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Abstract 

Loss of adaptive variation arising from population declines and fragmentation is a 

primary concern in conservation.  However, many conservation programmes assess only 

neutral genetic variation.  Whilst assessments of neutral variation are informative about 

demographic history, inbreeding and genetic structure, they do not provide information on 

adaptive variation.  The Major Histocompatibility Complex (MHC) is a group of genes that 

has been extensively studied and are known to be important in effective immune 

responses.  Given the threat posed by infectious diseases to wildlife, the MHC is 

increasingly being assessed in endangered species. 

African wild dogs (Lycaon pictus, hereafter wild dog) are an endangered canid that 

has suffered extensive declines in the wild and now persist as small and fragmented 

populations totalling less than 8,000 individuals.  The purpose of this study was to assess 

how neutral and MHC marker data genetic data can be used to assist conservation of this 

species.  As such, I assessed sequence diversity across ~300bp of mitochondrial DNA, 

patterns of polymorphism and heterozygosity at 10 neutral microsatellite loci, compared to 

sequence variation and haplotype diversity at the MHC. 

Wild dogs were found to be genetically depauperate at the MHC compared to 

other canids.  Patterns of variation indicate a historical loss of variation, followed by more 

recent diversification.  However, it was also shown that evolutionary history contributes to 

differences in diversity between species.  The spatial and temporal structure of MHC 

diversity was found to be largely correlated with neutral markers, which may suggest that 

selection is unable to counter strong genetic drift in such small populations.  Overall, 

genetic diversity of both neutral and MHC markers appeared to be largely determined by 

demographic stability and size of populations.  Habitat fragmentation and loss were 

associated with genetic isolation of wild dog populations, which showed strong structuring.  

However, the barriers to, or corridors for, dispersal of wild dogs were not always clear.  

The European captive breeding population was found to have comparable diversity 

metrics to wild populations, and was found to contain a large proportion of the MHC 

variation from the Southern African populations from which they were originally sourced.  

Careful genetic management is now required to correct the severe over- and under-

representation of some founder lineages in this captive population to reduce inbreeding 

and loss of genetic variation. 

 



3 

Table of contents 

1 Chapter 1: General introduction...................................................................................... 12 

1.1 The need for conservation ...................................................................................... 13 

1.2 Conservation genetics and genetic threats............................................................. 14 

1.3 The Major Histocompatibility Complex (MHC) ........................................................ 18 

1.4 African wild dogs..................................................................................................... 25 

1.5 Aim of the thesis ..................................................................................................... 28 

1.6 Chapter objectives .................................................................................................. 29 

2 Chapter 2: Highly endangered African wild dogs (Lycaon pictus) lack variation at the 

Major Histocompatibility Complex ........................................................................................... 31 

2.1 Abstract .................................................................................................................. 32 

2.2 Introduction ............................................................................................................. 33 

2.3 Methods.................................................................................................................. 35 

2.4 Results.................................................................................................................... 39 

2.5 Discussion .............................................................................................................. 42 

3 Chapter 3: Puzzling Persistence of African Wild Dogs in Serengeti................................ 56 

3.1 Abstract .................................................................................................................. 57 

3.2 Introduction ............................................................................................................. 58 

3.3 Methods.................................................................................................................. 60 

3.4 Results.................................................................................................................... 63 

3.5 Discussion .............................................................................................................. 65 

4 Chapter 4: Demographic processes determine patterns of genetic diversity across African 

wild dog populations................................................................................................................ 71 

4.1 Abstract .................................................................................................................. 72 

4.2 Introduction ............................................................................................................. 73 

4.3 Methods.................................................................................................................. 76 

4.4 Results.................................................................................................................... 86 

4.5 Discussion .............................................................................................................. 93 

4.6 Conclusion ............................................................................................................ 103 

5 Chapter 5: The importance of considering phylogenetic relatedness when interpreting 

patterns of MHC polymorphism in endangered species........................................................ 120 

5.1 Abstract ................................................................................................................ 121 

5.2 Introduction ........................................................................................................... 122 

5.3 Methods................................................................................................................ 125 

5.4 Results.................................................................................................................. 131 

5.5 Discussion ............................................................................................................ 135 

5.6 Conclusion ............................................................................................................ 141 

6 Chapter 6: Combining studbook information, neutral markers and MHC data to assess 

the genetic status of the European African wild dog captive breeding programme............... 157 

6.1 Abstract ................................................................................................................ 158 



4 

6.2 Introduction ........................................................................................................... 159 

6.3 Methods................................................................................................................ 161 

6.4 Results.................................................................................................................. 167 

6.5 Discussion ............................................................................................................ 172 

7 Chapter 7: General Discussion ..................................................................................... 186 

7.1 Genetics in conservation ...................................................................................... 187 

7.2 Broader implications of this work .......................................................................... 192 

7.3 Future work........................................................................................................... 194 



5 

List of Tables 
Table  2.1: List of captive African wild dog samples contributed. ............................................. 51 

Table  2.2: Frequency of DLA-DRB1 alleles and lineages across the sampling localities........ 52 

Table  2.3: Frequency of DLA-DQB1 alleles across the sampling localities............................. 54 

Table  2.4: Comparison of DLA alleles found in different canid populations. ........................... 55 

Table  3.1: Genetic diversity and heterozygosity estimates based on microsatellite and MHC 

markers, for samples from the Pre-extinction and Re-established Serengeti-Mara. ............... 69 

Table  3.2: Frequency of MHC-DRB alleles and lineages in the Pre-extinction and Re-

established Serengeti-Mara. ................................................................................................... 70 

Table  4.1: Details of the origin of the African wild dog samples used in this study ............... 113 

Table  4.2: Sample sizes and distribution of mtDNA haplotypes across African wild dog 

populations............................................................................................................................ 114 

Table  4.3: Summary of diversity statistics for mtDNA, microsatellite and MHC markers....... 115 

Table  4.4: Frequencies of MHC-DRB1 alleles and lineages in each population. .................. 116 

Table  4.5: Estimates and 95% confidences intervals of effective population size based on 

three methods. ...................................................................................................................... 117 

Table  4.6:  Findings from bottleneck tests conducted on five populations. ........................... 118 

Table  4.7:  Estimates of ancestral and current effective population sizes and time since decline 

derived from coalescent simulations in MSVAR.................................................................... 118 

Table  4.8: Results from hierarchical analysis of molecular variance..................................... 119 

Table  5.1:  Number of DRB, DQB, DQA alleles found in the wolf-like canids.. ..................... 151 

Table  5.2: Allele sharing amongst the wolf-like canids at the DRB, DQB and DQA loci........ 152 

Table  5.3: Results from tests for selection at the DRB locus ................................................ 153 

Table  5.4: Results from tests for selection at the DQB locus ................................................ 154 

Table  5.5: Results from tests for selection at the DQA locus ................................................ 155 

Table  5.6: Diversity at three MHC class II loci across the wolf-like canids ............................ 156 

Table  6.1: List of samples contributed by different EUZ........................................................ 179 

Table  6.2: mtDNA haplotypes of the 17 females in the extant EUZ population..................... 181 

Table  6.3: Sample sizes and distribution of mtDNA haplotypes in wild and captive populations 

of wild dogs. .......................................................................................................................... 182 

Table  6.4: DRB1 allele frequencies for EUZ, SAZ and WILD populations. ........................... 183 

Table  6.5: Effective populations size, and microsatellite and MHC diversity metrics for EUZ, 

SAZ and WILD populations................................................................................................... 184 

Table  6.6: Pairwise estimates of microsatellite genetic differentiation between EUZ, SAZ and 

WILD populations.................................................................................................................. 185 



6 

List of Figures 
Figure  2.1:  Historic and present range of African wild dogs ................................................... 47 

Figure  2.2: African wild dog DLA-DRB1 alleles aligned to a domestic dog sequence............. 48 

Figure  2.3: Segregation analysis of DLA-DRB1 alleles in captive African wild dogs............... 49 

Figure  2.4: Neighbor-joining tree of DLA-DRB1 alleles ........................................................... 50 

Figure  3.1: (A) Map of sampling locations. (B) Approximate area of Serengeti-Mara pre-

extinction and re-established monitoring areas.  (C) Population subdivision based on 

neighbour-joining tree. (D) Population structure based on STRUCTURE analyses. ............... 67 

Figure  3.2: Magnitude of ΔK as a function of K.. ..................................................................... 68 

Figure  4.1: Historic and present distribution of African wild dogs.. ........................................ 104 

Figure  4.2: African wild dog DLA-DRB1 alleles aligned to allele A1...................................... 105 

Figure  4.3:  Mitochondrial DNA variation in African wild dogs............................................... 106 

Figure  4.4: Unrooted neighbour-joining network based on 10 microsatellite loci .................. 107 

Figure  4.5: Genetic structure of African wild dog populations based on Bayesian clustering 

analyses................................................................................................................................ 108 

Figure  4.6: Principle coordinates analysis of African wild dog............................................... 109 

Figure  4.7: Estimates of long term migration rates between African wild dog populations.... 110 

Figure  4.8: a) Correlation of pairwise genetic differentiation between populations for DRB and 

microsatellite markers b) and c) Regression of pairwise genetic distance against geographic 

distance................................................................................................................................. 111 

Figure  4.9: Theoretical expectations of how genetic differentiation changes with geographic 

distance................................................................................................................................. 112 

Figure  5.1: Phylogenetic tree of the wolf-like canids ............................................................. 142 

Figure  5.2: Amino acid variability at DRB codons across eight wolf-like canid species......... 143 

Figure  5.3: Levels of MHC trans-specific polymorphism and MHC diversity for endangered and 

abundant wolf-like canids and hybridising and non-hybridising wolf-like canids ................... 144 

Figure  5.4: Mr Bayes tree of wolf-like canid DRB alleles....................................................... 146 

Figure  5.5: Mr Bayes tree of wolf-like canid DQB alleles ...................................................... 148 

Figure  5.6:  Mr Bayes tree of wolf-like canid DQA alleles. .................................................... 150 

Figure  6.1: Current captive EUZ wild dog pedigree............................................................... 179 

Figure  6.2: Geneti Structure of EUZ and SAZ captive wild dogs........................................... 178 



7 

List of Accompanying Material 

A full size (A1) pedigree for Chapter 6 (Figure 6.1) is provided as accompanying material. 

 



8 

Acknowledgement 

Firstly, and most of all, I would like to thank my PhD supervisor, Barbara Mable; I 

am hugely grateful for all of the time and energy you have invested in me and also for 

your patience – alas I fear I required much of that.  Thank you also for encouraging me to 

leave the office occasionally to join you on various hiking adventures, which certainly were 

the highlight of Glasgow.  I also need to thank my co-supervisors: Dan Haydon for help 

with project management, statistics and multiple near death experiences, and Lorna 

Kennedy at the University of Manchester for training in MHC typing.  I am also very 

grateful to Sarah Cleaveland and Greg Rasmussen for providing much useful advice with 

various wild dog aspects of the project.  I would like to thank Rob Thomas, my CASE 

partner at The Royal Zoological Society of Scotland, who provided much funding and 

assistance.  I am hugely grateful to Aileen Adam for much training and assistance in the 

lab, as well as providing significant chocolate supplies.  To Liz Masden, I couldn’t have 

done it without you mate, and Katie Prager, it was great to work with someone else who 

studies wild dogs (even if they deny it)!  At UCLA, I would like to thank Bob Wayne, for 

allowing me to join his lab for 6 months and use his canid freezers, but also for his helpful 

perspective on manuscripts.  Also at UCLA, I need to thank John Pollinger for his help 

with various evil genetic programmes, Klaus Koepfli for his unrivalled scientific passion 

and enthusiasm, and to Bridgett vonHoldt for just being so damn clever - you certainly 

raised the bar.  Overall, Klaus, Bridgett, Daniel, James, Sergio and Rena, you made 

UCLA the most enjoyable and humorous 6 months of the PhD; I didn’t realise North 

American’s could do ‘wit’.   

I am indebted to Rosie Woodroffe for enabling me to tap into her expertise and 

knowledge of wild dogs, and for facilitating collaborations with the wild dog network.  I am 

also hugely grateful to researchers from many wild dog field projects that entrusted their 

samples with me, as well as providing much field information and help with interpretation 

of findings: Gus Mills (Old Kruger); Harriet Davies, Paulette Bloomer and Janet Edwards 

(Recent Kruger and metapopulation); R.Lines (NE Namibia); F.Stander (NE Namibia); 

Tico McNutt (Old and Recent Okavango); Josh Ginsberg (Hwange); Greg Rasmussen 

(Hwange); Mark Swarner (Ghanzi), Rosemary Groom (Lowveld/Savé), Jean-Marc André 

(Sofala), Colleen and Keith Begg (Niassa), Scott Creel (Selous), Aart Viseé (Masai 

Steppe), Sarah Cleaveland (Old Serengeti), Emmanuel Masenga (Recent Serengeti), 

Pieter Kat (Masai-Mara), Rosie Woodroffe (Laikipia), A.Bastos, T.Matjila and H.Strydom 

(South African captive and metapopulation).  Further samples were provided by Andrew 

Kitchener (museum specimens) and Arati Ivengar (Dhole samples), for which I am very 

grateful.   



9 

For the zoo research, I need to thank the studbook coordinator, Hanny 

Verberkmoes, who made it all possible. But overall, I need to thank all of the EEP Species 

Committee for African wild dogs for patiently teaching me the realities of captive breeding 

management: Wim and Hanny Verberkmoes (Kerkrade), Jens Lilleør (Aalborg), Stefan 

Stadler, (Frankfurt), Lennart Sunden (Kolmarden), Lars Versteege (Hilvarenbeek), Alexis 

Maillot (Amnéville), Hans van Weerd (Amsterdam).  I am also hugely grateful to all of the 

zoos that collaborated with this research by providing samples and information: Aalborg 

zoo, Aalborg, Denmark; Artis zoo, Amsterdam, Netherlands; Attica Zoological Park, 

Spata, Greece; Beekse Bergen Safarai Park, Hilvarenbeek, Netherlands; Borås Djurpark 

Zoo, Alvsborg, Sweden; Bretagne Zoo Sarl, Pont-Scorff, France; Centre d'Etude Rech 

Zool Augeron, Lisieux, France; City of Belfast Zoo, Belfast, UK; Colchester zoo, Essex, 

UK; Ebeltoft zoo, Ebeltoft, Denmark; Edinburgh Zoo, Edinburgh, UK; Friguia Zoo, 

Hammam, Tunisia; Fondazione Bioparco di Roma, Rome, Italy; GaiaPark Kerkrade Zoo, 

Kerkrade, Netherlands; Kolmården Djurpark AB, Kolmården, Sweden; La Palmyre Zoo, 

Royan, France; Le Pal Parc Animalier, Dompierre-sur-Besbre, France; London zoo, 

London, UK; Munchener Tierpark; Hellabrunn, Muenchen, Germany; Parken Zoo 

Eskilstuna AB, Sodermanland, Sweden; Port Lymne Wild Animal Park, Hythe, UK; Quinta 

De Santo Inacio, Avintes, Portugal; Reserve Africaine De Sigean, Sigean, France; 

Rostock Zoologischer Garten, Rostock, Germany; Safari De Peaugres, Peaugres, France; 

Warsaw Zoological Garden, Warszawa, Poland; West Midland Safari & Leisure Park, 

Worcester, UK; Zoo Basel, Basel, Switzerland; Zoo Dortmund, Dormund, Germany; Zoo 

D’Amneville, Amneville, France; Zoo Dvůr Králové, Dvůr Králové nad Labem, Czech 

Republic; Zoo Duisburgh Ag, Duisburg, Germany; Zoological Center Tel Aviv, Ramat Gan, 

Israel; Zoological Society of Ireland-Dublin, Dublin, Ireland.   

 



10 

Author’s declaration 

I declare that the work recorded in this thesis is entirely my own, except where 

otherwise stated, and that it has not been submitted as part of a degree elsewhere.  Much 

of this thesis has been produced in co-authorship, and my personal contribution to 

individual chapters is listed below. 

Chapter 2: Published as: Marsden, C.D., Mable, B.K., Woodroffe, R., Rasmussen, 

G.S.A., Cleaveland, S., McNutt, J.W., Emmanuel, M., Thomas, R., Kennedy, L.J. (2009) 

Highly endangered African wild dogs (Lycaon pictus) lack variation at the major 

histocompatibility complex.  Journal of Heredity 100: S45-65.  Initial concept developed 

by BKM and CDM.  Field sampling conducted by RW, GSAR, SC, JWM, EM, who also 

provided comments on the manuscript.  LJK trained CDM in MHC typing and RSCA 

analysis.  Study design, lab work, analyses of data and drafting of manuscript by CDM.  

Final draft was completed after detailed comments on manuscript from BKM and LJK.  

Chapter 3: Submitted to Molecular Ecology and currently in revision as: Marsden, 

C.D., Wayne, R.K. Mable, B.K. Puzzling persistance of African wild dogs in Serengeti. 

Molecular Ecology submitted. S. Cleaveland proposed the project.  Field samples 

provided by S. Cleaveland, M. Emmanuel, A. Visée, P. Kat, S. Creel, R. Woodroffe. CDM 

planned the study, conducted the lab work (except microsatellite PCRs, which were 

conducted by A. Adam) and analyses and drafted the first manuscript.  The final draft was 

completed after detailed comments on manuscript by RKW, BKM, R. Woodroffe and S. 

Cleaveland.   

Chapter 4: In preparation for submission to Molecular Ecology as: Marsden, C.D., 

Wayne, R.K. Woodroffe, R., Mills, M.G.L, McNutt, J.W. Creel, S., Groom, R., Masenga, 

E.H., Cleaveland, S., Kat, P., Rasmussen, G.S.A., Ginsberg, J. Lines, R., André, J-M., 

Begg, C., Mable, B.K..  Demographic processes determine patterns of genetic 

variation across African wild dog populations.  Initial concept developed by BKM and 

CDM.  RW, MGLM, JWM, SC, RG, EHM, SC, PK, GSAR, JG, JMA, CB, RKW, provided 

samples and field information, and commented on results.  Study design, lab work (except 

microsatellite PCR’s, which were conducted by A. Adam), analyses of data and drafting of 

manuscript by CDM.  BKM and RKW provided advice with analyses.  Final draft 

completed after detailed comments from BKM.     

Chapter 5: In preparation for submission to Molecular Phylogenetics and Evolution 

as; Marsden, C.D., Mable, B.M, Koepfli, K-P., Kennedy, L.K., Wayne, R.K.  The 

importance of considering phylogenetic relatedness when interpreting patterns of 



11 

MHC polymorphism in endangered species. CDM proposed and designed the study, 

conducted lab work, analyses of data and drafting of manuscript.  Samples were provided 

by RKW and KPK.  LJK provided Ethiopian wolf data.  BKM provided advice with analyses 

and detailed comments on manuscript.   

Chapter 6: In preparation for submission for Conservation Genetics as; Marsden, 

C.D., Wayne, R.K., Verberkmoes, H., Thomas, R., Mable, B.K.  Combining studbook, 

neutral markers and MHC data for an assessment of the genetic status of the 

European African wild dog captive breeding programme. RT proposed the research.  

CDM developed the concept and designed the study.  HV and CDM facilitated a sampling 

programme in zoos.  Individual zoos collected the samples.  South African zoo samples 

were provided through A. Bastos and RKW.  CDM conducted lab work (except 

microsatellite PCR’s, which were conducted by A. Adam), analysis of data and drafting of 

manuscript.  HV provided the studbook and general information.  BKM provided extensive 

comments on manuscript.  The management suggestions were devised in Kerkrade in 

May 2008 with the EEP Species Committee for African wild dogs and have now been 

implemented and are in effect.  The EEP committee consisted of Wim and Hanny 

Verberkmoes (Kerkrade), Jens Lilleør (Aalborg), Stefan Stadler, (Frankfurt), Lennart 

Sunden (Kolmarden), Lars Versteege (Hilvarenbeek), Alexis Maillot (Amnéville), Hans van 

Weerd (Amsterdam). 

 



 

1 Chapter 1: General introduction 



13 

1.1 The need for conservation 

Habitat destruction, unsustainable harvesting, persecution and environmental 

pollution have resulted in unprecedented rates of species decline and extinction (reviewed 

in Lande 1988; Stokstad 2005).  The proportion of species (36%) currently threatened with 

extinction present a clear signal that effective conservation strategies are urgently 

required to prevent widespread extinctions (IUCN 2010; Wall et al. 2001). 

Conservation biology is a field that draws from a variety of disciplines, including 

veterinary medicine, wildlife biology and ecology (Frankham et al. 2002; O'Brien 1994).  

Relatively speaking, conservation genetics is a new aspect of conservation biology 

associated with the use of genetic theory and genetic data to improve conservation of 

species.  For example, genetic data have been used to help understand species biology, 

resolve taxonomy and identify management units (Frankham et al. 2002; Palsboll et al. 

2007). Although many conservation programmes now incorporate conservation genetics, 

it is not routinely implemented for most systems (Amos & Balmford 2001; Moran 2002).  

However, consideration of genetic threats and the use of genetic information in these 

situations is vital.  Firstly, because most species requiring conservation typically persist in 

small and isolated populations and thus are at high risk of genetic threats.  Secondly, 

because implementation of conservation efforts can increase genetic threats (Ellstrand & 

Elam 1993; Frankham et al. 2002; Lacy 1997; Moran 2002).   
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1.2 Conservation genetics and genetic threats  

Where populations become small and isolated, they are at risk to a number of 

genetic threats including inbreeding depression, genetic drift and loss of genetic variation. 

The occurrence of these genetic threats are dependent on effective population size (Ne), 

which is defined as "the number of breeding individuals in an idealised population that 

would show the same amount of dispersion of allele frequencies under random genetic 

drift or the same amount of inbreeding as the population under consideration" (Wright 

1931).  Since populations rarely meet the assumptions of an idealised populations (stable 

population sizes; equal sex ratios; equal reproductive success between individuals; non 

overlapping generations), census population sizes are typically much smaller than Ne 

(Frankham 1995a; Frankham et al. 2002). 

 Inbreeding depression 

Inbreeding results from the mating of related individuals (Caughley 1994; Ellstrand 

& Elam 1993). Genetic theory suggests that inbreeding results in inbreeding depression, 

that is, general reductions in fitness such as reduced disease resistance and reproductive 

output, thus making populations/species more vulnerable to extinction (Charlesworth & 

Charlesworth 1999; Edmands 2007; Keller & Waller 2002). Two mechanisitic 

explainations have been proposed for inbreeding depression; overdominance and partial 

dominance (Charlesworth & Charlesworth 1999; Edmands 2007; Keller & Waller 2002).  

Overdominance is associated with the loss of heterzygote advantage occurring as a result 

of increased homozygosity that occurs as a consequence of inbreeding.  Partial 

dominance is based on the expectation that inbreeding results in a higher chance that an 

individual will inherit (from its parents) two copies of the same allele that are identical by 

descent, thus increasing expression of random deleterious mutations/alleles 

(Charlesworth & Charlesworth 1999; Edmands 2007; Keller & Waller 2002). The 

probability of this occurring is known as the inbreeding coefficient (F), which is measured 

by the extent of loss of heterozygosity (i.e. loss of allelic diversity) relative to Hardy-

Weinberg expectations, that is, for a population which is infinitely large, randomly mating, 

with no gene flow, mutation or selection (Hartl & Clark 2007).  Genetic theory has shown 

that inbreeding increases according to Ne ;  ∆F = 1/2 Ne (Barrett & Kohn 1991; Frankham 

1996; Wright 1931).  Inbreeding depression has been demonstrated in a number of 

species.  For example, a small population (N=40) of adders (Vipera berus) that became 

isolated in Sweden exhibited high and atypical levels of stillborn and malformed offspring 

indicative of inbreeding depression, which resulted in population declines (Madsen 1996).  

However, the introduction of 20 adult males from another population reduced the 

frequency of abnormalities and drastically increased recruitment.  The transferring of 
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individuals between populations raises the subject of outbreeding depression.  

Outbreeding depression is caused by the mating of individuals from genetically divergent 

populations, resulting in offspring with reduced fitness because of the breakdown of co-

adapted gene complexes or gene-environment interactions (Edmands 2007; Marshall & 

Spalton 2000).  A severe example of this has been shown with salmonid fish, where 

hatchery stock has been used widely to augment declining natural populations.  However, 

salmonid fish have strong local adaptation in migration behaviour and thus introgression 

between hatchery stock and wild born fish has resulted in lower return rates to natural 

breeding grounds and dramatic population declines (Allendorf & Waples 1996).  Another 

example comes from Atlantic salmon (Salmo salar), where stock transfers from Baltic 

populations to East Atlantic populations led to the extinction of native stock in 26/212 

Norwegian rivers (Johnsen & Jensen 1986).  This was caused by differences in local 

adaptation to parasite communities; Baltic populations were resistant to a local 

monogenean parasite, whereas East Atlantic populations (i.e. Norway) had not been 

exposed and were susceptible.  Thus, when the parasite was inadvertently transferred 

with the Baltic stock, it resulted in widespread declines to the Norwegian populations.  

Overall, the examples given here demonstrate that both inbreeding and outbreeding 

depression can increase vulnerability to extinction (Edmands 2007; Hedrick 2001; 

Marshall & Spalton 2000; Saccheri et al. 1998). 

Genetic drift  

Genetic drift causes random changes in allele frequencies due to the sampling 

effect of alleles transmitted between generations (Ellstrand & Elam 1993), which results in 

random fixation and/or loss of alleles (Lacy 1997; Lande 1988).  Genetic theory states that 

the extent of genetic drift is determined by effective population size.  In small populations, 

genetic drift replaces selection as the dominant evolutionary force (Wright 1931).  As 

such, all alleles effectively behave neutrally, which increases the chance that deleterious 

alleles could become randomly fixed and beneficial alleles lost.  Overall, genetic drift 

increases the rate of loss of genetic diversity; the fraction of neutral variation lost per 

generation = 1/(2Ne) (Barrett & Kohn 1991; Ellstrand & Elam 1993).  Bottlenecks and 

founder effects are a form of genetic drift, and typically result in severe reductions in 

diversity.  For example, the Mauritius Kestrel (Falco punctatus) suffered a bottleneck from 

hundreds to just one breeding pair, and this was associated with a large decline in genetic 

diversity (Groombridge et al. 2000). 

Loss of genetic diversity  

Loss of genetic diversity is inherent to population reductions and further 

exacerbated by the strength of genetic drift and inbreeding in small populations (Ellstrand 
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& Elam 1993; Higgins & Lynch 2001; Lacy 1997; Lande 1988).   However, this is thought 

to be one of the greatest threats to the persistence of species (Lacy 1997) because 

evolutionary change is reliant on the presence of adaptive genetic variation (Briggs & 

Goldman 2006; Lavergne & Molofsky 2007; Reznick et al. 1997).  For example, Bradshaw 

(1991) observed that resistance to heavy metals was only observed in genetically diverse 

populations of Agrostis stolonifera.  Although evolution is most commonly associated with 

long time scales, it can occur over very short periods (reviewed in Stockwell et al. 2003).  

For example in Tasmanian devils (Sarcophilus harrisii), a shift from iteroparity to 

semelparity and dramatic increase in precocious sexual maturity have been observed 

within 10 years in response to high mortality arising from a lack of immunity to devil facial 

tumour disease (Jones et al. 2008).  Rapid change is particularly important for 

endangered species, given that most instances of species extinction result from the 

inability of a species to respond to changes in their environment, such as new predators 

or diseases or changes in weather conditions (Lacy 1997).   

Overall, the examples mentioned and many others (e.g. Antiguan racer snake, 

Alsophis antiguae, (Daltry et al. 2001); Florida panther, Felis concolor coryi, (Roelke et al. 

1993); Tasmanian devil, ,(Hawkins et al. 2006), demonstrate that genetic factors can 

threaten species persistence.  However, there are also examples of species showing 

survival despite low levels of genetic variation and high levels of inbreeding (e.g. Chatham 

Island Black robin, Petroica traverse, (Ardern & Lambert 1997; Miller & Lambert 2004); 

Northern elephant seal, Mirounga angustirostris, (Bonnell 1974).  These varying results 

indicate that the relationship between extinction risk and genetic diversity and/or 

inbreeding is complex.  However, they are not unexpected because the effects of 

bottlenecks are highly stochastic and depend on the speed, duration and size of the 

bottleneck (Bouzat 2010; Ejsmond & Radwan 2009). Furthermore, the effects of genetic 

drift and inbreeding accumulate over time (Frankham 1995b), and expression of 

deleterious alleles can be environmentally dependent (Barrett & Kohn 1991); for example, 

mortality of song sparrows (Melospiza melodia) on Mandarte island during severe weather 

conditions was much higher amongst inbred individuals than outbred ones (Keller 1998; 

Keller & Waller 2002).  As such, populations that do not appear to be suffering genetic 

threats cannot be assumed to be unaffected, and thus continuous monitoring is important 

(Lacy 1997).  Overall, there is a general consensus that genetic threats pose significant 

threats and that conservation genetics should be used to monitor and assess these. 

However, conservation genetics also provides a unique and powerful tool for addressing 

questions that can not be assessed using other approaches, such as elucidating geneflow 

between populations, determining parentage, investigating demographic history of 

populations and applying wildlife forensics (Frankham et al. 2002). 
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Conservation genetic studies typically rely on neutral genetic markers such as 

microsatellites and mitochondrial DNA (Ennos et al. 1997; Frankham et al. 2002; Lynch 

1996).  These are the most appropriate type of markers for addressing questions relating 

to population structure, inbreeding, relatedness and demographic history.  However, the 

ability of neutral markers to reflect adaptive genetic diversity has been heavily criticised 

(Ennos et al. 1997; Frankham et al. 2002; Lynch 1996) because they are not subject to 

selection and therefore neutral markers are unlikely to be correlated with adaptive traits.  

The ability to measure adaptive genetic variation is vital to detect adaptive differences 

between individuals/populations and loss of evolutionary potential as well as to improve 

our understanding of the forces that govern adaptive variation so we can conserve it more 

effectively (Ennos et al. 1997; Lynch 1996; Moran 2002).  As such there is clearly a need 

for assessments of loci directly under selection (Miller et al. 2001). As one of the most well 

understood adaptive loci (Bernatchez & Landry 2003; Miller et al. 2001), and with clear 

relevance to viability (Hoglund 2009; Piertney & Oliver 2006; Siddle et al. 2007), the major 

histocompatibility complex (MHC) is currently one of the best markers available to use as 

a proxy for adaptive genetic variation.   
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1.3 The Major Histocompatibility Complex (MHC)  

Structure, function and diversity of the MHC 

The MHC includes multiple highly polymorphic genes that code for a set of cell-

surface molecules involved in the recognition of foreign antigens as part of the immune 

response (Klein 1980).  The MHC consists of three gene regions (classes I, II and III).  

MHC III genes include complement proteins and some cytokines involved in immune 

pathways, but are not discussed further here.  MHC class I and II molecules function in 

the recognition of intracellular protein antigens, such as viruses (class I), and extracellular 

protein antigens, such as bacteria and nematodes (class II) (Klein & Horejsi 1997; Klein & 

Sato 2000).  MHC class I genes are expressed on all nucleated cells and are made up of 

a trans-membrane peptide known as the heavy chain and three extra-cellular domains 

(Jeffery & Bangham 2000), whereas MHC class II genes are mainly expressed on 

antigen-presenting cells such as B cells, dendritic cells and macrophages and consist of 

an α and β chain (Klein & Horejsi 1997; Watts 1997).  Recognition of foreign antigens in 

MHC class I and II molecules occurs at the peptide binding residues (PBR), where 

peptides are loaded.  If they are recognised, the MHC molecules then present the 

peptides to thymus-derived lymphocytes (T cells) which triggers an immune response 

(Klein et al. 2007) .  Alleles at a MHC locus differ in their specificity in terms of what 

antigens they can bind to, although individual alleles are able to bind to a variety of 

peptides, and different alleles may be able to bind to the same peptides (Klein et al. 

2007).  Diversity at the MHC is thought to be important for diverse immune capabilities 

(Doherty & Zinkernagel 1975; Klein et al. 2007; Sommer et al. 2002), specifically 

functional diversity amongst alleles.  However, determining functional diversity from 

sequence data presents a significant challenge.  The divergent allele advantage 

hypothesis proposed by Wakeland (1990) predicts that highly divergent alleles are able to 

confer resistance to a wider range of pathogens, but single amino acid changes have 

been shown to be distinguish susceptible from resistant forms of proteins (e.g. Bryan et al. 

2000).  Furthermore, amongst MHC alleles, the ability to bind to different pathogens is 

thought to be largely attributable to variation in the functionally important PBR (Klein et al. 

2007).  Therefore, sequence diversity in the PBR is likely to be particularly important.  

Overall, whilst it will rarely be possible to test functional differences between alleles, it is 

important for diversity studies to consider divergence between alleles (Spurgin & 

Richardson 2010).  
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Structure of the MHC in canids 

Due to its status as a model species, extensive research has been conducted on 

the domestic dog (Canis familiaris) MHC, known as the dog leukocyte antigen (DLA) 

(Kennedy et al. 2002a; Kennedy et al. 2002b; Kennedy et al. 1999; Kennedy et al. 2000; 

Wagner 2003; Wagner et al. 1999), enabling understanding of the genetic organisation 

and diversity of the DLA.  Genomic structure analyses have shown that the DLA is split; 

~3-Mbp of Class II, III and I genes are located on chromosome 12 and a further ~ 500 kbp 

of Class I genes and four further pseudogenes on chromosome 35 (Yuhki et al. 2007).  

The DLA class I region also consists of several genes, one of which (DLA-88) is known to 

be highly polymorphic (Wagner et al. 1999).  The class III region has been less well 

characterised, but consists of a number of genes, including tumor necrosis factor (TNF) 

and lymphotoxin-alpha (LTA) (Yuhki et al. 2007). Overall, assessments of the DLA have 

primarily focused on four MHC class II loci; DLA-DRB1 (highly polymorphic), DLA-DQB1 

(highly polymorphic), DLA-DQA (moderately polymorphic), and DLA-DRA (monomorphic), 

which together encode the two α and β chains of class II molecules.  These genes have 

been found to be tightly linked and inherited as a haplotype (Kennedy 2007).  

Associations have been found between MHC class II haplotypes and a number of 

immune-mediated conditions in domestic dogs, including canine hypothyroidism (Kennedy 

et al. 2006c), haemolytic anaemia (Kennedy et al. 2006a), diabetes mellitus (Kennedy et 

al. 2006b) and visceral leishmaniasis (Quinnell et al. 2003).   With the knowledge gained 

from domestic dog studies, it is possible to expand MHC research to other canids.  

Indeed, studies have already been conducted on the Grey wolf (Canis lupus) (Kennedy et 

al. 2007a; Seddon & Ellegren 2002), Ethiopian wolf (Canis simensis) (Kennedy in prep), 

Mexican wolf (Canis lupus baileyi) (Hedrick et al. 2000) and Red wolf (Canis rufus) 

(Hedrick et al. 2000).   

Mechanisms driving diversity at the MHC 

A defining feature of MHC genes is their high diversity (Garrigan & Hedrick 2003).  

This diversity is thought to be primarily the result of balancing selection, which is predicted 

to maintain a large number of medium frequency alleles, which reduces the likelihood that 

alleles will become fixed and overall increases levels of heterozygosity (Garrigan & 

Hedrick 2003; Muirhead 2001).  Balancing selection is also thought to be responsible for 

the retention of ancestral polymorphism (trans-specific polymorphism), resulting in high 

sequence diversity amongst alleles within a species.   

A large number of studies have shown associations between specific MHC alleles 

and susceptibility or resistance to specific diseases (reviewed in Hill 1998; Piertney & 

Oliver 2006).  For example, Quinnell (2003) found that susceptibility to visceral 
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leishmaniasis in domestic dogs was associated with specific MHC alleles at the DRB 

locus, and a number of protective MHC haplotypes to malaria have been demonstrated in 

humans (reviewed in Hill 1998).  Studies have also demonstrated that heterozyogous 

individuals (Oliver et al. 2009b) and individuals with highly divergent MHC alleles 

(Schwensow et al. 2010) have lower parasite burdens.  Together, these data support the 

contention that the high levels of diversity at the MHC are maintained by some form of 

pathogen-driven balancing selection.  Three mechanisms of pathogen-mediated selection 

have been proposed for the MHC: 1) heterozygote advantage (Doherty & Zinkernagel 

1975); 2) negative frequency dependent selection (Slade & McCallum 1992); and 3) 

fluctuating selection (Hill 1991).  Heterozygote advantage predicts that heterozygotes can 

respond to a wider range of pathogens than homozygotes, which have just one allele 

(over-dominance) (Sommer 2005).  Overall, the higher fitness of heterozygotes results in 

a large number of MHC alleles being maintained in the population (Spurgin & Richardson 

2010).  Negative frequency dependent selection is based on the arms race between MHC 

alleles and pathogen resistance.  Theory predicts that there should be strong pressure for 

pathogens to become resistant to the most common MHC alleles.  As such, there should 

be less resistance against new or rare alleles and thus these should have a selective 

advantage and increase in frequency (Spurgin & Richardson 2010).  Overall, changes in 

allele frequencies reduce the probability that alleles become fixed or lost, resulting in large 

numbers of alleles being maintained. Fluctuating selection is derived from the fact that 

pathogen pressures vary both spatially and temporally, which results in directional 

selection for different alleles in different locations, as well as changes in selection, and 

thus alleles, within an area over time (Hill 1991; Spurgin & Richardson 2010).  This results 

in a large number of alleles being maintained across all populations.  Many studies have 

tried to determine which of these three mechanisms of balancing selection are most 

important in a system, but this has been difficult because they are not exclusive (Spurgin 

& Richardson).  For example, an excess of heterozygotes could be the result of either 

heterozygote advantage or negative frequency-dependent selection through selection for 

a specific allele in a heterozygote.  Furthermore, changes in alleles over time could 

represent either directional selection or negative frequency dependent selection. 

In addition to pathogen-mediated balancing selection, it has also been proposed 

that MHC diversity can be maintained by mate choice (reviewed in Milinski 2006).  In 

some species, the same MHC molecules that function in immune responses have also 

been shown to function as odorants (Carroll et al. 2002; Eggert et al. 1998; Slev et al. 

2006).  As such, it is thought that the MHC might act as cue in mate choice to enable 

selection of mates with dissimilar or pathogen resistant MHC genotypes, or that the MHC 

may be used as a ‘marker of relatedness’ to avoid inbreeding (Arcaro & Eklund 1999; 

Landry & Bernatchez 2001; Penn & Potts 1998; Slev et al. 2006).  Whilst this has been 

demonstrated in some species (reviewed in Bernatchez & Landry 2003; Piertney & Oliver 
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2006), the results have been highly variable, and more recent studies implicate the 

importance of other chemical signalling proteins (e.g. major urinary proteins in mice) 

(Hurst et al. 2001; Thom et al. 2008).  Overall, the data from wild populations has proven 

limited, indicating that pathogen-driven selection is the primary selection mechanism at 

the MHC (Radwan et al. 2010).   

Evidence of MHC selection in wild populations 

There are a variety of tests available for detecting selection in wild populations 

which Garrigan (2003) distinguished according to the timescale at which they detect 

selection.  Over historical time scales, evidence that balancing selection operates at the 

MHC has been demonstrated by an excess of non-synonymous variation (dN>dS) amongst 

MHC alleles, as well as the concentration of non-synonymous changes to the residues 

(PBR) intricately involved with the recognition of foreign antigens (Furlong & Yang 2008), 

i.e. the sites where amino acid changes are most likely to result in functional changes.  

However, Garrigan (2003) demonstrated that such signals of selection typically take a 

very long time to both appear and disappear (10,000 -100,000 years).  As such, it is only 

possible to infer that selection has occurred, not when it occurred.  It is also important to 

consider that the power of these tests is low when there are few sequences (Nozawa et 

al. 2009) or if strong genetic drift has eroded the signal of selection (Garrigan & Hedrick 

2003).  A related test is the McDonald-Kreitman test, which compares variation at 

synonymous and non-synonymous sites within species to divergence between species.   

If all nonsynonymous mutations are neutral, the ratio of non-synonymous to synonymous 

variation within species (dN:dS) should be equal to non-synonymous to synonymous 

variation within species between species (pN:pS), whereas if they are advantageous, the 

mutations should increase divergence between species, resulting in dN:dS > pN:pS (Egea et 

al. 2008).  This is one of the most widely used tests for inferring selection; however, its 

application to the MHC is restricted by increased sharing of alleles or allelic lineages 

between species expected under balancing selection (trans-specific polymorphism), which 

decreases fixed differences between species which results in too many zero values to 

compute the test (Garrigan & Hedrick 2003).  Another sequence-based test is the Tajima’s 

D statistic, which assesses whether DNA sequences are evolving neutrally, or whether 

they are evolving under a non-random process (explained in more detail in Chapter 4).  

Where D=0, neutral evolution is indicated, whereas purifying selection is indicated where 

D<0, and balancing selection where D>0 (Hartl & Clark 2007).  However, demographic 

factors, such as expansions and contractions affect D in a similar way to selection, and 

therefore it is not possible to conclusively disentangle selective from demographic events.  

Overall, one of the strongest indicators of balancing selection is evidence for trans-specific 

polymorphism, which is responsible for the high sequence divergence amongst alleles 

within a species (Klein 1980).  Trans-specific polymorphism describes the phenomenon 
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whereby ancestral alleles/allelic lineages are retained due to strong balancing selection.  

To date, trans-specific polymorphism at the MHC has been most often inferred from the 

sharing of allelic lineages, as direct allele sharing is considerably less common.  Amongst 

mammals it has only been observed in primates (Otting et al. 2002; Suárez et al. 2006), 

ungulates (Radwan et al. 2007), rodents (Cutrera & Lacey 2007), canids (Seddon & 

Ellegren 2002) and cetaceans (Xu et al. 2009), and rarely outside of genera (excluding 

DRA locus).  In comparison to dN:dS, the signal of trans-specific polymorphism persists 

for longer; indeed Klein (1993) suggested the upper limit to be ~40 million years.  

However, it is worthy to note that evidence of trans-specific polymorphism is confounded 

by convergent evolution (Klein et al. 2007), although methods have been proposed to 

disentangle these two processes (e.g. Kriener et al. 2000; Yeager & Hughes 1999). 

Selection in the recent past has been inferred by comparing patterns of genetic 

diversity at adaptive and neutral loci (Garrigan & Hedrick 2003).  If selection pressures are 

uniform across populations, differentiation is expected to be lower at the MHC relative to 

neutral loci (i.e. due to balancing selection), whereas if selection differs between 

populations (directional selection), higher levels of divergence are expected at adaptive 

loci.  Results from wild populations on this subject have been variable.  For example, 

higher divergence at the MHC relative to microsatellites, which is indicative of directional 

selection, was detected in Atlantic salmon (Salmo salar (Landry & Bernatchez 2001), 

Great snipe (Gallinago media; (Ekblom et al. 2007) and Water voles (Arvicola terrestris; 

(Bryja 2007), whereas no difference was reported in brown trout (Salmo trutta; (Campos 

et al. 2006), Gila topminnow (Poeciliopsis occidentalis; (Hedrick et al. 2001b) and Bighorn 

sheep (Ovis canadensis; (Boyce et al. 1997), which indicates that demographic processes 

are the primary factor influencing MHC variation.  Whilst these comparisons are widely 

used, it is important to consider that demographic history can confound the outcome 

(Garrigan & Hedrick 2003; Piertney & Oliver 2006); for example, random loss of alleles in 

small populations due to genetic drift would be expected to elevate differentiation between 

populations.   It is also possible to test for selection in the recent past using the Ewen-

Watterson test, which assesses allele frequency distributions to detect footprints of 

selection (Garrigan & Hedrick 2003).  Under neutral expectations, it is expected that there 

will be one common allele, whilst all other alleles occur at low frequency.  The Ewen-

Watterson test compares the expected heterozygosity based on mutation-drift equilibrium 

with the expected heterozygosity based on the allele frequency distribution within a 

population (Garrigan & Hedrick 2003).  A major drawback of the Ewen’s Watterson test 

comes from the assumptions that populations are at equilibrium and of constant size, 

which are often not the case.   

Lastly, selection in the current generation can be demonstrated by deviations from 

Hardy-Weinberg expectations or by disease-fitness associations, whereby susceptibility or 
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resistance to certain diseases is associated with specific MHC alleles (reviewed in Hill 

1998; Piertney & Oliver 2006).  Whilst these tests have the advantage of detecting current 

selection, they may not be able to detect weak selection, and are known to suffer low 

power where there are very high levels of heterozygosity or small sample sizes  (Garrigan 

& Hedrick 2003). 

Overall, a review of all of these tests by Garrigan (2003) found that selection is not 

detectible in every generation, population or evolutionary lineage, and attributed this to 

either variable selection pressures at the MHC or the lack of power of tests.  As such, it 

was recommended that tests of selection for different timescales be applied.  

MHC and conservation 

The effects of balancing selection have been repeatedly demonstrated at the 

MHC.  However, the ability of selection to maintain diversity is very sensitive to Ne 

(Richman 2000).  Where Ne is small, genetic drift replaces selection as the dominant 

evolutionary force, which results in the random loss of variation (reviewed in Sommer 

2005).  As such, there is concern that levels of MHC diversity will be lower in endangered 

species and thus that they will potentially have increased susceptibility to disease (O'Brien 

& Evermann 1988). The best example of this comes from Tasmanian devils, where a 

catastrophic population crash has been linked to an inability to mount an immune 

response against an emerging disease as a direct result of a lack of MHC variation due to 

previous bottlenecks (Siddle et al. 2007).  However, although many endangered species 

appear to have atypically low levels of variation (e.g. Galapagos penguin, Spheniscus 

mendiculus, (Bollmer et al. 2007), this is not always the case (reviewed in Radwan et al. 

2010).  For example, MHC diversity was found in the otherwise genetically monomorphic 

San Nicolas Island fox (Urocyon littoralis dickeyi) (Aguilar et al. 2004), and high sequence 

diversity has been found amongst small numbers of MHC alleles in other endangered 

species (e.g. Arabian oryx and Mexican wolf, (Hedrick 2003).  This has led to the 

suggestion that selection may be able to maintain MHC diversity despite strong genetic 

drift.  However, these varied results show that the relationship between endangered status 

and MHC diversity is complex, and highlights the need for research to improve 

understanding of the factors that influence MHC diversity in endangered species.   

Overall, there are two clear roles for MHC data in endangered species research 

and conservation.  Firstly, studies of MHC variation can be used to assess whether 

endangered species have lost diversity at these loci as a result of population declines or 

bottlenecks, and thus may potentially have increased disease susceptibility.  This is 

increasingly important given the rising incidences of infectious diseases in endangered 

species (Daszak et al. 2000).  Secondly, the MHC can act as a proxy of adaptive variation 
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so that it is possible to assess evidence of selection, elucidate local adaptation and 

understand differences in evolutionary potential between wild populations.  In captivity, it 

also provides a method by which to assess conservation of adaptive diversity from wild 

populations maintained in zoos.   
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1.4 African wild dogs 

African wild dogs (Lycaon pictus, hereafter wild dog) are distinguished from other 

canids by their unusual coat patterning of black, brown, white and caramel patches, their 

characteristically large ears and tall lean body (Creel & Creel 2002).  Phylogenetic 

analyses show wild dogs to be a member of the wolf-like canid clade, that also includes 

Domestic dogs (Canis familiaris), Grey wolves (Canis lupus), Coyotes (Canis latrans), 

Golden jackals (Canis aureus), Ethiopian wolf (Canis simensis), Dholes (Cuon alpinus), 

Black-backed jackals (Canis mesomelas) and Side-striped jackals (Canis adustus) 

(Lindblad-Toh et al. 2005). However, they are phylogenetically distinct to all other extant 

canids, and belong to the monotypic genus, Lycaon (Girman et al. 1993).  

Like many other canids (Macdonald & Sillero-Zubiri 2004), wild dogs have a 

cooperative breeding system.  They live in packs averaging 5-15 adults (range 2-28) 

typically formed by the fusion of a group of closely related females, and a group of closely 

related males, which are unrelated to each other (Creel & Creel 2002).  Within packs, 

normally only the alpha pair breed, although subordinate breeding of both sexes can 

occur (e.g. Creel & Creel 2002; e.g. Girman et al. 1997).  However, all individuals help to 

raise the large litters (~10 pups, but up to 21 (Fuller 1992), by ‘babysitting’, regurgitating 

food and defending the young (Courchamp et al. 2000; Courchamp & Macdonald 2001).  

Overall, larger pack sizes are correlated with both higher hunting and reproductive 

success, with the Allee effect (i.e. inverse density dependence) detected in packs with 

less than 5 adults because of reduced cooperative interaction (Courchamp et al. 2000).  In 

fact, the cooperative breeding system of wild dogs is considered almost obligate, as there 

is only one report of successful solitary breeding (Woodroffe et al. 2009).  As such, 

offspring are commonly permanently recruited to the pack.  However, others disperse at 

18-24 months as single sex groups, with the bias in dispersal to a particular sex varying 

between populations (Creel & Creel 2002). 

 Historically, African wild dogs ranged across most of sub-Saharan Africa 

(Woodroffe et al. 2004b) but they now occupy just 7% of their former range (IUCN/SSC 

2008, 2009; Woodroffe et al. 1997).  In the wild, fewer than 8,000 individuals remain, 

scattered across a small number of fragmented populations (IUCN/SSC 2008, 2009), only 

nine of which are known to constitute more than 200 animals (Woodroffe et al. 1997; 

Woodroffe et al. 2004b).  Like many other endangered species, extensive habitat loss has 

been a major factor in their demise.  However, habitat loss is a particular problem for wild 

dogs due to their very large home ranges, which can be > 4,000km2 (Lines Pers comm; 

(Woodroffe et al. 1997).  As such, wild dogs suffer greatly from edge effects because their 

home ranges frequently overlap both protected and unprotected areas (Woodroffe & 



26 

Ginsberg 1998), increasing the risk of persecution, snaring, domestic dog diseases and 

road deaths which together account for >60% of wild dog mortality (Woodroffe et al. 

2007a).  Whilst habitat loss has clearly caused substantial declines in wild dogs, human 

persecution is thought to be the ‘single most important’ cause of decreasing numbers of 

wild dogs in the past century (Woodroffe & Ginsberg 1997). This persecution stems not 

from a threat to human life, rather, their persecution appears to be a response to their 

method of killing (disembowelment, which is typical for canids, rather than strangulation in 

felids).  It also derives from their hunting success rates (~70%, range 39-85%) which are 

considerably greater that most other carnivores, and thus wild dogs are perceived to 

create a higher threat to ungulate populations, although in reality a large proportion of wild 

dog kills are taken by hyenas and lions (i.e. kleptoparasitism, (Courchamp & Macdonald 

2001; Creel & Creel 1998).  In some areas wild dogs are also perceived as a threat to 

livestock, although the data suggest that livestock depredation is restricted to areas where 

wild prey is significantly reduced (Woodroffe et al. 2005).  Together, these factors have 

resulted in wild dogs being perceived as ‘cruel, bloodthirsty killers,’ that present a 

significant threat to wild game and livestock, and should be dealt with as vermin 

(Woodroffe et al. 2004b). 

“Wild dogs hunt in packs, killing wantonly far more than they need for food, 

and by methods of utmost cruelty” (Bere 1956) 

“It will be an excellent day for African game and its preservation when means 

can be devised for [wild dogs’] complete destruction” (Maugham 1914)  

Indeed, between 1956-1975, there were 3404 wild dogs shot as part of a ‘vermin control’ 

programme in Zimbabwe (Childes 1988) and shooting of wild dogs was even endorsed in 

protected areas until as late as the mid 1980’s in some countries (Creel & Creel 1998, 

2002; Woodroffe & Ginsberg 1997).  

Alongside habitat loss and persecution, disease represents a significant threat to 

remaining populations, as wild dogs share susceptibility to diseases of common sympatric 

canids such as jackals and domestic dogs (Alexander et al. 2010). Outbreaks of diseases 

have resulted in significant population declines in the past (reviewed in Woodroffe et al. 

2004a) and such outbreaks present an increasing risk as human populations and 

associated domestic dogs spread further into wildlife areas (Randall et al. 2006).  

Consequently, knowledge of the MHC is particularly pertinent to wild dog conservation.   

A number of in situ and ex situ conservation programmes have been initiated to 

improve the status of African wild dogs.  Community education programmes are being 

used to change negative perceptions towards wild dogs (e.g. Laikipia wild dog project) 
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and ecotourism used to generate revenue to support wild dog conservation (Lindsey et al. 

2005). Anti-poaching patrols and road-sign awareness has also reduced snare and road 

mortalities (e.g. Painted Dog Research Project, in Zimbabwe).  Vaccination of domestic 

dogs and wild dogs themselves has been implemented in some areas to reduce disease, 

although this remains a contentious issue in wild dog conservation following the 

implication that vaccination was a causal factor in the extinction of a population of wild 

dogs in the Serengeti in 1991 (Burrows et al. 1994).  In South Africa, an artificial 

metapopulation was set up so to overcome the problem of the large habitat requirements 

of wild dogs (Endangered Wildlife Trust, South Africa).  This involves conserving small 

numbers of wild dogs (often just one pack) in several small reserves, with occasional 

transfers between reserves to imitate dispersal and prevent inbreeding (Gusset et al. 

2006).  Largely due to experience gained from the metapopulation, translocations of wild 

dogs are becoming more successful (Gusset et al. 2006) and have been used to 

reintroduce wild dogs to areas from which they have been extirpated or remove them from 

areas of persecution.  Work is also being done to reduce livestock depredation using bio-

boundaries (Botswana Predator Conservation Trust).  Lastly, ~650 wild dogs form part of 

an ex situ captive breeding programmes which have been used in reintroduction efforts, 

and in education and fund raising programmes (ISIS 2010).  The captive population is 

managed as four regional programmes in Europe, Australasia, North America and South 

Africa.  More than 40 zoos contribute to the European captive breeding programme which 

collectively hold almost half of world’s captive population (n~270 in 2008 (Verberkmoes & 

Verberkmoes 2008) and therefore are central to ex situ conservation efforts.   
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1.5 Aim of the thesis 

The aim of my thesis was to investigate how genetic information can be used to 

assist conservation of African wild dogs, with a particular focus on MHC data.  There were 

three overall objectives to my thesis: 

1. To determine how much MHC variation there is in wild dogs, and how that compares 

to other canids.   

2. To compare the spatial and temporal structure of neutral and MHC variation across 

free-ranging populations of wild dogs  

3. To assess how much genetic variation from wild populations is conserved in captivity, 

specifically, the European zoo captive population 
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1.6 Chapter objectives 

The first stage of my thesis was to conduct a baseline study that characterises 

MHC variation in wild dogs.  Extensive research has been conducted on the MHC class II 

loci in domestic dogs, specifically on the DLA-DRB1, DLA-DRA, DLA-DQA1 and DLA-

DQB1 loci.  Therefore, in Chapter 2 I conducted a preliminary study of MHC 

polymorphism at these four loci in wild dogs.   These data were compared with published 

data from Grey Wolves, Mexican wolves and Ethiopian wolves to assess how much MHC 

variation wild dogs have in comparison to other canids.   

Genetic information and molecular tools have many potential applications in 

conservation.  However, conservation genetics is an emerging field and many still 

question how much genetics really adds to conservation.  In Chapter 3 I present a 

focused case study where molecular tools were used to provide novel data that could not 

have been elucidated with any other approach, and which revolutionises our 

understanding of one of the most high profile population extinctions in conservation 

history; the disappearance of endangered African wild dogs (Lycaon pictus) from the 

Serengeti-Mara in 1991.   

Knowledge of patterns of genetic variation is critical to understanding of population 

structure, local adaptation and differences in levels of diversity between populations.  To 

achieve a thorough insight into patterns of genetic variation it is therefore important that 

both neutral and adaptive markers are assessed.  Furthermore, since selective and 

neutral forces vary both spatially and temporally, it is important that studies of variation 

are based on samples collected at an ecologically appropriate spatial scale for the species 

in question and from more than one temporal period.  To this end, in Chapter 4 I 

assessed the forces that shape patterns of genetic variation in the highly endangered 

African wild dog, by assessing a spatially and temporally variable set of samples with a 

combination of both neutral (microsatellite and mitochondrial DNA) and adaptive (MHC) 

markers.  Specifically I assessed the following four questions: 1) Is there a genetic 

signature of demographic decline in wild dogs? 2) How are African wild dog populations 

currently structured?  3) How are neutral and MHC diversity in African wild dogs 

structured temporally and spatially? 4) Is there evidence of selection at the MHC and/or 

local adaptation of African wild dog populations?   

