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Abstract 

 
Understanding the magnetic behaviour of thin film elements is of major importance for the 

magnetic sensor and storage industries, but also for fundamental micromagnetics.  To store 

digital information, each memory element must support two distinct remanent 

magnetisation configurations that can be switched between using an applied field.  In 

magnetoresistive random access memory (MRAM), a low switching field and reproducible 

reversal behaviour are desirable properties.  The low field keeps the power consumption to 

a minimum and the reproducility enables efficient writing and read back of data.  However, 

simple geometric structures are able to support a variety of metastable remanent 

configurations which can be problematic for device applications.  For example, with 

rectangular elements, the switching fields are history dependent, and there is the possibility 

of flux-closure formation on repeated switching.  This means different field strengths may 

be required to reverse the magnetisation of the same bit (binary digit) during different field 

cycles, and the information stored in a cell could be accidentally lost.  In addition, the 

miniaturisation of these elements faces the problem that the coercivity is inversely 

proportional to element width for a given thickness; a factor which limits their use in high 

density arrays.  The optimum geometry for supporting the stored information is therefore 

an important issue.  In this thesis, different element shapes designed to tackle these 

problems have been investigated using transmission electron microscopy (TEM) backed by 

micromagnetic simulations.  It has been found that variations in element geometry and 

symmetry can lead to a greater control of the states that can be formed. 

Alongside this work on patterned elements, continuous film multilayer samples in 

the form of magnetic tunnel junctions (MTJs) have also been studied.  These multilayer 

structures serve as storage cells in MRAM devices so their successful operation is of the 

utmost importance to the development of this technology.  At the most basic level, MTJs 

comprise two ferromagnetic layers separated by a layer of electrical insulator.  Whilst one 

magnetic layer is fixed (pinned layer), the other is free to switch direction when an external 

field is applied (free layer).  Ideally the free layer hysteresis loop would be centred at zero 

field, but because of magnetostatic interactions caused by layer roughness, the 

ferromagnets couple to one another and the hysteresis loop is offset.  This shift means that 

the fields required to switch the cell in opposite directions are different.  In collaboration 

with Philips Research in Eindhoven, the magnetic and physical structure of new MTJ 

stacks incorporating an artifical antiferromagnet (AAF) in the free layer were studied using 

TEM.  An AAF consists of two ferromagnetic layers coupled anti-parallel through a thin 

layer of non-magnetic metal, typically Ru.  These samples were found to reduce the offset 



 v

field by up to 36% when compared to the basic MTJ stack.  Whilst this research is valuable 

to the magnetic storage industry, the information it provides on these complicated magnetic 

systems is equally beneficial for solid state physics. 
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Chapter 1 

 

Magnetism and magnetic materials 

 
1.1 Introduction 

 
Magnetic properties of materials originate from the magnetic moment of the constituent 

atoms/ions which are produced by the spin and orbital angular momenta of their electrons.  

As magnetic fields can be generated by the movement of charge, the perpetual motion of 

the bound electrons effectively acts as a current loop with an associated magnetic moment.  

In most materials, however, the electrons are paired in their orbitals with opposite spin and 

their magnetic effects cancel.  In this situation the material is classed as diamagnetic and 

has a negative susceptibility.  As the atomic orbitals are filled according to the Pauli, Hund 

and Aufbau principles, however, some materials have unpaired electrons and are termed 

paramagnetic.  The magnetic moments of these electrons do not cancel and the material has 

a positive susceptibility.  In lanthanide elements, the ions have an incomplete 4f shell 

which is found deep within the atom.  As a result, the unpaired electrons are well-screened 

from the neighbouring ions and the magnetic moment can be related to both the spin and 

orbital angular momenta.  In the transition metal elements, the unpaired electrons are found 

in the incomplete 3d shell on the outside of the ion.  Here, the electrons are able to interact 

with the electric field of the neighbouring ions and the orbital moment is quenched.  In 

effect, only the electron spin contributes to the magnetic moment. 

In true paramagnetic materials the magnetic moments associated with the unpaired 

electron spins are randomly oriented throughout the material (Fig. 1.1a), whilst in others, 

spontaneous interactions force the moments (spins) to be aligned in particular orientations.   

 

 

 

 

 

 

 

 

 

(a) (b) (c) (d) 

Fig. 1.1: The magnetic ordering in (a) paramagnetic, (b) ferromagnetic, (c) antiferromagnetic and (d)

ferrimagnetic materials. 
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In ferromagnetic materials the neighbouring spins are aligned parallel to one another below 

the Curie temperature, CT  (Fig. 1.1b), giving a measurable magnetic moment overall, 

whilst in antiferromagnetic materials the adjacent spins are arranged anti-parallel below the 

Néel temperature, NT  (Fig. 1.1c).  At zero field, this latter configuration exhibits no overall 

moment due to cancellation from the two magnetic sub-lattices.  Above these critical 

temperatures thermal agitation destroys the alignment, causing transition to the 

paramagnetic state.  In another class of material, ferrimagnets, the electron spins are 

aligned anti-parallel but with an unequal moment in the two sub-lattices (Fig. 1.1d).  As a 

result, ferrimagnetic materials exhibit a net magnetic moment albeit weaker than most 

ferromagnets.  This type of magnetic order is not seen in any pure element, but instead is 

found in compounds such as mixed oxides, known as ferrites.  A colour-coded periodic 

table highlighting the magnetic state of each element at room temperature can be seen in 

Fig. 1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2 Ferromagnetism 

 
Of the various classes of magnetic material, ferromagnets are by far the most useful for 

applications due to the cooperative effect of their atomic moments.  As a result, these 

materials are most commonly studied and will be discussed frequently throughout this 

thesis.  Ferromagnetic behaviour is found in the transition metal and rare earth elements 

but also exists in the alloys, oxides and complexes of these elements. 

 

 

 

Fig. 1.2: Periodic table of elements revealing the magnetic order of each element at room temperature.  N.B.

all materials exhibit diamagnetism to some extent also. 

Ferromagnetic 

Antiferromagnetic 
Paramagnetic 
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1.2.1 Spontaneous alignment 

 

Unlike paramagnets in which the spins align parallel only in the presence of an applied 

field, ferromagnetic materials exhibit a spontaneous alignment below the Curie 

temperature.  For this to happen, there has to be a strong interaction present between the 

atoms/ions.  In 1907 Weiss represented the interaction by an internal molecular field, 

 

MλBe =      (1.1) 

 

where λ is the molecular field constant and M is the magnetisation of the material [1].  

Each atomic moment is assumed to be acted on by this field, which is proportional to the 

magnetisation of its environment.  If a parallel alignment of moments should appear locally 

at any place in the lattice, the molecular field will be produced which in turn will promote 

further alignment of the spins.  The problem with this theory was that it did not explain the 

origin of the field.  Also, for typical ferromagnetic materials, the magnitude is calculated to 

be on the order of 710~ Oe, suggesting that an externally applied field would be 

insignificant in comparison and would not affect the system at all.  This is clearly not the 

case.  In 1928, Heisenberg proposed a quantum mechanical theory to explain the 

spontaneous alignment [2].  In this theory the interaction can be attributed to an exchange 

force between each atom and its nearest neighbours, caused by the overlap of electron 

wavefunctions.  Pauli’s exclusion principle for fermions [3] states that the total 

wavefunction for a quantum mechanical system comprising electrons must be 

antisymmetric .  Therefore two electrons bound within the same orbital (symmetric space 

part) must have opposite spin (antisymmetric spin part), whilst those in different orbitals 

(antisymmetric space part) must have parallel spin (symmetric spin part).  Since similarly 

charged particles repel one another, it follows that the more favourable configuration 

occurs with the electrons occupying different orbitals and having their spins aligned 

parallel to one another.  In effect, the interaction responsible for ferromagnetic alignment is 

not magnetic as Weiss proposed, but is actually electrostatic in nature.  This interaction can 

be represented by the Heisenberg Hamiltonian energy, 

 

ji ss ⋅= -2JHH     (1.2) 

 

where HH  is the exchange energy of two interacting electron spins, is  and js , and J is the 

exchange integral which is material dependent.  This model can also be used to describe 

antiferromagnetic coupling.  Whilst for ferromagnets the exchange integral is positive, 
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resulting in an energy minimum for parallel spins, antiferromagnets have a negative 

exchange integral, with the lowest energy when the spins are aligned anti-parallel. 

 

1.2.2 Field and temperature dependence of M and χ  

 

The magnetisation of a ferromagnetic material is dependent on both applied magnetic field 

and temperature, as shown in Fig. 1.3a and Fig. 1.3b respectively.  Below the Curie 

temperature spontaneous alignment occurs, but overall the material exhibits no (or very 

little) magnetisation.  This is because (as will be discussed later) the material splits up into 

regions of parallel alignment called domains.  At zero applied field these domains are 

oriented randomly and the magnetic effects cancel, but as the field is increased, the 

domains align with one another and the magnetisation increases.  The magnetisation at 

zero field is referred to as the remanent magnetisation and when all domains are parallel 

the magnetisation is a maximum and is called the saturation magnetisation.  As the 

temperature approaches cT , the saturation magnetisation decreases to zero as thermal 

agitation destroys the alignment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.3: Graphs showing (a) the variation in magnetisation with field and (b) saturation magnetisation, (c)

magnetic susceptibility  and (d) reciprocal susceptibility with temperature for a ferromagnetic material. 
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Magnetic materials are often distinguished by their (temperature dependent) magnetic 

susceptibility (Fig. 1.3c).  The susceptibility of a material, χ, indicates how dramatically it 

responds to an applied field, and is defined as the ratio of the magnetisation to field, 

 

H
Mχ =      (1.3) 

 

At high temperatures χ is small and positive, but as the temperature is reduced it increases 

exponentially to infinity at cT .  This shows the ease of increasing the magnetisation by 

applying a field when the material is undergoing a transition between magnetic order and 

disorder.  This temperature dependence can be described by the Curie-Weiss law, 

 

θ-T
Cχ =      (1.4) 

 

where C and θ are the Curie and Weiss constants respectively.  Often the straight line plot 

of reciprocal susceptibility with temperature is used to describe the ferromagnetic response 

of a material (Fig. 1.3d).  The gradient of this graph is equal to -1C .  Deviations can be 

seen between experiment and theory as χ tends to infinity.  Whilst the Curie-Weiss law 

predicts 0→χ -1  at θ=T , experiments show the Curie temperature to be slightly lower.  

This is because the theory is based on a mean-field approximation to simplify the 

interactions of a many-body system. 

 

1.2.3 Gauss’ law for magnetism 

 

It is important to note that unlike electric fields which start and end on charges, magnetic 

B-fields are continuous and have no sources or sinks.  In a closed surface therefore, every 

magnetic field line entering the surface, leaves the surface and this includes both stray field 

and magnetisation components of ferromagnetic materials.  Gauss’ law for magnetism (one 

of Maxwell’s equations) expresses this as, 

 

∫ =⋅
S

0dAB      (1.5) 
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where B is the magnetic induction and A is the outward pointing area vector normal to the 

surface.  Physically, this equation means that magnetic field lines must be closed loops and 

is a mathematical formulation of the statement that there are no magnetic monopoles. 

 

1.3 Magnetic energy terms 

 
Although ferromagnetic materials have a net magnetic moment on the atomic scale, 

volumes of these materials often possess little or no net magnetisation.  The magnetisation 

of a material is the total magnetic moment per unit volume.  The reason for this, as 

mentioned previously, is down to the formation of magnetic domains.  The exchange 

interaction cannot explain this behaviour and there are other energy contributions that must 

be taken into account. 

 

1.3.1 Exchange energy 

 

The Heisenberg model discussed above has to be summed over all electrons which 

contribute to the magnetisation.  However, only the overlap between adjacent atoms gives 

an appreciable value for J and so only nearest neighbour interactions are considered, which 

simplifies the calculation.  The total exchange energy for the material assuming identical 

atoms is, 

 

∑=
ij

ij
2

ex φcos-2JSE     (1.6) 

 

where S is the magnitude of the spin vector and ijφ  is the angle between the spins i and j.  

Taking into account the three dimensional nature of crystals and integrating over a finite 

volume of material, but considering only cubic systems, this expression becomes, 

 

dV])γ()β()α[(AE 22

V

2
ex ∇+∇+∇= ∫    (1.7) 

 

where α, β, γ are the direction cosines with respect to the crystal axes and A is the 

exchange stiffness constant for the material given by, 

 

a
kJSA

2
=      (1.8) 
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with k a structure-dependent constant (1 for simple cubic, 2 for body-centred cubic and 4 

for face-centred cubic materials) and a the lattice parameter. 

 

1.3.2 Anisotropy energy 

 

Anisotropy relates to the fact that the properties of a magnetic material depend on the 

directions in which they are measured.  This is because the direction of magnetisation is 

influenced by the structure of the material, which forces the spins to lie in certain 

directions.  There are two main types of anisotropy: magnetocrystalline and shape 

anisotropy. 

 

Magnetocrystalline anisotropy 

 

The crystal structure of a material induces preferred directions for the magnetic moments.  

Magnetocrystalline anisotropy is caused by the spin-orbit interaction.  In general, atomic 

orbitals are non-spherical in shape and are linked to the crystalline structure.  As a result, 

these orbitals are oriented along certain crystallographic directions and can overlap with 

one another.  The orbitals then couple to the electron spins and force them to align along 

well-defined axes.  The preferred directions for the magnetisation are called the ‘easy 

directions’ and the directions in which it is most difficult to align the magnetisation are 

called the ‘hard directions’.  To rotate the magnetisation away from the easy direction costs 

energy.  This anisotropy energy depends on the structure of the lattice.  For hexagonal 

systems there is a uniaxial anisotropy with energy, 

 

dV)θsinKθsinK(E 4
2

2

V

1k += ∫    (1.9) 

 

or using direction cosines, 

 

dV])γ-1(K)γ-1(K[E 22
2

2

V

1k += ∫    (1.10) 

 

where 1K  and 2K  are the anisotropy constants for the material, θ is the angle between the 

easy direction and the magnetisation, and V is the volume of material.  This system 

therefore has one easy axis with two energy minima separated by energy maxima.  For 

cubic systems with cubic anisotropy, the energy is given by, 
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dV]γβαK)αγγββα(K[E 222
2

222222

V

1k +++= ∫   (1.11) 

 

In the above expression α, β, γ are the directional cosines referred to the crystallographic 

axes.  In polycrystalline materials, however, the magnetisation has no overall preferred axis 

because the crystallites are randomly oriented.  Instead, the anisotropy direction varies 

between crystallites, resulting in local easy axes which manifest themselves in the Fresnel 

and DPC images as magnetisation ripple [4].  Despite this, anisotropy can be induced 

during or after film growth using special processing techniques.  For example, growing the 

material in a large applied field or annealing the sample in a large field after deposition can 

have this effect.  Growing the film on top of a buffer layer is another commonly used 

method in the fabrication of multilayer structures. 

 

Shape anisotropy 

 

This type of anisotropy is related to the magnetostatic effects of the system rather than the 

overlap of electron orbitals, but is vitally important to the magnetic configurations of thin 

film elements and must be described.  When a magnetic body is uniformly magnetised, 

magnetic ‘free poles’ build up at the surface of the material.  These poles are referred to as 

north and south (N and S) but are often represented by positive and negative charges (+ 

and -).  In this situation, field lines connect the opposite poles both inside and outside of 

the material.  Inside the body, this demagnetising field, dH , is opposite in direction to the 

magnetisation and the shape anisotropy energy increases as dH  increases. 

 By considering an anisotropic 3D shape such as an ellipsoid (Fig. 1.4) magnetised 

along the long and short axes, it can be seen that free poles are separated by relatively long 

and short distances respectively [5].  As a result, magnetising the material along the long 

axis leads to smaller values of dH  and a lower energy than when it is magnetised along the 

short axis.  In this case the energy expression has a similar form to the uniaxial crystalline 

anisotropy, 

 

∫=
V

2
effk dVθsinK-E      (1.12) 

 

with    2
abeff M)N-N(2/1K =     (1.13) 
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where θ is the angle between the long axis of the sample and the magnetisation direction, 

M is the magnetisation and aN  and bN  are demagnetising factors in the long and short 

axes respectively.  aN  and bN  depend on the sample geometry and are uniform for an 

ellipsoid. 

 

 

 

 

 

 

 

 

1.3.3 Magnetostatic energy 

 

Magnetostatic effects are a natural consequence arising from any magnetisation 

distribution which results from the build up of magnetic charge at the surfaces of a 

magnetic material and also from within the volume when the magnetisation distribution is 

discontinuous or divergent.  As mentioned in the previous section, these poles generate 

field which exists both inside (demagnetising field) and outside (stray field) the material, 

with dH  opposing the magnetisation.  The surface magnetic charge density, σ , is given 

by, 

 

nM ⋅=σ      (1.14) 

 

and the volume magnetic charge density, ρ, by, 

 

M- ⋅= ∇ρ      (1.15) 

 

where M is the magnetisation vector and n is the outward pointing unit vector normal to 

the surface.  The energy associated with these surface and volume charges arises from the 

interaction between the field and magnetisation, and is expressed as, 

 

∫ ⋅=
V

0
d dV

2
µ-E dHM      (1.16) 

 

+ + + + + 

- - - - - 

+ 

+ - 

- 
H dHM 

H 

dH

M 

Fig. 1.4: The shape anisotropy energy is greatly affected by the sample shape and is dependant on the size of

the demagnetising field. 
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and 0µ  is the permeability of free space.  As the magnetostatic field originates from the 

surface (S) and volume (V) charges, it is represented by, 

 

dS
rπ4

1dV
rπ4

1

S
2

V
2 ∫∫ ⋅

+
⋅∇−

=
nMMHd    (1.17) 

 

where r is the position vector for the point at which the field from the charge is evaluated.  

The magnetostatic energy of the system can be reduced by decreasing the amount of stray 

field generated at the edges of the material.  This is achieved by the formation of domains 

and is discussed later in the chapter. 

 

1.3.4 Zeeman energy 

 

In the presence of an externally applied magnetic field, the moments within the material 

will attempt to align parallel to the field direction.  The Zeeman energy takes into account 

the orientation of the magnetisation with respect to the applied field and is given by, 

 

∫ ⋅−=
V

0z dVµE HM      (1.18) 

 

where H is the external magnetic field. 

 

1.3.5 Magnetostrictive energy 

 

When a ferromagnetic material is magnetised, there may be a change in the dimensions of 

the material.  This effect is termed magnetostriction.  Conversely, applying stress to the 

material changes its magnetisation.  The reason for this behaviour relates to the atomic 

structure of the material.  When atoms bond to form a crystal, the shape of the electron 

orbitals changes and they deviate from their spherical form.  Since the atomic moments are 

dependant on both the spin and orbital components of angular momentum and the 

magnetisation on the overlap of neighbouring orbitals, the magnetic properties are affected 

by the atomic spacing.  When an external field is applied, the magnetic moments try to 

align with the field and the orbitals distort.  This effectively changes the atomic positions 

within the material and creates mechanical strain.  The specimen either expands (positive 

magnetostriction) or contracts (negative magnetostriction) in the direction of the 

magnetisation.  Likewise, when a physical stress is applied, the atoms in the material are 
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displaced, effectively causing changes in the magnetisation.  The magnetostriction, λ, is 

defined as the fractional change in length,  

 

l
lδλ =       (1.19) 

 

and has a maximum value, sλ , when the magnetisation is saturated in the direction of an 

applied field.  The related energy term, called the magnetostrictive energy, is associated 

with the strain induced in the material and is given by, 

 

dV)αsinσλ2/3(E 2
s

V

λ ∫=     (1.20) 

 

where α  is the angle between the saturation magnetisation and the stress, σ.  Therefore, by 

magnetising a material in a specific direction there is a magnetostrictive energy cost.  The 

size and sign of sλ  depends on the crystal symmetry and the direction in which the 

material is magnetised. 

 

1.3.6 Total energy 

 

The total energy of a ferromagnetic specimen is the sum of the individual energy terms 

discussed, 

 

λzdkextot EEEEEE ++++=    (1.21) 

 

and the magnetic states supported are a direct consequence of its local or global 

minimisation. 

 

1.4 Magnetic domains and domain walls 
 

Ferromagnetic materials can be regarded as a collection of exchange-coupled magnetic 

dipoles [6].  They are fixed to one point but are free to rotate.  The magnetisation 

distribution (patterns) supported are determined by the different energy terms of the 

system.  The problem can be visualised more simply by considering the basic forces acting 

on the moments as a result of the different interactions.  The exchange interaction tries to 

align adjacent spins parallel to one another (Fig. 1.5a), whilst the magnetostatic interaction 
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pushes them in opposite directions (Fig. 1.5b).  Meanwhile any material anisotropy and 

magnetostrictive stress (Fig. 1.5c) bias the magnetisation in one particular direction and an 

applied field forces it in another (Fig. 1.5d).  The orientation of the dipoles within a 

particular domain is therefore a balance between the exchange and magnetostatic 

interactions.  At small length scales (10nm) the exchange force is greater and the spins are 

nearly parallel, but at length scales of 100nm and above, the magnetostatic coupling 

dominates and the spins may be oriented in opposite directions. 

 

 

 

 

 

 

 

 

1.4.1 Domain configurations 

 

As an example, consider a square piece of material sufficiently thin that the magnetisation 

preferentially lies in the film plane.  If the magnetisation is saturated along one axis (Fig. 

1.6a) the exchange energy is minimised by the parallel spins, but there is a large build up 

of surface charge and associated magnetostatic energy.  In reality, this state could only be 

achieved if the element was very small, if there was a large field present or there was a 

high uniaxial anisotropy or magnetostrictive stress.  In any other situation, the system 

would break up into domains [7,8] to reduce the magnetostatic energy at the expense of 

some ‘domain wall’ energy (Fig. 1.6b).  These walls (as will be discussed in the next 

section) have associated exchange, anisotropy and magnetostatic contributions.  As with 

the first configuration, the vertical orientation of spins would only occur under particular 

conditions.  Without these conditions the magnetisation would likely rotate to form a flux 

closure structure (Fig. 1.6c).  This state generates little surface charge but has exchange 

energy and some domain wall energy.  With uniaxial (magnetocrystalline) anisotropy or 

magnetostrictive stress present, a low energy configuration might be that shown in Fig. 

1.6d where multiple domains are present and surface charge is reduced.  Instead of 

magnetocrystalline anisotropy or magnetostriction, favourable orientations can be induced 

by introducing shape anisotropy.  In Fig. 1.6e the shape symmetry aligns the magnetisation 

parallel to the long (or easy) axis.  As discussed, this configuration reduces the 

demagnetising field and magnetostatic energy.  In summary therefore, it can be seen that 

Fig. 1.5: The directions of torque (red) acting on the magnetic moments as a result of (a) exchange, (b)

magnetostatic, (c) anisotropy/magnetostriction and (d) applied field interactions. 

(a) (b) 
H 

(d) (c)
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axis 
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whilst the exchange energy tries to oppose domain formation, the magnetostatic energy 

favours it.  In addition, anisotropy, magnetostriction and applied fields limit the possible 

orientations of these domains, but do not directly favour or oppose their formation. 

  

 

 

 

 

 

 

 

In most cases for a ferromagnetic film there are a large number of different magnetic states 

that the system can relax into, often with different energies [9].  The lowest energy state is 

referred to as the ground state, and represents the global minimum.  Configurations with 

higher energy are called metastable states and are the local minima for the system.  The 

configuration supported by a sample depends on the history of the material as well as the 

applied field strength and direction.  Applying a particular field will often change the 

configuration from one state to another.  In many cases, however, the various 

configurations are similar in energy and are considerably more complicated than those 

shown in Fig. 1.6. 

 

1.4.2 Domain wall configurations 

 

Two regions of different magnetisation are separated by boundaries known as domain 

walls.  Within the wall, the magnetic moments of the material rotate smoothly between the 

two directions of magnetisation.  As the rotation occurs gradually over many atoms, the 

domain wall width is given by, 

 

Naw =      (1.22) 

 

where N is the number of atoms and a is the atomic spacing.  However, as the walls 

introduce additional exchange, anisotropy and magnetostatic energy to the system, their 

width is an important consideration and depends on a balance between the different terms.  

Narrow walls have a considerable exchange energy because the rotation from one spin to 

the next is large, whilst wide walls deviate a larger fraction of the magnetisation away from 

the easy axis and introduce a large anisotropy component.  The magnetostatic contribution, 

Fig. 1.6: Hypothetical domain configurations supported by a square thin film element. These include (a)

single domain and (b) multi-domain states with large magnetostatic energy, (c) magnetocrystalline isotropic

and (d) anisotropic flux closure configurations and a (e) single domain (shape) anisotropic state. 

(a) (b) (c) (d) (e)
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however, depends on the thickness of the film.  In thin films the upper and lower surfaces 

are closer together, so the free poles create a large demagnetising field compared with 

thicker films.  This effect also determines the type of wall that forms. 

 Walls are characterised according to their spin configuration and angle through 

which the magnetisation rotates on going from one domain to the next.  There are two 

basic types of domain wall: namely Néel walls (Fig. 1.7a) and Bloch walls (Fig. 1.7b).  In 

Néel walls, the magnetisation rotates in the plane of the film, whilst in Bloch walls the 

rotation is out-of-plane.  With Bloch walls there is no divergence of the magnetisation.  

Therefore in thicker films (> 90nm), the associated stray field is small and Bloch walls are 

favourable.  If the thickness is reduced (<30nm) and the out-of-plane magnetisation 

intersects the surface, free poles are generated and this type of wall becomes unfavourable.  

Instead Néel walls are formed.  Since the spins rotate in the sample plane, magnetic charge 

builds up inside the material and not on the surface.  Taking into account the different 

energy terms, the width of a Bloch wall is dependent only on the exchange and anisotropy 

contributions and is related to the anisotropic exchange length, 

 

K
Aδ k,ex =      (1.23) 

 

with A and K being are the exchange and anisotropy constants for the material.  The width 

of a Néel wall on the other hand is dependent on the exchange, anisotropy and 

magnetostatic energy terms.  As the magnetostatic energy is more dominant than the 

anisotropy energy, however, the width is related to the magnetostatic exchange length, 

 

2
s0

d,ex Mµ
A2δ =     (1.24) 

 

where sM  is the saturation magnetisation. 
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Fig. 1.8 shows a simulated phase diagram for permalloy films [10], which illustrates the 

variation of wall energy density, wσ , with film thickness.  In real materials a variety of 

different domain wall configurations are possible by combining the basic Néel and Bloch 

type walls.  These more complicated structures occur as the system tries to minimise the 

total energy.  One common example is a cross-tie wall [11] (Fig. 1.7c) which, from Fig. 

1.8, is found in film thicknesses of between 30 and 90nm.  Solid lines in the schematic 

represent 90° Néel walls and dashed lines 45° Néel walls.  The circles in Fig. 1.7c indicate 

Bloch lines, where the magnetisation is out-of-plane.  They exist where the in-plane 

direction is undefined and are called singularities [12].  As the distance increases from the 

Fig. 1.7: (a) Néel, (b) Bloch and (c) cross-tie domain walls (shaded region) found in ferromagnetic films. 
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centre of a singularity, the magnetisation relaxes into the plane of the film.  The black 

circles are cross Bloch lines (or cross-ties) and the white circles circular Bloch lines (or 

vortex cores).  Magnetisation vortices are found frequently in ferromagnetic films because 

they reduce the magnetostatic energy of the system.  The magnetisation rotates around the 

core with the spins becoming tighter as the radius of curvature decreases.  This tightening 

increases the exchange energy to the extent that the spins point out-of-plane at the centre of 

the vortex, decreasing the exchange energy at the cost of some magnetostatic energy.  

Other examples of complex domain wall configurations include 360° domain wall loops 

and head-to-head vortex and transverse walls.  These will be discussed in detail in the 

relevant sections of this thesis. 

 

 

 
 

 

 

 

 

 

 

 

 

 

1.5 Hysteresis 

 
The magnetisation of ferromagnetic materials depends not only on the applied field, but 

also on the previous magnetic history [13].  This behaviour is called hysteresis.  The 

macroscopic field response is considered first and is depicted in Fig. 1.9.  If we take an 

isotropic ferromagnetic material in the as-grown state, where the sample has never been 

exposed to an external field, the domains within the material will be arranged such that the 

net magnetisation is zero (1).  By then applying a field, a net magnetisation is induced in 

the field direction (2).  As this field is increased, the magnetisation increases until 

saturation, sM  (3), when all the moments are aligned with the applied field, sH .  When 

this field is removed, the magnetisation then drops to a value known as the remanant 

magnetisation (or remanance), rM  (4).  The remanent magnetisation can range from zero 

Film thickness (nm)
40 80 120 160 200 
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Fig. 1.8: Domain wall phase diagram for permalloy showing the energy density of Néel, Bloch and cross-tie

walls as a function of film thickness. 
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to near sM  depending on the material.  A field applied in the opposite direction will then 

reduce the magnetisation to zero (5) with the field strength at which this occurs known as 

the coercive field, cH  (or the coercivity).  Increasing the negative field saturates the 

magnetisation in the opposite direction (6) before field removal allows the system to reach 

remanance again (7).  Application of a positive field then demagnetises the sample as 

before (8).  The M-H graph produced as the field is swept between positive and negative 

values is known as a hysteresis loop.  The area of the loop is a measure of the work 

required to take the material through one complete magnetisation cycle.  Note, however, 

that the initial increase of the magnetisation from zero to sM  between field values of zero 

and sH  (1) – (3) is never repeated.  This type of hyteresis loop is called a major loop since 

the magnetisation is driven between saturation in opposite directions.  On the other hand, 

cycling between smaller field values results in minor loops of which there can be an 

infinite number.  With anisotropic samples the direction of applied field is also a 

consideration, and so hysteresis loops for different directions of applied field must be 

obtained for proper characterisation.  Often plots of magnetic induction against applied 

field (B-H) are determined instead of M-H loops.  Magnetic induction is given by, 

 

)(µ0 HMB +=     (1.25) 

 

For linear materials, substituting M from equation (1.3) gives, 

 

HµµB r0=      (1.26) 

 

where 0µ  is the permeability of free space and rµ  is the relative permeability.  The latter is 

the relative difference in magnetic field inside and outside of the material. 

The quantities rM  and cH  provide the principal characterisation of a magnetic 

material for device applications.  For example, in permanent magnets the material must 

exhibit a high rM  and cH  so that it maintains a large magnetisation and is difficult to 

demagnetise.  Materials with a high or low cH  are referred to as hard and soft magnetic 

materials respectively.  For transformer cores, the material should be soft with a low rM .  

This is achieved using amorphous materials.  On the other hand, magnetic memory and 

storage applications require a thin film with large rM  and intermediate cH .  The large rM  

enables differentiation between two binary states (+ rM  and - rM ) whilst the coercivity 

allows the material to be written to without accidental demagnetisation (memory loss). 
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1.6 Magnetisation reversal 

 
When an external field is applied, the magnetisation can change direction to align with the 

field in two different ways.  One mechanism is coherent rotation.  In this situation, the 

magnetisation vector rotates smoothly from one direction to the other and occurs in films 

possessing uniaxial anisotropy.  Stoner and Wohlfarth [14] developed a model to describe 

this mechanism in small single-domain particles.  Although this model places a single 

domain constraint on the system, it can be used in a modified form to deal with more 

complicated problems [15].  However, in larger systems it may be more energetically 

favourable for reversal to occur through domain processes.  This mechanism involves the 

nucleation of domains and domain walls, and subsequent domain wall motion.  Such 

behaviour can be predicted using micromagnetic simulations.  In systems supporting 

multiple domains prior to field application, similar domain processes can occur without the 

need to nucleate new domains/domain walls.  By considering a rectangular thin film 

element exhibiting initial flux closure (Fig. 1.10a) and applying a field parallel to the long 

axis, the domain aligned with the field increases in size at the expense of the others (Fig. 

1.10b).  This process is reversible.  As the field is increased, however, domain wall 

annihilation occurs and the domain unfavourably aligned with the field is removed (Fig. 

1.10c).  This is an irreversible step.  Domains oriented close to the applied field direction 

rotate to align with the field.  At larger fields, further domain wall annihilation occurs and 

a single-domain state is reached (Fig. 1.10d).  In general, the growth and reduction of 

domains are reversible processes, whilst domain wall annihilation is irreversible.  It is the 

irreversible steps that are responsible for hysteresis in ferromagnetic materials.  In addition, 

Fig. 1.9: Typical hysteresis loop for a ferromagnetic material.  The enlarged region shows steps in the

response known as the Barkhausen effect. 
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the small magnetisation jumps that occur in hysteresis loops (Barkhausen effect) are due to 

irreversible domain wall motion (Fig. 1.9). 
 

 

 

 

 

 

 

 

 

 

1.7 Tunnelling magnetoresistance 

 
Magnetoresistance is the property of some materials to change the value of their electrical 

resistance when an external magnetic field is applied.  The effect, later called ordinary 

magnetoresistance (OMR), was first discovered by William Thomson (Lord Kelvin) in 

1856 [16] but only exhibited changes in resistance of up to 5%.  Since then, however, other 

types of magnetoresistance have been discovered including anisotropic (AMR) [17], giant 

(GMR) [18], tunnelling (TMR) [19] and colossal magnetoresistance (CMR) [20], which 

have been shown to give larger effects.  Only TMR is considered here, as it forms the basis 

for the structure and operation of magnetic tunnel junctions (MTJs). 

 MTJs (Fig. 1.11), at the simplest level, consist of two layers of ferromagnetic metal 

separated by an ultrathin layer of insulator, typically aluminium oxide with a thickness of 

about 1nm [21].  The insulating layer is thin enough that electrons can tunnel through the 

barrier if a bias voltage is applied between the metal electrodes.  A dramatic change in 

tunnelling current occurs when the magnetisation of the ferromagnetic layers change their 

alignment.  This TMR effect was first observed by Julliere in 1975.  In order for MTJs to 

be used as effective memory cells it must be possible to vary the alignment of the layers 

between a parallel and anti-parallel configuration using an applied field, whilst for 

magnetic sensors, all possible orientations are required. 

 

 

 

 

 

H 

0H = H increasing 
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Fig. 1.10: Typical domain process observed in a rectangular thin film element during field application.
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TMR is a consequence of spin-dependent tunnelling (SDT), a phenomenon discovered in 

1970 by Tedrow and Meservey [22].  It arises from the fact that in ferromagnetic metals, 

electronic energy bands are exchange split, resulting in a difference in the density of states 

at the Fermi level for the spin-up and spin-down electrons.  Therefore, the number of 

electrons that can tunnel through the barrier and also the tunnelling conductance, depend 

on the electron spin.  Julliere’s model (Fig. 1.12) helps to explain this further and is based 

on two assumptions.  Firstly, it is assumed that the spin of the electrons is conserved during 

the tunnelling process and that the tunnelling of spin-up and spin-down electrons can be 

considered as two independent processes (spin channels).  Therefore electrons of one spin 

state from the first ferromagnetic layer are accepted by unfilled states of the same spin in 

the second ferromagnetic layer.  When the two layers are aligned parallel, the majority 

spins tunnel to the majority states and the minority spins to the minority states.  In effect, 

the spin-aligned electrons have a higher probablility of tunnelling through the insulating 

layer and we have a low-resistance state.  On the other hand, when the two ferromagnetic 

layers are aligned anti-parallel, the identity of the majority and minority spin electrons is 

reversed and the majority spin electrons tunnel to the minority states and vice versa.  In this 

situation, the tunnelling probability of both spin-up and spin-down electrons is reduced and 

we have a high-resistance state.  The second assumption of Julliere’s model is that the 

conductance for a particular spin orientation is proportional to the product of the density of 

states of the two ferromagnetic layers.  Therefore, the TMR can be written as, 
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Fig. 1.11: Changes in the MTJ resistance occur when the relative orientation of the layers is altered by an

external magnetic field.  Dashed arrows in the low R state represent tunnelling electrons. 
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where R is the resistance, I is the tunnelling current, P is the spin polarisation for the top 

(1) and bottom (2) ferromagnetic layers and D is the density of states at the Fermi level.  

The arrows in equation 1.27 show the alignment of the magnetic electrodes whilst in 

equation 1.28 indicate spin-up and spin-down electrons. 

 

 

 

 

 

 

 

   

 

 

 
 

 

 

 

1.8 Interlayer coupling 

 
For storing information, it should be possible to vary the alignment of the MTJ 

ferromagnets (FM) between a parallel and anti-parallel orientation using a modest applied 

field.  By using an antiferromagnetic (AFM) layer in contact with one of the FM 

electrodes, the direction of magnetisation in this FM layer is fixed.  This layer is known as 

the pinned layer.  The other FM, however, is able to change its magnetisation direction to 

align with the field and is termed the free layer.  A common specification for applications 

is a good control over the low field properties of the free layer.  Its orientation should be 

sensitive to the applied field with a large resulting change in TMR as its direction changes 

with respect to the pinned layer.  Ideally the free layer hysteresis loop would be centred 

around zero field, but this is rarely the case.  As a result of various interlayer coupling 

mechanisms between the free and pinned layers, the centre of the hysteresis loop is shifted 

away from zero field and changes in the free layer coercivity can occur [23]. 

In general, the different coupling mechanisms cause a parallel (FM) or anti-parallel 

(AFM) alignment between adjacent FM layers.  This alignment depends on the dominant 

Fig. 1.12: Julliere’s model of TMR showing the variation in density of states for spin-up and spin-down 

electrons when the ferromagnetic layers of a MTJ are aligned (a) parallel and (b) anti-parallel. 

FE

E
1 2 

FE

E

(a) 

(b) 



          Chapter 1: Magnetism and magnetic materials 

 22

mechanism and the particular materials involved, and is described as ‘bilinear’ because the 

coupling energy is linear in both of the magnetisation directions [24], 

 

21 mm ⋅= 1bil -JE     (1.29) 

 

where 1J  is the coupling constant and 1m  and 2m  are the magnetisation vectors of the 

adjacent FM layers.  With this form of interaction, positive values of the coupling constant 

favour parallel alignment and negative values favour anti-parallel alignment.  Although 

this model can successfully describe the interactions for most samples, some specimens 

have been known to exhibit a non-linear magnetisation curve and a perpendicular 

alignment of the magnetisation vectors at zero field.  This alignment can be explained by 

the presence of physical defects and disorder in the structure.  Studies have shown that one 

origin is spatial fluctuations in the interlayer coupling through the spacer layer as a result 

of terraces at the FM/spacer interface.  A phenomenological way to describe this behaviour 

is through the use of a ‘biquadratic’ term in the energy expression, 

 
2

2biq )-JE 21 m(m ⋅=     (1.30) 

 

It is called biquadratic because the energy is quadratic in both of the magnetisation 

directions.  All found values of the coupling constant, 2J , are negative, favouring a 

perpendicular orientation of the magnetisation vectors.  Most of the different coupling 

interactions played a part in the magnetic structure of the MTJs in chapter 8, and will be 

described briefly.  A schematic diagram of the type of stack studied is given in Fig. 1.13, 

but will be discussed in detail later.  The various coupling types can be split into two main 

categories, namely exchange interactions and magnetostatic interactions. 
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Fig. 1.13: Schematic diagram of the MTJs studied in chapter 8 showing the different layers deposited and the

type of coupling present between each magnetic layer.  The dominant mechanism at each interface is

highlighted in bold. 
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1.8.1 Exchange interactions 

 

There are four different exchange interactions that affect the behaviour of multilayer films.  

These include interlayer exchange coupling (IEC), exchange bias, pinhole coupling and 

Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling.  IEC [25,26] is an indirect exchange 

coupling effect caused by spin-polarised electrons tunnelling across the insulating barrier 

when a voltage is applied to the stack (Fig. 1.14a).  These electrons exert a spin torque 

from one film to the other which acts to align the FM layers parallel provided the barrier is 

free from defects and impurities.  Exchange bias (or exchange anisotropy) [27,28] is a 

direct exchange interaction that exists at the interface of any FM and AFM material (Fig. 

1.14b) and is characterised by a shifted hysteresis loop ( EH ) and enhanced coercivity 

( CH ) for the FM.  With thin film AFM-FM bilayers, the exchange bias is set by cooling 

the film through NT  from CN T<T<T  in the presence of an applied field (cooling field).  

As a result of the loop shift, different coercivity values are experienced for positive and 

negative field.  All effects, however, vanish above the blocking temperature, BT , of the 

system, which is dependent on the AFM NT .  Pinhole coupling [29,30] is a direct FM 

exchange interaction via magnetic bridges through the insulating barrier (Fig. 1.14c).  

These bridges are formed when the upper FM material is deposited onto a spacer layer 

containing gaps.  The density of pinholes is affected by fundamental growth processes and 

by substrate dislocations and morphology.  RKKY coupling [31] occurs when the two FM 

layers are separated by a metallic paramagnetic (PM) spacer and is caused by an indirect 

exchange interaction through conduction electrons of the spacer layer (Fig. 1.14d).  The 

conduction electrons are magnetised in the vicinity of one FM and the second FM 

perceives this magnetisation.  For transition metals, the interaction is AFM and the 

conduction electrons try to screen the spin by spin-polarising in alternating directions.  

Close to the FM the spins are aligned in the opposite direction, but favour a parallel 

orientation further away.  The second FM then aligns itself anti-parallel to the spins of its 

adjacent conduction electrons. 
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1.8.2 Magnetostatic interactions 

 

There are also three magnetostatic coupling effects.  These include Néel (or orange-peel) 

coupling, domain wall coupling and stray field coupling.  Orange peel coupling [32-35] is 

a dipole-dipole interaction that occurs in multilayer FM films when the surface is rough 

and there is intralayer exchange coupling.  Under these conditions, magnetic surface 

charge develops at the interfaces because the magnetisation cannot follow the surface 

profile (Fig. 1.15a).  When the roughness has a conformal or correlated waviness (implying 

no phase, amplitude or correlation length differences in topology between the various layer 

surfaces) through a spacer layer of uniform thickness, the interface normals are locally 

opposite.  With the layers magnetised in the same direction, the poles of opposite polarity 

in adjacent films are closer together than if the magnetisation was anti-parallel.  In this 

situation stray field lines connect both inter and intralayer magnetic charges.  When the 

magnetisation is anti-parallel, none of the field lines cross the spacer layer and the field 

energy is larger.  Therefore, orange-peel coupling favours a FM alignment.  Domain wall 

coupling [36-40], on the other hand, is found in multilayer FM films that reverse by 

domain wall motion.  Domains walls in one film couple with those in the adjacent film and 

exert an ‘escape field’ which pins the second wall in place (Fig. 1.15b).  In the pinned 

configuration the magnetostatic energy is lowered when the sense of rotation in each of the 

walls is opposite, otherwise wall displacement occurs [41].  This coupling phenomenon 

affects not only the domain and domain wall configurations supported by the films, but 

also the material coercivity.  In patterned magnetic multilayers, magnetostatic interactions 

occur between the free and pinned layers as a result of stray field from the magnetic 

charges at the edges of the element (Fig. 1.15c).  This stray field coupling [42-45] 

encourages an energetically favourable anti-parallel orientation of the magnetisation 

vectors, which promotes reversal of the free layer to the anti-parallel state but opposes its 

Fig. 1.14: The (a) IEC, (b) exchange bias, (c) pinhole and (d) RKKY exchange coupling interactions

between the layers of a MTJ. 

(a) (c)(b) 

(d) 
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switch back to the parallel configuration.  The stray field itself radiates from the charge and 

has both parallel and perpendicular components which influence the magnetisation of the 

adjacent film. 

 

 

 

 

 

 

 

 

Although interlayer coupling is useful in some circumstances, exchange bias for example, 

many of the interactions adversely affect the behaviour of TMR memory and sensor 

elements.  Direct consequences include reduced TMR and field sensitivity, unstable 

magnetic states and in extreme cases, complete failure of the device.  Therefore, these 

interactions are not just minor complications but must be given a great deal of 

consideration if TMR devices are to be successful in the future. 

(a) 
(c) (b)

Fig. 1.15: The (a) orange-peel, (b) domain wall and (c) stray field magnetostatic coupling interactions

between the layers of a MTJ. 
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Chapter 2 

 

Instrumentation and experimental techniques 

 
2.1 Introduction 

 
Microscopy is a technique used to produce visible images of structures too small to be seen 

by the human eye.  The microscope itself has to accomplish three tasks: it must be able to 

produce a magnified image of the specimen, resolve features in the image and render the 

details visible to the eye or camera.  The technique has evolved with the development of 

optical technology and there are now three main branches: optical, electron and scanning 

probe microscopy.  Only electron microscopy is discussed in this thesis. 

