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Abstract

Non-linear unsteady aerodynamic effects present major modelling difliculties in the
analysis of aeroelastic response and in the subsequent design of appropriate control-
lers. As the direct use of the basic fluid mechanic equations is still not practical
for aeroelastic applications, approximate models of the non-linear unsteady aerody-
namic response are required. A rigorous mathematical framework, that can account
for the complex non-linearities and time-history effects of the unsteady aerodynamic
response, is provided by the use of functional representations. A recent develop-
ment, based on functional approximation theory, has provided a new functional
form; namely, multi-layer functionals. Moreover, the multi-layer functional repres-
entation for time-invariant, infinite memory systems is shown to be rcalisable 1n
terms of temporal neural networks.

In this work, a multi-layer functional representation of non-linear motion-induced
unsteady aerodynamic response is presented. A discrete-time, finite memory tem-
poral neural network, in the form of a finite impulse response (FIR) neural net-

work. 1s used as a practical realisation of a multi-laver functional. This model
form permits the identification of parametric input-output models of the non-linear
motion-induced unsteady aerodvnamic response. ldentification of an appropriate
FIR neural network model is facilitated by means of a supervised training process
using multiple sets of motion-induced unsteady aerodynamic response. The training
process is based on a conventional genetic algorithm to optimise the FIR neural net-

work architecture. and is combined with a simplification of the simulated annealing
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algorithm to update weight and bias values.

The identification process is used to produce I'IR neural network models for two
types of non-linear unsteady flow regimes. The first model relates 1o weakly non-
linear behaviour of the unsteady aerodynamic response for mildly separated flow-
fields as defined by a semi-empirical model. The second model relates to non-linear
unsteady aerodynamic response in the transonic regime as defined by a C'’kF'D code
based on solution of the Euler equations. Generally, the training process presents
a satistactory performance in both problems showing that the combination of ge-
netic algorithms and temporal neural networks provides a suitable framework for
the non-linear unsteady aerodynamic response modelling. The approach 1s shown
to furnish a satistactory generalisation property to different motion histories at dif-
ferent Mach numbers. considering that only limited training set data is presented

during the identification process.
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Nomenclature

Cr(t) unsteady aerodynamic lift force coefficient response at time ¢:

Cim,,4(t) unsteady aerodynamic pitch moment coefficient response at 25% chord length

at time t;
Cn(t) unsteady aerodynamic normal force coefficient response at time #;
F'(t) generalised unsteady aerodynamic force response at time ¢:

I lu(€):t, 7] indicial generalised force response at time ¢ per unit step change in u occuring

at time 7 (cf. Equation 1.7);

F(t) generalised unsteady aerodynamic force response vector at time ¢t (cf. Equa-

tion 1.4);
H; Hermite polynomials of :*"-degree:
[ unit hypercube;
L total number of time samples per training set:
M Mach number;
.N. number of input-output training sets:

N/ chromosome flag indicating whether the neuron / exists or not (c¢f. Figure 3.3)

Vil

v
L



P, probability for the mutation of a neuron value (existent or non-existent):
P; probability for the mutation of a time-delay value;

T’;; memory span of the synapse 7 belonging to the neuron j:
U set of functions in a space of infinite dimension C|p;, p2| (¢f. Inequality 2.3);
U, freestream velocity;
V; Laguerre functions of :*"-order;
a and b scaling coefficients for the selection operator (cf. Table 3.1):
¢ number of times the best individual is expected to be selected for reproduction:
dr(n) desired output of training set k at discrete-time n;
f fitness function (c¢f. Equation 3.1);
h; unit impulse response of process unit 7;
h!" Volterra kernel of i*"-order (cf. Equation 1.9);
h;; impulse response of neuron j due to excitation applied to synapse ::
1. 7, k, ¢, m.p,q integer valued auxiliary constants;
n discrete-time step;

n normal surface vector operator (cf. Equation 1.4):
p(¢p(x.t)) pressure distribution (cf. Equation 1.4):
t time:

u; and u, generalised motion histories used in the formation of the indicial response

(cf. Figure 1.4):
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us scalar generalised coordinate or displacement history:
u(t) instantaneuous boundary generalised motion input vector at time t:
u; generalised coordinate or displacement history vector;

v; activation potential of neuron j;

w;;(7;;) weight value of synapse 7 belonging to neuron j corresponding to the time-

delay 7;;
w,; welght vector of synapse : belonging to neuron j:
z;(t) excitation applied to synapse ¢ at time t;

T, function in the set of real valued continuous functions with domain / (cf. Equa-

tion 2.5);
x vector of the spatial coordinates (cf. Equation 1.4);
y(t) dynamic system output response at time ¢:
() How domains;
a(t) angle of attack value at time ¢;
oy angle of attack history;
[ perturbation constant used to update weight and bias values (cf. Equation 3.4);
ou virtual generalised displacement;
6*11" virtual work (cf. Equation 1.3):
e positive real valued constant:

¢ real valued constant;



n auxiliary variable running in the unit hvpercube I (c¢f. Equation 2.5):
f; bias values of neuron z:

p function in the set of functions of bounded variation on the unit hypercube /

(cf. Equation 2.5);
¢ auxiliary time variable running form the initial time instant to time instant 7:
7 arbitrary time instant;

7; number of time-delay units of the finite memory filter in synapse » helonging

to the neuron j;
¢(x,t) vector of the spatio-temporal flow state variables (cf. Equation 1.1):

¢ activation function of a neuron defined as a non-constant, bounded, monotone-

increasing continuous function (for example, a sigmoidal function);
A linear affine functional representation (cf. Equation 2.4);
B boundary operator (cf. Equation 1.2);
F tunctional representation:
L linear functional representation:;
MF multi-layer functional representation (cf. Equation 2.6):
N non-linear partial differential operator;
4 boundarv displacement function;

0§) flow boundaries:

J{ls boundaries of the aerodynamic surface:

X |



T . .
-]" transpose matrix operation;

-] norm operator.

Acronyms

CFD Computational Fluid Dynamics:

FIR Finite Impulse Response;

NACA National Advisory Committe of Aeronautics.
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Chapter 1

Introduction

1.1 Modelling Unsteady Aerodynamic Behaviour
in Aeroelastic Applications

Modelling unsteady aerodynamic behaviour presents a significant challenge for the
prediction and control of adverse aeroelastic phenomena. The earliest literaturc
on aeroelasticity: for example, Scalan & Rosenbaum [1951], Bisplinghoftf & Ashley
1962], Dowell et al. [1989], Fung [1993], and Bisplinghoff et al. [1996], incorporated
unsteady aerodynamic models based, primarily, on linear potential theory. Linear-
i1sed models of this kind have proved satisfactory, mainly because in many practical
problems, the unsteady flowhield is adequately described by small perturbations of
a uniform, inviscid, and irrotational freestream. The fundamental flow conditions
that can be described by linear theory, and the limitations of linearised aerodynamic
models for the prediction and control of aeroelastic phenomena such as divergence,
flutter, and gust response, are well understood from a fluid dvnamics point of view.

