediate sequential algorithms are produced. This differs from the ideas of others who propose transforming sequential algorithms in order to produce parallel ones.

- In order to derive parallel algorithms, parallel operators and accompanying theorems and laws are needed. For example the map, multiply and perms functions used here.

- Homomorphisms are ubiquitous in Squigol. This is particularly useful when deriving parallel algorithms because homomorphisms correspond to divide and conquer algorithms, which often make good parallel algorithms.

- Not all Squigol is suitable for deriving parallel algorithms. In particular optimisations which refine reductions to directed reductions, result in sequential algorithms. For these cases alternative parallel optimisations are required.

- Some parallel algorithms do not perform well sequentially. In such cases it is important to combine these with efficient sequential algorithms to form hybrid algorithms.
The representation of data structures in parallel programs is more important than it is for sequential programming. In particular the representation of lists must often be carefully designed, in order for them to admit parallel evaluation.
Chapter 6

Parallelism control

6.1 Introduction

In order to achieve real speed-up parallel programs must make efficient use of a parallel machines resources. Particularly this means that processors and storage must be used carefully. To achieve this a spectrum of possibilities exists. At one end the programmer must specify everything; for example what constitutes a task, on which processor it should be run, its communication with other processors and the order in which tasks should be executed. This is hardly compatible with the philosophy of high level programming! At the other end of the spectrum the machine must try to deduce all of these things, using analyses and heuristics. This is a highly desirable approach but it is unlikely to always produce programs with an acceptable level of efficiency.

What is required is a compromise, enabling the programmer to express programs with a freedom from low level implementation concerns and yet allowing the programmer enough control over their programs for them to run efficiently. Furthermore the parallelism control which the programmer has should not be mandatory, in the sense that it should be possible to develop programs without such control and then further refine them to include this if necessary.

In keeping with the spirit of this thesis, my own proposals consider the minimum actions the programmer must take to produce efficient parallel functional programs. The emphasis of this thesis is on programming with functional languages, using just par and seq to control evaluation. The thrust of this chapter is on programmer control of parallelism, using par and seq combinators; in particular control of task sizes is investigated. However, control via a machine's run-time system (the evaluate-and-die task model) is also used for comparative purposes.

Two kinds of algorithm are investigated: data parallel algorithms, (those algorithms whose parallelism occurs from performing operations in parallel across data structures) and divide and conquer (D&C) algorithms. The techniques used to control parallelism in these algorithms apply equally well to other algorithms. For example, most of the D&C algorithm control techniques can be applied to search and optimisation problems; for example branch-and-bound, and alpha-beta algorithms. The data parallel algorithms use lists, but the parallelism control techniques apply equally well to other data structures.

The parallelism control techniques are expressed as abstractions, as advocated by Cole (see Section 3.4.3). Thus D&C algorithms are all expressed using D&C combinators. Importantly
this allows abstractions to be constructed whose meaning is relatively simple but whose operation is sophisticated. These combinators may be used without the programmer understanding their operation. The programmer need only understand the meaning of a combinator and what parallelism control parameters it need be given, if any.

Thus, this chapter demonstrates some cases when parallelism control is necessary and a variety of programming techniques for doing this. Many researchers have had many different ideas concerning many different aspects of parallelism control. An objective of this chapter is to show the relationship between these ideas and the relationship between the problems they try to solve; previously these concerns have been regarded in isolation.

6.2 What should be controlled?

There are many aspects of parallelism which must be controlled. The following is a list of common aspects for control:

- The number of tasks in a machine at a given time, task residency. It is desirable to control the number of tasks in a machine at any given time simply because there will, naturally, be some constraint on the maximum number of tasks a machine can hold. Also, as task numbers increase so do communication and blocking, both of which are expensive.

- The 'size' of tasks, parallelism grain/granularity. Task sizes must be controlled to ensure speed-ups are gained from parallel evaluation. There are always overheads associated with parallel evaluation, caused by communication and context switching, and hence tasks must be worth evaluating in parallel.

- Storage usage caused by parallelism, storage residency. Evaluating a program in parallel may exhaust a machine's storage. Thus the disastrous situation may arise where a program will produce a result when run sequentially and may fail when run in parallel. Hughes in his thesis investigates the storage usage of parallel and sequential functional programs [58].

- Task and data placement: the mapping of tasks and data onto processors should preserve parallelism and minimise communications costs. This is discussed in Chapter 2, and it is not discussed further here since the assumed target machine is a shared memory one.

The first three areas are related. Controlling task residency will increase the size of tasks since the same amount of work must be performed by programs but by fewer tasks. Controlling the size of tasks controls task residency because it controls the total number of tasks. Tasks are either split into smaller tasks or several tasks are coalesced, and hence the number of tasks active at a given time is changed.

Tasks consume store in two ways. Firstly tasks use store for their own state — for example a stack — and secondly they generally result in a greater transitory store occupancy than a corresponding sequential program. For example consider an n task program where each task uses s amount of store transitorily. A total amount of $n \times s$ storage is required when it is run in parallel, compared with s when it is run sequentially. (However, there are occasions when
parallelism can reduce the storage residency [58].) Thus there is a storage parallelism trade-off; by decreasing the number of tasks the transitory store usage is also likely to be decreased. Also task numbers in excess of the number of processors will increase storage use. Note that in the experiments performed, it was not possible to measure the storage used by tasks' own state. Some idea of this figure can be gained by examining parallelism profiles; however parallelism profiles do not show blocked tasks and hence their state.

An important trade-off has now become apparent. An efficient parallel program should have its parallelism limited so as to just keep all of a machine's processes busy and to not use more storage than necessary. However Eager's speed-up results [36] say, in effect, that to get a reasonable speed-up the number of tasks should be much greater than the number of processors (see Section 2.6).

6.3 A survey of parallelism control methods

Three different approaches to controlling parallelism have been proposed; these are discussed in this section.

run-time system control: with this technique the run-time system uses heuristics to control parallelism. The programmer has no control over this and the run-time system has no information about the programs which are run. This may be compared with a paged virtual memory system's management of memory.

automatic partitioning: this technique uses compile-time analyses to partition (divide) a program into useful tasks. The decisions concerning parallelism control are expressed within programs.

programmer control: here the programmer is responsible for controlling parallelism. The programmer make decisions about parallelism and these are expressed within the program.

There are two forms of partitioning: static and dynamic. Static partitioning is the determination of tasks at compile-time. Essentially task candidacy is decided prior to program execution. Dynamic partitioning causes the postponement of task candidacy decisions until run-time. Tests for determining task candidacy are derived at compile-time and inserted into the program at sparking points. At run-time these tests will determine whether a task should be sparked or not. Static partitioning is a special case of dynamic partitioning when task candidacy tests may be evaluated at compile-time.

Notice that both automatic partitioning and programmer control of parallelism express parallelism within programs. Thus although this chapter concentrates on programmer control of parallelism, much of it is also relevant to automatic partitioning too.

6.3.1 Run-time system control

Run-time system control is characterised by being blind to programs; that is nothing about programs is known. Hence all control is by general heuristics. It is particularly suited to
controlling task residency. This is done by a machine calculating a loading factor which is used to determine whether to create a new task or not when a spark occurs. If the number of tasks and storage usage are used to compute the machines loading factor, then the storage use may also be effectively controlled.

The ZAPP project investigated divide and conquer algorithms and in particular, how to run them efficiently on a loosely coupled network of processors [25]. They proposed controlling the number of tasks by using an adaptive scheduling strategy. The scheduling strategy used either a LIFO or FIFO task queue depending upon the machines loading (the number of active tasks). Parallel divide and conquer algorithms produce a tree of tasks. Thus the scheduling strategy resulted in a breadth first traversal of the task tree when the machine was lightly loaded, causing the generation of many new tasks. When the machine was heavily loaded a depth first traversal occurred, causing tasks to be completed rather than new tasks to be generated. Importantly, a notification model was used, see below. This mechanism controlled the number of tasks and storage but it did not control task sizes.

The GRIP machine [27] has been briefly described in Section 2.5. It is interesting because it attempts to control task sizes, as well as task numbers, using a run-time heuristic. The control of both of these issues arise from GRIP's evaluate-and-die task model. This task mechanism allows any task to evaluate any redex. In particular sparking an expression does not reserve the expression for evaluation by the new task. Effectively task sparks are only advisory and they may be ignored. Thus once GRIP becomes loaded beyond a certain level it may ignore sparks; this is how task numbers are controlled. Compare this with ALICE where a notification model of task sparking is used; in this model if a closure is sparked it may only be evaluated by the new task which was created to evaluate it [31]. Thus tasks may not be discarded.

GRIP is intended for programs with much greater parallelism than there are processors. If this is the case then task sizes may be controlled. The idea is that once GRIP is fully loaded with tasks, any sparked closures will be evaluated by parent tasks, rather than child tasks, because parent tasks will encounter the closures first. Parent tasks will encounter closures first because new tasks can not be run until there is some spare capacity; that is until some parent tasks have terminated. Parent tasks cannot terminate until they have the sparked closures' values. This strategy is particularly suited to D&C algorithms. For example consider a D&C algorithm which produces a balanced tree of tasks. The parallel evaluation may be viewed as two waves one proceeding down the tree dividing problems into sub-problems, and solving them at the leaves; the other moving up the tree combining problems. If the tree is much bigger than the number of processors, then at some point the down wave will fully load GRIP with tasks. When this happens all subsequently sparked problems will be evaluated by parent tasks; since there will be no spare processors on which to run new tasks. Effectively, once loaded, each remaining sub-tree of the D&C tree will be solved sequentially. This results in larger tasks. Effectively tasks are coalesced.

A recent paper has reported some early experiments with the GRIP machine [39]. This mainly considers a parallel *nfib* function. Although this is a somewhat artificial example, the results show that unrestricted parallelism causes communications time to swamp reduction time. Using some run-time strategies they controlled parallelism and improved the program's absolute performance. These are only preliminary results and further experimentation with more realistic programs is necessary. However the results do show that effective parallelism control is very important for a real machine.
As previously stated, the target machine for programs in this thesis is an idealisation of GRIP which has an evaluate-and-die task model, but which does not discard any sparks.

Hartel in his thesis [42], states that control of task numbers, and their mapping to processors, should be based on the recorded history of an application program which is running. This history should include information from previous runs of the program. This is highly dependent upon the regularities of the program being run. A run time system could learn about a program over a number of runs and thereby mechanically tune it.

6.3.2 Automatic partitioning

Automatic partitioning is done by a compiler; a compiler uses analyses and heuristics to attempt to partition a program into tasks. Two forms of automatic control have been proposed. The first form is control at the micro-parallelism level, for example combining groups of dataflow operators to form larger operators. These are all static partitioning methods. The second form is a much more ambitious system which uses some form of complexity analysis to statically and dynamically partition programs. The first form is only of limited use on an MIMD machine. The second form has problems because in general complexity analysis is not decidable. Therefore some form of approximate complexity analysis is required. However general techniques for ‘good’ approximate complexity analysis have yet to be developed. Even worse, is the difficulty of using such information for dynamic partitioning. For static partitioning this is simple, but for dynamic partitioning some form of task candidacy test is required. Derivation of this test is non-trivial; in particular a straightforward test may be too expensive. Often the only efficient way to do the test is to combine it with some existing calculation; thus the automatic partitioning system is now required to do program transformation as well! For example consider parallel Quicksort. A suitable task candidacy test is to examine the length of the list to be sorted. If a list is short it should not be sorted in parallel. However for efficiency the list length should be calculated in conjunction with splitting the list, not separately.

The first three proposals described are for static partitioning, the last is for dynamic partitioning. Goldberg in his thesis [38] used a simple analysis to automatically determine whether an expression was ‘big enough’ to be considered a task. This was a very simple analysis which was able to calculate the complexity of simple expressions, involving no recursion, and which attributed an infinite cost to recursive expressions or expressions dependent upon recursive expressions. Any expression with a cost greater than a certain amount was considered a candidate task. Unfortunately this proved rather too simple an analysis and it attributed most expressions an infinite cost.

Some different work by Hudak and Goldberg considered parallelism at the combinator level [52]. Serial combinators were designed such that they corresponded to a task. They were executed sequentially but they could spark new tasks (serial combinator applications). Any parallelism had the form of one serial combinator invoking several other serial combinators in parallel. Thus serial combinators contained no expressions within themselves which could be evaluated in parallel other than parallel calls to other serial combinators. The effect of this was to make the implementation of tasks simple since tasks were exactly serial combinator applications. However this does not seem to have significantly affected the sizes or number of tasks produced.

Sarkar and Hennessy, [101], describe a compile-time method for automatically partitioning (IF1) data flow graphs. The goal once again was to increase task sizes. Their system had three phases:
1. assign execution times to nodes and communications times to edges
2. partition the graph
3. generate the code

The partitioning required the following machine information: the number of processors, scheduling overheads and function invocation overheads.

The data flow graph was partitioned on a function by function basis. Starting with the finest granularity (single operators), nodes were merged together until the desired granularity was reached. The result of the partitioning was a set of sequential bodied macro actors which could be run in parallel. The difficult part were the cost assignments. These were based on type information and probabilities; which in turn were based on three sources of information:

- heuristics
- programmer pragmas
- profiling information

The system which was implemented used only the latter source of information; which was obtained from instrumented SISAL programs. This is one of the most sophisticated partitioning systems which has been implemented. It is difficult to assess how applicable these techniques are to parallel functional languages.

Rabbi and Manson [94] advocate the use of automatically derived complexity functions to control parallelism grain size. Their approach uses static and dynamic partitioning. They show how complexity functions may be used in a functional program to control the grain size of tasks. They do not however have a system for automatically deriving the complexity functions. A problem with their approach is that many proposals for automatic complexity derivation are concerned with asymptotic complexity. It is unlikely that asymptotic complexity will be accurate enough for determining task sizes. They also demonstrate how complexity functions are often expensive to calculate. To alleviate this they sometimes assumed an infinite cost, as Goldberg does, or they transform programs. The transformation they tried was to carry list lengths around with lists. Thus list length calculation became a constant time operation, at the expense of longer construction time. This supports the previous points made, concerning the difficulty of automatic grain size control.

6.3.3 Programmer control

Lastly the control of task sizes by the programmer is discussed. Vree and Hartel [112], took the approach of using program transformation to change the sizes of tasks. They used two types of transformation depending on whether they wanted to increase or decrease the grain of parallelism. Data partitioning was used for decreasing the grain size of a function, particularly for D&C algorithms. This may be summarised thus:

\[
F \left(\text{union } (a, b) \right) \rightarrow \text{union } ((F a) \text{ in parallel with } (F b))
\]
Data parallel algorithms are algorithms where parallelism occurs by performing operations over data structures; the typical example is map. Vree and IIartel used data grouping to increase the grain size of tasks for data parallel algorithms, for example:

ParMap F (1..10) \rightarrow SeqMap F (1..5) in parallel with SeqMap F (6..10)

Starting with an algorithm which had the wrong grain of parallelism they were able to demonstrate how various transformation rules could be used to improve the grain sizes of tasks. Transformation was accomplished using some syntactic transformation rules. These rules took a parallelism annotated program and some task size predicates, and produced a program with dynamic task size control (dynamic partitioning). For example they transformed a Quicksort program, similar to the one below, to increase its parallelism grain.

\[
\begin{align*}
\text{pqsort} & \mathbf{[]} = \mathbf{[]} \\
\text{pqsort} (e : r) &= \text{par hi (lo++(e:hi))} \\
& \quad \text{where} \\
& \quad \quad \text{lo} = \text{pqsort} [x | x<-r; x<=e] \\
& \quad \quad \text{hi} = \text{pqsort} [x | x<-r; x>e]
\end{align*}
\]

The optimised program they produced was similar to the following one:

\[
\begin{align*}
\text{pqsort} & \mathbf{[]} = \mathbf{[]} \\
\text{pqsort} (e : r) &= \text{lo++(e:hi)}, lshrt \lor \text{hshrt} \\
& \quad \quad \text{par hi (lo++(e:hi)), otherwise} \\
& \quad \quad \text{where} \\
& \quad \quad \quad 1 = [x | x<-r; x<=e] \\
& \quad \quad \quad h = [x | x<-r; x>e] \\
& \quad \quad \quad \text{lo} = \text{qsosrt} 1, lshrt \\
& \quad \quad \quad \text{hi} = \text{pqsort} h, hshrt \\
& \quad \quad \quad \text{lo} = \text{qsosrt} 1, \text{otherwise} \\
& \quad \quad \quad \text{hi} = \text{pqsort} h, \text{otherwise} \\
& \quad \quad \text{lshrt} = \#1 < \text{threshold} \\
& \quad \quad \text{hshrt} = \#h < \text{threshold}
\end{align*}
\]

\[
\begin{align*}
\text{qsosrt} & \mathbf{[]} = \mathbf{[]} \\
\text{qsosrt} (e : r) &= \text{lo++(e:hi)} \\
& \quad \quad \text{where} \\
& \quad \quad \quad (l,h) = \text{split e r} \\
& \quad \quad \quad \text{lo} = \text{qsosrt} l \\
& \quad \quad \quad \text{hi} = \text{qsosrt} h
\end{align*}
\]

Both versions of \text{pqsort} are head and tail strict in their arguments. Thus if the hi value, which is sparked, is undefined then so will be the overall result. Therefore the \text{par}s in both versions satisfy the \text{par} constraint.
The idea is to evaluate recursive pqsort applications in parallel providing both the list arguments are sufficiently long. Once sufficiently short, lists are sorted sequentially using a sequential version of Quicksort (sqsort). This has become quite a complex program and it is quite different from the usual short specification of Quicksort, shown previously.

It is not clear how they obtained their task grain size tests, which in some sense embody the task candidacy criteria. Their transformation rules assume the programmer already has these predicates available and that some initial parallelism in the program has, somehow, been specified. A further problem is that it is unclear how general the transformation rules are; they only specify them for an untyped sequence data type.

The goal of a parallel program is to run quicker than the fastest sequential program. Often to do this sequential tasks (those which create no tasks) must use a different algorithm from parallel tasks (those which create tasks). This is because, as shown in Section 8.2.3 with parallel prefix, parallel algorithms are not necessarily efficient sequential algorithms. The ideal situation is to run efficient sequential algorithms on each processor of a parallel machine so as to calculate different parts of the desired result in parallel.

With this in mind a group at Imperial College have demonstrated with a small example the importance of using different algorithms and data structures for sequential and parallel tasks. They accomplish this by transforming functions to specialise them for parallel or sequential evaluation. In [32] they describe a simple way of representing lists as balanced binary trees with cons-style lists at the leaves. The trees are operated on in parallel and the leaves are operated on by sequential tasks. This improves the locality of computations, the overall execution speed and the storage usage. It also controls the number and size of tasks.

6.4 The goals of experiments

Before discussing some methods for controlling parallelism and presenting some experimental results from using these methods, the desired goals of experiments are discussed.

The goals of controlling parallelism, for the machine under consideration, are to:

- reduce task residency
- decrease storage use
- increase the granularity of parallelism

Obviously some programs may not need parallelism to be controlled; for example a program's granularity of parallelism may be naturally suited to its target machine. However for other programs this will not be the case.

The target machine has been made deliberately abstract, in order to make results as general as possible, see Chapter 4. Thus the target machine does not contain any built in parallelism costs, such as communications costs. This means that controlling parallelism will result in a decrease in performance, since all parallelism controls effectively reduce parallelism and hence increase execution time. Of course on a real machine this would not be the case. Therefore the object
of controlling a program's parallelism is to achieve the points stated above, with only a small
decrease in performance and with only a small increase in the total amount of work performed.

In addition no fixed assumptions are made about the cost of parallelism overheads. For example,
it is not assumed that each program must produce tasks which perform at least n reductions.
Rather, it is simply assumed that for each example program it is necessary to improve its parallel
efficiency (parallelism granularity etc.). Although this is arbitrary it should be noted that the
data used for example programs is also arbitrary. Thus on a real machine some of the example
programs might not require parallelism control; however with different data they might do. The
goal is to investigate how parallelism can be effectively controlled.

6.5 Data parallelism

The preceding sections have surveyed the area of parallelism control and discussed the goals
of experiments. This section describes some methods and results for program control of data
parallelism.

Parallel evaluation across data structures may yield massive parallelism; this is often termed
data parallelism. Often such parallelism is fine grained; that is, the tasks produced are small.
While this is suitable for SIMD machines, such as the Connection Machine [46], this type of
fine grained data parallelism cannot be directly exploited by MIMD machines, because of the
overheads of small tasks on MIMD machines. Furthermore unrestricted data parallelism may
flood a machine with tasks, often resulting in too much storage use.

6.5.1 Techniques

Three techniques are shown in this section for program control of data parallelism:

- **data grouping**: This technique groups data elements together into chunks. Chunks are then
 processed in parallel rather than single elements resulting in larger tasks.

- **k-bounded loops**: These have a similar effect to data grouping techniques. K-bounded loops
 bound the number of tasks which operate upon a data structure. Each task operates on
 more than one element of data.

- **buffering**: Buffers may be used to control the number of concurrently active tasks. These help
to synchronise the production of values with their consumption. This is particularly useful
for pipelined parallelism.

Essentially all of these techniques allow greater control of the parallelism produced by parlist
and other similar parallelism abstractions.

Data grouping

Vree and Hartel have used program transformation to increase the parallelism granularity of
some functions. They describe their program transformation as data grouping since it groups
together data to yield larger tasks.

An alternative account of such transformations, using Squigol (see Chapter 5) is given below. The basic idea is to group data elements together and to operate upon these groups in parallel. To do this an operation is needed to group the data elements of a data structure. An operator to do this on lists is chk_k (chunkify); this splits a list into a list of sub-lists of length k.

$$\text{chk}_k[a_1,\ldots,a_n] = [[a_1,\ldots,a_k],[a_{k+1},\ldots,a_{2k}],\ldots]$$

Thus chk_k is an inverse of $\text{++}/$. The only property required of chk_k is the chunk law:

$$\text{++} / \cdot \text{chk}_k = \text{id}_{[a] \rightarrow [a]}$$

Using this, the data grouping versions of map and filter may be derived. Geraint Jones has used similar ideas in his impressive FFT derivation [64].

Map, data grouping

\[
\begin{align*}
\text{map} \cdot \text{chk} & = \text{map promotion} \\
\text{map} \cdot \text{map promotion} & = \text{making parallelism explicit}
\end{align*}
\]

\[
\begin{align*}
\text{map} & = \text{chk law} \\
\text{map promotion} & = \text{filter promotion} \\
\text{making parallelism explicit} & = \text{making parallelism explicit}
\end{align*}
\]

Filter, data grouping

\[
\begin{align*}
\text{filter} \cdot \text{chk} & = \text{filter promotion} \\
\text{filter promotion} & = \text{making parallelism explicit}
\end{align*}
\]

\[
\begin{align*}
\text{filter} & = \text{chk law} \\
\text{filter promotion} & = \text{making parallelism explicit}
\end{align*}
\]

The values for k will depend upon the costs of f and p. Other operations such as fold and scan may also be defined using chk_k. Also the chk_k function may be defined for other data structures: in particular for other data structures in the Boom hierarchy, such as sets and trees (see Section 5.2.1).

Some functions for implementing data grouping are shown below:

```haskell
> splitat 0 1 = ([],1)
> splitat n [] = ([],[])
> splitat n (x:xs) = (x:1,r)
> where
>     (1,r) = splitat (n-1) xs

> chunkify n [] = []
> chunkify n 1 = e:chunkify n r
> where
>     (e,r) = splitat n 1

> concat xs = [y| ys<-xs; y<-ys]
> chk n = concat . parlist (seqlist id) . chunkify n
```
The chunkify function implements chk_k; the chk function uses chunkify to evaluate groups of list elements in parallel. The proof obligation for chk is essentially the same as for parlist id: either the list which chk n is applied to must be defined in its structure and at least defined to WHNF in its elements, or chk n must be used in a head and tail strict context.

K-bounded loops

A similar effect to chk_k was achieved by Arvind’s group at MIT. Arvind’s group were concerned with the flooding of their dataflow machine with tasks. This manifest itself as a prohibitive amount of storage use. To tackle this problem they concentrated on a special programming construct to control iterative parallelism. Their language, Id Nouveau [84], supports parallel iteration. A naive implementation would unwind loops and evaluate loop bodies in parallel. Thus a loop with one thousand iterations would produce one thousand tasks. To prevent flooding their machine with tasks, bounded loops were used [5]. Their k-bounded loops limited the number of loop bodies which could proceed concurrently to k. Thus a k-bounded loop with one thousand iterations, where k equals nine, will only produce a maximum of nine tasks. Initially the first k iterations of a loop are evaluated concurrently. On completion a task evaluating the ith iteration evaluates the $(i+k)$th iteration. This also enables the task’s storage to be reused for the $(i+k)$th iteration. Excessive storage use is an important problem which the MIT group have identified. K-bounded loops effectively combine several iterations into one task and thus task sizes are increased too.

A drawback of k-bounded loops is that they only control iterative parallelism. Also k-bounded loops can cause deadlock. For example, if a dependency exists from the ith iteration to the $(i + k)$th of a k-bounded loop, deadlock will arise.

It seems ironic that a dataflow machine should need to control excessive storage use by enlarging task sizes; since this is exactly how a MIMD machine is able to make use of fine grained data parallelism.

K-bounded loops may be written in the functional language thus:

```haskell
> bounded k 1 = par (parmap f [0..k-1]) 1
> where
> f i = g (drop i 1)
> g [] = ()
> g (x:xs) = seq x (g (drop k xs))
```

The proof obligation for bounded is the same as for chk: either the list which bounded n is applied to must be defined in its structure and at least defined to WHNF in its elements, or bounded n must be used in a head and tail strict context.

A difference between chk and bounded is the order in which they evaluate operations on data structure elements. Also chk fixes task sizes whereas bounded fixes the number of tasks. Note that in experiments bounded was optimised by specialising it to a particular k and unfolding drop.
CHAPTER 6. PARALLELISM CONTROL

Buffering

A related issue is pipelined parallelism and buffering. In his thesis, [58], Hughes shows how buffered lists can be programmed. These behave like a buffer by ensuring that k elements from the last list element demanded, are evaluated or being evaluated. A more general version of buffered lists is shown below:

\[\text{pipe } k \; \text{f} \; 1 = \text{par} \; (\text{parlist} \; \text{f} \; (\text{take} \; k \; 1)) \; (\text{pf} \; 1 \; (\text{drop} \; k \; 1)) \]

\[\text{where} \]
\[\text{pf} \; 1 \; [] = 1 \]
\[\text{pf} \; (x:xs) \; (y:ys) = \text{par} \; (f \; y) \; (x:\text{pf} \; xs \; ys) \]

A sufficient proof obligation for pipe \(k \; f \; 1 \) is: \(f \) must always be total and in addition either the elements of \(1 \) must be defined as far as \(f \) will evaluate them, or the strictness context in which pipe \(k \; f \; 1 \) occurs must be at least that implied by \(f \) on list elements. This is the same as the proof obligation for parlist.

For example an application \(g \; 1 \) could be buffered thus: \(g \; (\text{pipe} \; k \; f \; 1) \). The value \(k \) is the size of the buffer and \(f \) is used to force each list elements evaluation. The first \(k \) elements of the list are evaluated in parallel. Any demand for the \(i \)th element of the list causes its value to be returned and a task to be created to evaluate the \((i + k)\)th element of the list. Buffered lists control the number of active tasks and storage use. Storage use is controlled not only by regulating the number of tasks but potentially by controlling the size of the intermediate list. There is some overhead with pipe since it create a new list spine.

This differs from Arvind's \(k \)-bounded loops since the evaluation of the list here proceeds in a demand driven way with some speculative evaluation of the next \(k \) list elements. Arvind's \(k \)-bounded loops are eagerly evaluated, albeit with a bounded number of tasks. Also, new tasks are created by pipe rather than re-using old tasks as \(k \)-bounded loops do.

The buffer size may be calculated. If the consumption rate is \(c \) and the production rate is \(p \), and there are no dependencies between produced elements, then the buffer size should be \(p/c \). Note that a buffer (for parallel evaluation) is only required if the consumer is faster than the producer. For regular problems the \(p/c \) ratio may be easily estimated; notice that only a ratio is required, and no absolute measurements are needed. A ratio-sized buffer ensures there is always an element available for consumption, after an initial lag of \(p \) time. As the list length increases the average parallelism tends to the buffer's size.

Pipelining cannot usefully be combined with bounded but it may be combined with chunkify thus:

\[\text{pipe}_\text{chk} \; k \; n = \text{concat} \; \text{. pipe} \; k \; (\text{seqlist} \; \text{id}) \; \text{. chunkify} \; n \]

This can be used to increase the granularity of parallelism, at the expense of buffering operating on larger elements. Thus task size is increased, but buffering becomes coarser.
6.5.2 Claims

The results which follow show that it is essential to transform data parallel algorithms for use on MIMD machines. Although the execution overheads of such transformation can be high, these overheads are lessened when run on a real machine where the number of processors is much smaller than the average parallelism.

The evaluate-and-die task model does not increase the granularity of parallelism for the data parallel algorithm tested. This is because the parallelism is monolithic: all the tasks have the same size and the tasks are not dependent upon each other. Thus tasks cannot be coalesced. Since evaluate-and-die style task coalescing does not work at all for this algorithm, no experiments were performed to investigate this form of parallelism control (experiments with a limited number of processors). To achieve evaluate-and-die style task coalescing the algorithm must be changed. For example, if the data structure was a tree, rather than a list, and algorithm was expressed in a D&C style, then task coalescing might work. The D&C section describes methods for controlling the parallelism resulting from these algorithms.

Data grouping and k-bounding both control task sizes and the number of tasks. Data grouping has a larger overhead than k-bounding but it is more useful. This is because chk forms the \(i \)th chunk (sub-list) before the \((i + 1)\)th task may start. Also in the experiments bounded was optimised to a greater degree than chk. Data grouping is more useful than k-bounding because task size is specified rather than the number of tasks. The chk function may be combined with pipe, unlike bounded. In addition data grouping may have better data locality than k-bounding; however this was not tested.

The chk function is less space efficient than bounded because it reconstructs the input list and its order of element evaluation causes longer retention of the input list. This arises because the first \(k \) elements of a list are evaluated sequentially by \(\text{chk} k \); for large lists the equivalent bounded version will evaluate the first \(k \) elements in parallel.

The pipe function controls the number of tasks and the storage used; it does not however control the size of tasks. The prime reason for needing pipe is to control storage use arising from pipelined parallelism. A straightforward maximum parallelism implementation has a similar execution time as a pipe implementation but it has considerably higher transient storage use. The buffer size calculations, described in Section 6.5.1, are reasonably accurate and useful. However, for complex or irregular pipelines, buffer sizes are more easily found by experimentation.

6.5.3 Data grouping and k-bounding results

To compare data grouping and k-bounding, experiments were performed which mapped a vector operation across a list of 250 vectors (data). Vectors were represented as balanced binary trees.

\[
\text{vector} ::= \text{Scalar num} \mid \text{Bin vector vector}
\]

\[
\text{testvec} = \text{Bin}
\]

\[
(\text{Bin (Bin (Scalar 1) (Scalar 2)) (Bin (Scalar 3) (Scalar 4)))}
\]

\[
(\text{Bin (Bin (Scalar 5) (Scalar 6)) (Bin (Scalar 7) (Scalar 8)))}
\]
CHAPTER 6. PARALLELISM CONTROL

The size of testvec determines the granularity of parallelism which is produced. The dotprod function assumes that vectors have the same shape.

> dotprod (Scalar n) (Scalar m) = n * m
> dotprod (Bin a b) (Bin c d) = (dotprod a c) + (dotprod b d)

> parmap f $g = \text{parlist } f . \text{map } g$

> seq_test = \text{map (dotprod testvec) data}
> par_test = \text{parmap id (dotprod testvec) data}
> chk_test k = \text{chk } k (\text{map (dotprod testvec) data})
> bnd_test n = \text{bounded } n (\text{map (dotprod testvec) data})

Experiments were performed with a sequential map, a simple parallel map, data grouping and k-bounding. Each parallel function occurs in a hyper-strict context (the output driver), hence all proof obligations are met. The results are summarised in the table below:

<table>
<thead>
<tr>
<th>Program</th>
<th>seq</th>
<th>par</th>
<th>chk</th>
<th>chk</th>
<th>chk</th>
<th>bnd</th>
<th>bnd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chunk length / task bound</td>
<td>36023</td>
<td>2894</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Number of machine cycles</td>
<td>4707</td>
<td>4892</td>
<td>5958</td>
<td>7080</td>
<td>4254</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average parallelism</td>
<td>13.0</td>
<td>8.8</td>
<td>7.1</td>
<td>5.7</td>
<td>10.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work done</td>
<td>37535</td>
<td>43775</td>
<td>42903</td>
<td>42481</td>
<td>40214</td>
<td>43986</td>
<td></td>
</tr>
<tr>
<td>Max. number of active tasks</td>
<td>15</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>6</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Total number of tasks</td>
<td>251</td>
<td>51</td>
<td>26</td>
<td>14</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Average sparked task length</td>
<td>147</td>
<td>818</td>
<td>1576</td>
<td>2902</td>
<td>5441</td>
<td>3629</td>
<td></td>
</tr>
</tbody>
</table>

The results shown in the table above, and subsequent graphs, are now discussed. Many comments are made about ‘short’ tasks; these are taken to be the shortest tasks produced by the simple parallel algorithm. Note that no task distribution graphs are shown, since each program produced tasks of approximately one length.

Notice how for both chk and bnd the overhead, extra amount of work which is performed, decreases as the size of tasks increase.

The store profile for the sequential map is shown in Figure 6.1. It shows how store linearly decreases as elements of data are consumed and the result list is output. Once used, the elements of these lists become garbage, hence causing the store to linearly decrease.

Figure 6.2 shows the task and store profiles for the simple parallel test. The simple parallel version (Figure 6.2) uses parlist to force the parallel evaluation of map over data. Since the result of dotprod is a number, evaluation to \text{WIINF} is sufficient.

The storage usage is greater than in the sequential case but follows the same pattern. The parallelism profile shows how equilibrium is reached with 14 tasks. At this point for every new task created an old task dies. This also demonstrates the sequentiality of cons-lists; one might expect there to quickly be \(n \) tasks active, where \(n \) is the length of the list. Notice also that all tasks are very short, see the previous table.
CHAPTER 6. PARALLELISM CONTROL

Figure 6.1: Store profile: sequential map

Figure 6.2: Task and store profiles: parallel map
The next set of graphs, Figures 6.3 to 6.8 compare the task and store profiles of using chk with the simple parallel map of Figure 6.2 (the latter being shown dotted on each plot for comparison). Three values of k were tried: 5, 10 and 20. Since the list contained 250 elements these respectively produced 50, 25 and 13 tasks in total. The graphs and the previous table show, compared to the simple parallel version:

- increased storage usage
- less maximum parallelism
- longer slopes leading to and from the parallelism equilibrium plateau
- greater work performed
- all tasks with lengths greater than 800 cycles

As expected the average task length is proportional to chunk size. The parallelism profiles consist of three parts: an up slope, an equilibrium point and a down slope. Increasing chunk lengths increases the starting latency of tasks and hence lengthens the up slope. Parallelism
CHAPTER 6. PARALLELISM CONTROL

Figure 6.5: Parallelism profiles: chk 20 (——) and parallel map (····)

Figure 6.6: Store profiles: chk 5 (——) and parallel map (····)

Figure 6.7: Store profiles: chk 10 (——) and parallel map (····)
equilibrium is reached when the number of tasks being created equals the number of tasks dying. The equilibrium point increases with chunk size since as task lengths increase so does the number of concurrently active tasks. This phenomena occurs up to the point when the maximum parallelism equals the total number of tasks sparked. After this the average parallelism and maximum number of tasks must decrease. The down slope represents the staggered finishing of tasks and the remaining output of the resulting list.

The storage profiles for the chk tests show that it uses more store than the simple parallel version. This is because the chk version creates new lists to group elements in the input list. The storage usage follows the parallelism profiles up and down slopes, but decreases at the parallelism plateau. The plateau is analogous to the sequential version of the program: except the sequential version has only one task. Hence throughout this plateau storage usage decreases as it does in the sequential case. The storage follows the up and down slope since each task corresponds to a chunk, a sub-list of the original list. As tasks are created so chunks are allocated and hence more storage is used. When tasks die, chunks are output and storage is reclaimed.

Notice also how the overheads of chunks are such that chunk sizes of 5 and 10 have about the same execution times. Overall the chk versions do approximately 15% more work than the simple parallel version and they have a lower average parallelism. However on a real machine it is expected for some programs, similar to this one, a chk version would be quicker than a naive parallel version. However, this is very dependent on the machine, the program being run and the data size. The important point is that for a particular machine and data parallel program, this is a technique which may be used to improve parallel efficiency, if need be.

Two bounded examples are shown: one using 5 tasks and one using 10 tasks. Their graphs, Figures 6.9 to 6.12, are similar to the chk graphs albeit less smooth. The major difference is that the, parallelism, up and down slopes are much steeper. This is because, firstly bounded was heavily optimised (for example drop 10 was unfolded). Secondly the pattern of boundeds evaluation causes list elements to be evaluated in order from the front of the list rather than in chunks. The bounding versions performed approximately the same amount of work as the data grouping programs. That is they performed 10-15% more work than the simple parallel version. As with the chunking version, on a real machine with parallelism overheads, the bounding version of the program may be far more efficient than the naive parallel version. Like the chk versions the bounding versions all produced tasks with lengths greater than 800 machine cycles. The
CHAPTER 6. PARALLELISM CONTROL

Figure 6.9: Parallelism profiles: bnd 5 (---) and parallel map (· · · · · · · · · · · · · · · ·)

Figure 6.10: Parallelism profiles: bnd 10 (---) and parallel map (· · · · · · · · · · · · · · · ·)

k-bounding versions of the program used approximately the same amount of store as the simple parallel version, unlike the data grouping version. Overall the bounding version of the program has a lower overhead than the the chunking version.
Figure 6.11: Store profiles: bnd 5 (——) and parallel map (······)

Figure 6.12: Store profiles: bnd 10 (——) and parallel map (······)
6.5.4 Buffering results

An abstract program with an abundance of pipelined parallelism was used to test the pipe function:

```haskell
> producer = map (delay 1000) [1..500]
> consumer = map f
  where f x = seq x (delay 100 x)
> bufsize = 10
> test = consumer (pipe bufsize id producer)
```

The `pipe` function was used in a hyper-strict context, since `consumer` is essentially the identity function, thus the proof obligation for `pipe` was fulfilled. The application `delay n e` causes a delay of approximately `n` reductions before `e` is returned. The function `delay` was found useful for experimenting with abstract parallel programs. The optimal buffer size is 10 according to the buffer size calculations (the ratio of the producer to consumer is 10:1). The example was tried with an unbounded buffer, that is `parmap`, and with buffers of size 10 and 20. The results were as follows:

<table>
<thead>
<tr>
<th>Buffer size</th>
<th>10</th>
<th>20</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of machine cycles</td>
<td>69752</td>
<td>69482</td>
<td>66525</td>
</tr>
<tr>
<td>Average parallelism</td>
<td>8.2</td>
<td>8.2</td>
<td>8.7</td>
</tr>
<tr>
<td>Work done</td>
<td>571269</td>
<td>571142</td>
<td>578768</td>
</tr>
<tr>
<td>Max. number of active tasks</td>
<td>12</td>
<td>22</td>
<td>48</td>
</tr>
<tr>
<td>Total number of tasks</td>
<td>502</td>
<td>502</td>
<td>501</td>
</tr>
<tr>
<td>Average sparked task length</td>
<td>1000</td>
<td>1001</td>
<td>991</td>
</tr>
</tbody>
</table>

The parallelism and storage use graphs are shown in Figures 6.13 to 6.17. These reveal that the buffered map results in a striking improvement in task and storage residency without increasing execution time; this demonstrates how important buffering is. The table and graphs show that the optimal buffer size is just less than 10. That is a buffer size of just less than 10 will have approximately the same performance as the unbounded parallel map, and yet minimise task and storage residency.

