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1.1 Synopsis of Thesis 

Cardiovascular disease remains a major cause of mortality and morbidity and is underpinned 

by Oxidative stress, within which, inactivation of nitric oxide (NO) by superoxide (SO) and 

other reactive oxygen species is characteristic. Two major enzyme systems are implicated 

within oxidative stress; NAD(P)H oxidase and endothelial nitric oxide synthase (eNOS). eNOS 

generates NO while at the same time, and within the same cells, NAD(P)H plays a powerful 

role in the generation of SO. Evidence is accumulating that polymorphisms of the genes 

encoding these enzyme systems may play an important role in the pathophysiology of CAD. 

Additionally there has been much recent interest in both biochemical markers of oxidative 

stress and low grade chronic inflammation as well as a non invasive vascular phenotype, pulse 

wave analysis. This thesis reports a series of studies (utilising the techniques described in 

chapter 2) which aimed to ascertain:- 

 The reproducibility of pulse contour analysis as a non invasive intermediate 

cardiovascular phenotype (Chapter 3). 

 Whether common single nucleotide polymorphisms of the p22phox gene CYBA and  

the endothelial nitric oxide synthase gene, NOS3, have an effect upon arterial compliance in 

patients with coronary artery disease (Chapters 4,5 and 6). 

 In healthy volunteers, free of cardiovascular disease whether a relationship existed 

between markers of low grade inflammation and arterial stiffness (Chapter 7). 

 

Chapter 3: The reproducibility of diastolic pulse wave contour analysis and its relation to 

systolic pulse contour analysis. 

This clinical study demonstrated that both large (C1) and small artery (C2) compliance values 

were reproducible and that there was a significant correlation between both Augmentation 

Index (AIx) and C1and AIx and C2 in healthy volunteers and though there was no association 
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between AIx and C1 in patients with coronary artery disease AIx did correlate with C2 in this 

population. 

 

Chapter 4: The effect of the G894T SNP of the NOS3 gene upon arterial stiffness in 

patients with coronary artery disease. 

There was no association observed between this polymorphism and blood pressure or large 

artery compliance however ANOVA revealed a statistically significant association for TT 

homozygosity and small artery compliance. The highest small artery compliance was seen in 

the patients homozygous for the G allele, an intermediate value observed in heterozygotes and 

the lowest value demonstrated in patients homozygous for the T allele. Multiple regression 

analysis, examining the possible contribution of confounders showed that only small artery 

compliance was significant when NOS3 G894T genotype was assigned as the dependent 

variable. 

 

Chapter 5: The C242T single nucleotide polymorphism of the CYBA gene and blood 

pressure and arterial compliance in patients with coronary artery disease. 

We sought to examine the influence of the C242T SNP of CYBA upon vascular compliance and 

blood pressure using the dominant allele model. The presence of the 242T allele was associated 

with significantly higher systolic blood pressure. Patients homozygous for the C allele had 

lower systolic blood pressure than heterozygotes and patients homozygous for the T allele. 

There was no statistically significant effect upon diastolic blood pressure but there was 

however a significant association observed between the 242T allele and pulse pressure.  
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Chapter 6: Combined analysis of NOS3 G894T and CYBA C242T genotypes upon 

arterial stiffness. 

In order to contrast the arterial stiffness between the favourable versus the non-favourable 

genotypes patients homozygous for the NOS3 G allele and homozygous for the CYBA C allele 

were compared with those homozygous for the NOS3T allele and possessing the CYBA 242T 

allele. The former displayed higher large and small artery compliance than the latter group. 

Multiple regression analysis, examining the possible contribution of confounders showed that 

only the large and small artery compliance values contributed significantly when genotype was 

assigned as the dependent variable. 

 

Chapter 7 Chronic low grade inflammation and insulin resistance and arterial 

compliance in healthy volunteers. 

Within healthy volunteers multiple regression analysis showed that small artery compliance 

was significantly associated with IL 6, CRP and ICAM. Augmentation index showed only an 

association with ICAM1. There was no significant correlation between Adiponectin levels and 

either of the arterial stiffness parameters studied. 

 

Conclusions 

Diastolic pulse wave contour analysis is a reproducible assessment of arterial stiffness with the 

potential to represent a high fidelity non invasive vascular phenotype. 

 

Small artery compliance is correlated with Augmentation Index and although the 

measurements are not analogous they both represent useful means of acquiring quantitative 

data concerning arterial stiffness. 
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The 242T allele of the p22phox gene, CYBA, is associated with decreased large but not small 

artery compliance and increased systolic and pulse pressure. 

 

Homozygosity for a common NOS3 polymorphism (894 G T) was associated with decreased 

small artery compliance but not with large artery compliance or blood pressure. 

 

The markers of chronic inflammation Interleukin 6, ICAM and hsCRP but not Adiponectin, a 

marker of Insulin resistance, predict small artery compliance in healthy individuals apparently 

free of vascular disease. 
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AIx    Augmentation Index 

ANOVA  Analysis of variance 

C1   Large Artery Compliance 

C2    Small Artery Compliance 

CHD   Coronary Heart Disease 

CRP   C Reactive Protein 

CVD   Cardiovascular disease 

DBP   Diastolic Blood Pressure 

DPCA   Diastolic Pulse Contour Analysis 

eNOS   Endothelial Nitric Oxide Synthase 

HDL   High Density Lipoprotein 

IL-6   Interleukin 6 

L-NMMA  L-N
G
-monomethyl arginine  

LDL    Low Density Lipoprotein 

MAP   Mean Arterial Pressure 

NADH/NAD(P)H  Nicotinamide Adenine Dinucleotide (phosphate) Oxidases 

NO   Nitric Oxide 

•O2
- 
    Superoxide 

PP    Pulse Pressure 

PWA   Pulse Wave Analysis 

PWV    Pulse Wave Velocity 

SBP   Systolic Blood Pressure 

sICAM-1  Soluble Intracellular Adhesion Molecule 1. 
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SD   Standard Deviation 

SEM   Standard Error of the Mean 

SNP   Single Nucleotide Polymorphism 

SPCA   Systolic Pulse Contour Analysis 

UK    United Kingdom 

VNTR   Variable Number of Tandem repeats 
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1 Introduction 

 

Cardiovascular disease (CVD) is a designation for multiple pathologies underscored by 

atherosclerosis of which there are multiple clinical phenotypes. CVD is the main cause of death 

in the United Kingdom (UK) accounting for approximately 238,000 deaths per year: 39% of all 

deaths (BHF statistics at www.heartstats.org). The principle forms of CVD are Coronary Heart 

Disease (CHD) and stroke. CHD itself causes over 117,000 deaths per year in the UK: 

approximately 1 in 5 deaths in men and 1 in 6 deaths in women. It is the most common cause 

of premature death in the UK: 22% of premature deaths in men and 13% of premature deaths 

in women are from CHD. Over 1.2 million people in the UK have had a myocardial infarction 

and it is estimated that 2 million people are suffering from angina (www.heartstats.org). The 

aim of this thesis is to investigate non invasive intermediate vascular phenotypes that have a 

potential to be useful in the assessment of cardiovascular disease; namely pulse wave contour 

analysis and biochemical markers of inflammation. 

 

Conventionally risk stratification has rested upon traditional, established risk factors including 

smoking, poor diet, lack of physical activity, obesity, hypertension, hypercholesterolemia and 

diabetes mellitus. Genetic factors are increasingly recognised to predispose to CVD from 

studies that have provided long standing evidence that CVD clusters in families (Rose 1964). 

The advent of pulse wave analysis (PWA) as a non invasive vascular phenotype and increasing 

understanding of the importance of new surrogate markers of cardiovascular disease has 

introduced the capability of new ways of risk stratification and new methods of investigating 

the effect of genotype in CVD. It had previously been calculated that traditional risk factors per 

se may only explain approximately between 50%(Manson 1992) of the CHD risk but more 

recently this figure has been more accurately calculated as 80-90% (Khot 2003). A portion of 

http://www.heartstats.org/
http://www.heartstats.org/
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risk however remains unexplained and it is timely to examine the association between genetic 

factors, biochemical surrogate markers as well as non invasive vascular phenotypes with CHD. 

 

The purpose of this thesis is to describe the relationship of genotypes of common oxidative 

stress gene polymorphisms upon these new vascular phenotypes. The introduction will seek to 

depict PWA as a useful non invasive cardiovascular phenotype, describe the common oxidative 

stress gene single nucleotide polymorphisms and their role in cardiovascular physiology and 

pathophysiology and clarify the potential function of biochemical markers of low grade 

inflammation and insulin resistance in CVD. 

1.1 Pulse Wave Analysis and Pulse Wave Velocity: Non-invasive vascular intermediate 

phenotypes. 

 

1.1.1 Introduction and historical perspective. 

Cardiovascular research has long searched for the holy grail of a non-invasive, high fidelity, 

reproducible technique to function as an intermediate phenotype facilitating mechanistic basic 

physiology, intervention and outcome studies. Returning to techniques first utilised over 100 

years ago has led to the development of methodology which may end this search. 

 

The arterial pulse waveform has been interesting clinical scientists since the end of the 19th 

century and the assessment of the arterial pulse remains a bedrock of basic clinical 

examination. Following the invention of the sphygmograph by Marey (Roy 1880) clinicians 

like Osler and Mohamed relied upon it heavily as a diagnostic tool (Sharpey 1866). Ultimately 

however the sphygmograph was superseded by the sphygmomanometer which was invented 

for recording blood pressure and used widely thereafter for clinical purposes. Technological 
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advances now allow non-invasive acquisition of pressure pulse waveforms in a repeatable and 

reproducible manner. Early and consistent changes in the pulse contour occur with aging and 

cardiovascular risk factors and therefore descriptive analysis of the pulse contour may 

ultimately hold the potential to refine cardiovascular risk stratification and guide therapeutic 

interventions (McVeigh 2003). 

1.1.2 Why move beyond blood pressure? 

 

The Framingham Heart Study has generated important data on how systolic blood pressure 

(SBP) diastolic blood pressure (DBP) and pulse pressure (PP, the difference between SBP and 

DBP) change with advancing age (Franklin 1997). DBP is determined classically by peripheral 

arterial resistance and increases until middle age when it then tends to fall. SBP and PP, 

however, are influenced by the stiffness of large arteries, the peripheral pulse wave reflection 

and the pattern of left ventricular ejection and increase persistently with age. Changes in large 

artery (i.e. aorta or its major branches) stiffness accounts for the changes in SBP, DBP and PP 

observed from 50 years of age. The link between blood pressure and cardiovascular disease has 

been clearly established (Goldberg 1996), and SBP has been identified as having a greater 

predictive value for CHD than DBP in those aged over 60years (Kannel 1971, Franklin 2001a). 

Isolated systolic hypertension (ISH) where SBP is >140mmHG 140mmHg and DBP is <90 

mmHg is the most commonly observed form of hypertension in the elderly (Franklin 2001b) 

and is a major risk factor for stroke (Nielson 1995), coronary heart disease (Franklin 2001a) 

and total cardiovascular mortality (Antikainen 1998). Also recently the brachial artery PP, the 

chief determinant of which in the elderly is large artery stiffness, has emerged, albeit 

controversially (Prospective studies collaboration Lancet 2002), as an even more powerful 

predictor of CHD (Franklin 1999). 
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Hence with the integral part that altering arterial stiffness plays, not only in the ageing process 

but also, as will be discussed, with other risk factors for cardiovascular disease there is a 

growing appreciation that a better understanding of the mechanisms involved in generation of 

arterial stiffness will improve the treatment of hypertension and cardiovascular disease than 

that offered by simply measuring brachial BP. The ability to measure and monitor arterial 

stiffness would confer not only a useful research tool but also a clinical tool that will aid all 

levels of practitioners and physicians in diagnosis, treatment and possibly risk stratification. 

 

1.1.3 Arterial properties and arterial stiffness. 

 

Risk factors for cardiovascular disease mediate their effects by altering the structure, 

properties, and function of wall and endothelial components of arterial blood vessels (Gibbons 

1994).The ability to detect and monitor change in the physical properties of arteries, 

representative of the cumulative and integrated influence of heamodynamic, metabolic and 

inflammatory stimuli in impairing arterial wall integrity, holds potential to intervene at a 

preclinical stage to prevent or attenuate disease progression (McVeigh 2003).  

 

The elasticity of the arteries is not uniform and varies throughout different sites within the 

arterial tree. The elasticity of the proximal large arteries is the result of the high elastin to 

collagen ratio in their walls which steadily diminishes toward the periphery. The increase in 

arterial stiffness that occurs with increasing age (Hallock 1937) is largely due to progressive 

elastic fibre degeneration (Avolio 1998). The elasticity of a given arterial segment is not 

constant but depends on the distending pressure (Greenfield 1962). As distending pressure 

increases, there is greater recruitment of relatively inelastic collagen fibres (Roach 1957, Apter 
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1967, Bank 1996) and consequently, a reduction in elasticity. The background level of 

distending pressure in the circulation is determined by mean arterial pressure (Oliver 2003).  

 

Elasticity is not only dependent on collagen and elastin but the endothelium (Kinlay 2001, 

McVeigh 2001, Wilkinson 2002a) and arterial wall smooth muscle bulk and tone (Bank 1996, 

Bank 1999) also contribute to elasticity. The latter is under control from the endothelium and 

the balance between the vascular smooth muscle cell derived free radical and superoxide (SO) 

and the endothelium derived nitric oxide (NO) will be discussed later in more detail. 

 

1.1.4 Genetics and arterial stiffness. 

 

Polymorphisms within genes that generate the components that define arterial structure and 

function have been related to arterial stiffness. Polymorphic variation in the fibrillin (Medley 

2002), angiotensin II type I receptor (Lajemi 2001a), and endothelin receptor genes (Lajemi 

2001b) have been associated with altered arterial stiffness. Additionally the angiotensin 

converting enzyme (ACE) I/D polymorphism has been associated, albeit inconsistently with 

vascular stiffness (Lajemi 2001a, Balkestein 2001). Thus putatively as eluded to above and to 

be discussed in more detail later in the introduction logically it could be hypothesised that 

allelic polymorphisms amongst genes involved in the oxidative stress pathway, whose products 

influence the relative bioactivity of NO and consequently vascular tone, may also influence 

vascular stiffness. 
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1.1.5 Generation of the arterial pulse wave and pulse pressure amplification. 

 

Left ventricular ejection pumps blood into the arterial tree but simultaneously creates a pulse 

pressure wave that travels in the arterial wall in an anterograde fashion until it reaches areas of 

bifurcation or other areas of impedance mismatch, mainly at high resistance arterioles, where a 

retrograde (reflected) waveform is initiated (Nichols & O‟Rourke 1998). The shapes of the 

arterial pulse waveforms vary at different sites, attributable to both varying elastic qualities 

along the arterial tree and to wave reflection. In healthy, young subjects without vascular 

disease mean arterial pressure (MAP) declines in the peripheral circulation but SBP and PP are 

amplified (Kroeker 1955), amplification which is accentuated during exercise and diminishes 

with increasing age (Rowell 1968, Wilkinson 2001). The wave form at the proximal aorta is 

critical as it is the BP profile here rather than the typically measured peripheral BP which 

determines left ventricular afterload and coronary blood flow. The contour and amplitude of 

the pressure waveform are influenced by large artery pulse wave velocity (PWV) as pressure 

waves of higher velocity arrive and are reflected from the peripheral circulation earlier. With 

compliant arteries and slow PWV, reflected waves return to the central aorta in diastole, 

augmenting DBP and subsequently coronary blood flow which occurs in diastole. On the 

contrary when arteries are less complaint and PWV fast, the reflected waves return earlier and 

augment central SBP, increasing left ventricular workload and compromising coronary blood 

flow (Bogren 1989, Ohtsuka 1994, Oliver 2003). 
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1.1.6 Definitions of parameters used to describe the static and dynamic qualities of the 

arterial tree. 

 

One of the problems in studying or discussing arterial stiffness is that it is a term which is 

imprecise and has been applied to a wide variety of different vascular parameters. These 

include arterial compliance, arterial distensibility (change in area or diameter of an artery 

resultant from a given change in pressure), elastic modulus (the change in stress for a given 

change in strain of the wall materials), volume elastic modulus, Young‟s modulus, PWV, 

characteristic impedance (the ratio of pressure and flow in an artery when pressure and flow 

waves are not influenced by wave reflection), stiffness index (β), capacitive compliance and 

oscillatory compliance as measures representative of the mechanical properties of arteries 

(O‟Rourke 1999, McVeigh 2002). Table 1.1 outlines definitions of commonly used indices that 

are used to generate quantitative estimates of arterial wall properties. 
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Table .1.1 Definitions of the commonly measured indices of arterial stiffness. 

Parameter Definition Formula & Units 
Arterial Compliance 

 

Absolute diameter or area change for 

a given pressure step at fixed vessel 

length. 

ΔD/ ΔP(cm/mmHg or 

cm
2
/mmHg) 

Arterial Distensibility 

 

Relative diameter or area change for a 

given pressure increment; the inverse 

of elastic modulus. 

ΔD/ ΔP x D (mmHg 
-1

) 

Volume Elastic Modulus 

 

Pressure step required for a theoretical 

100% increase in volume where there 

is no change in length. 

ΔP/(ΔV/V) (mmHg)= 

ΔP(ΔD/D)(mmHg) 

Elastic Modulus 

 

Pressure step required for a theoretical 

100% increase in stretch from resting 

diameter at fixed vessel length. 

(ΔP x D/ΔD) (mmHg)· 

Young‟s Modulus 

 

Elastic modulus per unit area; the 

pressure step required per square 

centimetre for a theoretical 100% 

stretch from resting length (accounts 

for wall thickness).  

ΔP x D/(ΔD x h) 

(mmHg/cm)· 

Pulse Wave Velocity 

 

The speed at which the pulse wave 

travels along a defined arterial 

segment. 

Distance/Δt (m/second) 

Pressure Augmentation 

 

Increase in aortic or carotid pressure 

after the peak of blood flow in the 

vessel. 

mmHg or % of pulse 

pressure 

Characteristic Impedance. 

 

Relationship between pressure change 

and flow velocity in the absence of 

wave reflections. 

(ΔP/ΔV)[(mmHg/cm)s] 

Stiffness Index. 

Β 

Ratio of logarithm (systolic/diastolic 

pressures) to (relative change in 

diameter). 

Β = In (Ps/Pd)/ [(Ds-

Dd)/Ds] 

(non dimensional) 

C1 Large Artery Elasticity 

Index/ Capacitative. 

 

Relationship between the decline in 

pressure and decline in volume in the 

arterial tree during the exponential 

component of diastolic pressure 

decay. 

(ΔV/ΔP) 

ml/mmHg x 10  

C2 Small Artery Elasticity 

Index/ Oscillatory or 

Reflective. 

Relationship between oscillating 

pressure change and oscillating 

volume change around the exponential 

component of diastolic pressure 

decay. 

(ΔP/ΔV) 

ml/mmHg x 100 

 

P = pressure, D = diameter, V = volume, h = wall thickness, t = time, s = systolic, d = diastolic. 

Adapted from Oliver 2003 & O‟Rourke 2002. 
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1.2 Applanation tonometry, pulse wave velocity and pulse contour analysis. 

 

The technique of applanation tonometry detects the pressure pulse wave at a distinct 

anatomical site, for example the radial artery at the wrist by using a micromanometer tipped 

probe. The artery is compressed between the sensor and the underlying structures, and 

therefore the intra-arterial pulse pressure is transmitted through the arterial wall to the sensor. 

The recorded pressure waveform is then digitalized such that it can then be viewed upon a 

computer screen. The waveform that is recorded as stated above varies in different vessels in 

the same individual and is dependent on  

1) The viscoelastic properties of the artery. 

2) The viscosity of the blood. 

3) Wave reflection. 

4) Wave dispersion. 

 

As will be discussed below the computer software then utilises the recorded peripheral wave to 

either analyse the recorded pulse pressure wave in terms of a modified Windkessel model to 

generate arbitrarily labelled large and small artery compliance values (Diastolic Pulse Contour 

Analysis (DPCA)) or to use a mathematical generalised transfer function to construct the 

corresponding central aortic pressure and waveforms (Systolic Pulse Contour Analysis 

(SPCA)).  
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1.2.1 Pulse Wave Velocity 

Pulse Wave Velocity is simply a function of distance and time. 

 Velocity = Distance (m)/Time (seconds) 

 

To calculate the PWV, the time delay between the pulse pressure waves at two distinct sites 

has to be calculated by either placing probes simultaneously over two sites or by recording the 

waveforms at two sites independently and comparing the time delay at both sites against a 

simultaneously recorded QRS complex. Examples of sites where PWV is commonly recorded 

include carotid and radial arteries, or carotid and femoral arteries. Distance is measured simply 

with a suitable device. Calculating the time from the foot of the pressure wave at the first point 

to the foot of the pressure wave as it arrives at the next point is more complicated as it can be 

difficult to ascertain where the foot of the wave is, in particular identifying and defining the 

carotid pulse wave shape can be technically very difficult (Schram 2004). There are four 

recognised methods for calculating the location of the foot of the wave (Davies 2003a). The 

method using the point at which the second derivative of the pressure wave is maximal and the 

method looking at the point yielded by the intersection of a line tangent to the initial systolic 

upstroke of the pressure tracing and a horizontal line through the minimal point are the most 

reproducible. These are known as the second derivative method and the intersecting tangent 

method respectively (Chiu 1991). Comparison of studies utilising PWV as the means of 

assessing the arterial tree is must take into account the anatomy measured as there is no 

uniformity to the arterial tree segment that is being studied (i.e. carotid-femoral or carotid-

radial) and there are differences in arterial elasticity and tendency to atherosclerosis at different 

sites. 
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The strength of this technique is that it is simple to perform, no mathematical transformation is 

required and there is good published inter- and intra-operator reproducibility (Wilkinson 1998). 

Liang and colleagues report good repeatability of measurements preformed on two separate 

occasions (Liang 1998). Another group, however, reported a 16% variation in PWV on 

separate study days (Chiu 1991) which they suggest could be caused by changes in blood 

pressure, respiratory changes in arterial pressure or movement of the transducer on the skin 

overlying the arterial measuring site.  

 

PWV is sensitive to changes in heart rate and blood pressure (Quick 1998, Mitchell 1997, 

McVeigh 2002a) and small changes in arterial wall properties may not be detected between 

individuals, as data generated can often show considerable scatter for a given age range 

(Avolio 1983). Stewart et al (Stewart 2003) have demonstrated that inhibiting basal NO release 

caused an in increase in PWV, due to changes in MAP. 

 

Probably the most important facet of the literature pertaining to PWV is that it has been shown 

to be an independent predictor of outcome in high risk populations (Blacher 1999a, Blacher 

1999b, Blacher 2003, Guerin 2001). The utility of further refining risk stratification in patients 

already designated as being high risk, who should be receiving optimal therapy for risk 

reduction, has been suggested to be of limited clinical value (McVeigh 2002a).  

 

1.2.2 Systolic pulse contour analysis. 

 

SPCA is generated from pulse pressure waveforms recorded by applanation tonometry. When 

recorded at the radial artery at the wrist the waveform is calibrated to the brachial BP measured 

conventionally by arm/cuff oscillometric means. This has recently come under scrutiny and the 
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inaccuracy of oscillometric cuff method for measuring arm blood pressure was identified as the 

limiting factor in predicting potentially clinically useful, non-invasive aortic pressures 

(Smulyan 2003). 

 

SPCA uses a generalised transfer function to derive central aortic waveforms from those 

acquired from the peripherally acquired arterial waveform – most commonly from the radial 

artery. From the generated central aortic waveform central BP values and the augmentation 

index (AIx) can then be calculated. The AIx is the proportion of central PP that results from 

arterial reflection and is a commonly, and successfully, used measure of arterial stiffness 

(Figure 1.1).  

 

 

Figure 1.1: Augmentation Index. 

Aix, the ratio of pressure augmentation to local pulse pressure (PP), can be defined for both the 

aortic and radial pulse waveforms. It depends on the relative amplitude and timing of the direct 

and reflected waves that summate to produce the overall waveform (from Oliver 2003). 

 

The timing of arrival of the reflected wave at the proximal aorta is determined chiefly by large 

artery PWV. AIx is not, however simply a surrogate or a different way of measuring PWV. 

Simultaneous measurement of AIx using the generalised transfer function and PWV, used as an 

PP 

Aortic AIx = ΔP/PP 

Reflected pressure 
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Aortic pressure 

pulse 

PP 

 

Reflected pressure 
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Radial pressure 
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estimate of arterial stiffness revealed a positive (r=0.29) but modest correlation (Yasmin 1999). 

In this study only 9% of the variation of PWV was explained or accounted by variation in AIx.  

 

The Aortic AIx increases with age and blood pressure (Nichols & O‟Rourke 1998) and is 

elevated in subjects with other risk factors for cardiovascular disease namely diabetes 

(Wilkinson 2000) and hypercholesterolemia (Wilkinson 2002b). In patients with end stage 

renal failure (a group with high cardiovascular mortality) AIx is a highly predicative indicator 

of cardiovascular mortality (London 2001). As with the other vascular parameters derived 

using applanation tonometry AIx is sensitive to modulations of NO bioactivity. Inhibition of 

basal NO synthesis, with intra-arterial infusion of L-N
G
-monomethyl arginine (L-NMMA), has 

been shown to lead to a dose dependent increase in MAP, peripheral vascular resistance, and 

aortic and systemic arterial stiffness (Wilkinson 2002a).  

 

There have been a number of criticisms levelled at the use of a generalised rather than an 

individualised transfer function and moreover at the use of any transfer function whatsoever. 

The use of a generalised transfer function can show bias and a significant amount of the 

variation in predicting the centrally obtained AIx (Glasser 1997, Chen 1997, Stergioplus 1998). 

SPCA has recently been used increasingly in healthy volunteer studies and it merits stressing 

that the generalized transfer function has never been validated in young healthy volunteers 

(Oliver 2003). Millasseau and colleagues have recently suggested that similar information on 

central pressure wave reflection can be obtained directly from the radial pulse and a radial AIx 

without use of a generalised transfer function (Millasseau 2003). 

 

The unequivocal association of increased Aix with arterial stiffness in recent publications 

(Wilkinson 2000, Wilkinson 1999, Brooks 1999) has been criticised (McVeigh 2002a). 
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Although in some circumstances this may indeed be the scenario this supposition is to some 

degree speculative as it is based solely on a descriptive change in waveform morphology.  

 

The prognostic value of AIx has been shown in that carotid AIx is an independent predictor of 

cardiac ischaemic threshold during exercise in patients with CHD (Kingwell 2002). 

Additionally Aix is also a predictor of all cause and cardiovascular mortality in patients with 

end stage renal failure, even in those with normal PWV (London 2001). 

 

1.2.3 Diastolic pulse contour analysis. 

 

Cohn and McVeigh have pioneered DCPA as a useful research methodology for the early 

detection of vascular disease. Again the technology utilises applanation tonometry of the radial 

artery at the wrist and measures a waveform that is calibrated against the brachial BP.  

 

The modified Windkessel model (figure 1.2) is employed to interpret the consistent and 

predictable changes in the pulse pressure wave shape in diastole in terms of compliance, 

inertance and resistance in the arterial system (McVeigh 2002a). The Windkessel concept 

represents a lumped parameter non-propagative approach to interpret changes in the arterial 

mechanical properties that doesn‟t account for wave travel in the arterial system.  

 

The Windkessel model was first described, in 1769, by Stephen Hales. The Windkessel was the 

air filled dome in early fire engines which acted as a cushion to absorb fluctuations in water 

pressure delivered directly to the engine reservoir, hence allowing a smooth delivery of water 

to the fire hose. (O‟Rourke 1992). The physiological analogy is obvious with the pulsatile 

pump representing the heart, the Windkessel reservoir the central elastic arteries into which the 



 41 

heart pumps and the fire hose as the peripheral resistance (i.e. relatively non –elastic conduits 

of the peripheral arteries. The problem with this model is the assumption of uniformity 

throughout the arterial tree and as arteries differ in compliance and elasticity to smaller, and 

more muscular arteries such as the brachial and radial vessels. Additionally compliance varies 

throughout the length of each artery around junctions, curves and bifurcations (Kawasaki 1987, 

Van Merode 1991). This model cannot therefore account for wave amplification or the 

secondary diastolic wave that results from wave reflection in the arterial system. 

 

 

 

 

 

Figure 1.2: The modified Windkessel model of the arterial system. C1, proximal 

compliance; C2, Distal compliance; I, systemic inflow; L, inertance; R systemic vascular 

resistance. 

 

The energy contracts between all the elements in a modified Windkessel model can account for 

distortions in pressure-pulse contour produced by wave reflection, interpreting these changes in 

terms of altered compliance, resistance and inertance elements in the model (McVeigh 2002a). 