Assessments of MHC diversity in endangered species are increasingly common 

due to concerns that ‘low’ MHC diversity may reduce immune competence.  However, the 

level of diversity in endangered species is typically inferred by comparison with non-

endangered reference taxa, which are often distantly related or domesticated species.  As 
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such, any differences in levels of diversity may be the result of differences in evolutionary 

history rather than endangered status.  For example, Chapters 2 showed that levels of 

MHC variation in the wild dog are low in comparison to Grey, Mexican and Ethiopian 

wolves.  This difference may be result of demographic declines, but it could just reflect the 

fact that wild dogs are distantly related to the reference taxa.  In Chapter 5, I assess MHC 

variation across eight species of wolf-like canid clade.  These data were used to assess 

how endangered status, selection, hybridisation and phylogeny impact patterns of MHC 

diversity.   

Genetic management of captive breeding programmes has traditionally relied on 

studbooks.  However, increasingly, genetic data are being utilised to improve the status of 

captive populations.  The aim of Chapter 6 was to assess the genetic status of the 

European captive wild dog population by using a combination of studbook information and 

genetic data based on both neutral and MHC markers.  These data were used to assess 

how much diversity from wild populations is represented in European zoos, and also to 

investigate how recent imports from South African captive facilities have affected the 

genetic status of the European captive population.  I then used these data to formulate 

management suggestions to improve the genetic status of the zoo population. Finally, I 

assessed whether patterns of diversity based on MHC and neutral markers were 

correlated, as such comparisons are currently lacking in the literature.   

Lastly, in Chapter 7, I discuss the challenges of applying genetic data in 

conservation, as well as the broader implications of my work. 



 

2 Chapter 2: Highly endangered African wild dogs 

(Lycaon pictus) lack variation at the Major 

Histocompatibility Complex 
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2.1 Abstract 

The Major Histocompatibility Complex (MHC) is a set of highly polymorphic genes 

involved in the immune response.  Extensive research on the canid MHC has found 

moderate to high levels of diversity at the DLA-DRB1, DLA-DRA, DLA-DQA1 and DLA-

DQB1 class II loci with frequent trans-specific polymorphism among Canis species.  In this 

study I assessed MHC variation in the more distantly related and highly endangered 

African wild dog (Lycaon pictus).  I screened 168 African wild dogs from Eastern and 

Southern Africa as well as 200 samples from the European captive population for variation 

at MHC class II loci.  As for all other canids screened to date, I found a single allele at 

DLA-DRA, which was the same as that found in Canis species.  In contrast, I found 17 

DLA-DRB1 alleles, one DLA-DQA1 allele and two DLA-DQB1 alleles, all of which were 

unique to African wild dogs.   At DLA-DRB1, African wild dogs were found to have 

comparable numbers of alleles but less overall amino acid variation than other canids.  

However, the low numbers of alleles at DLA-DQA1 and DLA-DQB1 are surprising, given 

that in other canids these loci are also highly variable.  Overall, our data suggest that 

African wild dogs are genetically depauperate at the MHC relative to other canids.  These 

data are indicative of a loss of genetic variation, possibly as a result of population 

bottlenecks and declines experienced by this species. 
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2.2 Introduction 

The Major Histocompatibility Complex (MHC) is a highly diverse set of vertebrate 

genes that code for molecules involved in the recognition of intra- and extra-cellular 

antigens, and therefore form a fundamental component of immune responses (Eggert et 

al. 1998; Hedrick 2003; Piertney & Oliver 2006).  MHC genes are renowned for their high 

allelic diversity and heterozygosity which is thought to be the result of pathogen driven 

balancing selection (van Den Bussche et al. 1999).  Diversity at the MHC is adaptively 

significant in disease resistance; high diversity has been shown to allow response to a 

wider range of parasites and pathogens than low diversity (Hedrick et al. 2001a; Hedrick 

et al. 2003; Sommer et al. 2002).  Given the importance of adaptive genetic variation for 

evolutionary change and rising concerns about infectious diseases in the conservation of 

endangered species (Daszak et al. 2000), assessments of MHC variation are increasingly 

incorporated into endangered species research (e.g. giant panda, Ailuropoda 

melanoleuca (Wan et al. 2006), crested ibis, Nipponia nippon (Zhang et al. 2006) and 

Mexican wolf Canis lupus baileyi (Hedrick et al. 2000). 

Considerable research has been conducted on the canid MHC (known as the dog 

leukocyte antigen, DLA) in the domestic dog, Canis familiaris, and more recently, wild 

Canis species: Grey wolf, Canis lupus, (Kennedy et al. 2007a; Seddon & Ellegren 2002); 

Coyote, Canis latrans, (Seddon & Ellegren 2002); Ethiopian wolf, Canis simensis, (LJ 

Kennedy submitted); and Mexican wolf, Canis lupus baileyi, (Hedrick et al. 2000).  

Research has focused on variation at three MHC class II loci: DLA-DRB1, DQA1 and 

DQB1, which are physically tightly linked and inherited as a haplotype (Kennedy et al. 

2007a).  MHC class II loci are involved in the recognition of antigens of extracellular 

pathogens and parasites.  However, strong linkage disequilbrium has been found between 

MHC class I and II loci in humans (Sanchez-Mazas et al. 2000), domestic dogs and many 

other species studied, suggesting that variation at MHC class II loci can also reflect 

variation at MHC class I loci, which are involved in the recognition of intracellular 

pathogens such as viruses (Piertney & Oliver 2006).  To date, 134 DLA-DRB1 alleles, 26 

DLA-DQA1 alleles and 68 DLA-DQB1 alleles have been assigned official names by the 

DLA Nomenclature Committee (LJ Kennedy, unpublished data). These genes have been 

shown to be polymorphic across the Canis genus, with particularly high levels of 

polymorphism in both the domestic dog and Grey wolf (Kennedy 2007; Kennedy et al. 

2007a; Seddon & Ellegren 2002).  Trans-specific polymorphism (allele sharing) has been 

found to be a recurring feature among Canis species at all three loci.  A fourth locus, DLA-

DRA, appears to be monomorphic for allele DLA-DRA*00101 in all canids screened to 

date (LJ Kennedy, unpublished data).  Given the focus of research on the genus Canis, it 



34 

is not currently known if these patterns of MHC polymorphism are specific to these 

species or a characteristic of canids in general.   

 African wild dogs, Lycaon pictus, are the sole member of the Lycaon genus and a 

distantly related member of the wolf-like canid clade, to which the genus Canis belongs 

(Girman et al. 1993).  This highly endangered social species has suffered extensive 

declines in the wild to <6,000 individuals distributed across a few remaining small and 

fragmented populations (Figure 2.1) (Sillero-Zubiri et al. 2004; Woodroffe & Ginsberg 

1997).  Disease is argued to represent a significant threat to African wild dogs, which 

share susceptibility to diseases of common sympatric canids such as jackals and 

domestic dogs (Alexander et al. 2010), outbreaks of which have resulted in both pack and 

population extinctions in the past (reviewed in Woodroffe et al. 2004a).  Consequently, 

knowledge of the MHC is particularly pertinent to African wild dog conservation. 

In this study I have characterised MHC class II DLA-DRB1, DRA, DQA1 and 

DQB1 variation in African wild dogs to extend knowledge of the canid MHC to more 

distantly related canid species (Lindblad-Toh et al. 2005). Specifically, I assessed levels of 

polymorphism at MHC class II loci, and looked for evidence of allele sharing between 

African wild dogs and species in the genus Canis. 
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2.3 Methods 

Blood, tissue, hair and serum samples were provided from free ranging study 

populations in Eastern and Southern Africa (Figure 2.1): Laikipia, Central Kenya (n=56 

from 13 packs; study population size ~300); Serengeti, Northern Tanzania (n=14 from 4 

packs; study population size ~ 160); Okavango, Northern Botswana (n=53 from 8 packs; 

study population size ~200); Hwange, Western Zimbabwe (n=15 from 7 packs; study 

population size ~250).  The sampled Serengeti population, hereafter referred to as New 

Serengeti, represents a population that is thought to have naturally re-established in the 

early 2000s, rather than the Serengeti population assessed in previous genetic studies 

(Girman et al. 1997; Girman et al. 2001), which was extirpated with the last pack 

disappearing in 1991 (Woodroffe et al. 1997).  South African samples were derived from a 

set of animals artificially reintroduced and translocated between game reserves in South 

Africa and included some captive animals of South African origin (A.Bastos, n=43).  This 

South African sample set is considered a managed group of animals, rather than a free-

ranging population.  A further six samples from this managed group were collected from a 

set of 16 wild dogs that were translocated from Pilansberg Game Reserve, South Africa to 

Hwange National Park, ZimbabI in 2006.  These animals were analysed as part of the 

South African sample set, rather than the Hwange sample set.  The 15 Hwange samples 

do not include any animals recently translocated from South Africa, or their offspring.  Ear 

or muscle samples were also provided from carcasses collected in Kajiado district in 

Southern Kenya (R. Woodroffe n=1), Ghanzi district in Western Botswana  (M. Swarner, 

n=1), Northern Sofala province in Central Mozambique (J-M. André, n=3 from one pack) 

and Mangetti district, North Western Namibia (F. Stander, n=1).  I sampled 200 captive 

African wild dogs (75% of the total population) from the European Endangered Species 

Programme (EEP), which are derived from Southern Africa. This sample set was analyzed 

together and is hereafter referred to as EU zoos.  Details of the 31 contributing institutions 

are given in Table 2.1.  

DNA was extracted from samples using DNeasy extraction kits (Qiagen, Crawley, 

UK) according to the manufacturer’s instructions, with the following modifications: tissue 

samples were lysed for 18 hours rather than 3; blood spots and hair samples were lysed 

for 3 hours rather than one.  A negative control was conducted with all extractions to 

detect contamination.  

Sequence-based typing was conducted on exon 2 of the DLA-DRB1, DLA-DQA1, 

and DLA-DQB1 loci using locus-specific intronic domestic dog primers that gave products 

of 303 bp (DLA-DRB1), 345 bp (DLA-DQA1) and 300 bp (DLA-DQB1).  Primers were as 

follows (M13 and T7 tags are underlined): DRBln1: ccg tcc cca cag cac att tc (Wagner et 
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al. 1996b); DRBln2M13r: cag gaa aca gct atg acc tgt gtc aca cac ctc agc acc a (Wagner et 

al. 1996b);  DQAln1: taa ggt tct ttt ctc cct ct (Wagner et al. 1996a);  DQAIn2: gga cag att 

cag tga aga ga (Wagner et al. 1996a). DQB1BT7 taa tac gac tca cta tag gg ctc act ggc 

ccg gct gtc tc (Wagner et al. 1996a); DQBR2: cac ctc gcc gct gca acg tg (Kennedy et al. 

2002a).  A fourth MHC class II locus DLA-DRA, which has been shown to be 

monomorphic in all other canids tested to date (LJ Kennedy, unpublished data) was 

examined using locus-specific exonic primers: DRAF: gag cac gta atc atc cag gc; DRAR: 

ggt gtg gtt gga gcg cgc ttt a (JL Wagner, personal communication) and gave products of 

approximately 261 bp. 

Polymerase Chain Reactions (PCR) were performed in 25-µl reactions containing 

1 x Q solution (Qiagen), 1 x PCR buffer containing, 1 mM MgCl (Qiagen), 0.4 mM of each 

DNTP (Invitrogen), 0.04 mM of each primer, 0.1 µg/µl BSA (Promega), 1 unit of Hot 

Startaq (Qiagen) and approximately 25ng of template DNA.  To detect contamination, 

each PCR was run with both the DNA extraction negative and a PCR negative control 

containing no template DNA.  Reactions were run on PTC-200 DNA engine machines (MJ 

Research Inc).  PCR amplifications were conducted with a touchdown protocol: 15 min at 

95°C, 14 touchdown cycles of 95°C for 30 s, followed by 1 min annealing, starting at 62°C 

(DLA-DRB1), 62°C (DLA-DRA), 52°C (DLA-DQA1), 68°C (DLA-DQB1) and reducing at 

0.5°C per cycle, and 72°C for 1 min. This was followed by 20 cycles of 95°C for 30 s, 

60°C (DLA-DRB1), 55°C (DLA-DRA), 50°C (DLA-DQA1), 65°C (DLA-DQB1) for 1 min, 

and 72°C for 1 min.  The protocol ended with a final extension of 72°C for 10 minutes.  

The number of amplifications in the second stage of the PCR protocol was increased from 

20 to 30 cycles for DNA derived from hair, blot spot and serum samples, which typically 

yielded lower quantities of DNA. 

PCR products were cleaned using ExoSAP-IT (USB) according to the 

manufacturer’s instructions, and sequenced on an ABI 3730 sequencer.  Sequencing was 

conducted in both directions for DLA-DRB1, using primers DRBln1 and M13r (cag gaa 

aca gct atg acc).   To reduce costs, unidirectional sequencing was used for DLA-DQA1 

and DLA-DQB1, using primers DQAln1 and DQB1BT7, respectively.  Sequence data were 

analysed using Match Tools and Match Tools Navigator (Applied Biosystems), as 

described in Kennedy (2002a).  This method relies on an allele library built from 

homozygotes.  I had 6 heterozygous individuals (S.Africa=3, EU zoos=3) that did not 

match any pair of known alleles.  Therefore I cloned these six individuals using the TOPO 

TA™ cloning system (InVitrogen, San Diego, CA) and identified a single new allele 

DRB1*90301.  This allele was subsequently found in a further 12 heterozygotes.  There 

were three pairs of alleles which could not be distinguished using the Match tools 

analytical method because some allele pairs gave the same heterozygous sequence 

(DRB1*90601/90202 and DRB1*90602/90201; DRB1*90101/90201 and 
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DRB1*90102/90202; DRB1*90101/90601 and DRB1*90102/90602).  These ambiguous 

combinations were resolved using a combination of Reference Strand-mediated 

Conformation Analysis (RSCA) and pedigree information from the zoo populations.  RSCA 

is a genotyping method that separates allelic variants based on conformation-dependent 

mobility through a gel (Kennedy et al. 2005), and was used to distinguish between 

ambiguous DLA-DRB1 heterozygous sequences by running ambiguous samples 

alongside a set of candidate alleles in homozygous form.  For the EU zoo samples, 

individuals with ambiguous allele combinations could be resolved using pedigree 

information to examine the alleles of siblings, parents and offspring.  For example 

individual #P20791 was found to be heterozygous for either 1) DRB1*90601/DRB1*90202 

or 2) DRB1*90602/DRB1*90201.  Five of its siblings were found to have the following four 

alleles DRB1*90101, DRB1*90201, DRB1*90301 and DRB1*90602, which means that 

#P20791 must be heterozygous for DRB1*90602/DRB1*90201.  Pedigree data were also 

used to examine segregation of DLA-DRB1 alleles and lineages within families.  Chi-

square goodness of fit tests were used to compare observed segregation patterns to 

expected genotype combinations under random segregation at a single locus.  Pedigree 

information for the EU zoo samples were provided by H.Verberkmoes.  Pedigrees were 

drawn using SmartDraw 2009.   

Preliminary sequencing of 30 individuals for DLA-DQA1, DLA-DQB1 and DLA-

DRA revealed just one, two and one alleles respectively.  Consequently, I used RSCA 

(together with sequenced samples as controls), to screen for further variation at these loci.  

For DLA-DQA1, DLA-DQB1 and DLA-DRA, RSCA analysis was conducted on samples 

from EU zoos (n=92), Laikipia (n=56), New Serengeti (n=9), Okavango (n=53), Hwange 

(n=13), S.Africa (n=6) and the 6 carcass samples.  DNA from 5 New Serengeti, 2 Hwange 

and 43 South Africa samples were not available in time for RSCA analysis, however 

sequence based typing detected no new DLA-DRB1 alleles in these samples.  DLA-DQB1 

typing was conducted on an additional 25 Okavango samples that were not successfully 

typed at the DLA-DRB1 due to low quality DNA and RSCA failures.  Since RSCA was 

used to screen for new variants and the EU zoos included large family groups, I did not 

type offspring if I typed both parents, and screened a maximum of three animals per litter.  

In total, I typed 92 individuals representative of 36 sibling groups from the 200 captive 

samples.   

The new alleles identified in this study were submitted to the DLA nomenclature 

committee. Those that met the appropriate criteria were recognized and assigned official 

names by the committee.  Prior to this study, preliminary data (LJ Kennedy, H Bacon and 

A Radford, unpublished data) based on four African wild dog museum samples provided 

by the National Museums of Scotland (A Kitchener), had identified three DLA-DRB1 

alleles (DLA-DRB1*90101, 90102 and 90201), one DLA-DQA1 allele (DLA-DQA1*01901) 
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and two DLA-DQB1 alleles (DLA-DQB1*90101, 90201).  One allele did not fulfill the 

naming criteria, and is referred to by its local name, ‘fmut’.   

Sample sizes varied from 14-56 for non-managed populations. Therefore, I used 

rarefaction to compensate for sampling disparity between study populations by 

standardizing to a population size of 10 using the programme HP-Rare v.4.1 (Kalinowski 

2005).  I calculated nucleotide diversity in populations as the average number of 

segregating sites θ, and pairwise diversity π, in DnaSP 4.20 (Rozas & Rozas 1995), using 

a Jukes Cantor model of substitutions and standard errors calculated with 5,000 bootstrap 

replications.  I tested for an excess of heterozygosity relative to Hardy Weinberg 

proportions, which is indicative of selection on the current generation, using the U test in 

Genepop 4.0 (Raymond & Rousset 1995).  Synonymous and nonsynonymous genetic 

distances were calculated separately for putative peptide binding region (PBR) sites and 

non-PBR sites using the Nei-Gojobori method with a Jukes Cantor model of substitutions 

in Mega 4.0 (Tamura et al. 2007).  Putative PBR sites were based on the human HLA-

DRB1 (Brown et al. 1993).  Due to the recombining nature of MHC genes, phylogenetic 

trees are not strictly appropriate for analysis of the MHC and there is too much variation to 

allow a network approach.  However, MHC allele trees are a useful tool for displaying 

relationships among alleles.  Phylogenetic trees were constructed using African wild dog 

sequences alongside 105 alleles from Canis species made available by LJ Kennedy, who 

collates these data on behalf of the DLA nomenclature committee (Kennedy et al. 2001).  I 

also tested alternative phylogenetic models but these did not affect the resolved 

relationships within the tree.  Therefore, I have only shown neighbor joining trees with 

Kimura’s 2 parameter model as implemented in Mega 4.0 to demonstrate relationships.  

Following Seddon (2002), a human HLA sequence with ~80% similarity to dog DLA-DRB1 

alleles was used as an outgroup (HLA-DRB1*03011, Accession number AF352294).  

Bootstrapping was conducted with 5,000 replicates.    
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2.4 Results  

African wild dogs were found to have 17 DLA-DRB1 alleles (n=368), one DLA-

DQA1 allele (n=234), two DLA-DQB1 alleles (n=234) and one DLA-DRA allele (n=234) 

(official and local names are provided in Appendix 1).  Fewer samples were analyzed at 

DLA-DQB1, DLA-DQA1 and DLA-DRA because of the lack of variation found.  However, I 

did type representative individuals for all DLA-DRB1 alleles.  This is important because in 

domestic dogs and other Canis species there is strong linkage between MHC class II loci.  

Therefore, new DLA-DQB1, DLA-DQA1 and DLA-DRA variants would be most likely 

found in individuals with new DLA-DRB1 alleles.  There was no evidence of pseudogenes 

(stop codons or frameshift mutations), indicating that functional genes were being 

amplified.  All DLA-DRB1, DQA1 and DQB1 alleles detected in African wild dogs were 

new and have not been identified in any other canid species to date; accession numbers 

DQA1 (AM182470), DQB1 (FJ648575, FJ648576), DRB1 (FJ648559-FJ648574).  As with 

all other surveyed wolf-like canids (LJ Kennedy, unpublished data), African wild dogs were 

monomorphic at DLA-DRA for allele DRA*00101, which was originally identified in 

domestic dogs (Wagner et al. 1995). 

African wild dog DLA-DRB1 alleles varied at 31 polymorphic sites across 95 

codons, with 14 substitutions at the 1st codon position, 10 at the 2nd codon position and 

seven at the 3rd codon position.  These changes corresponded to 17 amino acid 

differences amongst alleles (Figure 2.2).  This included unique amino acid residues at two 

codons not seen in other canids and one new polymorphic site at a putative PBR residue 

which is monomorphic in all other canids.  All DLA-DRB1 alleles differed from each other 

at the amino acid level, except for DLA-DRB1*907011 and DRB1*907012, which indicates 

a high level of non-synonymous substitutions.  The majority of nucleotide (22/31) and 

amino acid (14/17) differences between DLA-DRB1 alleles were found to occur within the 

three hypervariable regions (HVR) (Figure 2.2) (Kennedy et al. 2007).  Nine of the 22 

functionally important putative PBR sites of DLA-DRB1 based on human HLA-DRB1 were 

variable in African wild dogs (Figure 2.2).  The ratio of non-synonymous to synonymous 

substitutions at the putative PBR sites was greater than 1.0, and larger than in non-PBR, 

but it was not found to be significant (PBR dN = 0.2, dS = 0.117, dN/dS = 1.709, p=0.073; 

non-PBR dN=0.031, dS = 0.022, dN/dS = 1.409, p=0.307). 

DLA-DRB1 alleles consisted of two highly divergent allelic lineages, which I have 

called A (7 alleles) and B (10 alleles).  Alleles within lineages were relatively similar 

whereas alleles from different lineages were highly divergent (Figure 2.2).  Lineage A 

alleles have identical HVR1 and HVR2 sequences.  Lineage B alleles have the same 

HVR1 sequence (which is different from that in lineage A), and one of two very similar 
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HVR2 sequences which differed by just one amino acid.  At HVR3, there were five 

different sequences, three of which were shared amongst lineages, and two of which were 

specific to Lineage B. Overall, the average numbers of nucleotide differences within 

alleles of the same lineage were 6.0 (lineage A) and 6.8 (lineage B), compared with an 

average of 22.9 nucleotide differences between alleles from different lineages.  Since 

RSCA analysis, DNA cloning and sequencing did not detect more than two alleles in any 

individual, and less than half of  the individuals sampled (46%) had alleles from both 

lineages, I am confident that these two allelic lineages are derived from a single locus.  

Furthermore, pedigree data clearly show co-segregation of the two allelic lineages within 

families (Figure 2.3). 

Phylogenetic analyses on African wild dog DLA-DRB1 alleles were conducted 

alongside alleles from Canis species.  The highly polymorphic nature of these genes 

resulted in insufficient resolution to determine specific relationships between groups of 

alleles; however they were used to indicate the positioning of African wild dog alleles 

relative to the alleles of other canids (Figure 2.4).  African wild dog DLA-DRB1 alleles 

were clearly shown to cluster into two distinct and separate monophyletic clades, rather 

than being scattered across branches, as found with Grey wolf and Ethiopian wolf alleles.  

Furthermore, African wild dog alleles were clearly positioned within, rather than peripheral 

to, the canid DLA-DRB1 allele tree, indicating similarity to other canid alleles.  In 

particular, comparison of amino acid sequences highlight that certain African wild dog 

DLA-DRB1 lineage B alleles and certain Ethiopian wolf alleles differ by just one amino 

acid at HVR 1 and are identical at HVR 2 (data not shown). 

DLA-DRB1 alleles from both A and B lineages were found in all populations with 

more than three samples.  Four of seven lineage A, and five of nine lineage B DLA-DRB1 

alleles were detected in two or more sampling areas, which were often separated by large 

geographic distances (Table 2.2).  For example, DLA-DRB1*90202 was found in countries 

across Eastern (Laikipia-Kenya, New Serengeti-Tanzania) and Southern Africa (Hwange-

Zimbabwe, Okavango-Botswana, NW Namibia and South Africa).  

African wild dog populations were found to differ from each other in DLA-DRB1 

allelic composition, allelic diversity and heterozygosity.  For non-managed populations, the 

number of alleles per population varied between 3 and 9, and average observed 

heterozygosity varied from 53.6 % - 92.9 %  (Table 2.2).  Despite being the most 

thoroughly sampled population, Laikipia had the smallest number of alleles (3 alleles, 

n=56), and correspondingly, also had the lowest observed heterozygosity (53.6%).  

However, nucleotide diversity was actually highest in this population (π=0.0758, 

θ=0.0716), suggesting that the three alleles are highly divergent; there were 29 variable 

sites amongst these three alleles.  In contrast, nucleotide diversity was lower in the three 
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other populations, which had between 7 and 9 alleles (π=0.0509, 0.0595, 0.0613; 

θ=0.0435, 0.0435, 0.0484).   Rarefaction was used to standardize population sample 

sizes to n=10, and showed Hwange to be most diverse in terms of numbers of alleles 

expected with that sample size (7.8 alleles), although New Serengeti and Okavango had 

only slightly lower levels of diversity (6.1 and 5.8 alleles respectively).  All three of these 

populations had at least 50% more diversity than Laikipia (2.9 alleles).  Although levels of 

observed heterozygosity were generally high, there was not an excess of heterozygosity 

relative to Hardy Weinberg expectations in any non-managed population.  The South 

African sample set consisted almost entirely of heterozygotes (46/49).  However, this is a 

managed group of animals derived from multiple sources, rather than a natural population.  

Together, the EU zoos were found to have 12 of the 14 DLA-DRB1 alleles detected in 

Southern African populations, and levels of heterozygosity (82%) comparable to non-

managed wild populations (53.6-92.9%).  One allele (DRB1*90101) was found at high 

frequency among the zoo samples (33.5%). 

The two DLA-DQB1 alleles differed at eight sites within HVR 2, resulting in five 

amino acid differences.  This included one new polymorphic amino acid site that is 

monomorphic in other canids tested to date, and four unique amino acid residues. DLA-

DQB1*90101 was considerably more frequent (87.5%) than DLA-DQB1*90201 (12.5%) 

resulting in a predominance of DLA-DQB1*90101 homozygotes (81%).  In fact, I found 

just six DLA-DQB1*90201 homozygotes in 234 samples.  Both DLA-DQB1 alleles were 

found across Eastern and Southern Africa (Table 2.3), however, DLA-DQB1*90201 was 

noticeably absent from Hwange, Zimbabwe.  Previous research has shown strong linkage 

disequilibrium between the canid DLA-DRB1, DQA1 and DQB1 loci (Kennedy et al. 

2007a).  There was insufficient variation at the DLA-DQA1 and DQB1 loci for haplotype 

designation in African wild dogs.  However, I did detect an association between DLA-

DQB1*90201 and DLA-DRB1 lineage A alleles.   Six out of seven individuals homozygous 

for DLA-DQB1*90201, had only lineage A DLA-DRB1 alleles, (DRB1*90101, *90201, 

*90202 or *90204).  Furthermore, all DLA-DQB1*90201 heterozygotes had at least one 

DLA-DRB1 lineage A allele, most commonly DRB1*90101, DRB1*90201, or DRB1* 

90202.   
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2.5 Discussion 

Research on MHC class II loci in Canis species has shown moderate to-high 

levels of diversity at the DLA-DRB1, DLA-DQA1 and DLA-DQB1 class II loci with frequent 

trans-specific polymorphism (allele sharing) among Canis species. In this study I 

conducted a geographically widespread survey of MHC class II variation in the highly 

endangered African wild dog to extend knowledge of the canid MHC to more distantly 

related canid species.  African wild dogs belong to a monotypic genus that is 

phylogenetically and morphologically divergent from Canis species (Bardeleben et al. 

2005; Wayne et al. 1997).  In total, I found 17 alleles at the DLA-DRB1 locus, one allele at 

the DLA-DQA1 locus and two alleles at the DLA-DQB1 locus, all of which are currently 

unique to African wild dogs.  At DLA-DRA, African wild dogs were monomorphic for the 

same allele found in other canids.   

Balancing selection is a key mechanism in the maintenance of variation at MHC 

loci (reviewed in Garrigan & Hedrick 2003) and is indicated by an increased ratio of non-

synonymous (dN) to synonymous (dS) substitutions at the amino acid residues of the 

functionally important PBR (Seddon and Ellegren 2002).  Although dN/dS was elevated at 

putative PBR sites of DLA-DRB1 alleles in African wild dogs, there was not a significant 

excess of non-synonymous substitutions (p=0.073).  This is not typical of canid DLA-

DRB1 alleles; there was a significant excess of dN/dS at PBR sites in Grey wolves, 

Coyotes and domestic dogs (Seddon and Ellegren 2002).  Whereas dN/dS ratios provide 

information on historical selection, excess heterozygosity can provide an indication of 

current selection at a locus (Aguilar et al. 2004; Garrigan & Hedrick 2003).  Despite the 

high heterozygous frequencies found in non-managed free ranging populations, the 

observed heterozygosity did not exceed Hardy Weinberg expectations.  This is not 

atypical for MHC studies (Garrigan & Hedrick 2003). 

The distribution of alleles from polymorphic loci under balancing selection are 

predicted to show very different distributions from that of neutral loci. In particular, they are 

expected to show lower levels of differentiation in allele composition between populations 

(Schierup et al. 2000).  Neutral genetic markers show strong structuring and differentiation 

between African wild dogs populations, in particular between Eastern and Southern Africa 

(Girman et al. 2001).  At the MHC, I found 17 DLA-DRB1 alleles, which clustered into two 

highly distinct lineages.  These two lineages showed no evidence of geographic 

structuring; all areas where more than three animals were sampled had alleles from both 

lineages.  Similarly, individual DLA-DRB1 alleles were not geographically restricted, with 

many alleles detected in populations spanning Eastern and Southern Africa.  The 

discordance between patterns of MHC and neutral variation could indicate that selective 
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forces are shaping patterns of MHC diversity across African wild dog populations; for 

example, selection for alleles which confer resistance to diseases common to most 

populations.   

Two DLA-DQB1 alleles were detected in African wild dogs.  However, allele DLA-

DQB1*90201 was considerably rarer (12.5%).  This rare allele was found across Eastern 

and Southern Africa but was absent from Hwange.  This may be the result of the low 

frequency of DLA-DRB1 lineage A alleles in Hwange (20%), which appear to be 

associated with DLA-DQB1*90201.  The stark differences in frequency of the two DLA-

DQB1 alleles may be indicative of selection on adaptive differences between these alleles 

or haplotypes.   

High MHC allelic diversity in a population and high heterozygosity in individuals is 

thought to be important because it theoretically expands the range of pathogens to which 

a population or individual can respond (Doherty & Zinkernagel 1975; Sommer et al. 2002).  

I found that the number of DLA-DRB1 alleles and levels of heterozygosity varied between 

populations (Table 2.2), even after population sample sizes were standardized using 

rarefaction.  This may reflect differences in demographic history and connectivity.  The 

highest allelic diversity in non-managed populations was found in Hwange (9 alleles, 

n=15), which is a long-standing stable population located within an admixture zone 

(Girman et al. 2001).  In contrast, the lowest number of alleles was found in Laikipia (3 

alleles, n=56), a recently recolonised population, that is also relatively isolated (Woodroffe 

et al. 2007b).  Clearly, however, recolonisation does not always result in low numbers of 

alleles, since the recently recolonised New Serengeti population was considerably more 

diverse than Laikipia.  However, the New Serengeti is linked to a number of other African 

wild dog populations and therefore may have been recolonised by a mixture of founders 

from multiple source populations.  Despite lower allele numbers, nucleotide diversity 

among alleles was higher in the two recently re-colonized populations (Laikipia and New 

Serengeti) than in two long-standing populations (Hwange and Okavango) (Table 2.2). 

The lower nucleotide diversity measures in Hwange and Okavango likely reflect the 

presence of closely related or similar alleles, and may indicate that in these populations 

new diversity has been accumulating, whereas in the recently recolonised populations 

there has been insufficient time for the evolution of new variants.  More research is 

required to explore whether differences in MHC diversity between populations reflect 

differences in disease characteristics of populations or neutral processes such as size of 

historical bottlenecks.   

The use of fitness related genes, such as the MHC, in endangered species 

management remains a contentious issue.  Nonetheless, it is valuable to evaluate the 

impact of management actions, such as translocations and captive breeding, on adaptive 
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genes.  In 2006, 16 African wild dogs were translocated from South Africa to Hwange, 

Zimbabwe.  Sampling of six of these South African translocated animals detected one 

allele (DLA-DRB1*90301) not present in the 15 resident Hwange samples.  This may 

indicate that the translocation has introduced new MHC diversity into the Hwange 

population. Our results show that 12 of the 14 DLA-DRB1 alleles found in Southern 

African populations and both DLA-DQB1 alleles are represented in the European zoo 

African wild dog population.  Nonetheless, allele DLA-DRB1*90101 clearly dominates this 

population (33.8%).  High frequency of this allele does not appear typical to Southern 

Africa where the EU zoo founders originated; it has less than 10% representation in 

Hwange, Okavango and South Africa.  Mapping DLA-DRB1 alleles onto the EU zoo 

pedigree (data not shown) shows that over-representation of this allele is the result of an 

extreme bias in founder contributions, and is a major cause of homozygosity in the EU 

zoos (21/35 homozygotes were homozygous for DRB1*90101). Management of this 

population is now focusing on equalizing founder representation. 

The patterns of MHC variation detected in African wild dogs are best interpreted 

through comparison with other canids.  Extensive research on the MHC in Canis species 

show frequent trans-specific polymorphism at DLA-DRB1, DQA1 and DQB1 loci (Kennedy 

et al. 2007a; Kennedy et al. 2001; Seddon & Ellegren 2002).  By contrast, all alleles 

characterized at these three loci in African wild dogs were unique to this species and not 

yet found in any species of Canis.  Furthermore, phylogenetic analyses of African wild dog 

DLA-DRB1 alleles showed clustering into two distinct branches (species-specific allelic 

clustering), rather than a scattered distribution throughout the DLA-DRB1 tree indicative of 

trans-specific polymorphism (as seen in Grey wolves and Ethiopian wolves).  Such a 

distribution may suggest that the canid DLA-DRB1, DLA-DQA1 and DLA-DQB1 allele 

lineages diverged prior to speciation within the genus Canis 1-2 Myr ago (Seddon & 

Ellegren 2002), but after the divergence of the Lycaon and Canis genera approximately 4-

5 Myr ago (Wayne et al. 1997).  However, given that allele sharing is most common 

among species of Canis at DLA-DQA1 and DLA-DQB1 loci (Kennedy et al. 2007a; 

Seddon & Ellegren 2002), whereas there are one and two alleles respectively in African 

wild dogs, it is also possible that shared alleles have been lost.  

Allelic diversity at DLA-DQA1 and DLA-DQB1, was much lower in African wild 

dogs than expected based on the pattern found in other canids (Table 2.4; (Hedrick et al. 

2000; Kennedy 2007; Kennedy et al. 2007a; Kennedy et al. 2002b; Seddon & Ellegren 

2002).  This cannot be explained by the endangered status of African wild dogs or 

differences in sampling since they had lower levels of DLA-DQA1 and DLA-DQB1 

variation than Ethiopian and Mexican wolves; two other endangered canids sampled from 

single populations (Table 2.4).  It is particularly striking that five DLA-DQA1 alleles were 

found in fewer than seven Mexican wolves sampled from a single population, whereas in 
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this study I found just a single allele in 234 African wild dogs sampled across Eastern and 

Southern Africa.  The lack of variation at these loci does not appear to be the result of 

non-matching primers as all samples amplified successfully; if a mutation had occurred in 

the primer site, homozygous individuals for these alleles should fail to amplify.  African 

wild dogs showed the most variation at the DLA-DRB1 loci, where they had the same 

number of DLA-DRB1 alleles to Grey wolves sampled across a similar geographic range 

in both European and North American regions (Table 2.4), and slightly higher numbers of 

DLA-DRB1 alleles in single populations, than other endangered canids.  However, 

because African wild dog DLA-DRB1 alleles are derived from just two allelic lineages, 

amino acid diversity amongst alleles was considerably lower than for other canids: 17 

variable amino acid sites across 17 DLA-DRB1 alleles in African wild dogs, compared with 

26 variable amino acid sites across 17 alleles in the North American Grey wolf (Seddon & 

Ellegren 2002) and 22 variable amino acids sites amongst just four alleles in a single 

Ethiopian wolf population (LJ Kennedy, submitted).  Furthermore, there was less variation 

at the putative PBR site residues, which are thought to be primarily responsible for 

functional differences between alleles (Sommer 2005), in African wild dogs compared with 

Ethiopian wolves (LJ Kennedy, submitted) and North American Grey wolves (Kennedy et 

al. 2007a): total number of variable PBR sites, 9, 11 and 15 respectively; average number 

of residues/PBR site, 1.5, 1.7 and 2.2 respectively.  Consequently, one might speculate 

that although African wild dogs have a large number of DLA-DRB1 alleles, they may have 

little functional diversity.  Overall, our data suggest that African wild dogs are genetically 

depauperate at the MHC relative to other canids.  They have uncharacteristically low 

amino acid diversity at the DLA-DRB1 locus and low numbers of alleles at the DLA-DQA1 

and DQB1 loci, for a canid, even for an endangered one.   

African wild dogs may have lost allelic diversity across all MHC class II genes due 

to historical bottlenecks, with strong disease pressures subsequently maintaining or 

generating MHC variation at the least conserved region, in this case the DLA-DRB1 locus.  

The presence of just two highly divergent monophyletic allelic lineages for both DLA-

DRB1 and DLA-DQB1 is consistent with the hypothesis that this species suffered severe 

bottlenecks, resulting in the loss of alleles, and subsequent evolution of new diversity (van 

Den Bussche et al. 1999).  However, both DLA-DQB1 alleles and both DLA-DRB1 

lineages, were represented across African wild dog populations.  A range-wide bottleneck 

would be unlikely to produce such a consistent pattern of diversity loss across populations 

because this would result in the random loss of variation.  It is more likely that African wild 

dogs suffered local population extinctions across most of the African wild dog range, with 

remnant populations retaining both allelic lineages and subsequently expanding to re-

colonise their former range.  
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It is clear from our study that African wild dogs are atypical in their patterns of 

MHC diversity amongst the canids which have been studied to date. However, all canids 

previously studied at the MHC (domestic dogs, Grey wolves, Coyotes, Ethiopian wolves, 

Red wolves, and Mexican wolves) have been closely related species of Canis, that have a 

long history of hybridization (Verginelli et al. 2005; Vilà et al. 1997).  Consequently I 

cannot distinguish whether African wild dogs show different patterns of MHC 

polymorphism to Canis species because of factors related to African wild dog 

demographic history, rather than their distant phylogenetic relationship to the Canis 

genus, or the fact that they lack extensive hybridization in their recent evolutionary history.  

Future work is planned on other non-hybridizing species of the wolf like clade to 

investigate these alternative hypotheses. 

Adaptive genetic variation is of primary interest in conservation genetics, therefore 

MHC data have particular application to endangered species programs (Aguilar et al. 

2004).  In this study I have shown that the highly endangered African wild dog has a 

reduced level of MHC variation compared with other canids, perhaps as a result of 

historical bottlenecks.   Amongst African wild dog populations, levels of MHC diversity 

were found to vary, but more research is required to investigate the significance of this in 

relation to differences in disease incidence and exposure.   Our data have shown that the 

distribution of MHC variation does not match the pattern of neutral genetic variation 

highlighted in previous studies (Girman et al. 2001), indicating that conservation plans 

based on neutral genetic data alone may not adequately conserve adaptive genetic 

variation.  It is promising however, that such a high proportion of MHC diversity from free 

ranging populations has been successfully conserved within the European captive 

breeding programme.  This high diversity is likely the result of the diverse origin of 

individuals that founded the European captive population.  
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Figure 2.1:  Historic (light gray) and present (dark gray) range of African wild dogs 
according to McNutt (2008).  Sampling locations are shown with circles.  Carcass samples 
are depicted with smaller circles and italics. Country codes – Kenya KNY, Tanzania TNZ, 
Zimbabwe ZIM, Botswana BOT, Mozambique MOZ, South Africa SAF, Namibia NAM.   

 

 



 

Figure 2.2: African wild dog DLA-DRB1 alleles aligned to domestic dog DLA-DRB1*00101 sequence. Matching amino acids are indicated with a dash, 
varying amino acids are indicated by single letter amino acid codes.  HVR 1, 2 and 3 are shaded in grey.  PBR are depicted with an asterisk.  Alleles are 
grouped into two phylogenetically divergent allelic lineages, A (above the line) and B (below the line).   

 

                 * * *              * * *    **        *        *   **   *  * **      *  **  ** **                    
DRB1*00101   -HFLEVAKSECYFTNGTERVRFVERYIHNREEFVRFDSDVGEYRAVTELGRPVAESWNGQKEILEQERATVDTYCRHNYGVIESFTVQRR- 
DRB1*90101   ----N------------------D---Y--------------F---------D--YL-R----------A-----------G--------- 
DRB1*90102   ----N------------------D---Y--------------F---------D--YL-R----------A--------------------- 
DRB1*90201   ----N------------------D---Y--------------F---------D--Y--R----------A--------------------- 
DRB1*90202   ----N------------------D---Y--------------F---------D--Y--R----------A-----------G--------- 
DRB1*90203   ----N------------------D---Y--------------F---------D--Y--R----------A---V-------G--------- 
DRB1*90204   ----N------------------D---Y------------------------D--Y--R----------A--------------------- 
DRB1*90301   ----N------------------D---Y--------------F---------D--Y--R---L---R--E---V-------G--------- 
________________________________________________________________________________________________________________________________________________________________ 

DRB1*90401   ---VYQF-G-------------LA-S-Y--------------F---------D--Y--R---L---R--E---V-------G--------- 
DRB1*90402   ---VYQF-G-------------LA-S-Y------------------------D--Y--R---L---R--E-----------G--------- 
DRB1*90501   ---VYQF-G-------------LA-S-Y------------------------D--YR-R---L---R--E-----------G--------- 
DRB1*90602   ---VYQF-G------------LLA-S-Y--------------F---------D--Y--R---L---R--E---V-------G--------- 
DRB1*90601   ---VYQF-G------------LLA-S-Y--------------F---------D--Y--R---L---R--E---V----------------- 
DRB1*907011  ---VYQF-G------------LLA-S-Y--------------F---------D--YR-R---L---R--A-----------G--------- 
DRB1*907012  ---VYQF-G------------LLA-S-Y--------------F---------D--YR-R---L---R--A-----------G--------- 
DRB1*90702   ---VYQF-G------------LLA-S-Y------------------------D--YR-R---L---R--A-----------G--------- 
DRB1*90801   ---VYQF-G------------LLA-S-Y--------------F---------D--YL-R----------A-----------G--------- 
DRB1-fmut    ---VYQF-G------------LLA-S-Y------------------------D--Y--R----------A---V----------------- 
                  HVR1                                  HVR2                                                                HVR3 
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Figure 2.3: Segregation analysis of DLA-DRB1 alleles according to sequence based 
typing data of captive African wild dog samples from European zoos.  African wild dog 
DLA-DRB1 alleles comprise two highly divergent allelic lineages, A and B.  Lineage B 
alleles are underlined to demonstrate segregation of these allelic lineages.  Family 1 
represents an example where the mother has two lineage B alleles and the father two 
lineage A alleles.  Each offspring is seen to inherit one lineage A allele from their mother, 
and one lineage B allele from their father.  The two expected genotype classes 
(90401/90101 and 90401/90102) occur at a frequency of 8 and 7, respectively, which is 
not significantly different than expected for a single locus (p>0.95).  Family 2 is an 
example of segregation where both parents have one lineage A and one lineage B allele.  
Although the expected frequency of each genotype class (1.75 for each of the four 
possible combinations of parental alleles) is too low to reliably apply a chi-square 
goodness of fit test, each expected genotype occurs at least once.  Three out of seven 
offspring are shown to inherit a lineage A allele from both parents, two offspring inherit a 
lineage B allele from both parents, and two offspring inherit a lineage A allele from one 
parent, and a lineage B allele from the other parent.  
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Figure 2.4: Neighbor-joining tree of DLA-
DRB1 alleles using a Juke’s Cantor 
model of nucleotide substitution.  
Bootstrapping was conducted with 5000 
replicates; black circles depict nodes with 
>70% support.  African wild dog 
sequences are highlighted in red, and 
cluster into two highly divergent lineages 
rather than being scattered throughout 
the tree as for Grey wolf (blue) and 
Ethiopian wolf (yellow) alleles. 
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Table 2.1: List of captive African wild dog samples contributed to this study by European 
zoological institutions. 

Contributing zoological institution No. samples contributed 

Aalborg zoo, Aalborg, Denmark 9 

Artis zoo, Amsterdam, Netherlands 4 

Attica Zoological Park, Spata, Greece 2 

Beekse Bergen Safarai Park, Hilvarenbeek, Netherlands 11 

Borås Djurpark Zoo, Alvsborg, Sweden 12 

Centre d'Etude Rech Zool Augeron, Lisieux, France 4 

City of Belfast Zoo, Belfast, UK  3 

Colchester Zoo, Essex, UK  4 

Duisberg zoo, Duisberg  3 

Ebeltoft zoo, Ebeltoft, Denmark  4 

Edinburgh Zoo, Edinburgh, UK  5 

GaiaPark Kerkrade Zoo, Kerkrade, Netherlands  7 

Kolmården Djurpark AB, Kolmården, Sweden  20 

La Palmyre Zoo, Royan, France  3 

Le Pal Parc Animalier, Dompierre-sur-Besbre, France  3 

London zoo, London, UK  4 

Munchener Tierpark Hellabrunn, Muenchen, Germany  7 

Parken Zoo Eskilstuna AB, Sodermanland, Sweden  2 

Port Lymne Wild Animal Park, Hythe, UK  23 

Fondazione Bioparco di Roma, Rome, Italy  2 

Rostock Zoologischer Garten, Rostock, Germany  5 

Safari De Peaugres, Peaugres, France  7 

West Midland Safari & Leisure Park, Worcester, UK  20 

Zoo Basel, Basel, Switzerland  5 

Zoo Dortmund, Dormund, Germany  3 

Zoo D’Amneville, Amneville, France  4 

Zoo Dvůr Králové, Dvůr Králové nad Labem, Czech Republic 4 

Zoological Center Tel Aviv, Ramat Gan, Israel  1 

Zoological Society of Ireland-Dublin, Dublin, Ireland  2 

Zoo de Pont-Scorff, Pont-Scorff, France  13 

Royal Museum of Scotland – deceased EU zoo animals  4 

  



 

Table 2.2: Percentage of DLA-DRB1 alleles and lineages across sampling localities, subdivided into free-ranging nonmanaged populations, and samples 
from a managed population, and carcass and captive samples. 

  Non-managed populations Managed Carcass samples Captive 

Laikipia 
KNY  

(n=56) 

N.Serengeti 
TNZ         

(n=14) 

Hwange 
ZIM   

(n=15) 

Okavango 
BOT  

(n=28) 

S.Africa 
SAF   

(n=49) 

Kajiado    
KNY 
(n=1) 

Ghanzi 
BOT 
(n=1) 

Sofala  
MOZ 
(n=3) 

Mangetti   
NAM 
(n=1) 

EU             
zoos            

(n=200) 

 Locus 
DRB1* 

90101     6.7 8.9 5.1         33.5 
90102  3.6  32.1      12.3 
90201   3.3 32.1 24.5  100.0   9.5 
90202 57.1 14.3 10.0 7.1 25.5    100.0 5.8 
90203  42.9    50.0  100.0    
90204   14.3          

Li
ne

ag
e 

A
  

90301     4.1     3.5 
            

     90401   10.0       13.0 
90402   33.3 1.8 7.14     1.5 
90501 15.2  3.3        
90602  3.6        6.5 
90601 27.7   12.5 4.1 50.0     

     907011   16.7  21.4     4.0 
 907012   13.3       0.3 
90702   3.3       9.8 
90801  17.9  5.4 8.2     0.5 

   
   

   
Li

ne
a

ge
 B

  

fmut   3.6               

Total # alleles  3 7 9 7 8 2 1 1 1 12 
% Lineage A 57.1 75.0 20.0 80.4 59.2 50.0 100.0 100.0 100.0 57.1
% Lineage B 42.9 25.0 80.0 19.6 40.8 50.0 0.0 0.0 0.0 42.9

Ho % 53.6 92.9 73.3 82.9 93.9* NA NA NA NA 82.0
He % 57.9 76.7 84.4 77.5 82.0 NA NA NA NA 82.9 

Standardised # 
alleles, n=10 

2.9 6.1 7.8 5.8       



 

π 0.0758 
(0.024) 

0.0613 
(0.009) 

0.0509 
(0.0001) 

0.0595 
(0.011) 

      

π(syn) 0.0482 0.0450 0.0294 0.0391       

π(nonsyn) 0.0810 0.0632 0.0552 0.0628       

Θ 0.0716 
(0.0019)

0.0435 
(0.0001) 

0.0484 
(0.0001)

0.0435 
(0.0004)

      

 

n=number of individuals typed.  
Ho = observed heterozygosity (%).  *denotes significant excess to Hardy Weinberg proportions (HWE), p<0.001.  
He = expected heterozygosity under HWE (%).   
The number of alleles was standardized for a population size of 10 using rarefraction, in HP-Rare. Nucleotide diversity was calculated as pairwise diversity 
π and segregating sites θ in DNAsp.  π(syn) = nucleotide diversity at synonymous sites. π(nonsyn) = nucleotide diversity at nonsynonymous sites.  
Population diversity metrics were not calculated where less than four individuals were sampled in a population, or for the managed South African sample 
set and captive samples, which do not represent true populations. Country codes – Kenya KNY, Tanzania TNZ, Zimbabwe ZIM, Botswana BOT, 
Mozambique MOZ, South Africa SAF, Namibia NAM. 



 

Table 2.3: Percentage of DLA-DQB1 alleles across sampling localities, subdivided into free-ranging nonmanaged populations, and samples from a 
managed population, and carcass and captive samples. 

 Non-managed populations Managed Carcass samples Captive 

Locus 
DQB1* 

Laikipia 
KNY  

(n=56) 

N.Serengeti 
TNZ         
(n=9) 

Hwange 
ZIM   

(n=13) 

Okavango 
BOT  

(n=53) 

S.Africa 
SAF 
(n=6) 

Kajiado   
KNY 
(n=1) 

Ghanzi 
BOT 
(n=1) 

Sofala  
MOZ 
(n=3) 

Mangetti   
NAM  
(n=1) 

EU  
zoos 

(n=92) 

Total 
(n=234) 

90101 89.3 72.2 100.0 70.8 100.0 100.0 100.0 100.0 100.0 97.8 87.5 
90201 10.7 27.8  29.2      2.2 12.5 

 

n=number of individuals typed. Country codes – Kenya KNY, Tanzania TNZ, Zimbabwe ZIM, Botswana BOT, Mozambique MOZ, South Africa SAF, 
Namibia NAM. 



 

Table 2.4: Comparison of DLA alleles found in different canid populations. 
 

Study species/population DRB1 DQA1 DQB1     Reference 

Species sampled in multiple populations     

African wild dog: n=368 17 1 2  
1Grey wolf: Canada, Alaska: n=194 17 12 15 (Kennedy et al. 2007a) 

Grey wolf: Northern Europe: n=163 17 9 10 (Seddon & Ellegren 2002) 

Grey wolf: Total n=407 26 18 21 (Kennedy et al. 2001) 

Species sampled from single populations     

2African wild dog: Single popn n=14-56 3-10 1 2  
3Mexican wolf: Single popn n<7 4 5 3 (Hedrick et al. 2000) 

4Ethiopian wolf: Bale Mountains popn n=99 4 2 5 L.J.Kennedy submitted 

 

1 Grey wolves are not an endangered species (Mech & Boitani 2008). 
2 Numbers of alleles detected in individual African wild dog populations where 14-56 animals were sampled per population. 
3 Mexican wolves, Canis lupus baileyi, are a critically endangered subspecies of the Grey wolf Canis lupus.  They are thought to have gone extinct in the 
wild in the c.1970.  All individuals extant today have been bred in captivity, and are derived from 7 founders (Hedrick et al. 2000).  
4 Ethiopian wolves are highly endangered, with just 500 individuals.  MHC surveys were conducted on 99 samples from the largest (n=250) of the seven 
extant Ethiopian wolf populations (LJ Kennedy submitted).  



 

3 Chapter 3: Puzzling Persistence of African Wild 

Dogs in Serengeti-Mara. 
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3.1 Abstract  

An endangered population of African wild dogs (Lycaon pictus) disappeared from 

the Serengeti-Mara in 1991. The reasons for the extinction are not understood, but 

disease was implicated in the disappearance.  In 2001, wild dogs naturally re-colonised 

the region.  I conducted microsatellite genotyping on samples collected prior and 

subsequent to this event, as well as samples from three nearby populations.   Contrary to 

expectations, clustering analyses and assisgnment tests demonstrate that the re-

established animals are derived from the Serengeti-Mara.  This result shows that wild 

dogs must have persisted in this region after 1991, either undetected in, or outside of, 

monitoring areas. Further, I did not detect a decline in genetic diversity at either neutral or 

major histocompatibility complex loci as predicted for a founder effect associated with a 

re-colonisation event. 

 

 



58 

3.2 Introduction  

With most species in global decline, there seems little to celebrate in endangered 

species conservation.  One recently heralded exception is the re-establishment of 

endangered African wild dogs (Lycaon pictus, hereafter referred to as wild dogs) in the 

Serengeti-Mara region (Figure 3.1A) following apparent extinction in 1991 (Woodroffe 

2001).  This extinction was a high-profile event (Morell 1995) due to an extensive debate 

spanning more than 20 articles across 9 years (reviewed in Woodroffe 2001) about the 

cause of a disease outbreak which was implicated in the extinction (Gascoyne et al. 1993; 

Kat et al. 1995). Concern that human handling may have caused latent rabies to develop 

and spread (Burrows et al. 1994) led to a ban on animal handling and reluctance to 

implement vaccination programs for both domesticated and wildlife species in some 

countries (Woodroffe 2001).  In 2001, African wild dogs naturally re-established in the 

Serengeti-Mara region (Fyumagwa & Wiik 2001).  Given the controversial history of this 

population, there is considerable interest about the population origin of these individuals.  

Since wild dogs are a highly mobile species, with dispersers groups capable of moving up 

to 250 km to establish new packs (Fuller et al. 1992) there are a number of potential 

source populations of the Serengeti-Mara wild dogs.  In Eastern Africa, wild dog 

populations are no longer resident in Uganda, Rwanda or Burundi, but extant populations 

are known in Tanzania, Kenya, Ethiopia and Sudan.  However, with few exceptions these 

wild dog populations are highly fragmented and isolated from each other by wide 

stretches of anthropogenically modified habitats, and thus recolonisation is more likely 

from the closest populations. 

Wild dog monitoring in the Serengeti-Mara formerly concentrated on two areas 

within the Serengeti-Mara ecosystem: 1) the “Serengeti plains” in the south from 1964 

(Burrows et al. 1994); and 2) the “Mara” just outside of the Masai Mara Nature Reserve in 

the north from 1987 (Scott 1991).  The pre-extinction Serengeti-Mara monitoring area is 

hereby used as a collective term describing the area covered by the home ranges of wild 

dog packs from these two areas (Figure 3.1B).  Between 1986 and 1991, 15 packs were 

observed in the pre-extinction monitoring area (Woodroffe 2001).  However, by December 

1991, all of these packs were recorded as locally extirpated (Woodroffe 2001) and the 

whole Serengeti-Mara wild dog population was subsequently reported  (Creel & Creel 

2002; Daszak et al. 2000; Woodroffe & Ginsberg 1999) and widely assumed to be, extinct 

(but see Burrows et al. 1994; Ginsberg et al. 1995).  Outside of the main Serengeti-Mara 

monitoring area, no systematic data was collected and so we do not know where and how 

many wild dogs were resident, nor their demographic trends (Burrows 1995).  Limited 

monitoring conducted in the Serengeti-Mara ecosystem between 1991 and 1998 reported 

only vagrant and single-sex dispersing groups (Woodroffe 2001).  However, following 
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sightings of multiple groups of wild dogs in 1998, systematic monitoring was restarted and 

the Serengeti-Mara population officially deemed re-established in 2001 when the first 

denning (reproduction) was reported (Fyumagwa & Wiik 2001).  Since then, the re-

established population has grown rapidly, with a minimum estimate of 125 wild dogs 

reported in 2009.  Whilst the home ranges of re-established and pre-extinction packs 

overlap, the re-established monitoring area does not include the entire pre-extinction 

monitoring area as wild dogs have not yet (January 2010) re-established as resident 

packs inside of the Serengeti National Park (SNP, Figure 3.1B), despite observations of 

sporadic incursions of wild dogs into SNP.   