The pipe and producer/consumer overheads account for the difference in calculated and actual values for the optimal buffer size. All the examples have about the same execution time. However the transient storage usage of the unbuffered version is much higher than for the buffered versions. To a lesser extent the storage residency of 10 element buffer version was better than the 20 element buffer version. Thus having a buffer of size 10 (or slightly less) is optimal with respect to storage use and execution time. Notice that because `parmap` was defined using `map` and `parlist` it has resulted in more work being performed by the simple parallel version than the buffered programs. Quirks like this also arose from the different transformations which the LML compiler used for different programs. (The LML compiler was used to generate FLIC for the simulator, see Chapter 4.)
Figure 6.13: Task and store profiles: map, unbounded buffer

Figure 6.14: Task profiles: buffer 10 (—) and unbounded (⋯⋯)

Figure 6.15: Task profiles: buffer 20 (—) and unbounded (⋯⋯)
CHAPTER 6. PARALLELISM CONTROL

Figure 6.16: Store profiles: buffer 10 (——) and unbounded (· · · ·)

Figure 6.17: Store profiles: buffer 20 (——) and unbounded (· · · ·)
6.6 Divide and conquer algorithms

Divide and conquer (D&C) algorithms are interesting because the size of tasks they produce varies. Also D&C algorithms are exactly the kind of algorithms suited to the machine being considered. This is because parallel D&C algorithms are difficult to map statically onto a machine and therefore dynamic placement must be employed. In addition such algorithms are easy to express in functional languages. D&C algorithms have been generally investigated in [83, 105]. In the context of functional programming the ZAPP project and later Cole, have advocated the use of D&C combinators. Here too, combinators are used to express D&C algorithms. The combinators used have the same meaning but they differ operationally. Different combinators are used to attempt to control task sizes, and also to control task numbers and storage usage. The combinators are compared with a run-time strategy for increasing the granularity of parallelism: the evaluate-and-die (E&D) task model as used by GRIP [91] (note that unlike GRIP no sparks are discarded).

6.6.1 Programming techniques

This section describes six different D&C combinators:

seq_dc a simple sequential one.
dc1 a simple parallel one.
dc2 a depth bounding one; this limits the depth to which sub-problems are split-up and solved in parallel.
dc3 a delayed sparking one; this delays parallel evaluation to reduce the probability of sparking small tasks.
dc4 an exact control one; this uses a problem-specific predicate to determine whether a problem is worth solving in a parallel.
dc5 a specialist exact control one; this is the same as dc4, except that it uses a specialised sequential algorithm to solve the problem when it is not worth solving it in parallel.

The following sections describe these combinators in greater detail.

Simple sequential and parallel D&C combinators

A sequential D&C combinator is shown below:

\[
\begin{align*}
> \text{seq_dc div comb isleaf solve} = \\
> & f \\
> & \text{where} \\
> & \quad f x = \text{solve} x, \quad \text{isleaf} x \\
> & \quad = \text{comb} (f \ p1) (f \ p2), \quad \text{otherwise} \\
> & \quad \quad \text{where} \\
> & \quad \quad (p1,p2) = \text{div} x
\end{align*}
\]
The div function is used to divide a problem up into sub-problems (always two in this case). The comb function combines the sub-problems’ results to form a new result. The isleaf x predicate indicates whether x is a leaf problem and therefore whether it can be solved directly by using solve.

For example a divide and conquer fibonacci function:

\begin{verbatim}
> dfib = seq_dc div (+) (<2) (const 1)
> where
> div x = (x-1,x-2)
\end{verbatim}

A parallel D&C combinator may evaluate sub-problems in parallel:

\begin{verbatim}
> dc1 div comb isleaf solve =
> f
> where
> f x = solve x, isleaf x
> = par sprob1 (seq sprob2 (comb sprob1 sprob2)), otherwise
> where
> (p1,p2) = div x
> sprob1 = f p1
> sprob2 = f p2
\end{verbatim}

In order for the par in dc1 to satisfy the proof obligation it is sufficient for comb to be strict in its second argument.

By using seq no assumptions are made about the order in which comb evaluates its arguments. Notice also that only one task is generated, the parent continues with the evaluation of one sub-problem. However, sometimes it may be desirable to replace seq by par to obtain pipelined parallelism. This depends on whether any useful evaluation of comb sprob1 sprob2 can occur before sprob1 and sprob2 have been evaluated. For the examples considered here, seq is sufficient.

It is very difficult to make completely general D&C combinators. Several generalisations of the one shown are:

- have lists of sub-problems rather than just pairs.
- have a function for forcing the evaluation of sub-problems’ results further than WHNF.
- evaluate the sub-tasks in parallel with the comb application – for pipelined parallelism.

The more general the D&C combinator the less efficient it is. However a sophisticated compiler may be able to do some partial evaluation to transform a program to a more efficient one. Even if this cannot be done, and manual transformation is necessary, the combinators are still useful for designing programs.
Depth bounding

It is desirable to limit the amount of parallelism produced by a D&C combinator. D&C algorithms form a tree of tasks: sub-problems to be solved in parallel. A simple way to limit the parallelism of a D&C combinator is to bound the depth of the task tree. That is to only spark tasks less than a certain depth and thereafter to solve sub-problems sequentially, such a combinator is shown below:

```haskell
> dc2 bnd div comb isleaf solve =
>   f bnd
>   where
>     f d x = solve x,
>           isleaf x
>       = seq_dc div comb isleaf solve x, d=0
>       = par sprob1 (seq sprob2 (comb sprob1 sprob2)), otherwise
>       where
>         (p1,p2) = div x
>         sprob1 = f (d-1) p1
>         sprob2 = f (d-1) p2
```

As for dc1, in order for the par in dc2 to satisfy the proof obligation it is sufficient for comb to be strict in its second argument.

The variable d is used to bound the depth of the task tree. The isleaf test may be omitted if it can be guaranteed that bnd is always less than the height of the tree.

Delayed sparking

A more complex method for controlling task sizes, is to delay the sparking of tasks; this is based on an idea by John Hughes and David Lester. The idea is analogous to the Hewit and Liebermann style garbage collector. It is this: the longer a task has run the longer it is likely to run. If a task is likely to run a long time, it should spark child tasks; if not, it should not spark any tasks. I call this delayed sparking; rather than immediately sparking a task, a parent task delays its sparking — in case the parent task terminates. The delay depends on the particular problem. This method is blind in the sense that it does not examine the problem being solved, and it is, therefore, suited to implementation in a machine’s run-time system.

The divide and conquer combinator maybe expressed to do delayed sparking thus:

```haskell
> dc3 k div comb isleaf solve =
>   f []
>   where
>     f l x = solve x, leaf x
>       = seq this (comb this delayed),
>         where
>         (s1, s2) = div x
>         delayed = f [] s2
>         this = f (1++[delayed]) s1
```
CHAPTER 6. PARALLELISM CONTROL

As for dc1, in order for the par in dc3 to satisfy the proof obligation it is sufficient for comb to be strict in its second argument.

The first argument to f is a list of delayed sparks (a FIFO queue). The position of a delayed spark in a task's queue is proportional to the amount of computation that the task has done since the delayed spark. Thus once a delayed spark reaches the head of the queue, the sparking task has done a sufficient amount of computation to warrant really sparking that task. On encountering a leaf, the delayed sparks in a tasks queue will not be sparked but will be evaluated sequentially (each delayed spark may produce tasks though). Notice that once a task terminates the delayed sparks are visited sequentially in LIFO order. This is done purely for simplicity. It could be changed to FIFO, which would probably give better performance, by altering the base case equations. In the following examples an optimised version of dc3 was used because queues (which dc3 needs) are difficult to implement efficiently in functional languages. The optimised version had a queue of length one.

As previously, for the par in dc3ql to satisfy the proof obligation it is sufficient for comb to be strict in its second argument.

This version, with a queue of length one, may be further optimised but it is designed to show how similar optimisations can be used for other lengths of small queues. However, generally a queue of length one was found to be sufficient for the grain size increases sought.
A simple analysis of simple delayed sparking

This section describes a simple analysis of delayed sparking. It is restricted to the following assumptions:

- The D&C algorithm, with no parallelism control, produces a binary balanced tree of tasks.
- The amount of work required to divide problems and combine their solutions is independent of problems' size (this is necessary for a good speed-up anyway, see Section 8.2.2).
- The delay used is equal to one spark; that is sparks are delayed by one level in the divide and conquer tree, as with dc3q1.

It will be proved that under these assumptions, using delayed sparking to control a D&C algorithm, both the average task length and the execution time will be doubled (with an unbounded number of processors).

The evaluation of a D&C algorithm will be represented as a tree. A pictorial representation of its evaluation with an unbounded number of processors is shown in Figure 6.18. Its evaluation has the form of a tree and its reflection: the problems' division and solutions' combination. However since one tree is a reflection of the other, one tree will suffice to represent its evaluation. Evaluation trees (trees representing a D&C algorithm's evaluation) will be constructed from the following data type:

\[
\text{eval}_\text{tree} = \varepsilon + \text{work} \text{eval}_\text{tree} + \text{eval}_\text{tree} \land \text{eval}_\text{tree}
\]
The ε value represents a directly solvable (leaf) problem, which, for this purpose, takes no time to solve. The work value represents a unit of work which is required to divide a problem and combine its solutions. The infix \wedge value represents a spark. The left argument represents the continuation of the parent task and the right argument represents the child task. Notice that only work values have an evaluation cost associated with them. For example, an evaluation tree $\text{work} (\varepsilon \wedge \varepsilon)$, represents the following evaluation: a unit of work is performed representing the division of a problem and its solution’s combination, a child task is sparked for one of the sub-problems, each task is directly solvable and hence no work is required to solve them (ε). The units of work represent a fixed cost for dividing problems into sub-problems and for combining their results.

A balanced evaluation tree will represent the evaluation of the D&C algorithm with no parallelism control and an unbounded number of processors. Delayed sparking will be expressed as a transformation on the balanced tree. A balanced evaluation tree of height h may be expressed thus:

$$
tt 0 = \varepsilon \\
tt h = \text{work} ((tt (h-1) \wedge tt (h-1)))
$$

A tree such as $tt 10$ represents the evaluation of a D&C algorithm with no parallelism control. Delayed sparking has the effect of delaying sparking by one spark, provided a directly solvable sub-problem (ε) is not reached. Thus delayed sparking may be described as the following transformation on balanced evaluation trees:

$$
ds \varepsilon = \varepsilon \\
ds (\text{work} x) = \text{work} (ds x) \\
ds (\varepsilon \wedge r) = ds r \\
ds ((\text{work} l) \wedge r) = \text{work} (ds l \wedge ds r)
$$

This is not a complete transformation of all forms of evaluation tree, but it handles those generated by tt. The last equation delays sparking by one unit of work, which for tt is the equivalent of one spark. The second to last equation shows what happens when a leaf problem is encountered and hence delayed sparks are not sparked. The ε represents the solution of a leaf sub-problem, these are not measured, hence the evaluation in sequence of ε and $ds r$ may be represented by $ds r$.

The maximum number of works performed in sequence represents the parallel execution time with an unbounded number of processors. For the no control case a tree of height h takes time h (h works). The delayed sparking case takes time $2 \times h - 1$. Proof is by induction on the balanced (no control) tree height:
case height = 0, balanced tree = ε:
delayed sparking tree = ε (using the delayed sparking transformation rules)
so both trees take time 0 (note, all number are naturals).

case height = 1, balanced tree = work ($\varepsilon \land \varepsilon$):
delayed sparking tree = work ε (using the delayed sparking transformation rules)
therefore, both trees take time 1.

case height = h ($h > 1$), balanced tree = work ((work l) \land work r):
delayed sparking tree = work (work (ds l \land ds r))
execution time $= 2 +$ maximum execution time of ds l and ds r
l and r are balanced trees and have heights $h - 2$ and $h - 1$ respectively.
using the induction hypothesis the execution time is:
$2 + \max (2 \times (h - 2) - 1) (2 \times (h - 1) - 1) = 2 \times h - 1$

The average task length is equal to the total amount of work done divided by the number of tasks. The no control and delayed sparking versions, both perform the same amount of work. For a tree of height h the amount of work (total number of works) is: $2^h - 1$. The no control evaluation tree generates 2^h tasks, for a tree of height h. The delayed sparking case generates 2^{h-1} tasks, for $h > 0$ and 1 task for $h = 0$. Proof by induction on the no control tree height, where the height is measured in terms of \land s:

\[
\text{case height} = 0, \text{balanced tree} = \varepsilon: \\
\text{delayed sparking tree} = \varepsilon \text{ (using the delayed sparking transformation rules)} \\
\text{delayed sparking consists of 1 task}
\]

\[
\text{case height} = 1, \text{balanced tree} = \text{work} (\varepsilon \land \varepsilon): \\
\text{delayed sparking tree} = \text{work} \varepsilon \text{ (using the delayed sparking transformation rules)} \\
\text{delayed sparking consists of 1 task (}2^{1-1}\text{)}
\]

\[
\text{case height} = h (h > 1), \text{balanced tree} = \text{work} ((\text{work }l) \land \text{work }r): \\
\text{delayed sparking tree} = \text{work} (\text{work} (\text{ds }l \land \text{ds }r)) \\
in \text{terms of } \land \text{s, } l \text{ and } r \text{ have the same height } (h - 1) \\
\text{number of tasks} = \text{number of tasks in } \text{ds }l + \text{number of tasks in } \text{ds }r \\
\text{using the induction hypothesis} = 2^{h-2} + 2^{h-2} = 2^{h-1}
\]

With formulae for the total amount of work performed and the number of task which each version generates, the average task lengths can be calculated:

\[
\text{no control average task length} = \frac{2^h - 1}{2^h - 1} = 1
\]

\[
\text{delayed sparking average task length} = \frac{2^h - 1}{2^{h-1} - 1} \approx 2
\]
Thus under the assumptions given control of parallelism by delayed sparking doubles the average
task length and doubles the execution time with an unbounded number of processors. Providing
the average parallelism is much greater than the number of processors the effect on execution
time will be negligible. By inspection it can be seen that the shortest length tasks which are
generated by the delayed sparking technique, are equal to the shortest length tasks generated
under no control (0), plus the delayed sparking delay (one work unit). Thus the shortest length
tasks which are generated by the delayed sparking technique have lengths of one work unit.

Exact control

A more direct method of controlling task sizes is to examine the ‘size’ of the problem to be solved.
Depending on the size of problem to be solved it may be solved in parallel or sequentially. A
simple way to implement this is to change the leaf predicate and the solve functions for the
simple D&C combinator. For example:

\[
\text{dcl div comb issmall (seq_dc div comb isleaf solve)}
\]

The proof obligation for dc4 is the same as for dc1: it is sufficient for comb to be strict in its
second argument.

This will only work providing \(\forall p \in \text{problem-domain}: \text{isleaf } p \Rightarrow \text{issmall } p. \)

However as has been previously mentioned, sequential tasks often should use different algorithms
to parallel tasks; this is expounded in Chapter 8. Also, close inspection of dc4 reveals that task
sizes must be tested before sparking in order to decide whether to spark or not. For example if
two sub-problems \(a \) and \(b \) are produced from a problem division, \(a \) may be suitable for parallel
evaluation, but \(b \) may not. Together these problems should be executed sequentially but \(a \)
should be solved using the parallel D&C function and \(b \) should use a sequential D&C function.
This may be implemented thus:

\[
\text{f}
\]

\[
\text{where}
\]

\[
\text{fx} = \text{comb sprob1 sprob2}, \quad \text{p1small \lor p2small}
\]

\[
= \text{par sprob1 (seq sprob2 (comb sprob1 sprob2))}, \quad \text{otherwise}
\]

\[
\text{where}
\]

\[
(p1, p2) = \text{div x}
\]

\[
\text{sprob1} = \text{seqalg } p1, \text{ p1small}
\]

\[
= f p1
\]

\[
\text{sprob2} = \text{seqalg } p2, \text{ p2small}
\]

\[
= f p2
\]

\[
\text{p1small} = \text{small } p1
\]

\[
\text{p2small} = \text{small } p2
\]

In order for the \text{par} in dc5 to satisfy the proof obligation, it is sufficient for comb to be strict
in its second argument. An improved dc4, for use when the same algorithm should be used for
sequential and parallel solution of problems, may now be defined thus:
The proof obligation is the same as for dc5. The bounding D&C combinator may also be extended so as to use a different algorithm to solve sub-problems when running sequentially.

It is interesting to compare a dc5 combinator version of Quicksort with Vree and Hartel's transformed Quicksort. Unfortunately, Quicksort cannot be expressed using these combinators since it cannot be defined as a homomorphism on lists. This is because the combination of two sub-problems' results is dependent upon the splitting element used to produce the results. To enable Quicksort to be expressed, and other non-homomorphism algorithms like it, a more general divide and conquer combinator is required. Specifically, the combine function must be produced by the divide function. A more general version of dc5 to do this is shown below:

\[
\begin{align*}
 & \text{dc5 issmall seqalg div } = \\
 & \quad f \\
 & \quad \text{where} \\
 & \quad \quad f x = \text{comb sprob1 sprob2}, \quad \text{pismall } \backslash\ p2small \\
 & \quad \quad = \text{par sprob1 (seq sprob2 (comb sprob1 sprob2))}, \quad \text{otherwise} \\
 & \quad \quad \text{where} \\
 & \quad \quad \quad (\text{comb}, p1, p2) = \text{div } x \\
 & \quad \quad \quad \text{sprob1} = \text{seqalg } p1, \quad \text{pismall} \\
 & \quad \quad \quad = f \ p1, \quad \text{otherwise} \\
 & \quad \quad \quad \text{sprob2} = \text{seqalg } p2, \quad \text{p2small} \\
 & \quad \quad \quad = f \ p2, \quad \text{otherwise} \\
 & \quad \quad \quad \text{pismall} = \text{small } p1 \\
 & \quad \quad \quad \text{p2small} = \text{small } p2
\end{align*}
\]

The proof obligation is similar to before: it is sufficient for the comb function produced by div to be strict in its second argument.

Quicksort may then be expressed thus:

\[
\begin{align*}
 & \text{parqsort } 1 = \text{dc5 isshort insertionsort div} \\
 & \text{isshort } 1 = \#1 < 6 \\
 & \text{div } (e; r) = (\text{comb}, [x | x\prec r; x\preceq e], [x | x\prec r; x\succ r]) \\
 & \quad \text{where} \\
 & \quad \quad \text{comb } l0 \ hi = l0++(e; hi)
\end{align*}
\]

Providing the whole of the result is required, comb will be strict in its second argument and hence parqsort will fulfill the proof obligation. (In fact a weaker proof obligation can be formulated for these D&C combinators which reveals that in any strict context parqsort is a valid program.)

The function insertionsort is the standard sequential insertion sort, which is efficient for short lists.
This is comparable with the result of Vree and Ilartel's transformation. The same effect has been achieved but without transformation. However with dc5, the programmer need only know that its meaning is the same as the operationally simpler one (dc1), and the nature of the predicate for controlling tasks sizes. Vree's and Ilartel's transformation results in a much more complex program for the programmer but it has the advantage of being more efficient. The more general the D&C combinators are, the less efficient they become. A solution to this inefficiency is to do some partial evaluation, hopefully automatically, to produce a program equivalent to the transformed version. Even if the partial evaluation cannot be done automatically, the manual transformation of a D&C combinator program to an explicitly recursive one is easier than the transformations Vree advocates.

One way to make exact control D&C combinators more efficient is to combine the issmall and div functions. The resulting function may produce pairs, consisting of a sub-problem and a truth value indicating whether it is small or not. This can improve efficiency because the splitting of problems and determination of sub-problems' sizes are usually inextricably linked. However this has not been done here, because it would mean using a different div function for the exact control combinators.

6.6.2 Claims

It is not possible to say that one method for controlling parallelism is definitively better than another. To adequately control parallelism for different algorithms a variety of techniques are necessary: both run time and programmer controlled.

Parallelism control is particularly important for D&C algorithms because they typically produce far more tasks than the machine has processors and they produce many small tasks. Task residency is best controlled by the run-time system of a machine. To control the sizes of tasks a combination of the evaluate-and-die (E&D) task model and programmer control is most effective. For some algorithms, such as parallel prefix, good speed-up over a sequential implementation may only be achieved by using a different, sequential, algorithm for sequential tasks, see Section 8.2.3. For these algorithms a D&C combinator is required which enables a different algorithm to be used for solving problems sequentially.

The most effective programmed method for controlling task sizes was found to be the exact method. This works well for any shape of task tree. The drawback of this method is that a predicate must be formulated indicating when a sub-problem is so small that it should be executed sequentially. In some cases this predicate may be quite expensive to compute and it may be difficult for the programmer to formulate.

For balanced task trees the simple depth bounding control works well and it has negligible cost associated with it. However it is not suited to badly unbalanced task trees. More importantly the notion of knowing when to bound the task tree not only requires information about the cost of solving sub-problems but it also requires the size of the original problem to be known or calculated. Thus this method is most suited to problems of fixed size which have balanced task trees, such as the matrix problem described. This precludes, for example, the use of sparse matrices represented using quad-trees.

The delayed sparking mechanism is better than the simple depth bounding one, for badly unbalanced task trees. Like the depth bounding case this too has some pathological bad cases. Unlike
the other programmed methods this method relies on lazy evaluation, which it needs in order to represent the queue of delayed sparks; that is, a queue of unevaluated tasks. In many ways delayed sparking is far more suited to being incorporated into the run-time system of a machine rather than being a programmer controlled technique. This is because the technique requires no problem specific information, unlike the other techniques. All that is required is to delay the sparking of a task. If the parent task of a delayed spark completes evaluation before its task is really sparked; then the parent may evaluate the task and no spark is necessary. Nevertheless this technique is available to the programmer if it is not implemented in a machines run-time system.

An important observation is that a GRIP-like machine which discards tasks (that is it does not keep all sparks in some form of task pool) must regularly garbage collect its task queue of useless WIINF tasks. The results show that vast numbers of WIINF tasks are created. A machine which discards tasks must make sure that tasks in its task pool are not in WIINF. Otherwise good tasks may be discarded when the majority of task in a task pool are in WHNF. It is *not* sufficient to just check tasks when they are put in a task queue and when they are evaluated to see whether they are in WIINF; since while in a task pool a task’s expression may be evaluated by another task.

The E&D task model produces a dramatic increase in the average sizes of tasks. Although a notification task model was not implemented, the E&D model may be compared with it. The performance on the abstract machine of the two models will be approximately equal. This is because the only difference between the two models on an abstract machine will be the order in which tasks are scheduled, and Eager’s result (Section 2.6) means that both systems should perform well. The sizes of task which are produced by the notification model, when executed with a limited number of processors, will be the same as the task sizes produced by the E&D model on a machine with an unbounded number of processors. This is because with an unbounded number of processors the E&D model sparks all tasks and coalesces no tasks: the exact behaviour of the notification model on a machine with any number of processors.

Nevertheless the E&D model does still create a significant number of small tasks. This can arise when a D&C algorithms task tree cannot be equally divided-up between processors and the processors end up sharing the remaining work. Thus by itself, run-time system control of parallelism is not sufficient.

A problem with programmed task size control is that for efficient task size control only enough tasks to satisfy the number of available processors should be generated. The calculation of such cut-off points is very hard. This is different from just ensuring that tasks which are created are ‘worth-while’. However if the programmed control method and E&D model are combined, then tasks sizes and task numbers may be very efficiently controlled. The programmed control imposes a lower limit on the size of tasks which are generated. That is, only tasks are generated which will be beneficial to evaluate in parallel. The E&D model automatically coalesces tasks once the machine is busy, thus effectively increasing the sizes of tasks.

6.6.3 Adaptive quadrature results

Many experiments were performed; a few interesting ones are described here. Two programs form the basis of the experiments shown: a numerical integration, using an adaptive quadrature algorithm, and a matrix multiplication, using quad-trees to represent matrices. The analysis
of the performance results had to take into account output times. The result of the numerical integration is a single number hence its output time is negligible. The objective of task size control was to reduce the number of short tasks. This was done relative to the sizes of the short tasks in the simple (dc1) version of the program.

An adaptive quadrature algorithm was encoded using the D&C combinators. This performs an integration of a function over an integral, using an adaptive trapezium rule [103].

```haskell
> area left right = (foo left + foo right) / (2*(right-left))
> solve (1, m, r, val) = (area 1 m) + (area m r)
> isleaf (1, m, r, val) = abs ((left+right)-val) < 0.5
>     where
>     left = area 1 m
>     right = area m r

> div (1, m, r, val) = ( (1,nlm,m,1m), (m,nrm,r,right) )
>     where
>     nlm = (1+m)/2
>     nrm = (m+r)/2
>     left = area 1 m
>     right = area m r

> comb = (+)

> issmall (1, m, r, val) = abs ((left+right)-val) < 0.7
>     where
>     left = area 1 m
>     right = area m r

> depthbound = 9

> mkdata l r = (1, (1+r)/2, r, area l r)

> foo x = (((x-6)*x)+3)*x-2

> data = mkdata 0 100
```

Notice that the combining function comb is strict in both arguments; thus it satisfies the proof obligations of the aforementioned D&C combinators.

This algorithm has the important characteristic that the sub-problems it produces are of varying sizes.

Two sets of experiments were performed; the first set compared seq_dc, dc1, dc2, dc3 and dc4, using an unbounded number of processors. With an unbounded number of processors no scheduling issues arise and no task coalescing occurs. A bounding depth of 9 was used for dc2, and the dc3g1 version of dc3 was used, see Section 6.6.1. The second set of experiments compared
dc1 with dc4 running on machines with 25, 100 and 200 processors. For these experiments task coalescing did occur. The simulated machine and the simulator are described in Section 2.7 and Chapter 4, respectively.

Short tasks are defined to be the those in the group of shortest tasks (as shown in task distribution graphs) produced by the simple parallel combinator dc1. Typically these fall in the range of 0 to 150 machine cycles.

Comparison of the combinators

The results of the first set of experiments are summarised in the table below:

<table>
<thead>
<tr>
<th>The algorithm</th>
<th>seq_dc</th>
<th>dc1</th>
<th>dc2</th>
<th>dc3</th>
<th>dc4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of machine cycles</td>
<td>253909</td>
<td>1261</td>
<td>1885</td>
<td>2325</td>
<td>2663</td>
</tr>
<tr>
<td>Average parallelism</td>
<td>-</td>
<td>203</td>
<td>152</td>
<td>110</td>
<td>115</td>
</tr>
<tr>
<td>Work done</td>
<td>-</td>
<td>255983</td>
<td>286652</td>
<td>255471</td>
<td>305020</td>
</tr>
<tr>
<td>Max. number of active tasks</td>
<td>-</td>
<td>986</td>
<td>505</td>
<td>429</td>
<td>385</td>
</tr>
<tr>
<td>Total number of tasks</td>
<td>-</td>
<td>1040</td>
<td>505</td>
<td>518</td>
<td>384</td>
</tr>
<tr>
<td>Average sparked task length</td>
<td>-</td>
<td>245</td>
<td>564</td>
<td>491</td>
<td>787</td>
</tr>
</tbody>
</table>

In general figures are not that accurate and they should only be read relatively to other figures; thus only general trends should be inferred from them. The sequential evaluation time may be compared with the work done by the parallel versions to reveal the extra work the parallel algorithms have to do. Notice how the heavily optimised dc3 performs about the same amount of work as dc1.

The execution times of the parallelism controlling combinators are worse than the execution time for dc1. However this would be offset by the increased task overheads, such as communications, from all the small tasks generated by dc1. Also for a limited processor machine the difference in execution times between dc1 and the other parallel combinators will be reduced; this is shown in the second set of experiments.
The sequential evaluation graph Figure 6.19 shows an erratic profile of storage usage. The storage usage probably varies according to the depth of the D&C tree. This means that only general remarks about the storage consumption of the parallel versions can be made.

Figures 6.20 and 6.21 show the dc1 combinators performance. It shows the software limit on the available parallelism; that is it shows the maximum amount of parallelism given an unbounded number of processors. This shows that there is a lot of parallelism and that the storage used tends to increase as parallelism increases. Parallelism increases as more of the D&C tree is concurrently evaluated. The task distribution graph shows that many small tasks (100-200 reductions) are created. These graphs will be compared with the graphs for the other combinators.

Figures 6.22 and 6.23 compare the parallelism and store usage of dc2 with dc1. The number of tasks is reduced by approximately 50% and the storage residency is cut by approximately 75%. The execution time is increased by 50%, this is due to the reduction in parallelism and the overheads of calculating the bound.

The task distribution graph, Figure 6.24, shows that far fewer short tasks are created, than for dc1. By changing the bounding, bigger or smaller tasks may be created. In general selecting a good bound for dc2 was found to be quite delicate and much ‘tuning’ was required. A poor bound either drastically reduces the available parallelism or results in many small tasks. This
CHAPTER 6. PARALLELISM CONTROL

Figure 6.22: Parallelism profiles: adaptive quadrature dc2 (—) and dc1 (⋯⋯)

Figure 6.23: Store profiles: adaptive quadrature dc2 (—) and dc1 (⋯⋯)

Figure 6.24: Task distribution: adaptive quadrature dc2
The bound chosen here was necessarily very coarse to prevent the generation of small tasks.

Figures 6.25 and 6.26 compare the parallelism and store usage of dc3 with dc1. The delayed sparking D&C version of the program is slower than the depth bounding version. The degradation in performance was due to the delay in tasks being evaluated; since the amount of work performed by this combinator and dc1 was about the same. Nevertheless, this combinator effectively regulates the number of small tasks, and it controls the storage usage better than the depth bounding version. It was noticeable how much less tuning was required with the delayed sparking combinator to produce an efficient program than with the other combinators. The main difference between the parallelism profile of dc3 and the other combinators is the longer sequential start-up time of dc3. Figures 6.27 shows that no task less than 350 cycles were generated; this compares well with dc2 where a few small tasks are still generated.

The results of the exact task size control combinator dc4 are shown in Figures 6.28, 6.29 and 6.30. It’s execution time is quite slow; this is because it produces no short tasks and it performs more work than any of the other combinators. However the average length of tasks it produces, are much greater than the other combinators. Its speed could be increased to a similar value to the other combinators, at the expense of producing some smaller tasks. It could also be made
CHAPTER 6. PARALLELISM CONTROL

Figure 6.27: Task distribution: adaptive quadrature dc3

Figure 6.28: Parallelism profiles: adaptive quadrature dc4 (---) and dc1 (......)

Figure 6.29: Store profiles: adaptive quadrature dc4 (---) and dc1 (......)
much more efficient if div and issmall were combined, since they duplicate work. Although it was not tried a dc5 version utilising a different sequential algorithm could be tested, for example using Simpson's rule.

Comparison of dc1 with dc4, using a limited number of processors

The second set of experiments compared dc1 with dc4 on a machine with a limited number of processors. The machine used the evaluate-and-die (E&D) task model which attempts to coalesce tasks. No sparks were discarded. Thus these experiments compare a combinator (dc1) which relies solely on the run-time system's task coalescing to control task sizes, with a combinator (dc4) which controls tasks sizes itself and has help from the run-time system. In addition the E&D task model may be compared with the notification task model, see Section 6.3.1, as previously mentioned programs with a high average parallelism will perform similarly on both abstract machines. However the size of tasks which are generated will differ. Thus the sizes of task generated by the dc1 combinator with a limited number of processors may be compared with the sizes of task generated for the dc1 combinator with an infinite number of processors. The latter measurement corresponds to the sizes of task which would be generated by the notification model for any number of processors, since it cannot coalesce tasks.

Machines with 25, 100 and 200 processors were tried. These sizes were chosen since in the unrestricted case the average parallelism was approximately 200 and for a run-time task size control policy to work well the average parallelism must be greater than the number of processors. Also Eager's speed-up theorem can be verified.

The table below shows the results from these experiments:
CHAPTER 6. PARALLELISM CONTROL

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>dc1</th>
<th>dc4</th>
<th>dc1</th>
<th>dc4</th>
<th>dc1</th>
<th>dc4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of processors</td>
<td>25</td>
<td>25</td>
<td>100</td>
<td>100</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Number of machine cycles</td>
<td>10756</td>
<td>13502</td>
<td>3320</td>
<td>4634</td>
<td>2138</td>
<td>3575</td>
</tr>
<tr>
<td>Average parallelism</td>
<td>24</td>
<td>23</td>
<td>77</td>
<td>66</td>
<td>120</td>
<td>85</td>
</tr>
<tr>
<td>Work done</td>
<td>255993</td>
<td>305010</td>
<td>256005</td>
<td>305010</td>
<td>255983</td>
<td>305019</td>
</tr>
<tr>
<td>Max. number of active tasks</td>
<td>25</td>
<td>25</td>
<td>100</td>
<td>100</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Total number of tasks</td>
<td>98</td>
<td>74</td>
<td>269</td>
<td>189</td>
<td>451</td>
<td>287</td>
</tr>
<tr>
<td>Average sparked task length</td>
<td>2527</td>
<td>3989</td>
<td>942</td>
<td>1595</td>
<td>564</td>
<td>1054</td>
</tr>
<tr>
<td>Number of useless tasks</td>
<td>942</td>
<td>310</td>
<td>771</td>
<td>195</td>
<td>589</td>
<td>97</td>
</tr>
</tbody>
</table>

Figures 6.31 to 6.42 show the results of experiments performed with machines of 25, 100 and 200 processors. The results agree with Eager's speed-up predictions – they show a good performance when the average parallelism (200) is much greater than the number of processors (25). Also none of the performances drop below the limit which Eager's speedup theorem states, see Section 2.6. For example the average parallelism of dc1 and dc4 with an unlimited number of processors is 203 and 115, respectively (see the table prior to this one). With 200 processors dc1 and dc4 have average parallelisms of 120 and 85. Eager's speedup theorem gives lower bounds on the average parallelism of dc2 and dc4 as 101 and 73, respectively.

Figures 6.31 to 6.42 show the results of experiments performed with machines of 25, 100 and 200 processors. The results agree with Eager's speed-up predictions – they show a good performance when the average parallelism (200) is much greater than the number of processors (25). Also none of the performances drop below the limit which Eager's speedup theorem states, see Section 2.6. For example the average parallelism of dc1 and dc4 with an unlimited number of processors is 203 and 115, respectively (see the table prior to this one). With 200 processors dc1 and dc4 have average parallelisms of 120 and 85. Eager's speedup theorem gives lower bounds on the average parallelism of dc2 and dc4 as 101 and 73, respectively.

With an infinite number of processors, see the previous results, dc1 produces tasks with an average length of 245. This corresponds to the average length of tasks produced by a machine using a notification task model for any number of processors. As can be seen above, the results for dc1 with a limited number of processors have much greater average task lengths than 245. Thus, unlike the notification model, the E&D task model can coalesce tasks and hence improve the parallelism granularity of some programs.

The percentage difference in execution times between dc1 and dc4 decreases with the number of processors. This difference in execution times may be bounded by the percentage difference in work done by the two algorithms (20%) and the percentage difference in execution time for the two algorithms with an unbounded number of processors (80%).

Task numbers (tasks residency) are well controlled by dc1 and dc4. The dc1 combinator's task sizes were greatly improved over the unbounded case, compare Figure 6.21 with 6.33, 6.37 and 6.41. Nevertheless a significant number of small tasks were created. Figures 6.34, 6.38 and 6.42 show that combining a run-time task size control with program control prevents all these small tasks.

The dc1 combinator generates many useless XIINF tasks; this demonstrates that checking tasks' expressions to see whether they are in XIINF is very important for a machine which implements an evaluate-and-die task model. However dc4 generates far fewer useless tasks than dc1, which means that detection of such tasks is less important in this case.
Figure 6.31: Parallelism profiles: 25 processors dc4 (——) and dc1 (⋯⋯)

Figure 6.32: Store profiles: 25 processors dc4 (——) and dc1 (⋯⋯)

Figure 6.33: Task distribution: 25 processors dc1
CHAPTER 6. PARALLELISM CONTROL

Figure 6.34: Task distribution: 25 processors dc4

Figure 6.35: Parallelism profiles: 100 processors dc4 (——) and dc1 (· · · ·)

Figure 6.36: Store profiles: 100 processors dc4 (——) and dc1 (· · · ·)
CHAPTER 6. PARALLELISM CONTROL

Figure 6.37: Task distribution: 100 processors dc1

Figure 6.38: Task distribution: 100 processors dc4

Figure 6.39: Parallelism profiles: 200 processors dc4 (---) and dc1 (····)
Figure 6.40: Store profiles: 200 processors dc4 (----) and dc1 (.....)

Figure 6.41: Task distribution: 200 processors dc1

Figure 6.42: Task distribution: 200 processors dc4
The second example of a D&C algorithm is matrix multiplication. This used quad-trees to represent matrices, as advocated by Wise [120]. Generally quad-tree matrix representation is very good for parallelism and data locality. It also means that sparse and dense matrices may be uniformly represented. Important operations such as Gaussian elimination may also be performed using quad-trees. The result of a matrix multiplication is large and hence considerable time is spent outputting it. Therefore results (tables and graphs) were adjusted to remove this output time.

Two 16 by 16 matrices were multiplied together in parallel. This problem is very different from the adaptive quadrature one. Its characteristics are:

- sub-problems have fixed sizes (dense matrices)
- the task tree is thickly branching
- the comb operation uses another D&C algorithm — matrix addition

To handle this problem generalised versions of the previous D&C combinators were required, which could handle more than two sub-problems. Therefore div and comb were changed to produce and combine lists of sub-problems. For example dc1 becomes:

```
> dc1 div comb isleaf solve =
>     f
>     where
>     f x = solve x, isleaf x
>     = comb (parmap id f (div x)), otherwise
```

In order for the parmap proof obligation to be met, this D&C combinator must be used in a context where either comb is head and tail strict in its argument or where the solutions of all sub-problems are defined. That is where div, comb, isleaf and solve are total and the input data is defined. Similar proof obligations hold for the other D&C combinators.

The quad-tree matrix multiplication was implemented thus:

```
> matrix * := Scalar * |
>     Quad (matrix *) (matrix *) (matrix *) (matrix *)

> isleaf ((Scalar _,_), _) = True
> isleaf _ = False

> addsolve (Scalar n, Scalar m) = seq x (Scalar x) where x = n+m
> adddiv (Quad a b c d, Quad e f g h) = [(a,e), (b,f), (c,g), (d,h)]
```
> addcomb \([p, q, r, s] \) = Quad \(p \ q \ r \ s \)

> addisshort (Quad \(______) = False
> addisshort \(_\) = True

> mulsolve (Scalar \(n\), Scalar \(m\)) = seq \(x\) (Scalar \(x\)) where \(x = n \ast m\)

> muldiv (Quad \(a\ b\ c\ d\), Quad \(e\ f\ g\ h\)) =
> \([(a,e),(b,g),(a,f),(b,h),(c,e),(d,g),(c,f),(d,h)]\]

> mulcomb madd \([p, q, r, s, t, u, v, w] m \) =
> par \(m1\) (par \(m2\) (par \(m3\) (seq \(m4\) (Quad \(m1\) m2 m3 m4))))
> where
> \(m1\) = madd \((p, q)\)
> \(m2\) = madd \((r, s)\)
> \(m3\) = madd \((t, u)\)
> \(m4\) = madd \((v, w)\)

> depthbound = 3

> mulisshort (Quad (Quad \(_____) \(______) = False
> mulisshort \(______) = True

The \(_\) pattern acts as a wildcard, which matches anything. An example multiplication using \(dc1\) is:

> test = dc1 muldiv mulcomb isleaf mulsolve (bigmatrix, bigmatrix)
> where
> comb = mulcomb (dc1 adddiv addcomb isleaf addsolve)

Since all of the result matrix is required (by the output driver), both \(mulcomb\) and \(addcomb\) occur in hyper-strict contexts. Thus \(test\) meets both \(dc1\) proof obligations. A similar argument applies to tests performed with the other D&C matrices.

Notice how \(dc1\) has been used for both the multiplication and the addition of sub-problems. In general matrix addition was always implemented using the same combinator as multiplication.

Like the adaptive quadrature program, two sets of experiments were performed. The first set compared \(seq_dc\), \(dc1\), \(dc2\), \(dc3\), \(dc4\) and \(dc5\), using an unbounded number of processors. A bounding depth of 3 was used for multiplication using \(dc2\). For \(dc3\) a version of \(dc3q1\), see Section 6.6.1, was used; this manipulated lists rather than pairs of sub-problems. The \(dc5\) combinator used an optimised algorithm for multiplying small matrices directly, rather than using recursion. The second set of experiments compared \(dc1\) with \(dc4\) running on machines with 25, 100 and 200 processors.
CHAPTER 6. PARALLELISM CONTROL

Comparison of the combinators

The results of the first set of experiments are summarised in the table below:

<table>
<thead>
<tr>
<th>The algorithm</th>
<th>seq_dc</th>
<th>dc1</th>
<th>dc2</th>
<th>dc3</th>
<th>dc4</th>
<th>dc5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of machine cycles</td>
<td>173230</td>
<td>514</td>
<td>832</td>
<td>861</td>
<td>845</td>
<td>583</td>
</tr>
<tr>
<td>Average parallelism</td>
<td>425</td>
<td>240</td>
<td>222</td>
<td>237</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>Work done</td>
<td>218270</td>
<td>199320</td>
<td>191057</td>
<td>200072</td>
<td>71489</td>
<td></td>
</tr>
<tr>
<td>Max. number of active tasks</td>
<td>1693</td>
<td>522</td>
<td>1041</td>
<td>523</td>
<td>432</td>
<td></td>
</tr>
<tr>
<td>Total number of tasks</td>
<td>9105</td>
<td>1105</td>
<td>2422</td>
<td>1105</td>
<td>1105</td>
<td></td>
</tr>
<tr>
<td>Average sparked task length</td>
<td>24</td>
<td>180</td>
<td>79</td>
<td>181</td>
<td>65</td>
<td></td>
</tr>
</tbody>
</table>

Notice that the optimisation of the parallelism controlling combinators means that they do less work than dc1. This is partly because the parmap used in the definition of dc1 is quite inefficient; it is defined in terms of parlist. When solving problems sequentially the parallelism controlling combinators do not incur the inefficiencies of using parmap. The dc5 combinator is much more efficient than the others, due to its optimisation for multiplying small matrices.

