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Abstract 

Pulmonary arterial hypertension (PAH) is a progressive disease characterised by 

vasoconstriction and remodelling of the pulmonary vasculature.  The consequence of this 

is increased pulmonary arterial pressure, right heart failure and eventual death if left 

untreated.  Even in those patients receiving advanced PAH therapy, mortality rates remain 

high.  Therefore, the development of novel therapeutic approaches in the treatment of PAH 

is urgently required.  A better understanding of PAH pathogenesis is critical to achieving 

this.  Gender differences exist in human PAH, with females up to three-fold more likely to 

present with disease than males.  Limited evidence suggests that estrogens may be 

accountable for these differences.  For example, the use of oral contraceptives has been 

associated with the development of PAH.  Paradoxical to this however, experimental 

models of PAH exhibit male susceptibility which has limited research into the role of 

estrogens in the pathogenesis of PAH.  

 

Serotonin is implicated in both experimental and human PAH.  Activity of the serotonin 

transporter (SERT) modulates the development of PAH and mice over-expressing SERT 

(SERT+ mice) exhibit PAH and exaggerated hypoxia-induced PAH.  In the central nervous 

system, estrogens regulate expression of several serotonin signalling components including 

tryptophan hydroxylase (TPH), the 5-HT receptors and SERT.  One hypothesis is that 

similar estrogen effects on serotonin signalling may also be apparent in the pulmonary 

vasculature, and this is one hypothesis for the increased female susceptibility observed in 

PAH.  To examine this, the influence of gender and estrogen on the development of PAH 

in SERT+ mice was investigated.  This was repeated following exposure to chronic 

hypoxia.  Pulmonary vascular reactivity was determined using small vessel myography.  

The genotypic differences in SERT+ mice were also assessed via microarray analysis.  

Genes of interest were validated by qRT-PCR analysis and immunoblotting.  To translate 
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clinical relevance to any findings, the effects of female hormones were also investigated in 

human pulmonary artery smooth muscle cells (PASMCs) derived from both non-PAH 

(control) and idiopathic pulmonary arterial hypertension (IPAH) patients.   

 

PAH was assessed via measurement of right ventricular systolic pressure (RVSP), 

pulmonary vascular remodelling and right ventricular hypertrophy (RVH).  Male SERT+ 

mice do not develop PAH.  Female SERT+ mice exhibited increased RVSP and pulmonary 

vascular remodelling.  This increased RVSP and pulmonary vascular remodelling were 

completely prevented following ovariectomy in SERT+ mice.  The chronic administration 

of 17β estradiol (1.5mg/kg/day), which is the pre-dominant circulating female hormone in 

pre-menopausal women, fully re-established PAH as assessed by increased RVSP and 

pulmonary vascular remodelling.  Pulmonary vascular reactivity to serotonin was 

unaffected in these mice.  In chronic hypoxia, female SERT+ mice exhibited exaggerated 

hypoxia-induced PAH whereas male SERT+ mice remained unchanged compared to their 

respective wildtype (WT) controls.  This exaggerated hypoxia-induced PAH phenotype 

was attenuated in SERT+ mice following ovariectomy, as assessed by a reduction in RVSP 

and pulmonary vascular remodelling.  The chronic administration of 17β estradiol 

completely re-established exaggerated hypoxia-induced PAH in ovariectomized SERT+ 

mice.  Similar to normoxia, serotonin-induced pulmonary vascular contraction was also 

unaffected in these mice.  The stimulation of PASMCs with 17β estradiol increased 

tryptophan hydroxylase-1, SERT and 5-HT1B receptor expression.  Consistent with our in 

vivo findings, physiological concentrations of 17β estradiol (1nmol/L) stimulated PASMC 

proliferation whereas estrone, estriol and progesterone had no effect.  This proliferation 

was successfully blocked by both the tryptophan hydroxylase inhibitor para-

chlorophenylalanine and the 5-HT1B receptor antagonist SB224289. 
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Microarray analysis in the pulmonary arteries of female SERT+ mice confirmed the 

dysregulation of multiple pathways with relevance to PAH including those associated with 

metabolism, cell differentiation and contraction.  A large number of PAH-related pathways 

were also dysregulated in female SERT+ mice exposed to chronic hypoxia.  In contrast, 

pathways were altered in normoxic and chronically hypoxic male SERT+ mice to a much 

lesser extent.  For microarray validation, qRT-PCR analysis was performed in ten selected 

genes (FOS, CEBPB, CYP1B1, MYL3, HAMP2, LTF, PLN, NPPA, UCP1 and C1S) and 

100% concordance was reported.  Three genes were selected for further investigation 

(FOS, CEBPB and CYP1B1).  Immunoblotting confirmed that protein expression of c-

FOS, C/EBPβ and CYP1B1 was increased in the pulmonary arteries of female SERT+ 

mice compared against female WT mice.  With relevance to human PAH, we also 

confirmed that mRNA expression of FOS, CEBPB and CYP1B1 was increased in 

PASMCs derived from IPAH patients.  Protein validation with immunoblotting confirmed 

that c-FOS, C/EBPβ and CYP1B1 expression was also increased in IPAH PASMCs.   

 

In summary of these findings, we have identified that females may be at an increased risk 

to the development of PAH via the effects of 17β estradiol.  Specifically, 17β estradiol 

appears to increase expression of several key serotonin pathway mediators including 

tryptophan hydroxylase-1 (the rate-limiting enzyme in serotonin synthesis), SERT and the 

5-HT1B receptors, all of which have been previously implicated in the pathogenesis of 

PAH.  Our results suggest that 17β estradiol stimulates PASMC proliferation via activation 

of the serotonin pathway.  Microarray analysis in the pulmonary arteries of SERT+ mice 

confirmed that a large number of genes associated with PAH-related pathways were 

differentially expressed in females.  RNA and protein validation further confirmed these 

differences in selected genes (CEBPB, CYP1B1 and FOS).  With relevance to human 

PAH, we also confirmed the dysregulation of several key genes at both mRNA and protein 

level in PASMCs derived from IPAH patients.  Taken together, these findings describe the 
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critical role of 17β estradiol in PAH, and this may offer an explanation for the increased 

susceptibility observed in females.     
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1.1 The Pulmonary Circulation 

1.1.1 Structural Organisation 

The pulmonary circulation constitutes the entire cardiac output from the right ventricle, 

which receives mixed venous blood draining into the right atria from the systemic 

circulation via the superior and inferior vena cava.  The pulmonary artery originates at the 

anterior base of the right ventricle where it bifurcates to become the left and right 

pulmonary artery, both of which extend into the hilum of their corresponding lungs.  The 

left lung is divided into the superior and inferior lobe, separated by the oblique fissure and 

each receives an arterial branch from the left pulmonary artery.  In contrast, the right lung 

is divided into three lobes (superior, middle and inferior) separated by interlobular fissures 

and each is supplied with a branch resulting from bifurcation of the right pulmonary artery, 

one entering the superior lobe and the other supplying the middle and inferior lobes.  Each 

of the five lobes can be further subdivided into distinct anatomical compartments termed 

bronchopulmonary segments (Sealy et al., 1993).  Each of these contains segmental 

bronchi and it’s accompanying (tertiary) pulmonary artery.  Subsequent distal branching of 

the pulmonary arterial circulation continues irregularly but in parallel series with the 

bronchial tree until the terminal alveoli are reached, which is equivalent to fifteen orders of 

branching.   

 

1.1.2 Functional Organisation 

This order of branching can be numerically categorised by function using the convergent 

approach (Huang et al., 1996).  In convergence, the most peripheral pulmonary arteries 

(the pre-capillary arteries) are termed order 1 and this numbering continues with each 

proximal branch-point until the main pulmonary artery (order 15) is reached.  The 

proximal elastic arteries (orders 15-13) are highly compliant and typically have an internal 
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diameter greater than 1mm and also have increased elastic laminae in the tunica media to 

facilitate compliance.  The more distal muscular arteries (orders 13-4) progressively lose 

their compliance with continual branching, as a direct consequence of increased smooth 

muscle and decreased elastic laminae in the tunica media.  These pulmonary arteries can be 

phenotypically characterised by the increased presence of medial smooth muscle relative to 

the rest of the vasculature (Heath and Edwards, 1958), and are important in blood pressure 

regulation.  Medial smooth muscle is completely diminished in the non-muscular pre-

capillary arteries (orders 4-1) (Meyrick and Reid, 1983; deMello et al., 1997), which exist 

as extremely thin-walled vessels composed of endothelial cells and pericytes 

(undifferentiated smooth muscle cells) to facilitate blood-gas exchange (Figure 1.1). 

 

The network of pulmonary pre-capillary arteries contains more than 300 million vessels 

over 15 orders of branching.  This ultimately becomes the pulmonary capillary network, 

which serves as an extremely distensible complex arrangement of almost 280 billion 

capillaries.  Each capillary has an internal diameter less than 10µm and supplies blood to 

several alveoli.  Together, the capillaries form a large surface area (125m
2
) to efficiently 

facilitate blood oxygenation, and this is the primary function of the lung.  Following 

completion of circulation through the pulmonary capillaries, the re-oxygenated blood 

enters the pulmonary venous circulation via the venules and convergent branching of the 

pulmonary veins continue until the left and right pulmonary veins are formed from their 

corresponding lungs, and these enter into the left atria. 
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Figure 1.1 Musculature in the pulmonary arteries.  The absence of mature smooth 

muscle cells is apparent in distal pulmonary arteries and typically replaced with immature 

non-muscular pericytes.  Adapted from (MacLean et al., 2000). 

 

1.1.3 Structure of the Pulmonary Vascular Wall 

 
The transverse section of a normal pulmonary artery reveals that the vessel wall typically 

consists of three concentric layers or ‘tunics’ termed the tunica intima, tunica media and 

tunica adventitia (Figure 1.2).  In addition, each tunic is composed of a population of 

phenotypically distinct cells.  The (innermost) tunica intima exists as a monocellular 

endothelial cell layer attached to an underlying connective tissue matrix, termed the 

basement membrane.  The pulmonary artery endothelial cells (PAECs) compose the 

lumen, and are unique to the vascular wall in that they are the only cells in constant 
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physical contact with blood flow.  PAECs are proposed to continually monitor and regulate 

the luminal environment via the release of various factors (Liu et al., 1994; Aaronson et al., 

2002).  The tunica media is typically the predominant of the three tunics and is composed 

of a conserved longitudinal arrangement of smooth muscle cells with an underlying elastic 

layer.  Pulmonary artery smooth muscle cells (PASMCs), of which several heterogeneous 

populations exist (Frid et al., 1997; Stenmark and Frid, 1998), are the only cell type in the 

vascular wall capable of producing a contractile response following their stimulation, and 

therefore are commonly referred to as the ‘effectors’ in determining arterial tone and blood 

pressure.  The outermost tunica adventitia exists as a collagen matrix and helps maintain 

the structural integrity of the vessel wall.  In addition, pulmonary artery fibroblasts (PAFs) 

also exist in the adventitia, and have been identified to play an important role in response 

to environmental stimuli (Stenmark et al., 2006). 

 

 

Figure 1.2 Vascular cell types which compose the pulmonary vascular wall.   

Endothelial cells, smooth muscle cells and fibroblasts primarily compose the pulmonary 

vascular wall. 
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1.1.4 Function of the Pulmonary Circulation 

In the adult circulation both the left and right ventricles are arranged in parallel series.  

Therefore, pulmonary blood flow is exactly equal to that of the left ventricular cardiac 

output, which typically equates to 5 litres per minute at rest and up to 25 litres per minutes 

during exercise.  The most essential function of the pulmonary circulation is to facilitate 

the oxygenation of deoxygenated blood arriving from the systemic circulation, via a blood-

gas interface (Comroe, Jr., 1966).  This continuously occurs by the rapid unloading of CO2 

molecules and subsequent binding of O2 molecules to haemoglobin, which resides within 

red blood cells, and this is vital to supply and maintain the metabolic processes throughout 

the body.   

 

In addition to gas exchange, the pulmonary circulation is required to perform additional 

functions.  For example, the pulmonary circulation acts as a physical barrier, by filtering 

and preventing the passage of inhaled foreign bodies from the respiratory system to the 

cardiovascular system (Comroe, Jr., 1966).  Within the cardiovascular system, it also acts 

as a physical barrier to prevent the passage of potentially lethal thrombi, which are 

typically formed in the systemic venous circulation, to the systemic arterial circulation.  In 

addition, thrombolytic medaitors synthesised and released from PAECs, including 

prostacyclin (Gryglewski et al., 1988) and nitric oxide (Nong et al., 1997), act to dissolve 

lodged thrombi via a process termed fibrinolysis.  Similarly, air and lipid emboli are 

rapidly absorbed and removed during their passage through the pulmonary capillaries.  

Together, the blood filtration function of the pulmonary circulation acts to prevent the 

thrombotic or embolic occlusion of essential arterial beds which may otherwise lead to 

infarction.  The pulmonary circulation may also function as a blood reservoir (Comroe, Jr., 

1966).  Under physiological conditions, about 40% of the total lung weight is blood and 

this equates to a total pulmonary blood volume of 500ml, or 10% of the total circulating 

blood volume.  Moreover, this blood volume can be rapidly mobilized back into the 
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circulation during periods of trauma or haemorrhagic shock to significantly improve short-

term cardiac output (Shoemaker, 1974).   

 

1.1.5 Control of the Pulmonary Circulation  

The pulmonary circulation is a high-flow, low-resistance, low-pressure system.  In contrast 

to the arteries which comprise the systemic circulation, the pulmonary arteries contain less 

medial smooth muscle and elastin, and therefore thinner walled allowing for greater 

distensibility (Kilner, 2004).  As a consequence, pulmonary arterial pressure (PAP) is 

typically 24/9mmHg and significantly lower than systemic arterial pressure (SAP), which 

is typically 120/80mmHg (Morgan et al., 2004).  As a result, the mean PAP (mPAP) is 

roughly 1/8
th

 of the mean SAP (~15mmHg cf. ~93mmHg).  Similarly, the pressure gradient 

throughout the pulmonary circulation is 7 to 9mmHg, and up to ten-fold lower than those 

which exist in the systemic circulation (Mandegar et al., 2004). 

 

1.1.6 Pulmonary Vascular Resistance 

Pulmonary vascular resistance (PVR) is defined as the total peripheral resistance which 

must be overcome to maintain continuous blood flow through the pulmonary arteries.  

According to Poiseuille’s law, the diameter (D) is to the fourth power and therefore even 

small changes in this are likely to significantly affect flow and thus PVR (Krenz et al., 

1994).  For example, a 50% reduction in vessel diameter would result in a 16-fold increase 

in PVR.  Physiologically, blood vessel diameter is regulated via changes in basal tone of 

the smaller muscular pulmonary arteries (100µm - 500µm ID), with vasoconstriction 

decreasing this, whereas the opposite effect would occur during vasodilatation.  This would 

result in an increase/decrease of PVR, and as a consequence cause a reflective change in 

PAP.  The relationship between lumen diameter, PVR and PAP is also essential in the 

pathobiology of pulmonary vascular disease states where elevated PAP is apparent, such as 
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pulmonary hypertension.  Intimal thickening of the pulmonary vascular wall, arising from 

vascular remodelling, results in an irreversible reduction of lumen diameter and as a 

consequence leads to a sustained increase in PAP.      

 

1.1.7 Passive Regulation and Distribution of Blood Flow  

The relatively low pulmonary pressures combined with the mid-entry point of the artery 

into the lung results in the uneven distribution of blood flow throughout the pulmonary 

circulation.  When upright, pulmonary blood flow through the apex of the lung is 

extremely low.  However, towards the base of the lung blood flow is greatly increased 

(Lee, 1971).  To explain, the lung is divided into three zones as determined by the relative 

values of the pulmonary arterial (Pa), pulmonary venous (Pv) and alveolar (PA) pressure 

(Figure 1.3).  Zone 1 describes the upper portion of the lung where blood flow is extremely 

low, and this can be explained because the apex alveolar pressure is greater than both the 

arterial and venous pressures (PA > Pa > Pv), resulting in collapse of the highly compliant 

vasculature.  Zone 2 exists in the mid-portion were arterial pressure is greatest, however 

alveolar pressure still exceeds venous pressure (Pa > PA >Pv) and therefore blood flow 

remains impaired.  In this portion of lung, a modest increase in arterial pressure is 

sufficient to functionally recruit the vessels back into the pulmonary circulation.  Zone 3 is 

the most inferior and below-heart level.  At rest, this is the area of the lung where vessel 

recruitment for the pulmonary circulation is greatest (Hughes, 1975).  Both the arterial and 

venous pressures are greater than the alveolar pressure (Pa > Pv > PA) which allows the 

vessels to be maximally distended at all times.  During periods of increased blood flow 

(e.g. stress, exercise), there is substantial recruitment of the pulmonary vasculature which 

exist in zone 1 and zone 2, resulting in an even blood flow distribution throughout the lung 

(Harf et al., 1978). 
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1.1.8 Active Distribution and Regulation of Blood Flow 

In addition to the passive distribution of blood flow, the active regulation of blood flow is 

also a major determinant of pulmonary arterial pressure (Barnes and Liu, 1995).  Active 

factors include sympathetic nerves, humoral mechanisms and respiratory gases.  All of 

these influence PVR via the regulation of pulmonary artery smooth muscle contraction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Passive distribution of blood flow throughout the lung.  Each lung is divided 

into three zones as determined by the pulmonary arterial pressure (Pa), pulmonary venous 

pressure (Pv) and alveolar (PA) pressure.  These are important determinants of passive 

blood flow through the lung. 
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1.1.8.1 Neural Mechanisms  

The pulmonary circulation is innervated by both the sympathetic (adrenergic) and 

parasympathetic (cholinergic) branches of the autonomic nervous system (Dawson, 1984).  

In addition, a third neural mechanism comprised of nonadrenergic noncholinergic (NANC) 

nerves, also regulates pulmonary vascular tone (Kubota et al., 1988).  All innervating 

nerves terminate in the perivasculature and release vasoactive neurotransmitters following 

stimulation.  Vasomotor regulation is an essential component in maintaining the 

vasoconstrictor-vasodilator balance in the pulmonary vasculature. 

 

Stimulation of the sympathetic nervous system results in increased neuron firing, increased 

pulmonary vascular resistance, and as a consequence increased PAP (Kadowitz et al., 

1974).  Vasoconstriction is primarily mediated via the α adrenoceptors, which are 

predominantly expressed in PASMCs (Hyman et al., 1986).  These receptors are stimulated 

following release of their endogenous ligand noradrenaline from stimulated sympathetic 

post-ganglionic nerves (Tong et al., 1978).  Although all α1 adrenoceptor subtypes are 

expressed in the pulmonary arteries (Xu et al., 1997), the α1D adrenoceptors appear to 

predominantly mediate vasoconstriction (Hussain and Marshall, 1997).  The α2 

adrenoceptors are not expressed in pulmonary arteries, but are thought to play an important 

role in pulmonary venous constriction (Ohlstein et al., 1989).  In addition, both the β1 and 

β2 adrenoceptor subtypes are expressed in the pulmonary circulation, and mediate 

vasodilatation following their stimulation by noradrenaline (Hyman et al., 1981; Hyman et 

al., 1990). 

 

The parasympathetic branch of the autonomic nervous system appears much less dense in 

the pulmonary arteries compared to sympathetic innervation (Downing and Lee, 1980).  In 

addition, this also appears less important in the regulation of pulmonary vascular tone, as 

its pharmacological blockade does not influence pulmonary vascular resistance or 
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pulmonary arterial pressure (Murray et al., 1986).  However, exogenous administration of 

the parasympathetic post-ganglionic neurotransmitter acetylcholine (ACh) relaxes 

endothelium-intact human pulmonary arteries (Greenberg et al., 1987) via stimulation of 

the endothelial muscarinic (M) receptors (McCormack et al., 1988). 

 

Functional NANC nerves have also been identified in the pulmonary arteries, as observed 

by frequency dependent nitric oxide mediated relaxations which are completely unaffected 

by adrenergic or cholinergic blockade in isolated pulmonary arteries (Scott and 

McCormack, 1999).  Multiple NANC neurotransmitters have been described as important 

in this, including substance P, ATP, calcitonin-gene related peptide and adenosine 

(Kobayashi and Amenta, 1994).  The effect of NANC nerves in the regulation of 

pulmonary vascular tone remains to be described in vivo.   

 

1.1.9 Pulmonary Vascular Contraction 

Increased intracellular [Ca
2+

]
 
is the major determinant in vasoconstriction, and plays an 

essential role in the mechanism of smooth muscle cell contraction (Figure 1.4).  The 

calcium-binding protein calmodulin (CaM) forms a complex with Ca
2+ 

and this construct 

binds to and activates myosin light chain kinase (MLCK).  When activated, MLCK 

phosphorylates myosin light chain (MLC) in an adenosine 5’ triphosphate (ATP) driven 

process, resulting in a conformational change which allows the interaction of myosin with 

actin filaments (Kuriyama et al., 1982).  These interactions are collectively termed cross-

bridge cycling and it is this mechanism which forms the basis of smooth muscle 

contraction (Gunst and Fredberg, 2003).  Contraction is terminated via the de-

phosphorylation of MLC by myosin light chain phosphatase (MLCP).   
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1.1.10 Hypoxic Pulmonary Vasoconstriction 

The pulmonary arteries are unique from those which comprise the systemic circulation in 

that they constrict in response to hypoxia (Fishman, 1961).  Hypoxic pulmonary 

vasoconstriction (HPV) is an intrinsic adaptive response to alveolar hypoxia (Madden et 

al., 1992), which results in the redistribution of blood flow throughout the lung to segments 

with greater oxygen supply.  The small resistance arteries (~200µm ID) are the primary 

site of HPV (McCulloch et al., 2000).  This regulative shunting mechanism ensures 

optimal ventilation-perfusion matching, and as a consequence more efficient blood re-

oxygenation.  Several observations in the systemic circulation have identified that they 

dilate in response to hypoxia (Gregor and Janig, 1977), confirming that HPV is intrinsic to 

the pulmonary vasculature.  PASMCs are proposed to be the cell type which monitors the 

hypoxic environment in the vasculature.  This is supported by evidence which shows that 

HPV still occurs in endothelium-denuded pulmonary arteries (Marshall and Marshall, 

1992).  Additionally, a contractile response is also observed in cultured PASMCs derived 

from pulmonary resistance arteries following their exposure to hypoxia (Zhang et al., 

1997).  In opposition to this others have proposed that, although not essential to HPV, the 

endothelium must be present and functional for a prolonged contractile response following 

sustained hypoxia (Holden and McCall, 1984; Archer et al., 2004).  This suggests the 

existence of both endothelium-dependent and endothelium-independent components in 

HPV.   

 

HPV is likely initiated by the inhibition of redox-sensitive membrane Kv channels via 

adaptive changes in mitochondria derived reactive oxygen species (ROS) generation.  In 

turn, this leads to cell depolarisation and the opening of L-type Ca
2+

 channels, resulting in 

pulmonary vascular contraction.   However at present, several detailed mechanisms have 

been proposed for HPV (Aaronson et al., 2006).  There is general agreement that all 

classical vasoactive mediators which mediate constriction in both the pulmonary and 
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systemic arteries (e.g. 5-HT, endothelin-1) are unlikely to be involved.  On this basis, the 

initial mediator of HPV must be uniquely expressed in the pulmonary vasculature, 

however this component remains to be unanimously identified (Figure 1.5).  Downstream, 

rho-kinase mediated Ca
2+

 sensitization of the smooth muscle contractile apparatus is an 

important regulatory component of HPV (Robertson et al., 2000).  The mitochondrial-

derived generation of reactive oxygen species (ROS) is also considered pivotal although 

their exact role still remains unclear as both an increase and decrease of ROS generation 

have been reported in hypoxia (Archer et al., 1989; Archer et al., 1989; Archer et al., 1989; 

Michelakis et al., 2002; Killilea et al., 2000).  The involvement of both Kv1.5 channels and 

L-type Ca
2+

 channels has also been described.  In PASMCs, hypoxia leads to decreased 

Kv1.5 and Kv2.1 expression (Wang et al., 1997; Wang et al., 2005), resulting in the net 

reduction of tonic K
+
 cellular efflux and as a consequence depolarisation and the opening 

of the L-type Ca
2+

 channels.  If hypoxia is adequately sustained for a prolonged period, this 

increase in intracellular Ca
2+

 not only results in vasoconstriction but also stimulates 

expression of several pro-proliferative target genes resulting in hypoxia-induced PASMC 

proliferation (Platoshyn et al., 2007). 
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Figure 1.4 The mechanism underlying pulmonary vascular smooth muscle 

contraction.  Intracellular [Ca
2+

] is the major determinant of smooth muscle tone.  The 

formation of a Ca
2+

-calmodulin (CaM) complex activates myosin light-chain kinase 

(MLCK), which subsequently phosphorylates myosin light-chain (MCL) to facilitate actin 

and myosin interaction to promote contraction.  Contraction is terminated via the de-

phosphorylation of MLC by myosin light chain phosphatase (MLCP).    
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Figure 1.5 Proposed mechanism of hypoxic pulmonary vasoconstriction (HPV).  Hypoxia results in decreased Kv channel function, increased 

intracellular K
+
 and membrane depolarisation.  Increased Ca

2+
 influx occurs via the depolarisation-activated L-type Ca

2+
 channels.  Hypoxia also activates 

the receptor-operated Ca
2+

 channels (ROCs) and store-operated calcium channels (SOCCs), further increasing intracellular Ca
2+

.  As a consequence, the 

increased cytosolic Ca
2+

 promotes smooth muscle contraction, and if sustained will stimulate proliferation.  
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1.2 Pulmonary Arterial Hypertension  

1.2.1 Classification 

Pulmonary arterial hypertension (PAH) is a progressive disease characterised by 

vasoconstriction and remodelling of the pulmonary vasculature, resulting in right heart 

failure and eventual death.  According to the latest clinical classification, PAH is 

diagnosed if mean pulmonary arterial pressure (mPAP) is greater than 25mmHg at rest 

(Simonneau et al., 2009).  This is typically confirmed following right heart catheterization 

(Barst et al., 2004).  Further clinical assessment is also performed to confirm PAH 

aetiology, as multiple diseases not directly associated with the pulmonary circulation (e.g. 

left heart failure) can indirectly influence PAP (Oudiz, 2007).  Patients with mild or 

moderate PAH typically present asymptomatic at both rest and during physical activity 

(Simonneau et al., 2009).  Only in late-stage/severe PAH, are clinical symptoms apparent 

and include dyspnoea, syncope, chest pain and fatigue.   

 

The mean age of PAH diagnosis is 56 years of age (NCASP Pulmonary Hypertension 

Audit 2010), and patients have a median survival time of 2.8 years if left untreated (Gaine 

and Rubin, 1998).  Although the development of PAH can arise from multiple aetiologies, 

all share a common phenotypic pathobiology (Voelkel and Cool, 2004).  According to the 

World Health Organisation (Rosenkranz and Erdmann, 2008), PAH is subcategorized into 

the following clinical classification (Table 1.1): idiopathic (IPAH), hereditable (HPAH), 

drug & toxin induced, associated with chronic haemolytic anaemia, schistosomiasis, 

congenital heart diseases, portal hypertension, HIV infection or connective tissue diseases, 

and persistent pulmonary hypertension of the newborn (PPHN). Non-arterial pulmonary 

hypertension can also occur and is classified into the following categories; pulmonary 

hypertension with unclear multifactorial mechanisms; chronic thromboembolic pulmonary 

hypertension (CTEPH), pulmonary hypertension owing to lung diseases and/or hypoxia, 



 

 17 

pulmonary hypertension owing to left heart disease and pulmonary veno-occlusive disease 

(PVOD) and/or pulmonary capillary hemangiomatosis (PCH).   

Clinical Classification of Pulmonary Hypertension  

4th World Health Organisation Symposium on Pulmonary Hypertension, Dana Point 

2008 

 

1. Pulmonary arterial hypertension (PAH) 

 1.1. Idiopathic PAH 

 1.2. Heritable 

  1.2.1. BMPR2 

  1.2.2. ALK1, endoglin (with or without hereditary hemorrhagic 

telangiectasia) 

  1.2.3. Unknown 

 1.3. Drug- and toxin-induced 

 1.4. Associated with: 

  1.4.1. Connective tissue diseases 

  1.4.2. HIV infection 

  1.4.3. Portal hypertension 

  1.4.4. Congenital heart diseases 

  1.4.5. Schistosomiasis 

  1.4.6. Chronic hemolytic anemia 

 1.5 Persistent pulmonary hypertension of the newborn 

1. Pulmonary veno-occlusive disease (PVOD) and/or pulmonary capillary 

hemangiomatosis  (PCH) 

2. Pulmonary hypertension owing to left heart disease 

 2.1. Systolic dysfunction 

 2.2. Diastolic dysfunction 

 2.3. Valvular disease 

3. Pulmonary hypertension owing to lung diseases and/or hypoxia 

 3.1. Chronic obstructive pulmonary disease 

 3.2. Interstitial lung disease 

 3.3. Other pulmonary diseases with mixed restrictive and obstructive pattern 

 3.4. Sleep-disordered breathing 

 3.5. Alveolar hypoventilation disorders 

 3.6. Chronic exposure to high altitude 

 3.7. Developmental abnormalities 

4. Chronic thromboembolic pulmonary hypertension (CTEPH) 

5. Pulmonary hypertension with unclear multifactorial mechanisms 

 5.1. Hematologic disorders: myeloproliferative disorders, splenectomy 

 5.2. Systemic disorders: sarcoidosis, pulmonary Langerhans cell histiocytosis:  

  lymphangioleiomyomatosis, neurofibromatosis, vasculitis 

 5.3. Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid  

        disorders 

  5.4. Others: tumoral obstruction, fibrosing mediastinitis, chronic renal failure on  

   dialysis 

 

Table 1.1 Current WHO clinical classification of pulmonary hypertension. Dana 

Point 2008.  BMPR2, bone morphogenetic protein receptor type 2; ALK1, activin receptor 

like kinase-1, HIV, human immunodeficiency virus. 



 

 18 

Current World Health Organization/ New York Heart Association Classification of 

Functional Status of Patients with Pulmonary Hypertension 

  

 

Class I: 

 

 

Patients with PH without limitation of usual activity.  Ordinary 

physical activity does not cause increased dyspnoea, fatigue, chest 

pain or pre-syncope. 

 

 

 

Class II: 

 

Patients with PH with slight limitation of usual physical activity.  

There is no discomfort at rest, but normal physical activity causes 

increased dyspnoea, fatigue, chest pain or pre-syncope. 

 

 

 

Class 

III: 

 

Patients with PH with marked limitation of usual physical activity.  

There is no discomfort at rest, but less than ordinary activity causes 

increased dyspnoea, fatigue, chest pain or pre-syncope. 

 

 

 

Class 

IV: 

 

Patients with PH with inability to perform any physical activity 

without symptoms and who may have signs of right ventricular 

failure.  Dyspnoea and/or fatigue may be present at rest and 

symptoms are increased by almost any physical activity. 

 

Table 1.2 Current World Health Organisation/ New York Heart association 

Classification of functional status in patients with pulmonary hypertension.  

 

The severity of PAH in patients can be categorized using the NYHA (class I – IV) 

functional classification system (Table 1.2).  It is the physical limitations imposed on the 

patient by the disease which determines the functional classification.  For example, 

asymptomatic patients with early-stage PAH reside within class I and those most affected 

(late-stage PAH with right heart failure) are class IV.  The NYHA (class I – IV) system is 

an important factor in both the choice of PAH therapy and is also an accurate predictor of 

patient mortality.      
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1.2.2 Current Therapeutic Strategies in PAH 

PAH results in an elevation of PVR, and as a consequence increased PAP.  To date, all 

current therapeutic strategies act to decrease PVR via the promotion of vasodilatation or 

the inhibition of vasoconstriction.  To date, none of these treatments have proven effective 

in the prevention and/or regression of remodelling in PAH.  These PAH drug therapies can 

be broadly categorised into the following four groups; prostanoids, calcium channel 

blockers, endothelin receptor antagonists and phosphodieasterase-5 (PDE-5) inhibitors 

(Figure 1.6).  These are typically prescribed in combination as the most effective treatment 

of PAH. 

 

1.2.2.1 Prostanoids 

The prostanoid analogue epoprostenol was the first FDA-approved drug used in the 

treatment of PAH, and is still prescribed for severe PAH (NYHA class III and class IV).  

Prostacyclin (PGI2), an endogenous prostanoid synthesised in PAECs, is a potent 

vasodilator in the pulmonary circulation and also exhibits anti-mitogenic and anti-

thrombotic properties in experimental PAH (Hoshikawa et al., 2001; Geraci et al., 1999).  

Previously, it has been reported that a deficiency in circulating PGI2, via decreased lung 

expression of PGI2 synthase, contributes to the pathogenesis of PAH (Christman et al., 

1992).  Data generated from clinical trials confirm that the chronic administration of 

exogenous epoprostenol demonstrate a marked improvement in haemodynamic function, 

exercise capacity and survival time in NYHA class III and class IV PAH patients (Barst et 

al., 1996; Sitbon et al., 2002; Badesch et al., 2000; McLaughlin et al., 2002).  However, the 

chronic intra-venous infusion and short half-life (<6mins) of epoprostenol are the major 

limitations of its use.  Common side effects include flushing, jaw pain, headache and 

sepsis, with the latter resulting from intra-venous catheter complications.  Treprostinil is a 

modern generation prostanoid analogue with similar beneficial haemodynamic effects to 
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epoprostenol, but has the advantage of an improved half-life (~3 hours), and can also be 

administered subcutaneously.  Recently, the inhaled prostanoid iloprost has also been FDA 

approved for therapeutic use, and this improved route of administration will bypass the 

side effects associated with other prostacyclin-based treatments. 

 

1.2.2.2 Calcium Channel Blockers 

Calcium channel blockers (CCBs) comprise a class of drugs which act to functionally alter 

calcium channel Ca
2+

 conductance.  In PASMCs, the consequence is a net decrease in 

[Ca
2+

]i and cellular hyperpolarisation, resulting in pulmonary vascular smooth muscle 

relaxation.  Clinical trials involving the use of CCBs in PAH have shown their beneficial 

therapeutic effects, with a marked improvement in survival rate observed (Rich et al., 

1992).  However, this was only apparent in a subset of patients.  Subsequently, it was 

identified that CCB therapy is only an effective treatment in patients who are vasoreactive 

(the pulmonary vasculature still responds to local mediators via relaxation or contraction) 

(Sitbon et al., 2005).  Only a reported 5-10% of PAH patients exhibit vasoreactivity, and 

therefore CCBs have limited therapeutic use.  Significant adverse events including the 

increased risk of fatality can also occur as side-effects of CCB administration.  This is 

typically observed in NYHA class IV PAH patients with right ventricular failure, and is a 

likely consequence of their pronounced negative ionotropic effects. 
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Figure 1.6 Current therapeutic targets in PAH.  Current PAH therapies (endothelin 

receptor antagonists, phosphodiesterase type 5 inhibitors, inhaled nitric oxide and 

prostacyclin derivatives) act to promote vasodilatation and inhibit proliferation.  Adapted 

from (Humbert et al., 2004). 
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1.2.2.3 Endothelin Receptor Antagonists 

Endothelins are a class of vasoactive peptides which are synthesised and released from 

both systemic and pulmonary artery endothelial cells.  Endothelin-1 (ET-1) is the 

predominant isoform within the pulmonary circulation, and circulating levels are reported 

to be increased in at least two different forms of PAH (Giaid et al., 1993; Galie et al., 

2004).  ET-1 is a potent vasoconstrictor in pulmonary arteries and also stimulates 

proliferation in PASMCs (McCulloch et al., 1998).  Currently, two endothelin receptor 

isoforms (ETA and ETB) have been identified, both of which are G-coupled protein 

receptors (GPCRs).  Endothelin receptor A (ETA) is primarily expressed in the PASMCs 

and mediates both vasoconstriction and smooth muscle cell proliferation following 

stimulation (Zamora et al., 1993).  In comparison, endothelin receptor B (ETB) is 

predominantly expressed in the PAECs and to a lesser extent in PASMCs (Hori et al., 

1992).  In the lung, ETB stimulation appears to promote pulmonary artery vasodilatation 

via both NO and PGI2 mediated release, which would decrease pulmonary vascular tone 

(Fukuroda et al., 1992).  Therefore on this basis, selective ETA inhibitors would prove most 

effective for endothelin-based therapy in PAH.   

