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Statement

Chapter 1 covers the basic material used throughout this thesis. The majority of this is standard

and can be found in the numerous references listed therein. The proofs of Proposition 1.5.2, and

Theorems 1.6.2 and 1.6.3 are my own.

Chapter 2 is an introduction to Pride groups. Most of the material in §2.1 is taken from

[82, 83, 85]. Section 2.2 is a survey of known results and §2.3 contains statements of the original

results that appear in this thesis.

Chapter 3 contains various technical results. The results in §3.1 are already known - see [35,

82, 85]. However, my treatment of this material is different than that found in the literature. See

in particular §3.1.1. Section 3.2 is my own work.

Chapter 4 is my own work. The proofs of Theorems 4.2.1 and 4.2.2 are based on similar proofs

found in [66, V.5 & V.7].

Chapter 5 is my own work, except for §5.1 and the proof of Lemma 5.2.2. These are taken

from [31].

Chapter 6 is an introduction to relative presentations. The material is standard and can be

found in the many references listed therein.

Chapter 7 is my own work. The spherical pictures illustrated in Figs. 7.19, 7.20 and 7.21 are

based on similar pictures constructed in [2].

Appendix A is my own work.
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Abstract

Combinatorial group theory is the study of groups given by presentations. Algebraic and geometric

methods pervade this area of mathematics and it is the latter which forms the main theme of

this thesis. In particular, we use diagrams and pictures over presentations to study problems in

the domain of finitely presented groups. Our thesis is split into two distinct halves, though the

techniques used in each are very similar. In Chapters 2 - 4 we study Pride groups with the aim to

solve their word and conjugacy problems. We also study the second homotopy module of a natural

presentation of a Pride group. Chapters 6 and 7 are devoted to the study of relative presentations,

with particular attention being paid to those of the form 〈H, t ; tnat−1b〉. Determining when such

presentations are aspherical is our main objective.

Chapter 1 covers the basic material that is used throughout this thesis. The main topics of

interest are free groups; presentations of groups; the word, conjugacy, and isomorphism problems

for finitely presented groups; first and second order Dehn functions of finitely presented groups;

diagrams and pictures over finite presentations; and the second homotopy module of a finite pre-

sentation. The reader may skip Chapter 1 if they are familiar with this material.

A Pride group is a finitely presented group which can be defined by means of a finite simplicial

graph; this is done in Chapter 2. Examples of Pride groups are given in §2.1. This section also

contains the statements of Conditions (I), (II), (H-I), (H-II), and the asphericity condition. We

will always assume that a Pride group satisfies one of these conditions. In §2.2 we survey the

known results that appear in the literature, while in §2.3 we present our original results. We

obtain isoperimetric functions for a vertex-finite Pride group G which satisfies (I), (II), (H-I) or

(H-II). Sufficient conditions are then obtained for G to have a soluble word problem. Solutions

of the conjugacy problem for G are also obtained. However, we require that G satisfies some

extra conditions. We calculate a generating set for the second homotopy module of the natural

x



presentation of a non-spherical Pride group, i.e. one which satisfies the asphericity condition. Using

this generating set, we obtain an upper bound for the second order Dehn function of a non-spherical

vertex-free Pride group. We also obtain information about the second order Dehn function of an

arbitrary non-spherical Pride group.

Chapter 3 contains various technical results that are needed in Chapter 4. The main focus is

that of diagrams over the standard presentation of a vertex-finite Pride group. We study simply-

connected r-diagrams in §3.1 and in §3.2 we study annular r-diagrams. Propositions 3.1.1, 3.2.1,

3.2.2, and Theorems 3.2.1 and 3.2.2 are the main results of this chapter.

Chapters 4 and 5 are devoted to the proofs of our main results. Proofs of our results for the word

and conjugacy problems of a vertex-finite Pride group are contained in Chapter 4, while Chapter 5

contains proofs of our results about the second homotopy module of a non-spherical Pride group.

Chapter 5 also contains a study of pictures over the natural presentation of such a group.

In Chapter 6, we turn our attention to relative presentations. Our interest lies in determining

when such presentations are aspherical. Relevant background material and definitions are given in

this chapter and pictures over relative presentations are also studied. Five tests which are used to

determine whether or not a relative presentation is aspherical are given in §6.4. Chapter 6 also

contains a brief survey of known results in this area.

In Chapter 7, the final chapter of this thesis, we present our original contribution to the area

of aspherical relative presentations. In particular, we determine when the relative presentation

〈H, t ; tnat−1b〉 is aspherical where n > 4 and a, b are elements of H each of order at least 3. There

are four exceptional cases for which asphericity cannot be determined.

xi



Notation

After the description of each piece of notation we list the page number in which that notation is

first used. If no page number is given, then it is assumed that the notation is well-known.

Sets and number systems

X,Y sets.

X ∪ Y the union of X and Y .

X ∩ Y the intersection of X and Y .

X ⊆ Y X is a subset of Y .

X − Y the difference between X and Y .

|X| the cardinality of X.

x ∈ X x is an element of X.

∅ the empty set.

N the set of natural numbers {0, 1, 2, . . .}.

Z the set of integers.

Q the set of rational numbers.

R the set of real numbers.

Functions

f, g functions.

f ≃ g the inequalities f 4 g and g 4 f are satisfied for f and g (p. 1).

f̄ the subnegative closure of f (p. 1).

xii



Groups

G,H groups.

H 6 G H is a subgroup of G.

G ∗H the free product of G and H.

G×H the direct product of G and H.

Hn(G,A) the n-th cohomology group of G with coefficients in A (p. 40).

Hn(G,B) the n-th homology group of G with coefficients in B (p. 40).

ZG the integral group ring of G (p. 32).

IG the augmentation ideal of G (p. 41).

M the relation module corresponding to a presentation of G (p. 41).

o(g) the order of g ∈ G (p. 110).

[g1, g2] the commutator of g1, g2 ∈ G (p. 39).

Free groups

x a set (p. 2).

x−1 the set of formal inverses of x (p. 2).

x±1 the union x ∪ x−1 (p. 2).

W a word on x±1 (p. 2).

|W | the length of W (p. 2).

W1 ≡W2 W1 and W2 are equal as words (p. 2).

[W ] the ∼-equivalence class containing W (p. 2).

ǫ the empty word (p. 2).

(x±1)∗ the set of all words on x±1 (p. 2).

F (x) the free group on x (p. 2).

xiii



Presentations

r a set of words on x±1 (p. 2).

rs the symmetric closure of r (p. 22).

<< r >> the normal closure of r (p. 4).

〈x ; r〉 a presentation (p. 2).

[W ]r the ∼r-equivalence class containing the word W (p. 3).

G(P) the group defined by P (p. 3).

W the element of G(P) represented by the word W (p. 3).

dx the word metric with respect to x (p. 3).

|| · ||x the norm corresponding to dx (p. 3).

∆G
H the length distortion function of a subgroup H in a group G (p. 4).

ΛR
Q the area distortion function of a presentation Q relative to a presentation R (p. 104).

First order Dehn function

AreaP(W ) the area of a word W with respect to P (p. 8).

δP the first order Dehn function of a finite presentation P (p. 8).

δG the first order Dehn function of a finitely presented group G (p. 9).
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Diagrams

E2 the Euclidean plane (p. 10).

∂S the boundary of S ⊆ E2 (p. 10).

S the topological closure of S (p. 10).

−S the subset E2 − S (p. 10).

D a diagram (p. 10).

D∗ the dual of D (p. 14).

Area(D) the area of D (p. 11).

H a hole in D (p. 13).

ν a vertex of D (p. 10).

d(ν) the degree of ν (p. 11).

ε an edge of D (p. 10).

∆ a region of D (p. 10).

d(∆) the degree of ∆ (p. 11).

i(∆) the number of interior edges of D contained in ∂∆ (p. 12).

S a simply-connected diagram (p. 13).

d(S) the degree of S (p. 13).

A an annular diagram (p. 13).

d(A) the degree of A (p. 13).

β(A) the number of regions in the boundary layer of A (p. 22).

∑
D summation over the vertices or regions of D (p. 15).

∑•
D summation over the boundary vertices or boundary regions of D (p. 15).

∑◦
D summation over the interior vertices or interior regions of D (p. 15).

∑∗
D summation over the simple boundary regions of D (p. 16).

xv



Pictures

P a picture (p. 26).

∂P the boundary of P (p. 26).

−P the mirror image of P (p. 31).

Area(P) the area of P (p. 26).

D a disc of P (p. 26).

κ a corner of a disc (p. 26).

α an arc of P (p. 26).

F a region of P (p. 26).

W (P) the boundary label of a simply-connected r-picture P (p. 27).

W (β) the label of a transverse path β in P (p. 28).

Mc the complement of a simply-connected subpicture M (p. 28).
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Chapter 1

Preliminaries

We introduce the main concepts and definitions that are used throughout this thesis. Our primary

references for this chapter are [17,66,67].

1.1 Equivalence and subnegativity of functions

Let f, g be functions from N to N. We write f 4 g if there exist positive integers K1,K2,K3 such

that f(n) 6 K1g(K2n) +K3n for all n ∈ N. We say that f and g are equivalent, and write f ≃ g,

if and only if f 4 g and g 4 f . Note that ≃ is an equivalence relation on the set of all functions

from N to itself.

Following Brick [22, p. 378], we say that a function f : N → N is subnegative whenever

f(m) + f(n) 6 f(m+ n)

for all m,n ∈ N. For every function f : N → N one can define a function f̄ : N → N by the formula

f̄(n) = max{f(n1) + . . .+ f(nr)},

where the maximum is taken for all r > 1 and all n1, . . . , nr ∈ N−{0} such that n1 + . . .+nr = n.

This function is the smallest subnegative function which is greater than or equal to f . The function

f̄ is said to be the subnegative closure of f . Note, if f 4 g, then f̄ 4 ḡ. Also, if f(n) 4 ln, then

f̄(n) 4 ln (n ∈ N).
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1.2 Free groups

Let x be a set. The set of formal inverses of x will be denoted by x−1 and x±1 will denote x∪x−1.

A word W on x±1 is a sequence of symbols

xε1

1 . . . xεn
n

where n > 0, xi ∈ x, and εi = ±1 for i = 1, . . . , n. The symbols xεi

i are the letters of W . A subword

of W is any consecutive sequence of letters of W . The length |W | of W is the integer n. If |W | = 0,

then we say that W is the empty word and denote it by ǫ. If xεi

i 6= x
−εi+1

i+1 for i = 1, . . . , n− 1, then

W is reduced ; W is cyclically reduced if in addition xε1

1 6= x−εn
n . The inverse of W is the word

W−1 = x−εn
n . . . x−ε1

1 ,

and it is clear that |W−1| = |W |. If W1 = x
εi1

i1
. . . x

εim

im
, W2 = x

εj1

j1
. . . x

εjn

jn
are words on x±1, then

the product of W1 and W2 is the word

W1W2 = x
εi1

i1
. . . x

εim

im
x

εj1

j1
. . . x

εjn

jn
.

Clearly |W1W2| = |W1| + |W2|. We say that W1,W2 are equal as words and write W1 ≡ W2 if

m = n and x
εik

ik
= x

εjk

jk
for k = 1, . . . , n.

Let (x±1)∗ denote the set of all words on x±1. Define a relation ∼ on (x±1)∗ as follows: W1 ∼W2

if and only if W1 can be transformed into W2 by adding and/or deleting finitely many pairs xεi

i x
−εi

i .

It is clear that ∼ is an equivalence relation on (x±1)∗, and if two words W1,W2 are equivalent, then

we say that W1 and W2 are freely equal. Let [W ] denote the ∼-equivalence class of the word W .

The free group F (x) on x is the set of equivalence classes {[W ] : W ∈ (x±1)∗} with multiplication

given by [W1][W2] = [W1W2] for all W1,W2 ∈ (x±1)∗. The identity element of F (x) is [ǫ] and

[W ]−1 = [W−1] for all W ∈ (x±1)∗. We will sometimes write W ∈ F (x) or say that W is an

element of F (x) with the understanding that we mean [W ] ∈ F (x).

1.3 Presentations

A presentation P is given by 〈x ; r〉 where x is a non-empty set and r is a (possibly empty) set of

words on x±1. We say that x is the set of generators of P and r is the set of defining relators of P.

The elements of r are usually assumed to be cyclically reduced. The presentation is finite if both x
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and r are finite sets. Given a presentation P we can construct a group G(P). First, define a relation

∼r as follows: W1 ∼r W2 if and only if W1 can be transformed into W2 by adding and/or deleting

finitely pairs xεi

i x
−εi

i together with adding and/or deleting finitely many occurrences of elements of

r±1. The relation ∼r is an equivalence relation on (x±1)∗ and we denote the equivalence class of W

by [W ]r. The group G(P) defined by P is then the set of equivalence classes {[W ]r : W ∈ (x±1)∗}

with multiplication defined by [W1]r[W2]r = [W1W2]r for all W1,W2 ∈ (x±1)∗. The identity element

of G(P) is [ǫ]r and [W ]−1
r

= [W−1]r for all W ∈ (x±1)∗.

We say P = 〈x ; r〉 is a presentation of a group G if G ∼= G(P). A group is finitely gener-

ated (respectively, finitely related, finitely presented) if it has a presentation P = 〈x ; r〉 with x

(respectively, r,x ∪ r) finite.

Let P = 〈x ; r〉 be a presentation of a group G and let W = [W ]r where W is any word on x±1.

We say that W represents g ∈ G if g = W . For g, h ∈ G, define dx(g, h) to be the length of a

shortest word on x±1 that represents g−1h. It is not hard to show that dx(g, h) = 0 if and only if

g = h; dx(g, h) = dx(h, g); and dx(g, k) 6 dx(g, h) + dx(h, k) for all g, h, k ∈ G. It follows that dx

is a metric on G, so G can be viewed as a metric space. The metric dx is called the word metric

on G with respect to x. Given the word metric dx on G, we define a corresponding norm by the

formula

||g||x = dx(1, g).

Recall, a non-negative function g → ||g|| on a group G is a norm if it satisfies the following

conditions: for any g, h ∈ G one has ||g|| = ||g−1||, ||gh|| 6 ||g|| + ||h||, and ||g|| = 0 implies g = 1.

The word metric clearly depends on the choice of generating set x. Thus so does the norm || · ||x.

However, if x is a finite generating set and if we choose another presentation Q = 〈y ; s〉 of G where

y is also finite, then the metric spaces (G, dx) and (G, dy) can be shown to be quasi-isometric.

Definition 1.3.1. ( [33, p. 85]) A map φ : X → X ′ between two metric spaces (X, d) and (X ′, d′)

is a quasi-isometric embedding if there are constants ǫ > 0 and λ > 0 such that for any two elements

x, y ∈ X,
1

λ
d(x, y) − ǫ 6 d′(φ(x), φ(y)) 6 λd(x, y) + ǫ.

It is a quasi-isometry if there exists a constant c > 0 such that for all x′ ∈ X ′, there is an element

x ∈ X such that d′(φ(x), x′) 6 c. The metric spaces X and X ′ are then quasi-isometric.
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Equivalently, X and X ′ are quasi-isometric if there exist two mappings φ : X → X ′, ψ : X ′ → X

and constants ǫ > 0, λ > 0, c > 0 such that

d′(φ(x), φ(y)) 6 λd(x, y) + ǫ d(ψ(x′), ψ(y′)) 6 λd′(x′, y′) + ǫ

d(ψφ(x), x) 6 c d(φψ(x′), x′) 6 c

for all x, y ∈ X and x′, y′ ∈ X ′.

Let G be a finitely generated group with finite generating set x and let H be a finitely generated

subgroup of G. We can assume that a generating set y of H is contained in x. Then for h ∈ H,

||h||y > ||h||x where || · ||x, || · ||y are the norms associated with the word metrics dx and dy,

respectively. The length distortion function of H in G is the function ∆G
H : N → N given by

∆G
H(n) = max{||h||y : h ∈ H and ||h||x 6 n}.

It is not hard to show that, up to ≃-equivalence, the length distortion function is independent

of the choice of word metrics dx and dy.

If ∆G
H(n) 4 n, then H is said to be undistorted in G, or simply undistorted. Subgroups of

finitely generated free groups are undistorted. Any subgroup of a finitely generated nilpotent

group has quadratic distortion [78, Theorem 2.2] (for example, consider the (cyclic) centre of the 3-

dimensional Heisenberg group given by the presentation 〈a, b, c ; [a, b] = c, [a, c], [b, c]〉). There exist

2-dimensional CAT(−1) groups which contain free subgroups with arbitrary iterated exponential

distortion and with distortion higher than any iterated exponential (see [11]). We refer to [41,71,77]

and [52, §3] for more on length distortion functions.

Let P = 〈x ; r〉 be a presentation. Each element R ∈ r gives rise to an element [R] ∈ F (x),

where F (x) is the free group on x. The normal closure << r >> of r in F (x) is the smallest normal

subgroup of F (x) that contains the elements {[R] : R ∈ r}. It is not hard to see that << r >>

consists of all elements of the form
k∏

i=1

[WiR
εi

i W
−1
i ], (1.1)

where Wi ∈ (x±1)∗, Ri ∈ r, and εi = ±1 for i = 1, . . . , k.

Let W be a reduced word on x±1 which is of the form (1.1). If V is obtained from W by adding

or deleting an element of r±1, then it is clear that [V ] ∈<< r >>. Therefore, if V ∼r U where U
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is any word on x±1 such that [U ] ∈<< r >>, then [V ] ∈<< r >>. We use this simple observation

in the proof of the following lemma.

Lemma 1.3.1. If P = 〈x ; r〉 is a presentation, then G(P) is isomorphic to the quotient group

F (x)/ << r >>.

Proof. Define a function θ : F (x) → G(P) by [W ] 7→ [W ]r. Then θ is a homomorphism whose image

is equal to G(P) and whose kernel contains the elements [R] for all R ∈ r. Since << r >> is the

smallest normal subgroup of F (x) containing all such elements, we deduce that << r >>⊆ ker θ.

If [W ] ∈ ker θ, then [W ]r = [ǫ]r and so W ∼r ǫ. Since [ǫ] ∈<< r >>, we deduce that that

[W ] ∈<< r >>. Therefore, ker θ ⊆<< r >> and so ker θ =<< r >>. The result then follows

from the first isomorphism theorem.

Let P = 〈x ; r〉 be a finite presentation of a group G. In general, G will have infinitely many

different presentations; however, each presentation can be obtained from P by a series of Tietze

transformations [98]. The following are the Tietze transformations one can apply to P, as given

in [66].

(T1) Add a word W ∈ (x±1)∗ to r if [W ] ∈<< r >>.

(T2) The inverse of a (T1) transformation.

(T3) Add a symbol y to the set of generators x and add a new relator yW−1 to r, where W is

some word on x±1.

(T4) The inverse of a (T3) transformation.

Theorem 1.3.1. ( [66, Proposition II.2.1]) Two finite presentations define isomorphic groups if

and only if it is possible to pass from one to the other by a finite sequence of Tietze transformations.

We end this section with a definition. Let P = 〈x ; r〉 be a presentation.

Definition 1.3.2. A word W on x±1 is injective relative to P if no proper subword of W represents

the identity element of G(P). We say that W is cyclically injective relative to P if every cyclic

permutation of W is injective relative to P.

If there is no confusion over which presentation we are working with, then we will say that W is

injective or cyclically injective. Note that a cyclically injective word of length strictly greater than

2 is necessarily cyclically reduced.
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1.4 Dehn’s fundamental algorithmic problems

In 1912, Max Dehn formulated three algorithmic problems for groups that lie at the heart of combi-

natorial group theory. They are: the Word Problem, the Conjugacy Problem, and the Isomorphism

Problem. Let us first state the word and conjugacy problems for a finite presentation P = 〈x ; r〉.

Word Problem. Is there an algorithm that will decide, given any word W ∈ (x±1)∗, whether or

not W ∼r ǫ?

Conjugacy Problem. Is there an algorithm that will decide, given any two words W1,W2 ∈

(x±1)∗, whether or not there exists a word U ∈ (x±1)∗ such that W1 ∼r UW2U
−1?

Theorem 1.4.1. ( [66, Proposition II.2.2] & [67, §1.5, Problem 11]) Let P1,P2 be two finite pre-

sentations of a finitely presented group G. If the word problem (respectively, conjugacy problem) is

soluble for P1, then the word problem (respectively, conjugacy problem) is soluble for P2.

Remark 1.4.1. To prove Theorem 1.4.1 it is enough, by Theorem 1.3.1, to show that if we

apply a single Tietze transformation to P1, the resulting presentation has a soluble word problem

(respectively, soluble conjugacy problem).

Thus, having soluble word or conjugacy problem is a group property, in the sense that it is

independent of the choice of finite presentation. If we can solve the word (respectively, conjugacy)

problem for one finite presentation of a group G, then we can solve it for all finite presentations of

G.

The word problem has been solved for many different classes of groups. For example: free

groups [67, Corollary 1.2.2]; one-relator groups (i.e. groups that have a presentation in which there

is exactly one defining relator) [67, Theorem 4.14]; small cancellation groups [50,66,97]; residually

finite groups [66, Theorem IV.4.6]; automatic groups [39, Theorem 2.3.10]; and word hyperbolic

groups [52]. Word hyperbolic groups can be characterized as those that have presentations which

have a Dehn Algorithm. If a finite presentation has such an algorithm, then an extremely efficient

solution exists for its word problem (see [66, Chapter IV] for details). The word problem is by

no means soluble for all groups. A fundamental result of Novikov [74] and, independently, Boone

[18] (see also [90, Chapter 12]) exhibits a finite presentation with unsolvable word problem. An

elementary construction of finitely presented groups with unsolvable word problems is given in [68].

We note that it is unknown whether or not the word problem for an arbitrary two-relator group
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(i.e. a group that has a presentation in which there are exactly two defining relators) is soluble.

It is clear that a solution of the conjugacy problem contains a solution of the word problem

(select W2 to be the empty word). Thus, the conjugacy problem may be viewed as a more difficult

problem than the word problem. Indeed, there exist finitely presented groups for which the word

problem is soluble but whose conjugacy problem is unsolvable [29,46,70,73]. The conjugacy problem

is soluble for free groups [67, Theorem 1.3], small cancellation groups [51,66], and strongly relatively

hyperbolic groups (in the sense of Farb), provided that the parabolic subgroup has soluble conjugacy

problem [26, Theorem 1.1]. The conjugacy problem is also soluble for one-relator groups with

torsion [72] and Pride [86] has recently shown that it is soluble for a special class of one-relator

groups. However, it is unknown whether or not the conjugacy problem is soluble for an arbitrary

torsion-free one-relator group [13, Problem O5].

We are primarily interested in the word and conjugacy problems for finitely presented groups.

However, there is another problem, the generalized word problem or membership problem, that we

will also consider.

Generalized word problem (relative to u). Given a finite presentation P = 〈x ; r〉 and a finite

subset u of (x±1)∗, is there an algorithm that will decide, given any word W ∈ (x±1)∗, whether or

not there exists a word Z on u±1 such that [W ]r = [Z]r?

The presentation is said to have a soluble generalized word problem if the generalized word prob-

lem is soluble for every finite subset u of (x±1)∗. Unsurprisingly, a solution of the generalized word

problem contains a solution of the word problem; take u to be empty. We will only be interested

in the generalized word problem for a specific choice of u, so we will not consider this problem

under the effect of changing presentation. We note that Farb [41] has studied the generalized word

problem for finitely presented groups.

The isomorphism problem is the hardest of Dehn’s fundamental problems.

Isomorphism Problem. Given a recursively enumerable setX of finite presentations Pi = 〈xi ; ri〉

(i ∈ N), is there an algorithm that will decide, given two arbitrary presentations Pi,Pj from X,

whether or not G(Pi) ∼= G(Pj)?

Adyan [1] and Rabin [89] proved that there is no such algorithm for an arbitrary set of recursively

enumerable finite presentations. (In fact, they proved that there is no algorithm that will decide,

given a finite presentation, whether or not the group it defines is trivial. This despite the fact that
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there is a procedure to enumerate all presentations of the trivial group (via Tietze transformations).)

One may then ask whether there is a solution within a particular class C of groups. That is, is

there an algorithm which, given any two finite presentations from a set X of recursively enumerable

finite presentations and the knowledge that each presentation from X defines a group in C, decides

whether or not the presentations define isomorphic groups? It is usually assumed that a positive

solution to this question should not require that the presentations are given along with a proof that

the groups which they define lie in C, merely the knowledge that they do should suffice.

The isomorphism problem has been solved for some classes of groups. Free groups have soluble

isomorphism problem [67], as do polycyclic-by-finite groups [93]. Recently, Dahmani and Groves [32]

have solved the isomorphism problem for torsion-free relatively hyperbolic groups with abelian

parabolics. As a special case of this, they recover solutions of the isomorphism problem for torsion-

free hyperbolic groups [94] and fully residually free groups [27]. Also, Kapovich and Schupp [59]

have shown that the isomorphism problem is soluble for an exponentially generic class of one-relator

groups.

1.5 The first order Dehn function

Let P = 〈x ; r〉 be a finite presentation of a finitely presented group G and let W be a word on

x±1. If W represents the identity element of G, then [W ] ∈<< r >> and so is equal to an element

of the form (1.1). The smallest natural number k among all expressions of the form (1.1) is the

area of W , which we denote by AreaP(W ). We will write Area(W ) for the area of W if there is no

confusion over which presentation we are working with.

Definition 1.5.1. The first order Dehn function of a finite presentation P is the function δP :

N → N given by δP(n) = max{AreaP(W ) : W ∈<< r >> and |W | 6 n}.

Different presentations can have different Dehn functions even if they define the same group.

Consider, for example, the following presentations of the infinite cyclic group: P1 = 〈x ; 〉 and

P2 = 〈x, y ; y〉. It is easy to see that δP1
(n) = 0 for all n ∈ N, whereas δP2

(n) = n for all n ∈ N.

Now P2 can obtained from P1 by applying the Tietze transformation (T3), so we see that passage

from one presentation to another via Tietze transformations has an effect on the Dehn function.
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Proposition 1.5.1. ( [22, Proposition 1.1]) If P1,P2 are two finite presentations of the same

finitely presented group, then δP1
≃ δP2

.

Since we shall not distinguish between ≃-equivalent functions, we may speak of the first order

Dehn function δG of a finitely presented group G. Work carried out in [21] and [91] has lead to a

fairly complete understanding of which functions arise as Dehn functions. In particular, it is known

that the isoperimetric spectrum of first order Dehn functions

IP = {α ∈ [1,∞) : f(x) = xα is a Dehn function}

is dense in the range [4,∞). A celebrated result of Gromov (see [19,76] for concise proofs) showed

that IP ∩ (1, 2) is empty, and it was later shown in [21] that this is the only gap in IP. Thus,

Q∩ (2,∞) ⊂ IP. We note that, previous to this result, the snowflake construction of [20] was used

to provide a dense set of exponents in IP ∩ [2,∞).

An isoperimetric function for a finitely presented group G is any function f : N → N that

satisfies δG(n) 4 f(n) for all n ∈ N. Thus, the Dehn function δG is the smallest isoperimetric

function for G. The following theorem provides a link between the word problem and the Dehn

function of a finitely presented group.

Theorem 1.5.1. ( [48, Theorem 2.1]) A finitely presented group has a recursive isoperimetric

function (in which case, the Dehn function itself is recursive) if and only if it has a soluble word

problem.

The following theorem provides a second characterization of word hyperbolic groups. A com-

prehensive proof of this result can be found in [4].

Theorem 1.5.2. ( [48, Theorem 3.1]) A finitely presented group G has a linear isoperimetric

function if and only if G is word hyperbolic.

A consequence of Theorem 1.5.2 is the fact that the finitely presented group Z × Z is not word

hyperbolic; its Dehn function is quadratic [12, pp. 551-552]. Automatic groups [39, Theorem

2.3.12] and, more generally, combable groups [48, Theorem 3.3] & [95, Theorem 2.3.4] provide

further examples of groups which admit a quadratic isoperimetric function.

We end this section by proving a simple result regarding the Dehn function of a free product

of groups.
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Proposition 1.5.2. Let G = G1 ∗ . . . ∗ Gn (n > 2) be a free product of groups, where each Gi is

finitely presented. Then δG ≃ max{δ̄Gi
: i = 1, . . . , n}.

Proof. We proceed by induction on n. For n = 2, the result holds by a theorem of Guba and

Sapir [54]. For n > 2 write G = G′ ∗Gn, where G′ = G1 ∗ . . . ∗Gn−1. Then δG ≃ max(δ̄G′ , δ̄Gn
) and

by induction, we have

δG′ ≃ max{δ̄Gj
: j = 1, . . . , n− 1}.

Since δ̄G′ is the smallest subnegative function which is greater than or equal to δG′ , it follows that

δ̄G′ ≃ max{δ̄Gj
: j = 1, . . . , n− 1}. Thus, δG ≃ max{δ̄Gi

: i = 1, . . . , n}.

1.6 Diagrams

The following treatment of diagrams is mostly taken from [66, Chapter V]. Let E2 denote the

Euclidean plane. If S ⊆ E2, then ∂S will denote the boundary of S. The topological closure of

S will be denoted by S, and −S will denote E2 − S. A vertex is a point of E2 and an edge is a

bounded subset of E2 that is homeomorphic to the open unit interval. A region is a bounded set

homeomorphic to the open unit disc.

A diagram D is a finite collection of vertices, edges and regions that are pairwise disjoint and

satisfy the following two conditions:

(i) If ε is an edge of D, then there are vertices ν1 and ν2 (not necessarily distinct) in D such that

ε = ε ∪ {ν1} ∪ {ν2}.

(ii) The boundary ∂∆ of each region ∆ of D is connected and there is a set of edges ε1, . . . , εn in

D such that ∂∆ = ε1 ∪ . . . ∪ εn.

If ε is an edge with ε = ε∪{ν1}∪{ν2}, then the vertices ν1 and ν2 are called the endpoints of ε.

Each edge of D may be given an orientation to obtain an oriented diagram. Let f be an arbitrary

homeomorphism of the interval (0, 1) to itself. Since f is monotone and bijective, there are two

possibilities: either (1) lim f(x) = 0 as x → 0 and lim f(x) = 1 as x → 1, or (2) lim f(x) = 1 as

x → 0 and lim f(x) = 0 as x → 1. It follows that f extends to a homeomorphism [0, 1] → [0, 1].

Following Ol’shanskii [75, p. 101], in case (1) we say that f preserves the orientation of (0, 1) (and

of [0, 1]), and in case (2) that f reverses the orientation.
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Now let ε be an edge of a diagram D. We say that homeomorphisms f1 : (0, 1) → ε and

f2 : (0, 1) → ε give ε the same orientation if f−1
1 f2 preserves the orientation of (0, 1), and they

give ε opposite orientations if f−1
1 f2 reverses the orientation of (0, 1). We can then endow the set

of all homeomorphisms f : (0, 1) → ε with an equivalence relation which splits it into two classes.

Assigning an orientation to ε amounts to choosing one of these two classes of homeomorphisms. It

is natural to indicate the choice of orientation of an edge by a small arrow on that edge. We refer

to [75, Chapter 3, §10.3] for more on orientable surfaces.

If ε is an oriented edge running from endpoint ν1 to endpoint ν2, then ν1 is the initial vertex

of ε and ν2 is the terminal vertex of ε. The oppositely oriented edge, or inverse of ε, is denoted by

ε−1and runs from ν2 to ν1.

A path is a sequence of oriented edges ε1, . . . , εn such that the initial vertex of εi+1 is the

terminal vertex of εi for 1 6 i 6 n− 1. We also allow the empty path. The endpoints of a path are

the initial and terminal vertices of ε1 and εn, respectively. A closed path or cycle is a path such

that the initial vertex of ε1 is the terminal vertex of εn. A path is reduced if it does not contain a

successive pair of edges εδε−δ (δ = ±1), and it is simple if, for j 6= i, εi and εj have different initial

vertices.

Since D is planar, it is possible to orient the regions of D and the components of −D so that in

traversing the boundaries of regions of D and the components of −D, each edge of D is traversed

twice, once in each of its possible orientations. If ∆ is a region of D with a given orientation, then

any cycle of minimal length which includes all the edges of ∂∆ and in which the edges are oriented

in accordance with the orientation of ∆ is a boundary cycle of ∆. The degree d(∆) of ∆ is the

number of edges in a boundary cycle of ∆, with an edge counted twice if it appears twice in the

cycle.

The degree d(ν) of a vertex ν of D is the number of unoriented edges incident with ν. Thus,

if an unoriented edge has both endpoints at ν we count it twice. The area of D is the number of

regions contained in D and we denote it by Area(D).

A vertex is a boundary vertex of D if it is contained in ∂D. Similarly, an edge is a boundary edge

of D if it is contained in ∂D. We say that a region ∆ is a boundary region of D if ∂∆ ∩ ∂D 6= ∅.

Thus, if ∆ is a boundary region of D, ∂∆ ∩ ∂D need not contain an edge, but may consist only

of one or more vertices. A vertex, edge or region of D that is not a boundary vertex, edge or

11



region is called interior. In Fig. 1.1 below ν1 (respectively, ε2) is a boundary vertex (respectively,

edge), whereas ν2 (respectively, ε1) is an interior vertex (respectively, edge). Regions ∆1,∆2,∆3

are boundary regions, whereas ∆4,∆5 are interior regions.

Figure 1.1: A diagram displaying boundary vertices, edges and regions.

If ∆ is a region of D, the number of interior edges of D that are contained in ∂∆ is denoted by

i(∆), again with an edge counted twice if it appears twice in a boundary cycle of ∆. In Fig. 1.1,

i(∆1) = 3, i(∆2) = 4 and i(∆3) = 4. Note that i(∆) = d(∆) if and only if ∂∆ ∩ ∂D does not

contain an edge.

