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Abstract In this thesis we study several different problems concerning the mathematical 

modelling of non-linear magneto- and electro-active elastomers. Three main problems have 

been addressed: universal relations, the modelling of transversely isotropic magneto- and 

electro-active elastomers, and the variational formulation. 

The complete set of linear universal relations was found for isotropic magneto- and 

electro-active elastomers. Some universal relations for some special simplified cases of the 

constitutive equations were also found. Two non-linear universal relations were studied, 

for the helical shear and for the anti-plane shear deformations. 

Two boundary value problems were solved using the finite difference method: one of 

them was the inflation and extension of a tube of finite length under the influence of a 

uniform axial magnetic field applied far away, and the other was the uniform extension of 

a cylinder with an electric field applied far away. 

The constitutive equations for transversely isotropic magneto- and electro-active elas- 

tomers were developed, and several simple boundary value problems were solved. For the 

case of transversely isotropic magneto-active elastomers a preliminary form for the energy 

function was proposed. 

Finally simple variational formulations for the magneto-elastic problem were found, 

and an extension of these formulations, which takes into account the interaction with a 

rigid semi-infinite body was proposed. 
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Chapter 1 

Introduction 

Magneto- and electro-active elastomers are smart materials, which are composed basi- 

cally of a rubber-like matrix, filled with magneto- or electro-active particles, which in the 

presence of an external magnetic or electric field, may develop large non-linear elastic 

deformations. 

The rapid response, the high level of deformations that may be achieved, and the 

possibility of controlling these deformations by varying an external field, either magnetic 

or electric, make these materials of special interest for vibration and noise suppression and 

in the design of robots. 

In the case of magneto-active elastomers, we may cite the paper by Farshad and Le 

Roux [44], where a new design for a window has been proposed, which makes use of an 

isotropic 1 magneto-active elastomer in order to generate a controlled vibration in the 

window such that the noise may be reduced or suppressed. 

The papers by Yalcintas and Dai [120], and Kari and Blom [62] also address the issue 

of the application of magneto-active elastomers (MS) 2 for noise and vibration reduction; 

in this last paper, experimental results have been obtained for the shear modulus from a 

dynamic test; as in the paper by Farshad and Le Roux [44], only the isotropic case was 

considered. 

An example of a smart actuator based in the use of a transversely isotropic MS 3 has 

'Isotropic means with a random distribution of particles. 
2The abbreviations MS and ES will be used in order to speak about the magneto- and electro-active elas- 

tomers respectively. These names are originated from the phrases magneto-sensitive and electro-sensitive 

elastomers, which are alternative names for these smart materials. 
3Transversely isotropic means a magneto-active elastomer in which the particles have a preferred align- 

ment, which has been obtained by applying a field during the curing process. 
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been given by Zhou and Wang [129]. 
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In the case of electro-active elastomers (ES), a comprehensive account of some of 

the capabilities of these materials may be found in the paper by Bar-Cohen [3], where. 

in particular, applications of these materials in the development of a nerv generation of 

robots have been addressed. 

Most of the experimental data available have been obtained for MS elastomers. The 

most important class of MS elastomers studied in this thesis is basically made with a 

rubber-like matrix filled with magneto-active particles (see Ginder [48]). 

Regarding ES elastomers, besides the ES elastomer studied in this thesis, which is 

made in a similar way to the MS elastomers mentioned above (see, for example, Bossis et 

al. [11], Varga et al. [115] and Feher et al. [46]), we have an additional class of elastomers, 

which react to the presence of an electric field due only to their particular composition; 

for these materials it is unnecessary to add electro-active particles (see, for example, Nam 

at al. [76]). 

Some of the papers cited above deal actually more with the characterization of fluids 

and gels filled with either magneto- or electro-active particles. Magneto- and electro- 

active fluids and gels have attracted the attention of researchers for a longer time than the 

magneto- and electro-active elastomers, which have been studied in detail only during the 

last ten years, although a class of rigid polymers filled with magnetic particles has been 

in use for a long time (see, for example, [115]). 

A `type' of material, which might be difficult to classify as a different class, corresponds 

to a kind of electro-active elastomer that is presented as thin membranes composed of one 

layer of normal rubber-like material covered by two layers of electrodes, which with the 

application of an electric potential provokes large, elastic and `controllable' 4 deformations 

for the elastomer; see, for example, Costen et al. [26], and also Mazzoldi et al. [71] for a 

short yet complete summary about these electro-active elastomers. 

Regarding the composition, in the case of MS elastomers the matrix is made of a 

highly elastic material with a low magnetic permeability, filled with particles with high 

permeability, low residual magnetization 5 (see Lokander and Stenberg [66]), and high 

4Here the word controllable means that the form and `amount' of deformation may be controlled by an 

appropriate intensity and distribution of the electric field in the electrodes. 
5Low permanent magnetization is required in order to be able to vary the magnetic field inside the MS 

elastomer quickly, since if there is too much residual magnetization, the response of the material would 

become `slow'. Note that the above requirement would imply a negligible magnetic hysteresis. 
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magnetic saturation. Among the different choices for the matrix, natural rubber 6 and 

silicone elastomer 7 are the most widely used. Regarding the magneto-active particles, 

Carbonyl iron has been the principal choice 8, followed by pure iron (see, for example, 

Shen et al. [97] and Blom and Kari [8]); other materials used are cobalt and nickel alloys. 

The size of the particles used in the papers cited above is highly variable; in most 

of them, spherical particles of about 2 to 4 [µm] have been used; however, experiments 

with larger particles with irregular shape have been carried out as well; see, for example, 

Blom and Kari [8], and Kari and Blom [62], where particles of about 60 [µm] have been 

considered. 

The proportion of particles in the matrix is highly variable as well; in the above refer- 

ences it ranges from 10% to a 30% per volume. 

The particles are added to the matrix during the curing process, where it is necessary to 

apply temperature and pressure; for example, in Lokander and Stenberg [66] a temperature 

of 150['C] and a pressure of 12[MPa] were used for the curing process, which lasted for 30 

minutes. The temperature differs depending on whether we are working with a natural 

rubber or a silicone elastomer [8]. 

An external magnetic field (or magnetic induction) may be applied during the curing 

process, which has the purpose of generating a preferred alignment for the particles, which 

as we will see later on, may enhance the properties of the MS elastomer significantly in 

comparison with the isotropic case; a range of values for this external field might be 0.5[T] 

to 0.8[T] (see Shen at al. [97], and Ginder at al. [49,50]). 

Much less information is available for ES elastomers. We only study the class of 

electro-active elastomers that are made by filling a rubber-like matrix with electro-active 

particles. From the paper by Bossis et al. [11] we have data for an ES elastomer whose 

structure is basically the same as the structure of some of the MS elastomers described 

previously. From that paper, we find that the matrix corresponds to a silicone elastomer, 

which is filled with carbonyl iron particles of an average size of 2[µm], and a 30% fraction 

per volume of particles in the matrix. 
6Lokander and Stenberg [66], Shen at al. [97], Cinder et al. [49], Blom and Kari [8], Kari and Blom [62], 

and Cinder et al. [50]. 
7Jolly et al. [59], Bellan and Bossis [7], Varga et al. [117], Zhou [128], and Farshad and Le Roux [44]. 
'See, for example, Lokander and Stenberg [66], Shen et al. [97], Cinder et al. [49], Zhou [128], Farshad 

and Le Roux [44], Varga et al. [115,117], Bellan and Bossis [7], Jolly et al. [59], and Cinder et al. [50]. 

Carbonyl iron corresponds to a powder composed of particles with a proportion of iron of about 97%, 

with traces of carbon, oxygen and nitrogen. 
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We have discussed the applications and the composition of the NIS and the ES elas- 

tomers; let's now speak about their properties, and let's give a short review of the experi- 

mental data available. 

There are three factors that are especially important regarding the behaviour of these 

materials; the average size of the particles, the total proportion of particles per volume, 

and the existence of a preferred alignment for the particles. 

The inclusion of the magneto- or electro-active particles in the matrix has as a first 

consequence an increase of the stiffness of the material, but since the particles are almost 

rigid in comparison with the matrix, we have that the capacity of the material to deform 

elastically diminishes in comparison with the original pure elastomer. As can be expected, 

more particles would imply the stronger the magneto- or electrostriction effect is; then 

there should be an `optimal' proportion of particles depending on the application; Davis 

[27] estimated it as about 27% of particles per volume in order to have a maximum change 

in the shear modulus as a function of the magnetic field. 

The majority of the applications have considered `small' particles with an average size 

of 3[µm]; however, Blom and Kari [8] studied MS elastomers made with much larger and 

more irregular particles (of an average size of 40[µm]). They showed that in this case, with 

a random distribution of particles, is possible to achieve a larger magnetostriction effect 

than for the case with small particles 9. 

Let us discuss the above statement in more detail. As we will see later on, when the 

particles are added to the matrix, after the curing they become trapped; as a result, when 

a field is applied, they tend to displace thereby provoking the deformation of the body. 

Now, sometimes this effect may be enhanced significantly by applying a field during the 

curing process, which permits the particles to adopt a preferred alignment; once cured, 

this alignment has been shown to enhance the magnetostriction significantly in comparison 

with the random distribution (see, for example, [7]); in fact, most of the experimental 

researchers have studied this particular kind of MS elastomer instead of the randomly 

distributed one, as we will see in the following. 

Let us now discuss briefly the available experimental data. First, we point out again 

that most of the data available correspond to MS elastomers, and that the information 

available for ES elastomers is very scarce. Regarding the kind of mechanical and magnetic 

tests that have been done in order to characterize the behaviour of these materials, we 
9Our mathematical models are based on the assumption of `small' particles. 
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can expect many practical problems, in particular about how to measure the magnetic 

field for a body, and about how to apply a field for a body under deformation. Due to 

these reasons, as far as it is known, only simple tests have been done, like the traction of 

a cylindrical bar, the simple shear of a block, and the compression of a cube or a short 

cylinder. 

The paper by Bellan and Bossis [7] was one of the important sources of information 

for part of this research. They investigated the behaviour of a MS elastomer by using 

the traction test for a cylindrical bar. Two main problems were treated (maintaining the 

same proportion of particles): the case of a random distribution of particles, and the case 

of a preferred alignment for the particles (in the axial direction). These two materials 

were studied with and without the application of a magnetic field. They also explored the 

dynamical response of this material. More details of these results will be shown in Section 

5.3. 

Another important paper whose results were used in this research is that by Ginder 

et al. [50], who investigated the behaviour of a MS elastomer with a preferred alignment 

for the particles by working with a block under simple shear deformation. Two main 

experiments were done, by using either a particle alignment in the direction of the shear, 

or in a direction perpendicular to the shear. They also studied the behaviour of this 

material under dynamical conditions. 

The paper by Jolly et al. [59], which has been used as a reference in many theoretical 

researches [12,30,31], shows also some results for a shear test of a block, which was made 

using a transversely isotropic MS elastomer. They only considered the case in which 

the particles are aligned in the same direction as the field, which is perpendicular to the 

direction of the shear. Results for the `shear modulus' as a function of the magnetic 

induction were obtained. 

In a series of papers Varga et al. [115-117] show some experimental results for a cube 

under compression, working with gels and MS elastomers. It is interesting to study what 

they did with the transversely isotropic material, where they studied a cube made of 

this material, under compression, for several different alignments for the particles and the 

external field. An interesting phenomenon they found is a sort of `collapse' for the case in 

which there is compression in the direction of the particle alignment, when the proportion 

of particles is `high' (see Figure 12, page 7786, of [1161). 

Kari and Blom [62], and Lokander and Stenberg [66] studied the properties of isotropic 
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MS elastomers, with special attention to the dynamical response of these materials, using 

the shear test. Lokander and Stenberg [66] were especially interested in studying BIS 

elastomers made with large irregular particles. Shen at al. [97] also used the shear test 

but in this case they studied the behaviour of the transversely isotropic BIS elastomers. 

Farshad and Le Roux [45], and Zhou [128] used the compression test for a `short' cylinder 

and a plate respectively; Farshad and Le Roux [45] worked with magneto-active gels and 

elastomers, while Zhou [128] only studied transversely MS elastomers. 

The traction test was used by Rigby and Jilken [88]. A `bending' test was used by 

Yalcintas and Dai [120], and Farshad and Benine [43]. Other experimental results that 

may be mentioned as well correspond to the results obtained by Ginder et al. [49] for 

transversely isotropic MS elastomers, who studied with particular attention the dynamical 

behaviour of these materials. 

The mathematical modelling of MS and ES elastomers is a difficult task. The main 

problem, as we will discuss in detail in Section 2.3.1, is to work with large deformations 

and magnetic or electric fields. A series of simplifications must be adopted; nevertheless, 

the final models are in general highly complex. 

There are basically two different approaches in order to develop a mathematical model 

for these materials. One them we may call `micro-mechanical' model, also called some- 

times `structural' model, and the other, the `continuum' or phenomenological model. Let 

us speak about the first model. In micro-mechanics a model may be obtained by consider- 

ing one magneto- or electro-active particle as a rigid sphere (rigid in comparison with the 

surrounding elastomer matrix), and then by studying what happens with this particle in 

the presence of a field, when it is surrounded by other particles and the host rubber-like 

material. It is possible to obtain an approximation for the average field in the material, 

and for some other `properties', such as the `shear modulus'. The magnetic or electric 

interaction between the particles in the material is in general the most difficult part of 

the model; a common approximation is to assume that the field in the neighborhood of 

a particle is affected only by the presence of the field due to the closest particles. The 

distribution of particles might be assumed random with a low density of particles per vol- 

ume [10], or it might be assumed with a preferred alignment for the particles, in which case 

we speak about `chains of particles' [1241. An advantage of working with micro-mechanical 

models is, for example, that it enables us to work with mathematical expressions where 

the constants and coefficients that appear have a clear physical meaning. About some of 
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the disadvantages; the most important that may be mentioned is the complexity of the 

mathematical expressions that usually appear, especially, for example, when the results 

for a particle or chain are extrapolated in order to obtain `global' expressions for the body. 

when many simplifications are usually made in order to obtain these `global expressions'. 

Borcea and Bruno [10] developed a mathematical micro-mechanical model for a MS 

elastomer. They considered the particles as rigid `small' non-sliding uniformly magnetized 

spheres. Regarding the distribution of particles, a random distribution with a low fraction 

of particles was assumed. This last assumption is important, because an approximation of 

the behaviour of the material was developed by studying what happens with one particle, 

by assuming that only the closest particles had an effect on the magnetic behaviour of this 

particle. Another important simplification used by Borcea and Bruno [10] was to consider 

the rubber-like matrix as a linear elastic material. The basic idea of the model was to 

obtain an approximate expression for the elastic and magnetic energies for the material by 

calculating the energy accumulated by one particle and its surrounding. Using statistical 

averaging, the assumption of a random distribution of particles, and the existence of an 

applied external load and field far away, Borcea and Bruno [10] obtained an expression for 

the energy for the complete body, which was used in order to calculate `average' expressions 

for the stress and the deformation, which depend, among other variables, on the external 

field. 

Davis [27] considered a transversely isotropic MS elastomer; as in [10], the particles 

were considered as rigid spheres; however, the rubber-like matrix was assumed as an 

hyperelastic material, whose behaviour was approximated by the `Ogden' model [77]. Davis 

only studied the behaviour of one particle and the surrounding rubber-like material around 

it, which was assumed of a cubic shape. The particles were aligned in chains, as an 

approximation, only the other particles in the chain were assumed to have an influence 

in the magnetic field of the particle; the field in the surrounding cubic host material was 

assumed to be uniform, no interaction between chains was considered, and the particles 

were supposed to be evenly distributed in the chains; finally, the particles were assumed to 

be completely magnetically saturated. With these assumptions, using the finite element 

method in order to model the mechanical behaviour of the rubber-like material, Davis [27] 

obtained an approximation for the behaviour of a chain under shear deformation, with a 

uniform field applied far away; with this approximation he calculated the `shear modulus', 

and in particular he studied the behaviour of the shear modulus as a function of the 
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percentage of particles per volume, and the external applied field. Davis estimated that 

the maximum change in the shear modulus due to the external field was about 50%, and 

that the `optimal' proportion of particles was about 27% lo 

Shen et al. [97], and Jolly et al. [59] also worked with transversely isotropic NIS elas- 

tomers. They were mainly concerned with the calculation of approximate expressions for 

the shear modulus. In the case of Shen et al. [97], they used an approximate analytical 

expression for the magnetic field, valid for an isolated chain composed of rigid spherical 

particles, assuming, as Davis [27], that the magnetic interaction is only important inside 

the chain, and disregarding the magnetic interaction between chains. The `energy' of the 

chain was calculated by using the angular momentum exerted by the particles due to the 

presence of an external magnetic field; then a shear deformation is assumed, where the 

`shear force' was calculated from an appropriate variation of the energy. The elastic en- 

ergy of the surrounding rubber-like matrix was calculated assuming it to be a hyperelastic 

material. With the shear deformation and stress, Shen et al. [97] obtained an expression 

for the shear modulus as a function of, for example, the particle proportion per volume 

and the external field. 

Jolly et al. [59] used a similar procedure in order to calculate the shear modulus. A 

difference is that they also worked with particles partially magnetically saturated. 

Another paper on micro-mechanics modelling that we can mention is that by Simon 

et al. [98]. They did not work actually with MS elastomers, but with magnetorheological 

materials, which are highly viscous fluids filled with magneto-active particles. This kind 

of material has attracted the attention of researchers for a long time, and as a result 

there is much more experimental and theoretical information about these materials than 

for MS or ES elastomers. Simon et al. [98] were interested in the magnetic response of 

this material; in order to model it, they worked with one particle, and they developed 

the magnetic equations for the particle and the surrounding material. These equations 

were solved analytically, and then, by using an asymptotic approximation, they used a 

method, called `the linear homogenization method', in order to extrapolate the results of 

the particle for the whole material. 

Armstrong [1] worked on an interesting model of a non-magnetic composite matrix filled 

'°As was mentioned earlier, there should be an optimal proportion of particles in order to obtain the 

`strongest' magneto- or electrostriction effect. Too few particles implies low electric or magnetic 'forces', 

but too many particles would imply too little rubber-like matrix material, which would reduce the capacity 

of deformation for the MS or ES elastomer. 
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with magneto-active particles. In this case the particles were considered as ellipses. It was 

shown that the magnetostrictive effect may be enhanced by an appropriate selection of 

the relation between the major and minor axes of the ellipses. Interestingly, this is similar 

somehow to the results of Kari and Blom [62], who worked with irregular relatively large 

particles. The calculation of the mean stress and strain was first done by computing an 

approximation of the energy associated with one particle and its surroundings, for both the 

magnetic and elastic part of the energies, and then the stress and strain were approximated 

using such an energy, assuming a random distribution of particles in the body. 

A last series of papers that it is necessary to mention is by Yin and associates. Yin et 

al. [125] studied the behaviour of a non-magnetic matrix filled with randomly distributed 

particles; the stress was calculated by using an approximation for the energy and Eshelby's 

equivalent inclusion method. Both the linear and non-linear cases were considered. 

Yin and Sun [123] studied the same problem as above, but in this case they were con- 

cerned with the behaviour of the magnetic permeability. The models developed considered 

just the linear case; the magnetic field inside the material was found by solving Laplace's 

equation for the magnetic scalar potential for a particle and its surrounding by using the 

Green's function method, and by dividing the total magnetic field inside the material in 

two parts, one being a uniform applied field, and the other being a perturbed local field. 

This field was found by using the above solution for the Laplace's equation, and by ex- 

panding it in a Taylor series, keeping only two terms (linear approximation). With the 

above results, a model for the interaction of two particles was developed, which, by using 

the statistical average method in order to obtain the behaviour of the random distribution 

of particles, permitted the obtention of an expression for the permeability. No study of 

the strain or stress was carried out in this paper. 

Yin and Sun [124], and Yin et al. [126] also studied the case of transversely isotropic 

MS elastomers. Their model only considered the linear case, assuming the magnetic and 

mechanical properties as constant, which means that they do not depend on the deforma- 

tion. The chain particles were considered randomly distributed but aligned in the same 

direction. The Green's function method was used in both cases in order to solve the 

boundary value problem for one chain, assuming that the chains do not interact with each 

other. With the above results they calculated expressions for the magnetic field, stress 

and strain. In [124] they were concerned, in particular, with the behaviour of the shear 

modulus and Young's modulus; they were able to show the existence of an optimum for the 
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fraction of particles per volume. In [126) they obtained the same expressions as in [124]. 

but they also studied the effect of working with different host materials with different 

Young's moduli. 

The second kind of model, which is the theoretical basis for what has been done in this 

thesis, corresponds to the so-called phenomenological or continuum model. For BIS and 

ES elastomers, we assume that the magneto- or electro-active particles are very small (in 

comparison with the overall size of the bodies), such that we can assume a `continuous' 

distribution of particles in the elastomeric matrix. Global balances of linear and angular 

momentum, energy and entropy production, plus the Maxwell equations, are used in order 

to find a system of partial differential equations, from which we can obtain, for example, 

the stress, the displacement field, the strain, and the magnetic or electric fields. 

In our particular case, one of the most important assumptions was to consider the 

material as Green elastic, which means we assume the existence of a free energy function, 

which takes account of both the elastic and the magnetic (or electric) energies accumulated 

in a body. The main problem then is to find from experiments such an energy function; 

these experiments must be designed in a `rational way' by an appropriate use of analytical 

solutions of boundary value problems. 

The main difficulty at the present moment is the lack of enough experimental data in 

order to propose realistic forms for the energy function, which, as well as this, must be 

`mathematically consistent', which basically means that this energy function should lead 

to a 'well posed' boundary value problem. 

Details about this formulation and a review of the most significant references in the 

area are given in the Section 2.3. 

Besides the introduction, this thesis is divided in nine chapters. 

Chapter 2 provides a review of the theory of non-linear elasticity and the theory of 

electromagnetism, and a detailed review of the most important references in the theory 

of deformable magneto- and electro-elastic solids. Particular attention and detail are 

provided in order to show the theory developed by Dorfmann and Ogden, which is the 

basis of what has been done in this thesis. 

In Chapter 3 we review the basic equations for MS elastomers. 

Chapters 4 and 5 are concerned with isotropic and transversely isotropic materials 

respectively. For isotropic MS elastomers (Chapter 4), linear and non-linear universal re- 

lations were found, and the results for a prototype boundary value problem are shown, 
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which was solved with the finite difference method. For transversely isotropic materi- 

als (Chapter 5), some boundary value problems were solved by the inverse method for 

some problems with homogeneous deformations. As well as this, a prototype energy func- 

tion was proposed, which was used in order to solve some boundary value problems for 

non-homogeneous deformations. The problem of determining the linear and non-linear 

universal relations for this particular kind of energy function was also treated. 

Chapters 6,7 and 8 show similar results as in Chapters 3,4 and 5 respectively, but in 

this case applied to ES elastomers. 

Finally, in Chapter 9, some results about the variational formulation are shown, with a 

discussion about the boundary conditions for the mixed boundary value problem. Chapter 

10 contains the conclusions and comments. 

The main results shown in this thesis are based on the following published and unpub- 

lished papers. 

In [22] Bustamante and Ogden studied the problems of finding all the linear universal 

relations for non-linear electro-elastic solids; different particular cases for the constitutive 

equations were studied. The extension of these results for magneto-elastic solids was 

addressed by Bustamante et al. in [18]. 

Bustamante and Ogden studied the problem of non-linear universal relations for the 

purely elastic problem in [21]. These results have been extended to the magneto- and 

electro-elastic cases as it is shown in Subsections 4.1.2 and 7.1.2. 

Some results for a boundary value problem are shown in [15]. In this paper Bustamante 

et al. investigated the magnetic behaviour of a tube of finite length under inflation and 

extension with an axial uniform magnetic field. The problem was solved using the finite 

difference method. 

Bustamante et al. [17] provided two equivalent variational formulations for magneto- 

elastic materials. An extension of those results for the case of a mixed boundary value 

problem is given in [16]. 

The particular case of transversely isotropic magneto- and electro-active elastomers is 

treated by Bustamante and Ogden in [20] and [19] respectively. 



Chapter 2 

Electromagnetic fields and 

deformable media 

In this chapter a detailed review of the continuum theory for magneto- and electro-elastic 

deformable bodies is presented. First, a brief review of some important concepts in con- 

tinuum mechanics and non-linear elasticity is given. In Section 2.2 we review the basic 

aspects of the theory of electromagnetism. In Section 2.3 a detailed account of the theory 

of non-linear magneto- and electro-elasticity is given. 

2.1 Basic concepts of continuum mechanics and non-linear 

elasticity 

Much of this section is based on the book by Ogden [78], where a complete account of the 

continuum mechanics theory with especial applications to non-linear elasticity theory can 

be found. Four other important reference books on continuum mechanics that can be also 

mentioned are the two comprehensive articles by Truesdell and Toupin [1131, and Tri 1vsdell 

and Noll [112], and the introductory books by Chadwick [23], and Gurtin [52]. An updated 

account of different problems in non-linear elasticity may be found, for example. in the 

book by Fli and Ogden [47]. 

19 
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2.1.1 Elements of tensor theory 

Vectors and tensors will be denoted in general by bold lower case and capital Latin letters 

respectively; there are, however, some exceptions as we will see later onl. Scalars will be 

denoted in general by lower case Greek letters. Bodies will be denoted by calligraphic 

letters. 

Let's denote by IE the Euclidean real vector space, and let {ei } denote an orthonormal 

basis for this space; let u and v be two vectors and ui, v2 the components of these vectors 

in the basis {ei}; then we define the dot product (") as2 [23,63,78] 

u"v-uiv2, (2.1) 

where u= uiei and v= viel 

The vector product is defined as 

(u x v)k = EZjkuivjek, (2.2) 

where Eijk is the permutation symbol. 

Consider three vectors u, v and w; the tensor product ® is defined as 

(u ® v)w - (v " w)u Vw E E. (2.3) 

Let T be a second order tensor, let feil denotes an orthonormal basis for IE; the 

component TZG of this tensor is obtained as TZG = ei " Ted. Then TT denotes the transpose 

of the tensor T, and it has components Tai. The trace of T is defined as 

trT - TZi. (2.4) 

'For example, the vector field that represents the position of each particle of a body in the reference 

configuration is denoted as X. For the electromagnetic theory we use capital letters in order to denote the 

magnetic and the electric variables. 
2We use the convention of summation of index, then, for example, if we have the expression 

a=bi, 

this means 

aibi aibi. 

Another example is 

Q"jb; - Q;; b;. 
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Let {ei} and {ei} be two different bases for E, and Q be the matrix for the transfor- 

mation {ei} -* {ei}; the components Q23 of Q are obtained as 

Qij 
=ei - e- 

3' (2.5) 

It is possible to show that under this basis transformation the components of a tensor T 

transform as [23,78] 

L iß - Qip"6jg1 p4 (2.6) 

In the following sections and chapters we will work mostly with Cartesian coordinates. 

Appendix A contains a summary of some useful expressions for cylindrical and spherical 

coordinates. An analysis of vectors and tensors in a general coordinate system may be 

found in the book by Sokolnikoff [100], and also in [113]. 

2.1.2 Kinematics 

Consider a body in a reference configuration, denoted by ß,., with boundary äl3,.. Let's 

use X as a name for each particle of the body, and let use the symbol X in order to denote 

the position of these particles in the reference configuration. This configuration may be 

chosen arbitrarily; we assume that it corresponds to the region occupied by the body at 

the beginning of the process, when it is unstressed [78,111]. 

Now, let us assume that the body is deformed to a current configuration, called 13, with 

boundary OB. Let us use x in order to denote the position of each particle in this current 

configuration (also called the Eulerian configuration). If there is no time dependence we 

have that (see Figure 2.1) 

X=x(x), (2.7) 

where X is a one-to-one, orientation-preserving mapping with suitable regularity prop- 

erties. The above conditions for X are assumed in order to avoid problems such as self 

penetration (principle of impenetrability), and in order to avoid regions of finite volume 

to be deformed into regions of zero or infinite volume (permanence of matter) [113). 

The displacement field u is defined as 

u =x -X. (2.8) 

The deformation gradient F is defined as 

F- Grad X, (2.9) 
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t 

Figure 2.1: Current and reference configurations. The vector t represents an external 

surface load. 

where the operator Grad is defined with respect to X. F is a second order tensor. its 

components FZj in Cartesian coordinates are given as3 

F 
axi 

(2.10) 
Zý aX 

In terms of the displacement field we have 

F= Gradu + I. (2.11) 

where I is the identity tensor. 

The Jacobian of the transformation X is defined as 

J- det F. (2.12) 

We assume 

J0 Vx, (2.13) 

which implies that X is locally invertible at each X. 

As well as this, by convention the orientation of a line element is preserved (there is 

no inversion of an element), so [78] 

J>0 Vx. (2.14) 

3See Appendix A. 3 for some examples of F in other coordinates systems. 

i eieI tfHut current 

configuration configuration 
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Now if det F 0, then there exist symmetric tensors U, V and an orthogonal tensor R 

such that (polar decomposition theorem) 

F=RU=VR, (2.15) 

where RRT =I= RTR. U and V are called the right and left stretch tensors. Note that 

U and V are positive definite and that the decompositions (2.15) are unique. We have as 

well 

detF = detU = detV. (2.16) 

Consider the following tensors 

c=FTF=U2, b=FFT=V2; (2.17) 

c and b are called the Cauchy-Green right and left deformation tensors respectively. 

2.1.3 Balance laws. Stress vector and stress tensor. 

The mass m of the body 13 in the current configuration is given as 

m= p(x) dv p>0 `dxEB, 
13 

(2.18) 

where p is the density of mass per unit of volume in the current configuration. There 

is no change in the mass of the body, so the total mass is the same for the reference 

configuration; if we call po the density, we have 

m=f p(x) dv = 
113r 

po(X) dV, (2.19) 

but (see, for example, [78] ) 

dv = JdV, (2.20) 

therefore from (2.19) we obtain 

p= J-1 po. (2.21) 

In the previous subsection we reviewed briefly the kinematics of deformation for a 

body; in this subsection we concentrate our interest on the `cause' of this `deformation'. 

The causes of the deformation in a body are the forces. We have two kind of forces, 

the body forces and the surface forces. By body forces we mean the forces that act at a 

distance on each point of the body, and their magnitude is usually given as force per unit 

of mass; some examples are the gravity force and the forces `generated' by electromagnetic 

fields; we will study in detail this last kind of body forces in Section 2.3. 
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For surface forces we mean the forces that require the direct contact or interaction 

between the surfaces of two bodies. These forces are given as force per unit of area. 

One of the most important assumptions in continuum mechanics is Cauchy's hypothesis 

for surface forces. Cauchy assumed that the surface forces, which we denote by the symbol 

t, are function of the position, time, and a normal vector to the surface of the body, then4 

t= t(x, t, n), (2.22) 

which has units of force per unit of area. For the body force we use the symbol b. 

The total force and moment for a body (in the current configuration) are given respec- 

tively as 
fpbdv+ftda, 

and 
fp(x_xo) 

x bdv+ 
acs(x-x0) 

x tda, 

(2.23) 

(2.24) 

where p and b are functions of x and t, and t is function of x, n and the time t; while xo is 

a given fixed point in the current configuration about which the moments are calculated. 

Let v denote the velocity field for each particle of the body, and () the material time 

derivative; then the balances of linear and rotational momentum, known as Euler's laws, 

are 

and 

113 
pb dv + 

acs 
t da = 

Iß 
v dm =v dm, (2.25) 113 

f(x 
- x0) x tda= 

(18 
p(x-x0) xv dv 

113 
p(x-x0) xb dv + 

= p(x - xo) xv dv. (2.26) 
r3 

For brevity in the notation we will omit the time dependence. 

Theorem 1. Cauchy's theorem: if t (x, n) is continuous in x then there exists a second- 

order tensor o, such that 

t(x, n) = 0, (x) n, (2.27) 

where o, is known as the Cauchy stress tensor. 

4For a full account of the Cauchy hypothesis see, for example, [113] Chapter D. 
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If p, b and v are continuous, and o is continuously differentiable, it is possible to prove 

that (2.25) and (2.26) become (see [78] or [113]) 

diva T+ pb = pv, 

ol T=Q) 

(2.28) 

(2.29) 

which are known as the first and second Cauchy's laws of motion (balance equations). Note 

that in all the previous expressions we have not considered the case of electromagnetic 
forces and body torques; it can be shown that in that case in general o is not symmetric. 
We will show these results in Subsection 2.3.1. 

The relation between the element of area da for the current configuration and dA for 

the reference configuration is known as the Nanson's formula, and is given as follows [52,78]: 

da = JF -T dA. (2.30) 

Then, consider the total surface force for a body in the current configuration: 

t da = 
113 

Qn da =Q da = 
fr 

JQF-T dA. (2.31) 
1,6 113 

We define the nominal stress tensor S via 

ST = Jo. F-T . (2.32) 

Since a is symmetric we have 

S= JF-1o. (2.33) 

Sometimes ST is called the first Piola-Kirchhoff stress tensor. 

2.1.4 Constitutive equations 

By experience we know that two bodies of the same `shape' and dimensions, with the same 

distribution of external load, but made of different materials will behave differently. So, 

in our previous equations we need to connect the `deformation' x with the stresses Q. 

The constitutive equations correspond to these relations between the `deformation' and 

the `external loads'. The constitutive equations are simplified mathematical models used 

in order to represent approximately the behaviour of the material [112], and they do not 

intend to model this behaviour in all the possible external conditions. For example, the 

response of steel under small deformations may be appropriately approximated by a linear 
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model for the `stress-deformation' relation; however, that is not the case, for example, 

when we have large plastic deformations. 

There are several assumptions that are necessary in order to find simple forms for the 

constitutive equations, the three principal assumptions are (see, for example, [113] Chapter 

G, and [112] Chapter III). 

" Principle of determinism: we assume that, for example, the Cauchy stress tensor 

is a functional of the `history of deformation', the `particle' and time. 

The history of deformation is just the set of all the configurations x of the body 

from the beginning of the process until the time t; it is denoted by the symbol Xt 

where the superscript t means the `collection' of configurations from the beginning 

of the process until a time t. We have 

o- (X, t) = (xt; X, t). (2.34) 

" Principle of local action: we assume that what happens for a small portion of 

material in the body is only affected by immediate surroundings. 

" Principle of material frame-indifference: we can expect that the response of the 

material will be the same for two different observers. Consider the transformation 

X*(X, t*) = P(t) + Q(t)(x(X, t) - xo), (2.35) 

t* =t-a, (2.36) 

or*(X, t*) = Q(t)o(X, t)Q(t)T " 
(2.37) 

So we have that 

, )" (2.38) Xt* 

Despite the above principles, the form of the functional 'a is still too general for practical 

purposes. Most of the models are based on an extra assumption, the so-called `simple 

materials'. 

Definition 2.1. If for a deformation we have that F does not depend on X for all time 

t, then the deformation is called homogeneous. 

Definition 2.2. A material is called simple if for any point xEB the deformation is 

`locally' homogeneous (see [78] section 4.1.2, and [112]). 
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In the above definition the word `locally' means that for any point x very close to a 

point xo the following approximation is valid 

x xo + F(X - Xo), (2.39) 

where Xo is the position in the reference configuration of the particle. whose position in 

the current configuration is x0. 

If a material is simple it is possible to show then that (2.38) becomes [78,112] 

o(X, t) = &(Ft; X, t), (2.40) 

where Ft is the history of the deformation gradient up until the time t. 

In this thesis we do not work with materials with `memory'; furthermore, we only 

consider quasi-static problems, so we do not consider dependence on time either. For 

simplicity we do not explicitly state the dependence on the position X. 

A material that depends on the `instantaneous' value of F is called a Cauchy elastic 

material, and in this case we have [78,111 
. 

o(X, t) =0 (F). (2.41) 

It is possible to show that from the principle of material frame indifference we have 

5(QF) = Q! (F)QT 

for all proper orthogonal tensors Q. 

(2.42) 

We can show that (2.42) holds if !5 is a function of U instead F (see, for example, [111]). 

Then an alternative form of writing (2.41) is 

o(X, t) = RO(U)RT, 

and since U2 = c, we have also 

Q(X, t) = R-15 (c) RT, 

where we defined S5(c) = O(U2). 

(2.43) 

(2.44) 

There are two additional topics to treat in this section; material symmetry and internal 

constraints. 

Regarding the material symmetry, consider the following example. Let assume that 

there is a body, which shows the same `behaviour' independently of the `orientation' of the 
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undeformed material relative to the external load. In order to understand this, consider 

a cube made, for example, of rubber; it is known that under certain conditions for the 

external load, we can apply tractions on the three main faces of the cube. such that we 

obtain the same behaviour for the stress as a function of the stretch. A material like this 

is called isotropic material, and for the case of Cauchy elastic materials, it can be shown 

that the constitutive equation (2.41) may be written as ([78] section 4.2.6) 

Q= qoI + q5ib + 02b2, (2.45) 

where Oi, i=0,1,2, are scalar functions of the invariants 

Il = trc, 12 =2 [(trc)2 - trc2], 13 = det c, (2.46) 

such that qZ = c5i(I1, I2, I3). 

In the case of MS and ES elastomers the situation is more complex. We give more 

details of the theory of material symmetry in Chapters 4,5,7 and 8. 

Let us now speak briefly about internal constraints. Some materials may present 

restrictions on the class of deformation they may undergo; consider, for example, 'incom- 

pressible' materials. If we have a body made of an incompressible material, then the only 

deformations that are possible for this body are the ones that keep the volume constant. 

As another example, consider the case of a composite material composed of an isotropic 

matrix filled with inextensible fibers, which may have a preferred alignment; then a body 

made with this material cannot stretch in that direction, and as a consequence, we have a 

`restriction' in the class of admissible deformations for the body. 

The above two examples are actually idealized situations; there is no material, for 

example, which is perfectly incompressible. For example, water is considered as an incom- 

pressible fluid, but it behaves as a compressible fluid for very high pressures. So, we must 

regard the constraints as mathematical idealizations, which model in an approximate way 

the behaviour of some materials under specific external conditions. 

Since a constraint is a restriction on the class of deformations, a form to write it is 

given as 

'y(F) = 0, (2.47) 

where 'y is a scalar function of the deformation gradient. This function should be also 

frame-indifferent, and in such a case it can be proved that (2.47) may be written alterna- 

tively as [112] 

A(c) = 0. (2.48) 
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Now, for a material with an internal constraint, we do not intend to find a particular 

constitutive equation for each different material for each different kind of constraint, rather 

we decompose the stress in two portions; one is calculated in the usual way with the 

constitutive equation, and the other part is calculated by assuming that it does not do 

any work for any deformation compatible with the constraint. This last statement is tricky; 

it would be actually valid only for elastic materials without internal dissipation; see, for 

example, [86]. 

The decomposition for the stress is 

Q=Z+O (F), (2.49) 

where Z is the part of the stress that does not do any work, and it is given as [112] 

Z- qF 
Oc 

FT' (2.50) 

where q is an arbitrary scalar. 

For example, in the case of incompressible materials we have 

A(c) = det c-1=0, (2.51) 

and as a result (see, for example, [23] ) 

Z= -pI, (2.52) 

where p= -q. 

2.1.4.1 Green elastic materials 

Green elastic materials correspond to a subclass of the Cauchy elastic materials; the prin- 

cipal characteristic is the assumption of existence of an `energy function' (scalar function), 

such that the `stress' tensor may be calculated as the derivative of this function. 

Consider the first Cauchy law of motion (2.28) 

diva + pb = pv. 

Taking the dot product of the above equation with v, using diva "v= div (Qv) - tr (QT), 

where IF = grade, we have that (2.28) becomes 

div (Qv) - tr (Q]') + pb "v= p2 
d 

(v " v). (2.53) 
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Integrating over 13 (current configuration) and using the divergence theorem we have 

(Qn) "v da + pb "v dv = 
dt 1 

pJ(v. v)dv+ tr (Q1') dv. (2.54) 
1a13 

ß5 

113 

Let's use the definition of the nominal stress tensor S (2.33), the identity tr (a]F) = 

tr (a E), where E=2 (I' + ][, T), and 

tr(SF) = Jtr (o E), (2.55) 

taking (2.54) back to the reference configuration it then becomes 

(SN) "v dA + pobo "v dV = dt 2 p(v " v) dV + tr (SF) dV. (2.56) 
fL3T 

Br BT Sr 

Definition 2.3. A material is called Green elastic (or hyperelastic) if there exists a scalar 
function W= W(F), called energy function, such that 

W= tr(SF). 

From the above definition it follows that 

S_ aw 
OF 

(2.57) 

(2.58) 

In components form (Cartesian coordinates) the above expression is Sij =7 (see [78]). 

More details about the above expression and about the theory of non-linear elasticity 

may be found, for example, in [78]. 

Note that (2.54) is the balance of energy for an elastic material; in fact, in Subsection 

2.3.1 we will derive expressions for the stress and the magnetic or electric fields by working 

with the balance of energy and the second law of thermodynamics, which we have not 

treated in this section. 

2.2 Electromagnetic fields 

In this section a brief summary of the basic aspects of the theory of electromagnetism is 

provided. 

Much of the theory of electromagnetism is based on or may be found in the important 

work by Maxwell [69,701; another classical book that can be mentioned is the volume by 

Landau and Lifshitz [65]. A modern treatment of the subject may be found, for example, 

in the book by Kovetz [641. 

Let's start with a brief review of the electric and magnetic properties of materials and 

some basic concepts. 
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2.2.1 Electric and magnetic properties of materials 

There is an abundant bibliography on the electric and magnetic properties of materials. 

In the context of magneto- and electro-elasticity we can mention Chapter 1 of the book 

by Maugin [67], and Chapter 4 of the book by Eringen and Maugin [42]. In the particular 

case of magnetic materials, we mention the book by Spaldin [101], where there is a more 

detailed explanation of the magnetic properties of materials at the atomic and quantum 

levels. This section follows the simpler approach presented in [9]. 

2.2.1.1 Electric properties of materials 

A basic and simple experiment that can be used in order to `see' the presence of electric 

fields and forces consists of rubbing a piece of plastic against wool; due to this friction 

and the particular composition of the polymer, it will eventually lose some electrons, and 

as a result the piece of plastic has a distribution of `positive charges', which generate an 

`electric field'. The presence of this electric field may be detected by putting, for example, 

a small piece of paper close to the plastic body; there will be an attractive force that 

acts through the distance and it will depend among many other variables, especially on 

the `strength' of the electric field generated by the positively charged plastic body, which, 

at the same time, will depend on the number of electrons lost during the rubbing of the 

plastic against the wool. 

The basic concept here is the charge, and like the concept of mass, in a closed system 

it is assumed that the charge is conserved (see Chapter F of [113], and [64]). Charges are 

classified as positive or negative. 

A body is composed of atoms, and each atom has a nucleus with protons, which have 

positive charge, and orbiting the nucleus (the orbits are called sometimes `shells') we have 

electrons with negative charge. If a body loses electrons it is said that it is positively 

charged, and if a body gains electron it is said it is negatively charged. 

Consider Figure 2.2 where we have a schematic representation of a positive and a 

negative charge, and the interaction (field) between them. 

An electric field exists at a point if a charged object that is put at that point experiences 

a force. 

Some materials, such as copper and gold, have an atomic structure where in the outer 

shell there is an electron that can be easily `detached'; as a result we may have an `electric 

current', in which we have a `flux' of electrons moving through the body. These materials 



CHAPTER 2. ELEC'TRO 1IAG \"ETIC' FIELDS A \"D DEFORMABLE MEDIA 

i 

ýý 

Figure 2.2: Positive, negative charges and dipole. 

are called conductors. 
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The electric potential (p at a point P is defined as the work that it is necessary to do 

in order to move a unit charge from infinity to the point P [107]. 

Consider two parallel plate conductors (Figure 2.3), where we have applied a difference 

in the potential L. 

ýý 

Figure 2.3: Scheme of two parallel plate conductors (blue lines) with an electric potential. 

Imagine that in the space between the plates we put a thin piece of material; then the 

amount of charge Q which will be accumulated on the plates due to the presence of the 

difference in the potential is given as 

Q =coy, (2.59) 

where the constant C is called the capacitance. This is a property of the material and also 

depends on the geometry. It is given as 

A C= -rto d (2.60) 

where Eo is the permittivity of the free space, Er is the relative permittivity of the material, 

A is the area of the plate, and d is the distance between the plates. We have that 

eo = 8.85 * 10-12 c2 
Arm, 

(2.61) 
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If d is small, the electric field E is given approximately as 5 

W (2.62) 

The flux D, also called electric displacement, is defined as 

D=ý (2.63) 

from where we get for free space (Er = 1) 

D= e0E, (2.64) 

and for the material 

D= Eos,. E. (2.65) 

Sometimes e,.. may be considered as a constant, but in general it depends on the tempera- 

ture of the material, and, in particular, on the electric field E. A general relation will be 

shown as follows. 

A dipole corresponds to an arrangement of two charges, positive and negative, sepa- 

rated by a finite distance (see Figure 2.2). This is a mathematical model of what happens 

for some materials, which do not have a net charge, but which react to the presence of an 

external field. 

Imagine we have a body with no free charges but only dipoles; since a dipole is com- 

posed of a positive and a negative charge, the net charge in the body will be zero. But 

these dipoles will generate a field inside the body, which will modify the final total field, 

this phenomenon is known as polarization. So, for free space the relationship between D 

and Eis 

D= s0E. (2.66) 

But for condensed matter is given as 

D= . soE + P, (2.67) 

where P is known as the polarization vector. 

There are different sources of polarization, which are listed as follows. 

" Electronic polarization: The polarization is generated when, because of the ex- 

ternal field, the electrons move and become more concentrated on one side of their 

orbits; as a result of this asymmetry we obtain a dipole. 

'There would be a minus sign depending on the way Ocp is defined. 
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" Ionic polarization: Ions are atoms or molecules that are electrically neutral. but 

which have lost or gained one or more electrons. The ionic polarization appears in 

ionic crystals due to the relative displacements between positive and negative ions. 

" Molecular polarization: Some molecules have a non-symmetrical arrangement of 

electrons, so we have a permanent dipole. 

" Interfacial polarization: Due to the frequent imperfections we find in the arrange- 

ments of atoms and molecules, we have for some materials the presence of a high 

density of gaps between the arrays; now, in some cases we may have a few free elec- 

trons moving freely around these gaps; as a result, when an external field is applied 

these electrons will move and become located on one face of the array, and we have 

an asymmetrical arrangement of electrons, which can be considered as a dipole. 

A material may have more than one source of polarization, but for different materials some 

of the above mechanisms will be more important than others. 

Consider the Figure 2.4, on the left side we have a body with a distribution of dipoles, 

the figure on the right side shows an alternative way to represent these dipoles. 
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Figure 2.4: Two equivalent representations for the polarization field. 

When an external field is applied the dipoles will start to appear and to become 

aligned with this external field; the stronger the field the more dipoles appear; this process 

continues until no more dipoles can be created, and in such a case we say that the material 

is saturated. A typical graph of the polarization as a function of the electric field is shown 

in the Figure 2.5. 

Some materials remain polarized after the external field is removed. which is the case. 

for example, for ferroelectric materials (see Figure 2.6). 
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aturation 

lectric field 

Figure 2.5: Normal behaviour for the polarization field as a function of the electric field. 

-tii(" h1(I 

Figure 2.6: Behaviour of the polarization as a function of the electric field. AVlien the 

external field vanishes there is a residual polarization (hysteresis). 

2.2.1.2 Magnetic properties of materials 

The phenomenon of magnetic fields was discovered from two different sources, one of them 

was the attractive force that some materials like lodestone exerted on iron particles, and 

the other was the magnetic flux generated by electric currents. 

In the case of permanent magnets, we identify north and south `poles'; a magnetic flux 

is generated whose field lines go (by convention) from the north to the south pole as is 

shown in Figure 2.7. 

Figure (2.7) suggests a close resemblance between the phenomena of magnetization 

and polarization; however, in the case of polarization we work with two charges, positive 

and negative, separated by a small distance, but in the case of magnetic materials, it has 

beeil impossible to isolate north or south poles; it does not matter how small a piece of 

magnet is, it has always a north and a south pole. 

The magnetic flux density per unit of area is denoted as B and is also called magnetic 

induction. 

Consider Figure 2.8. In this figure (a) represents a wire where we have an electric 

Polarization 

FOI Fixation 
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Figure 2.7: Permanent magnet and lines of flux. 

(a) 

(b) 

Figure 2.8: Magnetic flux due to an electric current 

current, and (b) is a body. Experiments show that an electric current in (a) generates 

a magnetic flux through (b), as is shown by the dashed line. The body will show some 

`resistance' to this magnetic flux. The body (b) would be the magnetic equivalent of an 

electric circuit, where B (the flux of magnetic induction) would be the equivalent of the 

current, the resistance of the body to the flux would be the same as the resistance of a body 

to the passage of electric current, and the equivalent of the difference of electric potential 

would be denoted as H, which is called the magnetic field or magnetic field intensity. 

For free space we have the relation 

B= µ0H. 

where µo is the magnetic permeability for free space. 

In the case of condensed matter, a linear model would be 

B= µriioH. 

where f'r is the relative permeability. For the general non-linear case we have 

(2.68) 

(2.69) 

B= µo(H + M). (2.70) 
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where M is called the magnetization. From here we can define the magnetic susceptibility 

X (one dimensional case) as 

M/H. (2.71) 

Before giving a short classification of magnetic materials., let us discuss briefly the 

`atomic' cause of the magnetic phenomenon. 

As we mentioned before, one of the sources of magnetic flux is the electric current.. 

It is argued that all magnetic interactions are generated ultimately by the 'movement' 

of electric charges. In order to understand this consider Figure 2.9. which shows a very 

simplified model for an atom with one electron. 

Electron O. 
Nucleus Spin 

Figure 2.9: Atomic source of magnetic flux. `Electric currents' due to the movement of an 

electron around its nucleus, and due to its spin. 

Because of the rotation of the electron around the nucleus, we have a phenomenon 

analogous to the movement of an electric current, because the electron has a negative finit 

charge. This `current' generates a magnetic flux. 

There is another source of magnetic flux, which is analogous to the rotation around 

an axis of the electron; this phenomenon is called spin of the electron, and it may also be 

considered as an analogous of the circulating of an electric current. 

A much more detailed explanation of the atomic basis of the magnetic phenomena may 

be found, for example, in [101] as mentioned previously. 

The materials may be classified in the following three categories accordingly with their 

magnetic response. 

" Diamagnetic 

A material for which X is slightly less than 1 is called a diamagnetic materials (M 

is in the opposite direction as H). 

For these materials the main source of magnetization (also called magnetic dipoles) 

comes from the orbits of the electrons around the nucleus of the atones. When a field 

is applied far away, it will generate an induced *current* for these electrons. which 
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at the same time will generate an induced magnetic field that opposes this external 

field. Examples of these materials are copper and mercury. 

" Paramagnetic 

For these materials there are atoms or ions with permanent magnetic dipoles. which 

are randomly oriented. When a field is applied some of these magnetic dipoles 

become aligned with the external field, and as a result M is aligned with H: the 

field inside is greater than 'outside' (the applied field) and x is slightly greater than 

1. An example of these materials is aluminium. 

" Ferromagnetic and ferrimagnetic 

For ferromagnetic materials we have µr > 1. These materials have permanent. 

dipoles, which in the presence of an external field are all aligned. Examples of these 

materials are iron and cobalt. 

In some cases half of the dipoles will align in the direction of the field, and the other 

half of them in the opposite direction. These materials are called antiferrimagnetic. 

Finally, for some materials some dipoles align in the direction of the field, and some 

of them in the opposite direction, but not in the same proportion and with the same 

total `strength'; as a result the magnetization is not zero. These materials are called 

ferriiiiagnetic; an example is the ferrite iron oxide. 

The plienoniena described previously are actually common to all materials, but for some 

of them one of these phenomena may be more important than the others. 

When it is said that a material has permanent magnetic dipoles, in general this means 

that the internal structure of the material is divided into many magnetic domains, inside 

each of which the dipoles are all aligned in the same direction; see Figure 2.10. 

Figure 2.10: Representation of the magnetic domains for a material. Inside each doniaiii 

the 'magnetic dipoles' are aligned in the same direction. 
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So, we may have that the total magnetization may be zero due to the randomness of the 

alignments of the different domains. Tow.. when an external field is applied. the domains 

that have alignments closest to the alignment of the external field will start growing at 

the expense of the other domains; little by little the magnetization is incremented until 

all the domains are aligned in the same direction. at which point we say the material is 

magnetically saturated. Figure 2.11 shows a plot of B against H which illustrates the 

saturation effect. 

M 

it. urat ion 

Figure 2.11: Magnetic saturation. 

If the external field becomes zero, it may happen that more or less domains remain in 

the direction of the field and we would have some residual magnetization. A soft magnetic 

material is a material with low permanent magnetization, and vice versa a hard magnetic 

material is a material with high permanent magnetization. See Figure 2.12. 

MM 

H 

Soft Hard 

H 

Figure 2.12: 'Magnetic behaviour of soft and hard magnetic materials. 

2.2.2 Maxwell's equations 

The purpose of this subsection is to show a brief summary of the most important aspects 

of the Maxwell equations. 
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There are different approaches that are used in order to obtain the 'Maxwell equations. 

A simple method of deduction is presented, for example, by Tiersten [107] for the special 

case of electro- and magnetostatics problems. In the electrostatics case Tiersten studied 

the electric interaction for one charge, defining the concept of electric field and electric 

potential; then these results are extended for a finite group of charges. The charges and 

dipoles are defined as in Subsection 2.2.1. In order to extend these results for the continuum 

case, Tiersten first studied the field and electric interaction due to a charged body for a 

point outside the body, by transforming the expressions for the discrete distribution of 

charges to a continuum distribution of charge. The field inside the body is calculated in 

the same way, by taking a point inside the body and a `small' neighborhood around it, 

and then applying the above results for the body without this portion of material, and 

taking the limit when this volume becomes a point. 

In the case of magnetostatics Tiersten [107] followed a similar procedure as in the case 

of electrostatics, but in this case the basic element used in the formulation was to consider 

that all the magnetic interactions were caused by an electric current moving in a small loop. 

The same method was used by Brown in his classical treatise on magnetoelasticity [13]. 

Eringen and Maugin [42] used a more sophisticated method in order to find the Maxwell 

equations and in order to study the electromagnetic interactions in continuous media. This 

formulation is more general since it considers the dynamic case as well (and as a result there 

is an interaction between the magnetic and electric fields). Basically they started with the 

microscopic form of the Maxwell equations, working with basic concepts of a charge and 

a microscopic current (associated with the magnetic phenomena); the `forces' (Lorentz's 

forces) and electromagnetic interaction are found again for a system of charges, but in 

order to find the equations for a continuum body (macroscopic form of the equation), they 

used the method of `statistical averages', where concepts such as the macroscopic electric 

field E appears as an `average' of the microscopic electric field generated for each charge 

in the body. 

The summary shown in this section follows the approach presented by Kovetz [64], 

which is based on the principle of conservation of charge and conservation of flux (see 

also [113]). 

One of the basic concepts here is the charge, which like the mass is a property of the 

body, and it may be positive, zero or negative. The charge is conserved, which means for 

a given region if the total amount of charges changes this is because charges pass into the 
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region through its boundary. 

If we call q the `density' of charge per unit of volume and cY the amount of charge per 

unit of area passing into the region V with boundary äV, for an interval of time [t1, t2] we 

have 

Af (2.72) 
fqdv+f2fda=o, 

V 

where Q= fv q dv is the total charge in the region and 0 fv q dv = Q(t2) - Q(ti). The 

flux of charge a may be expressed as a=J"n for 8V, where n is the outward normal 

vector in 5V. By assuming q and J differentiable and using the divergence theorem, (2.72) 

becomes 
t2 

ý+ div J dv dt = 0. 
tl v 

(2.73) 

The idea now is to write the above equation in a four dimensional space, where this space 

would include the three dimensions of the body plus an extra dimension equivalent to the 

time. By defining s as 

s= (J, q), (2.74) 

+ divJ is equivalent to äys'', where ry = 1,2,3,4. It is possible to show that (2.73) is 

equal to (see [64] and the chapter F of [113] ) 

s"nd3v=0, (2.75) 

where the integral is calculated over the `surface' of a four dimensional cylinder shown in 

Figure (2.13). The vector n is the normal to this `surface' (it is a four dimensional vector 

too), and d3v is the element of surface in this four dimensional space. For the top and 

bottom of this body d3v is equal to dv, and for the side of this `cylinder' is equal to da dt. 

Figure 2.13: Four dimensional space 

three dimensional space 
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In order to deal with (2.75) is necessary to extend the normal theorems of vector 

calculus for n dimensional spaces, where appear concepts like rot and dual of a field. For 

details see parts I and II of Chapter F of [113] and Chapter 2 of [64]. 

For an integral like (2.75) it is possible to show that there exists an antisymmetric 

tensor f such that 

s= divf, 

f is called charge-current potential. For an Euclidean space f is usually given as 

0 H3 -H2 -D1 

-H3 0 Hl -D2 
H2 -Hl 0 -D3 
D1 D2 D3 0 

(2.76) 

(2.77) 

In Cartesian coordinates we would have (there is no distinction between covariant or 

contravariant components) 

Si = fij, j, 

then 

1H3 49x2 aDl 
_ 

sl 
49x2 _ 19x3 at (2 78) 
OH3 OH1 OD2 S2 =- ax 1 

+ 
ax3 - at ' (2.79 

OH2 OH1 OD3 s3 = exl - 
49x2 

- at ' (2.80) 
OD, 4D2 OD3 

s4 = + 
ax, 

+ 
49x2 . 49x3 

(2.81) 

Since from (2.74) we had sl = Jl, S2 = J2, S3 = J3 and s4 = q, from (2.78)-(2.81) we get 

= J, cur1H - at 
divD = q. 

(2.82) 

(2.83) 

These two equations correspond to the first pair of Maxwell equations. The global forms 

of (2.82) and (2.83) are 

H"dr- 
d IDnda= IJnda, 

cs is 
fD 

"n da = 
vq 

dv, 

(2.84) 

(2.85) 

where V is a region in R3. In the first equation S is an open surface with boundary C, and 

in the second equation S is a closed surface that is boundary of V. 
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Let S be a surface of discontinuity or jump for H and D: following the standard 

procedure of working with a pillbox across S and using (2.84) and (2.85), it is possible to 

show that the jump conditions for H and D across S are [42,64,113] 

EH]] xn+ vn QD]l = K, (2.86) 

where v is a surface density of charge on S, v, z is the normal component of the velocity of 

the interface, and K is a surface density of current. For a function f, the double square 

brackets if ý means the difference for f approaching from the two sides of the interface. 

The other pair of Maxwell equations can be found by working with the `principle of 

conservation of flux'. This principle can be written in a four dimensional space as in the 

previous case as [64] 
fR2(2) 

= 0. (2.87) 

Here 
,T 

is called the electromagnetic field tensor, R2 is a closed surface in this four di- 

mensional space, and dr(2) is the element of surface in the four dimensional space. 5 is 

antisymmetric; let's assume that it can be written as 

0 B3 
-B2 

El 

-B3 
0 B1 E2 

F= 
B2 -B1 0 E3 

-Ei -E2 -E3 0 

From (2.87) it is possible to show that [113] 

f8B 
nda = 0, 

A B"nda= - E"drdt, 
S tlt2 

ic 

(2.88) 

(2.89) 

(2.90) 

where 0 fs B" nda = (f8 B"n da) 
t, - (fs B"n da)t . 

In (2.89) S is a closed surface, and 

in (2.90) S is an open surface with boundary C. 

From (2.89), (2.90) and (2.90) we have the local form of the conservation of flux 

divB = 0, 
OB 

at = -curlE, 

(2.91) 

(2.92) 

which form the second pair of Maxwell equations. From (2.89) and (2.90) the jump 

conditions for a surface with discontinuity in E and B are 

QB] "n=0, QED xn- vn QBD = 0. (2.93) 
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As a summary we have the Maxwell equations 

cur1H - 
OD 

= J, (2.94) 

divD = q, (2.95) 

divB = 0, (2.96) 
OB 

- -cur1E, (2.97) 
at 

with boundary conditions 

QDj "n=o, QHj xn+v,,, QDD = K, (2.98) 

QBý "n=0, QED xn-v, QBI = 0. (2.99) 

The equation cur1E _ -&B is also called Faraday's law, the equation cur1H - 
aD =J 

is called Ampere's law, the equations divD =q and divB =0 are called the Gauss' law 

and the Gauss' law for magnetism respectively. 