Rarely are samples available prior to extinction and following natural re-

colonisation of an endangered species.  However, through ongoing research programs, I 

obtained samples from individuals residing in the Serengeti-Mara region before and after 

the assumed extirpation, hereafter referred to as the pre-extinction and re-established 

Serengeti-Mara.  This sample set was typed for variation in 10 microsatellite loci along 

with samples from the three nearby wild dog populations in eastern Africa (Selous, Masai-

Steppe and Laikipia), to assess the source of the re-established Serengeti-Mara wild 

dogs.  We also assessed whether the re-established Serengeti-Mara population exhibited 

reduced levels of genetic diversity at neutral microsatellite loci and at the major 

Histocompatibility complex (MHC), as predicted with founder effects associated with the 

recolonisation. 

Here I demonstrate that, despite the observed disappearance of wild dogs in the 

monitoring area, the declaration of extinction was premature, as genetic evidence 

indicates that the re-established animals are derived from the Serengeti-Mara.  

Encouragingly, I show that there has not been a loss of genetic diversity in the Serengeti-

Mara population. However, increased monitoring is now essential to elucidate and protect 

the metapopulation connections that are needed to allow demographic rescue. 
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3.3 Methods  

Sampling and DNA extraction 

 I obtained samples from wild dogs residing in the Serengeti-Mara before (n=20 

from ≥6 packs, S. Cleaveland, P. Kat) and after (n=13 from 4 packs, E. Masenga) the 

assumed extirpation.  I also accessed samples from three other wild dog populations in 

eastern Africa: Selous in southern Tanzania (n=22 from 8 packs, S. Creel); Masai Steppe 

in northern Tanzania (n=32 from 3 packs, A. Visée); and Laikipia in northern Kenya (n=65 

from ≥9 packs, R. Woodroffe; Figure 3.1A,B), which are the three geographically closest 

extant populations for which samples could be obtained.  It was not possible to ascertain 

samples for all possible wild dog source populations, those that were not sampled are 

shown in Figure 3.1A. 

All samples assessed in this study were derived from high quality samples, that is, 

blood, sera or tissue.  Masai Steppe samples were provided as extracted DNA.  Six 

Selous samples and four pre-extinction Serengeti samples had been extracted using 

phenol chloroform for another study DNA (Girman et al. 2001).  All other samples were 

extracted using DNeasy tissue and blood extraction kits (Qiagen Inc) according to the 

manufacturer’s instructions.   

Microsatellite and MHC genotyping 

DNA samples were genotyped at 10 microsatellite loci PEZ08, PEZ12, PEZ15 (J. 

Halverson in Neff et al. 1999); FHC2010, FHC2054, FHC2611, FHC2658, FHC2785, 

FHC3399, FHC3965 (Breen et al. 2001; Guyon et al. 2003; Neff et al. 1999) located on 

different chromosomes (Neff et al. 1999).  The forward primer of each pair was labelled 

with ABI fluorescent dyes: NED (yellow), 6-FAM (blue) or HEX (green).  Samples were 

amplified alongside negative controls by multiplex PCR using Qiagen Multiplex PCR mix.  

I followed default reagent concentrations recommended by the manual except in cases of 

DNA derived from serum or hair, where 0.4μl of 10mM Bovine Serum Albumin (Promega) 

was added per PCR reaction.  PCR was performed on PTC-200 (MJ Research) 

theromcyclers with the following touchdown protocol:  15 min at 95°C; 12 touchdown 

cycles of 94°C for 30 s; 1 min at 30 s annealing, starting at 60°C and reducing at 0.5°C 

per cycle; and 72°C for 1 min. This was followed by 33 cycles of 89°C for 30 s, 55°C for 1 

min, and 72°C for 1 min.  The protocol ended with a final extension of 60°C for 30 

minutes.  Samples were run on an ABI 3730 with a ROX 500 size standard (by The 

Sequencing Service, University of Dundee) and analysed using GENEMAPPER 4.7 

(Applied Biosystems). Low concentration or poorly amplifying DNA samples were 

amplified and genotyped three times.  Samples with missing data for more than three loci 
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were excluded from analyses. For each population and locus, I tested for deviations from 

Hardy Weinberg Equilibrium using GENALEX6 (Peakall & Smouse 2006) and assessed 

for significance after Bonferroni correction for multiple tests.   

Sequence-based typing of the Major Histocompatibility Complex (MHC) DLA-

DRB1 locus (hereafter referred to as DRB) was done according to the methods detailed in 

Marsden et al. (2009) which is included in this thesis as Chapter 2.  In brief, I amplified 

and sequenced exon 2 of the DRB locus.  Sequences were visually analysed to correct 

automated base calling errors in Match Tools Navigator (Applied Biosystems).  

Homozygous samples were used to compile locus-specific allele libraries, which also 

included all other known canid alleles obtained from the DLA nomenclature committee (L. 

Kennedy pers.comm).  Heterozygous samples were then analysed in Match Tools 

(Applied Biosystems), which compares heterozygous sequences with the allele library to 

predict which allele combinations could generate the observed pattern (Kennedy et al. 

2002b).  

Microsatellite clustering analyses 

A neighbour-joining tree based on Nei’s allele-sharing distance was reconstructed 

in POPULATIONS v 1.2.30 (Langella 1999). Bayesian clustering analysis was conducted 

using STRUCTURE 2.3 (Pritchard et al. 2000), assuming no prior population or location 

information, with correlated allele frequencies and admixture.  I used 100,000 burn-in 

cycles and 500,000 Markov Chain Monte Carlo (MCMC) runs for K = 1-10, with ten 

replicates per K value.   The most likely number of clusters (K) that best fit the data was 

selected based on the ΔK statistic (Evanno et al. 2005) and consistency amongst 

replicates (Pritchard et al. 2000).  The ΔK statistic assesses the rate of change in the log 

probability of the data between successive K values (Evanno et al. 2005), and was 

calculated in the programme STRUCTURE HARVESTER v0.5 (Earl 2009).  Following 

Evanno et al. (2005) I first ran STRUCTURE on our complete data set, and subsequently 

on data subgroups as indicated by ΔK. 

Assignment tests 

 I conducted posterior probability assignment tests on the re-established 

Serengeti-Mara samples in STRUCTURE 2.3.  I ran STRUCTURE at K=4, assuming 

correlated allele frequencies, admixture, a migration rate of 0.01 (Pritchard et al. 2000), 

100,000 burn-in cycles and 500,000 MCMC runs.  An assignment test was also conducted 

in Geneclass 2 (Piry et al. 2004) using the Rannala & Mountain criterion (Rannala & 

Mountain 1997) and Paetkau resampling algorithm (Paetkau et al. 2004), assessed over 

10,000 simulations.    
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Microsatellite and MHC genetic diversity and heterozygosity 

For the Serengeti-Mara samples I calculated observed (Ho) and expected (He) 

heterozygosity in GenALEX (Peakall & Smouse 2006) and the number of alleles (A) and 

allelic richness standardized for sample sizes (Rs) in FSTAT 2.9.3 (Goudet 1995) for both 

microsatellite and MHC alleles.  I also calculated nucleotide diversity amongst MHC 

alleles as the average number of segregating sites θ and pairwise diversity π, using 

DnaSP 4.20 (Rozas and Rozas 1995). 
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3.4 Results 

Clustering analyses  

An allele sharing tree showed that the African wild dog samples clustered into four 

distinct geographic groups: 1) Laikipia; 2) Selous; 3) Masai-Steppe; and 4) pre-extinction 

and re-established Serengeti-Mara (Figure 3.1C).  Similarly, STRUCTURE analyses were 

most consistent with four clusters within the data set (Figure 3.2).  The ΔK statistic 

indicated the strongest signal of population subdivision to be K=2, where Laikipia was 

distinct from all other samples (Figure 3.2).  However, there was a strong secondary peak 

at K=4 indicative of finer scale population structuring (Evanno et al. 2005), where the pre-

extinction and re-established samples were identified as a single cluster, and Laikipia, 

Masai Steppe and Selous were each assigned to separate clusters.  It is noteworthy that 

only when K≥7, did the re-established Serengeti-Mara sometimes appear to form a cluster 

that was distinct from the pre-extinction Serengeti, but this was not a consistent solution 

across replicates.  As recommended by Evanno (2005) I re-ran STRUCTURE on each of 

these two clusters; 1) Selous, Serengeti-Mara and Masai-Steppe and 2) Laikipia.  For 

cluster 1, the results showed a clear single peak at K=3 corresponding to the pre-

extinction and re-established samples as a single cluster, with the other two clusters 

defined by Selous and Masai Steppe samples (Figure 3.2).   Independent analysis of 

Laikipia subdivided the population into groups of related packs (data not shown).   

Assignment tests 

Based on microsatellite loci, posterior probability assignment tests implemented in 

STRUCTURE showed that individuals from the re-established Serengeti-Mara population 

had on average a 95% probability of belonging to the same population as the pre-

extinction animals (range 85-97%), compared with 1.4-2.4% probability of belonging to 

any of the other putative source populations.  The more conservative assignment test that 

allows for unsampled populations, implemented in Geneclass 2, assigned nine of the 13 

re-established Serengeti-Mara animals to the same population as the pre-extinction 

individuals.  The remaining four samples were assigned to unsampled populations.  Given 

the limited geographic sampling of pre-extinction animals, this could suggest they are from 

unrepresented areas of the Serengeti-Mara and thus appear different despite being from 

the same genetic population.  Conversely, they could be migrants from unsampled 

populations. 
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Genetic diversity 

 I observed no significant decline in Ho, He, or Rs at microsatellite loci between the 

pre-extinction and re-established populations (Table 3.1: paired T-test; Ho, t=0.72, 

p=0.486; He, t=1.90, p=0.09; Rs, t=1.70, p=0.123).  In general, levels of genetic diversity 

were comparable to the three other wild dog populations (Ho, 0.61-0.68; He, 0.61-0.68; Rs, 

4.31-4.9; Table 3.1) as well as other wolf-like canid populations (Aspi et al. 2009; Aspi et 

al. 2006; Randall et al. 2010).  No significant deviations from Hardy Weinberg equilibrium 

at any microsatellite locus were observed (GENALEX).   

 I amplified nine different MHC class II DRB alleles (Table 3.2). I found no 

evidence of pseudogenes (stop codons or frameshift mutations), and a maximum of two 

alleles were amplified in each individual, suggesting a single functional gene was 

amplified.  As with the microsatellite data, I found no evidence of decline in MHC diversity 

between the pre-extinction and re-colonised populations (Table 3.1).  In fact, Ho, He and 

Rs were all higher in the re-colonised population.  However, there was shift in allelic 

composition and frequency between pre-extinction and re-colonised samples (Table 3.2).  

The pre-extinction and re-colonised populations shared just 2 alleles, and allele 

DRB1*90601 that was found at high frequency (34%) in the pre-extinction population was 

absent in the re-colonised population.  Further, allele DRB1*90203 which was common 

(43%) in the re-colonised population was not found in the pre-extinction population.  

African wild dog DRB alleles have been shown to be derived from just two allelic lineages, 

A and B (Marsden et al. 2009).  I observed that the re-colonised population had a 

significantly higher (36%) proportion of lineage A alleles than the pre-extinction population 

(Chi Squared, d.f.=1, p<0.005, Chi sq value = 8.288).  The re-established population also 

had a higher proportion (50%) of individuals with an allele from each lineage (i.e. lineage 

heterozygotes) than the pre-extinction population (22%), although the difference was not 

significant (Chi-Sq=0.90, d.f. =1).   



65 

3.5 Discussion 

Contrary to expectations, both Bayesian and allele-sharing clustering analyses 

showed that re-established Serengeti-Mara wild dogs grouped with pre-extinction 

individuals rather than putative source populations (Figure 3.1C,D).  Furthermore, 

assignment tests indicated that the majority of re-established Serengeti-Mara individuals 

were derived from the same population as the pre-extinction Serengeti-Mara.  

Consequently, these findings strongly imply that, although wild dogs were no longer 

observed to be resident in the well-monitored areas of Serengeti-Mara after 1991, they 

may have persisted there undetected.  Alternatively, they may have existed in 

unmonitored areas nearby, providing a source of individuals for re-establishment in 2001.  

It has been widely assumed that all former residents (15 packs) in the pre-extinction 

monitoring area died; however, the fates of most are unknown (Woodroffe 2001).  Passive 

monitoring by scientists, tour guides, and indigenous communities suggests an absence 

of breeding packs from the pre-extinction monitoring area until at least 1998.  However, 

these monitoring efforts may not have been sufficient to detect a population at low density 

in Serengeti-Mara or nearby areas.    Specifically, the re-established animals I sampled 

clustered most closely with pre-extinction animals from along the Kenyan-Tanzanian 

border, where monitoring had been minimal (Figure 3.1C).  However, genetic data alone 

cannot provide information on the puzzling cause of the disappearance of so many packs 

in Serengeti-Mara, nor on reasons for the subsequent recovery.  More extensive 

monitoring would have been required to evaluate the causes of their disappearance. 

Interestingly, although the population is recovering rapidly (minimum estimate of 125 

dogs), to date no packs have re-established in the Serengeti National Park (SNP), where 

much of the pre-extinction monitoring was focused (Figure 3.1B).  The reason for the 

absence from SNP remains to be determined but wild dogs are known to avoid lions (Mills 

& Gorman 1997), which have increased inside SNP since 1991 (Packer et al. 2005). 

It is rare to be able to compare genetic samples before and after a local 

demographic decline in an endangered species and the availability of samples here 

emphasises the importance of continuous long-term field projects such as in the 

Serengeti-Mara (Thirgood 2007).  Although our sample size is small, I found no evidence 

of a loss of genetic diversity in neutral microsatellites or genes that should be subject to 

selection (MHC-DRB) suggesting that the loss of packs in the Serengeti-Mara did not 

impact genetic variation of the regional metapopulation (Table 3.1).  However, at the DRB 

locus I detected a large increase in Ho as well as a shift in the composition and frequency 

of alleles and lineages between pre-extinction and re-colonised samples. Due to the 

functional relevance of the MHC locus, these changes could represent adaptive 

differences between the pre-extinction and re-established study populations resulting from 
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changes in selective pressures.  Indeed, allelic composition and heterozygosity were more 

consistent at neutral loci than at the DRB: 79% of microsatellite alleles detected in the re-

established population were found with pre-extinction population compared with 33% at 

the MHC; Ho in the re-established population was 4% lower at microsatellite loci but 26% 

higher at MHC loci. However, further study is required as these changes may be a 

stochastic consequence of limited sample sizes.   

Our study highlights the importance of geographic connectivity in small populations 

of highly mobile species and emphasizes the need for more, rather than less, monitoring 

so that source populations and dispersal corridors can be identified and adequately 

protected.  This monitoring may require animal handing, as radiotelemetry devices offer 

the only direct method to follow the movements of individuals (Woodroffe 2001).  In recent 

years, several other wild dog populations have likewise been re-established by natural re-

colonisation (Woodroffe et al. 2005).  Such demographic rescue events illustrate the 

critical importance of maintaining landscape connectivity even when the likelihood of re-

colonisation appears small or when local extinctions seem to have occurred. 
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Figure 3.1: (A) Map of sampling locations. Green = Laikipia (LAI), blue = Serengeti-Mara 
(S-M), yellow = Masai Steppe (MST), red = Selous (SEL). Numbers 1-5 represent 
populations that were not sampled in the area surrounding Serengeti-Mara. (B) 
Approximate area of Serengeti-Mara Pre-extinction (dark blue) and Re-established (light 
blue) monitoring areas.  (C) Population subdivision based on neighbour-joining tree of 
allele-sharing distance across 10 microsatellite loci.  Re-established Serengeti samples 
(brown) clearly cluster with pre-extinction Serengeti samples rather than with the three 
other populations, which each appear as distinct clusters. Asterisks depict pre-extinction 
Serengeti-Mara samples from the northern Mara area. (D) Population structure based on 
STRUCTURE analyses of 10 microsatellite loci. Shown is the most likely level of 
clustering (K=4) (Figure 3.2).  Columns are individuals, with the proportion of an 
individual’s genotype assigned to each cluster (K) denoted by different colours.  The re-
established Serengeti-Mara samples (S-M, R) clearly cluster with the pre-extinction 
Serengeti-Mara samples (S-M, Ex) rather than the three other populations, which appear 
as discrete clusters. 
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Figure 3.2: Magnitude of ΔK as a function of K.  a) Where all samples are included the 
highest level of structure (K=2) identifies Laikipia to be distinct to all other samples.  There 
was a prominent lower peak at K=4, where the pre-extinction and re-established samples 
are identified as a single cluster, and Laikipia, Masai Steppe and Selous as three separate 
clusters.  b) Where the divergent Laikipia samples are excluded, a single peak at K=3 is 
identified, which corresponds to the pre-extinction and re-established samples being a 
single cluster, with the other two clusters being Selous and Masai Steppe. 

 

 



 

Table 3.1: Genetic diversity and heterozygosity estimates for samples based on microsatellite (msat) and MHC markers, for samples from the pre-extinction 
and re-established Serengeti-Mara. 

 

  Microsatellites  MHC-DRB 
Sample source N (msat/MHC) A1 Rs2 Ho3 He4  A Rs Ho He π (SD) θ (SD) 

Pre-extinction 20/185 6.10 4.97 0.69 0.72  5.00 4.8 0.67 0.74
0.064 

(0.028) 
0.053 

(0.028) 

Re-established 13/146 4.60 4.31 0.65 0.67  6.00 6.0 0.93 0.76
0.060 

(0.009) 
0.049 

(0.024) 
 

1 Mean number of alleles per locus.  
2 Allelic richness standardized for differences in sample sizes.  
3 Observed Heterozygosity.  
4 Expected Heterozygosity.  
5 Two pre-extinction samples would not amplify or produce readable sequence at the DRB locus.   
6 One re-established sample failed to amplify across microsatellite loci.   
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Table 3.2: Frequency of MHC-DRB alleles and lineages in the Pre-extinction and Re-
established Serengeti-Mara.   

 

  Allele frequency 
 Allele Pre-extinction Re-established 

DRB1*90201 0.03  
DRB1*90202  0.14 
DRB1*90203  0.43 

 
Lineage A 

alleles 
DRB1*90204 0.36 0.18 
DRB1*90401 0.11  
DRB1*90601 0.33  
DRB1*90602  0.04 
DRB1*90801 0.17 0.18 

 
 

Lineage B 
alleles 

DRB1*91101  0.04 
Lineages 
%A:%B  39:61 75:25 

 
 



 

4 Chapter 4: Demographic processes determine 

patterns of genetic diversity across African wild 

dog populations. 
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4.1 Abstract 

African wild dogs Lycaon pictus are an endangered canid that has suffered 

extensive declines in both former geographic ranges and population numbers.  Current 

populations, with few exceptions, are small and exist in locations isolated from each other 

by wide stretches of anthropogenically modified habitats.  In this study I combined neutral 

(microsatellite, mtDNA) and adaptive (MHC) markers to elucidate demographic history, 

gene flow, evidence of selection and spatial and temporal patterns of genetic diversity 

across wild dog populations from Eastern and Southern African.  All wild dog populations 

were found to be small (Ne<30) and showed evidence of bottlenecks.  Coalescent models 

detected a genetic signature of a large and recent demographic decline in wild dogs, 

which correlates with human expansion, but contrasts with the demographic history of 

other African mammals.  Habitat fragmentation and loss appears to have resulted in 

strong population structuring of wild dog populations, with limited gene flow between 

them.  The spatial and temporal structure of microsatellite and MHC diversity were 

correlated, and appeared to be largely determined by demographic stability and size of 

populations. This suggests that selection may be unable to counter strong genetic drift in 

these small wild dog populations.  Overall, I found that the predominant factor determining 

patterns of both neutral and adaptive genetic variation in wild dogs is demographic history.   
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4.2 Introduction 

Knowledge of patterns of genetic variation within a species is essential to the 

understanding of population structure, local adaptation and differences in levels of 

diversity between populations (Bos et al. 2008).  Furthermore, in conservation genetics, 

this information is critical for setting conservation priorities, identifying management units 

and guiding translocation strategies.  Demographic history and gene flow are key factors 

that influence patterns of genetic variation.  For example, when populations become small 

and isolated, genetic divergence between populations increases, and genetic diversity is 

reduced within populations as a result of higher rates of genetic drift and inbreeding, and 

lower rates of geneflow (Frankham 1996; Templeton et al. 1990).  Neutrally evolving 

genetic markers, such as mitochondrial DNA (mtDNA) and microsatellites, are the most 

appropriate for elucidating demographic change and genetic structure and therefore have 

been widely implemented in population genetic studies (Bos et al. 2008).  However, 

selection is a dominant force in shaping adaptive genetic variation, which forms the basis 

of evolutionary change and local adaptation (Gebremedhin 2009; Hoglund 2009).  Since 

neutral genetic markers are not subject to selection, adaptive markers must be assessed 

in order to understand patterns of adaptive variation and the forces that govern it.  

As our knowledge of loci under selection improves, adaptive markers are 

increasingly being incorporated into studies, alongside neutral loci, to elucidate local 

adaptation and differences in evolutionary potential between populations e.g. (Campos et 

al. 2006).  The major histocompatibility complex (MHC) includes multiple genes that code 

for a set of cell-surface molecules involved in the recognition of intra- (class I) and extra- 

(class II) cellular protein antigens as part of the immune response (Eggert et al. 1998; 

Klein 1980; Piertney & Oliver 2006).  MHC loci have been shown to have extraordinarily 

high levels of variation and this diversity is thought to be maintained by balancing 

selection (reviewed in Garrigan & Hedrick 2003).  There are a large number of studies 

showing associations between specific MHC alleles and susceptibility or resistance to 

specific diseases (reviewed in Hill 1998; Piertney & Oliver 2006), which supports the 

contention that pathogens are the main selective force that maintains variation at the MHC 

(reviewed in Jeffery & Bangham 2000; Spurgin & Richardson 2010).  As one of the most 

well understood adaptive loci (Bernatchez & Landry 2003; Miller et al. 2001), and with 

clear relevance to population viability and evolutionary ability (Hoglund 2009; Piertney & 

Oliver 2006; Siddle et al. 2007), the MHC is currently one of the best markers available to 

use as a proxy for adaptive genetic variation.   

When designing studies of genetic variation it is important to consider that 

selective and neutral forces vary both spatially and temporally, and thus genetic variation 
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is also predicted to vary (Oliver et al. 2009a; Seddon & Ellegren 2004).  Under directional 

selection, for example, local selection pressures are expected to result in genetic 

divergence in MHC variation between populations subjected to different pathogen 

repertoires (Bryja 2007; Mäkinen et al. 2008; Miller et al. 2001; Vassilakos et al. 2009).  

Furthermore, changes in pathogen communities are predicted to result in changes in MHC 

variation, within a population, over time (Charbonnel & Pemberton 2005; Oliver et al. 

2009a; Westerdahl et al. 2004).  Despite spatial and temporal variability, many studies 

that have assessed neutral and MHC variation have been based on a set of samples from 

a small number of populations at a single point in time (e.g. Bos et al. 2008; Campos et al. 

2006; Charbonnel & Pemberton 2005; van Oosterhout et al. 2006).  To achieve a more 

thorough insight into patterns of genetic variation, there is a need for studies based not 

only on neutral and adaptive markers, but also with samples collected at an ecologically 

appropriate spatial scale for the species in question (e.g. Crandall 2009; Koutsogiannouli 

et al. 2009) and from more than one temporal period (e.g. Demandt 2010; Oliver et al. 

2009a; Westerdahl et al. 2004), but this has rarely been done in tandem.  

Such detailed studies are particularly important in conservation genetics, where 

anthropogenic declines and habitat loss are altering the neutral and selective forces that 

shape patterns of genetic diversity of endangered species.  Population declines and 

fragmentation are predicted to result in isolated populations with small effective population 

sizes; characteristics that reduce the efficacy of selection on maintaining adaptive 

diversity and increase the loss of genetic diversity by genetic drift and inbreeding 

(Charlesworth 2009; Crow & Kimura 1970; Frankham et al. 2002; Kimura 1983).  

Understanding the extent of demographic declines, their impact on selection, genetic 

diversity and population structuring, as well as determining which populations are 

adaptively different or suffering genetic threats, is critical for prioritising conservation 

efforts and reducing risk of species-wide extinctions.  However, the level of sampling 

required for such an extensive study is especially challenging in endangered species, 

where sample sizes are inherently limited.  

The African wild dog, (Lycaon pictus) is a highly mobile, social, wolf-like canid that 

hunts and breeds cooperatively in packs averaging 5-15 adults (Creel & Creel 2002).  

Historically, African wild dogs ranged across most of sub-Saharan Africa (Woodroffe et al. 

2004b).  However, dramatic range reductions resulting from extensive habitat loss and 

persecution mean that they now occupy just 7% of their former range (IUCN/SSC 2008, 

2009; Woodroffe et al. 1997).  In the wild, fewer than 8,000 individuals remain, scattered 

across a small number of fragmented populations which are largely isolated from each 

other by wide stretches of anthropogenically modified habitats.  (IUCN/SSC 2008, 2009).  

The small sizes of remnant populations, only nine of which are known to constitute more 

than 200 animals, make them vulnerable to extinction (Woodroffe et al. 1997; Woodroffe 
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et al. 2004b).  Disease is argued to represent a significant threat to African wild dogs, 

which share susceptibility to diseases of common sympatric canids such as jackals and 

domestic dogs (Alexander et al. 2010). Outbreaks of diseases have resulted in significant 

population declines in African wild dogs in the past (reviewed in Woodroffe et al. 2004a). 

Consequently, knowledge of the MHC is particularly pertinent to African wild dog 

conservation.   

The aim of my study was to assess the forces that shape patterns of genetic 

variation in the endangered African wild dog, by assessing a spatially and temporally 

variable set of samples with a combination of both neutral (microsatellite and 

mitochondrial DNA) and adaptive (MHC) markers.  Considering the endangered status of 

this species, my sample set is somewhat unusual in terms of: 1) the number of samples 

(>350); 2) their spatial scale (13 monitoring areas distributed throughout Eastern & 

Southern Africa); and 3) temporal separation (three populations were sampled at two time 

points).  Specifically, I addressed the following questions: 1) Is there a genetic signature of 

demographic decline in African wild dogs? 2) How are African wild dog populations 

currently structured?  3) How are neutral and MHC diversity in African wild dogs 

structured temporally and spatially? 4) Is there evidence of selection at the MHC and/or 

local adaptation of African wild dog populations? 
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4.3 Methods  

4.3.1 Sampling and DNA extraction 

To access genetic samples, I contacted established free ranging Africa wild dog 

field projects in Eastern and Southern Africa.  As far as I am aware, my sample set 

represents almost all free ranging wild dog samples available in this region (excluding 

faecal and museum samples).  In three monitoring areas (Kruger, Okavango and 

Serengeti), samples were available from two temporal periods, which will be referred to as 

“Old” and “Recent” (Old = 1980-1995; Recent = post 2000; Table 4.1; Appendix 2).  Blood, 

tissue, hair and serum samples were collated from thirteen monitoring areas (Figure 4.1; 

Table 4.1; Appendix 2): 1) Kruger; 2) Lowveld; 3) Okavango; 4) Hwange; 5) Selous; 6) 

Masai Steppe; 7) Serengeti-Mara, 8) Laikipia.  Five or fewer samples were available from 

the remaining monitoring areas: 9) Ghanzi; 10) NE-Namibia; 11) Sofala; 12) Niassa; 13) 

Kajiado.  For this reason, these samples were only used in descriptive analyses of the 

distribution of mtDNA haplotypes and MHC alleles, where these additional five monitoring 

areas improved geographic coverage.   Finally, I sampled 16 wild dogs that were 

translocated into Hwange (six moved from Pilansberg South Africa and ten moved from 

within Zimbabwe) to assess the genetic impact of artificial translocations. 

For samples collected prior to 1997, DNA had been extracted for another study 

using phenol chloroform extractions (Girman et al. 2001).  Samples collected post 1997 

were extracted using DNeasy tissue and blood extraction kits (Qiagen).  Blood, serum and 

tissue samples were extracted according to manufacturer’s instructions.  Hair was 

extracted according to a user-developed protocol available from Qiagen (Qiagen 2006).  

4.3.2 Genetic typing 

Mitochondrial haplotyping 

To enable comparison with previous work, I amplified a 327 bp segment of 

mitochondrial mtDNA D-Loop control region 1 overlapping the region assessed by Girman 

et al (2001).  Mitochondrial DNA was amplified by polymerase chain reaction (PCR) using 

a modified version of the canid-specific primers, Thr-L and DLH, which were redesigned 

specifically for African wild dogs (Leigh 2005): forward 5’ ACT ATT CCC TGA TCT CCC 

CC 3’; reverse CAG GAA ACA GCT ATG ACC CCT GAA GTA AGA ACC AGA TGC C.  

The underlined section of the reverse primer marks an M13 tag, which was used to permit 

sequencing in a single direction. These primers overlap the 381 bp mtDNA segment 

assessed by Girman, beginning at bp 93 (1st variable site is bp 171) and extending an 



77 
 
additional 22 bp at the 3’ end. PCRs were performed in a 20-µl reaction volume 

containing: 1.25 x Q solution (Qiagen); 1.25 x PCR buffer (containing 15mM MgCl2); 3.1 

mM MgCl; 0.2 mM of each dNTP (Invitrogen); 0.19 µM of each primer; 1 unit of Hot Star 

taq (Qiagen); and approximately 10ng of template DNA (except for negative controls).  

PCR was conducted according to the following protocol: 5 min at 95°C, 30 cycles of 95°C 

for 30s, 55°C for 30s, and 72°C for 30s. The protocol ended with a final extension of 72°C 

for 10 minutes.  The number of amplification cycles was increased from 30 to 37 cycles for 

weak DNA samples derived from hair, blood spots and serum.  PCR products were 

cleaned with ExoSAP-IT (USB) according to the manufacturer’s instructions and then 

sequenced using an ABI 3730 (using The Sequencing Service, University of Dundee or 

The Genepool, University of Edinburgh).  Sequences were aligned and analysed using 

Geneious Pro v 4.5.5 (Biomatters Ltd).   

Some samples included in my study had been manually sequenced at this same 

mtDNA region by Girman et al. (2001) but I re-sequenced all available samples where 

DNA and corresponding haplotype information were available (n=116).  This was done to 

confirm the haplotype designations using automated fluorescent sequencing. However, I 

included all of the data (corrected for errors that I detected) presented in Girman et al. 

(2001), so the sample sizes for mtDNA are larger than those listed for microsatellite and 

MHC loci since DNA was not available from all of the samples they described.  In total I 

sequenced 192 samples and combined my results with published data from a further 274 

samples from previous studies (Girman et al. 2001). 

Microsatellite genotyping 

I screened 25 domestic dog microsatellite loci for amplification and polymorphism 

in wild dogs and selected ten loci based on signal quality, polymorphism, and allele range 

sizes for multiplexing: PEZ08, PEZ12, PEZ15 (J. Halverson in Neff et al. 1999); FHC2010, 

FHC2054, FHC2611, FHC2658, FHC2785, FHC3399, FHC3965 (Guyon et al. 2003; Neff 

et al. 1999); Breen et al. 2001; details in Appendix 3).  All loci selected were located on 

different chromosomes (Neff et al. 1999).  The forward primer of each pair was dye-

labelled with ABI fluorescent dyes: NED (yellow), 6-FAM (blue) or HEX (green).  Samples 

were amplified alongside negative controls by multiplex PCR using Qiagen Multiplex PCR 

mix.  I followed default reagent concentrations recommended by the manual except in 

cases of DNA derived from serum, hair and blood spots, where 0.4ul of 10mM Bovine 

Serum Albumin (Promega) was added per PCR reaction.  PCR was performed on PTC-

200 (MJ Research) theromcyclers with the following touchdown protocol:  15 min at 95°C, 

12 touchdown cycles of 94°C for 30 s, followed by 1 min 30 s annealing, starting at 60°C 

and reducing at 0.5°C per cycle, and 72°C for 1 min. This was followed by 33 cycles of 

89°C for 30 s, 55°C for 1 min, and 72°C for 1 min.  The protocol ended with a final 
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extension of 60°C for 30 minutes.  Samples were run alongside a ROX 500 size standard 

on an ABI 3730 (by The Sequencing Service, University of Dundee) and analysed using 

GENEMAPPER 4.7 (Applied Biosystems).  Weak DNA samples have a higher probability 

of allelic drop out; therefore, I amplified and genotyped DNA samples derived from hair, 

blood spots and serum three times.  I also re-amplified and genotyped a further 20% of 

blood and tissue samples to verify results. Where a unique allele was found in a single 

animal, that animal was genotyped twice. Samples with missing data for more than three 

loci were excluded from analyses. For each population and locus, I tested for deviations 

from Hardy Weinberg Equilibrium using GENALEX6 (Peakall & Smouse 2006) and 

assessed for significance after Bonferroni correction for multiple tests.   

MHC-DRB typing 

Sequence-based typing was conducted on exon 2 of the DLA-DRB1 locus 

(hereafter referred to as DRB), which was previously shown to be highly variable in 

African wild dogs (Marsden et al. 2009).  Three other MHC class II loci (DLA-DQB1, DLA-

DQA1 and DLA-DRA), found to be monomorphic or biallelic in African wild dogs (Marsden 

et al. 2009), were not assessed here.  The DRB locus was typed according to Marsden et 

al. (2009), which is included as Chapter 2.  In brief, DRB sequence data were analysed 

using Match Tools and Match Tools Navigator (Applied Biosystems), as described in 

Kennedy et al (2002b).  This method relies on an allele library built from homozygotes that 

is used to predict the most likely allelic combinations present in a heterozygous sequence. 

Twenty heterozygous individuals did not match any pair of known alleles, indicating the 

presence of new alleles. Therefore, I cloned products from seven animals using the TOPO 

TA cloning system and One Shot Competent cells (Invitrogen).  In total I identified six new 

alleles, three from cloned individuals as well as three alleles in homozygotes, which 

resolved all twenty heterozygous sequences.  All new alleles were submitted to the DLA 

nomenclature committee to be assigned official names, and to confirm that the alleles 

were unique to wild dogs. To check for allelic drop out I conducted a second round of PCR 

and sequencing for all homozygote samples derived from serum, blood spots, hair and 

degraded tissue, and for approximately 90% of homozygotes derived from high quality 

blood and tissue samples.  There was a 20% allelic drop out rate in the weak samples 

(5/25), whereas no drop out was detected in the high quality samples (0/61). 

It is common for closely related alleles at a MHC locus to be classified into lineage 

classes (Ditchkoff et al. 2005).  African wild dog DRB sequences have previously been 

shown to belong to two lineages (A & B) according to amino acid sequence similarity and 

phylogenetic analyses (Marsden et al. 2009).  Therefore, I refer to the DRB alleles as A1-

9 and B1-13, and have conducted some analyses based on lineage rather than allelic 

data.  For official allele names see Appendix 1.   



79 
 
4.3.3 Summary statistics  

Population level mtDNA diversity was calculated as the number of haplotypes and 

nucleotide diversity (π) in Arlequin v3.11 (Excoffier 2006).  Microsatellite and DRB 

diversity were measured as allelic richness (AR), standardised allelic richness (Std-AR ; i.e. 

Mean number of alleles/locus standardised to the smallest sample size per locus, n=8) 

calculated using rarefaction in HP-RARE (Kalinowski 2005), and observed (Ho) and 

expected heterozygosity (He), fixation index (FIS) as calculated in GENALEX6 (Peakall & 

Smouse 2006).  Permutation tests were carried out in GENETIX (Belkhir et al. 2004) to 

test whether FIS values deviated significantly from zero.  To assess whether populations 

were differentiated in terms of their DRB alleles, I computed pairwise Fisher’s exact tests 

in GENEPOP (Raymond & Rousset 1995) which tests for homogeneity in DRB allele 

frequencies between populations.  Significance values were adjusted according to the 

Bonferroni correction for multiple comparisons.   

4.3.4 Effective populations size and demographic history 

Contemporary estimates of effective population size (Ne) were calculated in 

NeEstimator v1.3, using two single sampling point methods (Peel et al. 2004).  The 

linkage disequilibrium (LD) method (Hill 1981) tests for evidence of linkage disequilibrium 

between alleles at different loci arising as a result of increased genetic drift at smaller 

effective population sizes.  The heterozygote excess method (Pudovkin et al. 1996), is 

based on the presence of binomial sampling error in allele frequencies between the sexes 

when few individuals breed, which results in excess heterozygosity (Schwartz et al. 1998).  

I also used a temporal based method (moments based approach; (Waples & Yokota 

2007) for Kruger, Okavango and Serengeti, where I had temporally separated samples.  

This method assesses changes in allele frequencies between generations as a result of 

genetic drift increasing as Ne decreases.   

I tested for evidence of recent bottlenecks in microsatellite data using two methods 

implemented in BOTTLENECK 1.2.02 (Piry et al. 1999), as well as the M ratio test 

implemented in the programme M P Val (Garza & Williamson 2001).  These tests are 

based on the assumption that, in small bottlenecked populations, higher rates of genetic 

drift increase the loss of rare alleles.  Simulations have shown that bottleneck tests are 

sensitive to sampling (Garza & Williamson 2001; Luikart et al. 1998; Piry et al. 1999); 

therefore, I only ran these tests on populations with 30 or more samples (Kruger, 

Okavango, Masai Steppe, Serengeti and Laikipia).  The first method in BOTTLENECK 

tested for a shift in allele frequency distributions that is predicted to occur in bottlenecked 

populations as rare alleles are lost quicker than common alleles (Luikart et al. 1998).  

Secondly, I tested for an excess of heterozygosity arising as a result of the loss of rare 
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alleles during a bottleneck using a Wilcoxon sign-rank test (Cornuet & Luikart 1996).  For 

the excess heterozygosity test, I used the two-phase mutational model (Di Rienzo et al. 

1994), a variance of 12 as recommended by Piry (1999), 1000 simulations, and varied the 

percentage of mutations that change in a step wise manner between 70-90%.  

Significance was adjusted using Bonferroni correction.  I also tested for evidence of 

bottlenecks by assessing allele frequency distributions using the M ratio test (Garza & 

Williamson 2001).  The M ratio is calculated as the weighted frequency of alleles (k), 

divided by the overall range of allele sizes (r).  Bottlenecks result in a reduced M ratio 

because the loss of any allele reduces k, whereas r only decreases when alleles at the 

extremes of the range are lost; therefore, k decreases at a faster rate than r (Garza & 

Williamson 2001).  I ran the program using the values suggested by the authors (Garza & 

Williamson 2001): proportion of one-step mutations, ps = 90%; average size of multi-step 

mutations, Δg = 3.5.  I tested a range of θ values (0.2, 0.6, 1.2 and 2.0), which correspond 

to pre-bottleneck effective populations sizes of 100, 300, 600 and 1,000, respectively. The 

mutation rate, μ, in the M ratio test is fixed in the programme to be 5 x 10-4 per locus per 

generation, which is lower than the estimated canid microsatellite mutation rate (Francisco 

1996), and therefore results in a conservative test.   I used 10,000 simulations for each 

run and assessed significance after Bonferroni correction.  M ratio tests are able to detect 

older bottlenecks than the other tests as the M ratio takes longer to recover than 

heterozygosity excess.  This is because new rare alleles may not increase the M ratio but 

will always increase the metrics in the other two methods (Garza & Williamson 2001).   

For mtDNA haplotypes, I tested for signatures of demographic expansion or bottlenecks 

using mismatch distributions, Tajima’s D and Fu’s F statistic, implemented in the 

programme ARLEQUIN (Excoffier 2006).  I tested for departures from equilibrium using 

10,000 simulations. 

I further investigated evidence of demographic changes in African wild dog 

populations using the Bayesian coalescent hierarchical model-based approach 

implemented in the programme MSVAR 1.3 (Storz & Beaumont 2002).  MSVAR uses 

Markov chain Monte Carlo (MCMC) simulations to estimate the posterior probability 

distribution of a set of population parameters: current effective population size (N0), 

ancestral population size (N1), time since the change in demographic change (T), and 

allele size distribution for microsatellites assuming stepwise mutations at rate μ.  All 

parameter prior distributions were log normal.  I conducted this analysis on Kruger (old), 

Okavango (now) and Selous data sets; all other populations were excluded from this 

analysis due to small sample sizes or a known recolonisation history.   All runs were 

conducted assuming an exponential demographic model.  I used generation times of 6.2 

(Kruger), 4.5 (Okavango), and 5.4 (Selous) reported in Creel (2004) and conducted runs 

with wide uninformative priors, as suggested by Goossens et al. (2006).  For each 

population I ran 5 chains with different starting points, 50,000 updates and a thinning 
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interval of 50,000.  MSVAR output was assessed in the BOA package in the programme 

R v. 2.10 (R core development team).  The first 25,000 iterations were discarded as burn-

in.  Convergence of the remaining 25,000 iterations between the five chains was 

assessed using the Brooks, Gelman and Rubin statistic (Brooks 1998).  The last 25,000 

updates of each of the five chains were then combined to calculate the lower (5%), 

median (50%) and upper (95%) quantiles of the posterior distributions of the parameters 

N0, N1, T (Zhang et al. 2007).   

4.3.5 Spatial patterns of genetic diversity  

To compare with previous work (Girman et al. 2001) the geneology of African wild 

dog mtDNA haplotypes was reconstructed in MrBayes v3.1.2 (Huelsenbeck & Ronquist 

2001) using the best-fit nucleotide substitution model as indicated by Mr Model Test 2.2 

(HKY substitution model (Hasegawa et al. 1985), no rate variation between sites).  Four 

chains were run for 3,000,000 generations, with trees sampled every 100 generations.  

The first 5000 trees were discarded as burnin.   Based on these settings, two independent 

runs were conducted to check for convergence.  

To identify population structure, I conducted a hierarchical analysis of molecular 

variance (AMOVA) in Arlequin v 3.11 (Excoffier 2006).  AMOVA uses a distance matrix 

approach to partition variance into individual components.  For my data, alternative a priori 

hypotheses of population groupings (e.g., Eastern and Southern Africa) were tested to 

identify those groupings that resulted in more variation between groups than among 

populations within groups or among individuals within populations, as this is indicative of 

population structure (Holsinger & Weir 2009).  AMOVA’s were conducted on mtDNA 

haplotype data and DRB and microsatellite allele frequency data, based on FST values.  

Significance was assessed using 1,000 permutations. Other estimators, such as RST, that 

consider evolutionary distance, were not used as RST has high variance and because 

accurate estimates require many loci, which was not the case with my data (François & 

Nicolas 2002).   

I further assessed population structure of microsatellite data through allele sharing 

analysis, Principle Coordinates Analysis (PCO) and Bayesian clustering analysis.  A 

neighbour-joining tree based on Nei’s allele-sharing distance (DAS) was calculated in 

POPULATIONS v 1.2.30 (Langella).  PCO was conducted in GenALEX using genetic 

distances between individual multi-locus genotypes (Smouse & Peakall 1999) and with a 

median value computed for each population (Novembre & Stephens 2008).  Bayesian 

clustering analysis was conducted in STRUCTURE v 2.2 & 2.3 (Pritchard et al. 2000).  

STRUCTURE uses a Bayesian clustering model-based algorithm to elucidate the number 

of genetic clusters (K) within a sample set.  The model is based on global allele 
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frequencies of genotypic data and the method attempts to find genetic clusters that are in 

Hardy-Weinberg equilibrium and not in linkage disequilibrium (Evanno et al. 2005).  For 

each K value, the model generates an estimated log probability of the data, which is used 

to determine the most likely value among the range of K values tested, as well as a 

likelihood value for each individual being assigned to each cluster.  I conducted runs in 

STRUCTURE 2.2 assuming no prior population information, with correlated allele 

frequencies and admixture, 200,000 burn-in cycles, 2,000,000 Markov chain Monte Carlo 

runs (MCMC) for K = 1-10, with ten replicates per K.  I plotted likelihood values and 

variance amongst the 10 replicates at the different values of K, as well as the ΔK statistic 

which assesses the rate of change in the log probability of the data between successive K 

values (Evanno et al. 2005) using STRUCTURE HARVESTER  v.05. (Earl 2009). The 

value of K that best fit the data was selected based on ΔK statistic and consistency 

amongst replicates (Pritchard et al. 2000).  Since STRUCTURE uses global allele 

frequencies, there is little power for assignment of individuals derived from populations 

with small sample sizes.  Therefore the monitoring areas with five or fewer samples were 

excluded from all STRUCTURE analyses.   

STRUCTURE 2.3 has a new model (LOCPRIOR) specifically designed to increase 

the power to detect structure where data sets are limited by small sample sizes or low 

polymorphism (Hubisz 2009).  Therefore, I used this model (keeping all other parameters 

the same) to detect any cryptic population structure.  I used sampling location as the prior.  

I assessed whether there was a pattern of isolation by distance at microsatellite 

loci using Mantel tests, which assess whether there is a correlation between genetic and 

geographic distance.  Genetic distance was based on the estimator Dest (Jost 2008) as 

other estimators such as FST and GST have been shown to have a non-monotonic 

relationship with differentiation and may actually decrease with increasing differentiation 

(reviewed in Jost 2008).  This was a problem in my study as some populations were 

completely differentiated at the DRB locus (shared no alleles) but FST recorded values of 

0.32-0.41, whereas Dest gave the expected value of 1 (Appendices 4 & 5).   Pairwise 

population differentiation values (Dest) were computed in the programme SMOGD 

(Crawford 2009), using 1000 bootstraps.  Geographic distances (km) were calculated 

according to the straight line distance between population pairs.  Mantel tests were 

computed in the vegan package of R (R core development team).  The correlation 

between two matrices was computed using Pearson’s product moment estimator to 

generate the observed mantel test statistic (r).  Significance was tested by determining the 

position of r within a reference data set generated by 10,000 permutations (Sokal & Rohlf 

1994) and adjusted according to Bonferroni correction.   
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I estimated mean long-term migration rates between African wild dog populations 

and long term effective population sizes in MIGRATE v.2.4 (Beerli & Felsenstein 1999).  

MIGRATE estimates migration rates and effective population size using coalescence 

theory.  The parameters of θ = 4Neμ and M = mxy/μ (where Ne = effective population size, 

assuming an average mutation rate, μ, of 10-2 for canid tetranucleotide microsatellites 

(Francisco 1996), and m = unscaled migration rate) are estimated from the data by 

exploring different genealogies using MCMC.  Estimates of migration rates are based on 

assessing the rates of introduction of new variants into the population by migrants relative 

to mutation and calculated by multiplying θ and M.  MIGRATE does not assume equal 

population sizes or symmetrical migration rates. However, it does assume constant 

population sizes, mutation and migration rates. I excluded poorly sampled populations 

from this analysis, and pooled temporal data for Kruger, Okavango and Serengeti.  I 

assessed Eastern and Southern African populations separately as there was a sampling 

gap (~1500 km) between these two areas.  I ran MIGRATE on microsatellite data within 

the likelihood framework using 10 short chains with 10,000 steps and 3 long chains of 

100,000 steps and a burn-in of 10,000.  I selected an adaptive heating scheme 

(temperatures 1.0, 1.2, 1.5, 3.0).  θ and M were estimated from the data in the first run; 

subsequent to this, θ and M estimates of preceding runs were used as a prior in the 

following run.  Runs were conducted until confidence intervals of the posterior probabilities 

of θ and M of neighbouring runs were overlapping.  The number of migrants moving per 

generation between population x and y was calculated as θ*M, where θ = 4 Neμ and M = 

m/μ (Beerli & Felsenstein 1999).   

I first tried to estimate contemporary migration rates using the programme 

BAYESASS 1.3 (Wilson & Rannala 2003), which detects genotypic disequilibrium in 

recent migrants within a Bayesian MCMC framework.  However, there was not enough 

information in my data set for reliable estimates.  I also used STRUCTURE 2.2 to test for 

the presence of migrants in populations which is implemented through the USEPOPINFO 

option (Pritchard et al. 2000).  In this mode, STRUCTURE calculates posterior 

probabilities of membership of individuals to clusters that are defined a priori.  In this way, 

individuals that are not members of assumed populations are indicated as migrants.  A 

prior cluster memberships were based on previous STRUCTURE runs, which showed 

each study population to be a separate cluster, except for Hwange and Okavango, which 

belonged to a single cluster.   Individuals with posterior probability values lower than 40% 

were viewed as putative immigrants to that population.  I also used STRUCTURE 

posterior probability tests to identify the provenance of the animals that were translocated 

into Hwange.  For every individual within the test population, STRUCTURE calculated the 

posterior probability of membership to a group of potential source populations.  In this 

case Southern African samples were used as potential source populations. 
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4.3.6 Temporal patterns of genetic diversity  

Samples were available from two time points for Kruger, Okavango and Serengeti, 

which enabled assessments of how genetic diversity changes over time.  I tested for 

significant changes in microsatellite diversity (Gene diversity, He, Ho, AR, FIS) within 

populations over time using paired t-tests in MINITAB (Minitab Inc).  Since I only had data 

for a single locus at the MHC, I examined whether the allelic repertoire within populations 

was consistent over time, as well as examining trends in diversity (Gene diversity, He, Ho, 

AR, FIS).  Chi squared tests were performed to test for changes in the frequencies of the 

two DRB lineages.  Fisher’s exact tests were performed in GENEPOP (Raymond & 

Rousset 1995) to test for significant changes in the frequency of DRB and microsatellite 

alleles over time.   

4.3.7 Tests for Selection 

Synonymous and nonsynonymous genetic distances were calculated separately 

for putative peptide-binding region (PBR) sites and non-PBR sites using the Nei–Gojobori 

method with a Jukes–Cantor model of substitutions, as implemented in MEGA 4.0 

(Tamura et al. 2007). Putative PBR sites were based on the human HLA-DRB1 (Bondinas 

et al. 2007).  I tested for evidence of positive selection using a codon based Z test in 

MEGA.  I tested for an excess of heterozygotes within populations based on both allelic 

and lineage data, using the programme GENEPOP (Raymond & Rousset 1995).  Tajima’s 

D and Ewen Watterson tests for selective neutrality were computed in Arlequin v 3.11 

(Excoffier 2006).   Significance of both tests was assessed using 1000 simulations and 

adjusted according to Bonferoni correction.  Tajima’s D is a test that compares two 

estimates of the parameter θ; θπ which is based on nucleotide diversity under mutation 

drift equilibrium and θS which is based on the number of segregating sites under the 

infinite sites model.  The D statistic is based on whether θπ and θS are similar or different.  

Where D=0, neutral evolution is indicated, whereas purifying selection is indicated where 

D<0, and balancing selection is indicated where D>0 (Hartl & Clark 2007).  However, 

demographic factors, such as expansions and contractions effect D in a similar way to 

selection, and therefore it is not possible to conclusively disentangle selective from 

demographic events.  The Ewen-Watterson test assesses allele frequencies as evidence 

of selection.  Under neutral expectations, it is expected that there will be one common 

allele, whilst all other alleles occur at low frequency.  The Ewen-Watterson test compares 

the expected heterzygosity based on mutation-drift equilibrium (Ewen’s formula) and 

compares that with the expected heterzygosity based on the allele frequencies of a 

population (Garrigan & Hedrick 2003).   
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Selection can be inferred from patterns of genetic differentiation.  Specifically, 

selection is indicated where patterns of genetic differentiation at DRB and neutral markers 

are incongruent.  Therefore an analysis of covariance (ANCOVA) was computed in the 

programme R (R core development team) to test whether there was a significant 

difference in the slopes describing the relationship between Dest (genetic differentiation) 

and geographic distance, when based on microsatellite and DRB data.  For the DRB data, 

I computed values firstly as allelic data, and secondly as lineage data whereby an 

individual’s alleles were coded according to the lineage from which they were derived (i.e. 

AA, AB, BB).  Balancing selection at the MHC is expected to result in more even allele 

frequencies between populations, and thus lower genetic differentiation, than at neutral 

markers (Schmidt et al. 2008).  Therefore, I used partial Mantel tests to test whether 

genetic differentiation at the DRB was larger than expected under neutrality.  
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4.4 Results  

4.4.1 Summary statistics 

mtDNA 

  Amongst 425 samples sequenced at the mtDNA D-loop, I identified 10 

haplotypes with 23 polymorphic sites and between 1 and 18 nucleotide differences. This 

included eight previously identified haplotypes and two new haplotypes: S4 found in three 

immigrant males in Selous (S.Creel field observation), and S5 in five immigrant (3 males 

and 2 females; J.W. McNutt, field observation) in Okavango (Table 4.2).   In each 

population I found between one and six haplotypes (Table 4.3) and nucleotide diversity 

ranged from π = 0 – 0.02.  Monitoring populations in the central area of the sampling 

range had the highest diversity (Okavango, Hwange and Selous; π>10-3, ≥3 haplotypes, 

whereas Laikipia and Lowveld had the lowest diversity ≤2 haplotypes, π <0.001 (Table 

4.3).  Re-sequencing of samples to verify the eight haplotypes (AF335724-AF335731) 

previously identified by (Girman et al. 2001) showed some sequencing errors in three 

haplotypes primarily as a result of an indel that was not detected by manual sequencing 

but was apparent from fluorescent chromatographs.  The modified haplotypes are 

provided in Appendix 6.  

Microsatellites 

 I typed 321 samples at ten microsatellite loci and found between five and 30 

alleles per locus (mean = 13).  All populations were in Hardy Weinberg equilibrium at all 

loci except for a single locus in Kruger Old (FH2611) and Okavango Old (FH2658).  

Okavango, Hwange and Selous showed the highest levels of microsatellite diversity (Std-

AR=4.54-5.68, He=0.68-0.76; Table 4.3).  Lowveld exhibited the lowest diversity (Std-

AR=4.09, He=0.59), and Laikipia had the lowest values of Ho (0.61, 0.62), which is 

indicative of relatively higher rates of inbreeding.  Laikipia was the only monitoring 

population where FIS (microsatellite) was significantly different from 0, which further 

suggests inbreeding in this population and also indicates that Laikipia is not in Hardy 

Weinberg equilibrium despite the results from tests based on individual loci. 

DRB 

Sequence-based typing of 341 samples across all 13 monitoring areas (i.e. 

including monitoring populations with small sample sizes, and Hwange translocates) at 

the DRB locus identified 21 alleles derived from two allelic lineages, A and B (Figure 4.2; 
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Table 4.4).  This included 13 alleles described in Marsden et al (2009) and six new alleles 

(sequences are provided in Appendix 7). As for my previous analyses: all alleles were 

unique to African wild dogs; there was no evidence of pseudogenes (stop codons or 

frameshift mutations) to indicate amplification of non-functional alleles; and I am confident 

that a single locus was amplified due to lack of more than two sequences per individual, in 

conjunction with pedigree data from captive animals, which clearly showed biparental 

inheritance of alleles and cosegregation of allelic lineages (Chapter 2; Marsden et al. 

2009). With the exception of two highly similar alleles from lineage B (B6 and B12), all 

DRB alleles varied at the amino acid level.  Amongst alleles, 31/270 sites, 16/89 codons 

and 9/22 peptide binding region sites were variable.  Within monitoring populations there 

was an average of 5.93 alleles (range 2 – 11), and an average heterozygosity of 75.3% 

(range 53.9-92.8%), with the highest diversity found in Selous, Okavango and Hwange 

(AR=6.6-9.4; He=0.79-0.88) and lowest diversity found in Laikipia and Lowveld AR=3, 

He=0.57-0.68; Table 4.3). 

4.4.2 Effective population size and Demographic history  

Contemporary estimates of effective population size (Ne) were consistently small in 

all monitoring populations (mean <30), regardless of the analysis method used (Table 

4.5).  This gave Ne/N estimates ranging from 0.02-0.21 (Table 4.5).  Long term Ne 

estimates derived from MIGRATE were higher than those from other methods (Table 4.5).  