 

Sitaxsentan and ambrisentan, both which are ETA selective antagonists, are currently under 

clinical investigation for their potential use in PAH (Benza et al., 2007; Benza et al., 2008; 

Galie et al., 2008; Galie et al., 2005).  To date, the non-selective endothelin receptor 

antagonist bosentan is the only FDA-approved drug for treatment in its class (Sitbon et al., 

2003; Channick et al., 2001; Channick et al., 2001).  Clinical trials have reported an 

improvement in pulmonary haemodynamics, exercise capacity and functional class 

following its use.  Bosentan is generally well-tolerated, but hepatic toxicity and a 

prolonged time period (~12 weeks) from the start of treatment to clinical improvement are 

the major disadvantages to this therapy.   
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1.2.2.4 Phosphodiesterase Type 5 Inhibitors 

NO released from PAECs acts paracrinally on the underlying PASMCs to activate the 

NO/cGMP pathway, resulting in increased levels of the second messenger cyclic guanosine 

monophosphate (cGMP).  Activation of this pathway results in cGMP-mediated protein 

kinase G (PKG) activation, decreased [Ca
2+

]i and vasodilatation.  Phosphodiesterases 

(PDEs) are a class of enzymes which mediate the hydrolysis of cGMP.  Phosphodiesterase-

5 (PDE-5) is the most abundantly expressed PDE-isoform within the lung, and its activity 

and expression is also reported to be further increased in PAH (Black et al., 2001).  The 

highly selective PDE-5 inhibitor sildenafil acts to inhibit the hydrolysis of cGMP, therefore 

prolonging its half-life.  As a consequence, this leads to improved vasodilatation. PDE-5 

inhibition is reported to inhibit PASMC proliferation (Wharton et al., 2005) and attenuate 

hypoxia-induced PAH (Zhao et al., 2001).  Indeed, improvements in both NYHA 

functional class and exercise capacity have been reported in PAH patients when 

administered sildenafil treatment (Galie et al., 2005).  Although randomized clinical trials 

remain to be carried out, PDE-5 inhibitors have thus far proven to be an effective PAH 

treatment.  However, minor side effects are reported (headache, indigestion, muscle aches) 

and in rare cases ventricular arrhythmia, stroke and hearing loss have also been described. 

 

1.2.2.5 Combination Therapy 

It is generally considered that the simultaneous targeting of multiple pathways is the most 

effective treatment strategy in PAH (Benza et al., 2007).  This is achieved via adjunctive or 

combinational therapy.  Multiple clinical trials involving the use of multiple treatments 

have been described, and results appear promising with improvements in both 

haemodynamics and exercise capacity being reported (Benza et al., 2008). 
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1.2.3 Future Perspectives in the Treatment of PAH 

Although recent advances in PAH therapy have led to significant improvements in survival 

rate, prognosis still remains relatively poor in patients.  A 15% mortality rate is still 

reported at 2 years even in those undergoing advanced PAH therapy.  For this reason, an 

improvement in current therapies and the discovery of novel treatments is urgently 

required.  This has led to the research-led discovery of multiple novel drugs which may be 

beneficial for the treatment of PAH. 

 

1.2.3.1 Tyrosine Kinase Inhibitors 

Platelet-derived growth factor (PDGF) signalling is one potential target in the treatment of 

PAH (Grimminger and Schermuly, 2010).  The family of PDGF ligands, which exist as 

PDGF A-D and form homodimers or heterodimers, bind to and activate PDGF receptors 

(PDGFRs).  To date, two PDGFR isoforms have been identified, and are termed PDGFR-α 

and PDGFR-β.  The stimulation of PDGFR-α and PDGFR-β activates multiple signal 

transduction pathways, resulting in the phosphorylation of various mitogen-activating 

protein kinases (MAPKs) including ERK and P38.  As a consequence, these undergo 

nuclear translocation and regulate expression of multiple immediate early-response target 

genes (e.g. c-fos).  These genes directly regulate proliferation, migration, differentiation 

and apoptosis, all of which are essential cellular components in pulmonary vascular 

remodelling.  Indeed, PDGF stimulation of PASMCs results in increased proliferation (Yu 

et al., 2003).  In vivo, the PDGF receptor inhibitor STI571 (Imatinib) reverses established 

disease in at least two experimental models of PAH (Schermuly et al., 2005).  In human 

PAH, PDGF is also important (Perros et al., 2008) and several clinical studies have 

demonstrated the beneficial effects of Imatinib in the treatment of PAH (Ghofrani et al., 

2005).  Imatinib has been recently investigated in a phase II clinical trial (Ghofrani et al., 

2010), which demonstrated that NYHA functional class III-IV showed a marked 
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improvement following treatment highlighting its potential therapeutic benefits in severe 

PAH. 

 

1.2.3.2 Statin Therapy 

Another novel approach in the treatment of PAH is statin therapy.  Statins act to reduce 

isoprenoid synthesis via HMG-CoA reductase inhibition (Goldstein and Brown, 1990).  

Cholesterol is the most widely recognised isoprenoid.  Statins are involved in the post-

translational modification of rho and ras GTPases, and their use have been reported to 

decrease reactive-oxygen species (ROS) generation, inflammation and proliferation.  This 

may be mediated in part via the upregulation of endothelial nitric oxide synthase (eNOS) 

(Laufs et al., 1998).  Experimentally, simvastatin treatment successfully prevents 

(Nishimura et al., 2002) and reverses (Nishimura et al., 2003) monocrotaline-induced 

PAH.  Similar results have also been observed in hypoxia-induced PAH (Girgis et al., 

2003; Girgis et al., 2007).  The inhibition of rho-kinase appears important to this (Girgis et 

al., 2007).  In human PAH, a moderate improvement is observed in patients prescribed 

simvastatin (Wilkins et al., 2010).  However, this effect appears transient and lasts less 

than 12 months.  An improvement in drug design and/or drug delivery may result in a more 

sustained beneficial effect for this therapy. 

 

In addition to PDGF inhibition and statin therapy, a number of potentially beneficial PAH 

treatments are also under investigation.  In combination with current PAH therapies, these 

may be effective in the treatment of PAH.   

 

1.2.4 Pathobiology of PAH 

PAH is a disease with a multifactorial pathobiology.  Vasoconstriction, thrombosis and 

vascular remodelling all contribute to increased pulmonary vascular resistance observed in 
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PAH (Tuder et al., 2009).  Within the vasculature, increased vasoconstriction is recognized 

as the initiating factor which promotes disease progression (Mandegar et al., 2004).  This 

sustained elevation in vasoconstriction consequently results in an elevation of pulmonary 

vascular resistance.  If this persists, the activation of multiple stress-related pathways occur 

within pulmonary vascular cells (endothelial cell, smooth muscle cell, fibroblast), resulting 

in vascular remodelling.  Currently, pulmonary vascular remodelling is an irreversible 

component of PAH, and is considered the hallmark of disease pathogenesis (Hassoun et al., 

2009).  As a consequence of this, the pressure-intolerant right ventricle is subjected to 

increased after-load and subsequently right ventricular hypertrophy.  Although initially 

compensatory, this eventually leads to right ventricular failure, and this is the primary 

cause of mortality in PAH patients (Klepetko et al., 2004).  The identification and 

pharmacological targeting of signalling pathways which promote pulmonary vascular 

remodelling is considered the best treatment approach in the regression of PAH.  

Currently, several aberrant signalling pathways have been identified, which are stimulated 

by their respective pathway mediators.  These include serotonin, endothelin-1, 

prostacyclin, nitric oxide, angiopoetin-1, cytokines, chemokines and TGF-β.  

 

1.2.4.1 Vasoconstriction 

Excessive vasoconstriction is considered an essential initiating factor in the development 

of PAH (Mandegar et al., 2004).  If sustained, this leads to endothelial cell dysfunction and 

the impaired production of vasodilators such as nitric oxide and prostacyclin.  This in 

combination with the increased synthesis of several vasoconstrictors (e.g. serotonin, 

endothelin-1) results in a marked elevation of pulmonary vascular resistance.  This 

sustained elevation of pulmonary arterial pressure is considered the ‘pre-cursor’ resulting 

in pulmonary vascular remodelling.            
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Figure 1.7 Histopathological changes associated with human and experimental PAH.  

Top Left, A: A normal human pulmonary artery.  Top Right, B: Smooth muscle 

hypertrophy leading to medial hyperplasia typically observed in mild/moderate human 

PAH.  Middle Left, C:  Adventitial fibrosis typically observed in moderate human PAH.  

Middle Right, D:  Plexiform lesion characterised by lumen obliteration observed in 

severe/end-stage human PAH.  Bottom Left, E:  Normal mouse pulmonary artery, Bottom 

Right, F:  Medial hypertrophy observed in a mouse pulmonary artery following exposure to 

chronic hypoxia, note the failure to recapitulate plexiform lesion formation.  A-D adapted 

from (Cool et al., 2005). 

B A 

C D 

E F 
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1.2.4.2 Pulmonary Vascular Remodelling 

PAH is characterised by intimal thickening of the pulmonary vascular wall, resulting in the 

impairment of blood flow through the lumen.  This disease component arises from a 

process termed pulmonary vascular remodelling, and is considered the hallmark in PAH 

pathogenesis (Tuder et al., 2009).  PAH is associated with increased proliferation 

combined with suppression of apoptosis, and this is the primary cause of pulmonary 

vascular remodelling.  Each of the three predominating cell types (endothelial, smooth 

muscle, fibroblast) contributes to this.  Typically, a transverse section of a remodelled 

pulmonary artery reveals neointimal thickening and fibrosis, smooth muscle hypertrophy 

arising from PASMC hyperplasia and adventitial thickening and/or fibrosis (Figure 1.7). 

 

There are several histopathological subtypes of pulmonary vascular remodelling which 

exist in human PAH (Cool et al., 2005).  Smooth muscle hyperplasia and thickening is 

widely apparent and typically observed in mild/early-stage PAH.  Patients with 

moderate/mid-stage PAH also exhibit marked advential fibrosis in addition to increased 

medial thickness (Humbert et al., 2004).  In severe/end-stage PAH, plexiform lesions are 

usually present and represent the most severe subtype of pulmonary vascular remodelling.  

These are most commonly observed at bifurcation points in smaller resistance arteries 

(<200µm external diameter) and exist as an accumulation of disarranged proliferative 

endothelial cells which result in pronounced neointimal formation and marked intimal 

thickening (Cool et al., 2005).  The consequence of plexiform lesion development is 

complete obliteration of the artery, resulting in the severe impairment and cessation of 

blood flow through the lumen (Tuder et al., 1994). The pathological process leading to 

their formation remains an area of intense investigation.  Neoplasia likely contributes to 

plexiform lesion formation.  For example, loss of the tumour suppressor gene        

peroxisome proliferator-activated receptor-γ (PPAR-γ), is reported in plexiform lesions of 

PAH patients (Ameshima et al., 2003).  PPAR-γ is antiproliferative and anti-inflammatory 
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(Jiang et al., 1998) and has been previously shown to mediate an important protective role 

in experimental PAH (Hansmann et al., 2008).  Restoring function of such apoptotic 

pathways would result in inhibition of progressive pulmonary vascular remodelling, and 

considered the most effective therapeutic strategy in PAH.    

 

Established models of PAH (e.g. hypoxia, monocrotaline) fail to recapitulate severe 

plexiform lesion histopathology.  Recently, several experimental models which exhibit a 

similar lung pathobiology have been recently generated for study into their progressive 

pathobiology.  These include the S100A4/mts1 over-expressing murine model (Greenway 

et al., 2004; Spiekerkoetter et al., 2008), schistosomiasis murine model (Crosby et al., 

2010), and vascular endothelial growth factor (VEGF) antagonist Sugen 5416 + hypoxia 

rat model (Abe et al., 2010).     

 

The exact stimulus leading to abnormal endothelial cell proliferation remains unknown but 

may include shear stress, hypoxia, drugs/toxins and/or genetic susceptibility (Humbert et 

al., 2004).  Initial endothelial apoptosis is considered important to this, which results in 

both a vasoconstrictor/vasodilator imbalance whilst also exposing the PASMCs to 

circulating mitogenic factors.  For example, BMPR-II signalling promotes survival in 

PAECs (Teichert-Kuliszewska et al., 2006).  Therefore, an overall reduction in this 

signalling pathway (i.e. as observed in BMPR-II loss of function mutation carriers) may 

instead promote endothelial cell apoptosis (Teichert-Kuliszewska et al., 2006).  As a 

consequence, loss of functional endothelium may promote the stimulation of PASMCs via 

their exposure to circulating mitogenic factors. 

 

One feature common to PAH is the distal progression of smooth muscle into the normally 

non-muscular small peripheral pulmonary arteries.  This results in pronounced 

muscularisation of the terminal portion of the pulmonary arterial circulation (MacLean et 
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al., 2000).  Neointimal formation is also a common feature in severe PAH, as discussed 

previously.  The neointima is composed of a pronounced extracellular matrix surrounded 

with a layer of myofibroblasts, and is situated between the endothelium and internal elastic 

laminae.  Regardless of the histopathologic subtype, pulmonary vascular remodelling 

always results in increased obstruction of the lumen and the impairment of blood flow. 

 

1.2.5 Genetic Basis of Pulmonary Arterial Hypertension 

1.2.5.1 Bone Morphogenetic Protein Type 2 Receptor 

PAH is a disease with underlying genetic susceptibility.  That is, those individuals who 

inherit specific genotypes are more likely to develop PAH.  This is termed heritable PAH 

(HPAH).  The inheritance pattern for HPAH is autosomal dominant (Thompson and 

McRae, 1970).  Therefore, each child of an affected individual is at a 50% risk of 

inheriting the mutant allele.  Both genetic anticipation and female bias exists in HPAH 

(female 3:1 male).  Therefore, it is predicted that younger females are the risk category 

most susceptible to the development of HPAH.  Initially, the first identified disease locus 

was mapped to chromosome 2q31-32, and was termed PPH1 (Morse et al., 1998).  

Subsequently, this gene was identified as the bone-morphogenetic protein receptor-2 

(BMPR-II) (Lane et al., 2000).  BMPR-II mutations are widely recognized as the most 

common cause of HPAH, with mutation carriers up to ~100,000 times more likely to 

develop HPAH. These individuals are also accountable for up to 80% of HPAH cases 

(Morrell, 2010).  Despite this, penetrance for the gene remains relatively low as only ~20% 

of mutation carriers actually develop HPAH (Newman et al., 2004).  Therefore, it is 

assumed that other genetic and/or modifying risk factors contribute to this disease 

pathogenesis. 
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BMPR-II mediated dysfunction of transforming growth factor β (TGF- β) signalling is the 

pre-dominant genetic cause of PAH (Figure 1.8).  However in addition to BMPR-II 

mutations, alternative members of the TGF-β family may also render those affected 

individuals susceptible to the development of PAH.  Activin receptor-like kinase 1 (ALK-

1) receptor mutations are associated with hereditary hemorrhagic telangiectasia (HHT), but 

may also render those individuals susceptible to the development of PAH (Trembath et al., 

2001; Harrison et al., 2003).  This mutation, which results in defective SMAD signalling, 

leads to both an earlier-age of PAH onset and poorer prognosis in carriers when compared 

to those without the mutation. 

 

1.2.5.2 Serotonin Transporter  

Another genetic risk factor is the serotonin transporter (SERT).  SERT is encoded by the 

solute carrier family 6 member 4 (SLC6A4) gene located on chromosome 17 position 

17q11.2.  The SERT promoter region (SERTPR) contains a polymorphism which exists as 

short (S) or long (L) repeats in the region, the S allele has 14 repeats of a sequence, whilst 

the L allele has 16 repeats.  The S allele results in reduced SLC6A4 transcription and 

therefore reduced SERT protein expression.  SERT is an integral membrane protein that 

facilitates the transport of serotonin across the membrane in a Na
+
 dependant manner.  

SERT is implicated in the pathogenesis of both experimental and human PAH.  Mice over-

expressing the human SERT gene construct (SERT+ mice) develop PAH and severe 

hypoxia-induced PAH (MacLean et al., 2004).  Similarly, mice with targeted SERT over-

expression in the PASMCs develop PAH (Guignabert et al., 2006), whilst mice devoid of 

the SERT gene are protected against the development of hypoxia-induced PAH (Eddahibi 

et al., 2000).  SERT expression is also increased in PASMCs derived from idiopathic PAH 

(IPAH) patients and these proliferate to a greater extent than those from controls following 

serotonin stimulation, which is dependent on SERT activity (Eddahibi et al., 2006).  
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Indeed, the LL allele SERTPR polymorphism, which leads to increased activity/expression 

of SERT, has been associated with the increased development of PAH in a small cohort of 

patients (Eddahibi et al., 2001).  Subsequent studies in larger patient studies have failed to 

support these findings, although patients with the SERT polymorphism may present at an 

earlier age than those without (Willers et al., 2006). 

 

1.2.5.3 Transient Receptor Potential Channel 6 

Recently, a single-nucleotide polymorphism (SNP) in the transient receptor potential 

cation channel, subfamily C, member 6 (TRPC6) has been identified which may 

predispose those individuals to the development of PAH (Yu et al., 2009).  Increased 

frequency of the -254 (C→G) SNP in the TRPC6 gene is associated with increased 

incidence of PAH.  It is assumed that this SNP leads to both increased transcription and 

function of TRPC6, and as a consequence defective cytosolic Ca
2+

 handling in the 

PASMCs, leading to increased vasoconstriction and proliferation. 
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Figure 1.8 Bone morphogenetic protein receptor-2 signalling in PAH.  Following 

ligand binding (BMP-2,-4,-7), BMPR-II heterodimerizes with a type-I receptor (BMPR1A, 

1B, ALK-1) and phosphorylates the type-I glycine-serine rich tail domain.  

Heterodimerization initiates nuclear translocation of PSmad1/5/8 via co-Smad 4, or 

alternatively initiates smad independent P38MAPK signalling.  As a consequence, these 

pathways regulate transcription of several target genes (e.g cyclin D1, GATA-4, Id1, Id2) 

which regulate transcription and proliferation.        
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1.3 Serotonin Biosynthesis and Metabolism  

Serotonin (5-hydroxytryptamine; 5-HT) was first described following its isolation from 

serum (Rapport et al., 1948).  Physiologically, serotonin circulates at very low 

concentrations (<1nmol/L) and is maintained via SERT-mediated uptake into platelets, 

which act as a store for up to 99% of total peripheral serotonin.  Over 80% of peripheral 

serotonin synthesis occurs in the intestinal enterochromaffin cells, with the remaining 20% 

synthesised in other cell types including serotonergic neurons and PAECs (Hoyer et al., 

2002).  Serotonin controls many physiological functions in the cardiovascular system, 

including heart rate and vascular tone (Berger et al., 2009).  In addition to this, serotonin 

regulates the function of multiple other organs including the brain (e.g. the control of 

respiration, memory, nociception) and intestine (Hoyer et al., 2002).   

 

Serotonin is synthesised via the hydroxylation and subsequent decarboxylation of its 

biochemical pre-cursor tryptophan (Figure 1.9).  This two-step biosynthetic pathway is 

catalysed by tryptophan hydroxylase (TPH) and the aromatic L-amino acid decarboxylase, 

respectively.  TPH is the rate-limiting enzyme involved in serotonin synthesis, and 

specifically catalyses the hydroxylation of tryptophan via the addition of a hydroxyl group 

(–OH) to the 5 position, resulting in the formation of 5-hydroxytryptophan (5-HTP).  

Currently, two genes have been identified which encode for TPH, and are termed tph1 and 

tph2 (Walther et al., 2003).  These tph isoforms share 71% sequence homology.  Although 

both are functionally identical, TPH1 mediates peripheral serotonin synthesis whereas 

TPH2 mediates central serotonin synthesis. 

 

Serotonin inactivation occurs via its rapid metabolism in the liver and lung (Hart and 

Block, 1989).  Monoamine oxidase-A (MAO-A) initiates this metabolism via oxidative 

deamination (removal of –NH2 group) of the amino chain.  The product, 5-hydroxyindol-

acetaldehyde, is subsequently oxidised to 5-hydroxyindole acetic acid (5-HIAA) by 
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aldehyde dehydrogenase.  5-HTIAA is the primary serotonin metabolite produced and is 

excreted in the urine following conjugation.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9 Serotonin biosynthesis and metabolism.  The amino acid tryptophan is 

converted to 5-hydroxy-L-tryptophan/5-HTP via tryptophan hydroxylase.  This is the rate-

limiting enzyme in serotonin synthesis.  Subsequently, non-specific decarboxylase 

enzymes convert 5-HTP to serotonin.  Serotonin metabolism to 5-hydroxyindoleacetic acid 

occurs via both monoamine oxidase and aldehyde dehydrogenase.  Adapted from (Druce et 

al., 2009).         
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1.4 Serotonin Signalling 

A wealth of evidence exists which suggests that the serotonin system facilitates the 

development of human and experimental PAH (MacLean and Dempsie, 2010).  Elevated 

levels of circulating serotonin have also been reported in PAH (Herve et al., 1995).  The 

exogenous administration of serotonin promotes the development of PAH in rats and also 

uncovers a PAH phenotype in BMPR-II-/- mice (Long et al., 2006).  Within the pulmonary 

circulation, serotonin signalling is mediated via three distinct pathway components.  These 

are TPH1, SERT and the 5-HT receptors.  In addition, stimulation of SERT and/or the 5-

HT receptors initiates multiple downstream signalling pathways which are essential to 

serotonin signalling. 

 

1.4.1 Tryptophan Hydroxylase 

Tryptophan hydroxylase (TPH) catalyses the rate-limiting step involved in serotonin 

synthesis.  Currently, two TPH isoforms have been described (Walther et al., 2003), and 

are termed TPH1 and TPH2.  These are distinguishable by sequence heterology and their 

location of expression.  TPH2 is exclusively expressed in the central nervous system, and 

completely absent in the periphery.  In contrast, TPH1 mediates peripheral serotonin 

synthesis and is predominantly expressed in the intestinal enterochromaffin, and to a lesser 

extent in PAECs.  Although the enterochromaffin cells synthesise up to 80% of total 

peripheral serotonin, local serotonin synthesis within the PAECs is also considered 

important.  This local synthesis is thought to facilitate a ‘serotonin micro-environment’ 

which promotes the vasoconstrictive and mitogenic effects of serotonin on the underlying 

PASMCs.  Indeed, this appears to play a role in the pathogenesis of PAH as TPH1 

expression is increased in both the lungs and PAECs derived from IPAH patients 

(Eddahibi et al., 2006).          
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TPH1 expression is influenced by a number of physical, environmental and humoral 

factors.  As a consequence, this affects serotonin synthesis.  For example, TPH1 expression 

is increased in pulmonary neuroendocrine cells following stimulation by mechanical 

stretch (Pan et al., 2006).  Also, stimulation of the Tie-2 receptor via the growth factor 

angiopoietin-1 (Ang-1) stimulates serotonin synthesis in PAECs via increased TPH1 

expression (Dewachter et al., 2006). 

 

Previously, we have made unpublished observations that TPH1 is abundantly expressed in 

the pulmonary arteries of mice following exposure to chronic hypoxia.  Specifically, TPH1 

appears to be localised to the pulmonary endothelium.  Indeed, mice deficient of the tph1 

gene (tph1-/- mice) do not develop hypoxia-induced PAH (Morecroft et al., 2007), 

suggesting the importance of peripheral serotonin synthesis in its development.  

 

1.4.2 5-HT Receptors  

There are a total of 14 structurally distinct 5-HT receptor types (Figure 1.10).  These are 

divided into seven classes (5-HT1-7), defined by their structure and downstream coupling to 

signal transduction pathways (Alexander et al., 2006).  In addition, several isoforms can 

exist for the same 5-HT receptor subtype (e.g. 5-HT1 receptors comprise the 5-HT1A, 5-

HT1B and 5-HT1D) as a result of alternative splicing and RNA editing.  All of the 5-HT 

receptors exist as membrane-bound G protein coupled receptors (GPCRs), with the 

exception of the 5-HT3 receptor which operates as a ligand-gated ion channel (Hoyer et al., 

2002).   

 

The 5-HT GPCRs all share similar structural homology.  They contain an extracellular N 

terminus domain, seven transmembrane α-helices and an intracellular C terminal domain 

(Figure 1.11).  Following ligand binding at the extracellular portion of the receptor, this 
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initiates activation of the associated (or ‘coupled’) G-protein.  G-proteins exist as 

heterotrimeric structures composed of α, β and γ subunits.  These are typically classified by 

their α-subunit type, of which four exist; Gs, Gi, Gq and G12/13 (Figure 1.12).  Each 

respective G-protein initiates its own unique downstream signalling transduction pathways, 

and therefore the cellular function of a GPCR will be ultimately determined by the G-

protein it is coupled with.  For example, the Gs subunit increases adenylyl cyclase (AC) 

whereas the Gi subunit inhibits AC.  Also, the Gq and G12/13 subunits activate phospholipase 

C (PLC) and small G-proteins, respectively.  In addition, five β subunits and twelve γ 

subunits have also been described (Milligan and Kostenis, 2006).  G-proteins are typically 

coupled to their respective GPCR via a direct interaction with the second or third 

intracellular loop (Hoyer et al., 2002).  Specifically, the binding of a ligand to its receptor 

initiates a conformational change which promotes the exchange of guanosine 5'-

diphosphate (GDP) for guanosine 5'-triphosphate (GTP) at the guanosine nucleotide 

binding site within the Gα subunit (Hamm, 1998).  In turn, G-protein activation results in 

dissociation of the Gα subunit from the Gβγ complex, and both entities activate downstream 

signalling pathways.   

 

Figure 1.10 Classification of the 14 structurally distinct 5-HT receptor subtypes.  

Those highlighted in red have been previously shown to mediate serotonin effects in PAH.  

5-HT receptor subtypes denoted in lower case indicate that their physiological role remain 

to be described  
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Figure 1.11 Representative structure of a G-protein coupled receptor (GPCR).  

GPCRs typically exist of an extracellular N-terminus domain, seven transmembrane alpha-

helices and an intracellular C-terminus domain.  The ligand binds directly to the GPCR, 

and glycosylation of the N-terminus domain is involved in cell trafficking. 

 

 

 

 

 

Receptor   Type       Mechanism  

  

5-HT1    Gi/Go      Decreased cAMP   

5-HT2    Gq/G11      Increased IP3 and  

         DAG    

5-HT3    Ligand-gated Na
+
 and K

+
 cation channel.  Depolarisation  

5-HT4    Gs      Increased cAMP  

5-HT5    Gi/Go      Decreased cAMP  

5-HT6    Gs      Increased cAMP   

5-HT7    Gs      Increased cAMP 

    

Figure 1.12 5-HT receptor subtype signalling pathways.  All 5-HT receptor subtypes act 

via an intracellular second messenger, with the exception of 5-HT3, which is a ligand-gated 

ion channel.  

Glycosylation 
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Domains 
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Ligand 
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1.4.2.1 5-HT1 Receptor Subtypes 

The 5-HT1 class of receptors comprise five subtypes (5-HT1A, 5-HT1B, 5-HT1D, 5-ht1E and 

5-ht1F), and these share 40-63% sequence homology.  Both the 5-ht1E and 5-ht1F receptors 

are represented in lower case to denote that their physiological role remains to be 

determined.  All 5-HT1 receptors are coupled to the Gi protein.  Therefore, stimulation of 

the receptor and G-protein activation results in the inhibition of AC and cAMP production.  

All 5-HT1 receptor subtypes are expressed in both the CNS and periphery.  Specifically, it 

is the 5-HT1B and 5-HT1D receptors which predominantly mediate serotonin effects in the 

cardiovascular system.  Although 5-HT1D receptor expression is relatively low in 

comparison to the 5-HT1B receptor, it has been shown to evoke serotonin release from 

cardiomyocytes in humans, and is also important in inflammation (Hoyer et al., 2002).  

Indeed, 5-HT1D receptor antagonists are currently prescribed in the treatment of migraine 

(Cutrer et al., 1999).   

 

The 5-HT1B receptors are expressed in nerve terminals where they act as auto-receptors in 

the release of several neurotransmitters including noradrenaline and acetylcholine (Hoyer 

et al., 2002).  In the cardiovascular system, it mediates serotonin-induced vasoconstriction 

in both cerebral (van den Broek et al., 2002) and pulmonary (Morecroft et al., 1999) 

arteries.  With respect to the pulmonary circulation in humans, the 5-HT1B subtype is the 

primary 5-HT receptor which mediates receptor-driven serotonin signalling.  For example, 

it is implicated in both serotonin-induced pulmonary arterial vasoconstriction and 

proliferation, both of which are hallmarks of PAH.  Indeed, up-regulation of the 5-HT1B 

receptor has already been described in experimental PAH (Rondelet et al., 2003).  A 

functional role for the 5-HT1B receptor was initially described following the observation 

that sumatriptan (5-HT1B/1D receptor agonist) stimulated contraction of human small 

muscular pulmonary arteries (MacLean et al., 1996).  In support of this, serotonin-induced 

vasoconstriction was also successfully inhibited with the 5-HT1B/1D receptor antagonist 
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GR55562.  Subsequently, the role of the 5-HT1B receptor was confirmed by the observation 

that the selective 5-HT1B receptor antagonist SB224289 abolished sumatriptan-mediated 

vasoconstriction whereas BRL15572 (a selective 5-HT1D receptor antagonist) had no effect 

(Morecroft et al., 1999).  The 5-HT1B receptor is also involved in the contraction of non-

human pulmonary arteries.  Although, sumatriptan does not the stimulate contraction of 

bovine pulmonary arteries in basal conditions, it promotes vasoconstriction in the presence 

of U44619 tone (MacLean et al., 1994).  This is an example of pharmacological synergism.  

Additional factors often described in PAH (e.g. decreased NOS expression leading to 

reduced NO bioavailability) have also been found to potentiate 5-HT1B receptor-mediated 

contraction (Dempsie and MacLean, 2008).  In non-human pulmonary arteries, it is 

typically assumed that serotonin-induced vasoconstriction is via the 5-HT2A receptor in the 

absence of tone, whilst via the 5-HT1B receptor in the presence of tone.   

 

Animal models of PAH have also described a role for the 5-HT1B receptor in disease 

pathogenesis.  In rats, the 5-HT1B receptor antagonist GR127935 attenuates the severity of 

hypoxia-induced PAH (Marcos et al., 2003).  In addition, 5-HT1B receptor knockout mice 

exhibit a reduction in RVSP and pulmonary vascular remodelling following exposure to 

hypoxia (Keegan et al., 2001).  Indeed, increased 5-HT1B receptor expression is also 

reported in an overcirculation-induced model of PAH in piglets (Rondelet et al., 2003).  

Fawn-hooded rats, which exhibit altered serotonergic function and develop exaggerated 

hypoxia-induced PAH, also show increased 5-HT1B receptor mediated contraction in the 

pulmonary arteries (Morecroft et al., 2005).   

 

1.4.2.2 5-HT2 Receptor Subtypes 

Serotonin exerts multiple physiological effects via the activation of multiple 5-HT receptor 

subtypes.  In the cardiovascular system, the 5-HT1 and 5-HT2 receptor subtypes mediate 
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most of the serotonin effects (Hoyer et al., 2002).  The 5-HT2 subtypes include the 5-HT2A, 

5-HT2B and 5-HT2C receptors, which share 46-50% of overall sequence homology.  The 

majority of these receptors are coupled to the Gq protein, which signals via the activation 

of PLC to form inositol 1,4,5 trisphosphate (IP3) and 1,2-diacylglycerol (DAG).  In turn, 

these second messengers increase [Ca
2+

]i.  The 5-HT2A receptor is widely expressed in both 

the central nervous system and periphery, and mediates many physiological functions.  In 

the cardiovascular system, this receptor promotes vasoconstriction in both the systemic and 

pulmonary arteries.  Indeed, the 5-HT2A receptor antagonist ketanserin is a proven 

therapeutic treatment for systemic hypertension in humans.  In contrast, its use in the 

treatment of PAH is much less effective (Domenighetti et al., 1997).  In one study 

involving a cohort of PAH patients, ketanserin had no effect on pulmonary vascular 

resistance until extremely high doses were administered, and this effect was minimal 

compared to those observed on systemic vascular resistance.  Therefore, expression of the 

5-HT2A receptor in both the systemic and pulmonary arteries has limited its effectiveness as 

a therapeutic target in the treatment of PAH.  Multiple serotonin effects mediated via the 5-

HT2A receptor have also been described in animal models of PAH.  For example, serotonin 

promotes vasoconstriction in mouse, rat, dog and cow pulmonary arteries predominantly 

via the 5-HT2A receptors (MacLean and Dempsie, 2010).  This is in contrast to human 

pulmonary arteries, where both the 5-HT2A and 5-HT1B receptors mediate serotonin-

induced vasoconstriction.  In isolated rat PASMCs, the 5-HT2A receptor has also been 

shown to directly inhibit Kv channels, which results in decreased K
+
 cellular efflux and 

depolarisation (Varghese et al., 2006).   

 

The 5-HT2A receptor is also involved in the proliferation of pulmonary vascular cells.  It 

has been shown to mediate the exaggerated serotonin-induced proliferative response of 

PAFs in chronic hypoxia (Welsh et al., 2004).  In bovine PASMCs, this receptor may also 

stimulate serotonin-induced proliferation via the phophatidylinositol-3-kinase/protein 
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kinase B (PI3K/PKB) pathway (Liu and Fanburg, 2006).  In addition, this subtype 

promotes platelet aggregation and thrombosis (Nagatomo et al., 2004), which is a common 

feature in PAH. 

 

The 5-HT2B receptor has also been shown to mediate multiple serotonin effects in the 

pulmonary vasculature.  Nordexfenfluramine, which is an active metabolite of 

dexfenfluramine and potent 5-HT2B receptor agonist, stimulates the contraction of 

pulmonary arteries (Ni et al., 2004).  This 5-HT2B agonist also activates MAPK signalling 

in cells expressing the recombinant 5-HT2B receptor (Fitzgerald et al., 2000).  This 

pathway has previously been shown to stimulate the proliferation of both PASMCs (Liu 

and Fanburg, 2006) and PAFs (Welsh et al., 2001).  In vivo, the development of hypoxia-

induced PAH is completely ablated in 5-HT2B receptor knockout mice, and is also similarly 

ablated in mice treated with the 5-HT2B receptor antagonist RS-127445 (Launay et al., 

2002).  In addition, evidence which suggests that the 5-HT2B receptor is involved in the 

regulation of plasma serotonin levels has also been described in mice (Callebert et al., 

2006).  The 5-HT2B receptor is also essential in heart development during embryogenesis 

(Nebigil et al., 2000).  It appears to promote the survival of adult cardiomyocytes (Nebigil 

et al., 2003), which may be a feature of serotonin-induced right ventricular hypertrophy.  

However its therapeutic target in the treatment of PAH is limited, as loss of 5-HT2B 

receptor function may actually predispose to the development of dexfenfluramine-induced 

PAH in humans (Blanpain et al., 2003).  

 

1.4.2.3 Additional 5-HT Receptor Subtypes 

In addition to the 5-HT1 and 5-HT2 receptors previously discussed, the expression of 

additional 5-HT receptors has also been described in the pulmonary circulation.  mRNA 

transcripts for the 5-HT1A, 5-HT1D, 5-HT3A, 5-HT3B, 5-HT4, 5-HT6 and 5-HT7 receptors 
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have been identified in rabbit pulmonary arteries (Molderings et al., 2006), whilst 5-

HT1B/1D, 5-HT2A, 5-HT2B, 5-HT4 and 5-HT7 receptor transcripts have been found in porcine 

pulmonary arteries.  In the latter, this is an identical receptor expression profile to that 

observed in human PASMCs with the exception of the 5-HT4 receptor, which appears to be 

absent in humans (Ullmer et al., 1995).  Multiple physiological functions have been 

described for the majority of these 5-HT receptor subtypes, however these appear to play a 

minor role in the receptor-dependent effects of serotonin in the pulmonary circulation.  

Therefore, it is assumed that the 5-HT1B, 5-HT2A and 5-HT2B receptors mediate receptor 

driven serotonin signalling in PAH.     

 

1.4.3 5-HT Receptor and Serotonin Transporter Interactions 

Functional interactions between the 5-HT1B receptors and SERT have also been described.  

In the pulmonary circulation, this results in increased vasoconstriction and proliferation.  In 

rat pulmonary arteries, synergy between the inhibitory effects of 5-HT1B receptor 

antagonism and SERT inhibition on serotonin-induced contraction have been reported 

(Morecroft et al., 2005).  Similar interactions have also been described in mouse 

pulmonary arteries (Morecroft et al., 2010).  Indeed, dual inhibition of both the 5-HT1B 

receptors and SERT is more effective in preventing hypoxia-induced PAH in mice than 

inhibition of SERT alone (Morecroft et al., 2010).  SERT is considered to mediate 

serotonin-induced proliferation in cells, however involvement of the 5-HT1B receptor is 

also considered important.  In bovine PASMCs, stimulation of the 5-HT1B receptor results 

in activation of rho small G protein and its downstream mediator rho-kinase (ROCK), and 

in turn facilitates the nuclear translocation of SERT-induced phosphorylated ERK1/2 (Liu 

et al., 2004).  This interaction between SERT and the 5-HT1B receptors stimulates 

proliferation via the transcriptional regulation of multiple proliferative genes including 

GATA-4 and cyclin D1.  In human PASMCs, stimulation of the 5-HT1B receptor promotes 
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ERK1/2 phosphorylation and proliferation in a RAGE dependent manner (Lawrie et al., 

2005).  5-HT1B receptor stimulation results in the phosphorylation of ERK1/2, and via a 

mechanism involving serotonin metabolism, generated reactive oxygen species (ROS) 

facilitated nuclear translocation occurs.  Inside the nucleus, target genes are activated (e.g. 

