

McIlroy, Ross (2010) Using program behaviour to exploit heterogeneous
multi-core processors. PhD thesis.
http://theses.gla.ac.uk/1755/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given.

Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

http://theses.gla.ac.uk/1755/

Using Program Behaviour to Exploit
Heterogeneous Multi-Core Processors

Ross McIlroy

Department of Computing Science
Faculty of Information and Mathematical Sciences

University of Glasgow

A thesis submitted for the degree of

Doctor of Philosophy

April 2010

c©Ross McIlroy, 2010

mailto:ross@dcs.gla.ac.uk
http://www.dcs.gla.ac.uk
http://www.dcs.gla.ac.uk
http://www.gla.ac.uk

Abstract

Multi-core CPU architectures have become prevalent in recent years. A number of

multi-core CPUs consist of not only multiple processing cores, but multiple different

types of processing cores, each with different capabilities and specialisations. These

heterogeneous multi-core architectures (HMAs) can deliver exceptional performance;

however, they are notoriously difficult to program effectively.

This dissertation investigates the feasibility of ameliorating many of the difficulties

encountered in application development on HMA processors, by employing a behaviour-

aware runtime system. This runtime system provides applications with the illusion of

executing on a homogeneous architecture, by presenting a homogeneous virtual machine

interface. The runtime system uses knowledge of a program’s execution behaviour,

gained through explicit code annotations, static analysis or runtime monitoring, to

inform its resource allocation and scheduling decisions, such that the application makes

best use of the HMA’s heterogeneous processing cores. The goal of this runtime system

is to enable non-specialist application developers to write applications that can exploit

an HMA, without the developer requiring in-depth knowledge of the HMA’s design.

This dissertation describes the development of a Java runtime system, called Hera-

JVM, aimed at investigating this premise. Hera-JVM supports the execution of unmod-

ified Java applications on both processing core types of the heterogeneous IBM Cell

processor. An application’s threads of execution can be transparently migrated be-

tween the Cell’s different core types by Hera-JVM, without requiring the application’s

involvement. A number of real-world Java benchmarks are executed across both of the

Cell’s core types, to evaluate the efficacy of abstracting a heterogeneous architecture

behind a homogeneous virtual machine.

By characterising the performance of each of the Cell processor’s core types under

different program behaviours, a set of influential program behaviour characteristics is

i

uncovered. A set of code annotations are presented, which enable program code to

be tagged with these behaviour characteristics, enabling a runtime system to track

a program’s behaviour throughout its execution. This information is fed into a cost

function, which Hera-JVM uses to automatically estimate whether the executing pro-

gram’s threads of execution would benefit from being migrated to a different core type,

given their current behaviour characteristics. The use of history, hysteresis and trend

tracking, by this cost function, is explored as a means of increasing its stability and

limiting detrimental thread migrations. The effectiveness of a number of different mi-

gration strategies is also investigated under real-world Java benchmarks, with the most

effective found to be a strategy that can target code, such that a thread is migrated

whenever it executes this code.

This dissertation also investigates the use of runtime monitoring to enable a runtime

system to automatically infer a program’s behaviour characteristics, without the need

for explicit code annotations. A lightweight runtime behaviour monitoring system is

developed, and its effectiveness at choosing the most appropriate core type on which to

execute a set of real-world Java benchmarks is examined. Combining explicit behaviour

characteristic annotations with those characteristics which are monitored at runtime is

also explored.

Finally, an initial investigation is performed into the use of behaviour character-

istics to improve application performance under a different type of heterogeneous ar-

chitecture, specifically, a non-uniform memory access (NUMA) architecture. Thread

teams are proposed as a method of automatically clustering communicating threads

onto the same NUMA node, thereby reducing data access overheads. Evaluation of

this approach shows that it is effective at improving application performance, if the

application’s threads can be partitioned across the available NUMA nodes of a system.

The findings of this work demonstrate that a runtime system with a homogeneous

virtual machine interface can reduce the challenge of application development for HMA

processors, whilst still being able to exploit such a processor by taking program be-

haviour into account.

ii

Acknowledgements

I would like to thank my PhD supervisor, Professor Joseph Sventek, for all his enthu-

siasm, guidance and support over the years. He was a constant source of inspiration

and I have benefited greatly from his experience and wisdom.

I would also like to thank the various second supervisors I have been lucky enough to

work with over the course of this PhD: in chronological order, Dr Peter Dickman, Pro-

fessor Nigel Topham and Dr Wim Vanderbauwhede. They were invaluable in providing

guidance from a different perspective.

To my external and internal examiners, Dr Steven Hand and Dr Colin Perkins, for

their interest in this work and for taking the time to study this thesis extensively.

I would like to acknowledge the Carnegie Trust for the Universities of Scotland,

who funded this work. I would also like to thank Microsoft Research Cambridge for

providing the NUMA server used in this work.

Many thanks to my friends, who helped keep me (relatively) sane through the last

four years with encouragement and understanding. A special thanks to my fellow

ENDS research group cohort - Alexandros Koliousis, Martin Ellis, Oliver Sharma and

Stephen Strowes - for their daily conversations and shared coffee addiction. I am also

indebted to Rachel Lo, Craig MacDonald, Stephen Strowes and my parents, Alan and

Liz McIlroy, for proof-reading and commenting on various drafts of this dissertation.

Last, but by no means least, I am eternally grateful to my parents, Liz and Alan,

and my wee sister, Kim, for their love, support and encouragement throughout my life.

I cannot thank them enough for all they have done for me.

iii

Contents

1 Introduction 1

1.1 Thesis Statement . 3

1.2 Contributions . 3

1.3 Publications . 4

1.4 Outline . 5

2 Heterogeneous Multi-Core Processors 8

2.1 The Case for Heterogeneous Multi-Core Architectures 9

2.2 The History of Heterogeneous Processors 11

2.3 Heterogeneous Processors in Commodity Systems 14

2.3.1 Graphics Processing Units as Heterogeneous Cores 14

2.3.2 Many-Core CPUs . 16

2.4 Summary . 18

3 Related Work 19

3.1 Parallel Programming . 20

3.2 Abstraction of Heterogeneous Programming Environments 22

3.2.1 Programming Models and Compilers 22

3.2.2 Runtime Systems and Operating Systems 32

3.3 Thread Scheduling on HMAs . 36

3.4 Managing Non-Uniform Memory . 41

3.5 Summary . 46

4 Abstracting Heterogeneity using Behaviour Characteristics 47

4.1 Aspects of Processor Heterogeneity . 49

4.1.1 Heterogeneous Processing Resources 49

iv

CONTENTS

4.1.2 Heterogeneous Memory Hierarchy 50

4.1.3 Heterogeneous Inter-Core Communication 50

4.1.4 Summary . 51

4.2 Behaviour Characteristics . 51

4.2.1 Processing Requirement Characteristics 52

4.2.2 Execution Behaviour Characteristics 53

4.2.3 Thread Communication Characteristics 55

4.3 Tagging Mechanisms . 57

4.3.1 Explicit Annotations . 57

4.3.2 Source Code Analysis Tools . 61

4.3.3 Runtime Monitoring . 62

4.4 Costing Behaviour . 63

4.5 Discussion . 65

5 Hera-JVM: A Runtime System for Heterogeneous Architectures 67

5.1 The Cell Processor . 68

5.2 Hera-JVM Design Decisions . 71

5.3 Executing Java Code on the SPE Cores 73

5.3.1 Overview . 73

5.3.2 Local Variables and Stack Management 76

5.3.3 Software Caching of Heap Objects 78

5.3.4 Invocation and Caching of Methods 86

5.3.5 Scheduling and Thread Switching 91

5.3.6 System Calls and Native Methods 95

5.4 Migration between Core Types . 96

5.4.1 Migration Mechanism . 96

5.4.2 Scanning a Migrated Thread’s Stack 97

5.5 Experimental Analysis . 98

5.5.1 Experimental Setup . 99

5.5.2 Micro-Benchmarks . 100

5.5.3 Real World Benchmarks . 106

5.6 Discussion . 116

v

CONTENTS

6 Migration Based Upon Behaviour Annotations 120

6.1 Maintaining Per-Thread Behaviour Knowledge 121

6.1.1 Set of Tracked Behaviour Annotations 121

6.1.2 Tracking Thread Behaviour at Runtime 123

6.2 A Cost Function-Based Migration Policy 124

6.3 Implementing Behaviour Based Thread Migration 128

6.3.1 Evaluating a Thread’s Cost . 129

6.3.2 Triggering Thread Migration . 131

6.3.3 Combining Thread Costing and Migration Triggering 135

6.4 Experimental Analysis . 135

6.4.1 Experimental Setup . 136

6.4.2 Two Phase Synthetic Benchmark 136

6.4.3 XML Parsing Synthetic Benchmark 141

6.4.4 Real World Benchmarks . 149

6.5 Summary . 154

7 Monitoring Program Behaviour at Runtime 156

7.1 Monitoring Execution of Different Bytecode Types 157

7.1.1 Scoring Methods . 157

7.1.2 Monitoring a Thread’s Behaviour 160

7.2 Migration Decisions . 161

7.2.1 The Cost Function . 161

7.2.2 Combining Annotations with Runtime Monitoring 163

7.2.3 Triggering Thread Migration . 163

7.3 Experimental Analysis . 164

7.3.1 XML Parsing Synthetic Benchmark 165

7.3.2 Real World Benchmarks . 170

7.3.3 Combining Annotations and Runtime Monitoring 173

7.4 Summary . 175

vi

CONTENTS

8 Inter-Thread Communication on NUMA Architectures 177

8.1 Non-Uniform Memory Access Architectures 178

8.2 Abstracting NUMA Node Placement Decisions 182

8.3 Scheduling based upon Thread Teams 183

8.3.1 Making Hera-JVM NUMA Aware 184

8.3.2 Applying a Cost to a Thread’s Placement 186

8.3.3 Scheduling Threads with Per-Node Costs 189

8.4 Experimental Analysis . 192

8.4.1 Experimental Setup . 192

8.4.2 Scalability . 193

8.4.3 Multiple Teams per Thread . 198

8.5 Summary . 202

9 Conclusion and Future Work 204

9.1 Thesis Statement Revisited . 204

9.2 Contributions . 208

9.3 Future Work . 210

9.3.1 Other Heterogeneous Architectures 211

9.3.2 Other Behaviour Characteristics 211

9.3.3 Tagging Data with Behaviour Characteristics 212

9.3.4 Inferring Behaviour Characteristics Through Static Analysis . . . 213

9.3.5 Low-Level Abstraction of HMAs 214

9.3.6 Summary . 214

References 216

vii

List of Figures

2.1 A simplified example showing the performance that can be achieved from

different core layouts on the same area of a processor’s silicon die. . . . 10

4.1 A typical thread communication pattern. 57

4.2 Using thread teams to place threads on a NUMA system. 65

5.1 The architecture of the Cell processor. 69

5.2 An SPE core’s memory subsystem. 70

5.3 The structure of Hera-JVM. 72

5.4 Outline of the SPE data cache. 79

5.5 The code cache data structures. 88

5.6 TIB layout for super-class methods. 89

5.7 Performance difference between SPE and PPE cores for fundamental

Java operations in the Java Grande micro-benchmarks. 100

5.8 Heap data access performance. 102

5.9 The effect of a thread’s data working set on performance. 104

5.10 The effect of a thread’s code working set on performance. 105

5.11 Performance comparison between benchmarks running on a single SPE

core, and running on the single PPE core. 108

5.12 Percentage of cycles spent executing different classes of machine instruc-

tions on SPE. 109

5.13 The effect of varying the proportion of local memory reserved for use

by the data and code caches (Java Grande and SpecJVM:monte carlo

benchmarks). 111

viii

LIST OF FIGURES

5.14 The effect of varying the proportion of local memory reserved for use by

the data and code caches (SpecJVM Scimark benchmarks). 112

5.15 The effect of varying the proportion of local memory reserved for use by

the data and code caches (remaining SpecJVM and Dacapo benchmarks).113

5.16 Performance with a per-benchmark optimal code / data cache ratio. . . 115

5.17 Scalability of the Java Grande Parallel benchmarks. 117

5.18 Scalability of the SpecJVM scimark benchmarks. 117

5.19 Scalability of the remaining SpecJVM, Dacapo and mandelbrot bench-

marks. 117

5.20 Performance comparison between benchmarks running on all 6 SPE cores

and running on the single PPE core. 118

6.1 Migration with Hysteresis. 127

6.2 An example of thread behaviour sampling at timer ticks. 131

6.3 Targeted migration example. 134

6.4 Speedup of the two phase benchmark as annotation placement is varied. 139

6.5 Speedup of the two phase benchmark as the phase length is varied. . . . 141

6.6 Speedup as α and β parameters are varied, with γ = 0. 145

6.7 Speedup as α and β parameters are varied, with γ = 0.2. 145

6.8 Speedup as α and β parameters are varied, with γ = 0.4. 145

6.9 Speedup as α and β parameters are varied, with γ = 0.6. 146

6.10 Speedup as α and β parameters are varied, with γ = 0.8. 146

6.11 Speedup as α and β parameters are varied, with γ = 1. 146

6.12 Comparing the interaction between the β and γ. 147

6.13 Comparing the interaction between the α and γ. 147

6.14 Results for the targeted migration strategy when history, hysteresis and

trend tracking are enabled and disabled in the cost function. 149

6.15 Speedup for the XML Parsing benchmark under different migration

strategies. 150

6.16 Performance of real world benchmarks, which have been annotated with

their behaviour characteristics, when executed under Hera-JVM. 152

6.17 Overhead of tracking behaviour annotations. 153

7.1 The structure of a method’s score, related to its code structure. 159

ix

LIST OF FIGURES

7.2 Speedup as α and β parameters are varied, with γ = 0 166

7.3 Speedup as α and β parameters are varied, with γ = 0.2 166

7.4 Speedup as α and β parameters are varied, with γ = 0.4 166

7.5 Speedup as α and β parameters are varied, with γ = 0.6 167

7.6 Speedup as α and β parameters are varied, with γ = 0.8 167

7.7 Speedup as α and β parameters are varied, with γ = 1 167

7.8 Comparing the interaction between the β and γ. 169

7.9 Comparing the interaction between the α and γ. 169

7.10 Comparing runtime monitoring and behaviour annotations for the XML

Parsing benchmark. 170

7.11 Performance of real world benchmarks running under Hera-JVM, when

using behaviour runtime monitoring. 171

7.12 Overhead of runtime monitoring for real world benchmarks. 172

7.13 Performance of the Hera-JVM when runtime monitoring and annotation

behaviour information are combined. 174

7.14 Overhead of runtime monitoring with annotations approach. 174

8.1 The NUMA node layout of a 4x4 core AMD Opteron system. 179

8.2 The effect of NUMA on inter-thread communication. 181

8.3 Using thread teams to place threads on a NUMA system. 188

8.4 Scaling performance of mandelbrot benchmark on a NUMA system . . . 195

8.5 HyperTransport inter-core data traffic and L3 cache misses for mandel-

brot benchmark on NUMA system. 197

8.6 The performance of the mandelbrot benchmark on a NUMA architecture

as the number of thread teams assigned to each thread is varied. 199

8.7 Example of reducing the clusterablity of thread team assignments by

shuffling thread / team assignments. 200

8.8 The performance of the mandelbrot benchmark on a NUMA architecture

as its thread team clusterability is varied. 201

x

List of Tables

6.1 Costs associated with each core type. 125

6.2 Migration policy parameters. 128

6.3 Behaviour-based migration strategies implemented in Hera-JVM. 135

6.4 Average execution time of the workload methods on each core type. . . 137

6.5 Execution time and migration count for the two phase benchmark under

different annotation placements. 138

6.6 Migration policy parameters. 143

6.7 Behaviour characteristic annotations added to each benchmark. 151

7.1 Costs associated with each core type. 162

xi

Listings

4.1 Example of Behaviour Characteristic Annotations. 60

6.1 Two phase synthetic benchmark psuedo-code. 137

8.1 NUMA inter-thread communication micro-benchmark pseudo-code. . . . 180

8.2 Pseudo-code of algorithm used to calculate the preferred NUMA node

order of a thread. 187

8.3 Pseudo-code of Hera-JVM scheduling algorithm. The additions made to

support NUMA aware scheduling are shown in red. 190

xii

Glossary

ABI Application Binary Interface - the low-level interface between an application pro-

gram and the operating system.

API Application Programming Interface - a standard interface through which applica-

tions can make use of a service that is provided by another application or software

library.

CIL Common Intermediate Language - the bytecode format that is employed by Mi-

crosoft’s .NET framework.

CMP Chip Multi-Processor - a central processing unit which consists of multiple pro-

cessing cores on a single processor chip. Also known as a multi-core processor.

CPU Central Processing Unit - the part of a computer system that executes a com-

puter program’s instructions.

DMA Direct Memory Access - a feature in modern computer systems that enables

hardware subsystems to access memory independently from the central processing

unit.

GPU Graphics Processing Unit - a specialised processor that is designed to enable 3D

graphics operations to be offloaded from the CPU. Due to their high performance

in data-parallel floating point computations, GPUs are being employed for non-

graphics related computations. Such GPUs are known as general purpose GPUs

(GPGPUs).

HMA Heterogeneous Multi-core Architecture - a CPU architecture that that consists

of not only multiple processing cores, but also multiple processing core types,

each with different capabilities and limitations.

xiii

Glossary

ISA Instruction Set Architecture - the set of instructions that a given processing core

type can execute, and the format of the machine code used to specify these

instructions.

JIT Just In Time (compilation) - a compilation technique in which a program’s code

is distributed in a machine architecture independent form, and then compiled to

native machine code immediately before it is executed.

NUMA Non-Uniform Memory Access - a computer memory architecture in which

memory access latencies differ depending upon the location of the memory and

the processing core that is accessing it.

MFC Memory Flow Controller - the component of the Cell processor’s SPE core type

that controls movement of data between main memory and the SPE core’s local

memory.

OS Operating System - the software that controls a given computer system, manages

its hardware resources, and provides an interface between hardware and user level

applications.

PPE Power Processing Element - one of the processing core type of the Cell Processor.

The PPE core is the master processing core of the Cell processor, able to control

the system overall and execute the operating system.

SIMD Single Instruction, Multiple Data - a technique to exploit data-level parallelism,

by enabling a single processing instruction to be applied to multiple pieces of data

simultaneously.

SPE Synergistic Processing Engine - one of the processing core types of the Cell Pro-

cessor. The SPE core type is a slave processing core, i.e. one that cannot control

the system overall, but provides very high arithmetic computation performance.

VM Virtual Machine - a machine abstraction that encapsulates software from the

underlying computer system and operating system on which it is executing, thus

providing a portable environment on which to build applications. This work

deals with runtime system virtual machines, such as the Java virtual machine,

as apposed to full system virtual machines, such as the Xen or VMware virtual

machines.

xiv

Chapter 1

Introduction

One of the primary components of a computer system is its central processing unit

(CPU). Originally, a CPU consisted of a single processing core, on which program code

was executed as a single sequential sequence of instructions. A computer system’s

performance has traditionally been improved by increasing the speed at which these

instructions are performed (e.g., by increasing the clock frequency of the processing

core). However, this approach has stalled in recent years, due to challenges such as:

increased processing core complexity; energy and heat budgets, limiting the rate at

which clock speed can be increased; and diminishing gains in program performance

from faster processing cores. Instead, multi-core CPU architectures are becoming more

prevalent as a means of increasing computer system performance. These multi-core

CPUs consist of multiple processing cores, each of which can concurrently execute its

own sequence of instructions, thus increasing overall system performance.

The majority of multi-core CPU architectures are homogeneous1, in that each of

the processing cores in a given CPU is identical. This provides a uniform platform on

which to build computer programs; an application’s code can be executed by, and run

equally well on, any of the CPU’s processing cores. However, a symmetric multi-core

architecture may not provide the best possible level of performance. Since each core is

identical, it must have a general purpose design (i.e., jack of all trades, master of none).

However, different applications, or even different parts of the same application, can have

different processing requirements, and therefore might benefit from being executed on

a more specialised core type.

1These are often known as symmetric chip multi-processors, or symmetric multi-core processors.

1

Heterogeneous multi-core architectures (HMAs) have multiple different types of

processing cores, each of which is designed to perform a specific set of functions well.

This enables each core type to be optimised for its particular set of functions, providing

the potential to increase overall performance. By having different processing core types,

an HMA processor design can also make more effective use of the given area of silicon

from which it is built. For example, only one core type need be capable of supporting

the system overall by, for example, performing virtual memory page table updates or

I/O operations. Thus, the functionality required to perform these operations can be

eliminated from the other core types, simplifying their design and enabling more cores

to fit in the same area of silicon.

However, while HMA processors have the potential to increase performance and

efficiency, they are notoriously difficult to program. Not only must programmers deal

with concerns implicit in concurrent programming on multi-core architectures, such

as synchronisation, scalability and deadlock prevention, they must also contend with

different processing core instruction sets, thread scheduling on cores with asymmetric

performance capabilities and, often, complex memory hierarchies. As such, the use

of HMA processors is currently restricted to specialist fields, such as network packet

processing, computer games consoles and high performance embedded devices.

The goal of this work is to reduce the burden involved in developing applications

for HMA processors, such that they can be employed for non-specalist applications.

This work focuses on addressing the challenges that are unique to development on an

heterogeneous multi-core architecture (it deals with, but does not focus on, issues that

are inherent to concurrent programming of any multi-core processor). The philosophy

behind this work is to move the responsibility for dealing with the challenges of an HMA

processor away from application developers, and into a runtime system that supports

application execution. The intent is that applications can exploit the potential perfor-

mance of an HMA processor, without their developers requiring in-depth knowledge

of the processor’s architecture. This burden can, instead, be placed upon the runtime

system developers, who are likely to have more specialist knowledge of the capabilities

of the hardware and be more willing to deal with an HMA’s peculiarities. The provision

of such a runtime system will enable a much broader range of applications to exploit

the potential performance of HMA processors and will ease the likely transition toward

greater processing core heterogeneity in commodity systems.

2

1.1 Thesis Statement

1.1 Thesis Statement

Given the difficulties involved in programming and managing heterogeneous multi-core

architectures (HMAs), their use is currently limited to specialist applications. I assert

that a homogeneous multi-core virtual machine abstraction can be employed to reduce

the burden of developing applications for HMAs, while still enabling the disparate

processing resources of an HMA to be exploited. By tracking a program’s behaviour, a

runtime system can make informed thread and data placement decisions, enabling the

program to make effective use of heterogeneous processing resources. By employing

program behaviour characteristics to guide the partitioning of a program’s execution

across heterogeneous processing cores, application developers do not require in-depth

knowledge of an HMA’s design in order to exploit it effectively.

This assertion will be demonstrated by:

• The creation of a Java virtual machine runtime system that provides a homoge-

nous abstraction on which unmodified Java applications can be executed by the

different core types provided by an HMA. Two HMA systems will be targeted by

this runtime system — the IBM Cell processor and an x86 NUMA (non-uniform

memory access) architecture — to explore this assertion under two, very different,

of heterogeneous architectures;

• The augmentation of this runtime system to enable it to track a program’s be-

haviour and use this information to inform its thread and data placement deci-

sions with respect to the HMA on which it is executing. The effectiveness of this

behaviour-aware runtime system will be evaluated by measuring the performance

of a number of real-world Java benchmarks, that have either been augmented

with code annotations to express their behaviour characteristics, or have their

behaviour monitored at runtime by the runtime system.

1.2 Contributions

This work contributes to the abstraction of heterogeneous multi-core architectures in

a number of ways:

• Demonstration of the feasibility of hiding a heterogeneous multi-core architecture

behind a homogeneous virtual machine abstraction;

3

1.3 Publications

• Presentation of program behaviour characteristics as an abstraction that enables a

behaviour-aware runtime system to make effective use of heterogeneous processing

cores without unduly burdening the application developer;

• Development of a cost function that uses a program’s behaviour characteristics

to inform thread placement and migration across heterogeneous processing cores;

• Development of a targeted migration strategy, which enables future invocations

of a method, that initiates a change of phase in a program’s behaviour, to auto-

matically trigger a thread’s migration to another core type;

• Development of a lightweight runtime monitoring system that enables a runtime

system to automatically infer a program’s behaviour during its execution;

• Development of a thread and data placement strategy that can reduce inter-

thread communication overheads on a NUMA architecture, based upon program

behaviour characteristics; and

• Creation of a Java compiler for the SPE core type of the Cell processor, which

involved the development of a novel software caching scheme that exploits high

level type information to improve its performance.

1.3 Publications

The work reported in this dissertation led to the following publications:

R. McIlroy & J. Sventek, Hera-JVM: Abstracting Processor Heterogene-

ity Behind a Virtual Machine, in Proceedings of the Workshop on Hot

Topics in Operating Systems (HotOS’09), 2009. (McIlroy & Sventek,

2009b).

R. McIlroy & J. Sventek, Abstracting Heterogeneous Multi-Core Ar-

chitectures using a Code Annotation Aware Runtime System (Poster),

in the EuroSys Conference (EuroSys’09), 2009. (McIlroy & Sventek,

2009a).

4

1.4 Outline

During work on this dissertation, the following papers were also published by the

author on closely related topics:

R. McIlroy & O. Hodson, Subordinate Kernels: Application Offloading in

Asymmetric Multi-Processor Systems, in Proceedings of the Workshop

on Operating System Support for Heterogeneous Multi-Core Architec-

tures. 2007 (McIlroy & Hodson, 2007).

R. McIlroy, P. Dickman & J. Sventek, Efficient Dynamic Heap Allocation

of Scratch-Pad Memory, in Proceedings of the International Symposium

on Memory Management, 2008. (McIlroy et al., 2008).

E. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel & G. Hunt, Helios:

Heterogeneous multiprocessing with satellite kernels, in Proceedings of

the 22nd Symposium on Operating Systems Principles (SOSP’09), 2009.

(Nightingale et al., 2009).

The work reported in these related papers is not directly discussed by this disserta-

tion; however, the Helios operating system, as presented in (McIlroy & Hodson, 2007;

Nightingale et al., 2009), is discussed in the related work chapter.

1.4 Outline

The remainder of this dissertation is organised as follows:

Chapter 2 provides background information on heterogeneous multi-core architec-

tures. The reasoning behind introducing heterogeneity into processor design is

discussed and the history of heterogeneous multi-core architectures is presented.

Finally, a case is presented as to why commodity processor architectures are likely

to expose more heterogeneity in the near future.

Chapter 3 surveys related work that is aimed at easing application development on

heterogeneous architectures. Work that hides, abstracts or manages processing

core heterogeneity in the fields of programming models, compilers, runtime sys-

tems and operating systems is examined.

5

1.4 Outline

Chapter 4 presents an approach for abstracting the challenging aspects of application

development on a heterogeneous multi-core architecture, based upon a program

behaviour-aware runtime system. A set of behaviour characteristics is defined,

that can be used by a runtime system to automatically partition an application

across heterogeneous processing cores in an effective manner, without burdening

application developers with details of the underlying architecture’s heterogeneous

nature.

Chapter 5 describes the development of a Java runtime system, called Hera-JVM,

that hides the heterogeneity of the IBM Cell processor behind a homogeneous

virtual machine abstraction. This runtime system supports simultaneous execu-

tion of a single application across two different processing core architectures and

enables transparent migration of an application’s execution between these two

architectures.

Chapter 6 builds upon Hera-JVM to enable it to make use of knowledge of a pro-

gram’s behaviour characteristics, provided through code annotations, to choose

the most appropriate core type on which to execute the different parts of a pro-

gram. A cost function-based thread migration policy is introduced as a means

of deciding whether a thread might benefit from being migrated onto a differ-

ent core type. A number of migration mechanisms are presented and evaluated

experimentally.

Chapter 7 presents an extension to Hera-JVM that enables it to automatically infer

a program’s behaviour through runtime monitoring. This enables programs that

have not been annotated with behaviour characteristics to exploit heterogeneous

multi-core architectures without modification. The simultaneous use of both code

annotations and runtime monitoring to inform the runtime system of a program’s

behaviour characteristics is also investigated.

Chapter 8 explores the use of a behaviour-aware runtime system under a different

heterogeneous multi-core architecture from the Cell processor. Specifically, the

use of thread team characteristics, to express a program’s inter-thread communi-

cation patterns, is investigated as a means of informing a runtime system’s thread

6

1.4 Outline

and data placement decisions, so as to improve performance under a non-uniform

memory access (NUMA) architecture.

Chapter 9 concludes and explores opportunities for future work that build upon the

work presented in this dissertation.

7

Chapter 2

Heterogeneous Multi-Core
Processors

Commodity microprocessors have traditionally relied on increased clock frequency and

instruction-level parallelism to improve their performance from one generation to the

next. However, there are limits on the amount of instruction-level parallelism that

can be extracted from sequential programs (Wall, 1991), and CPU clock frequency

increases have also stalled, due to heat and energy issues (Ross, 2008). With the

number of transistors available on a given sized processor die continuing to increase

with each improvement in manufacturing process feature size1, processor designers

attempt to exploit these additional transistors to improve the performance of each

processor generation. However, the diminishing returns of instruction-level parallelism,

as well as the increase in processing core design and verification complexity from the

increased transistor count, have instead led to processors incorporating multiple cores

onto a single processor die, in order to exploit thread level parallelism (Olukotun et al.,

1996).

These chip multi-processors (CMPs) can be either symmetric, with each processing

core being identical, or heterogeneous, with multiple different processing core types

that each have different capabilities. Most current commodity CMPs are symmetric,

since this provides a much simpler platform on which to build applications. However, a

heterogeneous multi-core architecture (HMA) has the potential to provide much greater

performance and efficiency than an equivalent (in terms of transistor count) symmetric

CMP.

1The number of transistors on a CPU continues to roughly double every two years, a trend com-
monly known as Moore’s law.

8

2.1 The Case for Heterogeneous Multi-Core Architectures

This chapter outlines the development of heterogeneous multi-core architectures.

Section 2.1 discusses the reasons why HMA processors have the potential to provide

better performance than symmetric CMPs. Section 2.2 presents the history of HMA

processors. Finally, Section 2.3 describes current HMA processors and argues a case as

to why commodity processor architectures are likely to expose more heterogeneity in

the future.

2.1 The Case for Heterogeneous Multi-Core Architectures

A heterogeneous architecture can provide opportunities to improve performance and

efficiency, both through increased specialisation of core types and having the potential

to provide a better balance between sequential and parallel workload performance.

The different core types of an HMA are often designed such that each is specialised

for a different type of workload. Core types can be specialised through various means,

such as the provisioning of additional machine instructions targeted at the needs of a

particular workload, or improving the performance of a particular functional unit (e.g.,

the floating point unit) with additional circuitry. Of course, such specialisation has

inherent trade-offs — e.g. improving the performance of the floating point unit leaves

less room on the silicon die for other circuitry, such as improved integer performance,

branch predictors or larger caches. Therefore, traditional symmetric CMP processors

take a jack of all trades, master of none approach, with their cores being competent

in all areas but not specialising in any particular area. HMAs, on the other hand,

have the option of providing a general purpose master core type, as well as one or

more additional core types, each of which is specialised for a particular aspect of the

expected workload of the system. This enables the system to have better performance

for its expected workload, while still being capable of executing general purpose code

on its master core type.

Another advantage of a heterogeneous multi-core architecture is that it can pro-

vide a better trade-off between the performance of sequential and parallel code. When

developing a processor architecture, the design team can limit the number of process-

ing cores in the architecture, but devote more silicon area to each core to improve

its performance (i.e. through improved branch prediction, speculative execution or

instruction-level parallelism). Alternatively, the same area of silicon can be used to

9

2.1 The Case for Heterogeneous Multi-Core Architectures

P = 2 P = 2

Sequential Performance = 2
Parallel Performance = 4

(a) Symmetric - 2 cores.

Sequential Performance = 1
Parallel Performance = 8

P = 1 P = 1

P = 1 P = 1

P = 1 P = 1

P = 1 P = 1

(b) Symmetric - 8 cores.

P = 2

Sequential Performance = 2
Parallel Performance = 6

P = 1 P = 1

P = 1 P = 1

(c) Heterogeneous

Figure 2.1: A simplified example showing the performance that can be achieved
from different core layouts on the same area of a processor’s silicon die.

support a larger number of simpler cores which, while individually slower than the

larger cores, combine to provide greater processing power for parallel workloads.

As more silicon area is allotted to a processing core design, the performance increase

which can be expected from the increased transistor count is generally governed by

Pollack’s Rule (Borkar, 2007). Pollack’s Rule states that a core’s performance is roughly

proportional to the square root of the increase in transistor count. In other words,

doubling the size of a core will increase performance by about 40%. On the other

hand, doubling the number of cores has the potential to provide a 100% increase in

the performance of parallel workloads. This would seem to suggest that a processor

with a large number of small cores will provide better performance than an equivalent

processor containing a smaller number of more complex processing cores. However this

is not always the case. Firstly, not all algorithms can be parallelised effectively, and thus

can only be executed on a single processing core. Secondly, even if an algorithm can

be parallelised, it typically has a fraction of code that must run sequentially. Amdahl’s

law (Amdahl, 1967; Gustafson, 1988) shows that even a relatively small fraction of

sequential code can severely limit the overall scalability of an algorithm. Since this

sequential code can only be executed on a single core, there is an inherent trade-off

between the performance of each core (to execute sequential code) and the number of

cores available (to scale-up parallelisable code).

Figure 2.1 shows a simplified example of the options available to a processor de-

signer when developing a processor that fits on a given area of silicon. The cores of

a symmetric multi-core architecture are identical, therefore, they must all be tailored

to either provide high sequential performance, at the cost of having fewer cores overall

10

2.2 The History of Heterogeneous Processors

(Figure 2.1(a)), or be simplified to enable more cores on the same silicon die area (Fig-

ure 2.1(b)). However, a heterogeneous multi-core architecture (Figure 2.1(c)) has the

option of providing a more complex core type for high sequential code performance,

and many smaller, less complex cores, to provide much greater performance for code

that can be parallelised. Hill & Marty (2008) re-evaluate Amdahl’s law under a vari-

ety of potential processor designs and find that, under simplistic assumptions (e.g., no

scheduling or migration overheads), heterogeneous multi-core architectures can provide

better potential speedups compared with symmetric architectures. This was due to

their ability to execute the sequential portion of an algorithm on a more complex core,

while scaling up the parallel portion on many simple cores.

Of course, in order to exploit this potential for improved performance, an application

must partition naturally between the core types, such that its threads and phases of

execution are executed on the most appropriate core type. Enabling a runtime system to

perform this partitioning effectively, without burdening a programmer with the details

of core type specialisation, is one of the main research questions addressed in this

dissertation.

2.2 The History of Heterogeneous Processors

Computer systems that incorporate heterogeneous processing resources in their design

are not new. As early as 1957, the IBM 709 (Greenstadt, 1957) used channel pro-

cessors to remove the burden of I/O operations from the main CPU. These channel

processors could be programmed to perform I/O transfers asynchronously and indepen-

dently from the main CPU, and can therefore be thought of as heterogeneous processing

cores. These channel processors continued to evolve in subsequent systems such as the

IBM System/360 and System/370 (Case & Padegs, 1978) and the Control Data CDC

6600 (Thornton, 1970), eventually leading to the Bus Master DMA (direct memory

access) devices now found in commodity PCs. However, these I/O processors are gen-

erally limited to performing basic data transfer and signalling operations1 and are not

equal partners in the system’s processing capabilities.

1The peripheral processors of the CDC 6600 are more capable than most channel processors, able
to perform operating system tasks and manage the system overall. Modern day programmable I/O
offloading engines can be thought of as their decendents.

11

2.2 The History of Heterogeneous Processors

I/O operations are not the only type of processing which have been offloaded to

a heterogeneous coprocessor. Other coprocessors have been used to accelerate float-

ing point (Chandra, 1988), string matching (Cho & Mangione-Smith, 2005), encryp-

tion (Yee, 1994) and many other applications. As with channel processors, these co-

processors are generally not capable of executing general purpose program code; they

are limited to the subset of computation for which they are specialised.

A heterogeneous multi-core architecture (Kumar et al., 2005a) consists of multiple

processing core types on a single processor chip. Some of the processing cores of a

heterogeneous multi-core architecture are specialised for a particular type of computa-

tion, much like coprocessors. However, unlike coprocessors, all the processing cores of

an HMA are CPUs, capable of executing general purpose program code in their own

right. Thus, rather than thinking of these cores as accelerators for a particular opera-

tion, they become first class processing resources in their own right. This changes the

application development model from one where the program mostly runs on the main

CPU, but accelerates various operations though calls to a coprocessor, to one where

the application’s execution is spread across various processing cores, each of which

has different capabilities and specialisations. Heterogeneous multi-core architectures

have recently found their way into a number of specialist markets, such as network

processing, multimedia applications and low-power embedded hardware.

One of the first markets to employ HMAs was network packet processing equip-

ment. A number of network processors, such as the Intel IXP (Adiletta et al., 2002;

George & Blume, 2003), the IBM PowerNP (Allen et al., 2003) and the Motorola C-

Port (Motorola, 2001), consist of multiple different processing core types. Network

packet processing is a natural fit for an HMA processor, since there are two distinct

types of network packet: control packets, which involve complex operations, such as

routing table updates, but are received relatively infrequently; and data packets, which

must be dealt with quickly, but have much simpler processing requirements. Network

processors, therefore, generally consist of a complex control processor, which manages

the system overall and processes control packets, as well as a number of relatively sim-

ple packet processing cores (variously known as microengines, picoprocessors or chan-

nel processors depending upon the network processor), used to processes data packets.

Shah (2001) provides a comprehensive survey of the field of network processors.

12

2.2 The History of Heterogeneous Processors

Another recent HMA design is the IBM Cell processor (Chen et al., 2007; Hofstee,

2005; Pham et al., 2005). The Cell processor is targeted at both multimedia workloads,

being the main processor of the Sony Playstation 3 games console, and scientific compu-

tation, as a component in a number of supercomputer designs (Barker et al., 2008). Its

design evolved from that of network processors, consisting of both a control processor

and multiple, simple, but fast worker processors. These worker processors (called SPEs

on the Cell processors) are specially designed for computationally intensive floating

point and multimedia oriented workloads. The design of the IBM Cell processor will

be presented in more detail in Section 5.1.

Another sector which can benefit from a heterogeneous processor design is the

embedded market. The performance required by embedded devices, such as mobile

phones, is rapidly increasing as new features are added to the devices (e.g. music play-

back, video, etc.). At the same time, these devices are often powered by batteries and,

therefore, have significant energy consumption constraints. The use of multiple core

types, each designed for a particular purpose, can provide significant power efficiency

improvements, as each core type can perform its function more efficiently than could a

more general purpose core (Kumar et al., 2003). Many of these embedded architectures

also employ System On Chip (SOC) techniques, where many different components are

integrated into a single integrated chip (e.g. processor cores, memory and transmission

circuitry) to further decrease power requirements. The Intel PXA800F (Krishnaswamy

et al., 2003) is one such HMA processor. It is aimed at the high performance mobile

phone market and contains a general purpose XScale core, a Micro Signal Architecture

core used for voice or video processing and integrated GSM / GPRS mobile phone

communication circuitry.

The defining feature of these HMA processors is that they consist of multiple dif-

ferent processing core types on a single processor chip. In addition, these architectures

often incorporate unusual memory and inter-core communication features. For example,

the Intel IXP network processor has multiple levels of explicitly accessible memory (in

order of increasing capacity and memory latency — local memory, scratchpad memory,

SRAM and DRAM), with no hardware caching to automatically move data between

these memories. The IBM Cell processor also employs different explicitly accessible

memory levels, and requires direct memory access (DMA) operations to move data

between these levels1.

1The IBM Cell processor’s memory architecture is described in more detail in Section 5.1.

13

2.3 Heterogeneous Processors in Commodity Systems

If exploited effectively, these architectures can offer significant performance and

efficiency advantages over an equivalent symmetric CMP. However, developing an ap-

plication that makes full use of the available core types of an HMA processor is challeng-

ing. This, combined with the programming complications presented by heterogeneous

instruction sets and their unusual memory architectures, has currently limited their

uptake to specialist fields.

2.3 Heterogeneous Processors in Commodity Systems

If HMA processors continue to be limited to specialist domains, there will be little

benefit in the provision of a runtime system aimed at non-specialist programmers.

However, current trends suggest that future commodity computer systems will consist

of heterogeneous processor architectures. While these commodity systems may not be

as extreme as those currently found in specialist domains, they are likely to embody

many of the concepts found in current HMAs. This section attempts to justify the

argument that commodity systems are going to expose more processing heterogeneity

in the near future, through a survey of upcoming processor designs.

There are two driving forces behind this move towards heterogeneous commodity

processors: the availability and increased capabilities of graphics processor units in

commodity systems, and the steadily increasing core count of commodity processors.

2.3.1 Graphics Processing Units as Heterogeneous Cores

Graphics processing units (GPUs) are now ubiquitous in commodity computer systems.

These GPUs enable graphical operations, such as 3D graphics rendering and video

decoding, to be offloaded from the main CPU. These graphics operations are typically

highly floating point intensive and data parallel (e.g., the colour of a particular pixel is

not generally dependent upon the colour of other pixels, and therefore the calculations

used to compute each pixel’s colour can be carried out in parallel). As such, GPUs

are specifically designed to take advantage of data parallelism and have considerably

better floating point performance than an equivalent CPU.

GPUs were originally fixed function in design; they accelerated a fixed portion of

the graphics rendering pipeline, such as rasterisation (Kelley et al., 1992), but could not

14

2.3 Heterogeneous Processors in Commodity Systems

be programmed to perform any other function. They have gradually evolved to pro-

vide more programmability. Modern GPUs enable replacement of hard-coded stages

of their graphics pipeline with small programs, known as shaders. Initially, vertex

shaders (Lindholm et al., 2001) were introduced to provide programmable geometry

transformations and lighting calculations. This was followed by pixel or fragment

shaders (Montrym & Moreton, 2005), to provide programmable per-pixel effects (e.g.,

shadow or bump mapping effects), and most recently, geometry shaders (Blythe, 2006),

which can be used to procedurally generate additional geometry in the scene. A GPU

consists of a large number (tens to hundreds) of processing cores, used for shader execu-

tion. Thus, shader operations can be executed on many graphical elements concurrently

to provide a very high degree of data parallel performance.

With this highly data-parallel computation model, a GPU can be considered as a

high performance streaming processor. The Brook project (Buck et al., 2004) exploited

this fact to enable a GPU to be treated as a streaming coprocessor for general purpose

(non-graphics) computation. This was done by mapping computational kernels, written

in an extended form of C, to graphics shaders, and storing the data to be manipulated as

geometry and textures. This general purpose GPU (GPGPU) trend has continued, with

a variety of systems, such as Nvidia CUDA (Ryoo et al., 2008) and OpenCL (Munshi,

2009), having been developed to enable general purpose code to be offloaded to GPUs1.

The type of code that could be offloaded to initial GPGPU systems was limited by

a GPU’s fixed graphics pipeline and the lack of processing core features, compared to

that found on a CPU (e.g., lack of hardware caches and inefficient branch operations).

This has improved as GPUs have become more programmable and flexible. The Nvidia

Tesla (Lindholm et al., 2008) was one of the first GPU architectures specifically designed

with general purpose streaming computation, as well as graphics processing, in mind.

It unified the previously separate vertex and pixel processing cores into a single set

of shader processing cores, simplifying kernel development and enabling more flexible

load balancing. The (as yet unreleased) Nvidia Fermi architecture (Nvidia, 2009a) takes

GPU programmability even further, with a unified address space, advanced control flow

mechanisms (such as indirect branches and exception handling) and the ability to run

C++ (including virtual functions and function pointers).

1These GPGPU systems are described in greater detail in the next chapter.

15

2.3 Heterogeneous Processors in Commodity Systems

Underlining this convergence of CPU and GPU capabilities is the Intel Larrabee

project (Seiler et al., 2008). Intel’s entry into the high performance GPU market takes

the opposite approach from Nvidia’s — instead of taking a GPU and making it more like

a general purpose CPU, Larrabee takes a general purpose CPU and tailors it for data-

parallel workloads, such as graphics processing. Larrabee is a many-core architecture,

consisting of multiple x86-based, in-order processing cores. Since these cores are based

on the x86 architecture, a Larrabee GPU can execute any general purpose code that

could be executed on an x86 CPU (other than OS system calls, which are proxied to

the master CPU that runs the operating system).

As well as becoming more programmable, GPUs are being integrated with CPUs in a

single chip. In the embedded market, the Nvidia Tegra platform (Nvidia, 2009b) already

provides integrated CPU and GPU cores on a single chip. With the (as yet unreleased)

AMD Fusion project (AMD, 2008) and Intel Clarkdale architecture (Vaughn-Nichols,

2009), the desktop market is also heading in this direction. This increased coupling will

reduce the overhead of offloading computation to a GPU processor, as well as enable

better memory coherence between core types. This will enable more flexible and simple

work sharing between the CPU and GPU cores.

These improvements in programmability and the closer coupling to CPU cores mean

that a GPU is now less of a coprocessor and more of a fully fledged heterogeneous

processing core: a first class processing resource able to execute the majority of an

application’s code, but having very different performance characteristics from a con-

ventional CPU. The choice of where application code should be executed is a question

of expected performance (e.g., data-parallel floating point computations on a GPU

type core, control code on a CPU type core), rather than being limited by a GPU’s

capabilities.

A commodity processor chip, consisting of a modern Pentium-based CPU core and

many Larrabee-based GPU cores, would look much like a current HMA, such as the

IBM Cell Processor. Indeed, such a processor design is already planned as a future

commodity PC processor by Intel, and was one of the motivations behind this work.

2.3.2 Many-Core CPUs

Another trend driving commodity systems toward a more heterogeneous processing

environment is the ever increasing core count of commodity processors. Multi-core

16

2.3 Heterogeneous Processors in Commodity Systems

processor architectures are now commonplace, and a number of many-core architec-

tures have been proposed, such as Intel’s 80 core terascale processor (Mattson et al.,

2008; Vangal et al., 2008), and Tilera’s 64 core Tile processor (Wentzlaff et al., 2007).

These many-core architectures present opportunities for processor designers to intro-

duce heterogeneous processing cores as well as introducing scaling challenges which

may inevitably lead to some form of heterogeneity.

As the number of cores in commodity processors increases, the benefits of providing

different types of processing cores, as discussed in Section 2.1, becomes more apparent.

Modern multi-core processors already implement dynamic clock scaling of individual

cores (Charles et al., 2009) as a means of boosting system performance while remain-

ing within the processor’s thermal limits. This technique enables a particular core’s

frequency to be boosted above its base frequency, if the other cores are not being fully

utilised. Thus, these processors have become heterogeneous multi-core architectures,

with boosted cores having better performance than their non-boosted counterparts. An-

other approach which can be used to adapt to different workloads is core fusion (Ipek

et al., 2007). Core fusion enables a processor to dynamically fuse together multiple

simple cores into one, more powerful, virtual core. This enables the processor to adapt

to either a parallel workload (where all the simple cores can execute different threads

simultaneously), or a sequential workload (where a fused core can execute the single

thread more quickly).

As well as introducing opportunities to improve performance through heterogene-

ity, many-core architectures also introduce scalability challenges that can be overcome

through processing core heterogeneity. An example of this type of processor hetero-

geneity is non-uniform memory access (NUMA) architectures. As the number of pro-

cessing cores increases, accessing memory though a shared memory bus can become a

scalability bottleneck (Archibald & Baer, 1986; Rettberg & Thomas, 1986). NUMA

architectures (Cox & Fowler, 1989; Laudon et al., 1997) address this scalability bottle-

neck by having memory attached locally to each processor. An inter-processor network

enables access to data on non-local memory, but these accesses are slower than those to

local memory. Thus, the processing environment of a NUMA machine is heterogeneous,

in that the performance of a thread will depend upon whether it is placed on a core

close to the data it accesses.

17

2.4 Summary

2.4 Summary

In summary, heterogeneous multi-core architectures can provide performance and effi-

ciency improvements over symmetric counterparts. While currently occupying special-

ist domains, trends such as programmable GPUs and many-core architectures make

it likely that commodity multi-core processors will soon consist of heterogeneous pro-

cessing cores. The difficulties involved in programming these architectures mean that

new tools and programming techniques are required if they are to be exploited by

non-specialist programmers.

18

Chapter 3

Related Work

The heterogeneous nature of HMA processors complicates application development for

these processors. Developers must not only deal with the problems inherent in multi-

threaded programming, such as scalability and deadlock avoidance, but they must also

take into account the capabilities of the different processing core types in order to effec-

tively exploit an HMA processor. The impact this heterogeneity has on thread schedul-

ing has been investigated by Balakrishnan et al. (2005) and Bower et al. (2008). Issues,

such as different instruction sets, unusual programming models, complex memory ar-

chitectures and asymmetric inter-core communication, further complicate development

on these architectures (Penry, 2009).

The goal of this dissertation is to reduce the burden of dealing with heterogeneous

processing resources for non-specialist programmers. This chapter reviews work related

to the field of managing, abstracting and hiding processor heterogeneity from develop-

ers. Section 3.1 reviews parallel programming models and languages which have been

developed to ease the creation of programs which can concurrently execute on multiple

processing cores. Section 3.2 discusses work aimed at abstracting the heterogeneous

programming environment presented by architectures that consist of different process-

ing core types. Thread scheduling algorithms which take processing core heterogeneity

into account are discussed in Section 3.3. Finally, Section 3.4 discusses operating system

and runtime system designs aimed at managment of non-uniform memory.

19

3.1 Parallel Programming

3.1 Parallel Programming

To fully exploit a heterogeneous multi-core processor, an application must be able

to distribute its computation across the multiple cores available on the platform on

which it is executing. The application must therefore be designed such that it can be

parallelised into a number of parts that can each be executed concurrently. A number

of programming models, programming languages and compilers have been developed

to ease the process of developing parallel applications.

The work in this dissertation is not aimed at directly abstracting the creation of

parallel programs; instead, its goal is to enable programs, which are already parallel,

to effectively exploit heterogeneous core types. The work discussed in this section is

therefore complementary to the work in this dissertation, rather than being directly

comparable; both concurrency and heterogeneity abstractions are important if devel-

opers are to exploit heterogeneous multi-core architectures.

Application programming interfaces (APIs), such as MPI (Foster & Karonis, 1998;

Gropp et al., 1994) and OpenMP (Dagum & Menon, 1998), provide a variety of mech-

anisms to simplify the process of parallelising a given workload. These APIs are used

extensively by high performance and scientific applications.

OpenMP provides a set of preprocessor directives, or pragmas, that can be used to

direct the compiler to parallelise sections of code, by dividing a given task amongst a

number of different threads. OpenMP uses a fork-join threading model, in which the

master thread parallelises a task by forking a number of worker threads, that share

the work, and then waiting for each of these worker threads to complete (joining with

them) before continuing. OpenMP presents a shared memory programming model to

applications, with variables being visible to all threads of the application by default.

MPI takes a different approach, based upon message-passing. Communication be-

tween threads is performed using explicit messages. This enables developers to write

parallel programs that span multiple computer systems (e.g., within a computing clus-

ter) without having to be concerned with the details of inter-machine communication.

Thus, programs built using MPI can scale across multiple processing cores in a single

system, or across processors in multiple machines of a computing cluster.

Some programming languages have been built around the notion of concurrent pro-

gramming itself, rather than relying upon libraries or APIs to abstract concurrency.

20

3.1 Parallel Programming

These concurrency-oriented languages feature constructs that enable a program’s con-

currency to be expressed in as straightforward a manner as possible.

The Erlang programming language (Armstrong, 2003), originally developed for

telecommunication applications, follows the actor model (Hewitt et al., 1973) to ab-

stract the creation of concurrent programs. In this model actors are primitives of

computation, that send and receive messages amongst themselves and make local de-

cisions based upon received messages. Communication between actors in Erlang is

performed through shared-nothing asynchronous message passing, with messages being

sent to and retrieved from per-actor mailboxes. Messages may be consumed in a differ-

ent order from that in which they were received using pattern matching-based message

consumption. This model is inherently concurrent, with each actor being independent

from the others. Erlang influenced other concurrency-oriented languages, such as the

Java-based, Scala programming language (Odersky et al., 2004), which also uses the

actor model.

A similar approach is taken by languages based upon communicating sequential

processes (CSP) (Hoare, 1978), such as Occam (Roscoe & Hoare, 1988). These lan-

guages have a similar concept of independent communicating entities (called processes

in this case). However, these processes are anonymous (unlike actors which possess an

identity), with communication occurring across named channels.

Functional languages, such as Haskell, provide another approach. Purely functional

languages are side-effect free. This, in principle, enables the runtime system to ex-

tract parallelism by executing expressions in parallel, without changing the program’s

result at all. In practice, it is difficult for the runtime system to ensure that a given

expression is large enough to warrant the overhead of forking a thread to compute its

value in parallel with other expressions. Glasgow Parallel Haskell (GPH) (Trinder et

al., 1999), therefore, provides a par annotation, which programmers can use to identify

promising expressions for parallel computation. Use of the par annotation does not

change the semantics of the program, but rather enables exploitation of the already

present potential parallelism. Concurrent Haskell (Peyton Jones et al., 1996) provides

additional operators to enable threads to be forked explicitly, thus enabling a devel-

oper to express a program in a concurrent manner, if this is appropriate. However,

exploiting the potential parallelism provided by both concurrent and parallel Haskell

efficiently continues to be a challenging problem (Harris et al., 2005).

