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Abstract 

Non-linear unsteady aerodynamic effects present major modelling difficuli ics In t lie 

analysis of aeroelastic response and in the subsequent design of appropriýae control- 

lers. As the direct use of the basic fluid mechanic equatIons is still not pract Wid 

for aeroelastic applications, approximate models of t he non-linear unsteady aerod. v- 

namic response are required. A rigorous mathematical framework, that c; in ýiccounl 

for the complex non-linearities and time-history effects of the unstead. v aerodynamic 

response, is provided by the use of functional representations. A recent develop- 

ment, based on functional approximation theory, has provided a new functional 

form; namely, multi-layer functionals. Moreover, the multi-layer functional repres- 

entation for time-invariant, infinite memory systems is shown to be realisable in 

terms of temporal neural networks. 

In this work, a multi-layer functional representation of non-linear motion-induced 

unsteady aerodynamic response is presented. A discrete-time, finite memorY tein- 

poral neural network, in the form of a finite impulse response (FIR) neural net- 

work, is used as a practical realisation of a multi-layer functional. This model 

form permits the identification of parametric input, -output models of the. non-linear 

motion-induced unsteady aerodynamic response. Identification of an appropriate 

FIR. neural network model is facilitated by means of a supervised training proc(,,,. ý, 

using multiple sets of motion-induced unsteady aerodYnainic response. The training 

process is based on a conventional genetic algorithm to optimise the FIR neural net, - 

Nvork architecture. and is combined Nvitli a simplification of the simulated annealing 
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algorithm to update weight and bias values. 

The identification process is used to produce FIR neural network models for two 

types of non-linear unsteady flow regimes. The firsi model rekites, io Nveakly non- 

linear behaviour of the unsteady aerodynamic response for mildly separated flow- 

fields as defined by a semi-empirical model. The second model relates to non-linear 

unsteady aerodynamic response in the transonic regime as defined by a CFD code 

based on solution of the Euler equations. Generally, the I raining process presents, 

a satisfactory performance in both problems showing that the combinat ion of ge- 

netic algorithms and temporal neural networks provides, a suitable framework for 

the non-linear unsteady aerodynamic response modelling. The approach is shown 

to furnish a satisfactory generalisation property to different motion histories at dif- 

ferent Mach numbers, considering that only limited training set datýi is presented 

during the identification process. 
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Nomenclature 

CL(t) unsteady aerodynamic lift force coefficient response at time t-, 

C,,,,,, (t) unsteady aerodynamic pitch moment coefficient response at, 25% chord length 

at time t; 

CN (t) 
unsteady aerodynamic normal force coefficient response at time t, 

F(t) generalised unsteady aerodynamic force response at time t; 

7] indicial generalised force response at time t per unit step change in u occuring 

at timeT (cf. Equation 1.7); 

F(t) generalised unsteady aerodynamic force response vector at time t (cf. Equa- 

tion 1.4); 

Hi Hermite polynomials of ith 
-degree; 

I unit hypercube; 

L total number of time samples per training set-, 

-11 Mach number; 

number of input-output, training set s, 

A'if chromosome flag indicat, ing whether the neuron I" exists or not (cf. Figure 3.3): 
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probability for the mutation of a neuron value (existent or non-existent): 

Pt probability for the mutation of a time-delay value; 

Tjj memory span of the synapse i belonging to the neuron 

U set of functions in a space of infinite dimension C[PI, P21 (cf. InequalitY 2.3); 

U,, freestream velocity; 

Vi Laguerre functions of Z"-order; 

a and b scaling coefficients for the selection operator (cf. Table 3.1)-, 

c number of times the best individual is expected to be selected for reproduction-, 

dk(n) desired output of training set k at discrete-time n; 

fitness function (cf. Equation 3.1); 

hi unit impulse response of process unit i; 

h jý 
, Volterra kernel of ith 

-order (cf. Equation 1.9); 

hji impulse response of neuron j due to excitation applied to synapse i.; 

j, f, in, 1), q integer valued auxiliary constants, 

n discrete-time step; 

n normal surface vector operator (cf. Equation 1.4)-, 

/) (O(x. t)) pressure distribution (cf. Equation 1-4): 

t time-, 

ul and a-2 generalised motion histories used in the formation of the indicial response 

(cf. Figure 1.4): 

ix 



ut scalar generalised coordinate or displacement history: 

u(t) instantaneuous boundary generalised motion input vector at time t: 

ut generalised coordinate or displacement history vector; 

vj activation potential of neuron j; 

wji(-Fji) weight value of synapse i belonging to neuron j corresponding to the time- 

delay Tji; 

wji weight vector of synapse i belonging to neuron J*-, 

xi(t) excitation applied to synapse z at time t; 

x,, function in the set of real valued continuous functions with domain I (cf. Equa- 

tion 2.5); 

x vector of the spatial coordinates (cf. Equation 1.4); 

y(t) dynamic system output response at, time t; 

Q flow domains; 

ce(t) angle of attack value at time t; 

cet angle of attack history; 

13 perturbation constant used to update weight and bias values (cf. Equation 3.4); 

6u virtual generalised displacement; 

6*11' virtual work (cf. Equation 1.3): 

E positive real valued constant; 

( real vAued constant; 

x 



77 auxiliary variable running in i he unit hypercube I (cf. Equation 2.05); 

Oi bias values of neuron z: 

p function in the set of functions of bounded variat ion on the unit li. ypercube I 

(cf. Equation 2.5)-, 

ý auxiliary time variable running form the inifial time instant to time hisi ýint, T: 

T arbitrary time instant; 

Tj number of time-delay units of the finite memory filter in synapse i helonging i 

to the neuron j; 

O(x, t) vector of the spatio-temporal flow state variables (cf. Equat ion 1-1); 

ýp activation function of a neuron defined as a non-constant, bounded, monotone- 

increasing continuous function (for example, a sigmoidal function)-, 

linear affine functional representation (cf. Equation 2.4); 

B boundary operator (cf. Equation 1.2)-, 

.F 
functional representation: 

,C linear functional representation; 

M, F multi-layer functional representation (cf. Equation 2.6): 

Ar non-linear partial differential operator; 

U boundary displacement function; 

OQ flow boundaries: 

OQ,,; boundaries of the aerod. viiamic surface: 

xi 



transpose matrix operation; 

I 
-I norm operator. 

Acronyms 

CFD Computational Fluid Dynamics; 

FIR Finite Impulse Response; 

NACA National Advisory Committe of Aeronautics. 
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Chapter 1 

Introduction 

Modelling Unsteady Aerodynamic Behaviour 
in Aeroelastic Applications 

Modelling unsteady aerodynamic behaviour presents a significant challenge for the 

prediction and control of adverse aeroelastic phenomena. The earliest literature 

on aeroelasticity: for example, Scalan & Rosenbaum [1951], Bisplinghoff k Ashle. v 

[1962], Dowell et al. [1989], Fung [1993], and Bisplinghoff et al. [1996], incorporated 

unsteady aerodynamic models based, primarily, on linear potential theory. Linear- 

ised models of this kind have proved satisfactory, mainly because in many pract ical 

problems, the unsteady flowfield is adequately described by small perturbations of 

a uniform, inviscid, and irrotational. freestream. The fundamental flow condit ions, 

that can be described by linear theory, and the limitations of linearked aerodynamic 

models for the prediction and control of aeroelastic phenomena such as divergence. 

flutter, and gust response, are well understood from a fluid dynamics point of vi(m-. 

With the enlargement of flight operational conditions in modern aviat ion, ana- 

lysis of aeroelastic problems can no longer neglect non-linear effects for describing 

unsteady aerodynamic behaviour (Dowell k Ilgamov, 1988 and Dowell, 1993). In- 

I 



CHAPTERI 2 

deed, complex non-linear effects are constantly present in modern aircraft flight 

regimes: for example, dynamic stall on helicopter blades. and excursion of sliock 

waves over aircraft manoeuvring at transonic speeds. 

Non-linear effects are difficult to predict or model. whatever the dynamic system 

in question. For unsteady aerodynamic modelling, the non-linear flow effect -, of 

interest are mostly due to separated flows and compressibility effects leading to i he 

appearance and dynamic excursion of shock waves. Their modelling is part icularlY 

difficult because of the lack of complete understanding on some physical aspects of 

unsteady flows; for example, separation and turbulence mechanisms. Surve. vs on 

physical and modelling aspects of unsteady flow effects can be found in the works 

by McCroskey [1977,1982], Tijdeman & Seebass [1980], Ericsson & Reding [1987] 

and Mabey [1989]. 

For aeroelastic applications, the ideal and, perhaps, most general aero-st, ruct ural 

model would be based on solutions of the non-linear fluid mechanics equat ions, 

which considers unsteady, compressibility and viscous effects, simultaneously wit h 

the solution of the equations of motion. The instantaneous states, which are gen- 

erated by each of the corresponding equations, would be exchanged and the global 

simultaneous solution would produce both aerodynamic response and structural 

motion histories, which depend on the given initial conditions. Figure 1.1 shows an 

illustration for this general approach to aeroelastic modelling. 

The problem in applying the general aeroelastic model. as represented in Fig- 

ure 1.1, is mainly related to the unsteady aerodynamic model in use. Solutions 

to the non-linear fluid mechanics equations have been the focus of a great amount 

of research effort. For practical applications, however, solutions of the general fluid 

mechanics equations can usually be attained only by means of numerical I echniques. 

or computational fluid dynamics (CFD) methods (Edward k Thomas, 1989 and 

Anderson, 1991), fluit normally demand extensive comput at ions. These metho(i -S 
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r----------------------- 

General 
Fluid Mechanics Equations Aerodynamic 

Response instantaneous 
ýa instantaneous forces I 

displacements 
I and Cd tions, and moments 

velocities 

w Equations of Motion 
Motion 
History 

L ----------------------- Aeroelastic Model 

Figure LI: Representation of a general aeroelastic model. 

3 

encompass any numerical technique for specific fluid mechanics applications. For 

instance, finite-difference, finite volume, and finite element techniques are frequentlY 

used in numerical solutions in fluid mechanics applications. 

Limitations of CFD methods are basically the ones concerning the great amount, 

of computations required. Consequently, CFD methods are still not appropriate 

for preliminary aeroelastic stability analysis and control design. Nevertheless. with 

the fast developments in computing and numerical techniques, CFD methods nia. y 

be widely accessible in the near future, helping the convenient direct manipulation 

of full), non-linear fluid mechanics equations for aeroelastic analysis and control 

design. Alternatives for practical unsteady aerodynamic models to applications in 

aeroelasticity are, therefore, justified. 

Alternative models of non-linear unsteady aerodynamics for aeroelastic applica- 

tions have been achieved on the basis of some essential assumpt ions. Primarily. in 

aeroelastic models. the decoupling between the fluid mechanics equations and the 

equations of inotion (cf. Figure 1.1) is an assumption that eliminates the need for 

simultaneous solution of the combined aero-st, ructural set of equations. Therefore, 

by this premise the unsteady aerodynamic model 1,, det ermined in isolation of the 
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physical laws governing the structural motion. 

4 

An intrinsic element of this decoupling process is that aiiy alternative mist eady 

aerodynamic response model should account for the spatio-temporal behaviour of 

the internal aerodynamic states. For example, the decoupled uwsteady inviscid fluid 

dynamic equations are described by the following symbolic representation, 

ýQ 

uoo 

MMMMON- 

subject to 

I)OS 

ao(xl t) 
- at t)) in Q, t>0 

B (0 (x, t), u(t» =0 on 09s 

and an appropriate set of initial conditions, where, O(x, t) represents a vector of the 

spatio-temporal flow state variables, x is the vector of the spatial coordinates, 

is a non-linear partial differential operator, Q determines the flow domains of the 

problem, (9Q is the flow boundaries, OQs represents the boundaries of the acrody- 

namic surface, B represents a boundary operator, and u(t) is the instantaiieuous 

boundary generalised motion input vector. 

By assuming boundary motions of the form U(x, u(t)), such that 1 lie virtual 

work, 6*11', is defined by, 

P1V= 6u'- F (t) 
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then the generalised unsteady aerodynamic force respon.,, e vector. F(t) is giveii t: ýv 

the expression, 

F(t) -s 
(OU(X. U(t»)T 

n (-p (0 (x. t») da9s (1.4) 
lom 

c9 U, (t) 

where p is the pressure distribution described as a non-linear function of t he inst ant - 

aneous spatio-temporal flow variables and modified bN- the normal surface vect or 

operator n. 

The basic assumption for unsteady aerodynamic models is that the influence of 

the implicit time-delays on pressure variations introduced by the sj)atio-temporal 

propagation and convection of flow variables can be represented hY the motion his- 

tory alone. Applying the principles of dynamic systems Owory, unsteady aero- 

dynamic models can be obtained from mathematical laws so tliat, the generalised 

aerodynamic force response vector, F(t), can be represented as a non-linear func- 

tional, -F, of this generalised coordinate or displacement history, ut, illustrated in 

Figure 1.2 and described as, 

F(t) = F[ut] 

Non-Linear 
Dynamic F(t) 
System 

Figure 1.2: Schematic of dynamic systems. 

(1, -. )) 

Therefore. the functional represent at ion in Equation I.., -) bet ween unsl eadv aero- 

dynamic response and motion history implicitly accounts for the effects of internal 
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flow states dynamics. Although this assumption leads to an exact funci ional 

entation of the linear unsteady aerodynamic response. for the non-finear case. tliiý, 

approach can only be used as an approximation. 

Formal mathematical approaches to determine the functional relat ionship of the 

hereditary behaviour of unsteady aerodynamic responses. are originAlY due to I he 

use of the superposition principle over transient responses to step changes, namely, 

indicial responses (Tobak & Pearson, 1964 and Etkin & Reid, 1996). This approach. 

which provides exact representation of the linear unsteady aerodynamic behaviour, 

is categorised as a functional due to its dependence on the complete (or partial) 

motion histories. 

Viewing extensions to non-linear unsteady aerodynamic response functional,,, To- 

bak and co-workers (Tobak & Pearson, 1964; Tobak k, Schiff, 1978,1981 and TObak 

& Chapman, 1985) have proposed the indicial response functions to be reformulate(] 

as functionals of the motion histories. The result, after applying a generalisation of 

the superposition principle, is the non-linear unsteady aerodynamic response func. - 

tional. However, practical use of the resulting complex integral equations is only 

permitted by simplifications as proposed by Tobak & Schiff [1978,1981] and Jen- 

kins [1991]; for example, by replacing the mathematical description of the mot ion 

history by its Taylor series expansion, or by assuming a limited dependence on the 

motion past values. Other functional forms; for instance, the V'01terra series (Silx-a. 

1993a, 1993b) also provide appropriate frameworks to the production of non-linear 

unsteady aerodynamic functionals. 

Semi-empirical methods, or phenomenological models, comprise a class of aero- 

dynamic models based on the premise of modelling unsteady flow responso by con- 

sidering its functional relationship Nvith respect to the motion histories. Indeed. most 

of t he knowledge on unst cady flow behaviour is due to experimental work, ýtnd hasic- 

ally, serni-empirical models use. the I to establish from thesc, experiments 
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Incorporates 
spatio-temporal 
flow variables 

Non-Linear 
Unsteady Aerodynamics 

Mathematical Models 

EXACT MODEL 

I Fluid Mechanics Equations I 

Aerodynamic response 
represented by the 

motion historv alone 

APPROXIMATE MODELS 

non-linear, Semi-Empirical Functional 
partial differential Mediods Approximation 

equations 
phenomenological non-linear indicial response CFD 

Methods models Volterra series 

Figure 1.3: Mathematical approaches to non-linear unsteady aerodyimmic model- 
ling. 

a mathematical and logic formulation of the events that determine the unsteady 

aerodynamic response over a range of incidence motions and flow regimes. The 

works by Beddoes [1976,1982a, 1982b], Tran & Petot [19811, Leishman & Beddoes 

[1986], and Mahajan et al. [1993], are examples of contributions to semi-empirical 

modelling. The nature of semi-empirical methods facilitates their incorporation into 

aeroelastic stability and control design. In addition, semi-empirical methods have 

the advantage of being computationally fast. Nevertheless., semi-empirical models 

need extensive, specific and precise experimental data. There is also the problem of 

correlating this data, with mathematical and logic formulations. 

summary of the mathematical approaches for unsteady aerodynamic model- 

ling is depicted in Figure 1.3. As functional theory provides a rigorous mai hernatical 

framework for non-linear systems modelling, this suggests t, hat a suitable approx- 

imat ion of non-linear unst eady aerodynamic models should consider funct ional for- 

millalions. 
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1.2 Functional Approximation of Non-Linear Un- 

steady Aerodynamic Response 

The relevance of the functional concept to unsteady aerodynamics is evident in 

the context of modelling non-linear time-invariant hereditary systems. Functional 

approximation furnishes an appropriate mathematical framework to model the re- 

lationship between unsteady aerodynamic responses and motion history effecl -; 

A coherent modelling approach towards a general non-linear unsteady aerod. v- 

namic response functional has been followed by Tobak and co-workers: Tobak k 

Pearson [1964], Tobak & Schiff [1978,19811 and Tobak & Chapman [1985]. For ex- 

ample, Tobak assumes the (scalar) unsteady generalised aerodynamic response, F(t), 

as a functional, T, of the (scalar) generalised motion history. Ut : Ut(T) - U(t + T), 

-oc <T<0; that is, 

F(t) -- F[ut] (1.6) 

The unsteady aerodynamic response in Equation 1.6 can be achieved by su- 

perposition of indicial response functions (Tobak & Pearson, 1964) to produce a 

non-linear functional form. The methodology can be generalised by assuming the 

development of non-linear unsteady aerodynamic functionals in which the indicial 

function is replaced by a functional. This allows the indicial response to be free from 

linear assumptions, but still depend on past values of the motion history. Here, the 

indicial response to a step change is established by the difference between two mo- 

tion histories. that are identical up to a certain time, NN-lien a different step value i.,. ) 

applied in each case. Figure 1.4 illustrates the formation of the non-linear indicial 

response, assuming the case of non-linear unsteady aerodynamic force respon,, e 

to variations in the generalised motion u(t). 

The indicial response is formed by considering two different general"'e(I motions 
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U 

W 

t 
I 

F 

F(t) 

t 
I 

Figure 1A Representation of non-linear indicial response formation. 
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u(ý) up to time T, for 0<ý<T. At time T. each case assumes a different motion 

value, ul andU2, that remains constant for t >T. The resulting aerodynamic force 

histories, in each case, differ only for t>T, and the difference AF(t) (linear or 

non-linear) can be determined. Then, the non-linear indicial T-esponse is the limit,, 

for Au approaching zero, of the ratio 
AF(t, 7-). that is, Au I 

lim 
AF 

(t, 7-) = F� [u(ý); t, 7-] 
AU->O Au (1. -0 

By applying a generalisation of the superposition principle, integral forms for 

the aerodynamic force response are achieved. Therefore, by assuming Otal the non- 

linear indicial responses must exist and be unique for all values of their arguments 
(ý > T), the resulting non-linear unsteady aerodynamic force at time t is given bY 

the following integral form: 

Iý-(O) + F,, T] 
d 

11(7-)dT 
fo 

(I-, - 
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The assumption of uniqueness of the indicial responses implies the exclusion of 

all cases ývhere discontinuities in the functional response occur, for example. un- 

steady aerodynamic response in separated flowfields. In this case. the di,, -,, (-ontinuitY 

is characterised by the replacement of an initially unstable state I)Y a new , table 

equilibrium state, resulting in the non-uniqueness of the indicial response. Tobak k 

Chapman [1985] present a study on the representation of aerodynamic functionals 

for discontinuous behaviour. 