GATA-4) resulting in increased mts1 synthesis and release. As a consequence, Mts1 

activates membrane-bound RAGE receptors to stimulate proliferation (Lawrie et al., 2005).  

Dual blockade of both the 5-HT1B receptors and SERT is also more effective than singular 

SERT blockade at inhibiting serotonin-induced proliferation in both non-IPAH and IPAH 

PASMCs (Morecroft et al., 2010).  5-HT1B receptor expression appears confined to the 

pulmonary circulation and mediates both serotonin-induced vasoconstriction and 

proliferation.  On this evidence, the 5-HT1B receptor is one viable future therapeutic target 

in the treatment of PAH.      

 

1.4.4 Serotonin Transporter 

1.4.4.1 Structure  

A single gene encodes for the serotonin transporter (SERT; 5-HTT), which is located on 

chromosome 17q11.2, and its transcriptional regulation and function is controlled by the 

repetitive sequence of varying length in the promoter region of the gene (Ramamoorthy et 

al., 1993).  The alleles are composed of either fourteen (short; S) or sixteen (long; L) 

repeated sequences. The L allele promotes a higher rate of SERT gene transcription than 

the S allele, and is also associated with increased mRNA expression, protein expression 

and functional activity (Lesch et al., 1996).  The SERT protein is a ~630 amino acid 

sequence (molecular weight 70kDa) which consists of an intracellular N-terminus, 12 

transmembrane spanning domains (6 extracellular and 5 cytoplasmic loops) and an 

intracellular C-terminus (Figure 1.13).   
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1.4.4.2 Function 

SERT expression is reported in multiple cell types across both the central nervous system 

and cardiovascular system.  Specifically, it is abundantly expressed in both the platelets 

(Talvenheimo and Rudnick, 1980) and PASMCs (Eddahibi et al., 2001), and these cell 

types have been described in the pathobiology of PAH.  SERT operates as a Na
+
-

dependant transporter, utilising the Na
+
 concentration gradient to facilitate serotonin 

transport across the membrane (Torres et al., 2003).  It is assumed that serotonin flux only 

occurs when the transporter simultaneously binds Na
+
, Cl

-
 and serotonin.  Specifically, the 

aspartic acid residue (D98) situated at transmembrane domain 1 (TMD1) is essential for 

serotonin recognition via charge interactions with the negatively charged serotonin amine 

group (Nelson, 1998).  This interaction induces a conformational change to facilitate the 

transport of serotonin, in accompaniment with Na
+
 and Cl

-
, across the membrane.  The 

SERT must also bind an intracellular K
+
,
 
via an active cysteine residue located on TMD3, 

which is consequently transported outside the cell.  This allows the inactivation of SERT 

back to its native/resting state.  Typically, serotonin is transported into the cell via SERT 

and this direction of transport is energetically unfavourable (net loss of K
+
).  To 

compensate, the Na
+
/K

+ 
ATPase-mediated continuous influx of K

+
 coupled with the 

continuous efflux of Na
+ 

acts as an equilibrator to maintain the transmembrane 

concentration gradient. 

 

1.4.4.3 Pre and Post Translational Modifications  

SERT activity is regulated via pre- and post-translational modifications.  As discussed 

earlier, the allelic variation of the SERT gene leading to altered expression and activity, is 

the primary determinant of pre-translational function.  However, SERT activity is also 

regulated to a large extent via post-translational modifications.  The phosphorylation levels 

of SERT, which are regulated via protein kinase C (PKC), protein phosphatase 2A (PP2A) 
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and P38, are important in modulating SERT function (Ramamoorthy et al., 1998).  There 

are multiple serine and threonine binding sites located on the transmembrane domain 

cytoplasmic loops and these are the target-site of phosphorylation for these kinase 

pathways.  The functional consequence of SERT phosphorylation is the regulation of 

SERT expression via trafficking from the cell membrane.  For example, the activation of 

PKC has been shown to phosphorylate SERT resulting in increased sequestration from the 

membrane.  In contrast, PPA2 appears to maintain higher levels of membrane expression, 

as its inhibition results in increased SERT membrane sequestration.  The activation of P38 

is also associated with increased SERT activity.  P38 inhibition reduces serotonin uptake 

via reduction in SERT membrane expression (Samuvel et al., 2005).  Indeed, receptor-

mediated P38 activation can also increase SERT function itself independent of expression 

levels (Zhu et al., 2005).  Moreover, it is observed that serotonin can also directly decrease 

SERT phosphorylation.  This negative feedback mechanism may act to prevent the 

internalisation of SERT in circumstances where extracellular serotonin levels are higher 

than normal.  Combined, the regulation of SERT expression and activity via these pre- and 

post-translational modifications are important in SERT function. 
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Figure 1.13 Structure of the serotonin transporter.  The serotonin transporter exists as 

an intracellular N-terminus, twelve transmembrane domains and an intracellular C-

terminus.  The serotonin transporter also contains several sites which can undergo post-

translational modification to affect its function. 

 

1.5 Serotonin Hypothesis of PAH 

Serotonin is a potent mitogen and vasoconstrictor in the pulmonary vasculature (Figure 

1.14).  Serotonin was first implicated in the pathogenesis of PAH following introduction of 

the ‘serotonin hypothesis’ of anorexigen-induced PAH.  These appetite suppressant drugs 

act to inhibit SERT-mediated serotonin uptake whilst also increasing serotonin release.  In 

the 1960’s, use of the indirect serotonergic agonist aminorex, which is an appetite-

suppressant drug, was associated with >30 fold increased incidence of PAH (Abenhaim et 

al., 1996; Kramer and Lane, 1998).  The subsequent generation of anorexigens, termed 

fenfluramines, were introduced in the 1980’s, and also found to be associated with an 

increased risk of PAH.  Following a multicentre study investigation, it was observed that 
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use of these anorexigens for a period greater than three months, was associated with a >30 

fold increased risk of developing PAH.  This discovery resulted in the complete 

withdrawal of all aminorex/fenfluramine-based anorexigens for clinical use in the 

treatment of obesity. 

 

Both aminorex and fenfluramine are amphetamine-like compounds which act to influence 

serotonin signalling.  Specifically, both are SERT substrates which results in their uptake 

into cells.  Inside the cell, both aminorex and fenfluramine compete with monoamines at 

the vesicular monoamine transporter (VMAT) for entry into storage vesicles.  Once inside 

they disrupt monoamine storage, resulting in the reversal of normal serotonin flux to 

instead promote serotonin release.  Indeed, fenfluramine has been shown to increase 

plasma serotonin concentrations by evoking its release from platelets and neurons 

(Rothman et al., 1999).  Fenfluramines were often prescribed in combination with 

phentermine (fen-phen), which is also a SERT substrate and MAO inhibitor, resulting in 

the further potentiation of plasma serotonin levels via increased serotonin release and 

decreased metabolism.  These observations formed the basis of the ‘serotonin hypothesis’ 

in PAH. 

 

It was initially proposed that the anorexigen-mediated release of serotonin from platelets, 

leading to the accumulation of plasma serotonin, resulted in the development of 

anorexigen-induced PAH.  Consistent with this, elevated circulating levels were observed 

in PAH patients and individuals affected with platelet storage disorders also appear 

susceptible to the development of PAH (Herve et al., 1995; Herve et al., 1990).  Normal 

circulating levels of serotonin reside at ~1nmol/L, but have been reported to increase up to 

30-fold (~30nmol/L) in PAH patients.  However in fenfluramine-induced PAH, it was 

observed that serotonin levels were minimally elevated and still within normal 

physiological range (Kawut et al., 2006).  Of further interest, fenfluramine administration 
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leading to decreased plasma serotonin levels, has also been described (Stubbs et al., 1986).  

This converging evidence suggests that elevated plasma serotonin levels are not essential 

in the development of anorexigen-induced PAH. 

 

In humans, fenfluramines promote the development of PAH, and these effects have also 

been investigated in experimental PAH.  For example, dexfenfluramine promotes the 

development of PAH in both mice (Dempsie et al., 2008) and rats (Eddahibi et al., 1998).  

However the exact role of this drug remains controversial, as it has been shown to protect 

against the development of both hypoxia-induced PAH (Rochefort et al., 2006) and 

monocrotaline-induced PAH (Mitani et al., 2002).        

   

Non-serotonin mediated mechanisms have also been described for fenfluramines in PAH.  

For example, it can both directly inhibit potassium channels and increase intracellular 

[Ca
2+

], which act to promote vasoconstriction and proliferation (Weir et al., 1996).  In 

addition, fenfluramine metabolism results in formation of the active fenfluramine-

derivative nordexfenfluramine, which has been shown to mediate pulmonary arterial 

vasoconstriction via activation of the 5-HT2B receptors (Hong et al., 2004).  Indeed, this 

receptor may be involved in disease pathogenesis as 5-HT2B receptor knockout mice do not 

develop hypoxia-induced PAH (Launay et al., 2002).   

 

However, it is considered that serotonin effects of fenfluramines, as opposed to the non-

serotonin effects, promote the development of anorexigen-induced PAH.  Indeed, this has 

been confirmed experimentally as mice deficient of peripheral serotonin (tph1-/- mice) do 

not develop dexfenfluramine-induced PAH (Dempsie et al., 2008). 
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1.6 The Serotonin Transporter in PAH 

The SERT is highly expressed in both the platelets and lungs.  These play an important 

role in the regulation of plasma serotonin concentrations, and are thought to store or 

inactivate up to 95% of total circulating levels, therefore reducing serotonin effects in 

pulmonary vascular cells.  However, serotonin is implicated in the pathogenesis of PAH, 

and this is mediated in part via SERT.  One study in a small cohort of IPAH patients 

identified that 65% of those were homozygous for the SERT L-allele variant (LL), which 

is associated with increased SERT expression and activity, compared to only 27% of non-

PAH controls (Eddahibi et al., 2001).  Although subsequent studies in larger patient 

cohorts have failed to support these findings (Machado et al., 2006), patients with the LL 

allele polymorphism may still present at an earlier age than those without (Willers et al., 

2006).  Irrespective of genotype, SERT expression is increased in the lungs of IPAH 

patients (Eddahibi et al., 2001).  In addition, PASMCs derived from IPAH patients also 

exhibit increased SERT expression and these proliferate to a greater extent than those from 

controls following serotonin stimulation, and this is dependent on SERT activity (Eddahibi 

et al., 2006).  The SERT-mediated uptake of serotonin has been shown to activate multiple 

signalling pathways relevant to PAH, and this activation of has been reported in several 

pulmonary vascular cell types.  For instance, the role of SERT is implicated in increased 

Mts1 synthesis and release from PASMCs, which in turn stimulates proliferation via the 

RAGE pathway (Spiekerkoetter et al., 2005).  In bovine PASMCs, ROS derived from 

serotonin metabolism results in the phosphorylation and nuclear translocation of ERK1/2, 

and this is dependent on SERT function (Liu et al., 2004).  Once inside the nucleus, 

pERK1/2 can itself then phosphorylate multiple nuclear factors including elk-1, erg-1, 

GATA-4 and cyclin D1, all of which stimulate proliferation.  The serotonin-induced 

proliferation of PAFs is also mediated via SERT, as citalopram can successfully block 

these effects (Welsh et al., 2004).  Alternatively, intracellular serotonin can directly bind to 

and activate small GTPases which also reside within the cytoplasm in a process termed 
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serotonylation (Liu et al., 2010).  This further promotes the mitogenic effects of serotonin.  

Independent of serotonin, the SERT itself has also been shown to directly transactivate the 

PDGF receptors (Liu et al., 2007). 

   

Animal models of PAH have also implicated SERT in the development of PAH.  For 

example, mice over-expressing SERT (SERT+ mice) exhibit increased RVSP and 

pulmonary vascular remodelling, and also develop exaggerated hypoxia-induced PAH 

(MacLean et al., 2004).   Similarly, mice with targeted SERT over-expression in the 

PASMCs (under the guidance of its own SM22 promoter) develop PAH (Guignabert et al., 

2006).  Conversely, mice devoid of the SERT gene are less susceptible to the development 

of hypoxia-induced PAH (Eddahibi et al., 2000).  Also, the SERT inhibitor citalopram 

attenuates the severity of hypoxia-induced PAH in both wildtype and SERT+ mice 

(Morecroft et al., 2010), and prevents hypoxia-induced PAH in rats (Marcos et al., 2003).  

Hypoxia also appears to regulate SERT expression, as its expression is decreased in the 

lungs of hypoxic mice (MacLean et al., 2004). 

  

SERT is also a target for many drugs/toxins which promote the development of PAH.  The 

SERT substrate dexfenfluramine is one such example.  Dexfenfluramine enters the cell 

through SERT and then subsequently enters the storage vesicles via the VMAT.  Once 

inside these vesicle, dexfenfluramine acts to evoke serotonin release.  The consequence of 

this is increased circulating serotonin levels.  Methamphetamines also act to release 

serotonin via a similar mechanism, and have also been associated with the development of 

PAH (Rothman and Baumann, 2007; Zolkowska et al., 2006). 

 

A wealth of evidence exists which implicates the serotonin system in the pathogenesis of 

PAH.  Serotonin appears to act via the 5-HT receptors and the SERT to promote both 
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vasoconstriction and proliferation in the pulmonary vasculature.  The pharmacological 

target of these serotonin pathway mediators is one viable option in the treatment of PAH.       

 

1.7 Gender Differences in Cardiovascular Disease 

Gender differences exist in cardiovascular disease.  Although mortality rates are equally 

prevalent in both males and females, the age of disease onset is typically later in women. 

Also, pre-menopausal females are at a reduced risk of cardiovascular disease compared to 

males.  The beneficial effects of estrogens in the cardiovascular circulation are likely 

related to these differences (Mendelsohn and Karas, 1999).  This is further supported by 

the increased incidence of cardiovascular disease in women following surgically-induced 

or natural menopause.  Similarly, incidence is also decreased in those undergoing hormone 

replacement therapy (Bush et al., 1987; Stampfer et al., 1991) (estrogen and/or progestin).  

Experimentally, a wealth of evidence highlights the protective effects of estrogens, and 

particularly 17β estradiol in cardiovascular disease. 
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Figure 1.14 Serotonin signalling in the pulmonary vasculature.  Tryptophan 

hydroxylase-1 (TPH1) mediates serotonin synthesis in pulmonary artery endothelial cells.  

Serotonin is then released where its acts on the underlying pulmonary artery smooth 

muscle cells.  Specifically, serotonin can stimulate contraction via the 5- HT2A and 5-HT1B 

receptors, or alternatively enter the via the serotonin transporter (SERT) to stimulate 

proliferation. Additionally, stimulation of the 5-HT1B receptor also promotes proliferation.     
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1.8 Estrogen  

1.8.1 Synthesis and Metabolism  

Female steroid hormones (female sex hormones) comprise both estrogens and 

progesterone.  The majority of estrogen synthesis occurs in both the ovarian follicles and 

corpus luteum and to a lesser extent the liver, adipose tissue and skin.  In addition, 

estrogen-synthesising enzymes are also expressed in both the endothelial and smooth 

muscle cells within the vasculature, suggesting the importance of ‘local’ estrogen synthesis 

within the cardiovascular system.  In humans, estrogen synthesis is continuously 

modulated by the influence of various endocrine hormones, which are typically secreted 

from the brain.  For example, the release of pituitary-derived luteinising hormone 

stimulates the estrogen synthesis.  This continuous modulation of estrogen is the basis of 

both the menstrual (in humans) and estrous (in mammals) cycle.  Estrogens exist as a 

family of steroid compounds which include three major subtypes; estrone, 17β estradiol 

and estriol.  17β estradiol is the pre-dominant circulating hormone in pre-menopausal 

women, whereas estrone and estriol circulate at lower concentrations and have little 

contribution.  Estrone appears important only in post-menopausal women, whilst increased 

circulating levels of estriol are reported during pregnancy (Goodwin, 1999).   

 

The biosynthesis of 17β estradiol is well-described (Payne and Hales, 2004).  Cholesterol, 

which is the common pre-cursor in steroidogenesis, is converted to pregnenolone (Figure 

1.15).  The synthesis of androstenedione then acts as an intermediate step in estrogen 

synthesis.  17β estradiol is derived from androstenedione via two distinct biosynthetic 

pathways.  The enzyme aromatase converts androstenedione to estrone, which in turn is 

converted to 17β estradiol via 17β hydroxysteroid dehydrogenase.  Alternatively, 17β 

estradiol can be directly derived from aromatase-mediated testosterone metabolism.  In 

pre-menopausal females, circulating levels of 17β estradiol typically range between 0.1-
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1nmol/L (Rosselli et al., 1994), and this is influenced to a large extent on the menstrual 

cycle stage.     

 

Following its synthesis, 17β estradiol is rapidly metabolized.  There are multiple pathways 

which are involved in this (Zhu and Conney, 1998).  All convert 17β estradiol to various 

hormonally inactive non-estrogenic metabolites ready for elimination from the body.  The 

first-step of 17β estradiol metabolism is oxidative metabolism (hydroxylation) which 

occurs in the liver, and to a lesser extent in several extrahepatic tissues including the brain 

and vasculature.  Several members of the cytochrome P450 (CYP450) family are essential 

in mediating this NADPH-dependent oxidative metabolism of 17β estradiol.  Specifically, 

CYP1A1, CYP1A2, CYP1B1 and CYP3A4 appear critical to this (Martucci and Fishman, 

1993).  In the liver, around 80% of 17β estradiol is metabolized to 2-hydroxyestradiol via 

CYP1A1, CYP1A2 and CYP3A4, whereas the remaining 20% is metabolized to 4-

hydroxyestradiol via CYP1B1.  In extrahepatic tissues 2-hydroxyestradiol formation is 

predominantly via CYP1B1.  In addition to this, several other CYP isoforms (CYP2A6, 

CYP2C8, CYP3A5 and CYP3A7) also play a minor role in 17β estradiol metabolism, 

resulting in the formation of multiple other metabolites including 6α, 6β, 7α, 12β, 15α, 

15β, 16α and 16β hydroxyestradiol (Martucci and Fishman, 1993).  All of these water-

soluble catechol metabolites are readily eliminated by the kidneys via urine excretion.  

Alternatively, these hydroxyestradiol metabolites can themselves undergo metabolism via 

their COMT mediated O-methylation conversion to monomethoxyestradiols (e.g. 2-

methoxyestradiol, 4-methoxyestradiol) before excretion from the body.   

 



 

 57 

Figure 1.15 Estrogen biosynthesis and metabolism.  Androstenedione is derived from the steroid hormone pre-cursor cholesterol via cytochrome P450-

11A (CYP11A) and CYP17.  (17β) estradiol is derived from testosterone or estrone via CYP19 or 17β hydroxysteroid dehydrogenase (17β-HSD), 

respectively.  (17β) estradiol is metabolised to 2- and 4-hydroxyestradiol via CYP1A1, CYP1A2, CYP3A4 and CYP1B1.  Subsequently, the 

hydroxyestradiol compounds are metabolised to mono-methoxyestradiol compounds via catechol-O-methyltransferase (COMT).  Adapted from  (Tsuchiya et 

al., 2005). 
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1.8.2 Estrogen Receptors 

Both non-rapid and rapid 17β estradiol effects have been described and these are typically 

referred to as ‘genomic’ and ‘nongenomic’ effects, respectively (Mendelsohn, 2002).  The 

genomic effects of 17β estradiol are well-described, and involves ligand-binding to 

intracellular estrogen receptors to directly regulate transcription of a target gene.  In 

contrast, nongenomic effects do not require the regulation of gene transcription but instead 

act through signal transduction.  Recent evidence, through the use of cell-impermeable 

BSA conjugated 17β estradiol, suggests that these rapid nongenomic effects are mediated 

via the stimulation of estrogen receptors expressed in the plasma membrane (Pietras and 

Szego, 1977; Aronica et al., 1994).  Indeed, these observations are further supported by the 

observation that 17β estradiol stimulates responses in non-nuclear cells (e.g. platelets) 

which are not capable of gene transcription (Moro et al., 2005; Jayachandran et al., 2005; 

Jayachandran et al., 2010).  It is this activation of both intracellular and membrane 

estrogen receptors which mediate the effects of 17β estradiol.           

 

1.8.2.1 Estrogen Receptor α and β 

Intracellular estrogen receptors are ligand-activated transcription factors which typically 

exist as nuclear hormones receptors.  Similar to all steroid hormone receptors, estrogen 

receptors share a common structure of four functionally active units or ‘domains’ 

(Katzenellenbogen et al., 2000; Katzenellenbogen et al., 2000).  These include the variable 

domain, which is typically the most heterologous domain between receptors, the DNA-

binding domain, the hinge domain and the ligand-binding domain (Figure 1.16).  

Currently, two intracellular estrogen receptor (ER) isoforms have been identified and 

referred to as ERα and ERβ (Kuiper et al., 1996).  Each receptor is encoded by a separate 

gene (ESR1 and ESR2 respectively).  Both ER subtypes share an equal affinity for 17β 

estradiol, although estrone selectively binds ERα, whereas estriol selectively binds ERβ.  
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Both ERα and ERβ are expressed in a variety of tissues including the uterus, testes, 

prostate, ovaries, bone, breast, liver and brain (Heldring et al., 2007).  With respect to the 

cardiovascular system, ERβ predominates and is expressed in the cardiomyocytes, 

endothelial and vascular smooth muscle cells (Imamov et al., 2005).   

 

Although both ERα and ERβ share 97% sequence homology for the DNA-binding domain 

and 56% for the ligand-binding domain, the N terminus shares relatively poor homology at 

24%, which impacts their function.  ERs must co-operate as dimers in order to translocate 

from the cytosol to the nucleus.  Following this, the transcriptional activation of both ERs 

is mediated via two distinct activation functions (AFs) termed AF-1 and AF-2, which are 

located in the ligand-binding domain.  AF-1 is constitutively active and resides at the N-

terminus domain (Kushner et al., 2000), while AF-2 is located at the C-terminus and 

typically requires ligand-dependent activation for transcriptional activation.  With respect 

to both ER isoforms, ERα mediates transcriptional activation via AF-1 to a much greater 

extent than ERβ, which instead appears to regulate transcription via AF-2 function.  This 

balance of AF-1 and AF-2 is critical to the nuclear receptor-dependent cellular effects of 

17β estradiol.  Both AF-1 and AF-2 signal via the recruitment of co-regulator complexes 

(either co-activators or co-repressors) to activate or suppress gene expression.  

Specifically, the binding of the ERs to specific DNA sequences (estrogen response 

elements, EREs) are responsible for regulating the transcription of genes (Kushner et al., 

2000).  As a consequence, this regulates protein translation which consequently will affect 

cell function.  Alternatively, ER dimers can recognize and bind non-ERE DNA sequences 

which are primarily a target for other transcription factors. This commonly includes 

cAMP-responsive elements (Sabbah et al., 1999).  Collectively, ERα/ERβ transcriptional 

regulation is the basis of the ‘genomic’ effects of 17β estradiol (Figure 1.17). 
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The ERs are themselves also subject to pre- and post-translational modification which can 

influence their expression and/or function.  For example, estrogen receptors are subject to 

phosphorylation, acetylation, ubiquitination and SUMOlation (Mendelsohn and Karas, 

2010).  Numerous promoters have also been identified for both ERα and ERβ, which 

directly regulate their expression.  Also, a number of ERα gene polymorphisms have been 

identified, which most commonly exist as a variable number of tandem repeats within the 

promoter region.  These are associated with the increased development of multiple diseases 

including breast cancer (Dunning et al., 2009), prostate cancer (Tanaka et al., 2003), 

osteoporosis (Styrkarsdottir et al., 2008) and cardiovascular disease (Lu et al., 2002).  ERβ 

polymorphisms have also been associated with the increased incidence of cardiovascular 

disease in women (Rexrode et al., 2007).  Specifically, the rs1271572 polymorphism 

variant A allele (A→ C transposition in the promoter region) is associated with increased 

incidence of cardiovascular disease and myocardial infarction in women (Rexrode et al., 

2007).  Whether ER polymorphisms contribute to the development of PAH remains to be 

investigated. 

 

1.8.2.2 G-Protein Coupled Receptor 30 

17β estradiol also mediates its effects via ligand-binding to a third receptor, termed the G-

protein coupled receptor 30 (GPR30, GPER, mER) (Filardo et al., 2007).  GPR30 is 

described to act via both transcriptional regulation and activation of signal transduction 

pathways.  These signalling pathways include those associated with Ca
2+

 mobilization, 

ERK1/2 MAPK activation and NO production.  At the cellular level, GPR30 expression is 

localised at both the plasma membrane and endoplasmic reticulum, and has been identified 

in the stomach, pancreas, duodenum and the endothelial and smooth muscle cells of the 

vasculature.  Indeed, GPR30 is an important regulator of 17β estradiol effects in the 

cardiovascular system (Olde and Leeb-Lundberg, 2009).  GPR30 activation mediates 
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endothelial dependent NO-derived relaxation in isolated carotid arteries from both male 

and female rats (Broughton et al., 2010).  In addition, 17β estradiol-induced apoptosis of 

vascular SMCs requires ERK phosphorylation, and this appears dependent on GPR30 

(Ding et al., 2009).  Deletion of the GPR30 gene in vivo (GPR30-/- mice) results in the 

elevation of systemic blood pressure, and impaired glucose tolerance (Haas et al., 2009).  

In the pulmonary vasculature, the role of GPR30 remains poorly defined.    

   

 

Figure 1.16 Estrogen receptor structure.  Estrogen receptors (ERs) exist as a four 

domain structure.  The N-terminal variable domain, which is the most heterologous part of 

the receptor, is essential for receptor transactivation.  Both the DNA binding domain 

(DBD) and hinge domain are important in DNA binding receptor activity.  The ligand-

binding domain, which is located at the C-terminus, directly interacts with the ligand and is 

also important in nuclear translocation.  Adapted from (Jordan and O'Malley, 2007). 

 

1.8.3 17β Estradiol Effects in the Systemic Circulation 

17β estradiol has multiple physiological effects in multiple target organs including bone, 

breast, prostate, heart and the vasculature (Vitale et al., 2009).  In the cardiovascular 
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system, a wealth of evidence highlights a cardio-protective and vaso-protective role for 

17β estradiol in cardiovascular disease.  In women, the incidence of cardiovascular disease 

is negatively correlated with circulating estrogen levels, which are modulated by a number 

of factors including menopause and hormone replacement therapy.  For example, women 

are at an increased risk of cardiovascular disease following menopause (Rosano et al., 

2003).   

 

17β estradiol stimulates both NO-mediated (Caulin-Glaser et al., 1997) and prostacyclin-

mediated (Mikkola et al., 1995) vasodilatation.  In addition, this hormone limits the 

progression of atherosclerosis by reducing low-density lipoprotein and also reduces 

vascular inflammation, coagulation and fibrinolysis.  Indeed, 17β estradiol attenuates the 

development of atherosclerosis in apolipoprotein E (ApoE) deficient (ApoE-/-) mice 

(Bourassa et al., 1996).  A wealth of evidence highlights the specific vaso-protective role 

of ERα in the vasculature.  In endothelial cells, ERα stimulation activates multiple kinases 

including P38 to promote eNOS-derived NO production, thereby promoting vasodilatation 

(Anter et al., 2005).  In vivo, ERα appears to mediate the protective effects of 17β estradiol 

following vascular injury, as ERα knockout mice do not show vascular recovery following 

treatment with 17β estradiol compared to wildtype mice (Brouchet et al., 2001).  In 

contrast, ERβ-/- mice fully recover from vascular injury following 17β estradiol treatment, 

providing further evidence that this vascular response is ERα-mediated.  Instead, ERβ 

appears important in other forms of cardiovascular disease.  For example, the development 

of age-related systolic and diastolic hypertension is reported in ERβ-/- mice (Zhu et al., 

2002).  This phenotype is not observed in ERα-/- mice.  Vasodilatation appears to be 

mediated via ERα (Darblade et al., 2002; Pendaries et al., 2002).  Disruption of ion channel 

function is also apparent in vascular SMCs derived from ERβ-/- mice (Zhu et al., 2002).  

These mice also develop systemic hypoxia arising from lung dysfunction, and as a result 

develop systemic hypertension and left ventricular hypertrophy (Morani et al., 2006).  
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Taken together, a wealth of evidence supports a vasoprotective role for both ERα and ERβ 

in systemic vascular function and regulation of blood pressure. 

 

However, under certain circumstances estrogen exposure may conversely lead to an 

increased incidence of cardiovascular disease.  In one study cohort, the Women’s Health 

Initiative reported that those prescribed estrogen for hormone replacement therapy were at 

an increased risk of cardiovascular events (Anderson et al., 2004).  This appeared most 

significant during the initial 12 months of therapy.  This is also termed the ‘timing’ 

hypothesis.  The mechanisms underlying this pathophysiology of estrogens are unclear.  

Increased expression of both ERα and ERβ is reported in both cardiac hypertrophy and 

heart failure in humans (Mahmoodzadeh et al., 2006; Nordmeyer et al., 2004).  However, 

this must be further investigated as a wealth of evidence has shown that both ERα and ERβ 

protect against the development of cardiovascular disease. 

 

1.8.4 17β Estradiol Metabolite Effects in the Systemic Circulation 

17β estradiol metabolites are also vasoactive in the systemic circulation.  2-

hydroxyestradiol, 2-methoxyestradiol and 4-methoxyestradiol all inhibit the migration and 

proliferation of human and rat vascular SMCs.  Moreover, these metabolites do not appear 

to be ERα/ERβ dependent as the non-selective ER antagonist ICI-182,780 does not exert 

any inhibitory effects (Dubey et al., 2005).  In vivo, the metabolite 2-methoxyestradiol 

prevents the elevation of systemic arterial blood pressure associated with chronic NOS 

inhibition and also reduces inflammation, collagen synthesis and proliferation in the heart 

(Tofovic et al., 2005).  2-methoxyestradiol appears most potent in the prevention and 

regression of systemic cardiovascular disease.  Specifically, it is proposed to act via the 

inhibition of tubulin polymerization, which is an important component of the cytoskeleton 

and involved in cell growth.     
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Figure 1.17 17β estradiol signalling.   17β estradiol (E2) mediates both nongenomic and 

genomic effects.  E2 enters the cell where it can act on ER alpha and ER beta to regulate 

the transcription of target genes (genomic effects).  Alternatively, E2 can act on GPR30 to 

stimulate a more rapid mechanism of action (nongenomic effects).  Membrane-bound 

estrogen receptors are also proposed to exist, however their precise function remains to be 

determined. 
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1.8.5 17β Estradiol Effects in the Pulmonary Circulation 

In both idiopathic and heritable forms of PAH there is a gender bias, with females up to 

three fold more likely to present with disease (Peacock et al., 2007; Humbert et al., 2006; 

Thenappan et al., 2007).  Currently, BMPR-II mutations are not considered pivotal to this, 

confirmed by one study which showed no influence of gender in BMPR-II affected PAH 

patients (Girerd et al., 2010).  Therefore, the mechanisms attributing to these gender 

differences remain obscure.  Estrogen is one risk factor in PAH.  For example, the use of 

oral contraceptives have previously been associated with PAH (Masi, 1976) and female 

PAH patients exhibit increased expression of ESR1, which is the gene encoding for ERα, 

compared to unaffected (non-PAH) females (Rajkumar et al., 2010).  Decreased expression 

of the estrogen-metabolising enzyme cytochrome P450 1B1 (CYP1B1), leading to 

alterations in estrogen metabolism, has also been identified in female PAH patients 

harbouring a BMPR-II mutation compared to unaffected female carriers (West et al., 2008; 

Austin et al., 2009). 

 

In contrast, experimental models of PAH have repeatedly shown that females exhibit 

moderate PAH compared to males.  For example, male rats develop increased RVSP, 

pulmonary vascular remodelling and RVH compared to female rats following exposure to 

hypoxia (Rabinovitch et al., 1981).  Similar observations are also reported in mice (Stupfel 

et al., 1984).  In support of this, male swine and chicken also exhibit an exaggerated 

hypoxia-induced PAH phenotype compared to females.  These protective effects appear to 

be mediated via female hormones, as ovariectomy can increase the severity of hypoxia-

induced PAH (Resta et al., 2001).  Specifically, 17β estradiol appears to mediate these 

effects as its exogenous administration can attenuate increased RVSP and pulmonary 

vascular remodelling in ovariectomized females (Resta et al., 2001).  In transgenic models, 

male ApoE -/- mice subjected to a high-fat diet develop increased RVSP and pulmonary 

vascular remodelling compared against high-fat treated ApoE -/- female mice (Hansmann 
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et al., 2007).  Also, male VIP-/- mice are more susceptible to PAH than female VIP-/- mice 

(Said et al., 2007).  The loss of ERβ function, as is observed in ERβ-/- mice, also results in 

the development of right ventricular hypertrophy (Morani et al., 2006).  Estrogens appear 

to promote both NO-mediated (Gonzales et al., 2001) and prostacyclin-mediated (Sherman 

et al., 2002) endothelium-dependent vasodilatation in the pulmonary circulation.  For 

example, 17β estradiol has been shown to promote vasodilatation in the pulmonary 

vasculature.  In pulmonary arteries isolated from proestrus rats (highest circulating levels 

of 17β estradiol in the menstrual cycle), both phenylephrine and hypoxia-induced 

vasoconstriction is markedly attenuated compared to those responses observed in 

pulmonary arteries isolated from estrus, diestrus and male rats (Lahm et al., 2007).  In 

support of this, hypoxic pulmonary vasoconstriction is reduced in female sheep compared 

to males, and 17β estradiol attenuates this response.  Hypoxic pulmonary vasoconstriction 

is also reduced in the pulmonary arteries of dogs and rats during pregnancy, when 

circulating levels of estrogen are elevated.  17β estradiol has also been reported to increase 

endothelial nitric oxide synthase (eNOS) mRNA expression and activity in PAECs via an 

estrogen receptor-dependant mechanism (MacRitchie et al., 1997).  In addition, 17β 

estradiol also inhibits hypoxia-induced endothelin-1 gene expression (Earley and Resta, 

2002). 

 

Taken together, these findings indicate a protective role for female gender in experiment 

PAH.  This may not be entirely unexpected, as estrogens are beneficial in several forms of 

human PAH distinct from IPAH and HPAH.  For example, estrogens may protect against 

the development of PAH in high-altitude natives.  The incidence of high altitude 

pulmonary edema (HAPE), which occurs as a result of pronounced hypoxic pulmonary 

vasoconstriction, is also higher in males than females.  There is also an increased incidence 

of sclerosis-related PAH in post-menopausal females, and its risk of development is 

reduced in those prescribed hormone replacement therapy.  To date, the absence of a 
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suitable experimental model of PAH which replicates the female susceptibility observed in 

IPAH and HPAH has limited research into the role of estrogens in the pathogenesis of 

PAH.   

 

1.8.6 17β Estradiol Metabolite Effects in the Pulmonary Circulation 

Non-estrogenic 17β estradiol metabolites also mediate protective effects within the 

pulmonary circulation.  Those most extensively studied are the hydroxyestradiol and 

methoxyestradiol compounds.  2-hydroxyestradiol, which is derived from the CYP1A1-

mediated hydroxylation of 17β estradiol (and to a lesser extent CYP1B1), attenuates 

increased RVSP, pulmonary vascular remodelling and RVH associated with 

monocrotaline-induced PAH in rats (Tofovic et al., 2005).  The administration of this 

metabolite also successfully prevents isoproterenol-induced RVH and cardiac fibrosis in 

rats (Tofovic et al., 2008).  In support of this, 2-hydroxyestradiol successfully inhibits 

serum-induced proliferation of cardiac fibroblasts (Dubey et al., 2005).   

 

The subsequent O-methylation of 2-hydroxyestradiol, which is derived via COMT, results 

in the formation of 2-methoxyestradiol.  The anti-mitogenic effects of this metabolite are 

well-described in PAH.  For example, 2-methoxyestradiol attenuates the development of 

monocrotaline-induced PAH (Tofovic et al., 2004) and hypoxia-induced PAH (Zhang et 

al., 2005).  Pharmacological concentrations of this metabolite also inhibit serum-induced 

proliferation in PAECs, PASMCs and PAFs (Tofovic et al., 2008).  2-ethoxyestradiol, 

which is a potent synthetic analogue of 2-methoxyestradiol, also successfully inhibits the 

proliferation of PAECs, PASMCs and PAFs.  In vivo, 2-EE successfully prevents the 

elevation of RVSP and pulmonary vascular remodelling in monocrotaline-induced PAH. 
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1.9 Estrogen and Serotonin Interactions 

Interactions between estrogen and serotonin are widely investigated in the central nervous 

system.  In most cases, estrogens are reported to increase expression of multiple serotonin 

pathway mediators, which as a consequence would likely  promote serotonin signalling.  In 

the dorsal raphe nucleus, 17β estradiol increases both SERT expression and function in 

acutely ovariectomized mice (Bertrand et al., 2005).  Increased SERT binding is also 

reported in the basolateral amygdala and lateral septum of these mice.  Similar 

observations are also reported in rats (McQueen et al., 1997).  These 17β estradiol effects 

can be successfully blocked with the selective estrogen receptor modulators (SERMs) 

tamoxifen and raloxifine, suggesting the involvement of estrogen receptors in this 

induction (Sumner et al., 2007).  In addition, 17β estradiol is also reported to increase 5-

HT2A receptor expression in rats (Sumner et al., 2007).  Increased expression and/or 

function in the dorsal raphe nucleus and cerebral cortex is similarly reported in acutely 

ovariectomized mice subjected to 17β estradiol administration, and an increase is also 

observed in chronically ovariectomized rats and macaques following chronic 17β estradiol 

administration (Chavez et al., 2010; Rivera et al., 2009).  Similar to SERT, 17β estradiol-

induction of the 5-HT2A receptor is also proposed to act via an ER-dependent mechanism 

as both tamoxifen and raloxifine can block this effect (Sumner et al., 2007).   

