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Abstract 

Divisible groups, and then injective modules, were introduced by Baer 

[31, Eckmann and Schopf [14]. 

Injective objects play an important role in other categories than the cat- 

egory of modules. In the category of Banach spaces, the Hahn-Banach The- 

orem states that the field of real numbers is injective; in the category of 

Boolean algebras, a complete Boolean algebra is injective; in the category of 

normal topological spaces, tile closed interval (0,1] is injective, by Tietze's 

Theorem; in the category of partially ordered sets, the injective envelope of 

a partially ordered set is its MacNeille completion. Some of the results of 

injectives in the category of modules can be carried over into these other 

categories; namely the result that a direct Product of injectives is injective. 

Tile concept of injectivity and some of its generalizations has attracted 

much interest over tile years. 

Quasi-injective modules were first defined by Johnson and Wong [291. 

Jeremy [27,28] considered continuous and quasi-continuous modules, fol- 

lowing work of Utunii [60], on rings, and earlier work of Von Neumann 

[44,45,46], on continuous geometries. Continuous and quasi-continuous 0 
modules were studied by various authors. For a good account of this theory, 
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see the monographs by Mohamed and MiRler [40], and Dung, Huynh, Smith 

and Wisbauer [13]. 

Goldic [17,181 considered complements in his study of quotient rings. 

Following the work of Goldie, Chatters and Hajarnavis [8] studied extending 

modules. Independently, extending modules also arose in the work of Harada 

and his collaborators [22,23,49,50]. Kamal and Muller [31,32,331 devel- 

oped the theory and are responsible for discovering a number of interesting 

properties. 

Some generalizations of extending modules appear in [7,57], for example. 

Extending modules have been studied extensively in recent years and it 

appears that several classical theorems on injective modules have natural 

generalizations for extending modules. However, in some sense, the extend- 

ing property is quite far from injectivity and several questions on extending 0 
modules still remain unsolved. A very intriguing question is to find neces- 

sary and sufficient conditions for a direct sum of extending modules to be 

extending. We obtain answers for this problem, in some special cases, and 

also consider the same problem for generalizations of extending modules. 
Chapter 1 covers the background necessary for what follows. In partic- 

ular, general properties of injectivity and some of its well-known generaliza- 

tions are stated. 
Chapter 2 is concerned with two generalizations of injectivity, namely 

near and essential injectivity. These concepts, together with the notion of 

the exchange property, prove to be a key tool in obtaining characterizations 

of when the direct sum of extending modules is extending. 
ýVe find sufficient conditions for a direct sum of two extending modules to 
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be extending, generalizing several known results. We characterize when the 

direct sum of an extending module and an injective module is extending and 0 

when the direct sum of an extending module with the finite exchange property 

and a semisimple module is extending. We also characterize when the direct 

sum of a uniform-extending module and a sernisimple module is uniform- 

extending and, in consequence, we prove that, for a right Noetherian ring 

R, an extending right R-module M, and a semisimple right R-module A/12, 

the right R-module M, (D A, 12 is extending if and only if M2 is MilSoc(Mi)- 

injective. 

Chapter 3 deals with the class of self-c-injective modules, that can be 

characterized by the lifting of homornorphisms from closed submodules to 

the module itself. 

We prove general properties of self-c-injective modules and find sufficient 

conditions for a direct suni of two self-c-injective to be self-c-injective. We 

also look at self-cu-injective modules, i. e., modules M such that every ho- 

momorphism from a closed uniform submodule to M can be lifted to M 

itself. 

We prove that every self-c-injective free module over a commutative do- 

main that is not a field is finitely generated and then proceed to consider 

torsion-free modules over commutative domains, as was done for extending 

modules in [311. 

NVe also characterize when, over a principal ideal domain, the direct 

sum of a torsion-free injective module and a cyclic torsion module is self- 

cu-injective. 
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Chapter I 

Background 

In this preliminary chapter, we will fix some notation and state a few 

well-known results that will be used in the sequel. For other basic defini- 

tions, results and notations, we refer the reader to [2,13,15,36,40,65] as 

background references. 

1.1 Preliminaries 

Notation 

Throughout this dissertation, let R be a ring with identity and let all 

modules be unitary right R-modules. 

If N is a subinodule of 11, we write N<M; if N is a direct summand of 
AI, we write N`ýd 

-Al- 
For right modules Al and N, HOMR(M, N) will denote the set of R- 

module lionioniorphisms froin M to N. The kernel of any oz E HOMR(M, N) 

is denoted by ker ce and its image by oz (M). EndR (M) will denote the set of 

culdonlorphisnis of Al. 
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Given a family of modules { AIj IiE 11, for each jGI, 7rj : EDjEjA/Ij --4 AIj 

denotes the canonical projection with kernel (Dic-., \fjIMi. 

Essential submodules 

Let M be any module. A submodule N of M is called essential, or large, 

in 11 if NnK =ý4 0, for every 0 =ý4 K<M. If N is essential in M, we write 

< iVi. 

Some basic facts about essential submodules are stated below. 

Proposition 1.1.1 [13,1.51 Let K and N be submodules of a module M. 

(i) If K<N, then K <, Al if and only if K <, N and N <, M. 

(ii) If N <, Al, thenNnK <, K. 

(iii) If N, K <,. Al, then NnK<, 

(iv) If K<N and NIK <, A111K, then N <, M. 

(v) If Al = E)jEjA/lj and Ni <,: Ali, for every iEI, then E)iE, Ni :&M. 

Complements 

Let H be any module. A submodule K of M is called closed in M 

provided K has no proper essential extensions in M, i. e., whenever N is a 

submodule of Al such that K <, N, then K=N. If K is closed in AT, ive 

write K <,. Al. 

Given a submodule N of Al, a submodule K of M is called a complement 

of N in III if K is maximal in the collection of submodules L of M such that 
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LnN = 0. A submodule K of. Af is called a complement in M, if there exists 

a submodule N of AI such that K is a complement of N in M. 

An easy application of Zorn's Lemma guarantees the existence of com- 

plements. In fact, ive can prove the following facts. 

Lemma 1.1.2 (13,1.10] Let L and N be submodules of a module M such 

that LnN=0. 

(i) There exists a complement K of N such that L<K. 

(ii) K 0) N <, Al. 

(iii) K <, M. 

It turns out that a submodule of a module M is closed in M if and only 

if it is a complement in 11. This is a consequence of the following. 

Lemma 1.1.3 [13,1.101 Let K be a submodule of a module M and let 

L be a complement of K. Then K is closed in M if and only if K is a 

complement of L in M. 

We now list some basic properties of complements. 

Proposition 1.1.4 Let L and K be submodules of a modUle M, with 

K<L. 

(i) For every N <. Al, there exists H <, M such that N <, 

(ii) 
-K <, M if and only if, whenever N <, M is such that K<N, then 
ATIK <, MIK. 
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(iii) If K <, L and L <, Al, then K <, M. 

(iv) If L <, M, then LIK <, MIK, 

(v) If K <, M, then the closed submodules of A4'1K are of the form HIK, 

where H <, Al and K<H. 

Proof. A proof for (i)-(iv) can be found in [13,1.101. 

Suppose that K <, Al and let us prove (v). By (iv), HIK <c MIK, for 

every H <, M such that K<H. Assume now that H<M is such that 

If <H and HIK <, MIK, and let us prove that H <, M. If N<M is 

such that H <e N, then, by (ii), HIK <, NIK. Because HIK <, MIK, Nve 

can conclude that H=N and that H <, M. 0 

Uniform submodules 

A non-zero module U is said to be unifonn if any two non-zero submod- 

ules of U have non-zero intersection, i. e., if every non-zero submodule of U 

is essential in U. 

Examples of uniform modules are, for an arbitrary ring, simple modules 

and non-zero submodules of uniform modules. If R is a commutative ring and 
P is a prime ideal of R, the R-module RIP is uniform. If R is a commutative 
dornain, then its field of fractions is a uniform R-module. 

kloreover, for the ring T, the following are examples of uniform I- 

modules. 

(i) Cyclic groups ýZ/Z: p' of order p', for any prime p and nE IN. 

Priffer groups ýZ(p`) of type p, for any prime p. ID 
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(iii) Submodules of the additive group (Q, +) of rational numbers. 

Uniform dimension 

Let AI be a lion-zero module which does not contain a direct sum of an 

infinite number of non-zero submodules. Then M contains a uniform sub- 

module. Moreover, there exist a positive integer n and independent uniform 

subi-nodules U1, ..., U,, of Al such that U, E) ... (D U,, is an essential submod- 

ule of Al. This positive integer n is an invariant of M, i. e., if k is a positive 
integer and Vj,... ' Vk- are independent uniform submodules of M such that 

V, (1) ... E) Vk- is an essential submodule of M, then n=k. We shall call n 

the uniform dimension, or Goldie dimension, of M and shall denote it by 

u. dim (M). The uniform dimension of the zero module is, by definition, 0. If 

Al contains a direct sum of an infinite number of non-zero submodules, then 

we set the uniform dimension of M to be oo. For more details, see [20], for 

example. 

Annihilators 

Let. A, I be a module and let X be a subset of M. The right annihilator of X 

in R will be denoted by r(X), i. e., r(X) :=IrERI xr = 0, for all. xEX}. 
Given aE J11, let r(a) := r(jaj), and let (X : a) denote the set IrE 

RI ar E X}. Clearly, if X is a submodule of M, then (X : a) is the right 
annihilator of ja + XI in R, for every aEM. 

It is a simple observation that R/r(a) is isomorphic to aR, for every 

E jVI. Also, if X <, III, then (X : a) : ý, RR. These facts will be repeatedly 

ilsed in the sequel. 
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Singular and nonsingular modules 

For a module III, the singular submodule of M will be denoted by Z(. AI), 

i. e., 

Z(Al) :=fxG. Al I xE = 0, for some E <, RR I- 

The second singular sub7nodule of M, denoted by Z2(M), is the submod- 

ule containing Z(M) such that Z2(M)IZ(M) is the singular submodule of 

the factor module AIIZ(, Af). 

Recall that the module AI is called singular if M= Z(M) and is called 

nonsingular if Z(M) = 0. 

Clearly, Z(. All) is singular; in fact, it is the largest singular submodule of 

Al. Moreover, AI/Z2(Al) is nonsingular and Z(M) : ý, Z2(M) : ý, AT (see, for 

example, [58]). 

Proposition 1.1.5 [20, Proposition 3.26] A module A is singular if and 

only if it is isomorphic to BIC, for some module B and essential submodule 

C of B. 

Proposition 1.1.6 [20, Proposition 3.27] Let B be a submodule of a non- 

singular module A. Then AIB is singular if and only if B <, 

Proposition 1.1.7 (20, Proposition 3.28] 

(i) All submodules, factor modules, and sums (direct or not) of singular 

, triodules are sZngular. 

(ii) All submodules, direct products, and essential extensions of nonsingular 

niodules are nonsingular. 
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(iii) Let B be a submodule of a module A. If B and AIB are both nonsin- 

gular, then A is nonsingular. 

Socle 

Recall that the socle of a module M is defined to be the sum of all 

simple submodules of M, or to be the zero submodule, in case in case M has 

no simple submodules. The socle of M will be denoted by Soc(A/1). In the 

following result we gather some basic facts about Soc(. A/1) (see [2, Section 91). 

Lemma 1.1.8 Let. Al be a module. 

(i) Soc(M) is semisimple (i. e., is a direct sum of simple submodules). 

(ii) soc(m) = nj LIL<, AI}. 

(iii) Soc(N) =Nn Soc(M), for every submodule N of M. 

OV) ýO(SOCPII)) < Soc(. Al'), for evenj module M' and ýo c Hom(M, M'). 

OV) If Al = E)iE,. A/li, for some submodules Mi, iEI, of M, then Soc(M) = 
(DiEISOC(-A"i)- 

Noetherian modules 

A module 11 is called Noetherian if it satisfies the ascending chain con- 
dition (ACC) on subinodules, or, equivalently, if every submodule of All is 

finitely generated. 0 
The ring R is riglit Noetherian if the module RR is Noetherian. 
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A module Al is said to be locally NoetheTian if every finitely generated 

submodule of AI is Noetherian. Any module over a right Noetherian ring is 

locally Noetherian. 

V-modules 

A module. Al'is called a V-module if every submodule is the intersection of 

maximal submodules, or, equivalently, if every simple module is M-injective 

(see [13] or [65]). The ring R is said to be a 7ight V-ring if RR is a V-module. 

Projective and hereditary modules 

Let III and 112 be modules. The module M2 is Mi-projective in case 
for each epimorphism a: 11,11 --ý A and each homomorphism 6 A/12 ---ý A, 

where A is any module, there exists a homomorphism -y : M2 M, such 

that 6= a-y. 

A module M is called hereditary if every submodule of M is projective. 

1.2 Injectivity 

Let A, 11 and 11,12 be modules. The module A/12 is A/11-injective if every 
homonlorphisin a: A ---ý 11,12, where A is a submodule of M1, can be extended 

to a homomorphism 0: 111 --ý. A/12. 

A family of modules I 111i IiEII is relatively injective if Mi is AlIj- 

injective, for every ij E 1, i 7ý j. 

A module AI is called injective when it is N-injective, for every module 
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The following result is known as Baer's Criterion. 

Theorem 1.2.1 (2,18.3] The following conditions are equivalent for a 

module AL 

(i) Al is injective. 

(ii) Alis RR-injective. 

(iii) For every right ideal I< RR and every homomorphism a: I --ý M, 

there exists aE All such that a(r) == ar, for every rE 

Some basic properties of injectivity follow below. 

Proposition 1.2.2 [40, Proposition 1.31 Let M, and M2 be modules. If 

A12 is All-injective, then, for evenj submodule N of M1, M2 is N-injective 

and (AIIIN)-injective. 

Proposition 1.2.3 (40, Proposition 1.51 Let f Mi IiEII and N be 

modules. Then N is ((Dic-I. Ali)-injective if and only if N is Mi-injechve, for 

every iEI- 

Proposition 1.2.4 [40, Proposition 1.6] Let M and I Ni I i. E I} be 

modules. 
T/tenr'iENi is M-injective if and only if Ni is M-injective, for 

every iEI. 

The following result is a generalization of Baer's Criterion. 

Proposition 1.2.5 [40, Proposition 1.4] Let III and M2 be modules. 
Then A12 is Al, -Nijective if and only if A, 12 is aR-injective, for every a (E A/11. 
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Tlie6rein 1.2.6 [40, Theorem 1.7] Let I Ni IiEII be a family of mod- 

ules. For a module III, the following conditions are equivalent. 

(DiEjNj is All-injective. 

(ii) (DiEjNi ?S Af-injective, for evenj countable subset J of 1. 

(iZi) Ni is Al-injective, for every iEI, and for any choice Of Xn E Niýy 

with n. E IN and distinct i,, EE 1, such thatnýý n=lr(x") 
2 r(a), for some 

aE Af, the ascending chain 

00 00 00 

nr (x�) ý: - nr (x�) 9 ... ý: - nr (x�) C n=l n=2 n=k 

becomes stationary. 

TMotivated by these results, the following chain conditions on the ring R, 

relative to a given family f AIj IiGII of R-modules, were introduced in [40, 

page 4). Here we will follow their notation. 

(A, ) For any choice of x, E A/li., with nE IN and distinct i,, E 1, the 

ascending chain 

00 co 00 

n, r(x. ) gn r(x,, ) n r(x,, ) n=l n=2 n=k 

becomes stationary. 

(A2) For any choice of x,, G Afi,, with nE IN and distinct i,, cz I, such that 

ný, ý-Ir(x,, ) -==? r(y), for some yE Alj (j c 1), the ascending chain 

00 00 co 

ncncn r(x,, ) 12=1 rz=2 n=k 

becomes stationary. 
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Clearly, (A, ) implies (A2). Examples showing the converse does not hold 

are discussed in [40, Examples 1.12]. 

If R is right Noetherian, then (A, ) holds. Suppose that, for each iGI, 

Mi is a locally Noetherian module. Then, for every y C- Mi (i G 1), Rlr(y) 

is Noetherian, as it is isoinorphic to yR. Consequently, condition (A2) is 

satisfied. 
As an immediate consequence of Theorem 1.2.6, we have the following 

result. 

Proposition 1.2.7 [40, Proposition 1.9] Let I Mi IiEII be a family of 

modules. Then E)jEj\jj)AIj is Mj-injective, for every iEI, if and only if the 

modules I Mi IieII are relatively injective and condition (A2) holds. 

By Proposition 1.2.4, a direct product of injective modules, and hence 

a finite direct sum of injective modules, is injective. The following result 

characterizes the injectivity of arbitrary direct sums of modules and is a 

consequence of Theorem 1.2.6. 

Theorein 1.2.8 [40, Proposition 1.101 Let I Mi IiE I} be a family of 

7nodules. The following conditions are equivalent. 

(i) @jc-jAlj is injective. 

(ii) (Dic-i1li zs injective, for every countable subset J of I. 

(iii) AIj is injectZve, for evcry iE1, and condition (A, ) holds. 

TIleorei-n 1.2.9 [40, Theorem 1.11) For a module Af, the direct sum of 

any family of 11-injective modules is Al-injective if and only if M is locally 
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Noethcrian. In particular, the direct sum of every family of injective R- 

modules Z'S injective if and only if R is right Noetherian. 

Every module . 
11, has a minimal injective extension, which is at the same 

time a maximal essential extension. Such an extension is unique up to iso- 

morphisin, is called the injective hull, or injective envelope, of M and is 

denoted by E(Afl. 

1.3 Quasi-injectivity 

A module 11 is called quasi-injective, or self-injective, when it is M- 

injective. 

For example, injective modules and semisimple modules are quasi-injective 

and direct summands of quasi-injective modules are also quasi-injective. 

Some known properties of quasi-injective modules are listed below. 

Lemma 1.3.1 (40, Corollary 1.14] A module M is quasi-injective if and 

only if ýo(ilfl : 5- Al, for evenj endomorphism V of E(M). 

Theorem 1.3.2 (40, Theorem 1.181 Let I Mi IiGII be a family of 

modules. The following conditions are equivalent. 

(i) (DiEI'lli is quasi-nijective. 

(DjEjjWj is quasi- injective, for evenj countable subset J of I. 

(, iZi) Alj is quasi-injective and O)iEI\{j}A/li is A/Ij-injective, for evenj jE 

Ov) I 111i Ii EE II are relatively injective quasZ-injective modules and condi- 

tion (A2) holds. 
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1.4 Q uas i- continuous modules 
A inodule M is called a quasi- continuous module if E(M) < M, for every 

idempotent endomorpllisni c of E(M). 

Clearly, quasi-injective modules are examples of quasi-continuous mod- 

ules, and so are uniform modules. 
The following gives some equivalent characterizations of quasi-continuous 

modules, that can be found, for example, in [13,40,55). 

Theorem 1.4.1 The following conditions are equivalent for a module M 

with injective hull E. 

