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Abstract 
 
 
Insulin stimulates glucose transport in fat cells by inducing the 

movement of glucose transporters (Glucose transporter-4) from 

specialised storage vesicles to the plasma membrane.  Insulin 

resistant individuals and those with Type II Diabetes exhibit 

impairment in the ability of insulin to stimulate glucose transport.  

The molecular mechanisms of glucose transporter-4 trafficking in 

adipocytes are an important focus in understanding the underlying 

etiology of this disease.     

 

Glucose transporter-4 (GLUT4) recycles between the plasma 

membrane and intracellular stores in the absence of insulin using a 

complex intracellular pathway. This involves two intracellular cycles: 

one is the prototypical endosomal system, the other a specialised 

cycle involving the trans-Golgi network and a sub-set of intracellular 

vesicles called GSVs (the slow cycle). Understanding the control of 

the entry into this second cycle is the subject of this thesis. In 

particular, the work in this thesis will examine the role of Syntaxin 16 

and its cognate Sec1/Munc18 protein mammalian Vps45 (mVps45). 

 

The regulation of Syntaxin 16 has not been fully elucidated and 

understanding the role of Syntaxin 16 in SNARE complex regulation 

and subsequent control of GLUT4 traffic into the slow cycle requires 

an understanding of its cognate binding partner Sec1/Munc18 (SM) 

protein, mammalian Vps45 (mVps45).   

 

The absolute levels of both Syntaxin 16 and mVps45 were quantified 

and found to be present in 3T3-L1 adipocytes in roughly stoichiomeric 

amounts.  IP experiments also showed the ability of mVps45 to 

interact with Syntaxin 16 in the absence of insulin.   
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Using the model eukaryote Saccharomyces cerevisiae, we found that 

mVps45 could complement for the deletion of Vps45p. Assays for CPY 

secretion showed that mVps45 is able to complement for the loss of 

Vps45p function in the trafficking of carboxypeptidase Y (CPY).  

Additionally, mVps45 mutants were made that correspond to yeast 

mutants made previously in the lab and were tested for homology of 

function.   

 

Depleting 3T3-L1 adipocytes of mVps45 showed alterations in the 

levels of GLUT4 protein as well as the protein levels of Syntaxin 16, 

IRAP, and Rabenosyn.  Insulin-stimulated deoxyglucose uptake was 

also profoundly decreased upon depletion of mVps45.  Further 

experiments using mVps45 depleted cells show that these cells lose 

their sensitivity to insulin and that the loss of mVps45 in these cells 

causes GLUT4 to have the inability to enter the slow cycle.   

 

Taken together, these findings demonstrate that mVps45 has a role in 

allowing GLUT4 entry into the slow cycle. 
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Chapter 1: Introduction 

1.1 Diabetes and the Role of Insulin 
 
 

1.1.1 Endemic of Diabetes 
 
 

Diabetes mellitus is a global epidemic affecting approximately 150 million 

people worldwide, a figure which will double by the year 2025 (DeFronzo, 

1992). The majority (90%) of these cases are of the type II form. Type II 

diabetes is a chronic disease characterised by defective insulin action, a 

condition known as insulin resistance. The incidence of insulin resistance and 

Type II diabetes is endemic to a culture that adheres to a high sugar, high 

fat diet and a sedentary lifestyle. 

 

Insulin resistance places a greater demand on the pancreas to produce 

insulin leading to hyperinsulinaemia. Insulin stimulates glucose transport into 

fat and muscle by regulating the translocation of the facilitative glucose 

transporter GLUT4 from an intracellular store to the cell surface (Birnbaum 

et al., 1992). Upon binding to its receptor on the surface of fat and muscle 

cells, insulin initiates a signalling cascade that culminates in changes in the 

trafficking itinerary of GLUT4, releasing it from its intracellular store and 

delivering it to the cell surface (Zaid et al., 2008). Individuals with insulin 

resistance and Type 2 diabetes exhibit defective insulin-stimulated GLUT4 

translocation (Birnbaum et al., 1992; Charron et al., 1989) consequently, 

much effort has gone into defining the trafficking of GLUT4 in adipocytes 

and muscle. 

 

GLUT4 is a facilitative glucose transporter that transports glucose down its 

concentration gradient into the cell in an energy-independent manner. It is a 

membrane protein with 12 transmembrane domains (as shown in Figure 1.1). 

There are 13 known members of the GLUT family of proteins (GLUT1-13) 

which can be divided into 3 classes. Class I includes GLUTs 1-4, class II 

includes GLUTs 5, 7, 9 and 11 and class III includes GLUTs 8, 10, 12 and the 

proton-myoinositol symporter H+ -myo-inositol cotransporter (HMIT1) (Joost 
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and Thorens, 2001). GLUT4 is expressed primarily in striated muscle and 

adipose tissue and is the major insulin responsive GLUT isoform. 

 
 
1.1.2 Function of Insulin 

 
Insulin is an important hormone involved in metabolism. It has a role in cell 

growth, differentiation, and the storage of substrates in fat, muscle and the 

liver. One of its most important roles is in whole body glucose homeostasis 

(Saltiel and Kahn, 2001). At high plasma glucose concentrations, for example 

after eating a meal, insulin stimulates the uptake of glucose by adipose and 

muscle tissue and inhibits glucose production by the liver. Insulin stimulates 

glucose uptake in adipocytes by stimulating the translocation of GLUT4 

glucose transporter molecules from unique intracellular storage site(s) to the 

cell surface which results in an increase in glucose uptake into the cell. This 

returns glucose concentrations to their normal levels. In insulin resistance 

and type II diabetes this normal response to insulin is impaired. 

It has been known for more than 30 years that insulin stimulates the 

translocation of glucose transport activity (Saltiel and Kahn, 2001). Cushman 

and Wardzala performed detailed studies of D-Glucose inhibitable 

Cytocholasin-B binding sites which lead to the suggestion that increased 

numbers of glucose transport systems in the PM in response to insulin 

stimulation originate in an intracellular membrane pool associated with 

microsomal membranes (Cushman and Wardzala, 1980). Insulin shifts the 

distribution of GLUT4 from storage pools toward the PM primarily by 

elevating its exocytic rate (Zaid et al., 2008). It also modestly reduces the 

endocytic rate in adipocytes (Blot and McGraw, 2008). Insulin binds to a 

receptor on the surface of muscle and adipose cells that triggers a cascade 

of signalling events.   

 

There are two major signalling pathways that have been identified in insulin-

regulated GLUT4 translocation (Kanzaki, 2006).  These two pathways are the 

phosphatidylinositol 3-kinase (PI3K)-dependent pathway (Verhey et al., 

1995) and the c-Cbl-dependent pathway (Verhey et al., 1995).  In both these 

pathways insulin binds to its heterotetrameric receptor composed of two α 

and two β subunits. This results in a conformational change in the receptor, 

which leads to activation of its tyrosine kinase domains in the intracellular 
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portion of the β subunits. The receptor is then able to phosphorylate several 

potential substrates. Furthermore, the binding of insulin to the α-subunits of 

the receptor induces the trans-phosphorylation of the β-subunit which 

causes increased catalytic activity of kinase (Watson et al., 2004).  This 

activated insulin receptor in turn catalyses the tyrosine phosphorylation of a 

number of intracellular substrates, including the insulin-receptor substrate 

(IRS) family.  The phosphorylated tyrosine of this substrate acts as a docking 

site for signalling proteins (Czech and Corvera, 1999).  These proteins then 

regulate a myriad of cellular processes including vesicle trafficking, protein 

synthesis and gene expression (Saltiel and Kahn, 2001).  The IRS family of 

proteins are the most studied intracellular substrates to be phosphorylated 

by the insulin receptor.  They interact with several effector molecules 

 

In the PI3K pathway, the insulin receptor phosphorylates insulin-receptor-

substrate (IRS)-1 and IRS-2. It has been found that IRS-1 rather than IRS-2 is 

required for GLUT4 translocation and glucose uptake (Huang et al., 2005). 

IRS recruits PI3K to the plasma membrane where it catalyses the production 

of phosphatidylinositol 3-phosphate (PI3P).  IRS-1 binds the regulatory p85 

subunit of class I PI3K activating its catalytic p110 subunit (He et al., 2007). 

The PI3K family phosphorylate the third hydroxyl position of the inositol ring 

of phosphoinositides.  Insulin induced activation of Class I PI3K produces 

PtdIns(3,4,5)P3 which then recruits kinases including PKB/Akt via their 

pleckstrin homology (PH) domain.  Downstream of Class I PI3K there lies 

three major signalling axes, PKB/Akt, atypical PKC and Rac.  This brings it in 

close proximity to the kinase phosphatidylinositol-dependent kinase-1 (PDK-

1) which phosphorylates and activates PKB (Gonzalez and McGraw, 2006).  

 

PKB (Akt) is a serine/threonine kinase which requires phosphoryation at two 

sites (Thr308 and Ser473) for activation.  Upon activation by insulin signalling, 

PKB phosphorylates several substrates in the cell. One downstream target of 

PKB which is thought to be important in GLUT4 translocation is AS160 

(Sakamoto and Holman, 2008). AS160, also known as TBC1D4, is a protein 

with Rab-GAP (GTPase-activating protein) activity (Kanzaki,  2006). It is 

thought that PKB phosphorylation of AS160 inhibits its Rab-GAP activity 

(keeping it in its inactive GDP-bound form) towards Rabs associated with 

GLUT4 storage vesicles (GSVs) which lead to translocation of GLUT4  
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(Zeigerer et al., 2002; Zaid et al., 2008). Further work has shown that AS160 

is important for intracellular retention of GLUT4 under basal conditions 

(Verhey et al., 2005).  

 

In-vitro the GAP domain of AS160 acts on Rabs 2A, 8A, 10 and 14 (Ng et al., 

2008). Rabs 8A and 14 seem to be the targets of AS160 in muscle cells 

(Ishikura et al., 2008). However, Ishikura and colleagues have found that Rab 

10 is the predominant AS160 target in 3T3-L1 adipocytes (Ishikura et al., 

2008). Rabs are considered to be molecular switches, linking signal 

transduction cascades to molecular effectors including molecular motors. 

This may indicate that there are cell-specific differences in the insulin 

signalling pathways regulating GLUT4 translocation.  TBC1D1 is also a PKB 

substrate, highly homologous with AS160.  While AS160 has six 

phosphorylation sites for PKB, TBC1D1 only has two (Thr590 and Ser501) (Ramm 

et al., 2000). Both AS160 and TBC1D1 can bind 14-3-3 proteins.  In fact, 14-

3-3 binding to phoshorylated AS160 is essential for GLUT4 translocation (Zaid 

et al., 2008).  It remains to be determined whether TBC1D1 or TBC1D4 

(AS160) is the more important PKB target.  The major role of insulin is acting 

on the exocytosis of GLUT4 which has several insulin regulated steps (Zaid et 

al, 2008).  Insulin has the ability to regulate the docking and fusion of GLUT4 

vesicles with the plasma membrane (Lizunov et al, 2005) as well as the 

budding of vesicles from the storage compartment (Xu and Kandror, 2002) 

and their trafficking to the plasma membrane (Thurmond and Pessin, 2001). 

 

GLUT4 contains several motifs which regulate its localisation and trafficking 

(Lalioti et al., 2001). The majority of these motifs are found in the N- and C-

terminal domains. 

In the N-terminus, the FQQI motif has been shown to be important for the 

internalisation of GLUT4 from the cell surface (Verhey et al., 1995). Other 

studies have found that this motif may be involved in other aspects of GLUT4 

trafficking.  FQQI is also involved in entry of newly synthesised GLUT4 into 

the insulin-responsive compartment (IRC) (Capilla et al., 2007) and the 

AS160-dependent exit of GLUT4 from the IRC (Capilla et al., 2007). Recent 

work suggests that the FQQI motif may be involved in the basal retention of 

GLUT4 (Blot and McGraw, 2008).  
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The LL motif in the C-terminus of GLUT4 has also been shown to be 

important for the rapid endocytosis and retention of GLUT4 (Blot and 

McGraw, 2008). It is thought that the LL motif regulates the transport of 

internalised GLUT4 out of a fast recycling pathway into the retention 

pathway (Blot and McGraw, 2008). Several other residues and motifs in the 

C-terminus are thought to be important for GLUT4 trafficking and tend to be 

acidic in nature. The last 30 amino acids of the C-terminus are sufficient for 

the correct localisation of GLUT4 into the IRC (Verhey et al., 1995). A 

YXXPDEND motif has been shown to be important for the release of GLUT4 

from the IRC (Marsh et al., 1995) and a LXXLXPDEND motif is essential for 

insulin-stimulated GLUT4 translocation to the plasma membrane (Marsh et 

al., 1995). Also a TELEYLGP motif regulates sorting of GLUT4 into a post-

endosomal compartment (Shewan et al., 2003). This post-endosomal 

compartment has been shown to be a subdomain of the TGN enriched with 

syntaxin 6 and 16 (Shewan et al., 2003). Recently it has been shown that 

TELEY is required for the full basal retention of GLUT4 and that the 

trafficking step it is involved in is regulated by AS160 (Blot and McGraw, 

2008). Other recent work suggests that the C-terminus of GLUT4 is required 

for targeting of GLUT4 to a peri-nuclear insulin-responsive vesicle (IRV) 

donor compartment but is not required for entry into the IRVs (Li et al., 

2009).  

In addition to the motifs in the N- and C-terminus, other motifs have been 

discovered which regulate GLUT4 trafficking. The large intracellular loop has 

been shown to be important for entry of GLUT4 into the IRC (Marsh et al., 

1995) and also the AS160-dependent exit of GLUT4 from the IRC. Also a 

phosphatidic acid binding motif, SQWL in the first intracellular loop of 

GLUT4 is involved in the insulin-stimulated fusion of GLUT4 vesicles with the 

plasma membrane (Li et al., 2009).    

1.2 Trafficking of GLUT4 
 
 

A crucial facet of insulin is its ability to stimulate glucose transport in fat and 

muscle cells. This is mediated by the tissue-specific expression of a GLUT 

isoform (GLUT4) in those cells with unique trafficking and regulatory 

properties. Below, the key facets of GLUT4 biology will be discussed.  
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1.2.1 Intracellular location of GLUT4 
 
Insulin stimulates glucose transport into fat and muscle by regulating the 

translocation of the facilitative glucose transporter GLUT4 from an 

intracellular store to the cell surface (Watson and Pessin, 2007). Upon 

binding to its receptor on the surface of fat and muscle cells, insulin 

initiates a signalling cascade that culminates in changes in the trafficking 

itinerary of GLUT4, releasing it from its intracellular store and delivering it 

to the cell surface (Watson and Pessin, 2007). Individuals with insulin 

resistance and Type 2 diabetes exhibit defective insulin-stimulated GLUT4 

translocation (Watson et al., 2004), consequently, much effort has gone into 

defining the trafficking of GLUT4 in adipocytes and muscle. 

 

In the absence of insulin, around 95% of cellular GLUT4 is sequestered within 

intracellular compartment(s), including specialised GLUT4 storage vesicles 

(GSVs). Upon insulin stimulation, GSVs traffic to the plasma membrane (PM), 

resulting in a 10- to 20-fold increase in PM GLUT4 levels. This is achieved by 

a dramatic increase in the rate constant for exocytosis and a modest 

inhibition of endocytosis. A working model for GLUT4 trafficking in insulin-

sensitive cells based on work from many laboratories is presented in Fig. 1.2. 

 

Intracellular GLUT4 populates two inter-related endosomal cycles. The first 

(the proto-typical endosomal system) operates between the PM and early 

endosomes. This is a fast trafficking loop, and in the absence of insulin 

serves to effectively internalise GLUT4 from the PM (this process is 

dependent upon two endocytosis motifs within GLUT4). Once in this cycle, 

GLUT4 is further sorted into a slowly recycling pathway, operating between 

recycling endosomes, the trans-Golgi network (TGN) and GSVs (sorting into 

this cycle depends upon a distinct signal on the extreme C-terminus of 

GLUT4). According to this model, insulin mobilises GLUT4 to the cell surface 

from an intracellular store that moves slowly between the TGN and 

endosomes in the absence of insulin.  

 

Insulin stimulation of adipose cells causes a net gain in surface GLUT4 that 

peaks within 10-15 minutes of stimulation, brought about by a robust 

increase in the rate of GLUT4 exocytosis and a smaller reduction in its 
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endocytosis (Foster, 2000).  In mature adipocytes, GLUT4 is a long lived 

protein with a half life of approximately 40 hours, so each polypeptide chain 

is likely to cycle to the PM many times during its lifetime (Ishiki et al., 

2005). Hence, Glut4 trafficking to and from the cell surface is controlled by 

a series of membrane trafficking steps with GLUT4 populating distinct 

intracellular compartments, all of which are either directly or indirectly in 

communication with the PM.  Insulin acts to change rate constants of endo- 

and exo-cytosis between these compartments, and so re-distributes GLUT4 

to the PM. In the absence of insulin, >95% of GLUT4 is intracellularly 

sequestered inside the adipocyte or muscle cell. Analysis of this distribution 

reveals that Glut4 is present within the trans-Golgi network, recycling 

endosomes and transferrin receptor positive (early) endosomes. However, a 

variety of studies have strongly supported a model in which a portion of 

Glut4 is sorted into so-called Glut4 Storage Vesicles (GSVs), which function 

to retain Glut4 within the cell until such time as insulin recruits it to the cell 

surface. Hence, the model of two inter-related cycles of Glut4 trafficking 

has evolved from many studies to explain the behaviour of GLUT4 within 

cells. The argument is that cycle 1 (the prototypical endosomal system) 

functions to rapidly internalise Glut4 from the cell surface. A subsequent 

sorting event, which is poorly understood, traffics Glut4 into the TGN/GSV 

cycle, a slow cycle, which effectively ‘traps’ Glut4 in an intracellular 

location. Understanding the role of SNARE proteins in this cycle is the main 

objective of this thesis. 
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Figure 1.1 GLUT4 is the Glucose Transporter involved in Glucose Uptake  
GLUT4 is a Class 1 Glucose transporter that spans the membrane 12 times.  This 
representation of Class I transporters shows residues specific to GLUT4 in red (Bryant et al., 
2002). Insulin regulates glucose transport in muscle and fat cells by stimulating the 
translocation of GLUT4 from intracellular vesicles to the plasma membrane (Ramm and 
James, 2005). 
 

 
1.2.2 Generation and function of glucose storage vesicles 
 
GSVs are small insulin-responsive vesicles which are highly enriched in 

GLUT4 molecules and are characterized by the presence of v-SNAREs (Ishiki 

and Klip, 2005).  VAMP-2 is the primary v-SNARE (Mora and Pessin, 2002) 

required for fusion of GLUT4 vesicles mobilized by insulin with the PM 

(Toonen and Verhage, 2003). VAMP-2 interacts with the target SNAREs 

Syntaxin 4 and 23kDa synaptosomal associated protein (SNAP23) (James, 

2005) which are localized to the plasma membrane.  

 

GSVs also contain insulin-responsive aminopeptidase (IRAP) (Martin et al., 

2000; Ramm et al., 2000). IRAP traffics in concert with GLUT4 in response to 

insulin (Bogan and Kandror, 2010). However, the GSVs are notably lacking in 

several proteins including TfR, cellubrevin (VAMP3) (Hashiramoto and James, 

2000), cellugyrin (synaptogyrin 2) and cation-dependent mannose-6-

phosphate receptor (CD-MPR) (Martin et al., 2000). Such observations 

prompted the notion that GSVs are segregated from the general recycling 

endosomal system, a thesis supported by chemical ablation of TfR-containing 

endosomal compartment experiments which argued strongly that GLUT4 
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within GSVs are separate to endosomal membranes (Livingstone et al., 

1996). 

 
The precise mechanism by which the GSVs are formed is not fully known. 

Sortilin, a major component of GSVs has been shown to be sufficient and 

essential for GSV formation (Shi and Kandror, 2008). Further work has shown 

that it is the lumenal Vsp10p domain of sortilin which interacts with GLUT4 

and IRAP and plays an important role in GSV formation (Shi and Kandror, 

2008). Also Golgi-localised γ-ear-containing Arf-binding proteins, GGAs are 

required for sorting of GLUT4 (Watson et al., 2004) and IRAP (Hou et al., 

2007) into GSVs. It has been proposed that the formation of GSVs is driven by 

mass action, in which the expression of GLUT4, IRAP and sortilin, whose 

interaction and abundance fill the compartment, largely excludes other 

molecules (Pilch, 2008). Recently it has been shown that GSVs self assemble 

during differentiation of 3T3-L1 adipocytes and that lumenal interactions of 

GLUT4 and IRAP have an important role in the assembly of GSVs (Shi et al., 

2008). 

The specialised GSV compartment is thought to be an important mechanism 

of basal intracellular retention of GLUT4 and it is thought that GLUT4 in this 

compartment translocates to the cell surface in response to insulin. 

 

In the basal state, GLUT4 continuously cycles between the PM and an 

intracellular compartment but at a very slow rate, where 2-5% of the protein 

is at the plasma membrane with the remainder localized to various 

intracellular compartments (Mora and Pessin, 2002).  In the basal state, 

GLUT4 vesicles arrive at the PM but do not dock and studies have reported 

that docking/fusion is an insulin regulated event (Kumarov et al., 2005; 

Foster and Klip, 2000). 
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Figure 1.2 The slow recycling pathway  
This model shows the two recycling pathways in insulin-responsive cells.  Cycle 1, the fast 
pathway, consists of the pathway between the cell surface and the endosomes. In this cycle, 
insulin shifts GLUT4 from the slow TGN-endosome pathway to translocate to the cell surface 
at the plasma membrane.  The recycling pathway shown in cycle 2 between the TGN and 
endosomes is known as the slow recycling pathway. All the steps of this pathway are not 
known.  It is in this pathway that GLUT4 is sorted in the TGN and is packaged into GSVs.  
90% of GLUT4 is kept in this state under basal conditions.  (Bryant et al., 2002) 
 

 
There have been several models of GLUT4 trafficking proposed to explain 

the basal exclusion of GLUT4 from the plasma membrane and the high 

insulin responsiveness of GLUT4 translocation (Pessin et al., 1999; Dugani 

and Klip, 2005). These models include retention mechanisms, dynamic 

sorting events and packaging GLUT4 into a more stationary population of 

secretory-type vesicles or a static specialised compartment. 

 

The retention model predicts that sequences in GLUT4 specifically target 

GLUT4-containing vesicles away from the recycling endosomes (Lalioti et al., 
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2001). These sequences bind to retention receptors found in insulin-

responsive cells, for example, TUG (Bogan and Kandror, 2010). Insulin 

stimulation or competition by retention sequence peptides (Lee and Pilch, 

1994), disrupts the interaction between the GLUT4 sequences and the 

retention receptors, allowing the GLUT4-containing vesicles to enter the 

recycling endosomal system resulting in translocation to the plasma 

membrane.  

 

In the dynamic recycling model, the entire complement of GLUT4 eventually 

recycles to the plasma membrane in the basal state (Martin et al., 2000). 

GLUT4-containing vesicles undergo a futile cycle of fission and fusion with 

endosomes (Karylowski et al., 2004) and insulin acts to switch the fusion of 

these vesicles to the plasma membrane.  Insulin promotes two routes for 

GLUT4 mobilisation towards the plasma membrane, a direct route from the 

GLUT4-containing vesicles and an indirect one from the GLUT4-containing 

vesicles via the endosomal recycling system (Ramm et al., 2000; Zeigerer et 

al., 2002). A variation of this model is that only a fraction of GLUT4 recycles 

to the plasma membrane in the basal state. There also exists a latent pool of 

GLUT4 molecules which is never mobilised in response to insulin (Ziegerer et 

al., 2002). In the secretory vesicle model GLUT4 is localised to both small 

synaptic-like vesicles as well as larger tubulovesicular compartments.  

Insulin stimulation results in association and fusion of the vesicles with the 

plasma membrane (Xu and Kandror, 2002).  

  

These models are not mutually exclusive, nor has one been proven 

overwhelmingly better than another.  Recent work has shown that GLUT4 is 

regulated by both static and dynamic retention mechanisms (Muretta et al., 

2008). It is possible that cell culture conditions can affect GLUT4 trafficking, 

for example replating 3T3-L1 cells after differentiation inhibits static 

retention of GLUT4. According to Bryant et al., GLUT4 transport is controlled 

by all three mechanisms (Bryant et al., 2002). It is proposed that 

intracellular GLUT4 occupies two inter-related and overlapping endosomal 

cycles as shown in Figure 1.2. The first is a fast trafficking cycle involving 

the plasma membrane and early endosomes. In the absence of insulin it is 

this cycle which internalises GLUT4. Once in the endosome, GLUT4 is further 

sorted into a slow trafficking cycle involving endosomes, the TGN and GSVs. 



Chapter 1, 34 

It is thought that it is the GLUT4 in these GSVs which translocates to the 

plasma membrane in response to insulin. Recent data also supports a model 

in which basal GLUT4 retention involves two intracellular trafficking cycles 

(Blot and McGraw, 2008). 

 
 

1.2.3 Membrane trafficking 
 

The trafficking of GLUT4 involves the fusion of vesicles with specific 

membranes which is mediated by target- (t-) and vesicle- (v-) SNAREs 

(soluble N-ethylmaleimide-sensitive factor attachment protein receptors) 

(Watson et al., 2008). During membrane trafficking or vesicle-mediated 

transport, vesicles are formed from a donor compartment or membrane. 

These transport vesicles are then translocated to the target compartment or 

membrane. Then the vesicles dock and fuse with the target membrane. 

SNAREs function in the final docking and fusion stages of this process and 

catalyse the final fusion step (Chen and Scheller, 2001). 

 

Membrane fusion is a two step process: the membranes are brought into 

close proximity where counteracting electrostatic forces need to be 

overcome before the lipids of the proximal leaflets can interact.  The 

boundary between the hydrophilic and hydrophobic portion of the bi-layer is 

destabilized (Jahn et al., 2003).  Fusion proceeds by an ordered sequence of 

steps that includes the merging of the proximal mono-layers, stalk 

formation, generating of hemi-fusion intermediates and fusion pore opening 

(Jahn et al., 2003).  Intracellular fusion machines are dynamic supra-

molecular structures that are assembled upon demand and dismantled as 

soon as fusion is completed to allow them to be easily and quickly reused.  

Except for membrane anchored SNAREs, most components are recruited 

from the cytoplasm.  Fusion must be fast enough or of high enough 

probability to meet the physiological requirements of that trafficking step 

and fusion must be specific such that vesicles release their contents after 

encountering the correct target membrane (Shen et al., 2007).   

 

Membrane fusion is controlled by three main protein families, Rab GTPases, 

SNARE proteins and members of the Sec1/Munc18 (SM) family (Gengyo-Ando 

et al., 2007).  Membrane fusion involves NSF, SNAPs, SNAREs, and SM 
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proteins (Rizo, 2003).  All types of intracellular membrane fusion are 

believed to share common protein machinery (Dulubova et al., 2002).  

Transport and fusion are highly compartmentalized phenomena and occur in 

discreet locations in the cell.   Maintaining compartment identity and fusion 

specificity is particularly important for proteins, which navigate through 

multiple membrane compartments during their biogenesis, intracellular 

storage, exocytosis, and retrieval from the plasma membrane such as GLUT4 

(Mora and Pessin, 2002).  When the intracellular transport vesicle is fused 

with an intracellular membrane, it first needs to recognize its partner 

membrane by physical contact in a specific location.  This process provides 

specificity to fusion reactions and is variably called membrane attachment, 

tethering, or docking (Jahn et al., 2003).  After membrane attachment, 

fusion is initiated by the concerted action of SNARE and SM proteins.  After 

fusion, the transmembrane regions of the SNAREs are present in the same 

membrane, resulting in cis- complexes that need to be disassembled for 

reactivation.  This reaction is catalyzed by the ATPase NSF with SNAPs as 

cofactors (Jahn et al., 2003).  Internalized molecules can be recycled back 

from early endosomes or a late recycling compartment to the plasma 

membrane and can therefore participate in several rounds of exocytosis. 

   

Since my thesis work mainly concerns SNARE proteins and SM proteins, 

below, I will discuss aspects of SNARE and SM protein biology germane to 

Glut4 vesicle trafficking. 

 
 

1.3 SNARES 
 

Insulin-regulated GLUT4-traffic represents a specialised form of membrane 

trafficking, with GLUT4 being transported between various membrane-bound 

compartments by means of vesicular transport.  Membrane traffic in all 

eukaryotic cells is controlled by the formation of specific SNARE complexes. 

Members of the t- (target) family of SNARE proteins mark specific organelles. 

The formation of complexes between t-SNAREs and their cognate v- (vesicle) 

SNARE localised to the appropriate donor membrane is sufficient to catalyse 

bilayer fusion, and the SNAREs have been proposed to impart a degree of 

specificity on membrane traffic. While there is little doubt that these SNARE 

interactions control the fusion of the donor and acceptor compartments, the 
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role of SNAREs in determining specificity is somewhat more controversial. 

Nonetheless, it is likely that controlling SNARE complex formation enables the 

cell to regulate membrane traffic, providing an impetus to understand which 

SNAREs are involved in GLUT4 traffic and how they are regulated.  

 
1.3.1 Classification of SNAREs 
 
Membrane fusion in eukaryotic cells is thought to be mediated by a highly 

conserved family of proteins called soluble N-ethyl maleimide sensitive-

factor attachment protein receptors (SNAREs) (Yoon et al., 2006).  SNAREs 

are a super-family of small proteins with 24 known members in yeast and 

more than 35 in mammals (Jahn et al., 2003).  SNAREs are highly abundant 

in the cell and vary widely in size and structure and share only one 

homologous sequence, the SNARE motif that serves as their defining feature 

(Jahn et al., 2003).  The SNARE motif is an evolutionarily conserved stretch 

of about 60-70 amino acids arranged in eight heptad repeats, SNARE proteins 

also usually possess a single trans-membrane anchor domain at their C-

terminus connected to the motif by a short linker.  Other SNAREs feature 

hydrophobic post-translational modifications instead of a trans-membrane 

domain (Gerst, 1999).  The SNARE motifs are unstructured and spontaneously 

assemble into core complexes of high stability that are disassembled by the 

ATPase chaperone NSF in conjunction with cofactor SNAPs (Gerst, 1999).  

 

SNARE motifs are classified into Qa-, Qb-, Qc-, and R-SNAREs.  Based on a 

highly conserved layer of interacting amino acids (three glutamines and one 

arginine) in the centre of the helix bundle, the subfamilies are termed Qa-

SNAREs (the Syntaxins), Qb-and Qc-SNAREs (homologs of the N- and C-

termnal SNARE motifs of SNAP25) and R-SNAREs (VAMPs) (Jahn et al., 2003).  

SNAREs that carry trans-membrane domains can also be palmitoylated which 

has been shown to protect SNAREs from degradation (Jahn, 2000).   

 

Monomeric SNAREs are largely unstructured, but when SNAREs combine, the 

SNARE motifs form helical core complexes of great stability; it is thought 

that these stable complexes release sufficient energy to catalyse the fusion 

of two bilayers. These core complexes can withstand conditions such as 80°C 

temperatures, 8M urea concentrations, and 2% SDS chemical disruption 

(Brunger, 2006). The core complex is assembled from four parallel alpha 
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helices and comprises 16 stacked layers of interacting side chains.  Each core 

complex is assembled from one of each of the Qa-, Qb-, Qc-, and R-SNAREs 

(corresponding to three helices from t-SNAREs and one from the v-SNARE). 

These layers are largely hydrophobic except for a central zero-layer that 

contains three highly conserved glutamine residues and one highly conserved 

arginine residue (Jahn and Scheller, 2006).  The zero layer is crucial for 

dissociation because it recruits the cofactors of NSF.   

 

Complex formation is mediated by the SNARE motifs and is accompanied by 

large conformational changes (Jahn et al., 2003). The Q-SNARE acceptor 

complexes bind with the R-SNAREs from the N-terminal end of the SNARE 

motif towards the C-terminus, with the prevailing concept being that SNARES 

‘zipper-up’ into the core complex (Sollner et al., 1993).   

 

 

 

 
 
 

a 
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Figure 1.3 The distribution of SNAREs in the Adipocyte 
The adipocyte is highly compartmentalized and each participant in GLUT4 trafficking is 
localized near to where its action will take place.  The Syntaxin 4/SNAP23/VAMP2 complex 
that occurs in the fast pathway is located at the plasma membrane so that GLUT4 can be 
translocated to the plasma membrane in response to insulin stimulation.  Likewise, Syntaxin 
16 is located near the Trans-Golgi Network (TGN) for its role in the slow recycling pathway, as 
shown in panel a (Chen and Scheller, 2001). Panel B uses the same color scheme to 
delineate between SNARE types and shows clearly which SNAREs are involved in sorting 
pathways (Jahn and Scheller, 2006). 

 
 
1.3.2 Structure of SNAREs 
 
SNAREs have a highly conserved structure (Brunger, 2006). The majority of 

SNAREs contain three domains, an N-terminal domain, a SNARE domain and a 

transmembrane domain. The main feature of these proteins is the SNARE 

domain of around 60 residues, which is found in all SNAREs. This domain 

consists of heptad repeats which form coiled-coil structures. The structure 

of the N-terminal domain varies and is involved in a variety of functions. The 

N-terminal domain of the syntaxin subfamily has a three helical bundle 

consisting of Ha, Hb and Hc regions. This region can bind to the C-terminal 

SNARE motif generating a closed conformation, which needs to be opened 

before assembly into a t-SNARE. The N-terminal region of the subfamily can 

also be involved in interactions with regulators of SNARE assembly. For 

example the N-terminus of syntaxin 16 binds to the SM protein mVps45 

(Dulubova et al., 2002). Also, the N-terminal can direct intracellular 

targeting of the SNARE, for example the N-terminal of VAMP4 targets the 

SNARE to the TGN by a di-leucine motif and an acidic cluster (Burkhardt et 

al., 2008).  SNAREs associated with GLUT4 trafficking in the adipocyte are 

shown in Figure 1.3 and are listed in Table 1.1. 



Chapter 1, 39 

 

 
 
Table 1.1 Classification of SNAREs 

        SNAREs are required in the trafficking of GLUT4 in the adipocyte.  These SNAREs form  
        complexes with one another based on SNARE type. PM: Plasma Membrane, EE: Early  
        endosome, RE:Recycling endosome, TGN: Trans-Golgi Network, LE: Late endosome, TMD:  
        Transmembrane Domain. 
 
    

1.3.3 The Syntaxins 
 
Syntaxins (Qa-SNAREs) are members of the SNARE protein superfamily.    

Each syntaxin consists of a SNARE motif, a trans-membrane domain (TMD) 

and an Habc domain.  This Habc domain, located in the N-terminal portion 

of the syntaxin, consists of three alpha helices that fold back on one another 

(Togneri et al, 2006).  Syntaxin homology has been conserved among species 

with mammals having nearly double the number of syntaxins as yeast.  This, 

however, could be explained by the number of syntaxins with redundancy of 

function between species.  For example, the mammalian Syntaxins 1-4 

function at the plasma membrane, while in yeast the only PM syntaxin is 

Sso1p (Shen et al, 2007).  Some syntaxins can exist in both the closed and 

open conformations (such as Sso1p) and this allows them to specify function.  

In the closed conformation, the Habc domain folds over and interacts with 

the SNARE domain which disallows SNARE complex formation (Dulubova et 

al, 1999) as shown in Figure 1.4.  In contrast, there is no contact between 

the Habc domain and the SNARE domain in the open conformation which 

allows interaction with the SNARE domains of other SNAREs in order to form 

a SNARE complex (Dulubova et al, 1999). Figure 1.4 shows this open 
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conformation arrangement and Figure 1.5 shows the open conformation in 

relation to the opposing membranes. 

  
 
 

Figure 1.4 The closed and open conformations of the Syntaxins 
In the closed conformation the Habc domain is folded over and interacts with the SNARE 
domain, inhibiting SNARE complex formation.  In the open conformation the Habc domain 
does not interact with the SNARE domain, leaving space for SNARE-SNARE interaction and 
SNARE complex formation.  Reproduced with permission from MacDonald C, Munson M, 
Bryant NJ, 2010, Biochem Soc Trans, 38, Pt 1, 209-12. © the Biochemical Society 
 
 

 
Figure 1.5 SNARE structure has functional consequences  
Syntaxin is in the open conformation where the Habc domain is not folded back against the 
SNARE domain. (Rizo and Sudhof, 2002) 
 
 
1.3.4 The SNARE Hypothesis 
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SNARE complex assembly is an essential step in the fusion of vesicles to the 

plasma membrane (or indeed any membrane fusion step).  SNARE proteins 

that are localized in opposing membranes drive membrane fusion by using 

the free energy that is released during the formation of a tight four helix 

bundle, the core complex (Jahn and Scheller, 2006).  The SNARE motifs, 

which precede C-terminal membrane regions of SNARE proteins, form a core 

complex when a SNARE motif from one membrane (v-SNARE) the donor 

vesicle, and three from the other membrane (t-SNARE), the target 

membranes assemble in a parallel arrangement of alpha helices (Dulubova et 

al., 2002).  This proposed explanation of how SNAREs interact is called the 

SNARE hypothesis (as shown in Figure 1.6). 