Detailed mathematical development, leading to Equations 1.7 and 1.8. is de- 

scribed by Tobak & Pearson [1964] and Tobak & Schiff [1981]. The general form 

of the functional given by Equation 1.8, essentially provides an approximate repres- 

entation for the non-linear unsteady aerodynamic response; nevertheless, its use is 

exceedingly complex. In practice, the utilisation of unsteady aerodynamic response 

functionals depends on further simplifications, as proposed by Tobak & Schiff [1978, 

1981] and Jenkins [1991]. 

Another possibility for modelling non-linear unsteady aerodynamic response in 

the field of functional approximation, is by functional series methods; for example, 

Volterra functional series (Schetzen, 1980,1981). This functional form was de- 

veloped as a generalisation of the Taylor series for a function, and the basic premise 

of the Volterra series approach is that, an exact description for a continuous non- 

linear time-invariant system: in the context of aerodynamic response, is provided 

by an infinite series of multi-dimensional convolution integrals of increasing order: 

that is, 

00 ti 
F(t) =E... 

f 
hil' (TI, 7i) 

11 
u(t - Tj)dTl ... 

dTi 
fo 

.. 
0" j=l 

i integrations 

where F(t) is the unsteady aerodynamic force response to the generalised mot ion 

u(t) and hi" is the i -th -order VoItcrra kernel. 
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The first Volterra kernel represents the linear response of the ystem to a unit 

impulse input, while the higher-order kernels are the non-linear respoiiýw> of t lie 

system to multiple (with respect to the kernel order) unit, impulse input.,,. The 

higher-order kernels are measures of the non-linearity. or the relative influence of 

a previous input on the current response. that characterises the t, emporal effect Io 

the non-linear system. Identification of non-linear systems based on Volterra serles 

requires the determination of the higher-order kernels. This requirement ],,, a major 

drawback of using this representation. Some approaches overcome this problem hY 

simply assuming that the system is weakly non-linear. In this case, the s'. ystein can 

be represented with only a few kernels in the Volterra series-, for instance, up to the 

third-order kernel. 

For unsteady aerodynamic response prediction, an application of the Volterra 

series approach has been presented by Silva [1993a, 1993b]. The prediction of 

general-frequency, non-linear unsteady aerodynamic responses in the transonic re- 

gime is carried out by determining a second order Volterra series identified from 

aerodynamic data provided by an appropriate CFD code. The benefits of the Vol- 

terra series approach for subsequent use in aeroservoelastic analysis and design in 

terms of a bilinear systems representation is also presented. In terms of unsteady 

separated flow models, the applicability of this formulation remains for non-linear 

attached to weakly separated flows because of the limitations imposed by its- restric- 

tion to continuous functionals. 

Related to an expansion of the Volterra type. of functional series, t he I'Viener 

inctliods (Billings, 1980 and Schetzen, 1980,1981) provide other potential identific- 

ation schernes for non-linear dynamic systems. The first Wiener method consi(lers 

the idea of representing each functional term by a Fourier-Hermite series. Laguerre 

fuixtions are used for the Fourier or memory portion of the functional rejm-, ewa- 

tion, and this is followed by an expansion using normalised Hermite polynorniak. 
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U(t) 

vo (t) Ho (VO(t)) 
Linear -- 
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Figure 1.5: Schematic representation of Wiener systein. 

F(t) 
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The synthesis of non-linear systems, in the context of unsteady aerodYmunics. 

using the first Wiener method, as illustrated in Figure 1.5, can be thought of as 

a cascade process. A linear operator representing the expansion of the past of i he 

generalised motion, u(t), in terms of Laguerre functions has its multiple outputs, 

Vi(t), transformed by a non-linear no-memory operator based on Hermite polynomi- 

als, Hi(. ). Then, the outputs of the non-linear operator are amplified by the Wiener 

coefficients and summation yields the unsteady aerodynamic response, F(t). 

The second Wiener method is based on the expansion of a non-linear func- 

tional into a series of mutually orthonormal polynomial functionals, the so-called 

G-functionals. This functional series representation is also equivalent to the first 

Wiener method series, when white Gaussian inputs are used. Although, the Wiener 

methods provide a systematic approach to non-linear identification problems, I he 

excessive number of coefficients required to identify the functional series, even for 

lower-order non-linear systems, makes this approach impractical and difficult to 

apply. 

Other techniques for non-linear dynamic systenis identification ýire based on 

block-oTiented approches (Billings &:, Fakhouri, 1978,1979,1982-, Billings, 1980: 

Korenberg k Hunter, 1986 and Hunter k Korenberg, 1986). These approach(-, rep- 

resent systems by means of cascade structures of combinations of linear dynamic and 

non-] inear st at ic subsyst, ems. The first Wiener method is in esseiwe a block-oriew ed 
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one, as a linear operator with memory is cascaded with a non-linear no-memory op- 

erator, as illustrated in Figure 1.5. 

The Hammerstein model is a block-oriented representation (Billings (ý- Fakhouri, 

1979 and Hunter & Korenberg, 1986) of non-linear systems. in which a static non- 

linearity is followed by a linear dynamic subsystem. Similarly, system models that 

consist of a cascade of linear dynamic subsystem. a static non-linearity. and another 

linear dynamic subsystem, or the LNL systems (Korenberg & Hunter, 1986), provide 

another approach in non-linear identification by combining the ideas from Wiener 

and Hammerstein cascade models. 

These techniques have been developed strictly for random processes, in particular 

for white Gaussian inputs, in order to systematically obtain the parameters of the 

identified models for the associated class of dynamic systems. These features suggest, 

that the application of block-oriented model realisations via the current methods for 

the nonlinear unsteady aerodynamic response identification is questionable. 

In addition to the difficulties in determining the parameters associated with 

the aforementioned non-linear functional approximation approaches, other major 

drawbacks can be associated with the Volterra-Wiener functional series, and block- 

oriented approaches for non-linear unsteady aerodynamic response modelling. A 

drawback is that the functional approaches can only be reasonably achieved for 

single input single output models, due to the increasing complexity of multi-variable 

functional forms for each respective approach. Appropriate aerodynamic respoiise 

models should provide values of the generalised forces by means of a single model. 

Moreover, the inclusion of static inputs, for example, Mach number or Reynolds 

number, to the modelling scheme maY lead to other complications. 

Recently. allermitive approaches to the functional approximation of non-linear 

dynamic systems have been proposed bY Chen k Chen [1993] and Modlia K, Hecht - 

. Nielsen [1993]. Based on the universal approximator theorem (Cybenko, 1989 and 
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Hornik et al., 1989), Modha & Hecht- _N ielsen [1993] have developed the so-called 

muffi-layer functionals. based on the premise that any time-invariant non-linear 

system, characterised by continuous functionals, can be approximated by a non- 

linear superposition of linear affine functionals defined in arbitrary normed sj)mvs. 

This approach has basically extended the concepts of the approximation theorem 

for function representation, to obtain a new class of functional series. In the cont ext 

of non-linear unsteady aerodynamics; for example, multi-layer functional represent- 

ation of the functional relationship between unsteady aerodynamic force response 

and generalised motion histories of an airfoil, can be described as, 

F(t) r-la A4Y[ut] = 
(Oi + ci [ut]) (1.10) 

where k is the number of process units, (i and Oi are real valued constants, V is a 

non-constant, bounded, monotone- increasing continuous function, and Ci[ut] denote 

linear functionals of the generalised motion vector ut. 

For functional approximation representations of non-linear systems, Modha & 

Hecht-Nielsen [1993] have also established that multi-layer functionals represent a 

generalisation of the universal approximation theorem. Multi-layer functionals are 

functional series that, also resemble the cascade formulations of block-oriented ap- 

proaches, in the sense that each process unit in Equation 1.10 represents a cascade 

of a linear functional and a non-linear operator. However, the simpler formulation of 

multi-layer functionals, and also the possible composition into laýýers of process unit s. 

is easier to implement than Wiener series. In addition, multi-layer functionals do 

not present dimensionality restrictions in the model representation. Vol terra- Wi ener 

functional series, and block-oriented approaches do not possess t lie same advmii age- 

ous propert. y. because in all cases, tlie dimension of the respective represent at ion: 

for instance, the number of non-linear kernels in the Volt, erra series. determines a 



CHAPTERI I-) 

specific model. The implicit parallelism and multiple input multiple output model 

representation capability, are other attractive properties of mull i-layer funct ionals. 

Classes of multi-layer functionals can be obtained from specifýving different lin- 

ear functionals Li in Equation 1.10. For example. multi-layer feedforward networks 

are a class of multi-layer functionals. where arbitrary functionals of p-dimensional 

real valued spaces are represented as weighted superpositions of affine funct ion- 

als on p-dimensional real valued spaces, modified by a sigmoidal non-linear func- 

tion. Although multi-layer feedforward networks are appropriated for manY cases 

in non-linear function approximation, a better class of multi-layer functionals for 

non-linear dynamic systems is necessary. This class can be achieved by assumiiig 

Li in Equation 1.10, to be defined in arbitrary normed linear spaces (Modha k 

Hecht-Nielsen, 1993). 

1.3 Aerodynamic Functional Realisation via Tem- 
poral Neural Networks 

Viewing the implementation of a class of multi-layer functionals to represent non- 

linear unsteady aerodynamic response, a proper linear functional Cj (cf. Equation 

1.10) must be adopted. By assuming a basic linear functional in the form of the con- 

volution integral, the multi-layer functional of the non-linear mist eady aerodynamic 

force response is given by, 

kt 

F(t) I-IIld 
M. 77[ut] (i ýý 

(0i 

+ 
fo 

hi(A)u(t - A) dA) 

where k, ýj, Oi and t, - are as defined in Equation 1.10. ýind hi is the unit impuke 

response of process unil i. 
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Modha & Hecht-Nielsen [1993] have shown that the multi-layer functional in 

Lquation 1.11 can be realised by a temporal neural network (NN-an. 1990a. 191)(11): 

Back & Tsoi, 1991 and Back et al., 1994), that allows practical implernew at ions by 

means of typical neural networks methodologies. 

Temporal neural networks represent a generalisation of the coii\-(, iit ional iieural 

network concept (Miffler & Reinhart, 1990; Hecht-Nielsen, 1990; Hertz ct al., 1991 

and Haykin, 1994) to account for dynamic behaviour of input to output N-ariables. 

Temporal neural networks consist of many basic processing units, called 'o, cur- 

ons, joined by connection paths, or synapses, modelled by linear, time-inva"aw. 

continuous-time filters. Each neuron receives inputs from one or more other neur- 

ons, and the sum (or achvatzon potentzal) is transformed by the actzvatzon function 

(normally, a non-linear sigmoid function) to yield the neuron output. The arrange- 

ment of neurons in a neural network defines its architecture. When, the architecture 

consists of layers of neurons providing outputs in the same directions (information 

traffic from the input layer to output layer), the network is called a multi-laycr nct- 

work. Figure 1.6 schematises an arbitrary multi-layer network architecture and also 

a generic temporal neuron model. To allow computational implementation, a finite 

memory to the synaptic filter can be considered. This discrete-time model form 

is referred to as a finite Mpulse response (F1R) neural network model, where the 

network connections are comprised of weight vectors. 

The determination of a neural network is done by a learning process, or training. 

Basically, training processes are algorithms for adjusting the S. N-naptic weight", of 

neural networks. Theories concerned Nvith training processes are st H] in their infancY. 

Most of the xvork on neural networks has used the back-propagation algorithm for 

supervised training (Haykin, 1994). This algorithm produces a sequence, of gradient 

values normally calculated upon desired and network oui put s. Those gTadient values 

are used to update t lie Nveight s of the net work during a backward operat ion along t he 
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Figure 1.6: Schematic representation of temporal neural network architecture and 
neuron model. 

network connections. Then, the training process becomes a sequence of forward and 

backward passes through the networks until a point, where the difference between 

desired and network outputs is satisfactorily small. A back-propagation algorithm 

for FIR neural networks, namely, temporal back- propaga t ion. has been developed 

by Wan [1990a, 1990b]. In this case, the algorithm works in the same wa. v as in the 

conventional back- propagat ion algorithm. but, extra information of previous st eps in 

discrete-time of the neurons outputs and activation potentials is required. 

Some drawbacks are associated wifli the temporal back-propagai ion algorithm. 

One of them is the need for a differentiable and Nvell-behaved performance index. 

that may be a limitation for some applicaiions. The back-propagation algorithm 

synapsis -------------- 

neuron 
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cannot guarantee global optimisation of weights. especially becaii. ý, e learning and 

momentum rates affect the process performance. Moreover, only i he same value of 

time-delay per connection of adjacent hidden layers can be used. CausalitY restraint 

problems also compromise the flexibility of the algorithm. Finall. y. t he algorithm 

can only adapt weight values and as a network's architecture design relies 1)ur(, I. N, 

on a trial and error basis, the risk of achieving a temporal neural network which 

overfits the input-output mapping increases. Overfitted networks normally result in 

bad generalisation property, in other words. a bad identified model. 

Studies on techniques to help achieve optimal architecture have not ident ified 

a definitive procedure. The use of combinatorial optimisation based on evolution- 

ary programming may be an alternative to the limitations of existing neural nct- 

work architectures design schemes. Among them, the class of genetic algorithms 

has shown to be a powerful mathematical tool for topology optimisation. Genetic 

algorithms (Goldberg, 1989; David, 1991; Holland, 1992; Michalewicz, 1992; Beas- 

ley et al., 1993a, 1993b; Bdck, 1996 and Mitchell, 1996) are a cLiss of evolutionary 

algorithm based on combining sequentially structured information of system solu- 

tions (chromosomes), grouped in a set called the populatton. The information from 

each possible system solution in the population must be kept in a way to facilitate 

the reconstruction and evaluation of the system. 

Genetic algorithms can be applied to train and adapt temporal neural network 

architectures, since they are able to combine topological information. Indeed, genetic 

search allows optimisation of any variables within the same framework, including 

architecture, learning rules, activation functions, etc. Studies have revealed that 

genetic algorithms offer an ýippropriate means to optimise neural nct work architec- 

tures (Fogel et al., 1990: Harp k- Samad. 1991: Schaffer et al., 1992; Maniez/(). 

1994 and Angeline et al., 1994). Although training neural networks with genetic 

algorithm does not seem to provide a more efficient scheme t () Opt imise weight val- 
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ues compared with back- propagation algorithms. genetic algorithms are a proniiing 

alternative for training cases where, for example. gradient or error information i> 

not available (Schaffer et al., 1992). For the particular case of FIR neural networks. 

the application of genetic algorithms for training and adaptation may achieve bet- 

ter results, because of the possibility in assigning different time-delay per 

connection, as well as avoiding causality restraint problems. 

The wider approximation properties of temporal neural networks (allowed bY 

the multi-layer functional concept) in comparison to conventional neural networks 

(Poggio & Girosi, 1990 and Narendra & Parthasarathy, 1990), provides a suitable 

framework for non-linear unsteady aerodynamic response model identification. The 

systematic way of producing neural network models also offers an attractive oppor- 

tunity to overcome some of the difficulties related to conventional non-linear svst em 

identification approaches (Billings& Fakhouri, 1978,1979,1982, Billings, 1980; 

Korenberg & Hunter, 1986; Hunter & Korenberg, 1986 and Ljung, 1987). 

In terms of modelling non-linear unsteady aerodynamic behaviour with neural 

networks, there are few cases in the recent literature. Specific use of neural networks 

in modelling unsteady aerodynamics is presented by Faller & Schreck [1991, -). 1996, 

1997] and Schreck et al. [1995]. For this case, the authors use a real-time predictive 

scheme to capture the main features of three-dimensional unsteady separated flow- 

fields. Although important practical results have been achieved, neural net works are 

basically applied as time-series predictors or function approximators. using a ,, I at ic 

approach. Further. little has been done to obtain a neural network model wliicli 

is compatible NN, lt, h the functional representation of unsl eady aerodynamic response. 

The need for an approach that accounts for the functional representat ion of uns-t eadv 

aerodynamics is not only a matter of mathematical formalisation, but is essential 

to accommodate the physical behaviour of non-linear unsteadv acrodviiarnics to a 

matheniat ical model. 
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The present work is concerned with the use of multi-layer functional-, in the 

approximation of non-linear unsteady aerodynamic response in the context of aer- 

oelastic analysis and control. A discrete-time version of the temporal neural net work. 

or finite impulse response (FIR) neural network model. is adopted as a practical real- 

isation of the multi-layer functional model of non-linear unsteady aerodynamic re. - 

sponse. A training algorithm, including the optimisation of the FIR neural net Nvork 

architectures, has been developed for the identification of non-linear unst eady ýwro- 

dynamic response models. The training process is based on a convent ional genet w 

algorithm for the adaptation of the FIR neural network architecture and a simplific- 

ation of the simulated annealing algorithm (Kirkpatrick et al., 1983, Rutenbar, 1989 

and Otten & van Ginneken, 1989) is used to update the weight and bias values of the 

FIR neural network, and to assist the process in avoiding problems of local minima. 

The identification process is used to produce non-linear unsteady aerodynamic 

response functionals appropriate to variations of two-dimensional airfoil incidence 

histories for two different flow regimes. In the first case, the weakly non-linear 

unsteady aerodynamic force response in mildly separated flowfields is examined. 

The second case considers the non-linear unsteady aerodynamic responses due io 

compressibility effects in the transonic flow regime. Multiple data sets incorporat ing 

boundaries to the incidence motion histories in a range of Mach numbers. are used 

for the identification process to account for the non-linear behaviour of the unstead. y 

aerodynamic responses. 

The approximation properties of the identified multi-la. ver functionals. in the 

form of FIR neural networks, are explored by testing the abilit,. N- to predict, the un- 

steadY aerodynamic responses due to incidence motion histories or Mach numbers 

different from the ones used in the training process. A discussion on ihe llrnitýi- 

tions of the multi-layer functional models for unsteady aerodynamic response i, -, a],. -, () 

present ed. 
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1.4 Organisation of the Thesis 

In this thesis, i, he application of multi-layer functionals for the approximation of 

non-linear unsteady aerodynamic response is examined, as well as the advant itges, 

and limitations of such an approach. A survey on the main topics related io the 

difficulties involving the modelling of non-linear unsteady aerodynamic response in 

the context of aeroelastic analysis and control is introduced in Chapter 1. Practical 

limitations in the application of the fluid mechanics equations in aeroebist ic mod- 

els have motivated the adoption of approximate methods for modelling unstewlY 

aerodynamic responses. The mathematical approaches based on functional repres- 

entations have furnished a suitable framework to account for the strong depend- 

ence on time-history effects of non-linear unsteady aerodynamic responses. Various 

forms of functional representations can be used to identify unsteady aerodynamic 

response models; for example, superposition of non-linear indicial responses and Ný`ol- 

terra series. Nevertheless, these functional forms are complicated to implement. In 

addition, other approaches applied in identification of non-linear dynamic systems; 

for example, the Wiener methods and block-oriented models, present complications 

for unsteady aerodynamic modelling. Recently, multi-layer functionals have been 

introduced as a novel functional series form that can be realised via temporal neural 

networks. The application of multi-layer functionals for the approximation of the 

unsteady aerodynamic response is proposed. 