 

2.2 Electron microscopy 

 
2.2.1 The transmission electron microscope (TEM) 

 

As the resolution of a microscope is limited by the wavelength of its illumination, optical 

microscopes are only able to resolve features down to ~300nm at best [46].  To understand 

the properties of modern materials, however, it is necessary to study features that are on a 

length scale well below this resolution limit, if possible at the atomic level.  In 1925 Louis 

de Broglie hypothesised that electrons exhibit wave-like characteristics, with a wavelength 

far shorter than visible light.  As moving charged particles were already known to be 

deflected by magnetic fields, it was not long afterwards that the idea of an electron 

microscope was proposed.  The first electron microscope (transmission) was built in 1933 

by German physicists Ernst Ruska and Max Knoll and was similar in design to the optical 

microscope.  Using electromagnetic lenses to focus a beam of electrons, this instrument 

was capable of magnifying objects 400 times.  Electron microscopes have come a long way 

since this model, with modern versions being able to resolve individual columns of atoms 

in crystals with magnifications of several million times [47]. 

 The wavelength, λ, of electrons is related to their energy, and when accelerated by a 

potential difference, V, is given by, 
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where h is Planck’s constant and 0m  and e are the electron rest mass and charge 

respectively.  This equation ignores the relativistic correction for the kinetic energy of 

electrons, and by taking this into consideration, becomes, 
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where c is the speed of light in vacuum.  By substituting a typical value for the accelerating 

voltage of 200kV, the wavelength is found to be 0.0025nm (or 2.5pm).  This value can be 

reduced slightly by increasing the accelerating voltage, but higher energy electrons can 

introduce greater specimen damage which is often undesirable.  Although the above value 

is far smaller than interatomic distances, electron microscopes are not able to achieve this 

wavelength limit of resolution due to aberrations in the electromagnetic lenses.  Current 

work is being done to develop aberration correctors, however, and so far a resolution of 

0.5Å has been achieved [47]. 

 The original form of electron microscopy, transmission electron microscopy [48], 

involves a high voltage electron beam emitted by a triode electron gun and focussed by 

electromagnetic lenses (Fig. 2.1).  The beam is partially transmitted through a very thin 

specimen, carrying information about its physical structure.  Modern techniques also allow 

the user to extract details of the sample chemistry and electric or magnetic properties.  Like 

optical microscopy, the spatial variation in the illumination is then magnified by a series of 

lenses to be observed or recorded. 

For thermionic sources, a tungsten or 6LaB  filament is heated resistively until the 

electrons have sufficient energy to escape into the vacuum, before they are focussed using 

an electrostatic lens (Wehnelt) and accelerated down the column by an anode.  With field 

emission guns (FEGs), two anodes are used.  The first acts as an intense electric field to 

extract electrons before the second accelerates the beam.  The combined fields of the 

anodes produce a fine point source.  Following electron production, a condenser system 

involving two condenser lenses and an aperture diaphragm are used to control the electron 

intensity, spot size and convergence at the specimen.  For TEM analysis the sample must 

be electron transparent.  Therefore with 200kV electrons, the maximum specimen 

thickness cannot exceed ~100nm.  Below the sample, a short focal length objective lens is 
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used for imaging.  Focussing is achieved by varying this distance on the optic axis.  For 

magnetic lenses, adjustment of the focal length is easily performed by changing the current 

through the windings of the electromagnet.  Intermediate and projector lenses are then used 

for magnification, producing a final real image on a fluorescent screen or CCD camera.  

Due to interactions between the electrons and air molecules, the complete TEM column 

must be operated under high vacuum (~ 710− torr) to reduce scattering to a negligible level. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.2 The scanning electron microscope (SEM) 

 

As well as the evolution of transmission electron microscopy, two other types of electron 

microscope have developed rapidly.  These are the scanning electron microscope (SEM) 

and the scanning transmission electron microscope (STEM).  Scanning electron 

microscopes [49] (Fig. 2.2) are mainly used to study surface morphology and use a finely 

focussed beam which is scanned across the surface of the specimen in synchronism with a 

spot in a cathode ray tube (CRT). 

Fig. 2.1: A typical transmission electron microscope.  A series of electromagnetic lenses are used to magnify a

real image onto the phosphor screen. 

Electron gun 

C1 lens 

C2 lens 

Specimen 

Objective lens 
Objective aperture/ 
diffraction pattern 

C2 aperture 

Intermediate lens 

Projector lens 

Phosphor screen 

1st real image 

2nd real image 

Final real image 

C1 aperture 



Chapter 2: Instrumentation and experimental techniques 

 29

When the electron beam hits the sample, backscattered (BSE), secondary (SE) and Auger 

electrons (AE) can be produced as well as x-rays.  As the beam scans in a raster pattern a 

detector monitors the intensity of the secondary signal, which is then converted 

electronically, amplified and used to control the CRT spot on the display monitor.  Because 

the image is built up serially, the imaging process in SEM is much slower than in TEM, 

which occurs in parallel.  An advantage SEM has over TEM, however, is the ability to 

image thicker samples, and it is possible to control the depth to which the electron 

penetrates the specimen by adjusting the accelerating voltage.  As this affects the type of 

secondary signal produced, there is a lot of control over the nature of the final image. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As with TEM, an electron gun emits divergent electrons which are then controlled by a 

condenser system.  The first condenser lens, C1, demagnifies the gun crossover and the 

second condenser lens converges the beam to a final crossover at the specimen plane.  The 

upper condenser controls the spot size and effectively the resolution of the microscope 

whilst focussing is achieved by adjusting C2.  A condenser aperture is used to control the 

convergence angle of the beam at the sample surface.  As before, the aperture reduces the 

beam current by stopping many of the electrons from reaching the specimen.  

Fig. 2.2: Schematic diagram of a scanning electron microscope highlighting the important components that

make up the system. 
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Unfortunately it also reduces the microscope resolution since diffraction at the aperture 

edge increases the spot size.  Between the lenses, two sets of deflection coils are used to 

scan the beam about the specimen surface.  An SEM was used in this project to determine 

specimen quality immediately after fabrication. 

 

2.2.3 The scanning transmission electron microscope (STEM) 

 

The scanning transmission electron microscope [50] is a hybrid of the TEM and SEM 

which uses deflection coils to scan a fine electron probe across the surface of a thin 

specimen, and is generally used to localise signals at very high resolution.  Often the 

deflection coils are built into modern TEM systems to enable STEM imaging in addition to 

the usual TEM modes of microscopy, but dedicated STEMs are also available.  One 

method of converging the beam on the specimen is to adjust the C2 lens so that the focal 

point is at the specimen plane instead of below the sample (Fig. 2.3a).  However, we often 

require a spot diameter of <10nm to obtain the most useful information from the sample, 

and the C1 and C2 lenses are not able to achieve this.  Instead, the upper objective 

polepiece may be used to converge the beam with C2 switched off.  This configuration 

(Fig. 2.3b) can provide a highly focussed probe. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

α

Electron gun 

C1 lens 

C2 lens 

Specimen 

Objective lens 
(upper polepiece) 

C2 aperture 

(a)

α

Fig. 2.3: (a) A small area of the specimen can be illuminated by focussing the C2 lens on the surface of the

specimen, but for high resolution STEM imaging, (b) the upper polepiece of the objective lens is used to

converge the beam to a fine probe. 
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Scan coils between the condenser and objective lenses control the beam on the surface of 

the sample whilst descan coils below the specimen ensure the electrons are centred on the 

detector as the beam scans.  Instead of using an objective aperture to select the electrons 

contributing to the image, an electron detector is used.  The detector sits below the 

projector lens and is composed of two separate parts: the bright field (BF) and annular dark 

field (ADF) detectors.  Direct, unscattered electrons are incident on the BF detector whilst 

Bragg scattered electrons register on the ADF detector (which is situated around the BF 

section).  Some STEMs also incorporate BSE and SE detectors similar to those used in 

SEM.  One advantage STEM has over TEM is resolution.  In STEM, the resolution of the 

system is determined by the probe size at the specimen and not by the imaging lenses 

which are strongly affected by aberrations.  However, as spherical aberration affects the 

condenser system, the achievable probe size and resolution are still limited by the lenses.  

In both SEM and STEM scanning systems, the magnification is controlled by the scan 

dimensions on the specimen and not by the lenses. 

 

2.3 Electromagnetic lenses 

 
2.3.1 Focussing electrons 

 

Electromagnetic lenses used in electron microscopes (Fig. 2.4) incorporate a cylindrically 

symmetric core (or yoke) of soft iron called a polepiece, with a hole drilled through the 

centre called the bore (‘b’ in diagram). 

There are normally two polepieces in a lens known as the upper and lower 

polepieces, separated by a critical distance called the gap (‘g’ in diagram).  The ratio of the 

bore to gap size is very important, as it controls the density of field lines at the focussing 

region and therefore the action of the lens.  A coil of copper wire is wound around each 

polepiece to carry current and create an axially symmetric magnetic field in the bore.  As 

the current flows through the coil the copper heats up resistively, so the lenses have to be 

cooled using a water recirculating system.  The field produced magnetises the core, 

increasing the magnetic flux at the gap.  It is important to be able to produce large fields 

because the strength controls the ray paths of the electrons.  The field is weakest on axis 

and increases in strength towards the sides of the polepiece, providing a strong deflection 

to the electrons that travel off-axis. 

 

 

 



Chapter 2: Instrumentation and experimental techniques 

 32

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.2 Lens aberrations 

 

If the lenses in a microscope were optically perfect, they would be able to transfer each 

point in the object to an equivalent point in the image and give a geometrically accurate 2D 

projection of the specimen.  In reality, however, lens defects or aberrations affect the 

ability of the lens to form an image.  These aberrations are present in both optical (glass) 

and electromagnetic lenses, but rotation of the image caused by the electron trajectory in a 

magnetic field results in additional terms for electron microscopes.  Most aberrations are 

related to the orientation of the wavefront and focal plane with respect to the optic axis, 

and these affect the image clarity.  This type of aberration can be split into two different 

classes: on-axis and off-axis aberrations.  On-axis aberrations include chromatic and 

spherical aberration whilst off-axis terms include coma, astigmatism and field curvature. 

In addition to these, other optical problems exist that do not affect the resolution, 

but instead distort the image.  Geometrical distortion causes both barrel and pincushion 

effects, whilst as stated above, electron trajectories introduce rotation to the image.  Some 

of these lens defects will now be explained in more detail. 

 

Chromatic aberration 

 

Chromatic aberration (Fig. 2.5) is related to the wavelength of the illumination.  In light 

optics the different wavelengths of light are refracted differently, causing a dispersion 

spectrum.  In glass lenses this effect results in each colour having a different focal point 

along the optic axis.  In the image, this manifests itself as coloured fringes around the 

Water cooler 

b 
g 

Copper coils

Polepieces 

Fig. 2.4: An electromagnetic lens used to focus a beam of electrons. 
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features and a disc of least confusion instead of a point focus.  In electron microscopes, 

modern electron guns are capable of reducing the spread in electron energies and before 

they hit the specimen, the electrons can be regarded as monochromatic.  However, after 

specimen interaction, some of these electrons lose energy and therefore chromatic 

aberration exists in the post-specimen lenses. 

 
 

 

 

 

 

 

 

 

Spherical aberration 
 

Even with monochromatic illumination, on-axis rays can be poorly focussed.  This is due 

to spherical aberration (Fig. 2.6), which results in rays passing through the outside of the 

lens being focussed more strongly than those passing through the centre.  Spherical 

aberration is caused by differences in path length for the various rays and shows up in 

images as a series of diffraction rings around a focused spot.  Effectively, a point object is 

imaged as a disc of finite size which reduces the resolution of the system and limits the 

ability to magnify detail. 

 

 
 

 

 

 

 

 

 

Astigmatism 

 

Astigmatism (Fig. 2.7) affects the focussing of off-axis points in an image.  It is caused by 

differing degrees of focus for rays that propagate in two perpendicular planes.  In electron 

lenses, a nonuniform field caused by microstructural and engineering defects in the 

polepieces or by unclean apertures gives this effect.  The focal points for the tangential (yz-

plane) and sagittal (xz-plane) rays occur at different distances along the z-axis and are 

Fig. 2.5: Different wavelengths of light or electrons are brought to focus at different points on the optic axis

giving rise to chromatic aberration. 
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confusion 

Fig. 2.6: The outer regions of the lens focus illumination more strongly than the centre, resulting in multiple 

focal points for the various rays. 
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called the tangential and sagittal foci respectively.  As a result of this aberration, an off-

axis point on the object appears as a short line oriented along the x-axis at the tangential 

focus and as a second line oriented along the y-axis at the sagittal focus.  In between these 

two foci, a disc of least confusion is formed which represents the best compromise in an 

optical system with astigmatism.  As the two focal points move closer together, the image 

shape changes between linear, elliptical and circular. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Image rotation 

 

In electromagnetic lenses, the magnetic field causes electrons to spiral around the optic 

axis.  The number of turns the electron makes whilst traversing the lens is determined by 

the field strength and is rarely an integer.  As a result, the lens acts not only to invert the 

image, but also to rotate it about the optic axis. 

 

2.3.3 Resolution 

 

The resolving power of the microscope is its ability to make adjacent points in the object 

discernible in the image.  The resolution is therefore the shortest distance between these 

points on the object that can still be distinguished by the observer.  An approximate value 

for the smallest resolvable distance (theoretical) can be calculated using Rayleigh’s 

criterion, 
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Fig. 2.7: Different focal points for tangential and sagittal rays produce astigmatism in the image. 
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where λ is the wavelength of the radiation, n is the refractive index of the viewing medium 

and α is the objective lens semi-collection angle.  The resolving power of a lens is 

ultimately limited by diffraction.  When the illumination passes through the lens aperture, 

it interferes with itself to produce a ring-shaped diffraction pattern with points in the object 

being imaged as discs (Airy discs).  This interference therefore blurs the image and smears 

out the features.  The theoretical approximation also has to be adjusted due to the lens 

aberrations, and unfortunately, the practical resolution is not as good as Rayleigh’s 

equation predicts.    

Spherical aberration, as stated earlier, prevents the rays being focussed at a single 

point and instead focusses those close to the optic axis at the Gaussian image plane and 

those off-axis before the Gaussian image plane.  The disc of least confusion is the smallest 

dimension of the cone of rays and is found between these foci.  At the Gaussian image 

plane, a second, larger disc exists called the spherical aberration disc.  The radius of this is 

given by, 
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where sC  is the spherical aberration coefficient of the lens and α is the lens semi-

collection angle.  This is used to define the effect of spherical aberration on resolution.  

Similar image degradation is caused by chromatic aberration and astigmatism with radii 

defined as, 
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where cC  is the chromatic aberration coefficient of the lens, ∆E is the energy loss of the 

electrons, 0E  is the initial beam energy and ∆f is the maximum difference in focus induced 

by the astimatism.  However, in electron microscopy the high accelerating voltages and 

thin film specimens can reduce the chromatic aberration considerably, whilst stigmator 

coils can be used to introduce compensating fields to balance the inhomogeneities.  An 

approximate practical resolution at Scherzer defocus can therefore be found by taking the 

theoretical and spherical aberration expressions into account and ignoring the astigmatism 

and chromatic aberration [48].  These are added in quadrature, 
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and used to calculate an optimum value for α which minimises r, 
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Substituting this into equation 2.3 then gives the practical resolution, pr , 
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Typical values of λ and sC , 2.5pm and 1.2mm respectively, give a point-to-point 

resolution of 3.4Å. 

 

2.4 Structural characterisation 

 
2.4.1 Electron-specimen interactions and image contrast 

 

In order to be able to see details of a specimen in the TEM, we rely on image contrast.  

Contrast is defined as the difference in intensity between two neighbouring areas and is 

given by the equation, 
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where 1I  and 2I  are the intensities of the adjacent areas and ∆I is the intensity variation.  

This difference in intensity is caused by electron-specimen interactions.  When the incident 

beam travels through the sample, some electrons pass straight through unaffected by the 

specimen whilst a fraction are scattered by a variety of processes, affecting both the spatial 

and angular distribution.  These interactions produce forward and backscattered electrons, 

as well as a large number of secondary signals (Fig. 2.8).  In effect, an initial uniform 

distribution of illumination emerges from the sample with a non-uniform intensity, and this 

is what allows details of the specimen to be observed. 
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The human eye is not able to detect changes in intensity of less than ~5% [48], so specimen 

contrast must exceed this threshold unless electronic processing techniques are applied to 

digital images.  Electrons can undergo changes in both amplitude and phase, and as a 

result, there are two fundamental types of contrast in the image: amplitude contrast and 

phase contrast.  Normally both types of contrast contribute to the image but one may 

dominate.  Specimens that alter the amplitude of transmitted radiation are referred to as 

‘amplitude objects’ and can be observed in the microscope as a consequence of their ability 

to absorb or scatter the illumination.  The greater the degree of scattering from a given 

region of the specimen, the darker the corresponding area of the image appears.  In 

TEM/STEM the three main types of amplitude contrast in the images are mass-thickness, Z 

and diffraction contrast. 

Many specimens, however, do not produce significant amplitude contrast so 

different techniques are required to image their detail.  Phase contrast microscopy 

overcomes this problem by making use of the change in phase incurred by the illumination 

from specimens called ‘phase objects’.  In electron microscopy, phase changes are often 

produced by changes in electric and magnetic field.  They occur when the incident 

wavefront at a particular region in the sample is slightly advanced or retarded relative to 

the surrounding area, giving constructive and destructive interference.  For phase contrast 

microscopy to work, however, the illumination must have a degree of coherency that is 

preserved throughout the imaging system so that this phase change can be transferred to 

the image plane.  Examples of phase contrast include lattice fringes (High resolution 

TEM), Moiré fringes and Fresnel contrast. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.8: The various electron-specimen interactions produce forward and backscattered electrons as well as 

a large number of secondary signals. 

Coherent incident

Characteristic 

SEs 
Visible light 

Incoherent elastic  
se−

beam 

x-rays 

AEs 

Bremsstrahlung 
x-rays 

Coherent elastic  
se−

Direct beam 

Incoherent inelastic
se−

Incoherent elastic  
se−

pairhole/e  −
Absorbed se−   



Chapter 2: Instrumentation and experimental techniques 

 38

2.4.2 FEI Tecnai T20 TEM 

 

The structural characterisation in this thesis was performed using an FEI Tecnai T20 TEM 

[51] (Appendix Fig. A.1).  This is a fairly standard commercial microscope which uses a 

6LaB  electron source, but includes a couple of additional features.  Built into the lower 

polepiece of the objective lens (sketched below this lens in the diagram) is a Lorentz lens 

which enables imaging of magnetic specimens in a field-free environment.  This will be 

discussed in the next section, where similar lenses installed in the CM20 TEM/STEM were 

used for magnetic imaging.  In addition, below the microscope column, a Gatan Image 

Filter (GIF) has been installed to allow energy filtered imaging.  On passing through the 

GIF aperture, electrons are deflected by a magnetic prism and a chosen energy range is 

selected using the energy slit.  This enables the user to map specific elements by allowing 

only those electrons that have suffered a corresponding energy loss to contribute to the 

image.  Following selection, a final lens projects the image onto a CCD or off-axis TV 

camera.  Energy filtering was not required for this work, but the GIF was used for 

capturing BF and DF images of the continuous film samples. 

 

2.4.3 Bright-field and dark-field imaging 

 

The two fundamental operations of a TEM are the formation of an image and electron 

diffraction pattern on the viewing screen.  To observe an image of the specimen, the 

intermediate lens is set so that the object of this lens is the image of the objective lens 

produced at the first image plane.  On the other hand, if the diffraction pattern is required, 

then the intermediate lens is weakened so that the back focal plane of the objective lens (at 

which the DP is formed) becomes the object. 

When the diffraction pattern is projected onto the viewing screen it contains a 

bright central spot produced by the direct electrons and several spots or rings produced by 

the scattered electrons.  The diffracted electron beams can be selected using the objective 

aperture to produce either bright-field (BF) or dark-field (DF) images.  To produce a BF 

image, the aperture is centred around the direct beam, allowing only the unscattered 

electrons to contribute to the image (Fig. 2.9a). 
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If this aperture is moved and centred around one (or some) of the diffracted beams, then a 

DF image is produced (Fig. 2.9b).  In this DF arrangement, however, the selected electrons 

travel off-axis and suffer from aberrations and astigmatism.  This is avoided by tilting the 

incident beam onto the specimen at an angle equal to the Bragg angle.  In this situation, the 

scattered electrons travel down the optic axis and the direct electrons off-axis.  The 

objective aperture is centred around the scattered beam to produce a centred dark-field 

(CDF) image (Fig. 2.9c).  BF and (220) DF images of the polycrystalline grains in a MTJ 

film are shown in Fig. 2.10 as an example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.9: The formation of BF and DF images is achieved by centering the objective aperture around the (a)

central and (b) diffracted beams respectively.  (c) A CDF image can be formed by tilting the incident beam

to the Bragg angle. 
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Fig. 2.10: Plan-view BF/DF images of polycrystalline grains in a continuous film MTJ stack.  These images

were acquired using the central and (220) spots from the fcc diffraction pattern. 
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2.4.4 Electron diffraction 

 

Diffraction is a term which refers to the bending of waves on passing through an aperture.  

It occurs with any type of wave and results in the formation of an interference pattern 

behind the scattering object.  When the pattern is produced at a large distance from the 

object, the rays are effectively parallel and the diffraction is referred to as Fraunhofer 

diffraction, but when the pattern is close to the diffracting object, the parallel beam 

approximation cannot be used and the diffraction is called Fresnel diffraction. 

Here, the emphasis is on Fraunhofer diffraction produced when electrons in the 

TEM interact with the specimen and are scattered elastically to produce intense coherent 

beams.  The electron waves are scattered by the periodic arrangement of atoms in the 

crystal with each atom acting as a point source of spherical wavefronts.  When the 

electrons interact with the electron clouds of the atoms, they can be scattered at various 

angles.  However, some electrons in this beam are incident on the atomic planes at a 

critical angle (Bragg angle) and are ‘reflected’ in-phase with electrons from neighbouring 

planes, resulting in constructive interference of significant intensity. 

If two waves are incident at angle, θ, on a set of lattice planes, denoted by Miller 

indices (hkl), within the crystal, they will be reflected at an equal angle and will interfere 

with one another.  As can be seen in Fig. 2.11, if these planes have spacing, d, then the path 

difference between the two waves is 2dsinθ.  For constructive interference to occur, 

Bragg’s law must be satisfied, 

 

θsind2=λn      (2.11) 

 

It is important to note here that since 1θsin ≤ , Bragg reflection can only occur for d2λ ≤  

which is why it is not possible to produce diffraction patterns from crystals using visible 

light. 

 

 

 

 

 

 

 

 

 

θ θ

θ d 
(hkl) planes

Fig. 2.11: Two electrons waves incident on a set of lattice planes (hkl) are reflected in-phase when their path 

difference is equal to an integer number of wavelengths.  
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Within a crystal, each set of atomic planes has a different inter-plane spacing, d.  For a 

cubic lattice, this spacing is given by, 

 

222 l+k+h

a
=d     (2.12) 

 

where a is the lattice parameter and h, k, l are the Miller indices for the set of lattice planes.  

Electrons that are Bragg scattered emerge from the crystal suffering a deflection of 2θ with 

respect to the incident beam direction (Fig. 2.12).  Since all electrons that pass through the 

specimen are brought to focus in the back focal plane of the objective lens, the diffraction 

pattern is produced in this plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In a single crystal diffraction experiment, the electron wavelength, beam direction and d-

spacing for each set of planes are fixed.  Therefore, only certain lattice planes are able to 

satisfy the Bragg condition and produce an intense beam.  The beams for each of these 

allowed reflections results in a series of spots being produced (Fig. 2.13a).  By tilting the 

specimen, different (hkl) planes are able to produce Bragg scattering and the diffraction 

pattern changes. 

Fig. 2.12: Parallel rays entering the objective lens are brought to focus at the back focal plane.  The 

Bragg scattered electrons therefore form a diffraction pattern in this plane. 
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With polycrystalline samples however, all possible orientations of crystallite are present 

and a ring pattern is produced (Fig. 2.13b).  This pattern appears as a superposition of 

many single crystal spot patterns.  If the grain size in the material is small then continuous 

rings are produced, but if larger grains are present the rings are made up of discrete spots 

and appear speckled.  Also, as the probability of scattering decreases with angle, the spots 

and rings decrease in intensity the further they are from the centre. 

Crystalline texturing is the distribution of crystallographic orientations of the grains 

in a polycrystalline material [52].  Texturing is present in the sample when some preferred 

orientation exists, and the degree of texturing is dependent on the percentage of crystallites 

with that particular orientation.  When tilting a non-textured polycrystalline specimen the 

diffraction pattern remains constant.  If texturing is present, however, then the intensity 

varies within the rings and arcs are produced (Fig. 2.13c).  This pattern exists because, 

despite the texturing in one dimension, the crystallites are still randomly oriented about this 

direction.  Also, when tilting a textured sample, the intensity along the tilt axis remains 

constant.  This occurs because the plane spacing is unaltered relative to the incident beam 

direction. 

Diffraction can also be performed with amorphous materials.  Amorphous solids 

are non-crystalline and have no long range order.  When electrons are scattered from an 

amorphous material a series of fuzzy rings are produced (Fig. 2.13d) with the ratio of these 

rings being related to the average nearest neighbour distances in the material. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

(a) (b) (c) (d) 

Fig. 2.13: Typical electron diffraction patterns produced by (a) single crystal, (b) non-textured

polycrystalline, (c) textured polycrystalline and (d) amorphous materials. 
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2.5 Magnetic characterisation 

 
2.5.1 Electron-specimen interactions 

 

The way in which electrons interact with a ferromagnetic specimen is of great importance 

to this thesis.  This interaction can be described using both classical and quantum 

mechanical approaches [53]. 

 

Classical approach 

 

As mentioned earlier, electrons in the beam are deflected by magnetic fields, which is why 

electromagnetic lenses are used for focussing.  However, this Lorentz force is also present 

when the electrons encounter a magnetic specimen, and this enables us to image the 

magnetic structure.  Fig. 2.14 shows electrons passing through a thin ferromagnetic film 

which is split into three domains separated by two 180° domain walls.  The directions of 

magnetisation are in the plane of the specimen as indicated. 

 

 

 

 

 

 

 

 

 

A parallel beam, incident perpendicular to the plane of the film along the z-axis, 

experiences a deflection in the x-direction at angle Lβ  given by, 

 

dz)y,x(B
h
λe

=)x(β ∫
∞

∞-
yL     (2.13) 

 

where )y,x(By is the y-component of magnetic induction at point (x,y), e is the electron 

charge, λ is the electron wavelength and h is Planck’s constant.  If stray field effects are 

ignored, the magnetisation is uniform )M( s  and the specimen is of constant thickness, t, 

equation 2.1 can be simplified to, 

B B B

Lβ

x 
y 

z 

Fig. 2.14: The Lorentz deflection of an incident electron beam as it passes through a uniform thin
ferromagnetic film. 
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h
tλeB

=β 0
L      (2.14) 

 

where sB  is the saturation induction )Mµ=B( s0s .  For 200kV electrons passing through 

a 20nm thick film with a saturation induction of 1T, rad10×2.1~β -5
L .  This is far smaller 

than a typical first order Bragg angle of rad10~ -2 . 

 

Quantum mechanical approach 

 

A quantum mechanical description of this interaction is necessary when quantitative 

analysis is required or when interference effects must be considered.  If two electrons 

originating from the same point travel different equidistant paths and rejoin, they will 

suffer a phase difference which is proportional to the magnetic flux through the surface 

defined by the two paths.  This phase shift ∆φ is given by, 

 

h
eNπ2

=φ∆      (2.15) 

 

where N is the flux enclosed.  In the case of a plane wave incident on the thin 

ferromagnetic film considered above, the phase shift between any two points 1x  and 2x  

will be, 

 

∫
2

1

x

x
y dx)x(B

h
etπ2

=)x(φ∆     (2.16) 

 

As a result, a ferromagnetic specimen can be treated to first order as a pure phase object to 

the electron beam, and any amplitude modulation due to the physical structure of the 

material is neglected.  Lorentz microscopy is therefore a branch of phase contrast 

microscopy. 

 

2.5.2 Creating a field-free environment 

 

The main imaging lens in most microscopes is the objective lens and this determines the 

overall resolution and performance of the instrument.  When imaging non-magnetic 

materials, the specimen is normally located at the centre of the objective lens.  However, in 
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this region of the microscope a large field exists to focus the beam which makes it 

unsuitable for imaging magnetic samples.  This field would destroy the magnetic 

information which is to be studied so the objective lens has to be modified to allow for this 

type of imaging. 

 One way to achieve this is by using a three pole-piece setup with two gaps [54].  

The central pole-piece acts to create a magnetic shield around the specimen, leaving the 

sample in field-free space.  With this arrangement the objective lens can still be used for 

focusing and the resolution does not suffer too much.  Another way of achieving field-free 

conditions is by incorporating additional Lorentz lenses into the upper and lower objective 

lens pole-pieces [55].  In this situation the objective is switched off and the Lorentz lenses 

are used for focusing.  As these are not as strong as the objective lens, however, the 

resolution of the system is compromised.  An advantage of this latter setup is that whilst 

imaging with the Lorentz lenses, the objective can be weakly excited to provide a 

controllable field in the specimen region, allowing in-situ magnetising experiments to be 

performed. 

 

2.5.3 Philips CM20 TEM/STEM 

 

The Philips CM20 TEM/STEM [56] (Appendix Fig. A.2) used for all of the magnetic 

imaging in this project has been highly modified with respect to the basic commercial 

microscope.  This FEG system makes use of the upper and lower Lorentz lenses to enable 

in-situ imaging of magnetic specimens in both the Fresnel and differential phase contrast 

(DPC) modes of microscopy.  In addition, the gap between the objective lens pole-pieces 

has been widened to allow a magnetising stage or specialised rods to be used for more 

complicated experiments.  Below the projector lenses of the microscope there is an 8-

segment detector for modified DPC (see later) as well as a CCD camera for CTEM 

experiments and a BF/ADF split detector for normal STEM imaging using the objective 

lens. 

 

2.5.4 Fresnel imaging 

 

The Fresnel mode of Lorentz microscopy [57] is a qualitative technique used to image the 

domain walls within a ferromagnetic film.  To observe magnetic contrast, the imaging lens 

is defocused by an amount ±∆z.  This has the effect of raising or lowering the object plane 

relative to the specimen depending on whether the lens is under-focused or over-focused 
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respectively.  Referring to Fig. 2.15, the Lorentz deflection causes convergence and 

divergence of the electron beam at the domain walls.   

If the electron source is sufficiently coherent (as with a FEG), fringes may be 

observed at large defocus due to the interference effects of the convergent electron 

wavefront.  By positioning the object plane below the sample, dark and bright bands 

representing the domain walls (and edges of the material) are transferred to the image 

plane, whilst the domains themselves appear as regions of (near) uniform electron 

intensity.  Focusing on the object plane above the specimen rather than below inverts the 

contrast.  By extrapolating the rays back through the film, the regions of convergence and 

divergence are reversed and a virtual object is formed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

The level of contrast produced is highly dependent on the value of defocus.  Large ∆z 

values increase the contrast but also smear the information and reduce the resolution, 

whilst small ∆z values make it difficult to observe the details of the magnetic state.  A 

compromise is therefore required to obtain the best imaging conditions.  In addition to the 

domain wall contrast, intensity variations exist at the edges of magnetic specimens as a 

Fig. 2.15: (a) Domain wall contrast is observed in the Fresnel mode of Lorentz microscopy when the imaging

lens is defocused.  Under-focusing produces a (b) virtual object above the specimen and associated electron

intensity whilst over-focusing produces a (c) real object below the specimen. 
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result of magnetic and electrostatic phase contributions (Fig. 2.16a).  This edge contrast 

can dominate the images of small features, drowning out the domain wall information.  For 

this reason and the limited resolution of the technique, Fresnel is unsuitable for the 

observation of very small patterned elements with dimensions of < 200nm.  However, the 

technique is particularly useful for studying the magnetic behaviour of continuous film 

specimens.  In such samples magnetisation ripple is present within the domains, and this 

can be imaged in addition to the domain walls (Fig. 2.16b).  As the direction of ripple lies 

perpendicular to the net moment of the domain, it is possible to deduce the axis of 

magnetisation. 
 

 

 

 

 

 

 

 

 

 

By knowing whether the lens is over or under-focused, however, it is also possible to 

determine the absolute directions of magnetisation.  This is done using the domain wall 

contrast with the magnetisation ripple in continuous film specimens.  In thin film elements 

without visible magnetisation ripple, the domain wall and edge contrast is required. 

The advantages of Fresnel imaging for studying magnetic specimens include its 

ease of operation and the high levels of contrast.  It is also well-suited to real-time in-situ 

imaging, allowing reversal sequences to be recorded during magnetising experiments.  

However, as previously mentioned, this technique is limited by poor resolution, which 

prevents the imaging of ultra small structures and makes it difficult to relate magnetic 

detail to topographic contrast.  In addition, the non-linear relationship between intensity 

and magnetic induction mean that quantitative information is hard to obtain. 

 

2.5.5 Differential phase contrast (DPC) imaging 

 

Differential phase contrast imaging [58,59], unlike Fresnel, is performed in a STEM.  This 

technique is used to observe and provide quantitative information on the magnetic 

induction of thin film samples [60,61].  After the probe passes through the specimen, the 

electrons emerge as a cone of illumination which is projected onto a circular quadrant 

Fig. 2.16: Fresnel images of a (a) rectangular thin film element and a (b) continuous film multilayer specimen.

(a) (b) 

10µm 500nm 
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detector.  If a non-magnetic specimen is placed in the path of the beam the disc is centred 

on the detector.  Alternatively, if a magnetic sample is used, the Lorentz force deflects the 

electrons and shifts the disc to a position that is no longer concentric (Fig. 2.17).  Since 

each segment of the detector measures a separate electron intensity, difference signals 

taken from opposite segments provide information on the induction as contrast in the 

image.  The (A + D) – (B + C), (A + B) – (C + D), A – C and B – D signals are acquired to 

map the induction in 45° directions.  As the Lorentz force is perpendicular to both the 

induction and beam directions, the difference signals provide orthogonal maps of induction 

perpendicular to the deflection.  In addition, by summing the signals from all four 

quadrants, a bright field image can also be produced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The angle that the incident beam makes with the normal to the surface is denoted by α and 

is proportional to the radius of the disc on the detector.  The deflection angle of the beam is 

again denoted by β.  Therefore, when the disc is shifted a distance β on the detector, the 

area covered on region (B + C) decreases by ~2αβ.  Likewise, this same area is transferred 

to region (A + D) resulting in an area difference, ∆A, of 4αβ between the two regions.  The 

difference signal is given by, 

 

A
A∆I

=S      (2.17) 

 

where I is the electron intensity and A is the total area of the spot on the detector.  This can 

therefore be rewritten as, 

 

Fig. 2.17: (a) Magnetic specimens cause deflection of the beam which (b) shifts the disc on the surface of the
quadrant detector. 
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2    (2.18) 

 

The main implication of this calculation is that the difference signal produced is linearly 

proportional to the Lorentz deflection which, as was shown earlier, is directly related to the 

integrated magnetic induction.  Therefore, making the same assumptions about the sample 

as before, we have, 

 

hπα
tλIeB4

=S s      (2.19) 

 

It is important to note that this relationship only holds when the deflection is small, i.e. β < 

α/10.  If the deflection is larger than this, linear imaging is not possible.  The resolution of 

the image produced is approximately equal to the diameter of the probe, which varies 

depending on whether the system is being used in the high magnification scanning (HMS) 

or low magnification scanning (LMS) modes (Fig. 2.18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A greater useful magnification is achievable in HMS by scanning a smaller area of the 

sample with a finer probe.  In LMS the upper Lorentz lens is turned off, resulting in a 

larger probe at the specimen and smaller probe angle.  With this setup a resolution of ~ 

30nm is common.  Also, since β ~ α/10 (depending on magnetic sample), the DPC signal is 

very sensitive to changes in magnetic induction and high contrast is produced.  In HMS the 

use of the upper Lorentz lens forms a small probe with large probe angle.  However, as, β ~ 

α/1000, the signal is less sensitive to changes in induction and the contrast suffers.  The 

C1

Upper Lorentz lens

C2

Specimen

Screen
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Fig. 2.18: LMS DPC uses the C1 and C2 lenses to form the probe whilst HMS requires the use of the upper
Lorentz lens to condense the beam further. 
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resolution of DPC is limited by two factors: the coherent and incoherent limits.  The 

coherent limit was discussed earlier and is imposed by diffraction and spherical aberration.  

Remembering that the probe size, P, is proportional to 3
sαCα/λ + , the probe angle, α, can 

be chosen to minimise P (Fig. 2.19a).  The incoherent limit, however, arises from the fact 

that the probe cannot be demagnetised to a point, but has a finite size.  Of the two effects, 

this has the largest contribution and confines the probe size to just less than 10nm. 

When performing DPC, it is necessary for the beam to remain stationary with 

respect to the detector whilst scanning.  This ensures that deflections caused by the 

magnetic induction are the only shifts of the beam from the central position.  To achieve 

this, descan coils are used after the beam has passed through the specimen (Fig. 2.19b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 
2.5.6 Modified differential phase contrast (MDPC) imaging 

 

Despite the ability of DPC imaging to provide quantitative magnetic information, there is 

an inherent problem with the system: the data obtained from a real specimen contains both 

magnetic and non-magnetic components such as physical microstructure and crystalline 

potentials.  These contributions often conceal some of the magnetic data.  This problem is 

reduced with the use of an 8-segment detector (Fig. 2.20a) instead of its quadrant 

counterpart, which changes the efficiency with which different spatial frequencies are 

Fig. 2.19: (a) The probe size can be minimised by varying the incidence angle, α.  (b) Descan coils below

the specimen ensure that the only shift of the spot on the detector is due to the Lorentz deflection. 
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transferred to the image [62].  Since the spatial frequency of the crystallite contrast is 

greater than that of the magnetic contrast, detection of these lower frequencies with greater 

efficiency results in a boost of the magnetic signal at the expense of the crystallite signal 

(noise).  The only parts of the electron distribution which carry information in the 

difference signal are those involved in the overlap of the scattered and unscattered beams.  

For low frequency magnetic components, this overlap is at the edge of the unscattered 

cone.  Therefore, by collecting difference signals from the annular quadrants of the 

detector, the magnetic signal is preferentially detected.  When implementing this 

technique, an important consideration is the value of κ, defined as, 

 

α

i

k
k

=κ      (2.20) 

 

where ik  and αk  are the radii of the inner annulus and the bright field cone respectively 

(Fig. 2.20b).  The variation in signal to noise with reduced spatial frequency, rk , in one 

dimension is given in Fig. 2.20c, where, 

 

α

x
r k

k
=k      (2.21) 

 

and xk  is the spatial frequency along the x-axis.  As κ is increased, the high frequency 

contribution is suppressed and the signal to noise ratio enhanced.  Therefore κ should be 

set close to 1 so that the disc impinges only slightly onto the outer quadrants; achieved 

simply by adjusting the post-specimen lenses. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.20: (a) The 8-segment detector and (b) spatial frequency vectors for MDPC.  (c) The variation of signal

to noise with reduced spatial frequency for different values of κ. 
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The advantages of using DPC to study ferromagnetic films are that it can be used to 

recover quantitative magnetic information at a resolution of below 10nm.  Due to the phase 

gradient experienced by the electron beam between areas containing the magnetic film and 

those with only the supporting substrate, however, edge contrast is also present in DPC 

images.  As it is an in-focus technique though, these fringing effects are smaller than in 

Fresnel images, so DPC is the preferred option for the study of sub-micron sized elements.  

The main disadvantage is that the instrumental setup is a lengthy procedure, so the average 

DPC experiment requires far more time to complete than those performed in the Fresnel 

mode.  Fig. 2.21 shows MDPC images of a thin film element and continuous film 

specimen. 

 

 

 

 

  

 

 

 

 

 

 

2.5.7 In-situ magnetising experiments 

 

To study the dynamic behaviour of ferromagnetic films, fields were applied in-situ.  This is 

achieved in the Philips CM20 by weakly exciting the objective lens to provide a field and 

using the Lorentz lenses to image.  When current is passed through the lens coils a vertical 

field, H, is produced in the specimen region.  The direction of this field (up or down) can 

be controlled by passing the current through the coils in the forward or reverse directions 

respectively.  With the specimen held in the horizontal position (0° tilt) the field is 

perpendicular to the plane of the film and there is no in-plane component.  However, when 

the specimen is tilted at an angle, θ°, it encounters a field component parallel to the 

specimen plane, ||H , given by, 

 

θsin= HH||      (2.22) 

 

(a) (b) 

500nm 10µm 

Fig. 2.21: DPC images of a (a) rectangular thin film element and (b) continuous film multilayer specimen. 
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Therefore, the in-plane field can be controlled by tilting the specimen to different angles 

(Fig. 2.22).  The maximum field, experienced at 90° tilt, is determined by the current 

through the objective lens and can have any value up to ~7000 Oe.  A problem associated 

with this technique though, is that the component of field perpendicular to the sample, ⊥H , 

can affect the magnetisation.  This sensitivity to the perpendicular component lowers the 

in-plane field necessary to reverse the magnetisation and can allow the formation of 

magnetic states which would otherwise be difficult to form. 

 

 

 

 

 

 

 

 
 

 

Fig. 2.22: Tilting of the specimen about the rod axis introduces a variable field component in the plane of

the film.  The magnitude of this component is determined by the vertical field produced by the objective

lens coils and the angle of tilt. 
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Chapter 3 

 

Fabrication of thin film elements and continuous film specimens 

 
3.1 Introduction 

 
Nanotechnology [63] is a multi-disciplinary science that deals with the production of 

materials and devices at the nanometre scale.  The fabrication involved incorporates a 

variety of subjects including physics, chemistry, engineering and computer science 

amongst others, and pushes existing methodologies to the limit.  In general, 

nanofabrication techniques fall into two main classes called ‘top-down’ and ‘bottom-up’.  

Top-down fabrication [64] is the more traditional approach and includes lithography, soft-

lithography and masked deposition.  It can be thought of as carving away material from a 

larger component to build smaller structures.  Although these techniques are becoming 

reasonably well understood and have demonstrated major success, resolution and 

reproducibility problems are being encountered as smaller feature sizes are required.  

Bottom-up techniques [65] on the other hand create structures by assembling smaller 

components, and include molecular assembly, nanoparticle formation and probe 

lithography.  This approach can be used to fabricate smaller features, but the techniques 

themselves are still relatively new and it is difficult to create more complex patterns.  

Attempts are currently being made to integrate top-down and bottom-up techniques to 

develop a more reliable method of fabricating nanoscale structures. 

Nanofabrication has to be performed in a specially constructed and environmentally 

controlled laboratory called a cleanroom.  Cleanroom facilities use air filters and 

continuous circulation to produce levels of air borne particles that are far lower than 

normal atmospheric dust levels.  The cleanliness of a cleanroom is represented by its class.  

A class 1 area has less than 1 particle/ 3ft  greater than 0.5µm in size whilst a class 100 area 

has less than 100 particles/ 3ft .  In general, cleanroom levels begin at 100,000 particles/ 3ft , 

but the better the class the smaller the structures are that can be fabricated without 

contamination.  As well as cleanliness, cleanrooms are designed to control tempertaure, 

humidity, air pressure, vibration, noise and lighting, all of which are factors that greatly 

affect the fabrication procedures.  The majority of the fabrication performed in this thesis 

was carried out in the James Watt Nanofabrication Centre (JWNC) at Glasgow University, 

a newly built, top of the range facility with rooms ranging from class 10,000 to class 10. 
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During processing of the substrate it is necessary to keep the surface as clean as possible 

without any material residue, as this can seriously reduce the quality of the finished 

sample.  To clean the substrate, high purity organic solvents are used.  These strip off most 

organic matter and any particles of dust.  The wafer is first immersed in acetone and the 

beaker placed into a hot water bath.  Following this, the sample is transferred to a beaker of 

isopropyl alcohol (IPA) and returned to the bath.  IPA dissolves the acetone on the 

substrate surface without leaving drying marks.  Finally, a fast jet of nitrogen gas is used to 

blow-dry the surface.  If different solvents with higher boiling points are used for cleaning, 

then an oven can be used for drying after the nitrogen gas. 