This non-invasive approach generates the cardiac output from an algorithm incorporating the 

radial pulse pressure waveform (McVeigh 1999). Two components of the diastolic waveform 

i 
L 

R C1 C2 
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are distinguished in DCPA. An exponential decay curve represents large artery compliance 

(C1). Oscillatory or reflective compliance (C2) consists of peripheral wave reflections that are 

superimposed upon the basic waveform and provide a measure of small artery compliance 

(Watt 1976).  

 

Values obtained by this non-invasive technique have been compared with those obtained from 

waveforms generated invasively (Cohn 1995). Non-invasively derived waveforms from the 

tonometer were found to underestimate, but were tightly correlated to, pressure wave forms 

obtained invasively. Compliance values calculated from invasive and non-invasive methods 

were correlated statistically, though more strongly for C1 than for C2, with non-invasive 

measures tending to overestimate.  

 

Again, as with SPCA, the derived model based parameters change in a consistent and 

predictable manner with ageing and with disease states associated with vascular disease (Cohn 

1995, Finkelstein 1982, McVeigh 1999, Watt 1976).  

 

Utilising both brachial artery waveforms obtained invasively and radial artery waveforms 

obtained non-invasively with tonometry increased age was associated with lower C1 and C2, 

whether assessed invasively or non-invasively (McVeigh 1999). SBP was associated, in this 

study with C1 but not C2, which was not associated with any BP parameter. In an earlier study 

McVeigh (McVeigh 1991) demonstrated reduced C2 in patients with hypertension compared to 

age matched controls. In this study, moreover, C2 was reduced to a greater extent in young 

hypertensives than C1, whereas C2 was reduced to a similar extent in older hypertensives and 

healthy controls. C2 but not C1 was also reduced in postmenopausal women with CAD (Cohn 
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1995) and smoking and diabetes have also been associated with lower C2 than C1 (McVeigh 

1997, McVeigh 1993). 

 

Additionally inhibition of endothelial nitric oxide synthesis with L-NAME was associated with 

progressive diminution in the amplitude and frequency of the oscillatory diastolic waveform, 

identified as a decrease in C2 in the model analysis, with resolution to baseline with the 

addition of L-Arginine. This shows that, dynamically, the C2 is a sensitive means of 

identifying NO modulation of blood vessel tone (McVeigh 2001).  

 

Thus reduction in the small artery compliance value (C2), which reflects a diminished 

amplitude, frequency and duration of the secondary diastolic wave has been presented as a 

putative marker for the early detection of vascular disease. 

 

As for SPCA there has been criticism of this method and in particular debate as to whether 

SPCA or DPCA represents the most useful non invasive vascular phenotype. Rietzschel et al 

(Rietzschel 2001) preformed the first comparative study showing that, within 100 healthy 

individuals, the coefficients of variation were 32.8% for C1, 33.3% for C2 and 6.7% for Aix 

suggesting that in terms of reproducibility at least, SCPA was more robust. In this study, 

however, C2 was significantly and inversely correlated to AIx (r=-0.487). This was 

corroborated by a further study by Segers (r=-0.36) (Segers 2001). There is still some dubiety 

as to what C2 actually represents in terms of an anatomical site and though theoretically, the 

site measured should not affect measurements of overall proximal and distal compliance there 

was no correlation between values of C1 and C2 measured at the radial artery as compared to 

those measured at the posterior tibial artery (Manning 2002). Moreover in this study, despite 
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good quality tonometry recordings, application of the model yielded non interpretable results in 

some subjects (Manning 2002). 

 

1.3 Oxidative stress, the NAD(P)H oxidase system and & vascular disease. 

 

The principal pathological lesion of coronary artery disease is atherosclerosis. The nidus for the 

lesion would appear to be transfer of oxidized low density lipoprotein (LDL) across the 

endothelium to the artery wall (Navab 1996). The transfer is reported to be due either directly 

to the oxidized LDL or physical, chemical or infective stimulation (Ross 1999). Endothelial 

cells, vascular smooth muscle cells, and macrophages are the sources of oxidants for the 

oxidative modification of phospholipids. Oxidised LDL may damage endothelial cells which 

subsequently produce adhesion molecules and chemotactic factors that induce monocyte and T 

lymphocytes recruitment (McEver 1992,Madamanchi 2005). Thereafter monocytes migrate to 

the sub endothelial space and, ingesting lipoproteins, become macrophages which generate 

reactive oxygen species which convert oxidized LDL to highly oxidized LDL. Upon taking up 

highly oxidized LDL the macrophages become foam cells which combine with leucocytes to 

become the fatty streak. Foam cells themselves generate growth factors that facilitate smooth 

muscle cell migration into the intima. As the process persists and progresses the fatty streaks 

become more complex lesions which protrude into the vessel lumen and may undergo fibrosis 

and calcification. Ultimately the rupture of this complex with release of thrombi may lead to 

vessel occlusion and the acute coronary syndrome (Madamanchi 2005). 
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1.3.1 Introduction to oxidative stress 

 

Oxidative stress describes the injury caused to cells by the oxidising of macromolecules 

resulting from increased formation of reactive oxygen species and/or diminished anti oxidant 

reserves (Zalba 2001b). Recent work has demonstrated that all types of vascular cells generate 

reactive oxygen species and a growing number of reports have depicted a pivotal role for 

oxidative stress in the pathogenesis of cardiovascular disease (Cahilly 2000). Almost all 

cardiovascular disease states including hypertension, hyperlipidaemia, diabetes, 

arteriosclerosis, unstable angina, vasculitis and myocarditis, restenosis as well as 

ischaemia/reperfusion have been linked to an enhanced generation of oxygen derived free 

radicals (Kojda 1999). Oxidative stress has a prognostic role for cardiovascular morbidity and 

mortality. Coupled with endothelial dysfunction increased oxidative stress has been 

demonstrated to predict the risk of cardiovascular disease in patients with coronary artery 

disease (Heitzer 2001). 

 

The molecule oxygen is usually quiescent as although a radical, it is sparingly reactive as its 

two unpaired electrons are situated in different molecular orbitals and demonstrate parallel 

spins. Molecular oxygen thus undergoes univalent reduction to form •O
2-

 by means of several 

enzyme systems; nicotinamide adenine dinucleotide (phosphate) (NADH/NAD(P) oxidases, 

xanthine oxidase and endothelial nitric oxide synthase (eNOS)in the absence of sufficient co 

factor or substrate. The perilous balance between oxidation and reduction is maintained by a 

series of pro and anti oxidant enzymes and molecules. The best studied of these is the 

NAD(P)H oxidase system. 
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1.3.2 NAD(P)H Oxidase 

 

NAD(P)H oxidase is the major inducible source of •O
2-

 within phagocytes for which it plays a 

bactericidal role and produces •O
2- 

 in response to pathogens (Cross 1991). The oxidase is a 

membrane bound enzyme that catalyses a single electron reduction of molecular oxygen to 

form •O
2-

. The components of this enzyme system are highly conserved across mammalian 

species (Hitt 1996, Davis 1998). The enzyme system comprises several components:- a 

membrane bound portion the cytochrome b558, two cytosolic components p
47

phox and p
67

phox 

as well as the small GTPase protein rac2 (Leusen 1996, DeLeo 1996). The membrane bound 

heterodimeric protein referred to as the flavocytochrome b558 is the final electron transporter 

from NAD(P)H to molecular oxygen and consists of the larger gp91phox and the smaller 

p22phox (Parkos 1987). It is regarded as the redox centre of the NAD(P)H oxidase (Knoller 

1991). The NAD(P)H oxidase is ubiquitous to all vascular cells and is the chief source of 

vascular •O
2-

 (Greindling 2000). 

 

1.3.3 NAD(P)H Oxidase associated •O
2-

 and atherosclerotic vascular disease. 

 

The oxidative stress hypothesis of atherosclerosis posits that it is an inflammatory disease 

triggered, as described above, by subendothelial accumulation of LDL particles modulated by 

reactive oxygen species (Sorescu 2002). Furthermore reactive oxygen species mediate several 

additional pathological processes in the vessel wall including endothelial dysfunction and 

smooth muscle cell migration, growth and apoptosis (Griendling 2000).  

 

The evidence base linking •O
2-

with vascular disease is substantial. Levels of NAD(P)H 

stimulated •O
2- 

have been reported to be elevated in hyperinsulineamic rats (Kashiwagi 1999), 
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hypercholesterolaemic rabbits (Warnholtz 1999) as well as being positively correlated with 

endothelial dysfunction and clinical risk factors for atherosclerosis (Guzik 2000a). 

Hypertension and aging have been shown to be associated with increased •O
2- 

levels and 

consequently diminished NO levels (Hamilton 2001). Furthermore increased •O
2- 

production 

has been illustrated in coronary arteries from rats with methionine diet induced 

hyperhomocysteinemia, an independent risk factor for coronary artery disease (Ungvari 2003). 

•O
2- 

has also been implicated in the pathogenesis of vein graft intimal hyperplasia (West 2001). 

1.3.4 p22phox  

 

As described above the p22phox molecule is the smaller component of the flavo cytochrome 

b558 moiety of the NAD(P)H oxidase system. It has been implicated in the pathophysiology of 

vascular disease including atherosclerosis, diabetes and hypertension. 

 

The first investigation of p22phox and its difference in expression between non atherosclerotic 

and atherosclerotic human coronary arteries emanated from Azumi and co workers (Azumi 

1999). Utilising autopsied cases they demonstrated that in non atherosclerotic arteries p22phox 

was weakly expressed mainly in the adventitia. In contrast in atherosclerotic human arteries 

p22phox expression was more pronounced and was present in adventitial fibroblasts, smooth 

muscle cells, macrophages in the neointima and media and endothelial cells. As atherosclerosis 

progressed the expression of p22phox increased through the vessel wall (Azumi 1999). In their 

study examining O2
-
production in experimental venous bypass graft intimal hyperplasia West 

demonstrated increased p22phox protein expression in vein grafts as compared with control 

jugular veins (West 2001). In coronary arteries from 20 patients undergoing heart 

transplantation Sorescu and colleagues sought to localize the cellular sources of intracellular 

O2
- 
production in atherosclerotic and non atherosclerotic human coronary arteries and 
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characterise the cellular distribution of the Nox proteins –novel gp91phox homologues 

(Sorescu 2002). They found, in accordance with work by others detailed above, that O2
- 
was 

produced by all cell types in the vessel wall but specifically that O2
- 
was especially high in the 

shoulder regions of the plaque. Moreover gp91phox and Nox 4 were abundant in human 

coronary arteries, whereas Nox 1 expression is very low. p22phox co-localized with gp91phox 

and additionally the severity of atherosclerosis correlates with NAD(P)H oxidase subunit 

mRNA expression (Sorescu 2002).  

 

The p22phox protein was found to be significantly increased in diabetic arteries and veins 

compared to non diabetic patients undergoing coronary artery bypass graft surgery (Guzik 

2002a). Further association of the pathological role of this molecule in diabetes mellitus was 

recently produced which found that in decompensated type 2 diabetes p22phox expression was 

increased in circulating monocytes (Avogaro 2003). In terms of a role of the p22phox protein 

in hypertension the p22phox mRNA is elevated in spontaneously hypertensive rats (Fukui 

1997), can be induced in rats with a ligated renal artery (Ushio-Fukai 1996) and recently 

increased expression of p22phox has been documented in hypertensive lymphoblasts (Pettit 

2002). 

 Endothelial cells Fibroblasts Vascular Smooth 

Muscle Cells 

p22phox + + + 

gp91phox + + - 

p67phox + + - 

p47phox + + + 

Rac + + + 

Table 1.2: Expression of NAD(P)H oxidase Components in vascular cells ( From Zalba 

2001 b). 
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1.3.5 Modulation of vascular NAD(P)H oxidase. 

 

The best characterized stimulus for NAD(P)H oxidase activation and induction is angiotensin 

II from studies in animals and man. Animal studies have documented that not only is the 

NAD(P)H oxidase system modulated by Angiotensin II but, in turn the •O
2- 

 anion may play a 

role in the physiological and pathophysiological actions of this peptide. Angiotensin II 

increases vascular smooth muscle cell •O
2- 

 production by activation of a membrane bound 

NAD(P)H oxidase (Griendling 1994). Berry et al characterized cellular and enzymatic sources 

of •O
2- 

 production in human blood vessels showing that •O
2- 

 production was greater in human 

internal mammary arteries than in saphenous veins and that the prime sources were the 

NAD(P)H oxidase and xanthine oxidase enzyme systems (Berry 2000). Jacobson et al reported 

that inhibition of vascular NAD(P)H oxidases, using the chimeric peptide inhibitor, gp91ds-tat, 

suppressed angioplasty induced neointimal hyperplasia in the carotid artery of the rat (Jacobson 

2003). This finding therefore linked NAD(P)H oxidase dependent free radical production and 

neointimal formation. Within human blood vessels NAD(P)H oxidase inhibition has been 

shown to improve endothelial function (Hamilton 2002). The reduction in NO bioactivity is 

thus not related to diminished NO production per se but to increased •O
2- 

production.
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Figure 1.3: The functional consequence of NAD(P)H oxidase activation in hypertension. 

Ang II = Angiotensin II, PDGF platelet derived growth factor, TNF α Tumour Necrosis Factor 

α. Adapted from Zalba 2001 b. 

 

1.3.6 The p22 phox gene, CYBA. 

 

The gene coding for the p22phox gene, CYBA, is located on chromosome 16q24 (Cahilly 2000) 

and has several allelic variants (Cahilly 2000, Gardemann 1999, San José 2004). The 

association of three of these and vascular pathophysiology, C242T, A640G and -930 A/G, shall 

be discussed in detail. 

 

1.4 The CYBA C242T single nucleotide polymorphism and vascular disease. 

 

The CYBA C242T SNP within exon 4 of the gene induces a replacement of histidine by 

tyrosine at amino acid position 72 which is a potential heme binding site (Parkos 1988). This is 

Humoral factors 

(Ang II, PDGF, TNF-α) 

Heamodynamic factors 

(sheer stress) 

Genetic factors 

(SNPs of oxidative 

 stress genes) 

↑ NAD(P)H Oxidase 

↑•O2-  

↑ ONOO-, ↓NO ↑ H2O2 

Endothelial Dysfunction Media Hypertrophy 
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the best investigated of the three allelic variants of the CYBA and hence will be discussed in the 

most detail. 

 

The mechanism by which this SNP is functional is contentious. Most authors speculate that the 

C242T SNP may alter the structure of the heme binding site of the NAD(P)H oxidase and 

thereby lead to a reduced activity of the enzyme and thus modulate oxidative stress within the 

vasculature (Guzik 2000b). However, spectral analysis of the membrane fractions from 

transfected COS7 cell lines, expressing either gp91phox alone or gp91 and p22phox, indicated 

that the gp91 phox is the sole heme-binding component of flavocytochrome b558 (Yu 1998). 

The link with atherosclerosis and NAD(P)H oxidase mediated oxidative stress is well 

established as oxidation of LDL, a key step in the genesis of atherosclerotic lesions, is 

associated with the NAD(P)H oxidase system. Aviram and co workers established that 

NAD(P)H-cytochrome P450 reductase is able to oxidize LDL in vitro (Aviram 1999). 

 

1.4.1 Coronary Artery Disease. 

 

The first series of data associating this SNP with coronary atherosclerosis was generated by a 

number of case control studies. Inoue et al compared the distribution of C242T genotypes in 

201 Japanese patients with CAD compared to 201 controls (Inoue 1998). At odds with findings 

from other, and notably European and American populations (Cai 1999, Cahilly 2000) they 

found that the presence of the T allele was more prevalent in controls rather than patients thus 

suggesting that the T allele conferred a protection against atherosclerosis. The presence of the 

T allele has been reported, within an Italian study of 237 patients with coronary stenosis, to be 

associated with a reduced recurrence of cardiovascular deaths, non fatal myocardial infarction 

and new revascularization procedures (Arca 2008). In contrast Cai and co workers documented 
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that the T allele was a modest risk factor for the development of CAD in younger patients (less 

than 45 years) but not in the overall population (Cai 1999). Opposed to both these studies was 

an American study which failed to find a difference in prevalence of the C242T allele in 140 

patients with angiographically documented CAD or 103 patients with normal coronary arteries 

(Li 1999). Neither did they elicit any significant difference in coronary epicardial or 

microvascular responses to intracoronary acetylcholine or sodium nitroprusside (Li 1999). 

Further negative studies emanated from Saha and co workers who did not find that the C242T 

SNP was associated with coronary heart disease risk in Asian Indians and Chinese (Saha 1999) 

and Zafari et al who, in American population of 216 patients referred for coronary angiography 

did not find any association of this SNP with CAD (Zafari 2002). Additionally a study by 

Stanger et al in 108 male Caucasians with coronary artery disease and 65 controls failed to 

associate any relation of this SNP with the generation of malondialdehyde, a sensitive and 

specific marker of lipid peroxidation as biochemical end-product (Stanger 2001). 

 

In contrast to these reports a prospective study was done by Cahilly and co workers who 

determined the association of the C242T variants with the severity, progression and regression 

of CAD with serial quantitave coronary angiography (Cahilly 2000). They elicited that the T 

allele was associated with progression of CAD. In detail they documented that the presence of 

the T allele was linked with greater losses in mean lumen diameter and greater lesion specific 

mean lumen diameter and was associated with progression and also less regression of 

angiographically documented lesions over the 2.5 years of follow up (Cahilly 2000). There was 

no difference in characteristics at baseline suggesting self selection but the distribution of the 

genotypes was according to that expected under Hardy Weinberg equilibrium hence suggesting 

otherwise. A Polish case control study of 172 patients with angiographically documented 
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coronary artery disease versus 169 healthy controls found a cumulative effect of the 242T 

allele carrier state and cigarette smoking and hypercholesterolemia (Niemiec 2007). 

 

Schächinger and colleagues examined whether this SNP was associated with differences in 

coronary endothelial vasodilator function (Schächinger 2001). In accordance with Inoue they 

found that the CC homozygote was deleterious and was associated with a significantly blunted 

endothelium dependent dilator response. Guzik et al, in an elegant study measuring •O2
-
 with 

lucigenin-enhanced chemiluminescence in human saphenous veins from patients undergoing 

coronary artery bypass graft surgery found that the presence of the T allele was associated with 

decreased •O2
-
 production (Guzik 2000b). Not all results have been in parallel and most 

recently the 242T allele has been found to be a predictor of lower risk of cardiovascular events 

in high risk patients (Arca 2008). 

 

1.4.2 Cerberovascular Disease. 

 

Ito et al studied 226 Japanese patients with ischaemic (rather than cardioembolic or 

haemorrhagic) stroke and 301 control subjects from Tokyo (Ito 2000). They found that the T 

allele was associated with ischemic stroke with an odds ratio of 1.81. The T allele was also 

recently associated with an enhanced risk for ischaemic stroke in a German population based 

case control study of patients below the age of 50 (Genius 2008) 
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1.4.3 Diabetic Nephropathy. 

 

Hodgkinson et al found that there was a marked increase of the TT homozygous genotype in 

patients with type 1 diabetes mellitus and nephropathy compared with long term uncomplicated 

subjects and those with retinopathy alone (Hodgkinson 2003). This suggested that the T allele 

contributes to the susceptibility to diabetic nephropathy. The further findings from this study 

are discussed below with the A640G SNP. 

 

1.4.4 Carotid Atherosclerosis. 

 

The p22phox protein is significantly increased in human diabetic veins and arteries (Guzik 

2002a). Within a Japanese population of 200 subjects with type 2 diabetes mellitus and 215 

healthy non-diabetic controls the effect of this SNP with carotid intima media thickness was 

studied (Hayaishi-Okano 2003). In accordance with other studies by Inoue (Inoue 1998), 

Schächinger (Schächinger 2001) and also Guzik (Guzik 2000b) they found that the presence of 

the T allele conferred upon patients a protective, anti atherogenic effect with a smaller intima 

media thickness observed in this group (Hayaishi-Okano 2003). 

 

1.4.5 Peripheral Vascular Disease. 

 

Given the association of this SNP with CAD, Renner and co workers attempted to document 

whether there was any similar relationship with peripheral atherosclerosis (Renner 2000). In 

341 patients with peripheral vascular disease ranging from intermittent claudication to 
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gangrene compared to 295 control subjects they failed to ascertain any association with the 

C242T SNP with this phenotype. 

 

1.4.6 Pre Eclampsia. 

 

As the p22phox gene variants had been linked to other oxidative stress implicated disease 

phenotypes Raijmakers et al, within a Dutch population, compared normotensive pregnancies 

with pregnancies complicated by pre-eclampsia or the haemolysis elevated liver enzymes and 

low platelets syndrome (Raijmakers 2002). They found no difference in prevalence of C242T 

alleles between cases or controls concluding that the C242T SNP of CYBA was not associated 

with pre-eclampsia. 

 

1.4.7 Endothelial Function. 

 

There is some evidence that this SNP is implicated in endothelial function. Fan and co-workers 

noted that CC homozygotes had a lower flow mediated vasodilatation at the brachial artery 

than TT homozygotes – a relationship evident in subjects who smoked or were obese (Fan 

2007). Schneider et al sought to ascertain whether this SNP was associated with endothelial 

function as measured by endothelium dependent vasodilatation of the forearm vasculature 

utilising forearm plethysmography in 90 subjects with elevated cholesterol levels (Schneider 

2003). They found no association of the CYBA C242T and endothelial function. 
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1.4.8 Insulin Resistance. 

 

A link with insulin resistance was documented by Hayaishi-Okano within the non diabetic 

control group of the study into carotid atherogenesis (Hayaishi-Okano 2003). They found that 

fasting insulin levels and the insulin resistance index of homeostasis model assessment was 

significantly lower in patients with the T allele (Hayaishi-Okano 2003). 

 

In conclusion there have been multiple studies that have identified associations between CYBA 

gene polymorphism and cardiovascular diseases although there have not been consistent 

results. This is perhaps because these variants may identify a particular high-oxidative-stress 

risk subgroup within the healthy population and the population exhibiting cardiovascular risk 

factors, including hypertension and diabetes. Hence this points toward the importance of 

multiple polymorphism assessment in functional and association studies of complex disease 

traits (San José 2008). 

 

1.5 The CYBA A640G and CYBA 930A/G single nucleotide polymorphisms and vascular 

disease. 

 

The A640G SNP is situated within the 3‟ untranslated region of CYBA. This gene variation 

may modify messenger RNA processing and stability and therefore modulate p22phox protein 

biosynthesis (Gardemann 1999). The first study examining this SNP was in the context of 

CAD in a Japanese population (Inoue 1998). In the 402 participants analysed the T allele of the 

C242T gene polymorphism but neither the A allele nor the G allele of the CYBA A640G gene 

variation was associated with a reduced or an increased risk of coronary artery disease (Inoue 

1998). This association was further studied in a German population of 2205 male caucasians 
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(Gardemann 1999). On the contrary they found that the G allele of the A640G SNP was 

significantly more frequent in controls without CAD than in patients with CAD. 

Correspondingly the AA genotype of the A640G SNP was preferentially found in patients with 

CAD. They also found that the association of the A640G gene variation with the presence and 

extent of CAD was not only evident in the entire population but was even stronger in high risk 

(e.g. those with hypertension),younger individuals (Gardemann 1999). They found no relation 

with CAD when assessing potential influence of the C242T SNP. In contrast no association 

was found by Zafari et al when examining the effect of the A640G SNP in an American 

population (Zafari 2002). 

 

Hodgkinson et al found that there was not only a contribution of the C242T SNP upon the 

contribution to risk of nephropathy in patients with type 1 diabetes but also demonstrated that 

the entire CYBA haplotype – including the G640 allele -was important and that there was also a 

significant contribution of the aldose reductase (AKR1B1) gene (Hodgkinson 2003).  

 

The 930A/G SNP, within the promoter of CYBA was recently described by Moreno et al 

(Moreno 2003). They screened the promoter, which they found to contain TATA and CCAC 

boxes as well as Sp1, γ interferon and NFκB binding sites for new mutations. Moreno and co 

workers identified this SNP, localised at position -930 from the ATG codon, which was 

associated with hypertension in a Spanish population (Moreno 2003). In comparing 88 patients 

with hypertension and 68 normotensive controls they found that the presence of the G allele 

was associated with hypertension. Mutagenesis experiments suggested that the G allele had a 

higher promoter activity than the A allele by approximately 30% thus signifying the potential 

functional nature of this SNP. In a multi-factorial chronic disease such as hypertension a 

discrepancy in activity of 30% may well be significant. The same group went on to show that 
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hypertensive GG homozygotes displayed a variety of phenotypes linked with oxidative stress, 

i.e. higher NAD(P)H oxidase activity as assessed by chemiluminescence, higher levels of 

p
22

phox mRNA and protein expression as well as lower NO production as assessed by 

quantification of NO metabolites (San José 2004). Both these studies found functionality that 

was confined to hypertensives only. Why this should be is not clear but the presence of the G 

allele may modulate the transcription of the p22phox gene. Furthermore the -930 polymorphic 

site lies on a potential binding site for C/EBP transcription factors which may be relevant to the 

pathophysiology of hypertension (San José 2004). The G allele of this SNP has also been 

implicated within insulin resistance (Ochoa 2008).  

 

1.6 Nitric Oxide 

 

Initially NO was considered to be a noxious pollutant in exhaust fumes, cigarette smoke and 

responsible for acid rain and degradation of the ozone layer. Since the endothelium derived 

relaxing factor, proposed by Furchgott and Zawadski in 1980 (Furchgott 1980), was identified 

by Palmer and co workers (Palmer 1987) to represent NO there has been considerable attention 

to the multiple functions of this ubiquitous messenger molecule in human physiology and 

pathology. Under normal conditions eNOS generates NO which is multifunctional and in 

addition to its vasorelaxant role also inhibits platelet aggregation, leukocyte adhesion to the 

endothelium, vascular smooth muscle cell migration and growth and also the oxidation of low-

density lipoprotein (Cooke 1997). As stated earlier the latter is a key stage in the evolution of 

atherosclerosis, the means of a structural and functional change within the arterial wall,  

potentially identified by PWA. NO is synthesised from L-arginine by the NOS family of 

oxidoreductases via the L-arginine nitric oxide pathway (Palmer 1988). There are three known 
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isoforms of NOS which are the products of three distinct genes and summarised in table 1.3 

(Hecker 1990, Bredt 1991, Xie 1992).  

Gene Enzyme Calcium 

dependent? 

Chromosome Location Protein (kDa) 

NOS1 NOSI 

(neuronal) 

Yes 12q24.2-24.31 155 

NOS2 NOSII 

(inducible) 

No 17cen-q11.2 125-135 

NOS3 NOSIII 

(endothelial) 

Yes 7q35-36 135 

 

Table 1.3: The characteristics of the three human nitric oxide synthase isoforms. 

 

 

 

1.6.1 Endothelial nitric oxide synthase 

 

This constitutively expressed 135 KDa protein is predominantly associated with the 

particulated specific structures in the plasmalemmal membrane, caveolae, of vascular 

endothelial cells (McDonald 1997, Sakoda 1995). Endothelial nitric oxide synthase is 

responsible for the conversion of L-arginine to L-citruline and NO in the endothelium 

(Moncada 1991) and loss of endothelium derived nitric oxide is plays a pivotal role in 

atherogenesis (Ross 1993). Moreover experimental inhibition of NO synthesis is associated 

with acceleration of formation of early atherosclerotic lesions (Cayette 1994). 

 



 60 

1.6.2 The eNOS gene, NOS3: position and background. 

 

The human eNOS gene, NOS3, is situated on the long arm of chromosome 7(7q 35-26) and 

comprises a total of 26 exons spanning 21 kb (Marsden 1993). Due to the importance of eNOS 

in terms of cardiovascular function in man many investigators have sought to elucidate whether 

mutations or polymorphisms of the NOS3 gene correlate with either an altered physiological 

response or increased risk of cardiovascular disease. 

 

1.8 The NOS3 G894T single nucleotide polymorphism and human physiology. 

 

Given the centrality of NO in the regulation of numerous essential physiological processes 

including maintenance of vascular tone, inhibiting platelet and leukocyte adhesion to vascular 

endothelium, inhibiting vascular smooth muscle cell migration and growth as well as anti-

apoptotic and antioxidant functions SNPs within the NOS3 gene have been the subject of 

several studies which have associated common allelic polymorphism of this gene with human 

physiology (Loscalzo 1995a, Hingorani 1999, Vanhoute 1997, Lowenstein 1994, Karvonen 

2002). 

