Investigation of GLUT4 sorting into the insulin responsive compartment: A role for ubiquitination and deubiquitination

A thesis submitted to the
COLLEGE OF MEDICAL, VETERINARY AND LIFE SCIENCES

For the degree of
DOCTOR OF PHILOSOPHY

By Christopher A Lamb

Institute of Molecular, Cell and Systems Biology
College of Medical, Veterinary and Life Sciences
University of Glasgow

November 2010

© Christopher A Lamb 2010
Abstract

GLUT4 is the insulin-regulated glucose transporter found in muscle and adipose tissue. On insulin stimulation, GLUT4 translocates from a slowly recycling storage compartment (GLUT4 storage vesicles or GSVs) to the plasma membrane. This allows glucose to enter cells by diffusion down its concentration gradient, clearing glucose from the plasma. This response is defective in the disease states of insulin resistance and type 2 diabetes. The aim of this study is to understand how GLUT4 enters GSVs, which will hopefully extend our knowledge of insulin responsive tissues.

Previous studies from our lab, expressing GLUT4 in yeast, have shown that GLUT4 is subject to the same nitrogen- and ubiquitin-dependent trafficking as the yeast amino acid permease Gap1p. In my thesis I have extended these studies into 3T3-L1 adipocytes, and shown that GLUT4 is ubiquitinated in this insulin responsive cell line. A ubiquitin resistant version of GLUT4 (HA-GLUT4 7K/R) has an impaired ability to enter GSVs and does not translocate in response to insulin. However GLUT4 mutants with single ubiquitination sites outwith the large intracellular loop are ubiquitinated and traffic in an identical manner to wild type GLUT4, addressing concerns that mutation of the large intracellular loop of GLUT4 in HA-GLUT4 7K/R affects its trafficking.

The GGA family of clathrin adaptor proteins have previously been implicated in sorting of newly synthesised GLUT4 into GSVs. Our lab has shown previously that the two yeast Ggas are required for ubiquitin dependent trafficking of GLUT4 in yeast, as is the case for Gap1p. I have gone on to show that the ubiquitin binding function of the GGA3 GAT domain is, at least partially, required for an in vitro interaction between GLUT4 and the VHS-GAT domains of GGA3. When expressed in adipocytes, a ubiquitin binding deficient mutant of myc-GGA3 reduces the proportion of GLUT4 loaded into a subcellular fraction enriched in GSVs, suggesting that GLUT4 ubiquitination is one of the signals for GGA dependent sorting into GSVs.

As ubiquitination is usually thought of as a signal to direct lysosomal degradation, and only 0.1 % of total GLUT4 is ubiquitinated at any one time, there may be a role for a deubiquitination step in ubiquitin dependent GLUT4 traffic. Work by our collaborator (Nai-Wen Chi, UCSD) has demonstrated that
the GSV cargo IRAP and its binding partner tankyrase-1 are required for normal insulin responsive GLUT4 traffic. An interaction between tankyrase and the deubiquitinase (DUB) USP25 has been demonstrated by yeast two hybrid analysis, and this DUB contains a putative tankyrase binding motif. USP25 may therefore be recruited to GSVs by IRAP, with tankyrase acting as a scaffold. I demonstrated that GST-USP25 binds tankyrase-1 from an adipocyte lysate, and that a version of the enzyme with a mutation in the putative tankyrase binding motif (GST-USP25 R1049A) does not. I also used siRNA to deplete USP25 from 3T3-L1 adipocytes, and found that this results in a reduction of GLUT4 levels in these cells. A concomitant reduction in the fold change of insulin-stimulated glucose transport into these cells suggests that GLUT4 is not sequestered in GSVs, but is rather directed to the lysosome.

In summary, my data show that ubiquitination of GLUT4 is required for the transporter to be loaded into its insulin responsive compartment (GSVs). I also began to characterise the role of the ubiquitin binding GAT domain of GGA3 and the deubiquitinase USP25 in GLUT4 traffic, opening up two further avenues for research into the insulin regulated trafficking of GLUT4.
Table of contents

Abstract ... 2
List of tables.. 7
List of figures... 8
Acknowledgements...10
Declaration ..11
Abbreviations..12

Chapter 1 - Introduction ..16
 1.1 Compartmentalisation of eukaryotic cells17
 1.1.1 Vesicle traffic ...18
 1.1.2 SNARE proteins ...19
 1.1.3 Intrinsic protein signals ...20
 1.1.4 Sorting via post-translational modification20
 1.1.5 Ubiquitin as a post translational modification21
 1.1.6 Other ubiquitin modifications22
 1.2 Ubiquitination regulates protein traffic23
 1.2.1 ESCRTs and multivesicular body sorting.24
 1.2.2 GGA proteins sort ubiquitinated substrates26
 1.3 Deubiquitinating enzymes (DUBs)28
 1.3.1 Role of DUBs in endocytic and endosomal traffic29
 1.4 GLUT4 and Type 2 diabetes ...31
 1.4.1 Glucose homeostasis and Type 2 Diabetes31
 1.4.2 GLUT4 ...33
 1.4.3 GLUT4 traffic in insulin responsive cells34
 1.4.4 GLUT4 Storage vesicles ...36
 1.5 A role for ubiquitin in the trafficking of GLUT4?38
 1.5.1 Ubiquitin-like proteins regulate GLUT4 traffic38
 1.5.2 Evidence from yeast ..40
 1.5.3 Evidence from 3T3-L1 adipocytes40
 1.5.4 GGA proteins regulate GLUT4 entry into GSVs41
 1.6 Is GLUT4 deubiquitination required for its insulin responsive traffic? 42
 1.6.1 IRAP and Tankyrase ..43
 1.6.2 USP25: a candidate GLUT4 DUB44
 1.6.3 3T3-L1 adipocyte data versus knockout mice: a confusing picture.47
 1.7 A model for ubiquitin dependent loading of GLUT4 into GSVs.48
 1.8 Aims of the project ...48

Chapter 2 - Materials & Methods ..49
 2.1 Materials ...50
 2.1.1 Reagents, enzymes and media components50
 2.1.2 Bacterial and yeast strains50
 2.2 Yeast cell culture ..50
 2.2.1 Preparation of yeast competent cells51
 2.2.2 Yeast transformation ..51
 2.2.3 Preparation of yeast cell lysates for SDS-PAGE and immunoblot 51
 2.2.4 Plasmid rescue from yeast52
 2.2.5 APNE assay ...52
 2.3 Mammalian cell culture techniques53
 2.3.1 Cell culture of 3T3-L1 murine fibroblasts and adipocytes 53
 2.3.2 RNA oligonucleotide synthesis53
 2.3.3 Transfection of 3T3-L1 adipocytes with siRNA oligonucleotides ...53
 2.3.4 Retroviral infection of 3T3-L1 fibroblasts54
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.5</td>
<td>Cell culture of Plat-E cells</td>
<td>54</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Preparation of retrovirus using Plat-E cells</td>
<td>54</td>
</tr>
<tr>
<td>2.4</td>
<td>DNA manipulation</td>
<td>54</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Plasmid DNA purification</td>
<td>55</td>
</tr>
<tr>
<td>2.4.2</td>
<td>DNA oligonucleotide synthesis</td>
<td>55</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Polymerase Chain Reaction</td>
<td>55</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Site Directed Mutagenesis</td>
<td>57</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Plasmid construction</td>
<td>58</td>
</tr>
<tr>
<td>2.4.6</td>
<td>Preparation of retrovirus using Plat-E cells</td>
<td>54</td>
</tr>
<tr>
<td>2.5</td>
<td>Protein methods</td>
<td>59</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Elecrophoretic separation of proteins</td>
<td>59</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Transfer of proteins to nitrocellulose membranes</td>
<td>60</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Immunoblot analysis</td>
<td>60</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Antibodies</td>
<td>60</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Quantification of immunoblots</td>
<td>61</td>
</tr>
<tr>
<td>2.5.6</td>
<td>GST fusion protein preparation</td>
<td>61</td>
</tr>
<tr>
<td>2.5.7</td>
<td>GST fusion protein concentration estimation</td>
<td>62</td>
</tr>
<tr>
<td>2.6</td>
<td>GST fusion protein pull-down with yeast lysate</td>
<td>62</td>
</tr>
<tr>
<td>2.7</td>
<td>GST fusion protein pull-down with 3T3-L1 adipocyte lysate</td>
<td>63</td>
</tr>
<tr>
<td>2.8</td>
<td>Indirect immunofluorescence with 3T3-L1 adipocytes</td>
<td>64</td>
</tr>
<tr>
<td>2.9</td>
<td>[(^{3}H)]2-Deoxyglucose uptake assays</td>
<td>64</td>
</tr>
<tr>
<td>2.10</td>
<td>Isolation of low density microsomes from 3T3-L1 adipocytes</td>
<td>65</td>
</tr>
<tr>
<td>2.11</td>
<td>Iodixanol gradient analysis of LDMs from 3T3-L1 adipocytes</td>
<td>66</td>
</tr>
<tr>
<td>2.12</td>
<td>Enrichment of GSVs using subcellular fractionation</td>
<td>66</td>
</tr>
<tr>
<td>Chapter 3 - Ubiquitination and insulin responsive trafficking of GLUT4</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>74</td>
</tr>
<tr>
<td>3.2</td>
<td>Aims of the chapter</td>
<td>77</td>
</tr>
<tr>
<td>3.3</td>
<td>Expression of HA-GLUT4 and HA-GLUT4 7K/R</td>
<td>78</td>
</tr>
<tr>
<td>3.4</td>
<td>A single ubiquitination site is sufficient to permit insulin-stimulated translocation of GLUT4.</td>
<td>81</td>
</tr>
<tr>
<td>3.4.1</td>
<td>HA-GLUT4 6K/R K109 and K495 are ubiquitinated in 3T3-L1 adipocytes</td>
<td>81</td>
</tr>
<tr>
<td>3.4.2</td>
<td>HA-GLUT4 7K/R cannot translocate in response to insulin</td>
<td>85</td>
</tr>
<tr>
<td>3.4.3</td>
<td>HA-GLUT4 6K/R K109 and K495 translocate readily in response to insulin stimulation</td>
<td>87</td>
</tr>
<tr>
<td>3.5</td>
<td>Does the 7K/R mutation affect loading of GLUT4 into the insulin responsive compartment?</td>
<td>88</td>
</tr>
<tr>
<td>3.6</td>
<td>Chapter discussion</td>
<td>93</td>
</tr>
<tr>
<td>Chapter 4 - The ubiquitin binding GAT domain of GGA3 in ubiquitin mediated GLUT4 traffic</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>97</td>
</tr>
<tr>
<td>4.2</td>
<td>Aims of the chapter</td>
<td>99</td>
</tr>
<tr>
<td>4.3</td>
<td>Ubiquitin and GLUT4 interaction with the GGA3 GAT domain</td>
<td>99</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Mutagenesis of the GAT domain ablates ubiquitin binding in vitro.</td>
<td>100</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Expression of HA-GLUT4 and HA-GLUT4 7K/R in yeast</td>
<td>102</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Construction of the yeast strain BHNY1</td>
<td>104</td>
</tr>
<tr>
<td>4.3.4</td>
<td>An in vitro interaction between GLUT4 and GST-GGA3-VHS-GAT is partly ubiquitin dependent.</td>
<td>107</td>
</tr>
<tr>
<td>4.4</td>
<td>Expression of a ubiquitin-binding mutant of myc-GGA3 in 3T3-L1 adipocytes.</td>
<td>109</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Does expression of myc-GGA3 and myc-GGA3<sub>mut</sub> alter GLUT4 loading into the insulin responsive compartment?</td>
<td>113</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Does expression of myc-GGA3 and myc-GGA3<sub>mut</sub> alter insulin responsive [(^{3}H)]2-deoxyglucose uptake?</td>
<td>115</td>
</tr>
</tbody>
</table>
Chapter 5 - Deubiquitination and GLUT4 traffic ..

5.1 Introduction ...

5.2 Aims of the chapter ..

5.3 In vitro interaction of USP25 with tankyrase 1 ..

5.3.1 Expression and purification of recombinant GST-USP25

5.3.2 Pull-down assay on adipocyte lysates using GST and GST-USP25

5.3.3 Does mutation of the putative tankyrase binding motif of USP25 disrupt the in vitro interaction with tankyrase? ..

5.4 siRNA mediated depletion of USP25 in 3T3-L1 adipocytes reduces GLUT4 stability ..

5.4.1 Is GLUT4 redirected to the lysosome as a consequence of USP25 depletion? ..

5.4.2 Is glucose uptake affected by depletion of USP25?

5.5 Generation and characterisation of USP25 antisera

5.6 Chapter Discussion ...

Chapter 6 - Final Discussion ..

6.1 Ubiquitination of GLUT4 ..

6.2 The GGA3 GAT domain and GLUT4 traffic ..

6.3 The deubiquitinase USP25 and GLUT4 traffic ..

6.4 Future directions ...

Chapter 7 - Appendices ...

7.1 Appendix I - Glucose transport assay data for Figure 4.11

7.2 Appendix II - Glucose transport assay data for Figure 5.9

7.3 Appendix III - publications arising from this work

Bibliography ..
List of tables

Table 2.1 Primary antibodies used in this study .. 67
Table 2.2 Secondary antibodies used in this study 68
Table 2.3 Plasmids used in this study .. 70
Table 2.4 siRNA target sequences used in this study 70
Table 2.5 DNA oligonucleotides used in this study 71
Table 2.6 \textit{E. coli} strains used in this study .. 72
Table 2.7 \textit{S. cerevisiae} strains used in this study 72
Table 3.1 Percentage translocation of HA-GLUT4 and mutants thereof in response to 200 nM insulin ... 87
Table 7.1 $[^3]H$-2-deoxyglucose uptake data for Figure 4.11 157
Table 7.2 Glucose transport assay data for Figure 5.9 158
List of figures

Figure 1.1 Organelles within a mammalian cell.. 17
Figure 1.2 Ubiquitin conjugation to target proteins. ... 22
Figure 1.3 Gap1p traffic in S. Cerevisiae ... 24
Figure 1.4 Membrane protein trafficking to multivesicular bodies....................... 25
Figure 1.5 Domain structure of a typical GGA protein....................................... 27
Figure 1.6 Regulation of glucose homeostasis by insulin. 32
Figure 1.7 Insulin stimulates translocation of GLUT4 from intracellular stores to
the cell surface. ... 33
Figure 1.8 A model of GLUT4 traffic in insulin responsive cells....................... 36
Figure 1.9 A ubiquitin-resistant version of GLUT4 cannot exit the syntaxin 16
positive subdomain of the TGN in 3T3-L1 adipocytes.................................... 40
Figure 1.10 Schematic of tankyrase-1 and 2. .. 44
Figure 1.11 Schematic of USP25a. .. 45
Figure 1.12 Model for USP25 regulation by SUMOylation and ubiquitination...... 46
Figure 3.1 hGLUT4 expressed in yeast requires ubiquitin acceptor sites to enter
the proteolytically active endosomal system. .. 76
Figure 3.2 Schematic of GLUT4 in the plasma membrane with cytosolic lysines
(putative ubiquitination sites) indicated.. 77
Figure 3.3 DNA sequence alignment of HA-GLUT4 from pHA-GLUT4 and the
hGLUT4 sequence. ... 79
Figure 3.4 Construction of pRM55. .. 80
Figure 3.5 Expression of HA-GLUT4 and mutants in 3T3-L1 adipocytes.......... 81
Figure 3.6 GLUT4 is ubiquitinated in 3T3-L1 adipocytes. 83
Figure 3.7 Ubiquitination of HA-GLUT4 variants in 3T3-L1 adipocytes............ 84
Figure 3.8 HA-GLUT4 7K/R cannot translocate in response to insulin............. 86
Figure 3.9 Three example iodixanol gradient fractionation profiles of HA-GLUT4
in 3T3-L1 adipocytes.. 90
Figure 3.10 HA-GLUT4 7K-R cannot enter the insulin responsive compartment. 92
Figure 4.1 Purification of GGA3 VHS-GATmut .. 100
Figure 4.2 Mutation of the GAT domain ablates ubiquitin binding in vitro 101
Figure 4.3 Generation of pCAL4. ... 103
Figure 4.4 Expression of HA-GLUT4 in yeast... 104
Figure 4.5 HA-GLUT4 expressed in yeast interacts with GST-VHS-GAT.......... 105
Figure 4.6 GLUT4 expressed in yeast interacts with GST-VHS-GAT in a ubiquitin
dependent manner. .. 107
Figure 4.7 GST-VHS-GAT pull-down assay on 3T3-L1 adipocyte lysates........... 109
Figure 4.8 Expression of myc-GGA3 and myc-GGA3mut in 3T3-L1 adipocytes.... 111
Figure 4.9 Localisation of myc-GGA3 and myc-GGA3mut expressed in 3T3-L1
adipocytes .. 112
Figure 4.10 GLUT4 loading into the 16,000 xg supernatant is reduced by
expression of myc-GGA3mut ... 114
Figure 4.11 Insulin stimulated glucose uptake rate is not affected by expression
of myc-GGA3 or myc-GGA3mut ... 116
Figure 4.12 Recombinant GGA3 proteins used in this chapter........................ 117
Figure 4.13 A model for GGA function in GSV cargo recruitment.................... 120
Figure 5.1 Protein sequence alignment of vertebrate USP25................................. 126
Figure 5.2 Coomassie stained SDS-PAGE gel of GST-USP25 purification......... 127
Figure 5.3 Comparison of GST-USP25 and GST protein expression levels....... 128
Figure 5.4 Pull-down assay on adipocyte lysates using immobilised recombinant GST and GST-USP25. ...129
Figure 5.5 Quantification of purified GST-USP25 and GST-USP25 R1049A.130
Figure 5.6 Mutation of the conserved arginine residue in the USP25 tankyrase binding motif prevents interaction with tankyrase 1.131
Figure 5.7 siRNA mediated depletion of USP25 results in a reduction in GLUT4 protein levels. ...132
Figure 5.8 Treatment of siRNA transfected 3T3-L1 adipocytes with 15 mM NH₄Cl. ...134
Figure 5.9 Fold change in [3H] 2-deoxyglucose uptake is reduced on insulin stimulation of USP25 depleted 3T3-L1 adipocytes.135
Figure 5.10 Thrombin cleavage of GST-USP25. ..136
Figure 5.11 Sera from rabbits 2198 and 2199 tested against recombinant GST and GST-USP25. ...137
Figure 5.12 Testing sera 2198 and 2199 against 3T3-L1 adipocyte lysates.138
Acknowledgements

First of all I’d like to thank my supervisor Dr. Nia Bryant for all the constructive criticism, advice and support over the last few years, especially running those gels when I was getting a bit overwhelmed and letting me stop doing iodixanol gradients...! THANK YOU.

A big thank you to Dr Rebecca McCann (aka Wee Becky, Beckster etc) for getting the ball rolling on the GLUT4-ubiquitin project, and answering my repeated questions in the early days. Most importantly, thank you for the box of index cards with solution and media recipes - the importance of which cannot be underestimated.

Thank you to Dr Scott Shanks (aka Dr Scotch Eggs) for being a generally awesome benchmate (and neighbour), and providing a sounding board and source of all yeast and PCR knowledge. Also thanks to Dr Chris Macdonald (aka The Curly One/Zebra) for the regular cloning advice, pub sessions and the template for a low-stress write-up. This is probably the time to apologise for all the buffers I stole, sorry about that...

Thanks to the rest of the current Bryant group, especially Iain for being a competent (ahem) “minion”, and those who have gone on to better things - Tom, Lindsay (COG), and Maz. You’ve all helped in big or small ways. Also to the rest of lab 241, especially the 3T3-L1/GLUT4 crew (holla!), thanks for the help, advice and general banter (especially during long sessions in the virus room of cell culture eh Andy?) over the last few years. Also thank you to Professor Frances Brosky’s group at UCSF for making my visit there enjoyable.

Thanks to all my other friends up in Glasgow for the good times over the last few years, especially those going through a PhD at the same time. It’s good to know I wasn’t alone. Also to the Sunday night Cooper’s pub quiz team and all the people I met through GUSWPC for keeping me active, healthy and occasionally inebriated during my time at Glasgow.

Finally a massive thank you to Mum and Dad (Linda and John) for the constant encouragement, advice, love and support.
Declaration

I declare that the work presented in this thesis has been carried out by myself unless otherwise stated. It is entirely of my own composition and has not been submitted, in whole or in part, for any other degree. Permission has been granted by the publisher for any reproduced figures.

Christopher Anthony Lamb

November 2010
Abbreviations

- approximately
ADP adenosine diphosphate
ALP alkaline phosphatise
A amps
AP adaptor protein/assembly polypeptide complex
APNE N-acetyl-DL-phenylalanine β-naphthyl ester
AS160 Akt substrate of 160 kilodaltons
ARF ADP ribosylation factor
ATP adenosine triphosphate
b DNA base pair
BSA bovine serum albumin
°C degrees Celsius
cDNA complementary DNA
CEN centromeric
cfu colony forming unit
Ci curie
CPS carboxypeptidase S
CPY carboxypeptidase Y
C-terminal carboxy terminal
CuSO$_4$ copper sulphate
ddH$_2$O double distilled water
DMEM Dulbecco’s modified Eagle’s medium
DMF dimethyl formamide
DMSO dimethyl sulphoxide
DNA deoxyribonucleic acid
DNTP deoxynucleotide triphosphate
DUB deubiquitinating enzyme
E1 ubiquitin activating enzyme
E2 ubiquitin conjugating enzyme
E3 ubiquitin ligase
E. coli *Escherichia coli*
ECL enhanced chemiluminescence
EDTA ethylenediamine tetraacetic acid
ER endoplasmic reticulum
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS</td>
<td>foetal calf serum</td>
</tr>
<tr>
<td>FM4-64</td>
<td>N-(3-triethylammoniumpropyl)-4-(p-diethylaminophenyl-hexatrienyl)pyridiumdibromide</td>
</tr>
<tr>
<td>5-FOA</td>
<td>5-fluoroorotic acid</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>xg</td>
<td>multiple of gravitational force</td>
</tr>
<tr>
<td>GAE</td>
<td>γ adaptin ear</td>
</tr>
<tr>
<td>GAT</td>
<td>GGA and TOM1</td>
</tr>
<tr>
<td>GFP</td>
<td>Aequorea victoria green fluorescent protein</td>
</tr>
<tr>
<td>GGA</td>
<td>Golgi localised, γ adaptin ear containing, ARF binding protein</td>
</tr>
<tr>
<td>GLUT</td>
<td>glucose transporter</td>
</tr>
<tr>
<td>GST</td>
<td>glutathione-S-transferase</td>
</tr>
<tr>
<td>GSV</td>
<td>GLUT4 storage vesicle</td>
</tr>
<tr>
<td>GUV</td>
<td>giant unilamellar vesicle</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>hydrogen peroxide</td>
</tr>
<tr>
<td>HA</td>
<td>influenza haemagglutinin epitope tag</td>
</tr>
<tr>
<td>HCl</td>
<td>hydrochloric acid</td>
</tr>
<tr>
<td>HDM</td>
<td>high density microsome</td>
</tr>
<tr>
<td>HEPES</td>
<td>2-[4(2-hydroxyethyl)-1-piperazine]ethanesulphonic acid</td>
</tr>
<tr>
<td>HES</td>
<td>HEPES, sucrose, EDTA</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxidise</td>
</tr>
<tr>
<td>Ig</td>
<td>immunoglobulin isotype</td>
</tr>
<tr>
<td>IPTG</td>
<td>isopropyl-β-D-thiogalactopyranoside</td>
</tr>
<tr>
<td>IRAP</td>
<td>insulin responsive aminopeptidase</td>
</tr>
<tr>
<td>IRS</td>
<td>insulin receptor substrate</td>
</tr>
<tr>
<td>IRV</td>
<td>insulin responsive vesicle</td>
</tr>
<tr>
<td>JAMM</td>
<td>JAB1, MPN/MOV34 metalloenzymes</td>
</tr>
<tr>
<td>k</td>
<td>kilo (prefix)</td>
</tr>
<tr>
<td>KCl</td>
<td>potassium chloride</td>
</tr>
<tr>
<td>k_d</td>
<td>dissociation constant</td>
</tr>
<tr>
<td>K$_2$HPO$_4$</td>
<td>dipotassium hydrogen orthophosphate</td>
</tr>
<tr>
<td>KH$_2$PO$_4$</td>
<td>potassium dihydrogen orthophosphate</td>
</tr>
<tr>
<td>KOAc</td>
<td>potassium acetate</td>
</tr>
<tr>
<td>KOH</td>
<td>potassium hydroxide</td>
</tr>
<tr>
<td>l</td>
<td>litre</td>
</tr>
<tr>
<td>LDM</td>
<td>low density microsome</td>
</tr>
<tr>
<td>LiOAC</td>
<td>lithium acetate</td>
</tr>
</tbody>
</table>
LSB Laemmli’s sample buffer
µ micro (prefix)
m milli (prefix)
M molar
MgSO₄ magnesium sulphate
MHCII major histocompatibility complex class II molecule
min minute
MVB multivesicular body
n nano (prefix)
N-terminal Amino-terminal
NaCl sodium chloride
Na₂HPO₄ disodium hydrogen orthophosphate
NaH₂PO₄ sodium dihydrogen orthophosphate
NaOH sodium hydroxide
NCS newborn calf serum
NEM N-ethyl maleimide
NH₄Cl ammonium chloride
NSF N-ethyl maleimide sensitive factor
OD₆₀₀ optical density at 600 nm
ORF open reading frame
OTU otubain
p pico (prefix)
PAGE polyacrylamide gel electrophoresis
PBS phosphate buffered saline
PBS-T 0.1 % Tween-20 in phosphate buffered saline
PCR polymerase chain reaction
PI phosphatidylinositol
PIPES 1,4-piperazinediethanesulphonic acid
PKB protein kinase B/Akt
PKC protein kinase C
RNA ribonucleic acid
RS retention sequence
S. cerevisiae Saccharomyces cerevisiae; Baker’s yeast
SD yeast synthetic dextrose media
SDM site directed mutagenesis
SDS sodium dodecyl sulphate
SH2 Src-homology 2
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIM</td>
<td>SUMO interacting motif</td>
</tr>
<tr>
<td>siRNA</td>
<td>short interfering RNA</td>
</tr>
<tr>
<td>SNARE</td>
<td>soluble NSF attachment protein receptor</td>
</tr>
<tr>
<td>SUMO</td>
<td>small ubiquitin like modifier</td>
</tr>
<tr>
<td>TAE</td>
<td>tris-acetic acid-EDTA</td>
</tr>
<tr>
<td>TE</td>
<td>tris-EDTA</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N',N'-tetramethyl ethylene diamine</td>
</tr>
<tr>
<td>TfR</td>
<td>transferrin receptor</td>
</tr>
<tr>
<td>TGN</td>
<td>trans-Golgi network</td>
</tr>
<tr>
<td>Tris</td>
<td>2-amino-2(hydroxymethyl)-1,3-propanediol</td>
</tr>
<tr>
<td>Ub</td>
<td>ubiquitin</td>
</tr>
<tr>
<td>UBA</td>
<td>ubiquitin associated domain</td>
</tr>
<tr>
<td>Ubc</td>
<td>ubiquitin conjugating enzyme</td>
</tr>
<tr>
<td>UBL</td>
<td>ubiquitin like</td>
</tr>
<tr>
<td>UBX</td>
<td>ubiquitin regulatory X</td>
</tr>
<tr>
<td>UCH</td>
<td>Ubiquitin C-terminal hydrolase</td>
</tr>
<tr>
<td>UIM</td>
<td>ubiquitin interacting motif</td>
</tr>
<tr>
<td>USP</td>
<td>ubiquitin specific protease</td>
</tr>
<tr>
<td>UTR</td>
<td>untranslated region</td>
</tr>
<tr>
<td>VAMP</td>
<td>vesicle associated membrane protein</td>
</tr>
<tr>
<td>VHS</td>
<td>Vps27, Hrs, STAM</td>
</tr>
<tr>
<td>VPS</td>
<td>vacuolar protein sorting</td>
</tr>
<tr>
<td>v/v</td>
<td>units per unit volume</td>
</tr>
<tr>
<td>w/v</td>
<td>units weight per unit volume</td>
</tr>
<tr>
<td>Wnt</td>
<td>Wingless/Int protein</td>
</tr>
<tr>
<td>YPD</td>
<td>yeast extract, peptone, dextrose</td>
</tr>
<tr>
<td>YT</td>
<td>yeast extract, tryptone, NaCl</td>
</tr>
</tbody>
</table>
Chapter 1 – Introduction
1.1 Compartmentalisation of eukaryotic cells

One of the defining features of eukaryotic cells is the presence of internal membrane bound organelles, such as the nucleus, mitochondria and an endomembrane system (Figure 1.1) (Vellai and Vida, 1999; Dacks and Field, 2007). These characteristics allow the compartmentalisation of reactions in specialised organelles. For example, lysosomes are the site of hydrolysis of proteins and phagocytosed particles, peroxisomes are the location of peroxide breakdown, secretory protein synthesis occurs at the endoplasmic reticulum, and so on.

![Figure 1.1 Organelles within a mammalian cell. Reproduced with permission from http://www.abcam.com/index.html?pageconfig=resource&rid=16](http://www.abcam.com/index.html?pageconfig=resource&rid=16)

A problem with this system is that molecules may need to move from one compartment to another to carry out their function. As an example, secreted proteins are synthesised in the endoplasmic reticulum, modified in the Golgi membranes and must then reach the plasma membrane. Additionally, many cells need to move molecules from one compartment to another in response to external stimuli. Examples of this include mast cell degranulation in response to stimulation with specific antigen (Lawson et al., 1978), secretion of hormones, such as insulin secretion in response to raised plasma glucose (Eliasson et al., 2008), and synaptic vesicle exocytosis (Martin, 1997).
Therefore, mechanisms must be in place to permit the movement of proteins from one compartment to another, allowing molecules to move to the correct site to carry out their function while still maintaining organelar identity.

1.1.1 Vesicle traffic

One of the main routes by which proteins can move from one compartment to another is through the formation of coated vesicles (Kirchhausen, 2000). The formation of coated vesicles is required to collect molecules destined for another compartment together, helping to maintain organelle identity throughout the life of a cell. There are three main coat protein families found in mammalian and yeast cells. COPI (coatamer protein I) consists of a complex with seven subunits which appears to be involved in retrograde traffic from the Golgi to the endoplasmic reticulum and through the Golgi cisternae (Kirchhausen, 2000). GTP-bound Arf1 is responsible for recruiting COPI complexes to membranes (Serafini et al., 1991). The γ subunit of the COPI complex is responsible for cargo recognition, recognising cytosolic motifs such as the dilysine (KKXX) (Harter et al., 1996).

COPII coated vesicles are required for anterograde traffic from the endoplasmic reticulum to the Golgi (Kirchhausen, 2000). The GTPase Sec12p recruits Sar1p to the membrane (Barlowe et al., 1993; Barlowe and Schekman, 1993) and this forms the basis for a complex forming which includes the cargo recognition module of Sec23/24p and the Sec13/Sec31p coat (Barlowe et al., 1994).

Clathrin coats are the third main family of vesicle coat complexes and are distributed throughout various intracellular transport processes. Clathrin coats consist of heavy and light chains, with three heavy chains forming a three legged structure (“triskelion”) and these recruit the light chain (Brodsky et al., 2001). However clathrin coats do not interact with vesicle cargos directly - they rely on adaptor molecules to facilitate interaction (Knuehl et al., 2006).

The role of clathrin adaptors is to link the cytosolic domains of vesicle cargos and sorting receptors (via specific sorting motifs as described in section 1.1.3) with clathrin coats (Robinson, 2004). Several protein families fulfil this role - these include Dab2 (Mishra et al., 2002), the GGAs (Golgi localised, γ-adaptin ear containing, ARF-binding proteins) (Pelham, 2004; Robinson, 2004) and the AP
(adaptor protein/assembly polypeptide) complexes 1-4 (Robinson, 2004). AP1 and 2 were the first adaptors characterised (Keen, 1987; Robinson, 2004). GGAs are discussed more extensively in section 1.2.2.

1.1.2 SNARE proteins

To allow transport vesicles to reach their target compartment, a mechanism for selective targeting of said compartments is required. This selectivity is conferred in part by a family of proteins called SNAREs (soluble, N-ethyl maleimide sensitive factor attachment receptor proteins) (McNew et al., 2000). SNAREs are often termed the “minimal machinery for membrane fusion” as purified SNARE proteins reconstituted in liposomes can induce liposome fusion in vitro (Weber et al., 1998).

In general, SNAREs have a single transmembrane domain, a highly conserved 60-70 amino acid SNARE motif and an N terminal peptide of variable length and structure (Jahn and Scheller, 2006). Fusion occurs when four SNARE motifs align in parallel and interact to form an energetically favourable core complex (Sutton et al., 1998). The four SNARE motifs are generally contributed by two or three Q SNAREs (with a central glutamine residue) and one R SNARE (with a central arginine residue) (Fasshauer et al., 1998). The four SNARE motifs zipper together, pulling vesicle and target membranes together and contributing to fusion of the membranes. All participating SNAREs subsequently exist as a complex on the target membrane (the cis-complex). The cis-complex is disassembled in an ATP-dependent manner (Sollner et al., 1993), which allows the SNAREs to be recycled for further rounds of fusion (Jahn and Scheller, 2006).

SNARE proteins associate with specific membranes within the cell where they catalyse particular fusion reactions. For example, syntaxin-4 is a plasma membrane SNARE, whereas VAMP2 is associated with secretory vesicles, such as those involved in neurotransmitter release (Hong, 2005). This means that specific SNARE complexes can form between these membranes to facilitate membrane fusion (McNew et al., 2000).
1.1.3 Intrinsic protein signals

Proteins themselves may contain intrinsic signals that direct their trafficking from one compartment to another, due to recognition by coat protein components or their adaptors (as discussed in 1.1.1). Two well characterised intrinsic sorting motifs are acidic dileucine motifs, usually conforming to the sequence DXXLL, and tyrosine based motifs (YXXΦ, where Φ is a bulky hydrophobic residue). The acidic dileucine motif is found in proteins which are sorted from the trans-Golgi network (TGN) into the endosomal system, including the two mannose-6-phosphate receptors (Chen et al., 1997; Tortorella et al., 2007; Braulke and Bonifacino, 2009) and sortilin (Shiba et al., 2002). The motif is bound by the VHS domain of GGA proteins (Nielsen et al., 2001; Shiba et al., 2002). YXXΦ motifs are also found in proteins which traffic along the lysosomal pathway, including LAMP-1 (Honing et al., 1996; Braulke and Bonifacino, 2009), with the modification being bound by the AP-1 and 2 adaptor complexes (Honing et al., 1996). YXXΦ motifs are required for Golgi exit and entry into the endosomal system.