 

The vesicle associated v-SNARE engages with its partner t-SNAREs on the 

target membrane to from a coiled coil that bridges two membranes and 

facilitates fusion (Yoon et al., 2006).  Within the late secretory pathway, 

individual v- and t-SNAREs can pair with multiple other SNAREs to allow a 

certain level of crosstalk (Shen et al., 2007).  Cognate v- and t-SNAREs form 

a parallel four helix bundle through coiled-coil domain interactions that may 

be sufficient to overcome the energetic barrier to membrane fusion (Mora 

and Pessin, 2002).  v- and t-SNAREs are conformationally adaptable and are 

found in specific places in the cell.   

 

 
Figure 1.6 The SNARE Hypothesis 
The SNARE hypothesis states that in order for membrane fusion to occur, t-SNARES on the 
target membrane, and v-SNARES on the vesicle membrane must form a SNARE complex, 
then tether and dock on the target site before ultimately fusing and releasing cargo from the 
vesicle. (Bryant et al., 2002) 
 
SNARE mediated fusion occurs with an intermediate step called hemi-fusion.  

Hemi-fusion is a meta-stable membrane structure in which the outer leaflets 
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are merged while the inner leaflets remain intact.  Fusion is blocked if a 

SNARE trans-membrane domain is replaced by a more flexible lipid anchor or 

if extra amino acids are inserted between the SNARE motif and the trans-

membrane domain (Jahn and Scheller, 2006).  After fusion, SNARE complexes 

are transformed from a trans- to cis- configuration in which all SNAREs of a 

complex are together in the fused membrane (Gerst, 1999).   

 

SNARE proteins proceed from binary to 7s and then to 20s complexes 

comprising one v- and one t-SNARE before the fusion of the vesicles to the 

target membrane (Foster and Klip, 2000).  SNAREs alone can induce lipid 

mixing and complexes are dissociated after fusion so individual SNARE 

proteins can be recycled to their membranes (Jahn et al., 2003).  SNAREs are 

recycled through dissociation of the core complex which is achieved through 

N-ethylmaleimide sensitive factor (NSF) (Jahn and Scheller, 2006).  During 

fusion, the trans-complex relaxes to a cis-configuration, cis-complexes are 

disassembled by NSF and the R- and Q-SNAREs are separated for sorting 

(Brunger, 2006).  Disassembly requires energy which is provided by NSF, a 

hexameric member of the AAA+ protein family (Jahn and Scheller, 2006).  It 

requires cofactors, soluble NSF attachment proteins (α-SNAPs) to bind to the 

SNARE complex and has three distinct domains, two of which contain ATP 

binding sites (Sollner et al., 1993).  The complete dissociation of SNARE 

complexes might involve several catalytic cycles where NSF has several 

hydrolysis events which provides the energy for disassembly of the SNARES 

(Jahn and Scheller, 2006). 

 

SNAREs return to their donor compartment by intracellular membrane 

trafficking (Jahn and Scheller, 2006).  SNAREs reside not only in the 

organelle for which they mediate fusion, but they also reside in the 

membranes of the organelles that are part of their recycling pathway.  

SNAREs that are involved in trafficking between endoplasmic reticulum (ER) 

and the Golgi are found in both of these compartments and in the 

intermediate vesicles (Toonen et al., 2006).  The organization of the 

membrane compartments of eukaryotic cells is therefore likely to arise from 

numerous layers of regulation, may of which probably occur before the 

formation of the SNARE complexes that catalyze the final and irreversible 

step (Jahn and Scheller, 2006).  Core regions of SNAREs can interact with SM 
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proteins mediating Golgi or endocytic membrane fusion (Shen et al., 2007).  

Mammalian cells encode nearly twice as many SNAREs as yeast and the 

majority of that increase is concentrated in the endocytic/exocytic 

pathways (Shen et al., 2007). 

 

1.3.5 SNAREs involved in GLUT4 traffic to the plasma membrane 
 
A substantial body of experimental work has examined the t-SNAREs required 

for the insulin-stimulated delivery of GLUT4 to the PM, with the general 

consensus that syntaxin 4 (Sx4) (Qa) and SNAP-23 (Qb,c) are the crucial t-

SNAREs for this process. A good deal of experimental evidence now supports 

this view. For example, homozygotic disruption of the Sx4 gene results in 

early embryonic lethality, but heterozygote (Sx4 +/-) knockout mice exhibit 

impaired glucose tolerance, with a 50% reduction in whole-body glucose 

uptake, a result attributed to a ~50% reduction in insulin-stimulated glucose 

uptake and GLUT4 translocation in skeletal muscle (Tozzo et al., 1996). 

Similarly, depletion of either syntaxin 4 or SNAP23 using siRNA has revealed 

that these PM SNAREs are essential for GLUT4 translocation to the plasma 

membrane and thus for insulin-stimulated glucose transport (Kawaguchi et 

al., 2010). 

 

In common with other Qa-SNAREs, Syntaxin 4 is proposed to adopt either of 

two conformations.  The first is a closed conformation whereby the N-

terminal Habc helical domain is folded back upon the SNARE motif, thus 

rendering the latter inaccessible to incoming v-SNAREs. Alternatively, the 

Habc domain can be moved away from the SNARE domain (the open 

conformation) in the second conformation thus allowing the formation of 

productive SNARE complexes. How this regulation is achieved will be 

discussed further below when discussing SM proteins. 

 
1.3.6 SNAREs in intracellular traffic and the role of Syntaxins 6 and 16 
 
The mechanisms controlling the sorting of GLUT4 into the GSV compartment 

have received much less attention than the events regulating GLUT4 

insertion into the PM. GLUT4 is effectively sorted from recycling endosomes 

into a slow, futile cycle (cycle 2, in Figure 1.2), which culminates into the 

sorting of GLUT4 into an insulin-responsive compartment, termed GSVs. 
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Clearly, if cells are unable to correctly sort GLUT4 into GSVs, then it is likely 

that insulin-stimulated GLUT4 translocation will be impaired.  

 

The first reported role for an intracellular Syntaxin in GLUT4 sorting was 

that of Syntaxin 6. Over-expression of a mutant form of Syntaxin 6 which 

lacked a transmembrane anchor (and thus acting as a ‘dominant negative 

inhibitor’ of endogenous Syntaxin 6) was found to result in delayed re-

internalisation of GLUT4 from the cell surface upon insulin removal. 

Although the locus of action of Syntaxin 6 remains to be defined, studies in 

other systems have suggested that this SNARE acts at the trans-Golgi 

network (TGN), consistent with a role for Syntaxin 6 in sorting into GSVs. 

This conclusion is further supported by data showing that the recycling of 

the insulin-responsive aminopeptidase (IRAP; a GSV resident protein) from 

the cell surface back to GSVs required functional Syntaxin 6 (Perera et al., 

2003). The localization of both syntaxin 16 and syntaxin 6 to intracellular 

membranes in the TGN region suggests that this SNARE complex may control 

traffic of GLUT4 into or out of the slow recycling pathway and thus regulates 

the insulin responsiveness of cells (Perera et al., 2003).  

 

Two further studies have strengthened this hypothesis, in this case 

examining the role of Syntaxin 16 (Sx16) in GLUT4 traffic. Sx16 acts with 

Syntaxin 6 (Sx6) (and presumably Vti1a or Vti1b) to form a t-SNARE complex. 

Shewan and colleagues found that Sx16 exhibits a high degree of co-

localisation with GLUT4, and further showed that GLUT4 recycled through a 

sub-domain of the TGN enriched in Sx16 and Sx6 (Shewan et al., 2003). 

Moreover, Proctor et al further showed that depletion of Stx16 (or over-

expression of a dominant negative Stx16 mutant) in adipocytes resulted in 

reduced insulin-stimulated glucose transport and a reduction in cellular 

GLUT4 levels (Proctor et al., 2006). Such data suggest that Stx16 acts to 

facilitate the traffic of GLUT4 into GSVs, and that disruption of this pathway 

results in mis-targeting of GLUT4 and ultimately a reduction in total cellular 

GLUT4 levels (Proctor et al., 2006). This data suggest that Syntaxin 16 is 

required for entry into the slow recycling pathway and hence the GSVs and 

when this is prevented, GLUT4 levels decline as GLUT4 is mis-targeted into 

the lysosomal pathway. 
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There are five different splice variants of Syntaxin 16: 16A, 16B, 16C, 16D 

and 16H (Dulubova et al., 2002).  This study examines the role of Syntaxin 

16A since it has been shown to function in GLUT4 trafficking (Proctor et al., 

2006).   

 

1.4 SM Proteins 
 

SNARE-dependent fusion is a tightly regulated process. How this regulation is 

achieved is the subject of intense research effort, and recently attention has 

been focused on the SM (Sec1p/Munc18) proteins.  SM proteins are 

evolutionarily conserved cytosolic proteins known to regulate vesicle fusion 

in the secretory pathway.  The first SM protein was isolated in 

Caenorhabditis elegans. This SM protein, known as unc-18, was later joined 

by the Saccharomyces cerevisiae orthologue Sec1p.  Later other orthologues 

were discovered in plants (KEULE), invertebrates (ROP) and mammals (Munc-

18) (Rodkey et al., 2008).  Moreover, Sec1p isoforms were found in several 

yeast pathways (Banta et al., 1988).   

SM proteins are essential for vesicle trafficking. For example a temperature-

sensitive mutant of the yeast SM protein Vps45p causes an accumulation of 

post-Golgi vesicles (Piper et al., 1994). SM proteins bind to syntaxins and 

regulate SNARE complex assembly (Toonen and Verhage, 2003; Sudhof and 

Rothman, 2009). They function to positively regulate SNARE complex 

assembly by regulating t-SNARE receptivity.  SM proteins bind to syntaxins in 

three different modes (Carpp et al., 2006; Aran et al., 2009; Furgason et al., 

2009). In the first mode, the SM protein binds to syntaxin in a closed 

conformation, preventing the formation of SNARE complexes (Mode 1).  In 

the second mode (Mode 2), the N-terminal lobe of the SM protein binds to 

the N-terminal peptide of the syntaxin. This mode of binding allows the t-

SNARE complex to assemble and then accept the v-SNARE, forming a trans-

SNARE complex.  SM proteins also bind the trans-SNARE complex.  

Interaction of the SM protein with the trans-SNARE complex stimulates 

membrane fusion and adds specificity to membrane trafficking.  In addition 

to a role in SNARE complex assembly, SM proteins have been implicated in 

stabilisation and transport (Bryant and James, 2001; Carpp et al., 2007). 
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1.4.1 Regulation of SNARE Complex formation 
 
SNARE proteins are subject to a considerable degree of regulation, and a 

crucial family of regulatory proteins are the members of the Sec1p/Munc18 

(SM) family (Dulubova et al., 2002).   The SM family is a group of arc-shaped 

hydrophilic proteins of 650-700 residues which consist of three domains with 

a major v-shaped cleft in the middle (Toonen and Verhage, 2003).  There are 

four SM proteins in yeast and seven in the human genome.  SM proteins 

interact with specific Qa isoforms, adding a further layer of specificity upon 

the formation of the SNARE complex. The job of SM proteins may include 

proofreading SNAREs and preventing promiscuous SNARE pairing (Jahn et al., 

2003), but in addition they are thought to regulate the formation of 

productive SNARE complexes.   

 

Initially, SM proteins were thought to function by binding to the closed 

conformation of the corresponding syntaxin, and thus inhibiting the 

formation of the open syntaxin complex and so preventing SNARE complex 

formation.  A good deal of data subsequently showed that SM proteins 

appeared to play both a positive and negative role in SNARE-dependent 

membrane fusion, and that the interaction of SM proteins with syntaxin 

molecules involved more than one ‘mode’ of binding.  SM proteins interact 

with SNAREs in multiple ways, of particular importance is SM protein binding 

directly to the N-terminal ~20 residues for the corresponding Qa-SNARE.  It 

should be noted that the binding of an SM to the closed conformation of a 

syntaxin involves the arch-shaped SM protein ‘cradling’ the closed Syntaxin 

(Mode 1); binding to the extreme N-terminus of the (open) syntaxin involves 

a distinct binding pocket on the opposite face of the SM protein (Mode 2). 

The structures of several SM/Syntaxin complexes have now been solved and 

allow the formation of generalised models of these protein/protein 

interactions. SM proteins have also subsequently been shown to bind intact 

SNARE complexes (so-called mode 3 binding) with important consequences 

for the rate of SNARE-dependent fusion. 

 

The function of the N-terminal domain is interesting because some N-

terminal domains can reversibly associate with the SNARE motif of the same 
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SNARE to from a closed conformation which in turn prevents the SNARE motif 

from forming a complex (Jahn and Scheller, 2006).  Other N-terminal 

domains cannot assume a closed conformation which indicates that this 

function is non-essential.  It has been found that there are four binding 

modes for which SNAREs will complex with SM proteins.  In the first mode, 

the arch-shaped SM protein wraps over the closed SNARE conformation which 

provides stabililty to the interaction (see Figure 1.7a) (Jahn and Scheller, 

2006).  In the second mode of binding, the SM protein only interacts with the 

extreme N-terminal end of the Qa-SNARE in a superficial way. In the third 

mode of binding, the SM protein binds to the Qa-SNARE only when it is part 

of an assembled SNARE complex.  Modes one and two are important in cell 

trafficking and the second mode, SM-SNARE binding to N-terminal peptides 

adjacent to the three helix bundle domains of Qa-SNAREs, (as shown in 

Figure 1.7b) is the most prevalent mode of binding for SM proteins (Rizo, 

2003).    

 

In this first mode, the SM protein binds to the individual t-SNARE forming a 

complex that includes part of the SNARE motif which serves to disable the 

formation of a SNARE complex (Sudhof and Rothman, 2009).  The SM protein 

clasps a four helix bundle formed within the syntaxin.  In addition to the 

SNARE motif, the syntaxin also contains a three helix bundle that includes a 

globular N-terminal Habc domain that folds back and binds the helical SNARE 

motif to form the closed conformation (Dulubova et al, 1999).  This mode, 

shown in Figure 1.7a, is favoured by syntaxins involved in exocytosis.  

Rothman and colleagues have found that SM proteins are designed to clasp a 

four helix bundle and this is a general feature of SM proteins (Sudhof and 

Rothman, 2009).  This mode of binding has been suggested as evidence that 

SM proteins act as negative regulators.  However, the second mode of 

binding also exists to postulate that SM proteins can both negatively and 

positively regulate binding.   

 

In the second mode of binding, the SM protein is fixed by its N-terminal end 

to a specific N-terminal peptide of the cognate syntaxin (Yamaguchi et al, 

2002).  This binding mode, as shown in Figure 1.7b, leaves the body of the 

SM protein free to fold back onto the SNARE complex to grasp four helices.  

These four helices must consist of one helix from the v-SNARE and three 
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helices from the t-SNARE.  Shen and colleagues have discovered that this 

mode may allow SM proteins to organize SNARE complex assembly both 

spatially and temporally (Shen at al., 2007).  This is the mode preferred by 

SM proteins involved in membrane trafficking events.  mVps45 binds to the 

conserved N-terminal motif of Syntaxin 16 (Dulubova et al., 2002; Yamaguchi 

et al., 2002) using this mode. 

 

The third mode of binding is compatible with binding syntaxin in either the 

closed or open conformation.  This mode of binding may feature in models 

where SM proteins do not inhibit SNARE complex assembly.  In this model, 

the SM protein remains bound to the assembled SNARE complex to mediate 

later events (Munson and Bryant, 2009). Changes to the component partners 

in Mode 3 binding can result in trafficking defects in mammalian cells.  

 

Of course, others have described a fourth mode of binding via multi-protein 

complexes.  The yeast SM protein Vps33p uses this mode to interact with 

Vam3p and the C-Vps complex (Sato et al., 2000).  These different binding 

modes might suggest an adaptation to prevent SM proteins from binding to 

their non-cognate syntaxins and thus preserving specificity of function.   
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Figure 1.7 SM proteins bind to their cognate t-SNARE 
a. SM proteins can bind using either Mode1 or Mode 2 although Mode 2 binding (also shown 
in b) is the favoured method (Figure a: MacDonald et al., 2010) Reproduced with permission 
from MacDonald C, Munson M, Bryant NJ, 2010, Biochem Soc Trans, 38, Pt 1, 209-12. © the 
Biochemical Society. b. In the ER, Golgi, TGN and early endosomes, SM proteins bind to the 
amino-peptide motif of the corresponding t-SNARE, an example of Mode 2 binding. (Figure b: 
Rizo and Sudhof, 2002) 

 
 
Thus, SM proteins can differentiate among syntaxin conformations and 

facilitate the inter-conversion among conformations to control vesicle fusion 

(James, 2005).  SM proteins cradle syntaxin in its closed conformation and 

may interact with more than one syntaxin, including non-syntaxin t-SNARES 

and v-SNARES (James, 2005).  The small N-terminal domains of SM proteins 

bind to SNAREs leaving the rest free to function as possible effector domains 

as shown in Figure 1.8 (Dulubova et al., 2003). SM proteins use multiple 

epitopes of the SNAREpin and may regulate both the speed and the 

specificity of a fusion reaction (Shen et al., 2007).  Proteins acting upon SM 

proteins may influence binding to Syntaxins.  The loss of activity of each SM 

protein leads to impaired transport in different systems since deletion of 

these genes lead to blockage of fusion (Shen et al., 2007).  



Chapter 1, 50 

 
 

Figure 1.8a The functional role of SM proteins in regulating membrane fusion 
SM proteins bind to the core domains of cognate SNARE complexes as well as the N-terminal 
peptide of Syntaxin to regulate membrane fusion. Blue: light chain of t-SNARE. Magenta: v-
SNARE, Red: N-terminal portion of Syntaxin bound to SM protein (Yellow). (Shen et al., 2007) 
 
 

 
 
Figure 1.8b SM Modes of Binding 
SM proteins are thought to regulate the specificity of membrane fusion through the interaction 
with their cognate syntaxin and/or the assembled SNARE complex.  This regulation occurs 
through several possible modes of binding.  Mode 1 binding, illustrated in Panel A, occurs 
when the syntaxin is in the closed conformation (the Habc domain, here depicted in lighter 
blue colors, is folded back over the SNARE domain, a conserved region here represented by 
the dark blue color).  In this mode of binding, the closed syntaxin interacts with the SM protein 
through the SM cleft region.  Mode 2 binding, illustrated in Panel B, is the preferred mode of 
binding between mVps45 and Syntaxin 16.  In this binding mode, the syntaxin remains in the 
open conformation with the extreme amino terminus of the protein binding the SM protein in 
the hydrophobic pocket region rather than in the cleft.  This leaves the SNARE domain (dark 
blue) free to interact with other SNARE domains.  Mode 3 binding, illustrated in Panel C, also 
occurs when a SNARE complex (shown here with the open conformation Qa-SNARE domain 
in dark blue, Qb- in green, Qc- in red and the R-SNARE in purple) binds with the SM protein in 
the SM cleft region.   
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1.4.2 Munc18c and the regulation of glucose transport 
 
The SM protein that binds to Sx4 is Munc18c, and there is a wealth of 

evidence that implicates this SM protein in the control of insulin-stimulated 

GLUT4 translocation to the plasma membrane.  

 

Munc18c is a cytosolic Syntaxin 4 binding protein which is involved in insulin 

regulated GLUT4 (James, 2005).  Munc18c is composed of three domains, a 

small N-terminal domain, a central domain, and a C-terminal domain 

arranged in an arch shape.  These three domains form a cavity that binds to 

the closed conformation of the syntaxin.  The Habc domain folds back onto 

the SNARE motif forming a closed conformation that is incompatible with the 

core complex but is required for Munc18 binding to the closed conformation 

(Dulubova et al., 2002). 

 

Recent studies have clearly shown that Munc18c can also bind to the open 

form of Munc18c. Thus, Aran et al have shown that Munc18c can bind a 

mutant of syntaxin 4 located in the open conformation, this binding (mode 

2) mediated by the N-terminus of the syntaxin inserting into a hydrophobic 

pocket on Munc18c.  It is clear that both these forms of interaction between 

syntaxin 4 and Munc18c are involved in SNARE complex regulation, as is the 

interaction of Munc18c with the intact SNARE complex (so-called mode 4 

binding). 

 

Over-expression of Munc18c (or the expression of mutants within cells) 

renders 3T3-L1 adipocytes refractory to insulin-stimulated glucose transport, 

presumably reflecting an imbalance between the SM/Syntaxin pairs within 

the cell. Indeed, quantification of the levels of Munc18c and Syntaxin 4 

revealed that they are present in stoichiomeric amounts, so that inhibition 

of translocation caused by the over-expression of Munc18c can be rescued 

with increased levels of Syntaxin 4 (Mora and Pessin, 2002). Thus, studying 

the role of Munc18c (or indeed any SM protein) in vivo has been difficult. 
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Figure 1.9 Insulin may trigger GLUT4 translocation through the regulatory role of 
                  Munc18c. 
In the absence of insulin, Munc18c binds to the closed conformation of Syntaxin 4, thereby 
preventing VAMP2 from binding to the t-SNARE.  Insulin may induce a conformational change 
in Munc18c so it is less able to bind Syntaxin 4, allowing VAMP2 to bind to the t-SNARE and 
form the SNARE complex necessary for GLUT4 translocation to the plasma membrane. 
(Hodgkinson et al., 2005) 
 

 
A model for Munc18c function is shown in figure 1.9.  Initially, it is thought 

that Munc18c retains Syntaxin 4 in a closed conformation which renders the 

syntaxin unable to bind with VAMP-2 and SNAP23 and this change occurs in 

response to insulin whereby Munc18c may undergo a conformational change 

that allows interaction between VAMP-2 and Syntaxin 4 (James, 2005; 

Hodgkinson et al., 2005).   

 

Several studies have suggested that a key facet of insulin action occurs after 

the arrival of GLUT4 vesicles at the plasma membrane, suggesting that a 

step after the initial stabilised docking of these vesicles at the cell surface is 

under acute regulation by insulin. This contention is supported by TIRFM 
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studies, which show that in the absence of insulin, GLUT4-containing vesicles 

dock with the cell surface but do not normally proceed to fusion; in 

contrast, the rate of productive fusion events is dramatically increased by 

insulin.  Moreover, using an elegant cell-free system which recapitulates the 

final fusion step of GLUT4 vesicles with purified plasma membranes, 

Koumarov and colleagues showed that the fusion of GLUT4 vesicles with 

plasma membranes is not constitutively active, but rather is activated ~8-

fold by insulin (Koumarov et al., 2005). Such data posit that there is an 

insulin-dependent ‘switch’ to fusion competency after docking of GSVs at 

the plasma membrane. This might involve Munc18c.  Homozygous depletion 

of Munc18c was found to be embryonically lethal, but heterozygous knockout 

mice (Munc18c(-/+)) exhibited decreased insulin sensitivity in an insulin 

tolerance test and a >50% reduction in skeletal muscle insulin-stimulated 

GLUT4 translocation when compared with wild-type mice, strongly 

supporting the notion that Munc18c is a key regulator of insulin-stimulated 

GLUT4 translocation. Using adipocytes derived from MEFs from Munc18c -/- 

mice, Kanda et al showed that GLUT4 translocation is enhanced by the 

absence of Munc18 (Kanda et al., 2005). Such data suggest that Munc18c 

inhibits insulin-stimulated externalization of GLUT4, and argues that the 

disruption of the interaction between Syntaxin 4 and Munc18c in adipocytes 

might result in enhancement of insulin-stimulated GLUT4 translocation. 

Consistent with this, over-expression of Munc18c was found to inhibit insulin-

stimulated GLUT4 translocation in 3T3-L1 adipocytes, as did peptides 

designed to inhibit the binding of Munc18c to Sx4. Interestingly, Munc18c 

was found to inhibit the fusion of artificial liposomes mediated by Sx4/SNAP 

23 and VAMP-2 in vitro, further supporting the notion of Munc18c inhibiting 

fusion of GLUT4 vesicles with the plasma membrane (Brandie et al., 2008).  

 

1.5 mVps45 
 
 

1.5.1 mVps45 as a Class D SM Protein 
 
Vps45 encodes a 67 kDa homolog of Sec1p.  It is peripherally associated with 

cellular membranes, potentially including Golgi and endosomal membranes, 

as well as membrane vesicles (Cowles et al., 1994).  It is essential for 

viability and receptor-mediated endocytosis and it has also been shown that 
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Vps45 is expressed in all tissues of the early embryo of several species 

including C. elegans and Drosophila suggesting that it is ubiquitously 

expressed in development (Gengyo-Ando et al., 2007; Rahajeng et al., 2010).   

 
1.5.2 Syntaxin 16 
 
Syntaxin 16 is a member of the syntaxin subfamily of SNAREs (Simonsen et 

al., 1998). There are five splice variants of Syntaxin 16: Syntaxin A,B,C,D, 

and H. (Simonsen et al., 1998).  The three longest splice variants encode 

membrane proteins (Syntaxins A, B, and H) but differ in sequence between 

the first 27 residues and their Habc domains (Dulubova et al., 2002).  

Syntaxins C and D are truncated versions that lack SNARE and trans-

membrane domains (Simonsen et al., 1998).  The corresponding yeast 

homologue  to Syntaxin 16A is Tlg2p which has been shown to function in a 

similar manner (Struthers et al., 2009). Syntaxin 16 is located in the TGN 

(Simonsen et al., 1998) and is known to be involved in early endosome to 

TGN transport (Mallard and Tang, 2002). It is required for the efficient 

retrograde transport of Shiga toxin, cholera toxin, ricin and the mannose 6-

phosphate receptor (Amessou et al., 2007). Syntaxin 16 forms a t-SNARE 

complex with syntaxin 6 and Vti1a (Mallard and Tang, 2002) and also with 

syntaxin 10 and Vti1a, however the latter complex is not formed in murine 

cells and is specifically required for the retrograde transport of mannose 6-

phosphate receptor.  Syntaxin 16 also binds to the SM protein mVps45 

(Dulubova et al., 2002) which regulates its assembly into SNARE complexes. 

 

Shewan and colleagues have found that Syntaxin 16 (in concert with Syntaxin 

6) is transported to the plasma membrane in response to insulin (Shewan et 

al., 2003), but to an extent less than that observed for GLUT4. 

 

1.5.3 The role of mVps45 in binding to Syntaxin 16 
 
The interaction with mVps45 involves the very N-terminal sequence of 

Syntaxin 16 (Dulubova et al., 2002).   An N-terminal peptide motif, 

specifically the first half, mediates binding to mVps45, and this short 

peptide sequence is all that is necessary to complex with Vps45 since this is 

the only functional region of Syntaxin 16 that is intact in all variants 

(Dulubova et al., 2003).  Differences in the length of the sequence that 

follows the peptide motif may modulate the interplay between mVps45 
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binding and core complex formation, but it has now been established that 

the extreme N-terminus is all that is required to capture Vps45p (Dulubova 

et al., 2003).  Residues outside of the N-peptide region of mammalian 

Syntaxin 16 increase its affinity for Vps45 (Burkhardt et al., 2008).  

Moreover, isothermal titration calorimetry has demonstrated that Vps45 

binds tightly to the Syntaxin 16 N-peptide but weakly to Syntaxin 16 in the 

closed conformation (Burkhardt et al., 2008).  Studies have indicated that 

syntaxins do not require their cognate SM protein for correct formation or 

targeting and that observed lower syntaxin levels in the absence of SM 

proteins can be explained by impairment in stability at their site of action 

(Novick and Zerial, 1997).  

 
1.5.4 The yeast homolog Vps45p 
 
Vps45p is a 67kDa hydrophilic protein characterized as a Class D mutant 

(Cowles et al., 1994).  Class D mutants have large single vacuoles similar in 

morphology to the wildtype vacuoles in Class A mutants (but much larger and 

singular) which is in contrast to Class B mutants which display fragmented 

vacuoles and Class C mutants which do not possess a vacuole (Banta et al., 

1998) Class E mutants contain additional compartments along with their 

vacuole and Class F mutants contain a large single vacuole surrounded by 

fragmented smaller compartments (Banta et al., 1988).  In yeast, Vps45 

function is required for the secretion of vacuolar proteins such as 

Carboxypeptidase Y (CPY) (Cowles et al., 1994).  Vps45p, the yeast homolog, 

has a half time of sixty minutes in wild type cells and may function in vesicle 

docking or fusion from the Golgi to the endosome (Cowles et al., 1994).  The 

yeast Tlg2p/Vps45p binding is homologous to the mammalian Syntaxin 

16/mVps45 binding mode (Carpp et al., 2006).  The similarity of the N-

terminal sequences of Tlg2p and Syntaxin 16 indicate that Syntaxin 16 could 

bind to mVps45 by the same mechanism observed for the Tlg2p/Vps45p 

interaction (Dulubova et al., 2002).  The Qa-SNARE Tlg2p cannot form SNARE 

complexes in strains of yeast that lack the SM protein Vps45p (Jahn and 

Scheller, 2006).  The murine orthologue of Vps45 (mVps45) is functionally 

interchangeable with human Vps45 (hVps45) showing conservation in 

mammals (Gengyo-Ando et al., 2007), although it is not clear whether the 

human or rodent isoforms can compensate for the VPS45 deletion in yeast 

(see Chapter 4).  Loss of Vps45 blocks transport from the Golgi to vacuoles. 
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In yeast cells deleted for Vps45p, CPY trafficking is defective and the cells 

are sensitive to osmotic stress and become growth sensitive in non-

permissive temperatures (Piper et al., 1994).  Vps45p binds to monomeric 

Tlg2p using mode 3 binding but can also bind to cis-SNARE complexes that 

contain Tlg2p (mode 4) (Carpp et al., 2006). 

 
It has been found that Vps45p functions in the same Golgi-to-endosome 

pathway as the Rab-GTPase Vps21p.  It is possible that Vac1p couples the 

interaction of Vps45p and Vps21p by interacting with Vps21p on the vesicle 

and Vps45p bound to the t-SNARE Pep12p on the endosome.  In mammals, 

rabenosyn-5 may be the functional homologue of Vac1p and couples the 

interaction of the endosomal GTPase Rab5 with mVps45 (Nielson et al., 

2000).   

 
 

1.6 The Yeast Model 
 

Yeast was the first eukaryote where the entire genome sequence was known 

(Coe et al., 1999). The yeast genome is 12.8 Mb divided in to 16 

chromosomes, which is 200 times smaller than that in humans but nearly four 

times bigger than E. coli.  Taken with the fact that a protein encoding gene is 

found every two Kb on the yeast genome, yeast can be an ideal model 

organism for screening biological functions. 

 

Yeast is a eukaryote that can be grown on deficient media and is amenable to 

classical genetic manipulations.  A substantial number of cellular functions 

are highly conserved from yeast to mammals and corresponding genes can 

complement one another.  The basic functions in yeast that are similar to 

those in higher eukaryotes include biosynthetic pathways and their regulation, 

cell division and the cell cycle, DNA replication, recombination and repair, 

transcriptional regulation and activation, signal transduction pathways and 

stress responses.   

 

The life cycle of S. cerevisiae alternates between diploid and haploid phases 

and both ploidies exist in stable cultures.  Yeast cells have a plasma 

membrane that folds into the cytosol and a lipid bilayer containing 

transmembrane proteins. The yeast periplasm outside of the plasma 

membrane secretes proteins such as invertase that converts sucrose to 
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glucose and fructose so that they can cross the plasma membrane. In this 

thesis, yeast is used as a screening mechanism to study the function of Vps45 

through functional homology and mutational analysis. 

 

1.6.1 Yeast metabolism and the Endocytic pathway 
 
In the endocytic pathway (shown in Figure 1.10), membrane proteins and 

receptor-associated ligands are targeted to intracellular compartments 

(Maxfield and McGraw, 2004).  At the plasma membrane, proteins are 

packaged into vesicles and transported to early endosomes and the lysosome 

for degradation.  Alternatively, proteins that are reusable by the cell are 

recycled back to the plasma membrane. It has been shown that 

dephosphorylation of t-SNAREs modulates exocytosis and endocytosis in yeast 

by regulating the assembly of SNARE complexes (Gerst, 1999). Yeast cells 

lacking the v-SNAREs Snc1p and Snc2p and Tlg1p or Tlg2p t-SNAREs are 

defective in endocytosis.  This is because after the disintegration of the late 

Golgi cisternae (TGN) some vesicles pass into the endocytic pathway along 

with newly synthesized vacuolar proteins and TGN syntaxins such as Tlg1p 

among others  and when these molecules are defective they are unable to 

shuttle into the endocytic pathway. This shuttling is clathrin-dependent and 

can also be seen in animal cells that form secretory granules where the 

Tlg1p homologue Syntaxin 6 is removed in clathrin coated vesicles.  

Endocytosis is regulated by t-SNARE phosphorylation in vivo. It is thought 

that phosphorylation regulates the availability of t-SNAREs to participate in 

trafficking events. 

The endocytic pathway in yeast is not essential.  In fact, yeast can survive 

with only ER and plasma membrane syntaxins along with Sed5p (Cowles et 

al., 1994).  Cowles and others have found that there is a direct transport 

pathway from the Golgi to the vacuole and the expression of Pep12p is 

enough to create endosomes.  Other studies suggest that endosomes can 

form by the fusion of endocytic vesicles which with the addition of Pep12p 

can form structures capable of fusing with vacuoles (Nichols et al, 1998).   

Transfer of proteins from the exocytic to the endocytic pathways in yeast is 

dependent on the late Golgi syntaxins Tlg1p and Tlg2p (Nichols et al., 1998).  

In relation to this, the v-SNARE Snc1p, which mediates fusion of exocytic 

vesicles with the PM, is dependent on these syntaxins for its function.  After 
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Snc1p arrives at the PM, it dissociates from the t-SNARE Sso1p and is 

endocytosed (Pelham, 1999) after which it is recycled to the Golgi.  Just as 

in the mammalian homologues Syntaxin 6 and 16, Tlg1p forms a complex 

with Tlg2p.   

 

1.6.2 The Secretory Pathway 
 
 

 
 
 
 
 
 

Figure 1.10 The Endocytic and Secretory Pathways in Yeast 
The endocytic and secretory pathways in yeast are regulated by t-SNAREs and transfer 
between pathways is dependent on the actions of Tlg1p and Tlg2p, the homologues of 
Syntaxins 6 and 16 in mammals. Sso1p has been found to be essential for exocytosis at the 
plasma membrane. (Kienle et al., 2009) 
 
 
In the secretory pathway newly synthesized membrane proteins and soluble 

proteins are translocated into the endoplasmic reticulum.  The proteins are 

the packaged in to vesicles and transported to the Golgi.  Once at the Golgi, 

the proteins move through the Golgi cisternae to the trans-Golgi network 

(TGN).  At the TGN, proteins are sorted with soluble proteins being secreted 

from the cell and membrane proteins exocytosed to the plasma membrane 

by vesicle fusion.  Proteins not destined for other functions are either 

retained or sorted to the lysosome for degradation.   
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1.6.3 Membrane fusion and homology to the Mammalian System 
 
There are around 20 SNAREs in yeast, eight of which can be considered 

syntaxins (Pelham, 1999).  Two yeast syntaxins, Sso1p and Sso2p are found 

on the plasma membrane.  Pep12p is found on endosomes while Vam3p is 

found on vacuoles.  Ufe1p localizes to the ER and Sed5p is found on early 

Golgi cisternae.  Tlg1p and Tlg2p are also Golgi-associated but localize with 

late Golgi markers (Pelham, 1999).  There are clear homologues of Golgi 

syntaxins (Sed5p, Tlg1p and Tlg2p) between mammals, nematodes (which 

have nine syntaxins) and yeast.  In yeast, v-SNAREs can bind multiple 

syntaxins, for example the v-SNARE Vti1p binds five different syntaxins.  

Further, for v-SNAREs to be used again they must be recycled to their 

starting point and thus traffic on vesicles in both directions.  In addition to 

this muti-tasking of v-SNAREs, the t-SNARE Sed5p binds to at least seven 

different SNAREs in at least three separate complexes (Pelham, 1999).   