(i) Al is quasi- continuous. 

(ii) Whenever E= (DiEIEi, for submodules Ei (i E 1) of E, then M= 

eDic: , (Ai nEi). 

(iii) Whenever E= El E) E2, for submodules El, E2 of E, then M= 

(il, I n EI) ED (AI n E2) 
- 

(iv) Every submodule of Al is essential in a direct summand of M and, for 

any direct summands K and L of M with KnL=0, the submodule 

K E) L is also a direct summand of M. 

(v) Whenever L, and L2 are submodules of M with L, n L2 
-` 

0, then 

there exist submodules All and 112 of All such that All = All, @A/12 and 

Li < Ali, i=1,2. 

(vi) Whenever L, and L2 are closed submodules of M with L, n L2 
--- ý 07 

then the submodule Ll (D L2 is also a closed submodule of M. 
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(vii) Whenever L, and L2 are closed SUbmodules of M with L, n L2 ý-- 0, then 

every homomorphism ýo : LjEDL2 ---> M can be lifted to a homomorphism 

Al ---+ 

Theorem 1.4.2 [40, Tlieorem 2.13] Let f Mi IiEII be a family of 

modules. The following conditions are equivalent. 

(i) O)iEAli is quasi- continuous. 

(ii) (DjEj. AJj is quasi- continuous, for every countable subset J of 1. 

(iii) Allj is q uasi- continuous and (I)iEI\(j) A is Mj -injective, for evenj jE1. 

A/Ij IiGII are relatively injective quasi- co ntinuo us modules and 

condition (A2) holds. 

1.5 Continuous modules 

There is a class of modules intermediate to the class of quasi-injective 

modules and the class of quasi-continuous modules, namely the class of con- 

tinuous modules. 
A module A1 is called a continuous module if it has the following two 

properties: 

(Cl) Every submodule of III is essential in a direct summand. 

(C2) Every submodule isoniorphic to a direct summand of M is also a direct 

summand of Al. 

It is not hard to prove that every quasi-injective module is continuous. 
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Theorem 1.5.1 [40, Tileorem 3.16] Let I Mi IiE I} be a family of 

modules. The following conditions are equivalent. 

(i) EqjEjAlj is continuous. 

Oi) EDiEJ. Afi is continuous, for every countable subset J of 1. 

(iii) (DiEI. Ajj is quasi- continuous and Mi is continuous, for every iG 

Mi IiEII are relativelY injective continuous modules and condition 

(A2) holds. 

1.6 Extending modules 

A module M is called an extending module, or a CS module, if every 

submodule of III is essential in a direct summand, or, equivalently, if every 

closed submodule of Al is a direct summand. 
By Theorem 1.4.1, quasi-continuous modules are extending. 

It is obvious that an inclecomposable module is extending if and only if 

it is uniform. 

1.7 Uniform- extending modules 

A module 11 is called a unifonin- extending module if every closed uniform 

(i. e., maximal uniform) submodule of All is a direct summand. 

Lemma 1.7.1 [13, Lemma 7.7] Let 11 be a uniform- extending module 

and let K be a closed submodule of M with finite uniform dimension. Then 

K is a direct summand of Al. 
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Corollary 1.7.2 [13, Corollary 7.8] A module with finite uni/677n dimen- 

sion is extending if and only if it is uniform- extending. 

1.8 Some examples 

To illustrate the hierarchy of the concepts introduced in the previous 

Sections (injective, quasi-injective, continuous, quasi-continous, extending 

modules), and at the same time demonstrate that they are all distinct, in 

(40, page 191, are listed all abelian groups with these properties, as well as 

regular rings, as right modules over themselves, with these properties. 

Let us look now at examples of uniform-extending modules that are not 

extending. 

Let us start by proving that a free Z-module M is extending if and only 

if Al has finite uniform dimension. If M has infinite uniform dimension, 

then there exists an epimorphism ce :M --+ Q. It is not hard to see that 

K := ker a is a closed submodule that is not a direct summand, and hence 

M is not extending. On the other hand, if M has finite uniform dimension, 

then anY submodule N of M is essential in the submodule L such that LIN 

is the torsion submodule of MIN; and L is a direct summand of Al, because 

the module 11,11L is finitely generated and torsion-free. 

It is not hard to prove that any free ýZ-module of infinite uniform dimen- 

sion is uniform-extending (but not extending). 
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1.9 The exchange property 

A module M is said to have the (finite) exchange property if, for every 
(finite) index set 1, whenever M (D N= (DiEjAj for modules N and Aj, i C- 1, 

then All (D N= A/I E) ((DjejBj) for submodules Bi of Aj, iEI (see (131 or [40]). 

The exchange property was introduced in [91 and was established for in- 

jective modules in [631, for quasi-injective modules in [16] and for continuous 

modules in [39] (cf. (40, Theorem 3.241). In [42], it was proved that, for 

quasi-continuous modules, tile finite exchange property implies the exchange 

property. But, in general, quasi-continuous modules do not have this prop- 

erty, and tile ones that have were characterized in [411. 

Modules with decornpositions into indecomposable summands which en- 

joy the exchange property were described, for example, in [21,68]. Also in 

[68], and among other examples, it was proved that Artinian modules over 

commutative rings have the exchange property. 

A ring R is a P-exchange ring if every projective right R-module satisfies 

tile exchange property. Perfect rings, for instance, are a well known example 

of P-exchange rings. For other examples and results, see [24,34,37,47,48, 

59,66,68]. 

A ring R is an exchange ring if RR satisfies the finite exchange property. 

This definition is left-right symmetric, as was shown in (641. In that paper, ?D 
it was also proved that a right R-module M has the finite exchange property 

if and only if the endomorphism ring of M is an exchange ring. Examples of 

exchange rings include von Neumann regular rings and left or right contin- 

uous rings. Characterizations of exchange rings were obtained in [5,43,47], 
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I 

for example. 

The following properties will be repeatedly used in the sequel. 

Proposition 1.9.1 [62, Proposition 1] An indecomposable module has 

the exchange property if and only if its endomorphism ring is local. 

Lemma 1.9.2 [40, Leinina 3.20] If M=M, ED M2, then M has the 

(finite) exchange property if and only if M, and M2 have the (finite) exchange 

property. 

1.10 Indecomposable decompositions of mod- 
ules 

Generalizing a fundamental property of semisimple modules, Anderson 

and Fuller [1] (cf. [2, page 141]) introduced the following important concept 

for direct decompositions of modules. A decomposition M= TjC_jMj is said 

to complement direct summands in case for each direct summand A of M 

there is a subset J of I such that M=A ED (EDiciMi). Such a decomposition 

is necessarily an indecomposable decomposition (see (21, for example). 

A decomposition Af = EE)jEj. A/Ij is said to complement maximal direct 

summands if, whenever III =A E) X, with X an indecomposable summand, 

there is iEI such that Al =A (D Mi. Obviously, every decomposition that 

complements direct summands also complements maximal direct summands. 

Every decomposition of a module into summands with local endomor- 

phism rings complernents maximal direct summands [2, Theorem 12.6), but 

the local endomorphism ring hypothesis is not necessary for a decomposition 

18 



to complement direct summands (see, for example, [2, Exercises 12.5 and 

12.6]). 

If 
'All --'ý (DiEI. A"i is an indecomposable decomposition that complements 

maximal direct summands, then the conclusion of the Krull-Schmidt The- 

orem holds, i. e., an indecoinposable decomposition of M is unique up to 

isomorphism [2, Theorem 12.4]. 

A family f Ni IiEII of independent submodules of a module M is said 

to be a local direct summand of M if, for any finite subset F of I, (DiEFNj is 

a direct summand of M. If, furthermore, EDiEjNj is also a direct summand 

of M, then we say that the local direct summand is a summand. 

A family of modules I Mi IiE I} is called locally semi- T-nilpotent if, 

for any countable set of non-isomorphisms I f,, : Mi. --411jý+, }, with all i.,, 

distinct in 1, and for any xE there exists k (depending on x) such that 

fk- --- fi(x) = 

Lemma 1.10.1 Let Al = EDiEIAIj be a direct sum of modules with local 

endomorplasm rings. The following conditions are equivalent. 

Elid(. Al) is a se7ni-regular ring; that is SIJ(S) is von Neumann 

regular and the idempotents in SIJ(S) can be lifted over J(S), where 

J(S) is the Jacobson radical of S. 

(ii) Every local direct summand of M is a summand. 

(iii) The decomposition III = EDjEi-A/Ij complements direct summands. 

(iv) The family I AIj IiEII is locally semi-T-nilpotent. 
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(v) Al has the exchange property. 

Proof. The equivalence of (i)-(iv) is due to Harada, [21]. The equiv- 

alenece of (iv) and (v) is due to Zimmermann-Huisgen and Zimmermann 

[68]. 0 

N. V. Dung proved the following result, that generalizes [21, Theorems 

7.3.15 and 8.2.11. 

Theorem 1.10.2 [12, Theorem 3.41 Let M= EDi, 
=IMi 

be an indecompos- 

able decomposition that complements maximal direct summands. The follow- 

ing conditions are equivalent. 

(i) The decomposition Al = (DjEjMj complements direct summands. 

(ii) E venj non-zero direct summand of M contains an indecomposable direct 

summand, and the family I Mi IiGI} is locally semi- T-nilpo tent. 

Every local direct summand of Al is a summand. 

By [40, Theorem 2.22], an indecomposable decomposition of a quasi- 

continuous module always complements direct summands, and every local 

direct summand is also a direct summand. However, it is still an open ques- 

tion to characterize extending modules which admit hidecomposable decom- 

positions (cf. [40, Open problem 8, page 1061). N. V. Dung gives a complete 

characterization of extending modules which have a decomposition that com- 

plements maximal direct summands, as a Corollary of [12, Theorem 3.4]. 
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Theorem 1.10.3 [12, Theorem 4.4] Let M --": EDiEIA/lj be a direct sum of 

uniform submodules and suppose that this decomposition complements max- 

zmal direct summands. The following conditions arc equivalent. 

(i) Al is extending. 

(ii) OiEJ-A'li is extending, for every countable subset J of 1. 

(iii) AIj (D JAIj is extending, for every i, jEI, i : ýA j, and the family I Mi 

iGII is locally semi-T-nilpotent and satisfies condition (A2)- 

Furthermore, if Al satisfies any of the above equivalent conditions, then the 

decomposition M= (Dic-IIIi complements direct summands, and any local 

direct summand of AY IS also a direct summand. 

Sufficient conditions for an extending module to admit an indecomposable 

decomposition follow below. 

Lemma 1.10.4 [13,8.11 Let Af be a module. If R satisfies ACC on right 
idcals of the form r(x), xEM, then every local direct summand of M is 

closed in Al. 

Theoreii-i 1.10.5 [13,8.21 Let All be an extending module. If R satisfies 

ACC on right ideals of the form r(x), xGM, then M is a direct sum of 

unifoym S? Lbmod? tles. 

Corollary IL. 10.6 [13,8.3] Any locally Noetherian extending module is 

a direct sum of uniform subinodules. 
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In particular, over a right Noetherian ring, any extending module is a 

direct sum of uniform submodules. 

Corollary 1.10.7 [13,8.4) Let M be a nonsingular extending module. 

Then Al is a direct sum of uniform submodules if and only if R satisfies 

A CC on right ideals of the form r(x), xE Al. 

Proposition 1.10.8 [13,8.6] A locally Noetherian module M is extend- 

ing if and only if it is uniform- extending and evenj local direct summand of 

III is a direct summand. 
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Chapter 2 

Near and essential injectivity 

In recent years, extending modules have been studied extensively and a 

question that has attracted much attention is when the direct sum of extend- 

ing modules is extending (see, for example, [10,11,12,25,26,31,61]). 

In Section 2.2, we find sufficient conditions for a direct sum of two ex- 

tending modules to be extending, generalizing several known results. 

Trying to get partial converses for the results in Section 2.2, we look at 

modules with summands with the finite exchange property, in Section 2.3. 

We characterize when the direct sum of an extending module and an injective 

module is extending and when the direct sum of an extending module with 

the finite exchange property and a semisimple module is extending. We 

also characterize when the direct sum of a uniform-extending module and 

a seinisiniple module is uniform-extending and, in consequence, we prove 

that, for a right Noetherian ring R, an extending right R-module All and a 

semisiniple right R-module J1,12, the right R-module M, (D A12 is extending 

if and only if A12 is AII/Soc(All)-injective. Finally, we prove that a ring 

R is such that every direct sum of an extending (injective) R-module and 
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a semisimple R-module is extending if and only if RISoc(RR) is a right 
Noetherian right V-ring. 

To achieve this, the concepts of near and essential injectivity seem to 

play a key role. So, in Section 2.1, we start by introducing these notions 

and proving some criteria for a module to be essentially (nearly) injective, 

and follow with some examples and general properties, establishing a parallel 

with what is known for injectivity. 

In Section 2.4, we consider direct sums of uniform-extending modules. 
Let R be a ring and let 111i IiEI} be a family of R-modules. In case, for 

every iEI, Mi is a uniform module with local endomorphism ring, N. V. 

Dung [11] proved that E)jEj. Mj is uniform-extending if and only if Mi (D Ayj 

is extending, for every i, jE1, i :, 4 j, and condition (A2) holds. Considering 

that an indecomposable module has the exchange property if and only if its 

endomorphism ring is local, it is natural to try to generalize this result to 

direct sums of modules with the (finite) exchange property. Suppose that, 

for any iE1, k1i has the finite exchange property. We prove that E)iEIMi 

is uniform-extending if and only if Ali (D Mj is uniform-extending, for every 

i, jE1, i =ý j, and, for any choice of x,, E Mi., with nE IN and distinct 

i,, G I, such that nc, *=jr(Xn) ;? r(y), for some yG Mj such that yR is uniform 
(j E 1), the ascending chain 

00 00 
r(x. ) ýý 2 r(x�) !2 r(xj C- 

n=I iz=2 n=k- 

becomes stationary. This Section owes a good deal to (10,11,23,32], where 

most of the ideas and techniques originate (see also [30), for close results). 0 

Part of Section 2.1 and most of Sections 2.2 and 2.3 appeared in [53] (see 

24 



also [52]). 

2.1 Near and essential injectivity 

Let All and 112be modules. The module A, 12 is nearly AJ, -injective (resp., 

essentially 111-injective) if every homomorphism a: A ---+ M2, where A is 

" submodule of 111 and keroz :ý0 (resp., ker a <-, A), can be extended to 

" homomorphism 8: N11 -4 112 (see [13,2.14)). Obviously, if M2 is nearly 
A11-injective, then A, 12 is essentially A/11-injective and, for a uniform module 

11,11, the two notions coincide. 
Observe that a module M is nearly N-injective, for every module N, 

if and only if it is injective. To see this, let M, be any module, let A be 

a submodule of All and let a: A -+ M2 be a homomorphism such that 

kera = 0. Let B be any nonzero module and consider the hornomorphism 

cv/ :A E) B --4 M2 such that a'JA =a and a'IB = 0. As kerce' : 7ý 0, if A/12 is 

nearly (All (D B)-injective, there exists a homomorphism, 6 : All (D B --ý A/12 

that extends a'. Then, clearly, the restriction of 8 to All extends a. 
A module Al is essentially injective if it is essentially N-injective, for 

every module N. 

For example, every nonsingular module is essentially injective. In fact, 

for any modules JVII and 11,12, a homomorphism a: A -* A/12, where A is 

a subinodule of All and ker a <, A, is such that A/ ker a is singular, and 

therefore a(A) : ý- Z(A, 12). So, if A, 12 is nonsingular, ce(A) :ý Z(A/12) =0 and 

ct is the zero homomorphisin. 

For any prime p, consider the (uniform) Z-modules Z! /pZý, ýZ/p2 a and 
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; 2: /p'E. The module Z! /pZ is essentially (Z/p'Z)-injective, but is not essen- 

tially (. 7/p'Z! )-injective, as it fails to be (: Z/p', T)-injective (cf. Lemma 2.1.5 

below). 

In order to obtain characterizations of near and essential injectivity, we 

need the following Lemma, that generalizes [13, Lemma 7.5]. 

Lemma 2.1.1 Let All, and. AI2 be 7nodules, let X be a submodule of M, 

and let Al := Al, (D M2. The following conditions are equivalent. 

(i) 112 is (. AI, IX)-injective. 

(ii) For evenj (closed) submodule N of M such that Nnm, =0 and 

7r, (N) nx<N, there exists a submodule N' of M such that N< N' 

and. Al = N(D. AI2. 

(i. Zi) For every (closed) submodule N of. Af such that NnA42 =0 and X<N, 

there exists a submodule N' of Af such that N< N' and M= NE). A/12. 

Proof. Obviously, (ii) implies (iii). 

Let us prove that (i) implies (ii). Suppose that M2 is (Mi/X)-injective 

and let N be a submodule of AI such that Nnm, =0 and -7r, (N) nx<N. 

Consider the maps ao :N --ý A/12, a F-+ 7r2(a), and flo :N --+ lvfllX, a ý--* 

, rl (a) + X. As 71 (N) nX<NnM, = ker ao, the map a: NI (r, (N) n X) --4 

a+ 7-ij (N) nX 7r2(a), is a homomorphism. Obviously, 7r, (N) nX< 

ker [30. In order to prove that 7r, (N) nX= ker 00, let aE ker, 30. Then 
-, TI(a) EX and, consequently, 7r, (a) E -, Tl (N) nX<N. As Nn 112 =0 

and a- 7-,, (a)= 7r2(a), it follows that a =7r, (a) E: 7r, (N) n X. Therefore, 
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7r, (A') nX = kerOo and the map, 6: NI(7r, (N)nX) --4 AIIIIX, a+ 7r, (N)n 

X ý-4 ri (a) + X, is a monomorphism. Then, by hypothesis, there exists a 

maj) W: All IX --ý 112 such that ýp, 8 = a. 

Define N' :=fa+ W(a + X) IaGM, 1. Clearly, N' is a submodule 

of M and NI n. AI2 = 0. For every aEM, a= [7r, (a) + W(7r, (a) + X)] + 

[72 (a) - V(7r, (a) + X)j E N' + A/12. So, M= N' (D M2. Also, if aGN, 

then -Ir2(a) = a(a + TI(N) n X) = WO(a +7r, (N) n X) = w(7r, (a) + X) and 

a= 7r, (a) +'IT2 (a) = 7r, (a) + ýo (7r, (a) + X) G N. Thus, N<N. 

Let us prove, now, that (iii) implies (i). Suppose that condition (iii) is 

valid. In order to prove that 112 is (MI/X)-injective, let L be a submodule 

of Ml such that X<L and let a: LIX --ý A12 be any homomorphism. 