1.1.4 Sorting via post-translational modification

Post translational protein modifications are those which occur once a polypeptide chain has been produced, and can include protein conjugation to carbohydrates, lipids, functional groups such as phosphates, and other proteins. One well characterized modification required for protein sorting is the mannose-6-phosphate modification found on soluble proteins directed to the endosomal system and eventually the lysosome, such as cathepsin D (Hida et al., 2007).

This modification allows binding of the lysosomal hydrolases to one of the two mannose-6-phosphate receptors (MPR); the cation-dependent MPR and the cation independent MPR (Ghosh et al., 2003; Braulke and Bonifacino, 2009). These two receptors then direct sorting of the hydrolases in a manner dependent on the receptor cytosolic targeting motifs, as described in 1.1.3.
1.1.5 Ubiquitin as a post translational modification.

Ubiquitin is a 76 amino acid polypeptide, highly conserved throughout eukaryotes (Goldstein et al., 1975; Ciechanover, 2005). Proteins can be modified at free amino groups (usually lysine residues, but occasionally the N-terminal residue of a protein (Coulombe et al., 2004), serine, cysteine or threonine (Ishikura et al., 2010)) by the addition of ubiquitin moieties which, depending on the type of modification, can result in degradation at the proteasome for soluble proteins, or for membrane proteins trafficking through the endosomal system, leading ultimately to lysosomal degradation (Hicke and Dunn, 2003; Piper and Luzio, 2007).

Ubiquitin’s proteolysis-stimulating activity was initially identified as APF-1 (ATP-dependent proteolysis factor 1), an 8.5 kD protein component of reticulocyte lysate required for proteolysis, which could be conjugated reversibly to protein substrates (Ciechanover, 2005). Later studies confirmed that APF-1 was ubiquitin (Wilkinson et al., 1980). Ubiquitin is conjugated to proteins through the action of three different enzymes. E1 (ubiquitin activating) enzymes activate and form a high energy thioester bond with ubiquitin. E2 (ubiquitin conjugating) enzymes receive ubiquitin from E1 via a transthioleation reaction. Then the E2 and E3 (ubiquitin ligase) enzymes work together to transfer ubiquitin to a lysine side chain (Ciechanover, 2005). The E3 enzymes are the most numerous of the three groups and give each reaction its substrate specificity, often providing a platform for E2 and substrate to bind (Pickart, 2001).

The proteolysis-activating activity of ubiquitin was initially associated with the proteasome, a large 26 S multienzyme complex consisting of a 19 S regulatory particle and 20 S core particle which degrades substrates modified with a polyubiquitin chain linked through lysine 48 of ubiquitin (K48 linked polyubiquitin) (Ciechanover, 2005). However, as discussed in the next section, more recent work has identified that other ubiquitin modifications exist and these have various roles.
1.1.6 Other ubiquitin modifications.

Addition of a single ubiquitin moiety (monoubiquitination), often at multiple lysine residues, has been shown to be involved in endocytosis and protein trafficking (Haglund et al., 2003; Urbe, 2005). Ubiquitin itself contains seven lysine residues (at positions 6, 11, 27, 29, 33, 48 and 63) (Pickart and Fushman, 2004), and polymeric chains at all of these residues have been reported in vivo (Peng et al., 2003). K63 linked polyubiquitin has been implicated in vesicle trafficking (discussed further in the next section) and regulation of signalling cascades, by forming a scaffold on which signalling intermediates may assemble (Kanayama et al., 2004). The BRCA1/BARD1 ubiquitin ligase complex assembles K6 polyubiquitin chains in vitro (Wu-Baer et al., 2003) and the BRCA1 subunit can be autoubiquitinated with these chains (Wu-Baer et al., 2003). For the purposes of this study, the role of monoubiquitination and K63 linked polyubiquitin in protein traffic will be considered further in the next section.

Figure 1.2 Ubiquitin conjugation to target proteins.

A. Free ubiquitin is activated by formation of a high energy thioester bond with an E1 enzyme. B. A transthiolelation reaction passes ubiquitin to the E2 enzyme. C. The E2 and E3 enzymes work together, via a thiol-ester intermediate on the E3 ligase to D. Transfer ubiquitin to protein substrates.
1.2 Ubiquitination regulates protein traffic

It is now becoming widely accepted that many plasma membrane receptors and channels are internalised on the basis of monoubiquitin or K63 linked polyubiquitin modifications (Urbe, 2005). Examples in mammalian cells include MHCII β chain in dendritic cells (Shin et al., 2006), aquaporin 2 in Madin-Darby canine kidney cells (Kamsteeg et al., 2006) and the neurotrophin receptor TrkA (Geetha et al., 2005; Wooten and Geetha, 2006). The protein is ubiquitinated, internalised and either trafficked to the lysosome for degradation, or in the case of some proteins they may be recycled back to the cell surface (Shenoy, 2007; Berthouze et al., 2009; Mukai et al., 2010) (discussed further in section 1.3).

In Saccharomyces cerevisiae (yeast) and mammalian cells the role of ubiquitin in membrane protein traffic has been extensively studied, and it appears that the modification plays a role in more than internalisation of membrane proteins. A particularly well studied example is the general amino acid permease Gap1p. This twelve-transmembrane domain channel protein is regulated in response to nitrogen availability (Roberg et al., 1997; Magasanik and Kaiser, 2002). On preferential nitrogen sources such as glutamate Gap1p is trafficked directly to the proteolytically active endosomal system (Roberg et al., 1997). However on poor nitrogen sources Gap1p is directed to the plasma membrane to increase amino acid uptake into the cell (Roberg et al., 1997) (Figure 1.3).
Figure 1.3 Gap1p traffic in *S. Cerevisiae*

On rich nitrogen sources, for example glutamate, Gap1p is sorted to the endosomes to be degraded at the vacuole. On poor nitrogen sources such as proline, where amino acid uptake is required, Gap1p is directed to the plasma membrane. Adapted with permission from Macmillan Publishers Ltd from Bryant *et al.*, copyright (2002)

Work over the last decade has elucidated the role ubiquitin plays in this process, and one study (Risinger and Kaiser, 2008) has identified that different ubiquitin modifications on Gap1p give rise to different trafficking events. Monoubiquitination, which is dependent on a ubiquitin ligase complex containing the E3 ligase Rsp5p and the adaptor proteins Bul1p/2p, causes internalisation of Gap1p from the plasma membrane (Helliwell *et al.*, 2001; Soetens *et al.*, 2001; Risinger and Kaiser, 2008). However, polyubiquitination is required for the direct sorting of Gap1p from the TGN to the vacuole in favourable nitrogen conditions (Risinger and Kaiser, 2008). In summary, the studies on yeast Gap1p showed that i) an external stimulus can alter the trafficking of a membrane protein in yeast and ii) the ubiquitination status of a membrane protein at the TGN can target its trafficking into the endosomal system.

1.2.1 ESCRTs and multivesicular body sorting.

The ultimate fate of ubiquitinated membrane proteins is entry into the intralumenal vesicles (ILVs) of multivesicular bodies (MVBs), which subsequently fuse with lysosomes (Piper and Luzio, 2007). The contents of the MVB are degraded by lysosomal hydrolases on fusion of the MVB with the limiting
membrane of the lysosome (Hicke and Dunn, 2003; Woodman and Futter, 2008) (Figure 1.4).

![Diagram showing membrane protein trafficking to multivesicular bodies.](image)

Figure 1.4 Membrane protein trafficking to multivesicular bodies.

Ubiquitinated plasma membrane receptors and channels, and biosynthetic cargoes destined for the lysosome, are trafficked via the endosomal system to the limiting membrane of multivesicular bodies (MVBs) where they may be internalised into intraluminal vesicles. Rescue and recycling of ubiquitinated proteins can occur at the recycling endosome.

In yeast, multivesicular bodies were originally identified as a “pre-vacuolar compartment” which becomes enlarged when a subset of yeast *VPS* (vacuolar protein sorting) genes are mutated - the so called “class E” mutants (Raymond *et al*., 1992; Piper *et al*., 1995; Woodman and Futter, 2008). The yeast class E Vps proteins represent the ESCRT proteins (Endosomal Sorting Complex Required for Transport), which have orthologues in mammalian cells. In the following discussion the yeast orthologues are only named when the nomenclature differs from the mammalian orthologue.

There are currently thought to be four ESCRT complexes. ESCRT-0 is a complex of Hrs (hepatocyte growth factor regulated tyrosine kinase) and STAM (signal transducing adaptor molecule) (Vps27 and Hse1 in yeast, respectively) (Urbe, 2005; Williams and Urbe, 2007). Both ESCRT-0 components can bind ubiquitin, through the UIM (ubiquitin interacting motif) found on STAM and the unusual
ubiquitin binding VHS (Vps27, Hrs, STAM) domain of Hrs (Ren and Hurley, 2010). This results in clustering of ubiquitinated cargoes into microdomains (Bilodeau et al., 2002; Williams and Urbe, 2007), aided by ESCRT-0 binding to clathrin (Raiborg et al., 2006).

ESCRT-I in mammals is a trimeric complex consisting of VPS23/TSG101, VPS28 and one of four VPS37 isoforms, with the addition of Mvb12 in yeast (Raiborg and Stenmark, 2009). ESCRT-II is a tetramer with two subunits of VPS25 and single subunits of VPS36 and VPS22 (Williams and Urbe, 2007; Wollert et al., 2009). Both complexes have a relatively low affinity for ubiquitin and are thought to function only when cargo has been pre-clustered by the ESCRT-0 complex (Raiborg and Stenmark, 2009).

After passing from ESCRT-0 to II, ubiquitinated cargos are received by ESCRT-III. ESCRT-III is composed of a number of highly charged subunits referred to as CHMPs (charged multivesicular body proteins) in mammals (Vps2,4,20,24 and 32 in yeast), several of which are capable of forming polymeric structures (Williams and Urbe, 2007; Raiborg and Stenmark, 2009). This complex seems to be required for membrane deformation and the final budding of ILVs.

A recent study using recombinant ESCRT components to reconstitute intraluminal vesicle budding into giant unilamellar vesicles (GUVs) has identified the roles of the four ESCRT complexes in ILV budding (Wollert and Hurley, 2010). ESCRT-0 clusters the model cargoes of GFP/CFP fused to the C-terminus of ubiquitin in microdomains. ESCRT-I and II are involved in formation of membrane buds, localising to bud necks and confining cargoes to the buds. ESCRT-I and II finally recruit ESCRT-III components and cause scission of the bud necks, resulting in ILV formation (Wollert and Hurley, 2010). This study provides compelling evidence of the mechanism underlying ILV formation.

1.2.2 GGA proteins sort ubiquitinated substrates

The GGA (Golgi localised, gamma adaptin ear containing, Arf binding) family of clathrin adaptor proteins was discovered simultaneously by three groups in 2000 (Dell’Angelica et al., 2000; Hirst et al., 2000; Boman et al., 2000). There are two family members in yeast (Gga1/2p) and three in humans (GGA1-3) (Dell’Angelica et al., 2000; Hirst et al., 2000; Boman et al., 2000). GGAs contain four domains:
the VHS domain which binds acidic dileucine sorting motifs, the GAT (GGA and TOM1) domain which interacts with both Arf and ubiquitin, a clathrin binding hinge region and a gamma adaptin ear like domain which interacts with accessory proteins (Mattera et al., 2004; Pelham, 2004).

![Domain Structure of a Typical GGA Protein](image.png)

Figure 1.5 Domain structure of a typical GGA protein.
Interacting partners for each domain are indicated.

Structural studies have identified that the GAT domain of GGA3 contains two ubiquitin binding sites (Scott et al., 2004; Bilodeau et al., 2004; Kawasaki et al., 2005) and *in vitro* binding of ubiquitin to the GAT domain can be significantly reduced by mutation of single residues (E250 and D284) in both sites (Kawasaki et al., 2005). In yeast, a study has shown that ggaΔ cells mislocalise Gap1p to the plasma membrane under poor nitrogen conditions, and this sorting defect is maintained on deletion of the ubiquitin-binding portions of the GAT domain, despite normal Gap1p ubiquitination (Scott et al., 2004). This highlights the importance of the ubiquitin-GAT interaction in sorting yeast membrane proteins into the vacuolar degradation pathway.

In mammalian cells the story is less clear cut. GGA3 has been shown to have a role in sorting of ubiquitinated EGF receptor (Puertollano and Bonifacino, 2004). The EGF receptor is normally ubiquitinated on ligand stimulation at the plasma membrane, resulting in its internalisation and trafficking to the endosomal system (Stang et al., 2000). If GGA3 is depleted via siRNA, the EGF receptor accumulates in an aberrant early endosomal compartment along with the cation-independent mannose 6 phosphate receptor (CIMPR) (Puertollano and Bonifacino, 2004).
Most studies on mammalian GGA dependent sorting have tended to focus on the VHS and GAT domains in combination (Li and Kandror, 2005; Kakhlon et al., 2006), or on the role of the VHS domain which sorts acidic dileucine motifs (Hirst et al., 2007; Doray et al., 2008). However one study has highlighted that the GGA3 VHS-GAT domains in combination can bind ubiquitin and that GGA3 interacts with TSG101 (Puertollano and Bonifacino, 2004). TSG101 forms part of ESCRT I, so potentially GGAs perform a similar function to the ESCRT-0 complex as discussed in 1.2.1. A recent study (Kang et al., 2010) has linked the GGA3 dependent lysosomal sorting of beta-site APP cleaving enzyme 1 (BACE-1) to BACE-1 ubiquitination; mutation of the BACE-1 dileucine motif did not affect sorting, whereas mutation of its ubiquitination site at K501 prevented lysosomal sorting (Kang et al., 2010), as did expression of a full length GGA3 mutant which was impaired in its ability to bind ubiquitin (Kang et al., 2010).

Indeed it remains unclear whether mammalian GGAs are functionally redundant as those of yeast are. One study has suggested that GGA1 and 3 are capable of binding to the same intracellular membranes, as depletion of GGA1 resulted in increased membrane accumulation of GGA3 and vice versa (Hirst et al., 2009). Also, specific depletion of GGA2 results in the defective sorting of the lysosomal hydrolase cathepsin D, without altering the localisation of the classical GGA cargos of the mannose-6-phosphate receptors or GGA1 and 3 (Hida et al., 2007). In vitro studies have shown that GGA1 and 3 have a considerably higher affinity for ubiquitin than GGA2 (Shiba et al., 2004) indicating that GGA2 may have a different role to the odd-numbered GGAs. The situation is further complicated by the fact that GGAs can themselves be ubiquitinated (Shiba et al., 2004); in the case of GGA3 ubiquitination, this can act as a signal for trafficking of the lysosomal protein LAPTM5 to the lysosome (Pak et al., 2006).

1.3 Deubiquitinating enzymes (DUBs)

Deubiquitinating enzymes or DUBs are responsible for the cleavage of ubiquitin from substrate proteins, and thus counteract the activity of the E1-3 enzyme cascade. There are approximately 79 DUBs encoded by the human genome; these fall into five families - the ubiquitin C-terminal hydrolases (UCH), ubiquitin specific proteases (USPs), Josephins, Otubains (OTU) and JAB1/MPN/MOV34 metalloenzymes (JAMM) (Komander et al., 2009; Reyes-Turcu et al., 2009). UCH,
USP, Josephin and OTU enzymes are cysteine proteases whereas the JAMM family are zinc metalloproteases (Komander et al., 2009; Reyes-Turcu et al., 2009).

DUBs play three key roles in ubiquitin metabolism - they cleave precursors to release free ubiquitin, remove ubiquitin from substrate proteins and trim polyubiquitin chains. Although these three activities have wide ranging effects on many subcellular processes, including regulation of signalling cascades (Sun, 2010), endoplasmic reticulum associated degradation (ERAD) (Hassink et al., 2009) and remodelling of chromatin structure (Zhu et al., 2007) the most pertinent role of DUBs for this study is the role they play in determining the fate of membrane proteins.

1.3.1 Role of DUBs in endocytic and endosomal traffic.

As discussed in 1.2, ubiquitination is crucial for directing trafficking of membrane proteins, routing them from the plasma membrane to degradative compartments, or from the TGN to the endosomal system (Hicke and Dunn, 2003). Cleavage of ubiquitin modifications from target proteins can therefore modify their fate. I will now consider several examples of how DUBs modulate the ubiquitination status of membrane proteins and alter their trafficking properties.

In mammalian cells, multiple studies have identified that ubiquitination of plasma membrane receptors and channel proteins results in their internalisation (Geetha et al., 2005; Kamsteeg et al., 2006; Shin et al., 2006; Wooten and Geetha, 2006). Members of the G-protein coupled receptor family (seven transmembrane receptors) are internalised on the basis of their ubiquitination and the levels of their signalling downregulated accordingly (Shenoy, 2007). One well characterised example of the role of DUBs in this process concerns the β2-adrenergic receptor (β2-AR). The receptor is deubiquitinated by two redundant DUBs, USP33 and USP20 (Berthouze et al., 2009). Simultaneous depletion of both proteins by siRNA dramatically increases lysosomal trafficking of β2-AR and therefore its degradation (Berthouze et al., 2009). The recycling of the receptor to the cell surface is also reduced under these conditions which reduces downstream signalling as measured by accumulation of cyclic AMP - these phenotypes are also observed in cells co-expressing catalytically inactive forms
of USP33 and USP20 (Berthouze et al., 2009). So in this case the DUBs are rescuing the receptor from degradation.

Doa4p (degradation of alpha 4) is a yeast DUB which has been shown to interact with components of the yeast ESCRT machinery, specifically the ESCRT-III component Snf7, which along with its interacting partner Bro1 causes recruitment of the DUB to endosomes and multivesicular bodies. It was initially thought that Doa4p’s main role was to maintain free ubiquitin levels, which seemed plausible given that deletion of DOA4 caused a reduction in ubiquitin levels in stationary phase yeast (Swaminathan et al., 1999) and that depletion could be compensated by blocking trafficking to the MVB (Swaminathan et al., 1999). Secondly, a Δdoa4 strain exhibited defective ubiquitin dependent sorting to the vacuole and this can be compensated by overexpression of ubiquitin (Losko et al., 2001).

However, more recent work has suggested that Doa4p may play a more direct role in MVB sorting than merely maintaining the pool of free ubiquitin. It appears that the massive overexpression of ubiquitin used in earlier studies resulted in bypassing of key components of the ESCRT machinery, and on more moderate expression of ubiquitin the trafficking of Gap1p is found to be defective in a Δdoa4 strain, localising to the plasma membrane even under conditions of optimal nitrogen supply (Nikko and Andre, 2007). The same study also looked at the effect of DOA4 deletion on sorting of carboxypeptidase S (CPS), a biosynthetic cargo which traffics to the vacuole constitutively (Odorizzi et al., 1998). If Doa4p is absent or a catalytically inactive version of the DUB is expressed CPS is localised to the vacuolar membrane and cannot enter the lumen of the vacuole (Nikko and Andre, 2007). This suggests that the deubiquitination activity of Doa4p is required for entry of cargo proteins into the ILVs of MVBs, and thus entry into the vacuolar lumen.

In mammals, the ESCRT-0 complex binds two DUBs, AMSH (McCullough et al., 2004) and UBPY (Kato et al., 2000). AMSH is a JAMM family DUB which can process K63 linked polyubiquitin chains and deubiquitinate the epidermal growth factor receptor (EGFR) in vitro (McCullough et al., 2004). AMSH depletion results in an increased rate of EGFR degradation (McCullough et al., 2004), indicating that EGFR is stabilised by AMSH activity.
The second DUB, UBPY (also called USP8), has significant sequence similarity to yeast Doa4p (Clague and Urbe, 2006). The role of UBPY in endocytosis is less clear, as recent work has shown that depletion of the DUB severely impairs degradation of EGF-R and the Met tyrosine kinase receptor (Clague and Urbe, 2006; Row et al., 2006; Alwan and van Leeuwen, 2007). Unlike AMSH, UBPY can cleave K48 and K63 linked polyubiquitin equally well. siRNA mediated depletion of UBPY results in the formation of aberrant, enlarged endosomes and multivesicular bodies (Row et al., 2006). UBPY may deubiquitinate cytosolic as well as membrane bound proteins - the current hypothesis is that UBPY may deubiquitinate and thus stabilise components of the ESCRT machinery; this has been readily demonstrated for STAM, which is destabilised on knockdown of UBPY, concordant with a redistribution of Hrs from a cytosolic and perinuclear distribution to solely perinuclear structures (Row et al., 2006). In the fruit fly Drosophila melanogaster (Drosophila) UBPY has been shown to play a role in the trafficking of the Wingless (Wg; a Drosophila Wnt orthologue) receptor Frizzled (Mukai et al., 2010). UBPY knockdown flies show abnormal wing development due to decreased Wnt signalling during development, caused by increased ubiquitination (and thus degradation) of the Frizzled receptor (Mukai et al., 2010).

1.4 GLUT4 and Type 2 diabetes.

1.4.1 Glucose homeostasis and Type 2 Diabetes

The activities of the hormone insulin allow clearance of glucose from the bloodstream following a meal. Raised postprandial plasma glucose causes insulin to be released from the pancreatic β cells into the circulation, altering the activity of insulin responsive tissues such as adipose, muscle and the liver (Figure 1.6). This results in clearance of plasma glucose.

The dysregulation of the insulin response is known as diabetes mellitus, or more generally diabetes. In Type 1 diabetes, the form of the disease responsible for about 5 % of cases (source: World Health Organisation (WHO)), the immune system raises an autoimmune response against the β cells of the pancreas. This
destroys the cells, preventing insulin secretion and thus clearance of plasma glucose (Zimmet et al., 2001).

Type 2 diabetes, by far the most common form of the disease, responsible for approximately 95% of cases (WHO estimate), has a different aetiology. Type 2 diabetes is the pathogenic progression of a state known as insulin resistance, where insulin becomes less effective at stimulating adipose and muscle, preventing clearance of plasma glucose (Saltiel and Kahn, 2001; Zimmet et al., 2001). Type 2 diabetes tends to present at around 40 years of age after a prolonged period of insulin resistance, and has been linked to a sedentary lifestyle and high carbohydrate diet in at least 80% of cases (Venables and Jeukendrup, 2009). Type 2 diabetes is one component of the so-called metabolic syndrome, with other components including hyperinsulinaemia, visceral obesity, dyslipidaemia and hypertension (Zimmet et al., 2001).

Both types of diabetes result in complications with the circulatory system, including retinopathy, neuropathy, and cardiovascular disease. According to recent estimates there are approximately 220 million diabetics worldwide (Zimmet et al., 2001) and fatalities due to diabetic complications may reach 2.2 million by 2030 (WHO estimate), with most of these cases being due to type 2 diabetes. Therefore to better to understand type 2 diabetes, it is vital to understand the biology of insulin responsive tissues.

Figure 1.6 Regulation of glucose homeostasis by insulin.
Adapted with permission from Macmillan Publishers Ltd from Rosen and Spiegelman, copyright (2006)
1.4.2 GLUT4

One of the major actions of insulin is to increase the amount of the facilitative glucose transporter GLUT4 present at the cell surface of fat and muscle cells (Figure 1.7) and it is this response which is defective in Type 2 diabetes and insulin resistance (Saltiel and Kahn, 2001; Lin and Sun, 2010). GLUT4 presence at the plasma membrane of muscle and adipose allows glucose to enter the cells by diffusion down its concentration gradient. GLUT4 is a twelve-transmembrane domain channel protein, part of a larger family of thirteen facilitative sugar transporters including GLUT1-12 and the H+ coupled myo-inositol transporter H-MIT (Wood and Trayhurn, 2003).

![Figure 1.7 Insulin stimulates translocation of GLUT4 from intracellular stores to the cell surface.](image)

3T3-L1 adipocytes expressing GLUT4 with a C-terminal GFP tag were treated with 100 nM insulin (lower panel) or not (upper panel) for 15 minutes and total GLUT4 detected by immunofluorescence. Adapted with permission from Macmillan Publishers Ltd from Saltiel and Kahn, copyright (2001).

The insulin stimulated glucose transport activity in muscle and adipose was initially identified by two groups in 1980. One study used a subcellular fractionation approach and a cell free reconstitution of rat adipose glucose uptake activity to show that a glucose transport activity moved from the intracellular compartments of the plasma membrane to the cell surface on insulin stimulation (Suzuki and Kono, 1980). The second study used the glucose transport inhibitor cytochalasin B inhibit glucose transport in rat adipocytes, and
found that insulin stimulation increased the amount of cytochalasin B sensitive glucose transport activity on these cells (Cushman and Wardzala, 1980). This transport activity was associated with a channel protein in screens of cDNA libraries of insulin responsive tissues, identifying a transporter in rat adipose which shared some sequence similarity with the rat brain and liver glucose transporter. The identity of this transporter as the insulin regulated glucose transporter was confirmed using the monoclonal antibody 1F8 (Birnbaum, 1989; James et al., 1989; Fukumoto et al., 1989).

1.4.3 GLUT4 traffic in insulin responsive cells

The trafficking itinerary of GLUT4 is complex with several key questions remaining unresolved; however a picture of the process is beginning to emerge and I will discuss the findings underlying this model.

The trafficking pathway occupied by cargoes such as the transferrin receptor (TfR) is known as the constitutive recycling pathway, and involves proteins cycling between the endosomes and the plasma membrane. About 40% of total cellular GLUT4 is found in this cycle under basal conditions, as demonstrated by endosome ablation analysis using HRP conjugated transferrin (Livingstone et al., 1996). The remainder of GLUT4 occupies a second cycle between the TGN and the endosomes. This has been observed in several studies. Shewan et al. (2003) demonstrated that GLUT4 cycles between the endosomes and a perinuclear compartment, which represented a subdomain of the TGN enriched in the SNARE proteins syntaxin 6 and 16. Karylowski and colleagues (2004) showed that in the basal state an HA-GLUT4-GFP reporter cycles between endosomes and the perinuclear compartment without transiting the cell surface.

Two models have been proposed to explain the mobilisation of GLUT4 in response to insulin. The first model, termed dynamic exchange, suggests that most GLUT4 molecules occupy a constitutive recycling pathway between the cell surface and endosomal system, similar to that seen for TfR. On insulin stimulation, the increase in plasma membrane GLUT4 is caused by an increase in the exocytic rate constant, and decrease in the endocytic rate constant, of GLUT4, with a net increase in the number of GLUT4 molecules at the plasma membrane (Karylowski et al., 2004; Martin et al., 2006).
The second model, known as static retention, suggests that GLUT4 is retained in an essentially static storage compartment in basal conditions, analogous to the secretory vesicles found in neurons. On insulin stimulation GLUT4 discharged from this storage compartment into the cell surface recycling pathway, raising GLUT4 levels at the plasma membrane without any effect on exocytosis or endocytosis rates (Govers et al., 2004; Coster et al., 2004). More recent work seems to suggest that both these mechanisms play a role in GLUT4 exocytosis in response to insulin, and that previous studies had biased the recycling kinetics of GLUT4 in their systems due to the cell culture conditions used; if 3T3-L1 adipocytes are replated after transfection, there is an increase in the proportion of GLUT4 in the basal cycling pool, from 20% to almost 80% (Muretta et al., 2008).

Three key trafficking motifs have been identified within GLUT4: an N-terminal FQQI motif (Verhey et al., 1995) and dileucine (Verhey and Birnbaum, 1994) and TELEY motifs, both close to the C terminus (Shewan et al., 2000). Each motif appears to have its own role in the intracellular retention of GLUT4, and one study has investigated the role of all these motifs in retention in particular compartments (Blot and McGraw, 2008). Mutation of the phenylalanine residue in the FQQI motif to tyrosine results in an accumulation of HA-GLUT4-GFP in a perinuclear compartment thought to represent the Stx16 positive compartment, whereas mutation of the same residue to alanine resulted in a decrease in basal retention of HA-GLUT4-GFP (Blot and McGraw, 2008). This result relates to an earlier study, which implicates the FQQI motif in the AS160 (Akt substrate of 160 kilodaltons, a Rab GAP) dependent intracellular retention of GLUT4 (Capilla et al., 2007). Mutation of the TELEY motif to TALAY resulted in a decreased basal retention, which was additive to that of the AQQI mutation, suggesting that these two motifs regulate different aspects of the basal retention mechanism (Blot and McGraw, 2008). Mutation of the dileucine motif to dialanine results in a reduction in the rate of return of surface HA-GLUT4-GFP to basal levels (Blot and McGraw, 2008).

The model proposed by the authors of this study is that GLUT4 traffic is centred on the recycling endosome (Figure 1.8). GLUT4 is internalised from the plasma membrane in a manner dependent on the dileucine motif, with a small number of GLUT4 molecules reaching the cell surface under basal conditions via the constitutive recycling pathway (Verhey et al., 1995; Blot and McGraw, 2008).
basal conditions GLUT4 is retained intracellularly by slowly cycling between the endosomes and two specialised “storage compartments” - one being the Stx16 positive region of the TGN (Shewan et al., 2003) which retains GLUT4 in an AS160 dependent manner via the FQQI motif and does not undergo insulin responsive translocation, and a second vesicular pool which retains GLUT4 via the TELEY motif and translocates in response to insulin, (Blot and McGraw, 2008). The latter vesicular pool represents the insulin responsive compartment which has previously been named GLUT4 storage vesicles (GSVs) (Bryant et al., 2002).

![Figure 1.8 A model of GLUT4 traffic in insulin responsive cells.](image)

GLUT4 occupies two linked cycles in insulin responsive tissues. Cycle 1 is the constitutive, rapid recycling pathway between the recycling endosome and the plasma membrane. Cycle 2 is between the TGN and endosomes, and includes the slowly recycling, highly insulin responsive GLUT4 storage vesicles. Reproduced with permission from Macmillan Publishers Ltd from Bryant et al., copyright (2002)

1.4.4 GLUT4 Storage vesicles

The population of subcellular compartments which represent GSVs have been defined as a subset of the low-density microsomal (LDM) fraction of adipocytes which lack the transmembrane protein cellugyrin (Kupriyanova et al., 2002; Jedrychowski et al., 2010). Cellugyrin was initially identified as a component of GLUT4 vesicles in 3T3-L1 adipocytes (Kupriyanova and Kandror,
However, use of a monoclonal antibody raised against cellugyrin showed that cellugyrin containing vesicles only contained about 40-50% of total cellular GLUT4, with the remaining GLUT4 in other compartments (Kupriyanova and Kandror, 2000) - this figure is reminiscent of the relative amount of GLUT4 in the endosomal system compared to specialised compartments in earlier studies (Livingstone et al., 1996). Also, the cellugyrin negative vesicles were shown to be much more insulin responsive than cellugyrin positive ones (Kupriyanova and Kandror, 2000) and this result was confirmed using a GLUT4 specific monoclonal antibody (Kupriyanova et al., 2002). These data collectively suggest that cellugyrin negative vesicles from the LDM fraction of 3T3-L1 adipocytes represent insulin responsive GSVs.

GSVs have several well-characterised protein components including the SNARE protein VAMP2 (vesicle associated membrane protein 2) (Cain et al., 1992; Martin et al., 1996), sortilin (Lin et al., 1997), the insulin responsive aminopeptidase IRAP (Ross et al., 1996; 1997) and LRP1 (low density liposome receptor related protein 1) (Jedrychowski et al., 2010).

Several of these proteins are required for formation of GSVs from donor membranes. The sorting receptor sortilin was characterised as a 110 kD component of GSVs (Lin et al., 1997; Morris et al., 1998). Sortilin has been shown to be essential and sufficient for formation of GSVs in 3T3-L1 cells. Sortilin is induced 2 days after adipocyte differentiation and this event coincides with formation of functional GSVs (Shi and Kandror, 2005). siRNA mediated depletion of sortilin reduced formation of GSVs in an in vitro budding assay, and consequently reduced insulin stimulated glucose transport (Shi and Kandror, 2005). Expression of epitope tagged GLUT4 in the absence of sortilin in undifferentiated 3T3-L1 cells results in rapid degradation of the transporter; however co-expression of GLUT4 and sortilin resulted in formation of functional GSVs in the undifferentiated cell line (Shi and Kandror, 2005).

The lumenal domains of IRAP and GLUT4 can interact with that of sortilin as demonstrated by cross-linking and yeast two-hybrid analysis (Shi and Kandror, 2007). The GLUT4-IRAP interaction appears essential for recruitment of IRAP into GSVs (Shi et al., 2008). Also, co-expression of sortilin and GLUT4 in undifferentiated 3T3-L1 cells results in formation of an insulin-responsive compartment in these cells; this requires the lumenal interactions of sortilin, as
a sortilin mutant with a truncated lumenal domain can only partially
reconstitute the insulin responsive compartment (Shi and Kandror, 2005; Shi et
al., 2008)

LRP1 is another GSV cargo which was identified in a recent proteomic analysis of
immunoisolated cellugyrin-negative GSVs (Jedrychowski et al., 2010). It
interacts with GLUT4, IRAP and sortilin, and depletion of LRP1 results in the
depletion of all three proteins (Jedrychowski et al., 2010).

Two major questions remain unanswered concerning the regulated trafficking of
GLUT4; firstly, what is the signal that causes GSVs to translocate in response to
insulin; and secondly, how is GLUT4 loaded into the insulin responsive GSVs?
There is a reasonable amount of evidence that has gone some way to answering
the first of these questions. It appears that the insulin signalling cascade results
in phosphorylation of AS160 (Akt substrate of 160 kilodaltons - a RabGAP protein)
by Akt/protein kinase B (Sano et al., 2003). This phosphorylation event results
in fusion of GSVs with the plasma membrane, in a manner dependent on the
amino terminal FQQI motif of GLUT4 (Capilla et al., 2007). LRP1, a GSV protein,
can also recruit AS160 on its cytosolic domain, possibly providing a link from
GSVs to the insulin signalling pathway (Jedrychowski et al., 2010).

The overall aim of this thesis is to address the second question, contributing to
the data discussed in this section and section 1.4.3 to better understand how
GLUT4 enters the insulin responsive compartment.

1.5 A role for ubiquitin in the trafficking of GLUT4?

In recent years work in our laboratory has been focused on testing the
hypothesis that GLUT4 is modified with ubiquitin and that this modification is
essential for insulin-responsive trafficking of the transporter. In this section I
will discuss data that support this hypothesis.

