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Abstract

This thesis is composed by four chapters on New Keynesian macroeconomics.

Chapter 1 develops a small New Keynesian model augmented with a steady state level

of public debt and a share of rule-of-thumb consumers (ROTC henceforth) as in Galí et

al. (2004; 2007). This chapter focuses on the consequences for the design of monetary

and �scal rules, of the bifurcation on the demand side of the economy generated by the

presence of ROTC, in the absence of Ricardian equivalence. When �scal policy follows a

balanced budget rule, the share of ROTC determines whether an active and/or a passive

monetary policy in the sense of Leeper (1991) guarantees determinacy. When a short run

public debt asset is introduced, the amount of ROTC determines whether equilibrium

determinacy requires a mix of active (passive) monetary policy and a passive (active)

�scal policy or a mix where both policies are active or passive.

Chapter 2 studies the equilibrium determinacy of a New Keynesian model augmented

with trend in�ation, public debt and distortionary taxation. Both the level of long run

in�ation as well as the stock of steady state public debt have to be explicitly taken into

consideration for the characterisation of the equilibrium dynamics between monetary and

�scal policy.

Chapter 3 considers the implications of external habits for optimal monetary policy

in an otherwise standard New Keynesian model, when those habits exist at the level

of individual goods as in Ravn et al. (2006). External habits generate an additional

distortion in the economy, which implies that the �ex-price equilibrium will no longer be

e¢ cient and that policy faces interesting new trade-o¤s and potential stabilisation biases.

The endogenous mark-up behaviour, which emerges with deep habits, signi�cantly a¤ects

the optimal policy response to shocks and the stabilising properties of standard simple

rules.

Chapter 4 analyses both optimal monetary and �scal policy in a New Keynesian

model augmented with deep habits and valuable government spending. We �nd that, in
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line with the general consensus in the macro literature, �scal policy adds very little to

optimal monetary policy as a stabilisation device.
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Preface

This thesis is composed of four chapters on New Keynesian macroeconomics. We use

this introduction to describe the common features of these chapters, the methodological

techniques adopted and for a review of the literature.

The purpose of this thesis is twofold. First, it aims to study the equilibrium deter-

minacy of two New Keynesian (NK henceforth) models in which Ricardian equivalence

of �scal policy does not hold. Second, it analyses the optimal policy problem in a basic

NK model where households and government are a¤ected by consumption habits.

The NK models integrate Keynesian elements such as imperfect competition and

nominal rigidities, into a dynamic general equilibrium framework that until the early

�90s was largely associated with the Real Business Cycle (RBC henceforth) school.

In contrast to the traditional Keynesian models, i.e. the textbook IS-LM framework,

the dynamic general equilibrium approach implies that the equilibrium conditions for

aggregate variables are derived from the optimal behaviour of economic agents, i.e. all

agents face well-de�ned decision problems and behave optimally, and are consistent with

the simultaneous clearing of all markets.

In its basic formulation, a NK model ignores the endogenous variations in the capital

stock1 and features one nominal rigidity modelled as a constraint on the �rms�ability to

optimally reset their prices.2 Despite the existence of several other popular methods of

modelling this feature3 we adopt the Calvo (1983) price setting mechanism throughout

1Throughtout this thesis we follow McCallum and Nelson (1999) and Cogley and Nason (1995). They
argue that the response of investment and the capital stock to productivity shocks actually contributes
little to the dynamics implied by the NK models and that, at least for the US data, there is little evidence
of correlation between capital stock and output at business cycle frequencies.
2Note that in its basic formulation the NK model postulates that nominal wages are allowed to �uctuate
freely.
3See for example the staggered-overlapping contracts as in Taylor (1980) or the quadratic adjustment
cost as in Rotemberg (1982).
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this thesis. This implies that in each period only an exogenous fraction of �rms can

optimally reset their prices, while the rest have to keep their prices unchanged. This

constraint throws light on particular features of the nature of in�ation dynamics. Firms

re-setting their prices today recognise that the prices they choose are likely to stay in

place for more than one period, and are unresponsive to developments within the period.

Therefore �rms �nd it optimal, when making their current pricing decisions, to take into

account their expectations regarding future cost and demand conditions. This implies

that changes in the aggregate price level are a consequence of current pricing decisions,

and therefore it follows that in�ation has an important forward looking component. This

property appears clearly re�ected in the so called New Keynesian Phillips curve (NKPC

henceforth). Furthermore, this nominal rigidity introduces a source of monetary non

neutralities, which creates an explicit role for monetary policy: changes in the nominal

interest rate have real e¤ects on the economy.

These characteristics yield a NK framework which has strong and sound theoretical

foundations, yet a simple and straightforward analytical tractability and it is useful for

exploring a number of policy issues. For this reason this approach has gained increas-

ing fame in both theoretical and empirical macroeconomics over the last decade as a

benchmark speci�cation for policy analysis.

In this thesis we extend the basic NK model in several directions in order to analyse

di¤erent macro-policy issues.

First we study the problem of equilibrium determinacy. In so doing, we postulate

the behaviour of economic policy by assuming that the policy makers commit to simple

rules. This allows us to explicitly derive the conditions under which these rules ensure

the equilibrium to be determinate in the sense of Blanchard and Khan (1983). Following

Blanchard and Khan (1983), we write the dynamic model in matrix form as

(0.1) AEtxt+1 = Bxt
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where xt of size n� 1 is a vector representing the model�s endogenous and exogenous

variables. A and B are square matrix of size n � n. Let us de�ne J = A�1B; m as

the number of non-predetermined variables in x, n � m the number of predetermined

variables in x and q the number of eigenvalues of J that are greater than one in absolute

value, i.e. explosive eigenvalues. If q = m, the system is determinate (determinacy). In

other words the solution to (0.1) is unique and converges to the steady state for any given

initial state of the economy. If q < m there are an in�nite number of solutions to (0.1),

the system is therefore indeterminate (indeterminacy). Ultimately, if q > m there is no

solution to (0.1) and the system is unstable (instability).

Second we study optimal policy problems. For this part we follow the utility-based

welfare analysis of Woodford (2003). This technique allows one to analyse the welfare

consequences of alternative policies, and can thus be used as the basis for the design of

an optimal (or, at least, desirable) policy.

Part 1, chapters 1 and 2: determinacy analysis and the interactions between

monetary and �scal policy.

The analysis of the properties of macro-policy rules has been one of the central themes

of the recent literature on monetary and �scal policy (Leeper, 1991, Taylor, 1993, Galí et

al., 1999; 2004, Leith and Wren-Lewis, 2000 Schmitt-Grohe and Uribe, 1997) . This �eld

of research has shown that simple rules seem to explain relatively well the observed policy

choices as well as their role in di¤erent macroeconomic episodes. While this point of view

is widely shared, most of the literature makes convenient assumptions, i.e. a �scal policy

which implies Ricardian equivalence, that allows monetary and �scal policy rules to be

studied separately. However, these assumptions are often questionable, and therefore it

has been argued that the resulting conclusions of this approach could be misleading.

The main criticism of this approach is that it ignores the impact of monetary policy

on the government�s �nances and in turn ignores the consequences that di¤erent types of

�scal policy may have on the conduct of monetary policy. In fact, there are several ways
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in which monetary policy can a¤ect the government�s budget constraint and in turn the

conduct of �scal policy and vice versa. Typical examples are the seigniorage problem, the

relationship between debt service costs and in�ation stabilisation, the size of the tax base

and the need for �scal transfers when prices are sticky. Leith and Wren-Lewis (2000),

Linnemann (2006), Davig and Leeper (2006) and Schmitt-Grohe�and Uribe (2007) are

some of the recent authors that point out how the assumptions regarding the interactions

between monetary and �scal policy are of crucial importance in understanding macro-

policy rules.

In particular, a common point of all these works is that, when, for any reason, Ri-

cardian equivalence does not hold, �scal policy cannot be recursively separated by the

rest of the model and the equilibrium dynamics are determined by a genuine interaction

between monetary and �scal policy, see inter alia Leith and von Thadden (2008).

The traditional benchmark results of this �eld of research are the following: a) an

active monetary policy, i.e. a monetary policy which reacts to in�ation raising the real

interest rate, delivers a unique rational expectation equilibrium if and only if �scal policy

adopts a passive tax policy role, i.e. it raises tax revenues when public debt rises. How-

ever, if �scal policy does not adopt a tax policy which implies public debt stabilisation-

active �scal policy- a �scal policy that responds to increases in public debt cutting the

tax revenues- monetary policy has to abandon the Taylor principle, embracing a passive

role. A passive/passive policy mix delivers indeterminacy while an active/active policy

mix implies instability, i.e. no solution. This result can be found in Leeper (1991) in a

simple maximising model with money in the utility function and lump-sum taxes. Leith

and Wren-Lewis (2000) and Linnemann (2006) have similar results in a NK model. b)the

�rst type of regime (active monetary/passive �scal) is more likely to deliver low in�ation

and a sustainable path for public debt. c) periods of passive monetary policy can sub-

stantially alter the propagation mechanism of the shocks to the fundamentals, Lubik and

Schorfeide (2004).
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In the �rst two chapters of this thesis we extend these benchmark results in two

di¤erent NK models where Ricardian equivalence does not hold.

In Chapter 1 we study the consequences for the equilibrium dynamics of the interac-

tions between monetary and �scal policy rules in a basic NK model with a steady state

level of public debt and a share of rule-of-thumb consumers (ROTC) as in Galí et al.

(2004; 2007) and Bilbiie (2008). These consumers, who are not allowed to participate in

�nancial markets, i.e. they cannot hold public debt in order to smooth consumption over

time, but consume their available labour income in each period, stand next to standard

forward looking agents. From this, and independently of the tax instrument adopted,

lump-sum taxes or proportional labour income taxation, the presence of ROTC implies

a clear departure from Ricardian equivalence: both types of consumer pay the burden

of public debt but only the optimisers bene�t from it. Hence public debt becomes net

wealth and therefore a relevant state variable which has to be taken into account for the

equilibrium dynamics of the system. In particular the aim of this chapter is to study

the consequences for the design of monetary and �scal policy rules of the bifurcation on

the demand side of the economy, see for example Bilbiie et al. (2004) and Bilbiie (2008),

generated by the presence of ROTC.

In Chapter 2 we study the interactions between monetary and �scal policy rules in a

NK model augmented with trend in�ation, as in, for example, Ascari and Ropele (2007;

2009), a steady state level of public debt and a �scal policy which levies a proportional

labour income tax. As in the previous chapter, due to the distortive nature of �scal

policy, Ricardian equivalence does not hold and the equilibrium dynamics are determined

by genuine interactions between monetary and �scal policy. The aim of this paper is to

explicitly analyse the role of trend in�ation on the setting of monetary and �scal policy

rules.
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Part 2, chapters 3 and 4: optimal monetary and �scal policy.

In recent years the NK framework has been largely used for normative policy analysis,

i.e. optimal policy. Within this set of models, computing optimal policy means a speci�c

use of the policy instruments in order to maximise a well de�ned objective function,

given frictions in the economic environment and the behaviour of the economic agents.

To this extent, a recurrent assumption in the optimal policy literature is the one of the

benevolent policy maker, see for example Ramsey (1927) and Lucas and Stokey (1983).4

This implies that the policy maker uses the utility, i.e. the welfare, of the households as

the objective function in the maximisation process. This approach to optimal policy is

generally de�ned as utility-based welfare analysis, Galí (2001).

The fact that NK models are based on the optimal behaviour of the economic agents

and are consistent with the simultaneous clearing of all markets is of fundamental im-

portance for this approach to optimal policy. Indeed, the utility-based welfare analysis

in such models is conceptually straightforward because the preferences of private agents,

which are connected in the structural relations that determine the e¤ects of alternative

policies, provide a natural welfare criterion. Furthermore, in the context of sticky-price

models with monopolistic competition, the utility-based approach to welfare analysis not

only allows the evaluation of di¤erent policies (mostly in terms of optimal policy), but

also helps in quantifying the welfare costs of the various forms of real or nominal rigidities.

There are several approaches to computing optimal policy in a NK model. Yun (2005)

constructs optimal monetary policy as a Ramsey problem. He maximises the utility

functions subject to the structural equations in non-linear form. Schmitt-Grohe� and

Uribe (2004; 2005; 2007a; 2007b) study optimal policy as a second order approximation

to the exact Ramsey problem, i.e. they approximate to the second order around the

non-stochastic steady state both the utility function and the structural equations of the

model and then they compute the maximisation problem. Woodford (2001) analyses

4Although Ramsey (1927) and Lucas and Stokey (1983) do not consider a NK economy, their works are
pioneering in the utility based optimal policy literature.
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optimal policy maximising the second order approximation to the utility function of

the representative consumer subject to the log-linear approximations of the structural

equation around the non-stochastic steady state.

The �rst two techniques can be applied to a broad range of models without relying

on ad-hoc assumptions regarding the steady state. However they can be used only for

the solution under commitment (time inconsistent policy). Furthermore, they often lack

a straightforward analytical solution.

On the other hand, the validity of the technique proposed by Woodford (2001), often

referred as the linear quadratic approach, relies on particular assumptions, i.e. small

steady state distortions, small shocks, no capital accumulation, but can be used both

for commitment solutions as well as for the solution under discretion (time consistent

policy). Furthermore it is often possible with the linear quadratic apparatus to �nd an

analytical solution to the optimal policy problem.

In Chapters 3 and 4 we analyse optimal monetary policy using the linear quadratic

approach as in Woodford (2001), in a NK model augmented with habit formation.

Traditionally, the basic NK model has been augmented with habit formation in or-

der to capture the hump-shaped output response and the persistency in in�ation and

consumption, to changes in monetary policy one typically �nds in the data.

The habits e¤ects can either be internal (see for example, Fuhrer (2000), Christiano,

Eichenbaum, and Evans (2005), Leith and Malley (2005)) or external (see, for example,

Smets and Wouters (2007)) the latter re�ecting a catching up with the Joneses e¤ect,

whereby households fail to internalise the externality their own consumption causes on

the utility of other households.

Both forms of habits behaviour can help the New Keynesian monetary policy model

capture the persistence found in the data (see, for example Kozicki and Tinsley (2002)),

although the policy implications are likely to be di¤erent. More recently, Ravn, Schmitt-

Grohe, and Uribe (2006) o¤er an alternative form of habits behaviour, which they label

as �deep�. Deep habits occur at the level of individual goods rather than at the level of
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an aggregate consumption basket (�super�cial�habits). While this distinction does not

a¤ect the dynamic description of aggregate consumption behaviour relative to the case

of super�cial habits, it does render the individual �rms�pricing decisions intertemporal

and, in the �exible price economy considered by Ravn, Schmitt-Grohe, and Uribe (2006),

can produce a counter-cyclical mark-up which signi�cantly a¤ects the responses of key

aggregates to shocks.

In Chapter 3 we extend the benchmark sticky-price NK economy to include deep

external habits in consumption. This implies that there is an externality associated with

�uctuations in consumption which implies that the �exible price equilibrium will not

usually be e¢ cient, thereby creating an additional trade-o¤ for policy makers, which

may give rise to further stabilisation biases if policy is constrained to be time consistent.

We also consider the implications of habit formation e¤ects for the nature of simple policy

rules. The ability of policy to in�uence the time pro�le of endogenously determined mark-

ups can signi�cantly a¤ect the monetary policy stance and how it di¤ers across discretion

and commitment and across di¤erent exogenous shocks.

In Chapter 4 we extend the policy analysis conducted in Chapter 3 with an endoge-

nous �scal policy. This manifests in the model under the form of endogenous government

spending that, entering in the utility function of the representative consumer, is valuable

from a Social Planner point of view. Furthermore, we assume that as private consump-

tion, public spending is also a¤ected by external deep habits formation. This setting

allows us to characterise both the optimal �scal and monetary policy under private and

public deep habit formation.



CHAPTER 1

Designing monetary and �scal policy rules in a New Keynesian

model with rule-of-thumb consumers

This chapter develops a small New Keynesian model augmented with a steady state

level of public debt and a share of rule-of-thumb consumers (ROTC henceforth) as in

Gali�et al. (2004; 2007). The paper focuses on the consequences for the design of mone-

tary and �scal rules, of the bifurcation generated by the presence of ROTC on the demand

side of the economy, in the absence of Ricardian equivalence. We �nd that, when �scal

policy follows a balanced budge rule, the amount of ROTC determines whether an ac-

tive and/or a passive monetary policy in the sense of Leeper (1991) guarantees determi-

nacy. When short run public debt assets are introduced, the amount of ROTC determines

whether equilibrium determinacy requires a mix of active (passive) monetary policy and

a passive (active) �scal policy or a mix where policies are both active or passive. This set

of equilibria has the potential to explain the empirical evidence on the U.S. postwar data

on monetary and �scal policy interactions.

1.1. Introduction

The analysis1 of the properties of macro-policy rules has been one of the central

themes of the recent literature on monetary and �scal policy. This �eld of research has

shown that simple rules seem to explain relatively well the observed policy choices as

well as their role in di¤erent macroeconomic episodes. While this point of view is widely

shared, most of the literature makes convenient assumptions, i.e. a �scal policy which

implies Ricardian equivalence, that allows monetary and �scal policy rules to be studied

1I am grateful for useful comments to Florin Bilbiie, Campbell Leith, and Ioana Moldovan, as well as
all the participants at the 4th European Macroeconomic Workshop and at seminars at Glasgow and
Milan-Bicocca Universities.
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separately. However, these assumptions are often questionable, and therefore it has been

argued that the resulting conclusions of this approach could be misleading. Leith and

Wren-Lewis (2000), Linnemann (2006), Davig and Leeper (2006) and Schmitt-Grohe�

and Uribe (2007) are some of the recent works that point out how the assumptions

regarding the interactions between monetary and �scal policy are of crucial importance

in understanding macro-policy rules. In particular, a common point of all these works

is that, when, for any reason, Ricardian equivalence does not hold, �scal policy cannot

be recursively separated from the rest of the model and the equilibrium dynamics are

determined by the interactions between monetary and �scal policy.

In this paper we augment a standard New Keynesian (NK) model with a steady

state level of public debt and a share of rule-of-thumb consumers (ROTC) as in Galí

et al. (2004; 2007). These consumers, who are not allowed to participate in �nancial

markets, i.e. they cannot hold public debt in order to smooth consumption over time,

but consume their available labour income in each period, stand next to standard forward

looking agents (OPTC). From this, and independently of the tax instrument adopted,

lump-sum taxes or proportional labour income taxation, the presence of ROTC implies

a clear departure from Ricardian equivalence: both types of consumers pay the burden

of public debt but only the optimisers bene�t from it. Hence public debt becomes net

wealth, therefore a relevant state variable which has to be taken into account for the

equilibrium dynamics of the system.

While the behavior that we assume for rule-of-thumb consumers is admittedly simplis-

tic (and justi�ed only on tractability grounds), we believe that their presence captures an

important aspect of actual economies which is missing in conventional models. Empirical

support of non-Ricardian behavior among a substantial fraction of households in the U.S.

and other industrialized countries can be found in Campbell and Mankiw (1989). It is

also consistent, at least prima facie, with the �ndings of a myriad of papers rejecting the

permanent income hypothesis on the basis of aggregate data.
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Moreover, as stressed in the literature (Galí et al.; 2004, Di Bartolomeo and Rossi;

2007, Colciago; 2008, Bilbiie, 2008), the introduction of a set of ROTC can drastically

change the determinacy conditions of an otherwise standard NK model. On this subject

the main contribution can be found in Bilbiie (2008). The author shows that in a NK

model with no capital accumulation, a Walrasian labour market and no �scal policy, the

presence of a share of ROTC may generate a bifurcation in the conduct of monetary

policy. In particular, with a small share of ROTC, the traditional results on equilibrium

determinacy hold: necessary and su¢ cient condition for determinacy is to have, using

Leeper�s (1991) de�nition, an active monetary policy, whereby nominal interest rate is

adjusted such that the real rate increases in response to positive in�ation. However, when

the share of ROTC is above a speci�ed threshold, determinacy requires a passive mon-

etary policy, whereby nominal interest rate is adjusted such that the real rate decreases

in response to positive in�ation.

The basic intuition for this result is that when the monetary authority increases the

interest rate, the system experiences downward pressure on wages, that are, by assump-

tion, fully �exible.2 This, combined with a sticky price environment, implies an increase

in pro�ts which are held only by the optimiser consumers (OPTC henceforth). With a

high share of ROTC, the increase in OPTC wealth caused by the increase in pro�ts may

generate an increase in total demand, putting, via the Phillips curve, upward pressure

on prices. A monetary authority wishing to stabilise the price level may therefore need

to cut the real interest rate in the face of an in�ationary shock.

The main contribution of this paper is to study the bifurcation e¤ect generated by

the presence of ROTC on the interactions between monetary and (a non Ricardian) �scal

policy.

To this end we conduct several exercises. We start by studying the equilibrium dy-

namics of the interactions between monetary and �scal policy. We assume that monetary

2Colciago (2008) shows that in a NK model with ROTC and sticky wages the Taylor principle could be
restored through an ad hoc monetary policy rule.
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policy adopts a contemporaneous interest rate rule which is a function only of the in-

�ation rate, i.e. a Taylor rule as in Clarida et al. (2000), and �scal policy adjusts the

labour income tax rate in every period in order to generate enough revenues to pay a

level of public spending and service the long run level of public debt, without releasing

short run public debt assets.

This type of �scal rule, commonly known as balanced budget rule, has been studied in

detail by Schmitt-Grohe and Uribe (1997) in a Real Business Cycle model with capital

accumulation, and by Linnemann (2006) in a NK model with a contemporaneous mon-

etary rule and no capital accumulation. While both works stress the destabilising role

of such a �scal rule, given the NK elements of our model, we use Linnemann�s (2005)

results as a benchmark for ours.

He �nds that with a balanced budget rule, an active monetary policy rule that reacts

"too strongly" to in�ation leads easily to the possibility of self ful�lling expectations, i.e.

indeterminacy. In other words, in Linnemann�s (2006) model, monetary policy has an

upper limit in its active strength, and this upper limit is tighter the higher the long run

level of public debt.

This result is a direct consequence of the distortive nature of �scal policy and its

interaction with monetary policy: if monetary policy increases the real interest rate in

order to contrast higher in�ation expectations, via a traditional reduction of current

output through the demand channel, the burden of the service of public debt increases,

therefore forcing �scal policy to increase taxation in order to collect extra revenues. This

increase in taxation feeds back on the endogenous variables of the model, in�ation and

output, via the supply side of the economy, the Phillips curve, generating a positive

wedge between tax rate and current in�ation which could make the initial expectations

of higher in�ation self ful�lling, generating endogenous sunspots �uctuations. In our

paper we show that even with a small share of ROTC, the upper bound on monetary

policy gets looser, in turn helping to reestablish the validity of the Taylor principle. This is

because a small proportion of ROTC strengthens the validity of the Taylor principle or, in
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other words, it increases the sensitivity of aggregate demand to interest rate movements.

Hence monetary policy can reduce output to the desired level to contrast in�ation with

lower movements in interest rates, therefore generating a weaker �scal response, avoiding

sunspot �uctuations.

Furthermore, we �nd that, when the share of ROTC is above a speci�ed threshold

similar to the one found by Bilbiie (2008), both a strongly passive or a strongly active

monetary policy can lead to equilibrium determinacy. As described above, a passive

monetary policy, through its e¤ect on aggregate pro�ts and �nancial portfolio, can re-

duce aggregate demand and, ceteris paribus, decreases the cost of servicing the public

debt, avoiding the perverse e¤ect of an increase in the tax rate on current in�ation. On

the other hand, a strong active monetary policy can expand aggregate demand. While

higher output can have a destabilising e¤ect on in�ation stabilisation, it increases, ceteris

paribus, government revenues, potentially implying a decrease in the tax rate and this,

via the Phillips curve, can act as stabilisation device, leading to determinacy.

Next we assume a more general �scal policy rule in which the �scal authority is

allowed to release short run public debt assets in order to balance its budget. This type

of �scal policy, jointly with a traditional interest rate type of monetary rule, allows us to

analyse the equilibrium dynamics of our model under the active/passive logic of Leeper

(1991).

The traditional benchmark results of this �eld of research are the following: a) an

active monetary policy delivers a unique rational expectation equilibrium if and only if

�scal policy adopts a passive tax policy role, i.e. it raises tax revenues when public debt

rises. However, if �scal policy does not adopt a tax policy which implies public debt

stabilisation- active �scal policy- monetary policy has to abandon the Taylor principle,

embracing a passive role. A passive/passive policy mix delivers indeterminacy while an

active/active policy mix implies instability, i.e. no solution. b)the �rst type of regime

(active monetary/passive �scal) is more likely to deliver low in�ation and a sustainable
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path for public debt.c) periods of passive monetary policy can substantially alter the

propagation mechanism of the shocks to the fundamentals, Lubik and Schorfeide (2004).

However, as pointed by Favero and Monacelli (2005) and by Davig and Leeper (2006),

the active/passive policy logic is not able to capture the macro-evidence of the US post-

war data on monetary and �scal policy regimes. Indeed the empirical investigations in

these papers show long periods of policy regime mixes, i.e. both policies active or both

passive, which are incompatible with the traditional results of the literature on monetary

and �scal policy interactions. While Favero and Monacelli (2005) remain completely

agnostic on a possible theoretical explanation of their �ndings, Davig and Leeper (2006)

explain the unconventional policy mixes resulting from the data with the introduction

of macro-policy switches. They show that a standard New Keynesian model, where in

each period macro policies have a probability of switching from active to passive and

this probability is taken into account by the agents, is able to deliver a unique rational

expectation equilibrium for any policy combination.

The results we present in this paper could be considered as complementary to the

ones of Davig and Leeper (2006). In particular we �nd that when the share of ROTC is

below the threshold previously described, determinacy requires either an active monetary

policy jointly with a passive �scal one or viceversa. When instead the share of ROTC

is above the threshold, determinacy requires for monetary and �scal policy to be both

either active or passive.

Intuitively, this result is driven by the consequences of a share of ROTC on the demand

side of the economy. Suppose, for example, that our system is a¤ected by a large share

of ROTC so that we are above the threshold previously described. When �scal policy

adopts a debt stabilisation policy, i.e. passive �scal policy, monetary authority is free to

stabilise in�ation. As shown by Bilbiie (2008) and Leith and von Thadden (2008) this

is ensured by a passive monetary policy. If instead �scal policy follows an active role,

monetary policy has to abandon the in�ation stabilisation policy, adopting an active role.
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The remainder of the paper proceeds as follows: section 1:2 derives the model, section

1:3 outlines the results, section 1:4 conducts some robustness analysis with a more general

speci�cation of the monetary policy rules and di¤erent �scal arrangements, and section

1:5 concludes.

1.2. The model

The economy consists of two types of households, a continuum of �rms producing

di¤erentiated goods in a monopolistic competitive-sticky price environment, a perfectly

competitive labour market, a central bank in charge of monetary policy and a government

in charge of �scal policy.

The totality of households is normalised to unity. Of this, a fraction (1� �) ; with

� � 1; behaves in a traditional forward-looking, optimising way. Hence they maximise

their (in�nite) lifetime utility, hold pro�ts coming from the monopolistic nature of the

goods market, and participate in perfect and complete �nancial markets. We de�ne the

remaining � households as rule-of-thumb consumers (ROTC) as in Galí et al.(2004; 2007).

They care only for their current disposable income and they hold no �nancial assets nor

any pro�t shares. For these consumers all their wealth is represented by their after tax

wages and therefore they cannot smooth consumption over time. Variables with the su¢ x

o and r indicate OPTC and ROTC respectively. A variable without time index identi�es

its steady state value.

1.2.1. Optimisers

The (lifetime) OPTC utility function has a standard form and it simply includes con-

sumption and labour

(1.1) U o
t = E0

+1X
t=0

�tuo (Co
t ; N

o
t )

where � 2 (0; 1) is the discount factor, Et is the rational expectations operator, uo (�; �)

represents instantaneous utility. We assume, in line with most of the literature, that



29

duo

dCot
> 0 and duo

dNo
t
< 0: The shape of uo is3

(1.2) uo (Co
t ; N

o
t ) = logC

o
t � �

(N o
t )
1+�

1 + �

where Co
t is the level of consumption of the OPTC, N

o
t is the OPTC labour supply. The

parameter �; with � 2 (0;1) indicates how leisure is valued relative to consumption. The

parameter � > 0 is the inverse of the Frisch elasticity of labour supply and represents the

risk aversion to variations in leisure.

The nominal OPTC �ow budget constraint is

(1.3)
Z 1

0

Pt (j)C
o
t (j) dj +R�1t

Bt+1

1� �
+
Et (Qt;t+1Vt+1)

1� �
=

264 WtN
o
t (1� � t) +

Dt
1��+

+ Bt
1�� +

Vt
1�� � PtS

o

375
where Pt (j) is the price level of the variety of good j, Wt is the nominal wage, Dt are the

nominal pro�ts coming from the monopolistic competitive structure of the goods market,

Bt+1 is the nominal payo¤ of the one period risk-less bond purchased at time t; Rt is the

gross nominal return on bonds purchased in period t, Qt;t+1 is the stochastic discount

factor for one period ahead payo¤ and Vt is nominal payo¤ of a state-contingent asset

portfolio.4 The government is assumed to pay a level of public spending, Gt and the

service of debt, levying a proportional labour income tax, � t: So is a steady state transfer

such that at steady state the two types of agents have the same level of consumption and

supply the same amount of labour.

OPTC must �rst decide how to allocate a given level of expenditure across the various

goods that are available. They do so by adjusting the share of a particular good in their

consumption bundle to exploit any relative price di¤erences - this minimises the costs

of consumption. This, combined with the CES Dixit-Stiglitz aggregator, results in a

3We assume this shape of the utility function in order to make our results comparable with the ex-
isting literature on ROTC, i.e. Bilbiie et al.(2004), Gali� et al.(2007), Bilbiie(2008), Leith and Von
Thadden(2008).
4Note that given the de�nition the OPTC, V ot+1 =

Vt+1
1�� : The same holds for bonds and pro�ts.
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demand function for any single good that is downward sloping in the current price of the

speci�c j good.

Co
t (j) =

�
Pt (j)

Pt

��"
Co
t

where the price index is found by

Pt =

�Z 1

0

Pt (j)
1�" dj

� 1
1�"

at the optimum we have

(1.4)
Z 1

0

Pt (j)C
o
t (j) dj = PtC

o
t

where the parameter " represents the elasticity of substitution among goods and it is a

measure of the market power held by each �rm.

The budget constraint can be therefore rewritten as

(1.5) PtCo
t +R

�1
t

Bt+1

1� �
+
Et (Qt;t+1Vt+1)

1� �
= WtN

o
t (1� � t)+

Dt

1� �
+

Bt

1� �
+

Vt
1� �

�PtSo

Next the OPTC have to decide their labour supply and their intertemporal consump-

tion allocation. This problem involves maximising the utility (1.1) subject to the budget

constraint (1.5). The �rst order condition for the intertemporal consumption allocation

is

�

�
Co
t

Co
t+1

��
Pt
Pt+1

�
= Qt;t+1

Taking conditional expectations on both sides and rearranging gives

(1.6) �RtEt

��
Co
t

Co
t+1

��
Pt
Pt+1

��
= 1

Where Rt =
1

Et(Qt;t+1)
is implied by the non arbitrage condition. This expression is the

familiar Euler equation for consumption. It describes the desire to smooth consumption

over time once the opportunity cost implied by the real interest rate has been taken into
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account. The �rst order condition with respect to labour states that the marginal rate of

substitution between labour and consumption must be equal to the after tax real wage

(1.7) � (N o
t )
� Co

t =
Wt

Pt
(1� � t)

From the last expression one can see that taxation distorts the leisure-consumption choice.

Any change in the tax rate has a direct e¤ect on real wage and therefore on the marginal

rate of substitution between consumption and labour.

1.2.2. Rule of Thumb Consumers

The ROTC utility function is represented by a single period expression. In particular,

following Galí et al.(2004; 2007), it is assumed that the shape of the instantaneous utility

is the same for the two types of consumer. Therefore

(1.8) U r
t = logC

r
t � �

(N r
t )
1+�

1 + �

As stressed above, the ROTC do not participate in �nancial markets and do not hold

any pro�ts. Their budget constraint can be expressed as follows

(1.9)
Z 1

0

Pt (j)C
r
t (j) dj = WtN

r
t (1� � t)� PtS

r

Where Cr
t (j) and N

r
t are the level of consumption of each j product and the labour

supply of the ROTC. Furthermore, it is assumed that similarly to the behaviour of the

OPTC, the ROTC exploit any relative price di¤erences in creating their consumption

basket. Hence, at the optimum

(1.10) PtC
r
t =

Z 1

0

Pt (j)C
r
t (j) dj

On the consumption side the ROTC are forced to consume all their income in each

period, therefore consumption can easily be inferred by combining (1.9) with (1.10). The
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�rst order condition for the optimal supply of labour implies

(1.11) � (N r
t )
� Cr

t =
Wt

Pt
(1� � t)

The last two expressions state the ROTC "hand to mouth" attitude towards consumption.