Define N :=Ia- a(a + X) IaEL1. Clearly, N is a submodule of M, 

Ar n A12 =0 and X<N. Then, by hypothesis, there exists a submodule 

N' of AT such that N< N' and All = N' E) M2. Let 7r : AT --ý A, 12 denote 

the canonical projection with kernel N'. Then, as X< N' = ker7r, the map 

ýp : All IX ---+ 112, a+ X ý-4 -ir(a), is a homomorphism. For every aEL, 

ýp(a + X) = 7r(a) = -F, [(a - a(a + X)) + a(a + X)] = ce(a + X). Thus, M2 is 

(11,11/X)-iiijective. 0 

Leninia 2.1.1 has the following immediate consequences. 

Corollary 2.1.2 [13, Lemina 7.5] Let M, and M2 be modules and let 

, 
A, l : =. All (D 11,12. The following conditions are equivalent. 

11,12 I'S 11,11-znj'eCtiVC- 
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(ii) For evenj (closed) submodule N of All such that Nn A/12 = 0, there 

exists a submodule N' of Al such that N< N' and M= N(D A112. 

Proof. This is a consequence of Lemma 2.1.1, when X=0. Cl 

Corollary 2.1.3 Let M, and M2 be modules and let M := All, (D A/12. 

The following conditions are equivalent. 

(i) A/12 is (JI/l, /Soc (. All)) - injective- 

(ii) For every (closed) submodule N of M such that Nnm, =0 and 

Soc(-, rj(N)) < N, there exists a submodule N' of M such that N< N' 

and M= N(D M2. 

(iii) For ever? y (closed) submodule N of M such that Nn A/12 =0 and 

Soc(N) Soc(MI), there exists a submodule N' Of M such that N< N' 

and III N' (D J1,12. 

ProoE This is a consequence of Lemma 2.1.1, when X= Soc(MI). El 

We can now characterize near and essential injectivity. 

Lemina 2.1.4 Let All and 11,12 be modules and let M : =: All Ef) 112. The 

following conditions are equivalent. 

(i) A, 12 Z'S nearly All 
-injective. 

(ii) 112 is (11111X)-injective, for every nonzero submodule X of Mi. 
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(iii) For evemi (closed) submodule N of M such that Nnm, =ýý 0 and 
Nn m2 = o, there exists a submodule N' of M such that N< N' and 
Al = N(D A12. 

Proof It is not hard to prove the equivalence of (i) and (ii) and Lemma 

2.1.1 gives the equivalence of (ii) and (iii). 0 

Lemma 2.1.5 Let 11,11 and A/12 be modules and let M :=M, ED A/12. The 

following conditions are equivalent. 

(i) A, 12 is essentially MI-injective. 

(ii) A, 12 is (AIIIX)-injective, for evenj essential submodule X of III. 

(iii) For every sub7nodule N of M such that Nn. A4, : ý, M, and Nn A12 = 0, 

there exists a submodule N' of Al such that N< N' and M= N'(D N12. 

(iv) For evemi closed submodule N of M such that Nn mý : 5, All and 

Nn iv, = o, m= iv (D Ai,. 

y (closed) submodule N of Af such that Nnm, : 5, N, there (v) For even 

exists a submodule N' of Al such that N< N' and M= N(D A, 12- 

Proof. It is not hard to prove that (i) implies (ii). Let us prove the 

converse. Suppose that condition (ii) holds, let A be a submodule of All, 

let a: A ---ý A12 be a hoinomorphism such that ker a <, A and consider the 

homomorphisin d: A/ ker a --ý 112, a +ker ce F--+ oz (a). Let B be a complement 

of A in ill,. Then X := ker a E) B <, Mi. Consider the homomorphism 

(p : Al ker ci --+ Al, IX, a+ ker a ý-+ a+X. Because AnX= ker ce (D (A n B) = 
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ker a, V is a monomorphism. On the other hand, by hypothesis, M2 is 

(. A/I, /X)-injective. Then, there exists a map P: A1111X --ý A/12 such that 

(a + ker oz) = Pýo (a + ker oz) (a + X), for every a (E A. Let M, --4 A/12, 

a E--+ 3(a + X). Then, 6(a) a(a), for every a A. Therefore, M2 is 

essentially A11-injective. 

Lemma 2.1.1 gives the equivalence of (ii) and (iii) and, obviously, (iv) 

implies (iii). 

Let us prove, now, that (iii) implies (v). Suppose that condition (iii) 

holds and let N be a submodule of M such that Nnm, <, N. Let L be a 

complement of NnM, in Mi. Then, (N (D L) n M, = (N n Mj) E) L <, Mi. 

Also, (N n mý) n [N n (L E) M2)) =Nn [L E) (m, n m2)] =NnL=0. As 

N n1l, : S, N, Nn (L (D. A/12) =0 and, consequently, (N E) L) n A/12 = 0. By 

hypothesis, there exists a submodule N' of M such that N E) L< N' and 

1111 = N' @112. 

To conclude the proof, let us show that (v) implies (iv). Suppose that 

condition (v) holds and let K be a closed submodule of M such that Kn 

All <, All and Knm, = 0. Let us remark that Kn Al, :&K, because 

(KnAll)(DA12: 5, Al and KnAll = Kn[(KnA, 11)(DM2]. Then, by hypothesis, 

there exists a submodule K' of M such that K< K' and M= KI (D A'12. We 

have K <, K', because K (D A12 : ý:,, Al and K= KI n (K @ A/12). Since K is 

closed in Al, we can conclude that K= K' and M=K (D M2. El 

Corollary 2.1.6 Let A1, and A12 be modules. If 
M2 is (]Vll/Soc(Ml))- 

injectivc, then A12 is essentially Mi-injective. 

Proof. The result follows easily from Lemma 2.1.5, bearing in mind that, 
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for every X <,. A, 11, Soc(Mi) < X. 0 

In general, the converse for the last result does not hold, though Corol- 

lary 2.3.13 gives a partial converse for it. The Z-module 7- is essentially 

ýZ-injective, but is not (Z/Soc(Z: ))-injective (observe that Soc(Z) = 
In what follows, ive will look at some basic properties of near and essential 

injectivity. 

Proposition 2.1.7 Let M, and M2 be modules. If A/12 is nearly (resp., 

essentially) All, -injective, then, for every submodule No Mi, M2 is nearly f 

(resp., essentially) N-injective and nearly (resp., essentially) (1111N)-injec- 

tive. 

Proof. For near injectivity, the result is an easy consequence of Propo- 

sition 1.2.2 and Lemma 2.1.4. 

Let us prove the result for essential injectivity. Suppose that A/12 is essen- 

tially Mi-iiijective and let N< All,. 

By definition of essential injectivity, it is easy to see that M2 is also 

essentially N-injective. 

Let X< All be such that N<X and XIN <, A1111N. By Propo- 

sition 1.1.1(iv), X <, A, 11. Thus, bY assumption and Lemma 2.1.5, A/12 

is (Al, /X)-injective. Therefore, it is also [(Ivl, /N)/(X/N)I-injective, since 
these two modules are isomorphic. So, A/12 is essentially (Ml/N)-injective. 0 

Proposition 2.1.8 Let All and I Ni IiEII be modules. Then rIiEjNj 

is nearly (resp., essentially) Al-injective if and only if Ni is nearly (resp., 

essentially) Al-injective, for evenj iEI. 
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Proof. This is an obvious consequence of Proposition 1.2.4 and Lemma 

2.1.4 (resp., Lemma 2.1.5). 0 

Proposition 2.1.9 Let I Mi IiE I} and N be modules. Then N is 

essentially (EqjEjMj)-injectivc if and only if N is essentially Mi-injective, for 

every iEI. 

Proof. The necessity follows from Proposition 2.1.7. 

Conversely, suppose that N is essentially Mi-injective, for every iE1, 

and let X <, (DiEI. Afi. Then, for every iE ir, xn mi :: ý-, Mi and, by 

hypothesis, together with Lemma 2.1.5, N is [mil(x nMi)]-injective. From 

Proposition 1.2.3, we can conclude that N is j(DiEI[A1ii1(x n Mi)]I-injective, 

so that N is also 
f[O)iEI. A/'iI/[(ýDiEI(x nMi)]}-injective. By Proposition 1.2.2, 

N is [((DiEIIVIj)/Xj-injective. Finally, by Lemma 2.1.5, we can conclude that 

N is essentially ((j)jEjA/Ij)-injective. 0 

The Zý-rnodule ýZ is essentially (nearly) ýZ-injective, so that it is also 

essentially (Zý E) : Z)-injective, by Proposition 2.1.9. But it fails to be nearly 

(ýZ (D ; Z)-injective, as it is not [(a E) E) 0)1-injective, i. e., it is not 

self-injective. 

The modules 111 and 11,12 are relatively essentially injective if A/Ij is essen- 
tially jlfj-iiijective, for every i, jE 11,2}, i =/- 

Compare the following result with Theorem 1.4.1(v). 

Lemma 2.1.10 Let M, and M2 be modules and let M :=M, E)A/12. Then 

Al, and 1112 are relatively essentially injective if and only if, for all (closed) 
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submodules K and L of Al such that KnM, <, K and Ln M2 <, L, there 

exist submodules K' and L' of Al such that K< KY L< L' and M= K'E)L'. 

ProoL Suppose, firstly, that All and M2 are relatively essentially injec- 

tive and let K and L be (closed) submodules of M such that Kn All : 5, K 

and Ln 11,12 <, L. The fact that M2 is essentially MI-injective guarantees, 
by Lemma 2.1.5, that there exists a submodule K' of M such that K< K' 

and Al = K'E) M2. Then 111 and K' are isomorphic and, therefore, K' is 

essentially A12-injective. Again by Lemma 2.1.5, and because Ln A/12 :! ý, L, 

there exists a submodule L' of All such that L<V and M= K'O) V. 

Let us prove the converse. Let K be any submodule of M such that 

K nm, <, K and let L := A/12. By hypothesis, there exist submodules K' 

and L' of AT such that K< K', L< L' and M= KED L'. Then L' = (MI (@ 

112) n L' = (111 n L') OA12 and M= K'(D (m, n L') E9 M2. By Lemma 2.1.5, 

we can conclude that A12 is essentially Mi-injective. Analogously, we can 

prove that A/I, is essentially A, 12-injective. 0 

The following result is a version of Baer's Criterion for essential injectivity. 

Proposition 2.1.11 LetkI, and M2 be modules. Then M2 is essentially 

j1,11-injective if a-rid only if A12 is essentially aR-injective, for every aE All, - 
Moreover, a module is essentially injective if and only if it is essentially RR- 

injective. 

Proof. The necessity is given at once by Proposition 2.1-7. Conversely, 

suppose that A, 12 is essentially aR-injective, for every aG All,, and let X <, 

All. For aG All, aR nX<, aR. By hypothesis and Lemma 2.1.5, taking in 
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account that the submodules (aR + X)IX and aRI(aR n X) are isomorphic, 

we can conclude that A12 is [(aR + X)/X]-injective, for every aE Mi. It 

follows, by Proposition 1.2.5, that A/12 is (A/li/X)-injective. Thus, again by 

Lemma 2.1.5,112 is essentially A11-injective 

The last statement follows easily. 1: 1 

Let us introduce another generalization of injectivity. 

Let Ill and 112 be modules. The module M2 is u-essentially Ml-injective 

if every homomorphism a: U --4 A12, where U is a uniform submodule of 
All and ker a =7ý 0 (i. e., ker a <, U), can be extended to a homomorphism 

13 : -All ---ý A/12- 

Clearly, if M2 is essentially Ml-injective, then M2 is u-esseritially Mj- 

injective. In what follows, we can see that these two notions coincide when 
Ml is a direct sum of uniform modules. We also prove some basic properties 

of u-essential injectivity. 

An example of a module M2 that is u-essentially A/11-injective but not 

essentially 111-injective, for some module A/11, is provided in the end of this 

Section. 

Lernma 2.1.12 Let AI, and A, 12 be modules and let M := All ED A/12. Then 

J1,12 is u-essentially 111-injective if and only if, for every (closed) uniform 

submodule N of Al such that N n. All =54 0, there exists a submodule N' of M 

such that N< N' and Al = N' E) A/12. 

Proof. Assume that j112 is u-cssentially 111-injective and let N be a 

ulliforin subinodule of Al such that Nn All =7ý 0. As Nn 1v12 = 0, tlie 
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restriction of -ir, to N is an isomorphism between N and irl(N), so that 

-4 , Tj (N) is also uniform. Consider the homomorphism ce : 7r, (N) - A12, x 

72(7TllN)-I(x). The map a can be extended to a homomorphism 0: All, 

112, since 11,12 is u-essentially MI-injective and kera = Nn mi =ý 0. Define 

N' :=Ix+, 8(x) IxE A/I, 1. Clearly, N' is a submodule of M and M= 

N' (D JA/12. 
For every xEN, 071(x) = a7r, (x) = '7r2(x) and hence x= 

ir, (x) + /37r, (X) E N. Thus, N< N'. 

Conversely, assume that, for every uniform submodule N of Al such that 

Nn All : 54 0, there exists a submodule N' of AT such that N< N' and AT = 
N' E) 112. Let K be a closed uniform submodule of All, and let oz K --ý A/12 

be a homomorphism such that ker a =7ý 0. Define N :=fx- cz(x) xEK1. 

Clearly, N is a uniform submodule of AT such that Nn All = ker a =A 0. 

Then, by hypothesis, there exists a submodule N' of M such that N< N' 

and Il = N' E) M2. Let 7: M --ý A/12 denote the projection with kernel 

N' and let 8 All ---ý A/12 be the restriction of 7 to Mi. For every xEK, 

,3 
(x) =7 (x) -7r((x - a(x)) + a(x)) = a(x) and, therefore, 0 extends a. 

Thus, A/12 is u-essentially A/11-injective. 11 

Leinma 2.1.13 Let M, and A, 12 be modules. If A/12 is u-essentially Mj- 

injective, then 11,12 is u-cssentially N-injective, for every submodule N of. A111. 

Proof. Clear, by definition. 0 

Corollary 2.1.14 Let A1, be a direct sum of uniform modules. A module 

J1,12 is it-essentially 11,11-injective if and only if it is essentially A/11-injective. 

Proof. The sufficiency is obvious. 
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Suppose that A/12 is u-essentially Ml-injective and that All, == (I)iE, Mli, 

where Alli is uniform, for every iEI. By Lemma 2.1.13, M2 is u-essentially 

(i. e., essentially) A/Iii-injective, for every iEI. Using Proposition 2.1.9, we 

can conclude that 112 is essentially MI-injective. El 

Next we characterize essential (resp., u-essential) injectivity over an ex- 

tending (resp., uniform-extending) module. 

Lemma 2.1.15 Let All be an extending module, let M2 be any module 

and let All :=M, ED A12. Then 112 ZS essentially All, -injective if and only if 

the following condition holds. 

(*) For every closed submodule K of M such that Kn mý :! ý, K, there 

exists a submodule. AIll of M, such that M=K El) MI, EE) M2. 

In particular, if A, 12 is essentially Mi-injective, then every closed submodule 

K of Al such that K nAll <, K is a direct summand of M. 

Proof. It is obvious that condition (*) implies that M2 is essentially 

All-injective, by Lemma 2.1.5. 

Suppose now that A, 12 is essentially Ml-injective and let K be a closed 

submodule of 11 such that K n. All <, K. As Kn M2 = 0, the restriction of 

-, Tl to K is all isomorphism between K and irl(K). Then, from Kn Aii :&K, 

we can conclude that Kn All <, 7r, (K). Since All, is extending, there exist 

'I = Ill ýD M12 and 7rl(K) <-e M12. Hence 11111i A112 <- A1 SUCh that Al Al 

Kn A/11 <c 11112- Observe that K< 7r, (K) (1) 72(K) :5 A111 2& M2 
, jý-nm, 2 

Kn AII <-c 11112 and Kn iv2 = o. On the other hand, Proposition 2.1.7 
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guarantees that M2 is essentially -4/112-injective. Thus, by Lemma 2.1.5, A/-fl2(D 
112= K (D A12, so that Al =K E). AIll @ M2. 0 

Lemma 2.1.16 Let III be a uniform- extending module, let M2 be any 

7nodule and let Al : =. All (D A, 12. The following conditions are equivalent. 

(i) 11,12 is u-cssentially All-injective. 

(ii) For evenj closed uniform submodule K of M such that K n. A, [, 0 

there exists a submodule IvIll of M, such that M=K E) Mil (D A/12. 

(iii) A, 12 is essentially (nearly) U-injective, for every uniform submodule U 

of Ml - 

In particular, if A/12 is u-essentially All-injective, then every closed uniform 

submodule K of Al such that KnM, =ýA 0 is a direct summand of M. 

Proofi By Lemma 2.1.12, (ii) implies (i); that (i) implies (iii) follows by 

Lemma 2.1.13. Let us prove that (iii) implies (ii). 

Suppose that A, 12 is essentially U-injective, for every uniform submodule 

U of Ml. Let K be a closed uniform submodule of M such that KnM, =ýK 

0. Then, as K is uniform, Kn M2 =0 and K is isomorphic to 7r, (K). 

Consequently, -, T, (K) is also uniform and, because Ml is uniform-extending, 

7r, (K) is essential in a direct summand of All,. Suppose that M, = Mil ED A'112 
i 

where -, ri(K) :! & 11/112- Obviously, 1112 is also uniform and, by hypothesis, 

M2 is essentially 11/112-injeCtiVe- On the other hand, K< 7rl(K) (D 7ý2(K) 
12 and Kn A112 : ý, A, 112. Then, by Lemma 2.1.5, A/112 E) A112 

=K (D M2. Ml 2 (F) 11, 

Thus, 111 = 11111 6) 11'112 ED 11'12 =K (D Ali, E) 112. Therefore, condition (ii) is 

satisfied. El 
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Tile following results are versions of Theorem 1.2.6 for near, essential and 

u-essential injectivity. 

Proposition 2.1.17 Let I Alli IiE I} be a family of modules. For a 

module A, the following conditions are equivalent. 

(i) (DjEjMj is nearly A-injective. 

(Dic-j. Ali ?S nearly A-injective, for every countable subset J of I. 

(iii) JI/Ij is nearly A-injective, for every iEI, and for any choice of xn 

Ali, with n Cz IN and distinct i,, C- 1, such that nýý, r (X : a), 

for some aGA and some nonzero submodule X of A, the ascending 

chain 
00 00 00 

nr (x, ) 9nr (x�) 9 ... 9n r(x�) 9 n=I n=2 n=k 

becomes stationary. 

(iv) Mi is nearly A-injective, for every i C- 1, and for any choice of xn c 

Ali, with nE IN and distinct i,, E 1, such thatnýý=jr n= 
(x, ) ;? r(a), for 

some aGA, the ascending chain 

00 00 00 
nr(x, ) g nr(x,, ) c nr(x,, ) n=l n=2 n=k 

becomes stationary. 