In Chapter 2, the theoretical foundations of multi-layer funcl ionals are presen- 

ted. lnitially, the basic issues on approximation theory are introduced in the con- 

text of neural networks. For non-linear dynamic systems, neural networks have 

been heuristically used as parametric input-output models. The succes, -i of i hese 

models. in relation to the traditional non-parametric and block-oriented non-linear 

sytem identificmion approaches, has motivated studies on rigorous niathernatlcýd 
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formulations to justify the neural network approximation properties. The reý, ult iý, 

the universal approximation theorem, establishing that, any continuous function (, an 

be approximated by linear finite combinations. Then, based on this foundation, 

generalisations to the formulation have been proceeded, in order to adequate the 

theorem to account for functional representations. This leads to the definition of 

a novel parametric family of real valued mappings, named multi-layer functionals. 

Then, the practical realisation of multi-layer functionals in t erms Of temporal neural 

networks in discrete-time, or the finite impulse response (FIR) neural netNvorks. to 

represent time-invariant sytems are presented. 

The genetic search used in the supervised training of the FIR neural iiet work 

for the identification of unsteady aerodynamic response models, is present ed in 

Chapter 3. Initially, theoretical aspects of genetic algorithms are overviewed. A 

detailed explanation on how the FIR neural networks are encoded in chromosomes is 

presented. The genetic operators, applied in the optimisation of FIR neural network 

architectures, are then described. Then, the use of simplifications of the simulated 

annealing algorithm, applied to update the weight and bias values and to ýtsslst the 

process to avoid stagnation on the convergence performance, are explained. 

Aspects of multi-layer functional representation of non-linear unsteady aerody- 

namic, models are presented in Chapter 4. The identification of unsteady aerody- 

namic response multi-layer functionals, in the form of FIR neural networks, is carried 

out for two different flow regimes. The first case considers the weakly non-linear un- 

steady aerodynamic force response to variations in the incidence motion histories in 

mildly separated flowfields for a range of Mach numbers. A semi-empirical model is 

used to týciwratc the ilecesisary two-dimensional aerodynamic dat a for the ident ific- 

ation process. In the second case, flow regimes influenced by cornpresý, lbility effeci. s 

m*e considered. The funct ional of the non-linear unst eiidy aerodý-narnic responses to 

viirim, ions of the incidence motion histories of a two-dimensional NACA 0012 airfoil 
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is identified, using aerodynamic data from a CFD code based on the solution of the 

Euler equations. A discussion on the algorithm performance and on the approx- 

imation properties of the identified models are also presented. Limitations to the 

multi-layer functional approach are identified. 

Finally, in Chapter 5, the conclusions and directions for future investigations are 

presented. 
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Multi-Layer Functional Models of 
Non-Linear Dynamic Systems 

2.1 Introduction 

Identification of approximate models of dynamic systems remains a common prob- 

lem, particularly when systems present complex non-linear behaviour and a st rong 

dependence on the past history of the input variables. Approaches for non-finear 

system identification can be categorised in (Korenberg & Hunter, 1986): (1) ker- 

nel or non-parametric methods, (ii) block-oriented models; and (iii) parametric 

approaches. In the first category, the Volterra and Wiener functional series ýire 

among the most important ones. The block-oriented models represent a larger 

category, where cascades of interconnected linear d-vnamic sYstems and non-linear 

static operators are assumed. Surveys on these approaches are presented in Billings 

[1980], Billings k- Fakhouri [1982], Korenberg k- Hunter [1986] and Hunter k Noren- 

berg [1986]. 

Parametric models also provide suitable alternatives for non-linear systein iden- 

tification (Billings, 1980). Recently, the use of iwiiral nctivorks (Haykin, 1994) for 

non-linea, r systeni parametric modelling has increased considerably. Neural networks 

24 
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Consist of superpositions and combinations of parametric linear operators (stimnia- 

tions of weighted inputs) in cascade to non-linear operators (activation functioiis). 

However, the success of neural networks in the context of system identification is, 

based, historically, on heuristic approaches rather than on theorei wal foundat ions. 

The formalisation and proper mathematical explanation of neural network iden- 

tification properties for non-linear systems have been achieved by the universal ap- 

proximation theorem (Cybenko, 1989 and Hornik et al., 1989). By defining a rig- 

orous mathematical formulation based on the Stone-Weierstrass and Nolmogorov 

theorems, the universal approximation theorem establishes that finite combinations 

of superpositions of a fixed, univariate function over a set of affine functions can 

uniformly approximate any continuous multivariable function (Cybenko, 1989). A]- 

though the universal approximation theorem has provided a suitable conceptual 

basis for using conventional neural networks as parametric input-output models of 

non-linear dynamic systems, limitations on the set of internal network parameters 

requires special architecture modifications. 

While many non-linear dynamic systems can be identified by funchons, the ma- 

jority of systems are better represented by funchonal forms. Recognising the im- 

portance of functional representations in non-linear dynamic systems identification. 

Chen & Chen [1993] and Modha & Hecht-Nielsen [1993] have studied generalisations 

of the universal approximation theorem. Although both approaches have provided 

important developments towards a functional form for the universal approximation 

theorem, the approach by Modha &_- Hecht-Nielsen [1993] embraces a more complet e 

representation by establishing a functional form that can uniformly approximate 

any continuous functional on a normed linear space. 

Modha k Hecht-Nielsen [1993] have produced a novel parametric familv of real 

NI inear spaces, named m tilt'-layer funct -alued mappings on arbitrary normed Ii III 

Multi-layer funci ionals can also be used to represent tirne-invýiriant, cont inuous-t im(, 
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or discrete-time, fini ie or infinite memory, causal or non-causal syst eins. Moreover, 

the resulting class of functional forms for parametric non-linear systems representa- 

tion can also be realised by means of temporal neural networks (Wan. 1990a, 1990b: 

Back & Tsoi, 1991; Back et al., 1994 and Haykin, 1994) 

The purpose of this chapter is to present the theoretical foundations of mult i- 

layer functionals and also to demonstrate how multi-layer funct ionals can be used 

as parametric input-output models of non-linear dynamic systems. Primarily, the 

universal approximation theorem is described in the context of neural iiet works for 

non-linear system identification. The development of functional forms by expanding 

the concepts involved in the universal approximation theorem is presented. In this 

context, the approaches by Chen & Chen [1993] and Modha & Hecht-Nielsen [1993] 

are described and the definition of multi-layer functionals is presented. Then, multi- 

layer functionals are defined to facilitate the modelling of time-invariant, continuous- 

time, infinite memory, and anti-causal dynamic system. The resulting formulation 

can be shown to be realised by means of temporal neural networks (Wan, 1990a, 

1990b; Back & Tsoi, 1991; Back et al., 1994 and Haykin, 1994). 

Finally, temporal neural networks are described and the finite impulse response 

(FIR) neural model is described as a practical computational implementation of tein- 

poral neural networks in discrete-time to represent, time-invariant, finite memory, 

and causal dynamic systems. Using this approach, conventional use of neural net- 

works methodologies in the production of parametric input-output models of non- 

linear dynamic systems is facilitated. 
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2.2 Multi-Layer ]Functional Approximation 

The principles of the universal approximation theorem form a proper hasis for func- 

tion approximation. This approach has provided suitable framework for non-linear 

dynamic systems identification and modelling; for example, bY using neural net - 

works. However, better dynamic system representation is achieved by u, -, Ing func- 

tional forms. Generalisations to the universal approximation theorem has been pro- 

duced) and the result are new functional forms that furnish appropriat, e framework 

for parametric input-output models of non-linear dynamic systenis. The inath- 

ematical foundations to the definition for a class of functionals, called multi-layer 

functionals, are presented in this Section. 

2.2.1 Issues on Function Approximation 

The approximation of mathematical functions or mappings represents a central prob- 

lem in a variety of subjects. The basic issues of approximation theory, that, are 

relevant to the formulation of the universal approximation theorem, are presented in 

this section. Although this theorem has been developed to explain the approxima- 

tion properties of neural networks, its significance to approximation theory is more 

far-reaching (Haykin, 1994). 

The methods based on superposition of continuous functions liave estAlished 

the foundations of the universal approximation theorem. The basis of i his i he- 

orem comes from the Stone-Weierstrass and Kolmogorov theorems (Cybenko, 1989: 

Hornik et al., 1989 and Hecht-Nielsen, 1990), viewing the systernatisation and Has- 

sification of theoretical foundations of neural networks for function approximation. 

The Stone-Weierstrass theorem presents a simple criterion to define funct ions used 

to uniformly approximate arbit rary continuous functions, while the Kolmogorov the- 

orem establishes a superposition formulation for th (I function approximation problem 
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(Hecht-Nielsen, 1990). 
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The Kolmogorov theorem also represents an important mathematical too] for t he 

particular case of neural networks (Hecht-, Nielsen, 1990 and Haykin. 1994). Refor- 

mulations of this theorem, in the context, of neural networks theory. have provided 

appropriate mathematical foundations to explain the function approximat ion prop- 

erties of neural networks (Hecht-Nielsen, 1990). 

In the context of approximation of functions by neural networks, the approaches 

using finite linear combination forms have been rigorously represented by the uni- 

versal approximation theorem (Cybenko, 1989 and Hornik et al., 1989): 

If ýo is a non-constant, bounded, and monotone-increasing continu- 

ous function, then, any function y belonging to the space of continuous 

functions on the p-dimensional unit hypercube I =- [0,1] can uniformly 

be approximated by a finite linear combination of k process units such 

that, 

kp 

Y(Xl, X21 ... 7 xp) (jýo oj + wjixi <E 

j=l i=l 

where (j, Oj, wji E R, EE3? +, 
f Xl 3 X21 ... , xp ICI, and I -I represents an 

appropnate norm operator. 

2.2.2 Functional Approximation 

Approximation of functions has proved useful in applications to system modelling, 

identification and realisat ion (-Narendra &-- Parthasarathy, 1990 and M&, n ct al.. 

1993). Although approximation approaches based on Inequality 2.1 are concemed 

continuous functions, in practice dynamic systein models can be viewed as 
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funchonals defined on some so of functions (Chen k- Chen. 1993). This iý, sile li&, 

motivated Chen & Chen [1993] and Modha & Hecht--Nielsen [1993], in the deN-elop- 

ment of a generalisation for the theorem described in Inequality 2.1. 

A functional is a mathematical relationship between sets of points. being its 

domain sets of functions. For a set of real valued functions of t. the functional 77 

assigns a real number Y(t) to a real valued function xt from ns domain: that is. 

Y(t) - . 
77[Xt] (2.2) 

Indeed, the number Y(t) depends on all ordinates xt that correspond to abscissas 

t of a previously defined time interval. A functional can be considered as a function 

with an entire continuum of independent variables, which permits functionals to be 

considered as a generalisation of the mathematical concept of function. 

By approximating a generic functional T[xt] by a function of m- I variables giveii 

by Y(g(xi), ---, g(x, -, 
)), where g(-) are generic functions, Chen & Chen [1993] have 

achieved the following formulation, that generalises the universal approximation 

theorem in lnequality 2.1; that is, 

If U ts a set in a space of infinite dimension C[Pl 
- P21, T %s a continu- 

ous functional defined on U, and ýo(. ) is a non-constant, bounded, and 

monotone-Mcreasing continuous function, then for any EE W-, 
, thcrc 

e-xzst m+1 points p, ::::: to < ... < tm : ---: P2, a positive I'litcycr k and 

(j - 
Oj, wji E R, such that 

Oj+I: Wj, X, 
i < E, 

j=I i=O 

Vxt EU (2-3) 

where 1-1 i-cpresc-nts an appropriate norm opci-afor. 
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The significance of Inequality 2.3 for dynamic systein represent at ions is the fact 

that, the formulation provides a t, heoretical basis for approximation of continuoil, 

functionals. 

Simultaneuously, Modha & Hecht-. Nielsen [1993] have also used the functional 

approach to establish generalised formulations to the universal approximation the- 

orem. The Modha & Hecht-Nielsen [1993] approach presents the same st ructure of 

Inequality 2.3, differing in the way the argument of ýý is defined. This argument is 

assumed to be an affine functional A[xt] of the form: 

A[xt] =0+ L[xt] (2.4) 

where 0ER, L[xt] belongs to the set of all continuous linear functionals on arbitrar. y 

normed linear spaces. 

Although the differences between both approaches seem to be only a mat I er of 

notation7 the Modha & Hecht-Nielsen [1993] approach is more far-reaching, because 

no approximation to the affine functionals is assumed to be necessary. 

2.2.3 Multi-Layer Functionals 

Modha & Hecht-Nielsen [1993] have expanded the concept of the universal approx- 

imation theorem (cf. Inequality 2.1), by adopting a generalisation of the affine form 

in Equation 2.4. For that, a linear functional on an arbitrary normed linear space. 

has been defined as, 

, 
C[X, 

7] =I x(q)djt(rj) (2.5) 

where qEI ---:: [0.1]. 
., 1-, 7 belongs to the set of real valued continuous functions will, 

domain 1, and li belongs to the set of functions of bounded variation oil t, he unit 
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When the linear functional in Equation 2.1-5 is used in Equation 2.4. the formula- 

tion reveals a class of functional forms defined over a set of all real valued, continuoiiý, 

functions with domain I -= [0,1]. This functional class has been named by Modlia 

& Hecht-Nielsen [1993], as multi-layer functionals; that is, 

MTIX? 
71 = 

k 
E (j(p 

(oj 

j=l 

Ix 
(77) dtij (, q) 

) 
(2.6) 

where (j, Oj C- R, x(71) and pj(71) are defined by Equation 2.5, and k is the number 

of process units. 

To use multi-layer functionals as input-output representations for dynamic s. vs- 

tems, the notion of time needs to be incorporated. A general formulation for time- 

invariant, continuous-time, infinite memory, and anti-causal system represent at io iis 

by multi-layer functionals is presented by Modha & Hecht-Nielsen [1993] A basic 

linear functional C[xt] in the convolution form is assumed; that is, 

0 0 
, C[xtl = 

ft 
h(A)x(t - A)dA (2.7) 

where h is the unit impulse response due to x(t). 

Then, the application of the linear functional in Equation 2.7, to define an affine 

functional of the form of Equation 2.4, results in the following multi-layer functional. 

which approximates the dynamic system response y(t): 

MJ7[Xt] (jý; 
(Oj 

+ 
10 

hj(A)x(t - A)dA) (2-8) 
j=I 

where (j, Oj E WX ý, - is a bounded, continuous function, and lij is the unit impulse 

response of process unit j, for j=1. ..., 
k. 
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2.3 Neural Network Realisation of Multi-Layer 
Functionals 

A close examination of Equation 2.8 reveals that it corresponds to t lie definition 

of temporal neural networks described by Wan [1990a, 1990b]. Back &- Tsoi [1991], 

Back et al. [19941, and Haykin [1994]. This allows a suli able framework for pract ical 

representation of a large class of non-linear dynamic systems. 

2.3.1 Temporal Neural Networks 

Temporal neural networks as described in this Section, comprise the (-M, egor. v of 

neural networks represented by a spatio-temporal neuron model joined by connecting 

links called synapses (Wan, 1990a, 1990b; Back & Tsoi, 1991; Back et al., 1994 and 

Haykin, 1994). In this case, the synapses are modelled by linear, time-invanant, 

continuous-tzme filters. 

inputs filters 

XI (t) hW activation ji potential output 

Vj(t) 
h X2 W j2 

(01 E (P (Vi(t)) No. ylj(t) 

activation Oj function 

_VP W hjP W bias 

Figure 2.1: Temporal neuron model. 

Figure 2.1 illustrates the neuron model, in which the, synapw i. belonging to the 

neuron j has its temporal behiiviour described by an impulse re-, ponse hji(t). For 
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the input xi(t) denoting the excitation applied to synapse i (for i=1, ---, p), the 

synaptic response is determined by the convolution of the impulse response hjj (t) 

with xi(t). For a neuron j with a total of p, synapses, the associated activation 

potential vj(t) is due to the combined effect of all the inputs and the applied bias 

values Oj is given by, 

vj(t) = Oj +E hji (A) xi (t - A) dA (2.9) 
ipl 

I' 

The neuron output yj(t) is obtained by applying the activation function W, nor- 

mally a sigrnoidal function, on vj (t); that is, 

yj (t) =w (vj (2.10) 

An illustration of a simplified representation for the temporal neural model is 

shown for the neuron j in Figure 2.2. 

Xj (t) 

X2(t) 

0 
xp(t) 

Eh (P Yj 

Figure 2.2: Simplified representation for a temporal neuron. 

A multi-layer temporal neural network is formed by composing layers of neurons. 

A schematic representation (using the simplified neuron representation shown in Fig- 

ure 2.2) of a multi-layer network architecture, for the input-output pair (x(t), y(t)), 
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composed of neurons modelled by Equations 2.9 and 2.10, distributed in two hidden 

layers, is depicted in Figure 2.3. 

X(t) 

it 

L 

Figure 2.3: Temporal network architecture. 

Y(t) 

The temporal neuron model, described by Equations 2.9 and 2.10, is consistent 

with the representation of multi-layer functionals given by Equation 2.8. The rep- 

resentation in Equation 2.8 can be interpreted as a special form of multi-hi. yer neural 

network possessing a single hidden layer of temporal neurons with the network out- 

put being the linear combination of each hidden neuron output. In pract ice. a more 

robust form of mult i-layer functional ut ilises a network archit ect ure Nvith multiple 

hidden lavers. From a computational point of N'lew. it is colivenl("It to assign a 

discrete-tinie version of the temporal neuron model. by assuming t he synapses as 

finite impul,,; c ra,; pons(, FIR filter., ý. 

Hidden 
Layers 
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2.3.2 Finite Impulse Response (FIR) Neural Model 

To determine the FIR model it is convenient that the continuous-lime synaptic 

model (in fact, a synaphc filter) obeys the following characterist ics: 

o The synaptic filter must be causal, that is, 

hji (t) - 0, t<0 

e The synaptic filter must have finde memory, that is. 

hji (t) = 0, t> Tji 

where Tji denotes the memory span of the synapse i belonging to the neuron J. 

Therefore, Equation 2.9 can be re-written as, 

p Tj i 

Vj (t) = Oj +E hji(A)xi(t - A)dA 
i=l 

fo 

For convenience, the convolution integral in Equation 2.11 is approximated by 

a convolution sum, thereby permiting a discrete-time representation. Consequently, 

the continuous-time variable t is substituted bN, a discrete-time variable TiAt. where 

n is an integer and At is the sample interval. Then, Equation 2.11 is approximated as 

p Tj i 

vj (n) =: Oj + >I Z wji (At (n - (2.12) 
i=I i=O 

T- - where Tji = "is the number of delay units of the filter in , \-iiapse 1* belonging to At 

the neuron J. and wji((, \t) = hjj(tAt)-\t- 

The sample interval At has a common uniform value to all the time-varying 

quantities in Equio ion 2.12. For notational convemeiwe. --V may be omit I ed from 
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the arguments of all time-varying quantities. Each connection maY ako present 

different time-delay values. Therefore, Equation 2.12 can be re-written in the form. 

