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Abstract

Divisible groups, and then injective modules, were introduced by Baer
3], Eckmann and Schopf [14].

Injective objects play an important role in other categories than the cat-
egory of modules. In the category of Banach spaces, the Hahn-Banach The-
orem states that the field of real numbers is injective; in the category of
Boolean algebras, a complete Boolean algebra is injective; in the category of
normal topological spaces, the closed interval [0, 1] is injective, by Tietze’s
Theorem; in the category of partially ordered sets, the injective envelope of
a partially ordered set is its MacNeille completion. Some of the results of
injectives in the category of modules can be carried over into these other
categories; namely the result that a direct product of injectives is injective.

The concept of injectivity and some of its generalizations has attracted
much interest over the years. .

Quasi-injective modules were first defined by Johnson and Wong {29].
Jeremy [27, 28| considered continuous and quasi-continuous modules, fol-
lowing 'work of Utumi [60], on rings, and earlier work of Von Neumann
44, 45, 46], on continuous geometries. Continuous and quasi-continuous

modules were studied by various authors. For a good account of this theory,



see the monographs by Mohamed and Miiller [40], and Dung, Huynh, Smith
and Wisbauer [13].

Goldie [17, 18] considered complements in his study of quotient rings.
Following the work of Goldie, Chatters and Hajarnavis [8] studied extending
modules. Independently, extending modules also arose in the work of Harada
and his collaborators |22, 23, 49, 50]. Kamal and Muller [31, 32, 33] devel-
oped the theory and are responsible for discovering a number of interesting
properties.

Some generalizations of extending modules appear in (7, 57], for example.

Extending modules have been studied extensively in recent years and it
appears that several classical theorems on injective modules have natural
generalizations for extending modules. However, in some sense, the extend-
ing property is quite far from injectivity and several questions on extending
modules still remain unsolved. A very .intriguing question is to find neces-
sary and suflicient conditions for a direct sum of extending modules to be
extending. We obtain answers for this problem, in some special cases, and
also consider the same problem for generalizations of extending modules.

Chapter 1 covers the background necessary for what follows. In partic-
ular, general properties of injectivity and some of its well-known generaliza-
tions are stated.

Chapter 2 is concerned with two generalizations of injectivity, namely
near and essential injectivity. These concepts, together with the notion of
the exchange property, prove to be a key tool in obtaining characterizations
of when the direct sum of extending modules is extending.

We find sufficient conditions for a direct sum of two extending modules to
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be extending, generalizing several known results. We characterize when the
direct sum of an extending module and an injective module is extending and
when the direct sum of an extending module with the finite exchange property
and a semisimple module is extending. We also characterize when the direct
sum of a uniform-extending module and a semisimple module is uniform-
extending and, in consequence, we prove that, for a right Noetherian ring
R, an extending right R-module M; and a semisimple right R-module Mo,
the right R-module M & M, is extending if and only if M, is M;/Soc(M;)-
njective.

Chapter 3 deals with the class of self-c-injective modules, that can be
characterized by the lifting of homomorphisms from closed submodules to
the module itself.

We prove general properties of self-c-injective modules and find sufficient
conditions for a direct sum of two self-é-injective to be self-c-injective. We
also look at self-cu-injective modules, i.e., modules M such that every ho-
momorphism from a closed uniform submodule to A can be lifted to A
itself.

We prove that every self-c-injective free module over a commutative do-
main that is not a field is finitely generated and then proceed to consider
torsion-free modules over commutative domains, as was done for extending
modules in [31].

We also characterize when, over a principal ideal domain, the direct
sum of a torsion-free injective module and a cyclic torsion module is self-

cu-mjective.
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Chapter 1

Background

In this preliminary chapter, we will fix some notation and state a few
well-known results that will be used in the sequel. For other basic defini-
tions, results and notations, we refer the reader to [2, 13, 15, 36, 40, 65] as

background references.

1.1 Preliminaries

Notation

Throughout this dissertation, let R be a ring with identity and let all
modules be unitary right R-modules.

If N is a submodule of M, we write N < M: if N is a direct summand of
M, we write N <, M.

For right modules A/ and N, Homg(M, N) will denote the set of K-
module homomorphisms from M to N. The kernel of any o € Hompz(M, N)
1s denoted by ker a and its image by a(M). Endg(M) will denote the set of

cndomorphisms of A.



Given a family of modules {M;|i€l},foreachj€ I, m;: BiesM; — M,;

denotes the canonical projection with kernel ®;¢p\ ;3 M;.

Essential submodules

Let M be any module. A submodule NV of M is called essential, or large,

im M if NN K 50, for every 0 # K < M. If N is essential in M, we write
N <L, M.

Some basic facts about essential submodules are stated below.

Proposition 1.1.1 {13, 1.5] Let K and N be submodules of a module M .
(i) If K <N, then K <, M ifand only if K <. N and N <, M.
(it) If N <. M, then NNK <, K.
(iii) If NI <. M, then NNK <. M.
(iv) If K < N and N/K <, M/K, then N <, M.

(v) If M = @i M; and N; <, M;, for every i € I, then ®;efN; <. M.

Complements

Let A1 be any module. A submodule K of M is called closed in M
provided /{ has no proper essential extensions in M, i.e., whenever N is a

submodule of A/ such that X <, N, then X = N. If K is closed in M, we
write I <. M.
Given a submodule N of A, a submodule K of M is called a complement

of N in M if I is maximal in the collection of submodules L of M such that



LNN =0. A submodule K of M is called a complement in M, if there exists
a submodule IV of M such that K is a complement of NV 1n M.
An easy application of Zorn’s Lemma guarantees the existence of com-

plements. In fact, we can prove the following facts.

Lemma 1.1.2 (13, 1.10| Let L and N be submodules of a module M such
that LN N = 0.

(i) There exists a complement K of N such that L < K.
(i) K ®N <, M.
(iii) K <. M.

It turns out that a submodule of a module M is closed in M if and only

if it is a complement in Af. This is a consequence of the following.

Lemma 1.1.3 [13, 1.10] Let K be a submodule of a module M and let
L be a complement of K. Then K is closed in M if and only if K is a

complement of L in M.

We now list some basic properties of complements.

Proposition 1.1.4 Let L and K be submodules of a module M, with
K < L.

(i) For every N < M, there exists H <, M such that N <., H.

(it) K <. M if and only if, whenever N <, M 1is such that I < N, then
N/K <, M/K.



(i) If K <. L and L <. M, then K <. M.
(w) If L <. M, then L/IK <. M/K.

(v) If K <. M, then the closed submodules of M/K are of the form H/ K,
where H <, M and I{ < H.

Proof. A proof for (i)-(iv) can be found in (13, 1.10].

Suppose that { <. M and let us prove (v). By (iv), H/K <. M/K, for
every H <. M such that { < H. Assume now that H < M is such that
K < Hand H/K <. M/I, and let us prove that H <, M. f N < M is
such that H <., N, then, by (ii), H/K <. N/K. Because H/I <, M/ K, we
can conclude that H = N and that H <_. M. O]

Uniform submodules

A non-zero module U is said to be uniform it any two non-zero submod-
ules of U have non-zero intersection, i.e., if every non-zero submodule of U
1s essential in U.

Examples of uniform modules are, for an arbitrary ring, simple modules
and non-zero submodules of uniform modules. If R is a commutative ring and
P is a prime ideal of R, the R-module R/P is uniform. If R is a commutative
domain, then its field of fractions is a uniform K-module.

Moreover, for the ring Z, the following are examples of uniform Z-

modules.
(1) Cyclic groups Z/Zp" of order p", for any prime p and n € IN.
(ii)) Priifer groups Z(p*) of type p*°, for any prime p.
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(iii) Submodules of the additive group (@, +) of rational numbers.

Uniform dimension

Let A be a non-zero module which does not contain a direct sum of an
infinite number of non-zero submodules. Then Af contains a uniform sub-
module. Moreover, there exist a positive integer n and independent uniform
submodules Uy, ..., U, of M such that U@ ---® U, is an essential submod-
ule of A1. This positive integer n 1s an invariant of M, i.e., if k is a positive
integer and V4,..., V) are independent uniform submodules of M such that
Vi @ --- & V. is an essential submodule of M, then n = k. We shall call n
the uniform dimension, or Goldie dimension, of M and shall denote it by
u.dim(A). The uniform dimension of the zero module is, by definition, 0. If
M contains a direct sum of an infinite number of non-zero submodules, then
we set the uniform dimension of M to be co. For more details, see 20], for

example.

Annihilators

Let M be a module and let X be a subset of M. The right annthilator of X
n R will be denoted by 7(X), t.e., 7(X) :={re€e R|xzr=0, forallz € X }.

Given a € M, let r(a) := r({a}), and let (X : a) denote the set {r &
R ar € X}. Clearly, if X is a submodule of M, then (X : a) is the right
annihilator of {a + X} in R, for every a € M.

It is a simple observation that R/r(a) is isomorphic to aR, for every
a e M. Also, if X <, M, then (X : a) <, Rgr. These facts will be repeatedly

used in the sequel.



Singular and nonsingular modules

FFor a module A{, the singular submodule of M will be denoted by Z(M ),
1.e., ~

Z(M):={z€ M |zE =0, for some & <, Rp}.

The second singular submodule of M, denoted by Z,(M), is the submod-
ule containing Z(M) such that Zo(M)/Z(M) is the singular submodule of

the factor module M/Z(M).
Recall that the module A is called singular if M = Z(M) and is called

nonsingular if Z(M) = 0.

Clearly, Z(M) is singular; in fact, it is the largest singular submodule of
M. Moreover, M/Z5(M) is nonsingular and Z(M) <, Zy(M) <. M (see, for
example, [58]).

Proposition 1.1.5 (20, Proposition 3.26] A module A is singular if and

only if it is isomorphic to B/C, for some module B and essential submodule

C of B.

Proposition 1.1.6 |20, Proposition 3.27] Let B be a submodule of a non-
singular module A. Then A/B is singular if and only if B <, A.

Proposition 1.1.7 [20, Proposition 3.28]

(i) All submodules, factor modules, and sums (direct or not) of singular

modules are singular.

(ii) All submodules, direct products, and essential extensions of nonsingular

modules are nonsinqular.



(iit) Let B be a submodule of a module A. If B and A/B are both nonsin-

gular, then A is nonsingular.

Socle

Recall that the socle of a module M is defined to be the sum of all

simple submodules of M, or to be the zero submodule, in case in case M has
no simple submodules. The socle of M will be denoted by Soc(A/). In the

following result we gather some basic facts about Soc(M) (see [2, Section 9]).

Lemma 1.1.8 Let M be a module.
(1) Soc(M) is semisimple (i.e., is a direct sum of simple submodules).
(ii) Soc(M)=n{L|L <, M}.
(i11) Soc(N) = N N Soc(M), for every submodule N of M.
(iv) ©(Soc(M)) < Soc(M'), for every module M’ and v € Hom(M, M").

(iv) If M = ®;c;M;, for some submodules M;, i € I, of M, then Soc(M) =
GB;'EISOC(A':[i).

Noetherian modules

A module M is called Noetherian if it satisfies the ascending chain con-
dition (ACC) on submodules, or, equivalently, if every submodule of M is

finitely generated.

The ring R is right Noetherian if the module Rg is Noetherian.



A module M is said to be locally Noetherian if every finitely generated
submodule of M is Noetherian. Any module over a right Noetherian ring is

locally Noetherian.

V-modules

A module M is called a V-module if every submodule is the intersection of

maximal submodules, or, equivalently, if every simple module is M-injective

(see [13] or [65]). The ring R is said to be a right V-ring if Rg is a V-module.

Projective and hereditary modules

Let M; and M, be modules. The module M, is M;-projective in case
for each epimorphism « : M; — A and each homomorphism 8 : M, — A,
where A is any module, there exists a homomorphism ~ : My — M, such
that 0 = a7.

A module M is called hereditary if every submodule of M is projective.

1.2 Injectivity

Let M; and M5 be modules. The module M, is Mj-injective if every
homomorphism o« : A — As, where A is a submodule of A, can be extended
to a homomorphism S : M — Mo.

A family of modules { M; | i € I} is relatively injective if M; is M;-
injective, for every 1,7 € I, 1 # J.

A module M is called injective when it is N-injective, for every module

N.



The following result is known as Baer’s Criterion.

Theorem 1.2.1 (2, 18.3] The following conditions are equivalent for a

module M.
(i) M is injective.
(ir) Mis Rp-injective.

(i1i) For every right ideal I < Rgp and every homomorphism o : I — M,

there exists a € M such that o(r) = ar, for everyr € 1I.
Some basic properties of injectivity follow below.

Proposition 1.2.2 [40, Proposition 1.3] Let M, and My be modules. If
Mo 1s Mi-injective, then, for every submodule N of My, My is N-injective
and (M, /N )-injective.

Proposition 1.2.3 (40, Proposition 1.5] Let {M; | i € I} and N be
modules. Then N is (®;e;M;)-injective if and only if N is M;-injective, for

every 1 € 1.

Proposition 1.2.4 [40, Proposition 1.6] Let M and {N; | i € 1} be
modules. Then 1l;¢;N; is M-injective if and only if N; is M -injective, for

every 1 € 1.
The following result is a generalization of Baer’s Criterion.

Proposition 1.2.5 {40, Proposition 1.4] Let M; and My be modules.
Then My is M 1-z'njerftive if and only if My is aR-injective, for every a € M,.



Theorem 1.2.6 [40, Theorem 1.7] Let { N; | i € I} be a family of mod-

ules. For a module M, the following conditions are equivalent.
() @1 N; is M -injective.
(1) @;esN; is M-injective, for every countable subset J of I.

(iit) N; s M-injective, for every i € I, and for any choice of z, € N;_,
with n € IN and distinct v, € I, such that NS ,r(z,) 2 r(a), for some
a € M, the ascending chain

fjr(:z:n)g ﬁr(%) C .- C ﬁr(mn) C .-

ﬂ=2 ﬂ,::k

becomes stalionary.

Motivated by these results, the following chain conditions on the ring R,

relative to a given family { Af; | ¢ € I} of R-modules, were introduced in [40,

page 4]. Here we will follow their notation.

(A;) For any choice of =, € M; , with n € IN and distinct ¢,, € I, the

ascending chain

OO o0 OO

(N 7(zn) € () 7(zn) C---C (Y r(zn) C---

n=l n=2 n=Fk

becomes stationary.

(As;) For any choice of z,, € AM; , with n € IN and distinct 7, € I, such that

NS r(zn) 2 7(y), for some y € M; (5 € I), the ascending chain

oo

ﬂr(:l,n)g ﬁr(q;n)_(_:g ﬁr(zn)g
n==xk

it=1 =2

becomes stationary.
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Clearly, (A;) implies (As). Examples showing the converse does not hold

are discussed in [40, Examples 1.12].

If R is right Noetherian, then (A;) holds. Suppose that, for each ¢ € I |
M; is a locally Noetherian module. Then, for every y € M; (¢ € I), R/r(y)

is Noetherian, as it is isomorphic to yR. Consequently, condition (As) is

satisfied.

As an immediate consequence of Theorem 1.2.6, we have the following

result.

Proposition 1.2.7 [40, Proposition 1.9] Let { M; | i € I} be a family of
modules. Then @;cp\ 3 M; ts Mj-injectwe, for every j € I, if and only if the
modules { M; | i € I} are relatively injective and condition (As) holds.

By Proposition 1.2.4, a direct product of injective modules, and hence
a finite direct sum of injective modules, is injective. The following result

characterizes the injectivity of arbitrary direct sums of modules and is a

consequence of Theorem 1.2.6.

Theorem 1.2.8 [40, Proposition 1.10] Let { M; | i € I} be a family of

modules. The following conditions are equivalent.
(1) @;c1M; is injective.

(ii) DicjM; is injective, for every countable subset J of I.

(iit) M; is injective, for every i € I, and condition (A;) holds.

Theorem 1.2.9 [40, Theorem 1.11] For a module M, the direct sum of

any family of M-injective modules 1s M -injective if and only if M 1is locally

11



Noetherian. In particular, the direct sum of every family of injective R-

modules 1s injective if and only if R is right Noetherian.

[Every module A{ has a minimal injective extension, which is at the same
time a maximal essential extension. Such an extension is unique up to iso-

morphism, is called the injective hull, or injective envelope, of M and is

denoted by E(AT).

1.3 Quasi-injectivity

A module M is called quasi-injective, or self-injective, when it is M-
injective.

IFor example, injective modules and semisimple modules are quasi-injective
and direct summands of quasi-injective modules are also quasi-injective.

Some known properties of quasi-injective modules are listed below.

Lemma 1.3.1 (40, Corollary 1.14] A module M is quasi-injective if and
only if (M) < M, for every endomorphism ¢ of E(M).

Theorem 1.3.2 (40, Theorem 1.18] Let {M; | ¢ € I} be a family of

modules. The following conditions are equivalent.
(1) @icrM; s quasi-injective.
(it) @;csM; is quasi-injective, for every countable subset J of I.
(1i1) M; 1s quasi-injective and ®iep\ ;3 M; 15 Mj-injective, for every j € I.

(iv) {M; | i€ I} are relatively injective quasi-injective modules and condi-

tion (A,) holds.
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1.4 Quasi-continuous modules

A module M is called a quasi-continuous module if (M) < M, for every
idempotent endomorphism € of E(M).