1.5.1 Ubiquitin-like proteins regulate GLUT4 traffic.

Functional cloning approaches in Chinese hamster ovary cells have identified a
putative regulator of GLUT4 trafficking, which colocalises with GLUT4 at GSVs.
This regulator was termed TUG (tether, containing UBX domain, for GLUT4)
TUG contains two ubiquitin-like domains. The first of these is a C-terminal UBX (ubiquitin regulatory X) domain, which is involved in interaction with the p79/VCP ATPase, a generic molecular motor (Bogan et al., 2003; Tettamanzi et al., 2006). The long splice variant of TUG appears to be able to sequester GLUT4 within the cell in a manner dependent on this UBX domain (Bogan et al., 2003). The second is an N-terminal ubiquitin-like (UBL) domain. The structure of this domain has been solved using NMR spectroscopy (Tettamanzi et al., 2006). The data from this study suggest that TUG does not participate in protein conjugation as ubiquitin does as it lacks the key diglycine motifs and acceptor lysine residues to do so. However, a region of the molecular surface with high electrostatic potential and backbone mobility has characteristics of a region involved in protein-protein interactions, which is typical behaviour for UBL domain containing proteins which often function as adaptor molecules (Tettamanzi et al., 2006).

TUG has also been shown to be essential for insulin-responsive GLUT4 trafficking (Yu et al., 2007) since RNAi mediated TUG depletion, or expression of a dominant negative TUG fragment, enhances glucose uptake by both basal and insulin stimulated 3T3-L1 adipocytes, and that this appears to be achieved by disrupting formation of the perinuclear GLUT4 compartment (Yu et al., 2007). Additionally, this study indicates that TUG is capable of interacting with the large cytosolic loop of GLUT4. In the context of this thesis, the studies on TUG collectively suggest that a molecule with a high degree of structural similarity to, and the potential to interact with, ubiquitin has an important role in the insulin sensitivity of GLUT4.

It has previously been demonstrated that GLUT4 is modified by addition of small ubiquitin-like modifier 1 (SUMO1) at lysine residues (Lalioti et al., 2002), and that overexpression of the SUMO conjugating enzyme mUbc9 increases levels of GLUT4 in cultured skeletal muscle cells which consequently increases glucose transport rates (Giorgino et al., 2000; Liu et al., 2007), while mUbc9 depletion has the opposite effect (Liu et al., 2007). It is conceivable therefore that SUMOlation and, possibly, ubiquitin modifications are involved in regulating GLUT4 trafficking and glucose uptake in response to insulin. Indeed, SUMOlation itself can act as a tag for ubiquitination, directing E3 ubiquitin ligases to target proteins in certain cases. For example, in Schizosaccharomyces pombe (fission
yeast) the ubiquitin ligase complex Slx5-Slx8 is recruited to substrates by its ability to bind SUMO polymers (Mullen and Brill, 2008; Geoffroy and Hay, 2009).

1.5.2 Evidence from yeast.

Unpublished data from the expression of hGLUT4 in *S. cerevisiae* has shown that hGLUT4 is subject to the same nitrogen dependent trafficking as Gap1p (McCann R.K., 2007). On rich nitrogen sources, hGLUT4 is directed constitutively to the proteolytically active endosomal system, and on poor nitrogen sources the transporter is stabilised (McCann R.K., 2007) in a similar fashion to Gap1p (Roberg *et al.*, 1997), indicating that it is trafficked away from the proteolytically-active endosomal system. However a ubiquitin-resistant mutant of hGLUT4 (GLUT4-7K/R) cannot be directed to the vacuole on rich nitrogen sources, and deletion of both yeast GGA genes recapitulates this phenotype (Lamb *et al.*, 2010). By both co-immunoprecipitation and using a GST pull-down approach, GLUT4 has been shown to be ubiquitinated in yeast (Lamb *et al.*, 2010). These findings suggest that GLUT4 is subjected to ubiquitin-dependent trafficking to the vacuole in yeast, in a manner similar to Gap1p.

1.5.3 Evidence from 3T3-L1 adipocytes

![Figure 1.9](image_url)

Figure 1.9 A ubiquitin-resistant version of GLUT4 cannot exit the syntaxin 16 positive subdomain of the TGN in 3T3-L1 adipocytes.

3T3-L1 adipocytes expressing HA-GLUT4 (wt) or HA-GLUT4 7K/R (7K/R) were stained for the HA epitope (GLUT4) and syntaxin 16 (Sx16) as a marker of the TGN. Image used by permission of Dr. R. McCann.
Although the yeast studies provide evidence that ubiquitination of GLUT4 alters its trafficking, the analyses had to be extended to a more physiologically relevant mammalian cell line to draw any firm conclusions about the role of GLUT4 ubiquitination in vivo. 3T3-L1 adipocytes are a well established model system for studying the insulin responsive phenotype (Mackall et al., 1976). HA-GLUT4 7K/R cannot exit the Stx16 positive region of the TGN and is excluded from cytosolic puncta thought to represent GSVs (McCann R.K., 2007) (Figure 1.9), and initial data suggested that HA-GLUT4 7K/R cannot translocate in response to insulin, unlike its wild type counterpart (McCann R.K., 2007). However, the translocation data can only be taken as preliminary as the retroviral HA-GLUT4 7K/R construct used in these studies expressed the mutant protein at much lower levels than the wild type HA-GLUT4 (Shewan et al., 2000) construct. These data suggest that GLUT4 ubiquitination is involved in GLUT4 entering the insulin responsive compartment.

1.5.4 GGA proteins regulate GLUT4 entry into GSVs

Two key studies have implicated the GGA family of clathrin adaptor proteins in GLUT4 sorting into GSVs from the TGN, and they both rely on expressing a dominant negative fragment of GGA (VHS-GAT) which contains the cargo binding domains and the Arf binding site required for membrane association, but none of the effector domains. This GGA fragment was generated from GGA2 and is proposed to have dominant negative activity against all three mammalian GGAs (Li and Kandror, 2005).

The first study from 2004 (Watson et al.) demonstrated that expression of VHS-GAT resulted in reduced insulin stimulated GLUT4 translocation as assessed by confocal microscopy, and that the in vitro budding of GLUT4 containing vesicles is inhibited by the presence of VHS-GAT. The second study (Li and Kandror, 2005) demonstrated that GLUT4 colocalises with GGA2 in a perinuclear compartment, likely the TGN. This study also showed that VHS-GAT expressing cells cannot rapidly re-form the GSV compartment after stimulation with insulin, and that GLUT4 is loaded less effectively into the GSV enriched supernatant (produced from centrifugation of a 3T3-L1 adipocyte lysate at 16 000 xg for 20 minutes) in VHS-GAT expressing cells.
One further finding of Li and Kandror (2005) is that GSVs can interact with GGA adaptors *in vitro*. Although components of GSVs have been shown to have a requirement for dileucine sorting motifs interacting with the VHS domains of GGAs, notably IRAP (Hou *et al.*, 2006) and sortilin (Nielsen *et al.*, 2001; Shiba *et al.*, 2002), there is no published evidence for GLUT4 interacting directly with GGAs. Although GLUT4 does contain a dileucine motif at residues 489 and 490 (Verhey and Birnbaum, 1994; Shewan *et al.*, 2000) there seems to be little requirement for this motif in trafficking from the TGN to the GSVs; the motif appears to have a more important role in internalising the transporter (Verhey *et al.*, 1995; Sandoval *et al.*, 2000; Blot and McGraw, 2008).

As the internalisation step is apparently not GGA dependent, there is a possibility that the GAT domain plays a role in GLUT4 traffic by interacting with ubiquitin moieties on GLUT4, as has been observed for yeast Gap1p (Scott *et al.*, 2004; Bilodeau *et al.*, 2004). This is certainly not excluded by the two studies which implicate the GGAs in sorting of GLUT4 (Watson *et al.*, 2004; Li and Kandror, 2005) as they make use of a dominant negative VHS-GAT construct which would disrupt interactions with both cargo binding domains of endogenous GGAs.

1.6 Is GLUT4 deubiquitination required for its insulin responsive traffic?

So far evidence has been presented which supports the hypothesis that ubiquitination of GLUT4 is required for its loading into GSVs. However, there is a potential flaw in the reasoning behind this hypothesis. Ubiquitination of membrane proteins is canonically thought of as being a modification required for trafficking of proteins to the lysosome/vacuole compartment and their subsequent destruction by vacuolar hydrolases. Also work from our laboratory has demonstrated that only 0.1% of total GLUT4 is ubiquitinated in the cell at any one time (Lamb *et al.*, 2010) which suggests the modification is a transient one. There is therefore a potential requirement for a deubiquitination step in the post-TGN trafficking of GLUT4, to prevent its delivery to the lysosome, and to direct the transporter to GSVs. As discussed in 1.3.1, DUBs can rescue their substrates from lysosomal degradation; could this be the case for GLUT4? And if so, how are DUB(s) recruited to GSVs?
1.6.1 IRAP and Tankyrase

As has previously been stated in section 1.4.4, GLUT4 shares GSVs with a number of other proteins and one of these is the insulin responsive aminopeptidase IRAP, also known as vp165 and gp160. Although widely expressed, IRAP was characterized as a component of GSVs (Ross et al., 1996) and found to have an identical trafficking itinerary to GLUT4 in adipocytes (Ross et al., 1997). Subsequently IRAP has been localized to vesicles in neurons, where it colocalises with GLUT4 (Fernando et al., 2007; 2008) and in cells of the immune system, where it plays a role in antigen presentation (Saveanu et al., 2009) which suggests the peptidase has broader roles in vesicle traffic than previously thought.

In undifferentiated 3T3-L1 cells, IRAP is found primarily at the plasma membrane (Ross et al., 1998) but on differentiation it is sequestered in an intracellular compartment, resulting in an approximately 8-fold increase in plasma membrane localized IRAP on insulin stimulation (Ross et al., 1998). As with GLUT4, the trafficking of IRAP is defective in adipocytes from Type 2 diabetics. Less IRAP is found in the low density microsomal fraction (LDM) which contains GSVs, and insulin stimulated translocation of IRAP is severely impaired (Maianu et al., 2001). An IRAP knockout mouse line does exist and these animals exhibit normal glucose tolerance, despite having decreased tissue levels of GLUT4 and insulin responsive glucose uptake (Keller et al., 2002). These data indicate a role for IRAP in maintaining GLUT4 stability.

Work in 3T3-L1 adipocytes has demonstrated that IRAP depletion using siRNA impairs the insulin stimulated translocation of GLUT4; however the reverse is not true (Yeh et al., 2007; Jordens et al., 2010). IRAP interacts with a poly-ADP ribose polymerase (PARP) known as tankyrase 1 (Chi and Lodish, 2000; Sbodio and Chi, 2002). Tankyrase 1 was initially identified as a protein with in vitro PARP activity localised to telomeres (Smith et al., 1998). It contains a C terminal catalytic domain, a sterile alpha motif (SAM) and a series of N-terminal ankyrin (ANK) repeats (Figure 1.10), and has a closely related homologue, tankyrase 2 (Kaminker et al., 2001). The ANK repeats contain the IRAP interaction domain, binding an RXXPDG motif within IRAP conserved in other tankyrase interacting
partners such as NuMa and TRAF1 which are involved in DNA replication (Chi and Lodish, 2000; Sbodio and Chi, 2002). The domain of tankyrase 1 required for this interaction is the C-terminal region of the ANK repeat domain, named subdomain V (Chi and Lodish, 2000).

In tankyrase depleted 3T3-L1 adipocytes, both GLUT4 and IRAP are redirected to denser membrane compartments and fail to translocate normally in response to insulin (Yeh et al., 2007). Taken together these data suggest that IRAP may provide a “handle” on GSVs to which proteins regulating GLUT4 traffic, such as tankyrase 1, can associate. Tankyrase 1 itself, with its capacity for protein-protein interactions (via the ANK domains (Seimiya and Smith, 2002)) and oligomerisation (via the sterile alpha motif (Sbodio et al., 2002)) could potentially act as a scaffolding molecule, recruiting various factors to GSVs.

Figure 1.10 Schematic of tankyrase-1 and 2.
Ankyrin repeat domains (ANK), sterile alpha motif (SAM) and catalytic poly-ADP ribose polymerase (PARP) domains are indicated.

1.6.2 USP25: a candidate GLUT4 DUB

From the data discussed in section 1.6.1 it would appear that IRAP and tankyrase form part of a complex that can regulate GLUT4 entry into GSVs (Chi and Lodish, 2000; Yeh et al., 2007). A link between these data and the hypothesis that GLUT4 deubiquitination is required for entry into GSVs is provided by data from the laboratory of Nai-Wen Chi (UCSD). The deubiquitinase USP25 has been shown to interact with tankyrase in a yeast two hybrid screen, and contain a putative tankyrase binding motif (RTPADG) near the C-terminus (Sbodio and Chi, 2002). Co-immunoprecipitation experiments have also demonstrated that tankyrase and USP25 interact in vivo (N-W Chi, unpublished).
The USP25 gene was originally isolated as a locus within the short arm of chromosome 21 which was duplicated in Down’s syndrome patients (Valero et al., 1999). The gene has three different protein products (Valero et al., 2001). USP25a is the ubiquitously expressed 1055 amino acid isoform. USP25b is also broadly expressed at much lower levels than USP25a, but is not found in murine tissues. USP25m is the largest isoform at 1087 amino acids, and restricted to striated muscle in both mice and humans (Valero et al., 2001; Bosch-Comas et al., 2006).

USP25m has been shown to play a role in protein turnover in muscle. The isoforms of USP25 expressed in muscle can interact readily with filamin-C, ACTA1 and MyBPC1 as demonstrated by yeast two hybrid analysis, in vitro pull-down assays and co-immunoprecipitation experiments (Bosch-Comas et al., 2006). In fact, this study identifies MyBPC1 as a specific substrate of USP25; MyBPC1 is deubiquitinated and stabilised in HEK293 cells on overexpression of USP25 (Bosch-Comas et al., 2006).

Several studies have shed light on the regulation of USP25 activity and its molecular architecture. USP25 contains several key structural domains as shown in Figure 1.11. It contains three N terminal ubiquitin binding motifs (a single UBA and two UIM), a SUMO interacting motif (SIM), catalytic domains (USP1/2) and a long C-terminal coiled-coil region which appears to be required for catalysis (Meulmeester et al., 2008; Denuc et al., 2009).

![Figure 1.11 Schematic of USP25a.](image)

Key structural and catalytic domains are highlighted.

USP25 can itself be post-translationally modified. Meulmeester et al. (2008) demonstrated using mutagenic and mass spectrometry analyses that USP25 can be SUMOlated on two sites (lysines 99 and 141) within its two UIMs. SUMOlation appears to have an inhibitory effect on USP25 activity (Meulmeester et al., 2008); the authors speculate that this is due to the SUMO moieties blocking access of ubiquitin to the UIMs and thus preventing access of ubiquitinated substrates.
USP25 can also be ubiquitinated, and auto-deubiquitinate, as reported by a second study (Denuc et al., 2009). The authors identified K99 as the site of ubiquitination using mass spectrometry. Mutation of this residue did not greatly reduce in vitro DUB activity of USP25. The authors suggest that as K99 SUMOlation is known to be an inactivating modification, mutation of K99 would be expected to result in an over-active form of USP25. As this is not the case, it can be inferred that ubiquitination of USP25 at K99 is an activating mutation (Denuc et al., 2009). Denuc et al. went on to present a model building on that of Meulmeester et al (2008) whereby SUMOlated USP25 is held in an inactive conformation by the interaction of the SUMO moiety at K99 with the SUMO interacting motif (SIM), and the K141 SUMO blocking access to the UIMs and thus preventing access of ubiquitinated substrates. On ubiquitination at K99, ubiquitinated substrates are able to interact with the UIMs, resulting in efficient ubiquitin chain hydrolysis.

Figure 1.12 Model for USP25 regulation by SUMOlation and ubiquitination.
SUMOlation prevents access of ubiquitinated substrates (left panel) whereas ubiquitination allows their access to UIMs and thus efficient ubiquitin chain hydrolysis. Adapted from Denuc et al. (2009)

Finally, USP25 has recently been shown to interact with SYK (spleen tyrosine kinase) in HEK 293 cells (Cholay et al., 2010). The interaction is dependent on the C terminal SH2 domain of SYK and a C-terminal region of USP25 between residues 726 and 944, as demonstrated by yeast-2-hybrid analysis and co-immunoprecipitation experiments (Cholay et al., 2010). SYK is capable of phosphorylating USP25 at a tyrosine residue, possibly at residue Y740 as predicted by bioinformatic analyses (Cholay et al., 2010). This phosphorylation of USP25 results in its downregulation; overexpression of SYK results in a decrease in USP25 cellular levels, which can be countered by addition of the kinase inhibitor piceatannol (Cholay et al., 2010).
From these data, it is clear that USP25 activity and abundance can be modulated by several different factors. Taken together with the data on the interaction of tankyrase with USP25 (Sbodio and Chi, 2002), it is tempting to speculate that regulated USP25 DUB activity is required to deubiquitinate GLUT4 and prevent its lysosomal degradation.

1.6.3 3T3-L1 adipocyte data versus knockout mice: a confusing picture.

The story is complicated somewhat by the phenotypes observed in tankyrase deficient mice. As discussed in section 1.6.1, IRAP knockout mice have less GLUT4 than wild type littermates, and reduced insulin stimulated glucose uptake, despite apparently normal glucose tolerance (Keller et al., 2002). However a recent study (Yeh et al., 2009) demonstrated that tankyrase 1 knockout mice have reduced perirenal and epididymal adipose deposits, and 43% of normal plasma leptin levels which indicated an overall loss of adiposity consistent with their increased lipid utilisation; they also exhibit hyperinsulinaemia and a decrease in plasma glucose (Yeh et al., 2009). The tankyrase knockout mice appear to have increased expression of GLUT4 which can account for this phenotype, and they exhibit an increased fold change in glucose transport in response to insulin (Yeh et al., 2009). A second study shows that adipocytes isolated from mice deficient in tankyrase 1 or 2 both exhibit glucose uptake rates similar to wild type littermates (Chiang et al., 2008).

This does not support the hypothesis that IRAP and tankyrase form a platform for USP25 recruitment, as a reduction in cellular GLUT4 and altered insulin stimulated glucose uptake would be expected in tankyrase deficient mice if this were the case, as observed for IRAP knockouts (Keller et al., 2002). There is therefore still some confusion in the literature as to the roles that the two tankyrases play in GLUT4 traffic.
1.7 A model for ubiquitin dependent loading of GLUT4 into GSVs.

From the data presented so far we can present a model for the ubiquitin dependent loading of GLUT4 into GSVs (Figure 1.13). Newly synthesized GLUT4 at the TGN is ubiquitinated by an as yet unidentified ligase. Ubiquitinated GLUT4 can then exit the TGN in a GGA dependent manner, reaching GSVs. On entry into GSVs GLUT4 is deubiquitinated by a complex containing IRAP, tankyrase and USP25. GLUT4 is thus rescued from lysosomal degradation and can respond to insulin.

Figure 1.13 A model for ubiquitin dependent GLUT4 loading into GSVs.

1.8 Aims of the project

The aim of this study was to test the hypothesis that ubiquitination of GLUT4 is required for the GGA dependent sorting step from the TGN into GSVs; subsequent GLUT4 deubiquitination by USP25 then stabilises GLUT4 and prevents its trafficking to the lysosome. This hypothesis was tested using *S. cerevisiae* and the insulin responsive 3T3-L1 adipocyte cell line as model systems.
Chapter 2 - Materials & Methods
2.1 Materials.

2.1.1 Reagents, enzymes and media components.

All chemicals were from Sigma-Aldrich (Poole, Dorset, UK), VWR (Poole, Dorset, UK) or Fisher Scientific (Leicester, UK). DNA restriction endonucleases and Pfu® polymerase were from Promega (Southampton, UK). T4 DNA ligase was from New England Biolabs (Hitchin, UK). Platinum Pfx® polymerase and dNTPs were from Invitrogen (Paisley, UK). Fast Start High Fidelity polymerase was from Roche diagnostics (Burgess Hill, West Sussex, UK). Broad range protein markers were from Biorad (Hertfordshire, UK). Bacterial and yeast media components were from either Melford Laboratories Ltd (Suffolk, UK), Difco laboratories Inc (Appleton Woods Laboratory Equipment and Consumables, Birmingham, UK) or Formedium (Hunstanton, Norfolk, UK). Mammalian cell culture media components were from Invitrogen (Paisley, UK). Mirus TransIT TKO® transfection reagent was from Geneflow Ltd (Fradley, Staffordshire, UK). [3H]2-deoxyglucose solution was from Perkin Elmer (Cambridge, UK).

2.1.2 Bacterial and yeast strains

The bacterial and yeast strains used in this study are listed in Table 2.6 and Table 2.7. Plasmids were maintained and propagated in XL-1 Blue (Stratagene) or TOP10 (Invitrogen) E. coli. Recombinant proteins were expressed in BL-21 (DE3) cells (Invitrogen). The parent strain of BHNY1 (YNL297C) was purchased from the Invitrogen Yeast GFP clone collection (Huh et al., 2003).

2.2 Yeast cell culture

Yeast strains were grown non-selectively in YPD (1 %(w/v) yeast extract (Formedium), 2 %(w/v) D-glucose, 2 %(w/v) peptone), and selectively in synthetic dextrose (SD) medium (0.67 % (w/v) yeast nitrogen base without amino acids, 2 % (w/v) glucose supplemented with appropriate amino acids). To give a solid medium, 2 % (w/v) agar was added to the above mixtures prior to autoclaving.
2.2.1 Preparation of yeast competent cells

Transformation competent yeast were prepared according to the lithium acetate method as described by Ito et al., (1983). Routinely a 50 ml culture of the appropriate yeast strain was grown to an OD$_{600}$ of 0.5 to 1. Cells were harvested in a bench top centrifuge for 2 minutes at 640 xg. The cells were resuspended in 10 ml LiTEySorb (0.1 M LiOAc, 10 mM TrisyHCl (pH 7.6), 1.2 M sorbitol) and repelleted. The cell pellet was resuspended in 1 ml LiTEySorb and incubated at 30 °C with shaking for 1 hour. The cell suspension was incubated on ice for at least half an hour, and was subsequently transformed with the desired plasmid or stored at -80 °C with an equal volume of 40 % (v/v) glycerol/0.5 % (w/v) NaCl solution.

2.2.2 Yeast transformation

Approximately 10 ng plasmid DNA and 100 µl 70 % PEG-3350 was added to a 100 µl aliquot of competent cells and mixed by inversion. The mixture was incubated with shaking at 30 °C for 45 minutes, and cells were heat shocked at 42 °C for 20 minutes. Cells were pelleted in a bench top microfuge at approximately 6000 xg for 2 minutes, resuspended in 200 µl sterile H$_2$O and plated onto selective media. Plates were kept at 30 °C for 2 to 4 days until colonies appeared.

2.2.3 Preparation of yeast cell lysates for SDS-PAGE and immunoblot.

To analyse the protein composition of yeast cells by SDS-PAGE or immunoblot analysis, 5 OD$_{600}$ units of each culture was harvested, resuspended in 50 µl TWIRL buffer (5 % SDS, 8 M urea, 10 % glycerol, 500 µM TrisyHCl pH 6.8, 0.2% bromophenol blue) and heated at 65 °C for 10 minutes. 15 µl (1.5 OD$_{600}$ units) of each sample was resolved by SDS-PAGE and immunoblotted for the desired proteins.
2.2.4 Plasmid rescue from yeast

Cultures were grown to stationary phase in 10 ml of selective media. 5 OD$_{600}$ equivalents of yeast cells were harvested in a microcentrifuge at 669 xg for 2 minutes. The cell pellet was resuspended in 0.5 ml buffer S (100 mM K$_2$HPO$_4$ pH7.2, 10 mM EDTA, 50 mM β-mercaptoethanol, 50 µg/ml yeast lytic enzyme (prepared in 50 mM Tris-HCl pH 7.7, 1 mM EDTA, 50 % (v/v) glycerol) and incubated at 37 °C for 30 minutes. The resulting spheroplasts were lysed by resuspended and briefly vortexed in 100 µl lysis buffer (25 mM Tris HCl pH 7.5, 25 mM EDTA, 2.5% SDS), with subsequent heating at 65 °C for 30 minutes. 166 µl 3 M potassium acetate was added to the mixture followed by a 10 minute incubation on ice and centrifugation for ten minutes at 14 000 xg. The resulting supernatant was transferred to a Promega Wizard® Plus SV miniprep column, and DNA isolated from the supernatant by following the manufacturer’s instructions. The purified DNA was transformed into competent XL-1 Blue E. coli. A selection of transformants was picked and plasmid identity was verified using DNA sequencing (University of Dundee).

2.2.5 APNE assay.

To screen yeast strains for Pep4p activity the APNE assay was used (Wolf and Fink, 1975). The strains under test were patched onto YPD agar and grown overnight at 30 °C. The next day, 8 ml of reaction mixture (RxM; 0.2 M Tris-HCl pH 7.4, 0.8 mg/ml Fast Garnet GBC salt, 0.2 mg/ml N-acetyl-phenylalanine-β-naphthyl-ester (APNE)) was overlaid onto the plates with the yeast patches. The RxM was allowed to solidify and colour changes observed over several minutes; red indicated wild type cells, white pep4 mutants.
2.3 Mammalian cell culture techniques

2.3.1 Cell culture of 3T3-L1 murine fibroblasts and adipocytes

3T3-L1 fibroblasts were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10 % (v/v) newborn calf serum (NCS). Fibroblasts were maintained as sub-confluent cultures at 37 °C in a 10 % CO₂ humidified incubator. The fibroblasts were grown to confluency and maintained for up to three days before induction of differentiation by addition of DMEM supplemented with 10 % (v/v) foetal calf serum (FCS), 0.25 µM dexamethosone, 0.5 mM 3-isobutyl-1-methylxanthine and 1 µg/ml insulin. After 3 days, the differentiation mixture was replaced with DMEM containing 10 % (v/v) FCS and 1 µg/ml insulin. Adipocytes were re-fed with medium containing 10 % (v/v) FCS at 2 to 3 day intervals and used for experiments between 8 and 12 days post differentiation.

2.3.2 RNA oligonucleotide synthesis

All RNA oligonucleotides used in this study were synthesised by Qiagen (Crawley, West Sussex) and are detailed in Table 2.4.

2.3.3 Transfection of 3T3-L1 adipocytes with siRNA oligonucleotides.

At day 6 and 7 post-differentiation, 3T3-L1 adipocytes were incubated with 50 nM siRNA oligonucleotides (detailed in Table 2.4) complexed with TransIT-TKO® transfection reagent (Mirus, Madison, WI) using an adapted version of the manufacturer’s protocol. For a 24 well plate, 6 µl TransIT-TKO® reagent and 1.25 µl of 20 mM stock siRNA solution was combined in 100 µl of serum-free DMEM. After 20 minutes, this mixture was added drop wise to a single well of a 24 well plate. This process was scaled up for larger culture dishes. The siRNA treated adipocytes were then used for experiments on day 8 post differentiation.
2.3.4 Retroviral infection of 3T3-L1 fibroblasts

Fibroblasts were seeded to give approximately 40% confluency. The next day, 2ml of viral supernatant (produced as in 1.3.6) was combined with 2ml DMEM + 10% FCS, and 10µg/ml polybrene. This mixture was used to replace the fibroblast growth medium, and the cells were left to grow for 12 hours at 37°C. Cells were subsequently maintained in DMEM + 10% FBS with 2.5µg/ml puromycin which selected for cells harbouring retrovirus. On confluency the cells were differentiated as in 1.3.1 without drug selection, and then maintained in DMEM + 10% FBS with 2.5mg/ml puromycin until required for experiments.

2.3.5 Cell culture of Plat-E cells

Plat-E cells were cultured in DMEM supplemented with 10% (v/v) FCS, 1µg/ml puromycin and 10µg/ml blasticidin. Cells were maintained as subconfluent cultures at 37°C in a humidified 5% CO₂ incubator.

2.3.6 Preparation of retrovirus using Plat-E cells.

Cells were seeded at a density of 5 x 10⁶ cells per 10 cm dish, with one dish per virus being produced, in DMEM + 10% FCS. On the following day, the cells were transfected with the appropriate retroviral constructs using Lipofectamine™ 2000 reagent. Following transfection, the cells were maintained in DMEM + 10% FBS for 48 hours at 37°C, and subsequently switched to 32°C overnight to induce virus particle production. The viral supernatant was harvested from the plates, clarified by a 5 minute centrifugation at 500 xg and stored at -80°C until required.

2.4 DNA manipulation

Standard DNA manipulation procedures were used throughout the study (Sambrook et al., 1989).
2.4.1 Plasmid DNA purification

Promega Wizard® Plus SV miniprep kits were routinely used to isolate DNA from small bacterial cultures (< 10 ml). For larger preparations (> 50 ml) Qiagen® Plasmid Maxi kits were used.

2.4.2 DNA oligonucleotide synthesis

DNA oligonucleotides were synthesised by Yorkshire Biosciences Ltd (Heslington, York, UK) or VHbio Ltd (Gateshead, UK) and diluted in sterile double distilled water to a final concentration of 50 pmol/µl before use.

2.4.3 Polymerase Chain Reaction

The high fidelity Platinum Pfx® polymerase (Invitrogen) was routinely used to PCR amplify desired DNA sequences.

A typical PCR mixture consisted of:

10 mM dNTPs 5 µl
50 mM MgSO₄ 3 µl
10x Pfx buffer 5 µl
Enhancer solution 5 µl
ddH₂O 28 µl
Forward primer (50 pmol/µl stock) 1 µl
Reverse primer (50 pmol/µl stock) 1 µl
Plasmid DNA 1 µl
Pfx DNA polymerase 1 µl

And the conditions normally used were:

1. 95 °C 1 minute
2. 94 °C 90 seconds
3. 56 °C 1 minute
Steps 2 to 4 were repeated 30 times during the course of the PCR.

For amplification of larger templates and GC rich sequences the FastStart High Fidelity PCR system (Roche) was used. The mixture in this case consisted of:

- 10 mM dNTPs: 1 µl
- 10x Reaction buffer: 5 µl
- DMSO: 1-5 µl (2-10 %)
- Forward primer (50 pmol/µl stock): 4 µl
- Reverse primer (50 pmol/µl stock): 4 µl
- Template DNA: 1 µl
- 2.5 U FastStart High Fidelity enzyme: 0.5 µl
- ddH$_2$O: to 50 µl

For templates of less than 3 kb, a reaction profile essentially the same as that for Pfx was utilised. For longer templates the following was used:

1. 94 °C 2 minutes
2. 94 °C 30 seconds
3. 52 °C 30 seconds
4. 68 °C 1 minute/kb
5. 94 °C 30 seconds
6. 52 °C 30 seconds
7. 68 °C 1 min/kb (+ additional 20 seconds per cycle number)
8. 68 °C 7 minutes
9. 4 °C Final hold
Steps 2-4 were repeated ten times during the course of the reaction, followed by 25 cycles of steps 5-7.

Electrophoresis was used to resolve DNA fragments generated by PCR through 0.8 % (w/v) agarose in tris-acetate (TAE) buffer (40 mM Tris-acetate, 1 mM EDTA). DNA fragments were extracted from agarose gels using the QIAquick® gel extraction kit (Qiagen).

2.4.4 Site Directed Mutagenesis.

Site directed mutagenesis (SDM) of DNA sequences was performed using Pfu® polymerase (Promega) according to the Stratagene QuikChange® method. Synthetic oligonucleotides, detailed in Table 2.5, were used to exchange one amino acid residue for another with the mutagenic codon at the approximate centre of the oligonucleotide. A typical recipe for a SDM reaction was as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purified template plasmid</td>
<td>50 ng</td>
</tr>
<tr>
<td>Forward primer</td>
<td>125 ng</td>
</tr>
<tr>
<td>Reverse primer</td>
<td>125 ng</td>
</tr>
<tr>
<td>10x Pfu buffer</td>
<td>5 µl</td>
</tr>
<tr>
<td>10 mM dNTPs</td>
<td>1 µl</td>
</tr>
<tr>
<td>Pfu polymerase</td>
<td>1 µl</td>
</tr>
<tr>
<td>ddH2O</td>
<td>to 50 µl</td>
</tr>
</tbody>
</table>

Typical reaction conditions for SDM were:

1. 95 °C 1 minute
2. 95 °C 50 seconds
3. 60 °C 50 seconds
4. 68 °C 16 minutes
5. 68 °C 7 minutes
6. 4 °C Final hold

Steps 2 to 4 were repeated 18 times during the course of the reaction.
On completion of the reaction, the mixture was treated with 1 µl (10 units) *DpnI* for 1 hour at 37 °C, to digest methylated template plasmid. 5 µl of the resultant mixture was transformed into competent XL-1 Blue *E. coli*, and transformants selected for on solid 2x YT (1.6 % tryptone, 1 % yeast extract, 0.5 % NaCl) + 2 % agar supplemented with 100 µg/ml ampicillin. Several of the resultant colonies were picked, grown up in 10 ml of 2YT + 100 µg/ml ampicillin and plasmid purified. Mutations were verified by DNA sequencing (Sequencing service, University of Dundee).