P Tj i 

vj (n) = Oj +EE wji (f)xi (n - (2.13) 
i=1 t=O 

Equation 2.13 describes the expression for the act IN-at 101,1)01 ('111 'al of t he finitc 

impulse response (FIR) model, and the neuron can be illustrated as in Figure 2.4. 

where wji denotes the weight vector (R7'ji+' x 1) of synapse i belonging to neuron J: 

that is, 

wji = [wji (0) wji (1) 
... Wji(Tji)]T 

and 

xi (n) = [xi (n - 0) xi (n - 1) ... xi(n - Tji) ]T 

inputs weights 

x, (n) No. Wj, activation 
potential 

vj(n) 
x2 (n) Wj2 

xp (I I) wip bias 

(p 

1 . (11)) 

activation 
function 

output 

. 
N7j. (Il) 

Figure 2.4: FIR neuron model. 
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A simplified representation for the FIR neural mode] (neuron J) is depicted In 

Figure 2.5. 

x1(n 

x2(n) 

xp(n) 

(n) 

Figure 2.5: Simplified representation for a FIR neuron. 

An example of the final representation of a multi-hiver FIR neural net work ; irchi- 

tecture is illustrated in Figure 2.6, where each neuron is represented as in Figuiv 2.5. 

Figure 2.6 presents an arbitrary FIR neural network Nvith 1) input,;,, k outimts and 

two hidden layers. The first hidden layer has m neurons, while the second one Im,, 

neurons. The neurons of the FIR neural network are enumerated in sequence froin 

the input layer to the output layer, starting in the first hidden layer. Time-delaY. ", 

per connection; that is, Tjj in the connection between neuron z to neuron j., are also 

depicted. The FIR model is the practical realisation of the discrete-i line inult Fia. ver 

functional used to represent Lime-invariant, finite memory. and causal sý-st ems. 

2.4 Summary 

The foundations of multi-laver functionals for non-linear dynamic repres- 

entation are described in this chapt, cr. Multi-layer funct, ionals are a new parametric 

family of real valued mappings compounded by noil-lincar conihinalion of linear 
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Figure 2.6: FIR neural network arcli it (, (, I urc. 

Z ý. n C4ý ;. - 

ä rz 
: r, -ý 

38 



CHAPTER 2 39 

affine functionals on arbitrary normed linear spaces. Using the concepts of the uni- 

versal approximation theorem expanded by functional forms, multi-layer functionals 

provide an appropriate framework for a large class of non-linear system models. 

The development of a multi-layer functional to model time-invariant, continuous- 

time, infinite memory, causal system has been shown to be realisable in terms of 

temporal neural networks. Moreover, for practical computational implementations, 

temporal networks in discrete-time, or finite impulse response neural models, can 

be used. 



Chapter 3 

Identification of Non-Linear 
Dynamic Systems using FIR 
Neural Networks: A Genetic 
Algorithm Approach 

3.1 Introduction 

A suitable framework for the representation of non-linear dynamic systeins', as shown 

in Chapter 2, is provided by multi-layer functional models. A practical realisýil ion of 

the multi-layer functional representation of time-invariant systems can be achieved 

with a discrete-time, finite memory temporal neural network; i fiat is, the finit e 

impulse response (FIR) neural network. Identification of an approprial e FIR net - 

work model is achieved by means of a supervised training process in which bot h 

the network parameters and network architecture are adapt ed to minimise I he error 

between the prescribed outputs and the network outputs. 

The back-propagation algorithm (Hertz et al., 1991 and Haykin. 1994) has becii. 

so far, the most important technique in training neural networks. Finii e impulse 

response (FIR) neural network may also be trained with the back-propagation al- 

gorithm. In this case, the temporal back-propagation algorithm. as proposed bv 

40 
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Wan [1990a, 1990b], represents the most appropriate algorithm. However, the im- 

plementation. of the temporal back-propagation algorithm suffers from a number of 

drawbacks: 

(i) The training needs a fixed architecture; 

(ii) As back-propagation is based on gradients to update weights, then the cost 

function has to be well-behaved; 

(iii) Because of the filtering, a causal restraint has to be observed, and extra storage 

of each neuron output at previous time steps is required; 

(iv) The time-delays per connection must be fixed with the same value in all con- 

nections between adjacent layers. 

Since there is not a definitive approach available for designing neural network 

architectures, the risk of adopting trail-and-error schemes may lead to overfitted 

approximations and, consequently, bad generalisation properties. Moreover, back- 

propagation cannot guarantee a global minimum of the cost function, because of the 

dependence on the training parameters, and on the properties of the input-output 

mapping. 

The restrictions on the internal time-delay distribution may also influence the 

generalisation features of the FIR network; therefore, a more flexible and system- 

atic scheme to design FIR network architectures is desired. The rigid structure of 

the temporal back-propagation algorithm also justifies the adoption of alternative 

methods for training FIR networks. 

There is a clear potential in the use of genetic algorithms to evolve neural net- 

work architectures (Fogel et al., 1990; Harp & Samad, 1991; Maniezzo, 1994 and 

Angeline et al., 1994), as well as training the internal parameters. Genetic al- 

gorithms (Goldberg, 1989, David, 1991 and Holland, 1992) are search algorithms 



CHAPTER3 42 

based on the principles of natural evolution to manipulate and the optimum 

solution among a set of possible solutions (populatzon) to a given problem. Basically. 

each possible solution (Zndividual) is encoded into a numerical or symbolic st ruct ure 

(chromosome) that is used in specific combinatorial operations (selection, cro., ýsovcr,. 

mutatzon) to generate a new set of possible solutions. 

Recently, the combination of genetic algorithms and neural networks has al t rac- 

ted a wide research interest. The motivation comes from the need for a sN-steiuatic 

design of neural network architectures, and other training procedures. Schaffer et al. 

[1992] have surveyed the recent interest in this area and concluded that the greatest, 

advantage of such a combination lies in the use of genetic algorithms to evolve neural 

network architectures. As far as training neural networks is concerned, genetic ýd- 

gorithms have not produced substantial improvements to the back-propagation al- 

gorithm, but genetic algorithms may be a promising training method when gradient 

or error information is not available. Moreover, there is a need for more investiga- 

tions on genetic algorithms to train dynamic versions of neural networks (Schaffer 

et al., 1992). 

For the specific combination with FIR neural networks, genetic algorithms can 

be considered for both architecture adaptation and training. The advantages of 

architecture adaptation by genetic algorithms are evident. In terms of training FIR 

neural networks, genetic algorithms seem to be appropriate, since temporal back- 

propagation presents limitations in dealing with different time-dela. N-s per connection 

and is also subject to causality restraints. However, as genetic algorithms can only 

encode finite sequences of possible solutions, weight values can be restricted to a 

limited region of the weight space. This suggests that, extra mechanisms for updat ing 

weight values should be applied to assist the overall process. 

This chapter present,, an algorithm to train FIR neural networks and Io adapt 

the network architectures, for the purpose of identification of non-linear dynamic 
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system models. A genetic algorithm is developed to optimise the number of neuron, 

and the time-delay distribution of FIR neural networks. while a variation of the 

simulated annealing algorithm is used to update weight and bia,, vahies, and to 

assist the process of avoiding local minima. The chapter continues wii h an overview 

on genetic algorithms, where their basic structure and premises are exposed. Tfieii. 

the procedure to encode FIR neural network architectures, the determination of 

the fitness function, and the genetic operators for the identification process are 

presented. Finally, details of the training process are described. 

3.2 Overview of Genetic Algorithms 

Genetic algorithms are a type of evolution based search algorithms that manipu- 

late sets of possible encoded solutions to a given problem in order to determine t he 

optimum one. As an evolution based technique or evolutionary algorithm, genet i(- 

algorithms operate on the set of decoded solutions according to the principles of 

natural selection and the survival of the fittest premise. Detailed descriptions of ge- 

netic algorithms are presented in Goldberg [1989], David [1991], Michalewicz [1992]. 

Beasley et al. [1993a, 1993b], Bdck [19961, and Mitchell [1996]. 

Genetic algorithms are characterised by the following elements: 

Individuals: representing possible solutions for a particular problem, with feat ures 

encoded in the chromosome: 

Population: a complete set of individuals for I he search process: 

Chromosomes: basic units of a genetic algorithm. which encode all t lie information 

on how each individual is to be constructed: 
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Genes: subsets of a chromosome. thai keep a particular feature of an indi-, -idual-. 

Fitness function: the value assigned to each individual, which represents how good 

the individual is as a solution for the given problem. 

Good representation for the chromosomes and. consequently. for eacli individual 

is very important for the performance of the genetic algorithm. Traditionall. y. chro- 

mosomes are represented by sequences of genes in terms of binary digits. Nev- 

ertheless, other representations are possible; for example. integer or floating-point, 

numbers, letter strings, etc. (Beasley et al., 1993b). The influence of each chroino- 

some representation on the genetic algorithm cannot be quantified or qualified by 

means of the current theory on genetic algorithms. Some suggestions for chroino- 

some representation may be attained with the schema theorem. The schema theorem 

(Goldberg, 1989 and David, 1991) provides an explanation of how genetic ýdgorithnis 

work. Essentially, the theorem states that particular genes in particular positions 

of the chromosome have a fundamental influence on the fitness distribution. Those 

genes and their positions in the chromosome define structures called schemata that 

tend to become dominant in the chromosomes in the populat, ion as the genet ic al- 

gorithm progresses. This suggests that the adopted symbols, or alphabet, to define 

genes for chromosomes should be defined in such a way to allow the largest, number 

of schemata as possible. Goldberg [1989] postulates that binary representat, ions give 

the largest number of schemata, but studies with other forms have contradicted this 

affirmation (Beasley et al., 1993b). 

Fitness function representations also have an importmit offeci oil genetic a]- 

gorithms. Ideally, fitness functions should be smooth and regular, so that i he dis- 

tribut ion of the fitness values of the individuals is approximatelY uniform. How- 

ever, such a condition is not, possible for many problems of iiiierest (Beasley ct al., 

1993a), and fitness functions must he defined to avoid excessive local maxima. or a 
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non-expressive global minimum. 
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A basic genetic algorithm (Goldberg. 1989). as schematised in Figure 3.1. -, tarts 

with a randomly initialised population of individuals. Each individual is eviduated 

by decoding its chromosome and applying the fitness function. With t1w fitiless 

values for all members of the population, the reproduction phase start,, to produce 

new individuals. New individuals are the result of combining indiNl-iduals of tite 

original population. Reproduction in a genetic algorithm is commonly carried oui 

by the following operators: 

Figure 3.1: Basic genetic algorithm. 

Sclechon: The process in which parents, or pairs of individuals in the popu- 

lation, are chosen for reproduction. Basically, selection is carried out by a varietY 

of random procedures (roulette wheel selechov, tournavictit ., ý(-, Icctzon). and auxiliary 

niechimisms are adopled to ensure that the fittest individuals have a higher chance 
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of being selected. The majority of these mechanisms adjust the fitness distribution 

by scaling or ranking their values. 

Crossover: The selection process provides pairs of individuals, namely t tie par- 

ents. The crossover operator proceeds an exchange of genetic material between Ihe 

parent chromosomes, and as a result, two new zndzvzduals are created. The two new 

individuals are likely to be different from each other and their parents, but contain 

a mixture of genes from their parents. Crossover is not usually applied to all pairs 

of individuals selected. Typically, only 60% of pairs are subjected to this operator 

(Goldberg, 1989). The procedure is analogous to what happens in nature. The 

most basic one-point crossover operation is illustrated in Figure 3.2 and occurs as 

follows: (i) firstly, a randomly assigned gene is set; (zz) at this gene position, the 

chromosomes of each parent are split into two parts; (zzz) the equivalent parts from 

each parent are swapped, producing two new individuals. Many other techniques 

for crossover have been suggested (Beasley et al., 1993a, 1993b). Attempts with 

multiple-point, uniform, or partially matched crossover have been applied in many 

studies, but no conclusive arguments exist to establish which is the best method. 

Parents' Chromosomes 

Crossover 
gene 

New Individuals' 
Chromosomes DETIE198 IM REIN 

Crossýver Point 
(arbitrary) 

Figure 3.2: The one-point crossover operator. 



CHAPTER 47 

Mutation: Although mutation has always been aý,, ociated Nvith a destruct ive 

process, it is absolutely necessary for evolution. Genetic algorithms use mutation 

in many different ways. Its application can be random (with a very low probability 

value) or systematic (mutation of each new individual). The mutation is commonlY 

made by taking a chromosome of a new individual and, randomly. changing one 

or more genes. In the context of optimisation, the mutation operator attempts to 

guarantee that, occasionally, new search spaces can be visited, increasing the chance 

of avoiding local minima. 

Typically, the reproduction process is repeated until the number of new individu- 

als equals the population size. Then, the complete set of new individuals replaces 

the old population, and the process is stepped a generation. Before restarting the 

algorithm, a stop criteria must be checked. Stop criteria may be based on compar- 

ing the highest fitness value with a goal value or by assurning a maximum number 

of generations. The simplicity and flexibility of genetic algorithms enables several 

variations and forms. Because theoretical aspects of genetic algorithms are still in 

their infancy, most of the knowledge about genetic elements and operators relies on 

empirical works. 

3.3 Adaptation of FIR Neural Network Architec- 
a tures using a Genetic Algorithm 

Based on conventional genetic algorithms, the identificat ion of a FIR neural net work 

model is executed. The process simultaneously embraces the training of FIR neural 

networks weight and bias values, as Nvell as the adaptat. ion of the FIR iietwork 

archit ect ures. 
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3.3.1 Encoding FIR Neural Networks 

Initially, the genetic elements for the problem must be identified. A FIR neural net- 

work is accounted as an individual belonging to a populatimi. or a set of FIR neural 

networks. The individuals* chromosomes should have genp, s maintaining inforniat ion 

such as neurons per layer.. time-delays per connection, and weight and biaý, vahwý,. 

The fitness function for training and adapting FIR neural net Nvork arch iI ect ur(,,, -, 

is based on the premise of a supervZsed training process. In supervised training, t1w 

neural network is modified depending on the level of error between actual and dcsircd 

FIR neural network outputs. Such a strategy is usual for back-propagal ion training, 

where the error measurements define a cost function which is used to calculate t1w. 

gradients. 

Here, a cost function, defined as the sum of the squared errors betweeii the 

desired and the actual network outputs, is adopted. Another importaw aspect, 

in the fitness function definition is to account for information from several input- 

output training sets, since non-linear model identification is considered. Therefore. 

the fitness function f is defined as, 

( N, L -1 

E E(dk (71) 
- Yk (n) )2 

k=l n=l 

where N, is the number of input-output training sets, L is the total number of t ime 

samples per training set, dk(n) is the desired output of training sel k at dim-i-ew 

time n and Yk (n) is the corresponding network output - 
The main difficulty in implementing a genetic algorithm to I rain and iidapt 

FlR neural networks is in encoding a range of possible networks architecture. To 

determine the chromosome st ructure, it is first necessary Io assume certain feat ure,, 

for each FIR neural network (individual). The fOllONVmg &, ýsurnptions are adopted, 

(7. ) Each network presents a multi-layered architecture of bia,, ed iiciiroiiý, without 
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missing connections between each hidden layer; 

(ii) All hidden neurons are non-linear, defined by a sigmoidal activation function, 

W, of the activation potential, v; that is, 

2 
ýo (V) 

+ e-2v 
(3.2) 

(iii) The output neurons have linear activation function, W, of the activation poten- 

tial, v; that is, 

ýO(V) =v (3-3) 

(iv) Each connection presents its own number of time-delays, that may differ from 

connection to connection. 

In accounting for all information about the network; for instance, time-delay dis- 

tributions, neurons, connectivity, and weight-bias values, the chromosome will inev- 

itably be lengthy. Although, there is no restrictions in the genetic algorithm theory 

about lengthy chromosomes, it is possible that longer chromosomes may reduce the 

convergence rate of the overall process. To alleviate this effect, the chromosome for 

the training process is rationalised. Since weight and bias are real values, their inclu- 

sion in the chromosome would disrupt the process. A small alphabet should be taken 

to permit a natural expression of the problem (Goldberg, 1989). Consequently, the 

chromosomes are comprised of a sequence of the time-delays per connection and the 

neuron information that determines if the neuron exists or not. It must be borne in 

mind that the respective values of weight and bias for each delayed connection, and 

the neuron information, are always related during the genetic operations. 

To facilitate the implementation of a conventional crossover operator, the chro- 

mosomes are constructed to maintain the same size, whatever the encoded network 

architecture. Alternatively, the values for genes that identify existent connections or 
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neurons are encoded. To achieve thk. a basic FIR network with bounded arcliiiec- 

ture, and hence pre-defined chromosome length, is assumed. Then. the chromosome 

must furnish information about the exist ence of neurons and t heir connect ions. as 

well as the values of time-delays per connection. 

The sequence of genes in the chromosome is based on the number of neuroiis 

of the bounded network. The genes representing the neuron existence values are 

enumerated from the first neuron in the nearest hidden layer to the input layer, 

to the last neuron of the output layer. For each neuron of the bounded network, 

the respective gene is a flag to assign whether the neuron exist s or not. The genes 

for time-delays are arranged in terms of the connections between neurons of the 

network - they are integer numbers that correspond to the respective time-dela. v 

values. However, in the case of a non-existent connection, a special flag is assigned 

to the time-delay gene in question. Then, the final sequence for a chromosome is 

the one in which the flag gene per neuron is preceded by the time-delay genes of al I 

connections to the respective neuron. 

Figure 3.3 depicts a generic representation for the chromosome to encode FIR 

neural networks, where Nf is the flag indicating whether the neuron i exists or not. 

Tjj is the time-delay value in the connection between neuron j (in the previous la. N-er) 

to neuron z, and m is the number of neurons of the previous layer (consequenti. y. if 

the previous layer is the input layer, Tn is equal to t. he number of inputs)- 

neuroni 
gene 

Ij i, j+m 1 Lt.. N' I . tj+i L i 

neuron i +I 
gene 

Nf El 

Figure 3.3: Generic representation of I he chromosome. 
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An example of how a chromosome encodes FIR neural network architectureý, iý, 

presented in Figures 3.4 (a) to (c). Figure 3.4 (a) shows an arbit rary maximum po-s- 

sible architecture for a single input single output FIR neural network. Tliis example 

considers each connection possessing a maximum of three time-delays (T,,,,, - 3), 

with the neurons disposed in two hidden layers. The neurons are represented by t lie 

enumerated circles, while the squares represent the time-delays in the resjwut ive con- 

nection. Figure 3.4 (b) shows one of the possible FIR neural network architect ur(,,,, 

that can be extracted from the bounded network architectýure (cf. Figure 3.4 (a)). 

while its respective chromosome is depicted in Figure 3.4 (c). In this example, the 

neurons 3,5 and 7 do not exist; accordingly the flag F (false) is assigned in t lie chro- 

mosome. In contrast, existent neurons receive the flag T (true). The non-existent 

connections receive a special flag, represented here bY the sYmbol *. The vidues, 

for the time-delays (depicted by connection) are arbitrary, and for the connection,,, 

without values, the time-delay is considered null. 