With the enlargement of flight operational conditions in modern aviation. ana-
lysis of aeroelastic problems can no longer neglect non-linear effects for describing

unsteady aerodyvnamic behaviour (Dowell & Ilgamov, 1988 and Dowell, 1993). In-
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deed. complex non-linear effects are constantly present in modern aircraft flight
regimes: for example. dynamic stall on helicopter blades. and excursion of shock
waves over aircraft manoeuvring at transonic speeds.

Non-linear effects are difficult to predict or model. whatever the dvnamic svstem
in question. Ior unsteady aerodynamic modelling, the non-linear flow eftects ot
interest are mostly due to separated flows and compressibility eftects leading to the
appearance and dynamic excursion of shock waves. Their modelling is particularly
difficult because of the lack of complete understanding on some physical aspects of
unsteady flows; for example, separation and turbulence mechanisms. Survevs on
physical and modelling aspects of unsteady flow eflects can be found in the works
by McCroskey (1977, 1982], Tijdeman & Seebass {1980], Ericsson & Reding [1987]
and Mabey [1989].

For aeroelastic applications, the ideal and, perhaps, most general aero-structural
model would be based on solutions of the non-linear fluid mechanics equations.
which considers unsteady. compressibility and viscous eftects, simultaneously with
the solution of the equations of motion. The instantaneous states, which are gen-
erated by each of the corresponding equations, would be exchanged and the global
simultaneous solution would produce both aerodynamic response and structural
motion histories, which depend on the given initial conditions. Figure 1.1 shows an
1llustration for this general approach to aeroelastic modelling.

The problem in applying the general aeroelastic model. as represented in Fig-
ure 1.1, is mainly related to the unsteady aerodynamic model in use. Solutions
to the non-linear fluid mechanics equations have been the tocus of a great amount
of research eftort. Ior practical applications, however, solutions of the general fluid
mechanics equations can usually be attained only by means of numerical techniques.

or computational fluid dynamics (CFD) methods (Edward & Thomas. 1989 and

Anderson. 1991). that normally demand extensive computations. These methods
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General
Fluid Mechanics Equations

' Aerodynamic
| instantaneous Response
ot forces
— selocities momenis

Equations of Motion

Motion
History

Aeroelastic Model

Figure 1.1: Representation of a general aeroelastic model.

encompass any numerical technique for specific fluid mechanics applications. For
instance, finite-difference, finite volume, and finite element techniques are frequently
used 1n numerical solutions in fluid mechanics applications.

Limitations of CFD methods are basically the ones concerning the great amount
of computations required. Consequently, CFD methods are still not appropriate
for preliminary aeroelastic stability analysis and control design. Nevertheless. with
the tast developments in computing and numerical techniques, CFD methods may
be widely accessible in the near future, helping the convenient direct manipulation
of fully non-linear fluid mechanics equations for aeroelastic analysis and control
design. Alternatives for practical unsteady aerodynamic models to applications in
aeroelasticity are, therefore, justified.

Alternative models of non-linear unsteady aerodynamics for aeroelastic applica-
tions have been achieved on the basis of some essential assumptions. Primarily. in
aeroelastic models. the decoupling between the fluid mechanics equations and the
equations of motion (cf. Figure 1.1) is an assumption that eliminates the need for
simultaneous solution of the combined aero-structural set of equations. Therefore.

by this premise the unsteadyv aerodynamic model is determined in isolation of the
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physical laws governing the structural motion.

An intrinsic element of this decoupling process is that anv alternative unsteady
aerodynamic response model should account for the spatio-temporal behaviour of
the internal aerodynamic states. For example, the decoupled unsteadyv inviscid fluid

dynamic equations are described by the following symbolic representation.

a—q")(—x-’-i)—ZJV((,?f)(x.Jt)) in {2, t>0 (1.1)
ot
subject to
B(p(x,t),u(t)) =0 on 02 (1.2)

and an appropriate set of initial conditions, where, ¢(x,t) represents a vector of the
spatio-temporal flow state variables, x is the vector of the spatial coordinates. A/
IS a non-linear partial differential operator, {2 determines the flow domains of the
problem, 0§2 is the flow boundaries. 9¢2s represents the boundaries of the acrody-
namic surtace, b represents a boundary operator. and u(?) is the instantaneuous
boundary generalised motion input vector.

By assuming boundary motions of the form U(x,u(t)), such that the virtual

work, 0*11", is defined by,

"W =éu’ F(t) (1.3)
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then the generalised unsteady aerodynamic force response vector. F(t) is given by

the expression,

F(t) = /ms (@{—g;—&@) n(—p(p(x.t))) dofds (1.4)

where p is the pressure distribution described as a non-linear function of the instant-
aneous spatio-temporal flow variables and modified by the normal surface vector
operator n.

T'he basic assumption for unsteady aerodynamic models is that the influence of
the implicit time-delays on pressure variations introduced by the spatio-temporal
propagation and convection of flow variables can be represented by the motion his-
tory alone. Applying the principles of dynamic svstems theory, unsteady aero-
dynamic models can be obtained from mathematical laws so that the generalised
aerodynamic force response vector, F(t), can be represented as a non-linear func-
tional, F, ot this generalised coordinate or displacement history, u;, illustrated in

Figure 1.2 and described as.

Non—-Linear
Dynamic
System

u(z)

Figure 1.2: Schematic of dvnamic systems.

Therefore. the functional representation in Equation 1.5 between unsteady aero-

dvnamic response and motion historyv implicitly accounts for the effects of internal
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flow states dynamics. Although this assumption leads to an exact functional repres-
entation of the linear unstecady aerodynamic response. for the non-linear case. this
approach can only be used as an approximation.

Formal mathematical approaches to determine the functional relationship of the
hereditary behaviour of unsteady aerodynamic responses. are originally due to the
use of the superposition principle over transient responses to step changes, namely.
indicial responses (Tobak & Pearson, 1964 and Etkin & Reid. 1996). This approach.
which provides exact representation of the linear unsteady aerodynamic behaviour.

1s categorised as a functional due to its dependence on the complete (or partial)

motion histories.

Viewing extensions to non-linear unsteady aerodynamic response functionals, To-
bak and co-workers (Tobak & Pearson, 1964; Tobak & Schiff, 1978, 1981 and Tobak
& Chapman, 1985) have proposed the indicial response functions to be reformulated
as functionals of the motion histories. The result, atter applying a generalisation of
the superposition principle, 1s the non-linear unsteady aerodynamic response func-
tional. However, practical use of the resulting complex integral equations is only
permitted by simplifications as proposed by Tobak & Schift [1978, 1981] and Jen-
kins [1991}; for example, by replacing the mathematical description of the motion
history by its Taylor series expansion, or by assuming a limited dependence on the
motion past values. Other functional forms; for instance, the Volterra series (Silva.
1993a, 1993b) also provide appropriate frameworks to the production of non-linear
unsteady aerodynamic functionals.