Trafficking routes show several redundancy steps.  For example, the v-SNARE 

Vti1p is thought to be involved in traffic from Golgi to endosomes, Golgi to 

vacuole and endosomes to Golgi (Pelham, 1999).  In the SNARE complex of 

yeast, the hydrophobic core of the complex is conserved but there are 

sequence differences on residues located on the solvent-exposed surfaces of 

the helix bundle (Pelham, 1999).  This shows that syntaxin function is not 

terribly specific and weak interactions with associated effector molecules 

provide specificity of function rather than the action of individual SNAREs.  

For example, in both yeast and animal cells fusion of endosomes requires the 

phosphorylation of phosphatidylinositol molecules to form PI3P (Burd et al., 

1997).  Docking of the membranes requires the recruitment of a soluble 

protein which is EEA1 in animal cells and Vac1p in yeast who’s binding 

depends on both Rab5 and PI3P which restricts it to endosomes (Pelham, 

1999).   

The four yeast SM proteins are Sec1p which controls exocytosis, Sly1p which 

acts at the Golgi and ER, Vps45p which acts at the TGN, and Vps33p which 

acts with the HOPS complex to restrict sorting in the vacuole or lysosome 

(Chen and Scheller, 2001).  SM protein sequences are conserved and they 

have a common fold, but there is enough sequence diversity to allow for 

functional differences.  There is a noted conservation of the SM protein-
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syntaxin peptide interaction.  In fact, structural similarities of SM proteins 

and biochemical evidence suggest that Tlg2p residues 1-33 are sufficient for 

Vps45p interaction (Dulubova et al., 2002).   

 

1.6.4 The Syntaxin homolog Tlg2p 
 
Tlg2p is localized to the TGN and functions normally as a t-SNARE (Dulubova 

et al., 2002).  Cells deleted for Tlg2p show defective sorting of 

carboxypeptidase Y (CPY) and Tlg2p is required for the recycling of Snc1p 

through the early endosome (Abeliovich et al., 1998).  Tlg2p complexes with 

Tlg1p (the syntaxin 6 homologue) and Vti1p (the Vti1a homologue) as well as 

the v-SNAREs Snc1p and Snc2p (Abeliovich et al., 1998).  Like Syntaxin 16, 

Tlg2p requires phosphorylation in order to complex with other SNAREs 

(Gurunathan et al., 2002).  Vps45p stabilizes the syntaxin Tlg2p and 

positively regulates SNARE complex formation (Bryant and James, 2001).  

Vps45p is recruited to the target membrane by binding to the N-terminus of 

Tlg2p.  In fact when Vps45p is deleted in yeast cells, Tlg2p is down-regulated 

(Bryant and James, 2001). 

 

 

 

1.7 Hypothesis 
 
 
This project tests the hypothesis that when mVps45 interacts with Syntaxin 16 

in the absence of insulin, GLUT4 goes into the slow cycle.  However, when 

insulin stimulation occurs, mVps45 does not bind to Syntaxin 16 and GLUT4 is 

prevented from going into the slow recycling pathway.   
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Figure 1.11 Sorting of GLUT4 into the slow recycling pathway may be mVps45 dependent 
In the cartoon depicted above, mVps45 may have a role in shuttling GLUT4 into the slow 
recycling pathway in the absence of insulin.  mVps45 may act on this pathway via its role in 
modulating the actions of the t-SNARE Syntaxin 16.  The aims of this thesis set out to examine 
if this is the case. (Reproduced with permission from Gwyn Gould) 
 

 
1.8 Aims 
 
This work is aimed at understanding the mechanism by which insulin regulates 

glucose transport in adipocytes and specifically the mechanism by which the 

intracellular sorting of glucose transporters is regulated in adipocytes.  This 

regulation is known to be defective in Type II diabetes and understanding the 

mechanisms utilised by insulin to achieve this regulation is an important step 

to developing effective therapies.   

 

Glut4 translocation to the plasma membrane is an essential step in glucose 

metabolism.  Upon insulin stimulation, GLUT4 storage vesicles (GSVs) are 

rapidly translocated to the plasma membrane where they dock and 

subsequently fuse, resulting in elevated cell surface GLUT4 levels (see Figure 

1.11). In the absence of insulin, GLUT4 is sorted into a slow recycling 

pathway, operating between recycling endosomes, the trans-Golgi network 

(TGN) and GSVs.  Switching from the fast to the slow pathway creates a pool 

of GLUT4 in GSVs that can be used rapidly in response to an increase in 

glucose at the cell surface.   
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How adipocytes sequester GLUT4 in the slow cycle is poorly understood and 

this project aims to understand this sorting mechanism at the molecular level.  

It is known that Syntaxin 16 is required for entry into the slow recycling 

pathway (Proctor et al., 2006), but little is known about how Syntaxin 16 is 

regulated in this system.  mVps45 is a Sec1/Munc18 (SM) protein that binds to 

Syntaxin 16 (Cowles et al., 1994) and may control GLUT4 recycling to the GSVs 

in the slow cycle. 

 

This project tests the hypothesis that when mVps45 interacts with Syntaxin 16 

in the absence of insulin, GLUT4 goes into the slow cycle.  However, when 

insulin stimulation occurs, mVps45 does not bind to Syntaxin 16 and GLUT4 is 

prevented from going into the slow recycling pathway.  This hypothesis is 

testable in a variety of ways. 

 

In Chapter 3 the absolute levels of mVps45 and Syntaxin 16 were quantified in 

3T3-L1fibroblasts and differentiated adipocytes.  This is an important starting 

point in learning baseline information about the intracellular environment.  

Knowing the endogenous levels of mVps45 and Syntaxin 16 is vital to learning 

the underlying mechanisms of slow pathway recycling.  Quantitative 

immunoblots with titrated amounts of recombinant protein were assayed for 

Syntaxin 16 and mVps45.  These data indicated the amounts of both Syntaxin 

16 and mVps45 in adipocytes both in membrane and cytosolic fractions were 

present at levels indicated by other studies (Proctor et al., 2006).  Similar 

blots were also performed using insulin stimulated adipocytes and the data 

compared to basal levels.  These measurements of protein expression levels 

indicated whether Syntaxin 16 and mVps45 were present in stoichiomeric 

amounts.  The interaction between Syntaxin 16 and mVps45 was examined by 

preparing cell lysatesfrom differentiated 3T3-L1 adipocytes in basal and 

insulin stimulated conditions.  These lysates were used to immunoprecipitate 

Syntaxin 16 and blot for the presence of mVps45. This experiment showed 

whether Syntaxin 16 and mVps45 interact in the presence of insulin. 

 

One of the few pieces of information known about mVps45 is its homology to 

the yeast system.  In Chapter 4, complementation between the mammalian 

and yeast systems are the focus.  In yeast, the depletion of Vps45 causes 
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problematic sorting of vacuolar hydrolase Carboxypeptidase Y (CPY).  

Experiments using this knowledge tested whether mVps45 could complement 

the yeast VPS45 deletion mutant, and thus whether mVps45 was a true 

functional homologue.  Once complementation was tested, functional assays 

were then performed.  In the event that functional complementation could be 

demonstrated, the potential to design mutants of mVps45 will be exploited.  

 

In chapter 5, the condition of the intracellular environment in the absence of 

mVps45 was analysed.   It is postulated that this SM protein is the regulator of 

Syntaxin 16 and thus controls entry of GLUT4 into the slow recycling pathway, 

so in the absence of mVps45, the corresponding levels of Syntaxin 16 and the 

progress of GLUT4 both in the presence and absence of insulin were noted.  

To study this question, adipocytes were depleted of mVps45 by RNAi 

knockdown.  After depletion, glucose metabolism was measured in the 

presence and absence of insulin to ascertain information about the rate, 

sensitivity and extent of insulin stimulation.  These series of experiments, 

testing cells after the depletion of mVps45, gave a better understanding of 

how insulin stimulated transport is changed in the absence of mVps45.   



 

 
 
 
 
 
 
 
 
 
 
 
 
Chapter 2 – Materials and Methods  
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Chapter 2: Materials and Methods 
 
2.1 Materials 

2.1.1 Common Reagents and Suppliers 
 
 

All reagents were purchased from VWR UK Ltd., Leicestershire UK unless 
otherwise stated below: 
 
Ambion, Texas, USA 
Nuclease Free Water 
 
BD Biosciences, Oxford UK 
Syringes 
26 5/8 Gauge Needles 
 
BDH Laboratory Supplies, Poole, UK 
Calcium Chloride (CaCl2) 
Coomassie Brilliant Blue R-250 
Dipotassium hydrogen phosphate (K2HPO4) 
Hydrogen Peroxide (H2O2) 
Magnesium Chloride (MgCl2) 
Magnesium Sulfate (MgSO4) 
Potassium Chloride (KCl) 
Sodium Chloride (NaCl) 
Tetrasodium pyrophosphate (Na4P2O7) 
 
Fisher Scientific UK Ltd., Leicestershire, UK 
Ethanol 
Glycine 
HEPES (N-2-hydroxyethylpiperazine-N’ 2-ethane sulphonic acid) 
Potassium dihydrogen phosphate (KH2PO4) 
Tris Base (tris(hydroxymethyl)aminoethane) 
 
ForMedium, Norfolk UK 
Agarose 
Amino Acid Drop-Out Media –URA, -Met 
Peptone 
Tryptone 
Yeast Extract 
Yeast Nitrogen Base without Amino Acids 
Micro Agar 
 
GE Healthcare, Buckinghamshire, UK 
Protein A-sepharose beads 
 
Invitrogen, Paisley UK 
SOC Media 
Deoxynucleotidetriphosphates (dNTPs) 
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Kodak Ltd., Hertfordshire UK 
X-Ray Film 
 
New England BioLabs UK Ltd., Hertfordshire UK 
T4 DNA Ligase 
Restriction endonucleases 
 
Melford Laboratories Ltd., Suffolk, UK 
Dithiothreitol (DTT) 
 
Perkin Elmer, Buckinghamshire, UK 
2-[3H]-deoxy-D-glucose 
 
Pierce, Perbio Science UK Ltd., Cheshire, UK 
10,000 MWCO slide-a-lyzer 
 
Premier Brands UK, Staffordshire UK 
Marvel Low-fat Milk Powder 
 
Promega, Southampton UK 
Pfu DNA Polymerase 
Wizard Plus SV miniprep kit 
 
Qiagen, West Sussex, UK 
QIAfilter Maxi-plasmid purification kit 
QIAquick Gel Extraction kit 
Nickel-NTA agarose (Ni-NTA beads) 
 
Roche Diagnostics Ltd., Burgess Hill UK 
Complete and Complete EDTA-Free protease inhibitor tablets 
 
Severn Biotech Ltd., Worcestershire UK 
30% acrylamide/bisacrylamide 
 
Sigma-Aldrich, Steinheim, Germany 
5-Amino-2,3-dihydro-1,4-phtalazinedione (luminol) 
Adenosine 5’-triphosphate (ATP) 
Ammonium peroxydisulphate (APS) 
Bovine Serum Albumin (BSA) 
ρ-Coumaric acid 
Dimethyl sulphoxide (DMSO) 
Disodium hydrogen phosphate (Na2HPO4) 
Ethylenediamine tetraacetic acid (EDTA) 
Glycerol 
Sodium Fluoride (NaF) 
Sodium hydrogen carbonate (NaHCO3) 
Sodium dihydrogen phosphate (NaH2PO4) 
Sodium orthovanadate (Na4VO3) 
Sodium dodecyl sulphate (SDS) 
N,N,N’,N’-Tetramethylethylenediamine (TEMED) 
Triton X-100 
Tween-20 
 
Sterilin Limited, Caerphily UK 
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90 mm Petri dishes 
 

Whatman Plc., Kent UK 
Protran nitrocellulose 

  
 

2.1.2 Computer Software 
 

Image J V1.41 National Institutes of Health, Bethesda MD, USA 
 
LSM Viewer Carl Zeiss AxioVision LE Rel 4.5 Hertfordshire, UK 
 
Photoshop CS5, Adobe Systems Europe Ltd., Uxbridge, UK  
 
Vector NTI V10.3 Invitrogen, Carlsbad, CA, USA 
 

 
2.1.3 Primers 
 

Primer Sequence (5’-3’) 
Vps45 His 5’ Forward GGGCTCCAGCTCGAACGTCCTCTTTGCTGTGAAG 

Vps45 His 3’ Reverse GCCCGCGGCCCGTCATCTTCTGCTTGCTGACCT 
Vps45 Seq +1 
Forward 

ATG AAC GTG GTT TTT GCT 

Vps45 Seq +500 
Forward 

CTG AAG AAG TGT CCC ATG 

Vps45 Seq +1000 
Forward 

GGT TGG AGA ACT GTC TCG 

Vps45 Seq +1500 
Forward 

GGA GGA GCC ACC TAT GAA 

Vps45 Seq -1713 
Reverse 

TCA TCT TCT GCT CGC TGA 

Vps45 Seq -1200 
Reverse 

GCT GCT GTG TCG CTC ATA 

Vps45 Seq -700 
Reverse 

GGC CTG ATA TGT CCA CTG 

Vps45 Seq -200 
Reverse 

GCC TTC AGG TGT TTC ATG 

Vps45 ShRNA Target 1 
132 5’ Forward 

GATCCGGTATAGTGAGTATGGTCTTTCAAGAGAAGACCAT
ACTCACTATACCTTTTTTACGCGTG 

Vps45 ShRNA Target 1 
132 3’ Reverse 

AATTCACGCGTAAAAAAGGTATAGTGAGTATGGTCTTCTC 
TTGAAAGACCATACTCACTATACCG 

Vps45 ShRNA Target 2 
427 5’ Forward 

GATCCGCGGTGAATCCACAATTTGTTTTCAAGAGAAACA 
AATGTGGATTCACCGTTTTTTACGCGTG 

Vps45 ShRNA Target 2 
427 3’ Reverse 

AATTCACGCGTAAAAAACGGTGAATCCACATTTGTTTCTCT 
TGAAAACAAATGTGGATTCACCGCG 

Vps45 ShRNA Target 3 
329 5’ Forward 

GATCCGCAGTAATGTGATCAGCAAGTTCAAGAGACTTGCT 
GATCACATTACTGTTTTTTACGCGTG 

Vps45 ShRNA Target 3 
329 3’ Reverse 

AATTCACGCGTAAAAAAGGTATAGTGAGTATGGTCTTCTCT
TGAAAGACCATACTCACTATACCG 

Vps45 ShRNA Target 4 
1256 5’ Forward 

GATCCGAGTGGACCTCAGGAGTAAATTCAAGAGATTTACT
CCTGAGGTCCACTTTTTTACGCGTG 

Vps45 ShRNA Target 4 AATTCACGCGTAAAAAAAGTGGACCTCAGGAGTAAATCTCT
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1256 3’ Reverse TGAATTTACTCCTGAGGTCCACTCG 
Vps45 Yeast 
Recombinant 5’ 

GAAGAGGTACAGTGACTTGGTTTTGAGTTAAGGCCATCTT
TTACTGTATAGAACAAAGAAATGAACGTGGTCTTTGCTGTG
AAGC 

Vps45 Yeast 
Recombinant 3’ 

CGAAAAAGTTATATAGATTTATGCCTCATATATAAAATAGA
ATTTTAGAATAAGATAATCCTCAAGCGTAATCTGGAACGTC
ATATGGATAGGAACCACTGCCATCTCATCTTCTGCTTGC 

Vps45 V107R 5’ GTAATGTGATCAGCAAGAGTGACCGGAAGTCCTTGGCTGA
AGCTGACG 

Vps45 V107R 3’ CGTCAGCTTCAGCCAAGGACTTCCGGTCACTCTTGCTGATC
ACATTAC 

Vps45 W230R 5’ CATCACCCCACTGCTCAACCAGCGGACATATCAGGCCATGG
TCCATG 

Vps45 W230R 3’ CATGGACCATGGCCTGATATGTCCGCTGGTTGAGCAGTGG
GGTGATG 

 
 
Construction of mVps45 protein required particular restriction sites to be 

engineered into the Insert sequence by PCR for ligation into the recombinant 

vector.  These restriction sites are indicated in bold in the Vps45 His primer set.  

Additionally, synthesis of knockdown targets using shRNA required using specific 

sequences from the mVps45 CDS, which are also indicated in bold.  When 

mutating the yeast recombinant to make pocket-filled and dominant negative 

mutants, amino acids were changed in the protein sequence and these changes, 

all to arginine mutants, are indicated in bold.  The pocket-fill mutant V107R, 

which inhibits binding by steric hindrance, is a valine to arginine mutant at the 

107 amino acid in the protein sequence.  The dominant-negative mutant W230R, 

which binds but does not function, is a tryptophan to arginine mutant at the 230 

amino acid in the protein sequence.  A double mutant was also made by using 

the pocket-fill mutant as a template and applying SDM with the dominant-

negative primers. 

 

2.1.4 Plasmids 
 
 
Plasmid Description Source 
RNAi-Ready pSIREN-
RetroQ vector 

ColE ori  Ampr Puror   
Clontech 

RNAi-Ready pSIREN-
RetroQ Zs Green 

ColE ori Ampr Zs Green 1  
Clontech 

 
HA-GLUT4-GFP in the 
pRRL-PGK plasmid 

Human GLUT4 cDNA, 
tagged with GFP at the 
C-terminus and an HA 
epitope-tag in the 
exofacial loop in a vector 
for producing lentivirus 

 
Dr. Cynthia Mastick, 
University of Nevada, 
Reno 
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particles 
 
pCMV-Vps45 

Full length cDNA of rat 
mVps45 in pAlter-Max 
vector. 

Dr. Robert Piper, 
University of Iowa 

pCR2.1-TOPO ColE ori Ampr Kanr LacZα, 
TA Cloning Vector 

Invitrogen 

 
pCog70 

yEpVPS45 (YEplac195) 2u, 
URA3 encoding C-
terminally HA-tagged 
version of S. cerevisiae 
Vps45p flanked by 
downstream sequences 
containing the VPS45 
promoter and terminator 
region. 

 
Carpp et al., 2006 
 
Gietz and Sugino, 1988 

pQE-30 pUC ori, Lac0, Ampr, 
E.coli expression vector 

Qiagen 

 
pALA001 (Stx16-PrA) 

E.coli expression plasmid 
encoding C-terminally 
PrA-tagged truncated 
version of Syntaxin 16A 
(Cytosolic residues 1-269) 

 
Alicja Drozdowska 

 
 
2.1.5 E.coli Strains 
 
 
Strain Genotype Source 

BL-21 
(DE3) 

Fˉomp T hsdSB(rBˉmB ˉ) gal dcm (DE3) Invitrogen 

 
Fusion 
Blue 

endA1, hsdR17 (rK12
-, mK12

-), supE44, thi-1, recA1, gyrA96, 
relA1, lac F'[proA+B+, lacIqZΔM15::Tn10(tetR)] 
 

 
Invitrogen 

 
 
Top 10 

F- mcrA _(mrr-hsdRMS-mcrBC) φ80lacZ_M15 _lacX74 
nupG recA1 araD139 _(ara-leu)7697 galE15 galK16 
rpsL(StrR) endA1 λ 

 
 
Invitrogen 

XL-1 
Blue 

recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F’ 
proAB laclqZΔM15 Tn10 (Tetr)]  

Stratagene 

 
 
2.1.6 S. cerevisiae Strains 
 
 
Strain Genotype Source 
9Dα (SF838-9D) MATα leu2-3 112 ura3-52 

his4-519, ade6, gal2 
pep4-3 

Rothman, Howald et al., 
1989 

9DαΔ45 (LCY008) MATα, ura3-52 leu2-3 
112 his4-519, ade6, gal2, 
pep4-3, vps45Δ::Kanr 

SmaI/SphI digested 
pNOz13 (Bryant and 
James, 2001) used to 
disrupt VPS45 in SF838-
9D 
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2.1.7 Cell Culture materials, media, solutions and cell lines 
 
 

Materials 
 
Cell Culture BD Falcon Plasticware from BD Biosciences, Oxford UK 
10cm culture plates Cat#734-0006 
6 well plates Cat#734-0019 
12 well plates Cat#734-0055 
24 well plates Cat#734-0020 
96 well plates Cat#734-0026 
 
Corning Cell Culture Flasks, Fisher Scientific, Leicestershire UK 
Corning T150 Flasks Cat#430823 
 
Medium and Reagents 
 
Invitrogen, Paisley UK 
NCS Cat#16010159 
FCS USA Certified Cat#16000-044 
Dulbecco’s Modified Eagle’s Medium (DMEM) Cat#41965 
Trypsin Cat#25300054 
Optimem Cat#11058021 
Lipofectamine 2000 Cat#11668019 
 
Fisher Scientific UK Ltd., Leicestershire UK 
D-Glucose Cat#G-0400-60 
 
Novo-Nordisk, Bagsvaerd, Denmark 
Porcine Insulin 
 
Sigma-Aldrich, Steinheim, Germany 
Cytocholasin B 
Dexamethasone 
Isobutylxanthine (IBMX) 
 
 
Cell Culture Solutions 
 
HES Buffer, pH 7.4 
250mM Sucrose 
20mM HEPES pH 7.4 
1mM EDTA 
1 Tablet Roche EDTA-Free Protease Cocktail Inhibitor 
 
IP Buffer 
50mM HEPES, pH 7.5 
5mM EDTA 
10mM Tetra sodium pyrophosphate 
10mM NaF 
150mM NaCl 
2% (w/v) Protease Inhibitor Cocktail Tablet (Roche) 
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2mM Sodium Orthovanadate 
50mM β-Glycerophosphate 
1mM DTT 
1% (v/v) Triton X-100 

 
 
Cell Lines 
 

Cell Line Source Catalog Number 
3T3-L1 American Type Culture 

Collection (ATCC)/LGC 
Promochem 

 
CL-173 

EcoPack 2-293 Clontech 631507  
NIH/3T3 ATCC CRL-1658 
 
 
2.1.8 Primary Antibodies 
 
All antibodies were incubated overnight at 4°C unless otherwise stated 
 

Epitope Clonality Host 
Species 

Dilution Diluent Source 

Actin Polyclonal 
(C11) 

Rabbit 1:100 5% BSA Sigma-Aldrich 
(Cat#A2066) 

C/EBPα Polyclonal 
(14AA) 

Rabbit 1:250 5% Milk 
PBST 

Santa Cruz 
Biotechnology 
(Cat#sc-61) 

αCPY Monoclonal 
Clone:10A5 

Mouse 1:50 5% Milk 
TBST 

Roeder and Shaw 
1996 

EEA1 Monoclonal 
Clone:14 

Mouse 1:100 5% Milk 
TBST 

BD Transduction 
Labs 
(Cat#610456) 

FAS Monoclonal 
Clone:23 

Mouse 1:250 5% Milk 
PBST 

BD Transduction 
Labs 
(Cat#610962) 

GAPDH Monoclonal 
Clone:6C5 

Mouse 1:40,000 5% Milk 
PBST 

Ambion 
(Cat#AM4300) 

GLUT4 Monoclonal 
Clone:1F8 

Mouse 1:500 5% Milk 
PBST 

Cell Signaling 
(Cat#2213) 

HA Monoclonal 
Clone:3F10 

Rat 1:1000 5% Milk 
PBST 

Roche 
(Cat#11867423001) 

HA.11 Monoclonal 
Clone:16B12 

Mouse 2.5mg/ml 
WB 
1:1000 

WB:5% 
Milk 
PBST 

Covance/Cambridge 
Biosciences 
(Cat#MMS-101R) 

IRAP Polyclonal Rabbit 1:100 5% Milk 
PBST 

Cell Signaling 
(Cat#3808) 

IRAP Polyclonal 
(E-14) 

Goat 1:100 5% Milk 
PBST 

Santa Cruz 
Biotechnology 
(Cat#sc-107642) 

Pgk1p Polyclonal Rabbit 1:20,000 5% Milk 
TBST 

Piper et. al 
1994 

PPARγ Monoclonal 
Clone:E-8 

Mouse 1:2000 5% Milk 
PBST 

Santa Cruz 
Biotechnology 
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(Cat#sc-7273) 
Rabenosyn-
5 

Polyclonal Goat 1:300 5% Milk 
PBST 

Sigma-Aldrich 
(Cat#SAB2500853) 

SNAP23 Polyclonal Rabbit 1:2000 5% Milk 
TBST 

Synaptic Systems 
(Cat#111 203) 

Syntaxin 4 Polyclonal Rabbit 1:10,000 5% Milk 
PBST 

Synaptic Systems 
(Cat#110 042) 

Syntaxin 6 Monoclonal 
Clone:30 

Mouse 1:1500 5% Milk 
PBST 

BD Transduction 
Labs 
(Cat#610635) 

Syntaxin 13 Monoclonal 
Clone:15G2 

Mouse 1:1000 5% Milk 
PBST 

Stressgen 
(Cat#VAM-SV026) 

Syntaxin 16 
 

Monoclonal 
Clone:148.6 

Mouse 1:1000 5% Milk 
PBST 

Synaptic Systems 
(Cat#110 161) 

Syntaxin 16 Polyclonal Rabbit 4µg/ml IP 
Buffer 

Synaptic Systems 
(Cat#110 162) 

Transferrrin 
Receptor 

Monoclonal 
Clone:H68.4 

Mouse 1:500 5% Milk 
PBST 

Zymed/Invitrogen 
(Cat#13-6800) 

Tubulin Monoclonal 
Clone:14C11 

Mouse 1:2500 5% BSA 
TBST 

BD Transduction 
Labs 
(Cat#629201) 

Vps45 Polyclonal Rabbit 1:1000 5% Milk 
PBST 

Synaptic Systems 
(Cat#137 002) 

Vps45 
 

Polyclonal Goat 1:200 1%BSA 
3% 
Donkey 
Serum 
2 hours 
RT 

Abcam 
(Cat#ab40853) 

Vps45p 
(Yeast) 

Polyclonal Rabbit 1:500 5% Milk 
TBST 

Eurogentec 
aa 14-28, 563-577  

Vti1a Monoclonal 
Clone:aa.114-
217 

Mouse 1:1000 5% Milk 
PBST 

BD Transduction 
Labs 
(Cat#611220) 

Vti1b Monoclonal 
Clone:aa. 9-
121 

Mouse 1:1000 5% Milk 
PBST 

BD Transduction 
Labs 
(Cat#611404) 

 
 

2.1.9 Secondary Antibodies 
 
All secondary antibodies were linked to HRP and were used in 1% (w/v) Milk  

      PBST or TBST for 45 minutes at room temperature 

 
Epitope Host 

Species 
Dilution Source 

Alexa 
Fluor 488 
Donkey 

Rat 1:50 Molecular 
Probes/Invitrogen 

(Cat#A20218) 
Alexa 

Fluor 594 
Donkey 

Rabbit 1:50 Molecular 
Probes/Invitrogen 

(Cat#A21207) 
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Mouse IgG Sheep 1:2500 GE Healthcare 
(Cat#NA931) 

Goat IgG Swine 1:2000 Caltag 
(Cat#G50007) 

Rabbit 
IgG 

Donkey 1:2500 GE Healthcare 
(Cat#NA934) 

Rat IgG Goat 1:2000 GE Healthcare 
(Cat#NA935) 

 
 

2.1.10 General Solutions 
 

Coomassie 
0.05% (w/v) Coomassie brilliant blue R250  
50% (v/v) methanol 
10% (v/v) acetic acid 
 
Coomassie Destain 
10% (v/v) methanol 
10% (v/v) acetic acid 
 
DNA Loading Dye 
2.5% (w/v) Bromophenol Blue 
2.5% (w/v) Xylene Cyanole FF 
67% (v/v) Ficoll Type 400 (Pharmacia) 
 
ECL reagents 
 
Solution 1 
100mM Tris-HCl, pH 8.5 
2.25mM luminal in 2% (v/v) DMSO 
0.4 mM ρ-coumaric acid in 1% (v/v) DMSO 
 
Solution 2 
100mM Tris-HCl, pH 8.5 
0.018% (v/v) H2O2 
 
KRH Buffer 
20mM NaCl 
20mM HEPES-NaOH, pH 7.4 
5mM NaHCO3 
10mM D-Glucose 
5mM KCl 
1.2mM CaCl2 
1.2mM MgSO4 

1.2mM NaH2PO4 
0.1mM L-Arginine 
 
KRP Buffer 
1.28M NaCl 
47mM KCl 
50mM NaH2PO4, pH 7.4 
12.5 mM MgSO4 
12.5 mM CaCl2 
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LiTE-Sorb 
1M LiOAc 
1M Tris, pH7.6 
0.5M EDTA 
2.4M Sorbital  
 
PBS pH 7.2 
85 mM NaCl 
1.7 mM KCl 
5 mM Na2HPO4 
0.9 mM KH2PO4 
 
Ponceau S 
0.2% (w/v) Ponceau S 
1% (v/v) Glatial acetic acid 
 
SDS-PAGE Running Buffer 
250 mM glycine 
62 mM Tris Base 
0.1% (w/v) SDS 
 
4X SDS-PAGE sample buffer 
200mM Tris-HCl, pH 6.8 
8% (w/v) SDS 
40% (v/v) Glycerol 
0.4% (w/v) bromophenol blue 
400mM DTT 
 
SDS-PAGE Transfer Buffer 
25mM Tris Base 
192 mM Glycine 
20% (v/v) Methanol 
 
SOC Medium 
2% (w/v) Tryptone 
0.5% (w/v) Yeast Extract 
20mM D-Glucose 
20mM MgSO4 
10mM NaCl 
2.5mM KCl 
10mM MgCl2 
 
2YT 
1.6% (w/v) Tryptone 
1% (w/v) Yeast Extract 
0.5% (w/v) NaCl 
 
TAE 
40mM Tris-Acetate 
1mM EDTA, pH 8.0 
 
TB 
1.2% (w/v) Tryptone 
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2.4% (w/v) Yeast Extract 
0.4% (v/v) Glycerol 
2.3% (w/v) KH2PO4 
12.5% (w/v) K2HPO4 
 
TBST 
20 mM Tris-HCl, pH 7.5 
137 mM NaCl 
0.1% (v/v) Tween-20 
 
TST 
50 mM Tris-HCl, pH 7.6 
150 mM NaCl 
0.05% (v/v) Tween-20 
 
YPD 
1% (w/v) Yeast Extract 
2% (w/v) Peptone 
2% (w/v) D-Glucose 

 
 
2.2 DNA Methods 

 
2.2.1 Generation of target DNA and sequencing 
 
pCMV-Vps45 cDNA was generously provided by Dr. Robert Piper from the 

University of Iowa.  DNA was reconstituted in water from being previously 

blotted to filter paper.  It was then ethanol precipitated, washed and 

quantitated at OD260.  This template DNA was then used with the 5’ and 3’ 

Vps45 primers (listed in Primers Table) to PCR amplify the target.   

 
2.2.2 Amplification of target DNA by PCR 
 
The PCR reaction contained 1X PCR Buffer, 200 µM dNTPs, 1 mM MgSO4, 0.5 

µM 5’ Vps45 Primer, 0.5 µM 3’ Vps45 Primer (Primer Sequences listed in 

Section 2.1.2) and 1 unit of Pfx proofreading Taq polymerase (5U/µl) to a 

total volume of 50 µl with Ambion DNAse and RNAse free water. 

 

Reactions were incubated in a PCR machine and subjected to the following 

program: 

 
94°C 3 min 
94°C 1 min 
50°C 1 min 
68°C 1 min 
68°C 10 min 
4°C Holding temperature 
 

30 Cycles 
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2.2.3 Agarose gel electrophoresis 
 

Amplicons were analysed by agarose gel electrophoresis.  Agarose gels were 

prepared that consisted of 1% (w/v) Agarose in TAE buffer (0.04 M Tris-

acetate, 0.001 M EDTA).  These gels were stained with a stock solution of 

0.625 mg/ml ethidium bromide for a final gel concentration of 0.5 µg/ml.  

The running buffer was 1X TAE and gels were run under a constant current of 

100 mA.  DNA ladders were used to assess the size of separated DNA, in 

particular New England BioLabs Quick-Load 1Kb DNA Ladder (Cat#N0468S) 

and Quick-load 100 bp DNA ladder (Cat#N0467S).   

 
2.2.4 Gel Extraction of DNA 

 
DNA separated on Agarose-TAE gels was excised from the gel using a clean 

scalpel and the gel slice was weighed.  The Qiagen QIAquick Gel Extraction 

kit was used to extract the DNA from gels.  All centrifugations occurred at 

12470 x g for 1 min.  3 volumes of Buffer QG (Proprietary) were added to 

every 100 mg of gel and these samples were incubated at 50°C for 10 min 

with occasional vortexing.  This solution, containing a colorimetric pH 

indicator, ensured that the DNA stayed at the proper pH for adsorption to 

the membrane.  After the gel slice had dissolved into the buffer, 1 gel 

volume of isopropanol was added to increase the yield of DNA fragments and 

the sample was mixed before placing in a QIAquick spin column with 

collection tube.  The sample was applied to the column containing a silica-

gel membrane and centrifuged.  DNA adsorbed to the silica membrane in the 

presence of high salt concentration while impurities passed through the 

column and were washed away.  An additional 1/2 volume of Buffer QG to 

maintain high salt conditions for maximal adsorption was then added to the 

tube and centrifuged before the sample was washed in Buffer PE 

(Proprietary) and centrifuged again.  The tube was then centrifuged empty 

before the spin column was transferred to a fresh eppendorf tube.  The DNA 

was then eluted in water by a final centrifugation step.  Water was used 

since maximal elution occurs at low salt and pH (pH 7.0- 8.5) conditions.  

The collected DNA was stored at -20°C. 

 



Chapter 2, 77 

 
 
 
 

2.2.5 A Tail reaction and TA Cloning 
 

10 µl of the PCR product was added to a reaction of 1 µl (5 Units) Taq 

polymerase, 1 mM MgCl2, 1X Taq Polymerase Buffer and 200 µM dATP at 72°C 

for 20 min.  2 µl of this product was then added to 0.5 µl of PCR 2.1 Vector 

and incubated for 5 min at room temperature.  0.5 µl 1 M NaCl salt solution 

was added to the reaction before it was added to 50 µl of Top 10 E. coli 

cells,  kept on ice for 30 min, then heat shocked for 40 sec at 42°C.  After 2 

min on ice, 250 µl SOC Media was added and tubes were then incubated in a 

shaking incubator for 90 min at 37°C. Selection of positive colonies was 

assisted by blue-white colony screening.  This screening method used X-Gal 

(20 mg/ml in N’N’-dimethyl formamide) spread on plates and dried 20 min 

before plating transformants. Cells were then plated and incubated 

overnight at 37°C. 

 

Colonies that incorporated the DNA and thus disrupted the ability of the β-

galactosidase enzyme to hydrolyse the X-gal substrate appeared white due 

to the lack of the 5-bromo-4-chloroindole metabolite were selected for 

downstream applications. 

 
2.2.6 Restriction Digestion 

 
DNA was digested overnight at 37°C in a final volume of 20 µl.  DNA 

comprised half of this volume while 10% (v/v) of the reaction consisted of 

10X restriction digestion buffer specifically designed to work with the 

restriction enzyme in question.  100X BSA was added to minimize star 

activity at a concentration of 0.5% (v/v) and the rest of the reaction volume 

was water. In the case of a double digestion, an additional 10% (v/v) of 

buffer was used as well as two restriction enzymes at an individual 

concentration of 0.5% (v/v) and which was added to the reaction last to 

minimize premature activity. 

 
2.2.7 Ligation 
 
Insert and vector DNA was ligated in several experimental ratios depending 

on the amount of DNA present in each sample as assessed by either 
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absorbance or examination on an agarose gel using a quantifying ladder.  

The most common ratio was 1 volume of insert to 3 volumes of vector owing 

to the smaller size of the insert contributing more molecules per unit volume 

than the comparatively larger vector.  Insert and vector were combined in a 

10 µl volume that also included 10% (v/v) T4 DNA Ligase Buffer and 10% (v/v) 

T4 DNA Ligase.  If these components did not result in a final volume of 10 µl, 

then the remainder of the volume was made up of water.  These reactions 

were incubated at 16°C in a PCR thermocycler overnight before being 

transformed into the appropriate E. coli cells. 

 
2.2.8 Transformation of E.coli 

 
DNA and competent cells were individually thawed on ice.  Once thawed, 

the DNA was transferred into the tube containing the competent cells and 

this tube was incubated on ice for 30 min.  The samples were then heat 

shocked at 42°C for 30 sec and placed immediately on ice for 2 min.  SOC 

media was then added to the tubes and they were incubated in a shaking 

incubator for 90 min at 37°C.  After this incubation, samples were 

centrifuged at 660 x g for 3 min and the supernatants were discarded.  Cell 

pellets were re-suspended in the appropriate volume of SOC and plated on 

plates containing selective media.  These plates were incubated at 37°C 

overnight.  