3.3.2 Genetic Operators 

Essentially, the genetic operators used for the training and adaptation of FIR neural 

network architectures are based on the conventional operators described in Sect ion 

3.2. A description of each of the genetic operators follows. 

Selection 

The selection operator is based on the roulette wheel selection described by Gold- 

berg [1989], combined with a scaled fitness distribution. The roulette wheel select ion 

proceeds a random choice for parents starting hY summing all fitness in the 

population and multiplying the result by a uniformly disiributed randoin number 

hetween 0 and 1. This produces a refermcc value. Then, the choseil individual (par- 
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Figure 3.4: Example of encoded FIR neural network itrchitecture. 
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ent) is the one whose fitness, added to the fitness values of the preceding individuals. 

is greater or equal than the reference value. The second individual parent. ) 

for reproduction is chosen by repeating t he process for a differew random number. 

and consequently, a different reference value. 

The application of pure roulette wheel selection, however, may not, be ,, () effi- 

cient, because the process offers the same chance of selection for all the nwinbers 

of the population. In addition., for the first generations the process is very likelY 

to encounter individuals with much different fitness values, from i very fit to aii 

extremely poor one. Possibly, individuals with poor fitness value inaY present, good 

genes in their chromosomes, but it is convenient to avoid them and to establish a 

way of accelerating the convergence rate without weakening the quality of the final 

process outcome. A common practice is t, o concentrate the selection on Ow fittest 

individuals of the population, by scaling the fitness distribution. 

Here, a linear scaling process is applied (Goldberg, 1989). The calculation of 

the new scale is based on the average fitness value in the population. Defining f as 

the actual fitness of an arbitrary individual of the population (cf. Eqilat, ion 11), its 

value in the scaled fitness is given by: fs = af + b, where a and b are coefficients 

which depend on the minimum, average and maximum actual fitness values in the 

population and s denotes scaled fitness values. The average values of both act ual mid 

scaled fitness are assumed to be the same to guarantee that each average populat ion 

member contributes to the next generation. The maximum scaled fitness niu.., -, t 

be proportional to the actual average fitness, given by, c f,,, g. where c 

determines the number of times the best individual is expected to be selected. A 

typical value for the coefficient c is between 1.2 and 2 (Goldberg, 1989). 

The scaling process. however. may present a situation in which few individuals, 

with poor fitness values are far helow the population average. So. in applying 

the scaling, those lower individuals rnav become negative. thereby ý, polllllg 
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the selection process. This situation is likely to happen after the population fitness 

values start to stabilise. Goldberg [1989] shows how these problems can be tackled. 

A test is carried out during the scaling. If the minimum scaled fitness is predicted 

to be negative by normal scaling, then a new condition is set. It is assumed that 

the average scaled fitness continues to be equal to the actual one, but the minimum 

scaled fitness will be set zero. The final forms of the coefficients a and b for scaling 

the population's fitness values are given in Table 3.1. 

Cfa,, g -I-.. > Cfavg-f,. am 
C1 C-1 

(C-l)favg 

f. ax -favg 

fatg (fmao -Ifavg) 
fmax-favg 

favq 

favg-fmin 

b= - 
fminfavq 

favg-fmin 

Table 3.1: Scaling coefficients a and b for the selection operator. 

Crossover 

The only special feature of crossover, which is used in the genetic algorithm ap- 

plied to FIR neural network training, is the adoption of multiple-point crossover. 

Since chromosomes encoding FIR neural network architectures can be lengthy, the 

adoption of many points for this operation is attempted in order to improve the 

convergence performance. 

Nevertheless, a drawback associated with multiple-point crossover is the loss of 

many good genes when high numbers of points are taken. A reasonable number of 

points to avoid this sort of disruption can only be discovered by experimentation. 
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Mutation 
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For each new individual created, the mutation operator randomly chaitgeý, each geiie 

of the chromosome, based on a certain low probabilitY value for mut at ion. A. -, the 

chromosomes present particular symbols (alphabet). which determine feat ures of Ow 

FIR neural network architecture, a coherent mutation operator has to be adopt ed. 

Here, mutation is guided by the probability value Pt, for the mutation of t ime-delitys, 

or P, for the mutation of a neuron value (existent or non-existent). as the operator 

is presented with each of the chromosome genes. The mutat(, (l genes must be in 

the specified range of values, and any change in time-delaYs or neuron exiswiwe is 

followed by a respective change in the weight, and bias values. The mutation of 

an existent neuron leads to the complete disappearance of the connections reaclung 

and leaving the neuron. In contrast, where non-existent neurons are mutated, all 

connections to and from this new neuron are created. 

3.4 A Supervised Training Process for Network 
Identification 

The basic genetic algorithm (cf. Figure 3.1), with elements and operators as de- 

scribed in Section 3.2, is used for the supervised training and architecture adaptation 

of F1R neural networks. 

The process commences with an initial population of individuals, of size P. Each 

individual is created Nvith a randomly generated archit ect ure, where the i ime-delay 

values are taken between zero (connection without delaY) and the maximum pre- 

scribed value T,,,,,,, and the neuron flags receive ýi value which determines their 

existence (50% of existence). Depending on the time-delays and neuron flags. the 
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respective uniformlY distributed random weight and bia,, values, (between -1.0 and 

1-0) are assigned. 

Then, the entire population is evaluated by a feedfomard pass of each individual 

(FIR network), for each one of the pre-defined training sets, using Equation 3.1. The 

fitness distribution of the population is used to promote t lie parent, ' sclect ion for 

reproduction. As described in the previous section, selected parents produce new 

individuals through crossover and low probability mutation operm, ors. 

Some care must be taken after the creation of new individuals, or aft er their 

mutation. Encoded FIR neural networks of differeill architectures rriýiy w-esent, 

problems during genetic operations. The gaps left inside the chromosomes by non- 

existent neurons or connections may lead to an inconsistent new individual after 

the crossover operation. The procedure must be monitored to identify potential 

anomalies using checking routines applied just after the creation or mut ýition of new 

individuals. An attempt is made to correct any distortion in the architecture of new 

individuals, thereby, enabling chromosome strings to be re-arranged in the best, way 

possible. If this is not feasible, then the new individual is discarded. 

The next step after the main genetic operations is to update weight wid bias 

values of the new individuals pairs. Because of the nature of these values (real 

numbers) and the structure adopted by chromosomes, their manipulation is more 

conveniently carried out through another operation. This operat ion consists of per- 

turbing the weight, w, and bias, 0, values by a scaled, zero mean, unit variance 

normally distributed random value, N(O, 1); that is, 

Wnew - Wold+ ON(O. 1) 

Onew = Oold + 3N(O, 1) 
(3.4) 

where 13 is a small proportionality constant. 

This process is repeated several tinies for the simie individual, and for vitch the 
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new values of weight and bias are only accepted if they lead to a fii ter individual. 

Then, the modified individual is returned to the population. In e,.,, ence. this pro- 

cess randomly investigates vicinities of the FIR network weight, and bia., values for 

perturbations that lead to a reduction of the cost function (or to an mcrease of the 

fitness value). The intensity of the perturbation is controlled by t1w constmit 3. 

which also influences the speed of convergence, since large perturbations also mean 

larger differences in the weight space which in term increase t lie chance of 

ive deviations from optimum neighbourhoods. A suitable value for 3 can oiiI. y he 

adopted after some experimentation with the algorithm and the respective input- 

output mapping. In addition, this random search process may be associate(l with a 

crude implementation of the stmulated annealing algorithm (Kirkpatrick ct al., 1983-, 

Rutenbar, 1989 and Otten & van Ginneken, 1989), where a cooling schedule is not 

accounted for. 

The algorithm continues to create new individuals and to update their Ný, eight 

and bias values until the number of new individuals equals the original populat ion 

size P (one generation is stepped). Following each generation, the new and old 

individuals, totalling 2P individuals, are compared in terms of their fitness \'ahws 

and only the best P individuals are retained for the next generation. Therefore, its, 

there is no complete replacement of the old population, it is possible that the saine 

best individual occurs for many generations. This methodology has been adopted 

to avoid the loss of good genetic material from one generation to another. and to 

reduce potential disruptions in the overall process. 

To mitigate against the possibility of convergence to sub-optimal solut ions, an 

additional operation is used. Occasional stagnation of the process has beeii observed 

during the t est phase of the algorithm. GenerallY, t, his effect happens NvIten t lie pop- 

ulation has reached a stable condition in a sub-optimal solution, and no , ignificant 

improvement, occurs to overcome this situation. The need for new information in 
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the population to rnodiýv the search space js clear. 

When stagnation occurs, the algorithm forces the whole population to mutate in 

response to another mutation operator, referred to as forced mutatioii. This operator 

is invoked only after a pre-defined number of generations present the same fit iwsý, 

value for the best individual, and this operator works differently from I he niul at ion 

operator applied after the creation of new individuals in the genetic algorithm. For 

each member of the population, the operator random1v selects a gene to be modified. 

Then, the gene is modified and the individual is tested to check if its new fitness N-iflue. 

is greater than the old one. If this is the case, the individual is accepted, otherwise 

it is only accepted with a fixed probabilitY value of 0.0001. This probabilitY value 

has been adopted after some numerical experiences with the tranmig algorithin. 

Again, this operator works analogously to the conventional simulated annealing 

algorithm, but here the cooling schedule presents a fixed temperature value and no 

stabilisation inner loop. The routine is repeated a number of times and the final 

mutated individual returns to the population, restarting the whole procedure for 

the next member of the population. 

The final stage of the training and adaptation algorithm is a check for terminating 

the process. Two criteria are used to terminate the algorithm; namely (i) the number 

of generations exceeds a pre-defined limit, and (ii) the fitness value of t he best 

individual exceeds a pre-defined goal value. If any of the aforement ioned criteria 

are not met, the algorithm restarts to evaluate the populal ion, followed by genel ic- 

operations and so on. Figure 3.5 presents a schematic representat ion of t he ýdgorithm 

to illustrate the phases of the training process. 
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3.5 S ummary 

The lack of flexibility of the temporal back- propagat ion algorithm (Wan, 1990a. 

1990b) justifies attempts in training FIR neural networks by meaný, of other tech- 

niques. Recent studies (Schaffer et al.. 1992) have. provided argument, ý in fax-our of 

combining neural networks and genefic algorithms, especially for the case of adap- 

tion of neural network architectures. Therefore, the use of genetic algorit lim to t rain 

and optimise FIR neural network architectures seems to be appropriate. 

This chapter has described the application of a genetic algorithm for super- 

vised training and architecture adaptation of FIR neural networks in t1w cont ext of 

identification of non-linear dynamic systems. Init, ially, an overview of basic genetic 

algorithms is presented. Then, genetic elements and operators for the adaptal ion 

F1R neural network architectures are described. The chromosomes encode the in- 

formation to reconstruct each F1R neural network in the population. allowing tbe 

connections in the networks to present different values of time-delaY. 

The genetic operators are the conventional ones (Goldberg, 1989), except for the 

crossover operator, that permits multiple points. The selection operator is kised on 

roulette wheel selection over a scaled fitness distribution, and the mutation operator 

uses two probability values depending on the gene to be mutated (neuron or time- 

delay). The algorithm also uses simplifications of the simulated annealing algorithin 

to update the weight and bias values of the FIR neural network, as well as to a, N-oid 

stagnation of the convergence rate. 
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Modelling Non-Linear Unsteady 
Aerodynamic Response by 
Multi-Layer Functional 
Approximation 

4.1 Introduction 

The objective of this chapter is to address the issues and achievements obtained with 

the application of multi-layer functionals in the identification of non-linear unsteady 

aerodynamic response models. Multi-layer functionals, characterising the non-] kwar 

relationship between the (generalised) motion history and the (generalised) unsteýld. v 

aerodynamic response, are implemented in terms of a discrete-time version of i he 

temporal neural network; the FIR neural network. Identification of the FIR neural 

network is carried out using a process based on genetic search, in which both the. 

network training and optimisation of the network architecture is esi ahlished. 

Ideally, practical implementations of mult i-layer functional represew w ioii.,., of 

non-linear unsteady ýwrodynamic response for aeroelast ic analysis and cont rol deý, ign 

should be capable of represent ing a large class of flow reginies under nornial operat ing 

61 
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conditions. However, due to the physical characterist icý of unsteady aerodynamic 

response; for example, flow separation and compressibiliiy effects, multi-layei- func- 

tionals in the form of FIR neural network are specific to particular rangeý, ý of flow 

regimes and aerodynamic geometries. In addition, limitations due to the inherent 

characteristics of multi-layer functionals, restrict applications to motion histories 

compatible with the corresponding attached to mildly separated floNý- non-linearities 

of the unsteady aerodynamic response. 

Indeed, for such flow conditions, the unsteady aerodynamic reponse can be de- 

scribed mathematically as a continuous functional of the motion vamibles coinpýit- 

ible with the properties of multi-layer functionals. Therefore. the following multi- 

layer functional representation can be associated with the unsteady aerod. vnamic 

response model, 

ý-14M. 
77[ut, M] (4.1) 

where F(t) is the unsteady aerodynamic force vector, MT is the multi-layer func- 

tional operator, ut is the input motion history vector and -11 
is a flow parameter; 

for example, the Mach number. 

The unsteady aerodynamic test cases considered here are associated with two 

types of flow regimes: (i) mildly separated flowfields, and (ii) compressible flows 

exhibiting dynamic motion of shock waves. In the first case. weakly non-linear 

behaviour of the unsteady aerodynamic response is observed, while in the second. a 

stronger non-linear behaviour occurs. For the mildly separated flow regime ca,, e. Ow 

aerodynamic data necessary for identification is obtained by using a coinput ational 

implementation of the semi-empirical Beddoes model by Niven k Galbraith [19911. 

The transonic aerodynamic database is created using a CFD code (Dubuc et al., 

1997) based on Oie numerical solution of the Euler equations. In both a two- 
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dimensional IN ACA 0012 airfoil is used, and the range of mol ion li, st ories Is -wlect ed 

to cover a large class of non-linear unsteady aerodynamic behaviour compatible with 

the limitations of the database generators. 

The training process demands that a broad range of motion induced unsw&l. v 

aerodynamic responses be used during the non-linear identification of the FIR neural 

network. This requirement is associated with the non-linear nature of the unst eady 

aerodynamic response of interest, and the need for a variety of charact erist Ic mot ion 

histories within the chosen range for the network identification process. Other flow 

parameters can also be considered to vary from one motion history to another. For 

instance, a static range of Mach numbers variations per motion history can also be 

accommodated in the aerodynamic database. 

This chapter presents a description of the computations used to build up the 

aerodynamic database required for network training. A brief description of the Bed- 

does model and the Euler CFD code is made, and the respective numerical experi- 

mentations developed to establish the non-linear range of the unsteady aerodynamic 

responses. The results of model identification for both cases and a disciission are 

also presented. 

4.2 Unsteady Aerodynamic Data Generation 

The data base generation used in the identification of non-linear unsteady aerody- 

namic response functionals is presented. Only flow regimes that can be represent ed 

by continuous functionals are considered. Discontinuil le,, in I he functional repres- 

entations are related to the effects of separation. As shown by Tobak k Chapman 

[19851, functionals for this type of flow regime hýive to account, for the replacement 
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of an unstable equilibrium flow by a new stable equilibrium flow at a critical condi- 

tion; in other words. account for the effects of aerodynamic bifurcation. Subjected 

to these constraints, weakly non-linear unsteady aerodynamic behaviour associated 

with mildly separated flows, and non-linear inviscid unsteady aerodynamic belia- 

viour in the transonic regime, are considered. 

The approaches employed here to generate the unsteady aerodynamic dat abase 

are: (i) the Beddoes model (Niven & Galbraith, 1991) for weakly non-finear unst eady 

aerodynamic response of mildly separated flowfields: and (ii) an Euler G'FD code 

(Dubuc et al., 1997) for unsteady aerodynamic response in the transonic regime. 

4.2.1 A Semi-Empirical Model for Mildly Separated Flow 

The Beddoes model is a semi-empirical model originally proposed by Beddoes [1976, 

1982a, 1982b] and Leishman & Beddoes [1986]. This approach uses concepts based 

on physical observation of overall unsteady aerodynamic behaviour of bi-dimensional 

airfoils to determine a mathematical and logical formulation of the relat ionships 

between the motion history and the aerodynamic response. The model produces 

aerodynamic reactions by using superposition of a series of linear indicial responses. 

Extension to non-linear unsteady behaviour is accounted for by specific I heoretical 

or experimental correlation. Some of the most important evaluation aspects of t 1w 

various unsteady features executed in the Beddoes model (Beddoes. 1976,1982a, 

1982b and Leishman &, Beddoes, 1986), are, briefly: (i) non-linear lift characteri"I ics, 

of trailing edge separation are calculated using a Kirchhoff model (cf. Appendix A): 

(ii) centre of pressure variation with separation is empirically evaluated, based on 

i lie airfoil static behaviour; (iii) delays are added io pressure \-ariat ions and mist eady 

bounditrylayerresponse; (iv) the dynamic trail ing edge separat ion pol lit. is computed 

and used as a primary degree-of-freedom in the model. The comPlele model i, 
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capable of monitoring local flow states during unsteady motion to combine the 

temporal and non-linear effects to produce the final aerodynamic re.,, poiise. 

The weakly non-linear behaviour of the unsteady aerodynamic force respoiise of 

a two-dimensional NACA 0012 airfoil in mildly separated flows for a range of Miwh 

numbers is considered for the identification process. Under these conditloiis. tlie 

Beddoes model uses the Kirchhoff flow model, as presented in Appendix A. 

Niven & Galbraith [1991] have coded the Beddoes model into a computational 

program, which is used to generate the aerodynamic database. Numerical experi- 

mentation is used to indicate the range of incidence angle (angle of attack) mot ion 

histories for weakly non-linear behaviour of unsteady aerodynamic normal force re- 

sponse. A freestrearn sonic velocity of 340.5 m. s-1 and an airfoil chord length of 

0.55 m are adopted. The non-linear behaviour is studied from the numerical ex- 

periments by observing the differences between consecutive aerodynamic responses 

for the same type of incidence motion history at an increasing maximum value. For 

Mach numbers; 0.15,0.30 and 0.45, sinusoidal incidence histories of the airfoil at, 

a fixed frequency of 2 Hz and zero mean angle, are considered. From an initial 

amplitude of 1', up to the maximum amplitude value of 15', the incidence histories 

stepping I' in the amplitude value are used to obtain the respective normal force 

coefficient response histories, CN(t)- 

Then, the difference between eachCN(t) response history is calculated as, 

CN,, 
A, - 1 

(t) 
- 

CN1 

A 
(4.2) 

whereCNA+1 M is the response history due to the motion of amplitude .1+I and 

theCN1 M is response history due to the 1' amplitude motion, for .4= 10,. .. . 150 

This procedure generates a family of (-'A-(t) difference curves that, are normallsed 

with respect, to the first C. -\-(t) difference curve. The result is a family of normalised 

C,,, jt) difference curves as shown in Figure 4.1 for each respective Mach number. 
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The non-linear behaviour of the normal force coefficient responses can be ex- 

tracted from the normalised CN(t) difference curves presenting non-zero absolute 

normalisedCN(t) values. Inspection of Figure 4.1 reveals the range of angles of at- 

tack (incidence motion amplitudes) where the weakly non-linear behaviour induces 

non-zeroCN(t) difference curves, and Table 4.1 summarises these values. 