Definition 1.6.1. The boundary layer of a diagram D consists of all boundary vertices of D, all

edges of D incident with boundary vertices, and all boundary regions of D.

The shaded regions in Fig. 1.1 are the regions contained in the boundary layer of D.

Definition 1.6.2. Let D be a diagram. If each interior vertex of D has degree at least p and every

region of D has degree at least q (where p and q are positive integers), then D is a [p, q]-diagram.

12



If each interior vertex of D has degree at least p and each interior region of D has degree at least

q, then D is a (p, q)-diagram.

A subdiagram B of a diagram D is a sub-collection of the vertices, edges and regions of D such

that if ε is an edge of B, then the endpoints of ε are in B, and if ∆ is a region of B, then ∂∆ is in B.

An orientation of D induces an orientation of B. Boundary vertices (respectively, edges, regions),

and interior vertices (respectively, edges, regions) of B are defined in the obvious way. The degree

of a vertex ν of B is denoted dB(ν). If ∆ is a region of B, then iB(∆) denotes the number of interior

edges of B that are contained in ∂∆, and dB(∆) denotes the degree of ∆.

A hole H in a diagram D is a bounded component of −D. The components of D are the

connected components of
⋃

i

νi ∪
⋃

j

εj ∪
⋃

k

∆k,

and we say that D is connected if it has at most one component.

Definition 1.6.3. A diagram is simply-connected if it is connected and if it is does not contain a

hole.

Let S be a simply-connected diagram with boundary ∂S. A boundary cycle of S is a closed

path of minimal length that contains all the edges of ∂S. The degree d(S) of S is the number of

edges contained in a boundary cycle of S, counted with multiplicity. Let ∆ be a boundary region

of S. We say that ∂∆ ∩ ∂S is a consecutive part of ∂S if ∂∆ ∩ ∂S is the union of a sequence of

edges ε1, . . . , εn (n > 1) that occur consecutively in a boundary cycle of ∆, and in some boundary

cycle of S. We say ∆ is a simple boundary region if ∂∆ ∩ ∂S is a consecutive part of ∂S, and ∆

is a non-simple boundary region otherwise. In Fig. 1.1, ∆1 is a simple boundary region, whereas

∆2,∆3 are non-simple boundary regions.

Definition 1.6.4. An annular diagram A is a connected diagram such that −A contains exactly

two components. Equivalently, A is connected and contains exactly one hole.

Let A be an annular diagram. Let K be the unbounded component of −A and let H be the

bounded component of −A. We call σ = ∂A ∩ ∂K the outer boundary of A and τ = ∂A ∩ ∂H

the inner boundary of A. A cycle of minimal length which contains all the edges in the outer

(respectively, inner) boundary of A is an outer (respectively, inner) boundary cycle of A. The
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degree d(A) of A is the number of edges contained in an outer boundary cycle of A plus the number

of edges contained in an inner boundary cycle of A (counted with appropriate multiplicities).

Let ∆ be a region of A. Then ∆ is an outer boundary region if ∂∆∩σ 6= ∅ and ∂∆∩τ = ∅. It is

an inner boundary region if ∂∆∩σ = ∅ and ∂∆∩τ 6= ∅. We say that ∆ is a simple outer boundary

region if it is an outer boundary region and if ∂∆ ∩ σ is a consecutive part of σ. We define simple

inner boundary regions in an analogous way. We say that ∆ is an almost simple boundary region

of A if ∂∆∩ σ and ∂∆∩ τ are consecutive parts of σ and τ , respectively (see Fig. 1.2). Finally, we

say that ∆ is a non-simple boundary region if at least one of ∂∆ ∩ σ or ∂∆ ∩ τ is non-empty and

is not a consecutive part of σ or τ , respectively.

Figure 1.2: An almost simple boundary region.

Definition 1.6.5. Let A be an annular diagram with outer boundary σ and inner boundary τ .

An edge ε of A is a bridge if ε ⊆ σ and ε ⊆ τ . A vertex ν is a pinch if ν ⊆ σ, ν ⊆ τ and ν is not

the endpoint of a bridge.

1.6.1 Dual diagrams

Let D be an unoriented diagram. We construct the dual diagram D∗ as follows: pick a point ν∗i in

each region ∆i of D. The collection of the ν∗i ’s are the vertices of D∗. If ∆1 and ∆2 are distinct

regions of D having an edge ε in common, then an edge ε∗ is drawn from ν∗1 to ν∗2 crossing ε but

no other edges of D or edges of D∗ already constructed. Since ε ⊆ ∂∆1 ∩ ∂∆2, ε is an interior edge

of D. If a region ∆i of D contains an edge ε in its boundary such that ∆i lies on both sides of ε,

then a loop is draw at ν∗i crossing ε but no other edges. The edges and vertices of D∗ form a graph

Γ∗. The regions of D∗ are the regions bounded by Γ∗ that contain an interior vertex of D. It is

easy to see that D∗ has the following properties:
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(1) The vertices of D∗ are in one-to-one correspondence with the regions of D. If ν∗ corresponds

to ∆, then d(ν∗) = i(∆).

(2) The edges of D∗ are in one-to-one correspondence with the interior edges of D.

(3) The regions of D∗ are in one-to-one correspondence with the interior vertices of D. If ν is an

interior vertex of D, then there are d(ν) edges at ν. Each of these edges is crossed by an edge

ε∗ of D∗, and the collection of these edges in D∗ form a region ∆∗ of D∗ with d(∆∗) = d(ν).

(4) The boundary vertices of D∗ are in one-to-one correspondence with the boundary regions of

D.

(5) If D has h holes, then D∗ has at most h holes.

(6) If D is a (p, q)-diagram, then D∗ is a [q, p]-diagram.

1.6.2 The basic formulas

Throughout this section p and q will denote positive integers such that 1/p+ 1/q = 1/2.

Let D be a diagram. Summation signs
∑

D will denote summations over vertices or regions of

D. The notation
∑•

D denotes summation restricted to boundary vertices or boundary regions while
∑◦

D denotes summation over interior vertices or interior regions. The number of vertices of D will

be denoted by V . The number of unoriented edges of D will be denoted by E and F will denote

the area of D. Let V •, E • and F • denote the number of boundary vertices, edges and regions of

D, respectively. Note that E • is counted with multiplicity. Let Q be the number of components of

D and h be the number of holes in D.

Lemma 1.6.1. ( [66, Lemma V.3.2]) If D is a diagram with no isolated vertices, then V • 6 E •.

Theorem 1.6.1. ( [66, Theorem V.3.1]) Let D be an arbitrary diagram. Then:

p(Q− h) =
•∑

D

[p− d(ν)] +
◦∑

D

[p− d(ν)] +
p

q

∑

D

[q − d(∆)] −
p

q
E •; (1.2)

p(Q− h) =
•∑

D

[
p

q
+ 2 − d(ν)] +

◦∑

D

[p− d(ν)] +
p

q

∑

D

[q − d(∆)] +
p

q
(V • − E •). (1.3)
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Corollary 1.6.1. ( [66, Corollary V.3.4]) Let S be a simply-connected (q, p)-diagram which contains

more than one region. Then
•∑

S

[
p

q
+ 2 − i(∆)] > p.

Definition 1.6.6. An extremal disc of a diagram D is a simply-connected subdiagram K that has

a boundary cycle ε1 . . . εn such that the edges ε1, . . . , εn occur in order in the boundary of D.

Figure 1.3: A simply-connected diagram containing two extremal discs.

Lemma 1.6.2. ( [66, Lemma V.4.2]) Let S be a simply-connected diagram that contains no vertices

of degree 1. If ∂S is not a simple closed path, then S contains at least two extremal discs.

The notation
∑∗

D will be used to denote summation over the simple boundary regions of a

diagram D. The following result whose proof can be found in [66, Page 248], strengthens the

inequality stated in Corollary 1.6.1. The proof of Theorem 1.6.2 given below is more comprehensive

than the one given in [66]. Also, we have weakened one of the assumptions in the statement of the

result.

Theorem 1.6.2. Let S be a simply-connected (q, p)-diagram. Suppose that q > 3 and that

Area(S) > 2. Furthermore, assume that if ∆ is a region of S such that ∂∆ ∩ ∂S = ν for some

boundary vertex ν, then d(∆) > p/q + 2. Then

∗∑

S

[
p

q
+ 2 − i(∆)] > p.
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Proof. First, suppose ∂S is a simple closed path. We proceed by induction on Area(S). If Area(S) =

2, then S consists of two regions ∆1 and ∆2 that have a single edge in common. Therefore, i(∆j) = 1

for j = 1 or 2 and
∗∑

S

[
p

q
+ 2 − i(∆)] = 2[

p

q
+ 1] = p.

Assume the result holds for all diagrams satisfying 2 6 Area(S) 6 k. By Corollary 1.6.1, we

have
•∑

S

[
p

q
+ 2 − i(∆)] > p.

If every boundary region of S is simple, then

∗∑

S

[
p

q
+ 2 − i(∆)] =

•∑

S

[
p

q
+ 2 − i(∆)] > p,

as required. Suppose S contains a non-simple boundary region ∆ such that ∂∆∩ ∂S = ν for some

boundary vertex ν, and call such a region an almost interior region. By our hypotheses, the almost

interior regions have degree at least p/q + 2 and so make a non-positive contribution to the sum
∑•

S [p/q+ 2− i(∆)]. Let
∑!

S denote summation over the boundary regions of S which exclude the

almost interior regions. Then

!∑

S

[
p

q
+ 2 − i(∆)] >

•∑

S

[
p

q
+ 2 − i(∆)].

Therefore, if the only non-simple boundary regions of S are precisely the almost interior regions,

then
∗∑

S

[
p

q
+ 2 − i(∆)] =

!∑

S

[
p

q
+ 2 − i(∆)] >

•∑

S

[
p

q
+ 2 − i(∆)] > p,

as required.

Now suppose S contains a non-simple boundary region ∆′ which is not an almost interior region.

Then S − ∆′ has at least two components, C1 and C2 say, which each contain at least one region

(see Fig. 1.4). Let S1 = C1 ∪ ∆′ and S2 = C2 ∪ ∆′.

If ∆ is a region of Sj (j = 1, 2), then ∂∆ ∩ ∂Sj = ∂∆ ∩ ∂S unless ∆ = ∆′. The only region

common to S1 and S2 is ∆′ and i(∆′) > 1 in both S1 and S2. Applying the inductive hypothesis

to S1 and S2 gives
∗∑

S1

[
p

2
+ 1 − i(∆)] +

∗∑

S2

[
p

2
+ 1 − i(∆)] > 2p.
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Figure 1.4: Components C1 and C2.

Now ∆′ appears in both sums and, at worst, has i(∆′) = 1 in each; thus contributing p/2 to both.

It follows that
∗∑

S

[
p

q
+ 2 − i(∆)] =

∗∑

S1

∆ 6=∆′

[
p

2
+ 1 − i(∆)] +

∗∑

S2

∆ 6=∆′

[
p

2
+ 1 − i(∆)] > p.

This concludes the proof for the case when ∂S is a simple closed path.

If the boundary of S is not a simple closed path, then by Lemma 1.6.2, S contains at least two

extremal discs, say K1 and K2. If Kj (j = 1, 2) consists of a single region ∆j , then ∂∆j ∩ ∂S is a

consecutive part of ∂S and
∗∑

Kj

[
p

2
+ 1 − i(∆j)] =

p

2
+ 1.

If Kj contains more than one region, then

∗∑

Kj

[
p

2
+ 1 − i(∆)] > p

by the first part of the proof. Since an extremal disc is connected to the rest of S by a single vertex,

each Kj (j = 1, 2) can contain at most one region ∆′
j such that ∂∆′

j ∩ ∂Kj is a consecutive part of

∂Kj but ∂∆′
j ∩ ∂S is not a consecutive part of ∂S. Since i(∆′

j) > 1, ∆′
j can contribute at most p/2

to the sum
∑∗

Kj
[p
2 + 1 − i(∆)], so

∗∑

Kj

∆ 6=∆′
j

[
p

2
+ 1 − i(∆)] >

p

2
.

If K1 and K2 both contain a single region, then

∗∑

K1

[
p

2
+ 1 − i(∆)] +

∗∑

K2

[
p

2
+ 1 − i(∆)] = 2(

p

2
+ 1) > p.
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If K1 consists of a single region and K2 contains more than one region, then

∗∑

K1

[
p

2
+ 1 − i(∆)] +

∗∑

K2

∆ 6=∆′
2

[
p

2
+ 1 − i(∆)] > (

p

2
+ 1) +

p

2
> p.

Clearly, the same is true if we interchange K1 and K2. Finally, if K1 and K2 both contain more

than one region, then

∗∑

K1

∆ 6=∆′
1

[
p

2
+ 1 − i(∆)] +

∗∑

K2

∆ 6=∆′
2

[
p

2
+ 1 − i(∆)] >

p

2
+
p

2
= p.

Hence in all cases, we have

∗∑

K1

[
p

q
+ 2 − i(∆)] +

∗∑

K2

[
p

q
+ 2 − i(∆)] > p,

from which we deduce
∗∑

S

[
p

q
+ 2 − i(∆)] > p,

as required.

We conclude from Theorem 1.6.2 that S contains at least two simple boundary regions which

contain at most p/q + 1 interior edges in their boundaries. Note that p/q + 1 = 3 if S is a

(3, 6)-diagram and p/q + 1 = 2 if S is a (4, 4)-diagram.

We now prove some results for simply-connected [p, q]-diagrams.

Theorem 1.6.3. Let S be a simply-connected diagram which does not contain any vertices of degree

1 and where d(S) 6 n.

(i) If S is a [3, 6]- or a [4, 4]-diagram, then d(∆) 6 2n for each region ∆ of S.

(ii) If S is a [3, 8]- or a [4, 6]-diagram, then Area(S) 6 n.

Proof. Let S be a [3, 6]-diagram. To prove Statement (i) we proceed by induction on Area(S). If

Area(S) = 1, then S consists of a single region ∆ with d(∆) 6 n.

The boundary of S is either a simple closed path or, by Lemma 1.6.2, S contains at least two

extremal discs. In either case ∂S will contain a simple closed subpath γ. First, suppose γ is the

boundary of a single region. Let S1 be the subdiagram of S which is bounded by ∂S − γ. Now S1
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may contain vertices of degree 1, but we can remove, one at a time, any vertices of degree 1 and the

edges incident to such vertices. This process yields a subdiagram S ′
1 of S to which the induction

hypothesis applies. If ∆′ is a region of S ′
1, then d(∆′) 6 2d(S ′

1) < 2n. Furthermore, d(∆) < n

where ∆ is the region bounded by γ.

Now suppose γ bounds more than one region. In this case the subdiagram S2 of S which is

bounded by γ is a [3, 6]-diagram that does not contain any vertices of degree 1. From Theorem

1.6.2 we deduce that S2 must contain at least two simple boundary regions ∆1,∆2 with iS2
(∆j) 6 3

(j = 1, 2). Now S2 can contain at most one region ∆′ which is a simple boundary region of S2

but which is not a simple boundary region of S. Therefore, we may assume that ∆1 is a simple

boundary region of both S2 and S. That is α = ∂∆1 ∩ ∂S is a consecutive part of γ and ∂S. Since

d(∆1) > 6 and since iS2
(∆1) 6 3, we deduce that α must contain at least three edges. Delete α (but

not its endpoints) from γ to obtain a [3, 6]-diagram S ′
2. Since S ′

2 does not contain any vertices of

degree 1, and since Area(S ′
2) < Area(S) and d(S ′

2) 6 d(S), we may apply the inductive hypothesis

to S ′
2. Therefore, if ∆ is a region of S ′

2, then d(∆) 6 2n. Also, d(∆1) 6 n+ 3. Thus every region

of S has degree at most 2n. This completes the proof for the case when S is a [3, 6]-diagram.

The proof for the case when S is a [4, 4]-diagram differs only in the numbers used. This completes

the proof of Statement (i).

Now let S be a [4, 6]-diagram. To prove Statement (ii) we proceed by induction on d(S).

The boundary of S is either a simple closed path or, by Lemma 1.6.2, S contains at least two

extremal discs. In either case ∂S will contain a simple closed subpath γ. First, suppose γ is the

boundary of a single region. Let S1 be the subdiagram of S which is bounded by ∂S − γ. Now S1

may contain vertices of degree 1, but we can remove, one at a time, any vertices of degree 1 and the

edges incident to such vertices. This process yields a subdiagram S ′
1 of S to which the induction

hypothesis applies. Therefore, Area(S) 6 n.

Now suppose that γ bounds more than one region. In this case the subdiagram S2 of S which is

bounded by γ is a [4, 6]-diagram, which does not contain any vertices of degree 1. In particular, S2

is a (4, 4)-diagram and so, from Theorem 1.6.2, we deduce that S2 must contain at least two simple

boundary regions ∆1,∆2 with iS2
(∆j) 6 2 (j = 1, 2). Now S2 can contain at most one region ∆′

which is a simple boundary region of S2 but which is not a simple boundary region of S. Therefore,

we may assume that ∆1 is a simple boundary region of both S2 and S. That is α = ∂∆1 ∩ ∂S is
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a consecutive part of γ and ∂S. Since d(∆1) > 6 and since iS2
(∆1) 6 2, we deduce that α must

contain at least four edges. Delete α (but not its endpoints) from γ to obtain a [4, 6]-diagram

S ′
2. Since S ′

2 does not contain any vertices of degree 1 and since d(S ′
2) < d(S), we may apply

the inductive hypothesis to S ′
2. Therefore, Area(S ′

2) < n and it follows that Area(S) 6 n. This

completes the proof for the case when S is a [4, 6]-diagram.

The proof for the case when S is a [3, 8]-diagram differs only in the numbers used. This completes

the proof of Statement (ii).

Statement (ii) of Theorem 1.6.3 gives a bound on the area of a simply-connected [3, 8]- or

[4, 6]-diagram. The following result applies to the more general case of a (p, q)-diagram where

1/p+ 1/q = 1/2.

Theorem 1.6.4. ( [95, Theorem 3.6, p. 182]) For any simply-connected (p, q)-diagram S of degree

d, there is a number k > 0 such that Area(S) 6 kd2.

Remark 1.6.1. In [66, Theorem V.6.2] a formula is given for the area of a simply-connected (3, 6)-

or (4, 4)-diagram. However, the statement of this result does not appear to be correct. (What

appears to be a corrected version of the formula is later used in the proof of Theorem V.6.3.)

We end this section with some general results concerning annular diagrams. Let A be an annular

diagram and let B be the boundary layer of A (recall Definition 1.6.1). The diagram C = A − B

may have several components; however, C contains at most one annular component. A simply-

connected component of C is called a gap of B. Thus, a gap is a simply-connected subdiagram of

A that contains only interior regions and which is entirely surrounded by boundary regions. Let

K1, . . . ,Kn be the gaps of B and let B′ = B ∪ K1 ∪ . . . ∪ Kn. Then A′ = A − B′ is the annular

component of A−B and we say that A′ is obtained from A by removing the boundary layer and its

gaps.

Definition 1.6.7. A pair (∆1,∆2) of (not necessarily distinct) regions of A is called a boundary

linking pair if σ ∩ ∂∆1 6= ∅, ∂∆1 ∩ ∂∆2 6= ∅ and ∂∆2 ∩ τ 6= ∅.

Lemma 1.6.3. ( [66, Lemma V.7.5]) Let A be an annular diagram containing at least one region,

and let A′ be obtained from A by removing the boundary layer and its gaps. If there are no boundary

linking pairs in A, then A′ is an annular diagram containing at least one region.
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Figure 1.5: Examples of boundary linking pairs.

Let β(A) denote the number of regions contained in the boundary layer of A.

Theorem 1.6.5. ( [66, Theorem V.7.4]) Let A be an annular (q, p) diagram. Consider the sequence

of diagrams A = A0,A1, . . . ,Ak where Ai is obtained by deleting the boundary layer of Ai−1, and

the process is continued until the boundary layer of Ak is equal to Ak. Then

q

p

•∑

A

[p− i(∆)] > max{β(Ai) : i = 0, . . . , k}.

1.7 r-diagrams

Let P = 〈x ; r〉 be a finite presentation of a group G.

Definition 1.7.1. The symmetric closure rs of r is the set of all cyclic permutations of elements

of r±1. If rs = r, then r is symmetric.

Let D be an oriented diagram and let φ be a function which assigns to each oriented edge ε of

D an element φ(ε) ∈ x such that if ε−1 is the oppositely oriented edge, then φ(ε−1) = φ(ε)−1. We

call φ the labelling function of D and φ(ε) the label of ε. If α = ε1 . . . εn is a path in D, then the

label of α is φ(α) = φ(ε1) . . . φ(εn). A label of a region ∆ of D is a word φ(δ) where δ is a boundary

cycle of D. Similarly, a label of a simply-connected subdiagram B of D is a word φ(β) where β

is a boundary cycle of B. If we wish to denote a label of ∆ or B without giving reference to any

particular boundary cycle, then we will write φ(∂∆) or φ(∂B), respectively.

Definition 1.7.2. We say that an oriented diagram D is an r-diagram, or is a diagram over P, if

for any boundary cycle δ of a region of D, φ(δ) ∈ rs.
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An r-diagram D is reduced if whenever one has regions ∆1,∆2 meeting along a common path α,

then the labels of the boundary cycles αδ1 and αδ2 (see Fig. 1.6) are distinct. If D is not reduced,

then it is an unreduced diagram. It is conceivable that ∆1 = ∆2 (such a region is often called

self-identified). In this case if φ(αδ1) ≡ W , then the label of αδ2 would be a cyclic permutation

of W−1 (one reads αδ2 around the boundary of ∆ in the opposite direction to the way one reads

αδ1). Thus, the label on αδ2 would be W−1
1 W−1

2 say, where W ≡W1W2. However, it is impossible

for W−1
1 W−1

2 ≡W1W2. Thus, one never actually has to consider self-identified regions.

Figure 1.6: Regions ∆1 and ∆2.

A label of a simply-connected r-diagram S is a word φ(α) where α is a boundary cycle of S.

Let 0 be a distinguished boundary vertex of S; the basepoint of S. Let W be a non-empty word on

x±1 and let α0 be the anticlockwise boundary cycle of S that starts and ends at 0. We say that S

is an r-diagram for W if φ(α0) ≡W .

A proof of the following result, most commonly referred to as Van Kampen’s Lemma, can be

found in [75, pp. 188 - 119] and [66, Chapter V].

Theorem 1.7.1 (van Kampen’s Lemma). Let P = 〈x ; r〉 be a presentation defining a group G

and let W be a non-empty word on x±1. Then W represents the identity element of G if and only

if there exists a simply-connected r-diagram for W .

Recall that in §1.5 the area of a word W was defined to be the minimum number of relators in

any expression of the form (1.1) for [W ]. Due to van Kampen’s Lemma, we can re-define the area

of W in a geometric way.
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Definition 1.7.3. The area of W is equal to min{Area(S)} where the minimum is taken over all

simply-connected r-diagrams S for W .

We say that S is a minimal r-diagram forW if S is an r-diagram forW and Area(S) = Area(W ).

Lemma 1.7.1. ( [66, Lemma V.2.1]) If S is a minimal r-diagram for a word W , then S is reduced.

Let W be a word on x±1 of length n that represents the identity element of G. Then W is

∼r-equivalent to the empty word. Recall that the Dehn function of P measures the maximum

number of relators needed to “prove” this equivalence. Following Definition 1.7.3, we can now view

the Dehn function in a geometric setting: the Dehn function of P measures the maximum number

of regions needed to construct a simply-connected r-diagram for W . Thus, one may view the Dehn

function as measuring the number of discs needed to fill a closed curve of length n.

Just as simply-connected r-diagrams play a role in the study of the word problem, annular

r-diagrams play a role in the study of the conjugacy problem. Let P = 〈x ; r〉 be a presentation

of a group G. Let A be an annular r-diagram with two distinguished boundary vertices: a vertex

o contained in σ and a vertex ι contained in τ . We call o and ι the outer and inner basepoints of

A, respectively. Let W and Z be two non-empty words on x±1, and let σo be the anticlockwise

boundary cycle of A that starts and ends at o, and τι be the clockwise boundary cycle of A that

starts and ends at ι. If φ(σo) ≡ W and φ(τι) ≡ Z−1, then we say that A is an annular r-diagram

for the pair (W,Z−1).

Lemma 1.7.2. ( [75, Lemma 11.2] & [66, Lemmas V.5.1, V.5.2]) Let W and Z be two non-empty

words on x±1. Then W,Z represent conjugate elements of G if and only if there exists an annular

r-diagram for the pair (W,Z−1).

1.8 Pictures and the second homotopy module

Our aim in this section is to introduce the second homotopy module π2(P) of a presentation P =

〈x ; r〉. The elements of π2(P) can be represented by equivalence classes of spherical r-diagrams. Let

S be a simply-connected r-diagram, which can be viewed as the planar projection of a tessellation

of the two-sphere. If the label of every region of this tessellation is an element of rs, then the

tessellated two-sphere is an example of a spherical r-diagram. Note that in this case the label of S
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is an element of rs. For the general definition of a spherical r-diagram we refer to [30, pp. 159-160]

and [83].

It is more convenient to represent the elements of π2(P) by equivalence classes of spherical

r-pictures; one of the main reasons being that we can always work with spherical r-pictures in the

plane. A spherical r-picture P is basically the dual of a spherical r-diagram. Let S be the planar

projection of a spherical r-diagram. Insert a disc Di in the interior of each region of S and insert a

disc D∞ in the unbounded region −S. The collection of the Di’s together with D∞ are the discs

of P. If ∆1,∆2 are distinct region of S having an edge ε in common, then an arc α is drawn from

D1 to D2 which crosses ε but no other edge of S, nor arc of P already drawn. If a region ∆i of S

contains an edge ε in its boundary such that ∆i lies on both sides of ε, then a loop is drawn at

Di, crossing ε, but no other edge of S, nor arc of P. If ∆i is a boundary region of S, then for each

boundary edge ε of ∆i, an arc is drawn from Di to D∞ which crosses ε but no other edge of S, nor

arc of P. Finally, if S contains an edge ε which is not contained in the boundary of any region of S,

then an arc is drawn from D∞ to itself, crossing ε but no other edges of S. The collection of discs

and arcs form the spherical r-picture P. The labelling and orientation of the edges of S induce a

transverse labelling and orientation of the arcs of P, the result of which is that each disc of P is

labelled by an element of rs. We note that the construction of P is similar to the construction of

the dual diagram S∗ of S. Also, P can be supported on the two-sphere by identifying D∞ with the

arctic circle.

Although we have defined by means of an example a spherical r-picture as deriving from a

spherical r-diagram, it is possible to formulate the notion of a spherical r-picture, and more generally

a picture, directly.

1.8.1 Pictures

The definition of a picture given in this section is more general than the standard one found in

the literature (see for example [17,30,42,58,84]). This more general definition will be particularly

useful for our work in Chapter 5.

A closed punctured disc Π with n (> 0) holes is the closure of

D −
n⋃

i=1

interior(Bi),
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where D is a closed disc and B1, . . . , Bn are disjoint closed discs lying inside D. The boundary ∂Π

of Π is defined to be

∂D ∪
n⋃

i=1

∂Bi,

where ∂D and ∂Bi (i = 1, . . . , n) are the boundaries of D and Bi, respectively.

Definition 1.8.1. A picture P is a geometric configuration consisting of a finite collection of

pairwise disjoint closed discs D1, . . . , Dm in a closed punctured disc Π with n (> 0) holes, together

with a finite collection of pairwise disjoint compact one-manifolds α1, . . . , αk (the arcs of P) properly

embedded in Π −
⋃m

i=1 interior(Di). The punctured disc Π has a basepoint 0 on ∂Π, each disc Bi

has a basepoint bi on ∂Bi, and each disc Di has a basepoint 0i on ∂Di. Each arc is either a simple

closed curve having trivial intersection with ∂Π
⋃m

i=1 ∂Di, or is a simple curve which joins two

points of ∂Π
⋃m

i=1 ∂Di, neither point being a basepoint.

By the discs of P we mean the discs D1, . . . , Dm and not the ambient punctured disc Π. If Π

does not contain any holes, then we say that P is simply-connected. Otherwise, the picture is non-

simply-connected. The area Area(P) of P is equal to the number of discs of P. The boundary ∂P

of P is defined to be ∂Π. The corners κ of a disc Di are the closures of the connected components

of ∂Di −
⋃k

j=1 αj , and the regions F of P are the closures of the connected components of Π −

((
⋃m

i=1Di) ∪ (
⋃k

j=1 αj)). A region is a boundary region if it meets ∂P and it is an interior region

otherwise. The degree of a region is equal to the number of corners contained in its boundary. An

arc is a boundary arc of P if it has at least one endpoint on ∂P. The components of P are the

connected components of (
⋃m

i=1Di) ∪ (
⋃k

j=1 αj) and we say that P is connected if it has at most

one component. The empty picture is the picture which does not contain any arcs or discs.

Definition 1.8.2. A picture P is spherical if it is simply-connected and if no arc of P meets ∂P.

1.8.2 r-pictures

Let P = 〈x ; r〉 be a presentation defining a group G. An r-picture, or a picture over P, is a picture

P that satisfies the following two conditions:

(i) Each arc has a normal orientation indicated by a short arrow meeting the arc transversely

and is labelled by an element of x.
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Figure 1.7: A picture in which the ambient punctured disc contains one hole.

(ii) If we travel around ∂Di, where Di is a disc of P, once in a clockwise direction starting from

0i and read off the labels on arcs encountered (with the understanding that we read x if we

cross an arc labelled x in the direction of its normal orientation, and we read x−1 otherwise),

then we obtain an element of rs. We call this word the label of Di.

The boundary label of a simply-connected r-picture P is the word W (P) obtained by reading

the labels of arcs that are encountered in a walk around ∂P in anticlockwise direction, starting and

ending at 0.

Definition 1.8.3. A path β in a picture P that does not meet the interior of any disc of P is called

a transverse path if: (i) whenever β meets ∂P or a disc of P it does so only at its endpoints; (ii)

no endpoint of β touches any arc of P; (iii) β meets the arcs of P in just finitely many transverse

intersections.

A label W (β) of an oriented transverse path β is the word obtained by reading the labels of

arcs that are encountered in a walk from the initial point of β to the terminal point of β.
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Definition 1.8.4. A subpicture of an r-picture P is an r-picture M together with an embedding

M →֒ P such that the boundary of M is the union of a collection of closed transverse paths βλ

(λ ∈ Λ) in P.

A subpicture is simply-connected (respectively, non-simply-connected) if it is a simply-connected

(respectively, non-simply-connected) picture. The label W (M) of a simply-connected subpicture M

is the label of the transverse path that forms the boundary of M.

When P is a spherical r-picture and when M is a simply-connected subpicture of P with boundary

β, the complement Mc of M in P is defined as follows. Delete the interior of M to form an oriented

annulus (see Fig. 1.8(b)). Identification of ∂P to a point produces an oriented disc that has boundary

β and which supports a new r-picture over P. The complement of M in P is obtained from this

new picture by a planar reflection. The complement has the same boundary label as M and its

discs are those of P − M.

(a) P (b) Deleting M (c) Mc

Figure 1.8: The complement of M in P.

In the introduction to this section we described how a spherical r-picture is basically the dual

of a spherical r-diagram. If D is an arbitrary r-diagram, which is not the planar projection of

a spherical r-diagram, then we can obtain from D an r-picture P by a similar dual construction.

First, surround D by a circle S1 and insert a disc B with basepoint b in the interior of each hole of

D. In the interior of each region ∆i of D insert a disc Di with basepoint 0i. The collection of the

Di’s form the discs of the r-picture P. The construction of P now follows as in the spherical case;

however, we treat boundary regions of D in a slightly different way. If ∆i is a boundary region of

D, then for each boundary edge ε of ∆i an arc is drawn from Di to S1, or from Di to B (if ∆i
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meets the boundary of a hole in D), which crosses ε but no other edge of D, nor arc of P already

drawn. If D contains an edge ε which is not contained in the boundary of any region of D, then

an arc is drawn from S1 to itself, which crosses ε but no other edge of D. Label and orient these

arcs according to the orientation and label of the original edges. The boundary ∂P of the resulting

r-picture P is defined to be

∂S1 ∪
⋃

i

∂Bi,

and we choose a basepoint 0 on ∂S1. We say that P is the corresponding r-picture of D, or simply

the corresponding picture. Note that the area of P is equal to the area of the diagram D. In Chapter

4, there will be occasions when we have to consider the corresponding r-picture of an r-diagram.

We do so to ensure that we can always work in the plane (see Remark 4.1.1 proceeding the proof

of Theorem 4.1.1).

If S is a simply-connected r-diagram for a word W , then the corresponding picture P is a

simply-connected r-picture that satisfies W (P) ≡ W (for some appropriate choice of basepoint 0).

This observation leads us to the following pictorial version of Theorem 1.7.1.

Theorem 1.8.1. Let P = 〈x ; r〉 be a presentation of a group G and let W be a non-empty word

on x±1. Then W represents the identity element of G if and only if there exists a simply-connected

r-picture P such that W (P) ≡W .

We say that P is a simply-connected r-picture for the word W (or simply an r-picture for W ) if

W (P) ≡ W . Using this terminology, we can now define the area of a word W in terms of the area

of an r-picture for W :

Area(W ) = min{Area(P) : P is a simply connected r-picture for W}.

We say that P is a minimal r-picture for W if P is an r-picture for W and Area(P) = Area(W ).