This may be the result of the presence of unsampled (ghost) populations which are known 

to elevate effectively population size estimates from MIGRATE  because (unlike the other 

methods) MIGRATE assumes all populations were sampled (Beerli 2004).  Alternatively, 

they may reflect that MIGRATE will overestimate Ne if population sizes are decreasing 

(Beerli 2009). There was insufficient power in my data to calculate Ne using the 

heterozygote excess method (results were infinity); therefore, these results are not shown.   

I found significant evidence of bottlenecks in all populations.  However, there was 

some variation amongst the different bottleneck tests.  None of the five monitoring 

populations with 30 or more samples showed evidence of a mode shift in allele 

frequencies (allele frequency test), which would be indicative of a recent bottleneck (Table 

4.6).  Wheresas there was evidence of a heterozygosity excess in Kruger, Serengeti and 

Laikipia, although, only with some mutational models (Table 4.6).  Furthermore, all 

monitoring populations showed significantly lower M ratios than those expected under 

mutation-drift equilibrium, for at least some values of θ, which is indicative of a bottleneck.  

The discrepancy between these results can be explained by differences in power between 

amongst the bottleneck tests under different demographic histories (Williamson-Natesan 

2005).  For example, the M ratio test is able to detect more distant bottlenecks than the 

other tests.  The mtDNA data showed no significant values of Tajima’s D or Fu’s F, 
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indicating no evidence of a departure from neutrality, or unstable population dynamics.  In 

all monitoring populations mtDNA mismatch distributions were significantly different from a 

model of population expansion (results not shown), indicating that populations have not 

increased in size.  

Based on Bayesian coalescence simulations implemented in MSVAR, I found 

evidence of a large population decline from an ancestral Ne of approximately 600-900, to a 

current Ne of <10, within the last 100 years across all three monitoring populations 

assessed (Table 4.7).  These estimates match expectations for this species based on 

their social breeding system (Creel & Creel 1998), and known history of extensive habitat 

loss and persecution within the last 30 years (Woodroffe & Ginsberg 1997). It is 

noteworthy that N0, N1 and T estimates were consistent across different priors, and the 

signal of decline was still apparent when a prior of population expansion was used (data 

not shown).   

4.4.3 Spatial patterns of genetic diversity  

mtDNA 

As identified by Girman et al (2001), geneological analysis revealed that the 

mtDNA haplotypes were derived from two highly divergent clades (Figure 4.3): an Eastern 

clade (3 haplotypes) and a Southern clade (7 haplotypes).  There was strong structuring 

of the two mtDNA clades. The three most easterly (Laikipia, Serengeti, Masai-Steppe) and 

two most southerly (Kruger, Lowveld) monitoring populations, had exclusively Eastern and 

Southern mtDNA clade haplotypes, respectively.  However, Selous, Okavango and 

Hwange, which are located between these extremes, had haplotypes from both clades.  

Selous, in Southern Tanzania, shared no haplotypes with other East African monitoring 

populations, but did share haplotypes with Niassa (n=1) and Sofala (n=3) in Mozambique, 

as well as Okavango and Hwange.  Unique haplotypes were found in Kruger (S1), Selous 

(S4), and Okavango (S5).  The most abundant haplotypes were S2 (29%) which was 

found in all monitoring populations in Southern Africa, and E1 (26%), which was found in 

the most Eastern African monitoring populations, as well as Okavango and Hwange in 

Southern Africa.  A hierarchical AMOVA of mtDNA haplotypes indicated significant 

population structure, with 46% of variation being apportioned between four regions: 1) 

Southern cluster (Kruger, Lowveld);  2) South Western cluster (Okavango, Hwange); 3) 

Central cluster (Selous); and 4) Eastern cluster (Masai-Steppe, Serengeti-Mara, Laikipia) 

(Figure 4.3b; Table 4.8), which correspond with geographic expectations.   
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Microsatellites 

All monitoring populations had at least one private allele that was unique to that 

population (average 3.2, range 1-8) (Table 4.3). The majority of microsatellite variation 

(84%) was apportioned within populations (Table 4.8); therefore, although the hierarchical 

AMOVA indicated the presence of population subdivision, it was not informative in 

identifying groupings amongst samples.  Nevertheless, clustering analysis of microsatellite 

data based on allele sharing distances (represented by a neighbour joining network) was 

indicative of considerable population subdivision.  Individuals largely clustered as 

monitoring population specific groupings, although Okavango and Hwange clustered 

together (Figure 4.4).  These results were largely concordant with the results from 

Bayesian clustering analysis in STRUCTURE.  From the STRUCTURE analyses, the ΔK 

statistic identified two peaks, the height of which signifies the strength of the signal of 

population subdivision (Evanno et al. 2005).   K=4 represented the deepest level of 

population subdivision (Evanno et al. 2005), whereas K=7 which represented finer scale 

population structuring (Figure 4.5).  Only at K=4 & 7 were results consistent between 

replicates.  The four clusters at K=4 were: 1 = Kruger, 2 = Okavango-Hwange, (Lowveld 

was admixed 1&2), 3 = Selous, Masai Steppe, Serengeti-Mara, 4 = Laikipia.  At K=7, the 

clusters correspond to every monitoring population being distinct except for Okavango 

and Hwange, which appear to be a single genetic population (Figure 4.5).  Subsequent 

analyses of the same data set using the LOCPRIOR model STRUCTURE 2.3 returned 

identical results (data not shown).  Finally, I took a hierarchical approach and ran 

STRUCTURE 2.2 on subsets of the data independently; specifically each of the four 

groupings at K=4 and Eastern and Southern Africa.  These additional analyses did not 

detect any further populations than shown at K=7 and thus the results were also 

congruent with K=7 for the overall dataset (results not shown).   

Principle coordinates analysis also indicated strong structuring, but not complete 

isolation, of wild dog monitoring populations, as well as a pattern of isolation by distance 

(Figure 4.6).  PC1 and PC2 accounted for a considerable amount variation, 28% and 18% 

respectively, and appear to correspond to strong structuring along north-south and east-

west axes, resulting in a striking concordance between population medians and 

geographical positioning of sampling locations (Figure 4.6).  I found significant evidence of 

isolation by distance at microsatellite loci based on mantel tests (r=0.4168, p=0.00023) 

and regression of microsatellite genetic distance (Dest) against geographic distance 

(R2=0.17, p<0.05; Figure 4.8b). 
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Migration rates  

Posterior probability tests indicated that the majority of individuals originated from 

the population from which they were sampled; 97% (312/321) of individuals were 

assigned to their monitoring population with more than 95% probability (Hwange and 

Okavango were pooled for this analysis – see methods).  Overall, only one individual was 

indicated to be a migrant (posterior probability <40%): T04-187 from the Okavango was 

clearly identified as a migrant in both STRUCTURE (assignment probability 14%, highly 

significant mis-assignment) and PCO analyses (where it was an outlier: Figure 4.6).   

Sixteen animals were recently artificially translocated into Hwange (North West 

Zimbabwe); six from Pilansberg, South Africa, and ten from unknown locations in 

Zimbabwe.  Clustering analyses clearly detected all 16 animals to be of non-Hwange 

origin (data not shown).  Posterior probability analyses assigned 8/10 of the unknown 

Zimbabwe animals to the Lowveld (South East Zimbabwe) with >75% confidence.  PCO 

and STRUCTURE analyses also showed these individuals to cluster with the Lowveld.  

None of the animals derived from Pilansberg could be assigned to any monitoring 

population with >50% confidence.  It is not clear whether this is because of mixed 

ancestry (Pilansberg is an artificially formed population of wild dogs) or because they are 

derived from an unsampled population.   

Long-term migration rates were estimated in MIGRATE. However these results 

should be viewed with extreme caution and not interpreted literally because of the 

assumptions that underlie this method e.g. constant population sizes and migration rates 

(Abdo et al. 2004; Whitlock & McCaultey 1999).  MIGRATE predicted high levels of 

geneflow between Okavango and Hwange (~5-7 migrants/generation), which is not 

unexpected given that these populations are located within the same habitat fragment.  

However, all other monitoring populations were spaced widely apart.  Between these 

distant monitoring populations MIGRATE indicated low migration rates.  Since I did not 

have samples from intermediate populations, these estimates are not very valid as it is 

highly unlikely that wild dogs have migrated directly from Okavango to Kruger (1.8/gen), or 

Selous to Laikipia (1.7/gen) (Figure 4.7). Rather, migration is likely occurring from an 

unsampled area between these two sampling points.   

DRB 

At the DRB, alleles from both DRB lineages were present in all monitoring 

populations (Table 4.4).  Whether lineage A or B was most common varied between 

monitoring populations but not in any consistent geographic pattern.  At the allelic level, 

AMOVA analyses showed that the majority of DRB variation was apportioned within 
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monitoring populations (79-80%), which corresponds with the pattern in microsatellites.  

Seven of the 19 DRB alleles found in monitoring populations were private alleles (Kruger, 

A7,B11; Okavango, A2, B9; Serengeti, A6; Selous, A8, B10; Table 4.4).  Of the remaining 

12 alleles, only 4 were found exclusively in Southern or Eastern African monitoring 

populations (assuming that Niassa and Sofala, are classed as eastern, as indicated by 

mtDNA and microsatellite data).  Fisher’s exact tests showed DRB allele frequencies to 

differ significantly between all monitoring populations (data not shown). 

4.4.4 Temporal patterns of genetic diversity 

Temporal samples were collected in Kruger, Okavango and Serengeti (Table 4.3).  

In Okavango, there was no significant change in genetic diversity (msats, Paired T test, He 

- T=-2.14, p=0.058; DRB, Std-AR= 8.3 & 8.0; He - 0.85 & 0.86).  However, in Kruger, there 

was a large and significant reduction in observed heterozygosity at microsatellite (15.4%; 

paired T test, T=2.24, p<0.05) and DRB loci (13.1%), and an increase in FIS at both 

markers, which is indicative of inbreeding.  Over time, within Kruger and Okavango, the 

old and recent sample sets had the same DRB alleles, and there was no significant 

change in the frequencies of DRB alleles (Fisher’s exact test, Okavango; p=0.252, Kruger 

p=0.25163) or the frequencies of the two DRB lineages (Chi Sq, 1.d.f, p>0.05). In 

Serengeti, there was no significant change in microsatellite diversity (Paired T test, He 

T=0.72, p=0.486; Gene diversity T=1.60, p=0.145).  At the DRB, Ho and Std-AR increased, 

from 67% to 93% and 4.8 to 6 respectively.  Furthermore, the alleles present changed 

considerably between these two time periods (Table 4.4), resulting in a significant change 

in DRB allele frequencies (Fisher’s exact test p<0.0001) and in the frequencies of the two 

DRB lineages (Chi Squared, d.f.=1, p<0.005, Chisq value = 8.288).  

4.4.5 Tests for selection 

At the DRB, the ratio of nonsynonymous to synonymous substitutions at the 

putative peptide binding region (PBR) sites was greater than 1.0 and larger than in non-

PBR.  However, the ratio was not found to be significantly different between the PBR and 

non-PBR (PBR: dN = 0.303, dS = 0.183, dN/dS = 1.656, p = 0.093; non-PBR: dN = 0.013, dS 

= 0.011, dN/dS = 1.182, p = 0.460).  There was no evidence of an excess of heterozygotes 

or lineage heterozygotes (individuals with an allele from both lineage A and B) relative to 

Hardy Weinberg equilibrium in any monitoring population.  Tajima’s D test for selective 

neutrality was not significant in any monitoring population.  The Ewen’s Watterson 

estimator detected a deviation in allele frequencies from neutrality in Okavango (p=0.001) 

but not other monitoring populations.    
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Overall, genetic differentiation (Dest) was high amongst monitoring populations at 

both microsatellite and DRB markers, but was greater at the DRB (DRB Dest, = 0.722, 

95% CI = 0.691-0.751; Msats, Dest = 0.419).  Nonetheless, genetic differentiation of DRB 

and microsatellite loci were significantly correlated (r=0.3784, p=<0.01; Figure 4.8a).  

Population pairwise differentiation estimates (Dest) were >0.2 between all monitoring 

populations except Okavango and Hwange and within monitoring populations over time 

(Appendix 4). The FST values were substantially lower than Dest values, but were high 

(>0.15, Wright’s guidelines, (Frankham et al. 2002), by FST standards (mean FST msats = 

0.15, mean FST DRB = 0.19: Appendix 5). 

Both microsatellite and DRB showed evidence of significant isolation by distance 

based both on Mantel tests (DRB: r=0.506, p<0.01; msats: r=0.417, p<0.001) and 

regression of genetic distance against geographic distance (DRB: R2=0.26, p<0.001; 

Msats: R2=0.17, p<0.05).  However, the increase in genetic divergence with geographic 

distance was significantly stronger at the DRB than microsatellites (ANCOVA, p<0.05; 

Figure 4.8b).  Partial mantel tests showed that the relationship between DRB and genetic 

distance remained significant even after controlling for microsatellite differentiation (Partial 

Mantel Test; r=0.416, p=0.01), suggesting that genetic differentiation at the DRB is larger 

than expected under neutrality.  By contrast, the correlation between microsatellites and 

geographic distance was not significant when DRB was controlled for (Partial Mantel Test, 

Bonferroni corrected p value=0.01; r=0.284).  When genetic differentiation at the DRB was 

calculated using allelic lineages rather than alleles, no isolation by distance relationship 

was found (Regression; DRB lineages, R2<0.0001, p=0.881) and there was no correlation 

with microsatellites (Regression; R2 = 0.01, p=0.462; Figure 4.8c). 
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4.5 Discussion 

4.5.1 Effective population size and Demographic history  

Demographic history is a key factor influencing the patterns of genetic diversity 

within a species, as genetic drift and inbreeding are increased during periods of small 

effective population size, resulting in the loss of genetic diversity.  Even though I assessed 

some of the largest extant wild dog populations, my estimates of current effective 

population sizes were consistently small across monitoring populations (contemporary 

estimates of Ne, <30; Table 4.5) and with the exception of Selous, Ne/N estimates were 

≤0.1.  Habitat loss, population declines, inbreeding and reduced geneflow are likely the 

primary cause of the small Ne of wild dog populations.  However, the cooperative breeding 

system of wild dogs, whereby only a single pair of adults typically breed per pack (Girman 

et al. 1997), will also have contributed to a small Ne.  Indeed, these estimates are similar 

to other endangered cooperatively breeding canid populations: Ethiopian wolves (Canis 

simensis, Bale Mountains Ne 10-25, (Randall et al. 2007); Grey wolf (Canis lupus, Finland,  

Ne 37-43 (Aspi et al. 2006).  

A critical assessment in conservation biology is to determine whether population 

sizes have always been small or whether declines have occurred (Crandall 2009), as this 

has direct implications for conservation management.  Therefore, I tested whether there 

was a genetic signature of decline in African wild dogs. All monitoring populations had 

significantly lower M ratios than expected under drift-mutation equilibrium, which is 

indicative of a bottleneck (M = 0.64-0.75, P<0.05).  However, the allele frequency method 

detected no bottlenecks, and there was only limited evidence of bottlenecks in some 

monitoring populations using the heterozygosity method (Table 4.6).  The discrepancy 

between these tests likely reflects differences in power of detection of bottlenecks under 

different demographic histories (Williamson-Natesan 2005).  In particular, M ratio tests are 

able to detect bottlenecks over longer time scales than the heterozygosity excess method 

(Williamson-Natesan 2005), and can detect bottlenecks even when populations recover 

quickly, which African wild dogs have a propensity to do as a result of their large litter 

sizes (Woodroffe 2010).   

I used Bayesian coalescent simulations of microsatellite data to investigate the 

scale and timing of demographic declines in African wild dogs.  I found evidence for a 

large demographic reduction of approximately 2 orders of magnitude within the last 100 

years (Table 4.7).  The timing of this population decrease is congruent with the extensive 

and widespread declines in wild dogs associated with human related habitat loss and 

persecution that are known to have occurred throughout the 20th century (Woodroffe & 
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Ginsberg 1997).  Interestingly, although this result matches the finding in another 

endangered species, the orang-utan (Pongo pygmaeus; (Goossens et al. 2006), it differs 

from other African mammals (African elephant, Loxodonta Africana, (Okello et al. 2008), 

African buffalo, Syncerus caffer, (Heller et al. 2008), Walia Ibex, Capra walie, 

(Gebremedhin et al. 2009) where declines have been suggested to correspond with mid-

Holocene climatic change several thousands of years ago.  The strong evidence of a 

human mediated demographic collapse in African wild dogs highlights the urgent need for 

conservation efforts to reverse this trend.   

Although microsatellite data provided evidence of declines over the last 100 years, 

mtDNA and DRB data, which are informative at more distant time scales, also suggest 

further declines prior to this.  Mitochondrial DNA haplotypes showed evidence of strong 

Eastern-Southern regional clustering.  Similar structuring is common in other African 

mammals (reviewed in Hewitt 2004) such as Hartebeest (Alcelaphus buselaphus), 

Wildebeest (Connochaetes taurinus) and Topi (Damaliscus korrigum) (Arctander et al. 

1999), and is thought to represent contraction to refugia during the climatic shifts that 

were experienced during climatic transition during the late Pleistocene-Holocene.   The 

mtDNA pattern in wild dogs may indicate that this once widespread species declined to a 

few refugia where ancestral haplotypes were present.  Later expansion to recolonise the 

former range, combined with subsequent habitat fragmentation and time, would then have 

resulted in the evolution of new mtDNA haplotypes and loss of haplotypes by drift.  The 

high diversity of mtDNA haplotypes in Hwange and Okavango indicate this to be a 

potential refugium; however, high diversity is also expected to be retained more effectively 

in these larger populations.  It is also possible that the rift valley, which separates Eastern 

and Southern Africa, has contributed to divergence of mtDNA between these regions 

(Figure 4.3).  At the MHC, previous research showed that African wild dogs lack diversity 

at the DRB relative to other wolf-like canids (Marsden et al. 2009): wild dogs not only lack 

diversity at the DQA1 (1 allele) and DQB1 (2 alleles) loci that are strongly linked to the 

DRB locus assessed here, but they have just two allelic lineages at the DRB.  This lack of 

diversity could be indicative of a dramatic bottleneck in the past.  Given that both DRB 

allelic lineages were found in all populations across Eastern and Southern Africa, the DRB 

data are most congruent with dramatic range wide declines to refugia and subsequent 

recolonisation (Marsden et al. 2009), as indicated by the mtDNA haplotype distribution.   

Overall, my results suggest that the consistently small Ne estimates I found across 

monitoring populations are not primarily a reflection of species ecology.  Rather, they are 

a consequence of dramatic anthropogenic driven demographic declines (approximately 

two orders of magnitude) within the 20th century.  The impact of these declines on 

population connectivity and genetic diversity is of considerable concern. 
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4.5.2 Spatial patterns of genetic diversity 

Microsatellites were indicative of strong population structuring of wild dog 

populations.  With the exception of Hwange and Okavango, the microsatellite data 

suggested each monitoring population to be a separate genetic cluster (Figure 4.5).  

Furthermore, estimates of migration rates between monitoring populations were low 

everywhere except for between these two monitoring populations (Figure 4.7).  Hwange 

and Okavango are located in the largest continuous area supporting wild dogs (Figure 

4.1) and this connectivity appears to permit gene flow to occur across quite distant 

locations (~400 km).  Additional samples are required to determine whether NE Namibia 

wild dogs are contiguous with Okavango and Hwange.   Elsewhere, the lack of gene flow 

between populations suggests that there has been genetic isolation associated with 

fragmentation of wild dog populations, resulting in a pattern of isolation with distance 

(Mantel tests; Figure 4.8b), which is particularly evident in the PCO (Figure 4.6). It is 

possible that the gaps in my sampling regime have resulted in an under-estimation of 

connectivity between wild dog populations.  However, many of my sampling gaps reflect 

geographic areas that do not currently support wild dogs.  Furthermore, STRUCTURE 

detected only a very small number of migrants from unsampled populations.  This 

indicates that migration from ghost populations occurs at a low rate, which matches 

expectations given the high mortality of dispersers (Creel et al. 2004), in particular across 

unprotected areas (Woodroffe et al. 2007a).   

There was good correspondence in the population groupings suggested from 

mtDNA (Table 4.8) and the uppermost level of structuring suggested from microsatellite 

data (K=4), except that the microsatellites identified Laikipia as distinct to other East 

African populations whereas mtDNA identified Selous as being distinct to other East 

African populations (Figure 4.3).  Given that the E1 and E2 mtDNA haplotypes are so 

common in East Africa, these data likely reflect that Laikipia was recolonised by a distinct 

and unsampled East African population.  However, it is unclear why Selous gives an 

isolated signal based on mtDNA whereas microsatellites suggest connectivity, although 

cytonuclear genomic dissociation (different evolutionary histories for nuclear and mtDNA 

genomes) (Roca et al. 2005) or sex-biased dispersal are possible explanations.    

Where populations are small and fragmented, genetic diversity is likely to be lost 

as a result of genetic drift.  I consistently found higher diversity in Okavango, Hwange and 

Selous, and lower diversity in Lowveld and Laikipia, across both neutral and DRB markers 

(Table 4.3).  Higher diversity might be expected in Okavango, Hwange and Selous 

because these monitoring populations form part of some of the biggest most stable wild 

dog populations (n~2,500 and n~1,300 respectively, (UNEP 2008) and therefore they 

should be less affected by genetic drift.  Laikipia and Lowveld were recently recolonised 
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following extirpation (Pole 2000; Woodroffe 2010), and likely suffered more severe genetic 

drift and loss of genetic diversity and increased homozygosity associated with founder 

effects, small population sizes and inbreeding.   The low MHC variation I found in Lowveld 

and Laikipia contrasts with the expectation that selection can retain adaptive genetic 

variation despite strong genetic drift, as found in African buffalos (Wenink 1998), Island 

fox (Urocyon littoralis (Aguilar et al. 2004) and Guppies (Poecilla reticulate, (van 

Oosterhout et al. 2006).  However, similar to African wild dogs, population bottlenecks 

have resulted in depleted MHC variation in a number of other species (Tasmanian devil 

(Sarcophilus harrisii (Siddle et al. 2007), Moose (Alces alces (Mikko & Andersson 1995), 

Bison (Bison bonasus (Radwan et al. 2007), (reviewed in Radwan et al. 2010), indicating 

that the impact of a bottlenecks on MHC diversity may be context specific.   

Rarely do studies of endangered species have sampling at the spatial scale 

achieved in this study.  However, with this, I was able to show that widespread habitat 

fragmentation has resulted in extensive genetic fragmentation of wild dog populations.  

Furthermore, I have been able to characterise levels of genetic diversity and inbreeding 

across multiple populations and thus highlight populations particularly at risk of genetic 

threats (Lowveld and Laikipia), as well as to identify risk factors of genetic decline 

(founder effects).   

4.5.3 Temporal patterns of genetic diversity  

In the absence of selective pressures and high levels of geneflow, genetic diversity 

is expected to be relatively constant over time in large stable demographic populations.  

Indeed, genetic diversity estimates were stable in Okavango (Table 4.3), which is part of 

the largest wild dog population (Woodroffe et al. 1997; Woodroffe et al. 2004b).  By 

contrast, genetic diversity is expected to fluctuate as a result of genetic drift and/or 

inbreeding in populations that are small or declining.  My data highlighted a considerable 

loss of Ho at both microsatellite and DRB loci in Kruger between 1991-5 and 2007 (Table 

4.3).  This was coincident with a large demographic decline of >70% from a peak of 434 

animals in 36 packs in 1995 to a low of 120 animals in 17 packs in 2005 (EWT 2009) 

within Kruger National Park (~19,000 km2), and likely reflects increased inbreeding and 

genetic drift associated with reduced population size.  Temporal changes in genetic 

diversity may also vary as a result of selection pressures.  In the Serengeti-Mara, the 

disappearance of wild dogs from the main monitoring area in 1991 and subsequent local 

re-establishment in 2001 was not associated with significant changes in microsatellite 

diversity based on samples collected both pre-1991 and post-2001 (Table 4.3). However, 

at the DRB, there were notable changes (Table 4.3; Table 4.4).  Observed heterozygosity 

increased by 26%, indicating a reduction in inbreeding or selection for heterozygotes.  The 

DRB allelic composition also changed considerably, resulting in a significant change in the 
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proportion of lineage A and B alleles; the proportion of lineage A alleles increased from 

39% to 75% (Table 4.4).  By contrast, allelic composition and lineage ratios did not 

change in Kruger or Okavango over the same time period (Table 4.4).  Due to the 

functional relevance of the DRB locus, the temporal changes in DRB alleles in the 

Serengeti-Mara could represent adaptive differences between the two sampling periods in 

response to changes in pathogen selective pressures.   However, given my limited 

sampling, I cannot rule out the potential influences of stochastic processes.    

Few studies have assessed temporal changes in allele frequencies and genetic 

diversity at both MHC and neutral loci.  Those that have assessed multiple populations 

(Miller et al. 2001; Oliver et al. 2009a) have found like my study, that MHC and 

microsatellite allele frequencies are temporally stable in some populations, but not others.  

This indicates that selection is both spatially and temporally variable, which supports the 

hypothesis that fluctuating selection pressures are involved in balancing selection (Hill 

1991).  Similar to my findings in the Serengeti, temporal studies of individual populations 

of Great reed warblers (Acrocephalus arundinaceus; (Westerdahl et al. 2004) and Soay 

sheep (Ovis aries (Charbonnel & Pemberton 2005) found higher temporal divergence at 

MHC loci than at microsatellite loci, indicating temporal variation in local parasite selective 

pressures.  In contrast to the Kruger population, Soay sheep on the St Kilda island were 

found to show no significant changes in microsatellite or MHC diversity over 12 years 

(Charbonnel & Pemberton 2005), despite population fluctuations from ~2000 to ~600 

animals.  However, Kruger may have been more vulnerable to genetic drift because it was 

reduced from and to smaller population sizes.  A dramatic bottleneck from 100 to 11 birds 

in a small population of song sparrows (Melospiza melodia), was shown to result in a 

significant decline in microsatellite diversity (MHC diversity was not measured) (Keller et 

al. 2001), which corresponds more with my finding in Kruger.  In this case, demographic 

recovery occurred within 3 years, and low levels of immigration resulted in recovery of 

genetic diversity to pre-bottleneck levels within 2 generations (2-3 years) (Keller et al. 

2001).  Similar genetic rescue of MHC and microsatellite diversity by migration has been 

reported elsewhere (Seddon & Ellegren 2004; Vilà  et al. 2003; Wenink 1998).  It is 

encouraging, therefore, that wild dogs are such a highly mobile species (Fuller et al. 

1992).  Nonetheless, genetic recovery in Kruger is likely to be delayed by both the 

absence of demographic recovery to date (which will accentuate the impact of the 

bottleneck), and the lack of connectivity to nearby populations (Figure 4.1). 

Overall, my temporal data indicate that demographic declines, stochastic 

processes and selection contribute to changes in genetic diversity within populations over 

time.  Consequently, I reiterate the contention of Oliver et al (2009a) that “snapshot” 

sampling could be misleading as to the genetic status of a population.  This is particularly 

important in endangered species that suffer continuous demographic threats.  The Kruger 



98 
 
population assessed here, for example, was regarded as ‘big and secure’ (Mills et al. 

1998) and perceived as a ‘stronghold’ of African wild dogs (Woodroffe et al. 1997).  

However, the recent demographic declines and associated genetic impacts, highlight that 

even the largest wild dog populations are at risk.  This indicates the need for continual 

monitoring and reiterates the enormous value that continuous long-term field projects can 

contribute to endangered species conservation (Thirgood 2007). 

4.5.4 Tests for selection DRB  

Detecting selection at the MHC can be difficult because selection events are 

transient and the signal of selection is not expected to be consistent through time 

(Garrigan & Hedrick 2003).  Furthermore, in small populations, genetic drift may replace 

selection as the dominant force governing adaptive variation.  Balancing selection is a key 

mechanism that maintains variation at the MHC (Garrigan & Hedrick 2003).  It is indicated 

by: 1) an increased ratio of nonsynonymous (dN) to synonymous (dS) substitutions at the 

amino acid residues of the functionally important PBR (reviewed in Garrigan & Hedrick 

2003); 2) an increased proportion of intermediate frequency mutations (Tajima’s D); 3) 

excess heterozygosity relative to Hardy-Weinberg equilibrium; and 4) a more even allele 

distribution than expected under mutation-drift equilibrium (Ewen’s Watterson tests).  

Based on these criteria, I did not find significant evidence of balancing selection at the 

DRB locus.  There was not a significant excess of nonsynonymous substitutions, despite 

elevated dN:dS ratios at putative PBR sites of DRB alleles and 20/21 wild dog DRB alleles 

differing at the amino acid level (Radwan et al. 2010).  Neither was there evidence of a 

deviance from selective neutrality in Tajima’s D or an excess of heterozygotes relative to 

Hardy-Weinberg expectations in any population (despite observed heterozygosity 

between 0.54-0.93).  I did, however, find a signal of balancing selection in Okavango as 

indicated by the Ewen’s Watterson test, p=0.001). This may suggest selection operates in 

the largest wild dog population n~2500 (UNEP 2008), but this significant result may also 

be the product of a bottleneck, which results in rare alleles being lost more rapidly than 

heterozygosity (Garrigan & Hedrick 2003; Hartl & Clark 2007).  The lack of a signal of 

selection based on these tests is not atypical for MHC studies and has been attributed to 

the low power of these tests as well as the transient nature of selective events (reviewed 

in Garrigan & Hedrick 2003; Zhai et al. 2009).   

An alternative method used to indicate balancing selection is based on the 

expectation that selection should result in higher levels of diversity at adaptive loci and 

differences in the patterns of genetic diversity at adaptive and neutral genetic diversity 

(Figure 4.9) (Campos et al. 2006; Garrigan & Hedrick 2003).  In this study, the populations 

with the highest microsatellite diversity had the highest DRB diversity, and vice versa.  I 

also found a significant correlation in pairwise differentiation between populations at DRB 
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and microsatellite loci (Figure 4.8a; R-sq = 0.141, p = 0.004815).  These correlations have 

been found in other studies (e.g. Campos et al. 2006), , and may suggest the role of 

neutral factors in shaping patterns of DRB variation, which is likely the result of the 

reduced power of selection in small populations; alleles are predicted to become 

effectively neutral when s < 1/ (2Ne) (s is the selection coefficient and Ne is the effective 

population size), resulting in correlated patterns of neutral and adaptive diversity.  

However, although DRB and microsatellite loci were correlated, genetic differentiation and 

isolation by distance were more pronounced with DRB allelic data than with microsatellite 

data (Figure 4.8b).  Furthermore, partial Mantel tests showed that patterns of genetic 

differentiation at the DRB remained significant even after controlling for neutral 

microsatellite variation (r=0.4156, p=0.00749), suggesting that genetic differentiation at 

the DRB is larger than expected under neutrality.  Together, these results suggest that 

neutral forces alone cannot explain patterns of DRB variation.  The higher divergence at 

DRB is also consistent with diversifying, rather than balancing, selection acting on DRB 

alleles (Figure 4.9), and may indicate local adaptation (Bryja 2007; Ekblom et al. 2007; 

Landry & Bernatchez 2001).  However, it is also possible that this pattern has been 

generated by balancing selection through either fluctuating selection or negative 

frequency dependent selection for new rare alleles (Spurgin & Richardson 2010).   

Results from other studies comparing patterns of divergence at MHC and 

microsatellites have been variable (see review in Bernatchez & Landry 2003).  For 

example, higher divergence at the MHC relative to microsatellites, which is indicative of 

directional selection, was detected in Atlantic salmon (Salmo salar; (Landry & Bernatchez 

2001), Great snipe (Gallinago media; (Ekblom et al. 2007) and Water voles (Arvicola 

terrestris; (Bryja 2007), whereas no difference was reported in brown trout (Salmo trutta; 

(Campos et al. 2006), Gila topminnow (Poeciliopsis occidentalis; (Hedrick et al. 2001b) 

and Bighorn sheep (Ovis canadensis; (Boyce et al. 1997).  A reoccurring finding of most 

studies comparing neutral and MHC variation however, is that neutral forces and 

demographic processes are the predominant factors influencing patterns of MHC variation 

(Radwan et al. 2010), and that these may mask any current or historical signals of 

selection (Oliver et al. 2009a).  A recent study of water voles by Oliver (2009a) showed 

that across six years, genetic differentiation at MHC loci varied between being higher 

than, lower than, and equal to, genetic differentiation at microsatellite loci.  This highlights 

the influence of neutral forces and reiterates that selection at the MHC is both spatially 

and temporally variable (Oliver et al. 2009a).  

DRB alleles in African wild dogs are derived from just two lineages, with alleles 

within lineages differing by few amino acids but large numbers of amino acid substitutions 

between lineages.  If alleles within lineages are functionally similar, balancing selection 

may be expected to act on lineages rather than alleles.  When I analysed the DRB data in 
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terms of lineages I found a pattern indicative of balancing selection; there was no 

evidence of isolation by distance or genetic differentiation (Figure 4.8c; DRB R-sq = 

<0.0001, p=0.881) and there was no correlation between DRB lineage and microsatellite 

data (Regression, R-sq = 0.01, p = 0.4618 ).  Indeed, the presence of both lineages in all 

populations across Eastern and Southern Africa, is in itself suggestive of balancing 

selection (Table 4.4).  It is highly unlikely that independent selection events consistently 

retained just these two allelic lineages across all populations.  Rather, I suggest that wild 

dogs must have lost most DRB variation during a bottleneck, which restricted them to a 

few refugia.  Subsequent expansion (as indicated by mtDNA data) and later selection 

resulted in both lineages being spread and retained in all populations.  I found that in 

some populations lineage A was the most common, whereas in others lineage B was 

most common (Table 4.4).  This may reflect adaptation to local pathogenic communities.  

Similar to the pattern in African wild dogs, a study of White tailed deer (Odocoileus 

virginianus) revealed just two DRB allelic lineages, where alleles within lineages differed 

by few amino acids (van Den Bussche et al. 1999).  It was subsequently shown that 

alleles from each lineage were strongly associated with resistance to either ectoparasite 

ticks (lineage 1) or nematodes (lineage 2) (Ditchkoff et al. 2005) and therefore population 

DRB lineage composition may also reflect adaptation to local pathogenic communities.   

In summary, my data suggest that balancing selection is operating on DRB 

lineages, and directional selection on DRB alleles within lineages.  However, like many 

other MHC studies the overall footprint of selection in my data was low, which may reflect 

an erosion of historical signal due to strong genetic drift in small populations (Campos et 

al. 2006; Miller & Lambert 2004) and/or a lack of power of tests where sample sizes are 

small.  

4.5.5 Conservation management implications 

Adaptive genetic variation largely determines the ability and speed at which a 

species can adapt/evolve to changes in its environment.  It is also the basis of local 

adaptation and evolutionary differentiation between populations (Gebremedhin 2009; 

Hoglund 2009).  Consequently, knowledge of adaptive variation, such as the MHC is 

thought to be critical for endangered species conservation.  At the species level, a major 

bottleneck has been suggested as the cause of the lack of MHC variation in African wild 

dogs relative to other wolf-like canids (Marsden et al. 2009). In addition, I found evidence 

of the loss of DRB diversity as a result of genetic drift within populations.  Whether this 

lack of DRB variation will reduce the viability of wild dogs or wild dog populations is not 

clear, as examples from other wild animals present equivocal results (reviewed in Radwan 

et al. 2010).  However, the catastrophic population crash in Tasmanian devils, which has 

been linked to an inability to mount an immune response against an emerging disease as 
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a direct result of a lack of MHC variation (Siddle et al. 2007), suggests that the lack of 

MHC variation in wild dogs should be a cause for concern.  

My study suggests that extensive population declines, population subdivision and 

genetic isolation of wild dog populations are associated with habitat fragmentation and 

loss.  In the Okavango and Hwange monitoring populations, where continuous habitat still 

exists, gene flow connects wild dogs over considerable distances (~400 km), resulting in 

high genetic diversity and few indicators of inbreeding (Table 4.3).  This highlights the 

enormous value of maintaining habitat connectivity and suggests that conservation 

priorities should be directed towards reinstating connections between smaller and more 

isolated populations, which are more prone to genetic threats and extinction.  However, it 

is vital that studies are conducted to ensure habitat connectivity results in genetic 

connectivity.  Continuous habitat exists between the monitoring area in Southern Kruger 

and Lowveld (~500 km apart), yet I found these two monitoring populations were highly 

differentiated (Dest 0.28-0.37; Appendix 4) and shown to constitute distinct genetic 

populations in STRUCTURE (Figure 4.5).  The drivers of this isolation remain to be 

determined as wild dogs are able to disperse long distances (>250km, (Fuller et al. 1992; 

McNutt 1996) and there is no clear topographic barrier to wild dog movements (wild dogs 

must have crossed several wide perennial rivers when undertaking the long dispersal 

distances recorded by Fuller (1992).  However, it is possible that the low and declining 

wild dog densities in Northern Kruger, combined with fencing of Kruger National Park in 

the 1970’s has contributed to separation.  The establishment of the Greater Limpopo 

Transfrontier Park and the removal of fences on the north eastern border of Kruger may 

help to establish connectivity between populations.  

Given the isolation and small size of many wild dog populations combined with 

continuing demographic threats, it is not surprising that some population extinctions have 

occurred in recent years, including the Laikipia and Lowveld populations assessed here 

(Woodroffe 2001).  It has been suggested that the high fecundity and large dispersal 

abilities of wild dogs may enable resilience to population extinction (Pole 2000; Woodroffe 

2010); for example, the Laikipia wild dog population recovered from local extinction to 

>300 animals in just over 10 years (Woodroffe 2001).  However, in my assessments of 

Laikipia and Lowveld, the founder effects associated with population recolonisation were 

evident from the low genetic diversity and high indications of inbreeding I found in 

comparison to other populations.  These clear genetic costs associated with extinction 

events indicate that although wild dogs may have demographic resilience to extinction, 

this is not matched by genetic resilience.  This is not surprising given that wild dogs have 

likely suffered repeated and prolonged bottlenecks.  In the Serengeti-Mara, despite the 

disappearance of wild dogs from the monitoring area, genetic data shows that a 

population extinction did not occur (Chapter 3).  In this case, habitat connectivity appears 
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to have enabled local re-establishment and prevented the loss of genetic diversity, and 

thus again reiterates the importance of maintaining these connections (Chapter 3).  

Nonetheless, the natural recolonisation events from unknown source populations in 

Laikipia and Lowveld, and persistence of a population thought to have gone extinct in 

Serengeti, highlight gaps in my knowledge about the distribution of, and connectivity 

between, populations of wild dogs.  Further monitoring, both genetic and otherwise, is 

required to better understand distribution and connectivity in this species. 

Artificial translocations and reintroductions have been used to imitate gene flow 

where habitat connectivity cannot be reinstated.  However, to prevent outbreeding 

depression (Templeton 1986), it is critical to source animals from genetically similar 

populations (Edmands 2007).  In this study, I found some evidence of selection and local 

adaptation at the DRB, which indicates that artificial translocations should be approached 

with caution to prevent outbreeding depression.  Translocations have a long history in 

African wild dog conservation (Gusset et al. 2008; Gusset et al. 2006), but they have not 

previously been assessed genetically.  I examined the genetic impact of a recent 

translocation of 16 wild dogs into Hwange; eight animals shown here to be genetically 

derived from the Lowveld, and eight animals whose provenance was not known and could 

not be determined genetically.  The translocated animals introduced many new alleles, 

increasing genetic diversity at both microsatellite and DRB loci (microsatellite AR 

increased from 6.6 to 7.6; DRB AR increased from 7 to 12).  However, at the DRB this 

resulted in considerable changes to the allelic repertoire and also to the proportions of 

DRB alleles derived from lineages A and B, which may have implications for local 

adaptation.  Furthermore, the translocations also resulted in a noticeable increase in FIS 

from -0.05 to 0.78, and a decrease in observed heterozygosity at both microsatellites 

(Table 4.3, 80% to 68%, paired t-test, p=0.022) and DRB (79% to 71%, Table 4.3), 

indicating that the translocated animals were derived from inbred sources.  Both 

inbreeding and outbreeding depression are thought to be important genetic threats but 

their impact on different species has been very variable and difficult to predict (reviewed in 

Edmands 2007).  As such, I suggest future translocations should only be used as a 

management tool where populations are inbred, and in these cases genetic information 

should be used to select source animals from outbred and genetically similar populations.   
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4.6 Conclusion 

To the best of my knowledge, my study represents one of the most extensive 

genetic studies of a red list endangered species conducted to date. I combined neutral 

(microsatellite, mtDNA) and adaptive (MHC) markers to elucidate demographic history, 

gene flow, evidence of selection, spatial and temporal patterns of genetic diversity across 

eight monitoring populations of African wild dogs.  I found a genetic signature of a large 

and recent demographic decline in African wild dogs from microsatellite data.  This 

contrasts with findings in other African mammals which have shown major declines 

associated with climatic change at the end of the Holocene.  Habitat fragmentation and 

loss appears to have resulted in strong population structuring of African wild dog 

populations, with limited gene flow between them.  The spatial and temporal structure of 

microsatellite and DRB diversity were correlated, and appeared to be largely determined 

by demographic stability and size of populations. The correspondence between neutral 

and adaptive markers was not expected; selection is predicted to result in differences in 

the distribution of adaptive variation relative to neutral markers, the latter of which are only 

affected by neutral processes (Garrigan & Hedrick 2003; Schierup et al. 2000).  However, 

a similar correspondence has been found in other species (Campos et al. 2006).  This 

result suggests that selection may be unable to counter strong genetic drift in these small 

African wild dog populations (Ne<30), which results in contemporary patterns of DRB 

variation being largely determined by genetic drift.  This indicates that natural evolutionary 

processes may have become compromised by demographic declines in this endangered 

species.  Nonetheless, the pattern of genetic differentiation against geographic distance 

showed some evidence of balancing selection on DRB lineages and diversifying selection 

on DRB alleles.  This may indicate that selection still operates on DRB variation, although 

the extent and strength of selection is weaker than expected for the MHC.  Overall, my 

study has shown that the predominant factor determining spatial and temporal patterns of 

both neutral and adaptive genetic variation in wild dogs is demographic history, as 

population size appears to influence the strength of selection, rate of genetic drift, 

inbreeding, extinction probability and related distribution of populations and gene flow.    
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Figure 4.1: Historic (light grey) and present (dark grey) distribution of African wild dogs 
according to McNutt (2008).  Locations of monitoring areas for which I have samples are 
depicted by circles.  Sites represented by ≤5 samples, are shown as smaller circles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

       * * *            * * *      *         *         *   *     *  **  *   *      **  **  
A1  HFLNVAKSECYFTNGTERVRFVDRYIYNREEFVRFDSDVGEFRAVTELGRPDAEYLNRQKEILEQERAAVDTYCRHNYGVGESFTVQRR 
A2  --------------------------------------------------------------------------------I-------- 
A3  -------------------------------------------------------W------------------------I-------- 
A4  -------------------------------------------------------W--------------------------------- 
A5  -------------------------------------------------------W----------------V---------------- 
A6  -----------------------------------------Y-------------W------------------------I-------- 
A7  -------------------------------------------------------W-----L---R--E---V---------------- 
A8  -------------------------------------------------------W----------------V-------I-------- 
     
B1  --VYQF-G-------------LA-S------------------------------W-----L---R--E---V---------------- 
B2  --VYQF-G-------------LA-S----------------Y-------------W-----L---R--E-------------------- 
B3  --VYQF-G-------------LA-S----------------Y-------------R-----L---R--E-------------------- 
B4  --VYQF-G------------LLA-S------------------------------W-----L---R--E---V-------I-------- 
B5  --VYQF-G------------LLA-S------------------------------W-----L---R--E---V---------------- 
B6  --VYQF-G------------LLA-S------------------------------R-----L---R----------------------- 
B7  --VYQF-G------------LLA-S---------------------------------------------------------------- 
B8  --VYQF-G------------LLA-S-----------------------------------------------V-------I-------- 
B9  --VYQF-G------------LLA-S------------------------------------L---R--E-------------------- 
B10 --VYQF-G-------------LA-S------------------------------W-----L---R--E---V-------I-------- 
B11 --VYQF-G------------LLA-S----------------Y-------------R-----L---R--E-------------------- 
B12 --VYQF-G------------LLA-S------------------------------R-----L---R----------------------- 
B13 --VYQF-G------------LLA-S----------------Y-------------R-----L---R----------------------- 
 

Figure 4.2: African wild dog DLA-DRB1 alleles aligned to allele A1.  Matching amino acids are indicated with a dash, varying amino acids are indicated 
by single letter amino acid codes. Alleles are grouped into two phylogenetically divergent allelic lineages, A (above the line) and B (below the line).  
Amino acids of the putative peptide binding regions (Bondinas et al. 2007) are indicated by *.   
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Figure 4.3:  Mitochondrial DNA variation in African wild dogs. a) Bayesian geneology demonstrating the relationship between 10 African wild dog mtDNA 
haplotypes, rooted using the grey wolf as an outgroup.  Node support is shown via Bayesian posterior probability values (%).  Haplotype colours 
correspond with b. b) Distribution of haplotypes across Southern and Eastern Africa.  Frequency of haplotypes per sampling location is depicted by pie 
charts with colours corresponding to those shown in a) and sample sizes shown in brackets.  Geographic clustering, as indicated by AMOVA, are shown 
with coloured ovals. The former and current distribution of wild dogs is depicted by light and dark grey shading, respectively, the distribution of miombo 
forest by dashed brown lines, and the western rift valley by a thick black line.  



107 
 

 

Figure 4.4: Unrooted neighbour-joining network based on Nei’s allele sharing distance 
(DAS) across 10 microsatellite loci computed in Populations.  Colours of branches 
indicate sampling location of the individual as reflected on the map: Kruger – dark green, 
Lowveld – light green, Namibia –turquoise, Okavango – blue, Hwange – dark blue, Sofala 
– pink, Selous – red, Masai Steppe – Orange, Serengeti-Mara –brown, Laikipia – yellow, 
16 wild dogs of unknown provenance translocated into Hwange - grey.   
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Figure 4.5: a) Genetic structure of African wild dog populations based on Bayesian 
clustering analyses (STRUCTURE) of samples at 10 microsatellite loci. Shown is the most 
likely level of population clustering (K=7) as indicated by the ΔK statistic (c).  Columns are 
individuals, with the proportion of an individual’s genotype assigned to each cluster (K) 
denoted by different colours. Colours correspond with location map in Figure 4.4.  
Populations are depicted by three letter codes; Kru-Kruger, Low-Lowveld, Oka-Okavango, 
Hwa-Hwange, Sel-Selous, Mst-Masai Steppe, S-M-Serengeti-Mara, Lai-Laikipia.  b) 
Likelihood probability profile estimated from STRUCTURE 2.2 at K1-10 showing the mean 
and variance at each K.  c) ΔK at each value of K, averaged across 10 replicates.  The ΔK 
statistic identified two peaks where K=4 represented the uppermost level of structuring 
and K=7 which represents finer scale population structuring (Evanno et al. 2005).  
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Figure 4.6: Principle coordinates analysis of African wild dog populations computed in 
GenALEX. Small + symbols represent individuals, and large circles represent population 
medians.  Colours correspond to sampling location indicated on the map.  The axes have 
been rotated to reflect the resemblance between the PCO and geographic sampling 
location.  PC 1 (27.5 %) appears to represent a North South axis and PC 2 (18.4%) a East 
West axis.  
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Figure 4.7: Mean long term migration rates between African wild dog populations in 
Eastern and Southern Africa.  Estimates are based on number of animals/generation with 
95% confidence intervals calculated as θ*M, however, these values should be viewed with 
caution and should not be interpreted literally (see text for more details).  To improve 
clarity of the figure, migration rates were removed if the 95% confidence interval did not 
include 1. Arrow sizes are proportional to migration rate.   
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Figure 4.8: a) Correlation of 
pairwise genetic differentiation 
(Dest) between populations for 
DRB and microsatellite markers 
(R2 = 0.141, p<0.01).  b) 
Regression of pairwise genetic 
distance (Dest), against 
geographic distance (km) for 
DRB (white circles; R2=0.26, 
p<0.0001, intercept = 0.508, 
slope = 0.000125),  and 
microsatellite (filled circles; 
R2=0.17, p<0.05, intercept = 
0.238, slope = 0.000054) loci . c) 
Regression of pairwise genetic 
distance (Dest), against 
geographic distance for DRB 
lineages (white circles; 
R2<0.0001, p=0.881, intercept = 
0.121, slope =0.0000034) and 
microsatellite (filled circles; 
statistics in b) loci.  DRB lineages 
refers to the lineage or lineages 
an individual’s alleles were 
derived from, i.e. AA, AB, BB.  
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Figure 4.9: Theoretical expectations of how genetic differentiation changes with 
geographic distance and across an environmental gradient based on loci evolving 
neutrally and under selection changes (Redrawn from (Gebremedhin et al. 2009).  a) 
Differentiation increases with geographic distance at neutral loci as a result of random 
differences accumulating between isolated populations.  Balancing selection is expected 
to result in lower levels of differentiation between populations due to selection for high 
variation which results in selection for any new migrant alleles. b) Across an 
environmental gradient, local selection pressures result for differences accumulating more 
quickly at loci under directional selection than at neutral loci.   
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Table 4.1: Details of the origin of the African wild dog samples used in this study including 
the name and country of the monitoring area, the sampling years, number of animals and 
packs sampled, number of animals in monitoring area (Npop) and monitoring area three 
letter abbreviation. 

 

 

 

 

 

 

 

 

 

 

 

* pack information was not known for all monitoring areas. 

 

Monitoring area Country Sampling years n packs Npop Abbreviation 

Kruger SE South Africa 
Old:1990-95 
Recent: 2007-08 

 67 
24   

≥9 
6 

400  
 100   

Kru 

Lowveld SE Zimbabwe 2008-2009  15 6  130 Low 

Okavango N Botswana 
Old: UNK 
Recent: 2000-06 

 19 
 42 

* 
≥15 

 200  
 200 

Oka 

Hwange NW Zimbabwe ~1990-2007  19 *  250 Hwa 

Selous S Tanzania 1991-1995  23 8  100 Sel 

Serengeti-Mara 
Tanzania-Kenya 
border 

Old:1981-90 
Recent: 2005-07 

 20 
 14 

≥5 
5 

 50 
 160 

S-M 

Masai-Steppe NE Tanzania 1995  32 3  UNK Mst 

Laikipia Central Kenya 2003-2008  67 14  300 Lai 

Monitoring areas where n≤5 
 

  
 

 

Ghanzi W Botswana 2006  1 1   

NE Namibia NE Namibia 1980-2007 5 4   

Sofala Central Mozambique 2004  3 1   

Niassa N Mozambique 2008  1 1   

Kajiado S. Kenya 2008  1 1   
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Table 4.2: Sample sizes (n) and distribution of mtDNA haplotypes across African wild dog 
populations. Private haplotypes are underlined. Okavango and Serengeti-Mara represent 
frequencies based on both Old and Recent samples. 

 

 

 

 

 

 

 

 

 

 

 

*Four samples from this study were combined with data from six samples from (Girman et 
al. 2001). 

 

 

 

 

 

 

 
n S1 S2 S3 S4 S5 Z1 Z2 E1 E2 E3 

Kruger Old 94 35 59         

Lowveld 15  15         

NE Namibia* 10  10         

Okavango 90  13   5 4 6 59 3  

Ghanzi 1  1         

Hwange 47  16    11 17 1 2  

Sofala 3         3  

Niassa 1   1        

Selous 37   26 3     8  

Serengeti-Mara* 41        32  9 

Masai-Steppe 32        14  18 

Laikipia 54        15  39 

Total 425 35 123 27 3 5 15 23 121 16 66 



 

Table 4.3: Summary of diversity statistics for mtDNA (mt), microsatellite (ms) and MHC markers.  Listed are the number of animals (n) and packs (pk) typed 
at each marker in each population, number of haplotypes (h), number of private alleles or haplotypes (PA), nucleotide diversity (π), Gene diversity (Gdiv), 
Allelic richness (AR), Allelic richness standardized for sample size (Std-AR), Observed heterozygosity (Ho), Expected heterozygosity (He), Fixation index 
(FIS). # indicates FIS values significantly different from 0. Standard Error values are shown in brackets. 

   mtDNA Microsatellites MHC 

                                            
Population n 

(mt/ms/MHC) 
#    

pk 
#  
h 

# 
PA 

             
π x10^3  

             
Gdiv 

          
AR  

Std-
AR 

# 
PA 

     
Ho 

     
He 

   FIS   
AR 

 Std-
AR 

# 
PA 

 Ho   He      
FIS  

Kruger Old 94/67/67 ≥9 2 1.45 (±1.4) 0.47 (±0.03) 6.3 (1.0) 4.60 0.78 0.70 -0.11 6 5.1 0.82 0.76 -0.08 
Kruger Recent 0/20/24 6 na 

1 
na   5.4 (1.8) 4.53 

2 
0.66 0.67 0.02 6 5.5 

2 
0.67 0.66 -0.02 

Lowveld 15/14/15 6 1  0 0 4.6 (0.7) 4.09 1 0.62 0.59 -0.05 3 3.0  0.73 0.60 -0.22 
Okavango Old 90^/12/19 * 4.9 (0.4) 4.54 0.70 0.68 -0.03 9 8.3 0.84 0.86 0.02 
Okavango Recent -/42/42 15 

6 1 
22.20 (±11.6) 0.54 (±0.06) 

7.4 (0.8) 5.05 
5 

0.79 0.74 -0.07 9 8.0 
2 

0.81 0.85 0.05 
Hwange 47/14/19 * 5  11.20 (±6.4) 0.71 (±0.03) 6.6 (0.9) 5.68 2 0.80 0.76 -0.05 7 6.6  0.79 0.79 0.00 
Selous 37/23/22 8 3 1 19.42 (±10.5) 0.47 (±0.08) 6.3 (0.8) 4.90 3 0.68 0.68 0.00 11 9.4 2 0.91 0.88 -0.03 
Masai Steppe 32/32/17 3 2  6.18 (±4.0) 0.34 (±0.08) 5.5 (±0.7) 4.31 3 0.62 0.61 -0.02 5 5.0  0.83 0.71 -0.17 
Serengeti-Mara Old 41^/20/18 ≥5 6.1 (±0.7) 4.97 0.69 0.72 0.03 5 4.8 0.67 0.74 0.09 
Serengeti-Mara Recent -/13/14 5 

2  
9.32 (±5.5) 0.51 (±0.03) 

4.6 (±0.5) 4.31 
6 

0.65 0.67 0.03 6 6 
1 

0.93 0.76 -0.22 
Laikipia 54/67/63 ≥14 2  7.50 (±4.6) 0.41 (±0.06) 6.0 (±0.8) 4.41 8 0.61 0.67 0.11# 3 3  0.54 0.57 0.05 
Mean   2 0.4 7.45 (±2.3) 0.36 (±0.07) 5.8 4.67 3.8 0.69 0.68 -0.01 6.4 5.88 0.9 0.78 0.74 -0.05 

 

^ This value includes old and recent samples for that population.  * Information on the numbers of packs sampled was not available for all populations.   

 



 

Table 4.4: Frequencies of MHC-DRB1 alleles (A1-A8 and B1-B11) and A and B allelic lineages in each population.  The last three columns show the 
proportion of individuals that are homozygous for lineage A (AA) or B (BB), and those that have an allele from each lineage (AB). Private alleles and the 
most common allelic lineage within populations are underlined. 