Figure 6.43 shows the store profile of seq_dc. This shows a linearly decreasing use of storage.

Figure 6.44 shows beautiful parallelism and storage profiles, resulting from the problems regularity. The graphs show good speed-up and the storage usage exactly follows the parallelism profile. However the storage usage (residency) is increased over the sequential version. This is because sub-problems are solved concurrently and the solution of a sub-problem requires more storage than its input data or result. Thus sequential evaluation will only require the transient storage use of one sub-problem, since sub-problems are solved sequentially. Parallel evaluation will concurrently solve sub-problems and hence their transient storage requirements will be accumulated. The task distribution graph, Figure 6.45, reveals many small tasks; the majority of tasks took less than 25 cycles to execute!

Depth bounding works well for this problem because the task tree is balanced; however a potential weakness of depth bounding also becomes apparent. During matrix multiplication, the matrix size which add operates upon varies and therefore this must be calculated dynamically to
CHAPTER 6. PARALLELISM CONTROL

Figure 6.44: Task and store profiles: dc1

Figure 6.45: Task distribution: matrix multiplication dc1
achieve correct bounding for matrix addition. This is less of a problem for matrices, compared with other D&C algorithms, because matrices branch quickly and hence they are not usually very high. Also the matrices used in this experiment are regular, hence only the height of one matrix need be calculated for each set of additions. The overall execution time is 60% greater than dc1 and few small tasks are generated. This shows that the small tasks which dc1 generates perform a lot of work, otherwise there would be less discrepancy in execution times between dc1 and dc2. However in practice these tasks would be too small to be beneficial for parallel evaluation on a MIMD machine. Task numbers are controlled well by depth bounding; it only generates about 12% of the tasks which dc1 does. The storage use of dc2 is similar to dc1.

The delayed sparking algorithm performs very well compared to the other control methods, see Figures 6.49 to 6.51. The amount of work it performs and its execution time are similar to dc2 and dc4. However it does generate more tasks than the other parallelism controlling combinators and it generates many small tasks. This is because the other methods are well suited to controlling algorithms with balanced task trees. Nevertheless dc3 only generates 25% of the tasks which dc1 does, and it generate far fewer small tasks (less than 50 reduction cycles) than dc1 does.
CHAPTER 6. PARALLELISM CONTROL

Figure 6.48: Task distribution: matrix multiplication dc2

Figure 6.49: Parallelism profiles: matrix multiplication dc3 (—) and dc1 (·····)

Figure 6.50: Store profiles: matrix multiplication dc3 (—) and dc1 (·····)
Figures 6.52 to 6.54 show the results for the exact task size control combinator (dc4). The results for this are essentially the same as for the dc2 combinator, the same sub-problems are solved in parallel. The only difference is that dc4 is slightly less efficient than dc2 at determining whether sub-problems should be solved in parallel. The graphs for dc4 are almost identical to those for dc2.

Using exact task size control and an optimised sequential algorithm is very efficient as can be seen in Figures 6.55, 6.56 and 6.57. The same sub-problems were solved in parallel as dc2 and dc4; however an optimised sequential algorithm was used for multiplying small matrices. The execution time compares well with dc1 yet the number of tasks is reduced to 12% of dc1. The storage residency is reduced by approximately 50% of dc1. The drastic reduction in storage is a result of the optimised sequential tasks which create no intermediate matrices for addition, as the general case does. It is true that normally this optimisation would reduce the storage and execution time of the sequential algorithm, but in a parallel setting these benefits are amplified. This is because in a parallel setting the storage residency is increased and, because, sequential parts of the program limit the parallel algorithms performance, see [67].
CHAPTER 6. PARALLELISM CONTROL

Figure 6.53: Store profiles: matrix multiplication dc4 (—) and dc1 (⋯⋯)

Figure 6.54: Task distribution: matrix multiplication dc4

Figure 6.55: Parallelism profiles: matrix multiplication dc5 (—) and dc1 (⋯⋯)
Figure 6.56: Store profiles: matrix multiplication dc5 (——) and dc1 (····).

Figure 6.57: Task distribution: matrix multiplication dc5
Comparison of dc1 with dc4, using a limited number of processors

The matrix algorithm when run on an unbounded number of processors had an average parallelism of approximately 200; therefore once again dc1 was tried with 25, 100 and 200 processors.

Figure 6.58 shows the task length distributions for a 25 processor machine. Notice how many small tasks, less than 50 cycles long, are generated. Of the 5678 tasks sparked about 60% had lengths less than 10 machine cycles.

One reason for this was the parlist combinator which was used. The parlist combinator may generate sparks which do very little evaluation before terminating. For example in making parlist general it forces evaluation of list elements with a function. The value being forced may be in \texttt{VINF} but this cannot be detected by the machine because the task consists of a closure: the forcing function applied to the value in \texttt{VINF}. It seems as though the mechanisms of parallel machines may hinder the use of parallelism abstractions. Evaluation transformers, described in Section 3.2.3, would prevent this problem; however at present they are not extensible, and they do not support the definition of parallelism abstractions. This is discussed further in Section 9.1.7.

An alternative solution is to define parmap differently:

\begin{verbatim}
> pcons ht = par t (seq h (h:t))
> parmap f [] = []
> parmap f (x:xs) = (f h) $pcons parmap f xs
\end{verbatim}

This version of parmap must be used in at least a tail strict context: which it is in the D&C combinators. With this version of parmap results and pars (task sparks) reference the same values, therefore once a value is in \texttt{VINF} any task which refers to that value may also detect this. Unfortunately parmap is no longer parameterised with a forcing function.

Revised versions of the D&C combinators, which used the new parmap, were tried for 25, 100 and 200 processor machines. The results are summarised in the table below:
These results show that the execution times of dc1 and dc4 are very similar for small number of processors. The execution overhead of using dc4 may be bounded as previously mentioned in the discussion of the adaptive quadrature results. Also, as previously, the results agree with Eager's speed-up predictions. In particular notice how the parallelism profiles in Figures 6.59, 6.63 and 6.67 deteriorate as the number of processors increases. (Ideally the parallelism profiles should show a constant activity of p tasks for a p processor machine.)

Once again the E&D task model successfully coalesces some tasks and hence it results in a larger granularity of parallelism than if a notification model had been used. A notification model, on a machine with any number of processors, would have produced tasks with an average length the same as dc1 with an infinite number of processors (24).

The task distribution graphs, Figures 6.61 to 6.70, show that run-time control of task sizes is not sufficient. Many more small tasks (< 50 cycles) are generated by dc1 than dc4. It is noticeable that for 25 processors, dc4 better controls the storage residency considerably better than dc1.

Similarly to the adaptive quadrature results, dc4 produces far fewer useless tasks than dc1: which produces lots of them. However unlike the adaptive quadrature results, dc4 also produces far fewer tasks in total than dc1.

Some of the short tasks which are generated by dc1 and dc4 can be attributed to applications of pcons h. This generates an unnecessary task since there is no point evaluating h and □ in parallel.

These results show that additional control of parallelism is far more necessary for this algorithm than for the adaptive quadrature one. This is probably because this algorithm is more complicated than the adaptive quadrature one; this algorithm is a double D&C algorithm.
CHAPTER 6. PARALLELISM CONTROL

Figure 6.59: Parallelism profiles: 25 processors dc4 (——) and dc1 (····)

Figure 6.60: Store profiles: 25 processors dc4 (——) and dc1 (····)

Figure 6.61: Task distribution: 25 processors dc1
CHAPTER 6. PARALLELISM CONTROL

Figure 6.62: Task distribution: 25 processors dc4

Figure 6.63: Parallelism profiles: 100 processors dc4 (—) and dc1 (⋯⋯)

Figure 6.64: Store profiles: 100 processors dc4 (—) and dc1 (⋯⋯)
CHAPTER 6. PARALLELISM CONTROL

Figure 6.65: Task distribution: 100 processors dc1

Figure 6.66: Task distribution: 100 processors dc4

Figure 6.67: Parallelism profiles: 200 processors dc4 (—) and dc1 (⋯⋯)
CHAPTER 6. PARALLELISM CONTROL

Figure 6.68: Store profiles: 200 processors dc4 (—) and dc1 (⋯⋯)

Figure 6.69: Task distribution: 200 processors dc1

Figure 6.70: Task distribution: 200 processors dc4
6.7 Summary

This chapter has reported some of the first experiments carried out on a variety of programs, for testing the effectiveness of several techniques for controlling task sizes of functional programs.

The control of two different kinds of parallelism has been investigated: data parallelism and divide and conquer algorithm's parallelism. Three aspects of parallelism have been investigated: task sizes, task residency and storage residency. However all these areas are related and the emphasis has been on controlling task sizes. In particular increasing the size of tasks decreases task residency, and often decreases storage residency.

Three methods of controlling data parallelism were considered: data grouping, k-bounding, and buffering. The results of these methods are summarised in the table below:

<table>
<thead>
<tr>
<th>Method</th>
<th>Task size</th>
<th>Task Numbers</th>
<th>Storage Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data grouping</td>
<td>increased</td>
<td>decreased</td>
<td>increased</td>
</tr>
<tr>
<td>K-bounding</td>
<td>increased</td>
<td>decreased</td>
<td>unchanged</td>
</tr>
<tr>
<td>Buffering</td>
<td>unchanged</td>
<td>decreased</td>
<td>decreased</td>
</tr>
</tbody>
</table>

Data grouping is better than k-bounding for controlling task sizes because it fixes task sizes. To use k-bounding to control task sizes, the size of the data must be known. For controlling task numbers k-bounding is best since it fixes task numbers. Likewise to control task numbers with data grouping, the size of the data must be known. For very large data structures, yielding pipelined data parallelism, buffering is useful to control storage use. In particular buffering synchronises production and consumption of values, and thus it can prevent over eager evaluation.

Divide and conquer algorithms produce many tasks, the majority of which are small. Therefore it is particularly important to control task residency and the sizes of tasks produced. Three different D&C combinators, which control task sizes, were tried. These indirectly control task numbers too. In addition a run-time method, the evaluate-and-die task model, for coalescing tasks was used for comparison.

The best method of control was a combination of the evaluate-and-die task model with an exact task size controlling D&C combinator. The exact control combinator limited the minimum sizes of task which were sparked. The evaluate-and-die task model reduced task numbers and increased task sizes; however it was not found to be sufficient alone. It was found that the difference in efficiency between just using the evaluate-and-die model and using this and programmer control, decreased as the number of processors decreased. For parallel D&C algorithms which are not efficient sequential algorithms, an efficient sequential algorithm should be used for solving problems sequentially. This can improve efficiency tremendously.

The delayed sparking D&C combinator performed well considering that it uses no information about the problem to be solved. It is heuristic based and it appears to be well suited to incorporation into a machines run-time system.

Section 3.2 argued that using just strictness analysis to determine parallelism risks producing tasks of an unusably small grain. Results of this chapter support this.

In addition the matrix multiplication experiments have revealed some problems with using parallelism abstractions. In particular parallelism abstractions can prevent a machine from detecting
that values are in WHNF, and this can lead to needless re-sparking. The only solutions to this seem to be to write programs in a constrained style to prevent this from occurring (this is discussed further in Section 9.1.7), or to use some form of extensible evaluation transformers.

6.8 Conclusions

The main conclusion of this chapter is that programmer control of parallelism is necessary; in particular control of the following is required: task numbers, storage and task sizes. The simulation results have shown this to be necessary.

The control of data parallelism is very problem dependent. Depending on the problem, one of the techniques described here may be appropriate. The results reveal that each of the control techniques are suited to different aspects of parallelism control.

For controlling divide and conquer parallelism a combination of the evaluate-and-die task mechanism with an exact control method works best. The programmer should provide a lower bound on task sizes, and the E&D task model may coalesce tasks thereby increasing their sizes. This is borne out by the results.

The delayed sparking scheme for controlling task sizes could usefully be implemented in a machine's run-time system. The results show that this scheme works well, especially considering that it is a 'blind' technique.

Many useless tasks are sparked; thus it is necessary to remove these tasks. On a real machine it would be necessary to periodically garbage collect the task pool of useless tasks. The statistics reveal this too.
Chapter 7

Bags

Traditionally functional programs have made great use of the list data type. However, often lists are not used as lists but as bags (multisets). A list is a data type representing an ordered sequence. A bag is a data type representing an unordered multiset. If lists are used in place of bags, this results in a biased implementation, which can be detrimental to program meaning and implementation. This chapter proposes an extension to functional languages to provide direct support for bag data types.

A bag consists of a finite collection of unordered elements, which may contain duplicates. (Bags are restricted to being finite because it is unclear what the semantics of infinite bags are, see Section 7.5.1.) Operations may construct bags and take them apart. However operations to take bags apart must be deterministic; that is, not dependent upon the order of elements in bags. Determinism is necessary for referential transparency, which in turn is necessary for using equational reasoning. Thus there is no operation to select an element from a bag, but there is a bag filter operation.

This may be contrasted with Hughes and O’Donnell’s sets [57]. They use sets for handling non-determinism, where sets are represented by one element. All their operations on sets must apply to one element only: for example set union is possible, intersection is not. As described here, bag operations must apply equally to all bag elements elements.

Providing bags directly in a functional language allows specifications and programs to be written which are more abstract than if lists had been used to model bags. Note that bags do not replace lists, if a sequence is required then a list should be used; if only a multiset is required then a bag, not a list, should be used. In particular bags are naturally suited to database queries.

Bags have two important advantages over lists. Firstly more transformations are applicable to bags than lists because bags are insensitive to ordering changes. Secondly, bags may be implemented non-deterministically and hence they allow a greater freedom of parallel evaluation than lists. If the elements of a bag are evaluated in parallel they may be combined or consumed as they terminate, since bag elements are unordered. This means that the scheduling of the elements evaluation becomes less important, and parallel bag folding is very efficient.
CHAPTER 7. BAGS

7.1 Survey

This section surveys several other bag like proposals. None of these proposals suggest introducing bags generally and deterministically into functional languages, nor do any give an implementation of bags. It is particularly important not to introduce non-determinism into a language because it means that referential transparency will be lost.

There have been several proposals for non-deterministic fold operations which behave deterministically when the folding operator is associative and commutative. Hudak proposed a non-deterministic list folding operator which combined the elements of a list in the order in which they terminate [50]. This required that the folding function was associative and commutative. Wadler had a similar operator to Hudak for combining array elements in an array comprehension [113]. This allowed the value of an array element to be specified as the non-deterministic combination of several values together: again providing that the combining function was associative and commutative.

Bird and Meertens have used trees, lists, bags and sets in a generalised way, for algebraic program transformation and derivation [14, 80]. Trees, lists, bags and sets may be viewed as differing only in the algebraic richness of their constructors (the Boom hierarchy), see Section 5.2.1.

Bañate et al. have used bags as part of a non-deterministic rewriting model for parallel programs [9]. Essentially this is a parallel rewriting system which non-deterministically rewrites elements in a bag. They also describe how their bags may be implemented on a MIMD machine.

Connection Machine (CM*) Lisp has a data type similar to a bag called a Xapping [107]. Xappings have been inspired by the APL and FP languages and they fulfill the role of bags, mappings and arrays. These have been designed for efficient implementation on the Connection Machine, which has a fine grained SIMD architecture.

Xappings are specified as a mappings from indices to values; all the indices must be distinct. For example:

\[x = \{a->1 \ b->2 \ c->3 \ d->4\} \]

There are a variety of shorthands and operators for xappings, including two special forms. Xappings where the indices are equal to the values are called Xets and xappings where the indices are consecutive integers from zero are called xectors. Thus arrays are represented as xectors of xectors. The most important xapping operators are \(\alpha\) and \(\beta\) these correspond to map and fold applied to xappings values. Thus, \(\alpha \text{ sqr} \ x\) is \(\{a->1 \ b->4 \ c->9 \ d->16\}\) and \(\beta + x\) is 10. The implementation of \(\beta\) is non-deterministic; xapping elements are combined in any order. Thus the results of a \(\beta\) operation are only deterministic when the combining operator is associative and commutative. Other operators allow xapping indices to be manipulated, for example to achieve the effect of arrays. In general the operations are designed to allow efficient programs for the Connection Machine to be written. Unfortunately xappings suffer the common Lisp ailment of being over complicated: there are many different operations on xappings, each with many different forms.

Some other researchers have proposed adding bags to a purely functional language [77]. Their proposal tries to mimic xappings. The operations they propose on bags are:
There are many problems with their approach. In particular any is a non-deterministic bag selection operator, which means that referential transparency is lost. The dom operation is meant to generate a bag from the domain of a function with a finite domain. The idea of dom is to give some of the power of xappings. Generally their approach is confused and they see bags as a method of introducing genuine non-determinism into a functional language.

7.2 A bag abstract data type

This section describes a bag abstract data type. Bag operations are discussed along with constraints necessary for determinism. As previously stated a bag consists of a finite collection of unordered elements possibly containing duplicates. A complete set of operations for a bag abstract data type is shown below:

\[
\begin{align*}
> \text{emptybag} :: & \text{bag} * \\
> \text{any} :: & \text{bag} * \rightarrow * \\
> \text{add} :: & \ast \rightarrow \text{bag} * \rightarrow \text{bag} * \\
> \text{sub} :: & \ast \rightarrow \text{bag} * \rightarrow \text{bag} * \\
> \text{member} :: & \text{bag} * \rightarrow \ast \rightarrow \text{bool} \\
> \text{distr} :: & (\ast \rightarrow \ast \ast) \rightarrow \text{bag} * \rightarrow \text{bag} ** \\
> \text{fold} :: & (\ast \rightarrow \ast \rightarrow \ast) \rightarrow \text{bag} * \rightarrow \ast \\
> \text{dom} :: & (\ast \rightarrow \ast \ast) \rightarrow \text{bag} * \\
\end{align*}
\]

The first three functions are used to construct bags; the last function bhom is a homomorphism on bags, it may be described using the following equations:

\[
\begin{align*}
\text{bhom} \ f \ g \ e \ \text{bnil} &= e \\
\text{bhom} \ f \ g \ e \ (\text{bunit} \ a) &= g \ a \\
\text{bhom} \ f \ g \ e \ (\text{bunion} \ x \ y) &= f \ (\text{bhom} \ f \ g \ e \ x) \ (\text{bhom} \ f \ g \ e \ y)
\end{align*}
\]

This is not a legal functional program since bnil, bunit and bunion are not constructors. However these equations may be used for reasoning about programs.

Since bags are unordered it follows that bunion is associative (like list append) and commutative (unlike list append). That is:

\[
\begin{align*}
\text{bunion} \ x \ (\text{bunion} \ y \ z) &= \text{bunion} \ (\text{bunion} \ x \ y) \ z \\
\text{bunion} \ x \ y &= \text{bunion} \ y \ x
\end{align*}
\]

As Meertens states in [80] “inserting an operator \(x \) in a structure \(s \) is only meaningful if \(x \) has at least the same algebraic richness as the operator \(+ \) used to construct the structure”. Thus
f in \texttt{bhom \(f\)} \texttt{g e b} must be associative and commutative, like \texttt{bunion}. (The homomorphism (\texttt{fold}) used for lists in functional programs is directed and so the folding function does not even have to be associative, see [14].) Analogously since:

\[
\texttt{bunion \ bnil \ x} = x \\
\texttt{bunion \ x \ bnil} = x
\]

The e value in \texttt{bhom \(f\)} \texttt{g e b} must be the right and left identity element of f; that is:

\[
f \ e \ v = v \\
f \ v \ e = v
\]

(It may also be useful to have a \texttt{bhom} which works on non-empty bags, in which case no identity element is required. If required this is a trivial extension and it is discussed no further.) These constraints on f and e are left as \textit{proof obligations} to the programmer; often f will be a simple operator. For example:

```plaintext
> \texttt{bsum \ b} = \texttt{bhom (+) id 0 b}
```

This sums a bag of numbers. It is obvious that plus is associative and commutative, therefore this is a valid \texttt{bhom} application and the additions may be performed in any order.

Another useful operation is bag membership:

```plaintext
> \texttt{bmem \ e \ b} = \texttt{bhom (\bigvee) (=e) False b}
```

Care must be taken however since some operators are not equally strict in their arguments; for example boolean or \(\bigvee\) may be left sequential:

```plaintext
> \texttt{True \bigvee x} = \texttt{True}
> \texttt{False \bigvee x} = \texttt{x}
```

This \(\bigvee\) operator is not commutative since: \texttt{True \bigvee \bot \neq \bot \bigvee True}. Hence \(\bigvee\) must be either bi-strict or more interestingly bi-lazy, that is parallel.

<table>
<thead>
<tr>
<th>Bi-strict</th>
<th>Parallel</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bigvee)</td>
<td>(\bot)</td>
</tr>
<tr>
<td>(\bot)</td>
<td>(\bot)</td>
</tr>
<tr>
<td>False</td>
<td>(\bot)</td>
</tr>
<tr>
<td>True</td>
<td>(\bot)</td>
</tr>
</tbody>
</table>

Similarly for \texttt{bexists} and \texttt{ball}:
There is a large implementation cost associated with parallel-or since it requires unbounded concurrency from a sequential or parallel implementation.

Alternatively evaluation of a bag expression such as \(\text{bexists } p \ b \) may be cut short, if it can be guaranteed that all elements are defined. This can be achieved by using strictness analysis. Another alternative is to regard programs as being specifications, possibly weaker than their implementations; a program may terminate which should not. Bags may be defined to be strict but they may be implemented more 'lazily'. This is similar to evaluating a strict language lazily. The \(\text{par} \) combinator is similar to this; it could be regarded as being strict in its first argument that is, semantically equal to \(\text{seq} \), but implemented more freely.

7.3 Bag comprehensions

A useful notational operation that is available is the bag comprehension; just as it is possible to have list comprehensions, bag comprehensions are possible too. Bag comprehensions may include list and bag generators: however list comprehensions cannot include bag generators. For example the bag filter function may be written:

\[
> \text{bfilter } p \ b = \{ e \mid e \leftarrow b; p e \}
\]

Bag comprehensions are delimited by \(\{ \) and \(\} \). The \(\leftarrow \) construct is a bag generator, whereas \(\langle \) is the usual list generator.

Bag comprehensions may be translated into applications of the basic bag functions using a translation analogous to [11,11. An unoptimised translation is shown below:

\[
T[\{ E \mid v \leftarrow B; Q \}] = \text{bflatmap } f B \quad \text{where } f \ v = T[\{ E \mid Q \}]
\]

\[
T[\{ E \mid v \leftarrow L; Q \}] = \text{bflatmap } f (\text{bagify } L) \quad \text{where } f \ v = T[\{ E \mid Q \}]
\]

\[
T[\{ E \mid P; Q \}] = \text{if } P \text{ then } T[\{ E \mid Q \}] \text{ else bnil}
\]

\[
T[\{ E \mid L \}] = \text{bunit } E
\]

\[
> \text{bagify} :: [\ast] \rightarrow \text{bag } \ast
\]

\[
> \text{bagify} = \text{fold } \text{bunion} . \text{map } \text{bunit}
\]

\[
> \text{bflatmap} :: (\ast \rightarrow \text{bag } \ast \ast) \rightarrow \text{bag } \ast \rightarrow \text{bag } \ast
\]

\[
> \text{bflatmap } f \ b = \text{bhom } \text{bunion } f \ \text{bnil } b
\]

The value \(E \) is any expression, \(v \) is a variable, \(L \) is a list expression, \(B \) is a bag expression, \(Q \) is a list of zero of more qualifiers (filters or generators) and \(P \) is a boolean expression. The \(\text{bagify} \) function translates a list into a bag.

A different approach is to view bag comprehensions as monads [115], but this will not be pursued here.
7.4 Some useful bag functions

This section shows that many useful bag functions can be defined. All of the functions shown below may be defined in terms of the four basic bag operations previously described, by using the translation rules. It may be desirable for some of these operations to be implemented as primitives for efficiency.

\begin{align*}
> & bfold f e b = \text{bfold f id e b} \\
> & bmap f b = \{ f x \mid x \sim b \} \\
> & bflatten b = \{ y \mid x \sim b; y \prec x \} \\
> & bapply b a = (\text{bfold (.) id b}) a \\
> & bsort p b = \text{bsort p b} \\
> & \text{where} \\
> & \text{listunit e} = [e] \\
> & \text{merge}\ f\ []\ l = l \\
> & \text{merge}\ f\ l\ [] = l \\
> & \text{merge}\ f\ (x:xs)\ (y:ys) = x: \text{merge}\ f\ xs\ (y:ys),\ p\ x\ y \\
> & \text{else} \\
> & \text{bsize b} = \text{bsize b} = 0 \\
> & \text{bempty b} = \text{bsize b} = 0 \\
> & \text{bmax b} = \text{bfold max minint b} \\
> & \text{bcartprod xs ys} = \{ (x,y) \mid x \sim\sim xs; y \prec\prec ys \} \\
> & \text{bcrossprod f xs ys} = \{ f x y \mid x \sim\sim xs; y \prec\prec ys \} \\
> & \text{bgencartprod b} = \text{bfold (bcrossprod bunion) (bmap bunit) bnil b} \\
> & \text{bsubbags b} = \text{bfold (bcrossprod bunion) f bnil} \\
> & \text{bdiff b1 b2} = \{ x \mid x \not\subseteq b1; \not\exists y \in b2 : y \sim b1 \}
\end{align*}

The functions \text{bfold}, \text{bapply} and \text{bsort} are interesting because they are not necessarily deterministic; potentially non-deterministic abstractions have been constructed. To be deterministic \(f \) of \text{bfold f e}, as with \(\text{bfold f g e b} \), must be associative and commutative, and \(e \) must be a right and left identity element of \(f \). The function \text{bsort} sorts a bag into a list; in order for this to be a function the predicate \(\text{pred} \) must form a total ordering over all the elements and partial elements of the bag. That is:

\begin{align*}
\forall a: & \text{pred a a} \\
\forall a,b: & (a \neq b) \Rightarrow ((\text{pred a b} \& \sim \text{pred b a}) \lor (\sim \text{pred a b} \& \text{pred b a})) \\
\forall a,b,c: & (\text{pred a b} \& \text{pred b c}) \Rightarrow (\text{pred a c})
\end{align*}

The \text{bapply} function composes a bag of functions and applies them to an argument. In general function composition is associative but not commutative; so for \text{bapply f b} to be deterministic the functions in the bag must commute with each other, that is:

\(\forall f,g \in b: f \cdot g = g \cdot f \)
The last few functions have been adapted from [14]. The cartesian product of two bags is generated by bcartprod; bcrossprod is a generalisation of the cartesian product, it applies a function to elements drawn from each bag rather than pairing them. The bgencartprod function takes a bag of bags and forms the general cartesian product of elements taken from constituent bags. The bsubbags function forms the bag of all sub-bags of a bag (compare with the powerset of a set). A form of bag difference is performed by bdiff; various different difference operations are possible.

7.5 Bag laws and semantics

This section describes how bags may be reasoned about. Several laws are shown together with an important theorem. The theorem allows bag comprehensions to be optimised by rearranging filters and generators. The difficulties of giving a denotational semantics to bags is discussed, and an algebraic approach is proposed. In addition the Squigol work in [14] contains many laws and lemmas concerning bags.

Some example laws are shown below:

\[
\begin{align*}
\text{bunion } x \ (\text{bunion } y \ z) &= \text{bunion } (\text{bunion } x \ y) \ z \\
\text{bunion } x \ y &= \text{bunion } y \ x \\
\text{bunion } \text{bnil} \ b &= b \\
\text{bunion } b \ \text{bnil} &= b \\
\text{bfilter } p \ (\text{bunion } x \ y) &= \text{bunion } (\text{bfilter } p \ x) \ (\text{bfilter } p \ y) \\
\text{bmap } f \ (\text{bunion } x \ y) &= \text{bunion } (\text{bmap } f \ x) \ (\text{bmap } f \ y) \\
(\text{bfold } f \ e) \ . \ (\text{bmap } g) &= \text{bhom } f \ g \ e
\end{align*}
\]

The last law is the Squigol homomorphism lemma, see Section 5.2.1. Some laws allow the manipulation of bagify and the conversion of bags to and from lists

\[
\begin{align*}
\text{bagify } (\text{map } f \ 1) &= \text{bmap } f \ (\text{bagify } 1) \\
\text{bagify } (x++y) &= \text{bunion } (\text{bagify } x) \ (\text{bagify } y) \\
&= \text{bagify } (y++x) \\
\text{bagify } [] &= \text{bnil}
\end{align*}
\]

Also, if compbody does not contain any bag generators (<^>), then:

\[
\text{bagify } \{\text{compbody}\} = \{| \text{compbody} |\}
\]

Using the bag comprehension translation rules, the following identities may be proved:
An important theorem is the qualifier interchange theorem. This allows optimisations of bag comprehension to be achieved by rearranging their generators and filters. Trinder has used this to optimise queries within a functional database setting [108]; these optimisations originate from the relational database world. The qualifier interchange theorem is stated and proved below:

Qualifier interchange theorem:

If Q_1 and Q_2 are qualifiers which do not refer to variables bound in each other, QL and QL' are lists of zero or more qualifiers, and all the qualifiers are total, then:

$$\{ E \mid v^{<} ; Q_1 ; Q_2 ; QL \} = \{ E \mid Q_1 ; Q_2 ; QL' \}$$

The reason for requiring all the qualifiers to be total is that changing the order of qualifiers can change termination properties of a bag comprehension. For example:

```lisp
> terminate = \{ x \mid x^{<} (\{ 1 \}) ; even x ; error "help!" \}
> bottom = \{ x \mid x^{<} (\{ 1 \}) ; error "help!" ; even x \}
```

The first expression will terminate and return \{ 1 \}, whereas the second will give an error (try translating these using the rules previously given to see why).

To prove the qualifier interchange theorem, the following lemma will be needed:

Lemma:

If Q_1 and Q_2 are qualifiers which do not refer to variables bound in each other then:

$$\{ E \mid Q_1 ; Q_2 ; QL \} = \{ E \mid Q_2 ; Q_1 ; QL' \}$$

Proof of the lemma:

By case analysis on Q_1 and Q_2 (using the translation rules of Section 7.3):

Case Q_1 and Q_2 are both filters:

$$= \text{LHS using } T1 \text{ twice}$$
$$\text{if } Q_1 \text{ then if } Q_2 \text{ then } \{ E \mid QL \} \text{ else } \text{bnil} \text{ else } \text{bnil}$$
$$= \text{(modulo termination)}$$
$$\text{if } Q_2 \text{ then if } Q_1 \text{ then } \{ E \mid QL \} \text{ else } \text{bnil} \text{ else } \text{bnil}$$
$$= \text{the RHS translated by } T1 \text{ twice}$$
Case Q1 is a filter and Q2 is a bag generator $Q_2 = v_2 \leftarrow q_2$:

- LHS using T_1 and T_3

 if Q_1 then $(bflatmap (\lambda v_2. \{ | E | QL | \}) q_2)$ else $bnil$

- using $bnil = bflatmap (\lambda v_2. bnil) b$

if Q_1 then $(bflatmap (\lambda v_2. \{ | E | QL | \}) q_2)$
else $(bflatmap (\lambda v_2. bnil) q_2)$

- providing v_2 not in Q_1 and if idempotency

if Q_1 then $(bflatmap (\lambda v_2. \text{if } Q_1 \text{ then } \{ | E | QL | \} \text{ else } bnil) q_2)$
else $(bflatmap (\lambda v_2. \text{if } Q_1 \text{ then } \{ | E | QL | \} \text{ else } bnil) q_2)$

- using $(\text{if } c \text{ then } e \text{ else } e) = e$ and $Q_1 \neq \bot$
- $bflatmap (\lambda v_2 . \text{if } Q_1 \text{ then } \{ | E | QL | \} \text{ else } bnil) q_2$
- the RHS translated using T_1 and T_3

Case Q1 is a generator and Q2 is a filter — similar to previous case

Case Q1 and Q2 are both generators:

\{ | E | v_1 \leftarrow q_1; v_2 \leftarrow q_2; QL | \} = \{ | E | v_2 \leftarrow q_2; v_1 \leftarrow q_1; QL | \}

do by induction on q_1

translating LHS and RHS using T_3

LHS = $bflatmap (\lambda v_1. (bflatmap (\lambda v_2. E) q_2)) q_1$

= RHS = $bflatmap (\lambda v_2. (bflatmap (\lambda v_1. E) q_1)) q_2$

base case: $bnil$

LHS and RHS = $bnil$

base case: $bunit \ x$

LHS and RHS = $bflatmap (\lambda v_1. E [v_1/x]) q_2$

providing v_1 not in q_2 and v_2 not in q_1.

inductive case: $bunion \ x \ y$

LHS

$bflatmap (\lambda v_1. (bflatmap (\lambda v_2. E) q_2)) (bunion x y)$

= $bhom$ and $flatmap$

$bunion (bflatmap (\lambda v_1. (bflatmap (\lambda v_2. E) q_2)) x)$

$(bflatmap (\lambda v_1. (bflatmap (\lambda v_2. E) q_2)) y)$
= using induction hypothesis

\[
\text{bunion (bflatmap (\v2. (bflatmap (\v1. E) x)) q2) (bflatmap (\v2. (bflatmap (\v1. E) y)) q2)}
\]

= since bunion associative and commutative

\[
\text{bflatmap (\v2. bunion (bflatmap (\v1. E) x) (bflatmap (\v1. E) y)) q2}
\]

= bflatmap properties

\[
\text{bflatmap (\v2. (bflatmap (\v1. E) (bunion x y))) q2}
\]

= translated RHS using T3 □

Proof of the Qualifier interchange theorem:

\[
\{ I \ E \ | \ QL; Q1; Q2; QL' I\} = \{ I \ E \ | \ QL; Q2; Q1; QL' I\}
\]

Do by induction on length of QL (a list of qualifiers):

 case: empty — lemma applies
 inductive case: QL = Q ; QR
 Q is a single qualifier and QR is a sequence of qualifiers.
 trivial from the translation rules because all the translation rules translate
 \(\{ I \ E \ | \ Q; QR; Q1; Q2; QL' I\} \) to a function of the translation of
 \(\{ I \ E \ | \ QR; Q1; Q2; QL' I\} \) □

The major optimisation which this theorem permits, is the moving of filters so as to filter
elements as early as possible. The following example is adapted from [108]:

\[
> \text{res1 = \{ } a \ | \ (a,b)\in\ ~AB; (c,d)\in\ ~CD; b=c; d=99 \}\}
\]

\[
> \text{res2 = \{ } a \ | \ (c,d)\in\ ~CD; d=99; (a,b)\in\ ~AB; b=c \}\}
\]

By qualifier interchange, res1 is equal to res2. If the number of pairs in CD with a second
component equal to 99 is much smaller than \(n \), where \(n \) is the size of AB and CD, then res2 is
considerable more efficient to compute than res1; res1 is \(O(n^2) \) and res2 is \(O(n) \). This is more
easily understood by analogy with for loops:

\[
\text{res1 = bag_of_all_values_such_that} \quad \text{res2 = bag_of_all_values_such_that}
\]
\[
\text{for (a,b) in AB} \quad \text{for (c,d) in CD}
\]
\[
\text{if b = c then} \quad \text{if d = 99 then}
\]
\[
\text{a} \quad \text{a}
\]
(These are similar to an SQL queries.)

This shows why it is desirable to filter elements as soon as possible. These transformations could be done automatically; however this would be considerably more difficult for lists because the qualifier interchange theorem does not hold. The compiler relies on the knowledge that the ordering of qualifiers for bags does not matter. Bags make this explicit, lists do not since the resulting elements' order may matter for lists.

7.5.1 Bag semantics

For manipulating bags it is desirable to have a denotational semantics for them. Unfortunately this is far from straightforward as is also the case with sets. This is because it is necessary to reconcile the partial (information) ordering with the sub-bag (compare with subset) ordering of bags. In order to do this powerdomains must be used which are complex constructions for handling domains of sets of values, see [102]. One way to do this is to model bags as sets, by uniquely labelling their elements.

A simpler approach is taken here, rather than trying to mathematically model bags, they are viewed algebraically, in terms of their properties. This is similar to the Squigol view of data structures. A bag corresponds to the free commutative monoid \((\text{bag } *, \text{bunion}, \text{bnil})\) generated by \(*\) under the assignment \(\text{bunit}: * \rightarrow \text{bag } *\). This means that \(\text{bhom } f g e\) defines a unique function, providing \(f\) is associative and commutative with identity an element \(e\). Thus providing the constraints hold \(\text{bhom } f g e\) denotes a unique function and the \(\text{bhom}\) equations describe its behaviour. This approach assumes all operations on bags are total. Thus it is not strong enough to enable reasoning about termination; only partial correctness can be ensured.

7.6 Bag implementation

This section describes the implementation of bags. There are two objectives of this section. Firstly an efficient representation of bags is sought, which is both fast and store efficient. Secondly a correct parallel implementation which is non-deterministic is sought.

7.6.1 Bag representation

How should bags be represented inside a computer system? Two obvious representations are lists and trees. Lists are compact and \texttt{bagify} is easy to implement, but \texttt{bunion} is slow, like list append. Trees are not compact and \texttt{bagify} must convert a list into a tree, but \texttt{bunion} can be performed in constant time. A good representation is to combine these two representations thus:

\[
\begin{align*}
& \text{bagrep } * ::= \text{Bnil } | \\
& \quad \text{Bunit } * | \\
& \quad \text{Bunion } \text{bagrep } * \text{bagrep } * | \\
& \quad \text{Blist } [*]
\end{align*}
\]
Note, Bnil, Bunit etc. are true constructors, but they are not visible to the user. The bagrep data type is used to implement the abstract data type bag whose operations are available to the user. This combined representation has the good features of both list and tree representations; in fact Bnil and Bunit are not really needed: Blist can be used, albeit less efficiently. With the bagrep representation bagify and bunion are both constant time operations.

The bag data type may be implemented, in terms of bagrep, thus:

```haskell
> bnil = Bnil
> bunit e = Bunit e
> bunion x y = Union x y
> bagify = Blist
```

A sequential implementation of bhom is:

```haskell
> bhom f g e (Bnil) = e
> bhom f g e (Bunit a) = g a
> bhom f g e (Union x y) = f (bhom f g e x) (bhom f g e y)
> bhom f g e (Blist l) = foldr h e l
  where h a b = f (g a) b
```

A problem with this representation is that redundant Bnils may consume a lot of storage. This can be prevented by normalising bags so that redundant Bnils are eliminated; thus Bnil only occurs for representing a genuinely empty bag. The bag 'constructors' may then be implemented thus:

```haskell
> bnil = Bnil
> bunit e = Bunit e
> bunion (Blist []) (Blist []) = Bnil
> bunion (Blist []) x = x
> bunion x (Blist []) = x
> bunion Bnil x = x
> bunion x Bnil = x
> bunion x y = Union x y
```

Normalising bags can save a lot of storage, but it does have an overhead too. Further normalisation is possible; for example rather than using Blist directly a function can be used:

```haskell
> blist [] = Bnil
> blist [e] = Bunit e
> blist l = Blist l
```

This also eliminates the three Blist equations used for normalising 'unioned' bags. The bagify function is now just equal to blist. Normalisation opens up several bag possibilities. It would
be possible to allow pattern matching on Bnil and Bunit; however, this is not really in keeping with the notion of bags being abstract data types. Some operations could be made much faster; for example, \texttt{bempty} can be done in constant time and multiple bag traversals would be made more efficient. Also, if a non-empty bag homomorphism was required, this could be implemented as \texttt{bhom f g \perp}; since only genuinely empty bags would contain Bnils.

Normalisation does not affect the termination properties of bags. This is because once a bag has been demanded, its whole structure will be required. Intuitively, either none of the bag structure or the whole bag structure will be required; this is necessary for bag operations to be deterministic. Note that bag elements may not be evaluated; for example, \texttt{bsize} need only examine the structure of a bag. If bags are normalised, then the \texttt{bisempty} operation need only examine the top level constructor of the bag to determine whether the bag is empty or not. Normalisation means that the empty bag has a unique representation, namely Bnil. Without normalisation, the whole bag structure must be traversed. Thus normalisation can reduce the space usage of bags and it can improve the efficiency of some operations such as \texttt{bsize} and \texttt{bisempty}.

