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Abstract

This thesis develops a theoretical framework to evaluate XML retrieval. XML

retrieval deals with retrieving those document parts that specifically answer

a query. It is concerned with using the document structure to improve the

retrieval of information from documents by only delivering those parts of a

document an information need is about. We define a theoretical evaluation

methodology based on the idea of ‘aboutness’ and apply it to XML retrieval

models. Situation Theory is used to express the aboutness proprieties of XML

retrieval models. We propose a Situation Theory framework to evaluate XML

retrieval, which is based on the basic and most general information retrieval

question how a document (or in our case an XML element) can be about a

query. This framework allows us to compare and analyze the reasoning be-

haviour of XML retrieval models experimented within INEX evaluation cam-

paigns. We develop a dedicated methodology for the evaluation of XML re-

trieval and apply this methodology to five XML retrieval models from INEX.

For each model we derive functional and qualitative properties that qualify

its formal behaviour. We compare this behaviour with the underlying flat

document retrieval model as well as with a model we specially design to de-

termine how much an XML retrieval model includes XML structure in its

reasoning behaviour. More INEX specific, this thesis further investigates the

use of our theoretical evaluation methodology to describe the INEX evaluation

methodology. We exemplify theoretical models of user agents and assessment

procedures in INEX and derive reasoning assumptions that are included in the

specific XML retrieval experimental evaluation, its scales and the ways assess-

ments are done. We point to potential inconsistencies and make suggestions for

alternative views on the experimental evaluation dimensions for XML retrieval.

Further INEX specifics are discussed when we theoretically analyse filters, as

they are used in INEX to deliver only specific answers to an information need.

We introduce our theoretical methodology to analyse filters as special about-

ness decisions, before applying it to the XML retrieval filtering models. We

finally use the theoretical properties of XML retrieval models and their filters

to explain experimental results obtained with some of the XML retrieval mod-

els within INEX and draw upon all our previous results to demonstrate how

theoretical evaluation insights can be used to explain results from mainstream

experimental evaluations. We relate our theoretical evaluation results with

the experimental ones for XML retrieval to find out how the adjustment of

existing flat document retrieval models compares to the creation of completely



new ones, especially designed to meet the requirements of XML retrieval. For

each of the XML retrieval experimental evaluation tasks, we shall determine

the reasoning properties that support a good performance and discuss on this

basis the experimental performance of the XML retrieval models
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The general information retrieval problem is to find a set of information sources (mainly

documents) relevant to an information need (commonly expressed in a query). The aim

of XML retrieval is to retrieve relevant document parts at the right level of granularity,

i.e. those that specifically answer a query. XML, contrary to HTML, separates the logical

structure of documents from the layout. XML retrieval is concerned with using this docu-

ment structure to improve the retrieval of information from documents by only delivering

those parts of a document that are the most relevant ones to an information need.

For XML retrieval, the information sources are documents structured with XML, while

the queries can also contain structural hints or be purely content-based. Given that XML

has become an accepted standard method to structure information, making it easier for

applications and devices of all kinds to use and store information, XML retrieval has

also become an increasingly important research topic. This thesis attempts a theoretical

evaluation of XML retrieval and develops a general framework to do so.

Theoretical evaluation of information retrieval is concerned with the formal representa-

tion of retrieval models, which includes the symbolic representation of the way a retrieval

model captures information and the analysis of the matching function between information

need and document. A theoretical evaluation is then complementary to an experimental

evaluation if it helps to clarify the assumptions of retrieval models and if it can identify

the characteristics leading to a particular experimental behaviour.

In this work, we define a theoretical methodology based on the idea of ‘aboutness’ and

apply it to XML retrieval models. Our framework to evaluate XML retrieval is based on

the basic and most general information retrieval question: how a document (in our case

an XML-structured one) can be about a query. This allows us to compare and analyse the

behaviour of XML retrieval models.

As we consider aboutness as the cornerstone of our theoretical evaluation, we need a

way of expressing aboutness relations. To this end, the thesis draws on existing logic-

based approaches in order to derive the properties of aboutness relations and to analyse

information retrieval processes. It will become clear in our thesis that an aboutness-based

theoretical evaluation can complement mainstream experimental evaluations and provides

an opportunity to produce new and redevelop traditional IR models. This is especially

important for the more complex IR tasks of the future, one of which is the effective retrieval

from XML document repositories.

Our general hypothesis is that particularly in the domain of XML retrieval, an aboutness-

based theoretical evaluation presents a powerful methodology to analyse the complex in-

teraction of XML structure and content. This thesis will adjust existing aboutness-based

evaluation approaches to reflect the requirements of XML retrieval and develop a new

methodology. Based on this new methodology we will be able to theoretically evaluate

various XML retrieval models and underlying aboutness assumptions of specifics of XML

retrieval such as experimental evaluation strategies. We will argue that our theoretical

evaluation leads to a better understanding of a model’s retrieval performance in the ex-

perimental evaluation.