This means that they consume in every period all their resources which, as previously

stated, are equal to their after tax labour income. The optimal supply of labour takes

the same analytical form as that of the OPTC.

1.2.3. Firms

In this economy, �rms are assumed to possess an identical production technology. This

production function is linear in labour and can be written as

(1.12) Yt (j) = Nt (j)

Furthermore, it is worth noting that each �rm faces the following demand function

(1.13) Yt (j) =

�
Pt (j)

Pt

��"
Yt

where

(1.14) Yt =

�Z 1

0

Yt (j)
"�1
" dj

� "
"�1

Following the NK literature it is assumed that prices are sticky. We model this feature

of the economy following Calvo (1983). In each period there is a (randomly selected) set

of �rms, (1� �) with � < 1; who reset their price optimally, while the remaining � keep

their prices �xed. When a �rm is allowed to reset its prices, it takes into account the

expected future stream of pro�ts discounted for the probability of not resetting its prices.



33

In particular the maximisation problem of a price setter can be written in real terms as

(1.15) max
P �t (j)

Et

+1X
i=0

�iqt;t+i

��
P �t (j)

Pt+i

�
Yt+i (j)�mct+iYt+i (j)

�

Where qt;t+1 = �
�

Cot
Cot+1

�
is the real stochastic discount factor andmct = Wt=Pt represents

the real marginal costs. The �rst order condition with respect to P �t (j) is

(1.16)
P �t (j)

Pt
=

�
"

"� 1

� Et
P+1

i=0 �
i�i
�

Cot
Cot+i

�
(mct+i (Pt+i)

" Yt+i)

Et
P+1

i=0 �
i�i
�

Cot
Cot+i

�
(Pt+i)

" P�1t+iYt+i

while the price level follows

(1.17) P
(1�")
t =

h
(1� �)P

�(1�")
t + �P

(1�")
t�1

i

1.2.4. Aggregation rules and market clearing condition

The aggregate expressions for consumption and labour are simply the weighted average

of the single consumer type variables. Therefore aggregate consumption follows

(1.18) Ct = �Cr
t + (1� �)Co

t

and aggregate labour

(1.19) Nt = �N r
t + (1� �)N o

t

In the absence of capital accumulation, everything produced must be consumed in the

same period. Furthermore each product j can be purchased by the private sector or by

the government

(1.20) Yt (j) = Ct (j) +Gt (j)
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In aggregate, given the price dispersion implied by Calvo price setting

(1.21) Ytst = Nt

where st =
R 1
0

�
Pt(j)
Pt

��"
dj. Given our assumption of zero steady state in�ation, �uctu-

ations of st around the steady state are of second-order importance5, and therefore can

be ignored in the present analysis which employs a linearised framework. In equilibrium

total demand is equal to total supply and therefore

(1.22) Yt = Ct +Gt

1.2.5. The Government

The government uses labour income tax revenues, Nt� tWt to �nance a stream of pub-

lic spending, PtGt
6, and the service of public debt. Therefore the government budget

constraint can be expressed as

(1.23) R�1t Bt+1 = Bt � � tWtNt + PtGt

where PtGt � � tNtWt is the primary de�cit. The government budget constraint can be

expressed in real terms as

(1.24) R�1t bt+1 =
bt
�t
� � twtNt +Gt

where bt+1 =
Bt+1
Pt
; wt =

Wt

Pt
and �t = Pt

Pt�1
:

1.2.6. Monetary Policy

Monetary policy sets the nominal interest rate, Rt; in every period. Following the liter-

ature on monetary policy, for example Clarida et al. (2000), we approximate monetary

5A detailed discussion of this can be found in Woodford (2003).
6As the private sector, the government exploits any price di¤erences in the market to form its con-
sumption basket Gt: This jointly with a CES aggregator gives the following downward sloping demand

function for each single public spending good. Gt (j) =
�
Pt(j)
Pt

��"
Gt
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policy by a simple Taylor rule of the type

(1.25) Rt = R (�t)
��

Where R = 1
�
is the steady state interest rate.7 The single policy parameter �� in (1.25)

is the Taylor coe¢ cient, as discussed in the literature on interest rate rules inspired by

Taylor (1993). Accordingly, following Leeper (1991), monetary policy is called active (or

passive) if the nominal interest rate, Rt; rises more (or less) than one-for-one with the

current in�ation rate, i.e. if �� > 1 (�� < 1).

1.2.7. Fiscal Policy

Regarding �scal policy, we assume a government revenue rule of the type

(1.26) � t = �0 + �1
�

b
(bt � b) + �2

�

Y
(Yt � Y )

where �0 =
(1��)b+G

wN
and �1 and �2 are policy parameters identifying the relative weight

given to debt stabilisation and output stabilisation. This �scal rule has the characteristic

of being steady state neutral (at steady state the �scal rule collapses to � = (1��)b
wN

+ G
wN

which is equal to � = �0).

Unlike monetary policy, there is no widely accepted speci�cation for �scal policy.

The rule we assume is similar to the one considered in Linnemann (2006), Davig and

Leeper (2006; 2007) and Schmitt-Grohe and Uribe (2007). This type of rule has two main

advantages. The �rst is that it allows the study of the interactions between monetary and

�scal policy under the logic of Leeper�s(1991).8 Second is that these rules are receiving

7A variable without time index refers to its steady state value.
8Following the de�nition of Leeper (1991), we call the �scal rule (1.26) passive if �1 >

�
1
� � 1

�
, i.e

positive �scal response to increase in public debt from its steady state value, while it is active in the

opposite case of �1 <
�
1
� � 1

�
.
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particular attention from an empirical point of view, given their ability to capture many

stylised �scal facts of US postwar data.9

Several special cases of �scal policy will be speci�ed and discussed in detail below.

One prominent example is a �scal policy which follows a balanced budget rule, i.e. no

short run public debt �uctuations, in the fashion of Schmitt-Grohe and Uribe (1997) and

Linnemann (2006). In this case �scal policy has to collect enough revenues to repay the

cost of public debt and a level of government spending. Its speci�cation derives directly

from (1.24) in which one has to impose that bt = b 8t: It can be described as

(1.27) � twtNt = Gt + b

�
1

�t
� 1

Rt

�

1.2.8. Equilibrium

The non linear structural equations of the model are log-linearised around the non sto-

chastic steady state.10 Furthermore, we present the model in terms of aggregate variables.

These equations are: the New Keynesian Phillips curve (NKPC)11

(1.28) �t = �Et�t+1 +
(1� �) (1� ��)

�

��
1


c
+ �

� bYt � (1� 
c)


c
bGt +

�

1� �
b� t�

where 
c =
C
Y
, the dynamic IS curve augmented for the presence of ROTC

(1.29) bYt = EtbYt+1 ���1� 
c

c

�� bGt+1 � bGt

�
��

� bRt � Et�t+1

�
We de�ne � as the elasticity of the demand side of the economy to changes in real interest

rate. This parameter is de�ned as � =
�
1

c
� � �

1��

��1
.

9See inter alia Perotti (2007).
10Algebrical details are provided in the appendix of this chapter. We impose, through a transfer de�ned
in the appendix, that the two agents have the same level of consumption and supply the same level of
labour at steady state. Hence the heterogeneity between the two consumers is only along the business
cycle.
11Note that �t = log

�
Pt
Pt�1

�
. This notation is innocuous since we assume no trend in�ation.
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The market clearing condition,

(1.30) bYt = 
c bCt + (1� 
c) bGt

the monetary policy rule,

(1.31) bRt = ���t

and the �scal policy, described by the government budget constraint and the tax rule

when public debt is allowed to �uctuate along the business cycle as

(1.32)bbt+1 = bRt+
1

�

�bbt � �t �
�w


b

��
1


c
+ � + 1

� bYt + 1

1� �
b� t�+ �1� 
c


b
+
�w (1� 
c)


b
c

�� bGt

��

(1.33) b� t = �1bbt + �2bYt
or simply by the (log-linearised) government budget constraint where bbt = 0 8t in the

case of balanced budget �scal policy

(1.34)bRt +
1

�

��
1� 
c

b

+
�w (1� 
c)


b
c

�� bGt

�
� �t �

�w


b

��
1


c
+ � + 1

� bYt + 1

1� �
b� t�� = 0

A few points are worth stressing. Firstly, this model displays a clear departure from

the so called Ricardian equivalence of �scal policy. Both types of consumer pay the

burden of public debt, but only the optimisers bene�t from it, holding public debt as-

sets. Therefore public debt is net wealth and, independently of how it is �nanced, it

implies a wealth transfer from the ROTC to the OPTC. Moreover, �scal policy levies a

proportional labour income tax, which distorts the marginal rate of substitution between

consumption and leisure. This feeds back directly into the NKPC via the labour supply,

i.e. a higher tax rate induces OPTC to substitute leisure from the future to the present,

lowering labour supply, increasing the �rms�real marginal cost, and thus generating a
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positive wedge between the tax rate and in�ation. These properties of the model, to-

gether with the non neutral e¤ects of monetary policy due to sticky prices, imply that:

a) the government budget constraint cannot be separated from the rest of the model,

i.e. government debt turns into a relevant state variable which needs to be accounted in

the analysis of local equilibrium dynamics, b) that equilibrium dynamics are driven by a

genuine interaction of monetary and �scal policy.

Secondly, the presence of ROTC dramatically a¤ects the dynamic IS equation (1.29),

i.e. the demand side of the economy, via �; the elasticity of the aggregate demand to

changes in real interest rate. This parameter is linked in a non-linear way to �, the share

of ROTC, and to �; the inverse of the Frisch elasticity of labour. Both the size and

the sign of � can potentially alter the transmission mechanism and local determinacy

properties of the model. The intuition for this result is as follows. Assume the monetary

authority suddenly increases the real interest rate. This increase shifts downward the

consumption of the optimisers, through the usual intertemporal Euler equation channel.

This, ceteris paribus, generates a reduction in labour demand and therefore in nominal

wages. The reduction in wages lowers �rms marginal costs. Consequently prices fall, via

the NKPC. Due to the Walrasian structure of the labour market and to the Calvo price

mechanism, nominal wages decrease more than prices, implying as a result lower real

wages.

Furthermore, the form of the utility function, i.e. log-consumption, together with the

assumption of no capital accumulation and the shape of the tax structure, causes the

ROTC to supply labour inelastically12 and therefore to pass through their consumption

any change in real wage. This is not all. The asymmetric decrease in wages and prices,

i.e real wages decrease more than real prices, generates an increase in pro�ts. Note

that the OPTC hold all the �nancial activities present in the system, i.e. pro�ts share

and public debt bonds. In particular they hold (1� �)�1 of total �rms share. If, for

12Although this assumption simpli�es the algebra and the economic mechanism behind our results, it
does not drive them. This is shown when other types of �scal arrangment are introduced.
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example, pro�ts increase by one unit, dividend income of asset holders (OPTC) increases

by 1
1�� > 1 units. The same thing is true for public debt bonds: a unit of increase in the

real return of public debt generates a 1
1�� > 1 increase in the optimisers�wealth.

13 These

�nancial e¤ects work in the opposite direction relative to the traditional intertemporal

Euler equation: while the latter imply a contractionary e¤ect of higher real interest rate,

the opposite is true for the former.

As argued by Bilbiie et al. (2004) and Bilbiie (2008), the sign of � determines which

of these two channels prevails. Of course, the sign of � depends on the share of ROTC,

i.e. the higher �; the higher the �nancial channel of interest rate, and on the elasticity

of labour supply (of the OPTC), i.e. the higher �; the higher the sensibility of real wage

to interest rate movements.14 A necessary condition for � > 0 is

(1.35) � <
1

(1 + �
c)

Figure 1:1 sketches the sign of � for a given value of 
c in the (�� �) space. As

one can see, � remains positive for combinations of high values of the Frisch elasticity of

labour supply, i.e. low �; and high shares of ROTC, i.e high �; or vice versa. The reason is

now understood: when the share of ROTC is low (or the total labour supply is inelastic),

the intertemporal Euler equation transmission channel prevails on the �nancial one: an

increase in the real interest rate decreases the economic activity. Furthermore inside the

parameter values where � is positive an increase in the share of ROTC increases the

sensitivity of aggregate demand to interest rate movements, i.e. lower real wages imply

lower consumption for the ROTC and the traditional intertemporal e¤ect prevails on the

�nancial one for the optimisers. This ceases to be true when � < 0 : an increase in the

real rate could potentially expand aggregate demand.15

13Note that these e¤ects of interest rate movements on �nancial portfolio would be irrelevant if � = 0;
i.e. no ROTC.
14High sensitivity of real wage to interest rate movements enhances the �nancial e¤ects described.
15Bilbiie (2008) refers to this as the "inverted aggregate demand logic". We use the same terminology in
section 1.5:
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It is quite intuitive that these e¤ects have dramatic consequences on the equilibrium

dynamics: as discussed in Bilbiie (2008), a monetary economy with a share of ROTC

that displays a negative � requires, for the RE equilibrium to be unique, the monetary

policy to abandon the Taylor principle and adopt a passive monetary rule.

Here we explore the consequences of the sign of � on the RE equilibrium determinacy

in a model where, due to the presence of a distortive �scal policy, equilibrium dynamics

are driven by a genuine interaction of monetary and �scal policy.

1.2.9. Determinacy

Given the focus of the paper on the equilibrium dynamics of the model we assume that

non fundamental shocks hit the economy.16 We further assume that government spending

is always at its steady state level, i.e. Gt = G 8t:

We combine (1.28)-(1.33) to obtain a system of di¤erence equations describing the

equilibrium dynamics of our economy. After some algebraic substitutions we can reduce

the system to one involving three variables

(1.36) AEt fxt+1g = B fxtg

where xt �
� byt; �t; bbt�0 and A =

266664
1 � 0

0 � 0

0 0 1

377775and

B =

266664
1 ��� 0

��
�
1

c
+ � + 1 + �

1�� �2

�
1 ��

�
�
1�� �1

�
� 1
�
�w

b

�
1

c
+ � + 1 + 1

1�� �2

�
�� � 1

�
1
�

�
1� �w


b(1��)
�1

�
377775

In order to study the determinacy of the system we need to analyse the eigenvalues of

J = A�1B: Given that the x vector displays two non-predetermined variables (in�ation

and output) and one predetermined (public debt), determinacy requires the J matrix to

16The absence of shocks does not a¤ect the determinacy analysis as the eigenvalue associated with any
shock is assumed (if stationarity is imposed) to be inside the unit circle.
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have two eigenvalues outside the unit circle and one inside the unit circle. Alternatively if

more than one eigenvalue of J lie inside the unit circle, the system is locally undetermined:

from any initial value of the stock of public debt there exists a continuum of equilibrium

paths converging to the steady state, and the possibility of sunspots �uctuations arises.

If instead there are no eigenvalues inside the unit circle, there is no solution to (1.36)

that converges to the steady state.17

1.2.10. Calibration

The model is calibrated to a quarterly frequency.18 We assume the elasticity of substitu-

tion among goods, ", is equal to 6. This implies a steady state markup of 20%, which is

in line with most of the macro literature. The discount factor � has been �xed at 0:99.

As a consequence, the real annual interest rate is 4%. �, the parameter of relative disu-

tility of labour to consumption, has been chosen to obtain an average steady state labour

supply of 1=3. The steady state ratio between private consumption and total output, 
c;

is 0:75. This value implies a steady state ratio of government spending over output of

25%; which is in line with the level of public consumption in most of the industrialised

countries, see Galí et al.(2007). As in most of the NK literature, we assume that prices

remain unchanged on average for one year. Therefore �, the parameter ruling the degree

of price stickiness, is �xed at 0:75. When not di¤erently speci�ed, these parameters are

kept at their baseline values throughout the determinacy exercise. Next we turn to the

parameters for which some sensitivity analysis is conducted, by examining a range of

values in addition to their baseline settings. Given the aim of the paper, the model has

been solved with several pairs of �, the share of ROTC and �; the inverse Frisch elasticity

17Unless the initial level of the public debt stock is at its steady state value, in which xt = 0 for all t is
the only non explosive solution.
18We insert this paragraph on calibration before presenting the analytical results. This is because in
the section where we present the analytical results, we use simple numerical examples based on the
calibration presented here, in order to generate the economic intuitions behind our results.
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of labour supply, depending whether we want to study a situation where � is positive or

negative.19

In the case of a balanced budget �scal policy rule, the determinacy has been studied

for di¤erent values of 
b; the steady state level of public debt to GDP ratio, while in the

case of general �scal rules, we �x 
b = 2:4, a value which implies an annual steady state

ratio of public debt to output equal to 60% and a steady state level of taxation of 32; 8%

of total output. The determinacy, and consequently the calibration exercise, has been

studied with di¤erent values of �2, the �scal policy parameter of the output gap. A value

of �2 = 0 implies a policy rule very similar to the one studied by Leeper (1991), and

describes a situation in which the tax rates do not respond to output �uctuations. We

furthermore de�ne a countercyclical (procyclical) �scal policy in terms of output if �2 > 0

(�2 < 0). Similarly, in order to describe the active-passive policy mix, the determinacy

conditions is analysed for a broad range of policy parameters20, �� and �1:

1.3. Results

1.3.1. Balanced Budget Rule

As a �rst step in analysing the interaction between monetary and �scal policy with a

share of ROTC, we study the equilibrium dynamics of the model in the case where the

government has to balance its budget in every period without accessing to short run

public debt assets. Such a �scal policy implies that the tax rate is �xed in every period

to satisfy21

(1.37)
1

1� �
b� t = 
b

�w

�
� bRt � �t

�
�
�
1


c
+ � + 1

� bYt
Thus it is assumed there is a historical inherited stock of real public debt, on which

interest has to be paid by the government, but this stock never changes because the tax

19In particular we allow � to vary in a range between 0:25 and 4 and � between 0:05 and 0:5: These
values are consistent with most empirical literature.
20In particular we allow �� 2 (�2; 6) and �1 2 (�1; 2) :
21We continue to assume that Gt = G 8t:
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rate is adjusted appropriately. With a balanced rule of this type the dynamic system can

be written as

(1.38) Et fxt+1g = J br fxtg

where xt = fbYt; �tg, J br =
264 1 + �1�

�
��� �

�(1+(1����)	)
�

��1
�

(1+(1����)	)
�

375 ; with k = (1��)(1���)
�

;	 =

k
b"
("�1) and �1 = k

�
1��

c
+ (1� �) � � �

�
:

We assume that � <
�
1 + 1

1

c
+�

��1
: This implies that �1 > 0:

The restriction on � greatly simpli�es the algebra and it is mild in empirical terms.

Consider for example a standard parametrisation where 
c = 0:75 and � = 1: The

assumption on � implies that the tax rate has to be smaller than 60%: With 
c = 0:75

and � = 4; the restriction implies that � has to be smaller than 84%:

Given that both variables are non-predetermined, determinacy requires both eigen-

values of J br lying, in absolute values, outside the unit circle. As previously stated the

sign of the elasticity of demand to the real interest rate, �; changes markedly the dy-

namic properties of the model. Let us �rst assume � > 0: In this case22, necessary and

su¢ cient conditions for determinacy require

If �1 > 2
	�

�
=) �� > 1(1.39)

else if �1 <
	�

�
=) 1 < �� < min f�1; �2g(1.40)

else if
	�

�
< �1 < 2

	�

�
=) 1 < �� < �2(1.41)

With �1 =
1+	��
�	���1 and �2 =

2+2�+2	+�1�
2�	���1 : (1.39) represents the case with no or very

low level of steady state public debt, or high values of �. As in any standard New

Keynesian sticky price model, the only condition for equilibrium determinacy is to have

an active monetary policy, i.e. �� > 1: Two main reasons drive this result. First, with

� > 0; the e¤ect of an interest rate change on the economy follows the standard "Taylor

22Formal proof of this determinacy results is provided in the appendix of this chapter.



44

principle" logic: a higher interest rate generates a contraction in aggregate demand and,

through the NKPC, downward pressure on in�ation. For any given level of �� > 1; this

contraction of aggregate demand is positively correlated with �: Therefore the higher �

the easier it is for monetary policy to keep in�ation under control. Second, for values of

the steady state ratio of public debt to output, 
b; close to zero, the feedback of monetary

policy on the government budget constraint is very limited. The tax rate moves only to

balance changes in output and this movement does not imply any major feedback on the

endogenous variables of the model.

This stops being partly true when (1.40) or (1.41) are veri�ed: As in the previous

case monetary policy has to adopt an active role, but this is now constrained by some

upper bounds which are functions of the structural parameters of the model. They

depend, among other things, on the long run level of debt, the share of ROTC, the

Frisch elasticity of labour supply and the degree of price stickiness. Note that when

	�
�
< �1 < 2

	�
�
; �1 is not binding; meanwhile, when �1 <

	�
�
; �1 is more likely to bind

than �2 for standard parameter values: For example, suppose that � = 0:75, � = 0:99;


b = 2:4; � = 1; � = 0:3; " = 6: This set of parameters implies �1 = 0:16; 	 = 0:24;

� = 1:10; �1 = 2:01 and �2 = 12:34:With instead 
b = 3 (all other parameters constant),

�1 = 1:67 and �2 = 9:48:

These upper bounds are directly generated by the distortive nature of �scal policy. let

us instance assume agents suddenly expect higher in�ation. Monetary policy adopting

an active role increases the real interest rate so as to decrease current aggregate demand

and thus stabilise in�ation via the NKPC. The magnitude of the e¤ect of an interest rate

increase on aggregate output via the IS equation depends in a non-trivial way on �; i.e

the higher �; the more sensitive the aggregate demand on monetary policy. On the other

hand a higher interest rate feeds back on the government budget constraint, generating

an increase in the cost of the service of public debt and therefore an upward pressure

on the tax rate. Note that the higher the level of steady state public debt, the higher

the tax rate increase for each increase in interest rate. Furthermore, the contractionary
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e¤ect of monetary policy on output implies a decrease in the government revenues tax

base, which causes a further increase in the tax rate. Moreover each increase in the tax

rate feeds back positively, via the NKPC, on current in�ation. This positive wedge can,

for high levels of public debt or, ceteris paribus, for high responses of monetary policy

to in�ation, neutralise the initial attempt of monetary policy to stabilise in�ation via a

reduction of output, making the initial expectations of higher in�ation self-ful�lling.

Figure 1:2 displays determinacy analysis in the (���
b) space for di¤erent parameter

combinations of the share of ROTC, �; and the inverse Frisch elasticity of labour supply,

�: With low levels of public debt, the only condition for determinacy is to have �� > 1;

i.e. the Taylor principle. Furthermore, the constraints on the monetary policy parameter

are less likely to bind the higher is the share of ROTC or the lower is the Frisch elasticity

on labour supply (high �). The reason is now well understood. Within the parameter

values where � > 0; a high share of ROTC, or a more elastic aggregate labour supply,

increases the e¤ect of an interest rate changes on aggregate demand, preventing the �scal

policy feedback on the supply side of the economy to generate self-ful�lling expectations.

When, for example, � = 3 and � = 0:3 the only condition to obtain determinacy is

�� > 1:

We now turn to study of the determinacy properties of the model when � < 0:

Necessary and su¢ cient conditions for determinacy require

(1.42) �� < min f1; �1g [ �� > max f1; �2g

In this case there are two determinacy spaces. In the �rst one, monetary policy has to

adopt a passive role, i.e. �� < 1: This conduct may have an upper limit represented by

�1: In the other determinacy space monetary policy needs to adopt an active role, with a

potential downward limit represented by �2: As before, both �1 and �2 depend crucially

on the structural parameters of the model. In particular, �1 is increasing in �; � and 
b,
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while �2 is increasing in � and �; and decreasing
23 in 
b: We start by explaining the �rst

determinacy space, i.e. �� < 1: Let us assume agents suddenly expect higher in�ation.

The monetary authority, adopting a passive role, cuts the real interest rate. This cut

contracts aggregate demand through a decrease in the �nancial activities held by the

optimiser consumers. A decrease in the real rate and in output have opposite e¤ects on

the government budget constraint: a lower real interest rate, cutting the cost of the service

of public debt, implies a decrease in the tax rate, while a decrease in output, lowering the

government revenue base, generates an opposite e¤ect. As stressed above an increase in

the tax rate could have, through the supply side of the economy, a destabilising e¤ects

on in�ation. Therefore if the changes of the real interest rate and output generates an

increase in the tax rate, the initial expectations could be self-ful�lling. This situation is

more likely to happen with low values of 
b; i.e. lower monetary feed back on the tax

rate, low values of � and �; i.e. higher sensitivity of aggregate demand24 to interest rate

movements.

The second area of determinacy requires monetary policy to be active with a lower

bound represented by �2 =
2+2�+2	+�1�
2�	���1 . As before, let us assume agents suddenly expect

higher in�ation. The monetary authority would increase the real rate which, given its

e¤ect on �nancial assets, expands aggregate demand. This expansion feeds back on the

government budget constraint generating an increase in the tax base and therefore a

reduction of the tax rate. A reduction of the tax rate can stabilise in�ation through the

NKPC. However, a higher interest rate feeds back on �scal policy causing an increase

in tax rate and this, ceteris paribus, puts upward pressure on prices. It is therefore

important for determinacy that the e¤ect of output on �scal policy overcompensates the

monetary one. When this happens the decrease in the tax rate stabilises current in�ation

contrasting the initial expectations of higher in�ation. As stressed before, the higher �

and �, the lower the sensitivity of aggregate demand to monetary policy, and therefore

23For example with ' = 3; � = 0:35 and 
b = 2; �1 = 0:19 and �2 = 2:96; while with ' = 4; � = 0:5 and

b = 2; �1 = 0:64 and �2 = 8:38: Finally with ' = 4, � = 0:5 and 
b = 3; �1 = 0:77 and �2 = 6:25:
24Note that with � = 0:35 and ' = 3; � = �3:54; while with � = 0:5 and ' = 4; � = �0:37:
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more likely that, for each increase in the real interest rate, tax rate increases, raising the

possibility of sunspot �uctuations.

Figure 1.3 displays determinacy in the (�� � 
b) space for di¤erent values of � and

�: As stressed above, increasing these two parameters, (when � is negative) lowers the

sensitivity of aggregate demand to interest rate movements. This increases the possibility

of determinacy when monetary policy adopts a passive role, while the opposite is true

when monetary policy is active.

This simple exercise helps us to motivate and explain the importance of inserting �scal

policy when analysing the e¤ects on the equilibrium determinacy of a share of ROTC.

First of all, when � > 0; a balanced budget rule delivers determinacy for parameter

values which are consistent with the empirical evidence. This result is a clear departure

from Linnemann (2006). Linnemann �nds that in a standard NK model with a balanced

budget �scal rule, an active monetary policy could, through its feedback on �scal policy

and the feedback of �scal policy on aggregate supply, easily lead to indeterminacy even

for low positive values of long run public debt. The di¤erences of our results stem from

an increased sensitivity of aggregate demand to monetary policy due to the presence of

ROTC.

Similarly, when � < 0; the presence of balanced budget �scal rule, through its feed-

back on the endogenous variables of the model, helps to reestablish the Taylor principle

within realistic monetary policy responses to in�ation �uctuations. This result extends

the ones found by Bilbiie (2008) in the absence of �scal policy, where a contemporaneous

active monetary policy rule could deliver determinacy only for implausibly high levels of

the monetary parameter ��:

1.3.2. Endogenous Debt

Here we study a more general version of monetary/�scal policy mix. Short run public

debt �uctuations are allowed and �scal policy can be represented by the government

budget constraint (1.32) and by the tax rate rule (1.33). Note that, di¤erently from the
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previous case of a balanced budget rule, here the tax rate is a policy instrument which

can be discretionally set according to �1 and �2: Given the lack of a straightforward

and intuitive analytical result for the determinacy analysis of this exercise, we rely on

numerical solutions.

Figure 1.4 displays the determinacy analysis in the (�� � �1) space for di¤erent values

of the �scal parameter on output, �2; when � is positive, i.e. � = 1 and � = 0:3.

As previously described, when � > 0 the monetary policy e¤ects on the system follow

the common wisdom. Hence the presence of ROTC does not alter Leeper�s (1991) logic. In

other words equilibrium determinacy is guaranteed by an active (passive) monetary pol-

icy, �� > 1; (�� < 1) and a passive (active) �scal policy, �1 >
�
1
�
� 1
�
,
�
�1 <

�
1
�
� 1
��

:25

When both policies are passive, the system displays an in�nite number of solutions and

the possibility of endogenous sunspot �uctuations arises. When both policies are ac-

tive there is no solution to (1.36). Furthermore it is interesting to note that the �scal

parameter on output is not relevant for equilibrium determinacy.

The intuition for these results goes as follows. Let us assume agents suddenly expect

higher in�ation. Monetary policy, following an active role, raises the real interest rate.

Higher interest rate increases the cost of the service of public debt. A �scal policy

which follows a passive role increases government revenues raising the tax rate.26 The

combined e¤ect of a higher interest rate and a higher tax rate, reduces disposable real

wages, potentially lowering consumption of the ROTC and that of the OPTC. On the

other hand, both lower real wages, through an increase in pro�t share, and higher return

on public debt, generate an increase in the �nancial portfolio of the optimisers. For low

values of �; these positive �nancial e¤ects of monetary policy on the optimisers�wealth are

overcompensated by the traditional Euler equation channel: an increase in real interest

25Note that this de�nition of �scal policy is a simplifying approximation, given that it refers to an
environment where the Ricardian equivalence holds. For a detailed discussion see Leith and Wren-
Lewis(2000). For our benchmark parameterisation when � > 0; a stable public debt dynamics requires
�1 > 0:011; which is very close to 1

� � 1:
26The distortive nature of �scal policy implies a La¤er curve in the government revenues. However the
peak of the La¤er curve happens for steady state tax rate values which are far above to the ones assumed
in this analysis. For a detailed discussion see Schmitt-Grohe and Uribe (1997).
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rate reduces aggregate demand. Via the NKPC, this reduction in aggregate demand puts

downward pressure on current in�ation27: initial expectations of higher in�ation are not

self-ful�lled and the combination of monetary and �scal policy stabilises both the price

level and the public debt.

Consider instead a passive/passive policy mix. The monetary authority would respond

to the initial expectations of higher in�ation by cutting the real interest rate. This would

feed back on public debt generating a tax rate cut. The combined e¤ect of lower interest

rate and lower taxation would increase consumption of both type of consumer, expanding

aggregate demand and in turn putting upward pressure on prices. The initial expectations

of higher in�ation are self-ful�lled, so generating local indeterminacy.

The active/active policy mix generates a perverse path for in�ation and public debt

which in turn leads the system to be unstable.

Figure 1:5 displays the determinacy analysis in the (�� � �1) space for di¤erent values

of the �scal parameter on output, �2; when � is negative, i.e. � = 3 and � = 0:5. A nec-

essary condition for determinacy is that monetary and �scal policy are both either active

or passive. As previously described, the reason for these results is that when � < 0; the

�nancial e¤ects of an interest rate change overturn the traditional transmission mecha-

nism of monetary policy on aggregate demand. As a consequence, an active monetary

policy (�� > 1), through an increase in the return of the optimiser consumers��nancial

activities has the potential to expand aggregate demand. The intuition for these results

goes as follows. Let us assume that both monetary and �scal policy adopt an active rule

(�� > 1; �1 <
1
�
� 1). Let us further assume that agents suddenly expect higher public

debt. Fiscal policy reacts to this, cutting the tax rate (active �scal policy) and therefore

generating an explosive path for public debt. Moreover the tax rate cut feeds back on

aggregate demand, generating, ceteris paribus, an increase in output and a downward

pressure on in�ation via the NKPC. Monetary policy through an active rule expands

27Note that higher taxation per se puts upward pressure on prices via (1.28). However this e¤ect is
overcompensated by the decrease in aggregate demand.
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further output, i.e. � < 0; causing, via the NKPC an explosive path on in�ation, which

in turn de�ates the cost of public debt, implying a stable RE equilibrium.

Let us assume now that both policies are passive (�� < 1; �1 >
1
�
� 1) and that

agents suddenly expect higher in�ation. Monetary policy contrasts these expectations by

cutting the real interest rate (passive rule). A lower interest rate lowers current output,

putting downward pressure on prices via the NKPC, and therefore stabilising in�ation.