 

The importance of these studies is in that while the studies detailed in subsequent sections 

detail the importance of genetic variation within established disease phenotype these studies 

are preformed in the preclinical stage, prior to the potentially confounding lifetime of 

environmental risk and also when future strategies may seek to modify the initiation and 

progression of atherosclerosis. The G894T SNP has been examined in most detailed and 

further studies within are central to this thesis hence although other SNPs will be discussed the 
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importance of the G894T SNP in both human physiology, and later, in human pathology will 

be discussed in detail. 

 

1.8.1 Endothelial function: Interaction with environmental and dietary factors. 

 

Utilising flow-mediated arterial dilation, a nitric oxide dependent endothelial response, Leeson 

and co workers (Leeson 2002) investigated the influence of this polymorphism upon 

environmental risk factors, namely pro-atherogenic cigarette smoking and anti-atherogenic n-3 

fatty acid intake, in a young cohort (aged 20-28). They found, even at this age, within males 

the number of aspartate
298 

 alleles dictated the degree as to which endothelial function was 

impaired by smoking and, within both sexes the degree upon n-3 fatty acid status augmented 

endothelial function. They postulated that the steady state of the eNOS enzyme may be lower 

in the asp
298

 variant with a consequent diminution in NO production which, though sufficient 

to maintain vascular homeostasis in the absence of risk factors, is more amenable to further 

attenuation in the presence of risk factors (Leeson 2002). A lager study generated conflicting 

results. Kathiresan and co workers took advantage of the Framing Heart Study Offspring 

cohort which has almost 2500 subjects that have had vascular phenotyping with brachial artery 

flow-mediated vasodilatation or hyperaemic flow velocity measurements (Kathiresan 2005). 

They found no association of the G894T SNP and either of these NO mediated phenotypes. 

Recently however analysis of this SNP within the Prospective Study of the Vasculature in 

Uppsala Seniors Study of 959 subjects aged 70 found that of 23 SNPs analysed only this SNP 

was related to flow mediated vasodilatation (Ingelsson 2008). Furthermore recent work from 

Dundee has shown that within 68 healthy volunteers aged 18-44 the T allele was associated 

with blunted endothelial dependent vasodilatation assessed by forearm venous occlusion 

plethysmography (Godfrey 2007). 
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1.8.2 Maternal vascular adaptation to normal healthy pregnancy. 

 

Flow mediated dilatation was also employed to study 139 women at 12 weeks gestation during 

an early, complication free, singleton pregnancy (Savvidou 2001). At this point in pregnancy it 

is recognised that the eNOS enzyme is physiologically up regulated (Weiner 1994). There was 

an inverse and highly statistically significant relation between brachial artery flow mediated 

dilation and the number of maternal eNOS asp
298

 alleles (Savvidou 2001). Not only is this a 

fascinating insight into the pathophysiology of normal healthy pregnancy but moreover it 

implicates a role in genetic variation of the NOS3 gene in modulating risk of pre-eclampsia. 

 

1.8.3 Carotid intima-media thickness. 

 

An Italian study undertook to examine the effect of this SNP as well as the T
-786

→C SNP of the 

NOS3 gene upon not only upon flow mediated dilatation but also carotid intima-media 

thickness, a marker of early atherosclerosis, in 118 subjects aged 21-45 (Pardossi 2004). They 

found that the TT genotype (asp
298

/ asp
298 

variant) was significantly and independently 

associated with decreased brachial artery flow mediated dilatation and increased carotid 

intima-media thickness in this group of young healthy individuals free of traditional 

cardiovascular risk factors. On the contrary they found no evidence of an effect of the T
-786

→C 

SNP on this measurement of endothelial function or upon carotid thickening. This parallels the 

findings of Rossi et al who found that the T
-786

→C altered forearm blood flow in patients who 

were hypertensive but not normotensive (Rossi 2003b). The extrapolation of this being that this 
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is a „disease-modifying allele‟ and in itself insufficient to account for enhanced susceptibility 

to vascular dysfunction. 

1.8.4 Baseline production of nitric oxide. 

 

Veldman et al examined the differences in basal NO production between the different NOS3 

G894T genotypes but quantifying the vasoconstrictor response to eNOS inhibition by infusion 

of N
G
-monmethyl-L- arginine (L-NMMA) (Veldman 2002). The absolute and relative decrease 

in forearm blood flow during infusion of L-NMMA was attenuated in the asp
298

 variant 

concluding that basal NO production was attenuated in healthy subjects heterozygous or 

homozygous for the T allele of this substitution. 

 

1.8.5 Blood pressure response to endurance training. 

 

Four hundred and eighty four subjects were studied by Rankinen et al to elicit the association 

between this polymorphism and endurance training in previously sedentary normotensive white 

subjects (Rankinen 2000). They found that the TT homozygote had a blunted responsiveness of 

sub maximal exercise diastolic blood pressure and rate pressure product (an index of 

myocardial workload) than heterozygotes or GG homozygotes. 

 

1.8.6 Heamodynamic reactivity to stress. 

 

Malhotra and colleagues examined the effect of the G894T SNP upon heamodynamic response 

to stress whilst also taking into account possible confounding factors such as adipocity and 

ethnic background (Malhotra 2004). They showed that European Americans exhibited lower 
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diastolic blood pressure reactivity unless they were obese Asp allele carriers. African American 

non obese asp carriers exhibited the greatest total peripheral resistance reactivity. Obese asp 

allele carriers exhibited the greatest increases in cardiac output and the largest decrease in NO 

metabolites to a stress response. 

 

1.8.7 Inflammatory and oxidative stress markers. 

 

The association of the G894T SNP and elevated levels of inflammatory and oxidative stress 

markers comes from a group from Greece who studied 595 from the greater Athens area 

(Chrysohoou 2004). They found that there was TT homozygotes had higher levels of oxidised 

low density lipoprotein, white cell count and fibrinogen. They found a non significant 

association with homocysteine (p=0.08) but Brown et al, looking at 2 different populations 

found that the TT homozygote was associated with significantly higher levels of homocysteine 

in non smokers with low folate levels (Brown 2003). 

 

1.8.8 Post challenge insulin levels. 

 

Finally, in terms of human physiology a recent study by Maruyama and colleagues from Japan 

found no difference in insulin sensitivity between 247 non diabetic controls but post standard 

75g oral glucose tolerance elevated levels of Insulin were noted in carriers of the T allele as 

compared to GG homozygotes (Maruyama 2003). 
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1.9 The NOS3 G894T single nucleotide polymorphism and human pathology. 

 

As detailed thus several studies have documented the effect of this SNP upon human 

physiology. Likewise, although some studies have been negative a substantial amount of the 

available literature links this functional polymorphism with an important role in human 

pathology. 

 

1.9.1 Ischaemic heart disease. 

 

The first report emanated from Japan in 1998 when Hibi and associates investigated the role of 

this SNP in 226 patients at first presentation of acute myocardial infarction with comparison to 

482 control subjects (Hibi 1998). They found that those homozygous for the TT allele were at 

increased risk of acute myocardial infarction. Moreover they noted that lack of an association 

with the heterozygotes for this SNP suggested that the 894T allele was not dominant and that 

the increased risk posed by this SNP was confined to the TT homozygote. Evidence associating 

this SNP with coronary artery disease in a European population was subsequently published in 

1999 by Hignorani and co workers (Hignorani 1999). They compared 249 white individuals 

with acute myocardial infarction with healthy control subjects from East Anglia. Again the 

increased risk was confined to individuals homozygous for the TT allele and they quantified 

the increased risk as lying between 2.5 to 4 times that of individuals homozygous for the GG 

allele. A subsequent study, the ECTIM study, genotyping patients from France and Northern 

Ireland failed to corroborate this finding failing to elicit a significant association between this 

SNP and Ischaemic heart disease. A further positive association came again from a Japanese 

population of 285 patients with an acute myocardial infarction and 607 age matched controls 

which demonstrated that the missense G894T NOS3 variant (heterozygote and TT 
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homozygote) was associated with acute myocardial infarction (Shimasaki 1998). Guzik et al 

(Guzik 2001) did not show any association between this variant, however, and endothelium 

dependent vasorelaxation to different agonists in human saphenous veins from patients with 

coronary artery disease. Further negative studies between this polymorphism and ischaemic 

heart disease were generated by Jeeroburkhan in the United Kingdom and Schmoelzer from 

Austria (Jeeroburkhan 2001, Schmoelzer 2003).  

 

The overwhelming balance of evidence does, however, implicate this SNP as being a risk 

factor for ischaemic heart disease. Further corroboratory evidence was provided by Gardemann 

from a German population of 2717 individuals undergoing coronary angiography who 

associated, in younger individuals, an association between T allele carriers and an increased 

risk of coronary artery disease or myocardial infarction and also by Colombo from an Italian 

population of 201 patients with coronary artery disease where the T allele was associated with 

not only the presence of coronary artery disease but also the extent and severity of the 

atherosclerotic lesions (Gardemann 2003, Colombo 2002). 

 

Perhaps the most compelling evidence comes from a recent meta-analysis of 26 studies 

involving 23 028 subjects that sought to clarify the role of this SNP and the -786T/C SNP as 

well as the intron 4 SNP that are discussed below (Casas 2004). The strength of this study is 

that by sheer weight of numbers throughout a variety of populations they were able to 

overcome the potential criticism of smaller, possibly underpowered case-control allele 

association studies. This study concluded that the summary odds ratio under a fixed-effect 

model showed that individuals homozygous for the T allele were 1.31 times more likely to 

develop ischaemic heart disease. Even when the study with the largest influence upon this odds 

ratio was removed (Hignorani 1999), the overall estimate remained similar. Also interestingly 
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despite racial differences between the frequency of the 894T allele between Asian and non-

Asian populations, a meta-regression analysis showed that ethnic background as well as 

smoking, age and gender were not significant sources of heterogeneity (Casas 2004). A 

subsequent larger meta-analysis however suggests that that a potentially deleterious effect of 

the T allele may infact be markedly reduced (Odds Ratio 1.17) (Casas 2006). Furthermore the 

association is not without contention as in a prospective multi centre study Andrikopoulos and 

co workers did not, within a Greek population, show any association of the Asp298 variant 

with risk of further myocardial infarction, extent of coronary artery disease or in hospital 

mortality after acute myocardial infarction (Andrikopoulos 2008). 

 

1.9.2 Cerebrovascular disease 

 

Following the finding that the G894T SNP had proven to be putatively a strong risk factor for 

atherosclerosis within the coronary circulation (Hignorani 1999) several investigators sought to 

elucidate as to whether this finding potentially translated to the cerebral circulation (Markus 

1998, MacLeod 1999, Elbaz 2000, Akar 2000). Markus and co workers studied 361 

consecutive white patients recruited to a London teaching hospital comparing the allelic 

frequencies with 236 normal controls. They found no relationship between this SNP in exon 7 

of NOS3 (Markus 1998). A larger study from Paris, by Elbaz et al on behalf of the GÉNIC 

investigators, recruited 460 cases and 460 controls that were recruited among individuals 

recruited at the same individuals hospitalized at the same institutions and individually matched 

on age, sex and centre (Elbaz 2000). They found, counter-intuitively that homozygosity for the 

G allele was associated with cerebral infarction, especially with lacunar stroke. Other studies 

from Aberdeen (MacLeod 1999) and Ankara, Turkey (Akar 2000) failed to find any significant 

association between the G894T SNP and ischaemic stroke. 
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1.9.3 Coronary in-stent stenosis 

 

The genetic contribution to coronary in-stent restenosis was recently examined within London 

teaching hospitals (Gomma 2002). A total of 226 patients that underwent elective or 

emergency coronary artery stenting were recruited and carriers of the T allele exhibited a 

significantly higher frequency of restenosis (Odds Ratio 1.88) when compared to GG 

homozygotes (Gomma 2002). Moreover the -786T/C SNP was also found to have an 

association with the carriers of the -786C allele showing a higher risk of restenosis with an 

odds ratio of 2.06. These effects were found essentially to be additive and independent of other 

classical risk factors (Gomma 2002). 

 

1.9.4 Survival in patients with congestive cardiac failure. 

 

The role of the T allele variant of this common SNP was recently reported in a study from the 

USA (McNamara 2003). 469 patients with an ejection fraction of less than 45% were recruited 

and the investigators demonstrated that event free survival was influenced by the presence or 

absence of the T allele. Interestingly, in subset analysis the adverse impact of the T allele was 

evident primarily in patients with non ischaemic cardiomyopathy (McNamara 2003). This is 

surprising given the evidence linking this SNP with risk of ischaemic heart disease as listed 

above. 
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1.9.5 Coronary artery spasm and an enhanced vascular response to phenylephrine. 

 

Philip et al (Philip 1999) injected the alpha adrenergic agonist, phenylephrine into patients 

undergoing cardiac surgery and found the enhanced response to alpha adrenergic stimulation in 

patients with the 894T allele. This finding highlights the potential modulation of a vascular 

response to vasoconstricting hormones by this SNP. This finding did not extend however to α2 

adrenoceptor-induced coronary vasoconstriction, which appeared exclusively associated to the 

825T allele of GNB3, the gene which encodes the G protein β3 subunit, previously associated 

with an enhanced coronary blood flow reduction in response to α2 adrenoceptor activation 

(Naber 2003). Within a Japanese population where variant angina tends to be associated with 

diffuse coronary artery spasm the role of this polymorphism was examined (Chang 2003). 

They found, further implicating this SNP in cardiovascular pathophysiology, that the T allele 

was associated with diffuse, rather than focal spasm (usually associated with an area of 

atherosclerosis) of the coronary arteries (Chang 2003). 

 

1.9.6 Renal Disease 

 

Noiri et al compared 185 patients with end stage renal disease with 304 unrelated healthy 

individuals. They demonstrated an accumulation of T alleles, especially in patients with 

diabetes mellitus as the cause of their end stage renal disease (Noiri 2002). They postulated that 

diminished NO production in individuals with the T allele may augment the proinflammatory 

leukocyte adhesion to endothelial cells consequently decreasing the vasodilatory capability and 

further exacerbating atherosclerotic lesions in end stage renal disease. 
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1.9.7 Pre Eclampsia 

 

Pre eclampsia, hypertension and proteinuria in pregnancy, is a transient endotheliosis in other 

wise healthy young women. Serrano and colleagues postulated that the NOS3  gene was a 

candidate gene for pre eclampsia as physiologically there is considerable evidence that NO 

plays a role in pregnancy induced uterine vasodilatation (Serrano 2004). Acetylcholine is more 

potent and efficacious in producing dilatation of isolated uterine arteries from pregnant than 

from non-pregnant patients, an effect blocked by NOS inhibitors (Nelson 1995, Nelson 1998). 

Furthermore, in human uterine arteries there is a pregnancy associated increase in calcium 

dependent NOS activity and eNOS protein expression (Nelson 2000). 

 

Therefore Serrano et al studied 322 pregnancies with pre-eclampsia with comparison to 522 

controls (Serrano 2004). They analysed the effect of all 3 SNPs discussed in this introduction 

but found no increase in the risk of pre-eclampsia for the intron 4 or the -786T/C 

polymorphisms. They did however find a significant association in women homozygous for the 

T allele who had an adjusted odds ratio for pre-eclampsia of 4.6 (Serrano 2004). Furthermore 

after a multivariate analysis, carriage of the 894T-786C-intron 4b haplotype was associated 

with an increased risk of pre-eclampsia (odds ratio 2.11) compared to the 894G-786T-intron 4b 

haplotype. This corroborates earlier evidence associating the 894T allele with severe pre-

eclampsia in a Japanese population (Yoshimura 2000).  
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1.9.8 Cognitive Function 

 

A Spanish study recently reported on mild cognitive impairment and the G894T SNP (Solé-

Padullés 2004). Though no direct association was observed between this NOS3gene variation 

and mild cognitive impairment in 62 subjects studied those carriers of the 894T allele with 

mild cognitive impairment preformed worse in the Mini Mental State Examination, Wechsler 

Memory Scale (Revised),  long term visual memory and the phonetic verbal fluency tests 

(Solé-Padullés 2004). Thus the T allele represents a genetic risk factor for cognitive 

impairment in the elderly. 

 

1.9.9 Hypertension 

 

The first study linking this SNP and hypertension was published by Miyamoto and co workers 

(Miyamoto 1998). They examined the association of several SNPs of the NOS  gene and 

hypertension including the G894T SNP and the VNTR Intron 4 SNP in 2 different geographic 

sites in Japan, comparing hypertensives and normotensive controls. The odds ratio was similar 

in both places (2.3%) associating the 894T allele, but not the Intron 4 SNP, with hypertension 

(Miyamoto 1998). Though these findings in an were not substantiated in Australian (Benjafield 

2000) or a Scandinavian (Karvonen 2002) populations further evidence of an association of the 

894T allele, and with essential hypertension resistant to conventional treatment, came from a 

Czech population (Jáchymová 2001).  

 

Following the conflicting results generated from these association studies an elegant 

examination of the association of all three di-allelic SNPs (G894T, -786T/C and Intron 4 
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VNTR) and also another SNP, within Intron 13 of NOS3, was recently published by Persu 

(Persu 2005). They genotyped 110 dizygotic white twin pairs from Flanders, Belgium and 

examined blood pressure as a continuous trait using ambulatory blood pressure recorders. 

Although sib-pair analysis failed to show any significant association of any specific SNP with 

blood pressure, haplotype analysis disclosed a significant association between NOS3 

haplotypes and daytime systolic blood pressure (Persu 2005). Ultimately as this approach is 

more informative further studies, and specifically functional studies within a given phenotype 

would be most informative. 

 

1.9.10 Insulin resistance 

 

Hyperinsulinaemia and insulin resistance are cofactors in the pathophysiology of essential 

hypertension with the association of impaired endothelial with decreased nitric oxide 

production shared by insulin resistance and essential hypertension (Cleland 2000). Hence Chen 

and colleagues examined, in an American population, a community based sample of 1021 

unrelated African American and white young adults aged 19 to 38 years (Chen 2001). They 

sought to obtain information on the combined effects of the NOS3 G894T SNP and Insulin 

resistance status (using the homeostasis model assessment of insulin resistance utilising fasting 

insulin and glucose) on blood pressure. After adjusting for sex, age, body mass index, carriers 

of the T allele displayed higher systolic, diastolic and mean arterial blood pressure and was not 

race specific (Chen 2001). This association was modulated by insulin resistance status. 
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1.9.11 Aortic Stiffness: Pulse Wave Velocity. 

 

Given the association described above between SNPs of the NOS3 gene and hypertension 

Lacolley and colleagues sought to ascertain whether this SNP had an association with a 

surrogate marker of arterial stiffness, PWV (Lacolley 1998). They measured carotid-femoral 

pulse wave velocity in 309 untreated hypertensive and 123 normotensive controls. They failed 

to show any association with either blood pressure or pulse wave velocity in this French 

population (Lacolley 1998). 

 

1.9.12 How may the G894T single nucleotide polymorphism of the NOS3 gene  be 

functional? 

 

The G894T SNP of the NOS3 gene has, therefore been widely implicated in both human 

physiology as well as the pathogenesis of vascular disease in man. The key question pertains as 

to if this SNP is itself functional and thus an important potentially modifiable target in the 

treatment of vascular disease or whether not this is merely a marker of another significant loci 

that heralds a functional effect that has so far eluded discovery. 

 

Several groups have undertaken painstaking research upon the structure, localization and 

putative effects of this SNP upon the biology of NO. This exon 7 polymorphism (894G→T) 

which determines the location of either a glutamate or an aspartate residue at position 298 has 

been associated with altered vascular biology but with several reservations. 

 

Firstly both glutamate and aspartate are conservative substitutions hence it is unlikely that they 

themselves produce functional affects. This SNP is of special interest as this conservative 
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amino acid substitution within the oxygenase domain of the eNOS may influence eNOS 

function. Additionally analysis of the crystal structure of eNOS indicates that residue 298 is 

situated externally, distant from the active catalytic site and cofactor binding domains, and thus 

aspartate substitution would theoretically have minimal effect upon enzymatic activity 

(Fischmann 1999).  

 

Initial evidence was provided by Tesauro and co-workers who, utilising transfected cells, 

primary human endothelial cells and human hearts, demonstrated that eNOS with aspartate but 

not glutamate at position 298 was cleaved generating 100 KDa and 35 KDa products (Tesauro 

1999). The altered cleavage was postulated to alter NO generation. Additionally they noted, 

using Chou-Fasman secondary structure predictions that this seemingly conservative 

replacement generated significant structural changes. This contention was ultimately 

challenged by Fairchild et al who showed that the intracellular cleavage discovered in cells 

harbouring the Asp298 NOS3 substitution was an  in vivo artefact due to the acidic pH used in 

the study (Fairchild 2001).  

 

Gosler et al performed a detailed characterization of the G894T SNP with respect to its effect 

upon enzyme kinetic parameters, bound cofactors, uncoupled NADPH oxidase activity and 

binding affinities for calcium calmodulin and tetrahydrobiopterin. They showed no difference 

between the Glu/Glu or the Asp/Asp variants (Gosler 2003). 
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1.10 The NOS3 -786T/C SNP and human pathophysiology. 

 

The -786T/C SNP of the NOS3 gene has also been studied with respective to human 

pathophysiology. This variant results in a cytosine instead of thymidine substitution at 

nucleotide -786 (Nakayama 1999). This SNP has been shown to reduce the promoter activity 

(Nakayama 1999) and consequently reduce eNOS protein expression and eNOS activity (Wang 

2000a).  

 

1.10.1 Ischaemic heart Disease and coronary in-stent stenosis.  

 

The first evidence of the putative role of this SNP in ischaemic heart disease was produced by 

Álvarez who not only found that the frequency of patients homozygous for the C allele were 

significantly increased in patients compared to controls but also observed a synergistic effect 

between the NOS3 CC and the ACE DD genotypes in the risk of developing early coronary 

artery disease (Álvarez 2001). Colombo et al (Colombo 2003) in a study of 415 unrelated 

individuals from Italy with coronary artery disease described significant linkage disequilibrium 

between the G894T SNP and the -786T/C SNP. Both variants, they found, were significantly 

associated with the occurrence and severity of coronary artery disease and that the risk of CAD 

was increased amongst individuals homozygous for the C allele of the -786T/C SNP when 

compared to individuals homozygous for the T allele. Moreover individuals who were 

homozygous for the T allele of the G894T allele of the G894T SNP and who had at least one C 

allele of the -786T/C SNP were at greatest risk of coronary artery disease. As detailed above 

carriers of the -786C allele were found to be at higher risk of coronary instent stenosis (Gomma 

2002). Not all studies have been congruous as Jeerooburkhan did not show any association 

between this SNP and risk of ischaemic heart disease in the UK (Jeeroburkhan 2001). In a 
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large study of 1225 individuals, however, Rossi et al for the GENICA study performed 

multiple logistic regression analysis for the effect of this SNP and the G894T SNP on two and 

three vessel coronary artery disease. They found that the -786T/C SNP, but not the G894T 

SNP, was associated with coronary artery disease with subjects harbouring a -786C allele 

having an increased risk of tow or three vessel coronary artery disease (Rossi 2003b). 

 

Again, as with the G894T SNP, the meta analysis described above examined the role of the -

786 T/C SNP upon risk of ischaemic heart disease (Casas 2004). While examining for both the 

dominant or recessive models of genetic association the authors failed to ascertain any 

association between this SNP and risk of ischaemic heart disease (Casas 2004). The subsequent 

updated meta analysis from the same group in 2006 also did not assocaite this SNP with 

coronary heart disease (Casas 2006). 

 

1.10.2 Insulin resistance. 

 

Altered eNOS activity has been associated not only with hypertension but also glucose 

homeostasis and insulin resistance (Duplain 2001). Ohtoshi et al examined the relationship 

between the G894T and -786T/C SNPs, common eNOS gene variants and insulin resistance 

(Ohtoshi 2002). While they observed no relationship with the former several fascinating 

findings were observed with the latter. Non diabetic subjects with the -786C allele had higher 

fasting glucose and homeostasis model assessment of insulin resistance than -786 TT 

homozygotes; diabetic subjects with the T allele had higher HbA1c levels and utilising the 

euglyceamic hyperinsulineamic clamp diabetic patients with the C allele demonstrated a lower 

glucose infusion rate than those without (Ohtoshi 2002). Moreover diabetic patients with the C 

allele had lower levels of NO metabolites. Further association associating this SNP with insulin 
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resistance was produced by Fernandez et al (Fernandez 2004) who observed that the -786C 

homozygote was significantly more frequent in hypertensive patients with metabolic syndrome 

than in those without the syndrome. When they combined analysis of this SNP with the G894T 

SNP they identified the 786C894G as the risk haplotype for metabolic syndrome susceptibility. 

Lastly -786T/C genotype has been associated with AIx in children with type1 diabetes mellitus 

(Zineh 2007).  

 

 

1.10.3 Coronary artery spasm. 

 

Similar to the G894T mutation this SNP is associated with increased susceptibility for the risk 

of coronary artery spasm (Nakayama 1999). Subjects homozygous for the C allele were at a 3 

times elevated risk for coronary artery spasm as compared to heterozygotes or TT 

homozygotes. Moreover this group subsequently showed that this polymorphism combines 

with smoking to increase the risk of coronary artery spasm (Nakayama 2003). 

 

1.10.4 Internal carotid artery stenosis. 

 

Further evidence of the role of this SNP in the atherosclerotic process was recently published 

by an Italian group who observed that patients homozygous for the C allele were at higher risk 

of moderate to severe internal carotid artery stenosis, especially ulcerative lesions (Ghilardi 

2002). 
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1.10.5 Cerebral blood flow. 

 

The effect of this SNP upon cerebral blood flow parallels that of coronary artery spasm in 

regards to there being no recognised association between cerebral blood flow within non 

smokers but in smokers CC homozygotes had a significant decrease in cerebral blood flow 

(Nasreen 2002). 

1.10.6 Hypertension. 

 

Hyndman and colleagues, in a Canadian population of 705 healthy individuals, examined the 

effect of this polymorphism upon hypertension and documented that subject homozygous for 

the C allele had significantly higher systolic blood pressure and approximately 2 times more 

likely to be hypertensive (Hyndman 2002). 

 

1.11 The NOS3 Intron 4 variable number of tandem repeat and human pathophysiology. 

 

Several variable number of tandem repeats (VNTR) have been described in the NOS3 gene 

(Marsden 1993) including a polymorphism which represents 4 or 5 times the 27 base pair 

variable number of tandem repeats in intron 4 (NOS3 4a/b) (Wang 1996). Considerable 

interplay appears to exist between this SNP and the -786T/C SNP. Wang demonstrated that the 

27-bp repeat from the NOS3 intron 4 has a cis-regulating effect on the eNOS promoter (Wang 

2002a). Furthermore this regulation appeared to be haplotype dependent on both the eNOS 

promoter and intron 4 DNA sequence variants. 
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1.11.1 Ischaemic heart disease. 

 

The vast majority of the associations of this SNP with cardiovascular pathology centre upon 

ischaemic heart disease 

 

The first report associating this SNP with ischaemic heart diseased was published in 1996 by 

Wang et al (Wang 1996). They associated homozygosity for the NOS3a allele as a risk factor 

for coronary artery disease only in smokers. A further study, larger study with 455 patients 

with ischaemic heart disease and 550 controls, also from Japan confirmed the findings of Wang 

(Wang 1996) but found that the association of homozygosity for the NOS3 extended to both 

smokers and non-smokers (Ichihara 1998).  Furthermore these results were reproduced within a 

Turkish population where Hatemi found that the presence of an intron 4a allele was observed 

more frequently in patients with myocardial infarction than in controls (Hatemi 2002).  

 

Not all the literature is congruous, however, and Hibi et al, though they associated the TT 

homozygote of the G894T SNP with risk of acute myocardial infarction showed, within this 

Japanese population, no association between homozygosity of this SNP and ischaemic heart 

disease (Hibi 1998). Similar findings were elicited from a German population who, in 2717 

individuals undergoing coronary angiography compared to 533 healthy controls, failed to find 

an association between this SNP and risk of coronary artery disease and acute myocardial 

infarction (Gardemann 2002). Again as with all 3 SNPs Jeerooburkhan failed to ascertain any 

relationship between NOS3  genotype and either risk of ischaemic heart disease or plasma NO 

metabolites in a sample of middle aged white men in the United Kingdom. 
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In combining the 16 studies available examining the contribution of the intron 4a allele to 

ischaemic heart disease Casas concluded that, with a probable recessive genetic model of 

inheritance, the aa allele was associated with ischaemic heart disease (Casas 2004). 

 

1.11.2 Hypertension and correlation between blood pressure and physical activity. 

 

Kimura et al found a significant association between the intron4 VNTR genotype and physical 

activity level on systolic blood pressure (Kimura 2003). The association was only confined to 

those in the lowest tertile of physical activity level who had at least one a allele but 

nevertheless facilitates a better understanding of the mechanism of exercise to reduce 

hypertension and modulate cardiovascular risk.  

