An ecological and experimental study of sediment-benthos interactions in a polluted estuary

Volume 2

By

SAMIRA ABDUL-HUSSAIN ABDULA

(B.Sc., M.Sc.)

Being a thesis submitted for the Degree

of

Doctor of Philosophy

in the

University of Glasgow

August, 1985 Department of Zoology University of Glasgow APPENDICES

. •

.

APPENDIX I

,

.

.

.

•

, .

•

	Sample	Denah	Abun	dance	Biomass of	wet weight	Biomass of	dry weight
Species	number	(cm)	No. of animals /core	No. of animals /m ²	Wet weight g/core	Wet weight g/m ²	Dry weight g/core	Dry weight g/m ²
	1	0-10	35	6741.0	3.385	651.9	0.1383	26.63
	•	10-20	-	-	-	-	-	-
Corophium	2	0-10	37	7126.2	3.907	752.4	0.1462	28.15
volutator		10-20	-	-	-	-	-	-
	3	0-10	34	6548.4	3.419	658.4	0.4947	95.28
	5	10-20	-	-	-	-	-	
	,	0-10	2	385.2	5.197	1000.9	0.6439	124.0
		10-20	7	1348.2	18.19	3503.4	2.254	434.1
Nereis		0-10	-	-		-	-	-
diversicolor		10-20	6	1155.6	14.91	2872.2	. 1.866	359.3
	3	0-10	· · 1	192.6	2.799	539.0	0.5491	105.7
	,	10-20	5	963.0	13,99	2695.0	2.745	528.7
	•	0-10	2	385.2	0.6439	124.0	0.08500	16.37
	*	10-20	-	-	-	-	-	-
Macoma	2	0-10	1	192.6	0.1237	23.81	0.04250	8.186
baltica	-	10-20	-	-	-	-	-	-
	3	0–10	2	385.2	0.2473	47.63	0.08500	16.37
	3	10-20	-	-	-	-	-	-

t

APPENDIX I: TABLE 1. Abundance and biomass (wet and dry weights) of animals at Langbank mid-tide level. Data for small core technique, at 0-10 cm and 10-20 cm depth. Area of small core = 51.91 cm². Therefore the numbers of animals and biomass/core were multiplied by 192.6 to obtain numbers and biomass/m².

.

	Sample	Denth	Abun	dance	Blomass of	wet weight	Biomass of	dry weight
Species	number	(cm)	No. of animals /core	No. of animals /m ²	Wet weight g/core	Wet weight g/m ²	Dry weight g/core	Dry weight g/m ²
	1	0-10	75	8340.0	7.253	806.5	0.2963	32.94
		10-20	-	-	-	-	-	-
Corophium	2	0-10	64	7116.8	6.256	695.7	0.2657	29.54
volutator		10-20	-	-	-	-	-	-
	3	0-10	62	6894.4	6.061	673.9	0.2635	29.30
		10-20	-	-	-	-	-	-
		0-10	1	111.2	2.799	311.2	0.5491	61.05
	•	10-20	4	444.8	11.19	1244.8	2.196	244.2
Nereis	2	0-10	2	222.4	5.198	578.0	0.6440	71.61
diversicolor	_	10-20	6	667.2	16.71	1858.2	3,932	437.2
	3	0–10	1	111.2	2.868	318.9	0.6378	70.92
		10-20	6	667.2	16.90	1878.8	3.952	439.4
	1	0-10	-	-	-	-	-	-
		10-20	-	-	-	-	-	-
Macoma	2	0-10	1	111.2	0.1328	14.76	0.07330	8.151
baltica		10-20	1	111.2	0.1407	15.64	0.06995	7.778
-	3	0-10	-	-	-	•	-	-
	_	10-20	-	-	-	-	-	-

APPENDIX I: TABLE 2. Abundance and biomass (wet and dry weights) of animals at Langbank mid-tide level. Data for large core technique, at 0-10 cm and 10-20 cm depth. Area of large core = 89.91 cm². Therefore the numbers of animals and biomass/core were multiplied by 111.2 to obtain numbers and biomass/m².

	610	Denth	Abun	dance	Biomass of	wet weight	Biomass of	dry weight
Species	number	(cm)	No. of animals /core	No. of animals /m ²	Wet weight g/core	Wet weight g/m ²	Dry weight g/core	Dry weight g/m ²
		0-10	23	4429.8	0.3600	69.33	0.2032	39.14
		10-20	-	-	-	-	-	-
Pygospio	2	0-10	136	26193.6	2.016	388.2	1.202	231.4
<u>elegans</u>		10-20	-	-	-	-	-	-
	3	0-10	36	6933.6	0.56340	108.5	0.3181	4.199
		10-20		-	-	-	-	-
	,	0-10	2	385.2	0.08660	16.68	0.00890	1.714
		10-20	-	•	-	-	-	-
Scoloplos	2	0-10	3	577.8	0.2458	47.34	0.02795	5.383
armiger		10-20	-	-	-	-	-	-
	3	0–10	2	385.2	0.08660	16.68	0.00890	1.714
••••		10-20	-	-	-	•	-	-
	9	0-10	1	192.6	0.08670	16.70	0.00290	0.5505
	•	10-20	-	-	-	-	-	-
Corophium	• 9	0-10	-	-	-	-	-	-
volutator	4	10-20	-	-	-	-	-	-
-	1	0-10	1	192.6	0.07470	14.39	0.00870	1.676
	3 -	10-20	-	-	-	-	-	-

APPENDIX I: TABLE 3. Abundance and biomass (wet and dry weights) of animals at Ardmore sediment mid-tide level. Data for small core technique, at 0-10 cm and 10-20 cm depth. Area of small core = 51.91 cm². Therefore the numbers of animals and biomass/core were multiplied by 192.6 to obtain the numbers and biomass/m².

		Denth	Abu	ndance	Biomass of wet	weight	Biomass of	dry weight
Species	number	(cm)	No. of animals /core	No. of animals /m ²	Wet weight g/core	Wet weight g/m ²	Dry weight g/core	Dry weight g/m ²
	,	0-10	45	5004.0	0.1917	21.32	0.02260	2.513
		10-20	-	-	-	-	-	-
Pygospio	7	0-10	47	5226.4	0.1991	22.13	0.02580	2.869
elegans		10-20	-	-	-	-	-	-
	3	0–10	55	6116.0	0.4380	48.70	0.03795	4.220
		10-20	-	-	-	-	-	-
	,	0-10	1	111.2	0.06230	6.928	0.00940	1.045
		10-20	-	-	-	-	-	-
<u>Scoloplos</u>	2	0-10	2	222.4	0.02420	2.691	0.00460	0.5115
armiger		10-20	-	-		-	-	-
	3	0-10	1	111.2	0.17580	19.54	0.01570	1.746
		10-20	-	-	-	-	-	-
	,	0-10	1	111.2	0.02030	2.257	0,00470	0.5226
	•	10-20	-	-	-	-	-	-
Nud-obi e		0-10	3	333.6	0,1572	17.48	0.01970	2.191
ventrosa	4	10-20	-	-		-	-	-
		0-10	12	1334.4	0.07765	8.635	0.03390	3.770
	3	10-20	-	-		-	-	-
	3	0-10	1	111.2	0.6598	73.37	0,3633	40.40
	•	10-20	-	-	-	-	-	-
Macoma	2	0-10	1	111.2	0,1237	13.75	0.1425	15.85
baltica	•	10-20	-	-	-	-	-	-
	2	0-10	1	111.2	0.1390	15.46	0.1428	15.87
	_	10-20	-	-		-	-	-

APPENDIX I: TABLE 4. Abundance and biomass (wet and dry weights) of animals at Ardmore sediment mid-tide level. Data from large core technique, at 0-10 cm and 10-20 cm depth. Area of large core = 89.9/cm². Therefore the numbers of animals and biomass/core were multiplied by 111.2 to obtain numbers and biomass/m².

	Weight of A	arenicola (g)
Replicates	Wet weight	Dry weight
1	4.488	0.6228
2	3.375	0.5892
3	7.060	1.640
4	5.678	1.843
5	7.035	1.552
6	5.082	1.160
7	7.823	0.7562
8	5.965	1.544
9	4.617	0.7977
10	4.479	0.9408
11	4.841	1.229
12	4.734	0.7245
13	7.430	2.001
14	4.454	0.821
15	6.349	1.066
16	9.718	3.302
17	3.497	0.4548
18	4.403	0.6724
19	6.271	2.018
20	6.473	1.569
21	4.626	2.271
22	7.181	1.588
23	4.335	0.6362
24	5.659	0,9931
25	5.402	1.104
Mean <u>+</u> s.d.	5.639 <u>+</u> 1.494	1.276 <u>+</u> 0.6643

:

APPENDIX I: TABLE 6. Abundance and biomass of <u>Arenicola marina</u> at Ardmore. See text for methods of calculation from cast counts.

Ab	undance	Biomass (w	et weight)	Biomass (dry weight)						
No. casts/ m ²)	Means + s.d. of (no. casts/m ²)	Wet weight/m ² (g)	Means + s.d. of wet weight	Dry weight/m ² (g)	Means <u>+</u> s.d. of dry weight					
25		141.0		31.90						
37	33.66 <u>+</u> 7.572	208.6	189.8 <u>+</u> 42.67	47.21	42.96 <u>+</u> 9.660					
39		219.9		49.76						

APPENDIX I: TABLE 7. Student t-tests analysis of the abundance and biomasses of the different species at Langbank (LBM) and Ardmore (ARD) sampling sites. Comparisons were conducted between the number of animals obtained from the small and large cores for each species. <u>Corophium volutator (C.v.), Nereis diversicolor (N.d.), Macoma baltica</u> (<u>M.b.</u>), <u>Pygospio elegans (P.e.), Scoloplos armiger (S.a.</u>) and <u>Hydrobia ventrosa (H.v.</u>).

Sampling sites	Abundance and biomass	Comparison	D.F.	Student t	Probability	Small and large core
	Abundance	<u>C.v</u> . <u>N.d</u> .	4 4	-1.343 2.808	0.3 > P>0.2 0.05> P>0.02 *	S>L
1.01		<u>M.b</u> .	4	2.315	0.10>P>0.05	S≻L
L.BM	Biomass	<u>C.v.</u> <u>N.d.</u> <u>M.b</u> .	2 4 4	0.8571 0.7124 1.396	0.5 > P>0.4 0.6 > P>0.5 0.3 > P>0.2	
		<u>P.e</u> . <u>S.a</u> .	2 4	1.027 4.062	0.5 > P>0.4 0.02 > P>0.01 **	s≻l
	Abundance	<u>C.v</u> . H.v.			P∠0.001 ****** P∠0.001	s≯ r r> s
		<u>M.b</u> .			***** · P < 0.001 *****	l > S
ARD	Biomass	<u>P.e.</u> <u>S.a.</u> <u>C.v.</u>	2 4	1.251 1.441	0.4 > P>0.3 0.3 > P>0.2 P<0.001 *****	s>1
		<u>H.v.</u> <u>M.b</u> .	4 2	-2.305 -2.939	0.2> P>0.1 0.1> P>0.05	l≻S

APPENDIX I: TABLE 8. Mann Whitney U tests comparing the abundance of the different species present at Langbank (LBM) and Ardmore (ARD) sites. $(C_1, C_6 = \underline{C. volutator}, C_2 = \underline{N. diversicolor},$ $C_3 = \underline{M. baltica}, C_4 = \underline{P. elegans}, C_5 = \underline{S. armiger}, C_7 = \underline{H. ventrosa}, C_8, C_{16} = \underline{M. baltica}.$

Sediment	Comparison	W	Probability
	^C 1 × C ₂	. 57.00	$P = 0.0051_{****}$
LBM	^c 1 × ^c 3	57.00	$P = 0.0051_{****}$
	^C ₂ x ^C ₃	57.00	$P = 0.0051_{***}$
	C ₄ x C ₅	57.00	$P = 0.0051_{****}$
	C ₄ x C ₆	57.00	P = 0.0051 _{****}
	с ₄ х с ₇	57.00	$P = 0.0051_{xxxx}$
	C ₄ x C ₈	57.00	$P = 0.0051_{***}$
ARD	C ₅ x C ₆	53.00	$P = 0.0306_{*}$
	^C ₅ x C ₇	47.00	P = 0.2298
	^C ₅ × C ₈	54.00	$P = 0.0202_{*}$
	^C ₆ × ^C ₇	35.00	P = 0.05 _*
	° ₆ × ° ₈	39.00	P = 1.000
	C ₇ x C ₈	42.00	P = 0.6889

APPENDIX I: TABLE 9. Mann Whitney U tests comparing the dry biomass of the different species present at Langbank (LBM) and Ardmore (ARD) sites. $(C_9, C_{14} = \underline{C. volutator}, C_{10} = \underline{N. diversicolor},$ $C_{11}, C_{16} = \underline{M. baltica}, C_{12} = \underline{P. elegans}, C_{13} = \underline{S. armiger},$ $C_{15} = \underline{H. ventrosa}.$)

Sediment	Comparison	W	Probability
	C ₉ x C ₁₀	21.00	$P = 0.0051_{\text{min}}$
LBM	. ^c ₉ × ^c ₁₁	57.00	$P = 0.0051_{\text{min}}$
	^C 10 ^{x C} 11	57.00	$P = 0.0051_{\text{min}}$
	^C 12 ^{x C} 13	53.00	$P = 0.0306_{*}$
	^C 12 ^{x C} 14	57.00	$P = 0.0051_{****}$
	^C 12 ^{x C} 15	53.50	$P = 0.0250_{*}$
	^c 12 ^x ^c 16	44.00	P = 0.4712
ARD	^C 13 ^{x C} 14	54.00	$P = 0.0202_{*}$
	^C 13 ^{x C} 15	46.5	P = 0.2623
	^C 13 ^{x C} 16	39.00	P = 1.000
	C ₁₄ x C ₁₅	35.00	P = 0.5752
	C ₁₄ x C ₁₆	33.00	P = 0.3785
	^C 15 ^{x C} 16	34.50	P = 0.5218

APPENDIX	II	TABLE	10.	Preliminary	experiment	. Bacteri	al count	of Langba	nk (LBN)	and Ardmore	(ARD)	sediments (on three media	(freshwa	ater
nut	rient	agar,	bacto-	marine agar	and teepol	lactose a	igar).	Numbers of	bacteri	a were count	ed at	five differ	en: dilutions,	10, 10	0~*,
10	³ . 10	-4 and	10 ⁻⁵ ,	at 3, 5, 7,	10, 14 and 3	21 days a	fter inc	culation.							

.

.

	10-1 10-2															-				10 ⁻⁴							10-5					
Sell-ort						10-1	····					10-2						10 -		ł		Dave	after	. inocul	ation			Days	after	inocul	ation	
type	Media	R	Days	ofc	ountin	g after	r inocul	ation		Days	after	r inocu	lation			Day	s after	r inocu	lation			(8)	(7)	(10)	(14)	(21)	(3)	(5)	(7)	(10)	(14)	(21)
			(3)	(5)	(7)	(10)	(14)	(21)	(3)	(5)	(7)	(10)	(14)	(21)	(3)	(5)	(7)	(10)	(14)		(3)					8					-	1
	Nutrient	R ₁	550	674	835	855	879	895	3	94	111	145	302	319	1	12	18	19	45	49	-	3	3	3								
	agar (freshwater)											1 1 2 2 2	282	303	1		13	15	45 .	47	-	1	1	2	3	3	-	-	-	-		
		^R 2	520	665	843	845	867	916	10	102		152				ļ									3	5	_		-	-	-	-
	Bacto-	R ₁	144	300	558	565	620	637	26	75	203	205	230	236	3	11	25	27	36	48	2	2										
LBM	marine agar 2216E		242	177	676	540	609	627	12	96	200	210	253	269	2	9	22	25	37	45	-		4	4	5	6	-	-	-	•		
		^K 2	145																								-	-	-	-	-	-
	Teepol	R ₁	5	185	365	370	388	401	3	59	62	63	* 96	96	-	1	2	2	2	5	-		ļ			├						
	agar (coliform)	R	1	165	325	350	370	370	_	9	15	20	29	29	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-		
		2													┼───											-	-	-	1	1	1	1
	Nutrient	R ₁	17	29	101	112	200	250	-	1	12	13	47	48	-	-	-	-	5	5	-				ļ							
	agar (freshwater)	R	13	31	98	101	189	254	1	6	13	13	63	63	_	2	4	4	9	9	-	-	-	-	-	-	-	-	1	1	<u> </u>	
		2																							1,	1	-	-	-	-	-	1.
	Bacto-	^R 1	17	23	36	38	60	66	1	2	2	3	10	11	-	-	-	-	2	2		-				ļ						
ARD	marine agar 2216E	R.	16	40	52		84	124	,	6		8	35	.50	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-
		"2			<u> </u>	ļ						ļ													1	+		-	-	-	-	-
	Teepol lactose	R ₁	-	-	2	2	2	2	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-				<u></u>					
	agar (coliform)	R			<u>,</u>	,	<u> </u>	1						1	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	,,	"Z	_		1	1	1	•		_				_	1		1				I		<u></u>		<u> </u>							

.

Table 10 continued overleaf

•

· ·

444

Sediment type		1				10-1						10-2						10-3						10 ⁻⁴						10 ⁻⁵		
Sediment type	Media	R			Days c	f coun	ting	-			Days	of cou	inting				Days o	f count	ing			1	Days of	f count	ing			1	Days o	f count	ing	
			(3)	(5)	(7)	(10)	(14)	(21)	(3)	(5)	(7)	(10)	(14)	(21)	(3)	(5)	(7)	(10)	(14)	(21)	(3)	(5)	(7)	(10)	(14)	(21)	(3)	(5)	(7)	(10)	(14)	(21)
	Nutrient	R1	350	642	820	950	955	1000<	226	275	302	333	350	386	38	57	87	100	115	129	4	16	26	31	32	33	-	2	4	4	4	4
	agar (freshwater)	R2	360	695	803	943	950	> 1000	232	283	312	363	363	392	40	87	117	137	137	145	3	14	24	31	31	34	-	-	-		-	-
LBM	Bacto- marine agar	R ₁ :	1000	>1000	1000	1000	>1000	> 1000	820	865	945	>1000	>1000	>1000	157	195	216	252	299	345	19	22	32	42	55	65	-	-	1.	2	4	7
-	22165	R2	1000	1000	1000	>1000	>1000	>1000	835	876	952	>1000	>1000	>1000	127	145	185	267	306	348	37	41	46	57	62	70	6	7	9	12	12	13
	Teepol	R ₁	46	210	840	866	895	902	5	96	153	158	161	165	2	9	13	16	18	34	-	-	2	3	3	10	-	-	4	-		5
	agar	^R 2	49	223	810	841	886	899	. 6	99	152	154	.159.	161	1	8	21	22	22	37	-	-	2	2	2	12	-	•	. 🖛		••••	. 2
	Nutrient	R ₁	14	86	136	197	206	212	1	15	23	32	34	36	-	-	-	2	3	6	-	-	-	1	1	1	-	-	-	•	-	-
	(freshwater)	R ₂	13	90	176	206	215	216	2	18	28	40	44	46	-	1	4	4	4	6	-	-	-	4	5	5	-	-	-	1	1	1
	Bacto-	R ₁	451	502	557	583	592	600	49	55	74	89	129	134	6	9	12	29	38	42	1	1	2	3	3	3	-	1	1	. 1	1	2
ARD	2216E	R2	424	495	514	553	577	590	63	73	103	126	134	141	11	13	18	26	32	43	2	2	3	5	6	7	-	-	-	-	-	-
	Teepol lactose	R ₁	•	5	10	20	22	22	-	-	2	2	2	2	-	•	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-
	(coliform)	R ₂	•	6	13	22	22	23	-	-	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-

......

APPENDIX 1: TABLE 11. Definitive experiment. Bacterial counts per plate from Langbank (LBN) and Ardmore (ARD) sediments on three media (freshwater nutrient agar, bacto-marine agar and teepol lactose agar). Numbers of bacteria were counted at five different dilutions, 10⁻¹, 10⁻², 10⁻³, 10⁻⁴ and 10⁻⁵, at 3, 5, 7, 10, 14 and 21 days after inoculation.

٠.

.

5

T

÷.

. . .'

APPENDIX I: TABLE 12. Two-way analysis of variance testing the number of bacteria grown from Langbank (LBM) and Ardmore (ARD) sediments (Factor A) on three media, nutrient agar, bacto-marine agar 2216 and teepol lactose agar (Factor B).

Factors		Sum of squares	Means squares	D.F.	F-ratio	Probability
Factor A	LBM ARD	370602.0	370602.0	1	958.1	
Factor B	The three media	431895.4	215947.7	2	558.3	
Interaction		397458.4	198729.2	2	513.8	P ८ 0.001 ಸಾಹಾನ
Error		2320.8	386.8	6		
Total		1202276.5		11		

APPENDIX I: TABLE 13. pH measurements of Langbank (LBM) and Ardmore (ARD) sediments at nine different depths and three different time intervals, 5, 10 and 20 seconds.

		LBM			ARD			
Sediment depth	Replicate	Time (secs)			Time (secs)			
(cm)		5	10	20	5	10	20	
0	R ₁	7.65	7.81	7.85	7.95	8.00	8.09	
Ū	R ₂	7.65	7.70	7.75	7.98	8.01	8.19	
5	R ₁	7.70	8.00	7.95	8.01	8.03	8 .1 5	
5	R ₂	7.73	8.01	8.05	8.05	8.08	8.12	
10	^R 1	7.83	7.95	8.05	8.15	8.28	8.32	
20	^R 2	7.80	8.00	8.04	8.17	8.27	8,35	
15	R ₁	7.90	7.98	8.10	8.15	8.35	8.50	
15	^R 2	7.95	8.00	8.12	8.15	8.20	8.30	
20	R ₁	7.95	8.10	8.20	8.15	8.30	8.50	
20	R ₂	8.00	8.09	8.20	8.20	8.25	8.40	
25	R ₁	8.10	8.10	8.15	8.20	8.35	8.55	
. 23	^R 2	8.09	8.15	8.30	8.30	8.30	8.45	
30	^R 1	8.10	8.28	8.42	8.50	8.95	9.00	
50	R ₂	8.10	8.25	8.40	7.95	8.70	8.80	
35	R ₁	8.15	8.30	8.45	8.90	9.00	9.10	
	R ₂	8.16	8.25	⁻ 8.45	8.85	9.03	9.05	
40	^R 1	8.20	8.45	8.50	9.00	9.10	9.35	
40	^R 2	8.15	8.45	8.45	9.01	9.20	9.25	

1

Depth (cm)	Time (sec)	LBM	ARD
	5	+410	+280
0	10	+410	+290
	20	+410	+300
	5	+180	+220
5	10	+180	+230
	20	+180	+230
	5	+300	+320
10	10	+300	+320
	20	+290	+320
	5	+290	+290
15	10	+300	+290
	20	+310	+300
	5	+380	+360
20	10	+390	+360
	20	+390	+370
	5	+350	+340
25	10	+350	+350
	20	+340	+350
	5	+310	+300
30	10	+310	+300
	20	+300	+290
	5	+330	+300
35	10	+330	+300
	20	+340	+300
	5	+280	+280
40	10	+280	+290
	20	+290	+300

APPENDIX I: TABLE 14. Eh measurements (mV) of Langbank (LBM) and Ardmore (ARD) sediments at nine different depths, and three different time intervals (5, 10 and 20 seconds).

APPENDIX I: TABLE 15. Two-way analysis of variance of the organic carbon before cleaning, after ashing and after acid-cleaning of Langbank, Ardmore and Rockware sediments.

•

Factors	Sum of squares SS	Mean squares Ms	D.F.	F-ratio	Probability
A	200.8	100.4	2	4238.5	
В	141.6	70.78	2	2988.0	
Interaction	Interaction 101.1		4	1067.3	P く 0.001 がががが
Error	1.919	0.02369	81		
Total	445.4		89		

Factor A = Langbank and Ardmore sediments, Factor B = control, ashed and acid-cleaned

APPENDIX I: TABLE 16. Shear strength measurements of Langbank (LBM) and Ardmore (ARD) sediments to a depth of one metre at 5 cm intervals (P = peak; R = residual).

]	LBM	ARD		
	Р	R	P	R	
0	0	0	0	0	
5	0.028	0.028	0.028	0.028	
10	0.042	0.042	0.042	0.042	
15	0.056	0.042	0.056	0.056	
20	0.084	0.070	0.056	0.056	
25	0.112	0.112	0.084	0.070	
30	0.182	0.112	0.126	0.112	
35	0.182	0.154	0.196	0.168	
40	0.224	0.168	0.308	0.294	
45	0.238	0.168	0.350	0.294	
50	0.224	0.168	0.280	0.280	
55	0.224	0.196	0.280	0.252	
60	0.252	0.210	0.308	0.266	
65	0.224	0.196	0.238	0.224	
70	0.252	0.168	0.224	0.210	
75	0.294	0.196	0.196	0.168	
80	0.266	0.196	0.182	0.154	
85	0.294	0.224	0.168	0.154	
90	0.308	0.224	0.154	0.126	
95	0.280	0.210	0.140	0.112	
100	0.308	0.280	0.140	0.112	
1					

t

Inman plot for a sediment having a normally distributed particle size

The Inman plot provides a graphical method of estimating the mean, standard deviation, kurtosis and skewness of naturally occurring marine sediments. However, neither Inman nor any other paper appears to give a clear analysis of a sediment having a normally distributed particle size. Therefore, I decided to investigate what would happen if I plotted a normally distributed particle size using Inman's method and his statistical measurements. In an Inman plot, the \mathscr{S} scale is plotted on the X-axis and a probability scale on the y-axis, and the particle size weights on different sieves are plotted cumulatively on the y-axis. A normally distributed curve when plotted using these axes gives a straight line (Snedecor and Cochran, 1980, p. 79 and Hazen, 1914).

Figure 1 shows four arbitrarily chosen straight lines each of which represents a different particle size distribution, where all the size distributions are normally distributed. The following statements about statistical parameters are true for all of these lines.

1. Median and mean

The median is the same as the mean, and it is represented by the 50% intercept on the y-axis. Therefore $a_3 = a_4 = 0$.

2. Skewness

Skewness and second skewness are both equal to zero. Because skewness equal $\alpha_{2} = a_3/6$ and $a_3 = 0$, so $\delta_{2} = 0$, and second skewness equal $\alpha_{2} = a_4/6$, $a_4 = 0$, and so $\delta_{2} = 0$.

This is a graphical demonstration of the well known fact that a normal curve has no skewness.

3. Kurtosis

There are two measures of kurtosis. The first of these is an algebraic measure, K in Snedecor and Cochran (1980, p. 79), where $K = (x-\mu)^4/0^4$ (see also Inman, 1952, p. 140). Inman (1952, p. 138) states that "There appears to be no simple graphic analogy for this moment". He therefore defines a new graphical estimate of kurtosis which he calls the phi kurtosis measure (B_{ϕ}) . $B_{\phi} = \frac{1}{2} (a_1 + a_5)/0_{\phi}$. For a normal curve Snedecor and Cochran K = 3.0 (Snedecor and Cochran 1980, p. 79; Inman, 1952, p. 140) and Inman's $B_{\phi} = 0.65$ (Inman, 1952, p. 138). If the distribution is less peaked than a normal curve K \swarrow 3.0 and $B_{\phi} \gtrsim 0.65$.

4. Standard deviation

-.

All curves on an Inman plot have a standard deviation defined as:

$$\int_{\mathcal{B}} = \frac{1}{2} a_2$$

This is true whether the curves are normal or not. The values of these parameters for the arbitrarily chosen straight lines in Appendix I, Figure 1, are shown in Appendix I, Table 17. Appendix I: Figure 1

.

Inman plot for four arbitrarily chosen straight lines each of which represents a different particle size distribution (normal).

;

•

APPENDIX I: TABLE 17. Four arbitrarily chosen straight lines (normally distributed particle size).

Parameters obtained from Appendix I, Figure 1 using Inman's (1952) graphical method.