At the same time, monetary policy has two opposite e¤ects on �scal policy. On one

hand, a lower interest rate implies, via a reduction in the optimiser consumers�wealth, a

reduction in aggregate demand and therefore of the tax base, while on the other hand, a

lower interest rate implies a lower cost of the service of public debt. These e¤ects imply

an important role for the equilibrium determinacy, of �2; the �scal policy parameter on

output: In particular the determinacy region increases when �2 decreases: This is due to

the fact that if �scal policy reacts to a decrease in output with a further cut in the tax

rate (�2 > 0), it could potentially fail to generate enough revenues to balance its budget,

causing an explosive path for public debt and therefore generating indeterminacy. This

destabilising situation can be partially avoided with a procyclical, in terms of output,

�scal rule, i.e. �2 < 0. Note that within this monetary/�scal policy mix determinacy

requires a stronger �scal policy, i.e. high �1; the closer �� is to unity, i.e. constant real

interest rate.

With � < 0; a policy mix of active monetary (�� > 1) passive �scal (�1 >
1
�
�1) policy

generates indeterminacy. Monetary policy responds to higher in�ation expectations,

increasing the real interest rate. This generates an increase in the cost of the service of

public debt and therefore an increase in the tax rate. However as previously described,

the initial increase in the interest rate would expand aggregate demand, putting further

pressure on current in�ation and making the initial expectation self-ful�lling. Similarly,

a policy mix of passive monetary policy (�� < 1) and active �scal policy (�1 < 1
�
� 1)

generates the stabilisation of in�ation and the destabilisation of public debt, generating
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indeterminacy for positive values (0 < �� < 1) of �� and instability for negative values

of ��.

1.4. Robustness

1.4.1. General Monetary Policy Rules

We extend the determinacy analysis for a more general class of monetary policy rules of

the type

(1.43) bRt = � bRt�1 + (1� �)
�
��E�t+i + �YE bYt+i� with i = �1; 0; 1

where � identi�es the nominal interest rate smoothing parameter, while �Y is the output

parameter on monetary policy. In particular, when i = �1, (1.43) reduces to a backward

looking rule. When i = 0 it corresponds to a contemporaneous rule, and when i = 1

it becomes a forward looking rule. Figure 1:6 reports the determinacy analysis in the

(�� � �1) space when �; the parameter capturing the elasticity of aggregate demand to

interest rate, is positive, with � and � calibrated as in the previous section, and �2 = 0.

Scrolling down the �gure changes i (contemporaneous, backward-looking and forward-

looking), while scrolling the �gure from left to right changes the parameter values on �

and �Y : Obviously, with i; �Y and � equal to zero, (1.43) collapses
28 to (1.31). For what

concerns the �rst two top rows, i.e. contemporaneous rule and backward-looking rule, the

adoption of more general monetary rules does not change the equilibrium dynamics of the

model. In other words, the presence of a response in output (�Y > 0) or the persistence

of the interest rate (� > 0) does not alter, or does so only marginally, the logic of Leeper

(1991). As in the previous section, in order to have a unique RE equilibrium when � > 0,

monetary policy has to be active (passive) and �scal policy has to be passive (active).

With a forward-looking monetary policy rule (last row), this stops being true.

28For the sake of clari�cation, note that the case represented in the top left quadrant in �gure (1.6) is
the same as the one at the left bottom in �gure (1.4).
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Forward-looking monetary rules where originally proposed by Bernanke and Wood-

ford (1997), and estimated by Clarida et al. (1998; 2000). As noted by Bernanke and

Woodford (1997) and Bullard and Mitra (2002), this type of rule can change markedly

the equilibrium conditions of a standard monetary sticky price model respect its con-

temporaneous counterpart. In particular, when monetary policy is active, equilibrium

determinacy imposes an upper limit on �� and �1, which in turn depends on � and �Y :

In other words, when in (1.43) i = 1; there is an upper bound to the size of the response

to expected in�ation that must be satis�ed. If that upper bound is overcome, the equi-

librium becomes indeterminate. Galí et al. (2004) �nd a similar result in a monetary

model with capital accumulation and ROTC.

Here, while there are no changes in the case of active �scal policy/passive monetary

policy, in the case of active monetary/passive �scal policy, the upper limit on �� depends,

other than on �Y and �; on �1; the response of �scal policy to public debt �uctuations.

The upper limit on the monetary policy response to in�ation expectations is present

only for high responses of the tax rate to public debt. When �scal policy reacts too

strongly to public debt �uctuations, the implied increase in the tax rate feeds back on the

supply side of the system via the NKPC, generating a destabilising e¤ect on the attempt

of monetary policy to contain in�ation expectations and hence, causing indeterminacy.

With an increase of interest rate inertia, via � or an increase in monetary response to

output, via �Y ; the upper limit on �� disappears. These results are consistent with the

ones presented in Galí et al. (2004).

Figure 1:7 reports the same exercise when � < 0 (� = 3 and � = 0:5): As in the

previous section, in this case the logic of Leeper (1991) is reversed: necessary conditions

for a unique RE equilibrium are that monetary and �scal policy are both either active or

passive. these results changes only marginally for the timing of the monetary rule and

for the parameters of monetary policy inertia and output stabilisation.

Secondly, with a forward-looking monetary rule, the upper limit on �� and �1; which

characterised the case where � > 0; disappears. When �scal policy adopts a destabilising
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public debt policy, monetary policy has to in�ate the system through an active policy.

the potentially explosive path of both in�ation and public debt overshoot the importance

of the �scal feedback on the supply side of the economy, leading to determinacy.

1.4.2. Di¤erent �scal arrangements: the case of lump sum taxation.

One might rightly wonder if the results thus far presented depend on the particular

speci�cation of �scal policy or instead are robust to a di¤erent speci�cation of �scal

policy, i.e. lump sum taxation. This represents a natural extension of the analysis under

several points of view. First of all, lump sum taxation maintains the distortive nature of

�scal policy: both types of consumers pay the burden of public debt but only the OPTC

hold public debt assets. Therefore the government budget constraint cannot be separated

from the rest of the model, and public debt remains an important state variable which

has to be taken into account in the dynamics of the model. Secondly, despite the shape

of the utility function (log-consumption), with lump sum taxation, ROTC do not supply

labour inelastically.

The model with lump sum taxation is very similar to the one presented in the litera-

ture, as in Bilbiie et al. (2004), Galí et al. (2008). We therefore relegate to the appendix

the standard derivation of the model, while here we only present the log-linearised equi-

librium equations. When not di¤erently speci�ed we maintain the same notation and the

same calibration as in the case of labour income taxation. As before, we assume public

spending to be always at its steady state value. The equilibrium can be described by this

set of equations. The NKPC

(1.44) �t = �Et�t+1 +
(1� �) (1� ��)

�

��
1


c
+ �

� bYt�

the government budget constraint

(1.45) bbt+1 = bRt +
1

�

�bbt � �t �
� ls

b
b� lst �
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where � ls identi�es the steady state value of lump sum taxes, the monetary policy

(1.46) bRt = � bRt�1 + (1� �)
�
��E�t+i + �YE bYt+i� with i = �1; 0; 1

the �scal policy rule29

(1.47) b� lst = �1bbt + �2bYt
and aggregate demand

(1.48) bYt = EtbYt+1 � ��1c �ls (1� �)
� bRt � Et�t+1

�
+ ���

�1
c �

ls
�
Etb� lst+1 � b� lst �

where �c =
�
1� �(1+�)

1+��
c

�
; �n =

�(1+�)
1+��
c

; �ls = (1=
c � �n=�c)
�1 and �� =

�� ls�
Y (1+��
c)

:

A few things are worth noticing. The distortive nature of �scal policy is represented

by the feedback of taxation on the endogenous variables of the model via (1.48), the

demand side of the economy. The sign and size of this e¤ect depend crucially on the

share of ROTC30 and the elasticity of labour supply. Similarly, the sign of the elasticity

of aggregate demand to interest rate movements depends on �ls while its size depends on

�c: despite being a less straightforward analytical expression, the economic intuition for

the sign of �ls is the same to �; introduced in the labour income taxation environment.

A necessary condition for �ls > 0 is

(1.49) � <
1 + 
c��

1 + 
c + � + 
c�

Figure 1:8 sketches in the (�� �) space the sign of �ls: As in the case with labour income

taxation, �ls remains positive for high values of the Frisch elasticity of labour supply,

i.e. low �; and the higher, the higher the share of ROTC, i.e. high �: We repeat the

exercise conducted in 3:1 assuming that �scal policy balances its budget in every period

without accessing short term public debt asset but has to repay the interest on the long

29From now on we ignore the term on output in the �scal rule, i.e. �2 = 0:
30Note that in the limiting case of no ROTC, �n = �� = 0 and �c = 1:
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term public debt. The behavior of �scal policy can be represented in log-linear form as

(1.50) b� lst = 
bY

� ls

�bRt �
1

�
b�t�

While we assume that monetary policy implements (1.46) with i = � = �Y = 0; i.e.

contemporaneous rule. The dynamic system can be written as

Et fxt+1g = J ls fxtg

where, as before, xt =
nbYt; �to and J ls =

264 1 + ��1c �ls�(���+����)
�2

��1c �ls(�+(��1)�)(����1)
�2

��
�

1
�

375
with � = ��
b

(1+��
c)
> 0 and �1 = k

�
1

c
+ �
�
> 0: As in the case with labour income tax-

ation, determinacy requires J ls to have both eigenvalues outside the unit circle. When

�ls > 0; necessary and su¢ cient condition for determinacy is

(1.51) �� > 1

The upper bound on active monetary policy that was present in the case of labour

income taxation, disappear in the case of lump sum taxation. In other words, a monetary

policy which follows the Taylor principle, i.e. �� > 1; always delivers determinacy when

only lump sum taxes are available and �scal policy follows (1.50). This is due to the lack

of direct feedback of a tax change on the supply side of the economy together with the

ordinary e¤ect of an interest rate change on the demand side of the economy. A graphical

inspection of determinacy can be found in �gure 1:9.

When �ls < 0; necessary and su¢ cient conditions for determinacy require

(1.52) �� < min (1; �3) [ �� > max (1; �4)

where �3 =
�2��+���1c �1�

ls

���1c �1�
ls(1+�)

and �4 =
�2��2�2����1c �1�

ls+2��1c ��1�
ls

���1c �1�
ls(1+2�)

: As in the case with

labour income taxation, when �ls < 0; there are two determinacy areas, one in which

monetary policy follows an active rule and one in which monetary policy follows a passive
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one. Both �3 and �4 are functions of the structural parameters of the model. In particular

while �3 is increasing in �; � and 
b, while �4 is increasing in � and �; and decreasing
31

in 
b: Despite a less intuitive expression, �3 and �4 have the same interpretation �1 and

�2; respectively: Figure 1:10 displays the determinacy results in the case of �
ls: The

economic intuition for these results is very similar to the analogous case with labour

income taxation. We therefore refer to paragraph 1:3:1 for a detailed discussion.

Finally, we repeat the exercise conducted in (1:3:2) for the case of lump sum taxes.

Fiscal policy is allowed to release short run public debt assets and it balances its budget

following32 (1.47). The analysis can therefore be conducted under the active/passive logic

of Leeper(1991).

Figures 1:11 and 1:12 report the determinacy analysis with lump sum taxation with

positive (� = 1 and � = 0:3) and negative (� = 3 and � = 0:5) �ls: In both cases there

are no noticeable di¤erences with the labour income taxation scenario and the policy mix

which guarantees determinacy is mainly driven by the sign of �ls:

While, as detailed in Bilbiie et al. (2004), di¤erent �scal arrangements imply impor-

tant consequences for the transmission mechanism of macro policies, they do not cause

important changes for the equilibrium dynamics.

1.5. Concluding Remarks

The introduction of ROTC has dramatic consequences for the equilibrium dynamics

of a standard NK model. While most of the literature focuses only on the monetary

policy aspect of these consequences, for example Galí et al.(2004) and Bilbiie (2008),

we concentrate on the e¤ects of a share of ROTC on �scal policy and its interaction

with monetary policy. In doing so, we analyse a broad range of monetary and �scal

policy rules. To this end this paper contributes to enrich the theoretical literature on

31For example with ' = 3; � = 0:35 and 
b = 2; �3 = 0:421 and �4 = 1:78; while with ' = 4; � = 0:5
and 
b = 2; �3 = 0:63 and �4 = 6:81: Finally with ' = 4, � = 0:5 and 
b = 3; �3 = 0:72 and �4 = 7:19:
32For semplicity we �x �2 = 0 through this exercise.
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macro-policy rules and has the potential to explain the U.S. postwar empirical evidence

on monetary and �scal policy regimes.

We summarise our results as follow.

1) When the share of ROTC and the elasticity of labour supply guarantee that the

elasticity of demand follows the common wisdom, i.e. negative relation between interest

rate and aggregate demand, monetary policy adopts a contemporaneous interest rate rule

and �scal policy balances its budget constraint without releasing short run public debt,

an active monetary policy rule is necessary but not su¢ cient condition for determinacy.

In other words, a monetary policy which respects the Taylor principle and reacts �too

strongly�against in�ation might lead to indeterminacy for high levels of long run public

debt. This upper bound on monetary policy gets tighter the higher the level of public

debt and tends to disappear with an increase of the share of ROTC and a more elastic

labour supply.

2) When the combination of ROTC and the elasticity of labour supply inverts the

elasticity of aggregate demand to the interest rate and monetary and �scal policy rules

follow from 1), equilibrium determinacy can be guaranteed by both an active and a passive

monetary policy rule. While a passive monetary rule leads to a unique RE equilibrium

with an upper bound which is increasing in the share of ROTC, labour supply elasticity

and long run public debt, an active monetary rule leads to determinacy with a lower

bound which in turn is increasing in the share of ROTC and the elasticity of labour

supply and decreasing in the long run level of public debt.

3) When �scal policy is allowed to realise short run public debt and it follows a tax

revenue rule as in (1.33), equilibrium determinacy requires, following the de�nition of

Leeper (1991), to have an active (passive) monetary rule together with a passive (active)

�scal rule when the aggregate demand responds negatively to increases in real interest rate

or both monetary and �scal policy simultaneously active or passive when the aggregate

demand logic is inverted.
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4) Results 1, 2 and 3 survive to di¤erent speci�cations of monetary rules (contempo-

raneous, forward-looking, backward-looking) and di¤erent speci�cations of �scal arrange-

ments (labour income tax, lump sum tax).

We interpret our results in several directions. Results 1 and 2 represent a clear ex-

tension on �scal balanced budget rule. While for many reasons this type of �scal policy

might not be a wise policy choice, i.e. it increases business cycle �uctuations and gener-

ates signi�cant welfare losses (Barro, 1979; Lucas and Stokey, 1983;) and it may lead to

indeterminacy, thus inducing belief-driven aggregate instability and endogenous sunspot

�uctuations (Schmitt-Grohe and Uribe, 1997; Linnemann, 2005), its analysis represents a

recurrent theme of debate in many countries. The present work does not deal with busi-

ness cycle �uctuations nor with welfare analysis, but only with the determinacy properties

of a balanced budget �scal policy. To this respect, we �nd that, within reasonable pa-

rameter values, an active monetary policy together with a moderate level of ROTC, i.e

usual aggregate demand logic, guarantees determinacy with a balanced �scal policy rule.

This result can be compared to that of Linnemann (2006). The author �nds that in

a similar model, although with no ROTC, an active monetary policy with a balanced

budget �scal policy can easily lead to indeterminacy. The di¤erence in our results are

crucially driven by the presence of ROTC.

On the other hand, result 2 can be seen as an extension of Bilbiie (2008). He shows

that when the share of ROTC, or ceteris paribus, the elasticity of labour supply, imply an

inverted aggregate demand logic, monetary policy has to be passive in order to guarantee

a unique RE equilibrium. In this paper we argue that when the aggregate demand logic

is inverted and �scal policy follows a balanced budget rule, an active monetary policy

can realistically lead to determinacy.

Favero and Monacelli (2005) and Davig and Leeper (2006) �nd that in the US postwar

macro policy regimes, alongside with periods in which monetary and �scal policy respect

the active/ passive logic of Leeper (1991), there are periods in which monetary and �scal

policy are both active or passive. This evidence cannot generally be explained with a
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traditional Real Business Cycle or NK model in which macro policies are not allowed to

switch from active to passive and viceversa. We show in result 3; that within a reasonable

parameters region, our model33 has the potential to explain this empirical evidence.

33A similar result in a continuous time NK model with ROTC and lump sum taxation is obtained by
Leith and Von Thadden (2007).



60

1.6. Figures
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Figure 1.1. Sign of �. Black spots, � > 0, white area � < 0.



61

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

φπ

γ b

η=1 λ=0.05

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

φπ

γ b

η=1 λ=0.3

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

φπ

γ b

η=3 λ=0.05

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

φπ

γ b

η=3 λ=0.3

Figure 1.2. Determinacy analysis with a balanced budget �scal policy, pos-
itive �: White area, determinacy. Black area, indeterminacy.
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Figure 1.3. Determinacy analysis with a balanced budget �scal policy, neg-
ative �: White area, determinacy. Black area, indeterminacy.
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Figure 1.4. Determinacy area with contemporaneous monetary rule and a
�scal rule of the type b� t = �1bbt + �2bYt and positive � (� = 0:3 and ' = 1).
White area, determinacy, grey area instability, black area indeterminacy.
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Figure 1.6. Determinacy area with monetary rule of the type bRt = � bRt�1+
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Figure 1.9. Determinacy analysis with a balanced budget �scal policy, pos-
itive �ls: White area, determinacy. Black area, indeterminacy.
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Figure 1.10. Determinacy analysis with a balanced budget �scal policy,
negative �ls: White area, determinacy. Black area, indeterminacy.
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Figure 1.11. Determinacy area with monetary rule of the type bRt = � bRt�1+

(1� �)
�
��E�t+i + �YE bYt+i� with i = �1; 0; 1, a �scal rule of the typeb� lst = �1bbt and positive �ls (� = 0:3 and ' = 1). White area, determinacy,

grey area instability, black area indeterminacy.



71

­2 0 2 4 6
­1

0

1

2

φπ

δ 1

i=0 ρr=0 φy=0

­2 0 2 4 6
­1

0

1

2

φπ

δ 1

i=1 ρr=0 φy=0

­2 0 2 4 6
­1

0

1

2

φπ

δ 1

i=0 ρr=0 φy=0.5

­2 0 2 4 6
­1

0

1

2

φπ

δ 1

i=0 ρr=0.5 φy=0

­2 0 2 4 6
­1

0

1

2

φπ

δ 1

i=0 ρr=0.5 φy=0.5

­2 0 2 4 6
­1

0

1

2

φπ

δ 1

i=­1 ρr=0 φy=0

­2 0 2 4 6
­1

0

1

2

φπ

δ 1

i=­1 ρr=0 φy=0.5

­2 0 2 4 6
­1

0

1

2

φπ

δ 1

i=­1 ρr=0.5 φy=0

­2 0 2 4 6
­1

0

1

2

φπ

δ 1

i=­1 ρr=0.5 φy=0.5

­2 0 2 4 6
­1

0

1

2

φπ

δ 1

i=1 ρr=0 φy=0.5

­2 0 2 4 6
­1

0

1

2

φπ

δ 1

i=1 ρr=0.5 φy=0

­2 0 2 4 6
­1

0

1

2

φπ

δ 1

i=1 ρr=0.5 φy=0.5

Figure 1.12. Determinacy area with monetary rule of the type bRt = � bRt�1+

(1� �)
�
��E�t+i + �YE bYt+i� with i = �1; 0; 1, a �scal rule of the typeb� lst = �1bbt and negative �ls (� = 0:5 and ' = 3). White area, determinacy,

grey area instability, black area indeterminacy.
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1.A. Appendix

1.A.1. Steady state with labour income taxation

This section describes the steady state of the model with labour income taxation. A

few points are worth stressing. First of all, we impose, through a transfer, that the two

agents have the same level of consumption and supply the same level of labour at steady

state. Hence the heterogeneity between the two consumers is only along the business

cycle. Price are normalised to unity and we �x G
Y
= 1�
c: The OPTC budget constraint

is

(1.53) Co = WN o (1� �) +
D

1� �
+
�
1�R�1

� B

1� �
+ So

Where So is the OPTC transfer. The steady state ROTC budget constraint is

(1.54) Cr = (WN r) (1� �) + Sr

where Sr is the ROTC transfer. Furthermore we need to impose

(1.55) (1� �)So + �Sr = 0

From the steady state Euler equation it is possible to �nd the steady state interest rate

1

�
= R

While the steady state pro�ts follow

(1.56) D = (1�W )Y

Homogeneity requires

(1.57) Co = WN o (1� �) +
D

1� �
+ (1� �)

B

1� �
+ So = Cr = WN r (1� �) + Sr
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Therefore

(1.58) So = � �

1� �
(D + (1� �)B)

and

(1.59) Sr = �(1� �)

�
So

From the �rm�s marginal cost

w =
"� 1
"

=
1

�

The steady state government budget constraint can be written as

(1.60) �wN = (1� �) b+G

Given that C
Y
= 
c ,

G
Y
= (1� 
c), Y = N and that b

Y
= 
b we can rewrite the last

equation as

(1.61) � =
(1� �) 
b + (1� 
c)

w

The steady state optimal labour supply it yields

(1.62) �
c (N)
�+1 = w (1� �)

After rearranging, the latter yields the steady state level of labour supply

(1.63) Y = N =

�
W (1� �)

�
c

� 1
�+1

Consequently

G = (1� 
c)Y

C = 
cY
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These equations give us to have a full description of the steady state variables.

1.A.2. Log linearisation with labour income taxation

This section presents a log-linearised version of the model with labour income taxation

around the non stochastic steady state. Henceforth, all the upper hat variables identify

the variable percentage deviation from its steady state value (i.e. bXt = log
�
Xt
X

�
). While

�t = logPt � logPt�1 identi�es the in�ation rate.

The log linearisation of the OPTC Euler equation and optimal supply of labour are

(1.64) bC o
t = Et bC o

t+1 �
� bRt � Et�t+1

�

(1.65) bC o
t + � bN o

t = bwt � �

1� �
b� t

where bwt = cWt � bPt: The ROTC consumption and labour supply follow
(1.66) bCr

t = bwt + � bN r
t �

�

1� �
b� t

(1.67) � bN r
t +

bCr
t = bwt � �

1� �
b� t

Log linearising (1.16) and (1.17) around a zero in�ation steady state yields to the tradi-

tional New Keynesian Phillips Curve (NKPC)

(1.68) �t = �Et�t+1 + �(cmct)
Where � = (1��)(1���)

�
: The log linearisation of the aggregation rules for consumption

and labour yield

(1.69) bCt = � bCr
t + (1� �) bC o

t
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(1.70) bNt = � bN r
t + (1� �) bN o

t

while the market clearing condition follows

(1.71) bYt = 
c bCt + (1� 
c) bGt

where 
c =
C
Y
. Furthermore from the production function

(1.72) bYt = bNt

The log linearisation of the monetary and �scal rule yields

(1.73) bRt = ���t

b� t = �1bbt + �2bYt
:Finally, a log linearisation of the government budget constraint can be written as

(1.74)bbt+1 = bRt+
1

�

�bbt � �t �
�w


b

��
1


c
+ � + 1

� bYt + 1

1� �
b� t�+ �1� 
c


b
+
�w (1� 
c)


b
c

�� bGt

��

1.A.3. Equilibrium with labour income taxation

This section presents the equilibrium of the model. Further analysis is simpli�ed by

rewriting the model as a function of aggregate variables only. First, combining (1.66)

with (1.67), we obtain

(1.75) bN r
t = 0

and

(1.76) bCr
t = bwt � �

1� �
b� t
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From the last two expressions one can see that the introduction of distortive taxation

is completely internalised in the ROTC consumption, while their labour supply remains

constant at the steady state level.34 Therefore changes in the tax rate over the business

cycle do not have any e¤ect on the ROTC labour supply.

Combining the last expression with the optimal labour supply of the OPTC yields

(1.77) bC o
t + � bN o

t =
bCr
t

Furthermore, combining (1.70) with (1.75) it is possible to rewrite the total supply of

labour as

(1.78) bNt = (1� �) bN o
t

Therefore aggregate labour �uctuations are just a function of changes in OPTC labour

supply. Moreover, plugging these results into the equation for total consumption yields

bCt = �

�bC o
t +

�

1� �
bNt

�
+ (1� �) bC o

t

Simplifying gives

(1.79) bCt = bC o
t + �

�

1� �
bNt

From the latter we can rewrite the Euler equation in terms of aggregate consumption as

(1.80) bCt = Et

� bCt+1�� � bRt � Et�t+1

�
� �

�

1� �
Et� bNt+1

Substituting in the latter the market clearing condition and the production function

one can obtain the dynamic IS equation presented in the main text. On the supply

side, using the market clearing condition and the de�nition of real marginal cost, we can

express the New Keynesian Phillips Curve (NKPC) in terms of aggregate variables as

34For the ROTC the substitution e¤ect on the labour supply is equal to the income e¤ect.
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follows

(1.81) �t = �Et�t+1 + �

��
1


c
+ �

� bYt � (1� 
c)


c
bGt +

�

1� �
b� t�

1.A.4. Model with lump-sum taxes

This model shares with its labour income taxation counterpart the shape of the utility

function, the production sector, the aggregation and the monetary policy rules. The

optimiser budget constraint is

(1.82)

PtC
o
t +R

�1
t

Bt+1

1� �
+
Et (Qt;t+1Vt+1)

1� �
=

�
WtN

o
t +

Dt

1� �

�
+

Bt

1� �
+

Vt
1� �

� Pt�
ls
t � PtS

o

Where � lst identi�es the level (common to the two types of consumer) of lump sum taxes.

The optimisers �rst order conditions are

(1.83) �RtEt

��
Co
t

Co
t+1

��
Pt
Pt+1

��
= 1

Where as before Rt =
1

Et(Qt;t+1)
is implied by the non arbitrage condition. This expression

is the familiar Euler equation for consumption. The �rst order condition with respect

to labour states that the marginal rate of substitution between labour and consumption

must be equal to the real wage

(1.84) � (N o
t )
� Co

t =
Wt

Pt

The budget constraint for the ROTC is

(1.85) PtC
r
t = WtN

r
t � � lst � So

The ROTC �rst order condition is

(1.86) � (N r
t )
� Cr

t =
Wt

Pt
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while the optimum level of consumption is directly derived from (1.85).

The government budget constraint is

(1.87) R�1t bt+1 =
bt
�t
� � lst +Gt

Steady state with lump sum taxation

This section sketches the steady state for the model with lump-sum taxation.

(1.88) Co = WN o +
D

1� �
+
�
1�R�1

� B

1� �
� � ls + So

Where So is the OPTC transfer. The steady state ROTC budget constraint is

(1.89) Cr = (WN r)� � ls + Sr

where Sr is the ROTC transfer. Furthermore we need to impose

(1.90) (1� �)So + �Sr = 0

From the steady state Euler equation it is possible to �nd the steady state interest rate

1

�
= R

While the steady state pro�ts follow

(1.91) D = (1�W )Y

Homogeneity requires

(1.92) Co =

�
WN o +

D

1� �

�
+ (1� �)

B

1� �
+ So = Cr = WN r + Sr
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Therefore

(1.93) So = � �

1� �
(D + (1� �)B)

and

(1.94) Sr = �(1� �)

�
So

The steady state government budget constraint can be written as

(1.95) � ls = (1� �)B +G

Given that C
Y
= 
c ,

G
Y
= (1� 
c) and that

B
Y
= 
b we can rewrite the last equation as

(1.96)
� ls

Y
= (1� �) 
b + (1� 
c)

Combining the fact that at steady state Y = N with the steady state optimal labour

supply it yields

(1.97) �
c (N)
�+1 = W

After rearranging, the latter yields the steady state level of labour supply

(1.98) Y = N =

�
W

�
c

� 1
�+1

Consequently

G = (1� 
c)Y(1.99)

C = 
cY(1.100)
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1.A.5. Log-linearisation and equilibrium with lump sum taxation

This paragraph derives the log-linearisation of the demand side of the economy with lump

sum taxes. Log linearisation of the �rst order conditions for both types of consumers

yields

(1.101) bCo
t = Et bCo

t+1 �
� bRt � Et�t+1

�

(1.102) bCo
t + � bN o

t = bwt
(1.103) bCr

t =

�
1

�
c

�� bN r
t + bwt�� � ls

C

�b� lst �
where W = 1

�
and N

C
= 1


c
:

(1.104) bCr
t + � bN r

t = bwt
From the aggregation rules

(1.105) bCt = � bCr
t + (1� �) bCo

t

(1.106) bNt = � bN r
t + (1� �) bN o

t

The market clearing conditions are

bYt = 
c bCt + (1� 
c) bGt(1.107)

bYt = bNt(1.108)

Therefore the total labour supply follows

(1.109) bCt + � bNt = bwt
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Plugging the aggregation rules and the labour supply into (1.103) it yields

(1.110) bCr
t =

�
(1 + �) �

1 + ��
c

� bNt +
1 + �

1 + ��
c
bCt � �� ls�

Y (1 + ��
c)

�b� lst �
Substituting the aggregation rule into the optimisers�Euler equation one obtains

(1.111) bCt � � bCr
t = Et bCt+1 � Et bCr

t+1 � (1� �)
� bRt � Et�t+1

�
Using (1.110) we can write the aggregate demand as

(1.112) �c bCt = �cEt bCt+1 � �nEt� bNt+1 + �TEt�b� lst+1 � (1� �)
� bRt � Et�t+1

�
where �c =

�
1� �(1+�)

1+��
c

�
; �n =

�(1+�)�
1+��
c

; �T =
�� ls�

Y (1+��
c)
and � bXt = bXt � bXt�1: Finally,

using the market clearing condition and imposing bGt = 0 at all time it yields

(1.113) bYt = EtbYt+1 � ��1c �ls (1� �)
� bRt � Et�t+1

�
+ ���

�1
c �

ls
�
Etb� lst+1 � b� lst �

as in the main text.

The log-linearisation of the government budget constraint is

(1.114) bbt+1 = bRt +
1

�

�bbt � �t �
� ls

b
b� lst �

1.A.6. Analytical determinacy analysis: the case of a balanced budget rule

1.A.6.1. Case with labour income taxation. After few algebraical substitutions we

can write the model with a balanced budget rule as

(1.115) Etxt+1 = J brxt

where x is de�ned in the main text and

J br =

264 1 + �1�
�

��� �
�(1+(1����)	)

�

��1
�

(1+(1����)	)
�

375
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Where �1 = k
�
1��

c
+ (1� �) � � �

�
;	 = k
b

w
� 0:We assume that � <

�
1 + 
c

1+
c�

��1
.

As explained in the main text, the latter assumption implies that �1 > 0: Given that

the x vector contains two jump variables, determinacy requires that both eigenval-

ues of J br lye outside the unit circle. Determinant and trace of J br are respectively

Det (J) = 1+�1���+	����	
�

and Tr (J) = 1+�+�1�+	����	
�

: We start from the case where

� > 0: Following Woodford (2003; appendix C), every determinate equilibrium satis�es

either criterion I with

(I.a): Det (J) > 1() 1 + �1��� +	� ���	

�
> 1

(I.b): Det (J)� Tr (J) > �1() �1�(�� � 1) > 0

(I.c): Det (J) + Tr (J) > �1() 2 + � + �1�+ �1��� + 2	� 2�	��
�

> �1

or criterion II as

(II.a): Det (J)� Tr (J) < �1() �1�(�� � 1) < 0

(II.b): Det (J) + Tr (J) < �1() 2 + � + �1�+ �1��� + 2	� 2�	��
�

< �1

We want to express the determinacy conditions in terms of the monetary policy parameter

��: (I.a) implies that

if �1 <
	�

�
=) �� <

1 + 	� �

�	���1

elseif �1 >
	�

�
=) �� >

1 + 	� �

�	���1

while (I.b) implies

�� > 1



83

and (I.c)

if �1 < 2
	�

�
=) �� <

2 + 2� + 2	 + �1�

2�	� �1�

elseif �1 > 2
	�

�
=) �� >

2 + 2� + 2	 + �1�

2�	� �1�

Putting things together criterion I implies

if �1 > 2
	�

�
=) � > 1

elseif
	�

�
< �1 < 2

	�

�
=) 1 < �� <

2 + 2� + 2	 + �1�

2�	� �1�

elseif �1 <
	�

�
=) 1 < �� < min

�
1 + 	� �

�	���1
;
2 + 2� + 2	 + �1�

2�	� �1�

�

Criterion II can be ruled out due to sign restrictions.35�

Let now turn to the case when � < 0: (I.b) implies �� < 1; while (I.a) is veri�ed

when

(1.116) �� <
1 + 	� �

�	���1

and (I.c)

(1.117) �� <
2 + 2� + 2	 + �1�

2�	� �1�
\ �1 2

�
0;�2(1 + � +	)

�

�

Therefore when � < 0 criterion I implies36

(1.118) �� < min

�
1;
1 + 	� �

�	���1

�

When � < 0; criterion II cannot be ruled out, therefore (II.a) implies

(1.119) �� > 1

35In fact (II.a) implies �� < 1, while (II.b) requires �� >
2+2�+2	+�1�
2�	��1� \ �1 < 2	�� : Note that if

�1 < 2
	�
� ;

2+2�+2	+�1�
2�	��1� is greater than one.

