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Summary 

Chronic hepatitis C virus (HCV) infection causes inflammation of the liver, which 

can lead to fibrosis and cirrhosis over time.  Whether liver damage is a 

consequence of viral infection or is due to an immune mediated response is not 

clear.  Steatosis is a histopathological feature often found in HCV infected 

patients.  Steatosis is the accumulation of intracytoplasmic lipid droplets within 

hepatocytes.  It has been linked to the progression of fibrosis (Adinolfi et al., 

2001).  Steatosis was found significantly more frequently in patients infected 

with HCV genotype 3 than those infected with genotype 1 (Mihm et al., 1997).  

Currently there is no cell-based method of investigating the life cycle of HCV 

genotype 3 and transgenic mice studies have been restricted to genotype 1 

proteins. 

Three chimpanzees experimentally infected with HCV showed differential 

regulation of genes encoding enzymes concerned with lipid metabolism.  

Treatment of HCV genotype 1b replicon containing cells with cerulenin, which 

inhibits fatty acid synthase, reduced replication of HCV RNA in a dose dependent 

manner (Su et al., 2002).   

Polyunsaturated fatty acids (PUFAs) have recently been shown to inhibit 

replication of a genotype 1b sub-genomic replicon.  PUFAs are essential and are 

known to down regulate lipogenic gene expression.  However, the inhibitory 

effect of PUFAs on HCV RNA levels was thought to be independent of their 

inhibitory effect on fatty acid biosynthesis (Kapadia et al., 2005). 

To assess the effects of cerulenin and fatty acids on HCV genome replication we 

measured replication by northern blot analysis of total HCV RNA and using a 

replicon expressing luciferase.  HCV protein production was measured by 

western blot using an antibody to the NS5A protein.  To examine the effect on 

long chain fatty acid synthesis, we measured incorporation of 14C acetate into 
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total cellular lipids.  Toxicity was assayed using mitochondrial enzyme activity 

assays.  

Treating genotype 1b replicon cells with 30 μM cerulenin led to inhibition of 

fatty acid biosynthesis and a corresponding inhibition of HCV RNA replication.  

However, at this level of cerulenin, only 60 % of cells were viable.  Inhibition of 

fatty acid biosynthesis was not observed at the lower non-toxic concentrations 

of 10 μM and 3 μM, although HCV replication was inhibited.  These experiments 

were repeated using more frequent media changes and different suppliers of 

cerulenin.  However, similar results were obtained.  When a genotype 2a 

replicon expressing cell line (JFH1) was treated with cerulenin it was possible to 

inhibit both HCV RNA levels and fatty acid biosynthesis in a dose dependant 

manner.  Furthermore cerulenin treatment of an alternative genotype 1b 

expressing cell line led to an inhibition of fatty acid synthesis in a dose 

dependent manner. 

We have studied the effects of the PUFAs, docosahexaenoic acid (DHA) and 

eicosapentaenoic acid (EPA) on JFH1 replicon (genotype 2) replication using both 

constitutive and transiently expressing systems.  For a control, we used oleic 

acid, a monounsaturated fatty acid.  DHA and EPA administered from 3 to 100 

μM concentration showed a dose responsive reduction in replication. Fatty acid 

biosynthesis was also inhibited; however at the higher concentrations there were 

reductions in cell viability.  Oleic acid did not effectively inhibit JFH1 replication 

even though, at higher concentrations, there was a small reduction in 14C 

acetate incorporation.  Initial immunofluorescence data indicated that NS5A foci 

were not disrupted by treatment of cells with PUFAs and fluorescence recovery 

after photobleaching data indicated that PUFAs did not increase ER membrane 

fluidity. 

A genotype 3 genome was amplified and sequenced using reverse-transcription 

polymerase chain reaction (RT-PCR) from the serum of an HCV genotype 3a-

infected patient.  A majority sequence was assembled and amplification 

products were ligated into vectors, which were sequenced and mutated back to 

the majority sequence.  The genotype 3 genome was modified by the exclusion 

of the structural genes and non-structural (NS) protein 2.  A bicistronic replicon 

was created in which the HCV internal ribosome entry site (IRES) controlled 
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expression of the selectable marker neomycin phosphotransferase and the 

encephalomyocarditis virus IRES controlled expression of the NS proteins.  RNA 

replicons were transcribed and electroporated into HuH-7 cell lines.  A 

transiently expressing replicon was made by replacing the neomycin gene with a 

firefly luciferase gene.  Cells expressing neither the constitutively nor the 

transiently genotype 3 replicon sustained viral replication.   

In conclusion cerulenin inhibited HCV replication at levels, which did not inhibit 

fatty acid biosynthesis and were not toxic.  There was toxicity at cerulenin 

concentrations, which inhibited fatty acid biosynthesis.  Cerulenin inhibited 

replication but by a mechanism other than inhibition of fatty acid biosynthesis. 

Cells with different passage histories were shown to behave differently to each 

other in their response to drugs.  

The PUFAs, DHA and EPA exert an inhibitory effect on HCV replicon replication 

and fatty acid biosynthesis at non-toxic levels.  Oleic acid did not inhibit HCV 

replication at equivalent concentrations.  The mechanism behind PUFA inhibition 

of HCV RNA levels is still unknown. 

An attempt to create genotype 3 constitutively and transiently expressing 

replicon HuH-7 cell lines failed.  
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Chapter one 

1                              Introduction 

1.1 Background 

The liver has vascular, metabolic, secretory and excretory functions.  Therefore, 

if it becomes diseased, the effects can be experienced throughout the body.  

Liver disease can have many causes including drugs, alcohol, viral infection, 

autoimmune disease, toxins or be congenital.  Signs of liver disease include; 

jaundice, cholestatis (reduced or stopped bile flow), liver enlargement, portal 

hypertension (increased blood pressure in the portal blood vessels which supply 

the liver with blood from the intestine), ascites (a build up of fluid in the 

abdominal cavity due to leakage from the liver and intestine) and hepatic 

encephalopathy (the deterioration of brain function due to toxins not being 

removed from the blood by the liver).  Of these, jaundice is the most common 

sign of acute liver disease and sometimes is the only one.  Jaundice is caused by 

high levels of bilirubin in the bloodstream leading to yellowing of the skin and 

the whites of the eyes.  However, jaundice is not common in chronic liver 

disease.  

Hepatitis or inflammation of the liver caused by viral infection was first 

described in the 1900s.  The group of viruses associated with hepatitis are called 

the hepatitis viruses.  These are not related taxonomically but by their primary 

disease site.  They cause inflammation of the liver and the hepatocyte is their 

major target host cell. 

1.1.1 Viral hepatitis 

Hepatitis A virus (HAV) was described in the early 1900s by its clinical symptoms 

and faecal oral route of transmission.  However, virus particles were first 
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isolated from a faecal sample only in 1973 (Alter et al., 1975).  During the 

incubation period, the virus replicates within the liver but is undetected by the 

immune system.  Clinical symptoms of infection are manifested only when an 

immune response occurs.  The virus is efficiently removed by the adaptive 

immune system.  An increased risk of exposure occurs in people living in 

developing countries, illicit drug users, actively homosexual men and patients 

who require treatment with clotting factors.  The HAV genome was cloned and 

sequenced in 1987, which allowed its classification in the Picornaviridae family 

of viruses.  HAV is a positive-sense, single-stranded (ss) RNA non-enveloped 

virus.  Its 7500 nucleotide genome is packaged into an icosahedral protein 

capsid.  The genome contains a single open reading frame (ORF) which encodes 

a polyprotein flanked by 5’ and 3’ untranslated regions (UTR).  The polyprotein 

is cleaved to produce structural proteins, which make up the capsid of the virus, 

and non-structural (NS) proteins concerned with replication (Martin A, 2006).   

Hepatitis B virus (HBV) first came to notice in 1883 when patients developed 

jaundice after inoculation with a contaminated batch of smallpox vaccine 

(Shepard et al., 2006).   The route of infection is by blood or body fluid 

percutaneously (through the skin) or contact with mucosal surfaces leading to an 

acute or chronic infection.  HBV has a circular, partially double-stranded DNA 

genome of 3200 bp, which encodes 7 known viral proteins.  It has been classified 

in the Hepadnaviridae family of viruses.  Currently, the World Health 

Organisation estimates that there are 350 million people infected worldwide 

(WHO, 2007).  It is estimated that 500,000 – 700,000 people die each year from 

HBV infection.  HBV causes one third of all cases of liver cirrhosis and a half of 

all cases of hepatocellular carcinoma.  Methods for combating the virus rely on 

prevention more than treatment as an effective vaccine is available.  

Unfortunately, treatment of infected patients is complicated by development of 

viral resistance to drugs and is expensive (Shepard et al., 2006). 

Hepatitis D virus (HDV) was first discovered in 1977 after the recognition of the 

delta antigen in patients with HBV infection.  Initially, delta antigen was thought 

to be an HBV antigen but was found to be the core of another virus (Taylor J, 

2006).  Like HBV, HDV infection occurs by percutaneous or mucosal surface 

contact with blood or blood products.  HDV infection can occur only in the 

presence of a helper HBV, as it requires the HBV surface antigen (HBsAg) for 
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envelopement.  The two viruses have unrelated genomes.  HDV is a ss circular 

RNA virus with a genome of 1679 bases, which shows similarities in genome 

structure and replication to plant viriods.  Patients who are infected with HBV 

and HDV at the same time are said to be “co-infected”.  If a patient already 

chronically infected with HBV becomes infected with HDV, it is termed “super 

infection”.  Acute HDV “super-infection” causes an increase in the rate of liver 

disease and increases the chance of fulminant hepatitis.  Fulminant hepatitis is a 

clinical syndrome in which necrosis of large numbers of liver cells causes a 

severe impairment of hepatic function resulting in liver failure and 

encephalopathy.  Of HBV infected patients worldwide, it is roughly estimated 

that 20 million people are infected with HDV.  Treatment of chronic HDV 

infections is ineffective and prevention is based on vaccination against HBV.   

Hepatitis E virus (HEV) is a waterborne disease found mostly in developing 

countries.  HEV shows a similar epidemiological spread to HAV.  However, it was 

first identified that this was another enteric hepatitis virus in the early 1990’s.  

Initially known as enterically transmitted non-A, non-B hepatitis, the genome of 

HEV was eventually cloned and was classified in a new genus, Hepeviridae.  It is 

transmitted via the faecal oral route.  HEV causes acute hepatitis in young adults 

with most risk to pregnant woman.  HEV is a non-enveloped, spherical ss RNA 

virus similar to calicviruses.  The genome is 7500 bases in length and contains 

three overlapping ORFs used to produce viral proteins.  The 5’ and 3’ ends of the 

genome contain short UTRs (Subrat K, 2006). 

Hepatitis G virus (HGV) was first reported in 1995 by Genelabs, Inc after being 

isolated from patients with chronic hepatitis but no other viral hepatitis 

infection.  This was later followed by the isolation of another similar virus called 

GBV-C by Abbott laboratories.  Both HGV and GBV-C were different isolates of 

the same virus and were classified in the Flaviviridae family of viruses.  

However, HGV is now referred to as GBV-C as further epidemiological studies 

revealed it has no association with liver disease.  GBV-C is a positive ss RNA virus 

which produces a polyprotein of approximately 3000 amino acid.  Interest in 

GBV-C is because it has a similar gene organisation and shares amino acid 

homology with HCV.  Although not pathogenic, surprisingly it has been shown 

epidemiologically that GBV-C co-infection with human immunodeficiency virus 
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(HIV) improves the life expectancy of patients by an unknown mechanism 

(Stapleton et al., 2004).   

1.1.2 Non-A, non-B hepatitis 

With the discovery of HAV and HBV, serological markers were developed, which 

allowed their diagnosis.  However, it became clear that a form of hepatitis 

clinically indistinguishable from HAV and HBV infection, occurred without the 

presence of serological markers for HAV or HBV (Feinman et al., 1980).  This 

type of hepatitis was called non-A, non-B hepatitis (NANBH).  The evidence for 

another hepatitis virus mounted over the 1970s.  With the advent of highly 

sensitive radioimmunoassay, which was used to detect HAV and HBV infections, 

it soon became apparent that many patients who had developed hepatitis after 

blood transfusion were HAV and HBV negative.  A reduction in post-transfusion 

hepatitis was achieved by the elimination of blood donors who were positive for 

HBV.  However, 11 % of the remaining patients developed hepatitis, which was 

serologically unrelated to HAV or other hepatotropic viruses such as Epstein-Barr 

virus or human cytomegalovirus.  Although 4 cases were identified later as HBV 

infections, the remaining 89 % of patients with hepatitis developed the disease 

by an unknown agent. The study suggested that another virus was causing 

hepatitis in these patients (Alter et al., 1975).   

As there was no laboratory test for NANBH, diagnosis relied on exclusion of other 

causes of hepatitis.  The infectious nature of NANBH was demonstrated by the 

intravenous inoculation of chimpanzees with serum from patients presumed to 

be infected with NANBH.  It was possible to take infected serum from the first 

chimpanzee and infect another resulting in the second chimpanzee displaying 

alanine transaminase (ALT) levels, which were twice that of what would be 

considered to be the upper limit of normal (40 IU/L).  ALT is a liver enzyme, 

which can be used to assess damage to the liver by measuring increased levels in 

the serum.  Inactivation of NANBH infectivity with chloroform suggested that the 

infectious agent might have a lipid envelope (Feinstone et al., 1983).   
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1.1.3 Identification of hepatitis C virus genome 

Viral antigens and antibodies associated with NANBH failed to be identified using 

all conventional immunological methods.  However, Choo et al (1989) used 

recombinant DNA cloning technologies to identify the infectious agent of NANBH.  

They believed that a lack of antigen had led to the failure to identify the virus 

so they created a cDNA library to isolate the NANBH sequence. 

Initially, chimpanzee plasma was obtained that had displayed a high infectious 

titre.  The plasma was subjected to extensive ultracentrifugation to allow the 

pelleting of even small viruses and nucleic acid.  The resultant pellet was 

denatured after which cDNA was made using either DNA polymerase or reverse 

transcriptase and random primers since the nature of the viral nucleic acid was 

unknown.  A cDNA expression library was then made by cloning the cDNAs into 

bacteriophage λgt11 and expression in Escherichia coli (E.coli).  The cDNA 

libraries were then screened for clones expressing viral antigens with serum 

from “pedigreed” chronically-infected NANBH patients.  After screening 106 

clones, a positive cDNA clone (clone 5-1-1) was identified along with a larger 

clone (clone 81) which overlapped clone 5-1-1.   

Both these clones failed to hybridise to DNA from extracted human and 

chimpanzee cells, indicating that neither was derived from the host genome.  

Furthermore, the cDNA clones hybridised to total RNA extracted from infectious 

chimpanzees but not RNA extracted from uninfected chimpanzees.  This signal 

was lost on ribonuclease treatment but not on deoxyribonuclease treatment 

indicating it was an RNA molecule.  It was estimated that this hybridised RNA 

was 0.00001 % (w/w) of that of the total liver RNA.  The maximum size of the 

RNA was estimated to be 10,000 nucleotides after gel electrophoresis of RNA 

derived from an infected chimpanzee and hybridisation to clone 81.  Further 

analyses showed the genome to be ss, contain a single open reading frame, and 

be of positive-sense.  Thus, the infectious agent of NANBH had been isolated and 

was called hepatitis C virus (HCV). 
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1.1.4 Morphology of HCV 

The exact morphology of the HCV virion is not known.  Virus-like particles 

associated with NANBH had been described as early as 1975 (Feinman et al., 

1980).  The lack of cell-based infectious systems has meant slow progress in 

characterising the HCV virion.  Initial filtration experiments had indicated that 

the infectivity of an inoculum was not reduced on passage through an 80 nm 

filter.  The use of smaller filters indicated the diameter of the virion to be 

approximately 30-60 nm (He et al., 1987).  In fact, various diameters have been 

reported ranging from 20-100 nm.  This suggests that there may be different 

forms of the virion.  The different structural forms of the virion might also alter 

its association with host immunoglobulins and lipoproteins resulting in 

differences in the buoyant density of the virion (Diedrich G., 2006).  Separation 

of serum by density centrifugation found HCV RNA to be associated with 

fractions containing very low density lipoprotein (VLDL), low density lipoprotein 

(LDL), and high density lipoprotein (HDL).  HCV RNA was found with buoyant 

gradients of ≤1.06 g·mL-1 associated witrh LDL and VLDL and 1.06 - 1.17 g·mL-1 

associated with HDL (Nielsen et al., 2006).  Chimpanzees infected with 

separated fractions showed infectious particles to be present in the lowest 

density (<1.10 g·mL-1).  The study indicated that HCV particles associated with 

lipoproteins were the most infectious (Hijikata et al., 1993). 

More recently, virus-like particles have been produced directly from transfection 

of cells with full-length HCV genotype 2a genomes (Wakita et al., 2005).  The 

density of these particles was found to be between 1.15 – 1.17 g·mL-1 and they 

had a diameter of 55 nm. 

1.1.5 Classification of HCV  

Originally, Choo et al (1989) had described a positive-sense, ss RNA enveloped 

virus, which could be classified in the Togaviridae or Flaviviridae family of 

viruses.  Analysis of derived amino acid sequences found similarities in non-

structural protein 3 between HCV and dengue type 2 virus, a member of the 

Flaviviridae family.  Furthermore, HCV contained some protein sequence 

similarity to members of this family within the pestivirus group.  Based on these 

features, HCV was classified into the Flaviviridae family of viruses (Miller et al., 



Jonathan R Hubb, 2007    7 

1990).  Although some sequence similarity was present, this classification was 

based mainly on genome organisation.  Gene organisation and hydrophobicity 

profiles suggested HCV was closer to the pestivirus genus than the flaviviruses 

(Choo et al., 1991).  Currently, the Flaviviridae family contains 3 genera with 

HCV classified in its own genus, Hepacivirus.  This had been decided based on 

sequence and phylogenetic analysis, which showed the HCV sequence was too 

divergent from either pestivirus or flavivirus to be assigned to either genus 

(Figure 1.1)  (Robertson et al., 1998).   

1.2 HCV genome 

The HCV genome is approximately 10 kb in length (Figure 1.2).  It comprises a 

single open reading frame (ORF), which is flanked by two UTRs.  There are 10 

gene products with structural genes found at the 5’ end of the ORF and non-

structural (NS) genes at the 3’ end. 

1.2.1 Untranslated sequences  

1.2.1.1 5’ UTR 

The 5’ terminus of the HCV genome was described as being highly conserved 

between genotypes with similarity to pestivirus 5’ sequences (Choo et al., 1991; 

Han et al., 1991).  The structure of the HCV 5’UTR, was described, based on 

primary sequence, as stem-loop structures which may act as a platform for 

ribosome binding (Figure 1.3). 

Studies with picornaviruses had determined a similar highly conserved structure 

in the 5’ UTR, which was responsible for directing translation of viral genes 

(internal ribosome entry site - IRES) (Brown et al., 1992; Reynolds et al., 1995).  

IRES elements were first discovered in the picornavirus, polio, where a cis-acting 

element found in the 5’ end of the genome was responsible for translation of the 

internal ORF (Pelletier et al., 1988).  The IRES allowed translation of viral 

proteins in a cap-independent manner.  There were some subtle differences 

between the HCV IRES and those of polioviruses.  A comparison of the HCV IRES 

with other viral IRES structures found similarities with pestivirus IRES elements, 

which consist of 2 main stem loops.  However, picornavirus IRES 
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Figure 1.3.  The secondary structure of the 5’UTR indicating the 
replication element, the IRES and the start of the downstream ORF.  
The replication element comprises domains I and II and the IRES, 
domains II to domain IV.  The start codon of the ORF is highlighted (Kim 
et al., 2001).  
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elements, although similar to each other, were morphologically different to 

pestivirus IRES elements.  They were generally larger and required more direct 

interactions between domains (Beales et al., 2003).   

Studies by Reynolds et al (1995) showed that nucleotides 40 – 370 were required 

for IRES function.  Bicistronic mRNAs containing the HCV IRES were used to 

control translation of a slightly truncated form of an influenza NS protein.  

Deletion of sequences 3’ to the start of the ORF, at nucleotide 342, reduced 

protein expression (Reynolds et al., 1995).  

A combination of thermodynamic, phylogenetic and biochemical methods were 

used to obtain the secondary structure of the HCV IRES (Brown et al., 1992).  

The HCV 5’ UTR was proposed to comprise 4 domains (I, II, III and IV).  Domain I 

contained a small stem loop structure, which along with domain II, was essential 

for replication (Kim et al., 2002).  Domain II was also involved in translation.  

Domains II and III contained numerous complex stem loop structures, which were 

necessary for ribosome binding.  Domain III had much secondary structural 

homology with the pestiviruses even though there was little primary sequence 

homology (Brown et al., 1992).  It also contained a pseudoknot, which was 

essential for translation at the base of the stem loop situated just 5’ of the 

initiation codon (Wang et al., 1995).  Domain IV had a short stem loop structure, 

which contained the initiation codon.  This stem loop could be destabilised with 

little effect on translation.  However, a mutation, which stabilised the 

structure, caused a decrease in translation efficiency (Honda et al., 1996). 

Most mRNAs are translated by association of the cap binding protein complex to 

mRNA at its 5’ terminus after recognition of the guanine cap (a methylated 

guanine in reverse polarity).  This complex then recruits the 43S ribosome to the 

mRNA, which scans along the transcripts to the initiation codon.  Binding of a 

40S ribosome unit directly to the IRES without ribosome scanning was described 

as a unique feature of IRES elements (Honda et al., 1996).  Translation of the 

HCV IRES is thought to be mediated by the interaction of stem loops, 

pseudoknots and the initiation codon with the 40S ribosomal protein.  Ribosomal 

protein S5/S9, the guanine exchange factor eIF-2B and eIF-2γ have all been 

shown to be co-factors for HCV translation (Fukushi et al., 2001; Kruger et al., 

2000). 
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1.2.1.2 3’ Untranslated region 

The 3’ UTR is described as a tripartite structure containing a variable region 

after the stop codon, a poly (U) tract and a highly conserved element termed 

the X tail.  Originally, the 3’ UTR was described as a short 54 base structure, 

which consisted of some direct and inverted repeats followed by a short poly(U) 

stretch (Takamizawa et al., 1991).  However, the 3’ UTR was found to be longer 

by Tanaka et al (1995) when primer extension experiments revealed a 98 base 

structure at the 3’ end.  The sequence was able to form stem loop secondary 

structures and was termed the X tail.  The X tail was confirmed as being the 

authentic 3’ end of the genome after its presence was found in serum samples 

from infected patients with no additional sequence beyond it (Tanaka et al., 

1996).  Sequence conservation of the X tail between genotypes was high with 

between 98 -100 % homology (Kolykhalov et al., 1996; Yamada et al., 1996).  

The structure of the X tail suggested that the 3’ terminal 42 nucleotides formed 

a stable stem loop structure, which had high thermodynamic stability.  This 

indicated that the structure might be involved in important interactions for the 

viral life cycle.  The 56 nucleotides 5’ to these nucleotides were able to form 

multiple conformations and therefore were suggested to have multiple possible 

protein or RNA interactions (Blight et al., 1997). 

RNA/protein interactions with polypyrimidine tract protein (PTB), involved in 

RNA processing and translation, were described between the X tail and the 

poly(U) tract by performing UV cross-linking experiments (Ito et al., 1997; Luo G, 

1999; Tsuchihara et al., 1997).  Both primary RNA sequence and the stem-loop 

structures of the 3’ UTR were shown to be important for this interaction.  

However, some studies showed an interaction only with the poly(U) tract 

(Gontarek et al., 1999).  The ability of PTB to bind to the 5’ UTR suggested that 

it may be able to control translation through interactions between the two UTRs.  

Initially, PTB was suggested to enhance translation of the 5’ UTR.  A cis-acting X 

tail was shown to enhance translation through its interaction with PTB.  Removal 

of the X tail or mutation of the PTB binding site decreased but did not abolish 

translation (Ito et al., 1998).  In contrast, another study found that the 3’ UTR 

down-regulated IRES-dependent translation of viral RNA (Murakami et al., 2001).  

Murkami et al (2001) found that PTB could down-regulate IRES function although 

through another binding site thought to be situated in the coding region.  
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Furthermore, mutational studies of the X region indicated PTB does not 

participate in 3’ UTR mediated enhanced IRES translation (Brocard et al., 2006).     

Other proteins have been implicated in interactions with the 3’ UTR.  La protein, 

which recognises oligouridylate sequences, was able to bind the HCV poly(U) and 

protect it from RNA degradation by ribonucleases (Spangberg et al., 2001).  

Heterogeneous nuclear ribonucleoprotein C (hnRNP C) was also found to interact 

with the poly(U) tract of the 3’ UTR.  The exact function of this protein is not 

known but is thought to be important for viral replication possibly modulating 

RNA secondary and tertiary structure (Gontarek et al., 1999; Murakami et al., 

2001).  The HCV X tail also interacts with ribosomal proteins L22, L3, S3 and 

mL3.  Furthermore, L22 protein and La protein enhanced translation efficiency 

of the HCV IRES in mono- and bi-cistronic replicons (Wood et al., 2001). 

There is little information on RNA-RNA interactions between the 3’ UTR and 

other RNA structures.  However, an important RNA interaction between a cis- 

acting element in NS5B and the X tail was essential for replication of a replicon.  

The structure, rather than primary sequence, was necessary for the kissing-loop 

interaction, which was thought to be important for NS5B RNA polymerase 

priming (Friebe et al., 2005; You et al., 2004). 

Chimpanzees experimentally inoculated intra-hepatically with in vitro 

transcribed full length HCV RNA which had deletions in all or part of the X tail 

and poly(U) tract did not become infected (Kolykhalov et al., 2000; Yanagi et 

al., 1999).  In contrast, deletions in the variable region had no noticeable effect 

on viral infection (Yanagi et al., 1999).  In fact, HCV replicon studies have shown 

that the complete deletion of the variable region reduces but does not abolish 

replication (Friebe et al., 2002).  Similar deletion studies have shown that 

deletion of the X tail or poly(U) abolishes replication.  Deleted poly(U) mutants 

could be rescued by the insertion of, a minimum, poly(U) of 50 – 62 nucleotides 

of poly (U/UC) (Yi et al., 2003). However, other studies showed at least 26 

nucleotides of poly (U/UC) were required for replication (Friebe et al., 2002).   
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1.2.2 Structural proteins 

1.2.2.1 Core 

HCV core is a highly conserved basic protein, which is presumed to make up the 

viral capsid (Bukh et al., 1994).  The protein consists of the first 191 amino acids 

of the nascent polyprotein and three different isoforms have been isolated.  The 

first isoform called p23, based on its approximate molecular weight in a 

polyacrylamide gel, acts as a precursor for the other isoform p21.  However p16 

has only ever been found in one strain of HCV, HCV-1 (Lo et al., 1995).  p21 is 

the major isoform and is thought to be the mature core viral capsid protein as it 

has been found in infected patients’ sera (Yasui et al., 1998).  Mutational 

analysis placed the cleavage site of p23 between amino acids 191 and 192 by a 

cellular signal peptidase.  Originally, studies failed to identify the exact 

cleavage site for the p21 isoform placing it between amino acid 172 – 174 (Hüssy 

et al., 1994).  Recently, it has been proposed that cleavage occurs between 

amino acids 179 -180 by an intramembrane cleaving signal peptide peptidase 

(SPP) (McLauchlan et al., 2002). 

Core can be divided into three domains based on its hydropathicity.  Domain 1 

(amino acids 1 - ~117) contains mainly basic residues with two short hydrophobic 

regions.  Domain 2 (amino acids 118 – 174) is less basic and more hydrophobic 

and its C –terminus is at the end of p21.  Domain 3 (amino acids 175 – 191) is 

highly hydrophobic and acts as a signal sequence for E1 envelope protein (Bukh 

et al., 1994). 

Core is a cytosolic membrane-bound protein, which has been found to associate 

with the endoplasmic reticulum (ER), lipid droplets, mitochondria and the 

nucleus.  Association of mature core with lipid droplets and mitochondria was 

found only after cleavage to produce the p21 isoform (Barba et al., 1997; Schwer 

et al., 2004).  After SPP cleavage, mature core is able to transfer from the ER 

membrane to lipid droplets and mitochondrial surface membranes.  Core has 

also been reported to be found in the nucleus implicating a regulatory function.  

However, nuclear localisation  has been associated only with the p16 isoform of 

core or truncated versions of expressed core (Lo et al., 1995; McLauchlan J, 

2000). 
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As mentioned, mature core is thought to form the viral capsid.  Core protein can 

bind viral RNA (Santolini et al., 1994) via domain 1 (amino acids 1 – 74) and also 

multimerises (Matsumoto et al., 1996).  The ability of a capsid protein to 

interact with itself is important for capsid formation.  The domain of core 

involved with self-interaction was mapped to domain 1 (amino acids 1 – 115). 

Many other protein-protein interactions involving core have been identified by 

the yeast two-hybrid system and biochemical analysis.  Only domain 1 has been 

implicated in these interactions but the wide range of proteins with which core 

can associate suggests its multifunctional role in infection.  Core has been 

suggested to interact with apolipoproteins on the surface of lipid droplets (Barba 

et al., 1997).  Also core was found to interact with the Lymphotoxin-β receptor 

whose exact function is not known (Chen et al., 1997).  Core interaction with 

RNA helicases of the DEAD box family of proteins has been described (Mamiya et 

al., 1999; Patel et al., 1999).  Finally core can interact with hnRNP K, which 

suggests a regulatory role for core in transcription or viral replication.  

Interestingly, core was shown to suppress not only cellular transcription but also 

HBV gene expression (Chen et al., 2003). 

The interaction of core with cellular proteins allows for the deregulation of 

many cellular processes leading to suppression of apoptotic pathways (Ray et al., 

1996), an induction of cell proliferation (Erhardt et al., 2002) and cellular 

transformation (Yoshida et al., 2002).   

Recently, p16, a ribosomal frameshift protein called protein F was identified, 

which was made from a +1 frameshift in the region encoding core.  It displayed a 

similar subcellular localisation to core (Cristina et al., 2005) and F protein 

specific antibodies have been found in patients who are chronically infected.  

However, little is known about its function although it has been found to 

interact with prefoldin 2 disrupting the microtubule cytoskeleton (Tsao M-L, 

2006).  

1.2.2.2 Envelope proteins 

HCV has two envelope proteins, E1 and E2, which are glycosylated and mediate 

viral entry into the cell.  They form non-covalently bound heterodimers.  The 

proteins each contain an ectodomain, which is targeted to the lumen of the ER 
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after translation and a transmembrane domain.  The ectodomain of E1 is 

targeted to the ER lumen by a the signal sequence in the C-terminus of core 

protein and the ectodomain of E2 is targeted to the ER lumen by a signal 

sequence in the C-terminus of E1 (Santolini et al., 1994).  In the ER membrane, 

E1 and E2, are glycosylated at 5 and 11 glycosylation sites, respectively.  

However, the number of glycosylation sites can vary between different HCV 

genotypes.  The addition of these glycan groups is essential for proper folding of 

the proteins and is mediated by the ER protein calnexin (Dubuisson et al., 1996; 

Merola et al., 2001).  It was thought that slow E1 folding represents the limiting 

step in the E1E2 oligomerisation process with calnexin retaining misfolded 

complexes in the ER (Dubuisson et al., 1996).  Mutation analysis of charged 

residues within the transmembrane domains of the envelope proteins found 

possible ER retention signals.   Transmembrane domains with charged amino acid 

residues prevent translocation from the membrane and tether envelope proteins 

to the membrane (Cocquerel et al., 2000).  Deletion studies and domain 

swapping showed the transmembrane domains of HCV envelope proteins were 

essential for their heterodimerisation (Owsianka et al, 2001). 

The envelope proteins are thought to mediate cell entry by recognition of 

cellular membrane receptor proteins.  However, until recently, research in this 

area was difficult due to the lack of infectious cell based systems.  The 

development of cells, which produce infectious HCV pseudotype particles 

(HCVpp) by the use of a retroviral vector for assembly of the virus 

pseudoparticle has helped the identification of cellular receptors (Bartosch et 

al., 2003).  Furthermore, HCVpp could be neutralised by anti-E2 monoclonal 

antibodies (Hsu et al., 2003).   

Various putative cellular receptors have been suggested as mediating 

interactions with HCV envelope proteins.  Truncated forms of E2 have been 

shown to interact with CD81, scavenger receptor type B class 1 protein (SRB-1) 

and high density lipoprotein (HDL) binding molecule (Scarselli et al., 2002; Pileri 

et al., 1998).  Soluble forms of CD81 can inhibit entry of HCVpp to cells (Hsu et 

al., 2003).  Ectopic expression of CD81 in CD81-negative cells does not permit 

HCVpp entry indicating that CD81 is a co-receptor.  Another proposed HCV 

receptor is the low density lipoprotein (LDL) receptor, which was shown to help 

endocytosis of the virus.  Viral entry could be prevented in a number of cell 
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types using an anti-LDL monoclonal antibody (Agnello et al., 1999).  Mannose 

binding proteins (DC-SIGN and L-SIGN) have been suggested as having 

interactions with E2 but their contribution to viral entry is not known (Gardner 

et al., 2003). 

E2 contains two hypervariable regions (HVR), HVR1 and HVR2, which are under 

constant selection for mutation probably because they are targets for 

neutralising antibodies. Numerous studies have highlighted the genetic 

heterogeneity of the HVR1, which may enable virus to evade the immune system 

and facilitate establishment of chronic infection (Boulestin et al., 2002; Polyak 

et al., 1998).  However, chronic infection has been reported in an 

experimentally infected chimpanzee even though there was no variation in HVR 

(van Doorn et al., 1995). 

1.2.2.3 p7 

The p7 protein is a small, 62 amino acid, hydrophobic polypeptide thought to be 

a viroporin (Lin et al., 1994).  Analysis of the primary sequence predicted it to 

contain two hydrophobic transmembrane regions connected by a short 

hydrophilic segment.  Alkaline extraction confirmed p7 as an integral membrane 

protein and membrane localisation showed some p7 to localise to the plasma 

membrane while most remained in an earlier ER-derived secretory compartment 

(Carrere-Kremer et al., 2002).  The localisation of p7 to mitochondrial 

membranes further indicated the different functions the protein may have 

(Griffin et al., 2005).  It has been proposed that p7 may have a role in 

production of viral progeny.  Recently, p7 has been shown to oligermise with 

itself and form ion channels in artificial membranes.  Interestingly, the use of 

the anti-influenza drug amantidine, which can block ion channels, was shown to 

block HCV p7 ion channel formation (Griffin et al., 2003).  More recently, using 

the JFH1 infectious cell system, p7 has been shown to be essential for virus 

particle assembly and release of infectious virions in a genotype specific manner 

(Steinmann et al., 2007). 
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1.2.3 Non-structural proteins 

1.2.3.1 NS2 

NS2 protein is a 217 amino acid transmembrane protein that is an essential 

component of the NS2-3 autoprotease.  Studies have found that NS2 is not 

needed for RNA replication (Lohmann et al., 1999).  NS2 was found to contain 

signal sequences in its multiple transmembrane domains, which cross from the 

cytosol to the lumen of the ER, that target it to the ER membrane.  Its N-

terminus and C-terminus are found in the ER lumen (Yamaga et al., 2002).  This 

is contrary to previous reports which indicated that the C-terminus was found in 

the cytosol (Santolini et al., 1995).  The NS2-3 metalloprotease protein contains 

autoproteolytic activity, which is able to cleave the junction between NS2 and 

NS3 in a zinc dependent manner (Pallaoro et al., 2001; Santolini et al., 1995).  

The domain required for this cleavage was mapped between amino acids 827 and 

1207 of the polyprotein at the C-terminus of NS2 (Grakoui et al., 1993a).  NS2-3 

was called a metalloprotease based on observations that exogenous zinc 

stimulated protease activity and chelating agents, like EDTA, were able to 

inhibit protease activity.  The zinc, which is known to be essential, may act 

structurally to stabilise the NS3 structure at the active site.  Analysis of the 

region showed that amino acid requirements for effective NS2-3 cleavage vary 

between HCV strains but deletion was required in both NS2 and NS3 to inhibit 

cleavage (Reed et al., 1995).   

1.2.3.2 NS3 

The NS3 protein is a hydrophilic multifunctional protein, which contains an N- 

terminal serine protease domain and a C-terminal NTPase/helicase domain.  The 

mature protein has a molecular weight of 67 kDa (Gallinari et al., 1998) and is 

bound to the ER membrane by its association with NS4A protein.  When 

expressed on its own, NS3 protein showed a diffuse cytoplasmic and nuclear 

staining pattern.  The co-expression of NS4A and NS3 localised NS3 protein to the 

ER (Wolk et al., 2000).  Interestingly, the enzymatic activity of either the serine 

protease domain or the NTPase/helicase domain showed differences when 

expressed as part of the whole recombinant enzyme or individually as 

independent domains (Gallinari et al., 1998). 
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The identification of the serine protease domain was based initially on 

comparison with NS3 protein function and gene arrangement from other related 

flaviviruses and pestiviruses.  The related pestivirus NS3 protein contained serine 

protease activity, which was catalysed by a triad of amino acid residues (Eckart 

et al., 1993).  HCV NS3 protease is contained within the last 185 amino acids at 

the N-terminus and is involved in cleavage between NS3-4A, 4A-4B, 4B-5A and 

5A-5B (Bartenschlager et al., 1993).  The exact order in which the NS3 cleaves 

the polyprotein is complex.  An initial cleavage between NS3-4A is thought to 

occur, however NS3-5A intermediates have been found indicating that there can 

be variation.  Cleavage between NS5A and 5B was rapid with both NS3-4A and 

NS5A-5B cleavages occurring cotranslationally (Bartenschlager et al., 1994).  The 

proposed catalytic triad in HCV NS3 is positioned at amino acid residues His-

1083, Asp-1107 and Ser-1165.  Replacement of His-1083 and Ser-1165 with 

alanine abolished NS3 cleavage of the HCV polyprotein without affecting protein 

structure of NS3 (Bartenschlager et al., 1994; Grakoui et al., 1993a).  

Furthermore, NS2 sequences were not required for NS3 cleavages.  X-ray 

crystallography has shown a zinc ion to be tetrahedrally coordinated by three 

cysteine residues and a histidine (via a water molecule) bound tightly to NS3 

where it may provide a structural rather than enzymatic role (Kim et al., 1996).   

The NTPase/helicase domain of NS3 resides in the C-terminal 465 residues of the 

NS3 protein.  Initial sequence analysis indicated that the region contained RNA 

helicase motifs (Gallinari et al., 1998).  The helicase contained a consensus 

sequence common to the DEAD box family of proteins and could be placed in the 

DEXH subfamily (Kim et al., 1995).  The presence of helicase and NTPase 

domains was confirmed after expression of recombinant forms of NS3 and 

biochemical analysis (Suzich et al., 1993).  Biochemical analysis of the helicase 

domain showed double-stranded RNA could be unwound and denatured in an ATP 

and divalent ion dependent manner (Gallinari et al., 1998).  Also the helicase 

domain was able to unwind double-stranded DNA and DNA-RNA hybrids (Tai et 

al., 1996).  Furthermore, both the 5’ and 3’ UTRs of HCV have been shown to 

interact with the helicase domain.  However, presence of a ss region was 

necessary for this interaction.  These studies indicated that the helicase had 3’ 

to 5’ activity (Tai et al., 1996).  Recently, the stem loop structures in the X tail 

were found to be important for binding of the helicase domain to negative-
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stranded HCV RNA whereas the whole 3’ UTR was required for binding to 

positive-sense HCV RNA (Banerjee et al., 2001). 

The NS3 protein also contained a short consensus sequence, which interacted 

with the catalytic subunit of protein kinase A (PKA).  This interaction led to 

retention of the catalytic subunit of PKA in the cytoplasm preventing it entering 

the nucleus.  PKA modifies intracellular proteins by adding phosphate groups 

altering target protein function.  Therefore, NS3/PKA interactions may 

deregulate intracellular signalling (Borowski et al., 1997). 

1.2.3.3 NS4A 

NS4A is a 54 amino acid protein, which acts as a cofactor for NS3 protein.  Little 

is known about NS4A protein function other than its interaction with NS3.  The 

NS4A protein has an N-terminus which is highly hydrophobic and deletion analysis 

showed it to be involved in targeting NS3 to the ER membrane (Wolk et al., 

2000).  It was proposed the last 20 amino acids form a transmembrane helix, 

which anchors the NS3/NS4A complex on the ER membrane.  The interaction 

between NS4A and NS3 is mediated between residues within the core of NS3 and 

the C- terminus of NS4A.  This interaction allows activation of the NS3 active site 

and more efficient protease cleavage (Kim et al., 1996).    

NS4A is also required for the phosphorylation of NS5A and can directly interact 

with NS5A.  Deletion analysis indicated that a region of amino acids in the centre 

of NS5A (amino acids 2135 to 2139) was essential for NS4A-dependent 

phosphorylation of NS5A (Asabe et al., 1997).     

1.2.3.4 NS4B 

NS4B is a small hydrophobic 27 kDa protein, which may act as a “platform” for 

recruitment of other viral proteins.  Topology studies have found NS4B contains 

4 transmembrane domains.  The C-terminus of NS4B faces the cytoplasm and the 

N-terminus has a dual topology where most faces the ER lumen (Lundin et al., 

2006).  NS4B interacts with NS4A and therefore indirectly with NS3 and NS5A (Lin 

et al., 1997).  The NS4B protein was found to be an integral membrane protein 

which was targeted to the ER and colocalised with other non-structural proteins 

at foci in the ER membrane (Hugle et al., 2001).  Electron microscopy studies 
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indicated that NS4B induced morphological changes to the ER forming a 

structure termed the membranous web.  All viral proteins were localised to this 

area suggesting a site for replication complex formation (Egger et al., 2002).  

Additional immunofluorescence studies indicated that NS4B has reduced mobility 

in these foci which may be due to oligomerisation (Gretton et al., 2005).  NS4B 

can interact with lipids where it is palmitylated at two residues in the C-

terminus, which are important for oligomerisation (Yu et al., 2006).  NS4B 

protein failed to show cytopathic or oncogenic effects in the livers of transgenic 

mice (Wang et al., 2006).  

1.2.3.5 NS5A 

NS5A is a hydrophilic phosphoprotein, which contains no transmembrane 

domains.  Localisation studies have indicated that it associates with the ER 

through an amphipatic helix in the N-terminal 30 residues, which lies parallel to 

the membrane and is essential for replication (Brass et al., 2002).  NS5A 

localised to the nucleus when N- and C-termini were deleted.  Furthermore, 

production of this nuclear product could be achieved by cleavage by a cellular 

caspase-like protein (Shinya et al., 2000).  This might have interesting 

consequences for nuclear functions of NS5A.  However, the cleavage product was 

only found when NS5A was expressed alone and not in the context of the full 

polyprotein.  NS5A associated with lipid droplets when expressed alone or as 

part of the polyprotein (Shi et al., 2002).  Structural analysis of the N-terminus 

showed NS5A contained an essential zinc-coordination motif, required for 

structural integrity (Moradpour et al., 2005). 

NS5A is present as two phosphorylated forms based on its electrophoretic 

mobility, p56 and p58.  The p56 isoform is basally phosphorylated between 

residues 2200 and 2250 and near the C- terminus by cellular kinases (Tanji et al., 

1995).  Replicon studies have shown that active NS3, NS4A, NS4B and NS5A are 

required in the same polyprotein in order for NS5A phosphorylation to occur 

(Neddermann et al., 1999).  Kinase inhibitor studies failed to identify those 

kinases responsible for NS5A phosphorylation, however the CMGC family of 

kinases were suggested to be involved (Reed et al., 1997).  CMGC is an acronym 

for the best known members of this group CDK, MAPK, GSK3 and CKII.  As 

mentioned previously, hyperphosphorylation of NS5A to the p58 isoform requires 
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NS3, NS4A and NS4B production from the same polyprotein (Neddermann et al., 

1999).  Furthermore, Asabe et al (1997) described direct interaction of NS4A 

with NS5A was needed for hyperphosphorylation.  Hyperphosphorylation 

occurred in the centre of NS5A at three serine residues (S-2197, S-2201 and S-

2204).   

NS5A has been implicated as being important in viral replication.  Recently, it 

was found to bind to 3’ synthetic positive and negative HCV RNA strands, 

showing a preference for the poly(U) of the 3’ positive strand (Wang et al., 

2005).  Initial studies, which indicated the association of NS5A with other viral 

proteins suggested its presence in replication complexes (Neddermann et al., 

1999).  Mutation of the amphipatic helix disrupted membrane association and 

prevented formation of replicon-harbouring cells (Elazar et al., 2003).   Mutation 

in NS5A was essential for viral replication and establishing a replicon cell line 

(Lohmann et al., 1999).  Interestingly, a highly adaptive mutation, which 

improved replication efficiency of the replicon occurred at the 

hyperphosphorylated residue S-2204, changing it to an isoleucine residue and 

prevented hyperphosphorylation.  Although the presence of a 

hyperphosphorylated serine was required for successful infection of a 

chimpanzee with HCV, hyperphosphorylation was not required in the replicon 

system (Bukh et al., 2002).  

NS5A has also been proposed to contain a region, which confers resistance of the 

virus to interferon treatment (Gale et al., 1997).  This region, called the 

interferon-α sensitivity-determining region (ISDR), was later found to interact 

directly with an IFN-α stimulated gene product, PKR protein kinase.  PKR protein 

kinase is activated by binding to double-stranded RNA resulting eventually in 

cessation of protein synthesis.  It was proposed that sequences in the ISDR could 

be used to predict sensitivity or resistance of HCV to IFN-α treatment (Enomoto 

et al., 1995).  However, these Japanese studies were contradicted by a 

European study which found no correlation between sequence type and the 

response to IFN-α treatment (McKechnie et al., 2000).  NS5A has been proposed 

as having numerous interactions with proteins affecting cell signalling.  

However, the exact contribution of each interaction to viral infection is unclear.  

NS5A can modulate the three main MAPK pathways involved in host cell 

mitogenic signalling, which regulate growth and activation.  It is able 
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differentially to regulate members of the MAPK family of kinases leading to 

perturbation of host cell cycle, decreased cap-dependant translation and 

perturb apoptosis.  NS5A is able to regulate cellular signalling by both pro- and 

anti- apoptotic mechanisms.  It has also been implicated in interfering with ROS 

pathways and phosphatidylinositol 3-kinase signalling pathways, which may lead 

to hepatocyte transformation and HCC formation (Macdonald et al., 2004). 

1.2.3.6 NS5B 

The NS5B protein is a 65 kDa, RNA dependent RNA polymerase (RdRp) and forms 

the major component of the replication complex (Behrens et al., 1996).  

Sequence analysis had identified an amino acid motif GDD, common to RdRp’s 

and critical for polymerase activity (Yamashita et al., 1998).  The crystal 

structure of NS5B has been solved, revealing it to have a “fingers-palm-thumb” 

conformation in which the catalytic domain is found in the palm domain.  The 

RNA template lies between the fingers and thumb on the palm domain (Lesburg 

et al., 1999). 

The NS5B protein is a cytosolic ER membrane-bound protein, which is tethered 

by a transmembrane alpha-helix located in C-terminal 21 amino acid residues 

(Schmidt-Mende et al., 2001).  It forms a vital part of the replication complex 

via interactions with NS5A and therefore indirectly to all other non-structural 

proteins (Shirota et al., 2002).  