Nomenalatura	Definition	Line's graph data					
Nomenciature	Definition	(1)	(2)	(3)	(4)		
phi median diameter	$Md_{\mathcal{S}} = \mathscr{S}_{50}$	-0.85	-0.35	+0.05	+1.85		
phi mean diameter	$M_{g} = Md_{g} + a_{3}$	-0.85	-0.35	+0.05	+1.85		
Deviation measure) (standard deviation)	$\int_{\mathscr{B}} = \frac{1}{2} a_2$	0.775	1.2	1.6	0.5125		
Skewness	$\alpha_{g} = a_{3}/\delta_{g}$	0	0	0	0		
Second skewness	$\propto_2 \alpha = a_4 / 0_{\beta}$	0	0	0	0		
Kurtosis	$\beta_{g} = \frac{1}{2} (a_1 + a_5) / 0_{g}$	0.65	0.65	0.66	0.68		

APPENDIX I

Transformation of & scale for particle size to jum

 \mathscr{S} units and μ m can be transformed from one to the other, since $\mathscr{S} = -\log_2(\mu)$ where μ m is the diameter of the particle.

(i) $0 \longrightarrow \mu m$

$$\beta' = -\log_2 (mm)$$

 $-\beta' = \log_2 (nm)$
 $2^{-\beta'} = 2^{\log_2} (mm)$
 $2^{-\beta'} = mm$
 $\frac{1}{2^{\theta'}} = mm$
 $\frac{1}{2^{\theta'}} \times 1000 = \mu m ----- (1)$

This transformation is easy because powers of 2 are involved and most hand calculators have an x^y function, in which case x = 2and $y = \mathcal{N}$.

(ii) $\underline{un \longrightarrow \mathscr{N}}$

From (1)

$$\frac{\mu m}{1000} = \frac{1}{2^{10}} = 2^{-10}$$

$$\log_2\left(\frac{\mu m}{1000}\right) = \log_2\left(2^{-10}\right)$$

$$\log_2\left(\frac{\mu m}{1000}\right) = -8^{10}$$

$$-\log_2\left(\frac{\mu m}{1000}\right) = -8^{10}$$
(2)

However, there is no log₂ function on most hand calculators. Hence one has to use the general relationship:

$$\log_{n} (\boldsymbol{\chi}) = \frac{\log_{m} (\boldsymbol{\chi})}{\log_{m} (n)}$$

which becomes

.

.

•

$$\log_2 (X) = \frac{\log_{10} (X)}{\log_{10} (2)}$$

when n = 2 and m = 10

in equation (2) $= \frac{\mu m}{1000}$, and so

(2) becomes

•

$$-\log_{2}\left(\frac{\mu m}{1000}\right) = -\left(\frac{\log_{10}\left(\frac{\mu m}{1000}\right)}{\log_{10}(2)}\right) = \emptyset \quad (3)$$

APPENDIX II

.

t

.

,

APPENDIX II: TABLE 1. Two-way analysis of variance of the suspended weights of Langbank (LEM) and Rockware (RWS) sediments, removed with successive equal volumes of liquid at different time intervals (5, 10, 20, 40, 60 and 120 seconds), which was measured to determine the sampling times.

Factors		Sum of squares	Means squares	D.F	F-ratio	Probability
A-factor	lbm Rws	7.111	7.111	1	1252.0	
B-factor	times	13.28	2.657	5	467.7	
Interaction		5.252	1.050	5	184.9	P ∠ 0.001
Error		0.1363	0.005680	24		
Total		25.78		35		

t

APPENDIX II: TABLE 2. Experiment assessing best volumes for sediment sampling in the sedimentation experiments. Two-way analysis of variance of weights (mg/ml) of Langbank (LBM) and Rockware (RWS) sediments removed with different volumes (Factor B) at 5 seconds after inversion.

. . .

Factors		Sum of squares	Mean squares	D.F	F-ratio	Probability
A-factor	LBM RWS	0.0007224	0.0007224	1	7.636	
B-factor	different volumes	0.02851	0.007128	4	75.35	
Inter	action	0.001217	0.0003044	4	3.218	0.025>P>0.01 **
Error		0.01797	0.00009460	190		
Total		4.842		199		

APPENDIX II: TABLE 3. Means and standard deviations of % water contents of wet and dry sediments, after being kept at the appropriate temperature 24 hours before use in the experiment at the required temperature.

Temperature	Sediment type	Means and standard deviation	Number of replicates
5 [°] C	dry	0.2427 <u>+</u> 0.05280	3
	wet	29.65 <u>+</u> 0.9601	3
10 ⁰ C	dry	0.5383 <u>+</u> 0.1176	3
	wet	30.60 <u>+</u> 0.4450	3
20 ⁰ C	dry	0.5517 ± 0.06019	3
	wet	30.92 ± 0.6035	3

1

ŧ

APPENDIX II: TABLE 4. Langbank sediment. Two-way anovar on suspended weights.

Factor A: Control/ashed/acid-cleaned;

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

Factors		Sum of squares	Mean squares	D.F	F-ratio	Probability
A-factor	treatments	0.001550	0.0007749	2	213.6	
B-factor	time	0.0007960	0.0001592	5	43.87	
Interactions		0.0002713	0.00002713	10	7.477	P 🗸 0.001 *****
Error		0.0005878	0.000003628	162		-
]	Total	0.003205		179		

.

٠

APPENDIX II: TABLE 5. Ardmore sediment. Two-way anovar on suspended weights.

Factor A: Control/ashed/acid-cleaned;

.

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

Factors		Sum of squares Ss	Mean squares Ms	D.F	F-ratio	Probability
A-factor	Control ashed acid-cleaned	0.001409	[.] 0.0007046	2	396.1	
B-factor		0.0008612	0.0001722	5	96.83	
Interaction		0.0003529	0.00003529	10	19.84	P < 0.001 *****
Error		0.0002882	0.000001779	162 .		
Total		0.002911		179		

APPENDIX II: TABLE 6. Rockware sediment. Two-way anovar on suspended weights.

Factor A: Control/ashed/acid-cleaned;

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

Fact	cors	Sum of squares	Mean squares	D.F	F-ratio	Probability
A-factor	treatment	0.00002512	0.00001256	2	3.750	
B-factor	Time interval	0.0004711	0.00009422	5	28.13	
Intera	action	0,00005759	0.000005759	10	1.919	0.05>P>0.025 *
Err	cor	0.0005426		162		-
Total		0.001096		179		

APPENDIX II: TABLE 7. Control sediment: two-way anovars on suspended weights.

Factor A: Langbank, Ardmore and Rockware sediments.

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

Factors		Sum of squares Ss	Mean squares Ms	D.F	F-ratio	Probability
A-factor	RWS LBM ARD	0.001455	0.0007274	2	121.0	
B-factor	Time	0.001899	0.0003798	5	63.15	
Interaction		0.0001378	0.00001378	10	2.291	0.025 > P > 0.01 **
Error		0.0009743	0.000006014	162		
Total		0.004466		179		

APPENDIX II: TABLE 8. Ashed sediments: two-way anovars on suspended weights.

Factor A: Langbank, Ardmore and Rockware sediments.

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

Factors		Sum of squares	Mean squares	D.F	F-ratio	Probability
A-factor	LBM RWS ARD	7.664	3.832	2	2.686	
B-factor	Time	240.5	48.10	5	33.71	
Interaction		24.24	2.424	10	. 1.699	0.10>P>0.05
Error		231.2	1.427	162		
Total		503.6		179		

t

APPENDIX II: TABLE 9. Acid-cleaned sediments: two-way anovars on suspended weights.

Factor A: Langbank, Ardmore and Rockware sediments.

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

Factors		Sum of squares	Mean squares	D.F	F-ratio	Probability														
A-factor	LBM ARD RWS	199.4	99.72	2	59.14															
B-factor	Time	421.0	84.20	5	49.94															
Interaction		59.72	5.972	10	3.542	P < 0.001 ******														
Error		273.1	1.686	162																
Total		953.3		179																
APPENDIX	111	TABLE	10.	Original	data	of auspen	ded weights	(mg	/m1) o	ľ wet	and dr)	/ Langba	ank s	Bediment	during	aedimo	entatio	on at t	three di	fferent
----------	-------	---------	--------	-----------------------	-------	-----------	-------------	-----	--------	-------	----------	----------	-------	----------	---------	---------	---------	---------	----------	---------
tem	eratu	res (5,	10 and	1 20 ⁰ C),	three	different	salinities	(0,	50 an	1 100	Z) and a	nt six (time	interval	s (5, 1	10, 20,	40, (60 and	120 sec	:onds).
(R	= re	plicate	s.)																	

4

		1	s ^o c					T		10	່າ້ີເ			20°C					
Time	R		Wet		1	Dry		1	Wet		1	Dry			Wet			Dry	
(secs)		02	50%	1002	07	502	1002	02	50%	1002	07	502	1002	07	502	1007	02	502	1002
5	1	4.000	10.50	15.53	0.7750	2.075	8.825	5.600	10.50	20.08	0.8500	7.775	11.58	0.9750	2.575	9.325	0.09500	1.475	2.975
	2	4.050	11.03	20.03	0.5250	2.500	5.275	5.050	10.05	22.53	0.6750	8.000	10.00	0.9250	2.250	4.975	0.07500	1.425	2.825
	3	3.975	10.00	12.25	0.4750	2.125	9.025	5.575	6.775	25.08	0.7500	4.050	11.03	0.9500	2.250	9.400	0.09500	1.400	2.800
	4	4.025	15.03	15.60	0.4500	1.975	9.525	7.580	10.05	20.03	0.7750	6.700	15.00	0.9750	2.475	8.875	0.10000	1.450	2.800
	5	4.025	7.775	15.55	0.5250	1.975	9.000	5.050	17.78	17.55	0.2950	6.175	7.775	0.9500	2.350	4.975	0.07500	1.350	2.650
10	1	3.550	9.275	15.58	0.5250	1.525	7.025	7.775	10.08	15.00	C.9750	2.825	5.575	0.7500	1.650	7.275	0.06500	1.050	2.300
	2	3.425	8.775	14.50	0.7500	1.975	6.775	2.125	13.50	22.58	0.5000	7.775	6.000	0.7000	1.475	6.600	0.05000	1.025	2.250
	3	2.975	10.03	15.58	0.4750	1.575	7.000	2.100	11.60	15.03	0.4750	9.975	2.975	0.7750	1.525	4.975	0.05500	0.9750	2.100
	4	3.425	7.275	14.53	0.4750	1.850	6.975	3.050	6.000	10.03	0.9750	6.725	2.975	0.7750	1.575	6.625	0.05500	1.000	1.975
	5	3.035	8.200	14.78	0.4750	1.625	6.525	2.100	6.525	15.58	0.2250	2.750	6.775	0.7500	1.600	5.025	0.05500	1.000	2.000
20	1	2.075	2.975	13.03	0.2000	0.7750	5.500	2.100	8.050	11.18	0.0750	3.500	1.050	0.4500	1.275	2.250	0.05000	0.5500	1.050
	2	1.525	3.125	11.50	0.2250	0.5250	6.025	1.575	7.875	6.175	0.0500	2.750	1.000	0.4750	1.050	2.525	0.04500	0.5250	1.325
	3	1.875	4.025	15.03	0.2000	0.5000	6.275	2.100	7.025	10.00	0.1250	4.625	1.575	0.5000	1.175	2.025	0.04500	0.5750	1.425
	4	2.050	4.000	9.975	0.1750	0.7250	5.525	1.525	7.925	15.03	0.1750	2.750	1.075	0.4500	1.025	2.200	0.05000	0.5250	1.000
	5	2.050	4.050	12.53	0.2000	0.6250	5.975	1.275	5.275	10.53	0.1750	4.375	1.250	0.5000	1.275	2.000	0.05000	0.5500	1.250
40	1	1.550	2.000	5.575	0.2000	0.2750	4.275	0.7250	7.275	10.00	0.07500	2.225	1.050	0.3500	0.7250	1.250	0.03500	0.3500	0.5500
	2	1.475	1.875	5.000	0.2000	0.3250	3.025	0.6750	2.925	11.50	0.05000	1.775	1.000	0.3250	0.6000	0.9750	0.04500	0.3750	0.6750
	3	1.525	1.800	4.350	0.1750	0.2500	2.600	0.3750	7.025	10.53	0.02500	2.875	1.500	0.2500	0.5250	0.9250	0.04500	0.3000	0.4750
	4	1.525	1.475	1.175	0.1750	0.3000	2.775	0.4750	2.975	10.00 ⁻	0.04500	3.125	0.6750	0.2750	0.6000	1.000	0.04000	0.3250	0.4500
	5	1.475	1.750	3.275	0.1500	0.3000	2.500	1.075	8.000	10.58	0.10000	2.375	1.250	0.3000	0.5500	. 0.9750	0.04000	0.3500	0.4250
60	1 2 3 4 5	1.250 0.9750 1.025 1.000 1.075	0.6000 0.5750 0.5500 0.5250 0.5750	0.8750 0.6750 0.5250 1.175 0.9750	0.1250 0.1300 0.1750 0.1300 0.1000	0.2750 0.2500 0.2250 0.2000 0.2500	1.075 1.025 0.9750 0.9750 0.8250	0.6750 0.3750 0.4750 0.4500 0.4000	2.075 1.600 2.050 1.800 2.025	6.675 7.525 2.775 10.53 7.750	0.05000 0.02500 0.02500 0.02500 0.05000 0.00200	0.2750 0.2750 0.1750 0.2250 0.2250	0.5000 0.2500 0.2750 0.7500 0.5000	0.0750 0.1000 0.1250 0.07500 0.1000	0.3500 0.3750 0.3250 0.4000 0.3500	0.5250 0.4250 0.4500 0.5000 0.5250	0.01000 0.01500 0.01500 0.00500 0.01000	0.2250 0.2250 0.2000 0.2500 0.2250	0.3750 0.3500 0.3500 0.3000 0.3750
120	1	1.000	0.05000	0.2500	0.01000	0.2250	0.5250	0.2750	1.125	6.175	0.00500	0.0500	0.1000	0.05000	0.05000	0.0550	0.00500	0.01000	0.02500
	2	1.025	0.04500	0.5750	0.01000	0.2750	0.4250	0.3000	1.600	8.750	0.01000	0.0250	0.1500	0.04500	0.04500	0.1000	0.00200	0.01500	0.02500
	3	0.8750	0.07500	0.2500	0.00500	0.1500	0.4500	0.2500	0.6000	7.775	0.00200	0.0750	0.0750	0.02500	0.04500	0.0500	0.00200	0.01000	0.05000
	4	0.9000	0.07500	0.3250	0.00200	0.2250	0.4000	0.2250	1.100	2.750	0.00200	0.0500	0.0750	0.02500	0.05500	0.0500	0.01000	0.01000	0.05000
	5	0.9000	0.07500	0.3000	0.00200	0.2000	0.4500	0.2250	1.575	2.750	0.01000	0.0500	0.1000	0.02500	0.05500	0.0750	0.01000	0.01000	0.05000

,

.

.

APPENDIX II: TABLE 11. Langbank sediment. Two-way anovar on suspended weight (mg/ml) at 5°C and 0% salinity.

Factor A: Wet/dry sediments.

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

Factors		Sum of squares Ss	D.F	Mean squares Ss/D.F	F-ratio	Probability
A-factor	Wet sediment Dry sediment	0.0002058	1	0.0002058	358 511	-
B-factor	Time	0.0001084	5	0.00002178	377.65	-
Interaction		0,00005385	5	0.00001077	187.63	P ∠ 0.001 *****
Error		0.000002755	48	0.0000005740		
Total		0.0003708	59	_		

APPENDIX II: TABLE 12. Langbank sediment. Two-way anovar on suspended weights (mg/ml) at 5°C and 50% salinity.

Factor A: Wet/dry sediment.

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

Factors		Sum of squares Ss	D.F	Mean squares Ss/D.F	F-ratio	Probability
A-factor	Wet sediment Dry sediment	0.0006983	1	0.0006983	246.36	
B-factor	Time	0.001426	5	0.0002853	100.64	
Interaction		0.0006751	5	0.0001350	47.64	P∠ 0.001 *****
Error		0.0001361	48	0.00002834		
Total		0.002936	59			

46%

APPENDIX II: TABLE 13. Langbank sediment. Two-way anovar, on suspended weights (mg/ml) at 5°C and 100% salinity.

Factor A: Wet/dry sediments.

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

Factors		Sum of squares Ss	D.F	Mean squares Ss/D.F	F-ratio	Probability
A-factor	Wet sediment Dry sediment	0.0008653	1	0.0008653	142.08	
B-factor	Time	0.005374	5	0.001075	176.47	
Interaction		0.0007894	5	0.0001579	. 25.92	P ∠ 0.001 *****
Error		0.0002923	48	0.00006090		
Total		0.007321	59			

• ·

APPENDIX II: TABLE 14. Langbank sediment. Two-way anovar on suspended weight (mg/ml) at 10°C and 0% salinity.

Factor A: Wet/dry sediments.

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

Factors		Sum of squares Ss	D.F	Mean squares Ss/D.F	F-ratio	Probability
A-factor	Wet sediment Dry sediment	0.0003606	1	0.0003606	10.25	
B-factor	Time	0.0007744	5	0.0001549	4.403	
Interaction		0.0005820	5	0.0001164	3.309	0.025 > P > 0.01 **
Error		0.001689	48	0.00003518		
Total		0.003405	59			

APPENDIX II: TABLE 15. Langbank sediment. Two-way anovar on suspended weights (mg/ml) at 10°C and 50% salinity.

Factor A: Wet/dry sediments.

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

-- -

.

Factors		Sum of squares Ss	D.F	Mean squares Ss/D.F	F-ratio	Probability
A-factor	Wet sediment Dry sediment	0.0004612	1	0.0004612	25.75	
B-factor	Time	0.002076	5	0.0004152	23.18	
Int	eraction	0.0001327	5	0.00002653	1.481	0.25>P>0.10
Error		0.0008598	48	0.00001791		
Total		0.003530	59			

•

APPENDIX II: TABLE 16. Langbank sediment. Two-way anovar on suspended weights (mg/ml) at 10^oC and 100% salinity.

Factor A: Wet/dry sediments.

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

Factors		Sum of squares Ss	D.F	Mean squares Ss/D.F	F-ratio _.	Probability
A-factor	Wet sediment Dry sediment	0.003970	1	0.003970	178.52	• .
B-factor	Time	0.005261	5	0.001052	47.32	
Interaction		0.0003068	5	0.00006136	2.759	0.05>P>0.025 *
Error		0.001067	48	0.00002224		
Total		0.01061	59			

APPENDIX II: TABLE 17. Langbank sediment. Two-way anovar on suspended weights (mg/ml) at 20°C and 0% salinity.

٠

2

Factor A: Wet/dry sediments.

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

Factor		Sum of squares Ss	D.F	Mean squares Ss/D.F	F-ratio	Probability
A-factor	Wet sediment Dry sediment	0.00009298	1	0.000009298	6332.63	
B-factor	Time	0.00007779	5	0.000001556	1059.62	
Interaction		0.000005630	5	0.000001126	766.90	P ∠ 0.001 *****
Error		0.0000007048	48	0.0000001468		
Total		0.00002278	59			

APPENDIX II: TABLE 18. Langbank sediment. Two-way anovar on suspended weights (mg/ml) at 20°C and 50% salinity.

Factor A: Wet/dry sediments.

.

Factor : Time intervals (5, 10, 20, 40, 60 and 120 seconds).

• •

Factor		Sum of squares Ss	D.F	Mean squares Ss/D.F	F-ratio	Probability
A-factor	Wet sediment Dry sediment	0.00001094	1	0.00001094	647.16	
B-factor	Time	0.00009635	5	0.00001927	1139.9	
Interaction		0.000006011	5	0.000001202	71.12	P ∠ 0.001 *****
Error		0.0000008114	48	0.0000001690		
Total		0.0001141	59			

APPENDIX II: TABLE 19. Langbank sediment. Two-way anovar on suspended weights (mg/ml) at 20°C and 100% salinity.

Factor A: Wet/dry sediments.

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

Factors		Sum of squares Ss	D.F	Mean squares Ss/D.F	F-ratio	Probability
A-factor	Wet sediment Dry sediment	0.0001769	1	0.0001769	79.84	
B-factor	Time	0.0008971	5	0.0001794	81.00	· · ·
Interaction		0.0002115	5	0.00004230	19.10	P ∠ 0.001 *****
Error		0.0001063	48	0.000002215		
. Total		0.001392	59			·

APPENDIX II: TABLE 20. Comparison of wet and dry Langbank sediment by one-way anovars of suspended weights (mg/ml) at the six different time intervals: 0% salinity, 5°C data.

Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
	Main	30.02	30.02	1	3394.0	P ∠ 0.001
5	Error	0.07075	0.008844	8		
	Total	30.09		9		sisisisi
	Main	18.80	18.80	1	462.7	P L 0.001
10	Error	0.3250	0.04062	8		
	Total	19.12		9	<i>.</i>	******
	Main	7.353	7.353	1	271.1	Р ८ 0.001
20	Error	0.2170	0.02713	8		
	Total	7.570		9		totetete
	Main	4.422	4.422	1	5660.5	р ८ 0.001
40	Error	0.006250	0.0007813	8		
	Total	4.429		9		******
	Main	2.139	2.139	1	332.3	P 🗸 0.001
60	Error	0.05150	0.006438	8	·	
	Total	2.191		9		*****
	Main	2.182	2.182	1	953.0	₽ ८ `0.001
120	Error	0.01831	0.002289	8		
	Total	2.200		9		****

•

APPENDIX II: TABLE 21. Comparison of wet and dry Langbank sediment by one-way anovars of suspended weight at the six different time intervals: 50% salinity, 5°C data.

(secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
	Main	190.8	190.8	1	54.60	P 🗶 0.001
5	Error	27.95	3.494	8		
	Total	218.7		9		સંસંસ્ટ્રેલ્સ
	Main	122.5	122.5	1	216.7	P 🗶 0.001
10	Error	4.522	0.5652	8		
	Total	127.0		9		stestestestest
	Main	22.58	22.58	1	149.1	P∠0.001
20	Error	1.211	0.1512	8		
	Total	23.79		9		sinininini Marininini
	Main	5,550	5.550	1	286.5	P ∠ 0.001
40	Error	0.1550	0.01938	8		
	Total	5.705		9		10000
	Main	0.2641	0.2641	1	325.0	P ∠ 0.001
60	Error	0,006500	0.0008125	8		
	Total	0.2706		9		initiati
	Main	0.06084	0.06084	1	53.37	P ∠ 0.001
120	Error	0.009120	0.001140	8		
	Total	0.06996		9		*****

APPENDIX II: TABLE 22. Comparison of wet/dry Langbank sediment by one-way anovars of suspended weight at the six different time intervals: 100% salinity, 5°C data.

				And and the Owner of	the second s	
Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
	Main	139.2	139.2	1	26.14	P L 0.001
5	Error	42.61	5.326	8		
	Total	181.8		9		זרוכוכוכו
	Main	165.4	165.4	1	964.9	Р ८ 0.001
10	Error	1.371	0.1714	8		
	Total	166.8		9		*****
	Main	107 /	107 /	1	59.33	P ∠ 0.001
20	Fare	1/ /7	1 800	8		
20	Total	101 0	T.003	0		****
	Total	177.0				
	Main	1.936	1.936	· 1	1.081	0.50>P> 0.25
40	Error	14.33	1.792	8		
	Total	16.27		9		
	Main	0.04225	0.04225	1	1.154	0.50>P>0.025
60	Error	0.2930	0.03663	8		ļ
	Total	0.3353		. 9		
	Main	0.03025	0.03025	1	2.951	0.25>P>0.10
120	Error	0.0820	0.01025	8		
	Total	0.1123		9		
I I		Ţ		1	l	1

APPENDIX II: TABLE 23. Comparison of wet/dry Langbank sediment by one-way anovars of suspended weight at the six different time intervals: 0% salinity, 10°C data.

Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
	Main	65.08	65.08	1	113.9	р Д 0.001
5	Error	4.570	0.5713	8		
	Total	69.65		9	•	sininini
	Main	19.60	19.60	1	6.346	0.05>P>0.025
10	Error	24.71	3.088	8		
	Total	44.31		9		*
	Main	6.360	6.360	1	91.06	Р Д 0.001
20	Error	0.5588	0.06984	8		
	Total	6.919		9		10000
	Main	0.9181	0.9181	1	24.87	0.005>P>0.001
40	Error	0.2954	0.03692	8		
	Total	1.213		9		******
	Main	0.4942	0.4942	1	68.30	P∠0.001
60	Error	0.05788	0.007235	8		
	Total	0.5521		9		ಸಂಧರ್
						·
	Main	0.1491	0.1491	1	188.9	р Д 0.001
120	Error	0.006315	0.0007894	8		
	Total	0.1554		9	•	******
i i	1 1	1	1	1 İ	l	l

APPENDIX II: TABLE 24. Comparison of wet/dry Langbank sediment by one-way anovars of suspended weight at the six different time intervals: 50% salinity, 10°C data.

Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
	Main	50.42	50.42	1	5.316	0.10> P> 0.05
5	Error	75.88	9.486	8		
	Total	126.3		9		
	Main	31.15	31.15	1	3.041	0.25> P> 0.10
10	Error	81.95	10.24	8		
	Total	113.1		9		
	Main	32.94	32.94	1	30.85	р Д 0.001
20	Error	8,542	1.068	8		
	Total	41.48		9		sectors
	Main	25.04	25.04	1	7.771	0.025>P>0.01
40	Error	25.78	3.222	8		
	Total	.50.82		9		***
	Main	6.972	6.972	1	318.3	р ८ 0.001
60	Error	0.1753	0.02191	8		
	Total	7.148		9		
	Main	3,306	3,306	1	39.04	P∠0.001
120	Error	0,6775	0.08469	8		
	.Total	3.984	0.00409	9		*****

APPENDIX II: TABLE 25. Comparison of wet/dry Langbank sediment by one-way anovars of suspended weight at the six different time intervals: 100% salinity, 10°C data.

						إنكاري ونبيها ويهوي والمتعار ومنظا فعالما الفالمان القامي ونعيد ويتفع والمتعار والمحد
Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
·	Main	248.9	248.9	1	32.98	P∠0.001
5	Error	60.37	7.546	8		
	Total	309.2		9		*******
	Main	290.6	290.6	1	24.98	0.005>P>0.001
10	Error	93.06	11.63	8		
	Total	383.7		9		stricter
	Main	220-6	220.6	1	43.98	Р Д 0.001
20	Frron	40.13	5 016	- 8		
	Total	260 7	5.010	0		restricte
	IOLAI	200.7		9		
	Main	222.2	222.2	1	945.2	P ∠ 0.001
40	Error	1.880	0.2350	8		
	Total	224.1		9		******
· ·	Main	108.8	108.8	1	27.70	P 🗸 0.001
60	Error	31.41	3,926	8		-
	Total	140.2		9		*****
	Total	24002				
	Main	76.73	76.73	1	19.66	0.005>P>0.001
120	Error	31.22	3.903	8		
	. Total	108.0		9		*****
				ļ	l	

:

APPENDIX II: TABLE 26. Comparison of wet/dry Langbank sediment by one-way anovars of suspended weight at the six different time intervals: 0% salinity, 20°C data.

Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
	Main	1.879	1.879	1	6452.3	р ८ 0.001
5	Error	0.00233	0.0002913	8		
	Total	1.882		9		*****
	Main	1.208	1.208	1	2477.1	P 🗸 0.001
10	Error	0.0039	0.0004875	8		
	Total	1.211		9		*****
	Main	0.4580	0.4580	1	1448.1	P 🗸 0.001
20	Error	0.00253	0.0003163	8		
	Total	0.4605		9		******
	Main	0.1677	0.1677	1	212.3	P∠0.001
40	Error	0.00632	0.00079	8		
	Total	0.1740		9		******
	Main	0.01764	0.01764	1	77.54	P∠0.001
60	Error	0.00182	0.0002275	8		
	Total	0.01946		9		*****
	Main	0.001988	0.001988	1	23.23	P. < 0.001
120	Error	0.0006848	0.0000856	8		
	Total	0.002673		9		teketeke

APPENDIX II: TABLE 27. Comparison of wet/dry Langbank sediment by one-way anovars of suspended weight at the six different time intervals: 50% salinity, 20°C data.

Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
	Main	2.304	2.304	1	202.5	P ∠ 0.001
5	Error	0.091	0.01138	8		
	Total	2.395		9		*****
	Main	0.7701	0.7701	1	286.5	Р Д 0.001
10	Error	0.0215	0.002688	8		
	Total	0.7916		9		*****
	Main	0.9456	0.9456	1	128.8	Р L 0.001
20	Error	0.05875	0,007344	8		
	Total	1.004		9		*****
	Main	0.196	0.1690	1	50.07	P < 0.001
40	Error	0.169	0.003375	8		
	Total	0.027		9	1	******
	Main	0.04556	0.04556	1	81.00	P 🗸 0.001
60	Error	0.0045	0.0005625	8		
-	Total	0.05006		9		30,000
	Main	0.003423	0.003423	1	273.8	Р ८ 0.001
120	Error	0.0001	0.0000125	8		
	Total	0.003523		9		*****

· ¹

APPENDIX II: TABLE 28. Comparison of wet/dry Langbank sediment by one-way anovars of suspended weight at the six different time intervals: 100% salinity, 20°C data.

Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
	Main	55.23	55.23	1	20.42	0.005> P> 0.001
5	Error	21.64	2.704	8		
	Total	76.86		9		*******
	Main	38.71	38.71	1	68.60	P ∠0.001
10	Error	4.515	0.5643	8		
-	Total	43.23		9		******
	Main	2,450	2.450	1	63.33	Р 🗸 0.001
20	Error	0.3095	0.03869	8		
	Total	2.760		9		ichicicii
	Main	0-6503	0.6503	1	48.62	P∠0.001
40	Error	0.1070	0.01338	8		
~~	Total	0.7573		9		*******
· .	Main	0.04556	0,04556		30.38	P L 0.001
· 60	Frron	0_0120	0.0015	8		-
	Total	0.05756		9		sistericite
	GT					
	Main	0.002403	0.002403	1	7.336	0.05>P>0.025
120	Error	0.00262	0.0003275	8		·
	Total	0.005023		9		3°C
	9		· · · · · · · · · · · · · · · · · · ·	1		

t

APPENDIX II: TABLE 29. Langbank sediment. Two-way anovar on suspended weight of wet sediment at 20^oC.

Factor A: Different salinities.

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

Factors		Sum of squares Ss	Mean squares Ss/D.F	D.F	F-ratio	Probability
A-factor	0% S 50% S 100% S	0.0003974	0.0001989	2	135.7	
B-factor	Time	0.0006275	0.0001255	5	85.69	
Interaction		0.0004474	0.00004474	10	30.55	P ∠ 0.001 *****
Error		0.0001055	0.000001465	72		
Tota	1.	0.001578		89	-	

APPENDIX II: TABLE 30. Langbank sediment. Two-way anovar on suspended weights of wet sediment at 10⁰C.

Factor A: Different salinities.

٠

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

Factors		Sum of squares Ss	Mean squares Ss/D.F	D.F	F-ratio.	Probability
A-factor	0% S 50% S 100% S	0.004729	0.002364	2	52.24	
B-factor	Time	0.005645	0.001129	5	24.95	-
Interac	tion	0.0007473	0.00007473	10	1.651	0.25>P>0.10
Error		0.003259	0.00004526	72.		
Total		0.01438		89		

APPENDIX II: TABLE 31. Langbank sediment. Two-way anovar on suspended weight of wet sediment at 5°C.

Factor A: Different salinities.

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

Factors		Sum of squares Ss	Mean squares Ss/D.F	D.F	F-ratio	Probability
A-factor	0% S 50% S 100% S	0.002162	0.001081	2	210.6	
B-factor	Time	0.005334	0.001067	5	207.9	
Interaction		0.001958	0.0001958	10	38.14	P∠0.001 *****
Error		0.0003695	0.000005133	72		
Total		0.009823		89		

۴.

•

APPENDIX II: TABLE 32. Langbank sediment. Two-way anovar on suspended weight of dry sediment at 20°C.

Factor A: Different salinities.

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

Factors		Sum of squares Ss	Mean squares Ss/D.F	D.F	F-ratio	Probability
A-factor	0% S 50% S 100% S	0.00007796	0.00003898	2	1609.14	
B-factor	Time	0.00009154	0.00001831	5	755.8	
Interaction		0.00005790	0.000005790	10	239.03	P∠ 0.001 *****
Error		0.000001744	0.0000002422	72		
Total		0.0002291		89		

APPENDIX II: TABLE 33. Langbank sediment. Two-way anovar on suspended weight of dry sediment at 10^oC.

Factor A: Different salinities.

.

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

					٠.	
Factors		Sum of Mean squares squares D.F Ss Ss/D.F		F-ratio	Probability	
A-factor	0% S 50% S 100% S	0.0006676	0.0003338	2	62.52	
B-factor	Time	0.001655	0.0003310	5	61.99	
Interaction		0.0009300	0.00009300	10	17.42	P∠ 0.001 *****
Error		0.0003844	0.000005339	72		•
Tota	al	0.003637		89		

.

APPENDIX II: TABLE 34. Langbank sediment. Two-way anovar on suspended weight of dry sediment at 5°C.

Factor A: Different salinities.

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

Factors		Sum of squares Ss	Mean squares Ss/D.F	D.F F-ratio		Probability
A-factor	0% S 50% S 100% S	0.001108	0.0005540	2	655.5	
B-factor	Time	0.0005942	0.0001188	5	140.6	
Interaction		0.0005354	0.00005354	10	63,35	P∠ 0.001 *****
Error		0.00006085	0.0000008451	72		
Total		0.002298		89		

· ·

.

APPENDIX II: TABLE 35. Comparison of suspended weight (mg/ml) in the three different salinities by one-way anovars, wet Langbank sediment, 5° C. Main factor = 0%, 50% and 100% salinity.

Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
	Main	349.7	174.9	2	35,93	P 🗸 0.001
5	Error	58.39	4.866	12		
	Total	408.1		14		
	Main	343.3	171.6	2	353.5	P 🗸 0.001
10	Error	5.827	0.4856	12		
	Total	349.1		14		******
	Main	316.8	158.4	2	123.8	P ∠ 0.001
20	Error	15.36	1.280	12		
	Total	332.2		14		*****
	Main	17.36	8.679	2	8.393	0.01>P>0.005
40	Error	12.41	1.034	12		
	Total	29.77		14		1000
	Main	0,6280	0.3140	2	12.17	0.005>P>0.001
60	Error	0.3095	0.02579	12		
	Total	0.9375		14		******
·						
	Main	2.025	1.0126	2	131.5	P ∠ 0.001
120	Error	0.09237	0.007698	12		
	Total	2.118		14		*****

ŧ

APPENDIX II: TABLE 36. Comparison of suspended weight (mg/ml) in the three different salinities by one-way anovars, wet Langbank sediment, 10° C. Main factor = 0%, 50% and 100% salinity.

Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
	Main	602.5	301.3	2	35.16	P∠0.001
5	Error	102.8	8,567	12		
	Total	705.3		14		******
	Main	372.7	186.4	2	15.26	P∠ 0.001
10	Error	146.5	12.21	12		
	Total	519.2		14		******
	Main	200.5	100.3	2	26.25	P∠0.001
20	Error	45.84	3.820	12		
	Total	246.4		14		******
						_ /
	Main	242.8	121.4	2	55.12	Р 🗸 0.001
40	Error	26.43	2.203	12		-9999
	Total	269.2		14		
	Main	119.5	59.76	2	22.81	P < 0.001
60	Error	31.43	2.619	12		
·	Total	150.9		14		*****
		00.70	41 20		15 57	P ∠ 0.001
	Main	02.78	41,39	10	10.07	
120	Error	31.90	2.059	12		*****
	Total	114./		14		

APPENDIX II: TABLE 37. Comparison of suspended weight (mg/ml) in the three different salinities by one-way anovars, wet Langbank sediment, 20°C. Main factor = 0%, 50% and 100% salinity.

Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
	Main	118.9	59.43	2	32.92	P∠0.001
5	Error	21.67	1.805	12		
	Total	140.5		14		*******
	Main	83.09	41.54	2	114.6	Р ८ 0.001
10	Error	4.350	0.3625	12		
	Total	87.44		14		
	Main	7.544	3.772	2	190.0	р ८ 0.001
20	Error	0.2383	0.0199	12		
	Total	7.782		14		statesteriete
	Main	1.327	0.6635	2	82.73	р < 0. 001
40	Error	0.09625	0.008021	12		
	Total	1.423		14		*****
	Main	0,3966	0.1983	2	179.6	P < 0.001
· 60	Error	0.01325	0.001104	12		
	Total	0.4098		14		*******
		0.002562	0.001292		6 008	0.025 > P > 0.01
100	Main	0.00256	0.0002122	12	0.000	
120	Total	0.00230	0.0002133	14		**
	IULAL	0.003123		74		

APPENDIX II: TABLE 38. Comparison of suspended weight (mg/ml) in the three different salinities by one-way anovars, dry Langbank sediment, 5° C. Main factor = 0%, 50% and 100% salinity.

Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
	Main	99.83	49.92	2	54.51	P ∠ 0.001
5	Error	9.157	0.9157	12		
	Total	109.0		14		*******
	Main	113.1	56.53	2	175.4	P 🗸 0.001
10	Error	0.3860	0.03217	12		
	Total	113.4		14		10000
	Main	99.29	49.64	2	115.6	P < 0.001
20	Error	0,5138	0.0428	12		
	Total	99.80		14		******
	Main	26.16	13.082	2	75.26	P ∠ 0.001
40	Error	2.086	0.1738	12		
	Total	28.25		14		statestesteste
	Main	2,079	1.040	2	300.6	P∠0.001
60	Error	0.04150	0.003458	12		
	Total	2.121		14		*****
		0 4039	0.2470		173.6	P 🗸 0.001
100	Main	0.01706	0.001/22	12	1/3.0	
120	LILOL Total	0.5100	0.001422	14		sectoristics
	Torar	0.1103		* 4		

ł

APPENDIX II: TABLE 39. Comparison of suspended weight (mg/ml) in the three different salinities by one-way anovars, dry Langbank sediment, 10° C. Main factor = 0%, 50% and 100% salinity.

				·		
Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
	Main	272.3	136.1	2	43.09	P∠ 0.001
5	Error	37.91	3.160	12		
	Total	310.2		14		*******
	Main	80.27	40.13	2	9.062	P∠ 0.001
10	Error	53.15	4.429	12		
	Total	133.4		14		<i>icicici</i> i
	Main	31.77	15.89	2	57.08	P∠ 0.001
20	Error	3.340	0.2783	12		
	Total	35.11		14		******
	Main	14.69	7.346	2	57.84	r 🗸 0.001
40	Error	1.524	0.1270	12		
	Total	16.22		14		******
	Main	0.4507	0.2254	2	15.53	Р ८ 0.001
. 60	Error	0.1741	0.01451	12		
	Total	0.6249		14		******
		-				
	Main	0.02221	0.01111	2	26.31	P∠ 0.001
120	Error	0.005065	0.0004221	12		
	Total	0,02728		14		******
				f 1	[]	

t

APPENDIX II: TABLE 40. Comparison of suspended weight (mg/ml) in the three different salinities by one-way anovars, dry Langbank sediment, 20°C. Main factor = 0%, 50% and 100% salinity.

- -----

Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
5	Main Error Total	18.53 0.06308 18.59	9.263 0.005257	2 12 14	1762.1	P∠0.001
10	Main Error Total	11.16 0.1904 11.35	5.582 0.01587	2 12 14	351.8	P∠ 0.001 *****
20	Main Error Total	3.405 0.1325 3.537	1.702 0.01104	2 12 14	154.1	P 🗸 0.001
40	Main Error Total	0.5745 0.04407 0.6186	0.2873 0.003673	· 2 12 14	78.22	P∠ 0.001 *****
60	Main Error Total	0.2939 0.005070 0.2990	0.1470 0.0004225	2 12 14	347.8	P < 0.001
1 20	Main Error Total	0.002462 0.0008796 0.003342	0.001231 0.00007330	2 12 14	16.80	P < 0.001 *****

APPENDIX II: TABLE 41. Langbank sediment. Two-way anovar on suspended weight of wet sediment at 0% salinity.

Factor A: Different temperatures.

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

Factors		Sum of squares Ss	Mean squares Ss/D.F	D.F	F-ratio	Probability
A-factor	5 ⁰ C 10 ⁰ C 20 ⁰ C	0.0003383	0.0001691	2	7.204	
B-factor	Time	0.0008913	0.0001783	5	7.593	
Interactions		0.0006156	0.00006156	10	2.622	0.05 > ₽ > 0.025 *
Error		0.001690	0.00002348	72		
Tota	1	0.003536		89		

APPENDIX II: TABLE 42. Langbank sediment. Two-way anovar on suspended weight of wet sediment at 50% salinity.

Factor A: Different temperatures.

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

۰.

Factors		Sum of squares Ss	Mean squares Ss/D.F	D.F	F-ratio	Probability
A-factor	5 ⁰ C 10 ⁰ C 20 ⁰ C	0.001585	0.0007923	2	82.83	
B-factor	Time	0.002824	0.0005648	5	59.05	
Interaction		0.0008597	0.00008597	10	8.988	P∠ 0.001 *****
Error _		0.0006887	0.000009565	72		
Total		0.005957		89		

1

APPENDIX II: TABLE 43. Langbank sediment. Two-way anovar on suspended weight of wet sediment at 100% salinity.

Factor A: Different temperatures

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

.

· .

.

Factors		Sum of squares Ss	Mean squares Ss/D.F	D.F	F-ratio	Probability
A-factor	5 ⁰ C 10 ⁰ C 20 ⁰ C	0.004592	0.002296	2	144.34	
B-factor	Time	0.008219	0.001644	5	103.35	
Interaction		0.001338	0.0001338	10	8.414	P∠ 0.001
Error		0.001145	0.00001591	72		
Total		0.01529		89		

APPENDIX II: TABLE 44. Langbank sediment. Two-way anovar on suspended weight of dry sediment at 0% salinity.

Factor A: Different temperatures.

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

•

.

.

•

Factors		Sum of squares Ss	Mean squares Ss/D.F	D.F	F-ratio	Probability
A-factor	5 ⁰ C 10 ⁰ C 20 ⁰ C	0.000003872	0.000001936	2	44.47	
B-factor	Time	0.00001038	0.000002075	5	47.68	
Interaction		0.000004379	0.000004379	10	10.06	P 🗸 0.001 *****
Error		0.000003134	0.0000004353	72		
Tota	1	0.00002176		89		

APPENDIX II: TABLE 45. Langbank sediment. Two-way anovar on suspended weight of dry sediment at 50% salinity.

Factor A: Different temperatures.

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

.

•

Factors		Sum of squares Ss	Mean squares Ss/D.F	D.F	F-ratio	Probability
A-factor	5 [°] C 10 [°] C 20 [°] C	0.0004749	0.0002375	2	78.00	
B-factor	Time	0.0005554	0.0001111	5	36.49	4
Interaction		0.0003114	0.00003114	10	10.23	P∠ 0.001 *****
Error		0.0002192	0.00003044	72		
Total		0.001561		89		

۱
APPENDIX II: TABLE 46. Langbank sediment. Two-way anovar on suspended weight of dry sediment at 100% salinity.

Factor A: Different temperatures.

Factor B: Time intervals (5, 10, 20, 40, 60 and 120 seconds).

Factors		Sum of squares Ss	Mean squares Ss/D.F	D.F	F-ratio	Probability
A-factor	5 ⁰ C 10 ⁰ C 20 ⁰ C	0.0005794	0.0002897	2 92.85		
B-factor	Time	0.002265	0.0004531	5	145.20	
Interaction		0.0007171	0.00007171	10	22.98	P∠ 0.001 *****
Error		0.0002247	0.000003120	72		
Total		0.003787		89		

APPENDIX II: TABLE 47. Comparison of the effect of the three different temperatures on suspended weight (mg/ml) by one-way anovars. Wet Langbank sediment, 0% salinity. Main factor = 5, 10 and 20°C.

Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
	Main	59.40	29.70	2	81.28	P∠ 0.001
5	Error	4.385	0.3654	12		
	Total	63.79		14		*****
	Main	22.69	11.35	2	5.549	0.025> P> 0.01
10	Error	24.54	2.045	12		
	Total	47.23		14		זרונ
	Main	6.085	3.043	2	47.79	Р ८ 0.001
20	Error	0.7640	0.06367	12		
	Total	6.849		14		sisteriois
						- / 0 003
	Main	3.852	1.926	2	76.35	P < 0.001
40	Error	0.3028	0.02523	12		.11
	Total	4.155		14		XXXXXX
	Main	2.389	1.195	2	134.9	Р < 0.001
60	Error	0.1063	0.008854	12		
	Total	2.495		14		strictics
	Main	2,239	1,120	·	53.9	P∠0.001
120	Frror	0.02512	0,002003	12		
120	Total	2 264	0.002033	1/		*****
	IULAI	20204		***		

APPENDIX II: TABLE 48. Comparison of the effect of the three different temperatures on suspended weight (mg/ml) by one-way anovars. Wet Langbank sediment, 50% salinity. Main factor: 5, 10 and 20°C.

Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
	Main	244.7	122.4	2	15.68	р ८ 0.001
5	Error	93.64	7.804	12		
	Total	338.4		14		<i>wiekter</i>
	Main	192.3	96.16	2	24.99	р ८ 0.001
10	Error	46.17	3.837	12		
	Total	238.5		14		*****
	Main	93.16	46.58	2	84.11	P∠0.001
20	Error	6.646	0.5538	12		
	Total	99.80		14		*****
	Main	69.49	34.74	2	16.81	P < 0.001
40	Error	24.81	2.068	12	-	
	Total	94.30		14		kricherierie
	Main	7.089	3,545	2	243.4	P < 0.001
60	Error	0.1748	0.01456	12		
•	Total	7.264		14		<i>ininini</i>
	Main	4.378	2.189	2	38,79	P∠ 0.001
120	Error	0.6772	0.05643	12		
26 V	Total	5.055		14		*****

APPENDIX II: TABLE 49. Comparison of the effect of the three different temperatures on suspended weight (mg/ml) by one-way anovars. Wet Langbank sediment, 100% salinity. Main factor = 5, 10 and 20°C.

Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
	Main	465.9	233.0	2	32.95	P ∠ 0.001
5	Error	84.84	7.070	12		
	Total	550.8		14		sessistesie
	Main	284.1	142.1	2	19.84	Р Д 0.001
10	Error	85.93	7.160	12		
	Total	370.0		14		*******
	Main	296.4	148.2	2	32.92	P∠0.001
20	Error	54.02	4.502	12	2	
	Total	350.4		14		sestesteste
	Main	236.9	118.4	2	102.8	р 🗸 0.001
40	Error	13.82	1.152	12		
	Total	250.7		14		krkick
	Main	136.2	68.11	. 2	25.97	р Д 0.001
60	Error	31.47	2.623	12		
	Total	167.7		14		sistestest
	Main	98.72	49,36	2	18.93	Р 🗸 0.001
120	Error	31.30	2.608	12		
	Total	130.0		14		זרירורינינ

APPENDIX II: TABLE 50. Comparison of the effect of the three different temperatures on suspended weight (mg/ml) by one-way anovars. Dry Langbank sediment, 0% salinity. Main factor: 5, 10 and 20°C.

Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
	Main	88.84	44.42	2	114.9	р ८ 0.001
5	Error	4.638	0.3865	12		
	Total	93.48		14		stricticites
	Main	0.9566	0.4783	2	11.48	0.005>P>0.001
10	Error	0.5002	0.04168	12		
	Total	1.457		14		ಕುಂದರ್ಶ
	Main	0.05856	0.02928	2	24.61	P∠0.001
20	Error	0.01428	0.001190	12		
	Total	0.07284		14		****
	Main	0.05714	0.02857	2	66.06	P∠0.001
40	Error	0.005190	0.0004325	12		
	Total	0.06233		14		*****
	Main	0.04838	0.02419	2	58.61	р Д 0.001
· 60	Error	0.004953	0.0004128	12		-
	Total	0.05334		14		*******
	Main	0.0000	0.0	2	· 0	P > 0.75
120	Error	0.0001944	0.00001620	12		
	Total	0.0001944		14		

APPENDIX II: TABLE 51. Comparison of the effect of the three different temperatures on suspended weight (mg/ml) by one-way anovars. Dry Langbank sediment, 50% salinity. Main factor = 5, 10 and 20°C.

Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
	Main	76.94	38.47	2	45.20	P∠ 0.001
5	Error	10.21	0.8511	12		
-	Total	87.16		14		*****
	Main	73.30	36.65	2	10.92	0.005>P>0.001
10	Error	40.27	3.356	12		
	Total	113.6		14		*****
		20.27	15 12		57 34	P∠0.001
	Main	30.2/	0.3030	4	ەد، بر	
20	Error	3.100	0.2038	12		*****
	Total	33.43		14		
	Main	15.56	7.779	2	81.07	P ∠0.001
40	Error	1.152	0.09596	12		
	Total	16.71		14		*****
						-
	Main	0.000750	0.0003750	2	0.3913	0.75>P>0.50
60	Error	0.01150	0.0009583	12		
	Total	0.01225		14		
			0.05000		70.00	P / 0 001
	Main	0.1165	0.05823	2	/3.32	. C 0.001
120	Error	0.009530	0.0007942	12		abalaala ah
	Total	0,1260		14		ллллл

APPENDIX II: TABLE 52. Comparison of the effect of the three different temperatures on suspended weight (mg/ml) by one-way anovars. Dry Langbank sediment, 100% salinity. Main factor: 5, 10 and 20°C.

Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
	Main	177.2	88.60	2	26.78	P 🗸 0.001
5	Error	39.70	3.308	12		
	Total	216.9		14		*****
	Main	55.51	17.76	2	25.72	P 🗸 0.001
10	Error	12.95	1.079	12		
	Total	68.46		14		र्भताव राजाव रह
	Main	72,39	36.19	2	538.9	P∠0.001
20	Error	0.8060	0.06717	12		
	Total	73.19		14		******
	Main	17.34	8.672	2	42.73	P ∠ 0.001
40	Error	2.436	0.2030	12		
	Total	19.78		14		*****
	Main	1.120	0,5600	2	32.90	P < 0.001
. 60	Error	0.2043	0.01702	12		
	Total	1.324		14		*****
	Main	0.4983	0.2491	2	225.6	р ८ 0.001
120	Error	0.01325	0.001104	12		-
	Total	0.5115		14		sesence r

APPENDIX II: TABLE 53. Comparison of the suspended sediment (mg/ml) at the six different time intervals by one-way anovars. Langbank sediment: 5°C.

Salinity	Sediment	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
		Main	39.30	7.861	5	338.1	P∠ 0.001
	Wet	Error	0.5580	0.02325	24		
07		Total	39.86		29		*****
0%		Main	1.257	0.2514	5	46.11	P∠ 0.001
	Dry	Error	0.1308	0.005452	24		
		Total	1.388		29		*****
		Main	506.4	101.3	5	72.68	P ∠ 0.001
	Wet	Error	33.44	1.393	24		
50%		Total	539.8		29		*****
50%		Main	17.57	3.513	5	205.5	Р ८ 0.001
	Dry	Error	0.4103	0.01709	24		
		Total	17.98		29		*****
		Main	1278.2	255.6	5	104.9	P∠0.001
	Wet	Error	58.47	2.436	24		
100%		Total	1336.7	-	29		*****
100%		Main	263.5	52.69	5	86.05	P∠ 0.001
	Dry	Error	14.70	0.6124	24		
		Total	278.2		29		*****

APPENDIX II: TABLE 54. Comparison of the suspended sediment (mg/ml) at the six different time intervals by one-way anovars. Langbank sediment: 10°C.

Salinity	Sediment	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
		Main	117.5	23,50	5	19.09	P ∠ 0.001
	Wet	Error	29.54	1.231	24		
		Total	147.1		29		*****
0%		Main	2.409	0.4817	5	17.74	Р 🗸 0.001
	Dry	Error	0.6517	0.02715	24		
		Total	3.060		29		*****
		Main	396.0	79.19	5	13.72	P ∠ 0.001
	Wet	. Error	138.5	5.773	24		
507		Total	534.5		29		*****
50%		Main	192.0	38.41	5	16.95	P ∠ 0.001
	Dry	Error	54.39	2.266	24		
		Total	246.4		29		*****
		Main	820.1	164.0	5	18.15	P∠0.001
	Wet	Error	216.9	9.038	24		
1007		Total	1037.0		29		*****
100%		Main	451.9	90.37	5	52.83	P∠0.001
	Dry	Error	41.05	1.711	24		
		Total	492.9		29		*****

APPENDIX II: TABLE 55. Comparison of the suspended sediment (mg/ml) at the six different time intervals by one-way anovars. Langbank sediment: 20°C.

Salinity	Sediment	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
		Main	3.329	0,6659	5	961.5	P L 0.001
	Wet	Error	0.01662	0.0006925	24		
04		Total	3.346		29		*****
U4		Main	0.02318	0.004636	5	111.3	P∠0.001
	Dry	Error	0.0009996	0.00004165	24		
		Total	0.02418		29.		*****
		Main	18.61	3.721	5	485.2	P 🗸 0.001
	Wet	Error	0.1841	0.007670 [.]	24		
507		Total	18.79	· · · · · · · · · · · · · · · · · · ·	29		*****
JU/ 6		Main	6.986	1.397	5	1785.4	P∠ 0.001
	Dry	Error	0.01878	0.0007825	24		
		Total	7.004		29		*****
		Main	246.8	49.36	5	45.28	P 🗸 0.001
	Wet	Error	26.16	1.090	24		
100%		Total	273.0		29		*****
100%		Main	30,35	6.070	5	350.0	P∠0.001
	Dry	Error	0.4163	0.01734	24		
		Total	30.77		29		*****

APPENDIX II: TABLE 56. Application of three equations to the data of the suspended weights obtained at the three different temperatures, three different salinities, and wet and dry Langbank sediment to obtain the best fit.