36The condition �1 2
�
0;�2 (1+�+	)�

�
is always veri�ed within standard parametrisations. This also

imples that 2+2�+2	+�1�2�	��1� > 1: Hence (I.c) is not binding for standard parametrisation.
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and (II.b)

(1.120) �� >
2 + 2� + 2	 + �1�

2�	� �1�

This yields, for criterion II, to

(1.121) �� > max

�
1;
2 + 2� + 2	 + �1�

2�	� �1�

�

Therefore, putting things together, when � < 0 there are two determinacy spaces

(1.122) �� < min

�
1;
1 + 	� �

�	���1

�
[ �� > max

�
1;
2 + 2� + 2	 + �1�

2�	� �1�

�
�

1.A.6.2. Case with lump sum taxation. The relevant matrix is

J ls =

264 1 + ��1c �ls�(���+����)
�2

��1c �ls(�+(��1)�)(����1)
�2

��
�

1
�

375
Note that � = ��
b

(1+��
c)
� 0 and � = k

�
1

c
+ �
�
> 0: Given that the x vector contains

two jump variables, determinacy requires that both eigenvalues of J ls lye outside the unit

circle. Determinant and trace of J ls are respectively Det
�
J ls
�
= 1

�
+ ��1c ��ls(���(1+�)��)

�2

and Tr
�
J ls
�
= 1+��1c �ls�(���+����)

�2
+ 1
�
: In the same fashion adopted in the case of labour

income taxation, we follow Woodford (2003; appendix C). Every determinate equilibrium

satis�es either criterion I

(I.a): Det
�
J ls
�
> 1

(I.b): Det
�
J ls
�
� Tr

�
J ls
�
> �1

(I.c): Det
�
J ls
�
+ Tr

�
J ls
�
> �1

or criterion II
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(II.a): Det
�
J ls
�
� Tr

�
J ls
�
< �1

(II.b): Det
�
J ls
�
+ Tr

�
J ls
�
< �1

Let start from criterion I when �ls > 0. It is easy to show that (I.b) is veri�ed if and

only if �� > 1: Furthermore, if (I.b) holds, (I.a) and (I.c) are veri�ed as well.

We can rule out criterion II due to sign restrictions.37 �

Now we turn to study the determinacy conditions when �ls < 0: Let start with

criterion I. (I.a) implies

(1.123) �� < �3

With �3 =
�2��+���1c ��ls

���1c ��ls(1+�)
: (I.b) implies

(1.124) �� < 1

while (I.c) implies

(1.125) �� < �4

where �4 =
�2��2�2����1c �1�

ls+2��1c ��1�
ls

���1c �1�
ls(1+2�)

:

Let now analyse criterion II. (II.a) implies

(1.126) �� > 1

while (II.b) implies

�� > �4

37As in the analogous case with labour income taxation, (II.a) requires �� < 1 while (II.b) requires
�� > 1:
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Summing up the results: when�ls < 0 necessary and su¢ cient conditions for determinacy

require

(1.127) �� < min (1; �3; �4) [ �� > max (1; �4) �



CHAPTER 2

Indeterminacy with trend in�ation and �scal policy rules

This chapter studies the equilibrium determinacy of a New Keynesian model aug-

mented with trend in�ation (see for example Ascari and Ropele (2007), Schmitt-Grohe

and Uribe (2007), Ascari and Rossi (2009)), public debt and distorionary taxation. In-

terest rate policies in�uence the government budget constraint and distortionary taxation

feeds back on the model endogenous variables. When the �scal authority follows a bal-

anced budget rule without access to short run public debt and the system experiences a long

run level of in�ation, the model easily displays indeterminacy regardless of the conduct

of monetary policy. When short run de�cits are allowed, the equilibrium determinacy

requires a stronger monetary response to in�ation, the stronger is the �scal response to

short run �uctuations in public debt and the higher is the level of trend in�ation. In this

case we �nd also that, ceteris paribus, a higher level of steady state public debt increases

the possibility of determinacy.

2.1. Introduction

Assuming1 zero long run in�ation in the standard New Keynesian model, as in Wood-

ford (2003), may lead to policy analyses which are empirically unrealistic and theoret-

ically misleading. Empirically unrealistic because in the developed economies the long

run rate of in�ation is moderately di¤erent from zero, theoretically misleading because

the zero long run in�ation assumption and the Calvo price setting mechanism, relegates

to a second order importance many relations between variables, such as the correlation

between output and price dispersion. These have to be taken into account studying the

more general case of positive long run in�ation. The economic implications of long run

1This chapter was thought and written during my visiting period at the Monetary Policy Strategy
division at the European Central Bank. I would like to thank Massimo Rostagno, Jean-Pier Vidal and
Leopold Von Thadden as well as all the participants at the ECB division seminar for useful comments.
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in�ation can be divided into three �elds: implications for the transmission mechanism

of shocks to fundamentals (Ascari and Ropele, 2007; Amano et al. 2007), implications

for the conduct of optimal policy (Schmitt-Grohe and Uribe, 2007) and implications for

equilibrium determinacy (Ascari and Ropele, 2009) . This paper explores the last of these

points.

There is a large literature that studies the equilibrium determinacy conditions in the

New Keynesian (NK henceforth) model.2 The basic results of this literature could be

described as follows. In a simple monetary NK model with no capital accumulation,

equilibrium determinacy is guaranteed by a monetary policy that reacts to an increase in

in�ation by raising the real interest rate. This result is commonly known as the Taylor

Principle (TP henceforth), as discussed in the literature on interest rate rules inspired by

Taylor (1993). Let us consider that agents suddenly expect higher in�ation. Monetary

policy reacting to these expectations by raising the interest rate contracts current demand

and therefore current output. Given the positive correlation between current output and

in�ation implied by the New Keynesian Phillips Curve, this contraction in output reduces

current in�ation, invalidating the initial expectations of in�ation.

In a NK model with distortive �scal policy and public debt equilibrium determinacy

is guaranteed by a particular mix of monetary and �scal policy. In particular, when

�scal policy reacts to increases in the stock of public debt by raising the tax rate (passive

�scal policy), monetary policy can control in�ation through the adoption of a policy

that respects the TP (active monetary policy). On the other hand, if �scal policy does

not control the stock of public debt (active �scal policy), in order to have a unique

rational expectations equilibrium, monetary policy must de�ate the cost of public debt

by cutting the real rate in response to in�ation (passive monetary policy). This result

is due to Leeper (1991) and extended by Leith and Wren-Lewis (2000) and is commonly

known as the Active-Passive policy mix.

2See inter alia Woodford (2003) and Leeper (1991).
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In a monetary NK model with trend in�ation and the Calvo price mechanism, equi-

librium determinacy requires monetary policy to be more aggressive against in�ation the

higher the level of long run in�ation.3 As shown by Ascari and Ropele (2007; 2009), with

trend in�ation, in�ation expectations increase their importance in the NKPC on the

determination of current in�ation relative to the output component. Furthermore, an

increase in in�ation generates price dispersion that in this context is a relevant variable

of �rst order importance (Schmitt-Grohe and Uribe, 2007). This endogenous variable,

which in the traditional NK model with zero trend in�ation is relegated to second order

importance, a¤ects output negatively and in�ation positively. Therefore pinning down

expectations of future in�ation requires monetary policy to move output through the

traditional demand channel more than in the case with no long run in�ation (Ascari and

Ropele, 2009; Ascari and Rossi, 2009a; b).

This paper studies the equilibrium requirements of monetary and �scal policy in a

NK model with a distortive labour income tax, a steady state level of public debt and

a positive level of steady state in�ation. In order to do so we approximate the conduct

of monetary and �scal policies by simple rules. In particular we assume that monetary

policy �xes the nominal interest rate as a function of current in�ation rate while �scal

policy collects proportional labour income taxes.

We run two determinacy exercises. In the �rst one we assume that �scal policy bal-

ances the government budget constraint in each period without accessing to public debt.

In this case the only aim is collecting taxes to repay the service of the steady state level

of public debt, and �nance a time-independent level of public spending. This type of

�scal rule was �rst introduced by Schmitt-Grohe and Uribe(1997) in a simple Real Busi-

ness Cycle model with capital accumulation and then studied in a traditional NK model

with no capital accumulation by Linnemann (2006). In the former the combination of a

balanced budget �scal rule and capital accumulation could easily lead to indeterminacy

3Benhabbib and Eusebi (2005) and Ascari and Rossi(2009a; b) analyse an economy with steady state
trend in�ation and Rotemberg price setting.
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for parameter values consistent with the empirical evidence, in the latter indeterminacy

is instead generated by the combination of a balanced budget rule and the presence of a

steady state level of public debt, regardless of whether or not monetary policy4 is active.

When we analyse a balanced budget rule in our model we �nd that even in the case

of zero steady state public debt and no capital accumulation, a balanced budget rule and

a moderately positive level of trend in�ation lead to situations of sunspots �uctuation

regardless of the conduct of monetary policy. This result is driven by the combination

of �scal feedback on the supply side of the economy, i.e. positive correlation between

tax rate and current in�ation, and by the monetary policy feedback on the government

budget constraint, i.e. with trend in�ation monetary policy has to react more strongly

against in�ation in order to pin down in�ation expectations and this increases the costs

of serving public debt. This result can be considered as an extension along the line of

Linnemann (2006): adopting a balanced budget rule in the contest of a NK model may

not be a wise idea given that, regardless of the conduct of monetary policy, it can easily

lead to indeterminacy.

In our second exercise we allow �scal policy to access public debt. We therefore ap-

proximate the conduct of �scal policy in the fashion of Leeper (1991), Leith and von

Thadden (2008). This allows us to analyse the policy mix from an active-passive per-

spective. We �nd that the introduction of trend in�ation does not a¤ect the determinacy

properties of passive monetary policy/ active �scal policy while it does change the equi-

librium analysis for the combination of active monetary/passive �scal policy. When

describing the latter policy mix, we �nd that the greater is the �scal policy reaction

to �uctuations of short run public debt, the more aggressive monetary policy has to be

against in�ation in order to guarantee determinacy. Increasing the level of trend in�ation

reduces the determinacy area to combinations of strong �scal reactions to public debt

and strong monetary policy reactions to in�ation. These results are driven by the joint

4SGU(1997) show that in a RBC with no capital accumulation, a balanced budget rule does not lead
to indeterminacy. For this reason is crucial for indeterminacy the presence of long run debt in the NK
model analysed in Linnemann(2005).
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e¤ects of �scal policy feedback on the supply side of the economy and the di¢ culties

pinning down in�ation expectations with positive trend in�ation.

The paper is organized as follows. Section 2:1 outlines the model, section 2:2 describes

the determinacy results, section 2:3 concludes.

2.2. Model

The economy is represented here by a New Keynesian model (NK) with a government

which can balance its budget by levying a proportional labour income tax, and has

to deal with a steady state level of public debt. Furthermore, the system is a¤ected

by a (low) level of trend in�ation. Hence, the economy is populated by four type of

agents: a continuum of identical consumers who decide how much to consume and work,

a continuum of monopolistically competitive �rms that decide how much to produce and

at which price to sell, a monetary authority that �xes the nominal interest rate in every

period and a �scal authority that, using di¤erent speci�cations, balance its budget in

every period.

2.2.1. Households

There is a continuum of households normalized to one. Each of these has a lifetime utility

function de�ned as

(2.1) U0 = E0

+1X
t=0

�t
�
C1��t

1� �
� �

N1+�
t

1 + �

�

where Et is the rational expectation (RE) operator, � 2 (0; 1) is the discount factor,

Ct represents the consumption bundle, Nt is the labour supplied in a Walrasian labour

market, � � 1 is the CRRA parameter and � � 0 is the inverse-Frisch parameter. The

consumer problem consists in maximising (4.1) subject to a (nominal) budget constraint

(2.2)
Z 1

0

PitCitdi+ EtQt;t+1Dt+1 = �t +WtNt (1� � t) +Dt
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where Pit is the price of variety i, Dt+1 is the nominal payo¤ of a state contingent asset,

EtQt;t+1 is the stochastic discount factor, �t is the representative household�s share of

pro�ts in the imperfectly competitive �rms, Wt are wages and � t is the labour income

tax rate. Households must �rst decide how to allocate a given amount of expenditure

across the i products. In doing so they exploit any price di¤erence present in the economy

so as to minimise a total expenditure function subject to the CES Dixit-Stiglitz (1977)

aggregator of the type

(2.3) Ct =

�Z 1

0

C
"�1
"

it di

� "
"�1

It is easy to show that the minimisation problem results in a demand for each single i

product which is decreasing in Pit and increasing in total consumption as

(2.4) Cit =

�
Pit
Pt

��"
Ct

The parameter of substitutability among goods, ", identi�es the degree of monopolistic

competition present in the system(i.e. " ! +1 implies perfect competition). Further-

more, from the same minimization problem we can infer the general price level Pt as

(2.5) Pt =

�Z 1

0

P 1�"it di

� 1
1�"

Hence we can write
R 1
0
PitCitdi = PtCt. Maximizing (2.1) subject to (2.2) results in the

household�s �rst order conditions

(2.6) �Rt

�
Ct
Ct+1

�� �
Pt
Pt+1

�
= 1

(2.7) �C�
t N

�
t =

Wt

Pt
(1� � t)
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where Rt is the one period risk free nominal rate and it is derived from the non arbitrage

condition

Rt =
1

EtQt;t+1

Expression (2.7) identi�es the household labour decision: the marginal rate of substitu-

tion between consumption and leisure must be equal to the after tax real wage. Fiscal

policy is distortive because the tax rate changes the consumption-leisure decision of the

representative household. Taking the conditional expectation of (2.6) on both side and

rearranging it yields

(2.8) �EtRt

�
Ct
Ct+1

�� �
Pt
Pt+1

�
= 1

This is the traditional Euler equation, which indicates the consumer propensity of smooth-

ing consumption across time, having taken into account the opportunity cost represented

by the real interest rate.

For future reference it is useful to de�ne the real stochastic discount factor as

(2.9) qt;t+z = �z
�

Ct
Ct+z

��

2.2.2. Government

The government allocates its total consumption Gt, exploiting optimally, as the house-

holds, any price di¤erence present in the economy. It can be shown that the government

demand for each (public) consumption good is given by

(2.10) Git =

�
Pit
Pt

��"
Gt

In order to �nance its expenditure the government levies a proportional labour income

tax, � t and releases one (beginning of ) period state-contingent risk-less bonds.5 The

5The assumption of complete markets is neutral to the aim of the paper.
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government budget constraint can be written as

(2.11) WtNt� t +R�1t Bt+1 = PtGt +Bt

let us de�ne real public debt as bt = Bt
Pt�1

and the real wage as wt = Wt

Pt
: The government

budget constraint in real term becomes

(2.12) wtNt� t +R�1t bt+1 = Gt +
bt
�t

Furthermore, for the sake of simplicity we assume that government spending never devi-

ates from its steady state level, i.e. Gt = G 8t:

2.2.3. Monetary Policy

We de�ne the behavior of monetary policy by (standard) simple rules. In particular

monetary policy sets the nominal interest rate as

(2.13) Rt = �s (�t)
�1

with �s =
�
R
��1

�
: The single policy parameter �1 in (2.13) is the Taylor-coe¢ cient, as

discussed in the literature on interest rate rules inspired by Taylor (1993). Accordingly,

monetary policy is called �active�(�passive�) if the real interest rate rises (falls) in the

current in�ation rate, i.e. if �1 > 1 (�1 < 1). The literature is quite familiar with this

type of rule, e.g. Clarida (2000), Benhabib and Eusebi (2005), Ascari and Ropele (2007),

Leith and von Thadden (2008) because it allows a relative simple policy analysis in the

fashion of Leeper (1991).
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2.2.4. Firms

We assume there is a continuum of monopolistic competitive �rms indexed by i 2 [0; 1]:

Each of these �rms uses a linear technology in labour of the type

(2.14) Yit = Nit

We introduce sticky prices as in Calvo (1983). In each period each �rm has a �xed

probability 1� � with � 2 (0; 1); to optimally reset its price. This implies that when it

can reset its prices it takes into account the expected future discounted sum of pro�ts

for the periods in which it cannot do so. Hence the pricing problem becomes dynamic in

nature. The optimal behavior of a re-setter can be formalized as follows

max
P �it

Et

+1X
z=0

�zqt;t+z

�
P �it
Pt+z

Yit+z �mcit+zYit+z

�

subject to the demand function obtained from the aggregation of private and public

consumption as Yit+z =
�

P �it
Pt+z

��"
Yt+z . The variable mcit+z identi�es the real marginal

cost function of the i �rm and, given that capital accumulation is not considered here,

is simply equal to the Walrasian real wage, i.e. Wt

Pt
. As previously described we do not

restrict the analysis to the special case of no long run in�ation. On the contrary, we

consider scenarios in which steady state in�ation is greater than zero. It is easy to show

that the �rst order conditions with respect to P �it is

(2.15) P �it =
"

"� 1
Et
P+1

z=0 (��)
z
�

Ct
Ct+z

�� �
P "
t+zYt+zmct+z

�
Et
P+1

z=0 (��)
z
�

Ct
Ct+z

�� �
P "�1
t+z Yt+z

�
Given the presence of long run in�ation, i.e. � > 1, it is useful to re-express (2.15)

including the cumulative gross rate of in�ation

(2.16)
P �it
Pt
=

"

"� 1
Et
P+1

z=0 (��)
z
�

Ct
Ct+z

�� �
�"t+1;t+zYt+zmct+z

�
Et
P+1

z=0 (��)
z
�

Ct
Ct+z

�� �
�"�1t+1;t+zYt+z

�
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where we de�ne

�t;t+z�1 =

�
Pt+z�1
Pt�1

�
for z � 1 or

= 1 for z = 0

2.2.5. Market Clearing

The market clearing conditions are

Yit =

�
Pit
Pt

��"
Yt =

�
Pit
Pt

��"
(G+ Ct) and Nit = Yit = Cit +Gi

Therefore we can write

(2.17) Nit =

�
Pit
Pt

��"
Yt

Integrating the last expression over the i products it yields

(2.18) Nt =

Z 1

0

Nitdi =

Z 1

0

�
Pit
P

��"
diYt = stYt

The variable st =
R 1
0

�
Pit
Pt

��"
di measures the relative price dispersion across �rms. Its

law of motion can be written as

(2.19) st = (1� �)

�
P �it
Pt

��"
+ ��"tst�1

In the case with no trend in�ation, i.e. � = 1, the variable st is not relevant up to a

second order. In the case where � > 1 the relative price dispersion starts to matter up

to a �rst order, i.e. in a log-linearized world.

The general price level is a weighted average between the re-setters and those that do

not reset their price as

(2.20) P 1�"t = [(1� �) (P �t )
1�" + �P 1�"t�1 ]
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where we drop the i subscript due that all the re-setters will choose the same price.

Dividing on both side for P 1�"t yields

(2.21) 1 = (1� �) (p�t )
"�1 + ��"�1t

where �t represents the in�ation rate and p�t is the relative optimal price.

2.2.6. Fiscal Policy and Determinacy

We run two exercises on local determinacy analysis. The �rst one consists of analysing

the equilibrium dynamics of the model presented above and with a �scal policy which

balances its budget without accessing to short run public debt, i.e. bt = B 8t. This type

of �scal policy is similar to the one presented by Schmitt-Grohe and Uribe (1997) and

Linnemann (2006). It implies that the tax rate is adjusted in order to guarantee in each

period that

(2.22) wtNt� t = G+ b

�
1

�t
� 1

Rt

�

In the second exercise we allow taxes and short run debt to vary along the business cycle.

In this more general case, �scal authority changes the tax rate in each period following

a rule of the type

� t = �s + �1
�

b
(bt � b) + �2

�

Y
(Yt � Y )(2.23)

with �s =
G

wN
+

�
1

�
� 1

R

�
b

wN
(2.24)
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in order to balance in each period the government budget constraint as de�ned in (2.12).

Following the logic of Leeper (1991), we call the �scal rule (2.23) �passive�6 if �1 > 1
�
� 1

�
,

while7 it is �active�in the opposite and non-stabilising case of �1 < 1
�
� 1

R
:

The �rst step in studying local determinacy consists of log-linearising the structural

equations of the model around the non-stochastic steady state. A hatted variable repre-

sents the variable deviation from its steady state value, i.e. K̂t = log
�
Kt

K

�
:

These equations are: the NKPC augmented with trend in�ation and distortive labour

income tax

(2.25) b�t = ��1Etb�t+1 + k

�
� bCt + �bYt + �bst + � �

1� �

�b� t�+ �2

�
� bCt � bYt + Etb
t+1�

with k = (1��)(1���)
�

; �1 = (� + (� � 1) (1� ��"�1) ("� 1)) and �2 = (1� ��"�1) � (� � 1) :


̂t is an auxiliary variable with no particular economic intuition.
8 Its log-linearised law

of motion can be written as

(2.26) b
t = �1� ���"�1
� �bYt � � bCt�+ ���"�1

�
("� 1)Etb�t+1 + Etb
t+1�

The price dispersion

(2.27) bst = !1b�t + ��"bst�1
with !1 = " ��"�1

1���"�1 (� � 1) : The Dynamic Euler equations

(2.28) bCt = Et bCt+1 � 1

�

� bRt � Etb�t+1�

6This de�nition refers to a Ricardian environment. When the Ricardian equivalence does not hold, the
critical value on �1 to identify a passive �scal policy is greater than

�
R
� � 1

�
; see for a detailed discussion

Leith and Wren-Lewis (2000). However from numerical results we show that this critical value is very
close to

�
R
� � 1

�
:

7For example, assume that � = 0:99 and � = 1:005: In order to have a passive �scal policy �1 must be
greater than 0:015:
8For a detailed discussion about the auxiliary variable 
̂t; see Ascari and Ropele (2007).
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The market clearing condition

(2.29) Ŷt = �Ĉt

with � representing the steady state ration of private consumption over total output as

� = C
Y
: The monetary policy rule

(2.30) R̂t = �1�̂t

the government budget constraint

(2.31)
1

1� �
b� t + �1 + �

�
+ �
� bYt + (1 + �) bst = 
b

�ws�

�bbt � b�t�� 
b
Rws�

�bbt+1 � bRt

�
and the tax rate rule

(2.32) �̂ t = �1b̂t � Ŷt

Note that in the case of balanced budget rule, �scal policy is de�ned only by the govern-

ment budget constraint where b̂t = 0 8t:

The second step in the study of local determinacy consists of writing the model in

space form, �nding its impact matrix and calculating its eigenvalues.9 Following Blan-

chard and Khan (1981) a linear model of di¤erence equations has a unique rational ex-

pectations equilibrium if and only if the impact matrix displays a number of eigenvalues

outside the unit circle equal to the numbers of non-predetermined variables. From this,

if the impact matrix has a number of eigenvalues which exceed the unit circle inferior to

the number of non-predetermined variables the system is indeterminate (in�nite number

of solutions). In the remaining case the system is unstable (no solution).

9For a detailed discussion see paragraph 1:2:10
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2.2.7. Calibration

The model is calibrated to a quarterly frequency. Its structural parameters are: �; �;

�; "; �; �; 
b; �1; �1 and �2: The parameter of Calvo price setting, �; is �xed to 0:75.

This in turn implies that on average �rms keep their price �xed for a year. This value is

consistent with a large amount of empirical evidence such as Clarida, Galí and Gertler

(2000). The discount factor has been calibrated so that the steady state real interest

rate is 2% a year. This implies that � = 0:99. The CRRA parameter of consumption,

�, is �xed to 2: This value has been largely used in the literature. Following SGU (2007)

we calibrate �; the inverse of Frisch elasticity of labour to 1 and " = 6. The latter

implies that the steady state mark-up is around 20%: We �x the steady state ratio of

C
Y
= � = 0:75, which is in line with government consumption of most OECD countries.

When not otherwise stated, we �x the steady state debt to output ratio, 
b, to 2:4. This

implies a annual debt to output equal to 60%. Given the aim of this work we study the

determinacy for a wide range of �1 and �1; while for the sake of simplicity we �x �2 = �1:

2.3. Results

2.3.1. Constant debt and variable tax rate

Let us �rst analyse the equilibrium conditions with a balanced budget rule similar to the

type introduced by SGU (1997). In our setting, this implies that the tax rate is adjusted

in every period in order to collect enough revenues to �nance public spending and the

service of a steady state level of public debt. The log-linearised version of this rule is

(2.33)
1

1� �
b� t = 
b�

ws�
bRt �


b
ws��

b�t � �1 + �

�
+ �
� bYt � (1 + �) bst

As previously described, during this exercise the �scal authority cannot access short run

public debt to satisfy the government budget constraint, and public spending is always

at its steady state level, i.e. bt = b; Gt = G 8t. We rely on numerical results for this

exercise. These are displayed in �gure 2:1. Consider the case of no trend in�ation. A



101

necessary condition for a unique rational equilibrium is to have an active monetary rule,

i.e. �1 > 1. The logic behind this condition stems from the well known demand channel,

i.e. Woodford (2003). However, as one can see, adopting an active monetary policy rule

is not su¢ cient for equilibrium determinacy. Indeed both the level of debt to output

ratio and the strength of monetary policy play an important role in the equilibrium

determinacy. With low or no long run public debt, an active monetary policy rule is

enough to guarantee a unique equilibrium. This ceases to be true when the ratio of

annual public debt to GDP is around 50%: In this case determinacy requires an active

but "not too aggressive" monetary policy.

The intuition for this result goes as follow. Let us assume agents suddenly expect

higher in�ation. The monetary authority following the active role raises the real interest

rate. For each increase in the real rate, the �scal authority, ceteris paribus, through the

government budget constraint, increases the tax rate by 
b�(1��)
ws�

. This increase has a

supply side e¤ect, through the NKPC, of (1� �) 1���
�

�
�
1��
�
which directly feeds back

on current in�ation. In other words, an increase in tax rate could potentially lead to

an increase in current in�ation neutralising the attempt of monetary policy to pin down

expectations of future in�ation. Therefore, due to the e¤ects of changes in interest rate

on the government budget constraint, a "strong" active monetary policy in response

to in�ationary expectations might make these self-ful�lling. These self-ful�lling e¤ects

depend on the long run debt to output ratio both directly (the higher 
b; the higher is

the monetary feed back on �scal policy), and indirectly (the higher � ; the higher is the

�scal policy feed back on in�ation). For these reasons equilibrium determinacy shows an

upper bound in the level of debt to output.

An increase in trend in�ation increases the possibility of endogenous sunspots �uctu-

ations. When in�ation is at 2% per year, the presence of even a mild level of steady state

public debt, or ceteris paribus, a strongly active monetary policy, leads to indeterminacy.

With trend in�ation of 4% per year, a unique RE equilibrium requires both the absence

of long run public debt and a very aggressive monetary policy, i.e. �1 > 6: With higher
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levels of trend in�ation, there is no combination of 
b and monetary policy parameter (for

the parameters ranges we consider in the present analysis) that guarantees determinacy.

As before, consider agents suddenly have expectations of higher in�ation. Let us further

assume that an active monetary policy tries to reduce these expectations, increasing the

real interest rate. The monetary policy feedback on the government budget constraint

and the consequent �scal feed back via the NKPC may cause an increase current in�a-

tion which in turn could lead to self-ful�lling prophecies for expected in�ation. As shown

by Ascari and Ropele (2009) with trend in�ation, in�ation expectations have a stronger

impact on current in�ation and therefore they are more di¢ cult to pin down. This is

captured by �1, the parameter in the NKPC identifying the importance of in�ation ex-

pectations on the determination of current in�ation, that with positive trend in�ation,

becomes greater than 1: They �nd that this feature implies for equilibrium determinacy

a stronger monetary policy reaction to in�ation.10

Moreover, in the case of � > 1, price dispersion, ŝt; becomes a relevant variable

for the equilibrium determinacy and, given the assumption of Calvo price setting, is

positively related to in�ation and positively a¤ects in�ation. The �scal feedback with

its supply side e¤ect increases in�ation by k
�

�
1��
�
: This generates an increase in ŝt of

!1; the parameter which puts further pressure on prices. Hence, when trend in�ation is

positive it is easier for the monetary policy response to expected in�ation to generate

endogenous sunspots �uctuations. As one can see from �gure 2:1, these e¤ects increase

with the increase of steady state in�ation. Moreover higher price dispersion means lower

output. A lower output will feed back on �scal policy generating an increase in the tax

rate, which in turn causes a potential increase in current in�ation, generating higher price

dispersion. This is why increasing trend in�ation may lead to sunspots �uctuations even

in the case of zero debt. This result is clearly an extension of the one obtained by Ascari

and Ropele(2009). In their analysis they consider a NK model with trend in�ation but

10In particular Ascari and Ropele (2009) show that when steady state in�ation is greater than zero, the
Taylor coe¢ cient on the monetary rule must be much greater than one in order to ensure the determinacy
of the system.
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without �scal policy. Their main result is that the higher is trend in�ation the stronger

monetary policy must be against in�ation in order to guarantee a unique equilibrium.

With a �scal policy that relies on distortive taxation and follows a balanced rule similar

to the one introduced by SGU (1997), and a level of trend in�ation greater than 4%,

the system displays indeterminacy even in the case of zero steady state public debt and

regardless of the monetary policy parameter �1.

2.3.2. Endogenous debt and tax rate

The second exercise stems from analysing the equilibrium conditions assuming a �scal

policy that, in contrast with the last section, has the possibility to balance the government

budget constraint changing along the business cycle both the short run debt and the level

of labour income tax. The system is closed assuming a �scal rule as in (2.23). For sake

of simplicity and in order to make this analysis comparable to most of the literature11,

we consider a �scal policy in which �2 = �1: This rule implies a procyclical response of

the tax rate to output. Log linearisation of this �scal policy is

b� t = �1bbt � bYt
Results of this exercise are reported in �gure 2:2. Scrolling �gure 2:2 from left to right,

increases the level of trend in�ation, while from up to bottom increases the steady state

level of public debt. In the case with no-trend in�ation the usual Leeper (1991) result

holds: equilibrium determinacy requires a policy mix characterised by an active monetary

policy and a passive �scal policy or vice versa. As stressed before, with positive trend

in�ation, expectations of future in�ation are harder to stabilise, i.e. �1, the parameter

in the NKPC identifying the importance of in�ation expectations on the determination

of current in�ation, becomes greater than 1: Furthermore the �scal policy feedback on

current in�ation raises the price dispersion variable, st, which, ceteris paribus, puts fur-

ther upward pressure on current in�ation. Moreover with trend in�ation each increase in

11Inter alia Linnemann (2006), Leeper (1991).
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in�ation expectations reduces total output. At the same time, the government�s access

to short run public debt reduces in intensity the �scal feedback of monetary policy with

respect to the case of balanced budget rule analysed in the �rst exercise. An active inter-

est rate rule in response to in�ation expectations reduces the economic activity through

the traditional demand channel but at the same time it implies, via the government bud-

get constraint, an increase in the service of debt. A moderate positive response of �scal

policy guarantees a unique RE equilibrium. If instead the reaction of �scal policy is too

strong, i.e. raises the tax rate "too much" in response to the �scal feedback of monetary

policy, the system could display indeterminacy.

The intuition behind this result is similar to the case described above. A higher tax

rate, via its supply side e¤ects, puts upward pressure on current in�ation, which in turn

may make the expectations of in�ation self-ful�lling and therefore generate endogenous

sunspots. In order to avoid indeterminacy, monetary policy has to react more strongly

to in�ation expectations the higher is the �scal policy parameter, �1. All these e¤ects

imply that for a given level of �1; monetary policy has to be more aggressive, the higher

the level of trend in�ation, to avoid sunspots �uctuations.

Ceteris paribus, increasing the level of steady state public debt reduces the �scal

reaction to increases in short run public debt, spreading the determinacy area, for any

given level of trend in�ation, for the combination of active monetary policy and passive

�scal policy.