 

3.2 Electron transparent substrates 

 
A lot of the experimental work in this project involved characterisation of the magnetic 

behaviour of both thin film elements and continuous film specimens using TEM.  To 

enable TEM analysis, the samples have to be thin enough to ensure electron transparency.  

Normally films thinner than 100nm are suitable for use with 200kV electrons, and these 

must be supported on a substrate that allows the passage of electrons through the regions of 

interest whilst remaining strong enough to withstand handling. 

 

3.2.1 TEM membranes 

 

The substrate of choice is a 50nm thick, 2mµ 100100×  43NSi  membrane ‘window’ 

supported on 500µm thick bulk silicon [66].  These samples are made in two main sizes, 
2mm 22×  single membranes for deposition of continuous films or patterning with a 

focused ion beam (FIB) and 2mm 99×  blocks of 4 for electron beam lithography.  

Schematics of these specimens are given in Fig. 3.1.  The bulk silicon is wet etched 

through a mask of 43NSi  on the back of the substrate to leave the 43NSi  membrane on the 

opposite side.  For lithography, an etched topographic cross and markers are used to direct 

the electron beam to the transparent regions, whilst cleave lines allow separation of the 

individual membrane substrates for subsequent TEM analysis.   
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The membrane substrates are made in bulk quantities by Kelvin Nanotechnology Ltd 

(KNT) based in the Department of Electronics and Electrical Engineering at the University 

of Glasgow.  Generally, two 4-inch (100) Si wafers are used to produce 90 2mm 99×  

blocks and 600 2mm 22×  singles, assuming 100% yield.  In reality, however, accidental 

damage by handling and cleaving reduces the number of useable substrates. 

 

3.2.2 TEM cross-sections 

 

To properly understand the magnetic behaviour of thin film samples, it is often a 

requirement to characterise the physical structure of the material.  Currently, multilayer 

samples that exhibit novel electronic, magnetic, mechanical and optical properties are of 

great interest.  To a large extent these properties are dependent on the quality of the 

interface between the different layers of the structure and frequently, their composition 

varies widely on the nanometre scale.  The MTJ samples discussed in this work are 

examples of this kind of specimen and so structural characterisation was performed to 

compliment the magnetic study.  As well as examining these samples in-plane, TEM cross-

sections were fabricated to enable a detailed understanding of their physical make-up.  The 

encapsulation technique [67] (Fig. 3.2) used to make the cross-sections uses conventional 

Fig. 3.1: (a) Front, back and cross-section schematic diagrams of a single SiN membrane substrate.  (b) Block

of 4 membranes used for electron beam lithography. 
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fabrication methods and does not require the use of a cleanroom facility.  This was 

performed by Mr Brian Miller in the Department of Physics and Astronomy at the 

University of Glasgow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First the membrane substrates (onto which the films of interest are deposited) are cleaved 

in half (Fig. 3.2a) and ground until both pieces are of equal length and width.  The 500µm 

thick pieces are then placed onto a glass slide and thinned to 200µm using a hand grinder 

(Fig. 3.2b) before being glued face-to-face with an epoxy resin and held together in a 

400µm wide slot cut from a molybdenum rod (Fig. 3.2c).  This assembly is then coated in 

epoxy, slid into a brass tube (Fig. 3.2d) and cured at 130°C to set the glue.  Once cooled, 

300µm thick discs are cut from the tube and ground on both sides until a total thickness of 

150µm is achieved (Fig. 3.2e).  To reach electron transparency, a dimple grinder and 

mµ500

2mm 

1mm 

mµ400

mµ200

mµ300

mµ150

 thickmµ10<

Electron transparent

+Ar

(a) (b)

(c) (d)
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Fig. 3.2: The membrane substrate is (a) cleaved into halves and (b) ground to fit inside a slot cut from a (c)

Mo rod.  The pieces are then glued and encapsulated by a (d) brass tube before being sliced into (e) thin

discs.  The discs are ground, (f) dimpled and (g) ion milled until they are electron transparent. 
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precision ion polishing system (PIPS) are required.  Dimple grinding from either side 

produces a 10µm thick spherical indentation (Fig. 3.2f) before ion milling gently thins the 

remaining material during the latter fragile stages (Fig. 3.2g). 

 

3.3 Lithography 

 
Lithography [68] was originally defined as a process of obtaining prints from a stone or 

metal surface.  These days, however, it refers to the transfer of a pattern of geometric 

shapes from a physical or electronic mask onto the surface of a substrate, often a 

semiconductor.  The designed pattern is written onto an intermediate organic compound 

called a resist which is applied to the surface of the substrate, exposed to a beam of 

particles or electromagnetic radiation and developed.  Following development, the 

substrate is etched or metallised to produce the pattern using the resist profile.  A variety of 

different techniques have been developed to enable micro and nano scale lithography using 

different sources of radiation.  These include photo or optical lithography (UV), particle 

lithography (electrons, protons), x-ray lithography and ion-beam lithography ( +Ga ).  Each 

has particular advantages/disadvantages in terms of resolution, registration and pattern 

transfer time. 

 

3.3.1 Electron beam lithography 

 

Electron beam lithography (EBL) as the name suggests, uses a beam of electrons to expose 

the resist and offers major advantages over photolithography.  The resist itself is sensitive 

to electrons and not electromagnetic radiation.  As the wavelength of the electrons is much 

shorter ( 1210− m) than that of UV ( 710− m), an electron beam is capable of patterning at a 

far higher resolution, allowing features down to ~10nm to be written, taking into account 

spherical and chromatic aberrations.  Instead of using a physical mask to define the pattern, 

the beam is computer controlled and exposes regions as determined by an electronic 

computer-aided design (CAD) mask.  Although the ability to create any pattern 

electronically without the need to fabricate expensive mask plates makes e-beam a highly 

flexible tool, the exposure process occurs serially, pixel-by-pixel, resulting in a large 

writing time.  This, together with the high equipment and maintenance costs are the main 

drawbacks of the technique.  As well as being able to write single step jobs, electron 

beamwriters are capable of aligning a substrate (registration) to within ~50nm, allowing 

users to write multiple lithography steps for more complex samples.  This is a further 
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improvement on photolithography which uses a mask aligner to set the wafer to within 

~1µm. 

 

3.3.2 E-beam system 

 

Electron beamwriters in general are very similar in design to scanning electron 

microscopes.  The tool used for this work was a Leica-Cambridge Electron Beam Pattern 

Generator (EBPG5 HR100), capable of accelerating voltages of up to 100kV [69].  A 

schematic diagram of this system is given in Fig. 3.3 indicating the main components.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3: The EBPG5 HR100 beamwriter used for electron beam lithography. 
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The electrons are generated by a 6LaB  source at the top of the column and are directed 

along the optic axis by tilt and shift coils.  Following this, condenser lens 0 focuses the 

beam onto a blanking plate which switches the beam on and off during exposure.  Two 

further condenser lenses, 1 and 2, are used to control the beam diameter on the substrate 

whilst deflection coils scan the probe across the surface under computer control.  A final 

(objective) lens provides focusing of the spot and fine focus coils offer correction for beam 

deflections and sample height variation.  Below these, stigmator coils are used to correct 

any astigmatism in the deflected beam and a final aperture controls the current density of 

the electron probe.  In addition to the lenses and apertures used to control the beam, the 

column is fitted with backscattered electron (BSE) detectors for imaging, as well as a 

height meter to ensure the substrates lie flat with respect to the specimen stage.  Here a 

laser beam is reflected off the surface to measure changes in distance between the sample 

and final lens.  Below the sample, a mechanical stage is able to move the substrate in two 

dimensions under precise control using a laser interferometer.  The complete system 

operates under high vacuum and a series of pumps are located below the stage to evacuate 

any gaseous contamination. 

 

3.3.3 Design and layout files 

 

In order to pattern a substrate using the electron beamwriter, the control computer must 

have the design and job layout files.  In this work the CAD program L-Edit was used to 

produce the pattern (.gds file).  Within the one file, L-Edit allows the user to create several 

individual cells or structures which can be brought together to make up the final design.  In 

addition, several layers can be specified if multiple lithography steps are required.  

However, .gds files (as produced by most CAD programs) are not beamwriter compatible, 

as the machine is only able to handle primitive shapes.  Additional processing steps are 

therefore required to convert the file to a suitable format (Fig. 3.4). 
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The L-Edit output is transferred to a computer (CATS computer) which runs a program 

called CATS (Computer Aided Transcription System).  Once a series of input parameters 

have been provided along with the .gds file, CATS fractures the design into trapezia with 

sides of maximum length 6.4µm.  The computer converts the .gds file into a .clib readfile 

and CATS uses this to create .cflt, .dat, .cinc, .log and .log-long files.  These are then 

combined by the computer to produce a final .iwfl file which is sent to both the beamwriter 

control computer and the job layout program BELLE (Beamwriter Exposure Layout for 

Lithographic Engineers), which is the next step in the conversion process.  BELLE requires 

the .iwfl file complete with all of the patterning information to produce a final job layout 

(.com) file.  In addition, the program calculates an approximate writing time using 

Equation 3.1.   

 

currentbeam
ea)(charge/ar dose  area

currentbeam
charge total timejob ×

==   (3.1) 

 

Finally, the layout file is sent to the control computer and together with the design file, is 

used by the beamwriter to pattern the substrate.  Screenshots of the (a) CATS and (b) 

BELLE interface are shown in Fig. 3.5.   
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Fig. 3.4: File processing required before patterning can begin. 



Chapter 3: Fabrication of thin film elements and continuous film specimens 

 62

 

 

  Format:5HR50       Function:VOID         Resolution:0.05 
   Units:MICRON       Justify:CENTER           Height:800 [16000] 
 Compact:NO           Reverse:NO                Width:800 [16000] 
 Pregrid:NO          Overlaps:NO                 Grow:0 
  Precut:YES          Produce:CFLT               Rule:SQUARE     Border:OUTSIDE 
    Join:YES           Select:NO             Twosided:YES 
                         Keep:NO                  Tag: 
 
 
       Input:($TED/transcript_db.clib) 
   Structure: 
      Layers: 
      Limits: 
 
      Sizing:0 
       Scale:1 
 Orientation:0 
      Outpt:($TED/cbtranscri_db.cflt) 
CATS 10:19:01 SunOS 5.7 RELEASE 
Copyright 1986-2000 Transcription Enterprises Limited, Los Gatos, CA 
$TEC/start_up.cinc setting PREGRID to NO 
Command 

 
 

 USERNAME: C.BROWNLIE [S.MCVITIE]         GROUP: Physics        CALIB: cell 
SUBSTRATE: 10.0,10.0                     KVOLTS: 100    Job Time: 0.34 hours 
  OUTFILE: cb148.com                   JOB_TYPE: reg_exp_test  MATRIX: 1 
 
   PATTERN: cbnotch1_13                          RESOLUTION: 0.01000 
  POSITION: 2.10000,3.38000         DOSE: 1700.0     SPOT_SIZE: 12   <0.10> 
 STEP_SIZE: 2.0000,2.0000      INCREMENT: 1.05567      COMPLEX: NO 
   REPEATS: 2,2                 TOP_DOSE: 2000.0    IDENTIFIER: &E 
    CENTRE: -1.41000,-0.62000  FIRSTMARK: 0,0        MARK_TYPE: TOPO 
     CROSS: 0.100,1.380        MARK_SIZE: 20.0,20.0  MARK_CONT: NEGATIVE 

 
 
 
 
 
 
 
 
belle version 4.00 
Command: exec cb148 
--->WARNING 1063: aperture set to 200 microns for 12nm spot 
Command: 
 
 

 

 

3.3.4 Pattern writing 

 

When the resist layer(s) have been spun and the design and layout files submitted to the 

beamwriter control computer, the substrates can be loaded for patterning.  The samples are 

clamped into special holders depending on their size and then multiple holders are loaded 

into cassettes.  The cassettes are placed into the beamwriter and each holder is positioned 

separately onto the mechanical stage by the operator.  At this point the backscattered 

electron detectors are used to check the sample alignment before exposure.  During the job 

layout procedure, pattern resolution, spot size and cell dimensions are specified.  For finer 

features small Gaussian spots are required, whilst for less critical areas, larger spots and 

even shaped beams can be used.  The actual size of the spot on the sample is dependent on 

the size of the final aperture, and this is selected automatically.  The EBPG5 at Glasgow 

University has 200, 400 and 800µm apertures available, allowing users to pattern with spot 

sizes ranging from 12nm (at 100kV) up to 300nm (at 50kV).  An important point to note, 

(a) 

(b) 

Fig. 3.5: Screenshots taken from the (a) CATS and (b) BELLE programs. 
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however, is that a reduction in spot size results in a reduction in beam current, and so 

smaller features take far longer to write than larger ones. 

 During exposure, the electron beam is vector-scanned by directing the beam only to 

the desired areas of the sample and blanking in-between.  As mentioned earlier, exposure 

occurs pixel-by-pixel with each cell equal to the resolution set in CATS and BELLE.  

However, because the deflection coils are only able to deflect the beam by ±400µm, the 

pattern is also split up into blocks, each of size 32,000 resolution steps.  For patterns larger 

than this, fine control of the mechanical stage is used to move the next block below the 

beam, but although the blocks are positioned as accurately as possible, stitching errors can 

occur at block boundaries.  For the work considered here, the patterns were designed to fit 

within the 100µm TEM windows so stitching errors were not a problem. 

 As the pattern is exposed as a series of beam steps, it is to be expected that not all 

of the designed shapes will be transferred to the resist with the same level of edge quality.  

Despite the overlap of adjacent steps, features with straight edges transfer well, whilst 

those with rounded edges, as can be seen in Fig. 3.6, do not. 

 

 

 

 

 

 

 

 

3.3.5 Proximity effect 

 

When the electron beam interacts with a sample, both forward and backscattering events 

occur.  This ‘double exposure’ can result in a uniform exposure giving rise to a non-

uniform distribution in the patterned area and is commonly referred to as the proximity 

effect [70].  This non-uniformity can cause both a variation between patterned elements 

and also a variation within a patterned element, thus reducing the quality of the finished 

sample.  Between elements, the received exposure varies with geometry and distribution, 

with smaller elements receiving smaller doses than larger ones and isolated elements 

receiving smaller doses than those in densely packed regions.  Within a single shape, the 

exposure in the pattern centre tends to be larger than at the edges.  To take this additional 

exposure into account, the beam can be seperated into forward and backscattered 

components, with the radial function given by a double Gaussian approximation, 

Fig. 3.6: The patterning of features with (a) straight edges and those with (b) rounded edges. 

(a) (b)
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where α and β are the radii of the forward and backscattered beams respectively and η is 

their ratio.  A program called Proxecco can then be used to apply a range of doses instead 

of a single base dose, depending on the designed geometries (Fig. 3.7).  This proximity 

correction (.pec file) also considers the substrate material, resist thickness and beam 

energy.  A number of ready-made .pec files were used during the fabrication of the 

magnetic thin film elements.  The .pec file is added to the design file in CATS before 

submission of the job. 

 

 

 

 

 

 

 

 

 

 

3.4 Resist technology 

 
A resist [71,72] is any material which defines a pattern after exposure to radiation.  

Generally carbon-chain polymers are used in photo and electron beam lithography but less 

conventional materials such as spin-on-glass and self-assembled monolayers can be 

patterned also.  With polymers, many monomer building blocks are polymerised into large 

molecules with molecular weights of up to hundreds of thousands of atomic mass units 

(amu).  These monomers can be identical in structure, producing a homopolymer, but may 

be different, producing a copolymer.  The radiation exposure changes the chemical and 

physical properties of the resist in such a way that a replica of the mask is left on the 

surface of the substrate after the fabrication process is complete.  Resists can be divided 

into two main categories depending on their polarity, namely positive tone and negative 

tone (Fig. 3.8).   

 

 

 

Fig. 3.7: Effects of (a) uniform and (b) modulated doses on the exposure profile.  The applied and effective

exposure is shown as unfilled and grey regions respectively. 
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With positive resists, the exposure step breaks up the long chain polymer (chain scission) 

to produce organic molecules of lower molecular weight.  These products are more soluble 

in the developer than the unexposed resist and as a result, the patterned region is removed 

during development.  With negative resists, exposure causes the polymer chains to join 

together (cross-linking), strengthening the material and reducing the solubility.  During 

development it is the surrounding regions that are removed, leaving only the patterned 

resist on the substrate. 

Currently there are a large number of different resists available for use in photo and 

electron beam lithography.  When selecting a particular resist to use, careful consideration 

must be given to the processing conditions and applications involved, and there are several 

important properties that must be assessed.  The sensitivity of a resist affects the minimum 

dose required to pattern the substrate and the greater this is, the faster the sample can be 

written.  It is also important to select the correct polarity for a given job.  Positive resists 

tend to be better for smaller features as negative polymers can absorb solvent during 

development causing them to swell and distort the pattern.  The development stage also 

greatly affects the resist contrast and profile.  For the fabrication of very fine features (e.g. 

diffraction gratings), the resist resolution must be very high.  Often dry etching is required 

for this type of work and therefore the level of resistance to the reactive species is a priority 

if the pattern is to remain intact.  Following deposition, the resist should be easily removed 

(stripped) without too many additional steps.  Further factors including shelf-life, storage 

Fig. 3.8: The exposure and development processes involved in the patterning of positive and negative tone

single-component resists. 
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conditions, ease of handling, toxicity, cost and integration are also important 

considerations. 

 

3.5 Lift-off 

 
In order to produce the elements described in this thesis, a magnetic thin film has to be 

divided into discrete structures.  Typically, there are two different methods used to achieve 

this, namely lift-off (an additive process) [73] and etching (a subtractive process) [74,75].  

The lift-off technique (Fig. 3.9) was used routinely in this work.  It is a relatively simple 

method that is well-suited to the creation of metallic patterns, especially films of noble 

metals that are difficult to etch.  First, a layer of photo or electron sensitive resist is spun 

onto the substrate, exposed and then developed to define the pattern.  Following this, a 

metal layer is deposited (preferably by evaporation over a large working distance), 

covering the resist and areas where the polymer has been cleared.  The sample is then 

immersed in a solvent which dissolves the resist but does not attack the metal film.  This 

step strips the polymer and any overlying metal, leaving only the film that was deposited 

directly onto the substrate in the shape of the designed pattern. 

 

 

 

 

 

 

 

 

 

 

 

 

The lift-off process, however, is very dependent on the resist profile after pattern 

development.  For large features the resist can be removed in minutes, but for smaller 

features, in particular those with low aspect ratio, resist removal will take far longer, if 

occurring at all.  This problem is made worse when a single resist layer is used to define 

the pattern, as can be seen in Fig. 3.10a.  After exposure and development, the metal is 

deposited on the surface of the sample and also on the sidewalls of the resist, producing a 

continuous film.  Not only does this inhibit lift-off, but the metal coating the sidewalls 

Resist
Substrate

UV/electrons 

Metal 

(a) (b)

(c) (d)

Fig. 3.9: The various stages involved in the lift-off fabrication process include (a) exposure, (b) development,

(c) metallisation and (d) lift-off. 
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adheres to the substrate, even after resist removal.  This build up of excess metal is known 

as ‘flagging’ and occurs more prominently when the incoming material hits the sample at 

an angle to the normal.  The problem is made worse if the metal is sputtered, due to 

omnidirectional deposition from the target. 

 

3.5.1 Lift-off enhancement 

 

To improve the quality of the lift-off process, an undercut resist profile can be used.  This 

technique forces the metal film to become discontinuous, lying only on the surface of the 

sample and not on the sidewalls of the resist.  Thick resist layers develop a natural undercut 

due to scattering, particularly in electron beam lithography.  As the beam patterns the 

polymer, electrons experience small angle (forward scattering) and large angle 

(backscattering) scattering events.  Unfortunately, forward scattering tends to broaden the 

initial beam diameter, 
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where fd  is the effective beam diameter, tR  is the resist thickness (nm) and bV  is the 

accelerating voltage (kV) [69].  For a resist thickness of 200nm exposed at 50kV a  7.2nm 

beam diameter is achieved, but for 400nm thick resist this value increases to 20.4nm, 

reducing the pattern resolution.  It is therefore important to use a layer of resist that is thin 

enough to minimise the effect.  Different techniques must be employed to create an 

undercut in thin layers of resist. 

 To achieve this with photoresists, the sample is soaked in a solvent called 

chlorobenzene [76] after the resist has been baked.  This process hardens the surface of the 

resist, reducing its dissolution in the developer (Fig. 3.10b).  With electron-sensitive 

resists, however, solvent soaks can dissolve the polymer, and are therefore not an option.  

Instead, a bilayer of different molecular weight resists is used.  Those of lower molecular 

weight are more sensitive to electron exposure and give larger line widths for a given dose 

than resists of higher molecular weight.  Therefore, by using a more sensitive resist at the 

bottom of a bilayer, it is possible to create a significant undercut (Fig. 3.10c). 
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3.5.2 Additional problems 

 

Although the lift-off procedure is simple in design and is widely used in the fabrication of 

metal features on semiconductor substrates, some problems can arise whilst trying to 

remove the metal.  On occasion, pieces of material that have been removed travel through 

the solvent and resettle elsewhere on the surface.  This will often render a sample useless 

and is most problematic in the fabrication of electronic devices where it can create shorts.  

In the fabrication of magnetic elements, metal flakes can affect the magnetic behaviour and 

contribute to unwanted contrast in the TEM.  Surface contamination in this form can be 

avoided by frequently changing the solvent and using a pipette to remove the flakes.  

Gentle agitation can also help to dislodge the metal.  A further problem with this technique 

is that during immersion in the solvent, the entire layer of metal can be stripped.  This is 

caused by poor adhesion to the surface but can be eliminated by allowing the metal to bond 

to the surface overnight before lift-off. 

 

3.6 Deposition 

 
During sample preparation it is necessary to deposit thin films of material using physical 

and chemical processes.  For coating the substrate with a metal film, physical deposition 

techniques such as evaporation and sputtering can be used.  Evaporation involves heating 

the material to be deposited whilst sputtering makes use of energetic ion bombardment.  

Other materials such as insulating or semiconducting films, however, are not well suited to 

these techniques and chemical deposition is one of the methods employed instead [78].  

Lift-off

(a) 

Lift-off

(b) (c) 

Fig. 3.10: The different profiles achieved with (a) a single layer of resist, (b) photoresist soaked in

chlorobenzene and (c) a bilayer of electron sensitive resist. 
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The basic principles involved in evaporation and sputtering will be described in the next 

two sections. 

 

3.6.1 Evaporation 

 

The simplest evaporator consists of a high-vacuum chamber within which the material to 

be deposited is heated to the point of evaporation.  The atoms of the vapour travel through 

the vacuum in a straight line until they reach a surface where they accumulate as a film.  

The sample placed inside the chamber is exposed to the material until the desired thickness 

is deposited.  The evaporation chamber itself is evacuated using diffusion and rotary 

pumps.  A schematic diagram of the system used in this work can be seen in Fig. 3.22a.  

The rotary pump is first used to rough the chamber to ~ 110− torr before backing the oil 

diffusion pump which reduces the pressure to ~ 610− torr.  This high vacuum ensures that 

the vapour travels directly from the target to the substrate and also minimises 

contamination from other materials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The target material is loaded into a ceramic boat or crucible and heated using a large 

current (resistive heating).  Once any surface oxide is evaporated and a steady deposition 

rate is achieved, a protective shield is removed, exposing the sample to the vapour.  This 

particular system is capable of containing two crucibles to allow the deposition of bilayers 

Fig. 3.22: (a) Thermal evaporation and (b) parallel-plate magnetron sputtering systems used to deposit thin 

metal films onto a substrate.  
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or alloys of various composition without breaking vacuum.  It can also accommodate 

several substrates which are clamped in place ~20cm above the crucibles.  Controlling the 

composition of compound materials using evaporation is very difficult due to differences 

in vapour pressure, but this problem can be alleviated using coevaporation or sequential 

deposition techniques. 
The deposition rate is monitored using a quartz crystal device.  This is a plate that 

undergoes mechanical oscillation at a measured resonant frequency.  As the mass of 

deposited material on the plate increases, the resonant frequency decreases.  For each 

material, the frequency of vibration is calibrated with material thickness giving an accurate 

indication of the thickness of the layer on the substrate. 

 

3.6.2 Sputtering 

 

Sputtering is the main alternative to evaporation for metal deposition and is far better for 

producing layers of compound material and alloys.  The material to be deposited is 

removed from a target by the impact of energetic ions in a glow discharge plasma.  The 

atoms removed then land on the surface of the substrate, building up to form layers.  A 

plasma is a partially ionised gas (typically argon) within which exists dissociated atoms or 

molecular fragments called radicals, and ions in the atomic or molecular form.  Typically 

radicals and charged species account for 1% and 0.01% of the total plasma respectively.  

The plasma is created by applying a large voltage between two electrodes in the presence 

of the gas at low pressure.  Once formed, the positive ions are accelerated towards the 

cathode where they strike the surface and release secondary electrons.  These electrons 

then accelerate towards the anode, colliding with neutral gaseous atoms along the way.  

These collisions cause atomic excitation, producing a characteristic glow when the atoms 

decay or ionisation if the energy transfer is sufficient, increasing the number of ions within 

the plasma. 

 When an energetic ion strikes the surface of a target at sputtering energies (between 

10eV and 10keV depending on the ion and target material), bond breaking and physical 

displacement occurs.  The ion will travel several atomic layers into the material until it hits 

an atom head-on and is deflected through a large angle.  This interaction can free target 

atoms on the surface and break bonds in the surrounding material allowing subsequent 

collisions to eject individual atoms or atomic clusters. 

 To increase the ion density further and thus the sputtering rate of the system, 

magnetron sputtering can be utilised.  This technique involves the use of permanent 

magnets behind the target electrode to produce a toroidal field of a few hundred Oersted.  
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The magnetic field causes secondary electrons to spiral around the field lines, confining the 

plasma over the target.  The orbital motion of the electrons increases the probability of 

colliding with neutral atoms in the gas.  A planar magnetron sputtering system can be seen 

in Fig. 3.22b.  The MTJ films (discussed in Chapter 8) were deposited under ultra high 

vacuum (UHV) conditions in a multi-target DC magnetron sputtering system.  This was 

performed by Dr Frederik Vanhelmont at Philips Research Laboratories, Eindhoven, The 

Netherlands. 

 

3.7 Development of the lift-off fabrication process 

 
To produce well-defined magnetic elements with nanoscale features using lift-off, it is 

necessary to use a bilayer of high resolution resist that can be exposed and developed to 

give an undercut profile.  The pattern itself is written in the top layer of resist (imaging 

layer) with the bottom layer (undercut layer) used to ensure that the metal pattern is clearly 

separated from the resist and overlying metal.  In this way the structures avoid contact and 

are not disturbed by the lift-off step.  As a general rule of thumb, the bottom layer of resist 

should be thicker than the layer of evaporated metal. 

 

3.7.1 PMMA procedure 

 

A commonly used e-beam resist for this type of fabrication is poly(methylmethacrylate) 

(PMMA).  The chemical structure of this homopolymer can be seen in Fig. 3.11a. 

 

 

 

 

 

 

 

 

 

 

 

 

PMMA is a positive tone, single component resist and is supplied as a powder and then 

dissolved in o-xylene to provide different concentrations (%).  As the % increases, the film 

Fig. 3.11: Chemical structure and undercut profile of the (a) PMMA, (b) LOR and (c) ZEP polymers used in 

this work. 
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thickness increases.  Following an initial concentration/spin speed/spin time calibration, 

the desired film thickness can be achieved.  In addition, PMMA comes in various 

molecular weights (MW) with 2010 (MW of 90,000amu) and 2041 (MW of 345,000amu) 

available for use in the JWNC.  As the lower MW resist is more sensitive to electron 

exposure, it is used as the bottom layer in the stack.  PMMA can be developed 

anisotropically in methyl isobutyl ketone (MIBK):IPA solutions of various concentrations 

(determined by feature size, resist thickness and feature density) and later removed with 

acetone during the lift-off step. 

As an initial attempt to fabricate elements, a bilayer of PMMA was spun onto a 

clean membrane block and baked.  Both layers of resist were ~100nm in thickness.  The 

substrate was then patterned at 50kV in the design of a test pattern (Fig. 3.12), containing a 

series of basic geometric shapes.  Following exposure and development, a 20nm thick layer 

of permalloy was evaporated before the polymer was dissolved.  Finally a 4nm gold 

coating was sputtered onto the sample to prevent charging of the otherwise insulating 

substrates in the TEM/SEM.  If samples are allowed to charge as a result of electron 

exposure, unwanted contrast, specimen drift and substrate damage can occur.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

3.7.2 Problems encountered 

 

During the subsequent SEM/TEM inspection, however, a number of problems were 

discovered.  The first of these was pattern definition.  Despite using a finely focussed 

Fig. 3.12: Test pattern created in L-Edit.  The smallest squares are 1µm in size with the sub-pattern repeated 

at two and three times magnification. 
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electron beam and ultra high resolution resist, the shape of the elements deviated from the 

designed pattern, with the elements exhibiting rounded corners  (Fig 3.13).   

 

 

 

 

 

 

 

 

 

 

 

Although this does not vary the geometry so much in larger elements with in-plane 

dimensions of a few microns, the magnetic behaviour of smaller features (in the few 

hundred nanometer range for example) could be strongly affected as a result of these 

changes in element shape.  Round features are not able to pin domain walls in the same 

way that sharp features can, whilst changes in edge structure can vary the element 

coercivity and reversal behaviour [77].  Poor definition also makes comparison between 

different element geometries more difficult. 

A second problem was metal flagging around some of the element edges (Figs. 

3.13, 3.14).  This occurs when there is an insufficient undercut and some of the metal lands 

on the sides of the resist.  Once the resist is dissolved, this metal falls onto the surface 

creating regions of thicker material, and is problematic.  Edge flags can act as nucleation 

points for domain walls and may have large associated stray fields.  Because contrast from 

the thicker material dominates the image, they also inhibit magnetic imaging. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.13: SEM images of a (a) rectangle, (b) trapezium, (c) parallelogram and (d) notched rectangle.  The

notches in (d) have been reduced in width as a result of poor resolution and the corners of the other

geometries less pointed than intended.  Flagging is also visible around the edges of each element. 

Fig. 3.14: Flags of metal can be seen around several of the element edges and was present on almost all of

the structures. 
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The third problem was resist residue found beneath the elements using TEM.  This is 

caused by incomplete exposure or development and/or overly strong adhesion of the 

polymer to the substrate.  Although this does not affect the magnetic properties of the 

elements, it inhibits the magnetic contrast in the microscope (Fig. 3.15).  Unlike edge flags, 

this additional contrast does not just appear at the edges of the structures, but can be found 

anywhere below the metal, severely reducing the quality of the images obtainable. 

 

 

 

 

 

 

 

 

 

 

3.7.3 Possible solutions 

 

Following poor element definition, the .log file was checked.  This is an output file 

produced by the beamwriter control computer which lets the user know how well a 

particular job ran.  An important feature of this file is a height map of the substrate which 

is calculated at 9 points on the surface using the laser height meter attached to the column 

of the beamwriter.  With a flat substrate, the electron beam can be focussed accurately on 

the surface, but if the substrate is tilted slightly then the pattern transfer suffers.  Inspection 

of the height map for this sample showed that the laser was unable to provide a reading at 

any of the 9 points.  This was believed to be the result of poor reflection from the SiN 

surface and to improve this, a coating of aluminium on top of the resist bilayer was 

recommended.  As 43NSi  is electrically insulating, this metal coating may also help to 

reduce the build up of negative charge on the substrate during exposure.  It was hoped that 

this might improve the resolution further by decreasing the level of Coulombic repulsion.  

In addition, a 100kV beam was chosen to pattern the resist instead of the original 50kV 

beam.  The higher accelerating voltage reduces the spherical aberration and spot size 

without much increase in backscattered electrons when membrane substrates are used.  A 

further idea to improve the pattern resolution was to use a thinner imaging layer of 2041 

PMMA.  As electron-solid interactions tend to broaden the beam diameter, thinning of the 

Fig. 3.15: Fresnel images of a domain wall trap element taken on the CM20 TEM.  A head-to-head vortex

domain wall can be seen in the centre of the strip in (a) whilst in (b) this contrast is inhibited by resist residue

(circled in red). 
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resist should reduce this effect.  As a result, a 40nm thick top layer was chosen as a 

comparison to the original 100nm layer. 

To eliminate the edge flags around the element edges, a bilayer of resist with a 

larger undercut than PMMA is required.  As a result, two different types of resist were 

chosen to replace the 2010 PMMA at the bottom of the stack.  The first of these resists was 

LOR-10A (Lift-Off Resist) which is based on the poly(dimethylglutarimide) (PMGI) 

platform and produced by MicroChem.  LOR (Fig. 3.11b) is diluted in cyclopentanone to 

provide different concentrations and can be used with a variety of positive resists without 

intermixing.  PMGI is another homopolymer like PMMA but is not sensitive to electrons 

(or UV).  Instead, it acts as a sacrificial layer and can be wet-etched in CD26 developer 

following processing of the imaging layer.  The development occurs isotropically with 

time, resulting in a controllable undercut.  With thin layers, a re-entrant sidewall profile is 

achieved which is ideal for lift-off processes.  Lift-off of LOR is performed using SVC-14.  

In addition, due to its poor adhesion to silicon, pre-application surface modification using 

an oxygen plasma asher (see below) can be required.  The second resist to be tested in 

combination with 2041 PMMA was ZEP 520A (Fig. 3.11c), a copolymer of α-

chloromethacrylate and α-methylstyrene produced by Nippon Zeon.  This resist is a single 

component electron sensitive polymer with higher sensitivity than PMMA.  It is also 

positive tone with ultra high resolution and excellent dry etch resistance.  ZEP is diluted in 

anisole, developed in o-xylene and stripped using acetone.  As with LOR, ZEP develops 

isotropically to produce a re-entrant sidewall in the resist.  Surface modification can also be 

required to enable the resist to stick to the surface of the substrate. 

To address the problem of resist residue, an oxygen plasma asher was 

recommended for use after development of the resist.  Oxygen ashers generate oxygen ions 

in a plasma to bombard and react with the surface material.  These systems are very 

efficient at removing organic films and contamination from wafers and can be used for 

post-development residue removal as well as surface cleaning prior to resist application. 

 

3.7.4 Other resist issues 

 

In relation to the ideal thickness of each of the layers in the resist stack, resist adhesion and 

mechanical stability must be taken into account.  As stated previously, the bottom layer 

should be thicker than the deposited metal to create discontinuities in the film whilst the 

top layer should be thin enough to minimise forward scattering yet strong enough to 

support itself at the undercut regions.  Experiments have shown that with the strongest 

resists an aspect ratio of 3:1 can be achieved at best (i.e. 100nm tall, 33nm wide).   
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As a result, the patterned feature size and resist thickness (Fig. 3.16) is critical to the 

quality of the fabricated structures and care must be taken not to pattern a thick resist with 

closely packed features.  In addition, thinner layers of resist have been found to bond more 

strongly to the substrate than thicker layers and are therefore harder to remove in the lift-

off stage of the procedure.  In effect, although a thicker bottom layer is desirable for ease 

of lift-off, this can reduce the mechanical stability. 

 

3.7.5 Resist tests 

 

To determine the effects of these changes, 18 different bilayers of resist were exposed in 

the shape of the test pattern.  Six of these were 2010 PMMA/2041 PMMA, six were LOR-

10A/2041 PMMA and six were ZEP 520A/2041 PMMA.  The thickness of the bottom 

layer was varied from 40nm to 100nm and 200nm whilst 40nm and 100nm thick PMMA 

was spun on top.  A constant development time of 60 seconds was used at 21°C for each of 

the samples.  Variation of the development time and temperature could have been used to 

fine tune the process for each stack but was not performed here due to time limitations.  As 

the membrane substrates are relatively expensive, it was not possible to use these for the 

resist tests.  Instead, a (100) silicon wafer was coated in a 50nm thick 43NSi  layer and 

cleaved into 2mm 1010×  pieces.  It was hoped that despite the obvious backscattering and 

consequent decrease in required dose associated with bulk material, the majority of the 

fabrication parameters would be very similar to those used in the patterning of the 

membranes.  For each of the samples, a dose test was run to determine the optimum 

exposure.  Following this, new samples were patterned at this dose and fabricated using the 

detailed procedures given in Appendix Tables A.1-A.3.  Once completed, each sample was 

Resist 
thickness 

Width of 
structure 

Fig. 3.16: Tilted SEM image of resist columns after exposure and development.  The height-to-width aspect

ratio should not exceed 3:1 or mechanical stability can be a problem. 
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imaged using optical microscopy to establish the rough percentage yield of fabricated 

elements.  With visible light it is not possible to characterise the pattern in much detail, but 

optical microscopy is useful for determining if any of the structures are missing, badly 

damaged or contaminated with unwanted material (resist, metal, solvent scum etc).  

Afterwards, the samples were imaged using SEM.  A Hitachi S4700II microscope was 

used to examine the elements in more detail with particular emphasis on edge definition.  

An accelerating voltage of 5kV was used to allow imaging of both edge and surface detail.  

Higher energy electrons are able to penetrate deeper into the sample but were not required 

for this work.  During inspection, any problems discovered in the images (edge flagging, 

rounding, contamination etc.) were noted.  The results from these resist tests are presented 

in Table 3.1.   
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Bilayer Optical analysis SEM analysis 

Bottom Top 
Best dose  

2µC/cm  
%  

elements Problems Problems Edge definition 

40nm PMMA 40nm PMMA 270 99 good edge flags 

100nm PMMA 40nm PMMA 270 98 good edge flags 

200nm PMMA 40nm PMMA 270 99 OK edge flags, rounding 

40nm PMMA 100nm PMMA 270 96 good edge flags 

100nm PMMA 100nm PMMA 270 98 good edge flags 

200nm PMMA 100nm PMMA 270 98 OK edge flags, rounding 

40nm LOR 40nm PMMA 330 93 good contamination 

200nm LOR 100nm PMMA 330 89 OK 
edge flags, contamination,  

rounding 

100nm LOR 40nm PMMA 330 79 good 
missing elements, 
 surrounding flags 

200nm LOR 40nm PMMA 330 45 good missing elements, 
 surrounding flags 

40nm LOR 100nm PMMA 330 58 OK 
edge flags, contamination,  

rounding missing elements 

100nm LOR 100nm PMMA 330 93 OK 
edge flags, contamination,  

rounding missing elements 

100nm ZEP 40nm PMMA 200 99 good 

40nm ZEP 40nm PMMA 200 92 OK edge flags, rounding 

40nm ZEP 100nm PMMA 200 98 good edge flags 

100nm ZEP 100nm PMMA 200 89 good edge flags 

200nm ZEP 100nm PMMA 200 86 good edge flags contamination 

200nm ZEP 40nm PMMA 200 92 OK contamination 

edge flags 

edge flags, rounding 

Table 3.1: Experimental results from the various different resist bilayers. 
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It was found from the optical analysis that the PMMA/PMMA bilayers produced the 

highest yield of elements free from bulk contamination.  The LOR/PMMA samples, on the 

other hand, displayed a number of missing elements and metal build-up around the edges 

of some of the structures (Fig. 3.17).   
 

 

 

 

 

 

 

 

 

 

 

 

 

It is possible that the missing elements were the result of an incomplete development.  If a 

thin layer of resist was present on the substrate before the metal was deposited, then these 

elements would be removed during the subsequent lift-off step.  The build-up of metal 

around the elements (surrounding flags) may also have been caused by incomplete 

development.  If, due to the time-dependent isotropic development of LOR, the resist 

closest to the substrate (which is removed last) was not sufficiently dissolved, it would 

have been coated with metal, leaving flags around the element after stripping (Fig. 3.18). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.17: Optical (a) bright field and (b) dark field images of a sample fabricated using 200nm LOR/40nm

PMMA.  Surrounding flags and missing elements are visible in the images (circled red). 

Fig. 3.18: (a) Small development times may lead to surrounding flags of metal caused by resist-metal contact.

(b) Clearance gaps are produced by longer development and can reduce this effect. 
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With the ZEP/PMMA samples, most of the pattern appeared fine.  However, on two 

specimens there appeared to be significant contamination across the whole surface (Fig. 

3.19).  This may simply be the result of slightly unclean tweezers, glassware or solvents 

used during the fabrication of these particular samples.  As it was not present on any of the 

other samples it is unlikely to be a problem with the resist itself. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When the samples were imaged in the SEM, a greater number of problems emerged.  Edge 

flags were present on all samples apart from the three LOR specimens with 40nm imaging 

resist layers.  Therefore, despite the high sensitivity of ZEP and its isotropic development, 

this resist proved unsuccessful in eliminating the flags of metal.  In general, edge definition 

of the elements was good, although some corner rounding was observed with two 

specimens.  The 100nm PMMA layer on top of LOR seemed to reduce the pattern 

resolution as expected, but this trend was not observed with the other resists.  In fact, the 

thickest bottom layer of PMMA seemed to reduce the resolution whilst in the ZEP/PMMA 

samples, a decrease in edge definition was seen with a 40nm top layer.  A further 

observation was a slight contamination across the surface of four of the LOR samples (Fig. 

3.20).  This may again be associated with unclean utensils or solvents and could be 

minimised with proper care. 

 

 

 

 

 

Fig. 3.19: Unknown contamination was found on the surface of some of the ZEP/PMMA samples as can be

seen in the optical (a) BF and (b) DF images.  This was present around the elements only, without actually

affecting the structures themselves. 
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In summary of these experiments, the most successful resist bilayer in the fabrication of 

thin film magnetic elements was the 40nm LOR/40nm PMMA stack.  This proved capable 

of eliminating edge flags with no decrease in the pattern resolution.  Additionally, a 93% 

element yield was achieved without missing structures or surrounding flags of metal.  The 

only consideration, however, is the small amount of contamination that was present on the 

surface.  This resist combination was used for fabrication in the remainder of this thesis.  

An example of a successfully fabricated element can be seen in Fig. 3.21.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
This ‘domain wall trap’ element has been imaged using bright field TEM.  From these 

images, no metal flagging around the element edges can be observed and the film is free 

from resist residue and/or other contamination.  In addition, the edges are smooth and the 

shape well-defined.  Further examples can be seen in the Fresnel and DPC images of 

Chapters 5, 6 and 7. 

Fig. 3.20: Small particles of contamination were found on some of the elements fabricated using an

LOR/PMMA bilayer. 

Fig. 3.21: A successfully fabricated domain wall trap element imaged using bright field TEM.  The structure

closely resembles the designed geometry and is free from metal flagging and contamination. 

200nm 
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200nm 
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Chapter 4 

 

Micromagnetic simulations and image calculation 

 
4.1 Introduction 

 
The field of micromagnetics started in 1935 with a paper by Landau and Lifshitz [79] on 

the structure of a wall between two anti-parallel domains.  Following this, Brown 

published several papers [80-84] deriving a set of differential equations which allow the 

calculation of static magnetisation states.  A detailed account of micromagnetism is given 

in Brown’s 1963 book [85].  The aim of micromagnetics is to determine the magnetisation 

distribution that minimises the total system energy, and for many years Brown’s equations 

were solved analytically for systems with ideal geometry.  Around the mid 1980s, 

however, the increase in large-scale computing power has allowed the study of more 

realistic problems using numerical methods.  During this time it was found that the energy 

minimisation approach combined with classical nucleation theory (Stoner-Wohlfarth for 

example) was unable to correctly predict the state of the system after magnetisation 

reversal.  As a result, a lot of work has gone into the development of dynamic approaches 

based on the Landau-Lifshitz equation of motion. 

 

4.2 Magnetisation dynamics 

 
When an external magnetic field is applied, the magnetic moment precesses around the 

field direction.  Torque is the rate of change of angular momentum,  

 

dt
dlτ =       (4.1) 

 

and for a magnetic moment in an external field is given by, 

 

Hmτ ×=      (4.2) 

 

The magnetic moment is linked to the angular momentum by the gyromagnetic ratio, γ, 
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γ
µ

- 0m
l =      (4.3) 

with      
e

0

m2
geµ

γ =      (4.4) 

 

where g is the Landé g-factor, e is the electron charge, em  is the electron mass and 0µ  is 

the permeability of free space.  By including 0µ  in the expression for γ, the equation of 

motion for the moment of one electron is, 

 

Hmm
×= γ-

dt
d     (4.5) 

 

For a many-body system, we replace the electron magnetic moment by the magnetisation, 

M, and the applied field by an effective field, effH , which takes into account the exchange, 

anisotropy, magnetostatic and applied field interactions.  The effective field is defined by, 

 

M
Heff d

dE
µ
1

-= tot

0
    (4.6) 

 

where totE  is the total system energy.  As the magnetoelastic term can be expressed in a 

similar mathematical form to the magnetocrystalline anisotropy, it is effectively included 

also.  We therefore obtain the expression, 

 

effHM
M

×γ-=
dt

d
    (4.7) 

 

which describes the precession of the magnetisation vector about the field direction (Fig. 