Clearly, quasi-injective modules are examples of quasi-continuous mod-
ules, and so are uniform modules.

The following gives some equivalent characterizations of quasi-continuous

modules, that can be found, for example, in [13, 40, 55].

Theorem 1.4.1 The following conditions are equivalent for a module M

with ingective hull B .

(i) M is quasi-continuous.

I

(11) Whenever E = @1 FE;, for submodules E; (i € 1) of E, then M
Bic1 (M N E;).

(iii) Whenever E = E, & Es, for submodules E,, Es of IJ, then M
(11\{[ f El) D (A’I N Eg)

(iv) Every submodule of M s essential in a direct summand of M and, for

any direct summands I and L of M with K N L = 0, the submodule
K & L is also a direct summand of M.

(v) Whenever Ly and L, are submodules of M with Ly N L, = 0, then
there exist submodules My and M, of M such that M = M, & M, and
Li S l\i[i, 1= 1,2

(vi) Whenever L, and Ly are closed submodules of M with Ly N Ly = 0,

then the submodule Ly & Lo is also a closed submodule of M.

13



(vii) Whenever L, and Ly are closed submodules of M with LiyNLy = 0, then

every homomorphism o : Li@® Ly — M can be lifted to a homomorphism

M — M.

Theorem 1.4.2 [40, Theorem 2.13] Let {M; | ¢ € I} be a family of

modules. The following conditions are equivalent.
(1) DierM; is quasi-continuous.
(11) ®;cyM; is quasi-continuous, for every countable subset J of I.
(ii1) M; is quasi-continuous and ®;epn ;3 M; 1s M;-injective, for every j € 1.

(w) {M; | i € I} are relatively injective quasi-continuous modules and

condition (As) holds.

1.5 Continuous modules

There is a class of modules intermediate to the class of quasi-injective

modules and the class of quasi-continuous modules, namely the class of con-

tinuous modules.

A module M is called a continuous module it it has the following two

properties:

(C;) Every submodule of A{ is essential in a direct summand.

(Cy) Every submodule isomorphic to a direct summand of M 1is also a direct

summand of M.
It is not hard to prove that every quasi-injective module is continuous.

14




Theorem 1.5.1 [40, Theorem 3.16] Let {M; | i € I} be a family of

modules. The following conditions are equivalent.
(i) BierM; is continuous.
(11) DicyM; is continuous, for every countable subset J of I.
(ii1) DierM; is quasi-continuous and M; is continuous, for everyi € I.

(iv) { M;|i € 1} are relatively injective continuous modules and condition

(AQ) holds.

1.6 Extending modules

A module M is called an extending module, or a CS module, if every
submodule of M is essential in a direct summand, or, equivalently, if every
closed submodule of M is a direct summand.

By Theorem 1.4.1, quasi-continuous modules are extending.

[t is obvious that an indecomposable module is extending if and only if

it 1s uniform.

1.7 Uniform-extending modules

A module M is called a uniform-extending module if every closed uniform

(i.e., maximal uniform) submodule of M is a direct summand.

Lemma 1.7.1 [13, Lemma 7.7| Let M be a uniform-extending module
and let I be a closed submodule of M with finite uniform dimension. Then

K is a direct summand of M.

15



Corollary 1.7.2 (13, Corollary 7.8] A module with finite uniform dimen-

ston 1s extending if and only if it is uniform-eztending.

1.8 Some examples

To illustrate the hierarchy of the concepts introduced in the previous
Sections (injective, quasi-injective, continuous, quasi-continous, extending
modules), and at the same time demonstrate that they are all distinct, in
(40, page 19], are listed all abelian groups with these properties, as well as
regular rings, as right modules over themselves, with these properties.

Let us look now at examples of uniform-extending modules that are not
extending.

Let us start by proving that a free Z-module M is extending if and only
if M has finite uniform dimension. If M has infinite uniform dimension,
then there exists an epimorphism o : M — Q. It is not hard to see that
K := ker« is a closed submodule that is not a direct summand, and hence
M is not extending. On the other hand, if M has finite uniform dimension,
then any submodule NV of M is essential in the submodule L such that L/N
is the torsion submodule of AM/N; and L is a direct summand of M, because
the module A/ L is finitely generated and torsion-free. |

It is not hard to prove that any free Z-module of infinite uniform dimen-

sion is uniform-extending (but not extending).
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1.9 'The exchange property

A module M is said to have the (finite) exchange property if, for every
(finite) index set I, whenever M @ N = ®;crA; for modules N and A;, i € 1,
then M @& N = M & (BicrB;) for submodules B; of A;, ¢ € I (see [13] or [40}).

The exchange property was introduced in [9] and was established for in-
jective modules in [63], for quasi-injective modules in [16] and for continuous
modules in [39] (cf. [40, Theorem 3.24]). In [42], it was proved that, for
quasi-continuous modules, the finite exchange property implies the exchange
property. But, in general, quasi-continuous modules do not have this prop-
erty, and the ones that have were characterized in [41].

Modules with decompositions into indecomposable summands which en-
joy the exchange property were described, for example, in [21, 68]. Also in
[68], and among other examples, it was proved that Artinian modules over
commutative rings have the exchange property.

A ring R is a P-exchange ring if every projective right R-module satisfies
the exchange property. Perfect rings, for instance, are a well known example
of P-exchange rings. For other examples and results, see (24, 34, 37, 47, 48,
59, 66, G8].

A ring R is an exchange ring if Rp satisfies the finite exchange property.
This definition is left-right symmetric, as was shown in [64]. In that paper,
it was also proved that a right R-module M has the finite exchange property
if and only if the endomorphism ring of Af is an exchange ring. Examples of
exchange rings include von Neumann regular rings and left or right contin-

uous rings. Characterizations of exchange rings were obtained in [5, 43, 47],
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for example.

The following properties will be repeatedly used in the sequel.

Proposition 1.9.1 [62, Proposition 1| An indecomposable module has

the exchange property if and only if its endomorphism ring s local.

Lemma 1.9.2 [40, Lemma 3.20) If M = M; & M,, then M has the

(finite) exchange property if and only if My and M, have the (finite) exchange
property.

1.10 Indecomposable decompositions of mod-
ules

Generalizing a fundamental property of semisimple modules, Anderson

and Fuller [1] (cf. [2, page 141]) introduced the following important concept

for direct decompositions of modules. A decomposition M = @;crM; is said
to complement direct summands in case for each direct summand A of M
there is a subset J of I such that M = A& (®;cyM;). Such a decomposition

is necessarily an indecomposable decomposition (see {2], for example).

A decomposition M = @i/ M; is said to complement mazimal direct
summands if, whenever M = A& X, with X an indecomposable summand,
there is ¢ € I such that A/ = A & M;. Obviously, every decomposition that
complements direct summands also complements maximal direct summands.

Every decomposition of a module into summands with local endomor-
phism rings complements maximal direct summands [2, Theorem 12.6], but

the local endomorphism ring hypothesis is not necessary for a decomposition
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to complement direct summands (see, for example, (2, Exercises 12.5 and
12.6)).

If M = &®;e;M; is an indecomposable decomposition that complementsl
maximal direct summands, then the conclusion of the Krull-Schmidt The-
orem holds, i.e., an indecomposable decomposition of M is unique up to
isomorphism [2, Theorem 12.4].

A family { N; | i € I} of independent submodules of a module M is said
to be a local direct summand of M if, for any finite subset F' of I, ®;cpN; is
a direct summand of M. If, furthermore, ®;c;N; is also a direct summand
of M, then we say that the local direct summand is a summand.

A family of modules { M; | i € 1} is called locally semi-T-nilpotent if,
for any countable set of non-isomorphisms { f, : M;, — M, ., }, with all i,

distinct in 7, and for any x € M;,, there exists & (depending on z) such that
fro-- fi(z) = 0.

Lemma 1.10.1 Let M = ®;c;M; be a direct sum of modules with local

endomorphism rings. The following conditions are equivalent.

(1) S := End(M) is a semi-reqular ring; that is S/J(S) ts von Neumann
reqular and the idempotents in S/J(S) can be lifted over J(S), where
J(S) is the Jacobson radical of S.

(i) Every local direct summand of M 1is a summand.

(1ii) The decomposition M = B;erM; complements direct summands.

(iv) The family { M; | i € I} is locally semi-T-nilpotent.
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(v) M has the exchange property.

Proof. The equivalence of (i)-(iv) is due to Harada [21]. The equiv-

alenece of (iv) and (v) is due to Zimmermann-Huisgen and Zimmermann

1G8]. 0

N. V. Dung proved the following result, that generalizes [21, Theorems

7.3.15 and 8.2.1].

Theorem 1.10.2 [12, Theorem 3.4] Let M = @;¢;M; be an indecompos-
able decomposition that complements maximal direct summands. The follow-

ing conditions are equivalent.

(i) The decomposition M = ®;crM; complements direct summands.

(ii) Every non-zero direct summand of M contains an indecomposable direct

summand, and the family { M; | i € 1} is locally semi-T-nilpotent.

(7ii) Every local direct summand of M is a summand.

By [40, Theorem 2.22|, an indecomposable decomposition of a quasi-
continuous module always complements direct summands, and every local
direct summand is also a direct summand. However, it 1s still an open ques-
tion to characterize extending modules which admit indecomposable decom-
positions (cf. [40, Open problem 8, page 106]). N. V. Dung gives a complete

| characterization of extending modules which have a decomposition that com-

plements maximal direct summands, as a Corollary of (12, Theorem 3.4).
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Theorem 1.10.3 [12, Theorem 4.4] Let M = @;c;M; be a direct sum of
uniform submodules and suppose that this decomposition complements mazx-

imal direct summands. The following conditions are equivalent.
(i) M is extending.
(ii) ®iejM; is extending, for every countable subset J of I.

(i12) M; b M; s extending, for everyi,j € I, i # j, and the family { M; |

i € 1} is locally semi-T-nilpotent and satisfies condition (As).

Furthermore, if M satisfies any of the above equivalent conditions, then the

decomposition M = ®;c;M; complements direct summands, and any local

direct summand of M 1s also a direct summand.

Sufficient conditions for an extending module to admit an indecomposable

decomposition follow below.

Lemma 1.10.4 (13, 8.1] Let M be a module. If R satisfies ACC on right

ideals of the form r(x), x € M, then every local direct summand of M 1is

closed in M.

Theorem 1.10.5 [13, 8.2] Let M be an extending module. If R satisfies
ACC on right ideals of the form r(x), x € M, then M is a direct sum of

uniform submodules.

Corollary 1.10.6 (13, 8.3] Any locally Noetherian extending module is

a direct sum of uniform submodules.
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In particular, over a richt Noetherian ring, any extending module is a

direct sum of uniform submodules.

Corollary 1.10.7 [13, 8.4] Let M be a nonsingular extending module.
Then M is a direct sum of uniform submodules if and only if R satisfies

ACC on right ideals of the form r(x), z € M.

Proposition 1.10.8 {13, 8.6] A locally Noetherian module M 1is extend-
ing if and only if it is uniform-extending and every local direct sutnmand of

M is a direct summand.
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Chapter 2

Near and essential injectivity

In recent years, extending modules have been studied extensively and a
question that has attracted much attention is when the direct sum of extend-
ing modules is extending (see, for example, {10, 11, 12, 25, 26, 31, 61]).

In Section 2.2, we find sufficient conditions for a direct sum of two ex-
tending modules to be extending, generalizing several known results.

Trying to get partial converses for the results in Section 2.2, we look at
modules with summands with the finite exchange property, in Section 2.3.
We characterize when the direct sum of an extending module and an injective
module is extending and when the direct sum of an extending module with
the finite exchange property and a semisimple module is extending. We
also characterize when the direct sum of a uniform-extending module and
a semisimple module is uniform-extending and, in consequence, we prove
that, for a right Noetherian ring R, an extending right R-module M; and a
semisimple right R-module Ay, the right R-module M; & My 1s extending
if and only if Aly is M) /Soc(M,)-injective. Finally, we prove that a ring

IR is such that every direct sum of an extending (injective) R-module and
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a semisimple R-module is extending if and only if R/Soc(Rg) is a right
Noetherian right V-ring.

'To achieve this, the concepts of near and essential injectivity seem to
play a key role. So, in Section 2.1, we start by introducing these notions
and proving some criteria for a module to be essentially (nearly) injective,
and follow with some examples and general properties, establishing a parallel
with what is known for injectivity.

In Section 2.4, we consider direct sums of uniform-extending modules.
Let R be a ring and let { M; | ¢ € I } be a family of R-modules. In case, for
e\;ery 1 € [, M; is a uniform module with local endomorphism ring, N. V.
Dung [11] proved that @;e;M; is uniform-extending if and only if M; @ M;
is extending, for every ¢,7 € I, i # 7, and condition (As) holds. Considering
that an indecomposable module has the exchange property if and only if its
endomorphism ring is local, it is naturél to try to generalize this result to
direct sums of modules with the (finite) exchange property. Suppose that,
for any 1 € I, M; has the finite exchange property. We prove that &;c; M,
is uniform-extending if and only it M; @ M; is unitorm-extending, for every
1,7 € I, 1 # j, and, for any choice of z,, € M; , with n € IN and distinct
in € I, sucli that NS, r(x,) 2 r(y), for some y € M; such that yR is uniform

(5 € I), the ascending chain

o0 oo 00
m T(-Tn) g n T(g;n) C - C n T(In) g "
n=1 n=2 n=FmL

becomes stationary. This Section owes a good deal to (10, 11, 23, 32|, where
most of the ideas and techniques originate (see also [30], for close results).

Part of Section 2.1 and most of Sections 2.2 and 2.3 appeared in [53] (sce
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also [52]).

2.1 Near and essential injectivity

Let M; and Ms be modules. The module M, is nearly M;-injective (resp.,
essentially M;-injective) if every homomorphism o : A — M,, where A is
a submodule of M; and kera # 0 (resp., kera <, A), can be extended to
a homomorphism g : My — M, (see (13, 2.14]). Obviously, if M, is nearly
Mi-injective, then M, is essentially M;j-injective and, for a uniform module
My, the two notions coincide.

Observe that a module M is nearly N-injective, for every module N,
if and only if it is injective. To see this, let AM; be any module, let A be
a submodule of Ay and let a« : A — M, be a homomorphism such that
kerao = 0. Let B be any nonzero module and consider the homomorphism
« : A® B — M, such that &'|4 = e and o'|g = 0. As kero # 0, if M, is
nearly (M, & B)-injective, there exists a homomorphism 3 : M; & B — M,
that extends a'. Then, clearly, the restriction of 3 to M; extends «a.

A module M is essentially injective if it is essentially N-injective, for
every module N.

For example, every nonsingular module is essentially injective. In fact,
for any modules M; and Afy, a homomorphism o : A — M,, where A is
a submodule of M) and kera <. A, is such that A/ker « is singular, and
therefore a(A) < Z(Ms). So, if M, is nonsingular, a(A) < Z(M,) = 0 and
« 1s the zero homomorphism.

For any prime p, consider the (uniform) Z-modules Z/pZ, Z /p*Z and
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Z[p*Z. The module Z [pZ is essentially (Z/p*Z)-injective, but is not essen-
tially (Z /p*Z)-injective, as it fails to be (Z/p*Z)-injective (cf. Lemma 2.1.5
below).

In order to obtain characterizations of near and essential injectivity, we

need the following Lemma, that generalizes [13, Lemma 7.5].

Lemma 2.1.1 Let My and M, be modules, let X be a submodule of M,

and let M = M, & M,. The following conditions are equivalent.
(i) Moy is (M, /X)-ingective.

(ii) For every (closed) submodule N of M such that N N My = 0 and
i (N)YNX < N, there exists a submodule N of M such that N < N’
and M = N’ & M,.

(ii1) For every (closed) submodule N of M such that NN\My = 0 and X <N,
there exists a submodule N' of M such that N < N’ and M = N' @ M.

Proof. Obviously, (ii) implies (iii).

Let us prove that (i) implies (ii). Suppose that M, is (M;/X)-injective
and let N be a submodule of M such that NNM; =0and m(N)NX < N.

Consider the maps g : N — My, a — my(a), and Gy : N — A/[l-/X, a
ma)+X. Asm(N)NX < NNM; =kerag, themap o : N/(m(N)NX) —
My, a + 7 (N) N X — ma(a), is a homomorphism. Obviously, m(N)N X <
ker Bp. In order to prove that = (N) N X = ker Gy, let a € ker §;. Then
mi{a) € X and, consequently, mi(a) € m(N)NX < N. As NNM, =0
and a — w{a) = me(a), it follows that a = m(a) € m(N) N X. Therefore,
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T {(N)NX = ker By and the map f: N/(m(N)NX) - M;/X, a+m(N)N
X — m(a) + X, is a monomorphism. Then, by hypothesis, there exists a
map @ : M;/X — M, such that ¢ = a. -

Define N/ := {a + ¢p(a+ X) | a € M,;}. Clearly, N’ is a submodule
of M and N'N M, = 0. For every a € M, a = |[m(a) + p(m(a) + X)] +
(ma{a) — o(mi(a) + X)|] € N'+ Ms. So, M = N' @& M,. Also, if a € N,
then my(a) = ala + 7 (N)N X) = pfla+ m(N)N X) = p(ri(a) + X) and
a = m(a) + ma(a) = m(a) + p(m(a) + X) € N'. Thus, N < N'.