 

1.11.3 Pre-Eclampsia 

 

For the same reasons detailed above the Intron 4a/b had been investigated with regard to pre-

eclampsia. Although as previously described the influence of this SNP was found in one study 

to only extend as part of the 894T-786C-intron 4b haplotype in multiple regression analysis 

(Serrano 2004) others have associated this SNP with Pre-eclampsia (Tempfer 2001). Indeed the 

latter study elucidated a striking association odds ratio of developing pre-eclampsia when one 

of the shorter a alleles was present, 6.5 (Tempfer 2001). 

 

Other important reports that failed to find a significant association between this SNP and 

vascular disease includes negative studies pertaining to diabetic nephropathy (Rippin 2003) 

  



 81 

1.12 Biochemical indices as markers of cardiovascular disease 

 

Markers of Inflammation have received widespread attention within the medical literature over 

recent years as the link between low grade inflammation and cardiovascular disease gains 

rising precedence (de Maat 2004). Inflammation would appear to play a crucial role in all steps 

in the development of atherosclerosis from the nascent lesion to a full blown acute coronary 

syndrome (Libby 2002). Some of the markers extensively studied in relation to their putative 

roles are C-reactive protein (CRP), interleukin 6 (IL 6), Adiponectin and Intracellular adhesion 

Molecule 1 (ICAM1). 

 

1.12.1 C-reactive protein. 

 

CRP is a plasma protein which is produced by the liver and is an acute phase protein. It 

belongs to the pentraxin family of proteins and was initially discovered by Tillett and Francis 

in 1930 as a substance in the serum of patients with acute inflammation that reacted with the C 

polysaccharide of pneumococcus (Tillett 1930). CRP is a prototypic marker of inflammation 

and as will be described has been denoted to predict cardiovascular events in apparently 

healthy subjects, and a poor prognosis following acute coronary syndromes. 

 

Basal levels of CRP are associated with an increased risk of diabetes, hypertension and 

cardiovascular disease. Raised levels of CRP indicate that atherosclerosis is a chronic 

inflammatory process (Hirschfield 2003). Moreover several large scale prospective 

epidemiological studies have shown that plasma levels of CRP are strong independent 

predictors of atherosclerotic events in apparently healthy women and men (Ridker 1997, 

Ridker 1998a). Elevated CRP is a surrogate marker for sub clinical atherosclerosis (Wang 
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2002b) and is involved in development and progression of atherosclerosis (Pasceri 2000). 

Elevated baseline CRP was found to portend heightened risk of 30 day death or myocardial 

infarction in 727 patients prior to percutaneous coronary intervention (Chew 2001). Increases 

in pulse pressure in a large stuffy of almost 10,000 were associated with elevated CRP levels 

amongst healthy adults from the United States, independent of SBP and DBP (Abramson 

2002). Low grade inflammation has also been associated with the insulin resistance syndrome 

(Yudkin 1999, Festa 2000) and markers of low grade chronic inflammation have been shown 

prospectively to independently predict those at high risk for type 2 diabetes mellitus(Schmidt 

2000, Freeman  2001). Leinonen and co workers demonstrated that fasting levels of sICAM-1, 

IL-6 as well as CRP were associated with Insulin resistance and adiposity in 239 female 

patients with type 2 diabetes (Leinonen 2003). Additionally women with poly cystic ovarian 

syndrome have significantly increased CRP levels compared to healthy controls (Kelly 2001).   

 

There has been some dubiety regarding the strength of the association between CRP and CVD 

and a large study by Danesh and colleagues suggested that CRP may only be a modest risk 

factor for CVD (Danesh 2004). Furthermore Timpson and co workers examined associations 

between serum CRP concentrations and metabolic syndrome phenotypes in the British 

Women‟s Heart and Health Study then comparing these estimates with those derived from a 

randomized framework with common CRP gene haplotypes (Timpson 2005). While they found 

that CRP haplotypes were associated with plasma CRP concentration they noted disparity 

between estimates of the association between plasma CRP and phenotypes comprising the 

metabolic syndrome derived from conventional analysis and comparing those from a 

Mendelian randomization approach. Thus they suggested that there was no causal association 

between CRP and the metabolic syndrome phenotypes (Timpson 2005). 
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There thus remains contention as to whether CRP levels are merely a marker or whether there 

is a pathophysiological role for CRP within the vascular diseases described (de Maat 2004, 

Schunkert 2008). A statistical association is not analogous to clinical or pathophysiological 

causality (Schunkert 2008).  

 

CRP has been associated with arterial stiffness. Yasmin et al found that, even after controlling 

for confounding factors such as blood pressure, age, gender and smoking, aortic and brachial 

PWV were both associated CRP in 427 healthy individuals (Yasmin 2004). This group did not 

find any association with Aix and CRP. On the contrary another group from Estonia, in a 

smaller cohort of healthy individuals (158) found significantly higher Aix in subjects with CRP 

levels above 1mg/ml and in multiple regression analysis Aix correlated positively with age, 

female gender, short stature, mean arterial pressure and CRP (Kampus 2004).  

 

1.12.2 Interleukin 6  

 

IL-6 is a cytokine with both pro inflammatory and anti inflammatory effects on many cell 

types, affecting both B cell immunoglobulin production and T cell cytotoxic activity (Barton 

1996). IL-6 also modulates platelet function as well as endothelial function and is the only 

substance known to induce synthesis of all of the acute phase proteins by the liver (Lindmark 

2001). Il-6 itself is produced by many cellular elements such as activated macrophages, 

lymphocytes, endothelial cells and vascular smooth muscle cells (Rattazzi 2004).  

 

A series of studies have revealed the association of Il-6 and „traditional‟ vascular risk factors. 

Il-6 levels rise with age and are significantly associated with high blood pressure, smoking and 

insulin sensitivity (Bermudez 2002, Fernandez- Real JM 2001,Ridker 2000). Furthermore 
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production of IL-6 increases at increasing levels of adiposity in healthy men and women 

(Mohammed-Ali 1997). A circadian variation exists with increased cytokine levels during the 

night exists (Sothern 1995). 

 

Chae and co workers documented significant graded relationships between blood pressure and 

IL-6 and sICAM-1 in 508 apparently healthy men (Chae 2001). Il-6 plasma levels are elevated 

in patients with unstable angina compared to those with stable angina or healthy subjects 

(Biasucci 1996, Biasucci 1999). Large scale prospective studies have shown that IL-6 plasma 

levels in the upper quartile of the considered normal range are independently predictive of an 

increased risk of premature death or further myocardial infarction (Harris 1999, Ridker 2000). 

The idea that IL-6 is involved in progression of CAD is further substantiated by a Swedish 

study which identified circulating levels of IL-6 as a strong independent risk factor of increased 

mortality in unstable CAD and identifies patients, with high IL 6 levels (>5ng/l), who benefit 

most from a strategy of early invasive management (Lindmark 2001).  

 

1.12.3 Adiponectin 

 

Adiponectin is a protein hormone which regulates a variety of metabolic processes including 

glucose regulation and fatty acid catabolism. It is a 244 amino acid long polypeptide with 4 

distinct regions (Whitehead 2006). The gene for Adiponectin has been identified and is situated 

on chromosome 3p27 and has been highlighted as affecting genetic susceptibility to obesity 

and type 2 diabetes mellitus (Ukkola 2005). It is solely secreted from adipocytes and plasma 

levels are inversely and paradoxically proportional to body mass index, unlike leptin, another 

adipose tissue specific secretory product which is known to increase with body mass index 

(Takahashi 1996). Hence patients who have the highest BMI and highest quantity of adipose 
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tissue have the lowest levels of Adiponectin. There is also a sexual dimorphism with females 

displaying higher levels than males as well as circadian (Gavrila 2003).  

 

This hormone has been described as playing a key role in type 2 diabetes mellitus, obesity and 

atherosclerosis. Patients with diabetes have lower Adiponectin levels than control subjects and 

moreover those with macroangiopathy have lower levels than those without (Hotta 2000). 

Moreover plasma levels of Adiponectin were lower in Pima Indians, a unique cohort where the 

high prevalence of obesity aggregates with diabetes (Lindsay 2002). Additionally plasma levels 

of Adiponectin strongly correlate with insulin sensitivity (Stefan 2002). Thus Adiponectin has 

a key role in insulin action and low levels may result in insulin resistance and diabetes mellitus 

(Matsuzawa 2004). Adiponectin has also been found to predict Insulin resistance but not 

endothelial function in 294 adolescents (aged 13 to 16 years) (Singhal 2005). Patients with 

hypertension and ischemic heart disease have also been found to have lower levels of 

Adiponectin (Mallamaci 2002, Kumada 2003). Interestingly, whereas there is no adiponectin 

present in untreated normal vascular walls in rabbit models when balloon injury is introduced 

to vascular walls, a markedly positive immunohistochemical stain was found with anti 

adiponectin antibody (Okamoto 2000).  Therefore the presence of adiponectin may be a key 

pathological event in the development of CAD. The importance of adiponectin as a potential 

risk factor in vascular disease is further corroborated by Kaplan-Meyer analysis of patients 

with chronic renal insufficiency which demonstrated that subjects with lower levels died of 

cardiac events more frequently during a 4 year observation period (Zoccali 2002). The high 

molecular weight form of adiponectin is more strongly associated with insulin sensitivity (Hara 

2006), is more strongly associated with incident risk of diabetes (Nakashima 2006) and is also 

more strongly associated with protection against endothelial cell apoptosis (Kobayashi 2004) 

and hence is perhaps a more sensitive marker of coronary heart disease then Adiponectin per 
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se. It was not, however associated with incident coronary heart disease in women from the 

British Women‟s Health and Heart Study (Sattar 2008). It is unclear whether adiponectin is a 

key mediator or bystander in cardiovascular disease (Antoiniades 2009). It is therefore too 

early to nominate adiponectin as the origin of vascular disease. 

 

1.12.4 Intracellular adhesion molecules 

 

Cellular adhesion molecules in part mediate adhesion of circulating leucocytes to the 

endothelial cell (Springer1994, Adams 1994). Subsequent transendothelial migration is 

putatively an important step in the initiation of atherosclerosis (Ross 1993). ICAM1 is 

constitutively expressed on endothelial cells in most regional vascular beds (Granger 2004). 

Pathological studies have shown increase cellular adhesion molecule expression in several 

components of the atherosclerotic plaque (Poston 1992, O‟Brien 1996). There is a potential 

role for adhesion molecules in acute atherothrombotic syndromes (Jang 1994). Furthermore 

plasma concentrations may be higher among patients with atherosclerosis (Peter 1997, Blann 

1994) and dyslipidaemia (Hackman 1996). As noted above Chae et al described in healthy men 

a graded relationship between blood pressure and levels of ICAM 1 (Chae 2001). Ridker 

defined the importance of ICAM1 in CHD by showing in a large prospective cohort of 

apparently healthy men that increasing concentration of ICAM1 is associated with risk of 

future myocardial infarction (Ridker 1998b). The risk of future myocardial infarction was 80% 

higher in patients with baseline ICAM1 concentrations in the highest quartile (Ridker 1998b).  

 

In summary inflammatory activation, in part mediated by the molecules detailed above, in 

reaction to an atherogenic stimuli may, in the arterial wall, cause alterations in vascular 
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stiffness. We therefore sought to examine the putative relationship between these inflammatory 

markers and arterial stiffness in healthy volunteers. 

 

 

1.13 Diminished nitric oxide bioactivity: A potential link between non invasive vascular 

compliance as an intermediate phenotype and low grade inflammation. 

 

As described earlier in sections 1.2.2 and 1.2.3 both augmentation index and small artery 

compliance are sensitive to pharmacological manipulation in NO bioactivity with LNMMA 

(Wilkinson 2002a. McVeigh 2001). A growing body of evidence suggests that in the arterial 

wall low grade inflammation per se parallels the presence of poor NO bioactivity. 

 

eNOS is present within endothelial cells as stated the derived NO stimulates arterial 

vasodilatation and inhibits smooth muscle cell proliferation, LDL oxidation, platelet adhesion 

and aggregation and  monocyte adhesion to the endothelium (Wever 1998, Loscalzo 1995b, 

Boger 1996). Endothelial dysfunction which is complicit with impaired NO bioactivity occurs 

early in atherosclerosis. CRP has been shown to cause a direct reduction in eNOS expression 

and bioactivity in human endothelial cells with a simultaneous decrease in cyclic GMP and an 

increase in adhesion to monocytes to the endothelium – an early stage in atherosclerosis, with a 

rise in sICAM-1 levels (Venugopal 2002). Furthermore patients with angiographically 

documented coronary artery disease with high levels of CRP had diminished endothelial 

vasoreactivity (r=-0.46, Fichtlscherer 2000) and Cleland et al have shown a relationship 

between CRP levels and percentage decrease in forearm blood flow during infusion of the 

eNOS inhibitor L-NMMA (Clelland 2000b).  
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Aims 

The aims of the current study were: 

1) To assess the reproducibility of diastolic pulse contour analysis as a non invasive 

intermediate cardiovascular phenotype. 

 

2) To determine whether the C242T single nucleotide polymorphism of the p22phox gene, 

CYBA, has an effect upon arterial compliance in patients with coronary artery disease. 

 

3) To determine whether the G894T (Glu298Asp) single nucleotide polymorphism of the 

endothelial nitric oxide synthase gene, NOS3, has an effect upon arterial compliance in patients 

with coronary artery disease. 

 

4) To determine whether there is an interaction between the NOS3 G894T single nucleotide 

polymorphism and the CYBA C242T single nucleotide polymorphism in patients with coronary 

artery disease. 

 

5) To determine, in healthy volunteers, free of cardiovascular disease whether a relationship 

existed between markers of low grade inflammation and arterial stiffness. 
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Chapter 2 Methods. 

2.0 Summary  

 

This chapter provides a description of the general protocols of the clinical techniques used in 

the studies described in this thesis.  

2.1 Healthy volunteers and patients. 

 

All the studies described within this thesis were performed in the Clinical Investigation and 

research Unit (CIRU), British Heart Foundation Glasgow Cardiovascular Research Centre, 

Western Infirmary Glasgow. 

 

Twenty four healthy volunteers (Chapter 3) were recruited for validation studies. Each subject 

attended twice, at the same time of day for non invasive vascular phenotyping as described 

below. Volunteers were all in good health with no past or current medical history, aged 19-65 

and taking no regular mediation. Two were smokers. All subjects gave a full clinical history 

and underwent a full examination to confirm health prior to the study. 

 

Fifty three healthy normotensive volunteers were recruited via advertisements within the 

University, Glasgow Herald newspaper offices and local newspapers for the work described in 

chapter 6. No subjects were taking any medication and all abstained from alcohol, nicotine, 

tobacco, food and strenuous activity overnight before the study day. Physical health was 

confirmed by screening with history, a full physical examination, ECG and supine blood 

pressure measurement in triplicate. Ninety volunteers were screened and those with raised 

blood pressure, an antecedent history of vascular disease or abnormal ECG excluded. 
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The studies comparing oxidative stress genotype upon vascular compliance described in 

chapters 4 and 5 were performed in 103 individuals attending the Western Infirmary, Glasgow 

for coronary artery bypass grafting. Each individual previously underwent coronary 

angiography which had documented coronary artery disease and attended the BHF Glasgow 

Cardiovascular Research Unit in the University of Glasgow the week prior to surgery fasted 

and abstinent from tobacco, alcohol, tea or coffee from midnight the previous night. Each 

patient had their height and weight recorded as described below and a detailed drug and past 

medical history taken as well as a full physical examination and electrocardiogram. We 

excluded those who had a history of endocrine, hepatic, renal or valvular heart disease or atrial 

fibrillation. The latter two in themselves can alter the pulse pressure wave shape. All 

participants were asked to defer taking their normal medication on the day of the study until 

after the protocol was completed.  410 patients were screened and those withdrawn who did not 

manage to comply with fasting or due to an episode of anginal pain during the preceding 24 

hours, or upon documented valvular heart lesion or audible murmur or arrhythmia discovered 

during clinical examination or electrocardiogram. Clinical details obtained from the patients 

were corroborated from case sheet examination. A history of current cigarette smoking, 

hypertension (defined as either current anti-hypertensive treatment or a blood pressure > 

140/90 mmHg), diabetes mellitus and hypercholesterolaemia (plasma cholesterol >5.4 mmol/or 

on treatment) were considered as risk factors. Each patient brought with them an up to date 

repeat prescription sheet from their general practitioner to ensure that an accurate drug history 

was obtained. 
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2.2 General Clinical Protocol. 

 

The study protocols were individually approved by the Ethics Committee of the West Glasgow 

Hospitals University NHS trust. All underwent the pre study procedure above following full 

informed consent. On each study day the healthy volunteers or patients with coronary artery 

disease were transported to the CIRU between 0700 hours and 0900 hours after an overnight 

fast from 2200hrs. After the clinical and morphometric measurements were taken the patients 

lay supine, at rest in a quiet room which was temperature controlled, at 24-25ºC, where the 

clinical studies were undertaken. Following each study a light meal was provided for subjects 

prior to transportation home. 

 

2.3 Clinical and morphometric measurements.  

 

2.3.1 Body Mass Index 

 

Body weight and height were measured with subjects in light clothes and without shoes to the 

nearest 0.5kg of weight and the nearest 0.5cm of height. Exactly the same equipment was used 

throughout the studies, and the weighing scales (Seca, Germany) were calibrated regularly. The 

same observer preformed all the measurements (RSD). Body mass index (BMI, kg/m
2
) was 

calculated as:  

BMI= Body weight (kg )/(height (m))
2
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2.3.2 Blood Pressure and heart rate. 

 

Throughout each study the technique utilised to record blood pressure and heart rate remained 

uniform. Systolic and diastolic blood pressure and heart rate were measured, after 1 hours 

supine rest, by an oscillometric technique using a Dinamap Critikon (Johnson and Johnson 

Professional Products Ltd., UK) semi automatic sphygmomanometer, maintained and 

calibrated at regular intervals by the Department of Physics, Western Infirmary.  

 

2.3 Pulse Wave Analysis. 

 

Systolic and diastolic pulse wave analysis was carried out by a single investigator (RSD) in a 

dedicated investigation room as described. Subjects were placed in the supine position and 

right radial artery waveforms acquired as detailed below.  

2.3.1 Diastolic pulse contour analysis.  

 

Subjects were placed in the supine position and right radial artery waveforms were acquired 

with the use of a calibrated proprietary tonometer (model CR 2000 Hypertension Diagnostics 

Inc) and used according to manufacturers specifications. The tonometer consists of a 1.27cm 

diameter stainless steel canister with a 0.15mm thick stainless steel diaphragm connected to a 

double plated ceramic piezoelectric element used to amplify the waveform signal. The 

subject‟s arm is stabilised in an angulated wrist support and radial artery waveforms analysed 

for a 30 second period. The CR 2000 device then utilises the 4 element modified Windkessel 

model to generate C1 and C2 as described previously (Cohn 1995, McVeigh 1991, McVeigh 

1993, McVeigh 1999). A description of the mathematical model used within the Windkessel is 
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described in the introduction in section 1.2.3. Four recordings were taken and the mean used 

for analysis. The procedure was well tolerated by each subject. 

 

2.3.2 Systolic pulse contour analysis 

 

For systolic pulse contour analysis the SphygmoCor Arterial Tonometry system (Atcor 

Medical Inc) was utilised. Central pressure waveforms are derived and analysed as described 

by Wilkinson et al (Wilkinson 1998). A high fidelity micromanometer probe (SPC-301; Millar 

Instruments) was used by one observer (RSD). The probe is placed on the right radial artery at 

the wrist. The wrist is extended and held within a support to ensure that the artery is kept in one 

position and to facilitate reproducibility. The probe is placed upon the wrist with sufficient 

pressure to flatten but not occlude the radial artery at the wrist. The probe is connected to a lap 

top computer upon which data was collected directly. After a waveform recording was 

established 20 sequential waveforms are collected and software integral to the system generates 

an impression of an average peripheral waveform. A generalised transfer function, the 

methodology of which is described in the introduction in section 1.2.2, then constructs a 

derived central waveform. Recordings were excluded as per standard procedures of other 

groups which have utilised this technique (Wilkinson 2000). In this way recordings were 

excluded if the systolic or diastolic variability of the waveforms exceeded 5%, or the amplitude 

of the waveform, a measure of the quality of the tracing exceeded 100mV. The derived central 

waveform was then analysed, again using the integrated software to generate the AIx, the 

difference between the first and second peaks of the central pressure waveforms as described in 

section 1.2.2 and figure 1.1 .The AIx is expressed as a percentage of the pulse pressure and is a 

measure of systemic arterial stiffness and wave reflection. All measurements were made four 

times and again the mean values utilised.  
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2.4 Genotyping. 

 

Following non-invasive vascular measurements a sample of blood was taken and DNA 

extracted using the Wizard Genomic DNA Purification kit (Promega). Genotyping of the 

CYBA C242T and NOS3 G894T SNPs was performed by investigators Dr Nick Brain and Mrs 

Koh-Tan who were unaware of the patients‟ phenotypes.  

 

Genotyping of the C242T polymorphism was performed by restriction enzyme treatment and 

agarose gel resolution. Primers for polymerase chain reaction (PCR) were designed around the 

polymorphism.  Sequences of these were TGCTTGTGGGTAAACCAAGG (Fwd), 

GGAAAAACACTGAGGTAAGTG (Rev).  PCR was performed with 1U of Taq DNA 

polymerase (Promega) in a 20 l reaction volume containing 25 ng of genomic DNA; 1X PCR 

buffer; 1.5 mM Mg
2+

; 200 M each dNTP and 20 pmol of primer. PCRs were cycled on PCT-

225 thermal cyclers (MJ Research) as follows: 95 C for 5 min; then 30 cycles of 95 C for 1 

min, 55 C for 1 min, and 72 C for 1 min; followed by 72 C for 10 min.  PCRs were run on 

1.5% Ultrapure Agarose gels (Invitrogen) to confirm amplification. Restriction reactions 

consisted of 20 U of RsaI, 16 l of PCR product and 2 l of buffer. Reactions were incubated 

at 37 C for 2 hours, before resolution on 2% Ultrapure Agarose gels.  Genotype was 

determined from fragment patterns as follows: CC: 353 bp; TT: 160 bp and 193 bp; CT: 160, 

193 and 353 bp (Ito 2000).  Genotyping was checked by two individuals.  Fourteen 

representative samples were sequenced in forward and reverse directions, using PCR primers, 

to confirm fidelity of restriction genotyping.  
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The G894T polymorphism was genotyped by sequencing.  PCR primers were designed with 

the following sequences: AAGGCAGGAGACAGTGGATGGA (Fwd), 

CCCAGTCAATCCCTTTGGTGCTCA (Rev).  PCR was performed with 0.2U of HotStar Taq 

(Qiagen) in a 20 l reaction volume containing 25 ng of genomic DNA, 1X PCR buffer (with 

1.5 mM Mg
2+

), 200 M of each dNTP and 20 pmol of primer, and cycled on PCT-225 thermal 

cyclers (MJ Research).  The following program was used: 95 C for 15 min followed by 30 

cycles of 94 C for 1 min; 58 C for 1 min; 72 C for 1 min; followed by 60 C for 30 min.  PCR 

products were purified using Nucleofast-96 plates (Macherey-Nagel) and the manufacturer‟s 

protocol.  Products were sequenced using BigDye Terminator v3.1 kits (Applied Biosystems) 

and a modified 20 l reaction protocol such that 0.5 l of Ready Reaction mix and 3.75 l of 

5x sequencing buffer were used per reaction.  The reverse PCR primer was used for 

sequencing.  Sequencing reaction products were purified using genCLEAN plates (Genetix) 

before being resolved on an ABI 3730 capillary sequencer (Applied Biosystems) using 

standard sequencing run conditions. Genotyping of the sequencing data was performed using 

SeqScape (Applied Biosystems) software and two individuals checked all genotypes. 

Concordance between the two individuals was 100%. 

 

2.5 Laboratory methods 

 

Upon completion of pulse wave contour analysis venous blood samples were withdrawn from 

the antecubital fossa and samples immediately placed within ice. Thereafter samples for the 

biochemical analysis described below underwent centrifugation (3000 rpm, 4 ºC) prior to 

decanting and storage at -20ºC. 
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For all measurements batch analysis was performed to minimize inter assay variability and 

samples preformed in duplicate. All reagents and samples were allowed to come to room 

temperature prior to use. The inter- and intra-assay coefficients of variation were <10% across 

the range of measured results. Intra-assay coefficients of variation were <7% for all analytes. 

 

Cholesterol, HDL-C and tricylglycerol were measured using commercially available enzymatic 

assay kits from Roche Diagnostics Corporation (Indianapolis, IN, U.S.A.) and a Hitachi 917 

analyser, and LDL-C (low-density lipoprotein cholesterol) was calculated from the Friedewald 

equation 

 

2.5.1 Adiponectin 

 

Adiponectin was analysed using the Quantikine
®
 Human Adiponectin/Acrp30 Immunoassay 

(Catalog Number DRP300). This is a solid phase ELISA containing recombinant human 

adiponectin and can measure human adiponectin levels within cell culture supernatants, serum 

and plasma. The assay utilises the quantitative sandwich enzyme immunoassay technique. The 

monoclonal antibody specific for adiponectin is recoated onto the micro plate. Standards and 

samples are pipetted into the wells and any adiponectin present is bound by the immobilized 

antibody. Following washing the enzyme linked monoclonal antibody specific for Adiponectin 

is added to the wells. Thereafter following a further wash a substrate solution is added to the 

wells and colour develops in proportion to the amount of Adiponectin bound in the initial step. 

A Multiscan Ascent plate reader and software were used for calculating results  

 



 97 

2.5.2 Interleukin 6. 

 

IL-6 was analysed using the Quantikine
®

 Human IL-6 Immunoassay (Catalogue Number 

D6050). This is a solid phase ELISA designed to measure IL6 within cell culture supernates, 

serum and plasma. It contains recombinant human IL-6. The assay employs the quantitative 

sandwich enzyme immunoassay technique. A monoclonal antibody specific for Il-6 is 

precoated upon a microplate.  

 

A dilution series was generated with concentrations of 0pg/ml, 1.56 pg/ml, 3.12 pg/ml, 6.25 

pg/ml, 12.5 pg/ml, 25 pg/ml, 50 pg/ml and 100 pg/ml.  Standards and samples are pipetted into 

the wells and any IL-6 present is bound by the immobilized antibody.  Following washing an 

enzyme linked polyclonal antibody specific for IL-6 is added to the wells. After a further wash 

substrate solution is added to the wells which develops in intensity in proportion to the amount 

of Il6 bound in the initial step. The colour development is stopped and the intensity measured 

using a Multiscan Ascent plate reader and software were used for calculating results. 

 

2.5.3 Soluble ICAM-1 immunoassay. 

 

sICAM-1 was analysed using the Quantikine
®
 Human sICAM-1 Immunoassay (Catalogue 

Number BBE 1B). The principle stages are as described for adiponectin and IL-6. The 

technique employed is the quantitative sandwich enzyme immunoassay technique. A 

monoclonal antibody specific for sICAM-1 has been precoated onto a micro plate.  

 

A dilution series was generated using 0 ng/ml, 1.86 ng/ml, 10.3 ng/ml, 19.1 ng/ml, 29.8 ng/ml 

and 41.9 ng/ml. Standards, samples, controls and conjugate are pipetted into the wells and any 
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sICAM-1 present is sandwiched by the immobilised antibody and the enzyme-linked-

monoclonal antibody specific for sICAM-1. After washing a substrate solution is added top the 

wells and colour develops in proportion to the amount of bound sICAM-1. Again the colour 

development is then stopped and the intensity measured using a Multiscan Ascent plate reader 

and software for calculating results.  

 

2.5.4 Highly sensitive C reactive protein. 

 

CRP was measured using a sensitive double-antibody sandwich ELISA with rabbit anti-human 

CRP and peroxidase-conjugated rabbit anti-human CRP (Roche Diagnostics Corporation 

Indianapolis, IN, U.S.A., Catalog No 1972855). The assay is a particle enhanced 

immunoturbidimetric assay. Anti-CRP antibodies coupled to latex microparticles react with 

antigen in the sample to form an antigen/antibody complex. Following agglutination, this is 

measured turbidimetrically. A Hitachi 917 analyzer was used. The assay was linear up to 5 

mg/l and logarithmic thereafter.  

 

2.6 Statistics. 

2.6.1 Reproducibility studies. 

For the reproducibility studies we utilised the technique described by Bland and Altman (Bland 

1996). Bland-Altman plots were derived for to calculate intra-observer bias for C1 and C2 

(Minitab 14). 
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2.6.2 The effect of genotype upon arterial compliance in patients with coronary artery 

disease. 