2.4.5 Plasmid construction

To generate a construct encoding a ubiquitin binding deficient version of the GST-Dsk2p UBA protein to act as a negative control in pullydown experiments, I took advantage of the published crystal structure of Dsk2p in complex with ubiquitin (Ohno *et al.*, 2005), which identified the residues M342 and F344 (numbering relative to the full length protein) as essential for ubiquitin binding. pGEX-DSK2UBA (Raasi *et al.*, 2005) was subject to site directed mutagenesis using primer pair 352 and 353 (Table 2.5) to generate pCAL1, encoding GST-Dsk2p UBA M342R F344A (GST-UBAmut). This work was carried out in collaboration with Dr. Rebecca McCann.

pHAGLUT4 URA3 (pCAL4) was constructed by amplification of the HA-GLUT4 open reading frame from pRM55 (constructed by Dr Rebecca McCann) using oligonucleotides 1 and 2 (Table 2.5). This generated a product containing the GLUT4 ORF, with internal HA tag between residues 63 and 64, flanked by sequences homologous to the 3’ end of the *CUP1* promoter and the 5’ end of the *PHO8* 3’ UTR. The product was used to repair a gapped pNB701 (Struthers *et al.*, 2009), which encodes the ORF of RS-ALP (Piper *et al.*, 1997) under the control of the copper responsive *CUP1* promoter (Winge *et al.*, 1985; Mascorro-Gallardo *et al.*, 1996) and the 3’UTR of *PHO8*.

pGEX-GGA3 VHS-GATmut (pCAL6) was constructed by site directed mutagenesis of pGEX-GGA3 VHS-GAT (a gift from Juan Bonifacino, (Dell’Angelica *et al.*, 2000)). This was achieved by sequential site directed mutagenesis using primer pairs 457/458 (E250N mutation) and 459/460 (D284G mutation), sequences detailed in Table 2.5.
pCAL10 was constructed by amplification of the GGA3 short isoform mRNA from the IMAGE clone 4814878 in pBluescriptR (a gift from Professor Margaret S. Robinson) using oligos 489 and 511 (Table 2.5) to introduce a 5’ myc tag and EcoRI site, and a 3’ SalI site. This approximately 2 kb fragment was subcloned into pCR2.1. The myc-GGA3 fragment was excised from pCAL10 using EcoRI and SalI and ligated into simultaneously digested pBABE puro (Morgenstern and Land, 1990), a gift from Professor David James, to generate pCAL11. Mutation of the myc-GGA3 GAT domain was carried out in an identical fashion to that for pGEX-GGA3 VHS-GAT, generating pCAL12.

pCAL13 was constructed by site directed mutagenesis of pGEX-USP25 (Meulmeester et al., 2008) using primer pair 559 and 560 to mutate the arginine at position 1049 within the putative tankyrase binding motif of USP25 (Sbodio and Chi, 2002) to alanine.

2.5 Protein methods

2.5.1 Electrophoretic separation of proteins

The separation of proteins by electrophoresis was carried out with discontinuous polyacrylamide gels (SDS-PAGE) following the basic method outlined by Laemmli (1970). Proteins were separated on gels composed of a stacking layer (5 % (v/v) acrylamide in stacking buffer (0.25 M Tris-HCl (pH 6.8), 0.2 % (w/v) SDS) and a separating layer (normally 10% acrylamide in separating buffer; 0.75 M Tris-HCl (pH 8.8), 0.2 % (w/v) SDS). A 30 % (v/v) acrylamide-bisacrylamide mixture (37.5:1 ratio, Severn Biotech Ltd, Worcestershire) was used to make the gels. The tris-glycine electrophoresis buffer used contained 25 mM Tris-HCl, 250 mM glycine, 0.1 % (w/v) SDS. Resolved proteins were visualised on gels by agitating the gels in Coomassie Brilliant Blue solution (0.25 g Coomassie Brilliant Blue R250 in methanol: H₂O: glacial acetic acid (4.5:4.5:1 v/v/v)) for 30 minutes, followed by overnight agitation in destain solution (5 % (v/v) methanol, 10 % (v/v) glacial acetic acid) to give clearly visible bands.
2.5.2 Transfer of proteins to nitrocellulose membranes

A Bio-Rad Trans-Blot® SD cell was used to transfer proteins from polyacrylamide gels onto nitrocellulose membranes (Protran, 0.45 µm pore). Gels and membranes were sandwiched between 6 pieces of Whatman 3M filter paper soaked in semi dry transfer buffer (50 mM Tris-HCl, 40 mM glycine, 0.037% (w/v) SDS, 10% methanol. The assembly was subject to a constant 180 mA current for between 35 minutes (one gel) to one hour (three gels).

2.5.3 Immunoblot analysis

After protein transfer, unfilled sites on the nitrocellulose membrane were blocked using 5% (w/v) non-fat dried milk in PBST (0.1% (v/v) Tween-20 in PBS) or TBST (0.1% (v/v) Tween-20 in TBST (0.1% (v/v) Tween-20 in Tris-HCl buffered saline (TBS - 0.5 M NaCl, 10 mM Tris-HCl pH 7.6) according to the conditions required for each primary antibody. The membranes were exposed to primary antibody for 2 hours at room temperature or at 4 °C overnight with agitation. Primary antibodies were diluted as described in Table 2.1 in 1% (w/v) non-fat dried milk in PBST/TBST, except anti-FAS which was diluted in 5% (w/v) non-fat dried milk in PBST.

The membrane was subsequently washed six times with PBST/TBST for five minutes each. The membranes were exposed to secondary antibody at the concentrations described in Table 2.2 in 5% (w/v) non-fat dried milk in PBST/TBST for between 1 and 2 hours at room temperature, with agitation. A further six 5-minute washes in PBST/TBST were carried out and protein bands visualized using enhanced chemiluminescence (ECL).

2.5.4 Antibodies

Primary and secondary antibodies used in the study are detailed in Table 2.1 and Table 2.2 respectively. Polyclonal antisera against USP25 was generated by Eurogentec (Liege, Belgium) using an 87 day protocol. Briefly, two New Zealand white rabbits were immunised with 100 µg recombinant USP25 (generated as in 2.5.6) at days 0, 14, 28 and 56 of the protocol. Serum was collected from the
rabbits before the first immunisation (pre immune), and on days 38, 66 and 87 subsequently. The sera were stored at -80 °C until use.

2.5.5 Quantification of immunoblots.

Immunoblots were scanned using Photoshop® (Adobe) and immunoreactive bands measured using ImageJ software (National institutes of Health, USA). The integrated density of each band was measured and a background reading for an equally sized area of the image subtracted to give a numeric value for the band intensity.

2.5.6 GST fusion protein preparation

For pGEX-DSK2UBA and pGEX-GGA3 VHS-GAT based constructs, 10 ml of 2YT + 100 µg/ml ampicillin was inoculated with E. coli BL-21 (DE-3) cells harbouring a plasmid encoding the appropriate GST fusion protein and incubated at 37 °C overnight with shaking. The 10ml culture was inoculated into 400 ml Terrific Broth (1.2 % (w/v) tryptone, 2.4 % (w/v) yeast extract, 0.4 % (w/v) glycerol, 0.05 M K_2HPO_4, 0.016 M KH_2PO_4) and grown until OD_{600} = 0.6. Protein expression was induced with 1mM IPTG and the cells were incubated for a further 4 hours at 37 °C with shaking. The cells were harvested by centrifugation and resuspended in 19.5 ml phosphate buffered saline (PBS; 140 mM NaCl, 3 mM KCl, 1.5 mM KH_2PO_4, 8 mM Na_2HPO_4). The cells were treated with lysozyme (1 mg/ml) on ice for 30 minutes and subsequently sonicated for five 30 second bursts with 30 second iced pauses. The lysate was spun at 17640 xg at 4 °C to remove insoluble components. The lysate was incubated with 1ml of a 50 % glutathione-Sepharose bead slurry with rotation for 1 hour. The beads were washed three times with cold PBS to remove non-specifically bound proteins, and stored at 4 °C in PBS supplemented with EDTA free protease inhibitor cocktail (Roche) (containing leupeptin, α2 macroglobulin, pefabloc SC, pepstatin, PMSF, chymostatin, E-64, bestatin, trypsin inhibitor) at a bead:buffer ratio of 1:1.

For pGEX-USP25 and derivatives a similar protocol was used with several modifications. Proteins were purified from 2 litres of culture rather than 400 ml, and cells were lysed using a Microfluidizer M-110P cell disruptor set at
10,000 psi. After binding of the fusion protein to the beads, they were washed three times with PBS + 1% (v/v) Triton-X, three times with PBS + 0.5M NaCl and three times with PBS alone. Thrombin cleavage of GST-USP25, releasing USP25 from the beads, was performed by incubating the beads in thrombin cleavage buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 2.5 mM CaCl2) containing 0.04 units of thrombin per µl sample with rotation at room temperature for 2 hours.

2.5.7 GST fusion protein concentration estimation

20 µl of a 50% (v/v) glutathione Sepharose bead suspension was pipetted into a microfuge tube, spun at 500 xg for 1 minute and the supernatant removed. GST fusion protein was eluted from the beads by adding 400 µl of 2 × LSB (4% (w/v) SDS, 100 mM Tris-HCl pH 6.8, 20% (v/v) glycerol, 0.04% (w/v) bromophenol blue, 10% (v/v) β-mercaptoethanol), (i.e. a 1 in 40 dilution of the beads) and heating at 37 °C for 30 minutes. 20 µl of sample was run on a 10% SDS-PAGE gel with standard amounts of BSA (0.4, 1, 2 and 3 µg). After staining with Coomassie and subsequent destaining, protein concentration on the beads could be estimated visually.

2.6 GST fusion protein pull-down with yeast lysate

400 ml cultures of the appropriate yeast transformants (expressing wt HA-GLUT4) were grown to mid log phase - approximately 0.5 OD600 of cells/ml of culture. Cells were collected by centrifugation and the pellets resuspended in 40 ml YPD-Sorb (1.2 M sorbitol, 0.5% yeast nitrogen base (Formedium), 1% D-glucose, 1% peptone). Cells were converted to spheroplasts by treatment with 120 µl β-mercaptoethanol and 400 µl 50 mg/ml yeast lytic enzyme in yeast lytic enzyme buffer (50 mM Tris pH 7.7, 1 mM EDTA, 50% glycerol) and incubation for 1 hour at 30 °C. Spheroplasts were collected by centrifugation for 5 minutes at 1000 xg. The spheroplasts were resuspended in 250 µl lysis buffer (200 mM sorbitol, 100 mM KOAc, 1% Triton-X, 50 mM KCl, 20 mM PIPES pH 6.8, 1 mM N-ethyl maleimide (NEM)) supplemented with EDTA free protease inhibitor cocktail (Roche) and agitated for one hour to lyse spheroplasts.
Samples were subsequently centrifuged at 14000 xg for 15 minutes at 4 °C to pellet insoluble material. Lysates were equalized for protein concentration by the BCA assay (Thermo Fisher Scientific, Cramlington) if required to approximately 10 mg/ml. Approximately 200 µl of the diluted lysate was added to 20 µg of glutathione-Sepharose beads with appropriate GST fusion proteins bound. The beads were incubated with the fusion proteins with gentle agitation for 2 hours at 4 °C. The beads were washed three times with lysis buffer, drained and bound proteins eluted in 40 µl 2x LSB for 15 minutes at 65 °C. 20 µl of each sample was run out on a 10% SDS-PAGE gel alongside 2.5% of input lysate for each yeast transformant, followed by immunoblotting with antibodies against specific proteins.

2.7 GST fusion protein pull-down with 3T3-L1 adipocyte lysate.

Adipocytes were starved of serum using serum-free DMEM for at least two hours prior to starting the procedure. Two 10 cm plates were used per reaction condition. Following treatment cells were kept on ice and washed three times with ice cold PBS. Cells were scraped in 250 µl lysis buffer (50 mM Sodium HEPES, 150 mM NaCl, 5 mM EDTA, 1 mM NEM, 1 % Triton X-100, EDTA free protease inhibitor cocktail (Roche)) and homogenised using a syringe and needle (10 x 25 G, 2 x 26 G). The homogenates were clarified by a 10 minute centrifugation at 500 xg and 4 °C. The clarified homogenate was agitated at 4 °C for a further hour to disrupt membranes, then centrifuged at 14 000 xg and 4 °C for 15 minutes to pellet insoluble material. If required, protein concentrations were equalized by using the Bradford assay. An aliquot of lysate was retained and mixed with 2 X LSB (whole cell lysate). The remaining lysate was divided between the appropriate immobilized GST fusion proteins, with approximately 200 µl lysate per 20 µl bead suspension. The bead/lysate mix was mixed gently at 4 °C for 2 hours to allow binding of proteins. The beads were washed three times with lysis buffer and bound proteins eluted by addition of 2 x LSB with 10% beta-mercaptoethanol.
2.8 Indirect immunofluorescence with 3T3-L1 adipocytes.

Cells were grown on sterilised coverslips in a 24 well plate. Cells were starved of serum using serum-free DMEM for two hours prior to starting the procedure, and insulin stimulated (100 nM insulin for 15 minutes, 37 °C). For surface epitope staining, cells were washed twice with PBS then cross-linked with 200 µl 3 % (v/v) paraformaldehyde (PFA) for 30 minutes, washed twice with PBS then washed twice with 20 mM glycine (GLY) in PBS to quench free aldehyde groups. The coverslips were then incubated with 200 µl blocking solution (2 % (w/v) BSA/20 mM glycine in PBS (BSA/GLY)) for 20 minutes. To incubate the cells with the primary antibody, the coverslips were placed cell side down onto a 40 µl drop of primary antibody preparation (dissolved in BSA/GLY) on parafilm for 45 minutes, then washed four times with BSA/GLY. Fluorophore conjugated secondary antibody in BSA/GLY was applied to the cells in a similar manner for 30 minutes, then washed as previously. The cells were returned to a 24 well plate, washed twice with PBS and surface bound antibodies fixed using 3 % (v/v) PFA for 30 minutes. The coverslips were washed twice with PBS and the PFA quenched with GLY as previously. The cells were blocked and permeabilised using 200 µl 20 mM glycine, 2 % (w/v) BSA and 0.1 % (w/v) saponin in PBS (BSA/GLY/SAP) for twenty minutes. The coverslips were incubated with primary antibody preparation in BSA/GLY/SAP for 45 minutes, washed in BSA/GLY/SAP, incubated with secondary antibody for 30 minutes and given four further BSA/GLY/SAP washes. The coverslips were washed finally in PBS, dried and mounted onto slides using Immumount (Thermo). The mounted coverslips were analysed using a 63 x oil immersion objective lens fitted to a Zeiss LSM Pascal Exciter confocal fluorescence microscope, and images overlaid using LSM software (Zeiss).

2.9 3H\textsubscript{2}-Deoxyglucose uptake assays

For these experiments cells were grown in 12 well plates. After differentiation (as in 2.3.1) cells were serum starved for at least two hours. Each twelve well plate was maintained at 37 °C and washed four times with Krebs Ringer Phosphate (KRP; 128 mM NaCl, 4.7 mM KCl, 5 mM NaH\textsubscript{2}PO\textsubscript{4}, 1.25 mM MgSO\textsubscript{4}, 1.25
mM CaCl$_2$, pH7.4). The wells of each plate were treated as follows for 30 minutes at 37 °C:

- 3 wells 475 µl KRP (Basal)
- 3 wells 475 µl KRP + 1 µM insulin (Insulin)
- 3 wells 475 µl KRP + 5 µM cytochalasin B (Basal CytoB)
- 3 wells 475 µl KRP + 1 µM insulin + 5 µM cytochalasin B (Insulin CytoB)

After the 30 minute incubation, 25 µl of [3H]2-deoxyglucose solution in KRP was added to the wells such that the final deoxyglucose concentration was 50 µM with 0.25 µCi per well. Transport was allowed to proceed for 5 minutes after which time the contents of the wells was removed and the plates washed three times by immersion in ice cold PBS. Cells were air dried for 1 hour at room temperature and solubilised in 1 ml 1 % Triton X-100 for 2 hours. Solubilised cells were transferred into scintillation vials containing 5 ml scintillation fluid, and radioactivity associated with the cells measured using liquid scintillation spectrophotometry. When results of these experiments are expressed as fold change of glucose uptake from basal cells, the calculation is:

Fold change = (Insulin - Insulin CytoB)/(Basal - Basal CytoB)

2.10 Isolation of low density microsomes from 3T3-L1 adipocytes.

2 x 10 cm2 plates of confluent adipocytes were washed twice with cold PBS and once with HES buffer (20 mM HEPES, 225 mM sucrose, 1 mM EDTA, pH 7.4) plus protease inhibitors (Roche) (HES+I). The cells were subsequently scraped on ice in 1 ml HES+I and homogenised using a syringe and needle. All further centrifugation steps were carried out at 4 °C. The homogenate was centrifuged at 500 xg for ten minutes in a chilled microcentrifuge (Beckman Coulter). The supernatant was removed and centrifuged in a TLA-100 rotor at 5113 xg for twelve minutes to remove the plasma membrane, mitochondria and nuclei. The supernatant was again centrifuged at 8795 xg for seventeen minutes to remove high density microsomes (HDM). The final step involved centrifugation of the supernatant at 88760 xg for 75 minutes. The resulting supernatant was removed
and the pellet resuspended in 0.4 ml HES+I to give the low density microsome fraction (LDM).

2.11 Iodixanol gradient analysis of LDMs from 3T3-L1 adipocytes.

LDMs were isolated as in 2.10 from 2 x 10cm² plates of adipocytes expressing HA-GLUT4. This fraction was resuspended in iodixanol and HES+I to a final iodixanol concentration of 14 % (v/v). The resulting mixture was transferred to Quickseal® polyallomer tubes (Beckman Coulter), sealed within the tubes and briefly vortexed to mix the sample. The samples were transferred to a near vertical rotor (TLNy100) (Beckman-Coulter) and centrifuged at 295,000 xg at 4 °C for 1 hour. Fractions of approximately 300 µl were collected from the bottom of the gradient. 150 µl of each fraction was removed and mixed with 4 x Laemmli’s sample buffer (200mM TrisyHCl, 8 % (w/v) SDS, 0.4 % (w/v) bromophenol blue, 40 % (v/v) glycerol, 10 % (v/v) β-mercaptoethanol) and heated at 65 °C for ten minutes. The fractions were subjected to SDS-PAGE on 10 % (v/v) gels to allow detection of HA-GLUT4 by immunoblot analysis using the HA-11 antibody (Covance).

2.12 Enrichment of GSVs using subcellular fractionation

To produce a cellular fraction enriched in GLUT4 GSVs from differentiated 3T3-L1 adipocytes a method similar to that published by Li et al. (2005) was used. Briefly, 2 10 cm plates per condition under test were scraped in 500 µl PBS, homogenised using 12 strokes of a syringe and needle (10 x 25 G, 2 x 26 G) and centrifuged at 500 xg and 4 °C for 10 minutes to pellet insoluble material. The supernatant of this step was subjected to further centrifugation at 16 000 xg for 20 minutes. The pellets and supernatants from this step were collected and PBS added to both to equalise protein concentrations to approximately 2 mg/ml. In the case of the HA-GLUT4 constructs, approximately 20 µg of supernatant and 5 µg pellet fractions were routinely run on the gels (due to the higher concentrations of HA-GLUT4 in the pellet fraction).
<table>
<thead>
<tr>
<th>Antigen</th>
<th>Working dilution</th>
<th>Description</th>
<th>Reference/Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. v. GFP</td>
<td>1:1000 (IB)</td>
<td>Mouse monoclonal antibody (JLI8) raised against Aequorea victoria Green Fluorescent Protein (GFP).</td>
<td>Living colors®</td>
</tr>
<tr>
<td>FAS</td>
<td>1:200 (IB)</td>
<td>Mouse monoclonal antibody against residues 9-202 of human fatty acid synthase.</td>
<td>BD biosciences.</td>
</tr>
<tr>
<td>GAPDH</td>
<td>1:30,000 (IB)</td>
<td>Mouse monoclonal antibody (clone 6C5) against GAPDH.</td>
<td>Ambion®</td>
</tr>
<tr>
<td>GLUT4</td>
<td>1:1000 (IB)</td>
<td>Rabbit polyclonal antibody against C-terminal 14 amino acids of GLUT4.</td>
<td>(Brant et al., 1992)</td>
</tr>
<tr>
<td>HA</td>
<td>1:1000 (IB), 1:200 (IF)</td>
<td>Mouse monoclonal antibody (clone 16B12) against an epitope from the human influenza haemagglutinin protein (YPYDVPDYA).</td>
<td>Covance Research products</td>
</tr>
<tr>
<td>IRAP</td>
<td>1:2000 (IB)</td>
<td>Mouse monoclonal antibody against IRAP</td>
<td>Gift from Professor Paul Pilch</td>
</tr>
<tr>
<td>IRS-1</td>
<td>1:1000 (IB)</td>
<td>Rabbit polyclonal antibody raised against the C-terminal 14 amino acids of rat liver IRS-1 (YASINFKQPEDRQ)</td>
<td>Upstate (New York)</td>
</tr>
<tr>
<td>Myc</td>
<td>1:1000 (IB), 1:500 (IF)</td>
<td>Rabbit polyclonal antibody raised against the myc epitope (EQLISEEEDL) conjugated to KLH.</td>
<td>Abcam</td>
</tr>
<tr>
<td>Stx-I4</td>
<td>1:3000 (IB)</td>
<td>Rabbit polyclonal antiserum raised against the cytosolic domain of rat syntaxin-4</td>
<td>Synaptic Systems</td>
</tr>
<tr>
<td>Tankyrase 1/2</td>
<td>1:300 (IB)</td>
<td>Rabbit polyclonal IgG raised against amino acids 745-1094 of Tankyrase-1 of human origin</td>
<td>Santa Cruz biotechnology (California)</td>
</tr>
<tr>
<td>Ubiquitin</td>
<td>1:1000 (IB)</td>
<td>Mouse monoclonal antibody (clone P4D1) raised against denatured bovine ubiquitin.</td>
<td>Covance Research products</td>
</tr>
<tr>
<td>USP25</td>
<td>1:4000 (IB)</td>
<td>Rabbit polyclonal antibody raised against GST-USP25</td>
<td>(Bosch-Comas et al., 2006)</td>
</tr>
<tr>
<td>Vti1p</td>
<td>1:30,000 (IB)</td>
<td>Rabbit polyclonal antibody raised against Vti1p</td>
<td>Generated by Eurogentec.</td>
</tr>
</tbody>
</table>

Table 2.1 Primary antibodies used in this study.

IB = immunoblotting, IF = Immunofluorescence.
<table>
<thead>
<tr>
<th>Working dilution</th>
<th>Description</th>
<th>Reference/ Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti Rabbit-HRP</td>
<td>1:5000 (IB) HRP conjugated whole IgG from donkey.</td>
<td>GE Healthcare</td>
</tr>
<tr>
<td>Anti Mouse-HRP</td>
<td>1:2000 (IB) HRP conjugated whole IgG from sheep.</td>
<td>GE Healthcare</td>
</tr>
<tr>
<td>Anti Mouse-Cy3</td>
<td>1:200 (IF) Cy3 conjugated anti-mouse IgG from goat.</td>
<td>Jackson Immunoresearch (Stratech)</td>
</tr>
<tr>
<td>Anti Mouse-DyLight488</td>
<td>1:200 (IF) DyLight488 conjugated anti-mouse IgG from goat.</td>
<td>Jackson Immunoresearch (Stratech)</td>
</tr>
<tr>
<td>Anti Rabbit-AlexaFluor 488</td>
<td>1:400 (IF) AlexaFluor 488 conjugated anti-rabbit IgG, from goat.</td>
<td>Living Colours (Invitrogen)</td>
</tr>
</tbody>
</table>

Table 2.2 Secondary antibodies used in this study.

IB = immunoblotting, IF = immunofluorescence
<table>
<thead>
<tr>
<th>Number</th>
<th>Plasmid</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pPLO2010</td>
<td>pep4-ΔH3 allele in pRS306. Constructed by first subcloning a 4.6kb SacI-SalI fragment containing the PEP4 gene into pRS306, then removing the 1.3-kbp HindIII fragment contained within the SacI-SalI insert, generating the ΔH3 allele.</td>
<td>(Nothwehr et al., 1995)</td>
</tr>
<tr>
<td>13</td>
<td>pNB701</td>
<td>Yeast expression plasmid (CEN, URA3) encoding Pho8p from the CUP1 promoter</td>
<td>(Struthers et al., 2009)</td>
</tr>
<tr>
<td>169</td>
<td>pBABE puro</td>
<td>Retroviral expression vector, AmpR, puro</td>
<td>(Morgenstern and Land, 1990)</td>
</tr>
<tr>
<td>321</td>
<td>pRM4</td>
<td>Retroviral expression vector encoding HA-tagged GLUT4 7K/R</td>
<td>Constructed by Dr R. McCann</td>
</tr>
<tr>
<td>358</td>
<td>pHA-GLUT4</td>
<td>Retroviral expression vector encoding HA-tagged GLUT4</td>
<td>(Shewan et al., 2000)</td>
</tr>
<tr>
<td>359</td>
<td>pGEX-DSK2UBA</td>
<td>E. coli expression vector encoding the UBA domain of S. cerevisiae Dsk2p (residues 328-373) fused to the C-terminus of GST</td>
<td>(Funakoshi et al., 2002)</td>
</tr>
<tr>
<td>390</td>
<td>pCAL1</td>
<td>As pGEX-DSK2UBA but with two point mutations M342R and F344A in the UBA domain.</td>
<td>This study.</td>
</tr>
<tr>
<td>399</td>
<td>pGEX GGA3</td>
<td>E. coli expression vector encoding the VHS-GAT domain of hGGA3 (residues 1-146) fused to the C-terminus of GST</td>
<td>(Mattera et al., 2004)</td>
</tr>
<tr>
<td>476</td>
<td>pCAL4</td>
<td>S. cerevisiae expression vector (CEN, URA3) encoding GLUT4 with an exofacial HA tag between residues 67 and 68, based on pNB701</td>
<td>This study</td>
</tr>
<tr>
<td>482</td>
<td>pRM35</td>
<td>Retroviral expression vector encoding HA-tagged GLUT4 6K/R (K109)</td>
<td>Constructed by Dr R. McCann</td>
</tr>
<tr>
<td>483</td>
<td>pRM36</td>
<td>Retroviral expression vector encoding HA-tagged GLUT4 6K/R (K495)</td>
<td>Constructed by Dr R. McCann</td>
</tr>
<tr>
<td>487</td>
<td>pGEX6P-1</td>
<td>E. coli expression vector with N-Terminal GST tag.</td>
<td>GE Healthcare</td>
</tr>
<tr>
<td>492</td>
<td>pCAL6</td>
<td>As pGEX GGA3 VHS-GAT with two point mutations in GAT domain (E250N D284G)</td>
<td>This study</td>
</tr>
<tr>
<td>498</td>
<td>pGEX USP25</td>
<td>E. coli expression vector encoding USP25 with an N terminal GST tag</td>
<td>(Meulmeester et al., 2008)</td>
</tr>
<tr>
<td>515</td>
<td>pRM55</td>
<td>Retroviral expression vector encoding HA-tagged GLUT4. Constructed by excision of a PshA1-BglII fragment</td>
<td>Constructed by Dr R. McCann</td>
</tr>
</tbody>
</table>
Chapter 2

from pHA-GLUT4 and ligating this fragment into PshAl-BglII cut pRM36

521 pCAL11 Retroviral expression vector encoding N terminally tagged myc-GGA3 short isoform. This study

553 pCAL12 Retroviral expression vector encoding N terminally tagged myc-GGA3 short isoform with mutations in the GAT domain (E250N, D284G) This study

597 pCAL13 Identical to pGEX-USP25 with a mutation in the putative tankyrase binding motif (R1049A) This study

<table>
<thead>
<tr>
<th>Name</th>
<th>Target sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scrambled</td>
<td>GACGAACAAACCGCCACATAT</td>
<td>Scrambled control siRNA</td>
</tr>
<tr>
<td>30825</td>
<td>CCTGCTGGTTAGTCAGTTA</td>
<td>Targeted against USP25; sequence provided by Dr Nai-Wen Chi (UCSD)</td>
</tr>
<tr>
<td>30827</td>
<td>CCCAACGATCACTGCAAGAAA</td>
<td>As above</td>
</tr>
</tbody>
</table>

Table 2.3 Plasmids used in this study

Table 2.4 siRNA target sequences used in this study
<table>
<thead>
<tr>
<th>Number</th>
<th>Sequence (5’-3’)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GATATTAAGAAAAACAACTGTAATCAATCAATAATGCCGTCGGCTTCCAACAGATA</td>
<td>CUP1 hGLUT4</td>
</tr>
<tr>
<td>2</td>
<td>ATTATAACGTATTAAATATGTAAGAAAAAGAGGGAGAGTTAGATAGGATCGTGTTGATCAGATCGCTATCCGCTTAA</td>
<td>3’UTR hGLUT4</td>
</tr>
<tr>
<td>352</td>
<td>GACAACAAAAGAGACCGCGCCCTTGATTGCAGATGAA</td>
<td>Mutation of residues 342 and 344 of Dsk2p UBA domain from methionine to arginine and phenylalanine to alanine respectively (mutagenic codons underlined)</td>
</tr>
<tr>
<td>353</td>
<td>GTTTCTATCGAAATCGAGGCGGCCTTGCTGTTCATTGGTC</td>
<td>Reverse complement of 352</td>
</tr>
<tr>
<td>489</td>
<td>GTGTCAGCTCATAGGTTCTCCCACCTGTTCC</td>
<td>SalI GGA3’</td>
</tr>
<tr>
<td>511</td>
<td>TGAATTCATGGGACAAAATCTTATTTTGAGATAGGATCGTGTCAGATGAA</td>
<td>EcoRI myc GGA3 5’</td>
</tr>
<tr>
<td>520</td>
<td>TCTCCATCCGCGGCGTCTTCTCC</td>
<td>pBABE sequencing primer.</td>
</tr>
<tr>
<td>559</td>
<td>CATGGTTCCCTCAGTGGCAACTCCTGCTGATGG</td>
<td>Mutation of residue 1049 of human USP25 from arginine to alanine (forward primer, mutagenic codons underlined)</td>
</tr>
<tr>
<td>560</td>
<td>CCATCAGCGAGGTTGCACTGAGGACAACATGG</td>
<td>Reverse complement of 559</td>
</tr>
<tr>
<td>565</td>
<td>GACAGAGAGCTGATGAAAGAACCTGTTGATCAGTGAGAAGAC</td>
<td>Mutation of residue 250 of GGA3 GAT domain from glutamic acid to asparagine (forward primer, mutagenic codon underlined)</td>
</tr>
<tr>
<td>566</td>
<td>GGTTCACACTGATCAAGACAGTTGTCTTTCTTAATCAGCTCTCTTCTGTC</td>
<td>Reverse complement of 457</td>
</tr>
<tr>
<td>567</td>
<td>CTGCAAGCCAGTGGAACCTCTCCCGGGTCT</td>
<td>Mutation of residue 284 of GGA3 GAT domain from aspartic acid to glycine (forward primer, mutagenic codon underlined)</td>
</tr>
<tr>
<td>568</td>
<td>GACCGGGAGAGGTTCCACTGGCTTGCAG</td>
<td>Reverse complement of 459</td>
</tr>
</tbody>
</table>

Table 2.5 DNA oligonucleotides used in this study
<table>
<thead>
<tr>
<th>Name</th>
<th>Genotype</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL-21(DE3)</td>
<td>F^- *ompT hsdS_{\beta}(r_{\beta}^-, m_{\beta}^-)$ gal dcm (DE3)</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>TOP10</td>
<td>$F^- mcrA (mrr-hsdRMS-mcrBC) 80lacZM15 lacX74 recA1 ara139 (ara-leu)7697 galU galK rpsL (Str^R) endA1 nupG</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>XL-1 Blue</td>
<td>recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F’ proAB lacI^ZΔM15 Tn10 (Tet^r)]</td>
<td>Stratagene</td>
</tr>
</tbody>
</table>

Table 2.6 *E. coli* strains used in this study.

<table>
<thead>
<tr>
<th>Name</th>
<th>Genotype</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF838-I9Dα</td>
<td>MATa leu2-3, 112 ura3-52 his4-519 ade6 gal2 pep4-3</td>
<td>(Rothman et al., 1989)</td>
</tr>
<tr>
<td>YNL297C</td>
<td>MATa his3Δ::pFA6aMON2-GFP leu2Δ0 met15Δ0 ura3Δ0</td>
<td>Invitrogen, (Huh et al., 2003)</td>
</tr>
<tr>
<td>BHNY1</td>
<td>MATa his3Δ::pFA6aMON2-GFP leu2Δ0 met15Δ0 ura3Δ0 pep4-3</td>
<td>This study</td>
</tr>
</tbody>
</table>

Table 2.7 *S. cerevisiae* strains used in this study.
Chapter 3 - Ubiquitination and insulin responsive trafficking of GLUT4
3.1 Introduction

GLUT4 is a 12-transmembrane domain-containing transporter protein, part of the larger family of GLUTs, which allows passive diffusion of glucose down a concentration gradient (Wood and Trayhurn, 2003). Insulin signalling results in an increase in the number of GLUT4 molecules at the cell surface, thus increasing the rate at which glucose enters the cell (Birnbaum, 1989; James et al., 1989). This activity is responsible for the insulin-induced clearance of glucose from the bloodstream after a meal. In the absence of insulin, GLUT4 is retained intracellularly, continually cycling through compartments of the TGN/endosomal system including GLUT4 storage vesicles or GSVs (Bryant et al., 2002). GSVs are defined as the compartment(s) from where GLUT4 is mobilised to the cell surface in response to insulin (discussed in more detail in sections 1.4.3 and 1.4.4). Although GSVs remain somewhat poorly defined, they are known to contain many proteins other than GLUT4. Notable amongst these are the insulin responsive aminopeptidase IRAP (Ross et al., 1996; Ross et al., 1997), the sorting receptor sortilin (Lin et al., 1997; Morris et al., 1998) and the SNARE protein VAMP2 (Cain et al., 1992; Martin et al., 1996).

The trafficking itinerary of GLUT4 bears some similarities to that of the yeast amino acid permease Gap1p (Roberg et al., 1997; Bryant et al., 2002) as discussed in section (1.5.2). When yeast cells are grown on optimal nitrogen sources such as glutamate, the transporter is delivered to the endosomal system. On less favourable nitrogen sources such as proline, the channel is directed to the plasma membrane to allow uptake of amino acids (Roberg et al., 1997; Soetens et al., 2001; Risinger and Kaiser, 2008).

The nitrogen-regulated trafficking of Gap1p is controlled by ubiquitination of the transporter by the ubiquitin ligase Rsp5p (Helliwell et al., 2001), and subsequent Gap1p-Ub interaction with the coat proteins Gga1p/Gga2p (Scott et al., 2004; Bilodeau et al., 2004). Work in our laboratory has built upon the parallels between the regulated trafficking of Gap1p and GLUT4 to form the hypothesis that ubiquitination of GLUT4 plays a role in its trafficking in insulin-sensitive cells. A previous PhD student in the lab expressed human GLUT4 in yeast and found that it could only be detected by immunoblot analysis in cells lacking active vacuolar proteases, suggesting that it is trafficked to the proteolytically active endosomal system (McCann R.K., 2007). Indirect immunofluorescence
found that GLUT4 expressed in yeast displays a punctate staining pattern reminiscent of that reported for Gap1p (McCann R.K., 2007). This staining colocalises with the TGN marker Kex2p (McCann R.K., 2007). Proteins localise to the yeast TGN by continually cycling through a prevacuolar/endosomal compartment (Bryant and Stevens, 1997), an exaggerated form of which accumulates in the class E \textit{vps} mutants (Raymond \textit{et al.}, 1992). Consistent with its TGN localisation, GLUT4 localises to the class E compartment that accumulates in \textit{vps27}\textDelta cells (McCann R.K., 2007). Again, this bears similarity to findings reported for Gap1p whose punctate distribution (on rich media) collapses into the class E compartment of \textit{vps4} and \textit{vps27} mutant cells (Rubio-Texeira and Kaiser, 2006).