21

3.2 Abstraction of Heterogeneous Programming Environments

3.2 Abstraction of Heterogeneous Programming
Environments

As well as having multiple cores, over which an application must map its work if it is

to fully exploit the processor, the cores of a heterogeneous multi-core architecture are

of different types, each with a potentially different programming environment. Dealing

with the heterogeneous programming environments of an HMA’s different core types is

one of the most challenging aspects of developing an application for these architectures.

Typically, to develop an application that can exploit multiple different processing core

types, the program must be split between the core types at design time. The program-

ming environment of each core type is likely to be different, either due to the different

capabilities of the core type (e.g., a GPU is optimised for data parallel workloads and

is therefore usually programmed using a data parallel model), or the lack of operating

system support on slave cores (e.g., standard libraries may not be available on slave

processing cores if they do not execute operating system code).

This section discusses approaches which have attempted to abstract aspects of this

heterogeneity to various degrees, and through various means. Programming model and

compiler-based approaches are discussed in Section 3.2.1. Runtime systems and operat-

ing systems aimed at abstracting processor heterogeneity are discussed in Section 3.2.2.

3.2.1 Programming Models and Compilers

This section investigates programming models and compilers which have been developed

to ease the process of creating applications for heterogeneous processors. The three

main areas which have exploited heterogeneous processing cores are: coprocessors and

programmable devices (Section 3.2.1.1); network processors (Section 3.2.1.2); and the

IBM Cell processor (Section 3.2.1.3).

3.2.1.1 Coprocessors and Programmable Devices

The application development model for heterogeneous processors has evolved from that

of coprocessor-based approaches. Originally, coprocessors were programmed using two

distinct approaches: an ISA-based approach or a device driver-based approach. In the

ISA-based approach, the master CPU’s instruction set architecture (ISA) is augmented

with custom instructions which enable execution of coprocessor operations. The master

22

3.2 Abstraction of Heterogeneous Programming Environments

CPU is charged with controlling the coprocessor during its execution and, therefore, is

typically stalled for the duration of the coprocessor’s execution. This, combined with

the lack of flexibility afforded by having to modify the master CPU’s ISA to support a

given coprocessor, means that this approach was only used for the most closely coupled

coprocessor designs, such as the Intel x87 floating point coprocessor and the Cipher

coprocessor units of the Intel IXP network processor (Feghali et al., 2002).

Coprocessors which evolved from more loosely coupled devices, such as I/O offload

processors or GPUs, usually employ a device driver-based programming model. In

this approach a custom device driver controls offloading of work to the coprocessor.

To take advantage of these coprocessors, an application would originally have had to

interface with the coprocessor driver in a device specific manner. However, as GPUs

became more prevalent, device-independent, domain-specific programming APIs, such

as OpenGL (Woo et al., 1999) and DirectX (Microsoft, 2002), were built on top of these

drivers to provide graphics acceleration portability.

Domain-specific languages, such as the OpenGL Shader Language (Peercy et al.,

2000) and Cg (Mark et al., 2003), are provided by these APIs to enable applications to

exploit the programability of modern GPUs. These languages hide the GPU’s hardware

complexity and device-specific ISAs from application developers, but are heavily tai-

lored towards graphics processing. While it is possible to offload non-graphics related

code to GPUs using these languages, doing so is cumbersome, requiring the developer

to convert their algorithm into an equivalent graphical operation and map data into

graphical textures or vertices. Restrictions in these languages also limit the algorithms

that they can express. For example, while Cg is a C-like language, it does not pro-

vide support for pointers, recursion or many other standard C operations required for

efficient general purpose computation.

As the performance and programability of GPUs increase, general purpose compu-

tation on GPUs (GPGPUs) has become a more attractive proposition. To achieve high

performance from a GPGPU, offloaded code must be highly parallelisable so that it can

concurrently use the large number of processing cores provided by these architectures.

It must also minimise off-chip communication to avoid this becoming a bottleneck.

A streaming programming model, in which GPUs are abstracted as general purpose

stream processors (Kapasi et al., 2003), has been used by a number of GPGPU sys-

23

3.2 Abstraction of Heterogeneous Programming Environments

tems, such as Brook (Buck et al., 2004) and Cuda (Ryoo et al., 2008), to enable general

purpose code to exploit GPUs in an effective manner.

A streaming processing model expresses offloaded code in the form of computational

kernels, and the data on which they operate as streams. A computational kernel pulls

data from one or more input streams, performs a calculation on this data, and then

pushes its output to one or more output streams. A streaming application can be built

up from many computational kernels, connected by a network of data streams. This

model suits the architecture of GPUs because it expresses parallel work in the form

of computational kernels, and expresses inter-kernel data locality through streams.

Therefore, different computational kernels can be mapped to each of the cores of a

GPU, and off-chip communication can be minimised by mapping streams to direct

inter-core data transfers.

The Brook and Cuda GPGPU systems both extend the C language to enable

streams and computational kernels to be expressed. An application built using these

systems consists of both normal C / C++ code, that runs on the master CPU, and

computational kernels, which are offloaded to the GPU. Kernels are written as special

C functions, specified by a kernel keyword. These kernel functions are restricted to

a subset of C, with limited pointer support and no support for recursion or indirect

branches. The Brook and Cuda GPGPU systems consist of a compiler and a runtime

system. The compiler converts each kernel into a shader program so that it can be

executed on the GPU. The runtime system controls the initialisation, set-up and man-

agement of kernels on GPU cores, as well as providing routines to transfer data between

the CPU and GPU cores.

These systems enable general purpose computation on GPUs, but are relatively

inflexible. Since the computational kernels are compiled into shader programs, they

are restricted to execution on a GPU core, even if the GPU is already in-use or over-

subscribed. OpenCL (Munshi, 2009) presents a similar streaming programming model,

but provides more flexibility in where the computational kernels are executed. It does

this by distributing the kernels in an architecture independent intermediate form, then

just in time (JIT) compiling the kernels at runtime, for the core type on which they

will be run. OpenCL uses the Low Level Virtual Machine (LLVM) compiler infras-

tructure (Lattner & Adve, 2004) to JIT compile computational kernels to optimised

24

3.2 Abstraction of Heterogeneous Programming Environments

machine code. Therefore, these kernels can be run in an efficient manner on any avail-

able core-type which is supported by the LLVM back-end. This currently includes

general purpose CPU cores, GPU cores and embedded processing cores.

This gives the developer much more flexibility to exploit the available core types on

any given system. However, the onus is still on the application developer to decide which

core type is most suitable for a given computation: unlike the work in this dissertation,

OpenCL does not attempt to automatically schedule code on the most appropriate core

type. OpenCL also requires offloaded code to be written in a streaming programming

model style, which limits the type of code which can be offloaded and prevents efficient

interaction between offloaded and non-offloaded code.

A number of other systems, such as the Sh Programming Language (McCool &

Du Toit, 2004), the RapidMind Streaming Execution Manager (McCool, 2006) and the

PeakStream Virtual Machine (Papakipos, 2006) provide a similar streaming program-

ming model. These three systems all extend C++ with additional constructs to enable

developers to express computation kernels and declare data streams. They also manage

the offloading of code and data to the GPU, removing this burden from the developer.

A similar approach is taken by Microsoft Accelerator (Tarditi et al., 2006), which ex-

tends C# with a data-parallel programming model. It provides a set of parallel array

operations which can be offloaded to GPU cores automatically.

EXOCHI (Wang et al., 2007) provides a more typical multithreaded programming

model, by exposing heterogeneous cores as application-level resources, rather than a

separate device managed through a device driver. EXOCHI enables an application

to create user-level threads, calls shreds, which can target heterogeneous core types.

Shreds are created by invoking an extended form of the OpenMP shared-memory par-

allel programming interface (Dagum & Menon, 1998). Standard OpenMP constructs –

such as the fork-join or producer-consumer threading models – can be used to parallel-

ise code. These parallel sections can be compiled for multiple machine architectures

to produce a fat binary. The EXOCHI runtime system can then schedule shreds on

heterogeneous core types.

EXOCHI hides some of the complexity of partitioning an application between het-

erogeneous core types, by providing similar execution environments for shreds running

on master and slave processors through: (i) an architectural wrapper ; (ii) shared virtual

25

3.2 Abstraction of Heterogeneous Programming Environments

memory translation; and (iii) collaborative exception handling (e.g., faulting to a mas-

ter processor if a shred running on a slave processor requests an OS service). However,

it also relies upon the developer to decide upon the most appropriate core type for the

parallel portions of their code and does not enable shreds to be migrated between core

types once they have been started.

The Merge framework (Linderman et al., 2008) extends EXOCHI with a library-

oriented language, based upon the MapReduce programming model. The MapReduce

programming model (Dean & Ghemawat, 2004) can be used to decompose a large

computation into a set of independent map and reduce operations. Merge translates the

explicit parallelism, presented by the MapReduce programming model, into a series of

tasks that can be dispatched to any of the available processing cores on the system. The

tasks are expressed as a hierarchical set of functions with different degrees of parallelism

granularity, as well as different target architecture variants. The runtime system can

then select the most appropriate implementation for a given task, based upon the core

types available on a given platform and the degree of parallelism available. Tasks are

placed onto an architecture-agnostic work queue, with an appropriate implementation

of a work item being dispatched to a specific processing core when it becomes idle, thus

distributing work across the heterogeneous cores of a platform.

The Merge framework enables an application to exploit heterogeneous processing

cores in a conceptually simple and relatively elegant manner. However, applications

must be built using the MapReduce programming model if they are to exploit the

heterogeneous cores using this framework. This limits the set of algorithms which can

be offloaded to those which can be expressed in the MapReduce programming model.

Merge also relies on the developer or a library to provide multiple versions of a particular

abstract computation, for different target architectures or parallelism granularities, in

order to effectively exploit a given heterogeneous platform.

3.2.1.2 Network Processors

Network processors were one of the first domains in which true heterogeneous multi-core

architectures were found. As such, a number of programming models and compilers

were proposed to limit the complexity of building network processing applications on

these HMA network processors.

26

3.2 Abstraction of Heterogeneous Programming Environments

NP-Click (Shah et al., 2003) is a network processor programming model which is

based upon the Click Modular Router (Morris et al., 1999). A Click router consists of

a number of routing components, each of which performs a simple operation, such as

packet queueing or packet classification. The routing components are plugged together

using a simple language to create a particular router configuration. A network packet

traverses this pipeline of routing components, being partially processed by each com-

ponent. NP-Click maps each of these routing components onto a particular core of a

heterogeneous network processor, thus spreading the packet processing load across a

heterogeneous architecture.

However, NP-Click is a very domain-specific programming model. It is based upon

a dataflow paradigm, and is therefore only suitable for applications which process a

very regular stream of data, such as network routers. Additionally, router components

are statically allotted to processing engines at compile-time, reducing portability across

different heterogeneous platforms and limiting flexibility in dealing with changing work-

loads.

The NETKIT (Coulson et al., 2003) project provides a similar programming model

to NP-Click, with different routing components each performing a part of a network

packet’s processing and then passing the packet to the next component. However,

more flexibility is provided by pluggable loaders and binders, which enables dynamic

loading and binding of components at runtime. Different loaders can be employed to

load components onto different core types, with dynamic binding enabling components

to continue to communicate, even if their communication mechanism must change, due

to one being moved to a different core type.

NETKIT provides a dynamic method of linking routing components together, with-

out having to know a priori the type of processing core to which a component is con-

necting. However, as a middleware-based solution, NETKIT does not abstract the

process of writing a routing component for different core types, just the process of

loading and connecting these components on a heterogeneous architecture. Addition-

ally, its middleware design is a relatively heavyweight solution which is likely to have

high overheads (no performance results are available).

The auto-partitioning compiler, developed by Intel for network processors (Dai et

al., 2005), takes a different approach. Instead of having the programmer partition

the application manually, the compiler takes synchronous C code, and automatically

27

3.2 Abstraction of Heterogeneous Programming Environments

partitions it into a set of components. These components can be mapped to the het-

erogeneous processing cores of a network processor, parallelising the code by pipelining

each packet’s processing through a series of component stages. The sequential code is

partitioned by cutting its control flow graph into a series of non-overlapping compo-

nents. To enable the routing application to fully utilise a network processor’s processing

cores, the auto-partitioning compiler partitions the application such that there are no

data dependencies from later stages to earlier ones, as these would stall the pipeline and

prevent parallelism. It also attempts to choose cuts in the control flow graph which

minimise the amount of data which must be transmitted between component stages

and balance the amount of processing that each stage must perform.

Intel’s auto-partitioning compiler enables programmers to develop applications for a

heterogeneous multi-core architecture using the familiar sequential programming model.

However, extracting parallelisation from this sequential code depends upon the algo-

rithm having inherent data parallelism and a minimal number of inter-component de-

pendencies. Network routing is one of the best-case applications for this approach,

since it typically has inherent data parallelism, with a number of largely independent

operations that can be performed in a pipelined fashion on successive packets. More

general purpose applications with more complex structures and dependencies are much

more difficult to parallelise in this manner. There has been a large body of work in-

vestigating automatically parallelising programs on homogeneous processors, especially

in the Fortran language, due to its stronger pointer aliasing guarantees compared to

C. Compilers such as the Fortran D compiler (Hiranandani et al., 1992) and the SUIF

Explorer (Liao et al., 1999) have investigated auto-parallelisation of scientific appli-

cations in Fortran: however, achieving significant parallelism using these approaches

is difficult, with these compilers relying upon additional hints from the developer (in

the form of a data decomposition specification for Fortran D, and through user-driven

interactive analysis in the SUIF Explorer). Furthermore, the sequential programming

model does not guide the programmer to design applications in a manner that enables

them to exploit the available cores of a given system, and hence an algorithm’s potential

parallelism may be hidden when it has been written in a sequential form.

28

3.2 Abstraction of Heterogeneous Programming Environments

3.2.1.3 IBM Cell Processor

Thanks to its role as the main processor of the Sony Playstation 3 games console, the

IBM Cell processor is one of the most widely available HMA processors. Its performance

potential has also seen it incorporated into high performance scientific computing ap-

plications, either as a processor in an IBM server, a custom supercomputer (e.g., the

RoadRunner machine (Barker et al., 2008)) or a cluster of Playstation 3 devices.

There are two processing core types in the Cell processor, each with different capa-

bilities and instruction set architectures (ISAs). Thus, different machine code must be

generated for each core type. In fact, as well as having to be compiled for a particular

core type, the very different programming environments of these two cores means that

code is likely to have to be specifically designed for a particular core type. For example,

of the two core types on the Cell processor, only one (the PPE core) runs the operating

system. The other core type (the SPE core) does not run any operating system code,

meaning standard libraries and operating system features are not directly available.

As discussed briefly in Section 2.2, the heterogeneous programming environment is

further complicated by an unusual memory hierarchy. Each SPE only has direct access

to a small (256KB) private memory store. An SPE core can initiate direct memory

access (DMA) transfers between main memory and its private store in order to access

shared data: however, this is a costly operation and must be performed sparingly if

code is to perform well on the SPE cores.

The standard approach to application development on the Cell processor is a split

program approach, in which the application is effectively partitioned in two at design

time, with each of these parts being developed separately for its respective core type. A

number of specialist applications, such as games and scientific applications, have been

developed using this approach (Bader & Agarwal, 2007; Benthin et al., 2006; Liu et al.,

2007). However this approach is not ideal, due to its lack of portability and the limit

to load balancing and adaptability to changing workloads incurred by the design-time

fixing of application components to a particular core type. Furthermore, developing

each portion of the application under a different programming environment also com-

plicates application development, and hence may introduce defects. To alleviate these

challenges, a number of compilers and programming frameworks have been developed

29

3.2 Abstraction of Heterogeneous Programming Environments

to present the application developer with a less complex programming environment on

the IBM Cell processor.

A compiler, called the Octopiler (Eichenberger et al., 2006), was developed by IBM

to provide a more unified programming environment on which to develop applications

for the Cell processor. It extends the OpenMP programming model to enable program-

mers to specify regions of code that can be executed in parallel and would be suitable

for execution on the SPE cores. The compiler duplicates compilation of these code sec-

tions for both core types and inserts code to automatically co-ordinate their execution

on the heterogeneous core types. As well as the task-level parallelism provided by the

OpenMP pragmas, the Octopiler also automates the extraction of data-level parallelism

through auto-SIMDization of appropriate scalar loops1.

The Octopiler hides the Cell processor’s unusual memory heirarchy by providing

a single shared-memory abstraction. It does this with a compiler-controlled software

cache, which caches recently accessed data in the SPE’s private memory to reduce the

overheads of DMAing from main memory. This system is conceptually similar to the

software caching system presented in Section 5.3.3 of this dissertation. However, it

does not use high level type information to optimise data transfers by caching complete

objects and large array blocks. Instead, it emulates a 4-way set associative hardware

cache with 16 byte cache-lines.

The Octopiler provides a much simpler programming environment for the Cell pro-

cessor than the standard split-program approach. However, its use of the OpenMP

programming model limits its flexibility, in that only code blocks which have been

annotated as being parallel regions will run on the SPE cores. Only programs which

exhibit relatively regular task or data parallelism can use this model to exploit the

potential performance of the Cell Processor.

The Cell Superscalar (CellSs) framework (Bellens et al., 2006; Perez et al., 2007)

builds upon the Octopiler compiler to provide an alternative programming model, based

upon task dependency graphs, that can provide the developer with more flexibility in

program design. CellSs enables the developer to use code annotations to specify task

functions, that can be run on the SPE core type, as well as data dependencies between

these tasks. When a thread invokes a task function, it adds the task to a queue of

1Auto-SIMDization unrolls a loop so that multiple iterations of the loop’s body can be executed in
parallel using the SIMD (Single-Instruction, Multiple-Data) instructions available on the SPE cores.

30

3.2 Abstraction of Heterogeneous Programming Environments

pending work. It also adds this task as a node of a task dependency graph and inserts

edges between tasks which have data-dependencies. Tasks which have no dependencies

are scheduled on SPE cores, with the dependency graph being updated once they have

completed.

This programming model presents the developer with a more flexible model for shar-

ing work between the Cell’s heterogeneous processors. Since the CellSs runtime system

dynamically tracks inter-task dependencies, it can exploit irregular parallelism that

would not be easily expressible with the OpenMP-based Octopiler approach. However,

the developer is still responsible for identifying the code blocks that are likely to benefit

from execution on the SPE core type. Also, if the granularity of tasks is too small,

the overheads of updating the dependency graph and scheduling tasks for execution is

likely to overwhelm any performance benefits this approach could provide.

The Sieve C++ language (Donaldson et al., 2008), created by Codeplay Software

Ltd., presents the developer with a different model, based around the concept of sieve

blocks. Within these sieve blocks memory consistency is purposely relaxed, with writes

to global data (data defined outside that block) being delayed until after the block com-

pletes. These sieve blocks can then be automatically parallelised by splitting the blocks

into fragments of computation (a fragment may, for example, be a bundle of 20 loop

iterations) and speculatively executing these fragments concurrently on multiple cores.

The relaxed memory consistency, provided by delaying writes to global data, eases this

auto-parallelisation process, since the dependency analysis must only account for vari-

ables within the sieve block, not global data. When all of a sieve block’s fragments

complete, their delayed writes are written to global memory in the order that would

have occurred, had the blocks been executed sequentially. The delayed writes from

any fragments which were executed speculatively and were subsequently found to be

invalid (e.g., loop iterations which, in a sequential execution, would have occurred after

a break statement) are simply discarded.

Codeplay have implemented the Sieve C++ system for the Cell processor, as well

as for multi-core x86 systems. This programming model simplifies dependency analysis

and enables a program written in sequential manner to exploit the heterogeneous core

of the Cell processor. However, delaying writes to global memory until sieve blocks

complete presents an unusual memory consistency model to developers and may cause

unexpected bugs. It also limits the algorithms which can be expressed within a sieve

31

3.2 Abstraction of Heterogeneous Programming Environments

block, since a sieve block fragment is not able to see any of the writes to global variables

performed by sieve block fragments which were conceptually executed earlier.

3.2.2 Runtime Systems and Operating Systems

A number of runtime systems and operating systems have been specifically developed

to hide or abstract various aspects of heterogeneous multi-core architectures.

CellVM (Noll et al., 2008) is a Java runtime system for the Cell processor. It

aims to hide the heterogeneous nature of the Cell processor behind a homogeneous

Java virtual machine. CellVM supports the execution of a standard Java application

across the heterogeneous cores of the Cell processor. It consists of two co-operating

virtual machines, one for each of the two core types on the Cell processor. The virtual

machine running on the Cell’s PPE core type manages the system overall and provides

the full set of functionality, as specified by the Java Specification. The SPE cores run

a stripped down virtual machine, which enables an application to offload a single Java

thread to each of these cores. The SPE’s virtual machine supports most common Java

operations: however some more complex operations, such as object creation and thread

synchronisation, are not directly supported. To perform these complex operations, the

SPE virtual machine sends a blocking request to the PPE virtual machine, which

performs the operation on its behalf and returns the result.

The approach taken by CellVM – hiding the heterogeneous architecture of the

Cell processor behind a homogeneous Java virtual machine – is similar to that of the

Hera-JVM runtime system, presented in Chapter 5. However, there are a number

of significant differences in philosophy, design and implementation between these two

runtime systems.

CellVM aims to provide a unified programming environment for both the PPE and

SPE core types. However, it does not totally hide the Cell’s heterogeneous architecture:

the developer must still decide the core type upon which threads should be executed.

Since the PPE and SPE core types have very different performance characteristics, the

developer requires relatively in-depth knowledge of the Cell processor’s architecture

in order to exploit its potential performance. Hera-JVM attempts to hide the Cell’s

heterogeneous architecture from the developer entirely. Instead of specifying the core

type on which a thread should run, hints about the program’s likely behaviour are pro-

vided to the runtime system, either through code annotations (Chapter 6) or runtime

32

3.2 Abstraction of Heterogeneous Programming Environments

monitoring (Chapter 7). Hera-JVM uses these behaviour hints, and its knowledge of

the architecture on which it is running, to optimise the program’s use of the archi-

tecture’s heterogeneous cores, by migrating threads between the available core types.

This migration process is completely transparent to the application, meaning applica-

tion developers need not even be aware that their code is executing on a heterogeneous

environment.

The design of the two runtime systems also differs. CellVM is designed as two sep-

arate virtual machines, which co-ordinate through shared memory to support a single

application’s execution. In contrast, Hera-JVM’s philosophy of abstracting heteroge-

neous core types runs right through the runtime system’s design itself. The majority

of the runtime system’s code is shared by both core types; only a small number of

low-level routines are core-type specific. While the runtime system’s routines are, by

necessity, compiled to different machine code for each core type, the same mechanisms,

algorithms and data-structures are used by the runtime system, no matter the core

type. This design limits the likelihood of interfacing bugs being introduced if updates

to the runtime system are not applied to both core type runtime systems simultane-

ously and identically; updates made to Hera-JVM’s runtime system are simultaneously

shared by both core types.

The prototype implementation of CellVM has a number of limitations compared

with Hera-JVM. Only a single thread can be bound to each SPE core in CellVM, with

no thread switching provided by SPE cores and threads being fixed to a particular core

type upon creation. Hera-JVM enables threads to be migrated between core types at

any function call point, and supports the execution of multiple threads by a single SPE

core with pre-emptable thread switching. Additionally, CellVM relies upon the PPE

core to perform a number of common operations, such as object creation and thread

synchronisation, on the behalf of the SPE cores, which limits its scalability. These

operations are performed locally by the SPE cores in Hera-JVM. Finally, unlike Hera-

JVM, the current CellVM prototype does not strictly follow the Java memory model.

This is likely to introduce correctness issues for large scale concurrent applications.

Intel’s many-core runtime McRT (Saha et al., 2007) is a platform aimed at enabling

application developers to exploit many-core architectures (tens to hundreds of cores).

It provides a number of features, such as user-level thread scheduling and software

33

3.2 Abstraction of Heterogeneous Programming Environments

transactional memory (STM), to assist developers in creating highly scalable applica-

tions.

The current McRT prototype targets symmetric architectures, although it’s design

supports heterogeneous architectures. It provides a sequestered mode of execution,

where one master processing core runs the operating system and the other cores ex-

ecute application threads without operating system support (bare metal), being sup-

ported by a lightweight executive instead. This provides the application with complete

control of thread scheduling on the sequestered processors. The runtime system also

hides the lack of operating system support on the sequestered processors, by acting as

a OS interface shim and forwarding all system call requests to the master processor

for processing on the sequestered processor’s behalf. While this provides a substrate

for application execution on an HMA processor, there is no support for heterogeneous

processor architectures currently provided by McRT. McRT does not, therefore, cur-

rently deal with issues such as scheduling an application’s execution across an HMA

processor, such that it makes best use of the capabilities of its heterogeneous cores.

The BarrelFish operating system (Baumann et al., 2009; Schüpbach et al., 2008) was

specifically developed to tackle the increasing heterogeneity found in modern computing

systems. It is a microkernel-based design, in the mould of L4 (Liedtke, 1995); however,

it proposes a multikernel model, where each processing core runs its own instance of

the kernel and all inter-core communication is performed through explicit messages. In

essence, it treats modern heterogeneous computer systems like a distributed system,

with cores as nodes and the system’s inter-core interconnect as the network.

The multikernel model aims to expose an architecture’s heterogeneity and provide

tools and mechanisms to enable developers to deal with the complexities introduced

by such architectures, rather than hiding or abstracting these complexities. Barrelfish

provides a system knowledge base to expose details of the underlying machine to appli-

cations. An application can query this system knowledge base, using constraint logic

programs, to gain knowledge of the topology of the hardware on which it is executing.

The application can then adapt its execution by, for example, requesting to be sched-

uled on a core type with a specific set of features, or adapting its algorithm to suit the

architecture on which it is being run.

This approach provides considerable flexibility for applications to deal with and

adapt to heterogeneous systems. However, in doing so, it adds considerable complexity

34

3.2 Abstraction of Heterogeneous Programming Environments

to applications that wish to make use of the system knowledge base. It is likely that only

specialist application developers would have the skill necessary to effectively make use of

this exposed knowledge. Developers that do not have in-depth knowledge of the effects

of system heterogeneity could easily misinterpret the implications of a given system

topology and hinder performance, instead of improving it. It may be more appropriate

to limit use of the system knowledge base to libraries and runtime systems, which then

abstract these details from higher level applications. In this scenario, the Barrelfish

operating system is complementary to the work of this dissertation: a runtime system

such as Hera-JVM can be provided with information about the system’s heterogeneity

by the underlying operating system, but hide this heterogeneity from applications that

it supports.

Work on the system knowledge base aspect of the Barrelfish operating system is

currently at an early stage, with no published results as yet. Also, while Barrelfish was

designed to support systems with heterogeneous processing cores, it currently supports

only symmetric x86 multi-core architectures.

Another operating system aimed at heterogeneous systems is Helios (Nightingale et

al., 2009). It is based upon the Singularity operating system (Fähndrich et al., 2006;

Hunt & Larus, 2007) and, as such, is built in a variant of the C# programming language.

Processes are isolated from each other (they cannot explicitly share memory), but can

communicate through typed inter-process message channels.

Helios extends Singularity with the concept of satellite kernels. A satellite kernel is

started on each programmable device or heterogeneous processing core in the system.

Each satellite kernel manages the local resources of these heterogeneous cores (e.g.,

performing local memory management and thread scheduling), as well as providing a

single set of abstractions across the heterogeneous system: all Helios satellite kernels

export the same application binary interface (ABI), which, combined with application

code being distributed in architecture independent CIL (common intermediate lan-

guage) format, means that applications do not need to be designed or compiled for a

particular core type. Inter-process communication between processes on different satel-

lite kernels is also handled transparently, using the same message channel abstraction

as local inter-process communication. These features enable Helios to transparently of-

fload application processes and operating system services to the heterogeneous cores of

programmable devices. The current prototype can offload processes from the x86 host

35

3.3 Thread Scheduling on HMAs

CPU to an ARM-based core on a programmable I/O device, without any modification

of the applications’ source code.

Helios provides an affinity metric for inter-process message channels to enable ap-

plications to express a desire to be near to the the process with which they are commu-

nicating to reduce communication overheads or to be located on a different core type,

to isolate each process’s computation. Processes can also explicitly specify an affinity

for a particular core type. Helios uses these affinities to choose the satellite kernel (and

therefore core type) on which the process should be started.

The ability of Helios to transparently offload application code to heterogeneous

processing cores is similar to that of the Hera-JVM runtime system presented in this

thesis. However, there are a number of significant differences. Helios offloads processes,

while Hera-JVM enables offloading of individual threads within a single process. Also,

once running, a Helios process is confined to the core type on which it started. Hera-

JVM, by contrast, enables transparent migration of threads between core types at

runtime. Finally, while process affinity abstracts the process of taking into account the

communication overheads of offloaded processes, it does not abstract the performance

asymmetry caused by the differing capabilities of heterogeneous core types.

3.3 Thread Scheduling on HMAs

As well as presenting a heterogeneous programming environment to developers, HMA

processors also introduce asymmetries in performance, depending upon the core type

on which application threads are executed. This complicates thread scheduling on

these architectures. This section reviews work on thread scheduling algorithms that

take processing core heterogeneity into account in an attempt to maximise application

performance, energy efficiency or some other metric of interest.

Kumar et al. (2003) investigate the potential for energy savings using heterogeneous

core types. The cores have identical instruction sets but have different levels of com-

plexity, leading to differences in potential performance due to their different instruction

level parallelism capabilities. The authors investigate switching an application’s execu-

tion between these heterogeneous cores to improve the system’s energy efficiency. They

do this by sampling a thread’s execution and switching to a less complex core, while

36

3.3 Thread Scheduling on HMAs

turning off the more complex core, if this would lead to a better energy / performance

trade-off.

A number of oracle-based and more realistic, but simple, dynamic sampling heuris-

tics were simulated to investigate different methods of selecting the most appropriate

core type for different phases of a thread’s execution. Their approach samples a thread’s

energy-delay product on the core types that are one step up and one step down in com-

plexity, compared to the core upon which the thread is currently executing, and then

switches to one of these core types if it has a lower energy-delay product than the cur-

rent core. They achieve up to 80% of the performance of running on the most complex

core type, while using only 30% of the energy.

This work only investigated the effect of moving a single thread across these hetero-

geneous cores as a means of reducing energy consumption. Subsequent work (Kumar

et al., 2004) built upon this approach to investigate using heterogeneous multi-core

architectures to improve the performance of multi-threaded workloads. They propose

a dynamic scheduling system in which a system’s execution time is split into: (i) a

sampling phase, where a number of thread-to-core assignments are evaluated to com-

pare the system-wide performance they provide; and (ii) a steady phase, where the

best assignment evaluated in the previous sampling phase is executed until the next

sampling phase is triggered. Various triggering mechanisms are evaluated, including

periodic triggering, and triggering based upon changes in behaviour, as measured by

the processing core’s instructions per cycle (IPC) metric.

Becchi & Crowley (2006) propose a similar approach: however, instead of having a

system-wide sampling period to evaluate the most appropriate thread-to-core assign-

ment, their scheduler profiles each thread individually. Each thread’s IPC value is

measured for both core types. This information is used to decide which threads benefit

most from being executed on the more complex core type. The threads are then as-

signed a core type on which to execute in order to maximise system-wide performance,

but are periodically migrated to the other core type to update the IPC measure for that

core type and, if appropriate, are reassigned. In addition, they evaluate a round-robin

approach that simply rotates threads across the available processing core types, with

a preference towards fully utilising the more complex (and therefore faster) core types.

This approach was found to perform almost as well as the sampling-based approach,

while being much simpler to implement.

37

3.3 Thread Scheduling on HMAs

Both (Kumar et al., 2004) and (Becchi & Crowley, 2006) claim significant speedups

in system-wide performance on heterogeneous architectures using these sampling-based

approaches. However, these results are arrived at through simulation, with simplified

scheduling algorithms, and do not fully model the overheads incurred in a real system.

A two-stage core assignment strategy is proposed by Sondag et al. (Sondag &

Rajan, 2009; Sondag et al., 2007). In this work, a program is first analysed offline to

cluster basic blocks into different types, based upon the ratio between different classes

of instructions (e.g., integer, floating point, control flow, etc.) within that basic block.

This information is used to introduce phase markers to the program’s control flow

graph, which are then compiled into the application’s binary. During execution, the

scheduler uses a representative set of basic blocks from each phase type to sample the

IPC metric of each phase type on the different core types. This information is used

to decide which core type is most appropriate for each phase type, with the scheduler

automatically switching a thread’s execution between core types when it moves onto a

different phase type.

This approach was evaluated in a simulated heterogeneous processor system, con-

sisting of two 2.4GHz x86 processing cores and two underclocked 1.6GHz processing

cores, that were otherwise identical. While this approach introduced both memory and

time overheads due to the inserted phase markers, it was able to improve the through-

put of a heavily loaded system on this heterogeneous environment, compared with the

stock Linux scheduler. However, the relatively contrived heterogeneous processing en-

vironment and limited workload employed (a continuous stream of SPEC CPU2000

benchmark tasks) limit the general applicability of this evaluation. Additionally, this

approach assumes that all code sections which have been clustered into the same phase

type by the offline analysis will perform similarly on the different core types. This may

not be a valid assumption, if the metrics that are used to cluster the phase types do

not take into account all aspects of the code’s behaviour1.

Mogul et al. (2008) use a similar model of heterogeneous multi-core architectures.

However, instead of sampling a thread’s IPC to select the core type on which it should

run, a thread is migrated between core types based upon whether it is executing user

1For example, cache miss rates can have a very significant influence on per-core-type performance.
However, this metric is hard or impossible to evaluate statically ahead of the program’s execution and
so cannot be used to cluster code blocks in this approach.

38

3.3 Thread Scheduling on HMAs

level or operating system code. Operating system code is bound to a simple, operating

system friendly core, while user-level application code runs on more capable and com-

plex application cores. The reasoning behind this approach is that operating system

code, by its very nature, does not exploit the instruction level parallelism available in

more complex core types. Therefore the extra energy required by these more complex

cores is wasted when it is performing operating system functions. Offloading these

OS operations to a simpler core type frees the more complex core to execute another

application thread, or to power down if no application threads are available, improving

energy efficiency.

The authors modified the Linux operating system so that device management and

interrupt handling is bound to a simple (simulated) OS core. Long running system calls

(such as select and open) were also modified, such that they trigger a core-switching

function which moves the calling thread’s execution onto the OS core for the duration

of the system call. Linux’s context switching code was optimised to reduce the overhead

of switching cores on system calls (Strong et al., 2009). Experimental evaluation of this

approach showed that on benchmarks that frequently execute operating system code it

can improve energy efficiency, albeit at the cost of some reduction in performance. This

work is relatively preliminary and a number of open issues remain, such as preventing

OS cores from becoming overloaded when application cores are idle and investigating

how these changes interact with Linux’s load balancer.

Li et al. (2007) present the Asymmetric Multi-Processor Scheduler (AMPS), that

is aimed at balancing a system’s workload across processing cores with asymmetric

performance. Rather than simply attempting to balance the number of threads being

executed on each processing core, as a typical load balancing algorithm would, AMPS

scales the number of threads executed on each processing core, based upon the cores’

relative computing power. This ensures that a processing core’s load is proportional to

its power, and prevents under-utilisation of fast cores. However, this approach assumes

that the performance of each thread in the system scales proportionally to the power of

the processing core on which it is executed. This is very unlikely, even in the relatively

homogeneous HMA system1 they use to evaluate this scheduler. A thread which is

regularly stalled waiting for data due to cache misses will run slowly regardless of the

1In this paper’s evaluation, otherwise identical processing cores were throttled to introduce perfor-
mance asymmetries.

39

3.3 Thread Scheduling on HMAs

core upon which it is executed, whereas a thread in a tight computational loop will

benefit greatly from being executed on a faster core.

The Heterogeneity-Aware Signature Supported (HASS) scheduler (Shelepov et al.,

2009) uses per-thread signatures to estimate the performance benefit that a thread is

likely to gain from execution on processing cores with different clock frequencies or cache

configurations. A signature consists of the expected number of cache misses for this

application under a number of different cache configurations, which is approximated

through offline profiling of the application. At runtime, the scheduler uses this signature

to estimate a completion time metric for this thread if run on each core type. This

metric approximates the time it will take a core to complete execution of a fixed number

of hypothetical instructions, based upon the core’s frequency, its cache miss latency and

the thread’s expected cache miss rate. It is used by the scheduler, alongside per-core

load, to select a core type for this thread’s execution that maximises system-wide

performance. In general, this involves a preference for non-memory-bound threads on

the faster cores, since their performance is affected more by core speed than memory-

bound threads.

By using signatures that are generated offline, the HASS scheduler removes the

need for dynamic profiling of thread behaviour, and thus, reduces runtime overheads.

However, by describing a thread’s behaviour using only one signature, this approach

cannot take into account different behaviour phases of a thread’s execution, or variation

due to different inputs.

The work reviewed in this section is based upon heterogeneous multi-core architec-

tures where the cores have asymmetric performance, either purely through differences

in clock speed, or by having different instruction level parallelism capabilities. There

is, therefore, a very clear ordering in processing core performance, from fast to slow.

Different threads may benefit by different amounts if executed on a fast core, but they

will execute no worse than if they were executed on a slow core. However, these as-

sumptions do not hold for real world heterogeneous multi-core architectures, such as

the Cell processor. The core types on these architectures have different capabilities

and trade-offs; there is no clear ordering of core performance. For example, on the Cell

processor, a thread that performs a high proportion of floating point operations is likely

to perform better on the SPE core than the PPE core, whereas a thread that performs

memory accesses frequently will achieve higher performance on the PPE core.

40

3.4 Managing Non-Uniform Memory

The heterogeneous programming environment of the different core types on HMA

processors, such as the Cell processor, has limited research into dynamic scheduling on

these platforms; without a mechanism to abstract these heterogeneous programming

environments, an application must be statically partitioned between the core types at

development-time, which prevents dynamic scheduling of threads between core types.

The only dynamic scheduling system for the Cell processor of which the author is

aware is presented in (Blagojevic et al., 2007a,b). In this system, an application is built

such that computationally expensive functions can be offloaded from the PPE to the

SPE cores, using an MPI approach. The scheduling system attempts to fully utilise

the SPE cores with a combination of: task-level parallelism and loop-level parallelism.

The scheduler then attempts to find the most efficient degree of parallelism granularity

for a particular application by changing the ratio of task-level to loop-level parallelism.

When an application enters a particular phase (these phases are currently manually

hard-coded into the application), it is sampled under a variety of task-level and loop-

level configurations, with the most effective then being used for the remainder of the

application’s execution.

This approach is limited for a number of reasons. Firstly, it is heavily application

dependent: the application needs to be modified, both to enable functions to be of-

floaded to the SPE cores and to provide both task-level and loop-level parallelism using

APIs such as MPI and OpenMP. Secondly, the scheduler does not take core heterogene-

ity into account at all: it is left to the application developer to decide, at application

design-time, which core type is most appropriate for different sections of the applica-

tion’s execution. Finally, the sampling approach used to select the most appropriate

parallel granularity is simply an exhaustive search of the possible configurations, which

is not scalable and involves the application running in a large number of sub-optimal

configurations before the most optimal configuration is chosen. The approach is only

evaluated for a single application (an embarrassingly parallel gene matching algorithm),

and therefore the evaluation also has limited applicability.

3.4 Managing Non-Uniform Memory

Differences in processing core performance and capabilities are not the only form of

heterogeneity that developers can face. Another form of heterogeneity can arise from

41

3.4 Managing Non-Uniform Memory

non-uniform memory access (NUMA) architectures, where the access latency to a given

memory location is not uniform amongst the processing cores. In a NUMA system, the

processing cores are grouped into NUMA nodes, each of which is directly attached to its

own local memory. Processing cores can access data in remote memory on other NUMA

nodes: however, such accesses are slower than accesses to the core’s local memory on its

own NUMA node. This introduces a performance asymmetry to the system — if data

is not placed near to the cores from which it will be accessed, system performance will

suffer. NUMA architectures have been proposed as far back as the 1980’s as a means

of improving the scalability of multi-processor computer systems. Commodity multi-

processor systems from both Intel and AMD are now regularly based upon NUMA

architectures. As such, a large body of research has investigated techniques aimed at

reducing the impact of this non-uniformity on system performance.

Whilst the underlying machine may have a NUMA architecture, most operating

systems present a coherent and homogeneous view of memory to applications. Using

an approach similar to that proposed in the Platinum operating system (Cox & Fowler,

1989), virtual memory page tables are kept consistent across NUMA node boundaries,

meaning that a virtual address will map to the same physical address, and therefore the

same location, from any NUMA node. If such a system is to achieve good performance,

each new virtual page requested by an application must be allocated to a physical page

on the NUMA node where the threads that are most likely to access this page are

executing.

A basic technique, currently employed by most commodity operating systems, is to

allocate physical memory on the NUMA node of the processing core upon which the

thread requesting this memory is currently executing. This prefer local strategy works

well if threads only access data that they have themselves allocated; however, threads

often access data allocated by another thread. If communicating threads are not located

on the same NUMA node, access to these shared data-structures will involve remote,

and therefore longer latency, memory accesses. Additionally, if the operating system’s

load balancing algorithm moves a thread’s execution to a core in a different NUMA

node, the data which it has previously allocated will remain on the original NUMA

node, and will therefore suffer from longer access latency times.

An improvement on this basic strategy is proposed by Bolosky et al. (1989). In this

work, a virtual page of memory can be cached on the local memory of multiple different

42

3.4 Managing Non-Uniform Memory

NUMA nodes. This means that threads on different NUMA nodes can all access this

shared data at local memory access speeds. However, since the data is replicated on

a different physical page of memory in each NUMA node, these different copies will

not be kept consistent by hardware. Therefore, caching is limited to read-only data.

Pages which have been cached are protected as read-only, such that any attempt to

write to them will trigger a page fault. Upon such a page fault, the operating system

will remove this page’s cached status, by updating the page tables on other NUMA

nodes to point to this copy of the page, rather than any cached replicas they may have

made. Thus, writable pages are restricted to a single physical location, preserving their

consistency.

The system proposed by Bolosky et al. also attempts to improve system perfor-

mance by migrating writable pages between NUMA nodes. When a thread performs a

write to a page that is located on a different NUMA node, the page is first migrated

to its own NUMA node by the operating system. This will reduce the overhead of

subsequent writes to this page from this thread; however migrating this page intro-

duces a high overhead, therefore this approach is only beneficial for pages which will

be migrated infrequently. To avoid continually migrating pages, the operating system

counts the number of times a page has been migrated, and fixes the page to a particular

NUMA node if this count increases above a global threshold.

While this approach can provide performance improvements, migrating pages be-

tween NUMA nodes is an expensive operation and may degrade performance under

certain unfavourable workloads. Additionally, this approach suffers from false shar-

ing, where different data elements are located on a single page, but are accessed by

threads located on different NUMA nodes. Pages which exhibit false sharing can never

be placed optimally: either the threads accessing the data must be moved, or the

application modified to remove the false sharing.

A number of operating systems have also been developed around the premise of

partitioning the operating system along NUMA node boundaries in an effort to reduce

contention and increase scalability on NUMA systems. The Hive (Chapin et al., 1995)

and Cellular Disco (Bugnion et al., 1997; Govil et al., 2000) operating systems are both

structured as a set of independent kernels, each of which manages its own NUMA node.

As well as providing stronger fault containment (a goal for both of these projects), this

approach enables the operating system to scale across many NUMA nodes in a relatively

43

3.4 Managing Non-Uniform Memory

simple, yet effective, manner. With a single monolithic kernel, all processors share all

resources and therefore contend for the same data structures, leading to bottlenecks.

By having each independent kernel manage only the resources local to its NUMA node,

contention can be reduced.

In the Hive operating system, these independent kernels co-ordinate through dis-

tributed system style techniques to provide applications with the illusion of running

on a single instance of the IRIX operating system. Hive also enables these kernels to

borrow memory pages from each other, to prevent a process from being limited to the

memory present on a single NUMA node. Threads can migrate between nodes and can

access shared memory across NUMA nodes in Hive; however, mechanisms to improve

system-wide performance, by allotting data and threads to the most suitable NUMA

nodes, were not investigated by the authors.

Cellular Disco takes a different approach. It uses a virtual machine monitor to

segregate a computer system’s resources between multiple independent kernels, in effect,

creating a virtual cluster on a single machine. These virtual machines can be migrated

across different physical CPUs and can lend memory to each other to enable load

balancing of the system’s CPUs and memory. While Cellular Disco can improve the

scalability of large multi-core NUMA systems, it does not present a unified system to

the application developer, instead presenting a virtual cluster. For an application to

make full use of the system, it must be structured as a distributed system, with separate

processes executed on each node of a virtual cluster, complicating its development.

The BarrelFish (Baumann et al., 2009) and Helios (Nightingale et al., 2009) operat-

ing systems, already discussed in Section 3.2.2, were developed to tackle the challenges

of NUMA architectures, in addition to heterogeneous processing cores. Both BarrelFish

and Helios also execute independent kernels on each NUMA node to reduce contention

and increase scalability. They also provide mechanisms for applications to tune thread

and data placement in order to improve system-wide performance on NUMA architec-

tures.

Barrelfish provides a system knowledge base, as described in Section 3.2.2, that can

be used by applications to express their resource requirements or behaviour characteris-

tics under different configurations, thus providing information to the operating system

with which it can make more informed NUMA node placement decisions. However,

this work is still at a preliminary stage, with no real-world results as yet.

44

3.4 Managing Non-Uniform Memory

The Helios operating system attempts to abstract process placement decisions by

providing an affinity metric that can be attached to message channels. This metric can

be used by applications to express a preference for close coupling of the processes at

either end of a channel (in which case the operating system may decide to place them

on the same NUMA node), or a preference for non-interference between the processes

(in which case they may be placed on different NUMA nodes). This affinity metric is

relatively simple to understand, while still providing the developer with flexibility in

process placement. Additionally, since this metric describes the characteristics of the

application in an architecture independent fashion, the same affinity settings can be

used to tune application placement under different NUMA configurations. However,

Helios is limited in that processes cannot span multiple NUMA nodes: if an application

wishes to scale across all the processing cores on a NUMA architecture, it must be built

as a multi-process application that communicates over message channels.

The Tornado operating system (Gamsa et al., 1999) also aims to provide scalabil-

ity on NUMA architectures. Instead of structuring the operating system as a set of

independent kernels to provide this scalability, Tornado uses an object-oriented design,

where each virtual and physical resource is represented as a independent object. Rep-

resenting resources as independent, localised objects, rather than in a unified shared

data-structure, reduces contention and can enable the data-structures to be spread

across a non-uniform memory hierarchy in a more efficient manner. Tornado also pro-

vides the concept of a clustered object, where a shared object can be replicated across

multiple NUMA nodes, but access is provided through a unified object reference. A

clustered object provides a unified interface, behind which different mechanisms can be

used for reading and writing data consistently across these replicas, depending upon

the machine’s configuration and the likely access patterns to the data-structures.

While the object oriented approach, employed by Tornado, can increase scalability

and improve data-structure locality in NUMA architectures, it is challenging to imple-

ment and becomes more complex as the number of processing cores and NUMA nodes

increase. The use of an object oriented approach also incurs performance overheads,

for example, in the form of virtual function invocation. Finally, as with most of the

other operating systems described in this section, this work concentrates on improving

the NUMA awareness of the operating system itself, but does not provide significant

assistance to application code in this respect.

45

3.5 Summary

3.5 Summary

In order to build software that can exploit a heterogeneous multi-core architecture, a

developer must deal with parallel programming, heterogeneous programming environ-

ments, scheduling under a heterogeneous processor environment, and management of

non-uniform memory. Having to deal with these challenges places an additional burden

on the application developer and limits the use of these architectures to specialist do-

mains. This chapter has reviewed work which is aimed at reducing the burden placed

on application development by each of these challenges.

This prior work has generally focused on a single aspect of processor heterogene-

ity. For example, the systems which deal with non-uniform memory, described in

Section 3.4, do not take processing core heterogeneity into account, and the thread

scheduling systems, described in Section 3.3, limit their approach to architectures in

which the cores only differ in performance, not instruction sets or processing capabili-

ties.

Even those systems which do deal with truly heterogeneous multi-core architectures,

such as those described in Section 3.2, do so in the context of relatively specialised ar-

eas (e.g., stream processing or network packet processing). So far, there has been little

research into a single approach towards abstracting all of these challenges, such that

non-specialist programmers can easily exploit the potential performance of heteroge-

neous multi-core architectures.

46

Chapter 4

Abstracting Heterogeneity using
Behaviour Characteristics

The processing capabilities of commodity computing systems are likely to become more

heterogeneous in the future. Programmers of specialist applications might be willing

to deal with this heterogeneity, in order to maximise an application’s performance.

However, most developers do not want to be burdened with issues relating to the het-

erogeneous resources available in these architectures: they may wish to take advantage

of the performance gains which can be provided by exploiting these heterogeneous

processing resources, but not at the cost of extra complexity.

The goal of this dissertation is to provide a runtime system that enables the different

core types of a heterogeneous multi-core architecture (HMA) to be exploited without re-

quiring non-specialist programmers to redesign their applications. The approach taken

to achieve this aim is to completely hide the details of the heterogeneous architecture

from user-level code behind a homogeneous virtual machine interface. The runtime

system maps the execution of this homogeneous virtual machine to the heterogeneous

processing cores, using its knowledge of the architecture on which it is running to inform

its resource allocation decisions. In effect, this approach attempts to move the burden

of exploiting heterogeneous architectures out of the hands of application developers and

into the runtime system, where it can be managed by specialist programmers.

The heterogeneous core types are likely to have different performance characteris-

tics, depending upon the type of code they execute. For example, a core with a large

cache would be suited for the execution of code which has a large data working set,

47

whereas floating-point intensive code might perform better on a different core type with

better floating point hardware.

By hiding an architecture’s heterogeneity, developers do not need to manually par-

tition an application’s execution between these different core types. This has the ad-

vantage of reducing developer effort and application complexity. However, it means

that the runtime system must perform this partitioning on behalf of the application if

it wishes to make the best use of the different capabilities of the heterogeneous core

types available to it. To do so effectively, it must have information about a program’s

expected execution requirements, so that it can infer the most appropriate core types

for the different portions of a program’s execution.

The approach taken by this work is to enable application code to be tagged with

behaviour characteristics (e.g., floating point intensive or random memory access be-

haviours), either through explicit code annotations, automatically using compile-time

tools or dynamically through runtime monitoring. A cost is assigned to each of these

behaviour characteristics for each of the different core types supported by the runtime

system. This cost is based upon the effect such a behaviour has on performance when

performed on this core type. The runtime system then uses a cost function to select

the least costly core type on which to execute code with a particular set of behaviour

characteristics. Thus, these behaviour characteristics can be employed by the runtime

system to influence code execution placement on an HMA system.

In the next section, the primary aspects of a processor’s heterogeneity that are ab-

stracted by this approach are described and the potential impact that each of these

aspects has on an application’s performance is discussed. A set of behaviour charac-

teristics are then defined and their effects on heterogeneous architectures are outlined.

Section 4.3 describes a variety of methods that can be used to characterise a program’s

behaviour and tag its code with appropriate behaviour characteristics. Section 4.4 out-

lines how per-core-type costs can be applied to an application’s behaviour, enabling the

runtime system to make informed resource allocation decisions. The chapter ends with

a discussion of the relative merits of this approach, compared to other approaches.

48

4.1 Aspects of Processor Heterogeneity

4.1 Aspects of Processor Heterogeneity

There are three main aspects of processor heterogeneity which can have a significant

effect on application performance: heterogeneous processing resources (i.e. different

core types); a heterogeneous memory hierarchy; and heterogeneous inter-core commu-

nication. These features make resource allocation and thread placement decisions more

complicated than on conventional architectures.

4.1.1 Heterogeneous Processing Resources

By its very nature, an HMA processor contains a number of processing cores types

which each have different processing capabilities. For example, a certain core type may

be tailored towards high performance execution of floating point code, but perform

very poorly, relative to other core types in the system, when it has to successively

dereference multiple pointers (e.g. traversing a tree data-structure).

These issues cause difficulties even when an application is manually partitioned,

with code being statically assigned to a particular core type ahead of time. A runtime

system which abstracts core type heterogeneity must dynamically assign the different

threads and phases of execution of a particular application to the different core types

at runtime. This makes scheduling and thread placement even more difficult, since the

abilities of each processing core must be taken into account, as well as other scheduling

parameters, such as which processing core has free cycles and which threads have higher

priority.

The different types of processing cores available on an HMA processor typically have

different instruction sets. If a thread is being migrated to a different type of processing

core, that thread’s code may need to be recompiled for the target core’s instruction set

(either ahead of time, or with a Just In Time (JIT) compiler in the runtime system).

Since each core executes a different series of machine instructions and potentially has

very different register and stack-frame layouts, migration of a thread between core

types cannot occur arbitrarily during a thread’s execution. Instead, thread migration

must occur at well defined transition points, where the runtime system can ensure that

execution of the thread will continue on the target core from the same point, and with

the same data, as when it left the original core. These difficulties mean that careful

consideration must be given as to whether the benefits of moving or re-scheduling a

task outweigh the costs of moving its thread.

49

4.1 Aspects of Processor Heterogeneity

4.1.2 Heterogeneous Memory Hierarchy

Many HMAs do not have a globally uniform memory model. Instead, most have a

heterogeneous memory hierarchy, consisting of multiple different types of memory with

differing access times and sizes. Unlike conventional architectures, which hide their

memory hierarchy using hardware caches, the different levels of a heterogeneous mem-

ory hierarchy are often explicitly visible and accessible. Some of the levels in this het-

erogeneous memory hierarchy are also non-uniform, in that different processing cores

have different access times to the same area of memory. Some architectures even employ

local scratch-pad memory, which can only be accessed by a single core.