Proof. The equivalence of (i), (ii) and (iii) follows by Theorem 1.2.6 and 

Lemina 2.1.4, bearing in mind that, for every aEA and every submodule X 

of A, (X : a) is the right annihilator of ja + XI in R. 0 
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As r(a) 9 (X : a), for every a EE A and every submodule X of A, 

(iv) implies (iii). Let us prove the converse. Assume that condition (iii) 

holds and let x,, E Mi, with nE IN and distinct i,, E 1, be such that 

J: = n"O n=lr(xn) ;? r(a), for some aEA. Without loss of generality, assume 

that JD r(a). Then aJ =7ý 0 and (aJ : a) gJ= nýýir(Xn). By hypothesis, n= 

the ascending chain 

00 CO 00 

n, r(x. ) ý: - n r(x. ) g ... gnr (x�, ) C 
li=l n=2 n=k 

becomes stationary. 0 

Proposition 2.1.18 Let I Alli IiE I} be a family of modules. For a 

module A, the following conditions are equivalent. 

(i) (DjEjAIj is essentially A-injective. 

(ii) 69jEjAIj is essentially A-injective, for every countable subset J of I. 

(iii) Mi is essentially A-injective, for every iE1, and for any choice of xn E 
A, li,,, with 'n E IN and distinct in EE 1, such that n-ný-jr n= 

(x, ) D (X : a), 

for some aEA and some essential submodule X Of A, the ascending 

chain 
00 00 CO 

n r(x,, ) gn r(x,, ) n r(x,, ) 1 n=2 n=k 

becomes stationary. 

Proof. By Theorem 1.2.6 and Lemma 2.1.5.0 

Proposition 2.1.19 Let f 
-Mi 

IiEII be a family of modules. For a 

uniform-extending module A, the following conditions are equivalent. 
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(i) Gic-iAli is u-essentially A-injective. 

(ii) ý@jEjMj is u-essentially A-injective, for evenj countable subset J of 1. 

(iii) Ali is u-essentiall? A-injective, for every iEI, and for any choice of y 

xn E Alli, with nE IN and distinct in E I, such that nnoL n=lr(xn) 
Q r(a), 

for some aEU, where U is a uniform submodule of A, the ascending 

chain 
00 00 CO 

n r(x,, ) gn r(x. ) n r(x,, ) n=l n=2 n=k 
t Z1. becomes sta ionan 

(iv) A/li is ? L-essentially A-injective, for every iG1, and for any choice of 

xn E Ali,,, with nE IN and distinct in E 1, such that nýýjr(xn) ;? r(a), n= 
for some aGA such that aR is uniform, the ascending chain 

co 00 00 
p r(x,, ) E- ý, r(x-) g 

... 
g ar (X-) n=l n=2 n=k 

becomes stationanj. 

Proof. Lemma 2.1.16 and Proposition 2.1.17 give the equivalence of (i), 

(ii) and (iii) and, obviously, (iii) and (iv) are equivalent. 1: 1 

Corollary 2.1-20 Let f jWj IicII be a family of modules. For a module 

A, the following conditions are equivalent. 

(i) 11i is A-injective, for every iE1, and (DjEjA/Ij is nearly A-znjective. 

0') eiEI'l"i is A-injective. 

Proof. By Proposition 2.1.17 and Theorem 1.2.6. El 
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Motivated by these results, let us introduce the following chain conditions 

on the ring R, relative to a given family I Mi IiE I} of R-modules. 

(Bl) For any choice of x,, E Ali,, with nE IN and distinct i, E 1, such that 

n, -,., r(x,, ) :! & RR, the ascending chain 

00 00 00 

nr (x�) 9nr (x�) nr (x�) n=l n=2 n=k 

becomes stationary. 

(B2) For any choice of xn G lvli,, with nE IN and distinct in E I, such that 
(X : y), for some yE Mj and some essential submodule 

X of Alj (j c 1), the ascending chain 

00 00 00 

nr (x. ) gnr (x. ) n r(--. ) n=I n=2 n=k 

becomes stationary. 

(C) For any choice of x,, E -AI'i,, with nE IN and distinct i,, E I, such that 

ný, ý-jr(x,, ) Q r(y), for some yE Mj such that yR is uniform (j G I), 

the ascending chain 
00 00 00 

nr (x�) 9nr (x. ) 9 ... 9n r(x. ) 9 n=1 n=2 n=k 

becomes stationary. 

Let us look at some of the relations between these chain conditions. Ob- 

viously, (A2) implies both (B2) and (C), and (A, ) implies (BI). Also, (Bj) 

implies (BA since, for every module A, every essential submodule X of A 

, 
(X : a) <, RR- and every aEA, 
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For a family I Ali IiEI} of uniform modules, conditions (A2), (B2) and 
(C) are equivalent (we can prove that (B2) implies (A2), in these circum- 

stances, using the argument in the proof of Theorem 2.1.17). 

A family of modules I Alli IiG I} is relatively nearly injective (resp., 

relatively essentially injective, relatively u-cssentially injective) if Mi is nearly 
(resp., essentially, u-essentially) A/Ij-injective, for every i, jE1, i =, /= j. 

As an immediate consequence of Propositions 2.1.17 and 2.1.18, we have 

the following result. 

Proposition 2.1.21 Let { Alli IiEII be a family of modules. Then 

ý@iEI\jj)m i is nearly (resp., essentially) Allj-injective, for every jE1, if and 

only if the modules I AYj IiEII are relatively nearly (resp., essentially) 

injective and condition (A2) (resp., (B2)) holds. 

By Proposition 2.1.8, a direct product of nearly (resp., essentially) in- 

jective modules, and hence a finite direct sum of nearly (resp., essentially) 

injective modules, is nearly (resp., essentially) injective. The following result 

characterizes the near (resp., essential) injectivity of arbitrary direct sums of 

modules and is a consequence of Lemma 2.1.17 (resp., Lemma 2.1.18). 

Theorem 2.1.22 Let I. Ali IiEI} be a family of modules. The following 

conditions are equivalent. 

(i) (Dic-IIIi is nearly (resp., essentially) injective. 

(ii) CDjcjJAIj is nearly (resp., essentially) injective, for every countable sub- 

set .1 Of 1. 
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(iii) Mi is nearly (resp., essentially) injective, for every iG1, and condition 

(A, ) (resp., (Bi)) holds. 

Proof. Lemma 2.1-17 (resp., Lemma 2.1.18) gives at once the equivalence 

of (i) and (ii) and shows condition (iii) implies the other two. It remains to 

be proved that (i) implies (iii). 

Assuming that E)iEIA/li is nearly (resp., essentially) injective, we know 

that Mi is nearly (resp., essentially) injective, for every iG1, and we need 

to show that (A, ) (resp., (Bi)) holds. 

Let x,, E 11j., with nE IN and distinct i,,, EI be, without loss of gener- 

ality, such that i := n-jr(x,, ) zýA o (resp., be such that i :=n, lr(x,, ) n= n= 
RR). By hypothesis and Lemma 2.1.4 (resp., Lemma 2.1.5), (DiEIMi is (RIJ)- 

injective. Observing that J= r(I + J), Theorem 1.2.6 guarantees that the 

ascending chain 

00 00 00 

nr (x�, ) 9nr (x�) nr (x�) C 
n=l n=2 n=k 

becomes stationary. Therefore, condition (A, ) (resp., (Bi)) holds. 11 

The next results are versions of Theorem 1.2.9 for near and essential 

injectivity. 

Theorem 2.1.23 For a module A, the following conditions are equiva- 

lent. 

(i) A is locally Noetherian. 

(ii) The direct sum of any family of injective modules is A-injective. 
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(iii) The direct sum of any family of A-injective modules is A-injective. 

(iv) The direct sum of any family of injective modules is nearly A-injective. 

(v) The direct sum of any family of nearly A-injective modules is nearly 

A-injective. 

In particular, the direct sum of every family of (nearly) injective R-modules 

is (nearly) injective if and only if R is right Noetherian. 

Proof. It is obvious that (iii) implies (ii) and that (v) implies (iv); Corol- 

lary 2.1.20 gives the equivalence of (ii) and (iv); Theorem 1.2.9 shows that 

(i) is equivalent to (iii). 

Let us prove that (ii) implies (i). For aEA, since R/r(a) and aR 

are isomorphic, we will prove that aR is Noetherian by showing that any 

ascending chain 

r (a) = Io :: ý 11 < 

of right ideals of R is ultimately stationary. For every iE IN, let Mi be the 

injective hull of R11j, i. e., Mi := E(RIIi). Since each Mi is injective, EDiEj I N 1i 

is A-injective, by assumption. Consider the set of elements f xi I+ 1i G 

IN 1. For every iG IN, as r(xi) = Ii, we also have nzi r(x, ) 

n',,,, i 
I,, Ii. The A-injectivity Of OiEIN. A/li implies, by Theorem 1.2.6, that 

the ascending chain 

00 00 00 
r(a)=Iog 

nr(Xn) = Il 

c- n r(Xn) = 12 9 

gn 
r(Xn) = In C- 

n=l n=2 n=k 

becomes stationary. Therefore aR is Noetherian and A is locally Noetherian. 
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Finally, lot us show that (i) implies (v). Let I Mi IiEI} be a family 

of nearly A-injective modules. Let X be a nonzero submodule of A. By 

Lemma 2.1.4, k1i is (A/X)-iiijective, for every iEI. On the other hand, 

AIX, being a quotient of the locally Noetherian module A, is also locally 

Noetherian. Thus, Theorem 1.2.9 guarantees that E)jEjMj is (A/X)-injective. 

Again by Lemma 2.1.4, we can conclude that E)iEIMi is nearly A-injective. 

Thus, condition (v) holds. 

The last statement of the Theorem is obvious. 1: 1 

Theorem 2.1.24 For a module A, the following conditions are equiva- 

lent. 

(i) A/Soc(A) is locally Noetherian. 

(ii) AIX is locally Noetherian, for every X <, A. 

(iii) The direct sum of any family of injective modules is essentially A- 

injective. 

(iv) The direct sum of any family of essentially A-injective modules is es- 

senbally A-injective. 

In particular, the direct sum of evenj family of essentially injective R-modules 

is essentially injective if and only if R/Soc(RR) is right Noetherian. 

Proof. Firstly, let us prove the equivalence of conditions (i) and (ii). 

Since, for every X <, A, Soc(A) < X, we can conclude that, if the module 
A/Soc(A) is locally Noetherian, then AIX is also locally Noetherian. 
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Conversely, suppose that AIX is locally Noetherian, for every X&A. 

For every aGA, Nve want to prove that (aR + Soc(A))/Soc(A) is Noethe- 

rian, which is equivalent to proving that aR/Soc(aR) is Noetherian, since 

Soc(aR) = aR n Soc(A). By [13,5.15], aR/Soc(aR) is Noetherian if and 

only if aR satisfies ACC on essential submodules. Let B be a complement of 

aR in A and let 

XO: ý XI < X2 <-*< Xn 
-< "- 

be an ascending chain of essential submodules of aR. Then 

XoE)B < X, ED B <X2O)B <<X,, E) B< 

is an ascending chain of essential submodules of A. By hypothesis, the 

module (aR ED B)I(Xo ED B), being a cyclic submodule of AI(Xo (D B) with 
X0 (D B <, A, is Noetherian, so that aRIX0 is also Noetherian. Therefore, 

the chain 
XO 5XI 

-5X2 
<- <xn 

-< - 

is stationary and aR satisfies ACC on essential submodules. Finally, we can 

conclude that the module AlSoc(A) is locally Noetherian. 

It is obvious that (iv) implies (iii). 

Let us prove that (iii) implies (ii). Let X <, A. For every family f Alli 

i (E II of injective modules, the hypothesis and Lemma 2.1.5 guarantee that 

(Dj, =jJA/1j 
is (A/X)-injective. Then, by Theorem 2.1.23, we can conclude that 

AIX is locally Noetherian. 

It remains to be proved that (ii) implies (iv). Let I Alli Ii (-= I} be a 
family of essentially A-injective modules and let X&A. By Lemma 2.1.5, 
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Ali is (A/X)-iiijective, for every iG1. On tile other hand, by hypothesis, 

AIX is locally Noetherian. Thus, Theorem 1.2.9 guarantees that (BjEjA4'j is 

(A/X)-injective. Again by Lemma 2.1.5, we can conclude that @iEI. A/li is 

essentially A-injective. Thus condition (iv) holds. 

The last statement of the Theorem is obvious. 

We will finish this Section with some examples. 

Let K be a field and let V be an infinite dimensional vector space over 
K. The ring 

R: = 
K V] [0K 

is such that 

Soc(RR) == 
0v [0 

K 

Then, R/Soc(RR) is isomorphic to K and, therefore, is Noetherian, though 

R itself is not right Noetherian. By Theorems 2.1.23 and 2.1.24, the direct 

sum of every family of essentially injective R-modules is essentially injective, 

but there exists a family of (nearly) injective R-modules that is not (nearly) 

ill . ective. Theorem 2.1.22 guarantees that this particular family satisfies (Bl) 

but does not satisfy (A, ). 

Let R be a commutative Von Neumann regular ring. Observe that every 

uniform ideal of R is simple, so that every R-module is trivially u-essentialty 

RR-injective. As RISoc(RR) need not be Noetherian, not every R-module is 

essentially RR-injective (cf. Theorem 2.1.24). Consider, for example, a field 

K and let R := 11,, EINIýn, where Ký = K, for every nE IN. Then R is 

it commutative Von Nleumann regular ring such that Soc(RR) = (DnEINK'11. 

Thus RISoc(RR) is not Noetherian. 
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2.2 Sufficient conditions for a direct sum of 
two extending modules to be extending 

We now look at sufficient conditions for a direct sum of two extending 

modules to be extending. For this, we will need the following Lemma. 

Lemma 2.2.1 Let M, and. AI2 be extending modules and let M: = M, 0) 

112. The following conditions are equivalent. 

(i) All is an extending module. 

(ii) Every closed submodule K of Al such that KnM, =0 or Kn A/12 

is a direct summand of M. 

(iii) Every closed submodule K of M such that K n. A/11 :! ý, K, Kn M2<, K 

or KnM, =K nA12= 0 is a direct summand of M. 

Proof. The equivalence of (i) and (ii) is given in [13, Lemma 7.9] and it 

is obvious that (ii) implies (iii). 

Let us prove that (iii) implies (ii). Suppose that condition (iii) is valid and 

let L be a closed submodule of Al such that Ln A/12 = 0, the case LnM, =0 

being analogous. Let K be a closed submodule of L such that L n. A/Ij K. 

By Proposition 1.1.4, K is closed in Al. Clearly, Kn mi= Lr)Ml <, K and 

then, by hypothesis, K is a direct summand of M. Suppose that M= K(DK'- 

Then L=Ln (K (@ K') =K E) (L n KI), (L n KI) n M, = (L n Mj) n K< 

KnK'= 0 and (LnK')n. AI2 :! ý LnA112 = 0. Again by Proposition 1.1.4, LnK' 

is closed in M. Thus, by assumption, Ln K' is a direct summand of All and, 
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consequently, is also a direct summand of K'. Therefore, L=K E) (L n K') 

is a direct summand of K 6) K' = M. El 

Theorem 2.2.2 Let All and A/12 be extending (resp., unifonn- extending) 

modules and let Al := All (D M2. If one of the following conditions holds, 

then If is extending (resp., unifonn- extending). 

(i) A/12 is essentially (resp., u-essentially) Mi-injective and every closed 
(resp., closed uniform) submodule K of M such that KnM, =0 is a 

direct summand of Al. 

(ii) All and A, 12 are relatively essentially (resp., u-essentially) injective and 

every closed (resp., closed uniform) submodule K of M such that Kn 

All =KnA, 12 =0 is a direct summand of M. 

(iii) Ml is A112-injective and A/12 is essentially (resp., u-essentially) Ml- 

injective. 

Proof. (i) and (ii) follow from Lemmas 2.1.15 and 2.2.1 (resp., Lem- 

mas 2.1.16 and 2.2.1). 

Let us prove (iii). Suppose that M, is A/12-injective and M2 is essentially 

(resp., u-essentially) 111-injective. Let K be a closed (resp., closed uniform) 

submodule of M such that K n. All = 0. By Corollary 2.1.2, there exists 

a submodule K' of II such that K< K' and M=M, E) K'. As K' is 

isomorphic to M2, K' is extending (resp., uniform-extending) and K, being 

a closed (resp., closed uniform) submodule of K', is a direct summand of K'. 

Thus, K is also a direct summand of M. By (i), NI is extending. El 
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We shall prove partial converses for Theorem 2.2.2 and some of the Corol- 

laries below (cf. Section 2.3). 

Corollary 2.2.3 [25, Theorem 8] Let IM,,..., Allýj be a finite family of 

relatively injective modules. Then M, (D ... 6) Afn is extending if and only if 

Ali is extending, for every iE 11, 
.-., n}. 

Proof. This is a consequence of Theorem 2.2.2(iii). 0 

For any prime p, consider the (uniform) 7--modules I/pZ, Z/P 2Z and 

Wlp3ýZ. The Z-module M := Z/pZ (D Z/p'Z is not extending, because 

K: = (1 + pZ, p+ p3 ýZ) Z is a closed submodule of M which is not a direct 

summand. On the other hand, Theorem 2.2.2 guarantees that the Z-module 

N := : Z/pýZ ED ýZ/p2Z is extending. Recall that, as we have remarked in 

the beginning of Section 2.1, : Z/pZ is essentially (T/p2 a)-injective, but is 

neither (a/1)2 Z)-injective, nor essentially (: Z/p3Z)-injective. 

Corollary 2.2.4 Let All be an extending (resp., uniform- extending) mod- 

ule and let 112 be a seniisimple module. If M2 is essentially (resp., u- 

essentially) A, 11-injective, then 11, (D X12 is extending (resp., uniform-ext- 

ending). 

Proof. This is a consequence of Theorem 2.2.2(iii), considering that every 

module is injective over a semisimple module. U 

As trivial consequences of Corollary 2.2.4, we get the following known 

results. 
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Corollary 2.2.5 Let M, and. A/12 be extending modules. 

(i) [61, Proposition 5.8] If Al', is a finite direct sum of uniform modules 

and A, 12 ZS a finitely generated semisimple module that is (MilSoc(. A4'1)) - 
injective, then All, EDM2 is extending. 

(ii) [26, Theorem 4.4] If A, 12 is semisimple and nearly Mi-injective, then 

Ml (D A, 12 is extending. 

Bearing in mind that nonsingular modules are essentially injective, The- 

orem 2.2.2(iii) has the following immediate consequence. 

Corollary 2.2.6 [25, Theorem 4] Let M, and A12 be extending modules. 

If All is nonsingular and 112 Z'S M, -injective, then M, ED M2 is extending. 

The equivalence of (i) and (ii) in the next Theorem is the well-known 

result [31, Theorem 1]. 

Theorem 2.2.7 For a module Al, the following conditions are equiva- 

lent. 

(i) AI is extending. 

(ii) 11/1 ý Z2 (All) (D All', for some AP <M such that both Z2(M) and All' 

are extending and Z2(Al) is AP-injective. 