1.3 Model Systems for Investigating the HCV Life Cycle 

1.3.1 HCV in cell culture 

Viruses are obligate intercellular parasites that require the presence of a host 

cell in order to multiply.  Research into HCV has been hampered by the lack of a 

susceptible cell culture system.  Conventional virological methods involving 

inoculation of cell lines failed to initiate productive HCV infection.  Initial 

attempts to establish HCV infection used primary cells from humans and 

chimpanzees.  One study found that low levels of infection were possible in 

chimpanzee but not baboon primary hepatocytes, although efficiency was poor 

(Lanford et al., 1994).  In a study by Iacovacci et al. (1997), primary human 
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foetal hepatocytes were infected with HCV-containing sera.  Although small 

increases in HCV positive-strand RNA were detected, the overall efficiency of 

the system was low.   

As there can be difficulties associated with primary cell culture due to 

contamination problems and short passage life, other systems have been tried 

using immortalised human hepatoma cell types and human B- and T-cells.  A 

human hepatocyte cell line, PH5CH, which was immortalised with simian virus 40 

large antigen, was extensively studied.  Although found to be more susceptible 

to HCV infection than others, the system was still inefficient (Kato et al., 1996).  

Studies looking at hepatoma cell lines HepG2 and HuH-7 gave poor results even 

though conditions were changed extensively to try to optimise the approach 

(Seipp et al., 1997).  Mizutani et al. (1996) looked at infection of the human T-

cell line, MT-2, which harbours human T-cell leukaemia virus-1 (HTLV-1).  

Although susceptible to HCV infection, it was not possible to produce long-term 

infection.   Infection of Daudi cells, a B-lymphoplastoid cell line, managed to 

produce long-term infection for up to 1 year (Shimizu et al., 1998) but addition 

of the virus led to cellular cytopathic affects.  It was possible to infect a 

chimpanzee with supernatant obtained after 58 days of culturing in Daudi cells, 

but infectivity was low. 

Other attempts were made to culture virus directly from cells of infected liver 

biopsies from persistently infected patients (Ito et al., 1996).  However, 

replication efficiency was low and reproducibility of the system poor. 

1.3.2 HCV infection of Chimpanzees 

Cell culture studies have highlighted the narrow host range of HCV in that 

infection was possible only in human and chimpanzee cells.  Baboon and porcine 

cell lines did not permit viral infection (Lanford et al., 1994; Seipp et al., 1997).  

Chimpanzees offer the only animal model for HCV infection.  However, there are 

inherent difficulties in using these animals as they are expensive, the ethics of 

their use is debatable and it is difficult to sustain their use.  Nevertheless, 

chimpanzee work has been extremely useful in identifying the components 

required for infection.  Firstly, a cDNA clone was made that corresponded to the 

entire sequence of an HCV isolate.  RNA transcripts were then made, which were 
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infected into chimpanzees by intrahepatic injection.  The advantages of this 

technique are that the HCV genome was well defined and homogenous.  As the 

sequence of the cDNA clone was known any changes in infected viral RNA 

sequence could quickly be identified and defined.  Also RNA could be produced 

in large quantities to optimise the infection process and the cDNA clone was 

easily manipulated genetically (Yanagi et al., 1997).   

Based on the above approach, a cDNA clone was constructed with a consensus 

sequence derived from the sequence of six full-length variants of the same H77 

(genotype 1a) isolate.  From the resultant consensus cDNA genome, RNA 

transcripts were produced, which were intrahepatically injected into a 

chimpanzee and resulted in serum HCV RNA levels of approximately 1 x 106 

copies/ml (Kolykhalov et al., 1997).   Other studies have found that many viral 

variants may actually be defective in causing infection.  For example, studies 

using the H77 strain found two initial full-length cDNA clones were unable to 

cause infection.  However, a chimeric full length cDNA clone containing a 

consensus constructed from four full length clones was able to infect 

chimpanzees (Yanagi et al., 1997).  Sequence analysis indicated that null 

mutations may be responsible but it was unclear whether this was due to the 

error-prone NS5B viral protein or Taq polymerase error when amplifying the 

clones.  Infectious cDNA clones have been made for genotype 1b and 2a (Beard 

et al., 1999; Yanagi M, 1999).  Furthermore, chimeras between genotypes 2a and 

1a were unable to cause infection (Yanagi M, 1999).  Mutational analysis was 

used to assess the contribution of non-structural genes and the 3’ UTR to 

infection.  Mutation of NS2, NS3, NS5B or removal of the 3’ terminus prevented 

viral infection (Kolykhalov et al., 2000).  Other studies have shown that the 

structural protein p7 was necessary for infection.  Also p7 chimeras, which had 

N- and C-termini swapped for different genotypes, were non viable (Sakai et al., 

2003).   Therefore, the use of chimpanzees as an animal model has provided 

important knowledge of viral gene function in infection. 

1.3.3 Establishing an HCV genotype 1b expressing cell line 

A major breakthrough towards a system for productive infection of tissue culture 

cells was the development of HCV replicon systems.  This approach relies on 

hepatoma cell lines, which express an autonomously replicating modified HCV 
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genome.  This was first achieved by Lohmann et al. (1999) after the modification 

of Con1, an HCV genotype 1b strain, creating HuH-7 cell lines that harbor 

replicons.  Initially the coding region was amplified in two overlapping segments.  

This was then mutated to a consensus sequence based on the sequence of 

several clones from each overlapping fragment.  The UTRs were amplified 

separately and assembled with the ORF.  A truncated T7 promoter 

oligonucleotide was ligated to the 5’ flank of the 5’ UTR to allow synthesis of 

RNA transcripts.  A ScaI restriction site was engineered at the 3’ terminus of the 

3’ UTR to allow digestion of plasmid DNA and the synthesis of transcripts lacking 

vector sequence.  The HCV genome was modified by the deletion of structural 

genes as far as NS2 or NS3.  The incorporation of a selectable marker, the 

neomycin phosphotransferase gene, under the control of the HCV 5’ UTR allowed 

the selection of cells with actively replicating genomes.  A bi-cistronic replicon 

was created with the inclusion of an encephalomyocarditis virus (EMCV) IRES 

before the HCV non-structural genes.  A negative control was made by creating a 

10 amino acid in-frame deletion at the active site of the NS5B gene.  Two 

variant 5’ UTRs were used which contained either nucleotides 1 – 377 or 1 – 389.  

Transcribed RNA was extensively treated with DNase1 to ensure removal of the 

DNA template and then transfected into HuH-7 cells.  Colonies from the initial 

experiments were then isolated and passaged to obtain clonal cell lines.  Most 

cells died during this procedure and only nine clonal cells lines were obtained.  A 

replicon-harbouring cell line was defined as cells, which contained a replicon of 

correct size and conferred G418 resistance.  The frequency of stable replicon 

cell clones was low for the first generation of sub-genomic replicons (Lohmann 

et al., 2003).   

A combination of adaptation by both host cells and the acquisition of mutations 

by the replicon were required for successful and higher levels of RNA replication 

(Lohmann et al., 2003).  Replicons containing a luciferase gene to replace the 

neomycin phosphotransferase gene were used in transient assays to identify 

adaptive mutations required for growth in cell culture.  The highly adapted 5.1 

replicon contained three adaptive mutations (two in NS3 and one in NS5A), 

which were necessary to detect replication in transient assays.  Blight et al. 

(2000) also characterised culture adaptive mutations in NS5A in the Con1 

replicon.  Two occurred in serine residues used to produce the 

hyperphosphorylated form of NS5A.  Of these, a mutation of S-2204 to 
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isoleucine, which totally blocked p58 NS5A isoform formation, was found to be 

highly advantageous for replication.  This suggested that hyperphosphoryation 

was not required for efficient replication.  Mutations could be divided into two 

groups: those that had little impact on replication alone but could increase 

replication when combined with a highly adaptive mutation and those mutations 

that were highly adapted but incompatible with each other.  A highly adaptive 

mutation was defined as a single mutation, which resulted in approximately 4-

fold increase in replication compared to the wild type 1b replicon.  Therefore, a 

replication deficient replicon could be produced by the combination of the two 

highly adaptive mutations in NS5A, S-2204 and S2197  (Lohmann et al., 2003).   

Cellular factors were also important for replicon establishment in cell culture.   

Replicons in HuH-7 cells of passage 128 replicated more efficiently than those of 

passage 80 or 142.  Indeed, replicons of passage number 128 replicated 100-fold 

more efficiently than those in cells at passage number 15 (Lohmann et al., 

2003).    

Characterisation of cells that harboured replicons showed that they were able to 

maintain autonomously replicating RNA for over one year.  Furthermore, viral 

RNA was still detectable 10 months after removal of selection by neomycin.  

Replicon-bearing cells showed no obvious signs of cytopathogenicity.  Viral 

proteins were localised to ER membranes and replication and expression were 

linked to the cell cycle (Pietschmann et al., 2001).  Other studies showed that 

treatment of replicon expressing cells with IFN-α reduced expression and 

replication in a dose-dependent manner (Frese et al., 2001; Guo et al., 2001).  

Long term treatment of replicon-harbouring cells with IFN-α effectively removed 

or “cured” cells of the replicon (Blight et al., 2003). 

1.3.4 Establishing an HCV 1a replicon expressing cell line 

The genotype 1a replicon system was based on the infectious H77 isolate.  The 

genome was specifically modified using the mutations observed with the Con1 

genotype 1b system as a guide.  In order for successful replicon establishment, 

the previously described adaptive mutation of the hyperphosphorylated serine 

residues in NS5A was incorporated.  In addition, the cell line HuH-7.5 was used 

for replicon uptake (Blight et al., 2003).  Previously, this cell line had been 
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noted to be highly permissive for the establishment of Con1 genotype 1b 

replicon harbouring cell line.  Using the hypothesis that this permissive 

environment would be maintained in an IFN-α replicon “cured” cell line, the 

Con1 genotype 1b replicon was removed with IFN-α treatment (Blight et al., 

2002).  Successful replicon harbouring cells acquired additional adaptive 

mutations in NS3 similar to those NS3 mutations in the 1b replicon (Blight et al., 

2003). 

1.3.5 JFH1 genotype 2a isolate 

A recent breakthrough in HCV research has been the development of an 

infectious cell culture system, based on the JFH1 genotype 2a isolate.  This 

sequence was isolated from a 32 year old male patient with fulminant hepatitis.  

The patient had elevated serum alanine amino transferase levels, as is normally 

seen in HCV infection indicating liver damage.  Unusually, the patient developed 

jaundice and encephalopathy, the latter being extremely rare in acute HCV 

infection.  Based on sequence analysis, the JFH1 genome clustered with 

genotype 2a although it was found to be slightly divergent in its 5’ UTR, core, 

NS3 and NS5A sequences (Takanobu et al., 2001). 

1.3.5.1 Subgenomic replicon 

Initially, the JFH1 replicon was made in the same manner as previous replicons. 

The genome was amplified in 12 fragments, which were cloned into vectors.  A 

majority sequence was assembled based on the consensus of 5 sequences for 

each fragment.  Notably, no adaptive mutations were required in JFH1 

sequences prior to successful transfection.  JFH1 replicons produced over 50 

times more colonies than the Con1 replicon in colony forming assays and could 

be transfected into naïve HuH-7 cells.  Analysis of JFH1 replicon sequences from 

clones showed that all but one had acquired cell culture adaptive mutations.  

Most were found in NS5A and NS5B and were able to increase colony formation 

efficiency when introduced into the original replicon (Takanobu et al., 2003).  

Furthermore, replicons could be established in HepG2 cells and IMY-N9 cells 

(hepatocyte cells fused with a HepG2 cells).  However, the overall efficiency 

was lower than that found in HuH-7 cells (Date et al., 2004).  More recently, the 

JFH1 replicon was shown to replicate efficiently in non-hepatic cells lines e.g. 
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Hela and HEK293 cells (Kato et al., 2005) and U2OS human osteosarcoma cells 

(Targett-Adams et al., 2005).  These studies used transiently expressing systems 

with measurement of luciferase activity as an indirect measure of replication.  

The ability of JFH1 to replicate in other cells types and the improved efficiency 

of the transient JFH1 replicon when compared to the Con1 replicon highlighted 

its improved replication capacity.  JFH1 was also found to be sensitive to IFN-α 

treatment (Targett-Adams et al., 2005).   

1.3.5.2 Infectious system 

The JFH1 isolate has been shown to be infectious in cell culture.  Transfection of 

HuH-7 cells with full length JFH1 RNA results in the production of infectious 

particles described in section 1.1.4.  The cell culture particles can be 

neutralised using CD81 specific antibodies.  The infectious system was inefficient 

with a limited spread of infection between HuH-7 cells.  However, it was 

possible to infect chimpanzees intrahepatically using particles obtained from 

cell culture (Wakita et al., 2005).  Recently, this system was improved by the 

use of another HuH-7 derived cell line to yield viral titres of 104 – 105 infectious 

units per ml of culture supernatant.  This study indicated that HCV particles 

rapidly enter cells and expressed from input genomes within the first 24 hrs and 

found that limitations with naïve HuH-7 cells may be due to an innate antiviral 

response.  The derived HuH-7 cell line, discussed above, contained an 

inactivating mutation in the retinoic acid inducible gene-I (RIG-I), which is a 

component of a double stranded RNA antiviral pathway.  This suggested that, in 

naïve HuH-7 cells, this pathway transiently impedes HCV replication (Zhong et 

al., 2005).  Furthermore, these results were confirmed, where HCV infected 

HuH-7 cells produced 108 copies of HCV viral RNA per ml of culture supernatant 

and infection of HuH-7.5 cells showed high levels of HCV protein and RNA 

expression.  These studies showed HCV infection could be inhibited by treatment 

with monoclonal antibodies for CD81, E1 and E2 (Cai et al., 2005). 

1.4 HCV genotypes and quasispecies 

After the isolation of the HCV genome by Choo et al (1989), other isolates were 

found which were similar to the original sequence but also distinctly different.  

In general, sequence variability is distributed equally throughout the genome 
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except in the 5’ UTR, core and the HVRs of the envelope proteins (Zein et al., 

2000).  Initially, attempts to classify genotypes led to the formation of 4 

different classification systems.  However, this was later clarified by the 

creation of a new system, which classified genotypes according to their 

nucleotide similarity.  The system numbered the genotypes in order of their 

discovery.  A total of six genotypes were designated (Figure 1.4).  Strains which 

were closely related to a genotype were classified as a subtype.  Normally, a 

genotype is defined by the genetic heterogeneity between it and other HCV 

isolates and will share only between 65.7 % to 68.9 % sequence similarity with 

other genotypes.  A subtype will share 76.9 % to 80.1 % sequence similarity with 

other closely related isolates within the same genotype and a variant within a 

“quasispecies” will share 90.8 % to 99 % sequence similarity with other variants 

within the same isolate (Simmonds et al., 1994).  Any RNA viral population, 

“quasispecies”, within a patient derived from the same infectious population has 

a sequence which is dominant (the master sequence) and a number of variants 

differing from this (Forns et al., 1999).   HCV genotypes 1, 2 and 3 are 

distributed worldwide; however there appears to be some regional differences in 

prevalence.  HCV 1a and 1b are prevalent in the USA and in Europe (Zein et al., 

1996).  However, the main subtype found in Japan is 1b.  HCV subtypes 2a and 

2b are found in the USA, Europe and Japan.  Patients with genotype 3a are 

frequently intravenous drug users in the USA and Europe (Zein et al., 2000).  

Genotype 4 is found predominantly in North Africa and the Middle East and 

genotypes 5 and 6 are found only in South Africa and Hong Kong, respectively 

(Cha et al., 1992; McOmish et al., 1994). 
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Figure 1.4.  A phylogenetic tree of complete virus genome nucleotide 
sequences compared using parsimony analysis.  They are classified into 
six clades (genotypes) and subtypes a, b, etc (Robertson et al., 1998) 
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1.5 HCV Infection 

1.5.1 Acute and chronic infection 

In most cases acute HCV infection is asymptomatic and is therefore poorly 

characterised (Seeff L, 1997).  Non-specific symptoms include fatigue, 

discomfort in the upper right quadrant of the abdomen and pruritis.  50 % - 80 % 

of acutely infected patients with HCV develop a chronic infection.  

Approximately 25 % of patients with chronic infection will have fibrosis 

depending on the population studied (Pawlotsky J, 2004).  This can lead to 

cirrhosis and, in a small proportion of patients, hepatocellular carcinoma (HCC).  

Of the approximately 20 % of chronically infected patients who had developed 

cirrhosis, between 1.9 % and 6.7 % of HCV-infected patients will develop HCC.  

However, these figures can vary between different studies (Bisceglie A, 1997).  

An important study in Germany of 2867 women accidentally infected with HCV 

contaminated Rhesus anti-D immunoglobulin allowed an unbiased assessment of 

the natural history of the infection.  The study revealed that 1833 women were 

positive for HCV antibodies.  However, only 46 % had developed chronic infection 

and of these, 683 were untreated over a 25 year period.  During this period, only 

9 developed cirrhosis and 1 developed hepatocellular carcinoma (Wiese et al., 

2005).  The proportion of woman from this study who developed chronic 

infection was lower than had previously been described.  

1.5.2 Treatment 

The treatment of HCV is dependent on genotype and follows a treatment regime 

plan in an attempt to obtain a sustained viral response (SVR) to therapy.  The 

current treatment is pegylated IFN-α 2a or 2b in combination with ribavirin.  

Treatment length varies according to genotype; genotype 1 infected patients 

receive a 48 week course and patients with genotypes 2 and 3 receive 24 weeks.  

An SVR is achieved with 42 % to 46 % of genotype 1 infected patients compared 

to 78 % to 82 % of patients with genotypes 2 and 3 (Flamm S, 2003).  Currently, 

there is no vaccine to prevent HCV infection.  However, non-structural proteins 

are a target for the production of viral inhibitors.  The main targets for the drug 

therapy are the NS3/4A serine protease and the NS5B RdRp.  Although some 

drugs are in clinical trials it is believed a similar approach to HIV therapy will 
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need to be adopted using a combination of drugs which target different viral 

mechanisms to avoid escaping viral mutation (Zhuhui H, 2006). 

1.6 Disease pathology 

The pathology of liver disease as a result of hepatitis infection is not fully 

understood.  Whether liver damage is a consequence of viral infection or due to 

immune responses is still not known.  Immune-mediated pathways leading to 

liver damage are more likely since it has been shown there is no correlation 

between viral RNA titres and liver damage (Wejstal R, 1995).   

It has been recognised that liver histology may vary according to HCV genotype.  

A study by Mihm et al. (1997) showed that patients with genotype 3a frequently 

manifested more steatosis of the liver and bile duct lesions than patients with 

genotype 1a.  However, it has not been shown conclusively that progression to 

cirrhosis is more likely with any one genotype.  

1.6.1 Steatosis 

Steatosis is the accumulation of intracytoplasmic lipid droplets within 

hepatocytes (Figure 1.5).  Lipid droplets are spherical organelles in which 

neutral lipids are stored.  They contain a core of neutral triacylglycerols and 

cholesterol esters, which are formed in the ER and then coated in a phospholipid 

monolayer (Shi et al., 2002).  An external proteinaceous coat prevents fusion 

with other lipophilic surfaces.  Proteins within this coat are poorly described.  

Known proteins, which localise to the surface of lipid droplets include the 

perilipin family of proteins, adipocyte differentiation related protein (ADRP) (Lu 

et al., 2001) and caveolin (Pol et al., 2001).  ADRP has been proposed as possible 

marker of steatosis and has been used to observe lipid droplet biogenesis and 

behaviour in live cell analysis (Targett-Adams et al., 2003).   

The mechanism by which steatosis occurs is unknown.  However, there are 

numerous risk factors, which may predispose a patient to acquire the condition.  

These include an increased body mass index (BMI), increasing age, alcohol 

abuse, insulin resistance, HCV infection and drugs.  Assessing the contribution of 

individual factors to the progression to steatosis is difficult (Quadri et al., 2001).   
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Fatty liver disease can be divided into two main groups; alcoholic fatty liver 

disease and non-alcoholic fatty liver disease (NAFLD).  NAFLD varies from the 

less serious steatosis to more serious non-alcoholic steatohepatitis (NASH).  

Although steatosis itself is not thought to lead to fibrosis, NASH has been shown 

to develop into fibrosis and cirrhosis, end stage liver disease and hepatocellular 

carcinoma.  Steatohepatitis is steatosis accompanied by lipid peroxidation to 

produce reactive oxygen species and inflammation.  This can lead to fibrosis and 

liver disease over time (Green R, 2003; Tarantino et al., 2007).  Recent studies 

have found an association of NASH with metabolic syndrome which is 

characterised by abdominal obesity, insulin resistance, dyslipidemia (disruption 

of lipids in the blood) and hypertension (high blood pressure) (Green R, 2003).   

NASH is thought to develop in steatotic livers that undergo a secondary 

pathogenic stimulus, which results in oxidative stress and lipid peroxidation 

resulting in steatohepatitis.  Highlighting the importance of oxidative stress in 

the formation of fibrosing steatohepatitis, Ip et al. (2003) investigated the 

contribution of peroxisome proliferator-activated receptor-α (PPAR-α).  PPAR-α 

is a transcription factor that induces expression of hepatic cytochrome P450 

enzymes, which contribute to reactive oxygen species (ROS) and oxidative 

stress.  Mice fed a lipid rich diet, both methionine and choline deficient (MCD), 

displayed an increase in cytochrome P450 expression and steatohepatitis.  

However, activation of PPAR-α with an agonist reduced hepatic triacylglycerol 

content and ROS.  It was thought that the PPAR-α activation of genes involved in 

mitochondrial β-oxidation of fatty acids reduced the amount of the cellular fatty 

acid substrate for production of ROS. 

Another study examined the effect of inhibiting microsomal transfer protein 

(MTP)(Lettéron et al., 2003).  MTP is important in the formation of very low 

density lipoprotein (VLDL).  VLDL particles are secreted into plasma and used to 

transport lipids in the blood.  The particle consists of a core of triacylglycerols 

surrounded by a phospholipid layer, which itself is surrounded by apolipoprotein 

B (ApoB).  MTP acts to lipidate ApoB co-translationally in the lumen of the ER.  

Complete lipidation of ApoB is crucial for the assembly of VLDL and its correct 

secretion.  Incomplete lipidation of ApoB causes it to translocate to the cytosol 

for degradation (Shelness et al., 1999).   
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In the study by Lettéron et al. (2003,) drugs were used that were able to induce 

steatosis in mice by their inhibitory effect on MTP activity.  The most 

steatogenic drugs were those which were able to inhibit both MTP and 

mitochondrial β-oxidation.  Inhibition of MTP alone led only to steatosis in this 

study.  However, the accumulation of triacylglycerols (TAG) in the cytosol can 

lead to lipid peroxidation, such that reactive by-products cause DNA damage and 

interfere with mitochondrial respiratory pathways (Lettéron et al., 2003).  

Interestingly, mice fed diets deficient in choline display only steatosis not 

steatohepatitis.  Choline is an important substrate used in the synthesis of 

phospholipids and therefore diets deficient in it may affect VLDL formation and 

thereby lead to steatosis (Green R, 2003).  An MCD fed mouse could be rescued 

from liver disease by dietary supplementation with methionine (Chawla et al., 

1998).  This further suggests the two hit hypothesis mentioned previously in 

which steatosis itself may be benign but an additional metabolic or pathogenic 

insult results in steatohepatitis. 

1.6.2 HCV and steatosis 

An estimate of the proportion of the general population with NAFLD is 25 % and 

up to 20 % - 30 % of these patients may develop steatohepatitis, leading to 

cirrhosis.  Steatosis is present in approximately 50 % of patients with chronic 

HCV infection (Hickman et al., 2002).  Therefore, the proportion of HCV patients 

with steatosis is greater than in the general population.  In chronic HCV 

infection, steatosis could occur as a direct result of viral infection or as a 

secondary effect of viral infection. 

Multivariate statistical analysis is used when investigating the contribution of 

individual predisposing factors to the development of disease.  This statistical 

method allows multiple factors to be considered at the same time.  Multivariate 

analysis has indicated that there was an association between HCV genotype 3 

infection and steatosis, which was not found in genotype 1 infected patients 

(Mihm et al., 1997).  Adinolfi et al (2001) found a measure of visceral fat rather 

than BMI itself was associated with steatosis in patients infected with genotype 3 

and the degree of steatosis was associated with the level of HCV RNA.  In 

contrast, in genotype 1 infected patients the degree of steatosis was associated 

with BMI not with genotype 1 infection.  This study suggested that steatosis may 



Jonathan R Hubb, 2007    37 

be present as “metabolic fat” or “viral fat”.  Thus in genotype 1 infections, 

steatosis may be found but it is not associated with the virus but rather BMI is 

the predisposing factor to steatosis.  By contrast, in genotype 3 infections, the 

virus is associated with moderate to severe grades of steatosis independent of 

other risk factors.   

In a study of 254 chronic HCV patients attempting to identify the risk factors 

associated with steatosis, there was a significant association between genotype 

3 and moderate to severe steatosis (30 to 60 % steatotic hepatocytes).  70.5 % of 

patients with genotype 3 had steatosis whereas it was present in only 34.2 % of 

patients with other genotypes.  Patients with genotype 3 had a 10-fold increase 

in the probability of having steatosis.  A history of alcohol abuse was often 

associated with steatosis but there was no correlation between a history of 

intravenous drug addiction (IVDA) and increased steatosis (Rubbia-Brandt et al., 

2001). 

Steatosis is associated with an increased rate of fibrosis progression over time.  

Adinolfi et al., (2001) suggested that steatosis together with even a small 

amount of alcohol accelerated the progression of liver fibrosis.  Furthermore, 

hepatic steatosis together with aging, cirrhosis and no prior interferon treatment 

were all independently significant risk factors for hepatocellular carcinoma (Zhu 

A, 2003).  Recently, the effect of weight loss in patients chronically infected 

with HCV genotypes 1 and 3 was investigated for its effect on liver histology and 

biochemistry (Hickman et al., 2002).  A diet and exercise regime, which led to 

weight loss, was accompanied by a reduction in steatosis irrespective of viral 

genotype.  The effect of this on serum HCV RNA levels was not investigated 

however an improvement of fibrosis was found.   

A sustained viral response after anti-viral treatment significantly reduced 

steatosis in patients with genotype 3 HCV infection.  An improvement in 

steatosis was not found in patients with genotype 3 infection who did not 

respond to treatment and patients who achieved a SVR with a genotype 1 

infection (Kumar et al., 2002).  Additionally, these results were supported by 

another retrospective study.  Patients with genotype 1 infection and steatosis 

responded poorly to anti-viral treatments compared to genotype 1 infected 

patients without steatosis (Patton et al., 2004).  There was no relationship 
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between steatosis and inflammation although steatosis and fibrosis were 

associated.  This might indicate that fibrosis in HCV infection occurs by a 

mechanism, which does not invoke steatohepatitis.  However, other studies have 

found an association between steatosis and inflammation (Adinolfi et al., 2001; 

Mihm et al., 1997; Westin et al., 2002). 

HCV may be able to induce fibrosis via a number of mechanisms.  HCV proteins 

may induce steatosis, which leads to the production of ROS and the activation of 

hepatic stellate cells and fibrosis.  Alternatively, ROS may be produced directly 

by HCV infection causing stellate cell activation.  Immune-mediated responses to 

the virus may lead to necroinflammation and fibrosis (Asselah et al., 2006).   

Recently, the contribution of insulin resistance to fibrosis has been investigated.  

Insulin resistance is commonly associated with chronic HCV infection and often 

leads to type II diabetes mellitus and the metabolic syndrome.  In fact, insulin 

resistance has been implicated in the causation of steatosis and is a risk factor 

for progression of fibrosis in genotype 1 patients (Fartoux et al., 2005).  A recent 

study looked at the contribution of steatosis and insulin resistance to fibrosis in 

patients with NAFLD and chronic HCV genotype 3 infection.  Although both 

NAFLD and chronic HCV genotype 3 infection were associated with fibrosis, 

steatosis was associated with advanced fibrosis only in NAFLD.  “Viral steatosis”, 

in chronically infected HCV genotype 3 patients, was not associated with 

advanced fibrosis (Bugianesi et al., 2006).   

1.6.2.1 Transgenic mice studies 

Transgenic mice expressing HCV core protein displayed an increase in the 

accumulation of fatty acids and formation of lipid droplets within the liver.  

Both β-oxidation and secretion of TAGs from the liver was impaired (Moriya et 

al., 2001).  Furthermore, transgenic mice expressing HCV core protein have 

lower MTP activity and decreased secretion of VLDL suggesting a mechanism for 

steatosis of the liver by core protein.  Therefore, it has been suggested that core 

protein may induce steatosis in the livers of infected patients (Perlemuter et al., 

2002).  Transient expression of HCV core protein in mice led to disregulation of 

lipid metabolism genes and an increase in hepatic TAG and ROS (Yamaguchi et 

al., 2005).  Other genes involved in β-oxidation that have been implicated in 

having a role in steatosis were downregulated i.e. PPAR-α, acyl-CoA oxidase 
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(AOX) and carnitine palmitoyl transferase-1 (CPT-1).  However, the problem with 

many mice studies is that the core protein used is derived from genotype 1, 

which would be contrary to the results obtained from clinical studies.  As 

discussed, patients chronically infected with genotype 1b display steatosis, 

which is associated with metabolic causes, whereas genotype 3 is the only 

genotype with evidence for direct involvement in steatosis.  Therefore, the 

finding in the mouse model that genotype 1 core causes steatosis is possibly 

irrelevant to the disease in humans.  Moreover, levels of core expression may be 

greater in transgenic mice compared to that of HCV-infected cells and core is 

not expressed in the context of the whole viral polyprotein (Quadri et al., 2001).   

Although no transgenic animal studies have been performed with genotype 3 

core protein, expression of a genotype 3 core protein induced greater levels of 

accumulation of TAG in HuH-7 cells compared to core protein derived from 

genotype 1b (Abida et al., 2005).   

Nevertheless, steatosis is most likely not as simple as being caused by one single 

viral protein.  Other viral proteins may be involved and in fact NS5A was shown 

to interact with lipid droplets (Shi et al., 2002).   

Transgenic mice expressing HCV core protein have increased hepatic levels of 

tumour necrosis factor-α (TNF-α).  This finding was also seen in the livers of HCV 

infected patients (Neuman et al., 2002).  Increased TNF-α levels have been 

shown to induce insulin resistance in transgenic mice (Uysal et al., 1997).   

1.7 Microarray analysis of livers from acutely HCV 

infected chimpanzees 

Microarray analysis of host cellular gene expression after acute infection of 

three chimpanzees with HCV genotype 1 found three groups of genes with 

altered expression patterns.  Initially, one chimpanzee (1590) was 

intrahepatically infected with RNA transcribed from a full-length clone of the 

H77 strain (genotype 1a), which lacked the hypervariable region 1 (Su et al., 

2002).  This strain has previously been characterised as being able to cause 

infection but was somewhat attenuated compared to the wild type virus (Xavier 

Forns, 2000).  Four weeks after inoculation, a second chimpanzee (Ch96A008) 
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was inoculated with infectious plasma from chimpanzee 1590.  Another 

chimpanzee (1581) was inoculated with plasma from a patient with acute 

fulminant HCV infection.  Chimpanzee 1590 developed a persistent infection 

with no antiviral or IFN-γ response.  Chimpanzee Ch96A008 cleared the virus in 

response to a strong IFN-γ response and chimpanzee 1581 initially cleared the 

virus in response to an IFN-γ induction but then became persistently infected (Su 

et al., 2002).   

Gene expression analysis using microarrays was performed for selected time 

points during infection of each chimpanzee.  Three groups of genes were found 

to have altered expression: IFN-α stimulated genes, IFN-γ stimulated genes and 

genes involved in lipid metabolism (Su et al., 2002).  Alterations in the first two 

groups of genes would be expected as they are involved in the immune response.  

Interestingly, IFN-α stimulated genes were induced on viral infection, however 

this had no effect on viral titre.  A predictor of outcome of infection was the up-

regulation of IFN-γ stimulated genes involved in antigen presentation by major 

histocompatibility complexes (MHC) class I and T-cell recruitment.  Altered 

expression of IFN genes confirmed data obtained from a previous study, which 

looked at HCV acute infection in chimpanzees (Bigger et al., 2001).   

An unexpected group of genes with altered gene expression were those involved 

in lipid metabolism.  The study had sought to find genes, which could be used as 

predictors for the outcome of infection.  Of these, up-regulation of 45 genes had 

positive impacts on the onset of detection of viral RNA within the blood 

(viremia) and down-regulation of 10 genes were negative indicators of viremia.  

Genes involved in lipid metabolism were found in both these groups.  Genes, 

which were found to be repressed early in the onset of viremia, were PPAR-α, 

Flotillin (a lipid raft protein important in vesicular trafficking and signal 

transduction) and hepatic lipase C (involved in hydrolysis of lipoprotein TAGs and 

phospholipids).  Genes which were up-regulated early during the onset of 

viremia were UDP-glucose ceramide glucosyltransferase (involved in membrane 

lipid synthesis), sterol regulatory binding protein (SREBP)(transcription factor 

activating lipogenic gene expression), lipase A (involved in the hydrolysis of 

membrane lipids) and ATP citrate lyase (maintains cytosolic levels of acetyl 

CoA).  These results indicated that genes involved in the synthesis of fatty acids 

were induced and those involved in their breakdown were being repressed.  
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However, levels of fatty acid synthase, (FAS) a key enzyme involved in the 

synthesis of fatty acids did not show any correlation with HCV RNA levels.  

However, FAS expression was at a consistently high level in chimpanzees with 

sustained and temporary viral clearance (Su et al., 2002). 

Another microarray study of livers from 10 chimpanzees chronically infected 

with HCV genotypes 1b, 1a and 3a showed that IFN-stimulated genes displayed 

altered gene expression compared with livers from uninfected animals.  

Although some genes from the previous study had similar expression patterns in 

chronically infected and acutely-resolving chimpanzees, this pattern was not 

found in all animals.  This highlighted differences between chronic and acutely 

infected chimpanzees indicating that up-regulation of specific lipid metabolism 

genes was not absolute for chronic infection (Bigger et al., 2004).   

1.7.1 Lipid metabolism and HCV replication 

These studies were extended from the in-vivo chimpanzee animal model to 

observe the effect of lipid metabolism on the in-vitro HCV replicon system.  

Replication in replicon-expressing cells could be prevented in a dose-dependent 

manner by specific inhibitors of lipid metabolism, cerulenin (inhibits FAS) and 

25-hydroxycholesterol (inhibits cholesterol biosynthesis).  Use of a lipid 

metabolism inducer, nystatin, increased replication (Su et al., 2002).  These 

effects were reported as independent of the effects on cell cycle and cell 

toxicity.   

The ability of inhibitors of lipid metabolism to reduce HCV replicon levels 

indicated that products or enzymes within the pathway or affected by the 

pathway could alter viral RNA abundance.  Lipid biosynthesis can be divided into 

two separate branches: one branch leading to the synthesis of cholesterol and 

one branch leading to the synthesis of fatty acids (Figure 1.6).  The small 

molecule inhibitors used affected the two different branches of lipid metabolism 

suggesting that both cholesterol and fatty acid biosynthesis play roles in HCV 

replication.  
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Figure 1.6. shows the main genes regulated in SREBP cholesterol and lipid 
biosynthetic pathways. SREBP-1c is concerned with regulating genes involved 
in FA synthesis and SREBP-2 is concerned with regulating genes involved in 
cholesterol synthesis and transport (diagram taken from Horton et al., 2002) 
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1.7.1.1 Cholesterol biosynthesis and HCV replication 

Several other studies have investigated the effect on HCV replication of 

cholesterol inhibitors, which target specific stages in cholesterol biosynthesis.  

These studies found that it was possible to inhibit cholesterol biosynthesis using 

lovastatin leading to a reduction in replicon RNA levels (Kapadia et al., 2005; Ye 

et al., 2003).  Lovastatin is a specific inhibitor of 3-hydroxy-3-methyl-glutaryl 

(HMG) CoA reductase that converts HMG CoA to mevalonate, which are both 

cholesterol precursors (Figure 1.6).  Rescue of lovastatin-treated replicon 

expressing cells with mevalonate gave a dose-dependent increase in HCV RNA 

levels.  This was enhanced by the treatment of the replicon expressing cell line 

with LDL in addition to other treatments.  Supplying cells with LDL, an 

exogenous cholesterol source, directed metabolites destined for cholesterol 

biosynthesis to be used to make non-steroid isoprenoids.  These “off-shoots” of 

the cholesterol pathway are synthesised prior to the conversion to the end 

product, cholesterol (Ye et al., 2003).  Furthermore, treatment of cells with 

zarogozic acid (ZA) induced HCV RNA levels.  ZA is a specific inhibitor of 

squalene synthesis, a metabolite produced after the geranyl and farnesyl sub-

pathways but before cholesterol synthesis.  This induction was not affected by 

the addition of cholesterol supplied in LDL.  This confirmed that induction was 

not due to lack of downstream products but the presence of more upstream 

products.  Lovastatin-reduced HCV replication could be restored by treatment in 

a dose-dependent fashion with geranylgeraniol but not farnesol or oleate 

(Kapadia et al., 2005). 

Prenylation of host cellular proteins facilitates membrane association and can be 

important for function. Lovastatin reduces downstream isoprenoids and 

therefore prenylation.  After lovastatin-treatment of replicon-expressing cells 

immunofluorescence studies showed a relocalisation of NS5A foci to display a 

diffuse cellular distribution.  This and previous results suggested membrane 

association may be altered.  The cellular enzymes farnesyltransferase (FTase) 

and geranylgeranyltransferase I (GGTase I) are involved in the addition of the 

isoprenoid lipids, farnesyl pyrophosphate and geranylgeranyl pyrophosphate, 

respectively, to host cellular proteins.  A GGTase I inhibitor, GGTI-286, reduced 
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HCV RNA levels, however an equivalent inhibitor of FTase had no effect (Kapadia 

et al., 2005).  The host cellular geranylgeranylated protein, FBL2, was identified 

which interacted with NS5A and was essential for viral replication (Wang et al., 

2000).  Three possible proteins were identified; but only the FBL2 protein 

interacted with NS5A.  FBL2 is an F-box protein known to interact with other F 

box proteins and may be involved in ubiquitination reactions.  The prenylation of 

FBL2 occurs at geranylgeranylation sequences (CVIL motif) at its C-terminus.  

Mevalonate labelling of wild type protein produced a radiolabelled band.  

However, mutants that lack the CVIL motif were unable to be prenylated.  

Treatment with the GGTI-286 inhibitor abolished FBL2 membrane association.  

FBL2 bound specifically to NS5A and less efficiently to NS5B.  Mutational analysis 

of both FBL2 and NS5A showed that the N-terminus of NS5A and the 

geranylgeranylated CVIL motif (CAAX box) were essential for their association.  

Furthermore, the F-box of FBL2 was required to allow RNA replication in cells 

expressing the replicon.  In other F-box proteins, this domain is required for the 

interaction with ubiquitin ligase complexes.  SiRNA knockdown of FBL2 reduced 

its expression by 70 % and reduced HCV RNA replicon levels by 60 %.  The exact 

reason for the FBL2 interaction with NS5A is not understood but it may either 

direct NS5A for ubiquitination or direct it to the membrane. 

1.7.1.2 Fatty acid biosynthesis and HCV replicon 

Fatty acid biosynthesis can be inhibited by the drug cerulenin, which directly 

inhibits the enzyme FAS (Su et al., 2002).  FAS is a key enzyme in the synthesis 

of long chain fatty acids using malonyl CoA as a substrate for the sequential 

elongation of the fatty acid chain to produce a 16 carbon end product, palmitic 

acid (Figure 1.6).  A dose-dependent decrease in the HCV RNA levels was found 

on treatment with cerulenin in both constitutively expressing and transiently 

expressing replicon cell lines.  This was reported to be independent of toxic 

effects of the drug (Su et al., 2002).  Furthermore 5-(Tetradecyloxy)-2-furoic 

acid (TOFA), an inhibitor of Acetyl CoA carboxylase (ACC), the rate limiting 

enzyme in fatty acid biosynthesis, was reported to reduce HCV RNA levels and 

HCV NS3, NS5A and NS5B protein levels.   

Analysis of host cellular gene expression in replicon-expressing cells showed that 

ATP citrate lyase and acetyl CoA synthetase were induced compared to cells, 
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which had been cured of replicon.  Both these enzymes are concerned with the 

synthesis of cytosolic acetyl CoA.  This is the substrate, which is used to make 

either cholesterol or fatty acids.  Interestingly, FAS expression was not altered 

compared to cured cells (Kapadia et al., 2005).  This was in contrast to in-vivo 

studies in which FAS was expressed highly in acutely infected chimpanzees with 

increased viremia.  However, no correlation could be found between the high 

levels of FAS and increasing viremia (Su et al., 2002).  

1.7.1.3 Fatty acids and HCV replication 

Fatty acids are the product of fatty acid biosynthesis. They consist of a 

hydrocarbon chain with a methyl group at one end and a carboxyl group at the 

other, which gives them their acidic nature.  The number of carbons in the 

hydrocarbon tail can vary.  Carbon atoms are joined together by a single bond or 

a double bond.  If a fatty acid contains no double bonds they are called 

“saturated” e.g. palmitic acid.  This is because all carbon atoms are involved in 

the maximum number of carbon hydrogen bonds.  A fatty acid with a single 

double bond is called “monounsaturated” e.g. oleic acid (OLA).  Fatty acids with 

more than one double bond are termed “unsaturated” e.g. linoleic acid.  

Polyunsaturated fatty acids (PUFAs) e.g. eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA) contain 2 or more double bonds and cannot be 

produced in humans directly from acetyl CoA.  PUFAs must be supplied through 

diet or alternatively, via a substrate e.g. linoleic acid that can be converted into 

a PUFA.  As Figure 1.7 shows, the number of double bonds in a fatty acid can 

drastically alter its structure.  This can have important consequences for 

function where the saturation of fatty acids creates a diverse group of 

chemicals, which have varied functions. 

The effect of fatty acids on HCV RNA levels varies according to the degree of 

saturation in the hydrocarbon tail.  Studies have indicated that saturated fatty 

acids and monounsaturated fatty acids increase HCV replication (Kapadia et al., 

2005; Leu et al., 2004).  Furthermore, increasing unsaturated fatty acid levels 

reduced HCV RNA levels.  The degree of unsaturation was an indicator of their 

ability to inhibit HCV.  PUFAs were the most efficient at reducing HCV RNA 

levels.  The PUFA, arachidonic acid, acted synergistically in the presence of   

 



Jonathan R Hubb, 2007    46 

  

 

 



Jonathan R Hubb, 2007    47 

IFN-α treatment in inhibiting HCV replication (Leu et al., 2004).  PUFAs inhibit 

fatty acid biosynthesis through their inhibition of SREBP activated gene 

expression by antagonising its transcriptional partner, liver X receptor (LXR).  

Treatment of replicon expressing cells with several PUFAs (EPA and DHA) 

reduced HCV RNA levels as well as SREBP-1c and FAS RNA levels.  However, 

replicon expressing cells could be rescued from inhibition of fatty acid 

biosynthesis by treatment with the LXR agonist, T0901317.  Restoring fatty acid 

biosynthesis did not rescue PUFA-mediated HCV inhibition.  Therefore, PUFA 

inhibition of HCV was thought to be by a pathway other than the inhibition of 

fatty acid biosynthesis via SREBP-1c and LXR (Kapadia et al, 2005).  This suggests 

that cerulenin and PUFA inhibition of HCV are mediated by different pathways. 

1.8 Lipid metabolism 

1.8.1 Sterol Regulatory Element-Binding Proteins 

Sterol regulatory element-binding proteins (SREBPs) are a family of transcription 

factors that are involved in the control of cholesterol and fatty acid metabolism.  

Fatty acid and cholesterol pathways are controlled nutritionally at the 

transcriptional level (Shimano H, 2001).  There are three isoforms of SREBP;  

SREBP-1a, SREBP-1c and SREBP-2.  SREBP-1a and –1c are derived from the same 

gene on human chromosome 17p11.2 using alternative transcriptional start sites 

(Brown M, 1997), resulting in two proteins, which are exactly the same, apart 

from SREBP-1c having a shorter transactivation domain.  The SREBP-2 isoform is 

transcribed from a separate gene located on human chromosome 22q13.  

The different isoforms have distinctly different regulation profiles.  SREBP-1c is 

more involved with the regulation of lipogenic genes and SREBP-2 is involved in 

the regulation of cholesterogenic genes.  SREBP-1a is thought to be involved in 

maintaining basal levels of both cholesterol and lipid synthesis and transport 

(Horton et al., 2002; Pai et al., 1998).  Tissue expression patterns show SREBP-1c 

may be expressed 10-fold more abundantly than SREBP-1a and twice as 

abundantly as SREBP-2, although this varies according to tissue (Shimomura et 

al., 1997). 
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Structurally SREBPs belong to the basic-helix-loop-helix-leucine zipper (bHLH-

Zip) family of transcription factors.  SREBPs are produced as protein precursors 

bound to the ER and contain several structural domains with two membrane-

spanning regions positioned such that the C- and N-terminals of protein project 

into the cytoplasm.  The N-terminal region contains the bHLH-Zip region.  On 

release from the ER membrane, the bHLH-Zip region (nSREBP) of the protein is 

able to enter the nucleus to activate target genes.  nSREBP is released in a two-

step proteolytic process (Horton et al., 2002).  On entry to the nucleus, nSREBP 

binds to specific DNA recognition sequences in target genes. These regulatory 

sequences have been termed sterol regulatory elements (SREs).  Other 

sequences that nSREBP binds are the classic palindromic E-boxes.  nSREBPs 

activate a range of genes involved in cholesterol and lipid metabolism.  Genes 

involved in cholesterol synthesis have an SRE closely similar to the classic SRE.  

Lipogenic genes show a more divergent SRE sequence (Mater et al., 1999).  The 

varying length in transactivation domains of the SREBP isoforms dictates which 

type of gene is activated.  The shorter transactivation domain of SREBP-1c 

means it is only concerned with regulating lipogenic genes.  It is thought that 

the shorter length of transactivation domain reduces its overall activation 

ability.  However, SREBP-1a retains the long transactivation domain and is able 

to activate all SREBP responsive genes (Horton et al., 2002; Pai et al., 1998). 

The C-terminus of SREBP is thought to interact with SREBP cleavage activating 

protein (SCAP) and is also involved in sterol regulation (Hua et al., 1996; Sakai et 

al., 1997).  SCAP is both an escort protein and a sterol sensor.  The mechanism 

by which it senses increased lipid demand is unknown.  However, SCAP 

associates with SREBP through its C-terminus and escorts it from the ER to the 

golgi for proteolytic cleavage (Horton et al., 2002; Shimano H, 2001).  In the 

presence of sterols, SCAP-SREBP complexes interact with insulin-induced gene 

(INSIG), which retains them in the ER (Yabe et al., 2002).  However, when 

sterols are depleted SCAP undergoes a conformational change, which stops its 

interaction with INSIG and allows translocation to the golgi for cleavage to the 

nuclear form.  Originally, this mechanism was thought to apply to all SREBP 

isoforms.  However, in vivo studies indicated that something quite opposite 

happens with SREBP-1c.  In rodents, sterol depletion led to mature forms of 

SREBP-1c being reduced and this was mainly regulated by nutritional status 

(Horton et al., 1998). 
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Regulation of SREBP-1c is mainly thought to occur at the transcriptional level 

through control by insulin and the transcription factor liver X receptor (LXR).  