Semi-empirical methods. or phenomenological models, comprise a class of aero-
dvnamic models based on the premise of modelling unsteady flow response by con-
sidering its functional relationship with respect to the motion histories. Indeed. most
of the knowledge on unsteady flow behaviour is due to experimental work. and basic-

allv, semi-empirical models use the information from these experiments to establish
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Non-Linear
Unsteady Aerodynamics

spﬁggiﬁggifgia ] Mathematical Models Aerreopcgr;gzz& rgiptzgw
ﬂow vartables motion histor V ialone

EXACT MODEL APPROXIMATE MODELS

Fluid Mechanics Equations

non-linear, Semi—-Empirical Functlonal
partial differential Methods Approximation

: equations _ ‘ —
CFD : phenomenological ~ non-linear indicial response
Methods [~~~ models Volterra series

F'igure 1.3: Mathematical approaches to non-linear unsteady aerodvnamic model-
ling.

a mathematical and logic formulation of the events that determine the unsteady
aerodynamic response over a range of incidence motions and flow regimes. The
works by Beddoes {1976, 1982a, 1982b|, Tran & Petot [1981], Leishman & Beddoes
1986], and Mahajan et al. [1993|, are examples of contributions to semi-empirical
modelling. The nature of semi-empirical methods facilitates their incorporation into
aeroelastic stability and control design. In addition, semi-empirical methods have
the advantage of being computationally fast. Nevertheless. semi-empirical models
need extensive, specific and precise experimental data. There is also the problem of
correlating this data with mathematical and logic formulations.

A summary of the mathematical approaches for unsteady aerodynamic model-
ling is depicted in Figure 1.3. As functional theory provides a rigorous mathematical
framework for non-linear systems modelling, this suggests that a suitable approx-

1mation of non-linear unsteady aerodynamic models should consider functional for-

mulations.
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1.2

Functional Approximation of Non-Linear Un-
steady Aerodynamic Response

T'he relevance of the functional concept to unsteady aerodynamics is evident in
the context of modelling non-linear time-invariant hereditary svstems. Functional
approximation furnishes an appropriate mathematical framework to model the re-
lationship between unsteady aerodynamic responses and motion history effects.

A coherent modelling approach towards a general non-linear unsteady aerody-

namic response functional has been followed by Tobak and co-workers: Tobak &

Pearson [1964]|, Tobak & Schiff {1978, 1981] and Tobak & Chapman [1985]. For ex-

ample, Tobak assumes the (scalar) unsteady generalised aerodynamic response, F(?),
as a functional, F, of the (scalar) generalised motion history. u; : u(7) = u(t + 7),

—00 < 7 < 0; that 1s,

F(t) = Flu (1.6)

The unsteady aerodynamic response in Equation 1.6 can be achieved by su-

perposition of indicial response functions (Tobak & Pearson, 1964) to produce a
non-linear functional form. The methodology can be generalised by assuming the
development of non-linear unsteady aerodynamic functionals in which the indicial
function is replaced by a functional. This allows the indicial response to be free from
linear assumptions. but still depend on past values of the motion history. Here, the
indicial response to a step change is established by the difference between two mo-
tion histories. that are identical up to a certain time, when a different step value is
applied in each case. Figure 1.4 illustrates the formation of the non-linear indicial
response, assuming the case ot non-linear unsteady aerodynamic force response ['(t)

to variations in the generalised motion u(t).

The indicial response 1s tformed by considering two different generaliscd motions
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Au

n

u()

F, AF(1)

T

Figure 1.4: Representation of non-linear indicial response formation.

u(€) up to time 7, for 0 < £ < 7. At time 7. each case assumes a different motion
value, u; and ug, that remains constant for £ > 7. The resulting aerodynamic force
histories, in each case, differ only for ¢ > 7, and the difterence AF'(t) (linear or
non-linear) can be determined. Then, the non-linear indicial response is the limit.,

for Au approaching zero, of the ratio %—); that 1s,

AF
AlzlLIBO ﬂ(tv T) = Fy [u(é)a L, T] (1'7)

By applying a generalisation of the superposition principle, integral forms for
the aerodynamic force response are achieved. Theretore, by assuming that the non-
linear indicial responses must exist and be unique for all values of their arguments
(€6 > 7). the resulting non-linear unsteady aerodvnamic force at time t is given by

the following integral form:
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The assumption of uniqueness of the indicial responses implies the exclusion ot
all cases where discontinuities in the functional response occur; for example. un-
steady aerodynamic response in separated flowfields. In this case. the discontinuity
1s characterised by the replacement of an initially unstable state by a new stable
equilibrium state, resulting in the non-uniqueness of the indicial response. Tobak &
Chapman [1985| present a study on the representation of aerodynamic functionals

for discontinuous behaviour.

Detailled mathematical development, leading to Equations 1.7 and 1.8. 1s de-
scribed by Tobak & Pearson [1964| and Tobak & Schiff {1981]. The general form
of the functional given by Equation 1.8. essentially provides an approximate repres-
entation for the non-linear unsteady aerodynamic response; nevertheless. its use is
exceedingly complex. In practice, the utilisation of unsteady aerodynamic response
functionals depends on further simplifications, as proposed by Tobak & Schiff {1978,
1981] and Jenkins [1991].

Another possibility for modelling non-linear unsteady aerodynamic response in
the field of functional approximation, is by functional series methods; for example,
Volterra functional series (Schetzen, 1980, 1981). This functional form was de-
veloped as a generalisation of the Taylor series for a function, and the basic premise
of the Volterra series approach is that an exact description for a continuous non-
linear time-invariant system: in the context of aerodynamic response, is provided
by an infinite series of multi-dimensional convolution integrals of increasing order:

that 1s.

Fiy=3%" /0 /0 b (- m) [T ult = rj)dm .. dr, (1.9)

i=1 3 , j=1

t tntegrations
where /°(t) i1s the unsteady aerodyvnamic force response to the generalised motion

u(t) and A} is the *"-order Volterra kernel.
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The first Volterra kernel represents the linear response of the svstem to a unit
impulse input, while the higher-order kernels are the non-linear responscs ot the
system to multiple (with respect to the kernel order) unit impulse inputs. The
higher-order kernels are measures of the non-linearity. or the relative influence ot
a previous Input on the current response. that characterises the temporal effect to
the non-linear system. Identification of non-linear systems based on \olterra series
requires the determination of the higher-order kernels. This requirement i1s a major
drawback of using this representation. Some approaches overcome this problem by
simply assuming that the system is weakly non-linear. In this case, the syvstem can

be represented with only a tew kernels in the Volterra series: for instance, up to the

third-order kernel.

For unsteady aerodynamic response prediction, an application of the \olterra
series approach has been presented by Silva [1993a, 1993b]. The prediction of
general-frequency, non-linear unsteady aerodynamic responses in the transonic re-
gime is carried out by determining a second order Volterra series identified from
aerodynamic data provided by an appropriate CFD code. The benefits of the \ol-
terra series approach for subsequent use in aeroservoelastic analysis and design in
terms of a bilinear systems representation is also presented. In terms of unsteady
separated flow models, the applicability of this formulation remains for non-linear
attached to weakly separated flows because of the limitations imposed by its restric-
tion to continuous functionals.

Related to an expansion of the Volterra tvpe of functional series, the Wiener
mcthods (Billings, 1980 and Schetzen, 1980, 1981) provide other potential identific-
ation schemes for non-linear dynamic svstems. The first Wiener method considers
the idea of representing each functional term by a Fourier-Hermite series. Laguerre
functions are used for the Fourier or memory portion of the functional represent a-

tion, and this is followed by an expansion using normalised Hermite polynomials.
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Hy(Vy(t))
e
u(t) No—Memory (Vi) Coefficients F(t)

with memory

Operator

. Amplifiers
Laguerre Hermite and
functions Polynomials HP( VP( t)) Summations

Figure 1.5: Schematic representation of Wiener syvstemn.