والاردار بالابر الاستياري

	Factors		y = a + bx			y = ae ^{bx}			y = ax ^b		
Temperature	Salinity	Sediment type	Equation	R	R rank	Equation	R	R rank	Equation	R	R rank
	oz	Wet Dry	y = 3.029 - 0.02289X y = 0.4534 - 0.004331X	-0.7813 -0.7928	3 3	lny = 1.108 +0.01185X lny = -0.3086 -0.03962X	-0.8589 -0.9507	2 1	$y = 9.10 ex^{-0.4943}$ $y = 8.191 x^{-1.262}$	-0.9779 -0.8266	1 2.
s°c	50Z	Wet Dry	y = 7.757 -0.08208X y = 1.462 -0.01394X	-0.7613 -0.7086	3	lny = 2.414 -0.04525X lny = 0.2408 -0.01909X	-0,9907 -0,8035	1 2	$y = 265.8x^{-1.568}$ $y = 8.482x^{-0.8343}$	-0.9375 -0.9585	2 1
1	1002	Wet Dry	y = 14.12 -0.1429X y = 7.102 -0.06706X	-0.8425 -0.8665	3 3	lny = 2.869 -0.03692X lny = 2.1360.02654X	-0.9369 -0.9617	1 .1	$y = 258.5x^{-1.307}$ $y = .57.06x^{-0.9352}$	-0.9110 -0.9253	2 2
	oz	Wet Dry	y = 3.609 - 0.03666X y = 0.4694 - 0.005107X	-0.6514 -0.6294	3 3	lny = 1.1770.02503X lny = -0.79810.04127X	-0.8714 -0.8706	2 2	$y = 30.14x^{-1.013}$ $y = 13.32x^{-1.595}$	-0.9630 -0.8749	1 1
10 ⁰ C	50Z	Wet Dry	y = 9.634 - 0.08334X y = 5.531 - 0.05596X	-0.7768 -0.7681	3 3	lny = 2.345 -0.02016X lny = 2.112 -0.04409X	-0.9013 -0.9603	1 1	$y = 45.39x^{-0.7169}$ $y = 162.8x^{-1.509}$	-0.8749 -0.8810	2 2
	1002	Wet Dry	y = 16.33 - 0.1078X y = 5.816 - 0.06321X	-0.7218 -0.6136	3 3	lny = 2.788 -0.0111X lny = 1.702 -0.03648X	-0.7531 -0.9201	2 2	$y = 41.71x^{-0.4351}$ $y = 109.4x^{-1.399}$	-0.8090 -0.9637	1
	oz	Wet Dry	y = 0.7429 - 0.00249X y = 0.06695 - 6.036X	-0.8540 -0.8420	3 3	lny = -0.08059 -0.02979X lny = -2.519 -0.02538X	-0.9704 -0.9113	1 1	$y = 7.967x^{-1.055}$ $y = 0.4804x^{-0.8815}$	-0.9383 -0.8666	2 2
20 [°] C	50Z	Wet Dry	y = 1.740 -1.697X y = 1.024 -0.01016X	-0.8437 -0.8269	3 3	lny = 0.8594 -0.03239X lny = 0.4708 -0.03958X	-0.9956 -0.9885	1	$y = 21.29x^{-1.101}$ $y = 20.49x^{-1.303}$	-0.9242 -0.8887	2 2
	1002	Wet Dry	y = 5.270 - 0.05581X $y = 2.075 - 0.02104X$	-0.7279 -0.8174	3 3	lny = 1.902 -0.04053X lny = 1.070 -0.03757X	-0.9800 -0.9887	1 1	$y = 129.1x^{-1.441}$ $y = 38.56x^{-1.287}$	-0.9516 -0.9249	2 2

513.

المراجعة من المراجع ال

the last factor as adored meaning states, proceedings

and the second
APPENDIX II

Methods of sedimentation size analysis

There are several different methods of sedimentation size analysis (Allen, 1975; Dyer, 1979). These methods are as follows.

1. The pipette method

In the pipette method of particle size analysis, the concentration changes occurring with a settling suspension are followed by drawing off definite volumes by means of a pipette. The concentration of solids in the samples may be determined by centrifugation, drying and weighing or simply drying and weighing. The drying temperature should not be too high or spitting and subsequent loss of powder may occur. With hygroscopic dispersing agents, special care must be taken to eliminate uptake of moisture from the atmosphere as the container cools. This method has been explained in detail by Allen, 1975, p. 193; Dyer, 1979, p. 102; Galehouse, 1971, pp. 79-94.

In my study, I used a modified version of the pipette method.

2. The photosedimentation technique

The photosedimentometer combines gravitational settling with photoelectric measurement. The principle of the technique is that a narrow horizontal beam of parallel light is projected through a suspension at a known depth (h) on to a photocell. Assuming an initially homogenous suspension, the concentration of particles in the light beam will be the same as the concentration in the suspension. If the particles are allowed to settle, the number of particles leaving the light beam will be balanced by the number entering it from above. However, after the largest particle present in the suspension, d_m has fallen from the surface to the measurement zone the emergent light flux will begin to increase since there will be no more particles of this

size entering the measurement zone from above. Hence, the concentration of particles in the light beam at any time, t, will be the concentration of particles smaller than d_{st}, where d_{st} is given by Stokes' Law, d_{st} is the Stokes' diameter.

3. X-ray sedimentation

In this method, an instrument employing the X-ray absorption technique with a special programme for scanning the sedimentation tank. In this case the X-ray density is proportional to the weight of powder in the beam (see Allen, 1975, pp. 206-210 for details).

4. Hydrometers

The variation in density of a settling suspension may be followed with a hydrometer. The suspension is made up with a known amount of powder and thoroughly agitated, usually by shaking. The container is then placed in a thermostat and the change in density of the suspension at known depths recorded as the solid settles out (see Allen, 1975, pp. 210-212 and Dyer, 1979, p. 106 for details).

5. Divers

This method is an extension of the hydrometer technique. Two types of divers were designed, the first for gravitational and the second for centrifugal sedimentation. A number of divers are required since each one gives only one point on the size distribution curve (see Allen, 1975, pp. 212-214 for details).

6. The specific gravity balance

In this method, the changes in density within a settling suspension may be followed using a specific gravity balance (see Allen, 1975, p. 214 for details).

7. Coulter counter

Coulter counter provides a very detailed analysis of the grain size present in a sediment sample (see Dyer, 1979, p. 109).

A review of size analysis of fine-grained suspended sediments is also described in Swift et al. (1972).

APPENDIX III

APPENDIX III: TABLE 1. The sequence of removing the 2 x 6 replicate samples from each cylinder in the scaled down sedimentation experiment. Each column represents one cylinder containing sediment and secretions digested by one enzyme. The numbers in the columns of the table are random numbers whose sequence was obtained from Rohlf and Sokal (1969, Table 0 , p. 153).

Time			Cylinders									
(secs)	Replicate	🗙 -amylase	Hyaluronidase	Lipase	Lysozyme	Pepsin	Trypsin					
	a	7	7	11	10	5	5					
S	b	12	2	7	2	2	1					
10	a	4	10	8	7	7	4					
10	b	1	1	5	6	6	3					
20	a	3	3	6	11	3	12					
20	Ъ	5	8	4	9	4	6					
40	a	9	11	10	1	10	2					
40	Ъ	11	5	9	8	8	7					
60	a	6	4	2	12	9	8					
00	Ъ	8	6	1	4	12	9					
120	a	10	9	12	3	11	10					
120	b	2	12	3	5	1	11					

. ۲۰

Sediment			LB	м	·····		RWS						
type	5 secs	10 secs	20 secs	40 secs	l min	2 min	5 secs	10 secs	20 secs	40 secs	1 min	2 mir.	
Control	50.15 + 0.03962	49.37 + 0.04970	20.59 + 0.05805	4.975 + 0.03953	2.550 + 0.07289	1.775 + 0.01768	49 .83 + 0.05595	31.78 + 0.07950	5.275 + 0.07289	4.925 + 0.03953	2.150 + 0.03953	1.020 + 0.03708	
With <u>C. volutator</u>	94.78 + 0.05595	70.03 • 0.0T789	61.58 + 0.07906	52.87 • 0.T322	50.03 • 0.2828	20.63 • 0.09017	62.83 + 0.06380	50,35 • 0.07071	48.93 • 0.05595	36.59 0.T545	21.65 • 0.06380	7.825 + 0.08639	
With N. diversicolor	122.8 + 0.07071	110.3 + 0.1140	100.1 + 0.04416	89.28 + 0.05310	67.23 + 0.04550	45.63 + 0.08843	92.78 + 0.05595	80.03 + 0.01789	64.78 • 0.03962	50.15 • 0.05595	38.88 • 0.01789	15.03 • 0.03962	
With C. volutator and X. diversicolor	144.3 + 0.08367	128.0 + 0.03421	100.2 + 0.01789	99.38 + 0.03962	73.31 + 0.02775	51.02 + 0.03782	123.0 + 0.04472	112.3 + 0.07071	69.03 + 0.06573	50.33 + 0.05595	48.28 + 2.420	22.53 0.07930	

APPENDIX III: TABLE 2. Means and standard deviations of suspended weights (mg/ml) of Langbank (LBM) and Rockware (RWS) sediments without (control) and with (Corophium volutator, Nereis diversicolor and mixed) animals at different time intervals.

518.

.....

APPENDIX III: TABLE 3. The ln values of suspended weights (mg/ml) of Langbank (LBM) and Rockware (RWS) sediments without (control) and with (<u>C. volutator</u>, <u>N. diversicolor</u> and mixed) animals at six time intervals.

			1	BM			RWS						
Sediment type		<u> </u>	Time	(secs)			Time (secs)						
	5	10	20	40	60	120	5	10	20	40	60	120	
Control	3.915	3.899	3.025	1.604	0.9361	0.5738	3.909	3.459	1.663	1,594	0.7655	0.01980	
With C. volutator	4.552	4.249	4.120	3.968	3.913	3.027	4.140	3.919	3.890	3.600	3.075	2.057	
With <u>N. diversicolor</u>	4.811	4.703	4.606	4.492	4.208	3.821	4.530	4.382	4.171	3.915	3.660	2.710	
With mixed <u>C. volutator</u> and <u>N. diversicolor</u>	4.972	4.852	4.607	4.599	4.295	3.932	4.812	4.721	4.235	3.919	3.877	3.115	

1

APPENDIX III: TABLE 4. Means and standard deviations of suspended weights (mg/ml) of Ardmore (ARD) and Rockware (RWS) sediments without (control) and with (Pygospio elegans, Scoloplos armiger and Arenicola marina) animals at different time intervals.

Sediment				ARD			RHS					
type	5 secs	10 secs	20 secs	40 secs	60 secs	120 secs	5 secs	10 secs	20 secs	40 secs	60 secs	120 sec;
Control	50.03 + 0.1869	43.80 + 7.150	23.25 + 4.444	5.035 + 0.2240	2.315 + 0.2219	1.185 + Q.2020	49.83 • 0.02881	31.78 • 0.08258	5.275 0.05303	4.925 • 0.03536	2.150 + 0.01768	1.020 <u>+</u> 0.02739
Pygospio	94.73 + 0.03595	64.40 + 0.T031	48.75 + 0.09524	22.75 + 0.05550	8.250 + 0.03953	2.925 + 0.03536	89.25 + 0.03962	54.98 • 0.05595	44.33 + 0.04817	18.28 • 0.06380	4.975 • 0.05590	2.375 ± 0.06374
<u>Scoloplos</u>	50.07 + 0.03114	45.25 + 0.1768	23.30 + 0.06380	4.999 + 0.002236	2.625 • 0.007906	1.300 + 0.07289	49.83 + 0.5819	31.80 + 0.06380	5.300 0.1132	4.950 + 0.03953	2.200 0.05590	1.070 + 0.0326
<u>Arenicola</u>	122.8 + 0.1140	93.75 + 1.05595	51.60 + 0.2904	48.25 + 0.03962	26.25 + 0.08843	4.375 + 0.06374	97.78 + 0.05595	83.23 + 0.05595	49.88 + 0.03962	33.13 + 0.09017	15.88 + 0.05595	2.825 + 0.0555

4

۰.

٠

APPENDIX III: TABLE 5. The ln values of suspended weights (mg/ml) of Ardmore (ARD) and Rockware (RWS) sediments without (control) and with (Pygospio elegans, Scoloplos armiger and Arenicola marina) animals at six time intervals.

¥.

			Al	RD			RWS						
Experiment			Time (secs)			Time (secs)						
	5	10	20	40	60	120	5	10	20	40	60	120	
Control	3.913	3.780	3.146	1.616	0.8394	0.1697	3,909	3.459	1.663	1.594	0.7655	0.01980	
With Pygospio	4.551	4.165	3.887	3.125	2.110	1.073	4.491	4.007	3.792	°2 . 906	1.604	0.8650	
With Scoloplos	3.913	3.812	3.148	1.609	0.9651	0.2624	3.909	3.459	1.668	1.599	0.7885	0.06766	
. With <u>Arenicola</u>	4.811	4.541	3.944	3.876	3.268	1.476 ,	4.583	4.422	3.910	3.500	2,765	1.039	

•.

APPENDIX III: TABLE 6. Statistical analysis of suspended sediment (mg/ml) in experiments testing the effect of animal secretion on sedimentation (Rockware sediment containing Langbank and Ardmore species). Six 1 x 2 one-way analyses of variance each comparing sediment containing <u>C. volutator</u> secretions, sediment containing <u>N. diversicolor</u> secretions, sediment containing <u>P. elegans</u> secretions and sediment containing <u>A. marina</u> secretions. Data for the <u>5-second</u> time interval.

Comparison	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
C. volutator X N. diversicolor	Main Error Total	2242.2 0.02880 2242.2	2242.2 0.003600	1 8 9	622835.2	₽ ८ 0.001
C. volutator X P. elegans	Main Error Total	1745.6 0.02256 1745.6	1745.6 0.002820	1 8 9	618996.3	P < 0.001
<u>C. volutator</u> X <u>A. marina</u>	Main Error Total	3053.4 0.02880 3053.4	3053.4 0.003600	1 8 9	848168.5	₽ < 0.001
<u>N. diversicolor</u> X <u>P. elegans</u>	Main Error Total	31.05 0.01880 31.07	31.05 0.00235	1 8 9	13211.3	Р (0.001 *****
<u>N. diversicolor</u> X <u>A. marina</u>	Main Error Total	62.50 0.02504 62.53	62.50 0.003130	1 8 9	19968.1	Р 🗸 0.001 *****
<u>P. elegans</u> X <u>A. marina</u>	Main Error Total	181.6 0.01880 181.7	181.6 0.002350	1 8 9	77296.4	Р Д 0.001

APPENDIX III: TABLE 7. Statistical analysis of suspended sediment (mg/ml) in experiments testing the effect of animal secretions on sedimentation (Rockware sediment containing Langbank and Ardmore species). Six 1 x 2 one-way analyses of variance each comparing sediment containing <u>C. volutator</u> secretions, sediment containing <u>N. diversicolor</u> secretions, sediment containing <u>P. elegans</u> secretions and sediment containing <u>A. marina</u> secretions. Data for the <u>10-second</u> time interval.

Comparison	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
<u>C. volutator</u> x N. diversicolor	Main Error Total	2202.0 0.02128 2202.0	2202.0 0.002660	1 8 9	827804.2	Р 🗸 0.001 *****
C. volutator x P. elegans	Main Error Total	53.50 0.03252 53.53	53.50 0.004065	1 8 9	13161.1	ዮረ 0.001
<u>C. volutator</u> X <u>A. marina</u>	Main Error Total	2702.1 0.03252 2702.1	2702.1 0.004065	1 8 9	664717.9	₽ < 0.001
N. diversicolor x P. elegans	Main Error Total	1569.01 0.01380 1569.02	1569.0 0.001715	1 8 9	909569.1	₽∠ 0.001
<u>N. diversicolor</u> X <u>A. marina</u>	Main Error Total	25.89 0.006600 25.90	25.89 0.0008250	1 8 9	31380.4	P ∠ 0.001
<u>P. elegans</u> x <u>A. marina</u>	Main Error Total	1995.2 0.02504 1995.2	1995.2 0.003130	1 8 9	637430.1	P (0.001

523

APPENDIX III: TABLE 8. Statistical analysis of suspended sediment (mg/ml) in experiments testing the effect of animal secretions on sedimentation (Rockware sediment containing Langbank and Ardmore species). Six 1 x 2 one-way analyses of variance each comparing sediment containing <u>C. volutator</u> secretions, sediment containing <u>N. diversicolor</u> secretions, sediment containing <u>P. elegans</u> secretions, and sediment containing <u>A. marina</u> secretions. Data for the <u>20-second</u> time interval.

Comparison	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
<u>C. volutator</u> x <u>N. diversicolor</u>	Main Error Total	628.2 0.01880 628.2	628.2 0.002350	1 8 9	267325.4	P ∠ 0.001
<u>C. volutator</u> x <u>P. elegans</u>	Main Error Total	52.85 0.02180 52.88	52.85 0.002725	1 8 9	19396.0	P ∠ 0.001
<u>C. volutator</u> x <u>A. marina</u>	Main Error Total	2.266 0.01880 2.285	2.266 0.002350	1 8 9	964.2	₽ ∠ 0.001
<u>N. diversicolor</u> x <u>P. elegans</u>	Main Error Total	1045.5 0.01556 1045.5	1045.5 0.001945	1 8 9	537535.3	₽∠ 0.001 *****
<u>N. diversicolor</u> x <u>A. marina</u>	Main Error Total	555.03 0.01256 555.04	555.03 0.001570	1 8 9	353519.1	₽ ८ 0.001
<u>P. elegans</u> X <u>A. marina</u>	Main Error Total	77.01 0.01556 77.01	77.01 0.001945	1 8 9	39591.9	P ∠ 0.001

APPENDIX III: TABLE 9. Statistical analysis of suspended sediment (mg/ml) in experiments testing the effect of animal secretions on sedimentation (Rockware sediment containing Langbank and Ardmore species). Six 1 x 2 one-way analyses of variance each comparing sediment containing <u>C. volutator</u> secretions, sediment containing <u>N. diversicolor</u> secretions, sediment containing <u>P. elegans</u> secretions and sediment containing <u>A. marina</u> secretions. Data for the <u>40-second</u> time interval.

Comparison	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
<u>C. volutator</u> x N. diversicolor	Main Error Total	460.1 0.1080 460.2	460 .1 0.01350	1 8 9	34080.8	Р 🗸 0.001
C. volutator X P. elegans	Main Error Total	838.1 0.1118 838.3	838.1 0.01397	1 8 9	59995.7	Р Ҳ 0.001
<u>C. volutator</u> X <u>A. marina</u>	Main Error Total	29.96 0.1280 30.09	29.96 0.01600	1 8 9	1872.7	₽ < 0.001 *****
N. diversicolor x P. elegans	Main Error Total	2540.2 0.0288 2540.2	2540 .2 0.003600	1 8 9	705610.7	P ∠ 0.001
<u>N. diversicolor</u> X <u>A. marina</u>	Main Error Total	724.9 0.04504 724.9	724.9 0.005630	1 8 9	128753.5	Р ८ 0.001
<u>P. elegans</u> X <u>A. marina</u>	Main Error Total	551.2 0.04880 551.2	551.16 0.006100	1 8 9	90353.7	P ∠ 0.001

APPENDIX III: TABLE 10. Statistical analysis of suspended sediment (mg/ml) in experiment testing the effect of animal secretions on sedimentation (Rockware sediment containing Langbank and Ardmore species). Six 1 x 2 one-way analyses of variance each comparing sediment containing <u>C. volutator</u> secretions, sediment containing <u>N. diversicolor</u> secretions, sediment containing <u>P. elegans</u> secretions and sediment containing <u>A. marina</u> secretions. Data for the <u>60-second</u> time interval.

526

Comparison	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
<u>C. volutator</u> x <u>N. diversicolor</u>	Main Error Total	741.8 0.01756 741.9	741.8 0.002195	1 8 9	337967.1	P ∠ 0.001
<u>C. volutator</u> x <u>P. elegans</u>	Main Error Total	695.3 0.02878 695.33	695 . 30 0.005398	1 8 9	193274.7	₽ < 0.001 *****
<u>C. volutator</u> x <u>A. marina</u>	Main Error Total	83.41 0.0288 83.43	83.41 0.003600	1 8 9	23168.2	₽∠ 0.001
<u>N. diversicolor</u> x <u>P. elegans</u>	Main Error Total	2873.5 0.01378 2873.5	2873.5 0.001723	1 8 9	1668234.3	₽ ८ 0.001
<u>N. diversicolor</u> X <u>A. marina</u>	Main Error Total	1322.7 0.01380 1322.7	1322.7 0.001725	1 8 9	766800.0	P∠0.001
<u>P. elegans</u> X <u>A. marina</u>	Main Error Total	297.08 0.02502 297.1	297.08 0.003128	1 8 9	94989.4	₽ ८ 0.001

APPENDIX III: TABLE 11. Statistical analysis of suspended sediment (mg/ml) in experiments testing the effect of animal secretions on sedimentation (Rockware sediment containing Langbank and Ardmore species). Six 1 x 2 one-way analyses of variance each comparing sediment containing <u>C. volutator</u> secretions, sediment containing <u>N. diversicolor</u> secretions, sediment containing <u>P. elegans</u> secretions and sediment containing <u>A. marina</u> secretions. Data for the <u>120-second</u> time interval.

Comparison	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
<u>C. volutator</u> x <u>N. diversicolor</u>	Main Error Total	129.7 0.03753 129.74	129.7 0.004691	1 8 9	27648.9	₽∠0.001
<u>C. volutator</u> X <u>P. elegans</u>	Main Error Total	74.26 0.04750 74.30	74.26 0.005938	1 8 9	12506.3	P ∠ 0.001
<u>C. volutator</u> X <u>A. marina</u>	Main Error Total	62.50 0.04375 62.54	62.50 0.005469	1 8 9	11428.6	₽ < 0.001 *****
<u>N. diversicolor</u> X <u>P. elegans</u>	Main Error Total	400.25 0.02253 400.27	400.25 0.002816	1 8 9	142120.2	P < 0.001
<u>N. diversicolor</u> X <u>A. marina</u>	Main Error Total	372.28 0.01878 372.3	372.28 0.002348	1 8 9	158587.0	P ∠ 0.001
P. elegans X <u>A. marina</u>	Main Error Total	0.5063 0.02875 0.5350	0.5063 0.003594	1 8 9	140.9	P < 0.001

APPENDIX III: TABLE 12. Effect of 3 and 5 buffer washes on enzymic digestion of <u>C. volutator</u> and <u>N. diversicolor</u> secretions. The weights remaining after enzymic digestion are expressed as a fraction of the mean of controls. Arcsine values of these fractions were obtained from Table K in Rohlf and Sokal (1969, pp. 129-135). Two matched t-tests were applied to the arcsine data, one for each species. The paired x, y values were the 3 and 5 wash readings for each enzyme in the first and second experiments (6 + 6 = 12 paired readings in each matched t-test).

			First e	xperiment		Second experiment			
Species	Enzymes	3 พ	ashes	5 wa:	shes	3 wa	shes	S was	shes
		Weight	Arcsine	Weight	Arcsine	Weight	Arcsine	Weight	Arcsine
		0,2819	32.08 ⁰	0	00	0.1913	25.99 ⁰	0	00
	Hyaluronidase	0.3376	35.55 ⁰	0.01709	7.51 ⁰	0,3482	36.15 ⁰	0.01811	7.73°
	Lipase	0.4115	39.93 ⁰	0.06819	15.13 ⁰	0.4819	43.97 ⁰	0.08311	16.75 ⁰
C. volutator	Lysozyme	0.3014	33,34 ⁰	0.03512	10.79 ⁰	0,3026	33.40 ⁰	0.03369	10.63°
	Pepsin	0.4714	43,39 ⁰	0.02192	8.53 ⁰	0.2824	32.08 ⁰	0.01640	7.32 ⁰
	Trypsin	0.1008	18.53 ⁰	0	0 ⁰	0.08719	17 . 15 ⁰	0	0 ⁰
	🗙 -amylase	0.2427	29.53 ⁰	0.003192	3.240	0,1407	22.06 ⁰	0	0 ⁰
	Hyaluronidase	0.1643	23.89 ⁰	0.1607	23.66 ⁰	0.06754	15.12 ⁰	0.1966	26.35 ⁰
	Lipase	0.1246	20.70 ⁰	0.01855	7.920 ⁰	0.1217	20.44 ⁰	0.03555	10.94 ⁰
N. diversicolor	Lysozyme	0.1318	21.30 ⁰	0.006921	4.760 ⁰	0.1864	25.55 ⁰	0.01306	6.55 ⁰
	Pepsin	0.1511	22 . 87 ⁰	0.003249	3.240°	0.2224	28.11 ⁰	0.004612	3.89°
	Trypsin	0.1143	19.73°	0.03576	10.94°	0.1502	22.79 ⁰	0.03898	11.39°
Matched t-test		Fac	tors	Paire	ed t	D.F		Probability	
		<u>C. vol</u>	lutator	17.	.44	11		P < 0.001	
		N. diversicolor		4.296		11	0.01>P>0.005)5

111 13 - 5 23 40 1- 02 AM. (T.) - 200 FACT

Γ			•	C. voluta	tor			N	. diversi	color	
	Treatments	Experi	ment 1	Experim	ent 2	Mean Z of	Experis	ent 1	Exper	iment 2	Nean 2 of
		mg/g	g Z mg/g		z	and 2	mg/g	2	mg/g	z	and 2
Γ	≪ -amylase	0	0	0	0	0	0.6055	0.3192	0	0	0.1596
	Hyaluronidase	1.281	1.709	2.563	1.811	1.760	30.48	16.07	34.85	19.66	17.87
ae a	Lipase	5.111	6.819	11.76	8.311	7.565	3.519	1.855	6.303	3.555	2.705
Enzy	Lysozyme	2.632	3.512	4.767	3.369	3.441	1.313	0.6921	2.316	1.306	0,9991
ľ	Pepsin	1.643	2.192	2.320	1.640	• 1.916	0.6164	0.3249	0.8177	0.4612	0,3931
	Trypsin	0	0	0	0	0	6.784	3.576	6.912	3.898	3.737
	20 ⁰ C, pH 2.6	64	.99	133	.4		119	.8	1:	26.3	
	20 ⁰ C, pH 7.6	76	.72	186	.9		284	.4	1	91.8	
trol	37°Ċ, pH 2.6	64	.12	143	.7		127	1.4	1	86.1	
Con	37°C, pH 7.6	93	.97	101.8			227	.1	2	04.8	
	Heans + S.D	74.95	.95 <u>+</u> 13.92 141.5 + 35.16			35.16	189.7	± 79.86		4.86	

.

APPENDIX III: TABLE 13. Effect of enzymes on secretions of <u>C. volutator</u> and <u>N. diversicolor</u>, mg/g total weight (60[°]C) dried sand. mg/g column represents the weights of secretions remaining after enzymic digestion. Z column represents weights of secretions remaining after enzymic digestion as a percentage of the mean of the control. Mean Z column represent the mean of the percentages in Experiments 1 and 2.

529.

وميتا والملكة والروابي ومراكز فرارا والمتحر المراكبة المتح

2 See Della Marine Provident Contract Provide

APPENDIX III: TABLE 14. Effect of enzymes on secretions of <u>P. elegans</u> and <u>A. marina</u>, mg/g total weight (60^oC) dried sand. mg/m column represents the weights of secretions remaining after enzymic digestion. Z column represents weights of secretions remaining after enzymic digestion as a percentage of the mean of the control. Mean Z column represents the mean of the percentages in Experiments 1 and 2.

				P, elegans			<u>A. marina</u>				
Treatments		Experiment 1		Experiment 2		Mean % of	Experiment 1		Experiment 2		Hean Z of
		mg/g	z	mg/g	/g Z and		mg/g	2	mg/ g	z	and 2
	🗙 -anylase	0.9123	5.951	0.8221	6.334	6.143	7.097	16.14	7.092	16.59	16.37
	Hyaluronidase	5.670	36.99	5.493	42.32	39.66	24.48	55.66	30.15	70.54	63.10
neß	Lipase	0.2966	1,935	0.2984	2.299	2.117	10.74	24.42	17.31	40.50	32.46
Enzy	Lysozyme	1.540	10.05	1.707	13.15	11.60	14.80	33.65	15.29	35.77	34.71
	Pepsin	2.581	16.84	2.754	21.22	19.03	9.205	20.93	9.694	22.68	21.68
	Trypsin	4.191	27.34	3.766	29.01	28.18	31.68	72.03	40.61	95.02	83,53
	20°C, pH 2.6	15.	,02	15.23		52.43		49.36			
ols	20 ⁰ C, pH 7.6	19.	.92	10	.12	12		.66	28.	.93	
onti	37 ⁰ С, рН 2.6	16.	.76	17	17.19		27.50		27.87		
	37°С, рН 7.6	9.	.636	9.396		66.34		64.78			
	Neans <u>+</u> S.D	15.33	+ 4.306	12.98 <u>+</u> 3.821			43.98 <u>+</u> 18.69		42.74 <u>+</u> 17.71		71

APPENDIX III: TABLE 15. Suspended weights (mg/ml) of Rockware sediment with secretion from <u>C. volutator</u> after enzymes treatment at six different time intervals (5, 10, 20, 40, 60 and 120 seconds) in the sedimentation cylinder. The suspended weights of two control sediments are also present. R = replicates.