Let us prove, now, that (iii) implies (i). Suppose that condition (iii) is
valid. In order to prove that M, is (M;/X)-injective, let L be a submodule
of M; such that X < L and let o : L/X — M, be any homomorphism.
Define N := {a —~ala+ X) | a € L}. Clearly, N is a submodule of M,
NnM,=0and X < N. Then, by hy‘pothesis, there exists a submodule
N’ of M such that N < N and M = N &® M,. Let m : M — M, denote
the canonical projection with kernel N!. Then, as X < N’ = ker«, the map
¢ : My/X — My, a+ X — w(a), is a homomorphism. For every a € L,
pla+ X) =n(a) =7n((lea — ala+ X)) + ala+ X)| = ala + X). Thus, M, is
(M, /X )-injective. - O

Lemma 2.1.1 has the following immediate consequences.

Corollary 2.1.2 (13, Lemma 7.5] Let My and M, be modules and let

M = M, & Ms. The following conditions are equivalent.

(i) My is My-injective.

27



(1i) For every (closed) submodule N of M such that N N My = 0, there
exists a submodule N' of M such that N < N' and M = N' @ M.

Proof. This is a consequence of Lemma 2.1.1, when X = 0. a

Corollary 2.1.3 Let M, and My be modules and let M = M, & M.

The following conditions are equivalent.
(Z) A’fg 18 (A’fl/SOC(ﬂ”fl))-iﬂjﬁ?CtiUE‘.

(it} For every (closed) submodule N of M such that N N My = 0 and
Soc(m1(N)) < N, there exists a submodule N' of M such that N < N’
and M = N' @ M.

(i1i) For cvery (closed) submodule N of M such that N N M; = 0 and
Soc(N) = Soc(M,), there exists a submodule N" of M such that N < N’
and M = N" & M,.

Proof. This is a consequence of Lemma 2.1.1, when X = Soc(M;). O

We can now characterize near and essential injectivity.

Lemma 2.1.4 Let M; and M, be modules and let M := My &® M,. The

following conditions are equivalent.
(i) My s nearly Mi-injective.

(it) My is (M, /X)-injective, for every nonzero submodule X of Mj.
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(1i1) For every (closed) submodule N of M such that NN M; # 0 and

N N My = 0, there exists a submodule N’ of M such that N < N' and
M=N & A/fg

Proof. It is not hard to prove the equivalence of (i) and (ii) and Lemma

2.1.1 gives the equivalence of (ii) and (iii). O

Lemma 2.1.5 Let M, and My be modules and let M = M, & M,. The

following conditions are equivalent.
(i) M, is essentially M,-injective.
(ii) My is (My/X)-injective, for every essential submodule X of M.

(i1i) For every submodule N of M such that NNM,; <, M; and NNMy =0,
there exists a submodule N' of M such that N < N’ and M = N' &b M.

(iv) For every closed submodule N of M such that N N M; <. M; and
NNOMy=0, M =N Ms.

(v) For every (closed) submodule N of M such that NN M; <. N, there

exists a submodule N' of M such that N < N’ and M = N' & M,.

Proof. It is not hard to prove that (i) implies (ii). Let us prove the
converse. Suppose that condition (ii) holds, let A be a submodule of M;,
let a: A — M5 be a homomorphism such that kerov <, A and consider the
homomorphism & : A/ kera — M, a+kera — afa). Let B be a complement
of A in Af;. Then X := kera ® B <, M,. Consider the homomorphism
c: A/kerae — My /X, a+kera— a+X. Because ANX = kera®(ANB) =
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ker o, v is a monomorphism. On the other hand, by hypothesis, M> is
(M, /X )-injective. Then, there exists a map 8 : M;/X — M, such that
a(a+kera) = Bo(a+kera) = Bla+X), for every a € A. Let 8: M, — Mo,
a +— f[(a + X). Then, B(a) = ala), for every a € A. Therefore, M, is
essentially Ay-injective.

Lemma 2.1.1 gives the equivalence of (ii) and (iii) and, obviously, (iv)
implies (iii).

Let us prove, now, that (iii) implies (v). Suppose that condition (iii)
holds and let N be a submodule of M such that N N M; <, N. Let L be a
complement of N N My in M. Then, ( N L)NM, =(NNM)d L <, M.
Also, (NNM)N[NN(Le M)]=NN[L&(MiNM)]=NNL=0. As
NNM <. N, NN (L& M,) =0 and, consequently, (N & L)N M, = 0. By

hypothesis, there exists a submodule N’ of M such that N @& L < N’ and
M= N & M. -

To conclude the proof, let us show that (v) implies (iv). Suppose that
condition (v) holds and let K be a closed submodule of M such that K N
M, <, M, and I " M, = 0. Let us remark that KnNnM, <, K, because
(KNMy) @M,y <, M and KNM, = KN[(KNM,)®M,|. Then, by hypothesis,
there exists a,- -submodule K’ of M such that I < I{"and M = K'® M,. We
have I{ <. I{', because K & My <, M and K = K' N (K & Ms). Since K is

closed in M, we can conclude that X = K’ and M = K & M,. u

Corollary 2.1.6 Let M, and M, be modules. If My is (M;/Soc(My))-

injective, then Mo is essentially Mj-injective.

Proof. The result follows easily from Lemma 2.1.5, bearing in mind that,
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for every X <., M, Soc(M;) < X. 0

In general, the converse for the last result does not hold, though Corol-
lary 2.3.13 gives a partial converse for it. The Z-module Z is essentially
Z-injective, but is not (Z/Soc(Z))-injective (observe that Soc(Z) = 0).

In what follows, we will look at some basic properties of near and essential

injectivity.

Proposition 2.1.7 Let M, and My be modules. If My is nearly (resp.,
essentially) Mi-injective, then, for every submodule N of My, Ms is nearly
(resp., essentially) N-injective and nearly (resp., essentially) (M;/N)-injec-

Live.

Proof. For near injectivity, the result is an easy consequence of Propo-
sition 1.2.2 and Lemma 2.1.4.

Let us prove the result for essential injectivity. Suppose that M, is essen-
tially Mi-injective and let N < M.

By definition of essential injectivity, it is easy to see that Ay is also
essentially /N-injective.

Let X < AM; be such that N < X and X/N <, M;/N. By Propo-
sition 1.1.1(iv), X <. A;. Thus, by assumption and Lemma 2.1.5, M,
is (M, /X)-injective. Therefore, it is also [(M;/N)/(X/N)]-injective, since

these two modules are isomorphic. So, M, is essentially (M, /N )-injective. O

Proposition 2.1.8 Let M and { N; | i € I} be modules. Then I;c;N;
is nearly (resp., essentially) M -injective if and only if N; is nearly (resp.,

essentially) M -injective, for every 1 € I.
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Proof. This is an obvious consequence of Proposition 1.2.4 and Lemma

2.1.4 (resp., Lemma 2.1.5). O

Proposition 2.1.9 Let {M; | i € I} and N be modules. Then N is
essentially (B;er M;)-injective if and only if N is essentially M;-injective, for

every 1 € 1.

Proof. The necessity follows from Proposition 2.1.7.

Conversely, suppose that N is essentially M;-injective, for every ¢ € I,
and let X <, ®;erM;. Then, for every 1 € I, X N M; <, M; and, by
hybothesis, together with Lemma 2.1.5, N is [M;/(X N M;)}-injective. From
Proposition 1.2.3, we can conclude that N is {@®;c;[M;/(X N M;)]}-injective,
so that N is also {[®;cr M;]/[®icr(X N M;)]}-injective. By Proposition 1.2.2,
N is [(®;er M;)/ X ]-injective. Finally, by Lemma 2.1.5, we can conclude that
N is essentially (;e;M;)-injective. + O

The Z-module Z is essentially (nearly) Z-injective, so that it is also
essentially (Z @ Z)-injective, by Proposition 2.1.9. But it fails to be nearly
(Z & Z)-injective, as it is not [(Z & Z)/(Z & 0)]-injective, i.e., it is not

self-injective.
The modules Ay and Al; are relatively essentially injective if M; is essen-
tially AMj-injective, for every 4,7 € {1,2}, i # 3.

Compare the following result with Theorem 1.4.1(v).

Lemma 2.1.10 Let M; and My be modules and let M = M{®M,. Then

My and My are relatively essentially injective if and only if, for all (closed)
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submodules IC and L of M such that K N M; <. K and LN M, <. L, there
exist submodules K" and L' of M suchthat K < K', L< L' and M = K'®L'.

Proof. Suppose, firstly, that A; and Ms are relatively essentially injec-
tive and let I{ and L be (closed) submodules of M such that KX N M; <, K

and L N M, <., L. The fact that M, is essentially M;-injective guarantees,
by Lemma 2.1.5, that there exists a submodule K’ of M such that KX < K’
and M = K' @& M,. Then M, and K’ are isomorphic and, therefore, K’ is

essentially Ms-injective. Again by Lemma 2.1.5, and because L N M, <, L,
there exists a submodule I/ of M suchthat L< L'and M =K' L’.

Let us prove the converse. Let K be any submodule of M such that
KNAM, <, K and let L := M>. By hypothesis, there exist submodules K’
and L' of M suchthat K < K", L< L' and M = K'®L'. Then L' = (M, &
M )NL = (MiNLY®& My, and M = K'® (M;NL") & M,. By Lemma 2.1.5,

we can conclude that Ay is essentially AMi-injective. Analogously, we can

prove that M, is essentially M,-injective. O

The following result is a version of Baer’s Criterion for essential injectivity.

Proposition 2.1.11 Let M; and My be modules. Then My 1s essentially
M -ingective if and only if My is essentially aRR-injective, for every a € M.
Moreover, a module is essentially injective if and only if it is essentially Ry-

injective.

Proof. The necessity is given at once by Proposition 2.1.7. Conversely,
suppose that A, is essentially aR-injective, for every a € M, and let X <,

M. Fora € My, aRNX <, alR. By hypothesis and Lemma 2.1.5, taking in
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account that the submodules (aR+ X)/X and aR/(aRN X) are isomorphic,
we can conclude that M, is [(aR + X )/ X]-injective, for every a € M;. It
follows, by Proposition 1.2.5, that M, is (M;/X)-injective. Thus, again by
Lemma 2.1.5, M5 is essentially Aj-injective

The last statement follows easily. o

Let us introduce another generalization of injectivity.

Let A, and My be modules. The modﬁle Moy is u-essentially M -injective
if every homomorphism « : U — M5, where U is a uniform submodule of
M; and kera # 0 (i.e., kera <, U), can be extended to a homomorphism
G : My — M.

Clearly, if M, is essentially Mj-injective, then M, is u-essentially M-
injective. In what follows, we can see that these two notions coincide when
M, is a direct sum of uniform modules. We also prove some basic properties
of u-essential injectivity.

An example of a module Ay that is u-essentially AMi-injective but not
essentially MM-injective, for some module M, is provided in the end of this

Section.

Lemma 2.1.12 Let Ay and Mo be modules and let M = ﬂ/[l@liffg. Then
M, is u-essentially Mi-injective if and only if, for every (closed) uniform
submodule N of M such that N N\ M, # 0, there exists a submodule N' of M
such that N < N and M = N'& M,.

Proof. Assume that Ay 1s u-essentially A;-injective and let N be a

uniform submodule of Al such that NN M; £ 0. As NN M, = 0, the
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restriction of m; to N is an isomorphism between N and w(/V), so that
71(N) is also uniform. Consider the homomorphism « : m(N) — M2, z —
mo(m1|w) " (z). The map a can be extended to a homomorphism g : M; —
M, since My is u-essentially Mi-injective and kera = N N M; # 0. Define
N' = {z+ B(z) | £ € M;}. Clearly, N’ is a submodule of M and M =
N' @ M,. For every z € N, fBmi(z) = am(x) = my(x) and hence z =
m1(x) + Bmi(z) € N’. Thus, N < N'.

Conversely, assume that, for every uniform submodule N of M such that
N N M, # 0, there exists a submodule N’ of M such that N < N' and M =
N' @ M,. Let K be a closed uniform submodule of M; and let o : I — M,
be a homomorphism such that kera # 0. Define N :={zx —a(x) |z € K }.
Clearly, N is a uniform submodule of M such that N N M; = kera # 0.
Then, by hypothesis, there exists a submodule N’ of M such that N < N’
and M = NV M,. Let # : M — Mfgidenote the projection with kernel
N’ .and let B : M; — M, be the restriction of @ to M;. For every z € K,
B(z) = w(z) = 7((xz — a(x)) + a{z)) = af(z) and, therefore, B extends a.

Thus, M5 is u-essentially A;-1njective. 0

Lemma 2.1.13 Let M, and M, be modules. If My is u-essentially M-

injective, then My is u-essentially N -injective, for every submodule N of M.

Proof. Clear, by definition. 0

Corollary 2.1.14 Let My be a direct sum of uniform modules. A module

M, 1s u-essentially My-injective if and only if it is essentially M;-injective.

Proof. The sufficiency is obvious.
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Suppose that Ay is u-essentially M;-injective and that M, = ®;c; M;;,

where My; is uniform, for every ¢ cI. By Lemma 2.1.13, M, is u-essentially
(i.e., essentially) Mj;-injective, for every 7 € I. Using Proposition 2.1.9, we

can conclude that M, is essentially Mi-injective. 0

Next we characterize essential (resp., u-essential) injectivity over an ex-

tending (resp., uniform-extending) module.

Lemma 2.1.15 Let M, be an extending module, let My be any module
and let M := M, & My. Then My 15 essentially M,-injective if and only if

the following condition holds.

(x) For every closed submodule K of M such that K N M; <. K, there
exists a submodule My, of M, such that M = K & M;; & M.

In particular, if Mo 1s essentially M,-1njective, then every closed submodule

K of M such that K N M, <. I is a direct summand of M.

Proof. It is obvious that condition (x) implies that M; is essentially
Mi-injective, by Lemma 2.1.5.

Suppose now that My is essentially M;-injective and let K be a closed
submodule of M such that KX NAM, <. K. As KN M, = 0, the restriction of
my to I{ is an isomorphism between K and 71 (/). Then, from I NM; <, K,
we can conclude that K N M, <, m(K). Since M, is extending, there exist
My, Mo < My such that M = My, & My and 7 (K) <. M. Hence
KN M, <, M;s. Observe that K < m{(I{) @ m(I) < M2 ® Mo, KN My =
KnNM <. Mo and KN My = 0. On the other hand, Proposition 2.1.7
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guarantees that M, is essentially M5-injective. Thus, by Lemma 2.1.5, M, &
Mo = K @ Mo, so that M = K & My; © Ms. O

Lemma 2.1.16 Let M, be a uniform-extending module, let My be any

module and let M := M, & M,. The following conditions are equivalent.

(i) M, is u-essentially M,-injective.

(it) For every closed uniform submodule K of M such that K N M; # 0,
there exists a submodule My of My such that M = K & My, & M,.

(i11) My is essentially (nearly) U-injective, for every uniform submodule U

Of A’Il

In particular, if My 1s u-essentially My-injective, then every closed uniform

submodule IS of M such that I N M, # 0 is a direct summand of M.

Proof. By Lemma 2.1.12, (ii) implieé (i); that (i) implies (iii) follows by
Lemma 2.1.13. Let us prove that (iii) implies (ii).

Suppose that A, is essentially U-injective, for every uniform submodule
U of M. Let K be a closed uniform submodule of M such that K N M; #
0. Then, as K is uniform, I{ N My = 0 and K is isomorphic to ().
Consequently, w1 (I) is also uniform and, because M; is uniform-extending,
1 (I() is essential in a direct summand of M;. Suppose that M; = M, M,
where () <, Mys. Obviously, M, is also uniform and, by hypothesis,
M, is essentially Mjs-injective. On the other hand, K < 7 (K) & mo(K) <
Mio® M, and K NAM9 <. Mys. Then, by Lemma 2.1.5, Mo @ Mo = K& M,.
Thus, M = My @ My & My = K & My @ M,. Therefore, condition (ii) is

satisfied. [
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The following results are versions of Theorem 1.2.6 for near, essential and

u-essential injectivity.

Proposition 2.1.17 Let { M; | i € 1} be a family of modules. For a

module A, the following conditions are equivalent.
(i) DiciM; is nearly A-injective.
(1i) ®;esM; 1s nearly A-injective, for every countable subset J of 1.

(i11) M; s nearly A-injective, for every i € I, and for any choice of =, €
M; , with n € IN and distinct 1, € I, such that NS r(x,) 2 (X : a),

for some a € A and some nonzero submodule X of A, the ascending

chain
(Y 7r(@a) € [ 7(zn) S---C () 7(za) C -
n=1 =2 - n=k

becomes stationary.

(iv) M; 1s nearly A-injective, for every i € I, and for any choice of x, €

M;, , with n € IN and distinct i, € I, such that N2 7(z,) 2 r(a), for

n=1

some a € A, the ascending chain

0O 00 o'e
ﬂr(mn)g T(Q:n)(.;g ﬂr(l‘n)g
n=1 n==2 n=Kk

becomes stationary.

Proof. The equivalence of (i), (ii) and (iii) follows by Theorem 1.2.6 and
Lemina 2.1.4, bearing in mind that, for every a € A and every submodule X

of A, (X : a) is the right annihilator of {a + X} in R.