7.6.2 Developing a parallel implementation

This section develops a parallel implementation of bags. It assumes that bags are strict to WHNF in their elements. The implementation allows bag elements to be combined in any order; thus the implementation is non-deterministic. A non-deterministic rewriting system is used for the development.

Bags may be sequentially implemented in an ordinary functional language. However, a parallel implementation of \texttt{bhom f g e} is interesting, because bag elements may be combined with \texttt{f} in any order; this may be done efficiently by combining elements in the order in which they terminate. This allows the non-deterministic reduction order of parallel functional tasks to be matched to subsequent non-deterministic combination of such tasks. This non-deterministic behaviour cannot be achieved with \texttt{par} and \texttt{seq}; thus, the parallel bag implementation requires the implementation of a special non-deterministic mechanism. The implementation of such a mechanism is non-trivial because the evaluation occurs asynchronously. In particular, termination is quite delicate and must be explicitly detected; this is generally the case for asynchronous (relaxation) algorithms, for example, see [8].

The parallel implementation of bags is developed semi-formally to show that it is a correct implementation. For simplicity, the Blist constructor is ignored; its implementation is fairly obvious from what follows. A simple re-writing system illustrates the operation of \texttt{bhom}:

\[
\texttt{bhom f g e b = (mkbag b, \{e\})}
\]

\[
\begin{align*}
\text{\{x\} }\cup D, U & \rightarrow (D, U \cup \{g x\}) \\
(D, \{p, q\} \cup U) & \rightarrow (D, U \cup \{f p q\})
\end{align*}
\]

\[
f = \mathcal{M}[f], g = \mathcal{M}[g] \text{ and } e = \mathcal{M}[e]
\]

The first line shows the initial value of the tuple to be rewritten, given a full \texttt{bhom} application. The second and third lines show the two rules of the rewriting system. A rule matching the
tuple is selected, and the tuple is rewritten according to that rule. Rewriting stops when no rule matches the tuple. Here D and U are mathematical (algebraic) bags, where $\{\}$ denote bags, \cup denotes bag union and hom denotes a bag homomorphism, like bhom. The mkbag function is used to translate a concrete bag, as represented by bagrep, into a mathematical bag; its elements are also translated to mathematical values. It is assumed that f is associative and commutative, e is an identity element of f and the meanings of the arguments to bhom and bag elements are given via a standard denotational semantics.

The bag D (down bag) corresponds to the map part of bhom; evaluation proceeds down the tree like representation of bags (bagrep). The bag U (up bag) corresponds to the fold part of bhom; evaluation proceeds upwards, combining values with f. The rewriting system shows that several rewrites may be performed in parallel. Providing there are no dependencies between concurrent rewrites, the result will be the same as through the rewrites were performed in some sequence. Parallelism arises from concurrent applications of g and f.

The basis for the correctness proof of the rewriting system is shown below:

start the rewriting starts as described with a finite D and $U = \{e\}$

termination the following strictly decreases $2 \times |D| + |U|$ where $|B|$ is the size of the bag B

invariant the following holds: $h(\text{mkbag} b) = f(hD)(\text{horn} f id e U)$ where $h = \text{horn} fge$

result the rewrite system terminates when $D = \{}$ and $U = \{v\}$ therefore $v = h\ b$

However, this simple rewriting system is hard to implement directly; the difficulty is in combining elements of U with f. It is desired to combine pairs of elements of U as soon as they become available. Unfortunately, it is unclear how to do this from the rewriting system. Some rendezvous point for evaluated elements of U is required. A more complex rewriting system, based on the previous one, has been developed which may be easily implemented. This uses an accumulator, a, to act as a rendezvous point for evaluated elements of U. The accumulator holds the most recently evaluated element of U; it accumulates the result. A distinguished element E is used to represent an empty accumulator. In addition, this new rewriting system is made less abstract by working directly with the bag representation (bagrep):

$$\text{bhom} f g e b = (\{b\}, \{\}, e)$$

\[
\begin{align*}
\{\text{Bnil}\} \cup D, U, a & \quad \rightarrow \quad (D, U, a) \quad (1) \\
\{\text{Bunit} \ z\} \cup D, U, a & \quad \rightarrow \quad (D, U \cup \{g \ z\}, a) \quad (2) \\
\{\text{Bunion} x y\} \cup D, U, a & \quad \rightarrow \quad (D \cup \{x,y\}, U, a) \quad (3) \\
(D, \{v\} \cup U, a) & \quad \rightarrow \quad (D, U \cup \{f \ a \ v\}, \epsilon), \text{ if } a \neq \epsilon \quad (4) \\
(D, \{v\} \cup U, \epsilon) & \quad \rightarrow \quad (D, U, v) \quad (5)
\end{align*}
\]

$z = M[z], f = M[f], g = M[g]$ and $e = M[e]$

As before D represents the down (map) part of bhom and U represents the up (fold) part of bhom. The bag D is also used to extract elements from the bag representation. The pieces of bag representation in D are progressively split-up (rule 3) until elements are encountered (rule 2). The function g is applied to bag elements, representing the map operation, and the application
results are put in U for subsequent combination (rule 2). Rule 4 combines an element from U and the element in the accumulator using f, and the result is put in U. If the accumulator is empty rule 5 puts an element from U into it. This rewriting system is less abstract than the previous one because it uses the bag representation (bagrep) directly and it uses an accumulator as an explicit rendez-vous point for combining elements in U. As before parallelism arises from being able to perform several rewrites concurrently; and in particular performing f applications in parallel and g applications in parallel. Rules 1 to 3 may be applied concurrently to different elements in D. Rule 4 may be overlapped with other rule applications. That is, to perform a rewrite using rule 4 it is not necessary to wait for the application $f \ a \ v$ to complete, before applying other rules. However it is necessary to rewrite the accumulator to E before applying other rules.

The correctness proof of this more complicated rewriting system is similar to that of the previous, simpler, rewriting system:

start the rewriting starts as described with a finite D and empty U

termination the following strictly decreases $(t \ D) + 2 \times |U| + w \ a$ where (in Squigol)

$t = +/ \ (3 \cdot \text{height})^*, \text{height}$ returns the height of a tree (bagrep); t is similar to the standard multiset ordering used in termination proofs; $w \ x = \text{if} \ (x = \varepsilon) \ \text{then} \ 0 \ \text{else} \ 1$

invariant the following invariant holds, let $h = \text{hom} \ f \ g \ e$

$h (\text{mkbag} \ b) = f (\text{hom} \ f \ (h \cdot \text{mkbag} \ c \ D) \ (\text{hom} \ f \ \text{id} \ e \ (U \cup (q \ a)))) \text{where}$

$q \ x = \text{if} \ (x = \varepsilon) \ \text{then} \ \{\} \ \text{else} \ \{x\}$

result the rewrite system terminates when $D = U = \{\}$ and therefore $a = h (\text{mkbag} \ b)$

Termination and invariant maintenance must be proved:

Termination proof:

Each rewrite rule must decrease $(t \ D) + 2 \times |U| + w \ a$ that is using $(t \ D) + 2 \times |U| + w \ a$, it must proven that for each rule LIIS $>$ RIIS. For each rule it will be assumed that for the LHS of the rule: $d = t \ D$, $u = 2 \times |U|$ and $z = w \ a$. The LIIS and RIIS values for the rule will then be compared in order to prove that LIIS $>$ RIIS.

(rule 1): only D changes.

$d + u + z > (d - 3^0) + u + z$

since height of Bnil is 0

(rule 2): D decreases by one element of height 1, U increases by one element and a is unchanged.

$d + u + z > (d - 3^1) + (u + 2) + z$

since height of $\text{Bunit} \ x$ is 1

(rule 3): only D changes.

$d + u + z > (d - 3^j + 3^l + 3^k) + u + z$

where $j, k < i$ (law about height)
(rule 4): D is unchanged, $|U|$ remains the same, a is not empty and it becomes empty.

\[d + u + 1 > d + u + 0 \]

(rule 5): D is unchanged, $|U|$ loses an element, a is empty and it becomes full.

\[d + u + 0 > d + (u - 2) + 1 \]

The termination proof is not dependent upon the associativity or commutativity of the combining function f. Thus even non-deterministic programs will terminate (providing f and g are total etc.).

Invariant proof:

\[h = \text{hom } f g e \text{ and } \text{id} \text{ is the identity function} \]

The following properties of h and hom will be required:

- **hom property 1** for any f, g, e, B, x: $\text{hom } f g e (B \cup \{x\}) = f (\text{hom } f g e B)(g x)$
- **hom property 2** for any f, e, B, x: $\text{hom } f \text{id} e (B \cup \{x, y\}) = \text{hom } f \text{id} e (B \cup \{f x y\})$
- **h property** for any x, y and $h = \text{hom } f g e$: $h (x \cup y) = f (h x)(h y)$

Proof by induction on rewrite sequences:

base case: $({\{b\}}, {}, e)$

\[h (\text{mkbag } b) = f (\text{hom } f (h \cdot \text{mkbag}) e \{b\}) (\text{hom } f \text{id} e (\{\} \cup \{\})) \]

RHS $= \text{hom } f (h \cdot \text{mkbag}) e \{b\}$

$= (h \cdot \text{mkbag}) b$

inductive cases: rules 1-5

assume it holds for LIIS, prove it holds for RIS

(rule 1) trivial since $\text{mkbag } \text{Bnil} = {}$

(rule 2)

\[h (\text{mkbag } b) = f (\text{hom } f (h \cdot \text{mkbag}) e (\{\text{Bunit } x\} \cup D)) (\text{hom } f \text{id} e (U \cup \{q a\})) \]

RHS of above

\[f (\text{hom } f (h \cdot \text{mkbag}) e (\{\text{Bunit } x\} \cup D)) (\text{hom } f \text{id} e (U \cup \{q a\})) \]

$= \text{hom } \text{property 1}$

\[f (f (\text{hom } f (h \cdot \text{mkbag}) e D) ((h \cdot \text{mkbag}) (\text{Bunit } x))) (\text{hom } f \text{id} e (U \cup \{q a\})) \]

$= \text{using } h \text{ def. and } \text{mkbag (Bunit } x) = x$

\[f (f (\text{hom } f (h \cdot \text{mkbag}) e D) v) (\text{hom } f \text{id} e (U \cup \{q a\})) \text{ where } v = g x \]
= using \(f \) associativity and commutativity
\[
f (\text{hom } f (h \cdot \text{mkbag}) \cdot D) \cdot (f \cdot v \cdot (\text{hom } f \cdot \text{id} \cdot e (U \cup \{q \cdot a\}))
\]
= hom property 1
\[
f (\text{hom } f (h \cdot \text{mkbag}) \cdot D) \cdot (\text{hom } f \cdot \text{id} \cdot e (U \cup \{v\} \cup q \cdot a))
\]
where \(v = g \cdot x \)
= invariant for the RHS of rule 2

(rule 3)

\[
h (\text{mkbag } b) = f (\text{hom } f (h \cdot \text{mkbag}) \cdot e (\{\text{Union } x \cdot y\} \cup D)) \cdot (\text{hom } f \cdot \text{id} \cdot e (U \cup q \cdot a))
\]
RHS of above
\[
f (\text{hom } f (h \cdot \text{mkbag}) \cdot e (\{\text{Union } x \cdot y\} \cup D)) \cdot (\text{hom } f \cdot \text{id} \cdot e (U \cup q \cdot a))
\]
= hom property 1
\[
f (f (\text{hom } f (h \cdot \text{mkbag}) \cdot D) \cdot ((h \cdot \text{mkbag}) (\text{Union } x \cdot y))) \cdot (\text{hom } f \cdot \text{id} \cdot e (U \cup q \cdot a))
\]
= using the law: \(\text{mkbag} (\text{Union } x \cdot y) = \text{mkbag } x \cup \text{mkbag } y \)
\[
f (f (\text{hom } f (h \cdot \text{mkbag}) \cdot D) \cdot (h (\text{mkbag } x \cup \text{mkbag } y))) \cdot (\text{hom } f \cdot \text{id} \cdot e (U \cup q \cdot a))
\]
= using the \(h \) property
\[
f (f (\text{hom } f (h \cdot \text{mkbag}) \cdot D) \cdot (f (h (\text{mkbag } x))(h (\text{mkbag } y)))) \cdot (\text{hom } f \cdot \text{id} \cdot e (U \cup q \cdot a))
\]
= hom property 1 twice
\[
f (\text{hom } f (h \cdot \text{mkbag}) \cdot e (\{x,y\} \cup D)) \cdot (\text{hom } f \cdot \text{id} \cdot e (U \cup q \cdot a))
\]
= invariant for the RHS of rule 3

(rule 4)

\[
h (\text{mkbag } b) = f (\text{hom } f (h \cdot \text{mkbag}) \cdot e D) \cdot (\text{hom } f \cdot \text{id} \cdot e (\{v\} \cup U \cup \{a\}))
\]
RHS of above
\[
f (\text{hom } f (h \cdot \text{mkbag}) \cdot e D) \cdot (\text{hom } f \cdot \text{id} \cdot e (\{v\} \cup U \cup \{a\}))
\]
= hom property 2 and \(q \cdot E = \{\} \)
\[
f (\text{hom } f (h \cdot \text{mkbag}) \cdot e D) \cdot (\text{hom } f \cdot \text{id} \cdot e (U \cup \{f \cdot a \cdot v\} \cup q \cdot E))
\]
= invariant for the RHS of rule 4

(rule 5) trivial

□

The invariance proof is dependent upon the associativity and commutativity of the combining function \(f \) and \(e \) being an identity element of \(f \). Thus the value returned by non-deterministic programs is unknown.

The result:
The rewriting system terminates when no further rewrite rules can be applied. Thus the remaining triple must belong to the set which is the complement of the union of the rewrite rule left hand sides. This is the set of triples \(\{(\{} , \{\}, a) \}. \) The invariant restricts the value of \(a \) to that required.

A deficiency of the rewriting system is that it does not give the desired parallel behaviour when the result of a \(\text{bhom} f \ g \ e \ b \) application is a function. In particular \(\text{bapply} (= \text{bhom} (\cdot) \ id \ id) \) does not have the desired behaviour. This is because for an application such as \(\text{bapply} \ b \ a \), the functional result of \(\text{bapply} \ b \) will not be applied to \(a \) until all of the functions in \(b \) have been evaluated. It is desired for the functions in \(b \) to be applied to \(a \) as they become evaluated. One way to solve this problem is to provide a special implementation for \(\text{bapply} \). Although this is not a general solution, in practice \(\text{bapply} \) is the most commonly used \(\text{bhom} \) application which yields a functional result. A type-checker could issue warnings about \(\text{bhom} \) applications which yield functional results.

A rewriting system which gives \(\text{bapply} \) the desired operational behaviour is shown below:

\[
\begin{align*}
\text{bapply} \ b \ a & = (\{b\}, a) \\
(\{\text{Bnil}\} \cup D, v) & \rightarrow (D, v) \quad (1) \\
(\{\text{Bunit} \ f\} \cup D, v) & \rightarrow (D, f \ v) \quad (2) \\
(\{\text{Bunion} \ x \ y\} \cup D, v) & \rightarrow (D \cup \{x, y\}, v) \quad (3)
\end{align*}
\]

\(a = M[a] \) and \(f = M[f] \)

The basis for the correctness proof of the rewriting system is shown below:

\[\text{start} \text{ the rewriting starts as described with a finite } D\]

\[\text{termination} \text{ the following strictly decreases } (t \ D) \text{ where (in Squigol) } t = +/- (3^* \ height)^*, \text{ height returns the height of a tree (bagrep); } t \text{ is similar to the standard multiset ordering used in termination proofs}\]

\[\text{invariant} \text{ the following invariant holds, let } h = \text{hom} (\cdot) \ id \ id \]

\[h (\text{mkbag} \ b) \ a = \text{hom} (\cdot) (h \cdot \text{mkbag}) \ id \ D \ v\]

\[\text{result} \text{ the rewrite system terminates when } D = \{\} \text{ and therefore } v = h (\text{mkbag} \ b) \ a\]

The proof of correctness is similar to the \(\text{bhom} \) one.

7.6.3 Practical parallel implementations of \(\text{bhom} \) and \(\text{bapply} \)

The rewriting systems may be used to guide the practical parallel implementations of \(\text{bhom} \) and \(\text{bapply} \). There is a gap between the rewriting systems and the implementations, it would be nice to prove the implementations are correct with respect to the rewriting systems. However, the rewriting systems are very revealing and the implementations closely follow them. Of particular
importance is that by keeping track of the sizes of \(D\) and \(U\), for \(b\hom\), and \(D\) for \(b\apply\), termination may be detected. The invariants of the rewriting systems imply that when termination occurs the accumulators of \(b\hom\) and \(b\apply\) hold the overall results.

The implementation of \(b\hom\) is now described. When \(b\hom\) is first reduced a single task is created (\(\text{down_phase}(b)\)), to traverse the tree (\(\text{bagrep}\)). Also an accumulator corresponding to \(a\) is constructed, this includes information on the sizes of \(D\) and \(U\); all tasks have access to the accumulator.

\[
\text{acc} = (\text{value : graph-pointer}; \text{full : boolean}; \text{dsize, usize : integer})
\]

Initially for \(\text{bh}\om\ f\ g\ e\ b\): \(\text{acc} = (e, \text{true}, 1, 0)\) and \(\text{down_phase}(b)\) is initiated.

There are two overlapping phases in the evaluation:

down phase: the bag structure is evaluated in parallel and \(g\) is applied to the elements of the bag in parallel. This corresponds to rules 1 to 3, the map part of \(\text{bh}\om\).

up phase: the elements resulting from the down phase are combined with \(f\). This corresponds to rules 4 and 5, the fold part of \(\text{bh}\om\).

The algorithm is as follows (for simplicity the \(\text{Blist}\) case has been omitted but its implementation should be obvious):

down_phase\(_\)(x) =

\[
\begin{align*}
\text{eval}(x) \\
case x \ of \\
b\text{nil}: & \quad \text{decrement acc.dsize} \\
& \quad \text{-- whole bhom has terminated?} \\
& \quad \text{if} \{ (\text{acc.dsize} = 0) \text{ and } (\text{acc.usize} = 0) \} \\
& \quad \text{then return(acc.value)} \\
& \quad \text{else die} \\
b\text{unit a}: & \quad \text{increment acc.usize} \\
& \quad \text{decrement acc.dsize} \\
& \quad \text{-- make an application and bind it to y} \\
& \quad y := (g\ a) \\
& \quad \text{eval}(y) \\
& \quad \text{up_phase}(y) \\
b\text{union l r}: & \quad \text{increment acc.dsize} \\
& \quad \text{spark_new_task(down_phase(r))} \\
& \quad \text{down_phase}(l)
\end{align*}
\]

up_phase\(_\)(x) =

\[
\begin{align*}
\text{if acc.full} \\
\text{then } \{ v := \text{acc.value} \\
\quad \text{up_phase}(x) \}
\end{align*}
\]
CHAPTER 7. BAGS

All single operations must be atomic and all groups of operations, enclosed by curly braces must behave as single atomic instructions. Since applications of f are disconnected from the rest of the program graph, they can only be evaluated by the task created to evaluate them; thus bhom sparks may not be discarded. If it is desired to limit parallelism in this way, then when a task spark occurs which is not required, the spark must be performed sequentially by the parent task.

For large bags the accumulator could become a bottleneck in which case some form of distribution would be required; for example a bag could be split up into several smaller bags each implemented as described and the results of those could be combined in a similar way. This may be described as a program transformation, in a similar way to the data parallelism optimisations shown in Section 6.5, using Squigol.

\[
f \cdot g^*
= \text{chk law}
\]

\[
f \cdot g * \cdot \Psi / \cdot \text{chk}_k
= \text{map promotion}
\]

\[
f / \cdot \Psi / \cdot g ^* \cdot \text{chk}_k
= \text{reduce promotion}
\]

\[
f / (f/) ^* \cdot g ^* \cdot \text{chk}_k
= \text{map composition}
\]

Returning to the functional programming world, this may be expressed thus:

\[
\text{bhom}' f \cdot g \cdot e = \text{bhom} f (\text{bhom} f \cdot g \cdot e) \cdot \text{chk} \cdot k
\]

The problem with splitting up the bag in this way is that it prevents elements in different sub-bags from being combined. All the elements in a sub-bag must be combined before their result may be combined with the result of any other sub-bag. Thus splitting up a bag into sub-bags introduces extra synchronisation. Further work is required to see if a better implementation of bhom can be found, which avoids the accumulator bottleneck but which is not overly synchronous.

With a tree like bag representation, well balanced trees are desirable: firstly from a storage efficiency viewpoint and secondly when f and g are cheap operations and the the cost of traversing the tree becomes important. One way to achieve this is to balance trees when they are
constructed, in a similar way to normalisation. This is an expensive operation but if bag union
occurrs infrequently compared to bhom it could be cost effective.

The implementation of bapply is now described; in many ways this is similar to bhom. The major
difference between the implementations is that for bapply the combination of bag elements, by
applying them to the accumulator, is performed sequentially by one task. Initially one task is
created to do this (init_task(b)). An accumulator corresponding to v is created in which to
accumulate the result. This also contains a counter corresponding to the size of D, to detect
termination; this counts the number of functions which have been applied to v. In addition the
accumulator contains a queue of evaluated functions waiting to be sequentially applied to v.

\[
\text{acc} = (\text{value : graph-pointer; dsize : integer; fqueue : queue of graph-pointer})
\]

Initially for bapply b a: acc = (a, 1, empty) and init_task(b) is initiated.

The algorithm is as follows:

\[
\text{init_task(b)} = \\
\begin{align*}
\text{allocate(acc)} \\
\text{initialise(acc)} \\
\text{spark_new_task(down_phase(b))} \\
\text{while acc.dsize > 0 do} \\
\quad \text{if not isempty(acc.fqueue) then} \\
\quad \quad \text{decrement acc.dsize} \\
\quad \quad f := \text{dequeue(acc.fqueue)} \\
\quad -- \text{ make an application and bind it to x} \\
\quad x := f \text{ acc.value} \\
\quad \text{eval(x)} \\
\quad \text{acc.value := x} \\
\text{return(acc.value)}
\end{align*}
\]

\[
\text{down_phase(x)} = \\
\begin{align*}
-- x is evaluated to WHNF \\
\text{eval(x)} \\
\text{case x of} \\
\text{bnil:} & \text{ decrement acc.dsize} \\
& \text{die} \\
\text{bunit f:} & \text{ eval f} \\
& \text{enqueue(f, acc.fqueue)} \\
& \text{die} \\
\text{bunion l r:} & \text{ increment acc.dsize} \\
& \text{spark_new_task(down_phase(r))} \\
& \text{down_phase(l)}
\end{align*}
\]
The `init_task` procedure creates and initialises the accumulator. Then it repeatedly extracts functions from the queue and applies them to `v`, until all the functions in `D` have been applied. Thus it corresponds to the function application part of rule 2. The `down_phase` procedure corresponds to rules 1 to 3; it traverses and evaluates the bag structure and the bag elements in parallel.

Since combination of bag elements occurs sequentially in `bapply`, there are no bottleneck problems. Similar considerations to those for `bhom` apply to `bapply` if it is desired to discard sparks in a GRIP-like fashion.

7.7 Parallel bags performance

What are the performance benefits of bags over conventional data structures? The benefits arising from sequential optimisations have already been described. In a parallel setting, the benefit of bags over other data structures is that bag elements may be combined in the order in which they terminate. This concerns the folding part of `bhom`; thus it is sufficient to compare `bfold` with `folds` on conventional data structures. A fair comparison can be made with trees. A parallel tree fold may be described thus:

```haskell
> tree * :: = Tnil |
> Tunit * |
> Tunion (tree *) (tree *)

> treefold f e Tnil      = e
> treefold f e (Tunit x) = x
> treefold f e (Tunion x y) = par 1 (seq r (f 1 r))
>   where
>     r = treefold f e x
>     l = treefold f e y
```

If the cost of combining elements is constant and it is much larger than the cost of traversing the bag structure, then the parallel cost of `treefold` is, theoretically, proportional to the maximum depth of the tree. (The maximum number of combining function applications occurring in sequence.) The function `bfold` behaves in such a way that the cost of combining elements is as though the elements were arranged as a balanced tree. Thus the theoretical cost of `bfold` is proportional to `[ln n]` where `n` is the size of the bag. Therefore for balanced trees `treefold` and `bfold` have the same parallel cost. Thus when the cost of combining elements is constant and it is much larger than the cost of traversing the bag structure, `bfold` prevents the need for balancing trees. However, if the cost of combining elements is comparable to the cost of traversing the bag structure, `bfold` behaves like `treefold`. In some cases it may be possible to balance a tree before combining tree elements, in order to achieve a similar parallel efficiency to a bag. However, this will not be practical if the combining operation is relatively cheap.

This automatic balancing effect from the implementation of bags can arise because bags’ combining operations must be associative. Similar results could be achieved by designing a special list folding operator which was designed to work with just associative combining operations. However it seems difficult to implement such an operator.
In addition, the commutative aspect of bags’ combining operations means that the effect is more than just tree balancing. Elements are effectively rearranged out of their original order, into the order in which they terminate. Thus elements are combined in the order in which they terminate. This matters when the cost of combining elements varies or when elements become available at different times due to their scheduling. In such cases it is extremely difficult to write a program without bags to arrange elements to be combined in the order in which they terminate, and hence to maximise concurrency.

A simple example which compares trees and bags is shown in Figure 7.1; Chapter 4 describes the experimental set-up, in particular bags were implemented using the algorithms described in the previous section. A bag and tree of small vectors, all of the same size, were summed together — thus the combining operation (addition) had a constant cost. The bag (which was represented as a tree using bagrep) and tree of vectors were given the same shape of the fibonacci call tree; which is a moderately well balanced tree. The bag and tree contained 89 vectors in the shape of fib 10.

<table>
<thead>
<tr>
<th>Program</th>
<th>bag</th>
<th>tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of machine cycles</td>
<td>4586</td>
<td>5953</td>
</tr>
<tr>
<td>Average parallelism</td>
<td>13.6</td>
<td>10.4</td>
</tr>
<tr>
<td>Work done</td>
<td>62278</td>
<td>62209</td>
</tr>
<tr>
<td>Max. number of active tasks</td>
<td>77</td>
<td>76</td>
</tr>
<tr>
<td>Total number of tasks</td>
<td>89</td>
<td>88</td>
</tr>
<tr>
<td>Average sparked task length</td>
<td>700</td>
<td>669</td>
</tr>
</tbody>
</table>

The results show that the bag version had a greater degree of initial parallelism, which resulted in it being the quickest of the two. Further comparison is hard due to the different implementation costs associated with the two particular implementations. It is possible though to use the previous theoretical remarks to compare the two. The maximum height of a fibonacci call tree is $n-1$ for $fib\ n$. Therefore the cost of the tree version ($fib\ 10$) was proportional to 9. The number of elements in the bag/tree was 89; therefore the cost of the bag version was proportional to 7 ($= [\log_2 89]$). This gives the bag version a 22% performance improvement over the tree version, which is reasonably consistent with the experimental figures.
There is another parallelism benefit from bags which has not been explored here. This concerns pipelining and scheduling. Sometimes it is desirable to combine bag elements sequentially, for reasons of efficiency (see Chapter 6). With conventional data structures this must happen in the pattern specified by the combining function. For example a list of numbers might be summed from left to right using \(\text{foldr} \ (+) \ 0 \). If the list of numbers is evaluated in parallel then task scheduling may cause elements to become available in a different order from their ordering in the list. This will hinder elements consumption which can only occur in strict sequence, left to right. Hence evaluation will be slowed down, it may also result in a large amount of storage use, from the eagerly evaluated list. Bags can eliminate this problem since they are not restricted by such over-specified functional dependencies. However the bags described here do not do this. Essentially a special sequential \(\text{bfold} \), or \(\text{bfold} \) part of \(\text{bhom} \), is required.

Friedman and Wise [37] have designed bags which behave in this way. Their bags consisted of lists whose elements were evaluated in parallel, and which were ordered according to when they terminated. Unfortunately they viewed their lists as a way of introducing genuine non-determinism into a functional language. Also, they did not have a parallel \(\text{bfold} \) (\(\text{bhom} \)), only a sequential \(\text{fold} \) and parallel map.

7.8 Sets

Lists with an associative combining operator have been briefly mentioned. Increasing the number of laws which the combining operator must obey can yield sets. Bags may be usefully used to implement sets. The extra law for implementation of sets is that the combining operator in \(\text{bhom} \) \(f \) \(g \) \(e \) must be idempotent, in addition to associative and commutative. This representation of sets does contain duplicates, but because combining operations must be idempotent they are hidden. For space efficiency sets could be normalised, similar to bags, to eliminate duplicates. However in cases where there are many duplicate elements an alternative representation for sets may be desirable, for example see [12].

The set abstract data type may be defined thus:

\[
\begin{align*}
> & \text{snil} \\
> & \text{sunit} \\
> & \text{sunion} \\
> & \text{shom}
\end{align*}
\]

\[
= \ \text{bnil} \\
= \ \text{bunit} \\
= \ \text{bunion} \\
= \ \text{bhom}
\]

Bag comprehensions may also be used to specify sets. For example:

\[
> \text{setfilter } s \ p = \{ \ | \ x \ | \ x <^* s; \ p \ x \ |
\]

Since addition and multiplication are not idempotent, \(\text{setsize} \) and \(\text{setsum} \) may not be defined as \(\text{shom} \ (+) \ (\text{const} \ 1) \ 0 \) and \(\text{shom} \ (+) \ \text{id} \ 0 \). One way to implement these is to convert sets to bags, by removing duplicates. Then \(\text{bagsize} \) and \(\text{bagsum} \) may be used.

\[
\begin{align*}
> & \text{settobag } s = \ \text{shom} \ f \ \text{bunit} \ \text{bnil} \ s \\
> & \text{where} \\
> & \ f \ b1 \ b2 = \ \text{bunion} \ b1 \ \{ \ | \ x \ | \ x <^* \ b2; \ \neg (\text{bmem} \ x \ b1) \ |
\end{align*}
\]
The function f, above, is idempotent as well as associative and commutative. This only works where equality is defined on the set elements.

A last set example, set sort:

```
> ssort :: (*->*->bool) -> set * -> [*]
> ssort p s = shorn (remsorteddups . merge p) listunit [] s
>      where
>          listunit e = [e]
>          merge p [] l = l
>          merge p l [] = l
>          merge p (x:xs) (y:ys) =
>                                    x : merge p xs (y:ys), p x y
>                                    = y : merge p (x:xs) ys, otherwise
```

The representation of sets as bags is similar to the sets used in Machiavelli [86]. Machiavelli is an extension of ML designed for database applications. In particular it extends ML polymorphism to handle records. A key feature of Machiavelli is its ability to represent relations as sets of records. Machiavelli's set type is similar to a bag. A set type can be defined over any equality type, that is any data type for which equality is available. (It is unclear whether sets of equality types are themselves equality types.) Like ML, it is a strict language and hence sets can only have a finite cardinality. There are five basic operations on sets:

- empty set constructor
- singleton set constructor
- set union
- set homomorphism
- non-empty set homomorphism

The latter two operations may be described thus:

```
{()} = z
{f} = f
intersect = union
```

Applications of hom and hom* are only considered proper if f has no side effects and op is associative and commutative. This ensures the result of hom is independent of evaluation order. Machiavelli cannot guarantee that hom applications are proper. Indeed, they write "improper applications of hom are frequently useful" [86]. Applications of hom may be evaluated in parallel.
The authors claim that such sets are sets in the mathematical sense and that they are not bags or lists. However in order to be sets, set union must be idempotent, and hence so must \(\text{op} \) in \(\text{hom}(f, \text{op}, z) \).

7.9 Examples of bags use

This section shows several examples of bags use. In particular two problems posed by Arvind are solved using bags, and a divide and conquer combinator is defined using bags.

An example where the combination of bag elements non-deterministically would greatly improve the speed of an algorithm is a parallel compiler and linker. The compilations may proceed in parallel subject to module dependencies; once any two modules have been compiled they may be linked together to form a single object code file:

\[
> \text{a_out} = \text{bfold linker empty_prog bag_of_comp_progs}
\]

The \text{linker} function should be associative and commutative, and \text{empty_prog} should be its identity element.

In [6], Arvind shows two examples where I-structures, single assignment arrays, have limitations. Some of these problems may be resolved by using bags.

The first example is: "... we are given a very large number of generators (say a million of them), each producing a number. We want to compute a frequency distribution (histogram) of these values in say 10 intervals. An efficient parallel solution should allocate an array of ten accumulators initialised to zero, and execute as many generators as possible in parallel. As each generator completes, its result should be classified into an interval \(j \), and the \(j \)'th accumulator should be incremented. It does not matter in which order accumulations are performed, ...”, [6]. This may be coded using bags thus:

\[
> \text{gens} = \text{mkbag generators} \\
> \text{accumulators} = \text{mkarray 1 10 f} \\
> \quad \text{where } f\ i = \text{bsize (bfilter (interval } i \text{) gens)}
\]

The function \text{mkbag} constructs a bag in parallel. The predicate \text{interval } i \ g \text{ returns true if a generator } g \text{ is in interval } i. \text{The array of generators is modelled as a bag. The accumulations may be performed in the order in which generators complete.}

The problem with the above solution is that each generator is examined by each interval, if there are a large number of intervals this could be inefficient. A solution which alleviates this problem, by generating a bag of functions to increment array elements, is:

\[
> \text{inc_array :: num -> array num -> array num} \\
> \text{int :: generator -> num}
\]
CHAPTER 7. BAGS

Figure 7.2: Histogram

\[
\begin{align*}
\text{Number of tasks} & \quad 0 \quad 50 \quad 100 \quad 150 \quad 200 \quad 250 \\
\text{Time} & \quad 0 \quad 10000 \quad 20000 \quad 30000 \quad 40000 \quad 50000 \quad 60000 \quad 70000
\end{align*}
\]

\begin{verbatim}
> intv g = seq v (inc_array v) where v = int g
> initarray = makearray 1 10 (const 0)
> increments = bmap intv gens
> result = bapply increments initarray
\end{verbatim}

Notice that the functions in increments, applications of inc_array, all commute with themselves, and hence satisfy the bapply proof obligation.

The function inc_array increments an element of an array and int classifies a generator into an interval (1 to 10). The intv function takes a generator as argument and produces a function result; the function produced will increment the appropriate interval of an array of intervals, according to the interval within which the generator falls. The bag of increments are then applied to an array initialised to zero.

With this solution the generators can execute in parallel but the increments are done sequentially; however the increments may be done in the order in which they are produced. The bag increments may be viewed as a bag of increment messages for the accumulators — the result array. A desirable optimisation is for the store used by initarray to be re-used by bapply.

Experimental results yielded the parallelism profile shown in Figure 7.2. The experiment used 10 intervals and 256 generators. Delays of 0 to 15000 cycles (in multiples of 5000 cycles) were used.

The second example is: "... in a system that performs symbolic algebra computations, consider the part that multiplies polynomials. A possible representation for the polynomial:

\[a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots + a_n x^n\]

would be an array of size \(n+1\) containing the coefficients \(a_0, \ldots, a_n\). To multiply two polynomials \(A\) and \(B\) of degree \(n\) together, we need first to allocate an array of size \(2n\), with each location
containing an accumulator initialised to 0; then, for each \(j \), initiate \((j + 1)\) processes to compute \(a_0 \times b_j, a_1 \times b_{j-1}, \ldots, a_j \times b_0 \); as each of these processes completes, its result should be added to the \(j \)'th accumulator. The order of the accumulation at any index does not matter." [6].

This may be programmed thus:

```haskell
> result = mkarray 0 (2*n) f
> where
>   f j = bsum \{| a[i]*b[j-i] | i <- [lo..hi] \}
>     where
>       lo = max [1, j - n]
>       hi = min [j, n]
>   bsum b = bfold 0 (+) b
```

The variables \(a \) and \(b \) are the arrays to be multiplied; \(lo \) and \(hi \) bounds are necessary to prevent indexing outside the arrays. The function `bmap` creates the tasks to compute \(a_0 \times b_j, a_1 \times b_{j-1}, \ldots, a_j \times b_0 \) and `bfold` collects together the results of these tasks as they complete.

Experimental results for a polynomial of degree 20 yielded the parallelism profile shown in Figure 7.3; this demonstrates a good speed-up.

An alternative is to use the 'index value' pair style arrays, array comprehensions, see [113]. Rather than using a list, a bag of index-value pairs may be used. There are two useful forms of array comprehension, one without and one with a reduction operator which applies to elements with the same indices. These are analogous to Wadler's `array3` and `array4` operations; `array4'` with `bfold` is the same as `array6`.

\[
A = \text{array3'} n \text{ ixs} \quad \Rightarrow \forall 1 \leq i \leq n: A[i] = v \land (i, v) \in \text{ixs}
\]

\[
A = \text{array4'} h n \text{ ixs} \quad \Rightarrow \forall 1 \leq i \leq n: A[i] = \text{bhom h id e} \{| v | (i, v) \in \text{ixs} \}
\]

Thus, the solution to Arvind's first problem becomes:
> gens = mkbag generators
> bsum g = bfold 0 (+) b
> accumulators = array4' bsum 10 (bunion {I (i, 0) I i<-[1..10] I}
> {I (interval g,1) I g<"gens |})

The \texttt{bunion} with zero valued elements is necessary to give a value to intervals with no generators falling within them.

Arvind's second example has the same form as before:

> result = array3' (0, 2*n)
> {I (x,v) I x<-[0..2n]}
> where
> v = bsum {I a[i]*b[x-i] I i<-[lo..hi] I}
> lo = max [0,x-n]
> hi = min [n,x]
> |

No reduction operator is needed for this example; for each array index there is exactly one corresponding element in the bag comprehension, hence \texttt{array3'} is used.

Using bags it is possible to write a divide and conquer combinator thus:

> dc :: (*->bag *) -> (**->**->**) -> (*->bool) -> (*->**) -> * -> **
> dc div comb isleaf solve root = bfold comb e (f root)
> where
> fe = bunit (solve e), isleaf e
> = bflatmap f (div e), otherwise

The \texttt{comb} function must be associative and commutative, and \texttt{e} must be its identity element; alternatively if a non-empty \texttt{bhom} is available, an non-empty \texttt{bfold} could be defined and used. Notice that \texttt{div} produces a bag of subproblems to be solved.

7.10 Summary

This chapter has discussed introducing a bag data type into functional languages. Bags, in various guises, have been proposed by other researchers; however the approach taken here is the first to generally incorporate them, in a clean way, into a functional language. Unlike other proposals, a parallel implementation of bags is described, and this is formally developed.

Bags are introduced into functional languages as an abstract data type (ADT). The ADT operations consist of functions for constructing bags and a bag homomorphism function. Since the bag union operation is associative and commutative, the corresponding homomorphism function must also be associative and commutative. This is left as a proof obligation for the programmer; in practice this is rarely difficult.
A useful notational operation for specifying bags is the bag comprehension. It is shown how these may be translated into the bag ADT operations.

Many laws and theorems may be formulated about bags. Of particular importance is the Qualifier-interchange theorem. This allows generators and filters in bag comprehensions to be rearranged without changing the meaning of the comprehension.

The most important reason for introducing bags into a functional language is that they may be given a non-deterministic parallel implementation. However, providing the proof obligation is met, the results of bag expressions will be deterministic. A parallel implementation has been developed semi-formally via non-deterministic rewriting systems.

The performance of the parallel bag implementation is discussed and some experiments are tried. It is shown that bags performance is less dependent upon scheduling and it is less data dependent than is possible without them. For example if operations are applied in parallel across trees, for maximum parallelism it is important that trees are balanced, this is not necessary if bags can be used.

Finally some parallel programming problems, posed by Arvind [6], are solved using bags.

The real utility of bags will not be known until there is more experience of writing parallel functional programs. However there are certainly some cases where they make programming easier and give greater efficiency than would otherwise be possible.

7.11 Conclusions

The main conclusions of this chapter are:

- Bags may be used to express a limited form of non-determinism. Thus bags may express some algorithms which can not be expressed in a standard functional language. For example the histogram and polynomial multiplication problems may be solved using bags.

- In some situations bags mean that less work is require from the programmer to ensure parallel evaluation. For example to sum a collection of numbers together in a conventional language a balanced tree might be used, program code would be needed to ensure that the tree is balanced. With bags this is not necessary.

- The evaluation order of bag homomorphisms is not specified. This permits a greater freedom of implementation than would be possible without bags. In addition this means that scheduling will affect the performance of a bag homomorphism less than that of, say, a tree one. This is because the dependencies between tasks, produced by a bag homomorphism, are less constrained than those produced from a tree homomorphism.