 

 

  
Frequency of DRB alleles per population 

Frequency 
alleles/lineage 

DRB lineage 
genotypes 

Population n A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 A B AA AB BB 

Kruger-Old 67     0.08 0.23     0.01           0.11 0.33         0.23 0.30 0.70 0.11 0.39 0.50 
Kruger-Recent 24     0.06 0.17     0.02           0.08 0.54         0.13 0.25 0.75 0.04 0.42 0.54 
Lowveld 15 0.1                 0.4       0.5           0.10 0.90  0.20 0.80 
Okavango-Old 19 0.16 0.24 0.13 0.03           0.21   0.11 0.05   0.03   0.05     0.55 0.45 0.42 0.26 0.32 
Okavango-Recent 42 0.1 0.21 0.24 0.06           0.05   0.18 0.02   0.08   0.06     0.61 0.39 0.45 0.31 0.24 
Hwange 19 0.08   0.05 0.13           0.29 0.03 0.08     0.34         0.26 0.74 0.05 0.42 0.53 
Selous 22     0.02 0.11 0.18     0.05 0.11 0.02   0.09 0.02 0.18   0.18   0.02   0.36 0.64 0.14 0.45 0.41 
Masai Steppe 18         0.14       0.06     0.36   0.14 0.31         0.15 0.85 0.06 0.18 0.76 
Serengeti-Mara Old 18     0.03     0.36     0.11     0.33     0.17         0.39 0.61 0.22 0.33 0.44 
Serengeti-Mara Recent 14       0.14 0.43 0.18             0.04   0.18 0.04       0.75 0.25 0.50 0.50 0.00 
Laikipia 63       0.59             0.16 0.25               0.59 0.41 0.35 0.48 0.17 
Areas with ≤5 samples                                             

NE Namibia  4 0.33   0.17 0.33           0.17                        

Ghanzi  1     1                                      

Niassa 1                       0.5       0.5            

Sofala 3         1                                  

Kajiado 1         0.5             0.5                    



 

Table 4.5: Estimates and 95% confidences intervals of effective population size based on three methods. Long term effective population size derived from 
MIGRATE based on θ = 4Neμ (Beerli 2006), moments based temporal method for populations with temporal sampling, and the linkage disequilibrium 
method.  Ne/Npop estimates are provided for the linkage disequilibrium method; N pop taken from Table 4.1. 

 

Population n Ne MIGRATE (long term) Ne Temporal Method Ne Linkage Disequilibrium Ne/Npop Linkage Disequilibrium 

Kruger All 87 26.4 (24.8-27.7) 21.8 (11.6-43.5)   

             Old 67   19.6 (17.3-22.2) 0.05 

             Recent 20   10.2 (8.4-12.7) 0.10 

Lowveld 14 27.5 (23.2-30.5)  7.8 (6.1-10.5) 0.06 

Okavango All 54 34.9 (31.9-36.9) 28.3 (13.1-92.7)   

                  Old 12   10.4 (7.7-15.1) 0.05 

                  Recent 42   16.6 (14.7-18.8) 0.09 

Hwange 14 47.7 (40.2-52.4)  12.4 (9.9-15.9) 0.05 

Selous 23 108.0 (100.9-117.3)  20.5 (16.2-27.0) 0.21 

Serengeti-Mara All 33 36.2 (33.6-38.9) 11.9 (6.8-20.8)   

                           Old 20   12.6 (10.4-15.7)  

                          Recent 13   3.0 (2.6-3.6) 0.02 

Masai Steppe 32 30.5 (28.6-32.7)  11.5 (9.8-13.6) NA 

Laikipia 67 29.1 (27.7-30.5)  21.5 (18.7-24.8) 0.07 
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Table 4.6:  Findings from bottleneck tests conducted on 10 microsatelllite loci from five 
populations.  Results are based on heterozygosity excess and M ratio test. All allele 
frequency distributions were normal. 

 

 
 ^Heterozygosity excess 

p values where SMM = 

~M ratio 
p values where θ =  

Population* n 70% 80% 90% M ratio 0.2 0.6 1.2 2 

Kruger 87 0.002 0.007 0.065 0.677 0.017 0.005 0.003 0.004 

Botswana 54 0.188 0.461 0.813 0.754 0.001 0.000 0.000 0.000 

Masai Steppe 32 0.138 0.313 0.500 0.636 0.070 0.032 0.016 0.009 

Serengeti 33 0.001 0.003 0.065 0.674 0.019 0.007 0.002 0.001 

Laikipia 67 0.007 0.065 0.188 0.741 0.002 0.000 0.000 0.000 

 
*Kruger, Botswana and Serengeti are the combined temporal sample set.  
^ Heterozygosity excess assumed the two phase mutation model, varying propotions of 
step wise mutation model (SMM).  Significance was tested with wilcoxon tests.   
~M ratios tests assumed the proportion of one-step mutations as 90% and the size of 
multi-step mutations as 3.5.  p values show the probability of the M ratio being significantly 
lower than values expected under mutation-drift equilibrium at a range of θ values 
corresponding to pre-bottleneck population sizes of 100, 300, 600 and 1000 were tested.   
 

 

 

 

 

 

Table 4.7:  Estimates of ancestral (N1) and current (N0) effective population sizes and 
time since decline (T), for three populations, derived from coalescent simulations in 
MSVAR.  Results show the median value, with 5%  - 95% quantiles shown in brackets. 

 

Population N1 (5 - 95%) N0 (5 - 95%) T (5 - 95%) 

Kruger 865 (225-3278) 1 (0.1 - 7) 10 (1 - 82) 

Okavango 938 (284-3031) 2 (0.1 - 24) 14 (1 - 154) 

Selous 670 (181-2439) 1 (0.1 - 20) 9 (1-123) 

 



 

Table 4.8: Results from hierarchical analysis of molecular variance (AMOVA) computed in Arlequin v 3.11.  Alternative a priori hypotheses of population 
groupings were tested to identify groupings that explain more variation (%var) between groupings (ФCT) than within, as is indicative of population structure.  
Significance was assessed using 1,000 permutations and is indicated by bold type. Populations are described by three letter codes (Table 4.1). 

 mtDNA Msats MHC 

Grouping tested df %var p df %var p df %var p 

Southern-Eastern           
[Kru,Low,Oka,Hwa] [Sel,S-M,Mst,Lai]          
     Among Groups [Фct]  1 26.88 0.059 1 1.99 0.019 1 1.84 0.213 
       Among Populations [Фsc] 6 43.65 <0.001 6 13.54 <0.001 6 18.31 <0.001 

         Within Populations [Фst] 395 29.47 <0.001 640 84.47 <0.001 632 79.85 <0.001 

Southern-Central-Eastern              
[Kru,Low,Oka,Hwa] [Sel] [S-M,Mst,Lai]              
     Among Groups [Фct] 2 40.97 0.053 2 2.35 0.052 2 0.40 0.47 
       Among Populations [Фsc] 5 30.71 <0.001 5 13.38 <0.001 5 19.26 <0.001 

         Within Populations [Фst] 395 28.32 <0.001 640 84.26 <0.001 632 80.34 <0.001 

SouthEast-SouthWest-Central-Eastern             
[Kru,Low] [Oka,Hwa] [Sel] [S-M, Mst, Lai]             
     Among Groups [Фct] 3 46.34 0.048 3 2.72 0.028 3 2.87 0.182 
       Among Populations [Фsc] 4 22.62 <0.001 4 12.75 <0.001 4 17.02 <0.001 

         Within Populations [Фst] 395 31.03 <0.001 640 84.53 <0.001 632 80.12 <0.001 

SouthEast-SouthWest-Eastern-North East             

[Kru,Low] [Oka,Hwa] [Sel,S-M, Mst] [Lai]             

     Among Groups [Фct] 3 17.87 0.282 3 2.05 0.068 3 10.41 0.010 

       Among Populations [Фsc] 4 49.57 <0.001 4 13.21 <0.001 4 9.96 <0.001 

         Within Populations [Фst] 395 32.56 <0.001 640 84.73 <0.001 632 79.63 <0.001 

SouthEast-SouthWest-Central-Eastern-North East             
[Kru,Low] [Oka,Hwa] [Sel] [S-M, Mst] [Lai]             

     Among Groups [Фct] 4 38.82 0.133 4 3.81 0.008 3 10.13 0.005 

       Among Populations [Фsc] 3 29.09 <0.001 3 11.50 <0.001 4 10.02 <0.001 

         Within Populations [Фst] 395 32.09 <0.001 640 84.69 <0.001 632 79.86 <0.001 



 

5 Chapter 5: The importance of considering 

phylogenetic relatedness when interpreting 

patterns of MHC polymorphism in endangered 

species. 
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5.1 Abstract  

The major histocompatibility complex (MHC) is renowned for its high levels of 

variation, which results from balancing selection.  This diversity is thought to be important 

to enable diverse immune capabilities.  There is concern, though, that reduced population 

sizes in endangered species will result in increased levels of genetic drift and decreased 

levels of selection, resulting in an overall loss of MHC diversity.  As a result, a range of 

studies have examined MHC variation in endangered species and assessed the level of 

diversity through comparisons with non-endangered reference taxa.  However, the 

reference taxa used are commonly distant relatives or domesticated species.  Therefore, 

any differences in levels of diversity may be the result of differences in evolutionary history 

rather than endangered status.  Here, I assessed MHC variation across eight species 

from the wolf-like canid clade to investigate the potential factors that influence patterns of 

MHC diversity.  As expected, demographic history and selection were important factors 

influencing MHC diversity.  However, I also found evidence that phylogeny influences 

levels of MHC diversity and trans-specific polymorphism which suggests phylogenetic 

relatedness can confound patterns of MHC diversity.  Furthermore, it was shown that 

comparative MHC studies that fail to control phylogeny may lead to inaccurate 

interpretation of MHC data. This has important implications for the choice of reference 

taxa used in comparative studies aiming to classify levels of diversity in (endangered) 

species.  Clearly, unless very closely related species are compared, it will be difficult to 

disentangle whether any differences in diversity between species are the result of 

population declines rather than evolutionary history.   
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5.2 Introduction 

The major histocompatibility complex (MHC) includes multiple genes that code for 

a set of cell-surface molecules involved in the recognition of foreign antigens as part of the 

immune response (Klein 1980; Piertney & Oliver 2006).  A defining feature of MHC genes 

is their high level of polymorphism (Garrigan & Hedrick 2003), which is thought to confer 

immunity against a larger range of diseases (Doherty & Zinkernagel 1975; Sommer et al. 

2002).  This diversity is largely attributable to two characteristics, both of which are 

thought to result from pathogen-driven balancing selection: 1) large numbers of alleles 

(hundreds of alleles per locus have been reported in some species (HLA-Database 2010); 

and 2) high sequence divergence amongst alleles arising from retention of ancestral 

polymorphism (reviewed in Garrigan & Hedrick 2003).  Evidence that balancing selection 

operates on the MHC has been demonstrated by an excess of non-synonymous variation 

(dN>dS) amongst MHC alleles, as well as the concentration of non-synonymous changes 

to the residues intricately involved with the recognition of foreign antigens (the peptide 

binding region, PBR, (Furlong & Yang 2008), i.e. the sites where amino acid changes are 

most likely to result in functional changes.  Balancing selection is also evidenced by the 

retention of ancestral alleles/allelic lineages, that is, trans-specific polymorphism (Klein 

1980).   

Whilst the influence of balancing selection has been repeatedly demonstrated on 

the MHC, the ability of selection to maintain diversity is very sensitive to effective 

population size (Ne) (Richman 2000).  When Ne is small, genetic drift replaces selection as 

the dominant evolutionary force, resulting in the random loss of variation (reviewed in 

Sommer 2005). As such, endangered species that experience population declines or 

bottlenecks are predicted to lose diversity at the MHC and therefore potentially have 

increased susceptibility to disease (O'Brien & Evermann 1988).  The best example of this 

comes from Tasmanian devils, where a catastrophic population crash has been linked to 

an inability to mount an immune response against an emerging disease as a direct result 

of a lack of MHC variation due to previous bottlenecks (Siddle et al. 2007).  Overall, 

therefore, MHC diversity is thought to be important for both population and species 

viability (Hoglund 2009; Piertney & Oliver 2006).  As such, assessments of MHC variation 

are increasingly conducted in endangered taxa, with the aim to: 1) identify whether 

population declines have resulted in the loss of MHC diversity; and 2) assess whether 

selection still operates on the MHC in endangered species.  Since pre-decline samples 

are rarely available, declines in diversity in endangered species are typically inferred 

through comparison with reference taxa (e.g. Hedrick et al. 1999; Marsden et al. 2009).  

However, unless sister taxa are available (e.g. Miller & Lambert 2004), using species 

comparisons to determine whether a species has lost MHC variation because of 
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demographic declines is confounded by the possibility that differences in diversity 

between species are the result of evolutionary history; particularly, if reference taxa are 

distantly related (e.g. Smith et al. 2010; Zhu et al. 2007) or domesticated species (e.g. 

Hedrick et al. 1999; Mikko & Andersson 1995).  Investigations into the potential influence 

of evolutionary history on MHC diversity are currently lacking in the literature, and thus 

typically not considered in MHC comparisons.  As such, there is a need for research into 

the contribution of both evolutionary history and endangered status to MHC diversity 

through studies of multiple closely related taxa. 

The Canidae is a relatively young family that diverged very rapidly into 16 genera 

and 36 species within the last 8-10 million years (Lindblad-Toh et al. 2005; Perini et al. 

2009).  From a phylogenetic perspective, the Canidae creates an immense challenge 

because there has been insufficient evolutionary time for the accumulation of many 

genetic differences between species, which means very large amounts of sequence data 

are required to resolve evolutionary relationships (Lindblad-Toh et al. 2005).  However, for 

an evolutionary study of the MHC, this is a great advantage.  A diverse but recently 

evolved family with a number of closely related species is ideal for a comparative MHC 

study investigating the factors that affect patterns of diversity and selection in different 

species. 

Recent phylogenetic analyses of the Canidae based on ~15kb of intron and exon 

sequence found strong support for four clades: 1) the red-fox like canid clade; 2) the 

South American canid clade; 3) the wolf-like canid clade; and 4) the grey and island fox 

clade (Lindblad-Toh et al. 2005).  Furthermore, these analyses resolved the phylogenetic 

relationships amongst the wolf-like canids (excluding the Red wolf, Canis rufus): Grey 

wolves (Canis lupus); Coyotes (Canis latrans); Ethiopian wolves (Canis simensis); Golden 

jackals (Canis aureus), Dholes (Cuon alpinus); African wild dogs (hereafter wild dog, 

Lycaon pictus); Black-backed jackals (Canis mesomelas), and Side-striped jackals (Canis 

adustrus).  Importantly, both Lindblad-Toh (2005) and a subsequent study by Perini 

(2009) found the genus Canis to be non-monophyletic.  Specifically, the Black-backed and 

Side-striped jackals were found to be highly divergent to the other Canis species, and 

basal to the wolf-like canid clade (Figure 5.1), although these species have yet to be 

renamed. 

The wolf-like canids consist of a combination of both abundant (IUCN category, 

least concern: Grey wolves; Coyotes; Golden jackals; Black-backed jackals; Side-striped 

jackals) and endangered taxa (Ethiopian wolves; Dholes; African wild dogs) (IUCN 2010).  

Based on a comparison with highly abundant Grey wolves and two other endangered taxa 

(Ethiopian wolves and Mexican wolves, which currently have subspecies status, Canis 

lupus baileyi), previous research found that patterns of MHC in wild dogs, were atypical 
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for a wolf-like canid, even for an endangered species (Figure 5.1; Chapter 2; (Marsden et 

al. 2009).  Firstly, wild dogs lack variation at the DLA-DQA1 (1 allele, hereafter DQA) and 

DLA-DQB1 (2 alleles, hereafter DQB) loci, which have been shown to be variable in other 

wolf-like canids.  Secondly, wild dogs have just two allelic lineages at the DLA-DRB1 

locus (hereafter DRB), whereas DRB alleles in other wolf-like canids, are derived from a 

number of very divergent allelic lineages. Thirdly, wild dogs share no alleles with the other 

wolf-like canids, whereas allele sharing is common amongst the other species in that 

clade.  These differences led to the suggestion that wild dogs may have lost MHC 

variation as a result of widespread demographic declines  which have reduced the global 

wild population to less than 8,000 (IUCN/SSC 2008, 2009).  However, these differences 

may be the result of wild dogs being more distantly related to the other wolf-like canids 

surveyed, which were all from the genus Canis.  In addition, wild dogs are not known to 

hybridise with other species, whereas hybridisation within the genus Canis is extensive 

(Gottelli et al. 1994; Lehman et al. 1991; Verginelli et al. 2005; Vilà et al. 1997). 

To distinguish between the relative influence of evolutionary and demographic 

history on patterns of MHC variation, I surveyed diversity of DRB, DQB and DQA in 

Coyotes, Golden jackals, Dholes, Black-backed jackals, and Side-striped jackals for 

comparison with my previous study (Marsden et al. 2009).  The expanded dataset 

includes nearly all extant wild species (except the red wolf) in the wolf-like canid clade 

(Figure 5.1), to provide a finer scale picture of MHC diversity in abundant and endangered 

species in relation to phylogenetic history.  Specifically, I addressed the following four 

questions: 1) Do endangered species show different patterns of diversity at MHC loci than 

abundant species? 2) Is there evidence for differences in selection pressures on 

endangered versus abundant species? 3) Does hybridisation affect interpretations of 

selection and diversity? 4) Are patterns of selection and diversity confounded by 

phylogenetic history? 
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5.3 Methods 

5.3.1 Samples  

To compare DRB, DQB and DQA variation within the wolf-like canid clade (Figure 

5.1), I accessed samples or published MHC data from all wolf-like canid species (Table 

5.1) with the following exceptions: Domestic dogs (Canis familiaris) were specifically 

excluded as they have been under intense artificial selection; Red wolves and Mexican 

wolves were excluded due to their absence in the most recent phylogeny (Lindblad-Toh et 

al. 2005), small data sets available (Red wolf) and in the case of the Mexican wolf, due to 

their sub-species status.  Extracted DNA was sourced from the R. K. Wayne canid sample 

bank for 25 Coyotes, 13 Golden Jackals, four Dholes, eight Side-striped Jackals and 83 

Black-backed jackals.  A further 7 Dholes samples were provided by A. Ivengar and A. 

Kitchener.  Wild dog DRB data, were taken from Chapters 2 (Marsden et al. 2009) and 4; 

wild dog DQB and DQA data were based on Chapters 2 as well as some additional 

sequencing of 164 individuals at the DQB and 37 individuals at DQA.  All data for Grey 

wolves, Ethiopian wolves, and data for four additional Coyotes were taken from published 

sources (Table 5.1): Grey wolves (Kennedy et al. 2007a; Kennedy et al. 2001; Seddon & 

Ellegren 2002; Seddon & Ellegren 2004); Ethiopian wolves (L.J.Kennedy Pers comm.; 

GenBank; (Marsden et al. 2009); Coyotes (Seddon & Ellegren 2002).  Sequences were 

downloaded directly from GenBANK or provided by the DLA nomenclature committee 

(L.J. Kennedy).  Table 5.1 details sample sizes used in this study.  In some cases, the 

numbers of individuals typed per locus varied across the three loci.  This reflects the fact 

that data was excluded where it was not possible to make confident and unambiguous 

allele assignments.  

5.3.2 Sequence Based Typing  

Sequence-based typing was conducted on exon 2 of the DLA-DRB1, DLA-DQA1, 

and DLA-DQB1 loci using locus-specific intronic domestic dog primers that gave products 

of 303 bp (DLA-DRB1), 345 bp (DLA-DQA1), and 300 bp (DLA-DQB1). Primers were as 

follows (M13 and T7 tails are underlined): DRBln1: ccg tcc cca cag cac att tc (Wagner et 

al. 1996); DRBln2M13r: cag gaa aca gct atg acc tgt gtc aca cac ctc agc acc a (Wagner et 

al. 1996); DQAln1: taa ggt tct ttt ctc cct ct (Wagner et al. 1996); DQAIn2: gga cag att cag 

tga aga ga (Wagner et al. 1996). DQB1BT7 taa tac gac tca cta tag gg ctc act ggc ccg gct 

gtc tc (Wagner et al. 1996); DQBR2: cac ctc gcc gct gca acg tg (Kennedy et al. 2002a).   

Polymerase chain reactions (PCR) were performed in 25 μl reactions containing 1 

x Q solution (Qiagen), 1 x PCR buffer containing 15 mM MgCl2 (Qiagen), 1 mM MgCl 
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(Qiagen), 0.4 mM of each DNTP (Invitrogen, San Diego, CA), 0.04 uM of each primer, 0.1 

µg/µl BSA (Promega) OR 25mM of Dimethyl sulfoxide, 1 unit of Hot Star taq (Qiagen), 

and approximately 25 ng of template DNA. To detect contamination, each PCR was run 

with both the DNA extraction negative and a PCR-negative control containing no template 

DNA. Reactions were run on PTC-200 DNA engine machines (MJ Research Inc.). PCR 

amplifications were conducted with a touchdown protocol: 15 min at 95 ºC; 14 touchdown 

cycles of 95 ºC for 30 s; followed by 1 min annealing, starting at 62 ºC (DLA-DRB1), 52 ºC 

(DLA-DQA1), 68 ºC (DLA-DQB1), and reducing at 0.5 ºC per cycle; and 72 ºC for 1 min. 

This was followed by 20 cycles of 95 ºC for 30 s, 60 ºC (DLA-DRB1), 50 ºC (DLA-DQA1), 

65 ºC (DLADQB1) for 1 min, and 72 ºC for 1 min. The protocol ended with a final 

extension of 72 ºC for 10 min.   A generalised PCR touchdown protocol was used for any 

samples that amplified poorly at the DRB, DQB or DQA loci: 10 min at 95 ºC; 16 

touchdown cycles of 94 ºC for 1 min; followed by 1 min annealing, starting at 63 ºC and 

reducing at 0.8 ºC per cycle; and 72 ºC for 1 min 30 s. This was followed by 30 cycles of 

94 ºC for 30 s, 50 ºC and 72 ºC for 1 min. The protocol ended with a final extension of 72 

ºC for 5 min.  PCR products were visualised on 2% TBE agarose gels.  As sequence-

based typing relies on being able to read heterozygous sequences, it was vital that 

sequences had no background noise.  Therefore, samples with a thin clear single band 

were cleaned using ExoSAP-IT (USB) according to the manufacturer’s instructions.  

Otherwise, bands to be sequenced were excised and subsequently purified using 

QiaQuick gel extraction kits (Qiagen Inc.).  Purified PCR products were directly 

sequenced on ABI 3730 sequencers (Genepool, University of Edinburgh; The Core, 

University of California, Los Angeles; The Sequencing Service, University of Dundee). 

Sequence data were cleaned in Geneious v.4.5.5 (BioMatters) and then analyzed 

in Match Tools Navigator (Applied Biosystems), as described in Kennedy et al. (2002a).  

This method relies on an allele library built from homozygotes (or clones from 

heterozygotes) that is used to predict the most likely allelic combinations present in a 

heterozygous sequence (described in more detail in Chapter 2 and (Marsden et al. 2009).  

Since I was assessing MHC variation in previously uncharacterised species, I cloned 17 

heterozygous individuals that did not match any pair of known alleles, using the TOPO TA 

cloning system and One Shot Competent cells (Invitrogen).  At the DRB, I cloned one 

Dholes, three Golden jackals, one Side-striped jackal, and four Black-backed jackals, 

which identified 13 new alleles.  At the DQB, I cloned five Black-backed jackals, which 

identified 7 new alleles.  At the DQA, I cloned one Golden jackal and two Black-backed 

jackals, which identified three new alleles.  Following standard protocol (Kennedy 

pers.comm), new alleles were given a temporary name corresponding to the name of the 

sample they were first recorded in.  To maintain traceability of data, these temporary 

names are used here.  However, sequences will be supplied to the DLA nomenclature 
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committee to be assigned official names, as well as deposited to GenBANK, prior to 

publication.   

5.3.3 Diversity at the MHC 

I calculated nucleotide diversity within species as the average number of 

segregating sites (θ) and pairwise diversity (π), using DnaSP 4.20 (Rozas and Rozas 

1995).  The average number of amino acid differences between alleles was calculated in 

MEGA 4.0 (Tamura et al. 2007), with standard errors calculated based on 5000 bootstrap 

replications.  Observed heterozygosity was calculated as the percentage of heterozygous 

individuals (Ho).  Potentially new alleles that were only found in heterozygous individuals 

and that could not be resolved were excluded from diversity estimates.  However, since 

unresolved new alleles only occurred in the newly characterised species, this resulted in a 

bias towards lower Ho estimates in those species. As such, heterozygous individuals with 

unresolved new alleles were included in heterozygosity estimates.  Ho estimates were not 

available from published data for Ethiopian wolves, and for Grey wolves, Ho estimates 

were only available from Seddon et al. (2004) (but not the other published data on wolves 

(Kennedy et al. 2007a; Kennedy et al. 2001; Seddon & Ellegren 2002).   

5.3.4 Tests for Selection   

A commonly used method to infer selection on a gene is to calculate the ratio (ω) 

of non-synonymous (dN) : synonymous (dS) variation, with positive selection indicated 

when dN : dS is significantly greater than 1.  I chose to assess dN : dS as a method to test 

for selection at these MHC genes because, unlike standard neutrality tests such as 

Tajima’s D (Hartl & Clark 2007), methods evaluating this ratio do not assume 

demographic stability and they are appropriate for species rather than population data.  

The McDonald Kreitman test, which compares levels of variation within a species to that 

between species, was not appropriate due to a lack of fixed differences between species 

expected with balancing-selection induced trans-specific polymorphism (Garrigan & 

Hedrick 2003; Hartl & Clark 2007).   

I tested for positive selection at the DRB, DQB and DQA genes in each species 

using three methods based on dN : dS.  I first used the PARRIS method (Scheffler et al. 

2006), implemented in HYPHY (Pond et al. 2005) using the datamonkey webserver 

(www.datamonkey.org).  PARRIS requires three or more alleles.  Therefore, species that 

did not meet this requirement were excluded from this analyses.  PARRIS is a global test 

based on estimating average dN : dS ratios across a complete gene sequence to infer 

selection acting on the whole gene,  whilst accounting for recombination and synonymous 

rate variation (Nozawa et al. 2009).  PARRIS compares a model of no selection (M1) to a 
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model of selection (M2).  In both models, dN and dS can vary, but in M1, dN is restrained to 

be ≤ dS  (i.e. there is no evidence of positive selection) whereas in M2, dN is able to be 

greater than dS (i.e. indicating positive selection) (Michel et al. 2009). A likelihood ratio test 

is used to determine the model that best fits the data. This global test approach has the 

advantage of low rates of false positives and suitability for small data sets.  However, it is 

also associated with low power because typically a small number of sites are under 

selection and therefore, by averaging across the sequence, signals of selection from a few 

sites are likely to be lost (Kosakovsky Pond & Frost 2005).  The other disadvantage of this 

test is that it does not indicate where in the sequence selection is operating.  At the MHC, 

selection is predicted to occur at codons involved in peptide binding.  Therefore, I used a 

test implemented in MEGA 4.0 (Tamura et al. 2007) that partitions codons as being PBR 

or non-PBR, and tests whether dN : dS is significantly greater than 1 in the PBR and non-

PBR separately.  Following standard practice in mammalian studies, putative PBR sites 

were based on the human allele HLA-DRB1 (Bondinas et al. 2007).  Synonymous and 

nonsynonymous genetic distances were calculated for putative PBR sites and non-PBR 

sites using the Nei–Gojobori method, with a Jukes–Cantor model of substitution, as 

implemented in MEGA 4.0 (Tamura et al. 2007).  I tested for evidence of positive selection 

using a codon based Z test in MEGA.   Monomorphic species were excluded from MEGA 

analyses.  Since this is a global test, it suffers from a lack of power but, like PARRIS, has 

a low rate of false positives.  Whilst MEGA can identify selection between two classes of 

codon (PBR or non-PBR) it cannot identify selection at individual codons.  To this end, 

some methods have been developed to calculate dN : dS at individual codons, thus 

enabling one to identify specific sites under selection.  I implemented one such method, 

fixed effects likelihood (FEL), in HYPHY using the datamonkey webserver.  Due to the low 

power of this method with small data sets, FEL was only implemented on species with 5 

or more alleles. FEL is a method that uses maximum likelihood to directly estimate dN and 

dS ratios at each codon independently (Kosakovsky Pond & Frost 2005).  FEL does not 

assume a distribution of substitution rates for dN and dS, and takes error in estimation of dN 

and dS ratios into account. A likelihood ratio test (LRT) is then used to compare two 

models (neutral model where dN=dS and selection model where dN and dS are estimated 

separately) and thus determine if a particular site is under selection (Kosakovsky Pond & 

Frost 2005).  FEL is a relatively conservative test, and has low rates of false positives.  

However, because sites are assessed individually, power to detect selection where there 

are less than 20 sequences is low (Kosakovsky Pond & Frost 2005).   

For PARRIS and FEL, the most likely model of nucleotide substitution was 

selected based on results from Model Test, as implemented within HYPHY (Posada & 

Crandall 1998).  These methods assume a phylogenetic tree and constant branch lengths 

across sites (Scheffler et al. 2006).  However, recombination can result in branch lengths 

and tree topologies being different between sites and thus violates these critical 
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assumptions, which can cause false positives (Scheffler et al. 2006).  Therefore, prior to 

any test for positive selection I used the GARD method (Kosakovsky Pond et al. 2006) 

implemented in HYPHY to test for the occurrence of recombination within sequence sets.  

When recombination is present, GARD identifies the break points and partitions the 

sequence accordingly, thus enabling each partition to have its own phylogenetic tree 

(Poon et al. 2009).  GARD was run assuming a beta-gamma distribution of site to site 

variation, and four rates.   

5.3.5 Trans-specific polymorphism  

Due to the recombining nature of MHC genes, phylogenetic trees are not strictly 

appropriate for analysis of the MHC and there is too much variation to allow a network 

approach. In addition, due to the large number of alleles relative to the number of variable 

characters (DRB, 92:81; DQB, 50:67; DQA 32:21) trees were not expected to have a high 

degree of resolution.  However, MHC allele trees are a useful tool for displaying 

relationships among alleles, particularly to evaluate patterns of trans-specific 

polymorphism expected under balancing selection.  Phylogenetic trees for DRB, DQB and 

DQA were reconstructed in MrBayes v3.1.2 (Huelsenbeck & Ronquist 2001), using the 

best-fit nucleotide substitution model as indicated by Mr Model Test 2.2 (Hasegawa et al. 

1985). The following human (HLA) sequences were used as outgroups: HLA-DQA*01, 

AY585236; HLA-DQB1*06, GQ422610; and HLA-DRB1*03011, AF352294. Four chains 

were run for 4,000,000 (DQA), 14,000,000 (DQB) or 100,000,000 (DRB) generations, with 

trees sampled every 100 generations.  The burn-in was adjusted relating to the number of 

generations used for the different genes: 10,000 (DQA), 50,000 (DQB) and 200,000 

(DRB).  Trans-specific polymorphism was inferred where alleles were shared between 

species or where the closest relative of an allele in one species was an allele in a different 

species (based on phylogenetic trees). 

5.3.6 Comparative methods  

I used a generalized linear model (GLM) framework to test whether levels of MHC 

diversity and trans-specific polymorphism were significantly different between endangered 

and abundant species, and between species that can hybridise and those that cannot 

(detailed below).  However, I also used a phylogenetic comparative method to control for 

phylogeny.  It was predicted that if phylogeny does influence MHC diversity and trans-

specific polymorphism, explanatory factors that were significant when not accounting for 

phylogeny, would become non significant when phylogeny was accounted for (Harvey & 

Pagel 1991).  Specifically I used generalised estimating equations (GEE) which are an 

extension of standard GLM’s that enable one to incorporate a phylogenetic tree as a 

correlation matrix, and thus account for phylogenetic relationships between species within 
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the model framework (Paradis 2006).  A key advantage of GEE is that they are 

appropriate for categorical variables, unlike other phylogenetic comparative methods (e.g. 

phylogenetic independent contrasts, phylogenetic autoregression, autocorrelative 

methods, multivariate decomposition, generalised least squares), which require 

continuous traits (Paradis 2006).  Furthermore, the results can be directly compared with 

a standard GLM as the model framework was the same except for the correction for 

phylogeny.   The GLM and GEE analyses were both computed in the programme R (R 

core development team), with GEE implemented within the APE package (Paradis 2006).   

Population estimates are not known for many wolf-like species assessed here, therefore I 

classed species according to IUCN red list Endangered status (IUCN 2010).  All of the 

species fell into just two categories; ‘endangered’ which are defined as species with a high 

risk of extinction (Ethiopian wolves, Dholes and wild dogs); or ‘least concern’, hereafter 

referred to as abundant, which are defined as species with the lowest risk of extinction, 

such as widespread and abundant taxa (Grey wolves, Coyotes, Golden jackals, Black-

backed jackals).  Grey wolves, Coyotes and Ethiopian wolves were classed as able to 

hybridise based on published data of hybridisation observed in nature (Gottelli et al. 1994; 

Lehman et al. 1991; Verginelli et al. 2005; Vilà et al. 1997).  There is no documented 

evidence of Golden jackals, Dholes, wild dogs, Black-backed jackals or Side-Striped 

jackals hybridising with any other species in nature; therefore, they were classed as not 

able to hybridise.  Phylogenetic comparative methods have been criticised for data 

trawling (Freckleton 2009).  Therefore I a priori selected one trans-specific polymorphism 

metric and one diversity metric to evaluate.  Following Lu (2001), trans-species 

polymorphism was quantified as the number of alleles out of the total in a species for 

which the closest relative is an allele found in another species (based on phylogenetic 

trees) rather than another allele from the same species, in addition to shared alleles.  To 

reflect amino acid differences, diversity was calculated as dN, which was computed in 

MEGA 4.0 (Tamura et al. 2007).  The wolf-like canid phylogeny was taken from Lindblad-

Toh (2005) which was based on ~15kbp of intron and exon sequence (Lindblad-Toh et al. 

2005); branch lengths for this tree were provided by K-P Koepfli.  For the GLM, error was 

modelled using a binomial distribution for the trans-specific polymorphism metric because 

the data was proportional, and using a normal distribution for dN diversity metric.  The 

explanatory variables were catergorical with two levels. 
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5.4 Results 

5.4.1 Diversity at the MHC 

Across the wolf like canids, a total of 92 DRB (n=1870 individuals typed), 50 DQB 

(n=398) and 31 DQA (n=271) alleles were recorded, including 27 new DRB alleles, 17 

new DQB alleles and 10 new DQA alleles.  DRB was found to be the most diverse locus 

both in terms of numbers of alleles, nucleotide and amino acid diversity, whilst DQA was 

the least diverse (Table 5.1; Table 5.6; Figure 5.2).  There were some heterozygous 

individuals with new alleles which were unresolved in newly characterised species, and 

these were excluded from the study: Black-backed jackals (7 at DRB, 3 DQB, 1 DQA), 

Side-striped jackals (2 DRB); Golden jackal (4 DRB, 1 DQB, 1 DQA), Coyote (9 DRB, 5 

DQB, 6 DQA).   

Patterns of MHC diversity in the Coyote were complex and unusual for the wolf-

like canids.  Specifically, diversity at DQB and DRB was exceptionally high (17 alleles 

from 19 samples at the DRB, and 11 alleles from 15 individuals at the DQB).  

Furthermore, heterozygosity patterns across loci were atypical for the wolf-like canids and 

may indicate null alleles.  For example, some Coyotes were heterozygous at the DRB and 

DQA, but not the DQB, or at the DQB, DQA and not the DRB.   As such, estimates of the 

numbers of alleles at DRB and DQB in the Coyote should be viewed as underestimates, 

but I am confident in the alleles that I did detect and thus these data are useful for allele 

sharing comparisons.  However, it is noteworthy a more extensive assessment study of 

Coyotes is currently being conducted to characterise MHC variation in this species 

(L.Kennedy Pers.comm). 

I found large differences in the number of alleles per locus in different species 

(DRB, 4-27; DQB, 1-21; DQA, 1-16; Table 5.1).  It was not possible to apply rarefaction to 

this sample set, as it was not only the number of samples that varied between species; 

the number of populations varied also, and for many samples population was unknown.  

As a result, sample sizes must be considered when comparing diversity between species.  

Nonetheless, it can be seen that differences between species cannot be explained by 

sampling intensity alone.  For example, African wild dogs (n=271) and Dholes (n=11) had 

no variation at the DQA locus, and just two and one alleles respectively at the DQB locus, 

whereas fewer samples from Side-striped jackals (n=6-8) had 2-5 alleles at DQA, and 3 

alleles at DQB.  Further samples of Dholes are required to confirm the absence of 

polymorphism at the DQA and DQB. There was also considerable discrepancy in diversity 

between species in terms of sequence diversity of alleles (π, θ, amino acid diversity, 

number of variable PBR; Table 5.6).  Sequence diversity within species was often 
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unrelated to the number of alleles.  For example, at the DRB, sequence diversity metrics 

were similar between Grey wolves, Coyotes, Golden jackals and Ethiopian wolves, 

despite the number of alleles ranging from 4 – 27.  However, this was not always the 

case; at the DRB, Dholes and Side-striped jackals (n=4 alleles) had considerably lower 

sequence diversity than Ethiopian wolves which also had just four alleles (Table 5.6).  In 

contrast to the DRB and DQB, sequence diversity was similar between most species at 

the DQA (excluding species with no variation, Dholes and wild dog).  Levels of 

heterozygosity within species were generally high (>50%) across all three loci, with the 

exception of the DRB locus in Dholes, DQB locus in wild dogs, and all three loci in Side-

Striped jackals (Table 5.6).  

Overall, Grey wolves and Coyotes consistently showed the highest diversity in 

terms of both numbers of alleles per locus and highest sequence diversity of alleles 

across all three loci, whereas Dholes, wild dogs, Side-striped and Ethiopian wolves 

showed the least diversity for at least one locus (Table 5.1; Table 5.6; Figure 5.2).   

5.4.2 Tests for selection 

There was a high level of non-synonymous variation amongst DRB, DQB and 

DQA alleles.  Within species, all alleles differed non-synonymously except for two DRB 

alleles in Side-striped jackals (CAD6 & CAD19), two DRB alleles in African wild dogs 

(T5920 and lk5237v), two DQA alleles in Side-striped jackals (L051 and CAD2), and two 

DQA alleles in Grey wolves (DQA*014011 & *014012).  A global selection test, 

implemented in PARRIS, found significant evidence that dN/dS>1 amongst DQA alleles of 

Grey wolves and Coyotes, and DQB and DRB alleles of Grey wolves, Coyotes and Black-

backed jackals.  Across species, the number of PBR codons that were variable ranged 

from 7-16/19 at the DRB, 0-15/19 at the DQB, and 0-6/15 at the DQA (Table 5.6).  In 

general, though, Grey wolves and Coyotes typically exhibited the largest number of 

variable PBR codons per locus (Table 5.1; Table 5.6; Figure 5.2).  At the DQA, positive 

selection was indicated in the PBR (ω significantly > 1) in all species, except the Ethiopian 

wolf (and wild dog and Dholes, which had just one allele each), whereas there was no 

evidence of selection at non-PBR (Table 5.5).  The same pattern was found at the DQB 

and DRB, although in fewer species and in Ethiopian wolves (DRB) and Black-backed 

jackals (DQB), positive selection was indicated in both PBR and non-PBR data partitions 

(Table 5.3; Table 5.4). 

Amino-acid variability profiles showed that variation was highly correlated with 

PBR (Figure 5.2).  Codon-based selection tests based on FEL identified a small number 

of codons at each locus showing evidence of positive selection in some species (Table 

5.3; Table 5.4; Table 5.5).  In all cases, the codons under selection were putative PBR, or 
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codons directly adjacent to putative PBR.  Although positive selection was only detected 

in some species, the specific codons showing evidence of selection were often the same 

in different species, even where species shared no alleles. For example, for DRB, codon 

11 was found to be under positive selection in both Black-backed jackals, and Grey 

wolves despite the fact they shared no alleles (Table 5.3; Table 5.4; Table 5.5).  Overall, 

there was a striking similarity in which codons were variable in different species (Figure 

5.2), which likely reflects the combination of trans-specific polymorphism and common 

disease pressures.   

5.4.3 Trans-specific polymorphism 

All DRB, DQB and DQA alleles detected in African wild dogs were unique to wild 

dogs.  The same was true for the Dholes.  By contrast, allele sharing (trans-specific 

polymorphism) was detected in all other species (Figure 5.4).  The number of alleles 

shared between divergent taxa was striking (Table 5.2); e.g., 33% of DQA alleles (3/9) 

were shared between Black-backed jackals and Grey wolves, which diverged ~ 4.3 Myrs 

ago (Lindblad-Toh et al. 2005).  Overall, allele sharing was most common at the DQA 

locus (17/32, 50%, alleles shared) but also frequently observed at the DQB locus (10/50, 

20%).  At these two loci, alleles were shared between the most distantly related species 

(e.g. Black-backed jackals and Grey wolves; Side-striped jackals and Coyotes) and in 

some cases alleles were shared across 4/8 wolf-like canid species: DQA*01101; 

DQA*L051; DQB*01303; DQB*02303 (Figure 5.5; Figure 5.6).  By contrast, at the DRB 

locus, allele sharing was much rarer (7/92, 8% of alleles), and only found between the 

most closely related species; Coyotes and Grey wolves (Figure 5.4).  In addition to allele 

sharing, trans-specific polymorphism was also indicated by the retention of allelic 

lineages, as shown by alleles between species being more similar than alleles within 

species.  This can be demonstrated using a phylogenetic tree when alleles within species 

show a scattered distribution throughout the tree rather than species-specific allelic 

clustering.  There was some evidence of this pattern in most species, although species-

specific allele clustering was clearly evident in both the wild dog and Black-backed jackals 

at the DRB (Figure 5.4; Figure 5.5; Figure 5.6).  A scattered distribution of alleles was 

more common at the DQB and DQA across species, except for wild dogs, Dholes and 

Ethiopian wolves at DQA and wild dogs and Dholes at DQB.  Overall, trans-specific 

polymorphism was found to be a common feature at DQA and DQB loci in all of the wolf-

like canids, except the endangered Dholes and wild dogs.   

5.4.4 Comparative methods 

Endangered species were found to have consistently lower average levels of MHC 

diversity (dN) and trans-specific polymorphism than abundant species at all three loci 
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(Figure 5.3).  On the other hand, species that are able to hybridise had consistently higher 

average MHC diversity and trans-specific polymorphism than species that are not able to 

hybridise, at all three loci (Figure 5.3).  However, in many cases there was considerable 

variation within, and overlap between, the different categories.   

The GLM analyses showed that levels of diversity were significantly higher in 

abundant than endangered taxa at the DQA (GLM, p<0.05) and DQB loci (GLM, p<0.05), 

but this was not significant after phylogenetic correction (GEE, DQA, p=0.066; DQB 

p=0.064).  Levels of trans-specific polymorphism were also significantly higher in 

abundant than endangered taxa at the DQA locus (GLM, p<0.05), but again this was not 

significant after phylogenetic correction (GEE, 0.130). These results suggest that 

evolutionary history does influence both levels of trans-specific polymorphism at the DQA, 

and MHC diversity at the DQA and DQB.  Specifically, since endangered species were 

phylogenetically clustered, interpretation of whether risk of extinction is due to their shared 

ancestor having lower diversity or whether bottlenecks in population size in each species 

caused reduction in diversity at the MHC is confounded (Figure 5.1).  Moreover, the 

ladder-like structure of the current canid phylogeny (i.e. the three endangered species are 

basal to the more abundant species, except for the side-striped and black-backed 

jackals), makes it more difficult to interpret results in terms of ancestral states.   

There was no significant difference in levels of diversity between endangered and 

abundant taxa at the DRB (GLM, p=0.393, GEE, p=0.463) or in levels of trans-specific 

polymorphism between endangered and abundant taxa at the DQB and DRB (GLM, DQB, 

p=0.721, DRB, p= 0.980; GEE, DQB, p=0.2547, DRB, p=0.519). Similarly, levels of MHC 

diversity and trans-specific polymorphism were not significantly different between species 

that can and cannot hybridise at any locus (Figure 5.3).  In these cases, it was therefore 

not possible to assess the influence of phylogenetic correction. 
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5.5 Discussion  

Balancing selection on the MHC is predicted to result in a large number of medium 

frequency alleles, which increases heterozygosity, and reduces the likelihood that alleles 

will become fixed (Garrigan & Hedrick 2003; Muirhead 2001).  Furthermore, balancing 

selection is predicted to retain ancestral polymorphism, resulting in high sequence 

divergence amongst alleles within a species.  However, like other components of genetic 

variation, the numbers of alleles and retention of ancestral polymorphism at the MHC is 

expected to be very sensitive to effective population size (Ne) (Richman 2000) due to 

selection being weaker, and strength of genetic drift and loss of alleles being greater, 

when Ne is small (e.g. Sommer 2005).  As such, the numbers of alleles and extent of 

trans-specific polymorphism is expected to be lower in endangered species (which have 

small Ne) compared to abundant species (Richman 2000).  However, differences in the 

numbers of alleles and extent of trans-specific polymorphism between species may also 

be explained at least in part by phylogenetic distance between the species being 

compared.  As such, using species comparisons to infer whether endangered species 

have lost diversity may be confounded by evolutionary history.  In this study, I assessed 

MHC variation across species of the wolf-like canid clade (Lindblad-Toh et al. 2005).  

These data were used to assess how endangered status, selection, hybridisation and 

phylogeny impact patterns of MHC diversity.   

5.5.1 Do endangered species show different patterns of MHC diversity to 

abundant species? 

There was a large discrepancy in MHC diversity (# alleles, π, θ, PBR, amino acid) 

between the wolf-like canid species at all three loci (Table 5.6).  Low sampling intensity 

may explain the small numbers of alleles found in some species (e.g. Side-striped jackal).  

However, sampling intensity alone cannot explain all differences between species.  For 

example, despite being one of the best sampled species, wild dogs had the lowest DQA 

and DQB diversity (except Dholes, n=11).   Similarly, the discrepancy in sequence 

diversity between species cannot be explained by just differences in numbers of alleles.  

For example, Golden Jackals and Ethiopian wolves had similar numbers of DQB alleles (6 

and 5 respectively), but sequence diversity was much greater in Golden jackals (0.047) 

than Ethiopian wolves (0.019; Table 5.6).  In general, endangered status was well 

correlated with MHC diversity; endangered species had consistently lower average levels 

of MHC diversity than abundant species at all three loci, although the differences were 

only significant at the DQB and DQA loci (Figure 5.3).  However, diversity across the 

endangered species was quite uneven as indicated by variance shown in Figure 5.3.  For 

example, sequence diversity amongst the four Ethiopian wolf DRB alleles (π=0.073) was 
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far greater than amongst the four Dhole DRB alleles (π=0.038), and comparable to 

abundant taxa with between 13 and 27 DRB alleles (π=0.071-0.075; Table 5.6).  This 

suggests that a species may lose alleles but retain high sequence diversity if alleles from 

different lineages are retained by selection, as suggested by Hedrick (2002).  In contrast 

to Ethiopian wolves, sequence diversity amongst wild dog DRB alleles was low, despite 

the presence of 21 alleles.  This likely reflects that all wild dog alleles are derived from just 

two allelic lineages, with little variation within lineages.  However, the low number of 

lineages alone cannot account for low sequence diversity in wild dogs, as Black-backed 

jackals also had just a small number of DRB lineages, but the highest DRB sequence 

diversity overall (Table 5.6; Figure 5.4).  A very similar pattern to that seen at the DRB in 

wild dogs has been detected at the S locus (a plant self/non-self recognition system 

similar to the MHC and under balancing selection) of Physalis crassifolia, where there has 

been: 1) a large reduction in diversity compared to related species, resulting in the loss of 

most allelic lineages; 2) extensive ‘allelic re-diversification’ of the remaining allelic 

lineages, resulting in a large number of similar alleles (Richman 2000).  As such, it 

appears that there has been a loss of DRB polymorphism during a bottleneck in wild dogs 

and subsequent re-generation of allelic diversity post bottleneck.  

Overall, endangered species were found to have consistently lower average levels 

of MHC diversity than abundant species.  However, the large variation in diversity 

amongst endangered species and lack of significance at the DRB, indicates that the 

relationship between endangered status and diversity is complex and that factors aside 

from endangered status influence differences in diversity between species.   

5.5.2 Is there evidence for differences in selection pressures on 

endangered versus abundant species diversity? 

Selection is thought to be the driving force behind diversity at the MHC, and 

therefore may account for some of the differences in diversity between species.  I found 

evidence of selection at the DRB, DQB and DQA loci, but not in all species.  Overall, Grey 

wolves, Coyotes and Black-backed jackals most consistently showed evidence of 

selection, but these species also had the largest numbers of alleles and therefore the 

highest power in tests.  One of the strongest indicators of balancing selection is evidence 

for trans-specific polymorphism.  In the wolf-like canids, up to 50% of alleles at a locus 

were alleles shared with at least one other species, with allele sharing most common at 

the DQA and DQB loci.  I found shared alleles in all species except Dholes and wild dogs 

and between the most basal and recently diverged species (Table 5.2).  In addition to 

allele sharing, trans-specific polymorphism was also evidenced by alleles showing a 

scattered rather than clumped distribution in phylogenetic trees in most species (Figure 

5.4; Figure 5.5; Figure 5.6).  The strong evidence of trans-specific polymorphism indicates 
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the influence of balancing selection despite the lack of statistical evidence for selection for 

many species.   

Overall, all of the abundant taxa showed evidence of trans-specific polymorphism 

and significant results in selection tests for at least one MHC locus (Table 5.3; Table 5.4; 

Table 5.5; Figure 5.4).  Amongst the endangered canids, such strong evidence of 

selection was only found in Ethiopian wolves.  There was no evidence for selection or 

trans-specific polymorphism at any locus in wild dogs or Dholes.  In these two endangered 

taxa, the loss of alleles appears to have resulted in loci becoming fixed, or, with so few 

alleles that there was insufficient power to detect selection.  The exception to this is the 

DRB locus in wild dogs, which showed no evidence of selection despite being highly 

polymorphic (21 alleles).  Given that 20/21 alleles differed non-synonymously, and most 

variation was restricted to the PBR, it is likely that the lack of significance reflects either 

low selection intensities or recent re-diversification at the wild dog DRB (which results in 

few differences between alleles), rather than an absence of selection per se (Garrigan & 

Hedrick 2003).  At the DQB, one allele was detected at very high frequency in wild dogs 

(91%) and Dholes were fixed for a single allele.  At the DRB, which has predominantly 

mid-frequency alleles in the other species, Dholes also showed one high frequency allele 

(77%).  These patterns are not expected under balancing selection, but could indicate 

either directional selection, random drift or be a consequence of linkage.   

These data suggest that lower selection pressures may explain some of the 

variation in diversity between endangered and abundant canids.  However, variation in 

selection likely also explains differences amongst the endangered species.  In comparison 

to Dholes and wild dogs, levels of DRB diversity in Ethiopian wolves were considerably 

higher and comparable to abundant taxa.  This was unexpected for an endangered 

species with a global population of less than 500 individuals, sampled from one small and 

isolated population (Bale Mountains, n~250) (Gottelli et al. 2004).  However, the Bale 

Mountains Ethiopian wolf population has suffered a number of severe disease epidemics 

(~75% mortality, (Randall et al. 2006).  The results here suggest that these strong 

selective pressures have maintained DRB sequence diversity in Ethiopian wolves despite 

strong genetic drift, as suggested in the case of MHC diversity being found in the 

otherwise genetically monomorphic San Nicolas Island fox (Urocyon littoralis dickeyi) 

(Aguilar et al. 2004).  Fixation of alleles at the DQA and DQB loci has been commonly 

documented in endangered species and/or small isolated populations (e.g. Urocyon 

littoralis, for a review of examples see (Munguia-Vega et al. 2007).  This is thought to 

reflect that the lower selection intensities at the DQB and DQA relative to the DRB (Satta 

et al. 1994) have been less able to retain diversity (Munguia-Vega et al. 2007), as 

indicated by the low diversity in Dholes and wild dogs.  As such, the numbers of DQB and 

DQA alleles found in Ethiopian wolves seems surprising (Table 5.1).  However, the canid 
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MHC class II loci are tightly linked and inherited as a haplotype (Kennedy et al. 2007a).  

As such, strong selection at the DRB in Ethiopian wolves may have resulted in hitch-

hiking at the DQB and DQA loci.  In contrast, wild dogs appear to have undergone a 

dramatic bottleneck which reduced the species to just two DRB alleles, representing each 

of the two lineages, and so the number of linked DQB and DQA alleles was small (as 

discussed above).  It is noteworthy that due to tight-linkage at the MHC, some studies 

have assessed diversity at the DRB under the assumption that this should be a good 

indicator of variation at the other MHC class II loci due to tight linkage (Gutierrez-Espeleta 

et al. 2001).  However, as the examples from wild dogs and Dhole show, this may not 

always be the case in endangered species. 

5.5.3 Does hybridisation affect interpretations of selection and diversity? 

Evidence of trans-specific polymorphism is generally interpreted as evidence that 

alleles have been retained by balancing selection (Klein et al. 2007).  However, trans-

specific polymorphism could also be the result of convergent evolution or hybridisation.  

Convergent evolution is conceivable given that: 1) canids share susceptibility to a number 

of diseases (Hofmeyr et al. 2000); 2) DRB amino-acid profiles were strikingly similar 

between species sharing no alleles (Figure 5.2); 3) codons showing positive selection 

were identical in species sharing no alleles (Table 5.3).  To assess this, I compared 

whether phylogenetic trees based on just non-PBR had the same topology as those 

based on the whole sequence for the DRB (NJ trees; data not shown).  In agreement with 

balancing selection, both sets of trees resolved the same relationships.  Yeager (1999) 

suggested that convergent evolution is indicated where the same amino acid at a residue 

is encoded by different codons.  Grey wolves and Black-backed jackals share no DRB 

alleles, but there were 127 instances where Grey wolves and Black-backed jackals shared 

identical amino acid residues.  Contrary to the expectation for convergent evolution, all 

127 of these amino acids were encoded by the identical codon (data not shown).  

Together, these data indicate that sequence similarity is due to ancestry rather than 

convergent evolution.  

Overall, there was a trend for higher levels of diversity and trans-specific 

polymorphism in species that can hybridise, but this was not significant at any locus.  

Direct sharing of DQB and DQA alleles between species that do not hybridise provides 

clear evidence of trans-specific polymorphism.  At the DRB locus, it is possible that 

hybridisation has increased trans-specific polymorphism, as alleles were only shared 

between Grey wolves and Coyotes, which can hybridise.  However, Grey wolves and 

Coyotes are also closely related (divergence ~ 1 million years ago (Anderson et al. 2009), 

and as such, allele sharing is also predicted to be more common between them, which 

would also increase diversity.  As such, the data on whether hybridisation has contributed 
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to diversity and trans-specific polymorphism is inconclusive.  Further research on this 

topic is required. 

5.5.4 Are patterns of selection and diversity confounded by phylogenetic 

history? 

This study has shown that patterns of MHC diversity vary greatly between the wolf-

like canids.  These differences were expected to be largely the result of differences in 

demographic history, that is, endangered status.  However, although levels of diversity 

and trans-specific polymorphism differed between endangered and abundant taxa, there 

was much variation within these categories, indicating that other factors must be involved.   

The results here suggest that some of this variation may be explained by 

evolutionary history, as comparative phylogenetic analyses showed that phylogenetic 

relatedness influences both diversity and trans-specific polymorphism at some MHC loci 

(Figure 5.3).  It may not be surprising therefore, that Dholes and wild dogs, which are both 

basal to the more derived widespread species in the genus Canis (and thus potentially 

older) and the only extant representatives of their respective genera, should show 

different patterns of MHC diversity. Consequently, this means that studies must 

distinguish whether differences in patterns of MHC diversity in an endangered species are 

the result of ancestral losses in diversity rather than bottlenecks due to their endangered 

status, that is, distinguish between evolutionary and demographic history.  The high 

species coverage of the wolf-like canids made it possible to investigate this.  For example, 

sharing of DRB alleles and lineages was common to the closely related Coyotes and Grey 

wolves.  By contrast, wild dogs and Black-backed jackals, which are basal to Coyotes and 

Grey wolves, both showed species-specific clustering of alleles into a small number of 

lineages and an absence of allele sharing, indicating that this difference could be due to 

evolutionary history.  The DQA and DQB loci were found to be moderately polymorphic in 

all species except two of the endangered species (Dholes and wild dogs). The most 

phylogenetically parsimonious explanation of this pattern is that DQA and DQB diversity 

was lost in the common ancestor to wild dogs and Dholes, and then regained afterwards 

in the widespread species (see Figure 5.1).  However, at DQA and DQB alleles were 

shared across Coyotes, Grey wolves and Black-backed or Side-striped jackals, which are 

phylogenetically separated by wild dogs and Dholes.  This suggests instead that DQB and 

DQA variation was lost independently in both wild dogs and Dholes.  The ladder-like 

structure of the current phylogeny likely explains the discrepancy between the statistical 

results and the most realistic biological explanation. Although the current molecular-based 

phylogeny is based on a large number of characters (~15kb, (Lindblad-Toh et al. 2005), it 

is possible that extinction of sibling species to the monotypic endangered species (e.g 

Lycaon in, Hartstone-Rose et al. 2010) has resulted in the ladder like structure and lack of 
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resolution, which would reduce the power of comparative analyses.  As such, the lack of 

diversity in this instance appears to be the result of demographic reductions associated 

with their endangered status rather than evolutionary history.  