Agonists of LXR are able to activate lipogenic gene expression and induce SREBP-

1c expression (Hegarty et al., 2005).  LXR will be discussed in more detail later 

in section 1.8.3.  Insulin as well as LXR activation of SREBP-1c was required for 

cleavage of the precursor SREBP-1c and activation of lipogenic gene expression 

(Figure 1.8).  However, LXR induced expression of SREBP-1c without insulin 

poorly activated lipogenic gene expression.  Interestingly, LXR activates 

expression of both INSIG and SREBP-1c.  This would appear to be 

counterproductive in that activation of the mature SREBP-1c isoform would be 

prevented by expression of INSIG.  It is thought that this mechanism protects in  

times of low glucose availability and prevents the production of fatty acids from 

glucose.  LXR activation of SREBP-1c would not activate lipogenic gene 

expression until blood glucose levels are sufficiently high that insulin is 

produced.  This mechanism would allow a rapid response to increased glucose 

levels for the conversion to fatty acid (Hegarty et al., 2005). 

Overexpression of SREBP-1c in transgenic mice leads to steatosis and increases in 

lipogenic gene expression (Shimomura et al., 1998).  Furthermore, increased 

SREBP-1c levels are associated with insulin resistance by inhibition of IRS-2 

signalling (Ide et al., 2004).  

1.8.2 Peroxisome proliferator activated receptor 

Peroxisome proliferator activated receptor (PPARs) proteins are members of the 

superfamily of ligand activated nuclear transcription factors.  Their 

transcriptional effect is directly at the gene level where they affect genes 

involved in fatty acid oxidation and storage.  PPARs themselves act as lipid 

sensors controlling lipid metabolism according to fatty acid fluctuations.  There 

are three subtypes, PPARα, PPARδ (PPARβ) and PPARγ (Smith S, 2002).  PPARs 

contain several modular domains with functions including DNA binding, protein 

binding and ligand binding. 
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For transcriptional activation, PPARs must heterodimerise with activated 

retinoid X receptor (RXR) (Kliewer et al., 1992).  RXR is part of the same ligand 

dependent nuclear receptor super family as PPARs.  PPAR-RXR heterodimers 

without ligand form large complexes with associated repressors.  Ligand binding 

causes a conformational change releasing repressors and activating the 

transactivation domain.  PPARs are able to bind a range of endogenous ligands 

that include all fatty acids except short-chain fatty acids (<C10), very long chain 

monounsaturated fatty acids and dodecanedioic acid (12 carbon fatty acid).  

Exogenous substances, which induce peroxisome proliferation, can also activate 

PPARs.  These include hypolipidemic fibrate drugs, phythalate ester plasticizers 

and herbicides (Schoonjans et al., 1996).  Fatty acids are trafficked to the 

nucleus by liver fatty acid binding protein (L-FABP) where a direct interaction 

with PPAR isoforms and L-FABP is observed (Wolfrum et al., 2001). 

PPAR-RXR activated heterodimers are able to bind to specific DNA sequences 

within target genes.  These PPAR response elements (PPREs) are a direct repeat 

(DR) with a consensus of six bases (TGACCT), followed by an irrelevant spacer 

base (termed the DR-1 element) and followed by a further six base repeat (Smith 

S, 2002). 

The different isoforms of PPAR are expressed heterogeneously in different 

tissues.  Where a tissue has higher lipid oxidation levels, for instance the heart, 

liver and skeletal muscle, the dominant isoform of PPAR, is PPARα.  In white and 

brown adipose tissue where lipids are stored, the predominant isoform is PPARγ. 

There are two types of PPARγ, PPARγ1 and PPARγ2 (Elbrecht et al., 1996).  

Reports on the expression of these two isoforms are conflicting in human studies 

but rodent studies have indicated that PPARγ2 is adipose tissue specific (Smith 

S, 2002).  PPARδ is expressed fairly ubiquitously in tissues (Kliewer et al., 1992). 

It is possible to induce peroxisome proliferation and PPAR-induced proteins by 

treatment with exogenous PPAR ligands.  Peroxisomes are subcellular organelles, 

which have a single membrane and carry out many important anabolic and 

catabolic enzymatic processes (Schoonjans et al., 1996).  Fibrate activation of 

PPARα in rodents leads to hepatic peroxisome proliferation and increased 

expression of enzymes involved in fatty acid peroxisomal and microsomal 

oxidation pathways.  However, this activation is noted only in rodents and not in 
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humans.  PPARs have low ligand specificity and although PUFAs have a higher 

affinity than saturated FAs, there is no difference in activation properties.  This 

has meant that elucidating the exact role of PPARα is difficult.  It may act 

merely as a sensor to prevent excess triacylgylcerols from accumulating, 

although a role in regulating energy supply for vascular and cardiac tissues has 

been proposed (Schiffrin et al., 2003; Smith S, 2002). 

The biological function of PPARδ remains undefined.  It can be activated in a 

similar manner to PPARα.  Knockout mice experiments have indicated that it 

may have some role in FA uptake, brain development and skin epidermal cell 

differentiation (Smith S, 2002).  Other studies have indicated a role as an anti-

artherosclerosis and anti-inflammatory agent.  It is up-regulated in activated 

macrophages (Haraguchi et al., 2003; Schiffrin et al., 2003). 

Insulin sensitising agents (e.g. thiazolidinediones) activate PPARγ when insulin 

resistance is found, allowing the selective activation of PPAR-responsive genes.  

As mentioned earlier, of the two isoforms, PPARγ2 plays an important role in 

adipocyte differentiation and adipose storage in rodents.  In both humans and 

rats, a sustained activation of PPARγ leads to altered adipose tissue distribution 

(Smith S, 2002). 

When looking at genes involved in PPAR regulation, many studies utilise 

transgenic rodents but it should be appreciated that the action of specific PPAR 

isoforms may differ between rodent and human forms.  For instance, human 

PPARα is present at lower levels and does not induce the enzymatic cascades to 

the same extent as does murine PPARα (Palmer et al., 1998). 

1.8.3 Liver X Receptor and insulin 

PUFAs are able to inhibit genes involved in lipogenesis such as FAS and steroyl-

CoA desaturase (Clarke S, 2001).  This is due to down-regulation of SREBP-1c 

mediated by the interaction of the transcription factor LXR (Kersten S, 2002).  

LXR is a member of a family of nuclear receptors, which form obligate 

heterodimers with RXRs. They are activated by oxysterols.  There are two 

subtypes LXRα (expressed in the liver, spleen, kidney, adipose and small 

intestine) and LXRβ (expressed ubiquitously).  LXR-RXR heterodimers recognise 
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specific sequences within target genes called LXR response elements (LXRE).  

They have also been shown to be dominant activators of the SREBP-1c promoter 

(Hu et al., 2003).  Although LXR-α in hepatocyctes is a potent activator of 

SREBP-1c expression and transcription, insulin is required to induce the mature 

nuclear form.  

The activation of PPARα to form PPAR-RXR heterodimers, could reduce the 

available RXR for the LXR-SREBP-1c pathway by reducing the cellular levels of 

LXR-RXR heterodimers and therefore limit activated LXR formation (Figure 1.9) 

(Yoshikawa et al., 2003).  LXR inhibits PPARα and lipid degradation.  This is 

partially explained by competition between PPAR and LXR for RXR.  It has, 

however, been shown that, in presence of its ligand, LXR can also bind to PPARα 

to form a heterodimer which, not only inhibits the LXR-SREBP-1c lipid 

biosynthesis pathway, but also the PPARα-RXR lipid degradation pathway.  PUFAs 

which act as PPAR ligands are also able to inhibit LXR by binding and preventing 

LXR-RXR heterodimerisation.  Interaction between pathways leads to a mutual 

regulation of lipid degradation and lipolysis (Ide et al., 2003). 

1.8.4 Lipid Transport 

Lipids are transported in the blood in the form of lipoproteins, ketone bodies or 

conjugated to BSA.  As mentioned there are various forms of lipoproteins.  

Proteins which are needed for lipoprotein formation are called apolipoproteins 

and these are specific to the type of lipoprotein.  Lipids absorbed by the gut are 

released into the blood flow as large chylomicrons in a process, which requires 

apoplipoprotein B-48.  Chylomicrons contain an internal TAG store that is 

hydolysed to produce free fatty acid and glycerol, which is mainly absorbed by 

the liver.  The liver releases endogenous lipids in the form of VLDL in a process 

which requires apoplipoprotein B-100 (Kwiterovich P, 2000).  As previously 

discussed, complete lipidation of apoplipoproteins is required for VLDL secretion 

(Perlemuter et al., 2002).  VLDL is hydrolysed in the blood to produce 

intermediate density lipoprotein (IDL), which is further hydrolysed to produce 

low density lipoprotein (LDL).  VLDL and LDL are associated with atherogenesis.  

PUFA treatment of patients with atherogenesis may have a positive effect 

reducing circulating VLDL and LDL and increasing high density lipoprotein (HDL) 

levels (Kwiterovich P, 2000). 
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Figure 1.9. A diagrammatic representation of the interactions between 
PPAR, RXR, LXR and SREBP-1c.  1. LXR and RXR dimerise transactivating 
SREBP-1c transcription from the LXRE in the SREBP-1c promoter.  2. 
Ligand activated PPAR-α/RXR transactivate expression of genes 
involved in lipid β-oxidation.  3 and 4, The formation of PPAR/RXR and 
PPAR/LXR inhibits SREBP-1c expression and down-regulates fatty acid 
biosynthesis.  5. PUFAs, which are PPAR ligands, down-regulate fatty 
acid biosynthesis by antagonising LXR (Yoshikawa et al., 2003). 
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A role for VLDL in HCV viral assembly and secretion has recently been identified 

where two agents, which reduce VLDL formation were able to reduce HCV 

particle production.  Using an inhibtor of MTP or siRNA directed against apoB 

HCV particle release was reduced without affecting HCV replication.  

Furthermore, HCV replication complexes were isolated in memebrane fractions 

enriched in MTP, apoB and apoE, which are all involved in VLDL formation.  

These results suggested that HCV particles are associated with or incorporated 

into VLDL particles and VLDL assembly is important for viral particle release 

(Huang et al., 2007). Yao et al (2008) showed that an inhibitor of long chain 

acyl-CoA synthetase 3, a protein required for VLDL secretion, could inhibit HCV 

particle release.  VLDL formation can be reduced by treatment of cells with 

PUFAs.  PUFAs activate a post-ER presecretory proteolysis pathway, which 

targets apoB for degredation and thereby reduces VLDL formation (Pan et al., 

2004).  Further work would be required to ascertain whether PUFA treatment of 

HCV infected cells would reduce particle assembly and release.  However, it 

does not go to explain why PUFAs are also able to reduce HCV replication.  As 

the study above indicated that a reduction of VLDL formation had no impact of 

HCV replication. 

1.9 Aims and objectives of my project 

There were three parts to the project each with their own aims:   

• The aim of the first two parts of the project were to treat HCV genotypes 

1b and 2a replicon expressing cells with inhibitors of fatty acid 

biosynthesis and measure the effects on HCV RNA and protein levels while 

also measuring the effect of cellular fatty acid biosynthesis and cell 

viability.  The two methods chosen were cerulenin mediated inhibition, 

which directly inhibits fatty acid synthase and PUFA mediated inhibition, 

which inhibits the transcription of genes involved with fatty acid 

biosynthesis.  Following on from this the objective was to ascertain the 

mechanism for the inhibition of HCV RNA levels that was occurring.   

• The third part of the project was to amplify an HCV genotype 3 isolate 

and assemble genotype 3 replicon-expressing cells, which was of isolate 

majority sequence.  This genotype 3 replicon-expressing cell line was to 
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be used to observe the effect of genotype 3 on the accumulation of 

intracytoplasmic lipid droplets.   
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Chapter two 

2                      Materials and Methods 

2.1 Materials 

2.1.1 Bacterial Strains 

Escherichia (E.coli) strain Phenotype 

DH5α F’/endA1 hsdR17 (rk
-m+) supE44 thi1 

recA1 gyrA (NaIr) relA1 Δ(lacZYA-argF) 

U169 (Φ80dlac(lacZ)M15) 

2.1.2 Vectors 

pCR®2.1-TOPO® Invitrogen, Paisley, UK 

pGEM® T-Easy Promega, Southampton, UK 

pUC18 Roche Applied Sciences, Burgess Hill, 

UK 

pSP64 Poly A Promega, Southampton, UK 
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2.1.3 Enzymes and Kits for DNA modification 

QIAmp Viral RNA Mini Kit, OminscriptTM 

RT Kit, QIAprep® Miniprep Kit, 

QIAprep® Midiprep Kit, QIAquick® Spin 

Kit, QIAquick® Gel Extraction Kit 

Qiagen, Crawley, UK 

SuperscriptTM II Reverse transcriptase, 

ThermoScriptTM RT-PCR system, Taq 

DNA Polymerase, Platinum® Pfx DNA 

Polymerase, Deoxyribonuclease I, DNA 

Polymerase I Large (Klenow) Fragment 

dNTPs 

Invitrogen, Paisley, UK 

AdvantageTM HF 2 PCR, AdvantageTM 2 

PCR 

BD Biosciences, Oxford, UK 

SP6/T7 Transcription Kit, Phosphatase 

Alkaline Shrimp (SAP), RNase H, 

Restriction Enzymes 

Roche Applied Sciences, Burgess Hill, 

UK 

RNasin® Rnase inhibitor, T4 DNA Ligase, 

rNTPs 

Promega, Southampton, UK 

Restriction Enzymes New England Biolabs, Hitchin, UK 

Taqman® Universal PCR master mix, 

SYBR® green PCR master mix 

Applied Biosystems, Warrington, UK 

2.1.4 Mammalian cell lines and culture media 

Human heptacellular carcinoma (HuH-7) cells, 5-15 HCV genotype 1b expressing 

clonal cell line 12 (Bartenschlager et al., 1999), HCV genotype 2a JFH1 

expressing cell line (Kato et al., 2003), interferon cured replicon cell lines for 

the 1b and 2a genotypes. 
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Dulbecco’s Modified Eagles Medium (DMEM), foetal calf serum, L-glutamine, non-

essential amino acids (MEM) and penicillin/streptomycin were supplied by 

Invitrogen life technologies.  Phosphate Buffered Saline (PBSA and PBS 

complete), versene, Luria Bertani (LB) broth, LB agar were produced “in house” 

by the media department of the Institute of Virology. 

2.1.5 Human Serum 

Human serum in this study was obtained from a HCV genotype 3 infected 

patient.  The serum was collected at Gartnavel General Hospital, Glasgow, after 

informed consent had been obtained from the patient.  Ethical approval was 

obtained from West Glasgow Ethics committee.  Serum was separated by Carol-

Anne Smith.  Samples were stored at -80ºC. 

2.1.6 Radiochemicals 

32P-dCTP 10 μCi/μl  Amersham, Little 

Chalfont, UK 

1-14C Acetic acid 1 μCi/μl MP Biomedicals, Illkirch, 

France 

2.1.7 Antibodies and stains 

R1065 Rabbit Polyclonal antiserum raised 

against NS5A 

Made by J. McLauchlan and G. 

Hope. Raised against NS5A 

derived against the H77 sequence 

corresponding to 3 synthetic 

peptides from amino acid 197-

212, 255-264 and 289-303 

Sheep Polyclonal antiserum raised to NS5A Made by Macdonald et al (2003) 

Anti-adipocyte differentiation related 

protein monoclonal antibody 

Made by Target-Adams et al 

(2003) 
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Anti-calnexin monoclonal antibody Chemicon, 

http://www.millipore.com 

Anti-GAPDH monoclonal antibody AMS Biotech, Milton Abingdon, 

UK 

Anti-mouse HRP, Anti sheep HRP,  Protein A-

Peroxidase Conjugate from Staphylococcus 

aureus/horseradish, TRITC Goat Anti-rabbit 

IgG (Alexis 488), TRITC donkey anti-rabbit 

IgG (Alexis 488), FITC goat anti-mouse IgG 

(Alexis 568), FITC donkey anti-goat IgG (594) 

Sigma-Aldrich, Gillingham, UK 

2.1.8 Chemicals 

All chemicals were purchased from Sigma-Aldrich Co., unless stated. 

Hybond Nitrocellulose membrane, 

ECL reagent 

Amersham, Little Chalfont, UK 

Nylon membrane, 30% 

Acrylamide/Bis solution, ammonium 

persulphate 

Bio-Rad, Hemel Hempstead, UK 

Dried skimmed milk “Marvel” (Cadburys), London, UK 

Viraferon (pegylated interferon 

alpha-2b) 

Zymed Laboratories, San Francisco, USA 

C75, Cerulenin Axxora Biochemicals, Sigma Aldrich Ltd 

Cerulenin Sigma-Aldrich, Gillingham, UK 
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2.1.9 Solutions 

4MGT solution 4 M Guanidinium thiocyanate, 750 mM 

Sodium citrate pH 7 (with citric acid), 

10 % N-lauroylsarcosine sodium salt 

Agarose gel loading buffer 100 mM EDTA, 50 % sucrose, 1 μg/ml 

bromophenol blue.  

Alkaline hydrolysis solution 50 mM NaOH, 1.5 M NaCl 

Boiling mix 31 % stacking gel buffer, 31 % glycerol, 

21 % sodium dodecyl sulphate 

(SDS)(25 %), 9 % β-mecaptoethanol, 

1 μg/ml bromophenol blue, 8 % water. 

Denhardt’s solution 10 g Ficoll 400, 10 g polyvinylprrolidone, 

10 g bovine serum albumin in 500 ml H20 

Gel running buffer 40 mM Tris, 186 mM Glycine, 0.1 % SDS 

Hybridisation buffer 50 % formamide, 5 x sodium chloride 

sodium citrate (SSC), 1 x Denhardt’s 

solution, 0.1 % SDS, 100 μg/ml herring 

sperm DNA 

LB Agar LB broth plus 1.5 % (w/v) agar 

LB Broth 10 g tryptone, 5 g yeast extract, 10 g 

NaCl in 1 L H20 

Low stringency wash 2 x SSC, 0.1 % SDS 

Lysis Buffer (solution II) 0.2 M NaOH, 1 % SDS 
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Neutralisation Buffer (solution III) 60 ml KC2H3O2 (5 M), 11.5 ml glacial 

acetic acid, 28.5 ml water 

Neutralisation solution 500 mM Tris (HCl pH 7.4), 1.5 M NaCl 

Moderate stringency wash 0.2 x SSC, 0.1 % SDS 

MOPS buffer 200 mM MOPS [3-(N-morpholino)-

propanesulfonic acid] pH 7.0, 50 mM 

sodium acetate, 10 mM EDTA 

PBS PBS(A) plus 6.8 mM CaCl2.2H20 and      

4 mM MgCl2.6H20 

PBS(A) 170 mM NaCl, 3.4 mM KCl, 10 mM 

Na2HPO4, 1.8 mM KH2PO4, 25 mM Tris-HCl 

(ph 7.2). 

PBST 

 

PBS(A) plus 0.05 % (v/v) Tween 20 

Prehybridisation buffer 50 % formamide, 5 x SSC, 5 x Denhardt’s 

solution, 0.1 % SDS, 100 μg/ml herring 

sperm DNA 

Resolving gel buffer 1.5 M Tris-HCl (pH 8.9), 0.4 % SDS 

Resuspension buffer (solution I) 50 mM Glucose, 10 mM EDTA, 25 mM Tris 

pH 8.0 (HCl) 

RNA loading buffer 100 μl MOPS, 178 μl formaldehyde     

pH 4, 222 μl DEPC water, 500 μl pure 

formamide 

RNA running buffer 50 % glycerol, 0.1 % bromophenol blue, 

0.1 % xylene cyanol 
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SSC 20x 3 M NaCl, 300 mM Na3Citrate·2H2O, 

pH 7.0 with 1 M HCl 

Solution D 50 ml 4M GT solution, 0.36 ml 2 M β-

mercaptoethanol 

Stacking gel buffer 0.5 M Tris-HCl (pH 6.8), 0.4 % SDS 

Stripping buffer 62.5 mM Tris (pH 6.8), EDTA 100 mM,  

2 M β-mercaptoethanol, 2% SDS 

TBE x10 890 mM Tris, 890 mM Boric acid, 20 mM 

EDTA (ph 8.0) 

TE buffer 10 mM Tris·Cl (pH 7.5), 1 mM EDTA 

Towbin buffer 25 mM Tris-HCl (pH8.3), 192 mM glycine, 

20 % (v/v) methanol 

Versene 0.6 mM EDTA in PBS(A), 0.002 % (w/v) 

phenol red 

2.1.10 Other materials and apparatus 

Bacterial and tissue culture plasticware was supplied by Nunc.  Taqman® plates 

and lids were purchased from VWR.  EcoscintTM A was obtained from National 

Diagnostics.  X-Omat UV film, developer and fixer for the Dynex, were purchased 

from KONICA. 

2.1.11 Synthetic Olignucleotides 

Oligonucleotides were ordered from Sigma-Genosys.   
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Primer Primer name Use Sense/ 

Antisense 

Primer sequence (5’-

3’) 

Primer 1 PP-AC5-

GT1/3 

Sequencing 

(A1F)  

Sense GCGACACTCCACCATG 

Primer 2 PP-AC8-

GT1/3 

Sequencing 

(A1R)  

Antisense GATGTACCCCATGAGG 

Primer 3 MSQ1 Sequencing 

(A2F)  

Sense AAAGTCATCGATACCCT 

Primer 4 MSQ10 Sequencing 

(A2R) 

Antisense GCCATTCGATGTCCTGAG

AG 

Primer 5 MSQ15 Sequencing 

(A3F) 

Sense AAGCCTTCACGTTCAGAC

CT 

Primer 6 MSQ9 Sequencing 

(A3R)/PCR 

Antisense AGGTGCGTAGTGCCAGC

AGT 

Primer 7 MSQ13 Sequencing 

(B1F)/PCR 

Sense ACCAATGGCTCGTGGCAC

ATC 

Primer 8 MS2 Sequencing 

(B1R)/PCR 

Reverse TGATAAGGTAAAGAAGCC

G 

Primer 9 MSQ7 Sequencing 

(B2F) 

Sense GTCTGCGGCCCTGTGTAC

TG 

Primer 10 MSQ16 Sequencing 

(B2R) 

Antisense GGGGGAGCTCCGCACGT

CTTG 

Primer 11 MSQ12 Sequencing 

(C1F)/PCR 

Sense CGCTGAACGCCGTCGCTG

CT 
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Primer Primer name Use Sense/ 

Antisense 

Primer sequence (5’-

3’) 

Primer 12 a4935gt3 Sequencing 

(C1R)/PCR 

Antisense CGAGCAGCCCGCGTCATA

GC 

Primer 13 s3990gt3 Sequencing 

(C2F) 

Sense TCTGACAATTCAACTCCT

CCTG 

Primer 14 a4098gt3 Sequencing 

(C2R) 

Antisense GTGCTACCATAAGCGGCC

GGGAC 

Primer 15 s3471gt3 Sequencing 

(C3F)/ 

Sense GGGCCTTCTTGGGACTAT

TG 

Primer 16 a3550gt3-SpeI Sequencing 

(C3R)/PCR 

Antisense GCGCACTAGTCGTGGAAA

GCACCTGCACTT 

Primer 17 s4935gt3 Sequencing 

(D1F)/PCR 

Sense GCTATGACGCGGGCTGC

TCG 

Primer 18 a6120gt3-SpeI Sequencing 

(D1R)/PCR 

Antisense GCGCACTAGTCGCGATGA

GCCTGTTCATCCACT 

Primer 19 s5475gt3 Sequencing 

(D2F/I1F) 

Sense CGATGAGATGGAGGAGT

GCT 

Primer 20 a5548gt3 Sequencing 

(D2R/J1R) 

Antisense CCTTGAACTGGTGGGCTA

T 

Primer 21 s4586gt3 Sequencing 

(J1F)/PCR 

Sense GATGAGATAGCGTCCAAA

CTCAGAGGCA 

Primer 22 3a5aAO31 Sequencing 

(I1R) 

Antisense ACATGTTAGCACATGTAC

GC 
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Primer Primer name Use Sense/ 

Antisense 

Primer sequence (5’-

3’) 

Primer 23 3a5aAO32 Sequencing 

(G1F)/PCR 

Sense AGCGACGATTGGCTGCG

TAT 

Primer 24 3aAnti Sequencing 

(G2F)/PCR 

Antisense GGAGGTTTCTTGAAACAC

TC 

Primer 25 35a6 Sequencing 

(H1F) 

Sense CCCTGTGAGCCAGAACCA

GA 

Primer 26 3a5aAO35 Sequencing 

(H1R)/PCR 

Antisense AGCAGCAGACCACGCTCT

GT 

Primer 27 3a5aAO38 Sequencing 

(F1F)/PCR 

Sense AGGAAGAGAATAGCTCAT

AA 

Primer 28 PP6-Gt2/3Rev Sequencing 

(F2R)/PCR 

Antisense ACACGCTGTGATAAATGT

CG 

Primer 29 s8308gt3 Sequencing 

(F2F) 

Sense CTGTCACTGAACAGGACA

TCA 

Primer 30 a8343gt3 Sequencing 

(F2R) 

Antisense CTCCTCTTCCACCCTGAT

GT 

Primer 31 s8818gt3 Sequencing 

(F3F) 

Sense GGGAAACAGCTCGTCACA

CT 

Primer 32 a8878gt3 Sequencing 

(F3R)/PCR 

Antisense GCGCGTACATGATGATGT

T 

Primer 33 s7466gt3 Sequencing 

(F4F)PCR 

 

Sense GTCCAGCACTACTTCCAA

GGT 
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Primer Primer name Use Sense/ 

Antisense 

Primer sequence (5’-

3’) 

Primer 34 semcv2 Sequencing 

(semcv)        

Sense  CCGCTATCAGGACATAGC

GTT 

Primer 35 aemcv2 Sequencing 

(aemcv) 

Antisense GGTTGCGGTCAGCCCATT 

Primer 36 3a5aAO32 PCR Sense AGCGACGATTGGCTACGT

AT 

Primer 37 5-15-neo 

emcv-BglII 

PCR Antisense AGATCTCAAAGGAAAACC

ACGTCCCCGT 

Primer 38 NS3GT3-BglII PCR Sense AGATCTACGAATGGCTCC

GATCACAGCATA 

Primer 39 aXtailGT3-

SpeI 

PCR Antisense GCACTAGTAGTACTTGAT

CTGCAGAGAGGCCAGTA 

Primer 40 aluc-NotI PCR Antisense AAACTTACACGGCGATCT

TTCCGC 

Primer 41 sluc-gt3(2) PCR Sense GCGTCTTCCATGCGGCCG

CTGGCGCGCCCGTTGGT

CTT 

Primer 42 aluc-NotI(2) PCR Antisense AGCGGCCGCATGGAAGA

CGCCAAAAACATAAAGA 

Primer 43 alucPme1 PCR Antisense TCTGTTTAAACTTACACG

GCGATCTTTCCGC 
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Primer Primer name Use Sense/ 

Antisense 

Primer sequence (5’-

3’) 

Primer 44 Vtag940 PCR Sense GTGGTCAAGACGCCTAGA

GCTTCACGCAGA 

AAGCGTCTAG 

Primer 45 Vtag3 PCR Sense GTGGTCAAGACGCCTAGA

GC 

Primer 46 NCR4 PCR Antisense CACTCTCGAGCACCCTAT

CAGGCAGT  

Primer 47 EMCVHCVF PCR Sense TCTGCGGAACCGGTGAG

TAC 

Primer 48 EMCVHCVR PCR Antisense GCACTCGCAAGCACCCTA

TC 

Primer 49 PP-GT3-

5’UTR 

PCR Sense TGCGGATCCACCTGCCTC

TTACGAGGCGACACTCCA

CCA 

Primer 50 T7-5UTR-GT3 PCR Sense TAATACGACTCACTATAG

ACCTGCCTCTTACGAGGC

GAC 

Primer 51 sGAPDH1 PCR Sense ATCTTCTTTTGCGTCGCC

AG 

Primer 52 SGAPDH2 PCR Sense ACCACAGTCCATGCCATC

AC 

Primer 53  aGAPDH1 PCR Antisense CCCACAGCCTTGGCAG 

     



Jonathan R Hubb, 2007    69 

Primer Primer name Use Sense/ 

Antisense 

Primer sequence (5’-

3’) 

Primer 54 3a5aAO34 PCR Sense CACGGTACTTTCCCCATC

AA 

Primer 55 sG225Tgt3 Site-directed 

mutagenesis 

Sense CTCAATACCCAGAAATTT

GGGCGTGCCCC 

Primer 56 aG225Tgt3 Site-directed 

mutagenesis 

Antisense GGGGCACGCCCAAATTTC

TGGGTATTGAG 

Primer 57 sA4820Tgt3 Site-directed 

mutagenesis 

Sense GTTTCTCGCAGCCAACGT

CGTGGCCGTACGG 

Primer 58 aA4820Tgt3 Site-directed 

mutagenesis 

Antisense CCGTACGGCCACGACGTT

GGCTGCGAGAAAC 

Primer 59 sD6290EGT3 Site-directed 

mutagenesis 

Sense GTTGCGTACCATCTGGGA

ATGGGTTTGCACTG 

Primer 60 aD6290EGT3 Site-directed 

mutagenesis 

Antisense CAGTGCAAACCCATTCCC

AGATGGTACGCAAC 

Primer 61 sA7792Vgt3 Site-directed 

mutagenesis 

Sense CTTCGACAGGCTGCAGGT

GCTCGACGACCATTACAA

GAC 

Primer 62 aA7792Vgt3 Site-directed 

mutagenesis 

Antisense GTCTTGTAATGGTCGTCG

AGCACCTGCAGCCTGTCG

AAG 

Primer 63 sI8302Tgt3 Site-directed 

mutagenesis 

Sense CTGCTTTGACTCGACTGT

CACTGAACAGGACATCAG 
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Primer Primer name Use Sense/ 

Antisense 

Primer sequence (5’-

3’) 

Primer 64 aI8302Tgt3 Site-directed 

mutagenesis 

Antisense CTGATGTCCTGTTCAGTG

ACAGTCGAGTCAAAGCAG 

Primer 65 sT8967Agt3 Site-directed 

mutagenesis 

Sense GACTTTGAAATGTACGGG

GCCACTTACTCTGTCACT

C 

Primer 66 aT8967Agt3 Site-directed 

mutagenesis 

Antisense GAGTGACAGAGTAAGTG

GCCCCGTACATTTCAAAG

TC 

Primer 67 sC9098Igt3 Site-directed 

mutagenesis 

Sense GAAGCTTGGGTGCCCCCC

CCTACGGGCTTG 

Primer 68 aC9098Igt3 Site-directed 

mutagenesis 

Antisense CAAGCCCGTAGGGGGGG

GCACCCAAGCTTC 

Primer 69 sS2204Igt3 Site-directed 

mutagenesis 

Sense GCTAGCTCATCCGCCATT

CAACTATCGGCTCC 

Primer 70 aS22041gt3 Site-directed 

mutagenesis 

Antisense GGAGCCGATAGTTGAAT

GGCGGATGAGCTAGC 

Primer 71 sGNDgt3 Site-directed 

mutagenesis 

Sense CCCGGACTTTCTTGTCTG

CGGAAATGATCTAGTCGT

GGTGGC 

Primer 72 aGNDgt3 Site-directed 

mutagenesis 

Antisense GCCACCACGACTAGATCA

TTTCCGCAGACAAGAAAG

TCCGGG 
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Primer Primer name Use Sense/ 

Antisense 

Primer sequence (5’-

3’) 

Primer 73 sΔBglIIgt3 Site-directed 

mutagenesis 

Sense CGTGGTTTTCCTTTGAAA

AACACGAATGGCTCCGAT

CACAGC 

Primer 74 aΔBglIIgt3 Site-directed 

mutagenesis 

Antisense GCTGTGATCGGAGCCATT

CGTGTTTTTCAAAGGAAA

ACCACG 

Primer 75 slucΔScaI Site-directed 

mutagenesis 

Sense GTGGACATCACTTACGCT

GAATACTTCGAAATGTCC

GTTCG 

Primer 76 alucΔScaI Site-directed 

mutagenesis 

Antisense CGAACGGACATTTCGAAG

TATTCAGCGTAAGTGATG

TCCAC 

Primer 77 a9425gt3 PCR Antisense GCTCCCCGTTCACCGAGC 

Primer 78 PP-AC6-GT3 PCR Antisense CGGGAACGACATTTATC 

Primer 79 3a5aAO33 PCR Antisense AATATGCGGCCTTTAGG 

Primer 80 PM3 2AS PCR Antisense GTAGTACTTGATCTGCAG

AGAGGCCAGTA 

 

2.2 Manipulation of RNA and DNA 

2.2.1 Extraction of viral RNA from serum 

Viral RNA was extracted from serum using the QIAamp Viral RNA Mini Kit.  

Samples were first brought to 15 - 25ºC.  A 560 μl aliquot of buffer AVL 

containing carrier RNA was placed into a 1.5 ml micro-centrifuge tube.  An 
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aliquot of 140 μl of serum was added to the buffer AVL and mixed by pulse 

vortexing.  The sample was incubated at room temperature for 10 min.  Any 

drops were removed from the lid by centrifuging briefly.   A 560 μl aliquot of 

absolute ethanol was added to the sample and mixed by pulse-vortexing for 15 

secs.  Any drops were again removed from the lid by centrifuging briefly.  The 

sample was bound to the column by applying 630 μl of the solution to a QIAamp 

spin column in a 2 ml collection tube.  The sample was centrifuged at 6800 g for 

1 min and the collection tube was discarded.  Then another 630 μl of the 

solution was applied to the spin column and the process was repeated.  The spin 

column was placed in a fresh 2 ml collection tube and washed after 500 μl of 

AW1 buffer was applied.  The column was centrifuged at 6800 g for 1 min and 

the collection tube discarded.  In a fresh collection tube, a second wash was 

performed by the addition of 500 μl of buffer AW2.  The sample was centrifuged 

at 17,900 g for 3 min and the collection tube was discarded.  The sample was 

placed in a new collection tube and centrifuged at full speed for 1 min to 

remove all buffer AW2.  The QIAamp spin column was placed in a clean 1.5 ml 

microcentrifuge tube and 60 μl of buffer AVE, equilibrated to room temperature, 

was applied.  The column was incubated at room temperature for 1 min and the 

RNA was eluted by centrifuging at 6800 g for 1 min. 

2.2.2 Extraction of cellular RNA 

This extraction technique was adapted from Chomezynski et al (1987).  First 

cells (1 x 107 to 1 x 108 cells) were lysed by the addition of 500 μl solution D.  To 

this was added 0.1 volume 2 M sodium acetate (pH 4).  The mixture was mixed 

thoroughly.  Then a further 1 volume of phenol was added and mixed. Finally 0.2 

volume of chloroform:isoamyl (49:1) was added and the mixture was vortexed 

for 10 sec.  The mixture was incubated on ice for 15 min and then centrifuged 

10,000 g for 20 min at 4ºC.  The upper aqueous phase was then placed in a fresh 

micro centrifuge tube.  To this was added 1 volume of isopropanol.  The RNA 

was allowed to precipitate for 4 hrs or overnight at -20ºC.  The RNA was pelleted 

by centrifuging at 17,900 g for 20 min at 4ºC.  The supernatant was removed and 

the wet pellet was resuspended in 300 μl solution D.  Two volumes of absolute 

ethanol was added to this.  The mixture was vortexed and incubated at -20ºC for 

2 hrs.  The RNA was pelleted by centrifuging at 17,900 g for 20 min at 4ºC and 

the supernatant was removed.  The pellet was washed in 75 % absolute ethanol 
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twice. After the second wash, the alcohol was removed and the pellet allowed 

to air dry briefly.  The pellet was resuspended in 100 μl water.  In order to 

resuspend the pellet completely it was heated for 10 min at 65ºC.  RNA was 

stored at -20ºC for short term storage or -80ºC for longer term storage 

(Chomczynski P, 1987). 

2.2.3 Reverse transcription of RNA 

2.2.3.1 Omniscript reverse transcription 

For the purpose of quantification and amplification of DNA, Omniscript reverse 

transcription kit was used to produce a first strand cDNA template.  First 3 μl of 

RNA was added to 9.7 μl water and heated to 65ºC for 5 min.  Meanwhile the 

mastermix was mixed on ice.  The mastermix contained 2 μl 10 x RT buffer 

(Qiagen), 2 μl dNTPs (5 mM each dNTP), 2 pmoles RT primer, 12 U of RNasin 

inhibitor and 4 U of Omniscript RT enzyme.  The mastermix was added to the 

denatured RNA and incubated for 60 min at 37ºC and then heated to 95ºC for 5 

min before being cooled to 4ºC. 

2.2.3.2 Superscript reverse transcription 

For synthesis of cDNA for RNAs with a high degree of secondary structure 

SuperscriptTM II RNase H- Reverse Transcription was used.  First 3 μl of RNA, 1 μl 

dNTPs (10 mM each dNTP), 2 pmol RT primer and sterile distilled water to 12 μl 

volume were mixed in a micro centrifuge tube.  This mixture was heated to 65ºC 

for 5 min and chilled rapidly to 4ºC.  Then to this was added 4 μl 5 x First strand 

buffer, 2 μl 0.1 M DTT and 1 μl RNaseOUTTM Recombinant ribonuclease inhibitor 

(40 units/μl).  The contents were mixed and then incubated for 2 min at 42ºC. 

Then 1 μl of superscriptTM II RT was added and mixed by gently pipetting up and 

down.  The reaction was then incubated at 42ºC for 50 min and it was 

inactivated by heating at 70ºC for 15 min.  RNA template was removed by the 

addition of 1 μl (2U) E.coli RNase H and incubation for a further 37ºC for 20 min. 

2.2.3.3 ThermoScript RT-PCR System 

For templates with a high degree of secondary structure ThermoscriptTM reverse 

transcription was used.  Briefly 3 μl RNA template was mixed with 1 μl gene 
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specific RT primer (10 μM) and 2 μl dNTPs (10 mM).  This mixture was incubated 

at 65ºC for 5 min to denature the RNA and cooled on ice.  To this was added 4 μl 

5 x cDNA synthesis buffer, 0.1 M DTT, 1 μl RNaseOUTTM (40 U/μl), 1 μl DEPC 

treated water and 1 μl ThermoscriptTM RT (15 U/μl).  The reaction was mixed 

and incubated 65ºC for 60 min.  The reaction was inactivated by heating to 85ºC 

for 5 min.  The RNA template was removed by addition of 1 μl RNase H and 

incubation for 20 min at 37ºC. 

2.2.4 Quantification and Amplification of DNA 

2.2.4.1 Polymerase chain reaction (PCR) amplification of cDNA 

PCR was used for the amplification of HCV cDNA for quantification, cloning and 

sequencing purposes.  Amplification of HCV sequences required a “nested” or 

“semi-nested” approach to allow more specific and a higher yield of products.  

Two sets of primers were used.  The second set was internal (nested) or partially 

(semi-nested) internal to the first set of primers.  Primers were designed which 

covered the whole of the HCV GT3 genome allowing amplification of all coding 

and non-coding regions.  All PCRs were carried out on the Biometra TRIO-

Thermoblock 

2.2.4.2 BD AdvantageTM 2 and HF-2 PCR Enzyme system 

The BD AdvantageTM 2 and HF-2 PCR enzyme systems were used for amplifying 

large segments of DNA or high fidelity PCRs, respectively.  BD AdvantageTM 2 

polymerase mix could amplify long distances of DNA (up to 18kb).  Both systems 

contained a BD TitaniumTM Taq DNA polymerase plus a BDTM Taqstart antibody as 

well as a small amount of proof reading enzyme.  The BDTM Taqstart antibody 

prevents synthesis of DNA until antibodies which are bound to the polymerase, 

are inactivated on heating.  This is called “hotstart” PCR.  This allowed 

increased range, fidelity and greater yields of amplification product.  A standard 

25 μl reaction mixture included either 1 x BD advantage 2 PCR buffer or 1 x HF-2 

buffer, 1 x dNTP mix   (10 mM each nucleotide), 1 μl each primer (10 μM each), 

1 μl DNA template and 1 x BD advantage 2 polymerase mix or 1 x HF-2 

polymerase.  The reaction was carried out under the following conditions: a 95ºC 

denaturing step for 1 minute, then 25 - 35 cycles of a 95ºC strand separation 

step for 30 secs and a 68ºC primer annealing and strand elongation step for 2 - 
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10 min depending on the template size.  The elongation allowed for 1 min per 

kilobase of DNA.  These cycles were followed by a further elongation step, 

before the reaction was held at 4ºC. 

2.2.4.3 Pfu Polymerase PCR system 

Pfu DNA polymerase has proof-reading ability due to the presence of 3’ to 5’ 

exonuclease activity.  Due to its increased fidelity compared to that of Taq it 

was preferentially used when sequencing directly from PCR product.  A standard 

25 μl reaction contained 1 x Pfu DNA Polymerase Buffer, 1 μl dNTPs mix (10 mM 

each), 1 μl each primer (10 μl) and 1 unit Pfu DNA Polymerase.  The reaction was 

processed as follows: a 95ºC denaturing step for 2 min, then 25 - 35 cycles of a 

95ºC strand separation step for 30 sec, a 50ºC - 65ºC primer annealing step for 30 

sec and a 72ºC strand elongation step for 2 - 4 minutes.  Extension steps were 

designed allowing 2 min per kilobase of DNA.  This was followed by a 72ºC final 

elongation step for 5 min and the reaction was held a 4ºC. 

2.2.4.4 Taq Polymerase PCR system 

Taq DNA polymerase was used for diagnostic PCR where sequence fidelity did not 

matter.  There were also occasions where proof-reading enzymes were unable to 

amplify regions of DNA.  In these cases Taq was used.  A standard 25 μl reaction 

contained 1 x Taq buffer, 0.75 μl MgCl2 (50 mM), 0.5 μl dNTPs (10 mM each), 1 μl 

each PCR primer and 1 unit Taq DNA Polymerase.  For problematic templates 

amplification could be improved by the addition 0.5 μl of DMSO.  The reaction 

was carried out under the following conditions: a 95ºC denaturing step for 4 min, 

25 - 35 cycles of a 95ºC strand separation step for 30 sec, a 50ºC - 65ºC primer 

annealing step for 30 sec and a 72ºC strand elongation step for 1 - 3 min.  A final 

elongation step for 10 min was performed before the reaction was held at 4ºC. 

2.2.4.5 Platinum® Pfx PCR system 

Platinum® Pfx DNA polymerase was used for amplification for cloning purposes 

due to its increased fidelity compared to that of Pfu.  It has a fast chain 

elongation capability and is supplied in an inactive form due to the presence of 

the Platinum® antibody.  This allows “hot start” PCR which increases yield, 

specificity and sensitivity.  A standard reaction was set up as follows: 1 x Pfx 
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amplification buffer, 1 μl dNTP mixture (10 mM), 1 μl MgSO4 (50 mM), 1 μl each 

primer (10 μM), 1 μl DNA template, 1 unit Platinum® Pfx DNA polymerase.  The 

reaction was processed as follows: a 94ºC denaturing step for 2 min, 25 - 35 

cycles consisting of a 94ºC strand separation step for 15 sec, a 55ºC - 65ºC primer 

annealing step for 30 sec, a 68ºC elongation step for 1 - 4 min.  These cycles 

were followed by a final elongation step before the reaction was held at 4ºC. 

2.2.4.6 Real-time PCR of HCV cDNA  

Detection a small quantities of HCV cDNA used real-time PCR using the Perkin 

Elmer Applied Biosystems 5700 sequence detection system and reagents from 

Applied Biosystems.  A 25 μl reaction was set up as follows: 12.5 μl Universal PCR 

mastermix (AmpliTaqGold DNA polymerase and dNTPs), 7 pmol EMC HCVF primer 

(Primer 47), 1.2 pmol EMC HCVR primer (Primer 48), 5.1 pmol minor groove 

binding (MGB) probe (CGAAAGGCCTTGTGGTACTGCCT) and 1 μl cDNA template.  

The MGB probe was complementary to a short consensus sequence in the HCV 

5’UTR and was able to bind all genotypes.  In some cases 12.5 μl SYBR green PCR 

master mix was used instead of Universal PCR mastermix.  This allowed for the 

non-specific detection of any double stranded DNA products to detect the 

loading control GAPDH.  Detection of GAPDH sequences used the primers, 52 and 

53 in the same reaction described below.  In these cases MGB probe was omitted 

and 1 μl each gene specific primer (10 μM) was used instead of HCV primers.  

The following thermal cycling product was used for amplification of PCR 

product: a 50ºC step for 2 min, a 95ºC denaturing step for 10 min, 40 cycles 

consisting of a 95ºC denaturing step for 40 sec and a 60ºC primer 

annealing/strand elongation step for 1 min.  In reactions where SYBR green was 

used an additional dissociation step was included at the end of the 40 cycles. 

The reaction was held at 4ºC for up to 24 hrs.   