- The implementation of non-deterministic algorithms, like the implementation of bags, is complicated. In particular, care has to be taken with detecting the termination of such algorithms. For this reason it is desirable to formally develop such algorithms. This has been done for the bag implementation.
Chapter 8

Performance analysis and debugging

8.1 Introduction

8.1.1 Motivation

A great deal has been written on reasoning about the meaning of functional programs, but much less has been written on reasoning about their performance. This is particularly acute for parallel programs because:

- the problem is harder.
- the reason for parallel programs is performance; therefore it is especially important to get a handle on parallel performance.

Indeed, there are many reasons why it is necessary to be able to reason about and measure the performance (execution time) of parallel programs, including:

- comparison of parallel programs: for example it is necessary to be able to answer questions like: what is the best sorting algorithm for a particular machine? or is this new algorithm an improvement over existing ones?

- validating program transformations: in the context of program transformation, it is desirable to prove that transformations improve or preserve performance. Do transformations have their desired effect?

- performance debugging: this means debugging parallel programs which do not perform as expected. Typically this arises as a program’s evaluation being far more sequential than was expected.

Similar reasons exist for analysing and measuring the performance of sequential programs. However, except for the synchronous programming of SIMD machines such as the Connection Machine [46], the operation of parallel programs is much more complex than for sequential programs. A consequence of this is that performance analysis and measurement of parallel programs is considerably more difficult than for sequential programs.
8.1.2 Performance analysis and measurement

There are several levels at which the performance of a parallel program may be measured. These are listed in decreasing order of the insights which they give: which corresponds to increasing levels of detail.

formal program analysis: this is the most abstract level of performance measurement. This gives the greatest insights into a program's performance, yet it is the least detailed measurement. Formal analyses may give a general performance measure for all possible program inputs or bounds on a program performance.

program simulation: by simulating a program, its performance may be measured. Different levels of detail in the simulation are possible. Program simulation may be very abstract or it may predict the real performance of a particular implementation.

run-time profiling: programs may be run on a real implementation and profiles of the programs' executions may be collected. Ultimately this is the most important performance measure. It is the most accurate measure, but it is also the least revealing measure.

These levels of analysis/measurement are complementary. None alone is suitable for all uses of performance measurement. Ultimately a program's execution time is most important. However for algorithm comparison more abstract measurements are desirable, which abstract away from particular implementations. For performance analysis to be mathematically tractable it is necessary to abstract away from a language's implementation details.

Performance debugging may require measurements at all levels. Bugs which cause a program's performance to differ from that expected, should be caught at as abstract a level as possible. Initially a simple analysis should be used to estimate a program's performance. This should not incorporate any scheduling issues or communications costs. The analysis may indicate that a program is inherently sequential. If not then a more detailed analysis or an abstract simulation of the program with some test data should be performed. This should incorporate more implementation details than the previous analysis. This process of measurement at increasing levels of detail should be repeated until the bug is located; this may proceed as far as running the program on a real machine. At each level the programmer should satisfy himself that the performance of the program is satisfactory, before performing a more detailed measurement.

For example a program may be highly parallel but it may be slow because it performs a lot of communication. A simple analysis will show this as a good parallel algorithm. As successively more detailed performance measurements are taken it will be revealed, when communications costs are incorporated into measurements, that this program performs a lot of communication. The communications problem can then be identified and fixed. This may suggest that only performance measurement at the lowest level is necessary. However it is necessary to proceed through several refinements of measurement to determine at what stage a performance bug occurs. Consider the case of an inherently sequential algorithm; this would be difficult to identify with detailed levels of measurement, since communications costs etc. would mask the real problem. However if the program was analysed simply, this could reveal the inherent sequentiality. The idea of measuring a program's performance incorporating different amounts of implementation detail suggests that a simulator whose level of simulation could be varied would be a very useful tool. Certainly it can be very difficult to interpret performance results.
from real machines. For this reason the simulator outlined in Chapter 4 was found to be very useful.

To summarise: it is necessary to be able to measure programs’ performance at different levels of abstraction.

8.1.3 Chapter summary and contributions

This chapter investigates program performance via program analysis and simulation. All performance measurements made are quite abstract. In particular the average parallelism of a program, will be used as a measurement. This measurement has been advocated by Eager [36]. Importantly, it enables abstraction away from scheduling issues, which would otherwise greatly complicate analyses and interpretation of measurements. This measurement is discussed in Section 2.6.

Section 8.2 considers a simple analysis of some divide and conquer (D&C) algorithms. These algorithms have been advocated by many as a paradigm for writing parallel programs. However, it is shown here that some parallel D&C algorithms, such as Quicksort using lists, do not have a good performance. This motivates the design of some formulae which describe the performance of generalised divide and conquer algorithms. These formulae enable constraints to be derived for ensuring that D&C algorithms do have a good performance. It is also shown that some parallel algorithms are not efficient sequential algorithms, such as parallel prefix. This means that for some problems efficient parallel algorithms need to be hybrid parallel and sequential algorithms; which use parallel algorithms to distribute work across processors and sequential algorithms to solve problems on individual processors. The analysis technique used in this section is simple, but overly synchronous. It cannot be used to analyse pipelined parallelism; essentially the technique can only analyse parallel languages which are strict.

To analyse pipelined parallelism a more complex method of performance measurement is necessary. A non-standard semantics which can calculate the performance of programs with pipelined parallelism, is presented in Section 8.3. This semantics is presented formally because it is quite complex. It is novel in its use of time and timestamps. The semantics enables the performance of lenient programs to be calculated. Lenient programs support pipelined parallelism, and they represent a compromise between strict and lazy parallel languages. Unfortunately it does not seem possible to easily extend the semantics to deal with parallel lazy languages. In Section 8.4 the performance of a parallel Quicksort, which has pipelined parallelism, is calculated using the semantics. This is a long calculation and it shows the difficulties of using the performance semantics.

Section 8.5 uses the non-standard semantics, for calculating lenient programs’ performance, in a different way. It uses the semantics as the specification of a parallel simulator/interpreter. By treating the semantic equations as transformation rules, parallel programs’ performance may be simulated by transforming programs. It is shown how other more detailed information can be collected from the semantics, such as parallelism profiles. Furthermore it is shown how rather than directly calculating a programs performance, the semantics can be used to generate a history trace of a programs evaluation. This may be traversed by a separate program to simulate different numbers of processors and different scheduling strategies. This allows a much more detailed level of performance measurement than the original semantics.
Section 8.6 shows, via some real examples, how a simulator may be used to discover some programming errors, which cause poor program performance. This section concerns errors of algorithm translation rather than fundamental flaws in algorithms.

8.2 Simple analysis

In this section a simple analysis of some parallel programs performance is described. This reveals the 'algorithmic' parallelism of the programs; no communications or other overheads are measured. Often upper bounds may be made on the performance of programs; these are useful for determining whether an algorithm does contain any parallelism and how much it contains.

If some simplifying assumptions are made it is possible to reason about the performance of some parallel algorithms in a similar way to sequential ones. There are two major assumptions:

- **there are an unbounded number of processors**: therefore scheduling issues do not arise and the average parallelism may be easily calculated. Eager has shown that the average parallelism is a useful performance measure, see Section 2.6, even if the number of processors is fixed in the target machine.

- **the language is strict**: therefore the expressed parallelism is synchronous. In this context synchronous parallelism means that a task may not be started until all tasks evaluating expressions on which it depends, have completed. This means that all values which a task depends on will be fully evaluated before the task is started. Thus the evaluations of tasks, between which there are dependencies, do not overlap; hence no pipelined parallelism is possible. For example consider \(E_1 E_2 \), where \(E_1 \) and \(E_2 \) are evaluated in parallel. The application cannot proceed until both the \(E_1 \) tasks and the \(E_2 \) task have terminated. Note that, in all other chapters it has been assumed that the functional language is lazy.

Most forms of sequential algorithm analysis provide an asymptotic bound on the number of times a certain operation is performed. For example an algorithm for searching a list sequentially for a given element has an upper bound of \(O(n) \) comparison operations, where \(n \) is the length of the list.

However for the kind of machine envisaged asymptotic performance analysis is not accurate enough. For the machines being considered it is desirable for algorithms to have a much greater average parallelism than the machine has processors, see Section 2.6 for an explanation. This means that the total amount of work performed is much greater than the number of processors. Hence the sequential performance will be of the same order as the parallel performance. For example consider matrix multiplication. if \(p \) is the number of processors and \(n \) is the matrix size then for a high average parallelism \(p \ll n^3 \), assuming sequential matrix multiplication has complexity \(O(n^3) \). Therefore the best possible parallel complexity which can be obtained is \(O(n^3/p) \). However since \(p \) is a small constant compared to \(n^3 \), the parallel complexity is equal to the sequential complexity: \(O(n^3/p) = O(n^3) \). Therefore for parallel algorithm analysis, in this setting, performance measurements must be more accurate than asymptotic.

To measure parallel programs performance, program's **average parallelism** will be used. This is the sequential execution time of the algorithm divided by the parallel execution time of
the algorithm; given an unbounded number of processors. An equivalent measure is the total number of operations performed by the program, divided by the maximum number of operations performed in sequence: the proof of these two measures equivalence is due to Eager [36]. Often the average parallelism will be termed speed-up: more accurately this is the speed-up given an unbounded number of processors. The speed-up (average parallelism) can be viewed as a limit on the size of machine, defined as the number of processors it contains, which an algorithm can utilise efficiently.

The following sections analyse some divide and conquer algorithms; other similar algorithms such as search and optimisation algorithms may be analysed in a similar way. The last section discusses the shortcomings of this simple approach.

8.2.1 Quicksort analysis

A parallel Quicksort function\(^1\) is shown below:

```haskell
> qsort [] = []
> qsort (e:r) = par qhi (seq qlo (qlo++(e:ghi)))
>     where
>     qlo = qsort [x| x<r; x</=e]
>     qhi = qsort [x| x</=r; x>e]
```

How might this be formally analysed? The difficulty with formal analyses is that the amount of work performed by the program will depend on the values of the data as well as the size of the data. Thus assumptions concerning the input data must be made. A simplifying assumption for Quicksort is that the list to be sorted always splits into equal sized sub-lists. Fence applications of parallel Quicksort are assumed to result in a balanced tree of tasks. This assumption puts a lower bound on the cost of Quicksort (both sequential and parallel).

If it is assumed that `qsort` always produces an equal split, then its sequential cost may be described thus:

\[
S(0) = 0 \\
S(n) = 2 \times (n - 1) + 2 \times S((n - 1)/2)
\]

For an input of size \(n\) the first element is removed and the remainder is recursively sorted. The two recursive calls filter the remainder, producing a list half the size (the assumption). Each of the filterings requires \(n - 1\) comparisons.

Assuming there are an infinite number of processors available then `qsort`'s parallel cost may be described thus:

\[
P(0) = 0 \\
P(n) = (n - 1) + P((n - 1)/2)
\]

\(^1\)In practice `append` would not be used in Quicksort but this is of no consequence here since it is not measured.
The two recursive calls to Quicksort are performed in parallel and take the same time to evaluate since the list splits exactly. Therefore only the cost of one task and its filtering is incurred.

These recurrence relations may be solved thus (assume input size \(n = 2^m - 1 \)):

Sequential cost:

\[
S(2^m - 1) = 2^{m+1} - 4 + 2 \times S(2^{m-1} - 1) \\
= 2^{m+1} + 2 \times 2^m + 2^2 \times 2^{m-1} + \ldots + 2^{m+1} \times 2^0 \\
-4 - 2 \times 4 - 2 \times 2 \times 4 - \ldots - 2^{m+1} \times 4 \\
= m \times 2^{m+1} - 4 \times \sum_{i=0}^{m-1} 2^i \\
= m \times 2^{m+1} - 4 \times (2^m - 1) \\
= 2^{m+1}(m - 2) + 4
\]

Parallel cost:

\[
P(2^m - 1) = 2^m - 2 + 2^{m-1} - 2 + \ldots + 2^1 - 2 \\
= 2^{m+1} - 2 \times (m + 1)
\]

The speed-up (average parallelism) of an algorithm is the ratio of the sequential cost to parallel cost \(S(n)/P(n) \):

\[
\frac{2^{m+1}(m - 2) + 4}{2^{m+1} - 2 \times (m + 1)} \approx \text{for large} \ n \ (= 2^m - 1) \quad \frac{2^{m+1}(m - 2)}{2^{m+1}} = m - 2
\]

This is for an input size of \(n = 2^m - 1 \) therefore the speed-up is only logarithmic in the input size. This is unexpectedly poor! For example, for a 100 processor machine it is desirable to have an average parallelism of at least 100. This means that the list to be sorted should have a length of at least \(2^{100}! \). Experiments were performed to verify this result. A 1024 element list was constructed which produced exact splits for Quicksort. Sorting this list with the parallel Quicksort program produced an average parallelism of 10, compared to the calculated average of 8. In fact it was the poor experimental performance of Quicksort which led me to analyse it and several other programs. Only after the analysis was complete was I convinced that Quicksort’s poor performance was inherent and that it was not due to an implementation bug! Notice that the poor performance of Quicksort is due to its use of lists. If arrays were available, as they are in Haskell [55], a better performance could be achieved.

This Quicksort result is briefly mentioned in Hughes’s thesis [58]; however he does not say that this is a bad result.

8.2.2 General divide and conquer analysis

This section generalises the results obtained for Quicksort. Given some assumptions about the splitting of problems into sub-problems, general analyses can be made of divide and conquer algorithms. The sequential analysis of divide and conquer (D&C) algorithms, as used here, is described in [106].

In the following section the recurrence relation for the sequential D&C algorithm being described is \(S \). The input size is \(n \), the number of sub-problems is \(a \) and the size of sub-problems is \(n/b \).
The parallel divide and conquer function will be described as \(P \), it solves sub-problems in parallel; thus it is the same as \(S \) except that \(a \) is effectively 1.

For the first D&C function considered, the cost of dividing problems and combining their solutions is constant and equal to \(c \).

\[
\begin{align*}
 a &> 1 \quad b > 1 \quad c > 0 \\
 S(1) &= c \\
 S(n) &= a \times S(n/b) + c \\
 P(1) &= c \\
 P(n) &= P(n/b) + c
\end{align*}
\]

For an input of size \(n = b^k \):

\[
\begin{align*}
 S(n) &= c \times \sum_{i=0}^{k} a^i = c \times \frac{a^{k+1} - 1}{a - 1} \\
 P(n) &= c \times (k + 1)
\end{align*}
\]

Therefore the speed-up is equal to:

\[
\frac{S(b^k)}{P(b^k)} = \frac{c \times \frac{a^{k+1} - 1}{a - 1}}{c \times (k + 1)} = \frac{a^{k+1} - 1}{(a - 1) \times (k + 1)}
\]

This has a good speed-up which is almost linear in the input size. For example vector addition where vectors are represented by binary trees. If the addition of two scalars (leaves) is assumed to have the same cost as accessing and building a tree node, then this fits the D&C scheme described. In this case \(a = 2 \) hence the speed-up for an input of size \(n \) is:

\[
\frac{2 \times n - 1}{\ln n + 1}
\]

For example the addition of two 1000 element vectors should have an average parallelism of approximately 190. Experiments were performed to verify this result. These showed that the average parallelism was 180, which compares well with the predicted result of 190.

The results from the ZAPP project seem to be much better than formulae derived here [78]; they manage to achieve a near linear speed-up. However they used a machine with a small number of processors (40 maximum) and they used very large data sets, hence their figures do agree with these formulae.

The second divide and conquer scheme considers the case when the cost of dividing problems and combining their results is proportional to problems' sizes:
CHAPTER 8. PERFORMANCE ANALYSIS AND DEBUGGING

\[S(1) = c \]
\[S(n) = a \times S(n/b) + c \times n \]

\[P(1) = c \]
\[P(n) = P(n/b) + c \times n \]

Assuming an input of size \(n = b^k \):

\[S(n) = c \times n \times \sum_{i=0}^{k} \left(\frac{a}{b} \right)^i \]

\[S(n) = c \times n \times \begin{cases}
(k + 1), & \text{if } a = b \\
\frac{a^{k+1} - 1}{q - 1}, & \text{where } q = a/b, \text{ if } a \neq b
\end{cases} \]

\[P(n) = c \times n \times \left(\frac{r^{k+1} - 1}{r - 1} \right) \text{ where } r = 1/b = c \times n \times \frac{b^{k+1} - 1}{b^{k+1} - b^k} \]

For example when \(b = 2 \), \(P(n) = c \times (2 \times n - 1) \)

The speed-up is:

\[\frac{S(b^k)}{P(b^k)} = \begin{cases}
\frac{(k+1) \times (b^{k+1} - b^k)}{b^{k+1} - 1}, & a = b \\
\frac{a^{k+1} - 1}{q - 1} \times \frac{b^{k+1} - b^k}{b^{k+1} - 1}, & a \neq b
\end{cases} \]

This speed-up is logarithmic in the input size and therefore only useful in limited circumstances, for example: a machine with only a small number of processors. Ideally an algorithm’s speed-up, with an unbounded number of processors, should be near linear in its input size. Thus any algorithm which fits this scheme is not a good parallel algorithm. Divide and conquer algorithms have been advocated by many as a good parallel programming paradigm [29, 78]. This result shows that not all D&C algorithms are good parallel algorithms.

An example of this is parallel merge sort. Merge sort splits its input list into two halves, each halve is recursively sorted and the results are merged together. Each split requires the input list to be traversed once, as does each merge (\(a = 2 \), \(b = 2 \) and \(c = 2 \)). Thus this divide and conquer algorithm fits the current scheme. The speed-up of merge sort for a list of length \(2^k \) is:

\[\frac{S(2^k)}{P(2^k)} = \frac{(k + 1) \times (2^{k+1} - 2^k)}{2^{k+1} - 1} \approx \frac{k + 1}{2} \]

Like Quicksort this is very bad; for a one million element list (\(n = 2^{20} \)) the speed-up would only be 10!
The final general divide and conquer analysis considers algorithms where the cost of dividing problems and combining their solutions is logarithmic in problems' sizes. The performance of these algorithms should lie between that of the two previous schemes. The new scheme is:

\[
S(1) = c \\
S(n) = a \times S(n/b) + c \times (\ln n)
\]

\[
P(1) = c \\
P(n) = P(n/b) + c \times (\ln n)
\]

Since base two logarithms are used it is assumed, in addition to the previous assumptions about \(a, b \) and \(c\), that \(b = 2^d\). For an input of size \(n = 2^k\):

\[
S(n) = c \times a^k + c \times \sum_{i=0}^{k-1} a^i \times (\ln \left(\frac{n}{b^i}\right))
\]

Since \(b = 2^d\):

\[
S(n) = c \times a^k + c \times d \times \sum_{i=0}^{k-1} a^i \times (k - i)
\]

For example if \(a = 2\):

\[
S(n) = c \times 2^k + c \times d \times (2^{k+1} - k - 2)
\]

The parallel case is the same as the sequential case but with \(a = 1\):

\[
P(n) = c + c \times \sum_{i=0}^{k-1} d \times (k - i) = \frac{1}{2} \times (2 \times c + c \times k \times d \times (k + 1))
\]

The speed-up for \(a = 2\) is:

\[
\frac{S(2^k)}{P(2^k)} = \frac{c \times 2^k + c \times d \times (2^{k+1} - k - 2)}{\frac{1}{2} \times (2 \times c + c \times k \times d \times (k + 1))} = \frac{2^{k+1} + 2 \times d \times (2^{k+1} - k - 2)}{2 + k \times d \times (k + 1)}
\]

For example the speed-up for \(b = 2\), \(d = 1\) is:

\[
\frac{S(2^k)}{P(2^k)} = \frac{2^{k+1} + 2 \times (2^{k+1} - k - 2)}{2 + k \times (k + 1)}
\]

Some example figures are shown below:

<table>
<thead>
<tr>
<th>input size (n)</th>
<th>8</th>
<th>32</th>
<th>128</th>
<th>1024</th>
<th>4096</th>
<th>16384</th>
</tr>
</thead>
<tbody>
<tr>
<td>speed-up</td>
<td>2.7</td>
<td>5.6</td>
<td>13</td>
<td>55</td>
<td>155</td>
<td>464</td>
</tr>
</tbody>
</table>
As can be seen quite a large input size is required to get a good speed-up. Algorithms with this form are viable for machines with a small number of processors or for large input sizes.

This analysis shows how recurrence relations can get quite complex for even small algorithms. However, rather than solving recurrence relations they can always be calculated for a few values and a graph plotted. This can easily be done automatically and can serve as a useful method for verifying solutions too. Justification for this is that usually only a fairly limited range of input sizes need be considered for an algorithm; a few orders of magnitude normally suffice.

To summarise, in order for a D&C algorithm to have a reasonable parallel performance, the dividing and combining operations should take constant time or no worse than logarithmic time. If this is not the case then it will be difficult to efficiently utilise a parallel machine unless the machine is very small or the input data is extremely large.

8.2.3 Parallel prefix

Parallel prefix (scan or accumulate) is a particular D&C algorithm. However this algorithm is very important and general in its own right, for details see [47]. This analysis is of a parallel prefix which uses trees rather than list data structures. It is assumed that the trees are balanced; this gives a lower bound on parallel prefix's cost for arbitrary binary trees. Parallel prefix using trees is analogous to parallel prefix using lists. An informal specification of parallel prefix, using lists, is:

\[
\text{listscan} \oplus [a_1, a_2, \ldots, a_n] = [a_1, a_1 \oplus a_2, \ldots, ((a_1 \oplus a_2) \oplus a_3) \oplus \cdots \oplus a_n]
\]

A parallel prefix (pscan) using trees is shown below:

```haskell
> tree * :: Node (tree *) (tree *) | Leaf *
> tmap f (Leaf x) = seq fx (Leaf fx) where fx = f x
> tmap f (Node l r) = par ll (seq rr (Node ll rr))
>   where
>       ll = tmap f l
>       rr = tmap f r
> pscan f (Leaf x) = (Leaf x, x)
> pscan f (Node l r) = par lt (seq rt (seq rt' (seq v (Node lv rt', v))))
>   where
>       (lt, lv) = pscan f l
>       (rt, rv) = pscan f r
>       rt' = tmap (f lv) rt
>       v = f lv rv
```

An application such as \(\text{pscan \ f \ t}\) meets the \(\text{par}\) proof obligation providing either \(\text{f}\) is total and \(\text{t}\) is completely defined, or if the application occurs in a context which is strict in tree elements to the same degree as \(\text{f}\).
Notice that the calculation of v is redundant, since v is equal to the right-most element in rt'. For simplicity optimisation is not shown, but the cost of v is omitted from calculations.

Assuming that the scanning function’s (f’s) cost is much greater than the cost of tree traversal, and if the cost of v is omitted, the following recurrence relations result (S is the sequential cost and P is the parallel cost):

\[
\begin{align*}
S_{\text{pscan}}(1) &= 0 \\
S_{\text{pscan}}(n) &= 2 \times P_{\text{pscan}}(n/2) + S_{\text{map}}(n/2) \\
\end{align*}
\]

\[
\begin{align*}
P_{\text{pscan}}(1) &= 0 \\
P_{\text{pscan}}(n) &= P_{\text{pscan}}(n/2) + P_{\text{map}}(n/2) \\
\end{align*}
\]

\[
\begin{align*}
S_{\text{map}}(n) &= n \\
P_{\text{map}}(n) &= 1 \\
\end{align*}
\]

Thus for an input of size $n = 2^k$ (number of leaves in the tree):

\[
\begin{align*}
S_{\text{pscan}}(n) &= k \times 2^{(k-1)} \\
P_{\text{pscan}}(n) &= k \\
\end{align*}
\]

This gives rise to the following average parallelism:

\[
\frac{k \times 2^{(k-1)}}{k} = \frac{n}{2}
\]

Thus this algorithm has an excellent average parallelism.

Next the case when the scanning function has approximately the same cost as tree traversal, is considered. To do this some arbitrary assumptions about the cost of tree traversal and construction must be made. The assumptions are: only the cost of traversing and constructing leaves and nodes, and scan functions applications, are counted. All these are assumed to have the same unit cost. This generates the following recurrence relations:

\[
\begin{align*}
S_{\text{map}}(1) &= 3 \\
S_{\text{map}}(n) &= 2 + 2 \times S_{\text{map}}(n/2) \\
\end{align*}
\]

\[
\begin{align*}
P_{\text{map}}(1) &= 3 \\
P_{\text{map}}(n) &= 2 + P_{\text{map}}(n/2) \\
\end{align*}
\]

\[
\begin{align*}
S_{\text{pscan}}(1) &= 2 \\
S_{\text{pscan}}(n) &= 2 + 2 \times S_{\text{pscan}}(n/2) + S_{\text{map}}(n/2) \\
\end{align*}
\]

\[
\begin{align*}
P_{\text{pscan}}(1) &= 2 \\
P_{\text{pscan}}(n) &= 2 + P_{\text{pscan}}(n/2) + P_{\text{map}}(n/2) \\
\end{align*}
\]

These can be simplified to:
\[S_{map}(n) = 3n + 2(n - 1) = 5n - 2 \]
\[P_{map}(2^k) = 2(k + 1) + 1 \]
\[S_{pscan}(1) = 2 \]
\[S_{pscan}(n) = \frac{5}{2}n + 1 + 2S_{pscan}(n/2) \]
\[P_{pscan}(2^0) = 2 \]
\[P_{pscan}(2^k) = 2k + 3 + P_{pscan}(2^{k-1}) \]

Assuming the input size is \(n = 2^k \) and using the solutions generated in the previous section, these recurrence relations may be solved:

\[S_{pscan}(n) = \frac{5}{2}n \times (k + 1) + (n - 1) - n/2 = \frac{n}{2} \times (5k + 6) - 1 \]
\[P_{pscan}(n) = k \times (k + 4) + 2 \]

Thus the speed-up is:

\[S(n) = \frac{(n/2) \times (5k + 6) - 1}{k \times (k + 4) + 2} \]

Some example average parallelism figures are shown below:

<table>
<thead>
<tr>
<th>input size (n)</th>
<th>8</th>
<th>32</th>
<th>128</th>
<th>1024</th>
<th>4096</th>
<th>16384</th>
</tr>
</thead>
<tbody>
<tr>
<td>speed-up</td>
<td>3.5</td>
<td>11</td>
<td>33</td>
<td>200</td>
<td>697</td>
<td>2450</td>
</tr>
</tbody>
</table>

The average parallelism for this case is not as good as the previous case but is nevertheless reasonable.

However, although these scan results do give its average parallelism, they are misleading. Scan is an interesting algorithm because an efficient sequential algorithm does less work than the parallel algorithm. Hence the important measurement is the speed-up of the parallel algorithm compared with the efficient sequential algorithm. An efficient sequential algorithm is shown below:

\[
\text{scan } f \ e (\text{Leaf } x) = (\text{Leaf } f x e, f x e) \quad \text{where } f x e = f \ e \ x
\]
\[
\text{scan } f \ e (\text{Node } l \ r) = (\text{Node } l \ r, e'')
\]
\[
\text{where}
\]
\[
(l, e') = \text{scan } f \ e \ l
\]
\[
(r, e'') = \text{scan } f \ e' \ r
\]

Notice how the sequential scan requires an identity element to 'prime' it with. This performs \(n \) applications of \(f \), where \(n \) is the input size,
The pure parallel algorithm will run much slower than the efficient sequential algorithm on a single processor. Akl has also noticed this [4]; he describes such algorithms as not being cost optimal. This means that on a MIMD machine, a hybrid parallel and sequential algorithm is most efficient. The parallel algorithm should be used to distribute work to processors; each processor should evaluate its sub-problem using the efficient sequential algorithm. However it can be difficult to express such algorithms on a GRIP-like system. This is because programs (tasks) cannot determine when they have generated enough tasks for distribution across a machine, so that they may change and use an efficient sequential algorithm to solve problems. Kelly's Caliban [70] is well suited to this kind of behaviour because there is a one-to-one mapping of tasks to processors. Most parallel imperative languages also consist of static task networks, including the one used by Akl. Thus expressing hybrid algorithms is not a problem for these languages. A solution to this problem, for GRIP-like systems, is proposed in Section 9.1.3.

The following analysis compares the efficient hybrid parallel algorithm with the naive parallel algorithm. For this analysis only applications of the scanning function will be counted. As previously mentioned, the sequential algorithm performs n applications of the scan function, where n is the input size. To investigate the efficiency of the naive parallel algorithm the cost of the parallel algorithm run sequentially must be used. This was previously calculated to be:

\[S_{\text{pscan}}(2^k) = k \times 2^{(k-1)} \]

The naive parallel algorithm running on a machine with \(p = 2^q \) processors and an input of size \(n = 2^k \), where \(k > q \), may be described thus:

\[
\begin{align*}
P_{\text{naive}}(1, n) & = S_{\text{pscan}}(n) \\
P_{\text{naive}}(p, n) & = P_{\text{naive}}(p/2, n/2) + P_{\text{map}}(p, n/2) \\
P_{\text{map}}(p, n) & = \frac{n}{p}
\end{align*}
\]

This says that the cost of evaluating an input of size \(n \) on one processor is equal to the cost of evaluating it sequentially using the pscan algorithm. On more than one processor the input is divided into two and each recursion is allocated half the number of processors available (\(p/2 \)) to recursively evaluate their input halves. On completion using the \(p \) available processors the parallel map is performed. The synchronisation of tasks is crucial to this cost formulation. Therefore,

\[
\begin{align*}
P_{\text{naive}}(2^q, 2^m) & = S_{\text{pscan}}(m - q) + \sum_{i=0}^{q-1} \frac{2^{m-i}}{2^{i+1}} = (m - q) \times 2^{m-q-1} + q \times 2^{m-q-1} \\
& = m \times 2^{m-q-1}
\end{align*}
\]

The efficient parallel prefix which runs the efficient sequential algorithm on each processor is similar to the naive parallel algorithm except the sequential parts have cost \(n \) (\(S_{\text{quick}}(n) = n \)).

\[
\begin{align*}
P_{\text{quick}}(1, n) & = n \\
P_{\text{quick}}(p, n) & = P_{\text{quick}}(p/2, n/2) + P_{\text{map}}(p, n/2)
\end{align*}
\]
This has the following solution:

\[P_{\text{quick}}(2^q, 2^m) = 2^{m-q} + q \times 2^{m-q-1} = 2^{m-q-1} \times (2 + q) \]

Therefore, the speed-up, with \(2^q\) processors, for the naive parallel algorithm is:

\[S_{\text{quick}}(2^m) = \frac{2^m}{m \times 2^{m-q-1}} = \frac{2^{q+1}}{m} \]

The speed-up of the efficient parallel algorithm is:

\[\frac{S_{\text{quick}}(2^m)}{P_{\text{quick}}(2^q, 2^m)} = \frac{2^m}{2^{m-q-1} \times (2 + q)} = \frac{2^{q+1}}{2 + q} \]

The efficiency of the two parallel algorithms may be compared. The ratio of the efficient parallel algorithms' cost to the naive parallel algorithms' cost is:

\[\frac{2^{m-q-1} \times (2 + q)}{m \times 2^{m-q-1}} = \frac{2 + q}{m} \]

This is quite substantial. For example, for a 128 processor machine with an input size of 4096, the efficient parallel prefix algorithm is 33% faster than the naive one, despite the fact that the naive parallel algorithm has a much greater average parallelism. This result contravenes the philosophy that having a much greater average parallelism than the number of processors available is always a good idea. Thus, the object of designing a parallel program is not simply to produce one with maximal parallelism.

8.2.4 Shortcomings

A major shortcoming of the simple approach described is that it cannot describe pipelined parallelism. The difficulty is inherent since simple synchronous systems are easier to reason about than ones which synchronise purely on data values. Nevertheless, it is particularly desirable to be able to reason about pipelined parallelism. Some algorithms may rely on pipelined parallelism, for example, the sieve of Eratosthenes for finding primes. Many other algorithms will contain implicit pipelined parallelism; this may affect or invalidate the analysed performance of an algorithm if disregarded.

For example, the Quicksort shown below is a modified version of the previous Quicksort which was analysed. An important question is: what, if any, performance improvement is obtained by evaluating the filters in parallel; thus allowing successive Quicksort recursions to evaluate in a pipelined fashion?

\[\text{> qsort [] = []} \]
\[\text{> qsort (e:r) = ((par seqall lo) . (par seqall hi) . (par qhi) . (seq qlo))} \]
> (qlo ++ (e: qhi))
> where
> lo = [x | x<r; x<=e]
> hi = [x | x<r; x>e]
> qlo = qsort lo
> qhi = qsort hi

The next section formalises the basis for the analyses done here and it extends this to incorporate pipelined parallelism. This enables the performance of the version of Quicksort defined above, to be analysed.

8.3 Formal performance analysis

The previous semantics informally analysed the performance of several algorithms. However, the simple informal analysis was overly synchronous and it could not analyse pipelined parallelism. Thus, it can not accurately measure the performance of programs written in the parallel lazy language, described in Section 3.1. The objective of this section is to develop an analysis which is able to calculate the performance of pipelined algorithms. Pipelined parallelism is more operationally complex than the strict parallelism of the previous section; this is because for pipelined parallelism task synchronisation occurs on values. Due to this complexity a formal method for calculating programs performance will be used. This will be achieved by defining a non-standard denotational semantics which, in addition to calculating a program's standard meaning, will calculate its performance. To do this program operations must be counted or timed.

It is desirable to devise a non-standard semantics to calculate the performance of the parallel language which has been used throughout this thesis. Unfortunately the operational behaviour of lazy languages, even sequential ones, is very complex. Essentially this is because although the semantics of lazy languages are compositional; their operational behaviour is not compositional. The evaluation of one expression may affect the cost (performance) of evaluating another expression. The cost of evaluating a variable depends on whether the variable has previously been evaluated or not. For example:

> res = (a, a)
> where
> a = ...

The cost of evaluating snd res will depend upon, amongst other things, whether the first component or the second component has been previously evaluated. This operational behaviour is clearly not compositional.

There have been several proposals for analysing the performance of sequential lazy languages including [15, 97, 99]. These are all based on the same technique. The problem with lazy languages is that it is not known to what degree, if at all, expressions will be evaluated. Strictness analysis, see Section 3.2.1, yields this information. This enables operations to be counted in a similar way to sequential step counting (this is described in the next section); basically the total
number of operations which are performed can be summed to give the sequential performance. However this strictness approach to the performance analysis of sequential lazy languages is not sufficient to analyse parallel lazy languages. This is because it is not sufficient to know to what degree expressions are evaluated; in addition it is necessary to know when expressions are evaluated.

Hudak and Anderson [51] have devised an operational semantics for parallel lazy languages, based on partially ordered multisets. This could be used as the basis for a performance semantics. However the approach is extremely complicated and unwieldy, and there are some technical problems with it.

Rather than trying to solve the inherently difficult problem of reasoning about parallel lazy languages, a simpler problem has been solved. A non-standard semantics is presented for reasoning about the performance of a lenient language. Lenient languages, such as Id Nouveau [84], represent a compromise between strict and lazy languages. Lenient languages are strict in expressions which are evaluated sequentially, and lazy in expressions which are evaluated in parallel. The essential difference between strict languages and lenient languages is that for lenient languages synchronisation between tasks occurs when tasks’ results are required by another task. Importantly, like strict languages, lenient languages’ operational behaviour is compositional.

The next sections describes two performance semantics. Firstly a semantics for calculating the performance of sequential strict languages is devised. This is subsequently extended for analysing a parallel strict language (this has the same operational behaviour as the language used for the informal analyses). Lastly a semantics for reasoning about a lenient language is described.

8.3.1 A sequential strict language

This section presents a semantics for calculating the performance of a sequential call-by-value language. Call-by-value languages have a compositional operational behaviour. (I believe the only real advantage of call-by-value functional languages over lazy ones is their compositional operational behaviour.) For example the cost of evaluating $E_1 \ast E_2$ will be equal to the cost of evaluating E_1 plus the cost of evaluating E_2 plus the cost of the multiplication. Note that any shared variables must have already been evaluated. This forms the basis of step counting which will be used to analyse the call-by-value language. Using step counting to measure strict languages performance is not a new idea; one of the first references to it is [119]. More recently LeMétayer [74] has used step counting in ACE; this attempts to automatically analyse the complexity of FP programs. Sands [98] has also used step counting, as part of an operational semantics calculate the performance of strict functional programs.

The syntax of the language to be used is shown in Figure 8.1. The language is typed although no typing rules are shown. It is similar to languages like Hope and a pure subset of ML.

To perform step counting the value given to any expression must be a pair comprising its standard value and the number of steps take to evaluate it. Thus the valuation function \mathcal{M} used to give values to expressions within a particular environment has the form:

$$\mathcal{M} : E \rightarrow Env \rightarrow Ans$$
The semantic domains for the step counting semantics are:

\[
\begin{align*}
\text{Ans} & = D \odot \text{Step} \\
\alpha, \beta & \in D \quad = \text{Basic} + (D - \text{Ans}) + \text{List} \\
\text{Basic} & = \text{constants and primitive functions including integers and booleans} \\
\text{List} & = \text{nil} + (D \times \text{List}) \\
s & \in \text{Step} \quad = \text{Nat}_+ \\
\rho & \in \text{Env} \quad = \text{Var} - D
\end{align*}
\]

The \(\odot \) operator is smash product, that is strict product. This is used to ensure the strictness of the source language. Since the lambda calculus used to describe the source language is lazy, the strictness of the source language must be enforced. Normally this is done by either using a special strictifying function or by using a continuation based semantics which mimics the call-by-value evaluation order. The trick employed here relies on the fact that a function applied to bottom may yield a value component of the answer which is not bottom; however the step count component will be bottom. Thus the smash product forces the whole answer to bottom if the step component is bottom.

For example, the \texttt{let} construct has the following meaning:

\[
\mathcal{M}[\texttt{let } v = E_1 \text{ in } E_2] \rho = \langle \beta, s_1 + s_2 \rangle \\
\langle \alpha, s_1 \rangle = \mathcal{M}[E_1] \rho \\
\langle \beta, s_2 \rangle = \mathcal{M}[E_2] \rho[v \mapsto \alpha]
\]

This says that if it takes \(s_1 \) steps to evaluate \(E_1 \) and \(s_2 \) to evaluate \(E_2 \) then the total number of steps required to evaluate the \texttt{let} is \(s_1 + s_2 \). Contrast this with a lazy language where \(E_1 \) may or may not be evaluated. Even worse in a lazy language different amounts of evaluation of \(E_1 \) and \(E_2 \) are possible if they are data structures. Notice how the environment only binds variables to values \((D) \). This is because the cost of evaluating a variable is always zero. This
is very important and it is the reason why a strict semantics can be formulated. This arises because:

In a strict language all bindings (variables) are evaluated before they can be shared.

The meaning of a variable is thus:

\[M[v] \rho = (\rho[v], 0) \]

Of course accessing a variable may cost a small amount or a great deal if the access is non-local; however no evaluation of the program will be necessary.

Figure 8.2 shows the complete semantics minus the rules for constants and primitive functions. Underscore is used to represent unused values in patterns.

Notice how none of the above expressions take any steps to evaluate. It would be possible to make some expressions take a number of steps to evaluate. For example cons could take one step to evaluate. However a more general solution is to have a user supplied annotation which indicates which expressions should be counted as taking one step to evaluate. These annotations are represented as curly braces around an expression thus: \{E\}. The meaning of these annotations is:

\[M[\{E\}] \rho = (\alpha, s+1) \]

\[\langle \alpha, s \rangle = M[E] \rho \]

It is possible to have a version this annotation which also indicates the number of steps to count. Thus different costs may be assigned to different operations. However usually in these complexity analyses only the cost of one primitive operator is of concern and it is given a unit cost. For example in analysing sorting algorithms usually only the number of comparisons performed are counted. (For parallel sorting the maximum number of comparisons performed in sequence is sought.)

8.3.2 A parallel strict language

This section describes how the previous semantics can be extended to calculate the performance of a parallel call-by-value language.