We can solve (2.96) and (2.97) by using the vector and scalar potentials A and cp as 

B= curl A, 

E_-5A-grady. 

(2.100) 

(2.101) 

In general the physical meaning of cp is very clear; however that is not the case with 

A; a discussion of the physical meaning of A is presented, for example, in [96]. 

The boundary or jump conditions for cp and A will be discussed later on. 

We work with the quasi-static case; also for the problems under our consideration we 

assume that J=0 and q=0, so (2.94)-(2.97) become 

cur1H = 0, divB = 0, (2.102) 

cur1E = 0, divD = 0, (2.103) 

with boundary conditions 

QHjxn=0, QBj"n=0, (2.104) 

QED xn=0, QDý "n=0. (2.105) 

An important principle in electromagnetism is to assume that there exists an inertial 

frame such that 

D= e0E, B= µ0H. (2.106) 
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The above relations are valid for vacuum, µo and eo are known as the susceptibility and 

permittivity of free space; their numerical values are 

µ° = 41r * 10-7 
N 
A2 , 

19 C2 
E° 361r * 

10- 
Nm2 

For the case of condensed matter we have 

D= EOE + P, B= µo(H + M), (2.107) 

where P and M are known as the polarization and magnetization respectively. P and M 

are in general non-linear functions of, for example, the fields E and H respectively. 

2.3 Deformable media 

In the previous two sections we reviewed some basic topics in continuum mechanics and 

electromagnetism. The natural step now it is to present the continuum theory of de- 

formable media and the interaction with electromagnetic fields. However, at this step we 

may find that there are in fact many different theories for electromagnetism and deformable 

continua. The reason for this multitude of seemingly different theories is because of the 

essential nature of these two phenomena; the theory of electromagnetic fields has been laid 

down within a relativistic framework, while, on the other hand, continuum mechanics is 

based on the principles of classical Newtonian mechanics; therefore what has been done 

is to obtain a theory of deformable media by approximating the case when the velocities 

are `small' in comparison with the velocity of light. This approximation process has been 

argued as one of the reasons why there are several different theories for electromagnetism 

and deformable continua (see Chapter F of [1131). 

Let us review some of the important literature in the area. Two important references 

with a complete discussion of the different theories for electromagnetism and deformable 

media are the review paper by Pao [80], and the monograph by Hutter and van de Ven 

[57]; here it is possible to find the comparison of the different theories and, for example, 

expressions for the `body' force due to electromagnetic fields. In particular, the paper by 

Pao [80] has been the basis of many subsequent works in the area. 

The first paper in electroelasticity, where the case of finite deformations was considered, 

is the paper by Toupin [109], who obtained the equations for the case of a dielectric material 

using the principle of virtual work. 
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In a series of papers Tiersten developed his own theory for the interaction of electro- 

magnetic fields and deformable media. In [104] a theory for magnetoelastic phenomena in 

solids was developed, by assuming that the behaviour of the material could be described 

by working with two `continua', one of them called the `spin continuum', where all the 

purely magnetic interactions happen, and the other called the normal `lattice continuum', 

which is the continuum used in the theory of finite elasticity; these two continua interact 

with each other, and in the case of the spin continuum, each point there translates with the 

lattice continuum. For the quasi-static problem, using the second law of thermodynam- 

ics and the concept of free energy function, Tiersten found an appropriate set of balance 

equations, boundary conditions, and a general form for the constitutive relations for the 

magnetoelastic problem. 

The same procedure was used by Tiersten in [105] in order to obtain the balance equa- 

tions, and a general form for the constitutive relations for the case of thermo-electroelastic 

problems (also for the quasi-static case). In [108] Tiersten and Tsai generalized the above 

results for the dynamic problem with magnetic and electric fields, considering also thermal 

effects. 

An important reference that is necessary to mention again is the monograph by Brown 

[13], which, as with the article by Pao [80], has been used as a main source of reference 

for many subsequent researchers in the theory of magneto-elastic interactions. 

A work that is contemporary with the papers by Tiersten [104] and the monograph by 

Brown [13], is the paper by Jordan and Eringen [60], who developed a constitutive theory 

for the interaction of electromagnetic fields and thermal gradients, assuming the material 

to be Cauchy elastic, i. e. they did not use the second law of thermodynamics. This work, 

which is based on the representation theory for tensor and vector functions, provided a 

complete yet extremely complex general form for the constitutive equations, which, for 

example, in the case of the stress consists of 100 parameters! 

In subsequent works Eringen has provided a complete theory for the electromagnetic 

interaction with deformable bodies. In [68] Maugin and Eringen deduced the general 

balance and constitutive equations for the electroelastic problem, by working with the 

Lorentz's theory of electrons, and using the same average procedure in order to go from 

the microscopic to the macroscopic description as mentioned previously in Subsection 

2.2.2. This work is one the sources of their book [42]. 

Coleman and Dill [24] studied the case of a material with memory, electric and magnetic 
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fields, and thermal effects as well. They only studied coupling between electromagnetic 

phenomena and thermal effects, and did not consider deformations. 

In the case of the present thesis, we consider magneto- and electro-active elastomers 

as continua, and we do not study the microstructure of the material. There are, however, 

applications where it is necessary to do a more detailed analysis of the microstructure; this 

is the case, for example, for ferromagnetic materials, which as we mentioned in Subsection 

2.2.1, posses the characteristic of having magnetic domains that evolve due to changes 

in the external field. We can mention the papers by Romano [92], Pao [81], De Simone 

and Podio-Guidugli [29], and James [29]. In this last two papers we have a study of 

the microstructure of ferromagnetic materials, which is based mainly in the theory of 

Brown [13]. 

Let's now speak about recent references more connected with magneto- and electro- 

active elastomers. 

For the case of non-linear electro-elasticity Yang and Batra [122] proposed a variational 

formulation for the mixed boundary value problem. More details about this paper are given 

in [141. 

Rajagopal and Wineman [87] studied the problem of finding appropriate forms for 

the constitutive equations for the electroelastic problem. They considered the material as 

Cauchy elastic, and obtained a general form for the constitutive equation, which they used 

in order to study some simple boundary value problems, such as the triaxial extension of 

a cube and the simple shear of a slab. 

McMeeking and Landis [72] developed their own theory for electro-active elastomers. 

In their formulation they considered the interaction of the body and the free space (which 

is something that many other researchers do not do, as we see in Chapter 9). The consti- 

tutive equations were found by working with the free energy function and the second law 

of thermodynamics. From their general theory, McMeeking and Landis [72] also consid- 

ered many simplified cases, such as linear elastic dielectrics (small deformations), and in 

particular, a kind of material mentioned in the introduction [26,71], called here 'compli- 

ant isotropic dielectric', which corresponds to a thin membrane of elastomer, sandwiched 

between two electrodes, and as a result by applying an electric potential we may have 

large elastic deformations for the elastomer. The modelling of `compliant isotropic dielec- 

tric' has been also treated by Goulbourne et al. [51], who explored especially the possible 

applications of these materials to the development of small pumps. 
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Voltairas et al. [118] developed a model for electro-active gels, which are gels filled with 

electro-active particles. They assumed that the behaviour of the gels is similar to that 

of an electro-active elastomer, and proposed a general form for the constitutive equation 

based on the use of a free energy function. They also solved a boundary value problem, 

the flexure of a slab. 

Steigmann [103] developed a theory for magnetic elastomers with especial applications 

in membranes. Steigmann's work was based partly on the works by Brown [13] and 

Kovetz [64]; he worked with the decomposition of the magnetic field into an applied and a 

self field, and the use of the free energy function and the magnetic field as the independent 

magnetic variable. The weak form was also provided, and it was used in order to obtain an 

appropriate theory for membranes from the original three-dimensional theory. In [4] this 

theory is developed further and some results of a boundary value problem for membranes 

are shown. 

Kankanala and Triantafyllidis [61] also developed a theory for magneto-sensitive elas- 

tomers. They used the magnetization as the independent magnetic variable, and they 

put especial attention on the development of a suitable variational formulation. In this 

paper an example of a closed form for the energy function is provided, which was obtained 

using appropriate experimental data. The concept of quasiconvexity was studied and its 

extension to the field of magneto-elasticity was addressed by working with the variational 

formulation; with this, Kankanala and Triantafyllidis [61] obtained restrictions in the form 

of the energy function, which if they hold, are supposed to lead to well posed boundary 

value problems. Two boundary value problems were studied, the uniaxial stretching and 

torsion of a cylinder. 

In [40,41] Ericksen developed a theory for magnetic effects in elastic materials using 

the principle of virtual work. 

More details of the papers by Steigmann [103], Kankanala and Triantafyllidis [61], and 

Ericksen [40,41] are given in the following sections, especially in Chapter 9. 

The results obtained in this thesis are based on the theory for magneto- and electro- 

sensitive elastomers developed by Dorfmann, Ogden and Brigadnov [12,311 (see also [30] 

and [34]), where they obtained the basic equations and general forms for the constitutive 

equations for the magneto-elastic problem, based on the use of the free energy function 

and the second law of thermodynamics. The solution of some boundary value problems 

such as the shear of a slab and a problem with cylindrical symmetry are also provided. 
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In [33] Dorfmann and Ogden introduced the important concept of the -total energy 

function', from which it is possible to obtain very simple forms for the constitutive equa- 

tions. In the same paper Dorfmann and Ogden solved some boundary value problems such 

as the helical shear and the extension and torsion of a circular cylinder. An additional 

boundary value problem, the steady rotation of a tube, is presented in [38]. 

For the electro-elastic problem Dorfmann and Ogden [32] developed a similar theory 

(quasi-static case), defining the total energy function and solving some boundary value 

problems, such as the simple and axial shear. In [36] more results for boundary value 

problems are presented, such as the azimuthal shear, the extension and inflation of a tube, 

and the inflation of a spherical shell. 

2.3.1 Basic equations 

As has been mentioned previously, the article by Pao [80] is the basis for the review 

provided in this section (see also [12,31]). 

The local form of the balance laws for the case of a deformable solid and electromagnetic 

fields is given as [80] (see also Kovetz [64] for an equivalent formulation). 

" Conservation of mass 

A+ pdivv = 0, Jp = po, (2.108) 

where v is the velocity field, po is the density in the reference configuration and 

J=detF>0. 

9 Balance of linear momentum 

diva +pf+fe=pv, (2.109) 

where o is the Cauchy stress tensor, f is the body force per unit of mass due to 

non-electromagnetic effects, and fe is the electro-magnetic body force. 

From [80] fe is given as 

fe = qE +JxB+ µo 1(gradB)TM + (gradE)TP + (P x B) 

+div (v (9 (P x B)). (2.110) 

q represents a distribution of free charge, J corresponds to a conduction current, M 

is the magnetization, and P is the polarization. 
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" Balance of angular momentum 

e: c+(µ 1M+vxP)xB+PxE=O, (2.111) 

where we have the notation (E : Q)Z = EZjkojk, where Ejjk is the permutation tensor. 

9 Balance of energy (first law of thermodynamics) 

pdt U+2 Iv12 + divQ = div (av) + pf "v+ pR + we, (2.112) 

where U is the internal energy per unit of mass, the term 2 
IV 12 is the kinetic energy 

per unit of mass, Q is the heat flux, R is the `radiant heating' [75], and we is the 

electromagnetic power given as [80] 

Wefe"v+Je"Ee-Me"B+4 
1P 

Ee. (2.113 
P 

Je 
j 

Me and Ee are called the effective conduction current, the effective magnetiza- 

tion, and effective electric current respectively. 

For a body with a distribution of charge q, the movement of a point with velocity v 

can be interpreted as an `induced current', and as a result the 'effective current' can 
be defined as 

Je =J-qv. (2.114) 

Likewise, from the Lorentz's theory of electrons it is possible to show that the effective 

magnetization and electric field are given respectively as 

Me=ti 1M+vxP, Ee=E+vxB. (2.115) 

Note that the first equation says that a polarized body in movement will induce the 

appearance of a magnetization; regarding the second equation we see the induced 

effect on the electric field due to a magnetic induction, however, we do not see a 

symmetric effect of the electric field or electric displacement on the magnetic field 

or magnetic induction. 

" Second law of thermodynamics 

The Clausius-Duhem inequality in its local form is 

ps + div 
1Q- 

p7RR > 0, (2.116) 

s is the specific entropy and T is the absolute temperature. 
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Let us expand (2.112); then we have 

pU+pv"v+divQ=diva. v+c: gradv+pf"v+pR+w,, (2.117) 

but the first term of the right side diva "v can be replaced from the balance of linear 

momentum (2.109) as diva = pv - Pf - fez then, replacing in (2.117) and using (2.113) 

we have 

pU+divQ=Q: I'+pR+Je"Ee-Me"B- EP"Ee+P"Ee. (2.118) 
p 

In the above equations we have used the definition 

r- grade. (2.119) 

Let us define the Helmholtz free energy function 0 as (see, for example, [80] part 12.2, 

and see also [64] section 55 for an alternative definition of the `specific free energy') 

2/ý=U-Ts- 
1Ee"P. 

(2.120) 
P 

Let's expand (2.116); then, we get 

pTs- 
1gradT"Q+divQ-pR> 

0, (2.121) 

and from (2.120) and (2.118) we have respectively 

Tps= pÜ-pý-pi's+pEe"P-Ee"P-Ee"P, (2.122) 
p 

pR=pU+divQ-Q: r+Me"B-Je"Ee-"P"Ee-(P"Ee)divv. (2.123 

Using these in (2.121) and P= -divv from (2.108), we obtain the inequality (see [12,30, 

31,34] and [80]) 

-p( +Ts)+o,: Iý-Me"B-7, gradT"Q+Je"Ee-Ee"P>0. (2.124 

For most materials the heat flux Q is given by the Fourier law 

Q= -kgradT. (2.125) 

Let assume that is a function of T, F, Ee and B (an alternative formulation is shown 

in [30] ) 

0 =, 0 (T, F, Ee, B), (2.126) 
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then by the chain rule we have 

= 
ao 7' + 

a0 
: p+ all P"+ 10 

" 
B. (2.127) 

UT äF OEe OB 

As a result, in (2.124) we have 

490 
-pi 

( 
aT +s -pý, : P-p E 

"Ee-pýB -B+Q: r-Me"B 
OE, 

-Igrad T"Q+J"Ee-Ee"P>0. (2.128 

Using (2.125) and the identity [78] 

o-: I' = (F-1o. )T : F, (2.129) 

we finally have 

-pT 
00 

+s- pa; - (F-io. )T : P- pýE +P " 
Ee 

e 
(P 490 + Me E+T IgradTj2 + Je " Ee > 0. (2.130) 

By a standard argument, since T, F, Ee and B are independent variables, the above 

inequality holds if and only if [25] 

s=-a0, (F-io. )T=pa? 
ý, 

p=-pad', Mepao, (2.131) 
äT äF äEe äB 

and 
T IgradT12 + Je " Ee > 0. (2.132 



Chapter 3 

Basic equations for magneto-active 

elastomers 

In this chapter we show some results for magneto-active elastomers. We do not coiisidler 

the effect of electric fields; we assume that there is neither a distribution of charge q nor 

a current J. We disregard any thermal effect, and finally we restrict our analysis to Ole 

quasi-static case. 

This chapter is based on the theory for MS elastomers developed by Dorfmann and 

Ogden [33]. 

With the simplifications mentioned previously, from Subsection 2.3.1 we have that the 

Helmoholtz free energy function (2.126) is only a function of F and B, and hence 

u -- e (F, B), (3.1) 

and from (2.131)2 and (2.131)4 we have' 

öý, )T, 
m pF 

(OF 
OB * 

Now, let us use the following convention for the derivative of a scalar function on the 

1) gradient of deformation (this convention is usually used by Ogden '78 

(: 3.3) 
OF ij OFp 

With this coin-ention (3.2), can be written as 

= pFäF. (3.4) 

'For the quasi-static case there is no difference between the effective and the laboratory frame fields. 

ý: ý 3 
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In magnetoelastostatics we work with the three magnetic variables, H, B and M, the 

magnetic field, the magnetic induction, and the magnetization. respectively. \e regard H 

and B as the primary fields, and M only as an auxiliary field [64,113], which is defined in 

terms of H and B via (2.107)2. 

3.1 Lagrangian forms of the fields 

The simplified global forms of the Maxwell equations (2.102) in this case are 

fB. 
nda=O, H"dr=0. 

c 
(3.5) 

In magnetostatics we work with the Eulerian frame, which means H and B are related 

to the current configuration. Let us use (3.5) in order to determine the `Lagrangian' or 

pull back version of these fields [33-35]. For (3.5)1 from Nanson's formula we have [78] 

" nda= 
f 

B i 

8 s, 
is, 

B" JF -T N dA, 

JF-iB "N dA, 

and we can define the Lagrangian magnetic induction B1 as [33-35] 

Bl - JF-1B. 

Rom (3.5)2 using dx = FdX (see Section 2.1.2), we have 

H"dr = H"FdR, 
c c,. 

=FTH" dR, 
Cr 

and we can define the Lagrangian magnetic field Hi as [33-35] 

HI- FT H. 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

Assuming appropriate regularity of the deformation, the standard kinematical identi- 

ties (see, for example, [17] ) 

Div(JF-1B) = JdivB, FCurl(FTH) = Jcur1H (3.10) 

ensure that the equations (2.102) are equivalent to the pair 

Cur1H1 = 0, DivB1 = 0. (3.11) 

Let's give the proof of the identities (3.10). 
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Proof. Consider (3.7), applying the divergence theorem to both sides of the equation we 

obtain 

vdivB 
dv = 

fr 
Div(JF-'B) dV. 

Let's transform the integral of the left side to the reference configuration (we use dv = 
JdV); we obtain 

IV, 
JdivB dV = 

fT 

Div (JF-'B) dV. 

We have not specified the form of V, which is arbitrary, and so the above equation holds 

if only if 

JdivB = Div (JF-1B). 

Consider now (3.8), using the Stokes theorem (for an open surface S with boundary 

C) we get 

s 
cur1H " da = 

sr 
Curl (FTH) " dA. 

Using Nanson's formula to write the integral of the left side of the above equation in the 

reference configuration we obtain 

ST 
cur1H " JF -T dA = Sr 

Curl (FTH) " dA. 

This holds for any Sr, and we therefore obtain 

Jcur1H = FCurl (FTH) . 

0 

It is not possible to derive an equivalent Lagrangian form for M in such a simple and 

unique way as for B or H. Rom (2.107)2 we had that 

B=µ,, (H + M). (3.12) 

Since H and M are being added in the above expression, we can assume that M transforms 

in the same way as H [33-35] (note that this definition is not unique), so a definition for 

the Lagrangian form of M may be 

Ml - FT M, (3.13) 

from where we have for (3.12) from (3.7), (3.9) and (3.13) 

J-1cB1 = µo(Hj + MI). (3.14) 
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3.2 Initial field and Eulerian forms 

Consider the situation where there is no deformation, and let's denote the magnetic in- 

duction, the magnetic field, and the magnetization in such a situation as Bo, Ho and Mo. 

respectively. In this case, from (3.12), we have 

Bo=µ0(H0+M0). (3.15) 

Assume now that the body deforms such that the gradient of deformation is F; we could 

obtain the `push forward' versions of Bo, H,, and Mo by using (3.7), (3.9) and (3.13) [33], 

then by denoting B f, Hf and Mf in order to speak about such fields, we would have 

Bf= J-1FBO, Hf = F' -T Ho, Mf = F'-T MO, (3.16) 

and substituting in (3.15) we get 

(3.17) Bf= µ0J-ib(H f+M f). 

Thus, the form (3.15) is not preserved under the deformation. The same can be concluded 

from our previous expressions when we started with the Eulerian form of the equation 

B= µ0(H + M) and then we found that the Lagrangian form of that equation was 

J-icBl = µo(Hi + Ml) (equation (3.14)). As a result of this lack of invariance we have 

to be careful regarding the transformation of the magnetic variables; if we choose to work 

with B as the independent magnetic variable, then we will assume that B1 = Bo, noting 

that in this case in general HI Ho. Likewise if we work with H as the independent 

magnetic variable, then H1 = Ho, and in general B1 Bo [331. 

3.3 Constitutive equations and the total energy function 

The concept of the `total energy function' was introduced by Dorfmann and Ogden [33-35] 

in order to obtain a simpler representation for the problem in magnetostatic than, for 

example, the formulations developed by Kankanala and Triantafyllidis [61] or Steigmann 

[103]. 

Let us define the function 4) by 

4(F, Bt) = 0(F, J-1FBI). (3.18) 

From the principle of material frame-indifference [78,112] for we must have 

4ý(F, B1) = (D(QF, B1), (3.19) 
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where Q is a proper orthogonal tensor. In the above expression Bl is a Lagrangian vector 

and as a result is not affected by the rotation Q in the deformed or current configuration 
(see Section 4 of [103]). 

From (3.4) we had 

=PF OF 
av) 

Let us calculate in terms of 4 from (3.18) in component form (Cartesian coordi- 

nates). Remembering the convention for the derivative (3.3), we have 

04) a4D 
OF 2i - aFji 

But from (3.7) we have 

a aV) aBk 
öF; i 

+ OBk 5F, ß 

0Bl -2 aJ ; BFýZ - -J aýý2 
FkmBI�ý + J- bk 

mB1m� 

(3.20) 

(3.21) 

where Bl, 
n 

is the component m of the vector BI and the meaning of the symbol Sk,, 
n 

is 

given as follows 

J1 if j=k and i=m, 
bkm - (3.22) 

10 otherwise. 

We have that =J 
FZj [78] (where Fzj 

is the component ij of the tensor F-1), then 

OBk - Fzj8B J-1FkmBim + J-ibk 
B 

Bim. (3.23) 
k ji kmk 

= Bjs. As a result (3.20) is equivalent to But J-1FkmBl,.. - Bk and 6j' 
km DiTk 

0,1ý 
_av) -F-1 

ao"+J-iBl®aý 
7 

(3.24) 
8F äF äB 

B 
aB 

and then 
090 

pF äF = PFäF + PaB 'BI- J-1FB1®p . 
(3.25) 

From (3.2)1 we finally have 

= pF 
F- (M " B)I +B®M. (3.26) 
N 

Also, for the magnetization from (3.18) we have 

a0 
_ 

a4 aBzk (3.27) oBi OBI, aBi 
But 

___ - JF-1, aB 
(3.28) 
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and therefore 
a= 

JF-T 1941ý (3.29) 
aB aB1 

As a result, from (3.2)2, 

M=- pJF-T 
aB 

. 
(3.30) 

t 
But from (2.21) p= J-'p,,, using (3.13) we finally get [33] 

Ml 
a(D 

(3.31) P° 0Bl . 

With all the simplification stated in the introduction of this chapter, we have that 

the particular form of the balance of linear momentum (2.109) is (remember we do not 

consider non-magnetic body forces and we work with the quasi-static case) 

div Q+ fe = 0, (3.32) 

where in this case the magnetic force is given as (2.110) 

fe = µo 1(gradB)TM. (3.33) 

The factor µo 1 is sometimes incorporated in the definition of the magnetization, in which 

case we speak about the `effective magnetization' Me, such that Me - µ0M [33], then 

(3.33) can be replaced by (we do not use the notation Me) 

fe = (gradB)TM. (3.34) 

Proposition 3.1. The magnetic body force fe can be written as the divergence of the 

following second order tensor [33,103] 

µßl 
[B®B_(B. 

B)I] +(M"B)I-B®M. (3.35) 

Proof. We want to show that 2 

fe=div µßl BOB- 
1(B"B)I 

+(M"B)I-B®M (3.36) 

In index notation and expanding we for (3.36) (Cartesian coordinates) 

. 
fei = µo 1(Bi, 

iBj + B2Bj, i - BzBz, j) + MM, jBz + M{Bt, j - Bi, iM3 - BiMj, {, (3.37) 

2As with the case of the definition of the derivative of z/' with respect to F, here for the divergence 

operator we adopt the convention of taking the derivative with respect to the first index [78]. Note that 

in Subsection 2.2.2 we used a different convention for the divergence operator. 
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but using the Gauss law of magnetism (2.102)2 and after some manipulations we get 

. 
fei = Bi, t 1(Bj, 

i - Bi,. 7) + Mij Bi - BiMj, i + ABij 
" 

59 

(3.38) 

From (3.12) we can replace the term µO 1(Bj, i - B2, ß) of the right side of the above equations 

as 

. 
fej = Bi(Mj, i - IVli, j + Hj, i - Hi, j) + Mi, jBi - Bill/Ij, i + MiB2, j, (3.39) 

which by using the simplified form of the Ampere law curlH =0 (see equation (2.102)1), 

and after some manipulations becomes 

fei = Bi, 7Mi, (3.40) 

which in index notation is the same as (3.34). 

0 

Since we can express fe as the divergence of a tensor, then from the equilibrium equation 

(3.32) we can define the `total stress tensor' rr as [33] 

BOB- 1(B"B)I 
+(M"B)I-B®M, (3.41) 

and from (3.26) we finally get 

T=pF-Fý, +u l B&B-2I . 
(3.42) 

Definition 3.1. In magnetostatics the Maxwell stress tensor Trm is defined as [69,70] 

Tm =µol 
[B®B_(B. 

B)I]. (3.43) 

For vacuum (free space) we have the linear relation (2.106)2 B= µ0H, and we have 

the alternative expression for Tm 

Tm=µo H®H- 2(H"H)I 
. 

(3.44) 

From (3.42) if there is no material we conclude that the total stress is equivalent to 

the Maxwell stress. 

Remark The concepts of the Maxwell and total stresses are controversial [89]; from 

the mathematical point of view there is no problem with this definition, but, what is the 

physical meaning of the Maxwell stress especially outside the body?. As we will see in 

the next chapter, the Maxwell stress calculated using the field outside the body (just over 
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the surface of it) must be added as an external load [17]. The Maxwell stress only has a 

meaning when it is used in order to calculate the surface traction on the surface of a body, 

and then the total force is computed by integrating this vector field over the total surface 

of the body. The question is, how do we formulate the boundary value problem when 

there are magnetic fields, mechanical loads and restrictions on the displacement (mixed 

boundary condition)?; the answer is not so simple. From the variational formulation of 

Bustamante et al. [17] we have to consider the Maxwell stress as an external load for the 

boundary condition for the stress, but that formulation was based on the assumption of a 

body completely surrounded by a free space; but, what is the real situation when we have 

a mechanical surface traction and a restriction on the displacement?. The answer is that 

in such cases we have that our body is interacting directly with the surface of an `external 

body', and as a result the assumption of a body completely surrounded by a free space 

does not hold anymore. For the sake of simplicity for all the boundary value problems 

presented in this thesis we assume that the bodies are totally surrounded by a free space. 

A discussion on the boundary condition for the magneto- and electro-elastic problem has 

been presented in [16]. 

3.3.1 Symmetry condition for c and balance of angular momentum 

From (2.111) the local form for the balance of angular momentum in magnetostatics is 3 

e: a+MxB=O. (3.45) 

From here we see that in general the Cauchy stress tensor is not symmetric. Let us study 

the `symmetry condition' for the function (D. From (3.26) replacing the expression for 0 

in terms of ' in (3.45) we get 

E: pFOF - (M " B)I +B ®M +MxB=0, (3.46) 

bute: I=0ande: (B(9 M)=-MxB, and as a result we have 

e: F- = 01 
OF ('9"» (3.47) 

which means that F is symmetric. It follows from (3.42) that (unlike a) -r is symmetric; 

see the paper by Steigmann [103] for a discussion of the symmetry and restrictions on 4D 

in the context of his theory of MS elastomers. 

3The factor j1 is included in the definition; see page 58 for a discussion about this. 
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3.3.2 The total energy function 

From the definition (3.42) we have that the total nominal stress tensor T associated with 

rr is given by (equation (2.33) ) 

T= JF-1T = po-ýý, - µý 1 JF-1B ®B - 
1(B 

" B)JF-1 
. 

(3.48) 
2 

Proposition 3.2. The following identity holds 

OF 
(JB " B) = 2JF-'B ®B- (B " B)JF-1, (3.49) 

where is at fixed Bl. 

Proof. In component form the left side of (3.49) is 

[(JB 

- B) aF (JBkBk), 
ij ji 

= 
:. 

BkBk+2JBkk, (3.50) 
o9Fji 

but from [78] we have that 
aJ -1 =J Fij, (3.51) 

BFji 

-1 where Fij is the component ij os the tensor F-1. Also, from the definition (3.7), B= 

J-1FB1, substituting in the derivative of the right side of (3.50), we have M 

5Bka (J-1rkm, Blm), 
o9Fji o9Fji 

-1 
_ -J-1 Fij F'kmBcm + J-1SkmBl, 

n. 
(3.52) 

Then for (3.50) we get (for the meaning of the symbol Ö see (3.22)) 

a 
(JBkBk) _ -J Fij BkBk + 2B11Bj, (3.53) 

äFji 

and we have that 

OF 
(JB " B) = -JF-1(B " B) + 2B1® B, (3.54) 

= JF-1 [- (B " B)I + 2B ® B], (3.55) 

and so we have proved (3.49). 

0 

Rom (3.49) we have in (3.48) 

T= poi + JB "B. (3.56) 
F2 
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Definition 3.2. The amended free energy function S2 (sometimes called the total energy 
function) is defined as [33] 

-1 

P, +µ2 JB"B. (3.57) 

From the above definition we have that 

T=F (3.58) 

Then from (3.48) 

T J-lFT J-1FOF. (3.59) 

For the magnetization, from (3.31) we had Ml = -pow, and from (3.57) and (3.7) 

- 
aý 

___asp _/ 
1a 

_1 PoUB1 äB, 2 ÜBE 
ýJ Bl (cBl)ý 

. (3.60) 

Now, in the second term of the right side of the above equation we have that F and B1 

are independent variables. Therefore, from (3.60), we get 

oil Ml =- aBl 
+ µo 1 J-1CB1, (3.61) 

but from (3.14) we can replace Ml by M1 = MO 1J-1cB1 - HI, and as a result in (3.61) we 
have 

Hl=as 
l 

(3.62) 

Together, equations (3.58) and (3.62) constitute the constitutive equations for magnetoe- 

lastic material. 

3.3.3 An alternative formulation 

In the previous formulation for the energy, B1 was the independent magnetic variable. 

Now if we choose H1 as the independent variable, we can define the complementary energy 

function S2*(F, H1) through the partial Legendre transformation as 

Q* (F, Hi) = 9(F, BI) - Hl - B1. (3.63) 

Let's take the derivative of (3.63) with respect to F at fixed HI and B1, we obtain -- - 

and we have that (see equation (3.58)) 

T= 
Off, 

(3.64) 

If we take now the derivative of (3.63) with respect to H1 at F and B1 fixed we get 

Bt 
OH 

(3.65) 
I 
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3.4 Boundary conditions 

As was discussed previously (see the remark on page 60), we assume for the boundary 

value problem that the body is completely surrounded by a free space. The external 

magnetic induction or magnetic field is applied far away on the external boundary of this 

free space. From (2.104) the boundary conditions in the current configuration for the 

magnetic variables are4 

QHj xn=0, QBD "n=0. (3.66) 

With the global forms of the Maxwell equations in the reference configuration fsr B1 

N dA =0 and jc, Hi " dR =0 it is possible to show that the Lagrangian counterpart of 

(3.66) are [33,107] 

QHID xN=0, QBjj"N=0, (3.67) 

where n and N are the outward normal vectors to the surface of the body in the current 

and reference configurations. 

Regarding the boundary condition for the stress we have 

Qrr]n = 0, QTDN = 0, (3.68) 

in the current and the reference configurations respectively. 

As was discussed on pages 60 and 61, the boundary condition (3.68) must include the 

Maxwell stresses (3.43) in the external load; therefore, for the current configuration we 

would have from (3.68)1 

Trn =t+ Tmfl, (3.69) 

where t is the purely mechanical contribution to the surface traction, and Trm was the no- 

tation for the Maxwell stresses (see equations (3.43) and (3.44)). The boundary condition 

(3.69) is assumed valid only if the body is completely surrounded by a free space [17] (see 

also Chapter 9). 

4 The double brackets If I means the difference of the function at the boundary approaching from outside 

and inside; this means if f° is the function evaluated at the surface from outside, and f' is the function 

evaluated from inside, then 

If]=fo-f'. 
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3.5 The magnetic scalar and vector potentials in magneto- 

statics 

In Subsection 2.2.2 we discussed the vector and scalar potentials in the general context of 

electromagnetic fields. In magnetostatics (when there is no electric field, no free charge or 

current, and no time dependence), the Maxwell equations are (2.102): 

curlH = 0, divB = 0. (3.70) 

A solution of the equation (3.70)1 is 

H= -gradcp, (3.71) 

where cp is a scalar potential. This solution is not unique since cp+co where co is a constant 

is also a solution for (3.70)1. The boundary condition (3.66)1 implies that 

[gradcoD "r=0, (3.72) 

where r is a vector tangent to the surface at the point where grady is evaluated. The 

condition (3.72) implies that the directional derivative of Qgradcpý in the direction r is zero, 

which since r is arbitrary, is equivalent to 

Jýpj = Ký (3.73) 

where K is a constant and it may be assumed to be zero, then we finally have the boundary 

condition (see, for example, [107]) 

QED = o. 
A solution of (3.70)2 is 

B= curl A, 

(3.74) 

(3.75) 

where A is called the vector potential. It is a vector field, therefore is affected by a change 

in the reference configuration. In order to see how this vector changes with respect to a 

pull back to the reference configuration, let's consider the following surface integral, where 

the surface S is assumed open with boundary C 

fB"n 
da =is cur1A -n da = A- dr. 

c 
(3.76) 

where use has been made of Stokes' theorem. Now, consider the transformation of the last 

integral of the above expression back to the reference configuration, using dr = FdR, and 
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the symbol Cr in order to denote this closed curve in the reference configuration. We have 

A"dr= A"FdR= FTA"dR 
c 

ic, 

c,. 

where we have defined the Lagrangian form of A as 

Al=F T A, 

and it is easy to show that 

Bl = Cur1Al. 

(3.78) 

(3.79) 

There is an important question now, What is the continuity condition for A? And this 

question brings one more question. Is it necessary then to work with two different vector 

potentials, one for the body and one for the free surrounding space?. 

Consider the small pillbox of Figure 3.1, which surrounds a portion of the body and 

the free space just in the boundary of the body. 

n 
13O 

C 
-r 

W 

Figure 3.1: `Pillbox' used in the determination of the boundary condition for the vector 

potential. 

Consider now the following surface integral over S, which is the open surface sur- 

rounded by the curve C 

fB" da = 
is 

cur1A " da = 
cA 

" dr, (3.80) 

where again we have used Stokes' theorem. For a small circuit such as the one shown in 

Figure 3.1, the integral on the left side of the above expression may be approximated as 

hwB " m, where m is a vector normal to S. Meanwhile the integral on the right side may 

be approximated as -A° " wr +A" wr, then we have 

hwB"mizzý w(A-A°)"r, 

so 
Curl Al "N dA. (317) 

(3.81) 
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which, as h-0, implies that 

QA] "r=0, (3.82) 

which means that the tangential component of A must be continuous. 

An additional condition (which does not hold for all potentials) may be obtained by 

studying further the equation B= curlA. This equation is also satisfied by a field A' such 

that A' =A+ grade, where ý is a scalar field. Let assume now that 

divA'=0. (3.83) 

The above equation holds if only if 

div(gradý) = -divA. (3.84) 

It can be proved that the above partial differential equation has always a solution for ý. 

Then for a given magnetic induction B, we can always find a vector potential A, such that 

B= curl A and divA = 0. It is necessary to point out that it is not mandatory to work 

with such a potential, but, as we will see, this assumption permits us to work with only 

one potential for the body and the free space. 

The condition div A=0 implies that for any volume (for example the circuit in Figure 

3.1 but now considered as a three dimensional object) with the use of the divergence 

theorem we have 
iv 

divA dv = 
la 

vA" 
da = 03 (3.85) 

and from this last condition, it is easy to show that 

JAI "n=0. (3.86) 

So with (3.82) and the above equation we have that the vector potential is continuous: 

QAJ = 0. (3.87) 

3.6 The boundary value problem 

Consider the following summary of the main results of the Dorfmann and Ogden's theory 

for MS elastomers presented in this section. 

We have to solve the following system of partial differential equations (in the current 

configuration) 
div-r = 0, cur1H = 0, divB = 0, (3.88) 
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with boundary conditions 

frIn=o, QHI xn=o, QB]-n=o. 
The body is assumed to be completely surrounded by a free space (see Figure 3.2). 

------------- 
00 

50 
% 

Figure 3.2: The magneto-elastic problem 

67 

(3.89) 

We need to solve (3.88)2 and (3.88)3 for the body 13 and the free space 13°, and we only 

need to solve (3.88)1 for the body since for 13° we have Tr = r,,,,, and if (3.88)2 and (3.88)3 

hold then it is easy to prove that div-rm =0 also holds. 

The partial differential equations (3.88) are coupled. If we choose to work with B as 

the magnetic independent variable, then from Section 3.5, we have that B= cur1A was a 

solution for (3.88)3, and as a result we would need to solve 

div-r = 0, cur1H = 0, (3.90) 

where from (3.59) -r = J-1F and from (3.62) and (3.9) H= F-Tý. With the 

boundary conditions (we may assume that the vector potential is continuous across 4913 

and we use the same notation for the whole space) 

Qrr] n=O, QHJI xn=O. ( 3.91) 

Therefore, as a summary, we look for X and A (vector fields) such that 

div J-1F 
9" 

= 0, curl 
(F_T 0=0, 

xE 13, (3.92) 
t 

ands 

curlcurlA = 0, xE 13°, (3.93) 

where F §, B =_ cur1A, S2 =Q (F, BI) and BI -= JF-1B. 

5For free space we had the linear relation B° = µ°H 
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In the case we choose to work with H as the independent magnetic variable, if is the 

scalar potential for H, it is easy to show we would need to solve the system 

div 
(J_1F 

OF) = 0, div 
(J_1Fcl*) 

= 0, xE5, (3.94) 
t 

and 

divgradcp = 0, xc 13°, (3.95) 

where H- -grad co, S2* = S2* (F, Hl) and Hi - FTH. The scalar potential (,; is continuous 

and we use the notation cp for the whole space. 

To work with B1 or Hi as the independent magnetic variables is not the same from the 

point of view of the restrictions we would have to impose on S2 and 1l* in order to have a 

solution for the equilibrium and the Maxwell equations [33-35]. 

We will discuss more about the boundary value problem in the following chapter. 



Chapter 4 

Isotropic magneto-active 

elastomers 

In this chapter we restrict our attention to the case where the Magneto-<tc"tivv particles 

are distributed randomly in the elastomer [62,120]. These materials are called isotropic 

MS chistoiii('rs. 

Despite the above name and the random distribution of particles, the application of ;i ii 

external magnetic field implies that in some respects these materials behave like a `normal' 

(non-magnetic) transversely isotropic solid [12,30-341. 

Consider the total energy function S2 = cl(F, B1) (3.57) and the constitutive equations 

(3.59) and (3.62) (in this last case for H given in (3.9)) 

T= J_1FaS2 H=F -T 
OQ 

(4.1) 
OF OBI 

For the case of an incompressible material we would have for the stress 331! 

-r = FFF - pI. (1. '_>> 

In the case of an isotropic \IS elastomer we have that Q depends on six invariants 

(compressible case) [33,102,12 ], i. e. 

Q= 1(I1. I2, I; 3, I4, I;, I6), 

where the ilivariaiits Ik, k=1..... 6 are given as 

h= trc. h= [(trc)2 - trc2 I3 = det c. 

I4=B1"B1, I. =Bj"cBj. 16=B1-c2B1. 

(4.3) 

(4.1) 
(4. T 

69 
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Consider the following derivatives of the invariants in terms of the deformation gradient 
(remember the convention for the derivative (3.3)) 

all 
aF - 2FT 

1 
= 2(I1FT - FTFFT), 

0I3 
= 2I3F-1. (4.6) 

OF 
4915 

aF = 2B1 ® FBI, 
916 

= 2(Bl ® FFTFBI + FTFBI ® FBI). (4.7) F 

and the derivatives of the invariants in terms of the Lagrangian magnetic induction 

0914 4916 
OB1 = 2B1, 

OBt 
= 2cBt, 

aB t= 
2c2B1. 

Then from the chain rule, we have that and are given as 

aQ 6 a0 ark 

äF E 
ark aF k=1 

6 ý2 ark 

asl ark aB1 ' k=1 

(4.8) 

(4.9) 

and as a result, from (4.1) and the above derivatives, we have the explicit forms of -r and' 

H 

T=2J-1[bS21+(lib -b2)12+13113+J2B®B15 

+J2(B ® bB + bB ® B)S26], (4.10) 

H= 2J(b-1Bc 4+ BS25 + bBS26). (4.11) 

In the case of an incompressible material (2.1.4) we have J=1 (13 = 1), and we omit 

this invariant in this case. From (4.2) we have (see, for example, [33]) for the stress and 

the magnetic field the following expressions 

7= 2b11 +2(Iib- b2)112 -pI+2B®BS25 

+2(B (9 bB + bB ® B)116) (4.12) 

H= 2(b-1BS24 + B15 + bBS26). (4.13) 

Note the similarity of the above equation for the stress with the case of a simple transversely 

isotropic material [102] (see also [73,74]), the difference in this case is that in general B1 " B1 

(the fourth invariant) is not unity. 

Consider now that we work with the complementary energy function cl*(F, HI). In 

such a case for the stress and the magnetic induction from (3.64), (3.65) and (3.9) we 

have [33] 

T=J-1FaF' B=-J-1F°o9w 
Ht' 

'We use the notation 

(4.14) 

sek = ä1 k_ ý, ..., s. 
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and for an incompressible material 

T=FÖF P*I. (4.15) 

In the case of an isotropic MS elastomer we have that 1 depends on six invariants 

Q* = Q* (11 
, I21I3, K4, K5, K6), (4.16) 

where I2,12 and 13 are given in (4.4), and the new invariants K4, K5 and K6 are defined 

as [33] 

K4 = Hl " Hl, K5 = Hl " cHj, K6 = Hl " c2Hj. (4.17) 

Consider the derivatives 

and 

a= 
2H1 ® FH� 

OF = 2(H1 ® FFTFHI + FT 
OF OF 

FHI ® FH1), (4.18) 

aK4 
= 2H1, = 2cH1, 

OK6 
= 2c2H1. (4.19) 

OH1 OH 8H, OH1 

As a result, from the chain rule, we obtain for -r and B from (4.14) the following explicit 

expressions in terms of 1 (here 1 means a partial derivative on Ik if k=1,2,3, or Kk 

if k=4,5,6) [33] 

T= 2J-1 [bQ* + (Ilb - b2)S22 + I3S23 + bH ® bHS25 

+2(bH ® b2H + b2H (9 bH)Sts], 

+ b2HQ* + b3HQ*), B= -2J-1(bH1l 456 

and for an incompressible material, from (4.15), we get 

T= 2b1l +2 (Il b- b2) S22 -p *l + 2bH ® bH1l 

+2(bH ® b2H + b2H (9 bH)526, 

+ 2b3H1 ). B= -(2bHS24 + 2b2H1 56 

4.1 Universal relations 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

In magneto-elasticity, universal relations are equations connecting the components of the 

stress, the deformation and the magnetic fields, which hold independently of the specific 

choice of constitutive law for a family of materials. Such relations provide guidelines for 

the experimenters, since at the moment of proposing a constitutive equation for a material. 
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it is possible, through experiment, to test whether a material can be included in a family. 

as was emphasized by Beatty [6]. 

In non-linear elasticity (purely elastic context), the universal relation between the shear 

and normal components of the stress for a cube under simple shear deformation found by 

Rivlin [90] is well known. 

The first systematic way of generating such relations were provided by Hayes and 
Knops [54], and more recently by Beatty [6]. This last paper is one basis for the general 

analysis of Pucci and Saccomandi [85] (see also the review articles [93,94]). Another 

interesting and recent review has been presented by Rivlin [91]. 

The papers mentioned above are mainly restricted to the case of isotropic materials, 

although the paper by Pucci and Saccomandi [85] present a theory that can be applied 

to other classes of materials. Batra [5] presented some results for universal relations for 

transversely isotropic materials, which as we will see in this subsection resemble the results 

found in magneto-elasticity. 

Dorfmann et al. [37] and more recently Bustamante et al. [18] have studied the problem 

of finding universal relations in the context of magneto-elasticity. 

4.1.1 Linear universal relations 

Universal relations are classified as either linear or non-linear. In the first case the com- 

ponents of the stress tensor appear as linear combinations. Here we treat the problem of 

finding linear universal relations for our formulation of the MS elastomers; this section is 

mainly based on the results given in [181. 

In order to derive linear universal relations, consider the constitutive equations (4.12) 

and (4.13), and let us introduce the notation 

'Yl = 2(Q1 + 1211), 'Y2 = -21 2, 'Y4 = 2Q4, "Y5 =215, 'Y6 = 2Q6- (4.24) 

As a result (4.12) and (4.13) can be written in the compact forms 

-r = -pI+yib+'y2b2+'y5B®B+-y6(B®bB +bB ®B), (4.25) 

H= 'y4b-1B +'y5B +'y6bB. (4.26) 

Following Dorfmann at al. [37] we form the antisymmetric tensor 

rrb-bT=75(B®bB -bB ®B)+-y6(B®b2B-b2B(9 B), (4.27) 

noting that this vanishes when B is an eigenvector of b. 



CHAPTER 4. ISOTROPIC MAGNETO-ACTIVE ELASTOMERS 73 

For any antisymmetric second-order tensor an associated axial vector can be defined. 

For example, for the tensor u®v-v®u, where u and v are two vectors. the axial vector 

is vxu. More generally, if W is an antisymmetric second-order tensor, we denote by 

(W),, its axial vector2 

Therefore, the axial vector corresponding to the expression in equation (4.27) has the 

form 

(-rb - brr),, = ('y5bB + y6b2B) x B, (4.28) 

from which we obtain the universal relation 

(Tb - br) x"B=0. (4.29) 

This is identical to the universal relation found by Dorfmann at al. in [371. 

For the alternative formulation (4.22), (4.23) we use the notation 

'Yi = 2(Sl1 *+ Q*I1), 'Y2 = -2522, 'Y4 = 2524, 'Y5 = 21 , 'Y6 = 2526, (4.30) 

as a result (4.22) and (4.23) can be rewritten as 

T= -p*I+yb +ry2b2+y (bH(9 bH)+'y (bH®b2H+b2H(9 bH), (4.31) 

B= -('Y4bH + 75*b2B +'Ysb3B), (4.32) 

from where we form the antisymmetric tensor 

-rb - b-r = 'y (bH (9 b2H - b2H ® bH) + 76* (bH ® b3H - b3H (9 bH), (4.33) 

and its axial vector 

(-rb - br),, = (-Y5 b2H + 'y b3H) x bH, (4.34) 

from where we obtain the universal relation 

(-rb - brr) x" (bH) = 0. (4.35) 

2For an antisymmetric tensor W with components Wti , we define the axial vector (W),, such that for 

any vector a we have 

Wa = (W),, x a. 

From this definition we have that the vector of components of (W),, is given as 

(W) = (-W23i W131 -W12)T . 
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Proposition 4.1. The relations (4.29) and (4.35) are equivalent, and can be obtained 

from[18] 

-rb-b-r=B®bH-bH®B. (4.36) 

Proof. Consider the right-side of (4.36), using (4.26) we obtain 

B®bH-bH®B=75(B®bB-bB®B)+-y6(B0b2B-b2B®B), (4.37) 

which is equal to the right-side of (4.27). Similarly, from (4.32) we have for (4.36) 

B®bH-bH®B = ry5(bH®b2H-b2H(9 bH)+-y6* (bH®b3H-b3H®bH), (4.38) 

which is equal to the right-side of (4.33). 

0 

In order to show that the universal relation obtained previously (in either of the two 

forms presented) is unique for this class of materials, consider, for example, the represen- 
tation (4.25) [22] 

T=mTYI 

where 3 

T= (T11, T12, T13, T22, T23, T33)T, y= (-P, Y1, T2, Y5, T6 )T, 

and 
100101 

b11 b22 b13 b22 b23 b13 

b11 b12) b13) 022 b23) b33) 
lB11 B12 IB13 B22 B23 B33 

M11 M12 M13 M22 M23 M33 

(4.39) 

(4.40) 

(4.41) 

where b() is the component ij of the tensor b2, Bzj 
-= 

BiBj is the component ij of the 

tensor B®B, and 109[zj - Bibý2)Bk - b(ý)BkBj is the component ij of B® b2B - b2B ® B. 

Pucci and Saccomandi [85] proved that the number of independent linear universal 

relations that can be found for a given constitutive law is equal to the number of linearly 

independent equations (in our case six), minus the rank of the matrix M, which in our 

case is five. Thus, only one linear universal relation is to be expected in the general case. 
3 We will use a slightly different notation in Section 5.4. 
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4.1.1.1 Special cases 

As we will see in Section 5.3, the problem of finding an appropriate form for S2 from 

experimental data is in general highly difficult. Two main reasons are the lack of enough 

experimental data, and the complexity of the function SZ that depends on five invariants 

(incompressible case). In general it is necessary to propose a simplified form for Il (see 

[73,74] for the equivalent case for pure elastic transversely isotropic materials), which 

means we work with an energy function Il that would depend on fewer invariants. 

From the point of view of the linear universal relations, the above assumption would 

mean in some cases that the rank of the matrix M would be less than five, and as a 

result we could find more linear universal relations for these special cases; this is very 

important, because, as mentioned previously, we need criteria in order to know in advance 

from experiments if the simplifications we have made for S2 are or are not realistic, and we 

would like to do this without giving more detailed information for the form of the energy 

function [6]. 

Here we show universal relations for some simplified forms for 0; for brevity we do not 

list the similar results that can be obtained from the alternative formulation based on S2* . 

Case 1: 11 = 11(11,12,14,15) 

This is the case where the free energy function 1 does not depend on 16, which is to 

= 0). Equation (4.27) reduces to say ry6 =0 (that is equivalent to DT6 

rrb-bT=ry5(B0bB -bB (9 B), (4.42) 

from which we obtain the two universal relations 

(-rb - bT) x"B=0, (-rb - b-r) x" (bB) = 0. (4.43) 

Similarly, from equation (4.26) with 76 =0 we have the expression for the magnetic 

field H= ^/4b-'B +'y5B" We obtain 

(Hxb-1B)"B=O, (4.44) 

which is a relation between the deformation b and the magnetic field quantities H 

and B and does not involve the stress rr. 

Let's now examine some other subcases (see [22]). 
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(a) S2 = Sß(11, I4, I5) 

In this case for the total stress, from (4.25), we have 

-r = -PI + -yib + -y5B 0 B, (4.45) 

from where we obtain 

TB xB= 'yibB x B, (4.46) 

and we get the extra linear universal relation 

rrB " (B x bB) = 0. (4.47) 

(b) S2=1(I2, I4, I5) 

From (4.25) we have 

rr = -pI +'Yib2 +'Y5B ®B, (4.48) 

and following a similar procedure as before we get the linear universal 

relation 

-rB"(Bxb2B)=0. 

(c) IZ=SZ(Ii) I2)15) 

(4.49) 

In this case there is no new relation for the stress, but for the magnetic 

field, from (4.26), we have 

H= -y5B, (4.50) 

from which we obtain the simple universal relation 

HxB=O. (4.51) 

(d) S2 = SZ(11 i I2, I4) 

For this last situation we have new universal relations for both the stress 

and the magnetic field. From (4.25), we get 

r= -pI + yib, (4.52) 

and we get the universal relations 

76 

-rb - b-r = 0, rrB " (B x bB) = 0. (4.53) 
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The relation (4.53)1 is the classical result found by Beatty [6], and (4.53)2 

is the same as (4.26). 

For the magnetic field, from (4.26), we have 

H= 'y4b-1B, (4.54) 

and we obtain the relation 

Hx b-1B = 0. (4.55) 

Case 2: 1= Q(I1iI2, I4, I6) 

77 

We consider the special case where the energy function St does not depend on 15. 

From equation (4.27) we obtain 

rrb-brr=-Y6(B®b2B-b2B(9 B), 

and the corresponding axial vector has the form 

(-rb - brr),, = 'y6(b2B) x B. 

We get only two independent universal relations [85], which have the form 

(-rb - bT) x"B=0, (-rb - br) x" (b2B) = 0. 

(4.56) 

(4.57) 

(4.58) 

For this special case, the magnetic field H in terms of the magnetic induction vector 

B is given by 

H= 'yob-'B + 'y6bB, (4.59) 

and the additional universal relation, not involving the components of the stress r, 

has the form 

(Hxb-1B)"(bB)=0. 

As before we consider some subcases. 

(a) SZ = 1(I1, I4iIs) 

From (4.26), we have 

H=-y6bB, 

and we get the linear universal relation 

HxbB=O. 

(4.60) 

(4.61) 

(4.62) 
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(b) S2=11(11, I2,16) 

In this case for the total stress we have from (4.25) 

T=-PI+ylb+y6(B®bB +bB ®B), (4.63) 

and it is easy to prove that the extra linear universal relation obtained 
here is the same as (4.47). 

(c) SZ = 1(I2) I41 Is) 

This case is more complex. From (4.25), we have 

, r=-pI+ry2b2+-y6(B®bB +bB ®B), (4.64) 

from where with the use of the Cayley-Hamilton theorem we can prove 
that 

-r(bB) = -pbB + ry2(I, b2B - I2bB + B) 

+ y6(JbB12B + [B " (bB)]bB), (4.65) 

and we get 

(TbB x B) " bB = ry2I1(b2B ® B) " bB. (4.66) 

Also 

-rB = -pB +'y2b2B +'y6([(bB) - B]B + IBI2bB), (4.67) 

and we get 

(-rB x bB) "B= 72(b 2Bx B) " bB. (4.68) 

Then, from (4.66) and (4.68), we get the universal relation 

(TbB - IirB) " (B x bB) = 0. (4.69) 

Case 3: 1= 11(I1, I2,15,16) 

78 

The free energy formulation SZ does not depend on 14 and the constitutive equation 

for the magnetic field H reduces to 

H=ry5B+rysbB. (4.70) 

The additional universal relation, again involving the magnetic fields and the defor- 

mation b, is given by 

(HxB)"(bB)=0. (4.71) 
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No additional relation is found for the stress components. 

For additional simplification of this energy, we found that the only interesting sub- 

cases are SZ = 1l(Il, 15,16) and S2 = 1(I2, I5,16); for these simplified forms of the 

energy it is easy to prove that the additional linear universal relations found are 

(4.47) and (4.69) respectively. 

Case 4: S2 = 11(I1, I4i15, I6). 

For an energy formulation independent of 12, the expression for the total stress 7r 

reduces to 

T=-pI+-ylb+y5B®B+'y6(B®bB+bB®B), (4.72) 

and no additional universal relation can be obtained starting from equation (4.72). 

An additional non-trivial approach is by considering the antisymmetric tensor rB 0 

B-B® rrB, which leads to 

-rB®B-B®-rB=-yi(bB®B-B(& bB)+ry6B"B(bB®B-B(9 bB). (4.73) 

The corresponding axial vector has the form 

(-rB®B-B(9 -rB),, =rrBxB ='y1(bBxB)+-y6B"B(bBxB) 

= ('Yi+y6B"B)(bBxB), 

and the additional corresponding universal relation is given by 

(-rB x B) " (bB) = 0, 

which is the same as (4.47). 

Case 5: 1l = 1(12, I4, I5, I6). 

(4.74) 

(4.75) 

This case is similar to Case 4. For convenience, we write the reduced form of the 

total stress tensor T as 

-r=-pI+'i2(Ilb-b2)+'Y5B®B+'y6(B®bB +bB (9 B), (4.76) 

where we defined =Y2 = 202 . 
Starting with equation rb - bT, we obtain the univer- 

sal relation shown previously in equation (4.29). However, an additional universal 

relation can be found by considering the expression 

rbB®bB -bB ®rrbB= 

=12 [Il(b2B®bB-bB®b2B) - (b3B®bB-bB(& b3B)] 

+ [-y5(B " bB) + -y6(bB) " (bB)] (B (9 bB - bB ® B). (4.77) 
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The corresponding axial vector has the form 

-rbB x bB = rye [Ii (b2B x bB) - b3B x bB] 

+ [-y5(B " bB) +'y6(bB) " (bB)] (B x bB), (4.78) 

and it follows, on the use of the Cayley-Hamilton theorem in the form 

b3 - lib 2+ I2b -I=0, (4.79) 

that 

TbB x bB = %Y2(-B x bB) + [ry5(B " bB) + -y6(bB) " (bB)] (B x bB). (4.80) 

The additional universal relation is then given by 

(rrbB x bB) "B=0. (4.81) 

Remark The linear universal relations shown previously were obtained for the case of 

an incompressible material (4.12); it is easy to show that the same relations hold for the 

general case of a compressible (unconstrained) MS elastomer (4.10). 

In the case of a constrained material (like an incompressible solid), Pucci and Sacco- 

mandi [83] have shown that is possible to find additional universal relations; this is done by 

an appropriate manipulation of the constraint and by using the `controllable' solutions for 

the problem. Consider, for example, the case of an incompressible material; the parameter 

p is not a property of the material, but a quantity that may be found from the boundary 

conditions of a boundary value problem. In some cases (see, for example, [83]) p may be 

found as a linear combination of the material parameters yj (equation (4.25)), and as a 

result the structure of the matrix M (equation (4.41)) would change, and we would have 

a matrix of rank less than five. From the theory of Pucci and Saccomandi [85], we would 

have then an extra linear universal relation. 

The theory of Pucci and Saccomandi [83] has been applied, for example, by Saccomandi 

and Batra [95] for the case of transversely isotropic elastic materials. 

We do not explore the possibility of finding more linear universal relations following 

this theory for MS materials in this thesis. 

4.1.1.2 Applications 

We have mentioned that the linear universal relations can be used as criteria in order to 

know whether a material belongs to a particular family of constitutive laws. In order to 
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do so, we need to do experiments and to determine the stresses, the deformation, and the 

magnetic field, and then to use these results in order to evaluate the universal relations 
to check whether they hold. These experiments should be done in a rational way. which 

means we should use `exact' solutions of the boundary value problem in order to design 

these experiments. From Section 3.6 we see that the partial differential equations are 
highly non-linear and that the solution will in general depend strongly on the particular 
form of the energy function. We need to work with particular kinds of exact solution, 

which do not depend on the particular form of the energy function for a given family of 

materials; these solutions or `deformations' should be obtained by only applying a surface 
traction, and in the magneto-elastic case a magnetic field, and this is the reason this 

particular kind of solutions are called `universal solutions' 4. 

The problem of finding all the universal solutions in the purely elastic context was first 

treated by Ericksen [39] (see also [112]), who found five `families' of solutions. For the case 

of non-linear electro-elasticity, Singh and Pipkin [99] found the complete set of solutions5 
for a constitutive law not derived from an energy function, but considering the material 

as Cauchy-elastic [87]. Pucci and Saccomandi [82] studied the case of universal solutions 
in magneto-elasticity and electro-elasticity (but assuming now the existence of an energy 
function); they found that the only universal solutions for these two cases are the same 

as those listed by Singh and Pipkin [99]. For the case of magneto-elastic solids it is only 

necessary to replace the electric field and electric displacement, by the magnetic field and 

the magnetic induction respectively. 

Note that in all the examples considered by Singh and Pipkin [99] the matrix of com- 

4In the theory of non-linear elasticity there are two definitions that deserve an explanation in this thesis, 

these two concepts are the `universal solutions' and the `controllable solutions'. 

By `universal solutions' we mean solutions of the boundary value problem whose forms do not depend on 

the particular form of the constitutive equation. The partial differential equations in non-linear elasticity 

are highly non-linear, and the form of the solutions in general depend strongly on the constitutive equations. 

By `controllable solution' we mean a solution of the boundary value problem that can be produced by 

only applying a surface load. With the semi-inverse method we can find such solutions by solving the 

partial differential equations for specific forms of the constitutive equation; therefore not all controllable 

solutions are universal. 
5The problem of finding all the universal solutions for the purely elastic case is still open; see, for 

example, [55] and the references therein. 
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ponents of the left Cauchy-Green tensor b, denoted b, has the form 

*00 
b=0**, (4.82) 

0** 

or its equivalent obtained by re-ordering the axes, where * denotes a nonzero entry. Thus, 

the implications of the universal relations for each of the Singh and Pipkin solutions are 

rather similar in structure and it therefore suffices here to examine a limited number of 

the Singh-Pipkin solutions in order to illustrate the new results obtainable by invoking the 

universal relations. 