The endosomal delivery of Gap1p on rich media is regulated by ubiquitination of the transporter (Soetens \textit{et al.}, 2001). Ubiquitinated Gap1p is recognised by the Gga coat proteins, and trafficked from the TGN into the endosomal system (Scott \textit{et al.}, 2004).

Immunoblot analysis of GLUT4 immunoprecipitated from yeast reveals that it is ubiquitinated in a lysine-dependent manner (McCann R.K., 2007). Ubiquitination of GLUT4 appears to be both necessary and sufficient for delivery into the proteolytically active endosomal system in yeast since a ubiquitin-resistant version (with all 7 cytosolically disposed lysine residues mutated to arginines) is not degraded by vacuolar proteases in yeast, whereas an in-frame version of ubiquitin to this mutant restores its trafficking (McCann R.K., 2007). In addition, as reported for Gap1p (Scott \textit{et al.}, 2004), the ubiquitin-dependent delivery of GLUT4 to the yeast endosomal system requires the ubiquitin-binding Gga proteins (McCann R.K., 2007) (Figure 3.1).
Figure 3.1 hGLUT4 expressed in yeast requires ubiquitin acceptor sites to enter the proteolytically active endosomal system.

Wild type (wt) GLUT4 expressed in yeast is conjugated to HA-Ub (A) and endogenous Ub (B) when expressed in vacuolar protease deficient SF838-9Dα yeast, whereas a ubiquitin resistant mutant (K/R) is not. (C) Yeast grown on rich media traffic wt GLUT4, but not GLUT4 7K/R, into the proteolytically active endosomal system, resulting in its degradation. GLUT4 is stabilized on rich media when expressed in a ggaΔ strain. Image used with permission from Dr. Rebecca McCann.

These studies were extended to the more physiologically relevant 3T3-L1 adipocyte cell line. Initial results suggested that GLUT4-7K/R does not enter GSVs and does not translocate to the cell surface in response to insulin. However the constructs used in these studies expressed wild type HA-GLUT4 at a significantly higher (approximately 20 fold greater) level than the ubiquitin resistant HA-7K/R, making it impossible to be sure that the differences seen in the trafficking of these molecules was due to differences in their ubiquitination status.
Another caveat with these experiments is that five of the seven potential ubiquitination sites (i.e. lysine residues that are predicted to be cytosolically disposed) (Birnbaum, 1989; James et al., 1989) in GLUT4 are in the large intracellular loop (Figure 3.2). This portion of GLUT4 has been reported to interact with the ARF GAP protein ACAP1, and it has been proposed that this interaction is required to form functional clathrin coats on GSVs and permit recycling of GLUT4 (Li et al., 2007). One of the important sites identified by Li et al. (2007) is a KR motif at residues 245-246, mutation of which to AA results in decreased interaction between GLUT4 and ACAP1. It is therefore possible that mutation of the five lysine residues within the loop results in impaired insulin-regulated trafficking of due to disruption of interaction with ACAP1. This chapter describes work performed by me to address the above concerns.

3.2 Aims of the chapter.

The aims of the work in this chapter were twofold; firstly, I set out to equalise expression of wild type HA-GLUT4 and the ubiquitin resistant HA-GLUT4 7K/R from their respective retroviral expression vectors; and secondly, I wanted to address concerns that impaired insulin-regulated trafficking of ubiquitin-resistant HA-GLUT4 7K/R may not be due to its lack of ubiquitination, but structural changes in the large intracellular loop, which may in turn disrupt
interactions with effector proteins required for the insulin regulated trafficking of GLUT4, such as ACAP1 (see above).

In order to investigate the latter point, I built on previous work that demonstrated that GLUT4 expressed in yeast can be ubiquitinated on any one of its seven cytosolically disposed lysine residues, and that ubiquitination of any one of these lysines is sufficient to direct GLUT4 delivery to the endosomal system (McCann R.K., 2007). I reasoned that if the same is true in adipocytes then I could test whether the mutations in the large intracellular loop were impairing the trafficking of HA-GLUT4 7K/R by creating versions in which single lysine residues outwith the large intracellular loop, at positions 109 or 495, had been reintroduced.

3.3 Expression of HA-GLUT4 and HA-GLUT4 7K/R

The HA-GLUT4 expression construct (pHA-GLUT4) used in our lab’s initial studies on GLUT4 (described above) was generated in an earlier study (Shewan et al., 2000). The cDNA from which the HA-GLUT4 fragment was generated contained 22 bases of untranslated sequence 5’ to the GLUT4 coding region (Fukumoto et al., 1989; Quon et al., 1994) which may play a role in transcriptional and/or translational regulation of the GLUT4 coding sequence. A comparison of pHA-GLUT4 and wild type GLUT4 coding sequence is shown in Figure 3.3.

The HA-GLUT4 7K/R expression vector (pRM4) was generated from the GLUT4-7K/R open reading frame present in a yeast expression vector for GLUT4-7K/R. This construct lacked the 22bp upstream sequence and its expression was solely controlled by the retroviral CMV promoter in the pBABE vector backbone (Morgenstern and Land, 1990). In order to create a retroviral expression vector that produces levels of wild-type HA-GLUT4 similar to those obtained for pHA-GLUT4 7K/R, I set out to remove the 22 bp, non-coding sequence found upstream of the coding sequence in pHA-GLUT4.
Figure 3.3 DNA sequence alignment of HA-GLUT4 from pHA-GLUT4 and the hGLUT4 sequence.

The BamHI site used to subclone HA-GLUT4 is indicated in blue, homologous sequences are in red. Sequences were aligned using Vector NTI (Invitrogen).

Also present in the lab at this time were HA-GLUT4 expression vectors (pRM35 and 36) encoding GLUT4 mutants with single cytosolic lysine residues (K109 and K495 respectively), constructed by Dr R. K. McCann. These constructs were based on pHAyGLUT4 7K/R and thus lacked the upstream sequence present in pHA-GLUT4 (Fukumoto et al., 1989; Quon et al., 1994). The presence of these reagents in the lab provided a straightforward way to generate wild type HA-GLUT4 in a background lacking the 5’ upstream sequence (detailed in Figure 3.4), with the hope of obtaining vectors to produce comparable amounts of wild type HA-GLUT4, HA GLUT4 7K/R and the two “add back” mutants in 3T3-L1 adipocytes. A PshAI-BglII fragment of HA-GLUT4 from base pairs 70-1469 of the GLUT4 coding sequence was excised from pHA-GLUT4 and inserted into PshAI-BglII digested pRM36 which encoded HA-GLUT4 6K/R (495). The presence of the fragment was verified using a diagnostic restriction digest with Tth1111. This work was carried out in collaboration with Dr. Rebecca McCann.
Figure 3.4 Construction of pRM55.

pHA-GLUT4 and pRM36 (encoding HA-GLUT4 6K/R K495) were simultaneously digested using \(PshII \) and \(BglII \) restriction enzymes. The resulting fragment of HA-GLUT4 was ligated into gapped pRM36, generating pRM55. Relative positions of codons for cytosolically disposed lysine (K) and arginine (R) are indicated, the 22 bp 5' untranslated sequence is represented by the grey box in pHA-GLUT4.

All four HA-GLUT4 constructs (wild type, 7K/R and 6K/R 109 and 495), now in the same background (i.e. lacking the 22 bp sequence found in pHA-GLUT4) were transfected into Plat-E packaging cells to generate recombinant retrovirus as described in 2.3.4 and the resulting viruses were used to infect subconfluent 3T3-L1 fibroblasts. The fibroblasts were grown to confluency, differentiated into adipocytes and their HA-GLUT4 content analysed by immunoblotting. As shown in Figure 3.5 the expression of all four HA-GLUT4 variants was similar (using comparison to endogenously expressed GAPDH to control for loading). Having established conditions to express these 4 versions of HA-GLUT4 to similar levels in adipocytes, it was now possible to proceed with further characterisation of their trafficking without being concerned that any observed differences might be due to altered expression levels.
Figure 3.5 Expression of HA-GLUT4 and mutants in 3T3-L1 adipocytes.

Subconfluent 3T3-L1 fibroblasts were infected with recombinant retrovirus harbouring expression vectors encoding HA-GLUT4, HA-GLUT4 7K/R, HA-GLUT4 6K/R K495 and HA-GLUT4 6K/R 109, grown to confluency under selection with 2.5 µg/ml puromycin and differentiated as previously described. Between days 8 and 12 post-differentiation cells from one 10 cm plate were harvested in lysis buffer and the lysates equalized for protein content to approximately 5 mg/ml. The lysates were subjected to SDS-PAGE on 10 % (v/v) gels and immunoblotted for the HA epitope and GAPDH as a loading control.

3.4 A single ubiquitination site is sufficient to permit insulin-stimulated translocation of GLUT4.

3.4.1 HA-GLUT4 6K/R K109 and K495 are ubiquitinated in 3T3-L1 adipocytes.

As stated in 3.1, one of the major concerns with the use of the 7K/R mutant was that mutation of the five lysine residues within the large intracellular loop of GLUT4 may affect the structure of this region so that the altered trafficking of this mutant may be for reasons other than its altered ubiquitination status. To address this concern I made use of the observation that when present as the sole cytosolic lysine, any one of the seven lysines mutated in the 7K/R mutant serves as a ubiquitin acceptor site in yeast (McCann R.K., 2007). The two lysines located outside the large cytosolic loop are K109, located within the first intracellular domain, and K495, located within the C-terminal cytosolic region of
GLUT4 (Figure 3.2), a region known to contain several important GLUT4 trafficking motifs (Verhey *et al.*, 1995; Shewan *et al.*, 2000; 2003). As discussed above, our lab has retroviral constructs (pRM35 and pRM36) to express versions of GLUT4 harbouring either one of these as the sole cytosolic lysine (HA-GLUT4 K109 and 495) that produce these proteins in 3T3-L1 adipocytes at levels comparable to HA-GLUT4 and HA-GLUT4 7K/R from their retroviral expression vectors (Figure 3.5) Recombinant retroviral particles were produced containing these two constructs and used to infect 3T3-L1 fibroblasts. These cells were grown to confluency in 10 cm dishes and differentiated into adipocytes.

To ask whether the presence of either K109 or K495 is sufficient for to restore the ubiquitination of HA-GLUT4 7K/R I used a GST-pull-down approach. The Dsk2p-UBA has been studied extensively and binds both mono- and poly-ubiquitin with high affinity (Funakoshi *et al.*, 2002; Ohno *et al.*, 2005; Raasi *et al.*, 2005). The molecular determinants of ubiquitin recognition by the UBA domain have been identified in an NMR solution structure of Dsk2p UBA in complex with ubiquitin (Funakoshi *et al.*, 2002), demonstrating the two residues within the UBA essential for interaction are methionine 342 and phenylalanine 344 (numbering relative to full length Dsk2p).

A fusion protein of Dsk2p UBA and glutathione-S-transferase (GST) had been generated in another study (GST-UBA) (Raasi *et al.*, 2005), and could be used to pull ubiquitinated proteins out of solution. Work in our lab by myself and others sought to use GST-UBA to detect ubiquitinated GLUT4 in 3T3-L1 adipocytes. As a negative control for these experiments I used site-directed mutagenesis to mutate M342 and F344 in the context of the GST-UBA fusion, generating GST-UBA M342R F344A (GST-UBA\textsubscript{mut}). In collaboration with another member of our group (Dr. R.K. McCann) I used GST-UBA and GST-UBA\textsubscript{mut} in pull-down assays to ascertain the ubiquitination status of endogenous GLUT4 in 3T3-L1 adipocytes. The results of these experiments are shown in Figure 3.6.
Figure 3.6 GLUT4 is ubiquitinated in 3T3-L1 adipocytes.

3T3-L1 adipocytes (two 10 cm plates per condition) were lysed in a buffer containing 1 % (v/v) Triton-X 100, 1 mM NEM and 1 mM EDTA, equalized for protein concentration to 5 mg/ml and 2 mg lysate protein incubated with 20 µl of a 50 % (v/v) slurry of GST-UBA immobilised on glutathione-Sepharose beads for two hours. After 3 washes in lysis buffer, bound protein was eluted from the beads with 15 µl 2xLSB at 65 °C for 10 minutes. The eluate was subjected to SDS-PAGE on a 10 % (v/v) gel alongside 1.25 % (v/v) of the input lysate and immunoblotted for the HA epitope, IRS-1 as a control for ubiquitination and syntaxin 4 as a negative control. Equal loading of GST-UBA and GST-UBA\textsubscript{mut} is shown in the Coomassie stained gel.

These results not only show that GST-UBA can bind endogenous ubiquitinated proteins such as IRS-1 (Zhande \textit{et al.}, 2002), and this binding can be ablated by the M342R F344A mutation, but also that a proportion of GLUT4 is ubiquitinated in 3T3-L1 adipocytes, represented by the protein recognised by an anti-GLUT4 antibody at just above 50 kD in the GST-UBA pulldown lane in Figure 3.6. The small increase in molecular weight would suggest that GLUT4 is modified with a single ubiquitin moiety, as endogenous GLUT4 has an apparent molecular weight of 45 kD by SDS-PAGE (James \textit{et al.}, 1989) and ubiquitin has a molecular weight of approximately 8 kD (Ciechanover, 2005). Armed with this assay for detection of GLUT4 ubiquitination, I proceeded to analyse the ubiquitination status of HA-GLUT4, HA-GLUT4 7K/R and the two “add-back” mutants.
Figure 3.7 Ubiquitination of HA-GLUT4 variants in 3T3-L1 adipocytes.

3T3-L1 adipocytes expressing the indicated retroviral constructs (two 10 cm plates per construct) were lysed in a buffer containing 1 % (v/v) Triton-X 100, 1 mM NEM and 1 mM EDTA, equalized for protein concentration to 5 mg/ml and 2 mg lysate protein incubated with 20 µl of a 50 % (v/v) slurry of GST-UBA immobilised on glutathione-Sepharose beads for two hours. After 3 washes in lysis buffer, bound protein was eluted from the beads with 15 µl 2xLSB at 65 °C for 10 minutes. The eluate was subjected to SDS-PAGE on a 10 % (v/v) gel alongside 1.25 % (v/v) of the input lysate and immunoblotted for the HA epitope and IRS-1 as a control for ubiquitination. Blots are representative of 2 independent experiments.

As demonstrated in Figure 3.7, similar amounts of HA-GLUT4 and the two 6K/R variants are pulled down by GST-UBA, which suggests that they are ubiquitinated to a similar extent. As anticipated from the yeast studies, HA-GLUT4 7K/R is not detected in the pull-down, indicating that it is not ubiquitinated. As a control the blots were also probed for insulin receptor substrate-1 (IRS1) which is an abundant, endogenous adipocyte protein known to be ubiquitinated (Zhande et al., 2002). These data are in agreement with the findings from yeast (McCann R.K., 2007) that all seven cytosolic lysines represent potential sites of ubiquitination and also validates using K109 and 495 to test the sufficiency of a single ubiquitination site outside the large intracellular loop for GLUT4 translocation.
3.4.2 HA-GLUT4 7K/R cannot translocate in response to insulin.

As described in 3.1, the relatively low expression of HA-GLUT4 7K/R compared to its wild-type counterpart made interpretation of previously generated data showing that HA-GLUT4 7K/R does not translocate in response to insulin problematic, as its altered trafficking may simply be due to its lower expression levels. Having normalised expression levels between HA-GLUT4, HA 7K/R and the two 6K/R “add back” mutants (K109 and K495), I could now compare the translocation of the wild type ubiquitinated and ubiquitin resistant transporters. pRM4 (HA-7K/R), pRM55 (HA-GLUT4), pRM35 (HA-GLUT4 K109) and pRM36 (HA-GLUT4 K495) were transfected into Plat-E cells to generate recombinant retrovirus and the virus used to infect 3T3-L1 fibroblasts. The fibroblasts were grown to confluency and differentiated into adipocytes on sterile coverslips. The adipocytes were stimulated with 200 nM insulin or left in the basal condition, fixed and processed for confocal microscopy. The fixed cells were first stained for the HA epitope with out permeablisation to detect HA-GLUT4 localised at the adipocyte plasma membrane (as the HA tag is located in the first extracellular loop of GLUT4 (Quon et al., 1994)), followed by permeablisation and a second round of anti-HA staining to detect total HA-GLUT4. This technique shows the extent to which HA-GLUT4 and the three mutants can translocate in response to insulin.
Figure 3.8 HA-GLUT4 7K/R cannot translocate in response to insulin.

Subconfluent 3T3-L1 fibroblasts were infected with the retroviral constructs encoding the indicated HA-GLUT4 variants, grown to confluency on sterile coverslips under selection with 2.5 µg/ml puromycin and differentiated into adipocytes. Between days 8 and 12 post differentiation, the cells were either treated with 200 nM insulin for 15 minutes (Insulin) or not (Basal), fixed using 3 % (v/v) paraformaldehyde and stained for surface (magenta) and total HA epitope (green). Images are representative of three independent experiments. Scale bar = 20 µm.
Table 3.1 Percentage translocation of HA-GLUT4 and mutants thereof in response to 200 nM insulin.

At least 50 cells from three fields of view (prepared as in Figure 3.8) were scored for the presence or absence of cell surface HA immunoreactivity (rim fluorescence) as a measure of HA-GLUT4 translocation. Results shown in the table are the mean of three experiments, expressed as percentage of counted cells exhibiting rim fluorescence. * $p < 0.001$ compared to the HA-GLUT4 insulin stimulated condition, student’s unpaired T-test.

<table>
<thead>
<tr>
<th></th>
<th>Basal</th>
<th>Insulin</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA-GLUT4</td>
<td>0</td>
<td>90.97 (±1.69) %</td>
</tr>
<tr>
<td>HA-GLUT4 7K/R</td>
<td>0.55 (±0.55) %</td>
<td>22.12 (±4.36) % (*)</td>
</tr>
<tr>
<td>HA-GLUT4 6K/R (495)</td>
<td>0.62 (±0.62) %</td>
<td>91.32 (±6.06) %</td>
</tr>
<tr>
<td>HA-GLUT4 6K/R (109)</td>
<td>1.23 (±1.23) %</td>
<td>86.17 (±2.96) %</td>
</tr>
</tbody>
</table>

The upper four panels of Figure 3.8 compare the insulin regulated translocation of wild type and 7K/R HA-GLUT4. HA-GLUT4 7K/R exhibits severely impaired translocation in response to 200 nM insulin stimulation, whereas HA-GLUT4 translocates readily. The immunofluorescence data is quantified in Table 3.1, and show that while approximately 90 % of cells expressing HA-GLUT4 exhibit translocation in response to 200 nM insulin, only 20 % of those expressing HA-GLUT4 7K/R do. These data indicate that ubiquitination of GLUT4 is essential for its insulin responsive translocation. However, they still left open the possibility that the 5K/R mutations in the large central loop of HA-GLUT4 7K/R were affecting its translocation, rather than the lack of target lysines per se, due to the inability of ACAP1 to bind the loop and induce clathrin coat formation (Li et al., 2007).

3.4.3 HA-GLUT4 6K/R K109 and K495 translocate readily in response to insulin stimulation.

Having determined that the two HA-GLUT4 6K/R “add back” mutants are ubiquitinated (Figure 3.7), I was able to use the translocation assay described in 3.4.2 to observe whether they can still respond to insulin with a single intact ubiquitination site outwith the large intracellular loop. The results of these experiments are shown in the lower four panels of Figure 3.8. Both HA-GLUT4 6K/R variants translocate readily in response to 200 nM insulin, in a manner indistinguishable from HA-GLUT4 (upper two panels). These data demonstrate that a single site of ubiquitination of GLUT4 permits its insulin responsive translocation, and that despite mutation of residues within the large cytosolic
loop in both 6K/R variants there is no effect on translocation. This argues that if ACAP1 binding is required for sorting into and thus clathrin coat formation on GSVs (Li et al., 2007) is not affected by the 5K/R mutations introduced into the large intracellular loop.

The mutations introduced into the large cytosolic loop of GLUT4 by Li et al. (2007) were alanine scanning mutations, so the basic lysine residue with a bulky R-group was being replaced with neutral alanine which has a much smaller R group. However in the present study the lysines were being replaced with another bulky basic residue, arginine, which would be expected to alter the charge and structure of the large intracellular loop much less significantly.

3.5 Does the 7K/R mutation affect loading of GLUT4 into the insulin responsive compartment?

In insulin responsive tissues GLUT4 occupies two overlapping trafficking cycles. Cycle 1 is a prototypical recycling pathway between the endosomes and the cell surface; cycle 2 is a much slower pathway between the trans-Golgi network (TGN) and endosomes (discussed extensively in 1.4.3). As part of this cycle, GLUT4 occupies GLUT4 storage vesicles (GSVs); the compartment from where GLUT4 is mobilised to the cell surface in response to insulin (Bryant et al., 2002). GSVs are a component of the low density microsome (LDM) fraction of adipocytes and contain various proteins aside from GLUT4; these include sortilin (Lin et al., 1997), the insulin responsive aminopeptidase IRAP (Ross et al., 1996; Ross et al., 1997) and LRP1 (low density lipoprotein receptor related protein 1) (Jedrychowski et al., 2010). Translocation of GSVs is largely responsible for the approximately 11-fold increase in plasma membrane GLUT4 on insulin stimulation (Yang et al., 1992; Ross et al., 1998; Kupriyanova et al., 2002).

The hypothesis that HA-GLUT4 7K/R is not trafficked into GSVs was formed following colocalisation studies between HA-GLUT4, HA-GLUT4 7K/R and the TGN resident SNARE syntaxin 16 (McCann R.K., 2007). HA-GLUT4 is present in the TGN and punctate cytoplasmic structures which represent GSVs (Martin et al., 2000). However, while HA-GLUT4 7K/R, like its wild type counterpart, colocalises with syntaxin 16 to the TGN, it is conspicuously absent from these
puncta. Although the data presented in Figure 3.8 support the hypothesis that HA-GLUT4 7K/R is not trafficked into GSVs, it is also a possibility that the mutant’s defective translocation arises due to impaired trafficking from GSVs to the cell surface.

To distinguish between these possibilities I undertook subcellular fractionation to separate GSVs from other GLUT4 containing membranes of adipocytes expressing HA-GLUT4 and mutants thereof. One approach that was initially considered was that of iodixanol gradient centrifugation. This process as described by Hashiramoto and James (2000), involves isolating a LDM fraction from 3T3-L1 adipocytes in a high sucrose buffer (HES) and subjecting this to high velocity centrifugation in a self forming iodixanol gradient. Thirteen fractions are collected from the gradient and fractions 2-13 immunoblotted. GLUT4 fractionates into a “heavy” and “light” peak in fractions 2-6 and 7-12 respectively - the GLUT4 content of the heavy peak is depleted on insulin stimulation which indicates that these fractions contain the insulin responsive compartment (Hashiramoto and James, 2000).

I initially set out to use this approach on basal adipocytes expressing HA-GLUT4. However it proved difficult to obtain consistent fractionation profiles for even the wild-type protein. Three example gradients for HA-GLUT4 are shown in Figure 3.9 and indicate the lack of consistency between experiments -the protein was generally located primarily in one or another peak, rather than being evenly distributed between the two. This variation meant it would be difficult to ascertain whether the fractionation profile of any of the HA-GLUT4 mutants was altered when compared to the wild type.
Low density microsomes from serum-starved 3T3-L1 adipocytes were resuspended in HES buffer and centrifuged at 295 000 xg for 1 hour on a self-forming iodixanol gradient. Thirteen fractions were collected from the bottom of the gradient, combined with sample buffer and fractions 2-12 subjected to SDS-PAGE on a 10 % gel. The fractions were then immunoblotted with an anti-HA antibody to detect HA-GLUT4.

Another method for isolating the insulin responsive compartment has been developed in the laboratory of Konstantin Kandror (Boston University School of Medicine). As outlined in several publications (Xu and Kandror, 2002; Kupriyanova et al., 2002; Li and Kandror, 2005; Li et al., 2007), a subcellular fraction enriched in GSVs can be obtained from adipocytes homogenised in PBS and subjected to a 20 minute centrifugation at 16 000 xg. The resultant pellet contains heavy membranes including the lysosomes, Golgi membranes, endoplasmic reticulum and plasma membrane, whereas the supernatant contains the GSV compartment and transport vesicles (Xu and Kandror, 2002; Kupriyanova et al., 2002).

I employed this method to analyse the partitioning of HA-GLUT4, HA-GLUT4 7K/R and the two 6K/R (K109 and K495) mutants between the pellet and GSV containing supernatant fractions. Basal adipocytes were fractionated using the
protocol outlined in 2.12 and subsequently immunoblotted for the HA epitope and IRAP as a marker for GSVs. The results of these experiments are shown in Figure 3.10. From three independent experiments there was a consistent reduction in the amount of HA-GLUT4 7K/R in the supernatant fraction compared to HA-GLUT4 (31 % ± 1.02 % compared to 53.8 ± 0.57 %), indicating that HA-GLUT4 7K/R is impaired in its ability to reach GSVs. This correlates with the unpublished data concerning the absence of HA-GLUT4 7K/R from the cytosolic puncta thought to represent GSVs (McCann R.K., 2007). It also provides an explanation as to why HA-GLUT4 7K/R cannot translocate in response to insulin (as demonstrated in Figure 3.8) as the mutant is impaired in its ability to reach GSVs.

Importantly, both the 6K/R mutants are partitioned between the pellet and supernatant fractions in a manner similar to HA-GLUT4 (HA-GLUT4 6K/R (495) 53.5 % ± 3.9 %, HA-GLUT4 6K/R (109) 54.2 % ± 2.4% in supernatant fraction). These data support the hypothesis that a single ubiquitination site on GLUT4 is sufficient to allow the entry of the transporter into the insulin responsive compartment, and provides further evidence that mutation of the 5 lysine residues within the large intracellular loop does not affect the loading of GLUT4 into GSVs.
Figure 3.10 HA-GLUT4 7K-R cannot enter the insulin responsive compartment.

Adipocytes were homogenised with 12 strokes with a syringe and needle then centrifuged at 2000 xg for 10 minutes. The soluble phase of this step was subject to further centrifugation at 16 000 xg for 20 minutes. The pellet and supernatant from this centrifugation step were analysed by immunoblotting (A), loading 5 µg pellet protein and 20 µg supernatant protein. B. The partitioning of HA-GLUT4 between pellet and supernatant was compared using image analysis software (ImageJ, NIH) to quantify the optical density of the bands on the blot. The percentage of total HA-GLUT4 in the supernatant fraction is plotted. n = 3, * statistically significant difference ($p < 0.001$, unpaired Student’s T-test). Error bars ± standard error of the mean.
3.6 Chapter discussion

The aim of the experiments in this chapter was to test the hypothesis that ubiquitination of GLUT4 is required for its insulin responsiveness. To test this hypothesis, I initially set out to equalise the levels of HA-GLUT4 and HA-GLUT4 7K/R expression from their retroviral expression vectors as previous studies in our lab had used vectors which expressed HA-GLUT4 at much higher levels than HA-7K/R. The second aim was to use these new constructs to study the trafficking of HA-GLUT4, HA-GLUT4 7K/R and two “add back” mutants with single cytosolic lysines (i.e. potential ubiquitination sites) outwith the large intracellular loop (K109 and K495). This would indicate whether a single ubiquitination site is sufficient for entry into GSVs and thus insulin responsive GLUT4 translocation, and whether mutation of the five lysine residues within the large intracellular loop alters GLUT4 trafficking.

Removal of sequences 5’ of the HA-GLUT4 coding sequence in pHA-GLUT4 using subcloning techniques resulted in HA-GLUT4 and HA-GLUT4 7K/R being expressed at similar levels (Figure 3.5), addressing concerns that any difference in their trafficking properties might be due to differences in their expression levels. Going forward with these new reagents, I demonstrated that HA-GLUT4 7K/R is not be ubiquitinated in 3T3-L1 adipocytes (Figure 3.7) and that translocation of this mutant in response to insulin is blunted compared to the wild type protein (Figure 3.8). The ability of HA-GLUT4 7K/R to enter the GSV compartment is also significantly impaired, as shown by a subcellular fractionation approach (Li and Kandror, 2005) (Figure 3.10), which indicates that the lack of HA-GLUT4 7K/R translocation is due to its inability to enter the insulin responsive compartment rather than a defect in exit from GSVs.

A recent study indicated that the large intracellular loop, specifically the 245-246 KR motif, is involved in recruitment of the Arf6 GAP ACAP1 which plays a role in GLUT4 recycling (Li et al., 2007). Potentially, the 5K/R mutations located within the large cytosolic loop could disrupt the binding interface between the ACAP1 and GLUT4, raising concerns that the defective insulin regulated trafficking of the 7K/R mutant was not due to its loss of ubiquitination. This led to the use of two “add back” mutants which have single ubiquitin-acceptor sites outwith the large intracellular loop (HA-GLUT4 6K/R 109 and 495). Both these mutants behaved in a manner similar to HA-GLUT4 - they
were ubiquitinated in adipocytes (Figure 3.7), enter GSVs (Figure 3.10) and translocate to the cell surface in response to insulin (Figure 3.8) and. It is therefore possible to say that mutation of the lysine residues within the large intracellular loop does not affect GLUT4 traffic in itself. From these data it can also be stated that the exact residue on which GLUT4 is ubiquitinated is not important; any of the single cytosolic lysine residues can provide a suitable substrate for ubiquitination and subsequent development of insulin responsiveness. This corroborates unpublished data from yeast where immunoprecipitation experiments demonstrated that GLUT4 can be ubiquitinated to the same extent on any one of its seven cytosolically disposed lysine residues (McCann R.K., 2007).

The finding that a single GLUT4 ubiquitination site is sufficient for its ubiquitination and translocation may seem surprising. However, previous studies attempting to map the ubiquitination sites of other protein substrates using lysine to arginine mutations has shown that these mutants retain almost wild type levels of ubiquitination. Examples include the T cell receptor ζ subunit (Hou et al., 1994) and c-Jun (Treier et al., 1994).

How does my data correlate with previous findings? Work on other receptors and channel proteins in mammalian cells has shown ubiquitination is a signal for internalisation and degradation, rather than sorting from the TGN to a secretory compartment (Geetha et al., 2005; Kamsteeg et al., 2006; Shin et al., 2006; Shenoy, 2007). Examples of proteins being sorted into secretory compartments in a ubiquitin dependent manner are rare. One example is Fas ligand (FasL) which is secreted by cytotoxic leukocytes and natural killer cells to induce apoptosis (Zuccato et al., 2007). FasL is secreted from compartments known as secretory lysosomes, which are highly vesiculated structures with the intralumenal vesicle membranes containing FasL. A combination of phosphorylation and ubiquitination is required to sort FasL into the intralumenal vesicles of secretory lysosomes (Zuccato et al., 2007). However this sorting process may have more in common with ESCRT dependent multivesicular body sorting than formation of classical secretory compartments such as GSVs (Blott and Griffiths, 2002). The finding that ubiquitination of GLUT4 is required for its sorting into the insulin responsive compartment is, therefore, novel in the context of mammalian cells.
Previously, parallels have been drawn between the nitrogen-regulated trafficking of *S. cerevisiae* Gap1p and GLUT4 traffic (Roberg *et al.*, 1997; Bryant *et al.*, 2002). Gap1p is sorted to the cell surface when yeast are grown on poor nitrogen sources such as proline, but diverted to the endosomal system when yeast are provided with a rich nitrogen source such as glutamate (Roberg *et al.*, 1997). GLUT4 is directed to the cell surface in response to insulin, whereas in the absence of insulin it is retained intracellularly in a cycle containing GSVs (Bryant *et al.*, 2002; Muretta *et al.*, 2008) - in both cases an extracellular stimulus is determining whether the transporter remains intracellular or reaches the plasma membrane.

The data presented in this chapter highlight the differences between the two systems. Gap1p is only ubiquitinated in response to optimum nitrogen sources (e.g. glutamate), whereupon it traffics directly from the trans-Golgi network to the endosomal system (Soetens *et al.*, 2001; Magasanik and Kaiser, 2002) whereas it appears that GLUT4 is constitutively ubiquitinated to reach GSVs. Unpublished data from our laboratory has also shown that the ubiquitination status of GLUT4 is unchanged on stimulation with 100 nM insulin (Lamb *et al.*, 2010).

Collectively, the data presented in this chapter support the hypothesis that GLUT4 requires ubiquitination to enter the insulin responsive compartment. The molecular mechanisms underlying how ubiquitination has this effect will be investigated in subsequent chapters.
Chapter 4 - The ubiquitin binding GAT domain of GGA3 in ubiquitin mediated GLUT4 traffic.
4.1 Introduction

The GGA proteins are a family of clathrin adaptor proteins which sort proteins based on their ubiquitination status at the trans-Golgi network (Mattera et al., 2004; Pelham, 2004; Scott et al., 2004; Kawasaki et al., 2005). They have a conserved modular structure, with (from N to C terminus) a VHS domain (Vps27, Hrs and STAM) which interacts with acidic dileucine motifs, a GAT domain (GGA and Tom1) which has binding sites for Arf-GTP and ubiquitin, a clathrin binding hinge region and a C-terminal γ adaptin ear (GAE) which binds accessory factors such as epsin related proteins (Bonifacino, 2004; Pelham, 2004) (Figure 1.5). The structural basis of the GAT-ubiquitin interaction was resolved independently by two groups for the GGA3 GAT domain (Bilodeau et al., 2004; Kawasaki et al., 2005). The latter study carried out mutagenic analyses which suggested that residues 250 and 284 (glutamic acid and aspartic acid respectively) were vital for the Ub-GAT interaction, as substitution of both residues resulted in loss of ubiquitin binding.