All data are presented as mean ± SEM unless otherwise stated. Power calculations were 

performed before sample acquisition and 100 subjects were projected to provide 80% power 

for primary analysis based on two sample t-tests to compare mean C2 values between the two 

homozygous groups at each locus. The Chi squared statistic was used to ensure that the 

observed allele frequencies did not differ from that expected under Hardy-Weinberg 

equilibrium. 

 

A two tailed Student‟s t-test was used to analyse differences in phenotype between subjects 

with presence or absence of the T allele for the CYBA C242T SNP, as this has previously been 

reported as being the dominant allele (Cahilly 2000, Cai 1999). One-way ANOVA was used to 

examine the effect of genotype of the NOS3 SNP on vascular parameters as with this SNP there 

has been no documented dominant allele (Hibi 1998). Furthermore a comparison using the 

Student‟s t-test was carried out between patients homozygous for the NOS3T allele and 

possessing the CYBA 242T allele and patients homozygous for the NOS3 G allele and for the 

CYBA C allele. Thereafter multiple regression analysis was preformed to identify the variables 

that independently predicted the relationships. Where a potential confounder was discovered a 

generalised linear model was constructed to ascertain if, adjusting for this variable, the 

relationship remained significant. Statistical significance was defined as p<0.05. Minitab 14 for 

Windows (Minitab Inc) was used for all statistical analysis and PRISM 4 used to generate 

graphs (Graphpad). 
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2.6.2 The relationship between markers of low grade inflammation and Insulin resistance 

upon arterial compliance in healthy volunteers. 

 

The Kolmogorov Smirnov test for normality was used to establish whether the data sets were 

normally distributed. The data sets for ICAM and adiponectin were normally distributed 

whereas those for IL-6 and CRP were not. For data that did not follow the Gaussian 

distribution, for statistical analysis, the data set was log transformed to create a normal 

distribution. 

 

Simple regression was used to create a model with only one predictor utilizing the least squares 

estimation. Where the data was normally distributed the Pearson correlation was used (ICAM 

and Adiponectin). Where the data did not fit a Gaussian distribution Spearman Rank 

correlation was used, i.e. for CRP and IL 6. Thereafter multiple regression was used to describe 

the statistical relationship between a response and 2 or more predictors. Again this used the 

method of least squares, which determines the equation for the straight line that minimizes the 

sum of the vertical distances between the data points and the line. As before p<0.05 was 

considered significant. 
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Materials and Methods Appendix 

Manufacturers and Suppliers 

 

Multiscan Ascent Plate Reader and Software. 

Thermo Life Sciences 

Unit 5, The Ringway Centre 

Edison Road, Basingstoke, Hampshire 

RG21 6YN 

Telephone (01256) 817282) 

Fax   (01256 817292) 

www.thermo.com 

 

Where samples required dilution a Hamilton dilutor was used. 

 

Microlab 500 series. 

 

Scientific laboratory supplies ltd. 

Unit 17. 

Coatbridge business centre, 

204 Main Street 

Coatbridge, Lanarkshire, ML5 3RB 

 

Telephone  (01236) 431857 

Fax   (01236) 431050 

http://www.thermo.com/
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Adiponectin 

 

Quantikine
®
 Human Adiponectin/Acrp30 Immunoassay (Catalog Number DRP300).  

 

Interleukin 6. 

 

Quantikine
®
 Human IL-6 Immunosassay (Catalogue Number D6050).  

 

sICAM-1 

 

Quantikine
®
 Human sICAM-1 Immunosassay (Catalogue Number BBE 1B).  

 

Manufactured and distributed by  

R&D Systems Inc. 

614 McKinley Place, NE.  

Minneapolis, MN 55413. 

United States of America 

Tel (0800) 343-7475. 

Fax (612) 379-2956 

 

European Distributors. 

R & D Systems Europe 

19 Barton Lane, Abingdon Lane, Abingdon, 

Oxon, OX14 2NB. 

United Kingdom. 
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Cholesterol, HDL-C and tricylglycerol 

 

Enzymatic assay kits from  

Roche Diagnostics Corporation 

Indianapolis 

IN 

U.S.A 

 

 



 104 

Chapter 3. Baseline subject characteristics and the reproducibility and 

comparison of vascular compliance values. 

 

3.0 Summary. 

This chapter describes the clinical characteristics of the subjects recruited; healthy volunteers 

and patients with coronary artery disease. Thereafter, reproducibility studies examining small 

and large artery compliance values were conducted as there has been some suggestion in the 

medical literature that the reproducibility of DPCA is not optimal (Manning 2002, Rietzschel 

2001, Segers 2001).  

 

3.1 Subject and patient recruitment. 

 

As detailed in section 2.1 the twenty four subjects for reproducibility studies were recruited 

from within the British Heart Foundation Glasgow Cardiovascular Research Centre. The 53 

healthy volunteers for the study of arterial compliance and low grade inflammation were 

recruited from advertisements within Glasgow University and also from the offices of the 

Glasgow Herald. The 103 patients to ascertain the effect of genotype upon arterial stiffness in 

patients with coronary artery disease were recruited from the Coronary Artery Bypass Graft 

operation waiting lists. 
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3.2 Patient Characteristics.  

 

Table 3.1 describes the baseline characteristics of the 103 patients with coronary artery disease. 

The mean age was 61.8 but range included patients as young as 36 and as old as 82. The mean 

BP was 130.94/70.9 mmHg, total cholesterol 4.29 mmol/L and LDL cholesterol 2.34 mmol/L. 

In terms of vascular measurements the mean AIx was 28.89%, mean C1 14.74 ml/mmHg x 10 

and mean C2 4.63 ml/mmHg x 100mmHg. 39(37%) had never smoked cigarettes, 25 (25%) 

had previously been smokers (more than 6 months since their last cigarette) and 40 (38%) were 

current smokers. The cardiovascular medication that the patients were taking is detailed in 

table 3.2. As a group the patients were on the standard regimen with most on a HMG CoA 

Reductase inhibitor (85%), Beta Blocker (72%) and Aspirin (71%). 49% were on an 

Angiotensin converting enzyme inhibitor. 41% were using transdermal or oral nitrate. 

 

3.3 Baseline characteristics of healthy controls.  

 

The characteristics of the healthy controls recruited are detailed in table 3.3. The controls were 

younger with a mean age of 52.74, range 37-72. The mean BP was 124/62 and in terms of 

arterial compliance values the C1 and C2 were higher (15.2 ml/mmHg x 10 and 6.74 ml/mmHg 

x 100 respectively) and AIx lower (23.85%) indicating more compliant arteries. None of the 

controls were taking any medication, 4 were still smoking and 12 were ex smokers.  

 



 106 

Table 3.1. Baseline Patient Characteristics (n=103). 

 

Variable 

 

 

Mean 

 

Median 

 

SD 

 

SEM 

95% 

CI 

 

Range 

Age (years) 

 

61.84 63.00 8.98 0.86 60.13, 

63.56 

36.00 to 

82.00 

Height (cm) 166.22 168.00 9.42 0.91 164.42, 

168.02 

142.00 

to 

183.00 

Weight (Kg) 81.87 81.00 15.00 1.44 79.01, 

84.74 

47.00 to 

138.00 

BMI 29.69 29.00 5.36 0.52 28.67, 

30.72 

19.33 to 

58.90 

SBP(mmHg) 130.94 129.75 17.30 1.67 127.64, 

134.24 

92.00 to 

185.50 

DBP(mmHg) 70.88 70.625 9.66 0.48 69.03, 

72.73 

47.25 to 

95.00 

PP(mmHg) 60.06 58.00 12.87 1.24 57.60, 

62.51 

40.50 to 

113.50 

AIx(%) 28.89 29.67 11.43 1.16 27.58, 

32.20 

-13.40 to 

59.67 

C1(ml/mmHgx10) 14.74 3.64 5.00 0.48 13.79, 

15.70 

3.70 to 

35.20 

C2(ml/mmHgx100) 4.63 3.64 2.82 0.27 4.09, 

5.17 

1.40 to 

17.20 

CHOL(mmol/l) 4.29 4.25 0.83 0.08 4.13, 

4.54 

2.71 to 

6.94 

LDL(mmol/l) 2.34 2.23 0.74 0.07 2.20, 

2.49 

1.01 to 

4.88 

HDL(mmol/l) 1.07 1.00 0.37 0.04 1.00 to 

1.14 

0.38 to 

2.67 

VLDL(mmol/l) 0.88 0.77 0.51 0.05 0.78, 

0.98 

0.14 to 

3.31 

TRIG(mmol/l) 1.93 1.69 1.12 0.11 1.72, 

2.15 

0.31 to 

7.25 

CRP(mg/l) 4.73 2.00 8.36 0.82 3.11, 

6.35 

0.17 to 

61.55 

Adiponectin(ng/ml) 5053.32 3611.5 4811.90 471.85 4116.40, 

5990.30 

224.06 

to 

28355.00 

ICAM(ng/ml) 374.93 353.38 150.31 14.67 345.81, 

404.05 

164.77 

to 

1296.70 

IL-6 (pg/ml) 4.60 3.45 5.05 0.51 3.59, 

5.61 

0.47 to 

33.98 
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Table 3.2.  Patient Medication. 

 

Medication  n % 

Aspirin  75 71 

Aspirin + Clopidogrel 12 11 

Clopidogrel  10 9.5 

Βeta Blockers  76 72 

Calcium Channel Blockers  55 52 

HMG Co A Reductase Inhibitors  89 85 

Nitroglycerin  43 41 

Angiotensin converting enzyme inhibitors  51 49 

Angiotensin II type-1 receptor antagonist  5 4.8 
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Table 3.3 Healthy Control baseline characteristics (n=53) 

Variable Mean Median SD SEM 95% Range 

Age (years) 

 

52.74 52 9.147 1.25 50.21, 

55.26 

37-72 

Height (cm) 171.35 172 10.20 1.40 168.54, 

174.16 

149-194 

Weight (Kg) 77.02 75 13.85 1.90 73.20, 

80.84 

448-113 

BMI 26.14 25.82 3.34 0.46 25.22, 

27.06 

19.40-

35.8 

SBP(mmHg) 124.62 122.25 12.97 1.782 121.03, 

128.19 

106.50, 

168 

DBP(mmHg) 72.42 71.50 7.96 1.09 70.23, 

74.62 

58.25, 

98.250 

PP(mmHg) 52.19 51.00 7.78 1.07 50.05, 

54.34 

40.50, 

81.25 

AIx(%) 23.85 26.00 11.26 1.55 20.74, 

26.85 

-7.50, 

43.50 

C1(ml/mmHgx10) 15.20 15.33 4.14 0.58 14.04, 

16.37 

6.83, 

23.98 

C2(ml/mmHgx100) 6.74 6.85 2.94 0.41 5.91, 

7.57 

2.08, 

14.00 

CHOL(mmol/l) 4.75 4.83 0.78 0.11 4.53, 

4.96 

3.27, 7.25 

LDL(mmol/l) 2.97 3.03 0.81 0.11 2.76, 

3.21 

0.89, 5.73 

HDL(mmol/l) 1.31 1.32 0.30 0.04 1.23, 

1.40 

0.79, 1.99 

VLDL(mmol/l) 0.45 0.38 0.23 0.03 0.38, 

0.51 

0.14, 1.25 

TRIG(mmol/l) 0.98 0.84 0.50 0.07 0.84, 

1.12 

0.30, 2.73 

CRP(mg/l) 2.11 0.85 7.06 0.97 0.16, 

4.06 

0.22, 

51.74 

Adiponectin(ng/ml) 6234.63 4687.2 4824.20 662.66 4903.8, 

7565.5 

159.30, 

19921.00 

ICAM(ng/ml) 298.25 276.11 84.82 11.65 274.85, 

321.65 

169.98, 

703.11 

IL-6 (pg/ml) 3.49 1.75 6.20 0.87 1.75, 

5.24 

0.06, 

37.28 
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3.4 The reproducibility of the Windkessel derived large and small artery compliance 

values. 

 

3.4.1 Background. 

 

The diastolic pulse wave contour analysis method customarily used by Cohn (Cohn 1995) 

uses the 4- element Windkessel model conceptually introduced by Goldwyn and Watt in 

1967 (Goldwyn 1967). McVeigh and Cohn in recent years have described that fitting 

Windkessel model parameters into the diastolic portion of the radial artery pulse 

waveform generating small and larger artery compliance values is useful clinically. In 

particular the small, or oscillatory, compliance value is reduced with age, hypertension 

and diabetes and is sensitive to altered NO bioactivity (McVeigh 1999, McVeigh 1991, 

McVeigh 1993 and McVeigh 2001). There has been criticism in some quarters of this 

technique. Validity and widespread potential clinical utility have been questioned by one 

study finding an absence of correlations between different sites (radial and posterior tibial 

artery sites) as well as frequent uninterpretable values in hypertensive subjects (Manning 

2002). Rietzschel and colleagues found coefficients of variation of 32.8% for C1 and 

33.3% for C2 but only of 6.7% for AIx (Rietzschel 2001). Before conducting larger 

experiments we wished to ensure that, in our hands, C1 and C2 were reproducible 

vascular measurements.  
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3.4.2 Methods.  

 

For the initial reproducibility studies with the aim of producing Bland Altman plots we 

recruited twenty four healthy volunteers who attended twice, more than one week apart, 

fasted between 8am and 10am and having abstained from tea, coffee and nicotine from 

midnight the previous night. The 24 volunteers were all in good health and none had any 

hepatic, endocrine, or renal disease or were on any regular medication. Mean BP in this 

group was 118/72 mmHg.  

 

All subjects gave informed consent prior to enrolment in the study for which ethical 

approval had been granted by the Ethics Committee of the West Glasgow Hospitals 

University NHS trust. Following 60 minutes supine rest non invasive vascular profiling 

were performed as described within sections 2.3.1 and 2.3.2. 

 

Statistical analysis was preformed using Minitab14. Coefficients of variation were 

calculated as the SD of the difference between 2 measurements divided by the mean 

value of the mean of both measurements. Reproducibility data using the method 

described by Bland and Altman (Bland 1996) generates Bland Altman plots depicting 

differences between 2 measurements plotted against the mean of the 2 measurements.  
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3.4.3 Results Reproducibility: Bland Altman Plots.  

 

Using Bland Altman plots the calculated intra-observer bias for C1 was -0.1(SD of bias 

was 0.36, 95% CI -0.8 to 0.6) (Figure 3.1). Likewise for C2 the observed bias was -0.04 

(SD of bias was 0.20, 95% CI -0.44 to 0.36) (Figure 3.2). 

 

 

Figure 3.1 Bland Altman plots for intra observer variation within large artery 

compliance in 24 healthy volunteers. For C1 the calculated intra-observer bias was -0.1 

(SD of bias was 0.36, 95% CI -0.8 to 0.6). 
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Figure 3.2 Bland Altman plots for intra observer variation within small artery 

compliance in 24 healthy volunteers. For C2 the observed bias was -0.04 (SD of bias 

was 0.20, 95% CI -0.44 to 0.36).  
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3.5 The comparison between systolic and diastolic pulse contour analysis. 

 

3.5.1 Background 

 

Both systolic and diastolic pulse contour analysis have been validated in different 

populations but only a few groups have sought to compare these values in healthy 

volunteers as well as in patients with established vascular disease. Segers et al analysed 

45 human subjects, most of whom had coronary artery disease, simultaneously measuring 

aortic and radial pressure pulse waveforms (Segers 2001). They noted that C2 was 

inversely related to augmentation index (r=-0.36) (Segers 2001). Rietzschel and co 

workers measured AIx and C2 in 100 volunteers, 27 were taking anti hypertensive 

medication but all were free of atherothrombotic disease, and also found a significant 

inverse relation (r=-0.71) (Rietzschel 2001). A much smaller study was recently reported 

by Woodman et al examining 15 men with coronary artery disease and 15 healthy men. 

Their pooled correlation between AIx and C2 was -0.75 (Woodman 2005). The aim of 

this investigation was to compare the 2 methodologically different techniques focusing 

on either the systolic and diastolic portion of the arterial pulse waveform both in patients 

with coronary artery disease and in healthy controls. 
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3.5.2 Subjects and Methods. 

 

The 53 healthy volunteers for the study of arterial compliance and low grade 

inflammation were recruited from advertisements within Glasgow University and also 

from the offices of the Glasgow Herald. The 103 patients to ascertain the effect of 

genotype upon arterial stiffness in patients with coronary artery disease were recruited 

from the Coronary Artery Bypass Graft operation waiting lists. A full description of 

recruitment, general clinical protocol and pulse wave contour analysis are described n 

sections 2.1, 2.2 and 2.3. In each case the volunteer provided informed consent and the 

procedure was tolerated well in each case. Minitab 14 was used as the statistical package 

to construct simple linear correlations. Statistical significance was defined as p<0.05. 

 

3.5.3 Results: Correlations between large and small arterial compliance values in 

patients with coronary artery disease and healthy controls. 

 

Scatter plots of large and small artery compliance values and augmentation index are 

displayed in Figures 3.3 – 3.6. There was a significant correlation between both AIx and 

C1(r=-0.42, p=0.002) and AIx and C2 (r=-0.60, p=<0.0001) in healthy volunteers. While 

there was no association between AIx and C1 in patients with coronary artery disease (r=-

0.17, p=0.009) AIx did correlate with C2 in this population (r=-0.51, p=<0.001). 
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Figure 3.3 Scatter plots of large artery compliance (C1) and augmentation Index in 

healthy volunteers (n=53, r = -0.42, p=0.002).  
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Figure 3.4 Scatter plots small artery compliance (C2) and Augmentation Index in 53 

healthy volunteers. (r = -0.60, p<0.001).  
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Figure 3.5 Scatter plots of large artery compliance (C1) and augmentation index in 

patients with coronary artery disease. (n=103, r = -0.17, p=0.09).  
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Figure 3.6 Scatter plots of small artery compliance (C2) and augmentation index in 

patients with coronary artery disease. (n=103, r = -0.51, p<0.001).  
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3.6 Discussion 

 

The assessment of arterial stiffness is gathering growing recognition as a useful non 

invasive intermediate phenotype. Recently the Conduit Artery Function Evaluation 

(CAFÉ) study showed a SphygmoCor derived central SBP difference between the 2 arms 

of an Anglo-Scandinavian Cardiac Outcomes Trial substudy in spite of similar brachial 

blood pressure changes (Williams 2006). As there is a growing appreciation of the 

clinical utility of the assessment of arterial stiffness the assessment of reproducibility 

becomes of paramount importance. 

 

In essence we have shown that the HDI/Pulsewave 
TM

 CR-2000 Research Cardiovascular 

Profiling system used to determine Windkessel based diastolic pulse contour arterial 

compliance measurements is reproducible. For C1 the calculated intra-observer bias was -

0.1 (SD of bias was 0.36, 95% CI -0.8 to 0.6). Over 95% of the variability fell within 2 

standard deviations. Furthermore for C2 the observed bias was -0.04 (SD of bias was 

0.20, 95% CI -0.44 to 0.36). Again over 95% of the variability fell within 2 standard 

deviations. 

 

The HDI/Pulsewave 
TM

 CR-2000 Research Cardiovascular Profiling System has 

previously been proven to be reproducible over both a short and intermediate period of 

observation by Prisant et al (Prisant 2002). This group studied 59 healthy volunteers of 

mean age 36.5 years a mean of 52 days apart finding no significant difference between 

the readings obtained. Previously the reproducibility of this technology had been brought 
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into question but whereas Rietzschel described coefficients of variation of 32.8% for C1, 

33.3% for C2 and 6.7% for AIx (Rietzschel 2001) suggesting superiority of SPCA 

Woodman found different results with higher coefficient of variation for AIx (22.4%) 

than for C1 (11.3%) or C2 ( 15.6%) suggesting otherwise (Woodman 2005).  

 

The extent of pulse pressure amplification from the aorta to brachial artery varies with 

age, posture and exercise. Pulse pressure amplification as measured by SPCA, but not 

PWV, has been shown to be heart rate dependent (via manipulation of heart rate by 

incremental pacing) both in a group of older subjects with probable left ventricular 

systolic dysfunction and in a younger group with normal unimpaired left ventricular 

function (Wilkinson 2000, Wilkinson 2002c). Hence studies including PWA require 

uniformity in terms of preceding overnight fast and abstinence from strenuous exercise, 

caffeine, nicotine and a period of supine rest. Consensus guidelines have recently been 

published with respect to uniform, optimal conditions such that conclusions obtained 

from studies incorporating PWA may be widely applicable (Laurent 2006). 

 

Large and small artery compliance values, while they lack a discrete anatomical site, are 

associated with changes in arterial stiffness that occur in a predictable fashion with age 

and cardiovascular risk factors; similarly with AIx. We therefore anticipated that there 

would be a significant relationship between these two measurements of arterial stiffness 

as described previously within the medical literature (Segers 2001, Rietzschel 2001, 

Woodman 2005). The significant correlations of -0.60 and -0.51 in healthy controls and 

patients with coronary artery disease are approximate to those described by others (r=-
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0.75 Woodman 2005, r=-0.48 Rietzschel 2001) but stronger than those from Segers (r=-

0.36 Segers 2001). This study however does not pool healthy subjects with those with 

coronary artery disease or like those by Woodman and Rietzschel respectively 

(Woodman 2005, Rietzschel 2001) and has a larger number of subjects than that by 

Segers (Segers 2001). It is not clear why there was no correlation (or at best a borderline 

correlation p=0.09) between large artery compliance and AIx in patients with coronary 

artery disease while there was in healthy controls. It is possible that patients with 

increasing arterial stiffness, which is known to correlate with coronary artery plaque load 

(McLeod 2004) the established disease phenotype within the individuals studied with 

coronary artery disease may have precluded the observation of an association.  

 

There is no clear consensus yet as to which means of assessing arterial stiffness may be 

the most appropriate and robust for widespread clinical use. It remains possible that a 

pharmacological challenge may provide more information. Albuterol has been shown to 

produce repeatable changes in the aortic waveform that are substantially inhibited by 

LNMMA and is therefore an endothelium dependent NO mediated vasodilator 

(Wilkinson 2002d).This technique is potentially a simple, repeatable, non invasive means 

of assessing endothelial function in vivo and was blunted in patients with 

hypercholesterolemia (Wilkinson 2002d). It requires validation in other groups of single 

and combined risk factors.  

 

PWV is generally accepted as the most simple, non-invasive, robust and reproducible 

method to assess arterial stiffness and carotid-femoral PWV is currently endorsed as the 
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current gold standard (Laurent 2006). In healthy individuals a decline in endothelial 

function is associated with increased large artery stiffness, wave reflections and central 

pulse pressure (McEniery 2006). Within patients with coronary artery disease carotid 

radial PWV has been shown to correlate with the extent of coronary artery plaque volume 

(McLeod 2004). The Anglo Cardiff Collaborative Trial, which included 4001 healthy, 

normotensive individuals aged 18 to 90, however noted that while PWV is likely to be a 

better measure in older individuals AIx may be a more sensitive marker of arterial 

stiffness in younger individuals (McEniery 2005). The correlations observed within the 

groups examined suggest that Windkessel based modelling may still have a role although 

there remains, to date, no clinical outcome data utilising this technique. 
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Chapter 4 The NOS3 G894T genotype and arterial compliance in patients 

with coronary artery disease. 

 

4.0 Summary  

This chapter elucidates the effect of the G894T single nucleotide polymorphism of the 

NOS3 gene upon arterial compliance. We found that there was a significant association 

between the number of T alleles and the small artery compliance value as assessed by 

Windkessel based diastolic pulse wave contour analysis. 

 

4.1 Introduction 

 

An accruing body of evidence suggests that oxidative stress, of which reduced NO 

bioactivity is a hallmark, is significantly involved in the pathogenesis of vascular disease 

including hypertension, atherosclerosis, type 2 diabetes mellitus, heart failure and 

hypercholesterolemia (Landmesser 2001, Hamilton 2004).  

 

A previously stated in detail within section 1.6 the NOS3 single nucleotide polymorphism 

(SNP) (894 G T) that encodes a Glu298 Asp amino acid substitution in the eNOS 

protein has been implicated with cardiovascular disorders in which NO bioactivity is 

impaired including coronary artery disease (Hingorani 1999, Hibi 1998, Colombo 2002), 

hypertension (Jáchymová 2001, Miyamoto 1998), stroke (Elbaz 2000) and end stage 
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renal disease (Noiri 2002). It is also associated with endothelial dysfunction (Leeson 

2002). 

 

A key characteristic of increased vascular oxidative stress is a decrease in the compliance 

of large and small blood vessels. This alteration in vascular stiffness can be measured 

non-invasively using pulse wave analysis for example. We used diastolic pulse wave 

contour analysis utilising the modified Windkessel model as al non invasive intermediate 

phenotype for the assessment of arterial function in patients with coronary artery disease. 

Consistent characteristic changes in the pulse pressure wave shape have been associated 

with ageing and disease states predisposing to vascular events in which NO bioactivity is 

impaired. Small artery compliance has been associated with coronary artery disease in 

post menopausal women (Cohn 1995) and also with impaired NO bioactivity (McVeigh 

2001). 

 

We therefore hypothesised that this functional SNP within an oxidative stress gene, 

which potentially modulates part of its effect on cardiovascular function through altering 

arterial stiffness possibly due to altered eNOS function, would affect the non invasive 

cardiovascular phenotype small artery compliance.  
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4.2 Methods 

 

4.2.1 Subjects  

103 volunteers were recruited from patients attending the Western Infirmary Glasgow for 

coronary artery bypass grafting for coronary artery disease. As detailed in section 2.2 

each volunteer attended the BHF Glasgow Cardiovascular research Unit at the University 

of Glasgow the week prior to surgery fasted and abstinent from tobacco, alcohol, tea and 

coffee from the 10 pm previous night. Each study was performed by myself between 8.00 

am and 11 am. Ethical permission for this study was obtained from the Ethics Committee 

of the West Glasgow Hospitals University NHS trust and each subject gave informed 

consent before a detailed clinical history and examination was performed including an 

ECG to ensure sinus rhythm. 

 

4.2.2 Clinical procedures and laboratory analysis. 

 

Morphological measurements were performed upon the arrival of the subject and then 

following 60 minutes supine rest in a quiet, temperature controlled room the clinical 

protocol outlined in section 2.3 was undertaken. Following pulse wave contour analysis a 

portion of blood was obtained for quantification of IL-6, Adiponectin, sICAM-1 and 

highly sensitive CRP and analysis of the NOS3 G894T genotype. Small and large artery 

compliance values were obtained using a calibrated, proprietary tonometer (model CR 

2000 Hypertension Diagnostics Inc) and used according to manufacturers specifications. 
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Augmentation Index was measured using the SphygmoCor system (PWV Medical). A 

full description of these techniques is detailed in section 2.3.1 and 2.3.2. IL-6, CRP, 

Adiponectin and sICAM1 were measured using the techniques detailed in 2.5. From the 

portion of blood taken DNA was extracted using the Wizard Genomic DNA Purification 

kit (Promega) and genotyping of the NOS3 G894T SNP was performed by members of 

the BHF Glasgow Cardiovascular Research Centre who were unaware of the patients‟ 

phenotypes. The G894T polymorphism was genotyped by sequencing performed using 

SeqScape (Applied Biosystems) software and two individuals checked all genotypes. 

Concordance between the two individuals was 100%. A full description is detailed in 

section 2.4. 

 

4.2.3 Statistical Evaluation. 

 

All data are presented as mean ± SEM. Power calculations were performed before sample 

acquisition and 100 subjects were projected to provide 80% power for primary analysis 

based on two sample t-tests to compare mean C2 values between the two homozygous 

groups at each locus. The Chi squared statistic was used to ensure that the observed allele 

frequencies did not differ from that expected under Hardy-Weinberg equilibrium. One-

way ANOVA was used to examine the effect of genotype of the NOS3 SNP on vascular 

parameters as with this SNP there has been no documented dominant allele (Hibi 1998). 

Thereafter multiple regression analysis was preformed to identify the variables that 

independently predicted the relationships. Statistical significance was defined as p<0.05. 
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4.3 Results. 

 

4.3.1 Clinical Characteristics 

 

Baseline characteristics of the study population are those displayed in table 3.1. 78 

patients were male and 27 female. The mean age of the patients was 61.84, mean blood 

pressure 131/71 and cholesterol 4.29 mmol/l. In terms of smoking status 37 patients had 

never smoked, 26 patients were ex smokers as defined by more than 6 months of 

abstinence and 40 patients continued to smoke cigarettes. The mean large artery 

compliance (C1) was 14.74 ml/mmHg x 10, mean small artery compliance (C2) 4.63 

ml/mmHg x 100 and Augmentation Index (AIx) 28.89%. 75 patients were on Aspirin, 10 

on Clopidogrel alone and 12 on both Aspirin and Clopidogrel. 76 were taking Beta 

Blockers, 55 on calcium channel blockers, 89 on HMG Co A Reductase Inhibitors, 43 on 

a form of Nitroglycerin, 51 on Angiotensin Converting Enzyme Inhibitors and 5 on 

Angiotensin II type 1 receptor antagonists.  