The Dehn function of P can now be viewed in terms of pictures: the Dehn function of P measures

the maximum number of discs needed to construct a simply-connected r-picture for W .

If A is an annular r-diagram for the pair (W,Z−1), then the corresponding r-picture is an

annular r-picture for the pair (W,Z−1) (again for some appropriate choice of basepoints). This

leads us to the following pictorial version of Lemma 1.7.2

Lemma 1.8.1. Let W and Z be two non-empty words on x±1. Then W,Z represent conjugate

elements of G if and only if there exists an annular r-picture for the pair (W,Z−1).
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1.8.3 The second homotopy module

Let P = 〈x ; r〉 be a finite presentation of a finitely presented group G and let P be an r-picture.

A closed arc which encircles no disc or arc of P is called a floating circle. A cancelling pair in P

is a connected spherical r-subpicture that contains exactly two discs where the basepoints of each

disc lie in the same region. Furthermore, each arc in the cancelling has an endpoint on each disc.

Clearly each disc in a cancelling pair is labelled by the same element of rs.

(a) (b) (c)

Figure 1.9: A cancelling pair.

If R ∈ r is a proper power, then we need to be careful. The picture in Fig .1.9(a) is a cancelling

pair but those in Figs. 1.9(b) and 1.9(c) are not.

The following operations can be applied to an arbitrary r-picture.

BRIDGE Perform a bridge move (see Fig .1.10).

FLOAT Insert or delete a floating circle.

CANCEL Insert or delete a cancelling pair.

Figure 1.10: The bridge moves.

Two spherical pictures are said to be equivalent if one can be transformed to the other by a

finite number of the operations BRIDGE, FLOAT and CANCEL.
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Remark 1.8.1. Bridge moves highlight another advantage of using spherical r-pictures over spher-

ical r-diagrams. Diamond moves [30, pp. 160-164] are the operations dual to bridge moves that

one can perform on a spherical r-diagram. Special care is needed when using diamond moves and

there are various cases one must consider. Unlike diamond moves, bridge moves can always be

realised in the plane.

Let P1 and P2 be two r-pictures represented schematically in Fig. 1.11.

(a) P1 (b) P2

Figure 1.11: Schematics for P1 and P2.

Two new pictures P1 + P2 and −P1 are constructed in Fig. 1.12. Thus −P1 is a mirror image of

P1 obtained by a planar reflection and P1+P2 is obtained by identifying an anticlockwise segment of

∂P1 with a clockwise segment of ∂P2 of the same length. (Each segment starts at the corresponding

basepoint and does not intersect any arc of the picture.) The identified segment is then deleted to

obtain the boundary of P1 + P2. We will write P1 −P2 for P1 + (−P2). Clearly for any r-picture P,

P − P is equivalent to the empty picture and if P1,P2 are both spherical, then P1 + P2 = P2 + P1.

(a) P1 + P2 (b) −P1

Figure 1.12: The pictures P1 + P2 and −P1.

Let 〈P〉 denote the equivalence class that contains the spherical r-picture P. The set of all

equivalence classes of all spherical r-pictures form an abelian group, denoted π2(P), under the
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binary operation 〈P1〉 + 〈P2〉 = 〈P1 + P2〉. The identity element of π2(P) is the equivalence class

containing the empty picture and the inverse of an element 〈P〉 ∈ π2(P) is 〈−P〉.

Let W be a word on x±1 and let P be a spherical r-picture. The spherical picture illustrated in

Fig. 1.13 obtained by surrounding P with a succession of concentric closed arcs with total label W

is denoted by W · P.

Figure 1.13: The spherical picture W · P.

Lemma 1.8.2. ( [99, Lemma 1.3.3]) There is a well-defined G(P)-action on π2(P) given by

W · 〈P〉 = 〈W · P〉, (1.4)

where W is a word on x±1 and 〈P〉 ∈ π2(P).

The G(P)-action described in Lemma 1.8.2 gives π2(P) the structure of a left ZG(P)-module.

Definition 1.8.5. The second homotopy module of P is the abelian group π2(P) with G(P)-action

given in (1.4).

Let ξ ∈ π2(P). We say that a spherical r-picture P represents ξ if ξ = 〈P〉 and we define

Area(ξ) = min{Area(P) : 〈P〉 = ξ}. If P represents ξ and satisfies Area(P) = Area(ξ), then P is

said to be a minimal r-picture that represents ξ.

Definition 1.8.6. A presentation P is aspherical if π2(P) = 0. A group G is aspherical if it has

an aspherical presentation.

Definition 1.8.6 is equivalent to saying that every spherical r-picture is equivalent to the empty

picture. Knot groups have been shown to be aspherical by Papakyriakopoulos [79], as are Artin

groups of large type [7, 8].
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A famous open problem regarding aspherical presentations is the so called Whitehead conjecture.

We refer to [15] for a general discussion of this conjecture.

Conjecture (Whitehead). Is every subpresentation of an aspherical presentation aspherical?

A presentation is diagrammatically reducible (also called singularly aspherical in [28]) if every

non-empty spherical r-picture contains (after performing bridge moves) a cancelling pair. Thus,

each r-picture can be reduced to the empty picture by performing bridge moves and deleting

floating arc and cancelling pairs. We will sometimes abuse terminology and say a group G is

diagrammatically reducible if it has a diagrammatically reducible presentation.

It is clear that every diagrammatically reducible group is aspherical. Weinbaum [102] proved

that groups of prime alternating links are diagrammatically reducible. Later in this section we define

combinatorial asphericity. There is yet another notion of asphericity, Cohen-Lyndon asphericity,

which we will not define. For the definitions of all the different notions of asphericity and an

illustration of how they are linked, we refer to [28]. See also [17].

Let X be a collection of spherical pictures over P. We introduce a further operation that can

be preformed on a spherical r-picture.

INSERT(X) Insert or delete an X-picture.

Two spherical pictures are said to be equivalent (modulo X) if one can be transformed to the

other by a finite number of the operations BRIDGE, FLOAT, CANCEL and INSERT(X). We

present the following result as a definition.

Definition 1.8.7. ( [84, Theorem 2.5∗]) The elements 〈X〉 (X ∈ X) generate π2(P) if and only if

every spherical r-picture is equivalent (modulo X) to the empty picture. We say that X generates

π2(P) if the elements {〈X〉 : X ∈ X} generate π2(P).

In practice it is convenient to include the following derived operation as one of the basic oper-

ations one may perform on a spherical r-picture.

REPLACE(X) If an r-picture contains a subpicture M which is a copy of some subpicture of a

picture X ∈ X, then replace M by its complement Mc in X.

The operation REPLACE(X) is a consequence of the operations INSERT(X), BRIDGE and

CANCEL.
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Lemma 1.8.3. ( [17, Lemma 1.5]) Let A be a spherical r-picture. Let B be a subpicture of A and

let Bc be the complement of B in A. Suppose P is a spherical r-picture having B as a subpicture

and that P′ is obtained from P by replacing B with Bc. Then

〈P〉 − 〈P′〉 = W · 〈A〉

for some word W on x±1.

A presentation is said to be combinatorially aspherical if π2(P) is generated by primitive can-

celling pairs (also called primite dipoles in [17]). Fig. 1.9(b) is an example of a primitive cancelling

pair. We refer to [84] for an extensive catalogue of combinatorial aspherical presentations, which

includes, for example, one-relator presentations [66] and presentations of groups which satisfy the

small cancellation conditions C(p), T (q) (where 1/p+ 1/q = 1/2) [65].

Let X be a generating set for π2(P). For any element ξ ∈ π2(P) there exist elements ξ1, . . . , ξm

where each ξi = 〈Xi〉 for some Xi ∈ X (i = 1, . . . ,m); elements g1, . . . , gm ∈ G, and εi = ±1

(i = 1, . . . ,m) such that ξ can be written as a sum

m∑

i=1

εigiξi. (1.5)

The volume VX(ξ) of ξ (with respect to X) is the minimum value of m amongst all sums of the

form (1.5) that are equal to ξ. We will write V (ξ) for the volume of ξ if there is no confusion over

which set of module generators we are working with.

Definition 1.8.8. The second order Dehn function of P with respect to a generating set X of

π2(P) is the function δ
(2)
P,X : N → N given by

δ
(2)
P,X(n) = max{VX(ξ) : Area(ξ) 6 n}.

It is not immediately obvious that the set χn = {VX(ξ) : Area(ξ) 6 n} is finite for all n ∈ N.

The following result confirms that this is indeed the case and hence proves that the definition of

the second order Dehn function is well-defined.

Lemma 1.8.4. ( [99, Lemma 2.1.3]) The set χn is finite for all n ∈ N.

The second order Dehn function can be interpreted as measuring the number of balls needed

to fill a 2-sphere of fixed area. Compare this with the interpretation of the first Dehn function

measuring the number of discs needed to fill a closed curve of fixed length.
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Definition 1.8.9. A finite presentation P is said to be of type F3 if π2(P) is finitely generated as

a ZG(P)-module. A group G is of type F3 if it has a finite presentation which is of type F3.

The following theorem is the 2-dimensional analogue of Proposition 1.5.1.

Theorem 1.8.2. ( [6] & [99, Corollary 2.3]) If P1,P2 are two finite presentations of a group G

where P1 is of type F3, then P2 is of type F3. In this case, we have δ
(2)
P1

≃ δ
(2)
P2

.

Theorem 1.8.2 allows us to speak, up to ≃-equivalence, of the second order Dehn function δ
(2)
G

of a group G which is of type F3. In [5, Theorem 4.1] it was shown that word hyperbolic groups

have linear second order Dehn functions. Recall that word hyperbolic groups can be characterized

as the finitely presented groups which have linear first order Dehn functions. We note that the

converse of Theorem 4.1 in [5] is false. Any group with a finite aspherical presentation has a linear

second order Dehn function; however, such groups need not be word hyperbolic, as demonstrated

by the free abelian group of rank two.

As for first order Dehn functions, one may consider the isoperimetric spectrum of second order

Dehn functions, i.e.

IP(2) = {α ∈ [1,∞) : f(x) = xα is a second order Dehn function}.

Work carried out in [5] and [101] provided an infinite set of exponents in the range [3/2, 3) and

provided evidence for the existence of exponents in the range [2,∞). In particular, the results of [5]

proved that there is no gap between 1 and 2 in IP(2). The snowflake construction of [20] provided

a dense set of exponents in the interval [3/2, 2), and in [24] it was shown that 2, 3 ∈ IP(2). More

recently, it was shown in [21] that Q ∩ [3/2,∞) ⊂ IP(2).
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Chapter 2

An introduction to Pride groups

This chapter serves as a general introduction to the class of Pride groups. In addition to defining

the groups we are interested in, we shall present a survey of known results and state the original

results which appear in this thesis.

2.1 Pride groups

Pride groups first appeared in [85] under the title groups given by presentations in which each defin-

ing relator involves at most two types of generators. The class of Pride groups is huge. It includes

Coxeter groups, Artin groups, generalized tetrahedron groups, free products with amalgamation,

and cyclic presentations in which each defining relator involves two types of generators.

Let Γ = {V,E} be a finite simplicial graph with vertex set V and edge set E. Thus, Γ does

not contain two edges which have the same endpoints, nor does Γ contain any edge that is a loop.

We assume for convenience that Γ does not contain any isolated vertices. To each vertex v ∈ V we

assign a group Gv with a fixed finite presentation. Let e = {u, v} ∈ E and let G̃e denote the free

product Gu ∗Gv. To each such edge we assign a set te that consists of cyclically reduced elements

of G̃e, where each element of te involves at least one term from each of Gu and Gv. Associated to

this edge, we define a group

Ge = G̃e/ << te >> .

Let

t =
⋃

e∈E

te.
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The Pride group associated with the above data is the group

G = GV / << t >>,

where

GV = ∗
v∈V

Gv.

We say that Γ is the underlying graph of G. The groups Gv (v ∈ V ) are called the vertex groups

of G and the groups Ge (e ∈ E) are called the edge groups of G. More generally, if Ω is any full

subgraph of Γ which is generated by a set of vertices V (Ω) ⊆ V and has an edge set E(Ω) ⊆ E,

then the subgraph group is

GΩ = ∗
v∈V (Ω)

Gv/ << {te : e ∈ E(Ω)} >> .

(Recall, a subgraph Ω of Γ is full if E(Ω) contains all edges {u, v} of Γ where u, v ∈ V (Ω).)

Example 2.1.1. Let s be a finite set. A Coxeter group is a group C that has a presentation of

the form

〈s ; s2, (st)mst (s, t ∈ s)〉,

where mst ∈ N ∪ {∞} and mst = mts. If mst = ∞, then there is no relation (st)mst . We see that

C is a Pride group with finite vertex groups (cyclic of order 2) and dihedral edge groups.

Example 2.1.2. Let a be finite set. An Artin group is a group A that has a presentation of the

form

〈a ;< a, b >µab=< b, a >µba (a, b ∈ a)〉,

where µab ∈ {2, 3, . . . ,∞}, µab = µba, and < a, b >µab denotes the alternating product of a and b of

length µab, beginning with a. If µab = ∞, then there is no relation involving a and b. We see that

A is a Pride group with infinite cyclic vertex groups and edge groups given by the presentation

〈a, b ; aba . . .︸ ︷︷ ︸
µab terms

= bab . . .︸ ︷︷ ︸
µba terms

〉.

Example 2.1.3. A generalized tetrahedron group is a group T that has a presentation of the form

〈x, y, z ;xl, ym, zn,W1(x, y)
p,W2(y, z)

q,W3(z, x)
r〉,
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where each Wi(a, b) (i = 1, 2, 3) is a cyclically reduced word involving both a and b and all powers

are integers greater than 1. Observe that T is a Pride group with finite vertex groups (cyclic of

orders l,m, n, respectively) and whose edge groups are generalized triangle groups. For example,

the edge group Ge where e = {x, y}, is given by the presentation 〈x, y ;xl, ym,W1(x, y)
p〉.

For each v ∈ V and each e ∈ E there are natural homomorphisms Gv → G and Ge → G.

In general, these homomorphisms are not injective. For example, consider the group given by

the presentation P = 〈x, y, z ; yxy−1 = x2, zyz−1 = y2, xzx−1 = z2〉. This presentation defines a

Pride group with infinite cyclic vertex groups and Baumslag-Solitar edge groups. It is well-known,

however, that G(P) is the trivial group, so the natural homomorphisms Gv → G(P) (v ∈ V ) and

Ge → G(P) (e ∈ E) are clearly not injective.

When the natural homomorphisms are injective, i.e. when the vertex and edge groups embed in

G, the idea is then to try to describe the structure of G in terms of its edge groups; the philosophy

being that the edge groups should “control” the structure of G. More generally, one may consider

Pride groups in which for each full subgraph Ω the natural homomorphism GΩ → G is injective.

Such Pride groups are said to be developable.

Let G be a Pride group with underlying graph Γ. For each edge e = {u, v}, we define ψe to be

the natural epimorphism of G̃e onto Ge, and we denote by me the length of a shortest non-identity

element of kerψe. Note that either me = 1 (in which case one of the natural homomorphisms

Gu → Ge, Gv → Ge is not injective), or me is even. If kerψe is trivial, then me := ∞.

Definition 2.1.1. An edge group Ge (or more precisely a given presentation of Ge) has property-Wk

if and only if me > 2k.

Pride proved [85, Theorem 3] that the vertex and edge groups embed in G if either of the

following two conditions is satisfied:

(I) For each e ∈ E, Ge has property-W2;

(II) The graph Γ is triangle-free and for each e ∈ E, Ge has property-W1.

It was later remarked in [85] that the vertex and edge groups should embed in G under the

weaker asphericity condition:
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(III) For each e ∈ E, Ge has property-W1 and for any triangle in Γ (with edges e1, e2, e3, say)

1

me1

+
1

me2

+
1

me3

6
1

2
.

Pride groups which satisfy the asphericity condition are said to be non-spherical. Corson con-

firmed Pride’s prediction by proving that the vertex and edge groups embed in a non-spherical

Pride group. In fact, he proved [31, p. 562] that a non-spherical Pride group is developable.

We note that Conditions (I) - (III) can be stated in terms of the Gersten-Stallings angle

(Ge;Gu, Gv) (e = {u, v}) between the vertex groups Gu and Gv in the edge group Ge. For me > 1

one defines (Ge;Gu, Gv) = 2π
me

and if me = ∞, the angle is 0. See [62,96] for more details.

Example 2.1.4. ( [35, Example 4.1]) Let C be a Coxeter group (see Example 2.1.1) and let Ge be

the edge group given by the presentation

〈s, t ; s2, t2, (st)mst〉.

Then Ge always have property-W1 and has property-W2 if mst > 2.

Example 2.1.5. ( [83, Example 2]) Let A be an Artin group (see Example 2.1.2) and let Ge be

the edge group generated by a and b. Then Ge has property-Wµab−1 [8, Lemma 6].

Example 2.1.6. Let T be a generalized tetrahedron group (see Example 2.1.3) and let Ge be the

edge group given by the presentation

〈x, y ;xl, ym,W (x, y)p〉,

whereW ≡ xα1yβ1 . . . xαkyβk (1 6 αi < l, 1 6 βi < m for i = 1, . . . , k). Thenme = pk [56, Theorem

3.2], so Ge has property-W1 if k > 2 and Ge has property-W2 if k > 2.

Example 2.1.7. ( [44, Example 1]) For an edge e = {u, v}, let De denote the Cartesian subgroup

of Gu ∗ Gv (i.e. De is the kernel of the natural epimorphism Gu ∗ Gv → Gu × Gv). Then Ge has

property-W1 if te ⊆ De and Ge has property-W2 if te ⊆ D
p(e)
e D′

e for some prime p(e). This follows

from the fact that De/D
p(e)
e D′

e is an elementary abelian p(e)-group with basis [x, y]D
p(e)
e D′

e, where

1 6= x ∈ Gu and 1 6= y ∈ Gv.

We will also be interested in Pride groups which satisfy stronger versions of (I) or (II):
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(H-I) For each e ∈ E, Ge has property-W3;

(H-II) The graph Γ is triangle-free and for each e ∈ E, Ge has property-W2.

One may view Conditions (H-I) and (H-II) as hyperbolic analogues of (I) and (II), respectively.

We will see that among Pride groups (of a particular special class) that have soluble word and

conjugacy problems, the solutions of these problems for groups which satisfy (H-I) or (H-II) are

simpler than those which satisfy (I) or (II).

When studying an arbitrary Pride group one may also wish to impose certain conditions on the

vertex groups.

Definition 2.1.2. Let P be a property of groups (finite, free, hyperbolic, etc.). A Pride group is

said to be vertex-P if each of its vertex groups has property P.

We will be particularly interested in vertex-finite Pride groups, of which Coxeter groups and

generalized tetrahedron groups are examples.

2.2 A survey of known results

A special class of Pride groups in which each defining relator involves exactly two types of generators

first appeared in [82]. These are precisely the vertex-free Pride groups. We note that Meier [69]

uses the terminology simple Pride groups for vertex-free Pride groups.

Theorem 2.2.1. ( [82, Theorem 4]) If a vertex-free Pride group satisfies (I) or (II), then it is

developable.

The (co)homology of a vertex-free Pride group G was calculated in [87]. The authors proved [87,

Theorem 1] that the relation module of G decomposes into a direct sum of relation modules of the

edge groups. Using this, they were then able to express the (co)homology of G in terms of the

(co)homology of the edge groups. In particular, they proved the following.

Theorem 2.2.2. ( [87, Theorem 2]) Let G be a vertex-free Pride group which satisfies (I) or (II).

Then for any left G-module A and any right G-module B,

Hn(G,A) ∼=
∏

e∈E

Hn(Ge, A)
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and

Hn(G,B) ∼=
∏

e∈E

Hn(Ge, B)

for all integers n > 3.

A consequence of this result [87, Theorem 3] is that any finite subgroup of a vertex-free Pride

group is contained in a conjugate of one of the edge groups.

The next result gives necessary and sufficient conditions for a vertex-free Pride group to be

diagrammatically aspherical. Essentially, a presentation is diagrammatically aspherical (also called

combinatorially reducible in [17]) if every non-empty spherical picture over the presentation contains

(after performing bridge moves) a spherical subpicture which contains exactly two discs. Note,

diagrammatic asphericity is weaker than diagrammatic reducibility. We refer to [28] for the precise

definition of a diagrammatically aspherical presentation.

Theorem 2.2.3. ( [83, Theorem 1]) Let G be a vertex-free Pride group which satisfies (I) or

(II), and let P be a presentation of G. Then P is diagrammatically aspherical if and only if each

presentation of an edge group is diagrammatically aspherical.

We note that Edjvet [35] has introduced a larger class of presentations that generalize vertex-

free Pride groups. By replacing “graph” with “set of finite subsets of a given set” and “edge group”

by “face group” he is able to prove analogous results to Theorems 2.2.1 and 2.2.3. Also, Benson [14]

has studied the relative hyperbolicity of such groups.

Let G be an arbitrary Pride group which satisfies (I) or (II), and let Γ be the underlying graph

of G. In [85, Theorem 1], Pride obtained the short exact sequence

0 →
⊕

v∈V

(ZG⊗Gv
Mv)

|S(v)|−1 →
⊕

e∈E

(ZG⊗Ge
Me) →M → 0,

where Mv,Me,M are the relation modules corresponding to the presentations of Gv, Ge, G, respec-

tively (v ∈ V, e ∈ E), and where S(v) is the set of edges of Γ that are incident with the vertex v.

From this Pride obtained [85, Corollary 1.1] the short exact sequence

0 →
⊕

v∈V

(ZG⊗Gv
IGv)

|S(v)|−1 →
⊕

e∈E

(ZG⊗Ge
IGe) → IG→ 0, (2.1)

where for any group H, IH is the augmentation ideal. Some (co)homological consequences can be

derived from (2.1). In particular, if there exists n > 1 such that Gv has cohomological dimension
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less than or equal to n for all v ∈ V , then any finite subgroup of G is contained in a conjugate of

some subgroup of Ge (e ∈ E) [85, Corollary 1.3].

Theorem 2.2.4. ( [85, Theorem 2]) If G satisfies (I) or (II) and if each Ge is combinatorially

aspherical, then G is combinatorially aspherical.

Fennessey [44] gave sufficient conditions for a Pride group to be SQ-universal. A group G is said

to be SQ-universal if every countable group can be embedded in some quotient group of G. We

note that SQ-universality is a measure of the largeness of a group. See [38] and [81] for a general

discussion of largeness in group theory.

Theorem 2.2.5. ( [44, Theorem 2.2]) Let G be a Pride group which satisfies (I) or (II), and let Γ

be the underlying graph of G. Assume that there are vertices u, v of Γ satisfying the following: not

both Gu, Gv have order 2; {u, v} is not an edge of Γ; and if condition (II) holds (but (I) does not),

then adjoining {u, v} to Γ does not create a triangle. Then G is SQ-universal.

The final result of this section concerns a non-spherical Pride group. A class of groups C satisfies

the Tits alternative if each group in C contains a non-abelian free subgroup or has a soluble subgroup

of finite index.

Theorem 2.2.6. ( [62, Theorem 1]) Every non-spherical Pride group G based on a graph with at

least four vertices contains a non-abelian free subgroup unless G has the presentation

〈x1, x2, x3, x4 ;x2
1, x

2
2, x

2
3, x

2
4, (x1x2)

2, (x2x3)
2, (x3x4)

2, (x4x1)
2〉,

in which case G is virtually abelian.

2.3 A survey of original results

In Chapter 4 we solve the word and conjugacy problems for a vertex-finite Pride group and in

Chapter 5 we study the second homotopy module of the natural presentation of a non-spherical

Pride group. In the following three subsections we present our main results. The statement of each

result contains a reference to the section in which the proof of that result may be found.
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2.3.1 The word problem

In our first result we obtain isoperimetric functions for a vertex-finite Pride group.

Theorem 1. (§4.1) Let G be a vertex-finite Pride group with underlying graph Γ = {V,E}, and let

δE = max{δGe
: e ∈ E}.

(1) If G satisfies (I) or (II), then δG(n) 4 n2δE(n) for all n ∈ N.

(2) If G satisfies (H-I) or (H-II), then δG(n) 4 nδE(n) for all n ∈ N.

Thus, if G satisfies (I) or (II), then it has a quadratic isoperimetric inequality (modulo δE).

Whereas, if G satisfies (H-I) or (H-II), it has a linear isoperimetric inequality (modulo δE). This

fact adds weight to the claim that Conditions (H-I) and (H-II) are hyperbolic analogues of (I) and

(II), respectively.

The following corollary of Theorem 1 provides a solution of the word problem for a vertex-finite

Pride group which satisfies (I) or (II).

Corollary 1. (§4.1) If each edge group has a soluble word problem, then G has a soluble word

problem.

We suspect that an isoperimetric function similar to the one that appears in Statement (1) of

Theorem 1 could be obtained for a Pride group in which each vertex group is not necessarily finite.

The following theorem provides examples of such groups for which this can be done. Let G be a

vertex-finite Pride group which satisfies (II), and let Γ = {V,E} be the underlying graph of G.

Theorem 2. (§4.1.1) Given G one can construct a Pride group Q(G) which satisfies (II) and which

contains an infinite cyclic vertex group. The remaining vertex groups are finite. Moreover, the first

order Dehn function δQ of Q(G) satisfies

n2
4 δQ(n) 4 n3δE(n).

Remark 1. The Pride group Q(G) is a trivial HNN-extension of G.

Under suitable conditions on the edge groups, we obtain a lower bound for the first order Dehn

function of a vertex-free Pride group.
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Theorem 3. (§4.1.1) Let G be a vertex-free Pride group which satisfies (I) or (II), and let Γ =

{V,E} be the underlying graph of G. Suppose each edge group is diagrammatically reducible. Then

for all n ∈ N,

δG(n) < δE(n)

where δE = max{δGe
: e ∈ E}.

2.3.2 The conjugacy problem

Let G be a vertex-finite Pride group which satisfies (I) or (II), and let Γ = {V,E} be the underlying

graph of G. Also, let Ps = 〈x ; r〉 be the standard presentation of G (see the introduction of Chapter

3). In Theorem 4 we obtain necessary and sufficient conditions for two cyclically injective words

W and Z on x±1 to represent conjugate elements of G. In addition to (I) or (II), we require that G

satisfies Conditions (1) - (6), which are stated at the end of this section. We are then able to prove

Lemmas 4.2.2 - 4.2.7 (see §4.2) which reduce the problem of deciding whether or not two words on

x±1 represent conjugate elements of G to a “nice” set of words. In particular, we may assume that

W and Z satisfy Conditions (i) - (iv) (these are also stated at the end of this section).

For any two words U, V on x±1, we will write U
n
∼ V if there exists a word Y on x±1 of length

at most n such that UY V −1Y −1 represents the identity element of G. If |U | = n, then U
n
∼ U ′ for

any cyclic permutation U ′ of U .

Theorem 4. (§4.2) Let G satisfy Conditions (1) - (6) and assume that W and Z satisfy Conditions

(i) - (iv). Let n = |W | + |Z|. Then W,Z represent conjugate elements of G if and only if there

exist words W1, . . . ,Wl, Z1, . . . , Zl on x±1 such that

W
n
∼W ′ 10n

∼ W1
10n
∼ . . .

10n
∼ Wl

20n
∼ Zl

10n
∼ . . .

10n
∼ Z1

10n
∼ Z ′ n

∼ Z (2.2)

where |Wi|, |Zi| 6 10qn2 (i = 1, . . . , l) for q = 3 or 4 (depending if (I) or (II) holds, respectively),

and where W ′, Z ′ are cyclic permutations of W and Z, respectively.

Given Theorem 4, we can write down an algorithm that solves the conjugacy problem for G.

First note that for any two words U, V ∈ (x±1)∗ and any n ∈ N, the relation U
n
∼ V is decidable

(G is finitely generated and has a soluble word problem). Also, given any word U on x±1 we can

decide whether or not U is cyclically injective. Let W,Z be cyclically injective words on x±1 which

satisfy Conditions (i) - (iv), and where |W | + |Z| = n. Write W ∼∼ Z if there exist W1, . . . ,Wl
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and Z1, . . . , Zl such that (2.2) holds. Let C = {U : U ∈ (x±1)∗ and |U | 6 10qn2}, where q = 3 or 4

(depending if G satisfies (I) or (II), respectively). Theorem 4 states that W,Z represent conjugate

elements of G if and only if W ∼∼ Z with all the intermediate Wi’s and Zj ’s in C. Since G is

finitely generated, C is a finite set. All words U on x±1 such that U ∈ C and W ∼∼ U with all the

intermediate Wi, Zj ∈ C, can be enumerated in a finite number of steps. Then W and Z represent

conjugate elements of G if and only if Z appears in the list of the U ’s.

Remark 2. The above algorithm is essentially Schupp’s algorithm [92] which solves the conjugacy

problem for presentations satisfying the small cancellation conditions C(6), C(4) and T (4), or C(3)

and T (6).

Now suppose G satisfies (H-I) or (H-II) and Conditions (1) - (6). Let W,Z be cyclically injective

words on x±1. As above, we may assume that W and Z satisfy (i) - (iv). In this case it is convenient

to further assume that:

(v) W and Z are cyclically r̂-reduced words on x±1.

We may assume this by Lemma 4.2.9. (See Definition 4.2.1 for the meaning of a cyclically r̂-reduced

word.)

Theorem 5. (§4.2.1) Let G satisfy Conditions (1) - (6) and assume that W and Z satisfy Condi-

tions (i) - (v). Let n = |W |+ |Z|. Then W,Z represent conjugate elements of G if and only if one

of the following two conditions holds:

(C1) There exist cyclic permutations W ′ and Z ′ of W and Z, respectively, such that

W
n
∼W ′ 3

∼ Z ′ n
∼ Z.

(C2) There exist cyclic permutations W ′ and Z ′ of W and Z, respectively, such that W ′ = Z ′.

From Theorem 5 we obtain a particularly simple algorithm that solves the conjugacy problem

for G. Let W,Z be cyclically injective words on x±1 which satisfy Conditions (i) - (v), and let

|W | + |Z| = n. Write down all cyclic permutations W ′, Z ′ of W and Z, respectively, and write

down all words on x±1 of length at most 3. Since G is finitely generated, there are finitely many

such words. Now use the solution of the word problem for G to test whether Condition (C1) or (C2)

45



holds. If one of (C1) or (C2) holds, then W and Z represent conjugate elements of G. Otherwise,

they do not.

Let us now state Conditions (1) - (6). In what follows

−GE := G−
⋃

e∈E

Ge.

Also, for each e ∈ E, xe denotes the generators of a particular presentation of the edge group Ge.

(1) For each e ∈ E, Ge has a soluble conjugacy problem.

(2) For each e ∈ E, Ge is malnormal in G.

(3) For each pair of distinct edges e, f ∈ E, we can decide, given a word W on x±1
e and a word

Z on x±1
f , whether or not W,Z represent conjugate elements of G.

(4) For each e ∈ E, the generalized word problem (relative to x±1
e ) is soluble.

(5) For each e ∈ E, we can decide, given a word U on x±1
e and a word W on x±1 that represents

an element of −GE , whether or not U,W represent conjugate elements of G.

(6) For each e ∈ E, we can decide, given words W,Z on x±1 that represent elements of −GE ,

whether or not there exists a word U on x±1
e such that W,U and U,Z represent conjugate

elements of G.

A subgroup H of a group K is said to be malnormal if for each k ∈ K,

H ∩ kHk−1 6= {1} ⇔ k ∈ H.

Thus, if h1, h2 ∈ H/{1} are conjugate in H, then any conjugating element for h1 and h2 must also

be in H. In this case we say that h1 and h2 are conjugate in K if and only if they are conjugate in

H.

Conditions (i) - (iv) are as follows:

(i) W and Z both represent non-identity elements of G;

(ii) W and Z do not represent conjugate elements of GV ;

(iii) W and Z are words on x±1 that represent (distinct) elements of −GE ;

(iv) For each e ∈ E, there does not exist a word U on x±1
e such that W,U and U,Z represent

conjugate elements of G.
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2.3.3 The second homotopy module

Let G be a non-spherical Pride group with underlying graph Γ = {V,E}, and let P = 〈x ; r〉 be the

natural presentation for G (see the introduction of Chapter 5).

Theorem 6. (§5.3) For each e ∈ E, let Xe be a generating set for π2(Pe). Then

X =
⋃

e∈E

Xe

is a generating set for π2(P). In particular, if each Ge is of type F3, then G is of type F3.

The following corollary of Theorem 6 generalizes Pride’s result [85, Theorem 2] concerning the

combinatorial asphericity of Pride groups which satisfy Conditions (I) or (II).

Corollary 2. (§5.3) Let G be a non-spherical Pride group. If each Ge is combinatorially aspherical,

then G is combinatorially aspherical. In particular, if each Ge is aspherical, then G is aspherical.

If we assume each vertex group is free, then we obtain necessary and sufficient conditions for G

to be diagrammatically reducible.

Theorem 7. (§5.2) Let G be a non-spherical vertex-free Pride group with underlying graph Γ =

{V,E}. Then G is diagrammatically reducible if and only if each edge group is diagrammatically

reducible.

Remark 3. One may replace “reducible” with “aspherical” in the statement of Theorem 7 to

obtain a generalization of Pride’s result [83, Theorem 1] concerning the diagrammatic asphericity

of vertex-free Pride groups.

The proof of Theorem 6 provides us with a method for calculating an upper bound for the

second order Dehn function δ
(2)
G of a non-spherical Pride group G. If each vertex group is free, then

we have the following.