 

The synthesis and metabolism of serotonin is also influenced via 17β estradiol in the 

central nervous system.  Both mRNA and protein expression of TPH (the rate-limiting 

enzyme involved in serotonin synthesis) is increased in the brain of 17β estradiol-treated 

animals following ovariectomy (Pecins-Thompson et al., 1996), and its induction is 

similarly blocked in the presence of tamoxifen.  In addition, dorsal raphe expression of the 

serotonin-metabolizing enzyme MAO-A is decreased following 17β estradiol 

administration (Smith et al., 2004).  In combination, these likely facilitate increased 
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serotonin bioavailability.  Overall, 17β estradiol appears to increase expression of TPH, 

SERT and the 5-HT receptors in the central nervous system.  

 

Although estrogen-serotonin interactions are widely reported in the central nervous system, 

these remain poorly defined in the cardiovascular system.  Only functional interactions 

have been described.  A reported increase in serotonin-induced contraction is observed in 

the mesentery vascular bed of 17β estradiol-treated rats compared to vehicle controls 

(Mark et al., 2007).  To date, this study is the only to report the potentiated response of 

serotonin in the presence of 17β estradiol in the cardiovascular system.  Therefore, 

interactions between estrogen and serotonin remain to be investigated in the pulmonary 

circulation.     

 

1.10 Aim 

The principle research aim was to investigate the influence of gender in the development of 

PAH.  This may offer insight into the increased incidence of PAH in women.  This was 

evaluated through investigation of the following experimental study aims: 

 

 In vivo characterisation of gender and estrogen via assessment of PAH phenotype 

in a transgenic model of PAH (SERT+ mouse model).  

 Determine genotypic differences in the pulmonary arteries of female and male 

SERT+ mice. 

 In vitro characterisation of female hormones in pulmonary artery smooth muscle 

cells. 

 Influence of estrogen on serotonin signalling in pulmonary artery smooth muscle 

cells. 

 Identify novel genes in important in SERT+ PAH and human PAH. 
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Materials 

2.1.1 Chemicals and Reagents 

All chemicals and reagents were of the highest grade obtainable and supplied by Sigma-

Aldrich (Poole, UK), Invitrogen (Paisley, UK), Fisher Scientific (Loughborough, UK), 

Tocris Bioscience (Bristol, UK), Roche Diagnostics (West Sussex, UK) or BDH Prolabo 

(West Sussex, UK), as stated.  All cell culture reagents were supplied by Sigma-Aldrich 

(Poole, UK) or Gibco (Paisley, UK), unless otherwise stated.  Fetal bovine serum (FBS) 

was supplied by Sera Laboratories International (West Sussex, UK).   

 

Methods 

All experimental procedures conform with the United Kingdom Animal Procedures Act 

(1986) and with the ‘Guide for the Care and Use of Laboratory Animals’ published by the 

US National Institutes of Health (NIH publication No. 85-23, revised 1996).  All in vivo 

procedures were performed under the project license 60/3773 held by Professor M.R 

MacLean (University of Glasgow, UK).      

 

2.1.1 SERT+ Mice 

Mice over-expressing the serotonin transporter (SERT+ mice) were generated and supplied 

by Professor Tony Harmer, University of Edinburgh, UK.   The generation SERT+ mice 

was achieved using the C57BL/6xCBA background strain.  The transgene introduced was 

a 500kb yeast artificial chromosome (YAC35D8) containing the human SERT gene 

flanked by 150 kb of 5' and 300 kb of 3' sequence, with the short (S) allele of the 

SERTLPR in the promoter region and the 10-repeat allele of the variable number tandem 

repeat in intron 2.  Previously, in situ hybridization analysis has shown that human SERT 
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mRNA is similarly expressed in a manner which resembles that of the endogenous mouse 

SERT gene.  Genotyping was performed to confirm the presence of the human SERT 

transgene.  Mice were housed with littermates in the central biological services research 

facility at the University of Glasgow.  All mice were subject to a continuous 12hour 

light/dark cycle with access to food and water ad libitum.  PAH phenotype was assessed in 

female and male SERT+ mice at both 8 and 20 weeks of age (Figure 2.1), and 

C57BL/6xCBA littermate mice studied as controls.   

 

2.1.2 Bilateral Ovariectomy 

For pre-operative care, mice were administered 0.1mg/kg buprenorphine (an analgesic) and 

4ml/kg sterile saline via intra-peritoneal injection.  Surgical removal of the left and right 

ovaries (bilateral ovariectomy) was performed under general anaesthesia (1%-3% (v/v) 

isoflurane supplemented with O2) in 8 week old female mice.  This is a commonly used 

surgical technique used to deplete circulating ovarian hormone levels.  Briefly, a dorsal 

midline skin incision was performed to expose the dorsal back.  This was followed by 

incision through the muscle caudal to the posterior border of the ribs, and lateral blunt 

dissection was performed to advance into the abdominal cavity through the muscles of the 

abdominal posterior wall.  The ovary (including periovarian fat) was located underneath 

the muscle, and removed via cauterization through the distal uterine tube.  1-2 simple 

interrupted sutures were performed to repair incision through the muscle.  This surgical 

procedure was repeated to excise the remaining ovary.  2-3 surgical staples were used to 

close the dorsal midline skin incision.  For post-operative care, 2.5mg/kg carprofen (a non-

steroidal anti-inflammatory drug) and 4ml/kg sterile saline were administered via intra-

peritoneal injection.  Successful removal of the ovaries was confirmed at necropsy via 

weight measurement of the uterus.  The assessment of PAH was carried out 12 weeks 

following surgery (20 week old mice).  Sham-operated mice were studied as controls. 
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2.1.3 17β Estradiol Administration  

17β estradiol containing pellets (0.1mg/21 day pellet, Innovative Research of America, 

Florida, USA) or vehicle pellets were subcutaneously implanted into the dorsal neck.  This 

was performed under general anaesthesia (1%-3% (v/v) isoflurane supplemented with O2) 

using a sterile 12-gauge hypodermic needle.  These pellets have been previously shown to 

have a constant rate of drug release (Karas et al., 2001), and therefore an effective dosing 

method. The selected dose of 17β estradiol has been previously shown to produce 

physiologically relevant (~1nmol/L) concentrations of circulating 17β estradiol.  Following 

completion of the 21 day dosing regime, the assessment of PAH was carried out.    

 

2.1.4 Chronic Hypoxia 

The development of hypoxia-induced PAH was achieved in mice using a hypobaric 

hypoxic chamber.  Following acclimatization, mice were exposed to 550mbar for a 

continuous period of 14 days.  As a consequence of atmospheric depressurization from 

~1000mbar (ambient room pressure) to 550mbar, oxygen availability is decreased from 

21% O2 to 10% O2, resulting in sustained HPV and the development of PAH.  Temperature 

(21
o
C-23

 o
C) and relative humidity (30-50%) were maintained within a normal range and 

mice were re-housed with clean bedding and food/water every five days.   
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Figure 2.1 In vivo study design.  Chapter 3 - Female SERT+ mice were subject to sham/ovariectomy (at 8 weeks of age), vehicle/17β estradiol 

administration (at 17 weeks of age) and normoxia/ hypoxia (at 18 weeks of age) and PAH phenotype assessed at 20 weeks of age (A).  Chapter 4 - 

Female and male SERT+ mice were exposed to hypoxia (at 6 weeks of age) and PAH phenotype assessed at 8 weeks of age.  WT mice were studied as 

control (B).  

8 weeks                                                                                                 17 weeks    18 weeks 20 weeks

Sham/ovariectomy

Vehicle/17β estradiol

Normoxia/hypoxia

PAH phenotype

Normoxia/hypoxia

PAH phenotype

6 weeks     8 weeks

A.

B.

WT/SERT+ mice

WT/SERT+ mice
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2.2 Assessment of PAH 

2.2.1 Haemodynamic Measurements  

The induction of general anaesthesia was performed via exposure to 3% (v/v) isoflurane 

supplemented with O2.  Mice were immediately weighed and 1-2% (v/v) isoflurane 

continuously administered via a facemask to maintain general anaesthesia.  General 

anaesthesia was confirmed by the absence of a hind-limb and tail reflex.  These reflexes 

were also routinely assessed throughout surgery.  Following confirmation of general 

anaesthesia, both right ventricular pressure (RVP) and systemic arterial pressure (SAP) 

were measured. 

 

2.2.2 Right Ventricular Pressure 

Right ventricular pressure (RVP) was measured via a transdiaphragmatic approach.  The 

continuous measurement of RVP was assessed via a heparinised saline-filled calibrated 25-

gauge needle attached to an Elcomatic E751A pressure transducer connected to a MP100 

data acquisition system (BIOPAC Systems Inc, Santa Barbra, USA).  Briefly, a portion of 

skin was removed from the ventral chest to expose the anterior sternum.  The 25-gauge 

needle was then advanced through the mid-portion of the sternum, into the abdomen.  

Following entry into the diaphragm (confirmed by a negative pressure reading), the needle 

was advanced directly into the right ventricle via puncture through the right ventricular 

free wall.  This was confirmed by the characteristic pressure waveform typically observed 

inside the right ventricle (Figure 2.2).  From this recording, right ventricular systolic 

pressure (RVSP) was deduced and used as an index of PAH.  Following RVP 

measurement, two additional controls were performed to confirm successful right 

ventricular catheterisation.  This was achieved by further advancing the needle into the left 

ventricle to measure left ventricular pressure, which is typically positioned inferior to the 
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right ventricle in situ.  At necropsy, the heart was also microscopically assessed to confirm 

the presence of a puncture in the right ventricular free wall. 

 

 

 

 

 

 

Figure 2.2 Representative recording of right ventricular pressure.  Three second 

representative measurement of right ventricular pressure in mice.  Y-axis expressed in 

mmHg. 

 

2.2.3 Systemic Arterial Pressure 

Systemic Arterial Pressure (SAP) was measured via cannulation of the left common carotid 

artery (Figure 2.3).  Briefly, this was approached via skin incision through the ventral neck 

to expose the trachea.  Lateral blunt dissection was performed through the muscle lying 

inferior to the trachea.  The left common carotid artery is typically positioned ~2mm lateral 

(left) and less than 1mm posterior to the trachea.  Precision dissection was performed to 

separate the artery from both the vagus nerve and the recurrent laryngeal nerve.  Distal 

suture (7-0 silk non-braided) was used for isolation of the artery and an arterial clip 

positioned at the most proximal arterial segment to temporarily occlude blood flow through 

the lumen.  Following incision through the arterial wall, a heparinised saline-filled 

polypropylene cannula (Harvard Apparatus, Boston, USA) was proximally inserted 4-5mm 

into the lumen and secured using suture.  Similar to the technique used for RVP 
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measurement, the systemic arterial cannula was also attached to an Elcomatic E751A 

pressure transducer connected to a MP100 data acquisition system (BIOPAC Systems Inc, 

Santa Barbra, USA). 

 

 

 

 

 

 

 

Figure 2.3 Representative recording of systemic arterial pressure.  Three second 

representative measurement of systemic arterial pressure in mice.  Y-axis expressed in 

mmHg. 

 

Following measurement of RVP and SAP, mice were killed by cervical dislocation.  The 

heart and lungs were dissected en bloc and placed in ice-cold physiological saline solution 

(PSS; pH 7.4; mmol/L, NaC1 119, NaHCO3 25, KCl 4.7, KH2PO4 1.2, MgSO4 0.6, CaC12 

2.5, C6H12O6 11.1).  Where appropriate, the uterus was also removed for weight 

measurement in female mice.   

 

2.2.4 Right Ventricular Hypertrophy 

The atria, large blood vessels and pericardial fat were dissected free from the ventricles.  

The right ventricular free wall (RV) was dissected from the left ventricle plus septum 

(LV+S) and both were dry blotted.  Right ventricular hypertrophy (RVH) was assessed by 

weight measurement of the RV and LV+S.  The ratio expressed is RV/LV+S, and used as 

an index of PAH. 
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2.2.5 Pulmonary Vascular Remodelling  

Three 5µm sagittal sections of lung were elastica-Van Gieson stained and microscopically 

assessed for the muscularisation of pulmonary arteries (<80µm external diameter) in a 

blinded fashion.  Remodelled arteries were confirmed by the presence of a double elastic 

laminae.  Lung sections from 4 to 6 mice for each group were studied.  Approximately 150 

arteries from each sagittal lung section were assessed (~450 vessels from each animal in 

total).  This was expressed as a percentage of pulmonary vascular remodelling (remodelled 

vessels/total pulmonary vessels x 100 = % pulmonary vascular remodelling).  

 

2.3 Pulmonary Vascular Reactivity  

2.3.1 Dissection 

The intralobar pulmonary artery (internal diameter 200µm-250µm) from the superior 

(large) lobe of the left lung was studied for pulmonary vascular reactivity.  Dissection was 

approached from the visceral surface of the lung, and the artery was positioned laterally 

and posterior to the secondary bronchi.  Once isolated, the surrounding parenchyma and 

airway smooth muscle was carefully dissected free from the pulmonary artery and 

suspended in ice-cold PSS until use.          

 

2.3.2 Small Vessel Wire Myography 

Small vessel wire myography was performed to investigate pulmonary vascular reactivity 

in mice.  In preparation of mounting the arteries, each organ bath chamber was filled with 

5ml PSS heated to 37
o
C + 0.5

o
C and continuously bubbled with 16% O2, 5 % CO2 and 

79% N2.  This gas composition was used to replicate the partial pressure of O2 (pO2) 

typically observed within the lung in vivo.  Following dissection from the lung, the 

intralobar pulmonary artery (~5mm length) was divided into 2mm segments.  Two sections 
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of stainless steel wire (40µm diameter, 3cm length) were passed through the lumen and 

tied to their respective myograph clamp to securely position the artery.  Once achieved, the 

artery was equilibrated for at least 20 minutes under resting/zero tension. 

 

2.3.3 Application of Tension 

The pulmonary circulation operates as a high flow, low pressure circuit.  In control (non-

PAH) mice, the mean PAP typically resides at 15mmHg, whilst in mice exposed to chronic 

hypoxia this is increased to ~30mmHg.  Therefore to replicate similar conditions in vitro, a 

transmural pressure of 12-16mmHg (normoxia) or 27-32mmHg (hypoxia) was applied to 

the artery.  Isometric tension was applied to the artery to replicate transmural pressure.  

Pressure was then deduced from the force of tension (Figure 2.4).  For these, resting/zero 

tension (XO), active tension (Xi) and passive force (F) values were required.  In addition, 

the constant value of 2 (mm) was used for vessel length (L).  

 

Pi = (2π) x F/2 x L (205.6 + (Xi- Xo)) 

 

Figure 2.4 Equation to calculate transmural pressure.  The given value (Pi) must be 

divided by 0.133 in order for successful conversion to mmHg. 

 

Tension was incrementally applied to the artery until the appropriate transmural pressure 

was achieved.  Following this, the artery was again equilibrated under active tension for at 

least 20 minutes prior to the addition of 50mmol/L KCl for a 30 minute period.  KCl-

induced contraction was used to confirm both a contractile response is apparent, and also 

to normalise this contraction.  This step was subsequently repeated, and a contractile 

response of ≥1millinewton (mN) in the artery was considered sufficient to perform a 

cumulative concentration response curve. 
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2.3.4 Cumulative Concentration Response Curve 

Prior to the construction of a serotonin concentration response curve, a baseline tension 

was established for at least 30 minutes.  Serotonin (serotonin hydrochloride, Sigma-

Aldrich, Poole, UK) was initially added at 1x10
-9

mol/L and increased in 0.5 log increments 

until a final concentration of 1x10
-4

 mol/L was achieved.  To maintain consistency between 

the addition of each drug concentration, the subsequent concentration was added once the 

vascular response had reached a plateau which was typically every three minutes.  Where 

appropriate, all antagonists and inhibitors were added to the organ bath at least 30 minutes 

prior to the addition of the initial drug concentration. 

 

2.3.5 Analysis 

The contractile response to an agonist was normalised against the maximum contractile 

response to 50mmol/L KCl and expressed as a percentage.  For comparison, the logEC50 

(defined as the agonist concentration required to produce 50% of the maximal contraction) 

was generated and used as an index to describe serotonin potency.  This was calculated 

using the ‘log [Agonist] Variable Slope - Best Fit’ function (Graphpad 5.0, CA, USA), 

which assumes baseline is 0% response and maximal contraction is 100% response.  The 

Emax value, defined as the maximum contractile response generated by an agonist, was used 

as an index of efficacy.  Where appropriate, this was used to compare the maximum 

contractile responses across groups. 

 

2.4 Histology 

2.4.1 Fixation 

Following death, the inferior and middle lobes of the right lung were dissected free and 

fixed in 10% (v/v) neutral-buffered formalin (NBF; 90% dH2O, 10% formalin, 33mmol/L 
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NaH2PO4, 45mmol/L Na2HPO4) for three days, under gentle agitation.  Formalin-fixed 

lungs were then paraffin-embedded and 5µm sagittal sections cut and mounted onto 

salinized glass microscope slides. 

 

2.4.2 Immunohistochemistry  

5µm sagittal lung sections were deparaffinized and re-hydrated through a xylene-ethanol 

gradient (100% xylene > 100% ethanol > 90% ethanol > 70% ethanol; 10 minutes each 

step) and washed in deionised water for 10 minutes.  Following hydration, heat-induced 

epitope retrieval (HIER/antigen retrieval) was performed by the incubation of lung sections 

in 10mmol/L citric acid (pH 6.0) at 90
o
C-100

o
C for 20 minutes, which was then cooled to 

room temperature.  Lung sections were then rinsed in deionised water for 10 minutes, 

before endogenous peroxidise activity was blocked via incubation in methanol containing 

3% (v/v) hydrogen peroxide (Sigma-Aldrich, Poole, UK) for 30 minutes at room 

temperature.  After this, sections were washed in deionised water for 10 minutes and 

further PBS washed for 10 minutes.  Non-specific blocking was carried out using 10% 

(v/v) goat serum and 5% (w/v) BSA in 0.01mol/L PBS, and incubation performed in a 

humidified chamber for 1 hour at room temperature.  The next step was to block 

endogenous biotin, which was performed in a two-step process.  Initially, lung sections 

were incubated in avadin D blocking solution for 15 minutes followed by a PBS wash, then 

subject to an additional incubation in biotin blocking solution for 15 minutes followed by 2 

x 10 minute PBS washes.  The lung sections were then incubated in a humidified chamber 

at 4
o
C overnight with primary antibody diluted in 15% (v/v) primary antiserum and 10% 

(w/v) BSA in PBS.  The negative control slide was incubated in identical diluent, with the 

only exception the absence of primary antibody.  Subsequent to this, sections were washed 

in PBS for 2 x 10 minutes at room temperature prior to the biotinylated-conjugated 

secondary antibody incubation.  The purpose of the biotinylated-conjugated secondary 
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antibody was to selectively bind the primary antibody.  To perform this, lung sections were 

incubated in a humidified chamber for 1 hour at room temperature with the appropriate 

secondary antibody diluted in 0.01mol/L PBS.  Sections were then 3 x 10 minute PBS 

washed, and incubated with avadin-biotin complex (ABC) solution (Vector Laboratories, 

Peterborough, UK) for 1 hour at room temperature.  To stop this reaction, sections were 

rinsed with PBS and then subjected to a further 2 x 10 minute PBS wash.  For 

immunoperoxidase staining, the DAB Substrate kit (3,3-diaminobenzidine, hydrogen 

peroxide and nickel solution; Vector Laboratories, Peterborough, UK) was used and the 

solution was incubated with lung sections until dark brown staining was apparent, which 

was typically 2-5 minutes.  To stop the immunoperoxidase staining reaction, sections were 

placed in deionised water.  The lung sections were further washed in deionised water for 

10 minutes before ethanol-xylene dehydration (70% ethanol > 90% ethanol > 100% 

ethanol > 100% xylene; 10 minutes each step).  Finally, glass coverslips were mounted 

onto each slide using Tissue-Mount (Sakura Finetek, Alphen aan den Rijn, Netherlands).  

Immunostaining was visualised using a light microscope and positive protein-staining was 

brown/dark-brown in appearance.  Where appropriate, adjacent sagittal lung sections were 

counter-stained with hematoxylin and eosin (H&E), which stain for the nucleus and 

cytoplasm respectively.   

 

2.5 Tissue Culture  

Tissue culture was performed in sterile conditions using a Biological Safety Class II 

vertical laminar flow cabinet.  Tissue explants and cells were incubated at 37
o
C and 

maintained in 5% CO2, 95% air.  Human pulmonary artery smooth muscle cells (PASMCs) 

were the cellular model studied.   
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2.5.1 Human Pulmonary Artery Smooth Muscle Cells  

Human pulmonary artery smooth muscle cells (PASMCs) were provided by Prof N.W 

Morrell, University of Cambridge, UK.  Briefly, PASMCs were derived from the 

pulmonary arteries (1-3mm internal diameter) of three non-heritable idiopathic PAH 

(IPAH) patients.  PASMCs derived from macroscopically normal lung biopsies 

(pulmonary arteries; 1-3mm internal diameter) excised from non-PAH donors were studied 

as control.  The homogeneity of PASMCs was confirmed via cell morphology (Figure 2.5) 

and positive staining for α-smooth muscle actin.  PASMCs were incubated in a 75cm
2
 

culture flask and media was aspirated and replenished every 48 hours.  These were 

cultured in Dulbecco's Modified Eagle Medium (DMEM; Gibco, Paisley, UK) 

supplemented with 2mmol/L L-glutamine, antibiotic antimycotic solution (contains 

100U/ml penicillin, 100µg/ml streptomycin, 0.25 µg/ml amphotericin B; Sigma-Aldrich, 

Poole, UK) and 10% (v/v) fetal bovine serum (Sera Laboratories International, West 

Sussex, UK).  Cells were routinely passaged when monolayer cell growth reached 95% 

confluency, to prevent cell growth arrest via contact inhibition.  For passaging, cells were 

phosphate-buffered saline (PBS; 2.7mmol/L KCl, 0.137mol/L NaCl, pH 7.4) washed and 

twice rinsed with 0.06% (v/v) trypsin-ethylenediamine tetra-acetic acid (trypsin-EDTA; 

Gibco, Paisley, UK) suspended in 0.01mol/L PBS and incubated at 37
o
C until detached 

from the flask, which was typically less than 5 minutes.  Trypsinization of the cells was 

immediately stopped following the addition of 10ml 10% (v/v) FBS DMEM which acts to 

neutralize trypsin, and the cell-suspension used for sub-culturing.  Where appropriate, cell 

density was assessed via cell counts using a haemocytometer. 
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Figure 2.5 Typical morphology of human pulmonary artery smooth muscle cells.  

Scale bar 100µm. 

 

2.5.2 Proliferation Assays  

2.5.2.1 Cell Counting 

Cell counts were performed to identify total cell number.  PASMCs (passage 3-7) were 

seeded in 24-well plates at a density of 20,000 per/well and grown to 60% confluency in 

10% FBS DMEM before quiescence in 0.2% (v/v) FBS DMEM for 24 hours.  PASMCs 

were then exposed to the required agonist (in the presence of 2.5% (v/v) FBS) and 

proliferation assessed at 4-5 days.  Where appropriate, cells were stimulated with steroid 

hormone-depleted FBS for throughout experiments.  For the cell counting proliferation 

assay, media was aspirated and 70µl 0.06% (v/v) trypsin-EDTA added.  This was 

immediately aspirated and 150µl trypsin-EDTA added to each well and incubated at 37
o
C 

until the cells were free-suspended, which was typically 5-10 minutes.  To inhibit 
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trypsinization, 400µl 10% FBS DMEM was simultaneously added to each well and gently 

mixed.  The total volume of each well (550µl) was then transferred to 1.5ml tubes and 

centrifuged (10,000rpm) at 4
o
C for 10 minutes.  Following this, the supernatant was 

carefully aspirated and the remaining cell pellet re-suspended via vortex in 200µl 10% FBS 

DMEM.  Cell counts were performed using a haemocytometer and the mean value used to 

calculate the total cell number per well (mean x 2000 = cells per well).  Data are expressed 

as total cell number. 

 

2.5.2.2 [3H] Thymidine Incorporation 

The [
3
H] thymidine proliferation assay is based on the use of a radioactive nucleoside ([

3
H] 

thymidine) which is incorporated into chromosomal DNA during mitosis.  This is an 

accurate method to determine the rate of proliferation, as previously shown.  PASMCs 

were seeded in 24-well plates at a density of 20,000 per/well and grown to 60% confluency 

in 10% FBS DMEM before quiescence for 24 hours.  Following this, cells were then 

exposed to the agonist of interest for the required time.  Where appropriate, all 

antagonists/inhibitors were added at least 30 minutes prior to the addition of agonist.  For 

the last 24 hours, 0.2μCi [
3
H] thymidine was added to each well.  The experiment was 

stopped by twice rinsing each well with 0.01mol/L PBS.  Protein was precipitated by three-

times washing each well with 5% (w/v) trichloroacetic acid, which was performed 

immediately prior to the addition of 0.3mol/L NaOH for 30 minutes.  The total volume of 

each well (500µl) was then transferred to 1.5ml tubes and 1ml Ecoscint A scintillation 

fluid (Ecoscint, Atlanta, USA) added.  The radioactivity level of [
3
H] thymidine was an 

index of DNA synthesis and measured using a Wallac scintillation counter (PerkinElmer, 

Cambridgeshire, UK).  Data are expressed as percentage change compared to 2.5% FBS-

induced proliferation. 
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2.6 Western Blotting 

2.6.1 PASMCs 

Human PASMCs (passage 3-7) were seeded in 6-well plates at a density of 25,000 

per/well and grown to 80% confluency in 10% FBS DMEM before quiescence for 24 

hours.  Following agonist stimulation for the required time, experiments were stopped by 

6-well plate incubation on ice.  Immediately, the media was aspirated and each well PBS-

rinsed three times.  Ice-cold RIPA buffer (50mmol/L HEPES pH 7.5, 150mmol/L NaCl, 

1% (v/v) Triton X-100, 0.5% (v/v) sodium deoxycholate, 0.1% (v/v) SDS, 0.01M sodium 

phosphate, 5mmol/L EDTA, 0.1mmol/L PMSF, 1μg/ml soybean trypsin inhibitor, 1μg/ml 

benzamidine) was then added to each well for 15 minutes, under gentle agitation.  

Following this, cell lysates were collected by scraping.  Whole cell lysates were stored at -

80
o
C for Western blot analysis.   

 

2.6.2 Pulmonary Arteries 

The main, left and right pulmonary arteries were studied for Western blot analysis.  

Proximal pulmonary arteries were investigated as these were the smallest that could be 

practically dissected from mice, and more representative of the pulmonary vasculature than 

whole lung analysis.  Immediately following death, the arteries were dissociated free from 

the heart and lungs, snap-frozen in liquid N2 and stored at -80
o
C until use.  In order to 

obtain a sufficient concentration of protein for analysis, arteries from 4 mice were 

suspended in 250µl lysis buffer (50mmol/L tris pH 7.4, 1mmol/L DTT, 1x complete-

protease inhibitor tablet; Roche Diagnostics, West Sussex, UK) and homogenised using a 

micro-rotary blade.  Protein samples were aliquoted as required, and stored at -80
o
C for 

Western blot analysis.  For protein validation of novel genes, pulmonary arteries were 
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isolated and prepared from age-matched littermate mice to those studied for microarray 

analysis.    

   

2.6.3 SDS-PAGE 

Protein was separated on the basis of their molecular weight by performing SDS-PAGE 

using NuPage Gel Electrophoresis system (Invitrogen, Paisley, UK) as per manufacturer’s 

instructions.  Briefly, protein samples were subjected to reducing conditions in the 

presence of 10µl 4x NuPage (lithium dodecyl sulfate) LDS sample buffer and 10x NuPage 

sample reducing agent (10mmol/L dithiothreitol), and heated to 70
o
C for 10 minutes.  

Samples were loaded into NuPage Novex 4%-12% Bis-Tris Mini Gels (Bis-Tris-HCl 

buffer pH 6.4, 4%-12% acrylamide, bis-acrylamide, 0.1% ammonium persulfate) and 

subjected to 150V constant in the presence of NuPage MES or MOPS running buffer.  

SeeBlue Plus2 pre-stained size standard was used as a surrogate for protein molecular 

weight.  Once SDS-PAGE fractionation was complete, protein and size standard was then 

transferred to a polyvinylidene difluoride (PVDF) membrane (Millipore, County Durham, 

UK) at 30V constant for 1 hour.  The protein-loaded PVDF membrane was then three-

times 15 minutes washed with Tris-buffered saline (20mmo/L Tris pH 7.5, 150mmol/L 

NaCl) containing 0.1% (v/v) Tween-20 (TBST; Sigma-Aldrich, Poole, UK). 

 

2.6.4 Immunoblotting 

Immunoblotting was performed for protein expression analysis.  Briefly, membranes were 

blocked for 1 hour in 5% (w/v) dried milk suspended in tris-buffered saline supplemented 

with 0.2% (v/v) Tween (TBST) at room temperature under gentle agitation.  Following 

this, membranes were TBST-washed and incubated overnight at 4
o
C with primary 

antibody diluted in 5% (w/v) bovine serum albumin (BSA; Sigma-Aldrich, Poole, UK) 

suspended in TBST.  Optimized antibody dilutions are summarized in Table 2.1.  
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Subsequently, membranes were TBST-washed prior to 1 hour room temperature 

incubation with horse-radish peroxidise (HRP) conjugated-secondary antibody diluted in 

5% dried milk-TBST.  Following secondary antibody incubation, membranes were TBST-

washed.  Protein visualisation was performed using the enhanced luminol-based 

chemiluminescence detection system (ECL-detection system, Amersham Bioscience UK 

Ltd, Buckingham, UK).  To perform this, membranes were exposed to 1:1 dilution of ECL 

solution mix for 60 seconds, dry blotted and placed in a light-sensitive cassette.  General 

purpose Kodak X-ray film was used for the chemiluminescent visualisation of proteins. 

 

2.6.5 Quantitative Expression of Protein  

α tubulin was used as the protein loading control, which did not overlap with the 

molecular weight of any protein(s) which had been previously probed on the PVDF 

membrane.  To confirm equal protein loading, densitometry was employed.  

Densitometrical analysis was performed in scanned X-ray film visualised protein using 

TotalLab TL100 software, via calculation of the protein:α tubulin ratio.  To maintain ratio 

consistency across biological experimental replicates, multiple α tubulin time points were 

assessed and analysed.        
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Reactive  Molecular Supplier and   Antibody  1
o
 Dilution 2

o
 Dilution 

Protein Weight Order Number Description 

 

TPH1 55kDa Chemicon  Rabbit   1:250  Anti-rabbit 

     AB15570  polyclonal to   HRP  

        TPH1    1:1000 

 

5-HT1B  47kDa Abcam   Rabbit   1:250  Anti-rabbit 

Receptor   AB85937  polyclonal to   HRP  

       5--HT1B     1:1000 

  Receptor 

  

SERT  70kDa Abcam   Goat   1:500  Anti-goat 

    AB36127  polyclonal to   HRP 

  SERT    1:1000 

 

C/EBPβ 32kDa Abcam   Rabbit  1:1000  Anti-rabbit 

    AB32358  polyclonal to   HRP 

  C/EBPβ   1:1000 

 

CYP1B1 70kDa Abcam   Rabbit  1:500  Anti-rabbit 

     AB33586  polyclonal to   HRP 

  CYP1B1   1:1000 

 

c-FOS 60kDa Abcam   Rabbit   1:1000  Anti-rabbit 

  AB7963  polyclonal to   HRP 

  c-FOS    1:2000 

 

α tubulin 50kDa Abcam   Mouse   1:5000  Anti-mouse 

 AB7291  monoclonal to   HRP 

     α-tubulin   1:5000 

 

Table 2.1 Immunoblotting antibody table.  List of antibodies used for immunoblotting.  

Primary (1
o
) antibodies were incubated overnight at 4oC in 5% (w/v) BSA-TBST.  Secondary 

(2
o
) antibodies were incubated for 1 hour at room temperature in 5% (w/v) dried milk-TBST.         
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2.7 RNA Extraction  

2.7.1 Pulmonary Arteries 

The main, left and right pulmonary arteries were studied for RNA expression analysis.  

Immediately following death, the arteries were dissociated free from the heart and lungs, 

snap-frozen in liquid N2 and stored at -80
o
C in nuclease-free conditions until use.  Total 

RNA extraction was performed in the pulmonary arteries of mice using the RNeasy Mini-

Kit (Qiagen, Crawley, UK) as per manufacturer’s instructions.  Briefly, 400µl of buffer 

RLT was added to each pulmonary artery and subsequently homogenised (2 x 20Hz for 2 

minutes) using the TissueLyser II (Qiagen, Crawley, UK).  Buffer RLT contains guanidine 

isothiocyanate which immediately inactivates nucleases to ensure the isolation of intact 

total RNA.  Samples were then incubated for 10 minutes at 55
o
C in proteinase K solution 

(10µl:590µl dilution in nuclease free water) to ensure the optimal lysis and maximum total 

RNA yield from the fibrous tissue.  Subsequent to this, each sample was centrifuged 

(10,000rpm, 3 minutes, room temperature), the supernatant transferred to a 1.5ml tube and 

400µl ethanol added to promote ideal binding conditions.  The samples were then loaded 

and centrifuged (10,000rpm, 15 seconds, room temperature) into RNeasy spin columns, 

which results in the binding of total RNA to the silica-membrane component of the 

column.  The spin column was then washed three times with buffer RWT before RNA 

elution in 30µl RNase-free water (10,000rpm, 1 minute, room temperature).  To further 

increase total RNA yield, the 30µl volume was again centrifuged through the spin column.  

RNA integrity and quantification was assessed using the NanoDrop ND-1000 

Spectrophotometer (Nano-Drop Technologies, Delaware, USA) and Agilent 2100 

Bioanalyzer system (Agilent Technologies, Berkshire, UK).  Absorbance of the RNA 

samples was quantified at 260 and 280 nm, and the 260/280 ratio was calculated.  All 

samples showed a 260/280 ratio ≥ 1.9 and RNA Integrity Number (RIN) ≥ 8.0, which was 

indicative of RNA purity.    
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2.7.2 PASMCs 

RNA was extracted from PASMCs derived from IPAH patients and control using the 

RNeasy Mini-Kit (Qiagen, Crawley, UK).  PASMCs (passage 3-5) were seeded in 6 well 

plates at 25,000 per well and grown to 95% confluency.  Following trypsinization, 

PASMCs were centrifuged (10,000rpm, 10 minutes, 4
o
C), the media aspirated and cells re-

suspended in ice cold PBS.  Subsequent to this, centrifuge and aspiration was repeated and 

PASMCs snap-frozen in liquid N2 and stored at -80
o
C in nuclease-free conditions until use.  

 

2.7.3 DNase Treatment of RNA 

Currently, no RNA extraction method is sufficient at completely eliminating DNA 

contamination.  Therefore, DNase digestion is typically performed in RNA samples prior 

to microarray or qRT-PCR analysis.  To perform this, DNase treatment of RNA was 

performed using TURBO DNA-free kit (Ambion, Texas, USA) according to 

manufacturer’s instructions.  Briefly, 10% (v/v) of TURBO DNase buffer and 1µl TURBO 

DNase was added to each RNA sample and incubated at 37
o
C for 30 minutes.  To 

terminate this reaction, 10% (v/v) DNase Inactivation Reagent was added to each sample 

and incubated for 3 minutes at room temperature.  The DNase free RNA samples were then 

centrifuged (12,000rpm, 2 minutes, room temperature) and the supernatant stored at -80
o
C 

until use. 

 

2.7.4 cRNA Synthesis  

cRNA synthesis and amplification was achieved using the Illumina TotalPrep RNA 

Amplification Kit (Ambion, Texas, USA) according to manufacturer’s instructions.  