(iii) Al ý Z20/1) (D AP, for some M' <M such that both Z2(M) and All' 

are extending and Z2(AI) is essentially M-injective. 
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Proofi Obviously, (ii) implies (iii). 

If condition (iii) is satisfied, then clearly Hom(A, M) = 0, for every 

A< Z2(, AI), so that Al'is Z2(Al)-injective. Therefore, by Theorem 2.2.2(iii), 

Al is extending and condition (i) holds. 

That (i) implies (ii) is given in [31, Theorem 11, but Nve include a proof 

for completeness. If Al is extending, and because Z2(M) : 5, Al, we have 

ill = Z2 (Al) E) Al', for some submodule M' of M. Both Z2 (M) and M' are 

extending and it only remains to be proved that Z2(Al) is M-injective. Let 

K be a closed submodule of All such that Knz2(m) = o. Clearly, Z2(K) = 0. 

As All is extending, K is a direct summand of M and M=K (E) K', for some 

submodule K' of All. Then Z2(M) = Z2(K) @ Z2(K') = Z2(K') :ý K', so 

that K' = Z2(All) E) (K' n A/V) and M=K ED Z2(M) (D (K' n MI). By 

Corollary 2.1.2, we can conclude that Z2(M) is M-injective. 

2.3 Extending modules with summands sat- 
isfying the finite exchange property 

Trying to get a converse for Theorem 2.2.2 and some of its Corollaries, 

we consider modules with summands with the finite exchange property and 

obtain partial converses. 

We will start by proving three technical results that will be used in the 

sequel. 

Lemma 2.3.1 Let AI, and 11,12 be modules, let Af :=M, 0 M2 and let 

K be a direct summand of Al such that KnM, <, K. If K has the finite 

exchange property, then III == K 0) A E) A12, for some A< 111. 
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Proof. Because K has the finite exchange property, M=K E) A ED B, 

for some A< All and B <. A, 12. As KnAi, <, K and Knmn (A (DM2) = 
Kn [A (D (All n A12)] =KnA=0, we can conclude that Kn (A ED 112) = 0. 

Therefore, (K G A) n A, 12= 0 and, consequently, AT =K (D A (D M2.11 

Lemma 2.3.2 Let K and K' be modules, let M :=K E) K' and let L 

be a submodule of ll with the finite exchange property. If M= N' @ L, for 

some N' < K', then K has the finite exchange property. 

Proof. Because Al = N' ED L, for some N' < K', then K' = K, n 

(N' 0) L) = N' (D (K, nL), Al =K 0) K'= K E) N'ED (K'nL) and L= 

Ln [K (D N' (D (KI n L)] [(K o) N') n L] @ (KI n L). Thus, it is easy to see 

that M= [(K (D N) n L] K' and we can conclude that K is isomorphic to 

(K (D N) n L, which is a direct summand of L. Therefore, K has the finite 

exchange property. 

Lemma 2.3.3 Let JVII be any module, let A/12 be a module with the finite 

exchange property and let AI := AIj E) A/12. If K is a uniform direct summand 

of Al, then K has the finite exchange property or there exists a submodule L 

of Al such that K<L and Al =L 0) M2. 

Proof. Suppose that JAY =K (D K'. Because M2 has the finite exchange 

property, Al =N (D N' 6) M2, for some N<K and N' < K'. But K is 

uniform and, so, either Al =K (@ N' EE) N12 or M= N' ED M2. In the first 

case, AJ =L (B A12, where L :=K ED N', and, in the second case, K has the 

finite exchange property, by Leinma 2.3.2. 0 

53 



At this point, we are able to prove the following key result. 

Proposition 2.3.4 Let III be any module and let M2 be a module with 

the finite exchange property. If III E) M2 is extending (resp., uniform-ext- 

ending), then 111 is essentially (resp., u-cssentially) M2-injective. 

Proof. Suppose that AI : =. A/I, 6) M2 is extending and let K be a closed 

submodule of H such that K n. AY2 K. As A4' is extending, K is a direct 

summand of M. Suppose that MK ED K'. Thus, because M2 has the 

finite exchange property, Al =N (D N'(D M2, for some N<K and N' < K'. 

Then, as (K n. A, 12) nN=Nn A/12 = 0, N=0 and M= N'E) A/12. Therefore, 

by Lemma 2.3.2, K has the finite exchange property and, by Lemma 2.3.1, 

M=K ED M, ED B, for some B< A42. By Lemma 2.1.5, M, is essentially 

JI/12-injective. 

The result for Al uniform-extending follows analogously. 0 

We don't know if, for any modules M, and A/12 such that M, @ M2 is 

extending, III and M2 are relatively essentially injective. 

Proposition 2.3.4 has several consequences, of which we state a few. 

Corollary 2.3.5 Let J1,11 and A, 12 be modules with the finite exchange 

property and let Al := All (D. A, 12. Then M is extending if and only if M, 

and 11,12 are extending and relatively essentially injective and every closed 

submodulc K of Al such that K nm, =Kn m2 -= 0 is a direct summand of 

Al. 

Proof. By Theorem 2.2.2 and Proposition 2.3.4.0 
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The next result is a partial converse for Corollary 2.2.4. 

TIleorem 2.3.6 Let All be a module with the finite exchange property 

and let 112 be a semisimple module. Then M, (D. A/12 is extending if and only 
if 11,11 Z'S extending and 112 is essentially All, -injective. 

Proof. By Corollary 2.2.4 and Proposition 2.3.4. El 

In particular, Theorem 2.3.6 characterizes when the direct sum of a con- 

tinuous module and a semisimple module is extending. 

Versions of Corollary 2.3.5 and Theorem 2.3.6 for uniform-extending mod- 

ules could be given, but we will obtain better results below (cf. Corol- 

lary 2.3.10, Theorem 2.3.11). 

Theorem 2.3.7 Let Al, be any module and let M2 be an injective module. 

Then 11,11 fl) 11,12 is extending (resp., u nifo rm- extending) if and only if All, 

is extending (resp., unifom- extending) and essentially (resp., u-essentially) 

A12-injective. 

Proof. By Theorem 2.2.2 and Proposition 2.3.4.1: 1 

For uniforni-extending modules, these results can be improved, due to 

the following Proposition (compare with Proposition 2.3.4)- 

Proposition 2.3.8 Let 11,11 be any module and let M2 be a module wZt/i 

the finite exchange property. If All (D 112 is uniform- extending, then A/12 is 

u-cssentially Ali-inJective. 
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Proof. Suppose that III := All EDA, 12 is uniform-extending and let K be 

a closed uniform subinodule of M such that KnM, =/ 0. As M is uniform- 

extending, K is a direct summand of 11. By Lemma 2.3.3, K has the finite 

exchange property or there exists a submodule L of M such that K<L and 

JW =L ED. A, 12. In the first case, and because Kn All :: & K, Lemma 2.3.1 

guarantees that M=K 6) A CD 112, for some A< M1. Therefore, A/12 is 

u-essentially El 

Corollary 2.3.9 Let All be a direct sum of uniform modules and let 

A/12 be a module with the finite exchange property. If Ml E) IV12 is uniform- 

extending, then A12 is essentially M"l-injective. 

Proof. By Corollary 2.1.14 and Proposition 2.3.8. El 

Versions of the previous results (Corollary 2.3.5 and Theorem 2.3.6), for 

uniform- extending modules, follow below. Observe that the hypothesis of 

Ill having the exchange property was dropped. 

Corollary 2.3.10 Let Al, be any module, let M2 be a module with the 

finite exchange property and let All := Mi E) 112. Then Al is uniform- 

extending if and. only if All and A/12 are uniform- extending and relatively 

u-essentially injectZve and every closed uniform submodule K of M such that 

Kn Alý = Kn Al2 =o is a direct summand of Al. 

Proof. By Theorem 2.2.2 and Propositions 2.3.4 and 2.3.8. El 

Theoreiii 2.3-11 Let Al, be any module and let 112 be a semisimple 

7nodule. Then All (D A12 is unifonm- extending if and only if Ay, is uniform- 

extending and A, 12 is u-essentially Al, -injective. 
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Proof. By Corollary 2.2.4 and Proposition 2.3.8. El 

In certain cases, these results can somewhat be improved. We will need 

the following result, that generalizes [26, Proposition 4.21. 

Proposition 2.3.12 Let Mj be a module with zero socle and let IV12 be a 

module with essential socle and the finite exchange property. Then M, (D A/12 

is extending if and only if 111 and M2 are extending, All, is essentially M2- 

injective and 112 is AII-injective. 

ProoE The sufficiency follows from Theorem 2.2.2. 

Conversely, suppose that Al := All Eq A12 is extending. Obviously, All and 

112 are extending and, by Proposition 2.3.4, All is essentially A/12-injective. 

Let us prove that A112 is All-injective. Let K be a closed submodule of Al 

such that Kn 112 =0 and Soc(K) = 0. As All is extending, K is a direct 

summand of Al. Suppose that Al =K (D K'. Then, Soc(K') = Soc(Al) = 

Soc(A/12) <, A/12 and KI n A12 <, A/12. By Lemma 2.3.1 and because A/12 

has the finite exchange property, All =K 6) N' (D A/12, for some N' :5 K'. 

Therefore, A/12 is All-injective, by Corollary 2.1.3.0 

The next result gives a partial converse for Corollary 2.1.6. 

Corollary 2.3.1-3 Let JAY, be any module and let M2 be a module with 

essential socle and the finite exchange property. If M, 0) A/12 is extending, 

then the following conditions are equivalent. 

(i) A-12 is essentially All-injective. 
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(ii) 11,12 is (. AI, /Soc(A, 11))-injective. 

Proof.. In general, (ii) implies (i) (cf. Corollary 2.3.6). 

Suppose tllat. AIE)A, 12 is extending and that M2 is essentially A/11-injective. 

Being extending, All ý k1l 1@ A/112, where Soc(MI) :! ý, All,. So, Soc(Mll) : S, 

. All, and SOC(AI12) = 0. Then, M2 is (Mil/Soc(Mil))-injective, because it 

is essentially 1111-injective. Also, M2 is A/112-injective, by Proposition 2.3.12. 

Therefore, M2 is (MI/Soc(Afffl-injective. 1-: 1 

In particular, Corollary 2.3.13, together with other previous results, has 

tile following consequences. 

Corollary 2.3.14 Let M, be an extending module with the finite ex- 

change property and let A/12 be a semisimple module. The following conditions 

are equWalent. 

(i) All E)A, 12 is extending. 

(ii) J1,12 is essentially 11,11-injective. 

(iii) A, 12 is (Al, /Soc(Hj)) -injertive- 

Proof. By Theorem 2.3.6 and Corollary 2.3.13. El 

Theoren-i 2.3.15 Let Al, be an extending module that is a direct sum of 

uniform SUbiriodules, let A, 12 be a semisimple module and let M :=M, (D 112. 

The following conditions are cquivalent. 

(i) Al ? 'S extending. 

58 



(ii) All IS unifo rrn- extending. 

(iii) 112 Z*S u-essentially All-injective. 

(iv) A12 is essentially 111-injective. 

(v) A12 is (A/li/Soc(A/11))-injective. 

Proof. Obviously, (i) implies (ii) and (v) implies (iv); (ii) implies (iii), 

by Theorem 2.3.11; (iii) is equivalent to (iv), by Corollary 2.1.14; and (iv) 

implies (i), by Corollary 2.2.4. Also, by Corollary 2.3.13, if (i) holds, then 

(iv) implies (v). 0 

Corollary 2.3.16 Let All be a module such that R satisfies A CC on Tight 

ideals of the form r(x), x rz All, and let M2 be a semisimple module. Then 

M, (DA12 is extending if and only if III is extending and M2 is (MilSoc(Mi)) - 

injective. 

Proof. By Theorems 2.3.15 and 1.10.5. 0 

In particular, Theorem 2.3.15 characterizes when the direct sum of an ex- 

tending module and a semisimple module is extending, over a right Noethe- 

rian ring. 

[26, Theorem 4.61, [61, Proposition 5.2] and [52, Theorem 91 are conse- 

quences of Theorem 2.3.15. We can also improve [52, Theorems 13 and 181 

with the following result. 

Theorem 2.3.17 The following conditions on a ring R are equivalent. 
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(i) All (D 11,12 is extending, for every extending R-module All, and every 

sUnple (Semisimple) R-module A/12. 

M, (@. A, 12 is extending, for evenj injective R-module M, and evenj simple 

(semisimple) R-module M2. 

(iii) R/Soc(RR) is a (Tight Noetherian) Tight V-7-ing. 

Proof. Obviously, (i) implies (ii). 

Let us prove that (ii) implies (iii). Suppose that Mi (D M2 is extending, 

for every injective R-module All, and every simple (semisimple) R-module 

A/12. Let S be a simple (semisimple) R-module. Then, E(RR) ED S is ex- 

tending and, by Corollary 2.3.14, S is (E(RR)/Soc(E(RR)))-injective. But 

Soc(E(RR)) = Soc(RR) and, so, S is (RR/SOC(RR))-injective. Therefore, by 

[13,2.51, R/Soc(RR) is a (right Noetherian) right V-ring. 

Let us prove, finally, that (iii) implies (i). Suppose that RISoc(RR) 

is a (right Noetherian) right V-ring. Let All, be an extending R-module 

and let A/12 be a simple (semisimple) R-module. By Theorem 1.2.9,112 is 

(R/Soc(RR))-injective. Then, as AlIllSoc(Ml) is an (R/Soc(RR))-module, 

A12 is also (AII/Soc(All))-injective and, by Corollary 2.2.4, M, (j) A/12 is ex- 

tending. 13 

Examples of right Noetherian right V-rings are Cozzens domains (cf. (151). 

Also, at the end of Section 2.1, there is an example of a ring R such that the 

ring R/Soc(RR) is isomorphic to a field K, and therefore is a right Noetherian 

rifflit V-ring. 
11 
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Let III be any module and let A12 be a module with the finite exchange 

property (in particular, semisimple). It remains an open problem to deter- 

inine whether A, 12 is essentially All-injective, in case III (D M2 is extending. 

2.4 Direct sums of uniform-extending mod- 
ules 

Let I 111i Ii C- II be a family of modules with the finite exchange property. 

In this section, we give necessary and sufficient conditions for the direct sum 
(Dicilli to be uniforin-extending. 

We start with some technical Lemmas. 

Lemma 2.4.1 Let I k1i IiEII be a family of modules, let M := Oic-IA/Ii 

and let K be a uni/677n submodule of M. If J is minimal among the subsets 

of I such that Kn (E)iEA10 : 7ý 0, then K is isomorphic to 7rj(K), for evenl 

jGJ. 

Proof. Let Y :=I\J and let jEJ. Due to the minimality of J, 

iic n ((Dij\ýjpii) 
=0 and, consequently, Kn (@ic-, mi) n (ei,, \{j)mi) = 

Kn (cDi,, \(jjmi) = 0. Then, as Kn ((Di,,, mi) : 5, K, Kn (E)i,, \(j). Aji) =o 

and we can conclude that K is isomorphic to Fj(K). 0 

Lemma 2.4.2 Let I Ili IiEII be a family of relatively u-essentially 

injective ? nodules that satisfies condition (C), let M := EDjEjMj and let K 

be a closed uniform submodule of Al. If there exists a subset J of I such 

that EDiEJI"li is uniform-CXtendiny and Kn (@iEJ]V/Ii) 7ý 0, then K is a direct 

SUmmand of Al. 
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Proof. If J=1, the result is trivial. Suppose that J is a proper subset of 
I and that J is minimal among the subsets of I such that Kn ((Di, 

jAii) 
o o. 

Note that J is finite. 

For each iGJ, by Lemma 2.4.1, K is isomorphic to 7ri(K) and, so, 

-iTi(K) is uniform. As Mi is uniform-extending, 7ri(K) is essential in a direct 

summand Ni of 11j, which is also uniform. 
Let X :=I\J. Let iEJ and jEY. By hypothesis, Afj is u- 

essentially Ali-injective. Since condition (C) is satisfied and by Proposi- 

tion 2.1.19, E9jEJ'. A/Ij is u-essentially Mi-injective, and therefore essentially 

Ari-injective, for every iEJ. Then, EDjEJ'A1Ij is also essentially (TiEJNi)_ 

injective, by Proposition 2.1.9. On the other hand, K< EDiEI7Fi(K) < M' := 

((I)iEJNi) @ (E)iEYA11j) and Kn (E)iEjNi) =Kn (EDiEJMi) : ýA 0, where OiEjNi 

is uniform- extending. Then, Lemma 2.1.16 guarantees that K is a direct 

summand of M', and also of M. El 

Corollary 2.4.3 Let f Alli IicII be a family of relatively u-cssentially 

injective modules that satisfies condition (C)- If (DiEFAlli is uniform-extend- 

7. ny, for eveTW finite subset F of 1, then O)iEAli is uniform- exten ding. 

Proof. If the set I is finite, the result is trivial. If I is infinite, the result 
follows by Lemma 2.4.2, bearing in mind that, for each submodule N of A/I, 

there exists a finite subset F of I such that Nn (E)iEFMi) 77ý 0- 0 

Corollary 2.4.4 Let I 11i IiEI} be a family of relatively injective 

modules that satisfies condition (C). Then Ali is unifoT7n- extending, for every 

iE1, if and only if (DicIAIi is uniform- extending. 
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Proof. The sufficiency is clear. Conversely, suppose that Mi is uniform- 

extending, for every iEI. By Theorem 2.2.2, OiEFAA is uniform-extending, 

for every finite subset F of 1. Then, by Corollary 2.4.3, the result follows. El 

In particular, by Corollary 2.4.4, over a right Noetherian ring, every direct 

sum of relatively injective uniform-extending modules is uniform-extending. 

Compare the following results with Corollaries 2.4.3 and 2.4.4. 

Proposition 2.4.5 Let I Mi IiCI} be a family of relatively essentially 

injective modules that satisfies condition (B2) and let M := (DjEjA/Ij. If every 

local direct summand of 11 is a summand and OiEFAA is extending, for every 

finite subset F of I, then 11 is extending. 

Proof. Let K be a closed submodule of M. By Zorn's Lemma, K con- 

tains a maximal local direct summand I Na IaE A} of M. By hypothesis, 

N :ý (DaEANa is a direct summand of M. So, N is also a direct summand 

of K. Suppose that K=N (D N' and that N' =7ý 0. Let xE N' \ 10} 
- 

Clearly, there exists a finite subset F of I such that xE @iEFMi. The sub- 

module xR is essential in a closed submodule X of N. Note that X is also 

closed in H. Oil the other hand, from xR <, X, we can conclude that 

((DiEFAIi) nX<, X. As condition (B2) holds, Proposition 2.1.18 guarantees 

I that (DiEI\F. A'Ii is essentially (EDiEFA/li)-injective. By assumption, (DiEFA/i is 

extending, so that, by Lemma 2.1.15, X is a direct summand of All. Thus, 

X is also a direct summand of N' and we can write N' =XY, for some 

subinodule Y of N'. Now, we can conclude that K=N (D N' N E) X E) Y, 

with I A% IaG A} U JX} a local direct summand, contradicting the maxi- 
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mality of f IV,, Ia (z- A 1. Therefore, N' =0 and K=N is a direct summand 

of Al. 'We have proved that Al is extending. 0 

Corollary 2.4.6 Let j. AIj IiE I} be a family of relatively injective 

modules that satisfies condition (B2) and let M := EDiEjMj be such that every 
local summand of 11 is a summand. Then Mi is extending, for evenj iGI, 

if and only if M is extending. 