		Time (secs)							
Factors .	R	5	10	20	40	60	120		
Control	R ₁	62.75	59.73	48.75	38.90	21.55	7.825		
(with secretion)	R2	62.80	59,58	48.65	38.70	21.60	7.825		
	R ₁	49.73	47.03	25.73	15.00	4.925	1.025		
🗙 -amylase	^R 2	49.98	47.13	25.78	15.00	4.975	1.075		
	^R 1	51.08	50.00	39.98	17.00	16.00	2.050		
Hyaluronidase	^R 2	51.08	50.05	40.03	17.05	15.95	2.150		
• •.	R ₁	57.78	56.05	44.95	34.75	24.13	7.650		
Lipase	^R 2	57.83	56.20	45.00	34.65	24.38	7.450		
1	^R 1	55.45	55.03	43 .1 5	29.23	21.55	6.000		
Lysozyme	^R 2	55.50	55.08	43.40	29.28	21.60	6.050		
Demokr	^R 1	53.03	50.48	42.13	23.20	20.98	5.025		
repsin	^R 2	53.08	50,53	42.38	23.25	21.05	5.075		
	^R 1	49.88	48.00	36.15	15.00	12.50	1.200		
Trypsin	^R 2	49.88	48.05	36.10	15.05	12.55	0.9500		
Control	^R 1	49.78	31.60	5.250	4.975	2.050	0.9250		
(without secretion)	^R 2	49.78	31.65	5.350	4.825	2.100	0.9750		

APPENDIX III: TABLE 16. Suspended weights (mg/ml) of Rockware sediment with <u>N. diversicolor</u> secretions after enzymes treatment at six different time intervals (5, 10, 20, 40, 60 and 120 seconds) in the sedimentation cylinder. The suspended weights of two control sediments are also present. R = replicate.

Factors		Time (secs)								
	K	5	10	20	40	60	120			
Control	R ₁	92.75	82.55	64.70	50.05	38.75	15.00			
(with secretion)	^R 2	92.85	82.68	64.80	50.28	38.95	15.00			
	R ₁	49.95	38.63	28.05	21.13	6.450	1.075			
anylase	^R 2	50.00	38.73	28.10	21.08	6.500	1.225			
Hvaluronidase	^R 1	81.00	71.90	55.55	50.05	38.68	14.68			
	^R 2	81.00	72.00	55.70	50.20	38.88	14.83			
Lipase	^R 1	55.35	55.03	54.98	49.63	20.25	10.50			
	^R 2	55.45	55.08	50.00	49.88	20.30	10.55			
Lysozyme	^R 1	50.65	50.10	50.00	49.50	19.95	5.000			
	^R 2	50.55	50.20	50.05	49.55	20.00	5.050			
Pensin	R ₁	50.35	50.03	49.75	43.95	11.90	4.600			
- cpoin	^R 2	50.45	50.13	49.90	43.70	12.05	4.900			
Trumpin	^R 1	65.70	61.75	55.53	50.00	31.55	11.95			
rtypotn	^R 2	65.80	61.90	55.53	50.10	31.60	12.15			
Control	R ₁	49.75	33.45	7.925	4.925	2.050	1.000			
(without secretion)	R ₂	49.80	33.50	7.725	4.875	2.200	0.9500			

APPENDIX III: TABLE 17. Suspended weights (mg/ml) of Rockware sediment with secretion of <u>P. elegans</u> after enzymes treatment at six different time intervals (5, 10, 20, 40, 60 and 120 seconds) in the sedimentation cylinder. The suspended weights of two control sediments are also present. R = replicates.

Factors	-	Time (secs)								
Factors		5	10	20	40	60	120			
Control	R ₁	89.25	74.00	54.10	20.20	5.050	2.375			
(with secretion)	R ₂	89.30	75.46	54.40	20.28	4,975	2.425			
≪ -amylase	R1	50.30	44.38	21.53	9.975	3.675	0.5000			
	R2	50.20	44.25	21.50	9.900	3.700	0.5500			
Hyaluronidase	R ₁	83.28	64.98	50.95	19.85	3.020	2.375			
	^R 2	83.23	64.90	50.85	19.75	3.036	2.325			
Lipase	^R 1	49.98	33.88	11.68	5.025	3.975	1.050			
	^R 2	49.98	33.80	11.08	5.000	3.750	1.000			
Lysozyme	R1	50.00	49.98	32.83	16.03	4.975	0.8500			
	^R 2	50.00	49.95	32.75	16.05	4.950	0.9000			
Pepsin	^R 1	68.00	50.05	48.75	18.83	4.625	1.675			
	^R 2	68.05	50.03	48.68	18.70	4.575	1.675			
Truncin	^R 1	79.18	63.18	49.98	11.20	4.975	2.300			
	^R 2	79.90	63.05	49.90	11.68	4.900	2.350			
Control	R1	49.80	31.78	5.275	4.975	2.150	0.4325			
(without secretion)	^R 2	49.88	31.75	5.350	4.900	2.10	0.5675			

APPENDIX III: TABLE 18. Suspended weights (mg/ml) of Rockware sediment with secretions of <u>A. marina</u> after enzymes treatment at six different time intervals (5, 10, 20, 40, 60 and 120 seconds) in the sedimentation cylinder. The suspended weights of two control sediments are also present. R = replicates.

_		Time (secs)							
Factors	R	5	10	20	40	60	120		
Control	^R 1	97.78	83.30	59.88	33.25	15.88	2.950		
(with secretion)	^R 2	97.85	83.15	59.90	33.35	15.63	2.900		
/ -	R ₁	52.80	49.88	33.88	10.58	4.750	1.250		
🗙 -amylase	R ₂	52.85	49.83	33.75	10.55	4.650	1.100		
11 1	^R 1	83.03	57.68	50.55	9.975	4.525	2.550		
Hyaluronidase	R ₂	82.98	57.60	50.50	9.850	4.550	2.600		
	^R 1	65.50	50.03	49.68	21,55	4.550	1.450		
Lipase	^R 2	65.55	50.05	49,58	21.45	4.500	1.500		
7	R ₁	69.83	50.30	49.68	9.700	4.525	1.600		
Lysozyme	^R 2	69.75	50.30	49.75	9.800	4.550	1.650		
	^R 1	60.00	50.13	 49 . 38	4.875	2.950	1.300		
Pepsin	^R 2	60.05	50.08	49.20	4.900	2.850	1.200		
	R ₁	85.00	61.18	49.83	9.825	4.575	2.625		
Trypsin	R ₂	85.05	61.05	49.75	9.500	4.500	2.725		
Control	R ₁	49.80	31.65	5.350	3.900	2.150	1.025		
(without secretion)	^R 2	49.83	31.85	5.325	3.875	2.175	1.025		

APPENDIX III: TABLE 19. Means and standard deviations of suspended weights. Effects of <u>Nereis diversicolor</u> and <u>Corophium volutator</u> secretions and control (no secretion) on the suspended weight of Rockware sediment at 5, 10 and 20 cm depth for successive time intervals, in the sedimentation cylinder.

and the second
	Depth	Time (secs)								
	(cm)	5	10	20	40	60	. 120			
	5.	55.04 + 0.05657	50.08 + 0.1414	42.33 + 1.131	29.53 3.111	10 . 36 + 0.2475	1.925 • • •			
Nereis diversicolor	10	90.76 + 2.015	77.54 + 3.550	62.46 + 0.9546	50.11 • 0.0354	38.68 + 0.07070	12.54 3.521			
	20	68.36 3.995	55.01 + 0.03536	50.11 + 0.1061	43.26 + 0.3889	14.73 + · 1.980	4.325 0.9192			
	5	45.06 + 3.642	24.88 + 1.838	15.48 + 0.1414	6.625 + 0.1414	4.925 + 0.07071	1.975 0.1414			
Corophium volutator	10	62.28 + 0.6010	50.18 <u>+</u> 0.2828	46.63 + 3.182	36.33 + 0.3182	21.57 • 0.02121	7.525 • 0.03536			
	20	55.01 + 0.03536	43.59 + 1.004	37.08 + 2.970	18.33 + 3.111	5.188 + 0.1945	4.075 + • 1.273			
	5	22.53 + 1.202	18.31 + 0.6718	4.538 + 0.05303	1.275 + 0.2828	0.8250 • 0.1414	0.5750 + 0.07071			
Control	10	49.92 + 0.09192	31.86 + 0.1061	5,263 + 0,1237	3.300 + 0.07071	2.113 + 0.01768	0.8750 + 0.1768			
	20	55.53 + 0.7778	40.83 + 0.4243	19.21 + 2.722	6.350 + 0.4596	4.038 + 0.05303	1.450 + 0.1768			

535

್ ನಿಂತಿ ಸಂಸ್ಥೆ ಸಂಸ್ಥೆ ಮಿಲ್ಲಾ ಮಿಲ್ಲಿ ಮೊದಲು ಇತ್ತು ಮೊದಲು ಇತ್ತು ಬಿಡಿದಿ. ಸ್ಥೆ ಸಂಸ್ಥೆ ಸಂಸ್ಥೆ ಸಂಸ್ಥೆ ಸಿಲ್ಲಿ ಸಿ المعالية المركبة المركبينية فالتراس

· • •

معود جرار تر الر

APPENDIX III: TABLE 20. Two-way analyses of variance of the suspended weights (mg/ml) obtained for three treatments (sediment containing <u>N. diversicolor</u> secretion, sediment containing <u>C. volutator</u> secretions and the control sediment (sediment with no secretions)) at 5, 10 and 20 cm depths, and at six time intervals.

> Factor A = the three different depths. Factor B = six time intervals.

	the second se					
Treatment	Factors	Sum of square	Mean square	D.F	F-ratio	Probability
	Factor A	3515.8	1757.9	2	511.0	
	Factor B	18118.8	3623.8	5	1053.4	
Sediment with <u>Nereis</u> diversicolor	Interaction	573.4	57.34	10	16.67	Р 4 0.001
	Error	61.92	3.440	3,440 18		
	Total	22270.0		35		
	Factor A	2586.1	1293.1	• 2	479.5	
	Factor B	10596.5	2119.3	5	785.8	
Sediment with Corophium volutator	Interaction	675.8	67.58	10	25.06	P < 0.001
	Error	48.54	2.697	18		•
	Total	13906.9		35		
	Factor A	1056.5	528.2	2	904.1	
	Factor B	9090.0	1818.0	5	3111.5	
Control	Interaction	1015.6	101.6	10	-173.8	P ∠ 0.001
	Error	10.52	0.5843	18		
	Total	11172.5		35		

· •

THE PERMIT

APPENDIX III: TABLE 21. One-way anovars comparing the suspended weights (mg/ml) of Rockware sediment containing <u>Nereis diversicolor</u> secretions at the three different depths (5, 10 and 20 cm) and for the six time intervals.

Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
	Main	1303.1	651.5	2	97.61	0.005 > P > 0.001
5	Error	20.03	6.675	3		
	Total	1323.1		5		interio
	Main	857.4	428.7	2	101.9	0.005>P>0.001
10	Error	12.62	4.207	3		
	Total	870.0		5		*****
	Main	412.0	206.0	2	280.6	Р 4 0.001
20	Error	2.203	0.7342	3		
	Total	414.2		5		સંસ્ટારસંસ્ટાર
	Main	462.8	231.4	2	70.60	0.005>P>0.001
40	Error	9.833	3.278	3		
	Total	472.6		5		ગંભાના
	Main	930.0	465.0	2	350.0	P∠.0.001
60	Error	3.986	1.329	3		
•	Total	934.0		5	· ·	*****
	Main	123.9	61.97	2	14.03	0.05>P>0.025
120	Error	13.25	4.417	3		
	Total	137.2		5		*
[
APPENDIX III: TABLE 22. One-way anovars comparing the suspended weights (mg/ml) of Rockware sediment containing <u>Corophium volutator</u> secretions at the three different depths (5, 10 and 20 cm) and for the six time intervals.

Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
5	Main Error	264.0 13.62	132.0 4.541	2 3	29.07	0.025>P>0.01
	Total	277.7		5		sterie
10	Main	689.1	344.5	2	231.3	Р 🗸 0.001
	Error Total	4.468 693.5	1.489	5		*****
	Main	1018.7	509.4	2	80.57	0.005>P>0.001
20	Error Total	18.97 1037.7	6.322	3 5		****
	Main	895.3	447.6	2	137.0	0.005>P>0.001
40	Total	9.801 905.1	3.267	3 5		winter
(0	Main	363,5	181.7	2	12601.7	P 🗸 0.001
	Error Total	0.04326 363.5	0.01442	3 5	•.	*****
	Main	31.41	15.71	2	28.71	0.025 > P > 0.01
120	Error Total	1.641 33.05	0.5471	3 5		**

APPENDIX III: TABLE 23. One-way anovars comparing the suspended weights (mg/ml) of the control Rockware sediment at the three different depths (5, 10 and 20 cm) and for the six time intervals.

Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
	Main	1247.0	623.5	2	908.7	P ∠ 0.001
	Total	1249.0	0.0002	5		ंतन्तर
	Main	514.4	257.2	2	1200.8	Р 4 0.001
10	Total	0.6425 515.0	0.2142	5		******
	Main	273.4	136.7	2	55.19	0.005 > P >0.001
	Error Total	7.429 280.8	2.476	3 5		*****
40	Main	26.11	13.05	2	132.2	0.005>P>0.001
40	Total	26.40	0.09875	3 5		*****
60	Main	10.46	5,228	2	678.2	Р 🗸 0.001
	Total	10.48	0.007708	3 5		*****
	Main	0.7908	0.3954	.2	17.57	0.025>P>0.01
120	Error Total	0.8583	0.02250	3 5		***

APPENDIX III: TABLE 24. Two-way analyses of variance comparing the suspended weights (mg/ml) of the three treatments (sediment with <u>C. volutator</u> secretions, sediment with <u>N. diversicolor</u> secretions and the control sediment) at the depth of 5 cm.

Factor A = three different treatments. Factor B = six time intervals.

Factor	Sum of squares	Mean square	D.F	F-ratio	Probability
Factor A	3401.3	1700.7	2	1028.6	
Factor B	7062.1	1412.4	5	854.3	
Interaction	1359.0	135.9	10	82.20	P < 0.001
Error	29.76	1.653	18		
Total	11852.1		35		

APPENDIX III: TABLE 25. Two-way analyses of variance comparing the suspended weights (mg/ml) obtained from the three treatments (sediment with <u>C. volutator</u> secretions, sediment with <u>N. diversicolor</u> secretions and the control sediment) at the depth of 10 cm. Factor A: the three different treatments. Factor B: six time intervals

Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
Factor A.	9531.6	4765.8	2	2106.7	
Factor B	14473.8	2894.8	5	1279.6	
Interaction	1615.8	161.6	10	71.43	P 🕻 0.001
Error	40.72	2.262	18		
Total	25662.0		35		

APPENDIX III: TABLE 26. Two-way analyses of variance comparing the suspended weights (mg/ml) obtained from the three treatments (sediment with <u>C. volutator</u> secretions, sediment with <u>N. diversicolor</u> secretions and the control sediment) at the depth of 20 cm. Factor A: the three different treatments. Factor B: six time intervals.

Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
Factor A	2113.3	1056.7	2 376.6		
Factor B	14519.5	2903.9	5	1035.1	
Interaction	1039.9	104.0	10	37.07	P 🗸 0.001
Error	50.50	2.805	18		
Total	17723.2		35		

APPENDIX III: TABLE 27. One-way analyses of variance comparing the suspended weights (mg/ml) of Rockware sediment for the three treatments (sediment with <u>C. volutator</u> secretions, sediment with <u>N. diversicolor</u> secretions, and the control sediment) at 5 cm depth for the six time intervals (main factors the three treatments).

Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
	Main	1127.4	563.7	2	115.0	0.005>P> 0.001
5	Error	14.71	4.903	3		
-	Total	1142.1		5		strictic
	Main	1125.3	562.6	2	438.3	р д 0.001
10	Error	3.851	1.284	3		
	Total	1129.1		. 5		sininistris
	Main	1512.6	756.3	2	1741.6	P Z 0.001
20	Error	1.303	0.4343	3		
	Total	1513.9		5		*****
					120.0	0.005 NR NO.001
	Main	901.1	450.5	2	138.2	U.U.J J F J U.UUL
40	Error	9.780	3.260	3		abouturto
	Total	910.9		5		274.84
	Main	01 /1	<u>/5 71</u>	' 2	1589.7	P / 0.001
60	Frror	0.08625	4J•/1 0.02875	4	£207 • F	
		01 50	0.02075	5		******
	IULAL	71,30				
	Main	2.523	1.262	2	126.2	0.005>P> 0.001
120	Error	0.03000	0.01000	3		
	Total	2.553		5		stokestok
]

APPENDIX III: TABLE 28. One-way analyses of variance comparing the suspended weights (mg/ml) of Rockware sediment for the three treatments (sediment with <u>C. volutator</u> secretions, sediment with <u>N. diversicolor</u> secretions, and the control sediment) at 10 cm depth for the six time intervals (main factor the three treatments).

Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
	Main	1754.5	877.3	2	594.0	P∠ 0.001
5	Error	4.431	1.477	3		
	Total	1759.0		5		זיראריאראר
	Main	2114.3	1057.2	2	249.9	P∠ 0.001
10	Error	12.69	4.230	3		
	Total	2127.0		5		statestaste
	Main	3488.5	1744.2	2	473.5	P 🗸 0.001
20	Error	11.05	3.684	3		
	Total	3499.5		5		******
	Main	2314.2	1157.1	2	32290.7	P (0.001
40	Error	0.1075	0.03583	3		
	Total	2314.3		5		******
	Main	1339.0	669.5	2	348547.5	P∠ 0.001
· 60	Error	0.005763	0.001921	3		- ·
	Total	1339.0		5.		*****
	Main	137.0	68.48	2	16.52	0.025 } P > 0.01
120	Error	12.43	4.144	3		•
	Total	149.4		. 5	 .	***

APPENDIX III: TABLE 29. One-way analyses of variance comparing the suspended weights (mg/ml) of Rockware sediment for the three treatments (sediment with <u>C. volutator</u> secretions, sediment with <u>N. diversicolor</u> secretions, and the control sediment) at 20 cm depth for the six time intervals.

Time (secs)	Factors	Sum of squares	Mean squares	D.F	F-ratio	Probability
	Main	228.7	114.3	2	20.70	0.025>P>0.01
5	Error	16.57	5.523	3		
	Total	245.2		5		**
	Main	225.9	113.0	2	284.9	р 4 0.001
10	Error	1.189	0.3965	3 .		
	Total	227.1		5		********
	Main	962.7	481.3	2	88.90	0.005>P>0.001
20	Error	16.24	5.414	3		
	Total	978.9		5		****
	Main	1588.1	794.0	2	237.2	P < 0.001
40	Error	10.04	3.348	3		
	Total	1598.1		5		*****
	Main	137.8	68.90	2	52.19	0.005>P>0.001
. 60	Error	3.961	1.320	3		
	Total	141.8		5		****
	Main	10.15	5.073	2	6.097	0.10>P>0.05
120	Error	2.496	0.8321	3		
	Total	12.64		5		

APPENDIX III: TABLE 30. Means and standard deviations of particle sizes obtained from Rockware sediment during sedimentation at 5, 10 and 20 cm depths at six time intervals. Treatments were Rockware sediment with <u>C. volutator</u> secretions, Rockware sediment with <u>N. diversicolor</u> secretions, and a control sediment. (Mean and S.D's were calculated from the longest and shortest diameter of 100 sand grains for each treatment.)

	Depth			Time	(secs)		
Treatment	(cm)	5	10	20	40	60	120
	5	174.8 + 27.25	152.6 + 35.48	144.2 + 30.80	143.6 + 25.32	122.9 + 27.78	$ \begin{array}{c} 117.4 \\ + \\ 18.82 \end{array} $
<u>Nereis</u> diversicolor	10	294.8 + 27.62	278.0 + 30.57	276.1 + 30.05	257.1 + 36.27	164.3 + 35.64	152.2 + 33.55
	20	182.6 + 26.36	182.3 + 45.3	$ \begin{array}{c} 163.6 \\ + \\ 46.66 \end{array} $	145.8 + 46.43	118.5 + 27.75	111.3 + 16.07
	5	130.0 + 17.55	102.1 $\frac{+}{13.05}$	89.78 + 14.68	83.19 + 13.15	73.19 + 10.72	61.34 + 11.96
Corophium Volutator	10	160.8 + 25.16	133.2 + 24.46	132.0 + 17.08	107.4 + 13.56	93.46 + 14.98	84.29 + 11.73
	20	134.4 + 26.52	126.7 + 27.63	119.2 + 23.77	95.04 + 12.90	76.55 + 11.20	64.70 + 11.23
	5	83.66 + 12.11	78.64 + 11.41	77.46 • + 12.68	75.41 + 9.020	61.15 1 5 .32	49.49 + 9.987
Control	10	99.46 + 11.39	87.57 + 14.16	82.99 + 12.17	78.41 + 10.49	68.85 + 13.45	62.09 + 10.46
	20	129.4 + 17.21	113.5 + 13.97	104.2 $\frac{+}{16.03}$	93.46 + 16.83	79.32 + 14.31	57.99 + 1 I. 88

APPENDIX III: TABLE 31. <u>Nereis diversicolor secretions</u>. Comparison of sizes of particles between 5, 10 and 20 cm for successive time intervals, in the sedimentation cylinder.

Time (secs)	Comparison	D.F	t-test	Probability
5	5 cm x 10 cm	198	30.90	P∠0.001 *****
	5 cm x 20 cm	200	2.057	0.05>P>0.02 *
	10 cm x 20 cm	200	29.39	P∠0.001 *****
10	5 cm x 10 cm	196	26.78	P < 0.001 *****
	5 cm x 20 cm	189	5.161	P < 0.001 *****
	10 cm x 20 cm	175	17.51	P < 0.001 *****
20	5 cm x 10 cm	198	30.65	P∠0.001 *****
	5 cm x 20 cm	173	3.470	P∠0.001 *****
	10 cm x 20 cm	170	20.27	P∠0.001 *****
40	5 cm x 10 cm	179	25.66	$P \leq 0.001 *****$
	5 cm x 20 cm	154	0.4160	0.7>P>0.06
	10 cm x 20 cm	189	18.89	$P \geq 0.001 *****$
60	5 cm x 10 cm	198	9.458	P ∠ 0.001 *****
	5 cm x 20 cm	198	1.121	0.3 >P > 0.2
	10 cm x 20 cm	198	10.14	P ∠ 0.001 *****
120	5 cm x 10 cm 5 cm x 20 cm 10 cm x 20 cm	157 198 143	9.046 2.465 10.99	$P \angle 0.001$ ***** 0.01>P>0.001*** $P \angle 0.001$ *****

t

Time (secs)	Comparison	D.F	t-test	Probability
	5 cm x 10 cm	178	10.04	P∠0.001 *****
5	5 cm x 20 cm	173	1.384	0.2>P>0.1
	10 cm x 20 cm	198	7.222	P < 0.001 ******
	5 cm x 10 cm	152	11.22	P < 0.001 ******
10	5 cm x 20 cm	142	8.051	P < 0.001 ******
	10 cm x 20 cm	198	1.761	0.1>P>0.05
	5 cm x 10 cm	198	18.75	P∠0.001 *****
20	5 cm x 20 cm	166	10.53	P ∠ 0.001 ******
	10 cm x 20 cm	181	4.373	P∠ 0.001 ******
	5 cm x 10 cm	198	12.82	P < 0.001 *****
40	.5 cm x 20 cm	198	6.433	P ∠ 0.001 *****
-	10 cm x 20 cm	198	6.604	P < 0.001 *****
	5 cm x 10 cm	181	11.00	P∠ 0.001 *****
60	5 cm x 20 cm	200	2.167	0.05>P>0.02 *
	10 cm x 20 cm	185	9.041	Р Д 0.001 *****
·	5 cm x 10 cm	198	13.70	Р ∠0.001 *****
120	5 cm x 20 cm	198	2.048	0.05>P>0.02 *
	10 cm x 20 cm	198	12.06	P∠0.001 *****

APPENDIX III: TABLE 32. <u>Corophium volutator</u> secretions. Comparison of sizes of particles between 5, 10 and 20 cm for successive time intervals, in the sedimentation cylinder.

APPENDIX	III:	TABLE	33.	Contro	1	sedi	ment	: (1	10	secre	etion).	C	omparison
of s	izes o	f partic	cles	between !	5,	10	and	20	cm	for	success:	ive	time
inte	rvals,	in the	sed	imentation	n	cyli	nder	•					

.

Time (secs)	Comparison	D.F	t-tests	Probability
	5 cm x 10 cm	198	9.504	P 🗶 0.001 *****
5	5 cm x 20 cm	198	21.74	P∠0.001 *****
	10 cm x 20 cm	173	14.51	P < 0.001 *****
	5 cm x 10 cm	191	4,911	P < 0.001 ****
10	5 cm x 20 cm	198	19.33	P∠ 0.001 *****
	10 cm x 20 cm	198	13.04	P∠0.001 *****
	5 cm x 10 cm	198	3.146	0.01>P>0.001****
20	5 cm x 20 cm	1 90	13.08	Р Д 0.001 *****
	10 cm x 20 cm	99	2.076	0.05>P>0.02 *
	5 cm x 10 cm	198	2.168	0.05>P>0.02 *
40	5 cm x 20 cm	153	9.453	Р 🗸 0.001 *****
· 、	10 cm x 20 cm	.167	7.589	Р Д 0.001 *****
	5 cm x 10 cm	198	3.777	Р ∠ 0.001 *****
60	5 cm x 20 cm	198	8.667	P∠ 0.001 *****
	10 cm x 20 cm	198	5.331	P 🗸 0.001 *****
	5 cm x 10 cm	198	8.712	P 🗸 0.001 *****
120	5 cm x 20 cm	198	5.477	Р 🗸 0.001 *****
	10 cm x 20 cm	198	2.590	0.02>P>0.01 **

.

1

.

APPENDIX III: TABLE 34. Effects of secretions of <u>Nereis diversicolor</u> (<u>N.d.</u>) and Corophium volutator (<u>C.v.</u>) on sedimentation; 5 cm depth. Comparison of sizes of particles between <u>N.d.</u>, <u>C.v.</u>, and controls (no secretion), for successive time intervals, in the sedimentation cylinder

Time (secs)	Comparison	D.F	t-test	Probability
5	$\frac{N.d. \times C.v.}{N.d. \times control}$ $\frac{C.v. \times control}{C.v. \times control}$	170 137 177	13.82 30.56 21.73	P ∠ 0.001 ***** P ∠ 0.001 ***** P ∠ 0.001 *****
10	$\frac{N.d. \times C.v.}{N.d. \times control}$ $\frac{C.v.}{C.v. \times control}$	126 120 196	13.36 19.84 13.53	P∠0.001 ***** P∠0.001 ***** P∠0.001 *****
20	$\frac{N \cdot d}{N \cdot d} \cdot x \underbrace{C \cdot v}_{N \cdot d} \cdot x \text{ control}$ $\underline{C \cdot v} \cdot x \text{ control}$	143 132 193	15.95 20.04 3.561	P く 0.001 ***** P く 0.001 ***** P く 0.001 *****
40	$\frac{N \cdot d}{N \cdot d} \cdot x \underbrace{C \cdot v}_{N \cdot d} \cdot x \text{ control}$ $\frac{C \cdot v}{C \cdot v} \cdot x \text{ control}$	150 124 177	21.17 25.37 4.879	P∠ 0.001 ***** P∠ 0.001 ***** P∠ 0.001 *****
60	$\frac{N.d. \times C.v.}{N.d. \times control}$ $\frac{C.v.}{x} \times control$	128 155 179	16.69 19.46 6.439	P < 0.001 ***** P < 0.001 ***** P < 0.001 *****
120	$\frac{N.d. \times C.v.}{N.d. \times control}$ $\underline{C.v.} \times control$	169 152 194	25.14 31.87 7.605	P∠ 0.001 ***** P∠ 0.001 ***** P∠ 0.001 *****

APPENDIX III: TABLE 35. Effects of secretions of <u>Nereis diversicolor</u> (<u>N.d.</u>) and <u>Corophium volutator</u> (<u>C.v.</u>) on sedimentation. 10 cm depth. Comparison of sizes of particles between <u>N.d.</u>; <u>C.v.</u> and controls (no secretion), for successive time intervals, in the sedimentation cylinder.