The thesis is organised in three larger parts. The first one introduces the background,
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the second develops our methodology, while the third applies the methodology to analyse

XML retrieval models and further specifics of XML retrieval such as its experimental

evaluation strategies.

Chapter 2 is the first of two background chapters introducing XML retrieval in more

depth and our choice for a theoretical evaluation framework. It introduces basic XML

concepts relevant to this thesis and finally describes the subdiscipline of information re-

trieval called XML retrieval. It details some of the history of XML retrieval as well as

XML retrieval approaches that are emerging in this field and evaluation methodologies

that have been developed to support the specific aims of XML retrieval.

While the analysis of XML retrieval is well developed by now, there has been little,

if any, work done on a systematic theoretical evaluation. This thesis undertakes such

a theoretical evaluation. For this purpose, the second background chapter 3 introduces

the concept of theoretical evaluation, its history, predominant approaches and finally our

choice of using an aboutness-based approach to theoretically analyse XML retrieval. We

demonstrate why a theoretical evaluation based on aboutness is needed, as it helps reveal

some of the underlying assumptions of the XML retrieval work done so far.

In Chapter 3, we also introduce the framework we need to execute our theoretical

evaluation based on the logical analysis of reasoning processes involved in XML retrieval

models. We build upon an advanced mathematisation of natural language semantics

called Situation Theory. We introduce its basic concepts and show how its ontology is

particularly well suited for the analysis of information retrieval models. We derive what

an aboutness analysis based on Situation Theory means for XML retrieval in particular.

We introduce XML structure to aboutness research, as a component of the aboutness

decision and develop a framework for this, so that at the end of this chapter we are able

to generally define XML retrieval aboutness and redefine existing approaches to Situation

Theory aboutness, which allow for the inclusion of structure.

While Chapters 2 and 3 offer the background, Chapter 4 presents first results of our

work. Our research into developing an aboutness-based theoretical evaluation of XML

retrieval commences with the development of our methodology, where we adjust existing

theoretical evaluation methodologies to the requirements of XML retrieval, analyse gaps

and finally amend existing approaches with new parts that help describe the reasoning

behaviour of XML retrieval models. We develop our theoretical evaluation steps and

present with pure type XML retrieval a means to measure the impact of XML structure

on the reasoning behaviour of XML retrieval models.

Our evaluation methodology stands in the tradition of theoretical evaluation as it uses

a well-defined number of steps to firstly symbolically represent an XML retrieval model

and to secondly analyse its functional behaviour using logical reasoning rules. Each of

our theoretical evaluations of XML retrieval models goes through the same four steps to

define the characteristics of a particular XML retrieval model.

The first step is the translation of the way the model indexes information into a

symbolic representation, which we can use in the second step to analyse the aboutness

definition with reasoning rules. In Section 4.4, we define reasoning rules to describe the
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functional behaviour of XML retrieval models. Our discussion of aboutness rules covers

basic rules, then combination and containment rules before we finish by discussing how

non-aboutness reasoning can enhance IR models. Some of the rules that are key to our

theoretical evaluation are presented. These include traditional reasoning rules such as

Symmetry and Transitivity as well as variants of combination rules expressing monotonic

reasoning, which have proven to be particularly important and conclusive for the analysis of

XML retrieval models. Furthermore, containment rules express important characteristics

of XML documents. By comparing the kind of rules a particular model incorporates and

the way it does so, we are able to provide an analysis of the behaviour of XML retrieval

models.

A further investigation of aboutness boundaries for particular retrieval models, which

we call reflection, is the third step of the theoretical evaluation. The final step in our

theoretical evaluation is the comparison with the pure type XML retrieval model to analyse

the impact of structure on retrieval performance. This forth step is an addition to the

existing aboutness-based theoretical evaluation frameworks.

In Chapter 5, we apply our theoretical evaluation methodology to five successful XML

retrieval models. We present an XML vector space model, two XML language modelling

models and two further ones, which have been specifically designed for XML retrieval. For

each of these models, we go through all of the theoretical evaluation methodology steps

from Chapter 4 and draw conclusions on the representation of information in the model as

well as its reasoning behaviour. We are particularly interested in discussing how standard

information retrieval models such as vector space retrieval have been changed to meet the

requirements of XML retrieval and what kind of assumptions have guided the development

of new models for XML retrieval.

Chapter 6 adds another new dimension to a theoretical evaluation based on aboutness.