 

E.coli were made competent for transformation by using the calcium 

chloride method.  Cells were grown overnight in 2YT growth media in a 

shaking incubator at 37°C.  The next day, an O.D.600  reading was taken and 

cells diluted in fresh media and grown for several hours to achieve a healthy 

doubling of cells before they were assessed to be in mid-log phase by having 

an O.D.600  of 0.6.  Cells were then transferred to chilled centrifuge tubes 

and centrifuged at 660 x g for 10 min at 4°C.  The supernatant was discarded 

and cells were resuspended in ice-cold 0.1 M CaCl2 before being centrifuged 

a second time under the same conditions.  The pellet was then suspended in 

storage buffer (0.1 M CaCl2, 15% (v/v) glycerol) and the cells were aliquoted 

on ice into eppendorf tubes before being stored at -80°C. 
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2.2.9 Small and large scale DNA isolation 
 

Cells containing plasmids of interest were grown overnight at 37°C in the 

appropriate media and harvested by centrifugation at 1060 x g for 5 min.  

Pellets were then subjected to DNA isolation using the Promega Wizard Plus 

SV DNA Purification System. This system purifies plasmid DNA efficiently 

from E. coli cells with a mutated EndA gene.  Briefly, cells were re-

suspended in Cell Resuspension Solution (50 mM Tris-HCl pH 7.5, 10 mM 

EDTA, 100 µg/ml RNAse A) and Cell Lysis Solution (0.2 M NaOH, 1% (w/v) 

SDS) was then added to each sample and inverted 4 times to mix.  These 

steps ensure the cells are lysed and the bacterial lysates are at the correct 

salt concentration and pH to maximize DNA yield.To this mixture, 10 µl of 

Alkaline Protease Solution (subtilisin Carlsberg, isolated from the bacterium 

Bacillus licheniformis) was added to inactivate endonucleases.  The mixture 

was incubated for 5 min at room temperature, which is enough time to 

degrade protein contaminants.  Neutralization Solution (4.09 M guanidine 

hydrochloride, 0.759 M potassium acetate, 2.12 M Glacial Acetic Acid) was 

then added to the samples, reducing them from pH 9 and ending alkaline 

protease activity. They were centrifuged at 12470 x g for 10 min.  The 

supernatant was decanted into specialized flow through collection tubes 

containing a membrane that bound the DNA and was centrifuged at 12470 x 

g for 1 min.  Bound DNA settled onto these specialized membranes were 

washed twice with Wash Solution (162.8 mM Potassium Acetate, 22.6 mM 

Tris-HCl pH 7.5, 0.109 mM EDTA pH 8.0) and then the membrane collection 

inserts were transferred to new eppendorf tubes and the DNA was eluted 

using Nuclease Free water and stored at -20°C. 

 

To obtain larger yields of isolated DNA, cells containing plasmids of interest 

were grown for 8 hours at 37°C in the appropriate media and diluted in 

additional media before being grown overnight at 37°C.  These cultures were 

then harvested at 6000 x g for 15 min at 4°C.  Pellets were collected and 

subjected to the Qiagen QIAfilter plamid purification method which used a 

modified alkaline lysis procedure with a patented anion-exchange-based 

resin to yield high purity DNA.  Briefly, pellets were re-suspended in Buffer 

P1 (50 mM Tris-HCl pH 8.0, 10 mM EDTA, 100 µg/ml RNAse A) and then lysed 

with Buffer P2 (200 mM NaOH, 1% (w/v) SDS) and incubated at room 

temperature for 5 min. The proprietary resin filter cartridge was 



Chapter 2, 80 

equilibrated with Buffer QBT (750 mM NaCl, 50 mM MOPS pH 7.0, 15% (v/v) 

Isopropanol, 0.15% (v/v) Triton X-100).  After 5 min incubation, chilled 

neutralization buffer Buffer P3 (3 M potassium acetate pH 5.5) was added to 

the lysed culture to stop RNAse activity and the cultures were filtered 

through a specialized tip before being decanted into the equilibrated 

cartridge. The cleared lysate then passed through the resin of the cartridge 

by gravity flow so that the released DNA could bind to the resin before the 

resin was washed twice with Buffer QC (1 M NaCl, 50 mM MOPS pH 7.0, 15% 

(v/v) isopropanol).  This wash removed any remaining RNA or protein 

contaminants.  The bound DNA was then eluted from the resin using Buffer 

QF (1.25 M NaCl, 50 mM Tris-HCl pH 8.5, 15% (v/v) Isopropanol).  DNA was 

then precipitated by adding 0.7 volumes of isopropanol to the eluate and 

centrifuging at 15000 x g for 30 min at 4°C.  The resulting DNA pellet was 

then washed in 70% (v/v) ethanol and centrifuged at 15000 x g for 10 min 

before air-drying and resuspension in a suitable volume of water followed by 

storage at -20°C. 

 

After mini-prepping was performed, plasmid DNA was diluted in water and 

sent with the appropriate sequencing primers to the Sequencing Service at 

Dundee University (sequencing performed on an Applied Biosystems model 

3730 automated capillary DNA sequencer using Applied Biosystems Big-Dye 

Ver 3.1 chemistry).  These sequences were then aligned using the accession 

number U81160 for Rattus norvegicus vesicular transport protein rvps45 

mRNA, complete CDS in Vector NTI V10.3. 

 
 

2.2.10 Determination of DNA Concentration 
 

DNA concentration was quantified by measuring absorbance at 260 nm and 

the purity of the sample assessed by measuring the 260 nm/280 nm ratio on 

a spectrophotometer (WPA S2000, Cambridge, UK).  Alternatively, an 

estimate of DNA concentration was obtained by comparing the intensity of 

DNA bands on agarose gels to the intensity of bands in DNA quantifying 

ladders of known concentration. 
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2.3 Protein Methods 

 
 
2.3.1 Protein purification by Nickel NTA Method 
 
Plasmids were transformed into BL-21 (DE3) cells and grown in 2YT/Amp 

(1.6% (w/v) tryptone, 1% (w/v) yeast extract, 0.5% (w/v) NaCl with 50 µg/ml 

kanamycin and 100 µg/ml ampicillin) culture media overnight at 37°C.  

These cells were then grown in TB/Amp culture media (1.2% (w/v) tryptone, 

2.4% (w/v) yeast extract, 0.4% (v/v) glycerol, 0.017 M KH2PO4, 0.072 M 

K2HPO4 with 50 µg/ml kanamycin and 100 µg/ml ampicillin) and grown to 

mid-log phase of 0.75 O.D.600  and then induced with 1 M IPTG and incubated 

overnight at 22°C. 

  

Cultures were then centrifuged at 1060 x g for 30 min at 4°C and the pellets 

were resuspended in 10 ml A400 (25 mM HEPES, 400 mM KCl, 10% (v/v) 

glycerol), 1 mM βME, 20 mM imidazole.  Lysozyme at a concentration of 100 

µg/ml was then added and incubated at 4°C for 20 min with rotation.  After 

20 min, cells were sonicated 8 times with 20 second intervals on ice and 

centrifuged at 56420 x g for 20 min. 

 

Nickel-NTA beads were washed with A400 with 1 mM βME and 15 mM 

imidazole twice and the beads were added to the cleared lysate.  The lysate 

was then incubated with the beads rotating constantly overnight at 4°C.  

The beads were centrifuged at 560 x g for 5 min at 4°C and washed 7 times 

with A400 with 1 mM βME and 5 mM imidazole.  Protein fractions were eluted 

with A200 (25 mM HEPES, 200 mM KCl, 10% v/v glycerol) with 1 mM βME and 

500 mM imidazole.  Aliquots of the resulting protein were dialyzed using a 

10000 MWCO slide-a-lyzer in PBS at 4°C overnight.  After dialysis, the 

protein was loaded on to a 10% SDS-PAGE gel, Coomassie stained and dried. 

 
2.3.2 Protein purification with thrombin cleavage 

 
Plasmids were transformed into BL21 (BL-21 DE3, Invitrogen) cells and grown 

in 2YT/Amp culture medium overnight at 37°C.  These transformants were 

then grown in TB/Amp culture media and grown to a mid-log phase of 0.6 

O.D.600 and then induced with 1 M IPTG and incubated overnight at 22°C.   
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Cultures were then centrifuged at 1060 x g for 30 min at 4°C and the pellets 

were resuspended in 10 ml PBS with added protease inhibitors (1 tablet of 

Roche Complete Cocktail Inhibitor).  This suspension was then treated with 

100 mg/ml Lysozyme and incubated rotating constantly at 4°C for 20 min. 

After 20 min the cultures were sonicated 8 times at 20 second intervals on 

ice and centrifuged at 48400 x g for 30 min. 

 

IgG Sepaharose beads were washed in alternating TST and 0.5 M acetic acid 

pH 3.4 and the supernatant from the preceding spin was transferred into the 

packed beads and incubated rotating constantly overnight at 4°C.  The 

lysate was then centrifuged at 560 x g for 5 min at 4°C and the beads were 

washed with TST 10 times.  The beads were then eluted with Thrombin 

Elution Buffer (50 mM Tris pH 8, 150 mM NaCl, 2.5 mM CaCl2, 50 U/ml 

Thrombin) for 40 min at room temperature.  The eluate was centrifuged for 

a final time at 560 x g for 5 min at 4°C.  The resulting protein was loaded on 

to a 10% Tris-HCl gel and Coomassie stained and dried. 

 
2.3.3 Tricholoracetic Acid precipitation 

 
Cytosolic fractions of cells were collected from the extraction method 

described in Section 2.4.3.  These fractions were incubated for 5 min at 

room temperature in the presence of 0.15% (w/v) Deoxycholic acid.  They 

were then vortexed after the addition of 18% (w/v) Trichloroacetic Acid 

(TCA), incubated on ice for 30 min and centrifuged at 12470 x g for 15 min 

at 4°C. The supernatant was discarded and the pellet was washed in 1 ml of 

ice-cold Acetone and again centrifuged at 12470 x g for 15 min at 4°C.  The 

final pellet was then re-suspended in loading sample buffer and stored at     

-20°C. 

 
2.3.4 Immunoprecipitation 

 
Cells were cultured in 12 well plates and differentiated on Day 8, as 

described in Section 2.4.1, serum starved for 2 hrs and then Insulin wells 

were treated with 1 µM Insulin and Insulin + NEM wells were treated with 50 

µM NEM to a final well concentration of 5 µM NEM and 100 nM Insulin for 20 

min. Basal wells were left in serum-free media for the duration of the 

treatments. 
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Each 12 well plate contained 4 conditions in triplicate: Basal, Basal + NEM, 

Insulin and Insulin + NEM.  After treatment, all wells were washed 3 times in 

ice-cold 20 mM Tris-HCl, 150 mM NaCl wash buffer.  Then, 1 ml Lysis Buffer 

(20 mM Tris-HCl, 150 mM NaCl, Protease Inhibitor cocktail, 1% (w/v) Thesit 

(C12E8), pH 7.4) was added to the wells.  NEM wells received 1 ml Lysis 

Buffer containing an additional 5 mM NEM.  Wells were scraped using a 

Corning Cell Lifter and collected into eppendorf tubes on ice.  Lysates were 

passed 10 times through a 26 5/8” needle and then incubated on ice for 30 

min.   

 

Lysates were then centrifuged at 12470 x g for 20 min at 4°C.  The 

supernatants were decanted into fresh tubes and used for 

immunoprecipitation. 

 

500 µl of each lysate was pre-cleared for 1 hr with washed Protein A beads 

(50% slurry).  Then, either 2 µg (~5µl) of Syntaxin 16 antibody (SY SY #110 

162), Vps45 antibody (SY SY #137 002) or Random Rabbit IgG was added, 

inverted 10 times to mix and incubated on ice for 1 hr.  In the meantime,  

Protein A beads were washed 3 times in IP buffer (50 mM HEPES pH 7.5, 5 

mM EDTA, 10 mM sodium pyrophosphate, 10 mM NaF, 150 mM NaCl, EDTA-

Free Protease Inhibitor Cocktail, 2 mM β-Glycerophosphate, 1 mM DTT and 

1% (v/v) Thesit) as before and 40 µl of beads were then added to the lysate 

and antibody.  Tubes were then rotated overnight at 4°C.   

 

Samples were then centrifuged at 12470 x g for 1 min at 4°C, the 

supernatant discarded and the pellet washed 5 times in 1ml IP Buffer, then 5 

times in IP buffer containing 0.1% (v/v) Thesit. After the final wash, pellets 

were again spun at 12470 x g for 1 min at 4°C and the final pellet was 

resuspended in 2X SDS-PAGE sample loading buffer containing 20 mM DTT, 

boiled at 95°C for 5 min, cooled on ice and then stored at -20°C. 

 
2.3.5 SDS Gel Electrophoresis and transfer to Nitrocellulose 
 
Proteins were mixed 3:1 with 4X loading sample buffer, heated at 65°C for 5 

min, cooled and loaded into wells of 10-12% Tris-HCl SDS-PAGE gels. These 

gels were 1 mm in thickness and contain a stacking region approximately 2 
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cm deep consisting of 5% (w/v) Acrylamide/0.136% (w/v) bisacrylamide, 0.25 

M Tris-HCl pH 6.8, 0.2% (w/v) SDS polymerized with 0.1% (w/v) APS and 

0.05% (v/v) TEMED and a resolving pathway comprising (for 10% gel) 0.75 M 

Tris-HCl pH 8.8, 0.2% (w/v) SDS, 30% 37.5 acrylamide:5 bisacrylamide 

polymerized with 0.1% (w/v) APS and 0.05% TEMED.  These slab gels were 

cast using Bio-Rad mini-Protean III gel casting units.  Bio-Rad Precision Plus 

Protein Standards All Blue (Cat#161-0373) were run in one lane of each gel 

to help determine protein size.  Gels were run at 80V constant voltage in 

tris-glycine running buffer (25 mM Tris-HCl, 250 mM Glycine, 0.1% (w/v) SDS) 

using the Bio-Rad Protean III system. 

 

Once separated by electrophoresis, gels were then transferred to 

nitrocellulose using a Bio-Rad mini Protean III trans-blot system.  Transfer 

cassettes were layered with transfer sponges, Whatmann 3MM Filter paper, 

the gel and Protran 0.45 µ pore size nitrocellulose membrane and pre-soaked 

in Transfer Buffer (25 mM Tris-HCl, 192 mM glycine, 20% (v/v) Ethanol). The 

transfer then occurred at a constant current of 50 mA overnight or 200mA 

for 2 hrs.   

 

To confirm adequate transfer, membranes were stained with the reversible 

stain Ponceau S.  Briefly, membranes were removed from transfer buffer and 

washed twice in water before being submersed in Ponceau solution (0.1% 

(w/v) Ponceau S, 5% (v/v) glacial acetic acid).  Membranes were incubated 

under constant agitation at room temperature for 1 min and then washed 

once in water to detect the pink protein bands.  The stain was reversed in 

water until the membrane no longer contained any pink dye and the 

membrane was then subject to western blotting. 

 
2.3.6 Western blotting 

 
Once the transfer was completed, membranes were washed once in TBST for 

5 min and blocked in 5% (w/v) Milk TBST for 1 hr.  Membranes were then 

incubated with primary antibody solution containing the primary antibody in 

5% (w/v) Milk TBST or 5% (w/v) BSA TBST overnight rotating constantly at 

4°C. The blots were then washed 3 times for 10 min each time in TBST 

before being immersed in secondary antibody solution containing the 

appropriate HRP conjugated secondary antibody in 0.5% (w/v) Milk TBST or 
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0.5% (w/v) BSA TBST for 45 min at room temperature.  The membranes were 

then washed 3 times for 10 min each time in TBST before being subjected to 

the ECL detection system. 

 

Membranes were taken out of wash buffer and immersed in a solution of 

equal volumes of ECL detection reagent 1 and ECL detection reagent 2 with 

constant agitation for 1 min.   Membranes were then removed, wrapped in 

clear plastic film, then exposed to film.  

  

Densitometric data was obtained by scanning the films on a Mercury 1200c 

scanner using Adobe Photoshop software.  The intensity of the protein bands 

on the film was measured by using Image J Software. 

 

Statistical analysis was performed on all assays, including densitometric 

data.  Data was expressed as +/- SEM.  Statistically significant differences 

were determined using a one or two-tailed student’s t test (two-sample 

assuming unequal variance), or one-way and two-way ANOVA where 

appropriate, with p< 0.05 as significant. 

 
2.3.7 Coomassie Staining 
 
Proteins separated on Tris-HCl gels were visualized by submersing into 100 

ml Coomassie Brilliant Blue solution (2.5 g/L Coomassie Brilliant Blue R250 in 

45% (v/v) water, 45% (v/v) Methanol, 10% (v/v) glacial acetic acid) for 30 

min followed by constant washing in Destain Solution (5% (v/v) Methanol, 

10% (v/v) glacial acetic acid) overnight. Gels were then washed once in 

water and wrapped in cellulose paper, clipped into a drying board and 

allowed to air dry for 72 hrs. 

 
2.3.8 Protein concentration determination (MicroBCA) 

 
Protein was measured using a 96 well plate method incorporating Pierce 

MicroBCA solutions as the detection reagent.  Protein samples that 

comprised the sample wells of the plate were diluted to 0.5% of the total 

well volume in a 96 well Corning CoStar plate.  A standard curve that 

contained points from 0 to 12 µg was then produced using 1 mg/ml BSA.  To 

each standard and sample well that contained 100 µl volume, and additional 

100 µl detection reagent was added that consisted of 50% (v/v) of Solution A 
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(Proprietary alkaline tartrate-carbonate solution), 48% (v/v) of Solution B 

(Proprietary bicinchonic acid solution) and 2% (v/v) of Solution C 

(Proprietary copper sulfate solution).  Plates were incubated at 37°C for 30 

min before being read on a Fluorostar Optima plate reader (BMG LabTech, 

Aylesbury, UK) at 570 nm.  Sample values were then plotted against the 

standard curve using an Excel program and protein concentrations were 

calculated. 

 
2.4 Cell Culture Methods 

 
 

 2.4.1 Growth, trypsinisation and passage of cells 
  
Culture of 3T3-L1 Fibroblasts 

Murine fibroblast 3T3-L1 cells are an L1 continuous substrain of 3T3 (Swiss 

albino) cells that undergo a pre-adipose to adipose phenotypic conversion 

upon contact inhibition.  They were grown in DMEM (Dulbecco’s Modified 

Eagle’s Medium), 10% (v/v) Newborn Calf Serum (NCS), 1% (v/v) Penicillin 

(10,000 U)/Streptomycin (10,000 U) in Corning T75 75 cm2 flasks.  Cells were 

cultured at 37°C in a humidified atmosphere of 10% CO2.  Media was changed 

every other day until cells reached confluence. 

 
Trypsinization of 3T3-L1 Fibroblasts 

Media was removed from T75 culture flasks and 2 ml 0.5 g/L Trypsin- 0.2 g/L 

EDTA·4Na was added to the cells.  Cells were incubated at 37°C for 5 min 

and collected in a 15 ml Corning conical tube.  Cells were then pelleted in a 

benchtop centrifuge at 800 x g for 5 min.  The pellet was then resuspended 

in 10 ml DMEM/10% (v/v) NCS and re-plated onto plates or flasks. 

 

Differentiation of 3T3-L1 Fibroblasts 

Cells were grown to confluence and differentiated by administering 

differentiation medium (10% (v/v) FCS,1% (v/v) Penicillin/Streptomycin 

(P/S), 0.5 mM 3-isobutyl-1-methylxanthine (IBMX) , 1 µM Insulin, 0.25 µM 

Dexamethasone) 48 hours post-confluence.  After an additional 48 hr period, 

cells were given 1 µM Insulin and cell culture medium was changed every 

other day in DMEM/10% (v/v) FCS/1% (v/v) P/S until cells are at day 8-12 

post differentiation. 
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Collagen Coating Cell Culture Plasticware 

Collagen I (Rat Tail) Invitrogen Cat#A1048301 was sterile filtered using a 

Millipore 0.22 µm syringe filter and the solution was used to wash the plates 

leaving a thin film coating.  Plates were then dried in a sterile flow hood and 

irradiated with ultra violet (U.V.) light overnight.  Prior to use, plates were 

washed with serum-free DMEM to remove any traces of excess collagen 

solution. 

 
 

2.4.2 Freezing Down and Resurrection of Cells 
 

Freezing of Cells 

3T3-L1, NIH3T3, and EcoPack2-293 cells all were frozen down and woken up 

using the same method.  Cells were frozen down when 50-70% confluent by 

aspirating the growth media and washing the cells once in warm PBS.  The 

PBS was aspirated and Trypsin-EDTA was then applied to the cell culture 

plates in a volume of 10% of the total culture volume.  The plates were then 

incubated at 37°C for 5 min before swirling the Trypsin solution to detach 

the cells from the culture dishes.  Once cells had fully detached by 

inspection in a microscope, the cell volume was collected in a tube which 

was then centrifuged at 500 x g for 5 min.  The supernatant was discarded 

and the cell pellet was re-suspended in Cell Freezing Media (90% (v/v) FCS, 

10% (v/v) DMSO).  The solution was then aliquoted into cell freezing vials 

and incubated in a Nalgene Mr. Frosty containing isopropanol overnight at -

80°C before vials were placed in a communal liquid nitrogen tank for long 

term storage. 

 
Resurrection of Cells 

Cells were obtained from liquid nitrogen stocks and rapidly heated in a 37°C 

water bath until each aliquot was approximately half liquid.  The outside of 

vials were then sterilized with alcohol and the vials were placed into a 

biological cabinet.  The vial contents were transferred to a tube where 10 

volumes of additional warmed media were added before being centrifuged 

at 500 x g. The supernatant was discarded and the resulting pellet was 

diluted into the appropriate volume of warmed media and plated in cell 

culture plastic ware.  
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2.4.3 Cell treatment and preparation of homogenates 

 
Preparation of Whole Cell Homogenates 

Cells were used on Day 8 post-differentiation, serum starved for 2 hrs in 

serum-free media and some cells were treated with 200 nM Insulin for 20 

min. Cells were washed in ice-cold HES buffer and scraped into HES buffer 

containing inhibitors as described in the preparation of membrane extracts.  

Cells were then passed 10 times through a 26 5/8” gauge needle and kept on 

ice for 5 min.  Total homogenates were cleared by centrifugation at 500 x g 

for 10 min at 4°C.  Supernatants were then collected into fresh eppendorf 

tubes and quantitated for protein content using the MicroBCA method.  

Extracts were stored at -20°C. 

 

Preparation of Membrane and Cytosol Extracts 

Cells were used on Day 8 post-differentiation, serum starved for 2 hrs in 

serum-free media and were left untreated or stimulated with 200 nM Insulin 

for 20 min.  Cells were washed 3 times in ice-cold HEPES/EDTA/Sucrose 

(HES) Buffer (250 mM Sucrose, 20 mM HEPES pH 7.4, 1 mM EDTA, and 1 

tablet/50 ml volume of Roche EDTA-Free Protease Cocktail Inhibitor).  Cells 

were scraped into 400 µl HES Buffer on ice and transferred to eppendorf 

tubes.  Homogenates were then passed 10 times through a 25 gauge needle 

and kept on ice for 5 min.  They were then centrifuged at 500 x g for 10 min 

at 4°C.  Supernatants were then collected into fresh ultracentrifuge tubes 

and centrifuged at 86200 x g for 1 hr to generate a total membrane fraction.  

Cytosolic fractions were then prepared by TCA precipitation of the resulting 

supernatant and the pellets, which are the membrane fraction, were 

resuspended in the appropriate volume of HES buffer and protein quantified.  

Fractions were stored at -20°C. 

 
Preparation of Primary Rat Adipocyte Lysates 

Male Sprague-Dawley (SD) Rats (Charles River, Crl:SD) were sacrificed by 

isoflurane (2-chloro-2-(difluoromethoxy)-1,1,1-trifluoro-ethane) intoxication 

and 30 g of epididymal fat was harvested and transferred into 50 ml of 

Collection Buffer (118 mM NaCl, 5 mM NaHCO3, 4.7 mM KCl, 1.2 mM KH2PO4, 

1.2 mM MgSO4, 25 mM HEPES, 100 nM Adenosine, 2.5 mM CaCl2, 0.2% (w/v) 

BSA, 3 mM Glucose, final solution pH 7.4 at 37°C).  Tissue was then placed 
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into Digestion Buffer (118 mM NaCl, 5 mM NaHCO3, 4.7 mM KCl, 1.2 mM 

KH2PO4, 1.2 mM MgSO4, 25 mM HEPES, 100 nM Adenosine, 2.5 mM CaCl2, 0.2% 

(w/v) BSA, 3 mM Glucose, 2 mg/ml Collagenase, final solution pH 7.4 at 

37°C), dissected to remove blood vessels and connective tissue, and 

digested under constant agitation in a 37°C shaking water bath for 30 min. 

After 30 min, 3 volumes of Wash Buffer (118 mM NaCl, 5 mM NaHCO3, 4.7 mM 

KCl, 1.2 mM KH2PO4, 1.2 mM MgSO4, 25 mM HEPES, 100 nM Adenosine, 2.5 

mM CaCl2, 0.2% (w/v) BSA, final solution pH 7.4 at 37°C) was added to 

terminate digestion.  Tissue was then passed once through a 21” gauge 

needle and cells were allowed to pass through a mesh sieve that separated 

the cells from any remaining connective tissues.  These adipocytes floated to 

the top of the wash buffer and were collected into a fresh tube.  These cells 

were then washed 4 times in 10 min intervals in 2 volumes of wash buffer 

before being collected once more for lysis.  Collected cells were then passed 

through a 26 5/8” needle 10 times before being centrifuged at 500 x g for 10 

min at 4°C.  The resulting lysate was collected using a 1 1/2" 18 gauge needle 

to remove the lysate without disrupting the fat cake that formed on the top 

of the collection volume.  This lysate was then quantitated using the 

MicroBCA method as described previously, aliquoted and stored at -20°C. 

  
2.4.5 Glucose transport assay 

 
All glucose transport assays utilized 3T3-L1 cells that were grown in BD 

Falcon 12-well plates until confluent, and then differentiated using the 

standard method as described previously.  Cells were used on day 8 post-

differentiation and all experiments were performed on a hot plate water 

bath at a constant temperature of 37°C. 

 

Basic Glucose Transport Assay 

Cells were serum-starved for 2 hrs before being washed 3 times in KRP (1.28 

M NaCl, 47 mM KCl, 50 mM NaH2PO4, 1.25 mM MgSO4, 1 M CaCl2, final solution 

pH 7.4 at 37°C).  The plates were then incubated for 5 min with 6 wells 

incubated in KRP alone and the other 6 wells incubated in KRP containing 10 

µM Cytocholasin B.  Of these wells, 3 wells of the 6 incubated in KRP alone 

were treated with 1 µM Insulin as were 3 wells of the 6 incubated in KRP plus 

Cytocholasin B. Insulin treatment lasted 30 min, after which time 

Deoxyglucose solution (2-[3H]-deoxy-D-glucose: 50 µM 2-deoxyglucose, 0.5 
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µCi/well Tritium in KRP) was added for 5 min to all wells.  After 5 min, 

plates were washed in ice-cold PBS and allowed to air-dry for 30 min.  When 

plates were sufficiently dry, 1 ml TritonX-100 was added to each well and 

allowed to stand at room temperature overnight.  The next day, the liquid 

was collected into scintillation vials, covered with scintillation fluid and 

counted in a scintillation counter (Beckman Coulter LS 6500) along with a 

sample of the deoxyglucose solution (for total counts) for 3 min per vial.   

 

Dose Response Glucose Transport Assay 

Cells were serum-starved for 2 hrs before being washed 3 times in KRP (1.28 

M NaCl, 47 mM KCl, 50 mM NaH2PO4, 1.25 mM MgSO4, 1 M CaCl2, final solution 

pH 7.4 at 37°C).  The plates were then incubated for 5 min with 6 wells 

incubated in KRP alone and the other 6 wells incubated in KRP containing 10 

µM Cytocholasin B. For each plate, 3 wells incubated in KRP alone and 3 

wells incubated in KRP containing Cytocholasin B were treated with one 

concentration of Insulin, the other half plate were treated exactly the same 

but with a different concentration of Insulin.  Insulin treatment lasted 30 

min, after which time Deoxyglucose solution (2-[3H]-deoxy-D-glucose: 50 µM 

2-deoxyglucose, 0.5 µCi/well Tritium in KRP) was added for 5 min to all 

wells.  After 5 min, plates were washed in ice-cold PBS and allowed to air-

dry for 30 min.  When plates were sufficiently dry, 1 ml TritonX-100 was 

added to each well and allowed to stand at room temperature overnight.  

The next day, the liquid was collected into scintillation vials, covered with 

scintillation fluid and counted in a scintillation counter along with a sample 

of the deoxyglucose solution (for total counts) for 3 min per vial.   

 
Insulin Reversal Glucose Transport Assay 

Cells were washed 3 times in KRP and incubated in KRP alone.  6 wells were 

treated with 100 nM Insulin for 30 min while the other wells were left 

untreated.  After 30 min, all wells were aspirated and 3 of the insulin 

treated wells were incubated in KRP alone and 3 were incubated in KRP+ 

Cytocholasin B.  Similarly 3 of the untreated wells were incubated in KRP 

alone, and 3 were incubated in KRP+Cytocholasin B. Deoxyglucose solution 

(50 µM) was added to all wells and the plate was incubated for 3 min before 

being plunged into ice-cold PBS and allowed to air dry. This plate 

represented baseline basal and insulin-stimulated conditions. 
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Subsequently, other plates were washed in KRP and stimulated with 100 nM 

Insulin for 30 min.  Thereafter, the KRP and/or Insulin was removed and the 

wells repeatedly washed in KRM (1.28 M NaCl, 47 mM KCl, 20 mM MES, 1.25 

mM MgSO4, 1 M CaCl2, final solution pH 6.0 at 37°C) to remove Insulin and 

‘reverse’ Glut4 translocation.  This reversal protocol was varied to incubate 

cells in KRM for times ranging from 5 min to 60 min.  After this, cells were 

washed 3 times in KRP and deoxyglucose uptake was assayed as described 

above.  

 

After the plates had air-dried, 1ml TritonX-100 was added to each well and 

allowed to stand at room temperature overnight.  The next day, the liquid 

was collected into scintillation vials, covered with scintillation fluid and 

counted in a scintillation counter along with a sample of the deoxyglucose 

solution (for total counts) for 3 min per vial.   

 
 

2.4.6 Confocal Microscopy and staining 
 

Cells were grown on collagen-coated borosilicate glass cover slips using the 

method described previously.  After differentiation, cells were serum- 

starved for 2 hrs in serum-free media and either kept in media or 1 µM 

Insulin was added to media for 20 min.  Cells were then washed with PBS 3 

times and fixed in 2% (w/v) paraformaldehyde (ρ-Formaldehyde 7.5 g/L, 1 M 

CaCl2, 1 M MgCl2, in PBS) and left in the dark for 20 min. Cover slips were 

then washed 3 times in PBS and used for staining. 

 

Cover slips were then washed twice in 20 mM Glycine in PBS and 

permeabilized in permeabilization media (2% (w/v) BSA, 0.1% (w/v) Saponin, 

20 mM Glycine, PBS) for 20 min.  Primary antibody was added in 

permeabilization media for 45 min.  Cover slips were then washed in 

permeabilization media 4 times and the secondary antibody, again in 

permeabilization media, was applied and the cover slips were incubated for 

30 min in the dark.  Cover slips were washed 4 times in permeabilization 

media, and then washed once in PBS before being mounted on microscope 

slides using Immunomount adhesive.  Slides were left overnight at 4°C 

before being visualized under the confocal microscope.  Cover slips were 



Chapter 2, 92 

analysed using a 63X oil immersion objective fitted to a Zeiss Axiovert 

fluorescence microscope, equipped with a Bio-Rad MRC-600 confocal imaging 

system.  Image sets were processed and overlaid using Adobe Photoshop CS5. 

 

Adipocyte staining with Oil Red O 

3T3-L1 cells were grown in Lab-Tek glass chamber slides (Cat#177372, Fisher 

Scientific) until confluence, differentiated as previously described and used 

on Day 8 post-differentiation.  Cells were then fixed in 10% (v/v) Formalin 

and incubated at room temperature for 5 min initially.  The formalin was 

then replaced with fresh formalin and incubated at room temperature in the 

dark for 1 hr.  Cells were then washed once in 60% (v/v) isopropanol and 

wells were left to dry completely.  At this time, the Oil Red O working 

solution (60% (v/v) Oil Red O Stock (8.57 mM Oil Red O (Sigma Cat# O-0625) 

in isopropanol) 40% (v/v) water) was placed in the wells for 10 min and then 

washed away with water 4 times before the wells were left to dry.  Slides 

were then dipped for 30 sec in Mayers Hematoxylin (193.64 mM Aluminum 

Potassium Alum, 16.54 mM Hematoxylin, 2.02 mM Sodium Iodate, 2% (v/v) 

Glacial Acetic Acid) and then dipped in Ammonium Blue (3% (w/v) 

Ammonium Hydroxide, pH 10 in water) for 10 sec.  Slides were then dried 

and cover slips were affixed using Immuno-mount adhesive media (Fisher 

Scientific Cat#1900331).  Slides were stored at 4°C before being examined 

using a light microscope. 

 
2.5 Virus Generation and Delivery 
 

 2.5.1 Construction of shRNA 
 

Sequences along the accession number U81160 for Rattus norvegicus 

vesicular transport protein rVps45 mRNA, were used to design shRNA 

oligonucleotides.  19 base pair sequences were chosen that were not near 

the start codon or in untranslated regions and that had between 40-60% GC 

content.  4 sets of target sequences were generated using these criteria and 

checked for secondary structures and long base runs using the BLAST 

sequence and the proprietary software from the Promega website.  Briefly, 

the mVps45 sequence was entered into the software which checked base 

pairings for GC richness, excess internal runs of A and T and strand 

complementarity.  For each target, 2 complementary oligonucleotides were 



Chapter 2, 93 

synthesized with a 5’-BamHI restriction site overhang on the top strand and 

a 5’-EcoRI restriction site overhang on the bottom strand. The target sense 

sequence had an added G (Guanine) residue added upstream of the 5’-end as 

well as a nucleotide hairpin loop sequence (5’-TTCAAGAGA-3’).  The target 

antisense sequence had a terminator sequence of a 5-6 nucleotide poly (T) 

tract.  Each target sequence then consisted of a restriction site (5-6 bases) 

at the 5’ end, 19 bases of sense strand, 7-9 bases of hairpin loop, 19 bases of 

anti-sense strand, 6 bases of terminator poly (T) and 6 bases of restriction 

site at the 3’ end (for Mlu I digestion).  4 such targets were generated using 

the rat Vps45 CDS and each target was separated from another by at least 

200 base pairs. The oligonucleotides were synthesized by IDT (Integrated 

DNA Technologies, Germany) 

 
2.5.2 Ligation into retroviral vector 

 
Each oligonucleotide was resuspended in TE Buffer (1 M Tris pH 8.0, 100 mM 

EDTA) to a final concentration of 100 µM.  Each complementary strand for a 

target was then combined equally to achieve a 50 µM ds oligo.  The targets 

were placed in a PCR machine to anneal with the following program: 

 
95°C 30 sec 
72°C 2 min 
37°C 2 min 
25°C 2 min 
 
These conditions were to allow any secondary structures, including any 

internal hairpin loops to be removed while promoting intermolecular 

annealing. 

 

Once annealed, the oligonucleotides were diluted in TE Buffer to a 

concentration of 0.5 µM so that ligation efficiency was not impeded with an 

extreme molar excess of oligonucleotide.  Once diluted, oligonucleotides 

were used in ligation reactions consisting of linearized pSiren vector (25 

ng/µl), 10X T4 DNA Ligase Buffer, BSA (10 mg/ml), Nuclease-free water, and 

T4 DNA Ligase (400 U/µl).  These reactions, including positive and negative 

controls, were incubated for 3 hours at room temperature. 

 

At the end of the incubation period, 2 µl of each ligation reaction was 

transformed into Fusion Blue competent cells (described in 2.1.4).  Cells 
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were incubated on ice for 5 min and then heat shocked for 30 sec at 42°C.  

Cells were immediately placed on ice for 2 min and then SOC Media was 

added before cells were incubated under constant agitation at 37°C for 1 hr.  

After this incubation, 1/10 of the transformation volume was plated onto 

2YT/Ampicillin plates (50 µg/ml) and incubated overnight at 37°C.  The next 

day, 2YT/Ampicillin culture media was inoculated with single colonies from 

the transfected plates and grown overnight at 37°C in a shaking incubator.  