4.1).  Since this equation does not include a damping term, however, the precession is 

eternal and does not lead to an equilibrium state with the magnetisation parallel to the field.  

Experiments show that the changes in magnetisation decay with time, so Landau and 

Lifshitz included a second term which describes the dissipation of energy.  This gives the 

Landau-Lifshitz (LL) equation, 

 

)×(×
M
λ

-×γ-=
dt

d

s
effeff HMMHM

M
  (4.8) 
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where λ is a dimensionless damping parameter.   

 

 

 

 

 

 

 

 

 

Gilbert later proposed a different damping term [86] to give the Landau-Lifshitz-Gilbert 

(LLG) equation, 

 

dt
d

×
M
α

+×γ-=
dt

d

s

M
MHM

M
eff    (4.9) 

 

with damping coefficient, α.  Mathematically, these expressions are very similar.  LL can 

be derived directly from LLG and is often rewritten as, 

 

)×(×
M)α+(1

αγ
-×

)α+(1
γ

-=
dt

d

s
22 effeff HMMHM

M
 (4.10) 

 

which is the Landau-Lifshitz equation in Gilbert form.  This is equivalent to LL provided 
2α+1/γ='γ  and 2α+1/αγ=λ  where 'γ  is the LL gyromagnetic ratio.  In the limit of 

small damping )0→α,λ(  the LL and LLG equations are equivalent, but in highly damped 

systems )∞→α,λ(  they give ∞→dt/dM  and 0→dt/dM  respectively.  As high 

damping greatly minimises precessional motion, LLG is therefore more physically correct 

[87]. 

The LLG equation of motion describes the time evolution of the magnetisation if α 

is known.  Experiments show that α  is not constant, but depends non-linearly on the 

magnetisation [88].  It is usually determined from the line broadening in ferromagnetic 

resonance measurements, but for numerical convenience in simulations is normally set to a 

value between 0.1 and 1, which reduces the computation time.  The origins of the damping 

process are not yet completely understood, but are thought to be the result of microscopic 

physical processes involving interactions between the magnetisation and the crystal lattice.  

Fig. 4.1: Larmor precession with damping. 
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As the damping cannot be derived rigorously from basic principles therefore, the physical 

processes are accommodated into this single parameter. 

 

4.3 Performing micromagnetic calculations 

 
Micromagnetic simulation software allows the user to determine the magnetisation 

distribution in a ‘nanomagnet’ of a particular size and shape based on the various energy 

contributions.  However, a realistic simulation of every atomic moment in the material is 

not possible, as it would require huge amounts of computer time and power beyond current 

capabilities [88].  Instead, the problem is broken down into a manageable size by defining 

small cells of uniform magnetisation.  The cell size itself is very important to the results 

and can be varied by the user.  Typically, cells smaller than the magnetostatic exchange 

length are required to find solutions that are independent of the mesh used.  For the 

simulations performed in this thesis, cells with 5nm sides in the plane of the film were 

chosen.  By decreasing this value, it is possible to obtain more realistic results, but the 

increased calculation time makes this impractical.  Increasing the cell size beyond 5nm, on 

the other hand, speeds up the calculation, but provides a less realistic simulation of the 

material. 

 The numerical technique essentially involves the determination of the effective 

field at every point in the mesh, followed by a calculation of the magnetisation changes 

using the LLG equation.  Starting from an initial state, the spins are adjusted to take into 

account the physical geometry and effective field before the total energy is evaluated.  The 

whole system is updated simultaneously with each spin iteration (time step), and this 

procedure repeated until the magnetisation evolves into an equilibrium state.  Equilibrium 

may be specified as the point when the torque or dM/dt falls below a critical value.  

Alternatively, the control point can be determined by a maximum iteration count or 

simulation time.  Once the magnetisation has reached equilibrium, the system is said to 

have converged.  Because the external field is applied in a stepwise manner, this process 

has to be repeated with every perturbation. 

 There are two parts of this procedure which are problematic, however.  The first is 

determination of the local field.  Since magnetostatic effects give rise to magnetisation 

structures on a length scale orders of magnitude greater than atomic spacing, it is 

impossible to deal with both magnetostatic and exchange effects rigorously with the 

current computer facilities.  The second problem is in the physical microstructure of the 

material itself.  For this, approximations have to be made in order to make the problem 

accessible to numerical calculations whilst still retaining some physical realism.  As a 
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result, a large number of micromagnetic programs are available which tackle the problems 

using slightly different mathematical treatments.  The techniques fall into two main 

categories: finite difference and finite element methods [89].  These will be described 

briefly. 

 

4.3.1 The finite difference method 

 

The finite difference (FD) method is a widely used numerical technique for finding 

approximate values of solutions of problems involving partial differential equations.  The 

basic idea consists of replacing any differential operators (space and time) by FD 

operators.  On doing this, a partial differential equation is converted to a system of 

algebraic equations which can be solved numerically by an iterative process.  Therefore, in 

the case of magnetic systems, the various energy contributions have to be approximated to 

their FD counterparts before the effective field and LLG equations can be solved.  One 

problem with this technique is that it requires the use of a square mesh (Fig. 4.2).  This 

makes it difficult to handle complicated geometries with curved boundaries and irregular 

microstructures.  To deal with these systems, the finite element approach is more 

favourable.  The FD program used in this work was OOMMF – Object Oriented 

Micromagnetic Framework, a public domain package developed by Dr Michael Donahue 

and Dr Donald Porter at the National Institute of Standards and Technology (NIST) in the 

United States [90]. 

 

 

 

 

 

 

 

 

 

 

4.3.2 The finite element method 

 

The finite element (FE) method [91] is a more complex mathematical technique used for 

modelling arbitrary geometries.  As with FD simulations, the partial differential equation is 

discretised into a finite number of algebraic equations to reduce the problem of finding a 

Fig 4.2: Discretisation of a 2D domain into FD cells of side ∆ in which the micromagnetic equations are

satisfied.  The red outline shows the boundary of a particle that is problematic for FD simulations to deal

with. 

∆

∆
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continuous solution to one with finite dimensionality.  The solution is then approximated 

by piecewise continuous polynomials with the aim of the process to determine the 

unknown coefficients in such a way that the distance from the exact solution is minimised.  

Instead of replacing the differential operators of the energy equations by FD operators, 

they are transformed to an integral representation of the system variables.  The use of 

different shaped cells (triangles, squares or rectangles in 2D and tetrahedra, cubes or 

hexahedra in 3D) allows more accurate simulation of finite, inhomogeneous structures 

(Fig. 4.3).  A further advantage of FE over FD is the use of parallel processing power.  

Whilst FD programs are run on stand-alone machines, FE calculations can be performed 

using a computer network which enables the simulation of larger problems. 

 

 

 

 

 

 

 

 

 

 

The FE program Magpar was used as part of a collaboration with Prof Thomas Schrefl at 

the University of Sheffield, UK.  This software was developed by Werner Scholz, Prof 

Josef Fidler and Prof Schrefl at the Vienna University of Technology in Austria. 

 It must be noted, however, that although micromagnetic simulations act as a guide 

between theory and experiment, they do not provide a perfectly reliable predictive tool.  

FD simulations often use geometrically perfect elements with uniform thickness and 

regular edges, whereas in reality, the structures are less perfectly defined.  In addition, 

most programs neglect thermal effects and the time dependence of the magnetisation, 

which in fabricated structures, have a considerable impact on both the switching field and 

the supported states.  A further difference is the simulation of hysteresis loops.  In 

simulations, external fields are applied in a step-wise manner as opposed to the gradual 

increase or decrease of field applicable in experiment.  As a result of these factors, it is 

expected that simulated and experimental results will differ at some level.  Despite this, 

micromagnetic simulations are a useful tool in understanding observed behaviour and can 

also provide information that is experimentally inaccessible. 

 

Fig 4.3: Sub-division of a 2D domain into a triangular FE mesh allows the simulation of more complicated
structures. 
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4.4 Image formation 

 
4.4.1 Image formation in the TEM 

 

Image formation in the TEM [53] can be understood by considering the Abbe theory.  

Objects illuminated by a plane wave form diffraction patterns in the back focal plane 

(BFP) of the imaging lens.  A diffraction pattern divides an optical signal into its spatial 

frequencies with a varying intensity distribution, and can therefore be expressed as a 

Fourier transform.  Likewise, the image amplitude is obtained by taking the inverse Fourier 

transform of the diffraction pattern.  As the electron source is small and situated far from 

the specimen, the electron wave can be considered as a plane wave of the form, 

 

)ikzπ2exp()y,x(ψ =     (4.11) 

 

where k is the wavenumber defined as 1/λ.  Here (x,y) is in the sample plane which is 

perpendicular to the direction of electrons (z).  A typical specimen will modulate both the 

amplitude and phase of the wave, but for a thin ferromagnetic film of uniform thickness, 

we can ignore the amplitude modulation.  As a result, the wavefunction leaving the 

specimen is given by, 

 

)ikzπ2exp()y,x(f)y,x('ψ =     (4.12) 

 

with specimen transmittance, 

 

)]y,x(φiexp[=)y,x(f    (4.13) 

 

where φ  is the phase change caused by the sample.  In the BFP of the image forming lens, 

the electron disturbance can be described by the Fourier transform of the specimen 

transmittance, 

 

dxdy)]yk+xk(iπ2-exp[)y,x(f=)kk(g yxyx ∫∫   (4.14) 

 

where xk  and yk  are the x and y components of spatial frequency and are directly 

proportional to the reciprocal dimensions.  As all magnetic lenses suffer from aberrations, 

the wave is further modified by the transfer function, )k,k(t yx , where, 
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)]kk(λ∆iπexp[]2/)kk(λiCπexp[)k,k(A)k,k(t 2
y

2
x

22
y

2
x

3
syxyx +−+−=  (4.15) 

 

)k,k(A yx  is the ‘top-hat’ aperture function, ]2/)kk(λiCπexp[ 22
y

2
x

3
s +−  is the 

contribution from spherical aberration and )]kk(λ∆iπexp[ 2
y

2
x +−  is the lens defocus effect.  

The transfer function is necessary if phase variations in the object are to be changed into 

perceptible intensity variations in the image.  In the Fresnel imaging mode the objective 

aperture is normally removed, and the effect of spherical aberration is insignificant in 

comparison to the lens defocus.  Therefore, to a good approximation, 

 

)]kk(λz∆iπexp[)k,k(t 2
y

2
xyx +−=    (4.16) 

 

Finally, the electron disturbance in the image plane is given by an inverse Fourier 

transform, 

 

yxyxyxyx dkdk)]yk+xk(iπ2exp[)k,k(t)k,k(g  =)y,x(i ∫∫  (4.17) 

 

with intensity,    

 

     2)y,x(i)y,x(I =     (4.18) 

 

As equation (4.17) is a nonlinear integral, it is not always possible to interpret an image in 

terms of the detailed induction distribution within the specimen.  Therefore Fresnel, as 

described earlier, is largely a qualitative technique.   

 

4.4.2 Image formation in the STEM 

 

Image formation in the STEM [53] differs markedly from that in the TEM.  In TEM, the 

imaging lens combines the transmitted electrons into an image, whilst in STEM, the 

detector selects electrons from a focussed beam and records information.  Also, contrast in 

TEM is determined by the condenser and objective apertures, with the latter positioned in 

the BFP of the imaging lens after the specimen.  In STEM, it is controlled by an aperture in 

the BFP of the probe-forming lens before the specimen, and the detector collection angle.  

However, the imaging theory can be made very similar if we take into account a general 

reciprocity theorem.  This states that, hypothetically, indistinguishable images can be 
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obtained in the TEM and STEM provided (i) the imaging lens of the TEM is identical to 

the probe forming lens of the STEM, (ii) the current density distribution in the TEM 

electron source is identical to the detector response function in the STEM, and (iii) the 

response function of the TEM recording medium is identical to the current density 

distribution in the STEM electron source.   

 

 

 

 

 

 

 

 

 

 

 

 

With reference to Fig. 4.4, the TEM convergence semiangle is defined as Tα  and the 

objective aperture collection semiangle as Tβ  [48].  For STEM, the equivalent angles are 

the beam-convergence angle Sα  and the detector collection angle Sβ .  Therefore, as long 

as the electron paths contain equivalent angles of convergence and collection at some point 

in the optical system, the image contrast in TEM and STEM will be the same.  This is 

achieved by making ST βα =  and TS βα = .  In this situation the electrons undergo 

equivalent angular constraints, just not at equivalent points in the system.  The reciprocal 

relationship arises from considering the TEM image resolution and the size of the incident 

probe in STEM [50].  The transfer function which relates a point in the TEM image to a 

point on the specimen exit surface has the same form as that which describes the STEM 

probe on the specimen entrance surface in terms of the electron source.  Consequently, it is 

possible to reverse the ray directions in a TEM optical schematic to obtain a diagram 

depicting image formation in the STEM (Fig. 4.5).  In reality though, there is more 

freedom in STEM image formation due to variations in the detector geometry and response 

function. 

Assuming a plane wave, )k,k(ψ yx , illuminates the aperture in the BFP of the 

probe-forming lens, the electron disturbance is given by the transfer function, )k,k(t yx , as 

before.  At the specimen plane, this may be written as the inverse Fourier transform, 

Fig. 4.4: The important beam convergence and divergence angles in (a) TEM and (b) STEM. 
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yxyxyx dkdk)]ykxk(iπ2exp[)k,k(t)y,x(u += ∫∫   (4.19) 

 

The electron probe is scanned across the surface of the sample, but for mathematical 

convenience we assume it remains stationary and centred on the optic axis whilst the 

specimen is scanned.  When a point on the specimen with co-ordinates )y,x( 00  is 

coincident with the optic axis, the disturbance leaving the specimen is given by, 

 

)y,x(u)yy,xx(f)y,x('u 00 −−=    (4.20) 

 

The wave arriving at the detector plane is the Fourier transform of this, 

 

dxdy)]ykxk(iπ2exp[)y,x(u)yy,xx(f)k,k(v yx00yx +−−−= ∫∫   (4.21) 

 

with intensity,    

 

     
2

yxyx )k,k(v)k,k(I =    (4.22) 

 

However, the image signal is also dependent on the detector response, which interprets the 

phase information from the beam.  For a response function, )k,k(R yx , the image signal is 

expressed as, 

 

yxyxyx00 dkdk)k,k(R)k,k(I)y,x(i ∫∫=   (4.23) 

 

In DPC, the difference signal is proportional to the corresponding component of the 

electron intensity distribution.  As was discussed in chapter 2, this is proportional to the 

perpendicular component of magnetic induction, rendering DPC a quantitative technique. 
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4.5 Lorentz image calculations 

 
Lorentz imaging involves deflection of the electron beam by the magnetic induction 

associated with the sample.  To recall, the deflection, β, is given by, 

 

∫
∞

∞-
dz)ˆ×(

h
λe

=β nB     (4.24) 

 

where e is the magnitude of the electronic charge, λ is the electron wavelength, B is the 

magnetic induction, n̂  is the unit vector parallel to the beam and h is Planck’s constant.  

Considering the quantum mechanical approach, the phase change incurred by the electron 

on passing through the material is given by, 

 

∫
∞

∞-

dz)ˆ(e-)(φ nAr ⋅=
h

    (4.25) 

Fig. 4.5: The principle of reciprocity in the TEM/STEM. 
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where A is the magnetic vector potential [92].  In real space A can be written as, 

 

'dV
)(×∇

π4
1

=)( ∫
'V

r'-r
r'B

rA    (4.26) 

 

which is a convolution of )(×∇ rB  and 
rπ4

1
, 

 

)(
rπ4

1)( rBrA ×∇⊗=    (4.27) 

 

However, )(×∇ rB  can be written in terms of the conduction, CJ , displacement, DJ , and 

Amperian current densities, MJ , 

 

MDC JJJ
MHB

00

00

µ+)+(µ=         
)×∇(µ+)×∇(µ=×∇

   (4.28) 

 

Typically in the TEM, there are no conduction or displacement currents, and so A(r) can 

be rewritten as, 

 

)(∇
rπ4

µ
)( 0 rMrA ×⊗=    (4.29) 

 

Inserting this into the phase equation, we have, 

 

∫
∞

∞-

0 dzˆ)(
rπ4

µe
-)(φ nMr ⋅×∇⊗=

h
   (4.30) 

 

Assuming the film lies in the xy-plane, the beam is incident along the z-direction and the 

magnetisation is constant through the thickness of the film, t, 

 

zMr ˆ)(
rπ4
tµe

-)(φ 0 ⋅×∇⊗=
h

    (4.31) 
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Therefore Lorentz microscopy can be considered as Amperian current microscopy, with 

the electron phase dependent on the local magnetisation curl component parallel to the 

electron beam direction [93,94]. 

 

4.5.1 DPC image calculations 

 

With reference to the previous section on image formation in the TEM and STEM, it is 

clear that the final image depends on both the electron-specimen interaction and also the 

transfer function of the imaging system.  In DPC, an in-focus image is built up as the probe 

is scanned across the specimen surface.  The contrast in the final image is generated by the 

segmented detector which converts the phase changes to intensity variations.  Therefore, in 

this mode of microscopy the image is affected mainly by the Lorentz force, so the aperture, 

defocus and spherical aberration terms of the contrast transfer function can be neglected.  

Electrostatic phase contributions and Bragg scattering from the crystallites also affect the 

image, but these have been excluded for simplification.  Taking equation 4.25, the DPC 

signal is found by taking the 2D derivative perpendicular to the electron beam, 

 

∫
∞

∞-
⊥ dzˆ)∇(e-)(φ∇ nAr ××=

h
   (4.32) 

 

As AB ×∇= , this can be rewritten as, 

 

∫
∞

∞-
⊥ dzˆ(e-)(φ∇ )nBr ×=

h
   (4.33) 

 

So the DPC image is related to the integrated magnetic induction component perpendicular 

to the beam [95]. 

 

4.5.2 Fresnel image calculations 

 

In the Fresnel mode, a defocused image is projected directly onto the viewing screen.  In 

this situation, the electron wave is affected by both the specimen interaction and the 

defocus term of the transfer function [96].  Although Fresnel imaging of domain walls is 

generally considered to be a non-linear imaging mode, under certain conditions the 

information can be linearly interpreted and used directly in a quantitative manner [97].  In 

the linear regime, the Fresnel image intensity is given by, 
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)(φ
π2
λ∆-1)∆,(I 2 rr ⊥∇=    (4.34) 

 

where ∆ is the defocus distance and 2
⊥∇  is the Laplacian relating to the in-plane 

coordinates only [98-100].  The derivation of this equation assumes that higher order 

defocus terms are neglected and a small angle approximation is applied to the transfer 

function [101].  The spatial frequencies in the image determine the extent with which this 

equation can be applied for a given defocus.  For the images considered in this thesis, the 

magnetic resolution may be determined by the domain wall width.  Therefore, in a 200kV 

microscope a defocus value of mµ200  ≤ should enable linear imaging.  Assuming these 

conditions and noting that, 
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∞-

dz)ˆ(e-)(φ nAr ⋅=
h

   and   ∫
∞
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the Laplacian can be expressed as, 

 

∫
∞

∞

⊥

⋅×∇=

×⋅∇=

-

∞

∞-

2

dzˆ)(e-            

dzˆ(e-)(φ∇ ∫

nB

)nBr

h

h
    (4.35) 

 

Again, ignoring conduction and displacement currents, 

 

∫
∞

∞-

02
⊥ dzˆ)(∇µe

-)(φ∇ nMr ⋅×=
h

   (4.36) 

 

Inserting the Laplacian into equation 4.34 then gives, 

 

∫
∞

∞-

0 dzˆ)(∇
h
λ∆µe

1)∆I(r, nM ⋅×+=    (4.37) 

 

Therefore, assuming linear behaviour, the Fresnel image can be expressed as the integrated 

magnetisation curl component parallel to the electron beam [101].  In practice, however, 

small values of defocus present problems with the signal to noise ratio, especially when 
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there are non-magnetic contributions to the image contrast.  For this reason, defocus values  

of greater than 200µm were used to acquire the experimental Fresnel images. 

 In order to calculate the Lorentz images from the magnetisation distribution, it is 

necessary to consider the phase in terms of the magnetic vector potential.  In real space, 

this expression involves a convolution which is difficult to calculate.  This problem, 

however, becomes far easier to compute when we convert to Fourier space.  In Fourier 

space, a convolution can be written as a straight multiplication of the Fourier transforms of 

the two functions, allowing faster processing.  The Fourier transform produces a complex 

number valued output image that can be displayed as separate real and imaginary parts.  

All image calculations were performed using the Fast Fourier Transform (FFT) algorithm 

available on the TEM software package, Digital Micrograph.  The scripts themselves were 

written by Dr Stephen McVitie and Gordon White at the University of Glasgow.  The FFT 

technique involves a decomposition of the discrete Fourier transform which reduces the 

number of calculations from 2N  to NlogN 2 , where N is the number of real image pixels 

in one dimension.  In this case, N corresponds to the cell size of the micromagnetic 

simulation.  Typically, FFT algorithms restrict the size of the input image to a square of 

side n2=N , where n is an integer.  As a result, the area around the magnetic structure has 

to be padded out with pixels of zero intensity.  Here, such a constraint is advantageous, as 

it allows the observation of stray field outside of the element.   

As the stray field contributes to the image contrast in DPC, it is useful to consider 

the field sources in the sample.  These are the surface charge associated with the out-of-

plane magnetisation component, zM , and the volume charge produced by the divergence 

of the in-plane magnetisation, ||M⋅∇− .  As DPC is sensitive to the integrated induction in 

the plane of the specimen, only the latter affects the image.  Also, in 20nm thick films, the 

magnetisation can be assumed to lie predominantly in the plane of the film (xy-plane), so 

the main sources of field are the domain walls and element edges.  Calculation of the in-

plane field provides a visual comparison between the OOMMF magnetisation maps and 

the simulated DPC images.  The stray field calculation is intensive in real space, however, 

 

V'd
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rH   (4.38) 

 

so it is performed in the Fourier domain [102,103] to simplify the expression and reduce 

the computation time.  Alternatively, for a reasonable approximation of the in-plane field it 

is possible to calculate ||M⋅∇−  from the magnetisation data. 
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4.6 Simulation of a square element 

 
To demonstrate the use of these Lorentz image calculations, a 20nm thick square element 

of side mµ2  has been considered.  The ground state for this element is a flux-closure 

configuration and the corresponding magnetisation vector image is shown in Fig. 4.6a.  By 

mapping the magnetisation along orthogonal axes, the images in Fig. 4.6b were produced.  

The electron phase was then determined using equation 4.31 in Fourier form.  This 

calculation requires the magnetisation to be periodic, and this was implemented using an 

algorithm proposed by Mansuripur [104] which represents the magnetisation by a Fourier 

series.  The phase image is presented in Fig. 4.6c.  Following this, the phase was 

differentiated along the x and y directions to produce the calculated DPC images shown in 

Fig. 4.6d.  As a direct comparison, experimental DPC images are included in Fig. 4.6e 

which show an excellent agreement.  The DPC simulations appear very similar to the in-

plane magnetisation components in Fig. 4.6b.  This is because the magnetisation 

contributes greatly to the phase gradient image, with very small stray field effects as a 

result of the flux-closure.  However, subtle differences can be noticed around the domain 

wall regions.  These field effects become apparent when we consider the components of 

integrated field intensity (Fig. 4.6f), which are dependent on the in-plane divergence of the 

magnetisation (Fig. 4.6g).  Although rather weak, the field is strongest at the domain walls 

and acts against the magnetisation, reducing the integrated induction relative to that in the 

centre of the domains. 

For the Fresnel simulation, the phase Laplacian in equation 4.34 was calculated for 

a defocus value of 200µm.  Following this, the transfer function was taken into account 

using a standard wave optical treatment [105,106].  Alternatively, a close representation 

can be obtained from the out-of-plane curl of the magnetisation as indicated by equation 

4.37.  Calculated Fresnel and ⊥×∇ M  images are shown in Fig. 4.6h and Fig. 4.6i 

respectively.  For comparison, an experimental Fresnel image is presented in Fig. 4.6j.  The 

strong contrast at the centre of the element arises from rotation of the magnetisation and is 

not related to zM , which makes no contribution to ⊥×∇ M .  As can be seen, these images 

agree well, although the ⊥×∇ M  image is less physically correct.  Additionally, the high 

spatial frequency ringing around the element edges in some of the simulated images results 

from the fact that the calculations were performed using Fourier transforms and the edges 

are abrupt. 

 In this project, Fresnel and DPC image calculations were used as a useful guide to 

the contrast that could be expected during the setup of the experimental imaging 
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conditions.  They have also been helpful in interpreting experimental images containing 

magnetic information obscured by contamination and physical defects.  Although the 

effects of electrostatic phase and Bragg scattering were not taken into account here, they 

can be included in the simulations if required.  Related work involving the transport of 

intensity equation (TIE) have shown that phase reconstruction is possible using 

experimental Fresnel images taken at different values of defocus [101,107,108].  Such 

calculations allow quantitative information to be obtained on the magnetic induction, but 

have not been used in this study. 

 

  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.6: (a) Simulation of a square element in the flux-closure state and the corresponding (b) x and y

components of magnetisation.  (c) The phase must be determined before (d) in-plane induction maps can be

calculated for comparison to (e) experimental DPC images.  (f) Orthogonal integrated field distributions show

the difference between the magnetisation and induction calculations which are dependent on the (g) in-plane

magnetisation divergence.  Simulated (h) Fresnel and (i) out-of-plane magnetisation curl images agree

favourably with an (j) experimental Fresnel image.  Arrows in the figure show the directions of the integrated

components. 

(a) (b) (c) 

(d) (e)

(f) (g)
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Chapter 5 

 

Breaking the symmetry of thin film elements to tailor their 

magnetic properties 

 
5.1 Introduction 

 
A low switching field and reproducible reversal behaviour are desirable properties of 

MRAM storage cells.  With magnetic thin film elements, however, simple geometric 

structures can support a large number of different remanent configurations [109] which can 

result in history-dependent switching fields [110,111] and the formation of flux-closure 

states [112,113].  Their miniaturisation also faces the problem that the coercivity is 

inversely proportional to element width [114].   

 Rectangular ‘bar’ elements [115-123] are able to support near-single domain states 

in so-called ‘C’ and ‘S’ configurations with almost identical energy.  The states consist of 

near-uniform magnetisation along the main axis of the element, with the domains at either 

end orientated nearly perpendicular to this.  The principal difference between the C and S 

configurations is the relative direction of these end vectors, where they lie parallel in the S-

state and anti-parallel in the C state.  Similar configurations are possible where vortex end 

domains replace the transverse regions.  As described in chapter 1, magnetisation vortices 

involve the rotation of spins around a circular Bloch line or vortex core.  These spins 

become tighter as the radius of curvature decreases until, at the centre of the vortex, they 

point out-of-plane.  When vortices exist at the ends of a thin film element, they usually 

appear as part of an asymmetric domain structure, shown schematically in Fig. 5.1.  The 

similarity in energy means that on repeated magnetic switching it is possible to form either 

a C or an S state.  Each of the states mentioned above have been simulated and are 

presented in Fig. 5.2. 

 

 

 

 

 

 

 

Fig. 5.1: The typical domain structure of a magnetisation vortex formed at the end of a thin film element.
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Magnetising experiments (later) have shown that vortex C states can lead to a flux-closure 

configuration whilst transverse C, S and vortex S states tend to retain their configuration 

after switching (Fig. 5.3).  Vortex formation is clearly undesirable and can be problematic 

for the intended single mode switching of elements. 

 

 

 

Fig. 5.2: The (a), (b) transverse and (c), (d) vortex ‘S’ and ‘C’ configurations supported by rectangular thin

film elements.  Equivalent states also exist with the end vectors oriented in the opposite direction.  Arrows in

the simulations denote the magnetisation vectors.  Also shown are calculated Fresnel (top right) and DPC

images for each state.  The white arrows in the DPC images indicate the direction of sensitivity of the

mapped induction components.  Pixel colouring represents the x-component of magnetisation as shown. 

(b) Transverse C )J10×2.3( -17  

(a) Transverse S )J10×2.3( -17  

(d) Vortex C )J10×8.3( -17  

M 

(c) Vortex S )J10×8.3( -17  
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5.2 Possible solutions 

 
In an attempt to overcome the irreproducible switching behaviour of the rectangle, 

elements with tapered and elliptical ends have been studied in the past [124-130].  In the 

tapered element (Fig. 5.4a), the end domains responsible for degenerate ground states are 

suppressed, resulting in a single domain configuration.  Experimental and theoretical work 

on this structure has shown that when a field is applied to switch the magnetisation, 

reversal begins at the ‘corners’ between the body of the element and the triangular tip 

[124].  With the elliptical geometry (Fig. 5.4b), however, different studies have revealed 

contrasting behaviour.  One investigation [130] has shown the element supporting confined 

end domains that initiate reversal at higher fields, whilst a separate study [127] showed no 

end domains and reversal nucleated in the centre of the element.   

 

 

 

 

 

 

 

Fig. 5.3: The different transitions that occur in experiment with rectangular elements.  These simulated

elements were of size 3nm20×200×1000 .  Whilst the transverse (a) S, (b) C and (c) vortex S states retain

their configuration after switching, the vortex C state either switches to form (d) an equivalent configuration

or (e) undergoes transition to a flux-closure state.   

Fig. 5.4: Elements with (a) tapered and (b) elliptical ends have been found to support single domain states

provided the end regions are sufficiently narrow. 
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Therefore, provided the ends of these elements are sufficiently narrow, reproducible 

switching between single domain states can be achieved.  The drawback, however, is an 

increase in switching field associated with the smaller perpendicular component of 

magnetisation [130]. 

In this project, different structures designed to undergo single mode switching 

between two equivalent configurations were tested using Lorentz microscopy and backed 

by micromagnetic simulations.  By breaking the rectangular symmetry, geometries which 

support the C or the S state as the ground configuration have been identified.  A rectangle 

has mirror planes parallel to both the long and short axes and 180° rotational symmetry.  

The new elements, however, have a lower symmetry, with a trapezoidal structure (Fig. 

5.5a) exhibiting only the one mirror plane and no rotational symmetry, and a parallelogram 

(Fig. 5.5b) with a 180° rotational axis and no mirror planes.  The states supported are 

highly dependent on the shape anisotropy and the magnetisation tends to lie parallel to the 

edges of the element.  The decision to experiment with asymmetric geometries was based 

on recent micromagnetic simulations by Arrott [131], who used a distorted super-octagon 

structure (Fig. 5.5c).  This shape was found to support a C state as the remanent ground 

configuration offering a possible solution to the selectivity problem.  The fabrication of 

rounded features using an electron beamwriter, however, has its limitations as outlined in 

chapter 3, and the basic trapezoid and parallelogram geometries were the preferred options.  

Since this work was started, other groups have also had success with similar structures.  

Lower aspect-ratio trapezoids and cut-edge shapes (Fig. 5.5d) have been tested with TMR 

measurements [132] whilst pairs of parallelograms as multibit MRAM cells (Fig. 5.5e) 

have been studied using finite element simulations [133]. 

 

 

 

 

 

 

 

 

 

 

 
 

 

(a) (b)

(c) (d) (e)

C S 

C 
S C

Fig. 5.5: (a) The trapezium and (b) parallelogram shaped elements used in these experiments, both with an

identical volume to the rectangle (unfilled).  (c) The distorted super-octagon and (d) cut-edge geometries

support a remanent C state ground configuration whilst (e) parallelogram-shaped elements exhibit an S state

at zero field and have been considered as MRAM storage bits. 
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5.3 Micromagnetic simulations 

 

Initial simulations [90] were performed on the rectangle, trapezoid and parallelogram, 

using the rectangular cell as the starting point.  On tilting the ends of the 
3nm 20×200×1000  rectangle by 45°, the trapezium and parallelogram were created with 

an identical volume.  In each case, the element was relaxed from several initial conditions 

to identify some of the possible metastable states that could be supported by the different 

geometries.  Using these as the initial configuration, long-axis fields were then applied to 

determine the remanent state of each element, study the reversal behaviour and compare 

switching fields.  The absolute field values obtained from these simulations are not 

particularly important as they usually differ significantly from experiment [123].  What is 

of interest, however, is the relative difference in switching field.  The critical field for each 

geometry was determined to the nearest Oersted by running detailed simulations in 1 Oe 

field steps. 

 

5.3.1 Rectangle 

 

Rectangular cells have been known to support a wide variety of states at zero field [109].  

The different metastable configurations from this set of simulations are shown as 

magnetisation vector maps in Fig. 5.6 but do not constitute a complete set.  The transverse 

S (ground) state is shown for comparison.  The calculated total system energy for each 

configuration is also given.  These multi-domain states display S and C-like end domains 

i.e. parallel and anti-parallel.  On application of a maximum 1000 Oe field parallel to the 

long axis, irreversible changes occurred resulting in the formation of the transverse S and C 

ground states shown in Fig. 5.2.  The orientation of the end domains in the metastable 

states influenced the formation of these ground configurations.  On switching the ground 

state with a reverse field of 424 Oe, the element continued to support the same type of 

configuration prior to field application, albeit with the central domain in the opposite 

direction.  It is important to note that the field applied was not large enough to completely 

saturate the magnetisation of the element, but only to reverse it.  If saturation had occurred, 

it is likely that either remanent ground state could have been formed as a result of the 

degeneracy.  Typically, transitions between the transverse C and S states using a long-axis 

field occur via an intermediate ‘flower state’ [109,131]. 
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The reversal sequences for an S and C state are shown in Fig. 5.7.  As a result of the 

torque, magnetisation changes began at the ends of the element with the transverse 

domains increasing in size as the field was increased.  At the critical field the x-component 

of magnetisation changed, but the y-component did not.  After removing the field, the 

magnetisation relaxed to leave S and C states equivalent to those supported before field 

application. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To prevent charging, the domain walls were forced to change position.  Without this 

adjustment, head-to-head and tail-to-tail magnetisation vectors create an unfavourable 

configuration at either end.  Fig. 5.8 shows simplified schematics of the charge distribution 

around the domain walls of an S-state in the two orientations.   

 

Fig. 5.6: Various metastable states formed in the OOMMF simulations by relaxing the rectangular element

from different starting conditions. 

Fig. 5.7: Simulated reversal of the rectangular element from an (a)-(e) S and (f)-(j) C state using a long-axis

field.  Both states switched at the same field value via the same mechanism.  The direction of positive field is

shown. 
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Following long-axis reversal, a field was applied along the short-axis (Fig. 5.9) to try and 

uncover any changes in behaviour or different remanent states.  This simulation was 

performed using larger field increments for efficiency.  Starting from the transverse S 

configuration (Fig. 5.9a) and increasing the short-axis field strength saw the y-component 

of magnetisation increase from the end sections (Fig. 5.9b-c).  At 1000 Oe, the formation 

of a short-axis flower state was evident (Fig. 5.9d).  The field was increased further to 4000 

Oe which was enough to align all but the corner regions with the applied field (Fig. 5.9e).  

On reducing the field to zero, the system collapsed into the flower-diamond state (Fig. 

5.9f) seen previously in Fig. 5.6.  When the field was applied in the opposite direction, two 

vortices were introduced (Fig. 5.9g) but were later annihilated as the field strength was 

increased (Fig. 5.9h).  The rest of the cycle was the same as the outward path, albeit with 

the magnetisation in the opposite orientation (Fig. 5.9i-k).  A similar simulation was 

performed using the transverse C state as the starting point.  Apart from switching one end 

section at 200 Oe, the behaviour was identical to Fig. 5.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.8: Schematic diagrams showing the magnetic charge distribution around the domain walls with the

walls oriented in their (a) new and (b) original positions.  The latter configuration is energetically unstable

and purely hypothetical. 

(a) (b)

Fig. 5.9: (a)-(k) Simulated short-axis field application for the rectangular element from an initial S state. 
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5.3.2 Trapezium 

 

Simulations were then performed with the trapezoidal and parallelogram geometries.  The 

various metastable configurations observed after relaxing the trapezium from different 

starting conditions are shown in Fig. 5.10.  The low energy ground state (transverse C) is 

also given.  As can be seen, in comparison to the rectangular cell, the number of observed 

high energy states was much reduced.  In addition, the difference in energy between the 

ground and lowest metastable state is greater for the trapezium. 

 

 

 

 

 

 

 

 

 

As with the rectangular cell, long axis fields were applied to study the reversal mechanism 

and obtain an estimate for the switching field (Fig. 5.11).  In a similar manner, reversal 

began at the ends of the element, causing an increase in the size of these domains (Fig. 

5.11a-c).  The spins with a greater perpendicular component were the first to rotate.  

However, as the shape anisotropy acts to align the magnetisation with the element edges, 

the magnetisation adjacent to the edges required a larger field to influence.  This can be 

seen in the vector map at -523 Oe where, despite being aligned at 45° to the axis of applied 

field, the edge magnetisation at the ends of the trapezium remained relatively fixed (Fig. 

5.11c).  In contrast, the magnetisation near the centre of the end domains experienced a 

larger rotation at the same field value.  As the field was increased to -524 Oe, the 

magnetisation switched (Fig. 5.11d).  Unlike the rectangle, there was no need for the 

domain walls to change position and prevent charging, because the magnetisation in the 

end sections was forced to switch as a result of the local geometry.  When the field was 

removed, the system relaxed to a remanent C state (Fig. 5.11e). 

 

 

 

 

 

Fig. 5.10: Various states formed in the OOMMF simulations by relaxing the trapezium from different

starting conditions. 
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A hysteresis loop with the field applied at 90° to the long axis was later simulated.  This 

sequence is shown in Fig. 5.12.  From the initial C state (Fig. 5.12a), an increase in field 

strength caused the magnetisation to rotate (Fig. 5.12b).  However, as a result of the end 

shape, the magnetisation at one end was oriented against the field direction.  An increase in 

field to 800 Oe caused this region to switch, with the formation of a head-to-head 

transverse domain wall (Fig. 5.12c).  A further increase in magnitude saw the spins 

gradually align with the field (Fig. 5.12d), before the system relaxed to form a remanent 

diamond configuration (Fig. 5.12e).  This state is not unlike that observed with the 

rectangular element during the hard-axis cycle in Fig. 5.9.  By applying the field in the 

opposite direction, two vortices were formed (Fig. 5.12f).  At higher field these annihilated 

to leave a tail-to-tail transverse wall (Fig. 5.12g) which grew in length with increasing field 

strength (Fig. 5.12h).  The remainder of this field cycle was the same as the outward path, 

with the magnetisation gradually aligning perpendicular to the length of the element (Fig. 

5.12i) and then relaxing to form the previously observed diamond state (Fig. 5.12j). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.11: (a)-(e) Simulated reversal of the trapezium from a C state using a long-axis field. 

Fig. 5.12: (a)-(j) Simulated short-axis field application for the trapezoidal element from an initial C state. 
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5.3.3 Parallelogram 

 

As with the trapezoid, the number of metastable remanent states that could be formed by 

the parallelogram was far fewer than the rectangular element.  The different configurations 

are shown in Fig. 5.13 along with the transverse S ground state. 

 

 

 

 

 

 

 

 

 

 

When a long-axis field of 1000 was applied, any vortices present from the initial relaxation 

were driven out, leaving the element in the ground state.  The field was then applied in the 

opposite direction to study the reversal.  The magnetisation vector maps depicting this 

behaviour are shown in Fig. 5.14.  From the initial S state (Fig. 5.14a), spins near the 

centre of the end regions rotated to align with the field, increasing the size of these 

domains (Fig. 5.14b-c).  At -524 Oe, the magnetisation of each domain switched (Fig. 

5.14d).  This field was of the same strength required to switch the trapezoidal element.  

After removing the field, the magnetisation relaxed to a transverse S state (Fig. 5.14e). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.13: Various states formed in the OOMMF simulations by relaxing the parallelogram from different

starting conditions. 

Fig. 5.14: (a)-(e) Simulated reversal of the parallelogram from an S state using a long-axis field.
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Vector maps from the simulated short-axis hysteresis loop are given in Fig. 5.15.  From a 

vortex S state (Fig. 5.15a), a field of 200 Oe was enough to remove both vortices and force 

a transverse S configuration (Fig. 5.15b).  At 4000 Oe near-saturation occurred (Fig. 5.15c) 

before removal of the field allowed the system to relax to its ground state (Fig. 5.15d).  

With the field applied in the opposite direction, the magnetisation switched (Fig. 5.15f) 

instead of forming the diamond structure observed with each of the other geometries.  A 

further increase in field strength saw an increase in the y-component of magnetisation (Fig. 

5.15g) before the system collapsed to a transverse S state at zero field (Fig. 5.15h).   

 

 

 

 

 

 

 

 

 

 

 

These micromagnetic simulations have shown that it is possible for rectangular elements to 

support a large number of different metastable configurations at zero field.  In addition, 

depending on the orientation of the end vectors before long-axis field application, the 

element can relax into either the C or the S state.  As explained, this irreproducibility is an 

unattractive property for storing bits [115].  The simulations have also revealed that the 

rectangular geometry can support a flower/diamond configuration during a short-axis cycle 

as a result of its mirror symmetry.   

 In comparison, the trapezoid and parallelogram were seen to support far fewer 

metastable configurations at zero field.  Long-axis hysteresis loops showed these 

geometries to return to a single ground state; the trapezium a transverse C state and the 

parallelogram a transverse S state.  With all three shapes, the majority of metastable 

configurations were found to exist only after the initial relaxation and the vortices were 

driven out by an applied field of relatively low strength.  Like the rectangle, however, the 

trapezoid did support a diamond structure following hard-axis field application due to its 

symmetry plane.  The formation of this state is probably due to the high 

symmetry/perfection of simulated structures and is unlikely to be observed in experiment.  

It could not be formed in the parallelogram.   

Fig. 5.15: (a)-(h) Simulated short-axis field application for the parallelogram from an initial vortex S state. 
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Another important difference between the rectangular cell and the other geometries is the 

switching field.  Whilst the rectangle switched at 424 Oe, the trapezium and parallelogram 

both required a field of 524 Oe for reversal.  This 100 Oe increase can be attributed to the 

torque acting on the ends of the element.  The end sections of the rectangle (Fig. 5.16a) 

have spins oriented perpendicular to the field, unlike the other geometries (Fig. 5.16b).  

Since the reversal was seen to begin at the ends of the element, it follows that the rectangle 

will begin to switch at a lower field than its less symmetric counterparts. 

 

 

 

 

 

 

 

 

These simulations have shown that by tailoring the elemental geometry, it is possible to 

remove the rectangular ground state degeneracy and allow the C and S states to exist as 

single ground configurations.  This indicates, therefore, that single mode switching is likely 

in real elements of this type.  Such structures have been fabricated on SiN membrane 

substrates and characterised using Lorentz microscopy.  The results are presented in the 

next section. 

 

5.4 Fabricated elements 

 
Elements of the same size and shape as those used in the simulations were fabricated and 

studied using Lorentz microscopy.  The in-plane dimensions were scaled up by two and 

three times to compare results with the smaller structures.  Variation of the element size at 

constant aspect ratio seemed to have little effect on the magnetic behaviour, however, and 

the only notable difference was the switching field.  As the Fresnel mode is suitable for 

studying larger structures, images taken from the largest elements are shown to summarise 

the data.  As with the simulations, the rectangular geometry was studied as a benchmark 

for the other structures. 