 

4.3.2 The distribution of the genotypes and frequency of the alleles. 

GG GT TT 

43/103 47/103 13/103 

42% 45% 13% 

Table 4.1 The distribution of genotypes and frequency of the alleles of the NOS3 

gene. 
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The distribution of the genotypes and the frequency of the T alleles did not differ 

significantly from that expected under Hardy-Weinberg equilibrium (Chi = 0.007, 

p=0.65, q= 0.35). 

 

4.3.3 The NOS3 G894T genotype and cardiovascular phenotypes.  

 

The effect of the G894T SNP of the NOS3 gene on cardiovascular phenotypes is shown 

in Table 4.2. There was no association observed between this polymorphism and blood 

pressure or large artery compliance (Table 4.2, Figures 4.1, 4.2, 4.3 and 4.4). ANOVA 

revealed a statistically significant association for TT homozygosity and small artery 

compliance (p=0.01, Table 4.2, Figure 4.5). The highest small artery compliance was 

seen in the patients homozygous for the G allele (5.51 ± 0.51 ml/mmHg x 100), an 

intermediate value observed in heterozygotes  (4.21 ± 0.33 ml/mmHg x 100) and the 

lowest value demonstrated in patients homozygous for the T allele (3.18 ± 0.38ml/mmHg 

x 100). No association was evident in this cohort between NOS3 G894T genotype and 

augmentation index (Table 4.2 and Figure 4.6) 
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Table 4.2-.  Associations between the NOS3 G894T genotype and cardiovascular 

phenotypes in patients with coronary artery disease. 

Variable Genotype (n) ANOVA 

 GG 

(43) 

GT 

(47) 

TT 

(13) 

p value 

Age (years) 58.98 ± 1.4 63.17 ± 1.2 63.85 ± 2.5 0.05 

BMI (kg/m
2
) 29.85 ± 0.89 29.56 ± 0.80 29.55 ± 0.85 0.97 

SBP (mmHg) 129.9 ± 2.9 132.6 ± 2.3 127 ± 5.2 0.55 

DBP (mmHg) 71.1 ± 1.6 71.11 ± 1.3 69.4 ± 2.8 0.85 

PP (mmHg) 58.9 ± 2.0 61.5 ± 2.0 57.5 ± 2.9 0.51 

HR (beats/min) 61.9 ± 1.6 62.5 ± 1.9 58.33 ± 2.3 0.53 

C1 (ml/mmHg x 10) 15.87 ± 0.89 13.98 ± 0.64 14.47 ± 1.1 0.20 

C2 (ml/mmHg x 100) 5.51 ± 0.51 4.21 ± 0.33 3.18 ± 0.38 0.01 

Augmentation Index (%) 29.48 ± 2.01 28.99 ± 1.74 32.67 ± 2.43 0.61 

CHOL (mmol/l) 4.26 ± 0.11 4.321 ± 0.14 4.43 ± 0.23 0.81 

logTRIG (mmol/l) 0.24 ± 0.03 0.21 ± 0.04 0.21 ± 0.01 0.80 

LDL (mmol/l) 2.30 ± 0.09 2.35 ± 0.12 2.55 ± 0.21 0.57 

HDL (mmol/l) 1.06 ± 0.06 1.07 ± 0.06 1.08 ± 0.10 0.99 

Log CRP (mg/l) 0.34 ± 0.07 0.42 ± 0.08 0.14 ± 0.17 0.21 

Log Adiponectin (ng/ml) 3.49 ± 0.06 3.57 ± 0.05 3.66 ± 0.11 0.32 

Log ICAM (ng/ml) 2.56 ± 0.02 2.55 ± 0.02 2.53 ± 0.05 0.84 

Log IL-6 (pg/ml) 0.52 ± 0.06 0.33 ± 0.09 0.29 ± 0.18 0.19 
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Figure 4.1:- The G894T SNP of the NOS3 gene and systolic blood pressure in 

patients with coronary artery disease. 
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Figure 4.2:- The G894T SNP of the NOS3 gene and diastolic blood pressure in 

patients with coronary artery disease. 
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Figure 4.3:- The G894T SNP of the NOS3 gene and pulse pressure in patients with 

coronary artery disease. 
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Figure 4.4:- The G894T SNP of the NOS3 gene and large artery compliance in 

patients with coronary artery disease. 
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Figure 4.5:- The G894T SNP of the NOS3 gene and small artery compliance in 

patients with coronary artery disease. 
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Figure 4.6:- The G894T SNP of the NOS3 gene and augmentation index in patients 

with coronary artery disease. 
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4.3.4 Multiple Regression Analysis. 

 

Multiple regression analysis, examining the possible contribution of age, BMI, SBP, 

DBP, total and LDL cholesterol showed that only small artery compliance was significant 

when NOS3 G894T genotype was assigned as the dependent variable (p=0.01). 

 

Predictor Regression 

Coefficient 

Standard Error T value p value 

Age (years) 0.01 0.01 1.55 0.13 

BMI (kg/m
2
) 0.01 0.01 0.68 0.50 

SBP (mmHg) -0.01 0.01 1.63 0.11 

DBP (mmHg) 0.0001 0.01 0.02 0.99 

C1 (ml/mmHg 

x10) 

-0.02 0.02 1.47 0.15 

C2 (ml/mmHg 

x 100) 

-0.07 0.03 2.64 0.01 

Chol mmol/l 0.04 0.14 0.33 0.74 

LDL mmol/l 0.05 0.15 0.36 0.72 

Table 4.3: Multiple regression analysis of vascular phenotypes with NOS3 G894T 

genotype as the dependent variable. 

 

R
2
= 16.11%, adjusted R

2
= 16.11%, p=0.03 for the entire study group. 
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6.4 Discussion  

Despite a growing body of evidence that implicates the NOS3 G894T polymorphism in 

both human physiology and pathology there is still no complete consensus as to its role or 

indeed its functional mechanism. This SNP has been associated with altered baseline 

production of nitric oxide (Veldman 2002), blood pressure response to endurance training 

(Rankinen 2000), heamodynamic response to stress (Malhotra 2004), maternal vascular 

adaptation to healthy pregnancy (Savvidou 2001) and flow mediated dilatation and 

carotid intima media thickness in young healthy subjects (Paradossi 2004). There are 

many studies in different populations associating the T allele with susceptibility to 

ischaemic heart disease (Hingorani 1999, Hibi 1998, Colombo 2002, Gardemann 2002, 

Casas 2004). Some controversy remains with negative studies also reported (Rossi 2003, 

Schmoelzer 2003). The G894T SNP, though, has been associated with cerebrovascular 

disease (Elbaz 2000), survival in patients with congestive cardiac failure (McNamara 

2003), coronary in stent restenosis (Gomma 2002) and as previously stated, end stage 

renal disease (Noiri 2002). 

 

There is argument as to whether this SNP is functional. Glutamate and aspartate are both 

conservative substitutions and, indeed, analysis of the crystal structure indicates that 

residue 298 is situated externally away from the active site so that the aspartate 

substitution should have negligible effect on enzyme activity (Fischmann 1999). Though 

the initial experiment by Tesauro and colleagues (Tesauro 2000) suggesting that the 

mutant rather than the wild type enzyme was more amenable to proteolytic cleavage was 
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discounted as an artefact caused by the acidic pH used (Fairchild 2001), this group did 

suggest, using Chou-Fasman secondary structure predictions, that potentially significant 

structural changes would occur, even with the seemingly small conservative replacement 

(Tesauro 2000). Golser et al (Golser 2003) did not elicit any difference between the 2 

variants with respect to enzyme kinetic parameters, bound cofactors, uncoupled 

NAD(P)H oxidase activity and binding activities for calcium calmodulin and 

tetrahydrobiopterin. Moreover, it has recently been suggested via a series of experiments 

examining the complex intracellular regulation of eNOS that the aspartate variant is 

unlikely to directly modulate eNOS activity (McDonald 2004). However, Noiri et al 

(Noiri 2002) have demonstrated, utilising stably transfected Chinese hamster ovary cells 

for comparing nitric oxide activity, a statistically significant difference in nitric oxide 

production between the 298 glutamate and 298 aspartate variants. This is in keeping with 

our finding that the number of T alleles was associated with small artery compliance, 

which has been found to be altered in parallel with pharmacological manipulation of 

nitric oxide bioavailability (McVeigh 2001).  

 

Measurement of small artery compliance using the modified Windkessel model of 

diastolic pulse contour analysis has been suggested as a useful marker for the non 

invasive detection of vascular abnormalities in disease states where nitric oxide 

bioactivity is known to be impaired (McVeigh 1991, McVeigh 1993, Cohn 1995). Recent 

prospective study suggested possible prognostic (survival) significance for the Asp298 

variant of the NOS3 gene in patients with heart failure (McNamara 2003). One can 

extrapolate from this and our current data that the non-invasive measurements of arterial 
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compliance (especially C2) might be used as a marker of severity of cardiovascular 

disease and ultimately PWA per se as a non invasive phenotype which would delineate 

those most at benefit of aggressive intervention.  
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Chapter 5 The C242T single nucleotide polymorphism of the CYBA gene 

and blood pressure and arterial compliance in patients with coronary 

artery disease. 

5.0 Summary 

 

This chapter describes the effect of the C242T single nucleotide polymorphism upon 

blood pressure and arterial compliance in patients with coronary artery disease. In short 

we found that the 242T allele was associated with elevated systolic and pulse pressure 

and large artery compliance but not diastolic blood pressure nor small artery compliance 

in patients with coronary artery disease. 

 

5.1 Introduction 

 

Oxidative stress is increasingly implicated, as described in sections 1.3 and 1.4, in 

vascular disease. Moreover that induced by O2¯ is especially important as many other 

reactive oxygen species are subsequently derived from it (Taniyama 2003). The 

membrane bound NADPH enzyme system is putatively the major source of vascular O2¯. 

Expression of the p22phox has been found to be more intense in atherosclerotic human 

coronary arteries than non atherosclerotic human arteries, indicating that the p22phox 

might participate in the pathophysiology and pathogenesis of atherosclerotic coronary 

artery disease (Azumi 1999). The gene coding for p22phox, a critical component of the 

NADH/NAD(P)H oxidase enzyme system, a major source of vascular O2¯, is CYBA. 
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Among the allelic polymorphisms reported in CYBA is C242T, which has been 

demonstrated to affect NADPH oxidase activity (Wyche 2004, Guzik 2000). There have 

been several, contradictory, associations of the C242T SNP with coronary atherosclerosis 

some associating the T allele as being associated with coronary artery disease and others 

indeed suggesting that the T allele may be protective. „Positive‟ associating studies have 

been reported by Cia (Cai 1999), Cahilly (Cahilly 2000) and Nasti (Nasti 2006) within 

European and American populations whereas „negative‟ non associating studies have 

emanated from several groups most recently Finland (Fan 2006, Inoue 1998, Li 1999, 

Saha 1999, Zafari 2002). This SNP has also been associated with cerebrovascular disease 

(Ito 2000), carotid atherosclerosis (Hayaishi-Okano 2003) and susceptibility to diabetic 

nephropathy (Hodgkinson 2003). No relation has been found however with peripheral 

vascular disease (Renner 2000), pre eclampsia (Raijmakers 2002) or with endothelial 

function in patients with hypercholesterolaemia (Schneider 2003).  

 

Consequently given the importance of O2¯ in the generation of vascular disease and the 

association of genetic variation in the p22phox gene with vascular disease we sought to 

ascertain if there was a relationship between vascular compliance measured using systolic 

and diastolic pulse contour analysis and blood pressure and variation of the C242T SNP 

of CYBA in patients with angiographically proven coronary artery disease. 
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5.2 Methods 

 

5.2.1 Subjects 

 

103 volunteers were recruited from patients attending the Western Infirmary for coronary 

artery bypass grafting for symptomatic, obstructive coronary artery disease. As detailed 

in section 2.2 each volunteer attended the BHF Glasgow Cardiovascular research Unit at 

the University of Glasgow the week prior to surgery fasted and abstinent from tobacco, 

alcohol, tea and coffee from the previous night. Ethical permission for this study was 

obtained from the Ethics Committee of the West Glasgow Hospitals University NHS trust 

and each subject gave informed consent before a detailed clinical history and examination 

was performed including an ECG to ensure sinus rhythm. 

 

5.2.2 Clinical Procedures and laboratory analysis.   

 

Morphological measurements were performed upon the arrival of the subject and then 

following 60 minutes supine rest in a quiet, temperature controlled room the clinical 

protocol outlined in section 2.3 was undertaken. Subsequently a portion of blood was 

taken for quantification of IL-6, Adiponectin, sICAM-1 and highly sensitive CRP and 

analysis of the C242T CYBA genotype. Small and large artery compliance values were 

obtained using a calibrated, proprietary tonometer (model CR 2000 Hypertension 

Diagnostics Inc) and used according to manufacturers specifications. Augmentation 
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Index was measured using the SphygmoCor system (PWV Medical). A full description of 

these techniques is detailed in section 2.3.1 and 2.3.2. IL-6, CRP, Adiponectin and 

sICAM1 were measured using the techniques detailed in 2.5. From the portion of blood 

taken DNA was extracted using the Wizard Genomic DNA Purification kit (Promega) 

and genotyping of the CYBA C242T SNPs was performed by members of the BHF 

Glasgow Cardiovascular Research Centre who were unaware of the patients‟ phenotypes. 

The C to T substitution, at position 242 in the CYBA was typed by RsaI digestion of 

specific polymerase chain reaction products amplified from genomic DNA as described 

in section 2.4. Analysis was preformed on a 1.5% agarose gel. 

 

5.2.3 Statistical Evaluation 

 

All data are presented as mean ± SEM. Power calculations were performed before sample 

acquisition and 100 subjects, based on pilot data, were projected to provide 80% power 

for primary analysis based on two sample t-tests to compare mean C1 or C2 values 

between the two homozygous groups at each locus. The Chi squared statistic was used to 

ensure that the observed allele frequencies did not differ from that expected under Hardy-

Weinberg equilibrium 

 

A two tailed Student‟s t-test was used to analyse differences in phenotype between 

subjects with presence or absence of the T allele for the CYBA C242T SNP, as this has 

previously been reported as being the dominant allele (Cai 1999, Cahilly 2000 and Nasti 

2006). Thereafter multiple regression analysis was preformed to identify the variables 
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that independently predicted the relationships. Statistical significance was defined as 

p<0.05. 

 

5.3 Results  

 

5.3.1 Clinical Characteristics. 

 

The baseline characteristics of the study population are those displayed in table 3.1. 78 

patients were male and 27 female. The mean age of the patients was 61.84, mean blood 

pressure 130.94/70.88and cholesterol 4.29 mmol/l. In terms of smoking status 37 patients 

had never smoked, 26 patients were ex smokers as defined by more than 6 months of 

abstinence and 40 patients continued to smoke cigarettes. The mean large artery 

compliance (C1) was 14.74 ml/mmHg x 10, mean small artery compliance (C2) 4.63 

ml/mmHg x 100 and Augmentation Index (AIx) 28.89%. 75 patients were on Aspirin, 10 

on Clopidogrel alone and 12 on both Aspirin and Clopidogrel. 76 were taking Beta 

Blockers, 55 on calcium channel blockers, 89 on HMG Co A Reductase Inhibitors, 43 on 

a form of Nitroglycerin, 51 on Angiotensin Converting Enzyme Inhibitors and 5 on 

Angiotensin II type 1 receptor antagonists.  
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5.3.2 The distribution of the genotypes and frequency of the alleles. 

 

CC CT TT 

44/103 51/103 8/103 

43% 50% 7% 

 

Table 5.1 The distribution of genotypes and frequency of the alleles of the p22phox 

CYBA gene. 

 

The distribution of the genotypes and the frequency of the T alleles did not differ 

significantly from that expected under Hardy-Weinberg equilibrium (Chi = 1.69, p=0.67, 

q= 0.33). 

 

5.3.3 The CYBA C242T genotype and cardiovascular phenotypes. 

We sought to examine the influence of the C242T SNP of CYBA upon vascular 

compliance and blood pressure using the dominant allele model. The analysis of all 

measured cardiovascular phenotypes and CYBA C242T genotype are illustrated in Table 

5.2. As displayed in table 5.2 and Figure 5.1 the presence of the 242T allele was 

associated with significantly higher systolic blood pressure. Patients homozygous for the 

C allele had lower systolic blood pressure (125.7 ± 2.3 mmHg) than heterozygotes and 

patients homozygous for the T allele(134.6 ± 2.4 mmHg) (p=0.010). There was no 

statistically significant effect upon diastolic blood pressure (Table 5.2 and Figure 5.2). 
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There was however a significant association observed between the 242T allele and pulse 

pressure (Table 5.2 and Figure 5.3). Patients that were homozygous for the C allele had a 

PP of 56 ± 1.6 mmHg where as patients heterozygous or homozygous for the T allele had 

a PP of 62.7 ± 1.8 mmHg (p =0.01).  

In terms of arterial stiffness the 242T allele was associated with lower large artery 

compliance (Table 5.3 and Figure 5.4). CC homozygotes had higher large artery 

compliance (17.07 ± 0.82 ml/mmHg x10), than heterozygotes and TT homozygotes 

(13.16 ± 0.53 ml/mmHg x10) ( p = < 0.001). No difference was observed between the 

C242T SNP and small artery compliance nor Augmentation Index in our study 

population (Table 5.3 and Figures 5.5 and 5.6) 
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Table  5.2 -.  Associations between the CYBA C242T genotype and cardiovascular 

phenotypes in patients with coronary artery disease.  

Variable Genotype (n)  p value 

 CC 

(44) 

CT 

(51) 

TT 

(8) 

CT + TT 

(59) 

CC vs 

CT+TT 

Age (years) 61.91 ± 1.1 61.6 ± 1.4 58.63 ± 1.3 61.2 ± 1.3 0.68 

BMI (kg/m
2
) 28.89 ± 0.69  29.82 ± 0.65 33.2 ± 3.8 30.27 ± 0.76 0.18 

SBP (mmHg) 125.7 ± 2.3 134.4 ± 2.6 135.6 ± 6.3 134.6 ± 2.4 0.01 

DBP (mmHg) 69.6 ± 1.7 71.93 ± 1.2 71.16 ± 2.0 71.82 ± 1.1 0.28 

PP (mmHg) 56 ± 1.6 62.5 ± 2.0 64.5 ± 5.3 62.7 ± 1.8 0.01 

HR (beats/min) 62.2 ± 1.8 61.7 ± 1.7 58.83 ± 3.0 61.3 ± 1.5 0.70 

C1 (ml/mmHg x 10) 17.07 ± 0.82 13.39 ± 0.57 11.71 ± 1.5 13.16 ± 0.53 0.00 

C2 (ml/mmHg x 100) 4.66 ± 0.35 4.74 ± 0.45 3.73 ± 0.69 4.60 ± 0.40 0.91 

Augmentation Index (%) 30.57 ± 1.4 28.3 ± 2.0 32.78 ± 3.0 29.0 ± 1.8 0.49 

CHOL (mmol/l) 4.40 ± 0.12 4.24 ± 0.11 4.28 ± 0.42 4.25 ± 0.11 0.40 

logTRIG (mmol/l) 0.18 ± 0.03 0.26 ± 0.04 0.25 ± 0.09 0.26 ± 0.04 0.12 

LDL (mmol/l) 2.50 ± 0.10 2.21 ± 0.10 2.45 ± 0.36 2.24 ± 0.10 0.07 

HDL (mmol/l) 1.13 ± 0.06 1.04 ± 0.05 0.90 ± 0.10 1.02 ± 0.05 0.14 

Log CRP (mg/l) 0.36 ± 0.08 0.31 ± 0.07 0.57 ± 0.17 0.34 ± 0.07 0.84 

Log Adiponectin (ng/ml) 3.45 ± 0.10 3.59 ± 0.05 3.32 ± 0.14 3.55 ± 0.05 0.34 

Log ICAM (ng/ml) 2.57 ± 0.02 2.54 ± 0.02 2.56 ± 0.03 2.54 ± 0.02 0.32 

Log IL-6 (pg/ml) 0.41 ± 0.09 0.42 ± 0.07 0.27 ± 0.27 0.40 ± 0.07 0.96 
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Figure 5.1:- The C242T SNP of the CYBA gene and SBP in patients with coronary 

artery disease. 
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Figure 5.2:- The C242T SNP of the CYBA gene and DBP in patients with coronary 

artery disease. 
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Pulse pressure and C242T genotype
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Figure 5.3:- The C242T SNP of the CYBA gene and PP in patients with coronary 

artery disease. 
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Figure 5.4:- The C242T SNP of the CYBA gene and C1 in patients with coronary 

artery disease. 
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Small artery compliance and C242T genotype
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Figure 5.5:- The C242T SNP of the CYBA gene and C2 in patients with coronary 

artery disease. 
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Figure 5.6:- The C242T SNP of the CYBA gene and AIx in patients with coronary 

artery disease. 
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5.3.4 Multiple Regression Analysis. 

 

Multiple regression analysis, examining the possible contribution of age, BMI, SBP, DBP 

and total cholesterol showed that only large artery compliance was significant when 

CYBA C242T genotype was assigned as the dependent variable (p=0.001). 

 

Predictor Regression 

Coefficient 

Standard Error t value p value 

Age (years) -0.005 0.006 0.771 0.443 

BMI (kg/m
2
) 0.010 0.009 1.138 0.258 

SBP (mmHg) 0.003 0.004 0.647 0.519 

DBP (mmHg) -0.004 0.007 0.523 0.602 

C1 (ml/mmHg 

x10) 

-0.040 0.012 3.316 0.001 

C2 (ml/mmHg 

x 100) 

0.021 0.019 1.107 0.271 

Chol mmol/l -0.040 0.057 0.705 0.483 

 

Table 5.3: Multiple regression analysis of vascular phenotypes with CYBA C242T  

genotype as the dependent variable. 

 

R
2
= 19%, adjusted R

2
= 13.3%, p=0.004 for the entire study group. 
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5.4 Discussion  

 

The p22phox subunit of NAD(P)H oxidase has been associated with vascular disease. 

Azumi and co workers (Azumi 1999) demonstrated increased p22phox expression that 

paralleled increasing disease severity in atherosclerotic coronary artery endothelial cells 

and vascular smooth muscle cells. Guzik et al (Guzik 2002) showed that the p22phox 

protein subunit was significantly increased in human diabetic veins and arteries. 

 

Debate exists as to the role of the common C242T polymorphism of the p22phox gene in 

the pathogenesis of vascular disease. This SNP results in a substitution of histidine-72 

with tyrosine that has been speculated to modulate NAD(P)H oxidase enzyme activity by 

affecting its heme binding site thus influencing the amount of superoxide present and 

consequently nitric oxide bioactivity (Guzik 2000). Some groups have found that this 

single nucleotide polymorphism has no effect upon risk of ischaemic heart disease (Li 

1999, Gardemann 1999, Saha 1999). Others have also suggested that the T allele may 

even be protective in terms of less superoxide generation within human blood vessels and 

less development of carotid atherosclerosis in patients with type 2 diabetes mellitus 

(Hayaishi-Okano 2002). Schächinger et al (Schächinger 2001) suggested that the CC but 

not the TT homozygosity was associated with blunted coronary endothelial 

vasodilatation. 
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On the contrary, and in keeping with the findings of our study, the T allele of the 

p22phox gene has been associated with premature coronary artery disease in an 

Australian population (Cai 1999) and with progression of angiographically determined 

atherosclerosis in an American population in a prospective study (Cahilly 2000). These 

observations were more recently corroborated in an Italian population by Nasti and 

colleagues who noted that in 494 Caucasian Italians undergoing diagnostic coronary 

angiography to ascertain the cause of chest pain that the frequency of the mutant T allele 

was significantly higher in the 276 patients with angiographically documented coronary 

artery disease (Nasti 2006). Furthermore this relationship with the T allele was even 

stronger within patients with early onset coronary artery disease (aged < 55 years) (Nasti 

2006). Within a Japanese population the 242T allele has been associated with ischaemic 

cerebrovascular disease (Ito 2000). Additionally the T allele has been shown to be a 

marker of susceptibility to microvascular disease (nephropathy) in patients with type 1 

diabetes mellitus (Hodgkinson 2003). 

 

This is the first report of an association between the 242T allele of CYBA and the large 

artery stiffness as measured non-invasively. Further more we have shown an association 

between the T allele and higher systolic and pulse pressure. A recent previous report by 

Moreno and coworkers found, conversely, that the prevalence of the CC genotype and the 

C allele were significantly higher in hypertensives than in normotensives (Moreno 2006). 

The disparity between these results is possibly explained by the severity of vascular 

disease displayed in our cohort evidenced by prior diagnostic angiography necessitating 

bypass grafting. The strength of our observation finding an association with non invasive 
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arterial stiffness is in keeping with recent evidence that suggests that differences in 

central aortic pressures and hence large artery stiffness may be a determinant of differing 

clinical outcomes, as documented in the Conduit Artery Function Evaluation sub study of 

the Anglo-Scandinavian Outcomes Trial (ASCOT) investigators (Williams 2006). A 

prospective study combining pulse contour analysis and p22phox genotype would enable 

a definitive observation regarding the importance of this genotype in cardiovascular 

survival and the strength of the observed associations between the T allele and systolic 

and pulse pressure and large artery stiffness. Though the study was performed blind to 

genotype the weakness of this study is in both the small sample size and small numbers 

of homozygotes and the degree of overlap between each of the groups analysed as 

displayed within the scatter points and hence the results should be interpreted with a 

degree of caution. 
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Chapter 6 Combined analysis of NOS3 G894T and CYBA C242T 

genotypes upon arterial stiffness. 

 

6.0 Summary 

 

This chapter describes the collated analysis of the NOS3 G894T and CYBA C242T 

genotypes upon arterial stiffness. When the favourable and unfavourable genotypes were 

compared an additive effect was observed such that patients homozygous for the 

„deleterious‟ alleles had lower large and arterial compliance values when contrasted with 

the „favourable‟ alleles. 

 

6.1 Introduction 

 

The involvement of the two SNPs examined in chapters‟ 4 and 5 in vascular disease 

combined with the observations that eNOS protein expression and NO release are 

reduced in human atherosclerosis (Oemar 1998) and augmented p22phox expression in 

atherosclerotic human coronary arteries (Azumi 1999) with the severity of atherosclerosis 

correlating with NAD(P)H oxidase subunit mRNA expression (Sorescu 2002) leads to 

the hypothesis that these two genes may interact. Given that both SNPs have been shown 

to have the potential to be functional, the C242T CYBA polymorphism via the alteration 

of the heme binding site (Guzik 2002) and the G894T NOS3 via altered cleavage at the 

cleavage altering NO generation (Tesauro 1999) we hypothesized that the combination of 
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the deleterious homozygote alleles of both SNPs may result in reduced arterial 

compliance and hence increased arterial stiffness when compared to the favourable 

alleles. 

 

6.2 Methods 

 

6.2.1. Subjects, clinical procedures and statistical evaluation. 

 

The subjects utilised in the analysis of a possible gene gene interaction were those 

detailed in chapters 4 and 5 and documented in detail in section 2.2. Additionally the 

genotyping of both genes was performed utilising polymerase chain reaction and 

restriction digestion for the CYBA C242T SNP and sequencing for the NOS3 G894T 

SNP. A comparison using the Student‟s t-test was carried out between patients 

homozygous for the NOS3T allele and possessing the CYBA 242T allele and patients 

homozygous for the NOS3 G allele and for the CYBA C allele. Thereafter multiple 

regression analysis was performed to identify the variables that independently predicted 

the relationships. 