The synthesis of non-linear systems. in the context of unsteady aerodvnamics.
using the first Wiener method, as illustrated in Figure 1.5, can be thought of as
a cascade process. A linear operator representing the expansion of the past of the
generalised motion, u(t), in terms of Laguerre functions has its multiple outputs.
V;(t), transformed by a non-linear no-memory operator based on Hermite polynomi-
als, H;(-). Then, the outputs of the non-linear operator are amplified by the Wiener
coeflicients and summation yields the unsteady aerodynamic response, F'(t).

The second Wiener method 1s based on the expansion of a non-linear func-
tional into a series of mutually orthonormal polynomial functionals, the so-called
G-functionals. This functional series representation is also equivalent to the first
Wiener method series, when white Gaussian inputs are used. Although, the Wiener
methods provide a systematic approach to non-linear identification problems, the
excessive number of coefhcients required to identify the functional series. even for
lower-order non-linear systems. makes this approach impractical and difficult to
apply.

Other techniques for non-linear dvnamic svstems identification are based on
block-oriented approches (Billings & Fakhouri, 1978, 1979, 1982: Billings. 1980:
Korenberg & Hunter, 1986 and Hunter & Korenberg, 1986). These approaches rep-
resent systems by means of cascade structures of combinations of linear dvnamic and

non-linear static subsystems. The first Wiener method is in essence a block-orient ed
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one, as a linear operator with memory is cascaded with a non-linear no-memory op-
erator, as illustrated in Figure 1.0.

The Hammerstein model is a block-oriented representation (Billings & Fakhouri,
1979 and Hunter & Korenberg, 1986) of non-linear syvstems. in which a static non-
linearity is followed by a linear dynamic subsvstem. Similarly, svstem models that
consist of a cascade of linear dynamic subsystem. a static non-linearity. and another
linear dynamic subsystem, or the LNL systems (Korenberg & Hunter. 1986). provide
another approach in non-linear identification by combining the ideas from \Wicner
and Hammerstein cascade models.

These techniques have been developed strictly for random processes, in particular
for white Gaussian inputs, in order to systematically obtain the parameters of the
identified models for the associated class of dvnamic systems. These features suggest.
that the application of block-oriented model realisations via the current methods for
the nonlinear unsteady aerodynamic response identification is questionable.

In addition to the difliculties in determining the parameters associated with
the aforementioned non-linear functional approximation approaches, other major
drawbacks can be associated with the Volterra-Wiener functional series, and block-
oriented approaches for non-linear unsteady aerodynamic response modelling. A
drawback is that the functional approaches can only be reasonably achieved for
single input single output models, due to the increasing complexity of multi-variable
functional forms for each respective approach. Appropriate aerodynamic response
models should provide values ot the generalised forces by means of a single model.
Moreover. the inclusion of static inputs: for example, Mach number or Reynolds
number, to the modelling scheme mav lead to other complications.

Recently. alternative approaches to the tunctional approximation of non-linear
dynamic systems have been proposed by Chen & Chen {1993] and Modha & Hecht-

Niclsen (1993|. Based on the universal approximator theorem (Cvbenko., 1989 and
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Hornik et al., 1989), Modha & Hecht-Nielsen [1993] have developed the so-called
multi-layer functionals. based on the premise that any time-invariant non-linear
system, characterised by continuous functionals, can be approximated by a non-
linear superposition of linear affine functionals defined in arbitrary normed spaces.
This approach has basically extended the concepts of the approximation theorem
for function representation, to obtain a new class of functional series. In the context
ol non-linear unsteady aerodynamics; for example, multi-layer functional represent-
ation of the functional relationship between unsteady aerodynamic force response

and generalised motion histories of an airfoil, can be described as,

F(t) ~ MFu) =) (o 0; + Liluy)) (1.10)

where k is the number of process units, (; and 6, are real valued constants, ¢ is a
non-constant, bounded, monotone-increasing continuous function, and £;|u;| denote
linear functionals of the generalised motion vector wu;.

For functional approximation representations of non-linear systems, Modha &
Hecht-Nielsen [1993] have also established that multi-layer functionals represent a
generalisation of the universal approximation theorem. Multi-layer functionals are
functional series that also resemble the cascade formulations of block-oriented ap-
proaches, in the sense that each process unit in Equation 1.10 represents a cascade
of a linear functional and a non-linear operator. However. the simpler formulation of
multi-layer tunctionals, and also the possible composition into lavers of process units.
1S easier to implement than \iener series. In addition. multi-layer functionals do
not present dimensionality restrictions in the model representation. Volterra-\\iener
functional series. and block-oriented approaches do not possess the same advantape-
ous property. because 1 all cases. the dimension of the respective representation:

for instance, the number of non-linear kernels in the \olterra series. determines a
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specific model. The implicit parallelism and multiple input multiple output model
representation capability, are other attractive properties of multi-laver tunctionals.

Classes of multi-layer functionals can be obtained from specifving different lin-
ear functionals £; in Equation 1.10. For example. multi-laver teedforward networks
are a class of multi-layer functionals. where arbitrary functionals of p-dimensional
real valued spaces are represented as weighted superpositions of affine function-
als on p-dimensional real valued spaces, modified by a sigmoidal non-linear func-
tion. Although multi-layer feedforward networks are appropriated for many cases
in non-linear function approximation, a better class of multi-laver functionals for
non-linear dynamic systems 1s necessary. lhis class can be achieved by assuming

L; in Equation 1.10, to be defined in arbitrary normed linear spaces (Modha &
Hecht-Nielsen, 1993).

1.3 Aerodynamic Functional Realisation via Tem-
poral Neural Networks

Viewing the implementation of a class of multi-layer functionals to represent non-
linear unsteady aerodynamic response, a proper linear functional £; (cf. Equation
1.10) must be adopted. By assuming a basic linear tunctional in the form of the con-
volution integral, the multi-layer functional of the non-linear unsteady aerodvnamic

force response 1s given by,

F(t) =~ MFlu] = ZC:‘ ¥ (91; T /Ot hi(A)u(t — A) d/\) (1.11)

where k, (;. ¢; and o are as defined in Equation 1.10. and h; is the unit impulse

response of process unit ¢.
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Modha & Hecht-Nielsen {1993] have shown that the multi-laver functional in
F.quation 1.11 can be realised by a temporal neural network (Wan. 1990a. 1990b:
Back & T'soi, 1991 and Back et al.. 1994), that allows practical implementations by
means of typical neural networks methodologies.

Temporal neural networks represent a generalisation of the conventional neural
network concept (Miiller & Reinhart, 1990; Hecht-Nielsen. 1990; Hertz ¢t al., 1991
and Haykin, 1994) to account for dynamic behaviour of input to output variables.
lemporal neural networks consist of many basic processing units. called 7ncur-
ons, joined by connection paths, or synapses, modelled by linear. time-invariant,
continuous-time filters. Each neuron receives inputs from one or more other neur-
ons, and the sum (or activation potential) is transformed by the activation function
(normally, a non-linear sigmoid function) to yield the neuron output. The arrange-
ment of neurons in a neural network defines its architecture. When. the architecture
consists of layers of neurons providing outputs in the same directions (information
traffic from the input layer to output layer), the network is called a mult:i-laycr nct-
work. Figure 1.6 schematises an arbitrary multi-layer network architecture and also
a generic temporal neuron model. To allow computational implementation, a finite
memory to the synaptic filter can be considered. This discrete-time model form
is referred to as a finite impulse response (FIR) neural network model, where the
network connections are comprised of weight vectors.