Time (secs)	Comparison	D.F	t-test	Probability	
5	$\frac{N \cdot d}{N \cdot d} \times \frac{C \cdot v}{x}$ $\frac{N \cdot d}{C \cdot v} \times \text{ control}$	198 132 139	35.87 65.38 22.21	P∠ 0.001 P∠ 0.001 P∠ 0.001	****** ******* ******
10	$\frac{N \cdot d}{N \cdot d} \cdot x \underbrace{C \cdot v}_{N \cdot d} \cdot x \text{ control}$ $\underline{C \cdot v}_{\cdot} \cdot x \text{ control}$	191 140 160	36.98 56.52 16.14	P (0.001 P (0.001 P (0.001	neresen nereseen nereseen
20	$\frac{N \cdot d}{N \cdot d} \cdot x \underbrace{C \cdot v}_{N \cdot d} \cdot x \text{ control}$ $\underbrace{C \cdot v}_{C \cdot v} \cdot x \text{ control}$	158 131 181	41.69 59.56 23.37	P & 0.001 P & 0.001 P & 0.001	***** ***** *****
40	$\frac{N \cdot d}{N \cdot d} \cdot x \underbrace{C \cdot v}_{N \cdot d} \cdot x \text{ control}$ $\underbrace{C \cdot v}_{C \cdot v} \cdot x \text{ control}$	127 116 188	38.66 47.33 16.91	P & 0.001 P & 0.001 P & 0.001	***** ***** *****
. 60	$\frac{N.d. \times C.v.}{N.d. \times control}$ C.v. x control	134 127 198	18.32 25.06 12.22	P∠ 0.001 P∠ 0.001 P∠ 0.001	***** ***** *****
120	$\underbrace{N.d. \times C.v.}_{N.d. \times control}$ $\underbrace{C.v. \times control}_{C.v. \times control}$	123 118 197	19.11 25.64 14.13	Р 🗸 0.001 Р 🗸 0.001 Р 🗶 0.001	***** ****** *****

APPENDIX III: TABLE 36. Effects of secretions of <u>Nereis diversicolor</u> (<u>N.d.</u>) and <u>Corophium volutator</u> (<u>C.v.</u>) on sedimentation. 20 cm depth. Comparison of sizes of particles between <u>N.d.</u>; <u>C.v.</u>; and controls (no secretion), for successive time intervals, in the sedimentation cylinder.

Time (secs)	Comparison	D.F	t-test	Probability	
5	$\frac{N \cdot d}{N \cdot d} \cdot x \underbrace{C \cdot v}_{N \cdot d} \cdot x \text{ control}$ $\underbrace{C \cdot v}_{C \cdot v} \cdot x \text{ control}$	198 172 171	12.89 16.90 1.582	P ∠ 0.001 P ∠ 0.001 0.2 > P > 0.1	******
10	$\frac{N \cdot d}{N \cdot d} \cdot x \underbrace{C \cdot v}_{N \cdot d} \cdot x \text{ control}$ $\underbrace{C \cdot v}_{C \cdot v} \cdot x \text{ control}$	165 118 147	10.48 14.51 4.263	P∠ 0.001 P∠ 0.001 P∠ 0.001	****** ****** ******
20	$\frac{N.d. \times C.v.}{N.d. \times control}$ $\frac{C.v. \times control}{C.v. \times control}$	148 123 175	8.479 12.04 5.231	Р 🕹 0.001 Р 🕹 0.001 Р 🕹 0.001	****** ******* *******
40	$\frac{N \cdot d}{N \cdot d} \cdot x \underbrace{C \cdot v}_{\text{C.v.}}$ $\frac{N \cdot d}{C \cdot v} \cdot x \text{ control}$	115 125 187	10.53 10.60 0.7451	P∠ 0.001 P∠ 0.001 0.5>P>0.4	***** ***** *****
60	$\frac{N.d.}{N.d.} \times \frac{C.v}{C.v}.$ $\frac{N.d.}{C.v} \times \text{ control}$	131 149 189	14.02 . 12.55 1.524	P∠ 0.001 P∠ 0.001 0.2>P>0.1	*****
120	$\underline{N} \cdot \underline{d} \cdot x \underline{C} \cdot \underline{v} \cdot \underline{N} \cdot \underline{d} \cdot x \text{ control}$ $\underline{N} \cdot \underline{d} \cdot x \text{ control}$ $\underline{C} \cdot \underline{v} \cdot x \text{ control}$	179 184 198	23.77 26.68 4.105	P く 0.001 P く 0.001 P く 0.001	***** ****** *****

Scanning electron microscopy methodology

Samples were prepared for the scanning electron microscope as follows.

1. Dehydration

Fixed samples were dehydrated using a series of acetone solutions of increasing concentrations (30%, 50%, 70%, 90% and 100%). The samples were given two 5-minute washes at each concentration.

2. Critical point drying

Dehydrated samples were transferred to metal baskets, ensuring that the samples remained immersed in the anhydrous acetone solutions. The critical point drying apparatus was then set up. Baskets containing samples were transferred very rapidly from the acetone solution into the critical point drying apparatus to prevent the sample drying out. The apparatus was then rapidly sealed.

The inlet valve was opened to fill the chamber of the apparatus with liquid gas. The ventilation valve was opened to avoid back pressure building up while the inlet valve remained fully open the whole time. Samples were then reflushed with fresh liquid gas by opening the drain valve. At the same time, the ventilation valve was opened slightly to maintain the liquid level.

After reflushing the samples, the chamber was filled with liquid CO_2 , while ventilation and drain valves were closed. Samples remained inside the critical point drying apparatus for one hour and were flushed every 15 minutes with CO_2 .

Finally, the inlet valve was closed and the liquid level was allowed to fall to the top of the metal baskets. Complete drying was accomplished by slowly heating the sample to $36-40^{\circ}$ C with all values closed. Pressure remained at 1400 PSi. After 5 minutes, the gaseous CO_2 was slowly vented from the chamber, while the temperature was maintained at 36° C. The ventilation value was operated slowly since condensation of the gas back to liquid phase could occur due to the local cooling effect produced by expansion of the gas by rapid venting. Ventilation time was always in excess of 10 minutes. The baskets containing the samples were removed from the critical point drying apparatus after the pressure had fallen to zero.

3. Gold coating stubs

Stubs from each sample were prepared as follows.

Each stub was covered with a double-sided adhesive cellophane tape leaving a margin around the edge. The margins of the stubs were then painted with a quick drying silver paint and allowed to dry for 30 minutes before use.

A small sample of the critical-point-dried material was then transferred very gently to the stubs using a binocular microscope.

The stubs were gold coated as follows:

- 1. they were placed in the gold coating machine;
- Argon gas was set to a pressure reading of 4 on the meter scale on the Argon cylinder;
- the operation switch was set to pump, and the chamber was evacuated until the pirani guage read
 0.07 TOR;

554.

- 4. the leak valve was rotated one revolution in an anticlockwise direction (this step was repeated several times);
- 5. the H.T. position was selected on the operation switch and the control (H.T.) rotated until the pointer indicated 1.2 KV;
- the operation switch was then set to timer. An interval of 2 minutes was selected;
- 7. the leak valve was rotated to read 40 m amps on the current meter;
- 8. at the end of the 2 minutes, the leak valve was turned to zero in a clockwise direction, the H.T. control switched to zero, the operation switch set to the off position, and the Argon gas supply at the cylinder switch off;
- 9. finally, air was admitted to the chamber by lifting the air admittance valve on the top plate, the stubs were then placed in the SEM for study or stored.

SEM Procedure

A. Sequence of operations involved in switching on the SEM

The SEM was switched on using the following procedure:

- the main power box and the water cooling unit was switched on;
- 2. the mains switch and vacuum systems was switched on;

555.

- 3. the meter selector was turned to the PVL position. This activated the automatic pumping system which evacuated the system over a period of 20 minutes allowing the diffusion pump to warm up. The HV light then went out;
- 4. the meter selector was turned on to HV, and the movement of the needle was observed from right to left, showing an increased vacuum up to 5×10^{-5} torr;
- 5. the instrument was then ready to use.

B. Specimen insertion and removal using the five-specimen carrier

Sample insertions and removals were carried out as follows:

- X-position and Y-position controls were set at 7, the tilt lever was set at 33^o (), and the lever locked at this position;
- 2. magnification was turned fully anticlockwise, SED control switched off, and GAIN and BLACK levels were set to zero. The H.T. was switched off by depressing the button to extinguish its light. Thirty seconds were allowed for filament cooling and then air was admitted by pressing the vacuum system OFF and AIR buttons in close succession;
- 3. the positions of the X and Y controls and tilt were checked;
- 4. after the noise of air entering had ceased, the stage was pulled out using the two handles on the front of the stage;

- 5. the five-specimen carrier was removed using an Allen Key;
- 6. the stubs were inserted into the holder and clamped using an Allen Key. The stage was pushed back into the chamber ensuring a good seating of the sealing ring;
- 7. AIR and ON buttons of the vacuum system were closed in close succession to evacuate the microscope column to a working vacuum (i.e. H.V light extinguishes);
- 8. the stage was tilted to "O" and locked in this position using the handles on the front of the stage. An image of the samples on the SEM screen was obtained following the general operating procedure as below.

C. General operating procedure for SEM

į

-

- The specimen position was switched to 3 and the detector to 2;
- the SED control was set at off, and the GAIN and BLACK levels to zero;
- 3. a check was made to ensure that the 1X button of the scan generator was not depressed;
- the KV button was selected to be on 6, and 250 lines were selected;
- 5. the H.T. button was switched on and the magnification was reduced;

557.

- 6. the IX range was selected on the SED control;
- 7. an image was obtained on the viewing monitor by increasing the GAIN and BLACK levels when the line time was switched on to I.T position;
- the sample was then examined and certain areas were selected for photography.

D. Photography

- 1. After selecting an area of interest at an appropriate magnification and spot size, the vacuum system was checked to ensure that the automatic pumping system would not operate by observing the meter reading on position PVB of the selector. If the needle approached 40, the button (ON) of the vacuum system was pressed and no further action taken until the pump had ceased;
- 2. 250 lines was selected and the button of the scan mode was pressed;
- 3. line time was switched to 1 msec and the image was focussed at one step higher magnification than desired;
- astigmatism was corrected by moving the two shift controls on the scan generator;
- 5. magnification was turned to the desired setting and the I.T was switched on to obtain a viewing monitor image;

- 6. a margin of half an inch all round the image on the viewing monitor was allowed as a rough guide to the area that would appear on the photographic negative;
- 7. the scan mode was switched back to full frame;
- 8. 32 msecs on the line time and 1000 lines on the scan generator was selected watching the signal profile on the videoscope. Ideally the band of signals should lie mid-way between black and white lines on the videoscope screen;
- 9. the "IX" image button and the "exp" button were then pressed one after another to expose the film;
- 10. at the end of the scan (1 min) the "exp" button went out automatically. The film was then advanced and the "IX" button released.

t

{

REFERENCES

•

•

REFERENCES

- ALEXANDER, M. (1977). Introduction to Soil Microbiology. Wiley: New York.
- ALLEN, J.R.L. (1977). The plan shape of current ripples in relation to flow conditions. Sedimentology 24: 53-62.
- ALLEN, T. (1975). <u>Particle Size Measurement</u>. Chapman and Hall: London.
- ALLER, R.C. (1978a). The effects of animal sediment interactions on geochemical processess near the sediment-water interface. pp. 157-172. In: <u>Estuarine Interactions</u>. Ed. M. Wiley. Academic Press: New York and London.
- ALLER, R.C. (1978b). Experimental studies of changes produced by deposit feeders on pore water, sediment, and overlying water chemistry. <u>Am. J. Sci. 278</u>: 1185-1234.
- ALLER, R.C. (1980). Diagenetic processes near the sediment-water interface of Lond Island South. I. Decomposition and nutrient element geochemistry (S.N.P.). <u>Adv. Geophys.</u> 22: 237-350.
- ALLER, R.C. (1982). The effects of macrobenthos on chemical properties of marine sediment and overlying water. pp. 53-102. In: <u>Animal-Sediment Relations</u>. Eds. P.L. McCall and M.J.S. Tevesz. Plenum Press: New York.
- ALLER, R.C. (1983). The importance of the diffusive permeability of animal burrow linings in determining marine sediment chemistry. J. mar. Res. 41: 299-322.

- ALLER, R.C. and YINGST, J.Y. (1978). Biochemistry of tube dwellings: a study of the sedentary polychaete <u>Amphitrite ornata</u> (Leidy). J. mar. <u>Res. 36</u>: 201-254.
- ALLER, R.C. and YINGST, J.Y. (1980). Relationships between microbial distribution and the anaerobic decomposition of organic matter in surface sediments of Long Island Sound, U.S.A. <u>Mar. Biol. 56</u>: 29-42.
- ANDERSON, F.E., BLACK, L., WATLING, L.E., MOOK, W. and MAYER, L.M. (1981). A temporal and spatial study of mud flat erosion and deposition. J. sedim. Petrol. 51: 729-736.
- ANDERSON, J.G., BOONRUANG, P. and MEADOWS, P.S. (1981). Interrelationships between chlorophylls, carbon, nitrogen and heterotropic bacteria in an intertidal sediment transect. <u>Mar. Ecol. Prog.</u> <u>Ser. 6</u>: 277-283.
- ANDERSON, J.G. and MEADOWS, P.S. (1965). Micro-organisms and organic matter attached to the surface of marine sand grains. <u>J. gen.</u> <u>Microbiol. 41</u>: 3.
- ANDERSON, J.G. and MEADOWS, P.S. (1969). Bacteria on intertidal sand grains. <u>Hydrobiologia</u> <u>33</u>: 33-46.
- ANDERSON, J.G. and MEADOWS, P.S. (1978). Microenvironments in marine sediments. <u>Proc. R. Soc. Edinb.</u> 76B: 1-16.
- ANDERSON, J.G. and MORRIS, E.O. (1974). A review of studies on the microorganisms of the Clyde Sea area. pp. 28-31. In: <u>The Clyde</u> <u>Estuary and Firth</u>. The Natural Environment Research Council Publications, Series C, No. 11.

- ANDERSON, N.R. and MALAHOFF, A. (1977). <u>The Fate of Fossil Fuel CO₂ in</u> the Oceans. Plenum Press: New York.
- ANON. (1974). Introduction: general information about Clyde Sea area. pp. 3-5. In: <u>The Clyde Estuary and Firth</u>. The Natural Environment Research Council Publications, Series C, No. 11.
- ARNOLD, H.D. (1911). Limitations imposed by slip and inertia term upon Stokes' Law for the motion of spheres through liquids. <u>Phil. Mag.</u> <u>22</u>: 755-775.
- ASPIRAS, R.B., ALLEN, O.N., HARRIS, R.F. and CHESTERS, G. (1971). The role of microorganisms in the stabilizations of soil aggregates. <u>Soil Biol. Biochem. 3</u>: 347-353.
- BAFFONI, G.M. (1968). Osservazioni morfologiche sul tegumento in un polichete errante. <u>Atti Accad. naz. Lincei Rc. 44</u>: 463-468.
- BAGANDER, L.E. and NIEMISTÖ, L. (1978). An evaluation of the use of redox measurements for characterising recent sediments. <u>Estuar</u>. <u>Coast. Mar. Sci. 6</u>: 127-134.
- BAGNOLD, R.A. and BARNODORFF-NIELSEN, O. (1980). The pattern of natural size distribution. Sedimentology 27: 199-207.
- BAILEY, N.T.J. (1959). <u>Statistical Methods in Biology</u>. Hodder and Stoughton: London and Sydney.
- BARKER, S.A., HAYES, M.H.B., SIMMONDS, R.G. and STACEY, M. (1967). Studies on soil polysaccharides. <u>Carbohyd. Res. 5</u>: 13-24.
- BARNES, R.D. (1980). <u>Invertebrate Zoology</u>. Saunders College: Holt, Rinehart and Winston: Philadelphia.

BARNES, R.S.K. (1974). Estuarine Biology. Edward Arnold: London.

- BARRET, P.J. (1980). The shape of rock particles: a critical review. Sedimentology 27: 291-303.
- BASS-BECKING, L.G.M., KAPLAN, I.R. and MOORE, D. (1960). Limits of the natural environment in terms of pH and oxidation-reduction potentials. J. Geol. 68: 243-284.
- BATE, C.S. and WESTWOOD, J.O. (1862). <u>A History of the British Sessile-</u> <u>Eyed Crustacea</u> (Vol. I). John Van Voorst: London.
- BATHURST, R.G.C. (1967). Subtidal gelatinous mat, sand stabilizer and food, Great Bahama Bank. J. Geol. 75: 736-738.
- BERNER, R.A. (1980). <u>Early Diagenesis: A Theoretical Approach</u>. Princeton University Press: Princeton, New Jersey.
- BIERNBAUM, C.K. (1979). Influence of sedimentary factors on the distribution of benthic amphipods of Fishers Island Sound, Connecticut. J. Exp. Mar. Biol. Ecol. 38: 201-225.
- BLACK, M. (1933). The algal sediments of Andros Island, Bahamas. Phil. Trans. R. Soc. Lond. 22(B): 165-192.
- BLOOM, S.A., SIMON, J.L. and HUNTER, V.D. (1972). Animal-sediment relations and community analysis of a Florida estuary. <u>Mar. Biol.</u> <u>13</u>: 43-56.
- BOCK, W.D. and MOORE, D.F. (1968). A commensal relationship between a foraminifer and a bivalve mollusc. <u>Gulf. Res. Rep. 2</u>: 273-279.
- BOERSMA, J.R. and TERWINDT, J.H.J. (1981). Neap-spring tide sequences of intertidal shoal deposits in a mesotidal estuary. <u>Sedimentology 28</u>: 151-170.

- BÖHM, L., DAWSON, R., LIEBEZEIT, G. and WEFER, G. (1980). Suitability of monosaccharides as markers for particle identification in carbonate sediments. <u>Sedimentology</u> 27: 167-177.
- BOKUNIEURICZ, H.J., GORDON, R.B. and RHOADS, D.C. (1975). Mechanical properties of the sediment water interface. <u>Mar. Geol. 18</u>: 263-278.
- BOWLES, J.E. (1978). <u>Engineering Properties of Soil and their</u> <u>Measurement.</u> McGraw-Hill: New York and London.
- BRAYSHAW, A.C., FROSTICK, L.E. and REID, I. (1983). The hydrodynamics of particle clusters and sediment entrainment in coarse alluvial channels. <u>Sedimentology</u> 30: 137-143.
- BRIDGES, P.H. and LEEDER, M.R. (1976). Sedimentary model for intertidal mud flat channels with examples from the Solway Firth, Scotland. <u>Sedimentology 23</u>: 533-552.
- BRIGGS, D. (1977). <u>Sediments</u>. (<u>Sources and Methods in Geography</u>). Butterworths: London and Boston.
- BRITISH STANDARDSA (1975). <u>Methods of Test for Soils for Civil</u> <u>Engineering Purposes</u>. British Standards Institution, GR 10: London. No. 1377.
- BROWN, B. (1982). Spatial and temporal distribution of a depositfeeding polychaete on a heterogenous tidal flat. J. Exp. Mar. Biol. Ecol. 65: 213-227.
- BROWNING, G.M. and MILAM, F.M. (1944). Effect of different types of organic materials and lime on soil aggregation. <u>Soil Sci. 57</u>: 91-106.

- BUCHANAN, J.B. and KAIN, J.M. (1971). Measurement of the physical and chemical environment. pp. 30-58. In: <u>Methods for the Study of</u> <u>Marine Benthos</u>. I.B.P. Handbooks, No. 16. Eds. N.A. Holme and A.D. McIntyre. Blackwell Scientific Publications: Oxford and Edinburgh.
- BURGER, H. (1976). Log-normal interpolation in grain size analysis. Sedimentology 23: 395-405.
- BURGES, A. (1958). <u>Micro-organisims in the Soil</u>. Hutchinson University Library: London.
- BYRES, S.C., MILLS, E.L. and STEWART, P.L. (1978). A comparison of methods of determining organic carbon in marine sediments with suggestions for a standard method. <u>Hydrobiologia</u> <u>58</u>: 43-47.
- CADEE, G. (1976). Sediment reworking by <u>Arenicola marina</u> in tidal flats in the Dutch Wadden Sea. <u>Neth. Jl. Sea Res. 10</u>: 440-460.
- CAMPBELL, A.C. and NICHOLLS, J. (1976). <u>The Hamlyn Guide to the</u> <u>Seashore and Shallow Seas of Britain and Europe</u>. Hamlyn: London and New York.
- CAMPBELL, J.I. and MEADOWS, P.S. (1974). Gregarious behaviour in a benthic marine amphipod (<u>Corophium volutator</u>). <u>Experientia 30</u>: 1396-1397.
- CAMPBELL, R. (1977). Microbial Ecology. John Wiley and Sons: New York and Chichester.
- CAPPER, P.L. and CASSIE, W.F. (1976). <u>The Mechanics of Engineering</u> Soils. Sixth (SI) Edition. E and F.N. Spon: London.
- CARLING, P.A. (1982). Temporal and spatial variation in intertidal sedimentation rate. <u>Sedimentology</u> 29: 17-23.

- CHAMBERS' ENCYCLOPEDIA (1950). Camouflage Confession of Faith. George Newnes: London.
- CHAMBERS, M.R. and MILNE, H. (1975). Life cycle and production of <u>Nereis diversicolor</u> (O.F. Müller) in the Ythan Estuary, Scotland. Estuar. Coast. Mar. Sci. 3: 133-144.
- CHANDLER, G.T. and FLEEGER, J.W. (1984). Tube-building by a marine meiobenthic harpacticoid copepod. Mar. Biol. 82: 15-19.
- CHANNON, R.D. and HAMILTON, D. (1976). Wave and tidal current sorting of shell sediments southwest of England. <u>Sedimentology 23</u>: 17-42.
- CHRISTAIN, R.R. and WETZEL, R.L. (1978). Interaction between substrate, microbes, and consumers of spartina detritus in estuaries. pp. 93-113. In: <u>Estuarine Interactions</u>. Ed. M.L. Wiley. Academic Press: New York and London.
- COLLAR, R.H.F. (1974). The River Clyde Estuary current knowledge of water and sediment movement. pp. 10-13. In: <u>The Clyde Estuary and</u> <u>Firth: An Assessment of Present Knowledge Compiled by Members of</u> <u>the Clyde Study Group</u>. The Natural Environment Research Council Publication, Series C, No. 11.
- COLLINS, M.B. and RIGLER, J.K. (1982). The use of settling velocity in defining the initiation of motion of heavy mineral grains, under unidirectional flow. <u>Sedimentology</u> 29: 419-426.
- COLLINSON, J.D. and THOMPSON, D.B. (1982). <u>Sedimentary Structures</u>. - Allen and Unwin: London.
- COLWELL, R.R. and KAPER, J. (1978). Distribution, survival, and significance of pathogenic bacteria and viruses in estuaries. pp. 443-457. In: <u>Estuarine Interactions</u>. Ed. M.L. Wiley. Academic

Press: New York and London.

- COULSON, J.M. and RICHARDSON, J.F. (1955). <u>Chemical Engineering</u> (Vol 2). Pergamon Press: Oxford and London.
- CRAWFORD, G.I. (1937). A review of the amphipod genus <u>Corophium</u>, with notes on the British species. J. mar. biol. Ass. U.K. 21: 589-630.
- CROKER, R.A. (1967). Niche diversity in five sympatric species of intertidal amphipods (Crustacea: Haustoriidae). <u>Ecol. Monogr. 37</u>: 173-200.
- CRONIN, L.E. (Edit.) (1975). <u>Estuarine Research</u> (Vol. I): <u>Chemistry</u>, <u>Biology</u>, <u>and the Estuarine System</u>. Academic Press: New York and London.
- CRONIN, L.E. (Edit.) (1975). <u>Estuarine Research</u> (Vol. II): <u>Geology and</u> <u>Engineering</u>. Academic Press: New York and London.
- CROSS, F.A. and SUNDA, W.G. (1978). Relationship between bioavailability of trace metals and geotechnical processes in estuaries. pp. 429-442. In: <u>Estuarine Interactions</u>. Ed. M.L. Wiley. Academic Press: New York and London.
- CRUICKSHANK, R., DUGUID, J.P., MARMION, B.P. and SWAIN, R.H.A. (1975). Medical Microbiology. Churchill Livingstone: London and New York.

CULLEN, D.J. (1973). Bioturbation of superficial marine sediments by - interstitial meiobenthos. <u>Nature</u>, Lond. 242: 323-324.

CUMMINS, K.W. and LAUFF, G.H. (1969). The influence of substrate particle on the microdistribution of stream macrobenthos. <u>Hydrobiologia 34</u>: 145-181.

- DALE, N.G. (1974). Bacteria in intertidal sediments: factors related to their distribution. Limnol. Oceanogr. 19: 509-518.
- DALES, R.P. (1950). The reproduction and larval development of <u>Nereis</u> <u>diversicolor</u> (O.F. Müller). J. mar. biol. Ass. U.K. 29: 321-360.
- DALES, R.P. (1951). An annual history of a population of <u>Nereis</u> <u>diversicolor</u> (O.F. Müller). <u>Biol. Bull. mar. biol. Lab.</u>, Woods Hole <u>101</u>: 131-137.
- DALY, I.M. (1973). Behavioural and secretory activity during tube construction by <u>Platynereis dumerilli</u>. AUD. & M. EDW. (Polychaeta: Nereidae). <u>J. mar. biol. Ass. U.K. 53</u>: 521-529.
- DAVIS, R.A. Jr (1983). <u>Depositional Systems: A Genetic Approach to</u> <u>Sedimentary Geology</u>. Prentice-Hall: New Jersey.
- DAY, J.H. (1978). The effect of plants and animals on estuarine chemistry. pp. 216-221. In: <u>Biogeochemistry of Estuarine Sediments</u>. Proceedings of a UNESCO/SCOR Workshop, 1976. UNESCO: Paris.
- DEAN, W.E. Jr (1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J. sedim. <u>Petrol. 44</u>: 242-248.
- DEANS, E.A., MEADOWS, P.S. and ANDERSON, J.G. (1982). Physical, chemical and maicrobiological properties of intertidal sediments, and sediment selection by <u>Corophium volutator</u>. <u>Int. Revue ges.</u> <u>Hydrobiol. 67</u>: 261-269.
- DEEGAN, C.E. (1974). Geological investigations in the Firth of Clyde made by the Institute of Geological Sciences. pp. 6-9. In: <u>The</u> <u>Clyde Estuary and Firth: An Assessment of Present Knowledge</u>

<u>Compiled by Members of the Clyde Study Group</u>. The Natural Environment Research Council Publication, Series C, No. 11.

- DEFLAUN, M.F. and MAYER, L.M. (1983). Relationships between bacteria and sediment grain surfaces in intertidal sediment. <u>Limnol.</u> Oceanogr. 28: 873-881.
- DEFRETIN, R. (1971). The tubes of polychaete annelids. pp. 713-747. In: <u>Comprehensive Biochemistry</u> (Vol. 26, Part C). Eds M. Florkin and E.H. Stotz. Elsevier Publishing Company: Amsterdam and London.
- DENNELL, R. (1960). Integumental and exoskeleton. In: <u>The Physiology</u> <u>of Crustacea</u> (Vol. I). Ed. T.H. Waterman. Academic Press: New York and London.
- DIFCO MANUAL (1972). DIFCO Supplementary Literature. DIFCO Laboratories: Detroit and Michigan.
- DILLON, W.P. and ZIMMERMAN, H.B. (1970). Erosion by biological activity in two New England submarine canyons. J. sedim. Petrol. 40: 542-547.
- DONAHUE, J. (1971). Burrow morphologies in north-central Pacific sediments. <u>Mar. Geol. 11: M1-M7.</u>
- DOUGLAS, J.F., GASIOREK, J.M. and SWAFFIELD, J.A. (1979). <u>Fluid</u> <u>Mechanics</u>. Pitman: London.
- DORSETT, D.A. and HYDE, R. (1970). The spiral glands of <u>Nereis</u>. Z. Zellforsch. <u>mikrosk. Anat. 110</u>: 204-218.
- DUANE, D.B. (1964). Significance of skewness in recent sediments, Western Pamlico Sound, North Carolina. <u>J. sedim. Petrol. 34</u>: 864-874.