This heterogeneous memory hierarchy complicates data placement. Data should be

allocated close to those cores which are most likely to access it. If data is moved between

different levels of the hierarchy (i.e. using a software cache to exploit temporal locality),

then the software must also deal with issues such as coherency between different copies

of the same data, and potentially distinct address spaces for different memory regions.

This heterogeneous memory hierarchy is an additional hindrance to thread migra-

tion between cores. If a thread has stored data in the local scratch-pad memory of the

core on which it was executing, then this data will need to be moved, along with the

thread, to the destination core.

4.1.3 Heterogeneous Inter-Core Communication

An HMA often provides multiple inter-core communication mechanisms. Potential

options for inter-core communication can include: inter-core shared registers; mailbox

registers; a ring-based data-channel; network on-chip communication; or simply shared

memory. These communication mechanisms have different throughput, latency and

connectivity capabilities. These trade-offs must be taken into account before the most

appropriate communication mechanism for a particular situation can be chosen.

Thread placement also plays a significant role in the choice of inter-core communica-

tion. Certain communication mechanisms may only be available between neighbouring

cores, or cores of the same type. Conversely, the communication patterns between dif-

ferent threads can also inform thread placement decisions. It is often more efficient for

neighbouring cores to communicate with each other, both to shorten communication

50

4.2 Behaviour Characteristics

delays and to reduce overall congestion. Thread placement decisions should take this

into account, by placing threads which communicate frequently on neighbouring cores.

Other features of a processor’s inter-connect may also influence thread placement.

For example, the Cell processor uses a ring-based interconnection system (Ainsworth &

Pinkston, 2007). This ring can accept up to three simultaneous memory transactions,

as long as these transactions do not overlap. The runtime should therefore try to

cluster communication threads in a manner which reduces the likelihood of overlapping

transactions.

4.1.4 Summary

Different processor architectures will have different degrees of heterogeneity in each of

these aspects. For example, a non-uniform memory access (NUMA) based server has

a heterogeneous memory architecture, but its processing resources remain relatively

homogeneous. A true HMA, such as the Cell processor, is likely to have heterogeneous

features in each of these three aspects.

A concrete implementation of a runtime system which hides these heterogeneous

features behind a homogenous Java virtual machine interface will be presented in Chap-

ter 5. This runtime system targets the Cell processor and, therefore, must deal with

each of these aspects of heterogeneity.

Another version of the runtime system was developed for an x86 server system. This

system exhibits a non-uniform memory access (NUMA) architecture, which complicates

thread and data placement in the presence of communicating threads. Chapter 8 de-

scribes a runtime system that uses knowledge of a program’s behaviour to optimise its

thread and data placement decisions in such a system.

4.2 Behaviour Characteristics

To enable a runtime system to abstract these heterogeneous features, it must track the

behaviour of an application and use this information to inform its resource allocation

decisions. This section describes the types of program behaviour which could influence

an application’s performance on an HMA system. Each behaviour characteristic is

described in terms of how it should be applied and the way in which the knowledge of

such a characteristic can inform the runtime system’s allocation decisions, when taking

processor heterogeneity into account.

51

4.2 Behaviour Characteristics

The name given to each characteristic is indicative of an annotation that can tag

code which has this characteristic. Code can be tagged through a variety of mechanisms,

including these explicit code annotations, as described in Section 4.3.

There are three main categories of behaviour characteristics which are considered in

this work: processing requirements, execution behaviour and inter-thread communica-

tion. These categories relate to each of the aspects of processor heterogeneity described

in Section 4.1.

4.2.1 Processing Requirement Characteristics

Different applications will exercise the execution units and other subsystems of a pro-

cessing core in different ways. For example, a scientific application is likely to heavily

exercise the floating point execution unit of the core on which it is executing. A

database application, on the other hand, is more likely to make heavy use of the core’s

memory subsystem. At the same time, the processing core types of an HMA could

have differing capabilities. For example, an execution unit or subsystem could be more

capable of performing a given type of computation, or the core may have more ap-

propriate instructions for a given workload (e.g., support for vector-based operations

or more powerful memory addressing modes). As a result, a particular core type may

be more or less suitable for a given thread’s execution, depending upon its particular

processing requirements.

The set of processing requirement characteristics that the runtime system should

track depends upon how significantly the different core types of the targeted HMA

vary in processing capabilities. The major functional subsystems of a processing core

are: the arithmetic logic unit, which performs integer-based and bit manipulation op-

erations; the floating point unit, which performs floating point calculations; and the

core’s memory subsystem, which accesses data stored in system memory. Given that

the performance of each of these functional subsystems could vary between different

core types, the following set of behaviour characteristics were chosen to form the basis

of the processing requirement behaviour characteristics:

@IntegerCode Tags code which makes heavy use of integer or fixed point operations.

@FloatingPointCode Tags code which makes heavy use of floating point operations.

@DataAccessCode Tags code which spends most of its time accessing data in memory.

52

4.2 Behaviour Characteristics

While application code can be tagged with any of these behaviour characteristics,

the runtime system is free to ignore this information if it is not relevant for the target

HMA. For example, if the integer performance of two core types is identical, then there

is no need for the runtime system to track the @IntegerCode behaviour characteristic.

This set could also be augmented with more specialised processing behaviour char-

acteristics if core capabilities are similarly fragmented. For example, arithmetic code

could be tagged as @MultiplicativeCode or @DivisionalCode if the performance of

these operations varied between core types in a different manner from the more gen-

eral @IntegerCode characteristic. These more specific characteristics could be ignored

or interpreted as one of the more general characteristics if they are unnecessary on a

particular architecture.

The influence of a program’s processing requirements on its execution speed under

different processor types is shown by the micro-benchmarks presented in Section 5.5.2.

They show that integer and floating point operations are between three and five times

faster on the Cell Processor’s SPE core type than its PPE core type. On the other

hand, data access operations can be up to five times slower on the SPE core than they

are on the PPE core.

4.2.2 Execution Behaviour Characteristics

As well as the different processing requirements a program may have, other aspects of

its execution behaviour can affect its performance on the different core types available

in an HMA. For example, some processing core types (e.g. stream processors (Kapasi et

al., 2003)) are well suited to performing streaming accesses across a large sequential area

of memory. However, these same core types often have long memory access latencies

and, therefore, perform very poorly when accessing small areas of memory in a random

fashion. Therefore, code which accesses memory sequentially, e.g. by iterating over an

array or matrix would perform well on such a core, while code which accesses memory

in a more random fashion, e.g. by traversing a tree, would perform poorly.

To exploit the full potential of a target HMA, the runtime system must be aware

of the expected behaviour of an executing thread to make informed thread placement

and migration decisions. The following behaviour characteristics enable an application

to inform the runtime system of its expected execution behaviour.

53

4.2 Behaviour Characteristics

@SequentialAccessBehaviour This characteristic tags code which accesses data se-

quentially, for example, iterating over an array. The runtime system will prefer-

entially execute code with this annotation on cores which can stream or pre-fetch

sequential memory accesses in the background.

@RandomAccessBehaviour This characteristic describes code, such as traversal of a

tree or linked list, where memory addresses are being accessed in a non-sequential

manner. Pre-fetching and caching are less effective under this type of memory

access pattern, and therefore the runtime system will try to execute code with

this annotation on cores which are closely coupled to memory. By being more

closely coupled to memory, these cores have lower memory access latencies, and

will therefore incur less overhead when performing random memory accesses.

@LargeWorkingSet A program that has a large working set of data that it accesses

regularly is likely to perform better on core types which have more cache memory

available to them and can, therefore, hold more of the program’s working set in

the cache (Smith, 1982). The @LargeWorkingSet behaviour characteristic informs

the runtime system that the tagged block of code is expected to operate over a

relatively large amount of data and may, therefore, benefit from being executed

upon a core type with a large cache.

The working set size at which the runtime system should begin incorporating

this @LargeWorkingSet behaviour characteristic into its thread placement deci-

sions depends upon the size of the different core types’ caches for the HMA it

is targeting. To enable the runtime system to decide whether the program’s

working set is large enough to have an influence on its scheduling decisions,

the @LargeWorkingSet characteristic can be augmented with the expected size

of the code’s working set. This size could be estimated or found by profiling

the application ahead of time. In the Java annotation syntax, this can be ex-

pressed by parenthesising the annotation with an element-value pair, for exam-

ple, @LargeWorkingSet(SizeKB=256), specifies a working set size of 256KB. The

runtime system can then selectively ignore this characteristic if the size of the

working set is smaller than the size of the smallest cache of the core types it is

managing.

54

4.2 Behaviour Characteristics

@IoAccessBehaviour This characteristic specifies that a given region of code is ex-

pected to access I/O devices, for example, reading files on a disk drive or sending

packets across the network. Typically, only one of the processing core types in an

HMA can perform I/O operations directly. The runtime system will, therefore,

try to execute code with this characteristic on a processing core which is capable

of directly implementing the necessary I/O operations.

@ExceptionsLikely Handling exceptions can be very costly for some processing core

types. For example, some cores do not support hardware trap instructions and

must therefore emulate a trap instruction in software whenever an exception

occurs. This characteristic notifies the runtime system that a given region of

code is likely to generate many exceptions. The runtime system can then choose

to place this thread on a core better suited to dealing with exceptions.

These behaviour characteristics can have a significant influence on the performance

of programs on the different core types of an HMA processor. For instance, in the

micro-benchmark presented in Section 5.5.2.2, simply increasing the data working set of

a program reverses its relative performance on the two core types of the Cell Processor.

As the program’s working set is increased, its performance changes from running two

times faster on the Cell’s SPE core, compared to the PPE core, to running twice as

fast on the PPE core than the SPE core.

As with the processing requirement characteristics, the runtime system is free to

ignore those execution behaviour characteristics which do not influence performance on

the core types of the architecture it is targeting.

4.2.3 Thread Communication Characteristics

Communication between different threads of the same process often occurs through

shared data objects. In a heterogeneous architecture, the efficiency of inter-thread

communication using shared data-structures will depend upon a number of factors,

such as: the distance between the memory holding the shared data and the cores

accessing this data; the presence of a shared data cache between the cores accessing the

data; and the ability to use specialised inter-core communications mechanisms, such as

direct scratchpad to scratchpad memory transfers or nearest neighbour registers.

55

4.2 Behaviour Characteristics

For example, a micro-benchmark, presented in Section 8.1, aimed at stressing inter-

thread communication on a non-uniform memory access (NUMA) architecture machine,

shows a 60% decrease in performance if communicating threads and their shared data

are placed on far away NUMA nodes. On NUMA systems, the performance of inter-

thread communication is dependent upon the placement of the communicating threads

and their shared data. To make informed decisions regarding these issues, the run-

time system needs information about which threads communicate with each other, and

through which data objects they are likely to communicate.

The approach taken in this work uses the concept of thread teams to define the

scope of inter-thread communication. A thread can be tagged as being a member of one

or more thread teams using a @ThreadTeam(name="<name of team>") characteristic.

Threads which communicate with each other extensively are grouped into the same

thread team. The runtime system will then try to optimise thread placement, such

that members of the same team share efficient inter-core communication links (e.g.,

being placed on the same NUMA node).

While this thread team approach is conceptually simple, the ability to tag a thread

as being a member of multiple teams endues it with the power to describe relatively

complex communication patterns in a simple manner. For example, in the communi-

cation pattern shown in Figure 4.1, two sets of worker threads communicate amongst

themselves. These threads can therefore be grouped into two teams, called Workers 1

and Workers 2. The runtime system may, therefore, decide to cluster these two thread

teams on different NUMA nodes. A co-ordinator thread that communicates with both

thread teams is tagged as being a member of both the Workers 1 and Workers 2 thread

teams. The runtime system will try to minimise the communication cost between this

thread and both worker thread teams. Thus, it may place this co-ordinator thread on

a NUMA node which neighbours the two nodes on which the Workers 1 and Workers 2

thread teams were placed.

As well as tagging threads, it may also be beneficial to tag shared data with the

thread teams which will access the data. By default, when a thread allocates data,

it should be allocated on that thread’s local node. This will provide this thread and

other members of its team with the lowest latency access to this data. However, if this

data is to be accessed by other thread teams, it may be better to allocate the data on a

different node. For example, suppose the co-ordinator thread in the previous example

56

4.3 Tagging Mechanisms

Workers_1 Workers_2

Co-ordinator

Figure 4.1: A typical thread communication pattern.

allocates data which is intended for use by a thread in the Worker 1 communication

team. Instead of allocating this data on its local NUMA node, allocating the data

on the node on which the Worker 1 team is located may lead to lower memory access

overheads overall. By tagging data with the thread teams that access the data, the

runtime system can choose the node which provides the least costly access to this data

for these threads.

4.3 Tagging Mechanisms

A program can be tagged with these behaviour characteristics in a number of different

ways. The most direct mechanism is to explicitly annotate source code with appropriate

behaviour characteristic annotations. The addition of behaviour annotations to code

could also be automated, by employing source code analysis tools or involving the

compiler in the behaviour characteristic tagging process. Finally, the runtime system

can monitor the behaviour characteristics of a program at runtime, in order to infer its

behaviour characteristics in the absence of annotated code. This section outlines each

of these options.

4.3.1 Explicit Annotations

A number of modern programming languages provide support for code annotations.

These annotations can be used to provide meta-data about the code to the code’s

compiler, deployment tool or runtime system, without affecting the operations which

57

4.3 Tagging Mechanisms

are performed by the code1. Code annotations are a particularly appropriate means of

tagging the code with its behaviour characteristics, because the code itself need not be

modified and annotations can often be inserted into code without having to recompile

the code itself.

This dissertation focuses on Java as an application development language. Java was

chosen for a number of reasons. One of these reasons was its intermediate bytecode

representation, which provides a format for the distribution of machine architecture in-

dependent code to HMAs, which may employ different instruction sets in their different

core types (see Chapter 5). Another reason for this choice, however, was Java’s sup-

port, as of version 1.5, for code annotations. These annotations are retained through

the source code compilation and are included in the compiled Java class files, alongside

a program’s bytecode. Thus, the runtime system can retrieve this information when

loading a class’s code.

The behaviour characteristics described in the previous section can be expressed

as Java annotations. Java annotations can target a variety of program elements, such

as classes, methods, object fields and method parameters. To define the behaviour

characteristic annotations, it is necessary to identify the program elements which each

annotation can target.

The behaviour characteristics all describe an aspect of a thread’s behaviour during

its execution. By tagging the class used to create a thread with the appropriate an-

notation, the annotations can be used to define the thread’s behaviour throughout its

execution. The thread will retain the characteristics defined by these annotations for

the duration of its execution.

A thread may have different behaviour phases during its execution, or may act differ-

ently depending upon its input. Therefore, as well as targeting the threads themselves,

these annotations can also target blocks of code to define their behaviour. Unfortu-

nately, Java annotations cannot target arbitrary blocks of code. Therefore, this support

is provided by enabling the targeting of method declarations by behaviour character-

istic annotations. If a thread calls a method annotated with a particular behaviour

characteristic annotation, it will be tagged with this characteristic for the duration of

1For example, Krintz & Calder (2001) propose a system in which code annotations are used to
inform a runtime system of the potential to apply various compiler optimisations to an application’s
code, without changing the code’s semantics.

58

4.3 Tagging Mechanisms

the method call (i.e., it will retain the characteristic throughout this method’s entire

call stack, until the method returns).

As well as the behaviour characteristic annotations, a set of anti-behaviour char-

acteristic annotations (e.g., @NonFloatingPointCode, etc.) can be used to remove a

characteristic from a thread for a given period of its execution. These can target the

same program elements as the behaviour characteristic annotations.

Some of the behaviour characteristics could usefully target data, as well as code.

For example, the @ThreadTeam annotation could be used to indicate the team of threads

which are likely to access a shared data object, and the @SequentialAccessBehaviour

and @RandomAccessBehaviour annotations could tag data which is being accessed in

a sequential or random manner. Annotating data in this manner would enable the

runtime system to optimise data placement, in the case of the @ThreadTeam annotation,

or data access, in the case of the @SequentialAccessBehaviour and @RandomAccess-

Behaviour annotations. In this dissertation, the focus is on the tagging of code, rather

than data. However, data could be tagged with these characteristics by allowing the

annotations to target the data’s type declaration or the field or local variable used to

hold the data.

Listing 4.1 shows an example of how these behaviour characteristics can be em-

ployed. In this example, the Worker class (which extends the Thread class) is anno-

tated with @IntegerCode. Thus, any threads of this type will be tagged as making

heavy use of integer operations. The floatingCalcs() method performs floating point

operations, and therefore, is annotated with the @FloatingPointCode behaviour char-

acteristic. If a thread calls this method, it will be tagged as having a floating point

behaviour characteristic for the duration of this method call.

The main method creates two of these Worker threads. Since these threads are

also tagged as being members of the same “workers” team, the runtime system will

try to place these threads such that they can efficiently communicate with each other.

The two threads are also passed different types of store objects; worker1 is passed

an ArrayStore object, which is annotated with the @SequentialAccessBehaviour

characteristic, whereas worker2 is passed a LinkedListStore object, annotated with

the @RandomAccessBehaviour characteristic. Thus, when the worker1 thread calls

store.add(value), on Line 20, it will be tagged as having sequential memory access

59

4.3 Tagging Mechanisms

�
1 @Sequentia lAccessBehaviour
2 class ArrayStore extends StoreType { . . . }
3
4 @RandomAccessBehaviour
5 class LinkedL i s tStore extends StoreType { . . . }
6
7 @IntegerCode
8 @ThreadTeam(name = "workers")
9 class Worker extends Thread {

10
11 private StoreType s t o r e ;
12
13 Worker (StoreType s) {
14 s t o r e = s ;
15 }
16
17 void run () {
18 // i n t e g e r c a l c u l a t i o n s . . .
19 f l o a t i n g C a l c s () ;
20 s t o r e . add (value) ;
21 }
22
23 @FloatingPointCode
24 void f l o a t i n g C a l c s () {
25 // f l o a t i n g p o i n t c a l c u l a t i o n s . . .
26 }
27 }
28
29 class Coordinator {
30 void main (St r ing args []) {
31 Worker worker1 = new Worker (new ArrayStore ()) ;
32 Worker worker2 = new Worker (new LinkedL i s tStore ()) ;
33 worker1 . s t a r t () ;
34 worker2 . s t a r t () ;
35 }
36 }
� �

Listing 4.1: Example of Behaviour Characteristic Annotations.

60

4.3 Tagging Mechanisms

behaviour, whereas, the worker2 thread will be tagged as performing random memory

accesses.

This example is purposefully contrived in order to demonstrate a varied selection

of the behaviour characteristics in a small amount of code. It is not expected that a

real world application would tag every element of a program; rather, the small minority

which would be likely to have a significant impact on the program’s performance.

4.3.2 Source Code Analysis Tools

Instead of having a developer manually annotate the behaviour of an application, a

source code analysis tool could be employed to automatically infer a program’s be-

haviour and tag its code appropriately.

The processing requirement behaviour characteristics are a potential candidate for

inference using static code analysis techniques. The relative proportion of different

types of processing operations could be calculated for each code block of an application

during compilation. The tool then needs to approximate how often each of these code

blocks are likely to be executed during the program execution, to infer the influence of

the code block’s operations on overall program behaviour. Data-flow analysis (Allen &

Cocke, 1976) and loop bounding static analysis (Healy et al., 1998) techniques could

be adapted for this process.

The other characteristics would be more difficult to infer through static analysis.

Instead, off-line profiling could be used to gather information about a program’s be-

haviour and insert these characteristics into the code before the program is distributed.

Profiling of the execution behaviour characteristics would be relatively straightforward.

Inferring thread teams through profiling would be more challenging. A profiler which

monitors access to objects on a per-thread basis could infer a program’s inter-thread

communication behaviour. However, monitoring every object access would have a very

high overhead, even for an off-line profiler. This overhead could be reduced by em-

ploying escape analysis techniques (Choi et al., 1999) to extrapolate the set of objects

which can escape a thread’s context, and are therefore useful to monitor for inferring

inter-thread data sharing.

Once these tools have established the expected behaviour characteristics of a pro-

gram, they can insert them into the program, by augmenting its code with the same

annotations as used by developers to explicitly annotate their code. In the case of

61

4.3 Tagging Mechanisms

Java code, this could be accomplished by using a bytecode manipulation framework,

such as ASM1. These automated approaches can therefore be freely mixed with manual

tagging, through explicit annotations, as necessary.

The creation of source code analysis tools for automated program behaviour tagging

is beyond the scope of this dissertation, and is left as future work. However, the

conclusions drawn by this work should be applicable, no matter the source of the

behaviour characteristic annotations.

4.3.3 Runtime Monitoring

A runtime system can augment the behaviour characteristic information that has been

inserted, ahead of time, into a program’s code, or even eliminate the need for tagging of

code entirely, by monitoring different aspects of a program’s behaviour directly at pro-

gram runtime. This would enable completely unmodified code to exploit heterogeneous

architectures, without having to be annotated with its behaviour characteristics.

Chapter 7 describes an approach for monitoring a program’s processing requirement

behaviour characteristics at runtime. In this approach, blocks of code are scored, ahead

of time, with regard to the proportion of different classes of processing operations

performed by the block of code. The runtime system then uses these scores to update

per-thread processing requirement characteristics, whenever a block of code is executed.

Monitoring of execution behaviour characteristics, such as @IoAccessBehaviour or

@ExceptionsLikely, could be provided using software counters which are incremented

on each I/O operation or exception. Given the relatively high cost of I/O operations

and exceptions, this monitoring would add negligible additional overhead. The other

execution characteristics (memory access behaviour and working set size) could be

inferred using the hardware cache miss counters found in most modern processors.

Inferring inter-thread communication to build thread teams at runtime is a greater

challenge. One possibility, for a Java runtime system, would be to monitor the set of

objects locked by each thread using thread synchronisation operations. By comparing

the overlap between each thread’s set of lock objects, the runtime system can cluster

threads into teams which are likely to be sharing data.

1http://asm.ow2.org/

62

http://asm.ow2.org/

4.4 Costing Behaviour

This dissertation limits its focus to the runtime monitoring of performance re-

quirement behaviour characteristics (Chapter 7). Runtime monitoring of execution

behaviour characteristics and thread teams are left as future work.

4.4 Costing Behaviour

Once a program’s behaviour characteristics have been identified, the runtime system

can use this information to inform its thread placement and resource allocation deci-

sions. To do so, the runtime system must account for the influence of each behaviour

characteristic on the decision it is making. In this work, a cost is assigned to each

of the behaviour characteristics for each heterogeneous resource (e.g., processing core

type). A cost function is then used to calculate the total cost for each of the hetero-

geneous resource types from which the system can choose to allocate to a particular

request. These costs can then be used to inform its decision, by either directly choosing

the least-cost resource, or by using these costs as a guide alongside other factors (e.g.,

processing core utilisation).

To describe this more concretely, take the example of a thread placement decision

on the Cell Processor. The Cell processor has two processing core types: an SPE core

type with very good floating point performance; and a PPE core type which can access

memory more efficiently. Each of these core types are therefore assigned a different

cost value with regard to the floating point and data access behaviour characteristics;

the SPE core will have a lower cost for the floating point behaviour characteristic than

the PPE core, while the PPE costs will have a lower cost for the data access behaviour

characteristic than the SPE core.

A per-core-type cost function calculates the cost of executing a thread on a par-

ticular core type. This cost function sums the costs of those behaviour characteristics

with which the thread has been tagged. For this example, the following cost functions

can be used for each core type:

Cspe = 1 ·BF + 2 ·BD

Cppe = 4 ·BF + 1 ·BD

where BF and BD are one if the thread is tagged with the floating point or data access

characteristics respectively, or are otherwise set to zero. In this case, the floating point

63

4.4 Costing Behaviour

behaviour is four times more expensive on the PPE core than the SPE core, while

data access is half as costly. Appropriate cost values for each behaviour characteristic

can be found by profiling the effect each behaviour characteristic has on per-core-type

performance (these costs for the Cell processor are based on the results of benchmarking

experiments presented in Section 5.5).

In order to select the most appropriate core type on which to execute a thread, the

runtime system will calculate its cost for both core types. The most appropriate core

type on which to execute this thread, based upon these behaviour characteristics, is

the one which provides the least cost using this process.

The cost function presented here is simplified to outline the overall approach. Sec-

tion 6.2 details the creation of a more appropriate cost function for use in thread

placement and migration decisions on the Cell processor.

The same cost function approach can be used to inform thread and data placement

decisions on non-uniform memory access architectures, based upon thread team char-

acteristics. In this case, the aim is to cluster threads that communicate onto the same

NUMA node, but partition non-communicating threads onto different NUMA nodes1.

To enable this support, each thread team is assigned a preferred node, based upon

the node on which the first thread of this team is placed. When a new thread is created,

the runtime system examines the teams of which it is a member, and creates a cost

function for each node of the system, based upon these teams. The cost of placing this

thread on a particular node is calculated as the sum of the number of hops between

this node and the preferred node of each of the thread teams of which the thread is a

member. To partition non-communicating threads onto different nodes, an extra cost

is added for each team, located on this node, of which the newly created thread is not

a member. The runtime system can then choose a core on the least costly node for the

execution of this thread.

Figure 4.2 shows an example of this approach to thread placement. In this example,

teams A to D already have preferred nodes, as shown in the figure. The runtime system

must decide upon the optimal placement of a newly created thread, which has been

tagged as a member of teams A, B and D. The runtime system calculates the cost of

1Pushing non-communicating threads onto cores which are on different NUMA nodes will help to
reduce pollution of a processor’s L3 cache, which is typically shared between all the cores on the same
NUMA node.

64

4.5 Discussion

Node 0 Node 1

Node 2 Node 3

A B C

D

Thread DBA

Cost of Placement on:
Node 0 = 0 + 0 + 2 + 0 = 2
Node 1 = 1 + 1 + 1 + 1 = 4
Node 2 = 1 + 1 + 1 + 0 = 3
Node 3 = 2 + 2 + 0 + 0 = 4

Te
am

 A
Te

am
 B

Te
am

 D
Ex

tra

Figure 4.2: Using thread teams to place threads on a NUMA system.

placing the thread on each Node. Node 0 is zero hops away from team A and B, but

two hops away from team D, leading to a total cost of two. Nodes 1 and 2 are both

one hop away from all of this thread’s teams; however, Node 1 has an extra cost of one,

since it is the preferred node of an unrelated team (team C). Finally, Node 3 is two

hops away from both team A and B, but is zero hops away from Node D.

In this case, Node 0 is the least costly node on which to place this thread. However,

other factors may cause the runtime system to select an alternative node. For example,

if all the processing cores of Node 0 are already heavily loaded with the threads of team

A and B, a core on the second least costly node (Node 2) may be selected to execute

this thread. This approach to thread placement on a NUMA system is investigated in

more detail in Chapter 8.

4.5 Discussion

Abstracting a system’s heterogeneity using a program’s behaviour characteristics is ad-

vantageous for a number of reasons. The main advantage is that by abstracting the

heterogeneous architecture from application developers, they do not require detailed

knowledge of the capabilities of each heterogeneous core type and the system intercon-

nect to exploit an HMA. The burden of dealing with these features is shifted from the

application developer to the runtime system developer, where greater knowledge of the

target architecture can be expected.

In the case of source code analysis or runtime monitoring of behaviour characteris-

tics, the burden of dealing with system heterogeneity can be removed from the developer

65

4.5 Discussion

entirely. When explicit annotations are used to tag code with behaviour characteris-

tics, the application developer’s task is transformed from having to understand and

effectively exploit the heterogeneity of an architecture, to simply understanding and

describing the heterogeneity of their own application, using behaviour characteristics.

Another important advantage of this approach is that it is portable between systems.

Since behaviour characteristics are not explicitly related to a particular heterogeneous

architecture, the behaviour characteristics used to tag an application are valid, no

matter the architecture of the system on which it is run. The runtime system can choose

what effect each behaviour characteristic has on its placement decisions, depending

upon the architecture it is targeting.

Of course, this approach is not the most appropriate for every situation. By adding

another layer of abstraction, application performance could suffer. Abstracting pro-

cessor heterogeneity also removes the ability of a developer to explicitly tailor an ap-

plication for a particular architecture. This approach is, therefore, complementary

to approaches that provide more visibility of an architecture’s heterogeneity (e.g.,

(Schüpbach et al., 2008), (Munshi, 2009) and (Dagum & Menon, 1998)). Develop-

ers who wish to target a particular architecture and require the maximum performance

from this architecture for their applications are likely to be willing to deal with the

architecture’s heterogeneity to do so.

However, the vast majority of developers want their applications to be portable to

different architectures and do not want to deal with the added difficulties of targeting

specific heterogeneous architectures. The remainder of this dissertation demonstrates

that by abstracting a processor’s heterogeneity using behaviour characteristics, the

needs of these non-specialist developers can be supported.

66

Chapter 5

Hera-JVM: A Runtime System
for Heterogeneous Architectures

To investigate the feasibility of abstracting the heterogeneity of these heterogeneous

multi-core architectures (HMAs) from application developers, a prototype runtime sys-

tem has been created. This runtime system, called Hera-JVM (Heterogeneous Resource

Aware — Java Virtual Machine)1, supports the execution of Java applications on a

particular HMA - the Cell processor. Hera-JVM hides the heterogeneity of the Cell

processor’s architecture by presenting the application developer with the illusion of

running on a homogeneous, multi-core processor, through a virtual machine abstrac-

tion. Unmodified Java applications can be executed by Hera-JVM on either of the

two processor core types available on the Cell processor. Threads can be migrated

between core types transparently from the point of view of the application developer,

and without requiring modification of application source code.

This chapter describes the challenges involved in designing a runtime system which

can support the execution of an application on two very different architectures concur-

rently. Later chapters build on this abstraction of processor heterogeneity to investigate

automatic thread placement based upon application code behaviour characteristics.

The features of the Cell processor which make it challenging for application devel-

opment, as well as making it an interesting target for this research, are described in

Section 5.1. The main design decisions and overall approach taken in the creation of

Hera-JVM are then presented in Section 5.2. To fully support the Cell processor, a

1The name Hera-JVM was also chosen due to Hera being the Greek goddess of marriage, and Hera-
JVM attempting to marry the heterogeneous core types of an HMA processor behind a homogeneous
interface.

67

5.1 The Cell Processor

Java compiler and low-level runtime support for the secondary core type of the Cell

processor (the SPE cores) had to be added to Hera-JVM. These cores have a number

of traits which make efficient execution of Java code challenging. Section 5.3 describes

the implementation of the compiler and runtime system used by Hera-JVM to support

efficient execution of Java code on the SPE cores. The implementation of a transpar-

ent migration mechanism, for moving threads between the two core types supported

by Hera-JVM, is then presented. Finally, experimental analysis of Hera-JVM is per-

formed in Section 5.5 to investigate the efficacy of this virtual machine approach for

hiding processor heterogeneity, and to discover the performance characteristics of each

core type under different Java workloads.

5.1 The Cell Processor

The Cell processor (Chen et al., 2007; Hofstee, 2005; Pham et al., 2005) was developed

primarily for multimedia applications, specifically the game market, where it is the

main processor used by the Sony Playstation 3. It is also being actively employed in

a variety of other areas, such as: scientific and high performance computing, being

incorporated into IBM Bladecenter servers and supercomputers (e.g., the Roadrunner

machine (Barker et al., 2008)); and in high performance media devices, for example, the

Toshiba SpursEngine co-processor, employed in their Qosmio laptop range to accelerate

video encoding and decoding operations.

It was selected as the target architecture for the Hera-JVM runtime system for

a number of reasons. Firstly, the Cell processor is one of the few HMAs which is

currently widely deployed, therefore, the results gained on this platform should be

applicable in a real world setting. Secondly, it is a highly heterogeneous architecture,

having an asymmetric memory hierarchy and processing cores which not only differ in

performance, but also in capabilities and instruction sets. This enables investigation

of techniques for abstracting all these different types of heterogeneity. Finally, unlike

some other HMAs, such as the Intel IXP network processor (Adiletta et al., 2002), both

core types on the Cell processor have the capability to support the majority of Java

code. Therefore, thread placement decisions can be made based upon the expected

performance of the thread on the different core types, rather than being limited to a

68

5.1 The Cell Processor

SPE SPE SPE SPE

SPE SPE SPE SPE

PowerPC
(PPE) Element Interconnect Bus Memory

Figure 5.1: The architecture of the Cell processor.

particular core type due to the thread requiring features which are unsupported on the

other core type.

The Cell processor contains two different processing core types: a single Power

Processing Element (PPE) core; and eight Synergistic Processing Engine (SPE) cores

(Figure 5.1). The PPE is intended to manage the system overall and co-ordinate the

SPEs. As a PowerPC-based core, it can support the Linux operating system and

run any applications compiled for the PowerPC architecture. The SPEs are designed

to perform the bulk of the computation on the Cell processor. They have a unique

instruction-set, highly tuned for floating point, data-parallel workloads. The SPEs do

not run any operating system code, relying on the PPE to perform operations such as

page table updates or file I/O.

The processing cores share access to external DRAM memory through a circular

ring-based Element Interconnect Bus (Ainsworth & Pinkston, 2007). The PPE core has

a two-level cache to reduce data access latencies, with a 64KB L1 cache (split evenly

between data and instruction caches) and a 512KB L2 cache.

Unlike the PPE, the SPE cores do not have transparent hardware caches for ac-

cessing main memory; each SPE contains 256KB of non-coherent local memory. The

processing elements of the SPEs can access only this local memory directly. To access

data in main memory, an SPE must initiate a Direct Memory Access (DMA) transfer

to copy the data from main memory to its local memory. It can then modify this data

in local memory, but must initiate another DMA transfer to write the results back

69

5.1 The Cell Processor

MFCLocal
Memory

SPE
Core
(SPU)

SPE Main Memory

Control Flow
Data Flow

Figure 5.2: An SPE core’s memory subsystem.

into main memory. These DMA transfers are supported by a Memory Flow Controller

(MFC) unit associated with each SPE (see Figure 5.2). The MFCs have virtual mem-

ory support, translating virtual memory addresses to physical addresses using the page

tables that are maintained by the operating system running on the PPE core. Thus,

different threads of a single process share a consistent view of virtual memory, whether

running on the SPE or PPE cores. However, data which has been copied to an SPE’s

local memory is not automatically kept consistent with the original copy in main mem-

ory, or copies made by other SPE cores, meaning cores do not automatically share a

coherent view of data.

By offloading memory reads and writes to the MFC, the SPE cores can perform

large block transfers very efficiently, however, small transfers are much less efficient,

due to the overhead involved in setting up a DMA transfer. This approach suits the

intended target applications of the Cell processor — large blocks of data (e.g. image

fragments) being loaded, processed and then streamed out to main memory. However,

it is much less suited to general purpose computation, where memory is seldom accessed

in large chunks, and developers expect threads on different cores to share a coherent

view of memory. Developing an efficient and coherent memory access mechanism for

the SPE cores was therefore an important consideration in the creation of Hera-JVM

(see Section 5.3).

These features, of heterogeneous core types and an unusual memory architecture,

make developing efficient, or even correct, applications for the Cell processor challeng-

ing. The aim of Hera-JVM is to hide these challenging architectural features behind

a more typical symmetric multi-core virtual machine abstraction, whilst still trying to

preserve the performance benefits provided by the Cell processor’s heterogeneity.

70

5.2 Hera-JVM Design Decisions

5.2 Hera-JVM Design Decisions

The philosophy behind Hera-JVM is to hide the Cell’s challenging heterogeneous archi-

tecture behind a seamless homogeneous Java virtual machine abstraction, such that it

can run unmodified, multithreaded Java applications. To enable applications to exploit

the heterogeneous cores of the Cell processor under this homogeneous virtual machine

abstraction, Java threads should be able to migrate transparently between core types.

This philosophy influenced a number of Hera-JVM’s design decisions. Firstly, the

runtime system must provide support for the full Java specification on both core types,

to enable seamless migration of threads between them. If an operation cannot be

supported by a particular core type, a stub must be created to transparently hide this

limitation, by executing the operation on the other core type. Since trapping to another

core type is an expensive operation, this should only be performed for non-performance

critical operations, with the majority of the Java specification being supported natively

by both core types. Secondly, threads should share a single, consistent view of the heap,

with an object reference pointing to the same data when accessed from any core. By

employing these two design decisions, application developers need not worry, nor indeed

know, which core type their code is being executed on. Running a thread on a different

core type may affect performance, but will not affect program correctness.

Version 3.0 of the JikesRVM (Alpern et al., 2005) Java Virtual Machine was used

to form the basis of Hera-JVM. JikesRVM is a fully capable JVM with performance

comparable to production JVMs. It supports both x86 and PowerPC processor archi-

tectures under Linux, and can thus be run on the PowerPC-based PPE core of the

Cell processor without any modification. The main enhancements made to JikesRVM

to create Hera-JVM were: runtime and compiler support for the SPE cores; changes

to the overall runtime system to support simultaneous execution of a Java application

across two different architectures; and support for migration between the different core

types of the Cell processor.

JikesRVM (and thus Hera-JVM) is designed as a Java-in-Java virtual machine.

This means that the majority of the runtime system is written in Java. To build the

runtime system, this runtime Java code is bootstrapped, using a previous build of the

JVM or another JVM entirely, to create a machine executable boot-image.

71

5.2 Hera-JVM Design Decisions

Application

Java Library

Runtime System

Low Level
Assembly

PPC
Compiler

PPE Core

Low Level
Assembly

SPE
Compiler

SPE Core

Java Code

Assembly Code

Processing Core

Key

Figure 5.3: The structure of Hera-JVM. Much of Hera-JVM’s runtime can be
shared by both cores, given its Java-in-Java design.

The fact that much of the runtime system is itself written in Java confers a number

of advantages in the design of Hera-JVM. Given Java’s write once, run anywhere phi-

losophy, this code is largely portable. Thus, other than a small number of architecture-

specific routines1, the same runtime code is shared by both core types (Figure 5.3).

This approach extends the philosophy of hiding the architecture’s heterogeneity right

through application code, the Java Library code and the majority of the runtime sys-

tem’s code, simplifying the runtime’s design. This also improves the runtime’s main-

tainability. Using separate runtime systems on each core type — an approach employed

by CellVM (Noll et al., 2008) — introduces the risk of integration bugs and inconsis-

tencies in data structures shared between the two runtime systems. Having a single

runtime system for both core types limits the potential for such incompatibilities, and

means that bug fixes and improvements to the runtime system are immediately appli-

cable to both core types.

Hera-JVM is a non-interpreting JVM; all application, library and runtime Java

methods are compiled to machine code before being executed. A Java bytecode to

machine code compiler is therefore required for each processor architecture supported

by Hera-JVM. A non-optimising, bytecode to SPE machine code compiler, described

in Section 5.3, was built for Hera-JVM to enable execution of Java code on this core

type. This compiler directly translates fundamental bytecodes, such as arithmetic and

1Some low-level routines (e.g. reference collecting code in the garbage collector) depend upon stack-
frame layout, which varies between core types, and so have per-core type versions. Low-level routines
that set up a core for code execution (e.g. the final stages of exception delivery and thread context
switching support code) are also core type specific.

72

5.3 Executing Java Code on the SPE Cores

method invocation operations. More complex bytecodes, such as the new bytecode

for object allocation and the athrow bytecode used to throw exceptions, trap into

runtime system code, where they are implemented in Java. Since this runtime code

is shared by both the PPE and SPE cores, these more complex bytecode operations

can essentially be leveraged from the existing JikesRVM implementation, after the

addition of some glue code. Similarly, complex runtime system components, such as

file handling, class loading or thread scheduling, can be supported on either core type

with little modification.

Other than the subset of the runtime system methods which are pre-compiled into

the boot-image, all Java methods are compiled just in time. Thus Java code is dis-

tributed in architecturally-neutral Java Bytecode, which will only be compiled for a

particular core architecture if it is to be executed by a thread running on that core

type. Since it is expected that most applications will exhibit a partitioning between

code which is best run on the PPE or the SPEs, most methods will only ever be com-

piled for one of the two core architectures. Thus, the compilation overhead (both in

time and memory requirements) of running an application on an HMA, such as the

Cell, need be little more than running on a single architecture processor.

5.3 Executing Java Code on the SPE Cores

To support execution of Java on the SPE cores of the Cell processor, a Java bytecode

to SPE machine code compiler and some low-level assembly runtime support code is

required by Hera-JVM. Supporting execution of Java threads on the SPE cores presents

a number of challenges, not found in more typical architectures. These challenges

include the lack of operating system support for the SPE cores, and difficulties presented

by the cores having no direct access to main memory. This section details the design

and implementation of a compiler, and associated runtime support, which overcome

these challenges to provide efficient execution of Java code on the SPE cores.

5.3.1 Overview

The design of the SPE Java compiler in Hera-JVM follows that of the existing PowerPC

compiler, provided by JikesRVM, which is used to support the PPE core. JikesRVM

has two compiler types: a baseline compiler, where no inter-bytecode optimisations

73

5.3 Executing Java Code on the SPE Cores

are performed; and a much more complex optimising compiler, which recompiles hot

methods to decrease their execution time. Building an optimising compiler for the SPE

cores is beyond the scope of this dissertation and, in any case, would not significantly

enhance the argument supporting its hypothesis. Therefore, Hera-JVM only supports

the baseline compiler for both core types.

As with most of the rest of the runtime system, the PPE and SPE compilers are

themselves written in Java. A common compiler infrastructure is shared by both archi-

tectures, with concrete implementations of machine specific classes extending a com-

mon set of abstract super-classes. There were three main machine specific classes which

needed to be implemented to support the new SPE architecture: an assembler class

(Assembler), a bytecode compiler class (BaselineCompilerImpl), and a class which

generates low-level machine code, required to support the runtime system (OutOfLine-

CodeGenerator).

The Assembler class provides a set of methods, each of which represents a particular

machine opcode (e.g. the instruction to add two registers, load a memory address, etc.).

When one of these methods is called, with the opcode’s operands passed as arguments,

the associated machine code is generated and appended to an in-memory code array.

An instruction’s location in this code array can be associated with a label, so that it

can be easily referred to in branch operations, improving readability and simplifying

maintenance. This class can be used to generate executable code in much the same

way as a stand-alone assembler, but is integrated into the runtime system in a fully

programmable manner. The source code for a method which generates executable code

(e.g. those in BaselineCompilerImpl or OutOfLineCodeGenerator) looks much like

an assembly listing, with the opcode mnemonics replaced by calls to this Assembler

class.

The BaselineCompilerImpl class uses this Assembler class to generate executable

code from Java bytecodes. The BaselineCompilerImpl class consists of a set of emitter

methods, each of which generate the machine code necessary to execute a particular

bytecode operation. A Java method is compiled by calling the appropriate emitter for

each operation in the method’s bytecode stream. Thus, this class forms a single-pass

compiler, which directly converts the stack-oriented Java bytecode to equivalent SPE

machine code. It does not do any optimisation to reduce unnecessary stack operations

by, for example, holding intermediate, inter-bytecode values in registers.

74

5.3 Executing Java Code on the SPE Cores

The majority of the bytecode operations can be directly converted into a short

sequence of equivalent SPE machine instructions. However, some operations require

additional runtime support. As described in Section 5.2, the complex bytecodes are

implemented as Java code by a method in the runtime system. The emitter for

each of these bytecodes simply generates a trap to the method which implements

the bytecode. The bytecodes which are implemented in this manner are those deal-

ing with: object creation (new, newarray, anewarray and multianewarray); type

comparison (instanceof); exception throwing (athrow); and thread synchronisation

(monitorenter and monitorexit).

The runtime system must sometimes perform an operation which cannot be imple-

mented by standard Java code. For example, raw access to memory is not allowed by the

Java language, but is required for the runtime system to perform memory management

and garbage collection. To overcome these limitations, JikesRVM (and thus Hera-JVM)

provides a set of Magic methods. These methods are treated like intrinsic functions,

with their implementation provided by the compiler. The BaselineCompilerImpl class

treats these Magic methods like special bytecodes, by replacing a call to these methods

with inline assembly which directly performs the required operation.

Finally, the OutOfLineCodeGenerator class provides low-level support which is

required by the SPE cores to operate. This class is, in effect, an assembly listing used

to generate ∼4KB of low level runtime support code. This support code is permanently

resident in each SPE’s local memory, unlike the rest of the runtime system, which is

cached on-demand. It provides the low-level operations which are fundamental to the

execution of Java code on the SPE cores, such as: caching of objects into the SPE

local memory (Section 5.3.3); caching of method code (Section 5.3.4); management of

the SPE’s local memory (Section 5.3.3.2); low-level thread synchronisation operations

(Section 5.3.3.4); and interrupt handling and processor initialisation (Section 5.3.5).

This support code can be thought of as a tiny OS kernel, which supports the bare-

metal execution of Java code on the SPE cores.

The following sections detail the techniques which were employed by this compiler

and low-level runtime support code in order to overcome the challenges presented by

the unusual SPE architecture.

75

5.3 Executing Java Code on the SPE Cores

5.3.2 Local Variables and Stack Management

As a stack-oriented language, Java bytecodes implicitly operate on variables located

on an operand stack. For example, the iadd bytecode pops two integer values off the

operand stack, adds them together, and pushes the result back onto the operand stack.

Since almost every bytecode pushes or pops values from the stack, it is important that

these operations are efficient.

A thread’s stack resides in main memory (so that it can be accessed by any core

upon which it is scheduled). However, operating directly on this stack in main memory

would be incredibly inefficient on the SPE cores, due to their DMA-based access to this

memory. Therefore, the top portion of the currently executing thread’s stack is held

in the SPE’s local memory to provide efficient stack access. Upon a thread switch, a

16KB block at the top of the thread’s stack is copied into a reserved portion of the

SPE’s local memory. Stack updates are performed on this local copy, which is then

written back to main memory when the thread is context switched from this core.

The Java stack consists of multiple frames, each of which contains the state of one

method invocation. A frame pointer, held in a reserved register, points to the frame of

the currently executing method. Each method has a fixed frame size, depending upon

the set of bytecode operations performed by that method. When a method is invoked,

it buys its stack frame by decrementing1 the frame pointer by the method’s required

frame size. Push and pop operations then become loads and stores at a particular offset

from the address now pointed to by the frame pointer. The offset used for each stack

operation is calculated statically when the method is compiled. When the method

returns, it will release its stack frame by incrementing the frame pointer by its frame

size, such that it now points at the caller method’s frame.

Stack overflow checks are required when a method buys a stack frame, to ensure

that the stack does not grow beyond the 16KB limit held in SPE local memory. If a

stack larger than 16KB is required, these overflow routines could be modified to page

stack blocks on demand. However, this was not required for any of the Java benchmarks

which were investigated in this dissertation, and so stack block paging is not currently

supported by Hera-JVM.

1For historical reasons, stacks usually grow downwards in memory.

76

5.3 Executing Java Code on the SPE Cores

Whilst accessing local memory on the SPE cores is much more efficient than ac-

cessing main memory, it is still complicated by the SPE’s unusual instruction set. The

SPE cores have a Single Instruction, Multiple Data (SIMD) (Flynn, 1972) based in-

struction set. Each register is 128 bits wide, with instructions treating these 128 bits

as a vector of sixteen 8-bit, eight 16-bit, four 32-bit or two 64-bit values, depending

upon the operation. Hera-JVM does not currently exploit these SIMD operations for

data parallelism, since Java has no in-built vectorization support (exploiting the SPE’s

SIMD capabilities in Hera-JVM is left as future work). Instead, the first vector slot

is used exclusively by Hera-JVM for all arithmetic operations. The complication for

stack management is caused by the fact that the SPE instruction set only allows 128-

bit aligned load and store operations to local memory. Therefore, the choice in stack

layout has considerable trade-offs:

• The stack can be laid out in the standard fashion, with variables placed in word-

sized stack slots. However, this means that stack variables will not be aligned to

128-bit and must be shuffled into the first vector slot of a register before being

used as an instruction operand. Similarly, the result must be shuffled before

it can be stored in its required stack slot. These overheads make stack access

inefficient, requiring two machine instructions for a pop operation, and four for a

push operation.

• A full 128-bits can be used for each stack slot. Each stack variable can thus be

aligned to 128-bits and located such that it is in the first vector slot when loaded

into a register. This makes stack operations simple and efficient. However, given

that most stack values will be 32-bit words, this approach wastes a significant

proportion of the valuable local memory reserved for stack use.

Hera-JVM uses the first approach, since aligning every stack slot to 128-bits wastes

considerable local memory. However, an optimisation is employed to reduce the over-

head of variable shuffling. One of the SPE’s registers is reserved to hold the 128-bits

currently at the top of the stack. Variables are shuffled in and out of this register as

required, but the values are only written to the local memory stack when the stack

pointer passes a 128-bit boundary. This optimisation reduces stack operation over-

heads to one machine instruction for a pop operation, and two instructions for a push

operation.

77

5.3 Executing Java Code on the SPE Cores

As well as the operand stack, a Java method can store intermediate values in an

array of variables, known as local variables. Hera-JVM exploits the large register file

provided by the SPEs (each SPE core has 128 registers) to hold each local variable

in its own register. The value of a local variable is local to each method invocation,

and so the registers holding them must be non-volatile across method invocations. The

number of local variables required by a method is known at compile time. Thus, when

a method is compiled, code is included in its prologue to save the previous values held

in any local variable registers it may overwrite. When the method returns, the local

variables can be restored with these values.

5.3.3 Software Caching of Heap Objects

In addition to variables on its stack, a Java thread has access to a data heap, which

holds object instances and arrays. This heap is shared amongst all threads in the

system, and is therefore located in main memory. In order to access data in this heap,

an SPE core must first DMA the data into its local memory. To reduce heap data access

latencies and limit the overhead of DMA transfers, Hera-JVM employs a software cache

for SPE heap access. When a heap access results in a cache miss, the SPE core must

perform a DMA transfer to copy the required data into the SPE’s local memory. On a

cache hit, the thread can access this local memory copy directly.

Section 5.3.3.1 outlines the strategy employed by Hera-JVM to enable it to cache

heap data-elements in the SPE core’s local memory in an efficient manner. This caching

scheme dynamically allocates space for cached data-elements in the SPE’s local memory

using a process described in Section 5.3.3.2. Section 5.3.3.3 discusses the cache’s write

policy, and finally, Section 5.3.3.4 discusses synchronisation and coherency issues related

to ensuring that Hera-JVM conforms to the Java memory model (Manson et al., 2005)

under this caching scheme.

5.3.3.1 Caching Strategy

Setting up a DMA operation to transfer data to and from local memory is an expensive

operation (about 30-50 cycles, not including the data transfer itself). Therefore, an

early design decision of the software cache was to transfer large blocks of memory

wherever possible. However, to limit cache pollution, only data which is likely to be

used in the future should be cached. The high-level type information preserved in

78

5.3 Executing Java Code on the SPE Cores

0x3f42a58

0x41f26b0

0x27a980

...

0x02004940

0x40004240

0x1204680

...

Hash Index

Main Memory
Address

Local Memory
Address / Size

0
1
2
3

1022
1023 0x04000

Cache Data StoreCache Lookup Hash Table

Size Location

0x06000

...

...

Figure 5.4: Outline of the SPE data cache.

Java bytecode provides the opportunity to meet these two conflicting demands. The

software cache can specialise its caching mechanism depending upon the data type

being accessed.

Java code can read data from, or write data to, an object instance in the heap using

the getField and setField bytecodes, respectively. These operations access a single

field of an object. Rather than caching just the field being accessed, or a fixed size

block around that field, Hera-JVM exploits the flexibility of a software caching scheme

that has access to high-level type information, to cache the full object instance1. This

approach exploits object-based locality of reference — i.e., the thread is likely to access

other fields in the same object instance.

Arrays are accessed using a different set of bytecodes (iaload, iastore, etc). Ar-

ray accesses can therefore be cached in a different manner to object accesses. Array

instances are generally much larger than object instances, and may be too large to fit

in their entirety into the local memory cache. Therefore, rather than attempting to

cache entire array instances, Hera-JVM caches arrays in 1KB blocks. Spacial locality of

reference is exploited by this scheme, with neighbouring elements cached alongside the

element being accessed, on the assumption that they are likely to be accessed shortly.

1Arrays or object instances that are held in fields of a particular type are not actually stored in
instance objects of this type. Instead, these fields are pointers (or references in Java terminology) to
this data, and thus require only one word of memory each. Therefore, unless the object’s class type is
badly designed with a huge number of fields, object instances are always less than a couple of hundred
bytes, and can easily fit in local memory.

79

5.3 Executing Java Code on the SPE Cores

A small (1024 entry) local memory resident hash-table is used by each SPE to

support this software cache (see Figure 5.4). Each entry is either blank, or holds the

main memory address of an object instance or array block as a key, and the local

memory address of its cached copy as a value. When emitting code for a heap access

bytecode, the SPE compiler generates code which performs a lookup in this hash-table,

using the main memory address requested as a key, to check if the data has been

cached. Object access bytecodes look up the object’s address, whereas array access

bytecodes use the starting address of the required array block, which is calculated

based upon the array’s starting address and the index requested (both of which are

passed on the operand stack). This key is hashed using a simple XOR folding hash1 to

provide an index into this hash table. If the entry at this index is the same as the main

memory address requested, this access has hit the cache and the bytecode operation

is performed directly on the cached copy pointed to by this entry. Otherwise, a cache

miss has occurred and the data must first be pulled into local memory.

On a cache miss, space is reserved for this object instance in local memory, a DMA

operation is set up to copy its data into local memory, the hash table is updated

with this cached entry, and the thread blocks until the DMA copy completes. No

collision resolution is performed by this software cache hash-table. A cache miss simply

overwrites the hash-table entry to reflect this newly cached element, thereby evicting

the previous element from the cache.