Before discussing the parallel semantics a comment is made on the approach taken. Parallelism may be introduced into the sequential language previously described in various ways. The most general approach is to evaluate all function applications and other constructs in parallel. The drawback with this is that an implementation must be faithful to the semantics. This semantics means that even case statements will be evaluated in parallel. Since case statements are non-strict speculative evaluation has been introduced, which is very hard to implement efficiently. The semantics could restrict parallelism to just strict functions and constructs. However, most parallel programs only have a few 'points' where parallel evaluation is necessary to gain a substantial speed-up. Evaluating other expressions in parallel will cloud the analysis of the
\[
\begin{align*}
\mathcal{M}[v] \rho &= \langle v, 0 \rangle \\
\mathcal{M}[E_1 \ E_2] \rho &= \langle f(a, s_1 + s_2 + s_3) \rangle \\
\langle f, s_1 \rangle &= \mathcal{M}[E_1] \rho \\
\langle a, s_2 \rangle &= \mathcal{M}[E_2] \rho \\
\langle f a, s_3 \rangle &= f a \\
\mathcal{M}[\lambda v. E] \rho &= \langle \lambda a. \mathcal{M}[E] \rho[v \mapsto a], 0 \rangle \\
\mathcal{M}[\text{let } v = E_1 \text{ in } E_2] \rho &= \langle \beta, s_1 + s_2 \rangle \\
\langle \beta, s_1 \rangle &= \mathcal{M}[E_1] \rho \\
\langle \beta, s_2 \rangle &= \mathcal{M}[E_2] \rho[v \mapsto \alpha] \\
\mathcal{M}[\text{letrec } v = E_1 \text{ in } E_2] \rho &= \langle \gamma, s_1 + s_2 \rangle \\
\langle \gamma, s_1 \rangle &= \mathcal{M}[E_1] \rho[\gamma \mapsto \lambda (\alpha, \gamma). \mathcal{M}[E_1] \rho[v \mapsto \alpha]] \\
\langle \gamma, s_2 \rangle &= \mathcal{M}[E_2] \rho[v \mapsto \beta] \\
\mathcal{M}[E_1 + E_2] \rho &= \langle \alpha + \beta, s_1 + s_2 \rangle \\
\langle \alpha, s_1 \rangle &= \mathcal{M}[E_1] \rho \\
\langle \beta, s_2 \rangle &= \mathcal{M}[E_2] \rho \\
\mathcal{M}[][\rho] &= \langle \text{nil}, 0 \rangle \\
\mathcal{M}[E_1 : E_2] \rho &= \langle \text{cons } \alpha \beta, s_1 + s_2 \rangle \\
\langle \alpha, s_1 \rangle &= \mathcal{M}[E_1] \rho \\
\langle \beta, s_2 \rangle &= \mathcal{M}[E_2] \rho \\
\mathcal{M}[\text{case } E \text{ of}] &= \text{case } \mathcal{M}[E] \rho \\
\text{[]} \rightarrow & E_1 \\
\langle \text{nil}, s_1 \rangle & : (\alpha, s_1 + s_2) \\
\langle \text{cons } \alpha \beta, s_1 \rangle & : (\alpha, s_1 + s_2) \\
\langle \text{cons } \alpha \beta, s_1 \rangle & : (\alpha, s_1 + s_2) \\
\langle \gamma, s_1 + s_2 \rangle & : \mathcal{M}[E_1] \rho[\gamma \mapsto \alpha, \gamma \mapsto \beta] \\
\langle \gamma, s_1 + s_2 \rangle & : \mathcal{M}[E_2] \rho[\gamma \mapsto \alpha, \gamma \mapsto \beta]
\end{align*}
\]

Figure 8.2: Step counting semantics
major parallelism. Also, as has been shown experimentally, there is no benefit from evaluating small tasks in parallel. Thus all parallelism will be made explicit; there will be no implicit parallelism. To do this parallel language constructs will be introduced. The philosophy behind the approach is to make programs operationally declarative.

To make the previous sequential language parallel it will be augmented with a parallel version of let. The syntax for this new construct is:

\[
\text{plet } \{ v = E \}^* \text{ in } E
\]

The plet construct makes a number of bindings which are all evaluated in parallel. Its semantics is defined below:

\[
\mathcal{M}[\text{plet } v_1 = E_1, \ldots, v_n = E_n \text{ in } E_0] \rho = \langle \alpha, s + \max (s_1, \ldots, s_n) \rangle
\]

\[
\langle \alpha, s \rangle = \mathcal{M}[E] \rho[v_1 \mapsto \beta, \ldots, v_n \mapsto \gamma]
\]

\[
\langle \beta, s_1 \rangle = \mathcal{M}[E_1] \rho
\]

\[
\vdots
\]

\[
\langle \gamma, s_n \rangle = \mathcal{M}[E_n] \rho
\]

The bindings (E_1 to E_n) are evaluated in parallel and the main expression (E) is not evaluated until all the bindings have been evaluated. Thus the number of steps taken to evaluate the parallel bindings is the maximum number of steps that any one of the bindings takes to evaluate. The number of steps to evaluate the main expression is added to the number of steps it takes to evaluate the parallel bindings, to give the number of steps it takes to evaluate the whole construct.

This assumes, as with the informal analysis, that there is an unbounded number of processors. By calculating the performance with an unbounded number of processors, and the sequential performance, the average parallelism can be calculated, which is a useful measure, as previously explained. To calculate the sequential performance plets are treated as lets.

An example showing the use of plet is a parallel map function.

\[
\text{parmap } = \langle f, l \rangle \text{ case l of}
\]

\[
\begin{align*}
\begin{array}{ll}
\text{[]} & \rightarrow \text{[]} \\
(x:xs) & \rightarrow \text{plet} \\
\end{array}
\end{align*}
\]

\[
\begin{align*}
\text{first } &= f x \\
\text{rest } &= \text{parmap } f \text{ xs} \\
\text{in} \\
\text{first : rest}
\end{align*}
\]

This applies f to each element of the list in parallel. The cost is the maximum cost of applying f to any element of the list. This also implies that none of the result list is formed until all the parallel applications have completed. Thus no pipelined parallelism can arise between this and another task consuming the result list. In fact this semantics does not permit any pipelined
parallelism. A true call-by-value language cannot have any pipelined parallelism. This is because all constructors' (functions) arguments must be evaluated before the constructor is evaluated (built).

The \texttt{plet} construct is the only source of parallelism in the language; however other parallel constructs such as those proposed in [40] could easily be added and analysed.

A successor to LeMétayer's ACE system (CAT) has been constructed for analysing parallel FP programs [65]. The basis of the approach is the same as the parallel step counting described here.

8.3.3 A lenient language

The semantics for the call-by-value language is very simple and corresponds to the intuitive parallel step counting used previously to analyse Quicksort. Its drawback is that it is overly synchronous and it does not support pipelined parallelism. In this section a semantics for a lenient language is devised; this language does support pipelined parallelism.

In a lenient language, a parallel let's bindings and main expression are evaluated in parallel. Thus lenient languages are non-strict in expressions which are evaluated in parallel. Operationally parallel call-by-value and lenient languages differ in when synchronisation occurs. Synchronisation occurs in a lenient language when one task requires the value of a variable being evaluated by another task. In the parallel call-by-value language synchronisation was such that all the tasks evaluating a parallel let's bindings had to terminate before the parallel let's main expression was evaluated.

For a lenient language a parallel let with a single binding is sufficient: multiple parallel definitions may be accomplished by simply nesting parallel lets. Therefore, the syntax of \texttt{plet} will be simplified thus:

\begin{verbatim}
plet v=E in E
\end{verbatim}

The rest of the syntax for the lenient language will be the same as for the call-by-value language.

Step counting does not work for lenient languages. Consider the evaluation of \texttt{plet v = E_1 in E}; the tasks evaluating \(E_1\) and \(E\) should proceed in parallel, with no unnecessary synchronisation. Synchronisation between the tasks may occur if the task evaluating \(E\) tries to access the value of \(v\). When this happens one of two possibilities can arise: either \(v\) will have been already evaluated or it will still be being evaluated. This is because:

\begin{center}
\begin{tabular}{|l|}
\hline
\multicolumn{1}{|c|}{In a lenient language all variables' evaluation is \textit{started} at binding time}\\
\multicolumn{1}{|c|}{but their evaluation is \textit{not} necessarily completed then.}\\
\hline
\end{tabular}
\end{center}

If \(v\) has been evaluated, it should be accessed exactly the same as if it had been evaluated sequentially by a \texttt{let}. If \(v\) is still being evaluated, the task evaluating \(E\) should wait for it to be evaluated to \texttt{WINF}. (In an implementation this arises as one task blocking on another.) To reason about the length of one task, evaluating \(v\), and the time for another task, evaluating \(E\), to require the value of \(v\), a concept of time is required.
Two pieces of temporal information are required for this non-standard semantics. Firstly the time spent evaluating expressions is needed. Secondly the time at which values become available is needed. To understand these pieces of temporal information a simple operational model of evaluation is required. The model consists of a dynamic collection of tasks. Each task evaluates an expression. The essential components of the model are tasks and values. With regards to the performance semantics of the lenient language, each task will have an associated evaluation time. The evaluation time monitors the time a task has spent evaluating and waiting for values: rather like a reduction clock. Each value has an associated timestamp, indicating the time when the value was reduced to WNI NF, and hence when it became available. (Note that in the lenient language expressions are reduced to WN P, as in a strict language.)

Consider a task evaluating a list, its evaluation time monitors the time spent evaluating the list. Elements of the list will be timestamped with the times at which they become available: the times at which they are evaluated to WNI NF. Thus the time at which the task finishes evaluating the entire list is likely to be later than when some list elements become available. Alternatively if the task evaluating the list sparks tasks to evaluate list elements in parallel, the task evaluating the entire list may finish before list elements become available. Pipelining relies on this; for example, one task may consume list elements while another task produces list elements. Of importance is that list elements may be consumed before the entire list has been evaluated.

Times have also been used in real-time functional languages, for example ART and Ruth [17, 41]. However, in these languages times are used for a different purpose; they are used to respond to real-time events and to avoid non-determinism. Times are explicitly manipulated to avoid non-determinism. For example an operator for merging streams of elements can be written deterministically by simply taking stream elements with the lowest timestamps first. In these real time languages times are an integral part of the language; in the lenient language described here, times are part of the non-standard semantics, they are not visible to the programmer.

Rather than augmenting a standard semantics with temporal information, a combined semantics has been defined. In this semantics, the standard semantics and temporal information are mutually dependent.

The valuation function \mathcal{M} has the form:

$$\mathcal{M} : E \rightarrow Env \times Time \rightarrow Ans$$

Expressions are evaluated within an environment and at a specific time to produce answers. The new semantic domains are:

- $Ans = D \times Time$
- $\alpha, \beta \in D = Basic + Fun + List$
- $Basic = B \times Time$
- $Fun = (Ans \rightarrow Ans) \times Time$
- $List = (nil + (D \times List)) \times Time$
- $t \in Time = Nat_{\downarrow}$
- $\rho \in Env = Var \rightarrow D$
- $B = \text{constants and primitive functions}$

All values (D) are time-stamped with the time when they become available: when they are evaluated to WNI NF. Each evaluation returns a pair (Ans), comprising a value (D) and a $Time$
denoting the time when evaluation by the current task finished. Tasks only occur implicitly in the semantics. The time argument to the valuation function represents the time when a task starts to evaluate an expression. The time component of \(\text{Ans} \) pairs represents the time when a task finishes evaluating an expression. This time is not necessarily the time when the value of the expression becomes available. For example, the current task may have sparked another task to evaluate an expression. Thus the current task need spend no time evaluating the expression. However, if the current task requires the expression’s value, it will have to wait for it to become available. With one exception, times are sequentially threaded through valuation functions, representing a single task’s sequential evaluation. The exception is for the meaning of the \(\text{plet} \) function. This is the only parallel construct. Here there are two valuation function applications with the same time arguments: this represents a fork, parallel evaluation with a newly created task.

The meaning of a variable \(v \), in an environment \(\rho \) and at time \(t \), is:

\[
\mathcal{M}[v] \rho t = \langle \rho[v], t \rangle
\]

The time-stamped value is looked-up in the environment. The variable is either already evaluated or being evaluated by another task, thus no time is required to evaluate it. Therefore the amount of time required by this task to evaluate a variable is zero; hence the input time \(t \) is returned as the new time after \(v \)’s evaluation.

The meaning of \(\text{let} \) is:

\[
\mathcal{M}[\text{let } E_1 \text{ in } E_2] \rho t = \mathcal{M}[E_2] \rho[v \mapsto \alpha] t'
\]

\[
(a, t') = \mathcal{M}[E_1] \rho t
\]

The \(\text{let} \) construct evaluates its binding \((E_1) \) and then it evaluates its main expression \((E_2) \). Thus the binding is evaluated at the current time \(t \) and the main expression is evaluated at the time when the evaluation of the binding finishes. The valuation function is strict in its time argument: \(\mathcal{M}[E] \rho \bot = \langle \bot, \bot \rangle \). Therefore if the \(\text{let} \) binding evaluates to bottom, \(t' \) will be bottom and hence the whole construct will evaluate to bottom. In this way times are used to ensure the strictness of sequential evaluation.

The \(\text{let} \) construct may be contrasted with \(\text{plet} \):

\[
\mathcal{M}[\text{plet } v = E_1 \text{ in } E_2] \rho t = \mathcal{M}[E_2] \rho[v \mapsto \alpha] t
\]

\[
(a, _) = \mathcal{M}[E_1] \rho t
\]

The difference between \(\text{plet} \) and \(\text{let} \) is that for \(\text{plet} \), the main expression’s evaluation \((E_2) \) begins at the same time as the bindings evaluation \((E_1) \). Thus implicitly a new task has been sparked to evaluate the binding. Unlike the sequential \(\text{let} \), the binding may evaluate to bottom and the main expression may still be defined. Synchronisation occurs if the current task evaluating \(E_2 \) requires \(v \)’s value; in which case it may have to wait for the value of \(v \) to become available.

To help understand the semantics consider: \(\text{let } l = E \text{ in } l \) and \(\text{plet } l = E \text{ in } l \). The meanings of the two expressions in an environment \(\rho \) and at time \(t \) are:
There are two important points concerning the meanings of these two expressions:

1. \(\alpha = \beta \). The values \(\alpha \) and \(\beta \) are equal (including their timestamps); thus the results of the two expressions are equal, and they become available at the same time.

2. \(t \leq t' \). Since a task evaluating `let` must fully evaluate \(E \) before it can evaluate the main `let` expression (1), the amount of time required for a task to evaluate the `let` is at least that required to evaluate the `plet`. A task evaluating `plet` will evaluate the main expression (1) immediately, because it has sparked a task to evaluate its binding. No evaluation of the `let` and the `plet`s main expressions are required since in both cases the expression is a variable (1), and all variables must either have already been evaluated (`let`) or sparked tasks must be evaluating them (`plet`).

The meaning of `cons` is:

\[
\mathcal{M}[E_1 : E_2] \rho t = \langle \text{cons } \alpha \beta, t \rangle
\]

\[
\langle \alpha, t_1 \rangle = \mathcal{M}[E_1] \rho t
\]

\[
\langle \beta, t_2 \rangle = \mathcal{M}[E_2] \rho t_1
\]

Operationally `cons` produces a cons cell, then the head of the cons is evaluated and then the tail of the cons is evaluated. Many different patterns of evaluation for `cons` are possible; for example \(E_1 \) and \(E_2 \) could be evaluated in parallel. This cons, although sequential, can give rise to pipelining. Notice that the cons value is time-stamped with the current time. The head and tail will often have different time-stamps from this cons time-stamp.

The semantics for `{E}` increments the time at which the evaluation of \(E \) completes and the time at which that value becomes available. The behaviour of this annotation only makes sense for annotating primitive operator applications which return an atomic value.

\[
\mathcal{M}[\{E\}] \rho t = \langle \langle \alpha, t_1 + 1 \rangle, t_2 + 1 \rangle
\]

\[
\langle \alpha, t_1 \rangle, \langle t_2 \rangle = \mathcal{M}[E] \rho t
\]

The semantics for `+` is:

\[
\mathcal{M}[E_1 + E_2] \rho t = \langle \langle n_1 + n_2, t' \rangle, t' \rangle
\]

\[
\langle \langle n_1, t_1 \rangle, t_2 \rangle = \mathcal{M}[E_1] \rho t
\]

\[
\langle \langle n_2, t_3 \rangle, t_4 \rangle = \mathcal{M}[E_2] \rho t_2
\]

Like most primitive operators `+` must synchronise on its arguments. That is, if the arguments to `+` are not yet available after the current task has finished evaluating them, it must wait for them.
The + operator sequentially evaluates its arguments, left to right. Thus first the left argument is evaluated, and then the right argument is evaluated. The left argument is evaluated at time t. At time t_2 the evaluation of the left argument, by the current task, finishes. The left argument may not be fully evaluated at time t_2, since another task may be evaluating it. However it is guaranteed that this current task need not evaluate the left argument any further and that the argument will eventually be fully evaluated, possibly by another task. Thus the evaluation of the right argument may start at time t_2. At time t_4 the evaluation by the current task of the right argument finishes. Only when the values of both arguments are available may the result of the addition be calculated. The arguments become available at times t_1 and t_3. Thus the result of the addition cannot be calculated until the latest of the times t_4, t_1 and t_3. (The time t_4 must be later than or equal to t_2.)

The semantics for case is:

\[
\mathcal{M}[\text{case } E \text{ of } \langle x : xs \rangle \rightarrow E_2] \rho t = \langle \text{cons } \alpha \beta, t_2 \rangle : \mathcal{M}[E_2] \rho' (\max t_1 t_2) \\
\rho' = \rho[\alpha \mapsto x, \beta \mapsto xs]
\]

The case construct evaluates E at time t. Since case requires the value of E, if necessary, it must wait for this value to become available (synchronise). It does not wait for the whole list to become evaluated but only the top cons or nil. The value E becomes available at time t_1. The evaluation of E, by the current task, takes until t_2. Therefore the evaluation of E_1 or E_2, by the current task, starts at the later of the two times t_1 and t_2.

The complete semantics is shown in Figure 8.3.

The lenience of the semantics may be demonstrated by comparing: \texttt{let v = \bot in []} with \texttt{plet v = \bot in []}. The plet expression terminates whereas the let expression does not:

\[
\mathcal{M}[\text{let } v = \bot \text{ in } []] \rho t = \mathcal{M}[[]] \rho[\bot \mapsto \bot] \bot \\
(\bot, \bot) = \mathcal{M}[v] \rho t
\]

\[
= (\bot, \bot) \quad \text{since } \mathcal{M} \text{ is strict in times}
\]

\[
\mathcal{M}[\text{plet } v = \bot \text{ in } []] \rho t = \mathcal{M}[[]] \rho[\bot \mapsto \bot] t \\
(\bot, \bot) = \mathcal{M}[v] \rho t
\]

\[
= (\langle \text{nil}, t \rangle, t)
\]

The following example demonstrates how pipelining may occur in the lenient language. Consider the expression E defined below:

\[
\text{plet } 1 = \{1\} : \{2\} : \{3\} : [] \\
\text{in } \text{case } 1 \text{ of } \\
[] \rightarrow 0 \\
(a : as) \rightarrow a
\]
The \textit{1} binding is evaluated in parallel with the case expression. Each list element takes one time unit to evaluate. The value of the whole expression may be returned before all of the list \textit{1} has been evaluated. This is essentially a very simple form of pipelining. If it is assumed that the whole expression (\textit{E}) is evaluated at time \textit{t} and in an environment \textit{p} then:

\(M[1] \rho t = \langle w, t+3 \rangle\)

\(w = \langle \text{cons} (1, t+1) x, t \rangle\)

\(x = \langle \text{cons} (2, t+2) y, t+1 \rangle\)

\(y = \langle \text{cons} (3, t+3) z, t+2 \rangle\)

\(z = \langle \text{nil}, t+3 \rangle\)

For example, the second cons cell \textit{x} becomes available at time \textit{t+1}; however its integer head value becomes available later, at time \textit{t+2}. This has a ‘real’ value of 2. Since \texttt{plet} discards the evaluation time of \textit{1} and evaluates the case expression at time \textit{t}, the meaning of \textit{E} is:

\(M[E] \rho t = M[\text{case 1 of}\)

\[\begin{array}{l}
\text{[]} \rightarrow 0 \\
(a :: a) \rightarrow a \langle \rho[1 \leftarrow w] \rangle t
\end{array}\)

\(= \text{case } (w, t)\)

\(\langle (\text{nil}, t_1), t_2 \rangle : M[0] \rho \langle \text{max } t_1, t_2 \rangle\)

\(\langle (\text{cons } a \beta, t_1), t_2 \rangle : M[a] \langle \rho[a \leftarrow a, x \leftarrow \beta] \rangle \langle \text{max } t_1, t_2 \rangle\)

\(= M[a] \langle \rho[a \leftarrow (1, t+1), as \leftarrow x] \rangle t\)

Thus the initial task evaluating \textit{E} will finish at time \textit{t} and the value of the whole expression (\textit{1}) will become available at time \textit{t+1}.

8.4 Using the semantics

Using the semantics proofs may be made about the performance of parallel programs. Two properties are commonly sought: the (approximate) performance equivalence of two programs and the absolute performance of a program. As with conventional complexity analysis one does not calculate the performance of arbitrary programs. Rather, the performance of core algorithms and library functions are calculated. The following section uses the semantics to prove two program fragments have the equivalent performance; a kind of idempotence is proven. To simplify proofs some rules are used; two of these are given in the next section (without proof). The last section shows a performance calculation for a pipelined version of Quicksort.

8.4.1 A small proof

The following is a proof that the two program fragments shown below, have equivalent operation and meaning. A kind of idempotence is proved. The significance of this, is that it enables some redundant \texttt{plets} to be removed from programs; this will improve programs’ efficiency. Thus any expression having the form of the left hand side may be replaced by the more efficient form
\[M[E] \rho \perp = \langle \perp, \perp \rangle \]

If \(t \neq \perp \):

\[M[v] \rho t = \langle \rho[v], t \rangle \]

\[M[E_1 \cdot E_2] \rho t = f (M[E_2] \rho t_1) \]

\[((f, -), t_1) = M[E_1] \rho t \]

\[M[\lambda v. E] \rho t = \langle (\lambda (a, t'). M[E] \rho[v \mapsto a] t', t), t \rangle \]

\[M[\text{let } v = E_1 \text{ in } E_2] \rho t = M[E_2] \rho[v \mapsto a] t' \]

\[\langle a, t' \rangle = M[E_1] \rho t \]

\[M[\text{let rec } v = E_1 \text{ in } E_2] \rho t = M[E_2] \rho[v \mapsto a] t' \]

\[\langle a, t' \rangle = \text{fix} (\lambda (\alpha, _). M[E_1] \rho[v \mapsto a] t) \]

\[M[\text{let } v = E_1 \text{ in } E_2] \rho t = M[E_2] \rho[v \mapsto a] t' \]

\[\langle a, t' \rangle = M[E_1] \rho t \]

\[M[E_1 + E_2] \rho t = \langle (n1 + n2, t'), t' \rangle \]

\[t' = \text{max} t_1 t_3 t_4 \]

\[\langle (n1, t_1), t_2 \rangle = M[E_1] \rho t \]

\[\langle (n2, t_3), t_4 \rangle = M[E_2] \rho t_2 \]

\[M[\text{case } E \text{ of }] \]

\[\text{case } M[E] \rho t \]

\[\langle \langle \text{nil, } t_1 \rangle, t_2 \rangle : M[E_1] \rho (\text{max } t_1 \ t_2) \]

\[\langle \langle \text{cons } a \ \beta, t_1 \rangle, t_2 \rangle : M[E_2] \rho'(\text{max } t_1 \ t_2) \]

\[\rho' = \rho[x \mapsto a, xs \mapsto \beta] \]

\[M[\{E\}] \rho t = \langle \langle a, t_1 + 1 \rangle, t_2 + 1 \rangle \]

\[\langle \langle a, t_1 \rangle, t_2 \rangle = M[E] \rho t \]

Figure 8.3: A time-based semantics
shown on the right. This may be used to prove algebraic identities similar to those used in Section 3.1.3.

\[
\text{plet } a = E \text{ in } \quad = \quad \text{plet } a = E \text{ in } \\
\text{plet } b = a \text{ in } \quad E \text{main } [a/b] \\
\]

The left hand side is equal to, at time \(t \) and in an environment \(\rho \):

\[
\mathcal{M}[\text{Emain}] \rho'[b \mapsto \text{fst}(M[a] \rho'(t))] t \\
\rho' = \rho[a \mapsto \text{fst}(M[E] \rho t)] \\
= \text{var semantics} \\
\mathcal{M}[\text{Emain}] \rho'[b \mapsto \rho'[a]] t \\
= \text{by substitution} \\
\mathcal{M}[\text{Emain}[a/b]] \rho' t \\
\rho' = \rho[a \mapsto \text{fst}(M[E] \rho t)] \\
= \text{meaning of the right hand side} \Box
\]

This proof may seem intuitively obvious; however beware, for example \(\text{plet } x = E \text{ in } x \) and \(E \) have the same meaning, but they do not have the same performance.

8.4.2 Rules

This section describes two rules which are useful in the proof which follows. The first states that essentially times can only increase. The second is an uncurrying simplification for full function applications.

1. **Time monotonicity:**

\[
\forall E, v, \rho, t, t' : ((v, _), t') = \mathcal{M} \rho\ t \Rightarrow (t' \geq t)
\]

2. **Uncurrying**, if \(f \) is bound to a lambda abstraction of \(n \) arguments in an environment \(\rho \):

\[
f = (\forall v_1 \ldots \forall v_n. \ E)
\]

then applications of \(f \) to \(n \) arguments may be performed by \(f' \); where the meaning of \(f' \) is defined to be:

\[
\mathcal{M}[f'] \rho' t = \langle (\lambda t'. \lambda \alpha_1 \ldots \lambda \alpha_n. \mathcal{M}[E] \rho[v_1 \mapsto \alpha_1, \ldots, v_n \mapsto \alpha_n] t', t), t \rangle
\]

The meaning of \(f' \) applications is:

\[
\mathcal{M}[f' E_1 E_2 \ldots E_n] \rho t = f_{t_n \alpha_1 \alpha_2 \ldots \alpha_n} \\
\langle (f, _), t_f \rangle = \mathcal{M}[\Gamma] \rho\ t \\
\langle \alpha_1, t_1 \rangle = \mathcal{M}[E_1] \rho\ t_f \\
\langle \alpha_2, t_2 \rangle = \mathcal{M}[E_2] \rho\ t_1 \\
\vdots \\
\langle \alpha_n, t_n \rangle = \mathcal{M}[E_n] \rho\ t_{n-1}
\]
Both of these rules follow in a straightforward way from the semantics.

8.4.3 Quicksort revisited

The aim of this section is to calculate an upper bound on the performance of a Quicksort function. This function has some pipelined parallelism; this is caused by the evaluation of successive recursive calls to Quicksort overlapping. The performance of this Quicksort may then be compared with the non-pipelined version. To improve the readability of subsequent programs written in the lenient language: top level letrecs will be removed, defining constructs will be extended to handle multiple definitions and some brackets will be omitted where the intended meaning is obvious. In addition some extra data structures, such as tuples, will be needed. These entail only minor extensions to the previously defined semantics.

The pipelined Quicksort program is:

```haskell
qsort = \l. case l of
  [] -> []
  (e:r) -> parlet
    lo = filter (\x. x<=e) r
    hi = filter (\x. x>e) r
  in
  parlet
  qlo = qsort lo
  qhi = qsort hi
  in
  append qlo (e:qhi)
```

```haskell
filter = \p. \l. case l of
  [] -> []
  (x:xs) -> if p x then x : filter p xs else filter p xs
```

Notice the curly braces which indicate that only comparisons should be counted.

Although technically possible, it is very difficult to reason about a program of this complexity directly using the semantics. Instead the program will be transformed so as to compute the execution times in addition to the real results. Thus temporal information will be calculated explicitly as standard values. The transformed program may then be reasoned about using equational reasoning, in the same way as programs are usually reasoned about. This greatly simplifies reasoning because all reasoning is performed at the program level. The transformation can be achieved by regarding the non-standard semantics as specifying a program transformation rather than a denotational semantics. Denotational semantics specify the semantics of a language by translating expressions in the language into the lambda calculus. The lambda calculus has a well known domain theoretic semantics. A simple functional language is very similar to the lambda calculus. Therefore the denotational semantics may be treated as a source to source transformation, rather than a translation of the lenient language into the lambda calculus. The lambda calculus used in the denotational semantics has been made deliberately similar to the lenient language for this purpose. This is a standard ‘trick’ which often may be performed with the denotational semantics of functional languages.
The only difficulty in performing this transformation is that non-strictness is required in places in the semantics (for parallel constructs). Thus parallel constructs should be transformed into expressions with parallel constructs. However since the standard meaning of plet and let is the same, when the binding is completely defined (this can be easily proven), parallel constructs may be transformed into sequential constructs.

Despite calculating Quicksort's performance via program transformation, the calculation is still very detailed. Thus the calculations shown, especially the first step, contains many simplifications. These will be highlighted when important. Ideally powerful simplification rules should be developed to allow more formal, yet concise, reasoning to be used.

Once a transformed program has been obtained it is progressively simplified; until a recurrence relation may be derived and solved. Where necessary assumptions about data are made. The transformed version of qsort, which includes explicit time information, is:

\[
qsort = \lambda t \cdot \begin{cases}
\text{case } 1 \text{ of} \\
([], t') & \rightarrow \text{let } tt = \max t \ t' \ \text{in} \ (([], tt), tt) \\
(e: r, t') & \rightarrow \text{let } tt = \max t \ t' \ \text{in} \\
& \quad \text{let } lo = \text{filter } tt \ (\text{time } e) \ (\lambda x. x \leq \text{value } e) \ r \\
& \quad \text{hi } = \text{filter } tt \ (\text{time } e) \ (\lambda x. x > \text{value } e) \ r \\
& \quad \text{in} \\
& \quad \text{let } qlo = \text{fst} \ (qsort \ tt \ lo) \\
& \quad qhi = \text{fst} \ (qsort \ tt \ hi) \\
& \quad \text{in} \\
& \quad \ldots
\end{cases}
\]

\[
\text{filter } = \lambda t \cdot \begin{cases}
\text{case } 1 \text{ of} \\
([], t') & \rightarrow ([], \max t \ t') \\
(x:xs, t') & \rightarrow \text{let } tt = 1 + \max (\text{max } te \ (\text{time } x)) \ (\max t \ t') \ \text{in} \\
& \quad \text{if } p \ (\text{value } x) \\
& \quad \text{then } ((\text{value } x, tt) : \text{filter } tt \ te \ p \ xs, tt) \\
& \quad \text{else } \text{filter } tt \ te \ p \ xs
\end{cases}
\]

Several simplifications have been made; these include:

- Time monotonicity and the uncurrying rule have been used.
- Since the argument to both case statements is a variable, which takes no time to evaluate, neither case statement calculates the time to evaluate its expression to be matched.
- The filter function has been specialised. In particular, it need not calculate evaluation times since it is evaluated in parallel by qsort.
- The filter function increments the time taken for each predicate application.
- A 'real' predicate is passed into filter. The time taken to evaluate the predicate depends on the time at which x and e become available. The time at which e becomes available, is passed into filter. The time at which x becomes available is inspected in filter.
The syntax of answers (Ans in the semantics) is (value, time) and the syntax of values is (real value, time). For example ((x:xs), t) is a cons value with a timestamp of t. The expression (([], t), t) is an answer taking time t to evaluate. It has a value ([], t) which in turn is nil with a time stamp of t. As in the semantics, value and time are fst and snd respectively.

How should append (qsort lo) (e:qhi) be transformed? Rather than transform it directly it will be assumed that the greatest time it takes for any element to become available, is required. Therefore the performance calculation may be simplified by only calculating the longest time it takes for any element to become available.

In addition since filter is always called from qsort with a non-empty list and since max is idempotent the time e value will be lifted out of filter. Thus the functions become:

```haskell
qsort = \t. \1. 
    case 1 of 
      ([], t') -> max t t'
      (e:r, t') -> let tt = max t t' in 
        let lo = filter (max tt (time e)) (\x. x <= value e) r 
            hi = filter (max tt (time e)) (\x. x > value e) r 
        in 
        let qlo = qsort tt lo 
            qhi = qsort tt hi 
        in 
        max qlo (max (time e) qhi)

filter = \t. \p. \1. 
    case 1 of 
      ([], t') -> ([], max t t') 
      (x:xs, t') -> let tt = 1 + max (time x) (max t t') in 
        if p (value x) 
        then ((value x, tt) : filter tt p xs, tt) 
        else filter tt p xs 
```

Currently list elements and list cons cells are timestamped. This is unnecessary since only list elements need to be timestamped. The precondition for removing list cons cell timestamps can be formalised for filter thus:

\[f (\mathcal{M}[_][_] \rho _ t') = f (\text{zero} (\mathcal{M}[_][_] \rho _ t')) \]

where:

\[
\begin{align*}
(f, t') &= \mathcal{M}[\text{filter} _ _ \rho t \\
\text{zero} (_ _ t) &= _ _ (_ _ t) \\
z (_ _ t) &= (_ _ (_ _ 0) \\
z (\text{cons} _ _ t) &= _ _ (\text{cons} _ _ (_ _ \beta), 0)
\end{align*}
\]

This says that filtering a list must be the same as filtering a list with all the top level cons times zeroed. That is the list timestamps are irrelevant, only the element timestamps are required. A similar result holds for map.
This precondition is met by the filter used by qsort. Also since qsort consists of successive list filterings, list timestamps are unnecessary in qsort too. Thus the functions may be rewritten as:

```
qsort = \t. \l. case 1 of
    []  -> t
  (e:r) -> let lo = filter (max t (time e)) (\x.x <= value e) r
           hi = filter (max t (time e)) (\x.x > value e) r
     in
      let qlo = qsort t lo
            qhi = qsort t hi
     in
      max qlo (max (time e) qhi)
```

```
filter = \t. \p. \l. case 1 of
     []  -> ([],t)
  (x:xs) -> let tt = 1+ max (time x) t in
           if p (value x)
           then ((value x, tt) : filter tt p xs, tt)
           else filter tt p xs
```

It will be assumed that the list argument to qsort becomes available at the same time as qsort is applied to it. Then the time argument to qsort may be omitted, only the times at which list elements become available is required. Thus qsort becomes:

```
qsort = \l. case 1 of
    []  -> 0
  (e:r) -> let lo = filter (time e) (\x.x <= value e) r
           hi = filter (time e) (\x.x > value e) r
     in
      let qlo = qsort lo
            qhi = qsort hi
     in
      max qlo (max (time e) qhi)
```

It has also been assumed that the initial list to be sorted is non-empty. Thus, the nil case for qsort may return 0 which is the identity element of max (on naturals).

The intuition behind this description of the qsort's performance is now given. Only comparisons are being measured and the greatest time taken for any element to become available is required. Therefore only the times at which elements become available from each filtering is required. Effectively the qsort applications cost nothing and hence they can be completely unfolded at no cost. Thus the description consists solely of nested filters. Each comparison in filter increments the availability time of elements.
Filter rules

To further simplify qsort it is necessary to simplify the filter applications. To do this some rules about filter are developed.

These rules concern the transformed version of filter like the one in qsort: this filter has no cons timestamps and it has a predicate which is being "counted". In suitable cases these rules enable the time at which elements become available to be determined independently of which elements are present in the result.

The following assumptions are made, the list to be filtered is \(l \):
\[
l = [(e_1, t_1), \ldots, (e_n, t_n)]
\]

Thus \((e_i, t_i)\) is the \(i^{th}\) element of \(l\), \(e_i\) is the real value and \(t_i\) is its timestamp. The filtering starts at time \(tt\), the predicate is \(p\) and the result of the filter is \(fl\):

\[
fl = \text{filter } tt \ p \ l
\]

The time taken to evaluate the predicate, \(p\), is constant for all values which are available at the same time:

\[
\forall x, y : (\text{time } x = \text{time } y) \Rightarrow (\text{time } (p (\text{value } x)) = \text{time } (p (\text{value } y)) = (tp + \text{time } x))
\]

The value \(tp\) is the relative time taken to evaluate the predicate on an element of the list to be filtered. The series \(t'_1, \ldots, t'_n\) are the times at which each element \((e_i, t_i)\) of \(l\) is tested with the predicate \(p\).

\[
t'_1 = tp + \max tt \ t_1 \\
t'_i = tp + \max t'_{i-1} \ t_i
\]

Then in general the following rule holds:

\[
\forall (e_i, _) \in l : (e_i, t) \in fl \Rightarrow t = t'_i
\]

Two more restricted cases of the general rule are given below, case 1:

\[
(\forall (e_i, t_i) \in l : t_i \leq tt) \Rightarrow (\forall (e_i, _) \in l : (e_i, t'_i) \in fl \Rightarrow t'_i = tt + i \times tp)
\]

This may be expressed in programming terms thus:

\[
\begin{align*}
fl &= \text{filt } p \ (\text{acc } tt \ l) \\
\text{acc} &= \text{\{}tt, \text{tp, } l\text{. case} \\
& \quad \quad \text{\{}\text{\}} \\
& \quad \quad (x:xs) \rightarrow \text{\{}value x, tt\text{\} : \text{acc } (tt+tp) \text{ tp xs}} \\
\text{filt} &= \text{\{}p, \text{\} l\text{. case } l\text{ of} \\
& \quad \quad \text{\{}\text{\}} \\
& \quad \quad (x:xs) \rightarrow \text{if } p \ (\text{value } x) \ \text{then } x : \text{filt } p xs \ \text{else } \text{filt } p xs
\end{align*}
\]
Case 2:

\[(\forall 1 \leq i \leq n-1 : (t_i + tp) \leq t_{i+1}) \Rightarrow (\forall (e_i, \cdot) \in l : (e_i, t'_i) \in f \Rightarrow t'_i = t_i + tp)\]

This may be expressed thus:

\[fl = filt \ p \ (map \ (add \ tp) \ 1)\]
\[add = \ \lambda t. \ \lambda x. \ \text{value} \ x, (\text{time} \ x) + t\]

Notice how in this case the time \(t\) is not used. Similar rules hold for map, and other rules can be usefully formulated for scan and fold.

To use the filter rules it is necessary to unfold qsort once:

\[qsort = \ \lambda l. \ \text{case} \ 1 \ \text{of} \]
\[\quad [] \rightarrow 0\]
\[\quad (e:r) \rightarrow \text{let} \ lo = \text{filter1} \ (\text{time} \ e) \ (\lambda x. x \leq e) \ r\]
\[\quad \quad \text{hi} = \text{filter1} \ (\text{time} \ e) \ (\lambda x. x > e) \ r\]
\[\quad \text{in}\]
\[\quad \text{let} \ qlo = qsort' \ lo\]
\[\quad \text{qhi} = qsort' \ hi\]
\[\quad \text{in}\]
\[\quad \text{max} \ qlo \ (\text{max} \ (\text{time} \ e) \ qhi)\]

\[qsort' = \ \lambda l. \ \text{case} \ 1 \ \text{of} \]
\[\quad [] \rightarrow 0\]
\[\quad (e:r) \rightarrow \text{let} \ lo = \text{filter2} \ (\text{time} \ e) \ (\lambda x. x \leq e) \ r\]
\[\quad \text{hi} = \text{filter2} \ (\text{time} \ e) \ (\lambda x. x > e) \ r\]
\[\quad \text{in}\]
\[\quad \text{let} \ qlo = qsort' \ lo\]
\[\quad \text{qhi} = qsort' \ hi\]
\[\quad \text{in}\]
\[\quad \text{max} \ qlo \ (\text{max} \ (\text{time} \ e) \ qhi)\]

\[\text{filter1} = \text{filter}\]
\[\text{filter2} = \text{filter}\]

If it is assumed that all the input list elements become available at time zero and hence qsort is initially applied at time zero; the filter rules may now be applied to filter1 and filter2 yielding:

\[\text{filter1} = \ \lambda t. \ \lambda p. \ \lambda l. \ \text{filt} \ p \ (\text{acc} \ t \ 1 \ l)\]
\[\text{filter2} = \ \lambda t. \ \lambda p. \ \lambda l. \ \text{filt} \ p \ (\text{map} \ (\text{add} \ 1) \ l)\]
CHAPTER 8. PERFORMANCE ANALYSIS AND DEBUGGING

Notice that \texttt{filter2} does not use its time parameter.

To simplify the filter functions further it is necessary to make some additional assumptions about the input list. It is assumed that the input list divides exactly, as was assumed in the analysis of the strict parallel Quicksort. Furthermore the input data divides into alternating sequences of elements less than or equal to, then greater than the pivot element; for example the list: [8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]. This means that each pair of recursive calls to \texttt{qsort}, \texttt{qlo} and \texttt{qhi} will take almost the same amount of time to evaluate, and hence the splitting is optimal. Thus, the result obtained will give an \textit{upper bound} on the performance of pipelined Quicksort.

Since pairs of \texttt{qsort} recursions are almost symmetric and they take almost the same time to evaluate, only the slightly longer recursion need be analysed: \texttt{qhi}.