33



As r(a) C (X : a), for every a € A and every submodule X of A,
(iv) implies (iii). Let us prove the converse. Assume that condition (iii)
holds and let z, € AM; , with n € IN and distinct i,, € I, be such that-
J = N2 r(z,) 2 r(a), for some a € A. Without loss of generality, assume
that J D r(a). Then aJ # 0 and (aJ : a) C J = N%,;r(z,). By hypothesis,

the ascending chain

0 OO | 0
r(z,) C [ r{zn) C-+-C () r(zn) C
n=1 n=—=2 n=k
becomes stationary. 03

Proposition 2.1.18 Let {M; | i € I} be a family of modules. For a

module A, the following conditions are equivalent.
(1) ®ic1M; is essentially A-injective.
(it) D;ciM; is essentially A-injective, for every countable subset J of I.

(i11) M; is essentially A-injective, for everyi € I, and for any choice of x,, €
M;,,, with n € IN and distinct i, € I, such that N22r(z,) D (X : a),

for some a € A and some essential submodule X of A, the ascending

chain
.0 oo o0
ﬂ T(mn) C ﬂ T(mn) C .- C m T(wn) C -
n=1 n=2 n==k
becomes stationary.
Proof. By Theorem 1.2.6 and Lemma 2.1.5. O

Proposition 2.1.19 Let {A; | i € I} be a family of modules. For a

uniform-extending module A, the following conditions are equivalent.
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(i) Dic1M; is u-essentially A-injective.

(1) BicaM; s u-essentially A-injective, for every countable subset J of I.

(ii1) M; is u-essentially A-injective, for every i € I, and for any choice of
T, € M;,,, withn € IN and distinct i, € I, such that NS ,7(z,) 2 r(a),

for some a € U, where U is a uniform submodule of A, the ascending

chain _
OO O o0
ﬂ T\ In gﬂr(fcn)(—:'”(—: ﬂr(mn)g
n=1 n=2 n==k

becomes stationary.

(1v) M; is u-essentially A-injective, for every i € I, and for any choice of
T, € M; , withn € IN and distinct i,, € I, such that N2 ,7(z,) 2 r(a),

for some a € A such that aR s uniform, the ascending chain

alr(ﬂin) C fcir(:z:n) C...C akr(g;n) C ...

becomes stationary.

Proof. Lemma 2.1.16 and Proposition 2.1.17 give the equivalence of (i),

(ii) and (iii) and, obviously, (iii) and (iv) are equivalent. O

Corollary 2.1.20 Let { M; |1 € I} be a family of modules. For a module

A, the following conditions are equivalent.
(i) M; is A-injective, for every i € I, and ®;c;M; s nearly A-injective.
(1i) ®ic1M; is A-injective.
Proof. By Proposition 2.1.17 and Theorem 1.2.0. O
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Motivated by these results, let us introduce the tollowing chain conditions

on the ring R, relative to a given family { M; | ¢ € I} of R-modules.

(B;) For any choice of z,, € M;_, with n € IN and distinct i, € I, such that

N, r(x,) <. Rg, the ascending chain

Fjlr(zn) C 627'(3711) C C 5 T(:rn) C

becomes stationary.

(B,) For any choice of z,, € M; , with n € IN and distinct i, € I, such that

NS r(x,) 2 (X : y), for some y € M; and some essential submodule

X of M; (j € I), the ascending chain

(@) € () rlen) €+ € (e €

becomes stationary.

(C) For any choice of z, € M;_ , with n € IN and distinct 7,, € I, such that
N2 yr(z,) 2 r(y), for some y € M; such that yR is uniform (5 € I),

the ascending chain

o0 o o0
N (@) S (N r(en) S+ S () rlen) -
n=1 n="=2 n=k

becomes stationary.

Let us look at some of the relations between these chain conditions. Ob-
viously, (As) implies both (B;) and (C), and (A,) implies (B;). Also, (B;)
implies (Bs), since, for every module A, every essential submodule X of A

and every a € A, (X : a) <. Rpg.

41



For a family { M; | ¢ € I} of uniform modules, conditions (A,), (B>) and
(C) are equivalent (we can prove that (B,) implies (A;), in these circum-
stances, using the argument in the proof of Theorem 2.1.17).

A family of modules { M; | i € I} is relatively nearly injective (resp.,
relatively essentially injective, relatively u-essentially injective) if M; is nearly
(resp., essentially, u-essentially) M j-injective, for every z, 1€1,15#7.

As an immediate consequence of Propositions 2.1.17 and 2.1.18, we have

the following result.

Proposition 2.1.21 Let {M; | i € 1} be a family of modules. Then
Bicn\ (3 M; ts nearly (resp., essentially) Mj;-injective, for every j € I, if and
only if the modules { M; | i € 1} are relatively nearly (resp., essentially)
injective and condition (As) (resp., (Bs)) holds.

By Proposition 2.1.8, a direct product of nearly (resp., essentially) in-
jective modules, and hence a finite direct sum of nearly (resp., essentially)
injective modules, is nearly (resp., essentially) injective. The following result
characterizes the near (resp., essential) injectivity of arbitrary direct sums of

modules and is a consequence of Lemma 2.1.17 (resp., Lemma 2.1.18).

Theorem 2.1.22 Let{ M; | i € I} be a family of modules. The following

conditions are equivalent.

(1) ®ierM; is nearly (resp., essentially) injective.

(11) DicyM; is nearly (resp., essentially) injective, for every countable sub-

set J of I.
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(i11) M; is nearly (resp., essentially) injective, for everyi € I, and condition

(Aq) (resp., (B1)) holds.

Proof. Lemma 2.1.17 (resp., Lemma 2.1.18) gives at once the equivalence
of (i) and (ii) and shows condition (iii) implies the other two. It remains to
be proved that (i) implies (iii).

Assuming that @;c;M; is nearly (resp., essentially) injective, we know
that M; is nearly (resp., essentially) injective, for every 7 € I, and we need
to show that (A;) (resp., (B;)) holds.

Let z,, € M; , with n € IN and distinct 7,, € I be, without loss of gener-
ality, such that J := NS> ;r(z,) # 0 (resp., be such that J := N2 r(z,) <.
Rpr). By hypothesis and Lemma 2.1.4 (resp., Lemma 2.1.5), ®;csM; is (R/J)-
injective. Observing that J = r(1 + J), Theorem 1.2.6 guarantees that the

ascending chain

(Y r(zn) C () 7r(zn) CS---C () 7r(zn) C---
n=1 n=2 n=~k
becomes stationary. Therefore, condition (A;) (resp., (B;)) holds. O]

The next results are versions of Theorem 1.2.9 for near and essential

injectivity.

Theorem 2.1.23 For a module A, the following conditions are equiva-
lent.

(i) A is locally Noetherian.

(1i) The direct sum of any family of injective modules is A-injective.
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(111) The direct sum of any family of A-injective modules 1s A-injective.
(iv) The direct sum of any family of injective modules is nearly A-injective.

(v) The direct sum of any family of nearly A-injective modules is nearly

A-injective.

In particular, the direct sum of every family of (nearly) injective R-modules

is (nearly) injective if and only if R is right Noetherian.

Proof. It is obvious that (iii) implies (ii) and that (v) implies (iv); Corol-
lary 2.1.20 gives the equivalence of (ii) and (iv); Theorem 1.2.9 shows that
(i) is equivalent to (iii).

Let us prove that (ii) implies (i). For a € A, since R/r(a) and aR
are isomorphic, we will prove that aR is Noetherian by showing that any

ascending chain

\i
o~
=
S

|
S
AN
g
o
| A\

<<

of right ideals of R is ultimately stationary. For every ¢ € IN, let M; be the
injective hull of R/I;, i.e., M; := E(R/I;). Since each M; is injective, @;cp M;

is A-injective, by assumption. Consider the set of elements {z; ;= 1+ I; €

M; | ¢ € IN}. For every i« € IN, as r(z;) = I;, we also have ﬂfl‘:’;_,iir(:rn) —

Nn>i I, = I;. The A-injectivity of &, yM; implies, by Theorem 1.2.6, that

the ascending chain
r(a) = Ip C r(zn) = 1 C r(zn) =1, C--- C ﬂr(a:n)=1'ng-u
n==~k

becomes stationary. Therefore af? is Noetherian and A is locally Noetherian.
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Finally, let us show that (i) implies (v). Let { M; | i € I } be a family
of nearly A-injective modules. Let X be a nonzero submodule of A. By
Lemma 2.1.4, M; is (A/X)-injective, for every 7 € I. On the other hand, -
A/X, being a quotient of the locally Noetherian module A, is also locally

Noetherian. Thus, Theorem 1.2.9 guarantees that ®;c;M; is (A/ X )-injective.

Again by Lemma 2.1.4, we can conclude that @;c;M; is nearly A-injective.

Thus, condition (v) holds.

The last statement of the Theorem is obvious. O

Theorem 2.1.24 For a module A, the following conditions are equiva-

lent.

(1) A/Soc(A) is locally Noetherian.
(i1) A/X is locally Noetherian, for every X <. A.

(iit) The direct sum of any family of injective modules is essentially A-
njective.
(tv) The direct sum of any family of essentially A-injective modules is es-

sentially A-injective.

In particular, the direct sum of every family of essentially injective R-modules

is essentially injective if and only if R/Soc(Rpg) is right Noetherian.

Proof. Firstly, let us prove the equivalence of conditions (i) and (ii).
Since, for every X <. A, Soc(A) < X, we can conclude that, if the module

A/Soc(A) is locally Noetherian, then A/X is also locally Noetherian.
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Conversely, suppose that A/X is locally Noetherian, for every X <, A.
For every a € A, we want to prove that (aR + Soc(A))/Soc(A) is Noethe-

rian, which is equivalent to proving that aR/Soc(aR) is Noetherian, since

Soc(aR) = aR N Soc(A). By [13, 5.15], aR/Soc(aR) is Noetherian if and

only if a R satisfies ACC on essential submodules. Let B be a complement of

al in A and let
XOSXISXQSSXHE:

be an ascending chain of essential submodules of a/. Then

Xo®B<L X1 9B Xo0B<--- <X, ®B<---

Al

is an ascending chain of essential submodules of A. By hypothesis, the

module (aR & B)/(Xo @ B), being a cyclic submodule of A/(Xy & B) with
Xo & B <. A, is Noetherian, so that aR/Xj is also Noetherian. Therefore,

the chain

Xo< X< Xog< oo < X, < -1

1s stationary and aR satisfies ACC on essential submodules. Finally, we can
conclude that the module A/Soc(A) is locally Noetherian.

It is obvious that (iv) implies (iii). |

Let us prove that (iil) implies (ii). Let X <, A. For every family { M; |
i € I} of injective modules, the hypothesis and Lemma, 2.1.5 guarantee that
D;er M; is (A/X)-injective. Then, by Theorem 2.1.23, we can conclude that
A/X is locally Noetherian.

It remains to be proved that (ii) implies (iv). Let {M; | i € I} be a
family of essentially A-injective modules and let X <, A. By Lemma 2.1.5,
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M; is (A/X)-injective, for every 7 € I. On the other hand, by hypothesis,
A/ X is locally Noetherian. Thus, Theorem 1.2.9 guarantees that @;¢;M; is

(A/X)-injective. Again by Lemma 2.1.5, we can conclude that @®;c;M; is '
essentially A-injective. Thus condition (iv) holds.

The last statement of the Theorem 1s obvious. O

We will finish this Section with some examples.

Let K be a field and let V be an infinite dimensional vector space over

I{. The ring
K V
= [ 0 K]

1s such that
Soc(Rg) = [ g }i, ] .

Then, R/Soc(Rg) is isomorphic to K and, therefore, is Noetherian, though
R itself is not right Noetherian. By Thedrems 2.1.23 and 2.1.24, the direct
sum of every family of essentially injective R-modules is essentially injective,
but there exists a family of (nearly) injective R-modules that is not (nearly)
injective. Theorem 2.1.22 guarantees that this particular family satisfies (B;)
but does not satisfy (A;).

Let R be a commutative Von Neumann regular ring. Observe that every
uniform ideal of R is simple, so that every ft-module is trivially u-essentially
Rp-injective. As R/Soc(Rpr) need not be Noetherian, not every R-module is

essentially Rgp-injective (cf. Theorem 2.1.24). Consider, for example, a field

K and let R := Il NI, where K, = K, for every n € IN. Then R is

a commutative Von Neumann regular ring such that Soc(Rgr) = &, K.

Thus R/Soc(RR) is not Noetherian.
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2.2 Sufficient conditions for a direct sum of
two extending modules to be extending

We now look at sufficient conditions for a direct sum of two extending

modules to be extending. For this, we will need the following Lemma.

Lemma 2.2.1 Let M, and M, be extending modules and let M := M; @

Ms. The following conditions are equivalent.

(i) M is an extending module.

(1) Every closed submodule I of M such that KNM; =0 or KNM; =0

s a direct summand of M.

(1ii) Every closed submodule K of M such that KNM, <, K, KNM, <, K
or KNM, = KNM,=0 is a direct summand of M.

Proof. The equivalence of (i) and (ii) is given in {13, Lemma 7.9] and it
is obvious that (ii) implies (iii).

Let us prove that (iii) implies (ii). Suppose that condition (iii) is valid and
let L be a closed submodule of M such that LN M, = 0, the case LNM; = 0
being analogous. Let K be a closed submodule of L such that L N M, <. K.
By Proposition 1.1.4, K is closed in M. Clearly, KNM, = LNM; <. K and
then, by hypothesis, K is a direct summand of M. Suppose that M = KGK".
Then L=LN(KeK)=K&(LNK"), (LNK'YNM,=(LNM)NK" <
KNK' = 0and (LNK")NM,; < LNM,; = 0. Again by Proposition 1.1.4, LNK"

is closed in A/. Thus, by assumption, L N K’ is a direct summand of M and,

43



consequently, is also a direct summand of K’. Therefore, L = K & (L N K’)

1s a direct summand of I{ & K' = M. O

Theorem 2.2.2 Let M, and M, be extending (resp., uniform-extending)
modules and let M = M; & M,. If one of the following conditions holds,

then M is extending (resp., uniform-extending).

(i) M, is essentially (resp., u-essentially) M,-injective and every closed
(resp., closed uniform) submodule K of M such that KN M; =0 is a

direct summand of M.

(it) My and My are relatively essentially (resp., u-essentially) injective and
every closed (resp., closed uniform) submodule K of M such that K N
M, =K NMy=0 1is a direct summand of M.

(iii) M, is Msy-injective and My is essentially (resp., u-essentially) M;-

injective.

Proof. (i) and (ii) follow from Lemmas 2.1.15 and 2.2.1 (resp., Lem-
mas 2.1.16 and 2.2.1).
Let us prove (iii). Suppose that M, is Ms-injective and M, is essentially

(resp., u-essentially) M;-injective. Let K be a closed (resp., closed uniform)

submodule of A such that I N M; = 0. By Corollary 2.1.2, there exists
a submodule K’ of M such that X < K' and M = M; & K'. As K' is
isomorphic to My, I{' is extending (resp., uniform-extending) and I, being
a closed (resp., closed uniform) submodule of K”, is a direct summand of K.

Thus, K is also a direct summand of M. By (i), M is extending. O
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We shall prove partial converses for Theorem 2.2.2 and some of the Corol-

laries below (cf. Section 2.3).

Corollary 2.2.3 (25, Theorem 8| Let {M,...,M,} be a finite family of

relatively injective modules. Then M; @ --- & M, 1s extending if and only if

M; is extending, for everyi € {1,...,n}.
Proof. This is a consequence of Theorem 2.2.2(iii). u

For any prime p, consider the (uniform) Z-modules Z/pZ, Z/p*Z and
Z/p*Z. The Z-module M := Z/[pZ & Z[p*Z is not extending, because
K= 1+pZ,p+p*Z)Z is a closed submodule of M which is not a direct
summand. On the other hand, Theorem 2.2.2 guarantees that the Z-module

N = Z/pZ & Z/p*Z is extending. Recall that, as we have remarked in

the beginning of Section 2.1, Z/pZ is essentially (Z /p*Z)-injective, but is
neither (Z /p*Z)-injective, nor essentially (Z/p*Z)-injective.

Corollary 2.2.4 Let M, be an extending (resp., uniform-extending) mod-

ule and let M, be a semisimple module. If Mo, is essentially (resp., u-

essentially) M, -injective, then M; @ M, is extending (resp., uniform-ext-

ending).

Proof. This is a consequence of Theorem 2.2.2(iii), considering that every

module is injective over a semisimple module. O

As trivial consequences of Corollary 2.2.4, we get the following known

results.
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Corollary 2.2.5 Let M, and M, be extending modules.

(i) [61, Proposition 5.8} If M, is a finite direct sum of uniform modules
and My is a finitely generated semisimple module that is (M, /Soc(M;))-

injective, then M, & Mo s extending.

(i) [26, Theorem 4.4] If My is semisimple and nearly M,-injective, then
M, & M, is extending.

Bearing in mind that nonsingular modules are essentially injective, The-

orem 2.2.2(iii) has the following immediate consequence.

Corollary 2.2.6 {25, Theorem 4| Let M, and M, be extending modules.
If My is nonsingular and M, is Mi-injective, then M; & M, is extending.