The determination of a neural network is done by a learning process, or training.
Basically, training processes are algorithms for adjusting the syvnaptic weights of
neural networks. Theories concerned with training processes are still in their infancy.
Most of the work on neural networks has used the back-propagation algorithm for
supervised training (Haykin, 1994). This algorithm produces a sequence of gradient
values normally calculated upon desired and network outputs. Those gradient values

are used to update the weights of the network during a backward operation along the
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Figure 1.6: Schematic representation of temporal neural network architecture and
neuron model.

network connections. Then, the training process becomes a sequence of forward and
backward passes through the networks until a point where the difference between
desired and network outputs is satistactorily small. A back-propagation algorithm
for FIR neural networks, namely, temporal back-propagation. has been developed
by Wan [1990a. 1990b|. In this case, the algorithm works in the same way as in the
conventional back-propagation algorithm. but extra information of previous steps in
discrete-time of the neurons outputs and activation potentials is required.

Some drawbacks are associated with the temporal back-propagation algorithm.
One of them is the need for a differentiable and well-behaved performance index.

that may be a limitation tor some applications. The back-propagation algorithm
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cannot guarantee global optimisation of weights. especially because learning and
momentum rates affect the process performance. Moreover, only the same value ot
time-delay per connection of adjacent hidden layers can be used. Causality restraint
problems also compromise the flexibility of the algorithm. Finallyv. the algorithm
can only adapt weight values and as a network’s architecture design relies purely
on a trial and error basis, the risk of achieving a temporal neural network which
overfits the input-output mapping increases. Overfitted networks normally result in
bad generalisation property, in other words. a bad identified model.

Studies on techniques to help achieve optimal architecture have not identified
a definitive procedure. The use of combinatorial optimisation based on evolution-
ary programming may be an alternative to the limitations of existing neural net-
work architectures design schemes. Among them, the class of genetic algorithms
has shown to be a powertul mathematical tool for topology optimisation. Genetic
algorithms (Goldberg, 1989; David, 1991; Holland, 1992: Michalewicz, 1992; Beas-
ley et al., 1993a, 1993b; Back, 1996 and Mitchell, 1996) are a class of evolutionary
algorithm based on combining sequentially structured information of system solu-
tions (chromosomes), grouped in a set called the population. The information from
each possible system solution in the population must be kept in a wav to facilitate
the reconstruction and evaluation of the system.

Genetic algorithms can be applied to train and adapt temporal neural network
architectures, since they are able to combine topological information. Indeed, genetic
search allows optimisation of any variables within the same framework. including
architecture. learning rules, activation functions, etc. Studies have revealed that
genetic algorithms offer an appropriate means to optimise neural network architec-
tures (Fogel et al.. 1990: Harp & Samad. 1991: Schafter et al., 1992;: Maniezzo.
1994 and Angeline et al.. 1994). Although training neural networks with genetic

algorithm does not seem to provide a more efhicient scheme to optimise welght val-
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ues compared with back-propagation algorithms. genetic algorithms are a promising
alternative for training cases where, for example. gradient or error information is
not available (Schaffer et al., 1992). For the particular case of FIR neural networks.
the application of genetic algorithms for training and adaptation mayv achieve bet-
ter results, because of the possibility in assigning difterent time-delayv values per
connection, as well as avoiding causality restraint problems.

The wider approximation properties of temporal neural networks (allowed by
the multi-layer functional concept) in comparison to conventional neural networks
(Poggio & Girosi, 1990 and Narendra & Parthasarathy, 1990), provides a suitable

framework for non-linear unsteady aerodynamic response model identification. The
systematic way of producing neural network models also offers an attractive oppor-
tunity to overcome some of the difficulties related to conventional non-linear svstem
identification approaches (Billings & Fakhouri, 1978, 1979, 1982: Billings, 1980;
Korenberg & Hunter, 1986; Hunter & Korenberg, 1986 and Ljung, 1987).

In terms of modelling non-linear unsteady aerodynamic behaviour with neural
networks, there are few cases in the recent literature. Specific use of neural networks

in modelling unsteady aerodynamics is presented by Faller & Schreck {1995, 1996.
1997] and Schreck et al. [1995]. For this case, the authors use a real-time predictive

scheme to capture the main features of three-dimensional unsteady separated flow-
fields. Although important practical results have been achieved, neural networks are
basically applied as time-series predictors or function approximators. using a static
approach. Further. little has been done to obtain a neural network model which
is compatible with the functional representation of unsteady aerodynamic response.
The need for an approach that accounts for the functional representation of unsteadyv
acrodvnamics is not only a matter of mathematical formalisation, but is essential
to accommodate the physical behaviour of non-linear unsteadyv aerodvnamics to a

mathematical model.
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The present work is concerned with the use of multi-layer functionals in the
approximation of non-linear unsteady aerodynamic response in the context of aer-
oelastic analysis and control. A discrete-time version of the temporal neural network.
or finite impulse response (FIR) neural network model. is adopted as a practical real-
isation of the multi-layer functional model of non-linear unsteady aerodynamic re-
sponse. A training algorithm, including the optimisation of the FIR neural network
architectures, has been developed for the identification of non-linear unsteady acro-
dynamic response models. The training process is based on a conventional genetic
algorithm for the adaptation of the FIR neural network architecture and a siplific-
ation of the simulated annealing algorithm (Kirkpatrick et al.. 1983: Rutenbar, 1989
and Otten & van Ginneken, 1989) is used to update the weight and bias values of the
F'IR neural network, and to assist the process in avoiding problems of local minima.

The identification process is used to produce non-linear unsteady aerodynamic
response functionals appropriate to variations of two-dimensional airfoil incidence
histories for two diflerent flow regimes. In the first case, the weakly non-linear
unsteady aerodynamic force response in mildly separated flowfields is examined.
The second case considers the non-linear unsteady aerodynamic responses due to
compressibility effects in the transonic flow regime. Multiple data sets incorporating
boundaries to the incidence motion histories in a range of Mach numbers. are used
for the identification process to account for the non-linear behaviour of the unsteady
aerodynamic responses.

The approximation properties of the identiied multi-laver functionals. in the
form of FIR neural networks. are explored by testing the ability to predict the un-
steady aerodynamic responses due to incidence motion histories or Mach numbers
different from the ones used in the training process. A discussion on the limita-
tions of the multi-layver functional models for unsteady aerodynamic response is also

presented.
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1.4 Organisation of the Thesis

In this thesis, the application of multi-layer functionals for the approximation of
non-linear unsteady aerodynamic response is examined, as well as the advantages
and limitations of such an approach. A survey on the main topics related to the
difficulties involving the modelling of non-linear unsteady aerodynamic response in
the context of aeroelastic analysis and control is introduced in Chapter 1. Practical
limitations in the application of the fluid mechanics equations in aeroelastic mod-
els have motivated the adoption of approximate methods for modelling unsteady
aerodynamic responses. The mathematical approaches based on functional repres-
entations have furnished a suitable framework to account for the strong depend-
ence on time-history eftects of non-linear unsteady aerodynamic responses. Various
forms of functional representations can be used to identily unsteady aerodynamic
response models; tor example, superposition of non-linear indicial responses and Vol-
terra series. Nevertheless, these functional torms are complicated to implement. In
addition, other approaches applied in identification of non-linear dynamic systems:;

for example, the Wiener methods and block-oriented models, present complications
for unsteady aerodynamic modelling. Recently, multi-layer functionals have been
introduced as a novel functional series form that can be realised via temporal neural

networks. The application of multi-layer functionals for the approximation of the

unsteady aerodynamic response is proposed.