The prototypical Gga cargo in yeast is the general amino acid permease Gap1p. When yeast are grown on rich nitrogen sources, Gap1p is trafficked to the endosomal system in a ubiquitin and Gga dependent manner where it is degraded by vacuolar proteases (Roberg et al., 1997; Soetens et al., 2001; Magasanik and Kaiser, 2002). In contrast to wild type cells, in the absence of Ggas the endosomal sorting of Gap1p is delayed on a shift from a poor nitrogen source (proline) to a rich one (glutamate) and when the only Gga protein present lacks the GAT domain, Gap1p is trafficked to the vacuole via the plasma membrane (Scott et al., 2004). Collectively these data show that Ggas sort ubiquitinated Gap1p into the endosomes via their GAT domain when yeast are grown on a rich nitrogen source. Intriguingly a version of Gga2p which has the GAT domain of human GGA3 can rescue the sorting defects observed in ggaΔ cells (Bilodeau et al., 2004), suggesting that the ubiquitin binding function of GGAs is conserved from yeast to mammals.

The sorting of ubiquitinated substrates by mammalian GGAs is less well characterized. It has been known for some time that GGAs, notably GGA3, can interact with components of the ESCRT machinery such as TSG101 (Puertollano and Bonifacino, 2004; Mattera et al., 2004), which sorts ubiquitinated substrates to the lysosome (Raiborg and Stenmark, 2009), and that sorting of ubiquitinated
substrates such as the EGF receptor from the TGN to early endosomes is perturbed by depletion of GGA3 (Puertollano and Bonifacino, 2004).

Another example of GGA dependent protein sorting is beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1), involved in the production of the toxic beta-amyloid protein thought to be responsible for Alzheimer’s disease (Tesco et al., 2007). Depletion of GGA3 through caspase activation or RNAi stabilizes BACE1 (Tesco et al., 2007), due to defective lysosomal sorting of the enzyme (Tesco et al., 2007). More recent data has demonstrated that ubiquitination of BACE1 is required for its GGA3 dependent sorting to the lysosome (Kang et al., 2010). Mutation of the putative BACE1 ubiquitination site at K501 or expression of a ubiquitin binding deficient mutant of GGA3 both result in impaired sorting of BACE1 to the lysosome (Kang et al., 2010). These data demonstrate that GGA and ubiquitin dependent sorting of proteins is conserved from yeast to mammals.

The GGAs have been implicated in the sorting of GLUT4 into GSVs. Expression of a fragment of GGA2 which has dominant interfering effects for all three GGAs (VHS-GAT) in 3T3-L1 adipocytes alters the fractionation profile of GLUT4, with significantly less being found in a fraction enriched in GSVs (Li and Kandror, 2005). VHS-GAT also causes a block in budding of GSVs in vitro (Li and Kandror, 2005). Consistent with these findings, adipocytes expressing VHS-GAT display a blunted translocation of GLUT4 to the cell surface in response to insulin (Li and Kandror, 2005). The acquisition of insulin responsiveness of newly synthesised GLUT4 is severely impaired in 3T3-L1 adipocytes (Watson et al., 2004), however translocation of endogenous GLUT4 already present in GSVs is unaffected (Watson et al., 2004). These data indicate that the GGAs are involved in sorting newly synthesised GLUT4 from the TGN into GSVs.

On expression in yeast, ubiquitin dependent GLUT4 sorting into the proteolytically active endosomal system is impaired in a ggaΔ strain (Lamb et al., 2010). Taking the above data supporting a role for the GGA proteins in the sorting of GLUT4 from the TGN into GSVs, together with the data presented in the previous chapter supporting a role for GLUT4 ubiquitination in GLUT4 sorting into GSVs, it seems plausible that the GGAs recognize the ubiquitin modification on GLUT4 at the TGN and sort it into GSVs.
4.2 Aims of the chapter.

The aim of the work presented in this chapter was to investigate the role of the ubiquitin-binding GAT domain of GGA3 in the sorting of GLUT4 into GSVs. GGA3 was selected for study as it has the highest affinity for ubiquitin of all three mammalian GGAs (Shiba et al., 2004), and published structural data for the GGA3 GAT domain in complex with ubiquitin was available to facilitate analysis of the interaction (Bilodeau et al., 2004; Kawasaki et al., 2005). I utilised two approaches in this investigation: firstly, an in vitro pull-down approach to determine whether GLUT4 can interact with GGAs and whether this interaction is dependent on the ubiquitin binding function of the GAT domain; and secondly an in vivo approach, expressing an epitope-tagged versions of wild-type and a ubiquitin binding deficient mutant of GGA3 in 3T3-L1 adipocytes, to investigate their effect on GLUT4 sorting into GSVs.

4.3 Ubiquitin and GLUT4 interaction with the GGA3 GAT domain.

4.3.1 Mutagenesis of the GAT domain ablates ubiquitin binding in vitro.

As has been previously discussed, studies have indicated that the GAT domain of GGAs is the region of the proteins which binds ubiquitin (Scott et al., 2004; Bilodeau et al., 2004; Kawasaki et al., 2005). The lab was previously gifted a construct encoding recombinant GST-GGA3 VHS-GAT (pGEX GGA3 VHS-GAT (Dell'Angelica et al., 2000)), and I planned to use this construct to study the interactions between GGAs and GLUT4. I first carried out site directed mutagenesis of this construct to mutate the two key residues implicated by Kawasaki et al. (2005) in ubiquitin binding, generating pCAL6 (Table 2.3) which encodes recombinant GST-GGA3 VHS-GAT E250N D284G (referred to as GST-VHS-GAT mut; please see section 2.4.5 for a detailed description of how this construct was made and the oligonucleotide pairs used).
Figure 4.1 Purification of GGA3 VHS-GATmut.

A. BL-21 (DE3) *E. coli* were transformed with pCAL6 and grown to an OD_{600} of 0.6 in 400 ml Terrific Broth (1). The cells were induced for 4 hours with 1 mM IPTG (2), then lysed by treatment with 1 mg/ml lysozyme (4 °C for 30 minutes) and subsequent sonication. The lysates were centrifuged at 17000 xg to separate insoluble (3) and soluble (4) components. The soluble proteins were incubated with glutathione-Sepharose beads for 1 hour with continual mixing. The flow through was collected from this incubation (5) and several washes with PBS were also performed (6-8). Bound protein was eluted from the beads at a 1 in 400 dilution (9) and 5 µl of all samples run on a 10% SDS-PAGE gel. B. GST-VHS-GAT and GST-VHS-GATmut were expressed and purified as in A, and run on a 10% SDS-PAGE gel with samples containing known amounts of BSA to allow an estimation of fusion protein concentration.

Although the expression of GST-VHS-GAT has already been reported, I analysed the expression of the newly generated GST-VHS-GATmut as demonstrated in
Figure 4.1. Panel A shows aliquots taken at various stages of the expression and purification process of GST-VHS-GAT\textsubscript{mut} from BL-21 \textit{E. coli}. A band of approximately 60 kD is induced after 4 hours of induction with IPTG, corresponding to the predicted molecular weight of the GGA3 VHS-GAT domains fused to GST (Dell’Angelica \textit{et al.}, 2000). The majority of this protein remains in the soluble fraction of the lysate. Although some of GST-VHS-GAT\textsubscript{mut} remains in the flow through (lane 5), a large amount binds to the beads (lane 9). In panel B equivalent dilutions of GST-VHS-GAT and GST-VHS-GAT\textsubscript{mut} are run on the same gel as a set of BSA standards. This demonstrates that GST-VHS-GAT and GST-VHS-GAT\textsubscript{mut} can be expressed, purified and immobilised on glutathione-Sepharose beads at similar levels, allowing for comparisons in their ability to bind proteins to be made.

\textit{pGEX GGA3 VHS-GAT} and \textit{pCAL6} were transformed into BL-21 \textit{E. coli} and the recombinant proteins purified as described in 2.5.6, immobilised on glutathione Sepharose beads. The proteins were used in pull-down assays from lysates of 3T3-L1 adipocytes. Immobilised material was subsequently immunoblotted using antibodies raised against ubiquitin (Figure 4.2).

\textbf{Figure 4.2 Mutation of the GAT domain ablates ubiquitin binding \textit{in vitro}.}

Recombinant GST-GGA3 VHS-GAT and GST-GGA3 VHS-GAT\textsubscript{mut} were immobilised on glutathione Sepharose beads and 20 \(\mu\)l of the bead suspension exposed to detergent lysates of 3T3-L1 adipocytes for 2 hours. After three washes with 1 ml lysis buffer the pull-downs and 2.5\% of the input lysates were subjected to SDS-PAGE on a 10\% gel and immunoblotted for ubiquitin. Blot is representative of two independent experiments.
The immuno blot in Figure 4.2 demonstrates GST-VHS-GAT\textsubscript{mut} does not pull down the smear of ubiquitinated proteins seen for GST-VHS-GAT from an adipocyte lysate. This result indicates that mutation of E250 and D284 in the context of GST-VHS-GAT severely impairs the ability of the protein to bind ubiquitinated proteins, as expected from the published structures of the GGA3 GAT domain (Bilodeau \textit{et al.}, 2004; Kawasaki \textit{et al.}, 2005).

4.3.2 Expression of HA-GLUT4 and HA-GLUT4 7K/R in yeast.

Given that our lab has demonstrated that GLUT4 expressed in yeast is ubiquitinated (Lamb \textit{et al.}, 2010) I decided to use this system to investigate the binding between GLUT4 and the GGA3 constructs generated above. Our lab has also found that the heterologously expressed transporter traffics in a nitrogen responsive manner (R. McCann and N. Bryant, unpublished). This bears considerable similarity to the trafficking of the nitrogen-regulated amino acid transporter Gap1p (Roberg \textit{et al.}, 1997; Bryant \textit{et al.}, 2002). Gap1p has been shown to require at least one of the two yeast GGAs for its ubiquitin-dependent post-Golgi trafficking to the endosomal system when yeast are grown on rich nitrogen sources (Scott \textit{et al.}, 2004). The sorting of Gap1p and Gga1/2p depends on the presence of a ubiquitin binding GAT domain (Bilodeau \textit{et al.}, 2004).

Importantly, replacement of the two yeast GGAs with a single chimaeric protein consisting of yeast Gga2p with its GAT domain replaced with that of hGGA3 can fully complement the loss of the yeast Ggas in a \textit{gga1/gga2}\textsubscript{Δ} strain (Bilodeau \textit{et al.}, 2004) which suggests that the ubiquitinated cargo binding function of this domain is conserved from yeast to mammals. With this in mind I set out to express an epitope tagged form of GLUT4 in yeast cells.

I used PCR with primers 1 and 2 (Table 2.5) on plasmids harbouring cDNAs encoding human GLUT4 with haemagglutinin epitope tags (HA) in the first extracellular loop (pRM55; Table 2.3) to amplify the cDNAs with the 3'UTR of \textit{PHO8} and a 5' region homologous to the 3' end of the \textit{CUP1} promoter. The PCR product was transformed into SF838-9D\textalpha{} yeast, along with the gapped pNB701 plasmid. pNB701 contains the ORF for RS-ALP (Struthers \textit{et al.}, 2009). By gapping the plasmid within the RS-ALP ORF using a \textit{XhoI}/\textit{SalI} restriction digest
this allowed the GLUT4-HA and GLUT4 7K/R-HA fragments to repair the plasmid by homologous recombination. The whole scheme is illustrated in Figure 4.3.

Figure 4.3 Generation of pCAL4.

A. The ORF of HA-GLUT4 was amplified from pRM55 using oligonucleotide primers 1 and 2 (detailed in Table 2.5). B. Schematic of homologous recombination in yeast. pNB701 was gapped by a restriction digest using XhoI and SalI restriction enzymes, co-transformed into SF838-9Dα yeast with the PCR products from A allowing homologous recombination and plasmid repair to take place, generating pCAL4.
pCAL4 harbours the ORF of HA-GLUT4 under the control of the CUP1 promoter. The CUP1 gene encodes a metallothionein protein which mediates yeast cell resistance to high concentrations of Cu$^{2+}$ (Winge et al., 1985; Mascorro-Gallardo et al., 1996), and its promoter region is more effective with higher concentrations of copper - thus resulting in titrateable expression of genes from this promoter. SF838-9Dα cells, deficient in vacuolar protease activity (Table 2.7) transformed with pCAL4 grown in selective media supplemented with 100 µM CuSO$_4$ produce a HA-immunoreactive protein of approximately 42 kD (Figure 4.4), which corresponds to the molecular weight of GLUT4 expressed in yeast (Kasahara and Kasahara, 1997; Lamb et al., 2010).

![Image of Western Blot](image.png)

Figure 4.4 Expression of HA-GLUT4 in yeast.
SF838-9Dα cells harbouring pNB701 (empty vector), pCAL4 or pCAL5 were grown overnight in selective media in the presence of 100 µM CuSO$_4$, resuspended in TWIRL buffer as in 2.2.3. Equivalent amounts of cells were subjected to SDS-PAGE on a 10% acrylamide gel and immunoblotted for the HA epitope and Vti1p.

4.3.3 Construction of the yeast strain BHNY1.

The reagents generated in 4.3.1 and 4.3.2 provide a basis on which to test the requirement for ubiquitination to mediate the interaction between the GAT domain of GGA3 and heterologously expressed GLUT4. As an initial test for whether mutation of the ubiquitin binding GAT domain would affect the ability
of GST-VHS-GAT to interact with GLUT4 I carried out a pull-down assay from lysates prepared from SF8389Dα yeast expressing HA-GLUT4. The results of this are shown in Figure 4.5. HA-GLUT4 is detected at the expected molecular weight of approximately 42 kD in both GST-VHS-GAT and GST-VHS-GAT\textsubscript{mut} pull-downs. However a higher band is present that may be caused by the excess of recombinant GST tagged protein in the lanes. Most interestingly there is a decrease in the amount of HA-GLUT4 pulled out of the yeast lysate when the GAT domain is mutated.

These initial data from SF8389Dα yeast suggest that GLUT4 interacts with GGA3 in a manner that is at least partially ubiquitin dependent; however this preliminary experiment would benefit from further controls. An ideal control for this experiment would be a yeast protein that can interact with GGAs via the VHS domain alone with no ubiquitin dependence. Although several mammalian proteins are known to bind the GGA VHS domain through their acidic dileucine sorting motifs, including sortilin and the mannose-6-phosphate receptors (Nielsen \textit{et al.}, 2001; Tortorella \textit{et al.}, 2007) only a single yeast protein has been shown to exhibit VHS domain binding. This protein is Mon2p (Monensin sensitivity), also known as Ysl2p, a \textit{trans}-Golgi resident protein related to Arf.
GTP-exchange factors, which is involved in maintenance of Golgi architecture and has been shown to bind isolated VHS and VHS-GAT domains (Efe et al., 2005; Gillingham et al., 2006; Singer-Kruger et al., 2008).

I utilized the commercially available yeast strain YNL297C expressing green fluorescent protein (GFP) tagged Mon2p (Invitrogen; (Huh et al., 2003)). In order to detect GLUT4 in yeast grown on rich media, it is necessary to inactivate vacuolar proteases as the transporter is delivered to the proteolytically active endosomal system (Lamb et al., 2010).

The PEP4 gene product, which activates many of the proteases present in the yeast vacuole (van den Hazel et al., 1992), was disrupted in GFP-Mon2p expressing YNL297C using the loop in/loop out method by transforming the cells with EcoRI digested (linearised) pPLO2010, which contains the URA3 gene flanked with sequences homologous to PEP4 and further sequences which permit looping out of the URA3 cassette (Nothwehr et al., 1995). Integration of this fragment was selected for by plating transformants onto solid SD-URA media. To select for transformants which had looped out the URA3 cassette, they were plated onto media containing 5-fluoroorotic acid (5-FOA). The URA3 gene product is orotine-5’monophosphate dicarboxylase, which converts 5-FOA to toxic fluorodeoxyuridine (Boeke et al., 1984). Therefore only those cells lacking URA3 survive on 5-FOA containing media.

A selection of 5-FOA resistant colonies were collected and tested for the pep4-3 mutation in the APNE overlay assay (Wolf and Fink, 1975). This assay detects the activity of carboxypeptidase Y (CPY) which is activated by the PEP4 gene product proteinase A (van den Hazel et al., 1992). CPY activity releases β-napthol from APNE. β-napthol reacts with the Fast Garnet GBC salt present in the overlay mixture producing an insoluble red dye; thus strains which secrete CPY are red, whereas strains that missort (and thus do not activate) CPY remain white due to a lack of active CPY.

A single 5-FOA resistant pep4-3 colony was selected in this manner and named BHNY1.
4.3.4 An in vitro interaction between GLUT4 and GST-GGA3-VHS-GAT is partly ubiquitin dependent.

Armed with the reagents generated in 4.3.1, 4.3.2 and 4.3.3 I set out to test whether there is a ubiquitin dependent in vitro interaction between hGLUT4 expressed in yeast and GST-GGA3-VHS-GAT. 400 ml cultures of BHNY1 yeast transformed with pCAL4 or 5 (encoding HA-GLUT4 and HA-GLUT4 7K/R respectively) were grown to an OD$_{600}$ of 0.5, harvested and lysates prepared. The lysates were incubated with GST-VHS-GAT and GST-VHS-GAT$_{mut}$ immobilized on beads. Bound proteins were eluted from the beads and subject to SDS-PAGE alongside a sample of the input lysate.

![Figure 4.6 GLUT4 expressed in yeast interacts with GST-VHS-GAT in a ubiquitin dependent manner.](image)

400ml cultures of BHNY1 yeast harbouring pCAL4 (HA-GLUT4) were grown to mid log phase in selective media supplemented with 100 µM CuSO$_4$. The cells were harvested, lysed and used in pull-down assays as described for Figure 4.5. Eluted proteins were subjected to SDS-PAGE alongside 2.5 % input lysate and immunoblotted for the HA epitope, GFP and ubiquitin. Results are representative of three independent experiments.
A typical result for this experiment is shown in Figure 4.6. As observed for SF8389Dα yeast, HA-GLUT4 expressed in BHNY1 shows a detectable interaction between HA-GLUT4 and GST-VHS-GAT, and there is a less pronounced interaction between HA-GLUT4 and GST-VHS-GAT\textsubscript{mut}. However as previously discussed the GST fusion proteins distort the HA-GLUT4 band due to the high levels of fusion protein present in the pull-down reactions making these experiments somewhat difficult to interpret.

These data suggest that there is an interaction between heterologously expressed HA-GLUT4 and the VHS-GAT domain of GGA3 and this interaction is at least partially dependent on the presence of a functional ubiquitin-binding site in the GAT domain of GST-VHS-GAT. As expected, and demonstrated in Figure 4.2, there is reduced binding of ubiquitin to GST-VHS-GAT\textsubscript{mut} (compared to GST-VHS-GAT) in these experiments. One caveat with this result is that although BHNY1 expresses detectable amounts of Mon2p-GFP (input lane) there is no detectable interaction observed with either GST-VHS-GAT or GST-VHS-GAT\textsubscript{mut}.

Previous studies have suggested that isolated VHS domain alone interacts more readily with Mon2p than VHS-GAT (Singer-Kruger et al., 2008), so perhaps the level of interaction between Mon2p and GST-VHS-GAT is undetectable because of this effect.

I decided to extend this study to insulin responsive 3T3-L1 adipocytes to investigate whether an interaction between endogenous GLUT4-Ub and GST-VHS-GAT can be detected. The results of this experiment are shown in Figure 4.7. Although, as was previously demonstrated in Figure 4.2, GST-VHS-GAT readily pulls down a smear of ubiquitinated substrates, there is no discernible interaction between endogenous GLUT4 and GST-VHS-GAT.

Although there was no interaction detected between endogenous GLUT4 and recombinant GGA3-VHS-GAT in adipocytes, the data from yeast suggested that the ubiquitin binding GAT domain of GGA3 could interact with a small pool of GLUT4. Ubiquitinated species are enriched in the BHNY1 strain due to an absence of vacuolar proteases (4.3.3) and previous data from our lab has indicated that in 3T3-L1 adipocytes approximately 0.1% of the total GLUT4 pool is ubiquitinated (Lamb et al., 2010). Coupled with the relatively low affinity of the GGA3 GAT domain for ubiquitin ($K_d = 231 \mu M$) (Kawasaki et al., 2005) this is
likely to make detection of ubiquitinated GLUT4 binding to GST-VHS-GAT by a pull-down method rather challenging.

![Figure 4.7 GST-VHS-GAT pull-down assay on 3T3-L1 adipocyte lysates.](image)

4 plates of 3T3-L1 adipocytes were serum starved for 2 hours and lysed in a buffer containing 1% Triton-X100 and 1 mM NEM. 500 µl of the clarified lysates was incubated with with 20 µl of a 50% GST-VHS-GAT or GST-VHS-GAT_{mut} bead slurry for 2 hours with continual mixing. After three washes with lysis buffer bound protein was eluted from the beads by heating for 10 minutes in 20 µl 2xLSB. Eluted proteins were subjected to SDS-PAGE alongside 1.25% input lysate and immunoblotted for GLUT4 and ubiquitin. Results are representative of three independent experiments.

4.4 Expression of a ubiquitin-binding mutant of myc-GGA3 in 3T3-L1 adipocytes.

As the biochemical approaches I had initially set out to use were not suitable for detecting an effect on interaction of endogenous GLUT4-Ub with GGA3, I decided to express epitope tagged versions of wild type, full length GGA3 and a mutant version predicted to abolish ubiquitin binding (harbouring the same E250N D284G substitutions as the the recombinant GST-VHS-GAT_{mut} used in
4.3.4) in 3T3-L1 adipocytes and observe any effect of overexpression of these proteins on GLUT4 loading into GSVs and/or the ability of insulin to stimulate glucose transport into the cells. Expression of a dominant negative GGA construct (EGFP-VHS-GAT) resulted in reduced budding of GLUT4 vesicles in an *in vitro* assay, impaired loading of GLUT4 into GSVs, and reduced insulin responsiveness of the transporter (Watson *et al.*., 2004; Li and Kandror, 2005). Therefore if the ubiquitin binding function of the GGA proteins is required to sort GLUT4 into GSVs, I would predict that expression of the non-ubiquitin-binding myc-GGA3\textsubscript{mut} would reduce GLUT4 loading into GSVs and thus impair insulin stimulated glucose uptake.

To test this, I generated a chimeric gene incorporating a 5’ sequence encoding the myc epitope tag fused to the GGA3 short isoform cDNA in the pBABE puro retroviral expression vector (Morgenstern and Land, 1990) (pCAL11), and used site directed mutagenesis of pCAL11 to produce a construct encoding myc-GGA3 E250N D284G (myc GGA3\textsubscript{mut}) (pCAL12) which is predicted to be impaired in ubiquitin binding function according to data from this and previous studies (section 4.3.1, (Bilodeau *et al.*, 2004; Kawasaki *et al.*, 2005)).

pCAL11, pCAL12 (encoding myc-GGA3 and myc-GGA3\textsubscript{mut} respectively) and pBABE puro (as an empty vector control) were transfected into Plat-E packaging cells (Morita *et al.*, 2000), resulting in production of retroviral particles. 3T3-L1 fibroblasts were stably infected with each of the viruses, grown to confluency and differentiated into adipocytes. Lysates were subsequently prepared for western blot analysis. Blotting for the myc epitope and GAPDH (as a loading control) showed that cells infected with pCAL11 and 12 retroviruses exhibited an immunoreactive band at approximately 85 kD as has been previously reported for the GGA3 short isoform (Wakasugi *et al.*, 2003). However, myc-GGA3\textsubscript{mut} was consistently detected at much higher levels than the wild type protein (Figure 4.8).
Figure 4.8 Expression of myc-GGA3 and myc-GGA3\textsubscript{mut} in 3T3-L1 adipocytes.

3T3-L1 fibroblasts were infected with the retroviral constructs pBABE puro (pBABE), pCAL11 (myc GGA3) and pCAL12 (myc-GGA3\textsubscript{mut}), plated onto 2 10 cm plates per construct, grown to confluency and differentiated into adipocytes. Cells were harvested in 250 µl PBS supplemented with protease inhibitors per plate, homogenised with 12 strokes through a syringe and needle (10 x 25G, 2 x 26G) and the homogenate clarified by centrifugation. The homogenates were equalized for protein content and 20 µg protein subjected to SDS-PAGE on 10 % (v/v) gels, followed by immunoblotting for the myc epitope and GAPDH as a loading control. Blots are representative of three independent experiments.

This difference in levels of the wild type and mutant versions of myc-GGA3 has several possible explanations. It may be that the myc-GGA3\textsubscript{mut} viral stock infects 3T3-L1 fibroblasts more readily, or that myc-GGA3\textsubscript{mut} is more stable than myc-GGA3. To address whether the observed difference was due to differing levels of retroviral infection I performed a titration of the retroviral stock used to stably infect the 3T3-L1 cells. The pCAL11 (myc-GGA3) and pCAL12 (myc-GGA3\textsubscript{mut}) virus stocks were used in a series of six tenfold dilutions (10-1 to 10-6) to infect 3T3-L1 fibroblasts on 6 well plates. After a week of selection using DMEM supplemented with 10 % FBS and 2.5 µg/ml puromycin, the number of colonies present on the highest dilution plate was recorded. The pCAL11 viral stock gave 1 x 106 colony forming units per ml (cfu/ml) whereas the pCAL12 stock gave 9 x 105 cfu/ml. This result suggests that the observed differences in expression between myc-GGA3 and myc-GGA3\textsubscript{mut} are not due to differences in the ability of the two viruses to infect 3T3-L1 cells, but may be due to post-infection events such as the relative stability of the myc-GGA3 and myc-GGA3\textsubscript{mut} proteins. This possibility will be discussed in more detail at the end of the chapter.
Figure 4.9 Localisation of myc-GGA3 and myc-GGA3\textsubscript{mut} expressed in 3T3-L1 adipocytes.

3T3-L1 fibroblasts infected with either empty pBABE puro (pBABE), pCAL11 (myc-GGA3) or pCAL12 (myc-GGA3\textsubscript{mut}) virus were grown to confluency on sterile coverslips, differentiated into adipocytes and processed for confocal microscopy, staining for the myc epitope and nuclear DNA with DAPI. Images are representative from three experiments. Scale bar = 20 µm
To address whether the two constructs have differences in subcellular localisation, the infected cells were plated onto coverslips and stained for the myc epitope and DAPI to mark the nucleus. When visualized by confocal microscopy (Figure 4.9) both myc-GGA3 and myc-GGA3\textsubscript{mut} exhibited the perinuclear localization characteristic of the GGAs (Dell’Angelica \textit{et al.}, 2000; Hirst \textit{et al.}, 2000). Qualitatively there appears to be an increase in the amount of perinuclear staining in cells expressing myc-GGA3\textsubscript{mut}. This suggests that despite the relatively high expression level of myc-GGA3\textsubscript{mut} there is no change in the subcellular localisation of the mutant compared to the wild type protein.

4.4.1 \textit{Does expression of myc-GGA3 and myc-GGA3\textsubscript{mut} alter GLUT4 loading into the insulin responsive compartment?}

To assess the functional consequences of expressing myc-GGA3 and myc-GGA3\textsubscript{mut} in 3T3-L1 adipocytes I first used a subcellular fractionation approach, as detailed in 3.5, to assess the proportion of GLUT4 loaded into the GSV enriched 16,000 xg supernatant of 3T3-L1 cells (Xu and Kandror, 2002; Kupriyanova \textit{et al.}, 2002; Li and Kandror, 2005). Previously, expression of dominant negative EGFP-VHS-GAT has been shown to impair loading of GLUT4 into GSVs using this system (Li and Kandror, 2005). If either myc-GGA3 or myc-GGA3\textsubscript{mut} had a dominant negative effect on GLUT4 loading into GSVs, I would anticipate a lower proportion of GLUT4 would be found in the supernatant fraction. The results of this experiment are detailed in Figure 4.10. 40.3 % (± 3.5 %) of the total GLUT4 was found in the supernatant fraction in cells harbouring pBABE puro. The situation was similar in cells expressing myc-GGA3 - although 44.7 % (± 2 %) of total GLUT4 was found in the supernatant, this increase did not reach statistical significance (p = 0.18, Student’s T-test). However on expression of myc-GGA3\textsubscript{mut} in adipocytes only 30.6 % (± 2.4 %) of total GLUT4 was found in the supernatant, which was significantly different from both cells expressing empty pBABE puro (p < 0.05) and those expressing myc GGA3 (p < 0.01).
Figure 4.10 GLUT4 loading into the 16,000 xg supernatant is reduced by expression of myc-GGA3mut.

(A) 3T3-L1 adipocytes (2 10 cm plates per construct) harbouring empty pBABE puro (pBABE), pCAL11 (myc-GGA3) or pCAL12 (myc-GGA3mut) retrovirus were homogenised in 250 µl PBS supplemented with protease inhibitors (PBS + I) per plate by passage through a syringe and needle (10 x 25G, 2 x 26G) and insoluble components removed by centrifugation at 2000 xg for 10 minutes at 4 °C. The resulting supernatants were centrifuged at 16,000 xg for 20 minutes at 4 °C, separating pellet (P) and supernatant (S) fractions. The pellet was resuspended in 500 µl PBS + I and both fractions equalized for protein content. 30 µg of both pellet and supernatant was subject to SDS-PAGE on 10 % (v/v) gels and blotted for IRAP and GLUT4. Blots are representative of three independent experiments. (B) The percentage of total GLUT4 present in the supernatant fraction was measured from three independent experiments using image analysis software (ImageJ, NIH) and plotted. * significantly different from cells harbouring pBABE (p < 0.05, Student’s T-test)

As a control, the pellet and supernatant fractions were also blotted for the insulin responsive aminopeptidase IRAP. IRAP is another GSV cargo which occupies the same trafficking itinerary as GLUT4 (Ross et al., 1997). The
distribution of IRAP between supernatant and pellet fractions was not altered significantly by expression of myc-GGA3 or myc-GGA3\textsubscript{mut}, with the greater proportion of IRAP found in the pellet fraction for all three groups of cells.

This result is interesting in that expression of the ubiquitin-binding deficient myc-GGA3\textsubscript{mut} appears to have a mild dominant negative effect on GLUT4 loading into GSVs, reducing the amount of total GLUT4 found in the 16,000 xg supernatant by 10\% relative to controls. myc-GGA3 could still potentially have an effect on GLUT4 traffic; however its low expression level in this system may mask any possible phenotypes.

4.4.2 \textit{Does expression of myc-GGA3 and myc-GGA3\textsubscript{mut} alter insulin responsive 3H2-deoxyglucose uptake?}

As GLUT4 loading into the insulin responsive 16,000 xg supernatant is impaired by mutation of the GAT domain in the context of myc-GGA3, I wanted to test whether this altered loading translated to impaired insulin responsive GLUT4 translocation. It would be technically challenging to use the HA-GLUT4 translocation assay as it would involve co-infection of 3T3-L1 cells with two different retroviruses. I therefore decided to use an indirect measure of GLUT4 translocation, namely the 3H2-deoxyglucose uptake assay (Millar \textit{et al}., 1999). This assay measures the uptake of the radiolabelled glucose analogue 3H2-deoxyglucose into cells with and without insulin stimulation. As previously discussed in 1.4.2 the increase in glucose uptake on insulin stimulation is almost entirely due to GLUT4 translocation (Saltiel and Kahn, 2001) so a perturbation in 3H2-deoxyglucose uptake would indicate altered GLUT4 translocation.

A reduction in insulin stimulated glucose uptake on expression of EGFP-VHS-GAT in 3T3-L1 adipocytes compared to cells harbouring an empty vector control has previously been reported (Li and Kandror, 2005). To test whether this would also be the case for overexpression of myc-GGA3\textsubscript{mut}, I carried out 3H2-deoxyglucose uptake assays on cells stably infected with pBABE puro, pCAL11 and pCAL12 (encoding myc-GGA3 and myc-GGA3\textsubscript{mut} respectively).

As shown in Figure 4.11, expression of myc-GGA3 does not alter insulin stimulated glucose uptake compared to cells harbouring empty vector. There is a slight decrease in insulin stimulated glucose uptake on expression of myc-
GGA3mut; however this does not reach statistical significance when compared to cells harbouring empty vector (p = 0.18, Student’s T-test). It is difficult to draw any firm conclusions from this assay due to the variability of results between experiments. The mean values for glucose uptake (in pmoles/min/cell) for each of the 4 replicate experiments are detailed in Appendix I and illustrate the variability between experiments, ranging from 0.0118 to 0.0713 nmoles/min/well in the case of myc-GGA3. This suggests great variation in the glucose uptake between batches of cells which was unexpected as the cell lines used in these experiments were all products of a single infection, with each experiment being from a different passage number of the same cell line.

![Graph](image)

Figure 4.11 Insulin stimulated glucose uptake rate is not affected by expression of myc-GGA3 or myc-GGA3mut.

12 well plates of 3T3-L1 adipocytes harbouring either pBABE puro (pBABE), pCAL11 (myc-GGA3) or pCAL12 (myc-GGA3mut) were either stimulated with 100 nM insulin (Insulin) or not (Basal) for 30 minutes, followed by incubation with 50 µM $[^3]$H2-deoxyglucose per well for 5 minutes. After the incubation excess $[^3]$H2-deoxyglucose was washed from the cells using cold PBS. The plates were dried, cells lysed in 1 ml 1% (v/v) Triton X-100 and cell associated radioactivity measured using liquid scintillation spectrophotometry. n = 4, results are presented ± standard error of the mean.
4.5 Chapter Discussion

In this chapter I set out to investigate whether GGA ubiquitin binding is required for their role in sorting GLUT4 into the insulin responsive compartment. To do this I took advantage of the published crystal and solution structures of the GGA3 GAT domain in complex with ubiquitin (Bilodeau et al., 2004; Kawasaki et al., 2005), to generate mutant versions of GGA3 which are severely impaired in their ability to bind ubiquitin.

I first used site directed mutagenesis to mutate E250 and D284 of the GGA3 GAT domain in the context of a fusion protein consisting of GST fused to the VHSyGAT domains of GGA3 (GSTyVHSyGATmut). As shown in Figure 4.2, GSTyVHSyGATmut could not pull ubiquitinated proteins out of a 3T3-L1 adipocyte cell lysate. I then set out to test whether HAyGLUT4 expressed in yeast could interact with immobilised GSTyVHS-GAT.

As shown in Figure 4.6, HAyGLUT4 can bind GSTyVHS-GAT. This interaction appears to be partially dependent on the ubiquitin binding function of the GAT domain as it is decreased when the GAT domain of the fusion protein is mutated. Despite the VHS domain of both GSTyVHS-GAT and GSTyVHS-GATmut being intact, as the original GSTyVHS-GAT expression construct (pGEX GGA3 VHS-GAT) was generated from the long isoform of GGA3 (Dell’Angelica et al., 2000), no interaction was observed between either fusion protein and GFP tagged Mon2p, which is the only S. cerevisiae protein known to interact with GGA VHS domains (Singer-Kruger et al., 2008). However the interaction between the VHS domain and Mon2p is less effective when the GAT domain is also present (Singer-Kruger et al., 2008).
et al., 2008) which could explain the lack of binding observed in this experiment.