Proof. The sufficiency is obvious. Conversely, suppose that Alli is ex- 

tending, for every iEI. By Theorem 2.2.2, (DiEFA/li is extending, for every 

finite subset F of 1. Then, by Proposition 2.4.5, the result follows. 1: 1 

We also have the following fact. 

Corollary 2.4.7 Let I AIj Ii (=- I} be a family of relatively injective 

extending modules and let M := (DjEjA/Ij. If M is locally Noetherian, then. AY 

is extending if and only if every local direct summand of M is a summand. 

Proof. By Corollary 2.4.4 and Proposition 1.10.8.1: 1 

At this point, we need the following Lemma, that is just a reformulation 

of [4, Lemma 2] (see also [11, Lemma 2.11). 

Lemma 2.4.8 Let M, and A, 12 be uniform modules with local endomor- 

phism rings such that Al, (1) 112 is extending. If f: A, --+ A2 is an isomor- 

phism, where Ai < Ali, i=1,2, then either f can be extended to a monomor- 

phism Al, --4 
A, 12 

or f -1 can be extended to a monomorphism -4/12 --ý All. 

64 



Proof. Let Al := All E) M2 and consider the submodule B :=Ix-f (x) I 

xEA, I of M. As All is extending, B is essential in a direct summand C of 
M. By [2, Corollary 12.7], either Af =C E) A/12 or M= All (D C. 

Suppose firstly that Al == C E) A, 12 and let 7r be the projection of M onto 

112 with kernel C. Let g: M, -4 
M2 be the restriction of 7r to Mi. It is 

easy to check that g extends f. Also, ker gnA, = ker f=0 and, because 

A, :! & All,, g is a monomorphism All, ---ý A/12 that extends f. 

Suppose now that Al = III ED C and let o, be the projection of M onto 

All with h-ernel C. As above, it is not hard to see that the restriction of a to 
A 12 is a inonomorphism that extends f -1. 0 

Before looking at finite direct sums of uniform-extending modules with 
the finite exchange property, we need the following Lemma. 

Lemma 2.4.9 [2, Proposition 5.5] Let M, and M2 be modules, let M: = 
Al, ED A12 and let A be any submodule of M. Then AT =A ED M2 if and only 
if the restriction of 7r, to A is an isomorphism between A and A/11. 

Lemma 2.4.10 Let. A, 11, J1,12 and A, 13 be modules with the finite exchange 

property. If All G) M2, All 0113 and M2 0) A113 are uniform- extending, then 

Al, ED112 q). A, 13 is also uniform- extending. 

Proof. Because All @112, All ED. A, 13 and A/12ED A/13 are uniform-extending, 
by Proposition 2.3-4, the modules All, A12 and A/13 are relatively u-essentially 

hijective. 

Let K be a closed uniform submodule of Al := All (D A, 12 fl) A13. Let J be 

ii-iiiiiiiial aniong the subsets of I := 11,2,31 such that Kn ((DiEjA/li) : 51: 0. If 
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J is a proper subset of 1, then K is a direct summand of M, by Lemma 2.4.2 

(condition (C) is trivially satisfied by a finite family). Suppose that J=1. 

Then, Kn (All E), A, 12) =Kn (All E) A13) 

=Kn(m2 
ED m3) = o. 

For any iGI, K is isomorphic to 7ri(K) and, so, 7ri(K) is uniform. As Mi 

is uniform-extending, 7ri(K) is essential in a direct summand Ni of Mi, which 

is also uniform. Being a direct summand of A4"j, Ni has the finite exchange 

property and, consequently, its endomorphism ring is local. 

For every i, jE1, the maps fij : 7ri (K) --+ 7rj (K), -7ri (a) ý--* 7rj (a), are iso- 

morphisms. By Lemma 2.4.8, either fij can be extended to a monomorphism 

gij : Ni -t JYj or fji can be extended to a monomorphism gji : Nj --ý Ni, for 

every i, jE1, i =54 j. Considering that fjkfij = fik, for every i, j, kGI, it is 

not hard to see that there exists an iGI such that, for every jEJ, fij can 

be extended to Ni. Without loss of generality, suppose that i=1. 

Clearly, K= IX + f12 (X) + f13 (X) 1xC 7r, (K)}. Let K: = 
{X + 912 (X) + 

913(x) IxG Nil. It can easily be seen that K' is isomorphic to N, and, 

therefore, is uniform. On the other hand, K< K'. Then, K <e K' and, 
because K is closed, K= K'. Thus, irl(K) = N, and, by Lemma 2.4.9, 

N, 0) N2 (D N3 =K E) N2 (D AF3. So, K is a direct summand of M. 

Therefore, Al is uniform-extending. 0 

Lemma 2.4.11 Let I Mi IiEII be a family of modules with the finite 

exchange property. If TiElll'h is uniform- extending, then the family f Mi I 

iGII satisfies condition (C). 

Proof. Suppose that O)iElllli is uniform-extending. Then, for every jE 
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ý)iEI\fj)-A"i is u-essentially Alj-injective, by Proposition 2.3.4. So, by Propo- 

sition 2.1.19, condition (C) is satisfied. 1: 1 

We can finally prove the main result of this Section. 

Tlieoreni 2.4.12 Let I 11,1i IiEII be a family of modules with the finite 

exchange property. The following conditions are equivalent. 

(i) GiEIý'li is uniform- extending. 

(ii) (DjEjMj is uniform- extending, for every countable subset J of 1. 

(iii) Mi (D AIj 2s uniform- extending, for every i, jEI, i =7ý j, and the family 

f 11i IiEII satisfies condition (C). 

Proof. Obviously, (i) implies (ii). 

That (ii) implies (iii) follows by Lemma 2.4.11 and the fact that I Mi I 

iEII satisfies condition (C) if and only if every countable subfamily of this 

family satisfies condition (C). 

Let us prove that (iii) implies (i). Suppose that Alli ED Mj is uniform- 

extending, for every i, jE1, i =54 j, and that the family Mi IiE I} 

satisfies condition (C). By Proposition 2.3.4, fAIiGI is a family of 

relatively u-eSsentially injective modules. On the other hand, by induction 

and using Lemina 2.4.10, we can prove that @iEFA11i is Uniform-extending, for 

every finite subset F of I. Therefore, by Corollary 2.4-3, EDjEjMj is uniform- 

extending. El 

Compare Theorem 2.4.12 with Theorems 1.2.8,1.3-2,1.4.2 and 1.5.1. 

67 



Corollary 2.4.13 [11, Lemma 2.3] Let I Mi IiE I} be a family of 

uniform modules with local endomorphism rings. The following conditions 

are equivalent. 

(i) E)iE, Ali Z'S uniform- extending. 

(ii) EDjEj. AIj is uniform- extending, for every countable subset J of I. 

(iii) 11i (D A1j IS extending, for every i, jEI, i =7ý j, and the family f Mi I 

iEII satisfies condition (A2) 
- 

Proof. The result is an immediate consequence of Theorem 2.4.12, bear- 

ing in mind that, because 111i is uniform, for every iE1, conditions (C) and 

(A2) are equivalent. D 

Using Corollary 2.4-13, N. V. Dung proceeds to prove the following The- 

orem, which was later generalized by [12, Theorem 4.4] (cf. Theorem 1.10.3). 

Theorem 2.4.14 [11, Tlieorem 2.41 Let f Mi IiE I} be a family of 

uniforin modules wtth local endomorphism rings. The following conditions 

are equivalent. 

(i) OjEjAli is extending. 

(ii) E)jc=jAIj is extending, for every countable subset J of I. 

(iii) k1i (D Mj is extending, for evenj i, jEI, i =34 j; the family I Alli IiEI} 

satisfies condition (A2); and there does not exist an infinite sequence 

of monomorphisms that are not isomorphisms 

2 f. 
-1 fn A ýli2 
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with the i,, distinct in I. 

Furthermore, if Al satisfies either of the above equivalent conditions, then 

I A/Ij IiEII is locally se7ni- T-nilpo tent, and M has the exchange property. 
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Chapter 3 

c-Injectivity 

This Chapter is dedicated to another generalization of injectivity, namely 

c-injectivity. 

As we have seen, a module A/I is quasi-injective if, for any submodule N 

of JW, any homornorphism a: N --+ M can be lifted to a homomorphism 

,3: 
All --ý AL Continuous and quasi-continuous modules are other classes 

of modules that can be characterized by the lifting of homomorphisms from 

certain submodules to the module itself, as was shown in [561. In fact, in 

this paper, P. F. Smith and A. Tercan studied the following property, for a 

module M: 

(P,, ) For every submodule K of Al that can be written as a finite direct sum 
Ki (D ... (D K,, of complements KI, ---, liý, of Al, every liornomorphism 

a: K ---ý M can be lifted to a homomorphism 6: M M. 

and proved that a module is quasi-continuous if and only if it satisfies (P2). 

ýVe are now concerned with the study of self-c-injective modules, i. e., 

modules that satisfy (PI). Extending modules are an example of modules 
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with this property. 

Self-c-injective modules are also a special case of the generalized quasi- 

injective modules studied by Harada [22]. Recall that a module M is said 

to be GQ-injective (generalized quasi-injective), if, for any submodule N 

isomorphic to a closed submodule K of M, any homomorphism from N to 

M can be extended to All. 

In Section 3.1, '%ve prove general properties of self-c-injective modules and 

find sufficient conditions for a direct sum of two self-c-injective modules to 

be self-c-injective. We also look at self-cu-injective modules, i. e., modules Al 

such that every homomorphism from a closed uniform submodule to NI can 

be lifted to. AJ itself. 

Section 3.2 considers self-c-injective modules over commutative domains. 

We prove that every self-c-injective free module over a commutative domain 

that is not a field is finitely generated and then proceed to consider torsion- 

free modules over commutative domains, as was done for extending modules 

in [311. 

Finally, in Section 3.3, we look at self-c-injective modules over principal 

ideal domains, characterizing when the direct sum of a torsion-free injective 

module and a cyclic torsion module is self-cu-injective. 

For the theory of principal ideal domains and other undefined concepts, 

we refer the reader to [54,67], for example. 
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3.1 c-Injectivity 

Let All and 1112be modules. The module M2 is All-c-injective (resp., All- 

cu-injective) if every homomorphism a: K ---ý M2, where K is a closed (resp., 

closed uniform) submodule of A, 11, can be extended to a homornorphism 6: 

1111 14/12 - 

Clearly, if M2 is All-injective, then A/12 is Ml-c-injective. 

The modules M, and 112 are relatively c-injective (resp., relatively cu- 

injective) if Ali is Alj-c-iiijective (resp., A/li is Mj-cu-injective), for every 

i, iE 11,2}, i =, 4 

A module All is called self- c-injective (resp., self- cu-injective) when it 

is M-c-injective (resp., A/1-cu-injective); and is called c-injective (resp., cu- 

injective) when it is N-c-injective (resp., N-cu-injective), for every module 

N. 

Proposition 3.1.1 A module M is extending (resp., unifo rm- extending) 

if and only if every module Z'S III-c-injective (resp., M-cu-injective). 

Proof. The necessity is clear. Conversely, suppose that every module is 

M-c-injective and let K be a closed submodule of M. By hypothesis, there 

exists a homomorphism a: AJ --ý K that extends the identity 1, :K --+ K. 

It is not hard to see that 111 =K@ ker a, so that K is a direct summand of 

A1. Therefore, Al is extending. 

The proof for Al uniforin-extending follows analogously. 1: 1 

In particular, by Proposition 3.1.1, every extending module is self-c- 

injective. But not, every self- c-inj ective module is extending. Consider, for ex- 
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ample, the ýZ-modules All := Z/pýZ, for a prime p, and M2 :=Q. Let us show 

that the 2! -module A, 1 := Ml (DA12 is self-c-injective but it is not extending. 

Consider tile local ring Zp, It is not hard to see that the closed submodules 

of A/1 which are not direct summands are of tile form (I + pZ, q); 7-p 
, 

for some 

qEQ\ 10}. To show that Al is self- c-inj ective it is sufficient to prove that, 

for qGQ\ {0}, every homomorphism a: (I + pZ, q)Z! p --ý M can be lifted 

to All. Let K := (I +p: Z, q)T-p. Suppose that ce(l +pZ, q) = (a +p: z, b), for 

some aEI and bEQ. It is not hard to see that the mapping 3: M ---ý A1, 

defined by 8(c + pT_, d) = (ca + pýZ, dblq), for all cG T_ and dEQ, is a 

well-defined homomorphism that extends a. Thus, M is self-c-injective. 

Tile following result characterizes c-injectivity and cu-injectivity (com- 

pare with Lemmas 2.1.1,2.1.47 2.1.5 and 2.1.12). 

Leinma 3.1.2 Let M, and. A, 12 be modules and let M :=A E9 A112. Then 

1112 is 11111-c-injective (resp., A, 11-cu-injective) if and only if, for every (closed) 

submodule (resp., every (closed) uniform submodule) N of M such that Nn 

A12 =0 and 7r, (N) <, 1111, there exists a submodule N' of M such that 

N< N' and M= N' (D 11,12. 

Proof. Assume that A, 12 is. All-c-injective and let N be a submodule of M 

such that Nn AY2 =0 and -, rl (N) Lý, AJI. As Nn M2 = 0, the restriction of -'Tj 

to N is an isomorphism between N and 7r, (N). Consider the homomorphism 

a: 7r, (N) --4 A'12i I ý-4 7'-2(7r1jN)-1(x). The map a can be extended to a 

honlomorphism, 3: All --+ A12, since A/12 is All-c-injective and 7r, (N) : 5, All,. 

Define A" :={x+, 3(x) IxE AT, 1. Clearly, N' is a submodule of M and 
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Al = N' 0) 112. For every xcN, 871(x) =: a7ri(x) = 7r2(x) and hence 

X= 7rl(x) +, O-, Ti(x) E N'. Thus, N< N'. 

Conversely, assume that, for every submodule N of M such that Nnm, = 

0 and 7r, (N) <, All, there exists a submodule N' of M such that N< N' and 

. 
Al = N'ED M2. Let K be a closed submodule of Mi and let oz :K --4 A/12 be a 

homomorphism. Define N :=fx- oz(x) IxEK1. Clearly, N is a submodule 

of Al such that N nm = o. It is not hard to prove that 7r, (N) == K and so 

-r, 1 (N) <, 11,11. Then, by hypothesis, there exists a submodule N' of M such 

that A' < N' and Al N'(D. A112. Let 7r : AT -+ M2 denote the projection 

with kernel N' and let ill, --+ A12 be the restriction of 7T to Mi. For every 

xEK, O(X) = v(x) = 7((x - a(x)) + a(x)) = a(x) and, therefore, 0 extends 

a. Thus, A/12 is All-c-injective. 

Finally, observe that, if N is a submodule of AT such that Nn M2 =0 and 

7rl(N) <, J1,11, then N <,. AI. In fact, if N <, K <, Al, then Knm, = 0 and 

71 gives ail isomorphism between K and 7rl(K). Therefore, from N <, K we 

can conclude that 7r, (N) :! ý, 7r, (K). On the other hand, we have 7r, (N) : 5, X11 

and so -F, 1 (N) = 7r, (K). Thus, N=K<, M. 

The proof for cu-injectivity follows similarly. 1: 1 

Below follow some general properties of c-injectivity and cu-injectivity. 

Lemma 3.1.3 Let j1,11 and. A/12 be modules. If M2 is MI-c-injective, then, 

jor every closed submodule N of MI, A, 12 is N-c-injective and (AI, IN)-c- 

injective. 

Proof. Let N be a closed subinodule of Mi. 
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As every closed subinodule of N is also a closed submodule of All,, it is 

obvious that M2 is N-c-injective. 

Let us prove now that 112 is (]Vll/N)-c-injective. Let KIN be a closed 

submodule of 1111N and consider a homomorphism a: KIN ---ý M2. By 

Leinina 1.1.4, K <, k1l. 

Let 7r : J1,11 --+ All, IN and 7r' :K --+ KIN be the canonical epimorphisms. 

As A/12 is All-c-injective, there exists a homomorphism 0: A4, --+ M2 that 

extends ct-, T. Since N< ker 0, the existence of a homomorphism 7: M, IN --ý 

. 
A, 12 such that -y7r =8 is guaranteed. For every aEK, ^I(a + N) = -y-7r(a) = 

O(a) = a7r'(a) = a(a + N). Therefore -y extends a and M2 is (M, IN)-c- 

injective. 0 

Lemma 3.1.4 Let All, and A/12 be modules. If A/12 is Mi-cu-injective, 

then, for evenj closed submodule N of All,, M2 is N-cu-injective. 

Proof. Clear. 0 

Lemma 3.1.5 Let M and I Ni IiEII be modules. Then 1'iEjNj is M- 

c-injective (resp., AI-cu-iitj'ectz*ve) if and only if Ni is M-c-injective (resp., 

M-cu-injective), for every iEI. 

Proof. The proof follows as for injectivity (see, for example, [54, Propo- 

sition 2.2])_ El 

Corollary 3.1.6 Let III and M2 be modules and let M= III (@ M2. 

If Al is self- c-injective (resp., self- cu-injective), then All and 112 are both 

self- C- injectives (resp., self- cu-injectives) and are relatively c-injective (rcsp., 
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relatively cu-injective). In particular, a direct summand of a self- c-injective 

(resp., self-cu-injective) module is self- c-injective (resp., self- cu-injective). 

Proof. By Lemmas 3.1.3 (resp., 3.1.4) and 3.1.5.1-: 1 

The converse of Corollary 3.1.6 is not true, in general. Consider, for 

example, the ýZ-modules All := ýZ/pýZ, for a prime p, and M2 := 2K. Both 

A11 and 112 are uniform, so that they are self-c-injectives and relatively c- 

iqjective. It will be proved in Section 3.2 (cf. Proposition 3.2.3) that M, E) A112 

is not self- c-inj ective. 

Note that this example also shows that [6, Theorem 2] is not valid. The 

cited result states that, if All is a quasi-continuous module with finite uniform 
dimension, M2 is self- c-inj ective and Mi-injective, then M, E) M2 is self-c- 
injective. 

In order to obtain sufficient conditions for a direct sum of two self-c- 
injective (resp., self-cu-injective) modules to be self-c-injective (resp., self- 

cu-injective), we need the following Lemmas. 