The filter function may now be modelled as a function which selects every other element of the list to be sorted. Since the real values of the elements to be sorted are no longer used, only the times when elements become available are required:

\begin{verbatim}
qsort = \l. case l of
 [] -> 0
 (e:r) -> let lo = filter1 e r
 hi = filter1 e r
 in
 let qhi = qsort' hi in max e qhi

qsort' = \l. case l of
 [] -> 0
 (e:r) -> let lo = filter2 e r
 hi = filter2 e r
 in
 let qhi = qsort' hi in max e qhi

filter1 = \t. \l. everyother (from t ((length 1)+t))
filter2 = \t. \l. everyother (map inc 1)
inc = \x. x+1
\end{verbatim}

Now the list of times may be eliminated since the times are strictly increasing and therefore only the last element is required. The last element will have the longest time; in the program this is represented as \texttt{t}. The length of the list will now be modelled using a number \texttt{l}. This gives:

\begin{verbatim}
qsort = \l. let ll = length l in qsort' ((ll-1)/2) ll
qsort' = \l. \t. if l=1 then t else qsort' ((l-1)/2) (t+1)
\end{verbatim}

The recurrence relation which this defines may be solved thus: assuming the length of \texttt{l} is \(n = 2^m - 1 \) then the calculated time is: \texttt{qsort'} \((2^{m-2} - 1) n\). This equals \(2^m + m - 3 \). This may be compared with the previous strict (non-pipelined) version of Quicksort previously analysed;
this had a parallel execution time of \(2^{m+1} - 2 \times (m + 1)\). This gives a factor of two improvement in execution time for this pipelined Quicksort over the non-pipelined version of Quicksort. This is significant when compared with the basic logarithmic speed-up which is possible. Effectively this means that this algorithm can efficiently utilise twice as many processors as the previous strict algorithm can. Experiments have been performed and these verify the result, namely that the pipelined version of Quicksort is approximately twice as fast as the simple version of Quicksort.

The derivation is rather long. This is because the reasoning is at a very detailed level. Ideally theorems enabling reasoning at a higher level are required. For reasoning about purely sequential expressions, all of whose free variables are immediately available, a step counting semantics could be used. The complexity of the semantics is inherent in the lenient language; in particular this is caused by tasks synchronising on values. The parallel strict language has a much simpler operational behaviour because this does not happen; all the values a task may use are immediately available. To reason about the performance of large programs either many simplifications must be made to enable an analysis to be tractable, or some kind of simulation must be used.

8.5 Abstract simulation

This section describes how the non-standard semantics for the lenient language, which was developed in the previous section, may be used for program simulation rather than for generating cost formulae. Other non-standard semantics are also developed for generating different information. Often simulation is preferable to analysis because although less general, simulation is quicker than analysis and it is tractable for large programs. The comparison of analysis and simulation is analogous to that of symbolic versus numeric integration; the former is more general, but the latter is much easier!

8.5.1 Running the semantics

A different view of the non-standard semantics (Figure 8.3) is to regard it as defining a simulator. It may be used to simulate the performance of a parallel program; that is to evaluate a program and to generate some statistics about its evaluation. The main reason why this might be useful is that, as was shown in the previous sections, simplifying and solving recurrence relations is both difficult and time consuming. Often it is quicker and simpler to simulate a program, using sets of typical input data of different sizes. The results may be used to plot speed-up graphs to show the general behaviour of a program over a certain range of data. Further justification of this is that usually the context in which an algorithm is to be used puts constraints on the type and size of input data. Thus general information about an algorithms performance, as obtained by doing a complexity analysis and solving recurrence relations, is rarely required. Even if recurrence relations are generated and solved, the semantics may be run to verify the solutions for some values.

Two different approaches exist for running the semantics:

- The semantics may be treated as the specification and the basis for a conventional simulator. A simple but very inefficient way to do this is to implement the semantics directly
yielding an interpreter.

- The semantics may be viewed as a set of transformation rules, as was done in the analysis of Quicksort. Simulation then becomes a two stage process. First a parallel program is transformed (automatically) into a sequential program. Then the sequential program is evaluated using a conventional interpreter or compiler.

The second approach is new and corresponds to simulation by program transformation. This has several advantages over the conventional first approach. The advantages may be summarised as giving greater flexibility than conventional simulation. This arises because the simulation is not 'wired-in' to the simulator. The two techniques can be implemented with approximately the same efficiency. For both approaches the essential optimisation is to only timestamp values which need to be timestamped. Many sequential parts of programs do not need to propagate timestamps since they never change them.

Benefits of simulation by transformation

The programmer may vary the detail of simulation and has great control over the simulation. For example the cost of all operations may be counted or only a few. The programmer can decide what the costs should be. For calibration of operations costs, the cost of operations on a real implementation may be measured.

Another benefit is that expressions behaviour and value may be modelled. During the development of a software system, the system is often tested, although it is incomplete, by using stubs. Stubs model the value of missing parts of the system, either by calculating values inefficiently, for example a constructive specification or rapid prototype, or by only being defined for a range of values. This technique may be extended to include the performance of missing software components, as well as their values. Thus the performance of missing components must be modelled in addition to their values. For some complex high performance systems this may be essential.

To model the evaluation of an expression delays are required. This may be achieved by the delay function:

\[
\text{delay } = \lambda n. \lambda x. \text{if } n=0 \text{ then } x \text{ else } \text{delay } (n-1) x
\]

The \text{delay} function introduces an artificial delay proportional to its first argument. Pragmatically \text{delay} has been found to be a very useful function for debugging and designing parallel programs. It is used in the subsequent section on debugging (Section 8.6).

Rather than iterating \(n \) times, as the definition above shows, \text{delay} could be treated specially by the transformation phase. It can simply return its second argument and increment the time by \(n \), or some proportion of it. In terms of the semantics \text{delay} may be defined thus:

\[
\mathcal{M}[\text{delay}] \rho t = \langle (df, t), t \rangle
df = \lambda (\langle n, . \rangle, t'). \langle \lambda (a, t). \langle a, t+n \rangle, t' \rangle, t'
\]
The meaning delay produces a function df. The df function takes a numeric argument and produces a further function. This function returns its argument but increments the time by the numeric argument.

An example of such expression modelling is a game playing system. The system may be tested before the evaluation function which assesses how good a move is, has been written. The value of the evaluation function may be modelled as an arithmetic formulae. Its behaviour may be modelled using delay. If the evaluation function is an $O(n^2)$ operation then the delay should be proportional to the square of the argument's size. The stub for an evaluation function is shown below:

\[
\text{eval.fun} = \text{\textbackslash pos. delay (sqr (size pos)) (modelled.value pos)}
\]

The arithmetic code for calculating the modelled value should not contain any cost annotations; the entire cost of the evaluation function is modelled by the delay function.

The final advantage of doing simulation by transformation, is that although a program transformer is required, a simulator is not required!

8.5.2 Generating parallelism profiles

As described so far the only information which the semantics delivers is the result value and the execution time. For simulation purposes it is highly desirable to be able to generate other information too. Parallelism profiles plot the number of active tasks against time. They are particularly useful; hence the semantics will be augmented to generate these. For consistency, the addition of profiling information will still be presented as a non-standard semantics, although this semantics is difficult to reason with directly.

To get parallelism profiles tracing information must be incorporated into the semantics. This information represents the history of a task and its child tasks. This extra information is an augment to the previous semantics. The semantics is essentially unchanged.

Parallelism traces are lists of numbers showing the number of tasks active at a certain time. The value of a trace element at position t indicates the number of tasks active at time t. Several operations are required on traces: $||$, $+$ and $\text{\texttt{zeros}}$. The $||$ operator adds the elements of two traces pairwise. If the traces are of different lengths the shorter is padded-out with zeros. The $||$ operator represents parallel composition of traces. The $+$ operator appends one trace to another like list append; this represents sequential composition of traces. The $\text{\texttt{zeros}} n$ function creates a trace of n zeros; this is used for indicating a passage of time when a task is blocked - waiting for the result of another task. Traces are quoted in the same way as lists, for example $[1,2,0,3]$. This means that at time zero there was one task active, at time two there were two tasks active, at time three there were no tasks active and at time four there were three tasks active. The total execution time is four time units.

The valuation function \mathcal{M} is:

\[
\mathcal{M} : \mathcal{E} \to \mathcal{Env} \to \mathcal{Time} \to \mathcal{Ans}
\]
The semantic equations are the same as previously except for the parallelism tracing information. The old semantics domains are augmented with traces thus:

\[
\begin{align*}
\text{Ans} & = D \times \text{Trace} \times \text{Time} \\
\text{tr} & \in \text{Trace} = 1 + (\text{Nat} \times \text{Trace}) \\
\alpha, \beta & \in D = \text{Basic} + \text{Fun} + \text{List} \\
\text{Basic} & = B \times \text{Time} \\
\text{Fun} & = (\text{Time} - D - \text{Ans}) \times \text{Time} \\
\text{List} & = (\text{nil} + (D \times \text{List})) \times \text{Time} \\
t & \in \text{Time} = \text{Nat} \\
\rho & \in \text{Env} = \text{Var} - D \\
B & = \text{constants and primitive functions including integers and booleans}
\end{align*}
\]

The \text{Ans} domain now becomes triples of values, traces and times. The \text{Trace} domain represents the parallel execution trace of an evaluation.

The semantic equations are the same as previously except for the parallelism tracing information. The meanings of let and plet are:

\[
\begin{align*}
\mathcal{M}[\text{let } v = E_1 \text{ in } E_2]_{\rho t} & = (\beta, t_2, \text{tr}_2 \parallel \text{tr}_2) \\
(\beta, t_2, \text{tr}_2) & = \mathcal{M}[E_2]_{\rho[v \mapsto \alpha] t_1} \\
(\alpha, t_1, \text{tr}_1) & = \mathcal{M}[E_1]_{\rho t}
\end{align*}
\]

\[
\begin{align*}
\mathcal{M}[\text{plet } v = E_1 \text{ in } E_2]_{\rho t} & = (\beta, t_2, \text{tr}_2 \parallel \text{tr}_2) \\
(\beta, t_2, \text{tr}_2) & = \mathcal{M}[E_2]_{\rho[v \mapsto \alpha] t} \\
(\alpha, \ldots, \text{tr}_1) & = \mathcal{M}[E_1]_{\rho t}
\end{align*}
\]

Notice how they differ in the time at which \(E_2\) is evaluated and the way in which the traces, for the executions of \(E_1\) and \(E_2\), are combined. The let construct evaluates \(E_1\) and then \(E_2\), thus the trace for \(E_1\) is appended to the trace for \(E_2\) to form the result trace. For plet, \(E_1\) and \(E_2\) are evaluated in parallel so their traces are combined using \(\parallel\).

The meaning of + is:

\[
\begin{align*}
\mathcal{M}[E_1 + E_2]_{\rho t} & = (n_1 + n_2, t' + \text{tr}_2 \parallel \text{tr}_2 + z) \\
(\text{tr}_1,t_1,t_2) & = \max t_1 t_2 t_4 \\
z & = \text{zeros } (t' - t_4) \\
\langle n_1, t_1, t_2, \text{tr}_1 \rangle & = \mathcal{M}[E_1]_{\rho t} \\
\langle n_2, t_3, t_4, \text{tr}_2 \rangle & = \mathcal{M}[E_2]_{\rho t_2}
\end{align*}
\]

As before, the semantics of + states that each argument is evaluated and then the values of the arguments are awaited. Thus the left argument to + is evaluated at time \(t\). At time \(t_2\) the evaluation of \(E_1\), by the current task, finishes and the evaluation of \(E_2\) may start. At time \(t_4\) the evaluation of \(E_2\), by the current task, finishes. The values of the two arguments are then awaited. Thus, the addition happens at the latest of the times \(t_4, t_1\) and \(t_3\). Since the arguments are evaluated sequentially their traces are concatenated. After evaluating the two arguments, the current task may have to wait for their values. For every unit of time spent waiting, this
evaluation is not active. Therefore there is a trace of zeros, corresponding to the time spent waiting: zeros \((t' - t_4)\). If \(t'\) is less than or equal to \(t_4\) there is no delay and hence the empty trace is produced. Otherwise a trace of zeros corresponding to the difference between \(t_4\) and the latest value to become available will result.

The meaning given to case is:

\[
\mathcal{M}[^{\text{case } E \text{ of }}] = \text{case } \mathcal{M}[E] \rho t
\]

\[
\begin{align*}
\emptyset \rightarrow & E_1 \quad \langle \text{nil, } t_1, t_2, tr \rangle : \langle \alpha, t_4, tr + \text{zeros } (t_1 - t_2) + tr' \rangle \\
(x:xs) \rightarrow & E_2 \quad \rho t
\end{align*}
\]

\[
\langle \text{cons } \alpha \beta, t_1, t_2, tr \rangle : \langle \alpha, t_4, tr + \text{zeros } (t_1 - t_2) + tr' \rangle \\
= \mathcal{M}[E_2] \rho' (\max t_1 t_2)
\]

\[
\rho' = \rho[x \mapsto \alpha, xs \mapsto \beta]
\]

The value of \((t_1 - t_2)\) is the time spent waiting for value of \(E\) to become available. The values of \(t_1\) and \(t_2\) are natural numbers hence if \(t_1\) is less than \(t_2\) then the time spent waiting is 0. For every unit of time spent waiting, this evaluation is not active. Therefore after evaluating \(E\) and before evaluating \(E_1\) or \(E_2\) there is a trace of zeros, corresponding to the delay: zeros \((t_1 - t_2)\).

The semantics for \(\{E\}\) is the same as in the previous semantics except that it appends a unit trace of value \([1]\) to the parallelism trace for \(E\); since this represents a single time unit of activity:

\[
\mathcal{M}[\{E\}] \rho t = \langle \alpha, t_1 + 1, t_2 + 1, tr + [1] \rangle
\]

\[
\langle \alpha, t_1, t_2, tr \rangle = \mathcal{M}[E] \rho t
\]

The full semantics is shown in Figures ??.

Many other forms of information can be ‘collected’ by the semantics; this includes: task length statistics, blocking (waiting statistics), the number of tasks, and communication statistics: showing the communication of values between tasks.

8.5.3 A limited number of processors

This section concerns how evaluation information may be collected such that simulation with a limited number of processors may be performed. Performance with a limited number of processors is much less general than with a unbounded number of processors. However it is useful to be able to vary the degree of simulation as has been previously mentioned.

Unfortunately it is difficult to directly encode evaluation with a fixed number of processors into the semantics. Instead the semantics will be used to generate task dependency information. This information can then be used to perform the actual simulation. This idea has been used by Deschner \([35]\) to produce an efficient simulator for the parallel evaluation of functional languages.

The information necessary to describe potential tasks is:

- when work is performed
\[
\mathcal{M}[E] \rho \perp = (\perp, \perp, \perp)
\]

If \(t \neq \perp \):

\[
\mathcal{M}[v] \rho t = \langle \rho[v], t, [] \rangle
\]

\[
\mathcal{M}[E_1 E_2] \rho t = \langle (\beta, t_{fa}, tr_f + tr_a + tr_{fa}) \rangle
\]

\[
(\beta, t_{fa}, tr_{fa}) = \rho t_a \alpha
\]

\[
\langle (f, _), t_f, tr_f \rangle = \mathcal{M}[E_1] \rho t
\]

\[
\langle \alpha, t_a, tr_a \rangle = \mathcal{M}[E_2] \rho t_f
\]

\[
\mathcal{M}[\nu. E] \rho t = \langle \lambda \cdot \lambda \cdot \lambda \cdot \mathcal{M}[E] \rho[v \mapsto \alpha] t', t, t, [] \rangle
\]

\[
\mathcal{M}[\text{let } v = E_1 \text{ in } E_2] \rho t = \langle (\beta, t_2, tr_2 + tr_2) \rangle
\]

\[
(\beta, t_2, tr_2) = \mathcal{M}[E_2] \rho[v \mapsto \alpha] t_1
\]

\[
(\alpha, t_1, tr_1) = \mathcal{M}[E_1] \rho t
\]

\[
\mathcal{M}[\text{letrec } v = E_1 \text{ in } E_2] \rho t = \langle (\gamma, t_2, tr_1 + tr_2) \rangle
\]

\[
(\gamma, t_2, tr_2) = \mathcal{M}[E_2] \rho[v \mapsto \beta] t_1
\]

\[
(\beta, t_1, tr_1) = \text{fix} (\lambda (\alpha, _ _ _). \mathcal{M}[E_1] \rho[v \mapsto \alpha] t)
\]

\[
\mathcal{M}[\text{plet } v = E_1 \text{ in } E_2] \rho t = \langle (\beta, t_2, tr_1 || tr_2) \rangle
\]

\[
(\beta, t_2, tr_2) = \mathcal{M}[E_2] \rho[v \mapsto \alpha] t
\]

\[
(\alpha, _ _ _ t_1) = \mathcal{M}[E_1] \rho t
\]

Figure 8.1: Parallelism profiling semantics
\[M[E_1 + E_2] \rho t = (n_1 + n_2, t', tr_1 + tr_2 + z) \]
\[t' = \max t_1, t_3, t_4 \]
\[z = \text{zeros} (t' - t_4) \]
\[\langle (n_1, t_1), t_2, tr_1 \rangle = M[E_1] \rho t \]
\[\langle (n_2, t_3), t_4, tr_2 \rangle = M[E_2] \rho t_2 \]

\[M[\square] \rho t = \langle (\text{nil}, t), [] \rangle \]

\[M[E_1 : E_2] \rho t = \langle \langle \text{cons} \alpha \beta, t \rangle, t_2, tr_1 + tr_2 \rangle \]
\[\langle \alpha, t_1, tr_1 \rangle = M[E_1] \rho t \]
\[\langle \beta, t_2, tr_2 \rangle = M[E_2] \rho t_1 \]

\[M[\text{case } E \text{ of} \]
\[\square \rightarrow E_1 \]
\[(x:xs) \rightarrow E_2] \rho t \]
\[\langle (\text{nil}, t_1), t_2, tr \rangle : \langle \alpha, t_4, tr + z + tr' \rangle \]
\[\langle \alpha, t_4, tr' \rangle = M[E_1] \rho t_3 \]
\[t_3 = \max t_1, t_2 \]
\[z = \text{zeros} (t_1 - t_2) \]
\[\langle \langle \text{cons} \alpha \beta, t_1 \rangle, t_2, tr \rangle : \langle \alpha, t_4, tr + z + tr' \rangle \]
\[\langle \alpha, t_4, tr' \rangle = M[E_2] \rho t_3 \]
\[t_3 = \max t_1, t_2 \]
\[z = \text{zeros} (t_1 - t_2) \]
\[\rho' = \rho[x \mapsto \alpha, xs \mapsto \beta] \]

\[M[\{E\}] \rho t = \langle (a, t_1 + 1), t_2 + 1, tr + [1] \rangle \]
\[\langle (a, t_1), t_2, tr \rangle = M[E] \rho t \]

Figure 8.5: Parallelism profiling semantics
This information must be collected by the semantics. To simplify the semantics lists are omitted from the language. In actual fact only pipelining is a problem so strict lists could be introduced. This means that all tasks compute a single value and then die. With this constraint tasks synchronisation is simple since if a task requires the value of another task the 'requiring' task just waits for the other task to terminate. If pipelining may occur then it is necessary to know when values become available to other tasks. Without pipelining tasks synchronise on other tasks and not on the values they compute. If a task requires a value computed by another task it simply waits for that other task to complete.

The obvious representation for a parallel programs execution is as a graph: see Figure 8.6.

This diagram shows the execution of four tasks. Each tasks execution is represented by a solid arrow; dotted arrows represent tasks being sparked and tasks results being demanded. Thus task A sparks task B; task B sparks task C then it sparks task D, after which it demands the result of task C then the result of task D. Numbers indicate work which is performed between other actions. The execution time with an unbounded number of processors corresponds to the longest path through the graph. With a limited number of processors demands for task values introduce constraints on which tasks can be run. If pipelined parallelism was supported, this would manifest itself as multiple arrows from different parts of one tasks trace (arrow) to another parent task. This would represent multiple demands, for different parts of some data, from one task to another.

Thus the most natural representation of the semantic information representing the constraints between tasks is as a directed graph. However graphs are difficult to manipulate and so trees are used instead. The graph shown in Figure 8.6 will be represented by the tree shown in Figure 8.7. This tree has the same form as the graph except all demands have been made explicit.

All demands for tasks results are represented by explicit demands. Demand i means that this task requires the value of the $(i+1)$th last sparked task. For example in the example when task
B requires the value of task D it does a “demand 1” action.

The tree is called a Tracetrace and it has the following definition in the semantics:

\[
\text{Tracetrace} = \text{work Tracetrace} + \\
\text{spark Tracetrace} \times \text{Tracetrace} + \\
\text{demand Sparkcount} \times \text{Tracetrace} + \\
\text{end}
\]

\[
\text{Sparkcount} = \text{Nat}_\perp
\]

Note, work, spark, demand and end are all labels for the different parts of the sum construction: like constructors in programming languages. The work element represents a unit of work performed by a task. The spark element represents the creation of a new task; its first argument is the Tracetrace for the new task and its second argument is the current tasks continuation. A demand i element represents a demand for the value of the ith last sparked task. The end element is used to indicate the termination of a task (Tracetrace).

From this information it is possible to get: execution times, parallelism profiles, task length statistics, task blocking statistics and communication information for an unbounded, or bounded, number of processors.

The previous example has the following semantic representation:

\[
A = w \cdot 1 \cdot (\text{spark } B (w \cdot 10 \cdot (\text{demand } 0 \cdot (w \cdot 2 \cdot \text{end}))))
\]
\[
B = w \cdot 2 \cdot (\text{spark } C (w \cdot 2 \cdot (\text{spark } D (w \cdot 1 \cdot (\text{demand } 1 \cdot (\text{demand } 0 \cdot (w \cdot 1 \cdot \text{end}))))))))
\]
\[
C = w \cdot 3 \cdot \text{end}
\]
\[
D = w \cdot 5 \cdot \text{end}
\]
\[
w \cdot n \cdot t = \text{work}^n \cdot t
\]

Since only a unit cost is used in the semantics (work) a shorthand for multiple works is used: w. The w function is not used in the semantics.
The semantic domains are:

\[
D = \text{Value} \times (\text{Tracetree} \to \text{Tracetree})
\]

\[
\alpha, \beta \in \text{Value} = \text{Basic} + (\text{Value} \to \text{Sparkcount} \to D)
\]

Basic = constants and primitive functions including integers and booleans

\[
\rho \in \text{Env} = \text{Var} \to \text{Sparkcount} \to D
\]

\[
n \in \text{Sparkcount} = \text{Nat}
\]

Rather than enforce the strictness of this semantics, it is left lazy. Thus an infinite computation will produce an infinite Tracetree. If desired, strictness could be easily enforced.

The valuation function \(M \) is:

\[
M : \Gamma : \text{Env} \to \text{Sparkcount} \to D
\]

Result triples (\(D \)) consist of values, functions from Tracetrees to Tracetrees and Sparkcounts. Task executions are represented as functions which add their argument Tracetree to the end of their current Tracetree: forms of data continuations. In this way sequential composition of tasks executions simply becomes functional composition of their Tracetree functions.

Since task executions amount to essentially unfolding programs, it is necessary to pass Sparkcounts through the semantic functions in order to count the number of sparks. This is necessary to ensure that demands can be matched to their correct tasks.

The meaning of let is:

\[
M[\text{let } v = E_1 \text{ in } E_2] \rho n = \langle \beta, t_1 \cdot t_2 \rangle
\]

\[
\langle \alpha, t_1 \rangle = M[E_1] \rho n
\]

\[
\langle \beta, t_2 \rangle = M[E_2] \rho[v \mapsto \lambda n. \langle \alpha, \text{id} \rangle] n
\]

There are two important points to note. Firstly the traces (trace functions) are sequentially composed using function composition because \(\text{let} \) is sequential (\(t_1 \cdot t_2 \)). Secondly when \(\lambda n. \langle \alpha, \text{id} \rangle \), the value that \(v \) is bound to, is applied to a Sparkcount, it discards the Sparkcount and returns a \(D \), which consists of the calculated \(\alpha \) and the identity function for the trace function. The identity function corresponds to the null trace, an empty execution, the no-op. This is correct because accessing a variable which has already been evaluated, causes no Tracetree actions to take place.

This may be compared with the meaning of plet:

\[
M[\text{plet } v = E_1 \text{ in } E_2] \rho n = \langle \beta, \text{spark } (t_1 \text{ end}) \cdot t_2 \rangle
\]

\[
\langle \alpha, t_1 \rangle = M[E_1] \rho (n+1)
\]

\[
\langle \beta, t_2 \rangle = M[E_2] \rho[v \mapsto x] (n+1)
\]

\[
x = \lambda n'. \langle \alpha, \text{demand } (n'-n) \rangle
\]

Since plet sparks a task (evaluation) for \(E_1 \) the two trace trees (Tracetree functions) \(t_1 \) and \(t_2 \) are combined using spark. The sparked task's evaluation finishes after this, hence it is applied to end.
Note, spark takes two arguments; the first argument represents the sparked task's evaluation, and the second argument represents the parent task’s evaluation. Another major difference between let and plet is the binding of the variable v; in plet v is bound to a demand. This is because if the main task tries to access the sparked tasks value, this constitutes a synchronisation constraint between the tasks. In particular when a demand occurs the demanding task must wait for the demanded task’s value to be evaluated. The \((n - n')\) argument to demand identifies the task whose result is required. Thus demand \((n - n')\) represents a demand for the \((n - n')\)th last task sparked. Notice also how the evaluations for both E₁ and E₂ have the number of sparked tasks incremented, since a spark has occurred.

The meaning for a variable is:

\[
\mathcal{M}[v]_{\rho} n = \rho[v] n
\]

The value associated with the variable v in the environment \(\rho\) is looked-up and applied to the current number of sparks. This application will either return a no-op Tracetree function or the function will be a demand. In the former case the no-op Tracetree function is the identity function, see for example the sequential let binding. The latter case, see plet, corresponds to a synchronisation constraint; the demanded task must complete before this task may continue.

The work annotation \{E\} has the following meaning:

\[
\mathcal{M}[\{E\}]_{\rho} n = \langle \alpha, t \cdot work \rangle
\]

It appends a work Tracetree function (constructor) to the Tracetree function for E.

The full set of semantic equations are shown in Figure 8.8.

Using the tracetree semantics for simulation

This section describes an informal use of the previous Tracetree semantics. Although the semantics was only used to guide the implementation, it would have been possible, if a little tedious, to formally derive the implementation.

Since a lenient language was not available the experiments were performed in a lazy language. For strict adherence to the semantics, the strictness of sequential bindings must be enforced. If this is not enforced some programs may terminate which otherwise would not do so.

The Tracetree data structure was implemented in the obvious way:

```haskell
> tracetree ::= Spark tracetree tracetree |
> Work num tracetree |
> Demand num tracetree |
> End
```
\[
\mathcal{M}[\nu. E] \rho n = \langle \lambda \alpha. \lambda n'. \mathcal{M}[E] \rho[\nu \mapsto \lambda n. \langle \alpha, id \rangle] n', id \rangle
\]

\[
\mathcal{M}[\text{let } v = E_1 \text{ in } E_2] \rho n = \langle \beta, t_1 \cdot t_2 \rangle
\]
\[
\langle \alpha, t_1 \rangle = \mathcal{M}[E_1] \rho n
\]
\[
\langle \beta, t_2 \rangle = \mathcal{M}[E_2] \rho[\nu \mapsto \lambda n. \langle \alpha, id \rangle] n
\]

\[
\mathcal{M}[\text{letrec } v = E_1 \text{ in } E_2] \rho n = \langle \gamma, t_1 \cdot t_2 \rangle
\]
\[
\langle \beta, t_1 \rangle = \mathcal{M}[E_1] \rho n
\]
\[
\langle \beta, t_2 \rangle = \mathcal{M}[E_2] \rho[\nu \mapsto \lambda n. \langle \alpha, id \rangle] n
\]

\[
\mathcal{M}[\text{plet } v = E_1 \text{ in } E_2] \rho n = \langle \beta, \text{spark} (t_1 \text{ end}) \cdot t_2 \rangle
\]
\[
\langle \alpha, t_1 \rangle = \mathcal{M}[E_1] \rho (n+1)
\]
\[
\langle \beta, t_2 \rangle = \mathcal{M}[E_2] \rho[\nu \mapsto x] (n+1)
\]
\[
x = \lambda n'. \langle \alpha, \text{demand} (n' - n) \rangle
\]

\[
\mathcal{M}[E_1 + E_2] \rho n = \langle v1 \cdot v2, t_1 \cdot t_2 \rangle
\]
\[
\langle v1, t_1 \rangle = \mathcal{M}[E_1] \rho n
\]
\[
\langle v2, t_2 \rangle = \mathcal{M}[E_2] \rho n
\]

\[
\mathcal{M}[\{E\}] \rho n = \langle \alpha, t \cdot \text{work} \rangle
\]
\[
\langle \alpha, t \rangle = \mathcal{M}[E] \rho n
\]

where id = \lambda t. t

Figure 8.8: Trace tree semantics
Note that a parameterised work has been used Work. The Demand constructor has a numeric argument representing the nth last task which is being demanded, exactly as demand does in the semantics.

The simulated function shown here is a parallel divide and conquer combinator. It is based on the simple divide and conquer combinator shown in Section 3.4.3.

> dc :: (*->(**->**->**,*,*,tracetree->tracetree,tracetree->tracetree)
> (*->bool)
> (*->(**,tracetree->tracetree))
> (*)
> (*-> (**,num,tracetree))
>
> dc div' isleaf solve
> = f 0 End
> where
> f ns tt x = (solveval, ns, solvett tt), isleaf x
> = (comb v1 v2, ns, divtt (Spark l r)), otherwise
> where
> (v2,z,r) = f ns End s2
> (v1,rns,l) = f (ns+1) tr s1
> tr = Demand (rns-ns) (combtt tt)
> (comb, s1, s2,
> divtt, combtt) = div' x
> (solveval, solvett) = solve x

Conceptually two types of operations occur: the computation of real results and the simulation of parallel evaluation. The functions div', isleaf and solve perform the division, leaf testing and solution of problems. In addition to the result information which they normally generate they also generate simulation information. The functions divtt, combtt and solvett produce the simulated evaluation for the division, combination and solution of problems respectively. These are in turn represented as tracetrees.

The result of a D&C combinator application is a triple comprising the result value, the number of sparks (down the leftmost branch) and a tracetree of the evaluation. The subsidiary function f has three arguments: ns, tt and x. These represent the number of sparks so far, the tracetree continuation and the ‘real’ result. The tracetree continuation represents the evaluation to occur once each leaf task completes. An alternative to this would be write the D&C combinator using a continuation passing style; this would more closely mimic the real evaluation order of the function.

An example application of the combinator is shown below:

> bsum :: (num,num) -> (num,num,tracetree)
>
> bsum = dc div' isleaf solve
> where
> isleaf (a,b) = a = b
CHAPTER 8. PERFORMANCE ANALYSIS AND DEBUGGING

\[
\text{div'} (lo, hi) = ((+), (lo, mid), (mid+1, hi), \text{Work 1}, \text{Work 1})
\]

\[
\text{where}
\]

\[
\text{mid} = (lo+hi) \div 2
\]

\[
\text{solve (lo, hi) = (lo, id)}
\]

The bsum function takes a pair of numbers, representing a range, as argument and uses the divide and conquer function to sum the range of numbers. Dividing and combining problems both have a tracetree function indicating a constant cost of one (\text{Work 1}). Solving a problem causes no evaluation to take place; hence the tracetree function for this is the identity function. A more complex function such as the quad-tree matrix multiplication will produce much more complicated tracetrees for \text{div'}. In fact quad-tree matrix multiplication will use the D&C combinator to perform matrix addition for combining matrix multiplication sub-problems.

A function for interpreting tracetrees is shown below:

\[
\text{trace:: tracetree \rightarrow ([num], num, num)}
\]

\[
\text{trace = trace' [] 0}
\]

\[
\text{trace':: [num] \rightarrow num \rightarrow tracetree \rightarrow ([num], num, num)}
\]

\[
\text{trace' sl pt End} = ([], pt, 0)
\]

\[
\text{trace' sl pt (Work w tt)} = (\text{rep w 1 ++ p, pt', st+w})
\]

\[
\text{where}
\]

\[
(p, pt', st) = \text{trace' sl (pt+w) tt}
\]

\[
\text{trace' sl pt (Spark l r)} = (\text{addlist ppl ppr, pt1, stl+str})
\]

\[
\text{where}
\]

\[
(ppl, ptl, stl) = \text{trace' (ptr:sl) pt l}
\]

\[
(ppr, ptr, str) = \text{trace' sl pt r}
\]

\[
\text{trace' sl pt (Demand n tt)} = (\text{rep (spt-pt) 0 ++ pp, pt', st})
\]

\[
\text{where}
\]

\[
(pp, pt', st) = \text{trace' sl (max [pt, spt]) tt}
\]

\[
spt = sl! (n-1)
\]

\[
\text{rep 0 e} = []
\]

\[
\text{rep n e} = e : \text{rep (n-1) e}
\]

\[
\text{addlist} = \text{ziplist (+)}
\]

\[
\text{ziplist op [] 1} = 1
\]

\[
\text{ziplist op 1 []} = 1
\]

\[
\text{ziplist op (x:xs) (y:ys)} = \text{op x y : ziplist op xs ys}
\]

The trace function takes a tracetree and produces a triple representing: the parallelism trace (given an unbounded number of processors), the parallel execution time and the sequential
execution time. The function \texttt{trace} takes three arguments. The first is a list of times at which tasks finish along the current \texttt{tracetree} branch; this is arranged in task sparking order. By arranging the first argument in this way \texttt{Demands} may simply look-up when the demanded task finished. The second represents the parallel time and the third is the \texttt{tracetree}.

Notice that especially in the \texttt{trace} function lazy evaluation has been very useful. This would not be possible in the proposed lenient language unless such lists etc. were always evaluated in parallel. Thus lazy languages are more expressive, but at the cost of not being able to reason about their operational behaviour.

In general this technique of abstract simulation was found to be very useful. Its usefulness stems from its versatility. It gives the programmer great control over simulation and it does not require a simulator. Of particular importance is the ability to model the behaviour of functions in order to aid understanding of their performance.

8.6 Debugging

8.6.1 General

This section describes how poorly performing programs may be debugged. In particular programming errors rather than algorithmic errors are tackled. A distinction is made between the program expressing a parallel algorithm and the algorithm itself. Ideally the approximate performance of an algorithm should be calculated before the program is tested. However in practice the performance is only likely to be calculated when a program performs poorly. This section considers how program errors may be discovered by testing; in practice it also may pin-point expressions whose cost should be formally analysed. Testing alone is not sufficient to determine inherent poor performance in an algorithm.

The basic techniques for performance debugging are the same as for any form of debugging. Different parts of the program are tested in isolation to try and locate any bugs: in this case expressions with a high evaluation cost. This may proceed top down or bottom up. Bottom up testing is straightforward. It amounts to testing functions on data which they typically could be applied to during a program run. Top down testing requires abstraction over component expressions. This may be achieved by using techniques, as described in the previous chapter, to model functions behaviour and value. A particularly useful function for modelling other functions behaviour is \texttt{delay}:

\begin{verbatim}
> delay 0 x = x
> delay n x = delay (n-1) x
\end{verbatim}

The \texttt{delay} function introduces an artificial delay proportional to its first argument. This may be provided as a primitive so that an event driven simulator need not actually perform the delay. Example uses of \texttt{delay} occur in subsequent sections. Throughout performance debugging, program meaning is irrelevant: program behaviour is the chief concern.

Many performance errors arise from lazy evaluation. Lazy evaluation may delay the evaluation of an expression and hence reduce the amount of work a task may do. This can mean that the
work tasks could have done is performed sequentially by a single task. For example work may be locked-up in a closure which is the argument to a constructor. Many of these errors caused by laziness could be eliminated if compilers perform strictness analysis of programs and cause strict functions to evaluate their arguments using call by value evaluation. This is a little ironic since strictness analysis is being used to change the sequential order of evaluation which may in turn aid parallel evaluation. However, all parallelism is expressed by the programmer. The problem with this approach is that the strictness analysis is invisible to the programmer. The programmer does not know whether strictness analysis is being performed and if it is being done, how good such an analysis is. The alternative is to use seq expressions to force evaluation of strict arguments and to force the evaluation of data structures beyond W Huff. This is discussed further in Section 9.1.

All the following example errors were ones actually made by the author. The techniques shown were used to eliminate these bugs. However for some of these, and in general for more complex programs, some blind alleys will be investigated too.

8.6.2 Example: n-queens

This n-queens program was derived as shown in the Squigol chapter. However, a mistake was made in its translation from Squigol into the functional language. The program shown below computes the correct values but only has an average parallelism of just over one.

```haskell
> queens n = power n g' [[]]
>     where
g'     = foldl gg []
>     where
gg a b = par x (x+a) where x = f' b
> f' y   = foldl ff [[]] ([1..n]-y)
>     where
ff a b = par x (x+a) where x = h' y b
> h' y e = [], delta' y e
>        = [e:y], otherwise
> delta' r p = (exists . parlist id . map (check' (1,p)))
>            (zip [2..n] r)
> check' (i,j) (m,n) = (j=n) \ (i+j = m+n) \ (i-j = m-n)
> exists  = foldl (\/) False
> res     = queens 4
```

A single iteration of `power g` should evaluate in parallel. Therefore the program was broken up into its constituent functions, so that they could be tested individually. The parallelism in `g` arises from applying `f` in parallel to the elements of `g`'s list argument. Hence `g` was given a test argument of `[[1], [2], [3], [4]]`, which is the result of the first `power` iteration and this should result in some parallel evaluation.
The g function did not evaluate in parallel. Therefore its structure was scrutinised. Either the function f it should be applying in parallel does not do much work, or f is not being applied in parallel. The latter seems most likely and so it was tackled first. A substitute for f was required which was guaranteed to do some work. This is exactly what delay is designed to do. Thus, f was replaced by a function which crudely modelled its behaviour:

```
g' = foldl gg []
```
> \gg \ a \ b \ \ = \ \text{par} \ a \ (x++a) \ \text{where} \ x = f' \ b

> \ f' \ y \ \ = \ \text{foldl} \ ff \ [] \ ([1..n]-y)

> \text{where}

> \ ff \ a \ b \ \ = \ \text{par} \ a \ (x++a) \ \text{where} \ x = h' \ y \ b

> \ h' \ y \ e \ \ = \ [] \ , \ \delta' \ y \ e

> \ = \ [e:y], \ \text{otherwise}

> \delta' \ r \ p \ = \ (\exists \ . \ \text{parlist id} . \ \text{map} \ (\text{check'} \ (1,p)))

> (\text{zip} \ [2..n] \ r)

> \text{check'} \ (i,j) \ (m,n) \ = \ (j=n) \lor \ (i+j = m+n) \lor \ (i-j = m-n)

> \exists \ = \ \text{foldl} \ (\lor) \ False

> res \ = \ \text{queens} \ 4

This evaluated with a very high average parallelism.

This error involving \text{foldl} may not have occurred if the Squigol had been translated to use \text{flatMap} rather than to use \text{foldl}. Nevertheless this example is still a useful debugging demonstration and if \text{flatMap} had been used then a different programming error may have occurred: as it does in the next example.

8.6.3 Example: primes

This program generates all the prime numbers less than 2000. Like \text{n-queens} it produces the correct results, but evaluates with little parallelism. It works by testing each number for divisibility by any of the prime numbers less than its square root. If no prime less than its square root divides it exactly, then the number is prime, otherwise it is not prime. This algorithm is discussed in Section 3.4.2.

The erroneous program is shown below:

> \text{prim} \ ((p,\text{sqrp}):\text{ps}) \ n \ = \ [] \ , \ n \ \text{mod} \ p = 0

> \ = \ [(n,n+n)], \ \text{sqrp > n}

> \ = \ \text{prim} \ \text{ps} \ n, \ \text{otherwise}

> \text{primes} \ = \ (2,4) : \text{flatMap} \ (\text{prim} \ \text{primes}) \ [3..1999]

> \text{flatMap} \ f \ [] \ = \ []

> \text{flatMap} \ f \ (x:xs) \ = \ f \ x ++ \text{flatMap} \ f \ xs

> res \ = \ \text{map} \ \text{fst} \ (\text{parlist} \ \text{id} \ \text{primes})

One reason for the lack of parallelism may be that primes are being generated too slowly. The calculation of each prime requires all the previous primes less than its square root. To determine whether this is the case and to try and simplify the recursive nature of the data structure, \text{primes} will be given a pre-computed list of primes \text{primes}'. This eliminates the recursion of \text{primes} and any delays in calculating the primes list due to backwards dependencies.
> prim ((p,sqrp):ps) n = [], n mod p = 0
> = [(n,n*n)], sqrp > n
> = prim ps n, otherwise

> primes' = [(3,9),(5,25),(7,49),(11,121),(13,169),(17,289),
> (19,391),(23,529),(29,841),(31,961),(37,1369),
> (41,1681),(43,1849),(47,2209)]

> primes = (2,4) : flatmap (prim primes') [3..1999]

> flatmap f [] = []
> flatmap f (x:xs) = f x ++ flatmap f xs

> res = map fst (parlist id primes)

However this still performs little parallel evaluation. Thus either the function (prim primes')
does little evaluation or there is something wrong with the way res has been expressed. To test
this the function (prim primes') is moddled by using delay. This will ascertain whether the
problem lies with (prim primes') or the structure of res.