Consideration of evolutionary history is also important if domesticated species are 

used in comparisons with endangered taxa, because the domestication process may have 

resulted in atypical patterns of diversity.  For the wolf-like canids, domestic dogs which 

originated from middle eastern Grey wolves (vonHoldt et al. 2010) and have been 

extensively studied (e.g. (Kennedy et al. 2002b), and could have been used as reference 

taxa.   However, domestic dogs show exceptionally high MHC diversity: 90 DRB alleles, 

54 DQB alleles and 22 DQA alleles (L.Kennedy Pers comm).  As such, all of the wolf-like 

canids appear depauperate of diversity in comparison.   

Comparisons of MHC diversity between highly divergent taxa are common in the 

MHC literature (e.g. marsupials and placental mammals), but evolutionary history likely 

confounds these results.  Direct allele sharing has only been observed in primates (Otting 

et al. 2002; Suárez et al. 2006), ungulates (Radwan et al. 2007), rodents (Cutrera & Lacey 

2007) and Cetaceans (Xu et al. 2009), and rarely outside of genera (excluding DRA 

locus).  In contrast, I found that allele sharing was very common in the wolf-like canids, 

even between genera.  This might be interpreted as evidence that this is the result of 

unusually strong high balancing selection.  However consideration of evolutionary history 

suggests it is most likely that it reflects the recent and rapid divergence of the wolf-like 

canids (Lindblad-Toh et al. 2005).  This suggests comparisons of patterns of MHC 

diversity between highly divergent groups should be conducted with extreme caution.   
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5.6 Conclusion 

Assessments of MHC diversity in endangered species are increasingly common 

due to concerns that ‘low’ MHC diversity may reduce immune competence.  However, the 

results presented here for the wolf-like canids suggest that the relationship between MHC 

diversity and endangered status is complex.  Patterns of MHC diversity in endangered 

species were shown not only to be affected by their demographic history, but also by 

selection and evolutionary history.  The importance of evolutionary history as a factor 

influencing MHC diversity is intuitive but has rarely been considered when interpreting 

differences in MHC diversity between species, even if they are distantly related.  

Phylogenetic comparative methods are widely and routinely implemented in other fields to 

control for the influence of common ancestry on trait similarity between species.  

However, they are not typically employed in comparative analyses of diversity between 

endangered and non-endangered taxa.  Unfortunately, the power of this method was 

reduced with this dataset because of the small sample size (8 species), ladder-like 

structure of the wolf-like canid phylogeny and phylogenetic clustering of both endangered 

status and hybridisation ability.  Nonetheless, I found evidence that phylogeny does 

appear to influence levels of MHC diversity and trans-specific polymorphism. This has 

important implications for the choice of reference taxa used in comparative studies aiming 

to classify levels of diversity in (endangered) species.  Clearly, unless very closely related 

species are compared, it will be difficult to disentangle whether any differences in diversity 

between species are the result of population declines rather than evolutionary history.  As 

such, comparisons should be conducted with sister species wherever possible (e.g. Miller 

& Lambert 2004).  If the reference taxa/on is/are a distant relative, it is vital that 

intermediate species are assessed, as was done here. 

  



 

 

Figure 5.1: Phylogenetic tree of the wolf-like canids based on 15kb of intron and exon sequence, with Bayesian posterior probabilties. Re-drawn from 
Lindblah-Toh (2005) with divergence dates from Perini (2009).  Also indicated is whether the species is endangered and whether it is able to hybridise. 
Domestic dogs, which were domesticated from Grey wolves, were not included in this study. Photographs correspond to the species in the tree. Credits: 
Grey wolf, Wild dog, Black-backed jackal - C.Marsden; Ethiopian wolf – F.Vial; Coyote, Dhole, Golden Jackal, Side striped jackal from 
http://commons.wikimedia.org/File:[Cuon.alpinus-cut.jpg:Coyote2008.jpg:Side-striped_Jackal.jpg]  
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Figure 5.2: Amino acid variability at codons of the DRB across eight wolf-like canid 
species.  The similarity in profiles between species is remarkable given that alleles are 
only shared between GW and CO.  It can be seen that variability is concentrated in sites 
involved in PBR, indicated by tick marks on the X axis.  PBR positions from Bondinas 
(2007).  Species codes used are from Table 5.1. 
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Figure 5.3: Levels of MHC trans-specific polymorphism (TSP), and MHC diversity (dN) for 
endangered (END, n=3) and abundant (ABN, n=5) wolf-like canids and hybridising (HYB) 
and non-hybridising (NON-HYB, n=) wolf-like canids.  Box plots show 25%, 50% and 75% 
quartiles.  Significant difference in levels of trans-specific polymorphism (or MHC diversity) 
between END and ABN and HYB and NON-HYB are indicated above the box plots.  
Results are based on a standard GLM, as well as using GEE, where phylogeny was 
corrected for. 
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Figure 5.4: Mr Bayes tree of wolf-like canid DRB alleles, rooted with an HLA sequence.  Presence of alleles in different species (codes from Table 5.1) are 
shown by filled boxes, which shows allele sharing between different species and the clustering or scattered distribution of alleles in different species.  Solid 
circles depict branches with posterior probabilities ≥70%. 
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Figure 5.5: Mr Bayes tree of wolf-like canid DQB alleles, rooted with an HLA sequence.  Presence of alleles in different species (codes from Table 5.1) are 
shown by filled boxes, which show allele sharing between different species and the clustering or scattered distribution of alleles in different species.  Solid 
circles depict branches with posterior probabilities ≥70%. 
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Figure 5.6:  Mr Bayes tree of wolf-like canid DQA alleles, rooted with an HLA sequence.  No branches were resolved with posterior probabilities ≥70%.  
Presence of alleles in different species (codes from Table 5.1) are shown by filled boxes, which show allele sharing between different species and the 
clustering or scattered distribution of alleles in different species.  
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Table 5.1:  Number of DRB, DQB, DQA alleles found in the wolf-like canids.  The 
number of samples used at each locus is shown in brackets.  Provenance of the 
samples for each species is given.  Two-letter abbreviations are shown for each 
species. 

Species Abb Provenance DRB DQB DQA 
Grey wolf GW Europe and North America 27 (~514) 21 (~504) 16 (~521) 
Coyote CO California, Washington, Utah1 17 (19) 11 (15) 15 (29) 
Golden jackal  GJ E&S Africa, Israel 6 (9) 6 (13)  5 (11) 
Ethiopian wolf EW Bale Mountains, Ethiopia2 4 (99) 5 (99)  2 (99) 
Dhole DH Captive and unknown 4 (11) 1 (11)  1 (11) 
African wild dog WD Eastern & Southern Africa 21 (541) 2 (398) 1 (271) 
Black-backed Jackal BJ Eastern & Southern Africa 13 (77) 13 (81)  9 (83) 
Side-striped Jackal SJ Eastern Africa 4 (6) 3 (8)  2 (6) 
 

1 These coyote populations were selected as they outside the current range of Grey 
wolves, a species which Coyotes can hybridise with. 2 Sampled from a single 
population.   
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Table 5.2: Allele sharing amongst the wolf-like canids at the DRB (a), DQB (b) and 
DQA (c) loci. Shown is the number of alleles that the species at the top of the column 
shares with the corresponding species on each row, out of the total number of alleles 
found in that species.  Species abbreviations are from Table 5.1.  Zero values have 
been coloured grey to improve clarity. 

 
a) DRB GW↓ CO↓ GJ↓ EW↓ DH↓ WD↓ BJ↓ SJ↓

GW - 4/17 0/6 0/4 0/4 0/21 0/13 0/4 
CO  4/27 - 0/6 0/4 0/4 0/21 0/13 0/4 
GJ  0/27 0/17 - 0/4 0/4 0/21 0/13 0/4 
EW  0/27 0/17 0/6 - 0/4 0/21 0/13 0/4 
DH  0/27 0/17 0/6 0/4 - 0/21 0/13 0/4 
WD  0/27 0/17 0/6 0/4 0/4 - 0/13 0/4 
BJ  0/27 0/17 0/6 0/4 0/4 0/21 - 0/4 
SJ  0/27 0/17 0/6 0/4 0/4 0/21 0/13 - 

 
b) DQB GW↓ COY↓ GJ↓ EW↓ DH↓ WD↓ BJ↓ SJ↓

GW - 4/11 2/6 2/5 0/1 0/1 1/13 0/3 
CO  4/21 - 2/6 1/5 0/1 0/1 2/13 0/3 
GJ  2/21 2/11 - 2/5 0/1 0/1 1/13 1/3 
EW  2/21 1/11 2/6 - 0/1 0/1 0/13 0/3 
DH  0/21 0/11 0/6 0/5 - 0/1 0/13 0/3 
WD  0/21 0/11 0/6 0/5 0/1 - 0/13 0/3 
BJ  1/21 2/11 1/6 0/5 0/1 0/1 - 0/3 
SJ  0/21 0/11 1/6 0/5 0/1 0/1 0/13 - 

   
c) DQA GW↓ CO↓ GJ↓ EW↓ DH↓ WD↓ BJ↓ SJ↓ 

GW - 11/15 2/5 0/2 0/1 0/1 3/9 1/2 
CO  11/16 - 3/5 1/2 0/1 0/1 2/9 1/2 
GJ  2/16 3/15 - 1/2 0/1 0/1 2/9 0/2 
EW  0/16 1/15 1/5 - 0/1 0/1 0/9 0/2 
DH  0/16 0/15 0/5 0/2 - 0/1 0/9 0/2 
WD  0/16 0/15 0/5 0/2 0/1 - 0/9 0/2 
BJ  3/16 3/15 2/5 0/2 0/1 0/1 - 1/2 
SJ  0/16 1/15 0/5 0/2 0/1 0/1 1/9 - 

 



 

Table 5.3: Results from tests for selection at the DRB locus: PARRIS was used to test for selection across the whole sequence; MEGA was 
used to test for selection in the PBR and non-PBR separately; FEL was used to test for evidence of selection at individual codons.  Significance 
is indicated by asterisks: for PARRIS and FEL * <0.1; **<0.5; for MEGA *<0.5, **<0.01.  Species with just one allele were not tested; species 
codes are from Table 5.1.   

 

DRB  PARRIS MEGA FEL 
      PBR non-PBR   
  # alleles ω (SD) dS dN ω dS dN ω Codon 

GW 27 3.401±2.288 
** 

0.177±0.102 0.383±0.075 2.164 ** 0.013±0.010 0.028±0.009 2.154 11**, 13** (PBR), 58* (non-PBR)1 

CO 17 2.719±2.045 
** 

0.189±0.111 0.405±0.088 2.143 * 0.017±0.012 0.023±0.008 1.353 11* (PBR) 

GJ 6 1.795±0.962 0.171±0.123 0.320±0.083 1.871 0.017±0.013 0.023±0.009 1.353 11* (PBR) 
EW 4  0.188±0.108 0.425±0.092 2.261 * 0.000±0.000 0.035±0.013 nc **  
DH 4  0.079±0.055 0.181±0.085 2.291 0.013±0.013 0.012±0.009 0.923  
WD 21 1.542±1.128 0.183±0.098 0.303±0.089 1.656 0.011±0.010 0.013±0.008 1.182  
BJ 13 1.622±1.225 * 0.217±0.128 0.343±0.086 1.581 0.031±0.180 0.032±0.012 1.032 13** (PBR) 
SJ 4  0.139±0.077 0.244±0.096 1.755 0.010±0.010 0.006±0.006 0.600  

 

1Codon 58 is adjacent to PBR codon #57 
 

 



 

Table 5.4: Results from tests for selection at the DQB locus in different species, as for the DRB (Table 5.3). 

 

 

 

 

 

 

 

 

1Codon #63 is adjacent to PBR codon #62. 
 

DQB  PARRIS MEGA FEL 

    PBR non-PBR  

  # alleles ω (SD) dS dN ω dS dN ω  Codon 

GW 21 3.374 ± 2.521 ** 0.114±0.07 0.367±0.097 3.219 ** 0.012±0.007 0.024±0.009 2 13**, 85** (PBR)

CO 11 2.682 ± 2.024 ** 0.113±0.068 0.341±0.094 3.018 ** 0.007±0.005 0.024±0.01 3.42857   not sig 

GJ 6 2.668 ± 2.461 0.084±0.053 0.241±0.079 2.869 * 0.006±0.007 0.017±0.009 2.83333   not sig 

EW 5 20 ± 0 0.026±0.028 0.118±0.06 1.573 * 0±0 0±0 Nc   not sig 

WD 2  0.195±0.186 0.094±0.059 0.482 0±0 0.013±0.009 Nc -  

BJ 13 3.994 ± 3.483 ** 0.087±0.055 0.243±0.072 2.793 * 0.003±0.003 0.015±0.007 5 63* (non PBR)1 

SJ 3   0.012±0.013 0.023±0.012 1.917 0±0 0.008±0.006 Nc  - 



 

 

Table 5.5: Results from tests for selection at the DQA locus in different species, as for the DRB (Table 5.3).

DQA  PARRIS MEGA FEL 

    PBR non-PBR  

  # alleles ω (SD) dS dN ω dS dN ω Codon 

GW 16 2.630±6.527 ** 0.000±0.000 0.083±0.041 nc * 0.005±0.003 0.005±0.003 1.000 52** (PBR)

CO 15 20.00±0.000 ** 0.000±0.000 0.081±0.038 nc * 0.000±0.000 0.006±0.004 0.000 52* (PBR) 

GJ 5 1.590±3.894 0.000±0.000 0.062±0.032 nc * 0.000±0.000 0.009±0.005 nc *   

EW 2 - 0.000±0.000 0.057±0.061 nc 0.000±0.000 0.000±0.000 0.000   

BJ 9 2.123±3.395 0.000±0.000 0.074±0.039 nc * 0.009±0.007 0.007±0.004 0.000   

SJ 3 - 0.000±0.000 0.019±0.019 nc * 0.028±0.02 0.004±0.004 0.000   
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Table 5.6: Diversity at three MHC class II loci across the wolf-like canids.  Results are split 
into three tables: a) DRB; b) DQB; c) DQA. Diversity based on numbers of alleles, 
sequence diversity (π, θ), amino acid diversity (a.a.), variability in PBR (var PBR) and 
Observed heterozygosity (Ho).  

 

a) DRB n # Alleles π (SD) θ (SD) a.a. (SE) # var PBR Ho% (n)

GW 514 27 0.073±0.003 0.049±0.017 13.18±2.24 16 72.41 
CO 19 17 0.071±0.006 0.050±0.020 12.26±2.21 16 59.12 
GJ 9 6 0.065±0.010 0.055±0.027 11.6±2.34 13 53.8 
EW 99 4 0.073±0.019 0.069±0.038 13.83±2.6 14 Na 
DH 11 4 0.038±0.011 0.034±0.020 5.33±1.7 7 27.3 
WD 541 21 0.055±0.004 0.032±0.012 6.92±1.65 13 75.0 
BJ 77 13 0.075±0.007 0.051±0.021 12.56±2.29 15 65.5 
SJ 6 4 0.042±0.019 0.044±0.025 5.83±1.62 10 37.5 

 
b) DQB n # Alleles π (SD) θ (SD) a.a. (SE) # var PBR Ho% (n)

GW 504 21 0.067±0.003 0.046±0.015 11.36±2.19 15 70.41 
CO 15 11 0.063±0.007 0.049±0.020 10.71±2.06 15 78.32 
GJ 13 6 0.047±0.014 0.046±0.023 7.33±1.70 11 76.9 
EW 99 5 0.019±0.003 0.014±0.008 3.20±1.38 6 na 
DH 11 1 0 0 0 0 0 
WD 398 2 0.030±0.015 0.030±0.022 5.00±2.15 3 14.0 
BJ 81 13 0.045±0.008 0.039±0.016 7.67±1.62 14 65.5 
SJ 8 3 0.017±0.007 0.017±0.012 2.67±1.29 2 37.5 

 
c) DQA n # Alleles π (SD) θ (SD) a.a. (SE) # var PBR Ho% (n)

GW 521 16 0.016±0.002 0.015±0.007 3.23±1.20 5 69.5 1 
CO 29 15 0.015±0.002 0.015±0.007 3.16±1.12 6 76.9 2 
GJ 11 5 0.015±0.003 0.016±0.009 3.20±1.17 4 41.7 
EW 99 2 0.008±0.004 0.008±0.007 1.00±0.99 3 na 3 
DH 11 1 0 0 0 0 0 
WD 271 1 0 0 0 0 0 
BJ 83 9 0.016±0.002 0.015±0.008 3.06±1.12 4 62.7 
SJ 6 3 0.011±0.004 0.011±0.008 1.33±0.09 4 0 

 

1 Based on 141 European wolves from (Seddon & Ellegren 2004). 2 It is possible that there 
are null alleles at Coyote DRB and DQB loci, which would reduce Ho. 3 This information 
was not available.  



 

6 Chapter 6: Combining studbook information, 

neutral markers and MHC data to assess the 

genetic status of the European African wild dog 

captive breeding programme.  
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6.1 Abstract 

Captive breeding programs potentially play an important role in species 

conservation by serving as both an insurance against extinction in the wild as well as a 

source of individuals for re-introductions.  To achieve these roles captive programmes 

must establish a healthy and self-sustaining population that represents the genetic 

diversity from wild populations.  However, in reality most programmes are initiated from a 

small number of initial founders and thus may become inbred and suffer losses in genetic 

diversity.  In this study I combined studbook information with genetic data from neutral 

markers and the major histocompatibility loci (MHC) to assess the genetic status of the 

European captive population of African wild dogs.  These analyses showed that the 

captive population is derived from Southern African countries, and that a large proportion 

of the genetic diversity from the wild populations is represented in captivity.  This high 

diversity appears to be the result of both the diverse origin of the wild founders as well as 

recent imports of ‘new blood’ from South African captive facilities.  However, it was also 

shown that many founder lineages are currently over or under-represented and that ~10% 

of the population was produced by recent first order inbreeding events. Genetic 

management suggestions are proposed to prevent further losses of diversity and to 

reduce rates of inbreeding. Overall, these results highlight the value of combining 

studbook, neutral and MHC data, as each data type provided different information.  

Incongruence of diversity metrics based on MHC and neutral markers advocates the 

importance of combining neutral and adaptive markers in assessments of diversity.  
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6.2 Introduction 

Conservation programmes are designed to increase the long-term persistence of 

species (Ramirez et al. 2006).  Most commonly this is achieved through in situ 

conservation, which aims to reduce threats to extant populations and reintroduce a 

species where populations have been extirpated.   However, ex situ captive breeding 

programmes also play a crucial role in endangered species conservation.  Indeed, 38 

species exist only in captivity, having gone extinct in the wild (IUCN 2010), and many 

other species have only survived extinction due to successful reintroduction of captive 

animals into the wild (e.g. Przewalski’s horse (Equus ferus przewalskii; (Hedrick et al. 

1999), black footed ferret (Mustela nigripes (Wisely et al. 2003).  The two primary roles of 

captive breeding programmes are to act as an insurance against extinction in the wild and 

as a source of individuals for reintroductions (Bauman et al. 2004; Glatson 2001).  To 

successfully achieve these roles, they must not only establish a viable, healthy and self-

sustaining ex situ population but must also conserve the adaptive genetic diversity present 

in wild populations, as this retains the evolutionary and adaptive potential of the species 

(Bradshaw 1991; Ramirez et al. 2006).  In reality though, breeding programmes are 

derived from a small number of initial founders and subsequently maintained as a 

relatively small population because of space restrictions (Hedrick et al. 1999).  These 

characteristics result in a small effective population size (Ne), which increases risk of 

inbreeding and loss of genetic diversity; threats which pose a considerable risk to both the 

viability and success of ex situ conservation (Breen et al. 1995).  Genetic management is 

thus fundamental to the maintenance of healthy and genetically diverse captive 

populations.   

Traditionally, genetic management of captive breeding programmes has relied 

solely on studbooks, but these are often incomplete and they do not provide any 

information on genetic diversity.  The increasing availability of molecular markers has led 

to a rise in genetic assessments of captive breeding programmes, which are used to both 

fill in gaps in the studbook and to address questions relating to genetic diversity (e.g. 

Gautschi et al. 2003; Nsubuga et al. 2010; Ramirez et al. 2006).  However, most 

commonly, genetic assessments utilise only neutral markers (e.g. microsatellites and 

mtDNA).  Whilst these can address many useful questions (e.g. source of founders, 

inbreeding, relatedness), the ability of neutral markers to reflect adaptive genetic diversity 

has been heavily criticised (Lynch 1996; Reed & Frankham 2003).  The Major 

Histocompatibility Complex (MHC) is a group of genes known to be important for immune 

responses and is one of the best understood set of adaptive genes (Bernatchez & Landry 

2003).  As a result, some captive genetic studies have incorporated the MHC as a proxy 

for adaptive genetic diversity (Hedrick et al. 2000; Zhang et al. 2006; Zhu et al. 2007).  
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However, there is a paucity of studies comparing MHC and neutral markers within captive 

breeding programmes.  As such, the value of adding MHC markers to genetic studies of 

captive breeding programmes is not known.   

Assessments of MHC variation are also pertinent due to their role in immunity and 

growing concerns about the threat that infectious diseases pose to endangered species 

(Daszak et al. 2000).  The risk of diseases to wildlife has increased as human populations 

and their accompanying domesticated animals have spread, resulting in spill-over 

infections between domesticated and wild animals (Daszak et al. 2000; Randall et al. 

2004).  For example, rabies virus transmission between domestic dogs and Ethiopian 

wolves (Randall et al. 2006), and feline leukaemia virus between domestic cats and the 

Iberian lynx (López et al. 2009).   

African wild dogs, hereafter wild dogs, are a red list endangered species which has 

suffered extensive declines in the wild (IUCN 2010).  They now persist over just 7% of 

their former range in a few small and fragmented populations which together total less 

than 8,000 individuals (IUCN/SSC 2008, 2009; McNutt et al. 2008; Woodroffe et al. 1997).  

In addition to wild populations, there is also a growing captive population of wild dogs.  

Wild dogs were first brought into captivity in 1901, and in 2008 there were 636 captive wild 

dogs (364♂; 261♀; 11 unknown) in 108 institutions that contribute to wild dog captive 

breeding programmes (ISIS 2010; Verberkmoes & Verberkmoes 2008).  These are 

managed as four separate regional populations: the European Endangered Species 

Programme (EEP) in Europe, as well as by comparable programmes in Northern America, 

Australia and South Africa.  Zoos contributing to the European captive breeding 

programme have held almost half of world’s captive population (n~270 in 2008 

(Verberkmoes & Verberkmoes 2008) and therefore could form a critical component of ex 

situ conservation efforts.  However, informed genetic management of the wild dog captive 

population has been difficult because it relies solely on an incomplete studbook.   

The aim of this study was to assess the genetic status of the European captive 

wild dog population, using a combination of studbook data and genetic information based 

on neutral and MHC markers for >80% of the extant population.  I specifically addressed 

four questions: 1) How much of the diversity from wild populations is represented in the 

European captive population?; 2) How have recent imports from South African captive 

facilities affected the genetic status of the European captive population?; 3)  How can 

genetic management of the European captive population be improved?;  4) Are genetic 

diversity metrics from neutral and MHC markers correlated?   
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6.3 Methods 

6.3.1 Studbook and pedigree analyses 

Studbook analyses were based on the 2008 European regional African wild dog 

studbook provided by the studbook coordinator (H. Verberkmoes).  There was too much 

missing data for analysis in the standard studbook analysis programme, PM2000 (Pollack 

et al. 2001).  Therefore, the studbook was converted into spreadsheet format and analysis 

was conducted by hand.  Death dates were missing for many individuals in the studbook, 

but this information was needed to calculate the number of individuals which died without 

leaving descendents.  As such, any individuals in the studbook that were more than 20 

years old were considered dead, as no wild dog has lived > 15 years in European zoos 

(H.Verberkmoes, pers comm.).  The number of wild founders brought into the European 

zoos was estimated based on individuals in the studbook whose parents had been listed 

as ‘wild’.  However, this should be considered as a conservative estimate of the number of 

wild founders as the origin of many individuals in the studbook was listed as unknown.  A 

pedigree of the European captive population was built manually, using the drawing 

programme SMARTDRAW (www.smartdraw.com), as the studbook data were not 

appropriate for standard pedigree programmes which typically are designed for humans 

and thus have difficulty accommodating multiple partners and inbreeding.  To assist 

navigation of the pedigree, I refer to the centre, left or right side of the pedigree.  This 

literally refers to the centre, right or left side of the printed out pedigree.  To improve clarity 

of the pedigree, all individuals that died without leaving descendents were removed, 

unless they had been sampled for this study.  For demonstration, I also retained a group 

representing two founder lines that recently died out (boxed by dashed lines at the top 

centre of the pedigree).  The pedigree was used to calculate the individuals from which 

the extant population is descendent.  These are referred to as ‘putative founders’, as the 

relatedness between many of these individuals was unknown.  Following standard 

convention, captive wild dogs are referred to here by their studbook ID, which is indicated 

by the prefix #.  Numbers beginning with ‘T’ are temporary studbook ID numbers.  For 

individuals without a studbook ID, a local ID without a # prefix was used instead. 

6.3.2 Samples 

With the assistance of the studbook keeper (H. Verberkmoes), I compiled and sent 

genetic sampling kits to all 41 zoos participating in the European breeding programme in 

2007.  Sampling kits consisted of: 1) recommended procedures for anesthetisation and 

detailed instructions on how to collect, store and send samples; 2) blood, tissue and 

serum collection tubes; 3) pre-printed adhesive tube labels specific for the wild dogs of the 
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zoo receiving each kit; 4) UK import licence; 5) pre-labelled shipping envelope with 

specimen bags.  In total, 223 samples were sent from 34 zoos (Table 6.1) over three 

years, which represents approximately 83% of the population (n~270) and >75% of zoos 

(34/44).  Blood and tissue samples were preserved in TES buffer (50ul - 500mM Tris 

Base, 50ul - 500mM EDTA, 50ul-10% SDS, 350ul dH20) and serum and hair samples 

were frozen.  DNA was extracted from blood, tissue and serum samples using DNeasy 

extraction kits according to the manufacturer’s instructions (Qiagen, Crawley, UK).  Hair 

was extracted according to a user-developed protocol available from Qiagen (Qiagen 

2006).   

Fifteen of the 223 wild dogs sampled in European zoos were recently imported 

from South African captive facilities: nine from the Hoedspruit captive breeding facility in 

South Africa (also known as Kapama, but hereafter, Hoedspruit); six from the De Wildt 

Cheetah and Wildlife Centre in South Africa (also known as Ann van Dyk Cheetah Centre, 

but hereafter, DeWildt).  I acquired DNA from a further 60 South African captive wild dogs 

as follows:  45 samples from DeWildt collected in 1993 (n=15; R.K.Wayne), and 2002 

(n=30; A.Bastos, T.Matjila, H.Strydom).  Fifteen samples were available from Hoedspruit 

collected in 1993-4 (R.K.Wayne).   

Finally, to enable comparisons of genetic diversity between free ranging and 

captive populations and zoos, I included samples from six study populations in Southern 

Africa (n=257), which is the region of Africa from which the European zoo captive wild dog 

population is descendent (Woodroffe et al. 1997).  However, the number of samples that 

were successfully typed in each population varied according to the genetic marker: 

Kruger, South Africa (n=90-94); NE Namibia (n=4-10); Ghanzi, Botswana (n=1); 

Okavango, Botswana (n=56-90); Lowveld, Zimbabwe (n=15); Hwange, Zimbabwe (n=14-

47) (Chapter 4).  Whilst the sample sizes from Ghanzi and NE Namibia were small, they 

were useful for the distribution of mtDNA haplotypes and MHC haplotypes, where they 

improved geographic coverage.  However, these samples were excluded from genetic 

structure and population diversity analyses.  

For the purposes of genetic analyses the samples above were subdivided into five 

categories: 

 “EUZ”: All samples from European zoo wild dogs. 

 “EUZ_pure”: European zoo wild dogs excluding recent (1990+) South African imports 

and any of their descendents. 

 “SAZ_imp”: Wild dogs recently imported from South Africa to EU zoos. 



163 

 

 “SAZ”:  Wild dogs from South African captive facilities (Hoedspruit and Dewildt), 

including the 15 SAZ_imp. 

  “WILD”: Free ranging wild dogs from populations in Southern Africa. 

 

6.3.3 Genetic typing 

mtDNA 

To assess the provenance of the founders of the EUZ I amplified a 327 bp 

segment of mtDNA D-Loop control region 1 by PCR using a modified version of the canid-

specific primers, Thr-L and DLH, which were redesigned specifically for African wild dogs 

(Leigh 2005): forward 5’ ACT ATT CCC TGA TCT CCC CC 3’; reverse CAG GAA ACA 

GCT ATG ACC CCT GAA GTA AGA ACC AGA TGC C.  The underlined section of the 

reverse primer marks an M13 tag, which was used to permit sequencing in a single 

direction.  PCRs were performed in a 20-µl reaction volume containing: 1.25 x Q solution 

(Qiagen); 1.25 x PCR buffer (containing 15mM MgCl2); 3.1 mM MgCl; 0.2 mM of each 

dNTP (Invitrogen); 0.19 µM of each primer; 1 unit of Hot Star taq (Qiagen); and 

approximately 10ng of template DNA (except for negative controls).  PCR was conducted 

according to the following protocol: 5 min at 95°C, 30 cycles of 95°C for 30s, 55°C for 30s, 

and 72°C for 30s. The protocol ended with a final extension of 72°C for 10 minutes.  The 

number of amplification cycles was increased from 30 to 37 cycles for weak DNA samples 

derived from hair and serum.  PCR products were cleaned with ExoSAP-IT (USB) 

according to the manufacturer’s instructions and then sequenced using an ABI 3730 

automated sequencer (by The Sequencing Service, University of Dundee).  Sequences 

were aligned and analysed using Geneious Pro v 4.5.5 (Biomatters Ltd).  In total, I typed 

33 samples that were representative of 5/5 SAZ_imp founder lines and 9/12 EUZ_pure 

mtDNA founder lines. It was not possible to sample 3/12 EUZ_pure founders because 

there were no extant female lineages of these founders.  The data from captive animals 

was compared with mtDNA data from WILD samples (n=266; Chapter 4; (Girman et al. 

2001). 

Microsatellite genotyping 

I assessed diversity at 10 microsatellite loci shown to be polymorphic in free-

ranging populations of wild dogs (Chapter 4): PEZ08, PEZ12, PEZ15 (J. Halverson in Neff 

et al. 1999); FHC2010, FHC2054, FHC2611, FHC2658, FHC2785, FHC3399, FHC3965 

(Guyon et al. 2003; Neff et al. 1999); Breen et al. 2001).  All selected loci were located on 

different chromosomes (Neff et al. 1999).  The forward primer of each pair was dye-

labelled with ABI fluorescent dyes: NED (yellow), 6-FAM (blue) or HEX (green).  Samples 
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were amplified alongside negative controls by multiplex PCR using Qiagen Multiplex PCR 

mix.  I followed default reagent concentrations recommended by the manual except in 

cases of DNA derived from serum, hair and blood spots, where 0.4ul of 10mM Bovine 

Serum Albumin (Promega) was added per PCR reaction.  PCR was performed on PTC-

200 (MJ Research) theromcyclers with the following touchdown protocol:  15 min at 95°C, 

12 touchdown cycles of 94°C for 30 s, followed by 1 min 30 s annealing, starting at 60°C 

and reducing at 0.5°C per cycle, and 72°C for 1 min. This was followed by 33 cycles of 

89°C for 30 s, 55°C for 1 min, and 72°C for 1 min.  The protocol ended with a final 

extension of 60°C for 30 minutes.  Samples were run with a ROX 500 size standard on an 

ABI 3730 (by The Sequencing Service, University of Dundee).  Microsatellites were 

analysed using GENEMAPPER 4.7 (Applied Biosystems).  Weak DNA samples have a 

higher probability of allelic drop out; therefore, I amplified and genotyped DNA samples 

derived from hair and serum up to seven times.  I also re-amplified and genotyped a 

further 50% of blood and tissue samples to verify results.  Any samples that had data 

missing for three or more loci were excluded.  I used pedigree analyses to check for the 

expected segregation of alleles within families, and visually assessed the data for 

evidence of lack of amplification at loci which could indicate individuals homozygous for 

null alleles.  The data from captive animals were compared with microsatellite data for 

WILD samples (n=174; Chapter 4). 

MHC typing 

Sequence-based typing was conducted on exon 2 of the DLA-DRB1 locus 

(hereafter referred to as DRB), which was previously shown to be highly variable in 

African wild dogs (Marsden et al. 2009).  The DRB locus was typed according to Marsden 

et al. (2009), which is included as Chapter 2.  In brief, DRB sequence data were analysed 

using Match Tools and Match Tools Navigator (Applied Biosystems), as described in 

Kennedy et al (2002b).  Alleles were named as in Chapter 4.  The data from captive 

animals were compared with MHC data from WILD samples (n=185; Chapter 4).  The 

studbook-based pedigree was used to confirm that a single locus was amplified at DRB 

(see Marsden et al. 2009).   

6.3.4 Genetic Analyses 

Effective population size and genetic diversity 

Effective population size (Ne) estimates for the EUZ and SAZ were conducted 

using NeEstimator v1.3 (Peel et al. 2004).  Specifically, I used the linkage disequilibrium 

method (Hill 1981), which tests for evidence of linkage disequilibrium between alleles at 
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different loci arising as a result of increased genetic drift at smaller effective population 

sizes (Hill 1981).  Ne estimates for WILD populations were taken from Chapter 4.   

Microsatellite and DRB diversity were measured as allelic richness (AR), fixation 

index (FIS), observed (Ho) and expected heterozygosity (He), as calculated in GENALEX6 

(Peakall & Smouse 2006).  Allelic richness standardised for sample size (RS) was 

calculated using rarefaction in HP-RARE (Kalinowski 2005).  I tested for significant 

differences in microsatellite Ho, He, FIS between sample categories using two sample t-

tests in Minitab 15 (Minitab 2007).  Genetic diversity estimates for WILD populations were 

taken from Chapter 4. 

Genetic structure 

I assessed genetic structure of the EUZ and SAZ samples using Bayesian 

clustering analysis conducted in STRUCTURE v 2.2 (Pritchard et al. 2000).  STRUCTURE 

uses a Bayesian clustering model-based algorithm to elucidate the number of genetic 

clusters (K) within a sample set.  For each K value, the model generates an estimated log 

probability of the data, which is used to determine the most likely value among the range 

of K values tested (Pritchard et al. 2000).  A likelihood of assignment value is also 

generated for each individual to each cluster (Pritchard et al. 2000).  Runs were 

conducted assuming no prior population information, with correlated allele frequencies 

and admixture, 200,000 burn-in cycles, 1,000,000 Markov chain Monte Carlo runs 

(MCMC) for K = 1-10, with ten replicates per K.  I plotted likelihood values and variance 

amongst the 10 replicates at the different values of K, as well as the ΔK statistic, which 

assesses the rate of change in the log probability of the data between successive K 

values (Evanno et al. 2005) using STRUCTURE HARVESTER  v.05. (Earl 2009). The 

value of K that best fit the data was selected based on the ΔK statistic and consistency 

amongst replicates (Pritchard et al. 2000).  I also conducted assignment tests on the 15 

recent South African Imports, by implementing the USEPOPINFO option in STRUCTURE.  

In this mode STRUCTURE calculated the posterior probabilities of membership of the 15 

South African Imports to four Southern African populations: Hwange; Okavango; Lowveld; 

and Kruger.  Pairwise genetic differentiation between EUZ_pure, SAZ and WILD 

populations was calculated using the estimator Dest (Jost 2008) computed in the 

programme SMOGD (Crawford 2009), using 1000 bootstraps.   

Parentage  

I used microsatellite data to verify parentage across seven litters (2-8 pups/litter) 

from four EUZ (Aalborg, Boras, Kolmarden and Pontscorff).  These litters were specifically 

selected because samples were available for the studbook dam and sire, as well as all 
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other potential parents (i.e. other adults in the same enclosure) with the exception of one 

unsampled male for the 2008 Ponscorff litter and one unsampled female for the 2007 

Kolmarden litter.  For each offspring, putative parents were excluded when mismatches 

were found at two or more loci (Jones & Ardren 2003).    
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6.4 Results 

6.4.1 Studbook and pedigree analyses 

Between 1901 and 2008, 2175 wild dogs have been held in EUZ, including 80 wild 

caught founders (42 males; 36 females) (Verberkmoes & Verberkmoes 2008) and 41 wild 

dogs imported from captive South African facilities since 1990.  Of these 2175 individuals, 

only 415 have produced offspring (19%) and only 271 of 415 breeders, and just 18/80 

founders, have descendents alive today .   

The EUZ currently (2008) have 44 zoo spaces for wild dogs (including 26 spaces 

for breeding groups), which collectively hold ~270 wild dogs (155 males; 114 females; 1 

unknown sex (Verberkmoes & Verberkmoes 2008).  The reconstructed pedigree (Figure 

6.1) shows that the extant EUZ population is descendent from 38 putative founders (17 

females; 21 males): 18 wild born founders; 10 recent (1990+) imports from South African 

captive facilities (Hoedspruit-4, DeWildt-4, Johannesburg zoo-1) and 11 individuals of 

unknown parentage and origin.  Given that some of these 38 individuals may be related, 

especially those imported from South African captive facilities, this may be an over-

estimate of the true number of founders of EUZ.  

The pedigree (Figure 6.1) demonstrates four important points about the genetic 

status of the EUZ: 1) There are very unequal founder contributions, with a heavy bias to 

founders from one side of the pedigree (the right side).  For example, founders #896 and 

#897 (boxed by dashed lines at the centre and top of the pedigree) produced few 

descendents, the last of which died in 2007. 2) There is a large skew in reproductive 

contributions, with a few individuals producing a very large number of offspring but most 

individuals producing none. 3) There are a number of close inbreeding events (sibling 

matings/parent-offspring, indicated by red lines).  For example, four litters totalling 29 

offspring were produced by full sibling matings at a single zoo between 2004 and 2005, 21 

of which survived (Figure 6.1; centre of pedigree, #5705-5709; #T5819-T5829; #5719-

5724).  In total, 10% (27/270) of the extant EUZ population are the offspring from first 

order relative (sibling-sibling/parent-offspring) inbreeding events. 4) Most breeding groups 

are formed within the left side of the pedigree, or within the right side of the pedigree, 

which further increases inbreeding.  Overall, the bias in founder representation, large 

reproductive skew and close inbreeding events will have reduced Ne in the EUZ, thus 

accelerating the loss of genetic diversity as well as increasing the likelihood of inbreeding 

depression. 
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6.4.2 Effective population size and genetic diversity 

mtDNA 

I used mtDNA sequencing to trace the origin of 5 SAZ_imp and 12 wild founders of 

EUZ_pure.  Both the 5 SAZ_imp and 12 EUZ_pure wild founders were found to share 

three mtDNA haplotypes (E2, S2 and Z1; Table 6.2;Table 6.3).  The studbook lists the 

origins of the EUZ_pure wild founders as South Africa, Namibia and Unknown (no 

information was available for SAZ_imp).  Comparison of EUZ mtDNA haplotypes with wild 

population data (Table 6.3) shows that the presence of the E2, S2 and Z1 haplotypes are 

inconsistent with the origin of wild founders being just Namibia and South Africa.  Rather, 

the founder base of the EUZ most likely includes individuals from Namibia, South Africa, 

Zimbabwe and/or Botswana.  Two Namibian founders (#895 caught ~1982; #1986 caught 

~1993) were found to have mtDNA haplotypes that are not known from wild populations in 

Namibia (Table 6.3).  This may be the result of either errors in the studbook or incomplete 

sampling of Namibian populations.   

Microsatellites 

In total, I amplified 244 EUZ and SAZ wild dogs at 10 microsatellite loci and 

combined these data, with data from 174 wild dogs derived from wild Southern African 

populations (Chapter 4).  Amongst the EUZ samples, segregation of alleles in pedigreed 

zoo families detected allelic drop out at only a single locus (Pez08).  Whilst the number of 

individuals affected by drop out at the Pez08 locus was small, the locus was excluded as 

it may have significantly affected parentage assessments.   

Based on the linkage disequilibrium method, Ne for EUZ and SAZ was estimated to 

be 26.6 and 15.6 respectively, which are similar to estimates from WILD populations (7.8-

19.6; Table 6.5).  Furthermore, N:Ne was similar between EUZ (0.10) and WILD 

populations (0.05-0.1; Table 6.5). 

Microsatellite diversity in EUZ was comparable to that in WILD populations:  AR 

(6.4), RS (5.2), Ho (0.76) and FIS (-0.05) in EUZ compared to AR (4.6-7.4), RS (4.1-5.7), Ho 

(0.62-0.80), FIS (-0.11- -0.02) in WILD populations (Table 6.5).  Furthermore, 72.3% of 

microsatellite alleles from WILD populations in Southern Africa were represented in EUZ 

(Table 6.5), including two WILD private alleles; one from the Lowveld and one from 

Okavango.   

Comparison of diversity before (EUZ_pure) and after (EUZ) recent South African 

Imports, indicates that these imports have increased the proportion of wild microsatellite 
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alleles represented in EUZ from 57.4 to 72.3%, but resulted in little change in 

microsatellite diversity: RS (4.2 vs. 4.8); Ho (0.77 vs. 0.76); and FIS (-0.11 vs -0.05).  

Microsatellite diversity (RS) was found to be higher in SAZ than EUZ_pure (RS: 5.2, 4.2), 

although both were within the range found in WILD populations (RS: 4.1-5.7; Table 6.5).  

However, microsatellite Ho was significantly higher for the EUZ_pure (Ho = 0.77) than SAZ 

individuals (Ho 0.63; t test, p = 0.042).  Furthermore, FIS in SAZ (FIS +0.04) was outwith the 

range of wild populations (-0.11, -0.02), and significantly higher than EUZ_pure 

(EUZ_pure, FIS -0.11; t-test, p=0.027). 

MHC 

Amongst 211 EUZ wild dogs I detected 10 of the 13 DRB alleles known in free-

ranging Southern African populations (Table 6.4), including three private MHC alleles; one 

from Okavango and two from Kruger.  The EUZ had two further DRB alleles; one (B1) 

described only in free-ranging Eastern African populations (Selous, Masai Steppe, 

Serengeti-Mara-refer to table Chapter 4) and one allele (B13) that has only previously 

been detected in a single individual of unknown origin, which was translocated into 

Hwange.  The frequency of DRB alleles in EUZ were highly variable; allele A1 was very 

common (32.2%; detected in 115/211 individuals; Figure 6.1), but there were also four 

DRB alleles (A7, B2, B7, B11) that were very rare (<5%; Table 6.4).  Overall, DRB Ho 

(0.83) was high and comparable to that in wild populations (Ho 0.67-0.84; Table 6.5).  FIS 

(+0.01) in EUZ was also within the range of wild populations FIS -0.08 - +0.05 (Table 6.5).  

Overall, there were just 36 homozygotes amongst 211 EUZ individuals (Table 6.5).  It is 

noteworthy that 20/36 homozygotes were homozygous for allele A1 and 31/36 

homozygotes were the result of close inbreeding events or inbreeding within the right side 

of the pedigree (Figure 6.1).   

Comparison of DRB diversity between EUZ_pure and EUZ shows that recent 

South African imports have also increased DRB diversity: AR increased from 7 to 12; % 

wild diversity represented increased from 38.5% to 76.9%; and Ho rose from 0.76 to 0.83 

(Table 6.5).  This diversity increase can be attributed to the very high DRB allelic richness 

in SAZ (AR, 11; RS 9.2 Table 6.5); 77% of Southern African wild DRB diversity was 

represented in just 66 SAZ wild dogs.  However, whilst SAZ allelic diversity was high, 

DRB Ho (0.68) was lower than EUZ_pure (0.78), and FIS (+0.20) was both much higher 

than EUZ_pure (-0.12) and outside the range of wild populations (-0.08 – +0.05; Table 

6.5), similar to the pattern found at microsatellite loci.  Specifically, the low Ho is largely 

attributable to the early 1993/4 SAZ individuals, 22/30 of which were homozygous at DRB 

compared with just 1/36 for the recent SAZ individuals.  
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Genetic structure  

Bayesian clustering analysis of EUZ and SAZ wild dogs in STRUCTURE found 

that these two captive populations represented different genetic populations (Figure 6.2).  

The ΔK statistic found a single prominent peak at K=2 (data not shown), which correlated 

with separate clusters for EUZ_pure and SAZ.  However, the recent SAZ_imp to EUZ 

mean that the EUZ now includes wild dogs from both genetic clusters, as well as admixed 

individuals (Figure 6.2).  It is noteworthy that I ran STRUCTURE with the excluded locus 

(Pez08) incorporated back into the data set, and the same result was obtained (data not 

shown).   

I used assignment tests in STRUCTURE to indicate the origin of the fifteen wild 

dogs recently imported from South Africa.  The results found all 15 individuals to be of 

admixed ancestry; probability of assignment ≤55% for each population (data not shown).   

Estimates of genetic differentiation based on Dest showed that the EUZ_pure and 

SAZ were differentiated (Dest 0.320) to the same degree as isolated free ranging wild dog 

populations (Dest 0.277-0.483;Table 6.6).  The SAZ were quite genetically similar to Kruger 

(Dest 0.149), whereas EUZ_pure did not seem similar to any wild populations sampled 

(Dest>0.2;Table 6.6).   

Parentage 

I genetically assessed parentage in eight EUZ litters.  In 5/8 litters I could not 

exclude the putative studbook dam and sire, although in 4/5 of these litters there was 

more than one equally well matched sire for one or more pups which means a multiple 

paternity litter is a possibility.  Given that alternative sires were generally first order 

relatives (brothers, father-son), many more microsatellite loci would be required to identify 

a single sire/pup.  For the 6th litter (Boras 2006), both the studbook dam and sire 

appeared to be incorrect.  Here, #5517 (not #5513) was the only genetically possible dam 

of all of the eight pups.  There also appeared to be at least two sires (#T6048, #T6049) for 

the litter as no single male matched all pups, although neither of the two genetically 

possible sires was the studbook sire (#T6047).  For the seventh litter (Kolmarden 2005), 

genetic data confirmed behavioural data that two females (#5533, #5534) had whelped 

pups, despite all being raised by the alpha female.  In this case, the studbook sire (#5605) 

appeared to be incorrect, as he was excluded as the sire of 4/7 pups, and was not the 

closest match of any pup.  Rather, #5606 was the closest matched sire to all pups (except 

one pup where #5606 and another male, #5607, matched equally).  For the 8th litter 

(Kolmarden 2007), the studbook sire (#5605) again appeared to be incorrect, as he was 

excluded as the sire of 4/8 pups.  In this case, a multiple paternity litter is possible, as 
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there were multiple equally well matched sires for 6/8 pups, although #5606 was the only 

sire that was a match to all pups.  The studbook dam was the only mature female present 

at Kolmarden in 2007. 
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6.5 Discussion 

6.5.1 Genetic diversity in wild vs captive populations  

One of the primary aims of captive breeding programmes is to provide an 

insurance against extinction in the wild.  As such, it is important that a large proportion of 

genetic diversity from the wild is conserved in the captive population, in particular, 

adaptive genetic diversity which is important for evolutionary potential.  Analysis of the 

EUZ studbook highlights that unequal founder representation and a large reproductive 

skew has resulted in the loss of a substantial portion of the wild founder lineages initially 

brought into the EUZ (62/80, 77.5%) i.e. they have no descendents alive today.  Whilst 

this is regrettable, it is unfortunately not atypical for captive breeding programmes; 

194/242 (80.2%) of the original wild Golden lion tamarin (Leontopithecus rosalia) founders 

lineages are not represented in the extant population (Frankham et al. 2002).  

Contributions from 18 wild founders, 11 individuals of unknown ancestry and 10 recent 

imports from SAZ, mean that in total the current EUZ is descendent from 38 putative 

founders.  Mitochondrial haplotypes and the distribution of both neutral microsatellite and 

potentially adaptive MHC private alleles indicate that these putative founders were 

sourced from a number of countries in Southern African.  This wide founder base appears 

to have resulted in a large proportion of microsatellite (72.3%) and MHC diversity (~77%) 

from wild Southern African populations being maintained in EUZ (Table 6.5).  

Furthermore, microsatellite and MHC diversity metrics (RS, Ho, He and FIS) and Ne/N 

estimates of the EUZ were within the range reported for wild populations (Table 6.5).  

These results are highly encouraging, as they suggest that despite the loss of so many 

founder lineages, the extant EUZ population has a genetic status comparable to wild 

populations, and adequately represents the diversity of wild populations.  Such findings 

contrast with many other captive breeding programmes, which have been found to suffer 

from low genetic diversity compared to wild populations (e.g. Giant panda, Ailuropoda 

melanoleuca, (Shen et al. 2009), Asiatic lions, Panthera leo persica (Sachdev et al. 2005), 

high levels of inbreeding (e.g. Siam eld’s deer Cervus eldi siamensis (Thevenon & Couvet 

2002) and Puerto Rican crested toad Peltophryne lemur (Beauclerc et al. 2001), and 

severe founder effects (e.g. high frequencies of chondrodystrophy in Californian condors, 

Gymnogyps californianus, (Ralls et al. 2000); poor sampling of Hymenoxys acaulis var 

glabra resulted in an ex situ population that was unable to set seed because all founders 

were monomorphic for the same allele at self-incompatibility loci (Barrett & Kohn 1991).   

Nonetheless, similar positive results are known from other captive breeding programmes: 

neutral genetic diversity was comparable between wild and captive populations of Gorillas 

(Gorilla gorilla (Nsubuga et al. 2010), Iberian wolves (Canis lupus, (Ramirez et al. 2006), 

and Amur tigers (Panthera tigris altaica (Henry et al. 2009), and wild MHC diversity was 
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well represented in a population of Mauritian Cynomolgus macaques Macaca fascicularis 

used for medical research  (Mee et al. 2009).   

Despite the positive indicators from the EUZ, the pedigree highlighted unequal 

founder representation and close inbreeding events in the extant population, which may 

reduce both genetic health and genetic diversity in the future.  For example, a single MHC 

DRB allele (A1) dominates the allelic repertoire of the EUZ (32%), despite being relatively 

rare in wild populations (5.8%; Table 6.4).  Examination of MHC variation mapped on to 

the pedigree (Figure 6.1) demonstrates that the high frequency of allele A1 is likely a 

consequence of unequal bias in founder contributions to, and inbreeding within, the right 

hand side of the pedigree, where A1 is common.  It is also possible that the high 

frequency of this allele may be a consequence of adaptation to captivity (Frankham Pers 

comm.), whereby the captive environment selects for different components of variation 

compared with the wild (Frankham 2008).  Careful genetic management is required to 

prevent further losses of diversity. 

6.5.2 Have recent imports of wild dogs from South African improved the 

genetic status of EU zoos? 

Captive breeding programmes essentially represent a closed system, and 

therefore, inbreeding is eventually inevitable.  To counter this, zoos sometimes import 

‘new blood’, that is, individuals from outside of their specific breeding programme.  Since 

1990, 41 wild dogs have been imported from SAZ (Johannesburg zoo – 6; DeWildt – 23; 

Hoedspruit – 12), 17 of which have bred and produced viable offspring (depicted by purple 

highlighting in the pedigree; Figure 6.1).   

Genetic structure analyses showed that EUZ_pure and SAZ represent different 

genetic populations that are quite differentiated from each other (Figure 6.2; Dest 0.320).  

As such, the imports would be expected to increase genetic diversity, which was found to 

be the case: the imports introduced five new MHC alleles, and increased the proportion of 

wild diversity represented at MHC and microsatellite loci by 38% and 15% respectively 

(Table 6.5).  Nonetheless, estimates of Ho and FIS based on SAZ as a whole (not just the 

imports) suggested that inbreeding was higher than in EUZ (Table 6.5), which is 

concordant with assessments of SAZ studbook data (~38% of breeding pairs were close 

relatives (Frantzen et al. 2001).  This is a particular concern for the EUZ, because in 

general the ancestry of imports is not known, which makes genetic management of 

potentially inbred individuals difficult.  As such, it raises the question of whether the 

advantage of new diversity outweighs the potential genetic health problems associated 

with inbred individuals? 
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Another concern pertaining to the import of wild dogs from South Africa relates to 

trafficking of wild born animals into captivity, which is a problem for many endangered 

species (e.g. Chimpanzees, Pan troglodytes; (Goodall 2003).  Reports state that litters of 

wild born wild dog pups are being dug out of dens in Southern Africa countries and 

subsequently transported to dealers and onto captive facilities to supply demand for new 

blood lines (Rasmussen 2010; Scott 1991).  Indeed, I conducted genetic testing to verify 

that a litter of dug up pups seized in Zimbabwe had come from the Lowveld region 

(Hwange-Unknown samples; Chapter 4).  The removal of litters presents a significant 

threat to the persistence of wild populations, which are already very small.  Unfortunately, 

though, there is also a huge financial incentive to remove litters from the wild (a Chinese 

zoo paid $80,000 for a group of 20 wild dogs, ~$4,000/pup), and as yet no CITES listing 

to protect them (G.Rasmussen Pers comm).  Clearly, the EUZ would not endorse the 

purchase of wild dogs that had been removed from the wild, but there is no mechanism by 

which they can check either.  Genetic tracing could be particularly useful in this respect. 

For example, 35 wild dogs from Hoedspruit and DeWildt sampled in 1993/4 had just one 

mtDNA haplotype, (S2; (Girman et al. 2001), whereas three mtDNA haplotypes (S2, Z1 

and E2) were found amongst just 9 wild dogs imported from Hoedspruit and DeWildt after 

2002.  The presence of two new and non-South African mtDNA haplotypes amongst just 9 

samples suggests that the products of this trade or their descendents may have entered 

Hoedspruit and DeWildt, and thus the EUZ, although the admixed origin of the imports 

(assignment tests) indicates that the imports themselves were not wild caught.  Given that 

this unethical trade presents a significant risk to wild populations and demand for wild 

dogs from zoos will only perpetuate it, I propose a complete moratorium be placed on the 

import of wild dogs from South Africa to EUZ.  Since all 41 recent imports were conducted 

without the approval of the studbook keeper, the onus and responsibility of this issue 

clearly lies with individual zoos.  Currently, the genetic status of the EUZ wild dog 

population can be defined as healthy, and thus there is not the need (nor the space) for 

further imports.  It is important to note that this is not the situation for many captive 

species where more wild founders (Giant panda (Shen et al. 2009) and mixing of currently 

isolated captive lineages (Puerto Rican crested toad (Beauclerc et al. 2001); Mexican wolf 

(Hedrick et al. 1997) has been recommended. 

6.5.3 How can genetic management of zoo population be improved?  

Studbook analyses show that most wild founder lineages were lost, and many first 

order relative matings occurred, early on in the breeding programme.  However, some 

founder lineages have been lost recently (e.g. #896, #897 in 2007) and others, particularly 

those on the left side of the pedigree, are under-represented and thus at risk (Figure 6.1). 

Furthermore, the offspring of recent first order relative inbreeding events account for 

~10% of individuals in the EUZ.  Clearly, the current priority for the EUZ must be to 
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manage the population to maximise the retention of genetic diversity, whilst minimising 

inbreeding.   

The combination of studbook, neutral (microsatellite) and adaptive (MHC) genetic 

diversity data described here, provides a strong basis for informed genetic management.  

However, the behavioural ecology of wild dogs makes genetic management challenging.  