Lemma 3.1.7 Let All and 112 be modules such that M2 is essentially 

(resp., u-cssentially) A, 11-injective. If a module is All, -c-injective (resp., All, - 

cu-injective) and A, 12 -injective, then it is (Alli (D A, 12) -c-injective (resp., (All 

112) -cu-Injective). 

Proof. Let III := Ml ED A, 12 and suppose that N is a Ml-c-injective and 

112-injective module. 
Let K <, Al and consider a homomorphism a: K --* N. Take H <, K 

such that Kn iw, <, H. Then H n. All =Kn All <, H and, because M2 is 
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essentially Mi-injective, by Lemma 2.1.5, there exists a submodule H' of M 

such that M= H'E) M2 and H<H. 

Clearly, H <,: H' and, since M1 and H' are isomorphic, N is H'-c- 

injective. Thus, there exists a hornomorphism 3: H' --4 N that extends 

the restriction of a to H. Obviously, # can be extended by the homomor- 

phisin [37r: M --+ N, where 7r : Al -+ H' is the projection of M onto H' with 

kernel 1112. 

Consider the homomorphism a- 07r :K -ý N, x F-+ ce(x) -, 37r(x). As 

Knm, :ýH< ker(a -, 37), ce -, 67r can be lifted to a homomorphism 

KI (K n 111) --4N, x+Kn. A/11 F--ý a(x) - 07r(x). 

The homornorphism 0: KI(K n 111) --+ M2, x+KnM, ý-4 7r2 (X) 
i 

is 

clearly injective. Since N is A/12-injective, there exists 6: A/12---> N such that 

60 = -y. Clearly, 6ýT2 
: Ill --+ N extends 6. 

Consider, finally, the homomorphism 0 : -= )37r + 672 :M --4N. For all 

xEK, O(X) ý &(X) + 672(X) =, 37r(x) + 60(x +Kn Mi) =, 67r(x) + ^I(x + 

Kn M1) = 37r (x) + oz (x) - 37r (x) =a (x). Therefore, 0 extends a and N is 

11-c-injective. 

The result for cu-injectivity follows analogously. 0 

Lemma 3.1.8 Let M, and M2 be modules such that A/I, is extending 
(resp., uniform-extending) and A/12-injective and A/12 is essentially (resp., 

u-essentially) A/11-injective. If a module is M2-c-injective (resp., A/12-cu- 

injective), then it is (All E) A, 12)-c-injective (resp., (All, E) M2)-cu-injective). 

Proof. Let AI := Al, @ A, 12 and suppose that N is a A/12-c-injective 

module. 
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Let K <, Al and consider a homomorphism a: K --4N. Take H, : 5, K 

such that Kn Ali, : 5, Hi. Then Hý n Ali, = Kn mi : <, H, and, because 112 

is essentially All-injective, by Lemma 2.1.5, there exists a submodule H of 
Al such that M=H (D A, 12 and H, < H. 

Clearly, H, <, H and, since Mj and H are isomorphic, H is extending. 

Thus, H, is a direct summand of H. Suppose that H= HI E) H2. Then, 

Al = H, (D H2 (D. A, 12 and K=H, @ L, where L: = (H2 (i) m2) nK. 

Since Ln All = (H, ED. AI, ) n Kn mi :! ý, (H2 (D M2) n H, =0 and 11, is 

. 
A, 12-injective, there exists a submodule L' of M such that M=M, 0) L' and 
L L' 

Clearly, L <, L' and, since A, 12 and L' are isomorphic, N is L'-c-injective. 

Thus, there exists a homomorphism 6: L-' --+ N that extends the restriction 

of a to L. 

Let, 01,02 and 03 be the projections of M=H, (D H2 (D A/12 onto Hl, H2 

and 112, respectively. Consider the homomorphism -y :M --ý N such that 

'Y(X) ý--- aOI(X)+, 3W(02(X)+03(X)), where ýp is theprojection of M onto L'with 

kernel AlI. For every xEK, we have 02 (X) + 03 (x) E (H2 (D m2) nK=L and 
hence 'Y(X) ý GOI(X)+, 8W(02(X)+03(X)) = QOI(X)+a(02(X)+03(X)) ý a(X)- 

Therefore, y extends a to III and N is M-c-injective. 

The result for cu-injectivity follows analogously. 11 

NN, Te can now prove the following. 

Theorem 3.1.9 Let Al, and A12 be modules and let AT := All E9 112. If 

one of the following conditions holds, then M is self- c- injective (resp., self- 

C11-injective). 
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(i) All and A12 are both self- c-injective (resp., self- cu-injective) and are 

relatively injective. 

(ii) All, is extending (resp., uniform- extending) and M2-injective, A112 is 

self- c-injective (resp., self- cu-injective) and essentially (resp., u-essent- 

ially) A11-injective. 

Proof. By Lemmas 3.1.5,3.1.7 and 3.1.8. El 

Next we will look at further properties of c-injectivity that will be required 

in the sequel. 

Recall that a submodule N of a module M is called fully invariant if 

ýo(N) < N, for all ýo G Encl(M). 

Proposition 3.1.10 Let All be a self- c-injective module. Then evemjfully 

invariant closed submodule of All is self- c-injective. In particular, Z2(M) is 

a self- c-injective module. 

Proof. Let N be a fully invariant closed submodule of M, let K be a 

closed subinodule of N and let a: K --ý N be a homomorphism. Since N 

is a closed subinodule of jW, it follows that K is also a closed submodule of 
A1. Then, by hypothesis, there exists a homomorphism )3 :M ---ý M that 

extends a. Note that O(JV) :! ý N, by hypothesis. Hence OIN :N --ý N is 

a hoinoinorphism and a is the restriction of this homornorphism to K. It 

follows that A' is self-c-injective. El 

Lemina 3.1.11 Let. Af be a self- c-injective module and let K be a closed 

submodule of Al. If K is isomorphic to Al, then K is a direct summand of 

Al. 
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Proof. Let a: K -+ Al be an isomorphism. There exists a homomor- 

phism)3 : Al - Al that extends a, since M is self-c-injective. For any xE All, 

there exists yGK such that 3(x) = a(y) = 3(y) and hence x-yE ker, 6. It 

follows that x=y+ (x - y) GK+ ker, 6. Moreover, KnkerO = ker a=0. 

Thus AI =K (D ker)3 and K is a direct summand of M. C] 

The next results show that, in some cases, the notions of c-injectivity and 

cii-injectivity coincide. 

Proposition 3.1.12 Let 11, and. A/12 be modules such that u. dim(A/11) 

2. Then J1,12 is All, -c-injective if and only if 112 is Ml-cu-injective. 

ProoE Clear. 0 

Proposition 3.1.13 Let 111 be an extending module and let A/12 be a 

uniform Tnodule such that A, 12 is essentially Ml-injective. Then All, 0) A/12 is 

self- c-injective if and only if it is self- cu-injective. 

Proof. The necessity is obvious. Let us prove the converse. 

Suppose that M := Al, (@ A/12 is self-cu-injective. Let K be a closed 

subinodule of M and let a: K ---ý M be a homomorphism. 

Take H, <, K such that Kn All : ý, Hl. Then H, n M, =Kn All, <, H, 

and, because 112 is essentially Mi-injective, by Lemma 2.1.5, there exists a 

subinodule H of Al such that Al =H (3) A/12 and H, < H. 

Clearly, H, <, H and, since Mj and H are isomorphic, H is extending. 

Thus, H=H, E) H2, for some submodule H2 of H, so that All = H, (i) H2 (1) A/12 

and K=H, (D L, where L: = (H2 ED 112) n K. Since LnM, = (H2 (D A12) n 

Kn Af, < (H2 (D 11,12) n H, = 0, L embeds in M2 and hence is uniform. 
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By hypothesis, the restriction of ce to L lifts to M and, in particular, there 

exists a hoinomorphism, 8 : H2 (D 112 ---ý M that extends the restriction of a 

to L. Therefore, it is clear that a can be extended to M. We can conclude 

that III is self- c-inj ective. El 

3.2 Self-c-injective modules over commuta- 
tive domains 

In this Section, we look at self-c-injective modules over commutative do- 

mains. 

The following result generalizes [6, Theorem 1]. 

Theorem 3.2.1 Suppose that R is a commutative domain and let F be 

a self- c-injective free module. Then F is finitely generated or R is a field. 

Proof. Suppose that F is not finitely generated and let us prove that R 

is a field. By Corollary 3.1.6, we can assume, without loss of generality, that 

F=R (@ R (D R ED ---. Consider the elements e,, := (0, 
..., 0' 1,0' 0 .... 

r,, 

where I is the n-th component of e,,, for each positive integer n. 

Let Q denote the field of fractions of R and let 0 zýk CER. We aim to 

prove that c is a unit in R. 

Define a hoinoinorphism ýo :F --4Q by 

ýO(rl, 7-21 r37 ... 
) := ri + c-lr2 + C-2 r3 +*'*) 

for all (r 
1,7-2 1 7-3) ... )EF, and let K := kerýp. Consider the elements f,, := 

(0'..., 0,1, -c' 0,0 .... 
)= ell - cen+1 E K, for each positive integer n, and 

let us prove that K is a free subinodule of F with basis I fl) Ai f3) 
... 

I- 
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Clearly, L := EncIN f,, R < K. In order to prove that L=K, let 
('r, 

, 
r2 , ... i 7-ni 0,0 

.... 
)EK. Then T1 + C-1r2 +*'. + C-n+2 rn-1 + C-n+1 7n ý0 

and lience r�, + cr�-, +... + n-2 r2 + &-lrl = 0. Tlius 

(rh r27 
... ) 

7-n-li 'rni 0,0 )= 

=_____ Cn-2 T2 -C n-1 ri, 0,0 
.... 

) 

rix, + r2X2 +, -+ rn-lXn-li 

where xi = ej - cn-i en) for I <i<n-1. 

Clearly, xn-1 = fn-1 E L. If, for some 2<i<n-1, xi C- L, then 

xi-1 ='fi-I + cxi E L. By induction, xi E L, for all 1<i<n-1, and hence 

(ri, r2, .... rn) 0) 0 
.... 

)EL. It follows that K<L and hence K=L. 

Let us prove that the set f fl, f2, f3 
.... 

} is linearly independent. Suppose 

that, for a positive integer m and for some si E R, 1<i<m, we have 

Slfl +***+ SMfTn = 0) i. e. ) 

SI (1 
ý -Ci 01 07 

... 
)+ S2(Oi li -Ci 01 0) 

... 
)+-*+ Srn(0ý ... 1 

0) 11 -C) 01 03 
-- -) :' 01 

so that s, ý 0) S2 - CS1 : -- 0) S3 - CS2 ý 02 
... 1 Sin - CSrn-1 = 0, 

-CSn = 0- 

Thus, S1 = S2 =***= Sin = 0- 

lt follows that K is a free module with basis nE IN }. Hence K is 

isomorphic to F. Moreover, FIK, being isomorphic to a submodule Of QR) 

is a torsion-free module and hence K is a closed submodule of F. Then, by 

Lemma 3.1.11, K is a direct summand of F. Suppose that F=K E) K. 

Now, K' is isomorphic to FIK, which in turn is isomorphic to W(F), 

so that K' is a uniform submodule of F. Let 0 =ýA u (S K. Then u= 

Otj'... 
' uq, 0,0 .... 

), for some positive integer q and elements ui E R, 1< 
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i<q. Then K' <I (vi 
, ... 7 Vq) 07 07 

... )I vi G R71 <i< q}. SO, Cq+l = 

z+ (vl'..., Vq)070) ... ), forsoinezEK, viER, I <i<q. Hence 

C-q = ýo(e. +I) = v(vi,..., V., 0,0,... ) = vl + c- 1 V2 +» *'+ C-q+lVq) 

so that c-1 = Vq + CVq_l ++ Cq-1V1 R. Thus c is a unit in R. It follows 

that R is a field. El 

Lemma 3.2.2 Let 11 be a module and let N be an essential submodule 

of Al. For evenj mE Af, f (r, mr) Ir C- R, mr C- NI is a closed submodule 

of the module R ED N. 

Proof. Let m C- Al and let V :=I (r, mr) rER, mr EN}. Clearly 

V is a submodule of R fl) N andvn(O ED N) 0. Let W be a submodule 

of R 6) Ar such that V< 117, V =ý4 W. Then there exist sER and xEN 

such that (s, x) GW and x =, A ms. Hence x- ms =ý 0 and, since N <, M, 

(x - nis) R njV ýý4 0. Therefore, there exists tER such that y := (x - Ms)t E 

Ar \ 10}. Now inst = xt -yEN and (0, y) = (s, x)t - (st, mst) E W, so that 

vv n(O (D N) :ý0. Thus V, being a complement of 0 (D N in R ED N, is closed 

in R (D N. 0 

Proposition 3.2.3 Suppose that R is a commutative domain and let c: 

be a non-zero non-unit element of R. Then the R-module RG (RIcR) is not 

self- cu-injective. 

Proof. Let Q denote the field of fractions of R, let N= RIcR and let 

Al = c-IRIcR. Then N is a submodule of All. 
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Let mE Al, pi :ý0. Then ni = c-'r + cR, for some rER. If rE cR, 

tlien ni EE N; if r Ei R\ cR, tlien cm =r+ cR GN\ 10}. Thus Nn niR: 7ý 0, 
for every in EM\ 101, and N is essential in M. 

LetX R(DN, let m: =c-'+cRE Mandlet V := J(r, mr) IrE 

R, 71ir EN By Lemma 3.2.2, V is a closed submodule of the module X. 

Let rGR be such that Trir E N. Then c-'r + cR = mr =s+ cR, for 

some s R, and c-Ir -s (=- cR. So, rE cR. Hence cR rGRI mr EN 

and VI (cr, r+ cR) rER1. 
Define a mapping oz V-X by a (cr, r+ cR) == (r, cR), for every rER. 

Clearly, a is a homomorphism. Supppose that a lifts to a homomorphism 

0: X --+ X, witli, 6(0,1 +cR) = (a,, a2+cR) and, 6(l, cR) = (bl, b2 +cR), 

for some a,, a2, bl, b2 E R. Then c(al, a2 + cR) = c, 8(0, I+ cR) =, 6(0, cR) = 
(0, cR), so that a, = 0. Now (1, cR) = a(c, I+ cR) = 6(c, I+ cR) = 

co(l, cR) + 0(0,1 + cR) = c(bi, b2 + cR) + (0, a2+ cR). Hence 1= cbl, a 

contradiction. 
It follows that X is not self-c-injective. 0 

Corollary 3.2.4 [6, Leinina 31 Let R be a principal ideal domain and 

let If be a finitely generated self- c-injective module. Then M i's free or is a 

torsion module. 

Proof. By Lemma 3.1.6 and Proposition 3.2.3.11 

Now we consider torsion-free modules over commutative domains. 

Let us fix the following notation: 0 
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R is a commutative domain with field of fractions Q; M, and M2 are 
R-submodules of Q such that R< mi n m,; M :=M, E). A, 12; r and s 

are non-zero elements of R. For any element q C- Q and R-submodule 

N of Q, we set q-'N :=IxEQI qx E N}. In case q =, 54 0, q-'N = 
I ylq EQIyG fl. Also, if L and N are R-submodules of Q, we set 
(L: N) := jq EQI qN < L}. 

[311 provides information on when M is an extending module (cf. [55, 

Corollary 2.8])- 

TIleorem 3.2.5 [31] Let R be a commutative domain with field of frac- 

tions Q and let M, and A, 12 be R-submodules of Q such that R 
-< 

All, n A/12. 
Then the R-module. A/I := 11,11 E) 11/12 is extending if and only if 

n (sm: rM, )] + [(M,: m, ) n (rMý: sAll, )], 

for all non-zero elements r, s of 

Let us characterize when If is self-c-injective. 

Lemma 3.2.6 With notation (*), let N := r-IA/Ij n s-'AII2 and let K := 

I (rx, sx) IxEN1. Then K is a closed submodule of M. Moreover, a 

mapping ýo :K ---ý Al is an R-homomorphism if and only if there exist 

it G (11,11 : N) and vE(. A, 12 : N) such that W(rx, sx) = (ux, vx), for all 

x N. 

Proof. Let qj C- Mi, i =: = 1,2. Suppose that c(ql, q2) G K, for some 

: ý4- cER.. There exists xEN such that c(ql, q2) = S-r) 
, i. e, cql = rx 
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and cq2 = sx. Then r(xlc) = q, and s(x1c) = q2, so that x1c G r-1m, n 
s-'A, 12 =N and (qj, q2) = (7-(XIC), S(XIC)) E K. It follows that K is a closed 

submodule of Al. 

Suppose that uE (111 : N) and vE (M2 : N) are such that W(rx, sx) = 
(ux, vx), for all xEN. It is easy to check that W: K --+ M is a homomor- 

phisin. 

Conversely, let ýp :K --+ If be a homomorphism. Then ýp(r, s) = (u, v), 

for some uE All and vGA, 12. Let xEN. Then x= a/b, for some a, bER, 

b =, 4 0. Now 

býo(rx, sx) = ýo(brx, bsx) = W(ar, as) = aýo(r, s) = a(u, v). 

Suppose that (p(rx, sx) = (p, q), where pE All, and qE M2. The fact that 

b(p, q) = a(u, v) gives bp = au and bq av, so that, in Q, p= au/b = ux 

and q= av/b = vx. Thus W(rx, sx) (ux, vx). Note that ux E Al, and 
C- M2- 0 

Lemma 3.2.7 With notation (*), a mapping 0: M --ý M is an R- 

homomorphMn if and only if there exist elements aE (Mi : Mj), bE (MI : 

A12), cE(. AJ2 : A, 11) and dE (112 : A12) such that O(x, y) = (ax + by, ex + dy), 

for all xG III, yE 1112. 

Proof. Suppose that aE (111 : Mi), b E: (Mi : X12), cE (M2 : Mj) and 

dE (112 : 112) are such that 0 (x, y) = (ax + by, ex + dy), for all xE A/11, 

yE A112. It is easy to check that 0: M ---ý A/I is an R-homomorphism. 

Conversely, let 0: Al -+ Al be an R-liomomorphism and let t: M --+ 
Q (D Q be the inclusion honloinorphism. As Q ED Q is an injective R-module, 
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there exists an R-homomorphism 0: Q ED Q --ý Q (D Q such that Ot = to. It is 

easy to check that 0 is a Q-homomorphism. Hence there exist a, b, c, d C- Q 

such that 0(p, q) = (ap + bq, cp + dq), for all p, qEQ. Let xE All and 

yE M2. Then O(x, 0) = ýb(x, 0) = (ax, cx), so that ax E M, and cx E M2. 

Also, 0(0, y) = V)(0, y) = (by, dy), so that by E M, and dy C M2. It follows 

that aE (111 : A, 11), bE(, AI'l M2), cE (M2 : MI) and dE (M2 : M2). 