The equivalence of (i) and (ii) in the next Theorem is the well-known

result [31, Theorem 1J.

Theorem 2.2.7 For a module M, the following conditions are equiva-

lent.
(i) M 1is extending.

(ii) M = Zy(M) & M’, for some M' < M such that both Zo(M) and M’
are extending and Zo(M) is M'-injective.

(11i) M = Zy(M) & M', for some M' < M such that both Zo(M) and M’

are extending and Z,(M) is essentially M'-injective.
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Proof. Obviously, (ii) implies (iii).

If condition (iii) is satisfied, then clearly Hom(A, M’) = 0, for every
A < Zy(M), so that M' is Z,(M )-injective. Therefore, by Theorem 2.2.2(iii), -
N_f is extending and condition (i) holds.

That (i) implies (ii) is given in [31, Theorem 1], but we include a proof
for completeness. If M is extending, and because Zo(M) <. M, we have
M = Zo(M) ® M’, for some submodule M’ of M. Both Z,(M) and M’ are
extending and it only remains to be proved that Z,(M) is M’-injective. Let
K be a closed submodule of M such that KNZy(M) = 0. Clearly, Z3(K) = 0.
As M is extending, I is a direct summand of M and M = K & K’, for some
submodule K’ of M. Then Zy(M) = Zo(K) ® Z5(K') = Zy(K') < K, so
that I{' = Zo(M)e® (K'NM') and M = K & Z,(M) & (K' 0" M'). By
Corollary 2.1.2, we can conclude that Zy(M) is M’-injective. u

2.3 Extending modules with summands sat-
1sfying the finite exchange property

Trying to get a converse for Theorem 2.2.2 and some of its Corollaries,
we conslder modules with summands with the finite exchange property and
obtain partial converses.

We will start by proving three technical results that will be used in the

sequel.

Lemma 2.3.1 Let M, and My be modules, let M := M; & M, and let
K be a direct summand of M such that K N M, <, K. If I has the finite

exchange property, then M = K & A® M,, for some A < M;.
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Proof. Because K has the finite exchange property, M = K 8 A& B
for some A< Myand B< M, AsKNM,; <, Kand KNMN(A® M,) =
KN[A® (M, N M,)] = KN A= 0, we can conclude that K N (A® M) = 0.
Therefore, (I & A) N My = 0 and, consequently, M = K & A& M. O

ol

Lemma 2.3.2 Let K and K' be modules, let M = K & K' and let L

be a submodule of M with the finite exchange property. If M = N' & L, for

some N' < K', then K has the finite exchange property.

Proof. Because M = N' @ L, for some N’ < K’, then K' = K'N
(NN L)=No(HK'NL, M=KeK =KeN o(K'NL) and L =
LNKeNao(K'NnL)|= (K& N')NL & (K'NL). Thus, it is easy to see
that M = [(I{ & N')N L} & ' and we can conclude that K is isomorphic to
(K @ N')N L, which is a direct summand of L. Therefore, K has the finite

exchange property. O

Lemma 2.3.3 Let M; be any module, let My be a module with the finite
exchange property and let M = My ® M,. If K is a uniform direct summand

of M, then IC has the finite exchange property or there ezxists a submodule L

of M such that K < L and M = L & M,.

Proof. Suppose that M = K & K'. Because M, has the finite exchange
property, M = N @ N' @ Mo, for some N < K and N' < K’'. But K is
uniform and, so, cither M = K ® N' & My, or M = N' & M,. In the first

case, M = L ® My, where L := I @& N’, and, in the second case, K has the
finite exchange property, by Lemma 2.3.2. 0
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At this point, we are able to prove the following key result.

Proposition 2.3.4 Let M; be any module and let My be a module with
the finite exchange property. If My @& M, is extending (resp., uniform-ext-

ending), then M, is essentially (resp., u-essentially) My-injective.

Proof. Suppose that M = M, @& M- is extending and let K be a closed
submodule of A such that K N M, <_, K. As M is extending, K is a direct
summand of M. Suppose that M = K @ K’. Thus, because M, has the
finite exchange property, M = N & N’ @ M,, for some N < K and N' < K’.
Then, as (KNAM)NN = NNMy; =0, N=0and M = N'@ M,. Therefore,

by Lemma 2.3.2, K has the finite exchange property and, by Lemma 2.3.1,
M=K&M,® B, for some B < M,. By Lemma 2.1.5, M; is essentially

Mo-Injective.

The result for M uniform-extending tollows analogously. u

We don’t know if, for any modules M; and M, such that M; & M, is
extending, M, and A, are relatively essentially injective.

Proposition 2.3.4 has several consequences, of which we state a few.

Corollary 2.3.5 Let M, and My be modules with the finite exchange
property and let M = M; @ Mo. Then M 1is extending if and only of M,
and Mo are extending and relatively essentially injective and every closed

submodule I of M such that K "M, = KN My =0 is a direct summand of
A .

Proof. By Theorem 2.2.2 and Proposition 2.3.4. o
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The next result is a partial converse for Corollary 2.2.4.

Theorem 2.3.6 Let M, be a module with the finite exchange property
and let My be a semisimple module. Then M, & M, is extending if and only

if My 1s extending and My 1s essentially My -ingective.
Proof. By Corollary 2.2.4 and Proposition 2.3.4. 0

In particular, Theorem 2.3.6 characterizes when the direct sum of a con-
tinuous module and a semisimple module is extending.
Versions of Corollary 2.3.5 and Theorem 2.3.6 for uniform-extending mod-

ules could be given, but we will obtain better results below (cf. Corol-

lary 2.3.10, Theorem 2.3.11).

Theorem 2.3.7 Let M; be any module and let My be an injective module.
Then M; & M, is extending (resp., uniform-extending) if and only if M,
is extending (resp., uniform-extending) and essentially (resp., u-essentially)

Mo -1ngective.
Proof. By Theorem 2.2.2 and Proposition 2.3.4. _ O

For uniform-extending modules, these results can be improved, due to

the following Proposition (compare with Proposition 2.3.4).

Proposition 2.3.8 Let M, be any module and let My be a module with
the finite cxchange property. If My @ M, is uniform-extending, then M, is

u-essentially My -1njective.
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Proof. Suppose that A := A; & A, is unitorm-extending and let /{ be
a closed uniform submodule of M such that K N A; % 0. As M is uniform-
extending, I{ is a direct summand of M. By Lemma 2.3.3, K has the finite
exchange property or there exists a submodule L of M such that I < L and
M =L @ M,. In the first case, and because I N M; <., K, Lemma 2.3.1
guarantees that Ml = K & A & M,, for some A < M,. Therefore, M is

u-essentially Afj-injective. | D)

Corollary 2.3.9 Let M, be a direct sum of uniform modules and let
M, be a module with the finite exchange property. If My & M, is uniform-

extending, then Mo is essentially Mi-injective.

Proof. By Corollary 2.1.14 and Proposition 2.3.8. C

Versions of the previous results (Corollary 2.3.5 and Theorem 2.3.6), for
uniform-extending modules, follow below. Observe that the hypothesis of

A, having the exchange property was dropped.

Corollary 2.3.10 Let Ay be any module, let Mo be a module with the
finite exchange property and let M = M, & M,. Then M s uniform-
extending if and only if M, and M, are uniform-eztending and relatively
u-essentially injective and every closed uniform submodule K of M such that

KNM =KnM,=0 is a direct summand of M.
Proof. By Theorem 2.2.2 and Propositions 2.3.4 and 2.3.8. O]

Theorem 2.3.11 Let M, be any module and let Mo be a semisimple
module. Then M; & My 1s uniform-extending if and only if M, is uniform-

extending and Ny is u-essentially M -injective.
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Proof. By Corollary 2.2.4 and Proposition 2.3.8. ]

In certain cases, these results can somewhat be improved. We will need

the following result, that generalizes 26, Proposition 4.2].

Proposition 2.3.12 Let M, be a module with zero socle and let My be a
module with essential socle and the finite exchange property. Then M, & M,
15 extending if and only if M, and M, are extending, M, is essentially Mo-

injective and Mo 1s My-injective.

Proof. The sufficiency follows from Theorem 2.2.2.

Conversely, suppose that M := M; & M, is extending. Obviously, M; and
M, are extending and, by Proposition 2.3.4, M; is essentially Ms-injective.
Let us prove that A, is Adj-injective. Let K be a closed submodule of A/
such that I{ N My = 0 and Soc(K) = 0. As M is extending, K is a direct
summand of M. Suppose that M = K @ I’. Then, Soc(K’) = Soc(M) =
Soc(Ms) <, My and K' N M, <, M,. By Lemma 2.3.1 and because M,

has the finite exchange property, M = K & N’ & M, for some N' < K'.
Therefore, My is M;-injective, by Corollary 2.1.3. O

The next result gives a partial converse for Corollary 2.1.6.

Corollary 2.3.13 Let M; be any module and let My be a module with
essential socle and the finite exchange property. If M, & My 1s extending,

then the following conditions are equivalent.

(i) My is essentially My -injective.
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(11) My is (M, /Soc(My))-injective.

Proof. In general, (ii) implies (i) (cf. Corollary 2.3.6).

Suppose that A, @M, is extending and that M, is essentially M;-injective.
Being extending, M; = My, ® M5, where Soc(M;) <. Mj;. So, Soc(My;) <.
My, and Soc(My2) = 0. Then, M, is (M;;/Soc(Mji))-injective, because it

is essentially Aq;-injective. Also, My is Mis-injective, by Proposition 2.3.12.

Therefore, M, is (M, /Soc(M,))-injective. O]

In particular, Corollary 2.3.13, together with other previous results, has

the following consequences.

Corollary 2.3.14 Let M; be an extending module with the finite ex-
change property and let My be a semisimple module. The following conditions

are equivalent.
(i) M, & M, is extending.
(11) M, is essentially My-injective.
(ii1) My s (M /Soc(My))-ingective.
Proot. By Theorem 2.3.6 and Corollary 2.3.13. O

Theorem 2.3.15 Let M, be an extending module that is a direct sum of
uniform submodules, let My be a semistmple module and let M := M, & M,.

The following conditions are equivalent.
(i) M is extending.
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(it) M is uniform-eztending.
(iii) My is u-essentially M, -injective.
(iv) M, is essentially M;-injective.

(v) M, is (My/Soc(My))-injective.

Proof. Obviously, (i) implies (ii) and (v) implies (iv); (ii) implies (iii),
by Theorem 2.3.11; (iii) is equivalent to (iv), by Corollary 2.1.14; and (iv)
implies (i), by Corollary 2.2.4. Also, by Corollary 2.3.13, if (i) holds, then
(iv) implies (v). O

Corollary 2.3.16 Let M, be a module such that R satisfies ACC on right
ideals of the form r(z), x € M,, and let My be a semisimple module. Then
M@ M, is extending if and only if M, is extending and My is (M, /Soc(M;))-

injective.
Proof. By Theorems 2.3.15 and 1.10.5. O

In particular, Theorem 2.3.15 characterizes when the direct sum of an ex-

tending module and a semisimple module is extending, over a right Noethe-

rian ring.
26, Theorem 4.6], {61, Proposition 5.2] and {52, Theorem 9] are conse-

quences of Theorem 2.3.15. We can also improve {52, Theorems 13 and 18}

with the following result.

Theorem 2.3.17 The following conditions on a ring R are equivalent.
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(i) My @& M, is extending, for every extending R-module M, and every

simple (semisimple) R-module M.

(ii) M 1651\42 1s extending, for every injective R-module M, and every simple

(semisimple) R-module M.
(111) R/Soc(RR) is a (right Noetherian) right V-ring.

Proof. Obviously, (i) implies (ii).

Let us prove that (ii) implies (iii). Suppose that M; & M, is extending,
for every injective R-module M; and every simple (semisimple) R-module
Msy. Let S be a simple (semisimple) R-module. Then, E(Rg) & S is ex-
tending and, by Corollary 2.3.14, S is (E(Rg)/Soc(E(Rg)))-injective. But
Soc(E(RRr)) = Soc(Rg) and, so, S is (Rr/Soc(Rgr))-injective. Therefore, by
13, 2.5], R/Soc(Rg) is a (right Noetherian) right V-ring.

Let us prove, finally, that (iii) implies (i). Suppose that R/Soc(Rpr)
is a (right Noetherian) right V-ring. Let M; be an extending R-module
and let M, be a simple (semisimple) R-module. By Theorem 1.2.9, M, is
(R/Soc(Rp))-injective. Then, as M;/Soc(M;) is an (R/Soc(Rg))-module,
My 1s also (M, /Soc(M;))-injective and, by Corollary 2.2.4, M, & M, is ex-

tending. ]

Examples of right Noetherian right V-rings are Cozzens domains (cf. [15]).
Also, at the end of Section 2.1, there is an example of a ring R such that the

ring R /Soc(Rp) is isomorphic to a field K, and therefore is a right Noetherian

right V-ring.
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Let Ad; be any module and let M5 be a module with the finite exchange

property (in particular, semisimple). It remains an open problem to deter-

mine whether Af, is essentially M,-injective, in case M) & M, is extending.

2.4 Direct sums of uniform-extending mod-
ules

Let { M; | i € I } be a family of modules with the finite exchange property.

In this section, we give necessary and sufficient conditions for the direct sum
P;c 1 M; to be uniform-extending.

We start with some technical Lemmas.

Lemma 2.4.1 Let{ M;|i € 1} be a family of modules, let M = ®;c; M;
and let K be a uniform submodule of M. If J is minimal among the subsets

of I such that KK N (®;cgM;) # 0, then K is isomorphic to w;(K), for every
7€ J.

Proof. Let J' := I\ J and let j € J. Due to the minimality of J,
I N (@iengjyM;) = 0 and, consequently, K N (@icsM;) N (Biengy Mi) =
K 0 (@iengyMi) = 0. Then, as K N (@ics M) < K, K N (Biep iy M;) =

and we can conclude that I{ is isomorphic to m;{J(). O

Lemma 2.4.2 Let { M; | © € I} be a family of relatively u-essentially

injective modules that satisfies condition (C), let M = ®;crM; and let K
be a closed uniform submodule of M. If there exists a subset J of I such

that @;c g M; is uniform-eztending and K N (D M;) # 0, then K is a direct

summand of M.
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Proof. If J = I, the result is trivial. Suppose that J is a proper subset of

[ and that J is minimal among the subsets of I such that K N (;csM;) # 0.
Note that J is finite. .
For each ¢ € J, by Lemma 2.4.1, K is isomorphic to m;(K) and, so,
m;(I{) is uniform. As M; is uniform-extending, m;(K) is essential in a direct
summand N; of M;, which is also uniform.
Let J' := I\ J. Leti € J and j € J'. By hypothesis, M; is u-
essentially Ad;-injective. Since condition (C') is satisfied and by Proposi-

tion 2.1.19, @;c 0 M; is u-essentially M;-injective, and therefore essentially

Ni-injective, for every i € J. Then, ®;c; M; is also essentially (@;ecsN;)-
injective, by Proposition 2.1.9. On the other hand, K < @;¢;mi(K) < M' :=
(BicsNi) ® (Bicy M;) and K N (BieyN;) = KN (DBicgM;) # 0, where @iy N;

15 uniform-extending. Then, Lemma 2.1.16 guarantees that K is a direct

summand of A’, and also of M. O

Corollary 2.4.3 Let { M; |i € I} be a family of relatively u-essentially
injective modules that satisfies condition (C). If ®;erpM; is uniform-extend-

ing, for every finite subset I’ of I, then ®;c; M; is uniform-extending.

Proof. If the set [ is finite, the result is trivial. If [ is infinite, the result
follows by Lemma 2.4.2, bearing in mind that, for each submodule NV of M,
there exists a finite subset F' of I such that N N (®;crM;) # 0. O

Corollary 2.4.4 Let {M; | © € 1} be a family of relatively injective
modules that satisfies condition (C). Then M; is uniform-extending, for every

i € I, if and only if ®;c1M; 1s uniform-extending.
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Proof. The sufficiency is clear. Conversely, suppose that M; is uniform-

extending, for every i € I. By Theorem 2.2.2, ®;crM; is uniform-extending,

for every finite subset F' of I. Then, by Corollary 2.4.3, the result follows. O

In particular, by Corollary 2.4.4, over a right Noetherian ring, every direct
sum of relatively injective uniform-extending modules is uniform-extending.

Compare the following results with Corollaries 2.4.3 and 2.4.4.

Proposition 2.4.5 Let { M; |i € I} be a family of relatively essentially
injective modules that satisfies condition (By) and let M := @;c1 M;. If every

local direct summand of M 1is a summand and ®;crM; is extending, for every

finite subset F' of I, then M 1is extending.