2.2.5 PCR reactions 

The various PCR conditions are described in the following section where the 

PCRs performed during the project are shown. 
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2.2.5.1 Diagnostic PCRs 

PCR 1: Diagnostic PCR 

1 (First Round/P1)   
Cycle number 

Stage 1 95ºC 4 min X 1 

Stage 2 95ºC 30 secs 

 76ºC 30 secs 

 72ºC 30 secs 

 

X 30 

Stage 3 72ºC 1 min X 1 

Stage 4 4ºC Hold  

Primers: Primer 43 + PP-AC6-GT3                                                                          

Polymerase: Taq Polymerase 

PCR 2: Diagnostic PCR 

1 (Second Round/P2)   
Cycle number 

Stage 1 95ºC 4 min X 1 

Stage 2 95ºC 30 secs 

 55ºC 30 secs 

 72ºC 45 secs 

X 30 

Stage 3 72ºC 7 min X 1 

Stage 4 4ºC Hold  

Primers: Primer 45 + Primer 46                                                          

Polymerase: Taq Polymerase 
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PCR 3: Diagnostic PCR 

2 (P1)   
Cycle number 

Stage 1 95ºC 4 min X 1 

Stage 2 95ºC 30 secs 

 58ºC 30 secs 

 72ºC 1 min 30 secs 

 

X 30 

Stage 3 72ºC 1 min X 1 

Stage 4 4ºC Hold  

Primers: Primer 26 + Primer 23                                                                            

Polymerase: Taq Polymerase 

 

PCR 4: Diagnostic PCR 

2 (P2)   
Cycle number 

Stage 1 95ºC 4 min X 1 

Stage 2 95ºC 30 secs 

 55ºC 30 secs 

 72ºC 45 secs 

 

X 30 

Stage 3 72ºC 1 min X 1 

Stage 4 4ºC Hold  

Primers: Primer 54 + Primer 24                                                                            

Polymerase: Taq Polymerase 
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2.2.5.2 PCR of Fragments 1-7  

PCR 5: P1/P2 PCR 

Fragment 1   
Cycle number 

Stage 1 95ºC 1 min X 1 

Stage 2 

 

 

95ºC 

68ºC 

30 secs 

6 min 30 secs 

 

X 30 

Stage 3 68ºC 10 min X 1 

Stage 4 4ºC Hold  

Primers: Primer 49 + Primer 18                                                               

Polymerase: BD Advantage Polymerase 

PCR 6: P1/P2 PCR 

Fragment 2   
Cycle number 

Stage 1 95ºC 1 min X 1 

Stage 2 

 

 

95ºC 

68ºC 

30 secs 

5 min 

 

X 30 

Stage 3 68ºC 10 min X 1 

Stage 4 4ºC Hold  

Primers: Primer 49 + Primer 12                                                                             

Polymerase: BD Advantage Polymerase 
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PCR 7: P1/P2 PCR 

Fragment 3   
Cycle number 

Stage 1 95ºC 1 min X 1 

Stage 2 

 

 

95ºC 

68ºC 

30 secs 

4 min 30 secs 

 

X 30 

Stage 3 68ºC 10 min X 1 

Stage 4 4ºC Hold  

Primers: Primer 17 + Primer 77                                                                            

Polymerase: BD Advantage Polymerase 

PCR 8: P1 PCR 

Fragment 4   
Cycle number 

Stage 1 95ºC 4 min X 1 

Stage 2 95ºC 30 secs 

 55ºC 30 secs 

 72ºC 2 min 

 

X 30  

Stage 3 72ºC 4 min X 1 

Stage 4 4ºC Hold  

Primers: Primer 19 + Primer 79                                                                            

Polymerase: Pfu Polymerase 
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PCR 9: P1 PCR 

Fragment 5   
Cycle number 

Stage 1 95ºC 4 min X 1 

Stage 2 95ºC 30 secs 

 58ºC 30 secs 

 72ºC 1 min 30 secs 

 

X 30  

Stage 3 72ºC 4 min X 1 

Stage 4 4ºC Hold  

Primers: Primer 23 + Primer 26                                                           

Polymerase: Pfu Polymerase 

PCR 10: P1 PCR 

Fragment 6   
Cycle number 

Stage 1 95ºC 4 min X 1 

Stage 2 95ºC 30 secs 

 45ºC 30 secs 

 72ºC 1 min 20 secs 

 

X 30  

Stage 3 72ºC 4 min X 1 

Stage 4 4ºC Hold  

Primers: Primer 27 + Primer 28                                                          

Polymerase: Pfu Polymerase 



Jonathan R Hubb, 2007    82 

 

PCR 11: P1 PCR 

Fragment 7   
Cycle number 

Stage 1 95ºC 1 min X 1 

Stage 2 

 

 

95ºC 

68ºC 

30 secs 

10 secs 

 

X 30  

Stage 3 68ºC 12 min X 1 

Stage 4 4ºC Hold  

Primers: Primer 49 + Primer 77                                                                            

Polymerase: BD Advantage Polymerase 

PCR 12: Linker 

Fragment PCR   

Cycle number 

Stage 1 95ºC 1 min 1 

Stage 2 

 

 

95ºC 

68ºC 

15 secs 

4 min 

 

X 35  

Stage 3 68ºC 4 min 1 

Stage 4 4ºC Hold  

Primers: Primer 11 + Primer 18                                                        Polymerase: 

HF-2 Polymerase + 1 in 12.5 HF-2 Buffer + 1 in 50 Advantage Buffer 
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2.2.5.3 P2 PCR Fragments A-J 

PCR 13: P2 PCR 

Fragment A   
Cycle number 

Stage 1 95ºC 4 min X 1 

Stage 2 95ºC 30 secs 

 60ºC 30 secs 

 72ºC 1 min 40 secs 

 

X 30  

Stage 3 72ºC 4 min X 1 

Stage 4 4ºC Hold  

Primers: Primer 1 + Primer 6                                                                            

Polymerase: Pfu Polymerase 

PCR 14: P2 PCR 

Fragment B   
Cycle number 

Stage 1 95ºC 4 min X 1 

Stage 2 95ºC 30 secs 

 55ºC 30 secs 

 72ºC 1 min 40 secs 

 

X 30  

Stage 3 72ºC 4 min X 1 

Stage 4 4ºC Hold  

Primers: Primer 7 + Primer 8                                                               

Polymerase: Pfu Polymerase 



Jonathan R Hubb, 2007    84 

 

PCR 15: P2 PCR 

Fragment C   
Cycle number 

Stage 1 95ºC 4 min X 1 

Stage 2 95ºC 30 secs 

 68ºC 30 secs 

 72ºC 2 min 30 secs 

 

X 30  

Stage 3 72ºC 4 min X 1 

Stage 4 4ºC Hold  

Primers: Primer 11 + Primer 12                                                           

Polymerase: Pfu Polymerase 

PCR 16: P2 PCR 

Fragment D   
Cycle number 

Stage 1 95ºC 4 min X 1 

Stage 2 95ºC 30 secs 

 66ºC 30 secs 

 72ºC 1 min 30 secs 

 

X 30  

Stage 3 72ºC 4 min X 1 

Stage 4 4ºC Hold  

Primers: Primer 21 + Primer 18                                                              

Polymerase: Pfu Polymerase 
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PCR 17: P2 PCR 

Fragment F   
Cycle number 

Stage 1 95ºC 4 min X 1 

Stage 2 95ºC 30 secs 

 58ºC 30 secs 

 72ºC 1 min 20 secs 

 

X 30  

Stage 3 72ºC 4 min X 1 

Stage 4 4ºC Hold  

Primers: Primer 27 + Primer 28                                                                            

Polymerase: Pfu Polymerase 

PCR 18: P2 PCR 

Fragment G   
Cycle number 

Stage 1 95ºC 4 mins X 1 

Stage 2 95ºC 30 secs 

 45ºC 30 secs 

 72ºC 1 min 20 secs 

 

X 30  

Stage 3 72ºC 4 min X 1 

Stage 4 4ºC Hold  

Primers: Primer 23 + Primer 54                                                                           

Polymerase: Pfu Polymerase 
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PCR 19: P2 PCR 

Fragment H   
Cycle number 

Stage 1 95ºC 4 mins X 1 

Stage 2 95ºC 30 secs 

 55ºC 30 secs 

 72ºC 1 min  

 

X 30  

Stage 3 72ºC 4 min X 1 

Stage 4 4ºC Hold  

Primers: Primer 25 + Primer 26                                                                           

Polymerase: Pfu Polymerase 

PCR 20: P2 PCR 

Fragment I   
Cycle number 

Stage 1 95ºC 4 mins X 1 

Stage 2 95ºC 30 secs 

 

X 30  

 60ºC 30 secs  

 72ºC 1 min  

Stage 3 72ºC 4 min X 1 

Stage 4 4ºC Hold  

Primers: Primer 19 + Primer 26                                                                           

Polymerase: Pfu Polymerase 
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PCR 21: P2 PCR 

Fragment J   
Cycle number 

Stage 1 95ºC 4 min X 1 

Stage 2 95ºC 30 secs 

 65ºC 30 secs 

 72ºC 1 min  

 

X 30  

Stage 3 72ºC 4 min X 1 

Stage 4 4ºC Hold  

Primers: Primer 20 + Primer 21                                                                            

Polymerase: Taq Polymerase + DMSO 

 
PCR 22: P2 PCR 

Fragment 3’stop   
Cycle number 

Stage 1 95ºC 4 min X 1 

Stage 2 95ºC 30 secs 

 65ºC 30 secs 

 72ºC 1 min  

 

X 30  

Stage 3 72ºC 4 min X 1 

Stage 4 4ºC Hold  

Primers: Primer 31 + Primer 77                                                                            

Polymerase: Taq Polymerase + DMSO 
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2.2.5.4 PCR of HCV 3’UTR 

PCR 23: PCR of the 

3’UTR   
Cycle number 

Stage 1 95ºC 4 min X 1 

Stage 2 95ºC 30 secs 

 65ºC 30 secs 

 72ºC 1 secs 

 

X 30  

Stage 3 72ºC 4 min X 1 

Stage 4 4ºC Hold  

Primers: Primer 31 + Primer 39                                                                            

Polymerase: Taq Polymerase + DMSO 

2.2.5.5 Modification of the GM genome PCR  

PCR 24: T7 Promoter PCR   Cycle number 

Stage 1 95ºC 2 min X 1 

Stage 2 95ºC 15 secs 

 58ºC 30 secs 

 68ºC 5 min 

 

X 30  

Stage 3 68ºC 7 min X 1 

Stage 4 4ºC Hold  

Primers: Primer 50 + Primer 16      Polymerase: Pfx Platinum Polymerase 
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PCR 25: EMCV IRES 

PCR   
Cycle number 

Stage 1 95ºC 4 min X 1 

Stage 2 95ºC 30 secs 

 55ºC 30 secs 

 72ºC 1 min 20 secs 

 

X 30  

Stage 3 72ºC 4 min X 1 

Stage 4 4ºC Hold  

Primers: Primer 44 + Primer 37                                                                            

Polymerase: Taq Polymerase 

PCR 26: NS3-GT3 

PCR   
Cycle number 

Stage 1 95ºC 2 min X 1 

Stage 2 95ºC 15 secs 

 60ºC 30 secs 

 68ºC 3 min  

 

X 30  

Stage 3 68ºC 4 min X 1 

Stage 4 4ºC Hold  

Primers: Primer 38 + Primer 18                                                                            

Polymerase: Pfx Platinum Polymerase 
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2.2.5.6 Site-Directed Mutagenesis PCR 

PCR 27: 

Mutagenesis PCR   
Cycle number 

Stage 1 95ºC 1 min X 1 

Stage 2 

 

 

95ºC 

68ºC 

30 secs 

Varied (1min/kb) 

 

X 25  

Stage 3 68ºC 10 min X 1 

Stage 4 4ºC hold  

Primers: Sense and Antisense mutagenesis primer for desired mutation                  

Polymerase: BD Advantage Polymerase 
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2.2.5.7 Luciferase PCR 

PCR 28: Luciferase 

PCR 1   
Cycle number 

Stage 1 95ºC 4 min 1 

Stage 2 95ºC 15 secs 

 60ºC 30 secs 

 68ºC 2 min  

 

X 30  

Stage 3 68ºC 4 min 1 

Stage 4 4ºC hold  

Primers: Primer 42 + Primer 43    Polymerase: Pfx Platinum Polymerase 

PCR 29: Luciferase 

PCR Fragment 2   
Cycle number 

Stage 1 95ºC 4 min 1 

Stage 2 95ºC 15 secs 

 50ºC 30 secs 

 68ºC 1 min  

 

X 30  

Stage 3 68ºC 4 min 1 

Stage 4 4ºC hold  

Primers: Primer 44 + Primer 40                                                                            

Polymerase: Pfx Platinum Polymerase 
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PCR 30: Luciferase 

PCR Fragment 3   
Cycle number 

Stage 1 95ºC 4 min X 1 

Stage 2 95ºC 15 secs 

 60ºC 30 secs 

 68ºC 2 min  

 

X 8  

Stage 3 Add Primers: Vtag940 + aluc-PmeI                     

Stage 4 Repeat Stage 2 for 25 cycles 

Stage 5 4ºC hold  

Initially luciferase PCR fragments 1 and 2 were used in a self priming reaction  

Polymerase: Taq Polymerase + DMSO 

2.2.5.8 GAPDH PCR 

PCR 31: GAPDH PCR   Cycle number 

Stage 1 95ºC 4 min 1 

Stage 2 95ºC 30 secs 

 60ºC 30 secs 

 72ºC 1 min  

 

X 30  

Stage 3 72ºC 4 min 1 

Stage 4 4ºC hold  

Primers: Primer 51 + Primer 53       Polymerase: Taq Polymerase                            
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2.2.6 Automated DNA sequencing 

Automated DNA sequencing was performed by The Sequencing Service (School of 

Life Sciences, University of Dundee, Scotland) using Applied Biosystems Big-Dye 

Ver 3.1 chemistry.  The sequencing was performed on an Applied Biosystem 

model 3730 automated capillary DNA sequencer.  This system uses a fluorescent 

dye terminator where all four nucleotides are present in the same reactions 

each with a different dye group attached.  The dye terminator becomes 

incorporated at the end of the synthesised DNA chain producing many different 

length fluorescent DNA molecules.  The complementary nature of the 

synthesised new strand DNA to its template means that the fluorescent dye 

terminator represents the other half to the base pair at that position in the DNA 

template strand.  By separating strands according to molecular size in a 

polyacrylamide gel the DNA sequence can be plotted. 

2.2.7 TA Cloning of PCR products 

2.2.7.1 Taq 3’ adenine addition 

Cloning of PCR using the TA system required a 3’ adenine to be present on the 

amplification product.  Taq DNA polymerase leaves a 3’ single base overhang at 

the end of a PCR product after amplification.  Proof-reading enzymes do not 

leave this overhang creating blunt ended products.  Where TA cloning was being 

performed with a PCR product originating from proof-reading enzyme 

amplification, the addition of a 3’ adenine was required.  A 25 μl reaction was 

set up as follows: 1 x buffer, 1.5 mM MgCl2, 1 μl dATP (10 mM), 1 unit of Taq 

DNA polymerase, 15 μl purified PCR product.  The reaction was incubated at 

72ºC for 15 min before being held on ice. 

2.2.7.2 TOPO TA Cloning® system 

The TOPO TA cloning® system is a highly efficient system which uses 

topoisomerase I from Vaccinia virus to create a covalent bond between the 

3’ thymine on the vector DNA and PCR product.  The reaction is possible without 

the need for ligase.  A standard 6 μl reaction included: 4 μl PCR product 

(containing 3’ adenine overhang), 1 μl salt solution and 1 μl pCR2.1 TOPO® 

vector.  The reaction was incubated on the bench for 5 min at room temperature 
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(22ºC - 23ºC).  The ligation was stored a -20ºC until it was needed for 

transformation into chemically competent E.coli cells.  Cells were transformed 

with 2 μl of ligation mixture. 

2.2.7.3 pGEM® T-Easy TA Cloning system 

The pGEM® T-Easy TA cloning kit uses a linearised pGEM T-Easy vector which 

contains a 3’ thymine.  A 10 μl standard reaction contained 1 x rapid ligation 

buffer, 1 - 2 μl ligase, 1 μl pGEM® T-Easy and 2 μl PCR product (containing 

3’ adenine overhang).  The reaction was mixed and incubated for 1 hr at room 

temperature.  Alternatively for maximum transformants, ligations could be 

incubated overnight at 4ºC before being transformed into competent E.coli cells. 

2.2.8 Small Scale preparation of plasmid DNA (minipreps) 

2.2.8.1 Step-wise alkaline lysis method 

The alkaline lysis method of plasmid extraction was used when plasmid DNA was 

being used for restriction digest analysis and ligations.  A single colony of 

transformed bacteria was inoculated into 2 ml LB broth containing 100 μg/ml 

ampicillin.  This was incubated overnight on a shaking incubator at 37ºC.  A     

1.5 ml aliquot of the culture was centrifuged for 5 min at 17,900 g.  The LB 

broth supernatant was discarded ensuring that none was left in the tube.  The 

cell pellet was resuspended in 100 μl chilled solution I and placed on ice.  Then a 

200 μl aliquot of solution II was added to this and the solutions mixed 

immediately by inverting gently 3 - 4 times.  The solution was then incubated on 

ice for 5 min allowing lysis of the cells.  After this the solution was neutralised 

and protein was precipitated by the addition of 150 μl chilled solution III.  The 

solutions were mixed immediately, to avoid localised precipitation, by inverting 

sharply.  They were incubated on ice for a further 5 min before being 

centrifuged at 17,900 g for 5 min.  The supernatant was removed to a fresh 

1.5 ml microcentrifuge tube and 400 μl phenol:chloroform:isoamyl alcohol 

(24:24:1) was added.  The tube was vortexed for 10 sec and centrifuged for 

3 min at 17,900 g.  The upper aqueous phase was placed in a fresh 1.5 ml 

microcentrifuge tube.  To this was added 800 μl chilled ethanol and the mixture 

was kept on ice for 20 min.  The plasmid DNA was pelleted by centrifuging at 

17,000 g for 10 min.  The supernatant was discarded and the pellet was washed 
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in 1 ml 70 % absolute ethanol.  The pellet was centrifuged for 5 min at 17,900 g 

and the supernatant discarded.  The pellet was allowed to air dry at room 

temperature for 30 min and then resuspended in 50 μl molecular grade water or 

TE buffer. 

2.2.8.2 QIAprep® Miniprep Kit 

“QIAprep® Miniprep Kit” was used for the extraction of plasmid DNA when it was 

to be used for sequencing or site-directed PCR methods.  A single colony was 

picked, inoculated into 3 ml LB broth containing ampicillin (100 μg/ml) and 

incubated overnight at 37ºC.  The culture was split into two 1.5 ml centrifuge 

tubes and cells were pelleted by centrifuging at 17,900 g for 5 min. The LB broth 

supernatant was discarded and the pellet was resuspended in 250 μl chilled 

buffer P1 (RnaseA 100 μg/ml).  To this was added 250 μl buffer P2 and the 

solutions were mixed by inverting gently 3 - 4 times.  The lysis step was not 

allowed to proceed for longer than 5 min.  Then a 350 μl aliquot of buffer NS3 

was added and the solutions were mixed immediately by inverting sharply 4 – 

5 times.  The mixture was then centrifuged for 10 min at 17,900 g.  The 

supernatant was then transferred to a QIAprep® spin column and centrifuged for 

1 min at 17,900 g.  The flow through was discarded and then the supernatant 

from the second 1.5 ml microcentrifuge was applied to the same column.  The 

column was centrifuge at 17,900 g for 1 min and the flow through discarded.  

Then 750 μl of wash buffer PE was applied to the column. The column was 

centrifuged for 1 min at 17,900 g.  The flow through was discarded and the 

column was centrifuged at 17,900 g for a further two minutes to remove trace 

amounts of wash buffer.  The discard tube was discarded and the column was 

placed in a 1.5 ml microcentrifuge tube with lid cut off. The plasmid DNA was 

then eluted by the addition of 50 μl of buffer EB to the centre of the filter and 

centrifuged for 2 min at 17,900 g.  

2.2.9 Large scale preparation of plasmid DNA (midiprep) 

The large scale preparation of plasmid DNA was performed using the “Qiagen® 

plasmid midi kit”.  This was used for propagating high concentrations of plasmid 

DNA that could be used for in-vitro transcriptions.  A single colony was picked 

from transformed E.coli bacteria and inoculated into 100 ml LB broth containing 
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ampicillin (100 μg/ml).  The culture was inoculated overnight in a shaking 

incubator at 37ºC.  The cells were harvested by centrifuging at 6000 g for 15 min 

at 4ºC.  The supernatant was then completely removed and the bacterial pellet 

was resuspended in 4 ml chilled buffer P1 (containing RNase).  The cells were 

then lysed by the addition of 4 ml buffer P2 and mixed by inverting 3 - 4 times.  

The lysis reaction was incubated for 5 min at room temperature.  To this was 

added 4 ml chilled buffer P3 and the tube immediately inverted 4 - 6 times.  The 

solution was then incubated on ice for 15 min.  Precipitated material was 

removed by centrifuging at 20,000 g for 30 min at 4ºC.  The supernatant was 

placed in a fresh centrifugation tube and was recentrifuged at 20,000 g for 15 

min at 4ºC.  Meanwhile, a QIAGEN-tip column was equilibrated by the addition of 

4 ml buffer QBT and allowed to empty by gravity flow into a conical flask to 

collect the waste.  Once the column had drained completely the supernatant 

was applied to the column and allowed to drain through by gravity.  Once all the 

supernatant was added the column was washed by the addition of 10 ml buffer 

QC.  This was allowed to drain through and then a further 10 ml buffer QC 

applied.  The column was placed in a centrifuge tube and the plasmid DNA was 

eluted by the addition of 5 ml buffer QF.  The DNA was precipitated by the 

addition of 3.5 ml isopropanol to the eluted DNA.  It was mixed and centrifuged 

immediately at 17,900 g for 30 min at 4ºC.  The supernatant was discarded and 

the pellet was washed with 2 ml 70 % ethanol.  The tube was centrifuged at 

17,900 g for 10 min at 4ºC and the supernatant was completely discarded. The 

pellet was allowed air dry for 5 - 10 min and resuspended in 100 μl buffer TE (pH 

8.0) or molecular grade water.  

2.2.10 Restriction enzyme digestion of DNA 

Restriction enzyme digests were performed as was described in Sambrook et al. 

(1989).  15 - 50 μl total reaction volume was incubated at 37ºC for 1 ½ - 4 hrs. 

The reaction contained 10 U of enzyme per 1 μg of DNA in a buffer as advised by 

manufacture.  Reactions were stopped by the addition of a ¼ volume of gel 

running buffer and digested DNA was analysed by agarose gel electrophoresis as 

described in section 2.2.13.1 (Sambrook J, 1989). 
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2.2.11 Dephosphorylation of linearised plasmid DNA 

For the purposes of cloning linearised plasmid vector, DNA had 5’ terminal 

phosphates removed by the use of shrimp alkaline phosphatase.  A total volume 

of 20 μl consisted 1 x SAP dephosphorylation buffer, 2 μl Shrimp Alkaline 

phosphatase, 15 μl DNA. The reaction was incubated for 1 hr at 37ºC, after 

which the enzyme was inactivated by heating for 65ºC for 15 min. 

2.2.12 Ligation reactions 

Ligation reactions were performed as manufactures instructions using DNA 

obtained from restriction digests.  When restriction digests produced “sticky 

ends” and the vector and insert were of similar size, a 1:3 molar ratio was used. 

When the restriction digest produced “blunt ends” a 1:1 molar ratio was used. 

The total concentration of DNA used in a reaction did not exceed 1 μg.  In a     

10 μl reaction, vector DNA and insert DNA were mixed with 1 x reaction buffer 

and 10 U T4 ligase.  “Sticky end” ligations were incubated for 4 - 16 hr at 22ºC. 

“Blunt end” ligations were incubated at 16ºC for 16 hr. 

2.2.12.1 Mung Bean nuclease treatment 

Mung bean nuclease treatment was used to remove 5’ overhangs left from 

restriction enzyme digest.  A standard 30 μl reaction contained 1 x Mung bean 

nuclease, 1 U/μg DNA and x μg DNA. The reaction was heated at 30ºC for 30 min. 

The reaction was stopped by phenol:choloform extraction followed by ethanol 

precipitation as described in section 2.2.13.4 & 5.  

2.2.12.2 Random priming 

Random priming was used to make DNA probes for northern blot analysis using 

Klenow fragment (large subunit of DNA polymerase I).  A DNA fragment 

complementary to a target sequence was first purified from an agarose gel 

(Section 2.2.13.2).  1 - 40 ng of the DNA was heated to 95ºC for 7 min before 

being cooled to 4ºC.  To this was added 1 x NEB buffer 2, 1 x BSA, 1 mM dNTPs 

(dGTP, dATP & d TTP), 1 U random primer, 2.5 μl 32P dCTP and 2 μl Klenow 

fragment. The reaction was heated for 1 ½ hrs at 37ºC after which the radio 

labelled probe was purified by phenol:chloroform extraction and ethanol 
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precipitation (Section 2.2.13.4 & 5).  Precipitated DNA pellets were resuspended 

in 20 μl molecular grade water.  Before use, probes were denatured by heating 

at 95ºC for 7 min. 

2.2.12.3 Optimisation of probes for northern blots 

Detection of the 5-15 1b replicon RNA was initially attempted using probes 

designed against NS4B sequences.  RNA probes were transcribed from linearised 

pGEM T-Easy NS4B 1b plasmid (McLauchlan unpublished).  Non-specific binding of 

NS4B probes to ribosomal bands prevented detection of replicon.  Therefore a 

plasmid construct containing an NcoI/SphI fragment, derived from pGEM 

neoemcv, comprising half the neomycin gene and a portion of the 1b 5’UTR was 

cloned into pGEM T-Easy vector.  This was used to make probes for detecting 

HCV 1b RNA.  The housekeeping gene, glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH), was used to normalise HCV RNA levels for loading.  The 

GAPDH cellular control plasmid was made by PCR amplifying a GADPH RT 

product.  Oligonucleotides were designed from GAPDH sequences (Accession 

number M33197) and PCR product was resolved by agarose gel electrophoresis.  

An annealing temperature of 60ºC was chosen for optimal amplification and 

purified products were cloned into pGEM T-Easy.   

Initially RNA probes were used to detect HCV and GAPDH sequences.  However 

HCV probes still failed to give high resolution of HCV RNA bands.  Alternatively 

random primed DNA probes bound HCV RNA more stringently and were therefore 

used for detection in northern blot hybridisation.  JFH1 genotype 2a sequences 

were detected by synthesising DNA probes from an internal NS3 NcoI/PmeI 

fragment, which was obtained directly from pSGR-Luc-JFHI plasmid (Targett-

Adams et al., 2005). 

2.2.13 Separation and purification of DNA fragments 

2.2.13.1 Agarose gel electrophoresis 

DNA fragments produced from restriction enzyme digests and PCRs were 

separated according to their electrophoretic mobility in an agarose gel.  A 

standard 1 % gel contained 1 % agarose melted in 1 x TBE buffer and 0.05 μg/ml 

ethidium bromide.  In cases in which samples were 100 - 500 bases in length, 
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“Metaphore” agarose was used.  Samples were mixed with agarose loading 

buffer before being loaded onto the gel.  Molecular weight markers were used as 

standards to indicate size of DNA.  The agarose gel was run in 1 x TBE buffer at 

40 – 100 V for 1 ½ - 4 hrs.  DNA was visualised under short wave UV light for a 

standard gel.  If gel extraction of fragments was required long wave UV light was 

used to minimise damage to the DNA.  A “Bio-Rad Gel Doc 2000” Imaging system 

and software was used for photography.  

2.2.13.2 Purification of DNA from agarose gels 

Purification of DNA from agarose gels was performed using “QIAquick® Gel 

Extraction Kit”.  Appropriate bands were cut from agarose gel.  They were 

dissolved in 3 volumes Buffer QG to 1 volume gel slice at 50ºC for 10 min.  Once 

completely dissolved 1 volume of isopropanol was added.  The mixture was then 

applied to a QIAquick® column to bind DNA by centrifugation at 17,900 g for 

1 min.  The DNA was washed with 750 μl Buffer PE and the centrifugation was 

repeated.  The flowthrough was discarded and a further centrifugation was 

repeated for 2 min to remove completely all traces of Buffer PE.  The DNA was 

eluted by addition of 30 μl Buffer EB to the centre of the QIAquick membrane.  

This was incubated for 1 min at room temperature before the flowthrough was 

collected in a 1.5 ml microcentrifuge tube after centrifugation at 17,900 g for 

2 min. 

2.2.13.3 Purification of DNA from PCR and restriction digests 

The purification of linear DNA and PCR fragments was performed using 

“QIAquick® PCR Purification Kit”.  DNA was bound to a column by the addition of 

5 volumes Buffer PB to 1 volume reaction mixture.  This was applied to a column 

and centrifuged at 17,900 g for 1 min.  The DNA was washed and eluted as 

described in 2.2.13.2. 

2.2.13.4 Phenol/Chloroform extraction 

This was used for the removal of proteins from nucleic acid.  For volumes over 

100 μl, an equal volume of 25:24:1 phenol:chloroform:isoamyl alcohol solution 

was added.  The mixture was vortexed vigorously for 10 sec and centrifuged at 

17,900 g for 3 min.  The upper aqueous phase was removed to a fresh centrifuge 
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tube, careful not to remove any of the interphase or lower phase.  Further 

phenol extraction could be performed to remove any interphase contaminants.  

Residual phenol was removed by the addition of an equal volume of 24:1 

chloroform:isoamyl alcohol solution and centrifugation.  The upper aqueous 

phase was removed and nucleic acids precipitated as described below in 

2.2.13.5.  

2.2.13.5 Ethanol precipitation 

Nucleic acids were precipitated by the addition of 1/10 3 M sodium acetate and 

2 ½ volumes of absolute ethanol.  The alcohol/nucleic acid ‘slurry’ was mixed 

and incubated on dry ice for 20 min. Nucleic acids were pelleted by 

centrifugation at 17,900 g for 10 min. The pellet was washed with 70 % ethanol 

and centrifuged at 17,900 g for 5 min.  The pellet was allowed to air dry briefly 

for 5 - 10 min before being resuspended in 20 - 50 μl molecular grade water. 

2.2.14 Quantification of nucleic acids 

Nucleic acids were quantified using the “Eppendorf BioPhotometer”.  Optical 

densities of nucleic acid at 1 in 100 dilutions were compared to that of a blank.  

The absorption of light by nucleic acids at 260 nm giving 1 OD corresponds to 50 

μg/ml DNA or 40 μg/ml RNA. The concentration of nucleic acid was given 

automatically using the following equations: 

DNA concentration (µg/ml) = (OD 260) x (dilution factor) x (50 µg DNA/ml)/(1 

OD260 unit) 

RNA concentration (µg/ml) = (OD 260) x (dilution factor) x (40 µg RNA/ml)/(1 

OD260 unit) 

Impurities in the sample were detected from the ratios of 260 nm/280 nm for 

proteins and 260 nm/230 nm for carbohydrates, peptides, phenols and aromatic 

compounds.  Pure DNA should give a value of 2 and RNA a value of 1.8 for 

protein free contamination.  Protein contamination will decrease these values. 

The 260/230 ratio should be higher than 2 for pure samples.  Turbidity of the 

solution was corrected for, where pure samples should give a value of zero at 
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320 nm.  At this wavelength neither protein nor DNA absorbs light so it allows for 

background correction.  

2.2.15 Site-Directed Mutagenesis 

A site-directed mutagenesis technique was adapted from a “Quikchange II Site” 

directed mutagenesis kit from Stratagene.  Specific mutations could be 

introduced using a long PCR based method.  Primers containing specific 

mutations were designed as described in the user manual for sense and antisense 

amplification as described below:   

• Both sense and antisense primers contained the desired mutation. 

• Primers were 25 – 45 nucleotides long with a melting temperature (Tm) of 

≥78ºC.  Tm was calculated using the following equation: 

o Tm = 81.5 + 0.41 (%GC) – 675/n - % mismatch 

o N is primer length in nucleotides 

o %GC and % mismatch are whole numbers 

• The mutation should be in the centre of the primer with 10 -15 bases on 

either side. 

• There should be a minimum GC content of 40 %. 

The system uses a parental plasmid template obtained from bacterial mini or 

midi prep plasmid extraction.  After a number of cycles of PCR with the 

mutagenic primers, the parental DNA is digested with DpnI removing all dam 

methylated DNA.  Dam methylation is mediated by the methylase of the dam 

gene (Dam methylase) which transfers a methyl group from S-

adenosylmethionine to the N6 position of the adenine residue in the sequence 

GATC.  In E.coli which are dam positive, plasmid DNA will be dam methylated.  

Therefore, using DpnI, which cuts only dam methylated recognition sequences 

allows digestion of plasmid DNA only.  The PCR product could then be 

transformed into DH5-α competent cells and plasmid DNA examined by DNA 
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sequencing for the presence of the desired mutation.  A standard 50 μl PCR 

reaction contained: 1 x BD advantage 2 PCR buffer, 1 x dNTP mix (10 mM each 

nucleotide), 5 μl each primer (10 μM each), 1 μl DNA template (5 – 50 ng) and 1 x 

BD advantage 2 polymerase mix. The reaction was carried out under the 

following conditions: a 95ºC denaturing step for 1 minute, then 18 cycles of a 

95ºC strand separation step for 30 sec and a 55ºC primer annealing step for 1 

min and strand elongation step for 7 - 11 min depending on the template size.  A 

further elongation step was included and the reaction was held at 4ºC.  After the 

PCR the template plasmid DNA was digested with 1 μl DpnI for 2 hrs at 37ºC.    

20 μl of this reaction was transformed in 100 μl DH5-α competent E.coli as in 

section 2.4.  The cells were resuspended in 500 μl LB broth for the expression 

step and half of this was plated onto 100 μg/ml ampicillin LB agar plates.  These 

were incubated at 37ºC overnight and colonies streaked onto fresh media.  

Single colonies were picked and grown overnight in LB broth containing 100 

μg/ml ampicillin.  Plasmid DNA was extracted using Qiagen kits as in section 

2.2.8.  Any mutation was confirmed by direct DNA sequencing.  

2.2.16 In-vitro Transcription 

In-vitro transcriptions were performed from a linearised DNA template.  Care 

was taken to ensure that plasmid DNA was completely digested as circularised 

plasmid inhibited the transcription reaction.  Digested DNA was 

phenol/chloroform extracted and ethanol precipitated (sections 2.2.13.4 and 

2.2.13.5).  

2.2.16.1 T7 and SP6 RNA Polymerase 

T7 and SP6 RNA polymerases were used to transcribe RNA from T7 and SP6 

promoter sites within linearised plasmid sequences.  A standard 20 μl reaction 

contained: 1 x transcription buffer, 2 μl rNTPs (ribonucleotides) (10 mM each), 1 

μg linearised plasmid DNA, 0.4 μl RNasin (40 U/μl) and 2 μl T7 or SP6 RNA 

polymerase. Reactions were incubated at 37ºC for 2 hrs and purified by 

phenol/chloroform extraction and ethanol precipitation.  When ‘hot’ reactions 

were being performed to make an RNA probe radiolabelled 32P rUTP was 

included.  The reaction contained the following: 1 x transcritption buffer, 2 μl 

rNTPs (10 mM rATP, rCTP and rGTP), 2 μl rUTP (200 μM), 5 μl 32P rUTP, 1 μg 
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linearised plasmid DNA, 0.4 μl RNasin (40 U/μl) and 2 μl T7 or SP6 RNA 

polymerase.  Samples were processed as before. 

2.2.16.2 Ambion MEGAscript® T7 Kit 

For electroporation of RNA into mammalian cells, the Ambion MEGAscript® T7 Kit 

was used because of its ability to produce a high yield of RNA.  A standard 20 μl 

reaction contained 1 x reaction buffer, 2 μl each rNTP, 2 μl enzyme mix and 1 μg 

linearised plasmid DNA. The reaction was incubated at 37ºC for 2 ½ hrs. If the 

RNA was to be used for luciferase assays, 1 μl of the reaction was visualised on 

an agarose gel to check the integrity of the RNA. In some cases, it was necessary 

to remove the DNA template before using the RNA. This was achieved by 

treatment with 1 μl “Ambion Turbo DNase I” for 30 min at 37ºC.  Then 15 μl 

ammonium acetate and 115 μl DEPC treated molecular grade water was added to 

stop the reaction and the RNA was phenol:chloroform extracted.  After 

centrifugation, the upper phase was removed to a fresh microcentrifuge tube 

and 1 volume of isopropanol added. The RNA was precipitated at -20ºC for a 

minimum of 15 min before being pelleted at 17,900 g for 15 min at 4ºC. The 

supernatant was removed and the pellet resuspended in an appropriate volume 

of DEPC treated molecular grade water. 

2.2.17 Separation of RNA and Northern Blot Analysis 

2.2.17.1 Preparation of RNA samples 

Before total cellular RNA was run on a gel it was denatured.  4 μl total RNA (5 - 

20 μg) was added to 16 μl RNA loading buffer.  It was then heated to 68ºC for 10 

min and 2 μl RNA running buffer added.  Samples were kept on ice before 

loading. 

2.2.17.2 Formaldehyde Gel 

RNA obtained from cellular RNA extractions was separated on a formaldehyde 

denaturing gel.  A 100 ml gel was made as follows: 1 g of agarose was melted in 

84.8 ml DEPC water.  Then 10 ml of 10 x MOPS buffer was added.  Just before 

pouring the gel, 5.2 ml formaldehyde was added.  Samples were loaded onto the 

gel and run in 1 x MOPS buffer at 4ºC at 80 V for 2 - 3 hrs. 



Jonathan R Hubb, 2007    104 

2.2.17.3 Staining of gel and preparation for blotting 

The formaldehyde was removed from the gel by soaking in sufficient 0.5 M 

ammonium acetate to cover the gel for 20 min.  The solution was poured off and 

the gel soaked for a further 20 min.  The solution was discarded and the gel 

stained for visualisation of bands by soaking in 0.5 M ammonium acetate with 

0.5 μg/ml ethidium bromide for 30 min.  Total RNA was visualised under UV 

light. rRNA bands were used as a cellular molecular weight marker showing RNA 

integrity and cellular loading such that 28S corresponded to 4718 nucleotides 

and 18S corresponded to 1874 nucleotides.  A ruler was placed at the side of the 

gel to indicate where each marker corresponded to on the actual gel.  The stain 

was removed by soaking the gel for 45 min in 0.5 M ammonium acetate. 

To improve transfer of longer RNA molecules, the gel was soaked in 100 ml 

alkaline hydrolysis solution for 20 min.  The solution was removed and the gel 

neutralised by the addition of 100 ml neutralisation solution for 20 min.  The 

neutralisation solution was removed and the gel prepared for blotting by soaking 

in 100 ml 20 x SSC for 45 min.  

2.2.17.4 Northern blotting 

The blot was assembled on a plastic stand sitting in a larger plastic dish.  The 

dish was filled with enough 20 x SSC to half submerge the plastic stand.  Three 

long lengths of Whatman 3 mm paper were cut and used as wick to cover the 

plastic stand and were partially submerged in the 20 x SSC in the dish.  Three 20 

x SSC soaked pieces of Whatman were cut to the size of the plastic stand.  They 

were placed on top of the stand.  Next the gel was placed on the stand and the 

air bubbles were removed by rolling a glass pipette over its surface.  The edges 

of the gel and stand were covered with cling film to prevent short circuiting in 

the system.  A nitrocellulose membrane was cut to the size of the gel and placed 

on the surface of some 20 x SSC to soak for 10 min.  After soaking, it was 

carefully placed on top of the gel and air bubbles removed again.  The surface of 

the blot was flooded with 20 x SSC and five more sheets of Whatmann paper 

placed on top of the membrane.  On top of this was placed 4 cm of paper towels 

cut to the size of the membrane and a glass plate with a small weight on it.  The 

RNA was left to transfer onto the nitrocellulose membrane overnight by capillary 

action. 
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2.2.17.5 Preparation of membrane for hybridisation 

The stack was disassembled and the blot marked with pencil to indicate it 

orientation.  When hybridising with two probes annealing to targets of different 

size, the blot was cut in two across its width.  The ruler measurements taken 

earlier in the gel visualisation section (sect 2.2.17.3) allowed estimation of 

where to cut.  The two halves were briefly rinsed in 2 x SSC and placed on a 

sheet of Whatmann paper to dry briefly.  The RNA was immobilised to the blot 

by UV cross-linking using the Stratagene Stratalinker.  The RNA was irradiated, 

RNA side showing, at 254-nm UV light for 30 sec. 

2.2.17.6 Hybridisation of probe to target 

The membrane was placed in a hybridisation tube, RNA facing up, with 1 ml pre 

hybridisation buffer per 10 cm2 of membrane and incubated at 42ºC for 3 hrs in a 

rotating incubator.  After this, the buffer was discarded and an equal volume of 

hybridisation buffer added.  To this, 20 μl random primed probe (section 

2.2.12.2 & 3), specific to target, was added directly and mixed.  The blot was 

incubated for 16 - 48 hrs with the probe at 42ºC in a rotating incubator. 

2.2.17.7 Washing and exposure of the blot 

After hybridisation the blot was washed in an excess volume of low stringency 

wash at room temperature for 5 min agitating gently.  The wash was discarded 

safely and the step repeated twice.  After the last wash, an excess of pre-

warmed moderate stringency wash was added and the blot incubated at 42ºC for 

15 min in a rotating incubator.  This was repeated twice.  After the final wash, 

the membrane was removed from the tube and the excess wash buffer blotted 

onto Whatmann paper.  It was then wrapped in UV transparent plastic wrap and 

placed in a blank phosphoimager cassette with the RNA facing the screen.  The 

cassette was incubated for 4 - 48 hrs at room temperature before the image was 

visualised on a phosphorimager using the Bio-Rad Gel Doc 2000 Imaging system 

software. 
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2.2.17.8 Calculation of HCV RNA levels 

Radioactive RNA bands were detected by the phosphorimager, which assigned an 

arbitrary figure for photon emission that was detected after exposure to the 

phosphorimager laser.  The level of HCV RNA was calculated by normalising 

according to the GAPDH control.  The following equation was used to obtain a 

normalised HCV value: 

 

GAPDH Control RNA Value - 

Background 

 

GAPDH Test RNA Value - 

Background 

     x   HCV RNA Value – Background 

The GAPDH control, which was represented either by a BSA or DMSO control 

depending on the experiment, represented 100 % and HCV RNA levels were 

normalised according to the ratio of the control GAPDH and test GAPDH levels.  

Therefore, if the HCV GAPDH value was less than the control GAPDH value the 

HCV RNA value would be increased accordingly. 

These normalised HCV test RNA values were represented as a percentage of that 

of the normalised HCV control RNA values using the following equation: 

Normalised Test HCV RNA 

Value  

 

Normalised Control HCV RNA 

Value  

     x   100 % 

The normalised RNA values obtained from northerns were confirmed using 

luciferase (described in section 2.7) assays.  These two techniques had 

previously been compared by Tanabe et al (2004), who found that northern and 
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luciferase RNA levels correlated well with each other.  Our results supported 

these findings.  Figure 4.5 shows that HCV RNA levels obtained from either 

northerns or luciferase assays were equivalent.  

2.3 Preparation and transformation of E.coli DH5-α cells 

2.3.1 Preparation of E.coli DH5-α competent cells 

Chemically competent E.coli DH5-α cells were used for transformation of 

plasmid DNA.  A single colony was inoculated into 10 ml LB broth and incubated 

overnight at 37ºC on a shaking incubator.  The following day a sub-culture of this 

was made by taking 200 μl of the overnight culture and inoculating into 20 ml LB 

broth.  The sub-culture was grown at 37ºC for 2 - 2 ½ hrs on a shaking incubator 

or until it had reached a growth density of 0.6 absorbance at OD 600 nm.  At this 

point, the culture was placed on ice immediately for 15 min after which it was 

centrifuged at 6000 g for 10 min at 4ºC to pellet the cells.  The supernatant was 

discarded and the cell pellet resuspended in 10 ml 100 mM CaCl2 and incubated 

on ice for 30 min.  The cells were then pelleted by centrifugation at 6000 g for 5 

min at 4ºC.  The supernatant was discarded and the pellet resuspended in 1 ml 

100 mM CaCl2.  The cells were incubated for a further 30 min before use. 

2.3.2 Transformation of competent E.coli cells 

Transformation of chemically competent E.coli DH5-α with plasmid DNA and 

ligations were performed by heat shock transformation.  Bacterial competent 

cells and DNA were incubated at 4ºC for ½ hr before use.  DNA was added to  

100 μl competent cells in a microcentrifuge tube and mixed by flicking the tube.  

The mixture was incubated at 4ºC for ½ hr gently agitating every 5 min.  The 

cells were heat shocked for the uptake of the DNA by placing in a 42ºC water 

bath for 2 ½ min.  After this they were immediately placed on ice for 5 min 

before 900 μl of LB broth was added and incubation at 37ºC with a shaking for    

1 hr.  Transformed bacteria were selected for by spreading 100 - 200 μl 

transformants onto a suitable antibiotic selective LB agar plate.  In all cases, 

selection for uptake of plasmid DNA was achieved with 100 μg/ml ampicillin in 

LB media.  In some cases blue/white selection was used to identify if successful 
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ligation had taken place.  In this case, 200 μM IPTG and 40 μg/ml X-Gal was 

added to the selective agar LB media. 

2.3.3 Making glycerol stocks 

E.coli stocks containing successfully transformed plasmid were stored at -80ºC as 

glycerol stocks.  A 1 ml culture was grown overnight at 37ºC in a shaking 

incubator.  700 μl of culture was placed in a 1.5 ml cyrovial and mixed with    

300 μl 50 % glycerol.  Vials were then placed at -80ºC till required. 

2.4 Maintenance of mammalian cell culture 

All mammalian cells lines were cultured in Dulbecco’s Modified Eagles Medium 

(DMEM) containing 10 % foetal calf serum, 4 mM L-Glutamine, and 6 ml          

non-essential amino acids.  In some cases 100 units/ml penicillin/streptomycin 

was included.  Replicon containing cell lines were selected using G418            

(1 mg/ml).  Cultures were incubated at 37ºC in 5 % CO2 until growth was 

confluent.  At this point cells, were trypsinised from the flask and proportion of 

cells used to seed a new flask of cells.  G418 selection was removed at least two 

passages before experiment to prevent any selection for the replicon during the 

experiment.   

2.4.1 Freezing of cells 

Mammalian cell lines were stored in liquid nitrogen.  A large 175 cm2 tissue 

culture flask was trypsinised and cells counted using a haemocytometer.  Cells 

were centrifuged at 900 rpm for 5 min.  The supernatant was discarded and the 

cells resuspended in sufficient DMEM media to give 5 x 10-6 per 0.5 ml media.  A 

0.5 ml aliquot of cells was mixed with 0.5 ml foetal calf serum and 0.25 ml 

glycerol in a 2 ml cryovials.  Vials were frozen at -80ºC overnight and then 

transferred to long-term storage in liquid nitrogen 

2.5 Electroporation of mammalian cells  

HuH-7 cells were used for the electroporation of RNA produced from in-vitro 

transcription, as described in section 2.2.16.2.  Cells were cultured in 175 cm2 



Jonathan R Hubb, 2007    109 

tissue culture flasks till confluent.  Media was discarded and cells washed with 

20 ml versene at room temperature.  Cells were collected by trypsin treatment 

and resuspended in 10 ml media.  The cells were pipetted up and down to 

achieve a single cell suspension and counted using a haemocytometer.  Each 

electroporation required 1 x 10-6 cells to seed four 35 mm tissue culture dishes. 

Sufficient cells were removed to a fresh centrifuge tube for one electroporation 

and centrifuged at 400 g for 5 min.  The medium was discarded and the cells 

washed in 10 ml PBSA.  Cells were centrifuged again and the PBSA was 

discarded.  The cells were resuspended in 0.8 ml PBSA and placed in an 

electroporation cuvette (0.4 cm gap, CLP-direct) with 5 μg in-vitro transcribed 

RNA.  The cell/RNA suspension was mixed by gently tapping and electroporated 

using a Bio-Rad Gene Pulser II with the following conditions: Volts of 0.36 K and 

High capacitance of 0.96 F.  The cells were immediately transferred to 8 ml 

DMEM media and mixed.  Each 35 mm dish was seeded with 2 ml electroporated 

cells.  Cells were incubated at 37ºC at 5 % CO2. 

In some cases 10 μg in-vitro transcribed RNA was electroporated into 2 x 10-6 

cells which were seeded onto a 90 mm tissue culture dish.  

2.6 Transfection of mammalian cells 

Mammalian cells were transfected with DNA using an “Invitrogen lipofectamine 

transfection kit”.  One day prior to transfection HuH-7 cells (0.5 – 2 x105 cells) 

were seeded into a 35 mm dish.  DNA-Lipofectamine complexes were assembled 

for each transfection.  Initially, 1 μg of green fluorescent protein tagged (GFP)- 

DnaseX  expression plasmid was mixed with 250 μl Opti-MEM®.  At the same time 

10 μl of LipofectamineTM 2000 was mixed with 240 μl Opti-MEM® and incubated 

for 5 min at room temperature.  The diluted DNA was added to the 

LipofectamineTM 2000, mixed gently and incubated for 20 min at room 

temperature.  The DNA-lipofectamine complexes were added to the seeded 

mammalian cells and incubated for 10 hrs at 37ºC (5 % CO2).  