We must remark that the solutions found by Singh and Pipkin [99] are not actually 

exact. The boundary conditions (3.66) are quite severe, and in order to obtain some exact 

solutions Singh and Pipkin had to assume, for example, slabs or cylinders very `large' or 

`long'. They called this problem the `fringe effect' 

phenomenon in Section 4.2. 

Consider the following two examples. 

Homogeneous deformation in a uniform field 

We will speak in detail about this 

We consider a slab of uniform thick- 

ness limited by top and bottom faces normal to the X3 direction and with unlimited extent 

in the Xl and X2 directions, where (X1, X2, X3) define the rectangular Cartesian coor- 

dinates in the reference configuration 133. The universal relation in equation (4.29) has 

been applied to a similar geometry subject to triaxial stretch and simple shear in [37]. We 

also recall that the solution of the corresponding boundary value problem with an applied 

magnetic field normal to the top and bottom faces was given in [35]. 

Here we assume that the slab is subjected to a uniform magnetic field and stretched 

along the three coordinate axes with stretch ratios µl, µ2, µ3, respectively and then sheared 

by amounts '1 and K2 along the two in-plane directions. The combined triaxial stretch 

and shear deformation is given by 

X1=11X1+1c1/23X3, X2=/-2X2+ic2µ3X3, x3=13X3, (4.83) 

where (X1, x2) x3) are the rectangular Cartesian coordinates in the deformed configuration 

of the material point initially located at (Xi, X2, X3) and Al, µ2, µ3 and r-1, K2 are con- 

stants. For this homogeneous deformation and uniform applied magnetic field all strain 

components are constant and the field equations (3.88) are satisfied. 
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The matrix of the Cartesian components F of the deformation gradient tensor F is 

µ1 0 K1µ3 
F=0 22 k2µ3 (4.84) 

00/. 13 

The uniform magnetic field vector B in the deformed configuration 8, related through 

equation (3.7) to its Lagrangian counterparts, has the Cartesian components B= (Bl, B2. 

B3)T. 

The universal relation (4.29) of the form (-rb - brr),, "B=0 is given in component 

form 

[7-13, c1, c2µ3 +723({, 2 + t, 32 
(S2 

- 1)) + T33k2f43 - T12K1µ3 - T22k2µ3] B1 + 

ýT11ý1Iý3 + T12PC2/ý3 - T131Fý1 + Iý3ýý1 - 1ýý - T23'c1'c2Iý3 - T33k1{ý3] B2 + 

[T12(µ1 - µ2 +µs01 - i2)) + {ý3(T22K1/c2 + 723K1 - T11k1Y2 - T131t2)ý B3 = 0. (4.85) 

For illustration, consider the special case of simple shear along the x1 direction only 

and rename, for simplicity, the amount of shear rcl by rcl = n. Suppose further that the 

applied magnetic field vector is oriented along the x2 direction with components (0, B2,0). 

Then, equation (4.85) reduces to the universal relation 

K/, 12 
2 

- T33) = T13µ1 + I, 3(K2 - 1)], (4.86) 

which for the case of µl = 113 = 1, reduces to the well known correlation r11 - 7-33 = r, -r13. 

Note that the structure of this relation coincides with the corresponding formulation found 

in the purely elastic case [90]. 

An additional special case is obtained by considering triaxial stretches µl, µ2, µ3 and 

no shear. We therefore set in equation (4.83) '1 = r12 -0 and obtain the relation 

723 µ2 - Ii ) Bi + T13(112 -i 12 ) B2 + 712 111 - M2) B3 = 0. (4.87) 

We conclude this example by considering a special case of the energy S2 as outlined 

previously. Consider the case where 1 is independent of 16, which is equivalent to y6 = 0. 

This provides the additional universal relation (rb - br),, " (bB) = 0, shown by equation 

(4.43)2. From equation (4.83), assuming k2 =0 and B1 = B3 - 0, we can show that the 

universal relation (4.43)2 reduces to the same expression as given by equation (4.86). 
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The specialization of the universal relations (4.43)2 (for the case where 1 is independent 

of 16) requires the computing of (bB) and (-rb - br),,. By using the particular form of 

b= FFT with (4.84), the vector (bB) is given by 

[(µl + r21tL2 2+ k1k2µ3B2 + klµ3B3] 11 + 

[Ic1k2µ3B1 + (2, L212 + µ3)B2 + /2/ßB3] i2 + (4.88) 

[icl/-L3B1 + K2/L2B2 + µ3B3 131 

where (ii, i2, i3) are the unit base vectors along the x1, x2, x3 directions. The universal 

relation (4.43)2 is obtained by performing the scalar product of the axial vector (rb - b-r),, 

and the vector (4.88). Thus we have 

{7'23 [ii/ý2µ3 + µi (µ2 + ('2 - 1)µ3)] -I ý3 [K1'r12µ2 + k1k2T12µ3 + Pt2 (T221-t1 

-7-33A1 - K1T12K2µ3)]IB1 +f [K2T12{L1 + k1(T11 - 733)p2]/13 - T13[(ki - 1)µ2µ3 

+111(11 2+ K2IU3)]1 B2 + [K1723112 
- k2T13/1 + T12(I-L1 - I, 2)]t, 

2B3 
= 0. (4.89) 

An extra couple of connections can be derived by using (4.43)1 and (4.43)2. Consider 

the particular form of (4.43), which is given by (4.85) and (4.89). If we eliminate B2 from 

this pair of equations, and then if we assume K2 =0 (with µ2 0), we obtain 

(T23B1 
- T12B3)(-/, 2 + µ2H3 + µ2K1113 + µ2N2 - µ3N1) = 0. (4.90 

Since this condition must be satisfied for all deformations, we deduce the connection 

T23B1 - T12B3 = 0. (4.91) 

Meanwhile, if we eliminate Bi from (4.85) and (4.89) instead, assuming rci = 0, we can 

get the following relation 

(Ti2B3 - r1 3B2)(µ1 +µ2µ3 -µi(µ2 + (1 + 2)µs)) = 0. (4.92) 

which, as in the above case, must also be satisfied for all deformations. We deduce the 

connection 

T12B3 - T13B2 = 0. (4.93) 

Extension and torsion of a circular cylinder Consider an infinitely long solid cir- 

cular cylinder whose reference geometry, using cylindrical polar coordinates (R. 9, Z), is 

given by 

O<R<B, 0<O<27r, -oo<Z<oo. (4.94) 
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Combined torsion and axial extension is defined by the equations 

r=ýz1/2R, 9=0+) rZ, z=A Z, (4.95) 

where -r is the amount of torsional twist per unit deformed length, A is the constant axial 

stretch and (r, 9, z) are cylindrical polar coordinates in the deformed configuration. For 

details of the solution of this boundary value problem in the context of magneto-sensitive 

materials, we refer to [33]. 

The components of the deformation gradient F, referred to the two sets of cylindrical 

polar coordinate axes, are represented by the matrix F and given by 

Az 1/2 

F= 0 

0 

oo 
Az 1/2 AZ-y 

0 \z 

(4.96) 

where the notation -y = -rr has been defined. The corresponding matrix for the left 

Cauchy-Green deformation tensor b= FFT, written b, is given by 

z00 

b=0 Az i+ azry2 Azry (4.97) 

0 iý2 \2 

The matrix of the square of the left Cauchy-Green tensor needed to evaluate the stress 

components has the form 

ýz 20 

2 b=0(, \-l + \2 2)2 + \zry2 

0 \2 1+ \272 + \z) 

0 
A2-y(A 1+A y2 + az) 

Az (1 + y2) 

(4.98) 

where, depending on the selection of the independent magnetic field quantity, the formula- 

tion given by equation (4.25) or (4.31) can be used. The consequences of using one or the 

other formulation have been discussed in detail in [33] and will therefore not be repeated 

here. The corresponding invariants Il, 12, assuming an incompressible material, are given 

by 

Il =2A 1+\2(1+'y2), I2 =2A +az2+A y2 (4.99) 

Following the development in [33], it is convenient to select the formulation based on 

SZ* with HI as the independent variable. The corresponding constitutive equations are 

(4.31) and (4.32) for the total stress components r and for the magnetic induction field 

B, respectively. 
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Consider an axial magnetic field given in the reference configuration by the only non- 

zero component denoted by HZ. From the corresponding Maxwell field equation (3.88)2 

we concluded that the axial component Hz is constant. In the current configuration, the 

magnetic field is given by H= F-THI and has components along the three cylindrical 

polar axes 

Hr = 0, Hg = 0, Hz = )Z'Hz. (4.100) 

From equation (4.17) the corresponding invariants are 

K4 = Hz, K5 = (1 + ry2)AzK4, K6 = [ry2Az + (1 +'y2)2Ai]K4. (4.101) 

The non-zero components of the stress -r are given by equation (4.31) and have the explicit 

forms 

Trr 
- -C* +y1ýz 1 +'YAz 2, (4.102) 

Tee = -p* + Y1(Az 1+ Az Y2) + Y2 (il , \2, Y2 + Az 2) 

+ 'Y5 'Y2AZK4 + 2rys'Y2Az[Az 1+ Az (1 + ry2)]K4, (4.103) 

Tzz = -P* +7i, \z +, 72 Z 
*X4(1 +y2) +7'5/\zK4 + 27's\z(I + y2)K4, (4.104) 

TBz = 7'1 Az7' +A 'y(1 + Az + \3, y2) +'Y5'YAzK4 + 1's1'Az[l + 2A (1 + ry2)]K4. (4.105) 

From equation (4.32), the components of the magnetic induction vector B are 

Br =0 (4.106) 

Be = -['Y4Az +Y5 [Az + A4(1 +Y2)] +Y6 [l + Az(1 +2 72) 

(4.107) +ßs(1 + Y2)2]]'YHz, 
Bz = -[74 + ýY5Az(1 +'Y2) +'YsAz['Y2 +ßz(1 +'Y2)2]]AzHZ. (4.108) 

Now, by using (4.33) we calculate the axial tensor (-rb - b-r),, as 

(4.109) (-rb - b-r) x= (rýAzHz ['Ys (1 + ßz(1 + K2)) +'Y5l, 0, O) T 

The components of the vector bH are , \zHz(0, ß, 1)T T. Referring to (4.35) it follows that, 

for the considered combination of deformation and magnetic field, the universal relation 

(4.35) is satisfied identically. 

4.1.2 Non-linear universal relations 

The linear universal relation (4.29) is the only linearly independent relation for the full form 

of the constitutive equation for MS elastomers (4.25) [85]. In this case is not necessary to 
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provide any particular form for the `deformation'; but if we want to use (4.29), we would 

need to work with the `universal solutions', which are solutions of the boundary value 

problem that do not depend on the particular form of the energy function 6. 

Here we show two examples of non-linear universal relations. These relations are non- 

linear in term of the components of the stress tensor; they are found by studying some 

non-universal solutions, and cannot be generated from the linear universal relations [85]. 

When we work with non-universal solutions, the components of the stress and magnetic 

field depend on some unknown functions (semi-inverse method), which must be found 

by solving the partial differential equations (3.92), (3.93) for a given specific form of 

the constitutive equation. However, there might be some non-linear combinations of the 

components of the stress that do not depend explicitly on these unknown functions, and 

which as a result are universal relations in the sense described previously. 

More details about non-linear universal relations in the purely elastic context can be 

found in the papers by Pucci and Saccomandi [84,85], and Bustamante and Ogden [21]. 

4.1.2.1 Helical shear 

In the purely elastic context Ogden et al. [79] derived a non-linear universal relation for 

this deformation (see [21] for a more general perspective). For the magneto-elastic case 

Bustamante et al. [18] showed that the same relation holds with some restrictions on the 

form of the magnetic field. We describe these results in the following. 

Consider the problem of helical shear for a right circular tube with internal and exter- 

nal radii Rz and Re, respectively, in the reference configuration. Consider the following 

deformation in cylindrical coordinates (see [79] and [33] ) 

r=R, 9=0+ g(R), z=Z+ w(R), (4.110) 

and 

0<RZ<R<Re, 0<9<2-7r, -oo<Z<oo, (4.111) 

Note that the length of the tube has been assumed infinite so as to avoid problems 

with the boundary conditions (3.66) (see [15,99]). 

6These deformations must be produced only by applying a surface traction (and an external field), 

because of this reason they are called `controllable' solutions [99]. However, it is possible to have non- 

universal solutions that are also controllable for some particular constitutive equations. 
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The deformation functions g(R) and w(R) should be determined by solution of the 
boundary value problem. Consider the notation 

r, 0 = rg'(r), kz = w'(r), r= ýe ý-'z. (4.112) 

With this notation the deformation gradient and the left and right Cauchy-Green tensors 

are given as (Appendix A. 3) 

1001r, e rz 1+ r, 2 KO K- 
F= no 10, b= rye 1+KB C K8 10 (1.113) 

Kz 01 KZ 'o'z 1+ ! c2 lýz 01 

We work with the magnetic field as the independent magnetic variable. Consider the 
field [21] H1 = (0, Hie, Hiz )T ; from (3.9) and (4.113)1, the Eulerian form of the field is 

H= (-H, Hie, Hiz)T, where H= kOHle + týzHlz 
From (4.31) the components of the total stress and the magnetic induction are 

Trr = -P* + 2(Q*l + 2Q; ), (4.114) 

Tee = -P* + 2f (1 + ic) + 21 (2 + #c2) + 211 HB + 4Q*HB(Ho + kgH), (4.115) 1256 

Tzz = -P*+2Sl (1+Kz)+21(2+ice)+211 56 Hz +211 Hz(Hz+izH), (4.116) 

Tro = 2(11 + Q2*)rce + 2S26HBH, (4.117) 

Trz = 2(1 + fjkz + 2Q6*HH, (4.118) 

Z]. TBz = 2Q*lroKz + 2S25HgHz + 2Q6*[(2 + ic2)HgHz + (He + H2 'OK (4.119) 

and 

Br = -2[1 +Q *(2 + /, 2)]H, (4.120) 56 

BB = -2[(SZ4 +c565+Q *)Ho + (1 + [3 + r2]Q6)ýeH], (4.121) 

Bx = -2[(14 + 15 + 1ö)HH + (Sl + [3 + k2]S2s)k iI]. (4.122) 

Dorfmann and Ogden [33] found the necessary condition Br =0 in order to avoid a 

singularity at r=0, this condition appears from the Gauss conservation law (3.70). From 

(4.120) this implies 

S25+S26(2+r, 2)=0 or H=O. (4.123) 

Let us assume that ft 0, which means that (4.123)1 holds, and we have a restriction on 

the form of 11* (see [18]). 

Using the components of the total stress (4.114)-(4.119) we can show that the following 

non-linear universal relation holds 

T9z ( rB - Trz) - TrBTrz (Too 
- Tzz) = 0. (4.124) 



CHAPTER 4. ISOTROPIC MAGNETO-ACTIVE ELASTOMERS 89 

4.1.2.2 Anti-plane shear 

In non-linear elasticity the anti-plane shear has been studied by, for example, Gurtin and 

Temam [53], and more recently in the review article by Horgan [56]. A non-linear universal 

relation was found by Bustamante and Ogden [21]. For the magneto-elastic case we want 

to check in which cases this relation also holds. 

The anti-plane shear (of, for example, a slab) is described in Cartesian coordinates as 

X1 = X1, X2 = X2, X3 = X3 + co(Xi7 X2). (4.125) 

where co is an unknown function, which in general depends on the constitutive law. The 

deformation gradient and the left Cauchy-Green tensor have matrix representations 

1 0 0 

F= 0 1 0 

(P1 c02 1 

10 cpi 
b=01 cp2 

1 W2 l+Wi+W2 

where we have defined cp2 - äcp/5Xi, i=1,2. 

(4.126) 

Let us work first with the magnetic induction as the magnetic independent variable, 

and furthermore let's assume that Bi = (0,0, Bo)T ; then from (4.12) and (4.13), with the 

notation 79 =1+ co 4- cp2, we have 

T11 = -p+2SZ1 +2(2+ßp2)522, 

7-12 = -2cp1 2Q2, 

T13 = 2W, (Ql + Q2 + Bä16), 

T22 = -p+2522+2(2+ý )12, 

723 = 2W2(11 + 112 + B2Q6), 

Y33 = -p + 2192111 + 2(1 +, 02 )Q2 + 2B2(125 + 2192126), 

and 

Hl = 2B0 p1(1s - St4)7 

H2 = 2B0 2(16 - S24); 

H3 = 2B0(114 + 15 +'ä2Q6). 

(4.127) 

(4.128) 

(4.129) 

(4.130) 

(4.131) 

(4.132) 

(4.133) 

(4.134) 

(4.135) 

With the above components of the total stress we can show that the following non-linear 

universal relation holds [21]: 

T13723(722 - 711 + 712 (T 3- 
7223 )= 0- (4.136) 
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If we work with the magnetic field as the independent magnetic variable. with H1 = 
(0,0, Ho)', from (4.22) and (4.23) we have 

+ 2(1 + 192)q*], Til = -p* + 21 + 2(2 + ýo2)S22 + 2Höcpi [1l 56 

+ Ho [1l + 2(1 + 192)Q*]I, T12 = 212{-1 256 

7-13 = 2coi{I1 *+ 11 + H02 [t92Q5 + (3+2 002 + (P2) (2 + 192))Q6*]}, 

T22 = -p*+2Q*+2(2+W2)S22+2H p [Q*+2(1+z92)Q*], 

T23 = 2W2{S2i + S22 + H02 [i921 + (3+2 002 + W2)(2 + 192))ßs]}, 

733 = -p* + 2192SZ1 + 2(1 + , d2)1l 256+ 2HH1l + 2Ho{2Q* + ((Pi + (p2)(1 

+192) [Q5 + 2(1 + 792)Q6*]}, 

and 

Bl = -2Hop1 
[Q4 + (1 + 192)SZ5 + 1i2(2 +, 02)Q*], 

+ (1 + 792)q* + 192 (2+ 192)Q6], B2 = -2H0 2[1l 45 

B3 = -2Ho{192SZ4 +c +i+ ((P2 + W2)(2 + 192)[c + (1 +'92)Q6]I 5615 

It is possible to show that in this case (4.136) also holds. 

4.2 Numerical solution of a boundary value problem 

(4.137) 

(4.138) 

(4.139) 

(4.140) 

(4.141) 

(4.142) 

(4.143) 

(4.144) 

(4.145) 

In Section 4.1.1.2 it was mentioned that the set of universal solutions found by Singh and 

Pipkin [99] is only valid for infinite geometries. This assumption is important in order to 

meet the boundary conditions for the electric part of the problem. This set of universal 

solutions is the same in magneto-elasticity [82] and we have the same situation with the 

boundary conditions for the magnetic part of the problem (3.66). 

Few boundary value problems have been solved in non-linear magneto-elasticity [41, 

and, as far as it is known, no analytical or exact solution of a boundary value problem 

considering a finite geometry has been found yet. However, as mentioned in [15], it is 

important to obtain solutions of the boundary value problem (Section 3.6) in order to 

make the appropriate connections between the theory and experiment, especially regarding 

the development of realistic forms for the constitutive relations. Due to the difficulty 

of finding an exact solution for a finite geometry, we have to solve the boundary value 

problem (Section 3.6) by using numeric methods (see [4] and [119] for the electroelastic 

counterpart). 
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In this section we show some results for a tube under extension and inflation. For this 

problem, Singh and Pipkin had to assume a tube of `infinite' length, such that we do not 

need to consider the boundary conditions for the magnetic part of the problem over the 

end surfaces of the cylinder [35], in which case it can be proved that for an external axial 

uniform magnetic field, the field inside is also uniform. For a tube of finite length it is 

assumed that the exact solution will be very close to the `real' solution for the case in 

which the length of the tube is much greater than, for example, its external radius; then 

the field would be almost uniform inside the tube wall except near the ends of the tube, 

where there should be some variation in the value of the field; this phenomenon was called 
`fringe effect' by Sing and Pipkin. By solving a boundary value problem we want to have 

a first look at such phenomena. The results shown in this section are an extension of the 

results given in the paper by Bustamante et. al. [15]. Finally, we point out that most 

of the boundary value problems solved by numerical methods in non-linear magneto- and 

electro-elasticity [4,119,122] have not considered the interaction between the body and 

the free space around it. 

4.2.1 Extension and inflation of a cylindrical tube 

Dorfmann and Ogden [35] considered the extension and inflation of an infinitely long 

circular cylindrical tube subjected to an axial and a circumferential magnetic field. Equiv- 

alent solutions for the change in radius as a function of the applied pressure and for the 

corresponding resultant axial load were given using first the magnetic induction B and 

subsequently the magnetic field vector H as the independent magnetic field variable. 

Here we again consider the extension and inflation of a cylindrical tube with circular 

cross section subjected to an axial magnetic field H. In close proximity of the material in- 

terface, the magnetic field lines deviate from the axial direction due to interaction with the 

finite length cylindrical tube. Therefore, no closed form analytical solutions are available 

to determine the distributions of the magnetic fields inside the body and in the surround- 

ing space. Numerical methods are used instead to determine the approximate distribution 

of the magnetic field and the magnetic induction inside the body and in the surroundings. 

Using cylindrical polar coordinates (R, 4, Z), associated with the unit basis vectors 

(ER, Ee, EZ), the undeformed reference configuration is given by 

A<R<B, 0<p<27r, 0<Z<L, (4.146) 
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where the interior and exterior radii are denoted by A and B and the total length by L. 

The tube is deformed by applying a resultant tensile load N, with same magnitude but 

with opposite directions, to the top and bottom surface located respectively at Z=0 and 

Z=L, and by an interior positive pressure P. The deformed configuration maintains a 

circular cylindrical shape and, using cylindrical polar coordinates (r, 0, z), is defined by 

a<r<b, 0<0<27r, 0 <z<l, (4.147) 

where r is the current value of the radius, 1 the current total length and a and b the inner 

and outer radii. For an incompressible material, the deformation is given by [82,99] 

r= cR2+d, 6=0, z=AzZ, (4.148) 

and the axial stretch, denoted by A is 

Az (4.149) =-ý 
c 

where c and d= a2 - cA2 are constants. 

The position vector in the deformed configuration may be written conveniently as 

x= rer + zex, 

where (er, ee, e, z) denote the unit basis vectors. 

(4.150) 

Using the position vector (4.150) and the corresponding expressions in (2.9) the defor- 

mation gradient tensor in cylindrical coordinates is obtained from (Appendix A. 3) 

F_ 
äx®ER+ 1 öx®Ee+äx®EZ 

(4.151) 
8R Rä0 äZ 

and has the form 

F=A-1A ter®ER+Aee®E®+A e, z®Ez, (4.152) 

where the notation A is introduced and defined as A= r/R. The corresponding principal 

stretches are then given by 

. 
153) iý1=x-linz i, ý3=Az, (4 

where, due to the incompressibility condition, only two are independent. 
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Remark From Subsection 3.6 we see clearly an interaction between the magnetic field 

and the deformation of the body. The exact solution studied by Dorfmann and Ogden [351. 

which is shown in7 Subsection 5.5.1 is based in the assumption of a tube of infinite length, 

and as a result a variation in the actual form of the field will affect the actual deformation of 

the body. We do not consider that effect here, which means we assume the solution for the 

deformation (4.148) as given, and then we calculate from (3.94)2 and (3.95) the magnetic 

field and the magnetic induction [15]. Of course, this assumption would mean that our 

`exact' numerical solution for the field is actually an approximation of the actual solution; 

nevertheless, it is a better approximation than the solution based on the assumption 

of a tube of infinite length. The model presented here then is a sort of semi-inverse 

approximation of the `actual' solution, where the deformation is given but the field is 

calculated by solving numerically (3.94)2 and (3.95). 

4.2.2 Field equations and boundary conditions 

An axisymmetric deformation applied to a circular tube with finite length implies that 

all fields are independent of 8 but depend, in addition to the radius r, also on the axial 

coordinate z, i. e. B= B(r, z), H= H(r, z), M= M(r, z) and rr = -r(r, z). In the 

deformed configuration, the magnetic induction and the magnetic field have to satisfy the 

governing equations 

divB = 0, cur1H = 0, (4.154) 

together with the equilibrium equation 

div-r=0. (4.155) 

For the numerical solution of this boundary value problem, for convenience, we select 

the magnetic field H as the independent variable. Following Brown [13] and Kovetz [64], 

we introduce a scalar magnetic potential cp such that the magnetic field can be expressed 

as 
H= -grady. (4.156) 

Outside the body in vacuum, for example, where the magnetic induction B is pro- 

portional to the magnetic field H, or in a material with uniform magnetization M, the 

7There is a slight difference for the deformation presented here, which was taken from [991, and the 

form presented by Dorfmann and Ogden [35]. 
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divergence of H is zero, which follows directly from equation (4.154)1. Therefore, taking 

the divergence of both sides of (4.156) gives 

divH = -div(grady) = -V2cp = 0, (4.157) 

which shows that the scalar potential cp obeys Laplace's equation. 
Inside the body the magnetic induction is determined by the constitutive law (4.23), 

which for convenience is repeated here: 

B= -2(Q *b + Q5b2 + S26b3)H. (4.158) 

Let the magnetic field H inside the material body be given in terms of a scalar potential 

cp. The magnetic induction B can now be written as 

B= 2(Q *b +1 b2 + S2sb3)gradcp, (4.159) 

which has to satisfy the field equation divB = 0. For convenience we introduce the tensor 

C defined as 

C= 2(S24b + Q5b2 + 1b3), (4.160) 

which allows the differential equations (4.154)1 to be written in the simple form 

div(Cgrad cp) = 0. (4.161) 

For a given free energy function SZ* and for a known deformation b= FFT (see the previous 

remark), equation (4.161) can be solved for the scalar potential cp and, as a consequence, 

the spatial distributions of the fields H and B and the magnetization M are known. 

Let the magnetic far field condition of this problem be given by an applied constant 

field with nonzero component Hoe, i. e. the applied field is parallel to the axial direction 

of the undeformed and deformed circular tube; see Figure 4.1. Due to interaction with 

the body the magnetic field lines deviate from the original direction in proximity to the 

boundary interface to satisfy jump conditions specified in equation (3.66). The field will 

therefore be dependent on both coordinates r and z. 

A circular cylindrical tube subjected to axial extension and inflation maintains its 

original axisymmetric geometry. The numerical solution can therefore be reduced to a two- 

dimensional problem restricted to the r-z plane as shown in Figure 4.2. The determination 

of the magnetic field distribution reduces, for the given deformation, to first defining a 

particular form of the energy function 11* in terms of the invariants Il, 12,13, K4, K5, K6 
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and secondly finding a solution of equation (4.161) at any given point inside the body. In 

the surrounding space, the solution of the Laplace equation (4.157) determines the scalar 

potential cp. 

Ho 

1-0 

Figure 4.1: The three-dimensional problem of a deformed circular tithe iii ui axial far 

field. 

Ho ý4 J2 

$urr¢unding space 
4(b_a) 

tube 
pI 

0b 
a 

03 

'i3 Ji 

Ho 
-o 

-a 

i2 

-o 

Figure 4.2: A section through the axis of the tube and its exterior corresponding to the 

domain of numerical computation in terms of coordinates (r. z). 

The continuity condition on the material interfaces given by the equation QHý xn=0 

is satisfied automatically, since may be taken as continuous across these boundaries, as 

noted earlier. The continuity condition QBý -n=0 requires that the radial component 

B. is continuous across r=a and r=b and that the axial component Bz is continuous 

across the ends of the tube z=0 and z=1 (here z is measured relative to the origin 03 

in Figure 4.2). 
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4.2.3 A particular form for the energy function 

We consider a simplified form of * that depends only on Ii and K4. Then the stress 

(4.22) and magnetic induction (4.158) reduce to 

T= 2Q*ib - P*I, B= -21l bH, (4.162) 

respectively, with H= -gradcp. We also define a dimensionless form of K4, namely 
K4 = K4/ic, where rc is a constant that enables a suitable scaling to be made in order to 

produce the appropriate relative magnitudes of the mechanical and magnetic effects. 

To be more specific, we now consider the form 1l given by [15] 

Q* =1 [cxo + ßo tanh(k4 )] 
(Ii - 1) 

-1+ v(K4), (4.163) 
I 

2k 

where cti0,3o, n and k are positive constants, with n>1, k> 1/2. Note that ao 

corresponds to the shear modulus of the underlying elastic material in the absence of 

magnetic effects. The form of (4.163) is motivated by an elastic strain-energy function that 

has been used to solve a number of specific boundary value problems [58] and reduces to it 

in the absence of a magnetic field provided we take v(O) = 0. When there is no deformation, 

the first term vanishes, which allows the remaining term involving the function v to be 

interpreted as the magnetic energy in the undeformed configuration (in which there is a 

residual stress due to the presence of the magnetic field). 

It is convenient to assume a form for v such that v'(K4) is given by [15] 

v'(K4) = -rcryoK4 -isech2 (K4) + So tanh(K4) - eo. (4.164) 

These equations provide the nonlinear dependence of 1 and 124 on K4, which are illus- 

trated in the Figure 4.3. 

The choice of the dependence of 1 and S24 on K4 is motivated by the phenomenon 

of magnetic saturation (see Subsection 2.2.1.2). In Figure 4.3 the first value for I,. is 

the smallest value of Il through the wall, and the other two values are chosen in order to 

illustrate the dependence on the deformation. 

The values of the different constants that appear in (4.163) and (4.164) are given in 

Table 4.1 [15]. 
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Figure 4.3: The nonlinear dependence of S2i and Q4 on K4[Arnp2/nie] for I1 = Ii = 

3.1027, I1= I1, =3.3 and I1=I1, =3.5. 

ao 2.205[ýIPa] 

/3o 0.4['MMPa] 

Yo 9.49344 x 10-8 [N/Amp2] 

b0 5x 10-7 [N/Amp2] 

Eo 27r x 10-7 [N/Amp2] 

K 2.15 x 101'[Amp 2/M2] 

k 3/4 

n2 

Table 4.1: Values of constants for the energy function: isotropic NIS elastomers. 

4.2.4 Finite difference method 

In cylindrical coordinates, considering only r and z, the equation (4.157) has the form 

(Appendix A. 1) 

a2 =o (4.165) 
dr2 

+rdr+dz2 

and equation (4.161) becomes 

Crr 
+ 

DCr, d 
)±Crr5 

DC .0C, 
- 
o, ;=0 (4.166) 

r Or ar Or OZ OZ O 

-7' 012345 
K4 

x10" 



CHAPTER 4. ISOTROPIC MAGNETO-ACTIVE ELASTOMERS 98 

We need to solve (4.165) and (4.166) for the free space and the tube respectively. 
Equation (4.166) is nonlinear since Crr(r, z) and C, z, z(r, z) are functions of the solution ,:. 

We use the finite difference method in order to solve (4.165) and (4.166). Consider a 
division of the z-r space into a finite, uniformly spaced grid of points with coordinates 
(zi, rj), where Oz = zi+i - zi and Or = ri+l - ri are assumed constant. Then, consider 
the following approximation for the partial derivatives of co: 

191P 
, 

Pi+l, j - (Pi-1, j 
öz 20z 

ßi2 w1 

49W 
, 

'Pi, j+i -'Pi, j-1 
är 20r 

(4.167) 

5-Z-2 L z2 
(ýi+lj 

- 2Wi, j + Wi-1, j)' 5-Z-2 

__ 
1( 

Dr2 pr2 lcoi, j+l - 2ýij +ßi, 7-1), 

(4.168) 

(-1.169) 

where the notation cpj j corresponds to the value of the function cp evaluated at the point 
(zi, rj) . 

Using the above approximations in (4.165) and (4.166) we get, respectively, 

11111 
Oz2 Wz-l, j + 

(, 
Er-2 2rOr Wi, j-1 -2 Ore 2rOr `ýz, ý-i 

11111 
-2 Qr2 + Oz2 wZ, ý + Ore + 2rOr `ýi, ý+i + Oz2 Wi+l, j = 0, (4.170) 

and 

(fz 
- gz)ýOi-l, j + (fr 

- 9r)Wi, j-1 - 2(fz + fr)w 
,j+ 

(fr + gr)Wi, j+l 

+(fz + 9z)wi+l, j = 0, (4.171) 

where 

fz = fr =Ore 9z = 2L 
aazx 9r =_ 

(Crr 

r+ 
a 
or 

rr 
. 

(4.172) 
Oz2 

In equations (4.170) and (4.171) it is possible by setting Or = Oz to obtain `normalized' 

forms for the difference equations, but we do not do that here (in order to have some degree 

of freedom regarding the relative size of Ar and Oz). 

We must remember that in (4.171) f, f, g, and g, are not constant; they depend on 

W. 

The difference equations applied for the complete space (4.2) produce a system of 

nonlinear algebraic equations, which has the form 

Qcp = h, (4.173) 



CHAPTER 4. ISOTROPIC' MIAG\ETO-ACTIVE ELASTOMERS 99 

where cp is a column vector formed with a rearrangement of ,, jj .Q is a matrix and in 

general we have Q= Q(cp), and h appears from the use of the boundary conditions. 
Due to the continuity of cp at the boundary of the tube. it is possible to solve (4.170) and 

(4.171) considering only the boundary condition for the exterior surface of the surrounding 
free space (4.2); however, this would produce a highly ill-conditioned matrix Q. and we 

opt to treat the equations (4.170) and (4.171) separately. 

4.2.5 A numerical scheme 

Consider Figure 4.4, where we have divided the surrounding free space into six parts: this 

division of the surrounding space is totally arbitrary, but we need to do this in order to 

transform (4.170) and (4.171) into a system of equations of the form (4.173). It has been 

found that different divisions of this surrounding space produce matrices Q of different 

qualities regarding the condition number, and the scheme shown in Figure 4.4 was the one 

with the smallest number among the different divisions we tried for this problem. 

Ha 

surrounding space 

(ý) (II) (IV) 
tube 

(VI) 
(h 

--------------- ----------------------------- 
_z 

(I) ` (IIII (V) 

Ho 

--o 

Figure 4.4: Division of the surrounding space for the finite difference method. 

For (4.170) along the line (a) we have the boundary condition (3.66) for a uniform 

axial field H= (0,0, Ho)T with B= µ0H0, and from (4.167)1 we have cpoj = OzH, - yolj; 

a similar condition can be found for the boundary (h). Regarding (b) we use the condition 

= 0, which for the free space from (4.167)2 means ßi, 0 = ýpi, l, and for (f) we have a 

similar condition. In the interfaces (c). (d). (e) and (g) we use the continuity condition 

(3.66)2: for (d), for example, we have 
,: j-_1j + µý Bj. where i* is the particular 

value of i at the line (d), and Bj is the value of the axial component of the magnetic 

induction frone inside the cylinder. and as a result it depends on the solution of (4.171). 

Similar conditions may be found along (c), (e) and (g). 
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Therefore (4.170) can be rewritten as 

Q(0) p(0) = h(°), (4.17-! ) 

where Q(0) only depends on Oz and Or and as a result is constant, and (4.174) is just a 

linear system of equations. The vector cp(°) is a column vector formed with the components 

cpij of the discrete scalar potential outside (o) the body (surrounding space Figure 4.2). 

The vector h(°) is formed by using the boundary conditions mentioned previously for the 

lines (a), (b), (c), (e), (f), (g) and (h); h(°) depends on the external field H° and the 

magnetic induction from the tube. 

For the difference equation (4.171) we use the boundary condition (3.74); for example, 

for the line (d) we have cpo = cps, where cps is the value of the potential in (d) from outside 

the tube; then it depends on the result of (4.170) (or (4.174)) for the surrounding space 

(Figure 4.2). For the tube (superscript (i)) we have from (4.171) 

Q(i) (Z) = h(i). (4.175) 

Here Q(i) is a function of cp(i); therefore (4.175) is in general a nonlinear system of algebraic 

equations. The column vector cp(i) is formed with the components of the discrete potential 

cj for the cylinder, and the vector h(i) depends on the solution of the exterior problem. 

Due to the nonlinearity of (4.175) and the coupling of (4.174) and (4.175) (due to 

the boundary condition on the surface of the tube), we have to solve these two system of 

equations with an iterative scheme. The figure on the next page shows this scheme; the 

problem was solved using MATLAB and the program can be obtained from the author if 

requested. 
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(1) Input initial data 

2) Fill exterior matrix Q(° 

(3) Fill interior matrix Qlz' 

first iteration 

(4) Solve Q12'cpit' = hiz' 

first iteration 

es no While errorl > tolerance 

n While error2 > tolerance 

(9) Calculate h(°) with cpkz+l 

(10) Solve Q(°)cp, °+1 = h(°) 
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(7) Calculate error2 

error2 = IIVPk+i 
-'PkW 

II/IkAki) II 

(8) Calculate correction of cpk+l 

end 
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Let us explain in more detail the steps of the numeric procedure shown above. 

1. We give the data about the geometry of the tube (interior radius, thickness and 
length of the tube), the `deformation parameters', the mesh parameters (number of 

points in the z and r directions), and the external magnetic field. 

2. Fill the exterior matrix Q(0) for the surrounding free space. This matrix is formed 

using the finite difference system of equations (4.170) with the modifications along 

the boundaries (a), (b), (c), (e), (f), (g) and (h) (Figure 4. -I). The vector h(°) with 

the boundary conditions for (4.165) is partially filled with the data along (a), (b), (f) 

and (h) (Figure 4.4), and for (c), (d), (e) and (g) we assume a first approximation 
for the boundary condition along the interface with the tube wall. 

3. The matrix Q(ii, which is formed from the difference equation (4.171), depends on 

the solution of the problem for the tube. In this step we assume a solution for the 

potential in the tube wall, and we evaluate Q(i> for this first iteration. The vector 

with boundary conditions for the interior (tube wall) problem h(2) is filled with a 

first approximation of the potential cp from the surrounding space. 

4. For a first iteration we solve the linear system Q(, z)cp1i) = h(, '), where the subscript 1 

means the first iteration. We assume here that for one iteration Q(i) is constant. 

Now we start an iteration procedure. Here we iterate in order to find the correct 

boundary condition for the interface between the tube and the surrounding free 

space (3.74), (3.66)2. The criterion to finish this iteration loop is to make errorl 

less than a given tolerance, where error1 corresponds to the norm of the potential 

outside cp, n+l for the step m+1 minus the potential outside in the previous step 

Wm I normalized by the norm of this vector. 

5. Inside the above iteration loop there is another loop in this case in order to solve the 

nonlinear equation Q(') W(') = h('). First with the potential for the tube from the 

previous step we calculate the coefficients for Qk') 

6. Then assuming Q(z) as a constant matrix we solve the now linear system Qktlcpk+1 = 

h$? for the potential in the next iteration cpk+l; here h, il is the vector with the 

boundary conditions from the solution of the problem in the free space. 

7. We calculate a relative error error2 for the potential cp(z) in the tube wall. 
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8. Now the potential for the next iteration (pkt+l is corrected following a procedure 

found, for example, in [28]. 

If error2 is less than a tolerance the loop ends; if not, we start again with the steps 

(5), (6), (7) and (8), but now working with W(' 
) 

corrected as mentioned before. k+l 

9. Once error2 is less than a given tolerance, with the potential for the tube cpk'+1 

we calculate the components of the vector h, °) for the exterior problem along the 

boundaries (c), (d), (e) and (g) (Figure 4.4). 

10. We solve the linear system of equations q(o)1 = h�L). 

11. The relative error errorl is calculated for the potential of the surrounding space. 

12. As in (8), the potential for the next iteration cp, °+1 is corrected. 

13. With the above corrected potential for the free space we calculate the vector h, 1z+1 

for the boundary conditions for the interior problem. 

If the relative error error1 is greater than or equal to the tolerance, then we repeat 

everything again; if the error is less than the tolerance we finish the iteration. 

14. With the potential for the tube cp() and the surrounding space cp(°) we calculate the 

magnetic field and the magnetic induction for the problem. 

4.2.6 Results 

In this subsection, the numerical results obtained for the spatial distribution of the mag- 

nitudes of the magnetic field and magnetic induction are summarized. 

We consider aspect ratios l/a of 4,6 and 8 and describe the deformation through the 

constants c and d introduced in (4.148). Axial compression (extension) corresponds to 

c>1 (< 1), and we consider values c=0.5,1,1.2,2 with8 d=0 or 0.0002. The magnetic- 

field distributions inside the tube wall in the deformed configuration are compared with 

those in the deformed configurations. For each calculation we set b= 2a. Note that for 

d=0 the deformation is homogeneous, while for d0 the deformation is nonhomogeneous 

since A then depends on r. 
8In the original problem the dimension of the cylinder was given in meters (in order to be consistent with 

the values shown in Table 4.1), the actual size of the cylinder (length and, for example, internal radius) 

was of the order of the centimeters. The dimension of d was [m2], and this is the reason this parameter 

seems to be too `small' 
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Figure 4.5: Magnitude of the dimensionless axial component of the magnetic field through 

the tube wall in an arbitrary (r, z) plane for aspect ratio l/a = 4. for a tube under 

compression (c = 1.2) with d=0.0002. 

Figure 4.5 shows the dimensionless magnitude of the axial component of the magnetic 

field through the material wall for an arbitrary (r, z) plane and for aspect ratio l/a =4 [15]. 

For this illustration the values c=1.2 and d=0.0002 were chosen. The origin of the 

nondimensionalized coordinate system in Figure 4.5 is indicated by 02 in Figure 4.2, so 

that r/a and z/l both run from 0 to 1. The results show that the magnetic field is 

essentially constant away from the boundary and symmetric about the centre z/1 = 0.5 of 

the tube. 

Similarly, for the same geometry and deformation. the dimensionless magnitude of the 

radial component of the magnetic field is shown in the Figure 4.6, which reveals that the 

radial component is antisymmetric with respect to z/l = 0.5 and r/a = 0.5. In each case 

the magnetic field is nondimensionalized with respect to the far field Ho, which is given 

the value 105[Amp/m]. 

We complement these results, which were shown in [15], with similar figures for the 

surrounding free space for the same problem. In order to facilitate the implementation of 

the numeric method the surrounding space was divided in six parts (see Figure 4.4); in 

Figure 4.7 we have the dimensionless magnitude of the axial component of the magnetic 
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Figure 4.6: Magnitude of the dimensionless radial component of the magnetic field inside 

the material wall on an arbitrary (r, z) plane for aspect ratio l/a = 4, for a tube under 

compression (c = 1.2) with d=0.0002. 

field for the region (I) in Figure 4.4. 

Figures 4.8-4.12 show the same results for the region (II). (III). (IL'). (V) quid (V'I) 

respectively. 

Similar results for the radial component of the field are shown in the Figures 4.13-4.18. 

From these figures for the behaviour of the field for the surrounding free space we 

see that far away from the tube the axial component is constant; in fact this component 

changes quickly only very close to the tube wall. As it can be expected, the axial component 

is symmetric with respect to the line J1 J2 (Figure 4.2); compare, for example. Figures 4.7 

and 4.11. 

Regarding the radial component of the magnetic field, for example, from the Figures 

4.13 and 4.16, we see that far away from the tube wall it is almost zero. This component 

is antisyninietric with respect to the line j02. 

The magnitudes of the axial and radial components of the magnetic field within the 

material depend on the aspect ration l/a of the tube. The distribution of these values along 

the line i-li2 identified in Figure 4.2 is shown in Figure 4.19 for aspect ratios l/a = 4.6.8. 

The line 12i, 2 is located at a distance of 3a/2 from the centreline (Figure 4.2). 

r/a 
0 U. 1 

Z/l 
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Figure 4.7: Magnitude of the dimensionless axial component of the magnetic field for the 

free surrounding space in (I) in an arbitrary (r, z), for the same data of Figure 4.5. 
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Figure 4.8: Magnitude of the dimensionless axial component of the magnetic field for the 

free surrounding space in (II) in an arbitrary (r, z). 
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Figure 4.9: Magnitude of the dimensionless axial component of the magnetic field for the 

free surrounding space in (III) in an arbitrary (r, z). 
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Figure 4.10: Magnitude of the dimensionless axial component of the magnetic field for the 

free surrounding space in (IV) in an arbitrary (r, z). 
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Figure 4.11: Magnitude of the dimensionless axial component of the magnetic field for the 

free surrounding space in (V) in an arbitrary (r, z). 
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Figure 4.12: 'Magnitude of the dimensionless axial component of the magnetic field for the 

free surrounding space in (VI) in an arbitrary (r, z). 
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Figure 4.13: Magnitude of the dimensionless radial component of the magnetic field for 

the free surrounding space in (I) in an arbitrary (r, z). 
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Figure 4.14: Magnitude of the dimensionless radial component of the magnetic field for 

the free surrounding space in (II) in an arbitrary (r, z). 
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Figure 4.15: Magnitude of the dimensionless radial component of the magnetic field for 

the free surrounding space in (III) in an arbitrary (r, z). 

0.4 

0.2 

o 

-0.2 

-0.4 
5 

Figure 4.16: Magnitude of the dimensionless radial component of the magnetic field for 

the free surrounding space in (IV) in an arbitrary (r. 
--). 
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Figure 4.17: Magnitude of the dimensionless radial component of the magnetic field for 

the free surrounding space in (V) in an arbitrary (r, z). 
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Figure 4.18: Magnitude of the dimensionless radial component of the magnetic field for 

the free surrounding space in (VI) in an arbitrary (r. z). 
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Figure 4.19: 'Magnitude of the dimensionless axial and radial components of the magnetic 

field H; /Ho, i=r, z, along the axial direction for aspect ratios l/a = 4,6,8 and at location 

1112 in figure (4.2), for c=1.2 and d=0.0002. 
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Figure 4.20: Dependence of the magnitude of the dimensionless axial and radial compo- 

nents of the magnetic field Hi/Ho, i=r, z, on the dimensionless radius at two different 

axial locations and for aspect ratios l/a = 4,6,8 and for c=1.2 and d=0.0002. 

Variations in the magnitudes of the dimensionless axial and radial components of the 

magnetic field in the radial direction at two different axial locations are shown in Figure 

4.20 for aspect ratios l/a = 4,6,8. Two significant locations are considered, at z/l = 0.5 

and z/l = 0.25, which are indicated, respectively, by the lines J02 and j3 j4 in Figure 4.2. 

Figure 4.21 shows the variation of the axial and radial components along the line ili2 

when the tube is undeformed (c = 1, d= 0) or subjected to the deformation corresponding 

to the parameters c=0.5 (extension), c=2 (compression), with d= 00002 in each case. 

An aspect ratio of l/a =4 is used here. Extension of a tube has, in particular, a tendency 

to make the axial field more uniform while compression has the opposite effect. Similarly, 

the variations of the same components along the radial direction. located at z/l = 0.25 and 

indicated by j3 j4 in Figure 4.2, are shown in Figure 4.22 for the undeformed and deformed 

configurations. 

In Figure 4.23, at the radial station corresponding to the line ii i2 (Figure 4.2). the 

axial component B, and the radial component Hr are plotted in dimensionless forms (re- 

spectively B, /Bo and H,. /Ho. with Bo = pH, ) for the whole axial range (z/l running 

from 0 to 9) in order to illustrate the continuity of the axial component of the magnetic 

induction B and the radial component of the magnetic field H. The component B: is 
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Figure 4.21: Variation of the dimensionless axial and radial components of the magnetic 

field for l/a =4 along the axial direction ili2 (r/a = 3/2) for the undeformed configuration 

(c = 1, and d= 0) and two deformed configurations corresponding to c=0.5 and c=2. 

with d=0.0002. 
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Figure 4.22: Variation of the dimensionless axial and radial components of the magnetic 

field for l/a =4 along the radial direction at the axial location z/l = 0.25 (line j3J4) 

for the undeformed configuration (c = 1, and d= 0) and two deformed configurations 

corresponding to c=0.5 and c=2. with d=0.0002. 
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Figure 4.23: Illustration of the continuity of the dimensionless axial component of the 

magnetic induction B and on the radial component of the dimensionless magnetic field H 

for l/a = 4,6,8 with c=1.2 and d=0.0002 at radial location corresponding to the line 

'1122 in Figure 4.2. The material is located in the interval z/l = [4,5]. 

continuous on the ends of the tube (located at z/l = 4,5). Outside the material, the mag 

netic induction is obtained from the applied magnetic field by application of the standard 

equation B= µ0H. The continuity of the radial component Hr of the magnetic field on 

the same boundaries is illustrated in the lower graph in Figure 4.23. Outside the material, 

far from the tube the magnetic field reduces to a field with an axial components only. 

Figure 4.24 shows the dimensionless radial component of the magnetic induction and 

the axial component of the magnetic field for aspect ratios of 4.6 and 8 along the line j3 j 

located at z/l = 0.25 (relative to the origin 02 in Figure 4.2). The cylindrical boundaries 

correspond to r/a = 1.2. Note that the radial component of the magnetic induction 

vanishes on the tube axis, as expected. 
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Figure 4.24: Variation of the radial component of the dimensionless magnetic induction 

and the axial component of the dimensionless magnetic field for aspect ratios l/a = 4,6,8 

with c=1,2 and d=0.0002 along the radial line j3j4 in Figure 4.2. The material is 

located in the interval r/a = [1,2] 



Chapter 5 

Transversely isotropic 

magneto-active elastomers 

In this chapter we provide the theoretical basis for the nonlinear propert i('s of a part iuiilar 

class of MS materials, namely the transversely isotropic magneto-active vlastoiliers, whose 

particular characteristic is that during the curing process, when the iiiatgiieto-activ'ce parti- 

cles are added to the rubber-like material, an external field is applied, and, as a result, the 

particles are aligned in a preferred direction. The aivaiilable experiiiieiitad (lata [7,50, : »' 

suggests that by doing so the capacity of a magneto-active elastomer to deform in the 

presence of an external magnetic field is enhanced significantly in comparison with the sit- 

uation of a random distribution of particles. For example, the results shown in [59]. which 

Naive been used as reference in the recent theoretical works about isotropic magneto)-act lye 

elastomers (see, for example, [30.33-35]). were actually obtained for trauisversely isotropic 

magneto-active elastomers. 

Three homogeneous boundary value problems are studied in Section . 5.2. The first two 

of them, the simple shear of a block and the traction of a cylinder, are used in Sect ion 

5.3 in order to propose a first approximation for an energy potential, f, )l the particular 

case of working with the magnetic field as the independent magnetic variable. Siibsection 

5.2.3 deals with the problem of the biaxial traction of a thin plate, which is use(l mainly iii 

order to argue about the difficulties and the possibility of design of an experünent. which 

inav allow us to find all the different derivatives of the energy fiiia ti(, ii that appear iii the 

constitutive equations (3.5S). (3.62), (3.64) and (3.6 5). 

As was mentioned above, the first two boundary value problems (>f Hý ýý iOfl . 5.2 a, 

118 
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used in order to propose a first approximation for an energy function in Section 5.3. Here, 

using as a reference the experimental data provided in [7,11] and [50]. which were obtained 

essentially for the traction and the simple shear problems. a procedure in order to obtain 
the energy function is provided. 

Since the particular form of the energy function given in Section 5.3 was found by appro- 

priate simplifications of the general form of the energy function, a criterion, which should 
be independent of the particular form of the constitutive equation, must be provided, in 

order to know in advance whether these simplifications may be used for a particular ma- 
terial. This criterion is provided by the universal relations (see Section . 4.1), which are 

relations that must hold for a given family of materials, independently of the particular 
form of the constitutive equation. One example of a linear universal relation is shown in 

Section 5.4. 

Finally, in Section 5.5, some non-homogeneous boundary value problems are solved for 

two cases with cylindrical symmetry, the inflation and extension of a tube, and the torsion 

and extension of a cylinder (see [35] and [33] for the counterpart of these problems for 

isotropic materials). The particular form of the constitutive equation found in Section 5.3 

is used in order to obtain closed form solutions for these problems. 
Most of this chapter is based on a draft paper by Bustamante and Ogden [20]. 

5.1 Constitutive equation for transversely isotropic MS ma- 

terials 

Let us consider the case in which the magneto-active particles have a preferred alignment, 

which is caused by the presence of a magnetic field or a magnetic induction during the 

curing process. Let us denote by ao the (unit) vector field associated with the alignment, 

and consider the following two cases for the independent magnetic variable. 

5.1.1 The magnetic induction as the independent variable 

In this case we have for the free energy function that 

S2 = S2 (F, Bi, ao), (5.1) 

where the total stress was given by (4.1)1 and (4.2) as 

TJ -1 F 
ÖF , "r =FRF - pI, 
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for a compressible and an incompressible material respectively. The magnetic field was 

given by (3.62) 

On x1 = aBI. 
As well as this, for the particle alignment field we have 

a=Fao. (5.2) 

Now, for a transversely isotropic material, the energy potential Il, which depends on a 

tensor field (F) and two vector fields (B1 and ao), must be a function of the following ten 

invariants (see, for example, (102,127]): 

I. = trc, 12 =2 [(trc)2 - trc2], 13 = det c, 

I4=Bl. Bl, I5=Bl'CBI, I6=Bl'c2B1, 

I7=ao"cao, 18=ao"c2ao, 

I9=ao"B1, Iio=ao"cBl. 

Then 0= SZ(I1, I2, I3, I4, Is, Is, I7, Is, Is, Igo). 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

Note that from the article by Zheng [127] we have that our function Il =Q (F, B1, ao) 

should depend on eleven invariants; where the additional invariant would be Ill = ao"c2B1; 

however, this invariant is not independent of the others. A proof is presented in Appendix 

B. 

Now, in order to obtain appropriate expressions for the total stress and the magnetic 

field, consider the following derivatives 

all 
= 2FT, 0912 

= 2(I1FT - FTFFT), 
aF; 

= 2I3F-1, (5.7) 
aF OF 
015 

= 2B1® FBI, 
M= 

2(B1® FFTFBI + FTFBI ® FBI), (5.8) 
aF aF 
4917 

= 2ao ® Fao, 
aI8 

= 2(ao ® FFTFao + FTFa0 ® Fao), (5.9) 
äF äF 

OF 
0,10 

=ao®FBI +Bi ®Fao" (5.10) 

Then, by using the chain rule (equation (4.9)1 with k=1, ..., 
10) in (4.1)1. we obtain for 

the total stress in the case of a compressible material' 

rr = J-1[2b111+2(Iib-b2)12+2I3S23+2J2B®B115+2J2(B®bB +bB (& B)Sl6 

+2a®a17+2(a®ba+ba(9 a)SZ8+J(a®B+B0a)Qlo], (5.11) 

'We use the notation Pi . en for i=1, ..., 10. 
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where a= Fa0. For an incompressible material we have from (4.2) that 

'r = 2b121+2(Ilb-b2)c2-pI+2B®Bc5+2(B®bB +bB (9 B)S26 

+2a®a117+2(a®ba+ba®a)528+(a®B+B®a)510. (5.12) 

Consider now the following derivatives of the invariants 

0914 
= 2B1, 

ýB 
- 2csl, 

als 
= 2C2 Bi, 

019 
= ao, aB (5.13) 

ll OB1 aB1 also 
asl = cao. (5.14) 

Using the chain rule in (3.62), we obtain for the magnetic field in the case of a compressible 

material 

H= 2Jb-1B14 + 2JBS25 + 2JbB16 + b-laf29 + a1210, (5.15) 

and for an incompressible material (where J- 1) 

H= 2b-1BS24 + 2BS25 + 2bBS26 + b-1a129 + aSZ10. (5.16) 

Some restrictions may be obtained on S2, as was done, for example, in [19], by studying 

the particular case in which there is no external load and field. In such a case we have 

F=Iý a=ao, 

and 

I1=I2=3,13 =1, I4=I5=I6=0, I7=I8=1, I9=110=0. 

Let us use the symbol fin order to denote a function f=f (Ik), k=1, 
..., 10, evaluated for 

the above values of Ik. Now, if there are no residual stresses and no residual field (which 

would mean we would not take account the hysteresis phenomenon for the magnetic field), 

we need rr =0 and H=0. In the first case, from (5.11), this implies 

(2SZ1 +4SZ2 +2SZ3)I+2(SZ7+2Sl8)ao ®ao = 0, (5.17) 

which should hold for any particular form of the free energy function and the field a0, 

therefore we have the following restrictions 

91 + 292 + 93 = 0, 

97 + 258 = 0, 

(5.18) 

(5.19) 

where in the case of an incompressible material from (5.12) we have that the equation 

(5.18) should be replaced by 

2521 + 4522 -p=0. (5.20) 
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Finally, from H=0 and (5.15) we get 

Sts+5210=0. (5.21) 

Remark Consider the case when there is no field B=0, but there is deformation (due 

to some mechanical load) F 54 I, the question is: Is there any `induced' magnetic field only 

due to the deformation as in the counterpart case of linear piezoelectric materials?. 

For piezoelectric materials we have that due to the particular atomic structure, a 

deformation provokes an asymmetric rearrangement of charges, and as a result we have 

a non-zero polarization field (see, for example, [67]). However, these materials are very 

special, and there is no reason to expect something similar in the magnetic case; from 

the description of the basic properties of magnetic materials (Subsection 2.2.1.2) there 

seems to be no similar mechanism that might cause the presence of a magnetic field for 

an MS elastomer when there is deformation but no external field. Then, an additional 

restriction in the form of the constitutive equation would be to have H=0 whenever 

B=0; for the isotropic case (equation (4.13)) this does not introduce any additional 

restriction, but this is not the case for transversely MS materials. Let us denote by f the 

function f=f (Ik), k=1, ..., 10 evaluated for 14 = 15 = 16 = 19 = I10 = 0, then from 

(5.15) the restriction H=0 if B=0 implies 

b-1SZ9 + IStio = 0, (5.22) 

which should holds for any tensor b, therefore this implies 

99=910=0. (5.23) 

Note that the above restrictions would not mean that there is no a coupling between the 

magnetic effect and the deformation, but it only means that is always necessary to have 

an external field for such a coupling to exist. As well as this, note that if (5.23) holds, this 

implies that (5.21) holds. 

5.1.2 The magnetic field as the independent magnetic variable 

In this second case from Subsection 3.3.3 we would have for the free energy function SZ` 

that 

Q* = St* (F, Hi, ao), (5.24) 
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where the total stress was given by (4.14)1 and (4.15) as 

T=J-1F 
OF' 

T=F8F -p*I, 

for a compressible and an incompressible material respectively. The magnetic induction 

was given by (3.65) as 
a12* 

Similarly to the previous case, a transversely isotropic material must be a function of the 

following alternative set of ten invariants 

Il = trc, 12 =2 [(trc)2 - trc2], 13 = det c, (5.25) 

K4 =H, -Hi, K5 = He " cHc, K6 = Ht " c2HI, (5.26) 

I7= ao"cao, 18= ao"c2ao, (5.27) 

K9 = ao " Hi, Klo = ao " cHl. (5.28) 

Consider now the following derivatives 

all 
= 2FT 4912 

= 2(I1FT - FTFFT), 
aI3 

= 2I3F-1, (5.29) 
äF OF aF 
äK5 

= 2Hl ®FHl' = 
aKs 

2(Hi ® FF T FHI +FT FHI ® FH1), (5.30) 
8F OF 

0917 2a° ® Fa°, 
aI8 

,= 
2(a° ® FFTFao + FTFa° ® Fao), (5.31) 

aF aI 
OK10 

=a0®FH1+H1®Fa0" (5.32) 
OF 

Then, by using the chain rule for derivatives in (4.14)1, we obtain for an unconstrained 

material the following expression2 

T= J-1 [2bQ* + 2(Ilb - b2)1 23+ 2I31l + 2bH ® bHS25 + 2(bH ® b2H + b2H ® bH)1 

+2a0a1 +2(a®ba+ba(9 a)SZ8+(a0bH+bH0a)5210, (5.33) 

and for an incompressible material, from (4.15) we get 

T= 2bQ* + 2(Ilb - b2)Q* - p*I + 2bH ® bH1l + 2(bH ® b2H + b2H (9 bH)S26 

+2a 0 all + 2(a ® ba + ba (9 a)S28 + (a ® bH + bH (9 a)S2i0. (5.34) 

Consider the following derivatives 

8K4 
_ 

OK5 
= 2cHl, 

aK6 
= 2c2HI, 

OK9 
= ao, (5.35) 

OHi 
2Hý' OHl aHl äH1 

öKio 
_ cao (5.36) 

4KI 

'Here the notation SZ; means the partial derivative of S2' in I; if i=1,2,3,7,8, or in K; if i=4,5,6,9,10. 
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As a result, from (3.65) and using the chain rule, we get for the magnetic induction, in 

the case of an unconstrained material, that 

B= -J-1(2bH1 + 2b2HSZ5 + 2b3HS26 + a1t9 + baQ*O), (5.37) 

and for an incompressible material we have 

B= -(2bH1 456+ 2b2HQ* + 2b3HQ* + a1Z9 + baStio). (5.38) 

As in the previous case, some restrictions for * may be obtained if we study the case 

when there is no external loads or fields, assuming that there are no residual stresses and 

no residual fields. In such a case we have 

I1=I2=3, I3=1, K4=K5=K6=0, I7=I8=1, K9=K10=0. 