- DYER, K.R. (1979). <u>Estuarine Hydrography and Sedimentation</u>. Cambridge University Press: London and New York.
- ECKMAN, J.E., NOWELL, A.R.M. and JUMARS, P.A. (1981). Sediment destabilization by animal tubes. J. mar. Res. 39: 361-374.
- EDWARDS, J.M. and FREY, R.W. (1977). Substrate characteristics within a Holocence Salt Marsh, Sapelo Island, Georgia. <u>Senckenberg.</u> <u>marit. 9</u>: 215-259.
- EINSELE, G. (1977). Range, velocity, and material flux of compaction flow in growing sedimentary sequences. Sedimentology 24: 639-655.
- ELLIS, D. (1925). An investigation into the cause of blackening of the sand in parts of the Clyde Estuary. <u>Jl. R. Tech. Coll. Glasg. 1</u>: 144-156.
- ELLIS, D. (1926). Part I: <u>Thioporphyra volutants</u> (Ellis) a new genus of sulphur bacteria. Part II: the sulphur bacteria as aids in the study of polluted water. <u>Jl. R. tech. Coll. Glasg. 1</u>: 165-177.
- ELLIS, D. (1929). A bacteriological investigation into the state of pollution of the Clyde at Port Glasgow, Greenock and Gourock. <u>Jl. R. Tech. Coll. Glasg. 2</u>: 129-142.
- ELLIS, D. (1932). The dilution of sewage in the sea. <u>Jl. R. Tech.</u> <u>Coll. Glasg. 2</u>: 698-707.
- ELLIS, D. and STODDART, J.H. (1930). The chemical changes in pools - containing vegetable remains infected with sulfur bacteria. <u>Jl. R. Tech. Coll. Glasg. 2</u>: 336-346.
- ETTERSHANK, G., MAIN, B.Y., WILLIAMS, W.D., BLOWER, J.G. and GHENT, R.L. (1972). Phylum Arthropoda. pp. 392-613. In: <u>Textbook of Zoology</u>

<u>Invertebrates</u>. Eds A.J. Marshall and W.D. Williams. Macmillan: London and Basingstoke.

- EWER, D.W. and HANSON, J. (1945). Some staining reactions of invertebrate mucoproteins. Jl. R. microsc. Soc. 65: 40-63.
- FAGER, E.W. (1964). Marine sediments: effects of a tube-building polychaete. <u>Science</u>, N.Y. <u>143</u>: 356-359.
- FAUVEL, P. (1923). Polychetes Errantes. Tome 5 de Faune de France. Paul Lechevalier: Paris.
- FEATHERSTONE, R.P. and RISK, M.J. (1977). Effects of tube-building polychaetes on intertidal sediments of the Minas Basin, Bay of Fundy. J. sedim. Petrol. 47: 446-450.
- FENCHEL, T. (1969). The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special references to the ciliated protozoa. <u>Ophelia 6</u>: 1-182.
- FENCHEL, T. (1970). Studies on the decomposition of organic detritus from the turtle grass, <u>Thalassia testudinum</u>. <u>Limnol. Oceanogr.</u> <u>15</u>: 14-20.
- FENCHEL, T. (1972). Aspects of decomposer food chains in marine benthos. Verh. dt. zool. Ges. 65: 14-22.
- FENCHEL, T., KOFOED, L.H. and LAPPALAINEN, A. (1975). Particle sizeselection of two deposit feeders: the amphipod <u>Corophium volutator</u> and the prosobranch <u>Hydrobia ulvae</u>. <u>Mar. Biol. 30</u>: 119-128.
- FENCHEL, T.M. and RIEDL, R.J. (1970). The sulfide system: a new biotic community underneath the oxidised layer of marine sand bottoms. Mar. Biol. 7: 255-268.

- FISH, J.D. and MILLS, A. (1979). The reproductive biology of <u>Corophium</u> <u>volutator</u> and <u>Corophium arenarium</u> (Crustacea: Amphipoda). <u>J. mar.</u> <u>biol. Ass. U.K. 59</u>: 355-368.
- FLOOD, R.D. (1981). Distribution, morphology, and origin of sedimentary furrows in cohesive sediments, Southampton Water. <u>Sedimentology</u> <u>28</u>: 511-529.
- FOLK, R.L. (1966). A review of grain-size parameters. <u>Sedimentology</u> <u>6</u>: 73-93.
- FOLK, R.L. (1980). <u>Petrology of Sedimentary Rocks</u>. Hemphill Publishing Company: Austin, Texas.
- FOLK, R.L. and WARD, W.C. (1957). Brazos River Bar: a study in the significance of grain size parameters. J. sedim. Petrol. 27: 3-26.
- FOSTER-SMITH, R.L. (1978). An analysis of water flow in tube-living animals. <u>J. Exp. Mar. Biol. Ecol.</u> 34: 73-95.
- FOX, J.A. (1974). An Introduction to Engineering Fluid Mechanics. Macmillan: London and Basingstoke.
- FRANKEL, L. and MEAD, D.J. (1973). Mucilaginous matrix of some estuarine sands in Connecticut. J. sedim. Petrol. 43: 1090-1095.
- FRIEDMAN, G.M. and SANDERS, J.E. (1978). <u>Principles of Sedimentology</u>. John Wiley and Sons: New York and Chichester.
- FROSTICK, L.E. and McCAVE, I.N. (1979). Seasonal shifts of sediment within an estuary mediated by algal growth. <u>Estuar. Coast. Mar.</u> <u>Sci. 9</u>: 569-576.
- FRUTON, J.S. and SIMMONDS, S. (1953). <u>General Biochemistry</u>. Chapman and Hall, Limited: London.
- GALEHOUSE, J.S. (1971). Sedimentation analysis. pp. 69-94. In: <u>Procedures in Sedimentary Petrology</u>. Ed. R.C. Carver. Wiley Interscience: New York and London.
- GASITH, A. (1976). Seston dynamics and tripton sedimentation in the pelagic zone of a shallow eutrohic lake. Hydrobiologia <u>51</u>: 225-231.
- GASPERI-MAGO, R.R. and TROEH, F.R. (1979). Microbial affects on soil erodibility. <u>Soil Sci. Soc. Am. J. 43</u>: 765-768.
- GEOGHEGAN, M.J. and BRIAN, R.C. (1946). Influence of bacterial polysaccharides on aggregate formation in soils. <u>Nature, Lond.</u> <u>158</u>: 837.
- GEOGHEGAN, M.J. and BRIAN, R.C. (1948). Aggregate formation in soil. I. Influence of some bacterial polysaccharides on the binding of soil particles. <u>Biochem. J. 43</u>: 5-13.
- GHOSH, J.K., MAZUMDER, B.S. and SENGUPTA, S. (1981). Methods of computation of suspended load from bed materials and flow parameters. <u>Sedimentology</u> 28: 781-791.
- GIBBS, R.J., MATTHEWS, M.D. and LINK, D.A. (1971). The relationship between sphere size and settling velocity. J. sedim. Petrol. 4: 7-18.
- GINSBURG, R.N. and LOWENSTAM, H.A. (1958). The influence of marine bottom communities on the depositional environment of sediments. J. Geol. 66: 310-318.
- GORDON, D.C. (1966). The effects of the deposit feeding polychaete <u>Pectinaria gouldii</u> on the intertidal sediments of Barnstable Harbor. Limnol. Oceanogr. 11: 327-332.

- GORVETT, H. (1946). The tegumental glands in the land Isopoda. A: the rosette glands. Q. Jl. microsc. Sci. 87: 209-235.
- GORVETT, H. (1951). The tegumental glands in the land Isopoda. B: the lobed glands, structure and distribution. <u>Q. Jl. microsc. Sci.</u> <u>92</u>: 275-296.
- GORVETT, H. (1952). The tegumental glands in the land Isopoda. C: the lobed glands. The properties of their secretions and their mode of action. <u>Q. Jl. microsc. Sci. 93</u>: 17-29.
- GORVETT, H. (1956). Tegumental glands and terrestrial life in wood lice. <u>Proc. zool. Soc., Lond. 126</u>: 291-314.
- GRAETZ, D.A., KENNEY, D.R. and ASPIRAS, R.B. (1973). Eh status of lake sediment-water system in relation to nitrogen transformations. <u>Limnol. Oceanogr. 18</u>: 908-917.
- GRANT, J. (1981). Sediment transport and disturbance on an intertidal sand flat: infaunal distribution and recolonisation. <u>Mar. Ecol.</u> <u>Prog. Ser. 6</u>: 249-255.
- GRANT, W.D., BOYER, L.F. and SANFORD, L.P. (1982). The effect of bioturbation on the initiation of motion of intertidal sands. J. mar. Res. 40: 659-677.
- GRAY, J.S. (1966). The attractive factor of intertidal sands to Protodrilus symbioticus. J. mar. biol. Ass. U.K. 46: 627-646.
- GRAY, J.S. (1967). Substrate selection by the archiannelid Protodrilus hypoleucus Armenants. J. Exp. Mar. Biol. Ecol. 1: 47-54.
- GRAY, J.S. (1974). Animal-sediment relationships. <u>Oceanogr. Mar. Biol.</u> <u>Ann. Rev. 12</u>: 223-261.

- GRAY, J.S. and JOHNSON, R.M. (1970). The bacteria of a sandy beach as an ecological factor affecting the interstitial gastrotrich <u>Turbanella hyalina Schultze. J. Exp. Mar. Biol. Ecol. 4: 119-133.</u>
- GRAY, J.S. and RIEGER, R.M. (1971). A quantitative study of the meiofauna of an exposed sandy beach, at Robin Hood's Bay, Yorkshire. <u>J. mar. biol. Ass. U.K. 51</u>: 1-19.
- GRAY, T.R.G. (1967). Stereoscan electron microscopy of soil microorganisms. <u>Science, N.Y.</u> 155: 1668-1670.
- GREEN, J. (1968). The Biology of Estuarine Animals. Sidgwick and Jackson: London.
- GREENLAND, D.J., LINDSTROM, G.R. and QUIRK, J.P. (1961). Role of polysaccharides in stabilization of natural soil aggregates. <u>Nature, Lond. 191</u>: 1283-1284.
- GROSS-GRANT, M. (1971). Carbon determination. pp. 573-596. In: <u>Procedures in Sedimentary Petrology</u>. Ed. R.E. Carver. Wiley Interscience: New York and London.
- GUST, G. and HARRISON, J.T. (1981). Biological pumps at the sedimentwater interface. Mechanistic evaluation of the Alphaeid shrimp Alpheus mackayi and its irrigation pattern. Mar. Biol. 64: 71-78.
- HAGERTY, R. (1974). Usefulness of spade cores for geotechnical studies and some results from the north-east Pacific. pp. 169-186. In: <u>Deep-Sea Sediments</u>. Ed. A.L. Inderbitzen. Plenum Press: New York.
- HAHN, H.H. and STUMM, W. (1970). The role of coagulation in natural waters. <u>Am. J. Sci. 268</u>: 354-368.
- HALLERMEIER, R.J. (1981). Terminal settling velocity of commonly occurring sand grains. <u>Sedimentology</u> 28: 859-865.

- HARLEY, M.B. (1950). Occurrence of a filter feeding mechanism in the polychaete Nereis diversicolor. Nature, Lond. 165: 734-735.
- HART, T.J. (1930). Preliminary notes on the bionomics of the amphipod Corophium volutator (Pallas). J. mar. biol. Ass. U.K. 16: 761-789.
- HAWORTH, W.N., PINKARD, F.W. and STACEY, M. (1946). Function of bacterial polysaccharides in the soil. <u>Nature</u>, <u>Lond.</u> <u>158</u>: 836-837.
- HAYES, M.H.B. (1980). The role of natural and synthetic polymers in stabilising soil aggregates. pp. 263-296. In: <u>Microbial Adhesion</u> <u>to Surfaces</u>. Ed. R.C.W. Barkeley, J.M. Lynch, J. Melling, P.R. Rutter and B. Vincent. Ellis Horwood: Chichester.
- HAYES, M.O. (1975). Morphology of sand accumulation in estuaries: an introduction to the symposium. In: <u>Estuarine Research</u>. Ed. L.E. Cronin. Academic Press: New York and London.
- HAZEN, A. (1914). Storage to be provided in impounding reservoirs for municipal water supply. <u>Trans. Am. Soc. Civil Eng. 77</u>: 1539-1669.
- HEATH, G.W. (1974). Synopsis. pp. 1-2. In: <u>The Clyde Estuary and</u> <u>Firth, an Assessment of Present Knowledge Compiled by Members of</u> <u>the Clyde Study Group</u>. The Natural Environment Research Council Publications. Series C, No. 11.
- HEDGES, J.I. and PARKER, P.L. (1976). Land-derived organic matter in surface sediments from the Gulf of Mexico. <u>Geochimica Cosmochim.</u> <u>Acta 40</u>: 1019-1029.
- HJULSTROM, F. (1935). Studies on the morphological activity of rivers as illustrated by the River Fyris. <u>Uppasala Bull. geol. Inst.</u> <u>Univ. 25</u>: 221-527.

- HJULSTRÖM, F. (1939). Transportation of detritus by moving water: A symposium. pp. 5-31. In: <u>Recent Marine Sediments</u>. Ed. P.D. Trask. American Association of Petroleum Geologists, Tulsa, Oklahoma, Thomas Murby: London.
- HOSBEN, L.A. and MENZEL, D.W. (1969). The distribution and chemical composition of organic particulate matter in the sea and sediments of the east coast of South AmericaLimnol.Oceanogr.14: 159-163.
- HOLLAND, A.F., ZINGMARK, R.G. and DEAN, J.M. (1974). Quantitative evidence concerning the stabilization of sediments by marine benthic diatoms. <u>Mar. Biol. 27: 191-196</u>.
- HOLME, N.A. (1949). The fauna of sand and mud banks near the mouth of the Exe Estuary. J. mar. biol. Ass. U.K. 28: 189-238.
- HOLME, N.A. and MCINIYRE, A.D. (1984). <u>Methods for the Study of Marine</u> <u>Benthos</u>. I.B.P. Handbook No. 16. Blackwell: Oxford and Edinburgh.
- HOLMES, C.W. and GOODELL, H.G. (1964). The prediction of strength in the sediments of St Andrew Bay, Florida. <u>J. sedim. Petrol. 34</u>: 134-143.
- HOWES, B.L., HOWARTH, R.W., TEAL, J.M. and VALIELA, I. (1981). Oxidation-reduction potentials in a salt marsh: spatial patterns and interactions with primary production. <u>Limnol. Oceanogr. 26</u>: 350-360.
- HULSEY, J.D. (1961). Relations of settling velocity of sand sized spheres and sample weight. J. sedim. Petrol. 31: 101-112.
- HUNT, S. (1970). <u>Polysaccharide Protein Complexes in Invertebrates</u>. Academic Press: New York and London.

- HUNTER, K.A. and LISS, P.S. (1979). The surface charge of suspended particles in estuarine and coastal water. <u>Nature, Lond.</u> 282: 823-825.
- HUNTER, K.A. and LISS, P.S. (1982). Organic matter and the surface charge of suspended particles in estuarine waters. <u>Limnol.</u> <u>Oceanogr. 27</u>: 322-335.
- HYLLEBERG KRISTENSEN, J. (1972). Carbohydrases of some marine invertebrates with notes on their food and on the natural occurrence of the carbohydrates studied. <u>Mar. Biol. 14</u>: 130-142.
- INDERBITZEN, A.L. (Edit) (1974). <u>Deep-Sea</u> <u>Sediment: Physical and</u> <u>Chemical Properties</u>. Plenum Press: New York and London.
- INMAN, D.L. (1952). Measures for describing the size distribution of sediments. <u>J. sedim. Petrol.</u> 22: 125-145.
- JANSSON, B.O. (1967). The significance of grain size and pore water content for the interstitial fauna of sandy beaches. <u>Oikos 18</u>: 311-322.
- JOHNSON, R.G. (1971). Animal-sediment relations in shallow water benthic communities. <u>Mar. Geol. 11</u>: 93-104.
- JONES, R.H. (1966). Oxidation-reduction potential measurements. Instr. Soc. Am. J. 13: 40-44.
- JOPLING, A.V. (1964). Interpreting the concept of the sedimentation - unit. J. sedim. Petrol. 34: 165-172.
- JUMIKIS, A.R. (1962). <u>Soil Mechanics</u>. Van Nostrand: Princeton and New Jersey.

- KAESTNER, A. (1967). <u>Invertebrate Zoology</u>. Interscience Publishers: New York and London.
- KAJIHARA, M. (1971). Settling velocity and porosity of large suspended particles. <u>J. Oceanogr. Soc. Japan 27</u>: 158-162.
- KATZ, L.C. (1980). Effects of burrowing by the fiddler crab, <u>Uca</u> <u>pugnax</u> (Smith). <u>Estuar. Coast. Mar. Sci. 11</u>: 233-237.
- KELLER, G.H. (1974). Marine geotechnical properties: interrelationships and relationships to depth burial. pp. 77-100. In: <u>Deep-Sea</u> <u>Sediments, Physical and Chemical Properties</u>. Ed. A.L. Inderbitzen. Plenum Press: New York and London.
- KENDALL, M.A. (1979). The stability of the deposit feeding community of a mud flat in the River Tees. <u>Estuar. Coast. Mar. Sci.</u> 8: 15-22.
- KENNEDY, V.A. (1984). The Estuary as a Filter. Academic Press: New York and London.
- KIKUCHI, E. and KURIHARA, Y. (1977). <u>In vitro</u> studies on the effects of tubificids on the biological, chemical and physical characteristics of submerged rice field soil and overlying water. <u>Oikos 29</u>: 348-356.
- KOSTALOS, M. and SEYMOUR, R.L. (1976). Role of microbial enriched detritus in the nutrition of <u>Gammarus minus</u> (Amphipoda). <u>Oikos</u> <u>27</u>: 512-516.
- KRANK, K. (1973). Flocculation of suspended sediment in the sea. Nature, Lond. 246: 348-350.
- KRANK, K. (1975). Sediment deposition from flocculated suspension. Sedimentology 22: 111-123.

KRANK, K. (1981). Particulate matter, grain-size characteristics and flocculation in a partially mixed estuary. <u>Sedimentology 28</u>: 107-114.

- KRUMBEIN, W.C. and PETTIJOHN, F.J. (1938). <u>Manual of Sedimentary</u> <u>Petrography</u>. Appleton-Century-Crofts: New York.
- KRYVI, H. (1971). Histology and histochemistry of the mucous glands of <u>Sabella penicillum</u> L. (Annelida, Polychaeta). <u>Norwegian J. Zool.</u> <u>19</u>: 37-44.
- KUENEN, PH.H. (1968). Settling convection and grain-size analysis. J. sedim. Petrol. 38: 817-831.
- LAMBE, T.W. and WHITMAN, R.V. (1979). <u>Soil Mechanics</u>, SI Version. John Wiley and Sons: New York and Chichester.
- LAMBIASE, J.J. (1980). Hydraulic control of grain-size distribution in a macrotidal estuary. <u>Sedimentology</u> 27: 433-446.
- LANE, E.W. (1938). Notes on the formation of sand. <u>Trans. Am.</u> geophys. Un. 19: 505-508.
- LANGHORNE, D.N. (1982). A study of the dynamics of a marine sand wave. Sedimentology 29: 571-594.
- LANGMUIR, D. (1971). Eh-pH determination. pp. 597-634. In: <u>Procedures</u> <u>in Sedimentary Petrology</u>. Ed. R.E. Carver. Wiley Interscience: New York and London.
- LARSEN, L.H., STERNBERG, R.W., SHI, N.C., MARSDEN, M.A.H. and THOMAS, L. '1981). Field investigations of the threshold of grain motion by ocean waves and currents. <u>Mar. Geol. 42</u>: 105-132.

- LAUFF, G.H. (Edit) (1967). <u>Estuaries</u>. American Association for the Advancement of Science (Am. Ass. Adv. Sci. No.83). Washington D.C.
- LEE, H. and SWARTZ, R.C. (1980). Biological processes affecting the distribution of pollutants in marine sediments. Part II. Biodeposition and bioturbation. pp. 555-606. In: <u>Contaminants and Sediments Analysis, Chemistry, Biology</u> (Vol. 2). Ed. R.A. Baker. Ann Arbo Science Publishers, Inc., Michigan, U.S.A.
- LEE, H.J. (1982). Bulk density and shear strength of several deep-sea calcareous sediments. pp. 54-78. In: <u>Geotechnical Properties</u>, <u>Behaviour and Performance of Calcareous Soils</u>. Eds. K.R. Demars and R.C. Chaney. Am. Soc. Test. Mat. (ASTM).
- LEEDER, M.R. (1982). Sedimentology. Allen and Unwin: London.
- LEHNINGER, A.L. (1975). <u>Biochemistry</u> (2nd Edition). Worth Publishers: New York.
- LETZSCH, W.S. and FREY, R.W. (1980). Erosion of slatmarsh tidal creek branks, Sapelo Island, Georgia. <u>Senckenberg. marit.</u> 12: 201-222.
- LEVINION, J.S. (1982). Marine Ecology. Prentice-Hall: New Jersey, U.S.A.
- LINCOLN, R.J. (1979). British Marine Amphipoda: Gammaridea. British Museum (Natural History): London.
- LLOYD, B. (1930). Bacteria of the Clyde Sea Area: a quantitative investigation. J. mar. biol. Ass. U.K. 16: 879-907.
- LLOYD, B. (1931). Muds of the Clyde Sea Area. II. Bacterial content. J. mar. biol. Ass. U.K. 17: 751-765.
- LOCKWOOD, A.P.M. (1968). <u>Aspects of the Physiology of Crustacea</u>. Oliver and Boyd: Edinburgh and London.

- LONGBOFTOM, M.R. (1970). The distribution of <u>Arenicola marina</u> (L) with particular reference to the effects of particle size and organic matter of the sediments. <u>J. Exp. Mar. Biol. Ecol. 5</u>: 138-158.
- LOWE, D.R. (1976). Subaqueous liquified and fluidised sediment flows and their deposits. Sedimentology 23: 285-308.
- LYNCH, J.M. and POOLE, N.J. (1979). <u>Microbial Ecology</u>. Blackwell: London and Edinburgh.
- LYNCH, M.P. and HARRISON, W. (1970). Sedimentation caused by a tubebuilding amphipod. J. sedim. Petrol. 40: 434-435.
- MCCAFFREY, R.J., MYRES, A.C., DAVEY, E., MORRISON, G., BENDER, M., LUEDTKE, N., CULLEN, D., FROELICH, P. and KLINKHAMMER, G. (1980). The relationship between pore water chemistry and benthic fluxes of nutrients and manganese in Narrangansett Bay, Rhode Island. <u>Limnol. Oceanogr. 25</u>: 31-44.
- McCALL, P.L. (1979). The effects of deposit feeding oligochaetes on particle size and settling velocity of Lake Erie sediment. J. sedim. Petrol. 49: 0813-0818.
- MCCALL, P.L. and TEVESZ, M.J.S. (1982). <u>Animal-Sediment Relations: The</u> <u>Biogenic Alteration of Sediments</u>. Plenum Press: New York.
- McCALLUM, M.F. (1969). Faecal indicators in sea water. <u>Proc.</u> <u>Challenger Soc. 4</u>: 14-15.
- McCAVE, I.N. (1970). Deposition of fine-grained suspended sediment from tidal currents. J. geophys. Res. 75: 4151-4159.
- McCAVE, I.N. (1984). Erosion, transport and deposition of fine-grained marine sediments. pp. 35-69. In: <u>Fine-Grained Sediments: Deep</u>

<u>Water Processes and Facies</u>. Eds. D.A.V. Stow and D.J.W. Piper. Published for the Geological Society. Blackwell Scientific Publications: Oxford, London, Edinburgh.

- MCLUSKY, D.S. (1981). The Estuarine Ecosystems. Blackie: Glasgow and London.
- MCMASTER, R.L. (1967). Compactness variability of estuarine sediments: an <u>in situ</u> study. pp. 261-267. In: <u>Estuaries</u>. Ed. G.H. Lauff. American Association for the Advancement of Science, Washington D.C.
- MACGINITIE, G.E. (1978). The role of bacteria as food for bottom animals. <u>Science, N.Y. 76</u>: 490.
- MACGINITIE, G.E. and MACGINITIE, N. (1968). <u>Natural History of Marine</u> <u>Animals</u>. McGraw-Hill: New York and London.
- MANTZ, P.A. (1978). Bedforms produced by fine, cohesionless, granuler and flakey sediments under subcritical water flows. <u>Sedimentology</u> <u>25</u>: 83-103.
- MARSHALL, A.J. and WILLIAMS, W.D. (1972). <u>Textbook of Zoology:</u> <u>Invertebrates</u>. Macmillan: London and Basingstoke.
- MARTIN, J.P. (1945). Microorganisms and soil aggregation. I. Origin and nature of some of the aggregating substances. <u>Soil Sci. 59</u>: 163-174.
- MARTIN, J.P. (1946). Microorganisms and soil aggregation. II. Influence of bacterial polysaccharides on soil structures. <u>Soil Sci. 61</u>: 157-166.
- MARTIN, J.P. and WAKSMAN, S.A. (1940). Influence of microorganisms on soil aggregation and erosion. <u>Soil Sci. 50</u>: 29-47.

- MASSEY, B.S. (1979). <u>Mechanics of Fluids</u> (4th Edition). Van Nostrand Reinhold Company, Inc.: Princeton and New Jersey.
- MEADOWS, P.S. (1964a). Experiments on substrate selection by <u>Corophium</u> species: films and bacteria on sand particles. <u>J. exp. Biol. 41</u>: 499-511.
- MEADOWS, P.S. (1964b). Experiments on substrate selection by <u>Corophium</u> <u>volutator</u> (Pallas): depth selection and population density. <u>J.</u> <u>exp. Biol. 41</u>: 677-687.
- MEADOWS, P.S. (1964c). Substrate selection by <u>Corophium</u> species: the particle size of substrates. <u>J. Anim. Ecol.</u> 33: 387-394.
- MEADOWS, P.S. (1965). Attachment of marine and freshwater bacteria to solid surfaces. <u>Nature, Lond. 207</u>: 1108.
- MEADOWS, P.S. and ANDERSON, J.G. (1966). Micro-organisms attached to marine and freshwater sand grains. <u>Nature, Lond. 212</u>: 1059-1060.
- MEADOWS, P.S. and ANDERSON, J.G. (1968). Micro-organisms attached to marine sand grains. J. mar. biol. Ass. U.K. 48: 161-175.
- MEADOWS, P.S. and CAMPBELL, J.I. (1972a). Habitat selection and animal distribution in the sea: the evolution of a concept. <u>Proc. R.</u> <u>Soc. Edinb. (B)</u> 73: 145-157.
- MEADOWS, P.S. and CAMPBELL, J.I. (1972b). Habitat selection by aquatic invertebrates. pp. 271-382. In: <u>Advances in Marine Biology</u>. Eds.
 Sir F.S. Russell and Sir M. Yonge. Volume 10. Academic Press: London and New York.
- MEADOWS, P.S. and CAMPBELL, J.I. (1978). <u>An Introduction to Marine</u> Science. Blackie: Glasgow and London.