In Chapter 2, the theoretical foundations of multi-layer functionals are presen-
ted. Inmitially, the basic 1ssues on approximation theory are introduced in the con-
text of neural networks. For non-linear dynamic svstems., neural networks have
been heuristically used as parametric input-output models. The success of these

models. 1n relation to the traditional non-parametric and block-oriented non-linear

svtem identification approaches. has motivated studies on rigorous mathematical
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formulations to justify the neural network approximation properties. The result is
the universal approximation theorem. establishing that any continuous function can
be approximated by linear finite combinations. Then. based on this foundation.
generalisations to the formulation have been proceeded, in order to adequate the
theorem to account for functional representations. This leads to the definition of
a novel parametric family of real valued mappings, named multi-laver functionals.
T'hen, the practical realisation of multi-layer functionals in terms of temporal neural
networks in discrete-time, or the finite impulse response (FIR) neural networks. to
represent time-invariant sytems are presented.

The genetic search used in the supervised training of the FIR neural network
for the identification of unsteady aerodynamic response models, is presentced in
Chapter 3. Initially, theoretical aspects of genetic algorithms are overviewed. A
detailed explanation on how the IR neural networks are encoded in chromosomes is
presented. The genetic operators, applied in the optimisation of FIR neural network
architectures, are then described. Then, the use of simplifications of the simulated
annealing algorithm, applied to update the weight and bias values and to assist the
process to avoid stagnation on the convergence performance, are explained.

Aspects of multi-layer functional representation of non-linear unsteady aerody-
namic models are presented in Chapter 4. The identification of unsteady aerody-
namic response multi-layer functionals, in the form of FIR neural networks, is carried
out for two different flow regimes. The first case considers the weakly non-linear un-
steady aerodynamic force response to variations in the incidence motion histories in
mildly separated Howfields for a range of Mach numbers. A semi-empirical model is
used to generate the necessary two-dimensional aerodynamic data for the identific-
ation process. In the second case. flow regimes influenced by compressibility effect s
are considered. The functional of the non-linear unstecady aerodvnamic responses to

variations of the incidence motion histories of a two-dimensional NACA 0012 airfoil
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1s 1dentified, using aerodynamic data from a CFD code based on the solution of the
Euler equations. A discussion on the algorithm performance and on the approx-
Imation properties of the identified models are also presented. Limitations to the
multi-layer functional approach are identified.

Finally, in Chapter 5, the conclusions and directions for future investigations are

presented.



Chapter 2

Multi-Layer Functional Models of
Non-Linear Dynamic Systems

2.1 Introduction

Identification of approximate models of dynamic systems remains a common prob-

lem, particularly when systems present complex non-linear behaviour and a strong
dependence on the past history of the input variables. Approaches for non-linear
system identification can be categorised in (Korenberg & Hunter. 1986): (i) ker-
nel or non-parametric methods; (4:) block-oriented models; and (7i1) parametric
approaches. In the first category, the \olterra and Wiener functional series are
among the most important ones. The block-oriented models represent a larger
category, where cascades of interconnected linear dynamic systems and non-linear

static operators are assumed. Surveys on these approaches are presented in Billings

1980]. Billings & Fakhouri [1982], Korenberg & Hunter [1986] and Hunter & Koren-
berg [1986].

Parametric models also provide suitable alternatives tor non-linear svstem iden-
tification (Billings, 1980). Recently, the use of ncural networks (Havkin, 1994) for

non-linear syvstem parametric modelling has increased considerablv. Neural net works

24
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consist of superpositions and combinations of parametric linear operators (summa-
tions of weighted inputs) in cascade to non-linear operators (activation functions).
However, the success of neural networks in the context of svstem identification is

based, historically, on heuristic approaches rather than on theoretical foundations.

The formalisation and proper mathematical explanation of neural network iden-
tification properties for non-linear systems have been achieved by the universal ap-
prozimation theorem (Cybenko, 1989 and Hornik et al.. 1989). By defining a rig-
orous mathematical formulation based on the Stone-Weierstrass and Ikolmogorov
theorems, the universal approximation theorem establishes that finite combinations
of superpositions of a fixed, univariate function over a set of athne functions can
uniformly approximate any continuous multivariable function (Cybenko, 1989). Al-
though the universal approximation theorem has provided a suitable conceptual
basis for using conventional neural networks as parametric input-output models of
non-linear dynamic systems, limitations on the set of internal network parameters
requires special architecture modifications.

While many non-linear dynamic systems can be identified by functions, the ma-
jority of systems are better represented by functional forms. Recognising the im-
portance of functional representations in non-linear dynamic systems identification.
Chen & Chen [1993] and Modha & Hecht-Nielsen [1993] have studied generalisations
of the universal approximation theorem. Although both approaches have provided
important developments towards a functional form for the universal approximation
theorem, the approach by Modha & Hecht-Nielsen [1993] embraces a more complet e
representation by establishing a functional form that can uniformly approximate
any continuous functional on a normed linear space.

Modha & Hecht-Nielsen {1993] have produced a novel parametric family of real
valued mappings on arbitrary normed linecar spaces. named multi-layer functionals.

Multi-layer functionals can also be used to represent time-invariant. continuous-time
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or discrete-time, finite or infinite memory. causal or non-causal svstems. Moreover.
the resulting class of functional forms for parametric non-linear systems representa-
tion can also be realised by means of temporal neural networks (Wan. 1990a, 1990b:
Back & Tsoi, 1991; Back et al., 1994 and Haykin, 1994)

The purpose of this chapter is to present the theoretical foundations of multi-
layer functionals and also to demonstrate how multi-layer functionals can be used
as parametric input-output models of non-linear dynamic systems. Primarilyv. the
universal approximation theorem is described in the context of neural networks for
non-linear system identification. The development ot functional forms by expanding

the concepts involved in the universal approximation theorem is presented. In this
context, the approaches by Chen & Chen [1993] and Modha & Hecht-Nielsen {1993
are described and the definition of multi-layer functionals is presented. Then, multi-
layer functionals are defined to facilitate the modelling of time-invariant, continuous-
time, infinite memory, and anti-causal dynamic system. The resulting formulation
can be shown to be realised by means of temporal neural networks (Wan, 1990a,
1990b; Back & Tsoi, 1991; Back et al., 1994 and Haykin, 1994).