Again, let us use the symbol f in order to denote the function f evaluated with such 

values. Then, if there is no residual stresses, from (5.33) we have for an unconstrained 

material 

Q*j+2Q2*+Q3* = 0, 

527+258=0, 

and for an incompressible material (5.39) must be replaced by 

2Sti +4522 -p* = 0. 

If there is no residual field, we have from (5.37) that 

ý9+Qio=0. 

(5.39) 

(5.40) 

(5.41) 

(5.42) 

As in the previous subsection, if we assume that there is no induced magnetic induction 

when the external magnetic field is zero, and when there is deformation, then we would 

have the following extra restriction for SZ* 

IQ; +bQlo=0 (5.43) 

where SZ*, k=9,10 is the function Slk evaluated for K4 = K5 = K6 = K9 = Klo = 0. 

Therefore we obtain the restrictions 

S29 = S2io = 0. (5.44) 
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5.2 Boundary value problems: homogeneous deformations 

In this section, as was mentioned in the introduction, we will consider three simple bound- 

ary value problems, where the deformation is essentially homogeneous. These problems 

are the simple shear of a block, the simple tension of a cylinder and the biaxial tension of 

a thin plate. 

The idea of the two first problems is the following. Little experimental information 

is available at the present moment for magneto-active elastomers. Due to the complexity 

of the phenomena involved, it is not as easy as in the pure non-linear elastic case to do 

experiments in order to find an appropriate form for the energy function. Moreover, the 

large number of invariants involved makes the analysis even more difficult. As we will see 

in detail in Section 5.3, most of these experimental researches have been done for rather 

simple problems. The idea is to have general results for these two homogeneous problems, 

and then to use them in the following section in order to look for a preliminary form for 

the energy function. 

The idea of studying the biaxial tension problem is the following. As is well known for 

the pure non-linear elastic problem (see, for example, [78]), it is possible in the case of an 

incompressible rubber-like material to find the behaviour of the energy function for a wide 

range of values of the invariants by using only the biaxial tension experiment for a thin 

plate. It is not difficult to see that in our case such is not the situation; nevertheless, we 

study in which cases it would be possible at least theoretically to find the energy function 

as for the pure elastic case. 

5.2.1 Simple shear 

Simple shear for the magneto-elastic case has been treated several times in the literature; 

see, for example, [35] for the isotropic problem; see also [12] for isotropic materials but 

with a slightly different formulation for the energy function. 

Consider the simple shear deformation 

X1 = Xi +'yX2, X2 = X27 X3 = X3. (5.45) 

As a result, we obtain for the deformation gradient and the left and right Cauchy defor- 
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mation tensors, respectively, the components 

1ry0 

F- 010 

001 

1+-y2-y0 

b= -y 10 

0 01 

The two first invariants (5.25)1 and (5.25)2 are 

I1=I2=3+'y2. 

1 -Y 0 

ry1+20 

001 

We will consider the two cases for the independent magnetic variable separately. 

5.2.1.1 The magnetic field as the independent variable 

(5.46) 

(5.47) 

We will only consider the case of an external magnetic field that is uniform and parallel 

to the direction 2 (see [59] and [50] for the experimental counterpart of this problem, in 

particular regarding the orientation of the field and the particles). Then, 

Hl = (0, Ho, O)T, (5.48) 

where Ho is a constant. From (5.26) we have 

K4=H,, K5=Hö(l+ry2), K6=Hö[ry2+(l+_y2)2]. (5.49) 

The Maxwell stress was given by (3.44) as 

Tm=µo H®H- 
I(H"H)I (5.50) 

where from (3.9) we had that H= F-THI; then in this case H= (0, Ho, 0)T , and as a 

result the non-zero components of the Maxwell stress are 

oµo Höu0 
_ 

Höµo H 
Tmý _- 2 -r. 7n22- 27 

T7n33=- 
2 

(5.51) 

Now, there axe several options for particle alignments; let us consider the following 

two simple cases (see, in particular, [50] for experimental results obtained for a slab under 

shear with the two following particle alignments). 

Particle alignment in the x2 direction. In this case the initial particle alignment is 

given by the field 

ao = (p, 1, p)T; (5.52) 
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as a result, from (5.2), we get 

(5.53) 

and the invariants (5.27) and (5.28) are given by 

I7=1+'y2, I8=rye+(1+'y2)2, K9=Ho, Klo=H0(1+, 1 
2). (5.54) 

Then, from (5.34) the components of the total stress are given as 

Tu = -P* + 2(1 + ry2)S21 + 2(2 + ry2)SZ2 + 2Höy2S25 + 2Hoy2(2 + 7`')S26 

+2ry2S27 + 4y2(2 + y2)S28 + 2Ho'y21l 0, (5.55) 

T22 = -P* + 21 + 4522 + 2H 1l + 4Hö (1 + -y2) S26 + 211 + 4(l + y2) S28 57 

+2H01l 0, (5.56) 

T33 = -P* + 2Q* + 2(2 + "y2)1 , (5.57) 

T12 = 2'YLQi+Q2+HO1Z +Ho(3+2y2)St6+St7+(3+272)S28+H0S2io), (5.58) 

T23 = 713 = 0. (5.59) 

Regarding the components of the magnetic induction we have from (5.38) that 

B1 = -ry[2H0 + 2H0(2 + ry2)S25 + 2H0(3 + 4ry2 +'y4)S26 + 129 + (2 +'y2)1 10], (5.60) 

B2 = -[2H09 + 2H0(1 + -y2)St5 + 2H0(1 + 3y2 + ry4)S26 + 1l + (1 + ry2)S210], (5.61) 

B3 = 0. (5.62) 

Particle alignment in the xl direction. In this case the initial particle alignment is 

given by the following field in the reference and the current configurations (from (5.2)), 

respectively, as 

a0 = (1,0,0)T, a= (1,0,0)T. (5.63) 

The invariants we need to recalculate are (5.27) and (5.28) and they axe given by 

I7=1, I8=1+7 e, K9=0, K1o=Hoy; (5.64) 

as a result, from (5.34), the components of the total stress are 

+2(2 + ýy2)q* + 2Hory21l + 4Ho'y2(2 + y2)Q* + 2527 Tii = -p* + 2(1 +'y2)1 1256 
+4(1 + ry2)S *+ 2Ho'Y1l 0, (5.65) 

7*22 = -p* + 2Sl + 41l + 2H 1l + 2Hö (1 + _y2)526, (5.66) 

T33 = -p* + 2521 + 2(2 + _y2)St2, (5.67) 

+ 2'yQ* + 2H,, 2-y1 + 2H 'y(3 + 2y2)n* + 2-yQ* + H01 0, (5.68) T12 = 2-yIl 12568 
T13 - 723 = 0, (5.69) 
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and the components of the magnetic induction are given by (5.38) as 

B1 = -[2Ho-y92* + 2H, >-y(2 + ß)S25 + 2H0 y(3 + 4'y2 +'y4)SZ6 + Sý9 + (1 + ; `)Stioý. (5.70) 

B2 = -[2H01Z + 2Ho(1 + -y2)1 + 2H0(1 + 3y2 +'y4)1 + yIl ]" (5.71) 4561 

B3 = 0. (5.72) 

5.2.1.2 The magnetic induction as the independent variable 

For completeness we will consider the same problem, but now taking the magnetic induc- 

tion as the independent magnetic variable (some of the results obtained by. for example, 

Jolly et al [59] correspond to this situation). As in the previous problem we consider only 

the case of an external magnetic induction, which is constant and parallel to the direction 

2; then 

B1 _ (0, Bo, o)T, (5.73) 

where Bo is constant. The fourth, fifth and sixth invariants are given by (5.4) as 

I4=Bö, I5=Bö(1+y2), I6=Bä[72+(1+ýy2)2]. (5.74) 

The Maxwell stress in this problem is given by (3.43) as 

Tom,, = ic1 BOB- I (B " B)I (5.75) 

and in this case, from (3.7), B= FB1, and we have B= ('y, 1,0)TBo; hence, the non-zero 

components of the Maxwell stress are 

B2 B2 B2 
Tmil = l-'o 12 (1'2 7, m22 = Igo 2 1'2), Tm33 = -Fý'O 

12 (1 + 7'2), (5.76) 

5.77 Tmiz = 140 
1 Bo'Y 

We consider only the two following simple particle alignments. 

Particle alignment in the x2 direction. As in the previous problem let us consider 

the field (5.52) for the particle alignment; then the rest of the invariants are given by (5.5) 

and (5.6) as 

17 =1+72,1 8=- Y2+( 1+72 )2, I9 = Bo, Iio = B,, (1 +'Y2), (5.78) 
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and the components of the total stress given by (5.12) are 

Tli = -P + 2(1 +'y2)1l +2(2+'y2)112 + 2Bo, y215 + 4Bo-y2(2 +72 )1l6 

+2^y2S27 + 472(2 + ry2)S28 + 2B01 10, (5.79) 

722 = -P + 21l + 41 2+ 2B2Q5 + 4Bä(1 + ry2)S2s + 2527 + 4(1 + -y2)118 + 2B0Stlo. (5.80) 

T33 = -p+25 1 +2(2+72)12, 

712 = 2y[1 +S22+Bo1t5+Bö(3+2'y2)SZ6+17+(3+2y2)SZ8+B0S21o, 

713=728=O. 

The components of the magnetic field, which are given by (5.16), are 

Hl = ry[2B, Q5 + 2Bo(2 + 72 )S2s + 52101) 

H2 = 2B014+2B015+2Bo(1+'y2)SZ6 +S29+11o, 

H3=0. 

(5.81) 

(5.82) 

(5.83) 

(5.84) 

(5.85) 

(5.86) 

n 
Regarding the mechanical boundary conditions (3.68), let us denote by t the external 

stress vector (current configuration), which corresponds only to the mechanical part of the 

external load; then the boundary condition (3.69) reads 

n 
t= ýT 

-Tm) I1. (5.87) 

Let's assume that for the faces of the slab limited by the planes X3 =0 and X3 = L3 there 

is no external mechanical load; then the boundary condition (5.87) implies that 

T33 = Tross, (5.88) 

and from (5.81) and (5.76)3 we get 

2 

p=2SZ1+2(2+-y2)SZ2+µý1Bo(1+ Y2). (5.89) 

As a result, for (5.79) and (5.80) we have 

Til = y2Q, + 2B272f 5+ 4B272(2 + ry2)SZs + 2, t21 7+ 4y2(2 +Y2)Q8 
2 

+2Bo1'21io -o 
B0 

(1 + 72), (5.90) 

T22 = -2'y2112+2B2 5+4B2(1+y2)Q6+2Q7+4(1+'y2A +2BoQlo 
2 

-µo 
1B° (1 + Y2). (5.91) 
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Particle alignment in the x1 direction. Let us work now with the field (5.63) in 

order to represent the particle alignment. In such a case we have 

I7=1, I8=1+'y2,1 9=0, I1o=Bo, y. (5.92) 

For the components of the total stress from (5.12) we get 

Tii = -p + 2(1 + "y2)S21 + 2(2 + y2)S22 + 2Böy2SZ5 + 4Boy2(2 + y`)Sls 

+2St7 + 4(1 + y2)S2s + 2BoyQ, O, (5.93) 

T22 = -p + 21 + 412 + 2B2 5+ 4B2(1 + y2)SZ61 (5.94) 

r33 = -p + 2521 + 2(2 + y2 )Q27 (5.95) 

T12 = 2'){ + 2-y Q2 + 2B27Q5 + 2B2y(3 + 2y2)S2s + 2y 18 + B01110, (5.96) 

713 = 723 = 0) (5.97) 

and the components of the magnetic field are given by (5.16) as 

Hl = 2Bo'S25 + 2B0'y(2 +'y2)SZg + 129 + Il10, (5.98) 

H2 = 2B014 + 2B0125 + 2B0(1 +'y2)116 -'Y12s, (5.99) 

H3 = 0. (5.100) 

Regarding the mechanical boundary conditions (3.68), as in the previous case we as- 

sume no mechanical external load for the same planes; it is easy to show that the form of 

p is again given by (5.89) and then, from (5.93) and (5.94), we obtain 

71, = y2S21 + 2Bö'y215 + 4Böry2(2 +72 )Sts + 2117 + 4(1 + Y2 )Q8 
B2 

+2Bory1io - µo 12 (1 + -Y 2), (5.101) 

B2 
722 = -272112+2Bo15+4Bä(1+72)16-µý1 2 (1 + 72). (5.102) 

5.2.2 Uniform extension of a bar 

The simple tension of a cylindrical bar was used by Bellan and Bossis [7] and by Bossis et 

al. [11] in order to obtain some important experimental results, which will be used later 

on, in Section 5.3, in order to obtain some preliminary forms for the free energy function. 

Consider the deformation 

1/2 R, 0 =8, z=AZ. (5.103) 
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The components of the deformation gradient and the left and right Cauchy-Green tensors 

are given by 

'-1/2 00 A-1 00 

F= 0 A-'! 20 b=c= 0 -10 (5.104) 

00A00 A2 

and the first and second invariants are given from (5.25)1 and (5.25)2 as 

Il = 2A-1 + A2,1 2= A-2 + 2A. (5.105) 

As in the previous example, we will work with two cases, first taking the magnetic field 

as the independent magnetic variable, and then taking the magnetic induction as the 

independent magnetic variable. However, we only consider one example for the particle 

alignment, which corresponds to a uniform distribution in the axial direction. 

5.2.2.1 The magnetic field as the independent variable 

We consider only the axial magnetic field 

Hi = (0 0 Ho)T , 
(5.106) 

where Ho is constant. As was mentioned previously, let us consider the following uniform 

field representing the initial alignment of the magneto-active particles: 

a0 = (0,0,1) T (5.107) 

As a result, from (5.2) we get a= (0,0, A)T. The rest of the invariants, which are given 

by (5.26), (5.27) and (5.28), are 

K4=Ho, K5=A2Ho, K6=\4Hö, I7=A2, I8=\4, Kg = Ho, (5.108) 

Klo = \2Ho. (5.109) 

From (5.25) the components of the stress axe 

Trr = TOO = -p* + 2A 'Q + 2)-2(1 + A3)Q* (5.110) 

rzz = -p* +2 \21 + 4A1 + 2Hö ýZSZ5 + 4H, 2 \4SZ6 +2 A2St7 +4 A452ä 

+2HoA2S210, (5.111) 

Tre = Trz = T9z = 07 (5.112) 
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and from (5.38) the components of the magnetic induction are 

Br = B®= 0, (5.113) 
BZ = -A(2Hoc4 + 2H0A215 + 2Ho%4c 

69+ 
11 + A211* )" (5.114) 

By using (5.106) in (3.9) it is easy to show that H= (0,0. A-1Ho)T ; then, from (3.44). the 

non-zero components of the Maxwell stress are given by 

TT%trr = T7ItBB =_r µo\-2Hö (5.115) 

A-2112 (5.116) Tmzz =1µ, 0 0. 

As in the simple shear problem, let us study in more detail the mechanical boundary 

condition (3.69). If we assume no external mechanical surface load for the surface r=a, 
then we have 

Trr = TMrr 
- 

(5.1 17) 

From (5.110) this condition implies 

p* = 2A-1Q + 2(A-2 + A)S22 + 2µoß-2Ha, 
(5.118) 

which is equivalent to the condition reg = T�, ee . 
As a result we have, for (5.111), 

Tzz = 2(A2 - -1)S21 + 2(A - -2)Q* + 2HHA2SZ5 + 4HHA4SZ6 + 2A2527 

+4A4SZ8 + 2HoA21l 0- 
2µ0A-2H2 

(5.119) 

It is not difficult to show that the external load necessary to maintain this deformation is 

given by t, 
z = T, z, z - Tmzz . 

5.2.2.2 The magnetic induction as the independent variable 

As for the magnetic field, let us consider again a uniform axial magnetic induction given 

by 

Bi = (0,0, Bo)T (5.120) 

As in the previous case, we consider the same initial particle alignment field. Then the 

invariants (5.4), (5.5) and (5.6) are given by 

I4=Bö, I5=X2Bo, I6=A4 Bö, I; =A2, I8=A4, I9=Bo, (5.121) 

Iio = \2B0. (5.122) 
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The non-zero components of the total stress (5.12) are 

Trr = Tee = -p + 2, \-1521 + 2(A-2 + A)12, 

Tzz = -p +2 2521 +4 Q2 + 2BoA215 + 4BöA4S26 + 2, \2527 + 4\1l8 

+2B0A2110, 

and the components of the magnetic field (5.16) are given by 

Hr=Hg=0, 

Hz = A-' (2BJ24 + 2B0A2S25 + 2B0A496 +c9+ %2SZ10) 

(5.123) 

(5.124) 

(5.125) 

(5.126) 

With B= (0,0, AB, )T the non-zero components of the Maxwell stress (3.43) are 

TmTr = Tinee =- 2µo 
1 AZBö 

, (5.127) 

_2 µ-i 22 (5.128) TmZ: -o 
iý Bo. 

Then, as in the above problem, if we assume no external load on the surface r=a, we get 

p=2A-'S21+ 2(A-2+A)c12+2µo1A2B2 (5.129) 
07 

and hence, from (5.124), we have 

ýxz = 2(A2 - A-1)Ql + 2(A - 
2)122 + 2BöA2S25 + 4B2 \4126 + 2A2117 

+4A4528 + 2B0A21 10 - 2µi 
1A2Bo. (5.130) 

5.2.3 Biaxial tension for a thin plate 

For the pure elastic non-linear problem, especially for incompressible materials, it is not 

difficult to show that the biaxial tension of a thin plate may theoretically give all the 

data necessary in order to find the form of the energy function (see, for example, [110 

and [78] ), without assuming any further simplification. This is not the case for transversely 

isotropic materials, and of course of our problem, in which, as we have seen in Subsections 

5.1.1 and 5.1.2, the number of invariants involved is too large for this to be possible here. 

Nevertheless, it is interesting to study in which particular situations we would be able, at 

least theoretically, to find the complete form of the energy function with such a test. 

Consider the uniform deformation given by 

X1 = A1X1, X2 = A2X2, x3 = 13X3. (5.131) 
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For the incompressible case we have Al \2\3 = 1, so that 

1 
A3 _ A1A2 (5.132) 

Consider now the following particular external magnetic field (for brevity we will not 

consider the case of the magnetic induction as the independent magnetic variable here) 

HI = H0(cos B. sin 0 . O)T (x. 133) 

where Ho is constant. There are several options for the initial alignment of the magneto- 

active particles, and we consider only two cases: a field parallel to the external magnetic 

field, and a field perpendicular (in the plane 1-2) to the external magnetic field (see Figure 

5.1). 

Iý 

i 
_ý 

ý_ 
1 

Figure 5.1: Thin plate for biaxial traction. 

5.2.3.1 Parallel particle alignment 

In this case we have 

a0 = (cos 9, sin 9,0)T. 

The invariants (5.25)-(5.28) are given by 

Il = Ai +A+ A3, Iz = 1Az + Ai A3 + A2A5, 

K4 = Hö H. K; = H, -, (Ai cos' 0+ iý2 sin2 0), 

Iss = Hö(Aicost0+)1sin'6), 

17 _A cos2 0+A sine0,18 = A4 

K, = Ho. K1o = Ho(A cos' 0+ )2 sin 20). 

(5.134) 

(5.135) 

(5.136) 

(5.137) 

(5.138) 

(5.139) 
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and the components of the total stress (5.34) are 

Til = -p* + 2A1SZ1 + 2A1 (A2 + A3)S22 + 2Hö cos2 6A1525 + 4H0 cost OA 1 

+2 cost 9)1 +4 cost 64i ci. + 2H,, cost OA Qio (5.140) 

722 = -p* + 2A 2SZ1 + 2.2(A1 + )ý3)S22 + 2Hö sin 2 6A25ý5 + 4Hö sine 9 2526 

+2 sin 2 OA2 27 52* +4 sin 2 O4 Ii 82 + 2H0 sin 2 6A2SZlo, (5.141) 

T33 = -p* + 2A2 + 2A2(A + A2)Q21 (5.142) 

T12 = sin(20)AlA21[15 +X10 + (A1 + A2)Q*]Ho + 127 + (A1 + A2)S2$}. (5.143) 

713 = T23 = 0. (5.144) 

The components of the magnetic induction (5.38) are 

Bi = -illcos0[2Ho(1 +*l +)11526)+S29+ý1q10], (5.145) 

B2 = -A2 sin9[2Ho(S24 + \2 2526 q* + \49*) + 129 + \2g10}, (5.146) 

B3 = 0. (5.147) 

For this problem the Maxwell stress is given by (3.44), from (3.9) we have that H= 
T 

Ho ( cos 01 S'ß, 0) , and then 

12 H cos2 9 sin2 0 TMi l ol ýo =2 A- 2 
1 A2 2 

(5.148) 

Tmzz 
12 

=2 Ho I ýo 
sine B 

A2 - 
2 

cost B 
A2 1 

(5.149) 

12 H cost e sine e Tm33 
oloo 

= -2 
A2 1 

+ A2 , 2 
(5.150) 

TM12 = 
Ho µo 

cos 9 sin 9, 
A1A2 (5.151) 

TM13 = Tm23 = 0. (5.152) 

Regarding the mechanical boundary conditions, let us assume that there is no external 

load on the faces of the plate defined by the surfaces X3 = 0, h, as in the above boundary 

value problems. Let's define t as the stress vector over the surface with unit normal n, 

in this case let's call the surface X3 =h the surface 3. Then for this surface we have 

n= (0,0,1)T, and as a result from (3.68)1 we have 

(n) 

t= (T - Tm)n. (5.153) 

(3) 
If t= 0 we obtain 

T33 = TM33 , 
(5.154 
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and hence 
2 

p* = 2a3SZ1+2 a3(A1 + a2)SZ2 + 2Hµ0 
C ý22 e+ 81 

2e (5.155) 
12 

Then for (5.140) and (5.141) we finally get 

Tll = 2(A2 A2 Q* +2 A2 A2 A2 S2* + 2H2 cost OA252* + 4H2 cost 9A4 1 1- 3ý 1 2( 1- 3) 201506 

+2 cost 9A1Q* +4 cost 9'11 + 2Ho cos2 6Aiq* 10 
12 cos2 9 sine 9 

-2 Ho µo ý2 + A2 
(5.156) 

12 

T22 = 2(A2 - A2 1* + 2A2 (A2 - A2 S2* + 2H2 sin 2 OA21 + 4H2 sin 2 9) 41l 2 3J 112 3ý 2025026 

+2 sin2 9A1 728+4 sin 2 9)41 + 2Ho sin2 e, x co 
12 COS2 e sin2 e 

-2 Ho to A2 + A2 
(5.157) 

12 

For the edges of the plate, we define the plane (1) with normal vector n= (1,0,0)T, which 

corresponds to the plane defined by X1 = L1; equally we define the plane (2) with normal 

vector n= (0,1,0)T, which corresponds to the plane defined by X2 = L2 respectively (see 

Figure 5.1). For the plane (1) we have the external load 

1( 
t= (r11 

-7 Mil 7-12 - Trrt12 0) T1 (5.158) 

and for the plane (2) we get 

(2) 7, 
t= (r12 - 77n12 3 722 - 7m22 5 0) . 

(5.159) 

Let 
Wtj 

be the component in the direction j of the stress vector on the plane i. 

To summarize, from (5.145), (5.146), (5.158) and (5.159), we have 

B1 = -X1 cos 0[2Ho(94 + , 
\2q* + iýi1 )+ g9 + \1g10], (5.160) 

B2 = -A2 sin6[2Ho(SZ4 + \2q* 
25 + \2q6) +1 9 + \2g10], (5.161) 

(1) 
22*2222 2* 22 4* 

t1= 2(A1 - A3)S21 +2 A2(A1 - \2)n* 2+ 2Ho cos 9A1525 + 4Ho cos BA1SZ6 

+2 cos2 0, \2Q* +4 cos2 0, \4Q* + 2H,, cos2 9A2n* 
Ho 

cos2 O o, 17181 10 - A2 
N (5.162) 

1 

(2) 22*222*22 2p* 
524 t2= 2(ý2 - A3)S21+2 A1(A2 -A )S22 + 2Ho sin 9A2St5 + 4Ho sin 9A2SZ6 

2 

+2 sin2 6A252* +4 sin2 9A4Q* + 2Ho sin2 9A252* 
H° 

sin2 8µ (5.163) 27282 10 - A2 o, 
1 

(1) (2) 
t2=t 1= sin(29)AiA2{[S2 + Qi0 + (A1 + A2)Qs]Ho + Sý7 + (A? + ý2)SZ8} 

_ 
H0 2 

µ- 
cos e sin 9. (5.164) 

A1 A2 
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5.2.3.2 Perpendicular particle alignment 

In this second case we have 

ao = (-Sino, coso, o)T (5.165) 

The invariants (5.25) and (5.26) are the same, given by (5.135), (5.136) and (5.137). As 

for the rest of the invariants, from (5.27) and (5.28) we have 

17 = sin2 OA + cost eat, 18 = sine 9A + cost OA2, 

Klo = Ho cos 0 Sin 0(A2 - Al ), 

and from (5.34) the components of the stress are 

Tll = -p* + 2A1 + 2A1 (A2 + A3)S22 + 2H, cost 9A1SZ5 + 4Ho cost 8A1Q6 

+2 sin 2 OA2f +4 sin2 OA4Q - 2H,, cos 0 sin 9A Zio, 

722 = -p* + 2A1 + 2A2(A1 + A3)St2 + 2H0 cost BA2S25 + 4H0 cos' 9A25ý6 

+2 sin2 0, \2Q* 728+4 sin2 9)\4q* - 2H0 cos 0 sin 8)2S210, 

733 = -p* + 2A3SZ1 + 2A3 (Ai + AZýSZ2, 

T12 = sin(29)AiA2[Hö(St5 + (A + A2)Qs) + Sý7 - (A1 + A2)Q8] 

+H0 cos(29) Ai A21 0, 
Tig = 723 = O. 

And from (5.38) the components of the magnetic induction are given as 

B1 = -2H,, COS 8A1(SZ4 + i11SZ5 + %1SZ6) + ill sin 9(1 + A1 q10), 

B2 = -[2H0Sll1BA2(1& + %2525 + i12SZ6) + A2 COS9(SZj + iý2q10)1, 

B3=0. 

(5.167) 

(5.168) 

(5.169) 

(5.170) 

(5.171) 

(5.172) 

(5.173) 

(5.174) 

(5.175) 

Since (5.142) is the same as (5.169), and since the same happens with the Maxwell stress, 

then the expression for p*, in the case we assume no external mechanical load on the 

plane 3, is given by (5.155), and we may derive five expressions, as in the parallel case, for 

the two components of the magnetic induction, and the three components of the external 

loads, which for brevity we do not list here. 

So from the first problem (the parallel alignment) we have five equations and ten partial 

derivatives of SZ* that must be found. It is clear we do not have a unique solution. But 

from the second case (the perpendicular alignment) we have obtained five more equations. 

K9 = 0, (5.166) 

The question is if they are independent or not. Nevertheless, we still would have more 
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unknowns than equations, and it would be necessary to assume further simplifications in 

the form of Q* in order to be able to solve the above system of equations. Note that in the 

particular case of an isotropic material, where we would have that S2* would not depend 

on 17,18, K9 and K10, we have that the system of five equation of the parallel case provide 

enough equations in order to find the partial derivatives of S2* in Il, I2, K4. K5 and K6, 

but if and only if 00 and 0 7r/2. 

Of course the above may work from the theoretical point of view, but from the practical 

point of view it may be very difficult to achieve a uniform biaxial extension, where besides 

the normal loads, we must provide a shear (5.164). As well as this, we would need to be 

able to measure somehow for a thin plate the components of the magnetic induction inside 

it. 

The following variation of the original problem may be easier to implement from the 

experimental point of view. 

5.2.3.3 An additional case 

Let us consider a variation of the original problem, in which we assume now the presence 

of a uniform field in the direction 3 (see Figure 5.1) : 

Hl = (0,0, H0)T . 
(5.176) 

Let us also assume the particle alignment field 

a0 = (cos 9, sin 9,0)T. (5.177) 

For this problem, the first two invariants are the same as (5.135), the same happens with 

K4,17 and I8, which are given by (5.136)1 and (5.138); the rest of the invariants (5.26)2, 

(5.26)3, (5.27)2 and (5.28) are given by 

5\2H2, K6=\3Hä, K9=Klo=O. (5.178) 

The components of the total stress are (equation (5.34)) 

Tll = -p* + 2A2St* + 2\2 (, \2 + \2)Q* +2 cos2 OA2SZ* +4 cos2 0, \4Q*, (5.179) 
1112 32 1718 

T22 = -p* + 2A2St1 +2 \2 A2 + \2)Q* +2 sin 2 OA2S1* +4 sin2 O)ý41 , 
/5.180) 

21 2( 1 32 2728l 

T33 = -p* + 2i13 1 +2 )ý3(A + %2)SZ2 + 2H0 3SZ5 + 4H0A3Sts, (5.181) 

T12 = sin(28)a1A2[Q + (ý1 + ý2)ý8 (5.182) 

T13 = Ho COS OA1 A3Q*lo. (5.183) 

723 = Ho Sin 8A2A3Qi0. (5.184) 
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As we can see from the above results, the shear components in the plane 3 are not zero, 

and as a result, we cannot in general obtain a free load condition by only manipulating p, 

as was done in the previous two problems. Let us assume then the particular case of an 
isotropic material, which means 11* would depend only on Il . 

12, K4, K5 and K6. In such 

a case, by assuming no load in the plane 3, as before, we have the condition r33 = Tm33, 

where the non-zero components of the Maxwell stress are (equation (3.44)) 

H° µ° (5.185) TM11 - TM22 - -TMss -- 2A3 

where we have used H= (0,0, Ho/A3)T 
. 

Then, from 7-33 = T, ß, 33 we obtain 

2 
A 2)Q + 2H, A3Q* + 4HO2A4Q* - 

H2 
µo. (5.186) P= 2A l13122536+ 2A (A + 

2ý3 

As a result, we get for (5.179) and (5.180), respectively, 

Tll = 2(ßi - \2)Q* +2 \2(, \i - ý3)S22 - 2Hö\3S25 - 4Höý3S26 + 
H° 2° 
2ý 

(5.187) 

(T22 =2 ý2 2 \2)Q* - 31 + 2A2(, \2 12- A2 S2* 3) 2 2H2A2S2* -03 5- 4H2A2SZ* + 036 

3 
Hßµ° 

2A3 (5.188) 

Additionally for the isotropic case, from (5.38), we have for the magnetic induction that 

Bi = B2 = 0, (5.189) 

B3 = -2H0A3(SZ4 + \3SZ5 + %3SZ6). (5.190) 

As a result, we have three equations3 (5.187), (5.188) and (5.190), and five unknowns, 

so again we would need to assume further simplifications in order to obtain from this 

experiment an appropriate form for the energy function. 

5.3 A first approximation for an energy function 

As was expected, the last problem of the previous section showed us that in general it is 

not possible, at least with the biaxial test, to find the complete form of the energy function. 

Although for the isotropic case it would be possible to do that at least theoretically. A more 

complex experiment, involving a uniform deformation might be proposed; this experiment 

could be the uniform traction of a cube, which is essentially a three-dimensional problem, 

in which we would have (eliminating p with one of the normal components) five equations 

3It is not difficult to calculate with the components of the total and the Maxwell stresses the external 

load as in the previous problems. 
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for the rest of the components of the total stress, and three components of. for example. 

the magnetic induction, so in total we would have eight equations. Unfortunately to carry 

out such experiment (which must be done with a `large' cube) seems not possible from the 

practical point of view. 

The above considerations indicate that it is necessary to look for a way to simplify our 

general form of the constitutive equation; we do that in this section in several steps. We 

will only consider the case of an incompressible material. 
Since most of the experimental data used in this section was taken from [7], in which 

the independent magnetic variable was the magnetic field, in the rest of this section we 

put our attention to the problem formulated with S2*. 

Let us go back to Subsection 5.1.2, and let us study the meaning of the invariants, 

which are given in (5.25)-(5.28). In the classical theory of non-linear elasticity, in which 

we work essentially with the two invariants (5.25)1, (5.25)2 (incompressible case), some 

well known simple energy functions have been proposed; for example, the neo-Hookean, 

where the energy function only depends on I,. Then as a fist approximation we will assume 

that 11* will not depend on I2. 

Regarding the invariants shown in (5.26), they are given as K4 = HI " Hl, K5 = HI " cH1 

and K6 = H1 " c2Hl. The first of them just takes account for the `magnitude' of the field 

in the response of the material, regarding K5, it would correspond to the effect of the 

combination of the deformation and the magnetic field, it might not be considered as 

an important invariant, since an invariant with a similar `property' appears also in the 

formulation of the transversely isotropic material, and since the experimental data suggest 

(as we will se later on [7]) that in comparison with the transversely isotropic material the 

magnetostriction is less significant in the isotropic case; however, for reasons that we will 

explain in detail later on, we will assume that 1 does depend on K5, but as a first 

approximation we will not take account the invariant K6. 

Now, let us consider the two invariants that appear in (5.27). The first, 17 = ao " cao, 

takes account for the effect of the alignment of the particles in the material, but does 

not consider any field, so, this would correspond to the typical invariant that appears in 

the modelling of transversely isotropic materials (pure elastic case). We will consider this 

effect as important and we will consider it in our simplified energy function (see [71). As 

a first approximation, however, we will not take account the invariant 18. 

So, finally we have to make a decision about the last two invariants in (5.28). The 
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first of them K9, given as K9 = ao " H1, might be considered as important: the reason 

is simple, this invariant only takes account of the effect of the particle alignment and 

the field, which, as has been mentioned several times, seems to be an important factor 

in the behaviour of these materials. Moreover, it should be mentioned that some micro- 

mechanical models recently developed (see for example [10] and [126]) take in particular 

consideration, as an important factor in the overall behavior of the material, the alignment 

of the particles and their interaction with the magnetic field. Regarding the invariant K10, 

given as K10 = ao " cHl, it will be considered for our model as well, since we would like 

to include the effect of the combination of the deformation (in this case given by c) and 

the field. Notice that if 6 corresponds to the order of magnitude of HI, then in terms of 

this vector, the invariants K4, K5 and K6 are all of order b2, while only K9 and Klo are 

of order 6. 

So from the above considerations as a first approximation we have for the energy 

function that 

Q* = S2* (Ii, K4, K5 I7, Ks, Klo). 

The particular forms of the stress and the magnetic induction in this case are 

T= 2b12, -p*I+2bH®bH1 +2a®a! Z7+ (a®bH+bH(9 a)S2io, 

and 

B= -(2bHS24 + 2b2HSt5 + aQ* + baf2*0)" 

(5.191) 

(5.192) 

(5.193) 

So, we have reduced our original problem to one where we have to look for a function 

of six variables. This is still a difficult task, as it is in the analogous case of pure elastic 

deformations for transversely isotropic materials; then, further simplifications may be 

necessary. Taking as an example from what has been done in the case of transversely 

isotropic materials (see [73,74]), we split the energy function in two portions. One of 

them, denoted S2*, corresponds to the contribution to the total energy from the factors 

which do not depend on the orientation of the particles, which means this portion would 

be the `isotropic' part of the energy. The other part, denoted S2*, would correspond to the 

rest of the total energy function, meaning that this part of the energy would be the part 

due to the presence of the alignment of the particles. Then, as a second approximation we 

would have 

fZ*(Ii, K4, K5, I7, Ks, Klo) _ 1Z*(Ii, K4, K5) + l*(I7, K9, Klo). (5.194) 
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The simplifications (5.191) and (5.194) are strong, it could be interesting to study them 

in the context of some boundary value problems using the semi-inverse method. in order 

to find conditions for existence of solutions for Q*. The same might be done with the 

regularity conditions [61]. 

Even so, with the above simplifications for the energy function it may still be difficult 

to find an appropriate form for the energy function from the limited experimental data 

available. Thus, further assumptions are needed, but we must point out that the following 

simplifications do not intend to represent at all the whole behaviour of these materials, 

and that they must be taken only as a first attempt in order to propose a constitutive 

equation, which would be used to obtain some closed form solutions for some boundary 

value problems. Consider the following proposed form for O* (see, for example, [35] ) 

O*(I,, K4, K5) _ .f 
(Ii)9(K4) + v(K4) +, d (K5). (5.195) 

In the above expression for the isotropic part of the energy, we have assumed that the 

energy is separable in the variables Ii and K4. The function v(K4) represents the energy 

that the body accumulates only due to the magnetic field, when there is no deformation. 

The function i9(K5) has been introduced in order to deal with the presence of Maxwell 

stresses for the mechanical boundary conditions. 

Regarding the function f2*, we suggest the following form (see for example (73,74]) 

Q*(I7, K9, Klo) = h(I7)w(K9, Klo) + r7(K9). (5.196) 

The function ? 7(K9) represents the magnetic energy that arises in a body as a result only 

of the magnetic field, and due in particular to the alignment of the magneto-sensitive 

particles. 

The conditions of no residual stress and no residual magnetic induction (5.40) and 

(5.42) are, we recall, 

Q* + 2528 = 0, (5.197) 

Q* + Slip = 0, (5.198) 

from which we can obtain some restrictions for our functions h, q and w. Remembering 

the values of the invariants for this case from (5.1.2) were given as Ii = 3, K4 = 0, K5 = 0, 

I7=1, K9 =0 and K10 = 0, we have 

dI 
(1)c. ß(0,0) = 0, (5.199) 

7 

h(1) 
aw 

(0,0) + 
di1 

(0) + h(1) 
0K 

(0.0) = 0. (5.200) 
öK9 ä-K9 

io 
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From the above relations we have several options in order to impose conditions on our 

functions. In order to study this, let us replace in (5.192) the particular form for the 

energy (5.194) and (5.195), (5.196). Then we get 

T= 2b 
dl 

g-p*I+2bH®bHdK +2a®aäl w+(a®bH+bH®a)hýK . (5.201) 
157 10 

Consider the case in which cß(0,0) = 0. In such a case, for a pure elastic problem, in which 

we do not have a field4, but in which we do have an effect because of the alignment of the 

particles, we could not distinguish from (5.201) an isotropic material from a transversely 

isotropic one; as a result, in order that (5.199) holds, we need (1) = 0, and we also d T7 

insist that w (0,0) 0. 

Now, consider the case in which (0,0) 0; then from (5.200), since each partial TK- -lo 

derivative of w is independent, and the same happens with the derivative of the function 

, q, in order that (5.200) holds we would need the condition h(1) = 0. But in such a case, 

let us study from (5.201) what could happen with the following experiment. Imagine the 

situation in which there is no deformation, but in which there is a magnetic field. Then 

we would have h= h(1) =0 for any H, but since from the above considerations we have 

d(1) = 0, then, from (5.201), we would not see again any distinction in the behavior 

of the stress between an isotropic and a transversely isotropic material, which is not the 

case (see [7]). Hence, we need to impose the condition (0,0) = 0, and additionally 10 
(0,0) = 0, (0) = 0, and we want h(1) # 0. 

In summary, we have 

d71 
(0) = 0, w(0,0) 34 0, 

eK 
(0,0) = 

Ow 
(0,0) = 0, (5.202) 

dK9 s io 
dl 

(1) = 0, h(1) 0. (5.203) 
7 

5.3.1 Results for the simple traction problem of a cylinder 

Consider the following set of experiments for the traction problem. Let us have a magneto- 

sensitive elastomer, and let us have two cylindrical samples of material, one with a random 

distribution of particles, and another with a preferred particle alignment, in this case in 

the axial direction. Assume that the proportion of particles for each cylinder is the same, 

and let us do the following experiment; first measure the axial stress as a function of 

the deformation (in this case, for example, the stretch A) for the situations with and 

4We have that H=0 and as a result w= w(0,0) always. 
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without magnetic field (a uniform axial magnetic field only). In such an experiment we 

have (for one value of the magnetic field) four profiles for the stress as a function of the 

deformation. Of course more data may be added by doing the experiment for different 

values of the external magnetic field. This is what has been done in the paper of Bellan 

and Bossis [7] (see in particular the Figures 1 and 2 therein). 

There are some problems in the case of our models. As has been mentioned before, 

there is a problem with the boundary conditions for the magnetic part of the problem 

(see [15]); the analytic solutions presented in Section 5.2 are valid only for semi-infinite 

geometries, in the case of the simple shear, assuming an infinite slab in the directions 1 

and 3, and in the case of the traction problem, assuming an infinite cylinder in the axial 

direction (see Subsection (5.2.2)). 

Another problem with the model is the treatment of the Maxwell stress. As it was 

been shown recently (see [17], also Chapter 9), the Maxwell stresses appear when a body 

is completely surrounded by a free space, and they are the result of the variation of the 

energy in the free space due to the deformation of the body. All the solutions of the 

previous sections were obtained assuming bodies surrounded completely by a free space. 

However, the real situation might be different. In the traction problem, for example, we 

know that the extremes of the cylinder are `connected' with the test machine. How to 

model this situation in a real but simple way is not known yet, and as a result we will 

assume the cylinder surrounded by a free space, but, as we will see later on, this implies 

the existence of an extra factor for the stress, which will be appropriately handled by the 

use of the function 79(K5). 

From Section 5.2.2 we have that the total stress applied to a bar, in the particular case 

of using (5.191), is given as 

tx = 2(A - A-1)S2i + 2HöA21 57 10 + 2A21 + 2Ho\2Q* - µoý-2Hö. (5.204 

We notice that the last term in the above expression accounts for the effect of the Maxwell 

stress. The invariants of interest are given by (5.105), (5.108)1, (5.108)2, (5.108)4, (5.108)6 

and (5.109) as 

I1=2)ý-i+a2, K4=Hö, K5=A2Ho, I7=A2, K9=Hoy K10=\2Ho. (5.205) 

Let us write down the experiment mentioned at the beginning of this subsection, in which 

we have two cylinders made of the same basis material, and basis magneto-active particles, 
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and with the same proportion of particles, but in one case with random distribution, and 
in the other case with a preferred alignment for the particles (in this case axial). 

" Isotropic case, Ho =0 

Consider an isotropic cylinder with no external magnetic field, from (5.204), and 
(5.195), (5.196) we have 

tz = 2(A2 - A-1)d (1 1 )9(0)" (5.206) 
1 

Consider the following particular form for the function f 

_k f (Ii) _ 
(I12k 1) 

-1 (5.207) 

where k is a constant such that k> 1/2 (see [58] for the basis of this model in the 

non-linear elastic case). 

" Isotropic case, Ho 0 

For the isotropic case when Ho 0, from (5.204), (5.195) and (5.196) we get 

tz = 2(A - A-) 
df 

9(K4) + 2H0A2 
dý9 

Ho. (5.208) 
dIl dK5 

A simple model for the function g might be the linear approximation 

g(K4) = go + g1K4, (5.209) 

where go and gi are constants. 

Regarding t9, from [7] it seems there is no an effect of the Maxwell stress at the end of 

the cylinder when A=1. From (5.208), we can see that the factor -µ0A-2H", would 

imply the presence of a compressive stress for Ho 54 0, when A=1, which from [7] 

is not the case; then, we must find a rational way to deal with this problem. One 

way would be not to consider the Maxwell stress for the extremes of the cylinder; 

however, we would still have this stress around the lateral surface of the cylinder, 

and from the expression for p* we would end up with a factor -1/2µ0A-2Hä instead 

of -µ0A-2H02 in (5.208); also, we do not know yet how to handle appropriately this 

kind of boundary condition in a general context [16]. This is the reason we included 

the invariant K5 in our formulation. We assume that 19 has the linear form in K5 

z9(K5) = t90K5, (5.210) 
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where 19o is a constant. We could `eliminate' the Maxwell stress for A=1 if we set 

190 = 
2o, (5.211) 

which finally implies 

tz = 2() - A-1) 
dI 9(K4) + µ°Hý (A2 - A-2) (5.212) 

1 

" Transversely isotropic case, H. =0 

In the case of a transversely isotropic cylinder, with no external field as in the above 

case, we would get 

t, z = 2(A - A-1) 
df 

(I1)9(0) + 2\2 
dh 

(I7)w(0,0) (5.213) dIi dI7 

A function h that may be compatible with the conditions (5.203), in part suggested 
from [73,74], may be the taken as 

h(17) = ho + hl(17 - 1)", m>1, (5.214) 

where ho, hl and m are constants, and the condition m>1 is imposed in order to 

avoid problems with the evaluation of the derivative of h at5 17 = 1. 

" Transversely isotropic case, Ho L0 

In the previous cases the particular form given for the functions f, g and h were not 

proposed arbitrarily, but in order to fit the data provided in the Figure 2 of [7]. 

However, there is a more complex situation when we try to find an appropriate form 

for w. The following expression is the external stress for the transversely isotropic 

case when there is magnetic field (remember (5.210) ) 

t,, = 2(A2 - A-1) 
dI (I1)9(K4) + 2\2 

dI (I7)w(K9, Klo) 
17 

+2H0A2h(I7) (Kg, Klo) - µoH0 (ý2 - -2). (5.215) 
Mio 

5An additional condition for m may be the following. Consider the case in which m<2, then it may 

not be convenient to work, for example, with m= 3/2, because in such a case we would have a problem 

for the function h and its derivative when we would like to evaluate them for values of 17 less than 1 

(compression). This situation, which may not appear problematic for the particular case of the tension 

problem, may generate problems at the moment of applying the final result with our energy function for 

more general problems in which we might have localized compression for a body. 

The second derivative of h might be needed to calculate the moduli tensors, in such a case in order to 

avoid problems for 17 =1 we would need to impose the stronger restriction m>2; as well as this, m 

should be chosen such that to avoid problems for the evaluation of this second derivative for 17 < 1. We 

do not use this last restriction in this thesis. 
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Figure 4 of [7] shows the result for the difference of (5.215) and (5.213), for different 

values of the external magnetic field. The difference for these two cases is given as 

Atz = 2(a2 - A-1) 
dI 

(Ii)(9(K4) - 9(0)) + 2a2H (17)(w(Kg, Kio) -. (0.0)) 
i7 
aw +2H0A2h(I7) _w 

(K9, Klo) - µ0HH (A2 - X-2). (5.216) 

It has not been possible to find an appropriate and simple form for the function w. 

such that (5.202)2, (5.202)3 and (5.202)4 hold, and such that the behavior of atz may 

be reproduced with accuracy. As a result, we have proposed a simple bi-quadratic 

form for w, which nevertheless works very well for the data presented in Figure 2 

of [7]. The following is the expression6 proposed for w 

w(K9, Klo) = wo + w1K9 + w2Kio + w3K9Klo, (5.217) 

where wi, with i=0,1,2,3, are constants. 

This is the form for the energy function: 

11-3 
2 

(9o+9iK4)+v(K4)+ 2°K5+[ho+hi(I7-1)m](wo+w1K9 

+w2Klo + w3KsKlo) + rý(K9) + S2ö" (5.218) 

The values of the constants k, go, gi, ho, hi, m, wo, Wi, W2 and W3 are given in Table 5.1. 

k 1 m 4/3 

go 95 kPa W 2000 kPa 

gi 0.00001 kPa/(kA/m)2 cal 0.00323 kPa/(kA/m)2 

ho 0.02 W2 -0.000475 kPa/(kA/m)2 

hl 0.01 W3 0.020557 kPa/(kA/m)2 

Table 5.1: Constants for the energy function ('mechanical part' of the energy). 

As well as this, we have used µo = 1.2566 * 10-3kN/kA2. Figure 5.2 shows the graphs 

for the stress for the different situations mentioned above. 
6The expression for the functions w is just a truncated double Taylor expansion, where we have used 

the conditions (5.202). The problem with the Taylor expansions is that the choice of the optimal constants 

may not be unique, then there might be other values for w; in Table 5.1 that might also be acceptable. 
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Figure 5.2: Results for the traction experiment. Case 1 isotropic with Ho = 0; case 2: 

isotropic Ho = 123 [kA/m]; case 3; transversely isotropic H0 = 0, and case 4; transversely 

isotropic Ho = 123 [kA/m]. 

5.3.2 Results for the shear problem 

Having found part of the form for the energy function with the results for the traction 

problem [7], there are still some parts of the energy function missing, in particular the 

functions v and rj. 

Here, two additional papers with experimental results may seem useful, one of them 

by Jolly et al [59], frone which in particular we mention Figure 7, where we have the -shear 

modulus', as a function of the `flux density (magnetic induction). for a slab, which is a 

problem very similar to the problem described in Subsection 5.2.1.2. 

Another important paper with experimental results for the shear problem is that by 

Cinder et al [50]. We mention especially Figure 4. where the magnetization l is shown 

as a function of the magnetic field for a slab under shear, for the two alignments of the 

particles described in Subsection 5.2.1.1. 

Let us study our particular form for the energy function Q* in relation to the two 

papers mentioned above. In the first case, we want to calculate the `shear modulus' for our 

problem, and then to study its behavior as a function of the magnetic field; unfortunately. 

Figure 7 of [59] was obtained assuming the magnetic induction B as the independent 

magnetic variable. and, moreover. the proportion of particles was different from that in [7]. 
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so we do not attempt to compare directly the results, but only to study qualitatively the 

behaviour of the material for this experiment. 

" Particle alignment in the x2 direction 

Consider then the problem discussed in Subsection 5.2.1.1, and let us consider first 

the case in which the alignment of the particles is in the direction x2. Then, from 

(5.47)1, (5.49)1, (5.49)2, (5.54)i, (5.54)3 and (5.54)4, we have 

I1=3+-y, K4=Hö, K5=Hö(1+'y2), I7=1+_y2, K9=Ho, 

Klo =H0 1+ 2y2). 

Also for this problem, and for the particular form of the constitutive equation we 

are using, the shear component of the stress and the component 2 of the magnetic 

induction are given by (5.58) and (5.61) as 

T12 = 2(1l + H, Z5 + S27 + H0SZ10)ry, (5.219) 

+ 2H0(1 + _y2)11* + Il; + (1 + 72)1* 1 (5.220) B2 = -[2H01 45 10. 

In the linear theory of elasticity in order to have a shear deformation it is only 

necessary to apply a shear stress. This is not the case here. As it can be seen from 

subsection 5.2.1.1, normal components are also necessary. So, the results shown in 

Figure 7 of [59] must be valid only for small deformations. In such a case, the shear 

modulus, which we denote by G, is defined from -r = G-y, where 7- is the shear stress 

and ry is the `amount' of shear. Then from (5.219) we get 

G= 2(Q*l + H, 2Q; + Q7* + HoQ*jo) (5.221) 

Using (5.218) in the above equation, after some algebraic manipulations we obtain 

G=ao+a1Hö, (5.222) 

where ao and ai are defined as 

ao = go + 2m-y2(m-1)hlwo, (5.223) 

al = gl + 2[ho + h1ry2m] [2(1 +'y2)w2 + W3] + 2m-y2(m-1)hi [wt 

+(1 + y2)((1 + 72 ), 2 + W3)] + µo. (5.224) 

The above parameters depend on the amount of shear. For the case of infinitesimal 

deformations they might be obtained by evaluating them for -y --+ 0, but we do not 

do that here. 
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Figure 7 of [59] shows actually the difference in the shear modulus for the case in 

which we have an external field and for the case in which there is no field. So, let us 

calculate 

OG-G(H0)-G(Ho=0) =a1Hö (5.225) 

Then, independently of the value of al, which as it was mentioned before depends 

on the amount of shear, the `shape' of the curve OG(H0) will be a quadratic func- 

tion. The results shown in Figure 7 of [59] (see also Figure 3 of [50]) suggests that 

the difference in the shear modulus increases until reaching a value Hö (probably 

associated with the saturation point of the magneto-active particles), and then it 

tends to remain constant. This is not of course the behaviour of (5.225), so in the 

light of this data our model does not seem to work. 

In order to use the data provided by Ginder et al [50], let us determine the form of 

the component 2 of the magnetic induction as a function of the external magnetic 

field. In order to do so, let us use (5.218) in (5.220). After some manipulations we 

have 

B2 = -(ßo + /31Ho), (5.226) 

where the constants /3 and ßl are given as 

Oo = 7l (K9), (5.227) 

ßi = 729i + (1 + y2) (ho + hi , 2m) [2(1 + , y2)w2 + W3] 

+(ho + h11'2m)[2w1 + (1 +'y2)w3J + (1 + y2)µo + 2v (K4). (5.228) 

The equation (5.226) indicates that there is a linear relation between this component 

of the field and the external field (for a fixed shear deformation). 

" Particle alignment in the x1 direction 

It will be necessary to have results for the shear problem when the particles are 

aligned in the direction 1 (perpendicular to the original magnetic field). In such a 

case the only invariants that we need to recalculate are 17, K9 and K10, which from 

(5.64)1, (5.64)3 and (5.64)4 are given as 

I7=1, K9=0, K10=H0-y. 

From (5.68) and (5.71) we have 

T12 = 2rySZ1 + 2HorySZ5 + Ho1ti0, (5.229) 

B2 = -(2H0S24 + 2Ho(1 +'y)ý5 + -Yc10). (5.230) 2 



CHAPTER 5. TRANSVERSELY ISOTROPIC MAGNETO-ACTIVE ELASTOMERS 151 

As in the above case, using (5.218) and after some manipulations, we may obtain 
the following expression for the shear stress 

712 = [go + (9i + 2how2 + µ0)HH]ry. (5.231) 

and for the component 2 of the magnetic displacement 

B2 = -['Y2(9i + 2h0W2) + (1 +'Y2)µ0 + 2v'(K4)]Ho. (5.232) 

5.3.2.1 A model for v and q 

Figure 4 of the paper by Cinder et al [50] presents the results for the magnetization M 

as a function of the magnetic field for the shear problem, considering the two particle 

alignments studied in subsection 5.2.1.1. The only problem with this data is that the 

material had a different proportion of particles as compared with the one used in [7]. 

Nevertheless, since we do not expect at this stage to obtain precise expressions for the 

energy function, but rather a first approximation (as good as possible from the qualitative 

point of view), we will use this data, in particular in order to obtain the functions v and q. 
In order to do so, consider (3.12) and the results for the case where the particle alignment 
is in the direction 1. Then, using (3.12) and (5.232) we have 

µ,, M2 = -['Yö(9i + 2h0w2) + µo('Yy + 2) + 2v'(K4)]Ho. (5.233) 

Let us define 

Co = 'Yö (9i + 2how2) + µo(-yo + 2), (5.234) 

where ryo is a given (small) value for the shear. 

Now, the data of Figure 4 in [50] suggests, as must be expected, that the magnetization 

is an odd function, and for values greater than a given magnetic field, remains constant; 

this indicates that the magnetization has reached the saturation point for the magneto- 

active particles. We must expect to obtain a hysteresis effect as well, but we will assume 

that this effect is small. 

Then, an appropriate function that may be used in order to model the behaviour of 

M2 is given as 

µ0M2 = mo tanh 
H1o 

, 
(5.235) 

where the constant ml is related to the magnetic field necessary in order to reach the 

saturation point, while the constant Inc corresponds to the value of the magnetization 

(times the magnetic constant j. ) for that point of saturation. 
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From (5.233), (5.234), the particular value of K4 for this problem (equation (5.49)1). 

and (5.235), we get 

v(K4) = -In cosh 
K4 

momi - 
K4ýO 

+ vo. (5.236) 
Ml 2 

where vo is an arbitrary constant. Now, in order to obtain 71 we can do the following. 

Consider the case in which the particles are aligned in the direction 2, and let us define ii' 

as (remembering that for this problem K9 = Ho) 

i7'(K9) =ý (Kg)Kg. 

Also, let us define the constant C1 as 

'Yä91 + (1 +'Yö)(ho + hi'Yöm)[2(1 +'Yö)w2 + ws] + (ho + hi'yo"'")[2wi 

22 )w3] + (1 +7o)µo. +(1 +7o 

Then (5.226) becomes 

B2 = -{i (Kg) + (i + 2v'(K4)]H0. 

The magnetization M2 is then given from (3.12) as 

µa0M2 = -[i (Kg) + (1 + µo + 2v'(K9)]K9" 

(5.237) 

(5.238) 

(5.239) 

(5.240) 

As in the case of the alignment in the direction 2, the experimental data may be fitted by 

the same kind of hyperbolic tangent function as above. Then we would have 

µ�M2 = mo tanh 
(Kg), 

m2 
(5.241) 

where m2 is a constant. Note that the experimental data suggest the same level of satura- 

tion for the magnetization for the two cases, which is of course expected if the proportion 

of particles is the same. 

Then, using (5.241) and (5.236) in (5.240), we obtain 

ýl (K9) = 
mý tanh 

K9 
- tanh m9 - (i - µo + Co. (5.242) 

K9 m2 1 

As a result, from (5.237), we have 

Icoshm2 (j) 
K9 

rý(Kg) = ono In + «0 - (1 - µo) + ilo, (5.243) Lcoshml 2 

( Mj )- 
where rho is an arbitrary constant. 
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Figure 5.3 shows the results for the magnetization for our model and the data provided 

in Figure 4 of the paper by Ginder et al [50]. The values of the constants mo. ml and m2 
are 

m0 = 0.4998[T], ml = 309.3395[kA/m], m2 = 199.1828[kA/m]. (5.244) 
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Figure 5.3: Results for the shear experiment. Magnetization as a function of the magnetic 

field. Case 1: parallel alignment (direction 2), theoretical model. Case 2: parallel align- 

ment, experimental results. Case 3: perpendicular alignment (direction 1), theoretical 

model. Case 4: perpendicular alignment, experimental results. 

5.3.3 Summary of results for the energy function 

As a summary, we propose the following expression for our energy function Q* 

(Ii -3 (vK, )] h'ý ýo µo (90 + 91K: ß) - In 
[cosh 

m0nz1 -± K5 + [h0 
2 ml 22 

(Kg)- 

+h1(I7 - 1)m] (wo + w1K9 + w2Kio + w3K9K10) + mo In m2 

cosh"'' 
(Kg) 

µo) 29 +Qo' (5.245) 

where the numerical values of the different constants that appear in the above expression 

are given in Table 5.1. and in (5.244). Regarding the constants co and (1. they may be 

obtained from the above expressions, evaluating at a given shear 'yo. which may be chosen 
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as 'yo -ý 0. Finally, ft is just an arbitrary constant that does not need to be specified 
here, but it may be chosen such that the energy, when there is no field and deformation, 

becomes zero. 

The partial derivatives of S2* will be used in the next section, so here we provide a 

summary of them 

2 (go + g1K4), (5.246) 
11 (v'R4 mo (o 4=2 (Ii - 3)gß -2 tank 

m1 K4 
(5.247) 

2' 
Qµo 5=2 (5.218) 
97 = mhl (I7 

- 1)7r, -1 [ws + w1K9 + cý2K10 + W3K9Kls], (5.249) 

929 = [ho + hi (17 - 1)tm] [2w1K9 + w3Kio] + mo 
[tanh (Kg) 

- tanh (a)] +«0 - (i - µ0)K9, (5.250) 

Mio = [ho + hl(17 - 1)m](2w2K1o + w3Kg). (5.251) 

Note that (5.247) cannot be evaluated directly at K4 = 0, but the limit exists. Froiii 

(5.250) and (5.251) it is easy to show that (5.44) holds. 

5.3.4 Magnetic permeability and the traction problem 

Before finishing this section, we would like to study some results from the additional paper 
by Bossis et al [11]. This paper deals with electro and magneto elastomers, and it has in 

particular a result for the `magnetic permeability', which may be of interest to study on 

the basis of our theory. 

Figure 7 of [11] shows the results for the relative permeability for the traction experi- 

ment of a bar, for two situations, namely with and without external magnetic field, where 

in the last case a field Ho = 123[kA/m] was applied. The permeability is plotted as a 

function in this case of the deformation. 