 

 

 

 

Fig. 5.16: The greater torque acting on the end domains as a result of the local geometry allowed the (a)

rectangle to reverse at a lower field than the (b) elements with sloping edges. 
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(a) (b)



Chapter 5: Breaking the symmetry of thin film elements to tailor their magnetic properties 

 111

5.4.1 Rectangle 

 

Figures 5.18-5.21 show the 600nm wide rectangular element.  By saturating the 

magnetisation along the length of the structure and removing the field, the system relaxed 

to form a transverse C or S state.  Subsequent reversal with a long-axis field then caused 

the nucleation of a vortex at either end, leaving a vortex C or S state as the remanent 

configuration.  In agreement with the simulations, the orientation of the end vectors had a 

considerable effect on the magnetic state following field application.  An initial transverse 

C state led to the formation of a vortex C state after switching at 70 Oe.  Likewise, a 

transverse S state switched to its vortex counterpart at the same field strength.  On repeated 

field cycles, the element was observed to maintain its vortex configuration so long as the 

applied field did not saturate the magnetisation.  The switching field for vortex to vortex 

transition was around 25 Oe.  At higher fields, the vortices were driven out of the structure, 

allowing the element to revert back to the transverse state.  On occasion, reversal from a 

vortex C state resulted in the formation of a flux closure configuration.  These were formed 

with various numbers of vortices and cross-ties.  This was immediately surprising 

considering that the evaporator film thickness monitor (FTM) measured the permalloy 

thickness to be 20nm yet cross-ties only form in permalloy films with thicknesses of 

between 30 and 90nm.  A subsequent calibration by Dr Nils Wiese using an atomic force 

microscope (AFM) revealed that the evaporator was depositing more material than the 

thickness monitor was detecting.  The calibration graph shown in Fig. 5.17 shows that the 

elements were more likely to have been ~33nm thick than the 20nm initially intended.  A 

measurement with the AFM later confirmed this.  Nevertheless, the formation of cross-tie 

walls does not adversely affect the results and is therefore not a major issue in this 

particular study. 
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NiFe film thickness calibration 

 

 

 

 

 

 

 

 

 

 

 

 

 

In some instances a single vortex core was observed, but in others as many as 4 vortices 

(and 3 cross-ties) were present at remanence.  An increase in field to around 55 Oe, 

however, was enough to take the element to a vortex C state.  The corresponding images 

are shown in Figs. 5.18-5.20. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Fig. 5.18: (a)-(g) Reversal of the 3nm20×600×3000 wide rectangular element following saturation along

the main axis.  The magnetisation switched from a transverse C state to a vortex C state. 
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Fig. 5.17: NiFe film thickness measured using the AFM and FTM. 
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Short axis fields were then applied from initial transverse S and C states.  Due to 

similarities in behaviour, only the C state field sequence is shown (Fig. 5.21).   

Fig. 5.19: (a)-(g) Reversal from a transverse S state to a vortex S state. 
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Fig. 5.20: (a)-(g) On occasion, the rectangle switched from a vortex C state to a flux closure configuration.
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 Fig. 5.21: (a)-(o) Short-axis reversal from an initial transverse C state. 
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At –110 Oe (Fig. 5.21b), a vortex was nucleated at the end section magnetised anti-parallel 

to the field, whilst the domain at the opposite end of the element increased in size.  At –160 

Oe, a distorted flux-closure state formed as seen previously (Fig. 5.21d).  An increase in 

field then caused a reduction in size of the left hand domain (Fig. 5.21e) before 

annihilation at –300 Oe (Fig. 5.21f).  Further domain wall annihilation took place at higher 

field, leaving a near-uniform configuration at –560 Oe (Fig. 5.21g).  The element was then 

saturated at 2000 Oe and allowed to relax, forming a transverse S state with the central 

domain in the opposite orientation (Fig. 5.21h).  By applying a field in the positive y-

direction, vortices were introduced at the end regions as before (Fig. 5.21i,j) and 

subsequently driven out of the element at higher field.  As the end domains were 

magnetised in the same direction, no flux closure state was possible.  Instead, a flower-like 

domain pattern was formed at +280 Oe (Fig. 5.21m).  Following saturation in this 

direction, the element relaxed to another transverse S state (Fig. 5.21o).  The switching 

behaviour of the trapezium is discussed in the next section.   

 

5.4.2 Trapezium 

 

In agreement with the micromagnetic simulations, the trapezoid was not able to support a 

remanent S state following long-axis field application.  In addition, as the end regions were 

sufficiently narrow, vortex formation was not observed.  As will be seen in chapter 7, the 

nucleation of a magnetisation vortex is dependent on the width and thickness of material.  

Simulated phase diagrams of head-to-head domain walls have shown vortex formation in 

wider, thicker strips of permalloy, with transverse states favoured when these dimensions 

are reduced [134,135].  It is not surprising, therefore, that by tapering the end sections and 

reducing the element width in these regions, transverse domains were observed instead of 

vortices. 

Fig. 5.22a shows the ground state following saturation along the main axis.  By 

applying a field anti-parallel to the mean direction of magnetisation, domain wall contrast 

intensified and new walls were nucleated (Fig. 5.22b).  Although faint contrast is visible in 

the large central domain, the magnetisation has been approximated as uniform in the 

corresponding schematic.  This behaviour was also observed in the simulations, where 

reversal began at the end sections and the perpendicular component of magnetisation was 

able to rotate.  At a field of 100 Oe, the magnetisation switched (Fig. 5.22c) before 

relaxing to an equivalent C state at zero field (Fig. 5.22d).  Subsequent field application 

took the element round the hysteresis loop with an identical reversal mechanism in the 
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opposite direction (Fig. 5.22e-g).  No states other than the transverse C state were observed 

at remanence.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Images captured during the short-axis experiment are shown in Fig. 5.23.  From a 

transverse C state (Fig. 5.23a), a field in the negative y-direction caused the left hand 

domain to increase in size, whilst the right hand domain, aligned almost anti-parallel to the 

field direction, shrunk (Fig. 5.23b).  A fourth domain was then nucleated, which grew with 

field strength until saturation (Fig. 5.23c-e).  On removing the field a vortex formed in one 

corner (Fig. 5.23f), but was later annihilated, leaving the element in a transverse C state 

again (Fig. 5.23g).  Increasing the field in the opposite direction took the magnetisation 

through a similar process until after saturation, the element relaxed to a transverse S state 

(Fig. 5.23l).  This state is unlike the typical configuration observed in a rectangular element 

because of the difference in end shape, and is relatively unfavourable.  A small field in the 

negative y-direction, however, was enough to switch the less stable end domain and force a 

transverse C state (Fig. 5.23m).  This is slightly different behaviour to what the simulations 

predicted.  In these we saw the formation of a diamond state following saturation in both 

directions. 

 

 

Fig. 5.22: (a)-(g) Reversal of the trapezoid between equivalent C state configurations. 
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Fig. 5.23: (a)-(m) Short-axis reversal from an initial transverse C state. 
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5.4.3 Parallelogram 

 

The behaviour of the parallelogram was very similar to the trapezoid.  As a result of the 

slanted end sections, vortex formation was supressed and transverse end regions were 

observed.  In accordance with the simulations, the system was forced to support an S state 

at remanence (Fig. 5.24a).  Application of field anti-parallel to the net magnetisation 

direction then caused the domain wall contrast to increase around the corner regions (Fig. 

5.24b) before reversal took place at 100 Oe (Fig. 5.24c).  After removing the field, a 

transverse S state was observed (Fig. 5.24d).  The return path of the hysteresis loop was 

identical, albeit with the magnetisation vectors oriented in the opposite direction (Fig. 

5.24e-g).  As with the trapezium, a slightly larger field was required to switch the element 

relative to the rectangular geometry, due to the absence of perpendicular magnetisation at 

the ends. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From a transverse S state, a field was then applied in the negative y-direction (Fig. 5.25). 

 

 

 

 
 

Fig. 5.24: (a)-(g) Reversal of the parallelogram between equivalent S state configurations. 
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As the end sections were already oriented in the field direction, these domains expanded 

with increasing field strength (Fig. 5.25b).  This was continued until saturation was 

reached.  Following saturation, edge domains were formed as the field was reduced (Fig. 

5.25d), but these were later annihilated leaving the element in the original S state (Fig. 

Fig. 5.25: (a)-(n) Short axis reversal from an initial transverse S state. 
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5.25f).  When the field was applied in the positive y-direction, new end domains were 

nucleated as the magnetisation aligned with the field (Fig. 5.25g).  The field strength was 

then increased to uniformly align the magnetisation (Fig. 5.25h-i), but saturation was not 

achieved.  As a consequence, the element did not switch as the simulation (Fig. 5.15) 

predicted.  Instead, when the magnetisation relaxed (Fig. 5.25j-m), a vortex was introduced 

at one end, whilst the unfavourably aligned domain at the other end switched.  A small 

field was then required in the negative y-direction to remove the vortex and take the 

element back to its original configuration (Fig. 5.25n). 

 
5.5 Discussion 

 
The experiments have revealed a number of points about the magnetic behaviour of these 

element geometries.  As expected, there was some disagreement between the experimental 

and simulated results.  One main difference was the formation of magnetisation vortices in 

the fabricated elements.  Instead of vortex states, OOMMF predicted transverse 

configurations.  This was also found in the study of domain wall trap structures (chapter 7), 

where head-to-head transverse walls were formed in the simulations, yet head-to-head 

vortex walls were observed in experiment for elements of the same dimensions.  It must be 

noted, however, that in these calculations, the damping coefficient, α, was set to 0.5.  In a 

recent collaboration with Prof. Thomas Schrefl on domain wall trap elements, on the other 

hand, finite element simulations performed using a damping coefficient of 0.1 readily 

predicted vortex formation.  This suggests that reduced damping allows the magnetisation 

to further explore the energy surface without converging to the nearest state.  Perhaps if α 

had been reduced in the finite difference simulations, vortex C and S states would have 

been calculated for the geometries studied in this chapter also.  Unfortunately this could 

not be tested due to time constraints.  Nevertheless, the simulated reversal from an initial 

transverse state did agree closely with experiment, albeit at largely different field values.  

A table summarising the switching field data is given below.   
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As expected, the switching field was larger for the trapezoid and parallelogram in 

comparison to the rectangle.  From experiment, the field increased by 51% (54%), 53% 

(47%) and 52% (49%) for the 200nm, 400nm and 600nm wide trapezium (parallelogram) 

respectively, whilst the simulations on 200nm wide elements showed a 24% rise. 

These magnetising experiments also proved that flux closure formation is possible 

in rectangular cells during long-axis field reversal.  This transition was shown in Fig. 5.20 

where the element switched from a vortex C state.  Fields applied along the short axis also 

caused flux closure formation (Fig. 5.21).  This has been observed before during studies of 

elliptical elements, where a hard-axis field took the magnetisation from a single domain 

state to the vortex configuration [112,113].   

 Whilst the trapezium and parallelogram underwent long-axis single mode switching 

between their ground configurations, different states were found to exist at remanence 

when fields were applied along the short axis.  For example, in Fig. 5.23, the trapezoid was 

seen to support a transverse S state whilst a transverse-vortex C state was supported  by the 

parallelogram under the same field conditions.  These configurations proved relatively 

unstable and could be removed by a small field in the opposite direction.  In the 

simulations, the only calculated remanent state other than the ground configuration was a 

diamond state in the rectangle and trapezium.  As anticipated, this was not observed in the 

fabricated elements. 

Table 5.1: Experimental and simulated switching field measurements for each geometry.  The fabricated

elements were switched 10 times each to provide an average result. 

Geometry 

Rectangle 200

400

200

600

400

600

200

200

400

600

200

200

Element width  
(nm) Experiment/simulation Switching field  

(Oe) 

Rectangle 

Rectangle 

Rectangle 

Trapezium 

Trapezium 

Trapezium 

Trapezium 

Parallelogram 

Parallelogram 

Parallelogram 

Parallelogram 

Simulation 423 

150 

175 

106 

102 

71 

524 

265 

156 

108 

524 

270 

Experiment

Experiment

Experiment

Simulation

Experiment

Experiment

Experiment

Simulation 

Experiment 

Experiment 

Experiment 
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Under long-axis field application, therefore, it is safe to say that trapezium and 

parallelogram-shaped elements, of the dimensions considered here, can be reproducibly 

switched between their single ground state configurations with a slightly larger magnitude 

of field than that required to reverse the rectangular element. 

  
5.6 Variation of inclination angle 

 
After characterising the magnetic behaviour of the 45˚ trapezium and parallelogram, new 

elements were designed with different angles of inclination.  These were then tested with 

simulations to determine their reversal behaviour and switching field, before the 

fabrication and imaging was performed.  Here, fields were applied along the main axis 

only.  The angle of inclination varied from 30˚ to 80˚ in 10˚ increments at constant element 

width.  As before, 200, 400 and 600nm wide elements were studied, with Fresnel images of 

the largest structures being used to summarise the data. 

 

5.6.1 Micromagnetic simulations 

 

In the OOMMF simulations, each element was allowed to relax from a random 

configuration before being taken through a long-axis hysteresis loop.  The field was varied 

in 50 Oe steps to observe the main transitions.  Following this, a second simulation was 

performed in 1 Oe field steps around the switching point to accurately determine the 

critical field. 

From these simulations, the magnetisation of each element was found to switch 

from one transverse ground state to the other via the same mechanism as Figs. 5.11 and 

5.14.  For this reason, only the 30˚ and 80˚ trapezium/parallelogram simulations are shown 

(Figs. 5.26-5.27). 

 

 

 

 

 

 

 

 

 

 Fig. 5.26: Simulated reversal of the (a)-(e) 30˚ and (f)-(j) 80˚ trapezium. 
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5.6.2 Fabricated elements 

 

The long-axis reversal behaviour of the fabricated elements was then studied with Fresnel 

imaging.  As a data gathering exercise, each 600nm wide element, including the rectangle 

and 45˚ trapezium and parallelogram, were saturated along their main axes before being 

allowed to relax in zero field.  Following this, the elements were switched 10 times each 

(without saturating) to determine the remanent state after each reversal.  This data is 

presented as bar graphs in Figs. 5.28 and 5.29.  The behaviour of the 200 and 400nm wide 

structures was not analysed in as much detail, but was effectively the same as that of the 

600nm elements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.28: Remanent state supported by each geometry of trapezium after switching.
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Fig. 5.27: Simulated reversal of the (a)-(e) 30˚ and (f)-(j) 80˚ parallelogram. 
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Within these graphs, the remanent states are represented by 2 letters to denote the type of 

end domain (vortex or transverse) and overall configuration (flux-closure).  For example, 

when a vortex formed at either end of the element, the abbreviation VV has been used.  

Likewise, for two transverse end domains or a vortex-transverse mix the notation is TT and 

VT respectively.  In circumstances where a flux-closure state was formed, the letters FC 

are given.  After flux-closure formation, the field was increased to change the 

configuration to a C state before switching again. 

From these data it can be seen, that in general, C states were favoured in the 

trapezium and S states were favoured in the parallelogram, for all angles of inclination.  

However, it was occasionally possible at angles above 50˚, to form VVS or VTS states in 

the trapezium and VVC or VTC states in the parallelogram.  The probability of this 

increased with angle.  At 50˚ and below, the elements were only able to support their 

transverse, ground state configurations.  This is because, at smaller angles the shape 

anisotropy is sufficiently strong that the magnetisation is less able to explore the energy 

surface and form other states.  Also shown in the graphs is the formation of flux-closure 

states, which were possible in all of the 60˚ - 80˚ elements.  As with the vortex C and S 

states, the probability of flux-closure formation increased with inclination angle. 

Each element was then saturated along the main axis and allowed to relax to a 

transverse state.  From here, a field in the opposite direction was applied to reverse the 

magnetisation.  This process was repeated 10 times and the average switching field plotted 

in Fig. 5.30.  These data show that as the inclination angle increased, the switching field 

decreased; a direct result of the spin orientation at the ends of the element.  Also, in 

Fig. 5.29: Remanent state supported by each geometry of parallelogram after switching.
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agreement with previous studies, the switching field was inversely proportional to element 

width.  This stems from the shape anisotropy.  In narrower geometries, the magnetisation is 

firmly held in place by the element edges and a large opposing field is required to force the 

spins to rotate.  On the other hand, with wider elements, the magnetisation is able to follow 

the field direction and reverse domains are nucleated at a lower field.  The simulation data 

on the 200nm wide elements have been included for comparison, and although the 

magnitude of field is very different, the trend is similar.  Vortex states (with lower 

associated switching fields) also exist in the elements with wider end sections as shown in 

the image sequences.  However, as they could not be supported by every geometry, they 

have been excluded from this analysis. 

It can therefore be concluded, that although element geometries of lower symmetry 

may be an attractive alternative to rectangular cells in the sense that they exhibit more 

reproducible reversal behaviour, there is a price to be paid in switching field.  This was 

also the case with tapered and elliptical elements, and is often undesirable in functional 

devices where it results in a larger power consumption. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.30: Variation in switching field with increasing inclination angle. 
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Chapter 6 

 

Using notches to pin domain walls 

 
6.1 Introduction 

 

The magnetic properties of rectangular ‘bar’ elements have been discussed in the previous 

chapter, with emphasis on the selectivity problem.  Also presented were results from 

experiments and simulations on geometries with lower symmetry, where it was shown that 

the number of remenent states and modes of switching can be reduced, provided the end 

sections are sufficiently narrow.  The increase in switching field associated with these 

elements, however, is an unattractive property.  In this chapter, a different idea devised to 

control the magnetic switching is considered.   

 In recent years, there has been considerable interest in the modification of the 

magnetic properties of thin film structures by restricting their in-plane dimensions.  

Domain walls formed in these structures play a critical role in their behaviour.  For 

example, in spin-dependent electronic devices, the walls contribute to the 

magnetoresistance [136-141].  In the case of highly constrained walls, extremely large 

magnetoresistance ratios have been reported [136,137].  Aside from applications, however, 

the domain walls are a topic of great interest in their own right.  Theory predicts that wall 

widths in constrictions are smaller than those in continuous film, the wall structure being 

strongly influenced by the local geometry [142,143].  Such effects set in when the key 

dimensions in the fabricated structure become smaller than the wall width in continuous 

film.  More important for this work though, is the pinning of domain walls [144].  

Numerous studies have shown domain wall movement to be inhibited by notches [145-

149], constrictions [150-157], traps [158-162] and defects [163-169].  These pinning sites 

act as a source of magnetic hardening but can also stabilise a particular spin configuration.  

Indeed, it is the latter effect that is being explored here.  Previous studies involving notched 

micron-sized rings [144] have shown that notches create attractive potential wells for 

domain walls (Fig. 6.1a).  These act as artificial pinning sites which can be used to force 

the element into a particular magnetic state.  The idea is to include similar notches in the 

rectangular element and make either the C or the S state the ground configuration.  In 

practise, the notches could take on a variety of different shapes (triangular, square, circular 

etc.), but this work focuses only on symmetric, triangular notches.   
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In the previous chapter, domain walls in the C and S states were found to exist at the ends 

of the rectangle.  In the transverse state, they were connected between one corner of the 

element and a point on the opposite side.  From the simulations, this point was at 

approximately 90nm from the short edges of the 3nm202001000 ××  rectangle.  To try and 

pin the walls in place, in-plane notches of size 3nm2070120 ××  have been included at 

either end.  By placing the notches on opposite sides, the transverse S state should be 

favoured (Fig. 6.1b).  With the notches on the same side, the C state should have the lower 

energy (Fig. 6.1c).  These elements are labelled ‘Notch1’ and ‘Notch2’ for simplicity in the 

text.  One concern about this method, nevertheless, is the reversal process.  It was observed 

previously that the domain walls change position to avoid charging when the magnetisation 

switches.  Therefore, the reversal mechanism will have to be closely observed with this in 

mind. 

 

 

 

 

 

 

 

 

 

 

 

6.2 Micromagnetic simulations 

 

As with the basic rectangle, the spins of each element were randomised and allowed to 

relax to the nearest metastable energy state.  Afterwards, 1000 Oe long-axis fields were 

applied to determine the remanent state, switching field and reversal mechanism.  The 

hysteresis loops were simulated in 50 Oe field steps before the switching field was 

calculated to the nearest Oersted in a second, more detailed simulation. 

 

6.2.1 Notch1 

 

Despite the large number of metastable configurations supported by the rectangular 

element at zero field, there were very few states (other than the transverse S state) 

Fig. 6.1: (a) Notches have been used in magnetic ring structures to pin domain walls.  The simplified (b) S

and (c) C states induced by the addition of notches in the rectangular element. 
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calculated by OOMMF [90] when the notches were introduced.  Those formed are shown 

as magnetisation vector maps in Fig. 6.2.   

 

 

 

 

 

 

 

When the field was applied, any magnetisation vortices were driven from the element 

before removal of this field allowed the system to relax to a transverse S state.  The fact 

that an S state was favoured over a C state indicates that the notches were inhibiting the 

degeneracy.  The subsequent reversal sequence is shown in Fig. 6.3.  On reversing the 

magnetisation with a field of 487 Oe, all three domains switched, taking the element to an 

equivalent S state in the opposite direction.  The end domains were forced to switch as a 

result of the notch edges, rather like the short edges of the trapezium and parallelogram.  

New domain walls were then nucleated at the same position as the magnetisation rotated 

around the notch region.  Instead of complicating the reversal, the notches actually 

simplified the process.  The calculated switching field was larger for this element than it 

was for the basic rectangular cell (423 Oe), although still smaller than that of the trapezium 

and parallelogram (both 524 Oe).  Such behaviour is in agreement with other studies which 

found notches to increase the magnetic hardness of an element [149].  This time the 

coercivity is not so much the result of a difference in torque, but is more to do with the 

domain wall energy and the local shape anisotropy.  With the wall connected to the apex of 

the notch, its length and energy are minimised.  Consequently, the wall remains in this 

position to maintain a favourable configuration.  In addition, around the notch regions the 

magnetisation lies parallel to the edges to minimise the magnetostatic energy.  However, 

when a field is applied to reverse the magnetisation, these spins rotate against their natural 

orientation and the dipole energy increases.  Therefore, the edges of the notches act to 

prevent this rotation, causing the switching field to increase.  The short-axis hysteresis loop 

was then simulated and is shown in Fig. 6.4. 

 

 

 

 

 

Fig. 6.2: Energy states formed in the OOMMF simulations by relaxing the Notch1 element from different

starting conditions. 
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During the 90˚ hysteresis loop, the central section of the structure behaved in much the 

same way as the parallelogram, whilst the end sections, defined by the notches, were able 

to support flower-like corner domains (Fig. 6.4i).  These domains are formed when the 

magnetisation follows the edges of the notch and is oriented in a different direction from 

the bulk of the spins.  The magnetostatic energy of this metastable configuration was found 

Fig. 6.3: (a)-(e) Simulated reversal of the Notch1 element using a long-axis field.  The direction of positive

field is shown. 

Fig. 6.4: (a)-(q) Simulated reversal of the Notch1 element using a short-axis  field. 
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to be 66% larger than that of the ground state.  Application of a small negative field was 

enough to reverse the end regions (Fig. 6.4j). 

 

6.2.2 Notch2 

 

The same simulations were then performed using the Notch2 element.  By relaxing the 

element several times from a random demagnetised state, the magnetisation was found to 

collapse into a transverse C and on one occasion, a transverse/vortex S state.  These 

configurations are shown in Fig. 6.5.   

 

 

 

 

 

 

 

On applying a long-axis field (Fig. 6.6), the magnetisation switched between equivalent C 

states.  Again, this occurred at 487 Oe, the same magnitude of field required to switch the 

Notch1 geometry.  With the application of a hard-axis field, a head-to-head domain wall 

was formed due to the inner edges of the notches (Fig. 6.7i).  This configuration was also 

formed in the trapezoid where the short edges of the structure forced the magnetisation 

inward from either end. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.6: (a)-(e) Simulated reversal of the Notch2 element using a long-axis field. 

Fig. 6.5: Energy states formed in the OOMMF simulations by relaxing the Notch2 element from different

starting conditions. 
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6.3 Fabricated elements 

 

Elements of identical size and shape to those simulated were fabricated using electron 

beam lithography.  As with the other structures, the pattern was repeated at two and three 

times magnification.  Once again, the behaviour of each size of element at constant aspect 

ratio was very similar and only the largest (600nm wide) geometries are shown in the 

image sequences.  The changes in switching field will be discussed in more detail at the 

end of the chapter. 

The first noticeable thing about the fabricated elements was the frequent presence 

of vortices at the end sections.  The formation of these magnetic configurations greatly 

complicates the problem.  In the transverse state, a single wall exists at either end which 

can be pinned in place by the notch.  However, as vortex end sections involve multiple 

domains/domain walls, they cannot be controlled in the same way. 

 

6.3.1 Notch1 

 

Starting with the Notch1 element, a large field was applied along the main axis to saturate 

the magnetisation.  Afterwards, the field was removed, allowing the system to relax to a 

transverse state.  In this case the notches appeared unable to force a particular 

configuration though, and both transverse C and S states were possible at remanence.  

When a reverse field was applied there was a high probability of vortex formation, 

Fig. 6.7 (a)-(n) Simulated reversal of the Notch2 element using a short-axis  field. 
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although during repeated switching some vortex end domains were observed to change to 

transverse states.  In terms of inducing a particular remanent state, the notches were 

unsuccessful.  However, they did manage to prevent flux-closure formation during the 

long-axis magnetising cycle, which is a definite improvement over the rectangular element.  

Image sequences capturing these data are given in Figs. 6.8 and 6.9. 

As the simulations predicted, the switching field of this element was slightly larger 

than that of the basic rectangular cell (71 Oe) but smaller than the field required to reverse 

the 45˚ trapezium (108 Oe) and parallelogram (106 Oe).  To switch the magnetisation from 

a transverse S and C state, fields of around 90 and 85 Oe were required respectively, whilst 

a field of 35 Oe was able to reverse the element from an initial vortex configuration.  With 

a vortex state at one end and a transverse domain at the other, an average field of 55 Oe 

was required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.8: (a)-(g) Reversal of Notch1 from an initial transverse S state. 
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As the simulations predicted, the switching field of this element was slightly larger than 

that of the basic rectangular cell (71 Oe) but smaller than the field required to reverse the 

45˚ trapezium (108 Oe) and parallelogram (106 Oe).  To switch the magnetisation from a 

transverse S and C state, fields of around 90 and 85 Oe were required respectively, whilst a 

field of 35 Oe was able to reverse the element from an initial vortex configuration.  With a 

vortex state at one end and a transverse domain at the other, an average field of 55 Oe was 

required. 

The short-axis field sequence is shown in Fig. 6.10.  From a transverse S state (Fig. 

6.10a), an applied field of 120 Oe caused the nucleation of a double vortex structure at one 

end (Fig. 6.10b).  This was later annihilated at 180 Oe, resulting in the formation of a 

corner domain (Fig. 6.10c).  These were formed at both ends of the element.  As the field 

was increased, the magnetisation gradually aligned itself parallel to the short axis (Fig. 

6.10d) before removal of this field saw the element relax to a quasi-S state with a flower 

domain in one corner (Fig. 6.10e).  This was then removed by a 40 Oe field in the opposite 

direction (Fig. 6.10f).  After increasing the field strength (Figs. 6.10g-k) and relaxing the 

magnetisation, a flux-closure state was formed (Fig. 6.10l).  In agreement with the results 

in chapter 5, cross-ties were present within this domain structure.  As the field approached 

Fig. 6.9: (a)-(g) Reversal of Notch1 from an initial transverse C state. 

+ H 

1µm

C

C

C

(a) 0 Oe 

(b) -80 Oe

(c) -85 Oe 

(d) 0 Oe 

(e) +30 Oe 

(f) +35 Oe 

(g) 0 Oe 



Chapter 6: Using notches to pin domain walls 

 134

zero, the number of vortices and cross-ties increased (Figs. 6.10m,n), demonstrating the 

additional freedom of the magnetisation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.10: (a)-(n) Reversal of the Notch1 element using a short-axis field. 
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6.3.2 Notch2 

 

The Notch2 element was studied next and demonstrated analogous behaviour to Notch1.  

Long-axis reversal sequences from initial C and S states are shown in Figs. 6.11 and 6.12 

respectively.  As can be seen, the notches were unable to rule out S state formation, but did 

on some occasions manage to prevent the formation of vortex end domains.  For example, 

in Fig. 6.11e,f the magnetisation switched from a vortex C state to a transverse C state.  

Here, the transverse state has a lower energy because the notches reduce the length of 

domain wall.  In the basic rectangle, the magnetisation would have reversed to form 

another vortex C state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.11: (a)-(g) Reversal of Notch2 from an initial transverse C state. 
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The images recorded during the short-axis loop are shown in Fig. 6.13 and showed many 

similarities in behaviour to those from the Notch1 element.  From an initial transverse C 

state (Fig. 6.13a), an increase in field caused the unfavourably aligned end domain to 

reverse.  This occurred via the formation of two vortices (Fig. 6.13b), which were 

subsequently annihilated to leave a flower-like domain (Fig. 6.13c).  By increasing the 

field further, the central region gradually aligned with the field (Fig. 6.13d-g) before the 

magnetisation relaxed to a flux-closure state (Fig. 6.13h).  An 80 Oe field in the negative y-

direction increased the number of vortices and cross-ties (Fig. 6.13i), but these were 

removed again at 240 Oe (Fig. 6.13j).  At higher field the closure state was lost (Fig. 

6.13k) and the y-component of magnetisation increased to saturation.  A final reduction in 

field strength saw the system revert back to a flux-closure configuration which remained at 

zero field (Fig. 6.13p). 

 

 

 

 

 

Fig. 6.12: (a)-(g) Reversal of Notch1 from an initial transverse S state. 
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Fig. 6.13: (a)-(p) Reversal of the Notch2 element using a short-axis  field. 
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6.4 Discussion 

 
These in-situ magnetising experiments have shown that whilst the simulated Notch1 and 

Notch2 elements are able to reduce the number of remanent states and modes of switching, 

the fabricated structures do not display such perfect behaviour.  This is largely due to 

vortex formation at the ends of the element.  Instead of having to pin a single domain wall, 

the notches are faced with a three-wall configuration that cannot be easily controlled.  

Vortex end domains have also been observed with the element geometries in the previous 

chapter and are favoured in wider, thicker strips of material.  These configurations were 

supported in all of the 200, 400 and 600nm wide elements studied.  More complicated 

domain states were also observed during some of the field cycles as a result of vortex 

nucleation in the end sections.  Again, these configurations were absent in the simulations.  

As mentioned in the last chapter, however, differences in behaviour between simulation 

and experiment may be caused by the chosen value of damping parameter in OOMMF. 

Although the notches were unable to force the desired remanent state, they did 

prevent flux-closure formation during long-axis field cycles.  In addition, during repeated 

switching, vortex states sometimes changed to transverse states as a result of the notches.  

In these situations, the reduced domain wall length makes the transverse state the ground 

configuration. 

When short-axis fields were applied, simulation and experiment both showed the 

formation of flower-like domains in the corners of the element.  As explained, these 

domains form because the edges of the notch prevent the magnetisation around this region 

from following the direction of the central domain.  During hard-axis field cycles, flux-

closure states were also formed as observed with the other element geometries. 

Relative to the basic rectangular element, the switching field was larger for Notch1 

and Notch2.  This, as discussed in the chapter introduction, is due to the domain wall 

pinning effect and also the shape anisotropy of the notch edges.  From experiment, the field 

increased by 63% (61%), 53% (61%) and 42% (49%) for the 200nm, 400nm and 600nm 

wide Notch1 (Notch2) element respectively, whilst the simulations on 200nm wide 

elements showed a 15% rise.  Therefore, whilst the simulations predicted the notched 

elements would switch at a lower field than the trapezium and parallelogram, the 

experimental switching fields were around the same magnitude. 
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6.5 Variation of notch dimensions 

 
Following characterisation of the original Notch1 and Notch2 geometries, the in-plane 

notch dimensions were varied to determine changes in the magnetic behaviour and 

switching field.  In these experiments the x-dimension, denoted ‘length’, ranged from 

60nm to 180nm in 30nm steps.  At each of these lengths the y-dimension, denoted ‘width’, 

ranged from 30nm to 190nm in 40nm steps.  Therefore in total, 25 sizes of notch were 

studied for both the Notch1 and Notch2 element shapes.  At constant aspect ratio, these 

structures were fabricated at 1, 2 and 3 times magnification (200, 400 and 600nm wide 

elements) from 20nm thick permalloy.  Each element was imaged in the Fresnel mode 

under long-axis field conditions only.  Despite the extensive range in geometry, the 

behaviour varied only slightly.  As a result, only a few image sequences are required to 

summarise the findings. 

 

6.5.1 Micromagnetic simulations 

 

Each element geometry was relaxed from a random magnetisation state before being taken 

through a long-axis hysteresis loop in 50 Oe field steps.  Following this, a second 

simulation was performed around the switching point in 1 Oe field steps.  From these 

simulations, the magnetisation of each element was observed to switch from one transverse 

state to another.  However, there was found to be two different reversal mechanisms 

depending on the notch dimensions.  In some geometries, the magnetisation of every 

domain switched at the same field value.  This is the same reversal process observed with 

the Notch1 and Notch2 elements previously in the chapter (Figs. 6.3 and 6.6).  With 

different elements, on the other hand, the central and end regions switched at separate 

magnitudes of field.  This latter mechanism was exhibited by elements with notches of in-

plane size 2nm3060×  and 2nm190120×  amongst others, and is shown in Figs. 6.14 and 

6.15. 
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The reversal process begins with the central section switching direction, causing the 

domain walls to change position (Fig. 6.14c).  At higher field, the end sections then switch 

together, forcing the walls to move back to their original positions again (Fig. 6.14d).  In 

the basic rectangular element, the end domains have no reason to switch during a long-axis 

loop because there is no short-axis field component.  Instead, the domain walls shift 

position to minimise the surface charge.  However, in the notched elements the 

magnetisation has to rotate around the notch region to minimise the magnetostatic energy, 

which affects the end configuration.  The reason some sizes of notch favour a two-step 

reversal process over the typical single-step mechanism is not obvious, however.  By 

analysing the results from each element, a partial phase diagram was created to summarise 

Fig. 6.14: Simulated reversal of the Notch1 element geometry with (a)-(e) 2nm3060 ×  and (f)-(j) 
2nm190120 ×  notches. 

Fig. 6.15: Simulated reversal of the Notch2 element geometry with (a)-(e) 2nm3060 ×  and (f)-(j)
2nm190120 ×  notches. 
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the data (Fig. 6.16).  From this diagram it can be seen that there is a large range of length 

and width which allows a single-step reversal.  Outside this zone in both dimensions there 

is a shift in behaviour.  At very small sizes (in x and y) it may be that the notch is simply 

not large enough to pin the domain walls (Fig. 6.14a-e).  On the other hand, with very large 

notches (especially in the y-dimension), the notch seems to separate the magnetisation of 

the end sections from that of the main body, effectively causing the system to behave as 

three separate elements (Fig. 6.14f-j). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To compare the switching fields of each element, the field was plotted against notch aspect 

ratio.  The aspect ratio here is defined as notch length divided by notch width.  These data 

are shown in Fig. 6.17 along with the switching fields for the 200, 400 and 600nm wide 

fabricated elements.  The fabricated structures will be considered in the next section.   
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Fig. 6.16: Phase diagram produced from simulation data to show how the magnetisation reversal process

differs with notch length and width. 
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The trend of simulated data points shows that the coercivity rises with increasing aspect 

ratio.  This may relate to what was said in the last chapter about a change in torque with 

inclination angle for the trapezoid and parallelogram.  This time, however, it is the angle of 

spins around the notch region with respect to the applied field direction that is important.  

For example, by comparing two notches of different length and equal width (Fig. 6.18a,b) 

we find a larger switching field for the magnetisation around the longer notch.  At the 

notch edges the magnetisation of (a) is oriented at 75˚ to the x-axis as opposed to 56˚ for 

(b).  Similarly, given two notches of different width (Fig. 6.18c,d), a larger field is required 

to reverse the element with the narrower notch.  In this case the angles are 27˚ and 61˚ for 

(c) and (d) respectively.  As well as torque, differences in domain wall length as well as 

variations in exchange and magnetostatic energy may also contribute to the coecivity.  

Although this was investigated with simulation data, there appeared to be no obvious 

trends and the results were inconclusive.   

The switching fields for the rectangular elements are included in Fig. 6.17 for 

comparison.  In the main, the coercivity increased by adding notches to the structure, but in 

some cases at low aspect ratio, the switching field was slightly smaller than for a rectangle 

of the same overall dimensions.  This is an advantage over the trapezoids and 

parallelograms which were found to switch at higher fields than the rectangle for all angles 

of inclination. 

 

Fig. 6.17: Variation in switching field with notch aspect ratio. 
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6.5.2 Fabricated elements 

 

The fabricated elements were then studied in the Fresnel imaging mode.  To collect data on 

the remanent states, the largest elements were saturated along their main axes and relaxed.  

Following this, the elements were switched ten times (without saturating) and the state at 

zero field was noted after each reversal.  The data from this experiment is presented as bar 

graphs in Figs. 6.19 and 6.20.  Within these graphs, letters have been used to denote the 

different states following the same notation as in the previous chapter.  The number of 

states of each type are plotted against (in-plane) notch area instead of notch aspect ratio. 

These data show that the configuration supported strongly depends on the absolute 

size of the notch.  When the notch area is small, vortex end domains are favoured in both 

the Notch1 and Notch2 geometries.  As the area increases, vortex formation becomes less 

probable and transverse or vortex-transverse states are formed.  This arises because the 

volume of material decreases as the notches get larger, limiting the freedom of the spins.  

Instead, the shape anisotropy of the element edges aligns the magnetisation in a preferred 

direction.  This ties in with the earlier argument about wide notches splitting the element 

into three separate sections.  When the notches are large, the edges control the end 

configurations and the central section has little effect.  Under these conditions, the ends are 

triangular in shape whilst the central section resembles either a trapezium or parallelogram 

(Fig. 6.21) depending on whether the notches are on the same side of the element or 

opposite sides respectively.  As a result, the ends can be magnetised up or down and the 

main body of the element behaves in a similar manner to the structures considered in the 

last chapter. 

 

 

 

 

Fig. 6.18: (a)-(d) Magnetisation vector maps showing detail around the notch region for elements with

different sized notches.  The notch aspect ratio and switching field are given for each. 
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Although the Notch1 element was designed to support a remanent S state and the Notch2 

element a remanent C state, complete polarisation was not possible until the largest notches 

were used.  At this size ( 3nm20570540 ××  for a 3nm206003000 ××  element), vortex 

formation was suppressed, and the transverse ground states were observed at zero field.  

Fig. 6.19: The number of each remanent state formed after switching Notch1 elements with different sizes

of notch. 

Fig. 6.20: The number of each remanent state formed after switching Notch2 elements with different sizes of

notch. 
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Below this size of notch it was possible to form both C and S states in their transverse and 

vortex configurations.  Flux closure formation, on the other hand, occurred only with 

relatively small notches where vortex C states could be supported.  As shown in the last 

chapter, vortex C states occasionally switch to closure states to minimise the magnetostatic 

energy of the system.  Image sequences capturing the ‘ideal’ reversal behaviour in 
3nm206003000 ××  elements with 3nm20570540 ××  notches are shown in Figs. 6.22-

6.23. 

 

 

 

 

 

 

 

 

To determine the switching fields of the fabricated structures (Fig. 6.26), each element was 

saturated along the main axis and relaxed to form a remanent transverse state.  Afterwards, 

a field was applied in the opposite direction to reverse the magnetisation.  As in the 

previous chapter, this process was repeated ten times to obtain an average field value.  The 

switching field increased gradually with notch aspect ratio.  This trend is similar to the 

simulation results, although the magnitude of field was far lower for the fabricated 

elements.  In agreement with the results from the last chapter, the switching field was also 

inversely proportional to element width.  This can be attributed to an increased shape 

anisotropy when the element edges are closer together.  For comparison, the data from the 

simulated and experimental rectangular cells have been included in the graph.  In all 

experimental cases, the notched elements reversed with a larger field than the rectangle.  

This agrees with the micromagnetic simulations to a large extent, except for the elements 

with low aspect ratio notches, which were predicted to switch at a slightly lower field than 

the rectangle. 

 

 

 

 

 

 

 

Fig. 6.21: When large notches are used, the element is split into three different sections that behave almost

independently.  In this situation, the main body of the structure follows the behaviour of a (a) parallelogram

or (b) trapezium. 
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Fig. 6.23: (a)-(g) Reversal of the Notch2 element between transverse C state configurations. 
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Fig. 6.22: (a)-(g) Reversal of the Notch1 element between transverse S state configurations. 
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In conclusion therefore, the addition of notches to a rectangular element can force the 

magnetisation into a particular remanent state and induce a single mode reversal process, 

but only when very large notches are used.  In this study, merely those with the largest area 

were successful in achieving this.  The experimental switching fields for these elements 

were very similar to those required to reverse the trapezoid and parallelogram, and all 

exceeded the coercivity of the basic rectangle. 
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Chapter 7 

 

Domain wall traps 

 
7.1 Introduction 

 
The previous chapters have shown that whilst rectangular shaped elements can support a 

variety of remanent configurations and undergo different modes of reversal, the number of 

domain states may be reduced by breaking the element symmetry.  Additionally, the 

inclusion of notches in a rectangular cell can force the element into a particular magnetic 

state by creating potential wells for domain walls.  These artificial pinning sites make 

either the C or S state the ground configuration, but as with the trapezoids and 

parallelograms, cause an increase in switching field which is undesirable.  In this chapter 

an alternative solution is introduced which uses a ‘domain wall trap’ element shape.  The 

advantages of this approach are that it reduces both the element coercivity and the 

dependence of coercivity on element size.  In addition, reversal can occur without the 

problem of irreproducible switching.  The control of geometrically confined domain walls 

in constrictions or traps [149-152] is of great interest, both for solid state physics and 

device applications.  In the domain wall trap (DWT) the idea is to create a head-to-head 

domain wall that can be moved reproducibly between two stable positions.  The geometry 

consists of a narrow central section connected to wider ends as shown in Fig. 7.1.  Creation 

of the wall is achieved by applying a saturating field perpendicular to the length of the 

central strip and then reducing it to zero.  The geometry of the ends ensures that each end 

region becomes oppositely magnetised since the magnetostatic energy in these regions is 

minimised when the magnetisation lies parallel to the edges.  Provided a head-to-head 

domain wall is formed in the central strip (Fig. 7.1a), magnetisation reversal within this 

region is achieved through movement of the trapped domain wall structure (Fig. 7.1b).  

Furthermore, the wider end sections are meant to ensure that there is a considerable energy 

barrier for the trapped wall to move into these regions, since the energy of a head-to-head 

wall increases with increasing element width.  Therefore, the wall is preserved for 

switching to the opposite end of the element (Fig. 7.1c).  Theory suggests that the fields 

required to move the domain wall are lower than those required to switch isolated elements 

[158]. 
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Micromagnetic simulations of head-to-head walls [134,135] have predicted that both 

vortex and transverse wall configurations are possible depending on the width and 

thickness of the magnetic thin film.  These wall configurations are illustrated in Fig. 7.2 

and are named the vortex domain wall (VDW) and the transverse domain wall (TDW).  

The head-to-head VDW comprises three wall sections and can have clockwise (CW) or 

counter-clockwise (CCW) distributions as seen in Figs. 7.2a and 7.2b, respectively.  The 

TDW comprises two wall sections and the central domain can be magnetised in opposite 

directions as shown in Figs. 7.2c and 7.2d.  It should be noted, however, that these 

schematics are rather simplified and the detailed structure is discussed further in the next 

section. 

 

 

 

 

 

 

 

 

 
 

7.2 The domain wall trap elements 

 
To form a head-to-head domain wall in the centre of the element experimentally, it was 

necessary to adjust the end shape from the dimensions proposed in reference [158].  

Fabricated elements of the original design resulted in flux closure at the ends of the 

Fig. 7.1: After applying a short-axis field to form the wall (a), long-axis fields can be used to move the wall

reproducibly between the ends of the domain wall trap element (b), (c). 

Fig. 7.2: Simplified schematic representation of (a) and (b) vortex and (c) and (d) transverse domain

configurations for a head-to-head wall. 
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element with no head-to-head structures observed, so these sections were varied to induce 

significant shape anisotropy.  Four different structures, each with a 2nm 200×1000  central 

section were studied in the TEM (Fig. 7.3).  The first trap, labelled DWT1, is shown in Fig. 

7.3a.  The shape anisotropy associated with the long, parallel edges leads to the 

magnetisation being directed along the length of each section.  The end regions are of the 

same width as the central section.  In contrast, DWT2 was designed with end sections of 

varying width as can be seen in Fig. 7.3b.  It was expected that this increasing width would 

keep the trapped wall within the central strip and reduce the danger of its complete removal 

by propagation into the end structures with consequent loss from the element.  DWT3 (Fig. 

7.3c) and DWT4 (Fig. 7.3d) were further variants on the same theme, the former having a 

higher symmetry than DWT2 but a comparable maximum width, whilst the end portion of 

the latter was significantly narrower.  It is important to note the differences in local 

geometry where the central strip meets the end sections in each trap.  Unlike the other 

structures, the central region of DWT1 exhibits a slightly shorter lower edge.  The 

implications of this are described later. 