F'inally, temporal neural networks are described and the finite impulse response
(FIR) neural model is described as a practical computational implementation of tem-
poral neural networks in discrete-time to represent. time-invariant. finite memory,
and causal dynamic systems. Using this approach, conventional use ot neural net-
works methodologies in the production of parametric input-output models of non-

linear dynamic systems is facilitated.
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2.2 Multi-Layer Functional Approximation

1'he principles of the universal approximation theorem form a proper basis for func-
tion approximation. This approach has provided suitable framework for non-linear
dynamic systems identification and modelling; for example, by using neural net-

works. However, better dynamic system representation is achieved by using func-

tional forms. Generalisations to the universal approximation theorem has been pro-
duced, and the result are new functional forms that furnish appropriate framework
for parametric input-output models of non-linear dynamic svstems. The math-
ematical foundations to the definition for a class of functionals, called multi-laver

functionals, are presented in this Section.

2.2.1 Issues on Function Approximation

The approximation of mathematical functions or mappings represents a central prob-
lem in a variety of subjects. The basic issues of approximation theory, that are
relevant to the formulation of the universal approrimation theorem, are presented in
this section. Although this theorem has been developed to explain the approxima-
tion properties of neural networks, its significance to approximation theory is more
far-reaching (Haykin, 1994).

The methods based on superposition of continuous functions have established
the foundations of the universal approximation theorem. The basis of this the-
orem comes from the Stone-Weierstrass and Kolmogorov theorems (Cybenko, 1989:
Hornik et al., 1989 and Hecht-Nielsen. 1990). viewing the syvstematisation and clas-
sification of theoretical foundations of neural networks for function approximation.
The Stone-\\eierstrass theorem presents a simple criterion to define functions used
to uniformly approximate arbitrary continuous functions. while the Kolmogorov the-

orem establishes a superposition tormulation for the function approximation problem



CHAPTER 2 28

(Hecht-Nielsen, 1990).

T'he Kolmogorov theorem also represents an important mathematical tool for the
particular case of neural networks (Hecht-Nielsen, 1990 and Havkin. 1994). Refor-
mulations of this theorem, in the context of neural networks theory. have provided
appropriate mathematical foundations to explain the function approximation prop-
erties of neural networks (Hecht-Nielsen, 1990).

In the context of approximation of functions by neural networks, the approaches
using finite linear combination forms have been rigorously represented by the uni-

versal approzimation theorem (Cybenko, 1989 and Hornik et al.. 1989):

If ¢ 15 a non-constant, bounded, and monotone-increasing continu-
ous function, then, any function y belonging to the space of continuous
functions on the p-dimensional unit hypercube I = |0,1]| can uniformly

be approximated by a finite linear combination of k process units such

that,
k p
Y(T1, T2y, Tp) — Y (i (6{,- + Z’wﬁl’i) <€ (2.1)
where (;,0;,w; € R, € € Ry, {z1,%2,... ,2p} € I, and |-| represents an

appropriate norm operator.

2.2.2 Functional Approximation

Approximation of functions has proved usetul in applications to system modelling,
identification and realisation (Narendra & Parthasarathy, 1990 and Masri ot al..
1993). Although approximation approaches based on Inequality 2.1 are concerned

with continuous functions, in practice dvnamic svstem models can be viewed as
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functionals defined on some set of functions (Chen & Chen. 1993). This issue hax
motivated Chen & Chen [1993] and Modha & Hecht-Nielsen {1993], in the develop-
ment of a generalisation for the theorem described in Inequality 2.1.

A functional is a mathematical relationship between sets of points. being its
domain sets of functions. For a set of real valued functions of 7. the functional F

assigns a real number Y () to a real valued function z; from its domain: that is.

Y(t) = Flz] (2.2)

Indeed, the number Y (¢) depends on all ordinates x; that correspond to abscissas
t of a previously defined time interval. A functional can be considered as a function
with an entire continuum of independent variables, which permits functionals to be
considered as a generalisation of the mathematical concept of function.

By approximating a generic functional F|z;| by a function of m—1 variables given
by Y(g(z1),...,9(zm_1)), where g(-) are generic functions, Chen & Chen {1993] have
achieved the following formulation, that generalises the universal approximation

theorem in Inequality 2.1; that 1s,

If U is a set in a space of infinite dimension C|p;. p2|. F 1s a continu-
ous functional defined on U, and ©(-) s a non-constant, bounded. and
monotone-increasing continuous function, then for any € € R.. there
exist m + 1 points p; =t < ... < t,, = p2. a positwe ntcqger kK and

Cj. 93', Wj; € R, such that

k m
Flre| — ng (9j + Z’wﬁl‘t,) <g. Vzx el (2.3)

where |-| represents an appropriate norm opcrator.
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The significance of Inequality 2.3 for dynamic syvstem representations is the fact
that the formulation provides a theoretical basis for approximation of continuous
functionals.

Simultaneuously, Modha & Hecht-Nielsen [1993] have also used the functional
approach to establish generalised formulations to the universal approximation the-
orem. The Modha & Hecht-Nielsen [1993] approach presents the same structure of

Inequality 2.3, differing in the way the argument of ¢ is defined. This argument is

assumed to be an affine functional A|z;] of the form:

Alz;] = 0 + L|z] (2.4)

where 8 € R, L|x;| belongs to the set of all continuous linear functionals on arbitrary

normed linear spaces.

Although the difterences between both approaches seem to be only a matter of
notation, the Modha & Hecht-Nielsen [1993] approach is more far-reaching, because

no approximation to the athine functionals is assumed to be necessary.

2.2.3 Multi-Layer Functionals

Modha & Hecht-Nielsen {1993| have expanded the concept of the universal approx-
imation theorem (cf. Inequality 2.1), by adopting a generalisation of the affine form

in Equation 2.4. For that, a linear functional on an arbitrary normed linear space

has been defined as,

Llay) = | (ndu(n (25

where n € I = [0.1]. &, belongs to the set of real valued continuous functions with

domain /. and ;¢ belongs to the set of functions of bounded variation on the unit



CHAPTER 2 31

hypercube /.
When the linear functional in Equation 2.5 is used in Equation 2.4. the formula-
tion reveals a class of functional forms defined over a set of all real valued. continuous

functions with domain I = [0,1]. This functional class has been named by Modha

& Hecht-Nielsen [1993|, as multi-layer functionals; that is.

MEF|z,| = i@‘ﬂ (6’]- + /137(77)@]'(72)) (2.6)

where (;, 0; € R, z(n) and p;(n) are defined by Equation 2.5, and £ is the number

of process units.

To use multi-layer functionals as input-output representations for dynamic sys-
tems, the notion of time needs to be incorporated. A general formulation for time-
invariant, continuous-time, infinite memory, and anti-causal system representations

by multi-layer functionals is presented by Modha & Hecht-Nielsen {1993]|. A basic

linear functional L£|x;| in the convolution form is assumed; that is.

Lz, = /0 t R(A)z(t — \)dA (2.7)

where h is the unit impulse response due to z(?).

Then, the application of the linear functional in k.quation 2.7, to define an athne
functional of the form of Equation 2.4, results in the following multi-laver functional.
which approximates the dynamic system response y(t):

k t
y(t) =~ MF|x,| = ZCJ-;; (Qj + /0 hi(A)z(t — A)d/\) (2.8)
j=1

where (;. 0; € . ¢ 1s a bounded, continuous function. and h; is the unit impulse

response of process unit j. for j =1.... . k.
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2.3 Neural Network Realisation of Multi-Layer
Functionals

A close examination of Equation 2.8 reveals that it corresponds to the definition

of temporal neural networks described by Wan [1990a. 1990b]. Back & Tsoi [1991].
Back et al. {1994|, and Haykin {1994]. This allows a suitable framework for practical

representation of a large class of non-linear dynamic svstems.