Unfortunately I was not able to extend this *in vitro* study of GLUT4 and GGA3 GAT interaction to 3T3-L1 adipocytes. The low affinity of the GAT domain for ubiquitin (Kawasaki *et al.*, 2005) in combination with the low abundance of ubiquitinated GLUT4 in 3T3-L1 cells (Lamb *et al.*, 2010), will likely prove technically challenging in using this pull-down approach to studying the interaction further.

I next went on to clone myc-GGA3 and generate a ubiquitin-binding deficient mutant thereof (myc-GGA3_{mut}) and express these constructs in 3T3-L1 cells, using the pBABE puro retroviral expression system (Morgenstern and Land, 1990). Despite infection of 3T3-L1 fibroblasts with similar numbers of viral particles harbouring pCAL11 and pCAL12 (section 4.4), the expression of myc-GGA3 was much lower than myc-GGA3_{mut} when compared by Western blotting. Although myc-GGA3_{mut} was relatively overexpressed both proteins had a similar perinuclear localisation (Figure 4.9).

What possible explanations are there for the observed difference in expression? The answer may lie with ubiquitination of GGA3 itself. Previous studies have shown that GGA3 is ubiquitinated (Shiba *et al.*, 2004; Pak *et al.*, 2006) and that this ubiquitination depends on the ubiquitin binding ability of the GAT domain, as single amino acid substitutions introduced within the ubiquitin binding portion of the GAT domain severely impair GGA3 ubiquitination (Shiba *et al.*, 2004). This study did not report an increase in the levels of GGA3 expression as a consequence of GAT mutation; however the GGA3 expression constructs used by Shiba *et al.* were for transient expression of GGA3. As I was using the pBABE retroviral system (Morgenstern and Land, 1990) to stably express myc-GGA3 and myc-GGA3_{mut} in polyclonal pools of cells, it is hard to compare the two sets of data and further investigation of the role of the GAT domain in GGA3 stability would certainly be valuable. It may be that myc-GGA3 is more readily ubiquitinated than myc-GGA3_{mut} and is thus degraded more rapidly by the proteasome, although without further analysis this remains purely speculation.

I went on to analyse the phenotypic effects of myc-GGA3 and myc-GGA3_{mut} expression in 3T3-L1 adipocytes. Firstly I used a subcellular fractionation approach to isolate a GSV enriched vesicular fraction from 3T3-L1 adipocytes (Xu
and Kandror, 2002; Li and Kandror, 2005) harbouring either an empty vector control, pCAL11 or pCAL12 retrovirus. On expression of myc-GGA3 the loading of GLUT4 into the 16,000 xg supernatant is unaffected, however expression of myc-GGA3\textsubscript{mut} lowers the proportion of total GLUT4 present in the supernatant fraction, from 40.3 \% (± 3.5 \%) to 30.6 \% (± 2.4 \%) (Figure 4.10). These data substantiate the previous study outlining a role for GGAs in the sorting of GLUT4 into the insulin responsive compartment (Li and Kandror, 2005), as this study found that expressing a dominant negative version of GGA (EGFP fused to the VHS-GAT domains of GGA2) reduced the proportion of GLUT4 present in the GSV fraction compared to cells harbouring an empty vector.

The dominant negative effect of myc-GGA3\textsubscript{mut} expression is less than that observed for EGFP-VHS-GAT (Li and Kandror, 2005). The most obvious explanation is the structure of the two mutants. EGFP-VHS-GAT was derived from human GGA2, and thus would be expected to bind VHS domains more readily than ubiquitin modifications (Nielsen \textit{et al.}, 2001; Puertollano and Bonifacino, 2004; Shiba \textit{et al.}, 2004), whereas myc-GGA3\textsubscript{mut} was derived from the short isoform of GGA3 (see Figure 4.12). It has been predicted that the short isoform of GGA3 cannot bind dileucine motifs; the crystal structure of GGA1 VHS in complex with the C-terminal acidic dileucine motif of the cation independent mannose-6-phosphate receptor has been published, and GGA1 VHS residues involved in this interaction identified (Shiba \textit{et al.}, 2002). These residues are conserved in full length GGA3, however they are absent from GGA3 short (Wakasugi \textit{et al.}, 2003).

Therefore in terms of dominant negative activity, EGFP-VHS-GAT can interfere with the recruitment of endogenous GGAs to membranes (via Arf-GTP recruitment) and interaction with dileucine motifs. myc-GGA3\textsubscript{mut} (derived from GGA3 short) would be predicted to block membrane association of endogenous GGAs and to sequester factors which bind to the hinge region and GAE domain; these include clathrin and the BAR domain containing protein enthprotin, which are involved in formation of clathrin coated vesicles (Hirst \textit{et al.}, 2001; Mills \textit{et al.}, 2003).

IRAP and sortilin are two acidic dileucine-containing proteins which can bind GGA VHS domains and are present in GSVs (Nielsen \textit{et al.}, 2001; Hou \textit{et al.},
More recently, the sortilin, IRAP and GLUT4 lumenal domains have been shown to interact physically (Shi and Kandror, 2007; Shi et al., 2008).

From these data I propose a model for GGA binding to GSV cargoes at the TGN (Figure 4.13). Sortilin (or IRAP) and GLUT4-Ub cluster together at the TGN, brought into close proximity by their lumenal interactions. The GGAs, with their modular structure, can bind to GLUT4-Ub via the GAT domain, and to the acidic dileucine motifs present in the other cargo molecules, recruiting clathrin and accessory proteins resulting in vesicle budding. This model would account for the larger effect EGFP-VHS-GAT expression on GLUT4 loading into GSVs, as EGFP-VHS-GAT would prevent endogenous GGAs from interacting with GLUT4-Ub, ARF:GTP and the cytosolic domains of IRAP or sortilin.

![Figure 4.13 A model for GGA function in GSV cargo recruitment.](image)

Sortilin and GLUT4 are brought into proximity by their lumenal interactions. GGAs bind to the ubiquitinated GLUT4 cytosolic domain and the acidic dileucine motif in the sortilin cytoplasmic tail, resulting in clathrin coat formation and vesicle budding.

The proposed model is supported by work with truncation mutants of sortilin. A full length version of sortilin co expressed with GLUT4 in 3T3-L1 fibroblasts induces formation of an insulin responsive compartment in these normally non insulin responsive cells (Shi and Kandror, 2005). However a version of sortilin lacking the lumenal domain, and therefore not capable of interacting with the
lumenal region of GLUT4, can only partially recapitulate this effect (Shi and Kandror, 2005).

In cells expressing myc-GGA3\textsubscript{mut} there is a slight reduction in insulin stimulated glucose uptake, however this reduction does not reach statistical significance (Figure 4.11). As discussed in section 4.4.2, there is large variability in the results for insulin stimulated glucose uptake for all three constructs. As the effect of myc-GGA3\textsubscript{mut} on GLUT4 loading into the GSV enriched 16,000 xg supernatant is apparently quite small with only a 10 % loss of total GLUT4 from this fraction, the large variability in the glucose transport assay data may be masking any effect of myc-GGA3\textsubscript{mut} expression on glucose uptake.

In summary, the data presented in this chapter implicate the ubiquitin binding region of the GAT domain of GGA3 in the sorting of GLUT4 into the insulin responsive compartment. When taken together with data from the preceding chapter that GLUT4 sorting into GSVs requires its ubiquitination, and data from a study by our group implicating the yeast Ggas in ubiquitin dependent sorting of GLUT4 from the TGN to the proteolytically active endosomal system (Lamb et al., 2010), this lends weight to the hypothesis that GLUT4 ubiquitination is one of the signals required for GGA dependent sorting of GLUT4 into the GSV compartment.
Chapter 5 - Deubiquitination and GLUT4 traffic.
5.1 Introduction

Although work in our group (this study, Chapter 3, (McCann R.K., 2007; Lamb et al., 2010)) has implicated ubiquitin in the loading of GLUT4 into GSVs, one potential flaw in the hypothesis that ubiquitination is required to sort GLUT4 into GSVs is that ubiquitination of membrane proteins is canonically thought of as a modification resulting in protein degradation at the lysosome (Hicke and Dunn, 2003; Urbe, 2005). Ubiquitin dependent delivery of proteins to the lysosome is facilitated through MVBs, with ubiquitin acting as a signal for ESCRT-dependent sorting of membrane proteins into the intralumenal vesicles of MVBs (Wollert et al., 2009; Raiborg and Stenmark, 2009). Work from our group has shown that a constitutively ubiquitinated version of GLUT4 (GLUT4 7K/R Ub) is effectively trafficked into the yeast endosomal system (McCann R.K., 2007) indicating that the modification is sufficient for GGA dependent sorting into the endosomal system.

While it is clear that ubiquitination of GLUT4 is required for the transporter to become insulin sensitive, our lab estimates that only about 0.1 % of cellular GLUT4 is ubiquitinated in 3T3-L1 adipocytes (Lamb et al., 2010). This suggests that the ubiquitin modification on GLUT4 is a transient one, and introduces the possibility that deubiquitinating enzymes may play a role in GLUT4 traffic.

Deubiquitinating enzymes (DUBs) function at various levels of cellular regulation, including maintenance of free ubiquitin levels and promotion of protein stability (Komander et al., 2009; Reyes-Turcu et al., 2009). In the endosomal system, DUBs have been shown to play a role in receptor recycling and resensitisation; examples include the β2 adrenergic receptor which is deubiquitinated by USP20 and USP33 (Berthouze et al., 2009), and the Drosophila Wnt receptor Frizzled which is deubiquitinated by USP8 (Mukai et al., 2010). In both these cases, a proportion of the internalised receptor is deubiquitinated, thus being rescued from lysosomal degradation and returned to the cell surface for further stimulation. I therefore reasoned that DUB activity may be required to remove the ubiquitin modification from GLUT4 after interaction with GGA proteins had sorted it into the endosomal system, allowing it to avoid lysosomal trafficking.

The GSV resident insulin responsive aminopeptidase (IRAP) traffics in an identical manner to GLUT4 under both basal and insulin stimulated conditions in fat and muscle cells (Ross et al., 1997). siRNA mediated depletion of IRAP in
3T3-L1 cells has been shown to blunt insulin stimulated GLUT4 translocation, however GLUT4 depletion does not seem to have the same effect on IRAP (Yeh et al., 2007; Jordens et al., 2010). Intriguingly, IRAP knockout mice show a significant decrease in relative amounts of total GLUT4 (Keller et al., 2002). These data implicate IRAP in GLUT4 sorting into the insulin responsive compartment, and also suggest that IRAP may form part of a cellular machinery to maintain the stability of GLUT4. Could this include a deubiquitinating enzyme?

A potential link between IRAP and a DUB has been identified through the work of Nai-Wen Chi (UCSD) and colleagues over a number of years. IRAP has been shown to bind the poly-ADP ribose polymerase (PARP) tankyrase, via a minimal tankyrase binding motif (RXX(P,A)DG) (Chi and Lodish, 2000; Sbodio and Chi, 2002). Tankyrase 1 was initially localized to the nucleus where it plays a role in telomere maintenance and spindle assembly (Smith et al., 1998; Hsiao and Smith, 2008). In 3T3-L1 adipocytes a proportion of tankyrase 1 is also Golgi resident (Chi and Lodish, 2000) and siRNA mediated depletion of tankyrase 1 blunted insulin stimulated GLUT4 translocation in a manner similar to IRAP depletion (Yeh et al., 2007).

Tankyrase has been shown, via yeast two hybrid analysis, to interact with the deubiquitinating enzyme USP25 (which contains a putative tankyrase binding motif) (Sbodio et al., 2002). USP25 has three isoforms in humans; the ubiquitously expressed USP25a and b, and the muscle specific USP25m; USP25b is absent in murine tissues (Valero et al., 2001) and has also been shown to modulate the levels of a specific substrate, MyBPC1, on the basis of USP25 catalytic activity (Bosch-Comas et al., 2006). From these data a model can be inferred whereby tankyrase acts as a scaffold, linking USP25 to GSVs via IRAP.

My hypothesis for this part of the project is that USP25 serves to deubiquitinate GLUT4 once it has been sorted into the endosomal system and thus regulates GLUT4 entry into GSVs as part of a complex with IRAP and tankyrase. This deubiquitination of GLUT4 prevents its traffic to the lysosome and thus the transporter becomes localised to GSVs marked by IRAP (which localises USP25 to this compartment).
5.2 Aims of the chapter

I sought to substantiate the published data of a yeast two hybrid interaction of USP25 and the tankyrases by carrying out \textit{in vitro} pull-down assays using immobilized USP25, and to determine whether the interaction was dependent on the putative tankyrase binding motif of USP25 (Sbodio and Chi, 2002). I also employed transient siRNA mediated depletion of USP25 to test the hypothesis that USP25 is required to deubiquitinate GLUT4 thus stabilizing the transporter, allowing it to reach GSVs and preventing its traffic to the lysosome. I will also discuss my efforts to generate a USP25 antiserum for use in Western blotting.

5.3 \textit{In vitro} interaction of USP25 with tankyrase 1.

Studies over the last decade have identified a number of tankyrase binding partners, including IRAP, TAB182 (tankyrase 1 binding protein of 182 kilodaltons), NuMA (nuclear/mitotic antigen 1) and TRF1 (telomere repeat binding factor 1) (Chi and Lodish, 2000; Sbodio and Chi, 2002). All these proteins include a tankyrase binding motif RXX(P,A)DG (Sbodio and Chi, 2002). Human USP25 has also been found to contain this motif (RTPADG) one amino acid removed from the C terminus of the protein, and an interaction between tankyrase and USP25 has been demonstrated using yeast 2-hybrid analysis (Sbodio and Chi, 2002). The RTPADG motif, and its positioning, appears to be conserved in vertebrates. Figure 5.1 shows an alignment between known USP25 protein sequences from human and mouse databases, and predicted sequences for rat, \textit{Xenopus laevis} and \textit{Danio rerio}.

Unpublished data from our collaborator’s laboratory (Nai-Wen Chi, UCSD) has shown, using a co-immunoprecipitation approach, that USP25 and tankyrase 1 and 2 interact \textit{in vivo} - however this interaction may not be direct and could require a “bridging” molecule. In order to corroborate this data I sought to determine whether USP25 and tankyrase could interact directly in an \textit{in vitro} pull-down assay, and whether any interaction observed is dependent on the putative tankyrase binding motif.
USP25 human (1034) HELCERFARIMLSLR--TPADGR
Usp25 Danio rerio (1049) LELFERFGRVMTSLTMGTPADGR
Usp25 Xenopus laevis (1025) HELCERFARIMLSLR--MPADGR
Usp25 mouse (1034) HELCERFARIMLSLR--TPADGR
Usp25 rat (1034) HELCERFARIMLSLR--TPADGR

Figure 5.1 Protein sequence alignment of vertebrate USP25.

The C-termini of known sequences for human and mouse USP25, and predicted sequences for rat, frog (*Xenopus laevis*) and zebrafish (*Danio rerio*) from the UniProt database were aligned using Vector NTI (Invitrogen). The tankyrase binding motif is in green text.

5.3.1 Expression and purification of recombinant GST-USP25.

The GST-USP25 expression vector used in this study was a gift from the laboratory of Frauke Melchior (University of Gottingen). The vector was transformed into BL-21 DE3 *E. coli* and GST-USP25 purified as described in 2.5.6. A sample gel of the purification is shown in Figure 5.2. A major band of the correct molecular weight for GST-USP25 (approximately 165 kD) is observed in lane 1. Some of this protein seems to be lost in the insoluble fraction (lane 3), however after binding to glutathione-Sepharose beads and several wash steps (lanes 6-8) a large amount of this protein is bound to the beads (lane 9). There is also a second major band at approximately 25 kD (lane 9); this may represent an incomplete translation product of GST-USP25, or a degradation product, as the pGEX USP25 vector used in these studies contains a protease cleavage site C terminal to the GST tag.
5.3.2 Pull-down assay on adipocyte lysates using GST and GST-USP25

To control for nonspecific interactions with the GST tag I included GST in the experiments. As a much smaller, soluble protein (Sassenfeld, 1990) GST is much more highly expressed than GST-USP25, so this protein was purified from 200 ml of culture in an effort to equalize amounts of the two immobilized proteins. Nevertheless, GST alone had an approximately fivefold higher expression than GST-USP25, as shown in Figure 5.3.
Figure 5.3 Comparison of GST-USP25 and GST protein expression levels.

GST and GST USP25 were purified as in 5.3.1 from 200 ml and 2 l of BL-21 (DE3) E. coli culture respectively. 20 µl of bead suspension was heated at 37 °C in 200 µl 2xLSB for 30 minutes to elute bound proteins. 20 µl of each elution was subjected to SDS-PAGE on a 10 % gel. Additionally, 4 µl of the GST elution was run alongside (GST (1:5)).

The immobilized fusion proteins were used in pull-down assays from 3T3-L1 adipocyte lysates as described in section 2.7. To overcome the problem of GST being highly expressed compared to GST-USP25, proteins from the GST pull-down were eluted in a fivefold greater volume of 2 x LSB than the GST-USP25 one, and equal volumes of each eluate immunoblotted for tankyrase 1 and 2 using an antibody that recognised both proteins (Table 2.1). This experiment was carried out in collaboration with Iain Adamson, a placement student in the lab.

Figure 5.4 shows a representative result for one of these experiments. It appears that in this system only tankyrase 1 binds to USP25; a lower molecular weight band is observed but it does not coincide with the molecular weight of tankyrase 2 (compare band marked by lower arrowhead in GST-USP25 lane with the lower band, representing tankyrase 2, in the input lane). A similar result was observed if the pull-downs were eluted in the same volume of 2 x LSB. The data presented here corroborate the yeast 2-hybrid studies (Sbodio and Chi, 2002) and the in vivo immunoprecipitation data (N-W Chi, personal communication) that USP25 and tankyrase interact.
Figure 5.4 Pull-down assay on adipocyte lysates using immobilised recombinant GST and GST-USP25.

20 µl of each recombinant protein immobilized on glutathione-Sepharose beads was incubated with 400 µl 3T3-L1 adipocyte lysate (approximately 10 mg/ml protein content) for 2 hours with rotation. The beads were washed with lysis buffer and bound proteins eluted. 15 µl of each eluate was subjected to SDS-PAGE on a 10 % (v/v) gel and immunoblotted for tankyrase 1 and 2, alongside a sample of the input lysate. Representative of three independent experiments

5.3.3 Does mutation of the putative tankyrase binding motif of USP25 disrupt the in vitro interaction with tankyrase?

As discussed in 5.3, USP25 is one of a number of proteins which contain a tankyrase binding motif (Chi and Lodish, 2000; Sbodio and Chi, 2002). Previously mutational analyses have shown that disruption of this motif ablates tankyrase binding to human IRAP, TRF1 and TAB182 in in vitro pull-down assays and immunoprecipitation of epitope tagged proteins (Sbodio and Chi, 2002). I therefore reasoned that mutation of the RTPADG motif in USP25 would prevent its in vitro interaction with tankyrase 1 as described in 5.3.2, and thus set out to mutate its conserved arginine residue using site directed mutagenesis.

Site directed mutagenesis of pGEX-USP25 using primer pair 555 and 556 (detailed in Table 2.5) generated pCAL13, encoding a GST-USP25 variant with the conserved arginine residue at position 1049 mutated to alanine (GST-USP25 R1049A). Both pGEX-USP25 and pCAL13 were transformed into BL-21 E. coli and recombinant GST-USP25 and GST-USP25 R1049A purified as detailed in Figure 5.2. Figure 5.5 shows the results of this purification, indicating that GST-USP25 and GST-USP25 R1049A can be purified at similar levels.
Figure 5.5 Quantification of purified GST-USP25 and GST-USP25 R1049A.

BL-21 (DE3) *E. coli* were transformed with pGEX-USP25 and pCAL13, and recombinant fusion proteins purified as in 5.3.1. 10 µl of 1 in 10 dilutions of the immobilised fusion proteins were subject to SDS-PAGE on 10 % (v/v) gels, alongside samples of BSA at standard concentrations.

Both immobilized GST fusions were introduced into the pull-down assay described in 5.3.2, and bound proteins subjected to SDS-PAGE and immunoblotted with tankyrase specific antibodies. A typical result for this experiment is shown in Figure 5.6. It appears that binding of tankyrase 1 to GST-USP25 is ablated on mutation of the conserved R1049 within the tankyrase binding motif. This result is consistent with previous data for other tankyrase binding motif-containing proteins, such as IRAP, TAB182 and TRF1 (Chi and Lodish, 2000; Sbodio and Chi, 2002; Sbodio *et al.*, 2002), as shortening or point mutation of the conserved RXX(A,P)DG motif in these proteins results in loss of tankyrase 1 interaction.
5.4 siRNA mediated depletion of USP25 in 3T3-L1 adipocytes reduces GLUT4 stability

RNA interference (RNAi) using short interfering RNAs (siRNA) is a well established method for depleting proteins of interest in cells without having to knock out or inactivate the corresponding gene (Elbashir et al., 2001). I attempted to deplete USP25 using the Mirus TransIT-TKO® transfection system (see 2.3.3) and two oligonucleotide duplexes (siRNA25 and siRNA27, detailed in Table 2.4), the sequences for which were identified by our collaborator (Nai-wen Chi, UCSD, personal communication). 3T3-L1 adipocytes were transfected with 50 nM siRNA on days 6 and 7 post differentiation and subsequently harvested on day 8 in PBS supplemented with protease inhibitors. Equal amounts of proteins were run on 10% SDS-PAGE gels prior to immunoblot analyses with antibodies against USP25, GLUT4, Fatty acid synthase (FAS) and GAPDH. The immunoblots were quantified using ImageJ software by normalizing the intensities of USP25, GLUT4 and FAS against GAPDH (which served as a loading control). The results are shown in Figure 5.7.

These data indicate that USP25 is substantially depleted by both siRNA 25 and 27 when compared to a scrambled siRNA control to 35% ± 3.3% and 19% ± 3% respectively. A concomitant reduction is observed for GLUT4 which is reduced...
to 69% ± 5.8% (siRNA25) and 75% ± 8.8% (siRNA27) of control levels. These reductions are statistically significant when compared to the alteration of amounts of the untargeted protein FAS (USP25: p < 0.01, GLUT4: p < 0.05 for both duplexes, unpaired Student’s T-test). These data indicate that USP25 has a role in maintaining GLUT4 stability.

5.4.1 Is GLUT4 redirected to the lysosome as a consequence of USP25 depletion?

The depletion of GLUT4 observed in Figure 5.7 are consistent with the hypothesis stated at the beginning of this chapter, in that they are consistent with a model in which GLUT4 is trafficked to the lysosome in response to USP25 depletion. However, the mechanism by which GLUT4 is degraded in the
knockdown cells is not identified. Canonically, ubiquitinated membrane protein are degraded at the lysosome (Urbe, 2005). This led me to attempt to investigate whether lysosomal degradation is the fate of GLUT4 in USP25 depleted cells by inhibiting the lysosomal peptidases of the knockdown cells. Treatment of cultured cells with weak bases such as ammonium chloride (NH₄Cl) raises the pH of acidic compartments (including the lysosome) due to accumulation of protonated forms of the base. This pH rise inactivates lysosomal hydrolases (Amenta and Brocher, 1980).

To test whether GLUT4 in USP25 depleted cells was being redirected to the lysosome, I set out to inhibit the activity of lysosomal proteases using 15 mM ammonium chloride. Previous studies have shown this concentration of NH₄Cl to be effective in blocking peptidase activity in 3T3-L1 cells (Chandler and Ballard, 1983). The results of this experiment are shown in Figure 5.8. There appears to be knockdown of USP25 for cells transfected with siRNA27, however this is not observed for cells transfected with siRNA25. For both siRNAs there appears to be a relative increase in GLUT4 levels compared to cells transfected with scrambled control siRNA.

Although this initial experiment seemed to suggest that GLUT4 could be rescued from degradation by addition of NH₄Cl (at least in the case of siRNA27), repetition of the experiment proved problematic as USP25 knockdown appeared compromised in the cells treated with NH₄Cl. This may have been due to the method used to transfect siRNA duplexes into mature 3T3-L1 adipocytes. The transfection reagent (Mirus TransIT-TKO®) uses a polycation based method to allow siRNA to enter cells. This type of method relies on endocytosis of nanoparticles formed of siRNA duplexes and polycations from the reagent, and subsequent dissociation of the complex as the endosomal lumen acidifies, leading to release of the siRNA into the cytosol (Gary et al., 2007). Inhibition of the acidification of the endosomal system by using NH₄Cl would prevent uptake of siRNA and therefore severely compromise the efficiency of knockdown.
Chapter 5 134

Figure 5.8 Treatment of siRNA transfected 3T3-L1 adipocytes with 15 mM NH₄Cl.

On days 6 and 7 post differentiation, 3T3-L1 adipocytes were transfected with siRNA duplexes as described in Figure 5.7, and simultaneously treated with 15 mM NH₄Cl. On day 8 cells were harvested and immunoblotted for USP25, GLUT4, FAS and GAPDH as a loading control (lower GAPDH blot is the loading control for FAS and GLUT4 blots)

5.4.2 Is glucose uptake affected by depletion of USP25?

As my hypothesis states that USP25 is required to sort GLUT4 into GSVs, it is important to identify whether depletion of USP25 affects the insulin stimulated uptake of glucose into adipocytes. If the insulin stimulated increase in glucose transport is impaired it would suggest there is reduced loading of GLUT4 into GSVs. To address this, [³H] 2-deoxyglucose transport assays (Millar et al., 1999) were carried out on 12 well plates of 3T3-L1 adipocytes treated with the two siRNA duplexes against USP25 and the scrambled control.

As shown in Figure 5.9, there is a reduction in fold change in [³H] 2-deoxyglucose uptake on insulin stimulation in USP25 depleted cells. Results are expressed as fold change rather than absolute values due to the transient transfection method used (detailed in section 2.3.3). Unlike a cell line stably expressing an siRNA or shRNA construct there may be varying knockdown efficiencies and levels of cytotoxicity between batches of cells used for each experiment; this means it is more meaningful to compare the transport activities of cell populations within
experiments rather than use absolute values, however these are recorded in Appendix II.

The reduction in $[^3]$H 2-deoxyglucose uptake in USP25 depleted cells, coupled with the data from Figure 5.7, indicates that the reduced stability of GLUT4 in USP25 depleted cells is responsible for their reduced glucose uptake capacity.

![Graph](image)

Figure 5.9 Fold change in $[^3]$H 2-deoxyglucose uptake is reduced on insulin stimulation of USP25 depleted 3T3-L1 adipocytes.

12-well plates of 3T3-L1 adipocytes were treated with the indicated siRNA as described, and assayed for uptake of $[^3]$H 2-deoxyglucose on day 8 post differentiation. Results were analysed using an unpaired student’s T-test. * - $p < 0.05$. Error bars represent ± standard error of the mean, $n = 3$. The raw data for this figure are presented in Appendix II.

5.5 Generation and characterisation of USP25 antisera.

The anti-USP25 antibody used in this study was a gift from the laboratory of Gemma Marfany (Universitat di Barcelona). To allow larger scale experiments to be carried out I set out to generate antisera against USP25 which could be used in future experiments.

I initially produced recombinant GST-USP25 on glutathione-Sepharose beads as described in 5.3.1, and cleaved untagged USP25 from the beads using thrombin. The pGEX 4T-1 vector used in these experiments contains a thrombin cleavage site at the C-terminus of the GST tag.
Chapter 5

Figure 5.10 Thrombin cleavage of GST-USP25.

Recombinant GST-USP25 was purified as described in 5.3.1 on glutathione-Sepharose beads. The beads were treated with 0.04 units/µl thrombin in thrombin cleavage buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 2.5 mM CaCl$_2$) for 2 hours at room temperature, and untagged USP25 collected in the supernatant after brief centrifugation at 500 xg and 4 °C. 20 µl samples of beads before cleavage (GST-USP25 beads), supernatant (Cleavage product) and beads after cleavage were heated at 37 °C for 30 minutes with 20 µl 2xLSB and 20 µl of the eluate subjected to SDS-PAGE on a 10 % (v/v) gel. Bands were visualized by Coomassie staining and subsequent destaining.

The untagged USP25 was used to immunize two New Zealand white rabbits, with serum collected at the time points described in Materials and Methods section 2.5.4. I tested the sera for immunoreactivity against purified GST and GST-USP25. The results of this experiment are shown in Figure 5.11. As expected, the pre immune serum from both rabbits does not detect GST-USP25. The small bleed from 2198 detects GST-USP25 at a low level. However the large and final bleeds of both 2198 and 2199 show increased immunoreactivity against GST-USP25. Importantly the large and final bleeds from 2199 show the least cross-reaction with the GST purification tag (visible at approximately 25 kD) which suggests that the sera from 2199 may be more suited for use in future experiments.
Figure 5.11 Sera from rabbits 2198 and 2199 tested against recombinant GST and GST-USP25.

Pre-immune, small, large and final bleeds of rabbits 2198 and 2199 were tested for immunoreactivity against 1 µg of either GST or GST USP25, subjected to SDS-PAGE on 10 % (v/v) gels, immunoblotted and incubated with each of the sera at 1:1000 dilution overnight at 4 °C.

I went on to analyse whether the 2198 and 2199 sera could be used to detect USP25 from a mammalian cell lysate. I ran two sets of 3T3-L1 adipocyte lysate samples, with decreasing amounts of protein, and probed them with a 1:1000 dilution of both 2198 and 2199 sera from the final bleed. After ECL visualization, the same membranes were stripped and reprobed with the two antisera, this time incubated with 8 µg GST-USP25. As this fusion protein contains the antigen against which 2198 and 2199 was raised its presence would be expected to reduce the immunoreactivity of endogenous USP25 on the blots by competing for USP25 specific antibodies.
Chapter 5

Figure 5.12 Testing sera 2198 and 2199 against 3T3-L1 adipocyte lysates.

Decreasing amounts of 3T3-L1 adipocyte lysates (30, 20 and 10 µg protein added) were subject to SDS-PAGE and blotted with 2198 and 2199 antisera at 1:1000 dilution (left panels). After visualization, the membranes were stripped using stripping buffer (100 mM glycine, 150 mM NaCl, pH 2) for 20 minutes, blocked and re probed with the two antisera in the presence of 8 µg GST-USP25 (right panels). Arrow indicates putative USP25 band.

The results of this experiment are shown in Figure 5.12. Unfortunately it appears that both sera recognise a number of antigens in the adipocytes lysates. However there are noticeable bands at approximately 140 kD in all three lanes for both sera, which corresponds to the molecular weight of USP25 from previous studies (Meulmeester et al., 2008). These bands appear to be depleted on incubation with GST-USP25, which indicates that these bands may represent endogenous USP25. However this result is very preliminary as the experiment was only carried out once and has been included here primarily for documentation purposes.
5.6 Chapter Discussion.

In this chapter I set out to test the hypothesis that USP25 is recruited by tankyrase (through its interaction with IRAP) to GSVs, where it deubiquitinates GLUT4 and prevents the transporter from being delivered to the lysosome. I followed two lines of investigation to test this hypothesis. Firstly, I used an in vitro pull-down approach to identify whether USP25 can interact directly with tankyrase, as predicted by yeast-2-hybrid analysis (Sbodio and Chi, 2002). Secondly I transiently depleted USP25 from adipocytes using siRNA, and analysed the effect on GLUT4 stability and insulin responsiveness in these cells.

I purified recombinant GST-USP25 and GST, immobilized on glutathione-Sepharose beads. The GST-USP25 fusion protein pulled tankyrase 1 down from a 3T3-L1 adipocyte lysates, whereas GST alone did not. This shows that USP25 and tankyrase can interact, as previously demonstrated by yeast-2-hybrid analysis (Sbodio and Chi, 2002; Seimiya and Smith, 2002).

To investigate whether this interaction is dependent on the putative tankyrase binding motif, as found for other tankyrase binding substrates (Chi and Lodish, 2000; Sbodio and Chi, 2002; Seimiya and Smith, 2002) I mutated the conserved arginine residue at position 1049 within the motif, and introduced GST-USP25 R1049A into the pull-down assay. This approach resulted in ablation of binding of tankyrase 1 to USP25.

Of note, in these assays there is no obvious interaction with tankyrase 2, despite the fact that tankyrase 2 contains the same ankyrin repeat domains required for interaction as tankyrase 1 (Sbodio et al., 2002; Hsiao and Smith, 2008). This result is not particularly surprising as tankyrase 2 is not present at high enough levels in 3T3-L1 adipocytes to interact with GST-IRAP at detectable levels in a pull-down assay (Sbodio et al., 2002), indicating that there may be no detectable interaction with USP25 for similar reasons.

The findings from the pull-down studies indicate that USP25 is a bona fide tankyrase binding partner, with a functional tankyrase binding motif. These data have been substantiated by immunoprecipitation experiments, showing an interaction between tankyrase and USP25 in vivo (N-W Chi, personal communication). Given that tankyrase contains multiple sites that can interact with partner proteins in its ankyrin repeat domains (Seimiya and Smith, 2002), it
seems plausible that tankyrase can act as a scaffold protein at GSVs, binding the
GSV cargo protein IRAP and recruiting USP25.

To investigate the role of USP25 in GLUT4 trafficking I depleted USP25 using
siRNA. After two consecutive days of transfection with siRNA duplexes targeted
against USP25, there was ~35 % less GLUT4 compared to cells transfected with
an untargeted siRNA duplex. This suggests that GLUT4 is stabilised by the
presence of USP25, which is consistent with my hypothesis of the role of USP25
in deubiquitinating GLUT4, preventing its lysosomal degradation and “trapping”
it in GSVs.

These data are interesting in the context of recent data concerning the role of
DUBs in plasma membrane receptor recycling. Plasma membrane receptors
including the *Drosophila* Wnt receptor Frizzled and the B2-adrenergic receptor
(Shenoy et al., 2009; Berthouze et al., 2009; Mukai et al., 2010) can, after
ubiquitin-dependent internalization, be stabilized by deubiquitination, allowing
them to recycle to the cell surface and preventing their lysosomal degradation.
However my finding is novel in the context of intracellular traffic from the TGN
to a secretory compartment - ubiquitinated proteins sorted from the TGN into
the endosomal system are thought to only be deubiquitinated by ESCRT-
associated DUBs such as AMSH and Doa4p before entry into multivesicular bodies
(Swaminathan et al., 1999; Agromayor and Martin-Serrano, 2006; Nikko and
Andre, 2007).