2.7 Luciferase assay 

The Promega luciferase assay system was used as measure of replicon 

replication.  In-vitro transcribed RNA was electroporated into naïve HuH-7 cells 
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as described above (Section 2.5) and luciferase assays performed at 4 hrs, 24 

hrs, 48 hrs and 72 hrs.  First medium was removed from the dish and the cells 

washed with 1 ml PBS.  The PBS was discarded and the well washed again.  Once 

all PBS was removed, the cells were lysed in 100 μl Promega 1 x passive lysis 

buffer.  The lysed cells were removed from the dish and placed in a 1.5 ml 

microcentrifuge tube.  The lysed supernatant could be frozen at -20ºC or used in 

a luciferase assay.  A 100 μl aliquot of luciferase assay reagent was placed in a 

1.5 ml microcentrifuge tube and 40 μl of the lysis supernatant added.  The 

solutions were mixed briefly and luciferase activity assayed immediately by 

measurement in a Promega “20/20n luminometry system”.  

2.8 Lipid extraction and assay 

2.8.1 Folch total lipid extraction 

Total lipids were extracted from mammalian cells by the use of the Folch 

extraction technique in 35 mm dishes.  The first medium was removed and cells 

were washed with versene.  The cells were treated with 1 ml 1 x trypsin for 1 

min.  The trypsin was removed and cells lysed in 1 ml chilled methanol.  The 

cells were scraped off the bottom of the well and added to 4 ml chilled 

chloroform in a glass test-tube.  Another   1 ml of chilled methanol was used to 

remove all cell extract from the dish before being added to the chloroform.  The 

methanol:chloroform mixture was vortexed for 30 sec and incubated on ice for 

20 min.  After lysis, the mixture was washed with 1.75 ml 0.88 % potassium 

chloride and placed in the cold room on a rocker for 30 min.  The extraction was 

then centrifuged for 6000 g for 5 min to separate.  The upper aqueous phase was 

discarded and the bottom hydrophobic layer (containing most lipids) transferred 

to a glass scintillation vial.  The sample could be stored at -20ºC or dried down 

to lipid components under nitrogen (Folch J, 1957). 

2.8.2 Measuring fatty acid biosynthesis 

Fatty acid biosynthesis was measured using 1-14C Acetic acid as a substrate for 

the fatty acid elongation.  A 35 mm dish of confluent cells was used in a 14C 

pulse experiment.  A 0.2 μCi aliquot of 1-14C Acetic acid was mixed in 30 μl 

(10 mM sodium acetate).  This was incubated at 37ºC for ½ hr and was mixed 
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with the media in the dish to give a final concentration of 1 mM sodium acetate, 

0.2 μCu 1-14C Acetic acid per dish.  The cells were incubated at 37ºC in 5 % CO2 

for 3 hrs and after 3 hrs a total lipid extraction was performed as described in 

section 2.8.1. The chloroform layer was allowed to evaporate overnight in a 

fume hood.  The lipids were resuspended in 10 ml EcoscintTM A by being vortexed 

for 30 sec. Radioactive decays were measured as counts per minute on a 

scintillation counter.  

2.8.3 Conjugation of BSA to free fatty acids 

Treatment of mammalian cells with fatty acids first required them to be 

conjugated to fatty acid free BSA.  A 10 % BSA/5 mM fatty acid complex was 

made as follows: 50 μl 100 mM free fatty acid in ethanol was added dropwise to 

950 μl 10 % fatty acid free BSA.  The mixture was vortexed for 2 min and 

incubated at 37ºC for 2 hrs.  The resultant BSA-FA complex was used on the day 

of making and added directly to DMEM media containing 5 % foetal calf serum. 

2.9 MTT (3-(4,5-dimethylthiazol-2-yl) Assay 

The MTT cell viability method measured the toxicity of compounds to 

mammalian cell lines.  The method relies on the ability of living cells to reduce 

MTT (yellow) to purple insoluble formazan crystals catalysed by mitochondrial 

succinate dehydrogenase.  A 96-welled plate was used in the assay.  All outside 

wells were filled with 100 μl media to prevent evaporation in test wells.  100 μl 

aliquots of 2 x test media was placed in wells 2B-2G.  50 μl of untreated media 

was placed in all empty wells.  A serial dilution of 2 x test media was made in 

lanes 3 - 9 using a multi pipetter.  A 50 μl aliquot containing 2.5 x 10-4 cells was 

seeded into each of the test wells.  Each assay was performed in triplicate.  

Lane 10 was used a control for the test solvent and lane 11 contained untreated 

cells. 

Cells were incubated with test media at 37ºC in 5 % CO2 for 72 hrs.  The medium 

was changed daily to avoid degradation of test compounds.  At 72 hrs the 

medium was removed and then replaced with 100 μl DMEM containing 0.5 mg/ml 

MTT. The plate was incubated at 37ºC in 5 % CO2 for 3 hrs.  The MTT medium 

was then removed and replaced with 100 μl isopropanol (0.4 M HCl).  The plate 



Jonathan R Hubb, 2007    112 

was wrapped in tin foil and placed at 4ºC overnight.  The following day, the 

absorbance of the formazan crystals was measured at 595 nm and background at 

630 nm using the Dynex plate reader with “Revelation” software.  Cell viability 

was obtained using the following equation: 

Percentage cell viability =  

(Test 595 nm – test 630 nm / Control 595 nm – Control 630 nm)* 100 

The values obtained were used to create a dose response curve of cell viability 

against concentration of compound. 

2.10 Protein analysis by SDS-PAGE and western blotting 

2.10.1 Preparation of cell extracts 

Cell extracts were prepared from confluent cell growth in 35 mm dishes.  Media 

was removed from the well and the cells washed twice in PBS.  The cells were 

lysed by the addition of 150 μl 1 x boiling mix at room temperature.  Extracts 

were placed in a 1.5 ml microcentrifuge tube and boiled at 100ºC for 10 min. 

Cellular extracts were stored at -80ºC.  Samples were boiled before use. 

2.10.2 SDS-PAGE 

Proteins were separated by SDS polyacrylamide gel electrophoresis (Laemmli, 

1970) in a Bio-Rad Miniprotein II apparatus.  In all cases, a 10 % polyacrylamide 

gel was made for resolving proteins.  The gel was made by mixing 8 ml of 30 % 

acrylamide Bis-solution (consisting of acrylamide and N’,N’ methylene 

bisacrylamide (ratio 37.5:1)), 6 ml resolving gel buffer, 10 ml water and 200 μl 

10 % ammonium pursulphate (APS).  The solution was mixed and 25 μl TEMED 

added as catalyst for polymerisation.  The solution was immediately poured 

between the assembled gel plates to approximately 4 cm from the top of the 

smaller plate.  200 μl butan-2-ol was placed on top of the resolving gel solution 

to allow a smooth interface between the two parts of the gel.  After 

polymerisation of the gel, the stacking gel was made.  This was achieved as 

follows: 4 ml 30 % acrylamide bis solution, 6 ml stacking gel buffer, 14 ml water 
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and 200 μl 10 % APS.  The solution was mixed and 25 μl TEMED added.  The 

buton-2-ol was removed and the interface washed several times with water.  All 

water was removed with paper towel.  The stacking gel was immediately poured 

on top of the resolving gel, to the top of the glass plate and a 1.5 mm comb 

inserted for loading samples.  Once the gel had polymerised, the comb removed 

and the gel placed in the electrophoresis tank and the tank was filled with gel 

running buffer.  

Protein extracts were denatured by boiling prior to gel loading.  A 20 - 25 μl 

aliquot of cellular extract was loaded into each well.  An Amersham protein 

molecular weight marker (rainbow marker) was used to estimate size of loaded 

samples.  Any empty wells had 20 μl boiling mix loaded into it.  The gel was run 

at 120 V for 1 ½ hrs, until the bromophenol blue had run off the end of the gel.  

2.10.3 Western Blotting 

Proteins resolved by SDS-PAGE were transferred to nitrocellulose membrane 

using the western blotting technique in the Bio-Rad mini transblot apparatus as 

described by Towbin et al. (1979).  The gel was removed from the 

electrophoresis tank and the stacking gel discarded.  A blotting sandwich was 

made where the gel was placed with a piece of nitrocellulose membrane in 

contact with it between two pieces of 3 MM Whatman paper and two fibre pads. 

The sandwich was held together in a cassette and was placed into the transblot 

apparatus and immersed in Towbin buffer (Towbin H, 1979).  Electrotransfer was 

carried out at 100 mA (for 1 gel) or 200 mA (for 2 gels) for 2 hrs or 25 mA at 4ºC 

overnight. 

2.10.4 Immunodetection 

After transfer, the sandwich was dismantled and the blot recovered for 

immunodetection.  First the blot was incubated in 3 % BSA prepared in PBS(A) for  

1 hr at room temperature or overnight at 4ºC.  Next, the blot was incubated on 

an orbital shaker with primary antibody, 1 % BSA and 0.05 % Tween 20 in PBS(A) 

for 2 hrs at room temperature.  If an overnight incubation was required, 0.01 % 

sodium azide was included.  The primary antibody was removed by washing in 

excess PBSA/0.05 % Tween 20 (PBST) twice for 15 min. The secondary antibody 
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(either protein A conjugated to horseradish or anti-sheep IgG HRP or anti-mouse 

IgG HRP) and 2 % Marvel milk were prepared in PBST and incubated with the blot 

at room temperature on an orbital shaker at room temperature for 1 - 4 hrs.  

The secondary antibody was removed and the blot was washed twice in PBST for 

15 min.  The proteins were detected using Amersham enhanced 

chemiluminescence (ECL) reagents.  The blot was placed between two sheets of 

mellanine with the two reagents placed directly on the proteins of the blot in a 

1:1 ratio.  After a short incubation the proteins were visualised by exposing the 

blot to a sheet of Kodak XS-1 film for 10 - 120 sec in a dark room.  The film was 

developed in an Xomat Kodak developer. 

2.11 Immunofluorescence 

For the purpose of viewing protein expression in cells immunofluorescence was 

used.  Replicon cells were seeded on coverslips in a 24-welled plate and grown 

overnight at 37ºC 5 % CO2.  The medium was removed and the cells fixed by the 

addition of 0.5 ml methanol (-20ºC) at -20ºC for 20 min.  The methanol was 

aspirated and cells were washed in 1 ml PBS(C) for 10 min. The PBSA was 

removed and cells incubated in 1 ml PBS/2 % foetal calf serum for 10 min.  Next, 

200 μl of primary antibody in PBS/2 % foetal calf serum was added for 1 ½ hrs at 

room temperature.  The primary antibody was removed and the cells were 

washed three times in 1 ml PBS/2 % foetal calf serum.  200 μl secondary 

antibody (conjugated with TRITC or FITC) in PBS/2 % foetal calf serum was 

added.  The plate was wrapped in foil and it was incubated for 1 hr at room 

temperature.  The secondary antibody was removed and the cells were washed 

twice in 1 ml PBS/2 % foetal calf serum.  This wash was followed by a single 

wash in 1 ml PBS.  During the washes the plate remained wrapped in the tin foil 

to prevent degradation of the secondary antibody fluorescent group.  All steps 

were performed at room temperature on the orbital shaker. 

Coverslips were mounted onto a slide cell side down on a drop of CITI FLUOR. 

The edges of the coverslip were sealed with nail varnish and the slides were 

stored in the dark at 4ºC till use.  Slides were viewed using the ZEISS LSM 510 

confocal microscope using the accompanying software. 
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2.12 Fluorescence Recovery after photobleaching (FRAP) 

FRAP analyse was used to analysis the mobility of proteins bound to the ER 

membrane.  Previously, cells were transfected with GFP tagged DNaseX (GFP-

DNaseX).  Initially test medium was removed and replaced with prewarmed 

DMEM (1 % foetal calf serum) that did not contain phenol red.  Cells were kept in 

a 37ºC at 5 % CO2.  When required, cell dishes were moved to the live cell 

chamber on the ZEISS LSM 510 confocal microscope.  FRAP experiments observed 

the movement of GFP tagged DNaseX protein on the ER.  First a defined area (38 

μm2) on the ER membrane was irreversibly bleached by a high power focused 

laser beam (100% laser power, 488 nm laser line).  The movement of non 

bleached protein into the bleached area allowed the recovery to be observed.  

In addition to measuring the movement of GFP tagged proteins into the bleached 

area, another defined area of the same size measured the loss of GFP tagged 

proteins from an unbleached part of the ER membrane.  By taking into account 

the background, the recovery of GFP tagged proteins could be calculated using 

the following equation: 

The loss of fluorescence 

from an unbleached area 
The recovery of 

fluorescence 

into the 

bleached area 

x 
The background 

fluorescence 
X 

The starting fluorescence 

prior to bleaching in the 

unbleached area 

Once the recovery of fluorescence had been calculated a percentage of 

fluorescence recovery could be obtained. 

2.13 Computer software 

TaqMan PCR products that were produced in the Perkin Elmer Applied 

Biosystems 5700 sequence detection system were detected using Perkin-Elmer 

sequence detector software.  Agarose gels and phosphoimaging screens were 

viewed using Bio-Rad’s Gel Doc system and software.  Multiple sequence 

alignments were performed using a UNIX server and the GCG GEL START 
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programs or an internet based program called BCM launcher.  Text files 

produced from BCM launcher multiple sequence alignments were then viewed 

using Boxshade programs.  Toxicity assays were performed on a DYNEX plate 

reader using the Revelation software.  Endnote 5.0 was used to create the 

bibliography.  Vector diagrams were drawn using a freeware program called 

BioEdit.  Computer analytical restriction enzyme digests were performed by NEB 

Cutter (www.neb.com). 
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Chapter 3 

3                     Optimising techniques 

3.1 Enriching a 5-15 genotype 1b expressing cell line 

The 5-15 genotype 1b replicon cell line was derived from a single colony of HuH-

7 cells transfected with a Con1 genotype 1b sub-genomic replicon (Lohmann et 

al., 1999).  Analysis of transfected HuH-7 cells had revealed that only 10 - 50% of 

cells displayed HCV protein expression (Lohmann et al., 2003).  This emphasised 

the differences in expression of HCV non-structural proteins between cells within 

an apparent homogeneous population of cells.  These variations in expression 

were possibly due to heterogeneity of HuH-7 cells or cell cycle effects 

(Pietschmann et al., 2001). The 5-15 clonal cell line had increased HCV RNA 

levels compared to other clonal cell lines derived from the same initial 

transfection. 

To minimise the heterogeneity of HCV replicon expression in HuH-7 cells, we 

selected a clonal cell line with robust expression on which to test inhibitors of 

lipid metabolism by serially diluting a stock of cells and isolating single cell 

colonies and growing-up.  To obtain the highest expressing 5-15 genotype 1b 

clonal cell line, individual clones from single cells were grown and selected on 

the basis of NS5A expression, initially using indirect immunofluorescence and 

then Western blot analysis.  Two highly expressing clonal cell lines were 

obtained, clones 12 and 15 (Figure 3.1a). Although immunofluorescence analysis 

was useful in visualising the proportion of expressing cells, Western blot analysis 

was necessary to quantify total NS5A expression.  Indirect immunofluorescence 

highlighted the variations in NS5A protein expression within populations of cells 

where there was a range of expression (Figure 3.1b).  All future experiments on 

the 1b sub genomic replicon were performed using clone 12 (1b).  
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3.2 Interferon “curing” of replicon expressing cells 

Previous reports had indicated that the Con1 1b subgenomic replicon acquired 

specific mutations for achieving higher levels of replication (Lohmann et al., 

2003).  IFN-α treatment blocks HCV replication, thereby progressively clearing 

the replicon from cells (Blight et al., 2003; Frese et al., 2001; Guo et al., 2001).  

The resultant cells, cured with IFN-α, often give a slightly more permissive 

cellular environment for replication than naïve HuH-7 cells.   

Here, replicon containing cells were cured of HCV RNA using pegylated 

interferon alpha-2b (Blight et al., 2003).  “Cured” cells could then be used as a 

permissive host for the electroporation of subgenomic RNA for attempts to 

establish a genotype 3 replicon.  They could also be used as a negative control, 

which would better represent the cellular properties of replicon cells than naïve 

HuH-7 cells.  Figure 3.2 shows loss of NS5A expression in replicon-bearing cells 

by Western blot analysis.  Over a 120 hour period the expression of NS5A was 

abolished (Figure 3.2).  Furthermore, Figure 3.2 shows that by removing G418 

selection, there was no effect on NS5A expression.  This indicated that the 

replicon was lost due to IFN treatment and not due to the removal of G418 from 

the medium.  Cells were grown in the presence of IFN-α for a total of four 

passages.  Removal of replicon was confirmed by culturing in G418 containing 

media.  All future experiments used 1b “cured” HuH-7 cells (1b-C) as a negative 

control.  

3.3 Optimising the MTT (3-(4,5-dimethylthiazol-2-yl) assay 

The treatment of tumour cells with drugs or metabolites that interfere with lipid 

metabolism can reduce cell viability by inducing apoptosis and/or reducing cell 

proliferation (Kuhajda, 2000).  Drugs which inhibit fatty acid synthase induce 

apoptosis in breast cancer cells (Menendez JA, 2004).  Polyunsaturated fatty 

acids (PUFAs), which can globally effect the transcription of genes involved in 

lipid metabolism, reduce cell viability in breast cancer cells (Schley, 2005).  It 

was therefore important to ensure that any effect seen following treatment of 

cells with drugs or compounds was a specific effect and not the result of general  
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toxicity.    Cytotoxicity was measured using an MTT cell viability assay adapted 

from Mossman (1983).  MTT is a yellow tetrazolium salt, which is cleaved by 

dehydrogenase activity in active mitochondria to produce purple insoluble 

formazan crystals.  The absorbance of the resuspended formazan crystals is 

proportional to the number of living cells present (Mosmann, 1983).  The original 

method was modified slightly to measure absorbance of the formazan at a 

wavelength absorbance of 590 nm (A590) because cell number is directly 

proportional to absorbance over a wider range of cells/well at this wavelength 

(Tada et al., 1986).  In this study, the optimal seeding numbers varied between 

cell types because of differing metabolic activities.  Optimal cell seeding 

number was obtained by growing serial dilutions of replicon and cured cells for 

three days in microplates and performing an MTT assay at 72 hrs.  This allowed 

the relationship between MTT formazan production and cell number to be 

represented in a graph (Figure 3.3).  The optimal cell seeding number occurred 

approximately half way along the linear phase of absorbance.  This gave an 

optimal cell seeding number of approximately 25,000 cells/well for all cell lines. 

3.4 Optimisation of the fatty acid biosynthesis assay 

The effect of inhibitors on fatty acid biosynthesis can be measured by supplying 

cells with radiolabelled (14C) acetate, which becomes incorporated into all 

cellular lipids.  To measure the uptake and incorporation of radiolabelled 

acetate, total lipid extractions were performed at intervals over 3 hours.  

Replicon and cured cells (seeded with 5 x10-5 cells per dish), which had been 

grown overnight to 80 % confluency were incubated with radiolabelled (14C) 

acetate (0.2 μCi/well) for three hours.  Lipid extractions were performed, at 5 

time points, on cells and medium separately to measure the difference between 

incorporation of acetate into secreted and cellular lipids.  Figure 3.4 shows that 

there was an increase in acetate incorporated into cellular lipids but secretion 

of radiolabelled lipids into the medium did not increase over this period.  Based 

on these results, all future lipid extractions were performed only on cells, not on 

media.  

To confirm that the 14C was not being exhausted during the 3 hrs of the assay, an 

experiment was carried out using two different concentrations of label (0.2  
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μCi/well & 0.4 μCi/well).  Cerulenin was used to assess the effect of inhibitors 

of fatty acid biosynthesis on acetate incorporation in 1b replicon harbouring (1b) 

and 1b cured (1b-C) cells.  Again, as above, cells which had been grown 

overnight were incubated with the two concentrations of radiolabelled (14C) 

acetate for three hrs and then total cellular lipid extractions were performed. 

Figure 3.5a shows actual values for untreated controls, DMSO controls and 

cerulenin-treated cells.  As expected, incorporation of acetate into extracted 

lipids approximately doubled when adding twice the amount of radiolabel, 0.4 

μCu/well (Figure 3.5a).  Furthermore, normalised data showed that the 

proportion of incorporation compared to that of the DMSO controls remained the 

same between the two concentrations (Figure 3.5b).  This indicated that the 

label was not exhausted at the lower concentration.  Future experiments used 

0.2 μCu/well radiolabelled acetate.  Treatment of both replicon and “cured” 

cells with cerulenin reduced fatty acid biosynthesis at 30 μM and minimally at  

10 μM.  
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Chapter 4 

4 The effect of cerulenin on the replication of HCV 

expressing cell lines 

4.1 Introduction 

Microarray analysis of mRNA levels of host cellular genes from three 

chimpanzees acutely infected with HCV genotype 1a, highlighted three groups of 

genes with perturbed expression (Su et al., 2002).  Genes which had altered 

mRNA levels were IFN-α activated genes, IFN-γ stimulated genes and genes 

encoding enzymes involved in lipid metabolism.  In some viral infection, IFN-α 

activation of genes can aid viral clearance.  However, the study by Su et al. 

(2002) indicated that expression of IFN-α stimulated genes had little or no effect 

on HCV viral titre or outcome.  Another group of genes that showed perturbed 

expression were IFN-γ stimulated genes concerned with antigen presentation.  

Several genes in this group, which explicitly process antigen for presentation to 

T-cells in the adaptive immune system, were up-regulated.  Up-regulation of 

these genes was associated with sustained or transient viral clearance.   

The observed increased mRNA levels of some lipid metabolism genes associated 

with the early onset of virus detection in the blood (viremia) was unexpected.  

The genes concerned encoded proteins or enzymes involved with the synthesis of 

endogenous cholesterol and fatty acids and their modification into complex 

lipid.  The mechanisms directing changes in such genes during viremia were not 

understood.  A second micorarray study on 10 chronically infected chimpanzees 

also revealed perturbed expression of genes concerned with lipid metabolism 

(Bigger et al., 2004).   There were some differences however between the two 

studies.  Up-regulation of some genes associated with the onset of viremia in the 

study of acute infection was not found in the chronically infected animals.  Also 
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the fatty acid synthase (FAS) gene was more highly expressed in acutely infected 

animals that had a sustained or transient clearance of virus than those which 

displayed a persistent infection.  FAS expression in chronically infected 

chimpanzees was decreased in four animals. Differences between these two 

studies may be due to differences between acute and chronic infections.  The 

inconsistencies between these studies may also suggest that altered expression 

of genes concerned with lipid metabolism is not a prerequisite for successful 

viral infection.   

Further analysis was performed on cells harbouring HCV replicons and showed an 

altered cellular abundance of mRNA for some essential lipid metabolism genes.  

ATP citrate lyase and acetyl Co-A synthetase, were up-regulated in HuH-7 cells 

containing full-length genotype 1b HCV replicon (Kapadia et al., 2005).  ATP 

citrate lyase, which syntheses acetyl CoA in the cytosol, was also up-regulated in 

acutely and chronically infected chimpanzees (Bigger et al., 2004; Su et al., 

2002).  However, one difference between replicon and HCV infected chimpanzee 

studies was the lack of any change on FAS transcript levels in replicon–bearing 

cells.   

The importance of lipid metabolism to viral replication was further shown when 

drugs that interfere with lipid metabolism affected replication by the HCV 

replicon (Kapadia et al., 2005; Su et al., 2002).  Studies failed to identify the 

mechanism, which reduced replicon RNA levels after inhibition of fatty acid 

biosynthesis.  Induction of fatty acid biosynthesis by cholesterol sequestration 

using nystatin increased HCV replication (Su et al., 2002).  HCV replicon RNA was 

reduced by cerulenin, an inhibitor of fatty acid biosynthesis (Su et al., 2002).  

However, the effect of cerulenin, on fatty acid production was never 

investigated. Cerulenin ([2S,3R]2,3-epoxy-4-oxo-7E10E-dodecadienamide), is an 

antibiotic product made by the fungus Cephalosporium ceruleans (Ronnett et 

al., 2005).  It acts by binding irreversibly to the the ketoacyl synthase domain in 

the active site of FAS and modifies an active site cysteine preventing fatty acid 

chain elongation and consequently fatty acid biosynthesis (Knowles et al., 2004).  

A number of non-specific effects other than its inhibitory effect on FAS have 

been attributed to cerulenin (Schlesinger et al., 1982).   
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4.2 Cerulenin treatment of HCV genotype 1b replicon 

expressing cells 

4.2.1 Cerulenin inhibition of HCV RNA replication did not 

correlate with its ability to inhibit fatty acid synthesis  

In order to ascertain whether inhibition of HCV replication was a consequence of 

cerulenin’s inhibitory effects on FAS, we measured both fatty acid biosynthesis 

and HCV replication.  Cerulenin has been reported to reduce cell viability in 

tumour cell lines.  Thus, toxicity assays were used simultaneously to confirm 

that any effects seen were not due to cytopathic effects of the drug.  To 

maintain as much continuity as possible between our study and that of Su et al. 

(2002) a genotype 1b expressing cell line was used.  As previously described 

(Chapter 3.1) a highly expressing 5-15 genotype 1b cell line called clone 12 had 

been selected.  Clone 12 or “1b” was cured with IFN-α (chapter 3.2) to produce 

a cell line (1b-C) that could be used as a negative control in experiments. 1b and 

1b-C cells were incubated in the presence and absence of DMSO and at four 

concentrations of cerulenin (30 μM, 10 μM, 3 μM and 1 μM).  DMSO was kept 

constant at 0.00003%.  1b and 1b-C cells were grown for 72 hrs under these 

experimental conditions.  As the manufacturer advised that the stability of 

cerulenin in the aqueous medium could not be guaranteed for longer than 24 

hrs, the medium was changed daily.  Assays and extractions were performed at 

72 hrs.  The results shown are from three experiments. 

Figure 4.1a shows that cerulenin was able to reduce fatty acid biosynthesis at 

the highest concentration of 30 μM giving inhibitory levels of 50-60 % in both 1b 

and 1b-C cells.  At other cerulenin concentrations, inhibition was either not seen 

or fatty acid biosynthesis continued at greater than 80 % of that of the DMSO 

control.  For reasons that are unknown there appeared to be slightly more 

variation in results obtained from 1b experiments.  At 10 μM cerulenin, fatty 

acid biosynthesis was not inhibited. However at the lower concentrations of 3 μM 

and 1 μM a slight inhibition was seen.  Why no inhibition of fatty acid 

biosynthesis was seen at the higher concentration of 10 μM while there was 

slight inhibition at lower concentrations could not be explained but was found 

consistently.    
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Figure 4.1b shows treatment with lower concentrations of 10 μM, 3 μM, and 1 μM 

cerulenin resulted in cell viability which were comparable to that of the DMSO 

control.  At higher concentrations of 60 μM and 120μM cerulenin, the drug is 

completely lethal.  At 30 μM cell viability is approximately 60 % of that of the 

DMSO control.  

Figure 4.1c & d show that HCV replication was inhibited at all concentrations of 

cerulenin.  Effects at the upper concentration of 30 μM may be due to the toxic 

effects of the drug as cell viability was reduced by 20–30 %.  However, lower, 

non-toxic concentrations of cerulenin had a slight inhibitory effect on HCV RNA 

levels.  At 10 μM and 3 μM, HCV RNA dropped to 81 % and 84 % of that of the 

DMSO control respectively. 

The results indicated that cerulenin did not inhibit fatty acid biosynthesis 

without a corresponding effect on cell viability nor did it inhibit fatty acid 

biosynthesis in a dose dependent manner.  However, HCV replication was 

inhibited by cerulenin treatment at all concentrations, although this was 

minimally at non-toxic concentrations.   

4.2.2 Cerulenin was unable to inhibit fatty acid biosynthesis, 

even when media was changed every 8 hours  

The treatment of 1b with cerulenin had resulted in a slight drop in HCV RNA 

levels.  However, experiments failed to show inhibition of fatty acid 

biosynthesis. Cerulenin is well established as a direct inhibitor of FAS.  It 

therefore came as a surprise to find that it did not inhibit fatty acid 

biosynthesis.  One possibility was that cerulenin was not stable and was 

degraded in the aqueous solution.  Our initial hypothesis was that cerulenin 

acted on fatty acid biosynthesis and this action led to the drop in HCV replicon 

RNA levels.  Over time, as the compound degraded, fatty acid biosynthesis would 

recover.  In order to test this possibility, experiments were repeated with 

cerulenin being replaced every 8 hours.  It was hoped this approach would 

minimise effects of degradation of cerulenin and enhance the impact on fatty 

acid biosynthesis.  The experiment was also modified to include a final cerulenin 

replacement just before the fatty acid biosynthesis assay.  This additional step 
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was performed in all future experiments.  Fresh cerulenin would better show the 

effect on fatty acid biosynthesis directly after its addition.   

The first notable difference between the experiments was that the toxicity 

(figure 4.2b) of cerulenin increased.  An initial experiment found 30 μM was 

more toxic with a cell viability of only 20 %.  Therefore, 3 subsequent 

experiments were performed at 10 μM, 3 μM and 1 μM.  A 50 % cell viability or 

toxic dose 50 (TD50) was found at approximately 20 μM.  This compared to the 

previous experiment which had a TD50 of approximately 40 μM.  Thus by changing 

the medium more often, the toxicity cerulenin had increased.   

Figure 4.2a shows that by changing the medium more often, there was still no 

appreciable effect on fatty acid biosynthesis.  Therefore, the effect of cerulenin 

on fatty acid biosynthesis was equivalent irrespective of whether media was 

changed every 24 hours or every 8 hours.  

HCV replication was inhibited as before although the effect at 10 μM was more 

potent in that HCV RNA levels were 42 % of that of the control.  This was half 

that seen when changing the medium daily.  Therefore by changing the medium 

more frequently cerulenin’s effects on HCV replication and toxicity were 

increased however there was no change in fatty acid biosynthesis. 

4.2.3 Cerulenin from different suppliers affected cells differently 

with respect to HCV replication, fatty acid synthesis and 

toxicity 

The lack of any effect on fatty acid biosynthesis with cerulenin treatment of 1b 

and 1b-C cell lines was unexpected.  Results had indicated that the inability of 

cerulenin to inhibit FAS activity was unlikely to be due to the stability of the 

drug given the toxicity observed.  To investigate whether similar trends in the 

effects of cerulenin were obtained from an alternative source for the compound, 

the experiment in section 4.1.1 was repeated with cerulenin obtained from 

Axxora Ltd (Cayman Biochemicals) with drug being replished every 24 hrs.   

Treatment of 1b and 1b-C cells with cerulenin obtained for Axxora Ltd showed a 

slightly different response from previous experiments.  The inhibitory effect of   
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cerulenin on fatty acid biosynthesis (Figure 4.3a) was far more pronounced at   

30 μM than that seen in Figure 4.1a (cerulenin supplied by Sigma-Aldrich Ltd). At 

this concentration fatty acid biosynthesis was less than 10 % of that of the DMSO 

control.  This compared to 40 % with cerulenin from Sigma.  At 10 μM there was 

slight inhibition of fatty acid biosynthesis to 80-90 % but virtually no inhibition at 

the two lower concentrations of 3 μM and 1 μM.   

Figure 4.3b shows the toxicity result for this experiment.  There was also a slight 

difference in the toxicity of cerulenin from these two manufactures.  A TD50 was 

obtained at approximately 35 μM with cerulenin from Axxora.  At 30 μM of 

cerulenin from Axxora, 58-62% cell viability was found. This compared to 70-80 % 

cell viability with cerulenin from Sigma-Aldrich Ltd.  Again all lower 

concentrations of cerulenin were non-toxic.  Comparing the data in Figures 4.3a 

and b, the compound was still unable to inhibit fatty acid biosynthesis 

effectively at non-toxic levels. 

Cerulenin obtained from Axxora was more potent in reducing HCV RNA 

replication than that obtained from Sigma Aldrich.  Figure 4.3c & d shows 

replication was inhibited at 30 μM, 10 μM and 3 μM to 2 %, 40 % and 60 % of that 

of the DMSO control, respectively.  As previously, discussed toxicity may 

contribute to the inhibition seen at 30 μM however HCV RNA levels were reduced 

at non-toxic concentrations.   

4.3 Cerulenin treatment of HCV genotype 2a replicon 

expressing cells 

4.3.1 Cerulenin inhibition of fatty acid biosynthesis appears to 

correlate with inhibition of HCV replication 

In order to ascertain whether the effects seen with the 1b and 1b-C cell line was 

a response to either the HCV genotype or cell line used, experiments were 

repeated using an HuH-7 cell line expressing the JFH1 genotype 2a replicon (2a).  

A cured derivative had also previously been made (supplied by Paul Targett-

Adams) and this was used as a negative control.  Experiments were repeated as 

in section 4.1.1, using cerulenin obtained from Axxora Ltd.   
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Unexpectedly, Figure 4.4a shows that cerulenin inhibited fatty acid biosynthesis 

in 2a and 2a-C cells in a dose dependent manner.  At 30 μM, fatty acid 

biosynthesis was less than 5 % of that of the DMSO control.  This compared to 

10 % in 1b and 1b-C cells.  Furthermore, cerulenin inhibited fatty acid 

biosynthesis at all concentrations.  Fatty acid biosynthesis was approximately 

45 %, 81 % and 90 % of that of the DMSO control at 10 μM, 3 μM and 1 μM, 

respectively.   

Figure 4.4b shows that toxicity of cerulenin on 2a and 2a-C cells was slightly 

greater than that with 1b and 1b-C cells.  A TD50 was found at 22-28 μM 

cerulenin and the upper concentration of 30 μM had a cell viability of only 18 - 

38 % of that of the DMSO control.  There appeared some variation between 

results obtained from 2a and 2a-C cells which were reflected in the standard 

deviations within 2a-C results. This could be explained by one 2a-C toxicity 

result, which behaved slightly different from the others.  This led to an 

increased difference between 2a and 2a-C toxicity curves and greater variation, 

which was echoed in the standard deviations within the 2a-C curve itself.  If this 

toxicity value was omitted then the 2a-C cells follow a similar pattern to the 2a 

cells. 

Inhibition of HCV replicon RNA levels was found at all concentrations of 

cerulenin used (Figure 4.4c & d).  Furthermore, HCV RNA levels were less than   

2 % of that of the DMSO control at the upper concentration of 30 μM.  However 

as discussed, at this concentration cerulenin was toxic which may contribute to 

its effect on HCV RNA levels.  At 10 μM, cell viability was approximately 90 % of 

that of the DMSO control and fatty acid biosynthesis and HCV RNA levels were 

both less than 50 %.  However, there was a large amount of variation seen in 

HCV RNA levels at 3 μM, which could be explained by a single experiment which 

varied from the other 2 experiments and was reflected in the standard deviation 

values.  Even at 1 μM cerulenin, fatty acid biosynthesis and HCV RNA levels were 

approximately 90 % and 75 % of that of the DMSO control respectively.   

In conclusion, cerulenin acted in distinctly different manner on treatment of 2a 

and 2a-C cells.  Fatty acid biosynthesis was inhibited in a dose dependent 

fashion at all concentrations as were HCV RNA levels.  Although toxicity slightly 

increased, this did not account for the different response to the drug. 
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4.3.2 Similar results were shown using cells transiently 

expressing replicon  

To confirm the results found with the cell line constitutively expressing JFH1 

genotype 2a, experiments were repeated using the transient JFH1 genotype 2a 

replicon (Targett-Adams et al., 2005).  This replicon was derived from the 

constitutive replicon but had been modified by the replacement of the neomycin 

phosphotransferase resistance gene with a firefly luciferase gene.  Thus 

measuring luciferase values would reflect the extent of HCV replication.  The 

experiments were performed as with the constitutive replicon at four 

concentrations of cerulenin and replication assayed every 24 hrs over 72 hrs.  A 

NS5B “GND” mutant defective in replication was used as a negative control.  To 

confirm that the transiently expressing cells responded in a similar manner to 

the constitutively expressing cell line, fatty acid biosynthesis was assayed for 

one of the triplicate experiments.  RNA was also extracted from this experiment 

for Northern blot analysis.  

Figure 4.5a shows that cerulenin’s inhibitory effect on FAS was virtually 

equivalent between HuH-7 cells expressing the transient replicon and HuH-7 

cells expressing the constitutive replicon.  Fatty acid biosynthesis in cells 

electroporated with both JFH1 and JFH1 GND luciferase replicon RNAs was 

inhibited in a dose dependent manner.   The results indicated that fatty acid 

biosynthesis responded in a similar manner between transient and constitutively 

expressing cell lines. 

The toxicity of cerulenin on cells containing the transient JFH1 replicon (Figure 

4.5b) was also similar to that found with 2a and 2a-C cells.  A TD50 at 

approximately 20 μM was obtained and 30 % at 30 μM.  However the standard 

deviation between experiments is very large at this point in the graph. This 

could be explained by a single value, which deviated from the others at this 

concentration. Had this value been omitted the dose response curve would have 

a TD50 at approximately 28 μM.  This would suggest that cerulenin was less toxic 

at this concentration than that seen with the 2a and 2a-C experiments.  Had this 

been the case, this might have answered why at the upper concentration of 30 

μM, cerulenin was slightly less effective at inhibiting fatty acid biosynthesis  
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when treating transient replicon expressing cells.  At 10 μM, 3 μM and 1 μM 

cerulenin was non toxic to the cells. 

Figure 4.5c shows that over a 3 day period, all concentrations of cerulenin were 

able to reduce replication of the transient 2a replicon expressing cells. Even 

after 20 hrs of cerulenin treatment, a dramatic inhibition of HCV replication was 

found at 30 μM. However, this concentration was toxic at 72 hrs indicating that 

effects seen at all time points at this concentration might merely be a 

consequence of toxic effects on the cell.  At 72 hrs HCV replication was 31 %,   

53 % and 76 % of that of the DMSO control at 10 μM, 3 μM and 1 μM, respectively.  

These replication levels were similar to those results found with the 2a and 2a-C 

results.  Figure 4.5d shows that replicon RNA levels behaved in a similar manner 

to luciferase values with HCV RNA levels at 10 %, 53 % and 66 % of that of the 

DMSO control at 10 μM, 3 μM and 1 μM. 

Figure 4.6 shows that absolute luciferase values in untreated and DMSO 

controlled JFH1 replication increased initially over the first 48 hrs till it levelled 

off at the 72 hrs period.  The graph shows an initial burst of luciferase activity at 

the 4 hr time point in both JFH1 and JFH1 GND replicons.  This was considered 

to be expression of electroporated RNA.  The signal then increased for the 

replication competent JFH1 and gradually decreased for the replication deficient 

JFH1 GND replicon. The graph shows there was a dose dependant decrease in 

cerulenin treated JFH1 replication.  Cerulenin treatment most noticeably 

reduced absolute luciferase values at 30 μM.  However, at this concentration 

cerulenin was toxic.  At 10 μM there was almost a one log drop in luciferase 

actual values.  

A reduction in luciferase activity might have been caused by a direct inhibitory 

effect of cerulenin on luciferase rather than inhibition of replicon RNA. To 

confirm that the effect seen was due to an inhibition of replicon, Northerns blots 

were used to visualise replicon RNA.     
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4.4 Tandem treatment of 2 different HCV 1b replicon 

expressing cells was cell and not HCV type specific 

Treatment of JFH1 2a constitutive and transient replicon expressing cells with 

cerulenin inhibited both fatty acid biosynthesis and HCV replication.  Although 

cerulenin was toxic at the upper concentration of 30 μM, inhibition was also seen 

at lower concentrations. This inhibitory effect of cerulenin on fatty acid 

biosynthesis had not been found using the previous 1b and 1b-C cell lines.  The 

reason cerulenin inhibition of FAS did not lead to a reduction in fatty acid 

biosynthesis in 1b and 1b-C cells was nor clear.  It was likely that cell-type 

specific differences were the source of the variation in responses. For example, 

1b expressing cells may have an altered cellular environment, becoming 

resistant to the action of the drug.  This resistant cellular environment may then 

be maintained in cured cells.  All HuH-7 cells containing genotype 2a 

constitutive and transient replicons were derived from the same initial HuH-7 

source (cells originally from J.Dubuisson, University of Lille) and had a similar 

passage history.  In contrast 1b and 1b-C cells were derived from the 5-15 

genotype 1b expressing cell line (Lohmann et al., 1999).  HuH-7 cells containing 

and “cured” of the 1b replicon had an unknown passage history and had been 

obtained from a different source (cells originally from R. Bartenschlager, 

University of Heidelberg). 

In order to clarify whether responses seen on cerulenin treatment of the 1b and 

1b-C cells were due to the different sources of HuH-7 cells and not a 

consequence of HCV genotype, another line expressing the 1b replicon was used.  

This contained the 5.1 genotype 1b subgenomic replicon transfected into HuH-7 

cells that originated form the University of Lille (supplied by S.Gretton).  The 

5.1 subgenomic replicon was originally derived from the 5-15 subgenomic 

replicon but it had several different adaptive mutations (Krieger et al., 2001).  

Tandem fatty acid biosynthesis assays were performed on cells treated with 

various concentrations of cerulenin.  The cell lines tested were 1b, 1b-C, 2a, 2a-

C and the 5.1 1b cell line.  Unfortunately no 5.1 cured cells were available.  

However, previous experiments had shown that cured cells behaved as replicon 

cells on cerulenin treatment.  Figure 4.7 shows that the 5.1 1b cell line behaved 

in a similar manner to the 2a and 2a-C cells in its response to cerulenin 

treatment.  Fatty acid biosynthesis was inhibited in a dose-dependent  
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manner at all concentrations.  At 30 μM, 10 μM, 3 μM and 1 μM cerulenin, the 

effect seen between the 5.1 cells and the 2a and 2a-C was equivalent.  

However, there remained distinct differences in FAS response to cerulenin 

between these cell lines derived from the same University of Lille HuH-7 stock 

and the 1b and 1b-C cells, which were derived from a different HuH-7 stock. 

4.5 NS5A localisation in cerulenin treated cells 

The above experiments identified a stock of HuH-7 cells, containing the 5-15 1b 

replicon, that behaved differently in their response to cerulenin compared to 

HuH-7 cells from a different source.  Initial attempts had failed to reveal a 

strong correlation between inhibitory effects of cerulenin on fatty acid 

biosynthesis and HCV replication.  It has been shown that cerulenin treatment of 

MCF-7 human breast cancer cells can deplete phospholipids from membranes 

(Zhou et al., 2003).  Although in this case it was suggested as a possible 

apoptotic mechanism, it could also have consequences on viral replication in 

HuH-7 cells.  The significance of membranes to the HCV life cycle has been 

demonstrated where viral proteins can cause morphological changes to the ER 

membrane forming a “membranous web” (Egger et al., 2002).  Our hypothesis 

was that changes in membrane constituents by FAS inhibition may change ER 

morphology and viral protein localisation.  HCV NS proteins are normally found 

to associate with one another on the ER membrane forming replication 

complexes.   

NS5A is found both as punctuate sites on the ER membrane and on lipid droplets.  

By staining for NS5A it was possible to observe small punctate spots that had an 

ER localisation. These are thought to be sites where viral NS proteins associate 

to form replication complexes.  In order to determine whether cerulenin 

treatment of cells affected localisation of the NS5A protein, 

immunofluorescence was performed on constitutively expressing 2a cells.  Cells 

were treated at 10 μM and 3 μM concentrations of cerulenin.  To confirm 

whether NS5A was present on ER or on lipid droplets, 2a cells were probed with 

antibodies to NS5A and calnexin, an ER marker or NS5A and ADRP, a lipid droplet 

marker (Figure 4.8).     
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Figure 4.8 shows DMSO and cerulenin (10 μM) treated cells.  NS5A maintained an 

ER pattern of staining in cells treated with DMSO alone or with DMSO and 

cerulenin.  There was no movement of NS5A to lipid droplets or any noticeable 

morphological changes to the cells.  Interestingly cells, which contained high 

expression of the replicon tended not to contain many lipid droplets.  The 

reason for this could not be explained but was found consistently in other 

experiments.  Treatment of replicon cells with cerulenin led to a more diffuse 

staining of ADRP rather than its normal discrete lipid droplet punctuate staining.  

DMSO-treated replicon cells displayed an ER staining with some colocalisation 

with calnexin.  There were no obvious differences between replicon cells 

treated with DMSO or cerulenin. 

4.6 Discussion 

Initially experiments were performed to try and establish a correlation between 

the inhibition of FAS by cerulenin and the reduction in HCV replicon RNA levels.  

In other studies cerulenin treatment of replicon cell lines had an inhibitory 

effect on replicon RNA levels (Su et al., 2002).  In the study by Su et al. (2002) 

replicon cells were treated at an upper concentration of 44.8 μM cerulenin.  In 

my experiment dose response (Figure 4.1b) curve of cerulenin’s toxicity showed 

this concentration resulted in a cell viability of only 20 % of that of the DMSO 

control.  This was possibly because the medium was changed daily to minimise 

compound degradation in our study.  Also, in the former study, data was shown 

only at the 8 hrs period for 44.8 μM cerulenin. There was no result displayed at 

their second time point of 18 hrs.  The reason for this was never explained.   

In our study results showed a similar inhibitory effect of cerulenin on HCV RNA 

levels compared to the study by Su et al. (2002).  These inhibitory effects are 

comparable to those seen in the original study where HCV RNA was 52 % and 69 % 

of that of the DMSO control at 22.4 μM and 4.5 μM respectively.  However, fatty 

acid biosynthesis was not effectively inhibited by cerulenin.  The results had 

indicated that the effect on fatty acid biosynthesis may have been due to its 

toxic effects.  Why these cell lines were resistant was unclear.   

The luciferase results showed a dose dependent decrease in HCV RNA levels at 

all concentrations of cerulenin.  Also these results showed the gradual decrease 
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in HCV RNA levels over the 3 days at all concentration of cerulenin.  At the 

lowest concentration of 1 μM, fatty acid biosynthesis is inhibited minimally 

however there is a progressive decline in the levels of HCV RNA over 72 hrs.  

Therefore, extending the length of treatment of cell expressing the constitutive 

replicon to a week period or more may improve cerulenin’s inhibitory effects. 

Assessing the contribution of toxicity to effects seen on the replicon is difficult.  