 

6.3 Results 

 

The combined analysis of NOS3 G894T and CYBA C242T genotypes are detailed in table 

6.1. There was no difference evident in age, BMI, BP or cholesterol parameters between 
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the two groups. In order to contrast the arterial stiffness between the favourable versus 

the non-favourable genotypes patients homozygous for the NOS3 G allele and 

homozygous for the CYBA C allele were compared with those homozygous for the 

NOS3T allele and possessing the CYBA 242T allele. Hence the numbers analysed are 

small (18 CYBA CC & NOS3 GG and 8 CYBA CT/TT & NOS3 TT) as only patients with 

the „opposite‟ genotype are included in the analysis. The former displayed higher large 

and small artery compliance than the latter group. Patients with the CC/GG genotype had 

a mean C1 of 19.68 ± 1.3 ml/mmHg x10, with patients with the CT+TT/TT genotype a 

mean C1 13.90 ± 1.6 ml/mmHg x10 (p=0.01, Table 6.1, Figure 6.1). Likewise patients 

with the CC/GG genotype had a mean C2 of 5.48 ± 0.63 ml/mmHg x100, with patients 

with the CT+TT/TT genotype a mean C2 of 3.24 ± 0.52 ml/mmHg x100 (p=0.01, Table 

6.1, Figure 6.2). Using multifactor dimensionality reduction to detect epistasis there was 

no evidence of epistasis between the two genotypes analysed using the constructive 

induction algorithm (Ritchie 2001). 
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Table 6.1. Gene gene interaction. Associations between the CYBA C242T and NOS3 

G894T SNPs and cardiovascular phenotypes. 

Variable Genotype(n) p value 

 CYBA CC 

NOS3 GG 

(18) 

CYBA CT/TT 

NOS3 TT 

(8) 

CC+GG vs 

CT/TT + TT 

Age(years) 59.44 ± 1.5 60.13 ± 3.3 0.85 

BMI (Kg/m2) 28.79 ± 0.92  29.50 ± 1.00 0.61 

SBP (mmHg) 122.6 ± 4.00 126.8 ± 8.00 0.64 

DBP (mmHg) 69.7 ± 2.5 69.6 ± 4.2 0.98 

PP (mmHg) 52.81 ± 2.1 57.2 ± 4.4 0.39 

HR (beats/min) 60.7 ± 2.9 55.79 ± 2.5 0.21 

C1 (ml/mmHg x10) 19.68 ± 1.3 13.90 ± 1.6 0.01 

C2 (ml/mmHg x100) 5.48 ± 0.63 3.24 ± 0.52 0.01 

CHOL (mmol/l) 4.13 ± 0.15 4.51 ± 0.35 0.34 

logTRIG (mmol/l) 0.17 ± 0.04 0.262 ± 0.06 0.20 

LDL (mmol/l) 2.28 ± 0.14 2.58 ± 0.93 0.33 

HDL (mmol/l) 1.12 ± 0.09 1.04 ± 0.13 0.13 
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Figure 6.1 Combined analysis of the CYBA C242T and NOS3 G894T genotypes and 

large artery compliance.  
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Figure 6.2 Combined analysis of the CYBA C242T and NOS3 G894T genotypes and 

small artery compliance.  
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6.3.4 Multiple Regression Analysis. 

Multiple regression analysis, examining the possible contribution of age, BMI, SBP, 

DBP, total, ldl cholesterol and triglyceride concentration showed that only the 

large(p=0.02) and small(p=0.05) artery compliance values contributed significantly when 

genotype was assigned as the dependent variable. 

Predictor Regression 

Coefficient 

Standard Error t value p value 

Age (years) 0.014 0.01 1.04 0.32 

BMI (kg/m
2
) 0.0004 0.02 0.02 0.99 

SBP (mmHg) 0.002 0.01 0.16 0.87 

DBP (mmHg) -0.02 0.02 1.18 0.26 

C1 (ml/mmHg 

x10) 

-0.04 0.02 2.65 0.02 

C2 (ml/mmHg 

x 100) 

-0.07 0.03 2.14 0.05 

Chol mmol/l -0.06 0.25 0.23 0.82 

LDL mmol/l 0.34 0.26 1.33 0.20 

Log Trig 

mmol/l 

0.19 0.51 0.36 0.72 

Table 6.2: Multiple regression analysis of vascular phenotypes with combined NOS3 

G894T - CYBA C242T  genotype as the dependent variable. 

R
2
= 61.9%, adjusted R

2
= 69.2%, p=0.03 for the entire study group. 
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6.4 Discussion 

 

This chapter outlines the potentially additive effects of two common allelic variants 

within oxidative stress genes that potentially modulate the action of the gene products 

and are both implicated in the pathogenesis of vascular disease.  

 

Other groups have also attempted to look at the association of cardiovascular phenotypes 

with combinations of allelic variants. A large meta analysis was undertaken by Zintzaras 

et al (Zintzaras 2006) looking at the meta analysis of all the available studies relating the 

G894T, eNOS VNTR 4 b/a, -786T/C and G23T polymorphisms and their associations 

with hypertension. They preformed cumulative and recursive cumulative meta analyses 

which supported an association between hypertension and the eNOS VNTR 4 b/a 

polymorphism such that under a recessive model the allele b provided evidence of 

protection, especially when the analysis was confined to whites. Notably they found no 

detectable influence of the G894T, -786T/C nor G23T polymorphisms (Zintzaras 2006). 

A sib-pair study analysis and haplotype study was carried out by Persu and co workers 

who examined for linkage and association of the three commonly reported di allelelic 

polymorphisms (G894T, -786T/C, eNOS VNTR 4 b/a) and the intron 13 CA-repeat of 

NOS3 with blood pressure as a continuous trait (Persu 2005). The NOS3 haplotypes 

which associated with ambulatory blood pressure recordings all harboured the 894T 

allele (Persu 2005).  
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Other studies looking to ascertain the influence of combinations of allelic variants have 

been Casas et al (Casas 2004) have previously reported that individuals homozygous for 

the NOS3 894T and the NOS3 intron-4a allele are at increased risk of ischemic heart 

disease (Casas 2004). Further more a gene-gene interaction has also been documented 

between another NOS3 SNP (-786T/C) and the angiotensin converting enzyme gene 

insertion/deletion polymorphism in patients with early coronary artery disease (Álvarez).  

 

Sampians et al (Sampians 2007) investigated the relationship with the three commonly 

reported di allelelic polymorphisms (G894T, -786T/C, eNOS VNTR 4 b/a) and 

endothelial dysfunction in a population of 128 patients with an acute myocardial 

infarction aged less than 40. They found that a NOS3 -786TT/894 GT haplotype was 

associated with increased flow mediated dilatation than the other haplotypes. 

 

The observed interaction between the SNPs studied in this study and arterial compliance 

is the first to concentrate on a non invasive cardiovascular phenotype. It is the first study 

additionally to attempt to combine the effect of the CYBA C242T SNP with the NOS3 

G894T SNP. Chapter 4 describes that the 894T allele of the NOS3 gene is associated with 

attenuated small artery compliance and chapter 5 that the 242T allele of the CYBA gene is 

associated with high large artery stiffness. When the 2 alleles coincide the negative effect 

could be further potentiated. The limitations are naturally the small number of patients 

that were involved in the analysis as well as that the subjects are drawn from a single 

geographic are and all have established vascular disease. The fact that both genes are 

involved in ROS generation and implicated, as described, in the pathophysiology of 
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atherosclerotic vascular disease lends further weight to the potential usefulness of PWA 

as an intermediate phenotype for cardiovascular clinical functional genomics. 
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Chapter 7 Chronic low grade inflammation and insulin resistance and 

arterial compliance in healthy volunteers. 

 

7.0 Summary 

 

This clinical study was designed to ascertain whether, in healthy individuals free of 

vascular disease, markers of chronic low grade inflammation and insulin resistance were 

associated with arterial compliance. Fifty three healthy volunteers attended the clinical 

research unit to have a non invasive vascular profile performed and serum taken for 

biochemical analysis. In multiple regression analysis there was an association between 

vascular compliance and some, but not all markers of low grade chronic inflammation 

and insulin resistance. 

 

7.1 Introduction 

 

The advent of both non invasive vascular and biochemical surrogate markers for 

cardiovascular disease has provided intermediate phenotypes that may guide the clinician 

in treatment and risk stratification before established vascular disease is present (Davies 

2003, Oliver 2003, McVeigh 2003, Cohn 2004).  Cardiovascular disease is complicit with 

alterations in the structure, properties, and function of wall and endothelial components 

of blood vessels (Gibbons 1994). This study examines biochemical compounds which are 

either markers of, or pathophysiologically involved in, the genesis of vascular disease and 
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compares them to the non-invasively obtained large and small artery compliance values 

and augmentation index. Plasma levels of CRP are strong independent predictors of 

atherosclerotic events in apparently healthy individuals (Ridker 1997, Ridker 1998). Its 

association with aortic and brachial PWV and augmentation index has been examined 

previously (Yasmin 2004, Kampus 2004). IL-6 plasma levels within the highest quartile 

of the „normal‟ range have been associated with future cardiovascular events (Harris 

1999, Ridker 1999). Lower levels of Adiponectin are associated with insulin resistance, 

type 2 diabetes mellitus, hypertension and ischaemic heart disease (Matsuzawa 2004, 

Mallamaci 2002, Kumada 2003). There has also been an association of levels of 

Adiponectin with endothelial function (Lawlor 2005). Increasing levels of ICAM1 are 

associated with dyslipidaemia, hypertension and ischaemic heart disease (Hackman 1996, 

Chae 2001, Ridker 1998). Changes in the pulse pressure wave shape have been described 

in all these entities both in terms of AIx and small and large compliance values 

(Wilkinson 2000, Wilkinson 2002, Cohn 1995, McVeigh 1999). As with each marker 

studied statistical strength does not imply causality as confounding factors or reverse 

causality offer alternative explanations for the association (Schunkert 2008). An 

association thus between arterial stiffness and these biochemical markers would perhaps 

strengthen their relative associations with vascular disease and putatively add to their 

potential role in risk stratification. 
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7.2 Methods 

 

7.2.1 Subjects 

 

Fifty three healthy normotensive volunteers were recruited via advertisements within 

Glasgow University and local newspapers. This clinical study was approved by the Ethics 

Committee of the West Glasgow University NHS trust. No subjects were taking any 

medication and all abstained from alcohol, nicotine, tobacco, food and strenuous activity 

overnight before the study day. All subjects attended fasted in the morning between 7.00 

and 9.00 am depending on availability. Physical health was confirmed by screening with 

history, a full physical examination, ECG and supine blood pressure measurement in 

triplicate (Dinamap Critikon, Johnson and Johnson Professional Products Ltd.). Ninety 

volunteers were screened and those with raised blood pressure, an antecedent history of 

vascular disease or an abnormal ECG excluded. Of the 53 patients recruited the mean age 

was 52.74 years (range 37-72) years. Mean systolic blood pressure was 125 ±13 mmHg 

and diastolic blood pressure 72 ± 8 mmHg. The mean BMI was 26.14 ± 3.34 kg/m
2
 and 

total cholesterol 4.75 ± 0.78 mmol/l. 4 subjects were smokers and 12 were ex smokers 

with more than 6 months since their last cigarette. Of the ex smokers 8 had more than a 

10 pack year history. Table 3.3 details the baseline characteristics of the healthy 

volunteers.  
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7.2.2 Clinical Procedures 

 

Following screening morphometric parameters were taken as detailed in section 2.3. 

Thereafter 60 minutes supine rest was taken before vascular phenotyping and then blood 

obtained for quantification of IL-6, Adiponectin, sICAM-1 and highly sensitive CRP. 

Small and large artery compliance values were obtained using a calibrated, proprietary 

tonometer (model CR 2000 Hypertension Diagnostics Inc) and used according to 

manufacturers specifications. Similarly Augmentation Index was measured using the The 

SphygmoCor system (PWV Medical). A full description of these techniques is detailed in 

section 2.3.1 and 2.3.2. IL-6, CRP, Adiponectin and sICAM1 were measured using the 

techniques detailed in 2.5.  

 

7.2.3 Statistical Evaluation. 

 

The package used for analysis was Minitab for Windows (Minitab Inc). P value of <0.05 

was considered significant. 

 

Using the Kolmogorov Smirnov test for normality with the Dallal and Wilkinson 

approximation to Lilliefors' method the data sets for sICAM-1 and adiponectin were 

normally distributed whereas those for IL-6 and CRP were not. For data that did not 

follow the Gaussian distribution, for statistical analysis, the data set was log transformed 

to create a normal distribution. 
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Simple regression was used to create a model with only one predictor utilizing the least 

squares estimation. Where the data was normally distributed the Pearson correlation was 

used (sICAM-1 and Adiponectin). Where the data did not fit a Gaussian distribution 

Spearman Rank correlation was used, i.e. for CRP and IL-6. Thereafter multiple 

regression was used to describe the statistical relationship between a response and 2 or 

more predictors. Again this used the method of least squares, which determines the 

equation for the straight line that minimizes the sum of the vertical distances between the 

data points and the line. Augmentation Index has been shown to vary with heart rate 

(Wilkinson 2002b) hence AIx was corrected for a mean heart rate of 75. 

 

7.3 Results  

 

In the fifty three volunteers without vascular disease the procedures were completed 

without complication and were well tolerated.  

 

7.3.1 Arterial stiffness.  

 

The mean Large artery compliance value (C1) in this group was 15.20 ± 4.14 ml/mmHg 

x 10. The mean small artery compliance (C2) was 6.74 ml/mmHg x 100. This is 

comparable to previous work undertaken using this technique (McVeigh2001). Similarly 
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the mean augmentation index measurement of 23.85 ± 11.26 % was akin to 

measurements obtained by other groups (Kampus 2004).  

7.3.2 Interleukin 6. 

 

IL-6 was measured with a commercial assay kit (Quantikine human
 
IL-6, R and D 

System).The mean IL 6 level in this group was 3.49 ± 6.2 pg/ml. While in the normal 

range for this assay (1-10 pg/ml) our results are slightly higher than those from Chae et al 

from the United States who observed correlations across quartiles of systolic blood 

pressure of less than 3pg/ml although exact means are not detailed in their publication 

(Chae 2001).  
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Table 7.1 Linear Correlation of IL6 Using Spearman Rank Correlation 

 

Parameter Spearman r 95% CI p value 

Age(years) 0.343 0.072 to 0.567 0.011 

Height(m) -0.076 -0.347 to 0.206 0.588 

Weight(kg) -0.003 -0.280 to 0.276 0.986 

BMI 0.035 -0.245 to 0.310 0.802 

Smoking Status 0.011 -0.268 to 0.288 0.939 

SBP(mmHg) 0.356 0.0860 to 0.576 0.009 

DBP(mmHg) 0.258 -0.021 to 0.500 0.062 

PP(mmHg) 0.366 0.0979 to 0.584 0.007 

HR 0.177 -0.107 to 0.433 0.206 

C1(ml/mmHgx10) -0.325 -0.557 to -0.045 0.020 

C2(ml/mmHgx100) -0.527 -0.705 to -0.286 < 0.0001 

AIx(%) 0.361 0.093 to 0.581 0.008 

AIx(%)/HR75 0.429 0.172 to 0.632 0.001 

CHOL(mmol/l) -0.201 -0.453 to 0.082 0.150 

Log TRIG(mmol/l) -0.036 -0.311 to 0.245 0.799 

LDLChol(mmol/l) -0.201 -0.454 to 0.081 0.148 

HDL(mmol/l) -0.134 -0.397 to 0.149 0.338 
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The spearman rank associations are detailed in table 7.2. We found in our group a 

significant correlation with age (p=0.011) as has been found previously (Bermudez 

2002). Spearman rank correlation with only IL 6 levels as the predictor also showed that 

IL 6 was correlated positively with AIx (p=0.008). When AIx was adjusted for heart rate 

the relationship persisted (p=0.001). Higher levels of IL6 within the normal range were 

therefore associated with increased arterial stiffness. Akin to this was the finding that 

higher levels of IL 6 were associated with lower levels of arterial compliance, i.e. stiffer 

arteries with a significant correlation for both C1 (p=0.02) and C2 (p=<0.001). 

Associations were also seen with both SBP (p=0.009) and PP (p=0.007) but not DBP. 

 

7.3.3 Multiple regression analysis: IL 6 in healthy volunteers. 

 

Multiple regression analysis with C1 as the dependent variable showed significant 

associations for height, BMI, smoking and systolic blood pressure but not IL-6 (table 

7.3). The „good of the fit‟ for this multiple regression analysis was a R
2
 of 61.5%, and 

highly significant with p value <0.001. Incorporating pulse pressure into any of the 

analysis generated, as would be expected, redundant information. Table 7.4 shows that 

when C2 was taken as the dependent variable only log normalized IL 6 remained 

significant (p=0.05). Therefore even in healthy individuals where vascular disease is not 

apparent small artery compliance is associated with mediators of low grade chronic 

inflammation. With augmentation index corrected for heart rate of 75 age and systolic 

blood pressure were significant but not IL 6 (table 7.5) 
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Table 7.2 Results for the multiple regression analysis of IL 6 with Large Artery 

Compliance as the dependent variable. 

Predictor Regression 

Coefficient 

Standard Error tvalue p value 

Age (years) 0.07 0.05 1.35 0.18 

Gender -0.70 1.15 -0.60 0.55 

Height (m) 0.22 0.06 3.71 0.001 

BMI (kg/m
2
) 0.22 0.12 1.88 0.07 

Smoking -1.92 0.60 -3.18 0.003 

SBP -0.18 0.03 -5.73 0.000 

Log IL6 -1.15 0.87 -1.31 0.20 

 

R
2
= 66.9%, adjusted R

2
= 61.5%, p=0.000 for the entire study group (n=53).  

 

 

 

 

 

 

 

 



 168 

Table 7.3 Results for the multiple regression analysis of IL 6 with Small Artery 

Compliance as the dependent variable. 

 

Predictor Regression 

Coefficient 

Standard Error tvalue p value 

Age (years) -0.03 0.04 -0.58 0.57 

Gender -0.79 1.05 -0.76 0.45 

Height (m) 0.04 0.05 0.83 0.41 

BMI (kg/m
2
) 0.14 0.10 0.39 0.17 

Smoking -0.23 0.53 -0.43 0.67 

SBP -0.07 0.05 -1.47 0.15 

DBP -0.08 0.07 -1.04 0.31 

Log IL6 -1.59 0.77 -2.05 0.05 

R
2
= 51.0%, adjusted R

2
= 41.7%, p=0.000 for the entire study group (n=53).  
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Table 7.4 Results for the multiple regression analysis of IL 6 with Augmentation 

Index as the dependent variable. 

 

Predictor Regression 

Coefficient 

Standard Error t value p value 

Age (years) 0.34 0.17 2.07 0.04 

Gender 3.48 3.92 0.89 0.38 

Height (m) -0.34 0.19 -1.76 0.09 

BMI (kg/m
2
) -0.19 0.40 -0.48 0.64 

Smoking 1.66 2.05 0.81 0.42 

SBP 0.30 0.11 2.81 0.01 

Log IL6 3.35 3.00 1.12 0.27 

R
2
= 49.5%, adjusted R

2
= 41.7%, p=0.000 for the entire study group (n=53).  
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7.3.4 CRP in healthy volunteers 

 

CRP was measured using a sensitive double-antibody sandwich ELISA with rabbit anti-

human CRP and peroxidase-conjugated rabbit anti-human CRP. The assay was linear up 

to 5 mg/l and logarithmic thereafter. The inter- and intra-assay coefficients of variation 

were <10% across the range of measured results. Intra-assay coefficients of variation 

were <7% for all analytes. Mean CRP levels in this group were 2.11 ± 7.06 mg/L. The 

mean levels are lower than those in a recent similar study where mean level of 4.0 ± 5.6 

were found (Yasmin 2004). 

 

Linear correlations of hsCRP are displayed in table 7.6. As the data did not follow 

Gaussian distribution Spearman Rank correlations were used and thereafter for further 

analysis the data was log transformed. As with previous work we found that highly 

sensitive CRP correlated with BMI and hence weight. Moreover in accordance with 

Abramson et al we found that CRP correlated with pulse pressure (Abramson 2002). 

There was a trend, but not statistically significant, between small artery compliance and 

hs CRP (p=0.097). Additionally CRP correlated with HDL (p=0.005). 
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Table 7.5 Linear Correlation: hsCRP Using Spearman Rank Correlation 

 

Parameter Spearman r 95% CI p value 

Age(years) 0.199 -0.084 to 0.452 0.154 

Height(m) -0.018 -0.295 to 0.261 0.897 

Weight(kg) 0.397 0.133 to 0.608 0.003 

BMI 0.521 0.284 to 0.698 < 0.0001 

Smoking Status 0.159 -0.124 to 0.419 0.254 

SBP(mmHg) 0.242 -0.038 to 0.487 0.081 

DBP(mmHg) 0.117 -0.166 to 0.383 0.403 

PP(mmHg) 0.292 0.015 to 0.527 0.034 

HR  0.018 -0.262 to 0.294 0.900 

C1(ml/mmHgx10) -0.165 -0.429 to 0.124 0.246 

C2(ml/mmHgx100) -0.235 -0.486 to 0.052 0.097 

AIx(%) 0.181 -0.103 to 0.437 0.196 

Aix(%)/HR75 0.184 -0.099 to 0.439 0.188 

CHOL(mmol/l) 0.066 -0.216 to 0.337 0.641 

Log TRIG(mmol/l) 0.202 -0.080 to 0.455 0.146 

LDLChol(mmol/l) 0.159 -0.125 to 0.418 0.256 

HDL(mmol/l) -0.378 -0.594 to -0.112 0.005 

 

 



 172 

7.3.5 Multiple Regression Analysis: CRP  

 

In multiple regression analysis with C1 as the dependent variable (table 7.7, adjusted R
2
= 

48.2, p=0.000) correlated with gender (p=<0.01), BMI (p=0.05) and SBP (p=0.004). 

Though a tendency existed with log normalized CRP it did not reach clinical significance. 

Where the dependent variable was C2 (table 7.8, adjusted R
2
=39.8%, p=0.000) a 

significant correlation existed with gender (p=0.03), BMI (p=0.02), and log CRP 

(p=0.02). Table 7.9 shows multiple regression analysis with AIx corrected for heart rate 

as the dependent variable (adjusted R
2
= 44%, p=0.000). Age (p=0.007), Gender (0.000) 

and DBP (p=0.01) but not log CRP ( 0.43) were significant correlates. The lack of 

association between CRP and Aix mirrors that of Yasmin  et al (Yasmin 2004) but is at 

odds with the work of Kampus and co workers ( Kampus 2003). Given that the same 

technology was utilized in each study technical differences are unlikely to explain the 

different findings. That C2 and AIx are not analogous is further strengthened by the 

disparity in the associations described. 
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Table 7.6 Multiple Regression Analysis of log CRP in healthy volunteers with large 

artery compliance as the dependent variable.  

Predictor Regression 

Coefficient 

Standard Error tvalue p value 

Age (years) -0.03 0.05 -0.51 0.61 

Gender -3.95 0.974 -4.17 0.00 

BMI (kg/m
2
) 0.31 0.15 2.02 0.05 

Smoking -1.29 0.70 -1.86 0.07 

SBP -0.18 0.06 -3.02 0.004 

DBP 0.04 0.10 0.45 0.65 

Chol mmol/l 0.13 0.55 0.23 0.82 

HDL mmol/l 0.62 1.66 0.37 0.71 

Log CRP  -2.38 1.27 -1.87 0.07 

R
2
= 57.6%, adjusted R

2
= 48.2%, p=0.000 for the entire study group (n=53).  
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Table 7.7 Multiple Regression Analysis of log CRP in healthy volunteers with small 

artery compliance as the dependent variable.  

 

Predictor Regression 

Coefficient 

Standard Error tvalue p value 

Age (years) -0.06 0.04 -1.44 0.16 

Gender -1.67 0.73 -2.29 0.03 

BMI (kg/m
2
) 0.28 0.12 2.34 0.02 

Smoking 0.003 0.53 0.01 0.99 

SBP -0.07 0.05 -1.43 0.16 

DBP -0.08 0.08 -1.07 0.29 

Cholesterol 0.12 0.42 0.27 0.79 

HDL mmol/l 1.30 1.27 1.02 0.31 

Log CRP -1.93 0.97 -1.98 0.05 

R
2
= 50.7%, adjusted R

2
= 39.8%, p=0.000 for the entire study group (n=53).  
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Table 7.8 Multiple Regression Analysis of log CRP in healthy volunteers with 

Augmentation Index as the dependent variable.  

 

Predictor Regression 

Coefficient 

Standard Error tvalue p value 

Age (years) 0.43 0.15 2.82 0.007 

Gender 10.54 2.69 3.93 0.000 

BMI (kg/m
2
) -0.28 0.44 -0.64 0.53 

Smoking 0.50 1.99 0.25 0.80 

SBP mmHg -0.09 0.17 -0.54 0.60 

DBP mmHg 0.72 0.28 2.56 0.01 

Chol mmol/l -1.49 1.59 -0.94 0.35 

HDL mmol/l -5.55 4.78 -1.16 0.25 

Log CRP 2.95 3.67 0.80 0.43 

R
2
= 53.7%, adjusted R

2
= 44.0%, p=0.000 for the entire study group (n=53).  
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7.3.6 ICAM in healthy volunteers 

 

sICAM-1 was measured, as described in section 2.5 by ELISA. The mean level was 

298.25 ± 84.82 which is comparable with levels found elsewhere in the literature (Chae 

2001). Simple linear regression, as detailed in table 7.10 highlighted positive correlations 

with age (p=0.01), weight (p=0.04), BMI (p=0.02), smoking status (p=0.004), HDL 

(p=0.01). A positive correlation was seen for augmentation index when corrected for 

heart rate (p=0.006) and a negative relationship was seen between ICAM and small artery 

compliance (p=0.05). No relationship was seen with large artery compliance however (p= 

0.112). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 177 

Table 7.9 ICAM and Vascular Parameters: Simple Linear Regression 

 

Parameter Pearson r 95% CI r
2 

p value 

Age(years) 0.335 0.071 to 0.555 0.112 0.014 

Height(m) 0.090 -0.185 to 0.352 0.008 0.521 

Weight(kg) 0.290 0.021 to 0.520 0.084 0.035 

BMI 0.328 0.064 to 0.550 0.108 0.016 

Smoking Status 0.385 0.128 to 0.594 0.148 0.004 

SBP(mmHg) 0.228 -0.045 to 0.469 0.052 0.101 

DBP(mmHg) 0.182 -0.0926 to 0.431 0.033 0.191 

PP(mmHg) 0.194 -0.0811 to 0.441 0.038 0.165 

HR  0.192 -0.0830 to 0.439 0.037 0.169 

C1(ml/mmHgx10) -0.225 -0.472 to 0.054 0.051 0.112 

C2(ml/mmHgx100) -0.278 -0.515 to -0.003 0.077 0.048 

AIx(%) 0.279 0.010 to 0.511 0.078 0.043 

AIx(%)/HR75 0.376 0.117 to 0.586 0.141 0.006 

CHOL(mmol/l) -0.120 -0.378 to 0.155 0.015 0.391 

Log TRIG(mmol/l) -0.027 -0.295 to 0.245 0.001 0.849 

LDLChol(mmol/l) 0.023 -0.249 to 0.292 0.001 0.870 

HDL(mmol/l) -0.352 -0.568 to -0.090 0.124 0.010 

r
2
 = Coefficient of determination 
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7.3.7 Multiple regression analysis: ICAM  

 

Multiple regression analysis with large artery compliance as the dependent variable 

confirmed the lack of association between large artery compliance (p=0.07) and ICAM in 

our study population (table 7.11, adjusted R
2
=31.6%, p=0.001). Only weight was 

significant in this analysis (p=0.00). The significant associations seen within simple 

linear analysis with small artery compliance and augmentation index were corroborated 

with multiple regression analysis.  With small artery compliance as the dependent 

parameter only ICAM remained a significant correlate (p=0.05) (table 7.12 adjusted R
2
 

20.9%, p=0.01). No other significant correlates were observed. With augmentation index, 

multiple regression analysis (table 7.13 adjusted R
2
 38.9%, p=0.000) correlates were seen 

no only with ICAM (p=0.01) but also with age (p=0.01) and weight (p=0.001). The 

finding that the intracellular adhesion molecule ICAM, a cellular mediator of 

inflammation with a role in atherogenesis is associated with arterial stiffness is a novel 

finding. It didn‟t matter whether either SPCA or DPCA was used. These results would 

certainly be in keeping with those of Ridker (Ridker 1998) who found that plasma 

concentrations of ICAM was associated with risks of future myocardial infarction in 

apparently healthy men.  
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Table 7.10 Multiple Regression Analysis of ICAM in healthy volunteers with Large 

Artery Compliance as the dependent variable.  

Predictor Regression 

Coefficient 

Standard Error tvalue p value 

Age (years) -0.02 0.06 -0.30 0.76 

Weight (kg) 0.25 0.06 4.35 0.00 

BMI (kg/m
2
) -0.37 0.23 -1.60 0.12 

Smoking -0.89 0.85 -1.05 0.30 

ICAM (ng/ml) -0.01 0.01 -1.87 0.07 

HDL (mmol/l) 1.18 1.90 0.62 0.54 

R
2
= 39.8%, adjusted R

2
= 31.6%, p=0.001 for the entire study group (n=53) 
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Table 7.11 Multiple Regression Analysis of ICAM in healthy volunteers with Small 

Artery Compliance as the dependent variable.  