Theorem 8. (§5.4) Let G be a non-spherical vertex-free Pride group with underlying graph Γ =

{V,E}. Assume for each e ∈ E that Ge is of type F3 and let δ
(2)
E = max{δ̄

(2)
Ge

: e ∈ E}. Then

δ
(2)
G (n) 4 δ

(2)
E (n)

for all n ∈ N.
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The general case is more complicated. In order to obtain an upper bound for δ
(2)
G we need

to define a new area distortion function (see Definition 5.4.1 in §5.4). This function captures the

key information which one must obtain to calculate an upper bound for δ
(2)
G ; however, it is not

well-defined in general. With this is mind, we prove the following.

Proposition 1. (§5.4) Let G be a non-spherical Pride group with underlying graph Γ = {V,E},

and let P be the natural presentation of G. For each e = {u, v} ∈ E, let P̃e be a presentation of G̃e

and let Λe be the area distortion function of P̃e relative to Pe. Assume each Ge is of type F3 and

set Λ = max{Λ̄e : e ∈ E}. Then for all n ∈ N,

δ
(2)
P (n) 6 δ

(2)
E (n+ 2nΛn(n2 + n)) + δ

(2)
V (n)

where δ
(2)
V = max{δ̄

(2)
Pv

: v ∈ V }, δ
(2)
E = max{δ̄

(2)
Pe

: e ∈ E} and Λn is the n-th power of Λ.
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Chapter 3

Diagrams over the standard

presentation of a vertex-finite Pride

group

Let G be a vertex-finite Pride group with underlying graph Γ = {V,E}. We now fix a presentation

of G that will be used throughout this chapter. For each v ∈ V , let xv be a set that is in one-to-one

correspondence with the elements of Gv and let

rv = {x1x2x
−1
3 : x1, x2, x3 ∈ xv},

where xi (i = 1, 2, 3) corresponds to the group element gi ∈ Gv and where g3 is equal to the product

g1g2 in Gv. Then Pv = 〈xv ; rv〉 is a finite presentation of Gv where rv is the multiplication table

of Gv. For each e = {u, v} ∈ E, let xe = xu ∪ xv and let

re = ru ∪ rv ∪ r′e,

where r′e is a set of cyclically reduced words on x±1
e that represent the elements of te. We denote

the union of the r′e’s (e ∈ E) by r′. Then Pe = 〈xe ; re〉 is a finite presentation of Ge. It follows

that

Ps = 〈x ; r〉 (3.1)

is a finite presentation of G where

x =
⋃

v∈V

xv and r =
⋃

e∈E

re.
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We call Ps the standard presentation of G.

3.1 Simply-connected r-diagrams and federations

Let S be a simply-connected r-diagram with labelling function φ, and let E(S) denote the set of

regions of S whose labels are elements of (r′)s (recall Definition 1.7.1). If ∆ ∈ E(S) is such that

φ(∂∆) ∈ (r′e)
s for some e ∈ E, then we define Σ(∆) = e. For a simple path α ∈ S, let t(α) denote

the set of all v ∈ V for which some element of xv occurs in the label of α. Assume E(S) 6= ∅.

Choose some region ∆ ∈ E(S) and consider the collection of regions ∆′ of S for which the following

holds: there exist regions ∆ = ∆0,∆1, . . . ,∆n = ∆′ of S with t(∂∆i) ⊆ Σ(∆) for i = 1, . . . , n

and where ∆i,∆i+1 have an edge in common for i = 0, . . . , n− 1. Furthermore, {∆0, . . . ,∆n} is a

maximal set of regions that have this property. Following [85], we call this collection of regions, and

the subdiagram they determine, a federation and we denote it by F . We define Σ(F) = Σ(∆). If

Σ(F) = e for some e ∈ E, then F is an re-diagram. If F is a simply-connected re-diagram, then by

Theorem 1.7.1 any label of F represents the identity element of Ge. Equivalently, φ(∂F) represents

an element of kerψe : G̃e → Ge. If F is not simply-connected, then S − F contains at least one

non-empty bounded simply-connected r-subdiagram B which contains at least one region ∆′ with

the property that t(∂∆′) = f for some f ∈ E/{e}. Moreover, either ∂F ∩ ∂B = ∅ or ∂F ∩ ∂B = ν

for some vertex ν of ∂F as shown in Fig. 3.1 below.

(a) ∂F ∩ ∂B = ∅ (b) ∂F ∩ ∂B 6= ∅

Figure 3.1: Non-simply-connected federations.

Let F1 be a federation of S. If F1 6= S, then construct a federation F2 of S−F1. If F2 6= S−F1,
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then construct a federation F3 of S − (F1 ∪ F2), and so on. Eventually, we will end up with a

collection of subdiagrams F1, . . . ,Fn of S which cover S and satisfy the property that Fi+1 is a

federation of

S − (
i⋃

j=1

Fj).

We call the collection of subdiagrams FS = {Fi}
n
i=1 a federal subdivision of S. Although it has no

bearing on what follows, we note that a federal subdivision is not necessarily unique.

For each edge e ∈ E, let r̂e denote the set of all words on x±1
e that represent a non-identity

element of kerψe and let r̂ be the union of the r̂e’s. Note that r̂ is symmetrized. Let FS = {Fi}
n
i=1 be

a federal subdivision of a simply-connected r-diagram S that satisfies the following two conditions:

(i) Each Fi ∈ FS is simply-connected (i = 1, . . . , n);

(ii) φ(∂Fi) ∈ r̂ for i = 1, . . . , n.

By deleting the interior vertices and interior edges of each federation Fi ∈ Fs (i = 1, . . . , n)

we obtain an r̂-diagram which we denote by D. In the following subsection we describe two

modifications which we make to D. The fact that each vertex group is finite will play an important

role in one of these modifications.

3.1.1 The importance of being finite

Suppose D contains an interior vertex ν of degree 2 such that the edges ε1, ε2 which are incident

with ν have labels x1, x2 ∈ xu, respectively, for some u ∈ V . We wish to remove such a vertex.

This is a standard modification to make and one normally proceeds as follows. Delete ν, ε1, ε2 and

in their place add a single edge ε which has the same initial (respectively, terminal) vertex as ε1

(respectively, ε2). One then assigns the label x1x2 to this new edge. Thus interior edges become

labelled by words on x±1
u (u ∈ V ). We will proceed in a similar way; however, the label we assign

to ε will be an element of xu. Thus interior edges will remain labelled by elements of xu (u ∈ V ).

We are able to do this by virtue of the fact that each vertex group is finite.

Let ν1 and ν2 be the endpoints of ε1 and ε2, respectively, which are not equal to ν. There are

two cases to consider: the case when ν1 = ν2 and the case when ν1 6= ν2.

Let us first consider the case when ν1 6= ν2 (see Fig. 3.2 (a)). Let α be the path ε1ε2. On either

side of α, draw edges ε3, ε4 which are “close” to α and which have endpoints ν1, ν2 (see Fig. 3.2 (b)).
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We assign the same orientation to ε3 and ε4. The presentation Pu contains, as its defining relators,

the multiplication table of Gu. We may use, therefore, the defining relator x1x2x
′−1 to assign the

label x′ to ε3 and ε4. Thus, ε3 and ε4 are both labelled by the same element of xu.

(a) ν1 6= ν2 (b) Edges ε3 and ε4

Figure 3.2: A vertex of degree 2 with ν1 6= ν2.

Next, delete ν, ε1, ε2 and identify ε3 with ε4 (see Fig. 3.3). The labels of ∆1 and ∆2 have

changed; however, φ(∂∆1) and φ(∂∆2) are still elements of r̂. We proceed to remove other such

vertices of degree 2 in this way.

Figure 3.3: Identifying ε3 with ε4 in the case when ν1 6= ν2.

Now suppose ν1 = ν2. Let α denote the (closed) path ε1ε2 and let ∆ be the component of D

bounded by α (see Fig. 3.4 (a)). In the interior of ∆ draw a loop ε3 at ν1. Also, draw a loop ε4 at

ν1 which lies in the region ∆2 and which is “close” to the path ε1ε2 (see Fig. 3.4 (b)). We assign the

same orientation to ε3 and ε4. As in the previous case, we label ε3 and ε4 by an element x′ ∈ xu

which corresponds to the product of the group elements which correspond to x1 and x2, respectively.

Next, delete ν, ε1, ε2 and identity ε3 with ε4 (see Fig. 3.5). The label of ∆2 has changed; however,

φ(∂∆2) is still an element of r̂. In this case we can delete the loop ε3 (= ε4) as the resulting label

of ∆2 will still be an element of r̂.

Remark 3.1.1. After removing all such interior vertices of degree 2, we observe that each interior
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(a) ν1 = ν2 (b) Edges ε3 and ε4

Figure 3.4: A vertex of degree 2 with ν1 = ν2.

edge is labelled by an element of xu (u ∈ V ). This fact will be crucial to our work. See in particular

Lemma 3.1.1.

Figure 3.5: Identifying ε3 with ε4 in the case when ν1 = ν2.

The second modification removes particular interior vertices of degree 3. Suppose D contains

an interior vertex of degree 3 (see Fig. 3.6(a)). Then t(∂∆1) ∩ t(∂∆2) ∩ t(∂∆3) is either empty, or

is a singleton set, i.e. equal to {u} for some u ∈ V . Using the same technique as the one described

in [82, p. 254], we will modify D so that the latter possibility does not occur.

Suppose that

t(∂∆1) ∩ t(∂∆2) ∩ t(∂∆3) = {u}

for some u ∈ V . Then each of ε1, ε2, ε3 is labelled by an element of xu. Cut along the edge ε1 as

in Fig. 3.6(b). Note that the boundary of ∆1 has changed; however, φ(∂∆1) is still an element of

r̂. We have created new vertices of degree 2 which must be removed. After removing such vertices
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we proceed to examine other interior vertices of degree 3, and repeat the procedure if necessary.

(a) A vertex of degree 3 (b) The result of cutting along ε1

Figure 3.6: Removing a vertex of degree 3.

3.1.2 The derived diagram

After making the modifications to D described in §3.1.1 we obtain an r̂-diagram which we denote

by Ŝ. We say that Ŝ is the derived diagram of S corresponding to FS . If there is no confusion

over which diagram or federal subdivision we are working with, then we shall call Ŝ the derived

diagram. Note that by construction of Ŝ, ∂Ŝ = ∂S. Therefore, if S is a simply-connected r-diagram

for W ∈ (x±1)∗, then some boundary cycle of Ŝ has label W . The following lemma highlights two

key properties of the derived diagram.

Lemma 3.1.1. Let Ŝ be the derived diagram constructed above.

(1) If ∆1,∆2 are distinct regions of Ŝ that have an edge in common, then t(∂∆1)∩ t(∂∆2) = {u}

for some u ∈ V .

(2) If α is a non-empty simple path in Ŝ with label W , then |W | is equal to the number of edges

contained in α. In particular, if ∆ is a region of Ŝ, then |φ(∂∆)| = d(∆).

Proof. Let ∆1,∆2 be two distinct regions of Ŝ that have an edge in common, and suppose that

t(∂∆1) ∩ t(∂∆2) = {u, v} for some u, v ∈ V . Let F1,F2 be the federations that correspond to ∆1
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and ∆2, respectively. Then Σ(F1) = Σ(F2) = {u, v} and F1,F2 have an edge in common. However,

this contradicts the fact that F1 and F2 are federations (they should have been incorporated into

one larger federation).

Property (2) follows easily from Remark 3.1.1. Let α be a non-empty path in Ŝ with label W .

Since each edge of Ŝ is labelled by an element of xu (for some u ∈ V ) we conclude that |W | is equal

to the number of edges contained in α.

The following lemmas give Ŝ the structure of a [3, 2k + 2]-diagram or, if Γ is triangle-free, the

structure of a [4, 2k + 2]-diagram.

Lemma 3.1.2. If ν is an interior vertex of Ŝ, then d(ν) > 3, and if Γ is triangle-free, then each

interior vertex of Ŝ has degree at least 4.

Proof. It is clear that d(ν) > 1. Suppose d(ν) = 2 and let ε1, ε2 be the edges incident with ν. By

construction of Ŝ, φ(ε1) ∈ xu and φ(ε2) ∈ xv for some distinct u, v ∈ V . Since ν is an interior

vertex there exist distinct regions ∆1,∆2 of Ŝ such that ε1ε2 ∈ ∂∆1 ∩ ∂∆2. Therefore, ∆1 and ∆2

have an edge in common and t(∂∆1)∩ t(∂∆2) = {u, v}, contradicting Property (1) of Lemma 3.1.1.

Now assume Γ is triangle-free and that Ŝ contains an interior vertex of degree 3 (see Fig. 3.6(a)).

By Property (1) of Lemma 3.1.1,

|t(∂∆1) ∩ t(∂∆2)| = |t(∂∆2) ∩ t(∂∆3)| = |t(∂∆3) ∩ t(∂∆1)| = 1

and by construction of Ŝ, t(∂∆1)∩t(∂∆2)∩t(∂∆3) = ∅. Thus there exist distinct vertices u, v, w ∈ V

with t(∂∆1) = {u, v}, t(∂∆2) = {v, w} and t(∂∆3) = {w, u}. Therefore, we have a triangle in Γ.

Lemma 3.1.3. If each edge group has property-Wk, then d(∆) > 2k + 2 for each region ∆ of Ŝ.

Proof. Let ∆ be a region of Ŝ with t(∂∆) = e for some e ∈ E. Since Ŝ is an r̂-diagram, we have

φ(∂∆) ∈ r̂e, i.e. φ(∂∆) represents a non-identity element of kerψe. Since Ge has property-Wk,

|φ(∂∆)| > 2k + 2. Thus, d(∆) > 2k + 2.

Let S be a simply-connected r-diagram and let FS be a federal subdivision of S which satisfies

Conditions (i) and (ii) of §3.1.

Lemma 3.1.4. Suppose FS contains at least two federations. If (I) or (II) holds, then S contains

a federation F such that Σ(F) ⊆ t(∂S) and ∂F ∩ ∂S is a consecutive part of ∂S.
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Proof. Let Ŝ be the derived diagram of S corresponding to FS . If (I) holds, then Ŝ is a [3, 6]-diagram

and it follows from Theorem 1.6.2 that Ŝ contains a simple boundary region ∆ with i(∆) 6 3. Let

t(∂∆) = {u, v} for some u, v ∈ V , so that the label of each interior edge of ∂∆ is an element of xu

or xv. Since i(∆) 6 3, the W2 condition implies that the label of α = ∂∆ ∩ ∂Ŝ is a word which

contains letters from both xu and xv. Therefore, t(∂∆) = t(α) ⊆ t(∂Ŝ). Now, ∆ arose from some

federation F in S. Since Σ(F) = t(∂∆), we have

Σ(F) = t(∂∆) ⊆ t(∂Ŝ) = t(∂S).

Furthermore, since ∆ is a simple boundary region of Ŝ, ∂F ∩ ∂S is a consecutive part of ∂S.

Now assume (II) holds. In this case Ŝ is a [4, 4]-diagram and it follows from Theorem 1.6.2

that Ŝ contains a simple boundary region ∆ with i(∆) 6 2. In this case, if t(∂∆) = {u, v} for

some u, v ∈ V , the W1 condition implies that the label of α = ∂∆ ∩ ∂Ŝ is a word which contains

letters from both xu and xv. Therefore, t(∂∆) = t(α) ⊆ t(∂Ŝ) and so S must contain a federation

satisfying the desired conditions.

Recall, E(S) is the set of regions of a simply-connected r-diagram S whose labels are elements

of (r′)s. We say that S is minimal with respect to |E(S)| if the following is true:

|E(S)| = min{|E(S ′)| : S ′ is a simply-connected r-diagram such that φ(∂S ′) ≡ φ(∂S)}.

Proposition 3.1.1. Let FS be a federal subdivision of a simply-connected r-diagram S which is

minimal with respect to |E(S)| (> 1). If (I) or (II) holds, then FS satisfies the following two

conditions:

(i) Each F ∈ FS is simply-connected;

(ii) φ(∂F) ∈ r̂ for each F ∈ FS .

Proof. Assume FS does satisfy Condition (i). We will show that FS must then satisfy Condition

(ii). Let F be a federation with Σ(F) = e (= {u, v}) and let δ be a boundary cycle of F whose label

W represents the identity element of kerψe. Let P be the simply-connected r-picture corresponding

to S and let F be the subpicture of P that corresponds to the federation F . Note that W (F) ≡W .

Since S is minimal with respect to |E(S)|, P is minimal with respect to |E(P)|, where E(P) is the

set of discs of P whose labels are elements of (r′)s.
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Suppose W is freely equal to the empty word. In this case we can perform bridge moves

on the boundary arcs of F to separate F from the rest of P. We can then delete F to obtain a

simply-connected r-picture P1 such that W (P1) ≡ W (P) and |E(P1)| < |E(P)|, contradicting the

minimality of P.

Now suppose W is not freely equal to the empty word. Since W represents the identity element

of G̃e (= Gu ∗ Gv), it follows from Theorem 1.8.1 that there exists a simply-connected (ru ∪ rv)-

picture PW for W . We can replace F with PW in the following way. First, surround F with a circle

S1 such that S1 is transverse to the boundary arcs of F and does not intersect any other arc of F

or P. Delete the discs and arcs of F that are contained in S1, and in their place add PW . Next,

join together the boundary arcs of PW and the arcs of P which meet S1 in such a way that no two

arcs cross each other and only arcs of like label and orientation are joined. We obtain an r-picture

P2 such that W (P2) ≡ W (P) and |E(P2)| < |E(P)|, contradicting the minimality of P. Thus, W

must represent a non-identity element of kerψe, i.e. W ∈ r̂.

Now assume FS does not satisfy Condition (i). Let Fj be a non-simply-connected federation

of FS and let B be a non-empty bounded simply-connected r-subdiagram of S − Fj (see Fig. 3.1).

Note that B is minimal with respect to |E(B)|. We may choose Fj so that each federation contained

in B is simply-connected. Thus, each federation contained in B satisfies Condition (ii), and B must

contain at least two federations. It follows from Lemma 3.1.4 that B contains a federation Fi such

that Σ(Fi) ⊆ t(∂B) and ∂Fi ∩ ∂B is a consecutive part of ∂B. Since t(∂B) ⊆ Σ(Fj) we deduce that

Σ(Fi) = Σ(Fj). However, Fi and Fj have an edge in common so this contradicts the fact that Fi

and Fj are federations. We conclude that FS must satisfy Condition (i). This completes the proof

of Proposition 3.1.1.

3.2 Annular r-diagrams

Let A be an annular r-diagram with outer boundary σ and inner boundary τ , and with labelling

function φ. The notation E(A) and t(α) makes sense for A, so we may define a federation of A

and a federal subdivision FA of A. Suppose A contains a non-simply-connected federation F such

that A− F contains exactly two annular components (see Fig. 3.7). In this case we say that F is

an annular federation of A. An annular federation has a unique outer boundary σF and a unique

inner boundary τF . Note that σF ∩ σ and τF ∩ τ are not necessarily empty. Moreover, if Σ(F) = e
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for some e = {u, v} ∈ E, then F is not necessarily an annular re-diagram. However, we shall never

have to consider such federations. (Thus one may assume that the “holes” which appear in Fig. 3.7

are filled in.) If F is an annular re-diagram and if W and Z−1 are the labels of, respectively, an

outer and an inner boundary cycle of F , then W and Z represent conjugate elements of Ge. Note

that W (respectively, Z−1) is either a word on x±1
u , a word on x±1

v , or is a word involving at least

one xu-letter and at least one xv-letter.

Figure 3.7: An annular federation F .

Let FA = {Fi}
n
i=1 be a federal subdivision of A which satisfies the following two conditions:

(i) Each Fi ∈ FA is simply-connected (i = 1, . . . , n);

(ii) φ(∂Fi) ∈ r̂ for i = 1, . . . , n.

In this case we can construct the annular derived diagram Â of A corresponding to F . The

construction of Â is the same as the construction of its simply-connected counterpart. Thus, Â

is an annular r̂-diagram that satisfies Properties (1) and (2) of Lemma 3.1.1. Note that the outer

boundary of Â is equal to the outer boundary of A, so the label of any outer boundary cycle of A

is the label of an outer boundary cycle of Â. The same is true if we replace “outer” by “inner”.

Replacing “Ŝ” with “Â” in the proofs of Lemma 3.1.2 and Lemma 3.1.3 gives Â the structure

of an annular [3, 2k + 2]-diagram. If Γ is triangle-free, then Â has the structure of an annular

[4, 2k + 2]-diagram.
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Lemma 3.2.1. If ν is an interior vertex of Â, then d(ν) > 3, and if Γ is triangle-free, then each

interior vertex of Â has degree at least 4.

Lemma 3.2.2. If each edge group has property-Wk, then each region of Â has degree at least 2k+2.

Let A be an annular r-diagram for the pair (W,Z−1) where W,Z are words on x±1. We say

that A is minimal with respect to |E(A)| if

|E(A)| = min{|E(A′)| : A′ in an annular r-diagram for the pair (W,Z−1)}.

One may check that the proof of Proposition 3.1.1 did not depend on the fact that the r-diagram

in question was simply-connected.

Proposition 3.2.1. Let FA be a federal subdivision of an annular r-diagram A, which is minimal

with respect to |E(A)| (> 1). If FA does not contain any annular federations and if (I) or (II)

holds, then FA satisfies Conditions (i) and (ii).

Recall that the degree of an annular diagram is the number of edges contained in an outer

boundary cycle plus the number of edges contained in an inner boundary cycle (counted with

appropriate multiplicities).

The following result is crucial to our work. Let A be an annular r-diagram which is minimal

with respect to |E(A)|. Suppose σ and τ are simple closed paths and that A has degree n. Let FA

be a federal subdivision of A which does not contain any annular federations.

Proposition 3.2.2. If G satisfies (I) or (II), then the degree of each region of the annular derived

diagram Â (corresponding to FA) is at most 10n.

Proof. The proof is split into two cases: the case when G satisfies Condition (I) and the case when

G satisfies Condition (II). The arguments used in both are similar.

Case 1. Suppose G satisfies (I). Then by Lemmas 3.2.1 and 3.2.2, Â is an annular [3, 6]-diagram.

We proceed by induction on Area(Â). We note that Area(Â) 6= 1 for otherwise, FA would contain

an annular federation. If Area(Â) = 2, then Â can have at most two interior edges so each region

has degree at most 2+n < 10n. Suppose the result is true for all diagrams satisfying the hypotheses

with area k > 2.

Suppose Â contains a simple outer boundary region ∆ that contains at most 3 interior edges

in its boundary, i.e. i(∆) 6 3. Let α = ∂∆ ∩ σ. Since d(∆) > 6, α contains at least 3 edges.
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Delete α from σ to obtain an annular diagram A1 to which the inductive hypothesis applies. Since

d(A1) 6 n, each region of A1 has degree at most 10n. Furthermore, d(∆) 6 3 + n < 10n. Thus

each region of Â has degree at most 10n.

Call a region ∆′ of Â an almost simple outer boundary region if ∂∆′ ∩σ is a consecutive part of

σ and ∂∆′ ∩ τ = ν for some vertex ν in τ . Suppose Â contains an almost simple outer boundary

region that contains at most 3 interior edges in its boundary. Then, arguing as in the previous

paragraph, we have that each region of Â has degree at most 10n.

Now suppose Â contains a simple inner boundary region or an almost simple inner boundary

region that contains at most 3 interior edges in its boundary (where almost simple inner boundary

region has its obvious meaning). Then, arguing as in the previous paragraphs, we have that each

region of Â has degree at most 10n.

Now assume Â does not contain a simple outer (respectively, inner) boundary region nor an

almost simple outer (respectively, inner) boundary region which contains at most 3 interior edges

in its boundary. We claim that in this case Â cannot contain a non-simple boundary region ∆

which satisfies:

(1) At least one of ∂∆ ∩ σ, ∂∆ ∩ τ is non-empty;

(2) If ∂∆ ∩ σ 6= ∅, then ∂∆ ∩ σ 6= ν for some ν in σ. Similarly, if ∂∆ ∩ τ 6= ∅, then ∂∆ ∩ τ 6= ν ′

for some ν ′ in τ .

In other words, Â cannot contain a non-simple boundary region ∆ with ∂∆ ∩ σ or ∂∆ ∩ τ

disconnected. Therefore, if ∆ is a non-simple boundary region of Â, then either ∂∆ ∩ τ = ∅ and

∂∆ ∩ σ = ν for some vertex ν in σ; ∂∆ ∩ σ = ∅ and ∂∆ ∩ τ = ν ′ for some vertex ν ′ in τ ; or ∂∆

intersects both σ and τ at a single vertex.

We now proceed with the proof of our claim. Let ∆ be a non-simple boundary region of Â and

assume, without loss of generality, that ∂∆∩σ is non-empty and does not consist of a single vertex.

Then Â−∆ contains at least one simply-connected component B (see Fig. 3.8). We will prove that

B must contain a simple outer boundary region which contains at most 3 interior edges of Â in its

boundary, thus contradicting our assumptions.

Suppose B contains only one region ∆′. Since ∆′ can have at most one edge in common with

∆, i(∆′) = 1. Furthermore, ∂∆′ ∩ σ is a consecutive part of σ and ∂∆′ ∩ τ is empty. Thus, ∆′ is a

simple outer boundary region of Â with i(∆′) = 1. Now suppose B contains at least two regions.
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Figure 3.8: A simply-connected component of Â − ∆.

Since Â is an annular [3, 6]-diagram, B is a simply-connected [3, 6]-diagram. From Theorem 1.6.2,

we have
∗∑

B

[4 − iB(Φ)] > 6, (3.2)

where the sum is taken over all simple boundary regions of B. We deduce that B contains a simple

boundary region Φ′ with iB(Φ′) 6 3. Let γ = ∂Φ′∩∂B and assume that iB(Φ′) < 3. Since d(Φ′) > 6,

we deduce that γ contains at least 4 edges. Now γ can either be: (a) a subpath of σ; (b) a subpath

of ∂∆; or (c) equal to a path γ1γ2 where γ1 and γ2 are non-empty simple subpaths of σ and ∂∆,

respectively. Each possibility corresponds to a specific position for Φ′ in B (see Fig. 3.9).

Suppose γ is a subpath of σ. Then ∂Φ′ ∩ σ is a consecutive part of σ, ∂Φ′ ∩ τ is empty, and

i(Φ′) 6 2. Thus, Φ′ a simple outer boundary region of Â with i(Φ′) 6 2. Now suppose γ is a subpath

of ∂∆. By construction of Â, ∆ and Φ′ can have at most one edge in common, contradicting the

fact that γ must contain at least 4 edges. Finally, suppose γ = γ1γ2 where γ1 and γ2 are non-empty

simple subpaths of σ and ∂∆, respectively. Since ∆ and Φ′ can have at most one edge in common,

γ2 contains exactly one edge. Recalling that iB(Φ′) 6 2, we deduce that i(Φ′) 6 3. Since γ1 is a

consecutive part of σ, it follows that Φ′ is a simple outer boundary region of Â that contains at

most 3 interior edges in its boundary.

Now assume each simple boundary region Φ′ of B satisfies iB(Φ′) = 3. Then from (3.2) we

deduce that B must contain at least six simple boundary regions. Since each simple boundary

region can have at most one edge in common with ∆, we deduce that no simple boundary region

can have position (b) as illustrated in Fig. 3.9(b). Thus, each simple boundary region either has

position (a) or (c). At most two simple boundary regions can have position (c) (one for each
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(a)

(b)

(c)

Figure 3.9: The possible positions of Φ′ in B.

“corner”). Therefore, B must contain a simple boundary region Λ that has position (a). Thus, Â

contains a region Λ such that ∂Λ ∩ σ is a consecutive part of σ, ∂Λ ∩ τA is empty, and i(Λ′) = 3.

This completes the proof of our claim.

Let us now delete the label and orientation of each edge of Â to obtain an ordinary unoriented

annular diagram N ′. If N ′ contains a bridge ε (recall Definition 1.6.5), then we may remove

it by identifying its endpoints as in Fig. 3.10. Note, removing a bridge decreases the number of

boundary edges by one. We may also remove a pinch (recall Definition 1.6.5) from N ′ as illustrated

in Fig. 3.11. Note, removing a pinch increases the number of interior edges by one. By removing

all bridges and pinches in this way we obtain an annular [3, 6]-diagram N in which each region has

at least one interior edge in its boundary.

Let σN be the outer boundary of N and let τN be the inner boundary of N . Since d(A) = n,

the total number of edges contained in σN and τN is at most n. If ∆ is a boundary region of Â,
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Figure 3.10: Removing a bridge.

Figure 3.11: Removing a pinch.

then iÂ(∆) 6 iN (∆) and so dÂ(∆) 6 iN (∆) + n. Thus, we can estimate dÂ(∆) by calculating an

upper bound for iN (∆). Similarly, if ∆ is an interior region of Â, then dÂ(∆) 6 dN (∆). So we can

estimate dÂ(∆) by calculating an upper bound for dN (∆).

Since iN (∆) > iÂ(∆) for each region ∆ of N , each simple outer (respectively, inner) boundary

region of N and each almost simple outer (respectively, inner) boundary region of N must contain

at least 4 interior edges in its boundary.

Let N ∗ be the dual diagram of N . Applying formula (1.3) of Theorem 1.6.1 to N ∗ gives

6(QN ∗ − hN ∗) =
•∑

N ∗

[4 − dN ∗(ν)] +
◦∑

N ∗

[6 − dN ∗(ν)] + 2
∑

N ∗

[3 − dN ∗(∆)] + 2(V •
N ∗ − E •

N ∗).

Since N ∗ has at most one hole, 6(QN ∗ −hN ∗) > 0. Since each region of N has at least one interior

edge in its boundary, N ∗ has no isolated vertices and we deduce that V •
N ∗ 6 E •

N ∗ . Therefore,

0 6

•∑

N ∗

[4 − dN ∗(ν)] +
◦∑

N ∗

[6 − dN ∗(ν)] + 2
∑

N ∗

[3 − dN ∗(∆)].

Using the correspondence between N and N ∗, we have

0 6

•∑

N

[4 − iN (∆)] +
◦∑

N

[6 − dN (∆)] + 2
◦∑

N

[3 − dN (ν)]. (3.3)

Since each interior region of N has degree at least six and since each interior vertex has degree at
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least 3, each term of
∑◦

N [6 − dN (∆)] and
∑◦

N [3 − dN (ν)] is non-positive. Therefore,

◦∑

N

[6 − dN (∆)] + 2
◦∑

N

[3 − dN (ν)] 6 0

and so
•∑

N

[4 − iN (∆)] > 0. (3.4)

Boundary regions which contain at least 4 interior edges of N in their boundary make a non-

positive contribution to the sum in (3.4). Therefore, each simple outer (respectively, inner) bound-

ary region of N and each almost simple outer (respectively, inner) boundary region of N makes a

non-positive contribution to the sum in (3.4).

If ∆ is a non-simple boundary region of Â, and hence is a non-simple boundary region of N ,

then ∂∆∩σN or ∂∆∩τN (or possibly both) is connected and consists of a single vertex. Therefore,

iN (∆) = dN (∆) > 6, so ∆ makes a negative contribution to the sum in (3.4).

From the two preceding paragraphs, we conclude that only the almost simple boundary regions

of N which contain at most 3 interior edges in their boundaries (see Fig. 3.12) make a positive

contribution to the sum in (3.4). Note that such regions contain at least 2 interior edges in their

boundaries. For convenience, we will call an almost simple boundary region of N that satisfies

iN (∆) = 2 or 3 an AS-region. Note that each AS-region has degree at most 3 + n < 10n.

Figure 3.12: An AS-region.

Since N contains at most n boundary edges it contains at most n
2 AS-regions. Splitting (3.4)
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into terms that make a positive and a non-positive contribution gives

0 6

•∑

N

[4 − iN (∆)]

=

•∑

N
iN (∆)>4

[4 − iN (∆)] +
∑

AS-regions

[4 − iN (∆)]

6

•∑

N
iN (∆)>4

[4 − iN (∆)] + 2
n

2
.

Therefore,
•∑

N
iN (∆)>4

[4 − iN (∆)] > −n

where the sum is taken over all boundary regions of N that contain at least 4 interior edges in their

boundary. From this sum, we have

•∑

N
iN (∆)>4

[iN (∆) − 4] 6 n, (3.5)

where each term is non-negative. If ∆ is a boundary of N that satisfies iN (∆) > 4, then iN (∆)−4 6

n and so iN (∆) 6 4 + n. We deduce that dÂ(∆) 6 4 + 2n < 10. Thus,

d(∆) 6 10n (3.6)

for each boundary region ∆ of Â.

We now calculate an upper bound for dÂ(∆) where ∆ is an interior region of Â. Note that

0 6

•∑

N

[4 − iN (∆)] 6
∑

AS-regions

[4 − iN (∆)] 6 2
n

2
= n.

Then from (3.3), we have

0 6

•∑

N

[4 − iN (∆)] +
◦∑

N

[6 − dN (∆)] + 2
◦∑

N

[3 − dN (ν)]

6 n+
◦∑

N

[6 − dN (∆)] + 0

and so
◦∑

N

[6 − dN (∆)] > −n.

65



Thus,
◦∑

N

[dN (∆) − 6] 6 n. (3.7)

Since each term of the sum in (3.7) is non-negative, each interior region of N must satisfy

dN (∆) − 6 6 n, that is dN (∆) 6 6 + n. Therefore,

d(∆) 6 10n (3.8)

for each interior region ∆ of Â. From (3.6) and (3.8) we conclude that d(∆) 6 10n for each region

∆ of Â. This completes the proof of Case 1.

Case 2. Suppose G satisfies (II). In this case Â is an annular [4, 4]-diagram. We proceed by

induction on Area(Â). The result is clearly true for the initial case, so assume that the result holds

for all diagrams satisfying the hypotheses with area k > 2.