Briefly, reverse transcription with an oligo(dT) primer containing a T7 promoter (a 

genetically engineered reverse transcriptase which generates higher yields than wild type 
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reverse transcriptase enzymes) was performed in 200ng total RNA for first-strand cDNA 

synthesis.  To do this, 9µl Reverse Transcription Master Mix was added to each sample 

and incubated at 42
o
C for 2 hours.  Second-strand cDNA synthesis was then performed by 

adding 80µl Second Strand Master Mix to each sample and incubating at 16
o
C for 2 hours.  

Following purification, the cDNA is used as a template for in-vitro transcription (IVT) 

with T7 RNA polymerase.  The synthesis of biotinylated cRNA was performed in the 

presence of 7.5µl IVT and incubated at 37
o
C for 14 hours, and the reaction stopped by 

adding 75µl RNase-free water.  This biotin-labelling of cRNA is essential for streptavodin-

cy3 staining following array hybridization.  Following cRNA purification, which removes 

unincorporated nucleotide triphosphates (NTPs), enzymes and reagents, the samples were 

analysed for integrity using the Agilent Bioanalyzer system (Agilent Technologies, 

Berkshire, UK).  To determine cRNA concentration (µg/ml), we used the NanoDrop ND-

1000 (Nano-Drop Technologies, Delaware, USA) to obtain the A260 reading, which was 

then multiplied by 40-fold the elute volume (A260 x elute volume x 40 = cRNA µg/ml). 

 

2.8 Microarray Analysis 

Microarray analysis was used to investigate the genotypic changes associated with the 

development of PAH (Available online: Accession number E-MTAB-455).  To perform 

this, microarray analysis was performed in the pulmonary arteries of normoxic and 

chronically hypoxic male and female SERT+ mice (8-10 weeks of age).  Age-matched 

C57BL/6xCBA littermate mice were studied as controls. 

 

2.8.1 cRNA Direct Hybridization Assay 

Genome-wide cRNA microarray analysis was performed using the MouseRef-8 v1.1 

Expression BeadChip (Illumina, Essex, UK) according to manufacturer’s instructions.  



 

 93 

Briefly, 750ng cRNA was loaded into each BeadChip array and incubated at 58
o
C for 16 

hours under gentle agitation.  Once cRNA direct hybridization was complete, the 

Beadchips were washed in 1x High-Temp Wash buffer at 55
o
C for 10 minutes, then 

subject to a series of further washes in 0.06% (v/v) E1BC buffer and nuclease free ethanol 

prior to incubation in Block E1 buffer for 10 minutes at room temperature, under medium 

agitation.  Subsequent to this, each BeadChip was transferred into 2ml Block E1 buffer 

containing 1µg/ml streptavidin-Cy3 and incubated at room temperature for 10 minutes, 

under medium agitation. A third room temperature wash was then performed in 0.06% 

(v/v) E1BC buffer for 5 minutes.  BeadChips were then dried by centrifuge (350rpm) at 

25
o
C for 4 minutes, and immediately scanned with a BeadStation 500GX (Illumina, Essex, 

UK).  Each beadchip contained approximately 25,600 probe sets which represented a total 

of ~19,100 unique genes.  The direct hybridization signal strength of a gene was indicative 

of its expression. 

 

2.8.2 Statistical Analysis 

Microarray data was analysed with BeadStudio software (Illumina).  Hybridisation signal 

strength was normalised to the median array and expression levels determined using the 

Average Normalisation Beadstudio algorithm.  For identifying differentially expressed 

genes, the following parameters (as recommended by Illumina) were used: P value <0.05, 

Diff Score >15, Average Signal >100.    

 

2.9 Quantitative Real-time PCR 

Quantitative real-time PCR (RT-PCR) was employed to validate results obtained from 

microarray analysis.  For validation, RNA extracted from mice studied for microarray was 

pooled into comparative groups (n=4, repeated in triplicate) and analysis performed.  
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Gene-specific primers corresponding to the PCR targets were designed based on published 

sequences in GenBank using the primer 3 program and synthesised by IDT (Integrated 

DNA Technologies, Belgium).  We confirmed the absence of nonspecific amplification by 

examining PCR products by agarose gel electrophoresis ensuring amplification of single 

discrete bands with no primer-dimers.  Real-time PCR was carried out in a DNA Engine 

OPTICON2 (MJ Research).  Each reaction was performed according to the Brilliant II 

SYBRGreen PCR Master Mix (Agilent Technologies, Berkshire, UK) protocol, using 10ng 

of RNA.  Three replicates were performed for each sample plus template-free samples as 

negative controls.  Cycling parameters consisted of an initial reverse transcription step for 

40 minutes at 50°C, followed by a 10 minute incubation at 95°C to fully activate the DNA 

polymerase and 40 amplification cycles at 95°C for 30 seconds, 56°C - 58°C for 30 or 40 

seconds, and 72°C for 30 seconds. Fluorescence measurements were assessed at the end of 

the annealing phase at 78°C, 82°C, and 86°C.  The CT values were determined using the 

Opticon2 software, and the total amount of RNA was normalised against β actin. 

 

2.10 Statistical Analysis  

Data were analyzed using a two-way ANOVA followed by Bonferroni’s post-hoc test, 

one-way ANOVA followed by Dunnett’s post-hoc test or unpaired t-test as appropriate, 

and described in figure legend.  Data are expressed as mean + SEM. 
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3.1 Introduction 

Pulmonary arterial hypertension (PAH) is characterised by both remodelling and 

vasoconstriction of the pulmonary vasculature.  Mutations in the gene encoding for the 

bone morphogenetic protein receptor-2 (BMPR-II) are accountable for ~80% of heritable 

PAH cases, however penetrance for this gene is incomplete as only 20% of BMPR-II 

mutation carriers develop PAH (Newman et al., 2004).  Therefore, it is assumed that other 

genetic or environmental risk factors are involved.  This is the basis of the ‘multiple hits’ 

hypothesis in PAH. 

 

In both idiopathic and heritable forms of PAH there is a gender bias, with females up to 

three-fold more likely to present with disease (Peacock et al., 2007; Humbert et al., 2006; 

Thenappan et al., 2007).  Despite this, the reasons underlying this female susceptibility 

remain unknown.  Estrogens are one possible risk factor in PAH.  The ingestion of oral 

contraceptives have previously been associated with PAH (Masi, 1976; Morse et al., 1999) 

and female PAH patients show increased expression levels of ESR1 (estrogen receptor 1), 

the gene encoding for ERα, compared to unaffected females (Rajkumar et al., 2010).  

Decreased expression of the estrogen-metabolising enzyme cytochrome P450 1B1 

(CYP1B1) leading to altered estrogen metabolism has also been identified in female PAH 

patients harbouring a BMPR-II mutation compared to unaffected female carriers (Austin et 

al., 2009). 

 

In contrast, experimental models of PAH have repeatedly shown that female rodents 

exhibit less severe PAH compared to males.  For example, female rats exposed to chronic 

hypoxia develop moderate PAH compared with severe PAH in males (Rabinovitch et al., 

1981).  Ovariectomized rats exhibit severe PAH following hypoxic insult and this is 

attenuated with 17β estradiol treatment (Resta et al., 2001).  In addition, male ApoE -/- 
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mice prescribed a high-fat diet develop a more established PAH phenotype compared 

against high-fat treated ApoE -/- females (Hansmann et al., 2007).  This absence of a 

suitable animal model which replicates the female bias observed in human PAH has 

limited experimental research to date. 

 

Multiple studies have implicated serotonin, the serotonin transporter (SERT) and 5-HT1B 

receptors in the pathobiology of PAH.  In mice the development of hypoxia-induced PAH 

and dexfenfluramine-induced PAH are dependent on peripheral serotonin synthesis 

(Morecroft et al., 2007; Dempsie et al., 2008).  SERT expression is increased in human 

pulmonary artery smooth muscle cells (PASMCs) derived from idiopathic PAH (IPAH) 

patients and this is responsible for increased serotonin-induced proliferation in these cells 

(Eddahibi et al., 2001).   The 5-HT1B receptor mediates human pulmonary arterial 

vasoconstriction (Morecroft et al., 1999) and is also involved in PASMC proliferation 

(Morecroft et al., 2010).  

 

In the central nervous system, estrogens regulate expression of multiple serotonin pathway 

mediators including tryptophan hydroxylase (Pecins-Thompson et al., 1996) (TPH; the 

rate-limiting enzyme in serotonin synthesis) and SERT (Lu et al., 2003).  We have 

previously shown that mice over-expressing the SERT (SERT+ mice) develop PAH and 

severe hypoxia-induced PAH (MacLean et al., 2004).  Here, we investigated the possible 

interactions between serotonin and estrogens in human PASMCs and SERT+ mice. 
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3.2 Results 

3.2.1 Male SERT+ Mice Do Not Develop Spontaneous PAH or 

Exaggerated Hypoxia-induced PAH Compared to Wildtype Mice 

We investigated the effects of gender on the development of PAH in SERT+ mice.  Firstly, 

we assessed right ventricular systolic pressure (RVSP), pulmonary vascular remodelling 

and right ventricular hypertrophy (RVH) in male SERT+ mice.  This was also investigated 

in male SERT+ mice following exposure to chronic hypoxia.  Male SERT+ mice did not 

develop PAH or exaggerated hypoxia-induced PAH compared to male WT mice, as 

indicated by no differences in RVSP, pulmonary vascular remodelling or RVH (Figure 

3.1).  Similarly, no changes in mean systemic arterial pressure (MAP; Figure 3.2) or heart 

rate (HR; Figure 3.3) were reported.  To further investigate, PAH was assessed in female 

SERT+ mice.  

 

3.2.2 Female SERT+ Mice Develop Spontaneous PAH and Exaggerated 

Hypoxia-Induced PAH via the Effects of 17β Estradiol 

The effects of gender, ovariectomy, SERT and 17β estradiol were investigated in the 

development of PAH in SERT+ mice.  In normoxia, sham-operated female SERT+ mice 

demonstrated increased RVSP (Figure 3.4) and pulmonary vascular remodelling (Figure 

3.5).  Representative resistance pulmonary arteries also appeared remodelled to a greater 

extent in these mice (Figure 3.6).  This was apparent in the absence of RVH (Figure 3.7).  

Absolute RV, LV+S and body weight of these mice is summarized in Table 3.1, and 

haemodynamics summarized in Table 3.2.  The increased RVSP and pulmonary vascular 

remodelling observed in female SERT+ mice was abolished following ovariectomy 

(OVX).  We subsequently hypothesized that the pre-dominant female hormone 17β 

estradiol was critical to the development of PAH in these mice.  To examine, this, SERT+ 
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OVX mice were subject to chronic 17β estradiol administration (1.5mg/kg/21 days).  This 

successfully re-established increased RVSP and pulmonary vascular remodelling in these 

mice.  RVH was similar in both wildtype and SERT+ mice, and ovariectomy had no 

further effect on this.  However, ovariectomized SERT+ mice administered 17β estradiol 

exhibited a decrease in RVH.  Following their exposure to chronic hypoxia, female SERT+ 

mice exhibited an exaggerated PAH phenotype, as assessed by a greater increase in both 

RVSP and pulmonary vascular remodelling compared to wildtype mice.  This exaggerated 

hypoxia-induced PAH phenotype was attenuated in ovariectomized SERT+ mice, and 

increases in both RVSP and pulmonary vascular remodelling were re-established following 

17β estradiol administration in these mice.  The extent of RVH was also more pronounced 

in chronically hypoxic female SERT+ mice, however was unaffected following 

ovariectomy.  We further observed that the administration of 17β estradiol decreased RVH 

in the hypoxic SERT+ mice.  No differences in MAP (Figure 3.8) or HR (Figure 3.9) were 

reported.  Of additional interest, we also observed that hypoxia-induced PAH was more 

established in male wildtype mice than female wildtype mice.  This was confirmed by a 

marked elevation in both RVSP and pulmonary vascular remodelling in these males 

compared to females. 

 

This evidence suggests a critical role for female hormones in the development of PAH in 

SERT+ mice.  To further investigate this, we were also interested in assessing the effects 

of hormone depletion in WT mice.  Ovariectomy was performed in WT mice and PAH was 

assessed in both normoxia and following exposure to chronic hypoxia.    
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Figure 3.1 Male SERT+ mice do not exhibit spontaneous PAH or exaggerated 

hypoxia-induced PAH compared to male WT mice.  Right ventricular systolic pressure 

(RVSP; A), pulmonary vascular remodelling (% remodelled vessels; B) and right 

ventricular hypertrophy (RVH; C) is similar in male wildtype and male SERT+ mice in 

both normoxia and following exposure to chronic hypoxia.  Data are expressed as mean + 

SEM and analysed by two-way ANOVA followed by Bonferroni’s post-hoc test.  

***P<0.001 cf. normoxic mice.   n=8-12. 

0

10

20

30

40

50
WT

SERT+

NORMOXIC                              HYPOXIC

R
V

S
P

 m
m

H
g

*** ***

0

5

10

15

20
WT

SERT+

*** ***

NORMOXIC                              HYPOXIC

%
 r

e
m

o
d

e
ll

e
d

 v
e
s
s
e
ls

0.0

0.1

0.2

0.3

0.4
WT

SERT+

NORMOXIC                              HYPOXIC

R
V

/L
V

+
S

***
***

A. 
 
 
 
 
 
 
 
 
 

 
B. 
 
 
 
 
 
 
 
 
 
 
 

C. 



 

 101 

 

Figure 3.2 Male SERT+ mice exhibit similar systemic arterial pressure to male WT 

mice.  Mean systemic arterial pressure (MAP) is unaffected in both normoxic and 

chronically hypoxic SERT+ mice compared to their respective wildtype controls.  Data are 

expressed as mean + SEM; n=7-9. 

 

 

 

Figure 3.3 Male SERT+ mice exhibit a similar heart rate  to male WT mice.  Heart-

rate (HR) is unaffected in both normoxic and chronically hypoxic SERT+ mice compared 

to their respective wildtype controls.  Data are expressed as mean + SEM; n=7-9. 
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Figure 3.4 Female SERT+ mice exhibit increased RVSP in normoxia and chronic 

hypoxia, via the effects of 17β estradiol.  Sham-operated SERT+ mice (SERT+) exhibit 

increased RVSP compared to sham-operated wildtype (WT) mice.  Ovariectomized 

SERT+ mice (SERT+ OVX) exhibit a decrease of RVSP, and this is fully re-established 

following the administration of 17β estradiol (SERT+ OVX + E).  In chronic hypoxia, 

SERT+ mice develop increased RVSP compared to WT mice.  SERT+ OVX mice exhibit 

an attenuated hypoxia-induced elevation of RVSP and this is increased following the 

administration of 17β estradiol.  Data are expressed as mean + SEM and analysed by two-

way ANOVA followed by Bonferroni’s post-hoc test.  *P<0.05, **P<0.01, ***P<0.001 cf. 

normoxic mice; †P<0.05, ††P<0.01 cf. wildtype mice; §§P<0.01 cf. sham-operated mice; 

‡‡P<0.01 cf. vehicle-dosed mice.  n=6-9.  
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Figure 3.5 Female SERT+ mice exhibit increased pulmonary vascular remodelling in 

normoxia and chronic hypoxia, via the effects of 17β estradiol.  Sham-operated SERT+ 

mice (SERT+) exhibit increased pulmonary vascular remodelling compared to sham-

operated wildtype (WT) mice.  Ovariectomized SERT+ mice (SERT+ OVX) exhibit a 

reduction in pulmonary vascular remodelling, and this is fully re-established following the 

administration of 17β estradiol in these mice (SERT+ OVX + E).  In chronic hypoxia, 

SERT+ mice develop increased pulmonary vascular remodelling compared to WT mice.  

SERT+ OVX mice exhibit attenuated pulmonary vascular remodelling, and this is 

increased following the administration of 17β estradiol.  Data are expressed as mean + 

SEM and analysed by two-way ANOVA followed by Bonferroni’s post-hoc test.  *P<0.05, 

**P<0.01, ***P<0.001 cf. normoxic mice; ††P<0.01 cf. wildtype mice; §P<0.05, 

§§P<0.01 cf. sham-operated mice; ‡‡P<0.01 cf. vehicle-dosed mice.  n=5.
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Figure 3.6 Photomicrographs of representative resistance pulmonary arteries in SERT+ mice.  Pulmonary arteries are stained with elastica-Van 

Gieson from both normoxic and hypoxic female WT and female SERT+ mice (Scale bar 50µm).  SERT+ mice exhibit remodelling to a greater extent 

than WT mice and this is attenuated following ovariectomy however can be re-established following the administration of 17β estradiol (E).
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Figure 3.7 Female ovariectomized SERT+ mice exhibit reduced right ventricular 

hypertrophy in normoxia and chronic hypoxia, via the effects of 17β estradiol.  Right 

ventricular hypertrophy (RVH) is unaffected in sham-operated SERT+ mice compared to 

sham-operated wildtype mice (WT).  Ovariectomized SERT+ mice (SERT+ OVX) also 

exhibit RVH to a similar extent.  However, the administration of 17β estradiol reduces 

RVH in these mice (SERT+ OVX + E).  In chronic hypoxia, SERT+ mice develop 

increased RVH compared to WT mice.  RVH is unchanged in SERT+ OVX mice, however 

is reduced following the administration of 17β estradiol in these mice.  Data are expressed 

as mean + SEM and analysed by two-way ANOVA followed by Bonferroni’s post-hoc 

test.  **P<0.01, ***P<0.001 cf. normoxic mice; †P<0.05 cf. wildtype mice; ‡‡P<0.01 cf. 

vehicle-dosed mice.  n=6-9.   
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Figure 3.8 Female SERT+ mice exhibit no change in systemic arterial pressure 

compared to female wildtype mice, and this is further unaffected by ovariectomy or 

17β estradiol.  Mean systemic arterial pressure (MAP) is unchanged in normoxic and  

chronically hypoxic SERT+ mice compared to their respective wildtype controls.  

Similarly, this is further unaffected following ovariectomy or 17β estradiol administration.  

Data are expressed as mean + SEM; n=6-9. 

Figure 3.9 Female SERT+ mice exhibit no change in heart rate compared to female 

wildtype mice, and this is further unaffected by ovariectomy or 17β estradiol.  Heart 

rate (HR) is unchanged in both normoxic and chronically hypoxic SERT+ mice compared 

to their respective wildtype controls.  Similarly, this is further unaffected following 

ovariectomy or 17β estradiol administration.  Data are expressed as mean + SEM; n=6-9. 
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Group RV (mg) LV+S (mg) RV/LV+S Body Weight (g) 

 

Normoxic 
 

Wildtype 

Sham 19.34 + 0.78 73.31 + 1.19 0.26 + 0.013 24.75 + 0.99  

Ovariectomy 20.84 + 1.15 78.03 + 3.54 0.26 + 0.014 29.30 + 0.94§§  

SERT+ 

Sham 17.70 + 0.66 67.94 + 2.52 0.25 + 0.009 21.34 + 0.86 

Ovariectomy 22.04 + 0.88 78.08 + 2.06 0.27 + 0.009 22.62 + 0.53 

Ovariectomy + vehicle 23.92 + 0.75 85.42 + 3.10 0.28 + 0.016 21.44 + 0.80  

Ovariectomy + estradiol  19.91 + 0.58 90.50 + 5.65 0.22 + 0.008
‡‡ 

20.97 + 0.73 

 

Hypoxic 
 

Wildtype 

Sham 22.86 + 0.92 70.77 + 2.85 0.32 + 0.014** 21.23 + 1.02 

Ovariectomy 24.48 + 1.09 66.31 + 1.86 0.36 + 0.012 21.36 + 1.02 

SERT+ 

Sham 25.04 + 0.97 73.30 + 2.76 0.34 + 0.015** 20.12 + 0.89 

Ovariectomy 26.42 + 1.17 67.67 + 3.99 0.39 + 0.018*** 20.77 + 0.41 

Ovariectomy + vehicle  28.11 + 1.02 75.97 + 4.11 0.38 + 0.014**
† 

21.83 + 0.56 

Ovariectomy + estradiol 26.96 + 1.85 96.29 + 5.98 0.28 + 0.011**
‡‡ 

20.28 + 0.71 

 

Table 3.1 Ventricle and body weight in WT and SERT+ mice.  Right ventricle (RV) 

weight, left ventricle plus septum (LV+S) weight, RV/LV+S ratio and body weight.  

**P<0.01, ***P<0.001 cf. normoxic mice; †P<0.05 cf. WT mice; ‡‡P<0.01 cf. vehicle 

mice; §§P<0.01 cf. sham mice.  Data expressed as mean + SEM.  n=8-11.    
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Parameter  WT sham SERT+ sham SERT+ OVX SERT+ OVX+ E2

  

 
Normoxic 

 

RVSP, mmHg 20.19 + 0.72 26.93 + 1.73
††

 21.99 + 0.77§§ 26.95 + 0.99‡‡ 

RVMP, mmHg 7.59 + 0.46 9.99 + 0.70
†
 8.07 + 0.41§ 9.97 + 0.53‡ 

RVDP, mmHg 1.26 + 0.29 1.39 + 0.33 1.11 + 0.24 1.44 + 0.60
  

SAP, mmHg 109 + 4.56 112 + 6.46 116 + 7.20 121 + 9.48 

MAP, mmHg 87.37 + 3.34 90.50 + 4.19 93.43 + 4.24 97.62 + 5.23  

DAP, mmHg 76.2 + 2.23 79.75 + 2.99 87.14 + 3.87 85.93 + 2.11 

Heart rate, bpm 370 + 12 372 + 14 399 + 20 431 + 40  

 

Hypoxic 

 

RVSP, mmHg 31.07 + 2.69** 40.28 + 2.91***
†
 29.47 + 1.36*§§ 36.55 + 2.62**‡‡ 

RVMP, mmHg 12.58 + 1.32** 16.16 + 1.71*** 12.40 + 0.99**§ 15.06 + 1.44**‡ 

RVDP, mmHg 3.34 + 0.55* 4.15 + 0.59** 3.87 + 0.78* 4.29 + 0.95* 

   

SAP, mmHg 112 + 6.69 117 + 9.00 118 + 9.54 114 + 10.22 

MAP, mmHg 88.01 + 3.45 91.83 + 4.58 92.83 + 4.85 92.56 + 4.90 

DAP, mmHg 76.78 + 1.79 73.50 + 3.21 79.57 + 2.88 81.84 + 1.84 

Heart rate, bpm 388 + 12 408 + 20 376 + 9 388 + 23 

  

 

Table 3.2 Haemodynamics in WT and SERT+ mice.  Right ventricular systolic pressure 

(RVSP), right ventricular mean pressure (RVMP), right ventricular diastolic pressure (RVDP), 

systemic systolic arterial pressure (SAP), mean arterial pressure (MAP), diastolic arterial 

pressure (DAP) and heart rate measurements in normoxic and chronically hypoxic female WT 

and SERT+ mice. ovariectomy, OVX; 17β estradiol, E2  *P<0.05, **P<0.01, ***P<0.001 cf. 

normoxic mice; †P<0.05, ††P<0.01 cf. WT mice; §P<0.05, §§P<0.01 cf. SERT+ mice; 

‡P<0.05, ‡‡P<0.01 cf. SERT+ OVX mice.  Data expressed as mean + SEM.  n=6-9.    
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3.2.3 Ovariectomized Wildtype Mice Develop PAH  

We also studied the effects of ovariectomy on the development of PAH in wildtype mice.  

In normoxia, we observed that ovariectomized mice developed increased RVSP and 

pulmonary vascular remodelling compared to sham-operated mice (Figure 3.10).  Increases 

in both of these indices were observed in the absence of increased RVH.  In chronic 

hypoxia, ovariectomized females did not develop exaggerated hypoxia-induced PAH, as 

assessed by no further elevation of RVSP, pulmonary vascular remodelling and RVH 

compared to sham-operated mice.  No effect on MAP (Figure 3.11) or HR (Figure 3.12) 

was reported in ovariectomized mice.     
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Figure 3.10 Ovariectomized wildtype mice exhibit PAH.  OVX WT mice exhibit 

increased RVSP (A) and PVR (B).  Increased RVH (C) is reported in chronically hypoxic 

OVX mice compared to chronically hypoxic sham mice.  Data are expressed as mean + 

SEM and analysed by two-way ANOVA followed by Bonferroni’s post-hoc test.  *P<0.05, 

**P<0.01, ***P<0.001 cf. normoxic mice; ††P<0.01 cf. normoxic sham mice; §P<0.05 cf. 

hypoxic sham mice.  n=8-10.  

A. 
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Figure 3.11 Ovariectomy has no effect on systemic arterial pressure in either 

normoxic or chronically hypoxic wildtype mice.  Mean systemic arterial pressure (MAP) 

is unaffected in normoxic and chronically hypoxic mice following ovariectomy.  Data are 

expressed as mean + SEM; n=7-8.   

 

 

Figure 3.12 Ovariectomy has no effect on heart rate in either normoxic or chronically 

hypoxic wildtype mice.  Heart rate (HR) is unaffected in normoxic and chronically 

hypoxic mice following ovariectomy.  Data are expressed as mean + SEM; n=7-8.   
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3.2.4 Ovariectomy Increases Body Weight and Decreases Uterine 

Weight 

To confirm that ovariectomy was successfully performed in mice, we assessed body 

weight and uterine weight.  In ovariectomized WT mice, we observed a marked increase in 

body weight (Figure 3.13) whilst a decrease in uterine weight (Figure 3.14) was recorded 

in all ovariectomized groups, indicative of successful removal of the ovaries.  Similar 

observations have been previously reported in mice following ovariectomy (Windahl et al., 

2009).  Further, increased uterine weight was observed in 17β estradiol-treated 

ovariectomized SERT+ mice, as a consequence of 17β estradiol-mediated uterine 

hypertrophy.   

 

3.2.5 Male SERT+ Mice Do Not Develop PAH Following 17β Estradiol 

Administration 

We previously observed that 17β estradiol is critical to the development of spontaneous 

PAH and exaggerated hypoxia-induced PAH in female SERT+ mice.  To further 

investigate the role of this hormone in SERT+ mice in vivo, we administered male SERT+ 

mice with 17β estradiol (1.5mg/kg/21 days) to determine if this established a PAH 

phenotype.  We observed that 17β estradiol did not uncover a PAH phenotype in these 

mice, as assessed by no change in RVSP, pulmonary vascular remodelling or RVH (Figure 

3.15).  Similarly, no changes in MAP (Figure 3.16) or HR (Figure 3.17) were reported in 

these mice. 
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Figure 3.13 Body weight is increased in wildtype mice following ovariectomy.  WT 

mice exhibit increased body weight following ovariectomy however SERT+ mice remain 

unaffected.  Data are expressed as mean + SEM and analysed by two-way ANOVA 

followed by Bonferroni’s post-hoc test; **P<0.01 cf. sham-operated controls.  n=8-11.     

 

Figure 3.14 Uterine weight is decreased in normoxic and chronically hypoxic 

ovariectomized wildtype and SERT+ mice.   Uterine weight is decreased in both 

wildtype and SERT+ mice following ovariectomy.  Data are expressed as mean + SEM 

and analysed by two-way ANOVA followed by Bonferroni’s post-hoc test; ***P<0.001 cf. 

sham-operated controls.  n=10-11.    

.............................,0

5

10

15

20

25

30

35
WT SHAM

WT OVX

SERT+ SHAM

SERT+ OVX

**

NORMOXIC                             HYPOXIC

B
o

d
y
 W

e
ig

h
t 

(g
)

0

50

100

150

200
WT SHAM

WT OVX

SERT+ SHAM

SERT+OVX

*** *** *** ***

NORMOXIC                             HYPOXIC

u
te

ri
n

e
 w

e
ig

h
t 

(m
g

)



 

 114 

 

 

Figure 3.15 17β estradiol has no effect on PAH phenotype in male SERT+ mice.  17β 

estradiol administration does not increase RVSP (A), PVR (B) or RVH (C) in male SERT+ 

mice.  Data are expressed as mean + SEM.  n=9-12.  
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Figure 3.16 17β estradiol has no effect on systemic arterial pressure in male SERT+ 

mice.  Mean systemic arterial pressure (MAP) is similar in normoxic and chronically 

hypoxic male SERT+ mice dosed with 17β estradiol when compared against their vehicle-

dosed controls.  Data are expressed as mean + SEM; n=8-9.   

 

 

Figure 3.17 17β estradiol has no effect on heart rate in male SERT+ mice.  Heart rate 

(HR) is similar in normoxic and chronically hypoxic male SERT+ mice dosed with 17β 

estradiol when compared against their vehicle-dosed controls.  Data are expressed as mean 

+ SEM; n=8-9. 
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3.2.6 17β Estradiol Prevents Hypoxia-Induced PAH in Male Wildtype 

Mice  

Previously, we reported that ovariectomized WT mice develop moderate PAH.  We were 

interested in further investigating the effects of 17β estradiol in the development of PAH in 

WT mice.  In normoxia, the administration of 17β estradiol had no effect on RVSP, 

pulmonary vascular remodelling or RVH in male WT mice.  In chronic hypoxia, 17β 

estradiol protected against the development of PAH via a reduction in RVSP, pulmonary 

vascular remodelling and RVH (Figure 3.18).  We observed no effects on MAP (Figure 

3.19) or HR (Figure 3.20) in 17β estradiol-dosed male WT mice compared to their vehicle-

dosed WT controls.        
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Figure 3.18 17β estradiol attenuates hypoxia-induced PAH in male wildtype mice.  

17β estradiol attenuates RVSP (A), PVR (B) and RVH (C) in chronically hypoxic male 

wildtype mice.  No effects are reported in normoxia.  Data are expressed as mean + SEM 

and analysed by two-way ANOVA followed by Bonferroni’s post-hoc test.  *P<0.05, 

**P<0.01, ***P<0.001, cf. normoxic mice; §P<0.05, §§P<0.01 cf. vehicle-dosed mice.  

n=7-9. 
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Figure 3.19 17β estradiol has no effect on systemic arterial pressure in normoxic and 

chronically hypoxic male wildtype mice.  Mean systemic arterial pressure (MAP) is 

similar in normoxic and chronically hypoxic male wildtype mice dosed with 17β estradiol, 

when compared against their respective vehicle-dosed controls.  Data are expressed as 

mean + SEM; n=8-9.   

 

 

Figure 3.20 17β estradiol has no effect on heart rate in normoxic and chronically 

hypoxic male wildtype mice.  Heart rate (HR) is similar in normoxic and chronically 

hypoxic male wildtype mice dosed with 17β estradiol, when compared against their 

respective vehicle-dosed controls.  Data are expressed as mean + SEM; n=8-9. 
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3.2.7 Effects of Ovariectomy and 17β Estradiol on Serotonin Induced 

Pulmonary Vascular Contraction  

To determine if pulmonary vascular reactivity is affected in mice following ovariectomy or 

17β estradiol administration, we assessed serotonin-induced vasoconstriction in the 

pulmonary arteries.  As previously reported, the potency of serotonin is decreased in 

SERT+ mice and this was not further affected following ovariectomy.  Serotonin-induced 

vasoconstriction was also similar in both ovariectomized and sham-operated wildtype mice 

(Figure 3.21).  Similarly, ovariectomy had no effect on serotonin-induced vasoconstriction 

in the pulmonary arteries of chronically hypoxic wildtype and SERT+ mice (Figure 3.22).  

As ovariectomized SERT+ mice develop PAH following the administration of 17β 

estradiol, we were also interested in investigating any possible changes in pulmonary 

vascular reactivity.  However, no changes in serotonin-induced vasoconstriction were 

apparent in either normoxic (Figure 3.23) or chronically hypoxic (Figure 3.24) 17β 

estradiol-dosed SERT+ mice compared to vehicle-dosed SERT mice.     
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Figure 3.21 Serotonin-induced pulmonary arterial contraction is unaffected following 

ovariectomy in both normoxic wildtype and SERT+ mice.  The potency of serotonin is 

decreased in the pulmonary arteries of SERT+ mice compared to wildtype mice, however 

is unaffected following ovariectomy.  Data are expressed as mean + SEM.  n=6-8.   

 

 

 

Figure 3.22 Serotonin-induced pulmonary arterial contraction is unaffected following 

ovariectomy in chronically hypoxic wildtype and SERT+ mice.  The potency of 

serotonin is decreased in the pulmonary arteries of SERT+ mice compared to wildtype 

mice, however is unaffected following ovariectomy. Data are expressed as mean + SEM.  

n=6-7.  
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Figure 3.23 Serotonin-induced pulmonary arterial contraction is unaffected following 

17β estradiol administration in ovariectomized SERT+ mice.  Data are expressed as 

mean + SEM.  n=6. 

 

 

 

 

 

 

Figure 3.24 Serotonin-induced pulmonary arterial contraction is unaffected following 

17β estradiol administration in chronically hypoxic ovariectomized SERT+ mice.  

Data are expressed as mean + SEM.  n=6. 
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3.2.8 Effects of 17β Estradiol, Estrone, Estriol and Progesterone in 

PASMCs 

In summary of our in vivo findings, we identified that female SERT+ mice develop 

spontaneous PAH and exaggerated hypoxia-induced PAH whilst male SERT+ mice remain 

unaffected, compared to their respective WT controls.  Through multiple intervention 

studies we confirmed that ovariectomy reversed PAH in SERT+ mice, and disease was 

successfully re-established following 17β estradiol administration.  Collectively, this 

evidence suggests a critical role for 17β estradiol in the progression of PAH in SERT+ 

mice.  To further test this hypothesis, male SERT+ mice were subjected to 17β estradiol 

administration.  However SERT+ males failed to develop PAH, confirming that 17β 

estradiol effects are limited to SERT+ females.  In WT mice, ovariectomy resulted in the 

development of PAH, whilst 17β estradiol attenuated hypoxia-induced PAH in males, 

suggesting that female hormones and 17β estradiol are protective against PAH in WT 

mice.  To further delineate the role of female hormones in PAH, we assessed their effects 

in cultured pulmonary vascular cells.          