Mach numbers I Range of absolute incidence angles 

0.15 8' to 13' 

0.30 7' to 12' 

0.45 6' to 10' 

Table 4.1: Range of angles of attack that induces weakly non-linear unsteady aero- 
dynamic behaviour. 

4.2.2 An Euler Model for Transonic Flow 

The CFD code developed by Dubuc et al. [1997] is used for the unsteady transonic 

aerodynamic database generation. The code solves the non-linear unsteady Euler 

equations for inviscid fluid flow by means of implicit methods. An implicit dual- 

time method is employed to solve the unsteady fluid mechanics equations, while an 

implicit unfactored method solves the associated steady state problem in pseudo- 

time. The solution also relies on a multi-block structured grid approach based on a 

higher-order finite volume discretisation. For the aerodynamic data presented here, 

an undeformed grid rotational motion is considered. Figure 4.2 depicts a detail of 

the mesh used by the CFD code. 

Unsteady transonic aerodynamic responses, influenced by non-linearities caused 
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Figure 4.2: Detail of finite volume mesh used by CFD code. 

68 

by the appearance and dynamic excursion of shock waves during the incidence nio- 

tion history, are considered in the database for the training process. To establish 

the incidence motion and Mach number range that covers the non-linear behaviour 

of unsteady transonic responses, numerical experiments with a two-dimensional 

NACA 0012 airfoil, freestrearn sonic velocity of 340.5 m. s-' and airfoil chord length 

of 0.55 m, have been carried out. 

The experiments are based on observations of variations of the pressure coeffi- 

cient distribution around the airfoil due to shock waves during unsteady incidence 

motions. For several combined Mach numbers and motion histories adopted for the, 

training, the maximum (absolute) angle during the motion history exhibit ing com- 

pressibility non-linearities in the pressure distribution, is assumed as the unsteady 

motion boundary of the training process at, the respective Mach number. Table 4.2 

shows the relation between Mach number and the maximum incidence angle for t he 

non-linear unsteady transonic database generation. Moreover, in Appendix B, t he 

pressure distribution variations for the cases used in the training process and furt tier 
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verifications are presented. These cases also illustrate how the maximum incidence 

motion boundaries are extracted to compose the training sets. 

Mach numbers I Maximum absolute incidence angle 

Table 4.2: Incidence angles for non-linear behaviour of unsteady acrodyilaiillc i*(, - 
sponse in the transonic regime. 

4.3 Approximation of the Unsteady Aerodynamic 
Response in Mildly Separated Flow 

The identification of a multi-layer functional in the form of a FIR neural no work 

model for the weakly non-linear behaviour of unsteady aerodynamic response in 

mildly separated flows is presented. The process of network training and architecture 

adaptation, as described in Chapter 3, is used for the model identification. The 

algorithm is carried out for a two input one output unst eady aerodynamic problem. 

The functional relationship between normal force coefficient, Cv(t). and angle of 

attack history, cet , 
is represented by a multi-layer functional, MY: t hat is, 

(t )= M_7: 7[(i 
t, _%l 

] (4.3) 
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Tfie data used to train and adapt the FIR neural network k obtained by the 

semi-empirical Beddoes model presented in ihe Section 4.2.1. The inodel impli- 

citly accounts for the Mach number dependence of the unsteady aerodynamic force 

response, as well as the notional non-linear functional relation between the aerodv- 

namic force response and the incidence motion history. with basic problem paranict- 

ers as illustrated in Figure 4.3, freestream sonic velocity of 340.5 rn. s -1, and airfoll 

chord length of 0.55 m. 

U00 

No- )012 

Figure 4.3: Parameters for the identification of the unsteady aerodynamic response 
multi-layer functional in mildly separated flow. 

According to the features of weakly non-linear behaviour of I he unsteady aero- 

dynainic response in mildly separated flow, obtained by numerical experiments in 

Section 4.2.1, characteristic motion histories for the FIR network identificat ion can 

be defined. The characteristic motion histories comprise sinusoidal. ramp-ilp, wid 

ramp-down motions of the angle of attack, Nvith maximum absolut c amplit ude,, equal 

to the maximum absolute angle of attack that determines the limit for weakl. v non- 

linear behaviour in mildly separated flow of the unsteady nornial force rcsponý, e (cf. 

Table 4.3). 
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Characteristic motion . 11 Range 

ramp-up 0.15 ce, j, = - 5': a,,,, = 13 - 
0.30 aj, = o,,, = 12' 
0.45 oz, j, = -5': o,,,, = 10' 

sinusoidal 0.15 ce,,,,, = 0', amplitude= 13' 
(all cases: frequency is 2 Hz) 0.30 = 0'; amplitude= 12' 

0.45 ce,,,,, = 0' amplitude= 10' 
ramp-down 0.15 13'; a, i,, = 0' 

0.30 12', o .. j, = 0' 
0.45 ce,,,,, = 10': a,, i,, = 0' 
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Table 4.3: Training set motions for the identification of the unsteady aerodynamic 
response model for mildly separated flow. 

The network training sets are composed of the nine characteristic angle of ýit- 

tack motions (sinusoidal, ramp-up, and ramp-down) and respective unsteady normal 

force coefficient response histories, CN(t), corresponding to one of three freestrearn 

Mach numbers, as presented in Table 4.1. The confirmation that each training case 

is in the range of weakly non-linear behaviour of mildly separated flowfields is presen- 

ted in Appendix A in Figures A. 2 to A. 10. The presentation of each training set 

comprises normalised values with respect to the maximum incidence prior to I rain- 

ing. To guarantee adequate representation of the input motion histories and out put 

aerodynamic responses the sample interval in the discrete-time model is 0.01 s. 

For the maximum complexity F1R neural network in the population: 2 hidden 

layers and 10 neurons per hidden layer are used. A maximum time-delay per con- 

nection (T,,,,,, ) of 3 is assumed. The training process has been carried out in 00,000 

generations, since the error goal was not achieved. In Table 4.4, the complete , -, et of 

training paranwters is presented. 
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Training parameters Value 
population size 10 
number of crossover points 5 
Pt 0.3% 
Pn 0.1 I/C 
scaling factor for selection 2.0 
perturbation constant. 13 0.008 
number of cycles in updating weight/bias 5 
number of steps before forced mutation 1000 
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Table 4.4: Training parameters for the identification of weakly non-linear unst (, ýId. v 
aerodynamic response in mildly separated flow. 

Figures 4.4 to 4.6 present a comparison between the desired normal force coeffi- 

cient response and the FIR neural network output for each of the tntining sets aft or 

the end of the identification process. 

The form of the final adapted FIR neural network (including the number of I inw- 

delays per connection) is illustrated in Figure 4.7. The respective weight and bias 

values are presented in Tables 4.5 and 4.6. In Table 4.5, the rows are related t () the 

outputs of each neuron in the FIR neural network (cf. Figure 4.7), while t lie columns 

are related to the inputs. The row values in parenthesis represent time-delaY 

Therefore, each weight value for the respective time-delay (in parenthesis) belongs 

to the connection linking the neuron number in the row to the neuron number in 

the column. 
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Figure 4.4: Identification of unsteady aerodynamic response in mildly separated 
flow: Raining sets and adapted FIR neural network outputs for the ramp-up cases. 
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Figure 4.5: Identification of unsteady aerodynamic response in mildly separated flow: 
'JA-aining sets and adapted FIR neural network outputs for the sinusoidal cases. 
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Figure 4.6: Identification of unsteady aerodynamic response in mildly separated 
flow: IYaining sets and adapted FIR neural network outputs for the ramp-down 
cases. 
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Figure 4.7: Identified FIR network model for the unsteady aerodynamic respoiise in 
mildly separated flow. 
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1 2 3 4 5 6 7 8 9 10 
0.131 0.144 0.109 

-0.110 -0.237 0.120 

- -0.052 - 
(2) 

(3) 

0.699 -0.860 -0.005 -0.626 0.844 -0.446 
(1) -0.319 0.136 0.821 0.360 0.003 -0.215 
(2) -0.248 -0.163 0.698 0.009 -0.001 0.204 

(3) -0.049 0.325 0.279 - - 0.315 

-0.982 0.142 0.751 0.279 0.532 -0.455 
(1) - 0.479 0.504 - -0.191 -0.904 
(2) 0.005 0.806 - 0.066 0.563 

(3) - -0.396 -0.527 - 0.181 0.950 

-0.787 -1.148 -0.795 -0.752 -0.624 -0.306 
(1) -0.800 0.208 0.238 -0.391 0.691 0.207 

(2) -0.113 0.164 -0.898 0.119 0.569 0.526 

(3) - 0.003 - -0.413 - -0.027 

-0.255 

-0.661 
(2) 

(3) 

-0.151 

(2) 

(3) 

-0.014 

(2) 

(3) 

-0.461 

(2) 

(3) 

-0.773 

-0.206 
(2) -0.165 

(3) 

-0.015 

-0.001 
(2) 

(3) 

Table 4.5: Weight values in the identified FIR network model for the unsteady 
aerodynamic response in mildly separated flow. 
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1 10 
-0.965 0.121 -0.806 0.689 -0.071 -0.823 -0.243 0.049 -0.114 0.480 
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Table 4.6: Bias values of each neuron of the identified FIR network model of unsteady 
aerodynamic response in mildly separated flow. 

Figure 4.8 shows the convergence characteristics of the algorithm during network 

training. The sum of squared errors between the Beddoes model and FIR neural 

network outputs corresponding to the best individual in the population for steps 

of ten generations is depicted. The error values are normalised with respect to 

the initial error value, which is determined by the inverse fitness value of the best 

individual in the population. 

.......... ............ 

3.4 ZZZZ. ----z; -Z. .;.;, 

10 0 10 1 10 
2 10 3 10 4 

Generations 

Figure 4.8: Error decay during the identification of the FIR network model of un- 
steady aerodynamic response in mildly separated flow. 



CHAPTER4 7 

The robustness of the adapted network identified from the prescribed trainhig 

sets is examined in Figures 4.9 to 4.16. For each case. pitch incidence Idstory and 

Mach number values different from the ones used to ident ify the FIR neural net work, 

are used. In Appendix A, in Figures A. 11 to A. 18, the progression of the separation 

point for each test case helps to ensure that the correct aspects of the physical 

phenomena are present in the generalisation tests. The identified FIR neural net work 

model output is then compared to the desired normal force coefficient resj)oiise. All 

test cases show satisfactory correlation between the normal force coefficient identified 

by the FIR neural network model and the respective Beddoes model ow pil. s. 
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Figure 4.9: FIR network model of mildly separated unsteady aerodynamic response 
to arbitrary motion histories in the linear range. 
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to arbitrary motion history and Mach number. 
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Figure 4.12: FIR network model of mildly separated unsteady aerodynamic response 
to arbitrary motion histories at lower frequency than that of the training set s. 
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Figure 4.14: FIR network model of mildly separated unsteady aerodyniunic response 
to severe arbitrary motion history and Mach number. 
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Figure 4.16: FIR network model of mildly separated unsteady aerodynamic response 
to arbitrary motion histories beyond training range. 

4.4 Approximation of the Unsteady Aerodynamic 
Response in Transonic Flow 

Multi-layer functional models of unsteady transonic aerodynamic response are iden- 

tified for two different problems. The first one considers the identification of a FIB 

network model for the unsteady transonic aerodynamic response to variations in 

the incidence angle at a fixed Mach number (-V = 0.65), while the second problem 

considers the model identification for a range of Nlach numbers. Bot li problems 

are based on the features shown in Figure 4.17, for a freestream sonic vehwit v of 

340.5 and the airfoil chord length of 0.555 m. 



CHAPTER4 

/-, 1+ 1 

U00 

0012 

S4 

Figure 4.17: Parameters for the identification of the FIR neural network model of 
the unsteady aerodynamic response in the transonic regime. 

In comparison with the problem presented in the previous section, here the com- 

plexity of the input-output mappings naturally demands more generations for train- 

ing, as well as different training parameters. 

4.4.1 Unsteady Aerodynamic Response in Týransonic Flow 
at Fixed Mach Number 

In the present case, the training algorithm is used to identify the non-linear func- 

tional relationship between both, lift force coefficient, CL(t), pitch moment coeffi- 

cient at, 25% chord length, C,,,,,, (t), and incidence histories, at., for a -NACA 0012 

airfoil operating at a fixed value of Mach number (M = 0.65). Equation 4.4 describes 

the functional representation adopted; that is, 

CL (t) 
= A4. Tm[nt] (4.4) CM1/4 (t) 

motions used for training are The aerodynamic response to the character] 

obtained from the CFD code described in Section 4.2.2. Table 4.7 presents a de- 

scription of each one of the training sets used in the identification pro(-(,,,,,. For 
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all training cases, the appearance and dynamic motion of shock wave, responý, Ible 

for non-linpar behaviour of the unsteady aerodynamic response can be ol)>erv(, (l in 

Appendix B. The three characteristic motions for training have a sample illt ('FVýI I 

of 0.002 s, to adequate the representation of the input motion hislorles and outpiit 

aerodynamic responses. 

Characteristic motion Range 

sinusoidal - 0'; amplitude- 40, frequency 10 Hz 

sigmoidal ramp-up amin =-- -l'; cem,,., = 

, 
pulse-down Ginitial ý P; ap,,,,,, = -4.5'; (IfInal = 10 

Table 4.7: Training set motions for the identification of the unsteady aerodynamic 
response model in the transonic regime (fixed M=0.65). 

1n order to help the convergence, the training process is carried out in stages, 

with some training parameters altered from one stage to another. A triA-and- 

error approach is used to obtain new training values for each stage. Here. aI hree 

stage training process, totalising 250,000 generations, has been carried out. For Ow 

maximum complexity FIR network architecture in the population: 2 hidden layers 

and 10 neurons per hidden layer are used. A maximum time-delay per connection 

of 6 is assumed. Table 4.8 presents the complete set of training parameters. 
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Training parameters Value 
Stage 1 St age 2 Sial,,, e 3 

population size 14 14 14 
number of crossover points 13 13 13 
Pt an d P,, 0 . 5% 0.5'/c 0.5Vc 
scaling factor for selection 2.0 2.0 2.0 
perturbation constant, 0.0001 0.0001 0.001 
number of cycles in updating weight/bias 0 'D 0 
number of steps before forced mutation 200 100 100 
number of generations 100.000 100,000 50,000 
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Table 4.8: Training parameters for the identification of unsteady aerod. viianiic re- 
sponse model in the transonic regime (fixed A] - 0.65). 

Figures 4.18 to 4.20 present a comparison between lift force coefficiew and pit cli 

moment coefficient responses obtained by the Euler CFD code aiid t lie resI)ective 

F1R neural network outputs for each of the training sets after completion of I he 

i dent ificat ion process. 

The architecture and time-delay distribution of the identified FIR net work inodel 

is presented in Figure 4.21, while the respective values of weight and bias arc re- 

spectively presented in Tables 4.9 to 4.10. 
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Figure 4.18: Identification of the unsteady aerodynamic response model in Ow tran- 
sonic regime (fixed M=0.65): Euler CFD code and FIR network outputs after 
training for the sinusoidal case. 
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Figure 4.19: Identification of the unsteady aerodynamic response model in I Ile t ran- 
sonic regime (fixed -11 = 0.65): Euler CFD code and FIR network outputs after 
training for the signioidal ramp-up citse. 
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Figure 4.20: Identification of the unsteady aerodynamic response model in the trall- 
sonic regime (fixed M -- 0.65): Euler CFD code and FIR network outputs aft er 
training for the pulse-down case. 
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Figure 4.21: Identified FIR neural network model for the unsteady aerod. viialllic 
response model in the transonic regime (fixed 

-11 = 0.65). 
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1 2 3 4 5 
a 0. (96 -0.323 -0.422 

0.060 -0.298 0.191 

(2) - 0.634 0.059 

(3) - - -0.108 
(4) 

(5) - - - 

(6) 

-0.362 -0.961 
(1) - 0.234 

(2) - -0.243 
(3) - 0.099 

(4) - -0.068 

01) - -0.054 

(6) - -0.053 
2 -0.175 0.185 

(1) 0.022 0.148 

(2) -0.001 0.045 

(3) - -0.160 
(4) - -0.001 

(6) - 0.020 

(6) - -0.026 
3 -0.025 0.005 

(1) -0.001 - 
(2) -0.213 - 
(3) 

(4) 

(5) - - 

(6) 

-0.383 -0.241 
0.034 - 

(2) -0.055 - 
(3) 0.061 - 
(4) -0.012 - 

(5) -0.057 - 
(6) -0.020 - 

-0.686 -0.027 

(1) -0.020 - 
(2) -0.101 - 

(3) -0.691 - 
(4) 0.385 - 

(5) -0.391 - 
(6) -0.149 - 
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Table 4.9: Weight values in the identified FIR network model for the unsteadN. 
aerodynamic response in the transonic regime (fixed If = 0.65). 
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-0.403 -0.090 -0.296 -0.553 -0.141 -0.222 -0.114 

90 

Table 4.10: Bias values of each neuron of the identified FIR network model for the 
unsteady aerodynamic response in the transonic regime (fixed M=0.65). 

FigUre 4.22 presents the convergence characteristics, in steps of ten generations, 

of the training process in terms of the normalised sum of squared errors between 

Euler CFD code and adapted FIR neural network outputs. The best individual 

in the population with respect to the initial error value, which is determined by 

the inverse fitness value of the best individual in the population, is considered. 

The generalisation properties of the identified FIR network model are examined 

in Figures 4.23 to 4.30, by presenting arbitrary incidence motion histories to the 

identified model and comparing Euler CFD code and FIR network outputs. 
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Figure 4.22: Error decay during the identification of the FIR network model of 
unsteady aerodynamic response in the transonic regime (fixed M=0.65). 
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Figure 4.23: FIR network model of unsteady aerodynamic responses in the transonic 
regime (fixed M=0.65) to arbitrary motion histories in the linear range. 
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Figure 4.25: FIR network model of unsteady aerodynamic responses in the transonic 
regime (fixed M=0.65) to arbitrary motion histories at higher frequency than I 11at 
of the training sets. 
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Figure 4.27: FIR network model of unsteady aerodynamic responses, in the t railmnlic 
regime (fixed M=0.65) to arbitrary motion histories. 

"0 

9 -2 
C 
<-4 

1 

a) 

10 
-J 

_1 

................... .......... . ......... .................... .... ................... ................... 
............................. . ........... .......... 

........................................... .................. ............. 

................ ................... ................ ................... .......... 

0.05 0.1 0.15 0.2 0.25 
i ime Iseconasi, 

! 
pesirerVu ut r etwor u ut] 

.......... 

0 

0.01 

8 

-n ni 

0.05 0.1 0.15 0.2 0.25 
i ime 

.......... 

Resired 0-utput 
etwork uutput i. 

MX 

0 0.05 0.1 0.15 0.2 0.25 
Time [seconds] 

Figure 4.28: FIR net Nvork model of unstead. v aerodynamic i-esponses in i fie t railsonic 

regime (fixed 
-11 = 0.65) to arbitrary motion histO Fi CS. 