> primes = flatmap f [3..1999]
> f x = delay 100 [x]
> flatmap f [] = []
> flatmap f (x:xs) = f x ++ flatmap f xs
> res = parlist id primes

This still has little parallelism, hence the problem must lie with the structure of res. By running
the previous program on paper and with a little careful thought the problem is revealed to be
parlist composed with flatmap. The parallel evaluation, by parlist, of a list produced from
flatmap f l cannot proceed from one application of f to the next until the previous application
of f has produced the spine of its resulting list. The hypothesis is that a special parallel flatmap
is required. This is tested below:

> primes = parflatmap f [3..1999]
> f x = delay 100 [x]
> parflatmap f [] = []
> parflatmap f (x:xs) = par r (f x ++ r)
> where
> r = parflatmap f xs
> res = primes
The result of the above confirm the hypothesis that a special parallel flatmap is required. The
primes program then may be rewritten thus:

```haskell
> prim ((p,sqrp):ps) n = [], n mod p = 0
> = [(n,n^n)], sqrp > n
> = prim ps n, otherwise

> primes = (2,4) : parflatmap (prim primes) [3..1999]

> parflatmap f [] = []
> parflatmap f (x:xs) = par r (f x ++ r)
> where
>     r = parflatmap f xs

> res = map fst primes
```

This version of primes does evaluate in parallel. Parallel filter exhibits a similar property that:

```haskell
> res = parlist id (filter p l)
```

exhibits little parallelism. Like flatmap a special parallel version is required:

```haskell
> parfilter p [] = []
> parfilter p (x:xs) = par rest 1
> where
>     1 = (x:rest), p x
>     = rest, otherwise
>     rest = parfilter p xs
```

8.6.4 Example: matrix addition

The final example is matrix addition. This is exactly the same as has been used before except that it has been encoded directly rather than with a divide and conquer combinator.

```haskell
> matrix * ::= Scalar * |
>     Quad (matrix *) (matrix *) (matrix *) (matrix *)

> add (Scalar n1) (Scalar n2) = Scalar (n1+n2)
> add (Quad a b c d) (Quad e f g h) = (par m1 . par m2 . par m3 . seq m4)
> where
>     m1 = add a e
>     m2 = add b f
>     m3 = add c g
>     m4 = add d h
```
The test matrix is a 64 element matrix. This program has a high average parallelism; however its parallelism profile shows a long sequential ‘tail’, Figure 8.9. This tail may be accounted for by the output time for the matrix. The simulator which was used takes one reduction cycle to output each constructor or basic value. Also the symmetric nature of the program (quad-trees were balanced) means that once all but one task has died in the parallelism trace, only output can be occurring. Output of the 64 element result matrix should take: 64 numbers + 64 Scalar constructors + 1 + 4 + 16 Quad constructors, a total of 149 cycles. (See Chapter 4 for more details of the simulator which was used.) However the sequential output tail is well over 200 reduction cycles long. By dry-running the program with a small four element matrix it became obvious that the extra time was due to the non-strictness of Scalar constructors. The number additions were being forced by the output driver, during the output phase.

To remedy this, the scalar additions were forced in the matrix addition function by using seq:

```plaintext
> res = add test test
```

Figure 8.9: Matrix addition (erroneous)
This resulted in the new parallelism profile shown in Figure 8.10. This has an output tail of the predicted length.

8.7 Summary

This chapter has considered reasoning about performance and performance debugging. It has been argued that performance analysis and different levels of performance measurement are all complementary and that they are all necessary for performance debugging. Starting with a simple, general analysis of program performance and moving to more detailed analyses and measurements, this chapter has investigated performance issues of parallel functional programming.

The first section used a simple general analysis to show that some seemingly good parallel algorithms do not exhibit a good speed-up, for example Quicksort using lists. Some generic divide and conquer algorithms were analysed and their speed-up calculated. This generated simple constraints which can be used to determine whether a divide and conquer algorithm is a good parallel algorithm or not. It also became apparent that some problems have sequential algorithms which do substantially less work than parallel algorithms for that problem, notably scan (parallel prefix). Thus for some problems efficient parallel algorithms should be hybrid parallel and sequential algorithms. These should use a parallel algorithm to distribute work across processors and an efficient sequential algorithm to solve problems on individual processors.

The naive analysis used for analysing D&C algorithms was simple but overly synchronous. In particular it did not permit pipelined parallelism; hence a more detailed analysis was devised. A semantics was designed for calculating the performance of lenient programs, which permit pipelined parallelism. The semantics was quite complex, reflecting the operational complexity of lenient languages. It was possible to reason about small programs, but even so this was quite complicated. A pipelined version of Quicksort was analysed; this occupies five pages! This showed that the pipelined version of Quicksort was twice as fast as the previously analysed synchronous one. Lenient languages represent a compromise between strict and lazy languages; however, it seems difficult to extend the semantics to describe parallel lazy languages.
A different use of the performance semantics for the lenient language was to regard it as a specification of a parallel interpreter or simulator. By treating the semantic equations as transformation rules, parallel program simulation could be performed by program transformation. This represented an abstract form of performance measurement, rather than analysis. Also, it was shown how more detailed information such as parallelism profiles could be generated from the performance semantics. With the help of a clever compiler, simulation by transformation could be made very efficient; effectively simulation could be compiled into programs, rather like instrumenting them. For simulating parallel evaluation with a limited number of processors, a semantics was designed which generates a history trace representing a programs evaluation. This tree maybe traversed in different ways to represent evaluation by different numbers of processors and different scheduling strategies.

Finally, it has been shown how a simulator, such as the one outlined in Chapter 4 or the one derived from the performance semantics, can be used to detect some programming errors which result in programs with poor performances. This can involve scrutinising parallelism profiles at quite a detailed level. Thus this represents performance debugging at a very detailed level, using performance measurements rather than analyses.

8.8 Conclusions

The main conclusions of this chapter are:

- It has been shown that different levels of performance debugging are necessary. This has been demonstrated by measuring and debugging the performance of programs at different levels of abstraction.

- Formal methods are necessary for reasoning about performance. This has been shown by measuring the performance of some seemingly good parallel algorithms, which are revealed to be poor parallel algorithms.

- Pipelined parallelism is important for the performance of some parallel algorithms, for example the sieve of Eratosthenes and Trinder’s functional database [109]. To this end a formal semantics for reasoning about the performance of a lenient language has been devised (lenient languages permit pipelined parallelism).

- Sometimes hybrid parallel and sequential algorithms are necessary for efficient implementation on MIMD machines. This is because some parallel algorithms are inefficient sequential algorithms. This has been demonstrated by analysing the performance of various parallel and sequential scan functions.

- An interpreter or simulator is useful for low level performance debugging. Particularly in the case that an algorithm is known to have a good parallel performance, but a mistake has been made in encoding it in a functional language. Three real examples have demonstrated this.

- A flexible simulator may be developed directly from a performance semantics. This enables simulation to be achieved by program transformation. This allows the programmer great control over the detail of simulation. It was found useful to model programs' performance by constructing functional programs.
• An advantage of programming using parallelism abstractions, is that it is possible to find constraints which guarantee an algorithm's good parallel performance. This has been done for a divide and conquer parallelism abstraction.
Chapter 9

Further work

This chapter discusses directions for further work. Some specific problems from the preceding chapters are discussed and ideas for alleviating them are considered. Three main areas are discussed: parallelism expression and parallel algorithms, parallelism control and performance analysis.

9.1 Expressing parallelism and parallel algorithms

9.1.1 Non-determinism and algorithmic skeletons

Determinism is both the saviour and curse of parallel functional programs. Many parallel algorithms require non-determinism, for example branch and bound algorithms. It is important to be able to express such algorithms; for example it has been claimed that: "Branch and bound algorithms are the most frequently used methods in practice for the solution of combinatorial optimisation problems" (Karp and Zhang [69]). Unfortunately functional languages cannot express parallel branch and bound algorithms. Addressing this problem, Burton and Hughes have described ways of handling non-determinism in a functional language without compromising the ability to reason about such programs. These are described in Chapter 7. Also in this chapter, bags are proposed, which permit a limited form of non-determinism to be expressed. However there are problems with all of these approaches.

An alternative approach is to provide the programmer with a library of non-deterministic algorithmic skeletons [29]. These abstractions could be given special non-deterministic implementation in another language. If inter-language working was supported, new abstractions could also be defined. The results of abstractions could be truly non-deterministic, in which case Hughes-style sets could be used to represent these [57]. Alternatively abstraction results could be deterministic, with an implicit proof obligation of determinacy, like bags.

The problem with this approach is the additional complexity of using two languages: the functional language and the skeleton implementation language. Reasoning can be aided by providing a functional specification of what abstractions do. However it is difficult to transform applications of skeletons, since these consist of a mixture of two languages.
A branch and bound algorithmic skeleton

This section describes an example of a non-deterministic algorithmic skeleton, which implements branch and bound algorithms. The branch and bound combinator (bb) has type:

\[
\text{bb :: (val -> val -> bool) -> \{\text{an ordering on val}\}} \\
\text{(prb -> val) -> \{\text{fun for a problem's cost (val)}\}} \\
\text{(prb -> [prb]) -> \{\text{problem division}\}} \\
\text{(prb -> bool) -> \{\text{is a leaf problem?}\}} \\
\text{prb -> \{\text{the problem to be solved}\}} \\
\text{(prb, val) -> \{\text{the least cost solution and its cost}\}}
\]

A typical application of bb would might look like:

\[
\text{res = bb (\leq) cost div isleaf problem}
\]

The bb combinator finds the least cost solution to a problem. It returns a pair of the solution and its cost. The first argument of bb represents an ordering on costs (val). The second argument (cost) determines the cost of solving a problem. The third argument (div) divides a problem into a list of sub-problems. The fourth argument (isleaf) determines whether a problem is solvable.

An exhaustive search specification of bb may be defined thus:

\[
\text{es :: (val -> val -> bool) -> \{\text{an ordering on val}\}} \\
\text{(prb -> val) -> \{\text{fun for a problem's cost (val)}\}} \\
\text{(prb -> [prb]) -> \{\text{problem division}\}} \\
\text{(prb -> bool) -> \{\text{is a leaf problem?}\}} \\
\text{prb -> \{\text{the problem to be solved}\}} \\
\text{(prb, val) -> \{\text{the least cost solution and its cost}\}}
\]

\[
\text{es rel cst div isl a = (a, cst a),} \\
\text{isl a} \\
\text{= (foldl sel . map f . div) a, otherwise} \\
\text{where} \\
\text{f} \\
\text{= es rel cst div isl} \\
\text{sel a b = a, (snd a) $rel (snd b)} \\
\text{= b, otherwise}
\]

The operation and parallelisation of this function should be obvious.

Branch and bound algorithms are optimised search algorithms. They work by computing a lower bound on the cost of a sub-problem's solution. Such lower bounds can be used to guide the order in which sub-problems are solved, or to detect that sub-problems need not be considered, see [48, 93] for further details. In order for es to be equal to bb the following conditions must hold:

1. The cost function must give a lower bound on sub-problems' solutions:
 \[
 \forall p \in \text{prb} : (\text{cost } p) \; \text{$rel (es \; \text{rel cost div isleaf } p)}
 \]
2. The \texttt{rel} relation must be a total ordering on \texttt{val}.

3. The \texttt{bb} function may not expand all the problems which \texttt{es} does; therefore problems and their sub-problems must be completely defined.

If these conditions hold then: \texttt{es} = \texttt{bb}. These conditions are left as a proof obligation for the programmer who uses \texttt{bb}.

A problem for the implementation of \texttt{bb} is that it must mimic the same search order as \texttt{es}. This search order is induced by \texttt{sel} in \texttt{es}; \texttt{sel} favours its left operand in the case that the two operands have the same cost. The \texttt{bb} implementation must either reflect this or it must be ensured that the costs of different sub-problems are never the same. That is, it maybe necessary to add the constraint that \texttt{cost} is injective in order for the implementation to give precisely the same results as the exhaustive search.

For details of how \texttt{bb} might be implemented see the imperative implementations described in [48, 93]. The effects of parallelising branch and bound algorithms are considered in [73].

Very recently McKeown et al. [79] have suggested a similar idea to this parallel branch and bound abstraction.

The utility of \texttt{bb} is unknown. An implementation of it is required in order to test it. There are a number of possible implementations. Some experimentation is needed to determine whether a single combinator for expressing parallel branch and bound algorithms can be both general and efficient.

9.1.2 Speculative parallelism

It is useful to classify speculative evaluation into two classes:

\textbf{general}: this speculative evaluation is used to improve the performance of an algorithm by speculatively evaluating expressions. This is an attempt to try and utilise spare processing resources. Many expressions are randomly selected for parallel evaluation.

\textbf{specific}: this specific speculative evaluation is fundamental to some parallel algorithms. It is typified by parallel search algorithms; whose only source of parallelism is speculative parallelism. This parallelism usually only arises in a few places in an algorithm.

General speculative evaluation, in any language, is difficult to manage. The performance benefits of this kind of random speculative parallelism are also dubious; since the overheads of supporting this parallelism will be high and deciding which expressions to speculatively evaluate is difficult. However it is clear that specific speculative parallelism can be fundamental to an algorithm’s performance.

Therefore it seems desirable to support specific speculative parallelism and to express this explicitly, for example a simple parallel search:

\begin{verbatim}
> bintree * :: = Node (bintree *) (bintree *) l
\end{verbatim}
An alternative to using `spec_par` would be to use a generic parallel combinator for speculative and conservative parallelism. By performing a strictness analysis it could be determined which kind of parallel combinator was required: conservative (par), or speculative (spec_par). Explicitly indicating speculative parallelism, even via a generic parallel combinator, can decrease the overheads of implementing speculative parallelism.

Implementation difficulties can be further reduced by constraining the form of speculative parallelism which can be expressed. Many of the problems associated with speculative parallelism are caused by sharing. If speculative tasks are only referenced by exactly one other task many problems are alleviated. This may be ensured by either performing a sharing analysis to ensure that this is the case, or by enforcing linearity, for example via linear logic [116]. By analysing occurrences of `spec_par` it should be possible to determine where tasks become dereferenced (in the same way that it is possible to determine where cells can be reclaimed with linear logic) and hence where the necessary task killing mechanism needs to be implemented. However, there are still problems ensuring that all redundant speculative tasks are killed.

For optimal speculative evaluation it may be necessary to analyse patterns of evaluation to determine a good schedule for speculative tasks. This corresponds to assigning priorities to tasks. In the example above the scheduling of speculative tasks should be optimised for a depth first left to right search.

A lot more further work is necessary to develop these ideas. It is however essential that algorithms, like the one above, can be expressed and implemented in a parallel functional language.

9.1.3 Hybrid programs

In Section 8.2.3 it was shown that efficient parallel algorithms may need to consist of two parts: a parallel algorithm for distributing work across processors and a sequential algorithm for solving work on individual processors. The parallel language which has been proposed is not suited to expressing such algorithms. In particular, generating a fixed number of tasks to run on the machine can be very difficult. The number of tasks which must be generated is also dependent on the machines loading; this information cannot easily be obtained at run-time. It would be easier
to specify such algorithms using an explicit mapping scheme, which enables the programmer to explicitly map tasks to processors. However, for a shared memory machine a more abstract method is desirable. One possibility is now outlined.

It should be possible to specify a parallel and sequential algorithm and to indicate where in the parallel algorithm choice between the algorithms should be made, according to the system load. One way to achieve this is by using a non-deterministic choice operator: (choose paralg seqalg). The choose 'function' is non-deterministic, it chooses (returns) its first argument if the system is lightly loaded and its second argument if the system is heavily loaded. The arguments of choose must have the same value in order for it to be determinate, and for it to make sense! In order to reason about programs using choose oracles could be used, see [2, 24]. It may be necessary to take the 'size' of problem being solved into consideration:

...(if (small prob) then seqalg else (choose paralg seqalg)) prob ...

If a heavily loaded machine subsequently becomes lightly loaded then parallelism will be lost. This can be circumvented by inserting a choose paralg seqalg into the sequential algorithm. A version of the sequential algorithm with no chooses may be required for when evaluating 'small' problems.

The utility of choose is unknown. Some important algorithms do have more efficient sequential solutions than parallel solutions. Hence some method of expressing hybrid algorithms is required. Experimentation is required to test the effectiveness of choose. It should be possible to implement choose very efficiently.

9.1.4 par placement

The placement of pars can sometimes be difficult. It is desirable for the programmer to indicate where parallelism occurs in a program; however perhaps this need not be as rigorous as by using pars and seqs. One particular problem is that often strict or parallel data structures are required. It would be useful if these could be defined or denoted as strict or sequential via some special explicit type information.

Often the difficulty with placing pars and seqs is ensuring that pars are evaluated as soon as possible and that pars perform as much evaluation as possible. An ironic situation arises: strictness analysis could be used to insert seqs into a program. It could ensure that pars are evaluated as soon as possible and that pars perform as much evaluation as possible.

This may be too difficult to do. In this case an alternative approach is to design tools such as interpreters and debuggers for verifying that pars and seqs are correctly placed. A concurrent interpreter could allow all par and seq arguments to be inspected before they were evaluated. In this way it could be verified that pars and seqs were performing the desired amount of work. It would be interesting to extend the simulator which was used to perform experiments, Chapter 4, to generate this information, or alternatively to go via the simulation by transformation route, Section 8.5.
9.1.5 Pipelining, par and seq

It can sometimes be difficult to get the desired operational behaviour from par and seq. Sometimes either too many tasks must be generated or pipelining must be sacrificed. As frequently mentioned in this thesis generating too many tasks can reduce programs' efficiency.

For example consider a simple parallel tree map:

\[
\begin{align*}
& \textbf{> bintree} \;* \;::= \text{Node} \;\textbf{(*)} \;\textbf{(*)} \mid \text{Leaf} \;*
\\
& \textbf{> tmap} \;f \;\textbf{(Leaf} \;x) \;= \textbf{seq} \;y \;\textbf{(Leaf} \;y) \;\textbf{where} \;y \;= \;\textbf{(f} \;x)
\\
& \textbf{> tmap} \;f \;\textbf{(Node} \;l \;r) \;= \textbf{par} \;rr \;\textbf{(seq} \;ll \;\textbf{(Node} \;ll \;rr))
\\
& \textbf{where}
\\
& \quad ll \;= \;\textbf{tmap} \;f \;l
\\
& \quad rr \;= \;\textbf{tmap} \;f \;r
\end{align*}
\]

This map definition does not support pipelined parallelism because Nodes are not built until ll terminates. An alternative definition which does support pipelined parallelism could replace the expression \textbf{par} \;rr \;\textbf{(seq} \;ll \;\textbf{(Node} \;ll \;rr)) with \textbf{par} \;rr \;\textbf{(par} \;ll \;\textbf{(Node} \;ll \;rr)). However this definition generates many redundant tasks. It might be expected that a tree with \(n\) leaves would generate \(n\) or \(n+1\) tasks. However this new definition which does support pipelining generates \(2 \times n\) tasks.

The problem stems from \textbf{seq}. The \textbf{seq} combinator evaluates its first argument and then performs the update with its second argument. Thus access to \textbf{seq}'s result, and hence pipelining if its result is a data structure, is prevented until it has evaluated its first argument. This may be prevented by changing the operational behaviour of \textbf{seq}. (Note that in a real implementation full applications of \textbf{seq} should be 'compiled-away'.) Rather than evaluating its first argument and then returning its second, \textbf{seq} should initially save, but not evaluate, its first argument (for example push it on a stack) then it should return its second argument and evaluate that. Once its second argument becomes blocked or is in \textbf{WII NF}, its saved \textbf{seq} arguments should be evaluated. Thus \textbf{seq} becomes rather like \textbf{par}, the first argument to \textbf{seq} is put in a pool for later evaluation. However other processors may not take sparks from this pool. Only the current processor may do this.

The problems with this approach is that normally \textbf{seq}s can be compiled to produce very efficient code. With this approach they cannot. An alternative approach is to do some program analysis. The problem only arises when the second argument to \textbf{seq} is a data structure. Only in such cases can pipelining be lost and hence \textbf{seq} needs to behave differently.

9.1.6 Spark discarding

If GRIP-style \textbf{pars} are used which may discard sparks then crucial parallelism can be lost. For example, consider \textbf{parlist}:

\[
\begin{align*}
& \textbf{> parlist} \;f \;l \;= \;\textbf{par} \;(p \;l) \;l
\\
& \textbf{where}
\end{align*}
\]
If the first `par` happened to be discarded all the parallelism would be lost forever! Thus some parallel functions are not 'safe'. To detect this safety is difficult since it involves essentially a sharing analysis to determine whether all `par` combinators occurring in an expression `e1` of `par e1 e2` are accessible (shared) in `e2`. Writing safe programs means that data structures must be constructed using parallel constructors. This manifests itself as a loss of some abstraction. Since for example a list cannot be built and then evaluated in parallel, it must be built with a view to parallel evaluation. An example of a parallel constructor is `pcons`, shown below:

```haskell
> pcons h t = par h (par t (h:t))
> pmap f [] = []
> pmap f (x:xs) = f x $pcons parmap f xs
```

This suffers from the problem discussed in the previous section, that of generating too many tasks. One would expect `pmap f 1` where `#1 = n` to generate `n` or `n+1` tasks, in fact it generates `2 \times n` tasks. If `pcons` is defined as below then some pipelining may be lost.

```haskell
> pcons h t = par t (seq h (h:t))
```

An alternative is to introduce two forms of `par`: `par_may` which may or may not spark a task and `par_must` which always will spark a task. Essentially the idea is to prioritise some `pars` over others. For example the `parlist` function may be expressed thus:

```haskell
> parlist f 1 = par_must (p 1) 1
> where
>     p [] = ()
>     p (x:xs) = par_may (f x) (p xs)
```

The drawback with this approach is that it requires more work from the programmer, than if just `pars` are used.

9.1.7 Resparking and parallelism abstractions

A machine's task mechanism should discard useless tasks. That is a task mechanism should discard a task if when it is first evaluated its graph is already in `WINGF` or its graph is being evaluated by another task. In this way some resparking may be avoided. Unfortunately the use of parallelism abstractions can prevent the detection of some tasks being in `WINGF`. For example consider `parlist id [1,2,3,4]`, where `parlist` is defined thus:

```haskell
> parlist f 1 = par (p 1) 1
> where
```
This application will create five tasks. An implementation of evaluation transformers could record the degree to which the list [1,2,3,4] was evaluated and hence would not create any redundant tasks. If partial evaluation is employed or if a specific parallelism abstraction is written instead, for example pp [1,2,3,4] where pp is defined thus:

\[
\text{pp } \text{id} = \text{parlist id}
\]

Another solution to this problem is to use pcons as defined in the previous section. This has the drawback though that it will create extra tasks initially, in order to support pipelined parallelism. The pcons constructor is described in the previous section.

9.2 Parallelism control

9.2.1 Analysis of delayed sparking and GRIP task size control

In Section 6.6.1 a limited form of delayed sparking is analysed. It would be interesting to generalise this. In addition, if the GRIP task size control was also analysed it would be possible to compare the two methods. This would be useful for determining which problems the approaches are best suited to. It would also be useful to determine the effect of different scheduling strategies on these two approaches. A simple analysis of the GRIP task size control strategy reveals that the number of small tasks produced from a balanced tree of tasks, when there are many more tasks than processors, should be logarithmic in the original number of tasks. However experimental results produced many more small tasks than this, especially with unbalanced task trees and other shapes of task networks. This needs further analytical and experimental investigation.

9.2.2 Portable parallelism control

As described in Chapter 6 it is necessary to control programs parallelism in order to make them efficient. It is also desirable to make programs portable. However, these issues are potentially in contention, since incorporating parallelism controls, which are machine specific, into a program, is not going to make a program portable. To make programs portable and to allow machine specific parallelism control, programs must be parameterised with control information. This may be achieved by providing predefined constants at compile time, or input from the machine at run-time.
For shared memory MIMD machines, task sizes and task numbers must be controlled. To control task numbers a program needs to 'know' the number of processors a machine has. The number of idle processors will vary at run-time; nevertheless it is useful to have a limit on the number of available processors. This information could, for example, be used by a program to govern how large buffers it should use for controlling pipelined parallelism.

Task size control needs two measures to characterise a machine. Firstly the minimum amount of processing a task should do is required; since there will be some fixed machine overheads associated tasks. Secondly a measure of the execution cost to communications cost ratio is required. This characterises how much execution in relation to a tasks communication cost must be performed in order for a task to be worth evaluating on a different processor. Some simple metrics are required to measure this. Execution cost can be measured in terms of reductions. Communication cost can be measured in terms of graph nodes which must be communicated. Measuring these will be very approximate; however this should be sufficient. Depending on the particular algorithm, these measures may be redundant. For example the execution cost to communications cost ratio may be invariant for some divide and conquer algorithms.

Thus a program may control parallelism via some abstract measurements. These measurements can be compared with parallelism control measurements which are provided by a particular implementation. For example an algorithm may be able to calculate the approximate number of reductions that are required to sort any given tree. The compiler may provide a predefined constant `worth_sparking` which is a lower bound on the number of reductions a task must do to be worth sparking. Thus by comparing the approximate number of reductions it will take to sort a tree, with `worth_sparking`, it can be determined whether a task is worth sparking or not.

A yet more sophisticated system is also envisaged. This system automatically tunes a program's parallelism control. It is aimed at divide and conquer algorithms. Rather than the programmer having to provide absolute measurements, such as reduction counts, for specifying task sizes and communication costs, abstract measurements could instead be used. For example if a balanced tree is to be sorted, rather than calculating an approximation to the number of reductions required to sort a tree of height h, h could be used as an abstract task size measurement. These abstract measurements should be integer values which increase, as task sizes do. Parallelism control could be incorporated into a special combinator. Essentially this would be a parallel combinator which may or may not spark one of its arguments, depending on the other arguments' values. The parallel combinator would take several arguments: what potentially to spark and some abstract task size and communication cost measurements for that potential task.

A program containing these special parallel combiners and some test input for the program should be submitted to an automatic tuning system. This system will repeatedly run the program with the test data. Each run will try to improve parallelism control by changing integer bounds used by instances of the special parallel combinator. These bounds determine whether a task should be sparked or not. The bounds are automatically devised by the tuning system. The integer values which in some way represent task sizes and communication costs, are supplied by the programmer, via the special parallel combiners. Thus the system may automatically tune a program's parallelism control, in order to produce worthwhile tasks. It is necessary for the test data to produce a wide variety of task sizes.

This system needs to be implemented in order to test it. It is potentially very useful because it enables the programmer to control parallelism with very little effort.
9.2.3 Pipelined parallelism

Buffering is required to control pipelined parallelism. Unfortunately not all forms of buffering can be implemented in a functional language. In effect additional synchronisation is required between tasks, in order to implement buffering.

Consider the expression: \(f \ 1 \), to evaluate the list \(1 \) in parallel with \(f \) the following expression could be used:

\[
> \text{res} = f \ $(\text{pipe} \ 1) \\
> \text{pipe} \ f \ 1 = \text{par} \ (\text{seqList} \ 1) \ (f \ 1)
\]

Thus \(f \) and \(1 \) are evaluated in a pipelined fashion. To limit the number of tasks which are generated and to reduce the space usage, it is desirable to have some form of buffering. The production (evaluation) and consumption of the list \(1 \) should be synchronised. Buffering could be expressed thus:

\[
> \text{res} = f \ $(\text{buf} \ k) \ 1
\]

The buffer can be written to produce a new task for each element of the list; this was originally described by Hughes in [58] and it has been experimented with in Section 6.5. However sometimes it is required to just have two or three sequential tasks; one for the consumer, one for the producer and possibly one for managing the buffer. However this cannot be implemented in the parallel functional language.

Since this kind of pipelined behaviour is usually sought only of lists, a special primitive could be provided to implement this. There are two reasons for desiring this behaviour. The first is to constrain space usage, to prevent the whole list being evaluated and then consumed. Secondly for an infinite or very long list, like a stream in an operating system, some fairness is required in the scheduling, in order to guarantee that the system makes reasonable progress.

An alternative is to implement the kind of buffering previously described using logical variables, as used by Josephs in [66]. Logical variables are a non-functional extension to functional languages, which enable a greater control of synchronisation than is possible with just a pure functional language. A great deal of use has been made of logical variables in parallel logic programming, see [96].

The buffer function may be defined thus:

\[
> \text{buf} \ k \ f \ 1 = \text{par} \ (\text{seq} \ (\text{seqList} \ \text{init}) \ (f \ \text{ctrl} \ \text{rest})) \ (f \ 1') \\
> \quad \text{where} \\
> \quad 1' = \text{zipWith} \ g g \ \text{ctrl} \ 1 \\
> \quad \text{init} = \text{take} \ k \ 1 \\
> \quad \text{rest} = \text{drop} \ k \ 1 \\
> \quad \text{ctrl} = \text{inf_lst_log_vars}
\]

\[
> \text{ff c []} = ()
\]
Notice that only one task is sparked. Synchronisation is achieved via the `ctrl` list; this is a list of, initially, uninstantiated logical variables. The expression `c:=GO` instantiates a logical variable to `GO`. The function `ff` blocks until an element of `c` is instantiated to `GO`. (This requires a fairly simple extension to the implementation of tasks so that tasks may block on uninstantiated variables and be resumed when such variables are instantiated.) Only when this occurs is the body of `ff` evaluated, and hence the next list element `x` evaluated. When the consumer `f` evaluates an element of `l` it causes a logical variable to be instantiated, via `gg`. This represents the synchronisation between the consumer `f` and the producer `ff ctrl rest`.

This implementation is quite complicated. It may be possible to achieve the same effect more simply by using some some higher level abstractions, for expressing synchronisation constraints. Further work is required to determine how useful `buf` is and whether it is sufficient to just have one built-in function for this, or whether a more general facility like logical variables is required. Also, an implementation of `buf` is required for experimentation. I believe that the same effect as using logical variables to increase synchronisation can also be achieved by using Hughes's synch, see [58].

9.3 Performance

9.3.1 GRIP's spark discarding and Eager's result

As mentioned in Section 2.6, GRIP's scheduling discipline means that technically Eager's result is not applicable to GRIP. This is because GRIP may discard sparks and hence GRIP's scheduling discipline is not parallelism conserving. If no sparks are discarded, like in the simulator used for experimentation, then Eager's result will hold. Clearly as the spark retention limit is raised there is less potential for losing performance. However, it would be reassuring to analyse the GRIP sparking regime to determine conditions under which Eager's result does apply.

9.3.2 Performance measurement

Throughout this thesis performance has been measured using Eager's metric of speed-up. However this is not always accurate; in particular when an efficient sequential algorithm exists, which is better than an efficient parallel algorithm run sequentially. In such cases an efficient parallel algorithm must be compared with an efficient sequential algorithm. Furthermore for MIMD machines an efficient parallel algorithm may use a sequential algorithm to run on individual processors. Sometimes algorithms will not be so separable; thus different algorithms may be suited to machines with different numbers of processors. Therefore, sometimes it is desirable
to know the performance of a parallel program with a given number of processors. This can be difficult to calculate because of scheduling issues. However usually a parallel algorithm will either have many more tasks than processors or there will be exactly one task per processor. Analysing these programs' performance on machines with a fixed number of processors is relatively simple. The speed-up of programs lying between these extremes may be very dependent upon scheduling. Such algorithms will generally need to specify an exact schedule; it is hard to analyse their performance without an exact schedule since it may vary so much.

Parallel programs with many more tasks than processors may be analysed using a weighted Eager's result. The speed-up given by Eager's result must be weighted by the ratio of an efficient sequential algorithm's performance, against the parallel algorithm's sequential performance. This will yield a bound on the speed-up with a given number of processors, compared with an efficient sequential algorithm. If there is exactly one task per processor, the parallel performance will be equal to the performance with an unbounded number of processors. This is one of the basic measures which are normally calculated.

9.3.3 Performance analysis

Reasoning about the performance of programs written in parallel lazy languages is inherently difficult. Parallel strict languages are simpler to reason about but they are not as expressive as one would like. Therefore, in Section 8.3 a compromise is made between parallel lazy languages and parallel strict languages: a lenient language is used. However, reasoning about even lenient programs is quite complicated, despite lenient languages being a compromise. There are at least three possible approaches to simplifying reasoning about the performance of parallel functional programs:

mechanisation: reasoning about programs' performance could be semi-automated. This would simplify reasoning by putting some of the burden on the machine.

language simplification: many researchers advocate a semantics first approach to programming language design. Thus a simpler language could be designed with a simpler operational semantics (and a simple meaning semantics). For example sharing constraints could be enforced between tasks, to make reasoning and implementation easier. Alternatively a parallel strict language with restricted pipelined parallelism, such as streams, could be used.

assume programs are not complex: another approach is to assume that most parallel programs contain few places where parallel evaluation is required. Thus many simplifying rules could be developed for special cases which frequently arise. For example purely sequential expressions could be reasoned about using a different, simpler, semantics. Where parallelism does exist, dependency and sharing information could be used to simplify reasoning.

The latter approach seems particularly attractive for simplifying reasoning about the performance of parallel functional programs. It is desirable to investigate this further.
Chapter 10

Conclusions

Parallel programming is becoming increasingly necessary. Unfortunately there are many difficulties involved with parallel programming, notably non-determinism. Using functional languages to express parallel programs eliminates many of these difficulties, at the expense of some expressiveness. Essentially functional language's determinism eliminates the problems of deadlock and correctness. Unfortunately this also means that non-deterministic algorithms cannot be expressed. In addition communication and synchronisation need not be specified since they occur implicitly.

Starting from the premises above this thesis investigates the implications of parallel programming using functional languages. The main conclusion is that when applicable functional languages are an excellent vehicle for parallel programming. The following sections discuss the results of this thesis' main chapters: 3, 5, 6, 7 and 8 respectively.

10.1 A parallel functional language

Throughout this thesis it has been shown how parallel algorithms may be written in a parallel functional language. As a result of assuming quite a conservative implementation (a shared memory MIMD machine) many potential problems with parallelism were alleviated. In particular the only issue which needed to be addressed was: what to spark? It was argued that parallelism (sparking) should be explicitly expressed. This was realised in a simple parallel functional language which used par combinators to express parallel evaluation. In addition sequential evaluation sometimes needed to be expressed; this was done with a seq combinator. By using higher order functions, parallelism abstractions could easily be defined in the language. These were found to be very useful for structuring programs. In particular, they simplified the programmers task of placing pars. They also made the operational reading of programs simpler. In general it was found that only a few par combinators were required in order to express parallel algorithms.
10.2 Squigol

One of the advantages of parallel programming with functional languages is that standard functional programming techniques may be used. Chapter 5 discusses the derivation of parallel functional programs using program transformation. The Squigol variety of algebraic program transformation was used. Previously this has mostly been used for sequential program derivation. Although all Squigol laws and theorems are semantically valid for program transformation, not all of them were suitable for deriving parallel programs.

It was shown that specifications should be inherently parallel. Thus the object of derivations was to derive an efficient parallel algorithm from an inefficient one. Typically these derivations reduced the total amount of parallelism and they reduced the total amount of work which was performed, in order to produce an algorithm which is efficient for a real machine with a limited number of processors. An important set of rules, promotion rules, were shown to conserve parallelism. Other rules, such as refining general reductions to directed reductions, were found to be specifically sequential optimisations.

In Squigol much use is made of homomorphisms and their properties. Homomorphisms were found to correspond to forms of divide and conquer algorithms, which often were suitable for parallel evaluation. Squigol expressions typically consist of compositions of maps and reduces. Generally composition of list valued functions gave rise to pipelined parallelism, and map and reductions gave rise to partitioned parallelism. To aid the operational reading of Squigol expressions they were sometimes annotated with parallel labels.

It is unknown how generally useful Squigol is for deriving parallel programs. However it has been shown that some parallel programs can be usefully derived with it.

10.3 Parallelism control

Whereas Chapter 3 is concerned with expressing parallel algorithms, Chapter 6 is concerned with the efficiency of parallel algorithms. In particular the efficiency implications of when to spark were considered. It was shown that task sizes (parallelism granularity), task residency and storage residency must be controlled for a shared memory MIMD machine. Furthermore it was shown that these issues are all related.

For controlling divide and conquer algorithms' parallelism, in particular task sizes, a run-time strategy for controlling parallelism (the evaluate-and-die task model) was compared with various programmer controlled ones. It was discovered that a combination of the run-time and programmer controlled strategies worked best. The run-time strategy increased task sizes by coalescing them; however it also produced a significant number of small tasks. The solution was to use the run-time strategy to increase the granularity of tasks, whilst the programmer enforced a lower bound on task sizes.

The delayed sparking approach to parallelism control was implemented in the parallel functional language. This performed well considering that it used no problem information specified by the programmer. However, this approach is perhaps better suited to incorporation into a machine's run-time system.
CHAPTER 10. CONCLUSIONS

For controlling data parallelism, the run-time strategy did not work. Three program techniques for controlling this form of parallelism were tried. These techniques are suited to controlling different aspects of parallelism. Thus depending on the particular algorithm and machine, any one of these techniques might be appropriate.

10.4 Bags

Determinism makes parallel programming with functional languages relatively simple. Unfortunately this is also a curse for functional languages since non-deterministic computation cannot be expressed. Non-deterministic computation is very desirable for MIMD machines since it prevents needless synchronisation and hence needless sequentiality.

Chapter 7 proposed a limited form of non-determinism via a bag abstract data type. Providing combining operations on bags are associative and commutative, bag expressions are deterministic. This is left as a proof obligation to the programmer. Bags are shown to be useful for both sequential and parallel programming. Bags permit greater parallelism than is otherwise possible. Alternatively bags can eliminate some operations, such as tree balancing, which can be necessary to ensure parallelism.

A parallel implementation of bags is sketched in Chapter 7 and this was used to implement bags in the simulator. The implementation was based on non-deterministic rewriting systems, which were proven correct. This was useful because the non-deterministic parallel implementation of bags is quite difficult.

The utility of bags is difficult to assess; certainly for some problems they are very useful. Only through greater experience with parallel functional programming can their utility really be judged.

10.5 Performance

Although writing parallel programs is not particularly difficult, writing ones which demonstrate good performance is much harder. The goal of designing a parallel program is to produce a program with a good performance compared with an efficient sequential program for the same problem. For example it is shown that Quicksort, using lists, produces lots of parallelism (tasks); however it has a very poor speed-up (parallel performance). This result was obtained via an informal analysis, and it was verified experimentally. A generalisation of the analysis yielded conditions under which divide and conquer algorithms will give a good speed-up.

For some problems, such as scan and sorting, efficient parallel algorithms are not efficient sequential algorithms. Thus for an efficient MIMD implementation hybrid algorithms must be used. These use a parallel algorithm to distribute work across processors and an efficient sequential algorithm to solve the problem on each individual processor of a machine. This means that the goal of writing a parallel program is not to produce a program with maximal parallelism. Both the sequential and parallel performance of a program must be considered. The efficiency of parallel programs is much more architecture dependent than might be expected.

Analysing pipelined algorithms proved difficult, and hence error prone. Therefore rather than
using an informal method for analysis, a formal method for reasoning about programs' parallel performance was developed. Reasoning about a lazy language proved very difficult; therefore a compromise was made and a lenient language was used. A non-standard denotational semantics was used to reason about programs written in the lenient language. This was quite complicated but adequate for reasoning about 'small' algorithms and program fragments.

The semantics was also shown to be capable of collecting other information, for example parallelism profiles. It is difficult to reason about this information, but it did form a novel specification for a concurrency simulator. In fact by treating the semantics as a set of transformation rules, concurrency simulation could be achieved by program transformation.

10.6 A final comment

This thesis has demonstrated that functional languages are viable for writing some parallel programs; just as functional languages are viable for writing some sequential programs. In particular functional languages are suited to expressing a variety of parallel algorithms, especially divide and conquer algorithms. The powerful abstraction facilities of functional languages are very useful for defining parallelism abstractions. The ability to reason simply about parallel functional programs and to not have any concerns about deadlock, seems to far outweigh their inability to express non-deterministic algorithms.
Bibliography

[34] O de Moor. Indeterminacy in optimization problems. Lecture notes from the International Summer School on Constructive Algorithmics, Ameland, Holland, September 1989.

[116] P Wadler. Linear types can change the world! In IFIP TC 2 Working Conference on Programming Concepts and Methods, Israel, 1990.