The resulting cultures were then mini-prepped using the Promega Wizard SV 

system as described in 2.2.9.  This DNA was then restriction digested using 

New England BioLabs (NEB) Mlu I overnight at 37°C.  This product was then 

run on 1% (w/v) DNA Agarose gels stained with Ethidium Bromide for 

visualization.  Single bands at approximately 7 Kb were identified as 

successful clones and sent for sequencing to the University of Dundee 

sequencing Service.  Once sequences were confirmed to be correct, large 

scale Maxi-preps were performed as described in 2.2.9 and DNA was 

dispensed into 60 µg aliquots.  

 
2.5.3 Transfecting into EcoPack2-293 cells and virus collection 

 
EcoPack2-293 cells were taken from liquid nitrogen stocks and cultured in 

collagen-coated Corning T150 Flasks before being sub-cultured into BD 

Falcon 6-well plates at a density of 30,000 cells per well in Complete media 

(DMEM, 10% (v/v) FCS, 1 mM Sodium Pyruvate, 1% (v/v) 10000 U/ml P/S).  

ShRNA constructs were transfected into these viral packaging cells using the 

Lipofectamine method.  Briefly, media on 6-well plates were changed to 

antibiotic-free media (DMEM, 10% (v/v) FCS, 1 mM Sodium Pyruvate) 

overnight.  The next day 60 µg DNA from shRNA targets was diluted into 

Optimem and 150 µl of Lipofectamine 2000 reagent was separately diluted 

into Optimem media.  Both dilutions were incubated at room temperature 

for 5 min before being combined and incubated for an additional 20 min.  

The complexes were then placed on the 6-well plates and incubated at 37°C 

for 4 hrs.  Plates were then aspirated and fresh Complete Media was applied 

and plates were incubated for 24 hrs.  After 24 hrs, the conditioned media 

was removed from the cells and fresh Complete media was applied to the 

cells for a further 24 hrs.  The conditioned media was centrifuged at 500 x g 

for 5 min and the supernatant was collected into tubes that were then foiled 

to obscure light and stored at 4°C.  After 48 hrs, the second addition of 
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Complete Media was similarly processed.  It was then pooled with the 

previous supernatant, treated with 1 mg/ml Polybrene (Hexadimethrine 

Bromide Sigma Cat# H9268) and stored away from light at 4°C.   

 
2.5.4 Determining viral titer in NIH3T3 cells 

 
NIH 3T3 cells were plated in 6-well plates at a cell density of 50,000 cells 

per well in NCS Media (DMEM, 10% (v/v) FCS, 1% (v/v) 10000 U/ml P/S).  6 

10-fold serial dilutions of the viral supernatants were then prepared to 

represent 101 to 106 pfu and 1 ml of each dilution was placed on the cells in 

the representative well.  Cells were subjected to antibiotic selection for 2 

weeks after infection since a kill curve determined this to be the optimum 

amount of time.  At the end of the 2 weeks, 2 colonies had formed in the 106 

well, indicating that the viral titer was 2 x 106 cfu/ml.  

 
2.5.5 Infection of adipocytes and subsequent differentiation 

 
3T3-L1 fibroblasts were grown in 10 cm plates and infected with 5 ml/plate 

of 2 x 106/ml cfu virus per target.  Plates with cells growing in NCS Media 

(DMEM, 10% (v/v) Newborn Calf Serum (NCS), 1% (v/v) 10000 U/ml P/S) were 

aspirated and the normal media was replaced with virus (collected 

conditioned media).  Cells were left in the viral media for 24 hrs and then 

the media was changed to NCS Media containing 2.5 µg/ml Puromycin 

dihydrochloride (Sigma Cat#P8833) (NCS/Puromycin).  Cells growing in 

NCS/Puromycin had their media changed 3 times into additional 

NCS/Puromycin before becoming super-confluent (confluence plus 48 hrs) 

and then were differentiated as described previously.  On day 8 post-

differentiation, cells were used for downstream applications, such as whole 

cell lysates. 

 
2.5.6 Recycling Assay for HA-Tagged GLUT4 

 
HA-Glut4-GFP cells were cultured in 96 well plates and differentiated as 

described previously.  On day 8, cells were serum starved overnight and then 

washed into fresh serum-free media. Wells (in triplicate) were incubated 

with saturating concentration of Alexa-labelled anti-HA monoclonal antibody 

(a concentration of 2 mg/ml was routinely employed) for times ranging from 

0 to 16 hours. After this time, plates were rapidly washed in ice-cold PBS, 

each well rinsed in 20 mM sodium citrate, pH 4 to remove cell surface 
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antibody, then washed again in PBS. Fluorescence was read in a microplate 

reader, assaying for both GFP (total Glut4 levels) and Alexa (internalised 

anti-HA) signals.  

 
2.5.7 Subcellular Fractionation 

 
3T3-L1 pre-adipocytes were grown to confluence in 10 cm plates and 

differentiated as described previously.  On day 8, cells were serum starved 

for 2 hrs and some cells were treated with 1 µM Insulin for 20 min.  After 

treatment, cells were washed 3 times with ice-cold HES Buffer and scraped 

into HES Buffer that included protease inhibitors.  All steps were performed 

on ice, all re-suspensions involving HES Buffer contained protease inhibitors 

and all centrifugation steps were conducted at 4°C. Cells were homogenized 

10 times through a 26 5/8” needle and centrifuged at 500 x g for 10 min.  The 

pellet was discarded and the Post- Nuclear Supernatant (PNS) was further 

centrifuged at 9400 x g for 12 min.   

 
The pellet from this centrifugation (the M/N) was then re-suspended in HES 

buffer and again centrifuged at 9400 x g for 12 min.  This resulting pellet 

was re-suspended in HES buffer and layered over a high sucrose HES solution 

containing 1.12 M Sucrose.  This layered solution was centrifuged at 56420 x 

g using a swinging bucket rotor (Beckmann SW41) for 1 hr.  The interface of 

the heavy sucrose solution contained the Plasma Membrane Fraction (PM) 

and was collected from the sucrose gradient.  This fraction was diluted with 

additional HES buffer and centrifuged at 13300 x g for 15 min.  The resultant 

pellet, the washed PM was re-suspended in HES buffer and loading sample 

buffer, heated at 65°C for 5 min and stored at -20°C. 

 

The supernatant from the PNS centrifugation step containing the Cytosol, 

LDM and HDM was further centrifuged at 13300 x g for 17 min.  The pellet 

from this centrifugation was the HDM fraction which was re-suspended in 

HES Buffer and Loading Sample Buffer, heated at 65°C for 5 min and stored 

at -20°C.  The supernatant from this spin, containing the Cytosol and LDM, 

was centrifuged at 86200 x g for 75 min.  The resulting pellet from this 

centrifugation was the LDM Fraction which was re-suspended in HES Buffer 

and Loading Sample Buffer, heated at 65°C for 5 min and stored at -20°C.  

The supernatant was the Cytosolic Fraction and was TCA precipitated as 
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described previously, then re-suspended in HES Buffer and Loading Sample 

Buffer, heated at 65°C for 5 min and stored at -20°C.  The stored samples 

were then loaded onto 10% Tris-HCl gels and subjected to Western Blot 

Analysis. 

 
2.5.8 The Budding Assay 

 
3T3-L1 cells were grown to confluence in 10 cm plates and differentiated as 

described previously.  On day 8, cells were serum starved for 2 hrs and then 

washed twice in Budding Buffer (38 mM Potassium Aspartate, 38 mM 

Potassium Glutamate, 20 mM MOPS, 5 mM Sodium Carbonate, 2.5 mM 

Magnesium Sulfate, 5 mM reduced Glutathione and Roche protease cocktail 

inhibitor tablets, pH 7.2) then scraped into Budding Buffer and passed 

through a 26 5/8” gauge needle 10 times and centrifuged at 1000 x g for 5 

min at 4°C.  Supernatants resulting from this spin were transferred to fresh 

tubes and centrifuged at 16000 x g for 20 min at 4°C.  The pellets were 

retained and supernatants from this spin were then put into ultracentrifuge 

tubes and centrifuged at 104300 x g for 1 hr at 4°C.  During this hour spin, 

the pellets that were retained were then washed in budding buffer twice by 

centrifuging them at 16000 x g for 1 min at 4°C. These pellets were 

resuspended in budding buffer and kept on ice during the cytosolic 1 hr spin.  

After this spin, both membrane and cytosol were analysed for protein 

content using the MicroBCA method described previously.  The ATP 

regeneration system (800 mM Creatine Phosphate, 500 U/ml Creatine Kinase, 

100 mM ATP) was combined with the Cytosol and Membrane protein in a 

reaction consisting of 250 µg of membrane, 2 mg/ml Cytosol and 0.3% (v/v) 

ATP Regeneration System.  These reactions were then incubated at 37°C for 

20 min or 40 min before being centrifuged at 16000 x g for 20 min at 4°C.  

The resultant pellets (the donor fraction) were then re-suspended in Budding 

Buffer and Loading Sample Buffer (described previously) and heated for 5 

min at 65°C.  The supernatants were re-centrifuged at 200000 x g for 1 hr at 

4°C.  The pellets from this centrifugation step (the vesicle fraction) were 

also re-suspended in Budding Buffer and Loading Sample Buffer and heated 

for 5 min at 65°C.   Donor and vesicle fractions were then subjected to SDS-

PAGE and Immunoblot analysis. 
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2.5.9 Iodixanol Gradients 

 
LDM membranes (from Subcellular Fractionation experiments) were diluted 

in 60% (v/v) Iodixanol to a final Iodixanol concentration of 14% (v/v) in HES 

buffer (250 mM Sucrose, 20 mM HEPES pH 7.4, 1 mM EDTA, and 1 tablet/50 

ml volume of Roche EDTA-Free Protease Cocktail Inhibitor) and inverted to 

mix.  The mixture was then heat-sealed into Beckmann Quick Seal 

polyallomer tubes before being secured into a pre-chilled Beckmann TLN 100 

Rotor and centrifuged at 295000 x g at 4°C for 1 hr.  Fractions were then 

collected by piercing the top and bottom of the tubes, effectively dislodging 

the air lock on the sealed tubes, and allowing the fractions to flow by gravity 

into eppendorf tubes.  Fractions were then mixed with Loading Sample 

Buffer (described previously) and heated to 65°C for 15 min before being 

loaded onto 10% Tris-HCl SDS-PAGE gels and subjected to Western Blotting. 

 
2.6 Yeast Methods 

 
 

2.6.1    Construction of Vps45 plasmid using homologous recombination 
 
pCOG70, driving the overexpression of Vps45p harbouring an HA tag at its 

carboxy terminus, a generous gift of Dr. Lindsay Carpp, was digested with 

BamH1 and Sph1 to excise the Vps45p region and linearize the YEpVPS45 2u 

URA3 vector (Gietz and Sugino, 1998). YEpVPS45 was originally made from 

subloning a Vps45 fragment into YEplac195. 

 

A DNA fragment was then PCR amplified using the mammalian DNA received 

from Dr. Piper (described in 2.2.1) as a template.  The PCR reaction 

contained 1X PCR Buffer, 200 µM dNTPs, 1 mM MgSO4, 0.5 µM 5’ Vps45 yeast 

Recombinant Primer, 0.5 µM 3’ Vps45 Yeast Recombinant Primer (Primer 

Sequences listed in Section 2.1.2) and 1 unit of Pfx proofreading polymerase 

(5U/µl) to a total volume of 50 µl with Ambion DNAse and RNAse free water. 

 

Reactions were incubated in a PCR machine and subjected to the following 

program: 

 
 



Chapter 2, 99 

 
94°C 3 min 
94°C 30 sec 
48°C 30 sec 
68°C 4 min 30 sec 
68°C 10 min 
4°C Holding temperature 

 
 

2.6.2 Transformation of plasmids into yeast cells 
 

The insert was then homologously recombined with the pCOG70 vector in a 

ratio of 1:3 vector to insert and added to 100 µl of 9DαΔ45 cells with 200 µl 

of 70% (v/v) PEG3350.  The recombinant solution was heat shocked at 42°C 

for 20 min and then shaken for 90 min at 30°C.  The solution was centrifuged 

for 3 min at 660 x g, the supernatant was then discarded and the resulting 

pellet resuspended in 100 µl of water.  This was plated on SD –ura -met 

plates (SD; 0.67% (w/v) yeast nitrogen base without amino acids, 2% (w/v) 

glucose, 0.18% (w/v) Synthetic complete amino acid drop-out supplement –

ura-met, 2% (w/v) micro agar) and incubated at 30°C for 72 hrs. 

 

9Dα and 9DαΔ45 cells were made competent for transformation using the 

Lithium Acetate method (adapted from Gietz).  Cells were streaked onto 

YPD plates and after 72 hours were picked into YPD growth media (1% (w/v) 

yeast extract, 2% (w/v) peptone, 2% (w/v) glucose) and allowed to grow 

overnight at 30°C.  The next day, an O.D.600 was taken and cells were 

diluted to adjust the starting O.D.600 to 0.25.  Cells were allowed to undergo 

one doubling until they were assessed to be in mid-log phase as verified by 

an O.D.600 reading of 0.7.  Cells were collected into tubes and centrifuged at 

500 x g for 2 min.  The supernatant was discarded and the resulting pellet 

was resuspended in 10 ml Lite-Sorb (1 M Lithium Acetate, 1 M Tris pH 7.6, 

0.5 M EDTA, 2.4 M Sorbitol) centrifuged again at 500 x g for 2 min.  The 

supernatant was discarded and the pellet was suspended in 1 ml of fresh 

Lite-Sorb before being transferred to eppendorf tubes.  These tubes were 

incubated in a shaking incubator at 30°C for 1 hr.  After 1 hr, the tubes were 

placed on ice for 20 min after which time the cells suspended in Lite-Sorb 

received an additional volume of Competent Cell Freezing Media (40% (v/v) 

Glycerol, 0.5% (w/v) NaCl) so that the final composition of buffer on the 

cells was 50% (v/v) Lite-Sorb and 50% (v/v) Competent Cell Freezing Media.  

Cells were then aliquoted on ice and frozen at -80°C.   

30 Cycles 
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2.6.3 Plasmid Rescue 

 
Colonies from transformed plates were picked into a 10 ml overnight culture 

of SD –ura -met culture media and incubated at 30°C for 14 hrs.  The next 

day, 5 O.D.600  equivalents were harvested at 3610 x g for 2 min.  These cells 

were suspended in Buffer S (100 mM KPO4 pH 7.2 (KH2PO4 + K2HPO4), 10 mM 

EDTA, 50 mM βME, 50 µg/ml Yeast Lytic Enzyme(15 mg/ml Yeast Lytic 

Enzyme in 50 mM Tris pH 7.7, 1mM EDTA, 50% (v/v) Glycerol) and incubated 

at 37°C for 30 min.  After this incubation, Lysis Buffer (25 mM Tris-HCl pH 

7.5, 25 mM EDTA, 2.5% (w/v) SDS) was added, samples were vortexed briefly 

and incubated at 65°C for 30 min.  Then 3 M potassium acetate was added to 

the samples and they were kept on ice for 10 min.  Samples were then 

centrifuged at 12470 x g for 10 min and transferred to new tubes where 

ethanol was added and they were again incubated on ice for 10 min.  After 

this final incubation, cells were centrifuged at 12470 x g for 10 min and 

washed once in 70% (v/v) ethanol before being air dried and resuspended in 

water.  This DNA was then transformed into XL-1 Blue E. coli cells 

(Stratagene, Cambridge, UK) and plated onto 2YT/Ampicillin plates to select 

for the correct plasmid. 

                     
2.6.4 Construction of Vps45p mutants by site directed mutagenesis 

 
Mammalian rat Vps45 homologously recombined into the pCOG70 plasmid 

and under control of the yeast VPS45 promoter was used as a template for 

constructing mutants using site-directed mutagenesis.  The mutagenesis 

reactions contained 1X PCR Buffer, 200 µM dNTPs, 1 mM MgSO4, 0.5 µM 5’ 

V107R or W230R Primer, 0.5 µM 3’ V107R or W230R (Primer Sequences listed 

in Section 2.1.2) and 1 unit of Pfx proofreading Taq polymerase (5U/µl) to a 

total volume of 50 µl with Ambion DNAse and RNAse free water. 

 

Reactions were incubated in a PCR machine and subjected to the following 

program: 
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95°C 2 min 
94°C 1 min 
50°C 1 min 
68°C  20 min 
68°C 10 min 
4°C Holding temperature 

 
Amplicons were then digested with Dpn I (10 U/µl) at 37°C for one hour to 

digest the non-mutated super-coiled parental DNA.  After Dpn I digestion, 

plasmids were then transformed into XL-1 Blue cells using the transformation 

protocol described in 2.2.8.  Cells were then plated onto 2YT/Amp plates 

overnight and subsequent colonies that formed were cultured for 14 hrs in 

2YT/Amp media, DNA purified using the Promega Wizard system described 

previously in section 2.2.9, and sent for sequencing to the University of 

Dundee Sequencing Service.  Sequences were aligned using the Vector NTI 

V10.3 software program. 

 

Yeast colonies containing the correct sequences were then grown overnight 

at 30°C in selective media (SD-URA-Met), mixed with 10% (v/v) DMSO and 

aliquoted into cryovials which were stored at -80°C.  To wake up these cells, 

plates containing selective media were streaked with 10 µl of frozen cells 

and incubated at 30°C for 72 hours before individual colonies were picked 

and grown overnight  at 30°C in selective growth media. 

 
 
    2.6.5      Preparation of yeast lysates for SDS-PAGE 

 
Yeast cells grown overnight in selective medium (SD –ura –met) were diluted 

in fresh selective medium and grown to mid-log phase as assessed by taking 

an O.D.600  of 0.7 and 10 O.D. units/ml were collected and centrifuged at 660 

x g for 3 min.  The pellets were resuspended in TWIRL Buffer (5% (w/v) SDS, 

8M Urea, 10% (v/v) Glycerol, 50 mM Tris pH 6.8 and 0.2% (w/v) Bromophenol 

Blue, 10% (v/v) β-mercaptoethanol).  Cell extracts were then incubated at 

65°C for 10 min, cooled and resolved by SDS-PAGE on 10% Tris-HCl 

acrylamide gels.  

 
2.6.6      Invertase Assay- TCA precipitation method 

 
Cells were grown overnight in 10 ml selective medium (SD –ura -met) 

cultures, inoculated to an O.D.600  of 0.2 and allowed to double until 

reaching an O.D.600  of 0.7. Cells were then centrifuged at 1060 x g for 5 min.  

  18 Cycles 
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90% of the supernatant was removed to fresh tubes and 10% (v/v) TCA was 

added to this sample before being incubated on ice for 1 hr.  The 

supernatant was then centrifuged at 12470 x g at 4°C for 10 min to pellet 

the precipitated secreted proteins.  The supernatant from this protein pellet 

was discarded and the resulting protein was washed twice in ice-cold 

acetone to eliminate the effects of the TCA and change the pH.  The pellets 

were then resuspended in sample buffer (200 mM Tris-HCl, pH 6.8, 8% (w/v) 

SDS, 40% (v/v) glycerol, 0.4% (w/v) bromophenol blue, 400 mM DTT, 10% 

(v/v) βME) using the original doubled optical density so that all samples were 

equivalent to each other in relation to volume.  Samples were then 

corrected for pH using saturated Tris and boiled at 95°C for 5 min before 

being stored at -20°C. 

 
   2.6.7      CPY Invertase Assay- Liquid Colorimetric method 

 
Cells were grown overnight in 10 ml SD –ura -met culture media and 12 

O.D.600  equivalents were harvested at 1060 x g for 2 min.  Pellets were 

resuspended in 94 m M sodium acetate pH 4.9 before being further diluted to 

a final composition of 75 mM sodium acetate pH 4.9.  Cells that were 

assayed for total activity were lysed 5 times by freeze-thawing in a dry 

ice/methanol bath and subsequent placement in a 30°C water bath.  After 

freeze-thawing, 5 µl of 20% (v/v) Triton-X100 was added and the samples 

were vortexed briefly before being placed in a 30°C water bath.  When the 

samples had reached 30°C, 0.5 M sucrose was added and they were 

incubated in the water bath for 30 min at which time a stop solution of 0.2 M 

K2HPO4 was added.  After the addition of the stop solution, samples were 

placed in a boiling water bath for 3 min and then placed on ice.  Samples 

were then replaced into the 30°C water bath and Glucostat Reagent (0.1 M 

potassium phosphate pH 7.0, 1000 U/ml glucose oxidase in PBS, 1 mg/ml 

HRP, 20 mM NEM, 10 mg/ml O-Dianisidine) was added and allowed to 

incubate in the water bath for 30 min.  After 30 min, 6 N HCl was added to 

stop the reaction and absorbance measured at 540 nm. 

 
2.6.8     Complementation by spot plate method  

 
Cells were grown overnight in 10 ml selective medium (SD –ura -met) and 10 

O.D.600  equivalents were collected.  Samples were then diluted using culture 

medium to 1, 0.1, 0.01, and 0.001 O.D.600  equivalents and vortexed to 
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ensure homogenous dilutions.  SD –ura -met plates and SD –ura -met plates 

that contained 1.5 M KCl were then inoculated using a grid pattern and 

incubated for 72 hrs at either 30°C or 39.5°C.   
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Chapter 3:  Endogenous Levels of Syntaxin 16 and  
                    mVPS45 in Adipocytes 

 
 

3.1 Introduction 
 
 

3.1.1 The location of Syntaxin 16 and mVps45 
 

Syntaxin 16 is a functional t-SNARE located at the TGN and responsible for 

early endosomal to TGN transport (Yamaguchi et al., 2002).  It forms a SNARE 

complex with the t-SNAREs Syntaxin 6 and Vti1a and has been shown to 

translocate to the PM in response to insulin stimulation (Proctor et al., 2006).  

Vps45 is an SM protein located at the TGN and found to bind to Syntaxin 16 

(Dulubova et al., 2002).  These proteins are both found at the TGN of 3T3-L1 

adipocytes.  In this chapter we determine the levels of Syntaxin 16 and 

mVps45 in the locations where they are found in adipocytes. 

 

3.1.2 Interactions between Syntaxin 16 and mVps45 
 
Studies in yeast have revealed that the syntaxin 16 homologue Tlg2p binds the 

yeast SM protein Vps45p (Dulubova et al., 2002) and that this Tlg2p/Vps45p 

binding mode is conserved in mammalian Syntaxin 16 and mVps45.  Syntaxin 

16 has been found to bind to mVps45 via an N-terminal peptide motif 

(Dulubova et al., 2002).  In addition, Yamaguchi also found that Syntaxin 16 

and mVps45 bind directly to each other (Yamaguchi et al., 2002).  This 

binding interaction implies that SNAREs and SM proteins perform active roles 

in membrane fusion while forming part of the same complex. In this chapter 

we assess binding of mVps45 and Syntaxin 16 by immunoprecipitating these 

proteins. 

 
3.1.3 The effects of insulin stimulation on endogenous levels of Syntaxin  
         16, mVps45 and their interaction 
 
Several studies have suggested that the action of Syntaxin 16 may control the 

insulin-responsiveness of adipocytes.  Shewan found that insulin caused a 

significant redistribution of Syntaxin 16 from intracellular membranes to the 

PM (Shewan et al., 2003).   Perera also found that acute insulin stimulation 

reduced the phosphorylation state of Syntaxin 16 by nearly half (Perera et al., 
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2003) which may regulate GLUT4’s ability to enter the GSVs.  Furthermore, 

Proctor and colleagues suggested that Syntaxin 16 functions to control the 

entry of GLUT4 into the slow recycling pathway which regulates the insulin 

responsiveness of adipocytes (Proctor et al., 2006).   

 

The effects of insulin stimulation on the action of mVps45 have not been 

established in the literature and in this chapter, we quantify the levels of 

mVps45 in insulin-stimulated membrane and cytosol.  Similarly, while 

Dulubova and others have reported the binding mode used by Syntaxin 16 to 

interact with mVps45 (Dulubova et al., 2002; Yamaguchi et al., 2002), the 

binding of these partners has not been reported in cells which were insulin-

stimulated.  In this study, we examine the ability of mVps45 and Syntaxin 16 

to bind under insulin-stimulated conditions. 

 

 
3.2 Aims 
  

This first chapter investigates two important questions relating to the 

hypothesis that mVps45 interacts with Syntaxin 16 in the absence of insulin 

which allows GLUT4 to traffic into the slow cycle, shown in Figure 1.2.  First, 

quantification experiments in fibroblasts, differentiated 3T3-L1 adipocytes 

and rat primary adipocytes answer the question of whether mVps45 and 

Syntaxin 16 are present in stoichiomeric amounts.  The chapter goes on to 

answer the question of whether insulin stimulation alters the interaction 

between Syntaxin 16 and mVps45.  Immunoprecipitation experiments are used 

to determine if the interaction of Syntaxin 16 and mVps45 is regulated by 

insulin. 

 

 
3.3 Results 
 
 

3.3.1 Construction and purification of mVps45 
 
mVps45 recombinant protein was synthesized using a protein expression 

vector designed to express mammalian Vps45 in bacteria.   This construct was 

made by PCR amplifying the full length cDNA of rat mVps45 from the plasmid 

pCMV-Vps45 (generously donated by Dr. Piper, a plasmid containing the full 

length mVps45 in pALTER-MAX, see appendix for plasmid maps) as a template 
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and utilising the primer set Vps45 His (see Materials and Methods for 

sequence) in which restriction sites for Kpn I and Sph I were engineered.  This 

PCR product was cloned into the TA shuttle vector pCR2.1 (see appendix for 

plasmid map).  Once successfully incorporated into the shuttle vector, clones 

were selected and the resulting DNA was then digested with Kpn I and Sph I 

(restriction sites known to be in the MCS of the destination protein expression 

vector pQE-30).  This product was ligated into the 6X His-tagged protein 

expression vector pQE-30 and expressed in BL-21 (DE3) cells from which the 

expressed protein was purified as described in Materials and Methods.  Figure 

3.1 illustrates this process.  

 
 

 
 
           
 

Figure 3.1 The Construction of pCMV-mVps45 
Rat mVps45 was PCR amplified using primers engineered to clone into the N-terminal His-
tagged expression vector pQE-30. The PCR product was A-tailed and subcloned into the TA 
shuttle vector pCR2.1 before being ligated into pQE-30.  The construct was transformed into 
BL-21 (DE3) E. coli cells and purified using a Nickel-NTA method. Additional details of pCR2.1 
and pQE-30 can be found in the Appendix. 
 

 
 
 
 
 
 
 
 
 
 
 
 

4 
5 
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Figure 3.2 The Purification of mVps45 
mVps45 was purified using the Nickel-NTA method as described in Section 2.3.1.  The protein 
was run on an SDS-PAGE gel and Coomassie stained.  Lane 1: Marker, Lane 3: mVps45 (25 
µg) purified and shown to run at 67 kDa, Lane 5: Marker. 
 
 
This recombinant protein was subjected to SDS-PAGE which was then 

Coomassie stained to assess yield and that the protein was properly 

synthesized.  As Figure 3.2 shows, mVps45 was found to be at the correct 

molecular weight of 67 kDa and yielded a major band with only minor 

degradation products (which could be removed by dialysis).   

 

    3.3.2 Purification of Syntaxin 16 
 
After the synthesis of mVps45, the SM protein studied in this work, 

recombinant protein of its cognate syntaxin was also necessary to study 

functional interactions.  Syntaxin 16 was expressed in bacteria from the 

plasmid pALA001 (a protein-A tagged version of Syntaxin 16A, see section 

2.1.4) as described in Materials and Methods.  As Figure 3.3 illustrates, 

protein run on an SDS-PAGE gel yields a major band just above the 25 kDa 

molecular weight marker, corresponding to the molecular weight of Syntaxin 

16 (32 kDa). 
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Figure 3.3 The Purification of Syntaxin 16  
Marker, Lane 1: Syntaxin 16-PrA bound to beads, Lane 2: Syntaxin 16-PrA cleaved from beads, 
Lane 3: Syntaxin 16 cleaved from Protein A Tag, Lane 4: Residual protein A tag, Lane 5: Beads 
alone   Each lane is loaded with 20 µg total protein. Additional information about pALA001 in 
pETDuet-1 can be found in the Appendix. 
 
 
 3.3.3 Changes in Intracellular Protein Levels upon 3T3L1 Cell  
          Differentiation 
 
After synthesis of mVps45 and Syntaxin 16 recombinant protein for use as 

tools in understanding more about the interaction of mVps45 and Syntaxin 16, 

the target cell under study, the 3T3-L1 adipocyte, was assessed for 

differences in differentiation.  First, we looked at basic morphological 

changes in the cells upon differentiation under basal conditions.  Oil Red O 

staining revealed that fibroblasts assumed the same basic morphology as other 

fibroblast lineages.  However, when these fibroblasts were exposed to 

differentiation factors such as methylisobutylxanthine (IBMX or MIX), 

dexamethasone, insulin and serum, they differentiate into a phenotype 

resembling mature white fat cells.  While induction is necessary to convert 

these fibroblasts into adipocytes, it is not required to maintain these cells as 

adipocytes which can be taken as evidence that gene upregulation is the 

cause of this phenotypic change.   MIX, a phosphodiesterase inhibitor, is 

thought to function through increasing cAMP accumulation and has been 

shown to increase C/EBP-β expression which is required for subsequent PPARγ 

expression.  Dexamethasone, a synthetic glucocorticoid which induces PPARγ 

expression is also necessary to activate genes required for the adipocyte 

conversion. Insulin, in supraphysiological concentrations which do not increase 

the number of differentiated adipocytes but accelerates the accumulation of 
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lipid, and serum which contributes growth factors are also necessary for 

induction.  CCAAT-enhancer binding protein-α (C/EBPα) and Peroxisome 

proliferator-activated receptor γ (PPARγ) transactivate adipocyte specific 

genes and the substances used for induction directly affect the activation of 

these two molecules.  Committed pre-adipocytes undergo clonal expansion 

and growth arrest prior to differentiation but studies have shown that it is the 

growth arrest rather than any contact inhibition that is vital for 

differentiation to occur (Gregoire et al., 1998).   

 

 

 
 
 

Figure  3.4 Oil Red O Staining of basal cells.   
3T3-L1 adipocytes are a useful cell line for studying adipocyte biology because they are rapidly 
converted from a fibroblast-like cell lineage to a differentiated adipocyte phenotype.  
Differentiation requires the fibroblasts to be incubated with Insulin and other co-factors such as 
IBMX and dexamethasone in the presence of serum to shuttle cells into the adipocyte 
phenotype where they progressively accumulate lipid droplets.  Shown here, 3T3-L1 fibroblasts 
share the same morphology of other fibroblast cells.  Once differentiated, they exhibit the 
behaviours of adipocytes and collect lipid in their vacuole after they have undergone clonal 
expansion and growth arrest.  In KD cells, lipid accumulation is decreased compared to 
wildtype.  In this figure: L-R: Fibroblast, WT differentiated 3T3-L1, KD differentiated 3T3-L1. 
Cells were fixed onto slides, stained with Oil Red O and counterstained with Mayer’s 
hematoxylin and imaged under a light microscope under 63X Oil magnification. 

 
 

In Figure 3.4, basic fibroblast morphology is clear in the left panel.  However, 

upon induction with differentiation agents, fibroblasts assume an adipocyte 

phenotype and lipid rapidly accumulates.  Oil red O staining shows these 

accumulated lipids in red in the middle panel of Figure 4.3 (the nucleus has 

been counterstained as a positional landmark in blue).  Interestingly, 

knockdown of mVps45  in fibroblasts that were later differentiated into 

adipocytes shows a slight decrease in the size and number of lipid droplets 

(shown in the right panel, Figure 3.4), the effects of mVps45 knockdown will 

be discussed in detail in Chapter 5.   
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After assessing the basic morphological changes in basal cells when fibroblasts 

are converted to adipocytes by Oil Red O staining, fibroblasts and adipocytes 

were made into lysates and were subjected to immunoblot analysis.  mVps45, 

Syntaxin 16 and GLUT4 protein levels were analysed in Figure 3.5 for changes 

upon differentiation.  As shown in the top panel of Figure 3.5, GLUT4 is not 

present in fibroblasts but is expressed in differentiated adipocytes.  Shewan 

and colleagues have reported that 3T3-L1 cells have a characteristic ability to 

form insulin responsive GLUT4 compartments after adipocyte differentiation 

(Shewan et al., 2003).  Shewan found that the levels of Syntaxin 16 increased 

more than 2.5 fold upon differentiation. Here, in the third panel of Figure 

3.5, we report similar results. 

 
 

 
 
 

Figure 3.5 Differentiation of 3T3-L1 Adipocytes causes changes in cellular protein levels 
Two sets of 3T3-L1 fibroblasts were grown until 70% confluent.  For the first set, whole cell 
lysates were prepared as described in Materials and Methods and immunoblotted for the 
proteins GLUT4, mVps45, Syntaxin 16 and GAPDH.  For the second set, cells were allowed to 
divide until growth arrest resulting from contact inhibition, then differentiated as described 
previously into mature adipocytes. Whole cell lysates were then prepared from these 
adipocytes. Fibroblast and adipocyte samples (25 micrograms) were separated on SDS-PAGE 
gels and immunoblotted for the above proteins.  The data above are typical of several 
experiments of this type. 

 
 

We also assessed the differences in mVps45 levels upon adipocyte 

differentiation in an effort to discover whether the SM protein binding partner 

for this t-SNARE would also increase in a similar manner.  Here, in the second 
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panel of Figure 3.5 we show that mVps45 does increase upon adipocyte 

differentiation but not with the same fold increase as Syntaxin 16.  Later in 

this chapter, this finding becomes apparent when discussing whether mVps45 

and Syntaxin 16 are present in stoichiomeric amounts.  GAPDH was used as a 

loading control. 

 
3.3.4 Expression of Syntaxin 16 in Adipocytes 
 
Once expression in adipocytes had been analysed and compared to levels in 

fibroblasts, quantification of these levels was performed.  As mentioned 

above, Syntaxin 16 in basal adipocytes shows an increase in expression levels 

when compared to fibroblasts.  These levels were quantified in Figure 3.6 by 

comparing known quantities of differentiated basal membrane from 3T3-L1 

adipocytes (20 and 50 µgs) against a standard curve of microgram quantities 

of recombinant Syntaxin 16 (described in Section 3.3.2 and shown in Figure 

3.3).  Figure 3.6 also shows immunoblots of GLUT4, the glucose transporter 

involved in glucose uptake, and mVps45, the binding partner of Syntaxin 16.  

GAPDH was used as a loading control.   

 

 
 
 
 

Figure 3.6 Quantification of the levels of Syntaxin 16 in membranes from basal cells. 
Syntaxin 16 recombinant protein was purified as previously described and loaded in known 
amounts onto SDS-PAGE gels in a dose-dependent manner.  This standard curve was later 
used to quantify the amount of Sytaxin 16 present in basal differentiated 3T3-L1 membrane 
protein.  Also shown are representative immunoblots of known amounts of 3T3-L1 membranes.  
The antibodies used are indicated along with the approximate position of the molecular weight 
marker at the right of the figure.  Data from one representative immunoblot with each antibody is 
shown, repeated three times with different samples of 3T3-L1 adipocyte membranes. 
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The information gained from this quantitation experiment is reported in Table 

3.1 both as copies of Syntaxin 16 per microgram of membrane protein and 

copy number per cell.   

 

3.3.5 Expression of mVps45 in Adipocytes 
 
After quantifying the levels of Syntaxin 16 in basal membranes, the levels of 

mVps45 in basal membranes were also examined.  Unlike Syntaxin 16, a t-

SNARE that is membrane bound, mVps45 is present both in membranes and 

cytosol in differing amounts depending on insulin stimulation.  In Figure 3.7a, 

basal levels of mVps45 both in the cytosol and in membranes were quantified 

using the same method as before. A standard curve using recombinant mVps45 

protein (discussed in Section 3.3.1 and shown in Figure 3.2) in known 

microgram quantities (the same values as in the Syntaxin 16 standard curve) 

was used to quantify 20 and 50 µg quantities of both basal cytosol and basal 

membrane fractions from 3T3-L1 adipocytes.  In the basal state, mVps45 is 

expressed at lower levels in the cytosol compared to levels in basal 

membranes. The quantification data is listed in Table 3.1. 

 

 

 
 

 
 
 
 

Figure 3.7a Quantification of the levels of mVps45 in 3T3-L1 membranes and cytosol 
from basal cells. 
mVps45 recombinant protein was purified as previously described and loaded in known 
amounts onto SDS-PAGE gels in a dose-dependent manner.  This standard curve was later 
used to quantify the amount of mVps45 present in basal differentiated 3T3-L1 membrane 
protein as well as basal cytosol fractions.  Also shown are representative immunoblots of known 
amounts of 3T3-L1 membranes and cytosol.  The antibodies used are indicated along with the 
approximate position of the molecular weight marker at the right of the figure.  Data from one 
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representative immunoblot with each antibody is shown, repeated three times with different 
samples of 3T3-L1 adipocyte membrane and cytosol extract.  Note that for the mVps45 
samples, all samples were loaded on the same gel, but are presented above as different 
exposures for clarity. 