Proof. Let I{ be a closed submodule of M. By Zorn’s Lemma, K con-
tains a maximal local direct summand {N, | a € A} of M. By hypothesis,
N = ®uealN, is a direct summand of M. So, N is also a direct summand
of I{. Suppose that { = N @& N’ and that N’ # 0. Let z € N’ \ {0}.
Clearly, there exists a finite subset I of I such that z € ®;cpM;. The sub-
module z? is essential in a closed submodule X of N'. Note that X is also

closed in A/. On the other hand, from zR <, X, we can conclude that

(BicrM;)NX <, X. As condition (B5) holds, Proposition 2.1.18 guarantees

that @;e\rpM; is essentially (@;crM;)-injective. By assumption, @;erM; is
extending, so that, by Lemma 2.1.15, X is a direct summand of M. Thus,
X is also a direct summand of N’ and we can write N' = X @ Y, for some

submodule Y of N'. Now, we can concludethat K = NN =N XY,

with { N, | a € A} U{X} a local direct summand, contradicting the maxi-
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mality of { N, | a € A}. Therefore, N' =0 and K = N is a direct summand

of M. We have proved that M is extending. O

Corollary 2.4.6 Let {M; | i € I} be a family of relatively injective
modules that satisfies condition (Bj) and let M := ®;c; M; be such that every
local summand of M is a summand. Then M; is extending, for every 1 € I,

if and only if M is extending.

Proof. The sufficiency is obvious. Conversely, suppose that M; is ex-

tending, for every i € I. By Theorem 2.2.2, ®;crM; is extending, for every

finite subset F' of I. Then, by Proposition 2.4.5, the result follows. [
We also have the following fact.

Corollary 2.4.7 Let {M; | i € I} be a family of relatively injective
extending modules and let M := @®;cM;. If M 1is locally Noetherian, then M

is extending if and only if every local direct summand of M is a summand.
Proof. By Corollary 2.4.4 and Proposition 1.10.8. O

At this point, we need the following Lemma, that is just a reformulation

of [4, Lemma 2] (see also {11, Lemma 2.1]).

Lemma 2.4.8 Let M; and M, be uniform modules with local endomor-
phism rings such that My & My is extending. If f : Ay — Ay 15 an 1somor-
phism, where A; < M;, i = 1,2, then either f can be extended to a monomor-

phism M, — M, or f~! can be extended to a monomorphism My — M.
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Proof. Let M := M, & M, and consider the submodule B := { z — f(z) |
z € A} of M. As M is extending, B is essential in a direct summand C of
M. By (2, Corollary 12.7], either M = C @& My or M = M, & C.

Suppose firstly that A = C & M, and let 7 be the projection of M onto

My with kernel C. Let g : M; — M, be the restriction of @ to M,. It is
easy to check that g extends f. Also, kerg N A, = ker f = 0 and, because

Ay <. My, g is a monomorphism M, — M, that extends f.

suppose now that A = M; & C and let o be the projection of M onto

Ay with kernel C. As above, it is not hard to see that the restriction of ¢ to

M, is a monomorphism that extends f~?. o

Betfore looking at finite direct sums of uniform-extending modules with

the finite exchange property, we need the following Lemma.

Lemma 2.4.9 (2, Proposition 5.5 Let My and My be modules, let M =
My @ My and let A be any submodule of M. Then M = A® M if and only

if the restriction of m; to A is an isomorphism between A and M,.

Lemma 2.4.10 Let M, My and M3 be modules with the finite exchange
property. If My & My, My @ M; and My @ M; are uniform-extending, then
Ny D Mo & Mj is also uniform-extending.

Proof. Because M) ® M,, M, & M3z and M, @ M; are uniform-extending,
by Proposition 2.3.4, the modules Ay, M, and M; are relatively u-essentially

11jective.

Let K be a closed uniform submodule of M := M; ® Ms @ M;5. Let J be
minimal among the subsets of I := {1, 2,3} such that X N (DicsM;) # 0. If
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J 1s a proper subset of [, then /i is a direct summand of M, by Lemma 2.4.2
(condition (C) is trivially satisfied by a finite family). Suppose that J = 1.
Then, K N (M; ® M) = K 0 (M, & M;) = K N (My & M;) = 0. '

For any i € I, I{ is isomorphic to m;(K) and, so, m;(K) is uniform. As M,
is uniform-extending, m; (/) is essential in a direct summand N; of M;, which
is also uniform. Being a direct summand of M;, IV; has the finite exchange
property and, consequently, its endomorphism ring is local.

For every ¢,j € I, the maps f;; : mi(K) — m;(K), mi(a) — m;(a), are iso-
morphisms. By Lemma 2.4.8, either f;; can be extended to a monomorphism
gij N1t — IN; or fj; can be extended to a monomorphism g;; : N; — N;, for
every z',j- € I, 1 # 7. Considering that f;.fi; = fir, for every ¢,7,k € I, it is
not hard to see that there exists an 72 € I such that, for every 5 € J, f;; can
be extended to N;. Without loss of generality, suppose that ;: = 1.

Clearly, K = {x + fia2(z) + fis(z) | c m(K)}. Let K’ := {z + g12(z) +
giz(z) | z € N;}. It can easily be seen that K’ is isomorphic to N; and,
therefore, is uniform. On the other hand, K < K’. Then, K <, K’ and,
because K is closed, K = K’'. Thus, m(KX) = N; and, by Lemma 2.4.9,
Ni® Ny, DNy =K & Ny D N;. So, K is a direct summand of M.

Therefore, M is uniform-extending. N

Lemma 2.4.11 Let { M; | i € I} be a family of modules with the finite
exchange property. If ®icrM; is uniform-extending, then the family { M; |
i € I} satisfies condition (C).

Proof. Suppose that @;¢;A7; is uniform-extending. Then, for every 7 € I
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Dien\(7) M; 1s u-essentially Af;-injective, by Proposition 2.3.4. So, by Propo-
sition 2.1.19, condition (C) is satisfied. O

We can fnally prove the main result of this Section.

Theorem 2.4.12 Let { M; | i € 1} be a family of modules with the finite

exchange property. The following conditions are equivalent.

(1) BiciM; is uniform-extending.
(it) B;csM; is uniform-extending, for every countable subset J of I.

(iit) M; D M; is uniform-extending, for every i, € I, i # j, and the family
{ M; |1 €1} satisfies condition (C).

Proof. Obviously, (i) implies (ii).

That (ii) implies (iii) follows by Lemma 2.4.11 and the fact that { A |
i € I } satisfies condition (C) if and only if every countable subfamily of this
family satisfies condition (C).

Let us prove that (iii) implies (i). Suppose that M; @ M; is uniform-
extending, for every i,7 € I, ¢ # j, and that the family {M; | i € I}
satisfies condition (C). By Proposition 2.3.4, { M; | ¢ € I} is a family of
relatively u-essentially injective modules. On the other hand, by induction

and using Lemma 2.4.10, we can prove that &;cpM; 1s uniform-extending, for

every finite subset F' of I. Therefore, by Corollary 2.4.3, @&;c;M; is uniform-

extending. O
Compare Theorem 2.4.12 with Theorems 1.2.8, 1.3.2, 1.4.2 and 1.5.1.
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Corollary 2.4.13 [11, Lemma 2.3] Let {M; | i € I} be a family of
uniform modules with local endomorphism rings. The following conditions

are equivalent.
(i) ©ic;M; is uniform-extending.
(1) ®icsM; is uniform-extending, for every countable subset J of I.

(11i) M; ® M, is extending, for every i,j € I, i # j, and the family { M; |
t € 1} satisfies condition (As).

Proof. The result is an immediate consequence of Theorem 2.4.12, bear-

ing In mind that, because M; is uniform, for every 7 € I, conditions (C') and

(Ag) are equivalent. ]

Using Corollary 2.4.13, N. V. Dung proceeds to prove the following The-
orem, which was later generalized by [12, Theorem 4.4] (cf. Theorem 1.10.3).

Theorem 2.4.14 [11, Theorem 2.4] Let {M; | i € I} be a family of

uniform modules with local endomorphism rings. The following conditions

are equivalent.

(1) DicsM; is extending.
(1t) DicgM; is extending, for every countable subset J of I.

(1ii) M; @ M; is extending, for everyi,j € I, i # j; the family { M; |i & I}
satisfies condition (A,); and there does not exist an infinite sequence

of monomorphisms that are not isomorphisms



with the 1, distinct in I.

Furthermore, if M satisfies either of the above equivalent conditions, then

{M;|ie€ I} is locally semi-T-nilpotent, and M has the exchange property.
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Chapter 3

c-Injectivity

This Chapter is dedicated to another generalization of injectivity, namely
c-injectivity.

As we have seen, a module M is quasi-injective if, for any submodule NV
of M, any homomorphism a : N — M can be lifted to a homomorphism
B: M — M. Continuous and quasi-continuous modules are other classes
of modules that can be characterized by the lifting of homomorphisms from
certain submodules to the module itself, as was shown in [56]. In fact, in

this paper, P. F. Smith and A. Tercan studied the following property, for a
module A :

(P) For every submodule I{ of M that can be written as a finite direct sum
Ki®---® K, of complements Ky, ---, I(, of M, every homomorphism
a : I{ — M can be lifted to a homomorphism 3 : M — M.

and proved that a module is quasi-continuous if and only if it satisfies (F).
We are now concerned with the study of self-c-injective modules, i.e.,

modules that satisty (F;). Extending modules are an example of modules
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with this property.

Self-c-injective modules are also a special case of the generalized quasi-
injective modules studied by Harada [22]. Recall that a module M is said.
to be GQ-injective (generalized quasi-injective), if, for any submodule N
isomorphic to a closed submodule K of M, any homomorphism from /N to
M can be extended to M.

In Section 3.1, we prove general properties of self-c-injective modules and
find sufficient conditions for a direct sum of two self-c-injective modules to
be self-c-injective. We also look at self-cu-injective modules, i.e., modules A
such that every homomorphism from a closed uniform submodule to M can
be lifted to M itself.

Section 3.2 considers self-c-injective modules over commutative domains.
We prove that every self-c-injective free module over a commutative domain
that is not a field is finitely generated and then proceed to consider torsion-
free modules over commutative domains, as was done for extending modules
in [31].

Finally, in Section 3.3, we look at self-c-injective modules over principal
ideal domains, characterizing when the direct sum of a torsion-iree injective
module and a cyclic torsion module is self-cu-injective.

For the theory of principal ideal domains and other undefined concepts,

we refer the reader to [54, 67], for example.
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3.1 c-Injectivity

Let M, and M, be modules. The module M, is M| -c-injective (resp., M-
cu-injective) if every homomorphism a : i — My, where K is a closed (resp.,
closed uniform) submodule of M;, can be extended to a homomorphism 8 :
My — M.

Clearly, if M, is M;-injective, then M, is M;-c-injective.

The modules M; and M, are relatively c-injective (resp., relatively cu-
injective) if M; is Mj-c-injective (resp., M; is M;-cu-injective), for every
i,j € {1,2}, 1 # 5.

A module M is called self-c-injective (resp., self-cu-injective) when it
is M-c-injective (resp., M-cu-injective); and is called c-injective (resp., cu-
injective) when it is N-c-injective (resp., IN-cu-injective), for every module

N.

Proposition 3.1.1 A module M is extending (resp., uniform-extending)

if and only if every module 1s M -c-injective (resp., M -cu-injective).

Proof. The necessity is clear. Conversely, suppose that every module is
M-c-injective and let /C be a closed submodule of Af. By hypothesis, there
cxists a homomorphism « : M — K that extends the identity ¢ :  — K.
It is not hard to see that A = K @ ker ¢, so that K is a direct summand of

M. Therefore, M 1s extending.

The proof for A1 uniform-extending follows analogously. C

In particular, by Proposition 3.1.1, every extending module is self-c-

injective. But not every self-c-injective module is extending. Consider, for ex-
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ample, the Z-modules M, := Z /pZ, for a prime p, and M, := Q. Let us show
that the Z-module M := M & M, is selt-c-injective but it is not extending.
Consider the local ring Z,,. It is not hard to see that the closed submodules
of M which are not direct summands are of the form (1+pZ, q)Z,, for some
q € Q\ {0}. To show that M is self-c-injective it is sufficient to prove that,
for g € Q\ {0}, every homomorphism « : (1 + pZ,q)Z, — M can be lifted
to M. Let K := (1+pZ,q)Z,. Suppose that (1l +pZ, q) = (a + pZ,b), for
some a € Z and b € Q. It is not hard to see that the mapping 8: M — M,
defined by B(c + pZ,d) = (ca + pZ,db/q), for all c € Z and d € Q, is a
" well-defined homomorphism that extends . Thus, M is self-c-injective.

The following result characterizes c-injectivity and cu-injectivity (com-

pare with Lemmas 2.1.1, 2.1.4, 2.1.5 and 2.1.12).

Lemma 3.1.2 Let My and My be modules and let M = M, ® M,. Then
My is M-c-injective (resp., M, -cu-injective) if and only if, for every (closed)
submodule (resp., every (closed) uniform submodule) N of M such that N N

My = 0 and m(N) <. M, there exists a submodule N' of M such that

N<N and M =N & M.

Proof. Assume that Als is AM;-c-injective and let N be a submodule of M
such that NNAL, = 0 and m(N) <. M. As NN M, = 0, the restriction of m,
to N is an isomorphism between N and m(/N). Consider the homomorphism
a : m(N) — My, £ +— wo(m|n)" (z). The map a can be extended to a
homomorphism 3 : M; — M, since My is Mi-c-injective and my(N) <, M;.

Define N/ = {;1" -4 ﬁ(a,) | r € M, } Clearly, N’ is a submodule of M and
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M = N @& M,. For every z € N, fmi(z) = am(z) = m(x) and hence
r = m(z)+ PBmi(z) € N'. Thus, N < N'.

Conversely, assume that, for every submodule N of M such that NNM,; =
0 and m(N) <. M;, there exists a submodule N’ of M such that N < N’ and
M = N'&® M,. Let K be a closed submodule of M; and let o : K — M, be a
homomorphism. Define N := {z—a(x) | x € K }. Clearly, N is a submodule
of M such that N N M, = 0. It is not hard to prove that m;(/N) = K and so
m (V) <. M;. Then, by hypothesis, there exists a submodule N’ of M such
that N < N and M = N' & M,. Let m : M — M, denote the projection

- with ‘kemel N’ and let B : M, — M, be the restriction of 7 to M;. For every
z € I, ﬁ(:r;) = 7(z) = 7((z — az)) +alz)) = a(z) and, therefore, [ extends
. Thus, M, is M;-c-injective.

Finally, observe that, if IV is a submodule of M such that NN M, = 0 and
m(N) <, M, then N <, M. Infact, if N <, K éc M, then KNM, = 0 and
my gives an isomorphism between K and m;(J(). Therefore, from N <, K we
can conclude that 7, (N) <, m1(K). On the other hand, we have m(N) <. M,
and so wy(N) = m(K). Thus, N = K <, M.

The proof for cu-injectivity follows similarly. [

Below follow some general properties of c-injectivity and cu-injectivity.

Lemma 3.1.3 Let M, and M, be modules. If My is M,-c-injective, then,
for every closed submodule N of My, My is N-c-injective and (M;/N)-c-

injective.
Proof. Let N be a closed submodule of Af;.
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As every closed submodule of N is also a closed submodule of M, it is
obvious that A, is N-c-injective.

Let us prove now that Ay is (M;/N)-c-injective. Let /N be a closed
submodule of M;/N and consider a homomorphism « : K/N — M,. By
Lemma 1.1.4, I <. M,.

Let w: My — M/N and ' : K — K/N be the canonical epimorphisms.
As M, is Mi-c-injective, there exists a homomorphism G : M; — M, that
extends aw’. Since N < ker 3, the existence of a homomorphism v : M; /N —
M, such that ym = B is guaranteed. For every a € K, y(a+ N) = yw(a) =
B(a) = an'(a) = ala + N). Therefore v extends o and M; is (M,/N)-c-

injective. O

Lemma 3.1.4 Let My and M, be modules. If My 15 M,;-cu-injective,

then, for every closed submodule N of My, My is N-cu-injective.

Proof. Clear. B

Lemma 3.1.5 Let M and { N; | i € I } be modules. Then Il;c;N; is M-
c-injective (resp., M -cu-injective) if and only if N; is M-c-injective (resp.,

M -cu-injective), for every i € I.

Proof. The proof follows as for injectivity (see, for example, [54, Propo-

sition 2.2}). O

Corollary 3.1.6 Let M, and M, be modules and let M = M; & M,.
If M s self-c-injective (resp., self-cu-injective), then M; and My are both

self-c-injectives (resp., self-cu-injectives) and are relatively c-injective (resp.,
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relatively cu-injective). In particular, a direct summand of a self-c-injective

(resp., self-cu-injective) module is self-c-injective (resp., self-cu-injective).
Proof. By Lemmas 3.1.3 (resp., 3.1.4) and 3.1.5. O

The converse of Corollary 3.1.6 is not true, in general. Consider, for
example, the Z-modules M, := Z/pZ, for a prime p, and M, := Z. Both
Ay, and My are uniform, so that they are selt-c-injectives and relatively c-
injective. It will be proved in Section 3.2 (cf. Proposition 3.2.3) that M; & M,
is not self-c-injective.

Note that this example also shows that [6, Theorem 2| is not valid. The
cited result states that, if A/, is a quasi-continuous module with finite uniform
dimension, M, is self-c-injective and M;-injective, then M; & M, is self-c-
injective.

In order to obtain sufficient conditions .for a direct sum of two self-c-
injective (resp., self-cu-injective) modules to be self-c-injective (resp., self-

cu-injective), we need the following Lemmas.

Lemma 3.1.7 Let M, and M, be modules such that My is essentially

(resp., u-essentially) M,-injective. If a module is M;-c-injective (resp., M-

cu-injective) and Ma-injective, then it is (M, @ My)-c-injective (resp., (M, &

My)-cu-injective).