Ideally a therapeutic index should be calculated as the ratio between toxicity 

and the effect seen.  To calculate this, a TD50 (concentration at which 50 % 

growth inhibition occurs) value would be compared to the effective 

concentration or EC50 (concentration at which 50 % effect occurs).  For 

particularly toxic compounds, the ratio would be low.  In our study although we 

were able to estimate EC50 the accuracy was reduced because we only had a 

small number of points on our graph in which to extrapolate a curve.  Ideally to 

draw dose response curves it is better to have a range of concentrations as this 

allows fewer margins for error when drawing the curve.  In our study there were 

two separate therapeutic indices that we were looking at.  These were: the 

therapeutic index for the effect of cerulenin on HCV RNA levels and the 

therapeutic index for the effect of cerulenin on fatty acid biosynthesis.  The 

therapeutic indices obtained for 1b and 1b-C cells treated with cerulenin 

obtained from Sigma was low for both effects on fatty acid biosynthesis and HCV 

replication.  This indicated that the toxic effects of the drug may contribute to a 

large proportion of the effects observed.  1b and 1b-C cells treated with 

cerulenin obtained from Axxora Ltd still had low therapeutic ratios but were 

slightly greater than those obtained for cerulenin from Sigma.  The therapeutic 

indices for effects on HCV replication for the constitutive and transient 2a 

replicons were approximately 3:1 and 7:1 respectively.  These were better than 

those seen with the 1b and 1b-C cells.  However the effects on fatty acid 

biosynthesis again produced low ratios.  This might indicate that fatty acid 

biosynthesis could not be inhibited with cerulenin without a consequence on cell 

viability.  Effects on replicon RNA seen at concentrations that were toxic were 

not considered as reliable indicators that the drug was acting on HCV RNA levels 

by a non-toxic mechanism.  Therefore, I conclude that in 1b and 1b-C expressing 

cells, cerulenin was unable to inhibit fatty acid biosynthesis effectively without 

an effect on cell viability.  
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Inhibition of the replicon might have been caused by an action of cerulenin other 

than its effect on fatty acid biosynthesis. A number of non-specific effects have 

also been attributed to cerulenin.  Cerulenin has been shown to prevent 

acylation of vesicular stomatitis virus glycoproteins proteins (Schlesinger et al., 

1982).  Furthermore, cerulenin has been shown to bind β-keto-acyl-ACP synthase 

thereby directly inhibiting the enzyme involved in acylation.  Whether 

cerulenin’s inhibitory effects on HCV RNA levels were due to this other function 

of cerulenin was not clear.  Previous studies would indicate that inhibition of 

fatty acid biosynthesis was an important factor in reducing HCV replication.  This 

particularly was highlighted by the use of another inhibitor, TOFA, which inhibits 

Acetyl CoA Carboxylase (Figure 4.9).  TOFA also led to a decrease in HCV RNA 

levels in these studies (Kapadia et al., 2005).  Furthermore we had also 

performed preliminary studies on 1b and 1b-C cells using another FAS inhibitor, 

C75, which gave similar results to those obtained with cerulenin (data not 

shown).  C75 is structurally very similar to cerulenin but is reported to be more 

specific.  These preliminary studies showed that C75 was able to inhibit HCV RNA 

and fatty acid biosynthesis however toxicity of the drug is also a problem. These 

findings indicated that in 1b and 1b-C cells, inhibition of fatty acid biosynthesis 

was not an absolute requirement for inhibition of HCV replicon replication by 

cerulenin and some other inhibitory mechanism was acting on HCV replicon RNA 

levels.  

Cerulenin treatment of tumour cell lines can induce apoptosis (Kuhajda F, 2006).  

Many studies in cancer research have highlighted the high expression of FAS to 

be associated with aggressive cancers and in some cases a possible target for 

therapies.  FAS has been attributed as being important in cancers such as breast 

cancers (Kuhajda F, 2006) and prostate cancers (Bandyopadhyay et al., 2005).  

Treatment with FAS inhibitors (Kuhajda et al., 1994) and FAS RNAi’s 

(Bandyopadhyay et al., 2005) can induce apoptosis in tumour cells.  Previous 

studies had indicated that, rather than apoptosis being the result of fatty acid 

starvation, it was caused by the build up of malonyl CoA (Pizer et al., 2000).  In 

our study, to investigate whether the reduction in cell viability, fatty acid 

biosynthesis and HCV RNA levels was due apoptotic effects of cerulenin,  
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Figure 4.9.  A diagrammatic representation of the fatty acid 
biosynthesis pathway. Initially acetyl CoA is converted to malonyl 
CoA by the rate limiting enzyme Acetyl CoA Carboxylase.  Acetyl 
CoA is used to prime the fatty acid chain where sequentially 
elongated using malonyl CoA as a substrate is performed by the 
enzyme, fatty acid synthase.  The end product is a 16 carbon 
fatty acid, palmitic acid, which can be elongated and desaturated 
to form other fatty acids.  Inhibitors of the enzymes are shown to 
the right and the diagram. 
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experiments could be repeated with TOFA (Figure 4.9).  As mentioned, TOFA 

inhibits Acetyl CoA Carboxylase the enzyme prior to FAS which prevents malonyl 

CoA accumulation and therefore does not induce the same toxic effect that 

cerulenin does.   

The study highlighted the slight differences in the reaction of cells to cerulenin 

obtained from different suppliers.  There appeared no differences in chemical 

properties between cerulenin obtained from different suppliers apart from the 

purity promised which were ≥ 98 % purity and ≥ 95 % purity from Axxora Ltd and 

Sigma-Aldrich respectively.  It was possible that a small amount of impurity in 

the stock was able to subtly alter cells reactions to the drug.  However, the 

exact reason for the differences in response to cerulenin obtained from different 

suppliers was unclear.   

Cells with different passage history from the same original identified cell line 

may act distinctly differently to one another.  Here, differences were found with 

HuH-7 cells, which had come from different laboratories.  University of Lille  

HuH-7 cells behaved differently in their response to cerulenin than HuH-7 cells 

that had originated from a stock in Germany (Lohmann et al., 1999).  Whether 

the variations between these two HuH-7 cell lines was due to differences in HuH-

7 cells between laboratories or due to a change after transport to our laboratory 

is not clear.  It was possible that differences had occurred because the 1b and 

1b-C cells were of a high passage number when experiments had been 

performed.  Originally establishment of replicon cell lines had found passage 

number to be critical for successful transfection (Lohmann et al., 1999).  A 

passage number of 128 increased the permissiveness of the HuH-7 cells to HCV 

replicon replication compared to cells of different passage numbers.  HuH-7 cells 

contain a constantly changing cellular environment, which can be heterogeneous 

between cells from different passage numbers or histories.  Also the enrichment 

process for highly expressing cells might have caused a selective pressure on a 

cell clone, which had resulted in resistance to cerulenin’s effects.  HuH-7 cells 

obtained from different sources will also have been grown in different culture 

conditions.  Small variations in suppliers medium, serum and additives could 

have an effect on cell growth and heterogeneity.  To answer these questions 

experiments should be repeated including HuH-7 cells obtained from the 1b and 
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1b-C cells original source in Heidelberg and also the original 5-15 cells that had 

been received before enrichment for high expression.   

Although in our study it was difficult to show a direct association between the 

reduction of HCV RNA and the inhibition of fatty acid biosynthesis, the study by 

Su et al (2002) had suggested fatty acid biosynthesis to be important for HCV 

replication.  Had only 2a and 2a-C cells been treated, then an association might 

have appeared more likely.  However, the work with the 1b and 1b-C cells 

indicated that cerulenin inhibited by mechanisms other than that of inhibition of 

fatty acid biosynthesis.  It may have been that this was a cell type specific 

difference and the mechanisms of cerulenin mediated HCV inhibition were 

different between the two HuH-7 stocks.  However, this does highlight the 

importance of confirming the action of a drug that is being tested.  It would be 

possible to assess the importance of fatty acid biosynthesis in both these systems 

by supplementing cells with exogenous palmitic acid.  Palmitic acid is the final 

product of FAS, which is then modified for incorporation into complex lipids 

(Figure 4.9).  By supplying cells with palmitic acid it would be possible to rescue 

cells from the cerulenin induced fatty acid blockade.  If the end product of FAS 

is an important factor for HCV replication, the addition of exogenous palmitic 

acid should rescue HCV inhibition.  TOFA also could be used as an alternate 

method of assessing the importance of fatty acid biosynthesis for HCV 

replication.  Unlike cerulenin and C75, TOFA is not reported to have any non-

specific effects and does not induce the same cytotoxicity, so may prove as a 

more reliable compound to use. 

In conclusion, the 1b and 1b-C cell line were resistant to the inhibitory effects of 

cerulenin on fatty acid biosynthesis.  The contribution to the reduction of HCV 

RNA levels by the inhibition of fatty acid biosynthesis could not be correlated 

directly.  Although work with University of Lille HuH-7 derived cell lines 

indicated that there may be some association, further work is necessary in order 

to confirm this.  However, our study highlights the potential for different 

responses to drugs by clonal cell lines with different histories.  Here, all cell 

lines were derived from HuH-7 cells but their passage history and source have 

been different.  If this phenomenon had not been identified, differences in 

behaviour of replicons might erroneously have been attributed to genotype 

differences. 
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Chapter 5 

5 The effect of fatty acids on the replication of the 

JFH1 HCV replicon 

5.1 Introduction 

The role of fatty acids in the control of HCV replication was recently 

demonstrated using an HCV subgenomic replicon (Kapadia et al., 2005; Leu et 

al., 2004).  It was found that different fatty acids influenced HCV replication 

differently dependent on their degree of saturation (Leu et al., 2004).  

Treatment of replicon-expressing cells with monounsaturated and saturated 

fatty acids caused a small increase in HCV replicon RNA levels.  In contrast, 

polyunsaturated fatty acids (PUFAs) reduced HCV replication.  However, the less 

unsaturated a fatty acid was, the smaller the inhibitory effect on HCV RNA 

levels.  Leu et al (2004) went further and showed that the PUFA, arachidonic 

acid (AA), acted synergistically with IFN-α in reducing HCV RNA replication.  The 

combined effects of AA and INF-α were greater than the sum of their individual 

effects. Both these studies failed to identify a mechanism for the inhibition by 

PUFAs of HCV replication (Kapadia et al, 2005; Leu et al., 2004).  

Polyunsaturated fatty acids have long been appreciated as being able to regulate 

lipid metabolism.  They activate long chain fatty acid β-oxidation by acting as 

ligands for the PPAR family of transcription factors, which control enzymes 

involved in fatty acid oxidation and storage (Smith S, 2002).  They can also 

down-regulate fatty acid biosynthesis by antagonising liver X receptor (LXR). LXR 

is a transcription factor, which dimerises with sterol regulatory element binding 



Jonathan R Hubb, 2007    158 

protein (SREBP) and together they transactivate lipogenic gene expression 

(Horton J, 2002).  Interestingly, the same PUFAs, which had been shown to act 

as anti-lipogenic agents, were able to inhibit HCV replication as discussed above.  

The differing effects of fatty acids on HCV replication, depending on their 

saturation was also shown in a study by Kapadia et al. (2005).  The only 

differences between the studies of Leu et al and Kapadia et al was that the 

latter did not investigate the effects of the unsaturated fatty acids γ-linolenic 

and linoleic acid or the saturated fatty acid, stearic acid on HCV replicon 

replication and different concentrations of fatty acids were used.  Both studies 

came to similar conclusions that PUFAs acted as inhibitors of HCV replication and 

that saturated fatty acids induced replication.  Previously, cerulenin and TOFA 

(an inhibitor of acetyl CoA carboxylase), inhibitors of fatty acid biosynthesis, had 

been used to reduce HCV replicon RNA levels in a dose dependent manner 

(Kapadia et al., 2005; Su et al., 2002).  It had also been shown that treatment of 

replicon-expressing cells with nystatin, an inducer of fatty acid biosynthesis, led 

to an increase in replicon RNA levels (Su et al., 2002).  It was therefore possible 

that the mechanism behind control of HCV replication by exogenously supplied 

fatty acid was mediated by their ability to downregulate fatty acid biosynthesis.  

However, inhibition of HCV replication by PUFAs was shown to act by a 

mechanism that was independent of the LXR-SREBP-1c pathway (Kapadia et al., 

2005).  Replicon-expressing cells were treated in combination with an agonist of 

LXR and 3 different PUFAs (Arachidonic acid, EPA and DHA).  RNA levels were 

measured using RT-PCR for HCV replicon, SREBP-1c and fatty acid synthase 

(FAS).  LXR induction by the agonist caused an upregulation of mRNA expression 

for the fatty acid biosynthetic genes, SREBP-1c and FAS.  There was also a slight 

increase in HCV RNA levels.   However, PUFA treatment resulted in a reduction 

in HCV RNA, SREBP-1c and FAS mRNA levels.  Combination treatment, with both 

agonist and PUFA, rescued cells from inhibition of fatty acid biosynthesis 

however HCV RNA levels did not recover.  This suggested that the mechanism of 

HCV inhibition by PUFAs was independent of their inhibitory effect on the fatty 

acid biosynthetic pathway.   

PUFAs have other functions in the cell whereby they are incorporated into 

phospholipids and alter membrane composition.  Membranes of the cell are 

thought to contain lipid microdomains, e.g. detergent-resistant membranes (Ma 

et al., 2004; Stulnig et al., 2001).  Cholesterol and saturated fatty acids act as 
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stabilising influences on these microdomains and allow the recruitment of 

cellular membrane bound proteins e.g. the intracellular Src family of protein-

tyrosine kinases which are involved in T-cell signalling.  Incorporation of PUFAs 

into membranes causes a disruption of these microdomains and a loss of 

membrane-bound proteins which can affect cell signalling (Stulnig et al., 2001).  

The loss of membrane-bound proteins may occur also by PUFA inhibition of the 

palmitylation of proteins and therefore their association with the membrane.   

HCV replication complexes containing newly synthesised HCV RNA have been 

isolated from detergent resistant membrane fractions of cell extracts in replicon 

harbouring cells lines (Aizaki et al., 2004; Shi et al., 2003).  In these studies, 

replication complexes containing all the non-structural (NS) proteins co-

fractionated with the lipid raft associated intracellular membrane protein, 

caveolin-2 (Shi et al., 2003).  Furthermore, these replication complexes 

supported active viral replication.  It was also shown that in detergent-resistant 

membranes which contained replication complexes HCV RNA and protein were 

protected from RNase and protease degradation (Aizaki et al., 2004).  These 

observations are consistent with HCV forming sites in lipid microdomains which 

form a platform for its replication.  A possible mechanism for PUFA inhibition of 

HCV RNA replication may be their ability to disrupt lipid microdomains by 

changing the constituents of the lipid bilayer.  By destabilising lipid 

microdomains in the ER membrane, replication complex formation may be 

prevented. 

The ability of PUFAs to reduce tumour cell viability is well recognised.  This has 

been shown in breast cancer cells, pancreatic cancer cells and hepatic cells 

(Foretz et al., 1999 ; Schley et al, 2005; Tetsuya et al., 2005).  The mechanism 

behind this reduction in cell viability is not known but it may be a combination 

of induction of apoptotic pathways and reduction in cell proliferation (Schley et 

al., 2005).  Since HCV replicon cell lines are all derived from tumours, it was 

important to measure cell viability when performing experiments involving 

treatment with PUFAs. 
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5.2 Docosahexaenoic Acid (DHA) treatment cells 

expressing genotype 2a replicons 

5.2.1 DHA treatment of cells constitutively expressing HCV 2a 

replicon  

DHA is a 22 carbon fatty acid, which contains 6 double bonds between carbon 

atoms.  As previously described, PUFA treatment of replicon-harbouring cell 

lines led to a reduction in HCV RNA levels.  However, previous studies had 

indicated that the mechanism behind PUFA inhibition was independent of the 

ability to downregulate fatty acid biosynthetic pathways.  Measuring SREBP-1c 

mRNA is not an adequate method of measuring SREBP-1c activity as SREBP-1c 

protein expression is controlled pre- and post-transcriptionally (Horton et al., 

2002).  A more accurate method of ascertaining the effect of PUFAs on fatty acid 

biosynthesis would be to measure fatty acid production.  Our studies extended 

the original work by measuring fatty acid production and PUFA induced cytotoxic 

effects.   All studies were performed on a JFH1 genotype 2a expressing cell line 

(2a) and it’s IFN-α cured derivative (2a-C) as described in section 4.2.1.  Cells 

were grown in medium, which contained 5 % rather than 10 % foetal calf serum 

(FCS), to minimise the effects of serum fatty acids on experiments.  Completely 

serum free medium could not be used as cells died under these conditions.  

PUFAs were delivered to the cell lines at four concentrations (100 μM, 30 μM, 10 

μM and 3 μM) conjugated to fatty acid free BSA.  PUFAs were conjugated to BSA 

to minimise the effect of their acidic properties on cells.  Fatty acids are 

transported in blood conjugated to BSA, so this represents a physiological 

method of delivery to cells.  BSA was kept at a constant concentration of 20 

μl/ml in test wells.  A “BSA only” control was included.  2a and 2a-C cells were 

grown for 72 hrs under these experimental conditions.  Medium was changed 

daily to minimise the oxidation of the PUFAs.  Assays and extractions were 

performed at 72 hrs. The results shown are from three experiments.     

Figure 5.1a shows that DHA efficiently inhibited fatty acid biosynthesis in a dose-

dependent manner.  Replicon and cured cells responded similarly.  However, at 

30 µM and 10 µM, fatty acid biosynthesis in replicon cells was slightly less 

inhibited than that seen in cured cells.  In fact, at 10 μM there was a 20 %  
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difference between inhibition of fatty acid biosynthesis in cured and replicon 

cells.  This result was consistent but the reasons for this observation were not 

known.  Nevertheless, at 100 μM and 3 μM, replicon and cured cells behaved 

similarly in their response to DHA such that fatty acid biosynthesis was 

approximately 0.8 % and 82 % of that of the BSA control respectively.   

The MTT assay (Figure 5.1b) revealed that replicon and cured cell lines behaved 

in a similar manner in response to treatment with DHA.  There was 100 % cell 

death at the highest concentration of 100 μM and 50 % cell viability (toxic dose 

50/ TD50) at approximately 35 μM.  This indicated that the effects on fatty acid 

biosynthesis that were seen at 100 μM were due to cell death.  At 50 μM DHA  

100 % cell mortality was almost achieved. 

HCV replication was inhibited by all concentrations of DHA (Figure 5.1c & d).  As 

previously discussed, effects seen at the upper concentration of 100 μM were 

caused by cell death which resulted in the complete inhibition of HCV 

replication.  At 30 μM HCV RNA levels were approximately 5 % of that of the BSA 

control.  However, DHA was toxic at this concentration.  At the non-toxic 

concentrations of 10 μM and 3 μM, there was still slight inhibition of HCV 

replicon replication, approximately 77 % and 84 % of that of the BSA control 

respectively.  At these concentrations there was also inhibition of fatty acid 

biosynthesis at approximately 40 % and 82 % respectively. 

Figure 5.1e shows NS5A expression appears reduced at all concentrations of DHA.  

However GAPDH levels are virtually undetectable at 100 μM. 

5.2.2 DHA treatment of cells transiently expressing HCV 2a 

replicon  

Cells transiently expressing the JFH1 genotype 2a replicon, as previously 

described in the section 4.2.2., were then treated with DHA.  The experiments 

were repeated, as in section 5.2.1, at four concentrations of DHA and replication 

was assayed every 24 hrs over 72 hrs.  The experiment was repeated 3 times.  

RNA was extracted and fatty acid biosynthesis assayed for one of the three 

experiments. 
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Figure 5.2a shows a comparison of the effects of DHA treatment on fatty acid 

biosynthesis in cells constitutively or transiently expressing the 2a replicon.  

Both groups of cells behaved in a similar manner on DHA treatment whether they 

contained a transient or constitutive replicon.  Also the JFH1 transiently 

expressing replicon cells behaved in a similar fashion to the JFH1 GND, 

polymerase knock-out replicon.  Fatty acid biosynthesis was reduced in a dose-

dependent manner at all concentrations.  

Viability of cells transiently and constitutively expressing replicon were similar 

on DHA treatment.  DHA was again highly toxic at 100 μM in HuH-7 cells 

transiently expressing JFH1 replicon (Figure 5.2b).  Similarly to the cells 

constitutively expressing 2a replicon, DHA was almost completely lethal at 50 μM 

and had a TD50 at approximately 35 μM. 

Figure 5.2c shows DHA treatment reduced HCV replication at all concentrations 

in a dose dependant manner.  At 72 hrs, replication was 0 %, 4 %, 37 % and 82 % 

of that of the BSA control at 100 μM, 30 μM, 10 μM and 3 μM respectively.  These 

results were similar to those that were found with the cells expressing the 

constitutive 2a replicon.  However, there was relatively greater inhibition of 

replication with cells expressing the transient replicon at 10 μM when comparing 

the two systems.  Even so, DHA again reduced HCV replication and this occurred 

progressively over the 3 days.  As previously discussed suppression of HCV RNA 

replication at 100 μM DHA was attributed to cell death.  

Figure 5.2d shows that, as already indicated with the luciferase results, HCV RNA 

replication measured by northern blot analysis was reduced at 3 μM 

concentrations used.  However, the lack of RNA detected at two top 

concentrations of DHA was the result of insufficient numbers of cells surviving 

and at 10 μM there was an increase in replication. 
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5.3 Eicosapentaenoic Acid (EPA) treatment of cells 

expressing genotype 2a replicons 

5.3.1 EPA treatment of cells constitutively expressing HCV 2a 

replicon 

To ascertain whether the effects seen with DHA were unique to DHA or a general 

effect of PUFAs, experiments were repeated using EPA.  Structurally EPA is very 

similar to DHA. Both are omega 3 PUFAs, which means that they contain their 

first double bond on the 3rd carbon from the methyl end of the fatty acid.  EPA is 

a 20 carbon fatty acid that contains 5 double bonds.  Experiments were 

performed as in section 5.1.1 in which cells expressing the constitutive HCV 

genotype 2a replicon were treated at four concentrations of EPA conjugated to 

BSA.  At 72 hrs, RNA and protein were extracted and fatty acid biosynthesis 

assays and an MTT assay were carried out.  Results are shown as an average of 

three experiments with their corresponding standard deviations. 

Figure 5.3a shows that fatty acid biosynthesis was inhibited by EPA treatment in 

a dose dependent manner.  Replicon and cured cells behaved similarly in their 

response to EPA treatment.  Fatty acid biosynthesis was reduced to 

approximately 2 %, 12 %, 45 % and 85 % of that of the BSA control at 100 μM, 30 

μM, 10 μM and 3 μM.  Therefore EPA inhibited fatty acid biosynthesis in a similar 

manner to DHA. 

However EPA was less toxic than DHA (Figure 5.3b).  The toxicity assay showed 

that at the highest concentration of 100 μM EPA cell viability was reduced to 

only 50 % of that of the BSA control.  Again both replicon and cured cells 

behaved in a similar manner.  Cell viability in response to lower concentrations 

of EPA of 30 μM, 10 μM and 3 μM was the same as the BSA control.  This meant 

that although toxic effects might account for inhibitory effects at 100 μM, 

effects at lower concentrations were likely to be specific to EPA and not due to 

toxic effects. 

Reduction of HCV RNA was found at all concentrations of EPA used (Figure 5.3c & 

d).  EPA treatment reduced HCV RNA levels to approximately 25 %, 35 %, 90 % 

and 92 % of that of the BSA control at 100 μM, 30 μM, 10 μM and 3 μM.    
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However, there was variation between the experiments, which led to an 

increased standard deviation at 100 μM and 30 μM.   

Figure 5.3e shows NS5A expression appears reduced at 100 μM, 30 μM and 10 μM 

concentrations of EPA, however this is difficult to assess without quantifying.  

Again GAPDH levels are reduced at 100 μM however the effect is less than that 

seen with DHA.   

In conclusion, EPA treatment inhibited both HCV replication and fatty acid 

biosynthesis in a dose dependent fashion.  EPA was less toxic to cells than DHA 

and therefore effects on replicon RNA levels were more likely to represent the 

inhibitory effects of the PUFA.  

5.3.2 EPA treatment of cells transiently expressing HCV 2a 

replicon  

Experiments were repeated for EPA treatment of cells expressing the transient 

replicon as in section 5.1.2.  Luciferase activity was measured daily.  RNA was 

extracted and fatty acid biosynthesis assayed for one of the three repeat 

experiments.   

Figure 5.4a shows a comparison of fatty acid biosynthesis assays performed for 

the constitutive and transient replicons.  Cells expressing the transient replicon 

behaved broadly in a similar manner to cells expressing the constitutive 

replicon.  There were, however, some slight differences.  At 30 μM, fatty acid 

biosynthesis in cells expressing the transient replicon was reduced to 

approximately 4 % of that of the BSA control, compared to approximately 12 % in 

cells expressing the constitutive replicon.  The reason for this was unknown.  

However although the effect in cells expressing the transient replicon was more 

pronounced, it followed a similar trend to cells expressing the constitutive 

replicon.  Also there was a difference at 10 μM EPA, where fatty acid 

biosynthesis in cells expressing the transient JFH1 replicon was reduced more 

than that seen in cells expressing the constitutive replicon.   

Figure 5.4b shows an MTT assay for EPA which shows that the dose response 

curve to EPA was similar in cells expressing the transient replicon and those 

expressing the constitutive replicon.  EPA was slightly less toxic to cells  
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expressing the transient replicon with a TD50 of at 125 μM.  This compares to a 

TD50 of 100 μM in the constitutive system.  The reason for this was unclear.  At 

100 μM, cells expressing the transient replicon had a cell viability of 64 % of that 

of the BSA control.    The toxicity assay showed EPA to be less toxic than DHA 

where EPA concentrations 30 μM, 10 μM and 3 μM were all within a non-toxic 

range. 

EPA also inhibited HCV replication in the transient system (Figure 5.4c).  EPA 

reduced replication in a dose dependent fashion at all concentrations used.  At 

72 hrs, HCV replication was reduced to 1 %, 5 %, 30 % and 78 % of that of the BSA 

control at 100 μM, 30 μM, 10 μM and 3 μM.  Although toxicity may contribute to 

some of the inhibition seen at 100 μM, other reductions in HCV replication 

occurred in the non-toxic range.  As already mentioned the constitutive replicon 

RNA levels were 25 %, 35 %, 90 % and 92 % at 100 μM, 30 μM, 10 μM and 3 μM 

EPA, respectively.  There were distinct differences in the response between cells 

expressing the transient replicon and cells expressing the constitutive replicon.  

However the results obtained from cells expressing the transient replicon were 

more consistent.   

A Northern blot of luciferase RNA (Figure 5.4d) showed that at 100 μM and 30 μM 

no RNA was detected and at 10 μM and 3 μM HCV RNA was 77 % and 89 % of that 

of the BSA control.  These values were greater than the equivalent luciferase 

values obtained at 72 hrs at these concentrations.  The reason for this was 

unclear. 

5.4 Oleic Acid (OLA) treatment of cells expressing 

genotype 2a replicons 

5.4.1 OLA treatment of cells constitutively expressing HCV 2a 

replicon  

Our previous work with PUFAs had shown that they were able to reduce HCV 

replication in cells expressing both the transient and constitutive replicons.  In 

order to confirm that this was a unique property of PUFAs and not a general 

property of all fatty acids, experiments were repeated using a monounsaturated 

fatty acid oleic acid (OLA).  OLA is an 18-carbon fatty acid with one double 



Jonathan R Hubb, 2007    174 

bond.  As previously, experiments were performed on cells expressing the 

constitutive and transient JFH1 genotype 2a replicon containing cells.  Cells 

were treated at four concentrations; 100 μM, 30 μM, 10 μM and 3 μM OLA 

conjugated to BSA.  BSA was kept constant (20 μl/ml) in all test wells.  Cells 

were treated for 72 hrs.  Medium was changed daily and on the third day, RNA 

and protein were extracted and fatty acid biosynthesis and toxicity assayed.  

Results are shown as the average of only 2 experiments. 

Figure 5.5a shows OLA inhibited fatty acid biosynthesis in cells constitutively 

expressing replicon and in cured cells in a similar fashion.  Fatty acid 

biosynthesis was 54 %, 76 %, 92 % and 102 % of that of the BSA control at 100 μM, 

30 μM, 10 μM and 3 μM.  Unexpectedly OLA reduced fatty acid biosynthesis in 

cured and replicon expressing cells.  At the 100 μM, there was only 50 % of 

acetate incorporation compared to that of the BSA control.  This inhibition was 

less than that seen with PUFAs. 

Interestingly, the viability of OLA treated cured and replicon-expressing cells 

was different from PUFA treated cells (Figure 5.5b).  Also, replicon and cured 

cells behaved differently in their response to OLA.  Their dose response curves 

were similar but OLA appeared to be more toxic to replicon cells.  A TD50 was 

obtained at approximately 310 μM for replicon cells.  It was impossible to 

estimate TD50 for the cured cells.  At 100 μM, cured and replicon cells had cell 

viabilities of 91 % and 69 % of that of the BSA control respectively.   

Figure 5.5c and d shows HCV replication was not reduced in OLA treated replicon 

cells as had previously been seen with PUFA treatment.  A slight reduction of 

HCV RNA level was seen at 100 μM to 83 % of that of the BSA control.  However 

we have had to disregard results of RNA replication at 100 μM because there was 

only one experiment available as the RNA from another experiment at 100 μM 

concentration had degraded.  Treatment with the lower concentrations of OLA 

resulted in increases in HCV RNA levels.  At 30 μM, 10 μM and 3 μM HCV RNA was 

140 %, 160 % and 189 % of that of the BSA control.  A large amount of variation 

between experiments was seen especially at 10 μM and 3 μM.   

Figure 5.5e shows NS5A expression expressed at a similar level at 100 μM, 30 μM 

10 μM and and 3 μM concentrations of OLA.  
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In conclusion OLA was shown to inhibit fatty acid biosynthesis in cured and 

replicon expressing cells however the effect was not as pronounced as that seen 

with PUFA treatment of cells.  OLA was less toxic than PUFAs, failing to induce 

100 % cell death even at 400 μM.  Although it was difficult to ascertain whether 

OLA genuinely increased HCV replication (because of the variation between 

experiments), was not reduced as seen with PUFA treatment of cells. 

5.4.2 OLA treatment of cells transiently expressing HCV 2a 

replicon  

In order to confirm the effects seen with OLA treatment of cells constitutively 

expressing the genotype 2a replicon, experiments were repeated using cells 

transiently expressing the genotype 2a replicon.  Experiments were performed as 

in sections 5.2.2 and 5.3.2 except using OLA. 

Figure 5.6a shows that the response of cells transiently expressing the JFH1 

replicon and JFH1 GND replicon was similar to that obtained from cells 

constitutively expressing replicon.  However there were some differences 

between the two systems.  Notably, cells transiently expressing the JFH1 

replicon had higher rates of fatty acid biosynthesis at 10 μM and 3 μM of OLA 

compared to the equivalent of cells transiently expressing the JFH1 GND 

replicon.  Also, at OLA concentrations of 10 μM and 3 μM there were 

approximately 42 % and 55 % increases in fatty acid biosynthesis respectively 

compared to cells expressing the JFH1 GND transient replicon.  This was 

unexpected as all other results had followed a similar trend to cells expressing 

the constitutive replicon.  However this experiment had only been performed 

once and would need to be repeated.  

The viability of cells transiently expressing replicon showed OLA to be less toxic 

than that seen with cells constitutively expressing replicon.  At 100 μM, cell 

viability was 94 % of that of the BSA control.  Cell viability did not drop below 50 

% even at 400 μM.  This again showed that OLA did not induce the reduction in 

cell viability that was seen with PUFAs.  The dose response was similar to that of 

cured cells in Figure 5.5b.  All concentrations tested were considered to be 

within a non-toxic range. 
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Figure 5.6c showed that, as seen with cells constitutively expressing replicon, at 

100 μM there was a slight reduction in HCV replication to approximately 86 % of 

that of the BSA control.  However at 30 μM, 10 μM and 3 μM, replication was   

147 %, 138 % and 131 % of that of the BSA control.  These results were more 

definitive than results obtained from cells constitutively expressing replicon, as 

there was less variation within the standard deviation.  OLA treatment of cells 

transiently expressing replicon led to an induction of HCV replication at lower 

concentrations.  Conversely, at 100 μM it led to a slight inhibition.  These results 

were then confirmed using Northern blot (Figure 5.6d) although there was still a 

lack of sensitivity compared to the luciferase values and at 30 μM, HCV RNA was 

83 % of that of the BSA control.   

5.5 NS5A localisation in fatty acid treated cells 

5.5.1 PUFA treatment of cell constitutively expressing genotype 

2a replicon 

Previous experiments were designed to show if there was any correlation 

between the effect of PUFAs on fatty acid biosynthesis and their effect on HCV 

replication.  Although reduced levels of HCV replication were found when fatty 

acid biosynthesis was inhibited, this inhibition could not have been the only 

factor causing this reduction.  OLA reduced fatty acid biosynthesis at 30 μM and 

10 μM (Section 5.3) but there was no reduction in HCV RNA levels.  This meant 

that PUFAs may inhibit HCV replication by a mechanism other than their effect 

on fatty acid biosynthesis.  One possible explanation was that PUFAs were 

causing changes in the ER membrane thereby disrupting replication complex 

formation.  The irregular structure of PUFAs created by the extensive double 

bonding leads to changes in membrane fluidity. This results in disruption of lipid-

raft like structures.  Our hypothesis was that PUFAs were disrupting replication 

complex formation and stability and thereby reducing HCV replication.  In order 

to investigate this further, cells were treated with non-toxic concentrations of 

DHA and EPA at 10 μM for 72 hrs and on the 3rd day, HCV proteins were visualised 

using NS5A as an indicator of replication complex formation.  Cells were also 

stained for the ER marker, calnexin, and the lipid droplet marker, ADRP. 
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Figure 5.7 shows the effect of DHA treatment on replicon expressing cells 

compared to BSA-treated replicon cells.  BSA-treated replicon cells displayed 

diffuse staining of NS5A with the appearance of several more concentrated foci.  

NS5A showed some colocalisation with the calnexin ER marker.  There was no co-

localisation of NS5A with lipid droplets.  At 10 μM DHA, NS5A expression 

appeared reduced compared to that of the control, although this was difficult to 

quantify.  Nevertheless, NS5A seemed to have a less diffuse staining pattern and 

was now found mostly in the foci.  There was an increase in the number of lipid 

droplets that were present compared to the BSA control and some areas of 

possible co localisation.  However this was unclear.   

Figure 5.8 shows that EPA treatment, like DHA treatment, caused an altered 

NS5A expression pattern.  EPA treatment of replicon cells changed its expression 

pattern from having a diffuse ER appearance to being mainly associated with 

foci.  EPA treated replicon cells contained more lipid droplets than BSA treated 

replicon cells.  Also there appeared some co localisation between lipid droplets 

and NS5A.  However, due to the large number of lipid droplets present, it was 

difficult to ascertain whether this was true co-localisation. 

The results of PUFA treatment of cells failed to give a clear idea of what was 

happening to cause a downregulation of HCV replicon replication.  It had been 

hoped that PUFA treatment of cells might lead to abolition of NS5A foci and 

therefore replication complexes but this was not seen.  In fact the opposite 

occurred in that the diffuse staining found in the BSA control was lost and NS5A 

was mainly found in foci.   

5.5.2 OLA treatment of cell constitutively expressing genotype 2a 

replicon 

For comparison, cells were also treated with OLA to see the effects of a 

monounsaturated fatty acid on NS5A localisation.  The previous results suggested 

that OLA treatment resulted in an increase in replication at 30 μM.  Cells 

constitutively expressing the genotype 2a replicon were incubated for 3 days in 

30 μM OLA conjugated to BSA.  Media were changed daily and the experiments 

were performed in parallel with the PUFA experiments.   
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Figure 5.9 shows that, unlike in PUFA-treated cells, NS5A had a distinctly 

different expression pattern after OLA treatment of replicon cells.  OLA 

treatment, as with PUFA, treatment led to an increase in the number and size of 

lipid droplets.  Again, rather than a diffuse staining pattern, NS5A was found 

mainly in foci but the foci in these cells were larger and more intense than in 

either control or PUFA-treated cells.     

5.6 The effect of fatty acid treatment on ER membrane 

fluidity 

Our hypothesis for PUFA-induced reduction of HCV RNA levels had been that 

PUFAs were disrupting the ER membrane and interfering with membrane bound 

protein association, which was affecting replication complex formation.  

Although IF studies had been inconclusive, there did appear to be either a 

relocalisation or reduction of NS5A in PUFA-treated cells.  PUFAs have the ability 

to increase membrane fluidity due to their irregular structure.  In order to 

ascertain if the incorporation of PUFAs into the ER membrane was changing the 

dynamics of membrane-bound proteins, fluorescence recovery after 

photobleaching (FRAP) was performed on an ER membrane bound protein called 

DNase X.  Plasmid constructs expressing GFP-DNase X fusion protein were 

transfected into HuH-7 cells which were incubated overnight in the presence or 

absence of fatty acid conjugated to BSA.  Cells were treated at 10 μM EPA and 

10 μM DHA and 30 μM OLA.  Figure 5.10 shows data from one preliminary 

experiment investigating the effect of fatty acid on the mobility of the ER 

membrane protein GFP-DNase X. 

Figure 5.10 shows that fatty acid treatment of cells had no significant effect on 

the recovery of GFP-DNase X into the bleached area of the ER membrane.  DHA, 

and OLA-treated cells behaved similarly to the BSA-treated cells.  EPA-treatment 

of cells appeared to lead to a slight decrease in membrane protein mobility 

compared to the BSA control.  The experiment indicated that fatty acid 

treatment of cells expressing the GFP-DNase X protein did not affect its mobility 

as expected.  However, these results were obtained from one experiment and 

need to be repeated. 
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5.7 Discussion 

Results had showed that PUFA treatment of replicon-expressing cells led to a 

reduction in HCV replication and fatty acid biosynthesis.  However there was an 

associated toxicity at higher concentrations, which reduced cell viability.     

There were some differences between results presented here on the effect of 

PUFAs on replicon replication and previous studies (Kapadia et al., 2005; Leu et 

al., 2004) notably the concentration at which the PUFAs were added to cells.  

Although PUFAs had been extensively reported in the literature to reduce 

viability of cancer cells neither of the previous studies on the effects of PUFAs 

on HCV replication mentions this property as being a problem.  In Leu et al 

(2004), a maximum concentration of 100 μM fatty acid was used.  At this 

concentration, DHA was cytotoxic resulting in high levels of the cell death.  

Nevertheless in their study they found another PUFA, arachidonic acid to have  

50 % cell viability between 300-400 μM at 72 hrs.  These concentrations were far 

higher than any used in our study.  The study by Kapadia et al (2005) had used 

fatty acids at 50 μM concentrations.  However, there was no mention of fatty 

acid toxicity.  It was clear from our own study that PUFAs do reduce cell viability 

and this differs from the effects of the monounsaturated fatty acid, OLA.  In our 

study, media were changed daily but there is no mention of this in the previous 

two studies.  Changing the media allowed for a continual fresh supply of PUFA to 

be delivered, minimising degradation.  Also in our study, PUFAs were conjugated 

to BSA prior to being applied to culture, which had only previously been 

mentioned by Kapadia et al. (2005).  Conjugating to BSA more represents more 

physiological conditions and minimises the acidity of free fatty acids. 

Another important factor that became clear during the course of our study was 

that different batches of PUFA can vary in their ability to induce toxic effects on 

cells.  This was most notable with one batch of DHA, which was less lethal.  All 

experiments performed with that batch were equivalent to each other in their 

response but differed from other batches used.  To minimise variation caused by 

batch variation, all experiments were performed with the same batch of fatty 

acid.  The reason for variation between batches of fatty acid was not clear as 

the manufacturer guaranteed stability of the compound for up to a year after 

purchase.    
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It was important to note that our experiments used a genotype 2a replicon 

whereas previous studies had used genotype 1 replicons.  This also may have 

contributed to differences between studies.  However, experiments would need 

to be repeated using genotype 1b expressing cell lines in order to confirm this.  

The trend that PUFAs have an inhibitory role on replication whereas OLA does 

not was found consistently between studies.  One main difference with regard to 

the use of OLA was that in our study at 100 μM it had inhibitory effects but in 

Leu et al. (2002) this concentration had induced replication to 162.73 % of that 

of the control.  This might be explained by differences in cell lines used or 

possibly the BSA delivery method. 

Ideally, as with cerulenin, it would be useful to calculate a therapeutic index for 

fatty acid treatment of cells.  Again, there are two factors to consider:  the 

ratio of effect on fatty acid biosynthesis to cell toxicity and the ratio of effect 

on HCV RNA levels to cell toxicity.  A therapeutic index of approximately 3:1 was 

obtained for the effects of DHA on fatty acid biosynthesis for cells both 

constitutively and transiently expressing the HCV replicon.  The two methods 

used to assess HCV replication, Northern blots and luciferase assays, gave some 

inconsistent results.  The results with the constitutive replicon showed a 

therapeutic ratio that was lower than 3:1 and the transient replicon had a ratio 

that was higher than this.  This would indicate that DHA is more efficient at 

reducing HCV replication in the transient replicon than the constitutive replicon.     

EPA treatment inhibited fatty acid biosynthesis with a therapeutic ratio of 

approximately 4:1.  EPA was slightly more effective at reducing fatty acid 

biosynthesis in a non-toxic manner than DHA.  However, the real difference 

between EPA and DHA was seen when considering the effect of EPA on HCV 

replication.  Again, as with DHA, the transient replicon responded with a greater 

reduction in HCV replication upon EPA treatment.  Treatment of the transient 

replicon with EPA gave a therapeutic index of approximately 25:1 compared to 

10:1 with the constitutive replicon.  Both these ratios were far higher than those 

seen with DHA treatment of cells.  EPA treatment reduced HCV replication at 

more non-toxic concentrations than DHA.  This is interesting because their 

therapeutic ratios for reduction of fatty acid biosynthesis were similar.  The 

inhibition of HCV replication by EPA might be the result of a combination of 

different mechanisms apart from its inhibitory effects on fatty acid biosynthesis.  
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Therefore, inhibition of HCV RNA levels could not be attributed solely to 

inhibition of fatty acid biosynthesis.   

The relatively low therapeutic indices for the effect of EPA on fatty acid 

biosynthesis compared to effects on HCV RNA levels may be a result of using 

cancer cell lines.  It is possible that, in cancer cells, fatty acid biosynthesis is a 

requirement for successful cell growth.  As mentioned in chapter 4, up-

regulation of fatty acid synthase has been reported in several cancer types. In 

particular, FAS upregulation occurs in an aggressive subtype of breast tumours 

(Menendez et al., 2004).  This might mean that it is impossible to completely 

inhibit fatty acid biosynthesis in tumour cell lines without a corresponding drop 

in cell viability. 

The results showed inconsistencies in HCV replication response between 

Northern blots and luciferase assay data.  Although the general trend between 

experiments was the same, luciferase expression with the transient replicon was 

more sensitive in its response to fatty acid treatment than that seen by replicon 

RNA levels with the constitutive replicon.  This highlighted the difficulties in 

using Northern blots.  If the variation had occurred at the experimental level 

due to instability of the PUFA or perhaps some adverse condition that made the 

cells grow slower then there should also be some variation in the figures 

obtained for the fatty acid biosynthesis assay.  However, this was not the case.  

Therefore, this variation must have been introduced when processing the 

Northern blot possibly due to poor transfer of RNA or degradation of probe.  RNA 

degradation was normally identified early in the procedure because ribosomal 

bands were visualised by ethidium bromide staining.  More consistent results 

obtained with luciferase assays compared to inconsistent Northern results 

provided a more reliable system for measuring replication levels.  However, a 

study by Su et al. (1999) had seen similar inconsistencies in Northern results 

after treatment of cells with fatty acid inhibitors and inducers.  They noted that 

constitutive and transient replicons could differ in their extent of response.  

Nystatin, an inducer of lipid metabolism, increased replicon RNA levels in the 

constitutive system to 250 % of that of the control whereas the equivalent figure 

was 150 % in the luciferase system.  Although both systems give an indication of 

replication, neither directly looks at replication itself.  The luciferase replicon 

measures replication indirectly through luciferase activity.  Although an increase 



Jonathan R Hubb, 2007    194 

in luciferase signal requires replication to occur, the assay itself measures the 

translation and enzymatic activity of luciferase. However, this method gives a 

better idea of the kinetics of replication as it starts from zero replication.  

Effects of fatty acids on the constitutive replicon were measured by quantifying 

HCV RNA at the end of the 72 hour period and therefore might seem a better 

system for looking at replication.  However, this system looks at the “turn over” 

of RNA rather than directly at replication.  Northern blots were performed on 

the luciferase replicon RNA to determine whether the effect seen was due to 

effects on replicon replication or effects on luciferase translation and enzymatic 

activity.  Preferably Northern blots should be repeated for the RNA extracted 

from cells expressing the transient replicon as technical difficulties with high 

backgrounds may have given false quantitative estimate which led to 

inconsistencies between the luciferase values and the values obtained by 

Northern blot from the transient system. 

The extent of the inhibitory effects of PUFAs on replicon replication was not 

found with OLA.  Both PUFAs had an inhibitory effect on HCV replication at all 

concentrations.  OLA treatment gave a reduction in HCV levels at the highest 

concentration of 100 μM but led to increases in replication at other 

concentrations.  OLA also reduced fatty acid biosynthesis in a dose-dependent 

manner.  However, the effect was not as pronounced as that seen with PUFA 

inhibition.  As previously reported, the inhibition of fatty acid biosynthesis by 

PUFAs occurs by antagonising LXR (Kapadia et al., 2005).  It has also been 

reported that OLA can antagonise LXR but the effects are less dramatic than 

those found with PUFAs.  This antagonism of LXR is not seen with saturated fatty 

acids (Jump D, 2004), which could explain the reduction in fatty acid 

biosynthesis.  Results indicated that a reduction in fatty acid biosynthesis was 

not a prerequisite for reduction of HCV RNA levels.  Had it been a prerequisite, 

then OLA might have inhibited HCV replication at 30 μM and 10 μM.  However in 

our hands OLA had two different effects.  At 100 μM, HCV replication was 

reduced and at lower concentrations replication was induced.  These seemingly 

contradictory roles of OLA may indicate that it had a dual effect.  Our 

hypothesis is that inhibition of fatty acid biosynthesis led to a reduction in HCV 

replication at certain concentrations.  At lower concentrations OLA did not 

reduce fatty acid biosynthesis to an extent that would lead to a reduction of 

HCV RNA levels and its inductive effects on HCV RNA levels countered its 
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inhibitory effects.  It was also important to appreciate that de novo produced 

fatty acids (new fats) can have distinctly different abilities in altering metabolic 

pathways compared to exogenously produced fatty acids (old fats)(Gibbons, 

2005).  It may be useful to ascertain where OLA was being incorporated in to the 

cell using thin layer chromatography.  This would answer whether OLA was being 

stored as triacylglycerols in lipid droplets, as our IF experiments suggested, 

whether it was being incorporated into phospholipid components of the cells or 

if it was present mainly as free fatty acid.   

Some of the OLA data that we obtained were contradictory to the data obtained 

by Leu et al. (2004) where they had found an increase in HCV RNA at 100 μM.  

However they measured expression of a genotype 1b HCV replicon at 24 hrs.  In 

our study, replication of the transient replicon at 24 hrs was slightly increased 

compared to the control but not to the same extent seen in Leu et al. (2004).  

Nevertheless cells expressing both transient and constitutive replicons gave the 

same results in our studies although there had only been one experiment 

performed with the constitutive replicon.   