 
 

 

 
 
 
 
 
 
 

Figure 3.7b Quantification of the levels of mVps45 in 3T3-L1 membranes and cytosol 
from Insulin-stimulated cells 
mVps45 recombinant protein was purified as previously described and loaded in known 
amounts onto SDS-PAGE gels in a dose-dependent manner.  This standard curve was later 
used to quantify the amount of mVps45 present in insulin-stimulated differentiated 3T3-L1 
membrane protein as well as insulin-stimulated cytosol.  Also shown are representative 
immunoblots of known amounts of 3T3-L1 membranes and cytosol.  The antibodies used are 
indicated along with the approximate position of the molecular weight marker at the right of the 
figure.  Data from one representative immunoblot with each antibody is shown, repeated three 
times with different samples of insulin-stimulated 3T3-L1 adipocyte membrane and cytosol 
extract. Note that for the mVps45 samples, all samples were loaded on the same gel, but are 
presented above as different exposures for clarity. 
 
 
In Figure 3.7b, adipocytes were stimulated with 1µM Insulin for 20 min and 

cytosol and membrane fractions were prepared.  A standard curve of known 

quantities of mVps45 recombinant protein was used to compare 20 and 50 µg 

quantities of insulin-stimulated cytosol and membrane protein from 3T3-L1 

adipocytes.  In the insulin-stimulated state, it would appear that there is a 

slight increase in the amount of mVps45 present in the cytosol.  This increase 

could be explained by the role of mVps45 in translocation events. It is 

important to note that in both the basal (Figure 3.7a) and insulin-stimulated 

state, GLUT4 and Syntaxin 16 are not present in the cytosolic fraction. Data 

from this experiment (from Figures 3.7a and b) are reported in Table 3.1 in 
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terms of copy number per cell and copy number per µg of cytosol and µg of 

membrane. 

 
 
3.3.6 Levels of Syntaxin 16 and mVps45 in Fibroblasts 
 
In section 3.3.3 it was reported that protein expression levels of Syntaxin 16 

and mVps45 in fibroblasts differed greatly to those in differentiated 

adipocytes (see Figure 3.5).  In an effort to understand and quantify these 

differences, the protein quantities in 20 and 50 µg of fibroblast lysate was 

compared against a standard curve of recombinant Syntaxin 16 protein to 

assess the levels of Syntaxin 16 in fibroblasts and to then compare this 

amount to what was seen in differentiated 3T3-L1 adipocytes. Quantitative 

data from this experiment is listed in Table 3.1 as copies per µg of fibroblast 

lysate. 

 

 
 
 

Figure 3.8a Quantification of the levels of Syntaxin 16 in 3T3-L1 fibroblast cells 
Syntaxin 16 recombinant protein was purified as previously described and loaded in known 
amounts onto SDS-PAGE gels in a dose-dependent manner.  This standard curve was later 
used to quantify the amount of Syntaxin 16 present in 3T3-L1 fibroblast cells.  Also shown are 
representative immunoblots of known amounts of 3T3-L1 fibroblast lysate.  The antibodies used 
are indicated along with the approximate position of the molecular weight marker at the right of 
the figure.  Data from one representative immunoblot with each antibody is shown, repeated 
three times with different samples of 3T3-L1 fibroblast lysate. 
 
 
Similarly, the levels of mVps45 in fibroblasts were assessed by comparison of 

20 and 50 µg quantities of fibroblast lysate against a standard curve of 

recombinant mVps45 protein (shown below in Figure 3.8b).  The quantitative 
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results of this experiment are shown in Table 3.1 as copies per µg of fibroblast 

lysate.  

  

 
 
 
 
 
 

Figure 3.8b Quantification of the levels of mVps45 in 3T3-L1 fibroblast cells 
mVps45 recombinant protein was purified as previously described and loaded in known 
amounts onto SDS-PAGE gels in a dose-dependent manner.  This standard curve was later 
used to quantify the amount of mVps45 present in 3T3-L1 fibroblast cells.  Also shown are 
representative immunoblots of known amounts of 3T3-L1 fibroblast lysate.  The antibodies used 
are indicated along with the approximate position of the molecular weight marker at the right of 
the figure.  Data from one representative immunoblot with each antibody is shown, repeated 
three times with different samples of 3T3-L1 fibroblast lysate. 
 
 
3.3.7 Levels of Syntaxin 16 and mVps45 in Rat Primary Cells 
 
So far in this study, protein expression in adipocytes has been analysed using 

cultured 3T3-L1 adipocytes.  It is possible that results may differ in primary 

cells.  In order to determine if there are differences in protein levels between 

the use of an immortalized cell line in an in-vitro system and isolated primary 

cells, rat adipocytes were isolated from male Sprague-Dawley (SD) rats and 

whole cell lysates were prepared (as described in Materials and Methods).  

These lysates (20 and 50 µg) were first compared against a standard curve of 

known quantities of recombinant Syntaxin 16 protein (as shown in Figure 

3.9a).  The quantitative results of this experiment are shown in Table 3.1 as 

copies per µg of rat adipocyte lysate.  Next, 20 and 50 µg of these lysates 

were compared against a standard curve of known quantities of recombinant 

mVps45 protein (shown in Figure 3.9b).  The quantitative results of this 

experiment are shown in Table 3.1 as copies per µg of rat adipocyte lysate. 
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Figure 3.9a Quantification of the levels of Syntaxin 16 in rat primary adipocytes 
Syntaxin 16 recombinant protein was purified as previously described and loaded in known 
amounts onto SDS-PAGE gels in a dose-dependent manner.  This standard curve was later 
used to quantify the amount of Syntaxin 16 present in primary rat adipocytes.  These adipocytes 
were isolated from SD rats and whole cell lysates were prepared as described in Materials and 
Methods.  Also shown are representative immunoblots of known amounts of rat primary 
adipocytes.  The antibodies used are indicated along with the approximate position of the 
molecular weight marker at the right of the figure.  Data from one representative immunoblot 
with each antibody is shown, repeated three times with different samples of rat primary lysate. 
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Figure 3.9b Quantification of the levels of mVps45 in rat primary adipocytes 
mVps45 recombinant protein was purified as previously described and loaded in known 
amounts onto SDS-PAGE gels in a dose-dependent manner.  This standard curve was later 
used to quantify the amount of mVps45 present in primary rat adipocytes.  These adipocytes 
were isolated from SD rats and whole cell lysates were prepared as described in Materials and 
Methods.  Also shown are representative immunoblots of known amounts of rat primary 
adipocytes.  The antibodies used are indicated along with the approximate position of the 
molecular weight marker at the right of the figure.  Data from one representative immunoblot 
with each antibody is shown, repeated three times with different samples of rat primary lysate. 
 

 
 

3.3.8 Analysis of Endogenous Syntaxin 16 and mVps45 expression using  
         the Standard Curve Method and Calculation of Copy Number per  
         Cell 
 
Once all of the samples had been compared to their corresponding standard 

curves, the immunoblots were analysed and densitometric data was collected 

(See Materials and Methods, Section 2.3.6).   
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Table 3.1 Quantification of SNARE protein levels  
Estimated levels of the indicated proteins are shown above.  In this analysis the diameter of the 
dishes employed was 100 mm, and these contained ~1 X 107 cells per dish. 
 
 
Densitometry values for each lane of the standard curve were used to plot the 

20 and 50 µg values for each experiment.  After this value was determined, 

approximations of the amount of protein in the samples (2500 µg for 

membrane, cytosol and adipocytes, 1250 µg for fibroblasts) was divided 

against the quantity of protein blotted (20 or 50 µg).  This value was 

converted to the amount in 10 million cells before being divided by the 

molecular weight of the protein (32,000 for Syntaxin 16 and 67,000 for 

mVps45).  This value was reported as the copies per microgram.  To obtain 

the copies per cell, this number was multiplied by Avogadro’s number and 

divided by the estimated number of cells in the sample (10 million).  The 
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quantification results of the experiments shown in Figures 3.6-3.9 are listed in 

Table 3.1 above. 

 

These data reveal that the total mVps45 levels (i.e. copies per cell in 

membrane fraction + copies per cell cytosol) are broadly similar to that of 

Sx16, as would be predicted if this SM protein acts together with the cognate 

syntaxin. Levels of Sx16 are clearly increased during differentiation from 

fibroblasts to adipocytes, as is also the case for mVps45. Interestingly, the 

levels of mVps45 and Sx16 expressed per microgram of membrane are broadly 

similar in rat adipocytes, consistent with the notion that these two proteins 

interact functionally. 

 
 

3.3.9 The Co-Immunoprecipitation of Syntaxin 16 and mVps45 
 
While quantification of the levels of Syntaxin 16 and mVps45 tested the 

hypothesis that they were present in roughly stiochiomeric amounts, it was 

imperative to discover whether there is a binding interaction between 

Syntaxin 16 and mVps45.  In order to test the second part of the hypothesis 

co-immunoprecipitation experiments were performed.  These experiments 

shed light on the hypothesis that in basal conditions mVps45 binds to Syntaxin 

16 thereby allowing Glut4 into the slow cycle and upon insulin stimulation 

mVps45 does not bind Syntaxin 16 and therefore cannot enter into the slow 

recycling pathway. 

 
 

 
 
 
 
 

Figure 3.10a Syntaxin 16 Co-Immunoprecipitates with mVps45 
Immunoprecipitation lysates were prepared from basal and insulin-stimulated 3T3-L1 
differentiated adipocytes as described in Materials and Methods.  These lysates were incubated 
with Syntaxin 16 antibody and immunoblotted with an antibody against mVps45.  Inputs are 
lysate supernatants. Random IgG antibody was also incubated with basal and insulin-stimulated 
lysates as a control for binding.   
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In Figure 3.10a, shown above, basal and insulin-stimulated lysates were 

immunoprecipitated with Syntaxin 16 antibody and immunoblotted against an 

antibody specific to mVps45.  In these experiments random IgG was used as a 

control for binding.  It is clear from this experiment that Syntaxin 16 and 

mVps45 interact under basal conditions.  

 

 
 
 
 

Figure 3.10b mVps45 Co-Immunoprecipitates with Syntaxin 16 
Immunoprecipitation lysates were prepared from basal and insulin-stimulated 3T3-L1 
differentiated adipocytes as described in Materials and Methods.  These lysates were incubated 
with mVps45 antibody and immunoblotted with an antibody against syntaxin 16.  Random IgG 
antibody was also incubated with basal and insulin-stimulated lysates as a control for binding 
 
 
When the converse co-immunoprecipitation experiment was performed (as 

shown in Figure 3.10b above), it is clear that Syntaxin 16 and mVps45 are able 

to bind in basal conditions, once again validating the hypothesis that mVps45 

can bind Syntaxin 16. Insulin did not appear to modulate these interactions. 

 
 

3.4 Discussion 
 
 

In this first chapter, the hypothesis that mVps45 and Syntaxin 16 are present 

in stoichiomeric amounts and that mVps45 can bind to Syntaxin 16 was tested.   

 

Shewan and colleagues found that Syntaxin 16 was upregulated significantly 

during adipocyte differentiation (Shewan et al., 2003).  In Figure 3.5, we 

confirm these results since there is an increase in Syntaxin 16 protein levels as 

fibroblasts are differentiated into adipocytes.  We also show that mVps45 

levels appear to be upregulated in tandem with Syntaxin 16.  These data are 

consistent, and suggest that mVps45 and Sx16 function is enhanced during the 

adipocyte differentiation process by increasing the absolute levels of these 

two proteins. 
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We then quantified the levels of Syntaxin 16 and mVps45 in adipocytes.  

Hickson and colleagues examined the SNARE complex involved in exocytosis of 

GLUT4 in response to insulin to determine whether any of the associated 

proteins were rate limiting to the formation of a SNARE complex and 

subsequent fusion of GLUT4 vesicles with the plasma membrane (Hickson et 

al., 2000). In this study, we quantified the t-SNARE associated with GLUT4 

intracellular trafficking (Syntaxin 16) and its cognate SM protein mVps45 in 

order to test whether one of these proteins was present in significantly 

disproportionate amounts and was thus rate limiting to the sorting of GLUT4 

into GSVs.  When we quantified these levels (Figures 3.6-3.9) we found that 

levels of Syntaxin 16 and mVps45 were present in roughly stoichiomeric 

amounts and also the levels in rat primary adipocytes were similar.  

 

When we quantified the levels of Syntaxin 16 in basal membranes we 

calculated a cell copy number of over 600,000 molecules of Syntaxin 16 per 

3T3-L1 adipocyte.  This value is broadly in keeping with the membrane fusion 

t-SNARE values that Hickson obtained (Hickson et al., 2000).  When this value 

is compared with the values calculated for mVps45 (which is present in both 

basal membrane and cytosol) in 3T3-L1 adipocytes, it shows that these two 

molecules are present in stoichiomeric quantities which suggests that their 

interaction is important for membrane fusion in adipocytes.     

 

Quantification of the levels of Syntaxin 16 and mVps45 in fibroblasts (as 

reported in Table 3.1) indicate when compared to values reported for 

adipocytes that the copies of both Syntaxin 16 and mVps45 increase upon 

adipocyte differentiation. This result confirms the qualitiative findings in 

Figure 3.5 that show that both Syntaxin 16 and mVps45 increase upon 

adipocyte differentiation and is in keeping with the findings of Shewan et al 

which found that Syntaxin 16 increased upon adipocyte differentiation 

(Shewan et al., 2003).  The increase in copy number for both Syntaxin 16 and 

mVps45 suggests that these two proteins are important in differentiated 

adipocytes.   

 

When we quantified the levels of Syntaxin 16 and mVps45 in isolated rat 

primary adipocytes we found that they were present in similar levels, which is 

consistent with the data from differentiated 3T3-L1 adipocytes indicating that 
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they are present in roughly similar amounts.  The idea that Syntaxin 16 and 

mVps45 are present in stoichiomeric amounts in both 3T3-L1 adipocytes and 

primary cells suggests that they interact functionally in adipocytes. 

 

In this chapter we also examined the hypothesis that Syntaxin 16 and mVps45 

interact in the basal state but are dissociated when 3T3-L1 adipocytes are 

insulin-stimulated.  We tested this binding interaction between Syntaxin 16 

and mVps45 by performing immunoprecipitation experiments.  In these 

experiments we showed that in basal conditions Syntaxin 16 and mVps45 are 

able to bind, indicating that the first portion of this hypothesis may be 

correct.  In lanes which show Syntaxin 16 and mVps45 interaction in insulin-

stimulated conditions, we found that there is a clear interaction still present 

upon insulin-stimulation and so it appears that insulin does not modulate this 

interaction, or if it does, then the modulation is too subtle to be revealed 

using this approach.    



 

 
 
 
 
 
 
 
 
 
 
 
Chapter 4: The Yeast Model in Understanding  
                   mVps45 Function 
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Chapter 4: The Yeast Model in Understanding  
                   mVps45 Function 
 
 
4.1 Introduction 
 
 

4.1.1 Homology between Yeast and Mammalian Vps45 
 
Yeast can be used as a model system to study the function of mVps45. Yeast 

work is experimentally tractable and membrane trafficking has been 

conserved in both yeast and mammalian cells. Although mVps45 was identified 

as a mammalian homologue of Vps45, it remains unknown whether mVps45 

can complement the Vps45 deletion, and is therefore a true functional 

homologue. This chapter sets out to determine whether this is the case. If so, 

then mutants of mVps45 could be generated, based upon known mutations in 

the yeast isoform. 

 
 
4.1.2 Complementation between the behaviour of Vps45p and  
 mVps45 
 
To test if mVps45 is a functional homologue of Vps45p, mammalian Vps45 was 

expressed in yeast cells lacking endogenous Vps45p and tested for 

complementation.  If the yeast cells could function as expected using the 

mammalian Vps45 and thus complement for the loss of the endogenous yeast 

Vps45 then mVps45 would be considered to be a functional homologue of 

Vps45p. 

 

Several studies in this lab have employed the use of the yeast expression 

vector pVT102u to drive expression of various proteins of interest.  In this 

study, however, we have used a plasmid containing a less strongly expressing 

promoter than pVT102u since over-expression of mVps45 might mask true 

functional differences in complementation.  pVT102u uses the ADH1 promoter 

which is constitutively active and thus would generate very high expression 

levels which could lead to excessive levels of Vps45 being produced.   
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4.1.3 Use of yeast mutants to screen for mVps45 function 
 
Mutants of mVps45 can be generated based upon homology modeling with 

yeast Vps45p.  Vps45p binds Tlg2p via an NH2-terminal peptide of the syntaxin 

inserting into a hydrophobic pocket on the outer face of domain I of Vps45p.  

In the related SM protein, Sly1p, this hydrophobic pocket is formed by five 

residues of Sly1p (L137, L140, A141, I153, and V156) that surround F10 of 

Sed5p (the cognate syntaxin) (Munson and Bryant, 2009).  Sequence alignment 

of Vps45p and Sly1p indicates that four of these residues are conserved, with 

the fifth residue, I153, being replaced by a valine in Vps45p.  Mutation of 

these residues results in a pocket-fill mutant that abrogates Vps45p function 

(Carpp et al., 2006).  In addition, a version of Vps45p carrying a single amino 

acid substitution (W244R) exerts a dominant-negative effect on the sorting of 

CPY (Carpp et al., 2006).   This chapter also describes the generation of 

mutants of the equivalent residues in mVps45, and an analysis of their 

phenotypes when expressed in yeast lacking Vps45p (VPS45Δ). 

 
 
4.2 Aims 
 

Vps45p and mVps45 are thought to be functional homologues and this chapter 

aims to investigate whether this is the case using a variety of methods.  S. 

cerevisiae depleted of Vps45 are unable to correctly sort the vacuolar 

hydrolase carboxypeptidase Y (CPY), and, instead, a precursor form of the 

protease is secreted from the cell.  This sorting event involves yeast syntaxin 

Tlg2p, the yeast homologue of Syntaxin 16.  In this chapter, we determine 

whether mammalian Vps45 can complement the VPS45Δ by expressing 

recombinant mammalian mVps45 in yeast from a centromeric plasmid and 

assaying CPY secretion.   

 
4.3 Results 
 
 

4.3.1 Construction of the rat recombinant 
 
To express mVps45 in yeast, the mVps45 ORF was placed downstream of the 

VPS45 yeast promoter with approximately 1 kb of flanking sequence both 

upstream and downstream for recombination stability.  Homologous 
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recombination was performed by the standard gap repair method as shown in 

Figure 5.1.   

 
 

 
 
 
 

Figure 4.1 The method of Homologous Recombination allows mammalian Vps45 to be 
                  expressed in yeast 
The yeast expression vector pCog70, here in this digram labelled as YEpVPS45 to denote that 
YEplac195 was subcloned with a Vps45p fragment and the vector contains theVPS45 promoter, 
is ‘gapped’ by restriction digestion also removing the endogenous Vps45 (shown in blue).  The 
PCR product, created by designing primers to amplify the gene of interest (here in red) and 1 
Kb of additional sequence (royal blue) is co-transformed with the vector in yeast cells so that the 
yeast machinery can replace the missing Vps45 (in blue, excised before transformation by 
restriction digestion) with the mammalian copy of Vps45 (red, the gene of interest).  The 
expression plasmid contains a URA3 selection marker (dark red) allowing the transformed 
recombinant to grow on media deficient in uracil.   
 
 
As described in Materials and Methods, YEpVPS45 (pCog70), is a 2 micron yeast 

expression plasmid containing an endogenous version of yeast Vps45p tagged 

with the HA epitope and containing a URA3 selection marker which allows 

growth on uracil deficient media. This vector was linearized by restriction 

digestion, a process which also excised the endogenous coding sequence of 

the yeast Vps45 (Vps45p). This gapped yeast expression vector was co-

transformed into SF838-9D (9Dα) cells with the PCR amplified mammalian ORF 

encoding mVps45.  This PCR product also contained flanking sequences 

homologous to the 3’ end of the VPS45 promoter and the 5’ end of the 3’ UTR 

of pCog70.  The gap repair machinery within the yeast cells homolgously 

Gene of 
Interest 

Flanking sequences 
complementary to the ends of a 

gapped plasmid are added by 
PCR 

A gap is created in the vector by 
restriction digestion. Yeast cells are 
transformed with vector and insert and 
carry out homologous recombination to 
repair the gap 
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recombined the mammalian sequence with the expression plasmid and 

successful transformants grew into colonies on solid media lacking uracil (SD-

ura -met).  Colonies were selected and underwent plasmid rescue after which 

they were transformed into E. coli cells.  Resulting colonies were then 

selected and the DNA isolated and sent for sequencing. (See Materials and 

Methods)   

 
4.3.2 Expression of the recombinant in yeast cells 
 
Once sequencing confirmed that the plasmid contained mammalian Vps45, 

protein extracts from yeast containing the resulting plasmid, YEpmVps45, 

were used to perform immunoblots and these are shown below in Figure 5.2.   

 

 
 
 

Figure 4.2 Mammalian Vps45 expression in transformed yeast cells 
Whole cell lysates (1 O.D.600  equivalent) prepared from 9Dα (SF838-9D) and 9DαΔ45 
(LCY008) cells and 9DαΔ45 cells co-transformed with either empty vector or recombinant 
plasmid were screened for expression of protein levels using immunoblot analysis.  Lane 1: 9Dα 
cells not transformed with any plasmid.  Lane 2: 9DαΔ45 cells not transformed with any 
plasmid.  Lane 3: 9DαΔ45 cells containing the yeast expression plasmid pCog70 (HA-Vps45p).  
Lane 4: 9DαΔ45 cells containing the mVps45 insert that had previously undergone homologous 
recombination, plasmid rescue and sequencing as described. 
 
 
In the upper panel, lysates were subjected to immunoblot analysis using a 

mouse monoclonal antibody against HA (see Antibody table, Materials and 

Methods).  In lane 1, no HA expression is detected in empty 9Dα cells.  

Similarly, in lane 2, no HA is detected in empty 9DαΔ45 cells.  These two 

lanes contained lysates from cells that were not transformed with any plasmid 

so that no HA antigen would be present.  However, in lane 3, these delete 

cells (9DαΔ45) contained the expression vector pCog70, which contained an 

HA-tagged version of endogenous yeast Vps45 (Vps45p) and do show HA 

expression.  Lane 4 shows the signal from yeast expressing HA-tagged mVps45.  
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In the middle panel, lysates were immunoblotted using a rabbit antibody 

against the yeast Vps45 (as described in Materials and Methods, an antibody 

specific to yeast Vps45p).  In lane 1, Vps45p expression in these 9Dα wildtype 

cells is shown.  These wildtype cells harbour endogenous Vps45p and the level 

of protein expression from these cells is shown.   In lane 2, the 9DαΔ45 cells 

have their copy of Vps45p deleted and so there is no expression of Vps45p 

when immunoblotted with the antibody.  Because these yeast delete cells do 

not contain Vps45p, when they are transformed with plasmids containing 

Vps45p, as in Lane 3, expression levels are detected upon immunoblot 

analysis.  Importantly, in lane 4, delete cells not containing Vps45p but 

transformed with the recombinant containing the mammalian copy of Vps45 

(mVps45) do not show expression of the yeast Vps45.  This shows that the 

recombinant did truly lose the copy of endogenous Vps45p contained in the 

yeast expression plasmid pCog70 when it was removed by digestion before 

recombination.  In the last blot, lysates were immunoblotted using a rabbit 

antibody against the mammalian mVps45 (see Materials and Methods for 

description, an antibody specific for mammalian mVps45).  A strong band at 

67 kDa is detected in Lane 4 which contains the recombinant harbouring the 

mammalian copy of Vps45.  This band is not detected in wildtype cells 

containing Vps45p (Lane 1), delete cells which do not contain Vps45 (Lane 2), 

delete cells ‘rescued’ with yeast Vps45p (Lane 3). 

 
4.3.3 Construction of yeast mutants 
 
Site-directed mutagenesis was used to construct mutants using YEpmVps45 as 

a template (as described in Materials and Methods).  A pocket-fill arginine 

mutant, pHA-mVps45-V107R, was constructed using primers Vps45 V107R that 

replaced two base pairs (GTG to CG

 

G) in the Vps45 sequence from a valine 

residue to an arginine.  Similarly, a dominant negative mutant, pHA-mVps45-

W230R, was constructed using primers Vps45 W230R replacing one base pair 

(TGG to CGG) in the sequence from a tryptophan to an arginine residue.  Also, 

a double mutant (pHA-mVps45-Double) containing both mutations was 

constructed using pHA-mVps45-V107R as a template and using the W230R 

primers to mutate the tryptophan.  The mutations were sequenced using 

sequence primers listed in Table 2.1.3, Materials and Methods and subsequent 

expression blots were performed to test the validity of these mutants. 
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4.3.4 Expression of the recombinant and yeast mutants in wildtype and 
         delete cells 
 

 
 
 
 
 

Figure 4.3 HA-tagged Mammalian Vps45 expresses in yeast delete cells 
Whole cell lysates (1 O.D.600  equivalent) prepared from 9Dα (SF838-9D) and 9DαΔ45 
(LCY008) cells and 9DαΔ45 cells co-transformed with either empty vector or recombinant 
plasmid were screened for expression of protein levels using immunoblot analysis.  Lane 1: 9Dα 
cells not transformed with any plasmid.  Lane 2: 9DαΔ45 cells not transformed with any 
plasmid.  Lane 3: 9DαΔ45 cells containing the yeast expression plasmid pCog70 (HA-Vps45p).  
Lane 4: 9DαΔ45 cells containing the mVps45 insert that had previously undergone homologous 
recombination, plasmid rescue and sequencing as described. Lane 5: 9DαΔ45 cells containing 
the pocket-fill arginine mutant V107R (PF).  Lane 6: 9DαΔ45 cells containing the dominant 
negative mutant W230R (DN).  Lane 7: The double mutant in delete cells expresses protein 
levels for HA, Vps45p and mVps45 in a similar manner to the other two mutants. 
 
 
As in the expression blots showing the intial construction of the mammalian 

recombinant, the mutants express the appropriate levels of HA tag and the 

correct version of Vps45.  The upper panel, assessing the levels of HA protein 

expression, shows that empty wildtype and delete cells are a negative control 

for HA expression (see Antibodies, Materials and Methods).  The last 4 lanes, 

all containing lysates from delete cells transformed with plasmids harbouring 

an HA-tag, show appropriate and relatively even levels of protein expression 

for all of the mutants of mVps45 generated. In an immunoblot demonstrating 

the levels of yeast Vps45, it is clear that only the wildtype cells, with their 

copy of endogenous Vps45p, show protein expression when immunoblotted 

with a polyclonal rabbit Vps45 antibody.  Mammalian Vps45 protein levels 

were assessed in these mutants by subjecting the lysates to immunoblot 

analysis with a commercial rabbit mVps45 antibody.  This blot clearly shows 
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that mammalian Vps45 is only detected in delete cells (cells not containing a 

copy of Vps45) transformed with plasmids containing the mammalian copy of 

Vps45.  These lanes (4-7) correspond to the YEpmVps45 plasmid and 

subsequent mutants.  The lower panel shows a loading control which was also 

employed when assessing the level of protein expression in these lysates.  

 

 
4.3.5 CPY Assay- TCA Precipitation 
 
Normal CPY trafficking is a receptor-mediated event.  In wildtype cells, CPY is 

synthesized as a prepro form and is transported across the endoplasmic 

reticulum membrane (Bowers and Stevens, 2005).  In the ER it is cleaved to 

produce the 67 kDa p1 form.  CPY binds the receptor Vps10p and this complex 

is sorted from the late Golgi to the late endosome (Bowers and Stevens, 

2005). CPY then dissociates from Vps10p at the late endosome and is 

transported back to the vacuole where it is cleaved into mature CPY from the 

Golgi-modified p2 form (Bowers and Stevens, 2005).  Vps mutants secrete the 

soluble hydrolase CPY.  Vps45, a class D mutant, exhibits defective vacuolar 

morphology because it forms a single large vacuole that does not extend into 

daughter bud cells. Vacuoles in the mother cells of these mutants appear as 

single large spheres that fail to form segregation structures and buds appear 

to receive little or no vacuolar material from mother cells (Raymond et al., 

1992).  This suggests that nascent vacuolar material produced in these cells 

transiently accumulates as unfused vesicles.  The fact that nearly all mother 

cells possess vacuoles raises the possibility that vacuoles can arise from 

unassembled vacuole precursors in a de novo fashion within daughter cells 

(Raymond et al., 1992). These mutants are unable to generate a pH gradient 

across the vacuolar membrane and fail to assemble peripheral membrane 

subunits of V-ATPase onto the cytoplasmic surface of the vacuole (Raymond et 

al., 1992).  Class D mutants also affect genes that are thought to control 

anterograde vesicular traffic between the late Golgi and the late endosome 

(Horazdovsky et al., 1995). In Vps mutant cells such as this, a portion of the 

p2 form of CPY is secreted from the cell (Bowers and Stevens, 2005).   

 

Since Vps45 mutants contain this secretion defect, this forms a useful model 

in which to test complementation. The CPY secreted from wildtype cells (SF-

838, 9Dα) transformed with empty vector was compared to that of cells 
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lacking the endogenous copy of Vps45p (LCY008, 9DαΔ45) transformed with 

empty vector, the mammalian copy of Vps45 (mVps45), the mammalian 

pocket-fill, dominant-negative or double mutant.  TCA precipitation was used 

to collect the secreted proteins from selective media (SD –ura -met) and these 

proteins were subjected to immunoblot analysis using an antibody specific to 

CPY.              

 

 
 

 
 
Figure 4.4 The TCA Secretion Assay 
TCA precipitation was performed as described in Materials and Methods.  Wildtype and 9DαΔ45 
cells were allowed to double, consequently secreting CPY protein in the process.  Cell cultures 
containing the conditioned media were precipitated for protein content by incubating them with 
TCA.  Collected protein pellets were then normalized for protein levels and immunoblotted for α-
CPY levels using a mouse monoclonal (Clone 10A5) anti-CPY antibody.  (Roederer and Shaw, 
1996) Lane 1: Wildtype cells containing yeast Vps45 transformed with empty vector (EV).  Lane 
2: 9DαΔ45 cells deleted for Vps45 transformed with empty vector (EV).  Lane 3: 9DαΔ45 delete 
cells transformed with the plasmid containing mVps45 (mVps45).  Lane 4: Delete cells 
transformed with pHA-mVps45-V107R, the pocket-fill mutant (PF).  Lane 5: Delete cells 
transformed with pHA-mVps45-W230R, the dominant negative mutant (DN).  Lane 6: Delete 
cells transformed with pHA-mVps45-V107R/W230R, the double mutant (Double).  
 

 
Figure 4.4 reveals that wildtype cells traffic CPY correctly and the CPY has 

been converted to the mature form.  In comparison, the delete cells in lane 2 

which lack VPS45 clearly secrete the p2 form of CPY from the cell.  The 

expression of the mammalian Vps45 reduces CPY secretion of Vps45 delete 

cells to levels seen in wildtype cells.  However, mutants lacking the ability to 

express a functional copy of Vps45, such as the pocket-fill mutant V107R and 

the dominant-negative mutant W230R as wells as a double mutant of both of 

these forms display defective CPY trafficking.  In these lanes (4-6), CPY has 

been secreted out of the cell at levels similar to delete cells transformed with 

empty vector.  This assay shows that mVps45 complements for the loss of 

Vps45p with respect to trafficking of the vacuolar hydrolase CPY and that 

mVps45 mutants cannot restore this function. 
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4.3.6 CPY Invertase Assay- Colorimetric Assay 

 
 

Invertase (β-D-fructofuranoside fructohydrolase) in S. cerevisiae hydrolyzes 

sucrose into glucose and fructose (Darsow et al., 2000).  The invertase gene 

(SUC2) encodes two transcripts with the longer sequence translocating to the 

cell surface from the ER through the Golgi where it is heavily glycosylated and 

the shorter sequence staying in the cytoplasm (Darsow et al., 2000).  Vacuolar 

protein trafficking can be studied by measuring this invertase enzymatic 

activity.  This method measures invertase glycosylation as indicative of ER to 

Golgi transport (Darsow et al., 2000) and because invertase secretion is not 

vital to cell survival cells mutant for CPY sorting secrete CPY-invertase 

allowing these cells to function through sucrose fermentation.  Use of the 

liquid invertase assay quantitates the amount of glucose released by the 

hydrolysis of sucrose by comparing the invertase levels in the secreted 

population with the levels in total cell lysates.  

 

 

 
 
 

 
Figure 4.5 Secretion of Invertase 
Wildtype yeast cells transformed with empty vector and delete cells transformed with empty 
vector, the mammalian copy of Vps45, the mammalian pocket-fill mutant, the mammalian 
dominant-negative mutant and the mammalian double mutant were grown in selective media 
(SD -ura -met) to mid-log phase and were harvested and diluted as described in Materials and 
Methods.  Cells were incubated in 0.5 M sucrose, stopped in K2HPO4 and then incubated in 
glucostat reagent before being read at 540 nm. Data shown represent the mean % Invertase 
secretion +/- SEM from 5 independent experiments. *p< 0.05 by one-way ANOVA compared to 
delete cells. 
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In this assay, glucose oxidase was used to oxidize the glucose released by 

hydrolysis.  This hydrolysis reaction produced hydrogen peroxide which was 

used by peroxidase to oxidize the chromogen o-dianisidine.  The chormogenic 

product was read at 540 nm and the ratios of secreted and total fractions 

were estimated as a percentage of secreted invertase.  As Figure 4.5 shows, 

cells lacking a copy of VPS45 (9DαΔ45) are defective in CPY-Invertase sorting 

and secrete nearly double the amount of invertase as wildtype cells.  In 

contrast, delete cells transformed with the mammalian copy of VPS45 

(mVps45) showed reduced secretion of invertase approximating the levels in 

wildtype.  This ability to rescue CPY-Invertase sorting showed 

complementation of function.  Mammalian mutants however, transformed into 

these delete cells, showed abnormal CPY-Invertase secretion.  Delete cells 

transformed with the mammalian pocket-fill mutant (V107R) showed 

increased secretion compared to the mammalian recombinant (mVps45) but 

functioned better than the dominant-negative mutant (W230R).  Interestingly 

in this assay, the double mutant seems to show a closer phenotype to the 

pocket-fill mutant and shows lower levels of invertase secretion than the 

dominant-negative. This is not necessarily unexpected, since the role of 

Vps45p in protein sorting is likely to be pleiotrophic. 

 

 
4.3. 7 Spot Plate Complementation 
 
 
Yeast grown on media with higher than normal salt concentrations are 

sensitive to osmotic stress when they lack the ability to traffic CPY normally 

(Banta et al., 1988).  In this study, normal growth media (SD –ura -met) was 

supplemented with an additional 1.5M concentration of potassium chloride.  

In order to test whether mVps45 mutants can complement the function of 

Vps45p, yeast cells harbouring both yeast and mammalian genes were grown 

to mid-log phase in selective medium (SD –ura -met) and were spotted onto 

plates containing selective media supplemented with 1.5 M KCl.  Wildtype SF-

8389D (9Dα) cells were transformed with empty vector and were shown to 

grow normally.  Likewise, delete cells lacking the endogenous Vps45p, LCY008 

(9DαΔ45), were transformed with the yeast copy of Vps45, HA-Vps45p, and 

grew at a similar rate to the wildtype.  The addition of the mammalian copy 

of Vps45, mVps45, in these delete cells was able to rescue the ability of the 
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yeast to grow on altered media and shows complementation of function.   As 

expected, delete cells transformed with empty vector displayed an inability 

to cope with added salt and grew poorly in the face of such osmotic stress.  As 

Figure 4.6 shows, the yeast pocket-fill mutant, L117R, transformed into these 

delete cells also showed an inablility to grow in a hyperosmotic environment.  

As others have shown, the mutation of the hydrophobic pocket in these 

mutants causes Vps45p to lose binding ability and thus perturbs the function 

of vacuolar sorting (Carpp et al., 2006). Interestingly however, the 

mammalian version of this mutant, V107R, when transformed into delete 

cells, grows at a similar rate to wildtype.   