A cache miss is significantly more costly than a cache hit, both in terms of ex-

ecution time and the amount of machine code required to perform these operations.

Therefore, rather than the compiler generating inline code to deal with cache misses

for every heap operation, cache misses trap to an out-of-line procedure generated by

the OutOfLineCodeGenerator class. Thus, the fast path cache hit code is performed

inline to reduce performance overheads, whilst the more complex, but less used cache

miss code is kept out-of-line to reduce code bloat.

5.3.3.2 Cache Element Space Allocation

This caching scheme is unusual in that the elements being cached are not of a fixed

size. Therefore, a memory allocation scheme must be employed to manage the local

1Bits 4 to 13 of the object’s main memory address are XORed with bits 14 to 23, then masked to
provide an index into the hash table. An XOR hash was chosen due to its simplicity, to making cache
look ups as lightweight as possible.

80

5.3 Executing Java Code on the SPE Cores

memory reserved for heap data caching. Hera-JVM uses a simple bump-pointer allo-

cation scheme, where a newly cached object is appended to the end of the previously

cached object, by incrementing a bump pointer with the size of the new object. The

cache is simply flushed completely if it becomes full. A more effective, lightweight,

free-list based memory management algorithm (McIlroy et al., 2008) was considered as

an alternative to this simple bump-pointer based approach. However, the requirement

to flush this cache for synchronisation operations (see Section 5.3.3.4) would limit the

benefits such an approach could provide over a much simpler approach, while incur-

ring additional complexity in the cache’s design. Improvement of the cache’s memory

management is therefore left as future work.

The size of memory which must be allocated depends upon what is being accessed.

For object instance accesses, type information embedded in the getField and setField

bytecodes enables the runtime system to infer, at compile time, the type, and thus the

size of the object instance being accessed. Array accesses cache either a full block, of

1KB in size, or, if accessing the last block in the array, a block sized to fit the remainder

of the array. The length of an array is held in its header. The cache miss handling code

checks this length when caching a block to discover if this is the last block of the array

and, if so, what size this last block will be.

One problem with this approach relates to Java’s subtyping inheritance abilities.

An object access bytecode (e.g. getField or setField) has a particular type associated

with the operation. However, the actual instance object accessed at runtime may be

a subtype of the type associated with the bytecode. This subtype may have more

fields than the supertype referred to by the bytecode, resulting in its instance objects

being larger. Since the caching system uses the type associated with the bytecode

to infer the size of the object being cached, it will not cache the full subtype object

instance, only those fields associated with its supertype. This is not a problem for this

bytecode, since it is accessing one of the fields associated with the supertype. However,

subsequent accesses to this object instance will hit this cached copy directly. If they

are trying to access one of the subtype fields, invalid data will result from reading from

this cached copy, since it does not contain any of the subclass data. To avoid this,

Hera-JVM stores the size of the data it has cached alongside the local memory address

81

5.3 Executing Java Code on the SPE Cores

of the cached object in the hash table1. When a cache hit occurs, the size of the cached

data is compared to the expected size of the object type being accessed. If the cached

data is not large enough, the object is re-cached.

5.3.3.3 Write Policy

Operations which write to the heap (setField, iaStore, etc.) must update both

the cached data in local memory and the original copy in main memory. Two write

policies were considered for this software cache: a write-through policy, where every

write operation is performed on both the local copy and its main memory backing

store; and a write-back policy, where writes are only performed directly on the local

memory copy, but are propagated to main memory when the local copy is evicted from

the cache. By default, Hera-JVM uses a write-through policy for all write operations

due to its simplicity.

Write operations update the data in the local memory cache directly. They then

immediately initiate a DMA transfer to copy the object field or array element which

was modified to its original main memory location. Unlike the cache read operations,

this DMA transfer is non-blocking; the thread can continue executing while the DMA

engine performs this write to main memory concurrently. Threads do, however, block

on these write operations before reading data from main memory to service a cache

miss and thread synchronisation operations, to maintain memory consistency.

Whilst non-blocking DMA write operations greatly improve performance, compared

to blocking transfers, the overhead of setting up a DMA transfer on every write oper-

ation is still non-negligible. Therefore, the use of a write-back policy was also inves-

tigated. Since SPE DMA operations are most efficient when transferring large blocks

of data, a write-back policy was investigated as a means of coalescing multiple write

operations on elements in the same array into a single main memory write-back DMA

transfer, instead of each write being performed individually.

One approach for implementing a write-back policy for array updates would be to

simply mark a cached array block as being dirty if one or more of its elements are

written to, and then transfer the block back to main memory in its entirety when it

is evicted from the cache. However, this will overwrite all the elements of this array

1Since the local memory has a small address space (18 bit address width), the object’s size and
cached local memory address can fit in a single 32 bit word entry of the hash table.

82

5.3 Executing Java Code on the SPE Cores

block, including those that were never updated by the thread running on this SPE.

The Java Memory Model (Manson et al., 2005) does not permit a thread to overwrite

array elements which it did not update, since this will cause updates, performed on

these elements by other threads, to be lost. This is clearly unacceptable, therefore, the

write-back approach must log the elements that have been written to, and only write

these back to main memory.

To limit the state required for array element write logging, only sequential writes to

an array block are coalesced in this manner. A small (16 element), local memory resi-

dent hash-table is employed for this purpose. Each entry holds a start and end address,

specifying a sequential range of elements of an array block that have been written to by

the current thread, but have not yet been written-back to the main memory backing

store. An array write operation looks up the hash-table entry, corresponding to the

array block being operated upon1. It then checks if the address being written to is

adjacent to the start or end addresses in this entry. If so, the write can be subsumed

into the logged updates by modifying this entry’s start or end address to include this

write. If not, either because the hash-table entry refers to another array block, or

the block is not being written to in a sequential manner, then the logged operations

in this hash-table entry are written-back to main memory, and the entry is updated

to log the current operation. As with the caching code, this slow path is trapped to

and performed in out-of-line code, while the fast path, of simply updating the log to

subsume this write operation, is processed inline.

Unfortunately, implementation of this write-back approach introduced errors into

the Hera-JVM runtime which prevented execution of the more complex real world

benchmarks used in Section 5.5.3. Therefore, by default, Hera-JVM writes-through

all array write operations; this write-back approach is only used in the experiments in

Section 5.5.2.1.

5.3.3.4 Synchronisation and Coherency

In a multi-threaded application, the same object could be accessed by multiple threads

simultaneously: thus as well as residing in the main memory heap, multiple copies of

this object could reside in different SPE local memory caches. Keeping these copies

1The index for this table is generated by simply masking the index generated as part of the cache
lookup operation on this array block (Section 5.3.3.1), such that it refers to an element in this smaller
hash-table.

83

5.3 Executing Java Code on the SPE Cores

consistent is usually the job of a hardware cache coherency system. However, the

Cell processor does not provide hardware cache coherency for SPE local memory, and

providing a software coherency protocol that broadcasts every object update to all

copies of the object’s data would cripple the SPEs’ performance. However, without

some form of consistency model, a thread running on an SPE core will never see any

updates made to an object by other threads, after it has cached this object in its local

memory (unless the object has to be re-cached, due to it having been evicted).

To correctly execute Java programs, Hera-JVM must provide a consistency model,

for code running on the SPE cores, that is allowed by the Java Memory Model (Manson

et al., 2005). Java’s memory model is based upon the happens-before memory model.

Synchronisation operations, such as lock operations and volatile field accesses, impose

a happens-before order on program execution. A data read is not allowed to observe a

write which happens after it in this happens-before partial order (i.e., it should not see

any writes which happen after a subsequent synchronisation point). Similarly, the read

can observe a write w, as long as there was no intervening write w′, where w happened

before w′ in the happens-before partial order (i.e., the thread does not see a value which

was overwritten before the previous synchronisation point).

In virtual machine implementation terms, the effect of this model is to allow heap

data to be cached by a thread (i.e., be inconsistent with the globally accessible original

copy in main memory), as long as these cached copies are re-synchronised with main

memory at thread synchronisation points. After performing a locking operation, a

thread must see all heap updates which happened-before this lock. Before releasing

this lock, the thread must ensure that any updates it has made to heap variables are

fully propagated to main memory, thus ensuring that they will be visible to any thread

which later synchronises on this same lock object.

Hera-JVM ensures this by completely purging the SPE local memory cache when-

ever the thread it is executing locks an object or reads a volatile field. Before unlocking

an object or writing to a volatile field, the thread is blocked until all of its DMA write

transfers have been completed. If the write-back caching policy is being used for ar-

ray access, then the runtime system iterates through the write-back log and performs

any outstanding write-back operations. Once these transfers are complete, the unlock

operation is performed.

84

5.3 Executing Java Code on the SPE Cores

The Java memory model also requires synchronisation order consistency, where

the order of synchronisation operations and volatile variable accesses is sequentially

consistent across threads. These operations must, therefore, be performed atomically.

Volatile field accesses are restricted to reading or writing from a single field, which

can have a maximum size of 8-bytes. DMA transfers, performed by an SPE core’s

memory flow controller (MFC), that are less than 16-bytes operate atomically on the

Cell processor. Therefore, volatile field accesses can be treated like normal field accesses

by Hera-JVM, with the additional constraints that: (i) the SPE local memory cache is

flushed before a volatile read is performed (which was also required for happens-before

consistency above); and (ii) the thread blocks on volatile writes to ensure they have

been written to memory before continuing (unlike non-volatile field write operations,

which are non-blocking).

To perform lock and unlock operations atomically, an atomic compare-and-swap

type of operation must be used. The SPE MFCs provide two blocking DMA operations,

called GETLLAR and PUTLLC, which can be used to build an atomic compare-and-swap

operation. The GETLLAR operation performs a blocking read from a memory address,

whilst simultaneously setting a reservation on this address. The PUTLLC operation

conditionally writes to a memory address, if the processor still holds a reservation on

this address, and returns a success or failure notification. If another core writes to this

memory address between the GETLLAR and PUTLLC operations, the reservation will be

lost and the PUTLLC operation will fail. Thus, an SPE core can perform an atomic

(from the point of view of other cores) compare-and-swap operation to lock or unlock

objects, based upon these operations.

By conforming to the Java Memory Model, any correctly synchronised, data-race-

free, multi-threaded application will exhibit sequentially consistent behaviour and run

correctly under Hera-JVM. To gain reasonable performance under the unusual SPE

memory hierarchy, Hera-JVM exploits the fact that the Java memory model is rela-

tively weak, by not guaranteeing sequential consistency in the presence of data-races.

However, there may exist programs that have benign data-races, which, none the less,

function correctly when executed on a typical cache coherent CPU. The limited co-

herency provided by Hera-JVM on SPE cores could cause such programs to fail. How-

ever, this has not been a problem for the range of real world benchmarks used to

85

5.3 Executing Java Code on the SPE Cores

investigate Hera-JVM, suggesting that most bug-free Java applications are also data-

race-free.

5.3.4 Invocation and Caching of Methods

Code must also reside on the SPE’s local memory before it can be executed. Since a

Java thread is likely to execute more code than can fit in an SPE’s local memory, a

software-based code caching scheme is required.

Section 5.3.4.1 describes the strategy taken by Hera-JVM to cache method code in

an SPE’s local memory so that it can be executed by a thread executing on the SPE

core. Section 5.3.4.2 describes the approach taken to ensure that execution resumes

at the correct point when an invoked method returns. Since the cache has a limited

size, it must be emptied when no space remains to cache a newly invoked method. The

code cache purging approach, employed by Hera-JVM, is discussed in Section 5.3.4.3.

Finally, Section 5.3.4.4 describes how this approach enables Hera-JVM to support the

SPE cores using a runtime system that has code memory requirements larger than the

size of the SPE cores’ local memory.

5.3.4.1 Caching Strategy

In keeping with Hera-JVM’s approach of DMAing large blocks of data wherever pos-

sible, Java methods are cached in their entirety. As with the object cache, a bump

pointer allocation scheme is used to manage this cache, with the cache being com-

pletely purged whenever it becomes full. Unlike the object cache, this code cache does

not use a hash-table to perform look-ups. A hash-table was considered unsuitable as

a means of looking up whether a method has already been cached, due to the need to

support virtual method invocation for Java instance methods.

When an instance (as opposed to a static) method is called, the actual method

which is invoked depends upon the type of the instance object upon which this method

was called. This object instance could have a type which is a sub-class of that de-

scribed by the invokevirtual bytecode. If this method has been overridden by the

object instance’s sub-class, then the runtime system must invoke the sub-class version

of the method, not the super-class method described by the invokevirtual bytecode.

Therefore, the actual code that should be invoked by the invokevirtual bytecode

86

5.3 Executing Java Code on the SPE Cores

is unknown at compile time; it must be inferred at runtime-based upon the object

instance’s type.

Typically, in order to support virtual method invocation, the header of every in-

stance object includes a pointer to a type information block (TIB), which describes the

class of the object instance. This TIB contains an entry for every method declared by

a class, each of which points to the code that implements the method. The TIB is laid

out such that inherited methods are located at the same index in the sub-class’s TIB as

in the super-class’s TIB1. By looking up the index of the virtual method being invoked

in the TIB of the object upon which it is being invoked, the runtime system can find

the actual instance method which it should run for this virtual method invocation.

Since each TIB entry points to the machine code implementing a method, Hera-

JVM requires two TIBs for every class — one which points to the PPE machine code

and one which points to the SPE machine code. To limit memory overheads, Hera-JVM

uses a two stage class-loading system. A class is initially resolved for the PPE core,

with only the PPE TIB being created. If the class is referenced by code running on the

SPE core, it will then be resolved for the SPE core, which will create the SPE TIB.

The SPE TIBs reside in main memory, being cached into an SPE’s local memory

only when required (exploiting class locality — if a method in a particular class is called,

it is likely that other methods in that class will also be called). When invoking a virtual

method, an SPE core must: (i) find the location of the SPE TIB for the current object

instance; (ii) cache this TIB in local memory if necessary; (iii) look up the location

of the requested method in this TIB; and (iv) if necessary, cache this method in local

memory before invoking it.

Hera-JVM exploits the fact that only a limited number of classes will be resolved

for the SPE core to simplify TIB and method caching. A small (4KB) class table of

contents (TOC) resides in SPE local memory, with an entry for each class that has

been resolved for the SPE (Figure 5.5). Each entry initially points to the location of

the class’s SPE TIB in main memory. Object instances have an index in their header

which points to their class’s entry in this class TOC, rather than a direct pointer to

the SPE TIB’s main memory address. When a method is invoked, the appropriate

class’s TOC entry is read to locate the class’s TIB, which is cached if necessary. When

1This is possible because Java does not support multiple inheritance, and therefore each class can
only inherit methods from its single super-class.

87

5.3 Executing Java Code on the SPE Cores

Class TOC

Metadata

getName() 0x43564550

length 1290

setName() 0x6000

length 2350

TIB

Object 0x31562350

Work 0x31564550

Person 0x4000

Customer 0x31534550

Employee 0x31523350

Manager 0x31545350

Method

Figure 5.5: The code cache data structures.

a TIB is cached, its TOC entry is updated to point to this local memory copy, and so

subsequent look-ups immediately know the location of the cached copy. The required

method is then looked up in the TIB and, if necessary, is cached in local memory, with

the TIB entry being updated to point to the cached method’s address.

This differs from the data heap cache, in that references in the TOC and TIB data

structures are directly updated with the local memory address when the data they refer

to is cached, whereas, references in the data cache always point to the main memory

original. Therefore, a cache hit in the code cache only requires two local memory

de-references, instead of multiple hash-table lookups to translate from main memory

addresses to the local memory cache addresses. These local memory references are

never propagated to the original data structures in main memory; only the cached

copies in the local memory of an SPE core are updated to point to data which has been

cached by that core.

An added benefit of this approach is that, while a direct pointer to a class’s SPE TIB

would require a full word to specify, a class’s TOC index only requires 10 bits in Hera-

JVM. Therefore, it can be accommodated in spare bits of the object instance’s header,

rather than having to reserve an additional word for the SPE TIB pointer in every

object instance’s header. Note, the object instance headers do still contain a pointer

to their PPE TIB, so that the PPE code can perform virtual method invocation in the

usual manner. However, since the TOC index is hidden in spare bits of the header,

object instances are the same size in Hera-JVM as they are in JikesRVM.

Static method invocations always invoke the same class’s method (they are statically

associated with the class, not a particular object instance). These method invocations

are cached in the same manner as instance methods, the only difference being that

88

5.3 Executing Java Code on the SPE Cores

Person TIB Employee TIB

...

getName() 0x 123 00001

...

Tag

...

getName() 0x60000

...

Cached Method
 Address

Class TOC Index

Figure 5.6: TIB layout for super-class methods.

the class TOC index is supplied statically by the compiler, rather than being read

dynamically from an object instance’s header at runtime.

One issue with this caching scheme, which is not immediately obvious, relates to

methods that are inherited from a super-class, but are not overridden by the sub-class.

A non-overriden method is shared by multiple classes, with its entry in each of these

class’s TIB pointing to the same method code. Since a method is recorded as being

cached by updating its TIB entry, the fact that the same method can be pointed to by

multiple class TIBs can lead to a method being cached multiple times.

Take, as an example, a program with three classes: a common super-class, called

Person; and two sub-classes of Person, called Customer and Employee. Person contains

a method, getName, which is inherited (but not overriden) by both the Customer and

Employee classes. If the getName method is invoked on a Customer object instance, its

entry in the Customer class TIB will be updated. However, its entry in the Person and

Employee TIBs will not be updated (these TIBs may not even be cached themselves).

Therefore, if the getName method is subsequently called on a Person or Employee

instance object, the method will be needlessly re-cached.

To avoid this, only the class which actually implements the method includes a

pointer to the method in its TIB. For classes which inherit this method, the TIB

entry is, instead, an index pointing to the implementing class’s TOC entry, with a tag

to indicate this (see Figure 5.6). When caching an inherited method (e.g. invoking

getName on a Customer object instance, as above), the cache system uses this TOC

index to look up the implementing class’s TIB (i.e., the Person TIB in the above

example). The implementing class’s TIB is checked to see if the method has been

previously cached. If so, the method’s entry in the invoking class’s TIB (i.e. Customer)

89

5.3 Executing Java Code on the SPE Cores

is updated to point to the same cached copy (overwriting the TOC index it previously

held). If not, the method is cached, and both TIBs are updated to reflect this. Since

this approach updates the implementing class’s TIB, as well as the invoking class’s TIB,

whenever an inherited method is cached, subsequent invocations of the same method

on an instance object of a different class (e.g. Employee) will not re-cache this method.

5.3.4.2 Returning from a Method

When a method returns, execution should return to the point in the caller method

immediately after the callee method was called. Typically, this is supported by placing

a return address on the stack; a return statement will branch to this return address

to resume execution of the caller method. However, code executed by an SPE core is

dynamically cached in local memory. Therefore, a simple return address is not sufficient,

since the caller method may no longer be at the same location in local memory when

execution returns to it (it could have been evicted from the cache or re-cached at a

different location).

Instead, Hera-JVM places a return offset on the stack when code running on an

SPE core invokes another method. The value of this return offset is the distance of the

invoking instruction from the start of the caller method. Alongside this return offset,

the caller’s stack-frame also contains a method ID, which specifies both the TOC and

TIB indexes necessary to look up this method in the code cache. When the callee

method returns, it ensures the caller method is cached by performing the same look up

process as if it were invoking the method, using the indices specified in the method ID

in its caller’s stack-frame. Adding the return offset on the caller’s stack-frame to the

start address of this cached method provides the callee method with an absolute return

address, to which it can jump in order to resume execution of the caller method.

5.3.4.3 Purging the Cache

If the caching of a method’s code would overflow the the remaining space in the code

cache, the cache is purged to make room for this new method. To do this, the class

TOC is reloaded from main memory. This will replace any entries that had been

updated to point to cached TIBs with the original main memory address of the TIB,

thus effectively evicting all TIBs from the cache. Since cached methods are pointed to

by these cached TIBs, evicting them also evicts every method from the cache. Finally,

90

5.3 Executing Java Code on the SPE Cores

the bump allocation pointer, used to allocate space in this cache, is reset to the start

of the local memory area that is reserved for code caching.

Once the cache has been purged, execution should resume where it left off. However,

the code of the executing method has now been evicted from the cache. Therefore, the

cache purging routine must re-cache this method before resuming its execution. It does

this in a similar manner to that described for returning from a method (Section 5.3.4.2),

using the method ID on the current stack-frame to work out what code should be

cached.

As well as being purged when it becomes full, the code cache is also purged whenever

new methods are compiled for the SPE. This insures that the relevant updates to the

TOC and TIB data-structures are propagated to all SPE cores, ensuring that these

new methods will be cached correctly when invoked.

5.3.4.4 Caching of Runtime System Code

Since the majority of the Hera-JVM runtime system is written in Java, it can be cached

into local memory as required by this mechanism in the same manner as application

code. Thus, there is no need to specialise the SPE runtime to enable it to fit in its

entirety in the SPE cores’ 256KB of local memory. This enables the same runtime code

to be used on both the PPE core as the SPE cores, unlike CellVM (Noll et al., 2008),

which used two different runtime systems to support the two different core type.

5.3.5 Scheduling and Thread Switching

Java is a multi-threaded programming language. The runtime system must therefore

schedule the execution of Java threads onto the processing cores it has available. The

version of JikesRVM upon which Hera-JVM is based (version 3.0) uses a green thread

model to schedule Java Threads. This model maps multiple Java threads to a single OS

thread, with the runtime system performing user level scheduling of the Java threads,

rather than the underlying operating system1.

JikesRVM uses an m-to-n threading model, with the runtime system starting an

OS thread for each processing core and pinning its execution to this core. Thus only

1JikesRVM has since moved to a native thread model (as of version 3.1), where each Java thread
maps to a native OS thread. In the native model, the underlying operating system schedules the
threads (although the runtime system retains some control).

91

5.3 Executing Java Code on the SPE Cores

a single OS thread (known as a virtual processor in JikesRVM) executes Java code on

a particular processing core, on behalf of different Java threads. When a Java thread

performs a blocking operation or a timer tick event occurs, the virtual processor’s

execution traps to runtime scheduling code. The runtime scheduler selects another Java

thread from the virtual processor’s run-queue and morphs its identity from the Java

thread which it was previously executing to this new Java thread. Thus, the operating

system is not involved in the scheduling of Java threads at all; it is only involved in

sharing the processing core’s execution between the JikesRVM virtual processor and

any other processes running on this processing core.

Since the SPE cores do not run an operating system, code executes bare-metal, with

no OS level support for multi-threading1. Thus, this green thread model is a natural

fit for the creation of Java threading on SPE cores in Hera-JVM. A single virtual

processor thread of execution is run bare-metal on the SPE core. This SPE virtual

processor employs the same runtime scheduling code as the PPE core to schedule Java

threads. No OS level scheduling support need be created to support threading on the

SPEs.

5.3.5.1 SPE Virtual Processor Initialisation

Hera-JVM initialises each SPE core by having the SPE execute a specially written

boot-loader program, using the libspe2 library provided by IBM. This boot-loader is

written in C so that it can be supported by libspe2. It initialises some reserved registers

used by the SPE runtime system, then copies the low level, out-of-line, runtime code

(used to provide code and object caching, as well as other services such as interrupt

handling) into its local memory. The boot-loader then traps to this out-of-line code to

cache and invoke the Java entry function of the SPE runtime system (this overwrites

the C boot-loader code in the process).

The Java entry function performs some additional initialisation to set-up the SPE

core’s virtual processor data-structures. It then invokes the scheduling code to find a

Java thread which it can execute. Initially, only a pre-built idle thread will be runnable

on this SPE virtual processor. The idle thread does nothing other than yield, to enable

1The Linux kernel which runs on the PPE core has some support for the multiplexing of multi-
ple virtual SPE processors onto a single physical SPE core. However, the swapping process is very
heavyweight and must be performed by the PPE core, making it unsuitable for the scheduling of Java
threads on SPEs.

92

5.3 Executing Java Code on the SPE Cores

the scheduling of a useful thread. After a given number of yields, it puts the core to

sleep, by performing a blocking read on an inter-core signalling channel. To wake this

core, another thread will send a signal through this channel to wake the core, after

placing a thread on its run-queue or (in the case of the PPE core) migrating a thread

to the SPE core.

5.3.5.2 Scheduling Mechanism

Each virtual processor (whether PPE or SPE) has its own run-queue of Java threads.

It schedules these threads for execution in a round-robin manner, with each thread

running for a full scheduling quantum or until it blocks (e.g., on an I/O operation).

When a virtual processor is making a scheduling decision, it checks whether it has

more threads in its run queue than the other virtual processors. If so, it will perform

load balancing by transferring some threads to another virtual processor’s ready queue1.

This load balancing is only performed by virtual processors running on the same core

type (i.e., SPE to SPE or PPE to PPE, but not SPE to PPE or PPE to SPE). The

thread migration mechanism, described in Section 5.4, must be used to transfer a thread

to a different core type.

Since the virtual processor is running on a single OS thread, a Java thread cannot

perform blocking system calls, or it would block all threads scheduled on that virtual

processor. Instead, the runtime system makes a corresponding non-blocking system

call, then blocks the Java thread by placing it on a per-core type blocked queue. A

virtual processor will periodically check if any of the threads in the blocked queue of

its core type have become runnable. It does this by performing a non-blocking select

system call on the file descriptor upon which the thread is waiting for data. If the select

call indicates that data is available on this file descriptor, it will move the thread back

onto its run queue.

5.3.5.3 Context Switching Mechanism

The process of context switching a virtual processor’s execution to a different Java

thread is highly architecture dependent. The scheduling code calls a magic method to

1In fact, it uses a per-virtual processor transfer queue to transfer threads, rather than directly
accessing another virtual processor’s ready queue. This is because transfers between virtual processors
must be thread safe, whereas, if the ready queue is only ever accessed by its own virtual processor, its
access need not be thread safe, thus speeding up the normal scheduling path.

93

5.3 Executing Java Code on the SPE Cores

perform a context switch. This magic method is compiled directly into inline context

switching machine code, specific to the core type for which it is being compiled.

To perform a context switch on an SPE core, the currently executing thread’s state

must be saved and the new thread’s state restored onto the core. This involves the

context switch code saving all non-volatile registers to an array associated with the

executing thread. Reserved registers, such as the frame pointer and the top of stack

register (Section 5.3.2) are also saved in this array. The thread’s current method ID

and offset is saved onto the stack as if a method was being invoked. The stack block

currently cached in the SPE’s local memory is then written back to the thread’s stack

in main memory.

To restore the new thread’s context onto this core, the process is reversed. The

reserved and non-volitile registers are set to those values which were saved in this new

thread’s register array when it was last swapped out. A block at the top of this new

thread’s stack is loaded onto the SPE’s local memory stack area. The context switch

code then performs a process similar to a method return, using the method ID and

offset saved on this new thread’s stack when it was swapped out. This ensures that the

method which was being executed by the thread when it was last executing is cached

in local memory, and execution of the thread resumes at the correct point within this

method.

5.3.5.4 Timer Interrupts

To implement pre-emptive scheduling, the scheduler must be able to interrupt the

execution of a Java thread. SPE cores have a simple hardware interrupt mechanism

which can be employed to provide timer interrupts and enable pre-emptive scheduling.

An SPE core can be set up to asynchronously transition to interrupt handling code

whenever a particular set of hardware events occurs. One of the hardware events which

can cause an SPE interrupt is an incoming signal on the SPE’s inter-core signalling

channel. Therefore, to provide SPE timer interrupts, a thread, running on the PPE

core, signals each SPE core every 10ms.

The SPE interrupt handler saves the core’s context and processes the hardware

signal which caused the interrupt. As well as handling timer interrupts, the interrupt

handler maintains hardware controlled data-structures, such as a hardware decrementer

used for low-level timing information. If a scheduling operation should be performed

94

5.3 Executing Java Code on the SPE Cores

during this interrupt, the interrupt handler then invokes the scheduler’s entry-point

method.

A number of runtime operations must be completed in their entirety, without being

pre-empted by another thread. Many low-level operations, such as updating a thread’s

stack frame pointer or transferring data from main memory, cannot be completed atom-

ically under the SPE’s unusual instruction set. Disabling and then re-enabling inter-

rupts around all these low-level operations would be a considerable overhead, as well

as being difficult to maintain. Instead, Hera-JVM explicitly checks for an interrupt

event at specific points in a method’s execution. The SPE compiler inserts a branch on

external condition instruction into method prologues and loop branches. If an interrupt

event is pending, this instruction triggers the interrupt handling code, otherwise it does

nothing. Checking for interrupt events on loop branches, as well as method prologues,

ensures that only a limited amount of time will pass between a timer interrupt being

fired, and the interrupt handler running. This is actually a similar approach to that

taken by the PPE compiler, but for different reasons.

Some higher level operations must also be non-preemptible. For example, runtime

methods that deal with thread scheduling or heap allocation should not be pre-empted.

Such methods have been annotated with an @Uninterruptable annotation by Jikes-

RVM to enable them to be treated specially. To ensure that these methods are not

pre-empted, the SPE compiler simply does not include explicit interrupt check instruc-

tions when compiling methods which are tagged with @Uninterruptable annotations.

5.3.6 System Calls and Native Methods

Occasionally, a method in the runtime system, the Java Library or a Java application

requires access to native code (e.g. to write to a file or start an external process).

JikesRVM / Hera-JVM provides this support with the JNI (Java Native Interface) for

Java Library and Java applications, whilst methods in the runtime system can use a

fast system call mechanism.

However, if a thread is running on an SPE core, there is no underlying OS to

support native methods. SPE cores must rely on the PPE core to perform native code.

In the case of a JNI method, the thread is migrated to the PPE core for the duration

of the native method, using the process described in Section 5.4. For fast system call

methods, the SPE core uses an inter-core mailbox channel to signal a dedicated thread

95

5.4 Migration between Core Types

on the PPE core with an appropriate message. This dedicated thread performs the

required system call on the SPE thread’s behalf, then signals the SPE with the result.

There is one set of native methods which is treated specially by Hera-JVM. The

Classpath Java library, used by HeraJVM, implements the Math class natively. This is

done purely for performance reasons; these methods do not require OS support. Thus,

they do not need to be offloaded to the PPE, when invoked by a thread on an SPE

core. Indeed, since these methods perform complex floating point operations, they are

likely to perform much better on the SPE core, than on the PPE core. Therefore,

the SPE compiler treats these methods like intrinsic functions — directly generating

the machine code required to perform the required operation — rather than offloading

them.

5.4 Migration between Core Types

With the SPE Java support, described in the previous section, Hera-JVM can execute

the same Java code on either an SPE or a PPE core and produce the same results. Hera-

JVM supports migration of a Java thread between the PPE and SPE cores to enable

it to exploit the core types available on the Cell processor. This migration process is

transparent from the point of view of the application; no changes in application code

are required to enable the application to be migrated between core types.

A thread can be migrated when it invokes a method that has either been tagged

by an annotation or has been selected by the scheduler. The experiments in this

chapter focuses on migration of threads using explicit annotations (@RunOnSubArch

and @RunOnMainArch); Chapters 6 and 7 investigate dynamic migration triggered by

the scheduler. However, the mechanism used for thread migration is the same in both

cases.

5.4.1 Migration Mechanism

A method which triggers a migration is invoked as usual, but then code in the method’s

prologue will cause a trap to migration support code. In the case of methods tagged

with the explicit @RunOnSubArch and @RunOnMainArch annotations, the method will

unconditionally trap if it is being executed on the wrong core type (i.e., a method

tagged with @RunOnSubArch will trigger a migration if it is run on the PPE core, but

96

5.4 Migration between Core Types

not if it is run on the SPE core). Other conditional triggering mechanisms are discussed

in Section 6.3.2.

The migration support code (executing on the original core type) will package the

parameters of the migrating method and, if necessary, JIT compile this method for

the core type to which the thread is being migrated. It then performs a scheduling

operation to find another thread which this core can execute, placing the migrating

thread on a per-core type migration queue, rather than returning it to the core’s own

run queue.

During scheduling operations, each core will periodically check the migration queue

associated with its core type. Any threads it finds will be removed from the migration

queue to be added to its own run queue. However, the current stack-frame of a migrated

thread is laid out for the other core type. Therefore, before this thread is added to the

run queue, a stack-frame for this core type is added to the end of the thread’s stack.

This synthetic stack-frame causes the thread to start executing at a migration entry-

point method when it is scheduled. The migration entry-point method will unpack the

parameters which were passed to the migrating method, then invoke the method using

Java’s reflection mechanism.

The thread continues to execute on this new core for the duration of this migrated

method and the whole tree of methods which it calls1. Of course, a subsequent method

invoked by this thread could cause it to migrate back to the previous core type using

the same mechanism.

Once a thread returns from a migrated method it must return to its original core

type. This is required by Hera-JVM because the frames below this point on the stack

are formatted for the other core type. To return to the original core type, the migration

entry-point method performs a return migration once the migrating method it invoked

has returned.

5.4.2 Scanning a Migrated Thread’s Stack

A number of runtime processes must scan a thread’s stack for information. For example,

the garbage collector must scan every thread’s stack for references to act as roots in its

tracing algorithm. Similarly, exception handling code must also scan the stack to find

1To migrate a thread for the entire duration of its execution, the thread’s run method can be
migrated.

97

5.5 Experimental Analysis

the location of an appropriate catch block to handle a thrown exception. If a thread

has been migrated between core types, its stack will consist of a mix of PPE and

SPE stack-frames, which could confuse such stack scanning code. For example, while

the vast majority of the garbage collector stack scanning code is architecture neutral,

the actual code which retrieves an object reference from a stack-frame is necessarily

architecture dependent, since stack-frame layout varies between the core types.

The synthetic stack-frame, placed on a thread’s stack as part of the migration

process, acts as a marker to signal the transition from stack-frames of one core type to

those of another. This enables these stack scanning algorithms to transition between

PPE and SPE stack-frame scanning code as required. The Garbage collector stack

scanning code uses these markers to switch between PPE and SPE stack-frame walkers.

The exception handling code, on the other hand, is scanning the stack to find a suitable

catch block in which to resume the thread’s execution. It therefore migrates the thread

to the other core type if it encounters a migration marker, such that it is on the correct

core type on which to resume the thread’s execution when it finds a suitable cache

control block.

5.5 Experimental Analysis

This section presents an experimental evaluation of Hera-JVM with the following aims:

• Ensure that the SPE Java compiler and runtime in Hera-JVM supports real world

Java code, and produces identical results whether code is executed on the PPE

or SPE core type.

• Investigate the effectiveness of the software caching mechanism used by the SPE

runtime system to hide the Cell processor’s unusual memory hierarchy.

• Verify the hypothesis that a heterogeneous multi-core architecture can be ab-

stracted behind a homogeneous virtual machine interface.

• Characterise the performance of each core type under different application be-

haviours. This will be used to uncover the behaviour characteristics which the

runtime system should track to make effective core placement decisions.

98

5.5 Experimental Analysis

To achieve these aims, Hera-JVM’s performance is investigated in this section, under

a range of both synthetic and real world benchmarks. Synthetic micro-benchmarks are

used in Section 5.5.2 to investigate the differences in performance of fundamental Java

operations, when executed on either the PPE or SPE cores. Section 5.5.3 uses real world

benchmarks from three different Java benchmark suites to: (i) ensure real world Java

code can be executed correctly on either core type; (ii) uncover the most appropriate

core type for different types of applications; and (iii) measure the software cache’s

performance under real world load.

5.5.1 Experimental Setup

All the experiments in this section are performed on a Playstation 3 (PS3), with 256MB

of RAM, running Fedora Linux 9. A 256MB swap space is located on the PS3’s rel-

atively fast video RAM, to minimise the paging overhead incurred, due to the small

amount of RAM available on the PS3. The Cell processor contains 8 SPE cores; how-

ever, only 6 of these SPE cores are available on the PS3 used in this evaluation. All

experiments compare single threaded performance of code executed on a single SPE

core to that on a single PPE core, unless otherwise stated.

The baseline, non-optimising compiler was used to compile both PPE and SPE

machine code. Hera-JVM was built with a stop-the-world, mark and sweep garbage

collector. This collector only runs on the PPE core and thus becomes a scalability limi-

tation if it runs for a considerable proportion of a benchmark. There is no fundamental

reason the garbage collector cannot also execute on the SPE cores (it is written in Java

like the rest of the runtime system); however, this support was not implemented in

Hera-JVM for time reasons.

Each experiment was repeated ten times1, with the average being reported and the

standard deviation, between these runs, shown using error bars. The execution times

of these benchmarks were calculated using the System.currentTimeMillis() method

in the Java library.

1After investigation, it was found that less than ten repeats were required before the standard
deviation stabilised in these experiments.

99

5.5 Experimental Analysis

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

Arith Assign Cast Create Exception Loop Math Method

S
pe

ed
up

 o
n

S
P

E
 v

s.
 P

P
E

(a) Overall benchmark results

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Locals Scalar Objects Arrays

S
pe

ed
up

 o
n

S
P

E
 v

s.
 P

P
E

(b) Assign tests

 0

 0.2

 0.4

 0.6

 0.8

 1

Class Instance Synchronized

S
pe

ed
up

 o
n

S
P

E
 v

s.
 P

P
E

(c) Method tests

Figure 5.7: Performance difference between SPE and PPE cores for fundamen-
tal Java operations in the Java Grande micro-benchmarks.

5.5.2 Micro-Benchmarks

In this section, a series of micro-benchmarks are used to investigate different aspects

of Hera-JVM’s performance, under controlled conditions.

The first stage of this investigation is to characterise the performance of the var-

ious fundamental Java operations on both core types under Hera-JVM. The micro-

benchmarks provided by the Java Grande benchmark suite (Mathew et al., 1999) were

employed to investigate the different Java operations individually.

Figure 5.7(a) shows the difference in performance between the core types for each

of the micro-benchmarks included in section one of the Java Grande Suite1. There is

1These experiments use version 2.0 of the sequential Java Grande suite, available at http://www2.
epcc.ed.ac.uk/computing/research_activities/java_grande/sequential.html

100

http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/sequential.html
http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/sequential.html

5.5 Experimental Analysis

clearly a wide variation in capability between the PPE and SPE cores depending upon

the type of Java operation being performed.

Basic operations, such as arithmetic, primitive casting and looping code, perform

much better on the SPE core than on the PPE core. Some of these operations, such

as floating point arithmetic and casting operations, are more than five times faster

on the SPE core. This was expected, given that the SPE is highly tuned for floating

point performance. However, even integer operations are significantly faster on the SPE

core. The fact that looping code performs better on the SPE core, compared to the

PPE core, was surprising. The PPE core has branch prediction hardware that is not

found in the SPE cores1. This should reduce pipeline stalls on the PPE, thus increasing

the performance of looping code. The fact that the loop benchmark performs worse

on the PPE core may be explained by the shorter pipeline in the SPE core, which will

reduce the impact on performance incurred by pipeline stalls.

More complex operations, such as object creation, exception handling and math-

ematical calculations, have roughly equivalent performance on both core types. The

remaining two benchmarks (Assign and Method) both perform worse on the SPE than

the PPE core. These benchmarks both directly test the software caching code for

either heap data or method code access. To investigate which Java operations were

responsible for the drop in performance, these benchmarks were broken out into their

constituent tests (Figures 5.7(b) and 5.7(c) respectively).

Figure 5.7(b) shows that access to local variables (e.g. method parameters or vari-

ables on the thread’s stack) is very fast on the SPE cores. However, accessing scalar

objects or arrays on the heap is considerably slower. Sections 5.5.2.1 and 5.5.2.2 inves-

tigate the overheads involved in accessing heap data.

Figure 5.7(c) shows that most method invocations, whether static class methods or

instance methods, are almost 80% as fast on the SPE core as on the PPE core. However,

synchronised methods have a large overhead on the SPE core, due to the SPE core’s

software cache having to be purged before entering the synchronised method. This

has a high cost on the SPE core for two reasons: it will cause cache misses for future

heap accesses, which are much more expensive on the SPE core than the PPE core;

and the software cache on the SPE must manually purge the cache by overwriting all

1The SPE cores do have explicit branch hint instructions, which can be used to reduce pipeline
stalls. However, these are not yet used by Hera-JVM.

101

5.5 Experimental Analysis

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 20 40 60 80 100

S
pe

ed
up

 o
f S

P
E

 v
s.

 P
P

E

Percentage of Writes over Reads

Scalar Object
Array

(a) Performance as ratio of reads to writes is varied.

 0

 0.2

 0.4

 0.6

 0.8

 1

Seq

Write Through
Rand Seq

Write Back
Rand

S
pe

ed
up

 o
n

S
P

E
 v

s.
 P

P
E

(b) Effect of array write policy.

Figure 5.8: Heap data access performance.

cache hash-table entries, whereas the PPE does this with hardware. The code for the

benchmarks presented in this figure fits easily in the SPE’s code cache, and hence these

method invocation tests do not cause any code cache misses. Section 5.5.2.3 investigates

the effect of larger code working sets on SPE method invocation performance.

5.5.2.1 Writing to the Heap

The tests in the assign benchmark of the Java Grande Suite read from, and write to,

memory in equal measure. To investigate whether reading from objects and arrays

is equally as costly as writing to them on the SPE, the benchmark was modified so

that the ratio of reads to writes could be varied. Figure 5.8(a) shows the difference in

performance between the SPE and PPE cores, as this ratio is varied. At small write

ratios, the SPE core actually outperforms the PPE. The SPE is almost 55% faster

than the PPE when reading from scalar objects and 40% faster when reading from

array elements. Thus, even though the SPE must perform a software cache look-up

operation for each object or array access1, its simple design and the software cache’s

lightweight implementation make these accesses faster than the hardware cache on the

PPE core.

However, the SPE’s performance falls significantly as the write ratio increases.

Above a write ratio of between 10% and 15%, the PPE core’s performance outstrips

1This benchmark has a small enough working set such that reads always hit the cache, thus it only
exercises the fast-path of the software cache.

102

5.5 Experimental Analysis

that of the SPE. Writes are expensive on the SPE core because a write-through policy

is used, meaning every write must be propagated to main memory. This is costly since

each write to main memory requires a DMA transfer, which is relatively expensive to

set up.

A write-back policy could significantly increase heap write performance by batching

multiple write operations into a single DMA transfer. To investigate whether such a pol-

icy can improve performance, the array write-back policy, described in Section 5.3.3.3,

was implemented. This approach batches multiple sequential writes to the same array

into a single DMA transfer, thus it only benefits sequential access to an array.

Figure 5.8(b) shows the performance of the array assign benchmark (with 50%

write ratio) under both caching schemes. The benchmark was modified to either write

to array elements sequentiality or randomly. The write-back policy can batch up to 32

writes in a single DMA transfer, achieving a 60% performance increase over the write-

through approach, when the array is accessed sequentially. For random array accesses,

the write-back policy cannot batch transfers, and consequently does not improve per-

formance. In fact, in this case, the added logging overhead decreases performance by

10% over the write-through policy. However, since arrays are often accessed sequen-

tially, this would seem a worthwhile trade-off. In fact, the magnitude of performance

increase provided by the write-back policy suggests that exploring this policy for object

accesses would also be worthwhile.

Unfortunately, this write-back implementation introduced errors when executing

more complex applications. These could not be corrected due to time constraints

and therefore all subsequent experiments use the write-through policy. However, in-

formal experiments were performed using the mandelbrot and compress benchmarks,

introduced in Section 5.5.3. These showed a performance improvement of 4% for the

mandlebrot benchmark, and 26% for the compress benchmark, when the write-back

policy was used.

5.5.2.2 Data Caching Overheads

Each micro-benchmark presented above has a small enough working set that the data it

accesses always fits in the cache. To investigate the overhead of data caching, a micro-

benchmark was devised in which the size of the program’s data working set could be

varied. This benchmark reads from, and writes to, randomly selected elements of an

103

5.5 Experimental Analysis

 0

 1

 2

 3

 4

 5

 6

 7

 8

8k 16k 32k 64k 128k 256k 512k 1M 2M 4M 8M 16M

R
un

tim
e

(s
)

Working Set Size (bytes)

PPE
SPE

(a) Absolute performance.

 0

 0.2

 0.4

 0.6

 0.8

 1

8k 16k 32k 64k 128k 256k 512k 1M 2M 4M 8M 16M

P
er

ce
nt

ag
e

S
lo

w
do

w
n

Working Set Size (bytes)

PPE
SPE

(b) Slowdown relative to 8k working set.

 0

 0.2

 0.4

 0.6

 0.8

 1

8k 16k 32k 64k 128k 256k 512k 1M 2M 4M 8M 16M

D
at

a
C

ac
he

 H
it

R
at

e

Working Set Size (bytes)

SPE

(c) SPE Cache Hit Rate.

Figure 5.9: The effect of a thread’s data working set on performance.

array. The size of the array can be varied to alter the program’s working set size and

affect its cache hit rate. This benchmark represents the worst case in performance for

a particular working set size, since access is entirely random and no real work is done

between heap accesses.

Figure 5.9 shows the performance of the SPE and PPE cores for this benchmark,

both as the absolute runtime required (a), and the slowdown, relative to the smallest

working set size (b). Figure 5.9(c) shows how the hit rate of the SPE core’s software

data cache varies with this benchmark’s working set size.

The SPE’s performance initially surpasses that of the PPE. However, as expected,

cache misses on the SPE core are more expensive than on the PPE core, due to the

caching being performed in software, rather than under hardware control. Once the

size of the working set grows larger than the amount of local memory reserved for

the SPE’s data cache (96KB), its performance degrades severely. The PPE core has a

larger data cache (256KB in its L2 cache). Its performance does suffer after the working

104

5.5 Experimental Analysis

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 32 64 128 256 512 1024 2048 4096 8192

R
un

tim
e

(s
)

Number of Methods

PPE
SPE

(a) Absolute performance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 32 64 128 256 512 1024 2048 4096 8192

P
er

ce
nt

ag
e

S
lo

w
do

w
n

Number of Methods

PPE
SPE

(b) Slowdown relative to 32 methods.

Figure 5.10: The effect of a thread’s code working set on performance.

set size increases above this cache size, but not as severely as on the SPE core. For

the maximum working set size of 16MB, the overhead due to cache misses reduces the

SPE core’s performance to about an eighth of its original value, while the PPE core’s

performance only drops by a half.

5.5.2.3 Code Caching Overheads

Method invocation also involves caching of code from main memory. To investigate the

performance of the software caching scheme used by Hera-JVM, a micro-benchmark

was developed, in which the amount of code executed can be varied, while the same

amount of real work is done. This benchmark performs three million method invo-

cations, randomly selecting which method to invoke from a set of available methods.

Every method in this set performs the same operation (incrementing a local variable).

However, each is compiled into separate machine code, and so its code is cached sep-

arately when run. By varying the number of methods in the set, the amount of code

which the benchmark executes can be varied, without altering the amount of “real”

work that it performs.

Figure 5.10 shows the performance of this benchmark on both the SPE and PPE

cores. Once the working set of methods that this benchmark invokes grows beyond

1024, it can no longer fit in the SPE’s local memory cache. Performance on the SPE

core drops to about one fifth of its original value, since almost every method invocation

will need to re-cache the method’s code, as it is likely to have been evicted since the

method was last called. The benchmark’s performance does not suffer so severely on

the PPE core, again due to its dedicated caching hardware.

105

5.5 Experimental Analysis

5.5.3 Real World Benchmarks

In this section, a selection of benchmarks from three real world benchmark suites

are used to evaluate Hera-JVM in a realistic setting. To provide a range of applica-

tions, with different types of behaviour, benchmarks were selected from: (i) SpecJVM

2008 (Shiv et al., 2009), a suite which mimics a variety of general purpose applica-

tions; (ii) the Java Grande Parallel benchmark suite (Smith et al., 2001), which aims

to replicate high performance computing workloads, such as scientific, engineering or

financial applications; and (iii) the Dacapo 2006 benchmark suite (Blackburn et al.,

2006), which focuses on memory hungry benchmarks. The following benchmarks were

run under Hera-JVM:

mandelbrot generates an 800x600 pixel image of the mandelbrot set, using an escape

time algorithm with a maximum of 200 iterations. This benchmark was developed

independently and does not belong to any of the benchmark suites.

JavaGrande: mol dyn performs a molecular dynamics particle simulation, using the

Lennard-Jones potential.

JavaGrande: monte carlo performs a financial simulation, using Monte Carlo tech-

niques to price products derived from the price of an underlying asset.

JavaGrande: ray trace renders a scene containing 64 spheres, using a 3D ray tracer

with a resolution of 150x150 pixels.

Spec: fft performs Fast Fourier Transformation, using a one-dimensional, in-place

algorithm with bit-reversal and Nlog(N) complexity.

Spec: lu computes the LU factorization of a dense, in-place matrix using partial piv-

oting. It uses a linear algebra kernel and dense matrix operations on a 100x100

matrix.

Spec: monte carlo approximates the value of Pi by computing the integral of the

quarter circle y =
√

1− x2. It chooses random points within the unit square and

computes the ratio of those within the circle, versus those outside the circle.

106

5.5 Experimental Analysis

Spec: sor simulates the Jacobi successive over-relaxation algorithm for a 250x250 grid

data set. The algorithm performs basic grid averaging, where each element is

assigned an average weighting using the weights of its four nearest neighbours.

Spec: sparse performs matrix multiplication on an unstructured sparse matrix in

compressed-row format with a prescribed sparsity structure. The data set is a

compressed 25, 000× 25, 000 matrix with 62,500 non-zero elements.

Spec: compress compresses and decompresses 3.36MB of data, using a modified

Lempel-Ziv method.

Spec: mpegaudio decodes six MP3 files which range in size from 20KB to 3MB. It

uses an MP3 library called JLayer.

Dacapo: antlr parses multiple grammar files, and generates a parser and lexical an-

alyzer for each.

Dacapo: hsqldb uses JDBC to invoke an in-memory, SQL relational database, mod-

elling the transactions of a banking application with 20 client threads, performing

64 transactions each.

Hera-JVM can support execution of these benchmarks on either core type. By an-

notating each benchmark’s main method, Hera-JVM can migrate the whole benchmark

to the SPE core. Other than adding this annotation, the only modification required to

execute these benchmarks on the SPE cores was to split a small number of exception-

ally long methods into multiple smaller methods, so that they could fit in the SPE’s

code cache in their entirety. Developing a code caching scheme which splits a method

into multiple cacheable blocks would remove the need for these modifications.

The same Java code for each benchmark is run on either the PPE or SPE cores.

These benchmarks execute correctly and consistently on either core type under Hera-

JVM. This validates the correctness of the SPE compiler and runtime for real world

Java applications, and verifies that a heterogeneous multi-core architecture can be

abstracted behind a homogeneous virtual machine interface.

There is an inconsistency between the PPE and SPE floating point instructions

which can lead to subtle inconsistencies in output, depending upon the core type on

which a thread is executed. The PPE and SPE cores use different rounding modes for

107

5.5 Experimental Analysis

 0

 0.5

 1

 1.5

 2

 2.5

m
andelbrot

JG: m
ol_dyn

JG: m
onte_carlo

JG: ray_trace

SPEC: fft

SPEC: lu

SPEC: m
onte_carlo

SPEC: sor

SPEC: sparse

SPEC: com
press

SPEC: m
pegaudio

DACAPO: antlr

DACAPO: hsqldb

S
pe

ed
up

 o
n

S
P

E
 v

s.
 P

P
E

Figure 5.11: Performance comparison between benchmarks running on a single
SPE core, and running on the single PPE core.

single-precision floating point calculations1. This can lead to minor (least significant

bit) differences in the result of the same floating point operation under both core types.

However, only single-precision floating point operations are affected: both the SPE and

PPE cores support the round to nearest rounding mode for the more commonly used

(in Java applications) double-precision floating point operations. The only benchmark

affected by this inconsistency is the SPEC:fft benchmark; however, this results in a

deviation of less than 10−11% in its final result when run on the SPE core, as compared

to the PPE core.

5.5.3.1 Single Threaded Performance

Figure 5.11 shows the difference in the performance of these benchmarks when they are

run on the SPE, versus the PPE core. The error bars represent the standard deviation

between ten runs on each core type. There is a wide variation in the performance of

1Java requires floating point calculations to use the IEEE round to nearest rounding mode, which
is supported by the PPE core; however the SPE only supports the rounding towards zero rounding
mode for single-precision operations.

108

5.5 Experimental Analysis

0%  20%  40%  60%  80%  100% 

SPEC: sor 

SPEC: lu 

JG: mol_dyn 

SPEC: sparse 

mandelbrot 

SPEC: fft 

SPEC: monte_carlo 

SPEC: mpegaudio 

JG: ray_trace 

JG: monte_carlo 

SPEC: compress 

DACAPO: antlr 

DACAPO: hsqldb 

FloaIng 

Integer 

Branch 

Stack 

Local Memory 

Main Memory 

Figure 5.12: Percentage of cycles spent executing different classes of machine
instructions on SPE. Benchmarks are ordered upwards by increasing SPE per-
formance.

the benchmarks between core types, from a 2.25x increase in SPEC:sor on the SPE

core, to a 3x slowdown for DACAPO:hsqldb.

The mandelbrot benchmark, SpecJVM 2008 suite (other than SPEC:compress) and

Java Grande suite all perform well on the SPE core. These benchmarks are of a

similar workload to that which the SPE was designed to support: computationally

intensive scientific or multimedia centric workloads. The SPEC:compress and Dacapo

benchmarks do not perform as well on the SPE core. The common trait linking these

benchmarks is that they access large amounts of data, thus exercising the software

cache on the SPE.