Further characterization of the USP25 depleted cells by lysosome inhibition
proved problematic as the method used for inhibition of lysosomal hydrolases,
treatment with 15 mM NH₄Cl (Amenta and Brocher, 1980; Chandler and Ballard,
1983), generally reduced the effectiveness of USP25 knockdown (Figure 5.8 and
data not shown). The reduced effectiveness of the knockdown was probably due
to the inhibition of endosome acidification by NH₄Cl (Gary et al., 2007); this
would prevent release of the siRNA from nanoparticles and its uptake into the
cytosol.

Another possible method for investigating whether the lysosome is involved in
GLUT4 degradation would be to use a pulse chase experiment. For example the
USP25 knockdown adipocytes could be treated with siRNA duplexes for two days
(as described in 5.4). These cells could be subsequently treated with a lysosome
inhibitor such as 15 mM NH₄Cl and the half life of newly synthesised GLUT4
followed using pulse-chase labelling followed by immunoprecipitating GLUT4 at various timepoints. The difference between the half life of GLUT4 in cells with and without lysosome inhibition could then be compared - if GLUT4 is degraded at the lysosome the half life of GLUT4 would be expected to be longer in cells treated with 15 mM NH₄Cl. Measuring the rate of degradation of newly synthesised GLUT4 in this manner would circumvent the problem of reduced siRNA uptake in the presence of an inhibited endosomal system. Another possibility would be to use a lysosomal inhibitor that did not alter the acidification of the endosomal system and instead inhibits the lysosomal peptidases directly, an example being leupeptin (Maeda et al., 1971). This method may not interfere with the pH dependent release of siRNA from the endosomal system (Gary et al., 2007).

On assaying the glucose transport activity of the USP25 knockdown cells, they were found to have a reduced fold change in insulin stimulated glucose transport compared to cells transfected with an untargeted siRNA (Figure 5.9). This suggests that GLUT4 is being trafficked away from the insulin responsive pool, or that the GLUT4 present in the insulin responsive pool of the knockdown cells is less able to respond to insulin. When taken together with the data from Figure 5.7 it seems possible that the observed GLUT4 depletion is responsible for the reduced glucose transport - perhaps the population of GLUT4 normally routed to GSVs (and therefore ubiquitinated) is being diverted to the lysosome in USP25 depleted cells, resulting in the observed reduction in fold change on insulin stimulation.

The attempt to generate a USP25 antiserum was partially successful. Recombinant GST-USP25 could be detected by both sera. However endogenous USP25 from 3T3-L1 adipocytes was harder to detect, with a number of other bands being recognised by the sera. Use of antigen competition seemed to show that USP25 was amongst the bands detected by the two sera - although this result remains preliminary as the competition experiment was only carried out once. If this result stands up to repetition, the population of USP25 specific IgG would need to be immunopurified from the sera - the sera could be passed over a column of immobilised USP25 (antigen), allowing binding of USP25 specific IgG to the antigen. Nonspecific antibodies could then be washed off and USP25 specific IgG eluted.
Overall, the data presented in this chapter support the model that USP25 associates with GLUT4 containing compartments via a complex of IRAP and tankyrase, acting as a scaffolding protein, in a manner dependent on its C-terminal RTPADG motif, and that USP25 is required for maintenance of GLUT4 stability. However, more work clearly needs to be done to elucidate the underlying molecular mechanisms. As discussed in 5.1, in yeast a constitutively ubiquitinated version of GLUT4 (GLUT4 7K/R-Ub) is sorted into the yeast endosomal system and degraded (McCann R.K., 2007). However, when this fusion protein is expressed in adipocytes, it remains in the TGN, neither being degraded at the lysosome nor translocating in response to insulin (McCann R.K., 2007). These data do not necessarily implicate a DUB step in GLUT4 traffic. It may be that in the case of GLUT4 in 3T3-L1 adipocytes the architecture of the C-terminal ubiquitin fusion is not adequate to induce GGA dependent sorting out of the TGN to the endosomal system, unlike ubiquitination on a cytosolic lysine residue (this study, chapter 3, (Lamb et al., 2010)).

My findings that USP25 depletion results in depletion of GLUT4 and alterations to its insulin responsive traffic are also interesting in the context of studies where IRAP and tankyrase are depleted. IRAP knockout mice have normal glucose tolerance, but exhibit depletion in total GLUT4 levels and reduced insulin responsive glucose uptake in certain tissues (Keller et al., 2002). In studies of 3T3-L1 adipocytes depleted of IRAP (Yeh et al., 2007; Jordens et al., 2010) and tankyrase (Yeh et al., 2007) the insulin responsive translocation of GLUT4 is blunted - both these lines of evidence support a role for a putative IRAP-tankyrase-USP25 complex at GSVs. However, studies of tankyrase deficient mice have yielded conflicting data. Tankyrase-1 knockout mice apparently have an expanded cellular pool of GLUT4 and a corresponding increase in insulin stimulated fold change in glucose transport (Yeh et al., 2009). In contrast, tankyrase-2 knockout mice do not exhibit any significant perturbation in insulin stimulated glucose transport (Chiang et al., 2008). Further study of tankyrase depletion and its effects on GLUT4 would clearly be valuable.

Overexpression of dominant interfering or dominant negative versions of DUBs is a technique often used to interpret their function (Mukai et al., 2010). Given the data I have presented a catalytically inactive mutant such as that described in previous studies (Denuc et al., 2009), where the conserved catalytic cysteine (C178) residue is mutated could be used. This could theoretically prevent
active, endogenous USP25 binding to the tankyrase scaffold and potentially replicate the phenotype seen for USP25 knockdown cells. In the aforementioned study this mutant was used to study the stability of a specific USP25 substrate, MyBPC1 (Denuc et al., 2009).

Another useful tool would be a 3T3-L1 fibroblast cell line with a stable USP25 knockdown, or a knockdown which is under the control of an inducible system. This would make it possible to “add back” an siRNA resistant USP25 and observe whether the knockdown phenotype is rescued. As 3T3-L1 adipocytes are relatively difficult to work with in terms of generating a stable cell line due to the limited number of times the cells can be passaged, one possibility for generation of a stable cell line is to use a more tractable cell line where insulin signalling has been reconstituted. Chinese hamster ovary (CHO) cells expressing GLUT4 have been shown to recapitulate aspects of the insulin responsive GLUT4 trafficking pathway seen in 3T3-L1 adipocytes (Dobson et al., 1996; Lampson et al., 2000) and may prove a useful model system for testing effects of USP25 knockdown and overexpression before moving to work on adipocytes.

The USP25 R1049A mutant, which I showed to be deficient in tankyrase binding, could also be expressed in this background. If interaction with tankyrase is required for USP25 to exert its stabilising effect on GLUT4, the tankyrase binding deficient R1049A mutant would be expected not to have this effect. A stable knockdown of USP25 would also be helpful in addressing the issue of how GLUT4 is depleted in the absence of USP25. It would be possible to use lysosome inhibitors such as NH₄Cl or leupeptin on this cell line as there would be no issues with transfection reagents altering siRNA uptake. Another possibility for interfering with lysosomal function in USP25 depleted cells would be to knock down expression of components of the ESCRT machinery as this would interfere with multivesicular body formation and thus lysosomal protein degradation. Depletion of ESCRTI, II and III subunits has previously been shown to stabilise EGFR and prevent internalisation into MVBs (Bache et al., 2006; Malerod et al., 2007).

In summary, the data in this chapter substantiate the yeast two hybrid (Sbodio and Chi, 2002) and in vivo immunoprecipitation (N-W Chi, unpublished) data that tankyrase and USP25 can interact, and moreover demonstrate that the interaction is dependant on the RTPADG motif between residues 1049 and 1054.
of USP25. Additionally, the data indicate that USP25 is involved in maintaining GLUT4 stability. These findings support my hypothesis that a deubiquitination step is required for the insulin responsive traffic of GLUT4.
Chapter 6 – Final Discussion
The overall aim of this study was to investigate the mechanisms underlying GLUT4 entry into the insulin responsive compartment, which is one of the key questions remaining to be addressed in our understanding of GLUT4 traffic (Bryant et al., 2002). More specifically I tested the hypothesis that ubiquitination of GLUT4 is required for the GGA-dependent sorting step from the trans-Golgi network (TGN) to the insulin responsive compartment, with subsequent deubiquitination stabilising GLUT4 and preventing its traffic to the lysosome.

6.1 Ubiquitination of GLUT4

Previous work in the Bryant group has shown that GLUT4 expressed in yeast traffics in a nitrogen-regulated manner similar to Gap1p (McCann R.K., 2007). Like Gap1p, GLUT4 expressed in yeast is ubiquitinated (Lamb et al., 2010), and functional ubiquitin acceptor sites as well as the Ggas are required for its trafficking into the endosomal system (Lamb et al., 2010). Given these data I decided to first test whether GLUT4 is ubiquitinated in 3T3-L1 adipocytes, and if so, whether ubiquitination is required for entry into the insulin responsive compartment.

Initial work on GLUT4 ubiquitination in 3T3-L1 cells had been carried out by a former member of the group (Dr. R.K. McCann), using a retroviral expression construct encoding GLUT4 with an HA-tag in the first exofacial loop (pHA-GLUT4) (Shewan et al., 2000) and a construct expressing ubiquitin resistant HA-GLUT4 7K/R (pRM4; Table 2.3 (Lamb et al., 2010)). However in these initial experiments, HA-GLUT4 was expressed at approximately twenty fold greater levels than HA-GLUT4 7K/R (McCann R.K., 2007), as pRM4 lacked sequences 5' of the GLUT4 open reading frame which seemed to raise expression of HA-GLUT4 (Fukumoto et al., 1989; Quon et al., 1994). Concerns were also raised about the structure of HA-GLUT4 7K/R. Five of the seven cytosolic lysines are located within the large intracellular loop of GLUT4, a region required for binding of factors involved in GLUT4 sorting - specifically, the lysine residue at position 245 is involved in recruitment of the ARF GAP ACAP1, required for clathrin coat nucleation (Li et al., 2007). Therefore, mutation of the five lysines within the large intracellular loop could disrupt the structure of this region, altering binding of ACAP1 and consequently blocking entry into GSVs.
I addressed these concerns in Chapter 3 by making use of constructs already present in the lab encoding versions of HA-GLUT4 with single cytosolic lysines outwith the large intracellular loop (pRM35 and 36 encoding HA-GLUT4 6K/R 109 and 495 respectively (Table 2.3)). These constructs were based on pRM4 and should thus express at the level seen for the 7K/R mutant. Firstly, in collaboration with Dr R.K. McCann, I subcloned a fragment of pHA-GLUT4 into simultaneously digested pRM36, generating a retroviral expression construct encoding the HA-GLUT4 ORF but lacking the 5’ sequence (pRM55). When assayed by western blotting, levels of HA-GLUT4 (expressed from pRM55), HA-GLUT4 7K/R and the two 6K/R mutants were similar, which dealt with the issue of the overexpression of HA-GLUT4 previously observed (McCann R.K., 2007).

Also, in collaboration with Dr R.K. McCann I developed a pull-down assay, using a GST tagged UBA domain of the yeast protein Dsk2p (Ohno et al., 2005) (GSTyUBA), to enrich for ubiquitinated species. This approach showed that a small proportion of endogenous GLUT4 is ubiquitinated (Figure 3.6) – this was quantified by our group, showing approximately 0.1% of total GLUT4 is ubiquitinated in 3T3-L1 adipocytes (Lamb et al., 2010). I went on to use this approach to analyse the ubiquitination status of HA-GLUT4, HA-GLUT4 7K/R and the two 6K/R mutants, and found that HA-GLUT4 and both 6K/R mutants were ubiquitinated to a similar extent, whereas HA-GLUT4 7K/R was not (Figure 3.6)(Lamb et al., 2010).

To address the issue of disruption of the structure of the large intracellular loop in HA-GLUT4 7K/R, I expressed HA-GLUT4, HA-GLUT4 7K/R and the two 6K/R mutants in 3T3-L1 adipocytes and studied their ability to translocate in response to insulin stimulation using labelling of the exofacial HA tag. This approach showed that HA-GLUT4 7K/R does not translocate in response to insulin, whereas HA-GLUT4 and the two HA-GLUT4 6K/R mutants all translocated to a similar extent (Figure 3.8) (Lamb et al., 2010). These findings support the hypothesis that GLUT4 ubiquitination is required to enter GSVs, as only those versions of GLUT4 with functional ubiquitination sites translocate in response to insulin. Also, these data suggest that mutation of the lysine residues within the large intracellular loop does not alter the structure of this region sufficiently to affect recruitment of factors involved in GLUT4 translocation, such as ACAP1 (Li et al., 2007). The mutations introduced into the large intracellular loop of GLUT4 by Li et al were alanine scanning mutations, so the bulky basic R-group of lysine was
being replaced by the much smaller, neutral alanine. In this study the lysines were being replaced by another residue with a bulky, basic R-group, arginine, and this would be expected to alter the charge and structure of the large intracellular loop much less.

To confirm that the defect in HA-GLUT4 7K/R sorting was at the level of entry into GSVs rather than translocation itself, I utilised two subcellular fractionation approaches. The first was to isolate light density microsomes (which include GSVs) from adipocytes and separate them on a self forming iodixanol gradients (Hashiramoto and James, 2000). This method proved too variable even with wild type HA-GLUT4 to give reliable results (Figure 3.9).

Instead, I utilised a differential centrifugation method that produces a fraction enriched in GSVs (Xu and Kandror, 2002; Kupriyanova et al., 2002; Li and Kandror, 2005). Using this method, HA-GLUT4 7K/R was found to be depleted from the GSV enriched fraction, containing approximately 30% of total GLUT4 (Figure 3.10) (Lamb et al., 2010). This was significantly less than the approximately 55% of total GLUT4 observed for HA-GLUT4 and the two 6K/R mutants (Lamb et al., 2010).

The data presented in Chapter 3 support the hypothesis that GLUT4 ubiquitination is required to sort the transporter into the insulin responsive compartment. GLUT4 ubiquitination can be added to the C-terminal TELEY motif as a signal on GLUT4 required for its sorting into GSVs (Shewan et al., 2000; Blot and McGraw, 2008).

Previously, ubiquitination of membrane proteins has been thought of as a signal for internalisation and subsequent degradation of membrane proteins, including MHCII (Shin et al., 2006) and aquaporin 2 (Kamsteeg et al., 2006). Sorting of Fas ligand into secretory lysosomes also requires ubiquitination, but likely has more in common with ESCRT dependent sorting into multivesicular bodies than sorting into classical secretory compartments (Zuccato et al., 2007). The finding that GLUT4 ubiquitination is required for sorting into its secretory compartment is therefore novel in terms of protein sorting from the TGN.
6.2 The GGA3 GAT domain and GLUT4 traffic.

To further characterise how ubiquitin dependent sorting of GLUT4 occurs, I turned my attention to the GGA family of clathrin adaptors which, as mentioned earlier, have been implicated in sorting GLUT4 into GSVs (Watson et al., 2004; Li and Kandror, 2005). The GAT domain of GGAs is responsible for ubiquitin binding (Scott et al., 2004; Shiba et al., 2004; Bilodeau et al., 2004), and GGA3 GAT appears to have the highest avidity for ubiquitin (Puertollano and Bonifacino, 2004; Shiba et al., 2004). With this in mind, in Chapter 4 I used a ubiquitin binding deficient mutant of GGA3 (E250N D284G) to study the interaction with GLUT4 in vitro, and effects on GLUT4 sorting in vivo. In an in vitro pull-down assay using immobilised GST-GGA3 VHS-GAT (GST-VHS-GAT) and a ubiquitin binding deficient mutant thereof (GST-VHS-GATmut) I demonstrated that GLUT4 expressed in yeast can bind to GST-VHS-GAT, however this interaction is reduced on mutation of the ubiquitin binding region of the GAT domain (Figure 4.6).

I attempted to use the pull-down approach to investigate the role of the GAT domain in binding endogenous GLUT4 from 3T3-L1 adipocytes. However it proved difficult to detect any interaction between recombinant GST-VHS-GAT and GLUT4 with this approach (Figure 4.7); possibly due to the relatively low affinity of the GAT domain for ubiquitin (Kawasaki et al., 2005), and the small proportion (0.1 %) of ubiquitinated GLUT4 in 3T3-L1 cells (Lamb et al., 2010).

What possible methods could be used to overcome these obstacles, to better study the interaction of endogenous GLUT4 and the GGAs? One possibility would be to enrich ubiquitinated species in 3T3-L1 cells, perhaps by lysosome inhibition (Chandler and Ballard, 1983) or knockdown of ESCRT subunits, which has been shown to result in an accumulation of ubiquitinated species at endosomes (Bishop et al., 2002). A second possibility would be to take a more biochemical approach and use immobilised GST-UBA (described in Chapter 3) to purify ubiquitinated proteins from a large amount of adipocyte lysate - this would include GLUT4-Ub. The ubiquitinated proteins could be eluted from the GST-UBA column and passed over a GST-VHS-GAT or GST-VHS-GATmut column, and interacting proteins detected by immunoblot. However this approach would be no small undertaking and would require significant optimisation.
It would also be interesting to study the effect of introducing yeast-expressed GLUT4-K/R into the GST-VHS-GAT/GST-VHS-GAT\textsubscript{mut} pull-down assay. As this mutant is ubiquitin resistant, it would be expected to bind GST-VHS-GAT much less readily than the wild type transporter.

Further characterisation of the role of the GGA3 GAT domain in GLUT4 sorting in yeast \textit{in vivo} would also be beneficial. As I have previously discussed (1.2.2), a chimaeric protein consisting of yeast Gga2p with the GAT domain of human GGA3 (Gga2p-GATGGA3) rescues Gap1p trafficking defects when expressed in a gga1/2\textDelta yeast strain (Bilodeau \textit{et al.}, 2004). Our group has shown that GLUT4 expressed in yeast traffics in a nitrogen-responsive and ubiquitin-dependent manner similar to Gap1p (McCann R.K., 2007; Lamb \textit{et al.}, 2010), and that GLUT4 sorting into the yeast endosomal system requires Ggas (Lamb \textit{et al.}, 2010). Therefore if GLUT4 and Gga2p-GATGGA3 were co-expressed in a gga1/2\textDelta yeast strain this system could be used to analyse the effect of mutations in the ubiquitin binding GAT of GGA3 domain on GLUT4 sorting.

Having established that GST-VHS-GAT\textsubscript{mut} is impaired in its ability to interact with ubiquitin, I went on to express full length myc-GGA3 (short isoform) and a mutant version harbouring the E250N D284G point mutations (myc-GGA3\textsubscript{mut}) from retroviral constructs in 3T3-L1 adipocytes, to study the effects of expressing the mutant on GLUT4 loading into GSVs and glucose transport. My first observation on expression of these two proteins in 3T3-L1 cells was that myc-GGA3\textsubscript{mut} was expressed at much higher levels than the wild type protein, despite the expression cassettes being in identical vector backgrounds (pBABE puro; (Morgenstern and Land, 1990)). As I speculated in section 4.5, it may be that the reduced ubiquitin binding function of myc-GGA3\textsubscript{mut} results in a reduction in its ubiquitination, leading to increased stability. It already known that GAT mutation alters GGA3 ubiquitination (Shiba \textit{et al.}, 2004) although the stability of GGA3 in this context was not measured. Use of pulse-chase to radiolabel newly synthesised myc-GGA3 and myc-GGA3\textsubscript{mut} could allow the stability of both proteins to be measured. Despite the observed difference in expression there was no obvious effect on the subcellular localisation of myc-GGA3\textsubscript{mut} compared to the wild-type protein (Figure 4.9).

With the differing expression of myc-GGA3 and myc-GGA3\textsubscript{mut} in mind, I went on to analyse the effects of expressing these two proteins on the loading of GLUT4
into the GSV enriched 16,000 xg supernatant, as had been done previously in cells expressing a dominant negative GGA (Li and Kandror, 2005). Expression of myc-GGA3\textsubscript{mut} resulted in 10\% less total GLUT4 being loaded into the GSV enriched fraction (Figure 4.10). This result was interesting in that it replicated the decreased loading of GLUT4 into the 16,000 xg supernatant observed by Li and Kandror (2005), albeit to a lesser extent, and indicated that the ubiquitin binding function of the GAT domain is at least partly required for sorting GLUT4 into GSVs. There was no significant effect of myc-GGA3 expression on GLUT4 loading into the 16,000 xg supernatant, which might be expected due to the low expression of the wild type protein. It is also important to note that the 2005 study (Li and Kandror) did not use a wild-type GGA protein as a control, instead comparing empty vector transfected cells with cells expressing dominant negative GGA (EGFP-VHS-GAT).

Although there is a significant effect on GLUT4 loading into the 16,000 xg supernatant on expression of myc-GGA3\textsubscript{mut}, this did not translate into a significant effect on GLUT4 translocation as measure indirectly by \[^{3}\text{H}]\text{2-deoxyglucose uptake} (Figure 4.11). The variability of the measured uptake rates (as detailed in Appendix I) likely contributed to this.

Although more technically challenging, the effect of myc-GGA3/myc-GGA3\textsubscript{mut} expression on GLUT4 translocation could be measured more directly by using the HA-GLUT4 translocation assay detailed in chapter 3. 3T3-L1 cells could be stably infected with a retroviral construct with a particular antibiotic resistance, for example hygromycin, encoding HA-GLUT4. This stable cell line could then subsequently be infected with the pBABE puro based GGA3 constructs, and their effects on HA-GLUT4 translocation measured by analysing the levels of HA immunoreactivity in the plasma membrane of insulin stimulated adipocytes.

In summary, my work on the role of the GGA3 GAT domain in GLUT4 traffic has shown that the ubiquitin binding function of this domain is at least partially required for the sorting of GLUT4 into the insulin responsive compartment, perhaps working in concert with other GSV cargoes such as sortilin to sort GLUT4 into GSVs from the TGN. My data, when considered with previous studies from our lab, indicate that GGA3 facilitates ubiquitin dependent GLUT4 sorting into GSVs.
6.3 The deubiquitinase USP25 and GLUT4 traffic.

Although my work in chapters 3 and 4, and previous studies from our group (McCann R.K., 2007; Lamb et al., 2010) have implicated GLUT4 ubiquitination in its sorting into GSVs, there is a caveat in that ubiquitination of membrane proteins directs them into the ESCRT dependent MVB sorting pathway, eventually leading to degradation at the lysosome (Hicke and Dunn, 2003; Piper and Luzio, 2007). Our group has previously shown that only 0.1% of endogenous GLUT4 is ubiquitinated in 3T3-L1 adipocytes (Lamb et al., 2010), suggesting that the modification is transient. A requirement for deubiquitination has previously been demonstrated for the recycling of several cell surface proteins, including Frizzled (Mukai et al., 2010) and β2-AR (Berthouze et al., 2009). Given these data, I reasoned that the ubiquitin modification on GLUT4 may be a transient one, and that there may be a deubiquitination step involved in GLUT4 traffic.

A link between GLUT4 traffic and a deubiquitinase has been provided by several studies from the laboratory of Nai-Wen Chi (UCSD). Work from his laboratory identified a role for the GSV cargo IRAP and its binding partner tankyrase in the trafficking of GLUT4 (Chi and Lodish, 2000; Yeh et al., 2007). Yeast two hybrid studies by the same group identified that the deubiquitinase USP25 can interact with tankyrase and contains a putative tankyrase binding motif (RTPADG) near the C-terminus (Sbodio and Chi, 2002).

To extend these data, I used a GST pull-down approach to investigate the interaction between tankyrase and recombinant USP25. I found that GST-USP25 could pull detectable levels of tankyrase 1 out of an adipocyte lysate (Figure 5.4), and that mutation of the conserved arginine residue within the putative tankyrase binding motif prevented this interaction (Figure 5.6). These findings substantiate the yeast-2-hybrid data (Sbodio and Chi, 2002) and more recently generated in vivo co-immunoprecipitation data (N-W Chi, unpublished) that USP25 and tankyrase interact, and moreover show that the interaction is direct and depends on the integrity of the USP25 RTPADG motif. This supports my hypothesis that tankyrase and IRAP form a platform to recruit the DUB USP25 to GSVs.

Although the pull-down data are conclusive, it would be interesting to extend the investigation of the USP25-tankyrase interaction further. For instance, an epitope tagged version of USP25 R1049A and its wild type counterpart could be
expressed in 3T3-L1 adipocytes, immunoprecipitated and co-precipitated proteins blotted for tankyrase. If tankyrase 1 was not co-immunoprecipitated with USP25 R1049A this would lend further weight to my hypothesis that the two proteins interact directly and form part of a complex in 3T3-L1 adipocytes.

Another possibility would be to attempt to reconstitute the putative IRAP-tankyrase-USP25 complex in vitro. It has previously been demonstrated that the IRAP RQSPDG tankyrase binding motif alone readily binds tankyrase 1 from a 3T3-L1 lysate when expressed as a GST fusion protein (GST-RQSPDG) (Sbodio et al., 2002). This recombinant protein could be immobilised on glutathione-Sepharose beads and recombinant USP25 and tankyrase added to the beads individually and in combination with appropriate controls, for example, non-tankyrase binding versions of GST-RQSPDG and USP25, or adding recombinant USP28 in place of USP25, as it is a homologue of USP25 (Valero et al., 2001). If the three proteins formed a complex, I would anticipate recombinant USP25 to be pulled down by the GST-RQSPDG, with tankyrase 1 acting as a scaffold linking the two molecules. This method would however require some optimisation, especially regarding expression of recombinant tankyrase 1.

I went on to deplete USP25 in 3T3-L1 adipocytes using siRNA (Figure 5.7) and found that depletion of USP25 resulted in a reduction in the amount of GLUT4 in 3T3-L1 adipocytes (Figure 5.7), suggesting that USP25 is involved in maintaining GLUT4 stability. My initial attempt to ascertain whether the lysosome was responsible for this reduction in GLUT4 levels was hampered by the transfection method used and the lysosome inhibitors available; however further investigation of this would be valuable, as discussed in section 5.6. I went on to analyse the effect of the observed GLUT4 depletion on insulin responsive glucose uptake, and found that the fold change in [3H] 2-deoxyglucose uptake was reduced on USP25 knockdown. These data suggest that the proportion of GLUT4 lost on USP25 knockdown may represent an insulin responsive pool of the protein. Further analysis of USP25 depleted cells is important, for example the subcellular fractionation approach applied in chapters 3 and 4 (Li and Kandror, 2005;Lamb et al., 2010) could shed light on whether the observed GLUT4 depletion is actually from GSVs.

Overall, my investigation of knockdown of USP25 in 3T3-L1 adipocytes supports my hypothesis that USP25 is recruited to GSVs by IRAP and tankyrase, and acts to
deubiquitinate GLUT4, “trapping” it in GSVs and preventing its traffic to the lysosome. These findings are interesting in the context of studies highlighting the importance of deubiquitinases in stabilising cell surface proteins (McCullough et al., 2004; Berthouze et al., 2009; Mukai et al., 2010).

6.4 Future directions

The work I have presented in this thesis implicates ubiquitination of GLUT4 in the sorting of the transporter into GSVs. I have also begun to characterise the roles of GGA3 and USP25 in the ubiquitin dependent sorting of GLUT4. What other directions could the study of GLUT4 ubiquitination take?

One issue to address is which E3 ligase ubiquitinates GLUT4 in 3T3-L1 cells. Of the three enzyme families in the ubiquitination cascade, the E3 ligases are the most numerous (with approximately 600 ligases encoded by the human genome (Li et al., 2008)) and give the reaction its substrate specificity (Hicke and Dunn, 2003; Ciechanover, 2005). Two possible approaches could be taken to identify which of the many ligases ubiquitinated GLUT4. A screen approach using a fluorescent GLUT4 reporter (HA-GLUT4-GFP for example (Blot and McGraw, 2008)) expressed in a readily transfected cell line, such as HEK-293, would be one option. If USP25 was stably depleted in these cells, for example using a retroviral shRNA construct, this would deplete GLUT4 and reduce GFP fluorescence in these cells to a minimal level. An siRNA library of E3 ligases (Stagg et al., 2009) could be used in this background and the cells assayed for fluorescence. The prediction would be that depletion of the ligase that ubiquitinates GLUT4 would result in an increase in GFP fluorescence in these cells, as the transporter would be diverted from lysosomal degradation.

A second possibility would be to look for ligases which can interact with GLUT4, or indeed other GSV components, and characterise whether their depletion or overexpression affects GLUT4 sorting. One candidate is βTrCP (β transducing repeat containing protein), which is the substrate recognition component of the SCF (Skip-Cullin-F box) ligase complex, shown to be required for growth hormone receptor degradation (Govers et al., 1999; van Kerkhof et al., 2007). βTrCP recognises motifs related to the sequence DDSWVEFIELD on substrates (Govers et al., 1999). GLUT4 contains a variant of this motif (G. Gould, I. Adamson and N.
Bryant, unpublished) and has previously been proposed as a candidate for βTrCP directed ubiquitination (Govers et al., 1999). Mutagenesis of this motif in the context of HA-GLUT4, and subsequent analysis of the ubiquitination status, insulin responsiveness and subcellular localisation of the mutant would test whether this ligase is responsible for ubiquitin dependent GLUT4 traffic.

GLUT4 has been shown to be SUMOlated (Lalioti et al., 2002). Levels of GLUT4 are raised in 3T3-L1 cells by overexpression of the SUMO conjugating enzyme Ubc9 and decreased by depletion of the enzyme (Giorgino et al., 2000; Liu et al., 2007). However it seems that the scaffolding role of Ubc9 is more important than its enzymatic activity in maintaining GLUT4 stability, as overexpression of a catalytically inactive version of Ubc9 has the same effect on GLUT4 stability as overexpressing the wild type enzyme (Liu et al., 2007). Further study of the interplay between GLUT4 SUMOylation and ubiquitination would be of interest, especially in light of data implicating SUMOlation as a tag for protein ubiquitination (Mullen and Brill, 2008).

Finally, as the overall aim of this thesis is to better understand the biology of insulin responsive tissues and consequently type 2 diabetes, it would be interesting to extend these studies into tissue samples from type 2 diabetic patients. One study has demonstrated that adipose tissue from a cohort of type 2 diabetic patients, while displaying normal expression of IRAP, exhibits markedly altered localisation of the peptidase, with the protein redistributed from the GSV enriched LDM (low density microsome) compartment to the HDM (high density microsome) and plasma membrane (Maianu et al., 2001). This IRAP redistribution was associated with a depletion of GLUT4 from all membrane subfractions (Maianu et al., 2001). When taken together with the data I have generated in this thesis, these findings suggest that the IRAP-tankyrase-USP25 complex may be being trafficked away from the GSV compartment in this cohort of type 2 diabetes patients, resulting in increased ubiquitination and thus lysosomal degradation of GLUT4.
Chapter 7 – Appendices
7.1 Appendix I – Glucose transport assay data for Figure 4.11

Basal

<table>
<thead>
<tr>
<th></th>
<th>pBABE</th>
<th>myc-GGA3</th>
<th>myc-GGA3\textsubscript{mut}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal</td>
<td>0.00114</td>
<td>0.00466</td>
<td>0.00234</td>
</tr>
<tr>
<td>Basal</td>
<td>0.00444</td>
<td>0.00307</td>
<td>0.00356</td>
</tr>
<tr>
<td>Basal</td>
<td>0.00119</td>
<td>0.00305</td>
<td>0.003112</td>
</tr>
<tr>
<td>Basal</td>
<td>0.00431</td>
<td>0.00646</td>
<td>0.00571</td>
</tr>
<tr>
<td>Mean</td>
<td>0.00273</td>
<td>0.00431</td>
<td>0.00368</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.00181</td>
<td>0.00162</td>
<td>0.00145</td>
</tr>
</tbody>
</table>

Insulin

<table>
<thead>
<tr>
<th></th>
<th>pBABE</th>
<th>myc-GGA3</th>
<th>myc-GGA3\textsubscript{mut}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin</td>
<td>0.0162</td>
<td>0.0118</td>
<td>0.0117</td>
</tr>
<tr>
<td>Insulin</td>
<td>0.0565</td>
<td>0.0334</td>
<td>0.0322</td>
</tr>
<tr>
<td>Insulin</td>
<td>0.0271</td>
<td>0.0324</td>
<td>0.0220</td>
</tr>
<tr>
<td>Insulin</td>
<td>0.0546</td>
<td>0.0713</td>
<td>0.0398</td>
</tr>
<tr>
<td>Mean</td>
<td>0.0386</td>
<td>0.0372</td>
<td>0.0264</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.0200</td>
<td>0.0248</td>
<td>0.0122</td>
</tr>
</tbody>
</table>

Table 7.1 $[^3]$H 2-deoxyglucose uptake data for Figure 4.11.

Data are expressed as nmoles $[^3]$H 2-deoxyglucose per minute per well.
7.2 Appendix II – Glucose transport assay data for Figure 5.9

Basal

<table>
<thead>
<tr>
<th></th>
<th>Scrambled</th>
<th>siRNA25</th>
<th>siRNA27</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>376.6667</td>
<td>562.5567</td>
<td>482.78</td>
</tr>
<tr>
<td></td>
<td>205.2233</td>
<td>508.7833</td>
<td>437.8933</td>
</tr>
<tr>
<td></td>
<td>131.3333</td>
<td>325.3367</td>
<td>346.56</td>
</tr>
</tbody>
</table>

Insulin

<table>
<thead>
<tr>
<th></th>
<th>Scrambled</th>
<th>siRNA25</th>
<th>siRNA27</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1773.34</td>
<td>761.5567</td>
<td>722.7867</td>
</tr>
<tr>
<td></td>
<td>1207.333</td>
<td>1704.123</td>
<td>1013.94</td>
</tr>
<tr>
<td></td>
<td>609.78</td>
<td>1168.45</td>
<td>1278.237</td>
</tr>
</tbody>
</table>

Table 7.2 Glucose transport assay data for Figure 5.9

Data are expressed as total counts in 5 minutes.
7.3 Appendix III – publications arising from this work

Bibliography

cytoplasmic domain. An acidic cluster containing a key aspartate is important for function in lysosomal enzyme sorting. J.Biol.Chem. 272, 7003-7012.

Ref Type: Thesis/Dissertation