 

 

 
 
 
 

 
 
Figure 4.6 Expression of mVps45 pocket-fill mutants complement the osmotic  
                  sensitivity phenotype of Vps45 mutants 
An empty vector was transformed into both wildtype and Vps45 delete cells as a control for 
growth activity.  Delete cells were also transformed with endogenous Vps45, the mammalian 
construct mVps45p, the yeast pocket fill mutant L117R or the mammalian pocket-fill mutant, 
V107R to assess complementation. Cells were grown to mid-log phase in selective medium (SD 
-ura -met) and were then harvested and resuspended at an OD600 of 10 in sterile water.  Serial 
dilutions were performed generating cultures with an OD600 of 10, 1, 0.1, 0.01 and 0.001. 5 µl of 
each culture was spotted onto an SD -ura -met plate containing 1.5 M KCl and grown for 3 days 
at 30°C. 
 
 
In addition to the pocket-fill mutant, the dominant-negative mutant was also 

assayed for complementation using the spot plate method.  In figure 4.7, the 

ability of the mammalian Vps45 recombinant, mVps45, to complement the 

function of the yeast HA-Vps45p was confirmed.  The yeast dominant-

negative, W244R, shows loss of function in high salt conditions.  However, the 

mammalian dominant-negative grows well in hyperosmotic conditions. 
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Figure 4.7 Expression of mVps45 dominant-negative mutants complement the osmotic  
                  sensitivity phenotype of Vps45 mutants 
An empty vector was transformed into both wildtype and Vps45 delete cells as a control for 
growth activity.  Delete cells were also transformed with endogenous Vps45, the mammalian 
construct mVps45p, the yeast dominant-negative mutant W244R or the mammalian dominant-
negative mutant, W230R to assess complementation. Cells were grown to mid-log phase in 
selective medium (SD -ura -met) and were then harvested and resuspended at an OD600 of 10 
in sterile water.  Serial dilutions were performed generating cultures with an OD600 of 10, 1, 0.1, 
0.01 and 0.001. 5 µl of each culture was spotted onto an SD -ura -met plate containing 1.5 M 
KCl and grown for 3 days at 30°C. 
 
 
A double mutant was also assayed on spot plates and as figure 4.8 shows, the 

yeast double mutant again loses function when faced with additional salt 

while the mammalian double mutant grows well on hyperosmotic media.   

 
 

 
 

 
 

Figure 4.8 Expression of mVps45 double mutants complement the osmotic  
                  sensitivity phenotype of Vps45 mutants 
An empty vector was transformed into both wildtype and Vps45 delete cells as a control for 
growth activity.  Delete cells were also transformed with endogenous Vps45, the mammalian 
construct mVps45p, the yeast double mutant L117R/W244R or the mammalian double mutant, 
V107R/W230R to assess complementation. Cells were grown to mid-log phase in selective 
medium (SD -ura -met) and were then harvested and resuspended at an OD600 of 10 in sterile 
water.  Serial dilutions were performed generating cultures with an OD600 of 10, 1, 0.1, 0.01 and 
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0.001. 5 µl of each culture was spotted onto an SD -ura -met plate containing 1.5 M KCl and 
grown for 3 days at 30°C. 
 

 
These results indicate that under hyperosmotic conditions, the mammalian 

Vps45 (mVps45) complements the function of yeast Vps45 (Vps45p).  The 

mammalian mutants (V107R, W230R and double) however, do not show a 

similarity in behaviour and grow well on media supplemented with 1.5 M KCl.  

This lack of complementation can be explained in several ways.  Firstly, it is 

thought that Vps45 acts in different steps in endocytosis and the 

complementation by mVps45 may not be identical in the pathway that is 

assayed in this experiment.  Also, the residues chosen for mutation in the 

mammalian mutants were based on sequence homology to the yeast Vps45 

and it may be that different or additional residues need to be replaced in 

order to show proper complement using this assay.   

 

Similarly, temperature sensitivity was assayed using this experimental 

method.  As Figure 4.9 shows, the mammalian Vps45 complements the 

phenotype of the yeast Vps45 at a non-permissive temperature.  These results 

demonstrate the ability of mVps45 to complement for the loss of Vps45p by 

correcting the trafficking defects displayed in Δ45 mutant cells. 

 

 

 
 

 
 
 

Figure 4.9 Expression of mVps45 pocket-fill mutants complement the temperature  
                  sensitivity phenotype of Vps45 mutants 
An empty vector was transformed into both wildtype and Vps45 delete cells as a control for 
growth activity.  Delete cells were also transformed with endogenous Vps45, the mammalian 
construct mVps45p, the yeast pocket fill mutant L117R or the mammalian pocket-fill mutant, 
V107R to assess complementation based on the fact that Vps45 has the ability to grow 
temperature sensitive mutants. Cells were grown to mid-log phase in selective medium (SD       
-ura -met) and were then harvested and resuspended at an OD600 of 10 in sterile water.  Serial 
dilutions were performed generating cultures with an OD600 of 10, 1, 0.1, 0.01 and 0.001. 5 µl of 
each culture was spotted onto an SD -ura -met plate and grown for 3 days at 39.5°C. 
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Figure 4.10 Expression of mVps45 dominant-negative mutants complement the  
                    temperature sensitivity phenotype of Vps45 mutants 
An empty vector was transformed into both wildtype and Vps45 delete cells as a control for 
growth activity.  Delete cells were also transformed with endogenous Vps45, the mammalian 
construct mVps45p, the yeast dominant-negative mutant W244R or the mammalian pocket-fill 
mutant, W230R to assess complementation. Cells were grown to mid-log phase in selective 
medium (SD -ura -met) and were then harvested and resuspended at an OD600 of 10 in sterile 
water.  Serial dilutions were performed generating cultures with an OD600 of 10, 1, 0.1, 0.01 and 
0.001. 5 µl of each culture was spotted onto an SD -ura -met plate and grown for 3 days at 
39.5°C. 
 

 
 

 
 

 
 
 

 
Figure 4.11 Expression of mVps45 double mutants complement the temperature  
                  sensitivity phenotype of Vps45 mutants 
An empty vector was transformed into both wildtype and Vps45 delete cells as a control for 
growth activity.  Delete cells were also transformed with endogenous Vps45, the mammalian 
construct mVps45p, the yeast double mutant L117R/W244R or the mammalian double mutant, 
V107R/W230R to assess complementation. Cells were grown to mid-log phase in selective 
medium (SD -ura -met) and were then harvested and resuspended at an OD600 of 10 in sterile 
water.  Serial dilutions were performed generating cultures with an OD600 of 10, 1, 0.1, 0.01 and 
0.001. 5 µl of each culture was spotted onto an SD -ura -met plate and grown for 3 days at 
39.5°C. 
 
 
 

 



Chapter 4, 139 

 

Expression of the dominant-negative and double mutants at non-permissive 

temperatures exhibited the same phenotype as the pocket-fill mutant.  As 

figures 4.10 and 4.11 clearly illustrate, mVps45 is able to complement for the 

function of Vps45p.  The mammalian mutants however, do not match the 

phenotype of the yeast mutants and this mismatch in complementation can be 

explained by possibly altering the residues mutated, but even this may not 

remedy the differences in function as it is not a given that mammalian and 

yeast mutants will work in exactly the same way in all assays.    

 
 

 4.3.8 Expression of Tlg2p in mVps45 Mutants 
 
 

 
 
 

 

 

 Figure 4.12 Expression of mammalian Vps45 stabilises cellular levels of Tlg2p, the yeast  
                     homologue of Syntaxin 16 
Cell lysates were prepared from wild-type yeast (SF838-9Dα) harbouring empty vector 
YEpURA3 (Lane 1) and a congenic ∆vps45 yeast strain (LCY008-9DαΔ45) harbouring empty 
vector YEpURA3 (Lane 2), or producing an HA-tagged version of yeast Vps45p (Vps45-HA) 
(Lane 3), an HA-tagged version of the mammalian homologue of Vps45 (mVps45-HA) (Lane 4), 
a putative ‘pocket-filled’ mutant of mVps45-HA (mVps45-HA-V107R) (Lane 5), a putative 
‘dominant-negative’ mutant of mVps45-HA (mVps45-HA-W230R) (lane 6) and a version of 
mVps45-HA containing both ‘pocket-filled’ and ‘dominant-negative’ mutations (mVps45-HA-
V107R/W230R) (Lane 7).  Proteins within the cell lysates were separated using SDS-PAGE 
before being subjected to immunoblot analysis using antibodies specific for Tlg2p and Pgk1p. 
Pgk1p was used as a loading control.   
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Mutation of residues within the hydrophobic pocket of Vps45 disrupts the 

interaction of this SM protein with its cognate syntaxin and results in a 

decrease in Tlg2p cellular levels to ~15 % of wild-type levels (Carpp et al., 

2007).  

In order to assess functional complementation of mammalian Vps45p (mVps45) 

in yeast lacking VPS45 and functionally characterise putative ‘pocket-filled’ 

and ‘dominant negative’ versions of mVps45, yeast cells were transformed 

with mVps45 mutant constructs and lysates prepared for immunoblot analysis 

and probed for the presence of Tlg2p (Figure 4.12). Pgk1p (phosphogycerate 

kinase) was used as a loading control. In wild-type yeast cells transformed 

with an empty vector (lane 1, Figure 4.12), Tlg2p is stable and runs at 

approximately 49 kDa. In Δvps45 yeast transformed with empty vector, Tlg2p 

is rapidly degraded and is not detectable (lane 2). Expression of an HA-tagged 

version of yeast Vps45p in Δvps45 yeast stabilises Tlg2p cellular levels (lane 

3), although not to the levels seen in wild-type yeast. Expression of an HA-

tagged version of mVps45 in Δvps45 yeast stabilises Tlg2p cellular levels 

(lane4) to a similar extent as the yeast HA-Vps45p construct, indicating that 

the mammalian version of Vps45 can protect Tlg2p from degradation and 

suggests a conserved mode of interaction. In yeast, a Vps45p pocket-filled 

mutant (Vps45p-L117R) which causes a disruption of the hydrophobic residues 

that form a pocket on the outer-face of the protein, is unable to interact with 

the N-terminal peptide of Tlg2p (Carpp et al., 2006) and consequently has 

greatly reduced cellular levels of Tlg2p compared to the cells containing wild-

type Vps45p. In contrast, the mVps45 ‘pocket-filled’ mutant (mVps45-V107R) 

which was designed to mimic the yeast mutation appears to bind and stabilise 

Tlg2p to a similar level as the wild-type mVps45p and yeast Vps45p (lane 5). 

This suggests that the mutation of residue V107 to R107 may not be enough to 

disrupt the hydrophobic pocket of mVps45 and does not abrogate the binding 

interaction between mVps45p and Tlg2p. In yeast, a dominant negative 

version of Vps45p (Vps45-W244R) can bind and stabilise Tlg2p but cannot 

functionally complement trafficking defects of Δvps45 yeast (Carpp et al., 

2007). Expression of a putative dominant-negative version of mVps45p 

(mVps45-W230R) in Δvps45 yeast stabilises cellular levels of Tlg2p (lane 6) (to 

a greater extent than wild-type versions of mVps45 and yeast Vps45p).  The 

double mutant of mVps45 expressed in Δvps45 yeast (lane 7), interestingly 
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shows a lower Tlg2p binding stability than the other mutants.   Anti-Pgk1p 

antiserum was used as a loading control. 

4.4 Discussion 
 

The data in this chapter demonstrated that mVps45 can functionally 

complement the VPS45 deletion.  This conclusion is supported by data from 

the TCA precipitation experiment (Figure 4.4) which showed the 

complementation between mVps45 and Vps45p and also that the mammalian 

mutants did not traffic CPY and could not correct the trafficking defects 

displayed in yeast mutants.  Likewise, data from the secreted invertase assay 

showed the ability of mVps45 to secrete reduced levels of invertase 

approximating the levels secreted by the wildtype. 

 

The data reveal that the behaviour of the mVps45 mutants in some CPY assays 

(osmotic shock and temperature sensitivity) differ from the corresponding 

yeast VPS45 mutants. There are several potential explanations for this. 

Firstly, it is important to note that mVPS45 functions in several stages of 

trafficking, and thus is likely to exert distinct phenotypes on each of these 

processes, reflecting different consequences for the different functional 

assays. It is clear from the CPY secretion data (and the osmotic shock and 

temperature sensitivity data) that mVps45 can functionally complement the 

VPS45 deletion. The different behaviour of the mVps45 mutants from the 

corresponding yeast mutants therefore likely reflects differing affinities for 

interaction of mVps45 with Tlg2p compared to the yeast counterpart: there is 

no prior reason to assume that these affinities will be the same, and so the 

different data between the yeast and mammalian mutants probably reflects 

this.  Future work will involve biochemical measurement of the interactions 

and affinities of mVps45 (and its mutants) to Tlg2p (and Sx16). 

 

Also, since the Tlg2p open/closed transition may be controlled by Vps45p, it is 

not a given that each of the mVps45 species (wildtype or mutants) will 

mediate this transition in exactly the same manner. 

 

It is, however, important to note that in all of the assays shown in this 

chapter, mVps45 complements for the functional loss of Vps45p, and that thus 

allowed us to rationally design mutants of mVps45 to study the role of this 
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protein in adipocytes.   The fact that the mammalian mutants have shown 

complement in the TCA precipitation assay by failing to traffic CPY properly 

corresponds to what Carpp et al. have shown in yeast mutants (Carpp et al., 

2007).  

 

Future experiments will focus on determining whether these mutants can bind 

Tlg2p in a similar manner to yeast mutants.   In the event that this data can 

be obtained, it will then be reasonable to generate these mVps45 constucts in 

an adenovirus vector to allow gene delivery into differentiated adipocytes and 

examine the consequences for glucose transport (see Chapter 5).



 
 

 
 
 
 
 
 
 
 
 
 

 
 
Chapter 5:  Generation of mVPS45 Knockdown and 
                    Expression of Intracellular Factors in  
                    3T3L1 Adipocytes  
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Chapter 5: Generation of mVPS45 Knockdown and 
                    Expression of Intracellular Factors in  
                    3T3L1 Adipocytes  

 
 

5.1 Introduction 
 

A key to determining the function of genes is the ability to target specific 

genes for knockout, such approaches provide the ability to determine whether 

a particular gene is essential and what functions are perturbed by its loss.  

Post-translational gene silencing by the process of RNA interference (RNAi) is 

now widely used to study the role(s) of a given gene product (Rossi, 2008).  

RNAi is activated by introducing a double-stranded (ds) RNA whose sequence 

is homolgous to the target gene transcript.  The exogenous RNA is digested 

into small interfering RNAs (siRNA) which bind a nuclease complex to an RNA-

induced silencing complex (RISC).  This RISC then targets the endogenous gene 

transcripts by base-pairing and cleaves the mRNA.  This chapter employs small 

hairpin siRNA molecules (shRNA) to achieve knockdown of the mammalian 

Vps45 gene in adipocytes, and to examine the consequences of this 

knockdown on cellular function.    

 

mVps45, a member of the Sec1 family, modulates assembly of SNARE 

complexes by competitively binding to the t-SNARE Syntaxin 16.  It has been 

shown that loss of Sec1 in yeast blocks the fusion of transport vesicles with 

the plasma membrane (Tellam et al., 1997).  Here, we will examine the role 

of mVps45 by studying the effects of depleting 3T3-L1 adipocytes of this SM 

protein and determine if there are any effects on glucose transport, the levels 

of SNAREs associated with GLUT4 sorting, (chiefly Syntaxins 16, 6 and 4) and 

the effect of depletion of mVps45 on Glut4 translocation. 

 

It has been widely suggested that Syntaxin 16 functions to control the sorting 

of GLUT4 in the slow recycling pathway of adipocytes and acts in concert with 

Syntaxin 6 to regulate the intracellular trafficking of GLUT4 in adipocytes.  

How Syntaxin 16 is regulated has not been definitively determined, so 

understanding how this SNARE is regulated will further our understanding into 
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how GLUT4 traffic into the slow cycle is controlled.  The most likely candidate 

is the cognate Sec/Munc (SM) protein for Syntaxin16, mVps45. 

 
5.2   Aims 

 
The aim of this chapter is to investigate how the depletion of mVps45 alters 

cellular function, proteins levels and transport.  This study uses shRNA 

methodology as well as glucose transport assays to determine whether 

depletion of mVps45 alters the rate, sensitivity or extent of insulin 

stimulation as well as whether there is a reduction in total GLUT4 levels and 

a reduced ability of insulin to translocate GLUT4.   

 
5.3  Results 

 
 

5.3.1 Construction of shRNA targets 
 
In order to generate a knockdown of mVps45 in 3T3-L1 adipocytes, shRNA 

targets were constructed and viral particles were generated from a packaging 

cell line.   This virus was later used to infect the 3T3-L1 adipocytes leading to 

suppression of mVps45 expression (and the knockdown effect).  This 

knockdown was achieved by using a pSIREN retroviral expression vector (See 

Appendix for plasmid map) which uses the cells’ own RNA Polymerase III to 

transcribe a specifically designed shRNA using the human U6 promoter which 

provides a high level of expression in cells resulting in target gene 

suppression.  The mechanism includes initiator and effector steps.  In the 

initiator step, input dsRNA is digested into siRNAs (21-23 nucleotides in 

length) by the action of the enzyme Dicer (an RNase III family specific dsRNA 

ribonuclease) in an ATP-dependent manner yielding siRNA duplexes (19-21 

bp).  In the effector step, these siRNA duplexes bind to a nuclease complex 

and form RISC.  RISC is activated by the ATP-dependent unwinding of the 

siRNA duplex.  Active RISC then targets the native, homologous transcript by 

base pairing and cleaves the mRNA.   

 

In mammalian cells, RNAi can be difficult because of non-specific gene 

silencing (McIntyre and Fanning, 2006).  Also, use of nucleotides longer than 

30 bp causes an anti-viral response (Chang et al., 2006).  In this study, target 

sequences of 21-23 bp were synthesized using the coding region of the 

mVps45 gene.  The full details of oligonucleotide selection are available in 
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Materials and Methods, however some considerations are important to 

emphasize.  Sequences were chosen away from the start codon and UTRs so 

that any regulatory protein binding sites in these regions or translation 

intiation complexes would not interfere with the binding of RISC.  The 

oligonucleotide was also checked for GC content, AT content (A and T 

residues at the end of the sense sequence increase knockdown efficiency), 

secondary structure and long base runs (both of which interfere with proper 

annealing).  These sequences were cloned into the pSIREN retroviral vector 

(see Materials and Methods for details).  This vector is self-inactivating (by 

deletion of the 3’ LTR enhancer region) and designed to eliminate promoter 

interference from the upstream LTR in the integrated provirus.  The CMV 

promoter in the 5’ LTR produces sufficient viral titers in the HEK 293 based 

packaging cell line used (EcoPack2-293, which contain adenoviral E1A(1-4)).  

Virus containing conditioned media from these packing cells was then used to 

infect the target cell line (3T3-L1).  These viral particles are replication 

incompetent (as they lack gag, pol and env) and are integrated systematically 

to ensure that replication-competent virus was not produced during 

recombination events during cell proliferation.   
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     Figure 5.1 Packaging of the shRNA virus using EcoPack2-293 cells 
DNA targets were silenced using a shRNA system of RNAi.  Each sequence was cloned into 
the pSIREN RetroQ vector (vector information provided in Appendix) and transfected into 
EcoPack2-293 viral packaging cells.   These cells then released viral particles into their 
conditioned media that were used to infect the target 3T3-L1 cells transiently.  (Manjunath et al., 
2009) 
 
 
As Figure 5.1 illustrates, the retroviral construct is transfected into the viral 

packaging cell line which integrates the sequence, transcribing it and then 

synthesizing viral proteins.  These proteins are packaged into viral particles 

which are then collected and used to infect the target cells.  While this 

process is highly optomized, it was still necessary to validate it by the use of a 

GFP-tagged retroviral vector. 

 
     5.3.1.1    GFP control of transfection  

 
After shRNA vectors had been constructed, a test for transfection efficiency in 

the viral packaging cell line EcoPack-2 293 cells was performed. This 

transfection was undertaken to ensure the effective delivery of the viral 

construct into the 293 cell line for efficient formation of viral particulate in 

which to infect the target cells.  As described in Figure 5.1, the retroviral 

vector constitutively expressing Zoanthus sp green fluorescent protein (GFP) 
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was transfected using the Lipofectamine method (see Materials and Methods) 

into packaging cells where non-replicating infectious particles were 

generated.  The ability of the retroviral vector to express GFP was extremely 

useful in proving that the retrovirus was delivered correctly to the packaging 

cell and that the construct was properly integrated into the cell for 

transcription to take place.  Figure 5.2 shows that the cells incorporated the 

vector and that the vector was able to express GFP. 

 

 
 
 

Figure 5.2 Viral packaging cells are analysed for transfection efficiency using a GFP 
                  reporter plasmid 
pSIREN-RetroQ-Zs Green vector  was used to assess transfection efficiency in EcoPack2- 293 
cells.  This vector constitutively expresses Zoanthus sp. green fluorescent protein and shows 
the efficient delivery of the construct by examination under a fluorescent microscope.   
In this figure, shRNA delivering silencing of mVps45 was prepared as described in Materials 
and Methods using the Zs Green vector and transfected into the packaging cell line.  The 
fluorescence emitted from the GFP tag is shown to be largely in the perinuclear region of these 
fibroblasts indicating the successful incorporation of the silencing vector. 

 
 

5.3.2 Immunoblots of mVps45 knockdown 
 
In order to knockdown mVps45, 3T3-L1 fibroblasts were infected with virus 

and later differentiated using the standard method (see Materials and 

Methods for description of the differentiation process).  Whole cell lysates 

from these cells were prepared and subjected to immunoblot analysis.  The 

results of a typical experiment are shown in Figure 5.3, with quantification of 

several experiments of this type shown in Figure 5.3 bottom panel. 
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Figure 5.3 mVps45 is knocked down in 3T3-L1 Adipocytes 
3T3-L1 fibroblasts were grown to 70% confluence and infected with shRNA virus.  These 
targets were selected for using puromycin and later differentiated as described previously.  
Whole cell lysates were then prepared and immunoblotted for mVps45 and GLUT4. Lane 1: No 
Virus, Lane 2: Luciferase Control, Lane 3: shRNA Target 1, Lane 4: shRNA Target 2, Lane 5: 
shRNA Target 3, Lane 6: shRNA Target 4.  GAPDH was used as a loading control. 
Immunoblots above show the results of one representative experiment.  Three separate 
experiments were performed and densitometric analysis was performed on the results, here 
shown as the mean of three experiments +/- SEM. *=p<0.05 by one-way ANOVA compared to 
uninfected. 
 
Because not all sequences in a given mRNA are equally sensitive to siRNA, it 

was necessary to choose four potential target sequences along rat Vps45 

mRNA.  Figure 5.3 shows these four targets compared with control virus and 

uninfected 3T3-L1 adipocytes.  In the upper panel, immunoblots for mVps45 

indicated that shRNA targets 1 and 2 were most effective in suppressing 

mVps45 expression.  These two targets were also best at reducing the levels 

of GLUT4 protein.  Quantification of these blots by densitometry in the 

bottom panel shows that mVps45 and GLUT4 are reduced by 80% by these 
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targets.  In comparision, targets 3 and 4, entailing sequences that were 

farther along the mRNA than either target 1 or 2, fail to have much of an 

effect on silencing mVps45.  In fact, shRNA targets 3 and 4 produced similar 

results to control virus or uninfected cells. 

  
5.3.3 Immunoblots of the intracellular environment 
 
 
Initial immunoblots showed that shRNA targets 1 and 2 were best at reducing 

protein expression levels in 3T3-L1 adipocytes.  Using this knowledge, lysates 

from 3T3-L1 cells infected with control virus or either shRNA target 1 or 2 

virus were prepared and immunoblotted using antibodies specific for proteins 

known to act in GLUT4 translocation.  As shown in Figure 5.4a, shRNA 1 

reduces mVps45 and GLUT4 protein levels most effectively compared to 

control and uninfected lysates.  shRNA2 also shows a reduction in protein 

expression, however this effect is less dramatic than in Target 1. 

Densitometric analysis in Figure 5.4b shows that while shRNA 1 decreases the 

levels of mVPs45 more than 90% and GLUT4 around 80%, shRNA2 only 

decreases expression approximately 50-60% for these proteins.  
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Figure 5.4a The effect of mVps45 depletion on intracellular proteins 
3T3-L1 fibroblasts were grown to confluence, infected with viral targets and differentiated as 
described in Materials and Methods.  Lane 1: Uninfected cells, Lane 2: shRNA Target 1, Lane 
3: shRNA Target 2, Lane 4: Luciferase control.  This figure shows the effect of depletion on 
endosomal to TGN proteins involved in the GLUT4 sorting pathway.  GAPDH, Actin and Tublin 
were used as loading controls.   
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Figure 5.4b Densitometric analysis of the effect of mVps45 depletion on intracellular 
                    Proteins 
Three separate preparations of 3T3-L1 lysates from uninfected cells, cells depleted of mVps45 
using shRNA1 or shRNA2, and control infected cells were immunoblotted using the antibodies 
indicated in Figure 5.4a.  Those results were subjected to densitrometric analysis using Image J 
software and are shown above as the mean of three experiments +/- SEM. *=p<0.05, **=p<0.02 
by one-way ANOVA compared to Uninfected. 
 

 
Similarly, Syntaxin 16 is reduced by ~60% by shRNA 1 while shRNA 2 reduced 

protein levels by only approximately 30%.  Interestingly, shRNA 1 is able to 

reduce IRAP protein levels by 75% while shRNA 2 reduced levels by only 15%.  

There was no change in protein expression levels in Syntaxin 6, Vti1a or Vti1b.   
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Figure 5.5a The effect of mVps45 depletion on proteins involved in membrane fusion 
3T3-L1 fibroblasts were grown to confluence, infected with viral targets and differentiated as 
described in Materials and Methods.  Lane 1: Uninfected cells, Lane 2: shRNA Target 1, Lane 
3: shRNA Target 2, Lane 4: Luciferase control.  This figure shows the effects of mVps45 
depletion on proteins regulating membrane fusion from one representative experiment. 
 
 
Figure 5.5 shows the effect of mVps45 knockdown on other proteins involved 

in GLUT4 sorting and membrane fusion.  Figure 5.5a shows immunoblot 

analysis of cell lysate knocked down for mVps45.  Densitometric analysis of 

protein levels in Figure 5.5b shows that only Rabenosyn in shRNA 1 is 

decreased.  Figure 5.6 shows the action of Rabenosyn and its interaction with 

Rab5 and EEA1.  It has been shown that Vps45 interacts with Rabenosyn-5 and 

others have reported that human Vps45 depletion causes a reduction in 

Rabenosyn-5 expression (Rahajeng et al., 2009). 

 

 

 

 

 

 



Chapter 5, 154 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 5.5b Densitometric Analysis of the effect of mVps45 depletion on proteins  
                     involved in membrane fusion 
Three separate preparations of 3T3-L1 lysates from uninfected cells, cells depleted of mVps45 
using shRNA1 or shRNA2, and control infected cells were immunoblotted using the antibodies 
indicated in Figure 5.5a.  Those results were subjected to densitrometric analysis using Image J 
software and are shown above as the mean of three experiments +/- SEM. *=p<0.05 by one-
way ANOVA compared to wildtype. 
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Figure 5.6 Proteins involved in membrane fusion 
Rab5 and Rabenosyn as well as EEA1 are involved in membrane fusion. (Collins and 
Zimmerberg, 2009. 
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Figure 5.7 The effect of mVps45 depletion on differentiation proteins 
3T3-L1 fibroblasts were grown to confluence, infected with viral targets and differentiated as 
described in Materials and Methods.  Lane 1: Uninfected cells, Lane 2: shRNA Target 1, Lane 
3: shRNA Target 2, Lane 4: Luciferase control.  This figure shows the effect of mVps45 
depletion on proteins involved in the conversion of fibroblasts to adipocytes. These immunoblots 
represent the results of one representative experiment. The results from three separate 
experiments were subjected to densitrometric analysis using Image J software and are shown 
above as the mean of three experiments +/- SEM. There were no statistically significant 
differences between lanes. 
 

 
We used shRNA technology to look at whether depletion of mVps45 alters 

cellular levels of GLUT4 and other proteins involved in trafficking.  The main 

reason to use this shRNA system as opposed to siRNA techniques is that this 

method is more uniform and knockdown is not as variable or as expensive.  

Another advantage of this system is that it can be used to infect fibroblasts 

which can be selected as clones expressing the shRNA which can then be 

differentiated into mature adipocytes.  The mature adipocyte is difficult to 

transfect or electroporate because of its large fat vacuole and this method 

gets around this limitation.   

 

In Figure 5.7, we assess proteins activated by adipocyte differentiation.  

Depletion of mVps45 does not affect the protein expression levels of FAS, 
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C/EBPα or PPARγ.  These results indicate that mVps45 does not have a role in 

adipocyte differentiation, and provide good evidence that the 3T3-L1 

adipcytes generated using this approach have differentiated well and are thus 

a suitable model for the analysis of GLUT4 trafficking.   

 
 

    5.3.4   Confocal Images of GLUT4 Translocation 
 
Adipocytes are notoriously difficult to image because of their unique 

structural limitations with their large central triglyceride storage droplets and 

thin ring of cytoplasm.  Using confocal microscopy optical sectioning allows 

the in situ localization of proteins and the changes in response to different 

stimuli to be seen.  These experiments used single and double labelling to 

examine staining with a fluorescence microscope equipped with a confocal 

laser scanning system.  Confocal imaging allows precise visualization of 

fluorescent signals within a narrow plane of focus (Malide, 2001).    
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Figure 5.8 Glut4 is translocated to the plasma membrane in response to insulin- 
                  stimulation   
These images show that upon insulin stimulation, the amount of GLUT4 translocated to the 
surface of the cell in wildtype cells is markedly increased over basal in wildtype cells.  A: 3T3-L1 
adipocytes stably expressing HA-GLUT4-GFP were either left in the basal state and or 
stimulated with insulin.  63X Oil magnification. B: 3T3-L1 adipocytes stably expressing HA-
GLUT4-GFP were either left in the basal state or insulin stimulated and were later stained for 
mVps45 (Red).  63X Oil magnification.  
 
 
In these experiments, HA-GLUT4-GFP (details of which can be found in 

Muretta et al., 2008, but briefly contain an exofacial HA-tag and GFP on the 

C-terminus of GLUT4) cells were used to show GLUT4 translocation in 

response to insulin-stimulation in wildtype and mVps45 (knockdown) depleted 

cells.  In the first set of images (Panel A, Figure 5.8) insulin-stimulation 

causes GLUT4 translocation to the plasma membrane in control cells. GLUT4 

molecules are seen to leave centralized peri-nuclear GSVs and translocate to 

the PM in response to insulin-stimulation.  On the right side of Panel A, cells 

depleted of mVps45 show that in response to insulin stimulation, this GLUT4 

does not translocate to the PM.  In insulin-stimulated knockdown cells, GLUT4 

stays predominantly in the perinuclear region in GSVs.  Although descriptive, 

these data clearly suggest that depletion of mVps45 has altered GLUT4 

trafficking to an extent that insulin-responsiveness is lost. This is consistent 
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with our hypothesis that mVps45 may act to control GLUT4 sorting from cycle 

1 into cycle 2 (i.e. into GSVs). 

 

In panel B, these cells are co-stained with an antibody specific to mVps45.  In 

wildtype basal cells, mVps45 can be seen to congregate in areas rich in 

GLUT4.  However upon insulin stimulation, this centralized collection of 

mVps45 molecules disperses and appears to move with GLUT4 toward the PM 

(the intensity of the GLUT4 signal at the PM in the bottom left image occludes 

mVps45 staining, which can be seen faintly next to the bright green ring). 

 
 

5.3.5      Glucose Transport Assays 
 

Here, we set out to deteremine whether the maximal rate of glucose 

transport, the insulin sensitivity of glucose transport, or the rate of reversal 

of insulin-stimulated glucose transport were altered upon mVps45 knockdown. 

 
 

 
 

Figure 5.9a Effect of mVps45 depletion by viral targeting on basal and insulin-stimulated 
                    deoxyglucose uptake in 3T3-L1 adiopcytes.  
3T3-L1 adipocytes were grown under standard conditions (see Materials and Methods) in 
triplicate wells and transfected with either no virus (Wildtype), virus designed to knockdown 
mVps45, or virus designed to knockdown luciferase (as a control for viral infection: Luciferase). 
Four different viral constructs were designed to target mVps45 depletion and the most effective 
two are represented (shRNA1 and ShRNA2).  Cells were then differentiated and treated with 
either no Insulin (Basal) or 1uM Insulin for 30 minutes (Insulin-stimulated).  Glucose transport 
was then measured by the uptake of 2-Deoxy-D-Glucose for 5 minutes as described in 
Materials and Methods.  Shown is the data averaged from three separate experiments.  Data 
are represented as the mean fold increase relative to basal (wild-type) cells +/- SEM. += not 
significant to a by Students unpaired t-test. 

 



Chapter 5, 160 

 
In this assay, glucose uptake is measured using radioactive 2-deoxyglucose 

that cannot be metabolized by the cells.  This label is phosphorylated but 

cannot be used by the cell and is trapped, making it a measure of 

unidirectional transport.  The cells are washed in cold PBS and lysed to 

measure the amount of radioactive 2-deoxyglucose taken up by the cells 

incubated with (insulin-stimulated glucose uptake resulting from translocation 

of GLUT4) and without insulin (basal glucose uptake resulting from the GLUT1 

transporter).  These values are subtracted to give the true insulin-stimulated 

glucose uptake value.  

 
 

 
 
 
 
 
 
 
 

Figure 5.9b Effect of mVps45 depletion by best viral construct on basal and insulin- 
                    stimulated deoxyglucose uptake in 3T3-L1 adiopcytes. 
3T3-L1 adipocytes were grown under standard conditions (see Materials and Methods) in 
triplicate wells and transfected with either no virus (Wildtype), virus designed to knockdown 
mVps45 (shRNA1, the most effective viral construct), or virus designed to knockdown luciferase 
(as a control for viral infection: Luciferase).  Cells were then differentiated and treated with 
either no Insulin (Basal) or 1uM Insulin for 30 minutes.  Glucose transport was then measured 
by the uptake of 2-Deoxy-D-Glucose for 5 minutes as described in Materials and Methods.  
Shown is the data averaged from three separate experiments.  Data are represented as the 
mean fold increase relative to basal (wild-type) cells +/- SEM.  + = not significantly different to a 
by unpaired Students t-test. 
 
 
Cytoscholasin B binds to glucose transporters and inhibits glucose transport.  

Subtracting the uptake value of Cytocholasin B removed non-specific transport 

from the equation.   
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Glucose transport assays were performed initially using both shRNA1 and 2 

targets.  3T3-L1 adipocytes were left as wildtype cells or infected with either 

shRNA1, shRNA2 or luciferase control virus.   

 

The first glucose transport figure (Figure 5.9a) shows that insulin stimulates 

glucose uptake ~7-fold in wildtype. Control (Luciferase) cells also show a 

similar stimulation.  When cells are depleted of mVps45 however, this effect 

is decreased to only approximately 3-fold.  shRNA target 2 shows a slight 

increase in insulin-stimulated glucose uptake compared to shRNA1.  In the 

beginning of the chapter, it was shown that shRNA1 is the more effective 

knockdown target for mVps45 depletion and this can explain the increase in 

uptake in shRNA2.  shRNA1 is the more effective knockdown target and cells 

in these wells were depleted of more mVps45 and the effect on glucose 

uptake was more substantial than in cells infected with shRNA2.  Cells 

infected with shRNA 1 show less than a 3-fold increase in insulin-stimulated 

glucose transport.  It is important to note that basal rates of glucose transport 

were not significantly different between the groups studied. 

 

Once shRNA 1 was established to be the best target for mVps45 depletion (as 

confirmed by immunoblot analysis, Section 5.1) and showed the most 

promising effect on glucose uptake (as shown in Figure 5.9a) glucose transport 

assays were confirmed by performing the same assay again this time only 

using shRNA 1 as the target for knocking down mVps45.  As Figure 5.9b shows, 

3T3-L1 adipocytes infected with shRNA 1 virus clearly demonstrate a decrease 

in insulin-stimulated glucose uptake when compared to wildtype and control 

(luciferase) cells.  While cells not depleted of mVps45 showed a more than 7-

fold increase in glucose transport in response to insulin-stimulation, mVps45 

depleted cells only showed a less than 3-fold increase.   

 

We next analysed the dose-dependence of insulin in glucose transport.  In this 

set of experiments, glucose transport assays were performed with varying 

concentrations of insulin.   
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Figure 5.10a Analysis of the maximum glucose transport in Wildtype and mVps45 
                      depleted 3T3-L1 adiopcytes. 
3T3-L1 adipocytes were grown under standard conditions (see Materials and Methods) in 
triplicate wells and transfected with either no virus (uninfected Wildtype), or virus designed to 
knockdown mVps45.  Cells were then differentiated and treated with varying concentrations of 
Insulin for 30 minutes as indicated on the graph.  Glucose transport was then measured by 2-
Deoxy-D-Glucose uptake for 3 minutes as described in Materials and Methods.  Shown is the 
data averaged from three separate experiments of this type.  Data are expressed as the 
maximum percentage insulin-stimulated deoxyglucose uptake for each of four sets of cells. Note 
that the cells depleted of mVps45 exhibited a significant reduction in this value.  