To further investigate how a program’s behaviour affects its performance on the

different core types, a simulator was used to calculate the percentage of time the SPE

core spends executing different classes of machine instructions. Figure 5.12 shows this

breakout by instruction type for each benchmark. The benchmarks are ordered by

their performance on the SPE core, relative to the PPE core, with the best performing

benchmark at the top.

Benchmarks which perform well on the SPE core also generally spend more of their

109

5.5 Experimental Analysis

time executing floating point or integer-based calculations. While benchmarks with

floating point code generally perform better on the SPE core, the best performing

benchmarks do not always have a high proportion of floating point operations (e.g.

SPEC:lu and SPEC:sparse). The higher performance of integer operations on the SPE

core, as compared with the PPE core, seems to be as important as its impressive floating

point performance.

There is also a clear trend towards a benchmark’s performance decreasing on the

SPE core when it spends a greater proportion of time accessing data elements in the

heap (the local memory and main memory categories). This is especially prominent

when those accesses result in cache misses or write operations which require DMA

operations to main memory.

5.5.3.2 The Effect of Cache Size

By default, the size of software data and code caches on the SPE core are fixed at

92KB and 88KB respectively. These sizes were chosen to give roughly equal weighting

to caching of code and data by default. However, applications do not necessarily access

the same amounts of heap data as code. Therefore, these applications may benefit from

having a different proportion of local memory reserved for each cache.

To investigate the relationship between each benchmark’s performance and the pro-

portion of local memory reserved for code and data caching, Hera-JVM was modified,

so that the ratio of data cache size to code cache size could be altered. Figures 5.13

to 5.15 show how the performance of each benchmark is affected, as this ratio is altered.

The effect of cache size on hit rate for both data and code accesses is also shown in these

figures. The cross formed by the dotted lines in these figures shows the performance at

the default cache sizes.

The relationship between a benchmark’s performance and this ratio falls into four

main categories:

Peaked: The ray trace and mpegaudio benchmarks show a peak in performance, when

roughly an equal percentage of memory is reserved for each cache. These bench-

marks are equally affected by small code or data caches. However, the plateau

shape of these two graphs suggests that the working set of both code and data

for both benchmarks fits comfortably in the local memory provided by the SPE

core.

110

5.5 Experimental Analysis

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
ac

he
 H

it
R

at
e

Code Cache
Data Cache

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

0
180

32
148

64
116

96
84

128
52

160
20

 180 - Code
 0 - Data

0.5

0.6

0.7

0.8

0.9

1

1.1

S
pe

ed
up

 v
s.

 d
ef

au
lt

S
P

E

S
pe

ed
up

 v
s.

 P
P

E

Code / Data Cache Size (KB)

(a) JavaGrande: ray trace

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

C
ac

he
 H

it
R

at
e

Code Cache
Data Cache

0.9

0.92

0.94

0.96

0.98

1

1.02

0
180

32
148

64
116

96
84

128
52

160
20

 180 - Code
 0 - Data

1.65

1.7

1.75

1.8

S
pe

ed
up

 v
s.

 d
ef

au
lt

S
P

E

S
pe

ed
up

 v
s.

 P
P

E

Code / Data Cache Size (KB)

(b) JavaGrande: mol dyn

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

C
ac

he
 H

it
R

at
e

Code Cache
Data Cache

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

0
180

32
148

64
116

96
84

128
52

160
20

 180 - Code
 0 - Data

1
1.02
1.04
1.06
1.08
1.1
1.12
1.14
1.16
1.18

S
pe

ed
up

 v
s.

 d
ef

au
lt

S
P

E

S
pe

ed
up

 v
s.

 P
P

E

Code / Data Cache Size (KB)

(c) JavaGrande: monte carlo

0.97

0.98

0.99

1

C
ac

he
 H

it
R

at
e

Code Cache
Data Cache

0.9

0.95

1

1.05

1.1

0
180

32
148

64
116

96
84

128
52

160
20

 180 - Code
 0 - Data

1.35

1.4

1.45

1.5

1.55

1.6

S
pe

ed
up

 v
s.

 d
ef

au
lt

S
P

E

S
pe

ed
up

 v
s.

 P
P

E

Code / Data Cache Size (KB)

(d) SpecJVM: monte carlo

Figure 5.13: The effect of varying the proportion of local memory reserved
for use by the data and code caches (Java Grande and SpecJVM:monte carlo
benchmarks).

111

5.5 Experimental Analysis

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

C
ac

he
 H

it
R

at
e

Code Cache
Data Cache

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

0
180

32
148

64
116

96
84

128
52

160
20

 180 - Code
 0 - Data

1.1

1.2

1.3

1.4

1.5

1.6

1.7

S
pe

ed
up

 v
s.

 d
ef

au
lt

S
P

E

S
pe

ed
up

 v
s.

 P
P

E

Code / Data Cache Size (KB)

(a) SpecJVM: fft

0.97

0.98

0.99

1

C
ac

he
 H

it
R

at
e

Code Cache
Data Cache

0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1
1.01

0
180

32
148

64
116

96
84

128
52

160
20

 180 - Code
 0 - Data

2.1

2.15

2.2

2.25

S
pe

ed
up

 v
s.

 d
ef

au
lt

S
P

E

S
pe

ed
up

 v
s.

 P
P

E

Code / Data Cache Size (KB)

(b) SpecJVM: sor

0.97

0.98

0.99

1

C
ac

he
 H

it
R

at
e

Code Cache
Data Cache

0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1
1.02

0
180

32
148

64
116

96
84

128
52

160
20

 180 - Code
 0 - Data

1.5

1.55

1.6

1.65

1.7

1.75

S
pe

ed
up

 v
s.

 d
ef

au
lt

S
P

E

S
pe

ed
up

 v
s.

 P
P

E

Code / Data Cache Size (KB)

(c) SpecJVM: sparse

0.94

0.95

0.96

0.97

0.98

0.99

1

C
ac

he
 H

it
R

at
e

Code Cache
Data Cache

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

0
180

32
148

64
116

96
84

128
52

160
20

 180 - Code
 0 - Data

1.7

1.75

1.8

1.85

1.9

S
pe

ed
up

 v
s.

 d
ef

au
lt

S
P

E

S
pe

ed
up

 v
s.

 P
P

E

Code / Data Cache Size (KB)

(d) SpecJVM: lu

Figure 5.14: The effect of varying the proportion of local memory reserved for
use by the data and code caches (SpecJVM Scimark benchmarks).

112

5.5 Experimental Analysis

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

C
ac

he
 H

it
R

at
e

Code Cache
Data Cache

 0.6

 0.7

 0.8

 0.9

 1

 1.1

0
180

32
148

64
116

96
84

128
52

160
20

 180 - Code
 0 - Data

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

S
pe

ed
up

 v
s.

 d
ef

au
lt

S
P

E

S
pe

ed
up

 v
s.

 P
P

E

Code / Data Cache Size (KB)

(a) SpecJVM: compress

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

C
ac

he
 H

it
R

at
e

Code Cache
Data Cache

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

0
180

32
148

64
116

96
84

128
52

160
20

 180 - Code
 0 - Data

0.9

1

1.1

1.2

1.3

1.4

1.5

S
pe

ed
up

 v
s.

 d
ef

au
lt

S
P

E

S
pe

ed
up

 v
s.

 P
P

E

Code / Data Cache Size (KB)

(b) SpecJVM: mpegaudio

0.75

0.8

0.85

0.9

0.95

1

C
ac

he
 H

it
R

at
e

Code Cache
Data Cache

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

0
180

32
148

64
116

96
84

128
52

160
20

 180 - Code
 0 - Data

0.42
0.44
0.46
0.48
0.5
0.52
0.54
0.56
0.58
0.6

S
pe

ed
up

 v
s.

 d
ef

au
lt

S
P

E

S
pe

ed
up

 v
s.

 P
P

E

Code / Data Cache Size (KB)

(c) Dacapo: antlr

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ac

he
 H

it
R

at
e

Code Cache
Data Cache

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0
180

32
148

64
116

96
84

128
52

160
20

 180 - Code
 0 - Data

0.25

0.3

0.35

0.4

0.45

S
pe

ed
up

 v
s.

 d
ef

au
lt

S
P

E

S
pe

ed
up

 v
s.

 P
P

E

Code / Data Cache Size (KB)

(d) Dacapo: hsqldb

Figure 5.15: The effect of varying the proportion of local memory reserved
for use by the data and code caches (remaining SpecJVM and Dacapo bench-
marks).

113

5.5 Experimental Analysis

Rising: The performance of the JavaGrande:monte carlo and Dacapo benchmarks

rises as the proportion of memory provided to cached code increases. The work-

ing set of code required by these benchmarks is clearly too large to completely fit

into the SPE’s local memory, leading to this behaviour. It is also noticeable that

the data cache hit rate for the Dacapo benchmarks is quite low (93% and 89%),

compared to other benchmarks, and does not improve as the size of the data

cache is increased. It is likely that this is caused by these benchmarks performing

thread synchronisation operations, which purge the data cache, before the data

cache becomes full.

Falling: The performance of the mol dyn, fft, lu and compress benchmarks are more

heavily affected by the size of the data cache. These benchmarks would seem to

benefit from an even larger data cache size than can be provided by the SPE’s

local memory.

Flat: Finally, the SPEC:monte carlo, sor and sparse benchmarks exhibit little variation

in performance as the cache sizes change, except at extremely small cache sizes.

These benchmarks therefore have very small working sets.

Given the different behaviours of these benchmarks, it is clear that no fixed segrega-

tion of the code and data caches will provide the best performance for all applications.

One possible solution to this would be to mix code and data in a single larger cache.

A problem with this approach is that the data cache must be purged on thread syn-

chronisation operations, whereas the code cache need not. With a single shared cache,

either the code must be needlessly purged alongside data, or a more complex cache

allocation and purging scheme must be employed.

Another approach would be to provide Hera-JVM with the capability to dynamically

alter the code / data cache ratio, based upon runtime monitoring of a program’s cache

hit rates. Although a full investigation of is beyond the scope of this dissertation,

Figure 5.16 gives an approximation of the performance improvement this approach

could result in, by plotting the best performance results shown by these cache ratio

experiments. Those benchmarks which perform worst on the SPE core see the greatest

gains in performance when the code / data cache ratio is optimised. In fact, given the

trends seen by the compress, antlr and hsqldb benchmarks, it would seem that these

114

5.5 Experimental Analysis

 0

 0.5

 1

 1.5

 2

 2.5

m
andelbrot

JG: m
ol_dyn

JG: m
onte_carlo

JG: ray_trace

SPEC: fft

SPEC: lu

SPEC: m
onte_carlo

SPEC: sor

SPEC: sparse

SPEC: com
press

SPEC: m
pegaudio

DACAPO: antlr

DACAPO: hsqldb

S
pe

ed
up

 o
n

S
P

E
 v

s.
 P

P
E

Default
Best

Figure 5.16: Performance with a per-benchmark optimal code / data cache
ratio.

benchmarks would gain further performance improvements if the SPE’s cache size was

increased to the size of the PPE core (512KB). As it is, this optimisation could improve

the performance of the hsqldb benchmark on the SPE core, such that it is within 2.25

times slower than when running on the PPE core. This is comparable to the 2.25x

speedup observed by running the sor benchmark on the SPE core.

The provision of such a system for Hera-JVM is left for future research; the default

code / data cache ratio of 88KB / 92KB is used in all subsequent experiments.

5.5.3.3 Scalability

The preceding experiments compared the performance of a benchmark, run on a single

SPE core, with that when run on a single PPE core. However, the Cell processor

contains eight SPE cores and can provide significantly more computing power if an

application can be parallelised. All of the benchmarks in the SpecJVM 2008 and the

Java Grande Parallel suites can be parallelised, by passing the number of benchmark

threads required as a parameter. The Dacapo antlr benchmark is single threaded and

cannot be parallelised, however, the hsqldb benchmark already runs 20 client threads,

115

5.6 Discussion

and thus should be parallelisable by increasing the number of SPE cores upon which

these threads can be scheduled (this can be controlled with a parameter to Hera-JVM).

The Cell processor in the Playstation 3, used for these experiments, only provides

six SPE cores for user applications (one core is disabled, due to manufacturing defects,

and the other runs a secure hypervisor). Figures 5.17 to 5.19 show the speedup obtained

by each benchmark as they are scaled from one to six SPE cores. This is shown both as

a speedup against running on a single SPE core (a) and as the speedup against running

on a single PPE core (b).

Most of the benchmarks scale well as the number of SPE cores increase. However,

the lu, fft and both monte carlo benchmarks stop scaling after four cores. The reason

that these benchmarks stop scaling is believed to be due to garbage collection. These

benchmarks allocate a large amount of data during their execution. When they are

scaled to multiple threads, the amount of data increases with each benchmark thread

created. This increased allocation pressure leads to much more frequent garbage col-

lections, due to the small amount of memory available on the Playstation 3. Since the

garbage collector currently runs on only the PPE core, this leads to a scaling bottleneck.

The hsqldb benchmark does not scale at all. This is believed to be due to the core

engine of hsqldb not being multi-threaded1, rather than any scalability issue within

Hera-JVM.

Figure 5.20 provides an overview of the performance of running each benchmark on

all six SPE cores, compared with running on the single PPE core. For those benchmarks

which scale, running on all six SPE cores provides from a 3x to a 13x speedup, compared

to running on the single PPE core.

5.6 Discussion

The SPE core is a challenging architecture on which to develop general purpose soft-

ware. However, by abstracting this architecture behind a Java virtual machine, Hera-

JVM hides the unusual features of the SPE core. This enables developers to write

application code for this challenging architecture in the same manner as they would

for more conventional architectures. This, in turn, enables the same code to be run on

1The hsqldb FAQ at http://hsqldb.sourceforge.net/web/hsqlFAQ.html states that the core
engine is not yet multi-threaded.

116

http://hsqldb.sourceforge.net/web/hsqlFAQ.html

5.6 Discussion

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6

S
pe

ed
up

Number of Cores

mol_dyn
ray_tracer

monte_carlo

(a) Speedup vs. 1 SPE core

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6

S
pe

ed
up

Number of Cores

mol_dyn
ray_tracer

monte_carlo

(b) Speedup vs. 1 PPE core

Figure 5.17: Scalability of the Java Grande Parallel benchmarks.

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6

S
pe

ed
up

Number of Cores

sor
sparse

lu
monte_carlo

fft

(a) Speedup vs. 1 SPE core

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6

S
pe

ed
up

Number of Cores

sor
sparse

lu
monte_carlo

fft

(b) Speedup vs. 1 PPE core

Figure 5.18: Scalability of the SpecJVM scimark benchmarks.

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6

S
pe

ed
up

Number of Cores

mandelbrot
mpegaudio

compress
hsqldb

(a) Speedup vs. 1 SPE core

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6

S
pe

ed
up

Number of Cores

mandelbrot
mpegaudio

compress
hsqldb

(b) Speedup vs. 1 PPE core

Figure 5.19: Scalability of the remaining SpecJVM, Dacapo and mandelbrot
benchmarks.

117

5.6 Discussion

 0

 2

 4

 6

 8

 10

 12

 14

m
andelbrot

JG: m
ol_dyn

JG: m
onte_carlo

JG: ray_trace

SPEC: fft

SPEC: lu

SPEC: m
onte_carlo

SPEC: sor

SPEC: sparse

SPEC: com
press

SPEC: m
pegaudio

DACAPO: hsqldb

S
pe

ed
up

 o
n

6
S

P
E

s
vs

. P
P

E

Figure 5.20: Performance comparison between benchmarks running on all 6
SPE cores and running on the single PPE core.

both the SPE core and the more conventional PPE core of the Cell processor, without

requiring any modifications.

Of course, this abstraction does not come for free. Java is generally less efficient than

lower level languages such as C or C++, due to features such as dynamic compilation,

garbage collection and its object oriented nature (though recent advances (Blackburn

et al., 2004; Kotzmann et al., 2008) are reducing this gap). Additionally, the wide

impedance mismatch between the Java virtual machine abstraction and the SPE core’s

architecture is likely to increase the overhead of providing this abstraction.

However, the techniques described in Section 5.3, such as efficient stack management

and software caching using high level type information, enable the SPE core to provide

better performance than the PPE core for the majority of the benchmarks with which

Hera-JVM was evaluated. Even those benchmarks which perform badly (antlr and

hsqldb) have a similar slowdown on the SPE core as the speedup this core provides

to more suitable benchmarks (the maximum performance disparity is about 2.25x on

both sides).

This would suggest that, in most cases, the overhead of providing this abstraction

is outweighed by the increased processing speed of the SPE core. This is illustrated

118

5.6 Discussion

by the SPE core’s performance in reading cached data from the heap (Figure 5.8(a)).

Since the SPE must perform caching in software, even a cached object access requires

eight machine instructions to look up the location of the cached data. The PPE core,

on the other hand, can access the same data with a single memory access instruction,

relying on hardware to automatically look up its cache. Even so, the SPE core performs

better than the PPE core under this workload. The cost of providing this cached heap

abstraction in software is amortised by the fact that accessing an SPE’s local memory

is significantly less expensive than accessing the PPE’s data cache, due to its simple

non-associative nature.

As the number of cores on a processor increases, hardware caches will become even

more expensive and are likely to become scalability bottlenecks, due to the need for

cache coherency between cores (Kumar et al., 2005b). It may be that providing looser

coherency guarantees in hardware, and relying on software abstractions to provide a

similar programming experience, as with Hera-JVM, may be a better approach for

future many-core architectures. While the Cell’s approach is likely a step too far for

most general purpose applications, these results with Hera-JVM show that, even with

this architecture, it is possible to provide a relatively efficient caching abstraction in

software.

Another advantage of the SPE core’s simple design is that it requires much less

area on a silicon die to implement. On the Cell processor die, the PPE core requires

roughly the same area of silicon as 4 SPE cores. Thus, if an application can be paral-

lelised, it can be executed on many more SPE cores than PPE cores, for the same sized

processor. The scalability results show that, for those benchmarks which scale, even

the worst performing benchmark provides a 3x speedup when running on four SPE

cores, compared to running on a single PPE core, thus providing significantly better

performance for the same silicon area.

Finally, the ability of Hera-JVM to transparently migrate a thread between the PPE

and SPE core types provides the runtime system with the flexibility to fully utilise the

heterogeneous core types of the Cell processor under varying conditions and workloads.

Chapters 6 and 7 describe techniques for automatically selecting the most appropriate

core type on which to schedule the different threads and phases of execution of a given

application. This would not be possible without the homogeneous virtual machine

interface and transparent migration provided by Hera-JVM.

119

Chapter 6

Migration Based Upon
Behaviour Annotations

The Hera-JVM runtime system, described in the preceding chapter, hides much of the

complexity involved in developing applications for heterogeneous multi-core architec-

tures (HMAs). By providing a homogeneous virtual machine interface, an application

developer no longer needs to develop, compile or package code specifically for a particu-

lar core type. However, given the heterogeneous nature of the cores, the same code will

have different performance characteristics, depending upon the core type on which it is

executed. For an application to effectively exploit an HMA system, the most appropri-

ate core type for each thread or phase of execution must be chosen. If the application

developer has to perform this choice manually (e.g., using the @RunOnSubArch and

@RunOnMainArch annotations, as in the previous chapter), then he must still possess

relatively in-depth knowledge of the capabilities of the different core types in order to

best exploit the HMA processor. This would limit much of the benefit of hiding the

processor’s heterogeneity behind a homogeneous virtual machine interface.

This chapter discusses how the code behaviour characteristics, proposed in Chap-

ter 4, can be employed by a runtime system to hide this partitioning process from the

application developer, while still being able to exploit the cores’ differing capabilities.

These characteristics can be provided as code annotations, either explicitly added by

a developer or automatically applied by a compiler, code analysis tool or a program

profiling tool. This chapter focuses on annotations which are explicitly added by a

developer; however, the same principles would apply for annotations added in another

manner.

120

6.1 Maintaining Per-Thread Behaviour Knowledge

The first requirement for such a runtime system is a mechanism to track the set

of behaviour characteristics which apply to a particular thread. Section 6.1 describes

how Hera-JVM maintains this per-thread behaviour knowledge. This information is

used by the runtime system to automatically infer the most appropriate core type for

the different threads and execution phases which make up an application. Section 6.2

describes a thread migration policy, based upon thread behaviour cost functions, which

decides whether a thread would benefit from being migrated to another core type. Fi-

nally, a mechanism is required to cause a thread, which has been selected for migration,

to actually migrate at an appropriate point in its execution. A variety of migration

strategies are investigated in Section 6.3.

6.1 Maintaining Per-Thread Behaviour Knowledge

To enable the runtime system to make scheduling decisions based upon the behavioural

knowledge provided by code annotations, it must maintain the set of behaviour anno-

tations which apply to each thread and track changes to this set as the thread executes.

This section describes the mechanism used by the Hera-JVM runtime system to main-

tain this per-thread behaviour knowledge.

6.1.1 Set of Tracked Behaviour Annotations

The first design decision is to determine the set of annotations that the runtime system

should track. The annotations chosen should be those which describe the execution

behaviour patterns most likely to have a large impact on core placement. For exam-

ple, if both core types have similar integer operation performance, then tracking the

@IntegerCode annotation will be of little value, since this behaviour will have a neg-

ligible influence on core placement. The set of tracked annotations will therefore be

dependent upon the characteristics of the HMA targeted by the runtime system.

Since Hera-JVM targets the Cell processor, the choice of tracked annotations reflect

the most significant performance characteristic differences between the PPE and SPE

core types. Both the micro-benchmarks in Section 5.5.2 and the macro-benchmarks in

Section 5.5.3 suggest the most significant performance differences to be:

• Purely arithmetic operations (whether integer or floating point) have significantly

faster performance on the SPE cores.

121

6.1 Maintaining Per-Thread Behaviour Knowledge

• Object and array accesses are slightly faster on the PPE core if the thread’s

working set fits in the SPE’s on-core caches.

• Object and array accesses are significantly faster on the PPE core if the thread’s

working set does not fit in the SPE’s on-core caches.

Therefore, the @ArithmeticCode, @ObjectAccessCode and @LargeWorkingSet be-

haviour annotations were selected to track each of these behaviours, respectively. The

first two annotations describe processing requirement characteristics, as introduced

in Section 4.2.1. The @ArithmeticCode annotation merges the @IntegerCode and

@FloatingPointCode characteristics into a single annotation. The @ObjectAccessCode

annotation is simply the @DataAccessCode annotation, renamed to suit Java parlance.

Finally, the @LargeWorkingSet annotation describes an execution behaviour charac-

teristic, as outlined in Section 4.2.2. This annotation is not parenthesised with the

expected size of the working set. Instead, its presence is assumed to imply a working

set size larger than the 96KB data cache provided by the SPE core type.

An application developer can tag a method with one (or more) of these annotations

to signal the behaviour which is expected to dominate that method’s execution. As a

convenience, a class can also be annotated, which is interpreted by Hera-JVM as all the

methods in that class being tagged with that behaviour annotation. A thread inherits

a behaviour characteristic when it invokes a method annotated with the corresponding

behaviour annotation, until that method returns (i.e., the method, and the full call tree

of methods called by this method, inherit the behaviour characteristic). Therefore, to

state that a thread has a given behaviour throughout its lifetime, the developer can

simply annotate the thread’s run() method, since this will be the first method invoked

by the thread.

There may be situations where it is convenient to remove a behaviour characteristic

from a thread for the duration of a particular method. For example, a thread which per-

forms mainly arithmetic computations, and is thus tagged with the @ArithmeticCode

annotation, may call a method which does very little arithmetic (e.g. a method to

log the results to a file). The ability to remove the @ArithmeticCode behaviour

characteristic from the thread when it invokes this method (and restore it once the

method returns) would enable the runtime system to migrate this method to a more

appropriate core type. Hera-JVM provides three further annotations for this purpose

122

6.1 Maintaining Per-Thread Behaviour Knowledge

(@NonArithmeticCode, @NonObjectAccessCode and @SmallWorkingSet). These an-

notations behave similarly to those above, but cause the thread to lose, rather than

inherit, the corresponding behaviour characteristic for the duration of a tagged method.

6.1.2 Tracking Thread Behaviour at Runtime

The behaviour characteristics of a thread depend not only on the current method it

is executing, but also on any behaviour annotations encountered in the sequence of

methods called to reach this point. The runtime system must therefore maintain a rep-

resentation of each thread’s behaviour characteristics, and modify this representation

whenever a behaviour annotation is encountered.

Hera-JVM maintains a behaviour bitmap for each thread. Each of the tracked

behaviour characteristics is represented by a single bit — set for on, cleared for off.

There are only two operations which can cause a thread’s behaviour characteristics to

change: the thread invokes a method tagged with a behaviour annotation; or the thread

returns from a method tagged with a behaviour annotation. Therefore, the runtime

system can maintain a thread’s current behaviour characteristics by modifying method

invocations and returns to update the behaviour bitmap appropriately.

When JIT compiling a method, the runtime system checks whether it has been

tagged with any behaviour annotations. If so, a short sequence of machine code is

added to the method’s prologue (which is executed whenever the method is invoked).

This code loads the executing thread’s behaviour bitmap, sets and / or clears the bits

which correspond to the behaviour annotations tagging this method, then stores the

updated bitmap.

When a method returns, it must undo any changes it made to the thread’s behaviour

bitmap. However, simply clearing the behaviour characteristics which tag the method

is not appropriate, since the thread may have already had some of these behaviour

characteristics prior to the method’s invocation. Instead, the method’s prologue pushes

the thread’s behaviour bitmap onto its stack before it modifies the bitmap. During

the method’s epilogue (which is executed whenever the method returns), this value is

popped from the stack, and saved in the thread’s behaviour bitmap; thus restoring the

thread’s behaviour characteristics.

As an optimisation, rather than directly updating the thread’s behaviour bitmap,

Hera-JVM performs these updates on a per-core bitmap, which resides at a fixed loca-

123

6.2 A Cost Function-Based Migration Policy

tion (in local memory for the SPE cores). This optimisation saves one memory access

per update on the PPE core, and an expensive software cache lookup on the SPE

cores. During a thread switch operation, this bitmap is saved in the outgoing thread’s

control block, and replaced with the incoming thread’s behaviour bitmap. Using this

approach, behaviour tracking adds only seven PPE machine instructions or ten SPE

machine instructions to methods tagged with behaviour annotations. Methods which

are not tagged are unaffected.

6.2 A Cost Function-Based Migration Policy

Section 6.1 described the mechanism employed by Hera-JVM to track the behaviour

characteristics of threads as they execute. This section describes a cost function based

migration policy, which can use this thread behaviour knowledge to decide whether a

thread should be migrated to a different core type.

The overall approach involves the runtime system periodically evaluating the cost

that a thread incurs, based upon its current behaviour characteristics and the effect

incurred by these characteristics on each of the different core types available to the

runtime system. If this cost is higher for the thread’s current core type than another

core type, the runtime system may choose to migrate the thread to a more appropriate

core type. To calculate these costs, each core type has an associated cost function,

which takes a thread’s current set of behaviour characteristics as its input.

The purpose of the cost function is to evaluate the most appropriate core type for

a thread with a given set of behaviour characteristics. It is not necessary for the cost

function to produce an absolute, or even particularly realistic measure of performance

on a given core type. Instead, it need only produce a relative measure of the expected

difference in performance between core types. As such, the costs associated with each

behaviour characteristic are based upon the relative difference in performance observed

for that behaviour between the different core types.

The micro-benchmark tests, performed in Section 5.5.2, provide an estimation of the

relative performance disparity for these behaviour characteristics between the SPE and

PPE core types under Hera-JVM. The arithmetic micro-benchmark suggests that when

running purely arithmetic operations, the SPE is approximately four times faster than

124

6.2 A Cost Function-Based Migration Policy

Behaviour PPE Cost SPE Cost

Arithmetic (CA) 4 1
Object Access (CO) 1 2

Large Working Set (CL) 2 8

Table 6.1: Costs associated with each core type.

the PPE. Similarly, the assign micro-benchmark suggests a 2x slowdown for purely ob-

ject access code on the SPE versus the PPE. Finally, the working set micro-benchmarks

show that when a thread’s working set does not fit in the SPE’s local memory, the over-

head of software caching causes up to an 8x slowdown. The slowdown on the PPE,

on the other hand, is only 2x. Using these results, the costs shown in Table 6.1 were

chosen for these behaviour characteristics on each core type.

The total cost of a thread is calculated as the sum of the costs of those behaviour

characteristics currently associated with that thread (Equation 6.1). In this equation,

the BA, BO and BL terms represent the Arithmetic, Object Access and Large Working

Set behaviour characteristics, respectively. These terms are binary values, set to one if

the thread has the corresponding behaviour characteristic, otherwise set to zero. The

CA, CO and CL terms are the behaviour costs as defined in Table 6.1. The thread’s cost

is calculated for each core type (the PPE and SPE cores in Hera-JVM), substituting

the appropriate behaviour costs for that core type. The behaviour costs are summed,

rather than being combined as their product, since these behaviours are independent

from each other, and so a linear combination is the most appropriate.

C = BA · CA +BO · CO +BL · CL (6.1)

This raw cost function calculates the cost of the thread at a given moment in time.

However, it may be appropriate to take the history of a thread’s behaviour into account

before making migration decisions. This will limit those migrations that occur due to

very short behaviour phase changes, and are thus likely to incur more overhead than

any benefit they might bring.

A thread’s behaviour history is incorporated into the cost function using an expo-

nential moving average function (Equation 6.2). For a given time t, a smoothed cost

(C ′t) is calculated by combining the current raw cost from Equation 6.1 (Ct) with the

previous time period’s smoothed cost (C ′t−1). The value of α can be varied to affect the

125

6.2 A Cost Function-Based Migration Policy

degree to which the thread’s behaviour history (C ′t−1) influences the thread’s current

behaviour cost (C ′t).

C ′t = (1− α) · Ct + α · C ′t−1 (6.2)

Once a thread’s cost has been calculated for both the SPE and PPE core types (C ′ppe

and C ′spe), these values can be compared to decide if migration would be beneficial. A

target score (S) is calculated using Equation 6.3.

S = C ′spe − C ′ppe (6.3)

A negative target score suggests the thread will run better on the SPE core, while a

positive score recommends the PPE core. However, a policy which simply migrates the

thread as soon as the target score switches from positive to negative (or vice-versa),

could lead to unwanted oscillation of a thread between core types if its target score

fluctuates around zero. Hysteresis can be used to counteract this unwanted oscillation.

A system which employs hysteresis takes into account its present state, as well as

the value being measured, before deciding whether to transition to another state. Thus,

the point at which a system changes state depends upon the system’s current state.

For this cost function, hysteresis is used to vary the target score at which a migration

should occur, depending upon the current core type on which the thread is running (see

Figure 6.1). A target score within the window of −δ to +δ will not trigger a migration.

Thus δ can be thought of as the cost of migration; as δ is increased, a greater difference

in cost between the core types is required to trigger a migration.

Given that the target score S does not have a symmetrical absolute range, it is

inappropriate to specify δ as an absolute value. Therefore, we define δ as a fraction (β)

of the cost of the core on which the thread is currently executing (i.e. δ = β · C ′curr,
where C ′curr is C ′ppe or C ′spe). The migration decision is thus captured by Equation 6.4

if the thread is currently executing on the PPE core, or Equation 6.5 if it is executing

on an SPE core.

migrate to SPE if : S < −β · C ′ppe (6.4)

migrate to PPE if : S > +β · C ′spe (6.5)

Another issue which may affect a migration decision is introduced by including

the history of a thread’s behaviour into the cost function; a thread’s target score may

126

6.2 A Cost Function-Based Migration Policy

Migrate to PPE

Migrate to SPE
S-δ +δ0

Running on PPE

Running on SPE

Figure 6.1: Migration with Hysteresis.

be slow to react to changes in the thread’s current behaviour. While this is one of

the reasons for including this history information — to provide greater stability by

limiting short-lived migrations — it may result in migrations at inappropriate times.

For example, a thread’s behaviour history may cause its calculated target score to

remain above the threshold required to trigger a migration, even though its current

behaviour costs from Equation 6.1 suggest a migration is unnecessary.

To limit these inappropriate migrations, the runtime system can also take the trend

in the direction of the target score into account. For example, if the target score is

trending downwards, it may be better not to migrate a thread from an SPE core to

the PPE core, even though its target score is above the PPE migration threshold.

The downward trend means that the thread’s current behaviour costs favour continued

execution on the SPE core; however, a history of PPE favourable behaviour means the

target score still lies above the PPE migration threshold1.

The target score’s trend in direction is incorporated into the migration decision

by comparing a thread’s current target score (St) to its previous target score (St−1).

If the score is trending in the wrong direction, migration is prevented (Equations 6.6

and 6.7). The parameter γ is introduced to control how strong the trend must be to

1In an ideal system the thread would have been migrated to the PPE core previously, when it first
passed the migration threshold, and thus this situation would not occur. However, in a real system,
factors such as non-migratable code sections or forced migration can cause this situation.

127

6.3 Implementing Behaviour Based Thread Migration

Parameter Effected Property Prevents
Default
Value

Value to turn
off property

α Behaviour History Short-lived migrations 0.8 0
β Hysteresis Oscillating migrations 0.2 0
γ Trend tracking Badly timed migrations 1 0

Table 6.2: Migration policy parameters.

prevent migration. Note, this trending information is never used to cause a migration,

only to prevent a migration from occurring.

do not migrate to SPE if : St > γ · St−1 (6.6)

do not migrate to PPE if : St < γ · St−1 (6.7)

Thus, incorporating hysteresis from Equations 6.4 and 6.5, and trend tracking from

Equations 6.6 and 6.7, the migration decision becomes:

migrate to SPE if : (St < −β · C ′ppe) and not (St > γ · St−1) (6.8)

migrate to PPE if : (St > +β · C ′spe) and not (St < γ · St−1) (6.9)

or, more simply:

migrate to SPE if : (St < −β · C ′ppe) and (St < γ · St−1) (6.10)

migrate to PPE if : (St > +β · C ′spe) and (St > γ · St−1) (6.11)

The degree to which history, hysteresis and trend information is taken into account

by the migration policy can be tuned using the parameters α, β and γ, respectively.

Indeed, these parameters can be used to turn off the associated property entirely.

Table 6.2 outlines some of the characteristics of these parameters. In Section 6.4.3

these parameters are varied to investigate their effects and find their optimal default

values.

6.3 Implementing Behaviour Based Thread Migration

This section describes the development of a concrete implementation of this migration

policy for Hera-JVM. A number of design choices must be made to develop a real world

implementation, such as how often a thread’s cost should be evaluated and where in a

128

6.3 Implementing Behaviour Based Thread Migration

thread’s execution it should be migrated. The decisions taken for these design choices

trade off immediacy of reaction to behaviour changes with migration and behaviour

measuring overheads. To investigate these trade-offs, this section explores a number of

different mechanisms for evaluating a thread’s cost and signalling it to migrate.

6.3.1 Evaluating a Thread’s Cost

There are two main options which can be employed by Hera-JVM to evaluate the

per-core-type costs associated with a thread’s behaviour characteristics: the migration

policy can be re-evaluated immediately, whenever a thread’s set of behaviour charac-

teristics change, or the runtime system can sample a thread’s behaviour characteristics

with a fixed time frequency, re-evaluating the thread’s per-core-type cost at every sam-

pling period.

Immediate cost evaluation has the advantage of allowing the runtime system to

immediately react to a thread’s changing behaviour. However, since any method in-

vocation can change a thread’s behaviour characteristics, the overhead involved in

re-evaluating a thread’s per-core-type cost after every behaviour change could become

prohibitively expensive.

Evaluating a thread’s cost at fixed time periods (e.g. at timer tick operations) limits

the overhead of cost evaluation. However, the runtime system will be slower to react

to changes in a thread’s behaviour, and may not produce an accurate cost if it samples

a thread’s behaviour characteristics too infrequently, or at a time when the thread is

behaving uncharacteristically.

Both approaches were implemented in Hera-JVM to evaluate these trade-offs. Sec-

tions 6.3.1.1 and 6.3.1.2 describe the implementations of each approach.

6.3.1.1 Immediate Thread Cost Evaluation

To implement immediate thread cost evaluation, assembly code was added to the thread

behaviour tracking code, described in Section 6.1.2. This code initiates a trap to a

thread cost evaluation routine if the thread’s behaviour characteristics have changed.

Given that every method invocation could change a thread’s behaviour characteris-

tics, thus triggering a thread cost evaluation, this cost evaluation routine was made as

lightweight as possible. Therefore, this routine was also written in assembly code. As

such, it was not feasible to implement the full cost function described in Section 6.2.

129

6.3 Implementing Behaviour Based Thread Migration

Instead, this routine just evaluates the raw per-core-type costs using Equation 6.1,

without incorporating history, hysteresis or trend tracking into the migration decision

(i.e., this implementation essentially fixes the parameters α, β and γ to zero).

Using an exponential moving average to incorporate the history of a thread’s be-

haviour into its cost function would, in any case, not provide a realistic smoothing effect

for this immediate thread cost evaluation approach. The exponential moving average

function assumes that each sample is equally significant when sampled, but becomes

exponentially less significant each time a newer sample arrives. However, by evaluating

(and thus sampling) a thread’s cost whenever its behaviour changes, samples should

not be treated equally. For example, a thread may inherit a behaviour characteristic for

an insignificantly short time, e.g., when calling a short method. This sample should be

treated with less significance than a longer lived characteristic; however, the immediate

cost evaluation approach treats each behaviour change equally.

There are other possible approaches for incorporating history into this immediate

cost evaluation approach (such as measuring the time between behaviour characteristic

changes); however, these would be much more expensive to evaluate. Therefore, the

immediate cost evaluation approach bases its migration decisions on only the thread’s

current behaviour characteristics. This is appropriate, given that this approach focuses

on providing immediate reactions to thread behaviour changes.

6.3.1.2 Thread Cost Evaluation at Timer Ticks

An alternative to evaluating a thread’s cost every time its behaviour characteristics

change is to sample the thread’s behaviour characteristics at fixed time intervals and

build up expected per-core-type costs, based upon these samples. There are two ad-

vantages to this approach. Firstly, the thread cost evaluation has a fixed overhead,

rather than being dependent upon the placement of behaviour characteristic annota-

tions. Secondly, the sampling process places less emphasis on short-lived behaviour

characteristics over time, since they will have a lower probability of being sampled,

given their short lifetime. The disadvantage is that the runtime system can only make

migration decisions at these fixed sampling times, which may cause a delay in moving

a thread to a more appropriate core type, or cause it to miss migration opportunities.

Hera-JVM already interrupts the running thread (by default, every 10ms) to make

scheduling decisions and decide whether execution should switch to a different Java

130

6.3 Implementing Behaviour Based Thread Migration

A

B C

D

C

D

Scheduling
Quantum 1 2 3 4

Method
Call Trace

Migration
Target
Score

SPE

PPE

Figure 6.2: An example of thread behaviour sampling at timer ticks. Method
B has behaviour characteristics which suit execution on the PPE core type,
method D has behaviour characteristics that suit execution on the SPE, and
all other methods do not have any behaviour characteristics.

thread1. To implement the sampling-based cost evaluation approach, this scheduling

code was augmented to calculate the thread’s per-core-type costs whenever it is called.

The current thread’s behaviour characteristics are sampled and then fed through the

cost function migration policy. An example of this process is shown in Figure 6.2. This

scheduling code is written in Java and runs relatively infrequently; therefore, the full

cost function, described in Section 6.2, was implemented for this approach.

6.3.2 Triggering Thread Migration

Once the runtime system has decided that a thread will perform better on a different

core type, it must trigger the thread to migrate at an appropriate point in its execu-

tion. Hera-JVM’s migration mechanism (described in Section 5.4.1) places a number

of constraints on this process. Firstly, migration can only occur at method invocation.

Secondly, since stack frames created by the different core types are incompatible with

each other, a thread must return to its original core type when it returns from the

method which was migrated.

1The mechanism used to interrupt the current thread and invoke the scheduler code is described
in Section 5.3.5.

131

6.3 Implementing Behaviour Based Thread Migration

This places conflicting demands on the migration triggering mechanism. Ideally, a

thread should be migrated at the next available migration point (i.e. the next method

call). However, if this method returns very quickly, the thread will be forced back to

the original core type with little performance benefit and perhaps a performance loss,

due to the migration overheads. It may be more appropriate to wait for a longer lived

method before migrating.

Two migration triggering mechanisms are therefore investigated: triggering a mi-

gration on the next available method call; and targeting a longer lived method, further

up the stack trace, for migration the next time it is executed by the thread.

6.3.2.1 Migrate On Next Method Call

A per-core flag is added to signal that this core should migrate its current thread at the

first opportunity. Code in the prologue of migratable methods checks this flag and, if it

is set, initiates a migration by trapping to an out-of-line migration support routine. As

with the thread’s behaviour bitmap, this flag is placed in a reserved location, in local

memory on the SPE cores, to avoid unnecessary memory accesses and software caching

overheads. The overhead involved in checking this flag is minimal — two machine

instructions on both architectures.

Some methods should never be migrated. For example, the runtime system runs

scheduling code on each core to control thread switching. This code must run on

the core it is controlling to function correctly, and therefore should not be migrated.

Hera-JVM, therefore, prevents a thread from migrating when it is executing runtime

system code by not including the migration flag check in any of the runtime system’s

methods. This means that the runtime system can trigger a thread to migrate during

the scheduling code (e.g. when evaluating thread costs using the sampling-based ap-

proach in Section 6.3.1.2) and the thread will only be migrated when control returns

to application or Java library code.

6.3.2.2 Targeted Migration

Rather than migrate immediately, the targeted migration approach attempts to trigger

migration on a method that is sufficiently long-lived to gain some benefit from the

migration. The runtime system does not know how long future method calls are likely

132

6.3 Implementing Behaviour Based Thread Migration

to run, nor does it know if these future methods will exhibit the same behaviour char-

acteristics as have triggered the thread’s migration. However, it is possible to estimate

the time at which each of the methods on the thread’s stack was called. The runtime

system can then select a method further up the thread’s stack-trace which is likely to

be both long-lived and to exhibit similar behaviour characteristics on future calls. This

method can then be targeted for migration the next time it is called by the application.

While this will not provide any immediate benefit to the thread, it should enable the

runtime system to accumulate knowledge of which application methods are appropriate

to migrate, thus improving the performance of subsequent calls to these methods.

To enable the runtime system to estimate the length of time for which a method has

been executing, a slot is reserved in each method’s stack-frame to store a representation

of the time at which the method was invoked. However, calculating the current time

at each method invocation would be an unnecessary overhead. An estimate of time’s

progression with an appropriate granularity is sufficient. Given that a migration is

more expensive than a thread switch, it is appropriate to target only those methods

which take at least one timer tick to complete for migration. Therefore, it is sufficient

to estimate time with the granularity of a timer tick. As such, the runtime scheduler

maintains a scheduling quantum counter, which is incremented at each timer tick.

When a method is invoked, its prologue pushes the current value of this counter into

the reserved slot of the method’s stack-frame.

When the runtime system decides that a thread should be migrated, it selects a

long-lived method by scanning through the thread’s stack trace until it finds a method

that was invoked one or more scheduling quanta before the current scheduling decision.

Since this method has been executing for at least one scheduling quantum, it is likely

to do so again the next time it is called, and thus is a good candidate for migration.

Figure 6.3 shows an example of a method being selected for targeted migration.

Once a method has been targeted for migration, the runtime system must en-

sure that the thread migrates to the appropriate core type whenever this method is

called. One possible approach for signalling this migration would be to set a flag which

is checked when the method is invoked, as with the “migrate on next method call”

approach. However, since a particular method is being targeted for migration, an in-

dividual flag would be required for each potentially migratable method. Storing this

number of flags in the SPEs’ local memory would impose an unnecessary burden on

133

6.3 Implementing Behaviour Based Thread Migration

A

B C

D

C

D

Scheduling
Quantum 1 2 3 4 5 6 7

Method
Call Trace

Stack
Layout B 1

A 1

C 2

A 1

D 2
C 3
A 1

D 3 Migration decision:
traces down current

stack to target the first
method started in a
previous quantum

A

B C

D

C

D

A

B

Figure 6.3: A targeted migration example. At the end of the third scheduling
quantum, a migration decision is made. Method A is found to be the first
method on the thread’s stack, at that point, which was invoked in a previ-
ous scheduling quantum. Therefore, method A is targeted for migration and
executes on the other core type (shown in red) on future invocations.

this constrained resource, while caching a flag when it is required would be unwieldy

and cause additional software caching overheads at every method call. Even on the

PPE core, this would be a cumbersome approach.

Instead, Hera-JVM employs runtime binary code re-writing to patch targeted meth-

ods, such that they trap to the migration support routine whenever they are invoked.

Potentially migratable methods have a short1 machine code sequence added to their

prologue, which sets up a trap to the migration support routine. However, the branch

instruction, which actually causes the trap, is substituted with a nop instruction. By

default, therefore, the method will not cause a migration. To target this method for

migration, the runtime system simply replaces this nop instruction in the method’s

compiled code with the branch instruction necessary to complete the trap operation.

Since only a single instruction is being replaced, this can be done atomically, thus en-

suring any other threads executing this code do not run inconsistent or invalid code

during the update.

1Four machine instructions on the PPE core, three instructions on the SPE.

134

6.4 Experimental Analysis

Thread Costing Migration Mechanism

AtAnnotation Immediate Next Method
AfterSched Sample Based Next Method
Targeted Sample Based Targeted

Table 6.3: Behaviour-based migration strategies implemented in Hera-JVM.

This approach changes the semantics of targeted migration somewhat, in that any

thread which invokes this method will now be migrated, not just the thread which

triggered the migration. This seems reasonable, however, given that a method is likely

to perform similarly, even if called by a different thread.

6.3.3 Combining Thread Costing and Migration Triggering

The above thread costing and migration triggering mechanisms were combined to create

three different implementations of Hera-JVM with support for behaviour-based thread

migration. These behaviour-based migration strategies are outlined in Table 6.3.

These strategies progressively trade off immediacy in reacting to a thread’s be-

haviour changes, with more informed (and expensive) decisions on when and where to

migrate. The AtAnnotation strategy will immediately migrate on any method which

has behaviour characteristic annotations that suggest the thread may perform better

on a different core type. The AfterSched strategy samples a thread’s behaviour char-

acteristics at every scheduler timer tick, migrating, if appropriate, at the first oppor-

tunity after the scheduling code returns. Finally, the Targeted strategy also samples

a thread’s behaviour at timer ticks, but targets a long-lived method on the thread’s

stack for migration the next time it is called, rather than migrating immediately. The

combination of immediate thread costing with targeted migration was not implemented

because the overheads involved in selecting a method for targeted migration are too

high to be executed each time a thread’s behaviour characteristics change.

6.4 Experimental Analysis

In this section, the efficacy of employing behaviour characteristic annotations for auto-

mated exploitation of heterogeneous processing cores is investigated. The three strate-

gies implemented by Hera-JVM (AtAnnotation, AfterSched and Targeted) are

135

6.4 Experimental Analysis

compared and contrasted under a variety of synthetic benchmarks to discover their

performance under a variety of different situations. The effectiveness of history, hys-

teresis and trend tracking are also investigated by varying the α, β and γ parameters of

the cost function. Finally, some real world benchmarks are annotated with behaviour

characteristics to investigate the appropriateness of this approach in a realistic setting.

6.4.1 Experimental Setup

As with the experiments in the previous chapter, all the experiments are performed on

a Playstation 3, with 256MB of RAM, running Fedora Linux 9. The baseline (non-

optimising) compiler was used to compile both PPE and SPE machine code. Each

experiment was repeated ten times, with the average being reported and the standard

deviation between these runs shown using error bars. Unless otherwise noted, the

thread behaviour cost function uses the default values of α, β and γ, as shown in

Table 6.2.

6.4.2 Two Phase Synthetic Benchmark

The first synthetic benchmark is a simple program that exhibits two distinct phases of

behaviour during its execution. One phase is heavily arithmetic, and therefore suited to

the SPE cores; the other phase performs many object accesses, and therefore runs faster

on the PPE core. This two phase benchmark is used to investigate the basic trade-offs

between the different behaviour-based migration strategies, as well as exploring the

effect of annotation placement and behaviour phase length.

Listing 6.1 outlines the code used for this benchmark program. The type of appli-

cation that this benchmark attempts to model is one which performs some calculation

over a given data-set (the arithPhase() method), then performs data update opera-

tions on this data-set (the objAccessPhase() method). This process is repeated over

multiple data-sets. The actual calculation, or update operation, for each element of the

data-set is performed by a separate method (doArith and doObjAccess, respectively).

The Arithmetic and Object Access workloads are tailored so that the SPE core

executes the doArith() method 2.4 times as quickly as the PPE core, and conversely,

the PPE core executes the doObjAccess() method 2.4 times as quickly as the SPE

core. They are also tailored such that their execution times are roughly equal when

run on their most appropriate core type. Table 6.4 shows the execution times of these

136

6.4 Experimental Analysis

�
1 class TwoPhase {
2 void main () {
3 loop x times ... {
4 ar i thPhase () ;
5 objAccessPhase () ;
6 }}
7
8 void ar i thPhase () {
9 loop y times ... {

10 doArith () ;
11 }}
12
13 void objAccessPhase () {
14 loop y times ... {
15 doObjAccess () ;
16 }}
17
18 void doArith () { Arithmetic workload ... }
19 void doObjAccess () { Object access workload ... }
20 }
� �

Listing 6.1: Two phase synthetic benchmark psuedo-code.

doArith (µs) doObjAccess (µs)

PPE core 61.75 (σ = 0.684) 24.71(σ = 0.661)
SPE core 25.81 (σ = 0.006) 59.33 (σ = 0.007)

Table 6.4: Average execution time of the workload methods on each core type.

methods on the PPE and SPE core types. With perfect thread phase placement,

ignoring overheads, the program should therefore run 1.7 times faster1 than it would if

run on a single core exclusively.

6.4.2.1 Behaviour Annotation Placement

This benchmark clearly has an arithmetic phase and an object access phase, therefore

these phases should be labelled using the @ArithmeticCode and @ObjectAccessCode

appropriately. However, the choice of which methods are annotated with these be-

haviour characteristics will affect each of the migration decision strategies differently.

1If running on a single core, one of the phases will run at the faster speed, whereas placing each
phase on the most appropriate core will result in both phases running at the faster speed. Therefore,
only one of the phases will exhibit a speed-up relative to the single core case, leading to a total speed-up
of (1 + 2.4)/2 = 1.7.

137

6.4 Experimental Analysis

Workload method annotated Phase change method annotated

Time (s) Migrations Time (s) Migrations

PPE 17.69 (0.31) 0(0) 17.69 (0.3) 0(0)
SPE 17.21 (0.003) 1 (0) 17.21 (0.003) 1 (0)

Manual 10.42 (0.16) 20 (0) 10.42 (0.16) 20 (0)
AtAnnotation 278.7 (12.4) 200,000 (0) 10.66 (0.15) 20 (0)

AfterSched 52.05 (3.3) 36,651 (5743) 50.62 (2.21) 42,373 (3301)
Targeted 11.23 (0.09) 19 (0) 11.43 (0.16) 37 (0)

Table 6.5: Execution time and migration count for the two phase benchmark
under different annotation placements (standard deviation in brackets).

The most intuitive approach is to annotate those methods which perform a workload

that has a particular behavioural characteristic, with the appropriate annotation. In

this case, the doArith and doObjAccess methods (lines 18 and 19 of Listing 6.1)

are annotated with @ArithmeticCode and @ObjectAccessCode respectively. However,

these methods are relatively short-lived, therefore, if the runtime system selects these

annotated methods for migration, the overhead involved in migrating every time they

are called would eradicate any potential performance improvement.

A developer who is aware of this fact could, instead, choose to annotate the longer

lived methods, where the thread changes phase to a different behaviour. For this two

phase benchmark, this would mean annotating the arithPhase and objAccessPhase

methods (lines 8 and 13 of Listing 6.1). This is a more appropriate point for thread

migration. However, this annotation placement is not as intuitive for the developer;

the methods being annotated may not exhibit any of the behaviour characteristics with

which they are being annotated, they just happen to call other methods which do.

The benchmark was annotated using both of these annotation placements, to in-

vestigate their effect. For these experiments, x in line 3 of Listing 6.1 was set to 20,

and y on lines 9 and 14 was set to 10,000. This simulates a program working on 20

data-sets, each of which contains 10,000 elements.

Table 6.5 shows the execution times of this benchmark with both annotation place-

ments, when running under the different migration decision strategies. The speedup,

relative to the benchmark being run completely on the PPE core, is reported in Fig-

ure 6.4. As expected, running the program solely on the SPE core does not significantly

improve performance. The Manual results show the maximum speedup of 1.7x, when

138

6.4 Experimental Analysis

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

PPE SPE Manual AtAnnotation AfterSched Targeted

S
pe

ed
up

 v
s.

 P
P

E
Annotate workload method

Annotate phase change method

Figure 6.4: Speedup of the two phase benchmark as annotation placement is
varied.

each phase is manually run on the most appropriate core type, without any migration

or behaviour tracking overheads.

The AtAnnotation strategy almost reaches this maximum speedup (the migration

and thread behaviour tracking overhead is just 2.25%), when the phase change methods

are annotated. However, when the more intuitive approach of annotating the workload

method is used, this strategy performs very badly, imposing a significant slowdown on

the benchmark rather than improving performance. The overhead involved in migrating

the short-lived workload methods, every time they are called, leads to this marked

slowdown.

By sampling the thread’s behaviour characteristics on timer ticks, rather than re-

acting immediately to annotations, the AfterSched strategy is much less affected by

annotation placement. However, since this strategy simply migrates at the first oppor-

tunity, it is more likely to migrate the commonly called, short-lived methods than the

less frequently called long-lived ones. The AfterSched strategy, therefore, does not

improve performance in this benchmark, due to the migration overheads it causes.