 

 

 

 

 

 

 

 

 

 

 

 

OOMMF micromagnetic modelling [90] was utilised prior to fabrication as a means of 

testing the ability of each shape to support a head-to-head wall.  Examples of some of the 

configurations simulated with the DWT1 geometry are shown in Fig. 7.4.  The ground state 

for the element (Fig. 7.4a) has near-uniformly magnetised regions with low angle walls 

between them.  In the case of the VDW and TDW states (Figs. 7.4b and 7.4c, respectively) 

each section is near-uniformly magnetised except for the head-to-head domain region 

where the vortex or transverse wall is observed.  Both the VDW and TDW states are 

metastable and much higher in energy than the ground state, with the VDW exhibiting a 

slightly lower energy for the dimensions considered here.  It should be noted that this is 

Fig. 7.3: The various domain wall trap structures studied. 
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consistent with the previous calculations on idealised trapped walls [134].  Detailed 

magnetisation configurations of the VDW and TDW are shown in Figs. 7.4d and 7.4e 

which indicate that the simplified wall structures shown in Fig. 7.2 are a reasonable 

description of the magnetisation distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ten elements, 20nm thick, of each DWT geometry were then fabricated on SiN membrane 

substrates using electron beam lithography and lift-off.  The material used was permalloy 

and deposition was by thermal evaporation.  Following this, their magnetic structure was 

imaged using the Fresnel and DPC modes of Lorentz microscopy. 

 

7.3 Formation of the head-to-head domain wall structure 

 
When observed in the as-grown state, all of the elements supported the low-energy ground 

state structure equivalent to that shown in Fig. 7.4a.  Formation of the head-to-head domain 

configuration was achieved by applying a field perpendicular to the long axis of the central 

strip and then relaxing the field to zero.  The fields applied were not large enough to 

Fig. 7.4: OOMMF simulation of selected remanent states supported by DWT1: (a) near-uniformly

magnetised, (b) head-to-head vortex and (c) head-to-head transverse states, and (d) and (e) more detail of the

corner sections of (b) and (c).  The calculated total system energies for (a)-(c) are given.  Colours indicate the

x-component of magnetisation whilst arrows are used to represent the magnetisation vectors. 
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saturate the magnetisation along the y-axis but only to nucleate a VDW or TDW by 

switching the magnetisation in one of the end sections.  This experiment determined the 

minimum field necessary to form the head-to-head structure in each element.  All 10 

elements of each geometry in the sample were observed and the field was increased 

gradually until the required structure was formed.   The field values needed to achieve this 

(Table 7.1) reveal a strong dependence on end shape.  The DWT1 elements required the 

largest fields to form the walls whilst the DWT3 elements required the smallest fields, 

consistent with the shape anisotropy of their respective end regions. 

 

 

 

 

 

 

 

 

 

 

 

 

To understand more about the head-to-head structures supported, fields were applied at 

various angles to the y-axis to determine changes in the magnetic configuration with 

varying field orientation (Fig. 7.5).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Element Field to form wall 
(Oe) 

Field to move wall 
between ends (Oe) 

Field to remove wall 
from structure (Oe) 

Axis of applied field Y

DWT1 

DWT2 

DWT3 

DWT4 

83

75

67

94

31

35

295

200

285

330

36

X X 

Table 7.1: The critical field values required to form, switch, and remove a VDW in each of the DWTs.  There

is no field value in the third column for DWT1 because it was not possible to move the wall reproducibly

between the ends of the strip in this element. 

Fig. 7.5: Orientation of applied field during the wall-forming experiment. 
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Ten field orientations close to the positive y-direction and 10 close to the negative y-

direction were chosen.  In practice this involved rotating the specimen in its holder by 1º 

between field applications.  In this, and in subsequent experiments, the sample was 

subjected to a field in its plane of ~7000 Oe, the maximum available.  Observations were 

then made in zero field.  The results of this experiment can be seen in Figs. 7.6-7.7.  As the 

data obtained from DWTs 2, 3 and 4 were almost identical, only those from the DWT1 and 

DWT3 elements are shown.  Fig. 7.9 shows the 5 locations where the head-to-head VDW 

can be formed in the strip. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.6: The number/type of head-to-head and tail-to-tail walls formed at each of the 5 locations in the 10 

DWT1 elements at different angles of applied field.  The angles are measured with respect to the element

short-axis. 
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One of the 200 observations (10 elements × 20 fields) of head-to-head structures in DWT3 

is shown in Fig. 7.8.  It was typical insomuch as the VDW structure was favoured over the 

TDW 99% of the time.  This is in agreement with the energetics calculated by OOMMF 

and consistent with the original phase diagram that predicts vortex formation in a 

permalloy strip of this width and thickness [134].  It is interesting to note, however, that in 

the 1% of configurations where a TDW was nucleated, the structure was supported only by 

the DWT1 elements and not by any of the other geometries. 

Fig. 7.7: The number/type of head-to-head and tail-to-tail walls formed at each of the 5 locations in the 10 

DWT3 elements at different angles of applied field.  The angles are measured with respect to the element 

short-axis. 
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The VDW structure did not always form in the middle of the central strip, but was found to 

be stable at 5 different locations depending on the orientation of the field.  These positions 

are depicted schematically in Fig. 7.9.  Locations 1 and 5 spanned the apex between the 

central and end regions.  Locations 2 and 4 were at the ends of the central strip but 

contained entirely within it, whilst location 3 was at the centre of the strip.  In DWT1, the 

most favoured positions were locations 1 and 5.  Although it was possible to form the 

structure in the other regions, these instances were rare (3% of the 200 observations).  For 

each of the other DWTs there was a far greater spread but the data can be approximated as 

follows.  Whilst for a field close to parallel to the short axis the VDW formed in the centre 

of the element, application of field at an angle of 2º away from this caused vortex 

formation at locations 2 and 4.  By rotating the sample 4º away from the axis, the 

likelihood of forming the VDW at locations 1 and 5 increased. 

 

 

 

 

 

Fig. 7.8: (a) Experimental and (b) calculated Fresnel images of a head-to-head VDW localised in the centre

of DWT3.  (c)-(d) Experimental and (e)-(f) simulated DPC images of this configuration.  Arrows in the DPC

images denote the direction of mapped induction. 

500nm  

(a)   (b) 

(c)   (d)  
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These experiments also revealed a correlation between the applied field direction and the 

sense of VDW rotation.  The data indicate that application of the hard axis field exactly 

orthogonal to the central strip resulted in an equal mix of CW and CCW vortices 

distributed throughout the elements and located at the centre of each strip (location 3).  

However, when the applied field was slightly misaligned from this direction, a strong 

polarisation of the VDW sense of rotation was observed.  For the head-to-head 

configuration (upwards field) a 1º misalignment clockwise from the hard direction resulted 

in formation of a CW VDW at location 3.  For a counter clockwise misalignment we 

observed a CCW VDW at location 3.  Fig. 7.10 shows Fresnel images of CW (Fig. 7.10a) 

and CCW (Fig. 7.10b) VDWs localised in the centre of DWT3.  Further clockwise 

deviation of the angle to 2º and 4º produced CW VDWs at locations 4 and 5 respectively 

whilst counter clockwise deviation produced CCW VDWs at locations 1 and 2. 

 

 

 

 

 

 

 

 

 

 

 

7.4 Magnetic behaviour of DWTs 2, 3 and 4 

 
Following initialisation of the head-to-head domain structures, in-situ magnetising 

experiments were carried out in the TEM to determine their stability.  The fields required 

to move the VDW between the ends of the strip and completely out of the structure were 

noted.  The various transitions are shown in Fresnel image sequences.  These images show 

1 2 3 4 5

Fig. 7.9: Locations where the head-to-head VDW can be formed. 

H H 

(a) 500nm (b)

Fig. 7.10: (a) A clockwise and (b) counterclockwise VDW in DWT3.  Schematics depict the magnetisation

vectors in the corresponding Fresnel images.  The direction of applied field used to initialise the different

head-to-head structures is also shown. 
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one of the DWT3 elements, but again, the behaviour of DWT2 and DWT4 was almost 

identical.  As the behaviour of DWT1 was very different from the other geometries, it is 

considered in the next section.  A summary of the critical fields for each geometry of 

domain wall trap is given in Table 7.1.  N. B. the values shown have been averaged over 

several experiments using 10 elements of each geometry.  In addition, no distiction has 

been made between the fields required to move the wall in different directions to take into 

account the asymmetry of the VDW and its interaction with the ends of the strip. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By applying a field parallel to the long axis of the central strip it was possible to move the 

VDW from one end to the other in a field of a few tens of Oersted.  In Fig. 7.11a, a CW 

VDW can be observed at location 1 in the trap.  At this location the direction of 

magnetisation in the end section and that of the adjacent part of the VDW resulted in a 

reduction in contrast of the left hand wall (starred) since the change in magnetisation 

orientation was small.  Application of a field to move the structure caused an increase in 

(a) (b)

(c) (d)

(e)

0 Oe +25 Oe

-15 Oe -40 Oe

+H 

250nm 

500nm 

* 

Fig. 7.11: (a)-(d) Fresnel images showing the movement of a VDW between the ends of the strip in DWT3.

(e) Bright-field image taken at higher magnification revealing well defined edges in the fabricated element. 
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length of the 180° domain wall before the VDW shifted to the opposite end of the strip 

(location 4) in a sudden move at a field of +25 Oe.  This is shown in Fig. 7.11b.  Thereafter 

a field of -15 Oe shifted the VDW to the middle of the strip (Fig. 7.11c) instead of back to 

its original position.  The wall remained at this position until, at a field of 40 Oe, it moved 

back to location 1 (Fig. 7.11d).  The inhibited movement at location 3 was observed in 

almost all of the experiments and occurred in the DWT2, DWT3 and DWT4 elements.  

Fig. 7.11e shows a bright field image of the central strip of a DWT3 element at higher 

magnification, the high quality of the edges being relevant to the discussion later. 

In the next set of experiments larger fields were applied to try to force the VDW 

out of the central region.  An example of this behaviour is shown in Fig. 7.12, again for 

DWT3.  Starting with the head-to-head wall in the corner of the element (Fig. 7.12a), a 

field of -85 Oe (Fig. 7.12b) caused an increase in length of the left hand wall of the VDW 

before removing the structure from the trap at 95 Oe (Fig. 7.12c).  As can be seen in Fig. 

7.12b, this transition occurred via wall formation and movement in the end section at 

higher field values.  This behaviour was also observed in DWT2 where the large volume of 

material permitted formation of more complex domain structures.  With the head-to-head 

structure situated at location 4 (Fig. 7.13a), an applied field of 80 Oe in the positive x-

direction varied the orientation of the magnetisation in the VDW (Fig. 7.13b) before 

removing it at a field of 100 Oe (Fig. 7.13c).  Again, domains in one of the ends of the 

element played a role in this transition.  A significant change in domain wall contrast can 

be observed prior to expulsion of the VDW out of the central strip (Fig. 7.13b).  In the 

narrower DWT4 element, however, it was the VDW that moved during reversal of the end 

section.  Here, the high shape anisotropy hinders rotation of the magnetisation whilst only 

a slight increase in the size of the VDW occurs as it moves into this region. 
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Fig. 7.12: (a)-(c) Fresnel images showing the removal of a VDW from the left hand side of DWT3. 

Fig. 7.13: (a)-(c) Fresnel images showing the removal of a VDW from the right hand side of DWT3.

(a)

+H 

0 Oe500nm 

(c) -95 Oe

(b) -85 Oe

(c) +100 Oe 

(a) 0 Oe

+H 

500nm (b) +80 Oe
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In the majority of experiments on DWTs 2, 3 and 4 the VDW was not trapped in the end 

sections after moving past the corners, but was removed from the element completely.  On 

the few occasions when the VDW was not completely removed, several complex domain 

configurations were observed instead.  Four of these domain states are shown in the 

Fresnel images of Fig. 7.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

7.5 Magnetic behaviour of DWT1 

 
The magnetic behaviour in DWT1 was quite different from that observed in each of the 

other traps.  As mentioned previously, application of the initialisation field tended to form 

a VDW at locations 1 and 5 in the trap.  In the tail-to-tail configuration, clockwise vortices 

favoured location 1 (Fig. 7.15a) whilst counter-clockwise vortices were observed at 

location 5.  From the former configuration, application of a -80 Oe field parallel to the long 

axis resulted in the vortex being driven out of the element.  Instead of switching to the 

opposite end of the strip, the VDW was stretched from the corner (Fig. 7.15b) until at a 

field of -115 Oe it was removed from the trap (Fig. 7.15c).  In the majority of experiments 

with DWT1, the VDW could not be moved between the ends of the strip. 

 

 

 

Fig. 7.14: (a)-(d) Four of the configurations observed when the VDW was moved out of the central strip but

contained within the end section. 
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On some occasions, however, it was possible to form a head-to-head CW VDW at location 

1 or a head-to-head CCW VDW at location 5 (Fig. 7.16a) using an exact hard-axis field.  

In these configurations the VDW was not as strongly stabilised.  By applying a field to 

move the structure to the opposite end of the central section, three different kinds of 

behaviour were observed as shown in Fig. 7.16.  In the first, the VDW was seen to move 

from location 5 to location 2 maintaining its structure (Fig. 7.16b).  In the second case, the 

VDW behaved in a similar manner but was able to move completely into location 1 (Fig. 

7.16c) without being hindered at the end of the central region.  In the third sequence, the 

vortex switched both position and sense (Fig. 7.16d).  This behaviour was observed in all 

of the DWT1 elements and occurred randomly.  Experimentally, these behavioural types 

took place around the same field value (60 Oe) and appeared to be equally probable.  It is 

important to stress that in most cases the head-to-head structure formed in DWT1 could not 

be moved reproducibly. 

 

 

 

 

 

(c) -115 Oe 

(b) -80 Oe (a) 

+H 

0 Oe500nm 

Fig. 7.15: (a)-(c) Fresnel images of the most common transition observed in the DWT1 elements.  The VDW

can be seen to extend before it is removed from the structure. 
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A final observation on the DWT1 element relates to the movement of a TDW (Fig. 7.17a).  

By applying a field to shift the position of the structure, a vortex was nucleated and a 

further domain introduced, transforming the TDW to the lower energy VDW state at a field 

of -5 Oe (Fig. 7.17b).  Once formed, the VDW behaved as described previously. 

 

 

 

 

 

 

 

 

 

 

 
 

 

(a)

(b) (c)

0 Oe 

+H 

-60 Oe
-60 Oe

-60 Oe 

(d)

500nm 

Fig. 7.16: (a)-(d) The three transitions observed when a field was applied to move the less stable VDW to the

opposite end of the strip.  These occurred around the same field value. 

(b) -5 Oe (a) 0 Oe 500nm 

+H 

Fig. 7.17: Fresnel images of a (a) TDW in DWT1 transforming to the (b) vortex structure under the

application of a small field. 
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7.6 Variation of strip width and thickness 

 
To determine changes in the head-to-head wall structure with varying strip dimensions, a 

series of DWT3 elements were fabricated with strip widths of 50, 100, 150 and 200nm.  

All other in-plane dimensions were kept constant.  These permalloy structures were 

deposited on membrane substrates at thicknesses of both 10 and 20nm.  Head-to-head 

walls were initiated as before and imaged using low mag scanning (LMS) DPC.  A 

simulated phase diagram [134] of thin permalloy strips predicts TDW formation in the 

thinner, narrower strips only, with VDWs forming as the width and thickess increases.  

Data extracted from this phase diagram and the experiment are shown in Table 7.2 with 

DPC images of each element given in Figs. 7.18 and 7.19.  

 

 

 

 

 

 

 

 

 

 

 

 

 

From these images it can be seen that VDWs were formed in all of the 20nm thick strips 

despite the micromagnetic predictions.  This discrepancy is likely to be the result of an 

inaccurate film thickness measurement.  As discussed in chapter 5, the evaporator FTM 

underestimated the NiFe thickness, and was not detected until after the majority of 

experiments had already been completed.  In the 10nm thick elements, the magnetic 

contrast was low, making it difficult to determine the domain wall structure.  In addition, 

the 50 and 100nm wide strips of this thickness were found to be narrower than expected 

(~30 and 60nm respectively).  Whilst a faint VDW can be seen in the 100, 150 and 200nm 

wide strips, the wall cannot be seen in the narrowest element.  The reasons for low 

magnetic contrast in the 10nm film is 3-fold.  A smaller Lorentz force is expected as a 

result of the thinner material, but metal flagging and a surface oxide were also present on 

this sample.  Attempts to reveal further information from the 50nm wide strip using both 

Thickness (nm) Width (Oe) Simulated wall 
structure 

Experimental wall 
structure 

20 

20 

20 

20 

10 

10 

10 

10 

50 

100 

150 

200 

50 

100 

150 

200 

TDW 

TDW/VDW

VDW 

VDW 

TDW 

TDW 

TDW 

TDW/VDW

VDW 

VDW 

VDW 

VDW 

? 

VDW 

VDW 

VDW 

Table 7.2: Types of head-to-head wall formed in strips of various width and thickness. 



Chapter 7: Domain wall traps 

 164

Fresnel and high mag scanning (HMS) DPC proved unsuccessful.  In HMS the signal is 

not as sensitive to changes in magnetic induction and the contrast is reduced, whilst in 

Fresnel the strong edge effects drowned out any magnetic information. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.18: DPC images showing the head-to-head domain wall structure in 20nm thick DWT3 elements with

strips of various width. 
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7.7 Discussion of single bit DWT elements 

 
It has been shown that it is possible to fabricate a variety of domain wall traps in which 

head-to-head or tail-to-tail wall structures can be nucleated and moved reproducibly using 

a relatively small magnetic field.  Significant changes in the magnetic behaviour as a result 

of adjusting the geometry at the ends of the element have been observed. 

 Variation in end shape had an effect on the minimum field required to form the 

head-to-head domain wall.  The field value necessary to reverse the end section is 

dependent on the width of this region and also the effective torque exerted on the 

magnetisation by the applied field.  For example, by comparing elements of similar 

maximum end width (DWT1 with DWT4 or DWT2 with DWT3), a larger field was 

required to reverse the end sections that had an edge aligned parallel to the axis of applied 

field.  As the magnetisation direction generally aligns with the element edges, it follows 

that the torque acting on the magnetisation towards the ends of DWT3 and DWT4 will be 

Fig. 7.19: DPC images showing the head-to-head domain wall structure in 10nm thick DWT3 elements with

strips of various width. 
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greater than on DWT1 and DWT2, in which the magnetisation was locally aligned anti-

parallel to the direction of applied field.  Also, by comparing end width for elements with 

similarly angled edges (DWT1 with DWT2 or DWT3 with DWT4) we observed smaller 

creation fields for the wider geometries.  This reflects the shape anisotropy of the end 

sections. 

 When large fields were used to initialise the VDW it was shown that the precise 

field orientation had a strong influence on both the wall position and sense of vortex 

rotation.  Following saturation in a given direction, the magnetisation relaxes to form a 

VDW or TDW at one of 5 possible locations within the strip.  At the ends of the strip the 

Néel walls of the VDW structure interact with the corners of the element.  There is also an 

additional reduction in the exchange energy associated with the magnetisation at the inner 

corner [158] which acts to stabilise the configuration.  At location 3 in the centre of the 

strip, magnetostatic fields, generated by the end sections of opposing magnetisation, act on 

the VDW from opposite sides to create an energetically stable location for the domain wall.  

Stabilisation at this point was initially thought to be the result of physical roughness in the 

fabricated element, but bright field images have revealed a smooth edge with no obvious 

pinning sites (Fig. 7.11e). 

The schematic diagrams given in Fig. 7.20 help to explain the biasing of the vortex 

rotation with applied field direction.  Following saturation of an element as the field is 

reduced to zero, the magnetisation can rotate in one of two directions to form the VDW.  

With the field applied perpendicular to the length of the strip there is no preferred 

orientation and both CW and CCW configurations can be formed.  By applying the field at 

a small angle to the short axis and relaxing, however, one ‘domain’ of the VDW is 

magnetised in a similar direction to the field (Fig. 7.20a) and the other is aligned anti-

parallel to this.  This alignment of magnetisation biases the orientation of the 180° wall of 

the VDW, and once this is established, the sense of rotation is determined by the direction 

of magnetisation in the adjacent sections of the element.  For example, in Fig. 7.20a the 

magnetisation in the VDW must rotate clockwise to prevent charging in the outer Néel 

walls.  If the magnetisation rotated in the opposite direction (Fig. 7.20b), individual head-

to-head regions would exist at either side of the structure, resulting in a build-up of 

unnecessary positive charge in the VDW. 
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When fields were applied along the x-axis a difference in the magnitude necessary to move 

the VDW in different directions was observed.  For example, in Fig. 7.11b a field of 25 Oe 

was required to move the CW VDW from location 1 to location 4, whilst in Fig. 7.11c a 

field of only 15 Oe was required to move it away from this end.  This 10 Oe difference can 

be related to the asymmetry of the VDW and its interaction with the corners of the element.  

At location 1, two of the three walls which make up the VDW are attached to the inner 

corner of the DWT3 element compared with only one of the walls at location 4.  This 

results in the two ‘domains’ of the VDW having a favourable/non-favourable orientation 

with respect to the end sections.  In addition, there is also a lower exchange energy 

associated with this VDW at location 1 compared with any of the other positions and it is a 

combination of this and the domain wall pinning that is responsible for the difference in 

field. 

 The magnetic behaviour of the DWT1 element was quite different from that 

associated with the other elements and needs to be discussed further.  The first notable 

point is the strong tendency for the wall to form at locations 1 and 5, as opposed to any of 

five locations in each of the other geometries.  This indicates a greater degree of corner 

stability that is most likely the result of local geometry.  DWT1 exhibits a shorter lower 

edge in the central strip giving different x co-ordinates to the upper and lower corners of a 

given end.  It is possible that the total length of domain wall is smaller at locations 1 and 5 

than elsewhere in the strip, resulting in a lower energy for the configuration at these 

positions. 

 In the DWT1 element, it was possible, on occasion, to form a TDW in the corners 

of the structure.  The reason for this is probably related to the symmetry of both the TDW 

and the corner of the element.  The TDW consists of three domains separated by two Néel 

walls.  In a narrow strip of uniform width, these walls are usually of equal length and the 

configuration has mirror symmetry about a line perpendicular to the strip.  A TDW 

localised in the corner of DWT1 is symmetric in shape with Néel walls of equal length.  A 

H(a) (b)

Fig. 7.20: The relation between the applied field orientation and the resulting VDW geometry: (a) favourable

CW rotation and (b) unfavourable CCW rotation. 
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schematic diagram depicts this configuration in Fig. 7.21a.  In each of the other element 

shapes, however, the local geometry around the corner means that a TDW would have 

walls of different lengths, destroying the symmetry of the structure and rendering the 

configuration less favourable.  A TDW localised in an element with ends of increasing 

width is shown schematically in Fig. 7.21b.  Such local geometry is exhibited by DWTs 2, 

3 and 4 around the corner regions.  To enable Néel walls of equal length, the wall adjacent 

to the end section of the element could tilt slightly, but this would increase the length (and 

energy) of the wall and the size of the central domain (Fig. 7.21c).  Instead, the wall 

nearest the central strip could be reduced in length by moving closer to the outer corner 

(Fig. 7.21d), but the symmetry of the TDW is still broken by the local geometry.  An 

alternative option would be to move the complete TDW structure further into the central 

strip (Fig. 7.21e).  In this position, however, the magnetisation in the adjacent end section 

would likely rotate to form a VDW.  As our experiments show only formation of head-to-

head VDWs in DWTs 2, 3 and 4, we can assume that none of the described configurations 

are energetically favourable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

When fields are applied along the easy axis of the strip, the behaviour of the trapped wall is 

dependent on how strongly it is pinned to the corners of the element.  With a strongly 

stabilised wall (Fig. 7.15a), the structure was stretched and then removed completely.  This 

demonstrates that the energy barrier which has to be overcome to de-pin the domain walls 

is sufficiently large that neither any magnetostatic energy minimum in the centre of the 

element nor any pinning at the opposite end of the strip are sufficient to arrest the reversal.  

A contributing factor to the loss of the VDW is the width of the end section in this element.  

Whilst the wider ends of DWTs 2, 3 and 4 help prevent this from occurring, the ends of 

(a) (b) (c) 

(e) (d) 

Fig. 7.21: (a) Schematic representation of a TDW localised in the corner of a DWT1 element and (b)-(e)

hypothetical energetically unfavourable structures in the other DWTs. 
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DWT1 offer little resistance to the domain wall motion.  With a less favourable and more 

weakly pinned VDW on the other hand (Fig. 7.16a), the wall was able to move across the 

strip with a relatively small applied field and was pinned at the opposite end. 

 The TDW to VDW transition presented in Fig. 7.17 is also considered here.  When 

the field is applied parallel to the strip length it affects the TDW in two ways.  Firstly, it 

exerts a torque on the central domain of the TDW.  Due to the local geometry at the ends 

of DWT1, however, the magnetisation in this region is oriented towards the outer corner 

and not perpendicular to the axis of applied field.  As a result, the torque acting on opposite 

sides of the TDW is different, and the magnetisation within the domain rotates 

incoherently, possibly accounting for VDW formation.  The applied field also acts to move 

the TDW along the central strip, with the energy required dependent on the level of 

pinning at the corner.  As a result, the behaviour of the TDW under the influence of an 

applied field depends on where it is situated within the element.  This transition has also 

been observed in finite element simulations performed by Bance et al [160].  In these 

experiments a clockwise rotating field of variable frequency was able to change 

reproducibly a transverse configuration to either a CW or CCW VDW as a function of field 

strength.  In addition, the simulated application of static fields along the length of the strip 

was able to move the TDW from one corner to the other, with transition to a VDW 

occurring midway between the ends of the strip. 

 By varying the width and thickness of strip in the DWT3 element, a VDW was 

observed in every geometry apart from the (designed) 10nm thick, 50nm wide strip.  The 

magnetic contrast in this film was inherently low, but fabrication problems caused the 

actual width of the element to be smaller than expected, and combined with metal flagging 

and a surface oxide layer, made determination of the domain wall structure difficult.  These 

results disagree somewhat with the simulations which predict transverse wall formation in 

the thinner, narrower strips.  However, given the inaccuracy of the FTM at the time of this 

experiment, it is not fair to compare the results directly. 

 From the four different geometries considered in this study, the DWT3 element was 

most successful in terms of its ability to support a head-to-head domain structure that could 

be moved reproducibly with field.  The small fields required to nucleate and move the 

VDW (200 Oe and 35 Oe respectively), combined with the resistance to domain wall 

motion created at the ends of the trap by the increasing end width (75 Oe), make this 

element more suitable than the others for device applications.  Despite the interesting, and 

rather unusual, behaviour exhibited by DWT1, this element geometry is less suitable for 

applications due to the inability to move the VDW reproducibly between the strip ends.  

The DWT2 geometry could, however, be used as a domain wall trap element and its 
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behaviour was very similar to DWT3.  The drawback here is the large initialisation field 

associated with the end shape (295 Oe).  Finally, although DWT4 was based directly on the 

DWT3 design, the narrower end sections do not provide enough resistance to large applied 

fields (67 Oe).  In domain wall traps, it is desirable to have a large range of field in which 

the head-to-head wall is fixed at the end of the strip, as this prevents accidental loss after 

switching.  With DWT4, the difference in field required to move the wall between the ends 

of the strip and to remove it from the structure completely (31 Oe) is not sufficient for 

practical applications. 

 

7.8 DWT chains 

 
To be able to store sufficient data in an MRAM chip [171], the magnetic bits (binary 

digits) have to be fabricated in a 2D array (Fig. 7.22).  However, due to magnetostatic 

interactions between neighbouring cells, the packing density is limited.  Previous studies 

on rectangular elements have shown that a separation of greater than or equal to one width 

is advisable between elements in the same row, and in excess of one length between each 

row [114,130].  Therefore, when the domain wall traps are moved closer together, problem 

areas would likely arise between adjacent elements (Fig. 7.23a).  As magnetostatic 

interactions tend to align neighbouring moments anti-parallel, this could potentially affect 

the formation of the head-to-head configuration.   

 

 

 

 

 

 

 

 

 

 

 

 

 

A simple solution would be to alternate the orientation of adjacent elements in the y-

direction so as the field lines favour the configuration, but local fields would be required to 

form the domain walls (Fig. 7.23b).  In the global setup, problem regions would still exist 

Fig. 7.22: SEM images of a fabricated array of DWT3 elements on the surface of a Si substrate at different

magnifications. 

1µm 3µm 5µm



Chapter 7: Domain wall traps 

 171

because the ends are magnetised in a similar direction (Fig. 7.23c).  An alternative 

approach, as proposed in one of the early papers [158], would be to link up the elements in 

a given row to form a series of traps attached end-to-end that share the same end sections.  

A schematic diagram of this arrangement is shown in Fig. 7.23d.  In a DWT chain, the end 

sections are separated by 1µm strips which reduces their interaction.  As has been observed 

previously in this study, however, stray fields from these regions act on each strip with an 

equal and opposite force, inhibiting the VDW slightly as it moves (Fig. 7.11c).  On the 

other hand, a small increase in field was enough to overcome this ‘magnetostatic pinning’ 

effect, so it is more a minor complication than a serious problem.  Also, although 

maximising the packing density with this setup, each chain would still have to be 

sufficiently separated (~2µm) along the y-axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A series of 20nm thick connected DWT3 elements were fabricated with 5 and 10 elements 

in each chain.  Fields were then applied to nucleate and manipulate the domain walls.  

Application of a short-axis field produces alternating head-to-head and tail-to-tail walls in 

each of the strips, and thereafter long-axis fields affect every wall in the chain.  To control 

the state of a single bit requires the application of a local field.  Such control would be 

achievable using the word/bit line architecture used in current MRAM devices but this was 

not possible in the microscope.  Instead, global fields were applied as before to study the 

behaviour of the complete structure.  

H

2µm 

(a)

(b)

(c)

(d)

Fig. 7.23: (a) Stray field interactions may prevent the formation of a head-to-head configuration in a closely

packed array unless the bits are oriented in alternating directions.  This would require local fields to

magnetise the cells in (b) opposite directions otherwise (c) magnetostatic effects would still cause problems.

(d) A series of DWT3 elements connected as a long magnetic strip.  The chain spacing is still an important

dimension if stray fields are to be negligible. 
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Fig. 7.24 shows a series of VDWs moving between the ends of each strip in a single DWT 

chain.  The domain wall contrast reveals that every head-to-head wall had a CCW rotation 

and every tail-to-tail wall a CW rotation.  This implies that the initialising field was 

oriented at a small angle CCW to the positive y-direction instead of exactly along the short 

axis.  The walls did not move at exactly the same field strength, but were observed to 

switch over a range of about 20 Oe.  The reversal behaviour of each strip was the same as 

described earlier.  Stars are used in the images to highlight transitions at the various field 

steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 7.24: Fresnel images showing VDW movement between the ends of the each strip in a DWT chain.
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After this, larger fields were applied to remove the domain walls.  This behaviour was 

captured in Fresnel image sequences for both positive (Fig. 7.25) and negative (Fig. 7.26) 

long-axis fields.  Earlier it was shown that head-to-head and tail-to-tail walls move in 

opposite directions under the influence of an applied field.  In DWT chains, therefore, 

neighbouring walls will annihilate one another provided they are not first removed by walls 

in the end sections.  It has also been shown with the isolated DWT elements, that 

depending on end width, removal of the VDW can occur either by annihilation with walls 

in the end sections or by propagation (DWT3 vs DWT1).  With DWT3 chains, annihilation 

with domain walls in the wider regions was the dominant process.  Stars are used in the 

images to highlight domain wall removal at the various field steps.  In Fig. 7.25, all VDWs 

in the field of view were observed to annihilate at 95 Oe.  With the field applied in the 

opposite direction (Fig. 7.26), the walls were removed at different field values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.25: Fresnel images showing VDW annihilation with domain walls in the wider regions of the

structure when the positive field was increased.  Removal of each wall took place around the same field 

strength. 
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7.9 Domain wall injection 

 
As well as investigating the potential of domain wall trap elements as MRAM storage 

cells, their fundamental magnetic behaviour is also of interest.  Currently, the study of 

domain walls in elements with restricted dimensions [172] is a hot research topic.  The 

structure [134], width [142,143] and motion [173] of the wall can change dramatically 

depending on the physical size and shape of material.  With this in mind, DWT chains have 

been used to investigate the injection of a single head-to-head wall, as well as the 

movement of this wall through the structure.  After attempting this with the basic DWT3 

chain geometry, new elements incorporating an injection pad at one end were also studied.  

Several groups have performed similar investigations on magnetic nanowires, so the results 

of these experiments should be of general interest.   

Starting with a chain of 5 connected DWT3 elements (no injection pad) in a 

uniform state, long-axis fields were applied anti-parallel to the magnetisation direction in 

an attempt to introduce and direct a wall along the length of the chain.  Fresnel images 

capture this behaviour in Fig. 7.27.  From the near-uniform configuration (Fig. 7.27a) an 

increase in field saw the nucleation of low-angle domain walls in the wider sections of 

each DWT (Fig. 7.27b).  Increasing the field strength further then caused the magnetisation 

of the complete chain to switch (Fig. 7.27c).  This was the most commonly observed 

Fig. 7.26: Fresnel images showing VDW annihilation with domain walls in the wider regions of the structure

when the negative field was increased.  The walls were removed at different field values in this particular

experiment. 
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reversal process.  On occasion, however, individual regions within the chain reversed 

without affecting the magnetisation of the neighbouring sections.  This behaviour took 

place at a slightly lower field strength (110 Oe) than that required to switch the complete 

structure and caused formation (starred) of a VDW (Fig. 7.27d) and also some more 

complex configurations (Fig. 7.27e).  These complicated domain structures could not be 

moved and increased field application resulted in their annihilation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The use of a so-called injection pad at one end of the DWT chain was then investigated.  

An injection pad [174-177] is a wider section of material attached to the end of a narrow 

element.  It can take various forms, but typically circular, elliptical, square, rectangular or 

diamond geometries are used.  Since the field required to nucleate a domain wall depends 

on the element width, a wide pad can form a wall at fields smaller than the nucleation field 

of the wire.  In this work, diamond-shaped pads with a diagonal width of 2µm were 

attached to one end of each DWT chain. 

  

 

 

Fig. 7.27: (a)-(c) Typically, application of field anti-parallel to the near-uniform magnetisation caused

reversal of the complete DWT chain.  Occasionally, however, individual sections switched at slightly lower

fields to form a (d) VDW and (e) more complex domain structures. 
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The element was first saturated along the length of the chain and allowed to relax.  A flux-

closure state was supported at remanence in the pad with the magnetisation of each DWT 

segment approximately uniform (Fig. 7.28a).  Following this, a field was applied in the 

opposite direction and increased gradually.  Changes in the magnetisation of the pad were 

noticeable at low field, with an increase in the size of the domains oriented close to the 

field direction (Fig. 7.28b).  At 60 Oe, the right hand wall in the pad was stretched and a 

Fig. 7.28: The introduction of a VDW to a DWT3 chain.  Although the wall could be moved through the

length of the element using an applied field, its motion was abrupt. 
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head-to-head domain wall formed at the connection point between the pad and the chain 

(Fig. 7.28c).  A further increase in field to 70 Oe caused the right hand wall to change 

position from the upper edge of the pad to the lower edge, with the nucleation of a vortex 

and the injection of a head-to-head VDW.  This came to rest at the end of the first strip 

(Fig. 7.28d).  At 75 Oe, this wall propagated through the wide section of the trap and into 

the second strip (Fig. 7.28e).  At a field of 80 Oe, it had moved through the third and fourth 

strips before stopping at the fifth (Fig. 7.28f).  The head-to-head wall maintained its 

structure and sense of rotation throughout each transition.  Finally, at an applied field of 85 

Oe, the wall was driven from the element completely, leaving the magnetisation in a near-

uniform state (Fig. 7.28g).  A schematic diagram depicting the magnetisation changes in 

the injection pad as the field was increased is shown in Fig. 7.29. 

 

 

 

 

 

 

 

 

 

 
As a comparison to this, DWT1 chains were fabricated with injection pads to determine if 

the uniform width would allow an injected wall to move more reproducibly through the 

structure.  Fresnel images of their behaviour can be seen in Fig. 7.30.  As with the previous 

element, domain wall injection proceeded via movement of the right hand wall in the pad.  

This time, however, the magnetisation vortex rotated counter-clockwise and so the wall 

moved from the lower edge of the pad to the upper edge.  Once formed, the VDW was 

trapped at the end of the first strip but managed to move completely into the narrow end 

section.  A further increase in field then saw the head-to-head wall propagate out of the 

element without pinning at any of the corner regions.   

 

 

 

Fig. 7.29: The introduction of a VDW to the DWT chain using a diamond-shaped injection pad. 
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7.10 Discussion of DWT chains 

 
The last few sections of this chapter have shown that it is possible to connect several 

DWT3 elements together to form a chain that maximises the packing density.  By using 

this design, head-to-head domain walls can be moved between the ends of each strip 

reproducibly without strong adverse magnetostatic interactions.  The magnetic behaviour 

of each bit in the chain was the same as that of the isolated elements.  However, local fields 

would be required to switch the individual bits if these structures were to be used in a 

magnetic memory device. 

Attempts to inject a single head-to-head wall into the standard DWT3 chain proved 

unsuccessful.  The inclusion of an injection pad at one end was later able to overcome this 

problem.  However, whilst a single wall could be introduced, it was difficult to manipulate 

the wall between the different sections of the structure.  This behaviour is a result of the 

wide DWT3 end regions.  Although they provide resistance to the domain wall motion 

Fig. 7.30: The introduction of a VDW to a DWT1 chain.  Once formed, the wall was removed from the

element completely in a single field step. 
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during switching, the field required to drive the wall past each strip gives it sufficient 

energy to bypass other traps in the element.  As a result, the VDW ‘jumps’ between the 

different sections in a non-reproducible manner. 

On the other hand, the DWT1 geometry allowed the VDW to move uninhibited 

through the structure.  Although the end regions of DWT1 are sufficiently narrow that the 

wall can pass through, they do not provide adequate resistance to the wall motion, and the 

wall is easily lost.  Furthermore, it was shown in Fig. 7.15 that the local geometry at the 

corner regions of DWT1 provides additonal stability for the VDW causing it to stretch 

before its removal at higher fields.  Given that the corners of the DWT1 chain are of the 

same geometry, this is a likely contribution to the wall being removed after propagating 

past the first end section. 

In order to inject a head-to-head wall that can be reproducibly moved through a 

DWT chain, therefore, it will be necessary to adjust the end regions of each DWT unit.  A 

compromise between the DWT1 and DWT3 geometries may be successful.  One solution 

might be to keep the basic DWT3 shape, but narrow the ends slightly.  On doing this, the 

barrier could be reduced without compromising its ability to stop the wall after propagation 

to the next strip.  In theory, this would allow a small field to drive the VDW past the end 

sections without giving the wall sufficient energy to bypass the neighbouring traps.  

Unfortunately, time limitations have prevented the study of this geometry here. 
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Chapter 8 

 

Magnetic tunnel junctions incorporating an artificial 

antiferromagnet in the free layer 

 
8.1 Introduction 

 
Néel or ‘orange-peel’ coupling (Fig. 8.1) is a magnetostatic interaction between 

ferromagnetic (FM) layers in multilayer films that occurs when the surface is rough and 

there is intralayer exchange coupling.  Under these conditions, magnetic surface charge 

develops at the interfaces because the magnetisation cannot follow the surface profile.  

When the roughness has a conformal or correlated waviness (implying no phase, amplitude 

or correlation length differences in topology between the various layer surfaces) through a 

spacer layer of uniform thickness, the interface normals are locally opposite.  With the 

layers magnetised in the same direction, the magnetic charges of opposite polarity in 

adjacent films are closer together than if the magnetisation was anti-parallel.  In this 

situation, stray field lines connect both inter and intralayer charges.  When the 

magnetisation is anti-parallel, none of the field lines cross the spacer layer and the field 

energy is larger [33].  Therefore, orange-peel coupling favours a FM alignment.   

 

 

 

 

 

 

 

 

Due to the FM coupling between the free and pinned layers, the free layer hysteresis loop 

is shifted away from zero field.  In the original Néel model (Fig. 8.2), this offset field is 

given by, 
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Fig. 8.1: Néel coupling in multilayer films with the layers aligned (a) parallel and (b) anti-parallel. 
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for a correlated waviness with amplitude h and wavelength λ, where Ft  and St  are the 

thickness of the free and spacer layers respectively, and PM  is the saturation magnetisation 

of the pinned layer [32].  This model has been found to give a reasonable description of the 

free and spacer layer thickness dependence.  The offset field can be reduced by increasing 

the thickness of these layers, but this has disadvantages.  Increasing the free layer thickness 

results in a higher switching field and hence greater power consumption, whereas a thicker 

tunnel barrier increases the resistance of the stack. 

 

 

 

 

 

 

  

A more refined analysis has been proposed [35] which takes into account the finite 

thickness of the ferromagnetic layers (Fig. 8.3), since charges created at the outer surfaces 

of the magnetic layers also interact.  Again, assuming conformal waviness, the offset field 

is described by, 
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which includes a dependence on the pinned layer thickness, Pt .  As the thickness of the 

pinned layer is increased, the Néel coupling and offset also increase. 

 

 

 

 

 

 

 

It has been shown in recent studies that a reduction in coupling can be realised by the 

addition of small amounts of oxygen in the sputtering gas as a surfactant (surface active 

agent) [178], by smoothing the layers during deposition [179] using an argon gas cluster 

ion beam (GCIB), or by pre-oxidation of the pinned layer to reduce intermixing with the 

tunnel barrier [180].  A different technique utilising an AAF in the pinned layer has also 

Fig. 8.2: Néel model for magnetic films of infinite thickness separated by a thin spacer layer. 

λ

h

Free 

Spacer 

Pinned 

FM

PM
St

Fig. 8.3: Refined model for magnetic films of finite thickness separated by a thin spacer layer. 
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proven to alleviate the interlayer coupling [181].  These consist of two FM layers separated 

by an extremely thin non-magnetic spacer, usually ruthenium.  The bottom layer is in 

contact with a natural antiferromagnet and there is strong AF Ruderman-Kittel-Kasuya-

Yosida (RKKY) coupling across the ruthenium, provided the spacer is of the correct 

thickness.  By including an AAF, magnetic charges of opposite polarity can be brought 

closely together at the interface between the pinned and spacer layers to partly compensate 

each other.  Although this solution is effective, the AAF layer closer to the barrier has to be 

far thinner than the bottom layer.  A further advantage of a pinned layer AAF is its increase 

in rigidity relative to a single layer film of the same material and thickness.  The rigidity 

amplification can be expressed by the Q-factor, 

 

)SL(QH=)AAF(H CC    (8.3) 

 

where     
2211

2211

tM-tM
tM+tM

=Q     (8.4) 

 

)AAF(HC  and )SL(HC  are the AAF and single layer coercivities respectively and M and t 

are the magnetisation and thickness of the two AAF layers [182].  Therefore, for identical 

materials, maximum rigidity is achieved when 21 t=t .  However, in order to effectively 

compensate the charge and reduce the Néel coupling, robustness in high magnetic field is 

compromised.  This is undesirable, as the pinned layer orientation should not vary with 

applied field during normal device operation. 

 

8.2 The MTJ samples 

 
In this study, an alternative method to reducing the offset field was investigated.  Previous 

work using a vibrating sample magnetometer (VSM) has shown that by including an AAF 

in the free layer (Fig. 8.4) of the stack instead of the pinned layer, it is possible to reduce 

the offset field by up to 36% without affecting the pinned layer rigidity [183].  Taking into 

account the AAF, the offset field can be expressed as, 
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where 1Ft  and 2Ft  are the thicknesses of the lower and upper layers of the free layer AAF 

and AlOt  and Rut , the thicknesses of the tunnel barrier and AAF spacer layer respectively.  

The first term of this equation describes the interactions between F1 and the pinned layer 

whilst the second term deals with the F2-pinned layer interactions.  Also, as the third 

exponential in each term includes a dependence on the thickness of material separating the 

free and pinned layers, the second term must consider the 32OAl , F1 and Ru layers and not 

just the 32OAl . 

 

 

 

 

 

 

 

 

There are two important consequences of this equation on the behaviour of the stack.  

Firstly, the negative sign in the second term, which describes the F2-pinned layer 

interactions, explains the reduction in offset field when compared to equation 8.2.  