2.4. Conclusions

This paper analyses the determinacy properties of a New Keynesian model with trend

in�ation, long run public debt and a distortive �scal policy. We assumed, following the

mainstream NK literature that monetary policy is concerned with in�ation stabilisation

and �scal policy with public debt stabilisation. The message of the paper is simple:

a steady state level of in�ation and a distortive �scal policy augment the di¢ culty for

economic policies to reach determinacy. In particular, in the case of a balanced budget



105

rule, where �scal policy is not allowed to access short run public debt, determinacy is

impossible even for a moderate level of in�ation and/or low levels of long run public debt.

When instead �scal policy has the ability to access short run public debt, determinacy

requires that, for any levels of �scal policy reaction to public debt �uctuations, monetary

policy reacts more aggressively to in�ation �uctuations the higher the level of steady

state in�ation.
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2.5. Figures
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Figure 2.1. Determinacy with a balanced budget �scal policy. Determi-
nacy, white area, indeterminacy, black area.
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Figure 2.2. Determinacy analysis with �scal rules of the type b� t = �1bbt� bYt:
Determinacy, white area, indeterminacy, black area, instability, red area.
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2.A. Appendix

2.A.1. Log linear equilibrium

The log-linearised version of the model is derived from the �rst order conditions of the

households the NKPC, the government budget constraint, a de�nition of monetary and

�scal policy. As

(2.34) b
t = �1� ���"�1
� �bYt � � bCt�+ ���"�1

�
("� 1)Etb�t+1 + Etb
t+1�

(2.35) b�t = ��1Etb�t+1 + k

�
� bCt + �bYt + �bst + � �

1� �

�b� t�+ �2

�
� bCt � bYt + Etb
t+1�

(2.36) bst = !1b�t + ��"bst�1
(2.37) bCt = Et bCt+1 � 1

�

� bRt � Etb�t+1�

(2.38) bYt = � bCt
(2.39) bRt = �1b�t
(2.40)

1

1� �
b� t + �1 + �

�
+ �
� bYt + (1 + �) bst = 
b

�ws�

�bbt � b�t�� 
b
Rws�

�bbt+1 � bRt

�

(2.41) b� t = �1bbt � bYt
Where the �rst three equations represent the NKPC augmented with trend in�ation,

the fourth one is the dynamic IS, the �fth is the market clearing condition together with

the assumption that G is constant, the sixth one is the government budget constraint,
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the seventh is the de�nition of the Taylor type monetary policy rule and the eighth is

the �scal policy revenue rule. Note that (2.40) corresponds to the case where the tax

rate is free to move along the business cycle. In the case of a balanced budget rule as

in Schmitt-Grohe and Uribe(1997) the log linearised version of the �scal policy takes the

form of

(2.42)
1

1� �
b� t = 
b�

ws�
bRt �


b
ws��

b�t � �1 + �

�
+ �
� bYt � (1 + �) bst

2.A.2. Derivation of the NKPC

we start from the expression

(2.43)
P �it
Pt
=

"

"� 1
Et
P+1

z=0 (��)
z
�

1
Ct+z

�� �
�"t+1;t+zYt+zmct+z

�
Et
P+1

z=0 (��)
z
�

1
Ct+z

�� �
�"�1t+1;t+zYt+z

�
where given the production function mct+z =

Wt+z

Pt+z
= wt+z:

2.A.2.1. Quasi-di¤erentiate the optimal relative price. Let �rst rewrite (2.15) as

(2.44)
P �it
Pt
=

"

"� 1
�t

t

where

�t = Et

+1X
z=0

(��)z
�

1

Ct+z

�� �
�"t+1;t+zYt+zmct+z

�
(2.45)


t = Et

+1X
z=0

(��)z
�

1

Ct+z

�� �
�"�1t+1;t+zYt+z

�
(2.46)

we need to �nd a recursive formulation for �t and 
t:

�t = mctYtC
��
t + ��Et

�
�"t+1;t+1Yt+1mct+1C

��
t+1

�
+

+(��)2Et
�
�"t+1;t+2Yt+2mct+2C

��
t+2

�
+ :::
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this can be rewritten as

�t = mctYtC
��
t + ��Et

8><>: �"t+1;t+1�

�
�
Yt+1mct+1C

��
t+1 + ���"t+1;t+2Yt+2mct+2C

��
t+2 + :::

�
9>=>;

noting that the second line of the last expression is simply equal to Et�t+1 we can rewrite

the last expression as

(2.47) �t = mctYtC
��
t + ��Et

�
�"t+1�t+1

�
where �t+1;t+1 = Et�t+1: With the same fashion

(2.48) 
t = YtC
��
t + ��Et

�
�"�1t+1
t+1

�
2.A.2.2. Steady state. We evaluate the last expressions at steady state (i.e. a variable

without the time index corresponds to its steady state value)

(2.49)
P �i
P
=

"

"� 1
�




� =
mcY C��

1� ���"
(2.50)


 =
Y C��

1� ���"�1
(2.51)

1 = (1� �) (p�i )
1�" + ��"�1(2.52)

Furthermore using the de�nition of steady state mc and the household �rst order condi-

tion

(2.53) mc = w =
Y �+�s���

1� �
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where we use the fact that at steady state C
Y
= �. Therefore we can re-write (2.50) and

(2.51)as

� =
Y 1+�s�

(1� ���") (1� �)
(2.54)


 =
Y 1�����

1� ���"�1
(2.55)

the steady state optimal re-setter is

(2.56)
P �i
P
= p�i =

"

"� 1

P+1
z=0 (���

")zmcP+1
z=0 (���

"�1)z
=

"

"� 1
1� ���"�1

1� ���"
mc

Note that in order for the last expression to hold ���" < 1.

2.A.2.3. Log-linearisation. Taking the log linearisation (step-by-step) of (2:47). Let

consider it at steady state

1 =
mcY

C��
+
���"�

�

then we take a �rst order approximation. Hatted variables represents its log deviation

from steady state i.e. bzt = log � ztz � :

1 u
mcY

C��

�
1 + cmct + bYt � � bCt � b�t�+ ���"

�
1 + "Etb�t+1 + Etb�t+1 � b�t�

Rearranging and using the de�nition of � it yields

(2.57) b�t = (1� ���")
�cmct + bYt � � bCt�+ ���"

�
"Etb�t+1 + Etb�t+1�

Log-linearisation of (2:48)

(2.58) b
t = �1� ���"�1
� �bYt � � bCt�+ ���"�1

�
("� 1)Etb�t+1 + Etb
t+1�

Log-linearisation of (2:47)

(2.59) bp�it = ��"�1

(1� �) (p�i )
1�"b�t
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Plugging in the last expression (p�i )
1�" = (1� ��"�1) 1

1�� yields

(2.60) bp�it = ��"�1

1� ��"�1
b�t

Furthermore from (2:44) it is easy to see that

(2.61) bp�it = b�t � b
t
combining the last two equations yields

(2.62) b�t = b
t + ��"�1

1� ��"�1
b�t

Then we substitute the latter into (2:57)

b
t = (1� ���")
�cmct + bYt � � bCt�� ��"�1

1� ��"�1
b�t +

+���"
�
"Etb�t+1 + Etb
t+1 + ��"�1

1� ��"�1
Etb�t+1�(2.63)

Then let plug in the last expression in (2:58)

�
1� ���"�1

� �bYt � � bCt� = ����"�1
�
("� 1)Etb�t+1 + Etb
t+1�+

+(1� ���")
�cmct + bYt � � bCt�� ��"�1

1� ��"�1
b�t +(2.64)

+���"
�
"Etb�t+1 + Etb
t+1 + ��"�1

1� ��"�1
Etb�t+1�(2.65)

Expressing in term of current in�ation

� ��"�1

1� ��"�1
b�t =

�
1� ���"�1

� �bYt � � bCt�+ ���"�1
�
("� 1)Etb�t+1 + Etb
t+1��

����"
�
"Etb�t+1 + Etb
t+1 + ��"�1

1� ��"�1
Etb�t+1�+(2.66)

� (1� ���")
�cmct + bYt � � bCt�(2.67)
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Rearranging

��"�1

1� ��"�1
b�t = (1� ���")

�cmct + bYt � � bCt�� �1� ���"�1
� �bYt � � bCt�+

+���"
�
"Etb�t+1 + Etb
t+1 + ��"�1

1� ��"�1
Etb�t+1�+(2.68)

����"�1
�
("� 1)Etb�t+1 + Etb
t+1�(2.69)

��"�1

1� ��"�1
b�t = (1� ���") cmct + ����"�1 � ���"

� �bYt � � bCt�+
+

�
���"

�
"+

��"�1

1� ��"�1

�
� ���"�1 ("� 1)

�
Etb�t+1 +(2.70)

+
�
���" � ���"�1

�
Etb
t+1(2.71)

b�t =
(1� ���") (1� ��"�1)

��"�1
cmct + 1� ��"�1

��"�1
�
���"�1 � ���"

� �bYt � � bCt � Etb
t+1�+
+
1� ��"�1

��"�1

�
���"

�
"+

��"�1

1� ��"�1

�
� ���"�1 ("� 1)

�
Etb�t+1(2.72)

simplifying

(2.73) b�t = ��1Etb�t+1 + kcmct + �2

�
� bCt � bYt + Etb
t+1�

where �1 = (� + (� � 1) (1� ��"�1) ("� 1)), �2 = (1� ��"�1) � (� � 1), k = (1����")(1���"�1)
��"�1 .

To double check this expression: �x � = 1 (no steady state in�ation); (2:73) collapses to

the standard NKPC with no trend in�ation

(2.74) �t = �Et�t+1 +
(1� ��)(1� �)

�
cmct

Furthermore, with no government spending and an utility function in log consumption

Ct = Yt and therefore (2:73) reduces to equation (13) in the Ascari and Ropele(2007b)
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paper in the case of no indexation. Log linearisation of

(2.75) st =

Z 1

0

Pit
Pt
di

First of all we need to write this expression in a recursive form. Applying the same

technique used for 
 and � and remembering the basic mechanism behind the Calvo

price setting, we can write

(2.76) st = (1� �)

�
P �it
Pt

��"
+ ��"tst�1

At steady state the latter collapses to

s = (1� �) (p�i )
�" + ��"s

s =
1� �

1� ��"
(p�i )

�"(2.77)

log linearising (2:76)

(2.78) bst = �" (1� ��") bp�it + ��" ("b�t + bst�1)
plugging in the latter the de�nition of bp�it
(2.79) bst = �" (1� ��")

��"�1

1� ��"�1
b�t + ��" ("b�t + bst�1)

rearranging

(2.80) bst = !1b�t + ��"bst�1
where !1 = " ��"�1

1���"�1 (� � 1) :

2.A.2.4. Remaining log linear equations. Log linearisation of (2:7) and (2:8) yield

(2.81) � bCt + � bNt = bwt � � �

1� �

�b� t
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(2.82) bCt = Et bCt+1 � 1

�

� bRt � Etb�t+1�
Log-linearisation of the market clearing conditions lead to

(2.83) bYt = � bCt + (1� �) bGt

and

(2.84) bNt = bYt + bst
The government budget constraint at steady state is

(2.85) G = �wsY + �b� b

�

where is the real term value of debt de�ned as b = B
P
while steady state interest rate

follows

(2.86) R =
�

�

Therefore log linearisation of (2:11) yields

(2.87)
1

1� �
b� t + �1 + �

�
+ �
� bYt + (1 + �) bst = 
b

�ws�

�bbt � b�t�� 
b
Rws�

�bbt+1 � bRt

�
Real marginal cost are given by

(2.88) mct =
Wt

Pt
= wt

log linearising and using (2:81) it yields to

(2.89) cmct = � bCt + �bYt + �bst + � �

1� �

�b� t
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Plugging this into the NKPC it yields

b�t = ��1Etb�t+1 + k

�
� bCt + �bYt + �bst + � �

1� �

�b� t�+
+�2

�
� bCt � bYt + Etb
t+1�(2.90)

2.A.3. Steady State

This section describes the steady state of the model. The steady state equilibrium con-

dition are

Utility function:
C1��

1� �
� N1+�

1 + �

Consumer budget constraint : C +B = wN (1� �) + � +R�1B

Euler equation: R =
�

�

Labour supply: C�N� = w (1� �)

Government budget constraint : � =
(1� �) +

�
1
�
� 1

R

�

b

ws

Market clearing conditions : N = sY

Y = C +G

Price level : 1 = (1� �) (p�i )
1�" + ��"�1

Re-setter price : p�i =
"

"� 1
1� ���"�1

1� ���"
mc =

"

"� 1
�




Real marginal cost: mc = w

Price dispersion : s =
1� �

1� ��"
(p�i )

�"

� =
Y 1+�s�

(1� ���") (1� �)


 =
Y C��

1� ���"�1
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In order to have a �rst analytical expression for the steady state variables we operate few

substitutions. First of all, let rewrite

(2.91) p�i =

�
1

1� �
� �

1� �
�"�1

� 1
1�"

With the latter we can �nd an expression function of the sole parameters of s and w.

The we can rewrite the government budget constraint as

(2.92) Y sw� = G+

�
1

R
� 1

�

�
b

Dividing on both side for Y and imposing G
Y
= 1� � and b

Y
= 
b, the latter becomes

(2.93) � =
(1� �)

ws
+

�
1

�
� 1

R

�

b
ws

Therefore

(2.94) � =
(1� �)

ws
+

�
1

�
� 1

R

�

b
ws

Using the household labour supply we can infer the steady state values of Y as

(�Y )� Y �s� = w (1� �)

(Y )�+� =
w (1� �)

��s�

Y =

�
w (1� �)

��s�

� 1
�+�

(2.95)
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2.A.4. Matrix Representations

2.A.4.1. Balanced budget rule. In order to check for determinacy we write the model

in matrix form as Axt+1 = Bxt:

A =

0BBBBBBBB@

���"�1 ("� 1)�� (�"�1) 0 0

�2 �1 0 k�

0
�
1
�

�
1 0

0 0 0 1

1CCCCCCCCA
xt+1 =

0BBBBBBBB@

Et
t+1

Et�t+1

EtCt+1

st

1CCCCCCCCA

B =

0BBBBBBBB@

1 0 � (1� ���"�1) (�� �) 0

0 �4 ��3 0

0 1
�
�1 1 0

0 !1 0 ��"

1CCCCCCCCA

H = A�1 �B

Determinacy requires three eigenvalues of the H matrix outside the unit circle and

one inside.

�3 =
�
k (� + ��) + �2 (� � �)� k��

�
1 + �

�
+ �
��
; �4 =

�
1 + k
b

�
1
�
� ��1

��
:

2.A.4.2. Endogenous tax and short run debt. In order to check for determinacy

we write the model in matrix form as Axt+1 = Bxt: Note that for sake of simplicity we
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set bGt = 0. And �2 = 0. Following this bYt = � bCt.

A =

0BBBBBBBBBBB@

���"�1 ("� 1)���"�1 0 0 0

�2 ��1 0 0 k�

0 1
�

1 0 0

0 0 0 
b�
ws�

(1 + �)

0 0 0 0 1

1CCCCCCCCCCCA
xt+1 =

0BBBBBBBBBBB@

Et
t+1

Et�t+1

EtCt+1

bt+1

st

1CCCCCCCCCCCA

B =

0BBBBBBBBBBB@

1 0 � (1� ���"�1) (�� �) 0 0

0 1 �k
�
� + ��� � �

1��
�
� �2 (� � �) �k� �

1�� 0

0 1
�
� 1 0 0

0 � 
b
ws�

�
��1 � 1

�

� �
1 + �

�
+ � � 1

1��
�
� �

�
1
1�� �1 �


b
�ws�

�
0

0 !1 0 0 ��"

1CCCCCCCCCCCA
In particular the system has a unique rational expectation solution i¤H has 3 eigen-

values outside the unit circle and 2 inside the unit circle. Where H is de�ned as

H = A�1B

In the above matrix representation the �rst line is (2.34), the second line (2.35), the

third line(2.37), the fourth line is(2.40) and the last line represents(2.36).



CHAPTER 3

Optimal Monetary Policy in a New Keynesian Model with

Deep Habits Formation.

While consumption habits have been utilised as a means of generating a humpshaped

output response to monetary policy shocks in sticky-price New Keynesian economies,

there is relatively little analysis of the impact of habits (particularly, external habits)

on optimal policy. In this paper we consider the implications of deep external habits

(�deep�habits: see Ravn, Schmitt-Grohe, and Uribe (2006)) for optimal monetary policy.

External habits generate an additional distortion in the economy, which implies that the

�ex-price equilibrium will no longer be e¢ cient and that policy faces interesting new trade-

o¤s and potential stabilisation biases. Furthermore, the endogenous mark-up behaviour,

which emerges with deep habits, can also signi�cantly a¤ect the optimal policy response

to shocks, as well as dramatically a¤ecting the stabilising properties of standard simple

rules.

3.1. Introduction

Within1 the benchmark New Keynesian analysis of monetary policy (see, for example,

Woodford (2003)), monetary policy typically in�uences the economy through the impact

of interest rates on a representative household�s intertemporal consumption decision.

It has often been felt that the purely forward-looking consumption dynamics that such

basic intertemporal consumption decisions imply, are unable to capture the hump-shaped

output response to changes in monetary policy one typically �nds in the data. As a

means of accounting for such patterns, some authors have augmented the benchmark

model with various forms of habits e¤ects in consumption. The habits e¤ects can either

1This chapter is part of the paper "Optimal monetary policy in a new Keynesian model with consumption
habits" (with Campbell Leith and Ioana Moldovan) ECB working paper series, No. 1076.
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be internal (see for example, Fuhrer (2000), Christiano, Eichenbaum, and Evans (2005),

Leith and Malley (2005)) or external (see, for example, Smets and Wouters (2007)) the

latter re�ecting a catching up with the Joneses e¤ect whereby households fail to internalise

the externality their own consumption causes on the utility of other households.

Both forms of habits behaviour can help the New Keynesian monetary policy model

capture the persistence found in the data (see, for example Kozicki and Tinsley (2002)),

although the policy implications are likely to be di¤erent. More recently, Ravn, Schmitt-

Grohe, and Uribe (2006) o¤er an alternative form of habits behaviour, which they label

as �deep�. Deep habits occur at the level of individual goods rather than at the level of

an aggregate consumption basket (�super�cial�habits). While this distinction does not

a¤ect the dynamic description of aggregate consumption behaviour relative to the case of

super�cial habits, it does render the individual �rms�pricing decisions intertemporal and,

in the �exible price economy considered by Ravn, Schmitt-Grohe, and Uribe (2006), can

produce a counter-cyclical mark-up which signi�cantly a¤ects the responses of key aggre-

gates to shocks. While the focus of the papers listed above is on the dynamic response of

economies which feature some form of habits, they do not consider the implications for

optimal policy of such an extension. In contrast, Amato and Laubach (2004) consider

optimal monetary policy in a sticky-price New Keynesian economy which has been aug-

mented to include internal (but super�cial) habits. Since the form of habits is internal

(households care about their consumption relative to their own past consumption, rather

than the consumption of other households), there is no additional externality associated

with consumption habits themselves, and, given an e¢ cient steady-state, the �exible price

equilibrium in the neighbourhood of that steady-state remains e¢ cient. Accordingly, as

in the benchmark New Keynesian model, there is no trade-o¤ between output gap and

in�ation stabilisation in the face of technology shocks and interesting policy trade-o¤s

require the introduction of additional ine¢ ciencies (such as mark-up shocks or a desire

for interest rate smoothing).
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In this paper we extend the benchmark sticky-price New Keynesian economy to in-

clude deep external habits in consumption. This implies that there is an externality

associated with �uctuations in consumption which implies that the �exible price equi-

librium will not usually be e¢ cient, thereby creating an additional trade-o¤ for policy

makers, which may give rise to further stabilisation biases if policy is constrained to be

time consistent. We also consider the implications for optimal policy. The ability of pol-

icy to in�uence the time pro�le of endogenously determined mark-ups can signi�cantly

a¤ect the monetary policy stance and how it di¤ers across discretion and commitment

and across di¤erent exogenous shocks.

In addition to examining optimal policy, we also consider how the introduction of

habits a¤ects the conduct of policy through simple rules. We �nd that the introduction

of deep habits can induce problems of indeterminacy, as the tightening of monetary policy

can induce in�ation through variations in mark-up behaviour, such that an interest rate

rule which satis�es the Taylor principle (where nominal interest rates rise more than

one for one with increases in in�ation above target) may not be su¢ cient to ensure

determinacy of the local equilibrium.

The plan of the paper is as follows: in the next section we outline our model with

deep super�cial habits. In section 3:3 we consider the determinacy properties of a simple

Taylor rule. In section 3.4 we consider optimal policy under both commitment and

discretion when the economy is hit by a technological and a government spending shock,

where the policy-maker�s objective function is derived from a second order approximation

to households�utility. Section 3.5 concludes.

3.2. The Model

The economy is comprised of households, two monopolistically competitive production

sectors, a monetary authority and a government. There is a continuum of �nal goods

that enter the households�and the government�s consumption baskets, each �nal good

being produced as an aggregate of a continuum of intermediate goods. The households
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and the government form external consumption habits at the level of each �nal good in

their basket. Ravn et al. (2006) label this type of habits as �deep�.

3.2.1. Households

The economy is populated by a continuum of perfectly rational, in�nitely-lived households

uniformly distributed on the unit interval and indexed by �. Each of them has preferences

over a set of di¤erentiated types of products (i.e. wine, cheese etc.), C�
it. Types of product

are indexed by i. Moreover, each of these types of goods is composed by a continuum

of speci�c " brand " products, C�
jit; indexed by j. Furthermore the households derive

disutility from labour e¤ort, N�
t which is supplied in a perfectly competitive labour

market, and have access to perfect and complete �nancial markets. Following Ravn et al.

(2006), it is assumed that preferences show external habit formation at the level of each

type of products i rather than, as in Abel (1990), at a �nal composite good level: For

this reason our assumption on habit formation is commonly de�ned as "Deep habits".

In particular, households derive utility from X�
t such that

(3.1) X�
t =

�Z 1

0

(C�
it � �Cit�1)

1� 1
# di

�1=(1�1=#)
8�

where Cit�1 �
R 1
0
Ck
it�1d� denotes the cross sectional average level of consumption variety

i consumed at t � 1 which is taken as exogenous by the households. The parameter

� measures the degree of external habit formation. The parameter # represents the

elasticity of substitution of habit-adjusted types of consumption goods i and C�
it is a

consumption basket of a single type of consumption good (i.e. j are single brands of

cheese while i0s identify the totality of cheese consumed by the households) formed as

(3.2) C�
it =

�Z 1

0

�
C�
jit

�1�1="
dj

�1=(1�1=")

where the parameter " identi�es the elasticity of substitution among the j products. In

forming the last consumption basket the consumers exploit any price di¤erences present in
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the system. Doing so they minimise the total expenditure for each product j,
R 1
0
PjitC

�
jitdj,

subject to (3.2). The optimal demand for good j is therefore de�ned as

(3.3) C�
jit =

�
Pjit
Pm
it

��"
C�
it

where Pm
it �

hR 1
0
P 1�"jit dj

i1=(1�")
: At the optimum we have Pm

it C
�
it =

R 1
0
PjitC

�
jitdj: Further-

more for any given level of X�
t ; purchases of each variety i in period t must again solve

the minimisation problem of
R 1
0
PitC

�
itdi , with P

m
it < Pit;

2 subject to the consumption

bundle de�ned in (3.1). The optimal level of C�
it is given by

(3.4) C�
it =

�
Pit
Pt

��#
X�
t + �Cit�1

where Pt �
hR 1
0
P 1�#it di

i1=(1�#)
. The demand function for each variety i de�ned in (3.4)

is decreasing in its relative price Pit
Pt
and increasing in past aggregate consumption of the

variety in question. At the optimum we have PtX�
t =

R 1
0
Pit (C

�
it � �Cit�1) di:

The utility function is de�ned as

(3.5) U�
t = E0

+1X
t=0

�tu (X�
t ; N

�
t )

where du
dX

> 0; du
dN

< 0 and � 2 (0; 1), denoting the discount factor: Let us assume

that u (X�
t ;N

�
t ) =

(X�
t )
1��

1�� � �
(N�

t )
1+�

1+�
where the parameter � > 0 represents the inverse

of the intertemporal elasticity of habit-adjusted consumption and � > 0 corresponds to

the inverse of the Frisch elasticity of labour supply and represents the risk aversion to

variations in leisure. The intertemporal nominal budget constraint follows

(3.6) PtX
�
t + Pt�t + EtQt;t+1D

�
t+1 = D�

t +WtNt + �t + PtTt

2The reason why Pmit < Pit is discussed in detail below.
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where �t = �
R 1
0

�
Pit
Pt

�
Cit�1di:

3 The variable �t denotes the pro�ts coming from monop-

olistic competitive �rms, Wt is the nominal wage and EtQt;t+1 is the one period nominal

stochastic discount factor. Tt = T 8t; is a steady state lump sum tax which is used to

subsidise producer �rms. The household problem consists of choosing
�
X�
t ;N

�
t ;D

�
t+1

	+1
t=0

, taking as given the processes for Wt; �t;�t; Pt and the initial asset holding D�
0 as to

maximise (3.5) subject to (3.6). The �rst order conditions are

(3.7) �uN (X
�
t ;N

�
t )

uX (X�
t ;N

�
t )
=
Wt

Pt

(3.8) 1 =
uX
�
X�
t+1;N

�
t+1

�
uX (X�

t ;N
�
t )

Pt
Pt+1

�

Qt;t+1

Taking expectations from the last expression

(3.9) �RtEt

 
uX
�
X�
t+1;N

�
t+1

�
uX (X�

t ;N
�
t )

Pt
Pt+1

!
= 1

where Rt =
1

Et(Qt;t+1)
, implied by the non arbitrage condition, represents the nominal

return on a riskless one period bond paying o¤ a unit of currency in t + 1. Condition

(3.7) simply states that real wage is equal to the marginal rate of substitution between

consumption and leisure, while condition (3.9) is the traditional Euler equation. It states

that households tend to smooth habit-adjusted consumption across periods taking into

account the opportunity cost represented by the real interest rate, such that the marginal

rate of substitution is the same across periods.

3.2.2. Firms

The production sector is assumed to be formed of two groups. One group, that we call

for simplicity "production group", is formed of a continuum of �rms indexed by j, each

3This term is necessary in order to have just present consumption in the budget constraint. It can be
obtained substituting for Xt its optimum

R 1
0
Pit (Cit � �Cit�1) di:
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of whom produces in a monopolistically competitive environment a single variety of j

products.

In each period each j �rm sells all its products to the second group, formed again

by a continuum of �rms indexed by i; that we call "�nal group", which aggregates the j

products creating the i ones, and sells them in a monopolistically competitive environment

to the households. Both types of �rm are assumed to be price setters and to take as

exogenous all the actions of other �rms of the same group.

3.2.2.1. Production Group. This group is assumed to have a linear labour intensive

production function of the type Yjit = AtNjit where At identi�es the common technology,

Yjit the total production of variety j and Njit the total labour input required to produce

Yjit. Each �rm of this group has two constraints. The �rst is given by the demand of

each good Yjit =
�
Pjit
Pmit

��"
Yit where Yjit = Cjit, " > 1 and Pm

it is a measure of the general

producer price level. The �rm�s cost minimisation problem implies that

MCm
t = (Wt=At) (1� {)

whereMCm
t identi�es the nominal marginal cost

4 for a �rm j at time t and { represents a

steady state subsidy �nanced by consumers with a lump sum tax which will be discussed

in detail later. In real terms

(3.10) mcmt =
MCm

t

Pt
=
Wt=Pt
At

(1� {)

The �rm�s j real pro�ts follow �jit
Pt
=
�
Pjit
Pt
�mcmt

�
Yjit , and the pro�ts in the production

sector as a whole follow

(3.11)
Z 1

0

Z 1

0

�jit
Pt

djdi =
�mt
Pt

4Given the assumption on the labour market that marginal costs are common across the production
group, we dropped the index j:
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When all the �rms can adjust their prices in each period, they set their prices according

to
Pm�
it

Pt
=

�
"

"� 1

�
mcmt = �mmcmt

where �m represents the production sector mark up due to the monopolistic competitive

environment.

Furthermore we assume that each production �rm in order to change optimally its

prices has to participate in the "Calvo lottery". This is the second constraint faced by

the production sector �rms. If it is extracted (with probability 1 � �) it can optimally

reset its prices, otherwise (with probability �) it keeps its prices unchanged. When a

�rm can change its prices it takes into account the expected discounted value of current

and future pro�ts. The problem can be formalised as follows

max
P �jit

Et

+1X
z=0

�zqt;t+z

��
P �jit
Pt+z

�
Yjit+z �mcmt+iYjit+z

�
(3.12)

z:t: Yjit+z =

�
Pjit
Pm
it+z

��"
Yit+z(3.13)

Where qt;t+z is the real discount factor de�ned as

(3.14) qt;t+z = �z
ux (Xt+z;Nt+z)

ux (Xt;Nt)
= �z

�
Xt

Xt+z

��
or alternatively

qt;t+z = Qt;t+z
Pt+z
Pt

given that all the j companies that re-optimise operate the same choice, the �rst order

condition with respect to Pm�
it can be expressed as follows

(3.15)
Pm�
it

Pt
=

�
"

"� 1

�
Et
P+1

z=0 �
zqt;t+z

�
mcmt+z

�
Pm
it+z

�"
Yit+z

�
Et
P+1

z=0 �
zqt;t+z

�
Pm
it+z

�" �Pt+z
Pt

��1
Yit+z
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while the aggregate price level for the production group follows

(3.16) P
m(1�")
it =

h
(1� �)P

m�(1�")
it + �P

m(1�")
it�1

i
3.2.2.2. Final product group. The �nal product group uses the j products as an

input in order to produce the i products according to the technology

(3.17) Yit = F (Yjit) =

�Z 1

0

(Yjit)
1�1=" dj

�1=(1�1=")

Firms are price setters. In exchange they must stand ready to satisfy demand at the

announced prices, formally �rm i must satisfy
hR 1
0
(Yjit)

1�1=" dj
i1=(1�1=")

� Cit. Given

(3.17) �rm�s i nominal pro�ts in period t are

(3.18) �it = PitYit �
Z 1

0

PjitYjitdj

On average each i �rm pays Pm
it to produce an additional unit

5 of Yit and charges, for

the same product, Pit to the households. The marginal cost for each �rm i is therefore

MCit = Pm
it ; or in real terms mcit =

Pmit
Pt
; while the (real) pro�t function can be expressed

as

(3.19)
�it
Pt
=

�
Pit
Pt
�mcit

�
Yit =

�
Pit � Pm

it

Pt

�
Yit

The mark up of the generic �rm i is de�ned as �it =
Pit
MCit

and the average mark up

charged in the economy

(3.20) �t =
Pt
MCt

=
Pt
Pm
t

5This can be found formally from the cost minimization problem of the �rm

min
yjit

Z 1

0

PjitYjit + �t

 
Yit �

�Z 1

0

(Yjit)
1�1="

dj

�1=(1�1=")!
where �jit the Lagrangian multiplier, identifying the marginal costs, is equal to P

m
it :
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while the aggregate demand for each i product can be expressed as

(3.21) Yit =

�
Pit
Pt

��#
(Xt) + �Yit�1

where Xt =
R 1
0
X�
t d� is a measure of aggregate demand. This demand function generates

a procyclical behaviour of its price elasticity. Indeed, when for any reason there is an

upward shift in the aggregate demand Xt, the importance in (3.21) of the price elastic

term
�
Pit
Pt

��#
increases hence reducing the relative importance of �Yit�1, which, given

its habit origin, is by de�nition inelastic. Hence as pointed out by Ravn et al. (2006),

this generates a co-movement between aggregate demand and price elasticity of demand.

Given the negative relation between markup and price elasticity, this feature of the model

implies countercyclical mark ups at the �nal group level.