The Targeted strategy attempts to overcome this deficiency by selecting relatively

139

6.4 Experimental Analysis

long-lived methods for migration. This strategy works well, providing up to a 1.6x

speedup for this benchmark, relative to being run entirely on the PPE core. It is

also less affected by annotation placement than the AtAnnotation strategy - in this

case performing slightly better with the more intuitive workload method annotation

placement. The reason the Targeted strategy does not reach the theoretical maximum

speedup is not purely down to overheads, but also due to the fact that a phase must

be sampled before being migrated. Therefore, the first time a thread executes a phase

which is better suited to a different core type, the first migration opportunity is missed

while the phase is being sampled.

6.4.2.2 Length of Behaviour Phases

The execution length of phases of behaviour in a thread influence whether or not these

behaviour phases should be migrated. If the phase is short, the overheads of migration

might outweigh the benefit of running that phase on a different core type. In this

experiment, the effect of phase length of the two phase benchmark (annotated at the

phase change methods) is investigated for the different migration strategies. The length

of the two phases in this benchmark was varied by adjusting the ratio between x and

y in Listing 6.1. As the length of a phase (y) was reduced, the number of phases (x)

was increased proportionately, such that the same amount of work was being done

(x ∗ y = 200000 in all runs).

Figure 6.5 shows the speedup obtained by each migration strategy as the phase

length is varied. The AtAnnotation strategy performs well when the length of the

behaviour phase is greater than 1ms. However, by blindly migrating phases without

taking their execution time into account, it incurs a significant slowdown when the

phase length is less than 1ms, due to the thread migration overheads.

The Targeted strategy does not incur a significant slowdown when the phase length

is short, because it does not target these short phases for migration. Once the phase

length is long enough to overcome the migration overheads, the Targeted strategy

has performance close to the AtAnnotation strategy. However, this speedup tails off

as the phase length increases. This tail-off is not due to the length of the phase, but

instead, due to the phases being repeated less often (the top x-axis of Figure 6.5 shows

the number of phase repetitions for each run). Since the Targeted approach misses

140

6.4 Experimental Analysis

 0

 0.5

 1

 1.5

 2

 0.1 1 10 100 1000

50000 1 10 100 1000 10000
Sp

ee
du

p
vs

. P
PE

Phase Length (ms)

Number of Phases

AtAnnotation
AfterSched

Targeted

Figure 6.5: Speedup of the two phase benchmark as the phase length is varied.
The Phase Length axis measures the average execution time of either phase
when run on its most appropriate core type.

migration of the first occurrence of a particular behavioural phase, it relies on the phase

being repeated a reasonable number of times to be effective.

The AfterSched strategy continues to perform badly here. As the phase length

decreases, its performance does climb towards the reference performance, of running

completely on the PPE core. However, this is only because the history, hysteresis and

trend tracking element of the cost function — as intended — decrease the number of

migrations taken as the phase length decreases.

6.4.3 XML Parsing Synthetic Benchmark

To investigate the influence of incorporating history, hysteresis and trend tracking into

the thread behaviour cost function, a more complex and realistic benchmark was de-

vised. This benchmark is based on a real world scenario — parsing of encrypted and

compressed XML files. The workload for this benchmark is the complete set of the

36 Shakespeare plays that comprise the First Folio, marked up in XML1 which are

compressed and encrypted, with one file per play. The benchmark reads each of these

1The XML files can be found at: http://www.cafeconleche.org/examples/shakespeare/

141

http://www.cafeconleche.org/examples/shakespeare/

6.4 Experimental Analysis

files and decrypts and uncompresses the XML data. The XML is parsed to calculate

the total number of lines spoken by each character in that play. Once the XML has

been parsed, the mean number of lines spoken per character, and the standard devi-

ation around this mean, is calculated for the play. This information, along with the

count of lines spoken by each individual character, is inserted into the end of the XML

document, which is then re-compressed, encrypted and written to a file on disk.

Whilst the benchmark itself is synthetic, parsing of encrypted and compressed XML

files is a relatively common operation in many Web Service applications. Real world

libraries were employed in the creation of the XML parsing benchmark to increase

confidence that these results are applicable to real world applications. Encryption and

decryption is performed using the triple DES symmetric key encryption algorithm (Cop-

persmith et al., 1996), as implemented by the Java Cryptography Extension (JCE)

library1, which is part of the standard Java Library. The Lempel-Ziv-Welsh (LZW)

algorithm (Welch, 1984) is employed for compression and decompression. Finally, the

benchmark parses the XML using the SAX (Simple API for XML) parser in the Apache

Xerces 2.9.1 library2.

The benchmark has three main behaviour phases: the encryption and decryption

routines, which perform best when run on the SPE cores; the compression and decom-

pression routines, which perform approximately equally well on either core type; and

the XML parsing, which runs faster on the PPE core. However, these phases, and the

most appropriate core type for each, would not necessarily be clear to a non-specialist

programmer. Therefore, this benchmark was annotated in the manner expected from

a relatively competent, but non-specialist programmer: methods likely to significantly

influence execution time were annotated with the behaviour characteristics of that

method, without taking into account the phase to which the method may belong. In

all, 14 methods were annotated with behaviour annotations.

6.4.3.1 Exploration of the Cost Function Parameter Space

There are three independent variables in the migration decision cost function — the α,

β and γ parameters, controlling history, hysteresis and trend tracking, respectively. In

this section, these parameters are varied to investigate the effectiveness of incorporating

1http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html
2http://xerces.apache.org/xerces-j/

142

http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html
http://xerces.apache.org/xerces-j/

6.4 Experimental Analysis

Parameter set to zero Parameter set to one

α
Only the current behaviour cost of
a thread influences the migration

decision.

Only past behaviour influences the
cost function, therefore a thread

will never migrate.

β
The migration threshold is a target

score T = 0 (i.e. no hysteresis).

The migration threshold is
T = C ′currCore (Given the definition
of T , it can never reach this value
and so migration never occurs.).

γ
Trending direction of the target
score is not taken into account.

Target score must be trending
beyond the migration threshold to

trigger a migration

Table 6.6: Migration policy parameters.

each of these features into the cost function, and the degree to which they should

influence the migration decision. The interaction between these parameters is also

explored.

Of the three migration strategies employed by Hera-JVM, the AtAnnotation strat-

egy does not incorporate history, hysteresis or trend tracking into its cost function, and

the AfterSched performs badly under all scenarios. Therefore, the effect of cost func-

tion parameters are explored under only the Targeted migration strategy.

The range of all three parameters is from zero to one. Setting a parameter to zero

turns off the associated part of the cost function. For example, when α = 0, only

the thread’s current behaviour cost is incorporated into the cost function; the thread’s

previous behaviour is not taken into account. When α = 1, the cost function only

takes a thread’s past behaviour into account, thus no new behaviour cost samples are

incorporated into the cost function’s output and the thread’s cost value will never move

from its initial value of zero. Table 6.6 describes the effect of setting each parameter

to its minimum and maximum values.

In the following experiments, the value of each parameter was varied in 0.2 incre-

ments between zero and one, and the XML Parsing benchmark was run under the

Targeted migration strategy for each combination of parameter values. Figures 6.6

to 6.11 show the speedup obtained by this migration strategy, compared with running

the benchmark entirely on the PPE core, for each combination of parameter values.

These results are presented as both a 3D projection and a heat map, showing the effect

143

6.4 Experimental Analysis

of varying α and β on the speedup gained by the migration strategy, with γ varied

between figures. All figures have the same scale, with white representing the best

possible speedup, down through orange, representing a modest speedup, then purple

representing no speedup and finally black representing a slowdown.

It can be observed, for all values of γ, that when α = 1 or β ≥ 0.8, no speedup

is observed. This is because, when these parameters are set so high, the target score

never passes the migration threshold, and thus, the thread never migrates from the

PPE core.

Across all values of γ, there is a relatively distinct L-shaped ridge of good speedup

results moving along the β = 0.4 line, then down the α = 0.8 line. The best speedup

results generally occur in the corner of this L-shaped ridge (0.6 ≤ α ≤ 0.8 and 0.2 ≤
β ≤ 0.4). Behind this ridge (i.e. when α < 0.8 and β < 0.4), the migration strategy

does not perform as well, although it does still provide a modest speedup.

This supports the hypothesis that incorporating a certain amount of history (con-

trolled by α) and hysteresis (β) into the cost function does, indeed, improve the perfor-

mance of the migration strategy. The reason for this becomes clear when considering

an example routine in the XML Parsing benchmark — the calculation of the average

and standard deviation of the number of lines spoken per character. This routine is

an arithmetic operation, and is annotated as such. However, its execution time is too

short for it to be a useful migration target. Whilst the Targeted migration strategy

will prevent this short method from being migrated on its own, it can still influence a

migration decision if the scheduler samples the behaviour characteristics of the thread

whilst it is running. If the cost function does not incorporate the thread’s behaviour

history or hysteresis into its migration decision, sampling this method’s arithmetic

behaviour characteristic will immediately push the thread’s score past the migration

threshold. The Targeted migration strategy will try to find a longer-lived method,

further up the thread’s stack trace, to target for migration to the SPE core. In this

case, the main XML parsing routine in the Xerces library is targeted — a method

which performs much better on the PPE core. The mistaken targeting of this method

for migration is likely to be corrected when it is next run (on the SPE core), but by

then the performance has already suffered, due to this routine having been run on an

inappropriate core type.

144

6.4 Experimental Analysis

(a) 3D Projection (b) Heat Map

Figure 6.6: Speedup as α and β parameters are varied, with γ = 0.

(a) 3D Projection (b) Heat Map

Figure 6.7: Speedup as α and β parameters are varied, with γ = 0.2.

(a) 3D Projection (b) Heat Map

Figure 6.8: Speedup as α and β parameters are varied, with γ = 0.4.

145

6.4 Experimental Analysis

(a) 3D Projection (b) Heat Map

Figure 6.9: Speedup as α and β parameters are varied, with γ = 0.6.

(a) 3D Projection (b) Heat Map

Figure 6.10: Speedup as α and β parameters are varied, with γ = 0.8.

(a) 3D Projection (b) Heat Map

Figure 6.11: Speedup as α and β parameters are varied, with γ = 1.

146

6.4 Experimental Analysis

(a) α = 0 (b) α = 0.2 (c) α = 0.4

(d) α = 0.6 (e) α = 0.8 (f) α = 1

Figure 6.12: Comparing the interaction between β and γ.

(a) β = 0 (b) β = 0.2 (c) β = 0.4

(d) β = 0.6 (e) β = 0.8 (f) β = 1

Figure 6.13: Comparing the interaction between α and γ.

147

6.4 Experimental Analysis

Incorporating the history of a thread’s past behaviour into the cost function helps

to mitigate this scenario. The influence of a single rogue sample is limited, because the

thread’s cost is calculated based upon multiple sample readings. Similarly, hysteresis

can limit the above scenario by increasing the threshold required to trigger migration.

The L-shape in these results suggests that both history and hysteresis can independently

provide similar improvements in performance. The fact that the best speedups occur

at the corner of the L suggests that these parameters complement each other, and both

history and hysteresis are useful features to incorporate into the cost function.

The influence of trend tracking (γ) can be inferred by observing the evolution in

the shape of the graphs, from Figure 6.6 to Figure 6.11, as γ is increased. Whilst trend

tracking slightly improves the best possible speedup result, its main effect is to broaden

out the ridge of good speedup results across a greater range of α and β parameter values.

For example, a distinct trough of slowdowns occurs along the β = 0.6 line in Figure 6.6.

This trough gradually disappears as γ is increased, until in Figure 6.11 (where γ = 1),

it has disappeared entirely. This suggests that trend tracking reduces the migration

strategy’s sensitivity to less than optimal values of the α or β parameters.

Figures 6.12 and 6.13 show the same data, but with the α and β parameters held

constant in each graph. This enables the interaction between α and γ, and β and γ

parameters to be seen more clearly. Figures 6.13(c) and 6.13(d) show that the α and

γ parameters are correlated to some extent. As more historical information is taken

into account by the cost function (as α increases), a corresponding increase in trend

tracking (γ) is required to provide stability against inappropriate migrations caused by

out of date information.

Figure 6.14 summarises these results by showing the best results obtained when

each of these features are enabled or disabled in the cost function. When all three

features are enabled, the Targeted migration strategy performs almost as well as

manually selecting the most appropriate core type for each phase. When only history

is incorporated into the cost function, the best possible speedup drops from almost 1.3x

to 1.2x. The best result when only hysteresis was incorporated into the cost function is

slightly better, with a 1.27x speedup. However, the performance variance of this result

is higher than when all three features are enabled, suggesting that the other features

help improve stability. Finally, incorporating only trend tracking into the cost function

does not significantly improve upon using only the raw behaviour characteristic costs

148

6.4 Experimental Analysis

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

PPE SPE Manual All on
(α 0.8,
 β 0.2,
 γ 1.0)

History
only

(α 0.8)

Hysteresis
only

(β 0.6)

Trend
tracking

only
(γ 0.8)

All off

S
pe

ed
up

 v
s.

 P
P

E

Figure 6.14: Results for the targeted migration strategy when history, hystere-
sis and trend tracking are enabled and disabled in the cost function.

(All off), with both approaches having a speedup of around 1.12x. In all, these results

show that incorporating history, hysteresis and trend tracking into the cost function

improves the performance of the Targeted migration strategy.

The most effective combination of these parameters (α = 0.8, β = 0.2 and γ = 1)

is used for all the remaining experiments in this chapter.

Finally, the Targeted migration strategy is compared with the AtAnnotation

migration strategy in Figure 6.15. The AtAnnotation strategy again performs very

poorly, due to the high number of short method migrations. When the behaviour

annotations were removed from three frequently called methods of the XML Parsing

benchmark (AtAnnotation Improved), this strategy comes close to reaching the

Targeted migration strategy’s performance. However, the Targeted migration strat-

egy has better performance and, with its reduced susceptibility to annotation placement

issues, is the migration strategy of choice.

6.4.4 Real World Benchmarks

In order to validate the use of behaviour characteristic annotations in a realistic setting,

a subset of the real world benchmarks, first presented in Section 5.5.3, were annotated

149

6.4 Experimental Analysis

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

PPE SPE Manual Targeted AtAnnotation AtAnnotation
 Improved

S
pe

ed
up

 v
s.

 P
P

E

Figure 6.15: Speedup for the XML Parsing benchmark under different migra-
tion strategies.

with their behaviour characteristics. Annotating these benchmarks requires gaining an

understanding of their code to be able to recognise the portions of the benchmark’s

code are likely to have a significant influence on execution time and characterise the

behaviour of these execution phases. Therefore, to keep this experiment tractable, a

representative subset of these benchmarks was selected for annotation: the Java Grande

mol dyn and ray trace benchmarks; the SpecJVM 2008 sor, mpegaudio and compress

benchmarks; and the Dacapo antlr benchmarks. These benchmarks were annotated,

then executed, under Hera-JVM, with the behaviour characteristic annotations being

used to influence migration decisions between the PPE and SPE cores.

To compare the effect of annotation placement on performance, each benchmark was

annotated in two different ways. In the first approach, called TagThread, the bench-

mark’s main thread is annotated with the behaviour characteristics that are expected

to apply to the benchmark throughout its execution.

For the second approach, called TagMethods, the source code of each benchmark

was examined to discover the set of methods that are likely to contribute significantly

to the benchmark’s execution time (i.e., computational and data-processing methods,

150

6.4 Experimental Analysis

Benchmark
TagThread TagMethods

Files Modified Annotations Files Modified Annotations

JG: mol dyn 1 1 3 6
JG: ray trace 1 2 4 28

SPEC: sor 1 1 1 2
SPEC: mpegaudio 1 2 4 23
SPEC: compress 1 2 1 11
DACAPO: antlr 1 1 17 37

Table 6.7: Behaviour characteristic annotations added to each benchmark.

as opposed to set-up, co-ordination and initialisation methods). These methods were

then annotated with the characteristics applicable to them, as discovered through code

inspection.

The TagMethods approach is a more accurate representation of the expected

use-case of behaviour characteristic annotations, with methods being individually an-

notated to describe their behaviour as the program is developed. The TagThread

approach approximates a profiling tool which profiles the behaviour of a program’s

threads and then automatically inserts appropriate behaviour characteristic annota-

tions into the program’s bytecode. Table 6.7 shows the number of files modified and

the number of annotations added to each benchmark for each of these approaches.

Figure 6.16 shows the performance of each of these benchmarks under both the

AtAnnotation and Targeted migration strategies, when annotated using either the

TagThread or TagMethod approaches. The AfterSched migration strategy was not

investigated, due to its poor performance in previous experiments. The performance

of each benchmark is shown as the speedup gained relative to the benchmark’s perfor-

mance when executed entirely on the PPE core.

Each of these benchmarks are designed to examine a particular facet of system

performance. Therefore, unlike the XML parse benchmark used above, they generally

exhibit just one main behaviour phase, which performs better on either the SPE or PPE

core. If the runtime system chooses the most appropriate core type on which to execute

this phase, based upon the behaviour annotations, the benchmark’s performance should

approach the higher of either the SPE’s or PPE’s performance. Since Figure 6.16

measures performance relative to execution on the PPE core, the performance of the

system should approach the higher of 1.0 or the SPE’s performance.

151

6.4 Experimental Analysis

 0

 0.5

 1

 1.5

 2

 2.5

JG: mol_dyn

JG: ray_trace

SPEC: sor

SPEC: compress

SPEC: mpegaudio

DACAPO: antlr

S
pe

ed
up

 v
s.

 P
P

E

SPE
TagThread : AtAnnotation

TagThread : Targeted
TagMethod : AtAnnotation

TagMethod : Targeted

Figure 6.16: Performance of real world benchmarks, which have been anno-
tated with their behaviour characteristics, when executed under Hera-JVM.

These results show that under both annotation approaches and migration strategies,

all of the benchmarks (other than ray trace under the TagMethod:AtAnnotation

strategy) come close to the performance that they would achieve if they were manually

placed on their most appropriate core type. This shows that the runtime system is

choosing to migrate the benchmark threads correctly, based upon the information it has

available through the behaviour code annotations. Therefore, the different migration

strategies and annotation approaches can be compared with regards to their overhead

and their intuitiveness for application developers.

Figure 6.17 shows the same results, but plotted as the overhead of each approach

compared with manually placing the benchmark on the most appropriate core type. It

is clear from this figure that the TagMethod:AtAnnotation approach frequently in-

curs a significantly larger overhead than other approaches. In the case of the ray trace

benchmark, this approach incurs in excess of a 50x slowdown relative to manual place-

ment, rendering the program entirely unusable. This overhead is due to the fact that

the AtAnnotation migration strategy immediately migrates any method that has

been annotated with behaviour characteristics suggesting it would perform better on

the other core type. If these methods are short-lived, the overhead of migration will be

152

6.4 Experimental Analysis

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

JG: mol_dyn

JG: ray_trace

SPEC: sor

SPEC: compress

SPEC: mpegaudio

DACAPO: antlr

O
ve

rh
ea

d
vs

. B
es

t C
or

e
50.18x overhead

TagThread : AtAnnotation
TagThread : Targeted

TagMethod : AtAnnotation
TagMethod : Targeted

Figure 6.17: Overhead of tracking behaviour annotations.

greater than the benefit they gain from being executed on the other core type. If these

short-lived methods are called very frequently, as with the ray trace benchmark, this

overhead can lead to more time being spent supporting thread migration than doing

useful work.

The Targeted migration strategy does not encounter this problem, since it only

targets long-lived methods for migration. The impact of each method’s behaviour

characteristics on overall program execution is built up over time and, if appropriate,

a method is selected for migration. In some cases, such as the antlr benchmark, the

shorter method’s behaviour have a negligible impact on their parent methods and,

therefore, no migration occurs. In others, such as ray trace and mpegaudio, the be-

haviour characteristics of these short-lived methods have a large impact, thereby influ-

encing the runtime system to migrate one of their longer lived parent methods.

In the TagThread approach, the program’s behaviour characteristic annotations

are attached to the main method of the benchmark’s thread of execution. They are,

therefore, encountered early in the benchmark’s execution by the runtime system. The

Targeted approach performs almost equally as well under either the TagThread or

TagMethod approaches. The AtAnnotation approach, however, is better suited to

the TagThread approach to annotation placement than it is to the TagMethod ap-

153

6.5 Summary

proach. Since the annotations tag the benchmark thread’s run method, the whole of

the benchmark’s execution is migrated if the behaviour annotations suggest this would

be appropriate. Since the annotations are only encountered once under the TagTh-

read approach, the AtAnnotation strategy only makes a single migration decision

during the benchmark’s execution. It, therefore, has a slightly lower overhead than

the Targeted strategy under this annotation placement approach, since the Targeted

strategy continues to evaluate a thread’s cost at each scheduling operation.

However, the TagMethod approach to annotation placement would seem to be

more intuitive to developers than the TagThread approach, since they are only re-

quired to understand the behaviour characteristics of a single method, rather than

trying to discover the behaviour characteristics of a thread throughout its execution.

Also, if a thread exhibits different behaviour phases, these can be captured by the

TagMethod approach, while they might be lost in the TagThread approach. For

these reasons, the Targeted migration strategy provides the best trade-off in terms of

ease-of-use, flexibility and performance.

6.5 Summary

This chapter investigated the use of behaviour characteristic code annotations to in-

form a runtime system’s selection of an appropriate core type on which to execute a

program’s code for an HMA system. The heterogeneous core types of the Cell pro-

cessor have different performance characteristics, depending upon the behaviour of the

code executed upon them, even under the homogeneous virtual machine interface of

Hera-JVM.

To explore the efficacy of scheduling based upon code behaviour annotations, Hera-

JVM was augmented to track code annotations describing behaviour characteristics

that are applicable to code performance on the Cell processor’s two core types. A

cost function was developed in Section 6.2 which enables the runtime system to decide

whether a thread should be migrated to a different core type based upon its current

behaviour characteristics. Historical data, hysteresis and trend tracking were applied

to this cost function in order to increase the system’s stability and limit migrations

that are likely to be detrimental to overall performance.

154

6.5 Summary

Three different migration strategies (AtAnnotation, AfterSched and Targeted)

were implemented for the Hera-JVM runtime system. These strategies progressively

trade off immediacy in reacting to behaviour changes with making more informed deci-

sions about the point in a thread’s execution at which it is most appropriate to migrate.

Experiments, both on synthetic and real world benchmarks, showed that the AtAnno-

tation strategy performs very well when the behaviour annotations are at appropriate

migration points. However, it is very sensitive to annotation placement and behaviour

phase length. This makes it a less appropriate migration strategy for a program which

has been annotated by a non-specialist developer. The AfterSched strategy was found

to perform poorly in all situations, since it is likely to migrate short-lived methods. The

Targeted strategy is much less sensitive to annotation placement; it also does not in-

cur significant slowdowns when the behaviour phase length is too short to benefit from

migration. This makes it a good do no harm migration decision strategy, suitable for

executing applications annotated by non-specialist developers. However, it misses the

first opportunity to migrate a thread when its behaviour changes, and thus relies on

this behaviour phase being repeated multiple times if it is to be effective.

A strategy that combines the immediacy of the AtAnnotation strategy with the

do no harm characteristics of the Targeted strategy would provide the best of both

worlds.

155

Chapter 7

Monitoring Program Behaviour
at Runtime

The previous chapter shows that a runtime system can use knowledge of a program’s

expected behaviour, provided by code annotations, to inform its thread scheduling

and migration decisions on a heterogeneous multi-core architecture. However, code

annotations are not the only way of providing this behaviour information. Instead,

the runtime system could directly monitor certain aspects of a program’s behaviour

at runtime. By using this monitored information to infer a program’s behaviour, the

runtime system can enhance the behaviour information provided by annotations and

even support efficient exploitation of heterogeneous cores by completely unmodified

applications that have not been augmented with behaviour annotations.

This chapter investigates the extension of Hera-JVM to support automatic monitor-

ing of a thread’s behaviour, based upon the frequency with which it executes different

classes of bytecode. With this information, it can make informed scheduling and migra-

tion decisions, even when the program is not annotated with the behaviour annotations

described in the previous chapter.

Section 7.1 describes the mechanism used to monitor a thread’s behaviour at run-

time. The means by which this monitoring information informs migration decisions

is described in Section 7.2. An experimental analysis of these techniques under both

synthetic and real world benchmarks is presented in Section 7.3.

156

7.1 Monitoring Execution of Different Bytecode Types

7.1 Monitoring Execution of Different Bytecode Types

Hera-JVM was augmented to enable investigation of the use of runtime monitoring of a

program’s behaviour to inform thread placement on the Cell’s heterogeneous core types.

Only two behaviour characteristics are monitored by Hera-JVM — the proportion of

arithmetic and object access operations performed by a thread. By tracking these two

values, the runtime system can infer highly arithmetic phases of a thread, which are

likely to benefit from migration to an SPE core. Similarly, phases which perform a

significant number of object accesses can be identified, to ensure they are run on the

PPE core.

It is important that the runtime monitoring of a thread’s behaviour is lightweight

and efficient, otherwise any gains in performance, realised by improved scheduling de-

cisions, will be offset by the overheads involved in performing this monitoring. Thus,

while an approach which directly counts the number of arithmetic and object access

bytecodes executed by a thread would provide precise measurement of the proportion

of each operation type being performed by a thread, the overheads of doing so would

likely outweigh any benefits.

To reduce this monitoring overhead, Hera-JVM employs a two stage process. The

first stage involves analysing a method’s bytecodes to score the behaviour of blocks of

code within the method. This stage occurs only once per method, when it is being

compiled from bytecode to machine code by the runtime system. The second stage

involves using these scores to update a pair of per-thread counters when the method

is executed. An approximate count of the number of arithmetic and object access

bytecodes executed by a thread can be calculated, based upon the values of these two

counters. Section 7.1.1 describes the system used by Hera-JVM to score methods at

compile time. The mechanism used to monitor a thread’s behaviour, based upon these

scores, is described in Section 7.1.2.

7.1.1 Scoring Methods

Each method is scored immediately before being compiled to machine code by the run-

time system’s JIT compiler. The scores which are generated for a method represent

the number of arithmetic and object access bytecodes that will be executed whenever

157

7.1 Monitoring Execution of Different Bytecode Types

the method is invoked. The purpose of generating these scores is to provide a sum-

mary of the types of operations which will be performed when this method is executed.

Updates to the runtime monitoring counters can then be performed in aggregate, us-

ing this summary score information, rather than having to monitor every operation

performed.

A single arithmetic / object access score could be created per-method, with the

monitoring code updating a thread’s behaviour, based upon this score, whenever the

method is invoked. However, loops, if / else blocks and case statements mean that the

actual number of operations which a method executes is not necessarily the same as

the number of bytecode operations in that method’s code.

A more accurate approach would be to score each of the basic blocks of the method1,

and update the thread’s behaviour, using this score, whenever the basic block is ex-

ecuted (this approach is similar to that employed by Sherwood et al. (2001) to find

application phases). While this approach would provide an accurate representation

of a thread’s behaviour, updating the runtime monitoring counters every time a basic

block executes would lead to significant monitoring overheads.

Instead, the approach taken by Hera-JVM is to approximate the behaviour of a

thread, by scoring methods and loops, but amalgamating the scores of other basic

blocks, such as if / else and case statements, into their parent loop’s or method’s score.

The reasoning behind this approach is that loops and method invocations can have a

significant effect on a thread’s behaviour, whereas other basic blocks are unlikely to

significantly influence the thread’s overall behaviour.

For example, a highly arithmetic loop could execute many more arithmetic oper-

ations than are accounted for by the method’s score, since the loop’s body will be

repeated many times. However, the execution of a particular conditional block of code

(e.g. regardless of whether the if block or the else block of an if statement is executed)

should not, by itself, significantly affect a thread’s behaviour2.

The scoring system, therefore, calculates multiple scores for each method; one for

the method’s main score and one for each of the loops found within the method. When

a method is invoked, the monitoring system updates the thread’s behaviour score using

1A basic block is a code section which contains only a single entry point and a single exit point
(i.e., there are no jumps within the block). It is therefore either executed in its entirety, or not at all.

2If the conditional block invokes a method or executes a loop, this could have a significant effect
on behaviour. However, this effect will be captured by the method or loop scoring.

158

7.1 Monitoring Execution of Different Bytecode Types

Code Structure

Score Structure

Method's Code
Loops

Main Score

Outer Loop Score

Inner Loop Score

Figure 7.1: The structure of a method’s score, related to its code structure.

the method’s main score. The monitoring system also updates a thread’s behaviour

score after each iteration of a loop’s body, using the score associated with the loop.

Each of these scores represent a distinct, non-overlapping block of code within a

method. The method’s main score is calculated based upon code which is not part of

any loop body. Likewise, a loop’s score is based upon the code in its body, minus any

code which forms an inner loop. Invocations of other methods do not contribute to this

method’s score; these method’s will be scored separately and only taken into account

if the method is actually invoked. Figure 7.1 demonstrates which parts of a method’s

code is used to calculate each score.

To monitor a thread’s behaviour, each score consists of both a count of arithmetic

bytecodes and a count of object access bytecodes within the block of code that this

score represents. To calculate the set of scores associated with a particular method’s

code, its bytecode stream is scanned to classify each bytecode. During this classification

process, branch operations are also inspected. Those branches which target an earlier

point in the stream (i.e. backward branches) are indicative of loops; therefore, the

source and target address of these branches are noted as a loop iteration boundary. A

score is created for each of these loop iterations, as well as for the method itself.

Two counters are created for each of the loops found and for the method’s body

itself. The counters represent the number of arithmetic and object access bytecodes in

the associated body of code. The array of bytecode classifications is scanned and, for

each bytecode, the score associated with the innermost loop at that bytecode’s position

159

7.1 Monitoring Execution of Different Bytecode Types

(or the method’s main score if the bytecode is not part of a loop’s body) is updated by

incrementing the appropriate counter.

This scoring process calculates these scores based upon a method’s bytecode; there-

fore, it cannot be used for native methods or system call methods, which have no

associated bytecode. Most of these methods can be safely ignored, since they are

generally not arithmetic or object accessing in nature and are infrequently executed.

Therefore, they have minimal influence on the aspects of a thread’s behaviour that are

being monitored by this system.

However, the Java Math package (java.lang.Math is highly arithmetic, imple-

mented as native code and likely to be invoked frequently by some applications. To

enable the influence of this package to be monitored, the scoring system treats an in-

vocation of a method in the Math package specially. Since a Math method cannot

be scored directly, its influence is subsumed into the score of any invoking method.

Method invocation bytecodes are checked to discover if they invoke a method in the

Math package. If so, the bytecode is scored as if it is multiple bytecodes (one hundred

arithmetic bytecodes by default, chosen as an approximation of the work done by the

Math methods). This approach could also be used for other intrinsic functions (e.g.

Magic methods) or system calls if these were found to significantly influence a thread’s

behaviour.

7.1.2 Monitoring a Thread’s Behaviour

Once these scores have been calculated, they are used by the runtime system to approx-

imate the number of arithmetic and object access bytecodes that have been executed

by a thread at runtime. An execution count for each type of bytecode is maintained

in per-thread runtime counters. Whenever a block of code, represented by a particular

score, is executed (e.g. a method body returns, or a loop iteration is executed), these

counters are updated with the values held in the appropriate score. Since the score

holds the count of each class of bytecode for the block of code that was just executed,

this update approximates the amount, and type, of work performed during this code

block’s execution.

To ensure low-overhead monitoring, these updates are performed inline, alongside

the rest of the method’s code. Hera-JVM’s bytecode to machine code compiler inserts

machine code that updates the runtime monitoring counters at appropriate points in

160

7.2 Migration Decisions

a thread’s execution, namely, at a method’s epilogue and backward branches (i.e., the

end of every loop body iteration). Each update involves simply incrementing both the

arithmetic and object access bytecode counters by a compile time constant value, based

upon the current code block’s score.

As with the behaviour bitmap, used in the previous chapter to track the set of

behaviour annotations which apply to a thread, these bytecode counters reside at a fixed

per-core location (in local memory for the SPE cores and directly on the stack for the

PPE core). During a thread switch operation, the values in these per-core counters are

saved in the outgoing thread’s control block, and replaced with the incoming thread’s

previously saved counters. The code necessary to update these counters is eight machine

instructions on the PPE core and fourteen instructions on the SPE core. This runtime

monitoring system has a relatively low overhead, due to these updates being lightweight,

and only being necessary at a method’s epilogue and loop iterations.

7.2 Migration Decisions

The monitoring system, described above, enables the runtime system to infer a thread’s

behaviour with regard to both the number of arithmetic and object access bytecode op-

erations executed. Hera-JVM uses this knowledge to inform thread migration decisions

between the PPE and SPE cores. The migration triggering infrastructure, described in

the previous chapter, is reused by Hera-JVM for this runtime behavioural monitoring

approach.

7.2.1 The Cost Function

The cost function, described in Section 6.2, is adapted for use with the information

provided by monitoring of a thread’s arithmetic and object access behaviour at runtime.

A cost is associated with arithmetic operations (CA) and object access operations (CO)

for both core types. The runtime monitoring system provides a count of the number

of arithmetic (MA) and object access (MO) bytecodes executed since the last cost

evaluation. The predicted cost of executing a thread on each core, during this time

period, is calculated as the proportion of each type of bytecode operation, multiplied

by the operation type’s respective cost:

C =
MA

MA +MO
· CA +

MO

MA +MO
· CO (7.1)

161

7.2 Migration Decisions

Behaviour PPE Cost SPE Cost

Arithmetic (CA) 4 1
Object Access (CO) 1 2

Table 7.1: Costs associated with each core type.

The costs for arithmetic and object access operations on each core type are shown

in Table 7.1. These costs are the same as those used for the @ArithmeticCode and

@ObjectAccessCode behaviour annotations in Chapter 6. As with the annotation-

based cost function, the reasoning behind these costs is that arithmetic operations are

up to four times faster on the SPE core, while object access operations (when cached)

are two times faster on the PPE core.

Dividing the monitored count of executed arithmetic and object access bytecodes by

the total monitored count of executed bytecodes leads to these values being normalised

between zero and one. This is useful when runtime monitoring is combined with ex-

plicitly annotated behaviour characteristics, where the coefficients used to compute the

cost function have values of either zero or one (see Section 7.2.2).

The annotation-based cost function measures the influence of a particular behaviour

characteristic in a binary manner. That is, a thread is either affected by a particular

behaviour, if it has invoked a method tagged with the associated behaviour annotation,

or it is not. The cost function for this runtime monitoring approach, on the other

hand, represents the arithmetic and object access behaviour characteristics as a fraction

between zero and one, based upon the proportion of each type of work performed in a

given time period. Thus, rather than simply categorising a thread as either having, or

not having, a particular behaviour characteristic, this approach can provide some sense

of the degree to which the thread is affected by the characteristic.

Once a thread’s raw cost has been calculated for each core type, it is smoothed

using the exponential moving average function, previously described in Equation 6.2.

These costs are converted into a target score, which the runtime system uses to make

a migration decision. Hysteresis and trend tracking are used in this migration decision

to limit unnecessary migrations, as is the case with the annotation-based cost function

(Equations 6.10 and 6.11 are reused by this monitoring-based cost function). The

history, hysteresis and trend tracking processes of this cost function are controlled

using the α, β and γ parameters, as described in the previous chapter.

162

7.2 Migration Decisions

7.2.2 Combining Annotations with Runtime Monitoring

Whilst a runtime system can use runtime monitoring to learn certain behavioural char-

acteristics of a program, there may be other characteristics which are overly expensive

or impractical to monitor at runtime or for which runtime monitoring has simply not

yet been implemented. In these cases, it may be useful to combine the behavioural in-

formation provided by code annotations with the characteristics monitored at runtime,

in order to inform thread migration and placement decisions. This runtime monitor-

ing approach makes migration decisions based upon a very similar cost function to

that used by the annotation-based approach. Therefore, the cost function can be eas-

ily augmented to incorporate behaviour characteristic information provided by code

annotations into its migration decisions.

The behaviour characteristics BA, BO and BL, used by the annotation-based cost

function, are either zero or one, depending upon whether the characteristic is set or

un-set for the thread in question. Similarly, the monitored proportion of arithmetic

and object access operations are normalised to a fraction between zero and one (i.e.,

the values of MA
MA+MO

and MO
MA+MO

will always be between zero and one), before being

used in the runtime monitoring cost function. Thus, the value of MA
MA+MO

can be seen

as equivalent to BA, and MO
MA+MO

as equivalent to BO, except that they provide a

continuous range between zero and one, rather than a binary choice. This enables the

@LargeWorkingSet behaviour annotation to be combined into the runtime monitoring

approach’s cost function, in the same form as in the annotation-based cost function.

This leads to the following raw cost function:

C =
MA

MA +MO
· CA +

MO

MA +MO
· CO +BL · CL (7.2)

where, BL is set to zero or one, depending upon whether the thread has inherited

the large working set characteristic through the program’s code annotations. The cost

value used for CL is the same as used in the annotation-based approach (2 for the PPE

core and 8 for the SPE core).

7.2.3 Triggering Thread Migration

The same thread migration triggering infrastructure, that was developed for Hera-

JVM as part of the annotation-based migration approach (described in Section 6.3),

163

7.3 Experimental Analysis

can also be used for this runtime monitoring-based approach. Three different migra-

tion strategies were developed for the annotation-based approach — AtAnnotation,

AfterSched and Targetted. However, since this runtime monitoring approach does

not employ behaviour annotations for migration decisions, there is no equivalent to the

AtAnnotation migration strategy for runtime monitoring. The AfterSched migra-

tion strategy was also not employed in this chapter, due to its poor performance in

the previous chapter. Thus, only the Targetted approach is used by Hera-JVM for

runtime monitoring-based migration.

The cost of running a thread is calculated each time it completes execution of its

assigned scheduling quantum. If the cost function decides that the thread would benefit

from migration, it selects a long-lived method from the thread’s current stack trace and

targets that method to be a migration point when it is next invoked (the process is

the same as described in Section 6.3). This strategy is particularly suitable, since the

migration decision is directly based upon the work which was performed during the

thread’s previous scheduling quantum. Thus, targeting one of the methods on the

thread’s call stack that led to this behaviour is an appropriate course of action.

7.3 Experimental Analysis

In this section, the effectiveness of exploiting runtime monitoring information to trigger

thread migrations is investigated. Suitable values are established for the cost function’s

α, β and γ parameters, which control history, hysteresis and trend tracking, respectively.

Unmodified and unannotated real world benchmarks are then executed using this sys-

tem to validate this approach with realistic applications. The experiments with these

benchmarks examine whether monitoring an application’s behaviour at runtime can

enable the runtime system to select appropriate migration points. These experiments

also examine the overhead incurred by monitoring a thread’s behaviour at runtime.

All the experiments up until Section 7.3.3 employ the runtime monitoring information

exclusively, using the cost function defined in Equation 7.1. In Section 7.3.3, the infor-

mation provided by behaviour code annotations is combined into this cost function, as

described in Section 7.2.2.

The same experimental set-up is used as in the previous two chapters, with experi-

ments being performed on a Sony Playstation 3, with 256MB of RAM, running Fedora

Linux 9. Error bars represent the standard deviation of ten runs of each experiment.

164

7.3 Experimental Analysis

7.3.1 XML Parsing Synthetic Benchmark

The first set of experiments uses the XML parsing benchmark, described in Sec-

tion 6.4.3. This benchmark has three distinct behaviour phases: the encryption and

decryption routines, which perform best when run on the SPE cores; the compression

and decompression routines, which perform approximately equally well on either core

type; and the XML parsing, which runs faster on the PPE core. These phases all exhibit

a different proportion of arithmetic and object access operations, which should enable

the runtime monitoring system to detect them and migrate the benchmark execution

appropriately.

7.3.1.1 Exploration of the Cost Function Parameter Space

As with the annotation-based cost function, the three independent variables (α, β

and γ) control history, hysteresis, and trend tracking in the runtime monitoring-based

migration decision cost function. While these parameters control the same aspects of

the cost function as with the annotation-based approach, the most effective values for

each parameter may differ from those found in Section 6.4.3.1, due to the different

source of information being provided to the cost function. Therefore, this section re-

explores this parameter space to find the most appropriate values for this runtime

monitoring approach.

As in Section 6.4.3.1, the value of each parameter was varied in 0.2 increments

between 0 and 1, and the XML Parsing benchmark was run under the Targeted

migration strategy for each combination of these parameter values. The results of

each parameter setting are shown in Figures 7.2 to 7.9. The same scale is used as in

Figures 6.6 to 6.11, with white representing the best possible speedup achieved by the

runtime monitoring approach, down through orange, representing a modest speedup,

then purple, representing no speedup and finally black, representing a slowdown.

Comparing these results to those of the annotation approach in Section 6.4.3.1, it

is clear that the performance of the runtime monitoring cost function is more sensitive

to the value of these parameters.

This is particularly noticeable as the value of γ, which controls trend tracking, is

increased between Figures 7.2 and 7.7. When no trend tracking is employed (γ = 0),

the benchmark performs almost uniformly poorly. As the influence of trend tracking is

165

7.3 Experimental Analysis

(a) 3D Projection (b) Heat Map

Figure 7.2: Speedup as α and β parameters are varied, with γ = 0

(a) 3D Projection (b) Heat Map

Figure 7.3: Speedup as α and β parameters are varied, with γ = 0.2

(a) 3D Projection (b) Heat Map

Figure 7.4: Speedup as α and β parameters are varied, with γ = 0.4

166

7.3 Experimental Analysis

(a) 3D Projection (b) Heat Map

Figure 7.5: Speedup as α and β parameters are varied, with γ = 0.6

(a) 3D Projection (b) Heat Map

Figure 7.6: Speedup as α and β parameters are varied, with γ = 0.8

(a) 3D Projection (b) Heat Map

Figure 7.7: Speedup as α and β parameters are varied, with γ = 1

167

7.3 Experimental Analysis

increased, the range of the α and β parameter values that provide good performance

increases. The best speedup results are seen when γ = 1.

The increased positive influence of trend tracking on this cost function, compared

to the annotation-based approach, highlights the noisier nature of the data provided

by runtime monitoring. The monitored arithmetic and object access execution counts

fluctuate significantly between sampling periods, even within a single behaviour phase

of an application. Trend tracking limits migrations to only those cost updates which

increase the system’s confidence that a thread will perform better on the other core

type. This increases the system’s robustness to inaccurate monitored behaviour, caused

by an erroneous or uncharacteristic sampling period.

Figures 7.8 and 7.9 show the same data, but with the α and β parameters held

constant in each graph. Figure 7.9 shows two interesting interactions between these

parameters. Firstly, whenever β ≥ 0.6, the system shows no speedup or slowdown.

Since β controls the hysteresis threshold required to trigger migration, setting this

parameter too high means that the monitored behaviour will never trigger a migra-

tion. Secondly, as with the annotation-based approach, the α and γ parameters are

correlated, suggesting that trend tracking is required to provide stability against inap-

propriate migrations caused by out of date information.

The most effective combination of these parameters is α = 0.8, β = 0.2 and

γ = 1. Interestingly, this is also the most appropriate combination of parameters

for the annotation-based approach. The remaining experiments all use these values,

unless otherwise stated.

7.3.1.2 Comparing Runtime Monitoring to Annotations

Figure 7.10 compares the performance of the XML parsing benchmark, under the run-

time monitoring migration strategy, to that of the annotation tracking strategy.

The “Monitoring (Overhead)” result shows the overhead incurred by the runtime

monitoring system, under this benchmark. To uncover this overhead, Hera-JVM was

run with the α, β and γ parameters set deliberately high (all set to one), such that

the thread will never migrate and instead always runs on the PPE core. Thus, the

difference in performance between this run and the non-monitored PPE core run reflects

the overhead in monitoring a thread’s behaviour, without involving thread migration.

This overhead is about 2% for this XML parsing benchmark.

168

7.3 Experimental Analysis

(a) α = 0 (b) α = 0.2 (c) α = 0.4

(d) α = 0.6 (e) α = 0.8 (f) α = 1

Figure 7.8: Comparing the interaction between the β and γ

(a) β = 0 (b) β = 0.2 (c) β = 0.4

(d) β = 0.6 (e) β = 0.8 (f) β = 1

Figure 7.9: Comparing the interaction between the α and γ

169

7.3 Experimental Analysis

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

PPE SPE Monitoring
(Overhead)

Monitoring
(Best)

Annotations
(Best)

S
pe

ed
up

 v
s.

 P
P

E

Figure 7.10: Comparing runtime monitoring and behaviour annotations for
the XML Parsing benchmark.

The “Monitoring (Best)” result presents the speedup provided by the runtime mon-

itoring system when its parameters are set correctly (α = 0.8, β = 0.2 and γ = 1).

This speedup is very close to that provided by the annotation-based approach, in fact

it slightly exceeds its performance. The increase in performance compared to “Anno-

tation (Best)” is relatively insignificant; however, considering that this approach is also

overcoming the added overhead of its runtime monitoring, this increase in performance

is surprising.

7.3.2 Real World Benchmarks

To validate this use of runtime behaviour monitoring, the set of real world bench-

marks, introduced in Section 5.5.3, are run under this modified version of Hera-JVM.

The benchmarks are unmodified and have not been annotated with their behaviour

characteristics; only the runtime monitoring data is used by Hera-JVM to influence its

migration decisions.

Figure 7.11 presents the performance of these benchmarks when migration is con-

trolled by runtime monitoring, compared to manually selecting the SPE core for their

execution. These results are shown as a speedup, relative to execution on only the PPE

core.

170

7.3 Experimental Analysis

 0

 0.5

 1

 1.5

 2

 2.5

m
andelbrot

JG: m
ol_dyn

JG: m
onte_carlo

JG: ray_trace

SPEC: fft

SPEC: lu

SPEC: m
onte_carlo

SPEC: sor

SPEC: sparse

SPEC: com
press

SPEC: m
pegaudio

DACAPO: antlr

DACAPO: hsqldb

S
pe

ed
up

 v
s.

 P
P

E

SPE
Monitoring

Figure 7.11: Performance of real world benchmarks running under Hera-JVM,
when using behaviour runtime monitoring.

As discussed in Section 6.4.4, these benchmarks exhibit just one main behaviour

phase, which performs better on either the SPE or PPE core. Therefore, if the runtime

system chooses the most appropriate core type on which to execute this phase, the

benchmark’s performance will approach whichever is the higher of either the SPE’s or

the PPE’s performance.

The results show that almost all of these benchmarks approach the performance

possible when they are manually run on their most appropriate core type. Therefore,

the runtime system has chosen the most appropriate core type for each benchmark’s

main phase of execution, based upon the monitored arithmetic and object access oper-

ation count.

The one exception is the compress benchmark, which the runtime system has mi-

grated to the SPE core, even though it has poorer performance on this core type than

the PPE core. This highlights one of the deficiencies of an approach which exclusively

monitors program behaviour at runtime. The compress benchmark does have a high

proportion of arithmetic operations. Therefore, based upon the information at its dis-

posal, the runtime system has made the correct choice. However, this benchmark also

operates over a large amount of data, leading to its poor performance on the SPE core.

171

7.3 Experimental Analysis

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

m
andelbrot

JG: m
ol_dyn

JG: m
onte_carlo

JG: ray_trace

SPEC: fft

SPEC: lu

SPEC: m
onte_carlo

SPEC: sor

SPEC: sparse

SPEC: com
press

SPEC: m
pegaudio

DACAPO: antlr

DACAPO: hsqldb

O
ve

rh
ea

d
vs

. B
es

t C
or

e

Figure 7.12: Overhead of runtime monitoring for real world benchmarks.

Since this behaviour characteristic is not tracked by the monitoring system, it is not

taken into account for migration decisions. The annotation-based approach, however,

can exploit the @LargeWorkingSet annotation to provide information about this be-

haviour characteristic. Section 7.3.3 investigates the performance when this annotation

characteristic is taken into account alongside the runtime monitoring.

Figure 7.12 shows these results plotted as the relative overhead incurred by the run-

time monitoring system, against manually selecting the best core on which to run each

benchmark. The runtime monitoring system incurs between a 3% and 10% overhead

on the majority of these benchmarks.

For those with a higher overhead, this cost is not purely down to the runtime

monitoring itself. As explained above, the compress benchmark is executed on the

sub-optimal core type, leading to its high apparent overhead. In the case of the antlr

benchmark, a subset of this benchmark’s methods are arithmetic in nature, and are

therefore migrated to the SPE core. While these methods have similar performance on

either core type, the overhead of migrating them leads to a decrease in this benchmark’s

performance. These methods are not always selected for migration (which explains

the high variance in this benchmark’s performance), suggesting their proportion of

arithmetic operations is likely to be only slightly above the migration threshold. Finally,

172

7.3 Experimental Analysis

some of the additional overhead of the mandelbrot benchmark is due to a relatively

frequently called method being selected for migration, thus increasing the number of

migrations performed.

7.3.3 Combining Annotations and Runtime Monitoring

As exemplified by the compress benchmark, runtime monitoring cannot always pro-

vide sufficient information about a program’s behaviour to enable effective migration

decisions by the runtime system. The runtime system requires knowledge of the com-

press benchmark’s large working set behaviour, in order to choose a more appropriate

core type for its execution. In this case, the runtime system could be augmented

to provide runtime monitoring of this large working set behaviour characteristic, by

tracking cache miss information at runtime. However, it may not always be feasi-

ble or prudent to directly monitor, at runtime, a particular behaviour characteristic

that is required to inform thread core-type placement decisions. Therefore, this sec-

tion investigates the incorporation of information about this characteristic, provided

by the @LargeWorkingSet code annotation, with the arithmetic and object access be-

haviour characteristics, provided by runtime monitoring, in the manner described in

Section 7.2.2.

The performance of each of the real world benchmarks annotated with behaviour

characteristic annotations in Section 6.4.4 is measured using this combination of run-

time monitoring and annotation-based behaviour information. The source code anno-

tated using the TagMethod approach (rather than the TagThread approach) was

used in these experiments because it most closely resembles the expected use case of

the behaviour annotations and means that the set of behaviour annotations that apply

to a thread change throughout its execution, rather than being fixed once the thread

has been created.

Figure 7.13 compares the performance of these benchmarks when Hera-JVM uses

either annotation, runtime monitoring or a combination of both to inform its thread

migration decisions. Figure 7.14 shows the same results, but presented as the overhead

incurred by each approach, compared to manually selecting the benchmark’s best core

type.

The only annotation that is being tracked by the monitoring with annotations ap-

proach is the @LargeWorkingSet annotation. The majority of the benchmarks only

173

7.3 Experimental Analysis

 0

 0.5

 1

 1.5

 2

 2.5

JG: mol_dyn

JG: ray_trace

SPEC: sor

SPEC: compress

SPEC: mpegaudio

DACAPO: antlr

S
pe

ed
up

 v
s.

 P
P

E

SPE
Annotations

Monitoring
Monitoring with Annotations

Figure 7.13: Performance of the Hera-JVM when runtime monitoring and
annotation behaviour information are combined.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

JG: mol_dyn

JG: ray_trace

SPEC: sor

SPEC: compress

SPEC: mpegaudio

DACAPO: antlr

O
ve

rh
ea

d
vs

. B
es

t C
or

e

Annotations
Monitoring

Monitoring with Annotations

Figure 7.14: Overhead of runtime monitoring with annotations approach.

174

7.4 Summary

employ this behaviour annotation for short periods of their execution. Thus, its in-

fluence on migration decisions is negligible and the runtime system makes the same

migration decisions as in the purely runtime monitoring approach.

The one benchmark which employs the @LargeWorkingSet annotation for a sig-

nificant fraction of its execution is the compress benchmark, which performed badly

under the purely runtime monitoring approach. When the runtime system incorpo-

rates the @LargeWorkingSet characteristic into migration decisions, alongside runtime

monitoring of arithmetic and object access execution behaviour, this benchmark sees

a considerable increase in its performance. By taking this annotation into account,

the runtime system correctly decides that the compress benchmark is better suited to

execution on the PPE core than the SPE core.

The overheads incurred by tracking behaviour annotations throughout a thread’s

execution are small, compared with those incurred by the monitoring of arithmetic and

object access code behaviour at runtime. Therefore, incorporating behaviour annota-

tions into migration decisions, alongside runtime monitoring of behaviour characteris-

tics, imposes a negligible additional overhead over the monitoring-only approach.

7.4 Summary

This chapter investigated whether information gained from monitoring a thread’s be-

haviour at runtime can inform a runtime system selection of the most appropriate core

type for different phases of a program’s execution. Doing so enables the runtime system

to make appropriate thread migration decisions between the different core types of an

HMA without requiring any input from the application developer. The architecture’s

heterogeneity can be hidden from the developer entirely; it is not even necessary for

the developer to annotate an application with its behaviour characteristics.

To verify whether runtime monitoring can provide the information required by a

runtime system to inform its thread migration decisions, Hera-JVM was augmented to

support runtime monitoring of the proportion of arithmetic and object access operations

executed by each thread. The experiments presented in Section 7.3 demonstrate, on

real world benchmarking applications, that a runtime system can use the information

provided by this form of runtime monitoring to select a suitable core type for a thread’s

execution in an HMA system.