The OLA experiments had indicated that reduction of fatty acid biosynthesis was 

not a prerequisite for inhibition of HCV replication.  In fact, an induction of HCV 

replication was possible when fatty acid biosynthesis was being reduced.  This 

would counter the argument that inhibition of fatty acid biosynthesis was 

necessary for reduction of HCV replication.  However, it was difficult to 

determine exactly whether this was true, as OLA appeared to have different 

functions at different concentrations.  The ability of OLA to inhibit fatty acid 

biosynthesis without reducing HCV RNA levels and the difficulty in correlating 

PUFA inhibition of fatty acid biosynthesis to a reduction in HCV RNA levels might 

mean that PUFA mediated inhibition of HCV occurred by a mechanism other than 

effects on fatty acid biosynthesis.  This had been previously suggested by 

Kapadia et al. (2005) where they had been able to rescue PUFA mediated fatty 

acid inhibition by treating cells in combination with an LXR agonist.  Although 

fatty acid biosynthesis was induced by LXR agonist treatment, HCV replication 

was still inhibited.  Therefore, it would be interesting to ascertain whether LXR 

agonist treatment in our system could restore fatty acid biosynthesis while 

maintaining HCV replication inhibition.  This could answer not only whether HCV 

replication inhibition is as a consequence of a reduction in fatty acid 
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biosynthesis but also whether toxicity induced by PUFA treatment is due to fatty 

acid biosynthesis being reduced.  It may be that the reduction of fatty acid 

biosynthesis was purely coincidental and that PUFAs act on HCV replication by 

another mechanism.  Also it would be useful to measure the expression of FAS 

and SREBP-1c in our cell extracts for comparison with the results obtained from 

Kapadia et al. (2005). 

We had hoped that IF and membrane fluidity studies might help answer how 

PUFAs inhibit HCV RNA replication.  However, IF results did not give any 

conclusive indication of mechanism as there appeared to be a general 

downregulation of NS5A expression.  When comparing control cells to PUFA 

treated cells, the diffuse ER staining seen in control cells was not present and 

NS5A was mainly found in foci.  Other studies have shown that only a small 

percentage of replication complexes are actively involved in HCV replication at 

any one time.  Therefore in these cells although HCV replication is down-

regulated the few replication complexes remaining could be sufficient to sustain 

replicon RNA (Quinkert et al., 2005).  OLA treatment of replicon led to 

noticeable differences in NS5A foci compared to BSA control cells.  The foci 

appeared larger and more concentrated with NS5A protein.  It was not known 

whether these were merely aggregates of NS5A or large replication complex 

foci.  If the latter, it was conceivable that large replication complexes were 

forming which led to the increases in replication seen in the previous OLA 

experiments.  It may be that OLA was able to provide a more beneficial 

environment for replication complex formation, which led to these oversized 

complexes.  It would be interesting to repeat the IF studies comparing 100 μM 

and 30 μM concentrations of OLA to see whether the large foci were present at 

100 μM. 

Preliminary membrane fluidity studies based on movement of a membrane-

bound protein indicated that DHA did not noticeably affect the mobility of the 

ER marker DNase X.  Although EPA appeared to slightly reduce membrane 

fluidity, which was contrary to our hypothesis, this was obtained from just one 

experiment and would need to be repeated.  More importantly, it may be more 

useful to observe the effect of PUFAs on the mobility of HCV proteins, rather 

than DNase X.  For exampled, it would be interesting to investigate the effects 
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of PUFAs on the mobility of NS4B protein.  This has been suggested as being a 

platform protein for replication complex assembly (Yu et al., 2006).   

Further experiments investigating where supplied fatty acids are being 

incorporated in the cell may help to identify why they affect HCV replication.  

Immunofluorescence suggested that there is an increase in lipid droplets so, 

some fatty acids must be being stored as triacylglycerols.  Radiolabelled fatty 

acids would allow fatty acids to be traced to the lipid group using thin layer 

chromatography.  Also previous cell fractionation experiments indicated that 

HCV RNA was found in fractions containing lipid rafts.  High-pressure liquid 

chromatography (HPLC) could be used to identify different fatty acid types and 

determine whether there is an increase in the ratio of PUFAs in fractions, which 

contain HCV replication complexes. 

It was also possible that PUFAs were affecting cholesterol biosynthesis as they 

affect the global transcription of lipid metabolism genes and can also directly 

inhibit farnesyl diphosphate, a key enzyme in the cholesterol pathway (Le Jossic-

Corcos et al., 2005).  PUFA inhibition of HCV RNA replication may be caused by 

inhibition of the same cholesterol pathway that was altered by the use of 

geranylgeranylation inhibitors (Kapadia et al., 2005).  If so, supplying 

geranylgeranoil would restore HCV RNA levels from PUFA mediated inhibition. 

EPA and DHA treatment of cells transiently expressing replicon showed the level 

of reduction in replication increased over 72 hrs.  PUFAs at 3 μM concentration 

were non toxic and therefore it would be interesting to extend for the longer 

periods the PUFA treatment of cells constitutively expressing replicon.  

Treatment of cells constitutively expressing replicon with IFN allows removal of 

replicon RNA to produce an HCV RNA negative population of cells.  Prolonged 

treatment of replicon cells with PUFA may similarly cure them of replicon RNA.   

With the advent of the JFH1 infectious system, it would be useful to extend our 

study to investigate the effect on the infectious system.  It might be possible to 

reduce replication and expression without a consequent effect on HCV infection.  

This depends on which part of the HCV lifecycle is the rate-limiting step for 

successful infection.  Is it entry of the virus, replication and expression of viral 

RNA and protein or assembly and release of new virus particles?  These 
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experiments would be crucial in identifying the possible role of PUFAs HCV 

therapy. 

There is interest in PUFAs not only because of their ability to reduce HCV 

replication but also their inherent health benefits.  If PUFAs were able to reduce 

HCV infection, then their use in combination with existing therapies could be 

valuable.  Already, their beneficial use in combination with IFN treatment had 

been hinted at in the study by Leu et al. (2004).  A combination of arachidonic 

acid and IFN treatment showed that it was possible to obtain a synergistic 

inhibitory effect on HCV replicon replication.  Already considered beneficial, 

essential fatty acids, which are required in the diet, could be used in 

combination with IFN treatment to treat HCV-infected patients.   Although it is 

difficult to determine their effect on HCV infection, an improvement of liver 

disease might be expected.  A clinical study to investigate the effects of PUFA 

treatment on HCV infected patients would now be justified.   
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Chapter 6 

6 Making a genotype three expressing replicon 

HuH-7 cell line 

6.1 Introduction 

The pathogenesis of liver disease as a result of HCV infection is still not fully 

understood.  Whether liver damage is a consequence of viral infection or due to 

an immune mediated response is not known.  Immune-mediated pathways 

leading to liver damage are more likely since it has been shown there is no 

correlation between viral RNA titres and liver damage (Wejstal R, 1995). 

One of the most common pathologies in chronic infection is steatosis, which is 

found in 50 % patients.  Steatosis is the accumulation of intracytoplasmic lipid 

droplets within hepatocytes (Zhu A, 2003).  The metabolic cause of steatosis is 

still not understood although there are many predisposing factors. These include 

increasing age, increased body mass index (BMI), alcohol abuse, intolerance of 

insulin, drugs and concomitant infections.  It is still not clear whether steatosis 

is a direct effect of viral infection or is a secondary consequence. Steatosis may 

create a beneficial environment for viral replication (Adinolfi et al., 2001).   

Several studies have identified HCV genotype 3 as being strongly associated with 

the presence of steatosis and suggested that HCV genotype 3 may cause steatosis 

as a cytopathic effect (Adinolfi et al., 2001; Quadri et al., 2001; Rubbia-Brandt 

et al., 2001).  Steatosis has been shown to accelerate fibrosis over time in 

patients with genotype 3 (Westin et al., 2002).  Kumar et al. (2002) reported 

changes in the degree of steatosis after a sustained viral response (SVR).  

Patients with genotype 3 who achieved a SVR to therapy almost invariably 

showed a complete reversal of steatosis.  This was not observed in patients 

infected with genotype 1 strain who displayed steatosis.  
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The lack of a cell-based system has limited research with genotype 3.  Until 

recently HCV researchers had no method of investigating viral replication, 

expression and particle assembly.  This was changed by the development of a 

modified autonomously replicating HCV genotype 1b genome (Lohmann et al., 

1999).  The genome required specific modifications and cell passage number was 

important for successful cell line establishment.  This system was further 

extended to HCV genotype 1a strain where again the genome was modified and 

the cell line used was important for successful replication (Blight et al., 2003).  

However both of these systems investigated only viral replication and 

expression.  In most cases HCV structural genes were omitted.  However, even 

when structural genes were included particle formation was not observed.  The 

production of infectious particles was achieved only after the isolation of a HCV 

genotype 2a isolate from a patient with fulminant hepatitis (Wakita et al., 

2005).  Therefore, present replicon systems are available for only genotypes 1b, 

1a and 2a.  Due to HCV genotype 3 being implicated in having a possible viral 

cytopathic effect creation of a replicon expressing cell line was desirable.   

Apart from this, possession of a full-length genotype three sequence was also 

desirable as there are few full-length genotype 3 sequences available.   

The aim of this study was to assemble a full-length genotype 3 genome, which 

could be used to make a replicon expressing cell line. 

6.2 Selection of a patient serum 

The criteria for selection of patient serum were;  

• an isolate obtained from a patient infected with HCV genotype 3  

• availability of several aliquots of stored serum and a stored liver biopsy   

The isolate used in our study was derived from serum from a 37 year old Glasgow 

male (GM) patient infected with HCV genotype 3a.  The genotype had been 

determined by restriction fragment length polymorphism (RFLP) and direct 

sequencing of NS5A gene (performed by Carol-Anne Smith).  West Glasgow 

Ethical Committee had authorised the study and informed patient consent was 

obtained on collection of serum and biopsy samples.  The patient was 
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subsequently treated with pegylated interferon-α and ribavirin and displayed a 

sustained viral response.  Liver biopsies and serum samples were taken before, 

during and post anti-viral therapy.  Liver biopsies were classified according to 

the Ishak score.  A liver biopsy taken after treatment showed an Ishak score of 

fibrosis stage 0/6 and inflammation 3/18 (one each for portal, interface and 

parenchyma).  The biopsy showed minimal steatosis which had slightly improved 

compared to the previous biopsy which was obtained before IFN-α treatment.  

The liver biopsy prior to therapy displayed moderate to minimal steatosis. 

The patient had no history of intravenous drug use and did not drink to excess.  

GM patient was 1.74 m tall and weighed 73.1 kg.  This made his body mass index 

24.14, which is between the range 18.5 and 24.9 and was classed as normal.  

6.3 Assembling a majority sequence 

6.3.1 Amplification of the genome 

It was first necessary to determine the complete sequence of the GM isolate.  

Using a similar principle that had been used to assemble a genotype 1b replicon, 

a majority sequence was deduced (Lohmann et al., 1999).  This comprised an 

HCV sequence, which corresponded to the most frequent base at any given locus 

and was achieved using RT-PCR and direct sequencing of PCR products.   Primers 

were designed in regions of homology shared between 4 HCV genotype 3 

genomes; NZL1 (Sakamoto et al., 1994), Ka3503a (Yamada et al., 1994), TR3b 

(Chayama et al., 1994) and 3aCB (Shukla et al., 1998).  In total, 37 primers both 

sense and anti-sense were used for RT, PCR and sequencing of the genome.  In 

most cases primers were designed to fit the following criteria:  

• a length of approximately 20 nucleotides  

• a Tm between 50-70ºC  

• a GC content of between 40-60 %   

All primers are listed in section 2.1.11 in Chapter 2 where primer sequence, 

name and use are indicated.   
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Initially RNA was extracted from serum or biopsy and reverse transcribed using 

an Ominscript reverse transcription kit.  RT primers were used, which annealed 

to the 3’ periphery of the genome on the X-tail (PM 3AS), at the stop codon 

(a9425gt3) and within NS4B (a6120gt3) and NS3 (a4935gt3).  A diagrammatic 

representation of all RT reactions and PCRs is found in figure 6.1.  Synthesis of a 

cDNA template from RNA was confirmed using real time PCR of the 5’UTR (data 

not shown).  The presence of template in a reaction indicated successful RT, 

generating transcripts from the RT primer point of origin to the 5’UTR.  The 

cDNA could then been used as a template for PCR amplification.   

Nested and semi-nested PCR was used to amplify areas of the genome.  This 

principle requires two rounds of PCR.  The first round (P1) of PCR amplifies a 

region of interest and the second round (P2) amplifies a region that is internal or 

partially internal to the P1 PCR primers.  This allows for specific high yield 

amplification from templates with low copy number.  Initially diagnostic nested 

PCR was used to confirm the presence of template using Taq Polymerase.  This 

was performed to confirm the real-time PCR result before using the more 

expensive BD Advantage 2 Polymerase kit and Pfu polymerase.  Two regions 

were used for this process: one of which was in the 5’UTR region (P1-PCR 1 and 

P2-PCR 2) and the other, which was in NS5A (P1-PCR 3 and P2-PCR 4).  After 

this P1 PCR products 1 (PCR 5), 2 (PCR 6), 3 (PCR 7) and 7 (PCR 11) were 

amplified (Figure 6.1).  Technical problems were encountered when attempting 

to amplify the 3’ end of the genome.  The reasons underlying the difficulties will 

be discussed in more detail in section 6.2.  After the P1 PCR, P2 PCR products, a 

(PCR 13), b (PCR 14), c (PCR 15), d (PCR 16), f (PCR 17), g (PCR 1) h (PCR 19), 

i (PCR 20) and j (PCR 21) (Figure 6.1) were amplified as described in section 

2.2.5, an aliquot of the P2 PCR products was resolved by agarose gel 

electrophoresis to confirm the PCR had been successful and a product of the 

correct size generated.  Once the correct P2 PCR product had been confirmed, 

the whole sample was electrophoresed through an agarose gel and the PCR 

product excised and purified.  The concentration of the purified PCR product 

was estimated by running an aliquot of PCR product on a DNA Mass ladder.  PCR 

products covering the entire genome up to base 9320 were then sent for direct 

sequencing.  Initially the sequence of the very 3’ end of the genome could not 

be obtained. 
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Optimisation of PCRs generated for sequencing purposes 

As described above, nested PCR was used to amplify the genome.  Diagnostic 

PCR identified whether RTs were successful so that P2 amplifications could be 

performed.  Figure 6.2 shows, in lanes 2, 4 and 6, 270 base pair products from a 

diagnostic PCR used to amplify a region in the 5’UTR.  The yield of PCR in lane 2 

appears less than that in lanes 4 and 6.  Also, there appears to be some non-

specific product of less than 100 bp, which is also present in the negative 

control.  This is unlikely to be a dimer of the primers given its close migration to 

the 100 bp marker.  Such first round PCR templates as in lane 2 were not used 

for further amplifications.   

Once the presence of a diagnostic PCR product had been confirmed, PCR 

fragments from other regions of the cDNA template were amplified for 

sequencing.  Figure 6.3 shows agarose gel electrophoresis for optimisation of 

PCR conditions for amplification of fragment c (PCR 15).  The PCR, which 

produced the best yield of product occurred at an annealing temperature of 

60ºC.  

6.3.2 Assembling majority sequence 

A consensus sequence was made by aligning sequences obtained from direct 

sequence reactions.   As the PCR fragments overlapped, it was possible to 

assemble a contiguous sequence of DNA (contig).  This comprised a series of 

overlapping fragments that encompassed the entire length of the genome.  A 

UNIX based contig mapping program called GELSTART (Generic Computer Group 

programs) was used to assemble the contig and calculate a consensus.  Before 

sequences were input into GELSTART, the original electropherogram was 

examined to ensure that the sequence was of good quality.  Sequences, which 

were inserted into GELSTART, were assembled under the following conditions:  

• word size - 0.5  

• fraction of words in overlap – 6 

• minimum overlap – default 



Jonathan R Hubb, 2007    206 

300 

100 

Figure 6.2. Agarose gel electrophoresis of second round PCR 
products used to ascertain if HCV cDNA was present.  PCR 
products are in lanes 2, 4 and 6.  Negative controls are in 
lanes 3, 5 and 7.  Lane 1 contains NEB 100 bp ladder. 
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Figure 6.3. Agarose gel electrophoresis of optimisation of 
PCR amplification for fragment C.  Lane 2 – 7 contain PCR 
amplification fragments generated at varying temperatures 
starting in lane 2 at 50ºC and ending in lane 6 at 70ºC, 
increasing in increments of 5ºC. Lanes 1 and lane 7 contain 
molecular weight marker XVI (Roche) and the negative control 
for the 60ºC PCR, respectively. 

 1      2      3      4       5       6       7  

1000 
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After the contig had been assembled, it was necessary to perform manual 

alignments to assign nucleotide type at regions where the consensus was 

unclear.  This required closer scrutiny of the electropherogram to ascertain 

whether the nucleotide at that position had been assigned correctly.   

By way of example, figure 6.4 shows how an ambiguity in a sequence alignment 

from sequences produced from fragment c was resolved.  The multiple sequence 

alignment had been unable to decide between assigning a T nucleotide or a C 

nucleotide.  There were four sequences used in the alignment C1R, C2F, C3F and 

C3F2.  These primers produced sequence between 3471 bases and 4098 bases 

long.  The output sequence for CF3 and CF32 had been assigned to a C.  

However, checking the electropherogram showed that although the output 

sequence had assigned a C, the electropherograms indicated a T residue at this 

position.  Although the sequence for C1R was difficult to ascertain whether the 

position was a C or T, other sequences showed a T peak at this point.  A C peak 

was present at this region but was less pronounced.  This might have suggested 

that a C variant of the majority sequence at this position in the genome was 

present within the viral quasispecies.   

Once the majority sequence had been assembled (Appendix 1), it was possible to 

compare the sequence with other genotype 3 sequences.  A comparison between 

the nucleotide sequence of GM isolate and the genotype 3a isolate sequence, 

3aCB (Shukla et al., 1998) found 93 % identity between sequences.  Sequence 

identity with genotype 3b isolate nucleotide sequence TR3b was lower at 78.5 % 

(Chayama et al., 1994).  A comparison between the nucleotide sequence of 

isolate GM and the genotype 1b Con1 sequence found 68.1 % identity (Lohmann 

et al., 1999).  Multiple alignments of the GM isolate protein sequence with 3aCB, 

TR3b and Con1 found an amino acid deletion at valine 1756.  This valine 

occurred in the linker sequence between two amphipatic helices in NS4B.  A 

protein sequence alignment performed with GM and JFH1 genotype 2a sequences 

showed that although the valine was not present in JFH1 an amino acid deletion 

of a methionine still occurred at this position (Kato et al., 2001).  Valine and 

methionine are both neutral non-polar residues.  The significance of the deleted 

amino acid in isolate GM was unknown. 
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6.4 Assembling a genotype 3 replicon that would express 

constitutively in cells  

6.4.1 Cloning the genome 

In order to assemble a genotype 3 replicon it was first necessary to clone the 

genome into vectors so that sequences could be modified and propagated as 

required.  As already explained in section 6.2.1 cDNAs had been made from RNA 

templates extracted from serum samples.  Using these cDNAs as templates, first 

round PCRs amplified regions to produce 2 products (Figure 6.5). One product 

contained the full-length genome amplification and one contained sequences 

from the 5’UTR to NS4B.  These were then used to as templates to perform 

second round PCR.  The genome was ligated into pCR2.1 Topo and pGEM T-Easy 

plasmids in three sections using the T/A cloning method (Figure 6.6).  This 

required a single A nucleotide overhang at the 3’ end of a PCR product which 

was achieved by incubating PCR products with Taq polymerase and dATP.  All 

subsequent ligations which directly cloned a PCR product into pGEM T-Easy were 

performed using this method (Figure 6.6).  pCR2.1(5’GT3) contained sequences 

from the 5’UTR to NS3 (at base 4935).  The pGEM linker contained an internal 

amplification fragment from p7 (at base 2622) to NS4B (at base 6120) cloned 

into pGEM T-Easy.  pCR2.1 (3’GT3) contained sequences from the NS3 (at base 

4918) to the 3’ end of the genome.   

Amplification of the 3’ end of the genome consistently produced products, which 

were smaller in size than expected.  Figure 6.7 shows that the yield of the PCR 

product obtained for amplification of the 3’ end of the genome (PCR 7) was less 

than that obtained for amplification of the 5’ end of the genome (PCR 6).  The 

expected size of the 3’(GT3) fragment was approximately 4490 bases but 

products were smaller than the 4361 marker.  A comparison of the majority 

sequence with other genotype 3 isolates had indicated that the viral genome 

contained a full sequence therefore this suggested one of the PCR primers was 

mis-priming.  The PCR product amplified was cloned into pCR2.13’(GT3).  The 

presence of the 3’(GT3) product was confirmed by restriction digest using HpaI 

and EcoRV.  This confirmed the presence of the 3’ end of the 3’(GT3) product.  

As expected a truncated PCR product had been produced where the anti-sense  
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PCR primer (Primer 77) had misprimed producing a PCR product approximately 

200-300 bases shorter at the 3’ end of the product.  Figure 6.8 shows an HpaI 

and EcoRV digest of the pCR2.1(3’GT3) with the insert in 3’-5’ orientation.  If 

full-length product had been present digested DNA fragments of 4701 bp and 

3618 bp would be produced.  The digest showed that the larger fragment of 

4701, which was derived from the very 3’ terminal of the genome, was 

truncated.  This supported the hypothesis that the anti-sense PCR primer had 

mis-primed.  Diagnostic PCR was also performed on the pCR2.1(3’GT3) clones to 

determine whether it was possible to amplify fragments D, G H and F (Figure 

6.1).  It was possible to amplify fragments D, G and H but fragment F failed to 

amplify.  

6.4.1.1 Cloning the 3’ end of the genome 

Previous PCRs had been unable to amplify the region of the genome, which 

contained the stop codon and 3’ UTR.  The majority sequence had been made as 

far as base 9319 but attempts to amplify to the end of the coding sequence using 

proofreading enzymes had been unsuccessful.  Despite varying annealing 

temperatures, different concentrations of reaction buffer and magnesium salts, 

all attempts to amplify the 3’ UTR were unsuccessful.  Changing the polymerase 

to Taq polymerase allowed amplification of the last 100 bases of the genome.  

Furthermore, by lowering the annealing temperature to 46ºC a PCR product was 

produced which was the correct size to be the 3’ UTR.   

Although initial attempts to amplify the 3’UTR failed it was eventually obtained 

from a PCR made by a previous laboratory member, Dr Petra Preikschatt.  She 

had made PCR products containing the full length 3’ UTR derived from the same 

GM isolate used in my studies after using Superscript RT and Taq polymerase 

PCR.  The original superscript RT was performed as described in section 2.2.3.2. 

and PCRs were performed as with previous 3’UTR amplifications (PCR 23) using 

primer 80 instead of primer 39.  Semi-nested PCR was performed on these 

products using Taq polymerase to produce a high yield product containing the 

complete 3’UTR.  As the last 98 bases of the HCV genome are highly conserved 

an antisense primer was designed based on other HCV sequences.  Due to the 

last 3 nucleotides of the genome being “AGT” the addition of ACT 3’ to this 

created a ScaI restriction enzyme. 
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site.  Digestion of clones containing the ScaI restriction site produced blunt 

ended DNA fragments, which allowed “run off” transcripts to be made, which 

contained only HCV sequence.  Resultant PCR products were then cloned into 

pGEM T-Easy vectors to create the pGEM 3’UTR plasmid.  Plasmids were analysed 

by restriction enzyme digest and sequencing.  Figure 6.9 shows that the 3’ UTR 

sequence of isolate GM is similar to other genotype 3 3’ UTR sequences.  The 

alignment uses four genotype 3 sequences TR3b (Chayama et al., 1994), 3aCB 

(Shukla et al., 1998), Ka3503a (Yamada et al., 1994) and NZL1 (Sakamoto et al., 

1994) and the 5-15 1b replicon sequence, derived from the Con1 isolate 

(Lohmann et al., 1999).  For comparison the 1b sequence showed that the extra 

sequence within the variable region of the 1b isolate was not present.  The 

cloning of the GM 3’ UTR completed the cloning of the GM genome which could 

now be modified for assembly of a genotype 3 replicon. 

6.4.2 Modification of the isolate GM genome 

6.4.2.1 Incorporation of a T7 promoter flanking the 5’UTR 

In order to produce “run off” replicon RNA transcripts it was necessary to 

engineer a T7 promoter to flank the 5’ UTR.  This was achieved using PCR and 

cloning.  The T7-5’UTR-GT3 primer which contained a truncated T7 promoter 

flanking a small portion of the 5’ UTR was used together with a 3550-gt3SpeI 

primer in a PCR described in section 2.2.5 (PCR 24).  pCR2.1(5’GT3) was used as 

a template for amplification of this region.  The resultant PCR product produced 

a 3550 bp fragment which was cloned into pGEM T-Easy.  Clones were initially 

analysed by restriction enzyme digest to determine if they contained an insert of 

appropriate size.  To determine whether the T7 promoter had been 

appropriately incorporated onto the 5’ end of the genome, sequence analysis 

was performed.  Figure 6.10 shows successful incorporation of the T7 promoter.  

The minimal T7 promoter sequence was used as it had been successfully 

employed with the genotype 1b replicon.     

6.4.2.2 Cloning the EMCV IRES and neomycin gene to the 5’UTR 

The original 1b genome had been modified to create a bicistronic replicon in 

which the first cistron was under the control of the HCV internal ribosome entry 

site (IRES) resulting in translation of the neomycin phosphotransferase gene and  
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the second cistron was controlled by the encephalomyocarditis virus (EMCV) IRES 

resulting in translation of the non-structural genes.  In designing the genotype 3 

replicon, a similar arrangement was envisaged.  Therefore, it was necessary to 

clone the neomycin phosphotransferase gene and the EMCV IRES.  This was 

achieved by amplifying this region from a plasmid containing the 1b replicon.  

Amplification (described in section 2.2.5, PCR 25) used an antisense primer, 

which bound the 3’ of the EMCV IRES and incorporated a BglII site into the 

sequence to allow subsequent cloning.  However this BglII was removed in the 

final construct by site directed mutagenesis to return the EMCV IRES to its 

original sequence.  The resultant PCR product was cloned into pGEM T-Easy and 

analysed by restriction enzyme digest to confirm the presence of insert. 

Once a clone containing the neomycin and EMCV IRES was obtained it was used 

as a vector to clone in a 5’UTR flanked by a T7 promoter (Figure 6.11).  This was 

done by digesting pGEMT7(5’GT3) and pGEMneo-emcv with SpeI and StuI and 

ligating the neo-emcv fragment produced into the pGEMT7(5’GT3) recipient 

vector.  Successful ligations were analysed by restriction enzyme digest to 

determine if insert was present.  The resultant plasmid was called pGEMT7-

emcv. 

6.4.2.3 Cloning NS3, 4A and 4B into pGEM T7 emcv 

In order to clone the non structural genes to be under control of the EMCV IRES, 

it was first necessary to modify NS3 by incorporating a start codon before its 

coding sequence.  This was done by amplifying a product from pGEM linker 

plasmid by the PCR described in section 2.2.5 (PCR 26).  The BglII restriction 

site that was placed at the end of the EMCV sequence was also placed in the 

sense primer before the start codon.  A SpeI restriction site was also 

incorporated into the a6120-gt3 primer to allow subsequent cloning of the PCR 

product.  Successful amplifications were then cloned into pGEM T-Easy and 

analysed for the presence of insert by restriction enzyme digest.  The resultant 

plasmid was called pGEMNS3-GT3. 

A 2701 base fragment from pGEMNS3-GT3 containing NS3, 4A and 4B was cloned 

into pGEMT7-emcv by digesting pGEMNS3-GT3 and pGEMT7-emcv with BglII and 

SpeI (Figure 6.12).  The resultant plasmid contained the 5’UTR flanked by a T7 

promoter, a neomycin phosphotransferase gene, the EMCV IRES and NS3-4B.   
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Restriction enzyme digest was used to confirm successful cloning. The resultant 

plasmid was called pGEMT7-emcv-NS3 and was 7525 bases in length. 

6.4.2.4 Cloning the 3’UTR onto pCR2.1(3’GT3) 

As already discussed, pCR2.1(3’GT3) was truncated at the very 3’ border of the 

insert missing part of NS5B coding sequence and also the 3’UTR.  Using the insert 

from pGEM3’UTR, it was possible to reassemble the clone so that the full 3’ 

sequence was present (Figure 6.13). This was performed by digesting pGEM3’UTR 

with HpaI and SpeI to release a 850 base fragment which could then be cloned 

into pCR2.1(3’GT3).  Presence of the insert was confirmed by restriction enzyme 

digest. The resultant plasmid was called pGEM(GT3)-X and was 8386 bases in 

length. 

6.4.2.5 Transferring the 5’ and 3’ of the replicon into pUC18 and removal of 

the BglII restriction enzyme site 

In order to transcribe the RNA replicon, a truncated T7 promoter had been fused 

to the 5’UTR of the HCV sequence.  However the pGEM T-Easy plasmid already 

has an endogenous T7 promoter within its sequence.  Therefore it was necessary 

to clone into another plasmid vector, which did not have a T7 promoter.  The 

plasmid pUC18 was used for this where EcoRI and BamHI digests of pGEMT7-

emcv-NS3 produced a 4066 base fragment, which was cloned into a digested 

pUC18 vector.  Successful transformants were confirmed for presence the new 

plasmid construct by restriction enzyme digest.  The plasmid was called 

pUC18T7-NS3 (Figure 6.14). 

Previously a BglII restriction enzyme site had been incorporated into the 3’ end 

of the EMCV IRES to allow cloning of the HCV genome.  However it was thought 

that this may affect the efficiency of the EMCV IRES so it was necessary to 

remove the BglII restriction enzyme site.  This was achieved by using site 

directed mutagenesis where primers were designed to mutate the sequence back 

to the EMCV IRES consensus.  Successful revertant mutants were analysed by 

restriction enzyme digest and sequencing.  Mutants lacking the BglII site were 

used for future cloning.  
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The 3’ end of the genome was also cloned into pUC18.  This was done by 

digesting pCR2.1(3’GT3)-X with BamHI and SpeI to release a fragment of 3980 

bases which was cloned into BamHI and XbaI digested pUC18 (Figure 6.15).  XbaI 

was used as oppose to SpeI because there was no SpeI site in pUC18.  However 

XbaI produced a sticky overhang after being cut, which could religate with SpeI.  

Successful plasmid constructs were analysed by restriction enzyme digest for the 

presence of the ligated fragment.  The resultant plasmid was called 

pUC18(3’GT3). 

6.4.3 Sequencing plasmid constructs and site directed 

mutagenesis 

In section 6.2.3 it was described how the majority sequence for isolate GM was 

assembled.  It was therefore necessary to mutate the sequence of the cloned 

parts of the genome to the majority sequence.  Sequencing was performed on 

pUC18T7-NS3 and pUC18(3’GT3) using primers previously used for assembly of 

the majority sequence described in section 2.1.11.  Two internal primers in the 

EMCV IRES were also used to obtain sequence that covered this area of the 

construct.  Sequence contigs were aligned using the “Gel Start” program 

(Generic Computer Group programs) and a consensus obtained.  The plasmid 

consensus sequence was then aligned with the majority sequence to deduce 

where they differed from each other.  A sequence alignment of pUC18T7-NS3 

sequences with majority sequence showed one difference in the 5’UTR and one 

non-synonymous difference in the non-structural protein region in NS3.  

Sequence alignment was also performed between the neomycin-EMCV IRES 

sequence from the 1b replicon.  It was found that 1 synonymous difference 

occurred in neomycin phosphotransferase gene and 2 deletions in the EMCV IRES.  

The reason for this may have been that error prone Taq polymerase had been 

used after problems with the use of proof reading enzymes.  One of the 

deletions had occurred over a Poly-C tract of 10 cystine nucleotides.  This 

repetitive sequence may have been difficult to amplify.  A sequence alignment 

with pUC18(3’GT3) found 5 non-synonymous mutations and 17 synonymous 

mutations. All non-synonymous mutations in pUC18T7-NS3 and pUC18(3’GT3) are 

described in table 6.1.   
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Table 6.1. A table indicating the position of non-synonymous 
mutations and their location in the genome.  Where 
applicable amino acid codon and amino acid conversion is 
shown.  

Mutation 7 

Mutation 6 

Mutation 5 

Mutation 4 

Mutation 3 

Mutation 2 

Mutation 1 

Mutation 
Name 

Threonine     Alanine GCT    ACT 8979 

Insertion     Alanine GCCC    GCC 9111 

Isoleucine  
Threonine 

ATT    ACT 8315 

Alanine     Valine GCG    GTG 7805 

Aspartic acid 
Glutamic acid 

GAC    GAA 6303 

Alanine     Threonine GCC    ACC 4824 

Deletion     Adenine G    T 228 

Nucelotide/Amino 
acid change(from   
.    to) 

Codon 
difference 

Location in 
genome 
(nucleotide) 
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Site-directed mutagenesis was used to mutate non-synonymous bases in 

pUC18T7-NS3 and pUC18(3’GT3) to the majority sequence. In total there were 7 

differences to be corrected in the plasmid constructs.  Primers were designed as 

follows as described by the stratagene site-directed PCR protocol (section 

2.2.15, PCR 27). 

Site directed mutagenesis PCRs were performed using the BD Advantage 2 

polymerase mix.  Clones were selected and analysed by sequencing.  Figure 6.16 

shows electropherograms before and after site directed mutagenesis for 

mutation 4.  The GCG was changed back to the majority GTG (A>V). 

To minimise the amount of time it took to mutate plasmids, rather than perform 

one mutation then the next till all were done in a sequential manner, site-

directed mutageneses was performed in parallel.  For instance, to obtain the 

pUC18NS3-Mut1,2 plasmid, both site directed mutagenesis PCRs were performed 

at the same time in separate reactions.  Resultant plasmids, which had 

successfully taken the reverted mutations, then were cloned together by 

digesting plasmids with BmgBI and EcoRI (Figure 6.17).  Here, only two mutations 

were involved.  However in pUC18(3’GT3) there were 5 sites to be mutated.  An 

initial round of mutagenesis was used to produce pUC18 (3’GT3) Mut3, pUC18 

(3’GT3) Mut4 and pUC18 (3’GT3) Mut7.  These were then confirmed by direct 

sequencing and used as templates for a second round of mutagenesis.  PCR was 

used to generate mutation 5 in pUC18(3’GT3)Mut4 and also mutation 6 in 

pUC18(3’GT3)Mut7.  Once all the mutagenesis was completed and successful 

mutations had been confirmed by sequencing, fragments were joined together 

into one plasmid (Figure 6.18).  This was performed by digesting 

pUC18(3’GT3)Mut3 with BamHI and EcoRI to produce a 1140 base DNA fragment, 

pUC18(3’GT3)Mut4,5 with EcoRI and HpaI to produce a 2030 base DNA fragment 

and pUC18(3’GT3)Mut6,7 with BamHI and HpaI to produce a 3490 base DNA 

fragment.  The resultant plasmid pUC18(3’GT3)Mut3-7 was analysed by 

restriction enzyme digest to confirm the presence of the complete 3’GT3 

fragment. 

6.4.3.1 Cloning the EMCV IRES 

Nucleotide sequencing had indicated that the EMCV IRES had two mutations, 

which might affect its activity.  Because one was a deletion it was decided it  
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would be quicker and easier to clone the EMCV IRES again using the high fidelity 

BD Advantage 2 polymerase mix for its amplification.  The PCR was performed as 

before and the product was insert into pGEM T-Easy to produce pGEM5’emcv.  

This was cloned into pUC18NS3-Mut1,2 by digesting both plasmids with AscI and 

BmgBI to release a 1300 base fragment from pGEM5’emcv which could be cloned 

into pUC18NS3-Mut1,2.  The resultant plasmid pUC18emcvMut1,2 was analysed 

by sequencing to confirm the presence of an intact EMCV IRES. 

6.4.4 Cloning the genome into pSP64 Poly-A Vector 

Initially, I attempted to join the mutated genome in pUC18 by cloning the 3’GT3 

mutated sequence into pUC18emcvMut1-2 using restriction enzyme sites BamHI 

and SspI.  BamHI cut the genome at a unique site and SspI cut in the vector 

sequence after the Ampicillin resistance gene.  However, all attempts to clone 

the entire genome in pUC18 were unsuccessful.  Therefore an alternate 

approach was adopted using another vector for holding the genome.   

pSP64PolyA cloning plasmid, which does not contain a T7 promoter, was selected 

as a suitable vector for carrying the genotype 3 replicon.  Initially the 5’ end of 

the genome was excised from pUC18emcvMut1,2 using EcoRI and BamHI 

restriction enzymes.  The 4062 base fragment was then cloned into a pSP64PolyA 

vector which had been digested with EcoRI and BamHI restriction enzymes.  The 

resultant plasmid pSP64 GM-NS3 was 7003 bases in size (Figure 6.19). 

To assemble the complete replicon, pSP64GM-NS3 plasmid was digested with 

BamHI and SspI to produce a 6107 base fragment.  The 3’ of the genome was 

then cloned onto this by digesting pUC18(3’GT3)Mut3-7 with BamHI and SspI to 

produce a 4594 base fragment.  The resultant plasmid pSP64 GM was 10701 bases 

in length and contained a complete genotype 3 replicon (Figure 6.20).  

6.4.5 Incorporation of the NS5A adaptive mutation and NS5B null 

mutation 

Previous genotype 1 replicons had been found to accumulate adaptive mutations 

for high expression in cell culture.  One highly adaptive mutation had been 

described in NS5A at amino acid position 2204 (Serine>Isoleucine).  It was  
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decided to incorporate this mutation into our genotype 3 replicon as it might aid 

establishing replication.  The mutation was incorporated by performing site-

directed mutagenesis.  Primers were designed to incorporate the mutation into 

NS5A (Section 2.1.11) as PCR protocol described in section 2.2.15.  Successful 

mutants were confirmed by direct sequencing of plasmid DNA and resultant 

plasmids called pSP64GM *.  

In was also necessary to produce a negative control replicon.  The negative 

control replicon was exactly the same as pSP64GM except it contained a null 

mutation in the GDD motif found of the NS5B gene (GDD>GND).  Site directed 

mutagenesis was used to mutate the sequence of pSP64GM. The resultant 

plasmid pSP64GMGND was confirmed for mutated sequence by direct sequencing 

of plasmid DNA.  The three replicons used to establish a HuH-7 cell lines 

expressing the genotype 3 replicon are diagrammatically represented in Figure 

6.21. 

6.5 In-vitro transcription of constitutive replicons and 

electroporation into cells 

Once replicons were assembled, RNA was transcribed from ScaI linearised 

plasmid.  The digestion of the ScaI restriction enzyme site, which had previously 

been engineered to flank the 3’ of the genome, enabled run off transcripts to be 

synthesised, which contained only HCV sequence.  In order to minimise the 

amount of uncut plasmid, as this would interfere with the in-vitro transcription, 

cut DNA was agarose gel electrophoresed and gel extracted.  Purified DNA was 

quantified by spectophotometry and used for in-vitro transcriptions. 

Figure 6.22 shows that the truncated T7 promoter flanking the 5’ of the genome 

was able to synthesis a comparable amount of RNA compared to the equivalent 

1b replicon.  This indicated that the T7 promoter was functional.  RNA obtained 

from these in-vitro transcriptions was DNase I treated with “Ambion DNase 

turbo” and purified by phenol choloform extraction and ethanol precipitation 

(Section 2.2.13.4 and 5) to ensure that the DNA template was removed.   

Figure 6.23 shows strains of HuH-7 (HuH-7, 2a-C and 1b-C) cells electroporated 

with purified RNA from 1b, GM, GM* and GMGND replicons.  The results showed  
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Figure 6.22. Agarose gel electrophoresis of in-vitro 
transcribed RNA synthesised from linearised plasmid vector 
using the Ambion Megascript in-vitro transcription kit.  Lane 1 
contains a negative control.  Lane 2 contains XbaI digested, 
mung bean treated pK389neoNS3-3’/5.1 containing the 
genotype 1b replicon.  Lanes 2 and 3 contain ScaI restriction 
enzyme digested pSP64GM* and pSP64GMGND respectively. 

    1           2            3             4 
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1b replicon RNA was able to produce colonies, which were resistant to G418 

selection and therefore contain actively replicating 1b replicon RNA.  There 

appeared no difference between the ability of 1b replicons to replicate in naïve 

HuH-7 cells compared to 2a-C cells or 1b-C cells.  All GM replicons failed to 

produce colonies in all cell types.  This experiment was repeated twice. 

6.6 Assembling a genotype 3 replicon that would 

transiently express in cells 

6.6.1 Fusion of the 5’UTR to firefly luciferase 

In parallel to the formation of cells constitutively expressing GM replicons, 

replicons that could transiently express in cells were also made.  This used the 

same principle employed as when the transient genotype 2a replicon was made 

(Targett-Adams et al., 2005).  A firefly luciferase gene was placed under control 

of the HCV 5’UTR in place of the neomycin phosphotransferase gene.  Figure 

6.24 shows the strategy that was used to fuse the HCV 5’UTR to the luciferase 

gene.  Two primers, aluc-GT3(2) and sluc-Not1(2), were designed which 

contained regions of homology to each other.  These were used to amplify the 

HCV 5’UTR (PCR 29) and the firefly luciferase gene (PCR 28).  These products 

were used in a self priming PCR to produce a 5’UTR fused to the luciferase gene 

(PCR 30).  The antisense primer in the luciferase PCR contained a PmeI 

restriction enzyme site at the end of the gene to allow cloning adjacent to the 

EMCV IRES.  The final fused product was cloned into pGEM T-Easy and clones 

were analysed for the presence of the fusion product by restriction enzyme 

digest and direct sequencing.  The resultant plasmid was called pGEMluc. 

To place the luciferase gene under control of a T7 promoter, pGEMluc was 

digested with AgeI and PmeI to produce a 1900 base fragment that could be 

cloned in pGEMT7-emcv after digestion with AgeI and PmeI (Figure 6.25).  The 

resultant plasmid, pGEMT7-luc-emcv, was analysed by restriction enzyme digest 

to confirm the presence of the firefly luciferase gene. 
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6.6.2 Removal of an internal ScaI restriction enzyme site in the 

luciferase gene 

In order to synthesise run off transcripts, the previous replicon had incorporated 

a ScaI restriction enzyme site at the 3’ end of the genome.  However it was 

found that the coding sequence of the luciferase gene already contained a ScaI 

restriction enzyme site (Figure 6.26a).  This problem was overcome by changing 

the wobble bases in the glutamic acid codon so that the nucleotide sequence 

was changed but the amino acid sequence remained the same.  Site-directed 

mutagenesis was used to change the G base of the GAG codon to an A.  The 

plasmid produced from this mutagenesis was called pGEMT7-lucΔScaI.  Successful 

mutants were confirmed by restriction enzyme digest (Figure 6.26b) in which, if 

mutagenesis had been successful, the plasmid would be linearised as seen in 

lane 1. 

6.6.3 Assembly of the transient replicon 

The transient replicon was also assembled in pSP64PolyA vector because this 

vector lacks an endogenous T7 promoter.  Initially the luciferase was excised, 

using EcoRI and PmeI, from pGEMT7-lucΔScaI to release a 2083 base fragment.  

This was cloned into pSP64GM-NS3 where the neomycin phosphotransferase gene 

had been removed by digestion with EcoRI and PmeI (Figure 6.27).  The resultant 

plasmid pSP64lucNS3 was 7893 bases in length and presence of the luciferase 

gene was confirmed by restriction enzyme digest. 

The complete sequence of the replicon was assembled by excising the 3’ of the 

genome from pUC18(3’GT3)Mut3-7 with BamHI and SspI.  This produced a 6107 

base fragment, which was cloned into pSP64lucNS3 digested with BamHI and SspI 

(Figure 6.28).  The resultant plasmid, pSP64luc-GM, was 11561 bases in length 

and was analysed by restriction enzyme digestion. 

Replicons were assembled for the GM majority sequence, a GM majority 

sequence with the adaptive mutation (GM*) and a GM majority sequence with a 

null GND mutation.  These 2 variations on the replicon were made by digesting 

pSP64GM* and pSP64GMGND with BamHI and SspI and cloning as previously 

described.   
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6.7 In-vitro transcription of transient replicons and 

electroporation into cells 

Plasmids containing the GM luciferase replicons were linearised with ScaI so that 

synthesis of RNA replicons could be performed using in-vitro transcription.  

Linearised pSP64GM-luc, pSP64GM*-luc and pSP64GMGND-luc plasmids were used  

to produce RNA replicons for GM-luc, GM*-luc and GMGND-luc respectively 

(Figure 6.29).  Linearised plasmid was purified after agarose gel electrophoresis 

and used in in-vitro transcriptions.   

Figure 6.30 shows that none of the GM luciferase replicons were able to 

replicate in any of the 3 HuH-7 cell types.  However the JFH1 positive control 

was able effectively to replicate over the 72 hrs in all 3 cell types.  This was 

compared to the JFH1 GND replicon, which does not actively replicate in any of 

the cells.  This replicon showed an initial luciferase value, which represents 

translation of the input RNA, but because the replicon was replication deficient 

there was no replication and luciferase values decrease over the 72 hrs.  All the 

GM luciferase replicons showed a luciferase values comparable to background 

where there was no initial luciferase activity from the expression of input RNA.  

Their luciferase values obtained varied minimally over the 72 hrs.  These data 

are preliminary data as the complete experiment has only been performed once.  

However an additional luciferase assay had been performed for the above RNAs 

in naïve HuH-7 cells prior to the above experiment and similar results were 

obtained (data not shown). 

6.8 Discussion 

The cloning and sequencing of the HCV genome was reliant on reverse 

transcription of the genome using reverse transcriptase enzymes and 

amplification using polymerase enzymes.  The initial RT step producing the cDNA 

template for future amplification was critical.  A few of RT enzymes were used 

for this process each varying in their ability to produce successful product.  

Some RT enzymes like MMLV and Ominscript RT enzymes have difficulty dealing 

with secondary structure in RNA.  However, it was found that “Superscript II” 

was able to deal more effectively with RNA secondary structures.  Any errors  
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produced by RT enzymes would be carried to the PCR level.  Therefore keeping 

RT enzyme conditions at the required levels was critical.  To minimise the errors 

in PCRs, proof reading enzymes were used.  However, it should be recognised 

that although the frequency of mutation is less than that of non-proofreading 

enzymes, mutation may still occur.  The error rate of Taq was described by 

Clonotech Ltd as 2.75 x 10-5 errors/base pair/cycle.  BD Advantage 2 polymerase 

mix and HF-2 polymerase were described as 3 x and 39 x more accurate than Taq 

respectively.  Pfu polymerase was described as having an error rate of            

1.3 x 10-6 errors/base/cycle.  Invitrogen describes the fidelity of Pfx Platinum 

polymerase as 3.2 x 10-6 errors/base/cycle.  This would place the polymerase 

enzymes in order of highest fidelity as follow: HF-2 polymerase> Pfu> Pfx>BD 

Advantage 2 polymerase mix>Taq. However it should be noted that a 

polymerase’s actual error rate will be specific to the reaction itself as variations 

in reaction conditions can alter the error rate.   

When assembling a majority sequence, polymerase errors were less important 

because errors only become important if the amount of starting material for 

amplification was very low and the mutation occurred in the first cycles of PCR.  

Most polymerase errors would be masked by the overwhelming consensus signal 

obtained during direct sequencing of PCR products.  A majority allows for 

inherent errors caused by polymerase enzymes to occur, without these affecting 

the end consensus sequence.   