The �rm�s problem consists of choosing processes Pit and Yit given the processes

fPm
it ; Pt; Qt;t+z; Xtg so as to maximise the present discounted value of real pro�ts

(3.22) Et

+1X
z=0

qt;t+z
�it+z
Pt+z

subject to the demand constraint in (3.21). The Lagrangian can be written as

� = Eo

+1X
t=0

q0;t

(�
Pit � Pm

it

Pt

�
Yit + !it

"�
Pit
Pt

��#
(Xt) + �Yit�1 � Yit

#)

where !it is the Lagrangian multiplier related to (3.21). The �rst order conditions are

(3.23)
d�

dYit
= 0) !it =

�
Pit � Pm

it

Pt

�
+ �Etqt;t+1!it+1

(3.24)
d�

dPit
= 0) Yit = #!it

�
Pit
Pt

��(#+1)
Xt

With the market clearing conditions Yjit = Cjit and Yit = Cit:

The variable !it; representing the Lagrangian multiplier to the �nal group �rm prob-

lem, can be interpreted as the shadow value of pro�ts given by the sale of an extra unit
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of good i at time t: Indeed, (3.23) has two components: the �rst one, represented by�
Pit�Pmit

Pt

�
; identi�es the contemporaneous increase in marginal pro�t derived by an extra

unit sold in time t. The second derives directly from the deep habits assumption. In

fact, given the shape of habits, for each unit sold at any time t; the �rms will sell �

units of the same good at the time t + 1. This intertemporal e¤ect on marginal pro�ts

is here represented by �Etqt;t+1!it+1: On the other hand, (3.24) states that each i �rm

chooses its optimal price Pit where the marginal bene�t of a unit increase in prices, iden-

ti�ed by Yit; is equal to its marginal cost (in terms of reduced demand) represented by

!it

�
Pit
Pt

��(#+1)
Xt.

3.2.3. Equilibrium

The equilibrium is represented by (3.1), (3.7), (3.9), (3.10), (3.15), (3.16), (3.20), (3.23)

and (3.24): In order to have a complete description of the equilibrium we need to add to

this set of conditions the expression for the total pro�ts present in the economy

(3.25) �t = �t +�
m
t

and

(3.26) Nt =
Yt
At

Z 1

0

Z 1

0

�
Pjit
Pm
it

��"
djdi

The �rst of these two equations simply states that the totality of state contingent assets

held by the households are the sum of the pro�ts coming from the monopolistic environ-

ment of the production sector and from the monopolistic environment of the �nal sector.

The second represents the market clearing condition of total labour demand. It includes

a term of price dispersion
R 1
0

R 1
0

�
Pjit
Pmit

��"
didj which is not relevant up to the second order.

Here we present in detail the equilibrium conditions as log deviations from the non

stochastic e¢ cient steady state.6 Henceforth bKt � log
�
Kt

K

�
, where K is the steady state

6For a detailed description of log-linearization and the steady state see the appendix of this chapter .
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level of a variable, represents the log deviation of a variable from its non stochastic steady

state. The log linear equilibrium can be de�ned as

bXt =
bCt � � bCt�1
1� �

(3.27)

� bNt + � bXt = cWt � bPt(3.28)

bXt = Et bXt+1 �
1

�

� bRt � Et�t+1

�
(3.29)

1

!�
(b�t) = b!t � ��

�
Et�t+1 � bRt + Etb!t+1�(3.30)

b!t = bYt � bXt(3.31)

bYt = bCt(3.32)

bYt = bAt + bNt(3.33)

bAt = �a bAt�1 + "at with "
a � N (0; 1)(3.34)

�mt = �Et�
m
t+1 + k

�
� bXt + � bNt � bAt + b�t�(3.35)

�t = �mt + b�t � b�t�1(3.36)

�t = P̂t � P̂t�1(3.37)

�mt = P̂m
t � P̂m

t�1(3.38)

This model shares with Ravn et al. (2006) the equations (3.27)-(??). The only

di¤erence is represented by (3.35), the New Keynesian Phillips Curve (NKPC henceforth)

introduced by the presence of sticky prices a la Calvo (1983) in the production sector.

In common with the traditional "super�cial" external habits models (i.e. Abel (1990))

it shares the optimal labour supply (3.28) and the dynamic IS curve (3.29). Within this

class of models the macroeconomic propagation of shocks generates (through the demand

channel) a high persistence of aggregate variables. The main intuition for this result lies

in the shape of (3.29). Given the de�nition of Xt as a quasi di¤erence between current

and past consumption, it is indeed easy to see that in the dynamic IS curve current

consumption is a function of a combination of both future and past consumption.
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Amato and Laubach (2004) show that indeed a super�cial habits model augmented

with sticky prices generates a higher persistence not only to the real variable but also in

the in�ation rate. The presence of bXt in the NKPC causes in fact a longer impact of any

output �uctuation on actual and expected in�ation.

As stressed above, the introduction of deep habits creates other dynamic e¤ects in

this model. First of all the pricing problem of �nal group �rms becomes dynamic. As a

result of (3.30) and (3.31), we can guess the implied dynamic behaviour of markup and

marginal pro�ts. An increase in current demand generates, ceteris paribus, an increase

in the price elasticity of demand, causing a negative relation through (3.31), between

output and marginal pro�t7. This intratemporal e¤ect is the price elasticity e¤ect of

deep habits on mark ups. Furthermore, it is clear from (3.30) that current mark up

depends negatively on future values of pro�ts, Etb!t+1: The intuition behind this result is
that a higher future value of pro�ts generates an incentive to increase the future market

share, and given the presence of deep habits this can be obtained by lowering the price

today. On the other hand, current mark up depends positively on real interest rate.

The reason is that with a higher interest rate �rms discount more future pro�ts, having

therefore less incentive to increase the current market share.

The introduction of sticky prices creates a further complication to the setting. This

feature generates in fact two more interactions in the model. On one hand from equation

(3.35) current producer in�ation depends positively on contemporaneous movement of the

�nal group mark up. Indeed, the countercyclical behavior of b�t seems to act as automatic
stabiliser for the producer in�ation rate. The intuition is the following. When for any

reason there is an increase in current demand, producer in�ation increases through the

NKPC. The same increase in current demand generates a countercyclical movement in

the �nal group mark up which puts downward pressure on producer prices. On the other

7To better see this it is enough to substitute in (2.89) the de�nition of Xt and the market clearing
condition so that b!t = � �

1� �

�bYt � bYt�1�
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hand the presence of staggered prices gives a role for monetary policy, as moving the

interest rate a¤ects �nal group mark ups via (3.30). These two e¤ects will play a crucial

role in the transmission mechanism of the model and in the setting of economic policies.

3.3. Determinacy and the Taylor Principle

This section describes the determinacy analysis of the model. In order to check the

equilibrium properties of the model we close the system assuming a simple monetary rule

of the type

(3.39) bRt = �r bRt�1 + ���
m
t + �y bYt

This formulation of monetary policy implies that movements in the nominal interest

rate are directly linked to producer in�ation, and changes in output and past nominal

interest rate. The choice of target is justi�ed by the fact that sticky prices (and therefore

price dispersion) are present at the production group level, therefore we believe it is

sensible for monetary policy to respond to producer in�ation. As in Schmitt-Grohe and

Uribe (2007) and Leith et al. (2009) the monetary rule also includes the response of the

nominal interest rate, to output and to the past interest rate.

3.3.1. Calibration

The model is calibrated to a quarterly frequency. The model�s structural parameters

are �, �, �, ", #, ��, �y; �, � and �. The risk aversion parameter � is set to 2 while

� equals 0:25.8 Following the literature, we impose " = # = 11: This values imply a

total (production plus �nal sector) steady state mark up over the real marginal costs

(for � = 0) of 20%, which is in line with the empirical evidence. The discount factor, �,

is �xed to 0:99. This value implies an annual steady state interest rate of 4%, which is

in line with the average interest rate of the last 20 years of most OECD countries. In

8� is the inverse of the Frisch elasticity of labour supply. While micro estimates of this elasticity are
rather small, they tend not to �t well in macro models. Here, di¤erently than chapters 1 and 2; we follow
the macroeconomic literature and choose a larger value of 4:0.
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order to give persistence to the model we �x �a, the parameter ruling the autoregressive

process of technology, equal to 0:9. The steady state value of the �nal group mark up

depends upon �: In fact � =
�

1
(1��)# (�� � 1) + 1

��1
. In particular the steady state mark

up is increasing in � (i.e. the higher � the more inelastic the demand function). For the

same reason !, with ! = 1
#(1��) ; the steady state shadow value of pro�t is increasing in

�. Determinacy analysis is conducted for a wide range of the deep habits parameter, and

the monetary policy rule �r; �� and �y:

3.3.2. Determinacy Results

Figure 3:1 displays the determinacy analysis9 with a monetary rule as in (3.39). Each

sub-plot details the combinations of �� and �y which ensure determinacy (white area),

indeterminacy (black area) and instability (red area). Moving from left to right across

subplots increases the degree of interest rate inertia in the rule, �r, while moving down

the page increases the extent of habits formation, �. Consider the �rst sub-plot in the

top left hand corner with �r = 0 and � = 0, which re-states the stability properties of the

original Taylor rule. Here, the importance of the Taylor principle is revealed as �� > 1: As

we move across the page from left to right we increase the extent of interest rate inertia

in the rule. In this case, as Woodford (2003) shows, the Taylor principle needs to be

rewritten in terms of the long-run interest rate response to excess in�ation, ��
1��r

> 1. As

a result, the determinacy region in the positive quadrant spreads further into the adjacent

quadrants (where �� < 1) since a given level of instantaneous policy response to in�ation

�� has a far greater long-run e¤ect. It is also interesting to note that a second region of

determinacy exists where the interest rate rule fails to satisfy the Taylor principle, such

that �� < 1, and the response to the output is strongly negative. This region is not often

discussed in the literature, but is mentioned in Rotemberg and Woodford (1999) and in

Leith et al. (2009). Typically, when monetary policy fails to satisfy the Taylor principle,

in�ation can be driven by self-ful�lling expectations which are validated by monetary

9A technical analysis of determinacy can be found in the appendix of this chapter.
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policy. However, when the output response is su¢ ciently negative there is an additional

destabilising element in the policy, which overturns the excessive stability generated by

a passive monetary policy, implying a unique saddle-path where any deviation from that

saddlepath will imply an explosive path for in�ation.

If the extent of habits formation is relatively low, the determinacy properties of the

model are similar to those observed in the case of no habit formation. However, when the

degree of habits formation exceeds � > 0:77, then there are some signi�cant di¤erences.

The usual determinacy region tends to disappear and the system becomes indeterminate.

This indeterminacy is linked to the additional dynamics displayed in the �nal goods

sectors, where the markup, due to the deep habits formation, is time-varying. Suppose

economic agents expect an increase in in�ation. Given an active interest rate rule, �� > 1,

this will give rise to a tightening of monetary policy. Typically, such a policy would lead

to a contraction in aggregate demand, invalidating the in�ation expectations. However,

in the presence of deep habits, the higher real interest rates will encourage �nal goods

�rms to raise current mark-ups as they discount the lost future sales such price increases

would imply more heavily. If the size of habits e¤ects is su¢ ciently large, then this

increase in mark-ups can validate the initial increase in in�ationary expectations, leading

to self-ful�lling in�ationary episodes and indeterminacy.

Furthermore, the excessive stability implied by endogenous markup behaviour implies

that the only determinate rule in the presence of a large deep habits e¤ect is where the

rule is passive, ��
1��R

< 1, and the policy response to the output is su¢ ciently strongly

negative.

Finally, when we combine a moderate the deep habits e¤ect (� around 0:4) with

interest rate inertia, it becomes possible to induce instability in our economy when the

rule is passive, ��
1��R

< 1 and the interest rate response to the output gap is negative, �Y

< 0. The relatively slow evolution of consumption under habits combined with interest

rate inertia and a perverse policy response to output gaps and in�ation serves to induce

a cumulative instability in the model.
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3.4. Optimal Policy

First we consider the Social Planner problem, and then we compare this with the non-

stochastic steady state in order to derive the optimal subsidy, {; which, �nanced with the

lamp-sum tax T; can ensure that the steady state variables are at their socially optimal

level.10 Next we derive the policy maker loss function as a second order approximation

of the utility function of the representative consumer which assesses the extent to which

endogenous variables di¤er from the e¢ cient equilibrium due to the nominal inertia and

the overconsumption generated by external habit formation. Finally, we minimise this

loss function subject to the log-linearised structural equations of the model in order to

determine the optimal behaviour of interest rate.

3.4.1. The Social Planner Problem and the Optimal Subsidy

The social planner problem can be de�ned as the maximisation of the utility function

of the representative consumer subject to the market clearing condition, the production

function and the de�nition of habits. Once the maximisation takes place we compare the

social planner�s outcome in steady state with the outcome resulting from the non sto-

chastic steady state that emerges from the decentralised equilibrium. Imposing equality

between these two, one can obtain the optimal subsidy as11

(3.40) (1� {) = "� 1
"

�
1� 1

(1� �)#
(1� ��)

�
1

1� ��

When in place, this subsidy guarantees the steady state to be socially optimal. It is

decreasing in " and #, (i.e. the lower the monopolistic competition the lower the steady

state ine¢ ciency). Furthermore it is greatly a¤ected by �; the habit parameter. Figure

3:2 sketches the value of the subsidy as a function of the degree of habit presents in the

system. As one can see the subsidy is positive for low values of � and it turns negative

10This procedure allows us to obtain an accurate expression for welfare involving only second-order
terms.
11Details of the social planner problem can be found in the appendix of this chapter.
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for high values of �. The intuition for this is as follows. The system is a¤ected by two

distortions: the market power of �rms and the externality of consumption. While the

former generates a situation of under production, i.e. the natural level of output is below

the e¢ cient one, the latter induces a situation of over production as households fail to

internalise the impact of their consumption decisions on others. For low �, the distortion

generated by the monopolistic power in the goods market is greater than the distortion

generated by the externality in consumption, while the opposite is true for high values of

�. This means that for low values of external habits formation, in order to reach the Social

Planner�s equilibrium is necessary to subside intermediate �rms�marginal costs, while

when habits e¤ects are large the social planner�s equilibrium is implemented through a

tax.

3.4.2. Policy Maker Loss Function

Appendix 3:A presents the step-by-step derivation of the second order approximation of

the representative household�s utility function around the e¢ cient non stochastic steady

state.

(3.41) L = �
�
(1� �)�� (C

�1�� 1
2
E0

+1X
t=0

�t�t + t:i:p+ o(3)

where �t; representing the instantaneous loss function is

�t = (1� ��) �

�bYt � (1 + �)
�

bAt�2 + � (1� �) bX2
t + (1� ��)

"

�
(�mt )

2

This loss function contains quadratic terms in in�ation, which re�ects the cost of

price dispersion, output and habit-adjusted consumption which can be interpreted as the

cost associated with deviation from the steady state of the real side of the economy. This

formulation is particularly appealing as the weight associated with each component of the

loss function derives in a microfounded way from the deep parameters of the model. A few

aspects are worth stressing. First of all, the presence of the optimal steady state subsidy is
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a key assumption for the derivation of a quadratic expression suitable for policy analysis.

Secondly, due to the presence of a dynamic real rigidity along the business cycle (i.e.

deep habits), and despite the steady state subsidy, the �exible price equilibrium implied

by the model is not e¢ cient outside the non-stochastic steady state. For this reason we

decide to keep the loss function and therefore the model in log deviation from steady

state, rather than expressing the policy problem in gap variable from the �exible price

equilibrium. Indeed, in order to �nd the e¢ cient level of the associated �exible price

equilibrium one needs to log linearise the �rst order conditions of the social planner and

then subtract this measure from the log deviation from steady state level of the variable.

3.4.3. Optimal Policy Results

3.4.3.1. Technology Shock. We start the analysis of the consequences of deep habit

formation for the setting of optimal commitment policy by computing, for di¤erent values

of �; the optimal response plan in the face of an unexpected 1% technology shock described

in (??). Details of the reduced form, matrix representation and numerical approach for

the policy problem are reported in the appendix of this chapter. We de�ne the optimal

response plan in the case where Yt = Ct; as a particular stochastic-response process of

the quadruple {�mt ; bYt; bRt; b�t} which minimises (3.41) subject to the structural equations
of the model (3.27)-(3.33) and (3.35) for all t � 0: The impulse response functions (IRF

henceforth) are reported in �gure 3:3. For � = 0 (the solid line), the policy problem

collapses to a standard New Keynesian case. At the time of the shock the monetary

authority lowers the nominal interest rate, so achieving the complete stabilisation of

in�ation and output gap. Output increases while the �nal group markup does not move

from its steady state level.

This result is well established in the macroeconomic literature (Walsh, 2003) and

it takes various names such as the Divine Coincidence (Galí and Blanchard, 2007). It

states that in a simple NK model with no capital accumulation, monetary policy is

able, through movements in the nominal interest rate to fully stabilise the economy (i.e.
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to replicate the e¢ cient �exible price equilibrium) in the event of a technology shock.

Therefore the policy maker does not face any trade o¤between stabilising the output-gap

and in�ation. As � increases this ceases to be true. The divine coincidence disappears

causing a stabilisation problem. Indeed, with the presence of habit formation monetary

policy faces an endogenous trade o¤: in the face of a technology shock it is not possible

to fully replicate the e¢ cient �exible price equilibrium.

The main intuition behind this result is that, while with � = 0 the monetary authority

has to stabilise the ine¢ ciency (and only the ine¢ ciency) created by price dispersion, for

� > 0, on the other hand, given the presence of habit formation both in the loss function

and in the structural equations of the model, monetary policy has to correct, with just

one instrument, two model distortions: price dispersion generated by staggered prices a

la Calvo and the externality of consumption caused by habit formation. At the time of

the shock output increases while the monetary authority decreases the nominal interest

rate. As a consequence, �nal �rms have a double incentive to lower their markups. On

one side, the increase in output generates, through the presence of deep habits a strong

incentive for the �rms to lower their prices as to increase their sale base and future pro�ts.

On the other side, a similar e¤ect is generated by a lower interest rate. As stressed in the

previous section, a decrease in the mark up generates a downward pressure on producer

prices, which adds up to a fall in nominal marginal cost induced by the technology shock

by itself. As a result producer in�ation decreases. As shown in �gure 3:3; during the

optimal plan the e¤ect of a technology shock on in�ation is increasing in �. This is not

surprising. Augmenting the importance of deep habit formation increases the incentive

of the �nal �rms to decrease their markups putting increasingly downward pressure on

prices.

Figure 3:3 displays the response of output for di¤erent values of �: For � = 0 the

pattern of output is downward sloping, following the pattern of the technology shock.

The reason for this is that with no habit formation the combination of movements in the

nominal rate and of the technology shock, consistent with the forward-looking rational
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expectations of the agents, generates the greatest impact on output in the �rst period.

With � > 0 this stops being true. First of all, on impact, the response of output is

decreasing in �: This is due to the fact that increasing � it increases the importance of

lagged output in the habit-adjusted Euler equation. For the same reason, positive values

of � generate hump-shaped response of output to shocks, see for example Christiano et al.

(2005). Furthermore as � increases, the stabilisation policy trade o¤ gets worse, implying

a widening output gap. It is also interesting to note that once the degree of habits passes

a certain level, real interest rates actually rise initially, as policy makers seek to dampen

the initial rise in consumption which imposes an undesirably externality on households.

Figure 3:4 shows the IRF under commitment and discretionary policy. The di¤erence

between the two types of policy is relatively small. This is because the variable patterns

are mainly driven by the persistence implied by habit formation, rather than on the type

of policy adopted. The main di¤erence is represented by the price level stabilisation

which is achieved only under commitment. The welfare loss in terms of steady state

consumption is 1:92% higher under discretion than under commitment with the baseline

calibration, i.e. � = 0:7512.

3.4.3.2. Government Spending Shock. Figure 3:5 reports the IRF to a 1% gov-

ernment spending shock under optimal commitment. The model is augmented with a

(ine¢ cient) government spending13. The government spending, being excluded from the

representative household utility function has a completely exogenous behaviour along the

business cycle and takes the form of

12We measure the welfare cost of a particular policy as the fraction of permanent consumption that must
be given up in order to equal welfare in the stochastic economy to that of the e¢ cient steady state as

E
+1X
t=0

�tu (Xt; Nt) = (1� �)�1 u ((1� �) (1�$)C;N)

Given the utility function adopted the exspression for $ in percentage terms is

$ =

"
1� ((1� �)�)

1
1��

(1� �)C

#
� 100

where � � (1� �) & + �N1+�

1+� and & � E
P+1

t=0 u (Xt; Nt) represents the unconditional expectation of
lifetime utility in the stochastic equilibrium.
13Details of the log-linearized version of the model are discussed in appendix C
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bGt = � bGt�1 + "gt with "
g
t~iid

�
0;�2g

�
At the steady state the market clearing condition is now Y = C + G with C

Y
=  . A

few points are worth stressing. Firstly, given the exogeneity of government spending, the

shape of the loss function remains unchanged. Therefore the policy evaluation is carried

out minimising (3.41) subject to the structural equations of the model augmented with

government spending. For the same reason, in this case the social planner problem is

trivial: given that the public spending has no value for the representative household,

the social planner will always choose an allocation where  = 1. Hence, the output gap

(i.e. the di¤erence between the actual level of output and its e¢ cient level counterpart)

has not been carried out for this exercise. Moreover public spending is �nanced with a

balanced tax rule of the type

Tt = Gt 8t

Where Tt is a lump sum tax paid by the households.

At the time of the shock, output increases through the market clearing condition.

At the same time, for the same reasons explained in the previous section, �nal sector

�rms cut their markup. Of course the fall in markup is increasing in �: the higher is

the deep habit parameter in the model, the higher is the incentive for �nal �rms to cut

their markup so as to increase their sale base in period of "high demand". The e¤ect on

producer price in�ation is somehow not straighforward. In fact, if on one side producers

prices have an upward pressure given by the expansion of total demand, on the other

the countercyclical movement of the �nal group mark up puts downward pressure on

the producers�real marginal cost and therefore on producers in�ation. The numerical

simulations show that the second e¤ect overtakes the �rst one, leading to a decrease in

producer price in�ation. It is interesting to note how this e¤ect is present even for low

values of �.
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While the nominal interest rate increases in face of a government shock, representing

the desire of the monetary authority to decrease the ine¤ecient high level of output, the

real interest rate falls. This is due to the combined e¤ect of a decrease in both the

producer and the total price level generated by the dynamic behaviour of the �nal group

mark up.

As in the previous exercise, and for the same reason, private consumption shows a

hump-shaped pattern in response to a government spending shock. Furthermore, as one

can see from �gure 3:5 the qualitative behaviour of private consumption to a government

spending shock is strongly dependent on the magnitude of �: In fact, for low values of

�; private consumption responds negatively to public spending. For high values of �, on

the other hand, public spending crowds in on impact, private consumption. In order to

understand this result we need to clarify a few points. First of all the so called Ricardian

Equivalence holds in equilibrium: given the presence of lump-sum taxes, the timing of how

public spending is �nanced is not important. In the �rst period, consumers internalise

the dynamic e¤ects of a change in the government spending (and therefore a change in

taxation). When the deep habit parameter is low we fall into the traditional real business

cycle result: for each increase in government spending, and independently on how this is

�nanced, the after tax labour income of the consumer is reduced. Through the marginal

rate of substitution between leisure and consumption, they transfer this reduction o¤ering

more work (which is indeed needed given the increase in total demand) and consuming

less. For high values of �; public spending crowds in private consumption. The main

intuition for this result lays in the fact that deep habit formation causes a decrease in

the general price level and therefore, ceteris paribus an increase, on impact in the real

wages which is stronger than the decrease in the after tax income induced by an increase

in Gt. From the simulation it appears that this increase is big enough to generate on

impact the crowding-in of public spending on private consumption.
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3.5. Conclusion and Future Research

This paper derives a simple and tractable New Keynesian model augmented with deep

habit formation. Monetary policy is analysed both with a simple rule a la Taylor and in

a welfare maximising environment (i.e. optimal policy).

With respect to a simple rule we �nd that the deep habit formation feature of the

model creates a mechanism of transmission of monetary policy which leads easily to

a situation of indeterminacy. Indeed we prove numerically that this indeterminacy is

completely independent of the type of monetary rule assumed and instead it depends

crucially on the degree of deep habit formation present in the system.

Regarding optimal policy, we derive a reasonably straightforward policy loss function

which depends in a microfounded way on the structural parameters of the model and

that displays both forward looking variables, such as output and producer in�ation, and

a backward looking one, represented by the habit-adjusted variable of consumption, Xt.

Furthermore, we �nd that the introduction of external habit formation introduces a sta-

bilisation trade o¤ for the policy maker: in face of a technology shock the monetary policy

is unable (in contrast with a traditional NK model), to stabilise both in�ation and the

output-gap when faced with technology shocks. As a result, at the time of the (technol-

ogy) shock in�ation decreases while output gap increases. The implications for optimal

policy are that, as in Ravn et al.(2006), markups display a countercyclical behaviour

while consumption, at least on impact, reacts positively to a government spending shock.

Moreover the presence of sticky prices, and therefore a real e¤ects of monetary policy

on the real variables, creates an hump-shape in the IRF of consumption and markups

which better replicates the stylized facts of the business cycle than its �exible price, real

business cycle counterpart. The next step in the analysis of deep habits is to develop a

model in which government spending is chosen endogenously as an active instrument of

economic policy. Given the positive correlation between private and public consumption,
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this feature may result in interesting outcomes concerning optimal �scal policy and its

interaction with monetary policy.
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3.6. Figures
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Figure 3.1. Determinacy of the model with a monetary rule of the typebRt = � bRt�1+���
m
t +�y

bYt: Determinacy (white area), indeterminacy (black
area), instability (red area).
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Figure 3.3. IRF to a 1% technology shock under optimal commitment.
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Figure 3.4. IRF to a 1% technology shock under commitment (solid line)
and discretion (circles). Baseline calibration, � = 0:75:
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Figure 3.5. IRF to a 1% government spending shock under commitment.
Solid line � = 0; dashed � = 0:25; circles � = 0:55; dots � = 0:75:
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3.A. Appendix

3.A.1. Equilibrium conditions

The non-linear equilibrium conditions can be identi�ed by these 11 equations. Since all

consumers are identical, we can drop the � index. We focus on symmetric equilibria. We

can therefore drop the � and the j indices.(Pit = Pt;P
m
it = Pm

t )

Xt = Ct � �Ct�1(3.42)

ux (Xt;Nt) = �RtEtux (Xt+1;Nt+1)
Pt
Pt+1

(3.43)

Wt

Pt
= �uN (Xt;Nt)

uX (Xt;Nt)
(3.44)

�t = �t +�
m
t(3.45)

Yt = Ct = #!t (Ct � �Ct�1)(3.46)

!t = ��Et

�
Xt

Xt+1

��
!t+1 + 1�

Pm
t

Pt
= ��Et

�
Xt

Xt+1

��
!t+1 + 1�

1

�t
(3.47)

Nt =
Yt
At

Z 1

0

Z 1

0

�
Pjit
Pm
it

��"
djdi(3.48)

�mt = At

�
Pm
t

Wt (1� {)

�
(3.49)

�t =
Pt
Pm
t

=
Pt

�mt Wt (1� {)
At(3.50)

Pm�
t

Pt
=

�
"

"� 1

�
Et
P+1

z=0 �
zqt;t+z

�
mcmt+z

�
Pm
t+z

�"
Yt+z

�
Et
P+1

z=0 �
zqt;t+z (Pm

t+z)
"
�
Pt+z
Pt

��1
Yt+z

(3.51)

P
m(1�")
t =

h
(1� �)P

m�(1�")
t + �P

m(1�")
t�1

i
(3.52)

Where (3:46) comes from the symmetry properties of the equilibrium given by (3:24).

3.A.1.1. Price elasticity and the intertemporal e¤ects of deep habits. Iterating

equation (3.47) forward and assuming the transversality condition limj!+1 �
jEtqt;t+j!t+j =

0 we can write that

(3.53) !t = Et

+1X
j=0

�jqt;t+j

�
�t+j � 1
�t+j

�
= Et

+1X
j=0

�jqt;t+j

�
1�

Pm
t+j

Pt+j

�
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and using (3.46) and Yt = 1
1
Yt

(3.54) !t =
1

#
�
1� � Yt�1

Yt

�
The denominator of the last expression is the short-run price elasticity for each vari-

ety of good in equilibrium where # > #
�
1� � Yt�1

Yt

�
: Furthermore, ceteris paribus, each

increase in current demand Yt relative to habitual demand �Yt�1; increases the short-run

demand elasticity. Substituting (3.54) into (3.47) we obtain the dynamic evolution of the

�nal �rm markup

(3.55)

�t = H (EtYt+1; Yt; Yt�1; Rt) =

0@1� 1

#
�
1� � Yt�1

Yt

� + �Et

�
Xt

Xt+1

��
1

#
�
1� � Yt

Yt+1

�
1A�1

3.A.2. Steady state

This section reports the analytical derivation of the non stochastic steady state (steady

state henceforth). The steady state equilibrium conditions are:

X = C � �C(3.56)

ux (X;N) = �Rux (X;N)(3.57)

W

P
= �uN (X;N)

uX (X;N)
(3.58)

Y = C = #! (C � �C)(3.59)

� = �+�m(3.60)

! = �
1

R
! + 1� 1

�
(3.61)

Y = AN = C(3.62)

�m = A

�
Pm

W (1� {)

�
(3.63)

� =
P

Pm
=

P

�mW (1� {)A(3.64)
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At steady state A = 1. From the Euler equation (3:57) we can obtain the long run

interest rate R = ��1. The elasticity of substitution among intermediate goods is ";

therefore, imposing Pm = 1 � {, nominal wages are equal to W = "�1
"
and nominal

producer sector markup is �m = "
"�1 (3:63): From (3:59) ! = 1

(1��)# : Plugging this in

(3:61) we can obtain the steady state �nal group mark up

(3.65)
1

(1� �)#
= ��

1

(1� �)#
+ 1� 1

�

Solving for � yields

(3.66) � =

�
1

(1� �)#
(�� � 1) + 1

��1
From (3:64) it easy to show that P = � (1� {). Assuming a standard CRRA utility

function of the type

(3.67) U =
X1��

1� �
� 


N1+�

1 + �

equation (3:58) implies

(3.68)
W

P
= 
X�N�

Using (3:56) and (3:62)

(3.69)
W

P
= 
 ((1� �)C)�N�

Substituting in the latter for the real wage it yields

(3.70)

"�1
"

�
1

(1��)# (�� � 1) + 1
�

1� { = 
 (1� �)�N�+�
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Solving for N

(3.71) N = Y = C =

0@ "�1
"

�
1

(1��)# (�� � 1) + 1
�


 (1� �)�
1

1� {

1A
1

�+�

3.A.3. Social Planner

In order to �nd the optimal subsidy that achieves e¢ ciency at steady state, we solve

the social planner problem. This problem consists of maximising the representative

consumer�s utility function subject to economic constraints, once taken into account

the symmetry conditions. The problem can be formalised as follow

MaxfXt;Ct;NtgEt

+1X
t=0

�t
�
X1��
t

1� �
� 


N1+�
t

1 + �

�

s:t: Yt = Ct

Yt = AtNt

Xt = Ct � �Ct�1

The �rst order conditions are

X��
t = ��t


N�
t

At
= ��t

�t � �t + ��Et�t+1 = 0

where �t and �t are the Lagrangian multipliers for the two constraints. Combining

the three solutions yields

(3.72) X��
t = ��EtX

��
t+1 + 


N�
t

At
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At steady state

X�� = ��X�� + 
N�

(1� ��) ((1� �)C)�� = 
N�

Using (3:69) and (3:70)

"� 1
"

�
1

(1� �)#
(�� � 1) + 1

�
= (1� {) 
 ((1� �)C)�N�

so the optimal subsidies is

(3.73) (1� {) = "� 1
"

�
1� 1

(1� �)#
(1� ��)

�
1

1� ��

The optimal subsidy o¤sets the steady state distortions caused by the monopolistic

competition at the production level as well as at the �nal level and the distortion caused

by habit formation. If (3.73) is in place the steady state levels of the variables is e¢ cient

and the �rst best is reached.