Furthermore, we have 0 (, -, y) = (x, y) = (ax + by, cx + dy), for all xE All,, 

E M2- 0 

Lemma 3.2.8 With notation (*), let N: = r-IM, ns-'M2 and let K: = 

(rx, sx) IxEN}. Then every homomorphism W: K --4M can be lifted to 

M if and only if 

(. All: N) : fý- (All: A/11)r + (Mi : A/12) s 

and 
N):: ý (AY2: Ml)r + (M2: A, 12)s. 

Proof. Suppose, firstly, that every homomorphism V: K -+ Al can be 

lifted to M. Let uE (All : IV) and v C= (A/12 : N). Define W: K ---ý M by 

ýo(rx, sx) = (ux, vx), for all xEN. By Lemma 3.2.6, W is a homomorphism. 

By Lemma 3.2.7, there exist aE (All : All), bE(. A/I, : M2), cE (A/12 : All) 

and d C: (M2 : J1,12) such that, for all xEN, (ux, vx) = W(rx, sx) = (arx + 

bsx, crx + dsx). Since R< All n A/12, it follows that R<N and hence IEN, 

so that (u, v) = (ar + bs, cr + ds). Then, u= ar + bs E (All, : Ml)r + (. A/I, : 

A, 12)s and v= cr + ds E (AI2 : All)r + (112 : A, 12)s. Thus, 

(All : 'N) ! ý- (. All : A, 11)r + (All : -A, 
12)s 
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and 
(AI2 : N) :ý (A/12: Ml)r + (M2: M2)s. 

Conversely, suppose that these two inclusions hold. Let a: K --ý Al 

be any R-homomorphisin. By Lemma 3.2.6, there exist uE (Mi : N) and 

vE (112 : N) such that a(rx, sx) = (ux, vx), for all xEN. By hypothesis, 

there exist aG (AY, : MI), bE (AY, : M2), cE (M2 : MI) and dE (M2 : M2) 

such that it = ar+bs and v= cr+ds. Let, 8 :M --ý M be the mapping defined 

by, 6(y, z) = (ay+bz, cy+dz), for all yE All and zE A/12. By Lemma 3.2.7,, 8 

is an R-homomorphism. For any xEN, 6(rx, sx) = (arx + bsx, crx + dsx) = 

(ux, vx) =a (rx, sx). Therefore, a is the restriction of 6 to K. 11 

Tlieorem 3.2.9 Let R be a commutative domain with field of fractions 

Q and let III and 112 be R-submodules of Q such that R< mý n M2. Then 

the R-module Al := All 6) A, 12 is self- c-injective if and only if 

r-l. Ai, n s-'112):: ý (MI: Ml)r + (All,: M2)s 

and 
(m, :r-I. Ay, ns-I Ai, ) < (m, : m, ), r + (m, : m, ) 

for all non-zero elements r, s of R. 

Proof. The necessity follows by Lemmas 3.2.6 and 3.2.8. Conversely, 

suppose that 

(Aii: r-lm, n s-Im&fý, (mi: mi)r + (mi: m2)s 

and 
I (m, :r-Im, m, ) < (112 : 111) r+ (A, 12 : A/12) s, 
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for all non-zero elements r, s of R. 

Let K be a closed submodule of M. If Kn (mi (Do) 0 0, then Kn(mi(Do) 

is a closed subinodule of All (D 0 and hence KnAe 0) = All (D 0. Thus, 

All (B 0<K and K =. All E) 0 or K=M, so that K is a direct summand of 
M. Similarly, if Kn (0 E) 112) =7ý 0, then K is a direct summand of M. Thus 

ive can suppose that Kn(. All E9 0) =Kn (o (D m2) = o. In particular, K is 

uniform. 
Let (qj, q2) G K, where 0 z7ý qj, q2 E Q. There exist non-zero elements 

r, s, cER such that q, = r/c and q2 = s1c. Thus (r, s) c(qj, q2) E K. By 

Lemma 3.2.6, K=I (rx, sx) IxE N}, because K and (rx, sx) IxENI 

are both closures of the subinodule (r, s)R and M has unique closures, since 

it is nonsingular. By Lemma 3.2.8, every homomorphism a: K ---ý M can 

be lifted to III. Thus, All is self-c-injective. 1: 1 

3.3 Self-c-injective modules over principal 
ideal domains 

In order to characterize when, over a principal ideal domain, the direct 

sum of a torsion-free injective module and a cyclic torsion module is self-cu- 
injective, we need the following Lemmas. 

Lemma 3.3.1 [26, Lemma 2.41 Let M, and. A/12 be modules and let Al : == 

11,11 0) 11,12. A submodule K of All is a complement of A, 12 in M if and only if 

there exists a homomorphism ýo : All --ý E(M2) such that K=Ix+ ýp(x) I 

C ýO -1 0112) 1- 
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Given a positive integer n, modules AT,, are called compatible if, 

for all 1<i<n and elements mj E A11j, 1<n, ive have r (, mi) +r (I mj 
1<j< nj =ý4 i 1) = R. 

Lemma 3.3.2 Assume that R is a Tight hereditary ring and let M be a 

module such that M= Allo (D A E9 ... (D M, for some positive integer n, 

nonsingular injective submodule A110 and singular uniform submodules A/Ij = 

injR, 1<i<n, with E(A111), ..., E(Mn) compatible. Let K be a non- 

zero closed submodule of M such that Kn (Ml E) ... E) All, ) = 0. Th en 

161 ++ -'Irn E K, for some 0 =7ý xO E A110 and xi E 10, mi}, 1 <_ i <_ n. 'EO +' 

Moreover, KC MO (D (E)'j'. jxjR). I= 

Proof. There exists 0 =7ý m= m' + m" E K, where m' E MO and 

Tn" E TI AYI T ... 0) 11, Since KnH o, it follows that m' =7ý 0. 

There exists an essential right ideal E of R such that m"E = 0. Then 

inE = 7WE 7ý 0. Thus Kn A4'0 =7ý 0. There exists a submodule MO' of Mo 

such that MO = E(K n A10) q) MO'. Note that Kn m,, n mo, = o. Since 

Kn IT = 0, it follows that K embeds in A110 and hence K is nonsingular. 
Suppose that Kn (110' 0) IT) =ý 0 and let 0 =ýk aEKn (M. ' (D TY). Then 

aF CKn A1101 =KnA, 10 n 11,101 = 0, for some essential right ideal F of R. Thus 

a=0, that is K is a complement of A110' (1) 19 in M= E(K n MO) G) A/10' ED TY 
- 

By Lemma 3.3.1, there exists a homomorphism V: E(K n. A4o) --+ MO" T 

E(1111) ý) ... (D E(AI,,, ) such that K=fy+ ýp(y) Iy (-= E(K n A10), (p(y) (E 

A10' (D M, ED ... (1) A, 1. For each I<i<n, let -xi : 110' E9 E(111) (@ ... (D 

E(jl, l,, ) - E(Ali) be the canonical projection. Let I<i<n and consider 

the liomonlorphisin 7riýo : E(K n MO) ---ý E(A). 
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Suppose that 7i(p =ý 0. Because R is right hereditary, 7riw(E(Kn m,, )) 

is a non-zero injective submodule of the indecomposable module E(Alli) and 

hence 7riýo(E(Kn Ai(, )) = E(Ali). In particular, there exists co E E(K n 

Mo) such that -, Ti(p(eo) = mi. Now ýp(eo) = c' + el +---+e,,, for some 

el E A/10, ej (2 E(Mj), I<i<n, and ei = mi. There exist sE r(mi), 

tE r(el,..., ei-1, ei+l.... e,, ) such that 1=s+t. Then W(eot) = e't + mit = 

e't+mi(I - s) = e't+mi. It follows that eot+e't+mi G K. Let zi := eot+e't. 

Then zi G A/10 and zi + mi E K. If 7riW = 0, choose any zi EK r) Mo. In any 

case, zi + xi E K, where xi Ef0, mij. 

We have proved that, for each 1<i<n, there exist zi G A110 such that 

zi + xi (=- K, where xi == 0, if riýo = 0, and xi = mi, if 7riW =54 0. Then 

Z+xl+--'+XnEK, wlierez: =zl+---+z,, EMo. BecauseKnM=O, 

it follows that z =ýý 0. 

Finally, note that Ky+ W(y) IyE E(K n IWO), W(y) E Mo' (D Mi E) 

E) Aln Alo 0) (V' lxiR), because xi =0 if and only if 7ri(p = 0. Z= 

Tlieorem 3.3.3 Suppose that R is a principal ideal domain and let the 

7-riodule AI := All (D. A/12 be the direct sum of a torsion-free injective submodule 

A1, and a cyclic torsion submodule A/12. Then M is self- cu-injective. 

Proof. There exists an element m Ei A/12 such that M2 = mR. Let 

I := r(m). Then I is a non-zero ideal of R. If I=R, then A/12 =0 and there 

is nothing to prove. 
ki 

... pký Suppose that I =/A R. Note that I= P1, 
nI 

for some positive integers 

7t, ki, I<i<n, and distinct maximal ideals Pi, 1<i<n, of R. It follows 
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that R11 is isomorphic to (RIP, "') E) ... T (RIP,, ý-) and the R-module RII 

is extending. 
Since A12 is isomorphic to RII, we have A/12 = L, (D ... E) L, where 

? n=ll+---+l,,, Li =1jRand Pi"i =r(lj), for I <i <n. Foreach 1 <i <n 

and each wE E(Li), there exists a positive integer v such that wPi' = 0, by 

154, Proposition 4.23). It follows that E(Li),..., E(L,, ) are compatible. 
Let U be a maximal uniform submodule of M. if un Ali, = 0, then 

UCA, 12, because 112 is the torsion submodule of M. Since M2 is isomorphic 

to R11, it follows that U is a closed submodule of the extending module M2 

and hence U is a direct summand of A/12. In this case, it is clear that any 
homomorphism ýo: U --4 AJ can be lifted to M. 

Now suppose that UC All,. Then U is a direct summand of M, and any 
homornorphism W: U --- ýM can be lifted to M. 

Otherwise, Un All, 54 0 and U q- Mi. Clearly un m2= 0 and hence, 

by rearranging the modules LI, ..., L, if necessary, Lemma 3.3.2 gives that 
(10 + 11 +---+ Ik)R cUC All (D L, (D ... (D Lk, for some 0 ý4 10 E MI, 

I<k<n. Let X :=L, ED ... ED Lk 
and -r := 11 +*'*+ 1k, 

so that X= xR. 
Let T: = fcERI Xc =X1. Then T is a multiplicatively closed subset 

of the domain R and we let S denote the subring I 7-/t IrGR, t C- TI 

of Q, the field of fractions of R. Given aEM, and b C- X, we define 

(a + b)(r1t) := ar/t + Mr, where VcX satisfies b= Ilt, for all rCR, tET. 

This makes All CD X into an S-module. Note that, for each c C- T, x= xrc, 
for soine'r G R, and hence x(I - re) = 0, i. e., X(I - rc) = 0. It follows that 

X is T-torsion-free. Also, A11 is a vector space over Q. 
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Now, we claim that U= (Io + x)S. Let V :=IaEM, o) XI at E 

U, for some tGT}. Clearly, V is a submodule of M, ED X and U <- V. Since 

. 
A, Ij E) X is T-torsion-free, it follows that U is essential in V. Thus U=V. 

Let rER, tGT. Then ((Io + x)(rlt))t = (Io + x)r EU and hence 

(Io + x) (r/t) E U. Thus (1o + x) S C- U. Let uEU. Then (Io + x) R+ uR C U, 

so that (Io + x) R+ uR is a finitely generated uniform module over a principal 

ideal domain and hence is cyclic. Suppose that (1o + x) R+ uR = (p + xd) R, 

for some pE All, dER. There exists cGR such that lo +x= (p + xd)c and 

hence x= xdc. It follows that 1-A C= r(x) and hence X= Xdc C Xc C X, 

i. e., X= Xc and cET. Hence p+ xd = (Io + x) (I 1c) G (1o + x) S. It follows 

that uE (Io + x)S. Thus U= (Io + x)S. 

Let y: = 1k+ 1+---+1,,, so that m=x+y. Because P1, ..., P,, are distinct 

maximal ideals, R= (P11, " n... n P,, ý'k) +(P, ". k+ In... npký +1 T(X) + r(y). 

Then, there exists c Cz R such that xc =x and yc = 0. Clearly, cET. 

Let ýp :U --ý M2 be an R-homomorphism. Suppose that W[(1o+x)(11c)] 

nif, for some fER. Then 

w(lo + x) = Alo + x) ('/c)lc = mf c= (x + Y)f C= xf - 
A similar argument shows that ýp(U) :! ý X. If rER and tET, then 

(Io + x)(r1t) = lo(r/t) + x'r, where x' EX and xt = x. So, 

(w[(lo + x) (rlt)])t = ýo[(lo + x)r] = xfr = xtfr. 

Because X is T-torsion-free, it follows that W[(Io + x) (r/t)] = x'f r. 
Note that M= A/11 e xR (D yR and let 7r : Af --ý xR be the canonical 

projection with kernel A, 11 (D yR. Define 0: xR ---ý A/12 by O(z) = zf, for 
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all zc xR. Clearly, 0 is an R-homornorphism. Then OF :M --ý M2 is a 
hornoinorphism and 07r(. AI) < xR. Also, for rGR and tET, 

(07r[(lo + x) (r/t)])t = 07r«lo + x)r] = O(xr) = xf r= Afr. 

Again because X is T-torsion-free, it follows that 

07C[(Io + X)(7'lt)] = Xif7- = W[(Io + X)(rlt)). 

Thus (p can be lifted to M. We have proved that M2 is M-c-injective. 

Since A1, is an injective module, it now follows that M is self-cu-injective, 

, by Lemma 3.1.5. 0 

Combining Theorem 3.3.3 and Proposition 3.1.13, we have the next result 

without further proof. 

Tlieorem 3.3.4 Suppose that R is a principal ideal domain and let the 

module III := Al, G) 112 be the direct sum of a torsion-free indecomposable 

inj . ective submodule All and a cyclic torsion submodule M2. Then M is self- 

c-injective. 

Proposition 3.3.5 Suppose that R is a principal ideal domain, let p, be 

a prime in R and let M be a p-primary module with uniform dimension 2. 

Then AI is self- c-injective. 

Proof. If 11 is injective, then there is nothing to prove. Suppose that 
Al == Ill, (D M2, where All is indecomposable injective and A, 12 = mR, where 

nip" = 0, Trip"-' :ý0, for some integer n. Let U be a maximal uniform 

submodule of Al and let (p: U -ý A, 12 be a homomorphism. 
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Either U is isomorphic to MI and U is a direct summand of M or U is 

cyclic. Suppose that U is cyclic. Then U= (x + ma)R, for some xc All, 

and aER with ma =7ý 0. Suppose that aG pR. 'Then a= pb, for some 

bGR, and x= yp, for some yE Mi. Let U' := (y + bm)R and note that 

(y + mb)p =x+ ma. Then U' is a cyclic p-primary module, so is uniform, 

and UC U'. It follows that U= U'. Hence we can suppose, without loss of 

generality, that a §ý pR, in fact a=1. 

Suppose that ýp(x + 7n) = mr, for some rER. Define 0: M ---ý IV12 by 

O(z + mc) = mer, for all zE 111, cER. It is clear that 0 is well-defined and 

is a homoinorphism. Moreover, for all sER, 0((x + m)s) = O(xs + Tns) 

77isr = (p((x + ni)s). Thus ýo is the restriction of 0 to U. 

Hence every homomorphism from U to A112 can be lifted to M. Since 11, 

is injective, it follows that Al is self-c-injective, by Lemma 3.1.5. 

Now suppose that M= 7njR (D Tn2R, where m, has order ideal p'R and 

7112 has order ideal p'R, for positive integers s<t. Let U be a maximal 

uniform submodule of M. Since M2R is quasi-injective, by (40, page 191, it 

follows that M2R is ni, R-injective, by [40, Proposition 1.3], and hence M- 

injective, by [40, Proposition 1.51. Thus any homornorphism from U to Tn2R 

can be lifted to M. 

Let W: U --+ mIR be a homornorphism. Then U= (mla + M2b)R, for 

some a, bER. By the above argument, we can suppose without loss of 

generality that a=1 or b=1. If b=1, then M= All ED U and (p lifts to 

Al. Suppose that a=1 and (P(7nl + M2b) = m1r, for some rER. Define 

0: Al --ý in 1R by 0(7n 1, ri + 7112r2) =mI ri r, for all rl, r2 C- R. Then 0 is well 

defined and is a honiomorphism. Moreover, (p is the restriction of 0 to U. It 
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follows that any homomorphism from U to mjR lifts to M. 

Therefore, Al is self-c-injective. El 

Corollary 3.3.6 Suppose that R is a Dedekind domain, let P be a max- 

imal Meal of R and let Al be a P-torsion module with uniform dimension 2. 

Then Al is self- c-injective. 

Proof. Without loss of generality, by localizing at P, we can suppose 

that R is a local ring with unique maximal ideal P. By [67, Theorem 16, 

page 2781, R is a principal ideal domain. Apply Proposition 3.3.5. El 

Contrast Proposition 3.3.5 and Corollary 3.3.6 with the following exam- 

ple 

Let p be any prime in Z and let M be the: Z-module (W-/pR)E)(Z/p2Z)E) 

(Z/p'R). Let us prove that III is not self-cu-injective. 

Let U denote the subinodule (I + pZ, p+ plZ, p+ p'Z)T. Then U is a 

cyclic p-torsion module, and so is uniform. Suppose that U is essential in a 
2y, C submodule V of Al. Thus, V is also uniform and V= (a + pZ, b+p_ 

p 
4; Z)I, for solne a, b, cGE There exists dE :Z such that 

+ 1); Z, + P2 T, +4 ý7 + P2W, C +, V4 p 1) (a+ pT-, b T-)d. 

Hence I is congruent to da, modulo p, so that dV pT. Therefore, U=V 

and we can conclude that U is a closed submodule of All. 

Define a homoinorphism a: U --4 M by 

+ P2 a, 4w), + PýZ, p+ 1), a, p+P, (PZ, rp- 
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for all rE 2K 
. 

Suppose that ce can be lifted to a homomorphism 6: Al --+. Al. 

Then 

_, 
l +p47) = 

(U+P; Z, V+P2j (pj, p2 j W+p4 

for some u, v, wE ýZ. Thus 

(py, p2: Z, p2W + P4: Z) p(pW, p2Z, p2 +p4W 

aild 

_, p+p2y, p+p4T a(P: Z, p2T, P2 + P41) = ap + PT _)pl = (pZ, p+p2j, p4 Z). 

Therefore, oz(pýZ, p2T, p2 + p4W) =ý4 6(pZ, p2y, p2 + p4l) and a cannot be 

lifted to M. It follows that Al is not self-cu-injective. 
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