In the linear theory of magnetism, the magnetic permeability is defined in the same way 

as for the free space (equation (2.106)2), as B= µH, where in this case p depends on the 

properties of the material. A more advanced non-linear model could be B= µ(A, Ho) H, 

where the permeability could in general be a non-linear function of the `deformation' and 

the field, and eventually of other important parameters such as the temperature. 

So, let's consider again the results of the traction problem for a cylindrical bar (Sub- 

section (5.2.2)), in particular the results considering the magnetic field as the independent 

variable (Subsection (5.2.2.1)). Now, consider the result (5.114) for the axial component 
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of the magnetic permeability. For our particular form of the energy function (5.245) we 
have 

BZ = -A(2H01 45+ 2H0A21 + S29 + A2Slio). (5.252) 

In particular, from (5.236), we had 

Hence, 

v(K4) _ -In cosh 
Kmi 4 momi - 

K42(0 
+ v0. 

v'(K4) _ -2 
mo tanh 

K4 
+ (o (5.253) 

K4 
(ml) 

and from (5.243) we had 

coshm2 
(Kg) 

2 
77 (Kg) = mo In 

(M2) 
+ (o 

K9 
+ 770, 

coshm' g2 

and we obtain 

77'(K9) = mo tanh 
m9 

- tanh 
m9 

+ (Co - (1 - µo)K9. (5.254) 
21 

Now, what we want is to obtain an expression equivalent to B= µH from (5.252) by 

using our particular model for S2*. Using the above expression for S2* (equation (5.245)), 

the derivatives of v and 77 given above, along with (5.105)1, (5.108)11 (5.108)2, (5.108)4, 

(5.108)6 and (5.109)1, and after some manipulations, it can be proved that (5.252) may 

be rewritten as 
Bz =/ A(Ho)Ho, 

where µa (Ho) is given as 

(5.255) 

b, ' \(H") = -(A - 1)2(2 + A)9i - A{(A2 - 1)µ° - (i + [(A2 - h1 + ho][2w1 +w3 

+A2(2w2 + W3)] + m0 tanh 
H° 

-2 tank 
H° 

(5.256) 
H° m2 ml 

From the above expression we cannot evaluate µ directly at Ho = 0, but the limit exists 

and is given (for the case in which there is no deformation) as 

(5.257) 0 lim - 
Ho 2ho wi1 µa=i ()= 

Homo 
µa-i ()= ýi -(i+ w2 + w3) + Mo ý1 - M2 

Also, 

µ, \=1(H° j 
(H�)] 

. 2 tank (: " ° -tank (5.258) 0) = (1 - 2ho(Wi + W2 + W3) + Mo 
H° i2 
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Figure 5.4: Relative magnetic permeability for the traction problem. Theoretical result. 

The quantities that Figure 7 of [11] displays are the quotients µ''(H°=°)-`\-' `O)-`\-'(H2=O) 
and 

I A(h1"ý-ýý'-1U') For our particular constitutive equation? we obtain the result shown in ýt 1 Hý 

Figure 5.4. 

The experimental results obtained by Bossis et al. [11] suggest that this relative inag- 

netic permeability is negative for 1<A<1.5; from Figure 5.4 we see that is not the 

case for our model, where there is a small interval around A=1.05 where the relative 

permeability is positive. The experimental value for this permeability for A=1.5 and 

Ho =0 is approximately -0.15, which is very close to the value obtained with our energy 

function. Overall our results for the relative magnetic permeability do not compare well 

with the results shown in Figure 7 of [11]. 

5.4 Linear universal relations for transversely isotropic MS 

elastomers 

In the previous section we presented the difficulties of finding an appropriate model for the 

energy function. These difficulties are not only related to the lack of enough experimental 

data, but also to the complexity of the original problem. where we have to work with 

a function that depends on ten invariants. As a result, it was necessary to assume a 

simplified form for the energy function. which depends only on six of these ten invariants. 

'Staue numerical values, for example ýi. were obtained by assuming ýo = 0. 

1.05 1.1 
A 

1.15 1.2 1.25 
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We had 

W= Q* (Ii, K4, K51I7, Ks, Klo). 

and, from (5.34), we have 

T= 2bQ*l - p*I + 2bH ®bHS5 + 2a 0 aQ7* + (a ®bH+ bH®a)Sio, (5.259) 

and, from (5.38), we get 

B= -(2bHS24 + 2b2HS25 + a1 + bat 0). (5.260) 

It might be highly improbable that we would actually have a material that may be accu- 

rately described by such a simplified model; nevertheless it seems to be the best that we 

can do in order to obtain an amenable formulation, for both theory and experiments. 

The question is how to know if these simplifications are actually valid, without having 

to give more detailed information about the form of the energy function. The solution is to 

use universal relations; as was emphasized by Beatty [6], these relations hold independently 

of the particular form of the constitutive equation for a family of materials. 

Universal relations have been found for the particular case of isotropic magneto-elastic 

elastomers; see, for example, [18] and Section 4.1. The results presented in [18] follow 

closely the general method developed by Pucci and Saccomandi [85]. Unfortunately, in 

our problem it has not been possible to find the universal relations following such an elegant 

method; instead we use a more direct but less concise method developed originally only for 

non-linear elastic problems by Bustamante and Ogden [21]. This method, which has also 

been used in order to find universal relations for transversely electro-elastic problems [19] 

(see Section 8.4), is described as follows. 

Consider the equation (5.259), rewritten in the form 

d(O)p* + d(l)S2i + d(2) 57+ d(3) + d(4)1 0, 

where the vectors r and d(t), with i= 01 1) 2,3,4, are defined as follows 

T= (711,722,7-33, T23, T13, T12 )T, 

d(°) = _(1,1,1,0,0,0)T, 

d(l) = 2(b11, b22, b33, b23, b13, b12 )T, 

d(2) = 2(. f1 
, . 

f2 
, . 

f3 
, 

f2 f3, f1 f3, 
. 
f1 f2)T 

, 

d(3) = 2(a2, a2, a3, a2a3, ala3, a1a2)T , 

d(4) = (2alf1,2a2f2,2a3f3, a2f3 + a3f2, alf3 + a3fl, alf2 + a2fl)T , 

(5.261) 

(5.262) 

(5.263) 

(5.264) 

(5.265) 

(5.266) 

(5.267) 
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where fj are the components of the vector f defined as 

f= bH. (5.268) 

It is necessary to remark that we will not make a distinction between constrained and 

unconstrained materials in order to look for universal relations8. 
Now, let us look for a vector e 

T e= (el, e2, e3, e4, e5, e6ý , 

such that the equation 

-r"e=0 (5.269) 

holds for any particular form of the energy function. In such a case from (5.261) we would 

need 

dýi> e=0, i= 01 11 2,3,4, (5.270) 

which may be written as 

Me = 0, (5.271) 

where ,M is a matrix of six columns and five rows, which is formed with the vectors 

d(2) as rows. The solution of (5.271) corresponds to the vectors of the null space of M, 

which in this case has dimension one (this is in concordance with the theory of Pucci and 

Saccomandi [85]). So, there is one linearly independent vector e that is solution of (5.269). 

This is the result (using the original notation for the stress) 

e1r11 + e2T22 + e3T33 + e4T23 + e5T13 + e6T12 = 0, (5.272) 

where the constants ej with j=1, ..., 6 are given below as 

fi(bi3f2 - b23f1) + a2fi(b23fi - b12f2) - aia3[b33f1f2 - b22f1f2 ei = (a3f2 - a2f3){a2 32 

+b12f2 - 2b23f1f3 + b13f2f3J + a2 l[(b33 - b22)f2f3 + b23(f2 22 
- f3)] 

+a2[a3fi(b33f1 - b22f1 + b12f2 - b13f3) + ai(-2b23f1f2 + f3(b22f1 

-b33f1 + b12f2 + b13f3))]}, (5.273) 

8More universal relations might be found for the case of an incompressible material, but these relations 

must be found by studying particular boundary value problems; see, for example, [83]. See also the remark 

at the end of Subsection 4.1.1.2. 
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e2 = (a3f1 - a1f3){a2[(b33 - bii). flf3 + b13(. f1 - f3)] + f2[a2(b23fi - bi3f2) 

+a2(bi3f2 - bi2f3) + aia3(b12fi - biif2 + b33f2 - b23f3)J + a2[-a3(bi2fi 

-b11f1f2 + b33f1f2 + b23f1f3 - 2b13f2f3) + a1(-2b13f1f2 + f3(b12f1 + b11f2 

-b33f2 + b22 f3))] }, (5.274) 

e3 = (a2fl 
- aif2){-a3(a2fi - aif2)(bi3f1 + b23f2) + a32 

2 [(b22 
- b1l)fif2 + b12(f1 - f2)1 

+a3[a2(blifl - b22f1 + 2b12f2) + al(bilf2 - 2bl2fi - b22f2)}f3 + f3[-(aibl3 

+a2b23)(aif2 - a2fl) + (aib12 
- a2b12 + aia2(b22 - b11))f3)}, (5.275) 

e4 = a32 
223 fi[b12(f2 - fi) + (b11 

- b22)f1f2] + ai(f2 - f31(b13f2 - b12f3) 

+aia32 2 {-b13f2(fi + f2) + [3b12 fi - 2b11fif2 + 2b22f1f2 - b12f21f3} 

+ala3[f2 (bi2fi 
- biif2 + b33f2) + 2bi3fif2f3 - 

(3b12f1 - biif2 + b22,2)ß] 

+a2fi [(bii 
- b33)fif3 + b13(f3 - fl )] + a2{a3f1 [b13(fl 22 + f2 ) 

+(fl(b22 - b33) - 2b12f2)f3] + 2a1a3[-fif2(b12f1 + (b33 - b11)f2) - b13(f1 

-f2) f3 + (fi(b11 - b22) + b12.2)ß] + a2[f2(2b12f1 + (b11 
- 

b33)f2)f3 

-(b11 - b22)ß + b13f1(f3 - 3f2)]} +a 2{a3fi[f2(fl(b33 - 
bil) 

- 
2b13f3) 

+b12(fl + f3 )] + al(b13f2(3f1 - 
f3) 

- 
f3(2(b11 - 

b33). flf2 

+b12(f1 22 + f3)))}, (5.276) 

e5 = a2(f1 - f3)(b22f1 - b12f3) + a2{a3[f1 (fl(b33 - b22) + b12. f2) + 2b23 f1 f2 f3 

+((b22 - b11)f1 - 3b12f2)b2] + ai[fi(fi(b22 - b33) + 2b12f2)f3 + (b11 - b22) f32 

[(b22 
- bii)fif2 + b12(fi - f22)] + aia2[b23(fi 33 +b23f2(. f3 - 3f1 )]} + f2{a2 

2322 )+ (f2(b11 - b22) - 2b12f1)f3] + al [(b22 - b33)f2f3 + b23 (f3 
- f2 +f2 

[b23. fi(f1 +ala3lflf2(b33 - b22) - 2b23f1f3 + b12(f2 + f3)]l + a2l-a32 
2 

+f2) + (2(b22 - b11)flf2 + b12(fi - 3f2))f3J + 2ala3[flf2((b22 - b33)fl - b12f2) 

b23(fl - . 
f2 )f3 + (b12f1 + (b22 - b11)f2)f3] + a2[b23f1(3f2 - f3) 

-f3(f2(2f1(b22 - b33) + b12 f2) + b12f3)] I, (5.277) 
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e6 = a33 
22(. fi - . 

f2ý + (b23fi 
- bi3f2) + aia3[bilf2 

32- b22fi 
. 
f2 + b33(fi - . 

f2 )f2 

-3b23f1 . 
f3 + 2b13f1f2f3 + b23f2 f3J + a, a3[-f2 (b23f1 + b13f2) 

+2(b22 - b33)fif2f3 + (3b23f1 - b13f2)f3] + a2 f3 [(b33 
- bii)fif3 

b13(fi - f32)] + a3f3[(b33 - b22)f2f3 + b23(f2 - f32)] + a2{a2[(b22 

22 
-b33)f1 + (b33 

- 
bii)fif2 + b13, f1 

. 
f3 + 2b23fif2f3 

- 
3b13f2 f3] 

+2ala3[fif2(b23f1 + b13f2) 
- 

((b22 
- 

b33)fi + (bil 
- 

b33)f2)f3 

-(b13fi + b23f2)f3J + a2f3[-2b23fif2 + (b22 
- 

b33)fif3 + b13(f2 

+f3)]} + a2{alf3[f2((bii - 
b33)f3 

- 
2b13f1) + b231f1 + f3)J 

- a3[b23f1ý1 

+ffi + f2(2(b33 
- 

b11)f1f3 + b13(f1 
- 3ffi)]} (5.278) 

Equation (5.272) is linear (in the stress components) and holds independently of the par- 

ticular form of the energy function, for the particular case in which we consider an energy 

function given by (5.191). The coefficients ej do not depend on Sl*, but only in the defor- 

mation, the magnetic field, and the particle alignment. What it is necessary to do now is to 

use (5.272) for some particular boundary value problems. Note that when the general form 

for the stress (5.34) is considered, then the matrix ,M has an empty null space; in fact, 

if the energy function * is such that the number of rows of M is equal or greater than 

six, then in general for unconstrained materials we do not have linear universal relations 

(see [83,85]). 

5.4.1 Application: the homogeneous deformation of a slab in a uniform 

field 

The coefficients ek of the linear universal relation (5.272) are complex and lengthy expres- 

sions. Here we show an example of application of the above relation. 

For the simple shear (5.45) we have that b11 =1+ rye, b22 = 1, b33 = 1, b12 = -y and 

b13 = b23 = 0; if we use the external field (5.48) we have H= (0, H0,0)T, and as a result 

from (5.268) we get f= (yH0, Ho, 0)T . 
Regarding the particle alignment, from Subsection 

5.2.1.1 we choose two cases, namely ao = (0,1,0) T and ao = (1,0,0) T; from (5.2) we have 

a= (7,1,0)T and a= (1,0,0)T respectively. It is possible to show that in both cases 

713 = 723 = O. 

For simple shear with the above two different alignments for the particles it is straight- 

forward to show that the linear universal relation (5.272) is satisfied trivially. 

Consider now the homogeneous deformation of a slab in a uniform field (Subsection 
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(4.1.1.2)). For this example we have 

Al 0 K1µ3 
F=0 µ2 k1µ3 

00 µ3 

and for the matrix form of the left Cauchy-Green deformation tensor we have 

µl + (k1P3)2 

b= k1 K2 P3 

K1/-t3 

k1k2f13 22 k1143 

µ2 + c2µ3)2 k2/23 

K2 A3 A3 

(5.279) 

Let's consider the case of a uniform field in the direction 3, such that HI - (0,0, HO)T 

As a result from (5.2) and (4.84) we have H= (0,0) Alµ2Ho)T . 
Then from (5.268) and 

(5.279) we have 

f= µ3(iciHo) k2Ho, 1)T . 
(5.280) 

Consider the three following cases for the particle alignment: 

Particle alignment in the Xl direction. In this case we have ao = (1,0,0)T; then, 

from (5.2), a= (µl, 0,0)T, and hence for the linear universal relation (5.272) we get 

k2/ 3322 
/-131µ3N12 - k1T23) + H0{ii T12 + µ3[( '2 - 1)r12 + /c1723 

-ic2(7'13 + ic1(T22 - r33))] + tc2Ho[_IU2T13 + µ3(T13 + KIT22 

-k2(7'12 + k2T13 - Y1T23) - k1T33) + !2 12 (K2713 - 1£1T23)Holll = 0. (5.281) 

If rc2µ3 Jµ3 0, then from the above relation we have 

M23(712 - K1T23) + Ho{µ2T12 + µ3[ K2 - 1)7'12 + k1T23 - k2(T13 + K1(722 - T33))1 

+k2Ho[-l-LZT13 + µ3(T13 + k1T22 - 12(T12 + k2T13 - K1T23) - rt, 17'33) 

+k2µ3(Ic2T13 - k1T23)Ho]} = 0. (5.282) 

Particle alignment in the X2 direction. In this case ao = (0,1,0)T and a= (0, µ2,0)T, 

and, from (5.272), with the condition 'c1µ2µ3 0 we have a similar relation 

µ3T12 -1 2T23ý + H0{µ1T12 + µ3Lýýl - 1712 + k27'13 - 1c1(723 + k2(7'11 - 733M 

+Ic1Ho[-µ1T23 + A3 (T23 - ic1(T12 + k1T23) +1 2(T11 + k1T13 - T33ýý 

+IG1I. t3(r1723 - K2T13)Ho] I=0. 
(5.283) 
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Particle alignment in the X3 direction. Here we have a0 = (0,0,1)T and a= 113(k1. 

Ic2,1)T. From (5.272), we have 

k1k211 3(H0 - 1)3 µi - t12) (K17»23 - K27'13) = 0. (5.284) 

If K1ic 3(H0 - 1)3(µi - µ2) L0 this implies that 

/c17'23 = K27'13. (5.285) 

5.5 Boundary value problems: non-homogeneous deforma- 

tions 

The idea in this last section is to use the particular form of the energy function S2* (equation 

(5.245)), in order to obtain results for some controllable non-homogeneous deformations. 

Two problems with cylindrical symmetry will be treated, namely the extension and 

inflation of a tube, and the extension and torsion of a cylinder. First we will study 

under what conditions for the magnetic field and the particle alignment the problems are 

controllable, and then for the particular energy function (5.245) closed form solutions for 

the boundary value problems will be presented. 

The two problems presented in this section, theoretically speaking, would correspond 

to tubes and cylinders of `infinite' length. This is in order to avoid problems with the 

magnetic boundary conditions (3.66), in the same way as it was done for the homogeneous 

problems of Section 5.2. In practice, what may be done is to use tubes and cylinders with 

a length much greater than their diameters. We do not discuss here in more detail this 

topic, but some preliminary results about the effect of the boundary conditions (3.66) on 

the magnetic field, for the particular case of isotropic magneto-elastic problems, may be 

found in [15] and Section 4.2. 

In order to study the controllability of the solutions, let's consider the balance equations 

div T=0, curl H=0, div B=0, 

which for the particular case of cylindrical coordinates become (see Appendix A. 1) 

ÖTrr 

+ 
ÖTTZ 1 (5.286) 

8r 09Z 
+r (r, 

- Too) = 0, 

OTre 2 
Tr9 =0 (5.287) 

Ö+r 

(9Trz ÖTZZ 1 

57 + 
49-- 

+ 
rTrz 

= 0, (5.288) 
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axe_ OH, aHz_ 1a 
az 

0' 
az ar 

0, 
rar 

(rHe) = 0, (5.289) 

1a 
(rB,. ) + 

aBz 
= 0, (5.290) 

r ar az 

respectively (in the absence of 0 dependence). 

5.5.1 Extension and inflation of a tube 

Consider the problem of extension and inflation of a tube. The kinematics for this defor- 

mation are given as (see [35] for the magneto elastic isotropic counterpart of this problem) 

r2=a? +A; 1(R2-A? ), e=e, z=AzZ, (5.291) 

where Ai <R<A, 0<O< 2ir and -oo <Z< oo, and ai and ae correspond to 

the interior and exterior radii for the tube in the current configuration. The deformation 

gradient, and the left and right Cauchy-Green deformation tensors have components 

(, \z, \)-' 00 (A A)-2 00 
F= 00, b=c= 0 \2 0 (5.292) 

00 \z 00 AZ 

where A= r/R. The first and second invariants (5.25)1 and (5.25)2 are 

Ii = trc = (AzA)-2 + A2 Az, (5.293) 

12 =2 [(trc)2 - trc2] = A-2 + A-2 + (AA )2. (5.294) 

Now, there are several options for the magnetic field and the particle alignment field. 

We study the simplest cases. 

5.5.1.1 Axial magnetic field and axial particle alignment 

In this case we consider an external axial magnetic field and an axial initial alignment for 

the particles9. Then, the magnetic field will be given as 

Hl = (O, O, H0)T , 
(5.295) 

and from (3.9) and (5.292)1 we have 

H=(0,0, A 1H0)T. (5.296) 

9It should not be difficult to obtain a real tube like this in order to do experiments. 



CHAPTER 5. TRANSVERSELY ISOTROPIC MAGNETO-ACTIVE ELASTOMERS 164 

Then the equation (5.289) is satisfied automatically. The invariants K4. K5 and A76 are 

given from (5.26) as 

K4=Hö, K5= Az H0, K6=Az H0. (5.297) 

From (5.296) and (3.44) the non-zero components of the Maxwell stress arelo 

TmrT = Tm99 =- 20 ýz 2H0 
, Tmzz = 

2ý Az 2H0 
" (5.298) 

Consider now a uniform axial initial alignment for the particles, so that 

ao = (0,0,1)T" (5.299) 

From (5.2) and (5.292)1 we obtain 

a= (0,0, A )T. (5.300) 

The rest of the invariants (5.27), (5.28) are 

I7=Az, I8=Az, Ks=Ho, Klo=H0\z. (5.301) 

The components of the total stress (5.34) are 

Trr = -p* + 2(AAz)-2521 + 2()x-2 + A-2)Q* 
, (5.302) 

7-BB = -p* + 2A21l + 2[)z 2+ (AAz)2]c2, (5.303) 

Tzz = -p* + 2A1 + 2)«-2 + AAz)2 S*+ 2H2\21 + 4H2A4S1* + 2A2Q* (2oz5oz6z7 

+4) 1l + 2HoAzS210, (5.304) 

TrO = Trz = 7'6z = 0, (5.305 

and the components of the magnetic induction (5.38) become 

Br = BB = 0, (5.306) 

Bz = -(2H�\, 9* + 2Ho, \39* + 2H0Az1lg + \zqZ* + \zgio). (5.307) 

In order to study the controllability of the solution, we must study what happens with the 

balance equations. Consider the following decomposition of the total stress: 

Trr = frr(r) - p*, T99 = fee(r) - p*, Tzz = Txz(r) - p*. (5.308) 

'°It was mentioned previously that we will assume that the bodies will be completely surrounded by a 

free space; as a result we need to consider the presence of the Maxwell stresses for the extremes of the 

cylinder as external loads. 
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It is easy to see why T,,, Too and Tzz (r) are only functions of r, this is because from the 

above results for the invariants it is clear that they only depend on r, and as a result f2* 

will only be a function of this variable. 

Now, if we use the above decomposition of the stress in (5.286)-(5.288), remembering 
that rr9 = Trz = TB-, = 0, then (5.287) is satisfied automatically, while (5.288) implies that 

p* = p* (r), and as a result the only equation to solve is (5.286), which we now write as 

dfrr dp* 1 
dr dr +r \TTr - Tggý = O. (5.309) 

Regarding the magnetic induction, from (5.307) and the same considerations as before, we 

have that B, z = B, (r), and as a result (5.290) is satisfied trivially. Hence, this solution is 

controllable. 

Other possibilities for the magnetic field and the particle alignment might be consid- 

ered. For example, one simple case may be to work with the same magnetic field HI, but 

with a radial uniform particle alignment field, given as a0 = (1,0,0)T. But in this case, 

from (5.34) is not difficult to see that Tr, z 0 in general, and as a result, if we use the same 

decomposition for the normal components of the stress (5.308), from (5.288) we would find 

that p* would be a function of r and z, and it cannot be obtained from (5.286). Thus, this 

solution would not be controllable in general. 

Another simple possibility may be to work with a radial uniform particle alignment as 

before, and a radial uniform magnetic field H1 = (Ho, 0,0)T. In such a case we would have 

that TrO = r,, = TB-, = 0, then p* may be obtained by simple integration from (5.286), but 

from (5.38) we would have that Br = Br(r), thus would give Br singular at r=0. This 

solution is not admissible either. 

Other possibilities may arise. We could try to work with the magnetic induction as 

the independent magnetic variable, but we do not study the problem of finding more 

controllable solutions for this case further" 

5.5.1.2 Boundary conditions 

We study further now the boundary conditions for the above problem. First in a general 

context, and then for our particular form for the energy function. 

From (5.309) we have that p* may be calculated as 

p*(r) = Trr(r) - Trr(ai) + 
Ir 1 

(Trr(r) 
- TBo(r dr. 

, 

(5.310) 

"The problem of finding all the controllable solutions for the isotropic case was treated in [821. 
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As for the boundary conditions for the mechanical part of the problem (3.69). let us require 

a free stress condition for the outer surface of the tube, in such a case we would have 

Trr (ae) 
- Tmrr (ae) _ 0. (5.311) 

The radial component of the stress might be calculated directly from (5.286) without 

determining p*. From (5.286) we have 

dyr 1 
dr -r 

(r90 
- Trr), (5.312) 

with the boundary conditions 

Trr(aj) = -P +7-,,,,, (ai), (5.313) 

TTT(ae) = Tm,. r(ae). 
(5.314) 

In the above boundary conditions P is the internal pressure required to inflate the cylinder. 

With the boundary condition (5.314) and (5.298)1, along with (5.312), we obtain 

Trr(r) = -p - 
µO 
2%z2 r 

1(Trr(1') 
- Tgg(r» dr. (5.315 H°2 + 

Ir 

With the above solution and (5.313), P is expressed as 

P= 
ae 

(TTT(r) - TB8(r)) dr, (5.316) 
at r 

and hence, from (5.302) and (5.303), we obtain 

ae 2 

P=2 [(ý2 
- 

(A)-2)c + (()2 
- -2)S22]dr. (5.317) 

aý r 

Note that the above result tells us that for the internal pressure there is no difference in 

the behaviour of a transversely isotropic material and an isotropic one. 

The relation between p* and P is given as follows 

p*(ai)=P+TTr(ai)+ 
20Az2H0 (5.318) 

From the above results and from (5.310) we obtain for p* 

p*(r) = Trr(r) -f 

ae I AO (Trr(r) 
-Too(; )) dr +2 Az 2Hö. (5.319) 

In order to obtain the extension for the tube we need a traction force applied at the ends 

of the tube; this force, denoted N, is given as N= J' t_. dA, where t, is the component 
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of the external vector stress applied at the end on the tube in the axial direction, and dA 

is the differential element of area. Using (3.69), (5.298)2 and (5.304) we have 

a, - N=T, 
z, z27rr dr - 

2° A 2Ho2 2ir(a2 - a? ), 
Ja: 

ae 

_ [-P* + 2A11 + 2(a-2 + (AA )2)Sl2 + 2H A Q5 + 4Hoaz1l + 2A cl; 
al 

+4)ßz1 + 2H0A 1 
0]27rrdr - 

2° Az 2H027r(ae 
- a? ). (5.320) 

5.5.1.3 Boundary conditions for a particular energy function 

For the particular form of the energy function (5.245), we have 

I 
ýi =2 (go + g1K4), Q2 = 0. 

As a result, after integrating (5.317) and after some manipulations, we obtain 
2222 1 

(go + gi Hö) In Az a2a2 
+1 + In a2 + A? 

1-2 
(5.321) P= 

2Az AZ AZ a2 A, At 

where ae is calculated as ae = a2 + Az (A2 - A? ). Let us define the non-dimensional 

parameters X and c as 
a2 Ae 

5.322 -, S= X= A2 Ai' 
Then (5.321) may be rewritten as 

12 
P= 

2ýz 
(go + gi Hö) In S2 + In 1 X2 +X (S2 _ 1) 

+1_ X2 
1- 

X-2 (5.323) 
Az 

[X2 

+ Al(ý2 - 1) 

As was mentioned previously, the above expression is valid for both transversely isotropic 

and isotropic materials. Figure 5.5 shows the function (5.323) for different values of the 

parameters X, c, A and Ho. 

Regarding the normal force N necessary in order to have an extension for the tube, 

for the energy function (5.245), the equation (5.320) becomes 

Ia. 
Al =*+ 2\2q* + 2H2a2Q* + 2A252* + 2H0A 1 ]27rr dr -p z1oz5z7z 10 

i 

- 
2°Az2Hö27<(ae 

- a? ), (5.324) 

where p* is given from (5.319) as 

p* (r) = 2(ýýx)-2S2i - 
ae 2 

[(ýA )-2 - ý2]Sti dr + 
2ý %ýz 2Ho 

7 
(5.325) 

r r 

where = R. From (5.324) we see now that there is a difference between the transversely 

isotropic and the isotropic materials, so we treat these two cases separately as follows. 
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Figure 5.5: Pressure for different parameters for the tube with extension and expansion. 

The magnetic field Ho is given. 

Isotropic case. Let's start with the simplest case where we only have isotropy. In such 

a case in (5.324) the only derivatives that appear are SZi and S2*, then we have 

rar 
). (5.326) A/ _ [-p* + 2A2Q* + 2Hö A Q]27rr dr - -0 \--'Hö 27r (a2 - a2 

a a 

which by using (5.319) and after some manipulations implies that 

N1 
=3 (go +gýHö) 1- 'A- a, 2 X2(1- 2c' 2A3(c2 -1) -ý az(2az -1)x2) A2 7r zag c _x 

+ (1 - AZX`) log(, ) - \zX` 
(log 

log 1AA 
1` 

+A.. 1- 2A + 2(i\3 - 1)c2 +A (2Az 
- 1) X2 

A"g c2A 
2M 

(2, \ý - 3)(sß - 1)H2t, (5.327) 
- l+s+ ý-)]] 

I 

Figure 5.6 shows the normal force for different values of the parameters. 

----------- 

= 0.5 )=1 

---k=1 s=2 
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Figure 5.6: Normal force for different parameters for the tube with extension and expan- 

sion. 

Transversely isotropic case. Regarding the transversely isotropic case, from (5.249) 

and (5.251) we have for the partial derivatives of S2* that 

S27 = mhi (I7 - 1) _1 [moo + wIKg + 2Kio + ýsK9Kio], 

Flo = [h 0+h 1(17 - 1)m] [2ý2Kio + -4ý3 K91- 

where frone (5.301)1, (5.301)3 and (5.301)4 we have for the invariants that 

I7=A: K9=Ho. K10=H0A 

These invariants do not depend on r. Then (5.324) may be written as 

., 
Vt 

ran ?*1? 

PrA' ýA' 
A[- HQQj0 (s - 1). 15.32 
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where 1 trap and Nisot correspond to the normal force for the transversely isotropic and 

for the isotropic cases (5.327), respectively. Let us study instead the behaviour of the 

difference 
. 
Aftran - ! Vi, 

sot, which we denote AV. The behaviour of AA' i,, , liow li iii F: lire 

5.7. 
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Figure 5.7: Difference for the normal force for different parameters for the tube with 

extension and expansion, between the transversely isotropic and the isotropic case. 

0 

A zoom of the behavior of the function AJA% near zero, for the first case presented in 

Figure 5.7 is shown in Figure 5.8. 
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Figure 5.8: Detail of the behaviour of V for the first Figure of 5.7. 

5.5.2 Extension and torsion of a cylinder 

The problem of extension and torsion for a cylinder has been studied previously in the 

context of isotropic magneto-elastic elastomers by Dorfmann and Ogden [33]. 

In material coordinates the cylinder is defined as 

O<R<A, 0<8<27r. -Dc<Z<x. 

and the deformation is given by 

r=\z1/2R, 9=0+'\zTZ, z=A,, Z. (5.329) 

Then the gradient of the deformation (see I 

A 
z- 

1/2 

F0 

0 

where -y is defined as 

'Y= 

ýppendia A. 3) has components 

00 

Az 1/2 A, (5.330) 

0 Az 

=Tr. (5.331) 

The associated left and right Cauchy-Green deformation tensors have components 

A-' 00 A-' 00 

ý 5-332) b=0 A-1 + A2 2 A2,, c=0 Az -1 A 1/2_ 

0 A2ý A-_ 0 Al/2; A (1+ý, -') 
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The first and second invariants are given by (5.25)1 and (5.25)2 as 

Il = 2)z 1+ Az (1 + 72), (5.333) 

12 = 2A + Az 2+A y2. (5.334) 

5.5.2.1 Axial magnetic field and axial particle alignment 

We consider now the particular case, as in the previous problem, of an axial uniform 

magnetic field H1 = (0,0, Ho)T, and an axial and also uniform particle alignment field 

ao = (0,0,1)T 

In this case it may be shown that H is also given by (5.296). The fourth invariant 14 

is given by (5.297)1 as well, and the invariants K5 and K6 from (5.26)2 and (5.26)3 as 

K5 =HHA (1+y2), Ks=Hö['y2A +(1+'y2)2A]. 

With a0 = (0,0,1)T, along with (5.330) and (5.2), we have that 

a= (0, Y, \z)T 

The rest of the invariants are given respectively from (5.27) and (5.28) as 

17 = (1+'y2 )A2,18 =ry2Az+(1+72)2Az' 

Klo =H� 1+ ry2)Az. 

(5.335) 

(5.336) 

(5.337) 

(5.338) 

Since H is the same as in the previous problem, then the non-zero components of the 

Maxwell stress (3.44) are given by (5.298). 

The components of the stress are given by (5.34) as 

rrr = -p*+2)ßz1SZ1+2)ßz2[1+(1+7 ziS221 

Tea = -p* + 2(ßz 1 +'Y2Az)Q1 +2 \-2 [I + (1 + ry2)ýz]Sý2 + 2Hö-y2AZSZ5 

+4Höy2Az[1 + (1 +'y2), \z]16 + 2, y2, \2Q7 + 4ry2AZ[1 + (1 + y2)A31Q8* 

+2Ho7'2, \2Q* 
z 10) 

Tzz z-- -p* + 2AZSti + 4'z Q2 + 2HöAz1 + 4Hö (1 + 72)Az 6+ 2AZSZ7 

+4(1 +'y2)AzS28 + 2H0AZSZi0) 

TrO = Trz = Oý 

TBz = 2ry, \2Q* + 2-yA SQ* + 2Hory, \2Q* + 2HoryAz[1 + 2(1 + ýy2), \z]SZ; 

+2-yAzSt7 + 2ryAZ[1 + 2(1 + 72)Az)SZ8 + 2Ho-yA? 1 0, 

(5.339) 

(5.340) 

(5.341) 

(5.342) 

(5.343) 
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and from (5.38) we obtain for the components of the magnetic induction 

BT = 0, (5.344) 

Bo = -{2Ho'yAxfl + 2H,, 7[1 + (1 +'y2)A3]Q51 + 2Hory[A 1+ (1 + 2'12)A 

+(1 + ry2)2, \z]Q* 69 +Y, \zQ* +Y[l + (1 + ý2), QQ*O}, (5.345) 

Bz = -{2H0A 1l + 2H0(1 + -y 2), \3Q* + 2H0AZ[72 + (1 + 72 2, \zjos +. z1s 

+A (1 + ry2)S2io}. (5.346) 

Now, let us study the controllability of the above solution (we do not give all the details). 

First, since the only parameter that appears in the invariants is -y, which depends on 

r, we have that 1* will only depend on r, then from the above solution for the stress, it is 

not difficult to show that (5.287) is satisfied trivially, and from (5.288) we conclude that 

p* = p*(r). As a result p* may be obtained by integration from (5.286). 

Regarding the magnetic induction, we have that BB = Bo(r) and B, z = Bz(r), so that 

(5.290) is also satisfied trivially. As a result this solution is controllable. 

As in the expansion and inflation problem for a tube, other options may be chosen 

for the magnetic field and the particle alignment; however, as in that problem, the other 

simple cases that have been studied have been found to be not controllable, so we consider 

only this particular case. 

5.5.2.2 Boundary conditions 

Now, regarding the boundary conditions, we have essentially two quantities to calculate. 

One of them corresponds to the traction load applied on the ends of the cylinder, and the 

other to a torque, which we call M, applied also on the ends of the cylinder. These loads 

are given by 
az a 

Jý% = 2-7r tz r dr, M= 2ý Tezr2 dr, 
00 

(5.347) 

where tz is defined as the external axial load per unit area applied at the ends of the 

cylinder. From (3.69), as in the previous problem (assuming that the cylinder is completely 

surrounded by a free space), it is given by 

z 
Tzz = tz + Tm2z (5.348) 

If we have free traction for the surface r=a, then from (3.69) this would imply that 

rrr (a) = Tmrr (a), and as a result from (5.286) we have 

ja 

p*(r) = Trr(r) - (Trr(r) - roo(r))dr + 2°ßz 2H 
ö, 

(5.349) 
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where frr (r) is defined by (5.308)1. 

Then, using (5.341), along with (5.298)2 and (5.348) in (5.347) we obtain for the normal 
traction 

N= 2-7r 
0d 

-P* (r) + 2Az1 + 4A 122 + 2H0 
zS25 + 4Ho (1 + y2)AZS26 

+2A1 + 4(1 + ry2)A 1l + 2H0AzS2i0 - 
2°Az-2Ho }r dr. (5.350) 

As well as this, using (5.343) in (5.347)2, we have the following expression for the torque: 
a 

M= 27r 
o 

{2ryAzS21 + 2ýyAzS22 + 2Ho-yAzS25 + 2HöryAz[1 + 2(1 +y2)a3]Sts 

+27A 2Q* + 2'yAz[1 + 2(1 + y2)A3]Q* + Wo-yAz1l 0}r2 dr. (5.351) 

5.5.2.3 Boundary conditions for a particular energy function 

For our particular energy function (5.245), the equation (5.350) for the normal force be- 

comes 

2* 2 2* fLO, 22 27r 
ja {p*(r) 

+ 2A1Z + 2HH \2q* + 2A l+ 2Ho, \29* 02zo}r dr, 

(5.352) 

and the equation (5.351) for the torque is given as 
a 

M= 27r {2ry, \zSli + 2Höy, \2Q* + 2ryAz127 + 2Hory, \2Q*o}r2 dr. (5.353) 
0 

We will study the isotropic case first, which is only a special case here. 

Isotropic case. For the isotropic case we have the following simplification of (5.352) 

N= 27r 
0a 

{p*(r) + 2AZS21 + 2HoAZSZ 5- 2°A z 2Hö 1r dr, (5.354) 

and from (5.349) we get (1 and 1l are constant) 

p*(r) = 2Az lcl + 2°az 2Hö +T2ýz(Q1 + Hö1S)(a2 - r2), (5.355) 

and 

N= 
2(A -Az 

1)1l + 2HHA? S25 - µoAz 2Hö -2 (-ra)2A? (Sli +H 1l ). (5.356) 
a2ir 

About the torque, from (5.353), for an isotropic material, we have the following simple 

expression 
M 

=, \2 /Ta S2* + H2SZ* 
mag zl 

ýý 
10 5) (5.357) 

The above two expressions are rather simple. Therefore we do not provide figures of the 

behaviors of N or M for this case. 
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Transversely isotropic case. The transversely isotropic case (5.352) and (5.353). using 

(5.349) along with (5.246)-(5.251) and (5.333), (5.337)1, (5.338)1 and (5.301)3. is much 

more complicated than the above isotropic problem. Nevertheless for this particular form 

of the energy function, (5.352) and (5.353) can be obtained analytically. The following is 

the expression for the normal force, where the dimensionless parameter ý has been defined 

ash= -ra 
N_ Ki 

(5.358) 
a27r 2D' 

and the expression for the torque is 

M K2 
a37r 

=D (5.359) 

where K1 and K2 are given respectively as 

Kl = 3(2 + m)(3 + m){2[(Az - 1)x"'(1 - (3 + 2m)A) - (, \z(1 + ý2) +, \? (m(ý2 

-2) - 3))]hlwo - (1 + m)Aze2[4 + \3(ý2 - 4)]S21} + Hö {-6(1 + m)(2 + m)(3 

+m) 2µo + 6h1 [(2 + m) (3 + m)((Az - 1)'n(1 - (3 + 2m)\z) - (A (1 + ý2) - 1)m 

*(1+Az(m(ý2-2)-3)))wl-(Xz-1)m((-2-2m)\z-m(1+m)A4+(1+m) 

*(2 + m)(7 + 2m)\6)w2 + (3 + m)(-1 - mAZ + (1 + m)(5 + 2m)\4)w3) - (, \z(1 

+ý2) - 1)'n((2 + ßz(1 + ý2) (2m + mAz + m2Az - 14\4 - 25mAz - 13M2, \4 

-2m3Az - (1 + m)Az(-m + (2 + m)(5 + m)Az)ý2 + (1 + m)(2 + m)2Azý4))w2 

+(3 + m)(1 + Az (1 + 62)(m -5 \z - m(7 + 2m)\z + (1 + m)2Az62))w3)] 

-(1 + m)(2 + m)(3 + m)Az62[ho(2\Z(-12 - 362 +264 )W2 + 3(62 - 4)w3) 

+3(ý2 - 4)S25]}, (5.360) 

K2 = 6(Az - 1)1+mhl{H, [(2 + m)(3 + m)wl + (2 + (1 + m)Az(2+(2 + m)Ai))w2 

+(3 + m)(1 + (1 + m)Az)w3] + (2 + m)(3 + m)wo} + 6[A (1 + ý2) - 1]mhl{Hö [(2 

+ m(1 + m), \z - (1 + m)(2 + rºz)ýs -ßm)(3 + m)(1 + \2(mý2 - 1))wi + (2 + 2m\2 

+mAz(2 + (1 + m)Az(2 + (2 + m)AZ)) 2+ (1 + m)Ai(m + (2 + m)(3 + 2m)Az) 4 

+(1 + m)(2 + m)2A6 6)w2 + (3 + m)(1 + maz - (1 + m)Az + M, \2(1 + (1 + m)Ai)ý2 

+(1 + m)2, \z 4)w3] + (2 + m)(3 + m)[1 + ßi( 2- 1)]wo} + (1 + m)(2 + m)(3 

+m)Azý4{3fk + H,, 2, [ho(2\z(3 + 2ý2)w2 + 3w3) + 31l ]}, (5.361) 

and 
D= 3(1 + m)(2 + m)(3 + m)A 3. (5.362) 
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Figure 5.9: Normal force for the extension and torsion problem. 
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Figure 5.10: Normal force for the extension and torsion problem as function of ý (the 

magnetic field is in kA/m). 
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Figures 5.9 and 5.10 show the results for the normal force, and Figures 5.11 and 5.12 the 

results for the torque. 
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Figure 5.11: Torque for the extension and torsion problem. 
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Chapter 6 

Basic equations for electro-active 

elastomers 

The theory for electro-active elastomers developed by Dorfmann and Ogrleeil [32,3(' follcnv., 

closely the theory for MS elastomers presented in Chapters 3,4 and 5. Thus, for this 

chapter, and for Chapters 7 and 8, we do not show the full proofs of some of the expie ioýiis. 

In this chapter we show some equations for elect ro-active (or elcctro-ý(, ilýit ive ES) 

elastomers; we base our work on the theory for ES elastomers of Dorfmann and Ogdeii 
L32, - 

For this chapter and for Chapters 7 and 8 we use the same symbols to denote t 11 fr(, (, amcl 

the total energy functions. 

We assume that there is no magnetic field, free currents or electric cliarges, as well as 

this, we only work with the quasi-static case (no time dependence), and we do not consider 

thermal effects. 

With the above assumptions, the effective electric field E(, defined in Section 2.3 he'- 

coiiie-; E (see equation (2.115)2). Therefore, with the above assumptions the frýý energy 

function z{' defined in (2.126) only depends on the deformation gradient F and t1w cl(, t ric 

field E; hence 

L, =t, (F, E). «). 1) 

From (2.131)2 and (2.131)3 (using the convention (3.3)). we have 

äiß du 
o=pFäF. P=-paE. ((. 21 

for the Caiucliv ýt i es and the polarization P respectively. 

17S 
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6.1 Eulerian forms, Lagrangian forms and the initial forms 

of the fields 

As for MS elastomers (see Section 3.1) we can define the Lagrangian forms of the electric 

field and the electric displacement by considering the global forms of the Maxwell equations 

for electrostatics (2.103) 

f8D0, jE. dr=O. 
c 

(6.3) 

As in Section 3.1 from (6.3)1 using the Nanson's formula [78], and from (6.3)2 using 

dx = FdX, we can define the Lagrangian electric displacement and electric field as [32] 

Dl = JF-1D, Ei = FTE. (6.4) 

With the identities 

Div(JF-1D) = JdivD, FCurl(FTE) = JcurlE, (6.5) 

we can prove that (2.103) are equivalent to 

CurlE1 = 0, DivDj = 0. (6.6) 

From (2.107)1 we had 

D=E0E+P. (6.7) 

We may assume that the polarization field P transforms in the same way as the electric 

displacement D; this definition is not unique. We have [32] 

Pl = JF-1P. (6.8) 

Then in (6.7) we have 

JF-1D = E0JF-1F-T FT E+ JF-'P; (6.9) 

as a result 

Dl = E0Jc-'El + Pl. (6.10) 

For the case in which there is no deformation, let's denote by E0, Do and Po the 

electric field, electric displacement and the polarization, respectively. From (6.7) we have 

Do = eoEo + Po. (6.11) 
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If we assume that the body deforms, such that the deformation gradient is F, from 

(6.4) and (6.8) we can define the push forward version (subscript f) of the fields E0. Do 

and Po as 

D f= J-'FDO, E f= F-T EO, Pf = J-1 F'Po, 

and substituting in (6.11) we get 

JF-1Df = E0FTEl + JF-'Pf. 

thus 

Df = e0J-1bEf + Pf. 

Then, the form (6.11) is not preserved. 

(6.12) 

(6.13) 

(6.14) 

If we choose to work with E as the independent electric variable, we have El = E0� 

but in general Do 54 D1. And conversely if we work with D as the independent electric 

variable we have DI = Do, but in general El E0. 

6.2 Constitutive equation and the total energy function for 

ES elastomers 

Let's define the function c as [32,36] 

4) (F, El) = 0(F, FTE). (6.15) 

From the principle of material frame-indifference [32,78,112] for c we must have 

4(F, El) = c(QF, EI), (6.16) 

for all proper orthogonal tensors Q. As for El, the transformation for F and E is F= QF 

and E' = QE respectively, then El = FTE' = FTQTQE = FTE = El. We have that El 

is a Lagrangian vector and is not affected by the rotation Q. 

Remembering the convention for the derivative (3.3), from the definition (6.15), fol- 

lowing similar steps as in Section 3.3, we can show that 

F 
a(D 

F 
OF 
22 

- 
2'-0 
OE 0 E. (6.17) 

OF 

Thus for (6.2)1 using (6.2)2 we have 

(6.18) pF0-1) -P®El 
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and 

P= -pýE = -pFaE . 
(6.19) 

t 
From Section 2.3 with the simplifications enunciated at the beginning of this chapter, 

the particular form of the balance of linear momentum, if we do not consider mechanical 

body forces, is (see equation (2.109) ) 

diva + fe = 0, (6.20) 

where, from (2.110), fe is given as 

fe = (gradE)TP. (6.21) 

Proposition 6.1. The electric body force fe can be expressed as the divergence of the 

following second order tensor [32] 

D ®E - 21 eo(E " E)I. (6.22) 

Proof. Let's work with Cartesian coordinates. We want to show that 

fe = div D®E- 
2Eo(E 

" E)I . 
(6.23) 

In index notation we have 

fei = 
(DE3 

-I EEkEk6ii 
), 

i 

= Di, zEj + DiEj, Z - EoEkEk, i(Sij, (6.24 

but from (2.103)2 we have that Di, i = 0, and from (2.103), we have Ej, i -- Eij, therefore 

. 
fei = (Di 

- E0Ei)Ei, j, 
(6.25) 

which from (6.7) is equivalent to 

fe = (gradE)TP. (6.26) 

r-l 

Then, we can define the total stress T as 

r=a+D®E- 
2Ea(E®E)I, (6.27) 

and (6.20) is equivalent to 

div-r = 0. (6.28) 
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Definition 6.1. In electrostatics the Maxwell stress tensor Tm is defined as /32J 

^rm =D®E- 21 Eo(E " E)I. (6.29) 

For vacuum we have the linear relation (2.106)1 D=E,, E, and so -r, can be expressed 

in the two equivalent forms 

Tm = Eo E ®E -I (E " E)I 
, 

(6.30) 

D ®D - 
1(D 

" D)I (6.31) 
E0 

The final remark of Section 3.3 also applies here. In Chapters 7 and 8 Nve solve some 

boundary value problems and we assume a body totally surrounded by free space; in such 

a case the Maxwell stress defined above must be included as an external load. 

Regarding the balance of angular momentum, from (2.111) for our particular electro- 

static problem we have 

E: o+PxE=O. (6.32) 

It is clear that in general a is not symmetric. Rom (6.27) we have o, = -r -D0E- 
1 Eo(E " E)I, and so from (6.32) since e: I=0 and we get 

jE: rr-e: (D(DE)+PxE=O. 

But e: (D (9 E) =DxE, therefore the above expression is equal to 

E : ýr+(P-D) xE=0, 

which is equivalent to 

E: r=01 

because P-D= -60E. As a result we have that T is a symmetric tensor. 

6.2.1 The total energy function 

(6.33) 

(6.34) 

(6.35) 

As was done in the magnetostatic case, here we can define a total nominal stress tensor, 

denoted T, associated with -r (equation (6.27)) asi 

N) 1 
T=JF-1-r=p0äF+JF-1 

[_PE+D®E_Eo(E. 
EI] (6.36) 

'See equations (2.33) and (6.18). 
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but from (6.7) we have (-P + D) ®E= eoE ® E, thus 

T= po-F4, + e0JF-1 E®E-2 (E " E)I . (6.37) 

From the definition of the Lagrangian electric field (6.4)2 and (2.17), we can prove 

that E"E= El " (c-' El) . 

Proposition 6.2. The following identity holds 

ýF, 
(JE1 " c-1El) = -2JF-1 E®E-2 (E " E)I 

, 
(6.38) 

where is at fixed El. 

The proof of the above proposition is not trivial and so it is given in full form as follows. 

Proof In index notation (Cartesian coordinates) we have 

OF 
[(JE1 

" c-'El) 
ij 

a 
-1 

- 
(JElk C kr El, ) 

, aF, z 
(6.39) 

-1 
where C kr is the component kr of the tensor c-1 and El, is the component k of the 

191 -1 
vector El. From (3.51) (see [78j) we have ýýj, ýJ Fij, where we recall the notation Fij 

for the component ij of the tensor F-1. Thus 

-1 
49 c kr Et, a 

(JEtk kr Etr) = 
äJ 

Elk -1 kr Etr + Elk-OF 
OFji OF- jZ 

ý -1 a CkT 
Et (6.40) =JF Zj Elk C kr Elr + Elk 

OFjz r 

-1 
Let's calculate C kr from the expression c-ic = I; taking the derivative in F, we have 

C7 Ckm -1 0Cmp 
= o. (6.41) Cmp+ C km 

0Fj2 aF, i 

But c= FTF, therefore 

oe7np 
-a (F'9mF, )=5 mF, + Fq�, Aý (6.42) 

aF, z aF, i 
where the definition of the symbol JIk', is given in (3.22). From (6.41) we obtain (multi- 

M 
plying by C pr) 

19 6Clkm 
6c1 

OFjj 
6mr ý-C km C pr (6imFjp + JipFjm), (6.43) 

and we get 
C kr 

aFji C ki C pr 
Fjp+ C kr C ir Fjp). (6.44) 
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As a result for the second term of the right side of (6-40), using (6.4)2, we have 

Elk EI, ý -(Esfsk Clki C1p, FjpFt, Et + E, Fk C1 kp C1 ir FjpFtrEt)- (6.45) 
o9Fji 

Using c-1 = F-lF T above, it is easy to prove that the right side of the above equation is 

equivalent to -2F-'E ® E. 

Then, using E-E= El - c-'Ej, and the above results in (6.40), we finally obtain 

ýF, 
(JE1 " c-'El) -- -2JF-1 E®E-2 (E " E)I . 

0 

Rom (6.38), for the total nominal stress tensor T (6.37) we have 

a T= 
OF 

(poi + 260JEl " c-lEl) . 
(6.46) 

Definition 6.2. The amended free energy function (electrostatics) Q is defined as 

JE1 c-1El (6.47) 9 (F, El) = po4) (F, El) +2 

From the above definition we have [32] 

T -- 
aQ 

(6.48) 
aF 

Hence, from (6.36) we get 

J-lF 
aQ 

(6.49) 
aF 

Rom (6.19) we have 

P= -pF 
pF [9g2 

- 
a- (LO-JE, 

- c-'E, 
)] (6.50) 

aE, PO 49EI 49EI 2 

but '9 (-LaJEI - c-'El) = e,, Jc-'El; using (2.21), we obtain 5 -El 2 

JF-1P =- äE 
00 

+ EoJc-'El, (6.51) 
c 

which from (6.8) is equivalent to 

e 
(9Q (6.52) Pj-0Jc-1Ej=-aEl, 

and from (6.10) we finally get [32] 

Di 
OE 

(6.53) 
I 
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6.2.2 An alternative formulation 

If we work with the Lagrangian electric displacement DI as the independent electric vari- 
able, we can introduce the complementary energy function Q* (F. DI) through the partial 
Legendre transformation as [32] 

Q* (F, Dl) =9 (F, Ei) + D, " Ei. (6.54) 

Then 

(6.55) T 
, OF 

and 

El 
äD * (6.56) 

c 

6.3 Boundary conditions 

As in the case of MS elastomers (Chapter 3), we assume here that the body is com- 
pletely surrounded by a free space. From (2.105) the boundary conditions, in the current 

configuration for the electric variables (no distribution of surface charges), are 

QEjxn=O, QDD"n=0. (6.57) 

Using (6.3) in the reference configuration fS, Di -N dA = 0, fcr El - dR = 0, the above 
boundary conditions are equivalent to 

QEIJ xN=O, IDI]. N=O. (6.58) 

Here the vectors n and N are the outward normal vectors to the surface of the body in 

the current and reference configurations. 

The boundaxy conditions for the stress in the current and reference configurations are 

QT]I n=0, QT]I N=0, (6.59) 

where for a body completely surrounded by free space we must include the Maxwell stress 
(6.30) (or (6.31)) in the external load. For (6.59)1, for example, we have 

Trn=t+Tr,,,, n, (6.60) 

where t is the purely mechanical contribution to the surface traction. 
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6.4 The boundary value problem 

This is a summary of the main results of the Dorfinann and Ogden's theory for ES elas- 
tomers [32,36]. 

We have to solve the following system of paxtial differential equations in the current 

configuration 

div-r = 0, curIE = 0, divD = 01 (6.61) 

with boundary conditions 

ý-rýn = 0, ýEI xn=0, ýDý -n -- 0. (6.62) 

The system of equations (6.61) is coupled. We work with a body B completely sur- 

rounded by a free space (vacuum) 8'. We solve (6.61), for B and (6.61)2 and (6.61)3 for 

B and B' respectively. From the definition of the total stress (6.27), we have that -r = -r, 

in B', where -r, is defined in (6.30) and (6.31); we can prove that if (6.61)2 and (6.61)3 

hold, then (6.61), is satisfied trivially for B'. 

In analogy with what was done in Section 3.5, we can define the scalar and vector 

potentials for the electric field and the electric displacement respectively. We do not 

repeat the theory here. 

Consider the case in which we work with the electric field E as the independent electric 

variable. A solution of (6.61)2 is 

E_ -grady, (6.63) 

where ýp is the scalar electric potential. This potential is very important in the theory of 

electrostatics [42,107]; in practical problems an electric field is produced by a difference 

in the potential. 

From (6.49), (6.53) and (6.4)1, the system of equations we have to solve is (6.61), and 

(6.61)3, where we look for X and W such that 

div J-'F'9Sý) = 0, div 
(J-'F-, 99 ) 

:=0, xc 13, (6.64) 
OF OEI 

and 
divgradýp = 0, xC S', (6.65) 

where F= "ý', E= -gradW, Q= Q(F, EI) and E, = FTE. The field ýp is continuous 

across OB, and we use the same notation for the scalar potential for B and B'. 
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In the case in which we work with the electric displacement D as the independent 

electric variable, a solution of (6.61)3 is (see Section 3-5) 

D= curlA, (6.66) 

where A is known as the vector potential. 
Therefore from (6.61)1, (6.61)21 (6.55), (6.56), the definition -r = J-1FT and (6.4)2, 

we look for X and A (vectors fields) such that 

div J-1F 
OQ* 

0, curl F-TO9ý2* 01 XEB, (6.67) aF 
)= 

-5 -DI 
)= 

and 

curlcurIA = 0, xE B07 (6.68) 

where D= curl AI Q* = Q* (F, Dj) and D1 = JF- 1 D. The vector potential A is assumed 

continuous across 49B (see Section 3.5), and we use the same notation for this potential for 

B and B'. 



Chapter 7 

Isotropic electro-active elastomers 

In this chapter we study the case of electro-active elastomers witli a random distribution 

of particles; these materials are called isotropic ES (elect ro-sens, it ive) elastoiiwiýs. 'I'lle 

distribution of particles is random but homogeneous. 

Consider the case in which the clectric field E is t1w independent electric N-m-iable; from 

(6.47) we have Q =: Q(F, El); from (6.49) and (6.53) we have 

äS2 
T-ýFäF 

OE-. 
(7.1) D1 

For aii incompressible material J=1, and (7.1), is rejAwc(I bY 

FRF - PI. (7.2) 

For the function Q(F, El) in the isotropic case Nve liave that it depends on six invitriaia, 

[: 2,102] 

I 
tr c, 12= _[(trC)2 _ tl, C2 1,13 ('1 C, (7.3) 

2 

11 = El - El. 15 = El - cEl, 16 = El _ C2 El. (7.4) 

For the fifth and sixth 111VýIrMlltS 15 and 16 Nve have chosen the forms 15 = El - cE, and 

16 = El -c2EI, instead the forms 15 = El - clEj and 1(, = El -c2 El used originally by 

Dorfmann and Ogden [32]-, it can be shown that these tNvo sei of iiivari; mlý, are equivýilent. 

Consider the following derivatives of the invariants in terins of the gradient t' 

mation and the electric field: 
1- 1-1 

T -F 
T FF'-), 

013 
=, 2113F-1, (7.5) 

OF OF OF 
. )I- (, 

- 9EI 0 FE,, 
01ýi 

= '22 (E, I ýý FFT FEI) + FIFE,, (9 FE,,. (7.6f 
OF - OF 

1ý-ý 
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and 
M= 

2E1 7 
21-5 

= 2cEj, 
'16 

= 2C2 El. (7.7) 
c9E, 49E, 5-El 

Thus, from (7.1) with the chain rule and (6.4), we get' [32] 

J-1 (2bQ, + 2[Ilb -b 
2] 02 + 2131Q3 + 2bE (9 bEQ5 

+2[bE 0b2 E+b 2E (9 bE] Q6) 
1 (7.8) 

-2J-1 (bE04 +b2 EQ5 +b3 EN). (7.9) 

In the case of an incompressible material J=1, from (7.2) we have 

-r =: 2bQ, + 2[lib -b 
2]Q2 

- pl + 2bE o bEf25 

+2[bE (9 b2 E+b 2E (9 bE]06; (7.10) 

additionally, 

D= -2(bM4 +b2 E95 +b3 E96) 
- 

If we work with the electric displacement D as the independent electric variable, NNe 
use the complementary function (6.54) Q* = Q* (F, DI); from (6.55), (2.33) and (6.56) we 
have 

7= J-'F 
OW 

, Ei== 
öQ* 

(7.12) 
OF OD, " 

As in (7.2), for an incompressible material (7.12), is replaced by 

F 
OQ* 

- aF 

For an isotropic ES elastomer Q* depends on six invariants; thus 

W :ý Q* (Il) 12 
7 

13, K4, K5, K6), 

where 1,, 12 and 13 are given in (7.3), and K4, K5 and K6 axe defined as [321 

K4=Dl. Dl, K5=Dl. cDl, K6=Dl. c 2 DI. (7.14) 

Consider the derivatives of the invariants 

OK5 
= 2DI (9 FDI, 

OK6 
= 2(DI (9 FF T FDI +FT FDI (9 FDI), (7.15) 

OF OF 
1 Note that in these expressions b3 depends on b and b2; from the Cayley-Hamilton theorem we have 

b3= Ilb 2- 12 b+ 13 1. 

The notation Pi means the derivative of 0 in Ii for i= 
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and 
aK4 

= 2DI, 
W5 

= 2cDj, 49K6 
= 2c 2 Di. (7.16) aDi jD-1 aDi 

With the chain rule and (6.4)1, from (7.12) we obtain2 

J-1 (2bQ* + 2[Ilb -b 
2]p* + 213IQ* + V2 D (9 DQ* 1235 

+2j2 [D (9 bD + bD (9 D]Q*), (7.17) 6 

E 2J(b-'DQ* + DQ* + bDQ*), (7.18) 456 

and for an incompressible material 

2bQ* + 2[Ilb - b2]Q* - p*I + 2D o DQ* 125 

+2[D 0 bD + bD 0 D]Q6*) (7.19) 

E 2(b-'DQ* + DQ* + bDQ*). (7.20) 456 

7.1 Universal relations 

The importance of universal relations was stressed at the beginning of Section 4.1. In 

this section we show some results for ES elastomers; we study in detail the theory of 

linear universal relations, and provide two examples of non-linear universal relations (see 

Subsection 4.1.2). The results of this section are based on the results shown in the paper 

by Bustamante and Ogden [22]. 