 
 
 
 
 

Figure 5.10b Analysis of the maximal concentration-dependence of insulin-stimulated 
                      deoxyglucose uptake in Wildtype and mVps45 depleted 3T3-L1 adiopcytes. 
3T3-L1 adipocytes were grown under standard conditions (see Materials and Methods) in 
triplicate wells and transfected with either no virus (uninfected Wildtype), or virus designed to 
knockdown mVps45.  Cells were then differentiated and treated with varying concentrations of 
Insulin for 30 minutes as indicated on the graph.  Glucose transport was then measured by 2-
Deoxy-D-Glucose uptake for 3 minutes as described in Materials and Methods.  Shown is the 
data averaged from three separate experiments of this type.  Data are expressed as a 
percentage of the maximal insulin-stimulated deoxyglucose uptake rates for each of the two 
sets of cells. Note that the cells depleted of mVps45 exhibited a significant reduction in this 
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maximal value, see previous figure. *p= 0.05 vs wildtype, **p < 0.01 vs wildtype by unpaired 
Students t-test. 
 
 

In these assays, mVps45 depleted cells (knockdown) show a more linear 

response to varying insulin concentration than wildtype.  As shown in Figure 

5.9, glucose transport in response to insulin-stimulation is decreased in 

knockdown cells compared to wildtype. It would appear that the half maximal 

concentration of insulin required to elicit a maximal response has increased 

upon mVps45 knockdown, but as the graph has not reached a clear plateau, 

this is difficult to ascribe with accuracy.  

 

Next, glucose transport assays were performed to test the ability of cells to 

reverse insulin-stimulated glucose transport.  Cells were stimulated with 0.1 

µM insulin for 30 min and reversed for various amounts of time before being 

assayed for glucose transport.  Figure 5.11 shows that the rates of reversal in 

knockdown cells are rather complex. For example, the knockdown is more 

effective in reversing insulin-stimulated glucose transport than wildtype at 

early time points.  For example, after 5 minutes of reversal the percent of 

maximal glucose transport has decreased only 10% in the wildtype compared 

to 25% in the knockdown.  After 15 min the wildtype cells decreased their 

uptake 20% while knockdown cells decreased uptake by nearly 40%.  This 

effect was temporary however as by 30 min both cell types had decreased 

uptake by over 40% and then appeared to decline in tandem.   
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Figure 5.11a Time course of the maximal percentage of the reversal of insulin-stimulated  
                      2-Deoxy-D-Glucose Transport in control and mVps45 knockdown 3T3-L1  
                      adipocytes 
3T3-L1 adipocytes were grown under standard conditions (see Materials and Methods) in 
triplicate wells and transfected with either no virus (uninfected Wildtype), or Knockdown virus for 
mVps45.  Cells were then differentiated and treated with 100nM of Insulin for 30 minutes.  
Insulin reversal was initiated by washing in low pH buffer (see Materials and Methods) and 
deoxyglucose transport was assayed at different times following reversal (see graph) as 
described in Materials and Methods.  Shown is the data averaged from three separate 
experiments of this type.  Data are expressed as a percentage of maximal insulin-stimulated 
deoxyglucose uptake rates for each of the two sets of cells. Note that the cells depleted of 
mVps45 exhibited a significant reduction in this maximal value, see previous figure. * p < 0.05 
vs knockdown in the corresponding points by unpaired Students t-test. 

 
 
 
Figure 5.11b Time course of the reversal of insulin-stimulated 2-Deoxy-D-Glucose 
                      Transport in control and mVps45 knockdown 3T3-L1 adipocytes 
3T3-L1 adipocytes were grown under standard conditions (see Materials and Methods) in 
triplicate wells and transfected with either no virus (uninfected Wildtype), or Knockdown virus for 
mVps45.  Cells were then differentiated and treated with 100nM of Insulin for 30 minutes.  
Insulin reversal was initiated by washing in low pH buffer (see Materials and Methods) and 
deoxyglucose transport was assayed at different times following reversal (see graph) as 
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described in Materials and Methods.  Shown is the data averaged from three separate 
experiments of this type. Data are expressed as the mean insulin-stimulated deoxyglucose 
uptake rate (pMol/Min/Cell) for each of the two sets of cells. Note that the cells depleted of 
mVps45 exhibited a significant reduction in this maximal value, see previous figure. 
 
 

5.3.6    Budding Assay 
 
 
In order to define molecules required for entry of Glut4 into the GSV 

compartment Kandror and colleagues described an in vitro budding assay 

which recapitulates the formation of GSVs. In brief, a membrane fraction 

(donor membranes) was prepared from a simple one-step 16,000 xg 

centrifugation of a homogenate of 3T3-L1 adipocytes. After washing, this 

fraction was incubated at 37°C with cytosol and ATP from 3T3-L1 adipocytes 

and incubated. After incubation, the donor membranes were sedimented at 

16,000 xg, and any GSVs which were formed remain in the 16,000 xg 

supernatant.  Using this method Kandror et al have shown that Glut4 is sorted 

from the donor membranes into GSVs in a time-, ATP- and cytosol-dependent 

manner, consistent with data from other groups (Xu and Kandror, 2002).  

 

Here in Figure 5.12a, we used this assay to look at GSV formation in control 

and mVps45 depleted cells. Donor membrane and cytosol were prepared from 

3T3-L1 adipocytes (as described in Materials and Methods) and combined with 

ATP in the combinations indicated at the bottom of the figure.  These 

reactions were incubated at 37°C for either 20 or 40 minutes and the vesicle 

fraction was collected by high speed centrifugation.  These fractions were 

immunoblotted with antibodies specific for GLUT4 and mVps45.  When the 

donor membrane fraction was incubated with 1 mg/ml cytosol in the presence 

of ATP (since the formation of vesicles occurs in an ATP-dependent manner) 

vesicles formed in the period from initial mixing to 20 minutes of incubation 

as evidenced by the presence of GLUT4 protein in the top panel.  After 40 

minutes, the vesicle budding had increased.  In the bottom two panels we 

analysed the presence of mVps45 in vesicular budding.   
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Figure 5.12a Budding of Vesicles in Wildtype Cells 
Cell lysates were prepared from wildtype 3T3-L1 adipocytes and centrifuged into membrane 
and cytosol fractions as described in Materials and Methods.  Membrane and cytosol fractions 
were combined as indicated above with the addition of an ATP regeneration system and 
incubated at physiological temperature for 20 and 40 minutes before being centrifuged into 
donor and vesicle fractions and immunoblotted with GLUT4 and mVps45 antibody. Set A-D: 
The donor fraction.  Set 2 A-D: The Vesicle Fraction. A: Membrane, Cytosol, ATP. B: No 
Cytosol, C: No ATP, D: No Cytosol, No ATP  
 
 

 
 
 

Figure 5.12b Budding of Vesicles in Knockdown Cells 
Cell lysates prepared from 3T3-L1 adipocytes infected with shRNA virus designed to 
knockdown levels of mVps45 were centrifuged into membrane and cytosol fractions as 
described in Materials and Methods.  Membrane and cytosol fractions were combined as 
indicated above with the addition of an ATP regeneration system and incubated at physiological 
temperature for 20 and 40 minutes before being centrifuged into donor and vesicle fractions and 
immunoblotted with GLUT4 and mVps45 antibody. Set A-D: The donor fraction.  Set 2 A-D: The 
Vesicle Fraction. A: Membrane, Cytosol, ATP. B: No Cytosol, C: No ATP, D: No Cytosol, No 
ATP  
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In cells depleted of mVps45, vesicular budding does not seem to occur (as 

shown in Figure 5.12b).  This result is in keeping with the idea that mVps45 is 

necessary for GLUT4 sorting.  When mVps45 is absent, GLUT4 does not enter 

into newly budded vesicles (Figure 5.12b, top two panels).  The lack of 

mVps45 (Figure 5.12b, bottom two panels) suggests that mVps45 acts on the 

GLUT4 recycling pathway.  However, these data are very preliminary, and 

require repeating and optimising to be certain of their veracity. They are 

included here to show the interesting result obtained, but it is important to 

stress that further work on this area is required and the data are not 

definitive. 

 
5.3.7 Recycling Assay with HA-GLUT4-GFP 
 
 
One prediction from the experiments performed above is that in the absence 

of mVps45, Glut4 may not be trafficked into the slower cycle 2 pathway (see 

Figure 1.2). To test for this, we used cells expressing HA-GLUT4-GFP. The 

uptake of fluorescently labelled anti-HA monoclonal antibody into the cell 

reflects the trafficking of Glut4 through the plasma membrane. Hence, by 

incubating cells with anti-HA for increasing times, it is possible to measure 

the rate of accumulation of anti-HA inside the cells, reflecting the rate at 

which the total population of Glut4 trafficks through the PM. Figure 5.12 

shows data from a typical experiment.  In cells expressing control shRNA 

(targeted against luciferase), the half time for accumulation of anti-HA is of 

the order of 4h. In cells depleted of mVps45, this is significantly shortened to 

around 100 minutes. 
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    Figure 5.13a The Recycling Assay  
The graph above shows increased fluorescence with time.  Cells were infected with control 
(Luciferase) shRNA or mVps45 shRNA1.  The data shows that in control cells, it takes about 4 h 
(240 min) for fluorescence to plateau, which shows that total GLUT4 in cells recycles through 
the PM with a half time of 4 h in control cells.  In mVps45 knockdown, the half time is 100 min 
(1.75 h), so in the absence of mVps45, GLUT4 recycles faster.  This can be explained by the 
possibility that GLUT4 is retained in cycle 1 and in the absence of mVps45 cannot enter cycle 2.    
 
 

 
 

 
 
 
 
Figure 5.13b The Recycling Assay normalized for HA-GLUT4-GFP Expression 
The graph above shows increased fluorescence with time.  Cells were infected with control  
(Luciferase) shRNA or mVps45 shRNA1.  The data shows that in control cells, it takes about 4 h 
(240 min) for fluorescence to plateau, which shows that total GLUT4 in cells recycles through 
the PM with a half time of 4 h in control cells.  In mVps45 knockdown, the half time is 100 min 
(1.75 h), so in the absence of mVps45, GLUT4 recycles faster.  This can be explained by the 
possibility that GLUT4 is retained in cycle 1 and in the absence of mVps45 cannot enter cycle 2.   
Note that the fluorescence value plotted has been normalised for HA-GLUT4-GFP expression 
by using the GFP fluorescence signal. 
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5.3.8     Subcellular Fractionation 
 
 
As shown in Section 5.3.3, depleting 3T3-L1 adipocytes of mVps45 causes 

changes to the intracellular environment.  Several proteins that may act with 

or are acted upon by mVps45 show decreased expression with depletion of 

mVps45 in whole cell lysates as analysed by immunoblotting.  These 

interesting results prompted further characterization of protein distribution in 

3T3-L1 adipocytes depleted of mVps45.  To further examine the effects that 

mVps45 depletion might have on protein distribution in these adipocytes, an 

analysis of the subcellular fraction of proteins was undertaken on wildytpe 

and knockdown adipocytes treated with or without insulin (Figure 5.14).   

 

 
 
 
 

Figure 5.14 The subcellular distribution of proteins in basal and Insulin-stimulated 3T3-L1 
                    adipocytes depleted of mVps45 
Wildtype 3T3-L1 adipocytes and adipocytes that were depleted of mVps45 were either 
incubated in the presence of 1 µM Insulin for 20 min or left in their basal state and crude lysates 
were prepared as described in Materials and Methods.  Lysates were then subjected to a series 
of differential centrifugations and fractions containing the cytosol, High Density Microsomes 
(HDM), Low Density Microsomes (LDM) and Plasma Membranes (PM) were collected.  These 
fractions were immunoblotted with an antibody specific to mVps45.  The results shown are 
representative fractions from 5 preparations.  
 
 

Through a series of sequential differential centrifugations, cell structures 

were separated into cytosolic, high density microsomes (HDM), low density 

microsomes (LDM) and plasma membrane (PM).  Fractions were then 

subjected to immunoblot analysis with an antibody specific for mVps45.  

Whole cell lysate was immunoblotted as a protein control.  3T3-L1 adipocytes 

were used on Day 8 after differentiation because it is at this stage in 

adipocyte development that mRNA and protein levels along with the glucose 

transport response have reached a steady state for analysis.  The intracellular 

pool of GLUT4 is localized to the LDM, and this fraction also contains 
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endosomes and the Golgi apparatus.  The HDM fraction is enriched with 

endoplasmic reticulum (ER).   

 

mVps45 is found in the cytosolic fraction in both basal and insulin-stimulated 

wildtype cells (as shown in figure 5.14, top panel) which confirms the findings 

in Chapter 3 which show that mVps45 is present in the cytosol of 3T3-L1 

adipocytes in both basal and insulin-stimulated conditions.  It is not found in 

the HDM which contains ER and other structures not associated with GLUT4 

recycling.  It is, however, found in the LDM fraction.  The LDM contains the 

TGN which is where mVps45 is known to act. mVps45 is also found at the PM 

in both basal and insulin-stimulated conditions.   mVps45 follows the pathway 

of GLUT4 and the presence of mVps45 in the PM of both basal and insulin-

stimulated cells suggests that it may move with GSVs to the PM.  This finding 

that mVps45 is found in the PM also confirms the results of Chapter 3 which 

shows that mVps45 is present in both basal and insulin-stimulated membranes. 

      

As this study shows, depleting mVps45 from these cells removed any trace 

amounts of mVps45 from all fractions aside from the HDM and slight traces at 

the PM.  This result indicates that with mVps45 depletion, the GSVs are not 

available for GLUT4 entry because shifting the fraction where mVps45 is 

present indicates that the proteins normally resident in Pool1 (the GSV pool in 

the two pool system) are no longer functional and proteins shift into Pool 2 

(the TGN/endosomal pool).  The results from Iodixanol sedimentation 

analysis, discussed below, also confirm this finding.    

         

 
5.3.9      Iodixanol Gradients 
 

While the above data suggests differences in the movement of proteins in 

cellular compartments upon depletion of mVps45, resolving distinct 

subcellular compartments by sucrose density centrifugation has its 

difficulties.  For example, proteins deriving from the same vesicle may be a 

similar density and size limiting the information available from this type of 

experiment.  Also, the density of GLUT4-containing vesicles is the same 

density as hyper-osmotic sucrose (Hashiramoto and James, 2000) which 

detracts from its usefulness.  In order to gain valuable data about the proteins 

contained in cellular fractions this study employed another method not 
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encumbered with the same limitations.  Iodixanol (Optiprep: 5,5’[2-hydroxyl-

1-3propanediyl)-bis(acetylamino)] bis[N,N’-bis(2,3-dihydroxypropyl-2,4,6 

triiodo-1,3-benzenecarboxamide] ) is an iso-osmotic iodinated sedimentation 

media used in centrifugation analyses to segregate intracellular organelles of 

different densities from the LDM as prepared from cell lysates. In fact, the 

banding patterns of many membrane compartments are sufficiently distinctive 

in iodixanol gradients and provide information about the specific components 

and functions and the shift in location during cellular activity. 

 

Here, we prepared lysates from wildtype 3T3-L1 adipocytes and adipocytes 

depleted of mVps45 and isolated the LDM fraction which was then used for 

iodixanol sedimentation analysis (see Materials and Methods), fractions were 

then immunoblotted for GLUT4 and mVps45 protein.   

 

 

 

 
 
 
 
 

Figure 5.15 Iodixanol equilibrium gradient sedimentation analysis of wildtype and  
                    Knockdown 3T3-L1 adipocytes 
Low density microsomes (LDM) were prepared from both wildtype 3T3-L1 cell lysates and those 
depleted of mVps45.  These lysates were subjected to iodixanol equilibrium sedimentation 
analysis as described in Materials and Methods.  The fractions were collected after 
sedimentation and immunoblotted for the distribution of GLUT4 and mVps45 proteins using 
antibodies specific to those proteins.  The data shown omits the first two and last two fractions 
of the sixteen collected and are the results of a single experiment representing 5 experiments. 
Images have been intentionally overexposed for clarity of purpose.  
 
 

In wildtype 3T3-L1 cells, two distinct peaks were resolved containing GLUT4 

fractions.  The first peak contains a significantly larger proportion of GLUT4 

than the later peak.  Other studies have shown similar results in 3T3-L1 

adipocytes and skeletal muscle (Hashiramoto and James, 2000) indicating that 

in insulin-sensitive cells GLUT4 is targeted to GSVs and endosomal fractions.  

In the left side panel of Figure 5.15, LDM fractions were resolved through 

Iodixanol sedimentation analysis and were found to contain the greatest 
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amount of GLUT4 in wildtype cells in the earlier fractions (fractions 2-5).  In 

LDM fractions resolved by this method from cells depleted of mVps45, the 

GLUT4 profile changes and the fractions containing the most GLUT4 shifts 

(Fractions 7-10).  This finding may indicate that GLUT4 cannot gain entry to 

the GSVs or that GSVs are absent or of a distinct density when mVps45 is no 

longer available.  The shift of GLUT4 from a dense GSV pool (classically found 

in the first 5 fractions) to a pool that appears to be primarily endsomal 

suggests that mVps45 is necessary for GLUT4 to reside in the GSV fraction.   

 

 In the right hand panel of Figure 5.15, mVps in wildtype cells appears to 

mirror that of GLUT4, and can be found to reside in the earlier, dense GSV 

population (Fractions 2-5) of the first peak while, like GLUT4, also is present 

in the TGN/endosomal fractions (Fractions 9-12).  This finding validates the 

knowledge that mVps45 acts at the TGN and interacts with membrane fusion 

proteins (most notably the t-SNARE Syntaxin 16) that sort GLUT4.   However, 

in LDM fractions from cells depleted of mVps45, the profile changes and the 

little mVps45 which remains after knockdown, while still present in the first 

peak (Fractions 2-5) corresponding with the GSVs is present in much lower 

levels 

            

 
5.4    Discussion 
 
 

This chapter examines the effect of mVps45 knockdown on GLUT4 

translocation using a variety of assays.  First we used shRNA mediated 

knockdown to deplete 3T3-L1 adipocytes of mVps45.  We used this method 

because lipid-based transfection methods transduce genes into 3T3-L1 

adipocytes poorly.  Once cells are differentiated they become refractory to 

standard methods of transfection and low efficiencies are achieved.  Single 

cell microinjection does not allow for global populations of cells to be studied 

and electroporation can be only used on very early stage cells and may cause 

changes to cell function and viability.  The advantage of shRNA is that the 

lentivirus integrates into the cell genome and thus the expression is 

permanent.  Thus targeted gene knockdown can be achieved at any phase of 

the cell cycle and can be maintained indefinitely.   
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The effects of depleting mVps45 from adipocytes were analysed by the 

immunoblot analysis of several proteins known to act on the GLUT4 sorting 

pathway.  We found that when mVps45 was knocked down, the cellular levels 

of its cognate t-SNARE Syntaxin 16 decreased giving evidence that there is a 

direct interaction between these two proteins.  Data from this chapter 

suggests that mVps45 may have a role in GLUT4 sorting and support for this 

theory was given by the fact that when mVps45 was depleted in 3T3-L1 

adipocytes, GLUT4 protein levels fell significantly in these cells.  Also, protein 

levels of the GSV resident protein IRAP decreased in mVps45 depleted cells 

suggesting that mVps45 may have a role in regulating entry into the GSVs.  

Rahajeng et al have found that human vps45 binds to rabenosyn-5 and that 

depletion of this vps45 decreased the levels of rabenosyn-5 (Rahajeng et al., 

2010).  This observation is confirmed in our study which demonstrated that 

mVps45 depletion decreased the levels of rabenosyn-5. 

 

We also studied the in-situ visualisation of GLUT4 translocation using HA-

GLUT4-GFP cells.  In these experiments, we found that depletion of mVps45 in 

these cells causes loss of insulin sensitivity.  This loss of insulin sensitivity was 

evidenced by the fact that in mVps45 depleted cells, GLUT4 was not able to 

traffic to the PM in response to insulin-stimulation.  The inability of GLUT4 to 

traffic to the PM in insulin-stimulated mVps45 depleted cells suggests a role 

for mVps45 in regulating GLUT4 sorting.   

 

Glucose transport using 3T3-L1 adipocytes was measured and it was found 

that mVps45 depletion alters the rate and sensitivity of insulin-stimulated 

glucose transport. Experiments measuring basic glucose transport in mVps45 

depleted cells showed that insulin-stimulated 2-deoxyglucose uptake was 

profoundly decreased in these cells compared to wildtype cells.  Experiments 

measuring the sensitivity of mVps45 depleted cells to varying doses of insulin 

suggested more insulin was needed to elicit a response in knockdown cells 

compared to wildtype which suggests a decease in insulin-sensitivity in these 

cells compared to wildtype. This decrease in glucose uptake suggests a role 

for mVps45 in regulating GLUT4 sorting.  Experiments measuring the ability of 

mVps45 depleted cells to reverse insulin-stimulated glucose transport showed 

that initially these cells are able to reverse transport more effectively than 

wildtype cells. An explanation for these data is not immediately apparent, but 
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may reflect changes in the intracellular trafficking of Glut4 into a degradative 

pathway upon mVps45 depletion.  Since GLUT4 levels decrease upon mVps45 

knockdown, it may be speculated that depletion of mVps45 results in GLUT4 

entering a degradative pathway; this pathway may allow faster movement of 

GLUT4 from cycle 1, so causing an apparent increase in reversal rates, at least 

at early times.  Clearly, further work will be required to address this. 

 

We performed a budding assay designed to recapitulate the formation of GSVs 

in-vitro in an effort to understand the effect mVps45 depletion might have on 

the creation of newly budded vesicles and to further investigate the role 

mVps45 might have on GLUT4 sorting.  Xu and Kandror show the creation of 

newly budded vesicles by the presence of GLUT4 protein in immunoblots of 

the vesicle fraction (Xu and Kandror, 2002).  In our study, newly budded 

vesicles were formed in wildtype cells as evidenced by the presence of GLUT4 

protein on immunoblots of the vesicle fraction.  The use of mVps45 depleted 

membrane and cytosol in this in-vitro budding assay suggested that new 

vesicles could not form when mVps45 was not present as evidenced by the 

lack of a GLUT4 band in immunoblots of the vesicle fraction.  This suggests 

that GLUT4 isn’t able to enter newly budding vesicles in mVps45 depleted 

cells which further gives rise to the possibility that mVps45 is necessary for 

GLUT4 sorting into the GSVs. 

 

Measurement of GLUT4 trafficking by the use of a recycling assay that used 

HA-staining to track GLUT4 movement in HA-GLUT4-GFP cells showed 

differences between wildtype and mVps45 depleted cells.  In wildtype cells, 

the total cycling of GLUT4 through the PM took nearly 4 hours, however, in 

mVps45 knockdown cells this rate was much more rapid and was found to be 

around 100 minutes, less than half the time of wildtype.  These findings 

suggest that the rate at which the total population of GLUT4 trafficks through 

the PM increases in the absence of mVps45 suggesting that in the absence of 

mVps45, GLUT4 may not enter the slow cycle.  This suggestion supports the 

possibility that mVps45 controls entry into the slow cycle. 

 

Subcellular fractionation experiments measuring the subcellular distribution 

of mVps45 protein showed that mVps45 normally resides at the TGN (as 

evidenced by the fact that it was found in the LDM fraction which is known to 
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contain the TGN) which is where it has been found to act.  Depleting 3T3-L1 

adipocytes of mVps45 showed the presence of traces of mVps45 in the HDM 

fraction but not the LDM fraction which indicates a shift of proteins from the 

GSV to the endosome pools.  This shift indicates that in the absence of 

mVps45 GSVs are not available for GLUT4 entry.   

 

Expanding upon the finding of the subcellular fractionation studies, Iodixanol 

sedimentation analysis showed a shift from the GSV pool to the 

TGN/endosomal pool for GLUT4 proteins in 3T3-L1 adipocytes depleted of 

mVps45 as evidenced by the change in band patterns for GLUT4 from fractions 

2-5 to fractions 7-10.  This finding suggests that GLUT4 shifts to the second 

pool in the absence of mVps45 because mVps45 may be necessary for GLUT4 

to enter the GSVs.  Hashiramoto and James suggest that these endosomal 

vesicles may mediate withdrawl of GLUT4 from the recycling system and this 

might explain the unique insulin responsiveness of GLUT4 in adipocytes.  

Maier and colleagues also found two distinct intracellular pools of GLUT4, one 

that was endosomal and enriched with transferrin receptors and early 

endosomal rab proteins and a second pool that was denser and devoid of 

endosomal markers (Maier and Gould, 2000).  They found that the earlier 

fractions correspond to GSVs and our study recapitulates this finding. 

 

 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
Chapter 6- Conclusions and Future Directions
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Chapter 6: Conclusions and Future Directions 
 
 

Insulin resistance is caused by the failure of insulin to stimulate the 

translocation of GLUT4 from internal GSV stores to the PM thereby 

internalizing glucose into muscle and fat cells (Bryant et al., 2002).  In insulin 

responsive cells such as adipocytes, GLUT4 traffics between two inter-related 

endosomal cycles.  Cycle 1 (the fast cycle) shuttles GLUT4 between the PM 

and early endosomes clearing it from the PM in the basal state while Cycle 2 

(the slow cycle) recycles GLUT4 between recycling endosomes/TGN and GSVs 

(see Figure 6.1 for an illustration).  Insulin mobilises GLUT4 to the PM from 

this slow recycling pathway (Bryant et al., 2002).  This thesis seeks to 

understand how GLUT4 entry into the second cycle is controlled. 

 

GLUT4 trafficking is a highly regulated process and is controlled by the 

formation of a specific SNARE complex, the formation of which ensures 

specificity of function.  Syntaxin 16 is the t-SNARE shown to form a SNARE 

complex with Syntaxin 6 and Vti1a that facilitates the traffic of GLUT4 into 

GSVs (Shewan et al., 2003; Proctor et al., 2006).  Regulation of this t-SNARE 

controls the SNARE complex which may regulate GLUT4 entry into the slow 

cycle.  mVps45 is the SM protein thought to control Syntaxin 16 (Dulubova et 

al., 2002; Yamaguchi et al., 2002).   

 

Data from several experiments appear to suggest that mVps45 may have a role 

in regulating GLUT4 sorting.  It is assumed that mVps45 regulates GLUT4 

sorting through the regulation of Syntaxin 16 and subsequently the formation 

of SNARE complexes involving Syntaxin 16 but precisely how this regulation 

occurs is not known.  Data from this thesis suggest an interaction between 

Syntaxin 16 and mVps45 so this assumption may be correct.   
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Figure 6.1 The effect of mVps45 on GLUT4 sorting into the slow recycling pathway 
Data from this thesis suggests a role for mVps45 in regulating the entry of GLUT4 into the slow 
cycle (reproduced with permission from Gwyn Gould) 
 
 
6.1 Endogenous levels and binding of Syntaxin 16 and mVps45 
 
 

In chapter 3, the aim was to assess whether mVps45 and Syntaxin 16 were 

present in stoichiomeric amounts and also to test whether insulin stimulation 

alters the interaction between Syntaxin 16 and mVps45.   

 

Through quantification analysis using standard curve methodology, we found 

that mVps45 and Syntaxin 16 are present in roughly stoichiomeric amounts 

which suggested that there is a functional interaction between Syntaxin 16 

and mVps45.  When these calculated values from 3T3-L1 adipocytes were 

compared to values obtained through the quantification of the levels of 

Syntaxin 16 and mVps45 in fibroblasts, it was found that the copy number of 

both proteins increase upon adipocyte differentiation.  This finding suggested 

that both Syntaxin 16 and mVps45 are important in the functioning of 

adipocytes.  When the copy number of Syntaxin 16 and mVps45 were 

compared between 3T3-L1 adipocytes and rat primary adipocytes, the levels 
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of both proteins appeared broadly similar which suggested that the roles of 

both Syntaxin 16 and mVps45 are important in adipocytes and that mVps45 

and syntaxin 16 being present in proportional quantities were able to interact 

functionally.  Further quantification work is necessary to quantify the levels 

of Syntaxin 16 from insulin-stimulated 3T3-L1 membranes in order to compare 

this to the data already obtained from quantifying the levels of mVps45 in 

3T3-L1 membrane proteins.  It is important to determine whether the 

expression of this complex is altered in insulin resistance so it would be 

interesting to quantify the levels of Syntaxin 16 and mVps45 from insulin 

resistant samples (ZDF rats or diabetic human samples). 

 

We also tested the binding interaction between Syntaxin 16 and mVps45 

through immunoprecipitation experiments.  These experiments revealed that 

in basal conditions Syntaxin 16 and mVps45 bind.  However, when 

immunoprecipitation experiments were performed using lysates from insulin-

stimulated 3T3-L1 adipocytes, it appeared that the interaction between 

mVps45 and Syntaxin 16 remained, suggesting that insulin does not modulate 

this interaction.  In other data from this thesis, the absence of mVps45 

appears to alter the ability of insulin to modulate Syntaxin 16 action and it 

would be interesting to perform immunoprecipitation experiments using 3T3-

L1 cells transduced with a dominant negative form of mVps45 to assess the 

ability of insulin to modulate this interaction. 

 
 
6.2 Yeast Model of Vps45 mutants and Complementation  

 
 

In chapter 4, we aimed to determine whether Vps45p and mVps45 are 

functional homologues.  We examined this question primarily through 

assessing whether mVps45 can complement for the deletion of Vps45p through 

a series of complementation assays. 

 

When we performed CPY trafficking assays we found that mVps45 can 

complement for the loss of Vps45p with respect to the trafficking of CPY and 

that mVps45 mutants cannot restore this function.  These data suggested that 

mVps45 is a functional homologue of Vps45p and mVps45 mutants in this assay 

may show homology to yeast mutants established in the lab previously (Carpp 
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et al., 2007).  Similarly, Invertase secretion assays appeared to suggest that 

mVps45 shows functional homology to Vps45p by rescuing the ability of cells 

to sort invertase.  These assays were performed with only mVps45 and mVps45 

mutants and were not assayed at the same time as Vps45p and its 

corresponding mutants (although the data was confirmed by comparing the 

data from mVps45 and its mutants with published literature for Vps45p and its 

mutants- see Carpp et al., 2006; Carpp et al., 2007).  Therefore, it would be 

advantageous to perform these experiments again with mVps45, the mutants 

described herein, Vps45p and its corresponding mutants in order to be able to 

directly compare the data in our assays at the same time. 

 

We also examined the ability of yeast to grown on hyperosmotic media and at 

non-permissive temperatures.  These assays assessed the ability of mVps45 to 

functionally complement for the loss of Vps45p in the face of osmotic shock 

and temperature sensitivity. Here, we found that mVps45 was clearly able to 

rescue the ability of yeast to grow on altered media (supplemented with 1.5M 

KCl) and at non-permissive temperatures throughout this series of 

experiments.  Lastly, we performed Tlg2p expression assays which also 

suggested the functional complementation of mVps45 in yeast lacking VPS45 

by showing that mVps45 is able to stabilize Tlg2p cellular levels.   

 

Future work will involve biochemical assays designed to measure the affinity 

of mVps45 to Tlg2p (the binding mode for which Dulubova et al., 2002 has 

already established) and also to its mammalian homologue Syntaxin 16.  We 

will also perform assays to assess the interactions of mVps45 mutants with 

Tlg2p and Syntaxin 16.  

 

6.3 Effects of mVps45 knockdown on the intracellular  
      environment. 
 
 
In this last chapter, our aim was to discover how depletion of mVps45 alters 

the cellular function, protein levels and transport in 3T3-L1 adipocytes. 

 

In order to do this, we first depleted cells for mVps45 and assessed the 

changes to the intracellular environment.  In this series of knockdown 

experiments we found that levels of mVps45’s cognate t-SNARE Syntaxin 16 
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were reduced as were the cellular levels of the GSV proteins GLUT4 and IRAP.  

These findings suggested a role for mVps45 in GLUT4 sorting.  Data from this 

chapter suggested that in the absence of mVps45 the influence of insulin-

stimulation is altered which affects glucose transport.  These knockdown 

experiments were performed in basal cells and it would be interesting to note 

any changes to proteins involved in GLUT4 sorting in insulin-stimulated cells 

depleted of mVps45.   

  

A series of glucose transport assays suggested that the absence of mVps45 

alters the rate and sensitivity of glucose transport in insulin-stimulated 3T3-L1 

adipocytes.  While this data suggests a role for mVps45 in GLUT4 sorting, a 

more specific role might be assigned to mVps45 in assays that incorporated an 

inhibitor. It has been found that wortmannin inhibits insulin-stimulated GLUT4 

translocation and glucose uptake in 3T3-L1 adipocytes in a dose-dependent 

manner (Hausdorff et al., 1999).  The use of wortmannin also led to the 

conclusion that it is the p110 isoform of PI3-kinase that is involved in 

regulating GLUT4 translocation and that cell-surface exofacially exposed 

glucose transporters (such as GLUT4) require additional factors to maintain 

activity (Hausdorff et al., 1999).  It would be interesting to include the use of 

wortmannin in future assays of glucose transport using these mVps45 depleted 

cells to see what effect PI3-kinase inhibition would have on our system. 

 

Budding assays performed in this chapter indicated that in the absence of 

mVps45, GLUT4 may not be able to enter into newly budded vesicles.  This 

finding suggests that mVps45 is necessary for GLUT4 sorting and possibly 

regulates the entry of GLUT4 into GSVs. It has been found that insulin can 

induce plasma membrane fusion of pre-formed vesicles and also stimulates 

the formation of new vesicles (Xu and Kandror, 2002).  GLUT4 is found in 

small insulin-sensitive 60-70 S membrane vesicles that may derive from larger 

donor membranes in-vitro (Xu and Kandror, 2002).  Xu and Kandror have 

demonstrated that small GLUT4-containing vesicles are formed from large 

rapidly sedimenting donor membranes in a cytosol-, ATP-, time- and 

temperature-dependent fashion (Xu and Kandror, 2002).  This suggests that 

small insulin-responsive vesicles are where GLUT4 is stored and that fusion of 

these vesicles with the plasma membrane is the result of insulin-stimulation.  

Insulin may also stimulate formation of these vesicles and accelerate GLUT4 
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recycling to the plasma membrane (Xu and Kadror, 2002).  Vesicle budding 

requires GTP binding to Arf and GTPγS increases recruitment of the adaptor 

complex AP1 onto donor membranes, however GTP-bound Arf does not limit 

the budding reaction.  Xu and Kandror found that insulin stimulated the 

formation of GLUT4 vesicles in-vitro by ~50% and it would be interesting to 

insulin-stimulate wildtype and mVps45 depleted cells and test whether the 

same result is obtained in insulin-stimulated wildtype cells and what the 

effect of insulin-stimulation would be in mVps45 depleted cells.  

 

Recycling experiments in HA-GLUT4-GFP cells suggested that in the absence 

of mVps45 the rate at which the total population of GLUT4 traffics through 

the PM increases, which may suggest that when mVps45 is not available 

GLUT4 may not be able to enter into the slow pathway and instead is trapped 

in the fast cycle.  These experiments were performed in HA-GLUT4-GFP cells 

depleted of mVps45.  Others in the lab have depleted these cells of Syntaxin 

16.  It will be interesting to see if similar results using this assay will be 

obtained in Syntaxin 16 depleted cells.  If this is the case, it suggests that the 

SNARE complex regulates GLUT4 sorting into the slow pathway and validates 

the role of mVps45 in regulating the t-SNARE involved in the complex. 

 

Subcellular fractionation and Iodixanol experiments identified a shift in 

cellular pool for GLUT4 in the absence of mVps45 from the GSV rich pool into 

the TGN/endosomal pool.  These very preliminary findings suggest that in the 

absence of mVps45 GSVs may not be available for GLUT4 internalization.  

While these findings are initially interesting, they do not communicate the 

full story available from these experiments.  It will be necessary to perform 

these experiments again and analyse the locations of other proteins involved 

in GLUT4 sorting, most notably GLUT4 protein itself in subcellular fractions to 

validate our assay against the established literature.  Other proteins vital to 

analyse will be IRAP, to obtain information about the GSVs, Syntaxin 16, the 

cognate t-SNARE for mVps45 as well as Rab4, Mannose-6 phosphate and other 

markers testing for purity of each fraction.   

 

Taken together, the findings in this thesis suggest a role for mVps45 in 

regulating GLUT4 sorting, probably through regulating the entry of GLUT4 into 

the GSVs 
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