 

We examined the effects of 17β estradiol on human pulmonary artery smooth muscle cell 

(PASMC) proliferation.  This was investigated at physiological circulating concentrations 

(0.1-1nmol/L).  For comparison, we also examined the effects of estrone, estriol and 

progesterone on PASMC proliferation.  At 1nmol/L, 17β estradiol stimulated PASMC 

proliferation (Figure 3.25) as assessed by increased cell number and DNA synthesis, 

whereas estrone (Figure 3.26), estriol (Figure 3.27) and progesterone (Figure 3.28) had no 

effect on PASMC proliferation.  These proliferative effects of 17β estradiol are consistent 

with our in vivo findings.   
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Figure 3.25 17β estradiol stimulates human pulmonary artery smooth muscle cell 

proliferation.  17β estradiol stimulates both cell number (A) and DNA synthesis (B) in 

PASMCs at 1nmol/L.  *P<0.05, **P<0.01 increased proliferation cf. 2.5% FBS 

stimulation.  Data are expressed as mean + SEM and analysed by one-way ANOVA 

followed by Dunnett’s post-hoc test.  n=3 and performed in duplicate. 
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Figure 3.26 Estrone has no effect on human pulmonary artery smooth muscle cell 

proliferation.  Estrone has no effect on cell number (A) or DNA synthesis (B) at a range 

of concentrations (0.1-1nmol/L).  Data are expressed as mean + SEM.  n=3 and performed 

in duplicate. 
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Figure 3.27 Estriol has no effect on human pulmonary artery smooth muscle cell 

proliferation.  Estriol has no effect on cell number (A) or DNA synthesis (B) at a range of 

concentrations (0.1-1nmol/L).  Data are expressed as mean + SEM.  n=3 and performed in 

duplicate. 
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Figure 3.28 Progesterone has no effect on human pulmonary artery smooth muscle 

cell proliferation.  Progesterone has no effect on cell number (A) or DNA synthesis (B) at 

a range of concentrations (0.1-1nmol/L).  Data are expressed as mean + SEM.  n=3 and 

performed in duplicate. 
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3.2.9 17β Estradiol Has No Effect on Serotonin Induced Proliferation in 

PASMCs 

Following our observation that 17β estradiol is critical to the development of PAH in a 

serotonin-dependent model of PAH (SERT+ mice), we investigated if this hormone 

potentiates serotonin-induced proliferation in cultured PASMCs.  We observed that, 

although both serotonin and 17β estradiol stimulate PASMC proliferation, their cumulative 

effect does not stimulate proliferation to a greater extent (Figure 3.29).       
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Figure 3.29 17β estradiol has no effect on serotonin-induced proliferation in human 

pulmonary artery smooth muscle cells.  Both 1nmol/L 17β estradiol and 1μmol/L 

serotonin stimulate PASMC proliferation however their cumulative effect does not further 

stimulate proliferation.  Data are expressed as mean + SEM and analysed by one-way 

ANOVA followed by Dunnett’s post-hoc test.  **P<0.01 cf. 2.5% FBS proliferation.  n=4 

and cell counts performed in duplicate. 
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3.2.10 17β Estradiol Increases Tryptophan Hydoxylase-1, 5-HT1B 

Receptor and Serotonin Transporter Expression in PASMCs 

To determine if 17β estradiol regulates the expression of key mediators in serotonin 

signalling we stimulated PASMCs with 1nmol/L 17β estradiol at multiple time-points and 

investigated protein expression of TPH1, the 5-HT1B receptors and SERT.  Following 

exposure of PASMCs to 17β estradiol for greater than 4 hours, we observed increased 

expression of TPH1 (Figure 3.30), the 5-HT1B receptors (Figure 3.31) and SERT (Figure 

3.32). 
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Figure 3.30 17β estradiol increases tryptophan hydroxylase-1 expression in human 

pulmonary artery smooth muscle cells.  Representative immunoblotting (A) and 

densitometrical analysis (B) showing that 1nmol/L 17β estradiol increases TPH1 

expression in PASMCs.  Quantitative data is shown as mean + SEM and analysed using 

one-way ANOVA followed by Dunnett’s post-hoc test.  *P<0.05 cf. untreated PASMCs.  

n=3. 
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Figure 3.31 17β estradiol increases 5-HT1B receptor expression in human pulmonary 

artery smooth muscle cells.  Representative immunoblotting (A) and densitometrical 

analysis (B) showing that 1nmol/L 17β estradiol increases 5-HT1B receptor expression in 

PASMCs.  Quantitative data is shown as mean + SEM and analysed using one-way 

ANOVA followed by Dunnett’s post-hoc test.  *P<0.05 cf. untreated PASMCs.  n=3. 
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Figure 3.32 17β estradiol increases serotonin transporter expression in human 

pulmonary artery smooth muscle cells.  Representative immunoblotting (A) and 

densitometrical analysis (B) showing that 1nmol/L 17β estradiol increases SERT 

expression in PASMCs.  Quantitative data is shown as mean + SEM and analysed using 

one-way ANOVA followed by Dunnett’s post-hoc test.  *P<0.05 cf. untreated PASMCs.  

n=3. 
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3.2.11 Serotonin Pathway Inhibitors Prevent 17β Estradiol 

Induced Proliferation in PASMCs 

Following the observation that 17β estradiol increases expression of key serotonin pathway 

mediators (TPH1, 5-HT1B receptors, SERT) critical to the development of PAH, we 

investigated if the serotonin system was also involved in 17β estradiol-induced PASMC 

proliferation.  To test this, we investigated the effects of inhibitors for TPH (p-

chlorophenylalanine, PCPA 10µmol/L), the 5-HT receptors (5-HT1B antagonist, SB224289 

300nmol/L; 5-HT2A antagonist. ketanserin 30nmol/L) and SERT (citalopram 1µmol/L) on 

1nmol/L 17β estradiol-mediated proliferation of PASMCs (Figure 3.33).  Although none of 

the inhibitors had any effect on FBS-induced proliferation, both the TPH inhibitor PCPA 

and the 5-HT1B receptor antagonist SB224289 successfully inhibited 17β estradiol-

stimulated proliferation.  Of interest, the 5-HT2A receptor antagonist ketanserin and the 

SERT inhibitor citalopram had no effect.   
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Figure 3.33 Effects of inhibitors for serotonin synthesis, 5-HT receptors and serotonin 

transporter on 17β estradiol-stimulated proliferation.  17β estradiol (1nmol/L) 

increases cell number (A) and DNA synthesis (B) in PASMCs.  This is inhibited by the 

tryptophan hydroxylase (TPH) inhibitor para-chlorophenylalanine (PCPA; 10µmol/L) and 

the 5-HT1B receptor antagonist SB224289 (300nmol/L) but unaffected by the 5-HT2A 

receptor antagonist ketanserin (30nmol/L) and the SERT inhibitor citalopram (1µmol/L).  

*P<0.05, **P<0.01 increased proliferation cf. 2.5% FBS; † P<0.05, †† P<0.01 decreased 

proliferation cf. 1nmol/L 17β estradiol.  Data are expressed as mean  SEM and analysed 

by one-way ANOVA followed by Dunnett’s post-hoc test.  n=3 and performed in 

duplicate. 
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3.3 Discussion 

Both idiopathic PAH and heritable PAH occur more in females than in males.  For 

example, in recent epidemiological studies carried out in Scotland, France and USA, 60%, 

65% and 77% of patients studied respectively were female (Peacock et al., 2007; Humbert 

et al., 2006; Thenappan et al., 2007).  The reasons for this increased frequency in females 

are unclear and under investigated.  One reason for this under investigation is the absence 

of a suitable animal model.  Paradoxically, it is observed that male rats exhibit severe 

hypoxia-induced PAH compared to female rats (Rabinovitch et al., 1981) and estrogens 

protect against monocrotaline-induced PAH (Farhat et al., 1993). 

 

This is the first complete study to describe an animal model of PAH with female 

susceptibility.  Preliminary evidence suggests that increased susceptibility in female mice 

may also be observed in dexfenfluramine-induced PAH (Dempsie et al., 2009; Dempsie et 

al., 2010) and VEGF receptor antagonist (SU 5416) + hypoxia-induced PAH (Tofovic and 

Rafikova, 2009).  In the current study, only female SERT+ mice develop PAH and we 

provide experimental evidence that interactions between 17β estradiol and the serotonin 

system may contribute towards this PAH pathogenesis.  We demonstrate that female 

SERT+ mice develop PAH as indicated by elevated right ventricular pressure and 

pulmonary vascular remodelling, whereas male SERT+ mice remain unaffected.  These 

results suggest that sex hormones are critical to the development of PAH in this model.  To 

investigate this hypothesis, we ovariectomized these mice and assessed the PAH phenotype 

after twelve weeks.  Ovariectomy completely prevented both the development of PAH and 

severe hypoxia-induced PAH in SERT+ mice.  These results suggest a detrimental role for 

ovarian-derived hormones in SERT+ mice. 
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To determine if 17β estradiol is the hormone critical to the development of PAH in vivo, 

we assessed the effects of its re-introduction into ovariectomized SERT+ mice.  As 

previously mentioned, ovariectomy protects SERT+ mice against the development of 

PAH, however 17β estradiol completely re-established a disease phenotype in these mice.  

Similarly, this hormone also re-established severe hypoxia-induced PAH in ovariectomized 

SERT+ mice.  These results confirm that female gender, via the influence of ovarian-

derived 17β estradiol, is critical to the development of PAH in SERT+ mice. 

 

The potency of serotonin is decreased in the pulmonary arteries of SERT+ mice, as has 

been previously reported (MacLean et al., 2004).  This is thought to occur via a reduction 

in extracellular serotonin concentration, arising as a consequence increased SERT-

mediated serotonin uptake.  Here, we investigated the effects of ovariectomy and 17β 

estradiol administration on serotonin-induced vasoconstriction in the pulmonary arteries of 

both normoxic and chronically hypoxic wildtype and SERT+ mice.  However, we 

observed no changes in serotonin potency or efficacy in any of these mice.  Similarly, 

serotonin-induced pulmonary vasoconstriction was also unchanged following 17β estradiol 

dosing in these mice.          

 

We wished to establish a cellular model in order to investigate possible mechanisms of 

action of 17β estradiol and also examine the relevance of our in vivo study to human cells. 

We chose PASMCs as these have been extensively studied to investigate critical pathways 

in PAH. For example, PASMCs proliferate to serotonin via stimulation of the 5HT1B 

receptors and SERT (Lawrie et al., 2005), and have also been studied to further investigate 

BMPR-II signalling in PAH (Yang et al., 2008). We observed that 17β estradiol stimulated 

proliferation, whereas estrone, estriol and progesterone had no effect.  This is consistent 

with our observation that 17β estradiol re-established a PAH phenotype in ovariectomized 

SERT+ mice. 1nmol/L 17β estradiol was sufficient to promote PASMC proliferation and 
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similar growth effects have been previously reported in rat PASMCs (Farhat et al., 1992).  

This is physiologically relevant as 17β estradiol circulates at concentrations between 0.1-

1nmol/L (Rosselli et al., 1994) and smooth muscle hyperplasia is a hallmark of PAH.   

 

The suggestion that 17β estradiol is involved in the pathogenesis of experimental PAH is 

consistent with recent findings in human PAH.  Decreased expression of the 17β estradiol-

metabolising enzyme CYP1B1 has been reported in female PAH patients harbouring a 

BMPR-II mutation compared to unaffected female carriers
8
.  Multiple factors modulate the 

levels of estrogen-metabolizing enzymes in the liver and target tissues, and the biological 

effects of an estrogen will therefore depend on the profile of metabolites formed and the 

biological activities of each of these metabolites (Zhu and Conney, 1998).  17β estradiol is 

metabolised to both pro- and anti-proliferative metabolites and its effects will depend on its 

metabolism.  17β estradiol can be converted to estrone and subsequently metabolized to 

16 -hydroxyestrone (16-OHE1) via CYP3A4.  Or alternatively, 17β estradiol is 

metabolized to 2-hydroxyestradiol (2-OHE) via the estrogen metabolizing enzymes 

CYP1A1/2 and to a lesser extent via CYP1B1 (Hanna et al., 2000; Tsuchiya et al., 2005).  

2-OHE can itself be metabolized to 2-methoxyestradiol (2-ME) via catechol O-

methyltransferase (COMT).  Both 2-OHE and 2-ME have anti-proliferative effects on cells 

(Tofovic et al., 2006), whereas 16 -OHE1 stimulates proliferation by constitutively 

activating the estrogen receptor (Swaneck and Fishman, 1988).  Metabolism of 17β 

estradiol will therefore be species, gender and strain-dependent and differential disruption 

in the balance of metabolites may therefore account for the differential effects of female 

hormones in different models of PAH.  Consistent with this, 17β estradiol did not promote 

PAH in male SERT+ mice suggesting gender differences in estrogen metabolism and/or its 

effects.   
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As discussed above, in other models of PAH it would appear that male gender predisposes 

to PAH and 17β estradiol may actually be protective in PAH.  It has, for example, been 

shown to improve both right ventricular hypertrophy and pulmonary vascular remodeling 

in hypoxia-induced and monocrotaline-induced PAH (Farhat et al., 1993; Resta et al., 

2001).  Our studies are consistent with this as we show that male WT mice developed more 

severe hypoxia-induced PAH compared to female wildtype mice and 17β estradiol ablated 

hypoxia-induced PAH in these males.  17β estradiol also reduced RVH in ovariectomized 

SERT+ mice.  In addition to the anti-proliferative effects of various 17β estradiol 

metabolites, it  is also an established nitric oxide-dependent vasodilator in rat pulmonary 

arteries (Lahm et al., 2008), up-regulates endothelial nitric oxide synthase expression in 

pulmonary arterial endothelial cells (MacRitchie et al., 1997) and suppresses hypoxia-

induced endothelin-1 gene expression (Earley and Resta, 2002).  These effects may protect 

against the development of PAH in some species and/or strains.  However, our results 

suggest that when SERT is up-regulated, 17β estradiol loses these protective effects and 

this may be via facilitating the mitogenic effects of serotonin.  The implications of our 

study may translate clinically and help explain the inconsistency of the occurrence of PAH 

which may depend on multiple influences on 17β estradiol metabolism including age, early 

menopause, gender and various other factors that affect 17β estradiol metabolism. 

 

There are multiple serotonin effects within the pulmonary circulation which promote PAH 

including microthrombosis, arterial vasoconstriction and proliferation.  Indeed, it has been 

previously shown that TPH1, SERT and the 5-HT1B receptors are all implicated in both 

human and experimental PAH.  For example, the expression of TPH1, the rate-limiting 

enzyme involved in peripheral serotonin synthesis, is increased in the lungs of IPAH 

patients (Eddahibi et al., 2006).  The exogenous administration of serotonin uncovers a 

PAH phenotype in BMPR-II+/- mice (Long et al., 2006) and also increases the severity of 

hypoxia-induced PAH in rats (Eddahibi et al., 1997).  In addition, mice deficient of 
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peripheral serotonin (tph1-/- mice), achieved through deletion of the tph1 gene, do not 

develop hypoxia-induced PAH (Morecroft et al., 2007) or dexfenfluramine-induced PAH 

(Dempsie et al., 2008).  Serotonin effects within the pulmonary vasculature are mediated in 

part via SERT.  For example, PASMCs derived from IPAH patients proliferate to a greater 

extent than those from controls following serotonin stimulation and this is dependent on 

SERT activity (Eddahibi et al., 2001).  A genetic polymorphism leading to increased 

activity/expression of SERT has been identified in a small cohort of PAH patients 

(Eddahibi et al., 2001).  Subsequent studies in larger patient studies have failed to support 

these findings although patients with the SERT polymorphism may present at an earlier 

age than those without (Machado et al., 2006; Willers et al., 2006).  As previously reported 

(MacLean et al., 2004) and further observed in the current study, mice over-expressing 

SERT develop PAH and severe hypoxia-induced PAH.  Conversely, mice devoid of the 

SERT gene are less susceptible to the development of hypoxia-induced PAH (Eddahibi et 

al., 2000).  Here, our findings demonstrate that female gender is also a risk factor in the 

development of PAH in SERT+ mice. 

 

In the central nervous system, estrogens influence serotonin signalling via up-regulation of 

multiple pathway mediators including TPH and SERT (Pecins-Thompson et al., 1996; Lu 

et al., 2003).  On this premise, we hypothesised that 17β estradiol was similarly affecting 

the serotonin system within the pulmonary circulation and this was the mechanism through 

which serotonin and 17β estradiol synergise to facilitate PAH. Thus, we investigated 

whether 17β estradiol regulated expression of any serotonin pathway mediators in 

PASMCs.  Here, we report for the first time that TPH1 is present in PASMCs, and this is 

markedly increased following stimulation with 17β estradiol.  In addition, 17β estradiol 

also increased both 5-HT1B receptor and SERT expression in PASMCs.  This may be 

relevant, as both have previously been shown to interact to promote serotonin-induced 

PASMC proliferation (Lawrie et al., 2005).  Based on these findings, we were interested in 
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determining if 17β estradiol mediated PASMC proliferation via a serotonergic mechanism.  

Indeed, we report that 17β estradiol-induced proliferation is completely abolished in the 

presence of the TPH inhibitor PCPA and the 5-HT1B receptor antagonist SB224289.  This 

suggests that serotonin synthesis, and subsequent activation of the 5-HT1B receptor, is 

essential in mediating the proliferative response of PASMCs to 17β estradiol.  It could be 

expected that the increased SERT expression may also increase the SERT-dependent 

serotonin activation of small GTPases within the cytoplasm (‘serotonylation’), to further 

promote the mitogenic effects of serotonin.  However, the observation that the SERT 

inhibitor citalopram was not sufficient to block proliferation suggests a minor role, 

although co-operation between the 5-HT1B receptors and SERT have previously been 

shown to mediate serotonin-induced proliferation and therefore a role for SERT in 17β 

estradiol-induced proliferation cannot be ruled out.  These findings are consistent with a 

role for serotonin in PAH as TPH1, the 5HT1B receptors and SERT have all previously 

been implicated in the pathogenesis of both experimental and human PAH, as discussed 

above. 

   

We have previously reported that un-dosed SERT+ mice develop elevated RVSP in the 

absence of RVH (MacLean et al., 2004).  Conversely, chronically hypoxic tph1-/- mice 

develop RVH in the absence of increased RVSP (Morecroft et al., 2007).  The present 

study confirms dissociation of these indices in SERT+ mice.  Further, we now show that 

ovariectomy decreased RVSP in SERT+ mice whilst having no effect on RVH, and the 

administration of 17β estradiol to ovariectomized SERT+ mice increased RVSP whilst 

decreasing RVH.  One explanation for this dissociation is that both 17β estradiol and 

serotonin have direct effects on ventricular cardiomyocytes.  17β estradiol exerts both pro- 

and anti-hypertrophic effects on these cells (Kilic et al., 2009).  Serotonin is considered a 

survival factor in cardiomyocytes (Nebigil et al., 2003) and apoptosis is a pre-dominant 

feature of ventricular remodelling (Williams, 1999).   
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In conclusion, here we have shown that female gender pre-disposes SERT+ mice to the 

development of PAH and 17β estradiol is critical to this.  17β estradiol appears to increase 

serotonin synthesis in PASMCs.  This, in combination with 17β estradiol-mediated 

upregulation of SERT and the 5-HT1B receptor, may act to enhance serotonin-induced 

proliferation.  The SERT and the 5-HT1B receptor have previously been shown to mediate 

both serotonin-induced proliferation of PASMCs (Lawrie et al., 2005; Morecroft et al., 

2010) and serotonin-induced constriction of pulmonary arteries (Morecroft et al., 2005).  

These findings may offer insight into the gender differences apparent in human PAH. 
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Chapter 4 

The Serotonin Transporter, Gender and 

Hypoxia: Microarray Analysis in the 

Pulmonary Arteries of Mice Identifies 

Genes with Relevance to Human PAH 
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4.1 Introduction 

Gender bias exists in both HPAH and IPAH, with women up to three-fold more likely to 

present with disease (Humbert et al., 2006; Peacock et al., 2007; Thenappan et al., 2007).  

The underlying reasons for these differences remain to be characterised.  Estrogen is one 

risk factor in PAH (Lahm et al., 2008).  Genotyping studies have revealed alterations in 

estrogen signalling in PAH.   For example, female PAH patients exhibit increased 

expression levels of ESR1 (estrogen recptor-1), which is the gene encoding for estrogen 

receptor alpha, compared to unaffected females (Rajkumar et al., 2010), and decreased 

cytochrome P450 1B1 (CYP1B1) expression is reported in HPAH (Austin et al., 2009). 

 

Multiple studies have implicated serotonin in the pathobiology of PAH, as previously 

discussed.  For example, peripheral serotonin synthesis is required for the development of 

both hypoxia-induced PAH (Morecroft et al., 2007) and dexfenfluramine-induced PAH 

(Dempsie et al., 2008).  Mice over-expressing the SERT (SERT+ mice) also develop PAH 

and exaggerated hypoxia-induced PAH (MacLean et al., 2004).  Consistent with this, mice 

with targeted SERT over-expression in the PASMCs under the guidance of its own SM22 

promoter develop PAH and severe hypoxia-induced PAH (Guignabert et al., 2006).  SERT 

expression is increased in human pulmonary artery smooth muscle cells (PASMCs) 

derived from IPAH patients, and mediates enhanced serotonin-induced proliferation in 

these cells (Eddahibi et al., 2006).  Taken together, this evidence highlights a critical role 

of smooth muscle-SERT in mediating serotonin effects in experimental and human PAH.  

 

In this study, we characterised genotypic differences in the development of PAH in SERT+ 

mice.  Female SERT+ mice develop PAH and exaggerated hypoxia-induced PAH whereas 

male SERT+ mice remain unaffected compared to their respective wildtype controls.  This 

was only apparent at 5 months of age.  This experimental model of PAH is the first to 
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exhibit female susceptibility, and may provide insight into the female bias observed in 

human PAH.  To investigate genotypic changes associated with the development and 

progression of PAH, microarray analysis was performed in the pulmonary arteries of 

normoxic and hypoxic 2 month old SERT+ mice.  A total of thirty two microarrays were 

performed (n=4 biological replicates each group).  The dysregulation of biological 

pathways was observed to a much greater extent in female SERT+ mice compared to male 

SERT+ mice.  Ingenuity Pathway Analysis (IPA) gene mapping identified three key genes 

of interest for further validation (CEBPB, CYP1B1, FOS).  Genes of interest were further 

assessed via quantitative RT-PCR and immunoblotting.  With relevance to human PAH, 

CEBPB, CYP1B1and FOS expression was also investigated in PASMCs derived from 

IPAH patients. 
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4.2 Results 

4.2.1 Female SERT+ Mice Exhibit Right Ventricular Hypertrophy in 

Chronic Hypoxia at 2 Months and PAH at 5 Months 

In normoxia, right ventricular systolic pressure (RVSP), pulmonary vascular remodelling 

(PVR; % remodelled vessels) and right ventricular hypertrophy (RVH) were similar in 2 

month old male (Figure 4.1-3) and female (Figure 4.4-6) wildtype and SERT+ mice.  

However, at 5 months of age female SERT+ mice exhibited PAH, as assessed by increased 

RVSP, PVR and RVP, whereas male SERT+ mice remained unaffected.  Following 

exposure to chronic hypoxia, all groups developed hypoxia-induced PAH as indicated by 

significant increases in RVSP, PVR and RVH.  However at 2 months of age, chronically 

hypoxic female SERT+ mice exhibited increased RVH compared to WT mice.  Similarly, 

at 5 months of age these mice exhibited increased RVSP, PVR and RVH compared to 5 

month WT mice.  Exaggerated hypoxia-induced PAH was not apparent in male SERT+ 

mice at 2 or 5 months of age.  There were no systemic effects reported in both female and 

male normoxic and chronically hypoxic SERT+ mice compared to WT mice, as assessed 

by no changes in systemic arterial pressure or heart rate (data not shown). 
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Figure 4.1 Male SERT+ mice do not exhibit increased right ventricular systolic 

pressure in normoxia or chronic hypoxia.  RVSP is unaffected in normoxic male 

SERT+ mice at 2 and 5 months of age compared to their respective wildtype (WT) 

controls.  Chronic hypoxia elevated RVSP in all groups.  Chronically hypoxic 2 month 

SERT+ mice do not exhibit any change in RVSP compared to their respective WT 

controls.  Data are expressed as mean  SEM and analysed by two-way ANOVA followed 

by Bonferroni’s post-hoc test.   **P<0.01, ***P<0.001 cf. normoxic controls; n=6-8. 
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Figure 4.2 Male SERT+ mice do not exhibit increased pulmonary vascular 

remodelling.  Pulmonary vascular remodelling is unaffected in normoxic male SERT+ 

mice compared to their respective wildtype (WT) controls.  Chronic hypoxia elevated 

pulmonary vascular remodelling in all groups.  Chronically hypoxic 2 month SERT+ mice 

do not exhibit any change in pulmonary vascular remodelling compared to their respective 

WT controls.  Data are expressed as mean  SEM and analysed by two-way ANOVA 

followed by Bonferroni’s post-hoc test.  ***P<0.001 cf. normoxic controls; n=5. 
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Figure 4.3 Male SERT+ mice do not exhibit increased right ventricular hypertrophy.  

RVH is unaffected in normoxic male SERT+ mice compared to their respective wildtype 

(WT) controls.  Chronic hypoxia increased RVH in all groups.  Chronically hypoxic 2 

month SERT+ mice do not exhibit any change in RVH compared to their respective WT 

controls.  Data are expressed as mean  SEM and analysed by two-way ANOVA followed 

by Bonferroni’s post-hoc test.  *P<0.05, **P<0.01 cf. normoxic controls.  n=6-8. 
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Figure 4.4 Female SERT+ mice exhibit increased right ventricular systolic pressure 

in normoxia and chronic hypoxia at 5 months of age.  RVSP is increased in normoxic 

SERT+ mice at 5 months of age but unaffected at 2 months of age compared to their 

respective wildtype (WT) controls.  Chronic hypoxia elevated RVSP in all groups.  

Chronically hypoxic 5 month SERT+ mice also exhibit increased RVSP.  Data are 

expressed as mean  SEM and analysed by two-way ANOVA followed by Bonferroni’s 

post-hoc test.   *P<0.05, **P<0.01 cf. normoxic controls; §§P>0.01 cf. WT mice. n=6-8. 
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Figure 4.5 Female SERT+ mice exhibit increased pulmonary vascular remodelling in 

normoxia and chronic hypoxia at 5 months of age.  Pulmonary vascular remodelling 

(PVR) is increased in normoxic SERT+ mice at 5 months of age but unaffected at 2 

months of age compared to their respective wildtype (WT) controls.  Chronic hypoxia 

elevated PVR in all groups.  Chronically hypoxic 5 month SERT+ mice exhibit increased 

PVR.  Data are expressed as mean  SEM and analysed by two-way ANOVA followed by 

Bonferroni’s post-hoc test.   *P<0.05, **P<0.01 cf. normoxic controls; §§P<0.01 cf. WT 

mice. n=5. 
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Figure 4.6 Female SERT+ mice exhibit increased right ventricular hypertrophy in 

chronic hypoxia at both 2 and 5 months of age. Right ventricular hypertrophy (RVH) is 

unaffected in normoxic SERT+ mice at both 2 and 5 months of age compared to their 

respective wildtype (WT) controls.  Chronic hypoxia elevated RVH in all groups.  

Chronically hypoxic SERT+ mice exhibit increased RVH at both 2 and 5 months of age.  

Data are expressed as mean  SEM and analysed by two-way ANOVA followed by 

Bonferroni’s post-hoc test.   *P<0.05, **P<0.01 cf. normoxic controls §P<0.05 cf. WT 

mice. n=6-8. 
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4.2.2 Genotypic Differences in SERT+ Mice 

We were interested in exploring the genotypic differences associated with the development 

and progression of PAH in female SERT+ mice.  In total, we identified 155 genes that 

were significantly (P<0.05) differentially expressed in female SERT+ mice compared to 

their wildtype controls.  71 genes show increased expression (Table 4.1), whilst the 

remaining 84 genes show reduced expression (Table 4.2).  To determine their biological 

relevance, we functionally categorized these genes by biological processes. A considerable 

number of these genes (>40%) were assigned to one or more biological processes, of 

which 15 categories were present in total (Figure 4.7).  Specifically, a large number of 

these genes were assigned to biological functions with relevance to PAH.  These included 

oxidation-reduction, cell differentiation, regulation of transcription, apoptosis, muscle 

contraction, cellular calcium ion homeostasis and glycolysis. 

 

In order to further investigate the genotypic changes underlying these gender differences in 

SERT+ mice, we also performed microarray analysis in the pulmonary arteries of male 

SERT+ mice.  We observed that a total of 148 genes were significantly differentially 

expressed in male SERT+ mice compared to male WT mice. Of these, 110 genes were 

increased (table 4.5) whilst the remaining 38 genes were decreased (table 4.6).  When 

categorised by biological processes, only 25% of these genes were assigned to biological 

function and 9 categories were represented in total. 

 

Hierarchal cluster analysis between the 4 normoxic groups (258 genes in total) revealed 

distinct gene expression patterns between female SERT+ and female WT which were not 

apparent in the identical male SERT+ and WT comparison. 
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4.2.3 Genotypic Differences in Hypoxic SERT+ Mice 

We were also interested in investigating the genotypic differences associated with 

exaggerated hypoxia-induced PAH in female SERT+ mice.  Following exposure to chronic 

hypoxia, female SERT+ mice exhibited a greater than two-fold increase in the number of 

differentially expressed genes compared against the identical normoxic comparison.  In 

total, 316 genes were differentially expressed.  We observed that 254 genes were increased 

(Table 4.3), whilst the remaining 62 genes showed decreased expression (Table 4.4).  

When arranged by biological processes, 53% of genes were assigned to a total of 26 

distinct pathways.  Moreover, a significant number of these dysregulated pathways 

observed in chronically hypoxic female SERT+ mice have been previously associated with 

PAH including apoptosis, inflammation, transcription and metabolism (Figure 4.8).                             

 

In contrast, a large number of these changes were not apparent in hypoxic male SERT+ 

mice.  A total of 145 genes were differentially expressed in male SERT+ mice, with 87 

showing increased expression (Table 4.7) and 58 showing decreased expression (Table 

4.8).  When categorised by biological processes, 42% of these genes were assigned a 

biological function.  12 categories were represented in total.   

 

Hierarchal cluster analysis of the differentially expressed genes between the 4 hypoxic 

groups revealed distinct gene expression patterns which were unique to female SERT+ 

mice.  This may be critical to the exaggerated hypoxia-induced PAH phenotype observed 

in these mice. 
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Table 4.1 List of genes up-regulated in the pulmonary arteries of 2 month female SERT+ mice 

compared to 2 month female wildtype mice, arranged by biological process.  
 

 
Gene Symbol Gene Name     Accession No  Fold False 

           Change  Discovery 

           Rate 

  

Oxidation Reduction    

CYP2S1   cytochrome P450, family 2, subfamily s, polypeptide 1  NM_028775.2  1.52 0.046 

SCD1   stearoyl-Coenzyme A desaturase 1    scl52445.7_23  2.51 0.009 

FASN   fatty acid synthase      scl014104.1_1  1.70 0.044 

ALDH1A7 aldehyde dehydrogenase family 1, subfamily A7   scl52665.13.1_14  2.20 0.018 

GPD1   glycerol-3-phosphate dehydrogenase 1    NM_010271.2  2.74 0.010 

CYP1B1  cytochrome P450, family 1, subfamily b, polypeptide 1  scl49594.5.189_22  1.54 0.037 

   

Cell Differentiation    

CEBPB  CCAAT/enhancer binding protein    NM_009883.1  1.50 0.049 

LGALS3  lectin, galactose binding, soluble 3    NM_010705.1  1.76 0.022 

DMKN   dermokine      scl32804.19.1_0  1.92 0.017 

  

Regulation of transcription 

CEBPB   CCAAT/enhancer binding protein    NM_009883.1  1.50 0.049 

FOS   FBJ osteosarcoma oncogene     NM_010234.2  2.79 0.017 

Xbp1   X-box binding protein 1     NM_013842.2  1.56 0.029 

HOXA4   homeo box A4      NM_008265.2  2.02 0.018 

HOXB5   homeo box B5      NM_008268.1  1.90 0.015 

AXUD1   AXIN1 up-regulated 1     scl35215.8_496  1.87 0.017 

  

Immune Response    

CFD   complement factor D     NM_013459.1  1.86 0.045 

SPON2   spondin 2, extracellular matrix protein    NM_133903.2  1.76 0.017 

  

Apoptosis    

CIDEC   cell death-inducing DFFA-like effector c   NM_178373.2  2.91 0.014 

SRGN   serglycin       scl019073.1_109  1.62 0.021 

AXUD1   AXIN1 up-regulated 1     scl35215.8_496  1.87 0.017 

  

Metabolic Process    

UGT1A10 UDP glycosyltransferase 1 family, polypeptide A10  scl0394435.7_126  1.66 0.046 

ACLY   ATP citrate lyase      NM_134037.2  1.68 0.044 

FASN   fatty acid synthase      scl014104.1_1  1.70 0.044 

ALDH1A7 aldehyde dehydrogenase family 1, subfamily A7   scl52665.13.1_14  2.20 0.018 

AACS   acetoacetyl-CoA synthetase     NM_030210.1  1.94 0.026 

GPD1   glycerol-3-phosphate dehydrogenase 1    NM_010271.2  2.74 0.010 

UAP1  UDP-N-acetylglucosamine pyrophosphorylase 1   NM_133806.2  1.74 0.026 

  

Lipid Metabolic Process    

SCD1   stearoyl-Coenzyme A desaturase 1    NM_011182.2  2.51 0.009 

AACS   acetoacetyl-CoA synthetase     NM_030210.1  1.94 0.026 

   

Lipid Biosynthetic Process    

SCD1   stearoyl-Coenzyme A desaturase 1    scl52445.7_23  2.51 0.009 

ACLY   ATP citrate lyase      NM_134037.2  1.68 0.044 

FASN   fatty acid synthase      scl014104.1_1  1.70 0.044 

ELOVL6 ELOVL family member 6     scl00170439.1_29  2.16 0.014 

  

Brown Fat Celll Differentiation    

SCD1   stearoyl-Coenzyme A desaturase 1    scl52445.7_23  2.51 0.009 

ADIPOQ  adiponectin, C1Q and collagen domain containing  scl49310.3_131  2.66 0.017 

UCP1   uncoupling protein 1     NM_009463.2  15.14 0.000 

CEBPB   CCAAT/enhancer binding protein    NM_009883.1  1.50 0.049 

BC054059 cDNA sequence BC054059     scl19994.5.1_11  2.54 0.017 

  

Glycolysis    

ENO2   enolase 2, gamma neuronal     NM_013509.2  1.61 0.045 
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Table 4.2 List of genes down-regulated in the pulmonary arteries of 2 month female SERT+ mice 

compared to 2 month female wildtype mice, arranged by biological process.  
 

 
Gene Symbol Gene Name     Accession No  Fold False 

           Change  Discovery 

           Rate 

  

Oxidation Reduction    

SC4MOL   sterol-C4-methyl oxidase-like    NM_025436.1  2.09 0.034 

PRDX2   peroxiredoxin 2      NM_011563.2  2.89 0.017 

  

Cell Differentiation    

TRIM54   tripartite motif-containing 54     NM_021447.1  2.58 0.026 

OBSCN   obscurin, cytoskeletal calmodulin and titin-interacting  scl40175.7.1_79  2.13 0.042 

  RhoGEF 

CSRP3   cysteine and glycine-rich protein 3    NM_013808.3  5.14 0.003 

  

Regulation of transcription    

TBX20   T-box 20       NM_194263.1  2.06 0.041 

  

Immune Response    

PRG4  proteoglycan 4      scl000882.1_25  2.57 0.019 

  

Apoptosis    

ACTC1   actin, alpha, cardiac     NM_009608.1  2.17 0.037 

COMP  cartilage oligomeric matrix protein    scl33728.21.1_0  4.73 0.011 

  

Metabolic Process    

PGAM2   phosphoglycerate mutase 2     scl40555.3.1_120  8.59 0.003 

  

Lipid Metabolic Process    

CPT1B  carnitine palmitoyltransferase 1b, muscle   NM_009948.1  2.81 0.022 

LPL  lipoprotein lipase      scl0016956.1_234  1.92 0.047 

  

Heart Development    

MB  myoglobin      NM_013593.2  22.71 0.000 

TNNI3  troponin I, cardiac      NM_009406.2  6.86 0.003 

MYL2  myosin, light polypeptide 2, regulatory, cardiac, slow  scl27267.9.1_12  70.40 0.000 

TNNT2  troponin T2, cardiac     NM_011619.1  3.18 0.015 

  

Muscle Contraction    

MYBPC3 myosin binding protein C, cardiac    NM_008653.1  3.34 0.014 

ACTN2  actinin alpha 2     NM_016798.2  9.71 0.003 

TBX20  T-box 20       NM_194263.1  2.06 0.041 

MYOM2  myomesin 2     scl34033.37.1_91  2.40 0.028 

TTN  titin      scl19104.8.1_3  6.48 0.003 

TNNT2  troponin T2, cardiac     NM_011619.1  3.18 0.015 

  

Lipid Biosynthetic Process    

SC4MOL   sterol-C4-methyl oxidase-like    NM_025436.1  2.09 0.034 

  

Cellular Calcium Ion Homeostasis   

PLN  phospholamban     scl38924.3_494  6.93 0.003 

TNNI3  troponin I, cardiac      NM_009406.2  6.86 0.003 

CSRP3  cysteine and glycine-rich protein 3    NM_013808.3  5.14 0.003 

  

Brown Fat Cell Differentiation    

MB   myoglobin      NM_013593.2  22.71 0.000 

 

Glycolysis    

ENO3  enolase 3, beta muscle     NM_007933.2  3.82 0.010 

PGAM2  phosphoglycerate mutase 2     scl40555.3.1_120  8.59 0.003 

  

Sarcomere Organization   

MYBPC3 myosin binding protein C, cardiac    NM_008653.1  3.34 0.014 

MYH6  myosin, heavy polypeptide 6, cardiac muscle, alpha  scl46291.1.1_325  2.60 0.018 

TTN  titin      scl19104.8.1_3  6.48 0.003 

TNNT2   troponin T2, cardiac     NM_011619.1  3.18 0.015 
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Table 4.2 Continued  
 

 
Gene Symbol Gene Name     Accession No  Fold False 

           Change  Discovery 

           Rate 

  

Regulation of Heart Contraction    

MYBPC3 myosin binding protein C, cardiac    NM_008653.1  3.34 0.014 

HRC  histidine rich calcium binding protein    NM_010473.1  3.71 0.011 

MYH6  myosin, heavy polypeptide 6, cardiac muscle, alpha  scl46291.1.1_325  2.60 0.018 

TNNT2   troponin T2, cardiac     NM_011619.1  3.18 0.015 
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Table 4.3 List of genes up-regulated in the pulmonary arteries of 2 month hypoxic female SERT+ 

mice compared to 2 month hypoxic female wildtype mice, arranged by biological process.  
 