175

7.4 Summary

Monitoring a thread’s behaviour at runtime does impose some overhead on this sys-

tem. However, the monitoring techniques described in Section 7.1.2 limit this overhead

to between 3% and 10% for real world benchmarks. This overhead could be reduced

even further by exploiting the fact that, in most JVM systems (including JikesRVM),

hot methods are recompiled using an optimising compiler. Since a method will only

be recompiled if it has been executed many times, the runtime system should already

have built up knowledge of this method’s behaviour. There is, therefore, no need to

continue monitoring its behaviour; the method’s influence on program behaviour can

be summarised and updates performed in aggregate. Thus, when the method is re-

compiled to its optimised form, the runtime monitoring code in its prologue, epilogue

and backward branches can be removed such that no monitoring overhead is incurred

during the method’s execution. These hot methods are responsible for the majority

of the program’s execution time — this is why the runtime system has selected them

for recompilation — so removing the runtime monitoring overhead from these meth-

ods should have a significant beneficial influence on performance. This technique is

regularly employed for other forms of runtime monitoring in runtime systems — e.g.,

in edge count profiling used to guide basic block reordering, to reduce mis-predicted

branches and instruction cache misses (Burger & Dybvig, 1998).

It may not always be possible to fully capture the behaviour characteristics required

to characterise a program’s behaviour through runtime monitoring alone. Section 7.3.3

shows that additional information, provided by explicit annotations, can be combined

with the information obtained through runtime monitoring, to improve thread place-

ment and migration decisions. As well as using annotations for characteristics that are

not tracked by runtime monitoring, annotations could be used to augment the infor-

mation provided through runtime monitoring and vice versa. Annotations could be

used to provide ahead-of-time hints of the expected behaviour of a program. Runtime

monitoring could then refine, or, in the case of inaccurate annotations, correct this

information, thus providing the best of both approaches.

176

Chapter 8

Inter-Thread Communication on
NUMA Architectures

Chapters 5 to 7 have focused on abstracting the heterogeneity of the Cell proces-

sor, which is an extreme example of a heterogeneous multi-core architecture (HMA).

However, other more conventional processor architectures are being introduced which

also exhibit heterogeneity. An aspect of heterogeneity, now commonly found in multi-

processor systems, is a non-uniform arrangement of system memory. These non-uniform

memory access (NUMA) architectures have homogeneous processing core capabilities;

however, their memory is laid out such that the speed of data access depends upon the

location of the core accessing the data and the data’s location in memory.

While not as demanding as the Cell processor, with regards to application develop-

ment, a NUMA system still requires the developer to have knowledge of the system’s

memory layout in order to extract its maximum performance. This chapter investigates

the use of thread team annotations, outlined in Section 4.2.3, as a means of expressing

thread communication information to a runtime system. The runtime system can use

this information to automatically optimise thread and data placement, such that the

overheads incurred by the system’s non-uniform memory layout are minimised.

Investigating the use of thread communication characteristics in the context of a

NUMA system, rather than on the Cell processor, enables the applicability of proces-

sor heterogeneity abstraction through behaviour characteristics to be examined on a

different class of heterogeneous architecture. Given that not all HMA systems are as

heterogeneous as the Cell processor, investigating the effectiveness of behaviour char-

177

8.1 Non-Uniform Memory Access Architectures

acteristics on a less heterogeneous system increases confidence that behaviour charac-

teristic knowledge can be usefully applied in a broad range of different system types.

Section 8.1 describes the typical characteristics of non-uniform memory access ar-

chitectures and outlines the effect such a structure can have on inter-thread commu-

nication. Section 8.2 presents thread team behaviour characteristics as a means of

abstracting NUMA node placement decisions, by enabling programmers to express a

program’s inter-thread communication behaviour to the runtime system. Section 8.3

describes how these thread team characteristics can be used by a runtime system to

inform its thread placement decisions, in order to reduce inter-thread communication

overheads. An experimental analysis of scheduling using thread teams on a NUMA

machine is presented in Section 8.4.

8.1 Non-Uniform Memory Access Architectures

As systems scale to an increasing number of processing cores, a single shared memory

bus can quickly become a key scalability bottleneck (Archibald & Baer, 1986; Rettberg

& Thomas, 1986). To overcome this bottleneck, a number of commodity multi-processor

systems are now employing non-uniform memory access architectures (Cox & Fowler,

1989; Laudon et al., 1997). These NUMA architectures contain multiple nodes, each

having their own memory bus and associated memory. Cores on a given NUMA node

can directly access data located on their node’s memory (local memory); however, to

access data on a different node (remote memory), they must communicate with that

node over an inter-node interconnect. This leads to non-uniform memory access times,

depending upon whether local or remote memory is being accessed.

These architectures commonly have a shared global address space and employ a

cache coherency system to ensure that the processing cores share a consistant view of

memory1. As such, a shared memory programming model can be used for application

development on these architectures. However, to gain the maximum performance from

such a system, a program must be carefully designed, such that it minimises remote

memory accesses.

A typical example of a ccNUMA architecture, used by commodity servers, is the

AMD Opteron architecture (Keltcher et al., 2003). Figure 8.1 outlines the system ar-

1This type of architecture is known as cache coherent NUMA or ccNUMA.

178

8.1 Non-Uniform Memory Access Architectures

Node 0 Node 1

Node 2 Node 3

I/O

I/O

Core 1

Shared L3 Cache

Core 0

Core 3Core 2

DRAM

HyperTransport Links

Figure 8.1: The NUMA node layout of a 4x4 core AMD Opteron system.

chitecture of a Dell PowerEdge 6950 server. It contains four quad-core AMD opteron

processors. Each processor socket has a direct connection to its own memory node, but

to access data located on another processor’s memory node, the data must be trans-

ferred across the inter-processor HyperTransport links (hidden from software behind

a hardware cache coherency protocol). Most nodes are a single HyperTransport hop

away from each other; however, communication between nodes 0 and 3 requires two

hops.

Communication between threads of a program often occurs through shared data

objects. Data access latency depends upon the location of a thread and the data it is

accessing on a NUMA architecture. Therefore, the overhead of inter-thread communi-

cation will depend upon the layout of threads and their shared data on the system’s

NUMA nodes.

A micro-benchmark was created to investigate the effect such a NUMA architecture

has on inter-thread communication overheads. This benchmark spawns two threads,

which ping-pong messages between each other, by alternately incrementing a shared

counter, which is protected by token passing. The algorithm executed by each thread

is outlined in Listing 8.1, as pseudo-code.

The micro-benchmark was written in C and compiled using gcc version 4.1.2. It was

run on a Dell PowerEdge 6950 server containing four quad-core AMD Opteron 8350

processors. The libnuma library1 was used to control the NUMA node on which each of

1http://oss.sgi.com/projects/libnuma/

179

http://oss.sgi.com/projects/libnuma/

8.1 Non-Uniform Memory Access Architectures

�
1 threadRunFunc (volat i le int ∗ ctr , volat i le int ∗ token) {
2 for (i =0; i <5000000; i++) {
3 while (token != myID) { /∗ Spin ∗/ }
4 (∗ c t r)++;
5 (∗ token) = otherID ;
6 }
7 }
� �

Listing 8.1: NUMA inter-thread communication micro-benchmark pseudo-
code.

the two threads execute, as well as the node on which the shared data is allocated. The

micro-benchmark was run for each combination of thread 1, thread 2 and shared data

node placements1, with each combination being run 10 times to provide an average and

standard deviation.

Figure 8.2 shows the number of cycles required to perform a two way message

(averaged over 5 million messages), as the location of the communicating threads and

their shared data is moved between different NUMA nodes. The results are categorised

into the set of placements which performed similarly — All on Same Node, Two on

Same Node and All on Different Nodes. Placing the shared data on nodes 0 or 3 led

to a higher overhead than if it was placed on nodes 1 or 2; therefore, these results are

separated out accordingly in Figure 8.2. This overhead is likely due to the fact that

nodes 0 and 3 are connected to I/O devices, unlike nodes 1 and 2, leading to higher

contention on these nodes.

Placing both threads and the shared data on the same NUMA node (All on Same

Node) results in the best performance2. The four cores on each NUMA node share a

2MB L3 cache. This means that if both the threads and their shared data reside on the

same NUMA node, the threads can communicate through this shared cache, leading to

reduced communication overheads.

The communication overhead increases if either one of the threads or the shared

data resides on a different NUMA node (Two on Same Node). Placing the threads on

different nodes leads to each message requiring communication over a HyperTransport

1With four nodes on which to place the two threads and the shared data, this leads to 64 possible
combinations.

2Each NUMA node contains four processing cores; therefore each thread executes on its own core,
even if the threads are on the same NUMA node.

180

8.1 Non-Uniform Memory Access Architectures

 0

 500

 1000

 1500

 2000

 2500

 3000

All on Sam
e Node

Two on Sam
e Node

All on Different Nodes

C
yc

le
s

Data on Node 1 or 2
Data on Node 0 or 3

Figure 8.2: The effect of NUMA on inter-thread communication.

link for cache fetch and invalidation operations. Placing the shared data on a different

NUMA node from the threads leads to a HyperTransport message being required for

each write to this shared data.

Placing each of the threads and the shared data on different NUMA nodes results

in the worst performance, since both cache operations and memory updates require

HyperTransport communication. Of note, communication between node 0 and node

3 requires two hops on the system’s HyperTransport network, leading to a distinctly

higher overhead when the data must be transferred between these nodes (the final bar

in Figure 8.2).

These results show that the selection of the NUMA node on which to allocate threads

and data can have a significant impact on inter-thread communication overheads. This

micro-benchmark shows up to a 60% increase in inter-thread communication overhead,

depending upon thread and data placement. This result motivated the development

of a runtime system which can use thread communication behaviour characteristics to

inform its thread and data placement decisions.

181

8.2 Abstracting NUMA Node Placement Decisions

8.2 Abstracting NUMA Node Placement Decisions

The approach taken in this work is to abstract NUMA node placement decisions from

the application developer, by providing a mechanism for defining thread teams using

code annotations. The runtime system will preferentially choose to execute a thread

on a core that is close to, or on the same NUMA node as other threads of the same

team, thus reducing their inter-thread communication overheads.

A thread team is a set of threads which are expected to communicate with each

other or share access to data during their execution. A thread can be a member of

more than one thread team. This provides a mechanism for describing asymmetric

communication patterns. For example, if thread 1 is a member of team A, thread 2 is a

member of team B, and thread 3 is a member of both team A and team B, then threads

1 and 2 both communicate with thread 3, but thread 1 and 2 do not communicate with

each other.

In this work, a thread is assigned to a team using code annotations. Java threads

are defined by a class that either extends the Thread class or implements the Runnable

interface. To declare a thread as being a member of a team, the declaration of the

class used to create this thread is annotated using the @ThreadTeam(name="<name of

team>") annotation. The string literal, assigned to the name parameter, defines the

team to which this thread is being tagged as a member. Any other threads annotated

with a team which has the same name are members of the same thread team. If a

thread is a member of multiple teams, then its class declaration will be annotated with

a multiple of these annotations, one for each team of which it is a member.

The use of compile time string literals to define the name of the team of which

a given thread is a member is limiting, since different threads created from the same

thread class must always be members of the same set of teams. Unfortunately, this is an

inherent limitation of annotations in Java. This limitation can be overcome by creating

differently annotated sub-classes of a given thread class, although this is a relatively

clunky solution. An approach with more flexibility would be to augment the thread

object’s constructor method with an argument, holding a dynamically generated list

of thread teams of which the newly created thread should be a member. A method

could also be added to enable a thread to change the set of teams of which it is a

member during its execution. However, for the purposes of this work, the annotations

are sufficient to demonstrate thread team-based scheduling on NUMA systems.

182

8.3 Scheduling based upon Thread Teams

8.3 Scheduling based upon Thread Teams

This section describes how a runtime system can be augmented so that it makes in-

formed thread placement and scheduling decisions on a multi-core NUMA architecture,

based upon thread team behaviour characteristics. Hera-JVM was modified to enable

investigation of this approach. Since Hera-JVM is based upon JikesRVM, it supports

the x86 processor architecture, as well as the PowerPC architecture and Cell SPE sup-

port, described in Chapter 5. It can therefore execute Java applications on an x86

AMD Opteron NUMA server. This section details the modifications that were made to

Hera-JVM to enable it to use thread team information to inform its thread scheduling

decisions.

The goal of this scheduling system is to place threads which communicate with

each other on the same or neighbouring NUMA nodes, to reduce their communication

overheads. A secondary goal is to explicitly separate non-communicating threads, to

reduce cache pollution on the L3 cache shared by all the cores of a NUMA node on

the Opteron system used in this work. Finally, data should be allocated on the NUMA

node upon which the threads most likely to access this data are executing.

To achieve these goals, Hera-JVM assigns each team to a preferred node. When a

thread is created, the preferred nodes of each of the teams to which it belongs are used

to calculate the preferred ordering of NUMA nodes on which to execute this thread.

When making scheduling decisions, Hera-JVM uses a thread’s preferred NUMA node

order to preferentially execute this thread on a core that is simultaneously close to

other members of its team and is not oversubscribed.

The changes made to Hera-JVM, to provide it with knowledge of the NUMA envi-

ronment on which it is executing and enable it to control the NUMA node on which

data is allocated, are described in Section 8.3.1. The algorithm used to generate a

preferred node order for newly created threads is detailed in Section 8.3.2. Finally,

Section 8.3.3 outlines the changes made to Hera-JVM’s scheduling algorithm to in-

corporate a thread’s preferred node order into the decision as to the core on which it

should be scheduled.

183

8.3 Scheduling based upon Thread Teams

8.3.1 Making Hera-JVM NUMA Aware

To exploit a non-uniform memory access architecture, a runtime system must have

mechanisms for controlling the NUMA node on which threads are executed and memory

is allocated. In this section, the provisioning of these mechanisms for Hera-JVM is

described.

Before describing the changes made to Hera-JVM to enable NUMA aware schedul-

ing and memory allocation, it is helpful to review the scheduling and memory allo-

cation approach taken by JikesRVM, on which Hera-JVM is built. As described in

Section 5.3.5, JikesRVM uses an m-to-n green threading model, where multiple Java

threads are mapped onto each per-core OS thread, and scheduled by the Java runtime

system, rather than the underlying operating system. Each of these OS threads is

known as a virtual processor and is pinned to a single core on the system.

Thread memory allocation requests are managed at the virtual processor level.

When a thread requests memory, it is allocated from a block of the heap space that

is reserved for exclusive use by the virtual processor on which it is executing. Since

only one thread can allocate memory from this virtual processor’s heap space at a time

(thread switching is disabled on this virtual processor for the duration of the alloca-

tion), this removes the need for inter-thread synchronisation on memory allocations. A

virtual processor’s heap space can be expanded if an allocation request cannot be ac-

commodated in its remaining capacity. This is achieved by performing an anonymous

(i.e., non-file backed) memory map operation, through the mmap system call. This

provides the virtual processor with an additional range of physically mapped virtual

memory from which to allocate data1.

This approach suggests a virtual processor centric approach to NUMA control for

the runtime system. Each virtual processor is already bound to a particular NUMA

node by virtue of its execution being pinned to a particular core. To provide the

runtime system with knowledge of the virtual processors to NUMA node bindings, the

native system call method, called during a virtual processor’s initialisation to pin its

execution to a core, was augmented to return the ID of the NUMA node on which this

core is located. With this knowledge, the runtime system can control the NUMA node

1Requests by virtual processors to grow their heap space are protected by inter-thread synchroni-
sation, since multiple virtual processors could try to grow their own heap space simultaneously and
contend for the same range of virtual memory.

184

8.3 Scheduling based upon Thread Teams

on which a thread executes or allocates memory, by restricting it to the set of virtual

processors which are bound to that NUMA node.

To control the NUMA node on which data is allocated, Hera-JVM was modified to

enable it to control the NUMA node of memory mapped virtual addresses when they

are mapped to physical memory. The Linux libnuma library1 can restrict the mapping

of a given virtual address range to ensure that it is mapped to physical memory that is

located on a particular NUMA node. Since a virtual processor expands its heap space

by mapping additional virtual memory, this ability to restrict the physical pages on

which virtual addresses are mapped enables the runtime system to restrict the virtual

processor’s heap space to memory on its own NUMA node. Thus, the NUMA node on

which a thread’s data is allocated can be limited to its local node, assuming a thread

is only executed on that node’s virtual processors.

However, not all data should be allocated locally. Some of the runtime system’s

data-structures are shared by all threads (e.g., class type information blocks and the

shared table of contents data-structure are accessed by all threads). Machine code is

also accessed by many different threads. If the shared data and machine code is stored

on a single NUMA node, then contention at that system inter-connect is likely to occur.

To spread this load across all NUMA nodes, the Hera-JVM was modified to interleave

this data evenly across all NUMA nodes. This was achieved by using libnuma to mark

the range of virtual memory addresses used for shared data and machine code, such

that they are mapped to physical pages that are interleaved across the NUMA nodes

of the system.

Another runtime system data-structure that should not necessarily be allocated on

the local NUMA node is the stack for a newly created thread. The memory required

for a new thread’s stack will be allocated by its parent thread, before this new thread

is started. There is no guarantee that this new thread’s preferred NUMA node will

be the same as the node on which its parent is executing when its stack is allocated.

Since a stack is only ever accessed by its own thread, and is accessed very frequently by

that thread, it should be allocated on the node on which this thread is most likely to

be run. Thus, a newly created thread’s preferred NUMA node is calculated (using the

algorithm described in the following section) before its stack is allocated, such that its

1http://oss.sgi.com/projects/libnuma/

185

http://oss.sgi.com/projects/libnuma/

8.3 Scheduling based upon Thread Teams

stack can be allocated on this preferred node, rather than the node on which its parent

thread is currently executing.

A similar approach could be used to select the NUMA node on which data, which

is itself tagged with the @ThreadTeam annotation, is allocated. Currently Hera-JVM

does not treat annotated object declarations specially; however, this annotation could

be used to enable a thread to allocate data on behalf of another thread or thread team.

The runtime system could calculate the preferred node for a given object, based upon

the thread team annotations attached to the object’s declaration. This object can then

be allocated on its preferred NUMA node, using a similar mechanism as is used to

allocate threads’ stacks. The implementation of off-node allocation is left as future

work1.

8.3.2 Applying a Cost to a Thread’s Placement

Hera-JVM attempts to inform its thread placement decisions based upon both the

structure of the non-uniform memory architecture on which it is executing and its

knowledge of thread teams, as provided by the @ThreadTeam annotation. Its aim is

to place threads which are members of the same team on cores in the same NUMA

node, while aiming to place non-communicating threads on different NUMA nodes. To

do this, it calculates a preferred ordering of NUMA nodes for any thread with one or

more thread team annotations. This calculation is performed when a thread is created,

based upon the current placement of the teams with which it will communicate. It is

only performed for threads which have been annotated with thread team information;

unannotated threads will not be assigned a preferred node order. The scheduler can

use this preferred order to influence the core on which it will schedule the thread’s

execution. This section describes the algorithm used to calculate a thread’s preferred

node order placement, while Section 8.3.3 outlines how the Hera-JVM’s scheduler uses

this information to inform thread placement decisions.

Hera-JVM calculates a thread’s preferred node order using a cost function, which

evaluates the cost of placing a thread on each of the nodes on the system, based upon

the thread teams of which this thread is a member. The cost of placing a particular

thread on a node is based on two factors: the distance from this node to each of

1This off-node heap allocation mechanism can be simulated by employing a separate proxy thread,
itself annotated in the same manner as the data, to allocate this data.

186

8.3 Scheduling based upon Thread Teams

�
1 int calcPrefNodeOrder (Thread thread) {
2 int c o s t s [] = new int [numberOfNodes] ;
3 for (node in nodes) {
4 for (threadTeam in threadTeams) {
5 i f (thread . memberOf (threadTeam) {
6 c o s t s [node] += node . distanceFrom (threadTeam . prefNode) ;
7 } else i f (threadTeam . prefNode == node) {
8 c o s t s [node] += threadTeam . numberOfThreads ;
9 }

10 }
11 }
12 return nodeOrder (c o s t s) ;
13 }
� �

Listing 8.2: Pseudo-code of algorithm used to calculate the preferred NUMA
node order of a thread.

the thread teams of which the thread is a member; and the presence of any non-

communicating thread teams on this node. These two factors try to, respectively,

cluster communicating threads onto the same or nearby NUMA nodes, while pushing

apart non-communicating threads onto different NUMA nodes.

In order to calculate a node’s distance from a thread team, the location of each

thread team must be defined. To this end, each team is assigned a preferred node. A

thread team is assigned a preferred node when it is first encountered by the runtime

system. A thread’s preferred node order is calculated when it is created, based upon

the teams with which it is annotated. If this thread is a member of any thread teams

that the runtime system does not yet know of, these new teams are not used in this

calculation. However, once the thread’s preferred node has been calculated, these new

teams are assigned the same preferred node as this newly created thread. Once assigned,

a thread team’s preferred node does not change, but is used to influence the placement

of newly created threads annotated as being a member of this team.

Listing 8.2 shows the algorithm used by Hera-JVM to calculate a thread’s preferred

NUMA node order. A cost is calculated for each node, by iterating over each thread

team in the system. For each team of which the thread is a member (line 6), the node’s

cost is increased, based upon its distance from that team’s preferred node. For the 4x4

core AMD Opteron NUMA system (Figure 8.1), this distance is defined as the number

of HyperTransport hops over which inter-core messages between these two nodes must

187

8.3 Scheduling based upon Thread Teams

Node 0 Node 1

Node 2 Node 3

A B C

D

Thread DBA

Cost of Placement on:
Node 0 = 0 + 0 + 2 + 0 = 2
Node 1 = 1 + 1 + 1 + 1 = 4
Node 2 = 1 + 1 + 1 + 0 = 3
Node 3 = 2 + 2 + 0 + 0 = 4

Te
am

 A
Te

am
 B

Te
am

 D
Ex

tra

Figure 8.3: Using thread teams to place threads on a NUMA system.

traverse (this distance can be zero if the thread team is on the node currently being

costed). This cost penalises placements that would place this thread on a NUMA node

that is far away from the threads with which it communicates.

For thread teams of which this thread is not a member, but which are located on

the node that is being costed (line 8), a cost is added based upon the number of threads

in that team. The aim of this cost is to penalise a placement in which this thread is

located on a preferred node of a team of which it is not a member. By making this cost

equal to the number of threads in the team, this means that nodes which are lightly

loaded with non-communicating threads are preferable to heavily loaded nodes.

Figure 8.3 shows an example of this algorithm in use. Once the cost of each node

has been calculated, the nodes are ordered, based upon these costs. If two nodes have

equal costs, a decision as to their order is taken randomly. In the case of Figure 8.3,

this thread’s preferred node order could be either 0, 2, 1, 3 or 0, 2, 3, 1, depending

upon the random choice for the two nodes which have an equal cost.

In Hera-JVM, a thread’s preferred node order is compressed into a single word

sized integer. Since the NUMA system supported by Hera-JVM has only four nodes,

two bits can be used to represent a node’s ID. Thus, a preferred order of nodes can

be represented as a sequence of these two-bit IDs, in the order required. Bit shifting

and masking is used to select the ID of a node at a particular point in this order. If

a system has too many nodes to make this approach practical, the state required to

store a thread’s preferred node ordering can be reduced by storing only the least costly

subset of this order, and treating other nodes as equally expensive.

188

8.3 Scheduling based upon Thread Teams

This algorithm has an algorithmic complexity of O(n × g), where n is the number

of nodes in the system and g is the number of thread teams. This may appear to

limit its scalability. However, this calculation is only ever performed once per thread:

the preferred node order is used to inform scheduling decisions but is only calculated

when the thread is created. Additionally, the number of nodes in a system is likely to

be a fraction of the number of cores on the system. Similarly, the number of thread

teams will be far fewer than the number of threads executed by a program. Thus, this

complexity should not limit a system’s scalability in practice.

8.3.3 Scheduling Threads with Per-Node Costs

The algorithm described in the previous section calculates a preferred ordering of nodes

for each thread. However, the runtime system’s scheduler must still decide upon the

processing core on which to execute each of the program’s threads. Blindly choosing

to schedule a thread on a core in its preferred node will not always result in the best

utilisation of all the processing cores available in the system. Such an approach could

lead to the processing cores on a popular node becoming over-subscribed, while cores

on other nodes lie idle. Instead, a thread’s preferred node order is used to advise

Hera-JVM’s scheduling decisions, alongside other information, such as core utilisation.

The scheduling algorithm implemented by JikesRVM forms the basis of the NUMA

node aware scheduler in Hera-JVM. Thread scheduling in JikesRVM is distributed

across the processing cores of the system. Each processing core (represented by a

virtual processor object) has its own local run-queue, from which it choses threads to

execute. A thread is only in one virtual processor’s run-queue at any time; however, it

may be moved to a different virtual processor’s run-queues by the runtime system in

order to balance load across all the available processing cores. The thread placement

decision is made by a method called scheduleThread. It is called whenever a thread is

initially registered, becomes unblocked, or yields (either voluntarily or due to a timer

tick), to choose the virtual processor on which the thread should be run when it is next

scheduled. In JikesRVM, the primary aim of this method is to balance a program’s

processing load evenly across the available processing cores of the system. Hera-JVM,

augments this scheduleThread method to try to preferentially group communicating

nodes onto the same NUMA node, by taking each thread’s preferred node order into

account.

189

8.3 Scheduling based upon Thread Teams

�
1 V i r tua lProce s so r scheduleThread (Thread thread) {
2
3 // i f the thread has a p r o c e s s o r a f f i n i t y , s e l e c t i t
4 i f (thread . h a s P r o c e s s o r A f f i n i t y ())
5 return thread . p r o c e s s o r A f f i n i t y () ;
6
7 // i f the thread i s not on i t s p r e f e r r e d node , check i f i t can
8 // be t r a n s f e r r e d to an i d l e p r o c e s s o r on i t s p r e f e r r e d node
9 i f (thread . hasPreferredNodeOrder () &&

10 thread . getPre ferredNode () != th i sProc . numaNode) {
11 int prefNode = thread . getPre ferredNode () ;
12 V i r tua lProce s so r i d l eProc = g e t I d l e P r o c e s s o r (prefNode) ;
13 i f (i d l eProc != null) {
14 return i d l eProc ;
15 }
16 }
17
18 // i f t h i s thread i s the on ly runnab le thread on the curren t
19 // processor , l e a v e the thread here
20 i f (runQueue . isEmpty ()) {
21 return this ;
22 }
23
24 // t r y to f i n d an i d l e p r o c e s s o r
25 // check in p r e f e r r e d node order
26 for (pre fOrder = 0 ; pre fOrder < numNodes ; pre fOrder ++) {
27 int prefNode = thread . getPre ferredNode (pre fOrder) ;
28 V i r tua lProce s so r i d l eProc = g e t I d l e P r o c e s s o r (prefNode) ;
29 i f (i d l eProc != null) {
30 return i d l eProc ;
31 }
32 }
33
34 // s c h e d u l e round−rob in on next p r o c e s s o r to load ba lance
35 i f (thread . hasPreferredNodeOrder ())
36 // choose on ly from p r o c e s s o r s on the thread ’ s p r e f e r r e d node
37 return nextProcessorOnNode (thread . getPre ferredNode ()) ;
38 else
39 // choose from any p r o c e s s o r
40 return nextProces sor () ;
41 }
� �

Listing 8.3: Pseudo-code of Hera-JVM scheduling algorithm. The additions
made to support NUMA aware scheduling are shown in red.

190

8.3 Scheduling based upon Thread Teams

Listing 8.3 presents the scheduleThread method in pseudo code. The original

algorithm used by JikesRVM is shown in black, with the changes added to enable

NUMA node aware scheduling in Hera-JVM shown in red.

The approach taken by the original algorithm is relatively simple. If the thread

has an affinity for a particular processing core (line 4), it is always scheduled on this

processor. Otherwise, if this thread is the only thread in its virtual processor’s run-

queue (line 20), it is kept on its current virtual processor. If not, the thread is offloaded

to another processor to attempt to load balance. If another processor is currently idle,

the thread is scheduled on this idle processor (line 28). Otherwise, this load balancing

is achieved by scheduling the thread on the next processor in a round-robin fashion

(line 40).

To enable Hera-JVM to preferentially schedule a thread on its preferred node, this

algorithm was augmented in three places. Firstly, a check is made as to whether a

thread is currently executing on a core located on its preferred node (lines 9 to 16). If

not, and there is an idle core available on this node, the scheduler will move the thread

onto this idle core. This ensures that a thread will execute on its preferred node if the

cores on that node are not over-subscribed.

Secondly, when attempting to balance the system’s load by offloading a thread

to another idle processor (line 28), the scheduler does not simply select the first idle

processing core available. Instead, it checks each node for idle processors in the order

preferred by the thread being scheduled. Thus, while a thread’s preferred node order is

taken into account, an idle core will always be given work if there are enough threads

in the system, even if no threads prefer that core’s node. This approach is the most

appropriate, since a program’s performance will suffer more by not fully utilising the

available processing cores than it will from the additional inter-core communication

overheads incurred by not placing its threads on their preferred nodes.

Finally, if the current core is over-subscribed and no other cores are idle, load

balancing is performed by moving the current thread onto the next processing core

located on the thread’s preferred node (line 37). Thus, if no other cores are idle, the

thread is kept on its preferred node, even if it moves to a different core for the purposes

of load balancing. This approach provides intra-node load balancing for threads which

have a preferred node, and retains full system load balancing for threads without a

preferred node. However, some workloads may require an additional form of inter-node

191

8.4 Experimental Analysis

load balancing for threads with preferred nodes. Such workloads were not encountered

during the experiments performed using this scheduling algorithm, and so inter-node

load balancing is left as future work.

These three additions are all conditional upon the thread that is being scheduled

having a preferred node order. Any thread which has not been annotated with thread

team information will be scheduled as it would have been under JikesRVM — based

upon processing core load, without any preference for a core on a particular node.

8.4 Experimental Analysis

This section investigates the effectiveness of using thread team annotations to inform

scheduling decisions and improve system-wide performance on NUMA architectures.

The experimental setup for these experiments is described in Section 8.4.1. Section 8.4.2

examines the scalability improvements provided by scheduling threads on a NUMA

architecture based upon thread team information. Finally, Section 8.4.3 examines Hera-

JVM’s effectivness at clustering threads that are members of multiple teams, as well as

its sensitivity to thread team configurations that preclude optimal clustering of threads

on NUMA nodes.

8.4.1 Experimental Setup

The experiments in this section are performed on a Dell PowerEdge 6950 server running

Centos 5.4, with version 2.6.26 of the Linux kernel. The Dell PowerEdge 6950 has the

NUMA architecture shown in Figure 8.1, with four NUMA nodes. The machine used

in these experiments is equipped with four quad-core, x86-based, Opteron processors,

each of which is its own NUMA node. This gives a total of sixteen processing cores,

each clocked at 2GHz. Each NUMA node contains 4GB of RAM, providing the system

with 16GB of memory overall.

A variation of the mandelbrot benchmark, first presented in Section 5.5.3, is used

to investigate the performance of various thread and data placement strategies on this

NUMA architecture. To increase the influence of non-uniform memory access latency

on this benchmark’s performance, it was modified, such that, instead of producing an

800 × 600 pixel image with a range of 200 colour levels, it draws a 12, 288 × 12, 288

pixel image with only 20 colour levels. The benchmark can spawn multiple threads,

192

8.4 Experimental Analysis

which co-operate to draw a single image. Each thread computes the colour of a subset

of the image’s pixels. Since each thread has its own unique set of pixels to draw, no

synchronisation is required for pixel updates. Therefore, the benchmark’s scalability

is primarily limited by the NUMA architecture’s inherent scalability and the runtime

system’s choice of thread and data placement.

Three runtime system configurations, each with different thread and data place-

ment strategies, are compared by these experiments. The first, Hera-JVM, employs

the approach described in Section 8.3 — scheduling threads based upon the teams to

which they belong. JikesRVM Local is the default policy employed by JikesRVM, with

thread scheduling not taking the system’s NUMA architecture into account and data

being allocated on the NUMA node on which the thread requesting this allocation is

executing. Finally, the JikesRVM Interleave configuration uses the numactl tool1 to

force memory allocations to be interleaved across all NUMA nodes, no matter which

thread requests the memory.

Other than the additions described in Section 8.3, Hera-JVM is identical to ver-

sion 3.0 of JikesRVM, with which it is compared in these experiments. Both runtime

systems are built using the production configuration of JikesRVM, and so employ the

optimising compiler to recompile hot methods2.

All experimental runs were performed ten times, with the average being reported

and the standard deviation between these runs shown using error bars. The selection

of ten runs was chosen as it was found to be sufficient to lead to a stable average and

standard deviation.

8.4.2 Scalability

To investigate the effectiveness of thread team awareness on a runtime system’s abil-

ity to scale an application across a NUMA architecture, the mandelbrot benchmark

was executed under the Hera-JVM, JikesRVM Local and JikesRVM Interleave runtime

system configurations, while being scaled from one to sixteen co-operating threads.

Figure 8.4 shows the performance of this benchmark as it is scaled across the cores

of the system, measured as the number of 12, 288 × 12, 288 pixel mandelbrot images

1http://oss.sgi.com/projects/libnuma/
2This differs from the previous chapters, where only the baseline compiler was used, due to the lack

of an optimising compiler for the Cell processor’s SPE core types.

193

http://oss.sgi.com/projects/libnuma/

8.4 Experimental Analysis

that can be generated by the benchmark per minute. Scalability is investigated under

different configurations of thread co-operation. Figure 8.4(a) shows the scaling when

all the threads are annotated as being members of the same thread team. For this

configuration, the image’s data is allocated as a single block, with all threads co-

operating towards the drawing of the whole image. Figure 8.4(b) shows scalability

when the threads are split into two equal teams. Threads only co-operate towards the

drawing of the half of the image allotted to their team. Finally, Figure 8.4(c) shows

the result of splitting the threads into four equal teams and allotting a quarter of the

image to each team.

With only a single team of threads (Figure 8.4(a)), the image’s data is allocated

by a single thread. Thus, both Hera-JVM and JikesRVM Local allocate the entirety of

the image’s data on a single NUMA node (the node on which the thread performing

the allocation is executing at the time). Since the threads are all members of the same

thread team, Hera-JVM attempts to cluster the threads on the same NUMA node as

the image’s data. This leads to better scaling of the application up until four threads1,

since all the threads can be executed by cores on the same NUMA node. When scaled to

more than four threads, some of the application’s threads must be placed on a different

NUMA node than the node hosting the image’s data, and must therefore access this

data remotely. Since the data is on a single NUMA node, these remote accesses contend

at that NUMA node, leading to a regression of Hera-JVM’s scalability compared to that

of JikesRVM Local by sixteen threads.

The JikesRVM Interleave strategy automatically interleaves the image’s data across

all four NUMA nodes. This leads to inferior scaling when the threads could be executed

on a single node; however, by sixteen threads, JikesRVM Interleave performs better

than the other approaches, since the data is spread across all the NUMA nodes and

remote access to a single node is avoided, preventing this bottleneck.

When the image is split into fractions and each fraction is drawn by an indepen-

dent team of threads (Figures 8.4(b) and 8.4(c)), the benchmark’s scalability under

Hera-JVM improves. Hera-JVM’s scheduling algorithm attempts to place threads from

different teams on different NUMA nodes. Therefore, each team is assigned a different

1The mandelbrot benchmark actually scales super-linearly up until four threads under Hera-JVM,
likely due to beneficial cache effects relating to all four cores sharing an L3 cache.

194

8.4 Experimental Analysis

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16

O
pe

ra
tio

ns
 p

er
 M

in
ut

e

Number of Threads

Hera-JVM
JikesRVM Local

JikesRVM Interleave

(a) One thread team.

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16

O
pe

ra
tio

ns
 p

er
 M

in
ut

e

Number of Threads

Hera-JVM
JikesRVM Local

JikesRVM Interleave

(b) Two thread teams.

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16

O
pe

ra
tio

ns
 p

er
 M

in
ut

e

Number of Threads

Hera-JVM
JikesRVM Local

JikesRVM Interleave

(c) Four thread teams.

Figure 8.4: Scaling performance of mandelbrot benchmark on a NUMA system
(higher is better). The dotted diagonal line shows perfect linear scaling.

195

8.4 Experimental Analysis

preferred NUMA node on which its fraction of the image’s data is allocated. Hera-

JVM attempts to cluster a team’s threads on its preferred NUMA node, close to the

fraction of the image’s data that they access. With two thread teams (Figure 8.4(b)),

the image’s data is spread across two NUMA nodes. Hera-JVM’s thread team aware

scheduling means that this configuration scales better under Hera-JVM than Jikes-

RVM Local and JikesRVM Interleave up to eight threads, after which it is necessary

to schedule threads on a non-preferred NUMA node. However, Hera-JVM continues

to scale better than the default JikesRVM Local strategy after this point. When the

benchmark’s work is split between four thread teams (Figure 8.4(c)), Hera-JVM can al-

lot a thread team to each of the four NUMA nodes of the system. Thus, the benchmark

scalability is significantly improved under Hera-JVM, having 28% better performance

than JikesRVM Local and 17.5% better performance than JikesRVM Interleave at 16

threads.

To verify that Hera-JVM’s improved scalability is due to a reduction in inter-core

data traffic, version 0.96 of OProfile was used to measure system-wide inter-core Hy-

perTransport data traffic and L3 cache misses during the benchmark’s execution1. Fig-

ure 8.5 shows the system-wide HyperTransport data traffic ((a), (c) and (e)) and L3

cache misses ((b), (d) and (f)) that result from running the previously described bench-

mark configurations under Hera-JVM, JikesRVM Local and JikesRVM Interleave, re-

spectively.

The volume of inter-core HyperTransport traffic, generated by the benchmark, is

consistently less when it is executed under Hera-JVM than under either of the JikesRVM

configurations. This supports the premise behind Hera-JVM’s scheduling algorithm —

that laying out data and threads based upon thread team information reduces inter-

core data traffic. However, as demonstrated by these figures, a lower system-wide level

of inter-core traffic does not always lead to better performance. With one team of

sixteen threads, the benchmark performs better under JikesRVM Interleave than it

does under Hera-JVM, even though the system-wide HyperTransport traffic is lower

under Hera-JVM. This occurs because, under JikesRVM Interleave, the traffic is evenly

spread across all the links in the system, whereas under Hera-JVM, all the traffic is

1OProfile uses hardware performance counters provided by the AMD Opteron processors to measure
these metrics.

196

8.4 Experimental Analysis

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2 4 6 8 10 12 14 16

H
yp

er
T

ra
ns

po
rt

 D
at

a
T

ra
ffi

c
(G

B
)

Number of Threads

Hera-JVM
JikesRVM Local

JikesRVM Interleave

(a) One team - HyperTransport traffic.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 2 4 6 8 10 12 14 16

L3
 M

is
se

s
(M

ill
io

ns
)

Number of Threads

Hera-JVM
JikesRVM Local

JikesRVM Interleave

(b) One team - L3 cache misses.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2 4 6 8 10 12 14 16

H
yp

er
T

ra
ns

po
rt

 D
at

a
T

ra
ffi

c
(G

B
)

Number of Threads

Hera-JVM
JikesRVM Local

JikesRVM Interleave

(c) Two teams - HyperTransport traffic.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 2 4 6 8 10 12 14 16

L3
 M

is
se

s
(M

ill
io

ns
)

Number of Threads

Hera-JVM
JikesRVM Local

JikesRVM Interleave

(d) Two team - L3 cache misses.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2 4 6 8 10 12 14 16

H
yp

er
T

ra
ns

po
rt

 D
at

a
T

ra
ffi

c
(G

B
)

Number of Threads

Hera-JVM
JikesRVM Local

JikesRVM Interleave

(e) Four teams - HyperTransport traffic.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 2 4 6 8 10 12 14 16

L3
 M

is
se

s
(M

ill
io

ns
)

Number of Threads

Hera-JVM
JikesRVM Local

JikesRVM Interleave

(f) Four team - L3 cache misses.

Figure 8.5: HyperTransport inter-core data traffic and L3 cache misses for
mandelbrot benchmark on NUMA system (lower is better).

197

8.4 Experimental Analysis

directed towards the NUMA node holding the benchmark’s image data, leading to a

single bottleneck.

The L3 cache miss count results reveal another somewhat counter-intuitive be-

haviour. When the benchmark is configured with one or two thread teams, and less

than 8 threads, Hera-JVM provides better performance than JikesRVM, even though

it incurs a higher cache miss rate. The reason for this becomes clear when its thread

placement decisions are taken into account. Hera-JVM attempts to cluster threads of

the same team onto the same NUMA node. Since the four cores of a NUMA node

share a single L3 cache in the architecture used by these experiments, this clustering of

threads leads to higher L3 cache contention, and therefore higher miss rates. However,

since these cache misses can be serviced by the node’s local memory, they have less

impact than the high latency remote memory cache misses incurred under JikesRVM.

This illustrates that lower cache miss rates do not always lead to higher performance.

If, as in a NUMA architecture, the location of data affects the time required to service

a cache miss, then thread and data placement can have a more significant performance

impact than cache miss rates on an application’s performance.

8.4.3 Multiple Teams per Thread

The experiments in the previous section involved threads that were a member of at most

one thread team; however, the approach described in this chapter enables a thread

to be annotated as being a member of multiple thread teams. To investigate Hera-

JVM’s effectiveness at clustering threads that are members of multiple thread teams,

the mandelbrot benchmark was modified as follows. The generated image is split into

sixteen fractions, with each fraction being associated with a particular thread team.

Sixteen threads are started, with each thread being a member of x thread teams, where

x can be varied between one and sixteen. A thread then contributes towards drawing

1
x of each of the image fractions with which it is associated, through the thread teams

of which it is a member. Therefore, the same amount of work is performed by the same

number of threads throughout these experiments. However, the degree of co-operation

between these threads can be varied by changing the number of teams to which each

thread is assigned.

The assignment of teams to threads was varied randomly between runs, with the

same set of random assignments being run under all three runtime configurations. The

198

8.4 Experimental Analysis

 20

 22

 24

 26

 28

 30

 32

 34

 0 2 4 6 8 10 12 14 16

O
pe

ra
tio

ns
 p

er
 M

in
ut

e

Teams Per Thread

Hera-JVM
JikesRVM Local

JikesRVM Interleave

(a) Performance.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2 4 6 8 10 12 14 16

H
yp

er
T

ra
ns

po
rt

 D
at

a
T

ra
ffi

c
(G

B
)

Teams Per Thread

Hera-JVM
JikesRVM Local

JikesRVM Interleave

(b) HyperTransport inter-core data traffic.

Figure 8.6: The performance of the mandelbrot benchmark on a NUMA ar-
chitecture as the number of thread teams assigned to each thread is varied.

team assignments were constrained such that threads can be clusterable into 1
x groups,

with all x threads in each group being members of the same x thread teams (Hera-JVM’s

sensitivity to less optimal thread team assignments is investigated subsequently). To

create each pseudo-random team assignment, x team names are randomly selected and

assigned to x randomly chosen threads. These threads and team names are removed

from the sets from which they are chosen, and the process is repeated until no threads

or team names remain to be assigned.

Figure 8.6 shows the level of performance and volume of HyperTransport traffic

that results from running this benchmark under Hera-JVM, JikesRVM Local and Jikes-

RVM Interleave, as the number of teams with which each thread is associated is varied.

These results show that Hera-JVM can support clustering of multi-team threads on

NUMA nodes in order to realise greater performance than either of the JikesRVM con-

figurations. However, once more than four thread teams are assigned to each thread,

co-operating threads can no longer be clustered on a single NUMA node (more than

four threads co-operate; therefore, since there are only four processing cores on each

NUMA node, some of the co-operating threads must be placed on a different NUMA

node). After this point, Hera-JVM’s performance reverts to that of JikesRVM Local.

This demonstrates that the use of thread teams enables Hera-JVM to improve an ap-

plication’s performance by clustering co-operating threads, but only if the structure of

co-ordination between an application’s threads permits clustering.

199

8.4 Experimental Analysis

1

2

1 2
3 4

1 2 3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

5 6 7 8

5 6
7 8

5 6
7 8

5 6
7 8

5 6
7 8

9 10 11 12

11 12
9 10

11 12
9 10

11 12
9 10

11 12
9 10

1 2 3 4

15 16
13 14

15 16
13 14

15 16
13 14

15 16
13 14

Key

Memory

NUMA node

Image fragment data,
associated with team 2

Thread, assigned to
teams 1, 2, 3 & 4

(a) Zero swaps - 100% clusterable

1 2 3 4

1 2
3 4

1 13
3 4

1 2
3 4

1 2
3 4

5 6 7 8

5 6
7 8

5 6
7 8

5 6
7 8

5 6
7 8

9 10 11 12

11 12
9 10

11 12
9 10

11 12
9 10

11 12
9 10

13 14 15 16

15 16
2 14

15 16
13 14

15 16
13 14

15 16
13 14

(b) One swap - 97% clusterable

1 2 3 4

16 2
3 4

1 13
3 4

1 10
3 4

1 2
3 14

5 6 7 8

5 11
7 8

13 6
7 8

12 6
10 8

5 6
7 8

9 10 11 12

6 12
9 10

11 5
9 7

11 12
9 2

11 12
9 10

13 14 15 16

15 16
2 4

15 1
13 14

15 16
5 14

15 16
13 14

(c) Eight swaps - 75% clusterable

Figure 8.7: Example of reducing the clusterablity of thread team assignments
by shuffling thread / team assignments. Each number represents a thread team
name (and associated image fragment). Thread / team assignment swaps are
highlighted in red.

200

8.4 Experimental Analysis

 20

 22

 24

 26

 28

 30

 32

 34

 0 20 40 60 80 100

O
pe

ra
tio

ns
 p

er
 M

in
ut

e

Percentage of Thread Teams That Can Be Clustered

Hera-JVM
JikesRVM Local

JikesRVM Interleave

(a) Performance.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100

H
yp

er
T

ra
ns

po
rt

 D
at

a
T

ra
ffi

c
(G

B
)

Percentage of Threads That Can Be Clustered

Hera-JVM
JikesRVM Local

JikesRVM Interleave

(b) HyperTransport inter-core data traffic.

Figure 8.8: The performance of the mandelbrot benchmark on a NUMA ar-
chitecture, with each thread assigned to four thread teams, as the proportion
of threads that can be clustered on a single NUMA node is varied.

To investigate Hera-JVM’s sensitivity to non-optimal thread team assignments, the

algorithm used to randomly assign teams to threads in the mandelbrot benchmark was

modified such that teams are not always assigned with 1
x groups of x threads that

share the same x thread team assignments. A second phase was added to the random

team assignment algorithm, in which a set number of randomly chosen thread / team

assignments are shuffled. By increasing the number of assignments that are shuffled

during this stage, the benchmark’s work can be made less clusterable. Figure 8.7 shows

the effect of this assignment shuffling on the potential clustering of threads and image

fragment data onto NUMA nodes.

Figure 8.8 shows the effect on the performance of the mandelbrot benchmark when

the proportion of threads that can be clustered is varied. The benchmark is configured

with sixteen threads, each of which is assigned to four thread teams. As expected, the

less potential there is to cluster co-ordinating threads onto the same NUMA node, the

lower the performance gains achieved by Hera-JVM compared with JikesRVM. How-

ever, the performance advantage of Hera-JVM degrades gracefully, with some benefit

provided by Hera-JVM’s approach as long as at least 50% of the thread teams can be

clustered. This shows that the algorithm employed by Hera-JVM can improve perfor-

mance on NUMA architectures even when an application’s inter-thead communication

patterns are relatively irregular.

201

8.5 Summary

8.5 Summary

This chapter examined the use of behaviour characteristics as a means of improving

performance on a heterogeneous multi-core architecture that has very different char-

acteristics from the Cell processor, used in Chapters 5 to 7. Specifically, this chapter

investigated the use of thread team annotations as a means of expressing inter-thread

communication patterns. This thread team information is used by the runtime system

to inform its thread and data placement decisions in order to improve an application’s

performance under a NUMA architecture.

The experiments presented in Section 8.4 demonstrate that, by taking thread teams

into account when choosing the core on which a thread should be scheduled, Hera-JVM

can reduce inter-core data traffic and, consequently, improve application performance.

Performance of a multi-threaded mandlebrot benchmark can be improved by up to

28% under Hera-JVM, compared to a runtime system which is unaware of threads’

communication patterns.

However, the use of thread teams does not completely eliminate the need for an

application to be structured in a manner amenable to scaling on a NUMA architec-

ture. For Hera-JVM’s approach to be effective, an application’s shared data must be

partitionable across multiple NUMA nodes, and its threads clusterable, such that inter-

thread communication outwith a NUMA node can be limited. When an application is

not structured in a NUMA-friendly fashion, the performance provided by Hera-JVM

reverts to that of the JikesRVM Local configuration, on which it is based. Under these

circumstances, simply interleaving an application’s data evenly across all of the NUMA

nodes on the system (JikesRVM Interleave) can provide better performance. This sug-

gests that the most appropriate approach may involve a hybrid scheme, in which thread

and data placement is based upon thread team annotations when threads can be clus-

tered appropriately, but reverts to automatic fine grained interleaving of memory pages

for less NUMA-frendly application structures.

Further experimental analysis on the use of thread teams, using more realistic bench-

marks, is required before its effectiveness on real-world applications can be established.

However, the results presented in this chapter provide a first step in understanding

where this approach can be useful in improving an application’s performance on a

202

8.5 Summary

NUMA architecture. This work also enabled investigation into the effectiveness of be-

haviour characteristics as a means of abstracting a very different heterogeneous multi-

core architecture from the Cell processor, that was investigated in the previous chapters.

Thus, it provides confidence that using behaviour characteristics to inform a runtime

system’s thread and data placement decisions can improve application performance

under a variety of different heterogeneous multi-core architectures.

203

Chapter 9

Conclusion and Future Work

A number of modern computer systems have been designed with multiple different types

of processing cores, each of which has different capabilities and drawbacks. This trend

towards increasing processing core heterogeneity is likely to continue and find its way

into commodity computer systems, thanks to the proliferation of graphics processing

units and the increasing number of processing cores employed by commodity processors.

While these heterogeneous multi-core architectures have the potential to provide sig-

nificantly better performance and efficiency, compared to homogeneous architectures,

it is notoriously difficult to develop applications that can exploit this potential. Non-

specialist application developers must be provided with better abstractions and runtime

support if they are to take advantage of these architectures.

The goal of this work is to provide a runtime system that ameliorates many of the

difficulties encountered in application development on heterogeneous multi-core archi-

tectures through abstraction, thereby enabling non-specialist application developers to

exploit their potential, without requiring in-depth knowledge of their design.

9.1 Thesis Statement Revisited

In this section, the thesis statement that was presented at the start of this dissertation

is revisited in light of the work presented by this dissertation. This thesis statement is

restated below:

204

9.1 Thesis Statement Revisited

“Given the difficulties involved in programming and managing heteroge-

neous multi-core architectures (HMAs), their use is currently limited to

specialist applications. I assert that a homogeneous multi-core virtual

machine abstraction can be employed to reduce the burden of developing

applications for HMAs, while still enabling the disparate processing re-

sources of an HMA to be exploited. By tracking a program’s behaviour, a

runtime system can make informed thread and data placement decisions,

enabling the program to make effective use of heterogeneous processing

resources. By employing program behaviour characteristics to guide the

partitioning of a program’s execution across heterogeneous processing

cores, application developers do not require in-depth knowledge of an

HMA’s design in order to exploit it effectively.”

To prove this assertion, a behaviour-aware runtime system was created and its effec-

tiveness at enabling applications to exploit the performance provided by two different

HMA systems, with minimal developer effort, was investigated.

Chapter 4 presented the overall approach for abstracting heterogeneous processors

proposed by this work. This involves hiding the heterogeneous nature of an HMA pro-

cessor behind a homogeneous virtual machine abstraction and having a runtime system

map a program’s execution onto the most appropriate core types, taking the program’s

behaviour into account. A set of behaviour characteristics were proposed that capture

the aspects of a program’s behaviour most likely to influence its execution performance

on different core types. These characteristics include a program’s processing require-

ments, execution behaviour and inter-thread communication patterns. The chapter

proposed a variety of means for inferring a program’s behaviour characteristics, includ-

ing explicit code annotations, static code analysis and runtime monitoring. Finally, the

use of cost functions, to enable a runtime system to make informed thread and data

placement decisions, based upon a program’s behaviour characteristics, was presented.

To investigate this premise, a Java runtime system called Hera-JVM was developed.

In Chapter 5, the techniques used to enable Hera-JVM to provide a homogeneous virtual

machine abstraction on the highly heterogeneous IBM Cell processor were presented.

These include the provision of the same Java virtual machine interface on both of

the Cell processor’s core types, transparent migration between these cores and the

205

9.1 Thesis Statement Revisited

provision of efficient support of the Java memory model under the unusual memory

hierarchy of the Cell processor’s SPE cores, using a type-aware software caching system.

This support enables Hera-JVM to execute unmodified Java programs on either of the

Cell processor’s core types and have both core types co-operate in the execution of a

single application. To back up this claim, a number of real-world benchmarks were

executed on both core types under Hera-JVM, thus ensuring that the heterogeneous

cores produce consistent results for real-world applications. This verifies the first part of

the thesis statement — that a heterogeneous multi-core architecture can be successfully

hidden behind a homogeneous virtual machine interface.

Chapter 5 also investigated the effectiveness of the software caching scheme that

Hera-JVM employs to hide the SPE core type’s unusual memory hierarchy, using both

synthetic micro-benchmarks and real-world benchmarks. These experiments show that,

when a program’s working set could fit in the SPE’s local memory, this scheme was very

effective. In fact, for read-only operations, this software caching scheme can outperform

the hardware cache of the Cell processor’s PPE core. However, its performance drops

for write-heavy workloads1, or workloads in which the program’s working set does not

fit in the SPE’s local memory.