Predictor Regression 

Coefficient 

Standard Error tvalue p value 

Age (years) -0.09 0.05 -1.87 0.07 

Weight (kg) 0.08 0.04 1.87 0.07 

BMI (kg/m
2
) 0.06 0.18 0.31 0.76 

Smoking 0.45 0.65 0.70 0.49 

ICAM (ng/ml) -0.01 0.01 -1.99 0.05 

HDL (mmol/l) 1.47 1.45 1.01 0.32 

R
2
= 30.4% adjusted R

2
= 20.9% p=0.01 for the entire study group (n=53) 
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Table 7.12 Multiple Regression Analysis of ICAM in healthy volunteers with 

Augmentation Index(%) as the dependent variable.  

Predictor Regression 

Coefficient 

Standard Error tvalue p value 

Age (years) 0.42 0.15 2.79 0.01 

Weight (kg) -0.50 0.14 -3.57 0.001 

BMI (kg/m
2
) 0.74 0.58 1.29 0.20 

Smoking -1.09 2.19 -0.50 0.62 

ICAM (ng/ml) 0.05 0.02 2.71 0.01 

HDL (mmol/l) -3.81 4.97 -0.77 0.45 

R
2
= 45.9% adjusted R

2
= 38.9 % p=0.000 for the entire study group (n=53) 
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7.3.8 Adiponectin in healthy volunteers 

 

Adiponectin measurements were quantified using commercially available ELISA (R&D 

Systems, Minneapolis, MN, USA). The mean levels were 6234 ± 4824.2 ng/ml – 

comparable with the work of others (Lawlor 2005). The data were normally distributed so 

simple linear regression was performed. As table 7.14 show adiponectin was positively 

correlated with sex (p=0.002), SBP (p=0.04), DBP (p=0.04), HDL (p=0.05) as well as 

augmentation index corrected for heart rate. Inverse correlations were observed with 

height (p=0.02), weight (p=0.0001), BMI (p=0.02) and large artery compliance (p=0.02).  
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Table 7.13 Adiponectin and Vascular Parameters: Simple Linear Regression 

 

Parameter Pearson r 95% CI r
2 

p value 

Age(years) 0.138 -0.138 to 0.393 0.019 0.325 

Height(m) -0.329 -0.550 to -0.064 0.108 0.016 

Weight(kg) -0.440 -0.635 to -0.193 0.194 0.001 

BMI -0.314 -0.539 to -0.048 0.099 0.022 

Smoking Status -0.051 -0.317 to 0.223 0.003 0.717 

SBP(mmHg) 0.279 0.009 to 0.511 0.078 0.043 

DBP(mmHg) 0.283 0.014 to 0.514 0.080 0.040 

PP(mmHg) 0.176 -0.099 to 0.426 0.031 0.208 

HR  0.085 -0.190 to 0.347 0.007 0.547 

C1(ml/mmHgx10) -0.325 -0.551 to -0.054 0.106 0.020 

C2(ml/mmHgx100) -0.269 -0.507 to 0.007 0.073 0.056 

AIx(%) 0.427 0.178 to 0.626 0.183 0.001 

AIx(%)/HR75 0.434 0.186 to 0.631 0.189 0.001 

CHOL(mmol/l) -0.128 -0.385 to 0.147 0.017 0.360 

Log TRIG(mmol/l) -0.352 -0.569 to -0.091 0.124 0.010 

LDLChol(mmol/l) -0.131 -0.388 to 0.144 0.017 0.349 

HDL(mmol/l) 0.275 0.005 to 0.508 0.076 0.046 

r
2
 = Coefficient of determination 
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7.3.9 Multiple Regression Analysis. Adiponectin in Healthy Volunteers. 

 

Once more multiple regression analysis was preformed for large artery compliance (table 

7.15, adjusted R
2
 55.9%, p = 0.000), small artery compliance (table 7.16, adjusted R

2
 

37.3%, p = 0.001) and augmentation index corrected for heart rate (table 7.17, adjusted 

R
2
 46.4%%, p = 0.000). No association was documented between either of the non 

invasive pulse contour measurements although correlations were seen with large artery 

compliance and height, SBP and log normalized triglyceride levels; small artery 

compliance and weight; and augmentation index corrected for heart rate and age and 

DBP. Although pulse contour analysis generated arterial stiffness measurements are not 

synonymous with endothelial function both are dependent up on structure and function of 

the arterial wall and hence potentially affected by atherogenesis. The lack of association 

seen in relation to DPCA and SPCA is therefore in keeping with the findings of Singhal 

and colleagues who found that whereas plasma adiponectin levels were associated with 

Insulin resistance they were not with endothelial function in young, healthy adolescents 

(Singhal 2005)  
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Table 7.14 Multiple Regression Analysis of Adiponectin in healthy volunteers with 

Large Artery Compliance as the dependent variable.  

 

Predictor Regression 

Coefficient 

Standard Error T value p value 

Age 0.02 0.05 0.43 0.67 

Gender -0.87 1.41 -0.62 0.54 

Height 0.15 0.08 2.00 0.05 

Weight 0.07 0.05 1.54 0.13 

SBP -0.22 0.06 -3.92 0.00 

DBP 0.07 0.09 0.80 0.43 

Log Trig 4.76 2.22 2.14 0.04 

HDL mmol/l 2.03 1.56 1.30 0.20 

Adiponectin(ng/ml) 0.0001374 0.0001086 1.27 0.21 

R
2
= 63.8% adjusted R

2
= 55.9 % p=0.000 for the entire study group (n=53) 
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Table 7.15 Multiple Regression Analysis of Adiponectin in healthy volunteers with 

Small Artery Compliance as the dependent variable.  

 

Predictor Regression 

Coefficient 

Standard Error T value p value 

Age -0.05 0.05 -1.16 0.25 

Gender -1.18 1.20 -0.98 0.33 

Height -0.02 0.06 -0.31 0.76 

Weight 0.08 0.04 2.04 0.05 

SBP -0.09 0.05 -1.92 0.06 

DBP -0.07 0.08 -0.86 0.40 

Log Trig -0.09 1.88 -0.05 0.96 

HDL mmol/l 1.37 1.32 1.04 0.30 

Adiponectin(ng/ml) 0.00008 0.00009 0.88 0.38 

R
2
= 48.6% adjusted R

2
= 37.3 % p=0.001 for the entire study group (n=53) 
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Table 7.16 Multiple Regression Analysis of Adiponectin in healthy volunteers with 

Augmentation Index as the dependent variable.  

 

Predictor Regression 

Coefficient 

Standard Error T value p value 

Age 0.33 0.16 2.11 0.04 

Gender 3.98 4.33 0.92 0.36 

Height -0.27 0.22 -1.24 0.22 

Weight -0.04 0.15 -0.29 0.77 

SBP -0.03 0.17 -0.18 0.86 

DBP 0.58 0.28 2.06 0.05 

Log Trig -3.02 6.77 -0.45 0.66 

HDL mmol/l -7.20 4.77 -1.51 0.14 

Adiponectin(ng/ml) 0.0003 0.0003 1.03 0.31 

R
2
= 55.7% adjusted R

2
= 46.4 % p=0.000 for the entire study group (n=53) 
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7.4 Discussion 

In brief we have described an association between parameters of low grade inflammation 

and vascular compliance in healthy volunteers. Similar analysis was performed in the 

cohort of patients with coronary artery disease but no statistical association was found in 

patients with the established phenotype. By multiple regression analysis there were 

significant associations between small artery compliance and IL-6, high sensitivity CRP 

and sICAM-1. There was also an association between augmentation index and ICAM. 

The importance of these results rests upon firstly what a change in arterial compliance 

may represent and secondly whether there is a link between this and biochemical markers 

of low grade inflammation. In short C2 and augmentation index are both sensitive to 

decreased NO bioactivity, a scenario common to atherosclerotic risk factors and low 

grade chronic inflammation.   

 

Alterations in arterial compliance mirror the functional and structural changes that 

accompany the progression of atherosclerosis, a process that these molecules are either 

risk markers for or indeed themselves culprit vehicles. The relationships that are shown 

further lend utility to pulse contour analysis as a useful tool for non invasive vascular 

assessment both physiologically and in risk assessment.  

 

The small artery compliance value does not represent a specific arterial bed or anatomical 

localization but reflects function (endothelial NO dependent) and structural changes 

(McVeigh 2001, Cohn 2004). While both are age dependent large artery compliance 
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reflects structural alterations in the conduit arteries that are accelerated by hypertension 

and atherosclerosis. This parameter has not been found to be sensitive to pharmacological 

manipulation of NO (McVeigh 2001). Augmentation index has also been found to be 

sensitive to inhibition of NO synthase with L-NMMA (Wilkinson 2002) but that C2 is 

not analogous to Aix is sufficient to explain why the correlations between C2 and CRP, 

IL6 and ICAM were significant but only an association existed only between ICAM and 

AIx. In studies comparing the two AIx and C2 were related  in part but not completely 

related to small artery compliance (r
 
= -0.487, Rietzschel 2001, r= -0.36, Segers 2001). 

 

Inflammation constitutes an important role within the development of atherosclerosis 

(Ross 1996, Libby 2002). The series of ensuing events involves recruitment of leukocytes 

to the arterial wall promoting development of atherosclerotic lesions. The vascular 

endothelium contributes to the inflammatory response by, following activation by 

proinflammatory cytokines or „classical cardiovascular risk factors, expressing leukocyte 

adhesion molecules which themselves promote adhesion of monocytes and T 

lymphocytes to the endothelial surface (Libby 2002, Widlansky 2003). The phenotypic 

changes in the endothelium induced by cardiovascular disease risk factors, cytokines and 

inflammatory markers including CRP, IL-6 and sICAM-1 in turn promotes a decrease in 

the production and/or biological activity of NO (Widlansky 2003,Verma 2002). 

Decreased NO activity promotes leukocyte adhesion, thrombosis, vasoconstriction and 

cellular proliferation; the principal components of atherogenesis (Vita 2002). CRP 

decreases expression of eNOS and NO synthesis in part by reducing the half life of eNOS 

(Verma 2002) and has been demonstrated to decrease eNOS expression and bioactivity in 
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human aortic endothelial cells (Venugopal 2002). These observed effects may also 

account form the relationship between IL-6 and small artery compliance as IL 6 is a 

potent stimulus for hepatic CRP production (Pearson 2003).  Other vascular phenotypes 

which associate with NO bioactivity have been shown to correlate with low grade 

inflammation. Vita et al (Vita 2004) examined the cross sectional relationship between 

vasodilator function in the forearm (both in terms of brachial artery flow-mediated 

dilatation and reactive hyperaemia) and CRP, IL-6 and sICAM-1 in the Framingham 

Offspring Study. They found that there was an incremental contribution of CRP, IL-6 and 

sICAM-1 to reactive hyperaemia above and beyond traditional risk factors (Vita 2004). 

Other groups have suggested that there is a correlation between CRP and brachial artery 

flow mediated dilatation (Tan 2002, Brevetti 2003) and CRP and coronary circulation 

endothelial dysfunction via the cold pressor test (Tomai 2001). Chapter 4 described how, 

in a group of patients with CAD, small artery compliance was lower in patients 

homozygous for the 894T allele of the NOS3 gene. The T allele has also been found to 

not only increase the risk for premature MI by Antoniades and coworkers (Antoniades 

2005) but also to be associated with a modified response of the vascular endothelium 

during the acute phase of the MI by affecting the release of IL-6. IL- 6 triggers an acute 

phase reaction in the liver, regulating the release of acute phase reactants such as CRP, 

and up regulating the expression of adhesion molecules in endothelial cells and 

depressing NO production by inhibiting eNOS (Cardaropoli 2003). A genome wide 

linkage scan for arterial stiffness was undertaken within 204 families from the 

Framingham Offspring study with tonometry data by Mitchell and colleagues (Mitchell 

2005). They found 4 regions of suggestive linkage for carotid femoral PWV including a 
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peak on chromosome 7 at 29 cM which includes IL-6. Not only does this implicate 

arterial stiffness as heritable but also that IL-6 may account for a proportion of the 

heritability.  

 

The lack of association between adiponectin and any of the pulse contour analysis 

variables given recent investigations are not surprising. Though the association between 

adiponectin and insulin resistance, diabetes mellitus and hypertension (Stefan 2002, Hotta 

2000, Iwashima 2004) has been clearly established the association with vascular 

phenotypes remains more obtuse.  Adiponectin did not predict endothelial function in 294 

adolescents (Singhal 2005) and most recently high molecular weight Adiponectin was not 

associated with incident coronary heart disease within the British Women‟s Heart and 

Health Study (Sattar 2008). 
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Chapter 8 General Discussion, Conclusions and Future Work. 

 

The cardiovascular disease epidemic continues to advance and increase both 

geographically to developing countries and numerically such that the projected increase 

in the proportion of all deaths attributable to cardiovascular causes increasing from 

approximately 25% in 1990 to more than 40% by 2020 (Reddy 2004). The „post genome 

era‟ permits the ability to study gene function and gene gene relationships which has been 

critical to the investigation of complex cardiovascular traits. The ultimate clinical 

dividend of this approach will include mechanistic classification of the common cardiac 

phenotypes, diagnostic markers and improved clinical therapy in terms of prevention and 

intervention on the basis of a putative risk assessment based upon an individual's 

cardiovascular risk haplotype (Dominiczak 2005). While others have utilised case-control 

association studies, i.e. the occurrence of a particular allele of a polymorphism in a group 

of subjects more frequently than expected by chance, as a process of the evaluation of 

two candidate genes in cardiovascular disease this project focused upon a non invasive 

cardiovascular phenotype, pulse wave analysis.  

 

The pathogenesis of vascular disease including hypertension, atherosclerosis, type 2 

diabetes mellitus, heart failure and hypercholesterolemia is, at least in part driven by 

oxidative stress (Landmesser 2001, Hamilton 2004). The relation of oxidative stress to 

atherosclerotic vascular disease is one where reactive oxygen species modulate the 

accumulation of sub endothelial LDL particles (Sorescu 2002). The principle reactive 

oxygen species are •O2
- 
 and NO of which the associated genes CYBA and NOS3 have 
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been implicated in vascular disease where NO bioactivity is impaired (Hingorani 2000) 

which is associated with a decrease in the compliance of large and small blood vessels.  

 

The objective of this thesis was to investigate the effect of single nucleotide 

polymorphisms of oxidative stress genes and low grade inflammation upon pulse wave 

contour analysis which has emerged as a useful non invasive, intermediate vascular 

phenotype. In this way the continuum from gene to protein to function has been 

paralleled by the examination of genotype, oxidative stress markers and arterial stiffness. 

 

8.1 The reproducibility of diastolic pulse wave contour analysis and its relation to 

systolic pulse contour analysis. 

 

Using Bland Altman plots the calculated intra-observer bias for C1 was -0.1(SD of bias 

was 0.36, 95% CI -0.8 to 0.6) and for C2 the observed bias was -0.04 (SD of bias was 

0.20, 95% CI -0.44 to 0.36). Moreover over 95% of the variability fell within 2 standard 

deviations. Furthermore there was a significant correlation between both AIx and C1and 

AIx and C2 in healthy volunteers and though there was no association between AIx and 

C1 in patients with coronary artery disease AIx did correlate with C2 in this population. 

 

Non invasive measures of assess the arterial pulse, while not a new arterial phenotype 

(Sharpey 1866), is becoming increasingly popular as measures of central aortic pulse 

pressure is recognized as providing additional information beyond that given by 

conventionally measured brachial pulse pressure (Williams 2006). PWV remains pre-
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eminent as the current gold standard (Laurent 2006) especially as it has been shown to 

correlate with coronary arterial plaque load (McLeod 2004) and has been shown to be an 

independent predictor of clinical outcome, albeit in high risk patient groups (Blacher 

1999, Blacher 1999, Blacher 2003, Guerin 2001). Systolic and diastolic pulse pressure 

pulse contour analysis also has its advocates. The former also has outcome data 

(Kingwell 2002, London 2001) and the recent Anglo Cardiff Collaborative Trial in 4001 

healthy, normotensive individuals aged 18-90 has not only provided „normal reference 

values‟ but also suggested that while PWV may be a better assessment of arterial stiffness 

in older individuals AIx might be a more sensitive marker of arterial stiffness and risk in 

younger individuals who potentially have more to gain from a biological marker driven 

treatment regimen (McEniery 2005). Moreover endothelial function, characterized by 

impaired NO bioactivity and oxidative stress has, within healthy individuals, been shown 

to be inversely associated with aortic PWV and AIx (McEniery 2006). The correlations 

observed in this thesis between C2 and AIx suggests that this may also be the case with 

the Windkessel derived arterial compliance measurement. Consistent characteristic 

changes in the pulse pressure wave shape have been associated with ageing and disease 

states predisposing to vascular events and application of the four element 3
rd

 order 

modified Windkessel model has been shown to generate useful information pertaining to 

hypertension and diabetes (C1) (McVeigh 1991, McVeigh 1993) and increasing age, 

coronary artery disease in post menopausal women and diabetes (C2) (McVeigh 1999, 

Cohn 1995, McVeigh 1993). Additionally the consistent and predictable changes found 

with pharmacologically impaired NO bioactivity suggest that C2 may be sensitive to 

conditions underpinned by oxidative stress (McVeigh 2001). 
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8.2 The effect of the G894T SNP of the NOS3 gene upon arterial stiffness in patients 

with coronary artery disease. 

 

There was no association observed between this polymorphism and blood pressure or 

large artery compliance however ANOVA revealed a statistically significant association 

for TT homozygosity and small artery compliance (p=0.01). The highest small artery 

compliance was seen in the patients homozygous for the G allele (5.51 ± 0.51 ml/mmHg 

x 100), an intermediate value observed in heterozygotes  (4.21 ± 0.33 ml/mmHg x 100) 

and the lowest value demonstrated in patients homozygous for the T allele (3.18 ± 

0.38ml/mmHg x 100). Multiple regression analysis, examining the possible contribution 

of age, BMI, SBP, DBP, total and LDL cholesterol showed that only small artery 

compliance was significant when NOS3 G894T genotype was assigned as the dependent 

variable (p=0.01). 

 

Arterial stiffness measures and mean and pulsatile components of blood pressure are 

heritable and appear to have genetic determinants that are postulated to be linked to 

separate genetic loci in humans (Mitchell 2005). Durier  et al investigating the 

physiological genomics of human arteries in an elegant study by examining gene 

expression of human aortic specimens and correlating the results with PWV found 

patterns of expression correlating with arterial stiffness including genes which may 

mediate, in part NO dependent vasodilatation (Durier 2003). The observations therefore 

that a common allelic variation is associated with an arterial stiffness parameter 
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associated with impaired NO bioactivity is consistent with these previous studies. This 

gene variant has been shown to be associated with survival in patients with heart failure 

(McNamara 2003) and the ultimate determinant of potential clinical utility of our finding 

would be a survival or treatment effect that would modulate clinical decision making in 

terms of risk stratification and treatment. 

 

8.3 The C242T single nucleotide polymorphism of the CYBA gene and blood pressure 

and arterial compliance in patients with coronary artery disease. 

 

We sought to examine the influence of the C242T SNP of CYBA upon vascular 

compliance and blood pressure using the dominant allele model. The presence of the 

242T allele was associated with significantly higher systolic blood pressure. Patients 

homozygous for the C allele had lower systolic blood pressure (125.7 ± 2.3 mmHg) than 

heterozygotes and patients homozygous for the T allele(134.6 ± 2.4 mmHg) (p=0.010). 

There was no statistically significant effect upon diastolic blood pressure but there was 

however a significant association observed between the 242T allele and pulse pressure. 

Patients that were homozygous for the CC allele had a PP of 56 ± 1.6 mmHg where as 

patients heterozygous or homozygous for the T allele had a PP of 62.7 ± 1.8 mmHg (p 

=0.01).  

 

In terms of arterial stiffness the 242T allele was associated with lower large artery 

compliance. CC homozygotes had higher large artery compliance (17.07 ± 0.82 



 197 

ml/mmHg x10), than heterozygotes and TT homozygotes (13.16 ± 0.53 ml/mmHg x10) ( 

p = < 0.001). No difference was observed between the C242T SNP and small artery 

compliance nor Augmentation Index in our study population. Multiple regression 

analysis, examining the possible contribution of age, BMI, SBP, DBP and total 

cholesterol showed that only large artery compliance was significant when CYBA C242T 

genotype was assigned as the dependent variable (p=0.001). 

 

The p22phox subunit is a common component of all types of NADPH oxidases and is the 

reputed redox centre of the enzyme system. The allelic variant C242T of the enzyme 

system has been demonstrated to affect enzyme activity (Guzik 2000, Wyche 2004) but 

as has been detailed there have been case control candidate gene association studies 

which have provided incongruous results as to which allelic variant is deleterious or 

advantageous (Cai 1999, Cahilly 2000, Nasti 2006, Inoue 1998, Saha 1999, Fan 2006). 

The strength of this thesis is thus in seeking to establish whether a gene function 

relationship is present. The finding that large artery stiffness, associated with 

hypertension (McVeigh 1991), is associated with the 242T allele is in keeping with the 

recent findings of Moreno et al who found a relationship between the C242T 

polymorphism in a case control study (Moreno 2006). They found however, that the CC 

genotype was associated with higher blood pressure levels and also NADPH oxidase 

activity and p22phox expression quantified from phagocytic cells by chemiluminescence 

and by northern and western blots (Moreno 2006). A larger study combining protein 

expression with arterial phenotype is therefore required before the relationship of this 

polymorphism and vascular disease is clearly delineated. 
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8.4 Combined analysis of NOS3 G894T and CYBA C242T genotypes upon arterial 

stiffness. 

 

In order to contrast the arterial stiffness between the favourable versus the non-favourable 

genotypes patients homozygous for the NOS3 G allele and homozygous for the CYBA C 

allele were compared with those homozygous for the NOS3T allele and possessing the 

CYBA 242T allele. The former displayed higher large and small artery compliance than 

the latter group. Patients with the CC/GG genotype had a mean C1 of 19.68 ± 1.3 

ml/mmHg x10, with patients with the CT+TT/TT genotype a mean C1 13.90 ± 1.6 

ml/mmHg x10 (p=0.01). Likewise patients with the CC/GG genotype had a mean C2 of 

5.48 ± 0.63 ml/mmHg x100, with patients with the CT+TT/TT genotype a mean C2 of 

3.24 ± 0.52 ml/mmHg x100 (p=0.01). There was no difference evident in age, BMI, BP 

or cholesterol parameters between the two groups. Multiple regression analysis, 

examining the possible contribution of age, BMI, SBP, DBP, total, ldl cholesterol and 

triglyceride concentration showed that only the large(p=0.02) and small(p=0.05) artery 

compliance values contributed significantly when genotype was assigned as the 

dependent variable. 

 

The interplay of these two enzyme systems may be hypothesized to modulate the 

oxidative milieu within vascular cells and the observed gene gene interaction adds weight 

to this theory. Most previous studies examining combinations of polymorphisms have 

concentrated on one gene such as the meta analysis by Zintzaras and co workers 
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(Zintzaras 2006). The combination of two genes that are associated with diminished NO 

bioactivity may therefore provide useful information. NO is a potent anti atherogenic 

molecule and endothelial dysfunction has been established as determining all cause 

mortality in coronary heart disease (Schächinger 2000). The interplay of two genes 

which, implicated in the genesis of oxidative stress and associated therefore with 

impaired NO bioactivity and consequently potentially endothelial dysfunction, and an 

observed gene gene interaction is entirely in keeping with prior studies examining 

reactive oxygen species vascular biology. 

 

8.5 Chronic low grade inflammation and insulin resistance and arterial compliance 

in healthy volunteers. 

 

Within healthy volunteers multiple regression analysis showed that small artery 

compliance was significantly associated with IL 6 (p=0.05), CRP (p=0.02) and ICAM 

(p=0.01). Augmentation index showed only an association with ICAM (p=0.01). There 

was no significant correlation between Adiponectin levels and either of the arterial 

stiffness parameters studied. 

 

Inflammation plays a critical role in all stages of atherosclerosis from the nascent lesion 

to the acute coronary syndrome (Libby 2002). There has been considerable interest and 

speculation about the interrelation between vascular inflammation and atherosclerosis 

(Ross 1999). The link with endothelial function and consequently arterial stiffness has 

been explored and CRP, IL-6 and sICAM-1 have previously been shown to associate 
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with endothelial function (Vita 2004). The observation that Windkessel derived pulse 

contour analysis is also related to these markers of low grade inflammation is hence 

consistent with these observations. Additionally CRP has also been reported to be 

associated with coronary microvascular endothelial function (Teragawa 2004). This 

thesis describes that in patients with CAD, small artery compliance is lower in patients 

homozygous for the 894T allele of the NOS3 gene. The T allele has also been shown to 

modulate the response of the vascular endothelium during the acute phase of the MI by 

affecting the release of IL-6 (Antoniades 2005). IL- 6 triggers an acute phase reaction in 

the liver, regulating the release of acute phase reactants such as CRP, and up regulating 

the expression of adhesion molecules in endothelial cells and depressing NO production 

by inhibiting eNOS (Cardaropoli 2003). Furthermore Mitchell and colleagues utilized 

tonometry within the Framingham Offspring study and discovered 4 regions of 

suggestive linkage for carotid femoral PWV including a peak on chromosome 7 which 

includes IL-6 (Mitchell 2005) This suggests that arterial stiffness may not only be 

heritable but also that IL-6 may account for a proportion of the heritability and also links 

these two non invasive phenotypes. CRP itself has been demonstrated to decrease eNOS 

expression, enzymatic activity and bioactivity within human aortic endothelial cells 

further supporting its role in atherogenesis. The observations in this thesis associating 

arterial stiffness with low grade chronic inflammation are hence in keeping with current 

knowledge and extends the robustness of diastolic pulse contour analysis as a vascular 

phenotype. The lack of association with adiponectin is congruent with that of Iwashima 

and co workers (Iwashima 2004). 
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8.6 Conclusions 

a) Diastolic pulse wave contour analysis is a reproducible assessment of arterial stiffness 

with the potential to represent a high fidelity non invasive vascular phenotype. 

 

b) Small artery compliance is correlated with Augmentation Index and although the 

measurements are not analogous they both represent useful means of acquiring 

quantitative data concerning arterial stiffness. 

 

c) The 242T allele of the p22phox gene, CYBA, is associated with decreased large but not 

small artery compliance and increased systolic and pulse pressure. 

 

d) Homozygosity for a common NOS3 polymorphism (894 G T) was associated with 

decreased small artery compliance but not with large artery compliance or blood 

pressure. 

 

e) The markers of chronic inflammation Interleukin 6, ICAM and hsCRP but not 

Adiponectin, a marker of Insulin resistance, predict small artery compliance in healthy 

individuals apparently free of vascular disease. 

 

8.7 Future work 

 

There are several important considerations which relate to future investigations regarding 

the relation of genotype and phenotype in cardiovascular disease. Firstly the sample size 
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required must be sufficient to detect small genetic effects and gene-gene and gene-

environment interactions. Secondly standardized high-fidelity phenotyping methods are 

required and in terms of the applicability of pulse wave analysis the current gold standard 

remains carotid femoral pulse wave velocity (Laurent 2006). Thirdly the use of proteomic 

markers to link the gene function relationship would add weight to conclusions. 

 

In terms of diastolic pulse waveform analysis the next step in assessing the clinical utility 

of this technology is to ascertain whether it represents an independent predictor of 

clinical outcome much in the way that has been established with pulse wave velocity 

(Blacher 1999, Blacher 1999, Blacher 2003, Guerin 2001) and Augmentation Index 

(Kingwell 2002, London 2001). Only then would small and large artery compliance 

values form comparable clinical parameters alongside other measurements of arterial 

stiffness or markers of low grade chronic inflammation such as CRP which although 

popular have also not always generated encouraging results (Danesh 2004). 

 

This thesis describes what is in essence a small gene function candidate gene study and 

the clinical relevance of the C242T CYBA and G894T NOS3 SNPs will only be fully 

clarified when an appropriately powered study allowing inclusion of other potentially 

involved loci to form a full haplotype analysis. As stated there have been discrepant case 

control association studies which such a study would provide a definitive answer to. The 

completion of the Human Genome Project in 2003 has conferred upon researchers the 

ability to find the genetic contributions to human disease phenotypes for genetic 

variations that contribute to their onset. Such a genome wide association study would 
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hence allow definitive associations with vascular phenotypes and genetic variation 

including pulse wave analysis and biochemical markers associated with vascular disease. 
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