CHAPTER4 

cc !V -2 
0 

......... ..... 

................... ........... ....... ..................................................... 
.......... 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

0.5 
'E 
A? 
V0 

-0.5 

ii me iseconcisi 

pesireci 
etwork 

................... . ......... .... . 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

-10 
A? 
A2 

5 

0 
E 
0 5; tz 

X10 Time [seconds] 

Repire(j 
etwork 

....................... 

....... ... ..................... ... .......... ......... ........ ................... 

94 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 
Time [seconds] 

Figure 4.29: FIR network model of unsteady aerodynamic responses in the t ransonic 
regime (fixed Al = 0.65) to arbitrary motion histories. 
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4.4.2 Unsteady Aerodynamic Response in T'ransonic Flow 
over a Range of Mach Numbers 

A multi-layer functional representation of the unsteady aerodynamic resjmiise of a 

two-dimensional NACA 0012 airfoil operating over a range of Mach numbers in the 

transonic regime is identified. The representation considers the finictioiial relation- 

ship between lift force coefficient, CL(t), and pitch moment, coefficient at 23-1/c chord 

length, Cm, 
j, 

(t), and the angle of attack histories, cet. over a range of Madi numhers 

(0.625 <M<0.725). Equation 4.5 describes the functional represent al ion used. 

CL (t) 

CM 
1/ 4 

(t) - A4 . 77[(ýtý 
_11] (4.; -)) 

As in Section 4.4.1, three characteristic incidence motion histories are considered. 

but here each one is considered at a different Mach number. The training sets are 

presented in Table 4.11, and the basic problem features are the same ýis in Fig- 

ure 4.17. In addition, the training sets are presented to the identification algorithm 

in terms of normalised values with respect to the maximum value of the aerodynamic 

responses. The non-linear behaviour of the unsteady aerodynamic response in this 

problem can be observed in Appendix B, where the existence and (IN-namic excursion 

of shock waves is apparent in each training case. To ensure adequate representation 

of the input motion histories and output aerodynamic responses the sampling rate 

is selected 0.002 s. 

For the network model, the maximum complexity FIR neural network in t he 

population is defined by 2 hidden layers and 10 neurons per hidden layer. A max- 

imum time-delay per connection (T,,, 
_, 

) of 4 is assumed. The identificat ion process 

is executed in 430,000 generations partiLioned into three stages. in order to improve 

the convergence rate bY changing (via a trial-and-error approach) cortain training 

parameters from one stage to another. Table 4.12 presents the complete ýwl of 
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training parameters used in the identification problem. 

96 

Characteristic motion -11 
Range_ 

sinusoidal. 0.625 0'; amplitude= 4.5". frequency 10 Hz 
0.675 ce,,,,, 0', amplitude= 3.00, frequency 10 Hz 
0.725 00; amplitude= 1.5', frequencY 10 Hz 

sigmoidal ramp-up 0.625 = 0'; 4.5' 
0.675 = 0'; 3.0' 
0.725 = 0'; 1.5' 

pulse-down 0.625 ainitiat 00: aputse -4.5'; Ofinat Oc' 

0.675 Oinitial 00, Cfputse -3.0', (Ifinal 00 

0.725 ainitiat 00; avulse -1-50-, afinal 00 

Table 4.11: Training set motions for the identification of the unstead ,v aerodynamic 
response model for a range of Mach numbers in the transonic regime. 

Týraining parameters Value 
Stage I Stage 2 Stage 3 

population size 14 14 14 

number of crossover points 13 5 
Pt and P,, 0.5% 0.5% 0. Vc, 

scaling factor for selection 2.0 2.0 2.0 

perturbation constant, 3 0.0001 0.0001 0.0001 

number of cycles in updating weight/bias 5 5 5 

number of steps before forced mutation 200 200 100 

number of generations 200,000 50,000 180.000 

Table 4.12: Raining parameters for the identification of the unstead , N, aerodynamic 
response model for a range of Mach numbers in the transonic regime. 

Figures 4.31 to 4.39 present a comparison bet ween lift force coefficient and pit ch 

moment coefficient responses obtained bY the Euler CFD code and the re,, pect ivo 

FIR neural network outputs for each of the training sets after completion of the 

identification process. 
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Figure 4.33: Identification of the unsteady aerodynamic response in the transonic 
regime (M = 0.625): Euler CFD code and FIR network outputs after training for 
the pulse-down case. 
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Figure 4.35: Identification of the unsteady aerodynamic response in the transonic 
regime (M = 0.675): Euler CFD code and FIR network outputs after training for 
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Figure 4.37: Identification of the unsteady aerodynamic response in the transonic 
regime (M = 0.725): Euler CFD code and FlR network outputs after training for 
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regime (M = 0.725): Euler CFD code and FIR iiet, Nvork outputs after training for 
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The architecture and time-delay distribution of the identified FIR network model 

are presented in Figure 4.40, while the respective values of welght and bias are 

presented in Tables 4.13,4.14, and 4.15. 
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Figure 4.40: Identified FIR neural network model of the unsteady aerodynamic 
response for a range of Mach numbers in the transonic regime (0.625 < ýAl < 0.725). 
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1 2 3 4 5 6 7 8 9 10 11 
m 0.724 -0.882 -0.415 -0.431 0.203 -0.364 -0.500 
a -0.055 0.154 0.003 -1.130 0.543 0.014 -0.763 

(1) 0.220 0.707 -0.210 1.247 0.121 - 0.784 

(2) - -0.399 - - -0.164 - -0.742 
(3) - - - - 0.376 

(4) - - 0.643 

-0.521 0.422 

0.128 -0.791 
(2) - 0.163 

(3) 0.090 

(4) - 0.076 

2 0.202 -0.762 
(1) 0.039 0.755 

(2) 0.068 -0.142 
(3) -0.896 0.251 

(4) 0.121 0.120 

3 0.658 -0.401 
(1) 0.125 0.169 

(2) -0.038 -0.176 
(3) 0.032 -0.033 
(4) - -0.039 

4 0.509 -1.007 
(1) -0.465 -0.587 
(2) 0.792 0.462 

(3) -0.111 0.179 

(4) -0.285 0.311 

5 -0.197 -0.028 

(1) 0.111 -0.233 
(2) 0.193 0.280 

(3) 0.221 -0.005 
(4) 0.143 -0.052 

6 -0.607 0.981 

(1) 0.014 -0.850 
(2) -0.738 0.634 

(3) 0.859 -0.316 
(4) 0.014 - 

7 -0.334 -0.054 
0.194 -0.411 

(2) - -0.122 

(3) - -0.081 

(4) - -0.033 

Table 4.13: Weight values in the identified FIR network model of the unsteady 
aerodynamic response for a range of Mach numbers of the transonic regime. 
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2346789 10 11 
-0. ýM 0.004 

(1) -0.49 ý- 

(2) 0.013 - 

(3) 0.009 - 

(4) -0.020 - 

0.076 -0.013 

-0.318 - 
(2) 0.110 - 

(3) -- 

(4) 

104 

Table 4.14: Weight values in the identified FIR iietwork model of the linstead ,y 
aerodynamic response for a range of Mach numbers of the transonic regime: cont'd. 

10 
-0.011 0.404 0.261 0.198 -0.401 0.137 -0.062 0.391 -0.825 0.162 -0.008 

Table 4.15: Bias values of each neuron of the identified FIR network model of t 1w 
unsteady aerodynamic response for a range of Mach numbers in I he transonic regime. 

Figure 4.41 presents the convergence characteristics, in steps of ten generations. 

of the training process in terms of the normalised sum of squared errors betweeii the 

Euler CFD code and adapted FIR neural network outputs of the best individual in 

the population with respect to the initial error value, which is determined by i he 

inverse fitness value of the best individual in the population. The generalisation 

properties of the identified FIR network model are examined in Figures 4.42 to 4.51, 

by presenting the network model with arbitrary incidence motion hist ories and Madt 

numbers and comparing the output of the FIR network model with correspondent 

aerodynamic responses generated by the Euler CFD code. 
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4.5 Discussion 

Both unsteady aerodynamic response models have shown encouraging resul Is Io cii- 

dorse the use of multi-layer functional represent at i ons. The abilitY of the FIR neural 

network to capture the essential characteristics of both linear and non-linear un- 

steady aerodynamic behaviour can be observed in simulations for a range of motion 

histories and Mach numbers different from the ones used for I raini ii[ý. In contrast Io 

the considerable amount of time demanded by the training process, to identifýy Ihe 

model, t he final network evaluations are fast enough Io allow real-t inie predict ion,, 

justif, ying further applications in aeroelastic analysis and control deý, ýigii. Another 
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advantage of FIR neural networks is in the fact that the network parameters (that 

is, connectivity information and weight and bias values) demand mininial , torage 

requirements. 

The presence of two hidden layers in the final FIR neural network ensure., func- 

tional complexity., as observed from all identified model,,. The typical thne-dela. y 

distribution within the networks also provides features to the identified models tliat 

are consistent with the physical behaviour of unsteadý, flowfields. Aniong all the 

identified network architectures, a tendency in accummulating larger time-delay 

values between the two hidden layers has been observed. No connection lias been 

found to relate time-delay distribution and values to the funct ional description of 

the unsteady aerodynamic response. 

An adequate representation of the weaklY non-linear nornial force coefficiew 

response in mildly separated flow regime has been achieved. The final network 

model is able to predict the aerodynamic response to motion histories within the 

limits of incidence angles and Mach numbers of the training sets. Here, a series of 

generalisation tests are explored and, for each new test case, the respective t inie- 

histories of the separation point, as modelled in the Beddoes model, are sliown in 

Appendix A. 

The test in Figure 4.9 for a ramp-up incidence motion history from -5' to 5ý', 

shows that linear unsteady aerodynamic behaviour is also incorporated in the final 

FIR network model. Simulations in the range of weakly non-linear behaviour ýtrc 

shown in Figures 4.10 and 4.11, where the FIR network model outputs are ahle to 

provide satisfactory predictions of the normal force coefficient response. In additioil. 

the non-linear dependency of the aerodynamic response on Macli number is also 

reproduced by the FIR network model. since each case is calculated for a Mach 

number different from the t. raining sets. The good agreement between ýiciual and 

network outputs is due mainly to charact erisi, ics of i he Beddoes model (tat a. Indeed. 
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the use of superposition of indicial responses and a Nveak separation de. -Icription based 

on a Kirchhoff model (cf. Appendix A). results in smooth aerodynamic repoii., w, 

that facilitate the training process. 

Generalisation tests considering different frequencies in (),, cillatorv motion cases. 
have shown that the FIR network model is capable of predict ions for a wide raiige of 

motion frequencies. Figures 4.12 and 4.13 illustrate the lower and higher frequeiwY 

cases, respectively, compared with the frequency of the oscillatory ciisc for trailliII!, 

Small discrepancies are only observed when the frequency is made four 6mes the 

frequency of the oscillatory training case. 

Three test cases, however, illustrate the network model behaviour for input Ins- 

tories beyond the training limits. Figure 4.14 presents a test, case in which ýt severe 

incidence motion history is assumed. Starting at, a coiist ant incidence of 10", t1w 

angle of attack abruptly changes from ramp-down (reaching -15') to rainp-up in it 

time interval of 0.3 seconds, returning again to a constant incidence of 10'. Dur- 

ing the incidence changes, discontinuous behaviour of the aerodyiiamic functional 

is manifested by severe separated flow behaviour as exposed in section 4.2. This 

feature can also be observed from the evolution of the separatioii point, as presen- 

ted in Figure A. 16 in Appendix A. Consequently, the FIR neural network response 

provides a poor approximation to the aerodynamic response over this part of t he 

motion history, but most of the overall unsteadY aerodynamic response features (-an 

still be reasonably predicted by the model. 

Figure 4.15 presents a test case where the incidence motion is Nvithin the model- 

ling range, but for a Mach number larger thaii the values used in the _NLich number 

range for training: that is, ill = 0.55. The incidence motion is adopted its a ramp-tip 

from an incidence of 0' to 10'. Although the discontinuity induced by increasing the 

freestrearn speed (and consequently, separation: cf. Figure A. 17) is not so strong, 

the effect on t lie normal force response functional is sufficielli to exclude this case 
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from the range of applicability of the identified FIR network model. For the lat c&, (, 

(cf. Figure 4.16) a ramp-up motion to 1,5' illustrates the network model perform- 

ance beyond the limits of weakly non-linear behaviour of the aerodynamic response 

functional. Again, the performance of the F1R neural network model is comproin- 

ised due to a severe form of non-linear behaviour exhibited in t, he aero(IN-nanfic 

response. This severe non-linearity, in the form of flow separation, can be confirmed 

in Figure A. 18 in Appendix A. 

The unsteady aerodynamic response in the transonic regime presews a mon, 

complex case for the identification process. Moreover., two output, FIR network 

models also represent a more complex searching space for the identification process, 

in terms of supervised training. As a consequence, the training processes require 

more iterations and difficulties arise in the selection of the training parameters. 

For the identified FIR network model at fixed Mach number (ill = 0.65) the 

non-linear behaviour of both lift force and pitch moment coefficients are adequatelY 

captured. Some discrepancies are associated with the pitch moment coefficient re- 

sponse; however, these are explained by the more severe non-linear characterist ics, 

of the pitch moment response. Nevertheless, t, hese discrepancies do not spoil the 

prediction of the main features of the pitch moment response. For the lift, force 

coefficient good agreement with the training sets is achieved. 

Despite the complexity of the searching space, the resulting network architect ure 

is shown to be very simple (cf. Figure 4.21). The simplicity of the iietwork archi- 

tecture, in association with good generalisation results. reinforces the satisfactory 

performance of the identification process. 

GenerallY, the predictive capabillities of the identified model of the uii,, -, I(, adN- 

aerodynamic response in the transonic regime (for fixed 
-11 = 0.65) are shown to be 

satisfact ory for the majority of the test cases not contained in the training so s. This, 

is particularly true for the lift force coefficient responses. When tested in the linear 
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range of the unsteady aerodynamic response. the ident, ified FIR network model ha> 

not shown good predictive qualities, although the error in the overall resj)oiises i, ý not 

patircularly large. The case, illustrated in Figure 4.23, is obtained from a shvisoidal 

incidence motion with mean angle of attack equals to zero and 0.,, -)' amplitude at 

frequency of 10 Hz. 

In the non-linear range of the unsteady aerodynamic response, the FIR iwt- 

work model presents good generalisation for low frequency oscillatory cases. Figure 

4.24 presents a case where the sinusoidal incidence motion is half the frequencY of 

the corresponding case used in the training sets. Only a few discrepancies can he 

observed in the pitch moment response of the FIR network model. Nevert heless. 

when a higher frequency sinusoidal motion is tested, as in the case illusti-at ed in 

Figure 4.25, the discrepancies in the pitch moment response increase. Here. t lw 

frequency of the incidence motion is twice that of the corresponding case used in 

the training sets. 

Figures 4.26 to 4.30 present more generalisation tests of the FIR neural network 

model of unsteady aerodynamic response in the transonic regime (fixed . 11 = 0.6,5). 

The cases correspond to pulses, ramps, and oscillatory input motions in the range 

of non-linear behaviour of unsteady aerodynamic response. The HR network model 

outputs for those cases indicate good agreement with the desired unsteady aerod. v- 

namic responses. Significant discrepancies arise in the pitch moment responses and 

for the cases in Figures 4.28 and 4.29, the steady-state behaviour of pit ch moment 

response in the presence of shock waves (cf. Figures B-13 and B. 14) shows, major 

disagreement with the Euler CFD code outputs. 

Identification of a FIR neural network model of the unsteady aerodynamic re- 

sponse is considered for a range of Mach numbers in the transonic regi me. 'fliis- 

problem presents a greater challenge to the identification pro(-(, ss. The increýised 

size of the searcb spiwe. in comparison N%-itb the previous cases. requin-, a greater 
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number of training iterations. These difficulties are also observed in the complexity 

of the final adapted architecture, as depicted in Figure 4.40. Although disprej)ancwý, 

in the training results for the pitch moment are larger than in i he previou, -, model 

for fixed Mach number, the overall features of the unst eady aerodynamic 

is captured. Again, the lift force coefficient response of the FIR network model i., -, 

better than the pitch moment response. 

The test case in Figure 4.42 considers an incidence motion hist ory compat ible 

with unsteady aerodynamic response in the linear range. An oscillatory motion 

with similar frequency to the oscillatory cases in training sets, amplitude of 0.5'. 

and Mach number equal to 0.7, is considered. The FIR network model otaput for 

this case reveals a reasonable approximation of the lift coefficient response-, how(wer. 

a very poor prediction of the moment coefficient response, in the form of large out 

of phase motion, can also be observed. 

In futher cases (cf. Figures 4.43 and 4.44), the FIR network model is test ed 

for oscillatory motions at different frequency values compared with the oscillýitor. y 

cases in training sets. The frequency for the case in Figure 4.43 is twice I hat, of t he 

training set oscillatory case, the amplitude is 4.5' and the Mach number is equal Io 

0.625. The second case in Figure 4.44 presents a frequency value that is lialf tlial 

of the training set oscillatory case, the amplitude is 1.5' and Mach number is 0.725. 

The FIR network approximation of the pitch moment coefficient respoiise for t hese 

cases, again, exhibits very poor results. The poor approximation properties are due 

to poor training results for the pitch moment output as observed from Figures 4.31 

to 4.39. 

Figures 4.45 to 4.47 present test cases at Mitch number equa] to 0.65. with 

the purpose of comparing the FIR network model response with the F113 network 

model obtained for a fixed Mach number (cf. Section 4.4-1), as shown in Figures 

4.26 to 4.28. Most of the differences arise in the pitch moment, responses where large 
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discrepancies can be observed. Despite the differences and i he predict ion di>pii i-it ws, 

the FIR neural network model for a range of Mach numbers in the transonic regime. 

maintains the principal features of the unsteady responses, even for Macli nuinben, 

different from those in the training sets. Larger errors in the siea(iy-state r(, spOii: -, (, 

of the pitch moment in the FIR network model can be observed for a range of Mach 

numbers in which shock waves are present. 

Further test cases with different incidence motion histories and Mach numbei-s' 

are presented in Figures 4.48 to 4.52. These tests illustrate how t lic FIR network 

model is able to predict the unsteady aerodynamic responses within the hinitation.,, 

imposed by the training sets. 

Finally, the behaviour of the FIR network model is I ested for a case Ný, Ith Nhwli 

number beyond the training limits. An oscillatory case with the same freqiiencY 

as that of the oscillatory case used in the training sets, amplitude P and Macli 

number of 0.75, is considered. Here, the flowfield is characterised by the presence 

of shocks whatever the incidence angle, as observed in Figure B. 28 in Appendix B. 

Figure 4.53 shows that the FIR network model for this case and in particular, the 

lift force coefficient response, provides reasonable predictive characteristics, despite 

the fact that the Mach number (M = 0.75) is beyond the limits of the training set s. 

4.6 Summary 

This Chapter has illustrated the application of multi-layer functionals. as reýdised 

hy F1R neural networks, for the identification of non-linear un,, iea(lY aerodynamic 

response models. The identification process, define(i in ternis of a genetic search 

algoritlini, has been shown to be satisfactory for the production of robust FIR 
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network models of non-linear unsteady aerodynamic respon, )e. 