 
Gene Symbol Gene Name     Accession No  Fold False 

           Change  Discovery 

           Rate 

  

apoptosis   

PGLYRP1 peptidoglycan recognition protein 1    scl33021.4.288_87  3.30 0.000 

CIDEC   cell death-inducing DFFA-like effector c   NM_178373.2  1.84 0.000 

SRGN   serglycin       scl019073.1_109  1.32 0.048 

KRT8   keratin 8       scl0016691.1_37  3.13 0.000 

CIDEA  cell death-inducing DNA fragmentation factor, alpha NM_007702.1  2.38 0.000 

  subunit-like effector A  

induction of apoptosis   

CEBPB   CCAAT/enhancer binding protein    NM_009883.1  1.67 0.004 

CIDEC   cell death-inducing DFFA-like effector c   NM_178373.2  1.84 0.000 

ERN2   endoplasmic reticulum     scl30713.22.1_242  2.08 0.003 

  

brown fat cell differentiation   

SCD1   stearoyl-Coenzyme A desaturase 1    scl52445.7_23  1.97 0.000 

ADIPOQ   adiponectin, C1Q and collagen domain containing  scl49310.3_131  1.87 0.025 

UCP1   uncoupling protein 1     NM_009463.2  2.60 0.000 

CEBPB   CCAAT/enhancer binding protein    NM_009883.1  1.67 0.004 

BC054059 cDNA sequence BC054059     scl19994.5.1_11  1.86 0.004 

NUDT7   nudix  NM_024446.2 1.57 

MRAP   melanocortin 2 receptor accessory protein   NM_029844.1  1.96 0.001 

ALDH6A1 aldehyde dehydrogenase family 6, subfamily A1   NM_134042.1  1.65 0.021 

PPARG   peroxisome proliferator activated receptor gamma  NM_011146.1  1.75 0.000 

 

carbohydrate metabolic process    

AMY1   amylase 1, salivary  scl077379.3_13 1.66 

PDK4   pyruvate dehydrogenase kinase, isoenzyme 4   scl29310.11_209  2.95 0.005 

PYGL   liver glycogen phosphorylase    NM_133198.1  1.86 0.000 

GPD1   glycerol-3-phosphate dehydrogenase 1    NM_010271.2  2.00 0.001 

CHST1   carbohydrate      NM_023850.1  1.42 0.031 

PPP1R3C protein phosphatase 1, regulatory    NM_016854.1  1.54 0.025 

KLB  klotho beta      scl27771.5.1_89  1.87 0.005 

  

cell adhesion   

MYBPC2  myosin binding protein C, fast-type    NM_146189.1  1.34 0.031 

LGALS3BP  lectin, galactoside-binding, soluble, 3 binding protein  scl39273.6_263  1.66 0.011 

1110049B09RIK  RIKEN cDNA 1110049B09 gene    scl42544.15.6_29  1.39 0.017 

CDH5  cadherin 5     NM_009868.4  1.75 0.030 

CD93   CD93 antigen      scl18542.4.1_65  1.99 0.034 

  

cell-cell adhesion   

CDH5  cadherin 5     scl33446.12_65  1.75 0.030 

CD93   CD93 antigen      scl18542.4.1_65  1.99 0.034 

   

chemotaxis    

CYSLTR1  cysteinyl leukotriene receptor 1    NM_021476.2  1.33 0.041 

CMTM8   CKLF-like MARVEL transmembrane domain containing 8 NM_027294.1  1.34 0.047 

CXCL12   chemokine      scl0001073.1_120  1.77 0.007 

  

defense response to bacterium    

PGLYRP1 peptidoglycan recognition protein 1    scl33021.4.288_87  3.30 0.000 

HAMP2   hepcidin antimicrobial peptide 2    NM_183257.1  5.38 0.000 

FCER1G   Fc receptor, IgE, high affinity I, gamma polypeptide  scl15940.5.1_15  2.29 0.016 

H2-K1   histocompatibility 2, K1, K region    scl0014972.1_210  1.61 0.016 

 

DNA replication    

POLN   DNA polymerase N     scl0272158.1_149  1.69 0.031 

SUPT16H suppressor of Ty 16 homolog    NM_033618.1  1.76 0.021 

POLK   polymerase      scl43651.15_178  1.29 0.047 

  

immune response    

PGLYRP1 peptidoglycan recognition protein 1    scl33021.4.288_87  3.30 0.000 
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Table 4.3 Continued  
 

 
Gene Symbol Gene Name     Accession No  Fold False 

           Change  Discovery 

           Rate 

  

CXCL12   chemokine      scl0001073.1_120  1.77 0.007 

CFD   complement factor D     NM_013459.1  1.68 0.007 

CD300LG CD300 antigen like family member G    scl40868.8_408  1.72 0.049 

H2-T23  histocompatibility 2, T region locus 23    NM_010398.1  1.37 0.036 

H2-K1   histocompatibility 2, K1, K region    scl0014972.1_210  1.61 0.016 

  

inflammatory response    

REG3G   regenerating islet-derived 3 gamma    NM_011260.1  2.97 0.049 

CHST1  carbohydrate      NM_023850.1  1.42 0.031 

KNG1   kininogen 1      NM_023125.2  1.79 0.006 

PPARG   peroxisome proliferator activated receptor gamma  NM_011146.1  1.75 0.000 

  

integrin-mediated signaling pathway    

ADAM9   a disintegrin and metallopeptidase domain 9   NM_007404.1  1.39 0.018 

  

lipid biosynthetic process    

SCD1   stearoyl-Coenzyme A desaturase 1    scl52445.7_23  1.97 0.000 

PCX   pyruvate carboxylase     scl000483.1_20  1.74 0.002 

ACLY   ATP citrate lyase      NM_134037.2  1.81 0.009 

FASN   fatty acid synthase      scl014104.1_1  1.97 0.004 

ELOVL6   ELOVL family member 6, elongation of long  scl00170439.1_29  2.86 0.000 

  chain fatty acids 

ELOVL5   ELOVL family member 5, elongation of long  NM_134255.2  1.39 0.031 

  chain fatty acids 

DGAT2   diacylglycerol O-acyltransferase 2    scl31009.10_67  2.20 0.000 

  

lipid metabolic process  

HSD11B1 hydroxysteroid 11-beta dehydrogenase 1   scl000857.1_11  1.55 0.054 

SCD1   stearoyl-Coenzyme A desaturase 1    scl52445.7_23  1.97 0.000 

HADHB   hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl- NM_145558.1  1.52 0.001 

  Coenzyme A thiolase/enoyl-Coenzyme A hydratase 

CPT1B   carnitine palmitoyltransferase 1b, muscle   NM_009948.1  1.94 0.013 

AACS  acetoacetyl-CoA synthetase     NM_030210.1  1.47 0.028 

CPT2  carnitine palmitoyltrasferase 2   scl000022.1_12  1.56 0.006 

ACADVL acyl-Coenzyme A dehydrogenase, very long chain  scl40004.19.1_140  1.41 0.042 

ACAA2   acetyl-Coenzyme A acyltransferase 2    scl0002163.1_25  1.40 0.033 

ACADL   acyl-Coenzyme A dehydrogenase, long-chain   NM_007381.2  2.12 0.000 

ACSM3   acyl-CoA synthetase medium-chain family member 3  scl000249.1_5  1.67 0.010 

DGAT2   diacylglycerol O-acyltransferase 2    scl31009.10_67  2.20 0.000 

PNPLA2   patatin-like phospholipase domain containing 2   scl8719.1.1_106  1.79 0.006 

LPL   lipoprotein lipase      scl0016956.1_234  1.86 0.007 

ADIPOR2 adiponectin receptor 2     scl28480.7_231  1.50 0.041 

CIDEA   cell death-inducing DNA fragmentation factor, A  NM_007702.1  2.38 0.000 

  alpha subunit-like effector 

metabolic process    

HSD11B1 hydroxysteroid 11-beta dehydrogenase 1   scl000857.1_11  1.55 0.005 

PCX   pyruvate carboxylase     scl000483.1_20  1.74 0.002 

ACLY   ATP citrate lyase      NM_134037.2  1.81 0.009 

FASN   fatty acid synthase      scl014104.1_1  1.97 0.004 

AMY1   amylase 1, salivary      scl077379.3_13  1.66 0.005 

AGPAT2   1-acylglycerol-3-phosphate O-acyltransferase 2   NM_026212.1  2.76 0.002 

ALAS2   aminolevulinic acid synthase 2, erythroid   scl54562.12.1_64  1.29 0.034 

HADHB   hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl- NM_145558.1  1.52 0.001 

  Coenzyme A thiolase/enoyl-Coenzyme A hydratase 

AACS   acetoacetyl-CoA synthetase     NM_030210.1  1.47 0.028 

GPD1   glycerol-3-phosphate dehydrogenase 1    NM_010271.2  2.00 0.000 

EPHX2   epoxide hydrolase 2, cytoplasmic    scl45408.20.1_29  1.48 0.021 

ALDH3A1 aldehyde dehydrogenase family 3, subfamily A1   NM_007436.1  1.92 0.003 

ACO2   aconitase 2, mitochondrial     NM_080633.1  1.89 0.000 

UAP1   UDP-N-acetylglucosamine pyrophosphorylase 1   NM_133806.2  3.48 0.000 

ACADVL acyl-Coenzyme A dehydrogenase, very long chain  scl40004.19.1_140  1.41 0.042 

GSTA3   glutathione S-transferase, alpha 3    scl18127.10.1_92  2.43 0.000 

GSTO1   glutathione S-transferase omega 1    NM_010362.1  2.01 0.034 
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Table 4.3 Continued  
 

 
Gene Symbol Gene Name     Accession No  Fold False 

           Change  Discovery 

           Rate 

  

ACAA2   acetyl-Coenzyme A acyltransferase 2    scl0002163.1_25  1.40 0.033 

EYA3   eyes absent 3 homolog     NM_010166.2  2.10 0.002 

NAT8L   N-acetyltransferase 8-like     scl27919.3_374  1.47 0.040 

ALDH6A1 aldehyde dehydrogenase family 6, subfamily A1   NM_134042.1  1.65 0.021 

ACADL   acyl-Coenzyme A dehydrogenase, long-chain   NM_007381.2  2.12 0.000 

ACSM3   acyl-CoA synthetase medium-chain family member 3  scl000249.1_5  1.67 0.010 

ACSS1   acyl-CoA synthetase short-chain family member 1  NM_080575.1  1.47 0.012 

PNPLA2  patatin-like phospholipase domain containing 2   scl8719.1.1_106  1.79 0.006 

GSTA4   glutathione S-transferase, alpha 4    NM_010357.1  2.61 0.000 

  

 

muscle contraction   

MYBPC2 myosin binding protein C, fast-type    NM_146189.1  1.34 0.031 

TBX20   T-box 20       NM_194263.1  1.57 0.034 

PPARG   peroxisome proliferator activated receptor gamma  NM_011146.1  1.75 0.000 

  

oxidation reduction   

CYP2S1   cytochrome P450, family 2, subfamily s, polypeptide 1  NM_028775.2  1.56 0.034 

HSD11B1 hydroxysteroid 11-beta dehydrogenase 1   scl000857.1_11  1.55 0.005 

SCD1   stearoyl-Coenzyme A desaturase 1    scl52445.7_23  1.97 0.000 

GPX2   glutathione peroxidase 2     NM_030677.1  1.53 0.045 

FASN   fatty acid synthase      scl014104.1_1  1.97 0.000 

GPX3   glutathione peroxidase 3     NM_008161.1  1.55 0.007 

CYP2E1   cytochrome P450, family 2, subfamily e, polypeptide 1  NM_021282.1  2.09 0.003 

GPD2   glycerol phosphate dehydrogenase 2, mitochondrial  NM_010274.2  1.52 0.007 

ETFDH   electron transferring flavoprotein, dehydrogenase  NM_025794.1  1.64 0.047 

DLD   dihydrolipoamide dehydrogenase    NM_007861.2  1.41 0.046 

GPD1   glycerol-3-phosphate dehydrogenase 1    NM_010271.2  2.00 0.000 

ALDH3A1 aldehyde dehydrogenase family 3, subfamily A1   NM_007436.1  1.92 0.003 

ACADVL acyl-Coenzyme A dehydrogenase, very long chain  scl40004.19.1_140  1.41 0.046 

CYP2F2   cytochrome P450, family 2, subfamily f, polypeptide 2  scl32906.13.1_13  8.61 0.000 

CYP2A5   cytochrome P450, family 2, subfamily a, polypeptide 5  NM_009997.1  1.85 0.022 

CYP4A12B cytochrome P450, family 4, subfamily a, polypeptide 12B  scl013118.12_302  3.42 0.000 

ALDH6A1 aldehyde dehydrogenase family 6, subfamily A1   NM_134042.1  1.65 0.021 

ACADL   acyl-Coenzyme A dehydrogenase, long-chain   NM_007381.2  2.12 0.000 

PRDX2   peroxiredoxin 2      NM_011563.2  6.22 0.000 

   

response to toxin  

EPHX2   epoxide hydrolase 2, cytoplasmic    scl45408.20.1_29  1.48 0.021 

CES3   carboxylesterase 3      scl34490.14.1_30  2.18 0.002 

CYP2F2   cytochrome P450, family 2, subfamily f, polypeptide 2  scl32906.13.1_13  8.61 0.000 

PON1   paraoxonase 1      NM_011134.1  2.09 0.001 

  

signal transduction    

RERG   RAS-like, estrogen-regulated, growth-inhibitor   NM_181988.1  2.02 0.001 

GPR109A G protein-coupled receptor 109A    NM_030701.1  1.61 0.009 

CYSLTR1 cysteinyl leukotriene receptor 1    NM_021476.2  1.33 0.042 

ELTD1   EGF, latrophilin seven transmembrane domain  NM_133222.1  2.08 0.001 

  containing 1 

FCER1G   Fc receptor, IgE, high affinity I, gamma polypeptide  scl15940.5.1_15  2.29 0.016 

  

small GTPase mediated signal transduction    

KNDC1   kinase non-catalytic C-lobe domain    scl31927.18.1_9  2.41 0.002 

RAB25   RAB25, member RAS oncogene family   scl21969.5.1_66  1.31 0.047 

G3BP2   GTPase activating protein     scl0023881.1_86  1.33 0.021 

  

temperature homeostasis  

GPX2   glutathione peroxidase 2     NM_030677.1  1.53 0.045 

ACADVL acyl-Coenzyme A dehydrogenase, very long chain  scl40004.19.1_140  1.41 0.042 

ACADL  acyl-Coenzyme A dehydrogenase, long-chain   NM_007381.2  2.12 0.001 

CIDEA   cell death-inducing DNA fragmentation factor,  NM_007702.1  2.38 0.000 

  alpha subunit-like effector A 
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Table 4.3 Continued  
 

 
Gene Symbol Gene Name     Accession No  Fold False 

           Change  Discovery 

           Rate 

  

transcription    

FOS   FBJ osteosarcoma oncogene     NM_010234.2  2.34 0.000 

SUPT16H suppressor of Ty 16 homolog    NM_033618.1  1.76 0.021 

KLF5   Kruppel-like factor 5     scl45215.1.1_294  1.99 0.001 

CEBPB   CCAAT/enhancer binding protein    NM_009883.1  1.67 0.002 

TBX20   T-box 20       NM_194263.1  1.57 0.034 

PPARG   peroxisome proliferator activated receptor gamma  NM_011146.1  1.75 0.000 

ZFP367   zinc finger protein 367     NM_175494.2  1.22 0.031 

 EYA3   eyes absent 3 homolog     NM_010166.2  2.10 0.002 

   

transport    

UCP1   uncoupling protein 1     NM_009463.2  2.60 0.000 

SLC5A6   solute carrier family 5     scl26744.20.688_4  1.38 0.024 

APOC1   apolipoprotein C-I      NM_007469.2  1.95 0.001 

NDUFB4 NADH  dehydrogenase (ubiquinone) 1 beta subcomplex 4  scl48493.1_0  1.34 0.028 

ETFB   electron transferring flavoprotein, beta polypeptide  NM_026695.2  1.29 0.044 

ETFA   electron transferring flavoprotein, alpha polypeptide  NM_145615.2  1.42 0.043 

ETFDH   electron transferring flavoprotein, dehydrogenase  NM_025794.1  1.64 0.047 

CPT1B   carnitine palmitoyltransferase 1b, muscle   NM_009948.1  1.94 0.013 

CPT2  carnitine palmitoyltrasferase 2   scl000022.1_12  1.56 0.007 

RAB25   RAB25, member RAS oncogene family   scl21969.5.1_66  1.31 0.047 

FXYD3   FXYD domain-containing ion transport regulator 3  NM_008557.1  1.84 0.003 

GABRP   gamma-aminobutyric acid     scl0001520.1_108  2.35 0.022 

ATP5K   ATP synthase, H+ transporting, mitochondrial F1F0 scl011958.2_29  1.49 0.033 

  complex, subunit e 

G3BP2   GTPase activating protein     scl0023881.1_86  1.33 0.021 

MFI2   antigen p97      scl0001844.1_62  1.45 0.014 

SLC25A1 solute carrier family 25     NM_153150.1  1.71 0.002 

MTCH2   mitochondrial carrier homolog 2    NM_019758.2  1.41 0.033 

  

triglyceride metabolic process    

APOC1   apolipoprotein C-I      NM_007469.2  1.95 0.001 

  

Other    

CISH   cytokine inducible SH2-containing protein   scl012700.3_170  1.60 0.004 

STMN2  stathmin-like 2      scl23400.7_310  1.65 0.000 

SOCS3   suppressor of cytokine signaling 3    NM_007707.2  1.41 0.022 

TUBA8   tubulin, alpha 8      scl29555.5_307  1.71 0.020 

DNAHC2 dynein, axonemal, heavy chain 2    scl40034.27.1_30  1.57 0.004  

SCGB1A1 secretoglobin, family 1A, member 1    NM_011681.1  9.55 0.000 

HSPA5   heat shock 70kD protein 5     NM_022310.2  1.75 0.005 

DUSP1   dual specificity phosphatase 1    NM_013642.1  1.64 0.021 

DUSP23   dual specificity phosphatase 23    NM_026725.2  1.45 0.044 

BMPER   BMP-binding endothelial regulator    NM_028472.1  1.95 0.004 
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Table 4.4 List of genes down-regulated in the pulmonary arteries of 2 month hypoxic female 

SERT+ mice compared to 2 month hypoxic female wildtype mice, arranged by biological process.  
 

 
Gene Symbol Gene Name     Accession No  Fold False 

           Change  Discovery 

           Rate 

  

brown fat cell differentiation      

MB   myoglobin      NM_013593.2  1.89 0.003 

 

carbohydrate metabolic process     

IGF2   insulin-like growth factor 2     scl30469.7_1  1.82 0.015 

RPE  ribulose-5-phosphate-3-epimerase    scl0227227.1_0  2.13 0.019 

 

Cell adhesion    

VCAN  versican       scl013003.1_89  1.11 0.025 

STAB1  stabilin 1       NM_138672.1  1.39 0.030 

SELP   selectin, platelet      NM_011347.1  1.38 0.021 

ITGA3  integrin alpha 3      NM_013565.2  1.25 0.017 

ITGB1  integrin beta 1      NM_010578.1  1.72 0.008 

 

cell-cell adhesion    

TNXB   tenascin XB      NM_031176.1  1.71 0.021 

 

cellular iron ion homeostasis    

LTF  lactotransferrin      NM_008522.2  11.84 0.000 

ALAS2  aminolevulinic acid synthase 2, erythroid   scl54562.12.1_64  1.29 0.033 

HAMP2  hepcidin antimicrobial peptide 2    NM_183257.1  5.38 0.000 

MFI2   antigen p97      scl0001844.1_62  1.45 0.014 

 

chemotaxis     

CCL21B   chemokine      scl0018829.1_65  2.04 0.026 

 

DNA replication    

NFIC  nuclear factor I/C      scl068530.1_6  2.03 0.005 

RBBP4  retinoblastoma binding protein 4    scl24919.4.1_260  2.09 0.021 

  

heart development    

MB  myoglobin      NM_013593.2  1.89 0.004 

MYL2  myosin, light polypeptide 2, regulatory, cardiac, slow  scl27267.9.1_12  6.36 0.001 

VCAN  versican       scl013003.1_89  1.11 0.025 

OSR1  oxidative-stress responsive 1    scl35223.18_513  1.53 0.007 

  

immune response     

H2-EA  histocompatibility 2, class II antigen E alpha   NM_010381.2  1.17 0.030 

CCL21B  chemokine      scl0018829.1_65  2.04 0.026 

 

inflammatory response 

STAB1  stabilin 1       NM_138672.1  1.39 0.030 

CCL21B  chemokine      scl0018829.1_65  2.04 0.026 

SELP  selectin, platelet      NM_011347.1  1.38 0.021 

 

integrin-mediated signaling pathway    

ITGA3  integrin alpha 3      NM_013565.2  1.25 0.018 

ITGB1  integrin beta 1      NM_010578.1  1.72 0.009 

  

lipid biosynthetic process    

PRKAG2   protein kinase, AMP-activated, gamma 2 non-catalytic subunit NM_145401.1  2.38 0.021 

  

lipid metabolic process   

PTPN11  protein tyrosine phosphatase, non-receptor type 11  NM_011202.2  1.88 0.040 

TNXB   tenascin XB      NM_031176.1  1.71 0.022 

  

metabolic process     

RPE   ribulose-5-phosphate-3-epimerase    scl0227227.1_0  2.13 0.019 

  

muscle contraction     

TTN  titin      scl19104.8.1_3  1.18 0.037 
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Table 4.4 Continued 

 

 
Gene Symbol Gene Name     Accession No  Fold False 

           Change  Discovery 

           Rate 

  

ZBTB7A   zinc finger and BTB domain containing 7a   scl0016969.1_242  3.43 0.002 

 

oxidation reduction    

4933406E20RIK RIKEN cDNA 4933406E20 gene    NM_028944.2  1.24 0.009 

 

signal transduction    

RAP2C   RAP2C, member of RAS oncogene family   scl54266.5_48  2.00 0.025 

 

transcription   

CREBBP   CREB binding protein     scl48815.9.1_11  2.07 0.033 

SKI  superkiller viralicidic activity 2-like (S.cerevisiae) scl23441.8_64  1.98 0.003 

RBBP4   retinoblastoma binding protein 4    scl24919.4.1_260  2.09 0.021 

NFIC   nuclear factor I/C      scl068530.1_6  2.03 0.005 

 

transport    

MB   myoglobin      NM_013593.2  1.89 0.004 

LTF   lactotransferrin      NM_008522.2  11.84 0.000 

TRAM1   translocating chain-associating membrane protein 1  NM_028173.1  1.72 0.036 

RAMP1   receptor       scl17654.5.1_10  1.54 0.034 

RAB17  RAB17, member RAS oncogene family   NM_008998.2  2.33 0.006 

 

triglyceride metabolic process    

PTPN11  protein tyrosine phosphatase, non-receptor type 11  NM_011202.2  1.88 0.040 

TNXB   tenascin XB      NM_031176.1  1.71 0.022 

 

Other     

GUCY1A3 guanylate cyclase 1, soluble, alpha 3    scl0060596.1_205  1.03 0.011 

BMX   BMX non-receptor tyrosine kinase    NM_009759.2  1.62 0.030 

KIF1B  kinesin family member 1B     scl0002773.1_49  2.29 0.021 

ZBTB7A   zinc finger and BTB domain containing 7a   scl0016969.1_242  3.43 0.002 

PRRX1   paired related homeobox 1     scl018933.1_11  1.78 0.021 
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Table 4.5 List of genes up-regulated in the pulmonary arteries of 2 month male SERT+ mice 

compared to 2 month male wildtype mice, arranged by biological process.  
 

 
Gene Symbol Gene Name     Accession No  Fold False 

           Change  Discovery 

           Rate 

  

Transport    

SCNN1G   sodium channel, nonvoltage-gated 1 gamma   scl32105.12.878_39 1.90 0.029 

CLIC6   chloride intracellular channel 6    NM_172469.1  2.28 0.009 

SLC39A4 solute carrier family 39     NM_028064.2  2.04 0.021 

RAB25  RAB25, member RAS oncogene family   scl21969.5.1_66  2.04 0.021 

GABRP   gamma-aminobutyric acid     scl0001520.1_108  2.83 0.002 

Ltf   lactotransferrin      NM_008522.2  11.43 0.000 

 

Transport; oxygen transport    

MB   myoglobin      NM_013593.2  2.74 0.000 

HBB-B2   hemoglobin, beta adult minor chain    NM_016956.2  2.35 0.000 

  

Signal transduction    

FCER1G   Fc receptor, IgE, high affinity I, gamma polypeptide  scl15940.5.1_15  2.68 0.002 

GRB7   growth factor receptor bound protein 7    scl40936.14_9  1.86 0.021 

  

Cell adhesion    

MUC4   mucin 4       scl0140474.33_123  1.82 0.031 

WISP2   WNT1 inducible signaling pathway protein 2   NM_016873.1  1.92 0.010 

SPON2   spondin 2, extracellular matrix protein    NM_133903.2  1.54 0.045 

  

Oxidation reduction    

CYP2E1   cytochrome P450, family 2, subfamily e, polypeptide 1  NM_021282.1  1.98 0.008 

CYP2F2   cytochrome P450, family 2, subfamily f, polypeptide 2  scl32906.13.1_13  12.08 0.000 

CYP2A5   cytochrome P450, family 2, subfamily a, polypeptide 5  NM_009997.1  3.32 0.004 

CYP4A12B cytochrome P450, family 4, subfamily a, polypeptide 12B  scl013118.12_302  4.46 0.001 

ABP1   amiloride binding protein 1     NM_029638.1  1.62 0.044 

GPX2   glutathione peroxidase 2     NM_030677.1  2.20 0.004 

ALDH3A1 aldehyde dehydrogenase family 3, subfamily A1   NM_007436.1  2.10 0.013 

ALDH1A1 aldehyde dehydrogenase family 1, subfamily A1   scl011668.12_94  2.55 0.027 

PRDX2   peroxiredoxin 2      NM_011563.2  2.25 0.012 

  

Immune response    

PGLYRP1 peptidoglycan recognition protein 1    scl33021.4.288_87  2.08 0.035 

CXCL15   chemokine      scl27600.3.1_4  5.76 0.000 

SPON2   spondin 2, extracellular matrix protein    NM_133903.2  1.54 0.045 

  

Metabolic process    

ALDH3A1 aldehyde dehydrogenase family 3, subfamily A1   NM_007436.1  2.10 0.013 

ALDH1A1 aldehyde dehydrogenase family 1, subfamily A1   scl011668.12_94  2.55 0.027 

GSTA3   glutathione S-transferase, alpha 3    scl18127.10.1_92  2.14 0.014 

GSTO1   glutathione S-transferase omega 1    NM_010362.1  2.92 0.004 

  

Hemopoiesis    

CXCL15   chemokine      scl27600.3.1_4  5.76 0.000 

  

Regulation of transcription    

IRX5   Iroquois related homeobox 5     NM_018826.2  1.94 0.025 

OTX1   orthodenticle homolog 1     scl40460.6_595  1.72 0.038 

IRX3   Iroquois related homeobox 3     scl34499.5.1_0  1.69 0.024 

FOXA1   forkhead box A1      scl42430.2_236  1.84 0.015 
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Table 4.6 List of genes down-regulated in the pulmonary arteries of 2 month male SERT+ mice 

compared to 2 month male wildtype mice, arranged by biological process.  
 

 
Gene Symbol Gene Name     Accession No  Fold False 

           Change  Discovery 

           Rate 

  

Transport: oxygen transport   

HBB-B1   hemoglobin, beta adult major chain    NM_008220.2  2.41 0.019 

 

Signal transduction     

LGR6   leucine-rich repeat-containing G protein-coupled  scl00329252.1_132  1.86 0.011 

  receptor 6 

Oxidation reduction    

JARID1B lysine (K)-specific demethylase 5B   scl17448.26_107  1.65 0.032 

SC4MOL   sterol-C4-methyl oxidase-like    NM_025436.1  2.25 0.003 

 

Hemopoiesis    

PICALM   phosphatidylinositol binding clathrin assembly protein  scl32408.23_56  3.80 0.001 

HBB-B1   hemoglobin, beta adult major chain    NM_008220.2  2.41 0.019 

 

Regulation of transcription     

TEF   thyrotroph embryonic factor     scl0002562.1_0  1.82 0.022 

DBP   D site albumin promoter binding protein   NM_016974.1  2.45 0.002 

PER2   period homolog 2      NM_011066.1  1.89 0.013 
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Table 4.7 List of genes up-regulated in the pulmonary arteries of 2 month hypoxic male SERT+ 

mice compared to 2 month hypoxic male wildtype mice, arranged by biological process.  
 

 
Gene Symbol Gene Name     Accession No  Fold False 

           Change  Discovery 

           Rate 

  

transport    

LBP   lipopolysaccharide binding protein    scl20002.16.7_10  1.92 0.019 

LTF   lactotransferrin      NM_008522.2  6.63 0.000 

APOC1   apolipoprotein C-I      NM_007469.2  1.95 0.020 

SLC4A1   solute carrier family 4     NM_011403.1  2.28 0.004 

HBB-B1   hemoglobin, beta adult major chain    NM_008220.2  3.05 0.032 

ABCC9   ATP-binding cassette, sub-family C    scl0001165.1_35  2.25 0.015 

SLC1A3   solute carrier family 1     NM_148938.2  1.85 0.011 

LCN2   lipocalin 2      NM_008491.1  1.65 0.021 

 

signal transduction, protein binding    

FGL1  fibrogen-like protein 1    scl34887.7.1_10  2.48 0.007 

ANGPTL4 angiopoietin-like 4     scl50042.7_106  1.89 0.019 

TNC  tenascin C      scl0002731.1_70  1.77 0.018 

 

immune response    

CCL7  chemokine      scl41159.3.1_10  2.02 0.014 

CFD   complement factor D     NM_013459.1  1.78 0.042 

CCL2   chemokine      scl020296.2_11  2.03 0.014 

CLEC4D   C-type lectin domain family 4, member d   scl017474.5_5  1.54 0.034 

C3   complement component 3     scl49743.39.1_15  1.74 0.042 

C1S   complement component 1, s subcomponent   NM_144938.1  3.34 0.003 

PRG4  PREDICTED:  proteoglycan 4    scl000882.1_25  2.34 0.003 

SPON2   spondin 2, extracellular matrix protein    NM_133903.2  1.98 0.019 

CXCL14   chemokine      scl43911.4.1_38  1.52 0.031 

 

proteolysis   

DPEP2   dipeptidase 2      scl34381.6_178  1.40 0.047 

CTSK   cathepsin K      NM_007802.2  1.56 0.014 

CFD   complement factor D     NM_013459.1  1.78 0.042 

CPXM1   carboxypeptidase X 1     NM_019696.1  1.25 0.020 

CTSC   cathepsin C      NM_009982.2  1.75 0.020 

C1S   complement component 1, s subcomponent   NM_144938.1  3.34 0.003 

HP   haptoglobin      NM_017370.1  3.13 0.002 

 

cell adhesion   

CNTN2   contactin 2      scl0021367.1_277  2.19 0.017 

CPXM1   carboxypeptidase X 1     NM_019696.1  1.25 0.020 

COL8A2  collagen, type VIII, alpha 2    scl24964.1.1958_52 1.98 0.018 

CYR61   cysteine rich protein 61     NM_010516.1  1.66 0.039 

TNC   tenascin C      scl0002731.1_70  1.77 0.018 

SPP1   secreted phosphoprotein 1     NM_009263.1  2.51 0.006 

SPON2   spondin 2, extracellular matrix protein    NM_133903.2  1.98 0.019 

COMP  cartilage oligomeric matrix protein   scl33728.21.1_0  1.85 0.025 

FN1  fibronectin 1      scl16639.44.189_5  1.57 0.013 

 

apoptosis    

CIDEC   cell death-inducing DFFA-like effector c   NM_178373.2  1.90 0.046 

COMP  cartilage oligomeric matrix protein   scl33728.21.1_0  1.85 0.025 

 

lipid metabolic process     

SLC27A3 solute carrier family 27     scl21918.10.1_222  1.74 0.031 

LPL  lipoprotein lipase      scl0016956.1_234  1.71 0.018 

 

innate immune response   

LBP  lipopolysaccharide binding protein    scl20002.16.7_10  1.92 0.019 

CFD   complement factor D     NM_013459.1  1.78 0.042 

C3   complement component 3     scl49743.39.1_15  1.74 0.042 

C1S   complement component 1, s subcomponent   NM_144938.1  3.34 0.003 
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Table 4.7 Continued  
 

 
Gene Symbol Gene Name     Accession No  Fold False 

           Change  Discovery 

           Rate 

  

brown fat cell differentiation    

ADIPOQ   adiponectin, C1Q and collagen domain containing  scl49310.3_131  2.30 0.003 

LRG1   leucine-rich alpha-2-glycoprotein 1    NM_029796.2  2.31 0.004 

 

skeletal system development    

RUNX1   runt related transcription factor 1    scl48188.1.1_190  2.07 0.011 

COL1A1   procollagen, type I, alpha 1     scl012842.26_28  2.15 0.007 

 

blood vessel development    

COL3A1   procollagen, type III, alpha 1     NM_009930.1  1.57 0.039 

COL1A1   procollagen, type I, alpha 1     scl012842.26_28  2.15 0.007 
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Table 4.8 List of genes down-regulated in the pulmonary arteries of 2 month hypoxic male SERT+ 

mice compared to 2 month hypoxic male wildtype mice, arranged by biological process.  
 

 
Gene Symbol Gene Name     Accession No  Fold False 

           Change  Discovery 

           Rate 

  

transport    

UCP1  uncoupling protein 1     NM_009463.2  3.84 0.000 

KCNAB1 potassium voltage-gated channel, shaker-related 1  NM_010597.2  1.68 0.025 

  subfamily, beta member 

KCNH2   potassium voltage-gated channel, subfamily H   NM_013569.1  1.74 0.014 

TOMM22 translocase of outer mitochondrial membrane 22 homolog  scl47742.5_273  3.76 0.000 

RAMP1   receptor (calcitonin) activity modifying protein 1   scl17654.5.1_10  1.59 0.046 

RAB17   RAB17, member RAS oncogene family   NM_008998.2  1.92 0.006 

 

proteolysis    

MIPEP   mitochondrial intermediate peptidase    NM_027436.1  1.50 0.046 

DPEP1   dipeptidase 1      NM_007876.1  1.70 0.031 

CORIN   corin       NM_016869.1  1.84 0.014 

 

cell adhesion    

MCAM   melanoma cell adhesion molecule    NM_023061.1  1.51 0.046 

PKP4  plakophilin 4      scl0003206.1_31  1.70 0.025 

 

apoptosis    

ACTC1   actin, alpha, cardiac     NM_009608.1  1.14 0.018 

CIDEA   cell death-inducing DNA fragmentation factor, alpha NM_007702.1  1.88 0.018 

  subunit-like effector A 

PAWR   PRKC, apoptosis, WT1, regulator    scl38461.7.1_1  1.67 0.031 

 

lipid metabolic process    

TNXB   tenascin XB      NM_031176.1  1.91 0.013 

CIDEA   cell death-inducing DNA fragmentation factor, alpha NM_007702.1  1.88 0.018 

  subunit-like effector A 

 

heart development      

PDLIM3   PDZ and LIM domain 3     NM_016798.2  1.59 0.028 

EDN1   endothelin 1      NM_010104.2  1.55 0.046 

TNNT2   troponin T2, cardiac     NM_011619.1  1.62 0.004 

 

brown fat cell differentiation    

UCP1  uncoupling protein 1     NM_009463.2  3.84 0.000 

 

skeletal system development    

GJA5   gap junction membrane channel protein alpha 5   NM_008121.2  1.55 0.042 

 

blood vessel development   

GJA5  gap junction membrane channel protein alpha 5   NM_008121.2  1.55 0.042 

GJA4   gap junction membrane channel protein alpha 4   NM_008120.2  1.80 0.014 
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Table 4.9 Primer pairs used for PCR analysis 

Gene Symbol  Accession No  Sense-primer     Anti-sense primer 

    Mouse 
HAMP2   NM_183257.2  5'-AGCAGAACAGGAGGCATGAT-3'  5'-GCAGATGGGAAGTTGATGT-3' 
CEBPB   NM_009883.1  5'-CAAGCTGAGCGACGAGTACA-3'  5'-AGCTGCTCCACCTTCTTCTG-3' 

CYP1B1  NM_009994.1  5'-GCGACGATTCCTCCGGGCTG-3'   5'-CTCATGCAGGGCAGGCGGTC-3' 

TNNC1   NM_009393.1  5'-GGAATTCATGAAGGGTGTGG-3'  5'-GGAATGGGGAGAGAAAGTCC-3' 

PLN   NM_023129  5'-ATCTTGCTGTGTTGGCTGTG-3'   5'-AGGGGACAACCACTTCCTCT-3' 

MYL3   NM_010859  5'-GATGCTGACACCATGTCTGG-3'   5'-TAAGGCCACAGGGTGGATAC-3' 

MB   NM_013593.3  5'-CCTGGGTACCATCCTGAAGA-3'   5'-GAGCATCTGCTCCAAAGTCC-3' 

NPPA   NM_008725.2  5'-CCTAAGCCCTTGTGGTGTGT-3'   5'-CAGAGTGGGAGAGGCAAGAC-3' 

FOS   NM_010234  5'-CTCCCGTGGTCACCTGTACT-3'   5'-TTGCCTTCTCTGACTGCTCA-3' 

COX6A2  NM_009943.2  5'-CGGTTATGAGCACCCTTGAT-3'   5'-CTGTTCCCAAAGAGCCAGAG-3' 

β-ACTIN  NM_007393.2 5'-AGCCATGTACGTAGCCATCC-3'    5'-TCTCAGCTGTGGTGGTGAAG-3' 

     

   Human 
CEBPB  NM_005194 5’-GACAAGCACAGCGACGAGTA-3’   5’-AGCTGCTCCACCTTCTTCTG-3’ 

CYP1B1  NM_005252 5’-AACCGCAACTTCAGCAACTT-3’  5’-GAGGATAAAGGCGTCCATCA-3’ 

FOS  NM_000104.3 5’-AGCAATGAGCCTTCCTCTGA-3’  5’-TGAGTCCACACATGGATGCT-3’ 

β-ACTIN  NM_001101 5’-TCCCTGGAGAAGAGCTACGA-3’   5’-AGCACTGTGTTGGCGTACAG-3’ 
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Figure 4.7 Representation of differentially expressed genes in normoxic female and 

male wildtype and SERT+ mice by hierarchical cluster analysis and gene ontology.  