Linear universal relations 

Let's work with the electric field as the independent electric variable, and let's work with 

an incompressible material. Consider the notation 

-yi = 2(Ql + Q21l)7 72 = -2Q2) -y4 = 2Q4; -y5 = 2Q5i -y6 = 2Q67 

so (7.10) and (7.11) become 

-r = -pI + -ylb + -y2b 
2+ 75bE (9 bE + -ý6(bE ob2 E+b 2E 

(9 bE), 

-(74bE + -y5b 
2E+ 

76b 
3 E). 

Consider the skew-symmetric tensor 

-rb-1 - b-l-r = -y5(bE (9 E-Eo bE) + -y6(b 2EoE-E0b2 E). 

(7.21) 

(7.22) 

(7.23) 

(7.24) 

2 Here the notation SIj* means the partial derivative of IT in Ii if i=1,2,3, or in Kj if i=4,5,6. 
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Using the same representation for a skew-symmetric tensor as in Subsection 4.1.1. denoting 

(-rb-1 - b-l-r),, its associated axial vector, we have 

b-l-r)x =Ex (-y5bE + 76b 2 E). (7.25) 

from which we obtain the universal relation 

(-rb-1 - b-l-r», -E=0. (7.26) 

Let's use the formulation based on Q* (F, Dj) and let's introduce the notation 

2(Q* + Q*11), -y2* -2Q*, -y4* = 2Q*, 75* = 2Q*, -y *=2 Q6", (71.27) 122456 

so that (7.19) and (7.20) become 

-r = -P* I+ -yi* b+ -y2* b2+ -y5*D (9 D+ -y6*(D 0 bD + bD (9 D). (7.28) 

E= -y4*b-'D + -y5*D + -y6*bD, (7.29) 

and hence 

-rb-1 - b-l-r = -y5*(D 0 b-lD - b-lD 0 D) + -y6*(bD (9 b-lD - b-lD (9 bD), (7.30) 

then 

(7-b-1 - b-l-r),, = b-lD x (-y5*D + 76*bD), (7.31) 

and we obtain the universal relation 

b-l-r»< - b-'D = 0. (7.32) 

As in Subsection 4.1.1 we have the proposition 

Proposition 7.1. The relations (7.26) and (7.32) are equivalent and can be obtained from 

-rb-1 - b-l-r =E0 b-lD - b-lD 0 E. (7.33) 

Proof. Consider the right side of (7.33), from (7.23) we obtain 

b-lD 0E-E0 b-lD = (74E + -y5bE + 76b 2 E) 0E 

(74E + -y5bE + -y6b 2 E), 

= 75(bE 0E-E0 bE) + 76(b 2E (9 E-E0b2 E), (7.34) 

which is equal to the right side of (7.24). 0 

From the theory of Pucci and Saccomandi [85] we have that for an isotropic ES elas- 

tomer the number of independent universal relations is one. For an incompressible material 

we could find more universal relations by solving some specific boundary value problems, 

but we do not do that here (see remark at the end of Subsection 4.1.1). 
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7.1.1.1 Special cases 

Sometimes it is necessary to propose simplified forms for 0 or W, which would mean we 

assume, for example, that Q would only be a function of some of the invariants shown in 

(7.3) and (7.4). As we explained at the beginning of Subsection 4.1.1.1, to assume that Q 

or Q* depend on fewer invariants means a modification of the matrix M of the Pucci and 

Saccomandi's theory (see [18,22,851), and we can find more universal relations for these 

simplified cases. 

Case 1: Q= Q(11,12,14,15) 

In this case -y6 =0 and from (7.25) we have 

-y5E x bE, (7.35) 

from which we find the two universal relations 

b-l-r)ý< xE=0, (7-b-1 - b-l-r)x x bE = 0. (7.36) 

Rom (7.23) with -y6 we have 

D- (bE xb2 E) = 0, (7.37) 

provided E is not an eigenvalue of b. 

Consider the following subcases [221. 

(11,14,15) 

Rom (7.22) we have 

-r = -pI + -ylb + NbE (9 bE, (7.38) 

so 

-rE = -pE + -y, bE + -Y5(bE - E)bE, (7.39) 

and we get the universal relation 

-rE - (E x bE) = 0. (7.40) 

(11,12,14) 

The total stress is given as (7.22) 

-r = -pI + -ylb + -y2b 2, (7.41) 
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and we get the classical result of the theory of non-linear elasticity [61 

-rb - b-r = 0. (7.42) 

Regarding the electric displacement, from (7.23) we have 

D= --y4bE, (7.43) 

and we obtain the relation 

Dx bE = 0. (7.44) 

Q (IT1 

1 
12 

7 
15 ) 

In this case we do not have any new relation involving the stress tensor. 

But for the electric displacement from (7.23) we have 

-^/5b 2 E, (7.45) 

from where we get the relation 

DX b2E = 0. (7.46) 

Q == Q (12,14,15) 

In this case we do not have a new relation for the electric displacement, 

but for the total stress from (7.22) we have 

-r = -pI + -ylb + -y5bE (9 bE, 

and it is not difficult to prove that the following relation holds: 

-rE - (E x bE) == 0. 

Case 2: Q= Q(Ij, 12,14,16) 

In this case -y5 =0 and from (7.25) we have 

-y6E xb2 E7 

from where we obtain 

(7.47) 

193 

(7.48) 

(7.49) 

(-rb-1 - b-l-r). -E= (b 2 E) = 0. (7.50) 
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As for the electric displacement, from (7.23) with -ý6 we have 

D= -(-y4bE + -y6b 3 E), 

and we get the relation 

D- (bE xb3 E) = 0. (7.52) 

Again let's consider the following subcases. 

(11,12,16) 

There is not new relation for the stress. From (7.23) for the electric dis- 

placement we have 

--y6b 3 E, (7.53) 

and we obtain the universal relation 

Dxb3E=0. (7.54) 

(b) 0Q (Ili 14) 46) 

From (7.22) we have for the total stress 

-r = -pl + -ylb + -y6(bE (9 b2 E+b 2E0 bE). (7.55) 

Let's take the product 

-rbE = -pbE + -y1b 2E+ -y6[(b 2E- bE)bE + IbE 12 b2 E], (7.56) 

and we get the relation 

-rbE - (bE xb2 E) = 0. (7.57) 

There is no new relation for the electric displacement. 

0 (12) 4 16) 

From (7.22) we have 

-r = -pI + -y2b 2+ Y6 (bE 0b2 E+b 2E (9 bE). (7.58) 

We can obtain the two foRowing expressions 

(-rE x E) -b2E N (b 2E 
- E)(bE x E) -b2 El (7.59) 

(-rb-'E x b-lE) - bE -t6(bE - b-'E)(b 2Ex b-lE) - bE. (7.60) 
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from where we have the relation3 

(bE - b-'E)[(b 2Ex b-lE) - bE][(-rE x E) -b2 Ej 

= (b 2E- E)[(bE x E) -b2 E][(-rb-'E x b-lE) - bE]. (7.63) 

195 

Using the Cayley-Hamilton theorem in the form b-1 =b2- bIl + 112 we 

could rewrite the above expression only in terms of I, b and b2. 

Case 3: Q=Q (1,, 14,15,16) 

Here from (7.22) for the stress we have 

-r = -pI + -ylb + -ý5bE (g bE + -y6(bE 0b2 E+b 2E0 bE). (7.64) 

Multiplying by bE we get 

-rbE = -pbE + -ylb 
2E+ 

-Y5jbE 12 bE + -y6[(bE - bE)bE + IbE 12 b2 E]. (7.65) 

With the above expression we can obtain the universal relation (7.57). 

For the subcase Q=Q (11,15,16), from (7.23) for the electric displacement we have 

D =: -(-y5b 
2E+ -y6b 3 E), (7.66) 

and we obtain the universal relation 

D- (b 2Exb3 E) = 0. (7.67) 

Case 4: Q= Q(12,14,15,16) 

This case is more complicated. Rom (7.22) the total stress is given as 

-r = -pl + -y2b 2+ -y5bE 0 bE + -y6(bE 0b2 E+b 2E (9 bE); (7.68) 

taking the product with bE and b-IE we can obtain respectively 

(-rbE x bE) -b3E = -t6lbE 12 (b 2Ex bE) -b3E, (7.69) 

(-rb-'E x b-lE) - bE = -y6(bE - b-'E)(b 2Ex b-lE) - bE, (7.70) 

3 Here we do not consider the cases 

(b 2E- E)(bE x E) -b2E=0, 

where we would have the universal relations 

(rE x E) -b2E=0, 

or (bE - b-'E)(b 2Ex b-lE) - bE = 

or (-rb-'E x b-'E) - bE =0 

(7.61) 

(7.62) 

respectively. 
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and we obtain 

(bE - b-lE)[(b 2Ex b-lE) - bE][(-rbE x bE) -b3 E] 

= JbE12 [(b 2Ex bE) -b3 Ej[(-rb-'E x b-lE) - bE]. 

As in the case 2 (c), when (bE -b-1 E) [ (b 2Ex b-lE) - bE] =0 or JbE12 [(b 2Ex bE) - 
b3 E] =0 we obtain the universal relations (7.62)2 and 

(-rbE x bE) -b3E=0. (7.72) 

In the above expressions b-1 and b, 3 can be obtained with b and b2 from the Cayley- 

Hamilton theorem, but we do not do that here. 

Case 5: Q= Q(11,12,15,16) 

Finally for this energy function from (7.22) we do not have a new relation involving 

the total stress. As for the electric displacement, from (7.23) it is easy to show that 

we obtain the universal relation (7.67). 

The remark at the end of Subsection 4.1.1.1 also applies here. The universal relations found 

in this subsection axe valid for constrained and unconstrained ES elastomers. But for the 

case of constrained elastomers we could find more relations by studying the solutions of 

some boundary value problems and working with the constraint stress (in this case p); see, 
for example, [83]. 

Applications 

The comments at the beginning of the Subsection 4.1.1.2 also apply here. If we want to 

use the linear universal relations found in the previous subsection we need to work with 

universal solutions. For electro-elastic materials these solutions were found by Singh and 

Pipkin [99]. 

We consider two solutions. 

Homogeneous deformation in a uniform field This problem differs slightly from 

the problem (4-83) presented for MS elastomers. Here we use the same deformation for a 

slab presented by Bustamante and Ogden [22], which is defined as 

Xl -` AlXl + KA2X2, X2 A2X2i X3 A3X3- (7.73) 
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The material is incompressible, so that 

Al/-12/13 : -- L (7.74) 

We work with the electric field as the independent electric variable. We assume that 

in the reference configuration there is an external uniform field applied far away; thus, 

Ei = (E013E021E03 (7.75) 

The matrix of Cartesian components of the deformation gradient and the left CauchY- 

Green deformation tensors are 
( 

/_12 22r til KA2 0+r,, A jj2 o 
122 

b2 K/12 o (7.76) 0 A2 0 /12 2 
2 00 A3 00 P3 

With (6.4)27 (7.76), and (7.75) the components of the electric field in the current 

configuration are given as 

E= (Ei, E2, E2) T 
: -- (112/13Eol 

i -t£112113Eol + 111113E021 M1M2E 03 
)T. (7.77) 

The first invariant (7.3)1 has the form 

2+p2 (1 +K 2) +p2 (7.78) 
12 3- 

From (7.10) the components of the total stress are 

222 [K2,12�3 + �2(t, 
2 + 112)] M2 +K , rj, = -p + 2(M, +K 1L2)91 +223123 92 + 2[El 2 

(E2 

2]2 12 
2] M4 K +Elr, ), g 95 + 4[E, + r, (Ei + Eir. )p [Ei + K(E2 + 2E1 )1,2t, 2 

212112 

+ (E2 + Ei r, ) (r, + r, 3)�4] 961 (7.79) 
2 

TU = -p + 2p 2t91 + 112 92 + tL2 [92 + 2E, r, (E2 + Elr, ) �2 231 2961 

, 
)2�2[95 + K2)1L2 r +(E2 + Ei 2 +2(1 2961ýi 

(7.80) 

2191 + [112 + (1 + K2)�2] + E2IL2 t12 733 = -p + 2P3 1 292 3 j(95 +2 396)li 
(7.81) 

7»12= 2p 2 tr, 91 + rtL3 92+(E2+ Ei K) [Ei JU2 + r, (E2+ Ei r, ) t, 
2]95 

232 
2), 

12�2 +[Ei (E2 + 2E1 )JU4 + (E2 + Ei r. ) (Ei + E2 r, + 4E1 r, 12 

")2(K + K3)�4] +2(E2+ Ei 2 
S26}) (7.82) 

2 
114 t, 

2 [95 2)j42 + �2 
7,13 = 2E3p31E1 196+ r. (E2+ Eir') 

2+ 
«1 +K2 3)961 

+p 2 [E195 + (r, (E2+ 2E1K) t12 + EljU2 )961 (7.83) 
13 

2 2{(E2 2 2)�2 
723 = 

2E3P2 P3 + E, K)95 +[Elrjul + (E2+ Ei r, ) «l+ r' 2+ 
4)196 1- (7.84) 
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For the electric displacement from (7.11) we obtain 

+1,4 K = -21E1 tL6 96 [Ei 95 + r, (E2 + 3E1 ), 12 + �2 [EI 94 + K(E2 Di 112 
961 

1 

2 
K2 K2), 14 +2E1r, )ti 95 + K(E2 + 2E1 + 2E2 + 3E1 961 + r, (E, + EiK ), 12 12 2[Q4 

+(l + K2)M2 (1 + K2)�296)]1, 2(Q5+ 2 (7.85) 
24+ 

K%L2 D2 = -2f12ý(E, + EIKA + ElrP196 + (E2 + Elr, )(1 2[Q5 

2)�2 +K +(l +K 961 't, 
2 [E, 95 + (EI + E2r, + Mjr, 2)j42 (7.86) 212 961 

D3 = -2E3M 
3 (94 + 112 95 +1,4 96)- (7.87) 333 

In general all the components of the total stress are not zero. From (7.26) we obtain 

, t2 +2_ 1)]M2lL2 t, 
2 + )M2]�2E2 1712 

1[ 
(TU 

- 711 )K+ 7»12 (K 
2 3E1 - 

[713 
1 

(7»23K 
- 713 32 

2] 2_ 2}1,2E 
3 =: 0. +f [712 + ('rll 

- 7»22)t£ - 7-12K- j42 712M1 3 
(7.88) 

Let's consider the special case -y6 =0 (Q6 = 0) . 
We have the extra universal relation 

(7.36)2. The component form of the vector bE is 

, 
]112,27, 2 

1£]112, r bE = (Eltil + K[E2 + Ei 2 [E2 + Ei 2 E3113 

and (7.36)2 becomes 

, 
]112) M2 +2_ 1)]112 j(E, t12 ý712 

1+ 7"12(K 21+r, [E2 + EiK 2 

K JU2 - 713 ), 12 ]�2 +f [7»12 + (T1 1- TU )K [TU 
1+ 

(7*23K 
31 

[E2 + Ei 2 

22 21E3112 
= -7'12K 

lig2 
- 7'12jU1 3 

(7.89) 

(7.90) 

For (7.37), since from (7.85)-(7.87) all the components of the electric displacement are in 

general not zero, we get 

222 2)02 
_ t, 2] D2 E tL2 114 + IqE2 DjE3112P3jEjnpj + (E2 + Ein)[(l +K233 3fEl 1 

2p+ K2)IL2 tL21 I _ tL2j + tL2 r +Elr, )IL [r, (E2 + 2E, ') t12 - El 223123 

222) ýl2 ]= (). +D3tiltL2[E, E21L1 + (E2 + EiK)(E2r, - Ei 2 (7.91) 

In [22] some extra relations were obtained by manipulating the results for (7.36), and 

(7.36)2. Bustamante and Ogden [22] used a different form for the invariants 15 and 16, 

as was stated at the beginning of this chapter. In our case we have not found the same 

relations by manipulating (7.36). 
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Extension and torsion of a circular cylinder Here we use the same deformation 

presented in Subsection 4.1.1.2 for MS elastomers. Consider a cylinder of infinite length 

defined as 
O<R<B, O<E)<2-7r, -oo<Z<Dc. (7.92) 

The extension and torsion of a circular cylinder was defined by the equations 

Az ' /2 R, 0 Z-- 9+ AZTZ, Z= Azz, (7.93) 

where -r is the amount of torsional twist per unit deformed length, A, is the constant axial 

stretch. 
The deformation gradient, left Cauchy-Green deformation tensor, and the first in- 

variant (7.3)1 in this case are given by (4.96), (4.97) and (4.99)1 respectively. The ex- 

ternal field in the reference configuration has only axial component and it is uniform, let 

El = (0,0, E,, )T denotes the component form of this field. The electric field in the reference 

configuration is given by (6.4)2 in component form as E= (0,0, Az 1E 
O)T 

Rom (7.10) the components of the total stress are 

-p 2, \-'Ql + (1 +2 \-3/2 _ \2 
zz Z)Q2) 

(7.94) 

Too A2 f2(A, + -y 
2, \4)Ql 

- 2[l + \1/2 (-2+ (, Y2 _ 1), \5/2)(1 + y2, \3 )IQ2 
zzzz 

+, \2 [_p + 2E,, 2 74, \z (AzQ5 + 2(l + (1 + 72), \3) Q6)1j (7.95) 
zz 

T-zz -p +2 \2Q, + 2[2 \3/2 _ \2 4_ 1)A41 2 \2 [Q5 + 2(l + ý4), \2 Q617 (7.96) 
zzz+ 

(-Y 
z 

Q2 + 2EOz zz 
7,0 = Trz = 0, (7.97) 

2-y 2Äzf, \zgl +(2 Al/2 _ 1)92 +E2[, Xz95 + (1 + (2 +,. y2 + -Y4)A3) (7.98) 
Z0z 

961ý- 

Using (4.97) and taking in consideration the zero components of the stress tensor given 

above, the component form of the skew-symmetric tensor (-rb - b-r),, is 

(0, [72 (72 1), \5 _ \2] -1 Iroz + [(Toz + Tz" _ Too), ý2 _ Toz], \3 1, O)T 
zzz 

Due to the form of the vector E presented above we have that the universal relation (7.26) 

is satisfied trivially. 
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7.1.2 Non-linear universal relations 

We study briefly the two non-fineax universal relations shown in Subsection 4.1.2. 

Helical shear 

A more detailed analysis of the helical shear for isotropic electroelastic elastomers can be 

found in [22], where, in particular, some restrictions on the deformation and the form of 

the energy function were found in order to ensure existence of the solution. In [22] was 

shown that from the point of view of these restrictions it is not the same to work NN'ith the 

electric field or the electric displacement as the electric independent variable. 
Consider the helical shear defined in (4.110), applied to a semi-infinite tube as described 

in (4.111). With the notation (4.112) for the deformation gradient and the left Cauchy- 

Green deformation tensors we have the matrix representation (4.113) 

Ioo 
r, 61 10 

r" 01 

1 r, 0 K, Z 
+ K2 0Z 

2 ror" + rZ 

(7.99) 

We work with the electric field as the independent electric variable; we assume that 

the initial field is only radial, such that El = (E, 0, O)T' from (6.4)2 with (7.99), we have 

(E,, 0, O)T, and the equation curlE =0 is satisfied automatically. 

From (7.10) and (7.11) the components of the stresses and the electric field are (we 
ýK 2-2 

'0 +K use the notation n= Z) 

T� -p + 291 + 492 + 2E 2[Q5 + 2(1 + r, 2 )96]j (7.100) 
r 

2)9, + N2 
2K2[95 K2 +2(2+ , (7.101) 7-00 -p + 2(1 + no +2(2 )92 + 2E, 0 )96]j 

2)9, K2 
2K2[g25 + K2 

-p + 2(1 + rz +2(2+ , )92 + 2E, ' z +2(2 , )96], (7.102) 

-r, 0 = 2rz191 + 92 + Er2[25 + (3 + 2K 2 )9611) (7.103) 

7-rz = 2rof91+92+Er2 [95 +(3 + 2r. 2 )961}, (7.104) 

K2 Toz = 
2K2K0f91+ Er2[Q5 + 2(2 +, )961ýj (7.105) 

and 

2 [1 + K2 
2 

Dr = -Mrjý24 + (I +6 )Q5 +, (3 + (7.106) 

K2 2++ K2) Do = -2Erro[Q4 + (2 +K )Q5 (3+ , 
)Q617 (7.107) 

+ K2 2++ K2) D, = -2ErKz 
[Q4 + (2 +K )Q5 (3 ,) 

Q61 
- (71.108) 
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In order to satisfy the equation divD =0 (see (A. 2) for the form of this equation in 

cylindrical coordinates), the radial component of the electric displacement must have the 
form [22] 

2)Q5 + [I + K2 K2 -2E, 104 + (1 +K (3+ v 
)IQ61 -"-: 

Ro 
(7.109) 

r 
This equation can be used in order to find E, as a function of r for a given energy function 

Q [22]. 

Using the components of the stress tensor given previously it is straight forward to show 

that the following non-linear universal relation holds [22,79] 

Toz(7r20 _ Tr2z) _ 7roTrz(700 _ Tzz) = (7.110) 

We do not treat the case where the electric displacement is the independent electric 

variable. 

7.1.2.2 Anti-plane shear 

We study the anti-plane shear [53,56] in the context of electro-elasticity, in particular with 

respect to the existence of a non-linear universal relation found recently by Bustamante 

and Ogden [21] in the purely elastic context. 

Consider the anti-plane deformation defined in Subsection 4.1.2.2 (equation (4.125)) 

in Cartesian coordinates. The matrix representation of the gradient of deformation and 

the left Cauchy-Green deformation tensors are (4.126) 

I o o 
0 1 0 

ý01 CP2 I) 

10 wi 
01 W2 

1+ W2 + ý02 Wl W2 12 

(7.111) 

Let's work with the electric field as the independent electric variable, and let's assume 

an initial field given in component form as El = (0,0, E,, )T, with E,, constant. With 

(7.111)1 and (6.4) 2 we have E=E,, (- ýp 1, ý02 i 1)T; the equation curlE =0 is satisfied since 

ýO ̀  W(Xl) X2), and we assume W smooth enough such that 492 192 
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Rom (7.10) and (7.11) the components of the stress and the electric displacement are4 

-p + 20, + 2(2 + ýo 
2) Q2, 2 

722 -p + 2Qj + 2(2 +W 2) Q21 2 

7'33 -p + 2, d2Q, +2(l + 192 A+ 2EO2(Q5 +2 192 

T12 -2ýo, W2Q2, 

T13 2W1 (Ql + Q2 + Eo2Q6), 

T23 2W2(f2l + Q2 + E02Q6)- 

(7.112) 

(7.113) 

(7.114) 

(7.115) 

(7.116) 

(7.117) 

The equation divD =0 imposes restriction in the form of ýp and/or Q; we do not explore 
this further in this thesis. 

With the above components for the stress tensor it is easy to show that the non-linear 

universal relation (4.136) holds, i. e. 

22 7»11) + 7-12(7-13 - 723) (7.118) 

Unlike the magneto-elastic case (Subsection 4.1.2.2) for brevity we do not explore the case 

where the electric displacement is the independent electric variable. 

7.2 Numerical solution of a boundary value problem: uni- 

form extension of a cylinder 

In Section 4.2 we showed some numerical results for a boundary value problem for the 

magnetoelastic case, the extension and inflation of a tube. In this section we provide 

similar results, in this case for a cylinder made of an ES elastomer, under a uniform 

extension. As in Section 4.2, the objective is to have a first approach of the 'fringe' effect 

(see [99]), by studying the behaviour of the electric field for a cylinder of finite length (see 

the introduction of Section 4.2). For the problem of this section we assume again that the 

deformation is given and then we solve the equations (6.64)2 and (6.65) for the cylinder 

and the free space around it; a full numerical solution should consider the interaction 

between the electric field and the deformation of the body, and we should also have to 

solve (6.64)1. We do not do that here, as we mentioned in Section 4.2 such numerical 

problems will be solved in the future using the finite element method. This method has 

been recently used by Vu et al. [119] for a problem involving an electro-active elastomer; 

4Fý. OM Subsection 4.1.2.2 we recall the notation V= v/1 
-+, p2l+ w22. As well as this, we had 11 =2 +1)2. 
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however, they considered the case of a body with a surface distribution of charges, and so 
they did not consider the free space surrounding the body (see [16]). 

7.2.1 Uniform extension of a bar 

Using cylindrical coordinates the undeformed reference configuration is given by 

O<R<B, O<e<27r, O<Z<L. 

The cylinder is deformed by applying a tensile load, the deformed configuration, using 

cylindrical coordinates (r, 0, z), is defined by 

0<r<b, 0<0< 27r 0<z< (7.120) 

where 

r= A-1/2 R, 0= 07 z= AZ. (7.121) 

The matrix forms of the deformation gradient and the right and left Cauchy-Green 

deformation tensors are 

A-1/2 0 0) A-' 0o 
F0 A-1/2 0 c= b= 0 A-' 0 (7.122) 

00 A/ 00 A2 

We work with the electric field as the independent electric variable, and we assume that 

the initial far field is uniform and has only an axial component; therefore El = (0,0, EO)T) 

with E,, constant. 
From (7.3) and (7.4) the invariants are given as (det F =: 1) 

+ A2 I= A-2 I= A2E2, I= A4E2. 2A-1 2+2A, 14 = E, 2,, 
5060 (7.123) 

7.2.2 Field equation and boundary conditions 

For the axisymmetric deformation (7.121), as in Subsection 4.2.2, we have that all fields 

are independent of 0, but for a finite cylinder in general they depend on the radius r and 

the axial coordinate z, i. e. 

E =E(r, z), D= D(r, z), P =P(r, z), and -r = -r(r, z). (7.124) 

Figure 7.1 shows the original three-dimensional problem. 
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E0 

E 

2u4 

Figure 7.1: Scheme of the problem of a cylinder under uniform extension and an axial 

electric field applied far away. 

For the cylinder and the free space we have to solve the equations (6.61)2 and (6.61): j 

curl E=0, divD = 0. (7.125) 

For the present problem we do not solve the equilibrium equation (6.61), (11\--r = 0. As 

was mentioned before we assume that the deformation is given; it is casy to that 

for such deformation and for an infinitely long cylinder, with El = (0,0, E0 )T,, from (7.10) 

and (7.3), (7.4), the equation div-r =0 is satisfied triviallY. 

Fý-oni (7.11) we have 

-2(b94 +b2 95 +b3 ý26)E. 

We introduce the tensor C defined as (see Subsection 4.2.2) 

2(bQ4 +b2 Q5 +b 
3 Q6) 

-, 

and so 
CE. 

From (6.63) (see Section 6.4) a solution of (7-125), is 

-gra&ý. 

(7-126) 

(7.127) 

(7-128) 

(7.129) 

and as a result from (7.125)2., (7.128) and the relation D=E, E for free space, we have to 

solve (see (6-64) and (6.65)) for the body 

div (Cgradp) = 0. xcS. (7.130) 
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and for the free surrounding space 0 

17 2, 
r div�, rad(, ý =ý=0. xe L30 (7.131) 

respectively. 

The continuity condition for the electric variables are given in (6.62)2 and (6.62)3 as 

ýEýxn=O, ýD]-n=O. (7.132) 

From Section 3.5 for the magnetic scalar potential we had that if 
,ý was continuous on 

08, then the condition ýHý xn=0 was satisfied automatically. We cim do tlic saiiie iii 

our case; we assume ýa continuous on 08. therefore we use only one sViiibol M ()rdciý to 

speak about the potential in the cylinder and in the free surrounding space. 

The partial differential equations (7.130), (7.131) are solved for the -plane' r-z (ax- 

isymmetric problem); consider the figure 7.2 where we have a representation of the cylinder 

and a 'finite' portion of free space around it. 

E, Eo 
------------------------------------------------------------------- 

4> 

------------ 21 21 

Figure 7.2: Two-dimensional simplification of the problem of a cylinder under uniform 

extension. 

The boundary condition (7.132)2 is satisfied if the radial component of the elcctric 

displacement is continuous across r=b, and if the axial component of the electric dis- 

placenient is continuous across the ends of the cylinder z=0 and z=1. 

7.2.3 A first approximation for the energy function 

In the introduction (Chapter 1) was mentioned that for ES elastomers there is very little 

experiniental data, unlike for "MS elastomers where the papers by Bellan and Bossis [7], and 

Ginder et al. [301 provided valuable information in order to propose a first approximation 

for the energy function. for ES elastoniers it has not been possible to find similar data. 
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For this reason, and only as a first illustration we use an energy function of the form (see 

a similar problem in [119]) 

Q -- 
1 

(1, - (go + gi 14) 
- In cosh 

( N/-I4 
MJMO _ 

14 
(o + Vo. (7.133) 

Ml 2 

The above form for the energy function has been adopted from Section 5.3 (equation 

(5.245)) for the isotropic case, not considering the dependence in the fifth invariant I, ý. 

The derivative in 14 is 

(Ii - 3)gl -I tanh 
( X/I4 'MO 

- 
(0 

(7.134) 
014 22 mi 74 2 

The values of the different constants that appear in (7.134) are given in Table 7.1. The 

electric permittivity for free space is E,, = 8.8419 * 10-12[COU12/NM2]. 

91 10-3[CoUl2/NM2] 

Ml 104 [V/M] 

MO 5*10-11 [CC)Ul2/NM2] 

(0 E0 

Table 7.1: Values of the constants for a first approximation of an energy function for an 

isotropic ES elastomer. 

We point out that the values of the constants that appear in Table 7.1 have not been 

found from experimental data, but rather have been suggested from the probable behaviour 

of the polarization as a function of the electric field (Figure 2.5), where we have assumed 

a value for the polarization for the saturation point 'close' in magnitude to the value of 

the electric permeability for free space. 

7.2.4 Results 

The equations (7.130) and (7.131) are solved using the finite difference method. The 

equation (7.130) is non-linear, because in general C, which depends on Q, is a function of 

the solution W. We use the same method as was presented in Subsection 4.2.4, and so, for 

brevity, we do not repeat it here (note that for the problem solved in Section 4.2 we also 

used cylindrical coordinates). 

Figure 7.2 shows the axil-symmetric simplification used in this problem. For definite- 

ness the surrounding free space (which in theory is infinite) was assumed of a length five 
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times the length of the cylinder and four times the radius of the cylinder. The external 

electric field is applied far away, as shown in Figure 7.2. 

We consider three aspect ratios Ilb equal 4,8 and 12. and we work witli tliree differeilt 

values for the stretch A of 1.3,1.5 and 2. 

Figures 7.3 and 7.4 show the results for the axial and radial component of the electric 
field, as functions of the coordinates r, z, for the region shown in the lower middle part of 
Figure 7.2. The origin of the system of coordinates for these two figures is located oil tile 
inferior corner of the left side of the axisymmetric representation of the cylinder. The.,, (, 

results were obtained for A=1.5 and 1/b = 4. 

1.8 

1.6 

1.4 

1.2 

0 

Figure 7.3: Magnitude of the dimensionless axial component of the electric field through 

the tube wall in an arbitrary (r, z) plane for aspect ratio Ilb =4 and for A= 

As we can see from Figures 7.3 and 7.4, far away from the cylinder the field is almost 

uniform; the same phenomena was observed for a tube made of MS elastomer and under 

extension and inflation (see Section 4.2 and [15]). 

In Figure 7.5 we have the comparison of the behaviour of the axial and radial com- 

ponents of the electric field, for three different aspect ratios 11b, as functions of the axial 

position z. In this case the graph was drawn for a line that passes through r= b/2 (see 

Figure 7.2), these results were obtained for A= 

From Figure 7.5 we can see that for larger aspect ratios 11b. the change in the compo- 

nents of the field is located in a narrower zone near the ends of the cylinder (see Figure 

4.19 for the magnetic counterpart of these results, for the case of the tube). 

In Figure 7.6 we have the behaviour of the radial component of the electric field, and 

U. t) 0.5 
0.4 

0 .2 
r/b 00 Z/1 
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-0.5 
0 

1 

0.4 0.8 

0.6 
0.4 

0.6 

0.8 0.2 

Z/1 0 r1b 
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Figure 7.4: Magnitude of the dimensionless radial component of the electric field through 

the tube wall in an arbitrary (r, z) plane for aspect ratio Ilb =4 and for A=1.5. 

11 1.0 

1.4 

1.3 

1.2 

1.1 

I 
I 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Z/1 

I 

0.2 

0.1 

-0.2' 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Z/1 

Figure 7-5: Magnitude of the dimensionless axial and radial components of the electric 

field EilEo, i=r, z, along the axial direction for aspect ratios Ilb = 4.8.12 for a location 

r= b/2 (see Figure 7.2) and for A=1.5. 

l1b =4 l1b =8 l1b = 12 



CHAPTER 7. ISOTROPIC ELECTRO-ACTIVE ELASTOMERS 209 

the axial component of the electric displacement. as functions of the axial position zz. for 

the whole space, at a position r= b/2., for A=1.5., and for the three different aspect ratios 
11b equals 4,8 and 12. In this figure the cylinder is located between ý=2 and z=3. 

1.4 

01.2 
Cý 

0.8 

0.6 

nA 

-11b =4 
--- l1b =8 Ilb = 12 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 
Z/1 

5 

0.2 

0.1 

o 

-0.1 

T 

-llb =4 
--- 17b =8- 17b = 12 

ý #C 

w» 
i M- 

1.5 2 2.5 3 3.5 4 4.5 5 
Z/1 

Figure 7.6: Illustration of the continuity of the dimensionless axial component of the 

electric displacement D and on the radial component of the dimensionless electric field E 

for I/a = 4,8,12 for a location r= b/2 (see Figure 7.2) aii(I for A= 

For this problem, the continuity conditions (7.132) imply that the axial component of 

the electric displacement, and the radial component of the electric field must be continuous 

for the line r= b/2, which is the result observed in Figure 7.6. In the same figure we can see 

that the external field is axial and uniform for the whole free space except for a relatively 

small region close to the surface of the cylinder. 

In Figure 7.7, we have the comparison of the behaviour of the axial and radial com- 

ponents of the electric field, for three values of the stretch A 1.3,1.5 and 2. These results 

show the behaviour of the field only for the cylinder, for the line r= b/2, and for 11b = 4. 

From this figure we see that for a larger value of A the change in the field if restricted 

to a relative narrower zone near the ends of the cylinder, but the change in the magnitude 

of the field becomes more abrupt. 
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Figure 7.7: Variation of the dimensionless axial and radial components of the dimensionless 

electric field in the cylinder for different values of A. 



Chapter 8 

Transversely isotropic 

electro-active elastomers 

In this chapter we provide the theoretical basis of the non-linear properties, for a sjwcial 

class of ES elastomers, namely the transversely isotropic electro-act 1ý'e (, List wliosc 

char, tc ter istic is that during the curing process due to the presence of an external applied 
field, the electro-active particles are aligned in a preferred direct ion (like wit ]i its inagiietiic 

counterpart, see Chapter 5). The theory is applied to some boundary value 
Some universal relations are obtained as well. 

It has been shown [7,11] (see also [59]) tliclt if an exteriial field is applied diiriiig 
rý 

the curing process, then the particles align in a preferred direction, and is a reýIllt the 

capability of the ES or MS clastomers to deform in the Presence of an cxt(, i-ii; tI electi-ic oi, 

magnetic field is enhanced siginficaiitly. in comparison with the same kind of material but 

Nvith (i random distribution of particles in the rubber-like matrix. 

Dorfmann and Ogden have been working with isotropic electro- or inýigiicto-activc 

elastoiners, which basically implies the assumption of a random distribution of the piii, ticles 

inside t1w rubber-like matrix material [31,32.34.36]. For this particular case ,, (, \-eral 

boun&ry value problems have been solved. The complete set of controllable or universal 

solutions is also available [99]. 

The situ. ition is not the sýuiie for the transversely Isotropic elcctro-active elt>toni(, rs. 

The general theory developed. for example, by Ei-Ingen and Malioln '12], or I)y Dorfinaiiii 
Z-3 nL 

ýiiid Ogden '32.36] iii-e good starting points in order to study this 
L 

Using ýis a stýirting point the work I)v Dorfmann and Oaden i32' ýChapter 6), we 

211 
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develop the constitutive equations for transversely isotropic electro-elastic elastomers. In 

Subsection 8.1.1 we study the form of the constitutive equations using the electric field 

as the independent electric variable. In Subsection 8.1.2 an equivalent set of equations is 

found assuming the electric-displacement as the independent electric variable. 

Most of the researches on electro-elasticity have focused mainly on the linear theory, 

which means the assumption of small deformations, displacement and electric field. The 

departure from the non-linear formulation to the linear one can be found for example 

in [42] and [121]. However, this process of linear approximation has been formulated 

starting from the general expression for the stress and the independent electric variable 

as derivatives of the energy function. In Section 8.2 we obtain a linear approximation 

in a different way. First, for the full non-linear formulation we compute the stress and 

the independent electric variable as functions of the invariants, and then, we approximate 

the expressions, thereby obtaining the same kind of linear constitutive equation as, for 

example, for some well known piezoelectric materials such as certain polarized ceramics 

(see, for example, [121]). 

In Section 8.3 we study different boundary value problems. The simple shear, the 

uniform extension of a bar, the extension and inflation of a tube, the extension and torsion 

of a tube and helical shear. For some of them we study the effect of assuming different 

alignments for the particles in the reference configuration; we are especially interested in 

the controllability of the solutions. In the particular case of helical shear [79], which is not 

a controllable solution, we axe interested mainly in finding a non-linear universal relation, 

like the one found for the isotropic case by Bustamante and Ogden [21] (see Subsections 

4.1.2.1 and 7.1.2). 

Finally, in Section 8.4, by recognizing that the experimental research with these kind 

of materials would be especially difficult in order to find realistic models for the energy 

function, we explore the situation of assuming a simplified form for the constitutive equa- 

tion, and we obtain a lineax universal relation for this particular simplified form of the 

energy function. 

This chapter is based in the on a draft paper by Bustamante and Ogden [191. 
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8.1 Constitutive equations for transversely isotropic ES ma- 

terials 

The electric field as the independent electric variable 

Consider the constitutive equations for a Green elastic electro-active solid in terms of the 

independent electric variable El, which for a compressible and an incompressible material 

were given respectively by (6.49) and (7.2): 

J-lF 
OQ 

49F' 
F 

aQ 
- pl. aF 

OE1' 
(8.1) 

(8.2) 

We had the connections (6.4) 

DI = JF-lD, EI =FTE. (8.3) 

Consider now the case of a transversely isotropic electro-elastic solid where the energy 

function is given as 

Q=Q(F, El, ao), laol=l, (8.4) 

where ao is a field that represents the particular alignment of the electro-active particles 

in the reference configuration. In the current configuration we have 

Fao. (8.5) 

For the energy function Q=Q (F, El, ao), we have that Q depends in the following set 

of invariants 1 

tr c, 12 =1 [(tr C)2 - tr C2], 13 = detc = j2, 
2 

I4=EI. El, I5=EI. cEl, I6=EI-c 2 Ei, 

17 =: ao - cao, 18 == ao -c2 ao, 

Ig =z ao - Ei, Il() = ao - cEl. 

(8.6) 

(8.7) 

(8.8) 

(8.9) 

'In this case we use only 10 invaxiants, as mentioned for the magnetoelastic case (Subsection 5.1.1). 

there is an error in Zheng's paper in the theory of invariants [127], see Appendix B. 
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Then, Q=Q (Ij, 12,13,14,15,16,17,18, Ig, Ilo) 
. 

Consider the derivatives 

01, 

: 2F T 
012 

'ý - 2(IlF T-FT FF T), ýI-3 

= 213F-1. (8.10) OF F OF aI5 

OF 2E1 0 FEll 2(El (9 FF T FE OF I) +FT FE1 (9 FE1. (8.11) 
017 

OF 2ao 0 Fao, 
018 

2(ao (9 FF TFao 
OF +F TFao (g Fao) (8.12) 

49,10 
OF ao 0 FE, + El o Fao. (8.13) 

Using the chain rule and these derivatives in (8.1)1, the total stress tensor is given aS2 

J-1 [2bQl + 2(Ilb - b2) Q2 + 213IQ3 + 2bE 0 bEQ5 

+2(bE 0b2 E+b 2E0 bE)Q6 + 2a (9 aQ7 

+2(a o ba + ba 0 a)Q8 + (a o bE + bE 0 a)Qlo]. (8.14) 

For an incompressible material (8.2) we have 

2bQ, + 2(lib -b2 
)Q2 

- pI + 2bE (9 bEf25 

+2(bE (9 b2 E+b 2E 
(9 bE)Q6 + 2a (9 aQ7 

+2(a 0 ba + ba (9 a)Q8 + (a o bE + bE 0 a)Qlo. (8.15) 

Consider the derivatives of the invariants in El 

014 
= 2E1,215 = 2cEl, '916 

= 2C2 Ei, 
919 ailo 

cao, (8.16) OEI 49E1 49E1 d9E1 - -' d9E1 
= 

and so from (8.1)2 with the chain rule we have 

D= -J-1(2bEf24 + 2b 2 EQ5 + 2b 3 E06 + aQ9 + baQ, o). (8.17) 

And for an incompressible material (J == 1) 

D=- (2bEQ4 + 2b 2 EQ5 + 2b 3 E06 + aQq + baQ, o). (8.18) 

As for the magnetoelastic case (Chapter 5), some restrictions on the energy function 

Q can be obtained by considering the undeformed state. 

If for the undeformed state with no external electric field there is no residual stresses 

and no residual polarization, then we have 

-r=O, D=O. (8.19) 

2 We use the notation f2i = '9n 
Wi , 
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In this case the invariants (8.6)-(8.9) axe given by 

Ii = 12 = 3,13 = 1,14 = 15 = 16 = 19 = 110 = 0,17 = 18 = ao - ao. (8-20) 

Let's denote by Qj the function Qj evaluated with the above values. Remembering that 

F= 1) El =0 and a= FaO = ao, then (8.14) and (8.17) become 

2(Ql + 2Q2 + Q3)1 + 2(Q7 + 2Q8)ao (9 ao, (8.21) 

-(Og + f2lo)ao, (8.22) 

and in view of (8.19) we need 

Qj+2Q2+Q3 
--- 1 01 (8.23) 

n7 + 2Ü8 03 (8.24) 

Üg + ÜJO 0. (8.25) 

In the incompressible case (8.23) should be replaced by 

291 + 492 -P : -- 0- (8.26) 

Piezoelectric materials produce polarization when deformed even when there is no 

external field [67,121]; the reason why some materials like quartz produces a polarization 

field when deformed lies with its particular atomic structure; a deformation produces an 

asymmetric arrangement of charges, creating this polarization field. We cannot expect in 

general the same phenomenon for transversely isotropic ES materials. 

Consider the case when there is deformation but no applied external field, in such 

a case if E=0 we have the extra restriction D=0. As in the magnetoelastic case 

(see remark at the final of Subsection 5.1.1), let 6i denotes the function Qj evaluated for 

14 = 15 16 = 19 = 11o =0 (these values for the invariants axe consequence of E= 0). 

With D0 from (8.17) we have the restriction 
199 

+ b91() = (8.27) 

which, if b :A1, implies 

Q9 = 610 = 0. (8.28) 

8.1.2 The electric displacement as the independent electric variable 

If we choose to work with D1 as the independent variable, then by defining the energy 

potential Q* by using the partial Legrende transform 

W (F, Di, ao) =9 (F, Ei, ao) + Di - Ei, (8.29) 
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it follows that 

-r = J-'F 
09* 

Ei = 
09* 

(8.30) ä7F- * Mi' 

For an incompressible material we have 

(8.31) 

Consider the following set of invariants [102,127]: 

tr c, 12 =I [(tr C)2 - tr C2], 13 = det c. (8.32) 
2 

K4 =D,. Dl, K5 =Dl. cD,, K6=Dl. c 2 DI, (8.33) 

17 = ao - cao, 18 = ao -c2 ao, (8.34) 

Kg = ao - Di, Klo = ao - cD1. (8.35) 

an* Using a similar procedure as for Q, the derivative F. - can be calculated using the invariants 

Ii and Ki defined as above, in which case the expression for the total stress (8.30), becomes3 

J-1 [2bQ* + 2(Ilb -b 
2)q* + 213IQ* + V2 D (9 DW 1235 

+2j2 (D (9 bD + bD 0 D)Q* + 2a (9 aQ* 67 

+2(a (9 ba + ba 0 a)Q; + J(a oD+D (9 a)Q*101, 8 (8.36) 

where the connections D, = JF-lD and ao = F-la have been used. The corresponding 

expression for the incompressible case (8.31) is 

2bQ* + 2(lib - b2)Q* - p*1 + 2D (9 DQ* 125 

+2(D 0 bD + bD 0 D)Q* + 2a (9 aQ* 67 

+2(a 0 ba + ba 0 a)Q; + (a (& D+D (9 a)Q*l 8 

Finally, the expression for the electric field (8.30)2 becomes 

E= 2Jb-'DQ* + 2JDQ* + 2JbDQ* + b-'aQ* + aQ* 4569 loý 

and the corresponding incompressible case is 

E= 2b-'DQ* + 2DQ* + 2bDQ* + b-'aQ* + aQ* 4569 10. 

(8.37) 

(8.38) 

(8.39) 

As in Subsection 8.1.1 we can find some restrictions on the form of the energy function if 

we assume that for the case when there is no deformation or external electric displacement, 

3 The notation Qi* means the derivative of Q* in Ii if i=1,2,3,7,8, or Ki if i=4,5,6,9,10. 
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there is no residual stresses and residual electric field. Let 07 denotes the function Q7 

evaluated with the invariants (8-32)-(8.35) calculated using F=I and D1 = 0. From 

(8.36) and (8.38) the conditions -r =0 and E=0 imply 

QI + 29; + 9; =0 23 

Ü* + 2f2* =0 78 

Q* 
9+ w10 = 0. (8.42) 

In the incompressible case (8.40) should be replaced by 

M*, + 492* - (8.43) 12P ()- 

A different restriction (more general in a way) can be found if we assume now that 

whenever we have deformation but no external electric displacement then from (8.38) the 

electric field is zero. Let 6j* denotes the function Qj* evaluated for DI =0 but with F in 

general different to the identity tensor. From (8.38) we have 

b-lý2; + ü2*lo = 01 (8.44) 1 

which, if b-1 : /ý- I, implies 

Q. = Q* 0=0. (8.45) 91 

8.2 Derivation of the equations for the linear elastic case 

To develop a linear theory through a linear expansion from the non-linear general formu- 

lation is a standard procedure. However, in electro-elasticity that has been made mainly 

by expanding directly, for example, the expressions (8.1) as Taylor series in c (instead of 

F) and El (see, for example, [42,106,114,121]). We have not found in the literature a 

lineax approximate expression from, for example, (8.14) and (8.17), which would relate 

directly the different parameters and quantities that appear in the general non-linear for- 

mulation, and the paxameters that appear in the classical linear theory; this is the reason 

this problem has been studied in this thesis. 

The main assumption in order to obtain a linear approximation from the general non- 

linear constitutive equations, is to consider that the gradient of the displacement (2.8) and 

the external electric field are 'small', more precisely 

lGradul < 1, lEll < 1. (8.46) 



CHAPTER8. TRANSVERSELY ISOTROPIC ELECTRO-ACTIVE ELASTOMERS 218 

It is not problematic to define what we means for 'small' in the case of the gradient 

of the displacement. However, the situation is more complicated for the electric field. In 

such a case, for small do we mean a field which is less than a given value in order to be 

able to approximate some non-linear expressions?. The concept of 'small' is relative, in 

the case of the gradient of the displacement this is not a problem because this gradient of 

the displacement is dimensionless. For the electric field we need to define the 'smallness' 

of the electric field El with respect to some 'reference value' for the field. Let's denote 

this value ER, then the inequality (8.46)2 should be understood as JE111ER <1 or JEIJ < 

ER. There is another remark; ER has units of electric field, which is Volt per metre. 

When we propose a form for the function Q, we may use in the formulation, for example, 

trigonometric functions; but from the point of view of the physical dimensions we cannot 

have an expression like tan(JE11), we need in fact to divide JEI I by a scalar with the same 

physical dimensions of the electric field, such that the tangent function can be evaluated 

with a dimensionless parameter (see, for example, the energy function (5.245) for the 

magnetoelastic problem, where we have the parameters mi and 7n2. ). For this section then 

we assume that El has been divided by ER, and so JE11 <1 actually means JEJJ < ER. 

We do not use a different notation for this dimensionless electric field. As for ER, it 

might seem to be an arbitrary value, but in fact it should have a physical meaning related, 

for example, to the behaviour of the polarization, as in the magnetoelastic case with the 

parameters ml and M2 in (5.245). Since we do not have enough experimental data for ES 

elastomers we do not discuss further about ER. 

Departing from the equations (8.14) and (8.17) is complex, and in order to avoid 

confusion the linearization process is done in three steps. 

First step: first we determine the approximation of b, b', bE and b2E. Rom the defi- 

nitions (2.17)2, (6.4)2, and (2.11) we have 

b == FF T =: I+ Grad u+ Grad UT + Grad uGrad UT 

-I+ Gradu + GradUT 7 

Ei =: FTE =E+ GradUTE ýE 

(8.47) 

(8.48) 

bE =E+ (Gradu + Gradu T+ Grad uGradu T )E -ý E. (8.49) 

The linear deformation tensor e is defined as [52] 

e -= 
1 (Grad u+ Grad UT). (8.50) 
2 
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Then we have 

+ 2e. (8.51) 

As well as this, it is not difficult to show that 

2 
ý-1+4e, b2E -z- E. (8.52) 

Finally we also have 

I= j2 3 (8.53) 

Using the fact that JbI -J and JEJ - 5, where J<1, neglecting the terms of order 
j2, for (8.14) we get 

-r ; z: ý: 2 (1 + 2e) Q, +2 [11 (1 + 2e) - (I + 4e)] Q2 + 2103 + 2a (9 af27 

+2[a 0 a(l + 2e) + (I + 2e)a (9 aJQ8 + [a 0E+E (& a]f2lo; 

thus 

,r, 2[Ql + (11 - I)Q2 + Q31I + 4[Ql + (I, - 2)Q2]e + 2[Q7 + 98]a (& a 

+408(a 0 ea + ea (& a) + Qjo(a 0E+E (9 a). 

For the electric displacement we have 

; z, - -(2[Q4 + ý25 + Q6]E + [Qq + Qloja + 2Qloea). 

(8.54) 

(8.55) 

(8.56) 

Second step: now we approximate Qj in the variables F and E (actually, we use the 

tensor c instead the gradient of deformation, which is the actual variable for Q to 
be frame-indifferent). We have 

Qj = ni + (C-I)+- E+ ac aE 

where we remember that I means that the function f is evaluated at the reference 

configuration with zero electric field. Using the definition of the linear deformation 

tensor (8.50), we have the following approximation 
Of2i OqQj ni f2i + 
09C 

: 2e + OE . E. (8.57) 

As a result, after neglecting the terms j2' we obtain for (8.55) 

2(Ql + 2Q2 + Q3)1 + 4[(flic + 2fl2c + fl3c) : ej 

+2[(flIE + 2f22E + 03E) 
- Ej + 4(01 + 02)e 

+2(n7 + 2f28)a 0a+ 4[(f27c + 2fl8c) : eja (9 a 
+2[(fl7E + 208E)ja 0a+ 408(a (9 ea + ea 0 a) 

+f2lo(a (9 E+E (9 a), (8.58) 
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= 9Q 
where we have used the notation flic 9-cL, 

RE = 2ýL- Using (8.23) and (8.24) the M 

above equation simplifies to 

4[(fli, + 2112c + fl3c) : ej + 2021E + M2E + f23E) - Ej 

+4(Ql + Q2)e + 4[(fl7c + 2fl8c) : e]a 0a+ 2[(fl7E + 2fl8E)]a (9 a 

+4Q8(aoea+ea(&a)+fýjo(aoE+Eoa). (8.59) 

For the electric part of the constitutive equation (8.59) we get 

2(f24 + f25 + f26)E + (09 + Olo)a + 2[(Clg, + Olo, ) : e]a 

+[(119E + flIOE) - Eja + 2Q, oeal. (8.60) 

which in view of (8.25) reduces to 

D ý- -12(f24 + f25 + 06)E + 2[(Clg, + Olo, ) : eja 

+[(f29E + fIlOE) - E]a + 2f2joeal. (8.61) 

Third step: the final step consists in the calculation of f1j, and RE in terms of the 

derivatives in the invariants, which are evaluated at the reference configuration for 

E=0. We have 
f2i 

aln 49ij RE 
a2Q 191 3. 

aijai. 7 ac o9IiOIj OE 

Consider the following derivatives of the invariants 

01,0912 0943 1 -1 
(914 4915 

c, ac c =0, -=EOE, (8.62) 
ac Oc ac aI6 = EocE+cE(&E, 1917 

= ao 0 ao, 
4918 

- ao (9 cao + cao (9 ao, (8.63) 

09C i9c ac 
aig allo 1 = 0) -- =- (ao 0E+E (9 ao). (8.64) 
ac 09C 2 

As well as this 

19,1 - 
1912 

- 
(913 

= 0) 4914 
= 2E, 4915 

= 2cE, 4916 
= 2c 2 E. (8.65) 

OE aE 49E OE aE aE 
aI7 

", ::: 
1918 aig ailo cao, (8.66) 0' 

OE iiE M aE 

so we have 

(ni, l + 2f2i, 2 + Oi, 
3)1 + (flij + 2ni, 8)a (9 a, (8.67) 

where we have used the notation Slij = 
82fl 

. As weU as this, Mi Tj 

fliE ý (Qi, q + 9ijo)a. (8.68) 
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8.2.1 Approximation for the stress 

Let's calculate separately the different terms that appear in (8.59). Since Qjj = Qj, i, we 

have the expressions 

4(01, + 2fl2c + f23c) = 4[(Ql, l + 4Q1,2 + M1,3 + 4Q2,2 + 4Q2,3 + Q3,3A 

+(f2l, 7 + M1,8 + 2n2,7 + 4f22,8 + n3,7 + 2n3,8)a (9 a]. (8.69) 

2(fIlE + M2E + f23E) = 2(Ql, g + Q1,10 + 202,9 + 2Q2,10 + Q3,9 + f23, lo)a, (8.70) 

4(fl7c + A28c) = 4[(Q7,1 + 2Q7,2 + Q7,3 + 2(Q8,1 + 2Q8,2 + Q8,3))I 

+(n7,7 + 4f27,8 + 4f28,8)a (9 a], (8.71) 

2(07E + 2f28E) = 2[f27,9 + f27,10 + 2(n8,9 + 08, lo)]a. (8.72) 

Let's define 

cel = f2l, 
l + 4f2l, 2 + 201,3 + 402,2 + 4n2,3 + f23,3i (8.73) 

a2 = 01,7 + 201,8 + 2n2,7 + 4n2,8 + f23,7 + 2n3,8) (8.74) 

CQ = 2(nl, g + f2i, 
lo + 202,9 + M2,10 + f23,9 + C23,10)i (8.75) 

CQ = f27,7 + 4n7,8 + 4n8,8) (8.76) 

Ce5 = 2[f27,9 + f27,10 + 2(n8,9 + n8,10)17 (8.77) 

then (8.59) becomes 

-r ý-ý 4[(a, I + a2a (9 a) : ej + a3(a - Ej + 4(ni + f22)e + 4[(a2l + a4a (9 a) : e]a 0a 

+a5(a. E)aoa+4(28(a(gea+ea(ga)+f2lo(aoE+E(ga). (8-78) 

By defining 31 -= 4(n, + f22) and by considering the particular case a= i3 we obtain 

Til = (4al + 01)ell + 4ale22 + 4(al + a2)e33 + a3E3) 

722 = 4alell + (4al + 01)e22 + 4(al + C12)e33 + Cf3E3i 

T33 = 4(al + a2)(ell + e22) + [4(al + 2a2 + a4) +01 + 808]e33 

+(a3 + Ce5 + 2nio)E3, 

T23 (01 + 408)e23 + fýlOE2i 

T13 (01 + 4f28)el3 + f2joEl) 

T12 = 3lel2- 

(8.79) 

(8.80) 

(8.81) 

(8.82) 

(8.83) 

(8.84) 

Finally by defining -yj = 4(al + 2a2 + a4) +01 + M8, and by using the following vector 

notation for the stress and the deformation 

T= (Tj, T2, T3, T4, T5, T6)T (7'11) 722,733) 723 1 Tl 31 Tl 2 )T, (8.85) 

= (61, e2 
le 3, e4, e5, E6 )T (e 11, e22, e33,2e23,2e 13,2e 12 

)T, (8.86) 
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we can rewrite (8.79)-(8.84) as (see, for example, the form of the linear constitutive equa- 

tions for a polarized ceramic (121]) 

( T, ) (4al + ßi) 4a, 4(al + a2) 0 0 0) EI ' 

T2 4al (4al +, 31) 4(al + a2) 0 0 0 E2 

T3 4(al + 0Z2) 4(al + C92) 0 0 0 E3 

T4 0 0 0 (, ßi +4(28) 2 
0 0 E4 

T5 0 0 0 0 l(01 + 4Ü8) 2 0 e5 

T6 0 0 0 0 101/ 
2 \c6) 

+ 

00 Cý3 

00 a3 

00 (Cf3 + a5 + 2nio) 

0 nio 0 

f2lo 00 

oo0 

8.2.2 Approximation for the electric displacement 

Ei ý 

E2 (8.87) 

E3 

We can repeat the same procedure used in order to obtain an approximation for the stress 

but for the electric displacement. In the present case consider the equation (8.61). We 

have 

2(09, + flioc) 2[(Qg, l + 2Q9,2 + f29,3 + QIO, l + M10,2 + Q10,3)I 

+(Qg, 7 + M9,8 + Q10,7 + 2QlO, 8)a 0 a] C931 + ce5a 0 a, (8.88) 

C29E + nlOE (ng, lo + ng, g + nio, lo + flio, g)a, (8.89) 

where in (8.88) and (8.89) we have used the fact that Qjj = Qj, i. Finally, let's define 

02 Q9, q + Qlo, lo + Mg, lo, 

El 2(Q4 + Q5 + Q6). 

We obtain for (8.61) (taking account of (8.25)) 

D1 =- [ElEl + MjoS5], 

D2 =- [El E2 + MjoE4], 

D3 = -[ElE3 + 02E3 + CtTE1 + a3'62 + (a3 + a5)E3 + 2fliog3j, 

(8.90) 

(8.91) 

(8.92) 

(8.93) 

(8.94) 
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which can be rewritten as 

D, El 00 

D2 0 El 0 

D3 00 61 +02) 

8.3 Boundary value problems 

E6 / 

(8.95) 

For transversely isotropic electro-active elastomers we do not have a complete set of uni- 

versal solutions as in the isotropic case [82,99]. In the next examples, in particular for 

the problems with cylindrical symmetry, it is shown that the controllability will depend 

strongly on the particular alignment of the electro-active particles with respect to the 

given external electric field or electric displacement. 

One important characteristic of the geometry of the bodies for the following problems, 

for example for the case of the simple traction or for the case of extension, inflation 

and torsion of a tube, is that one of the dimensions, generally the length of the tube or 

cylinder, should be in theory infinite. This restriction, which in practice would mean a 

'long' cylinder, is a theoretical trick necessary in order to be able to work with the electric 

boundary conditions (6.57) (see Sections 4.2 and 7.2). A full theoretical solution of the 

boundaxy value problem would require not only looking for a solution of (6.61) inside the 

body, with boundary conditions (6.62), and with constitutive equations (8.1) (or (8.30)), 

but also to solve the equations (6.61)2 and (6.61)3 using (2.106), for the exterior space 

surrounding the body. This problem is not easy, and at the present moment there is no 

general theory that would allow us to find theoretical solutions for any given kind of energy 

potential Q. 

All the problems considered below correspond to incompressible materials. 