3.A.4. Log-linearisation

Log linearisation of (3.56) and (3.57) (where hatted variables identify a variable log

deviation from its steady state value i.e. bKt = log
Kt

K
and �t = bPt � bPt�1)

bXt =
bCt � � bCt�1
1� �bXt = Et bXt+1 �

1

�

� bRt � Et�t+1

�
The log linearisation of the optimal labour supply follows

� bXt + � bNt = cWt � bPt
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and the log linearisation of (3.46) is

bYt = b!t + bCt � � bCt�1
1� �

The log linearisation of the production function follows

bYt = bAt + bNt

and the market clearing condition

bYt = bCt

3.A.5. The NKPC

We show above that the optimal price setter resets its price following

(3.74)
Pm�
t

Pt
=

�
"

"� 1

� Et
P+1

z=0 �
zqt;t+z

�
MCmt+z
Pt+z

�
Pm
t+z

�"
Yt+z

�
Et
P+1

z=0 �
zqt;t+z (Pm

t+z)
"
�
Pt+z
Pt

��1
Yt+z

Using the de�nition of the stochastic discount factor

qt;t+z = �z
ux (Xt+z;Nt+z)

ux (Xt;Nt)
= �z

�
Xt

Xt+z

��
Therefore (3.74) can be rewritten as

(3.75)
Pm�
t

Pt
=

�
"

"� 1

� Et
P+1

z=0 (��)
z
�

Xt
Xt+z

�� �MCmt+z
Pt+z

�
Pm
t+z

�"
Yt+z

�
Et
P+1

z=0 (��)
z
�

Xt
Xt+z

��
(Pm

t+z)
"
�
Pt+z
Pt

��1
Yt+z

Collecting all the terms which are not dependent on s and then log linearising the

expression yields bPm�
t = (1� ��)

+1X
z=0

(��)z dMC
m

t+z



156

Quasi-di¤erentiating the last expression

(3.76)
1

1� ��
bPm�
t =

��

1� ��
Et bPm�

t+1 + dMC
m

t

Log linearisation of (3.16) and (3.50) yields

(3.77) bPm
t =

h
(1� �) bPm�

t + � bPm
t�1

i
and

b�t = bPt � bPm
t

Combining the last two expressions with (3.76) yields

(3.78)

1

1� ��

�
1

1� �

� bPt � b�t�� �

1� �

� bPt�1 � b�t�1�� = ��

1� ��
Et

0B@ 1
1��

� bPt+1 � b�t+1�+
� �
1��

� bPt � b�t�
1CA+dMC

m

t

This can be solved (subtracting on both side bPt
�
) as

(3.79) �t = �Et�t+1 +
(1� �) (1� ��)

�

�dMC
m

t � bPt�� �Etb�t+1 + 1 + �2��
b�t � b�t�1

While the log linearisation of the production sector marginal cost yields

(3.80) dMC
m

t =
cWt � bAt

Plugging in (3.79) (3.80) and (3.77) yields

(3.81) �t = �Et�t+1+
(1� �) (1� ��)

�

�
� bXt + � bNt � bAt���Etb�t+1+1 + �2��

b�t�b�t�1
In terms of producer prices the latter can be expressed as

�mt = �Et�
m
t+1 + k

�
� bXt + � bNt � bAt + b�t�
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Derivation equation(3.30)

!t = ��Et

�
Xt

Xt+1

��
!t+1 + 1�

1

�t

A �rst order approximation yields

! (1 + b!t) = ��!
�
1 + � bXt � �Et bXt+1 + Etb!t+1�+ 1� 1

�
(1� b�t)

At steady state the latter collapses to

(3.82) 1 =
��!X�

!X�
+
1

!
� ��1

!

Collecting terms and constants and using (3.30)

(3.83) b!t = ��
�
� bXt � �Et bXt+1 + Etb!t+1�+ 1

!�
(b�t)

3.A.6. Determinacy

This section gives technical details of the determinacy exercise. Substituting (3.32) in

(3.27), (3.31) in (3.30), (3.33) in (3.35), (3.39) in (3.29) and (3.30), and (3.27) into (3.29),

(3.30), and (3.35), we can rewrite the monetary model as

(3.84) bYt = EtbYt+1
1 + �

+
�

1 + �
bYt�1 � �1� �

1 + �

�
1

�

� bRt � Et�t+1

�

(3.85) �mt = �Et�
m
t+1 +

(1� �) (1� ��)

�

��
�

1� �
+ �

� bYt � �
�

1� �
bYt�1 + b�t�

(3.86) �
�
� + �2�

1� �

� bYt + �2�

1� �
EtbYt+1 + �

1� �
bYt�1 = ��

�
Et�t+1 � bRt

�
+
1

�!
b�t
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(3.87) �t = �mt + b�t � b�t�1

(3.88) bRt = �r bRt�1 + ���
m
t + �y bYt

We represent the model in matrix form as

(3.89) A0Xt+1 = A1Xt

with

A0 =

0BBBBBBBBBBBBBBB@

�2�
1�� 0 � 1

�!
��� 0 ��

0 1 0 0 0 0

0 0 1 0 0 0

1
1+�

0 0 1
�

�
1��
1+�

�
0 � 1

�

�
1��
1+�

�
0 k

�
�
1�� + �

�
k 0 � 0

0 0 0 0 0 1

1CCCCCCCCCCCCCCCA

A1 =

0BBBBBBBBBBBBBBB@

�
�2�+�
1��

�
� �
1�� 0 0 0 0

1 0 0 0 0 0

0 0 1 1 �1 0

1 � �
1+�

0 0 0 0

0 k�
�

�
1��
�
0 0 1 0

�y 0 0 0 �� �r

1CCCCCCCCCCCCCCCA
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Xt =

0BBBBBBBBBBBBBBB@

Yt

Yt�1

�t�1

�t

�mt

Rt�1

1CCCCCCCCCCCCCCCA
The determinacy follows from the analysis of H = A�10 A1: The system is determined

when H has three eigenvalues outside the unit circle and three inside.

3.A.7. Welfare Function

We take the second order Taylor expansion to the utility function

Ut = E0

+1X
t=0

�t
�
X1��
t

1� �
� 


N1+�
t

1 + �

�

The �rst argument can be approximated as

(3.90)
X1��
t

1� �
=
X1��

1� �
+X1��

� bXt +
1

2
(1� �) bX2

t

�
+ o(3)

while the second argument

(3.91)
N1+�
t

1 + �
=
N1+�

1 + �
+N1+�

� bNt +
1

2
(1 + �) bN2

t

�
+ o (3)

Now we need to relate the labour input to output and a measure of price dispersion.

Using (3.23) and noting that there is no price dispersion across the i sectors we can write

(3.92) Nt =
Yt
At
smt
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where smt =
R 1
0

�
Pjit
Pmt

��"
dj: The latter expression can be written, following Woodford

(2003), as

(3.93) bNt = bYt � bAt + varj
"

2
(pjit)

therefore

N1+�
t

1 + �
= N1+�

�bYt + 1
2
(1 + �)

�bYt � bAt�2 + varj
"

2
(pjit)

�
+ t:i:p:+ o (3)

where t:i:p: includes all the terms which are independent of policy at time t: Using

X = (1� �)C and the second order approximation to the de�nition of Xt

(3.94) bXt =
bCt � � bCt�1
1� �

� 1
2
bX2
t +

1

2

1

1� �
bC2t � 12 �

1� �
bC2t�1 + t:i:p:+ o (3)

and putting all together, we can write the single period utility as

�t = (1� �)�� C1��
�bCt � � bCt�1 � 1

2
(1� �) bX2

t +
1

2
bC2t � 12� bC2t�1 + (1� �) (1� �)

2
bX2
t

�
+

�
N1+�

�bYt + 1
2
(1 + �)

�bYt � bAt�2 + "

2
varj (pjit)

�
+ t:i:p+ o(3)(3.95)

Collecting terms, using the in�nite sum property of the loss function and the e¢ cient

level of C and N implied by the steady state subsidy, (1� ��)
�
(1� �)�� (C

�1��
=


N�+1; we can write the loss function as

L = 
E0

+1X
t=0

�t

8><>:
(1� ��)

� bCt � bYt�� � bCt�1 � 1
2
� bC2t�1 + 1

2
(1� ��) bC2t+

�� (1��)
2
bX2
t � (1� ��)

�
1
2
(1 + �)

�bYt � bAt�2 + "
2
varj (pjit)

�
9>=>;+t:i:p+o(3)

where 
 =
�
(1� �)�� (C

�1��
: Using the second order approximation to the market

clearing condition

(3.96) bCt � bYt = 1

2
bY 2
t �

1

2
bC2t + o(3)
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we can write the loss function as

L = �
1
2
E0

+1X
t=0

�t

8><>:
� (1� ��) bY 2

t + � (1� �) bX2
t+

+((1� ��) "varj (pjit)) + (1� ��)

�
(1 + �)

�bYt � bAt�2�
9>=>;+t:i:p+o(3)

With this representation we assume that �
� bCt�1; �
� bC2t�1 are t:i:p: and we use the
fact that

lim
i!1

�t+i (1� ��) bYt+i = lim
i!1

�t+i bCt+i = lim
i!1

�t+i bC2t+i = 0
Furthermore collecting terms, we exploit the identity

(3.97)bY 2
t +

(1 + �)

�
bA2t � 2(1 + �)�

bYt bAt = �bYt � (1 + �)
�

bAt�2 + (1 + �)
�

�
�
(1 + �)

�

�2! bA2t
Moreover, noting that �


�
1���
�

��
(1+�)
�
�
�
(1+�)
�

�2� bA2t are included in the t:i:p:
term and using, following Woodford (2003),

(3.98)
+1X
t=0

�tvar (pjit) =
1

k

+1X
t=0

�t (�mt )
2 + t:i:p+ o(3)

where k = �
(1��)(1���) , we can write the linear quadratic expression for the policy

maker loss function as

(3.99) L = �
1
2
E0

+1X
t=0

�t

8><>: (1� ��) �
�bYt � (1+�)

�
bAt�2+

+� (1� �) bX2
t + (1� ��) "

�
(�mt )

2

9>=>;+ t:i:p+ o(3)

3.A.8. E¢ cient �exible price equilibrium and gap variables

Given the dynamic real ine¢ ciency along the business cycle represented by the presence

of deep habits, the e¢ cient equilibrium (in log-linear form) is carried out as the log-

linearisation of the social planner �rst order conditions. A hatted star variable, i.e.bY �
t ; represents the social planner log deviation of a variable from its steady state value

(i.e.bY �
t = log

�
Y �t
Y �

�
). The �rst step to obtain the gap variable is to log linearise the social
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planner �rst order conditions

(3.100) X���
t = ��EtX

���
t+1 + 


N��
t

At

(3.101) X�
t = C�t � �C�t�1

(3.102) Y �
t = AtN

�
t

(3.103) Y �
t = C�t

Log-linearisation of (3.100) (step-by-step)

1 =
��EtX

���
t+1

X���
t

+ 

N��
t

AtX
���
t

1 �= ��
�
1 + � bX�

t � � bX�
t+1

�
+ 


N�

X��

�
1 + � bX�

t + � bN�
t � At

�
0 �= ��

�
� bX�

t � � bX�
t+1

�
+ 


N�

X��

�
� bX�

t + � bN�
t � At

�
0 �= ��

�
� bX�

t � � bX�
t+1

�
+ 
 (1� �)� Y �+�

�
�bY �

t + � bX�
t � (1 + �)At

�
We can therefore write the log linearisation of (3.100) as

(3.104) �1 bX�
t = ���Et bX�

t+1 + �
�
(1 + �)At � �bY �

t

�
where � = 
 (1� �)� Y �+� and �1 = �(�� + �): Log-linearisation of (3.101)14 is

(3.105) bX�
t =

bY �
t � �bY �

t�1
1� �

The gap variables are therefore de�ned as ~Kt = K̂t � K̂�
t :

14in the expression we implicitly use the social planner market clearing condition.
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3.A.9. Analytical representation of the policy problem

The policy maker seeks to minimise

min
�
(1� �)�� (C

�1�� 1
2
E0

+1X
t=0

�t�t

subject to

bXt =
bYt � �bYt�1
1� �bXt =
1

1� �
EtbYt+1 � �

1� �
bYt � 1

�

�
Rt � Et�

m
t+1 � Etb�t+1 � b�t�(3.106)

1

�!
b�t = �1bYt � �2EtbYt+1 � (1 + ���) bXt(3.107)

�mt = �Et�
m
t + k

�
� bXt + �bYt � (1 + �)At + b�t�(3.108)

At = �aAt�1 + "t with " � N (0; 1)(3.109)

With �1 = 1 � �2�(1+�)
1�� , �2 = �� � ��(1+�)

1�� : Where (3.106), which represents the

demand side of the economy, is obtained combining the de�nition of habits, the de�nition

of producer price in�ation and the market clearing condition with the dynamic habit-

adjusted IS curve. The evolution of the mark up, (3.107), is derived plugging into (3.30)

the expression for the shadow value of �nal group pro�t (3.31) , the market clearing

condition and the de�nition of habit. Finally, (3.108) is the combination of the NKPC

with the production function and (3.109) is the technological progress.

Given the complexity of the minimisation we provide a numerical solution to the

policy problem.

3.A.10. Matrix Representation of the Optimal Policy

The model is augmented to include the log-linearised solution of the Social Planner�s

problem. In matrix form can be written as

(3.110) Axt+1 = Bxt + Cut + "t+1
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where xt is a n�1 vector of non-predetermined and predetermined variables, ut is a k�1

vector of policy instruments and "t+1 is a n � 1 vector of innovations with covariance

matrix �: A; B and C are matrices de�ned as

A =

0BBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1
1�� 0 0 0 0 0

0 0 0 1 0 0 0 0

0 �1 0 � (1 + ���) ��2 0 0 0

0 0 0 1 � 1
1�� � 1

�
� 1
�

0

0 0 0 �k 0 0 � 0

0 0 �� 0 0 0 0 ���

1CCCCCCCCCCCCCCCCCCCCCCA

B =

0BBBBBBBBBBBBBBBBBBBBBB@

�a 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 �
1�� 0 0 0 0 1

0 � �
1�� 0 0 1

1�� 0 0 0

0 0 0 0 0 1
�!

0 0

0 0 0 0 � �
1�� � 1

�
0 0

k (1 + �) 0 0 0 �k� �k 1 0

(1 + �) � 0 0 0 0 0 0 �1

1CCCCCCCCCCCCCCCCCCCCCCA

and C =

0BBBBBBBBBBBBBBBBBBBBBB@

0

0

0

0

0

� 1
�

0

0

1CCCCCCCCCCCCCCCCCCCCCCA
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and the vectors of the model�s variables and instruments are de�ned as

xt =

0BBBBBBBBBBBBBBBBBBBBBB@

AtbYt�1bY �
t�1bXt�1bYt
b�t
�mtbX�
t

1CCCCCCCCCCCCCCCCCCCCCCA

; ut = bRt, "t+1 = "at+1 and � = 1

In particular, the �rst row represents the technological process, the second row the iden-

tity bYt = bYt
the fourth row identi�es the de�nition of habits, the third and the last row identify

(3.104) and (3.105) which represent the log-linearised equation of the Social planner�s

solution. The �fth row represents the evolution of the markup, the sixth row is the

dynamic IS equation and the seventh row the NKPC augmented with the �nal group

markup. Following Soderlind (1999) we represent the loss function (3.41) as

(3.111) L = E0

+1X
t=0

�t
�
x
0

tQxt + x
0

tRut + u
0

tUut

�
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Given that in (3.41) there are no instruments terms, both R and U are matrix of

zeros and Q is de�ned consistently as

Q =
1

2



0BBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 �2 (1 + �) (1� ��) 0 0 0

0 ��2= (1� �) 0 0 �2 ��
1�� 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 (1� ��) � + �
1�� 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 (1� ��) "
k
0

0 0 0 0 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCA
The policy problem consists in maximising (3.110) subject to (3.111).

3.A.11. Model with Exogenous Government Spending

With respect to the model presented above the market clearing condition (log-linearised

version) is

(3.112) bYt =  bCt + (1�  ) bGt

Consistently the structural equations of the model are

(3.113) bXt =
1

1� �
Et bCt+1 � �

1� �
bCt � 1

�

�
Rt � Et�

m
t+1 � Etb�t+1 � b�t�

(3.114) �mt = �Et�
m
t+1 + k

�
� bXt + �bYt � (1 + �) bAt + b�t�

(3.115) �
�
� + �2�

1� �

� bYt + �

1� �
bYt�1 =

264 ��� bXt �
�
���+�2� 

1��

�
Et bCt+1+

� (1�  ) �
2�
1��
bGt+1 +

1
�!
b�t + ���2

1��
bCt
375



CHAPTER 4

Optimal Monetary and Fiscal Policy in a New Keynesian

Model with Deep Habit Formation

Recent work on optimal policy in sticky price models suggests that demand manage-

ment through �scal policy adds little to optimal monetary policy. We explore this con-

sensus assignment in an economy subject to �deep�habits at the level of individual goods

where the counter-cyclicality of mark-ups this implies can result in government spend-

ing crowding-in private consumption in the short run. We explore the robustness of this

mechanism to the existence of price discrimination in the supply of goods to the public

and private sectors. We then describe optimal monetary and �scal policy in our New

Keynesian economy subject to the additional externality of deep habits. Consistently with

the mainstream literature (e.i. Gali�and Monacelli (2005), Eser et al. (2009)) we �nd

that government spending adds little in the optimal stabilisation process. The stabilisation

burden is entirely left to monetary policy.

4.1. Introduction

We address the issue of how monetary and �scal policy should be set optimally as

stabilisation management tools along the business cycle. We do so in a New Keynesian

model, i.e. optimising agents, monopolistic competition and Calvo prices, augmented

with a level of valuable government spending and external deep habit formation in pri-

vate and public consumption in the sense of Ravn et al. (2006). The external habit is

formed at the level of a single good rather than on the aggregate level of consumption

as in, for example, Abel (1990). Monetary policy sets the nominal interest rate in every

period while �scal policy manages the level of public spending, balancing its budget con-

straint in every period with a non-distortive lump-sum taxation. The model so developed

167
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presents a nominal rigidity implied by the Calvo price mechanism, and two real rigidities

generated by the externality in private and public consumption that external deep habits

imply. This causes an endogenous policy stabilisation trade o¤1 between in�ation, the

consumption, output and government spending gaps. Furthermore, as shown by Ravn et

al. (2006; 2007), deep habit formation implies a further dynamic property in the �rms�

price setting behaviour, generating, ceteris paribus, an extra transmission channel for eco-

nomic policies, see for example Leith et al. (2009), and potentially a positive correlation

between private and public consumption.

The aim of this paper is to analyse how the policy trade-o¤ generated by habit

formation changes the optimal conduct of monetary and �scal policy with respect to

its basic New Keynesian model counterpart, see for example Eser et al. (2009). These

authors �nd that in a basic New Keynesian model augmented with a level of valuable

government spending, optimal policy involves a mute response of government spending

gap to shocks, i.e. government spending is always at its Social Planner- e¢ cient level. In

other words, the policy maker does not use �scal policy as a stabilisation device, leaving

the whole "stabilisation burden" in the hands of monetary policy.

The intuition for this result goes as follows: changing the government spending gap

is clearly costly in terms of welfare, because it moves government spending from its

optimal level. At the same time �scal policy is inherently ine¢ cient in adjusting in�ation

compared to monetary policy. In fact while monetary policy acts both to reduce demand,

by reducing consumption, but also to raise supply, as workers reduce their leisure in line

with consumption, government spending acts only on the demand side. Therefore moving

government spending from its e¢ cient level worsens the welfare of the representative

household and it is less e¤ective than monetary policy in stabilising price dispersion.

1As shown in Amato and Laubach (2004), the policy trade o¤ is not present when habits are of the
internal type.
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In this paper we aim to determine whether the introduction of the dynamic ine¢ -

ciencies generated by the presence of external habits in consumption and government

spending leads to a use of government spending gap as a stabilisation device.

This exercise can be seen as a natural extension of the monetary policy analysis in

a NK model augmented with deep habits presented in Leith et al. (2009). The authors

�nd that the presence of a policy trade o¤ generated by the introduction of external

deep habits, results in monetary policy (under full commitment) aiming to fully stabilise

the price level as its principal policy objective, leaving the output gap (and therefore

consumption gap) to rise above its e¢ cient level. Here we study whether and how the

policy maker uses �scal policy in order to reduce this over consumption.

The main �nding of the paper is that, as in the basic New Keynesian model analysed in

Eser et at. (2009), the government spending gap plays a very small role in the stabilisation

of the economy following a shock. The presence and the use of endogenous government

spending is negligible and the policy analysis that emerges is almost isomorphic to the

one presented in Leith et al. (2009). Both qualitatively and quantitatively the di¤erences

present in the impulse response functions analysis of this model and in that of Leith et

al.(2009) are very small and negligible. As in Eser et al. (2009) �scal policy does not

improve the policy trade o¤ and is dynamically ine¢ cient as a stabilisation device when

compared to its monetary counterpart.

The remainder of the paper is as follows: section 4:2 presents the model, section 4:3

discusses optimal full commitment policy and �nally section 4.4 concludes.

4.2. The Model

The economy is comprised of households, two monopolistically competitive production

sectors, a monetary authority and a government. There is a continuum of �nal goods

that enter the households�and the government�s consumption baskets, each �nal good

being produced as an aggregate of a continuum of intermediate goods. The households
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and the government form external consumption habits at the level of each �nal good in

their basket. Ravn et al. (2006) label this type of habits as �deep�.

4.2.1. The Households

The economy is populated by a continuum of perfectly rational, in�nitely-lived households

uniformly distributed on the unit interval and indexed by k. Each of these has preferences

over a set of di¤erentiated types of products (i.e. wine, cheese etc.), Ck
it: Types of product

are indexed by i. Moreover, each of these types of goods is formed by a continuum of

speci�c "brand" products, Ck
jit; indexed by j. Moreover households derive disutility from

labour e¤ort, Nk
t ; which is supplied in a perfectly competitive labour market, and derive

utility from a composite level of habit-adjusted public spending Xg
t ; and have access to

perfect and complete �nancial markets. The introduction of government spending in the

utility function is a commonly used shortcut to give value to public consumption, see for

example Galí and Monacelli (2005) and Leith and Wren-Lewis (2008). Following Ravn

et al. (2006), it is assumed that preferences show external habit formation at the level

of each type of product i, rather than, as in Abel (1990), at a �nal composite good level.

For this reason our assumption on habit formation is commonly de�ned as "deep habits".

This can be formulated as

(4.1) Xc;�
t =

�Z 1

0

(C�
it � �Cit�1)

��1
� di

� �
��1

where Xc;�
t represents the habit-adjusted consumption basket of the consumer �, C�

it

identi�es the amount of consumption of each good i, Cit�1 is the cross sectional average

of aggregate consumption of the generic good i in period t � 1, � represents the deep

habits parameter in consumption habit and � is the elasticity of substitution among i

goods and is a measure of monopolistic power. The cost minimisation problem implies

that the representative consumer minimises, exploiting any price di¤erences present in
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the system, the total expenditure as

(4.2) min
fC�itg

Z 1

0

PitC
�
itdi

subject to (4.1). In (4.2), Pit identi�es the price of good i. From the minimisation

problem, one can infer the demand for each good i, as C�
it =

�
Pit
Pt

���
X�
t + �Cit�1 and the

aggregate consumer price level as Pt =
�R 1

0
(Pit)

(1��) di
� 1
1��

:

The representative consumer�s stream of utility function is

(4.3) E0

1X
t=0

�t

 
(X�

t )
1��

1� �
� �

(N�
t )
1+'

1 + '
+ �G

(Xg
t )
1��

1� �

!

where � is the discount factor, E is the rational expectation operator, N�
t is the amount

of labour supplied in the Walrasian labour market by the consumer �, Xg
t is the habit-

adjusted public spending consumption, � is the CRRA parameter, ' is the Frisch inverse

parameter on the disutility of labour, and � and �G are the relative weights consumers

put on labour and public consumption. The utility maximisation problem consists in

maximising (4.3) subject to the nominal budget constraint

(4.4) PtX
�
t + Pt#t + EtQt;t+1D

�
t+1 = WtN

�
t +D�

t + �
�
t � PtT

�
t

where #t = �
R 1
0

�
Pit
Pt

�
Cit�1di. Qt;t+1 is the stochastic discount factor, D�

t+1 is the begin-

ning of the period portfolio of state contingent assets, Wt is the nominal wage, �t are the

pro�ts from the ownership of �rms and T �t is a lump sum taxation. The standards �rst

order conditions are the habit-adjusted Euler equation

(4.5) 1 = �RtEt

��
X�
t

X�
t+1

��
Pt
Pt+1

�

and the habit-adjusted consumption-leisure decision

(4.6) � (N�
t )

' (X�
t )
� =

Wt

Pt
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where Rt =
1

Et(Qt;t+1)
, implied by the non arbitrage condition, represents the nominal

return on a riskless one period bond paying o¤ a unit of currency in t + 1. Condition

(4.6) simply states that real wage is equal to the marginal rate of substitution between

consumption and leisure, while condition (4.5) is the habit-adjusted Euler equation. It

states that households tend to smooth habit-adjusted consumption across periods taking

into account the opportunity cost represented by the real interest rate, such that the

marginal rate of substitution is the same across periods.

4.2.2. The Government

While it is natural to think of households failing to internalise the impact of their con-

sumption decisions on the utility of others, it is less obvious that government spending

decisions are subject to a similar externality if spending is on global public goods. How-

ever, if public goods are local then the externality in government consumption can occur

at a local level. Controversies over �post-code lotteries� in health care and other local

services (Cummins, Francis, and Co¤ey (2007)) and comparisons of regional per capita

government spending levels (MacKay (2001)) indicate that households care about their

local government spending levels relative to those in other constituencies. We therefore

allow for these e¤ects in public consumption, but will assess how optimal policy varies

as we alter the extent of such externalities. It is important to note that, although the

national government is aware of the externality in the households�perception of pub-

lic goods provision, in allocating public spending across goods, they are bound by the

experience of that spending within each household.

In other words, this is not a model of pork-barrel politics where local politicians

over-provide local services which are �nanced from universal taxation2, but simply one

in which public goods are local in nature and households care about the provision of

individual public goods in their constituency relative to other constituencies.

2For a model of pork-barrel politics with vote-trading and alternative voting mechanisms, see Chari and
Cole (1995).
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Assuming, for simplicity, that each household de�nes an area associated with a local

public good, the government decides for each household on the provision of individual

public goods so as to maximize the aggregate Xg;

t that enters household ��s utility

function, given the allocated level of aggregate spending, Git�1, from the previous period,

the problem can be formalised as follows

max
fG
itg

Xg;

t =

�Z 1

0

(G

it � �Git�1)

��1
� di

� �
��1

(4.7)

s:t

Z 1

0

PitG


itdi � PtG



t(4.8)

where � represents the government�s constituency habits parameter and within this chap-

ter we maintain the assumption that consumers and government have the same degree

of habits.

In the same fashion as for the consumer problem, it is relatively straightforward to

infer the demand of each i good

(4.9) G

it =

�
Pit
Pt

���
Xg;

t + �Git�1

Furthermore the each government department balances its budget as

(4.10) PtX
g;

t + Pt#

g
t = PtT



t

where #g = �
R 1
0

�
Pit
Pt

�
Git�1di:

4.2.3. Firms

The production sector is assumed to be formed by two groups. One group, that we call

for simplicity "production group", is formed by a continuum of �rms indexed by j, each of

whom produces in a monopolistic competitive environment a single variety of j products.

In each period each j �rm sells all its products to the second group, formed again

by a continuum of �rms indexed by i; that we call "�nal group", which aggregates the j
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products creating the i ones, and sells them in a monopolistic competitive environment

to the households. Both types of �rm are assumed to be price setters and to take as

exogenous all the actions carried out by other �rms of the same group.

4.2.3.1. Production Group. This group is assumed to have a linear labour intensive

production function of the type Yjit = AtNjit where At identi�es the common technology,

Yjit the total products of variety j; and Njit the total labour input required to produce

Yjit. Each �rm of this group has two constraints. The �rst is given by the demand of

each good Yjit =
�
Pjit
Pmit

��"
Yit; where Yit = Cit + Git; " > 1 and Pm

it is a measure of the

general producer price level. The �rm�s cost minimisation problem implies that

MCm
t = (Wt=At) (1� {)

where MCm
t identi�es the nominal marginal cost

3 for a �rm j at time t and { represents

a steady state subsidy �nanced by the consumers which will be discussed in detail later.

In real terms

(4.11) mcmt =
MCm

t

Pt
=
Wt=Pt
At

(1� {)

The �rm j0s real pro�ts are given by �jit
Pt

=
�
Pjit
Pt
�mcmt

�
Yjit , and the pro�ts in the

production sector as a whole follow

(4.12)
Z 1

0

Z 1

0

�jit
Pt

djdi = �mt

When all the �rms can adjust their prices in each period, they set their prices according

to
Pm�
it

Pt
=

�
"

"� 1

�
mcmt = �mmcmt

where �m represents the production sector mark up due to the monopolistic competitive

environment.

3Given the assumption on the labour market that marginal costs are common across the production
group, we dropped the index j:
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However, we assume that in order to change optimally its prices each production �rm

has to participate to the "Calvo lottery". If it is chosen (with probability 1� �), it can

optimally reset its prices, otherwise (with probability �) it keeps its prices unchanged.

When a �rm can change its prices it takes into account the expected discounted value of

current and future pro�ts. The problem can be formalised as follows

max
P �jit

Et

+1X
z=0

�zqt;t+z

��
P �jit
Pt+z

�
Yjit+z �mcmt+iYjit+z

�
(4.13)

z:t: Yjit+z =

�
Pjit
Pm
it+z

��"
Yit+z(4.14)

where qt;t+z is the real discount factor de�ned as

(4.15) qt;t+z = �z
ux (Xt+z;Nt+z)

ux (Xt;Nt)
= �z

�
Xt

Xt+z

��
or alternatively

qt;t+z = Qt;t+z
Pt+z
Pt

Given that all the j companies that re-optimise operate the same choice, the �rst order

condition with respect to Pm�
it can be expressed as follows

(4.16)
Pm�
it

Pt
=

�
"

"� 1

�
Et
P+1

z=0 �
zqt;t+z

�
mcmt+z

�
Pm
it+z

�"
Yit+z

�
Et
P+1

z=0 �
zqt;t+z

�
Pm
it+z

�" �Pt+z
Pt

��1
Yit+z

while the aggregate price level for the production group follows

(4.17) P
m(1�")
it =

h
(1� �)P

m�(1�")
it + �P

m(1�")
it�1

i
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4.2.3.2. Final product group. The �nal product group uses the j products as an

input in order to produce i products according to the technology

(4.18) Yit = F (Yjit) =

�Z 1

0

(Yjit)
1�1=" dj

�1=(1�1=")

Firms are price setters. In exchange they must stand ready to satisfy demand at the

announced prices. Formally �rm i must satisfy
hR 1
0
(Yjit)

1�1=" dj
i1=(1�1=")

� Yit. Given

(4.18) the nominal pro�ts of each �rm i in period t are

(4.19) �it = PitYit �
Z 1

0

PjitYjitdj = (Pit � Pm
it )Yit

On average each i �rm pays Pm
it to produce an additional unit

4 of Yit and charges, for

the same product, Pit to the households. The marginal cost for each �rm i is therefore

MCit = Pm
it ; or in real terms mcit =

Pmit
Pt
; while the (real) pro�t function can be expressed

as

(4.20)
�it
Pt
=

�
Pit
Pt
�mcit

�
Yit =

�
Pit � Pm

it

Pt

�
Yit

The mark up of the generic �rm i is de�ned as �it =
Pit
MCit

; and the average mark up

charged in the economy

(4.21) �t =
Pt
MCt

=
Pt
Pm
t

while the aggregate demand for each i product can be expressed as

(4.22) Yit =

�
Pit
Pt

���
(Xt +Xg

t ) + �Yit�1

where Xt =
R 1
0
X�
t d� and Xg

t =
R 1
0
Xg
t dg are measures of aggregate demand. This

demand function generates a procyclical behaviour of its price elasticity. Indeed, when

4This can be found formally from the cost minimization problem of the �rm

min
yjit

Z 1

0

PjitYjitdj + �t

 
Yit �

�Z 1

0

(Yjit)
1�1="

dj

�1=(1�1=")!
where �jit; the Lagrangian multiplier, identifying the marginal costs, is equal to P

m
it :
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for any reason there is an upward shift in the aggregate demandXt or ceteris paribus, X
g
t ,

the importance in (4.22) of the price elastic term
�
Pit
Pt

���
increases, hence reducing the

relative importance of �Yit�1, which, given its habit origin, is by de�nition inelastic. Hence

as pointed out by Ravn et al (2006), this generates a co-movement between aggregate

demand and price elasticity of demand. Given the negative relationship between markup

and price elasticity, this feature of the model implies countercyclical mark ups at the �nal

group level.