Hierarchical cluster analysis of the differentially expressed genes in normoxic female and 

male WT and SERT+ mice (A).  Representation of the differentially expressed genes in 

female SERT+ mice (B) and male SERT+ mice (C), arranged by biological processes.  

n=4. 
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Figure 4.8 Representation of differentially expressed genes in chronically hypoxic 

female and male wildtype and SERT+ mice by hierarchical cluster analysis and gene 

ontology.  Hierarchical cluster analysis of the differentially expressed genes in chronically 

hypoxic female and male WT and SERT+ mice (A).  Representation of the differentially 

expressed genes in female SERT+ mice (B) and male SERT+ mice (C), arranged by 

biological processes.  n=4. 
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4.2.4 qRT-PCR Analysis in the Pulmonary Arteries of SERT+ Mice  

For validation of the microarray study, we employed qRT-PCR.  To perform this, we 

selected three differentially expressed genes for each of the 4 group comparisons (Table 

4.9).  Our genes of interest were FOS, CEBPB, CYP1B1, MYL3, HAMP2, LTF, PLN, 

NPPA, UCP1 and C1S.  In concordance with our microarray data, expression of these 

genes was significantly altered in relevant groups (Figure 4.9-12).  Of particular interest, 

qRT-PCR analysis confirmed that FOS, CEBPB and CYP1B1 were considerably up-

regulated (4-fold, 20-fold and 8-fold respectively) in female SERT+ mice.   
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Figure 4.9 FOS, CEBPB and CYP1B1 mRNA expression in the pulmonary arteries of 

normoxic female wildtype and SERT+ mice.  FOS (A), CEBPB (B) and CYP1B1 (C) 

mRNA expression is increased in normoxic female SERT+ mice, concordant with 

microarray analysis.  Data are expressed as mean  SEM and analysed by Students t-test; 

*P<0.05, **P<0.01, ***P<0.001 cf. normoxic female WT mice.  n=4 and performed in 

triplicate. 
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Figure 4.10 MYL3, HAMP2 and CEBPB mRNA expression in the pulmonary arteries 

of chronically hypoxic female wildtype and SERT+ mice.   MYL3 (A), HAMP2 (B) and 

CEBPB (C) mRNA expression is increased in chronically hypoxic female SERT+ mice, 

concordant with microarray analysis.  Data are expressed as mean  SEM and analysed by 

Students t-test; *P<0.05, ***P<0.001 cf. chronically hypoxic female WT mice.  n=4 and 

performed in triplicate. 
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Figure 4.11 LTF, PLN and NPPA mRNA expression in the pulmonary arteries of 

normoxic male wildtype and SERT+ mice.  LTF (A) mRNA expression is increased and 

PLN (B) and NPPA (C) mRNA expression is decreased in normoxic male SERT+ mice, 

concordant with microarray analysis.  Data are expressed as mean  SEM and analysed by 

Students t-test; *P<0.05, ***P<0.001 cf. normoxic male WT mice.  n=4 and performed in 

triplicate. 
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Figure 4.12 UCP1, LTF and C1S mRNA expression in the pulmonary arteries of 

chronically hypoxic male wildtype and SERT+ mice.  UCP1 (A) mRNA expression is 

increased and LTF (B) and C1S (C) mRNA expression is decreased in chronically hypoxic 

male SERT+ mice, concordant with microarray analysis.  Data are expressed as mean  

SEM and analysed by Students t-test; *P<0.05, ***P<0.001 cf. chronically hypoxic male 

WT mice.  n=4 and performed in triplicate. 
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4.2.5 C/EBPβ, CYP1B1 and c-FOS Protein Expression is Increased in 

Female SERT+ Mice 

To further investigate interesting gene expression differences observed in female SERT+ 

mice, we assessed expression of CEBPB, CYP1B1 and FOS at protein level.  In agreement 

with our qRT-PCR findings, protein expression of C/EBPβ (Figure 4.13), CYP1B1 (Figure 

4.14) and c-FOS (Figure 4.15) were also up-regulated in the pulmonary arteries of female 

SERT+ mice.   
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Figure 4.13 C/EBPβ expression in the pulmonary arteries of female wildtype and 

SERT+ mice.  Representative immunoblotting (A) and densitometrical analysis (B) 

confirming that C/EBPβ expression is increased in the pulmonary arteries of female 

SERT+ mice compared to female WT mice.  Data are expressed as mean  SEM and 

analysed by Students t-test; *P<0.05 cf. WT mice.  n=4 and performed in triplicate.  
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Figure 4.14 CYP1B1 expression in the pulmonary arteries of female wildtype and 

SERT+ mice.  Representative immunoblotting (A) and densitometrical analysis (B) 

confirming that CYP1B1expression is increased in the pulmonary arteries of female 

SERT+ mice compared to female WT mice.  Data are expressed as mean  SEM and 

analysed by Students t-test; *P<0.05 cf. WT mice.  n=4 and performed in triplicate.  
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Figure 4.15 c-FOS expression in the pulmonary arteries of female wildtype and 

SERT+ mice.  Representative immunoblotting (A) and densitometrical analysis (B) 

confirming that c-FOS expression is increased in the pulmonary arteries of female SERT+ 

mice compared to female WT mice.  Data are expressed as mean  SEM and analysed by 

Students t-test; *P<0.05 cf. WT mice.  n=4 and performed in triplicate.  
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4.2.6 Serotonin and 17β Estradiol Stimulate C/EBPβ, CYP1B1 and c-

FOS Expression in PASMCs 

To determine if serotonin and 17β estradiol stimulate expression of C/EBPβ, CYP1B1 and 

c-FOS, we investigated expression of these in PASMCs following 24 hour stimulation with 

serotonin and 17β estradiol.  Stimulation with serotonin or 17β estradiol for 24 hours was 

sufficient to increase C/EBPβ (Figure 4.16), CYP1B1 (Figure 4.17) and c-FOS (Figure 

4.18) expression in PASMCs.        
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Figure 4.16 C/EBPβ expression in human PASMCs following serotonin and 17β 

estradiol stimulation.  Representative immunoblotting (A) and densitometric analysis (B) 

confirming increased protein expression of C/EBPβ in human PASMCs following 24 hours 

stimulation with 1µmol/L serotonin (5-HT) or 1nmol/L 17β estradiol (E2).  Data are 

expressed as mean  SEM and analysed by one-way ANOVA followed by Dunnetts post-

hoc test; *P<0.05 cf. control PASMCs.  n=3 and performed in triplicate.   
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Figure 4.17 CYP1B1 expression in human PASMCs following serotonin and 17β 

estradiol stimulation.  Representative immunoblotting (A) and densitometric analysis (B) 

confirming increased protein expression of CYP1B1 in human PASMCs following 24 

hours stimulation with 1µmol/L serotonin (5-HT) or 1nmol/L 17β estradiol (E2).  Data are 

expressed as mean  SEM and analysed by one-way ANOVA followed by Dunnetts post-

hoc test.  *P<0.05 cf. control PASMCs.  n=3 and performed in triplicate.   
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Figure 4.18 c-FOS expression in human PASMCs following serotonin and 17β 

estradiol stimulation.  Representative immunoblotting (A) and densitometric analysis (B) 

confirming increased protein expression of c-FOS in human PASMCs following 24 hours 

stimulation with 1µmol/L serotonin (5-HT) or 1nmol/L 17β estradiol (E2).  Data are 

expressed as mean  SEM and analysed by one-way ANOVA followed by Dunnetts post-

hoc test.  *P<0.05 cf. control PASMCs.  n=3 and performed in triplicate.   
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4.2.7 C/EBPβ, CYP1B1 and c-FOS mRNA and Protein Expression is 

Increased in PASMCs Derived From IPAH Patients 

To identify if these findings translate with relevance to human PAH, we investigated the 

expression of CEBPB, CYP1B1 and FOS in PASMCs derived from IPAH patients.  

PASMCs from non-PAH donors were studied as controls.  Interestingly, CEBPB, CYP1B1 

and FOS expression appeared significantly increased in mRNA extracted from IPAH 

PASMCs (Figure 4.19).  Similarly, Western blot analysis confirmed that protein expression 

of C/EBPβ (Figure 4.20), CYP1B1 (Figure 4.21) and c-FOS (Figure 4.22) is also increased 

in IPAH PASMCs compared to control PASMCs. 
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Figure 4.19 CEBPB, CYP1B1 and FOS mRNA expression in PASMCs derived from 

control and IPAH patients.  Expression of CEBPB (A), CYP1B1 (B) and FOS (C) is 

increased in PASMCs derived from IPAH patients.  Data are expressed as mean  SEM 

and analysed by Students t-test; **P<0.01, ***P<0.001 cf. control.  n=3 and performed in 

triplicate. 
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Figure 4.20 C/EBPβ expression is increased in PASMCs derived from IPAH patients.  

Representative immunoblotting (A) and densitometrical analysis (B) confirming that 

C/EBPβ is increased in PASMCs derived from IPAH patients.  Data are expressed as mean 

 SEM and analysed by Students t-test; *P<0.05 cf. control.  n=3 and performed in 

triplicate. 
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Figure 4.21 CYP1B1 expression is increased in PASMCs derived from IPAH patients.  

Representative immunoblotting (A) and densitometrical analysis (B) confirming that 

CYP1B1 is increased in PASMCs derived from IPAH patients.  Data are expressed as 

mean  SEM and analysed by Students t-test; *P<0.05 cf. control.  n=3 and performed in 

triplicate. 
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Figure 4.22 c-FOS expression is increased in PASMCs derived from IPAH patients.  

Representative immunoblotting (A) and densitometrical analysis (B) confirming that c-

FOS is increased in PASMCs derived from IPAH patients.  Data are expressed as mean  

SEM and analysed by Students t-test; *P<0.05 cf. control.  n=3 and performed in triplicate. 
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4.3 Discussion 

Despite increased mortality reported in men (Humbert et al., 2010), the incidence of both 

IPAH and HPAH remains up to three-fold more common in women.  This is highlighted in 

recent epidemiological studies carried out in Scotland, France and USA, where 60%, 65% 

and 77% of the patients studied respectively were female (Peacock et al., 2007; Humbert et 

al., 2006; Thenappan et al., 2007).  Established experimental models of PAH have failed to 

provide insight into this increased occurrence.  Paradoxically, several experimental models 

of PAH exhibit male susceptibility compared to their female counterparts (Rabinovitch et 

al., 1981; Hansmann et al., 2007; Said et al., 2007; Miller et al., 2005).  Here, we describe 

an experimental model of PAH which exhibits female susceptibility.   Female SERT+ mice 

develop PAH and exaggerated hypoxia-induced PAH whereas male SERT+ mice remain 

unaffected, when compared against their respective WT controls.  We were interested in 

determining the genotypic differences associated with the development and progression of 

PAH in SERT+ mice.  To investigate this, microarray analysis was performed in the 

pulmonary arteries of SERT+ mice at 2 months of age, where no PAH phenotype is 

reported. 

 

Through microarray analysis we have identified a large number of differentially expressed 

genes in the pulmonary arteries of SERT+ mice.  In total, we identified 155 genes changed 

in female SERT+ mice whilst 148 genes were changed in male SERT+ mice.  Heat map 

analysis identified gene expression changes in females which were not apparent in males.  

When assigned to biological processes, we also identified that over 40% of the 

differentially expressed genes in female SERT+ mice were directly involved in biological 

pathways.  In total, fifteen known biological pathways were dysregulated in female SERT+ 

mice and included oxidation-reduction, cell differentiation, regulation of transcription, 

apoptosis, muscle contraction, cellular calcium ion homeostasis and glycolysis.  This may 
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be relevant to the development of PAH in SERT+ mice, as dysregulation of these pathways 

has been previously implicated in the pathogenesis of PAH (Rehman and Archer, 2010; 

Sakao et al., 2009).  Indeed, similar pathway changes have also been described in the lungs 

of VIP-/- mice (Hamidi et al., 2008) and BMPR-II mutant mice (Tada et al., 2007).  In 

contrast to female SERT+ mice, only 25% of altered genes in male SERT+ mice were 

associated with biological function and as a consequence resulted in the dysregulation of 

pathways to a much lesser extent.  

 

In chronic hypoxia, there were also a large number of differentially expressed genes in 

SERT+ mice compared to their respective WT controls.  We observed a total of 316 genes 

altered in females whilst less than half (154) of these were altered in males.  In hypoxic 

female SERT+ mice, 53% of genes were associated with biological function.  Similar to 

the normoxic female comparison, altered genes were related to apoptotic, inflammatory, 

transcription and metabolic processes, all of which are well-described in PAH (Hassoun et 

al., 2009).  In total, 26 biological pathways were identified as dysregulated.  As expected, 

fewer genes were reported as changed in male SERT+ mice.  These differences may help 

explain the exaggerated hypoxia-induced PAH phenotype in female SERT+ mice. 

 

The female hormone 17β estradiol is one risk factor in PAH.  Decreased expression of the 

17β estradiol metabolising enzyme cytochrome P450 1B1 (CYP1B1), resulting in altered 

estrogen metabolism, has been identified in female PAH patients harbouring a BMPR-II 

mutation compared to unaffected female carriers (Austin et al., 2009).  Multiple factors 

modulate the levels of estrogen-metabolizing enzymes in the liver and target tissues, and 

the biological effects of an estrogen will depend on the profile of metabolites formed and 

the biological activities of each of these metabolites (Zhu and Conney, 1998).  17β 

estradiol is metabolised to both pro- and anti-proliferative metabolites and its effects will 

depend on its metabolism.  17β estradiol can be converted to estrone and subsequently 
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metabolized to 16 -hydroxyestrone (16-OHE1) via CYP3A4.  Or alternatively, 17β 

estradiol is metabolized to 2-hydroxyestradiol (2-OHE) via the estrogen metabolizing 

enzymes CYP1A1/2 and to a lesser extent via CYP1B1 (Hanna et al., 2000; Tsuchiya et 

al., 2005).  2-OHE can itself be metabolized to 2-methoxyestradiol (2-ME) via catechol O-

methyltransferase (COMT).  Both 2-OHE and 2-ME have anti-proliferative effects on cells 

(Tofovic et al., 2006), whereas 16 -OHE1 stimulates proliferation by constitutively 

activating the estrogen receptor (Swaneck and Fishman, 1988).  Metabolism of 17β 

estradiol will therefore be species, gender and strain-dependent and differential disruption 

in the balance of metabolites may therefore account for the differential effects of female 

hormones in different models of PAH.  Consistent with this, our microarray findings show 

that CYP1B1 mRNA expression is increased in female SERT+ mice.  In further support of 

this, immunoblotting confirmed that CYP1B1 protein expression is also increased in the 

pulmonary arteries of female SERT+ mice.  Of further interest, both serotonin and 17β 

estradiol stimulation increased CYP1B1 expression in PASMCs.  Indeed, similar 17β 

estradiol effects have been previously described in cancer cells (Tsuchiya et al., 2004).    

On this evidence, serotonin and 17β estradiol may be accountable for increased CYP1B1 

expression in female SERT+ mice.    

 

CCAAT/enhancer-binding protein beta (C/EBPβ) is a transcription factor encoded by the 

CEBPB gene.  C/EBPβ has been previously shown to regulate inflammation, cell 

differentiation and cell proliferation (Ramji and Foka, 2002).  For example, C/EBPβ is 

essential in the pathogenesis of multiple proliferative disorders including skin, breast and 

ovarian cancer (Zhu et al., 2002; Raught et al., 1996; Sundfeldt et al., 1999).  In line with 

this, C/EBPβ deficient mice appear resistant to tumorigenesis (Sterneck et al., 2006).  The 

role of C/EBPβ in the development of PAH is poorly defined.  Increased C/EBPβ 

expression has been reported in the lungs of chronically hypoxic rats (Teng et al., 2002), 

where it appears to stimulate inducible nitric oxide synthase expression.  Reduced CEBPB 
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expression has also been previously reported in the lungs of SERT knockout mice (Crona 

et al., 2009).  Conversely, our microarray data shows the up-regulation CEBPB in female 

SERT+ mice.  Increased CEBPB mRNA expression was confirmed by qRT-PCR analysis.  

We also identified that C/EBPβ protein expression was increased in the pulmonary arteries 

of female SERT+ mice.  In support of this, we observed that serotonin and 17β estradiol 

increased C/EBPβ expression in human PASMCs.  These findings suggest that serotonin 

and 17β estradiol may stimulate C/EBPβ expression in vivo, and this contributes to the 

pathogenesis of PAH in female SERT+ mice.      

         

We observed increased FOS expression in the pulmonary arteries of female SERT+ mice.  

FOS is a proto-oncogene which exists as an immediate early gene transcription factor, and 

is transactivated in response to various stimuli (Herschman, 1991).  For example, FOS 

expression is increased in the heart following exposure to hypoxia (Deindl et al., 2003).  In 

bovine PASMCs, serotonin is also a potent inducer of FOS expression via a MAPK-

dependent pathway (Simon et al., 2005).  In agreement with this, we observed that 

serotonin stimulation also increased c-FOS expression in human PASMCs.  Of interest, 

expression was also increased in 17β estradiol stimulated cells.  Similar effects have also 

been described in rat hepatoctyes (Lee and Edwards, 2001).  In vivo, c-FOS expression is 

increased in the pulmonary arteries of female SERT+ mice.  Here, our evidence suggests 

serotonin and 17β estradiol stimulate c-FOS expression, and this may be relevant to the 

pathogenesis of PAH in female SERT+ mice. 

  

With relevance to human PAH we further examined CEBPB, CYP1B1 and FOS 

expression in PASMCs derived from IPAH patients.  We observed that expression of these 

three genes (CEBPB, CYP1B1 and FOS) was increased in IPAH PASMCs.  We observed 

at least five-fold increases in CEBPB and FOS mRNA expression compared to control 

PASMCs.  Immunoblotting confirmed that the upregulation of C/EBPβ and c-FOS was 



 

 193 

also apparent at protein level.  Since these genes are involved in inflammation and 

proliferation, both of which are essential components in disease pathogenesis (Tuder et al., 

2009), our findings suggest their importance in human PAH.  Their role in the 

pathobiology of experimental and human PAH is of particular interest.  We also observed 

increased CYP1B1 mRNA and protein expression in IPAH PASMCs, suggesting the 

importance of CYP1B1-mediated estrogen metabolism in PAH.  However, these findings 

are inconsistent with previous studies in Epstein Barr virus immortalized B cells derived 

from female BMPR-II PAH patients (West et al., 2008), where decreased CYP1B1 mRNA 

expression was described.  Most likely, this is attributable to the differences in cell type 

investigated.  This study focuses on changes in PASMCs, which represent a more 

physiologically relevant cell type in PAH.  The dysfunction in estrogen metabolism, and 

particularly CYP1B1, appears a causative factor in human PAH and merits further 

investigation. 

 

We have previously reported that SERT+ mice develop elevated RVSP in the absence of 

RVH (MacLean et al., 2004).  This phenomenon is particular to normoxic mice as we, like 

others, have shown that mice develop RVH following exposure to hypoxia (MacLean et 

al., 2004; Keegan et al., 2001). We are not alone in observing this phenomenon as other 

studies have similarly demonstrated elevated RVSP in transgenic mice in the absence of 

RVH.  For example, mice that express BMPR-II 
R899X

 in smooth muscle or molecular loss 

of BMPR-II signaling in smooth muscle demonstrate elevated RVSP with no change in 

RVH (Tada et al., 2007; West et al., 2004).  The observation that this only occurs in 

normoxic mice suggests that hypoxia induces an effect on RVH that may indeed be 

independent of RVSP. 

 

The distal arteries are typically those most susceptible to pulmonary vascular remodelling 

in PAH, however microarray analysis was performed in the proximal pulmonary arteries of 
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mice as these were the smallest that could be practically dissected out from whole lung.  

Therefore, these gene changes may not be entirely representative of gene expression 

changes in smaller resistance arteries.  For example, our microarray results show that 

hypoxic female SERT+ mice exhibit increased PPAR-γ expression relative to hypoxic 

female WT mice.  However, previous observations confirm that PPAR-γ expression is 

reduced in the distal pulmonary arteries of PAH patients (Ameshima et al., 2003), and its 

targeted deletion in pulmonary artery smooth muscle or endothelial cells is sufficient to 

cause PAH in mice (Hansmann et al., 2008; Guignabert et al., 2009).  This contrast in 

findings may well result from the effect of hypoxia per se or an indirect compensatory 

change in response to PAH in SERT+ mice. 

 

Additional bioinformatics analysis may help further identify ‘gene networks’ which are 

dysfunctional in SERT+ mice.  Additionally, it would be relevant to further investigate any 

dysregulated genes/pathways also present in alternative models of PAH and human PAH.  

Specific to this study, dysregulation of associated genes ‘upstream’ or ‘downstream’ of 

CEBPB, CYP1B1 and FOS would be of particular interest.   

 

In conclusion, through microarray analysis we have identified a large number of 

differentially expressed genes in the pulmonary arteries of SERT+ mice.  These findings 

offer further insight into the gender differences observed in this serotonin-dependent model 

of PAH.  At least three of these genes (CEBPB, CYP1B1 and FOS) are also up-regulated 

at protein level in these mice.  With relevance to human PAH, we identified that mRNA 

and protein expression of CEBPB, CYP1B1 and FOS was also increased in PASMCs 

derived from IPAH patients.  This study has described genotypic differences in a 

serotonin-dependent model of PAH and these findings at least in part, may be relevant to 

the pathogenesis observed in human PAH.   
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Chapter 5 

General Discussion 
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General Discussion 

Serotonin is a monoamine synthesized from dietary tryptophan.  In the pulmonary 

vasculature, it is a potent mitogen and vasoconstrictor (MacLean and Dempsie, 2009).  

These effects are well established in the pathogenesis of both experimental and human 

PAH.  The exogenous administration of serotonin exaggerates hypoxia-induced PAH in 

rats (Eddahibi et al., 1997), and uncovers a PAH phenotype in BMPR-II mutant mice 

(Long et al., 2006).  Also, mice devoid of peripheral serotonin are resistant to the 

development of both hypoxia-induced (Morecroft et al., 2007) and dexfenfluramine-

induced PAH (Dempsie et al., 2008).  TPH1, which is the rate-limiting enzyme involved in 

serotonin synthesis, is increased in the lungs and PAECs derived from IPAH patients 

(Eddahibi et al., 2006).  Serotonin is thought to mediate its effects via SERT.  For example, 

serotonin-induced proliferation of PASMCs is abolished by the SERT inhibitor citalopram 

(Welsh et al., 2004).  Indeed, SERT+ mice develop PAH and exaggerated hypoxia-induced 

PAH (MacLean et al., 2004) whilst mice devoid of the SERT gene are resistant to hypoxia-

induced PAH (Eddahibi et al., 2000).  Targeted over-expression of SERT in PASMCs is 

also sufficient for the development of PAH in mice (Guignabert et al., 2006).      

 

Increased female susceptibility in human PAH is well-described.  This is highlighted in 

recent epidemiological studies carried out in Scotland, USA and France, where a female 

bias of up to three-fold is observed (Peacock et al., 2007; Thenappan et al., 2007; Humbert 

et al., 2006).  Currently, no animal model of PAH has recapitulated this female 

susceptibility.  Paradoxical to this, male susceptibility is reported in several experimental 

models (Said et al., 2007; Rabinovitch et al., 1981).  This absence of a suitable 

experimental model has limited research to date.  In the central nervous system, estrogen 

regulates expression of several key serotonin signalling components including TPH, SERT 

and the 5-HT receptors.  Most likely, this results in enhanced serotonin signalling.  On this 
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evidence, we hypothesized that similar observations were apparent in the pulmonary 

circulation, and that this may be responsible for increased female susceptibility in PAH.  

We investigated this in a serotonin-dependent model of PAH (SERT+ mice). 

 

Here, we provide evidence that females are at an increased risk to the development of 

PAH, via the effects of 17β estradiol (Chapter 3).  Involvement of the serotonin pathway 

appears critical to this.  We observed that female SERT+ mice exhibit PAH and 

exaggerated hypoxia-induced PAH whilst male SERT+ mice remained unaffected 

compared to their respective WT controls.  Ovariectomy abolished this PAH phenotype in 

SERT+ mice confirming the involvement of ovarian-derived female hormones in disease 

pathogenesis.  The administration of 17β estradiol, which is the pre-dominant circulating 

hormone in pre-menopausal females, in ovariectomized SERT+ mice fully re-established 

PAH and exaggerated hypoxia-induced PAH.  These findings highlight the critical role of 

17β estradiol in the development of PAH in SERT+ mice.  Surprisingly, male SERT+ mice 

subjected to 17β estradiol did not develop an exaggerated PAH phenotype.  This 

observation must be further investigated, but one hypothesis to explain this is via the 

differential effects of 17β estradiol and its metabolism in males compared to females.  For 

example, altered estrogen metabolism arising from polymorphisms in the estrogen-

metabolising enzyme CYP1B1 has been associated with the development of PAH in 

women (West et al., 2008).  Here, we propose that dysfunctional estrogen metabolism, 

likely via altered expression of key estrogen metabolising enzymes, is essential in 

‘switching’ estrogen effects from disease-preventing to disease-promoting.  For example, 

SERT+ PAH is unique to female mice suggesting involvement of the serotonin pathway in 

this, and requires further investigation.  In humans, the SERTLPR polymorphism results in 

increased transcription, translation and function of SERT.  Therefore, it would be of 

interest to determine the precise gender bias in PAH patients who carry the SERTLPR 
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polymorphism.  Based on this evidence, we propose that female carriers are at a much 

greater risk to the development of PAH than male carriers.          

 

To translate clinical relevance to our findings, we further investigated the effects of female 

hormones in human PASMCs.  Consistent with our in vivo findings, we observed that 

physiological concentrations of 17β estradiol stimulate proliferation as assessed by 

increased DNA synthesis and cell number, whereas estrone, estriol and progesterone had 

no effect.  The proliferation of pulmonary vascular cells is essential for pulmonary vascular 

remodelling and currently considered an irreversible component in PAH (Humbert et al., 

2004).  These 17β estradiol effects may be relevant to the increased female susceptibility 

observed in PAH.  We also observed that activation and utilisation of the serotonin 

pathway is essential for 17β estradiol-induced proliferation.  This was apparent as presence 

of the TPH inhibitor PCPA or the 5-HT1B receptor antagonist SB224289 was sufficient to 

completely inhibit 17β estradiol stimulated proliferation.  On this evidence, it would be of 

interest to establish if inhibition of TPH1 or the 5-HT1B receptors is sufficient to abolish 

PAH in female SERT+ mice in vivo.  In contrast, the 5-HT2A receptor antagonist ketanserin 

had no effect on proliferation suggesting a minor role of this receptor, and is consistent 

with previous reports in human PASMCs (Morecroft et al., 2010).  Immunoblotting 

performed in PASMC lysates treated with 17β estradiol also confirmed that TPH1, SERT 

and 5-HT1B receptor expression was increased.  These findings are the first to describe the 

expression of TPH1 in PASMCs and suggest the possible existence of autocrinic serotonin 

signalling in pulmonary vascular cells.  Increased SERT and 5-HT1B receptor expression in 

PASMCs are also sufficiently important, as both have been previously implicated in 

serotonin-induced PASMC proliferation (Morecroft et al., 2010).  Along these lines, it 

would be of interest to investigate if TPH1, SERT and 5-HT1B receptor expression is 

similarly altered in the lungs of ovariectomized and estrogen-dosed SERT+ mice.  In 

conclusion of these findings, we have described the first experimental model of PAH 
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which exhibits female susceptibility.  Specifically, female mice appear at increased risk to 

the development of PAH via the proliferative effects of 17β estradiol.  This is likely 

achieved via 17β estradiol-mediated increased expression of TPH1, SERT and the 5-HT1B 

receptors to enhance PASMC proliferation and pulmonary vascular remodelling. 

 

Given the gender differences we observed in the development of PAH in SERT+ mice, we 

further investigated possible underlying genotypic differences which may help explain this 

(Chapter 4).  Through microarray analysis in the pulmonary arteries, we identified a large 

number of differentially expressed genes which were apparent in SERT+ mice compared to 

their respective WT controls.  When assigned to biological function, 43% of these genes 

were important in females whilst only 27% were important in males.  Similarly, these 

dysregulated genes in female SERT+ mice were associated with a large number (>15) of 

biological pathways whereas this was apparent to a much lesser extent in male SERT+ 

mice.  Moreover, a large number of altered pathways in females were associated with 

inflammation, metabolism and contraction, all of which have been previously implicated in 

the pathogenesis of PAH (Tuder and Voelkel, 1998; Rehman and Archer, 2010).  This 

suggests that dysregulation of these pathways is sufficient in promoting the development of 

PAH, and this is unique to female SERT+ mice.  Hierarchical cluster analysis also revealed 

gene expression patterns in female SERT+ mice which were not apparent in male SERT+ 

mice.  We also repeated microarray analysis in the pulmonary arteries of chronically 

hypoxic SERT+ mice to investigate the genotypic differences associated with exaggerated 

hypoxia-induced PAH.  We observed a total of 316 differentially expressed genes in 

females whilst less than half of this number (145) was altered in males.  Similar to the 

normoxic comparison, when assigned to biological function over half (53%) were 

important in females whereas significantly less (42%) appeared important in males.  As 

expected, the dysregulation of multiple pathways with relevance to PAH was observed in 

chronically hypoxic females.  
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For validation of the microarray study, we performed RT-PCR analysis in three 

differentially expressed genes across each group comparison.  These results were 

concordant with the microarray data.  Specifically, following interim Ingenuity Pathway 

Analysis (IPA) analysis, we focused our interest on three genes which were up-regulated in 

female SERT+ mice (CEBPB, CYP1B1 and FOS). 

 

The CEBPB gene encodes for CCAAT-enhancer binding protein beta (C/EBPβ).  It is 

important in inflammation and proliferation, both of which are essential in the 

pathogenesis of PAH (Rehman and Archer, 2010; Humbert et al., 2004).  CEBPB mRNA 

is intronless and is usually translated into three distinct isoforms termed full-length liver-

activating protein (LAP), medium-length LAP and short-length liver-inhibitory protein 

(LIP).  The translated C/EBPβ isoform is determined by the inherent translation start codon 

site.  Although LIP is a dominant-negative isoform with no biological function, the 

opposing effects of medium and full-length LAP are thought to determine function.  For 

example, in mouse embryonic fibroblasts (MEFs) full-length LAP is a transcriptional 

activator whereas medium-length LAP is a transcriptional repressor (Qiu et al., 2008).  In 

vivo, we observed increased CEBPB mRNA and protein expression in the pulmonary 

arteries of female SERT+ mice compared to female WT mice.  In agreement with this, 

CEBPB is decreased in the lungs of SERT knockout mice (Crona et al., 2009), whilst 

expression is increased in the lungs of rats following exposure to chronic hypoxia (Teng et 

al., 2002).  Serotonin and 17β estradiol increased C/EBPβ expression in PASMCs, which 

may be relevant to these in vivo findings.  In relation to human PAH, both mRNA and 

protein expression is increased in PASMCs derived from IPAH patients, suggesting its 

importance in human PAH.  On this evidence, we propose that C/EBPβ is a key 

inflammatory component in the progression of PAH.  
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Estrogen is one risk factor in PAH.  Decreased expression of the estrogen-metabolising 

enzyme cytochrome P450 1B1 (CYP1B1) has been previously described in PAH (West et 

al., 2008).  Here, we also observed alterations in CYP1B1 expression.  However, in 

contrast we reported increased CYP1B1 mRNA and protein expression in the pulmonary 

arteries of female SERT+ mice.  One explanation for this disparity in findings may be the 

different cell types investigated.  Here, we focused on pulmonary vascular cells, which 

may be more relevant cell type to study.  Serotonin and 17β estradiol may be important 

regulators of this, as stimulation with these increase  CYP1B1 expression in PASMCs.  

With respect to human PAH, we similarly observed increased CYP1B1 mRNA and protein 

in PASMCs derived from IPAH patients compared against control PASMCs.  Our 

evidence suggests a role for CYP1B1 in the pathogenesis of experimental and human PAH.  

It would also be of interest to further investigate C/EBPβ expression in PAECs and PAFs.  

Relevant to this, CYP1B1 is also over-expressed in pro-proliferative tumour cells (Murray 

et al., 2001; Murray et al., 1997), and polymorphisms in this gene are associated with 

increased incidence of tumorigenesis (Sasaki et al., 2004; Sasaki et al., 2003; Tanaka et al., 

2002; Van Emburgh et al., 2008; Cussenot et al., 2007).  One hypothesis we propose is that 

CYP1B1-derived estrogen metabolites are pro-proliferative in pulmonary vascular cells, 

and this alteration in estrogen metabolism is promoting the development of PAH in 

females.  Therefore, it would be of interest to assess the proliferative effects of CYP1B1-

derived estrogen metabolites in PASMCs.  Recently, vaccine-based CYP1B1 

immunotherapy successfully completed phase I clinical trial and appears a promising 

preventative treatment for cancer (Luby, 2008).  CYP1B1 appears an important mediator 

of estrogen signalling in PAH via regulation of its metabolism, and merits further 

investigation. 

 

We also investigated c-FOS expression in SERT+ PAH and human PAH.  FOS is a proto-

oncogene which exists as an immediate early gene transcription factor, and is 
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transactivated in response to various stimuli.  It is also involved in cellular proliferation 

(Herschman, 1991).  In bovine PASMCs, serotonin is a potent inducer of c-FOS expression 

via the ERK pathway (Simon et al., 2005).  Here, we observed increased expression of 

both FOS mRNA and c-FOS protein in the pulmonary arteries of female SERT+ mice.  

With relevance, stimulation of human PASMCs with either serotonin or 17β estradiol was 

sufficient to increase c-FOS expression. Of further interest, FOS mRNA and c-FOS protein 

was also up-regulated in IPAH PASMCs.  Given this increased expression in both 

experimental and human PAH, c-FOS may be an important signalling regulator in 

pulmonary vascular mitogenesis, however requires further investigation.   

 

Through microarray analysis we identified a large number of novel genes which appear to 

be promoting the development of PAH in a serotonin-dependent model of female PAH.  

Moreover, at least three of these genes (CEBPB, CYP1B1 and FOS) are up-regulated at 

protein level in mice and also up-regulated in PASMCs derived from IPAH patients, 

further suggesting their importance in human PAH.  These novel genes may be essential in 

promoting a PAH phenotype in females. 

 

In summary of these findings, through a translational approach we have provided evidence 

which greatly advances our understanding as to why increased female susceptibility exists 

in PAH.  This includes the upregulation of key genes which appear to be promoting a PAH 

phenotype in females.  Both serotonin and estrogen are critical to this.  In future 

perspective, the therapeutic target of these dysregulated pathways may be one potential 

treatment strategy in women with PAH.   
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Future Perspective 

Therapeutic target of the estrogen pathway appears a promising candidate in PAH.  From 

findings previously discussed, the therapeutic potential of CYP1B1 inhibition in the 

prevention and reversal of experimental PAH is of particular interest.  To test this, effects 

of the CYP1B1 inhibitor TMS in hypoxia-induced PAH should be considered.  Along 

these lines, the characterisation of PAH in CYP1B1 deficient mice is also of interest.  In 

translational perspective to human PAH, CYP1B1 inhibition via immunotherapy is one 

approach currently in phase I development for the treatment of cancer (Luby, 2008), and 

may be of potential clinical interest in the treatment of PAH if pre-clinical studies appear 

promising.      

 

In addition, those signalling pathways activated by estrogen and/or its metabolites must be 

further delineated.  It is likely that one or more ER isoforms (ERα, ERβ and GPR30) are 

directly involved in PAH, or at least indirectly via regulating expression of key estrogen 

metabolizing enzymes including CYP1B1, as previously reported (Tsuchiya et al., 2004).  

Therefore, inhibition of ERs via selective antagonists and/or SERMs is also of interest.  

Indeed, SERMs are already an effective therapeutic approach in the treatment of multiple 

other estrogen-dependent diseases including breast cancer (Veronesi et al., 2005).  C/EBPβ 

and FOS may also play an important role in the pathogenesis of PAH.  Here, our data 

suggests that C/EBPβ and FOS act downstream of estrogen-dependent pathways, as 17β 

estradiol increase their expression in PASMCs.  In support of this, C/EBPβ and FOS are 

increased in both experimental PAH and human PAH and further highlights their potential 

importance in PAH progression.   

 

In future perspective, this evidence implicates estrogen in the pathogenesis of PAH, and 

highlights the estrogen pathway as one novel therapeutic target in the treatment of PAH.  
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