Suppose Â contains a simple outer boundary region ∆ that contains at most two interior edges

in its boundary, i.e. i(∆) 6 2. Let α = ∂∆ ∩ σ. Since σ(∆) > 4, α contains at least two interior

edges. Delete α from σ to obtain an annular diagram A2 to which the inductive hypothesis applies.

Since d(A2) 6 n, each region of A2 has degree at most 10n. Furthermore, d(∆) 6 2 + n < 10n.

Thus, each region of Â has degree at most 10n.

If Â contains a simple inner boundary region which contains at most two interior edges in

its boundary or if Â contains an almost simple outer (respectively, inner) boundary region that

contains at most two interior edges in its boundary, then we argue as in the previous paragraph to

show that each region of Â has degree at most 10n.

Now assume Â does not contain a simple outer (respectively, inner) boundary region, nor an

almost simple outer (respectively, inner) boundary region that contains at most two interior edges

in its boundary. Following a similar argument to the one used in Case 1, we can show that if ∆

is a non-simple boundary region of Â, then either ∂∆ ∩ τ = ∅ and ∂∆ ∩ σ = ν for some vertex ν

in σ; ∂∆ ∩ σ = ∅ and ∂∆ ∩ τ = ν ′ for some vertex ν ′ in τ ; or ∂∆ intersects both σ and τ at a

single vertex. That is, Â cannot contain a non-simple boundary region ∆ with ∂∆ ∩ σ or ∂∆ ∩ τ

disconnected.

Delete the label and orientation of each edge of Â and remove any bridges and pinches from

the resulting diagram to obtain an ordinary unoriented annular [4, 4]-diagram N . Note that each

region of N has at least one interior edge in its boundary.
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Since iN (∆) > iÂ(∆) for each region ∆ of N , each simple outer (respectively, inner) boundary

region and each almost simple outer (respectively, inner) boundary region of N must contain at

least 3 interior edges in its boundary.

Applying formula (1.3) of Theorem 1.6.1 to the dual N ∗ of N gives

4(QN ∗ − hN ∗) =
•∑

N ∗

[3 − dN ∗(ν)] +
◦∑

N ∗

[4 − dN ∗(ν)] +
∑

N ∗

[4 − dN ∗(∆)] + (V •
N ∗ − E •

N ∗).

Since N ∗ has at most one hole, 4(QN ∗ − hN ∗) > 0. Since each region of N contains at least

one interior edge in its boundary, N ∗ has no isolated vertices and we deduce that V •
N ∗ 6 E •

N ∗ .

Therefore,

0 6

•∑

N ∗

[3 − dN ∗(ν)] +
◦∑

N ∗

[4 − dN ∗(ν)] +
∑

N ∗

[4 − dN ∗(∆)].

Using the correspondence between N and N ∗, we have

0 6

•∑

N

[3 − iN (∆)] +
◦∑

N

[4 − dN (∆)] +
◦∑

N

[4 − dN (ν)]. (3.9)

Since each interior region of N has degree at least 4 and since each interior vertex has degree at

least 4, each term of
∑◦

N [4 − dN (∆)] and
∑◦

N [4 − dN (ν)] is non-positive. Therefore,
∑◦

N [4 −

dN (∆)] +
∑◦

N [4 − dN (ν)] 6 0 and it follows that

•∑

N

[3 − iN (∆)] > 0. (3.10)

Boundary regions which contain at least 3 interior edges of N in their boundary make a non-

positive contribution to the sum in (3.10). Therefore, each simple outer (respectively, inner) bound-

ary region of N and each almost simple outer (respectively, inner) boundary region of N makes

a non-positive contribution to the sum in (3.10). If ∆ is a non-simple boundary region of Â, and

hence is a non-simple boundary region of N , then ∂∆ ∩ σN or ∂∆ ∩ τN (or possibly both) is con-

nected and consists of a single vertex. Therefore, iN (∆) = dN (∆) > 4 and so ∆ makes a negative

contribution to the sum in (3.10). Thus, only the almost simple boundary regions that satisfy

i(∆) = 2 make a positive contribution to the sum in (3.10) As in Case A, we call such a region an

AS-region. Note that each AS-region has degree at most 2 + n < 10n.
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Splitting (3.10) into terms which make a positive and a non-positive contribution gives

0 6

•∑

N

[3 − iN (∆)]

=

•∑

N
iN (∆)>3

[3 − iN (∆)] +
∑

AS-regions

[3 − iN (∆)]

6

•∑

N
iN (∆′)>3

[3 − iN (∆)] +
n

2
.

Hence,
•∑

N
i(∆′)>3

[3 − iN (∆)] > −
n

2

and so
•∑

N
i(∆′)>3

[iN (∆) − 3] 6
n

2
, (3.11)

where each term is non-negative. If ∆ is a boundary of N that satisfies iN (∆) > 3, then iN (∆)−3 6

1
2n and so iN (∆) 6 3 + 1

2n. We deduce that dÂ(∆) 6 3 + 3
2n < 10n. Thus,

d(∆) 6 10n (3.12)

for each boundary region ∆ of Â.

We now calculate an upper bound for dÂ(∆) where ∆ is an interior region of Â. Note that

0 6

•∑

N

[3 − iN (∆)] 6
∑

AS-regions

[3 − iN (∆)] 6
n

2
.

Then from (3.9), we have

0 6

•∑

N

[3 − iN (∆)] +
◦∑

N

[4 − dN (∆)] +
◦∑

N

[4 − dN (ν)]

6
n

2
+

◦∑

N

[4 − dN (∆)] + 0

6

◦∑

N

[4 − dN (∆)] +
n

2
,

and so
◦∑

N

[dN (∆) − 4] 6
n

2
. (3.13)
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Since each term of the sum in (3.13) is non-negative, each interior region of N must satisfy

dN (∆) − 4 6 1
2n, that is dN (∆) 6 4 + 1

2n < 10n. Therefore,

d(∆) 6 10n (3.14)

for each interior region ∆ of Â. From (3.12) and (3.14) we conclude that d(∆) 6 10n for each region

∆ of Â. This completes the proof of Case 2. The proof of Proposition 3.2.2 is now complete.

We now turn our attention to annular diagrams over vertex-finite Pride groups which satisfy

(H-I) or (H-II). In Theorems 3.2.1 and 3.2.2 we obtain information about the structure of annular

derived diagrams over the standard presentations of such groups. In particular, we prove that either

all regions have edges on both boundaries, or that the diagram has a “thickness” of two regions

as illustrated in Fig. 3.13. The diagram in Fig. 3.13(a) corresponds to the condition (H-I), while

Fig. 3.13(b) corresponds to the condition (H-II). These structure theorems are based on analogous

theorems [66, Theorems V.5.3, V.5.5] for presentations satisfying the small cancellation conditions

C ′(1
6), or C ′(1

4) and T (4).

(a) (H-I) (b) (H-II)

Figure 3.13: Annular derived diagrams for the Conditions (H-I) and (H-II).

Let Ps = 〈x ; r〉 be the standard presentation of a vertex-finite Pride group G and let Γ = {V,E}

be the underlying graph of G.

Definition 3.2.1. Let W be a non-empty word on x±1. If W ≡ W1W2 . . .Wl where each Wi

(i = 1, . . . , l) is a non-empty word on x±1
v for some v ∈ V , and Wi,Wi+1 are both not words on
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x±1
v for i = 1, . . . , l − 1, then the syllable length of W , denoted |W |s, is l. The syllables of W are

the subwords W1,W2, . . . ,Wl.

Recall (Definition 2.1.1), each edge group Ge (e ∈ E) has property-Wk if and only if me > 2k,

where me is the length of a shortest non-identity element of kerψe. We interpret this definition in

terms of syllable length in the following lemma. Recall that r̂ denotes the union of the r̂e’s, where

for each e ∈ E, r̂e is the set of all words on x±1
e that represent a non-identity element of kerψe.

Lemma 3.2.3. If each edge group has property-Wk, then |R|s > 2k for all R ∈ r̂.

Let U be a word on x±1, let a be a rational number, and let e ∈ E. We write U > ar̂e if there

exists an R ∈ r̂e such that R ≡ UZ where |U |s > a|R|s. We write U > ar̂ if U > ar̂e for some

e ∈ E.

Let A be an annular r-diagram which is minimal with respect to |E(A)| (> 1) and let σ

(respectively, τ) be the outer (respectively, inner) boundary of A. Let FA be a federal subdivision

of A which does not contain an annular federation and construct the annular derived diagram Â

of A corresponding to FA.

Theorem 3.2.1. Let G satisfy (H-I) or (H-II) and assume the following two hypotheses on Â.

(A) If ∆ is a region of Â with α = ∂∆ ∩ σ a consecutive part of σ, then φ(α) ≯ 1
2 r̂. Assume the

same hypothesis replacing σ by τ .

(B) Â does not contain a region ∆ such that ∂∆ contains an edge of both σ and τ .

Let (q, p) = (3, 6) or (4, 4) depending if (H-I) or (H-II) holds, respectively. Then Â satisfies the

following three conditions:

(i) For each region ∆, ∂∆ contains a boundary edge of Â;

(ii) i(∆) = p/q + 2 for all regions ∆ of Â;

(iii) d(ν) = q for all interior vertices ν of Â.

Proof. Suppose G satisfies Condition (H-I). The proof for the case when G satisfies Condition (H-II)

differs only in the numbers used.

Suppose σ is not a simple closed path. Then σ must contain a simple closed subpath η. Now η

bounds a simply-connected subdiagram B of Â. If B consisted of a single region ∆, then ∆ would
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contradict Hypothesis (A), so assume that Area(B) > 1. Since G satisfies (H-I), each edge group

has property-W3. It then follows from Lemmas 3.2.1 and 3.2.2 that B is a [3, 8]-diagram. From

Theorem 1.6.2, we have
∗∑

B

[4 − i(∆)] > 6,

so B must contain at least two simple boundary regions ∆1,∆2 with iB(∆j) 6 3 (j = 1, 2). Since

B can contain at most one simple boundary region which is not a simple boundary region of Â,

we may assume that ∆1 is a simple boundary region of both B and Â. Let φ(∂∆1) ≡ W and let

α = ∂∆1 ∩ η. The W3 condition implies that |W |s > 8 and since iB(∆1) 6 3, we have φ(α) > 1
2 r̂.

Therefore, ∆1 is a region which contradicts (A). We deduce that σ must be a simple closed path.

The same remarks apply to τ .

We now show that Â does not contain a region ∆ such that ∂∆ ∩ σ is disconnected. Suppose

there is such a region. Then Â −∆ contains at least one component which is a non-empty simply-

connected subdiagram B of Â. If B contained only one region, then this region would contradict

(A). Therefore, Area(B) > 2.

Since B is a simply-connected [3, 8]-diagram, it follows from Theorem 1.6.2 that B must contain

a simple boundary region ∆′ with iB(∆′) 6 3. Suppose iB(∆′) < 3 and let γ = ∂∆′ ∩ B. Since

iB(∆′) 6 2, the W3 condition implies that |φ(γ)|s > 6. The only possibility is that γ = γ1γ2 where

γ1 is a non-empty simple subpath of ∂∆ and γ2 is a non-empty simple subpath of σ (see Fig. 3.14).

Since ∆′ can have at most one edge in common with ∆, γ1 contains exactly one edge. Therefore, γ2

must contain at least 5 edges. The W3 condition then implies that |φ(γ2)|s > 5 and so φ(γ2) >
1
2 r̂,

which contradicts (A).

Figure 3.14: The simple paths γ1 and γ2.

If each simple boundary region of B satisfies iB(∆) = 3, then B must contain at least 6 such

regions. It is then easy to show that B must contain a simple boundary region which is a simple
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boundary region of Â and which contradicts (A). Thus, Â cannot contain a region ∆ such that

∂∆ ∩ σ is disconnected. The same is true if we replace σ by τ .

Delete the label and orientation of each edge of Â, and remove any boundary vertices of degree

two. Then each vertex of Â has degree at least 3 and if ∆ is any region of Â, ∂∆ ∩ Â contains at

most one boundary edge. If ∂∆ contains a boundary edge, then i(∆) > 4 by Hypothesis (A). If

∂∆ has no edge in ∂Â, then d(∆) > 8. Let Â∗ be the dual map of Â. Applying Theorem 1.6.1 to

Â∗, we have

6(QÂ∗ − hÂ∗) =

•∑

Â∗

[4 − dÂ∗(ν)] +

◦∑

Â∗

[6 − dÂ∗(ν)] + 2
∑

Â∗

[3 − dÂ∗(∆)] + 2(V •
Â∗

− E •
Â∗

).

Since Â∗ has at most one hole, 6(QÂ∗−hÂ∗) > 0. Each region of Â has interior edges by Hypothesis

(B), so Â∗ has no isolated vertices and V •
Â∗

6 E •
Â∗

. Therefore,

0 6

•∑

Â∗

[4 − dÂ∗(ν)] +
◦∑

Â∗

[6 − dÂ∗(ν)] + 2
∑

Â∗

[3 − dÂ∗(∆)].

Using the correspondence between Â and Â∗, we have

0 6

•∑

Â

[4 − iÂ(∆)] +
◦∑

Â

[6 − dÂ(∆)] + 2
◦∑

Â

[3 − dÂ(ν)].

Each term of the first sum is non-positive. Also, each term in the last sum is non-positive. If

Â contained an interior region, the second sum would be negative. Therefore, Â cannot contain

any interior regions. If some boundary region ∆ of Â had i(∆) > 4, then the first sum would be

negative. Hence, i(∆) = 4 for all regions ∆ of Â. Similarly, from the last term we conclude that

d(ν) = 3 for all vertices ν of Â.

Theorem 3.2.2. Let G satisfy (H-I) or (H-II) and assume the following two hypotheses on Â.

(A) If ∆ is a region of Â with α = ∂∆ ∩ σ a consecutive part of σ, then φ(α) ≯ 1
2 r̂. Assume the

same hypothesis replacing σ by τ .

(B) There is a region Λ of Â such that ∂Λ contains an edge of both σ and τ .

Then every region ∆ of Â has edges on both σA and τA, and i(∆) 6 2.

72



Proof. Suppose G satisfies Condition (H-I). The proof for the case when G satisfies Condition (H-II)

differs only in the numbers used.

In view of Hypotheses (A) it follows, exactly as in the proof of Theorem 3.2.1, that Â does not

contain a region whose boundary has disconnected intersection with one of the boundaries of Â.

Furthermore, σ and τ are both simple closed paths and if ∆ is a region of Â such that ∂∆ contains

an edge of only one of σ or τ , then i(∆) > 4.

Delete the label and orientation of each edge of Â to obtain an ordinary unoriented annular

diagram N ′, which we may assume does not contain any vertices of degree two. Using the operations

illustrated in Figs. 3.10 and 3.11, we may remove any bridges or pinches contained in N ′ to obtain

an annular diagram N in which each region has at least one interior edge. Note that N is a

[3, 8]-annular diagram and if ∆ is a region of N , then iN (∆) > iÂ(∆).

Our aim is to show that for each region ∆ of N , iN (∆) = 2 and ∆ has edges on both σN and

τN . We proceed by induction on Area(N ). It is clear that the result holds if Area(N ) = 2, so

assume Area(N ) > 2.

By Hypothesis (B), N contains a region Λ such that ∂Λ contains an edge of both σN and τN .

Since N does not contain any pinches, iN (∆) > 2. It follows that there is a region Π on one side

of Λ and a simple path β from σN to τN such that β ⊆ ∂Λ and β contains an edge of ∂Π. Cut N

open along β as in Fig. 3.15 and adjoin a copy Λ1 of Λ along the side of β that borders Π to obtain

a simply-connected diagram N1.

Figure 3.15: Cutting N open along β.
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Note that if a region ∆′ of N which is not equal to Λ has edges on both σN and τN , then

∂∆′ ∩ ∂N1 is not a consecutive part of ∂N1. Also, if ∂∆′ has edges on only one boundary of N ,

then iN1
(∆) > 4. Now N1 is a [3, 8]-diagram so from Theorem 1.6.2, we have

∗∑

N1

[4 − iN1
(∆)] > 6.

By the above remarks, only Λ and Λ1 can make a positive contribution to this sum. Since

iN1
(Λ1) > 1, one of the following holds:

(i) iN1
(Λ1) = 1 and iN1

(Λ) = 0;

(ii) iN1
(Λ1) = 1 and iN1

(Λ) = 1;

(iii) iN1
(Λ1) = 2 and iN1

(Λ) = 0.

However, N does not contain any pinches, so iN1
(Λ) 6= 0. Therefore, iN1

(Λ1) = iN1
(Λ) = 1. It

follows that in N , β is completely contained in ∂Π (see Fig. 3.16). Furthermore, if there is a region

Φ on the other side of Λ, then Φ is the only such region. We can now apply the same argument to Π

and Φ. Thus working out from Λ, we can prove that each region of N has exactly two interior edges

in its boundary. By reinstating any bridges and pinches that were deleted in the construction of

N , we deduce that each region of Â has an edge on both σA and τA, and that each region satisfies

i(∆) 6 2.

Figure 3.16: β completely contained in ∂Π.

The annular diagram illustrated in Fig. 3.17 satisfies the hypotheses of Theorem 3.2.2.
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Figure 3.17: An annular derived diagram satisfying the hypotheses of Theorem 3.2.2.
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Chapter 4

The word and conjugacy problems for

a vertex-finite Pride group

This chapter contains the proofs of our results for the word and conjugacy problems for a vertex-

finite Pride group.

4.1 The word problem for a vertex-finite Pride group

In this section we prove Theorem 1, which we now restate.

Theorem 4.1.1. Let G be a vertex-finite Pride group with underlying graph Γ = {V,E}, and let

δE = max{δGe
: e ∈ E}.

(1) If G satisfies (I) or (II), then δG(n) 4 n2δE(n) for all n ∈ N.

(2) If G satisfies (H-I) or (H-II), then δG(n) 4 nδE(n) for all n ∈ N.

Proof. Let Ps = 〈x ; r〉 be the standard presentation of G. We first prove Statement (1). Statement

(2) will then follow easily from the proof of Statement (1).

Suppose G satisfies (I) or (II) and let W be a non-empty word on x±1 that represents the

identity element of G. Let |W | = n and assume, without loss of generality, that W is cyclically

reduced. By Theorem 1.7.1, there exists a simply-connected r-diagram S for W , which we may

choose to be minimal with respect to |E(S)|. If |E(S)| = 0, then S is a simply-connected diagram

over a presentation of GV and we deduce that W represents the identity element of GV . From

76



Proposition 1.5.2, we have Area(W ) 6 max{δ̄Gv
(n) : v ∈ V }. Since each vertex group is finite,

δGv
is linear for all v ∈ V . Therefore, δV := max{δ̄Gv

} is linear. Since δGe
is at least linear for all

e ∈ E, we deduce that δV 4 δE . Thus, Area(W ) 6 δE(n).

Assume |E(S)| > 1 and let FS be a federal subdivision of S (see §3.1). If FS consists of a single

federation, then S is an re-diagram for some e ∈ E and W is a word on x±1
e that represents the

identity element of Ge. Therefore, Area(W ) 6 δGe
(n) 6 δE(n). Now assume that FS contains more

than one federation. Since G satisfies (I) or (II) and since S is minimal with respect to |E(S)|, it

follows that FS satisfies Conditions (i) and (ii) of Proposition 3.1.1.

Let Ŝ be the derived diagram of S corresponding to FS . If (I) holds, then each edge group has

property-W2, so from Lemmas 3.1.2 and 3.1.3 we have that Ŝ is a [3, 6]-diagram. On the other

hand, if (II) holds, each edge group has property-W1 and Γ is triangle-free, so Ŝ is a [4, 4]-diagram.

In either case, by Theorem 1.6.4, there exists a number k > 0 such that

Area(Ŝ) 6 kd(Ŝ)2

where d(Ŝ) is the degree of Ŝ. Since d(Ŝ) = |W | = n, we have

Area(Ŝ) 6 kn2. (4.1)

Let ∆ be a region of Ŝ. Since Ŝ is either a [3, 6]-diagram or a [4, 4]-diagram which does not

contain any vertices of degree 1, and since d(Ŝ) = n, it follows from Theorem 1.6.3 that d(∆) 6 2n.

Let U be a label of ∆. Then U is a word on x±1
e (e ∈ E) that represents the identity element of

Ge. Furthermore, |U | 6 2n by Property (2) of Lemma 3.1.1.

It is now convenient to change to pictures (see Remark 4.1.1 for explanation). Let P̂ be the

r̂-picture corresponding to Ŝ and let D be the disc of P̂ that corresponds to ∆. Since U represents

the identity element of Ge, there exists a minimal simply-connected re-picture PD for U such that

Area(PD) 6 δGe
(|U |) = δGe

(2n).

Replace D with PD as follows. First, surround D with a circle S1 such that S1 is transverse to

the arcs incident with D and does not intersect any other arc of P. Next, delete D and the arcs

contained in S1 which are incident with D, and in their place add PD. Finally, join together the

boundary arcs of PD and the arcs of P which meet S1 in such a way that no two arcs cross each

other and only arcs of like label and orientation are joined. In the same way, we proceed to replace
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the remaining discs of P̂ with appropriate minimal simply-connected re-pictures. In doing so, we

obtain a simply-connected r-picture P′ for W . From (4.1), we have

Area(P′) 6 M · kn2,

where M = max{Area(PD)} with the maximum taken over all discs D of P̂. Since M = δE(2n),

we have

Area(W ) 6 Area(P′) 6 kn2 δE(2n).

Statement (1) of Theorem 4.1.1 now follows.

Now suppose G satisfies (H-I) or (H-II). Statement (2) then follows from the proof of Statement

(1) by noting that the derived diagram Ŝ is in this case a [3, 8]-diagram or a [4, 6]-diagram, so by

Theorem 1.6.3 the bound in (4.1) can be replaced by kn.

Remark 4.1.1. The reader might ask why in the proof of Theorem 4.1.1 did we not replace each

region of the derived diagram Ŝ with a simply-connected re-diagram? One could certainly fill

each region of the derived diagram with such a diagram by gluing together boundary edges of like

label and orientation. However, one must check that the resulting diagram is planar. Planarity

is guaranteed by working with the corresponding r-picture - any spherical diagram that may have

been created during the “gluing in” process will correspond to a spherical subpicture, which may

be deleted from the r-picture.

The statement of Corollary 1 (restated below) now follows from Theorem 1.5.1 and Statement

(1) of Theorem 4.1.1.

Corollary 4.1.1. If each edge group has a soluble word problem, then G has a soluble word problem.

4.1.1 The word problem for non-vertex-finite Pride groups.

In this section we prove Theorems 2 and 3. We begin with the proof of Theorem 2, which will

follow from Propositions 4.1.1 and 4.1.2.

Let G be a vertex-finite Pride group which satisfies Condition (II) and let Γ = {V,E} be the

underlying graph of G. The underlying graph Q(Γ) of Q(G) is constructed from Γ as follows. Let

v be a fixed but arbitrary vertex of Γ. Adjoin a new vertex ω to Γ and adjoin a new edge eω which

has endpoints v and ω. Then Q(Γ) is the graph with vertex set V (ω) = V ∪ {ω} and edge set
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E(ω) = E ∪ {eω}. Since Γ is triangle-free, Q(Γ) is triangle-free. Assign the infinite cyclic group

F (ω) to the vertex ω and let teω = {[g, ω] : g ∈ Gv}. Then

Q(G) =
GV ∗ F (ω)

<< t ∪ teω >>
.

Proposition 4.1.1. The Pride group Q(G) with underlying graph Q(Γ) satisfies Condition (II).

Proof. Since G satisfies (II), Ge has property-W1 for each e ∈ E ⊂ E(ω). Now consider the edge

group Geω . Let Deω be the Cartesian subgroup of Gv∗Gω. Since teω ⊆ Deω it follows from Example

2.1.7 that Geω has property-W1. Therefore each edge group of Q(G) has property-W1. Since Q(Γ)

is triangle-free, it follows that Q(G) satisfies Condition (II).

By Proposition 4.1.1 and Corson’s result on developable Pride groups [31, p. 562], Q = Q(G) is

developable, i.e. each subgraph group embeds in Q. Now Γ is the full subgraph of Q(Γ) generated

by the vertices V ⊂ V (ω) and G is the subgraph group GΓ. Thus, G →֒ Q. We can now view Q as

the following trivial HNN-extension of G:

Q = 〈G, t ; [g, t]∀g ∈ Gv〉.

Proposition 4.1.2. The first order Dehn function δQ of Q satisfies

n2
4 δQ(n) 4 n3δE(n),

where δE = max{δGe
: e ∈ E)}.

Proof. Since Q is an HNN-extension of G, it follows from [9, Theorem 1.1] that for all n ∈ N,

δQ(n) 4 nδG(∆̄Q
Gv

(n))

where δG is the first order Dehn function of G and where ∆Q
Gv

is the length distortion function of

Gv in Q (see §1.3 for the definition of this function). Since Gv is a finite subgroup of Q, we have

∆Q
Gv

(n) ≃ n for all n ∈ N. Therefore, δQ(n) 4 nδG(n). We now use Statement (1) of Theorem

4.1.1 to obtain the desired upper bound.

For the lower bound, from [23, Proposition 3.4], we have

δQ(n) < n∆G
Gv

(n)

where ∆G
Gv

is the length distortion function of Gv in G. Since Gv is a finite subgroup of G, we have

δQ(n) < n2 as required.
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We now prove Theorem 3. Recall:

Theorem 4.1.2. Let G be a vertex-free Pride group which satisfies (I) or (II), and let Γ = {V,E}

be the underlying graph of G. Suppose edge group is diagrammatically reducible. Then for all n ∈ N,

δG(n) < δE(n) where δE(n) = max{δGe
: e ∈ E}.

Proof. Let P = 〈x ; r〉 be the natural presentation of G defined at the start of Chapter 5. Choose

some e ∈ E and let Pe = 〈xe ; re〉 be a diagrammatically reducible presentation of Ge. Let

W1,W2, . . . ,Wk be a sequence of words on x±1
e that satisfy the following three conditions:

(i) Each Wi represents the identity element of Ge;

(ii) n1 < n2 < n3 < . . ., where ni = |Wi|;

(iii) Area(Wi) = δGe
(ni).

There exist, by Theorem 1.8.1, minimal simply-connected re-pictures Pi for each Wi. Since

each edge group is diagrammatically reducible, each Pi is the unique simply-connected r-picture

for Wi. To see this, suppose M is another simply-connected r-picture for W which is not equal

to Pi. Since W (M) ≡ W (Pi), we may identify ∂Pi with ∂(−M) to obtain a non-empty spherical

r-picture A. Since Pi and M are distinct, A is not equivalent to the empty picture via bridge moves

and the deletion of floating arcs and cancelling pairs alone. This contradicts, however, the fact

that G is diagrammatically reducible (G is diagrammatically reducible by Theorem 7). Thus, M

cannot exist. Since each Pi is the unique minimal simply-connected r-diagram for Wi, we have

δG(n) < δGe
(n) for all n ∈ N. However, this does not depend on the choice of e. Therefore,

δG(n) < δGe
(n)

for all n ∈ N and all e ∈ E. The statement of the result now follows.

4.2 The conjugacy problem for a vertex-finite Pride group

In this section we prove Theorem 4. Let G be a vertex-finite Pride group which satisfies (I) or (II),

and let Γ = {V,E} be the underlying graph of G. Also, let Ps = 〈x ; r〉 be the standard presentation

of G. Recall that

−GE = G−
⋃

e∈E

Ge

80



and

GV = ∗
v∈V

Gv.

Assume G satisfies Conditions (1) - (6) of §2.3.2 and let W be a word on x±1. Condition (4)

states that for each e ∈ E, the generalized word problem (relative to x±1
e ) is soluble. Therefore, we

can decide, for each e ∈ E, whether or not W ∈ Ge.

Lemma 4.2.1. If W ∈ Ge for some e ∈ E, then we can find a word U on x±1
e that represents W .

Proof. We can recursively enumerate all words Ui on x±1
e and using the solution of the word problem

for G, we can decide, for each i > 1, whether or not W = Ui. Starting with U1, we test whether

or not U1, U2, U3, . . . represents W . Since W ∈ Ge, this algorithm must terminate by outputting a

word Uj on x±1
e that represents W .

Let W,Z be words on x±1. The following lemmas allows us to determine, in certain special

cases, whether or not W and Z represent conjugate elements of G.

Lemma 4.2.2. If W,Z both represent the identity element of G, then they represent conjugate

elements of G. If one of W,Z represents the identity element of G while the other does not, then

W,Z do not represent conjugate elements of G.

Proof. Since G has a soluble word problem, we can determine whether or not W,Z represent the

identity element of G. The statement of the lemma is trivially true.

Lemma 4.2.3. We can decide whether or not W,Z represent conjugate elements of GV .

Proof. Each Gv is finite and so has a soluble conjugacy problem. It then follows from the Conjugacy

Theorem for Free Products [66, Corollary IV.1.5] that GV has a soluble conjugacy problem.

Lemma 4.2.4. If W,Z represent elements of Ge for some e ∈ E, then we can decide whether or

not W,Z represent conjugate elements of G.

Proof. We can find, by Lemma 4.2.1, words U, V on x±1
e that represent W and Z, respectively.

Then W,Z represent conjugate elements of G if and only if U, V represent conjugate elements of

G. Using the solution of the conjugacy problem for Ge (Condition (1)) we can decide whether or

not U, V represent conjugate elements of Ge. Moreover, since Ge is malnormal in G (Condition

(2)), U, V represent conjugate elements of G if and only if they represent conjugate elements of Ge.

Thus, we can decide whether or not U, V represent conjugate elements of G.
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Lemma 4.2.5. If W represents an element of Ge and Z represents an element of Gf , where

e, f ∈ E with e 6= f , then we can decide whether or not W,Z represent conjugate elements of G.

Proof. We can find, by Lemma 4.2.1, a word U on x±1
e that represents W and a word V on x±1

f that

represents Z. Then W,Z represent conjugate elements of G if and only if U, V represent conjugate

elements of G. The latter part of this statement is decidable by Condition (3).

Lemma 4.2.6. If W represents an element of Ge (e ∈ E) and Z represents an element of −GE,

then we can decide whether or not W,Z represent conjugate elements of G. The same is true if we

interchange the roles of W and Z.

Proof. We can find, by Lemma 4.2.1, a word U on x±1
e that represents W . Then W,Z represent

conjugate elements of G if and only if U,Z represent conjugate elements of G. The latter part of

this statement if decidable by Condition (5).

Lemma 4.2.7. If W,Z represent elements of −GE, then we can decide whether or not there exists

an edge e ∈ E and a word U on x±1
e such that W,U and U,Z represent conjugate element of G. If

such a word exists, then W,Z represent conjugate elements of G.

Proof. For each e ∈ E, we can decide, by Condition (6), whether or not such a word U on x±1
e

exists. Since the number of edges is finite, we have only finitely many checks to make. The last

sentence of the statement of the lemma is clearly true.

We can decide, by Condition (4), whether or not there exists an edge e ∈ E such that W

(respectively, Z) represents an element of Ge. Therefore, we can decide if the hypotheses of Lemmas

4.2.4 - 4.2.7 hold for W (respectively, Z). We can now assume that W and Z satisfy the following

conditions:

(i) W and Z both represent non-identity elements of G;

(ii) W and Z do not represent conjugate elements of GV ;

(iii) W and Z are words on x±1 that represent distinct elements of −GE ;

(iv) For each e ∈ E, there does not exist a word U on x±1
e such that W,U and U,Z represent

conjugate elements of G.
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Using the solution of the word problem for G, we can decide, given any proper subword of any

cyclic permutation of W or Z, whether or not this subword represents the identity element of G.

Thus, we may assume that W and Z are both cyclically injective words on x±1 (recall Definition

1.3.2). We now proceed with the proof of Theorem 4.

Theorem 4.2.1. Let W and Z be as above and let n = |W | + |Z|. Then W and Z represent

conjugate elements of G if and only if there exist words W1, . . . ,Wl, Z1, . . . , Zl on x±1 such that

W
n
∼W ′ 10n

∼ W1
10n
∼ . . .

10n
∼ Wl

20n
∼ Zl

10n
∼ . . .

10n
∼ Z1

10n
∼ Z ′ n

∼ Z

where |Wi|, |Zi| 6 10qn2 (i = 1, . . . , l) for q = 3 or 4 (depending if (I) or (II) holds, respectively),

and where W ′, Z ′ are cyclic permutations of W and Z, respectively.

Proof. The “if” part of the statement is trivially true so assume that W,Z represent conjugate

elements of G. There exists an annular r-diagram A for the pair (W,Z−1) which we may choose

to be minimal with respect to |E(A)|. Since W,Z do not represent conjugate elements of GV , we

have |E(A)| > 1. Let σ be the outer boundary of A and let τ be the inner boundary of A. Since

W and Z are both cyclically injective words, σ and τ are simple closed paths.

Let FA be a federal subdivision of A and suppose FA contains an annular federation F , where

Σ(F) = e for some e ∈ E (see Fig. 3.7). Let σF be the outer boundary of F and let U be the

label of an outer boundary cycle of F . Note that U is word on x±1
e . If σF = σ, then U is a cyclic

permutation of W which contradicts the fact that W represents an element of −GE . Therefore, σF

and σ are distinct. Similarly, σF and τ are distinct. Let A1 be the annular subdiagram of A that

contains σF and σ, and all of A between σF and σ. Then A1 is an annular r-diagram for the pair

(W,U−1) and hence W,U represent conjugate elements of G. Let A2 be the annular subdiagram

of A that contains σF and τ , and all of A between σF and τ . Then A2 is an annular r-diagram for

the pair (U,Z−1) and hence U,Z represent conjugate elements of G. However, we have assumed

that such a word U does not exist. Thus, FA cannot contain any annular federations.