2.3.1 Temporal Neural Networks

Temporal neural networks as described in this Section, comprise the category of
neural networks represented by a spatio-temporal neuron model joined by connecting
links called synapses (Wan, 1990a, 1990b; Back & Tsoi. 1991; Back et al.. 1994 and
Haykin, 1994). In this case, the synapses are modelled by linear, time-invariant.

continuous-time filters.

Inputs filters

.-\‘.'1 (t) E;;:gt;lalttijgil oufput
vi(t)
720 (£ e @ (0) >0
: 0

| activation
] function

X (1) bias

Figure 2.1: Temporal neuron model.

Figure 2.1 illustrates the neuron model, in which the syvnapse ¢+ belonging to the

neuron j has its temporal behaviour described by an impulse response h;;(t). For
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the input z;(t) denoting the excitation applied to synapse ¢ (for 2 = 1,...,p). the
synaptic response is determined by the convolution of the impulse response h;(t)
with z;(¢). For a neuron j with a total of p synapses, the associated activation

potential v;(t) is due to the combined effect of all the inputs and the applied bias

values 6, is given by,

v;(t) = 0; + Zp: /0 | RNz (t — A)dA (2.9)

The neuron output y;(¢) is obtained by applying the activation function ¢, nor-

mally a sigmoidal function, on v,(t); that is,

y;(t) = p(v;(t)) (2.10)

An illustration of a simplified representation for the temporal neural model is

shown for the neuron j in Figure 2.2.

Aj (1)

X,(t)

Xp(t)

(1)

Figure 2.2: Simplified representation for a temporal neuron.

A multi-layer temporal neural network is formed by composing layers of neurons.

A schematic representation (using the simplified neuron representation shown in Fig-

ure 2.2) of a multi-layer network architecture, for the input-output pair (z(t), y(t)),
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composed of neurons modelled by Equations 2.9 and 2.10, distributed in two hidden

layers, is depicted in Figure 2.3.

x(t) @

Input @b Output
Layer qb Layer

S, oe——r

Hidden
Layers

V(1)

Figure 2.3: Temporal network architecture.

The temporal neuron model, described by Equations 2.9 and 2.10, is consistent
with the representation of multi-layer functionals given by Equation 2.8. The rep-
resentation in Equation 2.8 can be interpreted as a special form of multi-laver neural
network possessing a single hidden layer of temporal neurons with the network out-
put being the linear combination of each hidden neuron output. In practice. a4 more

robust form of multi-layer functional utilises a network architecture with multiple
hidden layvers. From a computational point of view. it is convenient to assign a
discrete-time version of the temporal neuron model. by assuming the svnapses as

finite impulsc response FIR filters
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2.3.2 Finite Impulse Response (FIR) Neural Model

lo determine the FIR model it is convenient that the continuous-time svnaptic

model (in fact, a synaptic filter) obeys the following characteristics:

e l'he synaptic filter must be causal, that is,

where 1’; denotes the memory span of the synapse : belonging to the neuron j.

T'herefore, Equation 2.9 can be re-written as,

0i(t) = 0;+ 3 /0 P BNzt — A (2.11)

For convenience, the convolution integral in Equation 2.11 is approximated by
a convolution sum, thereby permiting a discrete-time representation. Consequently-
the continuous-time variable ¢t 1s substituted by a discrete-time variable nAt. where

n is an integer and At is the sample interval. Then, Equation 2.11 is approximated as

Tj{

vj(n) =0, + > ¥ w;(¢At)r;(At(n — ¢)) (2.12)

1=1 £=0
where 7;; = % is the number of delay units of the filter in synapse 2 belonging to
the neuron j. and wj;(£At) = hj;; (A1) AT

The sample interval At has a common uniform value to all the time-varying

quantities n Equation 2.12. For notational convenience. At mav be omitted from
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the arguments of all time-varying quantities. Each connection may al~o present

different time-delay values. Therefore, Equation 2.12 can be re-written in the form.

) =10, +ZZwﬂ )zi(n — () (2.13)

1=1 £=0

Equation 2.13 describes the expression for the activation potential of the finite
impulse response (FIR) model, and the neuron can be illustrated as in Figure 2.4

where w;; denotes the weight vector (R7*! x 1) of syvnapse ¢ belonging to neuron j:

that is,
wji = [w;(0) wj(1) wﬂ(TJz)]T
and
X;(n) = z;(n—-0) z;(n—-1) ... z;(n — sz‘)]T
inputs weilghts
XI ( n ) W. ] activati_on
J potential output
vi(n)
X2(n) - o p(vj(n) vi(n)
* activation
) j function
xp(n bias

Figure 2.4: FIR neuron model.
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A simplified representation for the FIR neural model (neuron j) is depicted in

Figure 2.5.

x}(”)

le

X,(n) eb vi(n)
'

Xp(n)

Figure 2.5: Simplified representation for a FIR neuron.

An example of the final representation of a multi-laver FIR neural network archi-
tecture is illustrated in Figure 2.6, where each neuron is represented as in Figure 2.5.
I'igure 2.6 presents an arbitrary FIR neural network with p inputs, k£ outputs and
two hidden layers. The first hidden layer has m neurons. while the second one has ¢
neurons. The neurons of the FIR neural network are enumerated in sequence from
the input layer to the output layer, starting in the first hidden laver. Time-delavs
per connection; that 1s. 7;; 1n the connection between neuron 2 to neuron j, are also
depicted. The FIR model is the practical realisation of the discrete-time multi-laver

functional used to represent time-invariant. finite memory. and causal svstems.

2.4 Summary

The foundations of multi-laver functionals for non-linear dvnamic systems repres-
entation are described in this chapter. Multi-laver functionals are a new parametric

familv of real valued mappings compounded by non-linear combination of linear
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Figure 2.6: FIR neural network architecture.
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afhine functionals on arbitrary normed linear spaces. Using the concepts of the uni-
versal approximation theorem expanded by functional forms, multi-layer functionals
provide an appropriate framework for a large class of non-linear system models.
The development of a multi-layer functional to model time-invariant, continuous-
time, infinite memory, causal system has been shown to be realisable in terms of
temporal neural networks. Moreover, for practical computational implementations,

temporal networks in discrete-time, or finite impulse response neural models, can

be used.



Chapter 3

ldentification of Non-Linear
Dynamic Systems using FIR
Neural Networks: A Genetic

Algorithm Approach

3.1 Introduction

A suitable framework for the representation of non-linear dynamic systcins, as shown
in Chapter 2, is provided by multi-layer functional models. A practical realisation of
the multi-layer functional representation of time-invariant systems can be achieved
with a discrete-time, finite memory temporal neural network; that is, the finite
impulse response (FIR) neural network. Identification of an appropriate FIR net-
work model is achieved by means of a supervised training process in which both
the network parameters and network architecture are adapted to minimise the error
between the prescribed outputs and the network outputs.

The back-propagation algorithm (Hertz et al., 1991 and Ha<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>