Finally, the performance of the two core types of the Cell processor, under a va-

riety of different program behaviours, were characterised using both synthetic micro-

benchmarks and real-world benchmarks. This information was used to uncover the set

of behaviour characteristics that have the most influence on the relative performance

that a program can expect to achieve on either core type. This analysis showed that the

Cell’s SPE cores are much better suited to arithmetic computations (no matter whether

these involved integer, floating point or bitwise-based operations), while the PPE core

has a slight advantage when accessing data objects, and a significant advantage if a

program’s working set cannot fit in the SPE core’s local memory cache.

In Chapter 6, Hera-JVM was extended so that it can be made aware of a program’s

behaviour, through explicit annotations in the program’s code. Hera-JVM uses this

behavioural information, alongside its knowledge of the performance characteristics of

each of core type on the system, to select the most appropriate core type on which to

execute each of the program’s threads and execution phases.

1However, a preliminary investigation into the use of a write-back caching scheme suggests it may
be possible to significantly improve the software cache’s write performance.

206

9.1 Thesis Statement Revisited

A cost function was developed to enable the runtime system to decide whether a

thread should be migrated to a different core type, based upon its current behaviour

characteristics. It was found that by incorporating past history, hysteresis and trend

tracking into this cost function, its stability can be increased, leading to a reduction

in the number of detrimental migrations. A number of different migration strategies

(AtAnnotation, AfterSched and Targeted) were proposed and implemented in the

Hera-JVM runtime system. These enabled investigation into the trade-off between

immediacy in reacting to behaviour changes, against making more informed migration

decisions. The Targeted migration strategy was found to be the most effective, due

to its ability to target a suitable long-lived method for migration, and thereby avoid

migrating methods that are too short to benefit from execution on a different core type.

To evaluate the efficacy of thread placement based upon behaviour characteristics,

a number of real-world benchmarks were annotated with their behaviour characteristics

and executed under Hera-JVM. The runtime system was able to use this behavioural

knowledge to automatically migrate each benchmark’s threads across the Cell proces-

sor’s heterogeneous cores. Doing so, it can achieve performance that is comparable to

that of manual partitioning of the benchmark, based upon specialist knowledge of the

capabilities of the Cell processor’s different core types. This validates the second part

of the thesis statement — that a behaviour-aware runtime system can make informed

thread and data placement decisions that enable a program to transparently exploit

heterogeneous processing resources.

To further reduce the burden of application development on HMA processors, Chap-

ter 7 investigated the use of runtime monitoring to automatically infer a program’s

behaviour characteristics as it executes, without the need for explicit code annota-

tions. A lightweight runtime behaviour monitoring system was developed, that enables

Hera-JVM to automatically measure the proportion of arithmetic and object access

operations being performed by a program’s threads throughout their execution. The

overhead of this runtime monitoring system was reduced by scoring code blocks as they

are compiled and updating a thread’s behaviour using these aggregate scores. The cost

function and migration strategies employed by the annotation-based behaviour-aware

runtime system were reused to enable Hera-JVM to base its thread migration deci-

sions upon the behaviour characteristics that it monitors at runtime. Chapter 7 also

examined combining annotation-based behaviour characteristics with those monitored

207

9.2 Contributions

at runtime, to provide additional program behaviour information to the runtime sys-

tem. This process was simplified by the fact that the same cost function approach is

shared by both the annotation-based and runtime monitoring-based behaviour-aware

approaches.

A number of unmodified real-world benchmarks were executed under Hera-JVM,

to evaluate the effectiveness of runtime behaviour monitoring in enabling automatic

thread placement and migration decisions on the Cell Processor. These experiments

showed that runtime monitoring could be as effective as explicit behaviour annotations

in this regard, subject to a small (3-10%) runtime monitoring overhead. This validates

the third part of the thesis statement — that a behaviour-aware runtime system can

eliminate the burden of application development on an HMA processor, while still

enabling applications to effectively exploit its potential performance.

Finally, Chapter 8 performed an initial investigation of the use of thread team

annotations as a means of improving an application’s performance under a NUMA

architecture. When a thread is created, a cost function is used to evaluate its preferred

NUMA node ordering, based upon the teams of which it is a member. Hera-JVM uses

this information to influence its scheduling decisions, such that communicating threads

are clustered onto the same NUMA node, thereby reducing inter-node data traffic and

improving overall performance.

By examining the use of behaviour characteristics to improve performance on a

heterogeneous multi-core architecture that has very different characteristics from the

Cell processor, the work in Chapter 8 increases confidence that the assertions made

in the thesis statement apply under a variety of different heterogeneous multi-core

architectures.

9.2 Contributions

This work contributes towards the abstraction of heterogeneous multi-core architectures

in the following ways:

• Hiding a heterogeneous multi-core architecture behind a homogeneous

virtual machine abstraction

This work demonstrated the abstraction of heterogeneous multi-core architectures

by hiding their heterogeneity behind a homogeneous virtual machine architecture,

208

9.2 Contributions

using the Hera-JVM runtime system. By providing the same virtual machine

interface on heterogeneous core types and transparent migration between core

types, an application’s execution can be spread across the heterogeneous cores

of an HMA processor, without requiring any knowledge of the architecture’s het-

erogeneity from the application. The feasibility of this approach was evaluated

by executing a number of unmodified real world benchmarks across the hetero-

geneous core types of the Cell processor.

• Behaviour-aware runtime system

A set of behaviour characteristics was presented, that enables a runtime system

to make effective use of heterogeneous processing cores, without burdening ap-

plication developers with details of an HMA’s underlying design. Three sets of

behaviour characteristics were defined, namely, processing requirements, execu-

tion behaviour and inter-thread communication. The use of both explicit code

annotations and runtime monitoring, as a means of providing this behaviour in-

formation, was explored. Finally, the use of these behaviour characteristics, to

inform a runtime system’s thread and data placement decisions, was investigated

under two distinct heterogeneous architectures — the Cell processor and an x86

NUMA machine.

• Behaviour characteristic cost function

A cost function based approach for informing thread placement and migration

decisions, based upon a program’s behaviour characteristics, was presented. The

effectiveness of history, hysteresis and trend tracking, as means of improving the

cost functions’ stability, was investigated and found to be beneficial in reducing

unproductive migrations and improving overall application performance.

• Migration strategies

A number of strategies for triggering a thread’s migration from one core type

of the Cell processor to the other were explored. A targeted migration strategy,

which enables a method to be modified at runtime, such that it automatically

triggers a thread’s migration whenever it is invoked, was found to be the most

effective. By scanning a thread’s call stack and targeting a suitable long-lived

method for migration, the overheads incurred by thread migration can be reduced.

209

9.3 Future Work

• Lightweight program behaviour runtime monitoring system

A lightweight runtime monitoring system was developed, that enables a runtime

system to automatically infer a program’s behaviour during its execution. By

measuring the proportion of a thread’s execution spent performing different types

of computation, the runtime system can automatically select the most appropriate

core type on which to execute the thread and, if necessary, when to migrate it.

The use of explicit behaviour characteristic code annotations, alongside runtime

monitoring, was also demonstrated.

• Inter-thread communication aware scheduling on NUMA architectures

An initial investigation was carried out into the use of thread team behaviour

characteristics, as a means of expressing inter-thread communication patterns to

a runtime system. This knowledge was employed by the runtime system to enable

it to automatically optimise thread and data layout on a NUMA architecture.

This was found to improve the performance of programs that can be partitioned

across the nodes of a NUMA machine, by reducing the volume of inter-NUMA

node traffic.

• A Java compiler for the Cell’s SPE core type

The creation of a Java compiler for the SPE core type of the Cell processor was re-

quired for this work. This involved the development of a software caching scheme

that exploits high level type information to reduce the overhead of DMAing data

between main memory and the SPE core’s local memory, while respecting the

Java memory model.

9.3 Future Work

This dissertation has shown that a behaviour-aware runtime system can be used to

reduce the burden of developing applications that exploit a heterogeneous multi-core

architecture. Yet, there is considerable scope for future work that builds upon the work

presented in this dissertation. In this section, some of these opportunities for future

work are outlined.

210

9.3 Future Work

9.3.1 Other Heterogeneous Architectures

This dissertation investigated the use of a behaviour-aware runtime system under two

different heterogeneous multi-core architectures — the Cell processor and a NUMA

architecture. There are many other examples of heterogeneous multi-core architectures

that could benefit from this approach. An interesting area of future work would be to

examine the effectiveness of behaviour characteristics at enabling a runtime system to

exploit the performance potential of other HMA systems.

One of the most interesting systems on which to investigate the use of a behaviour-

aware runtime system would be a processor that consists of both CPU and GPU (graph-

ics processing unit) core types. GPUs are becoming prevalent in commodity PC systems

and there are a number of proposed processor designs that will incorporate GPU cores

into a multi-core processor (AMD, 2008; Nvidia, 2009b; Seiler et al., 2008). Given their

ubiquity and high floating point performance, GPU’s have the potential to greatly

improve the performance of many general purpose applications. However, this perfor-

mance can only be exploited by programs that perform certain types of computation

(e.g., highly data-parallel computations). In addition, making use of a GPU for general

purpose computation currently requires adapting the computation to fit a streaming

processing model (Buck et al., 2004; Munshi, 2009; Ryoo et al., 2008).

Extending this work to enable the exploitation of GPUs by general purpose appli-

cations will involve tackling a number of additional challenges. To take advantage of all

of the processing cores on a GPU requires a highly parallel computation. In addition,

the different processing cores of a GPU often share functional units, which makes these

architectures highly sensitive to branching program control flow (Fung et al., 2007).

For a runtime system to successfully hide these challenges from an application devel-

oper, while still providing the full performance of the GPU architecture, will require

further research into areas such as automatic parallelisation and ahead-of-time branch

prediction techniques.

9.3.2 Other Behaviour Characteristics

This work concentrated on evaluating the effectiveness of four behaviour characteristics

in informing a runtime system’s thread placement decisions, namely @ArithmeticCode,

211

9.3 Future Work

@ObjectAccessCode, @LargeWorkingSet and @ThreadTeam. A worthwhile area of fu-

ture work would be to investigate whether the other behaviour characteristics, proposed

in Chapter 4, are also effective in guiding a runtime system’s resource allocation deci-

sions.

The behaviour characteristics that were evaluated during this dissertation were

chosen because they were expected to provide the most benefit for the Cell processor and

NUMA architecture on which Hera-JVM was evaluated. However, a runtime system

that executes under a different heterogeneous multi-core architecture is likely to benefit

from knowledge of a different set of program behaviour characteristics. For example,

as discussed above, GPU processing cores are typically very sensitive to branching

program control flow. Therefore, a behaviour characteristic that identifies code which

is likely to have highly branching control flow would be beneficial to a runtime system

that executes on an HMA with both CPU and GPU type processing cores. It is likely

that additional behaviour characteristics will be identified by extending this work to

other architectures.

9.3.3 Tagging Data with Behaviour Characteristics

The focus of this work involved tagging code with its expected behaviour characteristics;

however, there are a number of situations in which it may also be beneficial to have

the ability to tag data with behaviour characteristics. As discussed in Chapter 8, the

@ThreadTeam behaviour characteristic could be applied to a piece of data to signal that

it is likely to be accessed by threads from that team more often than the thread which

allocated the data. This information could be used by a runtime system to select the

most appropriate memory location (or NUMA node) on which to allocate the data,

such that the application’s overall memory access time is minimised.

The @SequentialAccessBehaviour and @RandomAccessBehaviour characteristics

could also be used to tag data, in addition to code. If a runtime system is provided

with ahead-of-time knowledge of a data-structure’s expected access patterns using these

behaviour characteristics, it could optimise the strategy it uses to cache the data-

structure. If a data-structure is accessed sequentially, a prefetching caching strategy is

very effective in reducing memory access times (Smith, 1978). On the other hand, if a

large data-structure is accessed randomly, it may be non-beneficial or even detrimental

to cache its elements as they are accessed. This is because these elements are likely

212

9.3 Future Work

to have been evicted from the cache before they are next accessed, meaning these

cached copies only serve to pollute the cache. If a runtime system were provided

with the expected access behaviour of a given data-structure, it could use a variety of

mechanisms to influence the data-structure’s caching strategy, such as inserting data

prefetch instructions or marking memory regions as non-cacheable.

There are a number of challenges which must be tackled before a runtime system can

be provided with knowledge of data-structure’s behaviour characteristics. A mechanism

must be provided to enable data-structures to be tagged with their behaviour charac-

teristics. One option would be to enable behaviour characteristic annotations to target

data-variable declarations. Data-structures then inherit the behaviour characteristics

of the variable to which they are assigned. However, data aliasing issues could compli-

cate this approach — if a data-structure is pointed to by more than one variable, it may

inherit conflicting behaviour characteristics from each of these variable’s declarations.

Further work is required to overcome these challenges and investigate the effectiveness

of using data behaviour characteristics to inform runtime system operations.

9.3.4 Inferring Behaviour Characteristics Through Static Analysis

In this work, both explicit code annotations and runtime monitoring were investigated

as a means of providing a runtime system with information about a program’s be-

haviour. Another option would be to provide source code analysis tools that can infer

a program’s behaviour ahead of its execution, and automatically insert appropriate an-

notations into its source code. The use of ahead-of-time program analysis tools would

relieve application developers from having to explicitly annotate their programs, while

avoiding the overheads incurred by monitoring a program’s behaviour at runtime.

Section 4.3.2 discussed a number of static analysis techniques which could be em-

ployed to uncover a program’s behaviour characteristics, such as data-flow analy-

sis (Allen & Cocke, 1976), loop bounding analysis (Healy et al., 1998) and escape

analysis (Choi et al., 1999). An interesting area of future research would be to investi-

gate the effectiveness of these static analysis techniques at inferring program behaviour,

compared with explicit code annotations or runtime monitoring.

213

9.3 Future Work

9.3.5 Low-Level Abstraction of HMAs

Throughout this dissertation, the Java programming language was used for applica-

tion development. Java was chosen because of its portable nature and standardised

virtual machine interface, which enables the same application code to be executed on

heterogeneous processing cores that have different instruction set architectures. How-

ever, the heterogeneous processing cores of future HMA processors may not employ

different instruction set architectures and, therefore, may not require a homogeneous

virtual machine to abstract their differences. An interesting area of future work would

be to investigate whether behaviour characteristics can be employed to inform runtime

allocation decisions under lower-level languages, such as C and C++.

By extending this work to a lower-level language, it could be employed in situations

where the high-level nature of Java is not appropriate, either for performance reasons

or because of the lack of control afforded by Java (e.g., lack of pointers). It would also

enable investigation of the abstraction of HMA processors by an underlying operating

system, as apposed to a runtime system, using the techniques examined in this work.

Without the high-level information provided by a language such as Java, it may

be more challenging to infer a program’s behaviour. For example, in C, data-access

operations are untyped, making it more difficult to infer the data-structure that is

being accessed and tailor the operation appropriately. As such, additional methods for

expressing and tracking program behaviour would be required to apply this work to a

language such as C or C++.

9.3.6 Summary

There are a number of interesting future directions in which to take the work presented

by this dissertation. The use of behaviour characteristics for the abstraction of het-

erogeneous features can be applied to different HMA processors, and be extended to

make use of additional behaviour characteristics. The use of behaviour characteristics

targeted at data-structures, rather than code, would be another interesting avenue of

future research. Static analysis techniques that would enable tools and compilers to au-

tomatically tag programs with their expected behaviour characteristics, ahead of their

execution, would broaden the appeal of this work and further reduce the application

development burden. Finally, perhaps the most interesting area of potential future

214

9.3 Future Work

work would be to apply the techniques and overall approach described by this disserta-

tion to a more low-level programming language and runtime environment. This would

enable operating systems to abstract HMA processors, thereby providing any program

running on such a system with the opportunity of exploiting an HMA’s heterogeneous

processing resources.

215

References

Adiletta, M., Rosenbluth, M., Bernstein, D., Wolrich, G. & Wilkinson, H. (2002). The

Next Generation of Intel IXP Network Processors. Intel Tech. Journal, 6(3), 6–18.

Cited in Sections 2.2 and 5.1.

Ainsworth, T. & Pinkston, T. (2007). Characterizing the Cell EIB On-Chip Network.

IEEE Micro, 27(5), 6–14. Cited in Sections 4.1.3 and 5.1.

Allen, F. E. & Cocke, J. (1976). A Program Data Flow Analysis Procedure. Commu-

nications of the ACM, 19(3), 137–147. Cited in Sections 4.3.2 and 9.3.4.

Allen, J., Bass, B., Basso, C., Boivie, R., Calvignac, J., Davis, G., Frelechoux, L., Hed-

des, M., Herkersdorf, A., Kind, A. et al. (2003). IBM PowerNP Network Processor:

Hardware, Software, and Applications. IBM Journal of Research and Development,

47(2), 177–194. Cited in Section 2.2.

Alpern, B., Augart, S., Blackburn, S., Butrico, M., Cocchi, A., Cheng, P., Dolby,

J., Fink, S., Grove, D., Hind, M. et al. (2005). The Jikes Research Virtual Ma-

chine Project: Building an Open-Source Research Community. IBM Systems Journal,

44(2), 399–417. Cited in Section 5.2.

AMD (2008). ‘AMD Fusion: The Industry-Changing Impact of Accelerated Comput-

ing’. White Paper. Cited in Sections 2.3.1 and 9.3.1.

Amdahl, G. (1967). Validity of the Single Processor Approach to Achieving Large Scale

Computing capabilities. In Proceedings of the Spring Joint Computer Conference.

pp. 483–485. Cited in Section 2.1.

216

REFERENCES

Archibald, J. & Baer, J. (1986). Cache Coherence Protocols: Evaluation Using a Mul-

tiprocessor Simulation Model. ACM Transactions on Computer Systems, 4(4), 273–

298. Cited in Sections 2.3.2 and 8.1.

Armstrong, J. (2003). Making Reliable Distributed Systems in the Presence of Software

Errors. PhD thesis. The Royal Institute of Technology, Stockholm, Sweden. Cited in

Section 3.1.

Bader, D. & Agarwal, V. (2007). FFTC: Fastest Fourier Transform for the IBM Cell

Broadband Engine. Lecture Notes in Computer Science, 4873, 172. Cited in Section

3.2.1.3.

Balakrishnan, S., Rajwar, R., Upton, M. & Lai, K. (2005). The impact of performance

asymmetry in emerging multicore architectures. SIGARCH Computer Architecture

News, 33(2), 506–517. Cited in Section 3.

Barker, K. J., Davis, K., Hoisie, A., Kerbyson, D. J., Lang, M., Pakin, S. & Sancho, J. C.

(2008). Entering the petaflop era: the architecture and performance of Roadrunner.

In Proceedings of the Conference on Supercomputing (SC’08). pp. 1–11. Cited in

Sections 2.2, 3.2.1.3, and 5.1.

Baumann, A., Barham, P., Dagand, P., Harris, T., Isaacs, R., Peter, S., Roscoe, T.,

Schüpbach, A. & Singhania, A. (2009). The Multikernel: A New OS Architecture

for Scalable Multicore Systems. In Proceedings of the 22nd Symposium on Operating

Systems Principles (SOSP’09). Cited in Sections 3.2.2 and 3.4.

Becchi, M. & Crowley, P. (2006). Dynamic thread assignment on heterogeneous multi-

processor architectures. In Proceedings of the 3rd conference on Computing Frontiers.

ACM. p. 40. Cited in Section 3.3.

Bellens, P., Perez, J. M., Badia, R. M. & Labarta, J. (2006). CellSs: A Programming

Model for the Cell BE Architecture. In Proceedings of the Conference on Supercom-

puting (SC’06). p. 86. Cited in Section 3.2.1.3.

Benthin, C., Wald, I., Scherbaum, M. & Friedrich, H. (2006). Ray tracing on the Cell

processor. In Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing.

pp. 25–23. Cited in Section 3.2.1.3.

217

REFERENCES

Blackburn, S., Garner, R., Hoffmann, C., Khang, A., McKinley, K., Bentzur, R., Di-

wan, A., Feinberg, D., Frampton, D., Guyer, S. et al. (2006). The DaCapo bench-

marks: Java benchmarking development and analysis. In Proceedings of the 21st

Conference on Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA’06). pp. 169–190. Cited in Section 5.5.3.

Blackburn, S. M., Cheng, P. & McKinley, K. S. (2004). Myths and realities: the perfor-

mance impact of garbage collection. SIGMETRICS Performance Evalaluation Re-

view, 32(1), 25–36. Cited in Section 5.6.

Blagojevic, F., Nikolopoulos, D., Stamatakis, A. et al. (2007a). Dynamic Multigrain

Parallelization on the Cell Broadband Engine. In Proceedings of the 12th Symposium

on Principles and Practice of Parallel Programming (PPoPP’07). ACM. p. 100. Cited

in Section 3.3.

Blagojevic, F., Nikolopoulos, D., Stamatakis, A. et al. (2007b). Runtime Scheduling of

Dynamic Parallelism on Accelerator-based Multi-Core Systems. Parallel Computing,

33(10-11), 700–719. Cited in Section 3.3.

Blythe, D. (2006). The Direct3D 10 System. In Proceedings of the Conference on Com-

puter Graphics and Interactive Techniques (SIGGRAPH’06). pp. 724–734. Cited in

Section 2.3.1.

Bolosky, W., Fitzgerald, R. & Scott, M. (1989). Simple but effective techniques for

NUMA memory management. In Proceedings of the 12th Symposium on Operating

systems Principles (SOSP’89). pp. 19–31. Cited in Section 3.4.

Borkar, S. (2007). Thousand core chips: a technology perspective. In DAC ’07: Pro-

ceedings of the 44th annual Design Automation Conference. pp. 746–749. Cited in

Section 2.1.

Bower, F., Sorin, D. & Cox, L. (2008). The Impact of Dynamically Heterogeneous

Multicore Processors on Thread Scheduling. IEEE Micro-Institute of Electrical and

Electronics Engineers, 28(3), 17–25. Cited in Section 3.

Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M. & Hanra-

han, P. (2004). Brook for GPUs: stream computing on graphics hardware. ACM

Transactions on Graphics. Cited in Sections 2.3.1, 3.2.1.1, and 9.3.1.

218

REFERENCES

Bugnion, E., Devine, S., Govil, K. & Rosenblum, M. (1997). Disco: running commod-

ity operating systems on scalable multiprocessors. ACM Transactions on Computer

Systems, 15(4), 412–447. Cited in Section 3.4.

Burger, R. & Dybvig, R. (1998). An infrastructure for profile-driven dynamic recompi-

lation. In Proceedings of the 1998 International Conference on Computer Languages.

p. 240. Cited in Section 7.4.

Case, R. P. & Padegs, A. (1978). Architecture of the IBM system/370. Communications

of the ACM, 21(1), 73–96. Cited in Section 2.2.

Chandra, P. (1988). Programming the 80387 coprocessor. Byte, 13(3), 207–215. Cited

in Section 2.2.

Chapin, J., Rosenblum, M., Devine, S., Lahiri, T., Teodosiu, D. & Gupta, A. (1995).

Hive: Fault Containment for Shared-Memory Multiprocessors. In Proceedings of the

15th Symposium on Operating Systems Principles (SOSP’95). pp. 12–25. Cited in

Section 3.4.

Charles, J., Jassi, P., Narayan, A., Sadat, A. & Fedorova, A. (2009). Evaluation of the

Intel Core i7 Turbo Boost feature. In IEEE International Symposium on Workload

Characterization. Cited in Section 2.3.2.

Chen, T., Raghavan, R., Dale, J. N. & Iwata, E. (2007). Cell Broadband Engine Archi-

tecture and its First Implementation: A Performance View. IBM Journal of Research

and Development, 51(5), 559–572. Cited in Sections 2.2 and 5.1.

Cho, Y. & Mangione-Smith, W. (2005). A pattern matching coprocessor for network

security. In DAC ’07: Proceedings of the 42nd annual Design Automation Conference.

pp. 234–239. Cited in Section 2.2.

Choi, J., Gupta, M., Serrano, M., Sreedhar, V. & Midkiff, S. (1999). Escape analysis

for Java. Proceedings of the 14th ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, pp. 1–19. Cited in Sections

4.3.2 and 9.3.4.

219

REFERENCES

Coppersmith, D., Johnson, D. & Matyas, S. (1996). Triple DES cipher block chaining

with output feedback masking. In IBM Journal of Research and Development. Vol. 40.

Cited in Section 6.4.3.

Coulson, G., Blair, G., Gomes, A., Joolia, A., Lee, K., Ueyama, J. & Ye, Y. (2003). A

Reflective Middleware-based Approach to Programmable Networking. Proceedings of

2nd Intl. Workshop on Reflective and Adaptive Middleware. Cited in Section 3.2.1.2.

Cox, A. & Fowler, R. (1989). The implementation of a coherent memory abstraction

on a NUMA multiprocessor: experiences with Platinum. ACM SIGOPS Operating

Systems Review, 23(5), 32–44. Cited in Sections 2.3.2, 3.4, and 8.1.

Dagum, L. & Menon, R. (1998). OpenMP: An Industry-Standard API for Shared-

Memory Programming. IEEE Computational Science and Engineering, 5(1), 46–55.

Cited in Sections 3.1, 3.2.1.1, and 4.5.

Dai, J., Huang, B., Li, L. & Harrison, L. (2005). Automatically partitioning packet

processing applications for pipelined architectures. Proceedings of the Conference on

Programming Language Design and Implementation (PLDI’05), pp. 237–248. Cited

in Section 3.2.1.2.

Dean, J. & Ghemawat, S. (2004). MapReduce: Simplified Data Processing on Large

Clusters. In Proceedings of the 3rd Symposium on Operating Systems Design and

Implementation (OSDI’04). Cited in Section 3.2.1.1.

Donaldson, A., Riley, C., Lokhmotov, A. & Cook, A. (2008). Auto-parallelisation of

Sieve C++ programs. Lecture Notes in Computer Science, 4854, 18. Cited in Section

3.2.1.3.

Eichenberger, A., O’Brien, J., O’Brien, K., Wu, P., Chen, T., Oden, P., Prener, D.,

Shepherd, J., So, B., Sura, Z. et al. (2006). Using advanced compiler technology to

exploit the performance of the Cell Broadband Engine architecture. IBM Systems

Journal. Cited in Section 3.2.1.3.

Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G. C., Larus, J. R. & Levi,

S. (2006). Language Support for Fast and Reliable Message Based Communication

in Singularity OS. Proceedings of the EuroSys Conference. Cited in Section 3.2.2.

220

REFERENCES

Feghali, W., Burres, B., Wolrich, G. & Carrigan, D. (2002). Security: Adding Protec-

tion to the Network via the Network Processor. Intel Technology Journal, 6(3), 40–49.

Cited in Section 3.2.1.1.

Flynn, M. (1972). Some computer organizations and their effectiveness. IEEE Trans-

actions on Computers, 21(9), 948–960. Cited in Section 5.3.2.

Foster, I. & Karonis, N. (1998). A grid-enabled MPI: Message passing in heterogeneous

distributed computing systems. In Proceedings of the 1998 ACM/IEEE conference

on Supercomputing. pp. 1–11. Cited in Section 3.1.

Fung, W., Sham, I., Yuan, G. & Aamodt, T. M. (2007). Dynamic Warp Formation and

Scheduling for Efficient GPU Control Flow. IEEE/ACM International Symposium

on Microarchitecture, pp. 407–420. Cited in Section 9.3.1.

Gamsa, B., Krieger, O., Appavoo, J. & Stumm, M. (1999). Tornado: maximizing

locality and concurrency in a shared memory multiprocessor operating system. In

Proceedings of the 3rd Symposium on Operating Systems Design and Implementation

(OSDI’99). pp. 87–100. Cited in Section 3.4.

George, L. & Blume, M. (2003). Taming the IXP network processor. Proceedings of

the Conference on Programming Language Design and Implementation (PLDI’03),

pp. 26–37. Cited in Section 2.2.

Govil, K., Teodosiu, D., Huang, Y. & Rosenblum, M. (2000). Cellular Disco: Re-

source Management using Virtual Clusters on Shared-Memory Multiprocessors. ACM

Transactions on Computer Systems, 18(3), 229–262. Cited in Section 3.4.

Greenstadt, J. (1957). The IBM 709 Computer. In New Computers, Report from the

Manufacturers ACM Conference. pp. 92–98. Cited in Section 2.2.

Gropp, W., Lusk, E. & Skjellum, A. (1994). Using MPI: portable parallel programming

with the message-passing interface. the MIT Press. Cited in Section 3.1.

Gustafson, J. L. (1988). Reevaluating Amdahl’s law. Communications of the ACM,

31(5), 532–533. Cited in Section 2.1.

221

REFERENCES

Harris, T., Marlow, S. & Jones, S. P. (2005). Haskell on a shared-memory multiproces-

sor. In Haskell ’05: Proceedings of the 2005 ACM SIGPLAN workshop on Haskell.

pp. 49–61. Cited in Section 3.1.

Healy, C., Sjodin, M., Rustagi, V. & Whalley, D. (1998). Bounding loop iterations for

timing analysis. In Fourth IEEE Real-Time Technology and Applications Symposium.

pp. 12–21. Cited in Sections 4.3.2 and 9.3.4.

Hewitt, C., Bishop, P. & Steiger, R. (1973). A universal modular actor formalism for

artificial intelligence. In Proceedings of the 3rd International Joint Conference on

Artificial Intelligence (IJCAI’73). pp. 235–245. Cited in Section 3.1.

Hill, M. & Marty, M. (2008). Amdahl’s Law in the Multicore Era. Computer, 41(7), 33–

38. Cited in Section 2.1.

Hiranandani, S., Kennedy, K. & Tseng, C.-W. (1992). Compiling Fortran D for MIMD

distributed-memory machines. Communications of the ACM, 35(8), 66–80. Cited in

Section 3.2.1.2.

Hoare, C. (1978). Communicating sequential processes. Communications of the ACM,

21(8), 677. Cited in Section 3.1.

Hofstee, H. (2005). Power efficient processor architecture and the Cell processor. 11th

International Symposium on High-Performance Computer Architecture (HPCA-11),

pp. 258–262. Cited in Sections 2.2 and 5.1.

Hunt, G. C. & Larus, J. R. (2007). Singularity: rethinking the software stack. SIGOPS

Oper. Syst. Rev. Cited in Section 3.2.2.

Ipek, E., Kirman, M., Kirman, N. & Martinez, J. F. (2007). Core Fusion: Accommo-

dating Software Diversity in Chip Multiprocessors. In ISCA ’07: Proceedings of the

International Symposium on Computer Architecture. pp. 186–197. Cited in Section

2.3.2.

Kapasi, U., Rixner, S., Dally, W., Khailany, B., Ahn, J., Mattson, P. & Owens, J.

(2003). Programmable Stream Processors. IEEE Computer, 36(8), 54–62. Cited in

Sections 3.2.1.1 and 4.2.2.

222

REFERENCES

Kelley, M., Winner, S. & Gould, K. (1992). A scalable hardware render accelerator using

a modified scanline algorithm. Proceedings of the Conference on Computer Graphics

and Interactive Techniques (SIGGRAPH’92), 26(2), 241–248. Cited in Section 2.3.1.

Keltcher, C., McGrath, K., Ahmed, A. & Conway, P. (2003). The AMD Opteron pro-

cessor for multiprocessor servers. IEEE Micro, 23(2), 66–76. Cited in Section 8.1.

Kotzmann, T., Wimmer, C., Mössenböck, H., Rodriguez, T., Russell, K. & Cox, D.

(2008). Design of the Java HotSpotTM client compiler for Java 6. ACM Transactions

Architecture Code Optimization, 5(1), 1–32. Cited in Section 5.6.

Krintz, C. & Calder, B. (2001). Using annotations to reduce dynamic optimization

time. In Proceedings of the Conference on Programming Language Design and Im-

plementation (PLDI ’01). pp. 156–167. Cited in Section 1.

Krishnaswamy, D., Stevens, R., Hasbun, R., Revilla, J. & Hagan, C. (2003). The

Intel PXA800F wireless Internet-on-a-chip architecture and design. In IEEE Custom

Integrated Circuits. Cited in Section 2.2.

Kumar, R., Farkas, K. I., Jouppi, N. P., Ranganathan, P. & Tullsen, D. M. (2003).

Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Processor

Power Reduction. In MICRO 36: Proceedings of the 36th annual IEEE/ACM Inter-

national Symposium on Microarchitecture. Cited in Sections 2.2 and 3.3.

Kumar, R., Tullsen, D. M., Jouppi, N. P. & Ranganathan, P. (2005a). Heterogeneous

chip multiprocessors. IEEE Computer, 38(11), 32–38. Cited in Section 2.2.

Kumar, R., Tullsen, D. M., Ranganathan, P., Jouppi, N. P. & Farkas, K. I. (2004).

Single-ISA Heterogeneous Multi-Core Architectures for Multithreaded Workload Per-

formance. SIGARCH Computer Architecture News, 32(2), 64. Cited in Section 3.3.

Kumar, R., Zyuban, V. & Tullsen, D. (2005b). Interconnections in multi-core architec-

tures: Understanding mechanisms, overheads and scaling. In Proceedings of the 32nd

International Symposium on Computer Architecture. pp. 408–419. Cited in Section

5.6.

223

REFERENCES

Lattner, C. & Adve, V. (2004). LLVM: A compilation framework for lifelong program

analysis & transformation. In Proceedings of the International Symposium on Code

Generation and Optimization. Cited in Section 3.2.1.1.

Laudon, J., Lenoski, D., Syst, S. & View, M. (1997). System overview of the SGI Origin

200/2000 product line. In Proceedings of IEEE Compcon’97. pp. 150–156. Cited in

Sections 2.3.2 and 8.1.

Li, T., Baumberger, D., Koufaty, D. A. & Hahn, S. (2007). Efficient Operating System

Scheduling for Performance-Asymmetric Multi-Core Architectures. In Proceedings of

the Conference on Supercomputing (SC’07). pp. 1–11. Cited in Section 3.3.

Liao, S.-W., Diwan, A., Bosch, Jr., R. P., Ghuloum, A. & Lam, M. S. (1999). SUIF

Explorer: an interactive and interprocedural parallelizer. In Proceedings of the 7th

Symposium on Principles and Practice of Parallel Programming (PPoPP’99). pp. 37–

48. Cited in Section 3.2.1.2.

Liedtke, J. (1995). On µ-kernel construction. In Proceeding of 15th ACM Symposium

on Operating System Principles (SOSP’95). pp. 237–250. Cited in Section 3.2.2.

Linderman, M. D., Collins, J. D., Wang, H. & Meng, T. H. (2008). Merge: a pro-

gramming model for heterogeneous multi-core systems. SIGOPS Operating Systems

Review, 42(2), 287–296. Cited in Section 3.2.1.1.

Lindholm, E., Kligard, M. J. & Moreton, H. (2001). A user-programmable vertex en-

gine. In Proceedings of the Conference on Computer Graphics and Interactive Tech-

niques (SIGGRAPH’01). pp. 149–158. Cited in Section 2.3.1.

Lindholm, E., Nickolls, J., Oberman, S. & Montrym, J. (2008). NVIDIA Tesla: A

unified graphics and computing architecture. IEEE Micro, pp. 39–55. Cited in Section

2.3.1.

Liu, Y., Jones, H., Vaidya, S., Perrone, M., Tydlitát, B. & Nanda, A. (2007). Speech

Recognition Systems on the Cell Broadband Engine Processor. IBM Journal of Re-

search and Development, 51(5), 583–591. Cited in Section 3.2.1.3.

224

REFERENCES

Manson, J., Pugh, W. & Adve, S. V. (2005). The Java Memory Model. In Proceedings of

the 32nd Symposium on Principles of Programming Languages (POPL’05). pp. 378–

391. Cited in Sections 5.3.3, 5.3.3.3, and 5.3.3.4.

Mark, W., Glanville, R., Akeley, K. & Kilgard, M. (2003). Cg: A system for program-

ming graphics hardware in a C-like language. In Proceedings of the Conference on

Computer Graphics and Interactive Techniques (SIGGRAPH’03). p. 907. Cited in

Section 3.2.1.1.

Mathew, J. A., Coddington, P. D. & Hawick, K. A. (1999). Analysis and development

of Java Grande benchmarks. In JAVA ’99: Proceedings of the ACM 1999 conference

on Java Grande. ACM. pp. 72–80. Cited in Section 5.5.2.

Mattson, T. G., Van der Wijngaart, R. & Frumkin, M. (2008). Programming the Intel

80-core network-on-a-chip terascale processor. In Proceedings of the Conference on

Supercomputing (SC’08). pp. 1–11. Cited in Section 2.3.2.

McCool, M. (2006). Data-Parallel Programming on the Cell BE and the GPU using

the RapidMind Development Platform. In GSPx Multicore Applications Conference.

Cited in Section 3.2.1.1.

McCool, M. & Du Toit, S. (2004). Metaprogramming GPUs with Sh. AK Peters, Ltd.

Cited in Section 3.2.1.1.

McIlroy, R. & Hodson, O. (2007). Subordinate Kernels: Application Offloading in

Asymmetric Multi-Processor Systems. In Workshop on Operating System Support

for Heterogeneous Multi-Core Architectures. Cited in Section 1.3.

McIlroy, R. & Sventek, J. (2009a). Abstracting Heterogeneous Multi-Core Architec-

tures using a Code Annotation Aware Runtime System (Poster). In The EuroSys

conference (EuroSys’09). Cited in Section 1.3.

McIlroy, R. & Sventek, J. (2009b). Hera-JVM: Abstracting Processor Heterogeneity Be-

hind a Virtual Machine. In Workshop on Hot Topics in Operating Systems (HotOS).

Cited in Section 1.3.

225

REFERENCES

McIlroy, R., Dickman, P. & Sventek, J. (2008). Efficient Dynamic Heap Allocation of

Scratch-Pad Memory. In Proceedings of the International Symposium on Memory

Management. Cited in Sections 1.3 and 5.3.3.2.

Microsoft (2002). ‘DirectX 9.0 graphics’. Available online at http://msdn.microsoft.

com/directx. Cited in Section 3.2.1.1.

Mogul, J. C., Mudigonda, J., Binkert, N., Ranganathan, P. & Talwar, V. (2008). Using

Asymmetric Single-ISA CMPs to Save Energy on Operating Systems. IEEE Micro,

28(3), 26–41. Cited in Section 3.3.

Montrym, J. & Moreton, H. (2005). The Geforce 6800. IEEE Micro, pp. 41–51. Cited

in Section 2.3.1.

Morris, R., Kohler, E., Jannotti, J. & Kaashoek, M. F. (1999). The Click modu-

lar router. In Proceeding of 17th ACM Symposium on Operating System Principles

(SOSP’99). Cited in Section 3.2.1.2.

Motorola (2001). ‘C-5 Network Processor Architecture Guide’. Cited in Section 2.2.

Munshi, A. (2009). The OpenCL Specification. Khronos OpenCL Working Group. Cited

in Sections 2.3.1, 3.2.1.1, 4.5, and 9.3.1.

Nightingale, E., Hodson, O., McIlroy, R., Hawblitzel, C. & Hunt, G. (2009). Helios: Het-

erogeneous multiprocessing with satellite kernels. In Proceedings of the 22nd Sym-

posium on Operating Systems Principles (SOSP’09). Cited in Sections 1.3, 3.2.2,

and 3.4.

Noll, A., Gal, A. & Franz, M. (2008). CellVM: A Homogeneous Virtual Machine Run-

time System for a Heterogeneous Single-Chip Multiprocessor. In Workshop on Cell

Systems and Applications. Cited in Sections 3.2.2, 5.2, and 5.3.4.4.

Nvidia (2009a). ‘Nvidia Fermi Compute Architecture’. White Paper. Cited in Section

2.3.1.

Nvidia (2009b). ‘Nvidia Tegra: Visual computing for mobile devices’. available online at

http://www.nvidia.com/page/handheld.html. Cited in Sections 2.3.1 and 9.3.1.

226

http://msdn.microsoft.com/directx
http://msdn.microsoft.com/directx
http://www.nvidia.com/page/handheld.html

REFERENCES

Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Micheloud, S., Mihaylov,

N., Schinz, M., Stenman, E. & Zenger, M. (2004). An overview of the Scala program-

ming language. Technical Report LAMP-REPORT-2006-001. École Polytechnique

Fédérale de Lausanne (EPFL). Cited in Section 3.1.

Olukotun, K., Nayfeh, B. A., Hammond, L., Wilson, K. & Chang, K. (1996). The case

for a single-chip multiprocessor. SIGPLAN Not., 31(9), 2–11. Cited in Section 2.

Papakipos, M. (2006). The PeakStream Platform. In LACSI Workshop on Heteroge-

neous Computing. Cited in Section 3.2.1.1.

Peercy, M. S., Olano, M., Airey, J. & Ungar, P. J. (2000). Interactive multi-pass pro-

grammable shading. In Proceedings of the Conference on Computer Graphics and

Interactive Techniques (SIGGRAPH’00). pp. 425–432. Cited in Section 3.2.1.1.

Penry, D. A. (2009). Multicore diversity: a software developer’s nightmare. SIGOPS

Operating Systems Review, 43(2), 100–101. Cited in Section 3.

Perez, J., Bellens, P., Badia, R. & Labarta, J. (2007). CellSs: Making it easier to

program the Cell Broadband Engine processor. IBM Journal of Research and Devel-

opment, 51(5), 593–604. Cited in Section 3.2.1.3.

Peyton Jones, S., Gordon, A. & Finne, S. (1996). Concurrent Haskell. In Proceedings of

the 23rd Symposium on Principles of Programming Languages (POPL’96). pp. 295–

308. Cited in Section 3.1.

Pham, D., Asano, S., Bolliger, M., Day, M., Hofstee, H., Johns, C., Kahle, J.,

Kameyama, A., Keaty, J., Masubuchi, Y. et al. (2005). The design and implementa-

tion of a first-generation Cell processor. IEEE Solid-State Circuits Conference. Cited

in Sections 2.2 and 5.1.

Rettberg, R. & Thomas, R. (1986). Contention is no obstacle to shared-memory multi-

processing. Communications of the ACM, 29(12), 1202–1212. Cited in Sections 2.3.2

and 8.1.

Roscoe, A. W. & Hoare, C. A. R. (1988). The laws of occam programming. Theoretical

Computing Science, 60(2), 177–229. Cited in Section 3.1.

227

REFERENCES

Ross, P. (2008). Why CPU Frequency Stalled. IEEE Spectrum, 45(4), 72–72. Cited in

Section 2.

Ryoo, S., Rodrigues, C., Baghsorkhi, S., Stone, S., Kirk, D. & Wen-Mei, H. (2008).

Optimization principles and application performance evaluation of a multithreaded

GPU using CUDA. In Proceedings of the 13th Symposium on Principles and Practice

of Parallel Programming (PPoPP’058). pp. 73–82. Cited in Sections 2.3.1, 3.2.1.1,

and 9.3.1.

Saha, B., Adl-Tabatabai, A., Ghuloum, A., Rajagopalan, M., Hudson, R., Petersen,

L., Menon, V., Murphy, B., Shpeisman, T., Sprangle, E. et al. (2007). Enabling

Scalability and Performance in a Large Scale CMP Environment. In Proceedings of

the EuroSys Conference. pp. 73–86. Cited in Section 3.2.2.

Schüpbach, A., Peter, S., Baumann, A., Roscoe, T., Barham, P., Harris, T. & Isaacs,

R. (2008). Embracing diversity in the Barrelfish manycore operating system. In Pro-

ceedings of the Workshop on Managed Many-Core Systems (MMCS), Boston, MA,

USA, June. Cited in Sections 3.2.2 and 4.5.

Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junkins,

S., Lake, A., Sugerman, J., Cavin, R., Espasa, R., Grochowski, E., Juan, T. &

Hanrahan, P. (2008). Larrabee: a many-core x86 architecture for visual computing.

In Proceedings of the Conference on Computer Graphics and Interactive Techniques

(SIGGRAPH’08). pp. 1–15. Cited in Sections 2.3.1 and 9.3.1.

Shah, N. (2001). Understanding Network Processors. Master’s thesis, University of

California, Berkeley, Sep. Cited in Section 2.2.

Shah, N., Plishker, W. & Keutzer, K. (2003). NP-Click: A Programming Model for

the Intel IXP1200. 2nd Workshop on Network Processors (NP-2). Cited in Section

3.2.1.2.

Shelepov, D., Saez Alcaide, J. C., Jeffery, S., Fedorova, A., Perez, N., Huang, Z. F.,

Blagodurov, S. & Kumar, V. (2009). HASS: A Scheduler for Heterogeneous Multicore

Systems. SIGOPS Operating Systems Review, 43(2), 66–75. Cited in Section 3.3.

228

REFERENCES

Sherwood, T., Perelman, E. & Calder, B. (2001). Basic block distribution analysis to

find periodic behavior and simulation points in applications. In International Con-

ference on Parallel Architectures and Compilation Techniques. pp. 3–14. Cited in

Section 7.1.1.

Shiv, K., Chow, K., Wang, Y. & Petrochenko, D. (2009). SPECjvm2008 Performance

Characterization. In Proceedings of the 2009 SPEC Benchmark Workshop on Com-

puter Performance Evaluation and Benchmarking. Springer. pp. 17–35. Cited in

Section 5.5.3.

Smith, A. J. (1978). Sequential program prefetching in memory hierarchies. Computer,

11(12), 7–21. Cited in Section 9.3.3.

Smith, A. J. (1982). Cache memories. ACM Computing Surveys (CSUR), 14(3), 473–

530. Cited in Section 4.2.2.

Smith, L., Bull, J. & Obdrizalek, J. (2001). A parallel Java Grande benchmark suite. In

Proceedings of the Conference on Supercomputing (SC’01). pp. 6–6. Cited in Section

5.5.3.

Sondag, T. & Rajan, H. (2009). Phase-guided thread-to-core assignment for improved

utilization of performance-asymmetric multi-core processors. In IWMSE ’09: Pro-

ceedings of the 2nd International Workshop on Multicore Software Engineering. Cited

in Section 3.3.

Sondag, T., Krishnamurthy, V. & Rajan, H. (2007). Predictive thread-to-core assign-

ment on a heterogeneous multi-core processor. In Proceedings of the 4th workshop on

Programming Languages and Operating Systems. Cited in Section 3.3.

Strong, R., Mudigonda, J., Mogul, J. C., Binkert, N. & Tullsen, D. (2009). Fast switch-

ing of threads between cores. SIGOPS Operating Systems Review, 43(2), 35–45. Cited

in Section 3.3.

Tarditi, D., Puri, S. & Oglesby, J. (2006). Accelerator: Using Data Parallelism to

Program GPUs for General-Purpose Uses. Technical Report MSR-TR-2005-184. Mi-

crosoft Research. Cited in Section 3.2.1.1.

229

REFERENCES

Thornton, J. E. (1970). Design of a Computer—The Control Data 6600. Scott Foresman

& Co. Cited in Section 2.2.

Trinder, P., Barry Jr, E., Davis, M., Hammond, K., Junaidu, S., Klusik, U., Loidl, H.

& Jones, S. (1999). GpH: An Architecture-independent Functional Language. IEEE

Transactions on Software Engineering. Cited in Section 3.1.

Vangal, S., Howard, J., Ruhl, G., Dighe, S., Wilson, H., Tschanz, J., Finan, D., Singh,

A., Jacob, T., Jain, S., Erraguntla, V., Roberts, C., Hoskote, Y., Borkar, N. &

Borkar, S. (2008). An 80-Tile Sub-100-W TeraFLOPS Processor in 65-nm CMOS.

IEEE Journal of Solid-State Circuits, 43(1), 29–41. Cited in Section 2.3.2.

Vaughn-Nichols, S. J. (2009). Vendors draw up a new graphics-hardware approach.

IEEE Computer, 42, 11–13. Cited in Section 2.3.1.

Wall, D. W. (1991). Limits of instruction-level parallelism. SIGARCH Computer Ar-

chitecture News, 19(2), 176–188. Cited in Section 2.

Wang, P., Collins, J., Chinya, G., Jiang, H., Tian, X., Girkar, M., Yang, N., Lueh,

G. & Wang, H. (2007). EXOCHI: Architecture and Programming Environment for a

Heterogeneous Multi-Core Multithreaded System. In Proceedings of the Conference

on Programming Language Design and Implementation (PLDI’07). p. 166. Cited in

Section 3.2.1.1.

Welch, T. (1984). A technique for high-performance data compression. Computer,

17(6), 8–19. Cited in Section 6.4.3.

Wentzlaff, D., Griffin, P., Hoffmann, H., Bao, L., Edwards, B., Ramey, C., Mattina, M.,

Miao, C.-C., Brown, J. & Agarwal, A. (2007). On-chip interconnection architecture

of the tile processor. IEEE Micro, 27(5), 15–31. Cited in Section 2.3.2.

Woo, M., Neider, J., Davis, T. & Shreiner, D. (1999). OpenGL Programming Guide:

The Official Guide to Learning OpenGL. Addison-Wesley Longman Publishing Co.,

Inc.. Boston, MA, USA. Cited in Section 3.2.1.1.

Yee, B. (1994). Using Secure Coprocessors. PhD thesis. Carnegie-Mellon University.

Carnegie-Mellon University. Cited in Section 2.2.

230

	1 Introduction
	1.1 Thesis Statement
	1.2 Contributions
	1.3 Publications
	1.4 Outline

	2 Heterogeneous Multi-Core Processors
	2.1 The Case for Heterogeneous Multi-Core Architectures
	2.2 The History of Heterogeneous Processors
	2.3 Heterogeneous Processors in Commodity Systems
	2.3.1 Graphics Processing Units as Heterogeneous Cores
	2.3.2 Many-Core CPUs

	2.4 Summary

	3 Related Work
	3.1 Parallel Programming
	3.2 Abstraction of Heterogeneous Programming Environments
	3.2.1 Programming Models and Compilers
	3.2.2 Runtime Systems and Operating Systems

	3.3 Thread Scheduling on HMAs
	3.4 Managing Non-Uniform Memory
	3.5 Summary

	4 Abstracting Heterogeneity using Behaviour Characteristics
	4.1 Aspects of Processor Heterogeneity
	4.1.1 Heterogeneous Processing Resources
	4.1.2 Heterogeneous Memory Hierarchy
	4.1.3 Heterogeneous Inter-Core Communication
	4.1.4 Summary

	4.2 Behaviour Characteristics
	4.2.1 Processing Requirement Characteristics
	4.2.2 Execution Behaviour Characteristics
	4.2.3 Thread Communication Characteristics

	4.3 Tagging Mechanisms
	4.3.1 Explicit Annotations
	4.3.2 Source Code Analysis Tools
	4.3.3 Runtime Monitoring

	4.4 Costing Behaviour
	4.5 Discussion

	5 Hera-JVM: A Runtime System for Heterogeneous Architectures
	5.1 The Cell Processor
	5.2 Hera-JVM Design Decisions
	5.3 Executing Java Code on the SPE Cores
	5.3.1 Overview
	5.3.2 Local Variables and Stack Management
	5.3.3 Software Caching of Heap Objects
	5.3.4 Invocation and Caching of Methods
	5.3.5 Scheduling and Thread Switching
	5.3.6 System Calls and Native Methods

	5.4 Migration between Core Types
	5.4.1 Migration Mechanism
	5.4.2 Scanning a Migrated Thread's Stack

	5.5 Experimental Analysis
	5.5.1 Experimental Setup
	5.5.2 Micro-Benchmarks
	5.5.3 Real World Benchmarks

	5.6 Discussion

	6 Migration Based Upon Behaviour Annotations
	6.1 Maintaining Per-Thread Behaviour Knowledge
	6.1.1 Set of Tracked Behaviour Annotations
	6.1.2 Tracking Thread Behaviour at Runtime

	6.2 A Cost Function-Based Migration Policy
	6.3 Implementing Behaviour Based Thread Migration
	6.3.1 Evaluating a Thread's Cost
	6.3.2 Triggering Thread Migration
	6.3.3 Combining Thread Costing and Migration Triggering

	6.4 Experimental Analysis
	6.4.1 Experimental Setup
	6.4.2 Two Phase Synthetic Benchmark
	6.4.3 XML Parsing Synthetic Benchmark
	6.4.4 Real World Benchmarks

	6.5 Summary

	7 Monitoring Program Behaviour at Runtime
	7.1 Monitoring Execution of Different Bytecode Types
	7.1.1 Scoring Methods
	7.1.2 Monitoring a Thread's Behaviour

	7.2 Migration Decisions
	7.2.1 The Cost Function
	7.2.2 Combining Annotations with Runtime Monitoring
	7.2.3 Triggering Thread Migration

	7.3 Experimental Analysis
	7.3.1 XML Parsing Synthetic Benchmark
	7.3.2 Real World Benchmarks
	7.3.3 Combining Annotations and Runtime Monitoring

	7.4 Summary

	8 Inter-Thread Communication on NUMA Architectures
	8.1 Non-Uniform Memory Access Architectures
	8.2 Abstracting NUMA Node Placement Decisions
	8.3 Scheduling based upon Thread Teams
	8.3.1 Making Hera-JVM NUMA Aware
	8.3.2 Applying a Cost to a Thread's Placement
	8.3.3 Scheduling Threads with Per-Node Costs

	8.4 Experimental Analysis
	8.4.1 Experimental Setup
	8.4.2 Scalability
	8.4.3 Multiple Teams per Thread

	8.5 Summary

	9 Conclusion and Future Work
	9.1 Thesis Statement Revisited
	9.2 Contributions
	9.3 Future Work
	9.3.1 Other Heterogeneous Architectures
	9.3.2 Other Behaviour Characteristics
	9.3.3 Tagging Data with Behaviour Characteristics
	9.3.4 Inferring Behaviour Characteristics Through Static Analysis
	9.3.5 Low-Level Abstraction of HMAs
	9.3.6 Summary

	References