Since G satisfies (I) or (II) it follows that FA satisfies Conditions (i) and (ii) of Proposition

3.2.1. We may then construct the derived diagram Â of A corresponding to FA. If G satisfies

(I), then Â is an annular [3, 6]-diagram and if G satisfies (II), Â is an annular [4, 4]-diagram. Let

(q, p) = (3, 6) or (4, 4), depending on the case. Since Â has n boundary edges, there can be no

more than n regions which have edges on ∂Â. If ∆ is a boundary region of Â such that ∂∆ ∩ ∂Â
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does not contain an edge, then all edges of ∆ are interior edges and i(∆) > p. Therefore,

q

p

•∑

Â

[p− i(∆)] 6
q

p
· pn = qn.

Consider the sequence of diagrams Â = R0,R1, . . . ,Rk where Ri is obtained from Ri−1 by

removing the boundary layer and gaps of Ri−1, and Rk is the first diagram obtained by this process

which contains a boundary linking pair. Let Â = A0,A1, . . . ,Ak be the sequence of diagrams where

Ai is obtained from Ai−1 by removing the boundary layer of Ai−1, and the process is continued

until the boundary layer of Ak is equal to Ak. By construction, we have

β(Ri) 6 β(Ai)

for i = 0, 1, . . . , k, where β(Ri) (respectively, β(Ai)) is the number of boundary regions contained

in the boundary layer of Ri (respectively, Ai). Hence, from Theorem 1.6.5, we have

β(Ri) 6 β(Ai) 6
q

p

•∑

Â

[p− i(∆)] 6 qn

for i = 0, 1, . . . , k.

By Proposition 3.2.2, the degree of each region of Â is at most 10n. Therefore, the degree of

each region of Ri (i = 0, 1, . . . , k) is at most 10n. If i > 0, then each boundary edge of Ri is an

edge in the boundary of a boundary region of Ri−1. It follows that the number of edges contained

in the outer (respectively, inner) boundary of Ri is at most 10n · qn = 10qn2. Thus, if U is the

label of a boundary cycle of Ri, then |U | 6 10qn2 by Property (2) of Lemma 3.1.1.

Let σi be the outer boundary of Ri and let τi be the inner boundary of Ri. Let Ji (i =

0, . . . , k − 1) be the subdiagram of Â consisting of σi and σi+1, and all of Â between σi and σi+1.

Let Ki (i = 0, . . . , k− 1) be the subdiagram of Â consisting of τi and τi+1, and all of Â between τi

and τi+1 (see Fig. 4.1). Because of the nature of the subdiagrams Ji, each Ji must contain a region

∆i that intersects both the inner and the outer boundary of Ji. Note, d(∆i) 6 10n. Therefore,

there is a simple path γi from σi to σi+1 with |φ(γi)| 6 10n. Let Ji and J−1
i+1 be the labels of an

outer and an inner boundary cycle of Ji, respectively, and let |φ(γi)| ≡ Vi. Cut Ji open along γi

to obtain a simply-connected r̂-diagram Si with boundary label JiViJ
−1
i+1V

−1
i .

Once again it is convenient to change to pictures (see Remark 4.1.1 for explanation). Let Mi be

the r̂-picture corresponding to Si. Replace each disc of Mi with an appropriate simply-connected
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re-picture to obtain a simply-connected r-picture Pi (see the proof of Theorem 4.1.1 for details).

Now, W (Pi) ≡ JiViJ
−1
i+1V

−1
i . Therefore, Ji and Ji+1 represent conjugate elements of G, and Vi

represents a conjugating element for J i, J i+1. Thus,

Ji
10n
∼ Ji+1. (4.2)

Now Ji+1 will be a label of an outer boundary cycle of Ji+1, so we can repeat the above argument

with Ji+1 in place of Ji to show that

Ji+1
10n
∼ Ji+2.

Similarly, we have

Ki
10n
∼ Ki+1, (4.3)

where K−1
i and Ki+1 are the labels of an inner and an outer boundary cycle of Ki, respectively.

Figure 4.1: The diagrams Ji and Ki.

There is a boundary linking pair (∆1,∆2) in Rk so there are vertices ν0 in σk ∩ ∂∆1, ν1 in

∂∆1 ∩ ∂∆2 and ν2 in ∂∆2 ∩ τk. Therefore, there is a simple path β1 ⊆ ∂∆1 from ν0 to ν1 and

a simple path β2 ⊆ ∂∆2 from ν1 to ν2 (see Fig. 4.2). Note that β1 and β2 both contain at most

10n edges. Let β = β1β2, and let φ(β1) ≡ B1 and φ(β2) ≡ B2. Then B :≡ φ(β) ≡ B1B2 and

|B| = |B1|+ |B2| 6 20n. Let Jk be the label of the outer boundary cycle of Rk that starts and ends

at ν0 and let K−1
k be the label of the inner boundary cycle of Rk that starts and ends at ν2. Cut

Rk open along β to obtain a simply-connected r̂-diagram Sk with boundary label JkBK
−1
k B−1.
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Figure 4.2: The boundary linking pair (∆1,∆2).

Let Mk be the simply-connected r̂-picture corresponding to Sk and let Pk be the simply-connected

r-picture obtained from Mk by replacing each disc of Mk with an appropriate simply-connected

re-picture. Since W (Pk) ≡ JkBK
−1
k B−1, it follows that Jk and Kk represent conjugate elements

of G, with B representing a conjugating element for Jk,Kk. Thus,

Jk
20n
∼ Kk. (4.4)

From (4.2), (4.3) and (4.4), and noting that J0,K0 are cyclic permutations of W and Z, respec-

tively, we have

W
n
∼ J0

10n
∼ J1

10n
∼ . . .

10n
∼ Jk−1

10n
∼ Jk

20n
∼ Kk

10n
∼ Kk−1

10n
∼ . . .

10n
∼ K1

10n
∼ K0

n
∼ Z.

Furthermore, |Ji|, |Ki| 6 10qn2 for i = 1, . . . , k.

4.2.1 The conjugacy problem for a vertex-finite Pride group satisfying (H-I) or

(H-II)

In this section we prove Theorem 5. Let Ps = 〈x ; r〉 be the standard presentation of a vertex-finite

Pride group G, and let Γ = {V,E} be the underlying graph of G. We now define the concept of an

r̂-reduced word. Recall the notation U > 1
2 r̂ introduced in §3.2.

Definition 4.2.1. Let W be a word on x±1. Then W is r̂-reduced if it does not contain a subword

U such that U > 1
2 r̂. We say that W is cyclically r̂-reduced if each cyclic permutation of W is

r̂-reduced.
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Let W and Z be words on x±1. The proof of Theorem 5 depends on Theorems 3.2.1 and

3.2.2, which give precise information about the structure of possible annular diagrams for the pair

(W,Z−1). In order to use these structure theorems we require that W and Z are both cyclically

r̂-reduced. However, it is not immediately clear that we can assume such a condition. Lemma 4.2.9

allows us to do precisely this. We require a new definition before we can prove this lemma.

Definition 4.2.2. A word is x-reduced if successive letters a, b are such that a ∈ xu and b ∈ xv for

some u, v ∈ V with u 6= v. A word is cyclically x-reduced if each cyclic permutation is x-reduced.

If W is x-reduced, then |W |s = |W |. This fact will play an important role in the proof of Lemma

4.2.9. We also make use of the following observation. Suppose W is not cyclically r̂-reduced. Then

some cyclic permutation of W contains a subword U such that U > 1
2 r̂, i.e. there exists some R ∈ r̂e

(e ∈ E) such that R ≡ UZ with |U |s >
1
2 |R|s. Now, Z is not x-reduced in general; however, we can

use the defining relators r to obtain an x-reduced word Z1 that represents Z. Let R1 ≡ UZ1. Then

R1 ∈ r̂e and |U | > 1
2 |R1|s. Therefore, if W is not cyclically r̂-reduced, then there exists a subword

U of a cyclic permutation of W and a word R ∈ r̂ such that R ≡ UZ where Z is x-reduced and

|U |s >
1
2 |R|s.

Lemma 4.2.8. If each Ge (e ∈ E) has a soluble word problem, then we can decide, given a word

W on x±1, whether or not W is cyclically r̂-reduced.

Proof. We can list all subwords U of all cyclic permutations of W . There are finitely many such

subwords and each subword satisfies |U |s 6 |W |. Since G is finitely generated, there are finitely

many x-reduced words Z on x±1 that satisfy |Z|s < |U |s. Therefore, there are finitely many words

R ≡ UZ where Z is x-reduced and |U |s >
1
2 |R|s. For each e ∈ E, we use the solution of the word

problem for Ge to decide whether or not each R is an element of r̂e. If R ∈ r̂e for some e ∈ E, then

W is not cyclically r̂-reduced. Otherwise, W is cyclically r̂-reduced.

We now prove Lemma 4.2.9.

Lemma 4.2.9. Given any non-empty word W on x±1 we can write down a cyclically r̂-reduced

word W1 on x±1 such that W1 and W represent conjugate elements of G.

Proof. We proceed by induction on |W |. If |W | = 1, then W is cyclically r̂-reduced, so take

W1 = W . Assume the results holds for all words of length less than k and let |W | = k.

87



By Lemma 4.2.8, we can decide whether or not W is cyclically r̂-reduced. If it is, then take

W1 = W . Suppose W is not cyclically r̂-reduced. Then there exists a cyclic permutation W3 of W ,

a subword U of W3, and a word R ∈ r̂ such that R ≡ UZ where Z is x-reduced and |U |s >
1
2 |R|s.

Since Z is x-reduced, |Z| = |Z|s < |U |s 6 |U |. Replace U by Z−1 in W3 to obtain a word W2 which

satisfies |W2| < |W3| = |W |. Therefore, the inductive hypothesis applies to W2. We can write down

a cyclically r̂-reduced word W1 on x±1 such that W1 and W2 represent conjugate elements of G.

Since W2 = W3, and since W3,W represent conjugate elements of G, we deduce that W1 and W

represent conjugate elements of G.

Now let G satisfy (H-I) or (H-II) and assume G satisfies Conditions (1) - (6) of §2.3.2. Let

W,Z be cyclically injective words on x±1. By Lemmas 4.2.2 - 4.2.7, we may assume that W and Z

satisfy Conditions (i) - (iv) of §4.2. Furthermore, by Lemma 4.2.9, we can assume the additional

condition:

(v) W and Z are cyclically r̂-reduced words on x±1.

Theorem 4.2.2. Let W and Z be as above and let n = |W |+ |Z|. Then W,Z represent conjugate

elements of G if and only if one of the following two conditions holds:

(C1) There exist cyclic permutations W ′ and Z ′ of W and Z, respectively, such that

W
n
∼W ′ 3

∼ Z ′ n
∼ Z.

(C2) There exist cyclic permutations W ′ and Z ′ of W and Z, respectively, such that W ′ = Z ′.

Proof. The “if” part of the statement is trivially true so assume that W,Z represent conjugate

elements of G. Let A be an annular r-diagram for the pair (W,Z−1), which is minimal with respect

to |E(A)| (> 1). Let σ (respectively, τ) be the outer (respectively, inner) boundary of A. Arguing

as in the proof of Theorem 4.2.1, we may assume that A does not contain any annular federations.

Let FA be a federal subdivision of A. Since G satisfies (H-I) or (H-II), FA satisfies Conditions (i)

and (ii) of Proposition 3.2.1. Let Â be the annular derived diagram of A corresponding to FA. The

proof is split into two cases: the case when G satisfies (H-I) and the case when G satisfies (H-II).

Case 1. Suppose G satisfies (H-I). Suppose Â does not contain a region Λ such that ∂Λ has

an edge on both σ and τ . Since W and Z are both cyclically r̂-reduced, it follows that Â satisfies

Hypotheses (A) and (B) of Theorem 3.2.1. Let B1 be the union of σ and all regions of Â whose
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boundaries contain an edge of σ. Define B2 similarly, replacing σ by τ . Then B1 ∪ B2 = Â and B1

and B2 are both annular r̂-diagrams. Let ∆1,∆2 be regions of B1 and B2, respectively, which have

an edge in common. There exists an edge ε1 ⊆ ∂∆1 that connects a vertex νσ on σ to a vertex

ν1 on the inner boundary of B1. Similarly, there exists an edge ε2 ⊆ ∂∆2 that connects a vertex

ντ on τ to a vertex ν2 on the outer boundary of B2. Moreover, we may choose ε2 so that ν1 and

ν2 are joined by an edge ε ⊆ ∂∆1 ∩ ∂∆2 (see Fig. 4.3). Therefore, we can construct a simple path

β = ε1εε2 from νσ to ντ . Let φ(β) ≡ B. By Property (2) of Lemma 3.1.1, |B| = 3. Let W1 be

the label of the outer boundary cycle of Â that starts and ends at νσ, and let Z−1
1 be the label

of the inner boundary cycle of Â that starts and ends at ντ . Cut Â open along β to obtain a

simply-connected r̂-diagram S with boundary label W1BZ
−1
1 B−1.

As in previous proofs, we now change to pictures. Let M be the simply-connected r̂-diagram

corresponding to S. Replace each disc of M with an appropriate simply-connected re-picture to

obtain a simply-connected r-picture P (see the proof of Theorem 4.1.1 for details). Since W (P) ≡

W1BZ
−1
1 B−1, we have

W
n
∼W1

3
∼ Z1

n
∼ Z

where W1 and Z1 are cyclic permutations of W and Z, respectively.

Figure 4.3: Edges ε1, ε2 and ε.

Now suppose Â does contain a region Λ that has an edge on both σ and τ . Since W and Z

are both cyclically r̂-reduced, it follows that Â satisfies Hypotheses (A) and (B) of Theorem 3.2.2.

Therefore, i(Λ) 6 2. Suppose i(Λ) 6= 0. Then there exists an edge ε in the boundary of Λ that
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connects σ to τ . The label of ε is an element of x±1
u for some u ∈ V . Cut Â open along ε to obtain a

simply-connected r̂-diagram S with boundary label W2φ(ε)Z−1
2 φ(ε)−1, where W2 and Z2 are cyclic

permutations of W and Z, respectively. Let M be the simply-connected r̂-picture corresponding

to S and let P be the simply-connected r-picture obtained from M by replacing each disc with an

appropriate re-picture. Since W (P) ≡W2φ(ε)Z−1
2 φ(ε)−1, it follows that

W
n
∼W2

1
∼ Z2

n
∼ Z

as required.

Now suppose i(Λ) = 0. Then ∂Λ must contain a pinch ν. Let σν be the outer boundary cycle of

Â that starts and ends at ν, and let τν be the inner boundary cycle of Â that starts and ends at ν.

Let Wν be the label of σν and let Zν be the label of τν . Note that Wν is a cyclic permutation of W

and Zν is a cyclic permutation of Z−1. Break Â open at ν to obtain a simply-connected r̂-diagram

S with boundary label WνZν (see Fig. 4.4).

Figure 4.4: Breaking Â open at ν.

Let M be the simply-connected r̂-diagram corresponding to S and let P be the simply-connected

r-picture obtained from M by replacing each disc with an appropriate simply-connected re-picture.

Since W (P) ≡WνZν , we have Wν = Z−1
ν where Wν and Z−1

ν are cyclic permutations of W and Z,

respectively.

Case 2. Suppose G satisfies (H-II). Suppose Â does not contain a region Λ such that ∂Λ has

an edge on both σ and τ . Since W and Z are both cyclically r̂-reduced, it follows that Â satisfies
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Hypotheses (A) and (B) of Theorem 3.2.1. Let B1 be the union of σ and all regions of Â whose

boundaries contain an edge of σ. Define B2 similarly, replacing σ by τ . Then B1 ∪ B2 = Â where

B1 and B2 are both annular r̂-diagrams. Let ∆1,∆2 be regions of B1 and B2, respectively, which

have a edge in common. There exists an edge ε1 ⊆ ∂∆1 that connects a vertex νσ on σ to a vertex

ν1 on the inner boundary of B1. Similarly, there exists an edge ε2 ⊆ ∂∆2 that connects a vertex ντ

on τ to a vertex ν2 on the outer boundary of B2. Moreover, we can choose ε2 so that ν1 = ν2 as

illustrated in Fig. 4.5 below.

Figure 4.5: Edges ε1 and ε2.

We can construct a simple path β = ε1ε2 from νσ to ντ . Let φ(β) ≡ B. By Property (2) of

Lemma 3.1.1, |B| = 2. Let W3 be the label of the outer boundary cycle of Â that starts and ends

at νσ, and let Z−1
3 be the label of the inner boundary cycle of Â that starts and ends at ντ . Cut Â

open along β to obtain a simply-connected r̂-diagram S with boundary label W3BZ
−1
3 B−1. Let M

be the simply-connected r̂-diagram corresponding to S. Replace each disc of M with an appropriate

simply-connected re-picture to obtain a simply-connected r-picture P. Since W (P) ≡W3BZ
−1
3 B−1,

we have

W
n
∼W3

2
∼ Z3

n
∼ Z

where W3 and Z3 are cyclic permutations of W and Z, respectively.

If Â contains a region Λ such that ∂Λ contains an edge of both σ and τ , then we argue as in

Case 1 to show that either (C1) or (C2) holds. This completes the proof of Theorem 4.2.2.
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4.2.2 Concluding remarks

We have solved the conjugacy problem for a vertex-finite Pride group which satisfies Condition (I)

or (II), or Condition (H-I) or (H-II). However, our solutions depend on the assumption that the

Pride group also satisfies Conditions (1) - (6). What can be said about these conditions?

Let us first suppose (H-I) or (H-II) holds. Condition (1) states that each edge group has a

soluble conjugacy problem and, clearly, this assumption cannot be dropped.

Theorems 3.2.1 and 3.2.2 give us precise information about the structure of annular derived

diagrams. We suspect these results can also help in determining the structure of annular r-diagrams

which contain at least one annular federation. The following should be true. If A is an annular r-

diagram, then: either (i) each federation in A is simply-connected, or (ii) each federation is annular.

This result would be a major step forward in solving the decision problems stated in Conditions

(3), (5) and (6).

There is no reason to suspect that Condition (2) will be true in general, i.e. that Ge will be

malnormal in G for each e ∈ E. However, if the result stated in the previous paragraph is true,

then it should be relatively straightforward to determine when two elements of Ge (e ∈ E) are

conjugate.

Condition (4) is an interesting question in its own right and deserves further study.

Very little can be said about the structure of annular derived diagrams in the case when (I) or

(II) holds. Despite this it is reasonable to expect that the decision problems stated in Conditions

(3), (4) and (6) are soluble. Such solutions may also help in determining when Condition (2) holds.

We cannot say anything more about Conditions (2) - (6) at this time.
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Chapter 5

The second homotopy module of a

non-spherical Pride group

In this chapter we prove Theorems 6, 7 and 8, and Proposition 1. Let G be a non-spherical Pride

group (recall §2.1, Condition (III)) with underlying graph Γ = {V,E}. We now fix a presentation

of G that will be used throughout this chapter. For each v ∈ V , let Pv = 〈xv ; rv〉 be a finite

presentation of Gv. For each e = {u, v} ∈ E, let xe = xu ∪ xv and let re = ru ∪ rv ∪ r′e, where r′e

is a set of cyclically reduced words on x±1
e that represent the elements of te. (Recall, te is a set of

cyclically reduced elements of G̃e = Gu ∗Gv.) Let r′ be the union of the r′e’s. Then Pe = 〈xe ; re〉

is a finite presentation of Ge and P = 〈x ; r〉 is a finite presentation of G, where

x =
⋃

v∈V

xv and r =
⋃

e∈E

re.

We call P the natural presentation of G.

5.1 Technicolor pictures

Let I be a fixed set whose elements shall be referred to as colours and let {mij : i, j ∈ I} be a fixed

family of elements of N ∪ {∞} such that mij = mji and mij > 4 for i 6= j. Following [31], we say

that a triple of distinct colours i, j, k ∈ I is a spherical triple if

1

mij
+

1

mjk
+

1

mki
>

1

2
,

where 1/∞ := 0.
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Definition 5.1.1. A colouring of a picture P by I is an I-valued function on the set of arcs of P.

A picture together with a colouring function into I is called an I-coloured picture.

Lemma 5.1.1. ( [31, Lemma 2.2]) Suppose I does not contain any spherical triples and let P be a

non-spherical simply-connected I-coloured picture satisfying:

(i) No arc is a floating circle nor has both endpoints on the same disc enclosing a region of degree

1;

(ii) Associated to each disc D are two distinct colours i, j ∈ I (with mij 6= ∞) such that each arc

incident with D is coloured either i or j and there are at least mij corners of D joining one

arc of each colour;

(iii) No interior region has more than one corner in its boundary joining arcs of the same two

distinct colours.

If under the above conditions some arc of P is coloured k, then some arc meeting ∂P is coloured k.

5.2 Pictures over the natural presentation of a non-spherical Pride

group

Let G be a non-spherical Pride group with underlying graph Γ = {V,E}, and let P be a picture

over the natural presentation P = 〈x ; r〉 of G. There exists an obvious colouring of P (by V ): arcs

labelled by an element of xv (v ∈ V ) are coloured v. For each pair of vertices u, v ∈ V , we define

muv =





me if {u, v} = e for some e ∈ E;

∞ if {u, v} /∈ E.

Clearly muv = mvu and since G is non-spherical, muv > 4 for u 6= v. Thus, we may view P as a

V -coloured picture.

Lemma 5.2.1. When viewed as a set of colours, V cannot contain a spherical triple.

Proof. Let u, v, w be distinct elements of V and let

T =
1

muv
+

1

mvw
+

1

mwu
.
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Now T is maximal when {u, v} = e1, {v, w} = e2 and {w, u} = e3 for some e1, e2, e3 ∈ E. It follows

that e1, e2, e3 are the edges of a triangle in Γ. Since G is non-spherical,

T 6
1

me1

+
1

me2

+
1

me3

6
1

2
.

Thus, V does not contain any spherical triples.

Let P be an r-picture and let u, v ∈ V . A (u, v)-subpicture of P is a subpicture in which each

arc has colour u or colour v.

Definition 5.2.1. A federation is a maximal (u, v)-subpicture F such that {u, v} = e for some edge

e ∈ E, and such that F contains at least one disc whose label is an element of r′e. It is maximal in

the sense that ∂F cannot be extended to include any other disc of P whose label is an element of

re. We define Σ(F) to be e.

A federation is simply-connected if it is a simply-connected (u, v)-subpicture. Otherwise, it

is non-simply-connected. If F is a simply-connected federation with Σ(F) = e, then by Theorem

1.8.1 the label W (F) of F represents the identity element of Ge. Equivalently, W (F) represents an

element of kerψe.

Let F1 be a federation of P. If F1 6= P, then construct a federation F2 of P−F1. If F2 6= P1−F1,

then construct a federation F3 of P1−(F1∪F2), and so. Eventually, we will end up with a collection

of subpictures F1, . . . ,Fn of P that cover P and satisfy the property that Fi+1 is a federation of

P − (
i⋃

j=1

Fj).

We call the collection of subpictures FP = {Fi}
n
i=1 a federal subdivision of P.

Recall, for each e ∈ E, r̂e denotes the set of all words on x±1
e that represent a non-identity

element of kerψe, and that the union of the r̂e’s is denoted by r̂.

Let P be a non-empty connected r-picture and let FP = {Fi}
n
i=1 be a federal subdivision of P

which satisfies the following two conditions:

(i) Each Fi ∈ FP is simply-connected (i = 1, . . . , n);

(ii) W (Fi) ∈ r̂ for i = 1, . . . , n.
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The derived picture P̂ of P corresponding to FP is obtained from P by deleting the arcs and discs

which are contained in each Fi. If α is a boundary arc of Fi, then we only delete the portion of α

which is contained in Fi. The boundary of Fi is then identified as the boundary of a disc of P̂. By

construction of P̂, W (P̂) ≡W (P). Also, P̂ inherits a colouring by the elements of V . Furthermore,

if D is a disc of P̂ obtained from a federation F, then the label of D is identical to W (F) and so is

an element of r̂. Thus P̂ is an r̂-picture.

Lemma 5.2.2. Let P̂ be the derived picture corresponding to some federal subdivision FP of some

non-spherical connected simply-connected r-picture P. Then P̂ satisfies Conditions (i), (ii) and (iii)

of Lemma 5.1.1.

Proof. Since P is connected, P̂ cannot contain any floating circles. Also, we may assume P̂ does

not contain an arc which has both endpoints on the same disc enclosing a region of degree 1. If

such an arc α existed, then (in P) its endpoints would lie on two discs which belong to the same

federation F (see Fig. 5.1). Furthermore, no disc of P would be contained in the region bounded by

α and ∂F. Thus, we could “pull” α into F as shown in Fig. 5.1. Hence P̂ satisfies Condition (i) of

Lemma 5.1.1.

Figure 5.1: Pulling α into F.

Let D be a disc of P̂ with label W . Then W is an element of r̂e for some e = {u, v} ∈ E, so

|W |s > me. We deduce that each arc incident with D is coloured u or v and there are at least muv

corners of D joining one arc of each colour. Thus, P̂ satisfies Condition (ii) of Lemma 5.1.1.

Assume P̂ contains an interior region F that does not satisfy Condition (iii) of Lemma 5.1.1,

i.e. F contains at least two corners κ1, κ2 in its boundary that join arcs of the same two distinct

colours u and v, say. Suppose κ1 and κ2 are corners of two distinct discs D1 and D2, respectively.

Then there is a simple closed transverse path β in P̂ enclosing D1 and D2 only (see Fig. 5.2). Let
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F1 and F2 be the federations of P that correspond to D1 and D2, respectively. It follows that

in P, there is a simple closed transverse path enclosing F1 and F2 only. Therefore the boundary

of F1 can be extended to include all the discs of F2, contradicting the fact that F1 is a maximal

(u, v)-subpicture.

Figure 5.2: A simple closed transverse path enclosing D1 and D2.

Now suppose κ1 and κ2 are corners of the same disc D (see Fig. 5.3). Draw a simple closed

transverse path β enclosing D as shown.

Figure 5.3: A simple closed transverse path enclosing D.

In addition to D, the subpicture bounded by β contains at least one disc so that Condition (i)

of Lemma 5.1.1 is not violated. Moreover, by assuming that the subpicture bounded by β is an

“innermost” one violating Condition (iii) (meaning that Condition (iii) is satisfied by every region
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which is enclosed by a simple closed transverse path consisting of discs and arcs of P̂ that lie in the

subpicture bounded by β) we may assume that Lemma 5.1.1 applies to the subpicture bounded

by β. Hence each arc in the subpicture is coloured u or v as only arcs of these colours meet its

boundary. Now β corresponds to a simple closed transverse path β′ in P that encloses only those

federations that correspond to the discs enclosed by β. Each such federation is a maximal (u, v)-

subpicture; however, this contradicts the fact that the federation corresponding to D is a maximal

(u, v)-subpicture. We deduce that P̂ must satisfy Condition (iii) of Lemma 5.1.1. This completes

the proof of Lemma 5.2.2.

Let P be a non-empty connected spherical r-picture and let FP be a federal subdivision of P.

Choose some F ∈ FP with Σ(F) = e ∈ E, and let W (F) ≡W . There are three possibilities for W :

(i) W is freely equal to the empty word, or

(ii) W represents the identity element of G̃e, or

(iii) W represents a non-identity element of kerψe.

Lemma 5.2.3. If each federation of FP is simply-connected and if FP contains at least two federa-

tions, then P contains a federation whose boundary label is either freely equal to the empty word or

represents the identity element of G̃e for some e ∈ E.

Proof. Suppose the boundary label of each federation of P represents a non-identity element of

kerψe for some e ∈ E. We may then construct the derived picture P̂ of P corresponding to FP.

Choose some disc D in P̂ and let F be its corresponding federation in P, where Σ(F) = {u, v} ∈ E.

Identify D as the only disc lying on the northern hemisphere of the two-sphere (see Fig. 5.4). The

discs and arcs that lie on the southern hemisphere form a simply-connected r̂-subpicture M of P̂

and so, by Lemma 5.2.2, satisfy the conditions of Lemma 5.1.1. We deduce that each interior arc

of M is coloured u or v, as only arcs of these colours meet its boundary. However, this contradicts

the fact that F is a maximal (u, v)-subpicture. The conclusion of the lemma now follows.

The following result extends Lemma 5.2.3 to the case where FP need not contain only simply-

connected federations.

Lemma 5.2.4. If |FP| > 2, then P contains a simply-connected federation whose boundary label is

either freely equal to the empty word or represents the identity element of G̃e for some e ∈ E.
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Figure 5.4: Identifying D as lying on the northern hemisphere of the two-sphere.

Proof. In light of Lemma 5.2.3, we may assume FP contains a non-simply-connected federation Fi.

Let Σ(Fi) = {u, v} ∈ E and let B be a simply-connected component of P − Fi. Observe that any

arc meeting ∂B has colour u or v and we may choose Fi so that each federation contained in B is

simply-connected.

Suppose B contains only one federation (which we will also denote by B) and let W (B) = W .

Then W is either a word on x±1
u that represents the identity element of Gu, or is a word on x±1

v that

represents the identity element of Gv. In either case, W represents the identity element of Gu ∗Gv.

Thus, B is a simply-connected federation of P whose boundary label represents the identity element

of G̃e for some e ∈ E.

Now suppose B contains more than one federation and assume that the boundary label of each

federation is an element of r̂. We may then construct the derived picture B̂ of B. Since B̂ satisfies

the conditions of Lemma 5.1.1, we deduce that each interior arc of B is coloured u or v, as only arcs

of these colours meet its boundary. Thus, B is a (u, v)-subpicture; however, this contradicts the

fact that Fi is a maximal (u, v)-subpicture. Hence, B must contain at least one simply-connected

federation Fj whose boundary label is either freely equal to the empty word or represents the

identity element of G̃e for some e ∈ E. Thus, P contains such a federation.

We are now in a position to prove Theorem 7, which we restate below. Recall that a group
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is said to be diagrammatically reducible if it has a diagrammatically reducible presentation Q, i.e.

every non-empty connected spherical picture over Q contains, after performing bridge moves, a

cancelling pair.

Theorem 5.2.1. Let G be a non-spherical vertex-free Pride group with underlying graph Γ =

{V,E}. Then G is diagrammatically reducible if and only if each edge group is diagrammatically

reducible.

Proof. Let P = 〈x ; r〉 be the natural presentation ofG where each vertex group has the presentation

〈xv ;−〉 (v ∈ V ). Let P be a non-empty connected spherical r-picture. If P is a spherical picture

over some edge group presentation, then the diagrammatic reducibility of the edge groups implies

that P must contain, after performing bridge moves, a cancelling pair.

If P contains more than two federations, then it must contain a simply-connected federation F

whose boundary label W is either freely equal to the empty word or represents the identity element

of G̃e for some e ∈ E. Since each vertex group is free, we deduce that W must be freely equal

to the empty word. By performing bridge moves on the boundary arcs of F we can split P into

two spherical components, one of which is F. Since each Ge is diagrammatically reducible, F must

contain, after performing bridge moves, a cancelling pair. Thus so does P. This completes the proof

of the theorem.

5.3 A generating set for π2(P)

Let G be a non-spherical Pride group with underlying graph Γ = {V,E}, and let P = 〈x ; r〉 be the

natural presentation of G. Let E(P) to be the set of discs of P whose labels are elements of (r′)s.

We now prove Theorem 6.

Theorem 5.3.1. For each e ∈ E, let Xe be a generating set for π2(Pe). Then

X =
⋃

e∈E

Xe

is a generating set for π2(P). In particular, if each Ge is of type F3, then G is of type F3.

Proof. Let P be a non-empty connected spherical r-picture. Suppose P does not contain a disc

whose label is an element of (r′)s. Then P is a non-empty connected spherical rv-picture for some

100



v ∈ V and so 〈P〉 ∈ π2(Pe) where e = {u, v} ∈ E. Thus P is equivalent (modulo Xe) to the empty

picture.

Now suppose P does contain a disc whose label is an element of (r′)s. We proceed by induction

on |E(P)|.

If |E(P)| = 1, then P is a connected spherical re-picture for some e ∈ E and so 〈P〉 ∈ π2(Pe).

Thus P is equivalent (modulo Xe) to the empty picture. Assume |E(P)| = k (> 1) and that

the result holds for all connected spherical r-pictures P′ with |E(P′)| < k. Let FP be a federal

subdivision of P.

If FP contains only one federation, then P is a non-empty connected spherical re-picture for

some e ∈ E and so is equivalent (modulo Xe) to the empty picture.

If FP contains at least two federations, then by Lemma 5.2.4, P contains a simply-connected

federation F whose boundary label W is either

(i) freely equal to the empty word, or

(ii) represents the identity element of G̃e for some e ∈ E.

Suppose (i) holds. By performing bridge moves on the boundary arcs of F we can split P into

two connected spherical components C1 and C2, where C1 contains P′ = P − F and C2 contains F.

It follows by induction that P′ is equivalent (modulo X) to the empty picture. Since F is a spherical

re-picture (e ∈ E), F is equivalent (modulo Xe) to the empty picture. Thus P is equivalent (modulo

X) to the empty picture.

Now suppose W represents the identity element of G̃e, where e = {u, v} ∈ E. Then there exists

a minimal simply-connected (ru ∪ rv)-picture B with W (B) ≡W . Let A be the connected spherical

re-picture illustrated in Fig. 5.5. By Lemma 1.8.3, we have

〈P〉 − 〈P′〉 = U · 〈A〉 (U ∈ (x±1)∗)

where P′ is the non-empty connected spherical r-picture obtained from P by replacing F with B.