They live in packs typically formed by the fusion of a group of closely related females, and 

a group of closely related males, which are unrelated to each other (Creel & Creel 2002).  

Breeding in the pack is typically monopolised by an alpha pair, which produce large litters 

of 10-15 pups every year, and commonly remain dominant for several years (Creel & 

Creel 2002; Girman et al. 1997).  As such, it is not possible to specifically designate which 

individuals breed, and a large reproductive skew is inevitable.  Unfortunately, genetic 

management of group-living species is one of the least-understood areas of captive 

breeding management (Frankham et al. 2002), and as such, there is not a generalised 

optimal management strategy for these types of species akin to minimising kinship for 

solitary species (Ballou et al. 1995; Frankham 2007; Frankham et al. 2002).  The most 

logical solution for wild dogs might be to hold them as pairs.  However, this is not viable 

because it would infinitely increase space requirements, conflict with the educational role 

of zoos, dramatically reduce breeding success (80% of EUZ wild dogs held as pairs did 

not breed or failed to rear pups) and potentially create welfare or ethical issues because 

social species can become stressed when held in small groups or isolation (H. 

Verbokemoes Pers comm).  The formation and separation of breeding packs is also 

restricted due to high mortality and failure rates associated with formation of packs of wild 

dogs in zoos; ~ 50% of attempts to integrate male and female groups to form breeding 

packs fail due to fighting, which is often fatal (Verbokemoes Pers comm.).  Lastly, 

breeding opportunities within the pack are unlikely to be equalised by contraception or 

sterilisation of the alpha pair because of the strict dominance hierarchy; subordinate 

males are physically prevented from mating by the alpha male, and many subordinate 

females appear to either not to ovulate (Creel et al. 1997), or have their litters killed 

(Malcolm 1979).  As such, genetic management is limited to control over which sibling 

groups are selected to breed.  However, even here, one is restricted due to the necessity 

to select: 1) groups that are of the appropriate age and character (e.g. not hand reared) 

for breeding; 2) opposite sex groups of similar ages and numbers of animals, to reduce 

the likelihood of aggression and death when forming breeding packs problems; 3) from 

countries where movement of animals is logistically possible. 

Taking into consideration the management restrictions exerted by the social 

behaviour of this species, a specific detailed breeding programme is not realistic.  In light 

of this, the following generalised guidelines were devised with the EUZ EEP management 

committee in May 2008 and subsequently have been implemented:  
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 Breeding groups should be selected with the aim to maximise mixing different founder 

lines, e.g. by breeding sibling groups from opposite sides of the pedigree, whilst at the 

same time equalising representation of founders. 

 To prevent over-representation of some families, no more than two siblings/sibling 

groups from the same parents should be given breeding opportunities and a breeding 

pair should be limited to producing no more than two successful litters, unless the zoo 

is willing to cull the surplus litters.   

 To maximise genetic diversity, breeding groups should not be formed by reciprocal 

swaps, whereby a zoo exchanges half its males with another zoo, in exchange for half 

of their females.  

 To increase space availability, groups of same sex relatives should not be split unless 

necessary and offspring should be kept with parents to assist with rearing of at least 

one, and preferably two, subsequent litters.  This will also ensure that parenting skills 

are passed on.  Sterilised animals and the offspring from first-order matings, are of 

little genetic value, and could be culled to increase space availability.   

 Fragmentation of captive programmes into sub-populations that are managed 

separately, with occasional migration, has been shown to reduce loss of genetic 

diversity and adaptation to captivity (Frankham 2008; Margan et al. 1998).  Therefore, 

it is not recommended that North American, European, Australian and South African 

captive breeding programmes are merged with an international studbook.  However, 

occasional exchanges with North American and/or Australian zoos could be 

considered as a management option to reduce inbreeding, as an alternative to further 

imports from South Africa.   

These recommendations should increase effective population size, reduce 

inbreeding and loss of genetic diversity.  However, space restrictions, social breeding 

structure, and large litter sizes produce a combination of challenges that make loss of 

genetic diversity inevitable.  Artificial reproductive technologies (e.g. artificial insemination) 

are being developed for wild dogs (Thomassen & Farstad 2009).  Such methods may 

enable managers to exert more control over breeding in the future (Howard et al. 2003), 

as well as offering the opportunity to conserve reproductive material from genetically 

valuable individuals that could be killed during pack formation or be prevented from 

breeding due to space restrictions.   

6.5.4 MHC data for captive management  

Conservation of adaptive genetic diversity is critical to prevent the loss of the 

evolutionary and adaptive potential of species (Lacy 1997).  However, the use of neutral 

markers as a proxy for adaptive diversity has been heavily criticized because neutral loci 
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are not under selection and therefore are unlikely to be well correlated with adaptive traits 

as found by (Bekessy et al. 2003; Ennos et al. 1997).  For this reason, assessments of 

adaptive loci, such as the MHC, have been advocated as an alternative proxy for adaptive 

diversity, which was pioneered in endangered species by Hedrick (1998).  However, as far 

as I am aware, a comparative analysis based on MHC and microsatellite markers has not 

been conducted for a mammalian captive breeding programme (except the Giant panda 

where MHC and microsatellite analyses were conducted on different sample sets (Zhu et 

al. 2007).  In this study, genetic diversity metrics for captive populations were calculated 

based on both MHC and microsatellite markers for the same individuals.  Whilst, there 

were some similar results between the two marker sets (e.g. Ho and FIS for EUZ_pure, 

Table 6.5), there were a number of important differences (Table 6.5): 1) AR and RS were 

much higher for MHC than microsatellites; 2) microsatellites suggested higher diversity for 

EUZ than EUZ_pure, whereas the opposite pattern was found for the MHC; 3) the 

proportion of wild diversity represented in EUZ_pure was much higher for microsatellites 

(57.4%) than at the MHC (38.5%); 4) EUZ Ho, and SAZ FIS were much higher for the MHC 

than microsatellites.  Overall, these results suggest that MHC and neutral diversity metrics 

were not completely correlated in captive wild dogs. As such, these findings advocate the 

value of incorporating MHC markers into genetic assessments of captive breeding 

programmes.  Nonetheless, the specific role of MHC data in genetic management has 

been the subject of much debate.  Hughes (1994) proposed that captive breeding 

programmes should be managed to maintain MHC in preference to management of loci 

that are selectively neutral (e.g. microsatellites, mtDNA).  However, this has been strongly 

opposed primarily due to concerns that conservation of a small number of loci may 

accelerate loss of diversity at other loci, as well as a lack of knowledge over the relative 

advantage of different alleles.  In this study, mapping of MHC data onto the pedigree 

provided a very visually intuitive representation of patterns of diversity.  Specifically, the 

MHC data was found to be an accurate indicator of both inbreeding and founder 

representation in the EUZ wild dog population.  For example, the high frequency of DRB 

allele A1 reflected the over-representation of, and inbreeding amongst, founders from the 

left side of the pedigree, whereas 3/4 low frequency DRB alleles were found in individuals 

from under-represented founder lines.  As such, these results advocate the potential for 

variable MHC loci as indicators of genetic status of captive breeding programmes.  

Overall, however, genetic management of captive breeding programmes will likely be 

strongest when combining multiple data types, that is, studbook information and data from 

neutral and adaptive loci, because each provides different types of information. 

 

 

 



 

Figure 6.1: Current African EUZ wild dog pedigree; a full sized version of this figure has been attached as an appendix to the thesis.  For clarity most 
individuals that died leaving no descendents have been removed.  Individuals typed at the MHC have their alleles depicted by colours. Full details are in the 
key.  
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Figure 6.2: Genetic Structure of European (EUZ) and South African (SAZ) captive wild 
dogs using 9 microsatellite loci.  Shown is the most likely level of population clustering 
(K=2) as indicated by the ΔK statistic. Columns are individuals, with the proportion of an 
individual’s genotype assigned to each cluster (K) denoted by different colours.  Admixture 
is indicated where both colours are well represented in an individual.  Groupings are 
depicted as follows: EUZ_ pure = EUZ individuals with no ancestry to recent SAZ imports; 
EUZ = all individuals in EUZ including SAZ_imp and their descendents; SAZ_imp = 
animals imported from South African zoos; SAZ – individuals from South African zoos.   
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Table 6.1: List of samples contributed by different EUZ. 

 

Contributing EUZ Zoo code No. samples 

Aalborg zoo, Aalborg, Denmark Aarlborg 9 
Artis zoo, Amsterdam, Netherlands Artis 4 

Attica Zoological Park, Spata, Greece Attica 2 

Beekse Bergen Safarai Park, Hilvarenbeek, Netherlands Hilvaren 11 

Borås Djurpark Zoo, Alvsborg, Sweden Boras 12 

Bretagne Zoo Sarl, Pont-Scorff, France PontScorff 13 

Centre d'Etude Rech Zool Augeron, Lisieux, France Lisieux 4 

City of Belfast Zoo, Belfast, UK  Belfast 3 

Colchester zoo, Essex, UK Colchester 4 

Ebeltoft zoo, Ebeltoft, Denmark  Ebletoft 5 

Edinburgh Zoo, Edinburgh, UK  Edinburgh 6 

Friguia Zoo, Hammam, Tunisia Friguia 1 

Fondazione Bioparco di Roma, Rome, Italy  Roma 3 

GaiaPark Kerkrade Zoo, Kerkrade, Netherlands  Kerkrade 7 

Kolmården Djurpark AB, Kolmården, Sweden  Kolmarden 20 

La Palmyre Zoo, Royan, France  La Palmyre 3 

Le Pal Parc Animalier, Dompierre-sur-Besbre, France  Le Pal 3 

London zoo, London, UK  London 4 

Munchener Tierpark Hellabrunn, Muenchen, Germany  Munich 7 

Parken Zoo Eskilstuna AB, Sodermanland, Sweden  Eskilstun 2 

Port Lymne Wild Animal Park, Hythe, UK  Lympne 28 

Quinta De Santo Inacio, Avintes, Portugal Quintas 1 

Reserve Africaine De Sigean, Sigean, France Sigean 10 

Rostock Zoologischer Garten, Rostock, Germany  Rostock 5 

Safari De Peaugres, Peaugres, France  Peaugres 7 

Warsaw Zoological Garden, Warszawa, Poland Warsaw 4 

West Midland Safari & Leisure Park, Worcester, UK  Bewdley 20 

Zoo Basel, Basel, Switzerland  Basel 5 

Zoo Dortmund, Dormund, Germany  Dortmund 4 

Zoo D’Amneville, Amneville, France  Amneville 6 

Zoo Dvůr Králové, Dvůr Králové nad Labem, Czech Republic Dvur Kralove 4 

Zoo Duisburgh Ag, Duisburg, Germany Duisburg 3 

Zoological Center Tel Aviv, Ramat Gan, Israel  Ramat Gan 1 

Zoological Society of Ireland-Dublin, Dublin, Ireland  Dublin 2 

Total 34 223 
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Table 6.2: mtDNA haplotypes of the 17 females that have contributed to the extant EUZ 
population.  Where the female did not have an ID #, they were referred to by their 
offspring ID#, specifically Dam of offspring ID#.  

Studbook ID Origin mtDNA 

#205 Unknown Only male descendents 

#293 Unknown Only male descendents 

#695 Wild born, Unknown Only male descendents 

#895 Wild born, Namibia E2 

#899 Wild born, Unknown S2 

#913 Wild born, Unknown S2 

#1985 Wild born, Etosha, Namibia S2 

#1986 Wild born, Etosha, Namibia Z1 

#1987 Wild born, Unknown S2 

#3130 Wild born, Transvaal, South Africa S2 

Dam of #984/6 Unknown Z1 

Dam of #T5853 Unknown S2 

#3733 SAZ, De Wildt S2 

#3734 SAZ, De Wildt E2 

Dam of #T5983 SAZ, Hoedspruit S2 

Dam of #T5987 SAZ, Hoedspruit S2 

Dam of #T5993 SAZ, Hoedspruit Z1 
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Table 6.3: Sample sizes (n) and distribution of mtDNA haplotypes across wild African wild 
dog populations and in EUZ and SAZ.  

 

 

 

 

 

 

 

 

 

   mtDNA haplotype 

 n  S1 S2 S5 Z1 Z2 E1 E2

Wild  
Kruger, South Africa 94 35 59
NE Namibia 10 10
Okavango, Botswana 90 13 5 4 6 59 3
Ghanzi, Botswana 1 1
Lowveld, Zimbabwe 15 15
Hwange, Zimbabwe 47 16 11 17 1 2
Captive  
EUZ 9 6 1 1
SAZ 5 3 1 1
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Table 6.4: DRB1 allele frequencies for all EUZ wild dogs (EUZ); wild dogs of EUZ 
excluding recent S. African imports and their descendents (EUzoos_pure); wild dogs from 
South African captive facilities (SAZ) and wild populations in Southern Africa (WILD).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
* Private MHC alleles in WILD populations: A2 = Okavango; A7, B11 = Kruger. 

DRB 
allele 

EUZ 
(n=211) 

EUZ_pure 
(n=104) 

SAZ 
(n=66) 

WILD 
 (n=185) 

A1 32.2 50.0 8.3 5.8 
A2* 12.1 19.7  7.1 
A3 8.8 1.0 13.6 11.4 
A4 8.3  17.4 13.8 
A6   1.5  
A7* 3.3  5.3 0.5 
B1 11.6 11.1   
B2 1.4  20.5 9.5 
B3    0.3 
B4   3.0 5.8 
B5 6.2 2.4 4.5 6.1 
B6 5.2  22.7 22.5 
B7 0.7 1.4 2.3 5.6 
B9    1.9 
B11* 0.9  0.8 9.8 
B13 9.2 14.4   



 

 Table 6.5: Effective populations size (Ne ) compared to census size (Npop), and microsatellite and MHC diversity metrics for EUZ, SAZ and 
WILD populations, where n = number of samples; AR = allelic richness; Rs = allelic richness standardised for sample size; % wild = % of wild 
diversity from Southern African populations represented; observed (Ho) and expected (He) heterozygosity; fixation index, FIS =1-Ho/He). 

 
1 Wild data are based on data from Kruger, Okavango, Hwange and Lowveld populations (Table 4.3 and Table 4.5), NE Namibia (n=4) and 
Ghanzi (n=1) were excluded for these population level diversity metrics. 

 Effective pop size Microsatellite diversity MHC diversity 

 Ne Npop/Ne n AR RS % 
wild 

Ho:He FIS  n AR RS % 
wild 

Ho:He FIS 

EUZ_pure 20.2 

(17.4-23.5) 

NA 98 5.0 
(0.58) 

4.2 57.4 0.77:0.70 -0.11 
(0.03) 

 104 7 8.1 38.5 0.76:0.68 -0.12 

EUZ 26.6 

(24.5-28.5) 

0.10 212 6.4 
(0.8) 

4.8 72.3 0.76:0.73 -0.05 
(0.03) 

 211 12 5.1 76.9 0.83:0.84 +0.01 

SAZ 15.6 

(13.7-17-9) 

NA 46 6.5 
(0.67) 

5.2 69.9 0.63:0.69 +0.04 
(0.04) 

 66 11 9.2 76.9 0.68:0.85 +0.20 

WILD1  7.8-19.6 

(6.1-22.2) 

0.05-0.10 169 4.6-7.4 4.1-
5.7 

NA 0.62-0.80:   
0.59-0.76 

-0.11 – 
+0.02 

 186 3-
9 

3.0-
8.3 

NA 0.67-
0.84: 

0.60-0.86 

  -0.08 -  
+0.05    
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Table 6.6: Pairwise bootstrapped Dest estimates of microsatellite genetic 
differentiation between captive (EUZ_pure; SAZ) and free-ranging wild dog (Kruger, 
Okavango, Hwange, Lowveld) populations from Southern Africa.   

 

-- EUZ_pure SAZ Kruger Okavango Hwange Lowveld 

EUZ_pure  0.320 0.284 0.259 0.218 0.483 

SAZ   0.149 0.251 0.247 0.376 

Kruger    0.319 0.277 0.338 

Okavango     0.074 0.450 

Hwange      0.383 

Lowveld       



 

7 Chapter 7: General Discussion 
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7.1 Genetics in conservation 

Genetic information and molecular tools have many potential applications in 

conservation.  However, conservation genetics is an emerging and expensive field and 

many conservationists question how much genetics adds to conservation.  One particular 

criticism has been that conservationists often fail to translate their data into ‘practical 

conservation solutions’ (Vernesi et al. 2008).  In this respect, criticism is probably 

warranted.  However, there are also conservation genetics success stories and it would 

be useful to identify common factors of these.  In the conservation of canids, for example, 

molecular data has been used to show that genetic exchange has not occurred amongst 

subpopulations of the reintroduced Rocky Mountain Grey wolf, and as such the population 

did not meet the requirements for delisting and so were re-listed (Bergstrom et al. 2009). 

Another high profile conservation genetics success story was presented in Chapter 3.  

Here, genetic data provided new information on one of the most contentious population 

extinctions in conservation history; wild dogs in the Serengeti in 1991.  The suggestion 

that animal handling during vaccination against a rabies outbreak caused the extinction 

resulted in restrictions in wildlife handling and the use of vaccination in wildlife and 

domestic species in a number of countries, despite the fact that the cause of the extinction 

could not be shown due to insufficient data (Woodroffe 2001).  In 2001, wild dogs naturally 

re-colonised the Serengeti and I used molecular data to assess where the colonists came 

from.  Contrary to expectations and current opinion, these results suggest that wild dogs 

did not go extinct in the Serengeti.  Rather, they continued to cryptically reside in the 

monitoring area or persisted elsewhere in the Serengeti region.  Essentially, it was the 

absence of knowledge rather than human intervention that resulted in the apparent 

extinction of wild dogs in the Serengeti.  High profile case studies such as the Serengeti 

wild dogs and Rocky Mountain Grey wolves, are incredibly important in advocating the 

role and value of conservation genetics.  In both of these case studies, very specific 

hypotheses were tested, and conservation genetics was able to provide novel data that 

could not have been elucidated with any other approach.  These characteristics appear to 

have been central to their success.   

Elucidating population structure is important for designating management units for 

translocation strategies and for understanding connectivity between populations and here 

also, genetics has been important for changing perspectives.  To some extent, 

connectivity between populations can be elucidated by non-genetic methods, such as 

radio-collaring and assessments of habitat distributions.  However, non-genetic methods 

typically assess migration, which is not the same as gene flow.  For example, a study of 

bobcats and coyotes in Southern California showed that populations either side of a major 

freeway were highly differentiated, despite migration being observed across the freeway 
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(Riley et al. 2006).  The reason was that the freeway caused a phenomenon called 

‘territory pile-up’ which meant that although animals dispersed across the freeway, few 

manage to establish a territory and reproduce (Riley et al. 2006).  In my study, I showed 

that Kruger in North Eastern South Africa was genetically isolated from South Eastern 

Zimbabwe, despite continuous habitat between these two areas, which had led to an 

assumption of connectivity by previous researchers.  The reason for the genetic 

discontinuity remains to be shown, as no natural or human barriers to wild dog movement 

have been identified.  However, elucidating the cause of the separation is important 

because genetic isolation puts Kruger at higher risk of genetic threats.  Sampling of wild 

dogs in Northern Kruger, and Southern Zimbabwe is planned to elucidate the causal 

factors behind this genetic discontinuity (R. Groom).  Overall, this example reiterates the 

importance of genetic studies in conservation, and more specifically it highlights the 

importance of spatial sampling; if samples had not be available from South Eastern 

Zimbabwe (i.e. Lowveld), the genetic isolation of Kruger would not have been revealed.   

It is not only spatial sampling that is important, temporal sampling is also vital to 

track changes in status.  Wild dogs have been described as a boom bust species 

(Woodroffe Pers comm) that are heralded for their ability to rapidly recover from 

demographic declines (Pole 2000; Woodroffe 2010).  This ability appears to derive from 

their high fecundity and dispersal abilities; for example, the Laikipia population in Southern 

Kenya recovered from local extinction to >300 animals in less than 10 years (Woodroffe 

2010).  However, genetic analysis of populations that have experienced declines or 

extinction and recolonisation show that these demographic fluctuations are associated 

with reduced genetic diversity and increased inbreeding (Chapter 4).  These data highlight 

that although wild dogs show demographic resilience to extinction, this is not matched by 

genetic resilience.  As such, demographic fluctuations and population extinction and 

recolonisation events should be perceived as significant threats to wild dogs.   

Overall, it is clear that, in general, conservation genetics must assign more priority 

to providing practical management suggestions.  However, this must be reciprocated by 

willingness from policy makers to heed advice and implement solutions (Vernesi et al. 

2008).  My PhD was conducted in partnership with the Royal Zoological Society of 

Scotland, who provided funding to assess the genetic status of the EU zoo wild dog 

population, and subsequently to use these data to assist with the genetic management of 

this species.  As a geneticist, the approach was simple; collecte the appropriate genetic 

data, and devise a genetic management plan for the zoos based on standard genetic 

principles.  However, by working closely with the studbook manager, I got a valuable 

insight into the practical difficulties of implementing genetic management strategies.  One 

of the biggest challenges for studbook managers is their lack of power.  Essentially, if a 

zoo refuses to conform to requests there is not much the studbook manager can do.  
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Furthermore, wild dogs exist in some captive facilities in Europe that have not signed up 

to the European breeding programme (EEP), and are not part of the European 

Association of Zoos and Aquaria (EAZA) and thus they fall out of any jurisdiction.  This 

would not present a problem if those wild dogs were kept separate.  However, in reality, 

some of these animals are transferred into the breeding programme.  It is not clear to me 

how the studbook manager can manage a population if they do not have jurisdiction over 

the population.  Another challenge pertains to the fact that decisions by individual zoos 

are often taken without prior consultation with the studbook keeper.  In recent years, wild 

dogs have been castrated, imported from South Africa, and sold to dealers, all without 

permission from the studbook manager.  It is not generally helpful to point fingers of 

blame.  However, I think it is important to raise these examples because the wild dogs that 

were sold or castrated were some of the most genetically valuable in the breeding 

programme, and therefore these actions have resulted in a large loss of potential genetic 

diversity.  Furthermore, as discussed in Chapter 6, it is likely that importation of wild dogs 

from South Africa is fuelling an illegal trade of wild dog pup trafficking that is putting wild 

populations at risk.   

A more general obstacle to genetic management comes from the fact zoos not 

only participate in captive breeding programmes but also have educational and research 

roles, and they must also generate sufficient revenue to sustain themselves.  In any 

captive breeding programme, space restrictions limit the number of individuals that can 

breed, and amongst individuals, some will have a higher breeding priority than others.  

However, pups and cubs and chicks attract customers, so problems can arise when zoos 

with low breeding priority animals request/demand breeding groups.  The studbook 

manager can control transfers of breeding priority animals between zoos; therefore, it 

might be possible to at least try to share breeding opportunities.  But if species are 

problematic to breed, do you keep things ‘fair’?  Or, do you send valuable animals to zoos 

with high success at breeding and in doing so risk that the zoos that are not given 

breeding opportunities refuse to cooperate further with the breeding programme?  Whilst I 

understand why the zoos have multiple aims, education, research, captive breeding and 

generating revenue will not always be parsimonious aims.  As such I think it is 

exceptionally challenging for zoos to achieve all of these aims well, and perhaps a 

consensus is needed across the zoo community on which of these has priority.   

The last challenge to captive breeding relates to problems specific to the species.  

As discussed in Chapter 6, the social behaviour of wild dogs means that they must be 

held as single sex groups or as a breeding pack formed by the merging of two unrelated 

single sex groups.  Formation of breeding packs of wild dogs in zoos is also associated 

with high aggression; approximately half of attempts to integrate male and female groups 

to form breeding packs fail due to aggression, which is often fatal (Verbokemoes Pers 
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comm.).  However, aggression is also common in single sex groups and sometimes fatal 

amongst individuals particularly during the breeding season (despite the absence of the 

opposite sex) (Boutelle & Bertschinger 2010; van Heerden et al. 1996), which results in 

pressure on the studbook keeper to provide breeding recommendations for such groups.   

Overall, it can be see that genetic management of captive breeding programmes is 

very challenging.  Geneticists will always propose the ideal genetic management plan, 

and it is important to strive to achieve this.  However, failing to consider factors such as 

logistics, financial costs, and behavioural factors, renders geneticists as guilty as studbook 

managers that ignore genetics.  My initial genetic management plan for the European 

captive wild dog population was sound from a genetic perspective but unrealistic from a 

management perspective because I had failed to appreciate: 1) the severity of the 

aggression problem during pack formation; 2) the importance of keeping offspring with 

parents to learn pup rearing skills; 3) the degree to which breeding success differs 

between zoos; 4) the variance between zoos in their willingness to cooperate (most do, a 

few don’t); 5) the value placed on the educational role of wild dogs in zoos.  It would be 

naïve to expect the management committee to appreciate the importance of genetic 

threats, if I were to ignore the issues they raised.  As such, together we devised a new 

genetic management plan that was feasible from a management perspective and 

acceptable from a genetics perspective.  This did require some genetic compromises.  

However, the ideal genetic management plan would never have been implemented, and 

whilst not perfect, the new management plan will go a long way in improving the genetic 

status of the breeding programme.  Overall, this example indicates that closer 

relationships between the conservation geneticists and managers would likely facilitate 

better integration of genetic data in conservation policy. 

In terms of application of genetic data, there is one last issue that needs to be 

raised.  There appears to be a big elephant in the room of conservation genetics that goes 

by the name of politics.  Whilst this is not unique to the field of conservation genetics, 

indeed politics seems to thwart many charismatic species conservation programmes, it is 

a concern.  Alvarez (1993) provided a damning review of the management of the Florida 

panther, California condor, black footed ferret and dusky seaside sparrow endangered 

species programmes which is summed up in this quote: 
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"And so it goes...the actors come and go; decisions are reversed, often without 

explanation; no one is in charge; the different agencies and factions pursue their 

separate objectives; motives are sometimes discernible and sometimes not; the recovery 

program is a case of strategic aversion and operational chaos, organized only to the 

extent that it can avoid any action deemed undesirable by its component factions, as 

they project an image of industry and purpose while consuming a perennial flow of 

revenue."  (Alvarez 1993) 

Clearly, there are many obstacles to implementing genetic research into 

endangered species conservation, but the value of well-sampled and well-analysed 

genetic data collected in close collaboration with conservationists on the ground should go 

a long way towards ensuring that knowledge of genetics has the potential to inform 

management decisions. 
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7.2 Broader implications of this work 

Loss of adaptive genetic variation is thought to be one of the greatest threats to 

the persistence of species because it may impair their ability to respond to changes in the 

abiotic and biotic environments (Lacy 1997).  As one of the most well understood adaptive 

loci (Bernatchez & Landry 2003; Miller et al. 2001), assessments of the MHC are 

increasingly being conducted on endangered species to assess whether species have lost 

adaptive diversity.  However, the results presented in Chapter 5 suggest that the 

relationship between MHC diversity and endangered status is complex. Overall, it was 

shown that patterns of MHC diversity in endangered species were not only affected by 

their demographic history, but also by selection and evolutionary history.  The importance 

of evolutionary history as a factor influencing MHC diversity is intuitive but has rarely been 

considered when interpreting differences in MHC diversity between species, even if they 

are distantly related.  I expect that evolutionary history (along with differences in selection 

pressures) may help to explain why some endangered species appear depauperate at the 

MHC, whereas others have considerably more variation than expected given their 

demographic history.  The results from Chapter 5 have important implications for 

assessments of MHC diversity in endangered species where determining whether an 

endangered species has lost MHC diversity is based on comparisons of diversity with a 

reference taxon.  Clearly, unless very closely related species are compared, it will be 

difficult to disentangle whether any differences in diversity between species are the result 

of population declines rather than evolutionary history.   

Use of the MHC as a proxy for adaptive genetic variation has been advocated 

because neutral markers are predicted to be uncorrelated to adaptive genetic diversity.  

However, like many other studies of the MHC in endangered species (e.g. Campos et al. 

2006), I found that MHC and neutral markers were often correlated, indicating that 

contemporary patterns of MHC variation are predominantly affected by neutral processes.  

Clearly this raises the question of whether assessments of MHC variation are worthwhile 

in endangered species?  I personally think the answer to this question is yes.  Firstly, 

because although there was a general correlation between MHC and neutral markers, this 

was not always the case, which suggests that selection is likely weak or variable, rather 

than absent.  For example, patterns of genetic differentiation across wild populations 

indicated by MHC and microsatellites were significantly different.  Secondly, in the case of 

the zoos, the MHC data was invaluable tool for presenting genetic data to a non-genetics 

audience.  In particularly, mapping MHC alleles onto the pedigree enabled me to 

demonstrate a range of genetic concepts in a visually intuitive format, which would not 

have been possible with microsatellite data.  Overall, it is likely that the strongest 
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approach would be to combine multiple marker types, because each is associated with 

different strengths and weakness and each provides different types of information. 
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7.3 Future work 

Whilst this thesis addressed a number of questions with the MHC, these were 

approached from a genetic perspective.  Given the importance of the MHC in immunity, 

the next logical step seems to be to use the MHC data towards applied disease questions. 

Infectious diseases have the potential to cause catastrophic population declines and are 

increasingly recognised as posing a significant threat to endangered species (Acevedo-

Whitehouse 2009; Smith 2009).  Disease epidemics have resulted in both population and 

extinctions of endangered species (reviewed in Daszak et al. 2000; Smith 2009), and 

newly emerged diseases such as the chytrid fungus pandemic in amphibians (Berger et 

al. 1998) and infectious facial tumour disease in Tasmanian devils (Hawkins et al. 2006) 

have resulted in species of little conservation concern transitioning to endangered status.  

Overall, the threat of diseases to wildlife species has increased as human populations and 

their accompanying domesticated animals have spread, resulting in spill-over infections 

between domesticated and wild animals (Randall et al. 2006), such as rabies virus 

between domestic dogs and Ethiopian wolves, and feline leukaemia virus between 

domestic cats and the Iberian lynx (López et al. 2009), which makes it a key conservation 

concern.   

As for most canids, African wild dogs are highly susceptible to a number of 

diseases (Woodroffe et al. 2004a; Woodroffe & Ginsberg 1997) and epidemics have 

resulted in dramatic demographic impacts (Woodroffe & Ginsberg 1997).  Rabies caused 

the death of 21/23 AWD pack members in the Masai Mara in 1989 (Kat et al. 1995), and 

was implicated in the loss of the pre-extinction Serengeti-Mara population in 1991 

(Burrows et al. 1995; Ginsberg et al. 1995).  Canine distemper virus (CDV) resulted in the 

death of 10/12 pack members in Chobe National Park, Botswana in the early 1990’s 

(Creel & Creel 2002).  Interestingly, though, wild dogs populations appear to show 

substantial variation in the extent to which they are influenced by disease.  Research is 

currently being conducted to investigate potential ecological differences (e.g. proximity to 

domestic dogs), for these differences.  However, genetic variation, such as differences at 

the MHC, could also be a causal factor underlying these patterns. It would be interesting 

to investigate this further.  Given that many of the most severe disease threats to wild 

dogs are viral, it would be very worthwhile to investigate MHC class I variation, as well as 

genetic variation in disease receptors such as the SLAM gene, which is important for 

responses to CDV (McCarthy et al. 2007).   

Vaccination strategies have been instigated successfully into conservation 

programmes for some endangered species.  For example, in the Ethiopian wolf, Canis 

simensis, a low coverage targeted vaccination strategy successfully prevented the spread 
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of rabies between subpopulations (Haydon et al. 2006).  However, the protection afforded 

by vaccination is dependent on an efficacious response to the vaccination and non-

responders present a problem to many vaccination programmes (for example, measles in 

humans (Hayney et al. 1998).  Vaccination programmes have been implemented on a 

number of occasions in wild dogs.  Unfortunately, wild dogs appear to exhibit extreme 

variation in vaccination response, with a large proportion failing to seroconvert. For 

example, a CDV outbreak in a captive breeding facility in Tanzania resulted in the death of 

49/52 of the dogs, all of which had been vaccinated (van de Bildt et al. 2002).  Similarly, 

wild dogs have died despite rabies vaccination on a number of other occasions (reviewed 

in Creel & Creel 2002).  The cause for this variation in vaccination response is currently 

unknown, but must be ascertained if vaccinations programmes are to be implemented 

effectively.  A number of factors are known to influence post-vaccination antibody levels. 

For example, a recent study of antibody responses to rabies in >10,000 domestic dogs 

showed that animal size, breed, sampling time and vaccine brand significantly influenced 

whether antibody responses were efficacious or not (Kennedy et al. 2007b).  Less 

understood is the contribution of genetics to variation in response to vaccination.  In light 

of MHC disease associations, and the similarity in the immunological response to 

vaccination and that of normal infection, it is possible that variation in vaccination 

response may, in part, be explained by the MHC.  That is, like disease resistance, 

efficacious vaccination response may require specific MHC alleles or heterozygosity 

(Hayney et al. 1998).  The influence of genetics on vaccination response has been best 

studied in humans.  Tan (2001) conducted a comparative study on monozygotic and 

dizygotic twins and found that the response to measles vaccination had a large genetic 

component (heritability - 88.5%).  Furthermore, non response to single-dose measles 

vaccination has been associated with both levels of homozygosity and specific alleles at 

the MHC (Hayney et al. 1998).  More recent research on MHC measles vaccinations have 

shown that, although non-response to measles vaccination is associated with the MHC, 

an efficacious response can normally be achieved with a second dose of vaccine dose 

(St. Sauver et al. 2005).   Consequently, two doses of vaccine are recommended to afford 

protection, regardless of MHC type (St. Sauver et al. 2005).  This research highlights the 

potential contribution of MHC studies in increasing vaccination efficacy but that careful 

research would be required. The use of vaccination in free-ranging wild dogs remains 

contentious.  However, assessments of antibody responses to vaccination in captive 

animals could be an alternative.  In this situation, it would be more feasible to assess 

additional questions relating to heritability of vaccine response.  

Another area requiring further research concerns understanding the causes of 

aggression between wild dogs in captivity, as this greatly restricts management in the 

zoos.  There has been interest as to whether this may in part reflect ‘MHC-related mate 

incompatibility’.  Unfortunately, this would be difficult to test because each zoo 
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approaches introductions in different ways, and in most cases the details and outcomes of 

the introductions are not documented.  Whilst it is possible that the MHC may be involved, 

a thorough behavioural study investigating husbandry approaches would be the best 

starting point to approaching this problem. 



197 
 

 

Appendices



198 
 

 

Appendix 1: Official DLA-DRB1 and DLA-DQB1 names for wild dog MHC alleles. An 
abbreviated name is provided for the DRB alleles; the letter refers to whether the allele is 
derived from either lineage A or B. Also listed are local names which were used in original 
files. 

Official name Abbreviated 
name 

Local name 

   
DRB1*90101 A1 awd01 
DRB1*90102 A2 awd02 
DRB1*90201 A3 awd04 
DRB1*90202 A4 awd09 
DRB1*90203 A5 at04 
DRB1*90204 A6 awd04v 
DRB1*90301 A7 GPB1 
DRB1*90205 A8 STAR 
DRB1*90401 B1 T5819/at09v 
DRB1*90402 B2 m038 
DRB1*90501 B3 awd34 
DRB1*90601 B4 awd08 
DRB1*90602 B5 at09 

DRB1*907011 B6 T5920/bru40 
DRB1*90801 B7 5960 
DRB1*91101 B8 K2MozNa 
DRB1*91001 B9 R504 
DRB1*90403 B10 DISH 
DRB1*90901 B11 R331 

DRB1*907012 B12 lk5237v 
DRB1*90702 B13 lk5237 

   
DQB1*90102  awd14 
DQB1*90201  awd16 
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Appendix 2: Details of monitoring populations in Chapter 4 

 

The Kruger samples were derived from a monitoring area in the Southern section 

of Kruger National Park in North Eastern South Africa [31º6’E, -25º1’N].  Samples were 

collected at two different time periods, 1990-1995 (Gus Mills) and 2007 (Janet Edwards, 

Paulette Bloomer, Harriet Mostert-Davies).  Population size in the monitoring area was 

~400 (1990-1995) and ~100 (2007). 

The Lowveld is located in South Eastern Zimbabwe [32º1’E, -20º8’N], and the 

monitoring area encompassed both the Savé Valley Conservancy monitoring population 

(3487km2) and Malilangwe Wildlife Reserve (384 km2), which is an adjacent, virtually 

contiguous protected area.  The Lowveld samples were collected in 2008-2009 

(Rosemary Groom). 

The Hwange monitoring area includes Hwange National Park and Nyamandlovu 

(an area of land that is contiguous with Hwange national Park and part of the Hwange 

ecosystem) in North Western Zimbabwe [26º9’E, -18º8’N].  Hwange has been influenced 

by artifical translocations of wild dogs from South Africa and other areas of Zimbabwe.  

Therefore, I only classified animals as Hwange, where I were confident they were of pure 

Hwange origin. I collected 19 samples from Hwange; 10 samples from Hwange National 

Park (n=5, unknown packs, sampled prior to 1993 and n=5 from 3 packs, sampled 2006-

7), and 9 samples from Nyamandlovu (n=9, unknown packs, 1995-96) (Joshua Ginsberg, 

Greg Rasmussen).  Sample sizes were too small for a temporal comparison, therefore 

these samples were pooled into a single data set. 

The Okavango encompasses the Okavango delta area including the Moremi 

Game Reserve in Northern Botswana [23º4’E, -19º3’N].  Samples were collected at two 

different time periods, 1991-1993 and 2000-2007 (Tico McNutt).  The five migrant animals 

with the new S5 (T1) haplotype had the following local ID’s; Mank  [(T)06-197], Warne 

[(T)04-188], Nino [(T)02-169; [(T)03-176] Lyra [(T)02-152], Cygnus [(T)01-149]. 

The Selous sampling area was the Northern parts of the Selous game reserve 

(43,600 km2) [38º1’E, -7º6’N].  Samples were collected between 1991-1995 (Scott Creel).  

The three migrant animals with the new S4 (C3) haplotype had the following local ID’s; 

Pluto, Thor and Neptune. 

The Masai Steppe samples were derived from a group of three litters of wild born 

pups that were taken from three dens in the Masai Steppe area in the 1980’s [37º0’E, -

4º5’N] and subsequently moved to a captive facility at the Mkomazai Game Reserve.  
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Specifically, I were provided with DNA from 18 wild born pups, and 15 samples from the 

descendents of a further 5 wild born pups for which DNA samples were not available (Aart 

Visee).  

The Serengeti-Mara is located on the border of Southern Kenya and Northern 

Tanzania.  Samples were collected from wild dog packs residing in or near the Serengeti 

National Park (SNP), Masai Mara Nature Reserve (MMNR), Ngorongoro Conservation 

Area and Loliondo Game Controlled Area, [35º1’E, -2º3’N].  Samples were collected at 

two time periods; Old, n = 20, 1981-1990 (Sarah Cleaveland, Pieter Kat); Recent, 2005 

and 2007 (Emmanuel Masenga).  For more details of Serengeti-Mara see Chapter 3.  

The Laikipia samples were derived from a monitoring area in the Laikipia district 

and parts of the Samburu, Isiolo and Baringo Districts in Kenya [37º2’E, 0º6’N]. Samples 

were collected 2003-2008 (Rosie Woodroffe).  

Monitoring areas with ≤5 samples were collected in the following years; Kajiado 

district 2001 (Rosie Woodroffe), NE-Namibia pre-1990 (Flip Stander) and 2006-2007 

(Robin Lines), Niassa National Reserve 2008 (Colleen Begg; 35º3’E, -18º2’N), Northern 

Sofala Province 2004 (35º4’E, -18º1’N; Jean-Marc André), Ghanzi district Western 

Botswana 2006 (Mark Swarner).   



 

Appendix 3: Information on microsatellite primers used in this study. 

Primer Name Sequence (5'---3') Chromosome Approx # alleles Label and primer mix 

FH2611F GAAGCCTATGAGCCAGATCA 36 20 Ned Multiplex 1 

   FH2611R TGTTAGATGATGCCTTCCTTCT 36    

PEZ12F GTAGATTAGATCTCAGGCAG 3 7 Ned Multiplex 1 

   PEZ12R TAGGTCCTGGTAGGGTGTGG 3    

PEZ08F TATCGACTTTATCACTGTGG 17 10 6-Fam Multiplex 2 

   PEZ08R ATGGAGCCTCATGTCTCATC 17    

FH2785F ATGGCAGGTCAAGAGTATGG 28 12 6-Fam Multiplex 2 

   FH2785R GATAGATCCAAGCCAACACC 28    

FH3965F GTCGCTCAGCAGTTAAGCTC 02 20 6-FAM Multiplex 1 

   FH3965R GAATCCTGGCTCTGCTACTTAC 02    

FH2054F GCCTTATTCATTGCAGTTAGGG 12 7 Hex Multiplex 1 

   FH2054R ATGCTGAGTTTTGAACTTTCC 12    

FH2658F TCTTAGAAATTGCTGGTGGG 14 11 Hex Multiplex 1 

   FH2658R TAAGAAACTGCCAGTCTGTGG 14    

FH3399F TCTCTATGCCTGCAGTTTCC 38 32 Hex Multiplex 1 

   FH3399R TTCTGATGCCCTCATAAAGC 38    

FH2010F AAATGGAACAGTTGAGCATGC 24 5 Ned Multiplex 2 

   FH2010R CCCCTTACAGCTTCATTTTCC 24    

PEZ15F CTGGGGCTTAACTCCAAGTTC 05 9 Hex Multiplex 2 

   PEZ15R CAGTACAGAGTCTGCTTATC 05     
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Appendix 4: Pairwise bootstrapped Dest (Jost 2008) estimates of genetic differentiation 
between African wild dog populaitons.  DRB data above the diagonal, msat below the 
diagonal. Values <0.2 are underlined. O and R depict Old and Recent samples for those 
populations. 

 KruO KruR OkaO OkaR Hwa Low Sel MaSt SerO SerR Lai 
KrugerO  0.06 0.88 0.82 0.85 0.46 0.48 0.83 0.99 0.85 0.59 
KrugerR 0.03  0.93 0.89 0.91 0.26 0.47 0.78 0.99 0.91 0.74 
OkavangoO 0.36 0.27  0.07 0.42 0.63 0.83 0.75 0.78 0.95 0.85 
OkavangoR 0.32 0.26 0.02  0.54 0.90 0.78 0.54 0.61 0.88 0.72 
Hwange 0.27 0.26 0.09 0.06  0.60 0.82 0.44 0.64 0.65 0.69 
Loweld 0.37 0.28 0.46 0.39 0.35  0.61 0.82 1.00 1.00 1.00 
Selous 0.37 0.33 0.51 0.45 0.36 0.45  0.51 0.77 0.44 0.67 
Masai 0.32 0.36 0.32 0.30 0.36 0.55 0.43  0.28 0.53 0.72 
SerengetiO 0.30 0.36 0.37 0.28 0.27 0.35 0.23 0.28  0.63 0.76 
SerengetiR 0.24 0.23 0.21 0.25 0.20 0.46 0.47 0.27 0.14  0.75 
Laikipia 0.39 0.46 0.37 0.30 0.48 0.50 0.33 0.36 0.25 0.28  

 
Appendix 5: Pairwise bootstrapped Fst estimates of genetic differentiation between African 
wild dog populaitons.  DRB data above the diagonal, msat below the diagonal. Values 
<0.2 are underlined. O and R after three letter codes, depict Old and Recent samples for 
those populations. 

 
 

 

 
 

 KruO KruR OkaO OkaR Hwa Low Sel MaSt SerO SerR Lai 
KrugerO  0.02 0.18 0.17 0.20 0.17 0.10 0.21 0.25 0.21 0.23
KrugerR 0.03  0.23 0.21 0.26 0.13 0.12 0.25 0.30 0.28 0.32
OkavangoO 0.17 0.15  0.01 0.08 0.19 0.11 0.15 0.16 0.18 0.28
OkavangoR 0.14 0.12 0.03  0.10 0.24 0.11 0.11 0.13 0.17 0.24
Hwange 0.12 0.11 0.06 0.04  0.21 0.14 0.12 0.17 0.16 0.26
Loweld 0.17 0.19 0.23 0.17 0.17  0.17 0.28 0.33 0.33 0.42
Selous 0.16 0.16 0.19 0.17 0.15 0.23  0.10 0.15 0.09 0.22
Masai 0.18 0.19 0.19 0.16 0.16 0.29 0.20  0.09 0.15 0.29
SerengetiO 0.13 0.16 0.14 0.11 0.09 0.18 0.13 0.16  0.18 0.30
SerengetiR 0.14 0.14 0.11 0.10 0.09 0.23 0.19 0.16 0.09  0.30
Laikipia 0.18 0.21 0.16 0.14 0.17 0.23 0.15 0.18 0.13 0.16  
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Appendix 6: mtDNA haplotypes.  Listed first are the original sequences from Girman et al. 
2001, followed by the corrected/longer sequences identified in Chapter 4. 

 
Original Girman et al. 2001 mtDNA haplotypes (AF335724-AF335731). 
 
>E1-Girman  
CTATTCCCTGATCTCCCCCATATTCACATATTGAGTCAACCTTACTATGCCACGTCGGCACCCACCCTCTTTTCTCCCCT
ATGTACGTCGTGCATTAATGGCTTGCCCCATGCATATAAGCATGTACATGATATTATATTCTTACATAGGACATATCTACT
TAATCTCACAATCTCATTGACCTACAGCAGCAATGAAATGCATATCACCTAGTCCAATAAGGGATTAATCACCATGCCTC
GAGAAACCATCAATCCTTGCTCGTAATGTCCCTCTTCTCGCTCCGGGCCCATACCAATGTGGGGG 
 
>E3-Girman          
CTATTCCCTGATCTCCCCCATATTCACATATTGAGTCAACCTTACTATGCCACGTCGGCACCCACCCTCTTTTCTCCCCT
ATGTACGTCGTGCATTAATGGCTTGCCCCATGCATATAAGCATGTACATGATATTATATTCTTACATAGGACATACCTGC
TTAACCTCACAATCTCATTGACCTACAACAGCAATGAAATGCATATCACCTAGTCCAATAAGGGATTAATCACCATGCCT
CGAGAAACCATCAATCCTTGCTCGTAATGTCCCTCTTCTCGCTCCGGGCCCATACCAATGTGGGGG 
 
>E2-Girman          
CTATTCCCTGATCTCCCCCATATTCACATATTGAGTCAACCTTACTATGCCACGTCGGCACCCACCCTCTTTTCTCCCCT
ATGTACGTCGTGCATTAATGGCTTGCCCCATGCATATAAGCATGTACATGATATTATATTCTTACATAGGACATACCTACT
TAACCTCACAATCTCATTGACCTACAACAGCAATGAAATGCATATCACCTAGTCCAATAAGGGATTAATCACCATGCCTC
GAGAAACCATCAATCCTTGCTCGTAATGTCCCTCTTCTCGCTCCGGGCCCATACCAATGTGGGGG 
 
>Z2-Girman          
CTATTCCCTGATCTCCCCCATATTCACATATTGAGTCAACCTTACTATGCCACGTCGGCACCCACCCTCTTTTCTCCCCT
ATGTACGTCGTGCATTAGTGACTTGCCCCATGCATATAAGCATGTACATAGTATTATACTCTTACATAGGACATACCTAC
TTAGTCTCACAATCTCATTAACCTACAACAGCAATGGAATGCATATCACCTAGTCCAATAAGGGATTAATCACCATGCCT
CGAGAAACCATCAATCCTTGCTCGTAATGTCCCTCTTCTCGCTCCGGGCCCATATTAATGTGGGGG 
 
>Z1-Girman          
CTATTCCCTGATCTCCCCCATATTCACATATTGAGTCAACCTTACTATGCCACGTCGGCACCCACCCTCTTTTCTCCCCT
ATGTACGTCGTGCATTAATGACTTGCCCCATGCATATAAGCATGTACATAGTATTATACTCTTACATAGGACATACCTACT
TAGTCTCACAATCTCATTAACCTACAACAGCAATGGAATGCATATCACCTAGTCCAATAAGGGATTAATCACCATGCCTC
GAGAAACCATCAATCCTTGCTCGTAATGTCCCTCTTCTCGCTCCGGGCCCATATTAATGTGGGGG 
 
>S2-Girman          
CTATTCCCTGATCTCCCCCATATTCACATATTGAGTCAACCTTACTATGCCACGTCGGCACCCACCCTCTTTTCTCCCCT
ATGTACGTCGTGCATTAATGACTTGCCCCATGCATATAAGCATGTACATAGTATTATACTCTTACATAGGACATATCTACT
TAGTCTCACAATCTCATTAACCTATAACAGCAATGGAATGCATATCACCTAGTCCAATAAGGGATTAATCACCATGCCTC
GAGAAACCATCAATCCTTGCTCGTAATGTCCCTCTTCTCGCTCCGGGCCCATATTAATGTGGGGG 
 
>S1-Girman          
CTATTCCCTGATCTCCCCCATATTCACATATTGAGTCAACCTTACTATGCCACGTCGGCACCCACCCTCTTTTCTCCCCT
ATGTACGTCGTGCATTAATGACTTGCCCCATGCATATAAGCATGTACATAATATTATACTCTTACATAGGACATATCTACT
TAGTCTCACAATCTCATTAACCTATAACAGCAATGGAATGCATATCACCTAGTCCAATAAGGGATTAATCACCATGCCTC
GAGAAACCATCAATCCTTGCTCGTAATGTCCCTCTTCTCGCTCCGGGCCCATATTAATGTGGGGG 
 
>S3-Girman         
CTATTCCCTGATCTCCCCCATATTCACATATTGAGTCAACCTTACTATGCCACGTCGGCACCCACCCTCTTTTCTCCCCT
ATGTACGTCGTGCATTAATGACTTACCCCATGCATATAAGCATGTACATAATATTATACTCTTACATAGGACATATCTACT
TAGTCTCACAATCTCATTAACCTATAACAGCAATGGAATGCATATCACCTAGTCCAATAAGGGATTAATCACCATGCCTC
GAGAAACCATCAATCCTTGCTCGTAATGTCCCTCTTCTCGCTCCGGGCCCATATTAATGTGGGGG                                       

 
Corrected mtDNA haplotype sequences and new sequences identified in Chapter 4..  
Sequencing errors were detected for E1, E2, E3.  The two new haplotypes identified were 
S4 and S5.  All of the sequences have been extended by a further 21 bp.  
 
>E1-Marsden (aka K1)    
CTATTCCCTGATCTCCCCCATATTCACATATTGAGTCAACCTTACTATGCCACGTCGGCACCCCATCCTCTTTTCTCCCC
TATGTACGTCGTGCATTAATGGCTTGCCCCATGCATATAAGCATGTACATGATATTATATTCTTACATAGGACATATCTAC
TTAATCTCACAATCTCATTGACCTACAGCAGCAATGAAATGCATATCACCTAGTCCAATAAGGGATTAATCACCATGCCT
CGAGAAACCATCAATCCTTGCTCGTAATGTCCCTCTTCTCGCTCCGGGCCCATACCAATGTGGGGGTCGCTATAACGG
AACTATAC 
>E2-Marsden (aka M1)    
CTATTCCCTGATCTCCCCCATATTCACATATTGAGTCAACCTCACTATGCCACGCCGGCACCCCATCCTCTTTTCTCCCC
TATGTACGTCGTGCATTAATGGCTTGCCCCATGCATATAAGCATGTACATGATATTATATTCTTACATAGGACATACCTAC
TTAACCTCACAATCTCATTGACCTACAACAGCAATGAAATGCATATCACCTAGTCCAATAAGGGATTAATCACCATGCCT
CGAGAAACCATCAATCCTTGCTCGTAATGTCCCTCTTCTCGCTCCGGGCCCATACCAATGTGGGGGTCGCTATAATGGA
ACTATAC 
 
>E3-Marsden (aka K2)   
CTATTCCCTGATCTCCCCCATATTCACATATTGAGTCAACCTCACTATGCCACGTCGGCACCCCATCCTCTTTTCTCCCC
TATGTACGTCGTGCATTAATGGCTTGCCCCATGCATATAAGCATGTACATGATATTATATTCTTACATAGGACATACCTG
CTTAACCTCACAATCTCATTGACCTACAACAGCAATGAAATGCATATCACCTAGTCCAATAAGGGATTAATCACCATGCC
TCGAGAAACCATCAATCCTTGCTCGTAATGTCCCTCTTCTCGCTCCGGGCCCATACCAATGTGGGGGTCGCTATAATGG
AACTATAC 
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>Z2-Marsden         
CTATTCCCTGATCTCCCCCATATTCACATATTGAGTCAACCTTACTATGCCACGTCGGCACCC-
ACCCTCTTTTCTCCCCTATGTACGTCGTGCATTAGTGACTTGCCCCATGCATATAAGCATGTACATAGTATTATACTCTTA
CATAGGACATACCTACTTAGTCTCACAATCTCATTAACCTACAACAGCAATGGAATGCATATCACCTAGTCCAATAAGGG
ATTAATCACCATGCCTCGAGAAACCATCAATCCTTGCTCGTAATGTCCCTCTTCTCGCTCCGGGCCCATATTAATGTGG
GGGTCGCTACAATGGAACTATAC 
 
>Z1-Marsden         
CTATTCCCTGATCTCCCCCATATTCACATATTGAGTCAACCTTACTATGCCACGTCGGCACCC-
ACCCTCTTTTCTCCCCTATGTACGTCGTGCATTAATGACTTGCCCCATGCATATAAGCATGTACATAGTATTATACTCTTA
CATAGGACATACCTACTTAGTCTCACAATCTCATTAACCTACAACAGCAATGGAATGCATATCACCTAGTCCAATAAGGG
ATTAATCACCATGCCTCGAGAAACCATCAATCCTTGCTCGTAATGTCCCTCTTCTCGCTCCGGGCCCATATTAATGTGG
GGGTCGCTACAATGGAACTATAC 
 
>S2-Marsden         
CTATTCCCTGATCTCCCCCATATTCACATATTGAGTCAACCTTACTATGCCACGTCGGCACCC-
ACCCTCTTTTCTCCCCTATGTACGTCGTGCATTAATGACTTGCCCCATGCATATAAGCATGTACATAGTATTATACTCTTA
CATAGGACATATCTACTTAGTCTCACAATCTCATTAACCTATAACAGCAATGGAATGCATATCACCTAGTCCAATAAGGG
ATTAATCACCATGCCTCGAGAAACCATCAATCCTTGCTCGTAATGTCCCTCTTCTCGCTCCGGGCCCATATTAATGTGG
GGGTCGCTACAATGAAACTATAC 
 
>S1-Marsden         
CTATTCCCTGATCTCCCCCATATTCACATATTGAGTCAACCTTACTATGCCACGTCGGCACCC-
ACCCTCTTTTCTCCCCTATGTACGTCGTGCATTAATGACTTGCCCCATGCATATAAGCATGTACATAATATTATACTCTTA
CATAGGACATATCTACTTAGTCTCACAATCTCATTAACCTATAACAGCAATGGAATGCATATCACCTAGTCCAATAAGGG
ATTAATCACCATGCCTCGAGAAACCATCAATCCTTGCTCGTAATGTCCCTCTTCTCGCTCCGGGCCCATATTAATGTGG
GGGTCGCTACAATGAAACTATAC 
 
>S3-Marsden         
CTATTCCCTGATCTCCCCCATATTCACATATTGAGTCAACCTTACTATGCCACGTCGGCACCC-
ACCCTCTTTTCTCCCCTATGTACGTCGTGCATTAATGACTTACCCCATGCATATAAGCATGTACATAATATTATACTCTTA
CATAGGACATATCTACTTAGTCTCACAATCTCATTAACCTATAACAGCAATGGAATGCATATCACCTAGTCCAATAAGGG
ATTAATCACCATGCCTCGAGAAACCATCAATCCTTGCTCGTAATGTCCCTCTTCTCGCTCCGGGCCCATATTAATGTGG
GGGTCGCTACAATGAAACTATAC 
 
>S5-Marsden (aka T1) NEW 
CTATTCCCTGATCTCCCCCATATTCACATATTGAGTCAACCTTACTATGCCACGTCGGCACCC-
ACCCTCTTTTCTCCCCTATGTACGTCGTGCATTAATGACTTGCCCCATGCATATAAGCATGTACATAGTATTATACTCTTA
CATAGGACATATCTACTTAGTCTCACAATCTCATTAACCTACAACAGCAATGGAATGCATATCACCTAGTCCAATAAGGG
ATTAATCACCATGCCTCGAGAAACCATCAATCCTTGCTCGTAATGTCCCTCTTCTCGCTCCGGGCCCATATTAATGTGG
GGGTCGCTACAATGAAACTATAC 
 
>S4-Marsden (aka C1) NEW 
CTATTCCCTGATCTCCCCCATATTCACATATTGAGTCAACCTTACTATGCCACGTCGGCACCC-
ACCCTCTTTTCTCCCCTATGTACGTCGTGCATTAATGACTTACCCCATGCATATAAGCATGTACATAATATTATACTCTTA
CATAGGACATATCTACTTAGTCTCACAATCTCATTAACCTACAACAGCAATGGAATGCATATCACCTAGTCCAATAAGGG
ATTAATCACCATGCCTCGAGAAACCATCAATCCTTGCTCGTAATGTCCCTCTTCTCGCTCCGGGCCCATATTAATGTGG
GGGTCGCTACAATGAAACTATAC 
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Appendix 7 African wild dog MHC class II sequences identified in this PhD. Shown are the 
official nomenclature names, with local names in brackets where applicable. 