Secondly, the )t-t/(1 F21F  factor affects the sign of the offset when the order of the AAF 

layers are changed.  In this work, the net magnetic moment of the free layer was kept 

constant for comparison to a stack with single free layer.  Three different MTJ films (Fig. 

8.5) were deposited onto 43NSi  membrane substrates for TEM analysis.  This differs from 

the VSM experiments where thermally oxidised Si was the chosen substrate.  The first 

sample, labelled MTJ1, was a standard junction and the second and third samples, MTJ2 

and MTJ3, contained an AAF in the free layer, 

 

MTJ1: 3.5Ta/2NiFe/6IrMn/2.5CoFe/0.9AlO/5NiFe/3.5Ta 

MTJ2: 3.5Ta/2NiFe/6IrMn/2.5CoFe/0.9AlO/3NiFe/0.8Ru/8NiFe/3.5Ta 

MTJ3: 3.5Ta/2NiFe/6IrMn/2.5CoFe/0.9AlO/8NiFe/0.8Ru/3NiFe/3.5Ta 

 

where the layer thicknesses are in nanometres.  During growth, the field used to induce an 

easy axis aligned all FM layers parallel to one another.  On removal of this field, F1 

remained magnetised in this direction as a result of the orange-peel coupling.  In the case 

of the basic junction (MTJ1), the single free layer was aligned parallel to the exchange bias 

layer.  With two layers in the free layer (MTJ2 and MTJ3), F2 coupled anti-parallel to F1 

Fig. 8.4: Coupling model for MTJ with free layer AAF. 
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through the Ruthenium.  Therefore, the net direction of free layer magnetisation depended 

on the relative thickness of the two AAF layers.  With the thick layer on the bottom 

(MTJ3), the net direction of free layer magnetisation was the same as that of the basic 

junction.  As a result, the free layer offset was in the same direction for both films.  With 

the layers interchanged (MTJ2), however, the net moment and offset were in the opposite 

direction.   

Since the physical structure of a material greatly influences the magnetic properties, 

the MTJs were grown on top of a buffer system consisting of a Ta seed and magnetically 

dead (non-FM) NiFe layer.  This system was used to encourage (111) texturing, which has 

been found to minimise the in-plane magnetocrystalline anisotropy [184].  In addition, Ta 

capping layers were deposited to help protect the magnetic films against atmospheric gases 

[185]. 

 

 

 

 

 

 

 

 

 

 

 

 

8.3 Magnetic characterisation 

 
To determine the magnetic behaviour of each MTJ, the samples were imaged in the Fresnel 

and differential phase contrast (DPC) modes of Lorentz microscopy.  They were positioned 

in the specimen rod and rotated until their direction of magnetisation (at zero field) was 

aligned with the axis of applied field.  A maximum in-plane field of ±50 Oe was applied 

in-situ to observe switching of the free layer.  The fields required to switch the pinned layer 

and decouple the AAF have previously been determined as 700 and ~600 Oe respectively 

[183].  Therefore, throughout the free layer reversals, it was assumed that the pinned layer 

magnetisation was unaffected and that the constituent layers of the AAF were always 

aligned anti-parallel.  In order to properly induce exchange bias, it was necessary to anneal 

each stack to 300°C in an applied field of 2000 Oe.  This heating and field-cooling cycle 

Fig. 8.5: Layer structure of the different MTJ samples. 
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was performed in a specially designed TEM specimen holder.  The samples were then 

imaged as before to determine the effect of annealing on the magnetisation reversal.  At 

each setting, a 2160 lines/mm cross grating was used for magnification calibration 

purposes.  The images of each reversal are shown, complete with coloured arrows to 

indicate the direction of applied field (red) and magnetisation (blue). 

 As Fresnel imaging can be applied easily at low magnification, the first image 

sequence covered reversal of the film over the whole of the 2mµ 100×100  membrane to 

provide a general understanding of the switching mechanism and magnetic structure.  

Following this, DPC was performed with a second specimen of the same type but at a 

higher magnification to reveal finer details of the reversal process.  Slight differences in 

morphology can occur between different samples of the same type during deposition, so 

examination of multiple samples provides a better representation of how each of the stacks 

reverse.  From these images, a measure of the prominent wavelength and dispersion angle 

of the magnetisation ripple was obtained to provide a more detailed comparison of the 

dispersion spectra. 

 From the image sequences, experimental values of the offset )H( O  and coercivity 

)H( C  were deduced in the following way.  For each set of images, the switching field was 

noted for the increasing and decreasing field sections of the magnetisation cycle.  Denoting 

these fields by +H  and -H  respectively (Fig. 8.6), OH  and CH  were calculated using, 
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)H+H(
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When the magnetisation reversed by domain wall nucleation and motion, the coercive field 

was assumed to be that at which the number of domain walls over the entire field of view 

was greatest [186].  On the other hand, when the magnetisation reversed by rotation, this 

field was taken when the magnetisation vector was oriented perpendicular to the axis of 

applied field. 
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8.3.1 MTJ1 

 

Beginning with the Fresnel images of pre-annealed MTJ1, it can be seen that magnetisation 

ripple was present across the sample at zero field (Fig. 8.7a).  On applying a negative field 

of -23 Oe (Fig. 8.7b), the ripple intensified together with modest rotation of the 

magnetisation.  Following this intensification, domains of reverse magnetisation were 

observed at -25 Oe (Fig. 8.7c).  By increasing the magnitude of applied field, the reversal 

proceeded with the formation of a number of long domain walls oriented at 33° clockwise 

(CW) to the field direction (Fig. 8.7d).  As the field increased further (Fig. 8.7e), the 

reverse domains increased in size as domain wall annihilation took place until, at a field of 

-40 Oe (Fig. 8.7f), several of the walls had collapsed into 360° domain walls.  These wall 

structures required larger fields to remove and will be described later in the chapter.  On 

the return path, the ripple contrast intensified on going from an applied field of -40 Oe 

(Fig. 8.7g) to -25 Oe (Fig. 8.7h) followed by domain wall formation as before (Fig. 8.7i).  

This time, however, the walls were oriented at 38° counter-clockwise (CCW) to the applied 

field (Fig. 8.7j) direction.  As the field was reduced to -12 Oe (Fig. 8.7k), a complex 

domain structure was observed in the previously unreversed regions, with the walls having 

no obvious preferred orientation.  At zero field (Fig. 8.7l), the magnetisation had returned 

to its initial configuration, but with the presence of 360° domain walls.  These 360° wall 

loops appeared at different locations from those formed during the initial reversal.  The 

images indicate a free layer easy-axis hysteresis loop centred around -21 Oe with a 

coercivity of 7 Oe. 
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Fig. 8.6: Minor hysteresis loops for the different MTJs defining OH  and CH . 
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Fig. 8.7: Fresnel image sequence of the MTJ1 free layer before annealing. 
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After annealing MTJ1 in an applied field along the easy axis, the specimen was imaged 

under identical conditions to before.  At zero field (Fig. 8.8a), modest magnetisation ripple 

was observed.  The reduction in ripple contrast was the first noticeable change in the 

sample.  By changing the field to -15 Oe (Fig. 8.8b) and then -25 Oe (Fig. 8.8c), the 

intensity of ripple increased as before, albeit on a much finer scale.  The direction of 

magnetisation also rotated slightly.  At an applied field of -30 Oe (Fig. 8.8d), reversal of 

the magnetisation occurred suddenly, with the nucleation and movement of a single, 

relatively straight domain wall oriented at 14° CCW to the field direction.  At -32 Oe the 

wall had progressed through the entire field of view (Fig. 8.8e), before the magnetisation 

Fig. 8.8: Fresnel image sequence of the MTJ1 free layer after annealing. 
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rotated to align with the field.  At -35 Oe (Fig. 8.8f), the magnetisation was completely 

reversed, without the formation of 360° walls.  By reducing the field from -40 Oe (Fig. 

8.8g) to -28 Oe (Fig. 8.8h), the ripple intensified slightly.  At -23 Oe, the magnetisation 

vector was seen to rotate (Fig. 8.8i), before two straight domain walls appeared which were 

aligned in similar directions to the wall on the outward path (Fig. 8.8j).  The reverse 

domain, defined by these walls, then grew in size at the expense of the neighbouring 

domains until near uniform magnetisation was observed at -18 Oe (Fig. 8.8k).  As before, 

further reduction of the field allowed the magnetisation to rotate and align itself with the 

easy axis (Fig. 8.8l).  From these images, OH  and CH  are calculated to be -25 Oe and 5 

Oe respectively. 

 DPC images of a second MTJ1 sample before annealing are shown in Fig. 8.9a-j.  

At each field value, a pair of images map the induction in orthogonal directions as 

indicated by the white arrows.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 8.9: DPC image sequence of the MTJ1 free layer before annealing.  The white arrows indicate the

direction of sensitivity of the mapped induction components. 
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The reversal of this specimen proceeded in a similar manner to the previous samples.  Of 

note from these images is the 360° domain wall loop captured in Fig. 8.9i, where, as the 

applied field was decreased on the reverse path of the magnetising cycle, the wall was 

removed (Fig. 8.9j).  These images suggest OH  and CH  to be -21 and 6 Oe respectively.   

After heat treatment, the sample was imaged in the DPC mode under identical 

conditions.  The corresponding images can be seen in Fig. 8.10a-j, but provide little 

additional information on the reversal mechanism.  There is, however, local domain wall 

pinning visible in Fig. 8.10h which may be caused by excessive roughness from the 

underlying layers.  The corresponding hysteresis loop is centred at -27 Oe with a coercivity 

of 3 Oe. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.10: DPC image sequence of the MTJ1 free layer after annealing. 
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8.3.2 MTJ2 

 

The above experiment was repeated with MTJ2.  The pre-annealed images reveal a very 

different dispersion spectrum to that of MTJ1.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At zero field (Fig. 8.11a), the magnetisation ripple was barely visible, but under a positive 

field of +20 Oe, the nature of the ripple spectrum became quite different (Fig. 8.11b).  The 

change in sign of applied field with respect to the previous stack reflects the difference in 

net direction of the AAF magnetisation as discussed earlier.  At a field of +24 Oe (Fig. 

Fig. 8.11: Fresnel image sequence of the MTJ2 free layer before annealing. 
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8.11c), domain walls were seen to develop.  These walls were oriented at 10° CW to the 

direction of applied field.  Within each domain, the direction of magnetisation was not as 

easily identified as with MTJ1 due to the reduction in ripple contrast.  When the field was 

increased further, the reversed domains continued to grow in size until at +35 Oe (Fig. 

8.11f), the reversal was almost complete.  Several 360° domain walls were formed, some 

of which linked together to form a chain structure. 

On the reverse path, similar behaviour was observed.  This time, however, the 

domain walls appeared in the field of view parallel to the direction of applied field (Figs. 

8.11j-k).  As the field was reduced to +4 Oe, the magnetisation was oriented in the initial 

direction without the presence of any 360° walls (Fig. 8.11l).  The hysteresis loop is 

centred at +18 Oe with a coercivity of 8 Oe. 

The images in Fig. 8.12 were taken directly after the annealing cycle on MTJ2.  At 

remanence, the ripple contrast was very low and the magnetisation uniform (Fig. 8.12a).  

As the field was increased, so did the dispersion.  At +18 Oe, the magnetisation rotated by 

40° (Fig. 8.12b) before domain walls began to appear.  A single reverse domain (Fig. 

8.12c) increased in size (Fig. 8.12d), gradually covering the whole area of the membrane 

(Fig. 8.12e) apart from regions where long 360° wall segments formed (Fig. 8.12f).  These 

walls were seen to extend over distances greater than 100µm and could only be removed at 

larger fields.  On the reverse path, ripple contrast increased as the field was reduced from 

+30 Oe (Fig. 8.12g) to +20 Oe (Fig. 8.12h).  At +18 Oe (Fig. 8.12i) the ripple was oriented 

in different directions, forming low angle domain walls.  This unusual ‘swirling’ 

configuration was then destroyed as two ~180° walls swept through the sample (Fig. 

8.12j).  Further reduction of the field saw the formation of a near uniform configuration, 

but with the presence of the 360° wall sections around the edges of the ‘window’ (Fig. 

8.12k).  The magnetisation was oriented back in the original direction at +4 Oe (Fig. 8.12l).  

After annealing, therefore, the MTJ2 hysteresis loop exhibited an offset of +18 Oe and 

coercivity of 2 Oe. 

 

 

 

 

 

 

 

 

 



Chapter 8: Magnetic tunnel junctions incorporating an artificial antiferromagnet in the free layer  

 193

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.13a-j shows DPC images of another MTJ2 sample.  Once again, compared with 

MTJ1 before annealing, the high frequency ripple contrast was very low at zero field.  

When the field approached the critical values in the forward and reverse directions, ripple 

contrast of a lower spatial frequency increased, together with a slight rotation of the 

magnetisation vector.  As expected, this was followed by the formation of a relatively 

complex domain structure which collapsed into a number of °360  domain walls.  OH  and 

CH  are +16 and 8 Oe respectively. 

Fig. 8.12: Fresnel image sequence of the MTJ2 free layer after annealing. 
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After heat treatment (Fig. 8.14a-j) the local deviation of magnetisation from the net 

direction did not appear to have been dramatically varied, again, since the initial degree of 

ripple was noticeably low.  The reversal process was effected by the nucleation and 

movement of a small number of domain walls which switched the film rather suddenly.  

These walls on the forward and reverse paths were oriented at 28° CW and 43° CCW to 

the applied field direction.  As can be seen in Fig. 8.14i-j, a 360° wall was formed after the 

magnetisation reversed back to its original direction.  From these images, OH  and CH  are 

estimated to be +18 and 1 Oe respectively. 

 

 

Fig. 8.13: DPC image sequence of the MTJ2 free layer before annealing. 
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8.3.3 MTJ3 

 

To complete this set of experiments, MTJ3 was studied before and after the annealing 

cycle.  The images reveal a similar behaviour to the first stack.   

 

 

 

 

 

 

 

Fig. 8.14: DPC image sequence of the MTJ2 free layer after annealing. 
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Prior to heating (Fig. 8.15i-j), a relatively large deviation of the local magnetisation from 

the mean direction resulted in significant ripple contrast at zero field (Fig. 8.15a).  On 

applying a negative field, the ripple was seen to intensify at –20 Oe (Fig. 8.15b) before the 

formation of domains of reverse magnetisation (Fig. 8.15c).  At a field of –26 Oe (Fig. 

8.15d) the reversal was half complete with the formation of a complicated domain 

configuration.  A further increase in field strength saw the complex structure split up into a 

Fig. 8.15: Fresnel image sequence of the MTJ3 free layer before annealing. 
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number of 360° domain wall chains (Fig. 8.15e), many of which annihilated at –30 Oe 

(Fig. 8.15f), leaving isolated walls that were persistent up to higher fields.  The backward 

path proceeded in much the same way.  Ripple intensification occurred on going from –20 

Oe (Fig. 8.15g) to –10 Oe (Fig. 8.15h), followed by domains at –8 Oe (Fig. 8.15i).  The 

complex domain configuration (Fig. 8.15j) then started to collapse into 360° walls (Fig. 

8.15k) at –4 Oe, with some chains remaining at zero field (Fig. 8.15l).  The images suggest 

a hysteresis loop centred at –16 Oe with a coercivity of 10 Oe. 

After annealing the sample (Fig. 8.16i-j) the dispersion spectrum, in agreement 

with the results from MTJ1, changed dramatically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8.16: Fresnel image sequence of the MTJ3 free layer after annealing. 

(l)

-10 Oe 

H
(b)

-10 Oe

(c)

-17 Oe 
(d) 

-19 Oe

25µm

(a) 

0 Oe 

M 

(e)

-21 Oe

(f)

-25 Oe 
(g) 

-30 Oe

(h)

-25 Oe

(i)

-20 Oe 
(j) 

-17 Oe

(k)

-15 Oe



Chapter 8: Magnetic tunnel junctions incorporating an artificial antiferromagnet in the free layer  

 198

At zero field (Fig. 8.16a), a very fine ripple was observed which intensified at –10 Oe (Fig. 

8.16b), and even further at –17 Oe (Fig. 8.16c).  A further increase in field to –19 Oe (Fig. 

8.16d) resulted in a sudden reversal via the movement of a single and relatively straight 

domain wall, oriented at 12° CCW to the field.  After passing through the film, the 

magnetisation appeared to be completely reversed at –21 Oe (Fig. 8.16e) without the 

formation of any 360° walls.  Further increase of field caused a reduction in the ripple 

contrast (Fig. 8.16f).  By reducing the applied field after saturation, almost identical 

behaviour occurred.  Ripple intensification took place on decreasing the magnitude of field 

from –30 Oe (Fig. 8.16g) to –25 Oe (Fig. 8.16h) and –20 Oe (Fig. 8.16i), followed by the 

nucleation and movement of a single domain wall over the field of view (Fig. 8.16j).  This 

domain wall was oriented at 35° CCW to the field direction.  As in the forward path, the 

reversal took place over a very small field range.  At –10 Oe the magnetisation was 

oriented in the original direction, again with the absence of 360° domain walls.  The 

hysteresis loop for this free layer is centred at –18 Oe with a coercivity of 1 Oe. 

From the DPC images (Fig. 8.17a-j) of MTJ3, the ripple contrast was very 

prominent prior to annealing.  As shown in this sequence, the reversal proceeded with an 

increase in ripple coarseness before domain walls swept through the film.  These walls 

were oriented at 23° CW and CCW to the field direction in the forward and reverse paths 

of the hysteresis loop.  Very little rotation was evident in this particular experiment.  The 

configuration during and after reversal were also surprisingly featureless.  In the previous 

MTJ3 specimen, a highly irregular domain pattern collapsed to form 360° wall loops and 

chains.  In this sample, no complicated structures were observed, although these images 

did only cover a small region of the film.  The offset and coercivity are calculated to be –

16 and 10 Oe respectively. 
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The reversal process did not change very much on heating the sample as can be seen from 

the images in Fig. 8.18a-j.  From these images, the only obvious differences were the 

reduction in ripple contrast as expected, and a change in domain wall orientation on the 

reverse path.  During the outward path, the wall was oriented at 23° CW to the field 

direction as before, but on the return was parallel to the field.  There was also a moderate 

degree of contamination present on the surface of this specimen, attributed to damage by 

the electron probe.  As this was actually the first specimen studied, additional time spent 

trying to optimise the DPC imaging conditions meant that the film was subjected to more 

electrons than any of the other samples.  This had no effect on the free layer reversal, 

however.  The images suggest a hysteresis loop centred at –19 Oe with a coercivity of 2 

Oe. 

Fig. 8.17: DPC image sequence of the MTJ3 free layer before annealing. 
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8.3.4 Comparison of the magnetisation ripple 

 

In order to study the effects of heat treatment and applied field on the magnetisation ripple 

as well as a comparison of dispersion between the different stacks, estimations of the most 

prominent ripple wavelength and dispersion angle were made from the Fresnel images.  

For a one-dimensional variation in magnetisation, the Fresnel contrast approximates to, 

 

dy
)y(dB

h
∆λet

=)y(C x     (8.8) 

 

where t is the FM film thickness, λ is the electron wavelength, ∆ is the defocus distance 

and xB  is the x-component of magnetic induction [187].  In this equation, the effects of 

Fig. 8.18: DPC image sequence of the MTJ3 free layer after annealing. 
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inelastic scattering and finite electron source size are ignored which has been shown to 

underestimate the magnitude of dispersion in the past.  Additionally, measurements of the 

ripple wavelength must be taken with care as the transfer function in the Fresnel mode 

oscillates strongly at large defoci.  However, despite these criticisms, the Fresnel images 

can still provide useful information on the dispersion.  Firstly, the finite source of a field 

emission TEM is effectively point-like, leading to negligible error in comparison to those 

fitted with thermionic emitters.  Inelastic scattering remains a problem though, unless the 

microscope is equipped with an energy filter.  The Philips CM20 used in this work 

unfortunately has no such filter and so the contrast measured is lower than equation 8.8 

suggests.  Despite this, although the Fresnel images do not allow absolute determination of 

the dispersion angle, they do provide a good method of obtaining information in arbitrary 

units.  By assuming that the ripple is sinusoidal with amplitude δMs  and wavelength Λ, 

the contrast can be expressed as, 
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with the standard deviation of intensity given by, 
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where sM  is the saturation magnetisation and δ is the root-mean-square (rms) dispersion 

angle.  Since the only varying quantities in equation 8.10 are the FM thickness (between 

samples) and ripple wavelength, Λ/δt∝σ .  However, as the two AAF FM layers in MTJ2 

and 3 are unlikely to be perfectly correlated through the Ru spacer, only the thicker of the 

layers should be taken into account. 

It is possible to use the DPC mode to supplement the Fresnel calculations.  This in-

focus technique can provide more reliable information on the ripple spectrum and an 

absolute measurement of the dispersion.  However, this analysis was not well suited to the 

image sequences shown here.  In many of the DPC images acquired, there appeared to be a 

relatively large background intensity gradient.  This noise was caused by a descan 

alignment error related to lens aberrations in the microscope during the time of this 

experiment and unfortunately could not be avoided.  A second problem was that the 

difference images were obtained using an electronic mixer system which introduced a 

signal offset and gain to optimise the contrast.  Such a system is invaluable during 
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experiment as it allows the user to observe difference signals in real-time during the scan 

without the need for subsequent processing.  Therefore, any corrections to the imaging 

conditions can be made immediately.  In hindsight, a better idea would have been to take 

the signal from each quadrant of the detector and create the desired difference images 

using computer software, without modifying the data. 

 As the images were recorded digitally using a charge-coupled device (CCD) 

camera, analysis of the pixel intensity was quick and straightforward.  The ripple was 

longitudinal in nature, so the average wavelength was estimated by taking a linetrace 

parallel to the axis of magnetisation and counting the number of intensity peaks.  This was 

performed for each image of the Fresnel sequences.  As we are dealing with a dispersion 

spectrum, a variety of different wavelengths were present in the images.  However, only 

the most prominent variations were taken into account.  To estimate the difference in 

dispersion angle between the images, the standard deviation of intensity taken from a line 

trace was weighted by the measured value of Λ and the (larger) free layer FM thickness. 

The variation in ripple wavelength and rms dispersion angle for the forward and 

reverse paths of each sample before and after heat treatment are given in Fig. 8.19 and Fig. 

8.20 respectively.  The values at zero field are given in Table. 8.1.  Studying the 

wavelength data first, each specimen showed a substantial increase in period as the field 

approached that required to reverse the magnetisation.  After reversal, this value then 

dropped suddenly and levelled out at higher field.  These graphs are offset as a result of the 

Néel coupling.  The wavelengths appeared to fluctuate about similar values for each MTJ 

albeit with different peak magnitudes at the coercive field.  Before annealing the stacks 

MTJ1 exhibited the largest peak wavelength and MTJ2 the smallest, but after increasing 

the magnetic homogeneity with heat treatment, MTJ2 and MTJ3 showed the largest and 

smallest peak wavelengths respectively.  Also, from these graphs it can be seen that the 

ripple wavelength for each sample decreased on annealing. 
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The rms dispersion data showed a very similar trend, although the values for MTJ1 were 

far greater than the other stacks, both before and after annealing.  Before annealing, MTJ2 

exhibited the lowest peak dispersion angle as was obvious from the Fresnel and DPC 

images, but after annealing MTJ3 was more uniformly magnetised. 

 

 

 

 

 

 

 

Fig. 8.19: Variation of ripple wavelength with applied field for (a)-(b) MTJ1, (c)-(d) MTJ2 and (e)-(f) MTJ3 

before and after annealing. 
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8.4 Discussion of magnetic behaviour 

 
The data presented here, and summarised in Table 8.1 (below) are very much in agreement 

with the previous VSM investigation by F. W. M. Vanhelmont and H. Boeve on the same 

MTJ samples [183].  The Fresnel and DPC images have revealed a number of interesting 

points about the magnetic behaviour of each stack and this section will attempt to explain 

the findings. 

 

 

 

Fig. 8.20: Variation of the rms dispersion angle with applied field for (a)-(b) MTJ1, (c)-(d) MTJ2 and (e)-(f) 

MTJ3 before and after annealing. 
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8.4.1 Offset and coercivity 

 

These results clearly show a reduction in the offset field as a result of including an AAF in 

the free layer of the stack.  Before heat treatment, this offset was reduced by 19% for MTJ2 

and 24% for MTJ3, but these values improved to 31% and 27% respectively on annealing.  

That the reduction in offset increased after properly setting the exchange bias is a direct 

consequence of increasing the uniformity of the magnetisation in each FM layer.  

Effectively, many of the magnetic inhomogeneities are removed during this process 

leaving the AAF optimised for charge cancellation at the interfaces.  The post-anneal data 

also show a greater reduction in field for MTJ2 over MTJ3.  This result is caused by the 

thinner bottom AAF layer which allows the poles of opposite polarity to be brought closer 

to the tunnel barrier, thus compensating the charge more effectively [181].  Another point 

about the variation in offset is the increase in magnitude for the individual stacks after the 

samples were annealed.  When the pinned layer is strongly magnetised in the plane of the 

film, the Néel coupling is enhanced relative to when the magnetisation is less uniform, and 

the offset field is increased.  Also, as expected, the sign of offset was different for MTJ2 

when compared to MTJ1 and MTJ3.  This change in sign is the result of a difference in the 

direction of free layer net magnetisation at zero field when the AAF FM layer order is 

changed, as shown diagrammatically in Fig. 8.5. 

 Turning the attention now to the free layer coercivity, it can be seen that before 

annealing, addition of the AAF caused an increase in switching field but after annealing 

reduced the coercivity.  Also, comparing the field values before and after heat treatment for 

each stack, it can be seen that the coercivity drops (substantially for MTJ2 and MTJ3) on 

annealing.  In single layer polycrystalline films, the rigidity is affected by the local 

Sample Before/after 
annealing 

Offset 
 (Oe) 

Coercivity 
 (Oe) 

Ripple wavelength at 
remanence (nm) 

rms dispersion angle at 
remanence (arbitrary units)

MTJ1 

MTJ1 

MTJ2 

MTJ2 
MTJ3 

MTJ3 

before 

after 

before 

after 
before 

after 

-21 

-26 

+17 

+18 
-16 

-19 

6 

4 

8 

1 
10 

1 

514 

396 

393 

358 
588 

336 

5174 

2332 

1507 

988 
2667 

859 

Table 8.1: Offset, coercivity, average ripple wavelength and rms dispersion angle at zero field for the free

layer of each MTJ stack before and after annealing. 
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anisotropy of the crystallites which creates a frictional torque against rotation.  With an 

AAF present, however, the magnetic rigidity is amplified by the Q-factor as shown in 

equation 8.3.  The AAF rigidity is strongly affected by that of the constituent layers, and 

the larger the coercivity of these layers, the greater the rigidity of the AAF.  As a result of 

the strong AF coupling, the magnetic stiffness of one layer is transferred to the other.  This 

would explain the increase in coercivity from MTJ1 to MTJ2 or MTJ3 before annealing.  

After annealing, the decrease in coercivity with inclusion of the AAF is more difficult to 

explain.  This result may be influenced by the Ru spacer.  In an MFM/TMR study [188] of 

AAFs, Ru has been found to diffuse between the grains of the FM causing intermixing at 

the FM-Ru interface.  This intermixing led to a decrease in the FM magnetisation and 

exchange coupling resulting in a lower coercivity.  As atomic mobility increases with 

temperature, Ru diffusion is certainly a consideration during a heating cycle. 

 For each stack, the coercivity dropped once the samples were annealed in an 

applied field.  This is caused by an increase in magnetic homogeneity for the free and 

pinned layers of the structure [189].  As can be seen in the Fresnel and DPC images prior 

to heat treatment, the magnetisation ripple was pronounced and the domain structure 

during reversal relatively complex.  Previous studies [36,37] have shown that domain walls 

in one layer give rise to local charge accumulations which can pin walls in neighbouring 

layers.  Therefore, interactions between the pinned and free layers create pinning sites for 

domain walls in the free layer that must be overcome for the reversal to go to completion.  

After annealing, the magnetisation in each layer is more uniform and the number of 

pinning sites reduced.  As a result, the magnetisation undergoes a less complex reversal 

with a lower coercivity. 

 

8.4.2 Reversal mechanism 

 

The Fresnel and DPC image sequences show that in these samples, the free layer 

magnetisation reversed via the nucleation and movement of domain walls.  In 

polycrystalline films, the local sense of rotation of the magnetic moments inside a layer can 

be influenced by thermal activation (though small at room temperature), variations in the 

exchange interaction and changes in the local anisotropy.  Therefore, different regions 

spaced far enough apart to avoid direct exchange can rotate either CW or CCW resulting in 

domain formation [188].  The moments inside uniformly magnetised regions weakly 

coupled to their neighbours tend to rotate first followed by those tightly coupled at higher 

field.  This model describes the behaviour of most of the MTJ samples studied here.  

However, as shown in Fig. 8.12, one MTJ2 specimen started to reverse via incoherent 
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rotation, producing a swirl-like configuration before domain walls were nucleated.  In 

another sample of this type (not shown), the complete reversal was by incoherent reversal.  

In this specimen, the magnetisation appeared to rotate differently in neighbouring regions, 

forming low-angle walls before further rotation caused their annihilation and precluded the 

nucleation of 180º walls.  It is important to note here, however, that to perform the 

annealing experiments in the TEM, each sample had to be inserted manually into a 

specially designed heating rod.  The down side to this procedure is that in-situ rotation of 

the specimen was not possible.  Hence, the precision with which the orientation of the 

applied field could be set with respect to the original easy axis was limited to 

approximately ±2° [190].  In addition, during these reversals, the field was applied along 

the same axis as that used to set the direction of the pinned layer magnetisation throughout 

the heating cycle.  However, it is possible that on removal of this aligning field, the easy 

axis of the free layer could have changed slightly, meaning that the field applied to reverse 

the film would not have been aligned exactly anti-parallel to this axis, increasing the 

chance of rotation.  Therefore, by applying the field at a slightly different angle to before, 

the MTJ2 free layer magnetisation may have been aligned more anti-parallel to the field, 

resulting in a more typical reversal process. 

 Another point to mention about the image sequences is the orientation of domain 

walls during the forward and reverse paths.  This change in orientation is not uncommon.  

In a previous study of spin valves [191], domain walls were inclined at ±25° angles to the 

easy axis.  This was attributed to an easy-axis dispersion whereby the magnetisation in 

different regions rotated towards the applied field.  In a study of IrMn/CoFe bilayers [189], 

similar behaviour was the likely result of an imperfect interface typical of multilayer 

polycrystalline films, giving rise to both unidirectional and biquadratic energy terms.  

Under these conditions asymmetric hysteresis occurs and a ‘natural angle’ emerges as a 

consequence of the FM passing through different effective fields on the forward and 

reverse paths. 

Also, when the samples were annealed, the shape and length of the domain walls 

varied.  Before annealing the walls were short and curved, whereas those imaged after heat 

treatment appeared to be relatively straight and extended over larger distances.  This is 

again related to the increased uniformity of the magnetisation when the easy axis is 

properly set.  Randomly oriented crystallites result in the formation of more complex 

configurations whereas a strongly induced easy axis favours long straight domain walls 

that are able to sweep through the film. 
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8.4.3 Magnetisation ripple 

 

The Fresnel and DPC images show a lot of contrast from the magnetisation ripple of the 

FM layers.  In polycrystalline magnetic materials, ripple results from local variations in the 

anisotropy direction between the coupled crystallites [192,193].  This gives a random 

contribution to the easy-axis direction of the magnetisation vector.  With MTJs 1 and 3, the 

ripple contrast appeared to be very similar.  However, with MTJ2, the intensity of ripple 

within each domain was much reduced, making an analysis of the magnetisation direction 

far more difficult.  One possible explanation for this observation could be a change in grain 

size.  In the previous VSM study, the AF coupling strength between the layers of the AAF 

increased with the thickness of the bottom NiFe layer.  The explanation for this result was 

that renucleation occurred for grain growth on top of the 32OAl  [183].  As a result, the 

grain size at the Ru spacer was larger for a thicker bottom layer and the random disorder at 

grain boundaries was reduced, leading to an enhanced AF coupling strength.  As 

magnetisation ripple is directly related to the crystallites, it is likely that the dispersion 

spectrum will also vary with grain size.  Interlayer mixing may contribute as well, 

however.  Each of the stacks are identical in structure up until the NiFe on top of the 

alumina barrier.  In MTJs 1 and 3, the NiFe layer directly above the oxide is relatively 

thick compared to the second junction, which is only slightly thicker than the magnetically 

dead NiFe seed layer.  In MTJ2, therefore, the 3nm layer is likely to be less uniform in 

structure than thicker layers of the same material, and it could be expected that defects and 

interlayer mixing at this part of the stack will affect the magnetic structure. 

The variations in ripple both before and after annealing, and indeed between the 

samples, is likely to have a considerable effect on the reversal mechanism.  It was observed 

in the pre-annealed images that domains of reverse magnetisation were formed from 

regions of intense ripple, and that the domain patterns involved could be quite complex in 

nature.  The chain-like structures observed in all three stacks are one such example and 

have been found to be produced when lower mobility walls are pinned during reversal and 

orthogonal walls nucleated between them [191].  As magnetisation ripple has an associated 

surface charge that can affect the distribution of neighbouring layers [181,194], it is likely 

that the larger dispersion is partly responsible for the formation of these structures.  When 

the ripple wavelength and dispersion angle decreased after annealing, a far simpler reversal 

took place via the movement of only one or two domain walls.  In line with what has been 

discussed earlier on the variation in domain structure, this behaviour is indicative of a 

higher degree of homogeneity.  In other MFM [195] and TEM [191] experiments 

performed on multilayer stacks, it was found that the incorporation of a natural 
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antiferromagnet reduced the amplitude of dispersion.  In the latter study, Néel coupling 

between the free and pinned layers of the spin valve was also expected to contribute. 

The ripple spectrum was found to vary with applied field.  As shown in Figs. 8.19 

and 8.20, the wavelength and dispersion angle peaked just before reversal and then 

dropped in magnitude at the coercive field.  This can also be seen in the images where the 

ripple contrast within the reversed part of the film was lower than that in the regions still to 

reverse.  Such behaviour occurred for each film but was less noticeable once the samples 

had been annealed.  This behaviour can simply be attributed to a variation in the Zeeman 

energy.  As the field anti-parallel to the net magnetisation increases, the Zeeman energy 

also increases.  The weakly coupled grains then start to rotate CW and CCW to align with 

the field, dragging the more strongly coupled grains behind them.  This gradually increases 

the dispersion until, at a critical field, domain walls are nucleated and irreversible changes 

in the magnetic microstructure take place. 

 

8.4.4 360º domain walls 

 

A final point from the experimental observations that must be addressed is the presence of 

360º domain walls.  These walls were observed in each film and occurred more frequently 

before the samples were annealed.  Such structures have been seen in numerous studies on 

samples containing AAFs [188,194-196] but can also be formed in different multilayer 

systems [197-200].  They occur between similarly magnetised domains and appear as two 

separate 180º Néel walls separated by a third domain oriented anti-parallel to its 

neighbours.  As the magnetisation rotates continuously between the parallel domains, these 

structures can be considered as individual entities.  Often 360º domain walls take the form 

of linear wall sections, but as has been shown here, they can just as easily link up to form 

360º wall loops (Fig. 8.21) which are extremely stable [191]. 

 

 

 

 

 

 

 

 

 

 
Fig. 8.21: A 360º domain wall loop. 
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The domain structure is initiated when Néel walls of opposite chirality come together as 

the reverse field is increased (Fig. 8.22a).  In this situation, like charges from the walls 

preserve the central domain oriented anti-parallel to the applied field direction and the 

spins rotate continuously through 360° (Fig. 8.22b).  When the Néel walls have the same 

chirality (Fig. 8.22c), on the other hand, opposite charges favour annihilation and the film 

becomes magnetised in the field direction (Fig. 8.22d). 

 

 

 

 

 

 

 

Although 360º walls are formed in single layer films, they are more abundant in samples 

containing AAFs because the AF coupling adds an additional contribution to their 

nucleation and stability [188].  They are nucleated in the bottom AAF FM layer where they 

are stabilised by charges of opposite polarity created by the interface roughness at the 

tunnel barrier.  In this layer, the magnetisation at the centre of the wall is opposite to the 

field direction.  This configuration is then mirrored in the upper AAF layer with the centre 

of the wall magnetised parallel to the field, creating a configuration with reduced 

magnetostatic energy.  In addition, due to roughness at the Ru spacer, local variations in 

the AF coupling prevent coherent reversal of the film and act as nucleation and wall-

pinning centres.  This is a further reason why AAFs show a greater density of 360º walls 

than single layer films. 

Once formed, their stability is dependent on the balance between the Zeeman, 

domain wall and AF coupling energies.  As the field is inceased, the Zeeman and domain 

wall energies become unfavourable for the wall in the bottom of the AAF and its central 

domain decreases in size.  However, the AF coupling preserves the wall and acts as a 

pinning source until the field strength dominates, causing it to collapse.  In the upper layer, 

the applied field is parallel to the magnetisation at the centre of the wall, enhancing its 

stability.  Nevertheless, expansion of this central domain is prevented by the strong AF 

coupling to the bottom AAF layer which is now uniformly magnetised in the field 

direction.  Only at very high field does an unfavourable domain wall energy cause the 

upper wall to collapse.  This enhanced wall stength may be the reason why 360º loops were 

observed at the end of the reversal sequences of both MTJ2 and MTJ3 but disappeared at 

low field for MTJ1 in Fig. 8.9j. 
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Fig. 8.22: Mechanism for the formation of 360° domain walls. 
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8.5 Physical characterisation 

 
In order to confirm the arguments on grain size and interlayer mixing in the previous 

section, it was necessary to analyse the physical structure of the MTJ samples.  This was 

performed using BF and DF TEM with electron diffraction.  First, diffraction patterns were 

obtained from each sample to check for any obvious structural differences and ensure that 

(111) texturing was indeed induced by the seed layers.  This was then repeated after the 

samples had been annealed to examine the physical effects of heat-treatment.  Following 

this, in-plane grain size estimations were made from several BF and DF images acquired 

by passing the beam through the complete stack.  Such estimations do not give any 

information on the grains within the individual layers of the film, but do provide an 

average result which can highlight any major changes in morphology.  To analyse the 

structure of the different layers in each sample, cross-sections were fabricated by Mr Brian 

Miller and imaged in BF and DF by Dr Ian MacLaren.  The cross-sectional images were 

also used to examine the layer roughness and compare values of amplitude and wavelength 

with those obtained from the VSM experiments performed at Philips. 

 

8.5.1 Electron diffraction 

 

Diffraction patterns taken with each sample at 0°, 15° and 30° tilt are shown in Fig. 8.23 

before and after annealing.  Only one set of diffraction patterns are shown because the ring 

structure was identical for each stack.  As can be seen, the heat treatment had no effect on 

the pattern.  When the tilt angle was increased, the contrast changed noticably, indicating 

that a high degree of texturing was present as a result of the seed layers.  For each pattern, 

the radii of the rings were measured and the rings indexed by plotting R² against (h²+ k²+ 

l²) since, 

 

)lkh()
a
Lλ(R 22222 ++=    (8.11) 

 

where R is the radius, λ is the electron wavelength, L is the camera length, a is the material 

lattice parameter and h,k,l are the Miller indices.  As the experimental parameters are 

known, Miller indices can be deduced from a knowledge of the crystal structure and the x-

coordinates of each point at which R² cuts the gradient of the graph (Fig. 8.24).    
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Typically, electron diffraction patterns are difficult to index for multilayer samples because 

the electron distribution is a projection through the complete stack.  However, this was 

simplified greatly by acknowledging that the stack thickness was dominated by NiFe and 

IrMn, both of which are face centred cubic (fcc), and that the Ta and 32OAl  were 

amorphous.  Also, as the CoFe pinned layer and Ru spacer were thin with respect to the 

NiFe and IrMn, they could be ignored.  Therefore, the diffraction patterns shown are 

effectively a superposition of NiFe and IrMn electron distributions with some diffuse rings 

as a result of the Ta.  As the NiFe and IrMn lattice parameters are 3.575 and 3.811 

angstroms respectively, lattice mismatch was inevitable during growth and some of the 

reflections are split. 

 

Fig. 8.23: Electron diffraction patterns taken before annealing at (a) 0°, (b) 15° and (c) 30° tilt and after
annealing at (d) 0°, (e) 15° and (f) 30°. 
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At 0° tilt, with the beam perpendicular to the film plane, the (111), (200) and (220) rings 

were visible and homogeneous.  However, at 15° the (220) contrast was reduced (except 

along the tilt axis) and additional rings appeared corresponding to the (311), (222), (400) 

and (331) planes.  By tilting the sample to 30° the (220) contrast practically disappeared 

and the (200) NiFe and IrMn rings became distinguishable.  These intensity variations 

support the claim for [111] texturing.  For the zero order Laue zone (ZOLZ), the electron 

beam direction [uvw] and the allowed Bragg reflection (hkl) satisfy the Weiss zone law 

[201], 

 

0lwkvhu =++     (8.12) 

 

Therefore, assuming the beam is incident along [111], the only planes which satisfy 

equation 8.12 are the set {220}.  Essentially, if the films were 100% textured in the [111] 

direction, the (220) ring would be the only one visible at 0° tilt.  In the patterns obtained, 

the (220) reflection is indeed strong, but other rings are also present because this level of 

texturing is physically impossible using the current sputtering tools.  With the sample tilted 

at 15° (beam incident ~[331]), stereographic projections calculated using the Desktop 

Microscopist software predict that faint (311), (331) and (420) rings should be visible in 

the diffraction pattern, whilst at 30° tilt (beam incident ~[220]), contrast from the (111) and 

(200) rings should also increase.  The experimental data are in agreement with this, but as 

before, other reflections were also visible.  Details of the stereographic projection 

technique are not given here, but can be found in reference [48]. 
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Fig. 8.24: Indexed diffraction pattern from the MTJ stacks. 



Chapter 8: Magnetic tunnel junctions incorporating an artificial antiferromagnet in the free layer  

 214

8.5.2 Plan-view BF/DF imaging 

 

By passing the electron beam through the complete multilayer stack, BF and DF images 

were acquired (Figs. 8.25-8.27).  Whilst the BF micrographs were obtained by placing the 

objective aperture over the central part of the diffraction pattern, their DF counterparts 

were taken using electrons from the (220) reflection.  As observed in Fig. 8.23a, this 

diffraction ring was intense, indicating that many of the crystallites satisifed the Bragg 

condition, allowing them to become clearly visible in the DF images.  From several images 

of each sample, the mean grain size was determined using a particle analysis tool built into 

the Digital Micrograph software.  To perform this analysis, a threshold is first selected 

which chooses the limits for the maximum and minimum grey-levels shown in the image.  

This is set so that only diffraction contrast from the strongly reflecting grains is visible.  

However, threshold selection is a matter of judgement, and care has to be taken not to omit 

the smallest grains from the calculations.  In sputter-deposited films, the distribution of 

grain sizes often follows a log-normal variation, with probability expressed as, 

 

]
σ2

)µ)D(ln(exp[
Dσπ2

1)D(P 2

2−−
=    (8.13) 

 

where D is the grain size and µ and σ are the mean value and standard deviation of ln(D) 

respectively.  To achieve a realistic grain size estimation, data from previous studies on 

similar films were used as a guide to help set the threshold.  The grain diameter was then 

calculated from statistics on the highlighted regions.  It is important to stress that this 

technique provides only a rough estimate.  The values for each sample are given in Table 

8.2.  These results show that the grain size was ~7nm for each sample and that the heating 

and field-cooling cycle caused no discernable change in the mean diameter. 

 

 

 

 

 

 

 

 

 

 

Sample Before/after 
annealing Bottom free 

layer 
Complete 

stack 

Roughness 
amplitude (nm) 

MTJ1 
MTJ1 

MTJ2 

MTJ2 
MTJ3 

MTJ3 

before 

after 

before 

after 
before 

after 

6.9 

7.0 

7.0 

7.1 
7.0 

7.1 

3.2 

3.1 

2.7 

2.6 
4.1 

4.3 

- 

- 

4.5 

4.5 
2.5 

2.4 

19.4 

17.0 

9.5 

10.2 
12.6 

13.9 

Grain size (nm)

Top free 
layer 

Upper 
layers 

Roughness 
wavelength (nm) 

3.2 

3.1 

3.5 

3.4 
3.5 

3.7 

1.2 

0.7 

1.7 

1.3 
1.1 

1.0 

Table 8.2: Comparison of grain size and layer roughness between the different MTJ stacks. 
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20nm 20nm

20nm 20nm

(a) MTJ1 BF unannealed (b)

(c) (d)

MTJ1 DF unannealed 

MTJ1 BF annealed MTJ1 DF annealed 

20nm 20nm

(g) (h)
20nm 20nm

(e) (f)MTJ2 BF unannealed MTJ2 DF unannealed 

MTJ2 BF annealed MTJ2 DF annealed 

Fig. 8.25: BF and DF plan-view images obtained from MTJ1 (a)-(b) before and (c)-(d) after the annealing 

process. 