Proof. Let M := M; & M, and suppose that N is a M;-c-injective and
Ms-injective module.

Let I <, M and consider a homomorphism « : X — N. Take H <. K
such that K N M, <, H. Then H NAM; = KN M,; <. H and, because M, is
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cssentially Ad;-1njective, by Lemma 2.1.5, there exists a submodule H' of M
such that M = H' & M, and H < H'.
Clearly, H <., H' and, since M; and H' are isomorphic, N is H'-c-

injective. Thus, there exists a homomorphism 8 : H' — N that extends
the restriction of a to H. Obviously, # can be extended by the homomor-
phism g7 : M — N, where 7w : M — H' is the projection of M onto H’ with
kernel M.

Consider the homomorphism a — 87 : K — N, z — a(z) — fr(z). As
KNM < H < ker(a — fm), a — Bm can be lifted to a homomorphism
v: K/(KNM))— N, z+ KN M, — ofz) — Br(x).

The homomorphism ¢ : K/(IX N M;) — M,, z + KN M; — my(z), is
clearly injective. Since /N is Ms-injective, there exists 6 : Mo — N such that
0¢ = ~. Clearly, émp : M — N extends 6.

Consider, finally, the homomorphisrﬁ 0 .= pfBr+0om : M — N. For all
r € I, 0(z) = pr(z) + éma(z) = Pr(x) + 6dp(z + K N M,y) = Br(z) + v(z +
KN M,)=pr(z) + a(z) — Br(x) = afx). Therefore, 8 extends o and N is
M -c-injective.

The result for cu-injectivity follows analogously. . O

Lemma 3.1.8 Let M; and My be modules such that My is extending
(resp., uniform-extending) and Ms-injective and M,y is essentially (resp.,

u-essentially) Mi-injective. If a module is My-c-injective (resp., M,-cu-

injective), then it is (My @ Ms)-c-injective (resp., (M, & Ms)-cu-injective).

Proof. Let M := M; & M> and suppose that N is a Ms-c-injective

module.
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Let X <, M and consider a homomorphism o : X — N. Take H; <, K
such that [ N M, <, H;. Then HiNM; = K N M; <, H; and, because M,
1s essentially Ai-injective, by Lemma 2.1.5, there exists a submodule H of
M such that M = H & M, and H; < H.

Clearly, Hy <. H and, since M; and H are isomorphic, H is extending.
Thus, H; is a direct summand of H. Suppose that H = H, & H,. Then,
M=H ®&Hy,®M,and K = Hy & L, where L := (Hy ® M) N K.

Since LNM, = (Hy,® M) NKNM; <(Hy® M)N Hy =0 and M, is
Ms-injective, there exists a submodule L' of M such that M = M; & L' and
L<UL.

Clearly, L <. L' and, since M5 and L' are isomorphic, N is L’-c-injective.
Thus, there exists a homomorphism 5 : L' — N that extends the restriction
of o to L.

Let 6, &5 and &3 be the projections of M = H{ & Ho & M,y onto Hy, H,
and M,, respectively. Consider the homomorphism v : M — N such that
v(z) = abi(z)+Bp(0:(z)+03(x)), where ¢ is the projection of M onto L' with
kernel M;. For every x € K, we have 6,(z)+0;3(z) € (Ho® My)NK = L and
hence y(z) = ab;(z) + Bp(02(z) +03(x)) = abi(z) +a(b2(z) +03(z)) = a(z).

Therefore, v extends a to Ad and N is M-c-injective.

The result for cu-injectivity follows analogously. Ol

We can now prove the following.

Theorem 3.1.9 Let M, and My be modules and let M := M; & M,. If
one of the following conditions holds, then M is self-c-injective (resp., self-

cu-injective).
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(1) My and M, are both self-c-injective (resp., self-cu-injective) and are

relatively injective.

(ii) My is extending (resp., uniform-extending) and Ms-injective, My is
self-c-injective (resp., self-cu-injective) and essentially (resp., u-essent-

tally) M, -injective.

Proof. By Lemmas 3.1.5, 3.1.7 and 3.1.8. C

Next we will look at further properties of c-injectivity that will be required

in the sequel.

Recall that a submodule N of a module M is called fully invariant if

w(N) < N, for all ¢ € End(M).

Proposition 3.1.10 Let M be a self-c-injective module. Then every fully

invartant closed submodule of M is self-c-injective. In particular, Zo(M) is

a self-c-injective module.

Proof. Let N be a fully invariant closed submodule of M, let I be a
closed submodule of N and let a : i — N be a homomorphism. Since N
1s a closed submodule of A, it follows that I is also a closed submodule of
A . Then, by hypothesis, there exists a homomorphism 8 : M — A that
extends . Note that G(N) < N, by hypothesis. Hence Bly : N — N is

a homomorphism and « is the restriction of this homomorphism to K. It

follows that N is self-c-injective. 0

Lemma 3.1.11 Let Al be a self-c-injective module and let K be a closed

submodule of M. [If IC is 1somorphic to M, then I 1s a direct summand of

Ny
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Proof. Let a : K — M be an isomorphism. There exists a homomor-
phism 3 : M — M that extends a, since M is self-c-injective. For any z € M,
there exists y € I such that f(z) = a(y) = B(y) and hence z — y € ker 8. It
follows that z = y 4+ (x — y) € K + ker 8. Moreover, K Nker 8 = kera = 0.
Thus M = K @ ker 8 and K is a direct summand of M. O

The next results show that, in some cases, the notions of c-injectivity and

cu-injectivity coincide.

Proposition 3.1.12 Let M, and M, be modules such that u.dim(M;) <

. 2. Then My 15 My-c-ingective if and only if My is M,-cu-injective.
Proof. Clear. O

Proposition 3.1.13 Let M; be an extending module and let Moy be a
uniform module such that My 1s essentially My-injective. Then M, & M, is

self-c-injectwe if and only if it is self-cu-injective.

Proof. The necessity is obvious. Let us prove the converse.

Suppose that M := AM; & M,y is selt-cu-injective. Let K be a closed
submodule of M and let a: X — M be a homomorphism.

Take Hy <. I{ such that K NM; <, H;. Then HiNM; = KnM, <, H,
and, because M, is essentially M;-injective, by Lemma 2.1.5, there exists a
submodule H of M such that M = H & M, and H < H.

Clearly, H; <, H and, since M; and H are isomorphic, H is extending.
Thus, H = H,® H,, for some submodule H, of H, so that M = Hi® H,® M,
and I = H, & L, where L := (Hy & My)NIK. Since LN M, = (Hy & M) N

KNAM <(H,® M) Hy =0, L embeds in M, and hence is uniform.
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By hypothesis, the restriction of « to L lifts to M and, in particular, there
exists a homomorphism S : Hy & M, — M that extends the restriction of o

to L. Therefore, it is clear that « can be extended to M. We can conclude

that A is self-c-injective. O

3.2 Self-c-injective modules over commuta-
tive domains

In this Section, we look at self-c-injective modules over commutative do-

mains.

The following result generalizes [6, Theorem 1].

Theorem 3.2.1 Suppose that R 1s a commutative domain and let I’ be

a self-c-injective free module. Then F' 15 finitely generated or R is a field.

Proof. Suppose that F' is not finitely generated and let us prove that R

is a field. By Corollary 3.1.6, we can assume, without loss of generality, that

F=R®R®R®--. Consider the elements e, :=(0,...,0,1,0,0,...) € F,
where 1 is the n-th component of e,, for each positive integer n.

Let Q denote the field of fractions of R and let 0 % ¢ € R. We aim to

prove that ¢ is a unit in I%.

Define a homomorphism ¢ : F' — @ by
(p(rlw Fr2, T3, ) =11 1 C_ITQ -+ C_2T3 + ... :

for all (ry,79,73,...) € I, and let K := ker . Consider the elements f, :=
(0,...,0,1,—¢,0,0,...) = €, — cepy1 € K, for each positive integer n, and

let. us prove that I is a free submodule of F' with basis { f1, f2, f3,--.}.
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Clearly, L = > .n/aR < K. In order to prove that L = K, let

(Tl, T9y.e.,3,Tn, 0, 0, . . ) € K. Then 1 +C_1T2 u +C_n+2Tn_1 +C_n+17’n = 0

and hence 7, +crp_1 + -+ 4+ " %ro + " r; = 0. Thus

(Tl.’ sz .- = e ’TH_I,TR,O’ 0’ ¢ » -) —_—

n—2 n—1
(TIJTQ:*":TH—I:_CTH—I — - —C 9 — C T],0,0,...)

J

T1Ty + 79Xy 4 *** + Th—-1Tn-1,

where z; = e; — ¢ te,, for 1 < i <n —1.

_plearly, Tno1 = fno1 € L. If, for some 2 < ¢t < n-—1, z; € L, then
ri—1 = fi—1 +cx; € L. By induction, z; € L, for all 1 <7 <n—1, and hence
(r1,72,...,70,0,0,...) € L. It follows that K < L and hence K = L.

Let us prove that the set {fi, fo, f3,...} is linearly independent. Suppose

that, for a positive integer m and for some s; € R, 1 < ¢ < m, we have

Slfl g i Smfm — 0: i.G.,
s1(1,—¢,0,0,...)+52(0,1,—¢,0,0,... )+ -+5,(0,...,0,1,—¢,0,0,...) =0,

so that sy =0, s —¢cs; =0, 83 —¢cso =0, ..., 8$;p —€Sp—1 = 0, —cs,,, = 0.
Thus, s;=89y=---=35,, =0.

It follows that K is a free module with basis { f,, | n € IN}. Hence K is
isomorphic to F'. Moreover, F'/K, being isomorphic to a submodule of Qp,

is a torsion-free module and hence I is a closed submodule of F'. Then, by

Lemma 3.1.11, K is a direct summand of F'. Suppose that FF = K & K.

Now, I’ is isomorphic to F'/K, which in turn is isomorphic to ¢(F),

so that K’ is a uniform submodule of F'. Let 0 # u € K’. Then u

(wy,...,u,4,0,0,...), for some positive integer ¢ and elements u; € R, 1 <
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t < q. Then K' < {(v,...,74,0,0,...) |vi € R,1 <i < q}. So, €41 =

z+ (v1,...,04,0,0,...), for some z € K, v; € R, 1 <1i < q. Hence
c™T=p(egr1) = p(v1,...,05,0,0,...) =v; +c lvg 4 -+ + ¢y,

so that ¢ = v, + cv,oy ++-- + ¢ 'v; € R. Thus ¢ is a unit in R. It follows

that I? is a field. 0O

Lemma 3.2.2 Let M be a module and let N be an essential submodule

of M. For everym € M, {(r,mr)|r € R,mr € N} is a closed submodule
of the module R® N.

Proof. Let m € M and let V := {(r,mr) | r € R,mr € N}. Clearly
V is a submodule of RGN and VN (0 N) = 0. Let W be a submodule
of R N such that V < W, V # W. Then there exist s € Rand z € N
such that (s,z) € W and x #% ms. Hence x — ms # 0 and, since N <, M,
(x —ms)RNN # 0. Therefore, there exists t € R such that y := (x —ms)t €
N\ {0}. Now mst =zt—y € N and (0,y) = (s, z)t — (st,mst) € W, so that
WnNO0éd N)#0. Thus V, being a complement of 0d N in R® N, is closed
in R V. O

Proposition 3.2.3 Suppose that R is a commutative domain and let c

be a non-zero non-unit element of R. Then the R-module R® (R/cR) is not

self-cu-injective.

Proof. Let @ denote the field of fractions of R, let N = R/cR and let
M =c 'R/cR. Then N is a submodule of M.
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Let m € M, m £ 0. Then m = ¢ 'r +cR, forsome r € R. If r € cR,
thenm € N;ifr € R\ cR, thencm =r+cR € N\ {0}. Thus NNmR # 0,
for every m € M \ {0}, and N is essential in M.

Let X .= R@N,letm:=c"4+cRe€ Mandlet V :={(r,mr)|r e
R,mr € N}. By Lemma 3.2.2, V is a closed submodule of the module X.

Let r € R be such that mr € N. Then ¢ 'r +cR = mr = s + cR, for
some s € R, and ¢c™'r—s € cR. So,r € cR. HencecR={re R|mr € N}
and V = {(cr,m+cR)|r € R}.

Define a mapping a : V — X by a(cr,r + cR) = (r,cR), for every r € R.
' Clearly, o is a homomorphism. Supppose that a lifts to a homomorphism
B:X — X, with 8(0,1 + cR) = (a;,as + cR) and B(1,cR) = (by, b2 + cR),
for some a;,as, b;,b> € R. Then c(a;,as + cR) = (0,1 4+ cR) = B(0,cR) =
(0,cR), so that a; = 0. Now (1,cR) = alc,1 + cR) = B(c,1 + cR) =
cf(1,cR) + B(0,1 + cR) = c(by, by + cR) + (0, (1,.2 + cR). Hence 1 = cby, a
contradiction.

It follows that X is not self-c-injective. O

Corollary 3.2.4 |6, Lemmma 3| Let R be a principal ideal domain and

let M be a finitely generated self-c-injective module. Then M 1is free or is a

torsion module.
Proof. By Lemma 3.1.6 and Proposition 3.2.3. O

Now we consider torsion-free modules over commutative domains.

Let us fix the following notation:
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(*) R is a commutative domain with field of fractions Q; M; and M, are
R-submodules of ) such that R < M N Mo; M := M; & M,; v and s
are non-zero elements of R. For any element ¢ € () and R-submodule
NofQ,weset g7'N:={z€Q|gre N} Incaseq#0, ¢go'N =
{y/ge Q@ |y € N}. Also, if L and N are R-submodules of Q, we set
(L:N):={qeQ|gN <L}

[31] provides information on when M is an extending module (cf. [55,

Corollary 2.8}).

Theorem 3.2.5 [31] Let R be a commutative domain with field of frac-
tions (Q and let My and M, be R-submodules of () such that R < M; N M,.
Then the R-module M .= M, & M, is extending if and only if

R < [(1\"{1 : A/Il) M (Sﬂ'fg . TMl)] -+ [(Mg :'MQ) A (TM] ‘ Sﬂ/fg)],
for all non-zero elements r, s of R.

Let us characterize when A is self-c-injective.

Lemma 3.2.6 With notation (%), let N :==r"'MiNs M and let K :=
{(rz,sz) | = € N}. Then K is a closed submodule of M. Moreover, a
mapping ¢ : K — M 15 an R-homomorphism if and only if there exist
uw € (My : N) and v € (M, : N) such that o(rz,sz) = (uz,vz), for all
z € N.

Proof. Let q; € M;, i = 1,2. Suppose that ¢(q;,q2) € K, for some

) # ¢ € R. There exists x € N such that ¢(qy,q2) = (rz, sz), i.e, cq1 = rx
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and cgy = sz. Then r(z/c) = q; and s(z/c) = s, so that z/c € v~ 1M, N
s My = N and {(q1, q2) = (r(z/c), s(z/c)) € K. It follows that K is a closed
submodule of M.

Suppose that u € (M; : N) and v € (M, : N) are such that ¢(rz, sz) =
(ux,vx), for all x € N. It is easy to check that ¢ : K — M is a homomor-
phisin.

Conversely, let v : K — M be a homomorphism. Then ¢(r, s) = (u,v),
for some u € M; and v € M,. Let £ € N. Then z = a/b, for some a,b € R,
b# 0. Now

bo(rz, sz) = p(brz,bsx) = (ar,as) = ap(r, s) = alu, v).

Suppose that ¢(rz,sz) = (p,q), where p € M; and q € M,. The fact that
b(p,q) = a(u,v) gives bp = au and bg = awv, so that, in Q, p = au/b = uzx
and ¢ = av/b = vx. Thus ¢(rz,sz) = (ux,vz). Note that uz € M; and

v € M. O

Lemma 3.2.7 With notation (%), a mapping 6 : M — M is an R-
homomorphism if and only if there exist elements a € (M; : M;), b € (M; :
Ms), c € (Mo : My) and d € (Ms : M) such that 6(z,y) = (ax + by, cx +dy),
for all x € M, y € M,.

Proof. Suppose that a € (M, : My), b € (M, : My), ¢ € (M, : M;) and
d € (My : My) are such that 6(z,y) = (az + by, cx + dy), for all z € M,
y € M,. Tt is easy to check that § : M — A is an R-homomorphism.

Conversely, let § : Af — Al be an R-homomorphism and let ¢ : M —

() b @ be the inclusion homomorphism. As Q & ¢ is an injective R-module,

80



there exists an R-homomorphism ¢ : Q@& Q — QB such that e = (6. It is

easy to check that 9 is a O-homomorphism. Hence there exist a,b,c,d € @
such that ¥(p,q) = (ap + bq,cp + dq), for all p,g € ). Let z € M; and
y € M,. Then 6(z,0) = 9(z,0) = (az,cx), so that az € M; and cx € M,.
Also, 6(0,y) = ¥(0,y) = (by,dy), so that by € M, and dy € M,. It follows
that @ € (M, : M), b € (M; : M), c € (Ms : M) and d € (M> : M,).
Furthermore, we have 8(z,y) = ¥(z,y) = (az + by, cx + dy), for all z € M|,
Y € Ms. O

Lemma 3.2.8 With notation (x), let N :=r"'M;Ns~ M, and let K :=

| {(rz,sx) |z € N}. Then every homomorphism @ : K — M can be lifted to
M if and only if

(A’Il : IV) < (A’fl : M’l)’r -}- (M]_ , A/IQ)S

and

(A‘Z[Q : N) _<_ (AJQ . MI)T' + (MQ . A/IQ)S.