Since |E(P′)| < |E(P)|, the induction hypothesis applies to P′. Therefore, P′ is equivalent (modulo

X) to the empty picture. It follows that P is equivalent (modulo X ∪ A) to the empty picture and

since A is equivalent (modulo Xe) to the empty picture, we deduce that P is equivalent (modulo

X) to the empty picture. This completes the proof for the case when P is a connected spherical
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r-picture. A simple inductive argument on the number of components proves that the result holds

when P is an arbitrary spherical r-picture.

Figure 5.5: The spherical re-picture A.

The proof of Corollary 2 (restated below) follows immediately.

Corollary 5.3.1. Let G be a non-spherical Pride group. If each Ge is combinatorially aspherical,

then G is combinatorially aspherical. In particular, if each Ge is aspherical, then G is aspherical.

5.4 An upper bound for the second order Dehn function of a non-

spherical Pride group

We begin this section with the proof of Theorem 8.

Theorem 5.4.1. Let G be a non-spherical vertex-free Pride group with underlying graph Γ =

{V,E}. Assume for each e ∈ E that Ge is of type F3 and let δ
(2)
E = max{δ̄

(2)
Ge

: e ∈ E}. Then

δ
(2)
G (n) 4 δ

(2)
E (n)

for all n ∈ N.

Proof. Let P = 〈x ; r〉 be the natural presentation ofG where each vertex group has the presentation

〈xv ;−〉 (v ∈ V ). Let P be a non-empty connected spherical r-picture of area n and let X be the
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set of generators of π2(P) described in Theorem 5.3.1. Note, since each Ge (e ∈ E) is of type F3,

X is a finite set.

We proceed by induction on |E(P)| = k. If k = 0, then P is a non-empty connected spherical

rv-picture for some v ∈ V . Since Gv is free and hence aspherical, P is equivalent to the empty

picture. Therefore, VX(〈P〉) = 0.

Now assume k > 0 and let FP = {Fi}
r
i=1 be a federal subdivision of P. If r = 1, then P is a

non-empty connected spherical re-picture for some e ∈ E. Therefore, VX(〈P〉) 6 δ
(2)
E (n).

Now suppose r > 2. It follows from Lemma 5.2.4 that P must contain a simply-connected

federation F whose boundary label W is either freely equal to the empty word or represents the

identity element of G̃e for some e ∈ E. Since each vertex group is free, we deduce that W must

be freely equal to the empty word. By performing bridge moves on the boundary arcs of F we can

split P into two spherical components. Thus,

〈P〉 = 〈P1〉 + 〈F〉

where P1 = P − F. The induction hypothesis applies to P1, so VX(〈P1〉) 6 δ
(2)
E (n − f) where f is

the area of F. Also, VX(〈F〉) 6 δ
(2)
E (f). Therefore,

VX(〈P〉) = VX(〈P1〉) + VX(〈F〉)

6 δ
(2)
E (n− f) + δ

(2)
E (f)

6 δ
(2)
E (n).

The statement of the result now follows.

We now consider the second order Dehn function of an arbitrary non-spherical Pride group G.

If we wish to apply the reduction argument used in the proof of Theorem 5.3.1 to calculate an

upper bound for δ
(2)
G , then we have to consider the case when a spherical r-picture P contains a

simply-connected federation F whose boundary label represents the identity element of some G̃e

(e ∈ E). (Recall, this case did not arise in the proof of Theorem 5.4.1 as each vertex group was

free.) Following the proof of Theorem 5.3.1, we replace F with some simply-connected picture B

over a presentation P̃e for G̃e. We have to take account of the area of B as this will affect the

volume of P; however, there is no obvious way to calculate Area(B). The area distortion function

defined below is designed to do precisely this.
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Let Q1 = 〈y1 ; s1〉 and Q2 = 〈y2 ; s2〉 be two finite presentations, and let s be a finite set of

non-empty cyclically reduced words on (y1 ∪ y2)
±1 where each element of s involves at least one

y1-letter and at least one y2-letter. Let R = 〈y1,y2 ; s1, s2, s〉. Then G(R) is the quotient group

G(Q1) ∗G(Q2)

<< s >>
.

Suppose the natural maps G(Q1) → G(R) and G(Q2) → G(R) are injective, and let Q =

〈y1,y2 ; s1, s2〉 be a finite presentation of G(Q1) ∗G(Q2).

Definition 5.4.1. The area distortion function of Q relative to R is the function ΛR
Q : N → N

where for all n ∈ N,

ΛR
Q(n) = max{AreaQ(W ) : W = 1 in G(Q) and AreaR(W ) 6 n}.

This function is similar to the following area distortion function h defined in [49] (see also

[52, 80]). Let S be a subpresentation of a finite presentation T so each generator (respectively,

relator) of S is a generator (respectively, relator) of T , and assume that G(S) embeds in G(T ).

The area distortion function of S in T is the function h : N → N given by

h(n) = max{AreaS(W ) : W = 1 in G(S) and AreaT (W ) 6 n}.

It is easily shown that h is invariant (up to the standard ≃-equivalence) under change of pre-

sentations, thus one may speak of the area distortion function of a finitely presented subgroup in

a finitely presented group. Unlike h, the area distortion function ΛR
Q is not well-defined in gen-

eral. Arbitrarily long words can have small area with respect to R but there is no obvious way of

bounding their areas with respect to Q. With these comments in mind, we proceed with the proof

of Proposition 1.

Proposition 5.4.1. Let G be a non-spherical Pride group with underlying graph Γ = {V,E} and

let P = 〈x ; r〉 be the natural presentation of G. For each e = {u, v} ∈ E, let P̃e = 〈xu,xv ; ru, rv〉

be a presentation of G̃e and let Λe be the area distortion function of P̃e relative to Pe. Assume each

Ge is of type F3 and set Λ = max{Λ̄e : e ∈ E}. Then for all n ∈ N,

δ
(2)
P (n) 6 δ

(2)
E (n+ 2nΛn(n2 + n)) + δ

(2)
V (n)

where δ
(2)
V = max{δ̄

(2)
Pv

: v ∈ V }, δ
(2)
E = max{δ̄

(2)
Pe

: e ∈ E} and Λn is the n-th power of Λ.
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Proof. Let P be a non-empty connected spherical r-picture of area n and let X be the set of

generators of π2(P) described in Theorem 5.3.1. If |E(P)| = 0, then P is a non-empty connected

spherical rv-picture for some v ∈ V , so

VX(〈P〉) 6 δ
(2)
V (n).

Now assume |E(P)| = k > 0 and let FP = {Fi}r
i=1 be a federal subdivision of P. Our aim is to

prove that

VX(〈P〉) 6 δ
(2)
E (n+ 2Λk((k + 1)n)).

We proceed by induction on k. If k = 1, then P is a non-empty connected spherical re-picture

for some e ∈ E, so

VX(〈P〉) 6 δ
(2)
E (n).

Now assume k > 2. If r = 1, then we argue as in the previous paragraph. Now suppose r > 2.

It follows from Lemma 5.2.4 that P must contain a simply-connected federation F whose boundary

label is either freely equal to the empty word or represents the identity element of G̃e for some

e ∈ E. In the first instance, we can perform bridge moves on the boundary arcs of F to split P into

two spherical components. Thus,

〈P〉 = 〈P1〉 + 〈F〉

where P1 = P − F. The induction hypothesis applies to P1, so

VX(〈P1〉) 6 δ
(2)
E (n− f + 2Λk1((k1 + 1)(n− f)))

where f = Area(F) and k1 = |E(P1)|. Hence,

VX(〈P〉) = VX(〈P1〉) + VX(〈F〉)

6 δ
(2)
E (n− f + 2Λk1((k1 + 1)(n− f))) + δ

(2)
E (f)

6 δ
(2)
E (n+ 2Λk1((k1 + 1)(n− f))

6 δ
(2)
E (n+ 2Λk((k + 1)n)).

Now suppose the boundary label of F represents the identity element of G̃e for some e ∈ E.

Then there exists a minimal simply-connected picture B for W (F) over P̃e. As in the proof of

Theorem 5.3.1, we replace F with B to obtain a connected spherical r-picture P2 so that

〈P〉 = 〈P2〉 + U · 〈A〉 (U ∈ (x±1)∗),
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where A is the connected spherical re-picture illustrated in Fig. 5.5. Let Area(F) = f . Then

Area(B) 6 Λe(f), where Λe is the area distortion function of P̃e relative to Pe. Therefore,

Area(A) 6 f + ΛE(f)

and we deduce that

VX(U · 〈A〉) = VX(〈A〉) 6 δ
(2)
E (f + Λ(f)).

Since |E(B)| = 0, |E(P2)| 6 k − 1 and the induction hypothesis applies to P2. Therefore,

VX(〈P2〉) 6 δ
(2)
E (n− f + Λ(f) + 2Λk−1(k(n− f + Λ(f)))).

Thus,

VX(〈P〉) = VX(〈P2〉) + VX(U · 〈A〉)

6 δ
(2)
E (n− f + Λ(f) + 2Λk−1(k(n− f + Λ(f)))) + δ

(2)
E (f + Λ(f))

6 δ
(2)
E (n+ 2Λ(f) + 2Λk−1(Λ(kn− kf) + Λ(kf)))

6 δ
(2)
E (n+ 2Λ(f) + 2Λk−1(Λ(kn)))

6 δ
(2)
E (n+ 2Λk(n) + 2Λk(kn))

6 δ
(2)
E (n+ 2Λk((k + 1)n))

as required.

Now let P be an arbitrary spherical r-picture of area n and let |E(P)| = k. If P has m

components, then we claim

VX(〈P〉) 6 δ
(2)
E (n+ 2mΛk((k + 1)n)) + δ

(2)
V (n).

We proceed by induction on m. If m = 1, then the result holds by the first part of the proof.

Suppose m > 1. Then

〈P〉 = 〈M〉 + 〈C〉

where C is a non-empty spherical component of P and M = P−C. Let Area(C) = c and |E(C)| = l.

If C is a connected spherical rv-picture for some v ∈ V , then l = 0 and

VX(〈P〉) = VX(〈M〉) + VX(〈C〉)

6 δ
(2)
E (n− c+ 2(m− 1)Λk((k + 1)(n− c))) + δ

(2)
V (n− c) + δ

(2)
V (c)

6 δ
(2)
E (n+ 2mΛk((k + 1)n)) + δ

(2)
V (n).
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If C is a connected spherical re-picture for some e ∈ E, then l > 1 and

VX(〈P〉) = VX(〈M〉) + VX(〈C〉)

6 δ
(2)
E (n− c+ 2(m− 1)Λk−l((k − l + 1)(n− c))) + δ

(2)
V (n− c) + δ

(2)
E (c)

6 δ
(2)
E (n+ 2mΛk((k + 1)n)) + δ

(2)
V (n).

Finally, if C is neither a connected spherical rv-picture nor a connected spherical re-picture for

any v ∈ V or e ∈ E, then

VX(〈P〉) = VX(〈M〉) + VX(〈C〉)

6 δ
(2)
E (n− c+ 2(m− 1)Λk−l((k − l + 1)(n− c))) + δ

(2)
V (n− c) + δ

(2)
E (c+ 2Λl((l + 1)c))

6 δ
(2)
E (n+ 2(m− 1)Λk((k + 1)n) + 2Λk((k + 1)n)) + δ

(2)
V (n)

6 δ
(2)
E (n+ 2mΛk((k + 1)n)) + δ

(2)
V (n).

This completes the proof of our claim. Since m 6 n and k 6 n, we have

VX(〈P〉) 6 δ
(2)
E (n+ 2nΛn((n+ 1)n)) + δ2V (n).

The statement of the result now follows.

If one could show that the area distortion function Λe is well-defined for each e ∈ E, then the

formula given in Proposition 5.4.1 would be an upper bound for the second order Dehn function

δ
(2)
G of an arbitrary non-spherical Pride group G. We have obtained results concerning this which

will appear elsewhere.

107



Chapter 6

An introduction to relative

presentations

We now turn our attention to the study of relative presentations. Our main interest is in determining

when a relative presentation is aspherical. In this chapter we define what it means for a relative

presentation to be aspherical and describe various tests that are used to determine whether or not

this is the case. The language we use is pictures over relative presentations. In Chapter 7 we give

a classification of when relative presentations which belong to a particular family are aspherical.

6.1 Relative presentations

A relative presentation consists of the following data: a group H, a set t that is disjoint from H, and

a set r of cyclically reduced elements of H ∗ F (t). The relative presentation is then P = 〈H, t ; r〉

and the group defined by P is

G(P) = (H ∗ F (t))/ << r >> .

The group H is the coefficient group of the relative presentation. If we choose H to be the trivial

group, then P is simply an ordinary presentation as defined in §1.3.

A relative presentation is said to be orientable if no element of r is a cyclic permutation of its

inverse, and it is injective if the natural map H → G(P) is a monomorphism. Injective relative

presentations are intimately connected with the study of equations over groups in the following

way. If P is an injective relative presentation, then the collection {t << r >>: t ∈ t} of elements
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of G(P) is a solution to the system of equations R(H, t) = 1 (R ∈ r) in the overgroup G(P)

of H. The study of equations over groups has been pursued by numerous authors. We refer

to [34,37,40,43,55,60,61,63] and the references contained therein.

We may obtain from P an ordinary lifted presentation P̂ in the following way. First, choose an

ordinary presentation Q = 〈x ; s〉 for H. Select words on x±1 to represent the elements of H and

then use these words to rewrite the H-coefficients that appear in the relative relators of r. Denote

the resulting set by r̂. The lifted presentation is then P̂ = 〈x, t ; s, r̂〉 and it defines the group

Ĝ = F (x, t)/ << s ∪ r̂ >>,

where << s∪ r̂ >> is the normal closure of s∪ r̂ in F (x, t). There is an isomorphism ν : Ĝ→ G(P)

induced by the epimorphism

φ ∗ id : F (x) ∗ F (t) → H ∗ F (t),

where φ : F (x) → H is an epimorphism with kernel << s >>.

Definition 6.1.1. A relative presentation P = 〈H, t ; r〉 is aspherical if for some ordinary presenta-

tion Q = 〈x ; s〉 of H and for some lifted presentation P̂ = 〈x, t ; s, r̂〉, the second homotopy module

π2(P̂) is generated by π2(Q) as a left ZĜ-module.

In terms of pictures, a relative presentation P is aspherical if every spherical picture over P̂ is

equivalent (modulo X) to the empty picture, where X is a set of generators of π2(Q). This concept

of asphericity was first given in [10] and is more general than that given in [16]. The stronger notion

of asphericity according to the theory developed in [16] will be given in §6.3. The main theoretical

consequences of asphericity are summarized in the following result.

Theorem 6.1.1. ( [10, Theorem 1]) If P = 〈H, t ; r〉 is an injective aspherical relative presentation

for a group G, then the following statements are true.

(1) The inclusion H →֒ G induces isomorphisms

Hn(G,−) ∼= Hn(H,−) and Hn(G,−) ∼= Hn(H,−)

in all dimensions n > 3 and for all choices of ZG-module coefficients.

(2) Each finite subgroup of G is contained in a G-conjugate of H.
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For the remainder of this chapter we restrict our study to one-relator relative presentations of

the form

P = 〈H, t ;R〉, (6.1)

where R = tε1h1t
ε2h2 . . . t

εmhm is a cyclically reduced element of H ∗ 〈t〉. The exponent sum

of t in the relative relator R is ε1 + ε2 + . . . + εm and the integer m is the t-length of R. A

relative presentation of the form (6.1) is said to be of t-length m if the t-length of R is equal to

m. The t-shape of R is the unreduced word formed by the occurrences of t±1, i.e. the unreduced

word obtained from R by deleting the H-coefficients. The injectivity and asphericity of relative

presentations of the form (6.1) depends very much on the t-shape of R.

6.2 A brief survey of known and original results

Levin [63] proved that the relative presentation P1 = 〈H, t; th1th2 . . . thm〉 is injective for m > 2

and it is easy to analyse the asphericity of P1 for t-lengths 6 2. However, for t-lengths > 3 it is

much harder. Bogley and Pride [16] obtained a complete classification of when P1 is aspherical for

the case when it has t-length 3. When P1 has t-length 4, an almost complete classification was

obtained in [10]. More recently, an almost complete classification of when P1 is aspherical for the

case when it has t-length 5 was obtained in [57].

Howie [55] proved that the relative presentation P2 = 〈H, t ; th1th2 . . . thm−1t
−1hm〉 is injective

if m = 3 and Edjvet [36] obtained a classification of when P2 is aspherical modulo eight exceptional

cases. Injectivity for the case m = 4 was shown in [37] and a classification of when P2 is aspherical

was obtained in [2] modulo twelve exceptional cases. Note that if m = 1, then P2 is a relative

presentation defining an HNN-extension. The injectivity and asphericity of such presentations is

well known [28].

We are interested in the case when h1 = h2 = . . . = hm−2 = 1 in P2, i.e. we study relative

presentations of the form P = 〈H, t ; tnat−1b〉. Edjvet [34] has shown that P is injective for n > 2.

The results of [36] and [2] determine when P is aspherical for the cases n = 2 and n = 3, respectively.

In Chapter 7, we prove the following.

Theorem 9. Let P = 〈H, t ; tnat−1a〉 where a is a non-identity element of H and n > 4. Then P

is aspherical if and only if a has infinite order in H.
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Theorem 10. Let P = 〈H, t ; tnat−1b〉 (n > 4) where a and b are distinct elements of H such that

o(a), o(b) > 3. Then P is aspherical if and only if neither of the following two conditions hold:

(1) 1
o(a) + 1

o(b) + 1
o(ab−1)

> 1 where 1
∞ := 0;

(2) a = b−1 and o(a) <∞.

There are four exceptional cases (see §7.2) for which asphericity cannot be determined in The-

orem 10.

We note that the relative relator tnat−1b (n > 2) has an amenable t-shape [43]. Forester and

Rourke [45] proved that if H is torsion-free and if R has an amenable t-shape, then the relative

presentation 〈H, t ;R〉 is aspherical in the sense of [16]. The difficulty in proving Theorem 10 comes

from the fact that H may have torsion.

Remark 6.2.1. For the remainder of this chapter, by a relative presentation we will mean a one-

relator relative presentation of the form (6.1). Note, such presentations are orientable.

6.3 Pictures over one-relator relative presentations

Let P = 〈H, t ;R〉 be a relative presentation and let P be a simply-connected picture. (All pictures

in this chapter will be simply-connected.). We say that P is a picture over P if it admits the

following labelling. Each arc of P has a normal orientation (indicated by an arrow transverse to

the arc) and is labelled by t, and each corner of P is labelled by an element of H. If κ is a corner of

a disc Di, then we denote by W (κ) the word obtained by reading in a clockwise order (beginning

with the arc at the head of κ) the labels on corners and arcs meeting ∂Di. The following two

conditions must be satisfied:

(i) For each corner κ of P, W (κ) is a cyclic permutation of R or R−1;

(ii) If h1, . . . , hr is the sequence of corner labels encountered in an anticlockwise traversal of the

boundary of an interior region of P, then h1 . . . hr = 1 in H.

We say that h1 . . . hr is the label of the interior region.

Example 6.3.1. Let Q = 〈Z3, t ; t
3at−1a〉 where a generates the cyclic group Z3 of order 3. The

picture illustrated in Fig. 6.1 is a picture over Q.
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Figure 6.1: A picture over Q.

Recall that we may obtain from P an ordinary lifted presentation P̂. Given a connected spherical

picture P over P, one may lift P (though not uniquely) to a simply-connected picture P̂ over P̂.

Choose a presentation Q = 〈x ; s〉 of H. For each corner label h of each interior region F of P,

replace h with a succession of x-arcs whose total label Wh is a word on x±1 that represents h. The

product of the Wh’s (h running over all corner labels of F ) represents the identity element of H, so

by Theorem 1.8.1 there exists a simply-connected s-picture BF whose boundary label is identical

to the product of the Wh’s. Fill F with BF and proceed to fill the remaining interior regions of P

in this way. The one remaining region of P is an annulus. Replace each corner label in this region

by a succession of x-arcs reading the representative word (anticlockwise around the ambient disc).

These x-arcs extend radially to the boundary of P̂. We call P̂ a lifted picture of P.

A connected spherical picture over P is said to be strictly spherical if the product of the corner

labels in the unique annular region (taken in anticlockwise order) equals the identity in H. The

lifted picture P̂ of a connected strictly spherical picture over P is a spherical picture over P̂. (The
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product of the representative words of the corner labels of the unique annular region of P represents

the identity of H, so we may fill this region with a simply-connected s-picture.)

Example 6.3.2. Let Q be the relative presentation given in Example 6.3.1. The picture illustrated

in Fig. 6.2 is a strictly spherical picture over Q.

Figure 6.2: A strictly spherical picture over Q.

A dipole in a picture P consists of a pair of corners κ, κ′ together with an arc α joining the head

of one corner with the tail of the other such that κ and κ′ belong to the same region of P, and such

that if W (κ) = Sh where h ∈ H and S begins and ends with t or t−1, then W (κ′) = S−1h−1 (see

Fig. 6.3). A picture is reduced if it does not contain a dipole.

Figure 6.3: A dipole.
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Definition 6.3.1. A relative presentation P is diagrammatically reducible if every non-empty

connected spherical picture over P contains a dipole.

In [16] a relative presentation was defined to be aspherical if it was diagrammatically reducible.

Suppose P is an orientable diagrammatically reducible presentation. If R is not a proper power

when viewed in the ambient free product, then P is aspherical as given in Definition 6.1.1. We will

make frequent use of the fact that if an orientable injective relative presentation P is not aspherical,

then there exists a reduced non-empty connected strictly spherical picture over P.

6.4 Tests for asphericity

In this section we describe five tests that are used to determine, given an orientable relative pre-

sentation P = 〈H, t ;R〉, whether or not P is aspherical.

6.4.1 The weight test

The star graph Pst of P is a graph whose edges are labelled by elements of H. The vertex set of

Pst is t ∪ t−1. The edge set of Pst consists of all cyclic permutations of R and R−1 which are of

the form Sh, where h ∈ H and S begins and ends with t or t−1. Let R̃ = Sh ∈ R∗. The initial

and terminal functions, respectively, ι and τ are defined as follows: ι(R̃) is the first symbol of S

and τ(R̃) is the inverse of the last symbol of S. The inverse of R̃ is defined to be S−1h−1 and the

labelling function is given by λ(R̃) = h−1. The labelling is extended to paths by multiplication in

H in the obvious way. A non-empty cyclically reduced closed path in Pst is admissible if its label

equals the identity in H. Each interior region of a reduced picture over P supports an admissible

cycle in Pst.

A weight function on Pst is a real valued function ω on the set of edges of Pst such that

ω(R̃−1) = ω(R̃) for each R̃ ∈ R∗. The weight of a path is the sum of the weights of its constituent

edges. Following [16], we say that a weight function ω is weakly aspherical if the following conditions

are satisfied:

(1) If R = tε1h1 . . . t
εmhm, then

m∑

i=1

(1 − ω(tεihi . . . t
εmhmt

ε1

1 h1 . . . t
εi−1hi−1)) ≥ 2;
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(2) Each admissible cycle in Pst has weight at least 2.

Theorem 6.4.1. ( [16, Theorem 2.1]) If Pst admits a weakly aspherical weight function, then P is

diagrammatically reducible.

6.4.2 The curvature test

Let P be a spherical picture over a relative presentation P. An angle function on P is a real valued

function θ on the set of corners of P. Associated to θ is a curvature function γ defined on discs of

P by

γ(D) = 2π −
∑

κ⊆∂D

θ(κ),

and on regions of P by

γ(F ) = 2π −
∑

κ⊆∂F

(π − θ(κ)).

If P is connected, then there is the fundamental curvature formula

∑

D

γ(D) +
∑

F

γ(F ) = 2πχ(S2) = 4π,

where the sum is taken over all discs and all regions of P including the unique annular region. The

following lemma is an obvious consequence of the curvature formula.

Lemma 6.4.1. If θ is any angle function on a connected spherical picture P, then some disc or

region of P has positive curvature.

A spherical picture P is flat at a disc D if γ(D) = 0, and θ is a flat angle function if P is flat at

every disc. If θ is a flat angle function on P, then it follows from Lemma 6.4.1 that there exists a

region F such that γ(F ) > 0. Let d be the degree of such a region. Then

∑

κ⊆∂F

θ(κ) > (d− 2)π

and we say that F is an exceptional region. Let h1 . . . hd be the label of an exceptional region. If

P is strictly spherical, then h1 . . . hd = 1 for any exceptional region. We may then obtain some

restrictions on the elements h1, . . . , hd.
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6.4.3 The distribution test

The distribution test introduced by Edjvet [36] is a more flexible application of the curvature

formula. Assign a flat angle function θ on a connected strictly spherical picture P so that by

Lemma 6.4.1 there exists at least one exceptional region F . The idea of the distribution test is to

“flatten” F by distributing curvature to its neighbouring regions. If we can flatten every exceptional

region, then we obtain a contradiction to the fundamental curvature formula, thus proving that P

cannot exist.

Let F and F ′ be two neighbouring regions of P that share an arc α which is directed from F

to F ′, and let ζ be any real number. Subtract ζ from the angle of one of the corners in F that

touches α and add ζ to the angle of the adjacent corner in F ′. There results a new angle function

θ∗ on P with associated curvature function γ∗. It is clear that γ∗(D) = γ(D) for each disc D of P,

that γ∗(F ) = γ(F ) − ζ, and that γ∗(F ′) = γ(F ′) + ζ. Other regions are unaffected. We may think

of this process as assigning a real number ζ to the pair of regions (F, F ′). More generally, let F

denote the set of regions of P. A distribution scheme on P is a function

η : F × F → R.

For example, in the situation described above the distribution function would be defined as:

η(F, F ′) =





ζ if F and F ′ have an arc in common which is directed from F to F ′;

0 otherwise.

If we are given P, θ, γ as above and if η is any distribution scheme on P, then there is an angle

function θ∗ with associated curvature function γ∗ such that γ∗(D) = γ(D) for each disc D of P,

and

γ∗(F ) = γ(F ) +
∑

F ′

(η(F ′, F ) − η(F, F ′))

for each region F of P. Here the sum is taken over all regions F ′ of P. The function γ∗ is called the

distributed curvature function. A distribution scheme η on P is a γ-flattening of P if the following

two conditions are satisfied:

(1) For all regions F and F ′, if η(F, F ′) > 0, then γ(F ′) ≤ 0;

(2) For all regions F , if γ(F ) > 0, then γ(F ) ≤
∑

F ′ η(F, F ′).
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Lemma 6.4.2. ( [10, Lemma 2]) Suppose that γ is a curvature function on a connected strictly

spherical picture P in which each disc is non-positively curved. If η is a γ-flattening of P with

distributed curvature function γ∗, then there exists a region K of P such that γ∗(K) > γ(K) and

γ∗(K) > 0.

6.4.4 Degenerate pictures

Let P be a connected strictly spherical picture over P = 〈H, t ;R〉. If one can show that P is not

degenerate, then P is not aspherical in the most general sense. The following account of degenerate

pictures is taken from [2]. See also [10, §8].

Recall that P can be lifted (though not uniquely) to a spherical picture P̂ over P̂ for some

appropriate choice of presentation Q = 〈x ; s〉 for H (see §6.3). Consider the image of P̂ under the

standard embedding [84, p. 692]

µ : π2(P̂) → (
⊕

S∈s

ZĜeS) ⊕ ZĜe
R̂
,

where Ĝ is the group defined by P̂. Our aim is to calculate the coefficient λ
P̂

of e
R̂
.

Let {Dj : j = 1, . . . , l} be the discs of P̂ whose labels are R̂±1. Let F be any region in P and let

BF be the s-picture that we filled F with to obtain P̂. Corresponding to F , there is a subpicture

F̂ in P̂ enclosed by t-arcs as illustrated in Fig. 6.4.

Figure 6.4: A subpicture of the lifted picture P̂ corresponding to F .

Let vj be a transverse path from the basepoint of P̂ to the basepoint of Dj such that vj is

always “close” to t-arcs and R̂-discs, in the sense that if F̂ ′ is any subpicture of P̂ corresponding to
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a region F ′, then vj does not cut through BF ′ . Note, it does not matter for vj to be on the left or

right of BF . Let Vj be the label on vj and note that Vj is a word on x±1 ∪ {t±1}. Then

λ
P̂

=

l∑

j=1

δjgj

where gj is the element of Ĝ represented by Vj and δj = ±1. The group isomorphism ν : Ĝ→ G(P)

induces a ring isomorphism ν∗ : ZĜ→ ZG(P), so let ν∗(λ
P̂
) = λP.

Suppose we choose another presentation Q1 = 〈x1 ; s1〉 for H that determines a lifted presenta-

tion P̂1 = 〈x1, t ; s1, R̂1〉 where Ĝ1 = G(P̂1). We then obtain an ordinary lifted picture P̂1 over P̂1,

which may be viewed as a copy of P̂ by replacing:

• R̂-discs by R̂1-discs;

• successions of x-arcs labelling corners of P by successions of x1-arcs labelling corners of P;

• s-pictures BF by s1-pictures EF .

For each transverse path vj in P̂, the copy of vj in P̂1 is a transverse path from the basepoint of

P̂1 to the basepoint of Ej , where Ej is the R̂1-disc which replaced the R̂-disc Dj . Denote this path

by uj and let Uj be the label of uj . Note that Uj is a word on x±1
1 ∪{t±1}. Since the presentations

Q and Q1 define isomorphic groups, we have Vj = Uj in H. Therefore, if λ
P̂1

is the image of the

coefficient of e
R̂1

in P̂1 under the embedding

µ1 : π2(P̂1) → (
⊕

S1∈s1

ZĜ1eS1
) ⊕ ZĜ1eR̂1

,

then λ
P̂1

= λ
P̂
. Thus, λP is independent of the choice of presentation for H, the choice of R̂ and

the choice of lift. We say that P is degenerate if λP = 0.

Lemma 6.4.3. If there exists a non-empty connected reduced strictly spherical picture P over P

such that P is not degenerate, then P is not aspherical.

Proof. Assume P is aspherical and let P be such a picture. Then there exists a presentation

Q = 〈x ; s〉 of H such that P̂ is equivalent (modulo a generating set for π2(Q)) to the empty

picture. It follows that the image of P̂ under the standard embedding µ lies entirely in
⊕

S∈s
ZĜeS .

We deduce that the coefficient of e
R̂

must be zero. Thus, λP = 0.

118



Let P be a reduced strictly spherical picture over P = 〈H, t ;R〉 where R = tε1h1 . . . t
εmhm, and

let k = ε1 + . . . + εm. Let Zk be the cyclic group of order k given by the presentation 〈x ;xk〉.

There exists a group homomorphism ψ : G(P) → Zk : H 7→ 1, t 7→ x, and ψ induces a ring

homomorphism ψ∗ : ZG(P) → ZZk. The point is, if ψ∗(λP) 6= 0, then λP 6= 0. Let Po = 〈t, Ro〉

where Ro = tε1 . . . tεm , and let Po be the picture over Po which is obtained from P by deleting all

the corner labels. Then ψ∗(λP) is just the coefficient of eRo under the embedding

µo : π2(P
o) → ZZkeRo .

This gives us an efficient way to determine whether λP 6= 0.

Example 6.4.1. Let P = 〈H, t ;R〉 where R = tnat−1a (n > 2) and where o(a) = p <∞. Consider

the reduced strictly spherical picture P over P illustrated in Fig. 6.5. Discs that have a corner in

the boundary region of P contribute px−1 to the coefficient of eRo , while the remaining discs of P

contribute −px−2. It follows that the coefficient of eRo is px−1(1− x−1). Thus, ψ∗(λP) 6= 0 and so

P is not aspherical.

Figure 6.5: A reduced strictly spherical picture over P.
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6.4.5 Calculating the order of t

Let P = 〈H, t ;R〉 be an injective presentation where R = tε1h1 . . . t
εmhm, and let k = ε1 + . . .+εm.

The factor group G(P)/N , where N is the normal closure of H in G(P), is cyclically generated by

tN and is of order k (it has infinite order if k = 0). If k 6= ±1, then t /∈ N . Hence if we can show

that t has finite order in G(P), then P is not aspherical by Theorem 6.1.1 (the finite subgroup

generated by t is not contained in a G(P)-conjugate of H). Thus, we have the following lemma.

Lemma 6.4.4. If the exponent sum of t is not equal to ±1 and if t has finite order in G(P), then

P is not aspherical.
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Chapter 7

The asphericity of relative

presentations of the form 〈H, t ; tnat−1b〉

Let P = 〈H, t ; tnat−1b〉 where n > 4 and a, b are non-identity elements of H. Note that P is

orientable and injective [34].

7.1 The subcase a = b

Theorem 7.1.1. Let P = 〈H, t ; tnat−1a〉 where a is a non-identity element of H and n > 4. Then

P is aspherical if and only if a has infinite order in H.

Proof. Suppose a has infinite order in H and consider the star graph Pst in Fig. 7.1. Edges α1, α2

have label a−1 and edges αi (i = 3, . . . , n + 1) have label 1. Define a weight function ω on Pst

as follows: ω(α1) = ω(α2) = 0 and ω(αi) = 1 for i = 3, . . . , n + 1. Since a has infinite order any

admissible cycle must include at least two edges from the set {α3, . . . , αn+1} and so will have weight

at least 2. Thus, ω satisfies Condition (2) of §6.4.1. Condition (1) is also satisfied, so ω is a weakly

aspherical weight function. Hence, by Theorem 6.4.1, P is diagrammatically reducible.