8.3.1 Simple Shear 

Consider the simple shear deformation defined as 

EI 

Ei 000 ü10 0ý 
E2 000 nio 00 

43 

E3 CQ a3 (a3 + Ce5 + Aio) 000 
E4 

e5 

Xl-: --Xl+'YX2. X2: -"--': 
x2i 

-C3ý--X37 
(8.96) 
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which is applied to a slab of initial dimensions 0<X, :ý A7 0 <- X2 !ýB and 05 X3 <- C. 
We apply the following external field in component form 

E� =: 
EI= (0, Eo, 0) (8.9 70 

We assume that the particles of electro-active material are aligned in the X. ) direction in 
the reference configuration, which meanS 

ao == (0,1, O)T (8.98) 

The matrix forms of the deformation gradient and the left and right Cauchy-Green defor- 
mation tensors are given as 

1 -Y 0 

010 

00 1) 

+ -Y2 -Y 0 

'Y 10 

00 1/ 

-Y 0 

1+ 72 o 

01 

We have det F=1. Other useful expressions are 

ly 
2+ (1 +72)2 -y(2 + y2) 0 

b2 -y(2 + 72) 1+72 0 C2 

001 

and 

1+ -ý2 -y(2 + -ý2) 0) 

-ý(2 + 72) y2 + (1 + y2)2 0 

001) 

(0, E, (» T, 
a=(,. y, 1,0) 

The invariants li are given by (8.6)-(8.9) as 

(8.99) 

(8.100) 

(8.101) 

2 3+-y 2 1= 4 E2 I= 
05 

(1 + 72)E2, 0 
I=[, Y2 + (1 + 72)]E2, 60 (8.102) 

17 1+ 72, 18 72 + (I + 72)2, Ig = Eo, Ilo = (1 + ý2)E 0 (8.103) 

and from (8.15) and (8.18) we obtain 

(1 + 72)pl +72 )205 ý2+ , Y2 
2,2 

Til 2 +2(2 )Q2 
-p+ 2(-yE,, +4 (2 )EoQ6 +2Y Q7 

+47 2 (2 +72 A+2, Y2E 0 f2lo' (8-104) 

722 M, + 492 
-p+ 2E, 2, Q5 +4 (1 + Y2) Eo2Q6 + 2Q7 + 4(1 + Y2 )Q8 + 2EoQlo, (8.105) 

T33 2Q, + 2(2 + -y 
2) Q2 -A (8.106) 

T12 2-yQ, + 27Q2 + 2-yEO2ý25 + 2-y(3 + 2, Y2) Eo2Q6 + 2YQ7 + 2-y(3 + 2,. Y2)f28 

+2-yEoQ, o, (8.107) 

713 = 723 = 0) (8.108) 

4 The reason for this particular alignment of the particles, and the form of the external electric field, is 

to reproduce theoretically what happens with the shear of a transversely isotropic slab, which has been 

studied experimentally for the magneto-elastic problem by Jolly et. al [59]. 
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and 

Di = -12 + -yE,, Q4 + 2-y(2 + -y 
2 )EoQ5 + 27(l + ý2) (3 + . ý2 )EoQ6 + 7419 

+-ý(2 + 72)Q101, (8.109) 
D2 = -12EoQ4 + 2(l + -y 

2 )EoQ5 + 2(l + 3^ý2 + ý4)EOQ6 + Q9 + (1 + ý2)Qloj, (8.110) 
D3 = 0- (8.111) 

By defining 

w (-t, Eo) == Q (h), 1,2,. 10 (8.112) 

and using (8.102)-(8.103) and the chain rule we show that 
aw 

= 2-yQ, + 27YQ2 + 2-yQ5EO2 + Q62-y(3 + -ý2 )EO2 + 2YQ7 + Q82-y(3 + ý, 2) 
0-Y 

+2-yQloEo, (8.113) 

2f24EO + 2Q5 (1 + -Y 2)E 
0+ Q62[_ý2 + (I + -ý2)2 ]Eo + Q9 + Qlo(l + ý2)j, (8.114) aEo 

from where we get the connections 

T12 D2 (8.115) 

An alternative expression for the electric displacement can be obtained if we consider w 
as a function of 14 instead of E, then 

14) D2 = -2E,, 
aw 

, 014 (8.116) 

The stress, the electric field, and the electric displacement are constant, and as a result, 
they satisfy automatically (6.61). However, as was mentioned in the introduction, the 

situation is not so simple with the boundary conditions (6.57). If we consider a 'finite' 

slab, then it is not difficult to see that in order to satisfy simultaneously the two boundary 

conditions (6.57), we would need a non-uniform field, which in general win depend strongly 

on the paxticular form of Q. As a result, for the above solution to be valid we would need 

at least two of the three dimensions of the slab to be infinite. Consider for example the 

.5 
Oc. following initial dimensions for the slab, -oo < X1 :5 oo, 0< X2 :ýB and -oc < X3 - 

this is actually the geometry of a infinite wall of width B. In this case the only surfaces 

where it is necessary to check the boundaxy conditions, are the surfaces X2 =0 and 

X2 = B; for a uniform external electric field of the form (8.97), the boundary conditions 

(6.57) axe satisfied automatically. In experiments what is done is to work with a slab such 

that B<A and B<C. 
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8.3.2 Uniform extension of a bar 

We consider now the uniform extension of a cylindrical bar. This problem has been studied 

because in two of the papers that have been mentioned about experimental researches oii 

electro and magneto sensitive elastomers [7,111, the tension of a cylinder was used in order 

to obtain some important chaxacteristics of these materials, in particular regarding the 

difference in the response for isotropic and transversely isotropic electro- and magneto- 

active elastomers. 
Consider a cylinder whose length is assumed much larger than its diameter. Its initial 

dimensions are 0<R<R,, and 0<Z<L, where R,, < L. In cylindrical coordinates the 

deformation is given as (see Section 7.2) 

r == \-1/2 R7 0= E), z =: AZ. (8.117) 

The external axial applied field is 

E,, = El = (0,0, EO)T, (8.118) 

and the orientation of the particles of electro-active material in the reference configuration 

is given as 

ao = 
(0,0, )T (8.119) 

The matrix forms of the deformation gradient and left and right Cauchy-Green tensors 

are given by 

, \-1/2 00 

F0 'X-1/2 
0b=c 

00A 

then the invariants axe, from (8.15)-(8.18), given as 

I, = 2A-1 + /\2,1 2= /\-2 + 2A, 14 = E, 2, 
, 

17= \2,1 8= \4, Ig = Eo, J10 = \2E 
0. 

A-' 00 

0 A-' 0 (8.120) 

00A2 

15 =A 
2EO2, J6 = A4EO2, (8.121) 

(8.122) 

The components of the stress and the electric displacement (8.15) and (8.18) are 

Trr = T-oo = 2A-lf2i +2(, \-2 + A)Q2 - (8.123) 

2 \2Q, \2 2 A4 2 \2 \4Q8 \2 
7-,, ý, = +4/\Q2-p+2 EoQ5+4 EoQ6+2 f27+4 +2 EoQjo. (8.124) 

Tro = Trz = TOZ = 01 (8.125) 
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and 

Dr = Do= 0, (8.126) 

Dz =- (2AEf24 + 2A3 EQ5 + 2A5EQ6 + AQ9 + A3Qlo (8.127) 

Now, the components of the Maxwell stress in the radial and the azimuthal directions are 

given by (6-30) 
EO 

L -2 E, 2 TM� ý Tmoo -2A Ljo * (8.128) 

If we want the external mechanical load in the radial and azimuthal directions to vanish, 

then from (6.61), we have 

Trr - 7»m� ý 01 TOO - 7-Mee ý 

and as a result we obtain 

21 A-2 60 A-2 2. A- Q, + 2(2 + )Q2 +2 Eo' (8.129) 

Therefore, for (8.124) we get 

(, \2 _ \-l)Ql \-2 A2E2 \4E2 \2 \4 2+ 2(A - 
)Q2 +2 OQ5 +4 OQ6 +2 Q7+4 Q8 

, 
\2E Q10 Eo \-2 2. 

+2 02 Eo (8.130) 

As for simple shear, we can define 

i=1,2..., 10, (8.131) 

and by using the chain rule with (8.121) and (8.122) we can show that 

aw = 2Ql(A - 
\-2) + 2Q2 (I _ \-3) + 205AE, 2 + 4Q6 \3 E, 2, + 2Q7A + 4Q8 \3 

aA 
+2Qlo, \E,,, (8.132) 

aw 
aE,, = 2Q4E,, + 2Q5 \2EO + 2Q6 \4EO + Qq + Qlo, \2. (8.133) 

Thus 

and 

Ell 
-2 2 (8.134) TZ Z -2 E; 

7 

aw (8.135) 
aE,, ' 

Or, if we use instead w= w(A, 14) we would get 

Dz = -2E,, A 
aw (8.136) 
aI4 
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As in the simple sheax problem, since the components of the stress and the electric field 

and electric displacement are constant, they satisfy automatically (6.61). Regarding the 
boundary conditions (6.62), if the cylinder has an infinite length (L = oc). then the only 

surface where we would need to check the boundary conditions (6.62) would be the surface 
R=R,,; in such a case, since the electric field is uniform in the axial direction, we would 

not have a component for the electric displacement in the radial direction (as has been 

shown here), and we would not need to check (6.61)3; and in order to satisfy (6.62)2 we 

would only need to have the same uniform electric field outside the body, which is the 

condition used here. In the case where R<L, as in the simple shear, the above solution 

would be valid far from the ends of the cylinder at Z=0 and Z=L (see Section 7.2). 

8.3.3 Problems with cylindrical symmetry 

The boundary value problem presented previously has cylindrical symmetry. In order to 

study the following boundary value problems it is necessary to consider in more detail the 

different characteristics of this kind of Problem (the same problems have been studied by 

Dorfmann and Ogden [32,361 in the context of isotropic electro-active elastomers). In the 

current configuration the equilibrium equation (without non-electric body force) was 

div-r = 07 (8.137) 

and the simplified forms of the electro-magnetic equations were 

curl E=0, divD = 0. (8.138) 

If we assume that -r = -r(r, z), then in cylindrical coordinates the equation (8.137) becomes 

(see Section A. 1) 

O-rrr O-r. 1 
+- (Trr 

- -roo) = 0, (8.139) 
Or 09Z r OTro 

+ 
Lroz 

+2 Tro 0 (8.140) 
jT az r O, T-r O-rzz 1 

57-- + -Tr. o. (8.141) 
Or r 

If we assume E= E(r, z) then the simplified form of (8.138), in cylindrical coordinates is 

OE, Mý, 
= 0,1 

0 (rE9) = 0, (8.142) 
az er r jr- 

and finally, by assuming D= D(r, z), the simplified form of (8.138)2 is 

1 d9 (rDr) + 
ODz 

= 0. (8.143) 
r Or az 
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We study basically three problems, the extension and inflation of a tube, the extension 

and torsion of a tube, and helical shear. For the first two of these problems we want to find 

universal solutions, which will depend among other factors on the particular form of the 

field ao, which corresponds to the alignment of the electro-active particles in the reference 

configuration. Rom the practical point of view, the manufacturing of these materials at 

the moment would permit us to make a tube with the particles uniformly aligned in the 

axial direction [7,11]. A radially uniform alignment might be possible as well. So we will 

consider the following two cases, ao = (0,0,1) T and ao = (1,0,0) T. 

8.3.3.1 Extension and inflation of a tube. 

Consider the following deformation given in cylindrical coordinates [36] 

r2=a2+ AZ l(R 2-A 2), 0= E), z= \Zz, (8.144) 

where a<r< b7 0<0< 27r and 
5_ 

00 <Z< CýO. 

The matrix forms of the deformation gradient and the left and right Cauchy-Green 

tensors are given by 

00ý((, \z, \)-2 00ý 

0b=c=0 \2 () (8.145) 

0 \2 j 0 \Z j 
where we have used the definition A= r/R. 

The first two invariants (8.6), and (8.6)2 are 

(AzA)-2 + A2 + A2 tr cz (8.146) 

12 
1 

[(tr C)2 - tr C2] z2+ 
\-2 + (, \Az)2. (8.147) 

2 

Now, it is necessary to consider a particular form for the external applied electric field, 

and also for the initial alignment of the electro-active paxticles. Consider the following 

cases: 

1. Axial electric field 

Let's assume that the external electric field is El = (0,0, E,, )T, where E,, is constant. 

From (6.4)2 we have that E= (0,0, Az 1E 
0 )T , and equations (8.142) are satisfied 

'Note that here we have an infinitely long tube for the same reasons already discussed for the uniform 

extension of a bar and the electric boundary conditions. 
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automatically. As well as this, from (8.7) we have 

I= E2,2E2, I= A4E2. 40 15 = Az 
06z0 (8-148) 

With the above electric field, the non-zero components of the Maxwell stress tensor 
(6.30) are 

60 A-2 2 E0 22 
TM rr=: TM 002E,, ' TM zz=2A-E,, 

(8.149) 

Now, regarding the initial alignment of the electro-active particles. we will consider 

two cases, an axial and a radial alignment. 

(a) Axial alignment 

In this case we assume that the particles are aligned uniformly in the axial 

direction in the reference configuration; as a result we have ao = (0,0, I)T , and 

the remaining invariants are given by (8.8) and (8.9) as 

I- A2, I= A4,2E 
. 7z8z 19 = Eo, Ilo = Az 0 (8.150) 

From (8.5) we obtain a= (0,0, Az)T. As well as this 

bE = «), (), AzE0)T 
,b2E= 

(0, (), \3E0), ba = «), () 
, 

\3) T 

We finally obtain from (8.15) 

2 (, \z, \)-291 + 2(AZ 2+ \-2 )92 A (8.151) 

-ro o=2 \2q, +2 (AZ 2+ (Az, \)2 )92 -A (8.152) 

-rz z=2 
\2 91 +2 (, \-2 + (, \z, \)2 )92 

-p+ 2(, \ZE 0 
)295 +4 (, \2 E� )2 96 

ZZ 

+2 A2 97+4 \4 98+2 \2E0910) (8.153) 
ZZZ 

7ro = Trz = Toz = 0, (8.154) 

and from (8.18) we have 

Dr = Do = 0, (8.155) 

A3 \5 \3Q, O). Dý, = -(2A, EoQ4 +2 zEoQ5 +2 zEoQ6 
+ AJ29 +z (8.156) 

Now, since by definition A= r/R, and since R may be seen as a function of r, we 

have that A= A(r). Thus the different invariants are function of r. Consider 

the following decomposition of the components of the stress -rr,, -roo and T,,.. 

given by the equations (8.151)-(8.153) (see Section 5.5) 

Trr ý 'Trr -A TOO : -- 'TOO -A Tzz : -- iL 
ZZ - 
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with 'Trr = frr (r), -Too = -Too (r) and iý, - Tz,, (r). As a result, the equation 

(8.140) is satisfied automaticaUy. Rom (8.141) we have 

0 
(f.,., (r) - p) = 0, => - 

LP 
=0 -#: > p= p(r). (8.157) Dz c')z 

and then from (8.139) we have 

dirr 
_ 

dP 
+1 Orrr - 'Too) 0, (8.158) dr dr r 

from where p can be obtained as 

r 
p(r) = 7r, (r) - '7rrr (a) + 

la 
Trr (77) - -Too (, q) d77. (8.159) 

Regarding the electric displacement, from (8.156) we have that Dz = D" (r), 

and using this and (8.155) we conclude that (8.143) is satisfied trivially. As a 

result for this electric field and initial orientation of the electro-active particles 

we conclude that (8.144) is universal (for an analysis of universal solutions in 

the context of electro- and magneto-elastic problems see [82,99]). 

Finally, let's consider the simplified form for the energy function 

w (A, A, Ej =9 (Ii), i=1,2, . .. 10, 

where from (8.146)-(8.147) and (8.148), (8.150) we have that in general Ii = 

li (Az 7 A, E, ). We have the partial derivatives 

49W 
_ \-3A-2) (, \2, \z _ \-3) \3E2 

OAZ = 2Qj (A-ý z+ 
2Q2 

z+ 2Q5A,, E, 2,, + 4Q6 
z0 

+2Q7/\z + 4Q8 \3 + 2QloAzEo, (8.160) 
z 

aw 
= 2Qj (A - 

A-2, \-3) + 2Q2(AA2 _ A-3), (8.161) 
OA zz 

ou) 
= 2Q4Eo+ 2Q5A 2EO + 2Q6 A4EO + Qq + QlOA2 (8.162) 

OEo zz zi 

and from the above relations it is easy to prove that 

aLl) aw 
-roo (8.163) 

Z a, \z aA 
and 

(b) Radial orientation 

Dz = -Az 
aw (8.164) 5 K, 

An additional case for this external electric field might be considered. Let's 

assume that the electro-active particles are initially aligned uniformly in the 
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radial direction. Consider ao = (1,0, O)T, in which case a= ((AzA)-l. 0, O)T 
.A 

straightforward calculation shows that the components of the stress tensor are 

7-� =2(, \z, \)-291 + 2(AZ 2+ \-2 )92 -p+ 2(, \z, \)-2 97 + 4(/\z, \)-498. (8.165) 

-ro 0=2 \2 91 +2 (, \-2 + (, \, \z)2 
Z 

)92 - P, (8.166) 

-rzz = 2A291 +2(, \-2 + (AAz)2 
-p+ 2(, \zE 0 

)295 +4 (A2 E0 )2 96ý (8.167) Z 
)92 

Z 

-r, z = \-'Eo9, o, (8.168) 

Tro = Toz = 0. (8.169) 

Since in general T, :A0, from the equation (8.141) we would have that 
z 

'Trz(r), which along with (8.139) show us that this deformation is not con- r 
trollable, and so we do not consider this case further. 

2. Radial electric displacement 

Consider now an external electric displacement in vector form given by DI = (D"IR' 

07 O)T' where D,, is constant. Then from (6.4), for an incompressible material we 

have D= (Az-'D,, /r, 0, O)T . For this particular form of the electric displacement, the 

equation (8.143) is satisfied automatically. 

Again, let's consider two possibilities for the particle alignment. 

(a) Axial orientation 

As in the previous case, let's take ao = (0,0,1)T, then from (8.37) we obtain 

2 (, \z, \)-2Q* 
Do 2 

+ 2(, \-2 + \-2)Q* _ p* +2 \-2 Q* 
z2z 

+4(AzA) -4 
Do 2Q 

6*) 
(8.170) 

+ 2(, \-2 + (, \z, \)2)Q* (8.171) -roo 2, \2p* p*, z2 

7-z, 2 \2Q* + 2(A-2 + (, \z, \)2)Q* - p* + 2, \2Q* + 4A4Q* 
z2z7z8, 

(8.172) 

Tr z 
Do 

Q (8.173) 
r 107 

Tro = TOZ = 0, (8.174) 

which because T, : ý6 0, it means that the deformation in this case is not con- 

trollable, as in the case l. b. 

(b) Radial orientation 

Consider a radial uniform orientation for the electro-active particles. So ao = 

(1,0, O)T, and as a result a == ((Az, \)-l' 0, O)T. The invariants are given bý 
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(8.32)-(8.35), and we have 

K4 = (D�IR)2 K5 = (D�/R)2(, \z, \)-2. K6 = (D�/R)2(Az, \)--11 (8.175) 

17=(, \z, \)-2,1 8=(, \z, \)-4, Kg = D�IR, (8.176) 

Klo = (D�IR) (, \z, \)-2. (8.177) 

As well as this, consider the vectors 

bD == ((AzA)-3 D,, IR, 0, O)T 
, ba == ((AzA)-3,010) T, 

From (8.37) we obtain 

2(AzA)-2Q* -2 + X-2)Q* _* -2 
D,, 

* 
1+ 2(A ,z2p+ 2AZ 

(r) 
Q5 

+4(AzA)-4 
D,, 

Q* + 2(AzA)-2ý2* + 4(AzA)-4g* 
(R)678 

+2(A, A)-2 
D,, 

Q* (8.178) 
R 10' 

1+ 2(A-2 + (AzA)2)p* _ P*, (8.179) Too = 2A20* 
z2 

z1+ 
2(A-2 + (AzA)2)Q* _ P*, (8.180) -rzz = 2A2Q* 2 

TrO = Trz = 70z = 0- (8.181) 

and from (8.39) we get for the electric field 

Er = 2AzA' 
D, * A, A)-' 

D,, 
Q* + 2(AzA) -3 

D,, 
Q* + A, AQg* f24 + 2( 5-6 RRR 

(AzA)-'Q*10, (8.182) 

Eo = Ez = (8.183) 

The invariants are function of \,,, A and D,, IR. The above electric field then 

satisfies (8.142). As well as this, by an argument similar to the one used in case 

La, it can be proved that this deformation is controllable, and that p* can be 

calculated from (8.159) using the above components of the stress and the same 

decomposition used for the stress in I. a. 

Let's define ý=D,, IR, and the simplified energy function 

(Ii, Kj) ý 
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and consider the derivatives 

ew 
_, -3 -2) -3) -3, -2e2 M* (Az \ /\ + M* (, \z, \2 _A- 29*, \ al\z Z2Z5Z 

, 
\-5/\-4e2 \-3A-2 

/\- 
5 \-4 -4fl* - M* - 49* - M*() 6z7z81Z 

aw 
- M*(A - 

\-2, \-3) + M* (, \, \2 _ \-3) 
- M* \-3Ä-2e2 

Z2Z5Z 

49* A-5, \-4e2 
- 29U -2, X -3 - 49U -4, X -5 - 29*10, \ -2, \-3Z, (8.185) 6Z7z8ZZ 

-2 -4 + g* + ý2*() 29*e + 29*e(Az, \) + 29*e(, \zX) 1 (, \z, \)-2. (8.186) 4569 

It is easy to show that 

TO 0- Irr r -A 
aw 

I-zz - 'Frr ---z Az 
aw 

(8.187) 
49A 5Az' 

and 
Tzz - Too =Az 

OW 
A 

OW (8.188) 5 -Tz 0A 

which is the same relation found in case La. Finally, for the electric field we 

have 

E, = Aý, A 49W (8.189) 
oqý - 

8.3.3.2 Extension and torsion of a tube 

V- 
For this problem, consider the deformation [33] (see Subsection 5.5.2) 

Az 112 R, 0= E) + A,, -rZ, z=A., Z, (8.190) 

where A, and -r are constants, and a<r<b, 0<0< 27r, and 6- oc <z< oo. Let's 

define 7= -rr, then the matrix representation of the deformation gradient is given as 

1/2 

0 

0 

0 

- 1/2 

We have that det F=1. Also, the matrix representations of the left and right Cauchy- 

Green tensors axe 

), -l 00 z 
+ y2, \2 y, \2 

zz 

y, \2 A2 
zz 

z00 
0-1 -ýA 

1/2 
zz 
1/2 + 0 -YAZ 

(8.191) 

(8.192) 

6 The reason of this conditions for the axial dimension of the tube has been explained already. 



CHAPTER& TRANSVERSELY ISOTROPIC ELECTRO-ACTIVE ELASTOMERS 235 

The following tensors (matrix form) are useful 

Az 200 

b20 Aý 2+ 2^ý 2 Az + (, Y2 + y4) A4 Az (1 + (1 + 2) A3) 
zz 

0 -tAz(1 + (1 + ^t2)A3) (1 + y2)A4 zz 

Az 200 

c20 A-2 + -ý 2 Az A- 1/2, 
ý(j + (I + y2)A3) zzz 

0 A-1/2_ý(, + (1 + ý2)A3) y2Az + (1 + 72)2A4 zzz 

The first and second invariants given by (8.6), and (8.6)2 are 

2A-1 + (I + _ý2)A2,1 2= \-2 +(2 + ý2), \z. 
zzz 

(8.193) 

As in the previous boundary value problem, we must choose a field and an alignment for 

the electro-active particles. For brevity we will consider only two cases, as follows: 

1. Axial uniform electric field and axial alignment for the electro-active par- 

ticles. 

For this case we consider the external electric field El - (0,0, E,, )T, and the field ao = 
(0,01 I)T that represents the alignment of the particles in the reference configuration. 

The rest of the invaxiants (8.7)-(8.9) are 

I= 4 : E2, I == 05 
E2 (I + 72), \2, I= E2[, ý2, \ 0z60 z+ 

(1 + ý2)2, \41, 
z 

17 2), \2, +z 72, \z ++ y2)2, \4, 8z Ig = Eo, 
2)x2 Ilo = E�(1 + -y Z" 

The non-zero components of the Maxwell stress (6.30) are 

Consider the vectors 

bE 

E0 \, -2 E20 \-2 E2 'rMrr :- TMOO ý-2 01 MZZ 0* 

0 

b2E _Y[l ++ -y2), \31 
z 

+ y2), \3 
z 

(8.194) 

(8.195) 

(8.196) 

(8.197) 

0 

ba ++ -y2 \31 
z 

+ ý2), \3 
z z 
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The components of the stress (8.15) are 

-P + 2Az lQj + 2[Az 2+ (I + , ý2) AzIQ2, (8.1981) 

Too -p + 2(A-1 + 72A2)Ql + 2[A-2 + (1 + 72) AzIQ2 + 2E,, 2 ý2A2 Q5 zzzz 

+4E, 2,72Az [I + (1 + y2)A3] ý2 A2 ý2Az[j + (1 + -, 2)A31 
z 

Q6 +2 zQ7 +4z Q8 

+2E 72A2qlO' 0z (8.199) 

'rýz -p + 2A2Q, + 4AzQ2 + 2EO2A2 A4(1 + 72 z ZQ5 + 4EO2 zA+ 2AýQ7 

+4A 4(1+72) Q8 + 2EOA2Q, O, zz (8.200) 

To, 2-yAý, JAzQj + Q2 + E02AzQ5 + E02[1 + 2(l + ý2)'\3j Q6 + AzQ7 
z 

+ 2)A3] +[l + 2(l 
z 

Q8 + EoAzQ, 01, (8.201) 
Tro = Trz = 0. (8.202) 

And the components of the electric displacement (8.18) are 

Dr = 0) (8.203) 

Do = --yf 2E,, A, 94 + 2E,, [l + (1 + -y2)A3] 72) A2 
z 95 + 2E,, (Az 1+ (1 +2z 

, Y2 + ý4)A5 [I + (1 + 72)A3]qlo +(1+2 z] 
96 + Az99 +z li (8.204) 

Dz = -Aý, f2E, 94 + 2E,, A2(l +, Y2 [, Y2 Y2 + ý4) zA+ 2E,, Az +(1+2 A5Z196 

+Qq + A2(1 + ý2)9101. z (8.205) 

We prove that the above deformation is controllable. As in the problem of Subsection 

8.3.3.1) if we decompose T, -roo and -r_.,, as -r,, = -p + -Tr, TOO = -P + iýoo and 

Tzz = -p + ; r-zz; remembering that -y = -rr, and considering (8.193)-(8.196), we can 

show that 'Trr = 'Trr(r), Too = Too(r), iýz = iýz(r) and -ro,, = -ro, ý(r) as well. Then, 

(8.140) is satisfied automatically, and from (8.139) and (8.141) we have that 

OP 
+ 

dTr, 
+1 (Tr r- 'FrO 0)=07 

OP 
= 07 Or dr r 49Z 

from where it is easy to see that p is a function of r, and that it can be calculated 

directly from (8.139). 

As well as this, from (8.203)-(8.205) we have that Do = DO(r) and D, ' = D,, (r), 

and as a result (8.143) is also satisfied, thus this deformation is universal. Also, 

since -oo <z< oo, it can be proved easily, as in the previous problems, that the 

boundary conditions (6.57) axe satisfied. 

Consider now the simplified form for the energy function 

w=w (Aý,, -y, E,, ) =Q (Ii), i=1,2,.. ., 10. 
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Rom (8.193)-(8.196) we have 

c9w \-2 
OAZ = 2Ql [(l zI+ 

Q2(2 2A z+ 
2f25E, 2, (1 

+96E2[-ý + 4(1 + y2)2, \3] +297(1 + ý2), \z +Q8 [-12 +4(1 + -, 2)2 A 3j 
0ZZ 

+291oE�(1 + -y 2) 
IXZ 1 (8.206) 

aw 

= 27AzIQIA, + Q2 + Q5E, 2Az + Q6E, 2[l + 2(l + 72)A3] + Q7Az 
0-Y z 

+Q8[1 +2 (1 + -y 2)A3j + QlOE OXz (8.207) z 
2Q4EO + 2Q5 E0 (1 + ý2)A2 + 2Q6Eo [, ý2, \z + (I + ý2)2, \4] 

aEo zz 
2), \2 +Qq + Q10(i + -Y Z7 (8.208) 

and then it is possible to derive the simple connections 

TO Z= 
ew 

9 
Dz = -/\z 

Ow 
(8.209) 

49-y 0 E� * 

2. Radial electric displacement and radial orientation for the electro-active 

particles 

Now, consider the case where the external electric displacement has the vector form 

0, O)T - 1/2 D,, IR, 0, O)T; Di = (D,, IR, in the reference configuration; as a result D= (AZ 

but r= A- 1/2 R, so that D= (Az-'D,, /r, 0, O)T, which satisfies (8.143). From (8.33) 

we have 
D 2A-1 D2A -2 D 2A-3 

0z0z0z K4 =, 
r2 I 

K5 = 
r2 I 

K6 =- 
r2 .* (8.210) 

If we consider a radially uniform alignment for the particles in the reference configu- 

ration given by ao = (1,0, O)T, then a= (AZ 1/2 
10) O)T , and the rest of the invariants 

(8.34)-(8.35) are (the first and second invariants are given in (8.19)) 

17 ý AZ 1,18 
:= Az 2, K9=: 

R7 
Kjo =zR (8.211) 

Using R= A1/2, r, the components of the total stress (8.37) and the electric field are 

(8.39) 

-p* + 2A-'Q* +2[, \-2 + (1 + ý2), \zp* +2 \-2 
D,, 

Q* + 4A-3 
(D,, )2 

z1z2zr5zrQ 6* 

+2A-1 Q* + 4, \-2Q* + 2, \-3/2 
D,, 

Q* (8.212) 
z7z8r 10) 

-roo -p* + 2(A-1 + 72, \2)Q* + 2[, \-2 + (1 +, y2)Az]Q* (8.213) 
zz1z 27 

Tzz -p* + 2A2Q* 
zI+ 4Azf22*, 

Tro = Trz = 

2-y, \2n* + 2^ýA-ýQ* z1 2) 

(8.214) 

(8.215) 

(8.216) 



CHAPTER8. TRANSVERSELY ISOTROPIC ELECTRO-ACTIVE ELASTOMERS 238 

and 

D,, D,, D,, 
A-2Q* + Al/2Q* + A-1/2ý1* E, -2 Q* +2 A-lQ* +2 10. r4rz5rz6z9z 

(8.217) 

Eo Eý, = 01 (8.218) 

which by the same reasons described in the previous problems is also universal and 
satisfies (8.142). Define ý == D,, IR, and let's consider the simplified form for the 

energy function 

w=w (A, -y, ý) =W (Ii 
ý Kj). 

Then we have (6.57) 

2[(l + ý2)Az - AZ 2 ]Ql + Q2(2 + -y 
2- 2A z 

3) 
- Q*A -2ý2 - M*A-3ý2 

49Az 
5z6z 

-Q 7AZ 
2- 2Q*A -3 _ Q*OA-2ý, (8.219) 8z1z 

aw YA2 Q2, yAz, 
19-Y 

= 2Q*j Z+22 (8.220) 

= 2Q*ý + 2Q*A-lý + 2Q*A-2ý + Q* + q*OA-1 (8.221) 45z6z91z 

from which it follows that 

11/2 d9W Ow 
E, =A -) TOZ = ae O-Y * 

(8.222) 

There are two extra possibilities that might be included. One is to consider a uniform axial 

electric field with a uniform radial alignment for the electro-active particles, and the other 

is to consider a radial electric displacement as in the above problem, but with a uniform 

axial alignment field for the electro-active particles. In any of these two extra cases is not 

difficult to show that a shear in the radial direction appears, which implies the arbitrary 

pressure p cannot be assumed to be a function of r only. As a result these cases are not 

controllable, and we do not consider them here. 

8.3.3.3 Helical shear 

Helical shear [22,79] has been studied in the context of isotropic ES elastomers (Subsection 

7.1.2.1), and for MS elastomers as well (Subsection 4.1.2.1). In this subsection we want 

to find some connections, and to check in which situation the non-linear universal relation 

110) holds. 

Rom [79] helical shear was defined in cylindrical coordinates by 

r=R, O=E)+g(R), z=Z+w(R). (8.223) 



CHAPTER& TRANSVERSELY ISOTROPIC ELECTRO-ACTIVE ELASTOMERS 239 

where g and w are unknown functions of R, and A<R<B, 0< E) < 27r and -x <Z 

oo. The matrix forms of the deformation gradient and the left and right Cauchy-Green 

tensors axe respectively 

+ r2 K 10 0) 
(1 

Ko KZ 0 �ýz 
) 

,01+ K2 K OK no 10K ZCr. 0 10 (8.224) 

,2 r, Z01 rz rorz I+rz r. Z01 

where no = rg'(r), n, = w'(r) and K2 = K2 +K2 0 Z' 

There are many possibilities for the external electric field or electric displacement, and 

for the alignment of the electro-active particles as well. We consider only two cases: 

1. A uniform axial electric field, and an axial orientation for the particles 7- 

As in the prior examples we work with E, = (0,0, E,, )T and ao = (0,0,1)T, where E,, 

'z' 0, )TE,, and a= (0,0,1)T is constant. Then, from (6.4)2 and (8.5) we get E= (-K 

The following vectors are useful: 

bE 

The invariants (8.6)-(8.9) are 

KZ 
b2Er, 

ZK0 
+ r2 ,Z 

r. Z 
ba r, ' r, 0 

+ K2 �Z 

I= E2(1 + K2), 21= E2 I, = I2=3+r, 45060, z 

Ig = I, o=E,,. 

17 = 1, (8.225) 

(8.226) 

The components of the stress tensor (8.15) and the electric displacement (8.18) are 

-r,, = -p + 2Qj + 4Q2) (8.227) 

, roo = -p + 2(1 + r, 2)pl + 2(2 + X2 )Q21 (8.228) 
0 

(1 + K2)f2l 
2 

+2(2+ r2 
22 

T-,, = -p +2z )Q2 + 2E,, Q5 + 4E,, (1 +K )Q6 + 2Q7 

+ K2 +4(l Iz)f28 + 2EoQlo, (8.229) 

-r, o = 2ro(Ql + Q2)) (8.230) 

7-" = 2rz(gi + Q2 + Eo2Q6 + Q8)) (8.231) 

7-&, = 2r,,, r. O(Ql + Eo2Q6 + Q8)) (8.232) 

7 For the isotropic electroelastic case see [221. 
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and 

2 Dr [MoS25 + 2Eo(2 +K )Q6 + Q10j, (8.233) 

Do = -r,, no[2EOQ5 + 2EO(3 + r, 
2A+ Q10]! (8.234) 

Dz =+ K2 2422 
-[2EoQ4 + 2Eo(l z)Q5 + 2EO(l + 3Kz + Kz + Kzrlo)Q6 

2)plo]. +Q9 + (i + rZ (8.235) 

If we define the energy function w as 

w=w (Ko, nz, E,, ) =Q (Ii), i=1,2,. .., 10, 

we get 

Ow 
- 2no(Ql + ý22)i (8.236) NO 

09L, ) 
- (8.237) 

09r., - 
2rz(Ql + Q2 + E, 2Q6 + Q8)) 

aw 
- 2EoQ4 + 2EJ25 + 2EoQ6(1 + X2)Qg 

aEo z+ Q10, (8.238) 

from which we obtain 
Tr 0 

aw 
Trz 

Ow 
(8.239) 

09KO ,5 -rlz 

2. A uniform radial electric field, and a radial alignment for the particles. 

In this case the external electric field is El = (E, 0, O)T' where E,, is constant, 

and the alignment in the reference configuration of the electro-active particles is 

ao = (1,0,0)T. Then the electric field and the particle orientation in the current 

configuration are 

(E0, (), (»T 
,a= (1, Ko, Kz 

The following vectors axe useful: 

1) 

bE = E,, no 
Kz 

+ r, 2 

b2 K2) E =: Eo ro (2 +, 

K2) ýrcz(2+ , 

The invariants axe given by (8.6)-(8.9) 

1+r, 2 

ba ro(2 + K2) 

K2) rt, z (2 +, ) 

r2, 12 =3+ 
14 = 

2, E0 = E2 150 (1 + K2), 

6 E2[K2 ++ n2)2], 0 
1 7 1+ K2, 

2+ 2)2, 18 =K (i +K 

Ig = E, Ilo = E,, (1 + r, 
2). 

(8.240) 

(8.241) 

(8.242) 



CHAPTER8. TRANSVERSELY ISOTROPIC ELECTRO-ACTIVE ELASTOMERS 241 

The components of the stress and the electric displacement are (8.15) 

Trr = -P + All + 4Q2 + 2Eo2f25 + 4EO2(l + n2 )06 + M7 + 4(l +K2 

+2E,, Qlo, 

K2Q5 K2 n2 'roo -p +2 (1 + K2)Ql +2(2+ 2A+ 2E, 2, 
o+ 4E 2 0 'o (2 +) 96 

22 
K2 2Q, 

O, +2t'ý007 + 4no(2 + )Q8 + 2E,, Ko 
2)Ql + r2 2222 

K2 -p 2(l + nz +2(2 )Q2 + 2E 0 KzQ5 + 4EOK, (2 + 
2 +2nzQ7 + 4K2 (2 + K2)Q8 + K2 ,z 2E,, zQ, 07 

K2) 7-, o = 2ro[Qj + Q2 +Eo2 Q5+ E02(3+2 ,N+ 
Q7 +(3+2 M2 

2K, [Q, + Q2 + Eo2 Q5 + E, 2, (3 + 2r2 2 )ý26 + Q7 + (3 + 2r , )f28 

(8.243) 

(8.244) 

(8.245) 

(8.246) 

(8.247) 

+ r2 Toz = 2nzrO[Ql + E, 2, Q5 + 2E,, 2(2 
K2) + E,, Qloj, (8.248) A+ Q7 + 2(2 +, Q8 

and (8.18) 

2 
K2 + N4 Dr [2E,, Q4 + 2E,, (1 + Q5 + 2EO (i +3 )Q6 + Q9 

+(l +K 2)Q10], (8.249) 

+ X2 N2 + N4 Do -Ko[2Ef24 + 2Eo(2 )Q5 + 2EO(3 +4 )Q6 + Q9 

K2)Qloj, +(2+ , (8.250) 

X2) K2 + N4 Dz ý- Kz [2EoQ4 + 2Eo(2 + Q5 + 2E,, (3 +4,, A+ 09 

+(2 + K2)qlo]. (8.251) 

Regarding the stress, we can prove that the components of the stress satisfy the 

following non-linear universal relation (see for example (22)) 

(Too 
_ Tzz)TrzTro = Toz(Tr2 , r2z 0 1 -7 (8.252) 

This relation is also satisfied by the components of the stress if they are calculated 
from the constitutive equation (8.37) for the electric displacement DI = (D,, IR, 0, O)T, 

and for a uniform radial field orientation for the particles ao = (1,0, O)T. 

Let's define 

2,..., 10. 
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Then 

OLO 
= 2ro[Q, + Q2 + Eo2Q5 + Eo2Q6(l + 2r2) 

i9r. 0 
+ Q7 + Q8(1 +2t, 2) 

(8.253) 
aw 

K2) 0 r" == 2rz[Ql+ Q2 +Eo2% +Eo2Q6(1+2 ,+ 
Q7 + Q8(1+2K2) 

(8.254) 
aw 

+ X2) K2 + K4) + Q9 -= 2EoQ4 + 2EoQ5(1 +2EoQ6(1+3, 
49E,, 

+Qlo(l + r, 
2), (8.255) 

from which we recover the connections (8.239) plus the following additional connec- 

tion for the radial component of the electric displacement: 

Dr 
aw 

(8.256) 
o9E,, ' 

The boundary conditions (6.57) are satisfied triviallY if -oo <Z< oo. 

8.4 Universal relations 

For a transversely isotropic electro-active elastomer the number of invariants involved in 

the energy function implies that it is difficult to find this function from experiments (see 

Section 5.3 for the same problem with transversely isotropic MS elastomer). What is 

usually done is to assume a simplified form for the general constitutive equation, assuming 

that the energy function depends only on some of the invariants (8.6)-(8.9). Consider the 

constitutive equation (8.15) 

-r == 2bQl + 2[lib - b2l Q2 - pI + 2bE (9 bEQ5 + 2[bE (& WE + WE (9 bE]Q6 

+2a (9 aQ7 + 2[a o ba + ba 0 a]Q8 + [a o bE + bE 0 a]Qlo. 

Let assume now that8 Q= Q(Ij, 14,17,18, Ig, Ilo); then this reduces to 

-r=2bQ, -pI+2a(&aQ7+2[a(gba+baoa]98+[a(&bE+bE(galf2lo. 
(8.257) 

8 In this section we assume a different simplification for the energy function as in Section 5.3; the reason 

is that the constitutive equations (5.34) and (8.15) are identical in form (changing E by H); therefore if 

we assume a form for the constitutive equation for the electric case similar to the one presented in (5.191) 

for the magnetic problem, we would end up with the same linear universal relation presented in Section 

5.4 (equation (5.272)). In order to expand more our results here we have assumed a simplified form for the 

energy function that depends on a different set of invariants. The purpose is just to illustrate a different 

case; we do not intend to provide a physical explanation for this choice of invariants (as %%-e did in the 

introduction of Section 5.3). 
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One criterion that may be used in order to determine the validity of a giveii constitutive 

equation corresponds to universal relations. Universal relations are relations that hold 

independently of the particular form of the parameters of the constitutive equation for 

a given family of materials. If they do not hold, this means that is not possible to use 

that particular constitutive equation for the material under consideration [6] (see the 

introduction of Section 4.1). Then a method to know whether the above simplification 

is valid is to find one or more of these universal relations (we have already found one 

non-linear universal relation for the particulax case of helical shear, which is valid for 

the full constitutive equation (8.15)). Regarding the linear universal relations, these can 

only be found when the number of parameters of the equation is less than the number of 

independent components of the stress, which in this case and in general is six; then for the 

simplified form (8.257) it is possible to find one such relation [85]. 

In order to look for a universal relation from (8.257) we use the same method as 

presented in Section 5.4 (see [21]). We repeat the main steps of this method here. 

The method consists essentially in the following steps. Consider the notation 

'r = (-rl, T2 7 T3) T4) T5) T6 )T = (Irl 1, T22 ý 733 , 723,7-311 Tl 2 )T. (8.258) 

Then (8.257) can be written alternatively as 

,r= d(')p + d(')Ql +d 
(7) Q7+ d (8) Q8+ d('O)Qlo, (8.259) 

where d(') are vectors defined in the same way as -r, from in this case, the tensors b, I and 

the components of the vectors a and E. For the simplified form of the constitutive equation 

(8.259), the theory of Pucci and Saccomandi [85] predicts only one linear universal relation, 

which by using the above notation may be found by solving the following problem. Let's 

look for a vector e such that 

e. -r= (8.260) 

for any particular form of p, Q1) Q7) Q8 and Qjo. Using (8.259) in (8.260) the problem is 

reduced to finding e from the linear system of equations 

Me = (8.261) 

where M is a6x5 matrix formed from the components of the vectors d('). The solution of 

the above linear system of equations is the null space of this matrix, which in this problem 
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has one element. The components of this element axe 

el =a3 bi +a2 (alb23 - a3bl2) -a2 (a3b 232 12 + a, b23) + a2a3 [a3bl3 + a, (b22 
- 

b33)1! 

2 e2 = a3(a3bl2 - a2bl3) 2 + al(a3bl2 + a2bl3) 3 
- alb23 - aja3[a3b23 + a2(bil - 

b33)]. 

e3 =a2 (a3bl2 2 - a2b13) -a2 (a3bl2 + a2b13) 1 +a3 b23 + a, a2 [a3 (bi 1- b22) + a2b231. 1 

e4 = 2a2a3(a2bl3 - a3bl2) + 2a2 (a3bl3 - a2bl2) + a, A- bil) + a2(bil - b33)] 13 022 2 
3 +a, b22 

- 
b33)) 

222 e5 = 2ala3(a3bl2 - alb23) + 2a2(albl2 - a3b23) + a2[a3(b22 - bil) + ai(b33 - 
b22)] 

3 +a2 b33 
- bil), 

2222 e6 = 2a2(al + a3)b23 + a2[a3(bil - 
b33) 

- 2albl3l + a3[a3(bl, - 
b22) 

- 2aja3bl3 
2 +a, (b33 

- 
b22)] 

Note that the components do not depend on E. For the linear universal relation (8.260) 

we have 

ei-ril + e2722 + e37,33 + e47»23 + e57,31 + e6712 :: -- (8.262) 

The above linear universal relation is valid for any material described by (8.257), and for 

any particular form of a. The application of this linear universal relation requires the use 

of universal solutions. 

Consider now a special but important problem, in which the alignment of the electro- 

active particles in the reference configuration is the same as the orientation of the applied 

electric field (see the boundary value problems of Section 8.3). We have 

ao = OEI, where 0=1 (8.263) 
E711 

Then from the connections El =FTE and a= FaO we get 

ObE. (8.264) 

We work with the full constitutive equation (8.15), using (8.264) we get 

-r = 2bQl + 2[Ilb -b 
2] Q2 

- pl + 2bE (& bE(Q5 +P2 Q7 + OQ10) 

+2(bE (9 b2 E+b 2E 
(& bE) (Q6 + 02%). (8.265) 

Rom the theory developed by Pucci and Saccomandi [851 the above equation may generate 

one independent linear universal relation. Consider the notation 

-yi = 2(Ql + IlQ2)) 72 = -2027 'Y3 = 2(Q5 +, 32 Q7 +)3QIO)i 

74 = 2(Q6 +, 32 Q8) 
- 
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Then we have 

-rb-1 - b-l-r = -y3(bE (9 E-Eo bE) + -y4(b 2E (o E-E (9 b2 E). (8-266) 

Consider the following property for two vectors u and v 

(UOV-V(&U),, =vxu, (8.267) 

where the subscript x means the axial vector of an antisymmetric tensor. From (8.266) 

we finally obtain 

b-1 -r) x= -y3E x bE + -y4E xb2E, (8.268) 

from where we get the universal relation (see (7.26)) 

b-l-r). -E=0. (8.269) 



Chapter 9 

Variational formulations 

The boundary value problem in non-linear magnetoelasticity (see Section 3.6) and in non- 
linear electro elasticity (see Section 6.4) involves seeking solutions of a system of non-linear 

partial differential equations; we need to consider the body and the free space surrounding 
it, and we need to use the boundary conditions (2.104) (or (2.105)). This problem is highly 

difficult, and there is little prospect of obtaining analytical solutions, except for cases with 
csemi-infinite' geometries [99]. 

Therefore it is necessary to develop numerical methods of solution (see [4]). Busta- 

mante et al. [15] solved a boundary value problem using the finite difference method (see 

Section 4.2); the geometry of the problems was simple and they only solved the magnetic 

part of the boundaxy value problem. More generally, to solve realistic boundary value 

problems of practical interest, a finite element approach is desirable. A prerequisite for 

such a formulation is a suitable variational principle or, at least, a virtual work principle. 

In this chapter we develop variational principles for the non-linear magnetoelastic 

problem. We do not treat the closely similar problem for electro-active elastomers in 

this thesis; this will be done in a future paper in preparation [14], though some remarks, 

which concern the electroelastic problem can be found in the Conclusions. 

Regarding past reseaxchers on the variational formulation, the most important refer- 

ence is the book by Brown [13], who provides a paxtial vaxiational principle based on use 

of the magnetization as the independent magnetic variable together with the deformation 

function. This has been developed into a full vaxiational principle by Kankanala, and Tri- 

antafyllidis [61], who use a magnetic vector potential as a third variable. A variational 

principle equivalent to that of Brown but based on the magnetic field rather than the mag- 

netization has been stated by Steigmann [1031, and a different but essentially equivalent 

246 



CHAPTER 9. VARIATIONAL FORMULATIONS 247 

formulation of the theory is contained in the recent work of Ericksen [41]. 

This chapter is divided in 3 sections. In Section 9.1 we summarize the basic equations of 

non-linear magnetoelasticity (see Subsection 2.3.1 and Chapter 3), in particular we review 

different constitutive laws based on different choices of independent magnetic variables. 

Section 9.2 is devoted to establishing connections between different energy expressions that 

are used in variational formulations of the non-linear magnetoelastostatic problem. Two 

new variational formulations are then derived, one based on the scalar magnetic potential 

and one on the vector potential. In each case all the relevant governing equations, boundarý 

and continuity conditions are derived. In Section 9.3 we propose a variational formulation 

for a problem of a body interacting with a rigid semi-infinite body, which would be a first 

attempt to explore a formulation for a mixed boundary value problem. 

This chapter is based on the results presented in [171 and [161. 

9.1 Basic equations 

In this section we review briefly the main results for the theory of magneto-active elas- 

tomers presented in Section 3, and then we present different possibilities for constitutive 

equations depending on the independent magnetic variable chosen for each case. 

The equations of magnetostatics 

From Sections 2.2 and 3 we had that the fields H and B satisfy the field equations (2.102) 

cur1H == 0, divB = 0. 

For condensed matter we introduced the magnetization vector M, which is defined in 

terms of H and B via (2.107)2 

p,, (H (9.2) 

In vacuum or in non-magnetizable materials M=0, and we have (2.106)2 

p,, H. (9.3) 

Rom (2.104) the continuity condition for H and B across the boundary W of the 

body 8 were 
[H]xn=O, IBJ. n=O. (9.4) 
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Proposition 9.1. The boundary conditions (9.4) are equivalent to (see, for e. Tample, 
11031) 

JHJ = (M - n)n, JBI = tL,, [(M - n)n - M]. (9.5) 

Proof. Let H', B' denote the fields inside the body close to W, and let H'. B' denote 

the fields outside the body (vacuum) close to OB. The open square brackets in (9.4) 

designates the jump of the quantity in passing from the inside to the outside of the body 

(see Subsection 2.2.2). Thus, 

JH] = H'- H) ýBý = B'- B'. (9.6) 

With the above notation (9.2) and (9.3) can be rewritten respectively as (the magnetization 

only exists inside the body) 

(9.7) 

therefore 

ýBý = p,, (ýHý - (9.8) 

and so 
ýBj -n=p,, (JHý - M) - n, (9.9) 

as a result 
ýHý -n= M. n. (9.10) 

Let's decompose ýHý as ýHj = ýHj T+ JHJ p, where ýHj p is the component of JHJ parallel 

to n, and ýHJT is the component normal to n (which is tangential to the surface of the 

body W); the boundary condition (9.4)1 means that JHJT = 0, and so JHJ = 1HIp. The 

norm of ýHjp is the absolute value of ýHj - n, and so from (9.10) it is easy to show that 

JHý = ýHjp = (M - n)n. (9.11) 

From (9.8) with the above result we have 

ýBý = tt,, [(M - n)n - M], (9.12) 

and it is easy to prove that (9.4)2 holds. 
0 
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9.1.2 Equilibrium, stress and constitutive laws 

As was mentioned in the introduction of Section 2.3, for deformable media it is possible to 

find many different definitions of 'stress' tensors that can be included in the equilibrium 

equation. In this thesis we have used the so-called 'total stress tensor' (see, for example, 
[32,33]), which has been denoted -r. This tensor is symmetric (see Sections 3.3 and 6.2), 

and is the analogue of the Cauchy stress tensor axising in elasticity theory 

In terms of -r the equilibrium equation has the form 

div-r + pf = 0, (9.13) 

where f is the 'mechanical' body force per unit of mass and p is the mass density of the 

material in the configuration B. 

As was emphasized in the remark of Section 3.3, -r incorporates terms that may be 

considered as magnetic body forces rather than stresses; while from the mathematical point 

of view there is no essential difference in treating the magnetic contribution as a body force 

vector or as a stress tensor there are differences in the resulting physical interpretations 

(see [89]). 

We assume that the material is not subject to any internal mechanical constraint. 

Formulation based on the magnetization 

Consider the classical formulation of Brown [13]. This is based on use of IM as the P 
independent magnetic vaxiable and a free energy function per unit mass; in this chapter 

this energy is denoted X(F, 94). This energy does not include the magnetic self energy. 

With this function the 'Cauchy stress', denoted &, and the magnetic field are given as 

ü =: pFLX , pý, H - 
Ox (9.14) 

c am* ')F 

Note that in general CT is not symmetric. 

The equilibrium equation (9.13) can then be expressed in the form 

divü + p�(M - grad)H + pf = 0, (9.15) 

the term IL,, (M - grad)H having the role of a magnetic body force relative to the stress 

tensor 6,. 

Proposition 9.2. The stress & is related to -r by 

-r = CT +, rm, 
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where -rn is referred as the Maxwell stress tensor, and is defined byl 

Tm=BOH- 
I 

p,, (H - H)I. (9.17) 2 

Proof, We have to show that 

div-r,, = p,, (M - gradH). 

The component form of -r.. in Cartesian coordinates is 

-rmij = BjHj -I gHkHkJjj, (9.19) 
2 

and so div-r,,, is equivalent to 

Tmij, i = Bi, iHj + BiHij - p,, Hk, jHk6jj. (9.20) 

But (9.1) in component form are equivalent to 

Hij = Hj, i, Bi, i = 

thus from (9.20) we get 

7'mij, i = (Bi - p,, Hi)Hj, i, (9.22) 

which by using (9.20) is equivalent to p,, (M - gradH). 0 

On the boundary W of the body the traction (per unit area) associated with & is 

given by (see [13,61,1031) 

-T1 )2 o, n+ -p,, (M -nn, 2 
(9.23) 

where t,, is the applied mechanical traction (per unit area) and n is again the unit outward 

normal to OB. 

It follows from (9.16), (9.17) and (9.23) that 

T -T 
11 

-rn = C7 n +, rmn =ta + (M - n)2n + (B - n)H - -p,, (H - H)n. (9.24) 
22 

'Rom the definition 3.1 we had seemingly different expressions for the Maxwell stress (equations (3.43) 

and (3.44)). For free space with (9.3), however, we see that (9.17) is equivalent to (3.43) and (3.44). These 

differences arise from the different definitions of stresses and body forces we see in this section, which is 

equivalent, to say, on which magnetic variable is taken to be independent and on the associated stress 

tensor. See Table 1 in Kankanala and Týiantafyllidis [611 for a list of some different Maxwell stress and 

magnetic body force expressions. 
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Proposition 9.3. Let's define the (symmetric) Maxwell stress outside the material (close 

to OB) as 

TO =BOOHO- 
1 

g, (Ho - H')I, (9.25) m2 

with B' = p,, H'. Then, we have 

-rn + -r' n, (9.26) m 

i. e. the traction calculated from the total stress in the body is balanced, on the relevant part 

of the boundary, by the applied mechanical tractions on the exterior Of the body together 

with the effect of the Maxwell stress exterior to the body. 

Proof. We show now that -1 - n)2 n+ (B - n)H - 1p,, (H - H)n is equivalent t02 -r' n. 2 Ac' (M 
2m 

The total traction on the boundary of the body due to -r' is m 
0 r. n da n)H'--(H'. B')n da. (9.27) 

a16 a13 21 

Using (9.5) we have 

Ho = H'+ (M - n)n, Bo = po[H'+ (M - n)n]. (9.28) 

With (9.28) in (9.25) after some algebraic manipulations we obtain 

-r, n da =1g, (M - n)2 n+ (B'. n)H'- 
1 

tt�(H'. H')n da. (9.29) 
fale 1813 [221 

Dropping the index i we see that indeed ly, (M - n)2n + (B - n)H - lp,, (H - H)n represents 22 

the Maxwell stress times the normal vector. 

0 

9.1.2.2 Formulation based on the magnetic field 

A formulation of the equations based on use of H as the independent magnetic variable 

has been used by Steigmann [103]. In this, the energy function V)(F, H) is adopted, from 

which we obtain 
ao ao pF 
o9F 

pom aH 
(9.30) 

This yield the same stress tensor er as does X. The functions X and V) are related by the 

partial Legendre transform 

+ g'm - (9.31) 

The equilibrium equations and traction boundary conditions axe the same as for X. 
2 An important observation about this expression is that the magnetic field, magnetic induction (and of 

course the magnetization) are evaluated on the boundary of the body approaching from inside. 
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9.1.2.3 Formulation based on the magnetic induction 

Another option is to base the formulation on the magnetic vector B and to define an 

energy function 3 O(F, B). This yields the stress tensor, denoted o,, and the magnetization 

M in the forms (see equations (2.121) and (3.4)) 

o, = pF 
490 

3 
m= 090 (9.32) 

OF "aB' 

while the equilibrium equations becomes 4 [80] 

diva + (gradB)TM + pf = 0. (9.33) 

In this case the term (gradB)T M has the role of a magnetic body force (in respect to the 

stress a). 

Proposition 9.4. We have the connections 

-r=o, +B(&H-(H-B)I+-Ip-'(B-B)I, &=a+-lp,, (M-M)I. (9.34) 
2'2 

Proof. Let's prove (9.34)1. Consider (3.41) 

-r=a+pol BOB- 
1 

(B-B)I +(M-B)I-B(&M, 
121 

using (9.2) p,, M =B- IL,, H in the above equation we have 

+ Ao B(&B- 
1 (B-B)I +[(fLOlB-H)-B]I-B(&(polB-H), (9.35) 
21 

and after some manipulations we obtain 

o, +B(&H- (H-B)I+ 
1 

Ao l(B - B)I. 
2 

We prove now (9.34)2. Rom (9.16) we have 

+B (H - 1, 
2 

and with (9.34)1 we have 

er =a -(H-B)I+ 
lpol(B-B)I+ 1 

yo(H - H)I, 
22 

+ -[B . (pO 1B - H)]l + -po[H - (H - MO 1B)II, (9.36) 
22 

3 See Subsection 2.3.1, where we use a different notation for this energy function. 

"See equations (2.109), (2.110), (3.32) and (3.33). 
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using (9.2) we have 

a+ 
1 [(B - p,, H) - Mj, 2 

or+ 
1 

yo(m - mj. (9.37) 2 

0 

We also note that [103] 

PO = po+ 
I 

p. m - M. (9.38) 2 
This is not a standard partial Legendre transform but can be converted into one by defining 
0* and 0* by 

pO* (F, B) =: pO(F, B) +1 [LO'B. BI pýb*(F, H)=pe(F, H)-lp�H. H, 2 (9.39) 

so that 

pO* (F, B) = pO* (F, H) +B-H. (9.40) 

Proposition 9.5. The stress tensors associated with 0* and 0*, denoted o-* and &* re- 
spectively , are given by 

pFLO: =a+ [to l(B 
- B)I, pFOO o-- - -po(H - H)I. (9.41) OF 2 OF 2 

Proof. Let's prove (9.41)1. From (9.39), we have po*(F, B) - ! p-lB -B= po(F, B); 20 

differentiating in F and after some rearrangements we get 

00* 490 19P P 
49-F 

ýP 
49F 

+ 5-F (9.42) 

but -pF-1 (see, for example, [78]); as a result, multiplying (9.42) from the left by 

F we have 
00* 00 

pF- = pF (9.43) 
OF 5F- +p 

while from (9.39)1, defining o, * = pF'90*, and using (9.32)1, from (9.43) we get YF 

U*=a+ 
I 

p-l(B - B)I. 

We can prove in the same way (9.41)2- 

We also have 
00* 

p-=H, ,C= -B. (9.44) 
i9B OH 
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From (9.41), we have 

diva = divo, * -1 /-L, -ldiv[(B - B)I], 
2 

= divcr* - ILO 1 (gradB)TB. (9.45) 

As a result in (9.33) we get 

divo-* - (gradB)T(M - po 'B) + pf = 0, (9.46) 

which from (9.2) is equivalent to 

divu* - (gradB)T H+ pf = 0. (9.47) 

If we work with &* we can prove in the same way that the equilibrium equation becomes 

divü* + (B - grad)H + pf = 0. (9.48) 

We see from (9.47) and (9.48) that the magnetic 'body force' term is different for each 

choice of 'stress' tensor. 

The formulation listed in the above sections are all equivalent, but they are not the 

only possible ones. The concept of 'stress', 'Maxwell stress' and 'magnetic body force' 

inside the material are clearly not uniquely defined. The formulation based on the 'total 

stress' [33,34] is simplest mathematically and avoids the need for defining either a magnetic 

body force or a Maxwell stress within a magnetizable material. 