Fig. 8.26: BF and DF plan-view images obtained from MTJ2 (a)-(b) before and (c)-(d) after the annealing 

process. 
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As we are particularly interested in the grain structure of the free layer, however, a second 

batch of samples were fabricated onto 43NSi  membranes which included only the upper 

layers of the stack from the 32OAl  with the NiFe dead layer to induce [111] growth.  For 

clarity, the layer structure (thicknesses in nanometres) and a schematic diagram are given 

below, 

 

MTJ1’: 2NiFe/0.9AlO/5NiFe/3.5Ta 

MTJ2’: 2NiFe/0.9AlO/3NiFe/0.8Ru/8NiFe/3.5Ta 

MTJ3’: 2NiFe/0.9AlO/8NiFe/0.8Ru/3NiFe/3.5Ta 

 

 

 

 

 

 

 

 

 

Fig. 8.27: BF and DF plan-view images obtained from MTJ3 (a)-(b) before and (c)-(d) after the annealing
process. 
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Fig. 8.28: Layer structure of the new MTJ’ samples. 
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The films were deposited by Dr Susana Cardoso at INESC-MN in Lisbon, Portugal.  It is 

important to stress, however, that these samples were fabricated some time after the 

previous batch and were only intended for plan-view BF/DF imaging.  Images showing 

diffraction contrast from the grains of the free layer are shown in Figs. 8.29-8.31.  These 

were acquired before and after the same annealing process used earlier. 
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(a) MTJ1’ BF unannealed (b)

(c) (d)

MTJ1’ DF unannealed 

MTJ1’ BF annealed MTJ1’ DF annealed 

Fig. 8.29: BF and DF plan-view images obtained from MTJ1’ (a)-(b) before and (c)-(d) after the annealing

process. 
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Fig. 8.31: BF and DF plan-view images obtained from MTJ3’ (a)-(b) before and (c)-(d) after the annealing

process. 
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Fig. 8.30: BF and DF plan-view images obtained from MTJ2’ (a)-(b) before and (c)-(d) after the annealing 

process. 
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The mean grain sizes are given in Table 8.2 and were all between 3-4nm.  These values are 

around half the size of those measured from the complete stack showing that larger grains 

in the lower layers of the structure contributed greatly to the earlier image contrast.  In 

addition, the grains in the single free layer of MTJ1 were slightly smaller than the grains of 

the AAF in MTJs 2 and 3.  This was expected, since thicker layers of material allow the 

formation of larger crystallites.  These images, however, did not reveal information on the 

grain structure within the separate AAF layers, so a cross-sectional analysis was necessary. 

 

8.5.3 Cross-sections 

 

Cross-sections were made from the membrane-supporting substrates using the 

encapsulation technique detailed in chapter 3.  These were then imaged in bright and dark 

field to capture the diffraction contrast of the different layers and their constituent grains.  

Several BF and DF images were obtained from each specimen and analysed.  A selection 

of these are shown in Figs. 8.32-8.34.  In these images, contrast also arises from the SiN 

membrane, the oxide formed above the Ta cap and the epoxy resin used to glue the two 

substrate sections together during fabrication.  As is evident from the grain structure, the 

only crystalline layers in the stack are NiFe, IrMn, CoFe and Ru.  The other layers are 

amorphous and exhibit no crystallite contrast. 
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In the images of MTJ1, contrast between the NiFe dead layer, IrMn and CoFe is poor 

because many grains that were nucleated in the NiFe continued into the IrMn and CoFe, 

despite the differences in lattice parameter.  The grain growth then stopped at the 

amorphous 32OAl  layer and new crystallites were nucleated in the NiFe free layer.  As it 

was suspected that the grain size within this layer had an impact on the magnetic 

behaviour, their average diameter was calculated.  The results from each sample are given 

in Table 8.2.  Although heating cycles can cause a variation in the grain size of a 

polycrystalline film [202], this was not observable in these images.  The mean free layer 

grain size was estimated to be 3.2nm before annealing and 3.1nm afterwards.  Layer 

Fig. 8.32: (a), (c) BF and (b), (d) DF cross-sectional images obtained from MTJ1. 
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roughness initiated in the buffer system appeared to be correlated with that at the tunnel 

barrier.  However, local fluctuations of a higher frequency were also present in the 32OAl  

as a result of an uneven grain structure from the underlying NiFe, IrMn and CoFe layers.  

The roughness of the upper layers of the stack, on the other hand, seemed to be fairly 

consistent with the seed layer waviness.  Since the grains in the free layer NiFe were 

relatively small, their structure did not cause additional local fluctuations. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.33: (a), (c) BF and (b), (d) DF cross-sectional images obtained from MTJ2. 
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In MTJ2, the Ru roughness appeared to be conformal with the 32OAl  variations because 

the NiFe separating these two layers was thin, and the small grain size was insufficient to 

redefine the waviness.  This roughness, however, did not continue up to the capping layer.  

Instead, a far smoother surface, exhibiting a more gradual undulation was observed.  The 

Ru spacer and 32OAl  barrier may also have been discontinuous in places, which is not 

surprising considering their thickness.  A previous TEM study on similar samples [184] 

has shown that the 32OAl  can vary in depth within the stack as a result of thickness 

changes in the underlying layers.  These have also been known to cause irregularities in 

other layers of the structure.  The images here reveal contrast to suggest analogous 

morphology.  Unfortunately, it has not been possible to determine if interlayer mixing was 

present between the NiFe free layer and Ru spacer.  Earlier it was discussed that 

intermixing may have been responsible for changes in coercivity and ripple contrast 

between samples, but further compositional characterisation using analytical TEM would 

be required.  What is evident from these images, however, is that the order of the AAF 

layer does affect the grain size at the Ru spacer.  With the thin NiFe layer adjacent to the 

oxide barrier, an average grain diameter of 2.7nm was calculated for this layer and a value 

of 4.5nm for the upper AAF layer.  With MTJ3 on the the other hand, these sizes were 4.2 

and 2.5nm respectively.  Apart from this, the images of MTJ3 show many similarities to 

those taken with MTJ2.  Also, whilst many of the grains in MTJ2 and 3 continue from the 

bottom AAF NiFe layer through into the Ru and top NiFe layer, others can be seen to 

renucleate on top of the Ru spacer which may be the result of lattice mismatch. 
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For comparison of the roughness amplitude and wavelength with the results obtained from 

the previous VSM experiments, measurements were made from the cross-sectional images 

of each sample.  A least squares fit to the VSM data gave h and λ to be 0.16 and 9.8nm 

respectively [183].  These values correspond to a stack with single pinned layer exhibiting 

conformal waviness in each of the layers.  To obtain an estimate from the cross-sections, 

many measurements of the distance from a reference line at the 43NSi  substrate to the 

Fig. 8.34: (a), (c) BF and (b), (d) DF cross-sectional images obtained from MTJ3. 
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centre of the 32OAl  tunnel barrier were made [41].  From these, the mean distance and 

standard deviation were calculated.  In addition, the distances between each peak were 

noted and the mean wavelength determined.  The results can be seen in Fig. 8.35 and Table 

8.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen in the roughness data, the amplitude measured for each stack was far larger 

than the previous estimation, but it is important to stress that these films were deposited on 

Fig. 8.35: Layer roughness at the AlO of (a) MTJ1, (b) MTJ2 and (c) MTJ3. 
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43NSi  membranes for TEM analysis and not bulk 2SiO  as used in the previous study.  

Therefore, substrate roughness variations may have influenced the results.  In addition, the 

MTJ2 layers were found to be slightly rougher than the other stacks, both before and after 

the annealing process; yet another observable difference between these samples.  The 

roughness wavelength on the other hand, was far closer to the VSM result.  Although this 

measurement technique gives only an average approximation, the variation in roughness 

between samples is surprising.  Each specimen was identical in structure up to the free 

layer of the stack, so layer growth was expected to be the same.  One explanation could be 

an increase in stress acting on the seed layers when the single free layer of MTJ1 is 

exchanged for the thicker AAF system.  The induced strain may cause displacement of the 

grains, but this does not explain the similarity in amplitude between MTJ1 and MTJ3.  

From the cross-sectional images, layer roughness does appear to be strongly influenced by 

the local grain structure of the underlying material.  Whilst smaller crystallites result in a 

smoother stack, larger grains found in thicker layers do not conform to the pre-defined 

topology, but create a new, and typically rougher, base upon which subsequent layers 

grow.  Grain sizes below the oxide barrier were not calculated, but perhaps changes in the 

grain diameter within the NiFe, IrMn and CoFe underlayers were responsible for the 

roughness variations in the 32OAl . 

 

8.6 Discussion of physical structure 

 
This physical characterisation has revealed a number of interesting points as well as testing 

the validity of the arguments in the magnetic discussion.  Electron diffraction patterns 

obtained from each of the stacks at different tilts have confirmed that texturing in the [111] 

direction was induced by the seed layers, and that this did not change when the samples 

underwent heat treatment.  The ring structure for each sample was identical, implying there 

were no major differences in structure.  Plan-view images captured in the BF and DF 

modes then revealed a near identical grain size for each film when averaged over the 

complete stack.  These estimates, however, were influenced strongly by the large grains in 

the bottom polycrystalline layers and a second calculation from the upper layers did show 

variations in the mean diameter.  As a result of the thicker AAF with respect to the single 

NiFe layer, the grain size of MTJ2’ and MTJ3’ were larger than MTJ1’.  Cross-sections 

were required to then analyse the grain structure within each layer.  As expected, columnar 

growth of grains nucleated on top of the amorphous oxide took place, and the grain size 

was dependent on the layer thickness.  This strengthens the argument for changes in 

magnetisation ripple being caused by a difference in grain size at the Ru spacer. 



Chapter 8: Magnetic tunnel junctions incorporating an artificial antiferromagnet in the free layer  

 226

Interlayer mixing may still have played a part, however.  If the Ru does indeed mix with 

the NiFe, then several monolayers either side of the spacer will become magnetically dead.  

In this situation the thin AAF layer of MTJ2 and MTJ3 will be further reduced in thickness 

causing the AAF to act more like the single free layer of MTJ1.  If we then consider the 

thick AAF FM in the latter two stacks, we see that the base upon which the grains of the 

layer grow is very different.  Whilst the crystallites of MTJ3 grow on top of the amorphous 

32OAl  in the same way they do in MTJ1, those of MTJ2 grow on a magnetically dead 

crystalline bed.  This additional ordering may be enough to reduce the ripple contrast. 

 Measurements were later made of the layer roughness at the tunnel barrier of each 

stack for comparison with the VSM data.  Although the wavelengths calculated were not 

too far off the quoted value, the previously determined amplitude seems very 

underestimated.  The images revealed an average roughness of ~7 times that deduced from 

the least squares fit, but this may be related to differences in the substrate material. 
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Chapter 9 

 

Conclusions and future work 

 
9.1 Introduction 

 
In this thesis, the magnetic properties of single layer patterned elements and continuous 

multilayer films have been studied extensively using Lorentz microscopy.  The thin film 

elements were specially designed to overcome difficulties in the switching behaviour of 

simple geometries.  As well as demonstrating a level of success, they have also proven to 

be interesting specimens in their own right.  Micromagnetic simulations were used 

throughout this work to aid interpretation of the results and provide a comparison to the 

experimental data.  The investigation of magnetic tunnel junction (MTJ) samples in 

collaboration with Philips Research was also fruitful.  These industrially relevant films 

have shown that the free layer offset field can be reduced by the compensation of magnetic 

surface charge at the layer interfaces.  This chapter discusses the results of each 

experimental chapter and summarises the research.  Following this is a section on new 

domain wall trap (DWT) sensor elements which, as well as being directly relevant to the 

work described in this thesis, could provide an exciting research project for the future. 

 

9.2 Conclusions 

 
In chapter 3, the different techniques used to fabricate continuous film specimens and thin 

film elements were described.  With the main focus of this study on the magnetic 

behaviour of patterned films, it was necessary to develop the existing lift-off process 

further and optimise the quality of the magnetic structures.  To recap, initial test samples 

showed poor feature definition and edge flags, as well as resist residue beneath the 

elements, all of which are problematic for this type of study.  Good edge definition is vital 

when comparing different element geometries because changes to the shape strongly affect 

the magnetic behaviour.  In addition, contamination above or below the ferromagnetic 

material leads to mass-thickness contrast in the TEM which can mask the magnetic 

microstructure we are trying to image.  Metal flagging has been observed in previous 

studies and was attributed to an insufficient undercut in the resist profile.  Experiments 

were therefore carried out to determine the most suitable resist combination necessary to 
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achieve an undercut suitable for lift-off.  In total, 18 different bilayers of resist were 

exposed to the electron beam.  As well as PMMA, the most commonly used electron-

sensitive polymer, ZEP and LOR were tested.  Whilst ZEP is more sensitive to electron 

exposure than PMMA, LOR is unaffected by the beam.  Instead, this layer is wet etched in 

CD26 after development of the imaging resist.  From these experiments, a 40nm 

LOR/40nm PMMA bilayer produced the best results, as determined by both optical and 

scanning electron microscopy.  This resist combination was almost able to eliminate edge 

flags completely and was used for the remainder of the fabrication in this thesis.  To 

improve the patterning resolution, a 100kV electron beam was chosen over the original 

50kV beam.  In addition, a 30nm layer of Al was deposited on top of the resist stack prior 

to exposure.  As 43NSi  membrane substrates are relatively unreflective, the light meter 

was unable to detect the specimen height and the beamwriter struggled to focus on the 

surface.  On using the Al, however, the focussing and feature definition improved greatly.  

A secondary benefit of using Al is to dissipate surface charge.  43NSi  substrates charge 

during exposure because the material is electrically insulating.  This can cause unwanted 

contrast, specimen drift and in extreme cases, substrate damage in the TEM, so it is 

important to provide an electrical path.  A final adjustment to the fabrication procedure was 

the use of an oxygen plasma to remove resist residue after incomplete development.  

Organic material was removed in a matter of seconds with little adverse effect on the 

substrate. 

 The magnetic properties of rectangular elements and geometries of reduced 

symmetry were discussed in chapter 5.  It was shown using simulations, that rectangles are 

able to support a wide variety of metastable configurations at zero field as well as 

degenerate ground states, due to their inherent symmetry.  Fresnel image sequences later 

revealed that vortex end domains were favoured over transverse states in the fabricated 

elements and that on repeated switching, a vortex C state could reverse to form a flux-

closure state.  As discussed, this behaviour is potentially disastrous for storage devices as 

the information contained in the cell is effectively lost along with the net component of 

magnetisation.  In contrast, the simulations predicted transverse end domains instead of 

vortex formation, though this may have been caused by an unrealistically high damping 

parameter.  Excessive damping prevents the magnetisation from fully exploring the energy 

surface and instead forces the spins to converge to the nearest stable configuration.  In 

addition, the simulated switching fields were found to be almost double in magnitude to 

those determined experimentally for elements of the same dimensions and initial 

configuration.  Given that the micromagnetic computation deals with structurally perfect 

geometries and ignores thermal effects, however, this was not surprising.  Different sizes 
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of element were then fabricated at constant areal aspect ratio for comparison.  Although the 

magnetic behaviour was similar for all sizes, the switching field increased with decreasing 

element width.  This has been observed in numerous studies and is caused by an increase in 

shape anisotropy as the edges get closer together.  The spins are held in place anti-parallel 

to the applied field direction until the Zeeman energy dominates and the element is forced 

to switch.  One advantage the rectangular element has over other geometries is a low 

switching field.  This is attributed to the perpendicular magnetisation at the ends of the 

element where the reversal begins. 

 After studying the rectangle, a 45° trapezium and parallelogram were investigated.  

By reducing the element symmetry, it was found that the number of metastable remanent 

configurations and modes of switching could be reduced.  In addition, the ground state 

degeneracy of the rectangle was removed, resulting in a single preferred configuration.  

The shape anisotropy causes the magnetisation to lie parallel to the short edges.  In effect, a 

transverse C state can be supported in the trapezium at zero field, whilst a transverse S 

state is the lowest energy configuration in the parallelogram.  The switching fields of these 

structures were found to be higher than the rectangle, however.  This occurred for two 

reasons.  First, the orientation of the short edges with respect to the axis of applied field 

decreases the effective torque acting on the end domains.  In the rectangle, these end 

sections were found to effect the reversal.  Secondly, because of the shape anisotropy of 

the sloping edges, the adjacent spins are held in place and are reluctant to align with the 

field.  Only at higher field strengths can they rotate against this magnetostatic energy 

barrier.   

The angle of inclination was then varied for each structure as a comparison to the 

elements with 45° sloping edges.  As the angle increased, the switching field dropped as a 

result of the larger torque.  In addition, because of the increasing width at the ends of the 

element, the probability of vortex formation increased.  At larger inclination angles, the 

trapezoid and parallelogram behaved in the same way as the rectangle, and flux-closure 

states were observed.  At angles of 50° and below, the magnetisation switched between 

transverse states without the nucleation of vortices.  Here, the element edges bias the spins 

in a preferred direction and limit their rotational freedom.  Therefore, at these angles of 

inclination, the trapezium and parallelogram offered greater magnetic stability than the 

rectangle, but this came at the cost of a larger coercivity. 

Cross-tie domain walls were observed in some of the images in chapters 5 and 6.  

This was surprising, as these only form in NiFe films with thicknesses of between 30 and 

90nm and the deposited material was assumed to be 20nm.  It was later discovered that the 
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evaporator FTM was underestimating the film thickness, and in actual fact these elements 

were closer to 33nm in thickness. 

Chapter 6 looked at how notches can be used to pin domain walls and stabilise 

particular spin configurations.  Notches were added to the basic rectangle in an attempt to 

remove the ground state degeneracy and induce either a transverse C or S state at 

remanence.  By using 3nm20×70×120  notches in the simulations, the number of 

metastable states was reduced and the elements underwent single mode switching.  In 

experiment, however, similarly sizes notches were unable to force the desired behaviour, 

mainly because vortex end domains were supported instead of transverse regions.  These 

complex wall structures cannot be controlled in the same way as a single transverse wall.  

Instead, the elements behaved much like the basic rectangle.  Saying this, the notches did 

manage to prevent flux-closure formation during long-axis field cycles and by reducing the 

domain wall length, influenced a vortex to transverse reversal.  The switching fields of 

these elements were found to be higher than the rectangular cell and around the same 

magnitude as the trapezium and parallelogram.  This increase in coercivity is related to the 

domain wall energy and local shape anisotropy.  When a wall is connected to the apex of 

the notch its length is minimised, rendering the configuration energetically favourable.  

Also, to avoid an increase in dipole energy at the edges, the notches act to prevent rotation 

of the spins, causing a further increase in switching field.  

The in-plane notch dimensions were then varied in an attempt to uncover further 

changes in the magnetic behaviour.  The simulations revealed two separate reversal 

mechanisms depending on the area of the notch.  At very small sizes, the notches had little 

effect on the magnetisation of the element.  Here, the central section switched first, 

followed by the end domains at higher field.  This two-step reversal was also observed in 

elements with very large notches.  In these structures, however, the notches were found to 

separate the ends from the bulk of the magnetisation, causing the different sections to 

behave almost independently.  For intermediate sizes, we observed reversal of every 

domain at the same field value.  From simulations and experiment, the coercivity was 

found to increase with notch aspect ratio.  This appeared to be related to the torque on the 

spins adjacent to the notch, but differences in exchange and magnetostatic energy may also 

have had an effect.  This data was later extracted from the simulations and analysed, but no 

clear trends were observed.  In experiment, the notch dimensions had an influence on the 

remanent state and reversal behaviour.  At small sizes, vortex end domains and flux-

closure formation were possible, but as the area of the notch increased, the probability of 

vortex nucleation dropped.  Instead, transverse states were favoured.  With the largest 

notches, the ground state degeneracy was finally removed and the elements were able to 
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switch reproducibly between single ground state configurations.  Like the trapezium and 

parallelogram, however, this ideal behaviour came at the cost of a large coercivity. 

Domain wall trap structures were investigated in chapter 7.  This type of element had 

previously been studied using micromagnetic simulations and demonstrated superior 

behaviour to isolated elements of comparable size.  This earlier work predicted 

reproducible switching behaviour at far smaller fields than is possible with rectangular 

cells, as well as a reduction in the switching field width dependence.  As no experimental 

studies had been performed on these geometries, a part of this project was to characterise 

their magnetic behaviour using Lorentz microscopy.  Domain wall trap elements were 

fabricated with the same dimensions as used in the original simulations.  However, the 

shape anisotropy of the end sections proved insufficient to form a head-to-head domain 

wall and four new geometries had to be fabricated.  Increasing fields were applied 

perpendicular to the central strip in small field steps to determine the magnitude required to 

form a head-to-head wall in each element.  This value was found to be dependent on both 

the torque and shape anisotropy, with DWT3 requiring the smallest field.  The simulations 

also predicted that two different domain wall structures were possible depending on the 

width and thickness of the central strip: a transverse domain wall (TDW) favouring 

narrower, thinner sections of material and a vortex configuration at larger dimensions.  To 

study this experimentally, DWT3 elements were fabricated with strips ranging in width 

from 50 to 200nm, and film thicknesses of 10 and 20nm.  These experiments showed 

vortex formation in all but the smallest strip, which itself exhibited insufficient contrast to 

determine the wall structure.  Although this disagrees with the simulated phase diagram, 

fabrication problems may have influenced the results.  The 200nm wide elements deposited 

at a thickness of 20nm were then used for the remainder of this study.  Whilst vortex 

domain walls were found in every element, transverse walls were observed on occasion in 

DWT1.  This was thought to be related to the local symmetry at the corners of the element.  

As the TDW has a mirror plane of symmetry and the corners of DWTs 2, 3 and 4 are 

asymmetric, the structure could not be supported.  In the DWT1 geometry, however, the 

TDW symmetry is preserved, thus facilitating its formation. 

 Saturating fields of 7000 Oe were then applied at various angles to the short axis to 

characterise the sense of vortex rotation and domain wall position within the element.  

Fields were applied in both the positive and negative y-directions to nucleate head-to-head 

and tail-to-tail walls.  The vortex domain wall (VDW) was found to be stabilised at five 

different locations within the strip.  At the ends of the strip, the domain walls are pinned to 

the corners of the element and there is a reduction in exchange energy as a result of the 

local geometry.  At the centre of the strip, on the other hand, magnetostatic fields act on the 
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VDW from opposite sides and create an energetically stable region.  This experiment also 

revealed that the vortex sense of rotation can be controlled by the field direction.  First the 

180° wall is biased in one of two orientations by an off-axis field.  Then, during the 

subsequent relaxation, its rotational sense is determined by the direction of magnetisation 

in the adjacent sections of the element. 

 Long-axis fields were later applied to study the switching of each element, and the 

images of DWTs 2, 3 and 4 showed identical behaviour.  The VDW could be moved 

reproducibly between the ends of the strip without propagation into the adjacent sections.  

As a result of asymmetry in the VDW structure and its interaction with the corner regions, 

however, different field strengths were required to move the wall in opposite directions.  In 

addition, the magnetostatic effect of the end sections inhibited movement of the wall at the 

centre of the strip, and a slightly larger field was necessary to overcome the energy barrier. 

 The switching behaviour of DWT1 was very different from the other geometries.  

This was attributed to the local geometry at the corners of the element which provided 

additional stability for the VDW.  In general, it was not possible to move the wall 

reproducibly between the ends of the element.  Instead, the head-to-head structure was 

stretched from the corner before propagating along the strip and out of the element at 

higher fields.  The narrow end sections of this geometry were unable to provide adequate 

resistance to the wall motion, proving that ends of increasing width are more suitable for 

trapping domain walls.  On occasion, it was observed that less strongly stabilised wall 

configurations (of higher energy) could be formed when the initialising field was applied 

along the short axis.  In this situation the VDW sense and position are unbiased.  These less 

strongly pinned wall structures could be moved to the opposite end of the element and 

were seen to switch sense as well as position.  In situations where a TDW was formed, 

fields applied to move the structure were unsuccessful.  Instead a vortex was nucleated, 

changing the TDW to a VDW and reducing the energy of the system. 

 Next, larger fields were applied to expel the head-to-head wall from each of the 

elements.  It was found that removal of the VDW in DWTs 2 and 3 took place via 

annihilation with low angle walls in the end sections.  In DWTs 1 and 4, on the other hand, 

the VDW was able to move past the corners of the element and right out of the structure.  

The reason for this difference in behaviour is down to the width of the end sections.  It 

costs energy to force the VDW into the wider regions because of an increase in domain 

wall length.  In addition, the spins in the centre of these sections can rotate to align with the 

field, so annihilation is by far the more favourable mechanism.  In the narrower geometries 

the shape anisotropy prevents rotation of the magnetisation, so it is easier just to move the 

VDW.  As the VDW length is kept relatively constant, there is no additional increase in 
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energy.  Overall DWT3 was most successful in terms of its ability to support a head-to-

head wall that could be moved reproducibly with field.  The small operational fields 

combined with the large domain wall resistance at the ends of the structure make this 

element more suitable than the others for device applications.   

After characterisation of single elements, DWT chains were studied.  These were 

formed by connecting several elements in a given row end-to-end.  In this way, the end 

sections are shared between neighbouring strips which maximises the packing density 

without adverse magnetostatic effects.  The DWT3 geometry was selected because of its 

symmetry and the success that these elements demonstrated as individual cells.  First, 

short-axis fields were applied to form the walls.  As a result of the chain geometry, 

alternate head-to-head and tail-to-tail configurations were nucleated.  Subsequent long-axis 

fields then moved these structures in opposite directions.  The control of a single DWT unit 

can be achieved only with a local field, and this was not possible in the microscope.  The 

magnetic behaviour within each strip was found to be the same as observed with the 

individual elements.  One notable observation, however, was that the walls moved at 

slightly different magnitudes of field over a 20 Oe range.  At far higher fields, annihilation 

with low angle walls in the end sections was the dominant removal mechanism as 

expected. 

As a final investigation into the behaviour of DWTs, domain wall injection was 

studied.  Long-axis fields were applied from a near-uniform state to try and nucleate a 

single wall.  During most of these attempts though, reversal of the complete chain took 

place and no walls were trapped.  Still, on odd occasions it was possible to switch several 

sections of the chain, forming multiple head-to-head walls and also more complex domain 

structures.  A diamond-shaped injection pad was later added to one end.  These are usually 

connected to magnetic nanowires for studying domain wall behaviour.  They are designed 

to reverse at a smaller field that the adjacent section of material, causing the nucleation of a 

single wall.  By applying the long-axis field a head-to-head wall was introduced.  

However, movement of the VDW was abrupt and it ‘jumped’ between the different traps in 

the chain until it was driven from the element at higher field.  To try and encourage 

smoother behaviour, similar elements were fabricated using the DWT1 end geometry.  It 

was hoped that the uniform width would allow better control of the wall.  Unfortunately, 

after the initial injection the VDW was stretched and removed from the element in a single 

step.  This uninhibited movement is because narrow end sections do not provide adequate 

resistance to the wall motion; behaviour observed previously in the single DWT1 elements.  

It appears, therefore, that further adjustment of the end shape is required before controlled 

movement of a head-to-head wall is possible in DWT chains of this type. 
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As well as the work on thin film elements, this project involved the magnetic and physical 

characterisation of continuous film tunnel junctions.  These samples were designed to 

reduce the Néel coupling by incorporating an artificial antiferromagnet (AAF) in the free 

layer.  It was hoped that compensation of the magnetic surface charge would minimise the 

offset field without adversely affecting the magnetic behaviour of the film.  Three different 

samples were deposited at Philips Research in Eindhoven, The Netherlands.  The first 

sample, labelled MTJ1, was a standard junction and the second and third samples, MTJ2 

and MTJ3, each included an AAF in the free layer.  The only physical difference between 

MTJs 2 and 3 was the AAF layer order; 3NiFe/0.8Ru/8NiFe and 8NiFe/0.8Ru/3NiFe 

respectively, where the layer thicknesses are in nanometres.  Both the magnetic and 

physical properties were studied before and after the samples were annealed, providing six 

data sets.  The Fresnel and DPC imaging modes were used to probe the magnetic structure, 

whilst the physical structure was studied with BF/DF TEM and electron diffraction. 

By adding an AAF to the stack, the image sequences revealed a 19% reduction in 

offset for MTJ2 before annealing and a 31% reduction afterwards.  Likewise, MTJ3 

demonstrated a 24% and 27% decrease.  That the Néel coupling decreased further on 

annealing the stacks is one effect of an increased magnetic homogeneity.  When the layers 

are more uniformly magnetised, the AAF is optimised for charge cancellation.  Also, the 

offset was lower for MTJ2 than MTJ3 after annealing because the lower AAF 

ferromagnetic (FM) layer is thinner.  This enables the poles of opposite polarity to be 

closer to the tunnel barrier, which compensates the charge more effectively.  The coercivity 

was also affected by adding an AAF to the stack.  This was attributed to the rigidity Q-

factor.  Such behaviour has been well documented, with theory suggesting a dependence 

on the magnetisation and thickness of the two AAF FM layers.  After heat-treatment, 

however, the coercivity of MTJ2 and MTJ3 dropped below that of the basic junction.  

Although surprising, this was suspected to be caused by the diffusion of Ru atoms into the 

FM layers.  As atomic mobility increases with thermal energy, it seems plausible that 

diffusion of the spacer material could reduce the magnetisation of the neighbouring layers. 

In terms of the reversal behaviour, each sample was found to change orientation 

predominantly via the nucleation and movement of domain walls.  In polycrystalline films, 

different regions spaced far enough apart to avoid direct exchange interactions rotate 

independently to align with the field.  Effectively, weakly coupled grains rotate first, 

followed by those more tightly coupled, giving rise to complex domain configurations.  As 

a result of an improved magnetic uniformity, the domain structure changed dramatically on 

annealing.  Before annealing each sample, the domain walls were short and curved, and 

many were observed in the field of view.  After heat-treatment, however, a small number 
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of long straight walls were captured sweeping across the film.  This may be related to the 

grain structure of the material, although the physical characterisation revealed no obvious 

changes in structure.  Whilst randomly oriented crystallites produce a more complex 

reversal, a strongly induced easy axis favours a simpler mechanism.  Also, the angle of 

domain walls with respect to the applied field direction was found to differ between the 

forward and reverse paths of the hysteresis loop.  Recent studies on multilayer films have 

suggested that this could be the result of an imperfect interface giving rise to both 

unidirectional and biquadratic energy terms.  In this situation, a natural angle emerges as 

the FM passes through different effective fields. 

The magnetisation ripple contrast of MTJ2 was far lower than MTJ1 and MTJ3 

before annealing.  This was unexpected considering the similarities in layer structure 

between the samples.  Initially grain size at the Ru spacer was thought to be responsible, 

since renucleation occurs on top of the amorphous 32OAl  barrier implying that there could 

be variations in magnetic order with FM layer thickness.  A more likely explanation 

though, is interlayer mixing.  If Ru diffused between the NiFe grains, then the thin AAF 

FM layer of MTJ2 and MTJ3 would become magnetically dead.  Therefore, the magnetic 

contrast in the images would arise from the thicker FM layer.  Given these conditions, the 

grains of MTJ3 grow upon the amorphous 32OAl  like MTJ1, but in MTJ2, they grow upon 

a magnetically dead crystalline base.  This additional ordering in MTJ2 may be enough to 

reduce the ripple contrast relative to the other two samples, which appeared very similar.  

The magnetisation ripple was found to strongly influence the domain configuration during 

reversal.  In particular, chain-like structures were observed in each film.  After annealing, 

however, the induced easy-axis greatly reduced the ripple contrast allowing the 

magnetisation to reverse via the long, straight domain walls described previously.  Again, 

this is a result of the improved magnetic homogeneity.  To better compare the ripple 

structure between stacks, the wavelength and dispersion were analysed from Fresnel 

images.  Although these images could not provide quantitative data, they did allow useful 

information to be obtained in arbitrary units.  It was found that as the applied field (anti-

parallel to the net direction of free layer magnetisation) approached coercivity, the ripple 

wavelength and dispersion angle increased.  These then dropped suddenly at the critical 

field before levelling off.  This behaviour can be attributed to the Zeeman energy.  As the 

field increases, the weakly coupled grains rotate and drag the more strongly coupled grains 

behind them.  This gradually increases the dispersion until domains are nucleated and 

irreversible changes take place. 

Another observation from the magnetising experiments was the formation of 360° 

walls.  These structures form when Néel walls of opposite chirality come together, and are 
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often stable up to high fields.  They occur in abundance in multilayer films containing 

AAFs because the AF coupling adds an additional contribution to their nucleation and 

stability.  They tend to be nucleated in the bottom AAF FM where they are stabilised by 

surface charge from roughness at the tunnel barrier.  This configuration is then mirrored in 

the top AAF FM, reducing the magnetostatic energy of the system.  In addition, roughness 

at the Ru spacer causes local variations in the AF coupling which prevents coherent 

reversal and creates nucleation and pinning sites.  Their robustness is down to a balance of 

Zeeman, domain wall and AF coupling energy terms.  As the field increases, the Zeeman 

and domain wall energies become unfavourable for the wall in the bottom AAF FM.  This 

causes a decrease in the central domain of the 360° wall.  However, AF coupling preserves 

the wall structure until the field strength dominates, causing it to collapse.  In the upper 

layer, the field is parallel to the magnetisation at the centre of the wall which stabilises the 

configuration.  Because of AF coupling to the lower layer, however, this domain cannot 

grow in size.  Only at very high field is the domain wall energy sufficient to remove the 

upper wall.  This is the reason why 360° loops were observed at the end of the MTJ2 and 

MTJ3 reversal sequences, but disappeared at low field in MTJ1. 

Following their magnetic characterisation, the physical structure of each MTJ 

sample was studied primarily to confirm the arguments on free layer grain size and 

interlayer mixing.  First, electron diffraction was performed through the complete stack to 

check for obvious structural differences between the samples and to ensure that (111) 

texturing was induced by the seed layers.  This was then repeated after annealing to 

examine the effects of heat-treatment.  The diffraction patterns were identical for all 

samples both before and after the heat cycle, indicating no major variations in morphology.  

When the samples were tilted, the ring contrast changed noticeably indicating a high 

degree of texturing.  Indexing of the rings later revealed that the texturing was indeed in 

the [111] direction. 

Afterwards, in-plane grain size estimations were made from BF/DF images.  This 

gives no information on the grains within the individual layers, but does provide an 

average measurement for each film.  The mean grain diameter was the same for all samples 

and was found to be ~7nm.  In addition, the heating and field-cooling cycle had a 

negligible effect on their size.  To obtain an estimation of the free layer grain size without 

larger grains in the IrMn and CoFe layers influencing the result, a second batch of samples 

were fabricated including only the upper layers of the stack and a NiFe seed layer.  A grain 

diameter of 3-4nm was measured for each sample, proving that grains in the lower layers 

of the stack were in fact contributing to the earlier image contrast.  The grains in the MTJ1 

single free layer were slightly smaller than those in the AAF of MTJs 2 and 3. 
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To obtain information on the grain structure within the separate layers, a cross-sectional 

study was necessary.  Diffraction contrast in these BF/DF images revealed that only the 

NiFe, IrMn, CoFe and Ru layers of the structure were crystalline.  Analysis of the 

crystallites in these layers then showed that the grain size was very dependent on layer 

thickness.  This strengthens the argument for changes in ripple being related to differences 

in grain size at the Ru spacer.  In terms of the film growth, many grains which started in 

the NiFe seed layer continued into the IrMn and CoFe, despite differences in the lattice 

parameter.  These grains then stopped at the 32OAl  and new crystallites were nucleated in 

the free layer.  In MTJs 2 and 3, most grains continued through the Ru and into the upper 

AAF FM, but some were seen to stop and renucleate at the spacer.  This may have been 

caused by lattice mismatch at the layer boundary. 

Layer roughness, responsible for the Néel coupling in these samples, was analysed 

last.  Undulations at the 32OAl  were found to be correlated with those at the buffer layer.  

However, large grains in the NiFe, IrMn and CoFe produced additional local fluctuations 

of a higher frequency.  In MTJs 2 and 3, the Ru roughness remained conformal with the 

tunnel barrier because the free layer grain size was insufficient to redefine the waviness.  

To quantify the 32OAl  roughness amplitude, distances between points at the centre of this 

layer and a reference line were measured.  Following this, their mean and standard 

deviation were calculated.  The average inter-peak distance was also determined to 

estimate the wavelength.  The roughness of each stack was found to be far larger than the 

Philips VSM least squares fit had estimated, but the wavelength was similar. 

One thing which could not be established from these cross-sections, however, was 

interlayer mixing.  If Ru diffusion into the AAF NiFe had occurred, then this may have 

explained the differences in ripple contrast and reversal behaviour of MTJ2 relative to the 

other stacks.  It was hoped that this information could be obtained from the BF/DF images, 

but in hindsight, compositional characterisation using analytical TEM may have been the 

better option. 

 

9.3 Future work 

 
In this section, a new idea involving domain wall trap elements is proposed.  In chapter 7, 

it was shown that these structures support head-to-head domain walls that can be moved 

between the ends of the element to store information.  However, instead of using these 

systems as storage cells, it may be possible to adjust their geometry to create elements that 

serve as one-dimensional magnetic field sensors.  The basic concept uses the position of 
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the head-to-head wall as a measure of the strength and direction of applied field.  To 

achieve this, a larger strip of material would be required to enable detection over a 

reasonable field range.  In addition, success of the system would rely on a smooth and 

reproducible domain wall movement with a high field sensitivity.  As well as strip length, 

the width of the strip is an important issue.  There must be a sufficient energy barrier for 

the wall to overcome as it moves along the strip, otherwise it will simply switch between 

the ends of the element (Newton’s first law of motion).  This would be the case if we were 

to take the basic DWT3 geometry and extend the central section (Fig. 9.1).   

 

 

 

 

 

 

 

 

Therefore, what is required is an element where the strip width increases along the x-axis 

from the centre (Fig. 9.2).   

 

 

 

 

 

 

 

 

 

 

 

In this case the domain wall length and energy increase as the wall progresses along the 

strip in either direction, which can only occur if the applied field is large enough to 

overcome the energy barrier.  The change in energy as the wall moves can be formulated 

by taking into account the various energy terms.  The saving in Zeeman energy as the wall 

propagates distance, δx, is given by, 

 

xδHwtM2=E∆ sZ     (9.1) 

Fig. 9.1: Strips of uniform width provide little resistance to the domain wall motion and are unsuitable for

this type of sensor device. 

Fig. 9.2: Definition of the strip dimensions used in the derivation of equation 9.3. 
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whilst the gain in domain wall energy is, 

 

wtσδ=E∆ W      (9.2) 

 

where w and t are the strip width and thickness respectively, δw is the change in width and 

σ is the domain wall energy (area) density.  For a linear response, we require c+kx=H , 

with k and c constants.  By equating the two expressions, substituting for H and 

rearranging the equation, we obtain, 

 

xδ
σ

)c+kx(M2
=

w
wδ s  

 

Integrating both sides then gives, 

 

d+)c2+kx(
σ

xM
=wln s  

 

where d is a constant of integration.  This can be rewritten as, 

 

]d+)c2+kx(
σ

xM
exp[=w s    (9.3) 

 

So the width of the element must vary exponentially if linear behaviour is to be realised.  

Unfortunately this will involve a large element with very wide end sections (Fig. 9.3), so 

microstructure is likely to play a significant role.  Whilst the theory may be convincing on 

paper, it would be interesting to see if this behaviour could be achieved in practise.  Finite 

element simulations would be well-suited to this type of problem and could provide further 

information prior to fabrication. 

 

 

 

 

 

 

 

 

 
Fig. 9.3: An element with exponentially increasing width may be required to achieve the desired behaviour.
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Appendix 

 
This appendix provides the fabrication parameters for the PMMA/PMMA (Table A.1), 

LOR/PMMA (Table A.2) and ZEP/PMMA (Table A.3) lift-off processes, as well as 

detailed schematics of the FEI Tecnai T20 (Fig. A.1) and Philips CM20 (Fig. A.2) 

microscopes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table A.1: Detailed fabrication process using PMMA/PMMA bilayers of resist. 

PMMA/PMMA process 

Step Parameters

Substrate clean Acetone in 45°C hot water bath for 10mins 
IPA in 45°C hot water bath for 5mins 
Dry with gun N 2  

Resist application Spin 2010 PMMA at 5000rpm for 60secs to deposit: 
2.5% - 40nm 
4% - 100nm 
8% - 200nm 
Bake in 180°C oven for 1 hour 
Repeat spin and bake cycle for 2041 PMMA 

Reflective coating Evaporate 30nm of Aluminium 

Exposure Prepare design and layout files then submit job to beamwriter 

Aluminium strip CD26 for 60secs at 21°C 
RO water for 30secs 
Dry with gun N 2  

Development MIBK:IPA 1:2.5 for 60secs at 21°C 
IPA for 30secs 
Dry with gun N 2  

Metallisation Evaporate 20nm of Permalloy 

Lift-off Acetone in 45°C hot water bath until material is removed 
IPA in 45°C hot water bath for 5mins 
Dry with gun N 2  

Gold coating Sputter 4nm of Gold 

Ash 35W for 60secs to remove 5nm of material 
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Table A.2: Detailed fabrication process using LOR/PMMA bilayers of resist. 

LOR/PMMA process 

Step Parameters

Substrate clean Acetone in 45°C hot water bath for 10mins 
IPA in 45°C hot water bath for 5mins 
Dry with gun N 2  

Resist application Spin 20% LOR-10A for 60secs to deposit: 
7000rpm - 40nm 
5000rpm - 100nm 
3000rpm - 200nm 
Bake in 180°C oven for 10mins 
Spin and bake 2041 PMMA as described in Table A.1 

Reflective coating Evaporate 30nm of Aluminium 

Exposure Prepare design and layout files then submit job to beamwriter 

Aluminium strip CD26 for 60secs at 21°C 
RO water for 30secs 
Dry with gun N 2  

Development PMMA - MIBK:IPA 1:2.5 for 60secs at 21°C 
 IPA for 30secs 
 Dry with gun N 2  

LOR -    CD26 for 60secs at 21°C 
               RO water for 30secs 
               Dry with gun N 2  

Metallisation Evaporate 20nm of Permalloy 

Lift-off SVC-14 in 45°C hot water bath until material is removed 
methanol in 45°C hot water bath for 5mins 
IPA in 45°C hot water bath for 5mins 
Dry with gun N 2  

Gold coating Sputter 4nm of Gold 

Adhesion promotion Oxygen plasma ash, 35W for 60secs 

Ash 35W for 60secs 
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Table A.3: Detailed fabrication process using ZEP/PMMA bilayers of resist. 

ZEP/PMMA process 

Step Parameters

Substrate clean Acetone in 45°C hot water bath for 10mins 
IPA in 45°C hot water bath for 5mins 
Dry with gun N 2  

Resist application Spin ZEP 520A for 60secs to deposit: 
25% at 4000rpm - 40nm 
40% at 2500rpm - 100nm 
60% at 2000rpm - 200nm 
Bake in 180°C oven for 1hour 
Spin and bake 2041 PMMA as described in Table A.1 

Reflective coating Evaporate 30nm of Aluminium 

Exposure Prepare design and layout files then submit job to beamwriter 

Aluminium strip CD26 for 60secs at 21°C 
RO water for 30secs 
Dry with gun N 2  

Development PMMA - MIBK:IPA 1:2.5 for 60secs at 21°C 
 IPA for 30secs 
 Dry with gun N 2  

ZEP -      o-xylene for 60secs at 21°C 
               IPA for 30secs 
               Dry with gun N 2  

Metallisation Evaporate 20nm of Permalloy 

Lift-off Acetone in 45°C hot water bath until material is removed 
IPA in 45°C hot water bath for 5mins 
Dry with gun N 2  

Gold coating Sputter 4nm of Gold 

Adhesion promotion Oxygen plasma ash to remove 5nm of material 

Ash 35W for 60secs 
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Fig. A.1: The FEI Tecnai T20 TEM column. 
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Fig. A.2: The Philips CM20 TEM/STEM column. 
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