The �rm�s problem consists of choosing processes Pit and Yit given the processes

fPm
it ; Pt; Qt;t+z; Xt; X

g
t g so as to maximise the present discounted value of real pro�ts

(4.23) Et

+1X
z=0

qt;t+z
�it+z
Pt+z

subject to (4.22). The Lagrangian can be written as

� = Eo

+1X
t=0

q0;t

(�
Pit � Pm

it

Pt

�
Yit + !it

"�
Pit
Pt

���
(Xt +Xg

t ) + �Yit�1 � Yit

#)

where !it is the Lagrangian multiplier related to (4.22). The �rst order conditions are

(4.24)
d�

dYit
= 0) !it =

�
Pit � Pm

it

Pt

�
+ �Etqt;t+1!it+1

(4.25)
d�

dPit
= 0) Yit = �!it

�
Pit
Pt

��(�+1)
(Xt +Xg

t )

with the market clearing conditions Yit = Cit +Git:

The variable !it; representing the Lagrangian multiplier to the �nal group �rm prob-

lem, can be interpreted as the shadow value of pro�ts given by the sale of an extra unit

of good i at time t: Indeed, (4.24) has two components: the �rst one, represented by�
Pit�Pmit

Pt

�
; identi�es the contemporaneous increase in marginal pro�t derived by an extra

unit sold in time t. The second derives directly from the deep habit assumption. In

fact, given the shape of habits, for each unit sold today the �rms will sell � units of
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the same good in the next period. This intertemporal e¤ect on marginal pro�ts is here

represented by �Etqt;t+1!it+1: On the other hand, (4.25) states that each i �rm chooses

its optimal price Pit where the marginal bene�t of a unit increase in prices, identi�ed

by Yit; is equal to its marginal cost (in terms of reduction in demand) represented by

!it

�
Pit
Pt

��(�+1)
(Xt +Xg

t ).

4.2.4. Aggregation

This section describes the model in terms of aggregate variables. At the intermediate

level the market clearing condition implies

�
Pjit
Pm
it

��"
(Yit) = AtNjit 8j;8i

Aggregating over j0s yields

(4.26) sit (Yit) = AtNit

where sit =
R 1
0

�
Pjit
Pmit

��"
dj and it represents the price dispersion in the intermediate

producer sector. Given the symmetry in the �nal sector we can drop the i index

(4.27) stYt = AtNt

where st =
R 1
0

�
Pmjt
Pmt

��"
di: While aggregate real pro�ts are

(4.28) �t = Yt � (1� {)
Wt

Pt
Nt

and on the demand side the market clearing condition implies

(4.29) Yt = Ct +Gt

Given the presence of two production sectors and therefore of two di¤erent price levels,

Pt, i.e. consumer price index (CPI) and Pm
t ; i.e. producer price index (PPI), the system
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has two di¤erent in�ation rates as well, �t and �mt : These are related as

(4.30) �t =
�t
�t�1

�mt

4.2.5. Log-linear system

We focus on a symmetrical equilibrium. This is represented by (4.1), (4.5), (4.6), (4.7),

(2.54), (4.17), (4.21), (4.24), (4.25), (4.27), (4.29) and (4.30) from which, given the

homogeneity across households (they all supply the same amount of labour and consume

the same basket of goods), production �rms (when extracted from the Calvo lottery

choose the same price) and �nal �rms (all the i �rms choose the same price and supply

the same quantity of goods), it is possible to eliminate from the above condition the

superscript and the subscripts i and j. We log-linearise the equilibrium conditions around

the non-stochastic-zero in�ation steady state. We de�ne a hatted variable as the variable

log-deviation from its steady state value, i.e. bKt = log
�
Kt

K

�
: This gives us the following

system of equations

(4.31) bXt =
1

1� �

� bCt � � bCt�1�

(4.32) bXg
t =

1

1� �

� bGt � � bGt�1

�

(4.33) � bXt + ' bNt = bwt
(4.34) bXt = Et bXt+1 �

1

�

� bRt � Etb�t+1�

(4.35) bYt = b!t + � bXt + (1�  ) bXg
t

�

(4.36) b!t = 1

�!
b�t + ��Etb!t+1 + ��

� bXt � Et bXt+1

�
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(4.37) bYt = bAt + bNt

(4.38) bYt =  bCt + (1�  ) bGt

(4.39) bPm
t = � bPm

t�1 + (1� �) bPm�
t

(4.40) �mt =
bPm
t � bPm

t�1

b�t = bPt � bPm
t

(4.41) �t = �mt + b�t � b�t�1

(4.42) �mt = �Et�
m
t+1 +

(1� ��) (1� �)

�

�
� bXt + 'bYt � (1 + ') bAt + b�t�

This framework shares the basic building block with the NK model augmented with

external deep habits presented in Leith et al. (2009). The only di¤erence is represented

by the presence of public spending that enters in the utility function of the representative

consumer. This short cut is used to give intrinsic value from a social planner point of

view to government spending, see, for example, Galí and Monacelli (2008) and Leith and

Wren-Lewis (2008). As a consequence, government spending becomes an endogenous

policy instrument which can be used as a stabilisation device.
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4.3. Optimal Policy

We compute optimal policy following the technique proposed by Woodford (2003).

First we consider the Social Planner problem, and then we compare this with the non-

stochastic steady state in order to derive the optimal subsidy which can ensure that the

steady state variables are at their socially optimal level. Next we derive the policy maker

loss function as a second order approximation of the utility function of the representative

consumer which assesses the extent to which endogenous variables di¤er from the e¢ -

cient equilibrium due to the nominal inertia and the private and public overconsumption

generated by external habit formation. Finally, we minimise this loss function subject to

the log-linearised structural equations of the model.

4.3.1. The Social Planner�s Problem

The social planner is not constrained by the price mechanism and simply maximises the

representative household�s utility, (4.3), subject to the de�nition of both private and

public habits formation (4.1) and (4.7), to the production function, (4.27), and resource

constraints, (4.29). This yields the following �rst order conditions5,

� (N�
t )
'

(X�
t )
�� = At

"
1� ��Et

�
X�
t+1

X�
t

���#

(X�
t )
�� � ��Et

�
X�
t+1

���
= �g (Xg�

t )
�� � �g��Et

�
Xg�
t+1

���
where we introduce the �*�superscript to identify the e¢ cient level of that variable. Not

surprisingly, given the dynamic nature of habit persistence the Social Planner�s problem

has a dynamic nature. Calculating the Social Planner�s steady state, we can derive the

optimal subsidy as

{ = 1� 1

1� ��

��
1� 1� ��

(1� �) �

�
"� 1
"

�

5A detailed derivation of the Social planner problem can be found in Appendix A.
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while the optimal government spending rule is such that it implements

�
 �

1�  �

���
= �g

The previous Social Planner�s �rst order conditions can be log-linearised around the

socially optimal steady state so as to obtain

(4.43) bY �
t = bC�t = bG�t

It is therefore optimal to have equal �uctuations in the various components of the ag-

gregate output. From this we can derive the Social Planner�s Euler equation in terms of

output as

(4.44) bY �
t = ��&EtbY �

t+1 + �& bY �
t�1 +

�
1 + '

�

�
& bAt

where � � �
(1���)(1��) and & =

1
1+�2�+'

�

: Henceforth we de�ne a gap variable as the dif-

ference between the log-deviation level of a variable and its correspondent social planner

log-linearised level, i.e. bKgap
t = bKt � bK�

t .

4.3.2. Policy Maker Loss Function

The policy maker loss function can be written as6

(4.45) L =
1

2

 E0

+1X
t=0

�t�t + t:i:p+ o(3)

where �t; representing the instantaneous loss function, is

�t =

8><>: (1� ��)'
�bYt � (1+')

'
bAt�2 +  � (1� �) bX2

t+

+(1� ��) "
�
(�mt )

2 + (1�  )� (1� �) ( bXg
t )
2

9>=>;
and 
 =

�
(1� �)�� (C

�1��
:

6Appendix A presents the step-by-step derivation of the second order approximation of the representative
household�s utility function around the e¢ cient non stochastic steady state.
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This loss function contains quadratic terms of producer price in�ation, which re�ects

the cost of price dispersion, output and habit-adjusted private and public consumption

which can be interpreted as the cost associated with deviation from the steady state of

the real side of the economy. This formulation is particularly appealing as the weight

associated with each component of the loss function derives in a microfounded way from

the deep parameters of the model.

A few aspects are worth stressing. First of all, the presence of the optimal steady

state subsidy is a key assumption for the derivation of a quadratic expression suitable

for policy analysis. Secondly, while this welfare measure has the same basic components

as a benchmark New Keynesian model augmented with government spending (without

externalities due to consumption habits), see for example Leith and Wren-Lewis (2008),

this welfare measure looks di¤erent, in that it does not contain a single real �variable

gap�, de�ned as the di¤erence between a variable and its �ex-price level. However, the

current set-up is conceptually similar. The variables gap terms in the standard analysis

captures the extent to which a variable deviates from its e¢ cient level (typically because

of nominal inertia, rather than any other distortion). In a model with external private

and public habits, there are additional externalities which means that the �exible price

equilibrium is unlikely to be e¢ cient, such that it is not possible to rewrite variables in

gap form due to the presence of a dynamic real rigidity along the business cycle (i.e.

Deep Habits), and despite the steady state subsidy, the �exible price equilibrium implied

by the model is not e¢ cient. For this reason we decide to keep the loss function and

therefore the model in log deviation from steady state, rather than expressing the policy

problem in gap variable from the �exible price equilibrium.

4.3.3. Optimal Commitment and Calibration

If the central authority can credibly commit to following its policy plans, it then chooses,

through an appropriate pattern of nominal interest rate and government spending, the
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policy that maximises households�welfare subject to the private sector�s optimal behav-

iour, as summarised in equations (4.31) - (4.42), and given the exogenous process for

technology. Appendix A gives analytical details of the optimal commitment policy. Here

we present the numerical results.

The model is calibrated to a quarterly frequency. We �x the discount rate � to 0:99:

This value implies an annual real interest rate of 4% which is in line with most of the

macroeconomic literature: The relative weight on labour � and that on government �g in

the utility function are assumed to be 3 and 0:75 respectively. The risk aversion parameter

� is set at 2:0, while ' equals 0:25. We set these parameters�value following the estimation

and calibration results of Galí et al. (2007) and Leith and Malley (2005). Consistent with

the empirical evidence, the level of price inertia parameter, �; is set at 0:75: This value

implies that on average prices remain �xed on average for one year. The degree of market

power is 1:21, split approximately equally between the two monopolistically competitive

sectors of our economy. The steady state value of the markup in the �nal goods sector is

given as � =
�
1� 1���

����

��1
, and depends on both the elasticity of substitution between

�nal goods � and the degree of habit formation �. However, the impact of � on the markup

� is minimal and we therefore set � = " = 11. For the habit formation parameter �, we

use a benchmark value of 0:65, which falls within the range of estimates identi�ed in

the literature, see for example Smets and Wouters (2008). However, we allow � to vary

in the [0; 1) interval as we conduct sensitivity analyses of our results. The steady state

ratio between private consumption and total output,  ; is �xed to 0:75; a value most

used in the literature, see for example Galí et al (2007). Technology shocks are assumed

persistent with persistence parameter � = 0:9:

In face of such a shock, the policy maker cannot simultaneously stabilise producer

price in�ation, the output gap and government spending gap. The reason for this is

that the central authority has two policy instruments- the nominal interest rate and

government spending- while the system displays three rigidities: a nominal rigidity, i.e.

the price dispersion, generated by Calvo price setting at the production level, and two



185

real rigidities, i.e. consumption externality both at private and public level, generated by

external (deep) habits both at the consumer and government level. Instead, while nominal

inertia points to a relaxation of monetary policy in the face of a positive technology shock

to boost aggregate demand, private and public consumption externalities suggest that

the higher aggregate demand this entails need not be desirable.

Figure 4.1 reports the impulse response functions to a 1% technology shock under

optimal monetary and �scal full commitment policy. At the time of the shock monetary

policy cuts the nominal interest rate in order to boost aggregate demand and therefore

stabilise price dispersion. As a consequence, private households substitute their current

consumption and leisure from future to the present. Therefore, aggregate output in-

creases and hours worked decrease. These two e¤ects put pressure on the demand side

of the labour market, generating an increase in real wages. Furthermore, the presence

of deep habits causes �nal �rms to respond to this increase in total demand cutting

their prices in order to expand their sales base and induce consumption habits in their

product, generating a further increase in real wages and total demand. Because the pol-

icy is expansionary, we can implicitly say that the ine¢ ciency due to price stickiness is

dominating over the real rigidities caused by the consumption externality. As the degree

of importance of habits increases, in�ation stabilisation remains the primary goal and

the policy maker su¤ers a widening (positive) output and consumption gap due to both

private and public consumption externality. However, once the degree of habits passes

a certain level (� = 0:75), real interest rates actually rise initially, as policy makers seek

to dampen the initial rise in consumption which imposes an undesirable externality on

households and government as they fail to internalise the impact of their consumption

decisions on others.

Fiscal policy reacts to the positive technology shock increasing government spending,

however keeping it very close to the social planner level, i.e. the government spending gap

is negligible. Government spending gap is not used as a stabilisation instrument despite
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the presence of a policy trade o¤. In other words, when monetary policy is unconstrained,

government spending gap does not respond to shocks.

This result was �rst noted by Eser et al. (2009). These authors analyse a simple

cashless NKmodel augmented with a level of (valuable) government spending. They show

that in a small open economy in the fashion of Gali and Monacelli (2005), the optimal

policy response to shocks, independently of whether these shocks are e¢ cient or not,

implements a zero government spending gap, therefore leaving the whole "stabilisation

burden" to monetary policy.

The intuition for this result goes as follows: changing the government spending gap is

clearly costly because it moves government spending away from the optimal provision of

public goods. At the same time such a policy does not improve the stabilisation trade-o¤.

The reason for this lies in the fact that �scal policy is inherently ine¢ cient compared

to monetary policy in adjusting in�ation. In fact while monetary policy acts both to

reduce demand, by reducing consumption, but also to raise supply, as workers reduce

their leisure in line with consumption, government spending acts only on the demand

side.

This result holds in our model and is almost insensitive to changes in the deep habit

parameter, i.e. �: Independently from private and public consumption externality gener-

ated by external habits, monetary policy remains the most e¢ cient stabilisation instru-

ment in�uencing both the demand side of the economy through the Euler equation and

the supply side of the economy both at the production level, via a change in the supply

of labour and at the �nal level, via the intertemporal e¤ect of a change in the interest

rate on the �nal group pricing decisions.

4.4. Conclusions

This paper derives a small New Keynesian model augmented with deep habits forma-

tion in private and public consumption in the sense of Ravn et al. (2006) and a level of

valuable government spending.
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We compute optimal commitment monetary and �scal policy using a linear quadratic

technique. In the presence of a nominal rigidity due to sticky prices and two real rigidities

due to externality in consumption and government spending, the policy maker faces a

stabilisation trade o¤ even in the face of a technology shock. Furthermore we �nd that

despite the policy trade o¤, deviations of government spending from its e¢ cient level

are negligible. In other words, government spending is not used as a policy stabilisation

device while all the "stabilisation burden" is left to monetary policy. As in the monetary

economy counterpart of this model, see for example Leith et al (2009), monetary policy�s

principal objective is price stabilisation. As a result the system experiences both positive

output and consumption gap. Moreover, due to the presence of deep habits formation,

optimal policy implies a countercyclical behaviour of �rms�markup together with a hump-

shaped behaviour of all the real variables.
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4.5. Figures
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Figure 4.1. IRF�s to a 1% technology shock. Optimal commitment policy.
Solid line � = 0:4; dashed line � = 0:65 (baseline value), line dots � = 0:75:



189

4.A. Appendix

4.A.1. Equilibrium

Here we list the equilibrium condition described as system of non-linear equations

(4.46) Xc
t = Ct � �Ct�1

(4.47) Xg
t = Gt � �Gt�1

(4.48) � (Nt)
' (Xc

t )
� =

Wt

Pt
= wt

(4.49) 1 = �RtEt

��
Xt

Xt+1

��
(�t+1)

�1
�

!t =

�
1� 1

�t

�
+ �Etqt;t+1!t+1(4.50)

Yt = �!t

�
Pit
Pt

��(�+1)
(Xt +Xg

t )(4.51)

(4.52) Gt + {wtNt = Tt

(4.53) st =

Z 1

0

�
Pm
it

Pm
t

��"
di = (1� �)

�
Pm�
t

Pm
t

��"
+ � (�mt )

�" st�1

(4.54) stYt = AtNt

(4.55) Yt = Ct +Gt
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(4.56) (Pm
t )

1�" = �
�
Pm
t�1
�1�"

+ (1� �) (P �mt )1�"

(4.57)
Pm�
t

Pt
=

�
"

"� 1

�
Et
P+1

z=0 �
zqt;t+z

�
mcmt+z

�
Pm
it+z

�"
Yit+z

�
Et
P+1

z=0 �
zqt;t+z

�
Pm
it+z

�" �Pt+z
Pt

��1
Yit+z

(4.58) mct =
wt
At

(4.59) �t = Yt � (1� {)wtNt

(4.60) �mt = �t
�t�1
�t

(4.61) lnAt = �a lnAt�1 + �t with � i:i:d:
�
0; �2�

�

(4.62) Etqt;t+1 = �Et

�
Xt

Xt+1

��

(4.63) �t =
Pt
Pm
t

�mt =
Pm
t

Pm
t�1

(4.64)

�t =
Pt
Pt�1

(4.65)

4.A.2. Steady State

This paragraph describes the non-stochastic steady state. We make the assumption that

there is no trend in�ation. Therefore s = 1:
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(4.66) X = (1� �)C

(4.67) Xg = (1� �)G

(4.68) � (N)' (X)� =
W

P
= w

(4.69) 1 = �R

! =

�
1� 1

�

�
+ ��!(4.70)

Y = �! (X +Xg)(4.71)

(4.72) G+ {WN = T

(4.73) Y = N

(4.74) Y = C +G

(4.75) Pm =
"

"� 1MC

(4.76) mc =
w

A

(4.77) � = Y � (1� {)wN
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(4.78) � =
P

Pm

(4.79) p� =
P �

P

Therefore

(4.80) R =
1

�
Interest Rate

(4.81) ! = (� (1� �))�1 Shadow price of private consumption

(4.82) � = (1� (1� ��)!)�1 goods mark up

(4.83) mc =
1

�

�
"� 1
"

�
Marginal costs producers

(4.84) w =
1

�

�
"� 1
"

�
Wages

(4.85)
P �

P
=
1

�
Producer optimal relative price

We �x the steady state ratios

(4.86)
C

N
=
C

Y
=  
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The labour supply becomes

� (N)' ((1� �) N)� = w

� (1� �)�  �N'+� =
1

�

�
"� 1
"

�
(4.87)

4.A.3. Social Planner

The Social planner maximises

max
fX�

t ;X
g�
t ;N�

t ;C
�
t ;G

�
t g
E0

1X
t=0

�t

 
(X�

t )
1��

1� �
� �

(N�
t )
1+'

1 + '
+ �g

(Xg�
t )

1��

1� �

!

subject to

AtN
�
t = C�t +G�t

X�
t = C�t � �C�t�1

X�g
t = G�t � �G�t�1

Calling Lsp the associated Lagrangian to this maximisation problem and z1;t; z2;t and

z3;t the Lagrangian multipliers of each constraint, the �rst order conditions are

�Lsp

�Xc�
t

= 0! (X�
t )
�� = �z2;t

�Lsp

�Xg�
t

= 0! �g (Xg�
t )

��
= �z3;t

�Lsp

�N�
t

= 0! � (N�
t )
'

At
= z1;t

�Lsp

�C�t
= 0! �z1;t + z2;t � ��Etz2;t+1 = 0

�Lzp

�G�t
= 0! �z1;t + z3;t � ��Etz3;t+1 = 0

After some manipulations

(4.88)
� (N�

t )
'

(Xc�
t )

�� = At

"
1� ��Et

�
X�
t+1

X�
t

���#
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(4.89) (X�
t )
�� � ��Et

�
X�
t+1

���
= �g (Xt)

�� � �g��Et
�
X�
t+1

���
At steady state the two above conditions collapse to

(4.90) � (N�)' (X�)� = (1� ��)

and

(4.91) (1� ��) (1� �)�� (C�)�� = �g (1� ��) (1� �)�� (G�)��

The latter implies

(4.92)
�
C�

G�

���
= �g

Now de�ning the Social Planner steady state ratio as

(4.93)
C�

N� =  �

we can write the expression for N� as

(4.94) (N�)�+' =
(1� ��)

� (1� �)�  ��

and

(4.95)
�

 �

1�  �

���
= �g

Therefore the optimal subsidy follows

(4.96) { = 1� 1

1� ��

��
1� 1� ��

(1� �) �

�
"� 1
"

�
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Next we log-linearise the Social Planner�s equation around the steady state. This

methodology allows us to derive the welfare relevant gap variables.

(4.97) bX�
t = ��Et bX�

t+1 +
1� ��

�

� bAt � ' bN�
t

�

(4.98) bX�
t � ��Et bX�

t+1 =
bXg;�
t � ��Et bXg;�

t+1

(4.99) bY �
t =

bAt + bN�
t

(4.100) bY �
t =

�
C�

Y �

� bC�t + �1� C�

Y �

� bG�t

(4.101) bX�
t =

1

1� �

� bC�t � � bC�t�1�

(4.102) bXg;�
t =

1

1� �

� bG�t � � bG�t�1�
Using the aggregate constraint and the de�nitions of habit-adjusted private and public

consumption, the Euler equation can be re-written as

(4.103)
�
1 + �2� +  �

'

�

� bC�t = ��Et bC�t+1 + � bC�t�1 � (1�  �)
'

�
bG�t + �1 + '�

� bAt
While the equation on consumption becomes

(4.104)
�
1 + �2�

� � bC�t � bG�t� = ��Et

� bC�t+1 � bG�t+1�+ �
� bC�t�1 � bG�t�1�

The solution of the latter takes the form
� bC�t � bG�t� = a

� bC�t�1 � bG�t�1� : In order to have
a stationary solution, the coe¢ cient a has to be less that one in modulus. In order to check

this, it is easy to show one should solve the quadratic expression ��a2�
�
1 + �2�

�
a+� = 0:
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The only solution less than one is a = �: Therefore the stationary solution for the private

public consumption balance is
� bC�t � bG�t� = �

� bC�t�1 � bG�t�1� : Assuming that bC��1 =bG��1 = 0; it is optimal to have equal �uctuation of the two components of aggregate

output bC�t = bG�t
Given this allocation, we can write the Euler equation in terms of output as

(4.105) bY �
t = ��&EtbY �

t+1 + �& bY �
t�1 +

�
1 + '

�

�
& bAt

where � � �
(1���)(1��) and & =

1
1+�2�+'

�

:

4.A.4. Loss Function

Here we derive the second order approximation to the utility function

(4.106) U =
+1X
t=0

�t
�
X1��
t

1� �
� 


N1+'
t

1 + '
+ �

Xg1��
t

1� �

�

The �rst term can be approximated as

X1��
t

1� �
=
X1��

1� �
+X1��

� bXt +
1

2
(1� �) bX2

t

�
+ o(3)

the second as

N1+'
t

1 + '
=
N1+'

1 + '
+N1+'

� bNt +
1

2
(1 + ') bN2

t

�
+ o (3)

and the third one as

(4.107)
(Xg

t )
1��

1� �
=
(Xg)1��

1� �
+ (Xg)1��

� bXg
t +

1

2
(1� �) ( bXg

t )
2

�
+ o(3)

Furthermore, we can write that

(4.108) Nt =
Yt
At
�t
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where �t =
R 1
0

�
Pjit
Pmt

��"
dj: The latter expression can be written, following Woodford

(2003) as

(4.109) bNt = bYt � bAt + varj
"

2
(pjit)

the labour term can be rewritten as

N1+'
t

1 + '
= N1+'

�bYt + 1
2
(1 + ')

�bYt � bAt�2 + varj
"

2
(pjit)

�
+ t:i:p:+ o (3)

Using that Xg = (1� �)G, and the second order approximation to the de�nition of

Xg
t

(4.110) bXg
t =

bGt � � bGt�1

1� �
� 1
2
( bXg

t )
2 +

1

2

1

1� �
bG2t � 12 �

1� �
bG2t�1 + t:i:p:+ o (3)

1
 
C = N and G = 1� 

 
C; the single period loss function can be therefore written as

(4.111)

�gt = 


2666664
� bCt � � bCt�1 + 1

2
bC2t � 1

2
� bC2t�1 + ��(1��)

2
bX2
t

�
+

� 1
 
(1� ��)

�bYt + 1
2
(1 + ')

�bYt � bAt�2 + "
2
varj (pjit)

�
+

+1� 
 

� bGt � � bGt�1 +
1
2
bG2t � 1

2
� bG2t�1 + ��(1��)

2
( bXg

t )
2
�

3777775+ t:i:p:+ o(3)

Where 
 =
�
(1� �)�� (C

�1��
: We use the properties of the in�nite sum to collect

terms. Furthermore we exploit the fact that at SS the e¢ cient level the variables are

(1� ��) (1� �)�� C1�� = 
N1+' 

� (1� ��) (1� �)�� G1�� = 
N1+' (1�  )
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L = 
E0

+1X
t=0

�t

8>>>>><>>>>>:
(1� ��)

� bCt � 1
 
bYt + 1� 

 
bGt

�
+ 1

2
bC2t � 1

2
� bC2t�1+

� (1� ��) 1
 

�
1
2
(1 + ')

�bYt � bAt�2 + "
2
varj (pjit)

�
+

+��(1��)
2

bX2
t +

1� 
 

�
��(1��)

2
( bXg

t )
2 + 1

2
bG2t � 1

2
� bG2t�1�

9>>>>>=>>>>>;
+ t:i:p+ o(3)

Using the second order approximation to the market clearing condition

(4.112) bCt � 1

 
bYt + 1�  

 
bGt =

1

2

1

 
bY 2
t �

1

2
bC2t � 12 1�  

 
bG2t + o(3)

L = 
E0

+1X
t=0

�t

8>>>>><>>>>>:
(1� ��)

�
1
2
1
 
bY 2
t � 1

2
bC2t � 1

2
1� 
 
bG2t�+

� (1� ��) 1
 

�
1
2
(1 + ')

�bYt � bAt�2 + "
2
varj (pjit)

�
+

+1� 
 

�
��(1��)

2
( bXg

t )
2
�
+ ��(1��)

2
bX2
t+

9>>>>>=>>>>>;
+ t:i:p+ o(3)

Now rearranging, moving into t:i:p: �

�
1���
' 

��
(1+')
'

�
�
(1+')
'

�2� bA2t ; using thatP+1
t=0 �

tvar (pjit) =
1
k

P+1
t=0 �

t (�mt )
2 + t:i:p+ o(3) and assuming that

lim
i!1

�t+i
(1� ��)

 
bYt+i = lim

i!1
�t+i bCt+i = lim

i=1
�t+i

1�  

 
bGt+i = lim

i!1
�t+i bC2t+i = lim

i!1
�t+i

1�  

 
bG2t+i = 0

we can write the linear quadratic second order loss function as

(4.113)

L = �1
2

 E0

+1X
t=0

�t

264 (1� ��)'
�bYt � (1+')

'
bAt�2 +  � (1� �) bX2

t+

+(1� ��) "
�
(�mt )

2 + (1�  )� (1� �) ( bXg
t )
2

375+ t:i:p+ o(3)

4.A.5. Optimal Policy

The central authority seeks to minimise

L = �1
2

 E0

+1X
t=0

�t

264 (1� ��)'
�bYt � (1+')

'
bAt�2 +  � (1� �) bX2

t+

+(1� ��) "
�
(�mt )

2 + (1�  )� (1� �) ( bXg
t )
2

375+ t:i:p+ o(3)

subject to the structural log-linearised equations that characterised the decentralised

equilibrium. These are
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bXt = Et bXt+1 �
1

�

� bRt � Etb�t+1�
�mt = �Et�

m
t+1 +

(1� ��) (1� �)

�

�
� bXt + 'bYt � (1 + ') bAt + b�t�

b!t = 1

�!
b�t + ��Etb!t+1 + ��

� bXt � Et bXt+1

�

(4.114) bYt = b!t + � bXt + (1�  ) bXg
t

�

(4.115) bXt =
1

1� �

� bCt � � bCt�1�

(4.116) bXg
t =

1

1� �

� bGt � � bGt�1

�

(4.117) bYt =  bCt + (1�  ) bGt

(4.118) �t = �mt + b�t � b�t�1
We utilise (4.114)-(4.118) to substitute for the Lagrangian multiplier !t; CPI in�ation,

and habit-adjusted private and public consumption in the Euler equation, NKPC, the

evolution of markup and in the loss function. After few analytical passages we obtain

(4.119)
�
1 + �

1� �

� bCt = 1

1� �
Et bCt+1 + �

1� �
bCt�1 + 1

�

�
Et�

m
t+1 + Etb�t+1 � bRt � b�t�

(4.120) �mt = �Et�
m
t+1 � �1 bCt � �2 bCt�1 � �3 bGt � �4 bAt + �b�t

(4.121) b�t = 
1�Et bCt+1 � 
2 bCt � 
3 bCt�1 + 
4�Et bGt+1 � 
5 bGt � 
6 bGt
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where � = (1���)(1��)
�

; �1 = ��
�

�
1�� + ' 

�
; �2 = � ��

1�� ; �3 = ��' (1�  ) ; �4 =

� (1 + ') ; 
 = �! �
1�� ; 
1 = 
 ( � + �) ; 
2 = 
 [ (1 + ��) + �� (1 + �)] ; 
3 = �
 ( + ���) ;


4 = 
 (1�  ) �; 
5 = 
 (1�  ) (1 + ��) ; 
6 = �
 (1�  ) :

Applying the same substitutions in the period loss function, it yields

Lt = �
1

2

 

8>>>>>>>>>>><>>>>>>>>>>>:

 (� + ' ) bC2t � 2�� bCt bCt�1+
+2' (1�  ) bCt bGt � 2 (1 + ') bCt bAt + �2� bC2t�1+

+(1�  ) [� + ' (1�  )] bG2t+
�2�� (1�  ) bGt

bGt�1 � 2 (1 + ') (1�  ) bGt
bAt+

�2� (1�  ) bG2t�1 + "
�
(b�mt )2

9>>>>>>>>>>>=>>>>>>>>>>>;
Where � = �

(1���)(1��) : Given that the interest rate appears only in one equation, the

dynamic IS curve is not binding. The maximisation problem can be therefore represented

as

� = Et

1X
t=0

�t

8><>: Lt � �t

�
�mt � �Et�

m
t+1 � �1 bCt + �2 bCt�1 � �3 bGt + �4 bAt � �b�t�+

�$t

�b�t � 
1�Et bCt+1 + 
2 bCt + 
3 bCt�1 � 
4�Et bGt+1 + 
5 bGt + 
6 bGt

�
9>=>;

The optimal commitment problem consists in choosing a path for
nb�t bCt bGt b�mt o1

t=0
;

given the exogenous process bAt; once this path is obtained, one can �nd through the
dynamic IS the path for the nominal interest rate bRt:

From the �rst order condition on b�t we can �nd the static relationship between the
two Lagrangian multipliers

$t = ��t

and for in�ation

b�mt = � �

"


�
�t � �t�1

�
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The �rst order conditions for private and public spending are266664
�
� �c bCt + 
�� bCt�1 � 
' (1�  ) bGt+

+
(1 + ') bAt � �1�t � 
2$t

+
1$t�1 + �Et

�

�� bCt+1 � �2$t+1 � 
3�t+1

�
377775 = 0

266664
�
�(1�  )�g bGt + 
�� (1�  )� 
�� (1�  ) bGt�1+

�
' (1�  ) bCt + 
(1 + ') (1�  ) bAt
��3�t � 
5$t + 
4$t�1

377775 = 0

Where �c = 1 + �2� + '
�
 and �g = 1 + �2� + '

�
(1 �  ): We can now use the relation

between the two Lagrangian multiplier to eliminate $t;

(4.122) �c bCt + '

�
(1�  ) bGt +

�
�1 + �
2
�
 

�
�t =

8><>: ��Et bCt+1 � ��2+�
3�
 

�
�Et�t+1+

+� bCt�1 + � �
1
�
 

�
�t�1 +

�
1+'
�

� bAt
9>=>;

(4.123) �g bGt +
'

�
 bCt + � �3 + �
5

�
 (1�  )

�
�t =

8><>: ��Et bGt+1 �
�

�
6
�
(1� )

�
�Et�t+1

� bGt�1 +
�

�
4
�
(1� )

�
�t�1 +

�
1+'
�

� bAt
9>=>;

Finally we substitute for the markup b�t and for in�ation in terms of Lagrangian
multipliers to write the NKPC as

(4.124)

�

"

(1 + �) �t�(�1 + �
2) bCt�(�3 + �
5) bGt =

8>>>><>>>>:
�
"

�Et�t+1 � �
1�Et bCt+1 � �
4�Et bGt+1+

+ �
"

�t�1 + (�2 + �
3) bCt�1+
+�
6 bGt�1 + �4 bAt

9>>>>=>>>>;
The expressions (4.122)-(4.124) together with the exogenous process for the technology

shock form a system of equations which can be solved for
n bCt; bGt; �t; bAto1

t=0
:
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