9.1.3 Lagrangian formulation and the total energy function 

Now we recall some of the concepts seen in Sections 3.1 and 3.3. 

We defined the Lagrangian counterparts of H and B, denoted HI and BI respectively, 

as 
H, == FTH, Bi -- JFB. 

Using the identities (3.10), the field equations (9.1) axe equivalent to 

Cur1H1 = 0, DivB1 = 

with the jump conditions (3.67) 

"r 
gilý [Bll -N=0. 

(9.49) 

(9.50) 

(9.51) 
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The equilibrium equation (9.13) in the reference configuration is [33.34] 

Div T+p,, f = 0, (9.52) 

where T is the nominal stress tensor associated with the total stress tensor -r (see (3.48)). 

In Section 3.3 and Subsection 9.1.2.3 we introduced the energy function o(F. B) (iii 

Section 3.3 we used a different notation for this function). Rom (3.18) with (9.49)2 we 

introduced the function 4b as 

4)(F, Bi) =- O(F, J-'FBI). (9.53) 

And we could define the total energy function Q as (Section 3.3, [33]) 

P,, -(D +1 J-lBj - (cBl). (9.54) 
2 

This enables T and -r to be given in the simple forms (equations (3.58) and (3.59)) 

T 
af2 

, -r = J-lF 
aQ 

7 
(9.55) 

OF OF 

and the Lagrangian and Eulerian forms Hi and H of the magnetic field are correspondingly 

(equations (3.62) and (4.1)2) 

Hi = 
aQ 

H=F -T'9ý1 

o9BI' 49B1 
(9.56) 

If, instead of B1, we wish to use H1 as the independent magnetic variable then this 

can be done, for example, by defining the complementary version of Q(F, Bj), denoted 

Q* (F, Hj), through the partial Legendre transformation (see Subsection 3.3.3) 

so that 

Q* (F, Hi) = 9(F, Bi) - Hi - Bi, (9.57) 

T 
a92* 

, Bi 
On* (9.58) 

OF OHl' 

which have Eulerian counterparts (see equations (3.64) and (3.65)) 

J-lF 
OQ* B= -J-'F 

aQ* (9.59) 
OF alll' 

Rom (9.54) multiplying by J-1 and with (9.49)2 we get 

-1 
1 

ýL-lj-2 (JF-'B) - (cJF-'B), (9.60) J-lQ == J P0.1) + 2) 0 

and from (9.39), we get the connection 

J-IQ = po +1 jL-lB -B= pO*. 2" 

From (9.57) and (9.39)2 we can found in the same way the connection 

(F, HI) = pý; * (F, H). (9.62) 
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9.2 Energy and variational formulations 

In the literature it is customary to consider the magnetic field as consisting of two con- 
tributions [13,61]: an applied field H,, in the absence of material, and an additional self' 
field H, generated by the presence of a magnetic material body that leaves H,, unchanged. 
These and the total field H each satisfies equation (9.1)1 and the associated magnetostatic 

potentials are denoted W, W., and W, so that 

Ha == -grad(Pa, H, == -gradw, H == -gradyý, (9.63) 

where ýp = ýp,, + ýp, and H=H,, + H,. The magnetic induction is B=B,, + B, where 
Ba = p,, Ha everywhere, B, = p,, H, outside the material, and B, = M,, (H, + M) and 
B=p,, (H + M) inside the material, M being the magnetization. Moreover, 

divB = divB,, = divB, = 

both inside and outside the material. 

(9.64) 

The energy formulation of Brown [13] uses x and !M as the independent variables P 
and the associated functional may be written as 

IlIx, MI = Ejx, M} - Lfx}, (9.65) 

where Lfxj is the work of the mechanical loading, which consists of both body forces and 

boundary tractions. In [13] the load were taken of 'dead' type. Here, we consider the 

body force to be conservative, such that f= -gradU, where U= U(x) is the associated 

potential, and the traction to be a dead load. We therefore write 

Llxl pU dv + t�, -x da, (9.66) 
B 

las 

where t,, is the traction per unit current area. 

The energy E may be written in terms of an energy density function e(F, M) as (see [131 

Chapter II, page 73, equation (7.13)) 

E= 
1B 

pe dv, (9.67) 

where 

e(F, M) = X(F, M) -2p,, M - H, - 11,, 94 - Ha7 (9.68) 

in which x is the free energy, the second term is the magnetic self energy and the third 

term is the external work of the applied magnetic field (all per unit mass). 
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From (9.31), we see that e may also be written 

e(F, O(F, H) +2p,, M - H, (9.69) 

which is the form used by Steigmann [103] when adopting H as the independent magnetic 

variable. Also, from (9.38) and (9.39), we have 

pe(F, M) = pý)* (F, H) + -B -H - -M�M - H� 
2 (9.70) 

= pO* (F, B) - 
1 

B-H- 
2 

1 
gM - H, 

Consider the integral (9.67), which on use, for example, of (9.70) can be written as 

(p, 
0* +1B- H) dv - -po M- H� dv. (9.72) 

22 
113 

By using H= -gradýp, divB = 0, the continuity of ýp and B-n across 05 and the 
divergence theorem (once for the body and once for its exterior) we obtain, for the second 
term of the first integral in (9.72), 

B-Hdv 1 
Po H. Hdv--1f ýpB-nda, (9.73) 

,q 
2 

fo 
2 

113o 

2 a13- 

where B' is the complement of BU OB (i. e. the exterior of the body) and 49B' is the 

boundary of B' far from the body, as depicted in Figure 9.1. 

---------------- 
00 

I, OB 
BO 

Figure 9.1: Depiction of the material body B in the deformed configuration and the 

surrounding space 81 with exterior boundary OB'. 

Similarly, for the second integral in (9.72), by first using (9.2) to replace M and also 

using (9.63) and (9.64), we obtain 

12 
ýPaB -n da 

- po M. Ha ý-, ýoBa -n da + 
22 Boo 

ýc, Ba -n da + ýPaB, -n da. (9.74) =-1 
laB 

a 22 
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Hence we have, for example, either 

258 

E pO* dv +1 tio 
0 21 

1 
H-Hdv+ l 

AB, -n da + 2 
Ba -n da 

13 B aBoo 9,6. 

2 r�sB, -n da, (9.75) 
az30c 

or 

E po* dv -1 PO H-Hdv- V, Ba -n da - jaBa -n da 
113 

2 
ißo faß-, 

2 913- 

W, B, -n da. (9.76) 
2 aj3. 

Since ýp,, and B,, are not affected by any variation in x or W,, the integral of , ý,, B,, over 
OB' can be omitted (or absorbed as a constant into E). Since, in 5', It'-, must satisfy 
Laplace's equation, we may assume that ýo, 

1 
- T. -I as IxI --ý oo, so that IB, l (see Tx7 

Section I of [103]) and the integral of ýo, B, over OB' therefore vanishes. The above two 

expressions for E then reduce to 

E -- po* dv +1 po H. Hdv+ V�B, -n da, (9.77) 
113 

2 

1130 faBoo 

and 

po* dv -1 yo H. Hdv- ýp, B,, -n da. (9.78) 
13 2 

Iso fal5oo 

Since the difference is a constant (and may be absorbed into the definition of E), we 

may replace B, by B in (9.75) and ýp, by ýp in (9.76), and we consider the two alternative 

but (apart from an additive constant) equivalent expressions 

E= PO* dv +1 tio H. Hdv+ V. B -n da, (9.79) 113 
2 

1,3o fa, 

600 

and 

pV)* dv -1 Po H-H dv - ýoBa -n da, (9.80) 113 
2 

1,3o iaBoo 

instead of (9.75) and (9.76), respectively. The 'energy' (9.79) can be considered as a 

functional of x and a vector potential A, with B= curlA (see Section 3.5), while (9.80) 

depends only on x and ýp, with H= -gradW. 

9.2.1 Kankanala and Triantafyllidis' variational formulation 

Kankanala and 7YiantafyUidis [61] used a functional with three indepedent variables, x, M 

and a vector potential, which at first sight is different from (9.65) and essentially amounts 

to replacing the magnetic self-energy term by the volume integral of P-OH -H over the 2 
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whole body and its exterior. We show in this subsection that under the assumptions that 
they adopt their functional can be re-cast as (9.65). 

The difference between the functional of Kankanala and T"ýiantafyllidis [61] (equation 
(3.8) page 2886), and that of BroWn5 [13] is, in the present notation. given by 

1 
yo M-Hdv+ I 

ILO H-H dv, 2 
JB 

2 
fsuB,, 

which, on use of H=H,, + H, and B=M,, (H + M), becomes 

(B. 
H., dv+l/-t,, IH. 

H,, dv+l/-t,, f 
H. Hdv. (9.82) 22 2 J5 

'1630 13 

Next, on use of H, = -gradýo, H= -gradýp, divB = 0, B,, = p,, H,, and divB,, = 0, this 
gives 

-ljdiv(ýp., B+ýpB,, )dv+lp,, f 
H. Hdt,,, (9.83) 2 20 

and hence, by the divergence theorem, 

(ýo, B+VB�). nda+lt£�f H. Hdv. (9.84) 2 913 2 j30 

Application of the divergence theorem over B' and use of B=B,, + B, then yields 

(VB + VB�) -n da +1 (H - Bs -B-H, ) dv. 
aj3.2 13. 

(9.85) 

But, in B', we have B=p,, H, B, = ,,, H, so that the volume integral in the above 
vanishes. The remaining (surface) integral can be split up into three separate terms, 

namely 

W, B� -n da + ýo, B, -n da + (PaBa -n da. (9.86) 
101300 

2 913- 2 9,6. 

The third term is not affected by any variation and is easily seen, by the divergence 

theorem) to be equal to 
1 

Yo H,, - H,, dv, 
2 

fBUBOO 
(9.87) 

which is a term dropped by Kankanala and 'Riantafyllidis [61]. They also omitted the first 

term by assuming rapid enough decay of ýo, at infinity. This assumption also ensures that 

the second term vanishes. Thus, their functional is equal to that of Brown apart from a 

non-essential constant. If we assume that ýp, decays rapidly enough for the first integral 

in (9.86) to vanish, then this would require that B, behaves in such a way as infinity is 

5Equation (9.68), see also the original expression (7.13), page 73 Chapter 111. 
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approached that the final integral on the right side of (9.74) also vanishes, and hence from 

(9.74) we have that 
is 

M-H,, dv 

vanishes, which is untenable. 

9.2.2 Ericksen's variational formulation 

(9.88) 

The energy functional used by Ericksen ( [41], equation (3.8)) has, in the present notation, 

the form 

I 
p-lB -B- (Ha + M) -B+ pX +1p,, M -M dv 

2021 
(lp-'B 

-B- pO + -lB - Ba dvi (9.89) 
n20 

where we have replaced the term (ý in [41] by its equivalent pX + lp,, M - M. This comes 2 

from the connections 

0(ý OX 
j, HaP- Px) = pom. 5-m- am-lo I am (9.90) 

After use of (9.2) Ericksen's energy can be reaxranged as the sum of E, given by the 

Brown form (9.67) with (9.68), and the sum 

f1 
tL, M - Hs +1M,, H -H- tL,, H - H,, dv +1p,, H -H-p,, H - H,, dv, (9.91) 

L3 

(22 fo. (2 

the latter two integrals representing the difference between Ericksen's and Brown's ener- 

gies. 

Next, the following steps show that application of (9.2) again, together with use of 

H= Ha + H, Ba = /-t,, Ha, H, = -gradW, and H= -gradýp, followed by divB = 0, 

divB,, =0 and an applications of the divergence theorem, leads the integral over B to 

become a surface integral. Thus, 

li, M - Hs +1 ju�H -H- p�H - Ha dv (B - H, - gH - H�) dv 1Z3 (2 
211 

div (ýo, B 

21 13 
1 (ýoB-ýoBa). nda. (9.92) ýoBa) dv = -- 2 13 

2 a13 E .6 

Converting the latter to an integral over OB' by invoking continuity of (;, ýp,. B-n and 

n and application of the divergence theorem to its exterior yields 

ýpB n da, (9.93) div (ýpsB - ýoBa) dv -2 as. 2 Iß - 
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and hence 

a 
(H - B, ý -B-H, ) dv - -1 

j 
(ýpB, - ýo,, B,, ) -n da, (9.94) 2 13.2 13- 

where we have used Wý ýOa + ýp,, and B= Ba + B, in the surface integral. 

By combining this with previous integral over B' in (9.91) we find that the difference 

between Ericksen's and Brown's energies is 

II 
(gH -H- 2tt,, H - H,, +H-B,, -B-H,, ) dv 

13- 

(PaBa) -n da. (9.95) 
2 9Z3- 

The integral over B' vanishes since H= H(, + H, and, in B', B=p, H, B,, = p,, H,,, 

while the integral of W, B, -n over 49L3' vanishes by the arguments used earlier. Thus, the 

difference is the inessential constant 

VaBa -n da. (9.96) 
2 aL3. 

9.2.3 Formulation in terms of the scalar potential 

We now construct a variational principle that does not involve the magnetization or sep- 

arate applied and self fields, one that produces the mechanical equations of equilibrium 

and boundary conditions together with the appropriate magnetic field equations and con- 

tinuity conditions. In this subsection we construct such principle based on the magnetic 

field, while in Subsection 9.2.4 we work with the magnetic induction. 

Consider the magnetic field expressed in terms of the potential V (see Section 3.5), 

regarded as a function of x: 
H= -gradW. (9.97) 

Without loss of generality we can extend ýp continuously from B into B' so that (9.97) holds 

in both B and B'. Since curlH =0 the continuity condition (9.4), is then automatically 

satisfied. 
The potential ýp may also be treated as a function of X via the connection ýp(x) = 

W(X(X)) and, in view of (9.49)1, the Lagrangian version H, of H is then given by 

-Gradýo (9.98) 

inside the material. While there is no material outside B and hence no physical deforma- 

tion to enable Lagrangian quantities to be defined naturally, one can define a fictitious 
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deformation function that extends x= X(X) smoothly from B into its exterior, as was 
done by Toupin [109]. 

We now rewrite equation (9.78) in Lagrangian form using (9.62) form as 

Ejx, W} = Q* (F, Hj) dV -1 AO J(F -T Hj) - (F -T HI) dV - , ýB,, -n da, (9.99) 
JB 

r2 

fB 

0 

JOL300 

r 

where L3, ' is the exterior of B, U al3,. It is assumed that the boundary at infinity is fixed 

so that the latter integral need not be converted to Lagrangian form. 

In place of (9.65) we define the functional 

IlIx, ýoj = Ejx, ýpj - Ljxj. (9.100) 

Variations in x and W may be considered as independent, with the proviso that since 

ýo depends on x any variation in x induces a variation in W. We begin by considering the 

variation of E with respect to W at fixed x. A variation is denoted by a superposed dot. 

Then, 141 = -Gradýb and F-T][11 = -gradýb. The first variation of E with respect to 

is 

-T HI) - (F-TI41) dV - ýbB -nda, (9-101) =f -0ý2*-GradodV-f tt,, J(F a 
'9 I 

AO 

r OH, 130 Boo 
r 

In anticipation of equation (9.58)2 we write -Bi. Then for the term in the first 

integral of the right side of (9.101) we get 

-Bl - Al = Div (ýbBl) - ýbDiVBI = J[div(ýbB) - OdivB], (9.102) 

where we have written B= J-'FBI (in respect of B). Also for the term in the second 

integral of the right side of (9.101) we have 

-M,, J(F-THI) - (F -THI) = p,, JH - gradýb = J[div(ýbB) - ýbdivBj, (9.103) 

in which we have set B= tt,, H (in respect of 13'). As a result for (9.101) we obtain 

OBa - nda. (9.104) 
=f J[div(ýbB)-ýbdivB]dV+f J[div(OB)-odivB]dV- 

Bo 

JaBoo 

r 

Writing the first two integrals on the right side in the current configuration, using dv = 

JdV7 and after some rearrangements we have 

4=- ißuso 
ýbdivB dv + 

113 
div (ýbB) dv + 

1,50 
div (ýbB) dv - 

faL300 
ýbB, ý -n da. (9.105) 

On use of the divergence theorem applied separately to 5 and S' (second and third integral 

of the right side of (9.105)), considering that 05' = MUWO", and that the normal vector 
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n on OB is -n if seen as outward vector for B, the first variation can be rearranged in 

the form 

ýbdivB dv - ýbiB] -n da + ýb(B - B�) -n da. (9.106) 
, IIUSO 

faL3 1a13011 

1 The final term vanishes since B-B,, = B, decays as Tx--, 17 as Ix OC and 'ý, may be taken 

to decay like I. Thus, E is stationary with respect to yý if and only if TX7 

divB =0 in 13 U B'l JB] -n=0 on OB. (9.107) 

We turn next to the variation of E with x, which we denote by E,,. Since ,: ý depends 

on x, when the latter is varied so is ýp, and we denote the induced variation by ýýind- The 

corresponding variation in H, = -Gradýp is Hl = -Gradcýind and equations (9.102) and 

(9.103) again hold, but with ýb replaced by ýýind- It then follows from the results (9.107) 

that the terms involving the induced variation do not contribute to kx. 

Consider the variation of E. Rom (9.99) we have 

Ü dV - 
j(F-TH1) 

- (F-THI) + J(F-THI) - (F-THI) dV, (9-108) 
L 49F 3.2 8r 

where F= Grad5c. Bearing in mind (9.58), we set 

aQ* = Tj (9.109) 
aF 

then for the term in the first integral of the right side of (9.108) we have 

OQ* 
:P= tr (TP) = Div (Tic) - (Div T) - k. (9.110) 

OF 

Consider the results (see, for example, [78]) 

(9.111) i= Jtr(F-'Ü), (F-T) = -F -TüT F -T. 

Using (9.110) and (9.111) in (9.108), with HI = FT H we have 

kx=f Div(T5c)-(DivT). kdV- A,, Jtr(F-1t)H -H 
E 0 

-TPT H) dV. JH - (F 
I 

For the first integral on the right side of (9.112), by applying the divergence theorem 

to B,, we get 
(DivT). kdV+f (TTN). kdA. (9.113) 

a E3r 1913r 
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Using B=M,, H, which is valid in 81, the second integral in (9.112) can be expressed r 
as 

tr BOH- 
1 

(B-H)I PF-1 JdV'. (9.114) 
02 rII 

which in the current configuration, in terms of the Maxwell stress (9.25) (with superscripts 
' dropped) can be rewritten as 

JB 
tr (-rmPF- 1) dv. 

Using ý, = PF-1 (see, for example, [78]) (9.115) becomes 

[div (-r,, 5c) - (div -r,, ) - k] dv, (9.116) 

and an application of the divergence theorem to S' yields 

(div -r�, ) - Sc dv + (-r�, n) - ic da + (-r�, n) -x da, laso iaBoo 

and we note that 

(-r�, n) - ic da =-(, rn) - ic da. 

With (9.113), (9.117) and (9.118) for k. we obtain 

(DivT) - ic dV + (T T N) - ic dA - (div -r�, ) - ic dv 
a13,0 

(-r., n) - ic da + (-r�, n) -k da. 

From (9.66) consider the variation of L (which has been written in the reference con- 

figuration) 

p,, f . 5c dV + tA * 5c dA, (9.120) 
13, &3, 

where tA is the pull-back version of the mechanical traction t,,. 

Finally, from (9.100) using (9.119) and (9.120) we obtain 

üx = Jýx - 
Lx =: - (DivT + pJ) - ic dV - 

15,2 (div-r .. )-k dv 

+I (TTN-tA-tm). icdA+ (-rmn) - ic da, (9.121) 

igB, 
laBoo 

a 

TN and T,, = JF-1-r,,,. The final term in (9.121) can be taken to vanish where t Tm 

by assuming that 5c decays sufficiently rapidly as IxI --+ oo. 

We conclude that H is stationary with respect to x if and only if 

DivT+pof=O, inB,, TTN=t,. A+tm on4913r. (9.122) 
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and 

div-r, = 0, inBo. (9.123) 

The latter equation, however, follows from the definition B= gH and the equations (9.1) 

in B' 

In summary, H is stationary with respect to variations in x and ,; ý if and only if (9.107) 

and (9.122) hold. 

9.2.4 Variation in terms of the vector potential 

An alternative formulation is now considered based on equation (9-1)2 

divB = 0) 

a solution of which is given in terms of the vector potential A as (see Section 3.5) 

curl A. 

Recall the Lagrangian version of A (equation (3.78)): 

Al =FTA. 

Then it is easy to show that 

FCurlAl = JcurIA, 

and 
B, = CurlAl. 

(9.124) 

(9.125) 

(9.126) 

(9.127) 

(9.128) 

From Section 3.5 one can take A to be continuous across aB (see equation (3.87)), and 

hence Al is continuous across aB,. 

Proposition 9.6. The identity 

181300 

ýoB - nda =- 
181300 

(H x A) - nda (9.129) 

follows from (9.97) and (9.125). 

Proof. For the left side of (9.129) with (9.125) and the divergence theorem we have 

181300 
vB - nda = ýocurl A-n da, 

= div (ýpcurl A) dv, (9-130) 
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and from (9.97) we get 

laBOO 
ýpB - nda = 

fUUBO 

-H - curIA dv. (9.131) 

Consider the identity 

div(H x A) =: H- curIA -A- curlH. (9.132) 

But from (9.1), we have curIH = 0, therefore in (9.131) with the divergence theorein we 
get 

ýoB -n da = div (H x A) dv, 

(H x A) - nda. (9.133) 
a9,5 - 

D 

Consider the expression for the energy (9.77). Using (9-61) and (9.129), it can be 

rewritten as (in this subsection we use the notation E*) 

E* {x, Aý 9(F, Bi) dV + B. Bdv- (H� x A) -n da, 
1L3, la 

L3 C, 0 

with Bi = CurlAl. 

Let's define the functional H* Ix, AI as 

Wfx, Al = E* f x, Al - L{x}, 

where Ljxj has been defined in (9.66). 

(9.134) 

(9.135) 

Consider the first variation of E* in A for fixed x, which we denote kj. Noting that 

1ý1 = Curlkl, where kl = FT. &, we have 

El = 
OQ 

. Curl. A-l dV + YO 1B- curlk dv - (H,,, x jý) -n da. (9.136) 
fl3r 

5-Bi 
JBO JaBOO 

Let's write Hi in B,, and using the identity (9.132), with B=p,, H in B', for El 

in (9.136) we obtain 

Div(Hlxkl)+, ii-CurlHldV+ div (H x curl H dv 

(H. xn da. (9.137) 
aBoo 

Using the divergence theorem we get 

k;, 
= 

fB, 
ki - CurlH, dV + 

IaB, (HI x ýkj) -N dA + 
fB 

0k- 
curl H dv 

+1 (Hx, &). nda- (Ha xn da. (9.138) 
aBo 

I-9BOC 

a 
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But OBO = aB U OBOO therefore 

ki = 
f5, ýi - CurlHi dV + 

J85, 
(N x Hi) -, ki dA + 

fB 

0 
ji - curIH dt, 

-1 (nxH). Äda+ [n x (H - H�)] -Ä da, (9.139) 
a13 

1a131- 

49 

where in the fourth integral of the right side H is evaluated from outside the body. 

We have the identity based in Nanson's formula 

(Hl x Äl)-NdA= (H x Ä). n da. (9.140) 

Proof. If we work with Cartesian coordinates, the expression (HI x Al) -N dA becomes 

EijkH,, Aij Nk dA, (9.141) 

where 6ijk is the permutation symbol. 

From (9.49)1, (9.126) and Nanson's formula we have 

Hi = FTH, Ä= FTÄ, N dA = J-'F Tn da, 

and so (9.141) becomes 

'EijkFmiHmFnjÄnJ-lFpknp da. (9.142) 

Consider the identity (78] J'Emnp EijkFmiFnjFpk) so that (9.142) becomes 

EmnpHmAnnp da, (9.143) 

which is equivalent to 
(H x Ä) 

-n da. (9.144) 

0 

With (9.127) and (9.140) in (9.139) for the variation of E* we have 

ki 
= 

JBUBO k- curlH dv - 
fa 

B 
(n x [HI) -. 

A, da + 
faB110 

[n x (H - H. )] ., 
k da. (9.145) 

16 The final term vanishes since H- Ha = H, behaves like T. 7 at infinity and A, = AL, can 

be assumed to decay as 1, where we have set B, = curl A, TX7 
Therefore, from (9.135) and (9-145), 11* Ix, A} is stationary with respect to A if only 

if 

curlH =0 in BU S', nx JHJ =0 on W. (9.146) 

'Remember that A. is not affected by the variation. 
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The variation of E* with respect to x follows a similar pattern to that in respect uf E 

(Subsection 9.2.3) and leads to 

ftX* = kx* - LX = kx - LX. (9.147) 

exactly as given in (9.121). The variation in A induced by that in x, just as for,,: preN-iously 

does not contribute to ft. *. Thus II* is stationary with respect to x if and only if equations 
(9.122) hold. 

9.3 A variational formulation for a boundary value problem 

with mixed boundary conditions 

There are several unresolved questions relating to the application of mixed bowidary con- 

ditions where both mechanical and electromagnetic quantities axe prescribed. For example, 

the appropriate boundary conditions for a body in direct contact with another body are 

unclear in this context. In [7] results for the uniaxial tension problem were obtained by at- 

taching the material specimen directly to the traction device. Other experiments involving 

interaction between mechanical and magnetic or electric effects in elastomers are described 

in [59,621 and [44], while some specific applications are discussed in [48] and [44]. The 

incorporation of the 'Maxwell stresses' exterior to the deforming body in the boundary 

conditions is also problematic [89]. 

In the previous section (see also [17]) a variational formulation for a body completely 

surrounded by free space was developed (see Figure 9.1); the magnetic field is applied 

fax away, and a surface mechanical traction (dead load) is applied on a portion of the 

boundary of B. In Section 9.2 there is no discussion of how a mechanical surface traction 

or a restriction on the displacement might be applied. In this section we therefore explore 

the possibility of extending the aforementioned results for the following problem. This 

section is based on the results presented in [16). 

Consider Figure 9.2, which shows a body B with part of its boundary bonded to a 

semi-infinite rigid body i3-. 

The body ý may displace and rotate. Exterior to these bodies is free space B. The 

surface of B is divided in two disjoint and complementary parts, 013= alp U &33 , where 

M' adjoins the free space and WO is in contact with the surface of 8. The body 1ý and 

the free space B' axe separated by the surface S. The boundaries of B' and 1ý far away 
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................ 
..................... 

al3c' 

Figure 9.2: A mixed boundary value problem. 
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are denoted by OB" and 0&'0, respectively. The normal vectors on the boundaries of B, 
B and B' are denoted n, fi and n', respectively, directed outwards from the region in each 
case; note that, for example, on OBI we have -n' = n, and on S we have -fi = n'. 

The body B is magnetoelastic. We work here with the magnetic field as the independent 

magnetic variable [33,34] (see Subsection 9.2.3), and so the free energy function for 5 
depends on the deformation gradient and the magnetic field (9.62). We assume that the 
(rigid) body, ý is magnetizable, and that the energy function depends only on the magnetic 
field H. 

For the boundary conditions on W we prescribe a displacement on 49B, 3 (the rigid 

displacement of B), and we denote its position vector by ic, while the boundary 05"' is 

taken to be free of mechanical traction. We also apply an external magnetic induction fax 

away on OB' and/or aC3' 

It is possible to show that the above model may be used to describe very well some real 

experiments, such as the uniaxial tension of a bar [7] and the shear of a slab [59] when both 

the magnetic interactions in the body and the surrounding free space are accounted for, 

and, importantly, the interaction with some external 'machine' that generates the applied 

magnetic induction or magnetic field is incorporated. 

Consider the expression 

pT dv + 
fl3Uf3 

B. Hdv- 1 
MI M-H,, dv (9.148) 

13UI3- 22 IBU6 

for the energy of the bodies B and 1§, where p is the mass density and T the energy per 

unit mass. This is a modification of the energy (9.72) [17] and is based on the classical 

aBoo ------------- ................ 



CHAPTER 9. VARIATIONAL FORMULATIONS 270 

formulation of Brown [13]. In the latter formulation the fields H and B are each decom- 

posed as the sum of an 'applied' field in the absence of material and an additional -self* 
field generated by the presence of the magnetic material body (9.63). (9.64) (Section 9.2). 

The energy function appeaxing (9.148) is defined as 

(9.149) 
x 

where V)* = 0* (F, H) (see (9.39)2 and (9.62)), and 
The first term of the right side of (9.148) can be decomposed as 

pV)* dv + (9.150) 
B Lj ýý* dv, 

p and ý being the mass densities associated with B and ý3, respectively. For the second 

integral in (9.148), on use of (9.97), (9-1)2 and the divergence theorem, we obtain [171 

-Ij ýpB - nda- 
1 J_ 

ýpB-fida. 2 '9913,11US 2 '99L3- 

The first integral in the above expression can be replaced by 

-11-Lof H-Hdv-lf ýpB-n'da, (9.152) 
L 2 2 5- 6913- 

where again we have used the divergence theorem and the relation (9.3) appropriate for 

the free space B'. 

The third integral in (9.148), on use of (9.2) and the fact that B,, = poH,, for the 

whole space BU 13, can be rewritten as 

r 
B-H,, dv+-lf H-B,, dv. 

2 BUIj 
(9.153) 

Following a similar procedure as for the second integral in (9.148), on use of the diver- 

gence theorem, and with reference to Figure 9.2, the first term in the above equation can 

be written as 

VaB. fida, (9.154) B-n da + -1 2 &xus 2 9, ü. 

and the first term in (9.154) is equivalent to 

go H- H� dv +2B- Wda. (9.155) 
2 e. 

1 la 

The second integral in (9.153) is easily shown to be equal to 

-12 
oc 

ýo 
Ba 

- fi da. (9.156) 
2 Ao Ha -H dv -, VB� - Wda - 

1,60 
2 
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Using (9.154), (9.155) and (9.156) in (9-153), and (9.152) in (9.151). and then combin- 
ing these results in (9.148) we can express P as 

f 

PO* dv + dv -1 110 H-Hdv 
13 

JL3- 

2 

Jj3o 

(ýp, B+ ýp B,, ) - n' da, 2 '99,6-UaB- 

where, for brevity, we have written fi = n' on OLý'. The latter integral in (9.157) can be 

decomposed as 

,9a- 
ýp, B,, - nda -1f- ýPa Ba - n'da - -1 

f 
ýp, B, - n'da. (9.158) 2 9B-UaI3- 2 913-UaB- 

The second integral in (9.158) is not affected by any variation [17] (see (9.76) and (9.78)). 

so we can omit it from our formulation. In the third integral in (9.158), as in Section 
1 9.2, we assume that ýo, - T. 7 as IxI --+ oc. For OB' it follows that IB, l and the Tx7 

associated integral vanishes. We assume that the behaviour of B, is such that the integral 

over 08' also vanishes. For the first integral in (9.158) we can replace , ý, by ,ý (since the 
difference is a constant). Hence, equation (9.157) can be written 

po*dv+Ibý*dv--liiol H-Hdv 
AE i3 2 130 

ýp B� - Wda - ýo Ba - ii da. (9.159) - 
faß- iaBoo 

For the mechanical boundary conditions we have x=ý: on OB, 3. Also, we have X= 

on WO (and on S). On OB' there is no mechanical load or restriction on the displacement. 

We assume, as in Section 9.2, that the mechanical body force f is conservative and equal to 

- grad U, where U is the associated potential. Then, since there is no prescribed mechanical 

traction on W' and x is prescribed on W, 3, the work L of the mechanical loading (9.66) 

is simply 
L pU dv. (9.160) 

We define the functional = as 

'zjx, ýpj = E{x, ýo} - L{x}. (9.161) 

9.3.1 Variation in the magnetic potential 

nal E with respect to the vaxiation in ýo. From Let denote the variation of the functio 

(9.159), (9.161) and (9.97) we have 

00* 
p 

N* 
- grad(ý dv + po H- grad, ý dv P OH - gradýb dv - 

1130 

- 
f8BI10 

ýbB,, - n'da - 
J8800 

,ýB,, - fi da. (9-162) 
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FoHowing Bustamante et al. [17] (see equation (9.44)2) we consider the connection 
ao- MO* - -% =B in B, and we also write --jM =B in B. Then, by using equation (9-02. 

the divergence theorem, and the decomposition of the boundary OB. the first integral in 

(9.162) is seen to be equivalent to 

ýbB -n da+ ýbB. nda- ýbdivBdi,. (9.163) 
1,913a laIV 113 

Similar expressions can be found for the second and third integrals in (9.162), but for 

brevity we do not include them here. Taking account of the decompositions o9lý = aB, 3 U 

SU o9, ý' and aB' = aB' USU aB' (see Figure 9.2), and remembering the rule for the 

sign of the normal vectors, we can show that (9.162) can be written as 

4- 
ýb divB dv + ýb ýBý -n da+ ýbýBý. nda+ ýb[Bý-n-da 

, OUI3U13- 

1,91301 faL3ß is 

+I ýbB,. n'da+ ýb B, - ii da. (9.164) 
a , 913- 

laß- 

In the above expression the last two integrals vanish when jxj -+ oc. It follows that E is 

stationary with respect to ýp if and only if 

divB=O in SU8UB' (9.165) 

and 
JBI -n=0 on OW, (9.166) 

JBI -n=0 on 963, (9.167) 

ýBj-fi=O on S. (9.168) 

9.3.2 Variation with x 

From Subsection 9.1.3 we have the foHowing connection between the function V)* and the 

complementary form of the energy function Q* [33,34] (equation (9.62)): 

(F, HI) = p, 0* (F, H). (9.169) 

Let us rewrite some of the integrals in (9.159) with respect to the reference configuration: 

W dV + ýý'dv -1 go J (F -T HI) - (F -T Hi) dV 
r 

2 130 

113 

rr 

VB.. n'da-1 VB. -fida. (9.170) 
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We did not have to modify the expression for the second, fourth or fifth integrals because 

the body B is rigid and OB' and OB' are assumed fixed. In Br' the deformation gradient 
is 'fictitious' in the sense that it is obtained arbitrarily from a smooth extension of the 
deformation x= X(X) in B, to BO. 

Next, we calculate the variation of P with respect to x, which we denote by 

For this purpose, we use the connection (9.58), an* =T where T is the total nominal TFF 

stress, and recall that is a function of H only. We also use the definition (9.25) 

-rm =B (9 H- ! (B - H)l of the Maxwell stress (see, for example, Kovetz [64]). and 2 

following a procedure similar to that used in [17] (see Subsection 9.2.3), the variation of 
P with respect to x can be written 

-L 

E, tr (TÜ) dV + div (-r .. ic) dv - (div -r, ) - ic dv. 
0 z3 z3 

113 

On using the divergence theorem in the above expression, making some rearraiigeniciits, 

referring to (9.160), and noting that 5c =0 on S and OB, 3, we obtain 

l: " TN- t�, ) - ic dA (DivT + pj) - Sc dV - (divT .. ic dv + (T 
130 13 

ir. 1,9Br 

-r, n' - ic da, (9.172) 
a1300 

TN and T JF-1-r,,,. where p,, = pJ is the density in Br, t, = Tm 

In the above equation we can assume that the fourth integral vanishes for jxj , oo. 

As a result - is stationary with respect to x if and only if 

DivT + p, f =0 in B, (9.173) 

TTN=t,, on OB, ' (9.174) 

and 
div-r,, == 0 in B'. (9.175) 

Note that this last equation holds for free space if the field equations (9.1) are satisfied. 

To summarize, the functional"E is stationary with respect to both ýp and x if and only 

if equations (9.165)-(9.168), (9.173) and (9.174) hold. 



Chapter 10 

Conclusions 

The final aim of the research on the mathematical modelling of NIS and ES elastomers 
is to predict the behaviour of these materials, and so to help in the development of iiew 

applications where smart materials are required. There are two important steps in order 
to achieve this; one is to propose simple and realistic forms for the constitutive equations, 

and the other is to set up a numerical method to solve the boundary value problem (due to 

the highly non-linear nature of the problem, analytical methods of solution have a limited 

applicability). Several steps towards the above two objectives have been achieved in this 

thesis. 

To propose simple and realistic forms for the constitutive equations is a very important 

part of our future research. Unfortunately, as stated in the Introduction, currently there 

is very little experimental data for the mechanical behaviour, especially for ES elastomers. 

The complexity of the problem, where we have to work with energy functions that may 

depends on five, six or even ten invariants (see, for example, (4.12) and (5.11)), implies 

that we have to propose at some moment simplified forms for these constitutive equations 

(see, for example, Section 5.3). It is necessary to have a criterion in order to know from 

experiments whether such simplifications axe realistic, and this criterion is provided by 

the universal relations. For MS and ES materials universal relations are shown in Sections 

4.1 and 7.1. In the case of MS materials, the results shown in this thesis correspond to 

an extension of the results shown in [18] and [371. We found universal relations for some 

simplified cases of the constitutive equation, and these results will be important in the 

future when more forms for the constitutive equation are proposed. 

As mentioned in the introduction, and also at the beginning of Chapter 5. it seems 

that most of the experimental data available [7,50,59) ha%, e been obtained actually for a 

274 
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particular class of materials, which we have described as transverselý- isotropic magneto- 

and electro-active elastomers (Chapters 5 and 8). Experimental data for the uniform 

extension of a cylinder [7] suggest that, for example, the magnetostriction effect is much 

stronger for these materials than for the isotropic ones. 
In this thesis we have provided the basic forms of the constitutive equations for trans- 

versely isotropic MS and ES elastomers, based on the theory developed by Dorfmann and 
Ogden [32-34]. For transversely isotropic MS elastomers a preliminary form for the energy 
function was proposed (5.245), and several simple boundary value problems were solved 
(Sections 5.2 and 5.5). The idea of solving some simple boundary value problems sucli 

as the shear of a slab, was to use these results in order to propose a form for the energy 
function, and then to use this function to obtain solutions for some non-homogeneou-s 
deformations. The procedure presented in Chapter 5, can be seen as a prototype method 

to handle the search of constitutive equations for transversely isotropic MS and ES elas- 

tomers, when more experimental data becomes available. 

Regarding the second main objective stated at the beginning of these conclusions, the 

developing of numerical methods, in this thesis we have obtained important results towards 

the implementation of the finite element method. 

In Sections 4.2 and 7.2 we obtained some numerical results for a tube under extension 

and inflation, and a cylinder under uniform extension, where an external uniform axial 

magnetic and electric field was applied respectively. These results showed that the bound- 

ary conditions (2.104) and (2.105) imply sometimes a rapid change in the form of the 

fields near the boundary of a body of 'finite size'. The method used in order to solve these 

problems was the finite difference method, which is limited regarding the kind of problems 

we can solve. This was one of the reasons we explores the possibility of obtaining a simple 

variational formulation, as a first step in order to develop a finite element formulation for 

the problem. Another reason was the doubts regarding the use of the Maxwell stresses [891, 

which appeared when we looked for a form for the energy function from the experimental 

data for the uniform tension of a bax [7]. It was not clear if it was necessary or not to 

include the Maxwell stresses [641 as external load. 

In order to answer these questions, and to develop a numerical method we proposed 

simple variational formulations for MS elastomers (see Chapter 9). In particular the 

simple forms for the total energy of the system (9.79) and (9.80) are considered as the 

most important contribution of this thesis, together with the extension of the variational 
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formulation presented in Section 9.3, where we studied the problem of the interaction of a 
NIS elastomer with a rigid semi-infinite body, which would represent some sort of external 
'machine' such as the traction and shear devices used in [7] and [59]. 

Regarding future projects, there are several possibilities. First, as was mentioned 

already, with the variational formulation and the energy function proposed in (5.245) we 

can solve some boundary value problems using the finite element method. This would be 

very important step on the modelling of these materials. 
There are many other things that can be done with the variational formulation. In [41 

Barham et al. mentioned regarding their variational formulation, that if the functional 

is constructed based on the magnetic field or the magnetic induction as the magnetic 

independent variable, then the stationary point for the functional is not a minimum but 

a saddle point. It would be very interesting then to study this issue for our formulation: 

in order to do so we would need to work with the second variation. 

Once the above questions are answered, a natural but very difficult next step would be 

to extend the analysis developed by Ball [2], in order to look for conditions on the energy 

function such that we would avoid solutions of the boundaxy value problem with disconti- 

nuities. With the variational formulation we can attempt to answer several questions such 

as existence of solution, and conditions in order to have either a 'stable' or an 'unstable' 

solution. From Ball's analysis [2] several concepts appear, such as quasi-convexity, and 

poly-convexity, which we would need to extend for our problem, where we have non-linear 

elastic deformations and magnetic fields (see [611). 

Of course the variational formulation presented in Chapter 9 can be used in order to 

find a similar formulation for ES elastomers. This is being done by the author, and it will 

appeax in a future publication [14]. 

Regaxding ES elastomers, there are a couple of boundary conditions we did not consider 

in this thesis. One of them would be to assume the scalax electric potential given for a 

portion of the surface of a body [122], or a distribution of surface charge [1191. The 

variational formulation of Yang and Batra [122], and Vu et al. [1191 did not consider the 

exterior free space, and so we would need to modify their formulation accordingly with 

the method presented in Chapter 9 and [14], in order to include the free space for their 

formulations. Another important future topic of reseaxch would be to propose restrictions 

(inequalities) of the energy function, in order to have solutions of the boundary value 

problem with physical meaning. The idea would be to explore in detail the theory for the 
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pure elastic case [1121, and to extend it to the magneto- and electro-elastic c&-, e-,;. 
The formulation of Dorfmann and Ogden (see, for example, [32-34]), which has beeii 

the basis of the results presented in this thesis, is based in the important assumption 
of 'small' magneto- and electro-active particles. Kari and Blom [62] and Armstrong [1] 

studied the case of 'large' particles. In the case of Kari and Blom, they showed that to 

work with comparatively 'larger' irregular shaped particles (random distribution) produces 

a magnetostriction effect as strong as for a transversely isotropic NIS elastomer with'small' 

particles. An interesting study would be to add to our model some 'microscopic* paranieter, 

which would take account for the effect of the 'shape' of the particles, in the case we would 

assume not to work with perfectly spherical particles. 
As well as this, we assumed that neither for the magnetization nor the polarization 

there was 'hysteresis', however, real materials do show some residual magnetization or 

polarization, and so it would be necessary at some moment to take account of t1lis plie- 

nomenon in our models. As what happens with plastic deformations, we would probably 

need to work with an 'implicit' constitutive equation to take account the phenomenon 

properly. 

Another very important but difficult future line of research would be to extend the 
formulation of Dorfmann and Ogden [32-34] to the dynamic case. The application men- 

tioned in this thesis, for example, the paper by Farshad and Le Roux [44], involve the use 

of MS and ES elastomers for vibration and noise reduction, which axe phenomena where 

it is clear the time dependence is important. 

A full analysis of the dynamic problem would in general imply the coupling of elee- 

tric and magnetic fields (see Subsection 2.2.2), which as happened with the analysis for 

transversely isotropic MS and ES elastomers, would mean most probably very complex 

mathematical expressions. 



Appendix A 

Cylindrical and spherical 

coordinate systems 

In this appendix we show some expressions such its the gnidient and Ili(, divei'gciwe ()I)- 

erators, applied to a scalar function, a vector field and a tensor field, iii cyliiidric(d aiid 

spherical coordinates. As well as this, some examples of tli(, cidciiLil i0ii of the gn-adieiit (d' 
deformation are shown, for the c(ise where either the current and/or t1w i-ekýiviice c()iiFi-- 

urations are given in cYlindrical or spherical coordinates. We do iiOt show Ilie fiill jn()()1'. S 

of the following expressions, which may be found, for example, in ý7,8'. 113 [10(), ). I (Sec (11"() 

A. I Cylindrical coordinates 

Consider the cYlindrical coordinate s. vstern (r, 0, ýý), where t lic unit lmsiis vectors are c, , e, 

and ez respectively. Consider a scýihir field 4), and the vector tWid A-A, e,. t Aý c: 

Nve have the following results: 

V -ýD = e, + eo + e-, ar 1,00 a-- - 
V, -A= 

(9 ++ 00 09- 
VA 

10.4 0-4() 
+ 

OAr (1- 
00 0-- 

)( 

(9-- 
V2(D 

02,1) 10, J) 1 02 ýD ý)2,1) 
+r Fr + 

Ir 2 (ýo 2+2 rar Oý 

('v 1) 

eo 110) -)e, 

(A. 4) 

In the ahove the ojwratýý, - nabla V lias been defined in ternis t' the co()i-dinat, 

sYstoill (r. 01 Z). 
Consider the Cauchy stress tensor o, with physical component- in the -vIindricýil co()i-- 

2 7S 
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dinate system 
0'rr O'rO Orz 

O'Or 0'00 O'Oz (A. 5) 

O'zr O'zO O'zz 

then the Cauchy-Euler first law of equilibrium is given in component form as (witli no 
time dependence) 

OUrr 1 190'Or 490'zr 1 
ä7r- + -r 0-0 + 

9z 
(O'rr - UOO) + Pfr = 0, (A. 6) + 

aor, 0 1 d9U00 
4 aolzo 

r 
2 

+ -r d90 
+ gz uo + Pfo = 0. (A. 7) + 

r Oor, 1 aoroz aorzz 1 

är- r 
+- -jo-- r0 

+ -äz Z 
+- urz + Pfz 

r 
(A. 8) 

where f= fe, + foeo + fe, is the body force in cylindrical coordinates. 

A. 2 Spherical coordinates 

In the case of spherical coordinates system (r, 0,0), where the unit basis vectors are e, 

eo and eo, we have 

04) 
e, + 

104) 
eo + 

1 O(D 
eo, (A. 9) 

Or r 00 r sin 0 490 

V-A =1a - - (r 2 Ar) + 
1a (Ao sin 0) + 

1 OA0 (A. 10) ý 2 Or r sin 0 00 r sin 0 00 

VxA (Ao 7 - sin 0) - 
ýA-o ) 

er + 
( 1 OAr 10 (rAo) - eo 

sin 0 0ý ao ror, rsinO 00 

+1 
( a (rAo) - 

aAr 
eo, 

) (A. 11) 
r Or ao 

V2, CD 
a 

r21941) + 
(- a 

sin 0 
adi 

- + (A. 12) 72 ý7r Fr TO 72 
sin 0 50 r2 sin 20a, 02 

where A=A, e, + Aoeo + AOeo. 

Consider the Cauchy stress tensor o, with physical components 

0'rr 0'rO 0'ro 

O'Or 0'00 0'046 (A. 13) 

Olor 01-00 01-0.0 

then the Cauchy-Euler first law of equilibrium is 

00'rr - 1 agrO + 1 + OOrrO 1 +- (2arr - 0'00 - Or,, O + UrO Cot 0) + Pfr = 0, (A. 14) 
ýi r r r sin 0 00 r 

(9aro 1 aaOO 
+- 

1 
+ 

OUOO 
- - 

1 
(30'rO + (0'00 - UOO) Cot 0) + PfO --- : 0, (A. 15) + 

r 00 r sin 0 5 0 r 
190'ro 1190,00 

-- - + 
1 

+ 
1 (3UrO + 2oo, 6 cot 0) + pfo = 0. (A. 16) + 

Or 50 r r sin 0 r 
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A. 3 Some examples for the deformation gradient in curvi- 

linear coordinates 

In this section we show some examples of how to calculate the deformation gradient for 

different situations involving cylindrical, spherical and Cartesian coordinates '78',. 
ýI 

* Current configuration in cylindrical coordinates and reference configura- 

tion in Cartesian coordinates. 

In this case we have x= rer + Oeo + zez and X= XlEl + X2E2 + X3E3, NN-here 
fEil is the system of unit basis vectors in the Cartesian coordinate system for the 

reference configuration. 

We have 

r= r(Xi), 0= O(Xi), z= z(Xi) i=1,2.3 (A. 17) 

Then from the definition F= Gradx, where in this case the gradient operator is 

given as 

Grad =:: Ei d9 + E2 d9 + E3 
0 

axi 0X2 49X3 
(A. 18) 

We have that [78] 

Or Or Or CI) 0 00 
F= äx- , 

er 0 Ei + 0X2 er (& E2 + -äX3 er (9 E3 +r Oxi eo o Ei + rjX--2 eo 0 E2 

490 az 49z Oz 
+rj---eo 0 E3 + e., (9 Ei +- ez 0 E2 + ez o E3- (A. 19) 

x3 öz äX-2 
49X3 

e Current configuration in Cartesian coordinates and reference configura- 

tion in cylindrical coordinates. 

In this case we have x= x1e, + X2e2 + X3e3 and X= RER + E)Ee + ZEz, where 

xi=xi(R, (), Z), i=1,2,3 (A. 20) 

and JER, Ee, Ez} is the system of unit basis vectors in cylindrical coordinates for 

the reference configuration. 

The gradient operator Grad is defined as 
010 09 Grad = ER äR- + -fi Ee 

09 + Ez u-z - 
(A. 21) 

Then for the deformation gradient we have 

== 
axj 1 '9ý-1-ei 0 Eg + d'xl ei 0 Ez + 

2X 2 
e2 0 ER +1 

0X2 
e2 '; ' Eg 

F OR ei (DER+ R OE) 
az OR 

Ar- 
R -ä-E) 

OX2 
_ 

Uaý3 
e3(&Ee+""""'3e3(&Ez. (A. 22) 

e2 (9 Ez + 
ý-13 

e3 (& ER + 
5z OR R OE) Oz 
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9 Current and reference configurations in cylindrical coordinates. 

In this case we have x= rer + Oeo + zez and as before X= RER - E)Eq - ZEz. 

where 

r (R, E), Z), 0=0 (R, E) I Z), z=z (R. E), Z), (A. 23) 

then 

Or 1 o9r Or 190 r 00 F= äR er 0 ER + ä-. e. (9 Eg + er 0 Ez + r-eo 0 ER + --eo 0 Eg R az OR R 08 

+r 
00 

eo (D Ez + 
Oz 

ez 0 ER +1 
Oz 

e, 0 EE) + C9 2 
e. 0 Ez. (A. 24) 

99z äR- R ä0- ä-z 

9 Current and reference configurations in spherical coordinates 

This is the only case we treat for spherical coordinates. Here we have x= i-e, and 
RER 

, where le, eo, eo I and JER, Ee, Kj, I are the systems of unit basis vectors 

in the current and reference configurations respectively. 

For this case the gradient operator in the reference configuration Grad is given as 

Grad = ER 
a+1 

Eg 
010 (A. 25) 

OR R 

Then for the deformation gradient we have 

F= 
Or 

er (9 ER +1 o9r er (& Ee +1 
Or 

er o E4,. (A. 26) 
OR R 5E-) R sin E) 5; ý 



Appendix B 

Note on the invariants for MS 

elastomers 

Let us recall the form of the iiivýiriýints for a transversel. v i,,, ()ti, ()pic NIS 1-,, i Hie 

case the magnetic induction is the independent magnetic výirlable. The t(, ii iiivariaiits Nvei, (, 

11 = trc. T) -1 [(t,, C)2 - tr C2 det c. 2 
ll=BI. Bl, 15=Bl. cBl, It; =Bl. c 2 Bi, B. 2) 

17 = ao - cao, 18 =- a() -c2 ao .Iý. 
3) 

19 = ao - Bi, lio = ao - cBl- (B. -o 

For a function Q= Q(F, BI, ao). which depends on one and t w, field, 

the theory presented by Zheng [1271 includes an extnt invariant, defines ýu, ý 

11, = ao -c2 B1. (B. T)) 

We prove here that 11, in fact depends on the i-(,., t of the iin-arlawý, (B. 1)-(B-2). (', m- 

sider the G'ýivIev-11ainiltoil theorem 

G3 (I).,, 
_ IG 1G2+ 

12GG 
- 1., Cýl = 

where 

Ilc' =t 
(B. 7 

1) 

[(ii, G 2) 
- trG 2], 

13c' det G ti-G 
3 (ti-G )3. 

-trGtrG- 3 1) 

2S 2 
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Let's replace G by c +AA. Rom (B 
-6) we have 

(c +XA)3 - Ilo(c +AA)2 + I2G(c +AA) - I, 3GI = 0, 

and from (B. 7)-(B. 9) 

IG - Je + ÄIA 1-1- 13 (B. 11) 
J20 = J2, +\2 J2A + AltrctrA - tr(cA)l, (B. 12) 

IG = Je + A3JA 333+A, (B. 13) 

where 

tr c, c=11 (tr C)2 - tr C2 1, c=I trc 3-l trctrc 2+I (tr C)3, (B. 14) 12 
2 

13 
326 

,A trA, A f(trA)2 21, JA tr A3 tr Atr A2 + (trA)3, (B. 15) 12 - trA 3 2326 

and 

A (C2 +A 
A2 

2) +A C2) + 
\2 \2 

2C) tr A) tr (cAc) + tr (cA tr (A tr (AcA) +- tr (A 333323 

- Atr ctr (cA) -A2 trctrA2 _ 
'\ tr Atr C2 _ A2 tr Atr (cA) +A (tr C)2 trA 222 

A2 
trc(trA )2, (B. 16) 2 

as well as this 

tr (C2 A) = tr (cAc) = tr (AC2), tr (cA 2) 
= tr (AcA) = tr (A 2C). (B. 17) 

Also 

(C + AA)2 = C2 + AcA + AAc +\2A2, (B. 18) 

(c + AA)3 = C3 + AC2 A+ AcAc +\2 cA 
2+ AAC2 + \2 AcA +\2A 2C + \2A3. (B. 19) 

From (B. 1l)-(B. 19) after some manipulations we obtain for (B. 10) 

c3_ JcC2 + 2cC _ I3cl + \3 (A 3_ JA A2+ I2A A- I3A 1) + \p(l) + \2p(2) = 0, (B. 20) 
11 

where the tensors P(l) and p(2) are defined as 

p(l) = C2A + cAc + AC2 _ (trc)cA - (trc)Ac - (trA)c 2+ [(tr C)2 - tr C21A 
2 

[tr ctr A- tr (cA)] c- 
[tr (C2 A) - tr ctr (cA) -1 tr Atr c2+1 (tr C)2 trA 1. (B. 21) 

221 
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and 

p(2) =A 
2C + AcA + cA 

2_ (trA)Ac - (trA)cA - (trC)A2 +1 '(trA)2 - trA'lc 
2) 121 

2- 
)2 + [tr Atr c- tr (Ac) jc- 

[tr 
(cA - tr Atr (cA) -2 trctrA +2 (trA trc] 1. (B. 22) 

Rom the Cayley-Hamilton theorem we have that 

3_ IcC2 + JcC 
_ jr-I =3_ JA 2 c1230, AA+ I2AA 

- Ii4l = 0, (B. 23) 

therefore from (B. 20) we get 

Ap(l) + A2p(2) = 0. (B. 24) 

It is possible to prove that trPM == 0 and that trp(2) =:: 
Let's multiply (B-24) by c and take the trace, we have 

Atr (cP(l)) + A2 tr (Cp (2)) = 0, (B. 25) 

which must hold for any A, and as a result is equivalent to 

tr (cP (1) =0 and tr (Cp (2)) = 0. (B. 26) 

We prove now that the equation tr(cP(l) =0 is satisfied trivially. Rom the definition 

(B. 21) we have 

tr( I cP(l)) -- 3tr (C3 A) - 2trctr (C2 A) - trAtrC3 +1 [(trC)2 - trC2jtr(Ac) 
2 

+[trctrA - tr(cA)]trc 2 tr (C2 A) - tr ctr (cA) -1 tr Atr c2 2 
1 

(tr C)2 trA trc. (B. 27) 21 

Let's use again the Cayley-Hamilton theorem in order to obtain the expression c-3 = 
Il' c2_ IcC + jcj; then for (B. 27) we have 23 

tr (cP =3 [Iltr (C2 A) - I2tr(cA) + I3tr A] - 2trctr (C2 A) - trA[I, tr C2 

-I2'trc + 313] +1 [(tr C)2 - tr C2j tr(Ac) + [trctrA - tr(cA)]tr C2 
2 

- 

[tr 
(C2 A) - tr ctr (cA) - tr Atr C2 + (tr C)2 trA trc. (B. 28) 

221 

Using the definition for Il and 12' from (B. 14)1, (B. 14)2, it is easy to show from above that 

tr(cP(1)) =0 is satisfied trivially. As a result, from (B. 26) the only equation left is 

tr (Cp(2» = 0. (B. 29) 
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From the definition (B. 22) the above equation is equivalent to 

tr (ep (2» 
= tr (C2A2) + tr (cAcA) + tr (cA 2C) 

- tr Atr (C2 A) - tr Atr (cAc) 

- tr ctr (cA2) +1 (tr A) 2 tr C2 _1 trA 2 tr C2 + trctrAtr (cA) - (tr (cA) )2 22 

- 
[tr 

(cA 2) 
- tr Atr (cA) -1 tr ctr A2+1 (tr A )2 trc trc = 0. (B. 30) 21 

We have that tr (C2 A 2) 
= tr (cA 2C) 

. After some manipulations (B. 30) becomes 

2tr (C2 A 2) + tr (cAcA) - 2tr Atr (C2 A) - 2tr ctr (cA 2) 
_ (tr A )2 

1 
[(tr C)2 _ trC2ji 

2 
+trA 21 [(tr C)2 - tr C2] + 2tr Atr ctr (cA) - (tr (CA»'2 - (). 

2 

Let's assume the following form for the tensor A. 

A=1 (ao (9 Bi + BI 0 ao). (B. 32) 
2 

From the theory for transversely- isotropic magneto-sensitive elastomers, we identify tlie 

invariants (B. 1) 1,1, =- tr c and (B. 1) 2 12 =1[ (tr C)2 - tr C2] . For the rest of the expressions 2 

that appear in (B. 31) we have (remember that in this case c is symmetric) 

trA = aoiBli = ao - Bi =- Ig, (B. 33) 

tr (cA) =I (cij aoj Bi, + cij Bij aoi) = ao - (cBl) = Ilo, (B. 34) 
2 

tr (C2 A) = ao - (C2 Bl) (B. 35) 

trA 21 (ao - Bl)tr 
1 

(ao 0 BI + Bi (9 ao)] + 
1B Iý tr (ao (9 ao) 

2[24 

+1 tr (BI 0 BI) = 
l(I92 

+14), (B. 36) 
42 

where we have used (B-2)1 tr(Bi (9 BI) = IB112 = 14, and tr(ao (9 ao) = lao 12 = 1. 

As well as this, from the relations (B. 3), tr (cao (9 ao) = ao - (cao) =- 17, and (B. 2)2 

tr (cBl (9 Bl) == Bi - (cB, ) =-= 15 we obtain 

2) 
ig 1 

tr (cA tr -c- [ao (9 BI + BI ao] + 
I4cao 

(9 ao +I cB, 0 Bi 
2244 

19,10 
+ 

14 
tr (cao (9 ao) + tr (cBj (9 BI) 

244 
1 (219Ijo + I& + 15). 
4 

(B. 37) 

Consider the term tr (C2 A 2), 
using the definition (B-3)2 tr (C2 ao(gao) = ao. (C2 ao) =- IfA. 

from (B. 32) we have 

(C2 2 
19 f 

C2 
14 

tr (C2 ao 0 ao) +1 tr (c 2 BI ý, BI) tr A tr [ao (9 BI + BI o aol + 
ý- 

2224 
1 (219Ijo + 1418 + 16). (B. 38) 
4 
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Finally for the term tr (cAcA) we obtain 

tr (cAcA) CijAjkCk,,, A .. i=1 [cij (aoj Blk+ Bij a'Ok)Ckm (ao,,, B1, -, Bl,, ao, )] 4 
[Bli cij ao, Bl,, Ckm aO, + ao, cij aoj BlkCkBl,,,, + Bici, 4 B1, al)k Ckrn aO.. 

+ aoi c-ij Bij aOkCkmBl,,, ] = 
1(1120 

+1517)- (B. 39) 2 

Using (B. 33)-(B. 39) in (B. 31) we get 

11121,2 
19,11 +2 1418 +2 16 +2 (Ijo + 1517) 

- 21gIll -2 (24911o + 1411 + 15) - IýI2 

12 
2 J2 +2 (Ig, + 14) + 21qIjljo - 10 -- 0, (B. 40) 

from where we obtain 

Ii i -- 
1 

[1418 + 16 - 1120 + 1517 + Ii (2jgjlo 
- J4J7 - J5) - J2 (J2 -I 219 9 (B. 41) 

and so I,, is not an independent invariant. 
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