- MEADOWS, P.S. and REID, A. (1966). The behaviour of <u>Corophium</u> volutator (Crustacea: Amphipoda). J. Zool. Lond. 150: 387-399.
- MEADOWS, P.S. and TAIT, J. (1985). Bioturbation, geotechnics and microbiology at the sediment-water interface in deep-sea sediments. <u>Proc. 19th European Mar. Biol. Symp.</u>: 191-199.
- MEADOWS, P.S. and WILLIAMS, G.R. (1963). Settlement of <u>Spirorbis</u> <u>borealis</u> Daudin larvae on surfaces bearing films of microorganisms. <u>Nature, Lond.</u> 198: 610-611.
- MILLER, M.C., McCAVE, I.N. and KOMAR, P.D. (1977). Threshold of sediment motion under unidirectional currents. <u>Sedimentology</u> 24: 507-527.
- MIRONER, A. (1979). <u>Engineering Fluid Mechanics</u>. McGRaw-Hill Book Company: New York and London.
- MITCHELL, R. (1968). The effect of water movement on lysis of nonmarine microorganisms by marine bacteria. <u>Sarsia 34</u>: 263-266.
- MOORE, D.G. (1964). Shear strength and related properties of sediments from experimental mohole (Guadalupe site). J.geophys.Res. 69: 4271-4291.
- MOORE, H.B. (1931). The muds of the Clyde Sea Area. III. Chemical and physical conditions; rate and nature of sedimentation and fauna. J. mar. biol. Ass. U.K. 17: 325-358.

MOORE, H.B. (1958). <u>Marine Ecology</u>. Wiley: New York and Chichester.

MORGAN, E. (1970). The effects of environmental factors on the distribution of the amphipod <u>Pectenogammarus planicrurus</u> with particular reference to grain size. <u>J. mar. biol. Ass. U.K. 50</u>: 769-785.

- MORONEY, M.J. (1951). <u>Facts from Figures</u>. Penguin Books: Baltimore and Maryland.
- MORTIMER, C.H. (1941). The exchange of dissolved substances between mud and water in lakes. I and II. J. Ecol. 29: 280-329.
- MOSHIRI, G.A. and CRUMPTON, W.C. (1978). Some aspects of redox trends in the bottom muds of mesotrophic Bayou Estuary. <u>Hydrobiologia</u> <u>57</u>: 155-158.
- MURRAY, S., CONLON, D., SIRIPONG, A. and SANTORO, J. (1975). Circulation and salinity distribution in the Rio Guayas Estuary, Ecuador. pp. 345-363. In: <u>Estuarine Research</u>. Ed. L.E. Cronin. Academic Press: New York and London.
- MYERS, A.C. (1972). Tube-worm-sediment relationships of <u>Diopatra</u> <u>cuprea</u> (Polychaeta-Onuphidae). <u>Mar. Biol. 17</u>: 350-356.
- NEBESKI, O. (1880). Beiträge zur Kenntniss der Amphipoden der Adria. Arb. zool. Inst. Univ. Wien. 3: 27-78.
- MEDWELL, D.B. and BROWN, C.M. (1982). <u>Sediment Microbiology</u>. Academic Press: New York and London.
- NEIHOF, R.A. and LOEB, G.I. (1972). The surface charge of particulate matter in sea water. <u>Limnol. Oceanogr. 17</u>: 7-16.
- NEUMANN, A.C., GEBELEIN, C.D. and SCOFFIN, T.P. (1970). The composition, structure and erodibility of subtidal mats, ABACO, Bahamas. J. sedim. Petrol. 40: 274-297.
- NEWELL, G.E. (1948). A contribution to our knowledge of the life history of <u>Arenicola marina</u> L. <u>J. mar. biol. Ass. U.K. 27</u>: 554-580.

- NEWELL, R.C. (1965). The role of detritus in the nutrition of two marine deposit-feeders, the prosobranch <u>Hydrobia ulvae</u> and the bivalve <u>Macoma baltica</u>. <u>Proc. zool. Soc. Lond.</u> <u>144</u>: 25-45.
- NEWELL, R.C. (1970). Biology of Intertidal Animals. Logos Press: London.
- NICHOLS, F.H. (1970). Benthic polychaete assemblage and their relationship to the sediment in Port Madison, Washington. <u>Mar.</u> <u>Biol. 6</u>: 48-58.
- NICHOLS, F.H. (1974). Sediment turnover by a deposit-feeding polychaeta. Limnol. Oceanogr. 19: 945-950.
- NICKLING, W.G. and ECCLESTON, M. (1981). The effects of soluble salts on the threshold shear velocity of fine sand. <u>Sedimentology 28</u>: 505-510.
- NICOL, J.A.C. (1960). The Biology of Marine Animals. Pitman: London.
- NIELSEN, M.V. and KOFOED, L.H. (1982). Selective feeding and episammic browsing by the deposit-feeding amphipod <u>Corophium volutator</u>. <u>Mar. Ecol. Prog. Ser. 10</u>: 81-88.
- NOWELL, A.R.M., JUMARS, P.A. and ECKMAN, J.A. (1981). Effect of biological activity on the entrainment of marine sediment. <u>Mar.</u> Geol. 42: 133-153.
- ODUM, E.P. (1959). <u>Fundamentals of Ecology</u> (2nd Edition). W.B. Saunders Company: Philadelphia and London.
- OTT, J.A., FUCHS, B., FUCHS, R. and MALASEK, A. (1976). Observations on the biology of <u>Callianassa stebbengi</u> Borradaille and <u>Upogebia</u> <u>littoralis</u> Risso and their effect upon the sediment. <u>Senckenberg.</u> <u>marit.</u> 8: 61-79.

- OTTO, G.H. (1938). The sedimentation unit and its use in field sampling. J. Geol. <u>46</u>: 569-582.
- OXOID MANUAL (3rd Edition) (1976). <u>The Oxoid Manul of Culture Media</u>, Ingredients and other Laboratory Services. Oxoid Ltd., Basingstoke.
- PACKHAM, R.F. (1962). The coagulation process. I. Effect of pH and the nature of the turbidity. J. appl. Chem. 12: 556-564.
- PAMATMAT, M.M. (1968). Ecology and metabolism of a benthic community on an intertidal sandflat. Int. Revue ges. Hydrobiol. 53: 211-298.
- PARTHENIADES, E. (1965). Erosion and deposition of cohesive soils. <u>Proc. Am. Soc. civ. Engrs. 91</u>: HYI: 105-139.
- PEARSON, T.H. and STANLEY, S.O. (1979). Comparative measurement of the redox potential of marine sediments as a rapid means of assessing the effect of organic pollution. <u>Mar. Biol. 53</u>: 371-379.
- PIERCE, T.J. and WILLIAMS, D.J. (1966). Experiments on certain aspects of sedimentation of estuarine muds. <u>Proc. Instn. civ. Engrs. 34</u>: 391-402.
- PERKINS, E.J. (1958). The food relationships of the microbenthos, with particular reference to that found at Whitstable, Kent. <u>Ann. Mag.</u> <u>nat. Hist. 13</u>: 64-77.
- PERKINS, E.J. (1974). <u>The Biology of Estuaries and Coastal Waters</u>. Academic Press: New York and London.
- PHILLIPS, P.J. (1971). Observations on the biology of mud shrimps of the genus <u>Callianassa</u> (Anomura: Thalassinidea) in Mississippi Sound. <u>Gulf Res. Rep.</u> 3: 165-196.

- POSTMA, H. (1967). Sediment transport and sedimentation in the estuarine environment. pp. 158-179. In: <u>Estuaries</u>. Ed. G.H. Lauff. American Association for the Advancement of Science, Washington, D.C.
- POWELL, E.N. (1977). Particle size selection and sediment reworking in a faunal feeder, <u>Leptosynapta tenuis</u> (Holothuroides, Synaptidae). <u>Int. Revue ges. Hydrobiol. 62: 385-408.</u>
- PRAKASH, S. (1981). <u>Soil Dynamics</u>. McGraw-Hill Book Company: New York and London.
- PRAVDIC, V. (1970). Surface charge characterization of sea sediments. Limnol. Oceanogr. 15: 230-233.
- PRITCHARD, D.W. (1960). Estuaries. In: <u>Encyclopedia of Science and</u> <u>Technology</u>. McGraw-Hill: New York and London.
- REHEMTULLA, F. and LØVTRUP, S. (1974). The comparative biochemistry of invertebrate mucopolysaccharides. II. Nematoda; Annelida. <u>Comp.</u> <u>Biochem. Physiol.</u> 49B: 639-646.
- REES, C.P. (1975). Competitive interactions and substratum preferences of two intertidal isopods. <u>Mar. Biol. 30</u>: 21-27.
- REICE, S.R. (1977). The role of animal associations and current velocity in sediment-specific leaf litter decomposition. <u>Oikos 29</u>: 357-365.
- REINECK, H.E. and SINGH, I.B. (1980). <u>Depositional Sedimentary</u> - <u>Environments</u>. Springer-Verlag: Berlin, Heidelberg, New York.
- REMANE, A. (1958). Okologie des Brackwassers. In: <u>Die Biologie des</u> <u>Brachwassers</u>. Schweizerbartsche Verlag: Stuttgart.

- REYNOLDS, O. (1883). An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. <u>Proc. R. Soc. 35</u>: 84-99.
- RHEINHEIMER, G. (1977). <u>Microbial Ecology of a Brackish Water</u> <u>Environment</u>. Springer-Verlag: Berlin, Heidelberg, New York.
- RHOADS, D.C. (1963). Rates of reworking by <u>Yoldia limatula</u> in Buzzards Bay, Massachusetts and Long Island Sound. <u>J. sedim. Petrol. 33</u>: 723-727.
- RHOADS, D.C. (1967). Biogenic reworking of intertidal and subtidal sediments in Barnstable Harbor and Buzzards Bay, Massachusetts. <u>J. Geol. 75</u>: 461-476.
- RHOADS, D.C. (1970). Mass properties, stability, and ecology of marine muds related to burrowing activity. pp. 391-406. In: <u>Trace</u> <u>Fossils</u>. Eds. J.P. Crimes and J.C. Harpper. Seel House Press: Liverpool.
- RHOADS, D.C. (1974). Organism-sediment relationships on the muddy sea floor. <u>Oceanogr. Mar. Biol. Ann. Rev. 12</u>: 263-300.
- RHOADS, D.C., ALLER, R.C. and GOLDHABER, M.B. (1977). The influence of colonizing benthos on physical properties and chemical diagenesis of the estuarine sea floor. pp. 113-138. In: Ecology of Marine <u>Benthos</u>. Ed. B.C. Coull. University of South Carolina Press: Columbia, South Carolina.
- RHOADS, D.C., YINGST, J.Y. and ULLMAN, W.J. (1978). Seafloor stability in central Long Island Sound: Part I. Temporal changes in erodibility of fine-grained sediment. pp. 221-244. In: <u>Estuarine</u> <u>Interactions</u>. Ed. M.L. Wiley. Academic Press: London and New York.

- RHOADS, D.C. and YOUNG, D.K. (1970). The influence of deposit-feeding organisms on sediment stability and community trophic structure. J. mar. Res. 28: 150-178.
- RHOADS, D.C. and YOUNG, D.K. (1971). Animal-sediment relations in Cape Cod Bay, Massachusetts. II: Reworking by <u>Molpadia oolitica</u> (Holothuroidea). <u>Mar. Biol. 11</u>: 255-261.
- RICHARDS, K.S. (1973). The histochemistry of the large granular, orthochromatic, mucous cells of some lumbricids (Annelida: Oligochaeta). <u>Annls. Histochim. 18</u>: 289-300.
- RICHARDS, K.S. (1974a). The histochemistry of the metachromatic mucous cells of some lumbricids (Annelida: Oligochaeta). <u>Annls.</u> <u>Histochim. 19</u>: 187-197.
- RICHARDS, K.S. (1974b). The histochemistry of the small granular, proteinaceous cells (albumen cells) of the epidermis of some lumbricids (Annelida: Oligochaeta). Annls. <u>Histochim. 19</u>: 239-251.
- RICHARDS, K.S. (1978). Epidermis and cuticles. pp. 33-61. In: <u>Physiology of Annelids</u>. Ed. P.J. Mill. Academic Press: New York and London.
- RICHARDSON, A.F. and PARKS, J.M. (1976). Marine geotechnology: average sediment properties, selected literature and review of consolidation, stability and bioturbation - geotechnical interactions in the benthic boundary layer. pp. 157-181. In: <u>The</u> <u>Benthic Boundary Layer</u>. Ed. I.N. McCave. Plenum Press: New York.
- RICHARDSON, J.F. and ZAKI, W.N. (1954). Sedimentation and fluidisation. <u>Trans. Instn. chem. Engrs.</u> 32: 35-51.

- RISK, M.J. and SZCZUCZKO, R.B. (1977). A method for staining trace fossils. <u>J. sedim. Petrol. 47</u>: 855-859.
- ROHLF, F.J. and SOKAL, R.R. (1969). <u>Statistical Tables</u>. W.H. Freeman and Company: San Francisco.
- ROWE, G.T. (1974). The effects of the benthic fauna on the physical properties of deep-sea sediments. pp. 381-400. In: <u>Deep-Sea</u> <u>Sediments</u>. Ed. A.L. Inderbitzen. Plenum Press: New York and London.
- RUBEY, W.W. (1933). Settling velocities of gravel, sand and silt particles. <u>Am. J. Sci.</u> 25: 325-338.
- RUSSELL, R.D. and TAYLOR, R.E. (1937). Roundness and shape of Mississippi river sands. J. Geol. 45: 225-267.
- SANDERS, H.L. (1958). Benthic studies in Buzzards Bay. I. Animalsediment relationships. Limnol. Oceangr. 3: 245-258.
- SCHAFER, W. (1972). Ecology and Palaeoecology of Marine Environments. Oliver and Boyd: Edinburgh.
- SCOFFIN, T.P. (1970). The trapping and binding of subtidal carbonate sediments by marine vegetation in Bimini Lagoon, Bahamas. J. sedim. <u>Petrol.</u> 40: 249-273.
- SEGERSTALE, S.G. (1959). Synopsis of data on the crustaceans <u>Gammarus</u> <u>locusta</u>, <u>Gammarus oceanaicus</u>, <u>Pontoporeia affinis</u> and <u>Corophium</u> <u>volutator</u> (Amphipoda, Gammaridea). <u>Commentat. biol. 20</u>: 1-23.
- SEIBOLD, E. and BERGER, W.H. (1982). <u>The Sea Floor</u>. Springer-Verlag: Berlin, Heidelberg and New York.
- SENGUPTA, S. (1979). Grain-size distribution of suspended load in relation to bed materials and flow velocity. <u>Sedimentology 26</u>:

- SETTLEMYRE, J.L. and GARDNER, L.R. (1977). Suspended sediment flux through a salt marsh drainage basin. <u>Estuar. Coast. Mar. Sci. 5</u>: 653-663.
- SHIELDS, A. (1936). Anwendung der Ahnlichkeits meschanik und der Turbulentzforschung auf die Geschiebebewegung. In: (W.P. Ott and J.C. van Uchelen (Translators); Calif. Inst. Technol., W.M. Keck Lab. Hydraul. Water Resour. Rep., 167). Mitt. Preuss Versuchsanst. Wasserbau Schiffnau. 26: 20.
- SHILLAKER, R.O. and MOORE, P.G. (1978). Tube building by the amphipods <u>Lembos websteri</u> Bate and <u>Corophium bonnellii</u> Milne Edwards. <u>J. Exp.</u> <u>Mar. Biol. Ecol. 33</u>: 169-187.
- SHOLKOVITZ, E.R. (1976). Flocculation of dissolved organic and inorganic matter during the mixing of river water and sea water. Geochem. cosmochim. Acta 40: 831-845.
- SIEBURTH, J. McN. (1967). Seasonal selection of estuarine bacteria by water temperature. <u>J. Exp. Mar. Biol. Ecol. 1</u>: 98-123.
- SKUTCH, A.F. (1926). On the habits and ecology of the tube building amphipod Amphithoe rubricata, Montagu. Ecology 7: 481-502.

SMITH, M.J. (1981). Soil Mechanics (4th Edition). George Godwin: London.
SMITH, N.D. and SYVITSKI, J.P.M. (1982). Sedimentation in a glacierfed lake: the role of pelletization on deposition of fine-grained
suspensates. J. sedim. Petrol. 52: 0503-0513.

SMITH, R.I. (1955). Salinity variation in interstitial water of sand at Kames Bay, Millport, with reference to the distribution of Nereis diversicolor. J. mar. biol. Ass. U.K. 34: 33-46.

- SMYTH, J.C. (1974). Flora and fauna of the Clyde Estuary. pp. 40-42. In: <u>The Clyde Estuary and Firth: An Assessment of Present</u> <u>Knowledge Compiled by Members of the Clyde Study Group</u>. The Natural Environment Research Council Publications, Series C, No. 11.
- SNEDECOR, G.W. and COCHRAN, W.G. (1980). <u>Statistical Methods</u> (7th Edition). The Iowa State University Press: Ames, Iowa.
- SOCCI, A. and TANNER, W.F. (1980). Short communications: Little known but important papers on grain-size analysis. <u>Sedimentology 27</u>: 231-232.
- SOROKIN, Ju. I. (1975). Sulphide formation and chemical composition of bottom sediments of some Italian lake. <u>Hydrobiologia</u> 47: 231-240.
- SOUTHARD, J.B. (1974). Erodibility of fine abyssal sediment. pp. 367-379. In: <u>Deep-Sea</u> <u>Sediments</u>. Ed. A.L. Inderbitzen. Plenum Press: New York and London.
- SPOONER, G.M. and MOORE, H.B. (1940). The ecology of the Tamar Estuary. VI. An account of the macrofauna of the intertidal muds. J. mar. biol. Ass. U.K. 24: 283-330.
- STANIER, R.Y., ADELBERG, E.A. and INGRAHAM, J.L. (1977). <u>General</u> Microbiology (4th Edition). Macmillan: London and Basingstoke.
- STEIDTMANN, J.R. (1982). Size-density sorting of sand-size spheres during deposition from bedload transport and implications concerning hydraulic equivalence. Sedimentology 29: 877-883.

STEPHEN, A.C. (1930). Studies on the Scottish marine fauna, additional

observations on the fauna of the sandy and muddy areas of the tidal zone. <u>Trans. R. Soc. Edinb.</u> 56: 521-535.

- STEVENSON, L.H. and COLWELL, R.R. (Eds) (1973). Estuarine Microbial Ecology. University of South Carolina Press: Columbia, South Carolina.
- STOCK, J.H. (1952). Some notes on the taxonomy, the distribution and the ecology of four species of the amphipod genus <u>Corophium</u> (Crustacea: Malacostraca). <u>Beaufortia 21</u>: 1-10.
- STRICKLAND, J.D.H. and PARSONS, T.R. (1972). <u>A Practical Handbook of</u> <u>Seawater Analysis</u>. Fisheries Research Board of Canada: Ottawa.

STRYER, L. (1975). Biochemistry (2nd Edition). Freeman: San Francisco.

- SUNDBORG, F.A. (1956). The River Klaräven, a study on fluvial processes. <u>Geogr. Annlr. 38</u>: 125-316.
- SUTHERLAND, I.W. (1980). Polysaccharides in the adhesion of marine and freshwater bacteria. pp. 329-338. In: <u>Microbial Adhesion to</u> <u>Surfaces.</u> Eds. R.C.W. Berkely, J.M. Lynch, J. Melling, P.R. Rutter and B. Vincent. Ellis Horwood: Chichester.
- SWIFT, D.J.P., SCHUBEL, J.R. and SHELDON, R.W. (1972). Size analysis of fine grained suspended sediments: a review. <u>J. sedim. Petrol.</u> <u>42</u>: 122-134.
- SWINBANKS, D.D. and MURRAY, J.W. (1981). Biosedimentological zonation
 of Boundary Bay tidal flats, Fraser River Delta, British Columbia.
 <u>Sedimentology</u> 28: 201-237.
- TANNER, W.F. (1964). Modification of sediment size distributions. <u>J. sedim. Petrol. 34</u>: 156-164.

- TEAL, J.M. (1958). Distribution of fiddler crabs in Georgia salt marshes. Ecology 39: 185-193.
- TEBBUTT, T.H.Y. (1983). <u>Principles of Water Quality Control</u> (3rd Edition). Pergamon Press: Oxford and New York.
- TEVESZ, M.J.S., SOSTER, F.M. and McCALL, P.L. (1980). The effect of size selective feeding by oligochaetes on the physical properties of river sediments. <u>J. sedim. Petrol. 50</u>: 561-568.
- THAMDRUP, H.M. (1935). Beiträge Zur okologie der wattenfauna auf experimenteller Grundlage. <u>Medd. Komm. Hav. Fisk. 10</u>: 1-125.
- TISSOT, B.P. and WELTE, D.H. (1978). <u>Petroleum Formation and</u> <u>Occurrence</u>. Springer-Verlag: Berlin, Heidelberg, New York.
- TRASK, P.D. and ROLSTON, J.W. (1950). Relation of strength of sediments to water content and grain size. Science, N.Y. 111: 666-667.
- TREVOR, J.H. (1977). The burrowing of <u>Nereis diversicolor</u> (O.F. Müller), together with some observations on <u>Arenicola marina</u> (L) (Annelida: Polychaeta). J. Exp. Mar. Biol. Ecol. 30: 129-145.
- VAN OLPHEN, H. (1966). <u>An Introduction to Clay Colliod Chemistry</u>. Interscience: New York and London.
- van STRAATEN, L.M.J.U. and KUENEN, PH.H. (1958). Tidal action as a cause of clay accumulation. J. sedim. Petrol. 28: 406-413.
- VISHER, G.S. (1969). Grain size distribution and depositional processes. J. sedim. Petrol. 39: 1074-1106.
- VOVELLE, J. (1973). Evolution de la taille des grains du tube arenace en fonction de la Crolssance Chez <u>Pectinaria</u> (Lagis) <u>Koreni</u> Malmgren (Polychaete: Sedentaire). <u>Ophelia 10</u>: 169-184.

WADELL, H. (1934). Some new sedimentation formulas. Physics. 5: 281-291.

- WAKSMAN, S.A. and MARTIN, J.P. (1939). The role of microorganisms in the conservation of the soil. <u>Science</u>, N.Y. 90: 304-305.
- WALKLEY, A. and BLACK, I.A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. <u>Soil Sci. 37</u>: 29-38.
- WALSHAW, A.C. and JOBSON, D.A. (1972). <u>Mechanics of Fluids</u> (2nd Edition). Longman: London.
- WANG, Y., PIPER, D.J.W. and VILKS, G. (1982). Surface textures of turbidite sand grains, Laurentian Fan and Sohm Abyssal Plain. <u>Sedimentology 29</u>: 727-736.
- WASLENCHUK, D.G., MATSON, E.A., ZAJAC, R.N., DOBBS, F.C. and TRAMONTANO, J.M. (1983). Geochemistry of burrow waters vented by a bioturbating shrimp in Bermudian sediments. <u>Mar. Biol. 72</u>: 219-225.
- WATKINS, E.E. (1941). The yearly life cycle of the amphipod <u>Corophium</u> volutator. J. Anim. Ecol. 10: 77-93.
- WEBB, J.E. (1969). Biologically significant properties of submerged marine sands. Proc. R. Soc. Lond. 174(B): 355-402.
- WHITEHOUSE, U.G., JEFFREY, L.M. and DEBBRECHT, J.D. (1960). Differential settling tendencies of clay minerals in saline waters. pp. 1-79.
- (Proc. 7th Conf. Clays. Clay Min.). In: Clays and Clay Minerals. Edit. E. Ingerson. Pergamon Press: London and New York.

- WHITEFIELD, M. (1969). Eh as an operational parameter in estuarine studies. Limnol. Oceanogr. 14: 547-558.
- WHITLACH, R.B. (1981). Animal-sediment relationships in intertidal marine benthic habitats: some determinants of deposit-feeding species diversity. <u>J. Exp. Mar. Biol. Ecol.</u> 53: 31-45.
- WIESER, W. (1956). Factors influencing the choice of substratum in <u>Cumella vulgaris</u> Hart (Crustacea: Cumacea). <u>Limnol. Oceanogr. 1</u>: 274-284.
- WIESER, W. (1959). The effect of grain size on the distribution of small invertebrates inhabiting the beaches of Puget Sound. <u>Limnol.</u> <u>Oceanogr. 4</u>: 181-194.
- WILEY, M. (Edit) (1976). <u>Estuarine Processes: Uses, Stresses, and</u> <u>Adaptation to the Estuary</u> (Vol. I). Academic Press: New York, San Francisco, London.
- WILEY, M. (Edit) (1976). <u>Estuarine Processes: Circulation, Sediments,</u> <u>and Transfer of Material in the Estuary</u> (Vol. II). Academic Press: New York, San Francisco, London.
- WILEY, M.L. (Edit) (1978). <u>Estuarine</u> <u>Interactions</u>. Academic Press: New York, San Francisco, London.
- WILSON, D.P. (1955). The role of microorganisms in the settlement of <u>Ophelia bicormis</u> Savigny. J. mar. biol. Ass. U.K. 34: 531-543.

WINDLOZ, M. (Edit) (1976). <u>The Merck Index: An Encyclopedia of</u> <u>Chemicals and Drugs</u> (9th Edition). Merck: Rahway, New Jersey.
WINKELMOLEN, A.M. (1982). Critical remarks on grain parameters, with special emphasis on shape. <u>Sedimentology 29</u>: 255-265.

- WINSTON, J.E. and ANDERSON, F.E. (1971). Bioturbation of sediments in a northern temperate estuary. Mar. Biol. 10: 39-49.
- WOOD, E.J.F. (1965). <u>Marine Microbial Ecology</u>. Chapman and Hall: London and New York.
- WOODIN, S.A. (1974). Polychaete abundance patterns in a marine softsediment environment: the importance of biological interactions. Ecol. Monogr. 44: 171-187.
- YINGST, J.Y. (1976). The utilization of organic matter in shallow marine sediments by an epibenthic deposit-feeding holothurian. <u>J. Exp. Mar. Biol. Ecol.</u> 23: 55-69.
- YONG, R.N. and WARKENTIN, B.P. (1966). <u>Introduction to Soil Behaviour</u>. The Macmillan Co.: New York, London.
- YONGE, C.M. (1932). On the nature and permeability of chitin. I. The chitin lining the foregut of decapod Crustacea and the function of the integumental glands. Proc. R. Soc. Lond. 111(B): 298-329.
- YONGE, D.K. and RHOADS, D.C. (1971). Animal-sediment relations in Cape Cod Bay, Massachusetts. I. A transient study. <u>Mar. Biol. 11</u>: 242-254.
- ZOBELL, C.E. (1938). Studies on the bacterial flora of marine bottom sediments. <u>J. sedim. Petrol. 8</u>: 10-18.
- ZOBELL, C.E. (1946a). <u>Marine Microbiology</u>. Chronica Botanica Company: _ Waltham, Mass.
- ZOBELL, C.E. (1946b). Studies on redox potential of marine sediments. Bull. Am. Ass. Petrol. Geol. 30: 477-513.

- ZOBELL, C.E. (1973). Microbial and environmental transition in estuaries. pp. 9-34. In: <u>Estuarine Microbial Ecology</u>. Eds. L.H. Stevenson and R.R. Colwell. University of South Carolina Press: Columbia, South Carolina.
- ZOBELL, C.E. and FELTHAM, C.B. (1942). The bacterial flora of a marine mud flat as an ecological factor. <u>Ecology 23</u>: 69-78.
- ZOLA, H. (1967). Sugar phosphate polymers in polychaete tube and in mineralized animal tissue. <u>Comp. Biochem. Physiol. 21</u>: 179-183.

FUTURE EXPERIMENTS

- The effect of animal secretions and other organic matter on the distance that particles are transported laterally (this would probably best be done under laboratory conditions).
- 2. Seasonal effects of animal secretions on sedimentation.
- 3. Test whether animals produce more or less secretory material in preferred sediments, and then test the effect of this on sedimentation. This would involve prior experiments on the preferences of the different species, which is a major undertaking.
- 4. Test differences in the amount of secretions produced by animals over different times and the subsequent effect of this on sedimentation.
- 5. Test different times of disaggregation of sediment held together by secretions.
- Identification of the chemical nature of the secretions produced by the species used in this study.