Proof. Suppose, firstly, that every homomorphism ¢ : KX — M can be
lifted to M. Let u € (M; : N) and v € (M, : N). Define ¢ : K — M by
o(rz,sz) = (uzx,vz), for all x € N. By Lemma 3.2.6, ¢ is a homomorphism.
By Lemma 3.2.7, there exist a € (M; : M), b € (M, : Ms), c € (M, : M)
and d € (My : Ms) such that, for all z € N, (uz,vx) = ¢(rz, sz) = (arz +
bsz,crz +dsz). Since R < My N M,, it follows that R < IV and hence 1 € IV,
so that (u,v) = (ar + bs,cr + ds). Then, u = ar + bs € (M : My)r + (M, -
My)s and v = cr +ds € (Mg : My)r + (M : My)s. Thus,

(Afl I'.Nr) < (1\‘2[1 ; A"II)T + (A/fl , AJQ)S
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and

(ﬂ‘fg . Af) S (ﬂ’fg X Ml)T' + (M2 . A/IQ)S.

Conversely, suppose that these two inclusions hold. Let o : K — M
be any R-homomorphism. By Lemma 3.2.6, there exist u € (M; : N) and
v € (M, : N) such that a(rz, sx) = (uz,vx), for all z € N. By hypothesis,
there exist a € (M, : M;), b€ (M, : My), c € (My : M;) and d € (M, : M)
such that v = ar+bs and v = cr+ds. Let 8 : M — M be the mapping defined
by 6(y, z) = (ay+bz,cy+dz), for ally € M; and z € M,. By Lemma 3.2.7,
is an R-homomorphism. For any z € N, B(rz, sx) = (arz+bsz, crx+dsx) =

(uz,vx) = a(rz,sz). Therefore, a is the restriction of 3 to K. O

Theorem 3.2.9 Let R be a commutative domain with field of fractions

() and let M; and M, be R-submodules of () such that R < My N M,. Then
the R-module M := M, & M, is self-c-injective if and only if

(My v ML N sTHM) < (My 2 My)r + (M : My)s

and

(A‘fz : T_lﬂ’fl () Sﬂlﬂ/fg) < (A/IQ . Afl)?" +- (A’fg . MQ)S,

for all non-zero elements r,s of R.

Proof. The necessity follows by Lemmas 3.2.6 and 3.2.8. Conversely,

suppose that
(My 7'My O™ M) < (My 2 My)r + (M 1 My)s

and

o (Mo IM N sTRAML) < (Mg s My)r 4+ (Mg @ My)s,
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for all non-zero elements r, s of R.

Let K be a closed submodule of M. If KN(M;®0) # 0, then K N(M; ®0)

is a closed submodule of Af; & 0 and hence K N (M, & 0) = M; © 0. Thus,
MidO0< I and X =M, 0 or X = M, so that I is a direct summand of

M. Similarly, if I N (0 M,) £ 0, then I is a direct summand of M. Thus
we can suppose that K N (M; &0) = K N(0 & M;) = 0. In particular, K is

uniform.

Let (q1,92) € K, where 0 # ¢;,q92 € Q. There exist non-zero elements
r, s,c¢ € IR such that ¢y = r/c and g3 = s/c. Thus (r,s) = ¢(q1,92) € K. By
 Lemma 3.2.6, I{ = { (rx,sz) | z € N}, because K and { (rz,sz) [z € N}
are both closures of the submodule (r, s)R and M has unique closures, since
it is nonsingular. By Lemma 3.2.8, every homomorphism o : X — M can

be lifted to M. Thus, M is self-c-injective. 0

3.3 Seli-c-injective modules over principal
ideal domains

In order to characterize when, over a principal ideal domain, the direct
sum of a torsion-free injective module and a cyclic torsion module is self-cu-

injective, we need the following Lemmas.

Lemma 3.3.1 |26, Lemma 2.4] Let M, and M, be modules and let M :=
M, & My, A submodule IC of M is a complement of My in M if and only if
there exists a homomorphism ¢ : My — E(Mj;) such that K = {z + ¢(z) |

2 € p M) }.

39



(ziven a positive integer n, modules M, ..., M, are called compatible if,
for all 1 <7 < n and elements m; € M;, 1 < j <n, we have r(m;) +r({ m; |

1<j<n,j#1i})=R.

Lemma 3.3.2 Assume that R is a right hereditary ring and let M be a
module such that M = My ® M, & --- b M, for some positive integer n,

nonsingular injective submodule My and singular uniform submodules M; =

miR, 1 < i < n, with E(M,),...,E(M,) compatible. Let K be a non-

zero closed submodule of M such that KN (M, & --- ® M) = 0. Then
To+ 21+ -4z, € K, for some0# x9g € My and z; € {0,m;}, 1 <i<n.
Moreover, K C Mo ® (®j_,z:R).

Proof. There exists 0 # m = m' + m" € K, where m' € M, and
m" € M := M ®---® M,. Since KN M = 0, it follows that m' # 0.
There exists an essential right ideal E of R such that m”E = 0. Then
mE = m'E # 0. Thus X N My # 0. There exists a submodule M|, of M,
such that My = E(IC N My) & MJ. Note that K N My N M{ = 0. Since
K N M =0, it follows that I{ embeds in M, and hence K is nonsingular.
Suppose that K N (Mj@® M) # 0 and let 0 # a € K N (M, @® M). Then
al € KNMy = KNMyNAM] = 0, for some essential right ideal F' of R. Thus
a = 0, that is K is a complement of M{@® M in M = E(K N My) & M§® M.

By Lemma 3.3.1, there exists a homomorphism ¢ : £(K N My) — M| &
E(M) ®--- & E(M,) such that K = {y+ ¢(y) | y € E(K 0 M), ¢(y) €
My@®MB---®M,}. Foreachl <i<n,letnm:MydEM)D ---&

E(M,) — E(M;) be the canonical projection. Let 1 < 7 < n and consider
the homomorphism ;0 : E(K N My) — E(M;).
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Suppose that m;p # 0. Because R is right hereditary, mo(E(K N My))
is a non-zero injective submodule of the indecomposable module £(M;) and
hence m;0(FE (K N My)) = E(M;). In particular, there exists eg € E(K N
My) such that mp(eg) = m;. Now @(eg) = € + e, + --- + e,, for some
¢’ € M|, e; € E(M;),1 <3 <n, and ¢; = m;. There exist s € r(m;),
ter(en,...,€i-1,€is1,--.6,) such that 1 = s+1%. Then p(egt) = €'t + m;t =
e't+m;(1—s) = e't+m;. It follows that egt+-e’t+m; € K. Let 2; := ept +€'t.
Then z; € My and z; +m; € K. If ;0 = 0, choose any 2; € I{ N M. In any
case, z; + z; € K, where z; € {0, m;}.

We have proved that, for each 1 < i < n, there exist z; € My such that
z; +x; € I{, where z; = 0, if mp = 0, and z; = m;, if ;0 % 0. Then
z4+ x4+ +x, € K, where z:= 2, +--- + 2, € My. Because KN M =0,
it follows that z # 0.

Finally, note that K = {y + o(y) | v € E(X N M), p(y) € M, ® M, @

@M, } C My® (B,x;R), because z; = 0 if and only if m;0 = 0. O

Theorem 3.3.3 Suppose that R is a principal ideal domain and let the
module M = M, ® M, be the direct sum of a torsion-free injective submodule

M, and a cyclic torsion submodule My. Then M 1s self-cu-injective.

Proof. There exists an clement m € My such that M, = mR. Let
I :=r{m). Then I is a non-zero ideal of R. If ] = R, then M, = 0 and there
is nothing to prove.

Suppose that I # R. Note that I = P ... Pk~ for some positive integers

n, k;, 1 <1 <n, and distinct maximal ideals P;, 1 <1t < n, of R. It follows
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that R/I is isomorphic to (R/P*) & --- @ (R/P*) and the R-module R/I

is extending.

Since A, is isomorphic to R/I, we have My, = L @ --- @ L,, where
m=I0L+---+1{,, L; = ;R and Pz-k" =71(l;),for1 <1 <n. Foreachl1 <i<n
and each w € E(L;), there exists a positive integer v such that wP? = 0, by
154, Proposition 4.23). It follows that E(L,),..., E(L,) are compatible.

Let U be a maximal uniform submodule of M. If U N M; = 0, then
U C My, because Ms is the torsion submodule of M. Since M, is isomorphic

to R/1, it follows that U is a closed submodule of the extending module M,

- and hence U is a direct summand of M,. In this case, it is clear that any

homomorphism ¢ : U — M can be lifted to M.

Now suppose that U C M,;. Then U is a direct summand of M; and any
homomorphism ¢ : U — A can be lifted to M.

Otherwise, U N M; £ 0 and U € M;. Cleé,rly U N My = 0 and hence,
by rearranging the modules L, ..., L,, if necessary, Lemma 3.3.2 gives that
o+ +---+L)RCUCM®L ®---® Ly, for some 0 # I, € My,
1<Et<n Let X =L &®---PdLandz:=1l; +---+ 1, so that X = zR.

Let T:={c€ R| Xc= X}. Then T is a multiplicatively closed subset
of the domain R and we let S denote the subring {r/t | r € R,t € T}
of ), the field of fractions of R. Given a € M; and b € X, we define
(@ +b)(r/t) :==ar/t+Vr, where b/ € X satisfiesb="Vb't, forallr e R, teT.
This makes M} & X into an S-module. Note that, for each c € T, z = zrc,

for some r € R, and hence z(1 —r¢) =0, i.e., X(1 —rc) = 0. It follows that

X is T-torsion-free. Also, M, is a vector space over ().
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Now, we claim that U = (lp 4+ z)S. Let V := {a € M & X | at €
U, for some t € T'}. Clearly, V is a submodule of M1 ® X and U < V. Since

M, & X is T-torsion-free, it follows that U is essential in V. Thus U = V.

Let r € R, t € T. Then ((lp + z)(r/t))t = (lo + z)r € U and hence
(lo+z)(r/t) € U. Thus (lp+z)S C U. Let u € U. Then (lp+z)R+uR C U,
so that (lp+x)R+uR is a finitely generated uniform module over a principal
ideal domain and hence is cyclic. Suppose that (lo +z)R+uR = (p + zd)R,
for some p € M,, d € R. There exists ¢ € R such that Iy +z = (p+ zd)c and
hence z = zde. It follows that 1 —dc € r(z) and hence X = Xdec C Xc C X,
- j.e., X=Xcand c €T. Hence p+zd = (lp +z)(1/c) € (lp+ z)S. It follows
that u € (lp + x)S. Thus U = (I + x)5.

Let v := lj41+---+1,, so that m = x+vy. Because P, ..., P, are distinct
maximal ideals, R = (P N...N P*) + (P;"ﬁl N...N Pir) = r(z) + r(y).
Then, there exists ¢ € R such that z¢c = z and 'yc = (. Clearly, ce T.

Let ¢ : U — M; be an R-homomorphism. Suppose that ¢{(lg+z)(1/c)] =

m f, for some f € R. Then

o(lo +2) = ¢l(lo + z)(1/c)le = mfe = (z +y)fe=zf

A similar argument shows that (U) < X. If r € R and t € T, then
(lo + z)(r/t) = lg(r/t) + 2'r, where 2’ € X and z't = z. So,

(el(lo +2)(r/D))t = o[(lo + x)r] = xfr = zt fr.

Because X is T-torsion-free, it follows that ¢[(ly + z)(r/t)] = =’ fr.
Note that M = M, & 2R S yR and let # : M — xR be the canonical
projection with kernel Ay & yR. Define 8 : xR — M, by 0(2) = zf, for
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all z € xR. Clearly, 6 is an R-homomorphism. Then 67w : M — M, is a
homomorphism and 7(A) < xR. Also, forr € Randt € T,

(O [(lo + z)(r/))t = On[(lo + x)r] = 0(zr) = zfr = L't fr.
Again because X is T-torsion-free, it follows that

0r(lo + 2)(r/8)] = 7' fr = l(lo + 2)(r/8)].

Thus ¢ can be lifted to M. We have proved that M, is M-c-injective.

Since Al; is an injective module, it now follows that M is self-cu-injective,

- by Lemma 3.1.5. 0

Combining Theorem 3.3.3 and Proposition 3.1.13, we have the next result

without further proof.

Theorem 3.3.4 Suppose that R is a principal tdeal domain and let the
module M = M, & My be the direct sum of a torsion-free indecomposable
injective submodule My and a cyclic torsion submodule My. Then M is self-

c-injective.

Proposition 3.3.5 Suppose that R 1s a principal ideal domain, let p be
a prime in R and let M be a p-primary module with uniform dimension 2.

Then M is self-c-injective.

Proof. If M is injective, then there is nothing to prove. Suppose that
M = M; & M, where M, is indecomposable injective and M, = mR, where
mp® = 0, mp"~! # 0, for some integer n. Let U be a maximal uniform

submodule of A/ and let v : U — Ady be a homomorphism.
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Either U is isomorphic to M; and U is a direct summand of M or U is
cyclic. Suppose that U is cyclic. Then U = (z + ma)R, for some xz € M,

and a € R with ma % 0. Suppose that a € pR. Then a = pb, for some
(y + bm)R and note that

b€ R, and x = yp, for some y € M;. Let U’ :
(y + mb)p = z +ma. Then U’ is a cyclic p-primary module, so is uniform,
and U C U'. It follows that U = U’. Hence we can suppose, without loss of
cenerality, that a € pR, in fact a = 1. |

Suppose that ¢(z + m) = mr, for some r € R. Define 8§ : M — M, by
0(z + mc) = mer, for all z € M, ¢ € R. It is clear that 0 is well-defined and
- is a homomorphism. Moreover, for all s € R, 8((z + m)s) = 6(zs + ms) =
msr = @((z + m)s). Thus ¢ is the restriction of 8 to U.

Hence every homomorphism from U to M, can be lifted to M. Since M,
is injective, it follows that A is selt-c-injective, by Lemma 3.1.5.

Now suppose that M = m; R H mo R, where ml has order ideal p° R and
mo has order ideal p*R, for positive integers s < ¢. Let U be a maximal
uniform submodule of M. Since myR is quasi-injective, by (40, page 19], it
follows that msR is m;R-injective, by {40, Proposition 1.3], and hence M-
injective, by |40, Proposition 1.5]. Thus any homomorphism from U to mqoR
can be lifted to Af.

Let ¢ : U — miR be a homomorphism. Then U = (m;a + myb) R, for
some a,b € R. By the above argument, we can suppose without loss of
vgenerality that a =1 orb=1. If b =1, then M = M; & U and o lifts to
- M. Suppose that a = 1 and p(m; + mob) = myr, for some r € R. Define
¢ : M — mR by 8(myry + mqry) = myrr, for all r;, 79 € R. Then 0 is well

defined and is a homomorphism. Moreover, ¢ is the restriction of 6 to U. It
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follows that any homomorphism from U to m R litts to M.

Therefore, M is self-c-injective. O

Corollary 3.3.6 Suppose that R is a Dedekind domain, let P be a maz-
imal ideal of R and let M be a P-torsion module with uniform dimension 2.

Then M 1is self-c-injective.

Proof. Without loss of generality, by localizing at PP, we can suppose
that R is a local ring with unique maximal ideal P. By |67, Theorem 16,
page 278], R is a principal ideal domain. Apply Proposition 3.3.5. a

Contrast Proposition 3.3.5 and Corollary 3.3.6 with the following exam-

ple.

Let p be any prime in Z and let M be the Z-module (Z/pZ)®(Z [p*Z)®

(Z/p*Z). Let us prove that M is not self-cu-injective.
Let U denote the submodule (1 + pZ,p + p*Z,p + p*Z)Z. Then U is a

cyclic p-torsion module, and so is uniform. Suppose that U is essential in a
submodule V of M. Thus, V is also uniform and V = (a + pZ,b+ p*Z,c +
p*Z)Z, for some a,b,c € Z. There exists d € Z such that

(L+pZ,p+p*Z,p+p'Z) = (a + pZ,b+ p*Z,c + p*Z)d.

Hence 1 is congruent to da, modulo p, so that d & pZ. Therefore, U =V
anid we can conclude that U is a closed submodule of M.

Define a homomorphism « : U — M by

al(l1 4+ pZ,p+p°Z,p+ p*Z)r| = (pZ,7 + p*Z,p*Z),
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for all r € Z. Suppose that « can be lifted to a homomorphism 8 : M — M.
Then

BOWZ,p*Z,1 +p'Z) = (u+pZ,v+p°Z,w + p*Z),

for some u,v,w € Z. Thus
BWZ,p’Z,p* + p*Z) = (pZ,p*Z,p*w + p'Z)
and
a(pZ,p*Z,p* +p'Z) = a[(1+ pZ,p+p*Z,p+p"Z)p| = WZ,p+p’Z,p*Z).

| Therefore, a(pZ,p*Z,p* + p*Z) # BWZ,p*Z,p* + p*Z) and a cannot be
lifted to A. It follows that M is not self-cu-injective.
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