The majority sequence is a theoretical sequence, which may not exist within a 

viral population.  All it represented was the most common nucleotide frequency 

at any given position within the genome.  It was shown with the genotype 1b 

replicon system that mutations might be incompatible for replication when 

combined in the same replicon (Lohmann et al., 2003).  Although the replicon 

system is quite different from the “live” virus these studies highlighted an 

interesting point that strong adaptive mutations could be incompatible when 

combined.  It therefore might be possible to have two populations of virus within 

the total viral population, one group with one mutation somewhere in the 

genome and the other with another mutation population in a different part of 

the genome.  However both mutations were incompatible with each other so did 

not occur together.  Therefore if these two groups occurred at similar 

frequencies this would result in the possibility of a majority sequence where the 
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mutations were combined.  It is difficult to assess which is the best method for 

deciding the majority sequence as both sequencing several clones or sequencing 

PCR product may produce non-functional genomes.  However we chose 

sequencing of PCR products as this would be looking at the average of millions of 

sequences rather than just several. The position would more than likely appear 

as a mixed base position in any majority produced.  The hope was that 

deleterious mutations would be lost as they occurred at a low frequency.  

Direct sequencing was reliant on bases being assigned by the “base caller” 

program used to translate electropherogram into raw sequence data.  It was 

possible for a base to be assigned a type, which did not represent the highest 

electropherogram peak at that point.  Analysis of electropherograms was 

necessary to combat this problem.  The multiple alignments themselves 

highlighted these ambiguities, as in each case several sequences were examined 

in both forward and reverse directions.  Most problems with sequencing that 

were encountered were due to too much or too little product or impurities in 

product and could be resolved by having further sequencing performed. 

In some cases, analysis of ambiguities found nucleotide positions, which could 

either, be one nucleotide type or another which could not be resolved by 

additional sequencing.  In these cases, both these bases may have been present 

within the viral population in similar frequencies.  In most cases analysis of 

electropherogram data would show both bases present.  However by using this 

and by analysing the consensus alignment of other genotype 3 sequences, a 

nucleotide could be assigned.   

Amplification of the 3’ end of the genome was initially difficult to achieve.  

Eventually it was possible to amplify to the stop codon by the use of Taq 

polymerase as opposed to a proof reading enzyme.  The reason that the 3’ end 

of the genome was more difficult to amplify than the rest of the genome was 

most likely due to structural elements found there.  Amplification of the 3’UTR 

had also caused problems.  The reason why it was so difficult to amplify the 

3’UTR was most likely due to the secondary structure of the RNA.  The critical 

step was again the reverse transcription.  Several different RT enzymes had been 

tried.  These had included an enzyme, which was thermophilic and could be 

used at increased temperatures, therefore not allowing renaturation of the RNA 
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template.  However the 3’UTR was obtained by use of Dr Preikshat, a previous 

lab member’s PCR samples.  She had worked with isolate GM and successfully 

amplified the region.  Although the same methodology had been used in my 

attempts to amplify the region they had all failed.  This may have been because 

the RNA had degraded while in storage, as samples were several years old.   

I found that successful amplification of the 3’UTR produced by Dr Preikshat was 

dependent on the polymerase used.  Why most proofreading enzymes were 

unable to amplify the region was not known.  Surprisingly Taq polymerase had 

been able to amplify the region. However the inclusion of DMSO was a 

prerequisite for this.  The inclusion of this factor might indicate that the 

sequence has some secondary structure or G/C rich area, which under normal 

conditions causes polymerases to fall off the template.  The most successful 

polymerase used was BD Advantage 2 polyermase mix, which was able to amplify 

most templates to a high yield. 

Another problem with the 3’UTR apart from its secondary structure is that it 

contains a homopolymeric tract of A/T nucleotides approximately 100 

nucleotides in length.  Homopolymeric tracts cause problems as they cause 

slippage of the polymerase as it synthesises the new strand.  This can lead to the 

incorporation of additional bases or alternatively the loss of the polymerase 

from the strand.  This would lead to the failure of the PCR.   

The site directed mutagenesis of cloned sequences to the majority was only 

performed at non-synonymous nucleotides.  This should have resulted in a 

polyprotein, which was functional.  However synonymous bases were not 

considered for mutation.  It might have been better to mutate all bases as 

synonymous mutations may also have an effect on RNA secondary structure and 

cis-acting elements within the genome.  As the importance of most of cis acting 

elements within the genome may not have been identified it is difficult to assess 

the effect of not mutating synonymous bases.  Nevertheless it has been reported 

that some cis acting elements found in NS5B are essential for viral replication.  

Due to the nucleotide sequence being of importance rather than the codon 

sequence differences which occur in nucleotides other than the wobble base 

may be important for replication as well (Friebe et al., 2005).  A non-

synonymous difference between the majority sequence and the replicon was 



Jonathan R Hubb, 2007    261 

found at nulceotide base 9003.  This difference, within the replicon sequence, 

had been overlooked and not converted to the majority sequence.  At this 

position a leucine residue is present however in the replicon a methionine 

residue was assigned.  Whether this difference could prevent replication was not 

known.  However, a change to the majority sequence would be needed to 

determine this.   

Problems that had been encountered when cloning the full-length genome into 

pUC18 had suggested that some of the sequences were toxic to E.coli.  The 

reason for this was unclear but was most likely due to the over expression of 

foreign membrane bound proteins.  Similar occurrences have been found with 

other sequences from isolate GM.  In a separate study, the structural genes of 

GM were found to mutate spontaneously in E.coli (Douglas et al., unpublished).  

Previous experience in the laboratory had led to full-length constructs of any 

HCV genotype to be grown at 30ºC in order to minimise the chance of 

spontaneous mutation within the coding sequences.  However in my study it was 

possible to circumvent this by subcloning into a different vector.  A crucial point 

was to sequence all replicon clones to identify if any spontaneous deleterious 

mutation in E.coli had occurred which may affect expression and replication of 

input RNA.     

The reason why isolate GM replicons failed to grow in cell culture was not 

understood.  However, why genotype 1b, 1a and 2a are able to grow in cell 

culture is also not understood.  It is thought that it may be a combination of 

viral and host cells factors, which contribute to successful replication.  Now that 

the GM replicon has been made it would be interesting to perform more studies 

looking at effect of different passage numbers and different viral adaptive 

mutations.  The ability of the genotype 2a replicon and not the 1b replicon to 

replicate in different cell types might indicate that its sequences are compatible 

for viral replication in a number of different cell types.  Therefore chimera 

replicons between GM and genotype 2a could be made in order to establish a 

functional genotype 3 replicon.  Initial work has been started to create several 

chimeras of GM and JFH1 luciferase replicons however these were not finished.  

The fact that there are currently replicons for only two of the genotypes 

highlights the difficulties associated with replication of replicons in cell culture.  

In fact, personal communication with Volker Lohmann revealed that this is not 
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just a problem that I encountered in my study but has also been found in his 

laboratory.  Neither cells expressing the constitutive GM nor the transient GM 

replicon were able to replicate.  The inclusion of the adaptive mutation in NS5A 

had no effect on successful replication.  A single mutation may not be sufficient 

to support replication or may not be relevant in the context of genotype 3.  

Also, merely curing a cell line does not necessarily provide a more permissive 

environment for GM replicon replication.  The permissiveness of the cells may 

change over passage history therefore testing cells at different passage number 

would also be of interest.   

The failure of the transient replicon to give any signal might indicate that the 

initial expression of luciferase prior to replication at the 4 hrs period did not 

occur.  This might indicate that translation from the HCV 5’UTR was not 

sufficient to be measured.  It may be that the isolate GM has a sequence that is 

incompatible for replication in these HuH-7 cells.  Therefore mutation on GM 

isolate would be required to establish a replicon expressing cell line.   
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Chapter seven 

7                           Final Discussion 

7.1 Different cell responses to the fatty acid synthase 

inhibitor, cerulenin 

The aim of our study was to find out whether there was an association between 

inhibition of fatty acid biosynthesis and levels of hepatitis C virus RNA.  A 

microarray study by Su et al. (2000) had shown that some genes concerned with 

lipid metabolism were positively or negatively regulated in response to increase 

viremia and that HCV RNA levels fell on treatment with inhibitors of fatty acid 

biosynthesis.   

Two separate approaches were used to reduce fatty acid biosynthesis in our 

study.  These targetted enzymes within the pathway and the global transcription 

factor that controls lipogenic gene expression.  Directly targeting fatty acid 

synthase (FAS) with the drug cerulenin reduced HCV RNA levels but inhibition of 

fatty acid biosynthesis could not be achieved in the initial genotype 1b 

expressing HuH-7 cell line.  The reason for this was unclear but differences in 

clonal cell behaviour are not unrecognised.  Both HCV genotype 1b and 1a 

replicons were successfully established in clonal cell lines which were highly 

permissive for HCV replication (Blight et al., 2003; Lohmann et al., 1999).  As 

described by Lohmann et al. (2003), a progressive increase in permissiveness for 

HCV replication in naïve HuH-7 cells was found between passages 15 and 128.  

This suggested that the internal environment of cells was continually changing 

and at passage 128 the conditions were optimal for replication of the replicon.  

Blight et al. (2003) selected a HuH-7 cell line, which had increased 

permissiveness for replication.  This was then “cured” by interferon treatment 

to produce the HuH-7.5 cell line.  The ability of one clone to differ from others 

supports the idea that HuH-7 cells are extremely heterogeneous and are 
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continually changing.  Two highly permissive HuH-7 cell lines from different 

laboratories, HuH-7.5 and HuH-7 lunet cells, were described as supporting 

similar levels of replicon replication.  However, recent studies found Huh-7 lunet 

cells to be less permissive for JFH1 infection due to low expression of the CD81 

cell surface molecule.  Ectopic expression of CD81 on HuH-7 lunet cells 

increased their permissiveness to levels comparable to that of HuH-7.5 cells 

(Koutsoudakis et al., 2006).  A highly permissive cell line derived from HuH-7.5 

cells contained a defective RIG-I protein which was thought to increase their 

permissiveness to JFH1 viral infection (Zhong et al., 2005).   

In our study we initially found that a HuH-7 genotype 1b expressing cell line, FAS 

was resistant to the effects of cerulenin.  Interestingly, HCV RNA levels were 

reduced in these cells.  However, whether this was due to toxic effects of 

cerulenin, which reduced cell viability, or non-specific effects of the drug where 

cell viability was not affected and neither was FAS, was unclear.  Nevertheless, 

FAS activity in these HuH-7 cells behaved differently in their response to 

cerulenin compared to HuH-7 cells obtained from the University of Lille.  Further 

work would be necessary to identify the reason for this.  Had we not directly 

looked at fatty acid biosynthesis, reductions in HCV RNA levels might have been 

attributed to actions of the drug on fatty acid biosynthesis.  Treatment of 

replicon harbouring HuH-7 cells derived from HuH-7 cells obtained from the 

University of Lille resulted in a reduction in HCV RNA levels when fatty acid 

biosynthesis was inhibited (Figure 4.5).  Our study highlights the inherent 

problems of comparing data from different laboratories using cell lines with 

different passage histories. 

7.2 Mechanisms by which PUFAs mediate inhibition of HCV 

replication 

The effect of PUFAs on HCV replication was reduction in HCV RNA levels.  HuH-7 

cells expressing both transient and constitutive replicons responded similarly to 

PUFA treatment, although the effect was greater using the transient system.  

Similar inhibitory effects of PUFAs on HCV replication had previously been 

reported by Kapadia et al. (2005).  Differences between studies might be 

accounted for by the different cell lines used and different drugs suppliers.  The 

trend of PUFAs inhibiting and OLA increasing replication was consistent between 
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our study and other studies in the literature.  It was difficult to correlate the 

effect on fatty acid biosynthesis with the effect on HCV replication.  Although a 

reduction in fatty acid biosynthesis was accompanied by a reduction in HCV RNA 

levels, it was difficult to show that they correlated.  In order to ascertain if the 

two are related additional concentrations of PUFA should be tested to allow a 

more accurate dose response curve to be produced.  Recent data from Kapadia 

et al. (2005) might indicate that PUFA-mediated reduction of HCV RNA levels is 

not correlated with inhibition of fatty acid biosynthesis.  They indicated that 

PUFA inhibition of HCV replication was accompanied by a reduction in SREBP-1c 

and FAS RNA levels.  However, fatty acid biosynthesis could be rescued with an 

LXR agonist, which restored SREBP-1c and FAS RNA levels without an effect on 

HCV RNA levels.  Although this study showed that SREBP-1c and FAS mRNA levels 

were induced, any increase in fatty acid production was not investigated.  The 

increase in FAS mRNA would indicate that treatment with the LXR agonist 

resulted in a SREBP-1c induction of lipogenic gene expression.  Certainly, SREBP-

1c mRNA levels, in rat adipose tissue, do not correlate with changes in lipogenic 

gene expression (Bertile et al., 2004).  Therefore, without measuring fatty acid 

biosynthesis the value of these data is unclear, as they provide no insight into 

the effect on intracellular fatty acid production.    

Another proposed mechanism for PUFA-mediated inhibition of HCV replication 

was disruption of replication complex formation by altering the lipid composition 

of the ER membrane.  Some indirect evidence of this is shown in the following 

studies.  Chimeric mice with humanised livers were successfully infected with 

HCV genotypes 1a and 1b.  It was then found that treatment of the mice with 

myriocin, an inhibitor of serine palmitoyl-transferase, caused a reduction in HCV 

replication.  Myriocin treatment disrupts biosynthesis of sphingolipids.  

Sphingomyelin is a major component of lipid raft (see below) assembly and 

therefore indirectly affects lipid raft formation (Takuyaet al., 2006).  Membrane 

flotation assays had co-fractionated HCV RNA with the lipid raft protein, 

caveolin 2, in detergent resistant membrane fractions (Shi et al., 2003).  By 

sequestering cholesterol from these fractions, HCV NS5A protein no longer co-

fractionated with detergent-resistant membranes.  This indicated that these 

regions were cholesterol rich regions required for raft integrity.  Indeed, 

cholesterol biosynthesis was found to be important for HCV replication and 
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further studies showed that geranylgeranoil, a pre-cholesterol metabolite, was 

essential for HCV replication (Wang et al., 2005).   

The role of PUFAs in disruption of lipid rafts is well established.  Lipid rafts are 

detergent resistant areas of the membrane enriched with cholesterol and 

saturated and monounsaturated fatty acids.  These act as a stable platform for 

the recruitment of cellular signalling proteins (Pitman et al., 2004).  The 

presence of the more hydrophilic PUFAs disrupts these stable detergent resistant 

areas of the membrane by excluding hydrophobic cholesterol.  This leads to the 

displacement of membrane bound proteins and can alter intracellular signalling 

(Stulnig et al., 2001).   

It has been suggested that the prenylation of a host protein, FBL2, is essential 

for HCV replication (Wang et al., 2005).  Lovastatin treatment of replicon 

expressing HuH-7 cells reduced the punctate staining of NS5A on the ER 

membrane (Ye et al., 2003).  If PUFAs had been disrupting replication complex 

formation and its association with detergent resistant areas of the membrane, a 

similar effect might have been expected.  However, my initial 

immunofluorescence studies had indicated that, although there was reduced 

expression of NS5A protein, punctate foci of NS5A were maintained.  To study 

the effect of PUFA treatment on known lipid raft proteins may be useful when 

interpreting immunofluorescence and fluorescence recovery after 

photobleaching.  

Nevertheless PUFA treatment reduces HCV RNA levels in replicon expressing 

cells.  Health benefits from dietary PUFAs have been shown in which mortality in 

men who had had a myocardial infarction was reduced by 29 % if they ate two 

oily fish meals a week.  Furthermore, omega 3 PUFAs can inhibit breast cancer 

growth but this is dependent on the background proportions of omega 6 PUFAs.  

PUFAs have been indicated as important beneficial constituents of the diet in 

other diseases such as rheumatoid arthritis, asthma, alcoholism and many others 

(Stillwell et al., 2003).  It would be interesting to investigate if a reduction of 

viral RNA or an improvement in liver disease could be achieved by PUFA 

treatment of HCV-infected patients in combination with interferon therapy.  

Previous studies in transgenic mice had indicated that fibrosing steatohepatitis, 

which could result in more advanced liver disease, could be avoided by induction 
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of PPAR-α pathways reducing oxidative stress (Ip et al., 2003).  PUFAs act as 

activating ligands for PPAR-α and could therefore reduce liver disease by a 

mechanism separate from reducing viral replication.   

7.3 Variability between experiments 

One of my main concerns was that in some cases there was marked variability 

between experiments reflected by increased standard deviations.  This may have 

occurred due to instabilities with the compounds used.  As described by the 

manufacturer, PUFAs readily oxidise in solution.  It may be necessary to include 

anti-oxidants in the experiments to try to minimise this.  However, this would 

introduce another variable.  When PUFA results were compared to previous 

studies, variability was noted in these experiments too.  In some cases there was 

up to 50 % variation between experiments in normalised values of HCV RNA 

levels (Kapadia et al., 2005).  This may suggest that this is an inherent problem 

with these compounds.  Variability between experiments was also found with 

cerulenin and TOFA treatment of cells (Kapadia et al., 2005; Su et al., 2002).  In 

our studies, the main variation in experiments was in Northern blot analysis and 

in cell viability measurements.  Northerns were most likely to be affected due to 

incomplete removal of probe, which had bound non-specifically to membrane, 

incomplete binding of probe to target sequence or poor transfer of RNA to 

membrane.  In most cases, because ribosomal bands were visualised integrity of 

RNA could be confirmed prior to Northern blotting.   Quantitative real time PCR 

might also be used to assess HCV RNA levels.  This would also allow more 

accurate estimation of RNA levels. 

7.4 Assembling a genotype three replicon 

The aim was to assemble a functioning replicon, which could be used to 

investigate the development of steatosis by HCV genotype 3.  I was unable to 

create successful genotype 3 replicon expressing HuH-7 cell lines.  However, the 

inherent difficulties with establishing the genotype 1b and 1a replicons in the 

HuH-7 cell line have been described (Blight et al., 2003; Lohmann et al., 1999).  

Both replicon adaptation and permissive cells lines were required.  Why 

replicons are able to replicate successfully in some cell lines and not others is 

not understood.  Furthermore, why the JFH1 genotype 2a replicon was more 
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successful at replicating is not known (Takanobu et al., 2003).  The genotype 2a 

sequence, JFH1 was isolated from a patient with fulminant hepatitis.  Fulminant 

hepatitis in HCV is rare so this might indicate the special nature of JFH1 

(Takanobu et al., 2001).  However, unpublished data by Wakita et al., (2006) 

presented at the 13th International Meeting of Hepatitis C Virus and Related 

Viruses suggested that the ability to replicate successfully in cell culture systems 

was specific to this genotype 2a isolate and not a feature of all isolates derived 

from patients with fulminant hepatitis.  A genotype 1b sequence obtained from a 

patient with fulminant hepatitis was unable to replicate successfully and 

produce colonies.  The fact that our genotype 3 replicon was unsuccessful was 

not surprising.  Without knowing why replication is successful in replicons 

derived from some isolates and not others, creation of a replicon expressing cell 

line becomes difficult.  Had there been more time, construction of chimera 

replicons between genotype 3 and genotype 2a could have been investigated for 

their replicative ability.    

7.5 Future experiments 

Experiments treating replicon-expressing cell lines had failed to show a direct 

association between the inhibitory effect of cerulenin on FAS and the inhibitory 

effect of cerulenin on HCV replicon RNA levels.  In fact, non-specific effects of 

cerulenin may have accounted for the inhibition of HCV RNA levels independent 

of the effects on FAS.  It may be useful to ascertain if cerulenin-treated cells 

could be rescued by supplying with the end product of the pathway, palmitic 

acid.  If FAS inhibition was due to a cerulenin blockade of fatty acid biosynthesis 

a possible explanation may be that cerulenin treatment of cells is able to alter 

ER membrane function.  In the bacteria Staphylococcus Aureus, exoprotein 

secretion can be blocked by cerulenin treatment resulting in interference of 

membrane function by fatty acid biosynthesis blockade (Adhikari et al., 2005).  

Indeed, a toxic effect of the related FAS inhibitor, C75, has been attributed to 

reduction in phospholipid production and membrane synthesis (Zhou et al., 

2003).  Stopping fatty acid biosynthesis may alter cellular signalling by altering 

ER membrane function and thereby alter HCV replication.   

HCV NS4B protein has recently been described as being palmitoylated (Yu et al., 

2006).  The palmitoylation of proteins is important for interactions with 
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membranes and can anchor proteins to the membrane.  It would be interesting 

to ascertain whether cerulenin could prevent NS4B from being palmitoylated and 

whether this has consequences in HCV replication since NS4B may act as a 

platform for replication complex assembly. 

Cerulenin inhibition of HCV replicon and fatty acid biosynthesis was 

accompanied by loss in cell viability, which might partly be explained by the 

inhibitory effects on fatty acid biosynthesis.  However, PUFAs were more 

effective at both inhibition of fatty acid biosynthesis and HCV replication.  

Further experiments are necessary in order to determine whether the inhibitory 

effect of PUFAs on HCV replication was as a consequence of their inhibitory 

effect on fatty acid biosynthesis.  Our hypothesis had been that PUFAs were 

affecting membrane fluidity and replication complex formation by destabilising 

lipid raft structures.  Initial IF and FRAP experiments had failed to determine 

whether this was the case.  IF had indicated a general down-regulation of HCV 

expression but membrane associated foci (generated by NS4B) were still present 

and FRAP had not shown an increase in membrane fluidity.  However, as 

discussed below, the ratio of saturated to unsaturated fatty acids within virally 

modified ER membrane is sufficient to disrupt viral replication.  Therefore, it 

might be interesting to investigate inhibitors and inducers of the desaturase 

enzymes to determine the effect they have on viral replication.  Additionally live 

cell analysis of GFP tagged NS4B, NS5A and known ER raft proteins may give 

more insight into the effect of PUFAs. 

The reason for making a genotype 3 replicon was to investigate whether viral 

induced steatosis occurred.  Although assembly of the genotype 3 replicon failed 

to produce a functional replicon, producing chimeric genotypes 3 and 2a 

replicons could be investigated.  If a chimeric replicon was successful, this could 

add to our understanding of sequence requirements for replication in cell 

culture.   

7.6 Lipid metabolism and other viruses 

Lipid metabolism has been implicated in the life cycles of other viruses such as 

Epstein-Barr virus (EBV), human immunodeficiency virus (HIV), polio virus, 

vesicular stomatitis virus (VSV), and brome mosaic viruses (BMV).   
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EBV is a gammaherpesvirus, which can infect cells in either a lytic or latent 

fashion.  Recently, it was found that EBV induces FAS expression in order to 

produce a lytic infection.  Furthermore, ceruleinin and C75 prevented activation 

of lytic proteins attenuating the viral lifecycle (Li et al., 2004).   

HIV, retrovirus, has been proposed to use lipid rafts not only in viral entry but 

also in the assembly and budding of the virus from the cell.  Recently, a study 

found that functional HIV Nef protein could up-regulate cholesterol biosynthesis 

genes and the production of cholesterol.  The up-regulation of cholesterol 

pathways had important consequences for the assembly of lipid rafts. This 

indicated that induction of cholesterol pathways may play a role in Nef mediated 

increased viral replication and virion infectivity (van 't Wout et al., 2005).  

The importance of lipid metabolism was shown in a study with poliovirus, a 

positive sense single stranded RNA virus.  Cerulenin inhibition of lipid 

metabolism caused a decrease in phospholipid production and membrane 

proliferation and inhibited poliovirus growth in HeLa cells.  In normal infection, 

poliovirus induces phospholipid production and membrane biogenesis allowing 

the formation cytoplasmic vesicles.  Cerulenin was able to decrease the cellular 

pool of fatty acids that could be used for phospoholipid production and thereby 

inhibited viral replication (Carrasco L, 1990).  Cerulenin mediated inhibition of 

RNA synthesis was also found with a negative sense ss RNA virus, VSV (Carrasco 

L, 1991).   

BMV is a positive sense stranded RNA virus.  It is a member of the alpha-like 

superfamily of human, animal and plant infecting viruses.  Using traditional 

genetic methods, it was possible to identify host genes required for its life cycle 

in the yeast Saccharomyces cerevisiae.  The OLE1 yeast deletion mutant contains 

a mutation in the chromosomal yeast Δ9 fatty acid desaturase gene.  This gene is 

responsible for the synthesis of unsaturated fatty acids.  BMV was unable to 

replicate efficiently in OLE1 and RNA replication was dependent on unsaturated 

fatty acids in the ER membrane.  Membrane composition affecting fluidity was 

important for early stage viral replication (Lee et al., 2001).  In addition, in 

wild-type yeast, BMV up-regulated membrane lipid synthesis inducing ER luminal 

spheres, which were the sites of viral replication.  In BMV infected yeast OLE1 

mutants, luminal spheres were depleted of unsaturated fatty acids affecting the 
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ratio of saturated to unsaturated fatty acids.  This in itself was sufficient to 

disrupt viral replication (Lee et al., 2001). 

Membrane alteration induced by RNA viruses is well reported and the formation 

of stable ER membrane modification seems crucial to viral infection.  As 

mentioned, in some cases it is possible to disrupt viral replication by targeting 

the cellular pathways that lead to the formation of lipids.  The morphology of 

membrane modification varies between viruses.  HCV induces the formation of a 

membranous web, consisting of small tightly associated vesicles embedded in a 

membranous matrix (Egger et al., 2002).  Other flaviviruses, for instance Kunjin 

virus, have been described as producing convoluted membranes or small vesicle 

structures.  Coronaviruses produce large double membrane vesicles, which are 

the site of active viral replication.  Picornaviruses induce vast vesicular 

structures and the disintegration of internal structures causing the formation of 

vesicles between 70 – 500 nm in size.  Between these RNA virus families the 

requirement for wrapping their replication complexes in membrane is a common 

feature.  The reason why is unclear.  It may be that these membrane 

modifications produce a stable environment for replication or alternatively 

concentrate viral proteins to increase efficiency.  It also makes replication 

complexes less accessible to host cellular immune response proteins.  Targeting 

cellular pathways, which are necessary for the production of membrane lipids 

has proved an efficient method of inhibiting viral growth and replication.  With 

this knowledge the possibility that PUFAs, which are safe dietary supplements, 

have an inhibitory role, not just on HCV but possibly also on other viruses makes 

these fatty acids of important interest for research. 
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8                             Appendix 

8.1 GM isolate sequence (appendix 1) 

ACCTGCCTCTTACGAGGCGACACTCCACCATGGATCACTCCCCTGTGAGG 
AACTTCTGTCTTCACGCGGAAAGCGCCTAGCCATGGCGTTAGTACGAGTG 
TCGTGCAGCCTCCAGGACCCCCCCTCCCGGGAGAGCCATAGTGGTCTGCG 
GAACCGGTGAGTACACCGGAATCGCTGGGGTGACCGGGTCCTTTCTTGGA 
GCAACCCGCTCAATACCCAGAAATTTGGGCGTGCCCCCGCGAGATCACTA 
GCCGAGTAGTGTTGGGTCGCGAAAGGCCTTGTGGTACTGCCTGATAGGGT 
GCTTGCGAGTGCCCCGGGAGGTCTCGTAGACCGTGCACCATGAGCACACT 
TCCTAAACCTCAAAGAAAAACCAAAAGAAACACCATCCGTCGCCCACAGG 
ACGTCAAGTTCCCGGGTGGCGGACAGATCGTTGGTGGAGTATACGTGTTG 
CCGCGCAGGGGCCCACGATTGGGTGTGCGCGCGACGCGTAAAACTTCTGA 
ACGGTCACAGCCTCGCGGACGGCGACAGCCTATCCCCAAGGCACGTCGGA 
GCGAAGGTCGGTCCTGGGCTCAGCCCGGGTACCCTTGGCCCCTCTATGGT 
AACGAGGGCTGTGGGTGGGCAGGATGGCTCCTGTCCCCGCGAGGCTCCCG 
TCCATCTTGGGGCCCAAATGACCCCCGGCGGAGGTCCCGCAACTTGGGTA 
AAGTCATCGATACCCTCACGTGCGGATTCGCCGACCTCATGGGGTACATC 
CCGCTCGTCGGCGCTCCCGTAGGAGGCGTCGCAAGAGCCCTCGCGCACGG 
CGTGAGGGCCCTTGAAGACGGGATAAACTTTGCAACAGGGAACTTGCCCG 
GTTGCTCCTTTTCTGTCTTCCTTCTTGCTCTGTTCTCTTGCTTGATTCAT 
CCAGCTGCTAGTCTAGAATGGCGGAATACGTCTGACCTCTACATCCTTAC 
CAACGACTGTTCCAACAGCAGTATTGTGTATGAGGCCGATAACGTTATTC 
TGCACACACCCGGCTGTATACCTTGTGTTCAGGAAGGCAATACATCCACG 
TGCTGGACCCCAGTGACACCTACAGTGGCAGTCAAGTATGTCGGAGCGAC 
CACCGCTTCGATACGTAGTCATGTGGACCTGCTAGTGGGCGCGGCCACGA 
TGTGTTCTGCGCTCTACGTGGGTGATATGTGCGGGGCTGTCTTCCTCGTG 
GGACAAGCCTTCACGTTCAGACCTCGTCGCCATCAAACGGTCCAGACCTG 
CAACTGCTCGCTGTACCCAGGCCATCTTACGGGACATCGAATGGCTTGGG 
ACATGATGATGAATTGGTCCCCCGCTGTGGGCATGGTGGTAGCGCACGTC 
CTGCGTCTGCCCCAGACCTTGTTCGACATAATAGCCGGAGCCCATTGGGG 
CATCTTGGCGGGCCTAGCCTACTACTCCATGCAGGGCAACTGGGCCAAGG 
TCACTATCATCATGATTATGTTTTCGGGGGTCGATGCCAATACGTATACC 
TCCGGTGGCAGTGTAGCTCGTAGTACCTACGGGCTAACTAGTCTTTTTAG 
TCCGGGTGCCAAACAGAACCTGCAGCTGGTCAACACCAATGGCTCGTGGC 
ATATCAACAGGACTGCCCTGAATTGCAATGATTCCTTACAAACGGGATTC 
ATAGCTGGGTTGTTTCATTACAATAAGTTCAACTCTACTGGATGTCCTCA 
AAGGCTCAGCAGCTGCAAGCCCATCACTTCCTTCAGGCAGGGGTGGGGCT 
CCTTGACAGATGCCAACATCACCGGTTCCTCTGAGGATAAACCGTACTGC 
TGGCACTACGCACCTAGAGTTTGTGAGACTTACCCAGCAGCAAATGTCTG 
CGGCCCCGTGTACTGCTTTACACCATCGCCAGTGGTTGTAGGCACTACTG 
ACGTTAAGGGCGCCCCAACCTACACCTGGGGTGCGAATGAGACAGACGTG 
TTCTTGCTGGAGTCACTACGGCCTCCCGGTGGTCGGTGGTTCGGGTGCAC 
GTGGATGAACTCCACAGGGTTTGTCAAGACGTGCGGAGCCCCCCCTTGTG 
ATATCTATGGGGGCGGGGGGAATCGCAGCAGAGGAGAAGACCTCTTTTGC 
CCCACCGACTGCTTTAGGAAACATCCTGAGGCCACATACAGCCGGTGTGG 
TGCAGGGCCCTGGCTGACACCTCGATGCTTGGTCGACTACCCATATCGGC 
TTTGGCATTACCCATGTACAGTCAATTTTACATTGTTCAAGGTGAGGATG 
TTTGTGGGCGGGTTTGAGCACCGGTTCACCGCCGCTTGCAACTGGACCAG 
GGGGGAGCGCTGCGATATCGAGGATCGTGACCGTAGCGAGCTACATCCGC 
TGCTGCATTCAACAACTGAGCTTGCTATACTGCCTTGCTCCTTCACGCCC 
ATGCCTGCATTGTCAACAGGTCTAATACACCTCCACCAGAATATCGTAGA 
TGTCCAATACCTTTATGGTGTTGGATCTGGCATGGTGGGATGGGCGCTGA 
AATGGGAGTTTGTTGTCCTCGTGTTCCTCCTCCTTGCAGACGCACGCGTG 
TGCGTTGCCCTTTGGCTGATGCTGATGATATCACAAGCAGAAGCAGCCTT 
GGAGAACCTCGTCACGCTAAACGCCGTCGCAGCTGCCGGGACGCATGGTA 
TTGGCTGGTACTTGGTAGCCTTTTGCGCTGCGTGGCACGTGCGGGGTAAA 
CTTGTCCCGCTGGTGACCTACAGCCTGACGGGTCTCTGGTCCCTAGCATT 
GCTCGTCCTCTTGCTCCCTCAACGGGCGTATGCTTGGTCGGGTGAAGACA 
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GTGCTACTCTCGGCGCTGGGATTTTGGCCCTCTTCGGCTTCTTTACCTTA 
TCACCTTGGTATAAGCATTGGATTAGCCGCCTCATGTGGTGGAACCAGTA 
CACCATATGTAGATGTGAGGCCGCCCTCCAAGTGTGGGTCCCCCCCTTAC 
TTGTACGAGGGAGTAGGGACGGTGTCATCCTACTAGCAAGCCTGCTTCAT 
CCATCTTTAATCTTTGACATCACTAAGCTGCTGATAGCAGTATTGGGCCC 
GTTATACTTAATACAGGCTGCCATCACTACCACCCCCTACTTTGTGCGCG 
CGCATGTACTGGTCCGCCTTTGCATGTTCGTGCGCTCTGTGATGGGGGGA 
AAATACTTTCAGATGATCATACTGAGCATTGGCAGATGGTTTAACACCTA 
CCTATACGACCACCTAGCGCCAATGCAACATTGGGCCGCAGCCGGCCTCA 
AAGACCTAGCAGTGGCCACTGAACCTGTAATATTTAGTCCCATGGAAATC 
AAGGTCATCACCTGGGGCGCAGACACAGCGGCTTGCGGAGATATTCTTTG 
CGGGCTGCCCGTTTCTGCGCGATTGGGCCGTGAGGTGTTGTTGGGACCTG 
CTGATGACTATCGGGAGATGGGTTGGCGTCTGTTGGCTCCGATCACAGCA 
TACGCCCAGCAAACTAGGGGCCTTCTTGGGACTATTGTGACTAGCTTGAC 
TGGCAGGGATAAAAACGTGGTGACCGGTGAAGTGCAGGTGCTTTCCACGG 
CTACCCAGACCTTCCTAGGTACAACAATAGGAGGGGTTATGTGGACTGTC 
TACCATGGTGCAGGCTCAAGGACACTTGCGGGCGCTAAACATCCAGCGCT 
CCAAATGTACACAAATGTAGATCAGGACCTCGTCGGGTGGCCAGCTCCTC 
CAGGGACTAAGTCTCTTGAACCGTGCGCCTGCGGGTCTGCAGACTTATAC 
TTGGTTACCCGCGATGCTGATGTCATCCCTGCTAGGCGCAGGGGGGACTC 
CACAGCGAGCTTGCTCAGTCCTAGGCCTCTCGCCTGTCTCAAGGGTTCCT 
CTGGAGGTCCTGTTATGTGCCCTTCGGGGCATGTTGCAGGGATCTTCAGG 
GCTGCTGTGTGCACCAGGGGTGTAGCAAAAGCCCTACAGTTCATACCAGT 
GGAAACCCTTAGCACACAGGCTAGGTCTCCATCTTTTTCTGACAATTCAA 
CTCCTCCTGCCGTCCCACAGAGCTACCAAGTAGGGTACCTTCATGCCCCG 
ACCGGCAGTGGTAAGAGCACAAAGGTTCCGGCTGCTTATGTAGCGCAAGG 
ATATAATGTTCTTGTGTTGAATCCATCGGTGGCGGCCACACTAGGCTTCG 
GCACCTTCATGTCGCGTGCCTATGGAATTGATCCCAACATCCGCACTGGG 
AACCGCACCGTTACAACTGGTGCTAAACTGACCTATTCCACCTACGGTAA 
GTTTCTTGCGGACGGGGGTTGTTCCGGGGGAGCATATGATGTGATTATCT 
GTGATGAATGTCATGCCCAAGACGCTACTAGCATATTGGGCATAGGCACG 
GTCTTAGATCAAGCTGAGACGGCTGGGGTGAGGCTGACGGTTTTGGCGAC 
AGCAACTCCCCCAGGCAGCATCACTGTGCCACACTCTAACATCGAAGAAG 
TGGCCTTGGGCTCTGACGGCGAGATCCCTTTCTACGGCAAGGCTATACCG 
TTAGCCCAGCTTAAGGGGGGGAGACACCTTATCTTTTGCCATTCCAAGAA 
GAAATGTGATGAGATGGCATCCAAACTCAGAGGTATGGGGCTTAACGCTG 
TAGCGTACTATAGGGGTCTTGATGTGTCCGTCATACCAACAGCAGGAGAC 
GTCGTAGTTTGCGCTACTGACGCCCTCATGACTGGATTCACCGGAGACTT 
CGATTCTGTCATAGACTGCAACGTGGCTGTTGAACAGTACGTTGACTTCA 
GCCTGGACCCTACCTTTTCCATTGAGACCCGCACTGCTCCCCAAGACGCG 
GTTTCTCGCAGCCAACGTCGTGGCCGTACGGGCCGAGGTAGACTCGGTAC 
GTATCGGTACGTCACCCCGGGTGAGAGACCATCTGGAATGTTCGACTCGG 
TCGTCcTCTGTGAGTGCTATGACGCGGGCTGCTCGTGGTACGATCTGCAG 
CCCGCTGAGACCACAGTTAGACTGAGAGCTTACTTGTCCACACCGGGGTT 
ACCCGTCTGCCAAGACCATTTAGACTTTTGGGAGAGTGTTTTTACTGGAC 
TGACTCACATAGATGCCCACTTTCTGTCACAGACCAAGCAGCAGGGACTC 
AATTTCTCGTACCTAACTGCCTACCAAGCCACTGTATGCGCTCGCGCGCA 
GGCTCCTCCCCCAAGTTGGGACGAGATGTGGAAATGTCTCGTGCGGCTCA 
AGCCAACACTACATGGACCTACACCCCTTCTATATCGGTTGGGGCCTGTC 
CAAAATGAAATCTGCTCGACACACCCGGTCACAAAATACATCATGGCATG 
CATGTCAGCTGATCTGGAAGTAACCACCAGCACCTGGGTGTTGCTTGGAG 
GGGTCCTCGCGGCCCTAGCGGCCTACTGCTTGTCAGTCGGCTGCGTTGTG 
ATTGTGGGTCATATCGAGCTGGGGGGCAAGCCAGCACTTGTACCAGACAA 
AGAGGTGTTGTATCAACAATACGATGAGATGGAGGAGTGCTCACAAGCCG 
CCCCATACATCGAACAAGCTCAGGTAATAGCCCACCAGTTCAAGGAGAAA 
GTTCTTGGGTTGTTGCAGCGGGCCACCCAACAACAAGCTGTCATTGAGCC 
CATAGCTACCAACTGGCAAAAGCTTGAGGTCTTCTGGCATAAGCATATGT 
GGAATTTTGTGAGTGGGATCCAGTACCTAGCAGGCCTTTCCACCTTGCCT 
GGCAACCCTGCTGTGGCGTCTCTTATGGCGTTCACTGCTTCAGTCACCAG 
TCCCCTGACGACCAACCAAACTATGTTTTTCAACATACTCGGGGGGTGGG 
TTGCTACCCATTTGGCAGGGCCCCAGAGCTCTTCCGCATTCGTGGTAAGC 
GGTTTGGCCGGCGCTGCCATAGGGGGTATAGGCCTGGGTAGGGTCTTACT 
TGACATCCTGGCAGGATACGGAGCTGGCGTCTCAGGCGCCTTGGTGGCTT 
TTAAGATCATGGGAGGAGAACTCCCCACTGGTGAGGACGTGGTCAACCTG 
TTACCCGCCATATTATCTCCAGGCGCCCTCGTCGTCGGTGTGATATGCGC 
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TGCCATACTACGTCGACACGTAGGACCTGGAGAGGGGGCGGTGCAGTGGA 
TGAACAGGCTCATCGCATTCGCATCCCGGGGTAACCACGTCTCACCAGCG 
CACTATGTCCCCGAGAGCGATGCTGCAGCGAAAGTCACTGCATTGCTGAG 
TTCTCTAACTGTCACAAGCCTGCTCCGGCGGCTGATCAATGAAGACTACC 
CAAGTCCTTGCAGCGGTGACTGGTTGCGTACCATCTGGGAaTGGGTTTGC 
ACTGCGTTGTCTGACTTCAAGACATGGCTCTCTGCTAAGATCATGCCAGC 
GCTCCCCGGGCTGCCCTTCATTTCCTGTCAAAAGGGATACAAGGGCGTGT 
GGCGGGGGGACGGTGTGATGTCGACGCGCTGTCCTTGCGGGGCATCAATA 
ACCGGCCATGTGAAGAATGGGTCCATGCGGCTTGCAGGGCCGCGTACATG 
TGCTAACATGTGGTACGGTACATTCCCCATCAATGAGTACACCACTGGAC 
CCAGTACACCTTGCCCACCACCCAACTACACTCGCGCACTGTGGCGCGTG 
GCTGCCAACAGCTACGTTGAGGTGCGCCGGGTGGGGGACTTCCACTACAT 
TACGGGGGCCACAGAAGATGAGCTCAAGTGTCCGTGCCAAGTGCCGGCTG 
CTGAGTTCTTTACTGAAGTGGACGGGGTGAGGCTTCACCGTTACGCCCCT 
CCATGCAAGCCCCTGTTGAGAGATGAAATCACTTTCATGGTAGGGTTGAA 
TTCCTACGCGATAGGATCTCAACTCCCCTGTGAGCCCGAACCGGATGTTT 
CCGTGCTGACCTCGATGTTGAGGGACCCTTCCCATATCACCGCCGAGACG 
GCAGCGCGCCGCCTTGCGCGCGGGTCCCCTCCATCAGAAGCTAGCTCATC 
CGCCAGTCAACTATCGGCTCCGTCGCTGAAGGCCACTTGCCAGACGCATA 
GGCCTCATCCAGACGCTGAGCTAGTGGACGCCAACTTGCTATGGCGGCAA 
GAGATGGGCAGCAACATTACACGGGTGGAGTCTGAAACAAAGGTTGTGAT 
TCTTGATTCATTCGAGCCTCTGAGAGCCGAAACTGACGACGCCGAGCTCT 
CGGTGGCTGCGGAGTGTTTCAAGAAACCTCCCAAGTATCCTCCAGCCCTT 
CCCATCTGGGCTAGGCCAGACTACAATCCTCCACTGTTGGACCGCTGGAA 
AGCACCGGATTATATACCACCAACTGTCCATGGATGCGCCTTACCACCGC 
GGGACGCTCCACCGGTGCCTCCCCCTCGGAGGAAAAGAACAATTCAGCTG 
GATGGCTCCAATGTGTCCGCGGCGCTAGCTGCGTTGGCGGAAAAGTCATT 
CCCGCCTCCGAAACCGCAGGAAGAAAATAGCTCATCCTCAGGGGTCGACA 
CACAGTCCAGCACTACTTCCAAGGTGCCCCCTTCTCAGGGAGAGGAGTCC 
GACTCAGAGTCATGCTCGTCCATGCCTCCTCTCGAGGGAGAACCGGGCGA 
TCCGGACTTGAGTTGCGACTCTTGGTCCACTGTTAGTGACAGCGAGGAGC 
AGAGCGTAGTCTGCTGCTCTATGTCGTACTCTTGGACCGGCGCCCTGATA 
ACACCATGTAGCGCTGAGGAGGAGAAACTTCCCATCAGCCCACTCAGCAA 
CTCTTTGTTGAGACACCATAACCTAGTCTATTCAACGTCGTCTAGAAGCG 
CTTCTCAGCGTCAGAAGAAGGTTACCTTCGACAGGCTGCAGGTGCTCGAC 
GACCATTACAAGACTGCATTAAAGGAGGTAAAGGAGCGAGCGTCTAGGGT 
AAAGGCTCGCATGCTCACCATCGAGGAAGCGTGCGCGCTCGTCCCTCCTC 
ACTCTGCCCGTTCAAGGTTCGGGTATAGTGCGAAGGACGTTCGCTCCTTG 
TCCAGCAAGGCCATTAACCAGATCCGCTCCGTCTGGGAGGACTTGCTGGA 
AGACACCACAACACCAATTCCAACCACCATCATGGCGAAGAACGAGGTTT 
TTTGCGTAGACCCCGCTAAAGGGGGCCGCAAGCCCGCTCGCCTCATTGTT 
TACCCTGACCTGGGGGTGCGTGTCTGTGAGAAACGCGCCCTATATGATGT 
GATACAAAAGTTGTCAATTGAGACGATGGGTTCCGCTTATGGATTCCAAT 
ACTCGCCTCAGCAGCGGGTCGAACGTCTGTTGAAGATGTGGACCTCAAAG 
AAAACCCCCTTGGGGTTCTCGTATGACACCCGCTGCTTTGACTCGACTGT 
CACTGAACAGGACATCAGGGTGGAAGAGGAGATATACCAATGCTGTAACC 
TTGAACCGGAGGCCAAGAAGGTGATCTCCTCCCTCACGGAGCGGCTTTAC 
TGCGGGGGCCCTATGTTTAACAGCAAAGGGGCCCAGTGTGGTTATCGCCG 
TTGCCGTGCCAGTGGAGTTCTGCCTACCAGTTTCGGCAACACAATCACTT 
GTTACATCAAGGCCACAGCGGCTGCGAGGGCCGCGGGCCTCCGGAACCCG 
GACTTTCTTGTCTGCGGAGATGATCTAGTCGTGGTGGCTGAGAGTGACGG 
CGTCGACGAGGATAGAACAGCCCTGAGAGCCTTCACGGAGGCTATGACCA 
GGTACTCTGCTCCACCCGGAGATGCTCCACAGCCTACCTACGACCTTGAG 
CTCATTACATCTTGCTCCTCTAACGTCTCCGTGGCACTGGACAATAAGGG 
GAAGAGGTATTATTACCTCACCCGTGATGCCACCACTCCCCTGGCCCGTG 
CGGCTTGGGAAACAGCTCGTCACACTCCGGTTAACTCCTGGCTGGGCAAC 
ATCATCATGTACGCGCCTACCATCTGGGTGCGCATGGTAATGATGACACA 
TTTTTTCTCCATACTTCAATCCCAGGAGATACTTGACCGACCCCTTGACT 
TTGAAATGTACGGGGCCACTTACTCTGTCACTCCGCTGGATTTACCAGCT 
ATCATTGAAAGACTCCATGGTCTGAGCGCGTTCACGCTCCACAGTTATTC 
TCCAGTAGAGCTCAATAGGGTTGCGGGGACACTCAGGAAGCTTGGGTGCC 
CCCCCCTACGGGCTTGGAGACATCGGGCACGAGCAGTGCGCGCCAAGCTT 
ATCGCCCAGGGAGGGAAGGCCAAAACATGTGGCCTTTATCTCTTTAATTG 
GGCGGTACGCACCAAGACCAAACTCACTCCACTGCCGGCCGCTGGCCAGC 
TGGATTTATCCAGTTGGTTTACGGTTGGCGTCGGCGGGAACGACATTTAT 
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CACAGCGtgtcaCGTGCCCGAACCCGCCATTTGCTGCTTTGCCTACTCCT 
ACTAACGGTAGGGGTAGGCATCTTTCTCCTGCCAGCTCGGTGAGGTGGTA 
AGAAAACACTCCCTTCCCTTTTTGTTTTTCCCCCTTTTTTTTTTTTTTT 
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