 

DLA-DQA1: 
>DQA1-01901 
GACCATGTTGCCAACTACGGCATAAATGTCTACCAGTCTTACGGTCCCTCTGGCCAGTTCACCCATGAATTTGATGGCG
ATGAGGAGTTCTATGTGGACCTGGAGAAGAAGGAAACTGTCTGGCGGCTGCCTGTGTTTAGCACATTTAGAAGTTTTGA
CCCACAGGGTGCACTGAGAAACTTGGCTATAATAAAACAAAACTTGAACATCCTGACTAAAAGGTCCAaCCAAAcTGCtG
CTaCCAaT 
 
DLA-DQB1: 
>dqb-90101(awd14) 
gATTtCGTgTaCcAGTTTAAGGGCGAGTGCTATTTCACCAACGGGACGGAGCGGGTGCGGCTTCTGACTAAACACATCTA
TAACCGGGAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTCACGGAGCTCGGGCGGCCCGAC
GCTGAGTACTGGAACCGGCAGAAGGACGAGGTGGACCGGGTACGGGCCGAGGTGGACACGGTGTGCAGACACAACT
ACGGGATGGAGGAGCTCACCACGTTGCAGCGGCGA 
>dqb-90201 (awd16) 
gATTtCgTGTaCcAGTTTAaGGGCGAGTGCTATTTCACCAACGGGACGGAGCGGGTGCGGTTCGTGGACAGATACATCTA
TAACCGGGAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTCACGGAGCTCGGGCGGCCCGAC
GCTGAGTACTGGAACCGGCAGAAGGACGAGGTGGACCGGGTACGGGCCGAGGTGGACACGGTGTGCAGACACAACT
ACGGGATGGAGGAGCTCACCACGTTGCAgCGGCGA 
 
DLA-DRB1: 
>DRB-90101 (AWD01) 
CATTTCTTGAACGTGGCAAAGTCCGAGTGCTATTTCACCAACGGGACGGAGCGGGTGCGGTTCGTGGACAGATACATC
TATAACCGGGAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTCACGGAGCTCGGGCGGCCCG
ACGCTGAGTACCTGAACCGGCAGAAGGAGATCTTGGAGCAGGAGCGGGCCGCGGTGGACACCTACTGCAGACACAAC
TACGGGGTGGGCGAGAGCTTCACGGTGCAGCGGCGA 
>DRB-90102 (AWD02) 
CATTTCTTGAACGTGGCAAAGTCCGAGTGCTATTTCACCAACGGGACGGAGCGGGTGCGGTTCGTGGACAGATACATC
TATAACCGGGAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTCACGGAGCTCGGGCGGCCCG
ACGCTGAGTACCTGAACCGGCAGAAGGAGATCTTGGAGCAGGAGCGGGCCGCGGTGGACACCTACTGCAGACACAAC
TACGGGGTGATTGAGAGCTTCACGGTGCAGCGGCGA 
>DRB-90201 (AWD04) 
CATTTCTTGAACGTGGCAAAGTCCGAGTGCTATTTCACCAACGGGACGGAGCGGGTGCGGTTCGTGGACAGATACATC
TATAACCGGGAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTCACGGAGCTCGGGCGGCCCG
ACGCTGAGTACTGGAACCGGCAGAAGGAGATCTTGGAGCAGGAGCGGGCCGCGGTGGACACCTACTGCAGACACAA
CTACGGGGTGATTGAGAGCTTCACGGTGCAGCGGCGA 
>DRB-90202 (AWD09) 
CATTTCTTGAACGTGGCAAAGTCCGAGTGCTATTTCACCAACGGGACGGAGCGGGTGCGGTTCGTGGACAGATACATC
TATAACCGGGAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTCACGGAGCTCGGGCGGCCCG
ACGCTGAGTACTGGAACCGGCAGAAGGAGATCTTGGAGCAGGAGCGGGCCGCGGTGGACACCTACTGCAGACACAA
CTACGGGGTGGGCGAGAGCTTCACGGTGCAGCGGCGA 
>DRB-90203 (AT04) 
CATTTCTTGAACGTGGCAAAGTCCGAGTGCTATTTCACCAACGGGACGGAGCGGGTGCGGTTCGTGGACAGATACATC
TATAACCGGGAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTCACGGAGCTCGGGCGGCCCG
ACGCTGAGTACTGGAACCGGCAGAAGGAGATCTTGGAGCAGGAGCGGGCCGCGGTGGACACGGTGTGCAGACACAA
CTACGGGGTGGGCGAGAGCTTCACGGTGCAGCGGCGA 
>DRB-90204 (AWD04V) 
CATTTCTTGAACGTGGCAAAGTCCGAGTGCTATTTCACCAACGGGACGGAGCGGGTGCGGTTCGTGGACAGATACATC
TATAACCGGGAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTACCGGGCGGTCACGGAGCTCGGGCGGCCCG
ACGCTGAGTACTGGAACCGGCAGAAGGAGATCTTGGAGCAGGAGCGGGCCGCGGTGGACACCTACTGCAGACACAA
CTACGGGGTGATTGAGAGCTTCACGGTGCAGCGGCGA 
>DRB-90205(STAR) 
CACATTTCTTGAACGTGGCAAAGTCCGAGTGCTATTTCACCAACGGGACGGAGCGGGTGCGGTTCGTGGACAGATACA
TCTATAACCGGGAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTCACGGAGCTCGGGCGGCC
CGACGCTGAGTACTGGAACCGGCAGAAGGAGATCTTGGAGCAGGAGCGGGCCGCGGTGGACACGGTGTGCAGACAC
AACTACGGGGTGATTGAGAGCTTCACGGTGCAGCGGCGA 
>DRB-90301 (GPB1) 
CATTTCTTGAACGTGGCAAAGTCCGAGTGCTATTTCACCAACGGGACGGAGCGGGTGCGGTTCGTGGACAGATACATC
TATAACCGGGAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTCACGGAGCTCGGGCGGCCCG
ACGCTGAGTACTGGAACCGGCAGAAGGAGCTCTTGGAGCAGAGGCGGGCCGAGGTGGACACGGTGTGCAGACACAA
CTACGGGGTGGGCGAGAGCTTCACGGTGCAGCGGCGA 
>DRB-90401 (T5819/at09v) 
CATTTCGTGTACCAGTTTAAGGGCGAGTGCTATTTCACCAACGGGACGGAGCGGGTGCGGTTTCTGGCGAGAAGCATC
TATAACCGGGAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTCACGGAGCTCGGGCGGCCCG
ACGCTGAGTACTGGAACCGGCAGAAGGAGCTCTTGGAGCAGAGGCGGGCCGAGGTGGACACGGTGTGCAGACACAA
CTACGGGGTGGGCGAGAGCTTCACGGTGCAGCGGCGA 
>DRB-90402 (M038) 
CATTTCGTGTACCAGTTTAAGGGCGAGTGCTATTTCACCAACGGGACGGAGCGGGTGCGGTTTCTGGCGAGAAGCATC
TATAACCGGGAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTACCGGGCGGTCACGGAGCTCGGGCGGCCCG
ACGCTGAGTACTGGAACCGGCAGAAGGAGCTCTTGGAGCAGAGGCGGGCCGAGGTGGACACCTACTGCAGACACAA
CTACGGGGTGGGCGAGAGCTTCACGGTGCAGCGGCGA 
>DRB-90403 (DISH) 
CATTTCGTGTACCAGTTTAAGGGCGAGTGCTATTTCACCAACGGGACGGAGCGGGTGCGGTTTCTGGCGAGAAGCATC
TATAACCGGGAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTCACGGAGCTCGGGCGGCCCG
ACGCTGAGTACTGGAACCGGCAGAAGGAGCTCTTGGAGCAGAGGCGGGCCGAGGTGGACACGGTGTGCAGACACAA
CTACGGGGTGATTGAGAGCTTCACGGTGCAGCGGCGA 
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>DRB-90501 (AWD34) 
CATTTCGTGTACCAGTTTAAGGGCGAGTGCTATTTCACCAACGGGACGGAGCGGGTGCGGTTTCTGGCGAGAAGCATC
TATAACCGGGAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTACCGGGCGGTCACGGAGCTCGGGCGGCCCG
ACGCTGAGTACCGGAACCGGCAGAAGGAGCTCTTGGAGCAGAGGCGGGCCGAGGTGGACACCTACTGCAGACACAA
CTACGGGGTGGGCGAGAGCTTCACGGTGCAGCGGCGA 
>DRB-90601(AWD08) 
CATTTCGTGTACCAGTTTAAGGGCGAGTGCTATTTCACCAACGGGACGGAGCGGGTGCGGCTTCTGGCGAGAAGCATC
TATAACCGGGAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTCACGGAGCTCGGGCGGCCCG
ACGCTGAGTACTGGAACCGGCAGAAGGAGCTCTTGGAGCAGAGGCGGGCCGAGGTGGACACGGTGTGCAGACACAA
CTACGGGGTGATTGAGAGCTTCACGGTGCAGCGGCGA 
>DRB-90602 (AT09) 
CATTTCGTGTACCAGTTTAAGGGCGAGTGCTATTTCACCAACGGGACGGAGCGGGTGCGGCTTCTGGCGAGAAGCATC
TATAACCGGGAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTCACGGAGCTCGGGCGGCCCG
ACGCTGAGTACTGGAACCGGCAGAAGGAGCTCTTGGAGCAGAGGCGGGCCGAGGTGGACACGGTGTGCAGACACAA
CTACGGGGTGGGCGAGAGCTTCACGGTGCAGCGGCGA 
>DRB-907011 (T5920/bru40) 
CATTTCGTGTACCAGTTTAAGGGCGAGTGCTATTTCACCAACGGGACGGAGCGGGTGCGGCTTCTGGCGAGAAGCATC
TATAACCGGGAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTCACGGAGCTCGGGCGGCCCG
ACGCTGAGTACCGGAACCGGCAGAAGGAGCTCTTGGAGCAGAGGCGGGCCGCGGTGGACACCTACTGCAGACACAA
CTACGGGGTGGGCGAGAGCTTCACGGTGCAGCGGCGA 
>DRB-907012 (lk5237V2) 
CATTTCGTGTACCAGTTTAAGGGCGAGTGCTATTTCACCAACGGGACAGAGCGGGTGCGGCTTCTGGCGAGAAGCATC
TATAACCGGGAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTCACGGAGCTCGGGCGGCCCG
ACGCTGAGTACCGGAACCGGCAGAAGGAGCTCTTGGAGCAGAGGCGGGCCGCGGTGGACACCTACTGCAGACACAA
CTACGGGGTGGGCGAGAGCTTCACGGTGCAGCGGCGA 
>DRB-90702 (LK5237) 
CATTTCGTGTACCAGTTTAAGGGCGAGTGCTATTTCACCAACGGGACGGAGCGGGTGCGGCTTCTGGCGAGAAGCATC
TATAACCGGGAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTACCGGGCGGTCACGGAGCTCGGGCGGCCCG
ACGCTGAGTACCGGAACCGGCAGAAGGAGCTCTTGGAGCAGAGGCGGGCCGCGGTGGACACCTACTGCAGACACAA
CTACGGGGTGGGCGAGAGCTTCACGGTGCAGCGGCGA 
>DRB-90801(5960) 
CATTTCGTGTACCAGTTTAAGGGCGAGTGCTATTTCACCAACGGGACGGAGCGGGTGCGGCTTCTGGCGAGAAGCATC
TATAACCGGGAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTCACGGAGCTCGGGCGGCCCG
ACGCTGAGTACCTGAACCGGCAGAAGGAGATCTTGGAGCAGGAGCGGGCCGCGGTGGACACCTACTGCAGACACAAC
TACGGGGTGGGCGAGAGCTTCACGGTGCAGCGGCGA 
>DRB-90901 (R331) 
CATTTCGTGTACCAGTTTAAGGGCGAGTGCTATTTCACCAACGGGACGGAGCGGGTGCGGCTTCTGGCGAGAAGCATC
TATAACCGGGAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTACCGGGCGGTCACGGAGCTCGGGCGGCCCG
ACGCTGAGTACCGGAACCGGCAGAAGGAGCTCTTGGAGCAGAGGCGGGCCGAGGTGGACACCTACTGCAGACACAA
CTACGGGGTGGGCGAGAGCTTCACGGTGCAGCGGCGA 
>DRB-91001 (R504) 
CATTTCGTGTACCAGTTTAAGGGCGAGTGCTATTTCACCAACGGGACGGAGCGGGTGCGGCTTCTGGCGAGAAGCATC
TATAACCGGGAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTCACGGAGCTCGGGCGGCCCG
ACGCTGAGTACCTGAACCGGCAGAAGGAGCTCTTGGAGCAGAGGCGGGCCGAGGTGGACACCTACTGCAGACACAAC
TACGGGGTGGGCGAGAGCTTCACGGTGCAGCGGCGA 
>DRB-91101 (K2MOZNA) 
CATTTCGTGTACCAGTTTAAGGGCGAGTGCTATTTCACCAACGGGACGGAGCGGGTGCGGCTTCTGGCGAGAAGCATC
TATAACCGGGAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTCACGGAGCTCGGGCGGCCCG
ACGCTGAGTACCTGAACCGGCAGAAGGAGATCTTGGAGCAGGAGCGGGCCGCGGTGGACACGGTGTGCAGACACAA
CTACGGGGTGATTGAGAGCTTCACGGTGCAGCGGCGA 
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Appendix 8: Donator ID and my corresponding lab ID for Lycaon pictus samples collated 
for this PhD (N.B. not all samples were used/useable), plus full details of EU zoo samples. 
 
South Africa - Kruger (Old) National Park Lycaon pictus samples from Southern section: 
Donated by Gus Mills via RK Wayne (Girman study) 

Donator  
sample ID 

Clare's lab 
ID 

Donator  
sample ID 

Clare's lab 
ID 

PF7 RKW 274 DM22 RKW 470 

AF2 RKW 283 DM25 RKW 471 

AF6 RKW 284 DM24 RKW 472 

SKAF RKW 287 DM23 RKW 473 

SKAF RKW 288 DF27 RKW 474 

SRM5 RKW 289 DF31 RKW 475 

AF5 RKW 290 GF1 RKW 476 

SKAF RKW 295 DF1 RKW 487 

DPNK9 RKW 297 DN-M1, RKW 5301 

NM1 RKW 306 SF-7, RKW 5302 

TM2, RKW 310 SM-10 RKW 5303 

SRF2 RKW 314 SM-3 RKW 5304 

Lpi RKW 321 WD7 RKW 5305 

FM5 RKW 323 DF18 RKW 550 

DPNK2 RKW 330 MF23 RKW 564 

AM12 RKW 331 MF22 RKW 565 

SRM3 RKW 337 DF9 RKW 566 

MF7 RKW 338 DM15 RKW 567 

MM21 RKW 342 DM19 RKW 568 

SKAF RKW 344 DF16 RKW 569 

DPNK8 RKW 345 DM16 RKW 570 

SM12 RKW 346 DF22 RKW 571 

SRM4 RKW 347 

MF20 RKW 421 

AF20 RKW 422 

AM10 RKW 423 

PM12 RKW 425 

TF1 RKW 427 

TM3 RKW 428 

DM21 RKW 429 

SF13 RKW 431 

PM11 RKW 432 

DM20 RKW 433 

ZM3 RKW 442 

PM10 RKW 452 

DF10 RKW 453 

DF20 RKW 454 

ZM2 RKW 455 

DF13 RKW 456 

MM10 RKW 458 

AF8 RKW 459 

ZM1 RKW 460 

AM8 RKW 461 

DF11 RKW 462 

NF2 RKW 463 

SM13 RKW 464 

RM1 RKW 466 

EM1 RKW 467 

MF10 RKW 468 

PF12, RKW 469 
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South Africa - Kruger (Recent) National Park Lycaon pictus samples, from Southern section 
Donated by P.Bloomer, H.Mostert-Davies, J.Edwards. 

Donator  
sample 
ID 

Clare's 
lab ID 

VL02074 K2074 

VL02075 K2075 

VL02076 K2076 

VL02077 K2077 

VLO2078 K2078 

VL02083 K2083 

VL02087 K2087 

VL02088 K2088 

VL02089 K2089 

VL02090 K2090 

VL02093 K2093 

VL02094 K2094 

VL02095 K2095 

VL02096 K2096 

VL02138 K2138 

VL02139 K2139 

VL02140 K2140 

VL02141 K2141 

VL02142 K2142 

VL02143 K2143 

VL02144 K2144 

VL02145 K2145 

VL02146 K2146 

VL02147 K2147 

 
Botswana – Okavango (Old) Lycaon pictus samples  
Donated by Tico McNutt via RK Wayne (Girman study) 
 

Donator  sample ID Clare's lab ID 
Bot41 Negro  RKW 496 
Bot42 Leah  RKW 497 
Bot44 PACT  RKW 498 
Bot45 FETCH  RKW 499 
Bot46 Cider  RKW 500 
Bot47 Schooner  RKW 501 
Bot48 Tag  RKW 502 
Bot49  RKW 503 
Bot50 Twilight  RKW 504 
Bot51 Isaac  RKW 505 
Bot53 LUNA   RKW 506 
Bot54 Bullseye  RKW 507 
Bot55 Carley (Carliog??)  RKW 508 
Bot57 Polyspock  RKW 509 
Bot59 Rugby  RKW 510 
Bot60  RKW 511 
Bot61  RKW 512 
Bot62  RKW 513 
Bot63  RKW 514 
Tinman  RKW 6209 

 
 
 
 



209 
 

 

Botswana – Okavango (Recentycaon pictus samples  
Donated by Tico McNutt  
 

Donator  
sample ID 

Other sample 
ID/tube label 

Clare's lab 
ID 

Donator  
sample ID 

Other sample 
ID/tube label 

Clare's lab 
ID 

Ander Lpi 144  T00-144 Costello* LPI 05-192  T05-192 

Moonstone LPI 172  T00-172  ? LPI 05-193  T05-193 

Scarp LPI 173  T00-173  ? LPI 05-194  T05-194 

Ts LPI 01-143 T01-143 Turkana LPI 06-195  T05-195 

Dundee LPI 01-144 T01-144  ? LPI 06-196  T06-196 

Meg LPI 01-145 T01-145  ? LPI 06-197  T06-197 

  LPI 01-146 T01-146 Yocco LPI 07-198  T07-198 

Rap* LPI 01-148 T01-148 Galileo Lpi 07-199  T07-199 

Cygnus LPI 01-149 T01-149 Pavav Lpi 07-200  T07-200 

Hewitt LPI 01-150 T01-150  ? Lpi 07-201  T07-201 

  LPI 02-151 T02-151 Verreaux Lpi 07-203 T07-203 

Lyra LPI 02-152 T02-152  ? Female pup ioivias  T-IPF 

Soya LPI 02-153 T02-153  ? Male pup ioivia's  T-IPM 

Neve LPI 02-154 T02-154 

Safer LPI 02-155 T02-155 

Pooni* LPI 02-156 T02-156 

Hinich LPI 02-157 T02-157 

Chacha LPI 02-158 T02-158 

Dombek LPI 02-159 T02-159 

Lady LPI 02-160 T02-160 

  LPI 02-161 T02-161 

Ponni* LPI 02-162 T02-162 

Njooki LPI 02-164 T02-164 

Minnie* LPI 02-165 T02-165 

Holmes LPI 02-166 T02-166 

Agate* LPI 02-167 T02-167 

Nino LPI 02-169 T02-169 

Manka LPI 02-170 T02-170 

Todaz LPI 03-171 T03-171 

  LPI 03-174 T03-174 

Sharpa LPI 03-175 T03-175 

Nino LPI 03-176 T03-176 

Rakuka LPI 03-177 T03-177 

Rap* LPI 03-178 T03-178 

Costello* LPI 03-179 T03-179 

Butterfly LPI 04-182 T04-182 

Minnie* LPI 04-183  T04-183 

Euph LPI 04-184  T04-184 

Gangs LPI 04-185  T04-185 

Agate* LPI 04-186  T04-186 

Matopi LPI 04-187  T04-187 

Warne LPI 04-188  T04-188 

Hinkley LPI 05-189  T05-189 

Mathews LPI 05-190  T05-190 

Punter LPI 191-05  T05-191 
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Zimbabwe - Hwange Lycaon pictus samples  
Donated by Greg Rasmussen 

Donator ID 
Clare’s Lab 

ID 

A137 G-A137 

ROMA 33 G-ROM33 

M038 08-08-07 G-M038 

Marble Hwange G-MARBLE 

PITA, Alpha Male G-PITA 

UM39 G-UM39 

 
Zimbabwe - Hwange Lycaon pictus samples  
Donated by Joshua Ginsberg via RK Wayne (Girman study)  

Donator ID 
Clare’s 
Lab ID 

ZIM CB Lpi DNA RKW 518 

Zim CR Lpi DNA RKW 516 

ZIM NO Lpi DNA RKW 517 

ZIM XX Lpi DNA RKW 519 

ZIM ZZ Lpi DNA RKW 520 

 
Zimbabwe - Hwange Nyamandlovu Lycaon pictus samples  
Donated by Greg Rasmussen via Linda Munson 

Donator ID Lab ID 

ZWD10 RKW 6211 

ZWD11 RKW 6212 

ZWD12 RKW 6213 

ZWD13 RKW 6214 

ZWD14 RKW 6215 

ZWD15 RKW 6216 

ZWD16 RKW 6217 

ZWD17 RKW 6218 

ZWD18 RKW 6219 

ZWD19 RKW 6220 

ZWD20 RKW 6221 

ZWD21 RKW 6222 

ZWD22 RKW 6223 

ZWD23 RKW 6224 

ZWD24 RKW 6225 

ZWD25 RKW 6226 

ZWD26 RKW 6227 

ZWD27 RKW 6228 

ZWD9 RKW 6210 

 
 
Zimbabwe –African wild dogs translocated into Hwange  
Donated by Greg Rasmussen 
Donator ID Clare’s Lab ID 

ANGELA G-ANGEL 

#40 Brutus G-BRU40 

JOHN G-JOHN 

LONDZI / LOND G-LONDZI 

#30 Minto G-MIN30 

PB1 G-PB1 

PB22 G-PB22 

PB29 G-PB29 

PB3 G-PB3 

PBS 08-05-07 G-PBS1 

PBS 05-08-07 G-PBS2 

37 Male Rambo G-RAM30 

SIPHO G-SIPHO 

ULAKA G-ULAK 

B 13-8-07 G-B138 
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Zimbabwe – Lowveld (Savé & Malilangwe) Lycaon pictus samples  
Donated by R.Groom 

Donator  sample ID Other ID Clare’s Lab ID  

LWDP F1 Spanners ZLF1 

LWDP F2 Racoon ZLF2 

LWDP F3 Sandy ZLF3 

LWDP M1 Blackie ZLM1 

LWDP M2 Survivor ZLM2 

LWDP M3 Darkie ZLM3 

DWD 001  ZL01 

DWD 003  ZL03 

DWD 004  ZL04 

DWD 005 Sandy ZL05 

DWD 007  ZL07 

DWD 008  ZL08 

Samples from Malilangwe 

MAL Pups 1-4  Mal-1 

MAL Pups 1-4  Mal-2 

MAL Pups 1-4  Mal-3 

MAL Pups 1-4  Mal-4 

Non-Lycaon pictus samples 

DWD 002  ZL02 

 
Namibia –Lycaon pictus samples  Donated by Robin Lines 

Donator sample ID Clare’s Lab ID 

AWD#92 RKW 6203 

DJOXY, AWD#89 RKW 6200 

TJEKA M1, AWD#91 RKW 6202 

TJEKA M2, AWD#90 RKW 6201 
 
 

Namibia –Lycaon pictus samples  Donated by F.Stander 
Donator sample ID Clare’s Lab ID 

Mangetti ZG-Mang 

Canal ZG-Canal 
 
 

Bostwana – Ghanzi Lycaon pictus samples  Donated by M.J. Swarner 
Donator sample ID Clare’s Lab ID 

MJS-F2 BK-MJSF2 
 
 

Mozambique –Ciné/Sofala Lycaon pictus samples  Donated by J-M André 
Donator sample ID Clare’s Lab ID 

M0Z SOF1 AT003, CMAWMZ001T 

M0Z SOF2 AT004, CMAWMZ002T 

M0Z SOF3 AT005, CMAWMZ003T 
 
 

Mozambique – Niassa Reserve Lycaon pictus samples  Donated by C.Begg 
Donator sample ID Clare’s Lab ID 

 MozNa/MozNb  
 
 

Tanzania – Captive Lycaon pictus samples (Mkomzai) Donated by R.Woodroffe 
Donator sample ID Clare’s Lab ID 

 WDP14a 
 
 

Kenya – Magadi Road Lycaon pictus samples Donated by R.Woodroffe 

Donator sample ID Clare’s Lab ID 

LPI020 S-MagRd 
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Tanzania – Selous Lycaon pictus samples  
Donated by Scott Creel via R.K. Wayne (Girman study) 

Donator  
sample ID Clare’s Lab ID 

ARCHER RKW 12157 

BLONDY RKW 12158 

BRACKY RKW 6204 

CALL RKW 12159 

Dish RKW 5306 

EF30 RKW 6208 

HAT RKW 6205 

K2 RKW 12164 

KING RKW 12156 

MAGNUM RKW 12150 

MBILI RKW 12165 

MM1 MM1 

MPIRA RKW 12151 

Neptune Neptune 

PILGRIM RKW 12152 

PLUTO RKW 12149 

SALLY RKW 6207 

Shiva RKW 12595 

SOCKO RKW 6206 

Star RKW 12564 

Thor RKW 12162 

Wengi Pup RKW 5307 

Wishbone RKW 12163 

 
 
Tanzania – Masai Steppe Lycaon pictus samples  
Donated by Aart Visée 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Donator ID  Clare’s Lab ID Donator ID  Clare’s Lab ID 

104 MK104 298 MK298 

202 MK202 300 MK300 

251 MK251 305 MK305 

261 MK261 308 MK308 

262 MK262 310 MK310 

263 MK263 333 MK333 

264 MK264 335 MK335 

265 MK265 336 MK336 

269 MK269 337 MK337 

274 MK274 348 Kisi MK348 Kisi 

276 MK276 348 Kimo MK348 Kimo 

284 MK284 368 MK368 

285 MK285 389 MK389 

289 MK289 448 MK448 

291 MK291 651 MK651 

294 MK294 730 MK730 

296 MK296 
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Tanzania –Old Serengeti Lycaon pictus samples  
Donated by Sarah Cleaveland via R.K. Wayne (Girman study) 
Donator ID Clare’s Lab ID 

SRI 15, Collar RKW 154 

SRI 14, Mwenzi RKW 165 

SRI 3 RKW 166 

D.HGm RKW 5309 

D583 RKW 5310 

Fleur RKW 5311 

Legs RKW 5312 

Limp RKW 5314 

MDM RKW 5315 

J1 SRI ♀ RKW 328 

 
Kenya –Old Masai Mara Lycaon pictus samples  
Donated by Pieter Kat via R.K. Wayne (Girman study)  

Donator ID Clare’s Lab ID 

Umlaut RKW 171 

Saddle RKW 176 

Ring mara RKW 177 

SCPHP RKW 179 

Bat- 11 RKW 236 

Arror  RKW 285 

Saddle RKW 176 & 294 

Bald ♂ RKW 444 

Scorpian Hp RKW 446 

H Lpi ♂ RKW 447 

B.Guards  RKW 5308 

 
 
Tanzania – Re-established Serengeti - Mara Lycaon pictus samples  
Donated by Sarah Cleaveland & E.Masenga  

Donator ID Clare’s Lab ID 

WD 12. S-WD1205 

WD 13.05 S-WD1305 

Lycaon Dog 1 S-D1LOS 

Lycaon Dog 2 S-D2LOS 

Lycaon  S-FMUT 

LPI-1537 S-1537 

LPI-1539 S-1539 

LPI-1541 S-1541 

LPI-1543 S-1543 

LPI-1545 S-1545 

LPI-1547 S-1547 

OL0707  S-OL0707 

WD 09.05  S-WD0905 

WD 10.05  S-WD1005 

WD 11.05  S-WD1105 

WD 14.05  S-WD1405 
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Kenya – Laikipia Lycaon pictus samples  
Donated by R.Woodroffe 
 

Donator ID 
Clare’s 
Lab ID Other ID's Donator ID 

Clare’s 
Lab ID Other ID's 

WDF 12, LPI018 AB001 CMAWLA001B WDF 27, LPI034 AB055 CMAWLA053B 

WDF 28, LPI035 AB002 CMAWLA002B WDM 29, LPI036 AB056 CMAWLA054B 

WDM 30, LPI037 AB003 CMAWLA003B WDM 30, LPI037 AB057 CMAWLA055B 

WDM 32, LPI043 AB004 CMAWLA004B WDM 31, LPI038 AB058 CMAWLA056B 

WDF 33, LPI044 AB005 CMAWLA005B WDM 53, LPI064 AB059 CMAWLA057B 

WDM 34, LPI045 AB006 CMAWLA006B WDM 54, LPI065 AB060 CMAWLA058B 

WDF 35, LPI046 
AB007,  
WDF 35 CMAWLA007B WDM 55, LPI066 AB061 CMAWLA059B 

WDM 36, LPI047 AB008 CMAWLA008B WDM 56, ???? AB062 CMAWLA060B 

WDM 37, LPI048 AB009 CMAWLA009B WDM 57, ???? AB063 CMAWLA061B 

WDF 38, LPI049 AB010 CMAWLA010B WDF 58, LPI069 AB064 CMAWLA062B 

WDM 39, LPI050 AB011 CMAWLA011B LPP 025 LPI009, LPI009 AB065 CMAWLA063B 

WDM 40, LPI051 AB012 CMAWLA012B LPP 019 LPI002/008, LPI008 AB066 CMAWLA064B 

WDF 41, LPI052 AB013 CMAWLA013B LPP 026 LPI 010, LPI010 AB067 CMAWLA065B 

WDF 42, LPI053 AB014 CMAWLA014B LPI 032  AB071   

WDF 43, LPI054 AB015 CMAWLA015B LPI 015, LPP 093 AB072   

WDM 44, LPI055 AB016 CMAWLA016B LPI029, LPI029 AT002 CMAWLA066T 

WDM 45, LPI056 AB017 CMAWLA017B WDF 59, LPI 070 WDF 59   

WDM 46, LPI057 AB018 CMAWLA018B WDF 62, LPI 073 WDF 62   

WDM 47, LPI058 AB019 CMAWLA019B WDF 66, LPI 077 WDF 66   

WDM 48, LPI059 AB020 CMAWLA020B WDF 67, LPI 078 WDF 67   

WDM 49, LPI060 AB021 CMAWLA021B WDF 69, LPI 080 WDF 69   

WDM 50, LPI061 AB022 CMAWLA022B WDF 70, LPI 081 WDF 70   

WDM 51, LPI062 AB023 CMAWLA023B WDF 72, LPI 083 WDF 72   

WDF 52, LPI063 AB024 CMAWLA024B WDF 72, LPI 083 WDF 72   

WDF 2, LPI002 AB025 CMAWLA025B WDF 73, LPI 084 WDF 73   

WDF 2, LPI002 AB026 CMAWLA026B WDF 74, LPI 085 WDF 74   

WDM 5, LPI005 AB027 CMAWLA027B WDF 77, LPI 088 WDF 77   

WDF 6, LPI006 AB028 CMAWLA028B WDF 78, LPI 089 WDF 78   

WDF 7, LPI011 AB029 CMAWLA029B WDF 79, LPI 090 WDF 79   

WDF 8, LPI012 AB030 CMAWLA030B WDM 49, LPI 060 WDM 49   

WDF 8, LPI012 AB031 CMAWLA031B WDM 54, LPI 065 WDM 54   

WDF 9, LPI013 AB032 CMAWLA032B WDM 60, LPI 071 WDM 60   

WDM 10, LPI014 AB033 CMAWLA033B WDM 61, LPI 072 WDM 61   

WDM 11, LPI015 AB034 CMAWLA034B WDM 63, LPI 074 WDM 63   

WDF 12, LPI016 AB035 CMAWLA035B WDM 64, LPI 075 WDM 64   

WDM 13, LPI017 AB036 CMAWLA036B WDM 65, LPI 076 WDM 65   

WDF 14, LPI020 AB038 CMAWLA037B WDM 68, LPI 079 WDM 68   

WDM 15, LPI021 AB039 CMAWLA038B WDM 71, LPI 082 WDM 71   

WDM 16, LPI022 AB041 CMAWLA039B WDM 75, LPI 086 WDM 75   

WDF 17, LPI023 AB042 CMAWLA040B WDM 76, LPI 087 WDM 76   

WDM 18, LPI024 AB043 CMAWLA041B 

WDM 19, LPI025 AB044 CMAWLA042B 

WDF 20, LPI026 AB045 CMAWLA043B 

WDF 21, LPI027 AB046 CMAWLA044B 

WDF 21, LPI027 AB047 CMAWLA045B 

WDM 22, LPI028 AB048 CMAWLA046B 

WDM 23, LPI030 AB049 CMAWLA047B 

WDF 24, LPI031 AB050 CMAWLA048B 

WDF 25, LPI032 AB051 CMAWLA049B 

WDF 28, LPI035 AB052 CMAWLA050B 

WDF 25, LPI032 AB053 CMAWLA051B 

WDF 26, LPI033 AB054 CMAWLA052B 
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EUzoos samples: 
B=blood, S=Serum, T=tissue. SAI = South African Imports; SAH = Descendent from SAI. #T 
numbers are temporary ID. Most cases studbook ID = DNA ID. 

Studbook 
# Zoo Local/other ID Sex 

Sampling 
date SAI SAH DOB 

Sample  
type 

DNA 
Extracted 

#3083 LYM P97062 - Benguela M 26/02/2002 Y   28/09/1995 B, S 05/03/2008 

#5117 LYM P93069 - Rafiki M 03/09/2005     22/11/1993 S 18/02/2008 

#5237 AMS M95168 F  01/10/2007     29/10/1995 B, S, T 17/10/2007 

#5331 LYM P20048 M  10/01/2008   Y 04/11/2005 B, S 21/01/2008 

#5333 ATT MLYP05 F  16/01/2008   Y 08/01/1998 B, S 01/02/2008 

#5345 ROM 3207 M 19/02/2008     16/11/1998 B, S, T 05/03/2008 

#5353 AMN LP18 M 25/06/2008       B, S 12/08/2008 

#5355 AMN LP20 F 25/06/2008     13/10/1999 B, S 12/08/2008 

#5361 EBE LYC003 F  01/11/2007   Y 17/10/1999 B, S, T 22/11/2007 

#5364 MUN 044015-Pointl F  16/10/2007   Y 17/10/1999 B, S 17/10/2007 

#5365 MUN 044016-Salome F  16/10/2007   Y 17/10/1999 B, S 17/10/2007 

#5369 HIL M99332 M Jul-08       B, S 12/08/2008 

#5373 BAS 393365 M         B, S 12/08/2008 

#5376 LIS M00113 F  14/01/2008     26/10/1999 B, S 28/01/2008 

#5394 LIS M01112 M  14/01/2008     30/10/1999 B, S 01/02/2008 

#5395 LIS M01113 M  14/01/2008     30/10/1999 B, S 01/02/2008 

#5396 LIS M01114 M  14/01/2008     30/10/1999 B, S 01/02/2008 

#5398 BAS 010333 F         B, S 12/08/2008 

#5432 FRI P97005 - Kassanga M 15/10/2001   Y 01/03/1997 S 18/02/2008 

#5434 Lym H20237 - Kassama F 23/12/2002   Y 01/03/1997 S 18/02/2008 

#5438 KNO P97011 - Kassala F 26/02/2002   Y 01/03/1997 S 18/02/2008 

#5442 KNO P98044 - Kang M 26/02/2002   Y 15/06/1998 S 18/02/2008 

#5443 ATT MLYP02 M  16/01/2008   Y 08/01/1998 B, S 01/02/2008 

#5450 AAL LYC11 M 05/02/2008   Y 22/11/2000 T 13/03/2008 

#5452 BEL 5072 M  16/01/2008     29/11/2000 B, S 01/02/2008 

#5453 PON 100304 M 17/03/2008       B, S 12/08/2008 

#5455 PON 100303 M 17/03/2008       B, S 13/08/2008 

#5456 BEL 5075 M  16/01/2008     29/11/2000 B, S 01/02/2008 

#5457 PON 100302 M 17/03/2008       B, S 13/08/2008 

#5458 BEL 5077 M  16/01/2008     29/11/2000 B, S 01/02/2008 

#5459 War   F       29/11/2000     

#5462 War   F       29/11/2000     

#5464 LE  262 F  ?     29/11/2000 B, S 21/01/2008 

#5467 COL BLL895, BRAM M 27/02/2008     11/04/2000 B, S 05/03/2008 

#5472 CAR P20081 - Kippa M 25/02/2002   Y 13/11/2000 S 18/02/2008 

#5474 LYM P20077 - Shue F 26/02/2002   Y 13/11/2000 S 18/02/2008 

#5476 COL P20079 - Krane F 26/02/2002   Y 13/11/2000 S 18/02/2008 

#5477 COL P20080 - Depti F 26/02/2002   Y 13/11/2000 S 18/02/2008 

#5493 LAP 3193 F  15/10/2007     29/10/2001 B, S 17/10/2007 

#5503 EDI P21050 - Snake M 28/08/2002   Y 24/11/2001 S 18/02/2008 

#5509 AMN LP24 F 25/06/2008   Y 24/11/2001 B, S 12/08/2008 

#5512 MUN 044017 M  15/10/2007     02/11/2001 B, S 17/10/2007 

#5513 ESK 1714 F  18/10/2007     02/11/2001 B, S 12/11/2007 

#5514 MUN 044018 M  16/10/2007     02/11/2001 B, S 17/10/2007 

#5515 ESK 1715 F  18/10/2007     02/11/2001 B, S 12/11/2007 

#5516 MUN 044019 M  15/10/2007     02/11/2001 B, S 17/10/2007 

#5517 BOR RA0011 F  05/11/2007     02/11/2001 B, S 13/11/2007 

#5518 MUN 044020 M  16/10/2007     02/11/2001 B, S 17/10/2007 

#5527 HIL M02341 M 16/06/2008     24/11/2002 B, S 11/08/2008 

#5529 COL BLL896, BEM M 27/02/2008     24/11/2002 B, S 05/03/2008 

#5530 HIL M02344 M 16/06/2008     24/11/2002 B, S 11/08/2008 

#5531 COL BLL897, MARANI M 27/02/2008   Y 24/11/2002 B, S 05/03/2008 

#5532 COL BLL898, CHICANI M 27/02/2008   Y 24/11/2002 B, S 05/03/2008 

#5533 KOL 8904 F 31/03/2008   Y 24/11/2002 B, S 07/04/2008 

#5534 AAL LYC25 F 05/02/2008     24/11/2002 B, S 19/02/2008 

#5537 AMS M02168 F 06/02/2008     24/11/2002 B, S 05/03/2008 
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#5549 AMS M06010 M 06/02/2008     04/11/2002 B, S 05/03/2008 

#5550 AMS M06009 M 06/02/2008     04/11/2002 B, S 05/03/2008 

#5552 EDI Pip F  04/12/2007     04/11/2002 B, S 07/01/2008 

#5553 EDI Spot F  04/11/2002       B   

#5554 EDI Spice F  04/11/2002       B   

#5555 EDI Ginger F  04/11/2002       B   

#5572 RAM 200982 F  22/10/2007     27/01/2003 B, S 12/11/2007 

#5574 Sig Ring M 10/03/2010     27/01/2003     

#5575 LAP S5575 M  15/10/2007     27/01/2003 B, S 17/10/2007 

#5577 KER M02140 M  18/12/2007     09/11/2002 B, S 07/01/2008 

#5578 HIL M02328 F Jul-08       B, S 12/08/2008 

#5579 HIL M02329 F Jul-08       B, S 12/08/2008 

#5580 HIL M02330 F 16/06/2008     09/11/2002 B, S 11/08/2008 

#5586 DVU 033288 Bianca F  15/01/2008   Y 09/11/2002 B, S 28/01/2008 

#5588 PON 100306 F 16/06/2008   Y   B, S 13/08/2008 

#5592 DUB A4M037 ASSEGAI M  17/01/2008   Y 02/11/2002 B, S 01/02/2008 

#5593 DUB P22049 M 27/01/2003   Y 02/11/2002 S 18/02/2008 

#5594 DUB A4M039 YELLA M  17/01/2008   Y 02/11/2002 B, S 01/02/2008 

#5595 EDI M07B03 M 20/06/2008   Y   B, S 12/08/2008 

#5596 KNO P22052 F 27/01/2003   Y 02/11/2002 S 18/02/2008 

#5597 KNO P22053 F 27/01/2003   Y 02/11/2002 S 18/02/2008 

#5598 KNO P22054 F 27/01/2003   Y 02/11/2002 S 18/02/2008 

#5599 KNO P22055 F 27/01/2003   Y 02/11/2002 S 18/02/2008 

#5601 KNO P22057 F 27/01/2003   Y 02/11/2002 S 18/02/2008 

#5602 KNO P22058 F 27/01/2003   Y 02/11/2002 S 18/02/2008 

#5603 KNO P22059 F 27/01/2003   Y 02/11/2002 S 18/02/2008 

#5605 KOL 8900 M 31/03/2008     27/01/2003 B, S 07/04/2008 

#5606 KOL 8901 M 31/03/2008     27/01/2003 B, S 07/04/2008 

#5607 KOL 8902   31/03/2008     27/01/2003 B, S 07/04/2008 

#5620 Sig Charly M 10/03/2010     21/10/2003     

#5639 LE  M06033 M  ?   Y 30/11/2003 B, S 21/01/2008 

#5642 KER M03141 M  18/12/2007     07/12/2003 B, S 07/01/2008 

#5643 KER M03142 M  18/12/2007     07/12/2003 B, S 07/01/2008 

#5644 KER M03143 M  18/12/2007     07/12/2003 B, S 07/01/2008 

#5645 KER M03144 M  18/12/2007     07/12/2003 B, S 07/01/2008 

#5646 KER M03145 M  18/12/2007     07/12/2003 B, S 07/01/2008 

#5647 KER M013146 M  18/12/2007     07/12/2003 B, S 07/01/2008 

#5666 LON 4537 M  20/11/2007     17/11/2004 B 22/11/2007 

#5667 LON 4538 M  20/11/2007     17/11/2004 B 22/11/2007 

#5669 LON 4539 M  20/11/2007     17/11/2004 B 22/11/2007 

#5671 LON 4540 M  20/11/2007     17/11/2004 B 22/11/2007 

#5685 ROS 4471 M  14/01/2008     15/11/2004 B, S 28/01/2008 

#5686 ROS 4472 M  14/01/2008     15/11/2004 B, S 28/01/2008 

#5687 ROS 4473 M  14/01/2008     15/11/2004 B, S 28/01/2008 

#5688 ROS 4474 M  14/01/2008     15/11/2004 B, S 28/01/2008 

#5689 ROS 4475 M  14/01/2008     15/11/2004 B, S 28/01/2008 

#5696 DOR 6CC138 F 06/03/2008     05/11/2004 B, S 03/04/2008 

#5699 DOR 6C14EB F 06/03/2008     05/11/2004 B, S 03/04/2008 

#5700 DOR 710SF6 F 06/03/2008     05/11/2004 B, S 03/04/2008 

#5704 DOR 6C2BF8 F 06/03/2008     05/11/2004 B, S 03/04/2008 

#5721 LE  M06034-Max M  ?   Y 23/02/2005 B, S 21/01/2008 

#5725 AMN LP25 M 25/06/2008       B, S 12/08/2008 

#5726 AMN LP26 M 25/06/2008       B, S 12/08/2008 

#5727 AMN LP27 M 25/06/2008       B, S 12/08/2008 

#T5932 KOL 10126 F 31/03/2008     29/12/2006 B, S 07/04/2008 

#T5936 KOL 10130 M 31/03/2008     29/12/2006 B, S 07/04/2008 

#T6094 KOL 10454 M 14/01/2008     30/10/2007 B, S 21/01/2008 

#T6095 KOL 10455 M 14/01/2008     30/10/2007 B, S 21/01/2008 

#T6096 KOL 10456 M 14/01/2008     30/10/2007 B, S 21/01/2008 

#T6097 KOL 10457 M 14/01/2008     30/10/2007 B, S 21/01/2008 
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#T6098 KOL 10458 M 14/01/2008     30/10/2007 B, S 21/01/2008 

#T6099 KOL 10459 F 14/01/2008     30/10/2007 B, S 21/01/2008 

#T6100 KOL 10460 F 14/01/2008     30/10/2007 B, S 21/01/2008 

#T6101 KOL 10461 F 14/01/2008     30/10/2007 B, S 28/01/2008 

31844 PON 250229600031844 F 06/08/2008     05/06/2006 B, S 13/08/2008 

40405 PON 250229600040405 F 06/08/2008       B, S 13/08/2008 

42698 PON 250229600042698 F 06/08/2008     05/06/2006 B, S 13/08/2008 

44252 PON 250229600044252 F 06/08/2008       B, S 13/08/2008 

45658 PON 250229600045658 F 06/08/2008       B, S 13/08/2008 

100390 PON (T5955) 100390 F 21/04/2008   Y 05/06/2006 B, S 13/08/2008 

AT001 Edi DEAD PUP ? 28/08/2007   Y 28/08/2007 T   

#768   AT006 F  NA     c.1980 T 12/09/2007 

AT007     M          T 12/09/2007 

#892   AT008 F  NA     c.1982 T 12/09/2007 

AT009     M  NA       T 12/09/2007 

DUIS DUI   F 15/07/2008       B, S   

M07114 HIL T6089 m 16/06/2008       B, S 12/08/2008 

M07118 HIL (T6090) M07118 F Jul-08     31/10/2007 B, S 12/08/2008 

M07119 HIL (T6091) M07119 F Jul-08     31/10/2007 B, S 12/08/2008 

M07120 HIL (T6092) M07120 m Jul-08     31/10/2007 B, S 12/08/2008 

M07121 HIL (T6093) M07121 m Jul-08     31/10/2007 B, S 12/08/2008 

#T6120 LYM P20789 M     Y 04/11/2007 H  10/04/2008 

#T6121 LYM P20790 F     Y 04/11/2007 H  10/04/2008 

#T6122 LYM P20791 M     Y 04/11/2007 H  10/04/2008 

#T6124 LYM P20793 M     Y 04/11/2007 H  10/04/2008 

#T6127 LYM P20796 M     Y 04/11/2007 H  10/04/2008 

#T6128 LYM P20799 F     Y 04/11/2007 H  10/04/2008 

#T1350 BEW DOG1 F 18/02/2008   Y 01/03/2002 B, S 19/02/2008 

#T1352 BEW DOG3 M 18/02/2008   Y 01/03/2002 B, S 19/02/2008 

#T1353 BEW DOG4 M 18/02/2008   Y 01/03/2002 B, S 19/02/2008 

#T1357 BEW DOG5 F 18/02/2008   Y 01/03/2002 B, S 19/02/2008 

#T5807 BAS 050352 M         B, S 12/08/2008 

#T5819 PEA NICK M  29/10/2007   Y 25/09/2005 B, S 12/11/2007 

#T5820 PEA RON M  29/10/2007   Y 25/09/2005 B, S 12/11/2007 

#T5821 PEA REX M  29/10/2007   Y 25/09/2005 B, S 12/11/2007 

#T5822 PEA OBER M  29/10/2007   Y 25/09/2005 B, S 12/11/2007 

#T5823 PEA KRYSTO M  29/10/2007   Y 25/09/2005 B, S 12/11/2007 

#T5824 PEA ROSTA M  29/10/2007   Y 25/09/2005 B, S 12/11/2007 

#T5825 PEA DAN M  29/10/2007   Y 25/09/2005 B, S 12/11/2007 

#T5827 DVU 033320 Andy F  15/01/2008   Y 25/09/2005 B, S 28/01/2008 

#T5828 DVU 033321 Ela F  15/01/2008   Y 25/09/2005 B, S 28/01/2008 

#T5829 DVU 033322 Irma F  15/01/2008   Y 25/09/2005 B, S 28/01/2008 

#T5835 KOL 9832 M 31/03/2008     18/11/2005 B, S 07/04/2008 

#T5836 KOL 9833 M 31/03/2008     18/11/2005 B, S 07/04/2008 

#T5837 KOL 9834 M 31/03/2008     24/11/2005 B, S 07/04/2008 

#T5838 KOL 9835 M 31/03/2008     24/11/2005 B, S 07/04/2008 

#T5839 KOL 9836 M 31/03/2008     24/11/2005 B, S 07/04/2008 

#T5840 KOL 9837 M 31/03/2008     24/11/2005 B, S 07/04/2008 

#T5857 LYM P20572 F  10/01/2008   Y 04/11/2005 B, S 19/02/2008 

#T5858 LYM P20573 F  10/01/2008   Y 04/11/2005 B, S 19/02/2008 

#T5859 LYM P20574 F  10/01/2008   Y 04/11/2005 B, S 19/02/2008 

#T5862 MUN 044022 F  15/10/2007   Y 01/11/2005 B, S 17/10/2007 

#T5886 AAL LYC27 M 05/02/2008   Y 23/10/2006 B, S 19/02/2008 

#T5887 AAL LYC28 M 05/02/2008   Y 23/10/2006 B, S 19/02/2008 

#T5888 AAL LYC29 M 05/02/2008   Y 23/10/2006 B, S 19/02/2008 

#T5889 AAL LYC30 M 05/02/2008   Y 23/10/2006 B, S 19/02/2008 

#T5890 AAL LYC31 F 05/02/2008   Y 23/10/2006 B, S 19/02/2008 

#T5891 AAL LYC32 F 05/02/2008   Y 23/10/2006 B, S 19/02/2008 

#T5892 AAL LYC33 F 05/02/2008   Y 23/10/2006 B, S 19/02/2008 

#T5894 BAS 600354 F         B, S 12/08/2008 



218 
 

 

#T5896 BAS 600356 F         B, S 12/08/2008 

#T5920 BOR RA0027 M  05/11/2007   Y 22/10/2006 B, S 13/11/2007 

#T5921 BOR RA0028 F  05/11/2007   Y 22/10/2006 B, S 13/11/2007 

#T5922 BOR RA0029 F  05/11/2007   Y 22/10/2006 B, S 13/11/2007 

#T5923 BOR RA0030 F  05/11/2007   Y 22/10/2006 B, S 13/11/2007 

#T5924 BOR RA0031 F  05/11/2007   Y 22/10/2006 B, S 13/11/2007 

#T5925 BOR RA0032 F  05/11/2007   Y 22/10/2006 B, S 13/11/2007 

#T5926 BOR RA0033 F  05/11/2007   Y 22/10/2006 B, S 13/11/2007 

#T5927 BOR RA0034 F  05/11/2007   Y 22/10/2006 B, S 13/11/2007 

#T5950 PON 100385 M 21/04/2008   Y 05/06/2006 B, S 13/08/2008 

#T5952 PON 100387 M 21/04/2008   Y 05/06/2006 B, S 13/08/2008 

#T5953 PON 100388 M 21/04/2008   Y 05/06/2006 B, S 13/08/2008 

#T5956 DUI 5386 F 15/07/2008   Y 05/06/2006 B, S 12/08/2008 

#T5959 DUI 5389 F 15/07/2008   Y 05/06/2006 B, S 12/08/2008 

#T5960 LAP 4322 F  15/10/2007     17/12/2006 B, S 17/10/2007 

#T5983 EBE LYC005 M  12/11/2007   Y ~06/2002 B, S 22/11/2007 

#T5984 EBE LYC006 M  12/11/2007   Y ~06/2002 B, S 22/11/2007 

#T5985 EBE LYC007 M  12/11/2007   Y ~06/2002 B, S 22/11/2007 

#T5986 EBE LYC008 M  12/11/2007   Y ~06/2002 B, S 22/11/2007 

#T5987 BEW DOG6 M 18/02/2008   Y ~/04/2002 B, S 19/02/2008 

#T5988 BEW DOG7 M 18/02/2008   Y ~/04/2002 B, S 19/02/2008 

#T5990 BEW DOG9 F 18/02/2008   Y ~/04/2002 B, S 19/02/2008 

#T5991 BEW DOG10 F 18/02/2008   Y ~/04/2002 B, S 19/02/2008 

#T5993 BEW DOG12 F 18/02/2008   Y ~/04/2002 B, S 19/02/2008 

#T6003 Sig Xenie F 10/03/2010   Y 01/06/1998     

#T6022 Sig Zeta F 10/03/2010   Y 28/11/2000     

#T6026 ROM 4476 M 19/02/2008   Y 12/11/2001 B, S 05/03/2008 

#T6027 ROM 4475 M 19/02/2008   Y 12/11/2001 B, S 05/03/2008 

#T6029 Sig Amandine F 10/03/2010   Y 12/11/2001     

#T6030 Sig Auridie F 10/03/2010   Y 12/11/2001     

#T6031 War   M     Y 12/11/2000     

#T6032 Sig Arthur M 10/03/2010   Y 12/11/2001     

#T6033 War   M     Y 12/11/2000     

#T6034 Sig Adeline F 10/03/2010   Y 12/11/2001     

#T6035 Sig Ariane F 10/03/2010   Y 12/11/2001     

#T6046 Sig Annabelle F 10/03/2010   Y 25/11/2001     

#T6047 BOR RA0006 M  05/11/2007   Y 25/11/2001 B, S 13/11/2007 

#T6048 BOR RA0007 M  05/11/2007   Y 25/11/2001 B, S 13/11/2007 

#T6049 BOR RA0008 M  05/11/2007   Y 25/11/2001 B, S 12/11/2007 

#T6050 Qui   M       UNK     

#T6051 BEW DOG13 F 18/02/2008   Y 05/12/2004 B, S 19/02/2008 

#T6052 BEW DOG14 M 18/02/2008   Y 05/12/2004 B, S 19/02/2008 

#T6053 BEW DOG17 M 18/02/2008   Y 10/12/2004 B, S 05/03/2008 

#T6054 BEW DOG20 F 18/02/2008   Y 27/10/2005 B, S 19/02/2008 

#T6055 BEW DOG21 M 18/02/2008   Y 27/10/2005 B, S 05/03/2008 

#T6056 BEW DOG22 M 18/02/2008   Y 27/10/2005 B, S 05/03/2008 

#T6057 BEW DOG23 F 18/02/2008   Y 27/10/2005 B, S 05/03/2008 

#T6058 BEW DOG24 M 18/02/2008   Y 27/10/2005 B, S 05/03/2008 

#T6059 BEW DOG25 F 18/02/2008   Y 27/10/2005 B, S 05/03/2008 

#T6060 BEW DOG26 F 18/02/2008   Y 27/10/2005 B, S 05/03/2008 

#T6061 BEW DOG27 F 18/02/2008   Y 27/10/2005 B, S 05/03/2008 

#5509 COU P21056 - Eva M 15/02/2002     24/11/2001 S 18/02/2008 

#5595 DUB P22051 M 27/01/2003     02/11/2002 S 18/02/2008 

AAL pup AAL AALBORG PUP   05/02/2008       H   
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