Two classes of flow regimes are considered for the identification of the FIR net- 

work models of unsteady aerodynamic response. Both regimes are presunied to be 

free of flow effects that may lead to discontinuities in the functional representation. 

The first case considers the weakly non-linear behaviour of the unsteady nornial 

force response in mildly separated flowfields in response io vamdioiis in the incid- 

ence motion of a two-dimensional NACA 0012 airfoil for a range of subsonic _NhAch 

numbers. The database for identification is obtained from a semi-empirwA Bc(Moes 

model (Niven & Galbraith, 1991). The FIR neural network model for the weaklY 

non-linear unsteady normal force response in mildly separated flows has provided 

good generalisation within the range of incidence motions and Mach numbers used 

in the training. The FIR network model has also been validated for a range of in- 

cidence motion frequencies; however, when tested for cases where severe separated 

flow conditions are present, the predicted results of the FIR network mode] show 

major discrepancies. 

For the second flow regime, the non-linearities in the unsteady aerodynamic re- 

sponses, caused by compressibility effects in the transonic regime, are considered. 

The database is obtained using a CFD code (Dubuc et al., 1997) based on i lie 

solution of the Euler equations. Two FIR network models of the unsteady aerod. v- 

namic response are identified. The first one identifies the unsteady lift force and 

pitch moment responses to variations in the incidence motion of a two-dimensional 

NACA 0012 airfoil at a fixed Mach number (. 11 = 0.65), while the second inodel 

is for a range of transonic Mach numbers. The training results for both I ransonic 

cases show better approximation for the lift force response in comparison with the 

pitch response. The same observation is made for the generalisat ion cases. The 

discrepancies in the unsteady pitch moment, are larger in the FIR network model 

applicable to a range of transonic Alach numbers, Nvhen compared Wth the same 
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cases for the FIR network model value at a fixed Mach number. 

Generally, the training process has shown satisfactory performance. The com- 

plexity of the non-linear input-output mapping for the unsteady transonic cases has 

resulted in to a longer training process. The division of the training process into 

stages has also been used as a means of improving the convergence performance 

during the process. 
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Conclusions and 
Recommendations for Further 
Research 

5.1 General Conclusions 

Multi-layer functionals furnish appropriate representation of t1w non-linear motion- 

induced unsteady aerodynamic response. Finite impulse response (FIR) neural ilet - 

works are practical realisations of multi-layer functionals and can be used to accur- 

ately approximate the non-linear unsteady aerodynamic response. The FIR neural 

network model can incorporate widely different p1tysical behaviour of the non-hneýir 

unsteady aerodynamic response. Identification of an approprial e FIR neural net - 

work, that provides a parametric input-output model, is achieved N-ia a supervised 

training process using multiple sets of motion-induced unsteady aerodynamic re- 

sponses. 

The advantages associated with multi-layer functional approximation of non- 

linear umsteady aerodynamic response via FIR neural networks are: 

the itbility to account for non-linearities and time-history dependencies eii- 

120 
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countered in unsteady flow regimes-, 

121 

(ii) the implementation of parametric multiple input multiple output niodels for 

aeroelastic applications. allowing fast, evaluat ion of the aerodynamic responses; 

(iZi) static parameters, such as Reynolds number or Mach number. c; in be iised it-, 

inputs to the neural model, thereby increasing i he range of flow condit iojis 

and, as a consequence, the applicability of the neural model: 

(iv) the difficulties related to the traditional non-linear sYst em ident ificat ion ap- 

proaches are diminished. 

The identification procedure is based on genetic searcli to optimise the FIR 

network architecture, combined with a simplification of t tie simulated annealing 

algorithm to update weight and bias values, and to improve the convengence rate of 

the process. This approach is shown to overcome many of the difficulties iissociat ed 

with the standard temporal back-propagation algorithm, and also to provide a more 

flexible manipulation of the FIR network architectures; for example, by allowing eadi 

network connection to have a different time-delay \-alue. Therefore, i he combinat ion 

of genetic algorithms and simulated annealing provides an appropriate frainework 

for training temporal of neural networks. 

The training performance is shown to require long processing I ime. Thi,. ), can 

be attributed to the combination of the genetic algorit hm for the FIR iiel work 

architecture optimisation and the methodology of updating the weight and bias 

values in the networks. The rate at which the genetic search optinfises net work 

architectures tends to be higher than that at which t he pert urbation process updat (-, 

weight and bias values in the respective FIR neural 110 W(As. 
-Numerical testý, are 

required to establish a good set of training parameters to obtain an acceptable 

convergence rate of the overall process. However, differences in the efficieiicicý, of 
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the various elements involved in the training process have not compromi:, (, (l the 

identification of the unsteady aerodynamic response functionak. 

A limitation associated with the training process is relate(l to the size of t1w 

maximum network architecture. For large values of time-delays per connection and 

number of neurons, the encoded FIR network results in a lengthy chromosome t Itat 

requires more computational effort. 

Application of the identification process for two different types of uný, t eady flow 

regimes, where the flow effects induce non-linear behaviour to the unst eady aero- 

dynamic responses, shows encoraging results to establish the FIR neural iielwork 

modellfing as an important framework for systematic product ion of unst cady aero- 

dynamic models. The first flow regime considers the weakly non-linearit les in un- 

steady aerodynamic responses for mildly separated flowfields, while the second one 

considers the non-linear behaviour of unsteady aerodynamic response in the tran- 

sonic regime shock waves and their dynamic excursion occurs. 

The generalisation test results show that, given only limited training set 61 it, 

the FIR neural network models are capable of accurate predictions of the non-linear 

unsteady aerodynamic responses due to any motion history and flow parameter 

within the training boundaries. 

For the multi-layer functional representation of the weakly non-linear unsteady 

force response in mildly separated flow regimes, generalisations have revealed good 

approximation properties in the range of Mach numbers, motion histories and fre- 

quencies considered. A major limitation of the FIR neural network model is the 

restriction to continuous functionals, since simulations considering highly separal ed 

flows hiive shown larger errors Nvith respect to the Beddoes model outputs to the 

unsteady aerodynamic responses in the motion segments with strong , -, eparation 

effects. 

The results for the non-linear unsteady aerodynamic responses in the tramonic. 
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regime show that the multi-layer functional in the form of a FIR neural network 

represents an efficient model form. Although the results for the moment coefficient 

response were poor in both cases, good predictions of the lift force coefficient re- 

sponse within the training range of motion histories and Mach numbers are aciiieved. 

Evidently, this reflects imperfections in the training process in terms of avoiding local 

minima. Nevertheless, the complexity of non-linearities involved in tlwý, (, aerody- 

namic cases, added to the limitations on information contained in the t raining set s 

available for the identification process, represent important factors in Lhe final FIR 

network model. The influence of the training sets on the identification process (-an 

be observed in the case at fixed transonic Mach number. For the restrict ion to fixed 

Mach number, the FIR network model is able to produce reasonably good predic- 

tions even for the moment coefficient responses. In contrast, when the problein is 

expanded for a range of transonic Mach numbers, the complexitY of the input-output 

mapping suggests that more training cases, and different training conditions, could 

improve the final outcome. 

5.2 Topics for Future Work 

To extend the capabilities of the multi-layer functional representation approacli to 

non-linear unsteady aerodynamics, improvements to the conventional operators in- 

corporated in the identification algorithm are necessary. However, t fie combinat ion 

of genetic algorithms and neural networks shows to be flexible enough to provide a 

large source of possibilities for identification schemes. Therefore, modifications to 

chromosome description. the use of different (and possibly more efficielit) ge-iietic. 

operators, and the definit ion of other cost function forms for t he optimisai ion of t he 
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network architecture, require further investigation. 

For the particular problem of the determination of weight and bi&, value:,. a 

proper application of the simulated annealing algorithm is a good alternadve. The 

great difficulty in this case is the prescription of a suitable cooling sdiolule iind a 

reasonable temperature definition. Moroever, as the number of N-ariable", re(lifired to 

be optimised (weight and bias values in this case) is generally large in a FIR iieural 

network, random perturbations can be compromised. To help in these 1,,,, iies, i he 

work by Otten & van Ginneken [19891 may provide a valuable cont ribut ion. 

The temporal back- propagation algorithm (NVan, 1990a, 1990b) can also be coni- 

bined with the genetic algorithm as a means of updating weight and Ut,, values. 

However, an immediate drawback associated with this approach is a loss In t Ite F113 

neural network architecture's ability to possess different time-delitys per connect ion. 

Apparently, no reduction in the number of training steps or in I lie processing t iine 

would be achieved, but an advantage of this approach could be in terms of bet ter 

relative convergence rates between architecture and weight optimisation. 

Despite the achievements of the multi-layer functional representation in discret (- 

time, continuous-time versions are desired to overcome some of the limital ions of 

the discrete version; for example, sampling and implementation for general prob- 

lems in aeroelastic analysis and control. A possible generalisation of the algorithm 

to accommodate continuous-time models could be achieved bY using the temporal 

neural network approach and respective continuous-time temporal back-propagat ion 

algorithm, developed by Day & Camponese [1991] and Day k- Davenport [1993]. 

Another important issue for future work in mult i-layer functional approximal ion 

of non-linear unsteady aerodynamics is the production of represent aions that, (-an 

account for discontinuous behaviour; for example, as in sepamted flo%N,,,. Tob; tk k 

Chapman [19851 have already discussed an ithernative functional model ba,, ed on 

the composition of continuous functionals for the various stable unsteady aerod. v- 
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namic responses resulting from aerodynamic bifurcations. Using the same concept, 

multi-layer functional approximate models could be composed to produce non-linear 

unsteady aerodynamic response models in separated flowfields. Moreover, numerical 

techniques such as fuzzy logic (Yager & Filev, 1994) could also be combined to the 

multi-layer functional representation to produce a rationale for the discontinuous 

behaviour of the non-linear unsteady aerodynamic response. 

Traditional methods for non-linear dynamic systems identification; for instance, 

Volterra and Wiener functional series and block-oriented models (Billings, 1980), 

also represent good tools for non-linear unsteady aerodynamic modelling. However, 

the limitations imposed by the kernel determination and the need for special forms 

of inputs (for example, Gaussian noise inputs are used in the Wiener functional 

series forms and block-oriented realisations) have contributed to discourage further 

application in non-linear unsteady aerodynamic modelling. 

However, in the future, new studies on kernel determination may provide the 

necessary mathematical tools to facilitate the traditional non-linear identification 

approaches to non-linear unsteady aerodynamic modelling. An example of this is 

given in Wray & Green [19941, where a special neural network architecture is shown 

to be equivalent to the finite memory, discrete, Volterra series. The Volterra ker- 

nels are then calculated from the internal network parameters by means of network 

training via the conventional back-propagation algorithm. 

Based on the features of Volterra series, one can infer that the same approach 

(Wray & Green, 1994) could be used to model the continuous non-linear behaviour of 

the unsteady aerodynamic response, allowing advantages in both aeroelastic analysis 

and control design problems. Moreover, the extracted Volterra kernels can be easily 

associated with a bilinear system, that represents a suitable form for non-linear 

control. 

Application of the multi-layer functional representation in aeroelastic modelling 
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parameters P. FIR Neural Network 
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I aerodynamic 
motion response 
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I 2C) 

Figure 5.1: Example of utilisation of a FIR neural network model of the unsteadý- 
aerodynamic response in an aeroelastic model. 

can be considered in many forms can be considered. For example, in Figure 5.1, aii 

aeroelastic model, including a FIR neural network model of the non-linear unst eadv 

aerodynamic response, is illustrated. 

In this case the FIR neural network model would use the motion variable values 

at a particular time instant (accounting for the past motion history) furnished bY t1w 

equations of motion, to return the respective unsteady aerodynamic responses at t1w 

respective time instant. The nature of the discrete-time equations of motion could 

be linear or non-linear. The design of controllers of the aeroelastic response could 

also benefit from this type of model. By considering the example in Figure 5.1 as 

the plant, any conventional linear or non-linear control approach or iiew ýipproacfwý,: 

such as, neural networks and fuzzy logic, could be used. 
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Representation of Unsteady 
Trailing Edge Separation 

The Kirchhoff flow model is among the theories for two-dimensional flows t liat en- 

compass separated regions. The model provides an approximation of i he st ciidy 

aerodynamic response in terms of a non-linear function of the siej)aration point,, f. 

as illustrated in Figure A. I. 

uoý 
MMMMOO- gttachedflow 

Separation point: 
f (% of chord) 

streamline 
.................. ---- ....................... ............... *** ......... ............................. .............................. .............................. ............................... 

........ .... 
separatedflow ...... .... 

........................ ...................... ..................... ............ 
..................... .................... ................... .................. ................ ............... .............. ............ 

Figure A. 1: Kirchhoff Flow Model. 

In the Beddoes model (Niven k- Galbraith, 199L Bc(1(l()(-,. 191-6.1982a. 19821) 

and Leishman k- Beddoes, 1986), t he Kirchhoff model is adapt ed for t he unst eady 

aerodynamic case to obtain the Nariations in the aerodynamic force and moinew 

12 7 
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with the incidence motion by approximating the relationship between the eparatioii 

point and motion as a function of the angle of attack. This approach provideý, noii- 

linear scaling to the unsteady aerodynamic response, until the breakdown pouit. 

that represents severe separated flow (stall). 

In this Appendix, the separation point histories are presented for eacli case used 

in Section 4.3 for training and generalisation tests of the FIR network model of 

weakly non-linear unsteady aerodynamic response in mildly separated flow. All 

cases are based on the parameters presented in the Figure 4.3, NN-liere the trailing 

edge is considered here at 100% chord length. 
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Figure A. 2: Separation point excursion in relation to airfoil motion: Cam, in Fig- 

ure 4.4 (M = 0.15). 
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Figure A. 5: Separation point excursion in relation to airfoil motion: Case in Fig- 
ure 4.5 (M = 0.15). 
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Figure A. 7: Separation point excursion in relation to airfoil inot ion: Case In Fig- 
ure 4.5 (M = 0.45). 
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Figure A. 9: Separation point excursion in relation to airfoil motion: Cýise in Fig- 
ure 4.6 (M = 0.30). 
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Figure A. 11: Separation point excursion in relation to airfoil motion: Ciise in Fig- 
ure 4.9 (M = 0.40). 
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ure 4.11 (M 
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Figure A. 17: Separation point excursion in relation to airfoil motion: Case in Fig- 
ure 4.15 (M -- 0.55). 
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Unsteady Transonic Pressure 
Distributions 

The figures presented in this Appendix are obtained from a CFD codc hased on t lw 

Euler equations and developed by Dubuc et al. [1997], for mistviid. v aerodynamic 

response in the transonic regime of two-dimensional airfoils. Each citse present,, Ilie 

pressure distribution for different points in the motion history. Figure B. I il I ustrat es 

the main parameters used to generate the cases. 
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Freestream Sonic Velocity = 340.5 mls 

Figure B. I: Parameters for the calculation of pressure distributions, for Ow unsteady 
transonic cases. 
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Angle of Attack History 
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Angle of Attack History 
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Figure B. 4: Pressure distribution variation in relation to airfoil motion: Case 
Figure 4.33 (M = 0.625). 
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Figure B. 5: Pressure distribution variation in relation to airfoil motion: 
Figure 4.43 (ill = 0.625). 
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Figure B. 6: Pressure distribution variation in relation to airfoil motion: Case 
Figure 4.18 (-V = 0.65). 
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Figure B. 7: Pressure distribution variation in relation to airfoil motion: Case ill 
Figure 4.19 (-V = 0.65). 
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Figure B. 8: Pressure distribution variation in relation to airfoil Motion: C&w in 
Figure 4.20 (-W = 0.65). 
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Figure B. 9: Pressure distribution variation in relation to airfoil motion: Ca"e in 
Figure 4.24 (-V = 0.65). 
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Figure B. 10: Pressure distribution variation in relation to airfoil motion: Cýi,, c iii 
Figure 4.25 (-V = 0.65). 
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Figure B. 11: Pressure distribution variation in relat, ion to airfoil motion: Camý ill 
Figures 4.26 and 4.4,5 (-V = 0.65). 
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Figure B. 12: Pressure distribution variation in relation to airfoil motion: Case iii 
Figures 4.27 and 4.46 (11 = 0.65). 
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Figure B. 13: Pressure distribution variation in relation to airfoil motion: (, jjs(ý in 
Figures 4.28 and 4.47 (-V = 0.65). 
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Figure B. 14: Pressure distribution variation in relation to airfoil motion: C; ve in 
Figure 4.29 (-V = 0.65). 
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Figure B. 15: Pressure distribution variation in relation to airfoil motion: Case iii 

Figure 4.30 (. 11 = 0.65). 



APPENDIX B 

Angle of Attack History 

2 

0 

'D 

-2 

1 

CL 
C) 

F 

234 

Mach - 0.675 

5 Reduced frequency - 0,07517 

S 

0 

0) 
C -1 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0ý09 O'l 
Time [seconds. ) 

Point 1 at time = 0.01 second Point 2 at time = 0.02 seco 

angle of attack = 1.76 deg. 

CL 
(. ) 

0.5 1 Point 3 at time = 0.026 second 

angle of attack = 3.0 deg. 

CL 
() 

angle of affack = 2.85 deg. 

D bm2*5 1 Point 4 at = 0.03 second 

angle of attack = 2.85 deg. 

0 Point 5 at tim2l 0.04 second 
10 Point 6 at timV- 0.05 second 

1 

1 

CL 

0.5 

CL 
0 

-0.5 

-1 

1 T2 

0 0.5 100.5 1 
X/C X/C 

Figure B. 16: Pressure distribution variation in relation to airfoil motion: Caw iii 
Figure 4.34 (-V = 0.675). 
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Figure B. 17: Pressure distribution variation in relation to airfoil motion: C&w iii 
Figure 4.35 (M = 0.675). 
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Figure B. 18: Pressure distribution variation in relation to airfoil motion: Case In 
Figure 4.36 (. 11 = 0.61-5). 
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Figure B. 19: Pressure distribution variation in relation to airfoil motion: C; Iýw ill 
Figure 4.48 (M = 0.68). 
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Figure B. 20: Pressure distribution variation in relation to airfoil inotioll: C(-Iý-e In 
Figure 4.49 (M = 0.685). 
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Figure B-21: Pressure distribution variation in relation to airfoil mot, ion: Case in 
Figure 4.50 (, V = 0.7). 
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Figure B. 22: Pressure distribution variation in relation to airfoil motion: ('ýve in 
Figure 4.51 (. 11 -- 0.7). 
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Figure B. 23: Pressure distribution variation in relation to airfoil motion: Ca', c ill 
Figure 4.52 (Al = 0.715). 
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Figure B. 24: Pressure distribution variation in relation to airfoil Motion: Caý, c ill 
Figure 4.3-17 (-V = 0.725). 
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Figure B. 25: Pressure distribution variation in relation to airfoil niotWil. Case in 
Figure 4.38 (M = 0.725). 
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Figure B. 26: Pressure distribution variation in relation to airfoil monoll: 
Figure 4.39 (M = 0.725). 
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Figure B. 27: Pressure distribution variation in relation to airfoil motion: in 
Figure 4.44 (-V = 0.1-25). 
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