In Example 6.4.1 we proved that P is not aspherical when a has finite order inH. This completes

the proof of Theorem 7.1.1.
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Figure 7.1: The star graph Pst.

7.2 The subcase a 6= b

Theorem 7.2.1. Suppose P = 〈H, t ; tnat−1b〉 (n > 4) is not one of the exceptional cases (E1),

(E2), (E3), (E4) listed below and that a, b are distinct elements of H such that o(a), o(b) > 3. Then

P is aspherical if and only if neither of the following two conditions hold:

(1) 1
o(a) + 1

o(b) + 1
o(ab−1)

> 1 where 1
∞ := 0;

(2) a = b−1 and o(a) <∞.

We cannot determine whether or not P is aspherical in the following four exceptional cases:

(E1) a = b2 where 3 < o(b) <∞;

(E2) a = b−2 where 3 < o(b) <∞;

(E3) a2 = b where 3 < o(a) = o(b) <∞;

(E4) a = b3 where o(b) = 9.

7.2.1 Preliminary comments and an outline of the proof of Theorem 7.2.1

We may assume, without loss of generality, that o(a) 6 o(b). For if o(a) > o(b), then we may use

the substitution s = t−1 to transform the relator tnat−1b into the equivalent relator snb−1s−1a−1

in which o(b−1) < o(a−1). This assumption will not be repeated.

The proof of Theorem 7.2.1 is split into two parts. In Part A we determine when P is diagram-

matically reducible and hence aspherical. Lemma 7.2.1 states that P is diagrammatically reducible

if a and b both have infinite order in H. Next, we suppose a 6= b−1 and 1
o(a) + 1

o(b) + 1
o(ab−1)

6 1
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where o(a) < ∞. To prove P is diagrammatically reducible in this case we assume there exists

a reduced non-empty connected strictly spherical picture P over P and argue for a contradiction.

We define a flat angle function θ on P with associated curvature function γ. Since θ is flat, P must

contain at least one exceptional region and we deduce that an exceptional region has degree d < 4.

The exceptional regions of degree 2 are the Di-regions (i = 1, 2, 3) (see Fig. 7.3) and the excep-

tional regions of degree 3 are the Tj-regions (j = 1, 2) (see Fig. 7.4). Next, we define a γ-flattening

distribution scheme η on P and conclude from Lemma 6.4.2 that there exists a region K such that

γ∗(K) > γ(K) and γ∗(K) > 0. Let K have degree m. If curvature is not distributed from any

Di-region (i = 1, 2, 3) to K, then m < 5 and it is easy to show that K cannot exist in this case. If

curvature is distributed from at least one Di-region (i = 1, 2, 3) to K, then m < 12. In Lemmas

7.2.2, 7.2.3, 7.2.5, 7.2.6 and 7.2.8 - 7.2.10 we prove that m cannot equal 3, 4, 6, 7, 9, 10, or 11. If m

equals 5 or 8, then in Lemmas 7.2.4 and 7.2.7 we show that K must be a P51-region (see Fig. 7.8),

a P8-region (see Fig. 7.13) or a Q5-region (see Fig. 7.14). In Lemma 7.2.12 we prove that some of

the neighbouring regions of a P51-region are sufficiently negatively curved to allows us to flatten

this region, thus obtaining a contradiction to the fundamental curvature formula. Regions Q5 and

P8 are dealt with in a similar way in Lemmas 7.2.13 and 7.2.14, respectively. This will complete

Part A of the proof of Theorem 7.2.1.

In Part B we determine when P is not aspherical. First, we suppose 1
o(a) + 1

o(b) + 1
o(ab−1)

> 1

which holds if and only if (o(a), o(b), o(ab−1)) = (3, 3, 2), (3, 4, 2), (3, 5, 2). For each solution we

exhibit a reduced non-degenerate strictly spherical picture over P (see Lemmas 7.2.15 - 7.2.17 and

Figs. 7.19 - 7.21). Next, we suppose a = b−1 and o(a) <∞. In Lemma 7.2.18 we prove that t must

then have finite order in G(P). This will complete Part B of the proof of Theorem 7.2.1.

7.2.2 The proof of Theorem 7.2.1

Part A

Lemma 7.2.1. If a and b both have infinite order in H, then P is diagrammatically reducible.

Proof. Consider the star graph Pst in Fig. 7.1 where edges α1 and α2 have labels b−1 and a−1,

respectively, and edges αi (i = 3, . . . , n + 1) have label 1. Define a weight function ω on Pst as

follows: ω(α1) = ω(α2) = 0 and ω(αi) = 1 for i = 3, . . . , n+ 1. It is easy to see that ω is a weakly

aspherical weight function. Hence, P is diagrammatically reducible by Theorem 6.4.1.
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Suppose a 6= b−1 and 1
o(a) + 1

o(b) + 1
o(ab−1)

6 1 where o(a) <∞. We assume P is not aspherical

and argue for a contradiction. It follows that there exists a reduced non-empty connected strictly

spherical picture P over P. The discs of P are illustrated in Fig. 7.2. For clarity, we leave blank

those corners that have label 1 and omit the label t on arrows.

Figure 7.2: The discs of P.

Define an angle function θ on P with associated curvature function γ as follows: corners labelled

a±1 or b±1 have angle π
2 ; corners that are adjacent to corners labelled a±1 or b±1 have angle π

2 ; all

other corners have angle 0. Then θ is a flat angle function on P and it follows from Lemma 6.4.1

that P contains an exceptional region F of degree d, say. Since

∑

κ⊆∂F

θ(κ) > (d− 2)π,

and since
∑

κ⊆∂F

θ(κ) 6 d
π

2

we deduce that d < 4. In Figs. 7.3 and 7.4 we exhibit (up to mirror image) the positively curved

regions of degree 2 and degree 3. A D1-region has curvature π, and a D2- or a D3-region has

curvature π
2 . Regions T1 and T2 also have curvature π

2 . By a D-region we shall mean a Di-region

for some i = 1, 2, 3 and by a T -region we shall mean a Tj-region for some j = 1, 2.

(a) D1 (b) D2 (c) D3

Figure 7.3: Positively curved regions of degree 2.
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(a) T1 (b) T2

Figure 7.4: Positively curved regions of degree 3.

Define a distribution scheme η on P as follows:

η(F, F ′) =





π
2 F is a D1-region and F is separated from F ′ by an arc which is oriented from

F to F ′;

π
2 F is a D1-region and F is separated from F ′ by an arc which is oriented from

F ′ to F ;

π
2 F is a D2-region and F is separated from F ′ by an arc which is oriented from

F to F ′;

π
2 F is a D3-region and F is separated from F ′ by an arc which is oriented from

F ′ to F ;

π
6 F is a T1-region and F is separated from F ′ by an arc which is oriented from

F ′ to F ;

π
6 F is a T2-region and F is separated from F ′ by an arc which is oriented from

F to F ′;

0 otherwise.

If η(F, F ′) > 0, then there exist at least two corners κ1 and κ2 of F ′ such that κ1 has label a±1

or b±1 and κ2 has label 1. It follows easily that η is a γ-flattening of P so by Lemma 6.4.2 there

exists a region K satisfying γ∗(K) > γ(K) and γ∗(K) > 0, where γ∗ is the distributed curvature

function. Let K have degree m. Our aim is to prove that K cannot exist.

Suppose K does not receive curvature from any D-region. Then K can receive curvature only

from a T -region. Since at most every second arc of ∂K can be on the boundary of a T -region, we
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have
∑

κ⊆∂K

θ∗(κ) 6 m
π

2
+
m

2

π

6
= m

7π

12
,

and since γ∗(K) > 0, we have
∑

κ⊆∂K

θ∗(κ) > (m− 2)π.

Thus, m < 24
5 < 5. By considering all possible arrangements of corner labels we find that the label

of K is either a, b, a2, b2 or ab±1. Each of these labels is a non-identity element of H, so K cannot

exist if m < 5.

Now suppose at least one arc of ∂K is on the boundary of a D-region and that curvature is

distributed from this region to K. To estimate an upper bound for the degree of K we first calculate

the maximum value of
∑

κ⊆∂K θ∗(κ). Before we apply η, each corner of K either has angle 0 or

π
2 . Suppose each corner has angle π

2 and let κ be a corner of K. Then the label of κ is either a±1

or b±1, or κ has label 1 and precisely one adjacent corner to κ has label a±1 or b±1 (see Fig. 7.5).

Therefore, if each corner of K has angle π
2 , then at most every second arc of ∂K can be on the

boundary of a D-region. Each of the remaining arcs of ∂K may lie on the boundary of a T -region,

so after applying η, we have

∑

κ⊆∂K

θ∗(κ) 6 m
π

2
+
m

2

π

2
+
m

2

π

6
= m

5π

6
. (7.1)

Figure 7.5: The possible labels of κ and its adjacent corners.

If two consecutive arcs of ∂K are on the boundaries of D-regions D′ and D′′ which both con-

tribute π
2 to γ∗(K), then the corner κ of K that is on the boundary of the disc which is common
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to both D′ and D′′ must have angle 0 (see Fig. 7.6). After applying η, we have θ∗(κ) = π. If

θ(κ) = π
2 and only one adjacent arc is on the boundary of a D-region which contributes π

2 , then

θ∗(κ) = π. Thus, both situations are equivalent in terms of the contribution κ makes to the sum
∑

κ′⊆∂K θ∗(κ′). Therefore, we may assume that each corner of K has angle π
2 and that at most

every second arc of ∂K is on the boundary of a D-region. Since

∑

κ⊆∂K

θ∗(κ) > (m− 2)π,

we deduce from (7.1) that m < 12.

Figure 7.6: Consecutive D-regions.

At least one arc of ∂K is on the boundary of a D-region and curvature is distributed from this

region to K. It follows that part of ∂K must have Configuration A or Configuration B as illustrated

in Fig. 7.7.

(a) Configuration A (b) Configuration B

Figure 7.7: Configurations of ∂K.

Beginning from Configuration A, we now consider all possible arrangements of corner labels

which can exist in K. Our aim is to prove that the label of K is a non-identity element of H or

that γ∗(K) 6 0. Note, when estimating an upper bound for γ∗(K) we assume each corner of K

has angle π
2 and that at most every second arc of ∂K is on the boundary of a D-region.
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Lemma 7.2.2. K cannot have degree 3.

Proof. If m = 3, then K must have label a 6= 1.

Lemma 7.2.3. K cannot have degree 4.

Proof. If m = 4, then K either has label a2 or ab±1 and it is clear that both of these elements are

non-identity elements of H.

Lemma 7.2.4. If m = 5, then γ∗(K) > 0 only if K is a P51-region.

Proof. Suppose K is a P51-region (see Fig. 7.8). At most one D-region and at most one T2-region

can contribute, respectively, π
2 and π

6 to γ∗(P51). Since γ(P51) 6 −π
2 , we have γ∗(P51) > 0 if and

only if curvature is distributed from both of these regions to P51, in which case γ∗(P51) = π
6 .

Figure 7.8: Possible regions of degree 5.

Suppose K is a P52-region. The label of such a region is either a2b or a2b−1, so we must have

o(a) > 3. Since P is not the exceptional case (E3), a2b−1 6= 1. Therefore, the label must be

a2b. Since o(a) > 3, P cannot contain a T -region. Since π
2 is distributed to P51 from at most one

D-region, we have

γ∗(P52) 6 γ(P52) +
π

2
6 −

π

2
+
π

2
= 0.

Clearly K cannot be a P53-region so suppose K is a P54-region. In this case we must have

o(b) > 3. Since P is neither the exceptional case (E1) or (E2), we have ab±2 6= 1.
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Lemma 7.2.5. K cannot have degree 6.

Proof. Suppose K is a P61-region (see Fig. 7.9). In this case we must have o(a) > 3, so P cannot

contain a T -region. Since π
2 is distributed from at most one D-region to P61, we have

γ∗(P61) 6 γ(P61) +
π

2
6 −π +

π

2
= −

π

2
.

Figure 7.9: Possible regions of degree 6.

Suppose K is a P62-region. In this case we must have o(a) > 3, so P cannot contain a T -region.

Since π
2 is distributed from at most two D-regions to P62, we have

γ∗(P62) 6 γ(P62) + 2
π

2
6 −π + π = 0.

Clearly K cannot be a P63-region, a P66-region, or a P67-region.

Suppose K is a P64-region. In this case we cannot have o(a) = o(b) = 3. Since P is neither the

exceptional case (E1) or (E2), we cannot have o(a) = 3 and o(b) > 3. If o(a) > 3, then P cannot

contain a T -region. Since π
2 is distributed from at most two D-regions to P64, we have

γ∗(P64) 6 γ(P64) + 2
π

2
6 −π + π = 0.

Suppose K is a P65-region. Since o(a) > 3, the label of this region must be aa−1. In this case

π
2 is distributed from at most two D-regions to P65. Suppose curvature is distributed from exactly

two such regions. This is only possible if P contains a dipole (see Fig. 7.10). Therefore, curvature is
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distributed from at most one D-region. Since π
6 is distributed from at most two T -regions to P65,

we have

γ∗(P65) 6 γ(P65) +
π

2
+ 2

π

6
= −

π

6
.

Figure 7.10: A P65-region with a dipole.

Suppose K is a P68-region with label ab−3. In this case we must have o(b) > 3. Since P is

not the exceptional case (E4), o(a) > 3 and so P cannot contain a T -region. Since π
2 is distributed

from at most two D-regions to P68, we have

γ∗(P68) 6 γ(P68) + 2
π

2
6 −π + π = 0.

Now suppose the label is ab3. Then as above o(b) > 3, so P cannot contain a T2-region. In this

case π
2 and π

6 is distributed from, respectively, at most one D-region and at most one T1-region to

P68. Therefore,

γ∗(P68) 6 γ(P68) +
π

2
+
π

6
6 −π +

2π

3
= −

π

3
.

Lemma 7.2.6. K cannot have degree 7.

Proof. Suppose K is a P71-region (see Fig. 7.11). In this case we must have o(a) > 3, so P cannot

contain a T -region. Since π
2 is distributed from at most one D-region to P71, we have

γ∗(P71) 6 γ(P71) +
π

2
6 −

3π

2
+
π

2
= −π.

Suppose K is a P72-region. In this case we must have o(a) > 3, so P cannot contain a T -region.

Since π
2 is distributed from at most two D-regions to P72, we have

γ∗(P72) 6 γ(P72) + 2
π

2
6 −

3π

2
+ π = −

π

2
.
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Suppose K is a P73-region. In this case π
2 and π

6 is distributed from, respectively, at most one

D-region and at most one T2-region to P73. Therefore,

γ∗(P73) 6 γ(P73) +
π

2
+
π

6
6 −

3π

2
+

2π

3
= −

π

2
.

Suppose K is a P74-region. In this case we must have o(a) > 3, so P cannot contain a T -region.

Since π
2 is distributed from at most two D-regions to P74, we have

γ∗(P74) 6 γ(P74) + 2
π

2
6 −

3π

2
+ π = −

π

2
.

Suppose K is a P75-region. Clearly, the label must be a3. In this case π
2 and π

6 is distributed

from, respectively, at most two D-regions and at most two T -regions to P75. Therefore,

γ∗(P75) 6 γ(P75) + 2
π

2
+ 2

π

6
6 −

3π

2
+ π +

π

3
= −

π

6
.

Suppose K is a P76-region. In this case we must have o(a) > 3, so P cannot contain a T -region.

Since P is not the exceptional case (E3), a2b−1 6= 1 and so the label must be a2b. In this case π
2 is

distributed from at most one D-region to P76. Therefore,

γ∗(P76) 6 γ(P76) +
π

2
6 −

3π

2
+
π

2
= −π.

If K is a P77-region, then, arguing as in the case when K is a P76-region, we find that π
2 is

distributed from at most two D-regions to P77. Therefore,

γ∗(P77) 6 γ(P77) + 2
π

2
6 −

3π

2
+ π = −

π

2
.

Suppose K is a P78-region with label a2b3. In this case we must have o(b) > 3, so P cannot

contain a T2-region. Since π
2 and π

6 is distributed from, respectively, at most one D-region and at

most one T1-region to P78, we have

γ∗(P78) 6 γ(P78) +
π

2
+
π

6
6 −

3π

2
+

2π

3
= −

5π

6
.

Now suppose the label is a2b−3. Then as above o(b) > 3, so P cannot contain a T2-region. In

this case π
2 and π

6 is distributed from, respectively, at most two D-regions and at most one T1-region

to P78. Therefore,

γ∗(P78) 6 γ(P78) + 2
π

2
+
π

6
6 −

3π

2
+

2π

3
= −

π

3
.

The arguments used to discount regions P79 - P716 are very similar to those used above. This

completes the proof Lemma 7.2.6.
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Figure 7.11: Possible regions of degree 7.

Lemma 7.2.7. If m = 8, then γ∗(K) > 0 only if K is a P8-region.

Proof. At most four arcs of ∂K can each be on the boundary of a T -region. Suppose thatK receives

π
6 from precisely four such regions. Up to mirror image, there is only one possible configuration for

K and its neighbouring regions (see Fig. 7.12). In this case the relations a3 = b3 = ab−1ab−1 = 1
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hold in H. Therefore
1

o(a)
+

1

o(b)
+

1

o(ab−1)
> 1,

which contradicts one of our main assumptions.

Figure 7.12: Four neighbouring T -regions.

It follows that at most three T -regions each contribute π
6 . In this case at least four neighbouring

D-regions must each contribute π
2 . For otherwise,

γ∗(K) 6 γ(K) + 3
π

2
+ 3

π

6
6 −2π + 2π = 0.

We deduce that K and its neighbours must have the configuration shown in Fig. 7.13, where at

least one of F, F ′ is a T1-region. If only one of F, F ′ is a T1-region, then γ∗(P8) = π
6 . If both F

and F ′ are T1-regions, then γ∗(P8) = π
3 . Note that P cannot contain a T2-region. For otherwise,

the relations a3 = b3 = ab−1ab−1 = 1 hold in H.

Lemma 7.2.8. K cannot have degree 9.

Proof. If K receives π
6 from at most four neighbouring T -regions and π

2 from at most three neigh-

bouring D-regions, then

γ∗(K) 6 γ(K) + 3
π

2
+ 4

π

6
6 −

5π

2
+

13π

6
= −

π

3
.

If K receives π
6 from at most three T -regions and π

2 from at most four D-regions, then

γ∗(K) 6 γ(K) + 4
π

2
+ 3

π

6
6 −

5π

2
+

5π

2
= 0.
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Figure 7.13: The possible region of degree 8.

Therefore, γ∗(K) > 0 if and only if K receives π
2 and π

6 from four neighbouring D-regions and

four neighbouring T -regions, respectively. In this case K must have label ab−2ab−2 or a2b−1ab−1,

and the relations

(i) a3 = b3 = ab−2ab−1 = 1, or

(ii) a3 = b3 = a2b−1ab−1 = 1

must hold in H. Suppose (i) hold. Then 1 = ab−2ab−1 = a−2bab−1 and so bab−1 = a2. From this

we deduce that b2ab−2 = a4. Therefore,

a = b3ab−3 = b(b2ab−2)b−1 = ba4b−1 = (bab−1)4 = a8

from which we deduce a = 1. By a similar argument we can show that if (ii) hold, then b = 1.

Thus, K cannot have degree 9.

Lemma 7.2.9. K cannot have degree 10.

Proof. Suppose π
2 is distributed from at most four neighbouring D-regions to K. In this case π

6 can

be distributed from at most five T -regions to K. Therefore,

γ∗(K) 6 γ(K) + 4
π

2
+ 5

π

6
6 −3π +

17π

6
= −

π

6
.
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Now suppose π
2 and π

6 is distributed from, respectively, five D-regions and at most three T -

regions to K. Then,

γ∗(K) 6 γ(K) + 5
π

2
+ 3

π

6
6 −3π + 3π = 0.

Therefore, γ∗(K) > 0 if and only if five D-regions and four T -regions each contribute π
2 and π

6 ,

respectively. However, it is impossible to construct a region of degree 10 that has five neighbouring

D-regions and four neighbouring T -regions.

Lemma 7.2.10. K cannot have degree 11.

Proof. If m = 11, then π
2 and π

6 is distributed from, respectively, at most five D-regions and at

most five T -regions. Therefore,

γ∗(K) 6 γ(K) + 5
π

2
+ 5

π

6
6 −

7π

2
+

10π

3
= −

π

6
.

We now have to consider all possible arrangements of corner labels that arise from Configura-

tion B (see Fig. 7.7). The analysis of such arrangements is very similar to those that arise from

Configuration A. We quickly find that γ∗(K) > 0 if and only if K is a mirror image of a P8-region

or is a Q5-region as illustrated in Fig. 7.14.

Figure 7.14: A Q5-region.

Lemma 7.2.11. If o(b) = 3, 4, 5, then P cannot contain a P8-region such that γ∗(P8) > 0.

Proof. Suppose o(b) = 3 and that P contains a P8-region of positive curvature. Now γ∗(P8) > 0

only if P contains a T1-region. In this case the relations a3 = b3 = (ab−1)2 = 1 must hold in H, so

1

o(a)
+

1

o(b)
+

1

o(ab−1)
> 1

which contradicts one of our main assumptions. We obtain the same contradiction if o(b) = 4, 5.
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We conclude from Lemma 7.2.11 that P cannot contain a P51-region with γ∗(P51) > 0, or a

Q5-region, together with a P8-region where γ∗(P8) > 0.

Lemma 7.2.12. After suitably distributing curvature, P cannot contain a P51-region with γ∗(P51) >

0.

Proof. Suppose P contains a P51-region (see Fig. 7.8). Before we apply the distribution scheme η

to P, distribute π
6 from all P51-regions as shown in Fig. 7.15 below.

Figure 7.15: Distributing curvature from a P51-region.

Note that θ(κ′) = 0, so after distributing this additional curvature we have θ∗(κ′) = π
6 and

γ(P51) 6 −π
6 . Now apply η to P. Then γ∗(P51) 6 0. We now prove that γ∗(N) 6 0, thus obtaining

a contradiction to the fundamental curvature formula.

From Lemmas 7.2.2 - 7.2.10, we have γ∗(N) > 0 if and only if N is a P51-region, a Q5-region,

or a P8-region. Since P contains a T2-region, it follows from Lemma 7.2.11 that N cannot be a

P8-region. Moreover, at least one corner of N has label a−1, which prevents N from being a Q5-

region. We are left with the possibility that N is a P51-region (see Fig. 7.16). We observe that no

arc of ∂N can be on the boundary of a D-region, so N can only receive curvature from at most one

T2-region. Thus,

γ∗(N) 6 γ(N) +
π

6
6 2π − 4(π −

π

2
) − (π −

π

6
) +

π

6
= −

2π

3
.

The proof of the following lemma is very similar to that of Lemma 7.2.12.
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Figure 7.16: The configuration for when N is a P51-region.

Lemma 7.2.13. After suitably distributing curvature, P cannot contain a Q5-region with γ∗(Q5) >

0.

We require a final lemma to complete Part A of the proof of Theorem 7.2.1.

Lemma 7.2.14. After suitably distributing curvature, P cannot contain a P8-region with γ∗(P8) >

0.

Proof. Suppose P contains a P8-region (see Fig. 7.13). Recall, if neither of F or F ′ is a T1-region,

then γ∗(P8) 6 0. So at least one of F, F ′ is a T1-region. Before applying the distribution scheme η

to P, distribute π
6 from all P8-regions as shown in Fig. 7.17. (If only one of F, F ′ is a T1-region, then

we distribute π
6 to N only. Otherwise, we distribute π

6 to N and π
6 to N ′ as shown.) After applying

η to P, we have γ∗(P8) 6 0. Our aim now is to show prove that γ∗(N) 6 0 and γ∗(N ′) 6 0.

Suppose N does not receive π
2 from a D-region. Then each arc of ∂N can be on the boundary

of a P8-region which contributes π
6 to N . If r is the degree of N , then

∑

κ⊆N

θ∗(κ) 6 r
π

2
+ r

π

6
= r

2π

3
.

If γ∗(N) > 0, then
∑

κ⊆N

θ∗(κ) > (r − 2)π

and we deduce that r < 6. We find that if N has degree at most 5, then its label is either

b2, b3, b4, b5, ab2 or a−1b2. Since o(b) > 2, N cannot have label b2. Also, N cannot have label

b3, b4, b5 by Lemma 7.2.11. Since P is neither the exceptional case (E1) or (E2), N cannot have

label ab2 or a−1b2. Thus, γ∗(N) 6 0.
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Figure 7.17: Distributing curvature from a P8-region.

Now suppose N does receive π
2 from at least one D-region. Since γ∗(N) is maximal when each

corner of N has angle π
2 ; when every second arc of ∂N is on the boundary of a D-region which

contributes π
2 to N ; and when every other arc of ∂N is on the boundary of a T -region or a P8-region

which contributes π
6 , we have

∑

κ⊆N

θ∗(N) 6 r
5π

6
.

If γ∗(N) > 0, then r < 12. We have already shown that r 6= 3, 4, 5 and by Lemma 7.2.10, r 6= 11.

In Appendix A we prove that r 6= 6, 7, 8, 9, 10. Thus, γ∗(N) 6 0. Similarly, γ∗(N ′) 6 0.

From Lemmas 7.2.1 - 7.2.14 we conclude that if neither Condition (1) nor Condition (2) of

Theorem 7.2.1 holds, then P is diagrammatically reducible. This completes Part A of the proof of

Theorem 7.2.1.

Part B

Let P = 〈H, t ; tnat−1b〉. To prove P is not aspherical when Condition (1) of Theorem 7.2.1 holds,

we exhibit three reduced non-degenerate strictly spherical pictures over P.

The presentation Po = 〈t ; tnt−1〉 is a presentation of the cyclic group Zn−1 of order n − 1,

and there exists a ring homomorphism ψ∗ : ZG(P) → ZZn−1 induced from the obvious group

homomorphism. Let P be a reduced non-empty connected strictly spherical picture over P. To

prove λP 6= 0 (i.e. to prove that P is not degenerate) recall (§6.4.4) that it is enough to show that
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ψ∗(λP) 6= 0, where ψ∗(λP) is the coefficient of eRo under the embedding

µo : π2(P
o) → ZZn−1eRo ,

where Ro = tnt−1.

Lemma 7.2.15. If o(a) = 3, o(b) = 3 and o(ab−1) = 2, then P is not aspherical.

Proof. Consider the reduced non-empty connected strictly spherical picture P1 over P illustrated

in Fig. 7.19. We find that ψ∗(λP1
) = 12(1 − x−1) 6= 0, so P1 is not degenerate.

Lemma 7.2.16. If o(a) = 3, o(b) = 4 and o(ab−1) = 2, then P is not aspherical.

Proof. Consider the reduced non-empty connected strictly spherical picture P2 over P illustrated

in Fig. 7.20. We find that ψ∗(λP2
) = 24(1 − x−1) 6= 0, so P2 is not degenerate.

Lemma 7.2.17. If o(a) = 3, o(b) = 5 and o(ab−1) = 2, then P is not aspherical.

Proof. Consider the reduced non-empty connected strictly spherical picture P3 over P illustrated

in Fig. 7.21. We find that ψ∗(λP3
) = 60(1 − x−1) 6= 0, so P3 is not degenerate.

Each double bond in Figs. 7.19 - 7.21 represents the configuration in Fig. 7.18. Also, regions

of degree 3 in Fig. 7.21 have label a3, regions of degree 5 have label b−5 and regions of degree 8

(including the boundary region) have label a−1ba−1b.

Figure 7.18: The double bond configuration.

Lemma 7.2.18. If a = b−1 and o(a) <∞, then P is not aspherical.

Proof. Suppose a = b−1 is of finite order. Then in G(P), ata−1 = tn and by induction on m,

amta−m = tn
m

for any integer m. Let o(a) = k < ∞. Then tn
k

= akta−k = t and so tn
k−1 = 1 in

G(P). It follows from Lemma 6.4.4 that P is not aspherical.
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It follows from Lemmas 7.2.15 - 7.2.17 that P is not aspherical if

1

o(a)
+

1

o(b)
+

1

o(ab−1)
> 1,

and it follows from Lemma 7.2.18 that P is not aspherical if a = b−1 and o(a) <∞. This completes

Part B of the proof of Theorem 7.2.1. The proof of Theorem 7.2.1 is now complete.

Figure 7.19: P1.
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Figure 7.20: P2.
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Figure 7.21: P3.
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Appendix A

References for Lemma 7.2.14

In this appendix we prove that r 6= 6, 7, 8, 9, 10, where r is the degree of N in Lemma 7.2.14. Recall,

the relations a3 = ab−1ab−1 = 1 hold in H and o(b) > 6 by Lemma 7.2.11.

Lemma A.0.19. If r = 6, then γ∗(N) 6 0.

Proof. Suppose N is an N61-region (see Fig. A.1). Then π
2 cannot be distributed from any D-region

to N , which is a contradiction.

Figure A.1: Possible regions of degree 6.

Since o(b) > 6, N cannot be an N62-, N63-, N65- or an N66-region.

SupposeN is anN64-region or anN67-region. If b3a−1 = 1, then 1 = (ab−1)2 = b4, contradicting

the fact that o(b) > 6. If b3a = 1, then 1 = (ab−1)2 = b8. However, b9 = a−3 = 1 and we deduce
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that b = 1, which is a contradiction.

Finally, suppose N is an N68-region. The label of such a region is either a−2b2 or a2b2. Since

a3 = 1, the labels become ab2 and a−1b2, respectively. Now o(b) > 3 and P is neither the exceptional

case (E1) or (E2). Therefore, ab2 6= 1 and a−1b2 6= 1. Thus, N cannot be an N68-region.

Lemma A.0.20. If r = 7, then γ∗(N) 6 0.

Proof. Suppose N is an N71-region (see Fig. A.2). Then π
2 cannot be distributed from any D-region

to N , which is a contradiction.

Since o(b) > 6, we see that N cannot be an N72-, N73-, N75-, N76-, N79-, N710- or an N711-

region.

Suppose N is an N74-region with label a−1b4. Then 1 = (ab−1)2 = b6. The label then becomes

a−1b−2. However, a−1b−2 6= 1 since P is not the exceptional case (E2). Thus, a−1b4 6= 1. If the

label is ab4, then 1 = (ab−1)2 = b−10 and so b10 = 1. However, b12 = a−3 = 1 and we deduce that

b2 = 1, which contradicts o(b) > 6. Similarly, N cannot be an N713-region.

Suppose N is an N78-region. The label of such a region is either a2b3 or a−2b3 and since a3 = 1,

the labels become a−1b3 and ab3, respectively. Arguing as in Lemma A.0.19, we deduce that

a−1b3 6= 1 and ab3 6= 1. Thus, N cannot be an N78-region. Similarly, N cannot be an N715-region.

Suppose N is an N712-region or an N714-region. Since P is not the exceptional case (E1),

b2a−1 6= 1. Similarly, since P is not the exceptional case (E2), b2a 6= 1.

Finally, suppose N is an N716-region. The label of such a region is either a3b2 or a−3b2. Since

a3 = 1, we have 1 = a±3b2 = b2, which contradicts o(b) > 6. Thus, N cannot be anN716-region.

Lemma A.0.21. If r = 8, then γ∗(N) 6 0.

Proof. If r = 8, then γ(N) 6 −2π. At most three arcs of ∂N can each be on the boundary of a

D-region which contributes π
2 to γ∗(N). Suppose (at most) only two arcs are on the boundaries of

such regions. Then each of the remaining six arcs of ∂N can be on the boundary of a T1-region or

a P8-region which contributes π
6 to γ∗(N). Therefore,

γ∗(N) 6 γ(N) + 2
π

2
+ 6

π

6
6 −2π + 2π = 0.

It follows that exactly three D-regions must each contribute π
2 to γ∗(N). We find that there

are three possible configurations in which this can happen. In each case, at most three arcs of ∂N
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can each be on the boundary of a T1-region or a P8-region which contributes π
6 to γ∗(N). Thus,

γ∗(N) 6 γ(N) + 3
π

2
+ 3

π

6
6 −2π + 2π = 0.

Lemma A.0.22. If r = 9, then γ∗(N) 6 0.

Proof. If r = 9, then γ(N) 6 −5π
2 . At most four arcs of ∂N can each be on the boundary of a

D-region which contributes π
2 to γ∗(N). Suppose (at most) only three arcs are on the boundaries

of such regions. Then each of the remaining six arcs of ∂N can be on the boundary of a T1-region

or a P8-region which contributes π
6 to γ∗(N). Therefore,

γ∗(N) 6 γ(N) + 3
π

2
+ 6

π

6
6 −

5π

2
+

5π

2
= 0.

It follows that exactly four D-regions must each contribute π
2 to γ∗(N). We find that there is

only one possible configuration in which this can happen. In this case, at most three arcs of ∂N

can each be on the boundary of a T1-region or a P8-region which contributes π
6 to γ∗(N). Thus,

γ∗(N) 6 γ(N) + 4
π

2
+ 3

π

6
6 −

5π

2
+

5π

2
= 0.

Lemma A.0.23. If r = 10, then γ∗(N) 6 0.

Proof. If r = 10, then γ(N) 6 −3π. At most four arcs of ∂N can each be on the boundary of a

D-region which contributes π
2 to γ∗(N). If exactly four arcs are on the boundaries of such regions,

then each of the remaining six arcs of ∂N can be on the boundary of a T1-region or a P8-region

which contributes π
6 to γ∗(N). Thus,

γ∗(N) 6 γ(N) + 4
π

2
+ 6

π

6
6 −3π + 3π = 0.
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Figure A.2: Possible regions of degree 7.
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