Aided by the fact that a new systematic experimental evaluation framework has been

developed for XML retrieval, we formulate a theoretical evaluation of the experimental

evaluation for XML retrieval. We derive reasoning assumptions that are included in the

specific XML retrieval experimental evaluation, its scales and the ways assessments are

done. We point to potential inconsistencies and make suggestions for alternative views on

the experimental evaluation dimensions for XML retrieval. We demonstrate so-called agent

reasoning models reflecting the various user interests expressed in XML retrieval evaluation

methodologies and use this to theoretically evaluate the experimental evaluation.

We continue with our theoretical evaluation work specific to XML retrieval, when in

Chapter 7 we analyse XML retrieval filtering used to deliver only answers that are most

specific to an information need. We introduce a new theoretical methodology to analyse

filters as aboutness decisions, before applying it to the XML retrieval filtering models.

Two main types of filters have been used in XML retrieval: a simple brute-force filter

that only keeps the highest ranked element of each XML path and a more complex one

that takes into account the relations between retrieved XML elements. For the latter,

we will look at the Utility Prior filter and the re-ranking approach. The first one takes

into account the utility of an existing XML element, while the second one uses the direct
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relationships of an XML element to re-rank it.

Finally, Chapter 8 draws upon all the results from the previous chapters to demonstrate

how theoretical evaluation insights can be used to explain results from mainstream exper-

imental evaluations. It relates our theoretical evaluation results with the experimental

ones for XML retrieval to find out how the adjustment of existing flat document retrieval

models compares to the creation of completely new ones, especially designed to meet the

requirements of XML retrieval. For each of the XML retrieval experimental evaluation

tasks, we shall determine the reasoning properties that support a good performance and

discuss the experimental performance of the XML retrieval models from Chapter 5. To

our knowledge, no existing aboutness approach has actually delivered such an in-depth

analysis of experimental results using the insights from the theoretical evaluation.

Our conclusion summarises the results and contributions of the thesis and considers

critically advantages and limitations of our approach as well as possibilities for future

work.
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Chapter 2

XML Retrieval
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2.1 XML Retrieval in context

XML retrieval is a recent development in information retrieval (IR) [Lalmas, 2009]. It is

frequently referred to as structured document retrieval [Manning et al., 2008], although

this characterisation might be misleading as structured retrieval is often associated with

database retrieval, for which individual records are retrieved from tables in databases

using a dedicated structured query language. Compared to this database task, XML

retrieval is not structured document retrieval, as its aim is to retrieve from unstructured

information — commonly from texts as in XML retrieval but more and more also from

other multimedia content. However, compared to general IR, XML retrieval is structured

document retrieval, as it uses structure of documents to improve the retrieval results. The

context of XML retrieval is therefore its distinction from traditional IR on the one hand

side and from database retrieval on the other [Lalmas and Baeza-Yates, 2010].

IR systems are often distinguised from traditional databases in terms of the objects

both contain. The former are considered to look at unstructured information while the

latter query structured information, following a relational calculus [Manning et al., 2008].

According to this distinction, searching in databases targets ‘records’ looked up in database

tables, while in IR, searching aims for ‘documents’ looked up in indexes. Database systems

look for data, while IR systems target information. But nowadays, the difference between

databases and IR systems is no longer a question of the objects they contain. Databases

can contain documents, too. In fact, many modern database management systems define

special fields to cover texts (and other multimedia documents) and might offer special

indexes to search them. However, most textual information is still considered to be better

modelled outside database systems [Manning et al., 2008, p. 195], as they are often not

just for consumption by computers but for consumption by humans, too. XML seems to

be the most common choice for structuring texts outside database systems. That is why

delivering XML retrieval solutions is so important.

In order to distinguish database retrieval from information retrieval, it is useful to start

with their different objectives. The general process of IR [van Rijsbergen, 1979] commences

with an information need, which a user expresses as queries to an IR system. Such a query

is normally entered as informal expressions; for example, as query terms into search fields

of web search engines. IR processes are therefore characterised by the complex interaction

between an information need and a system’s response. This complex interaction differs in

two aspects (among others) from the experience in traditional database systems:

• The IR user does not have to express her information need in a formal language.

• It is the assumption that an IR system only represents parts of the information of

the documents in its scope. The documents generally contain more information than

what the system is able to represent and present.

This means that several documents may be a match to a query as an expression of an

information need. IR systems then compute a score on how ‘relevant’ a document is to
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this ‘information need’ and return the documents ranked by these scores [van Rijsbergen,

1979].

Such a ranked list of documents is delivered in two fundamental processing steps.

In the first so-called indexing step, an IR system aims to find a representation of the

information that models the available information content in the considered documents,

while also delivering a computationally viable representation. In the second step, in the

actual retrieval of documents, the IR system computes a retrieval status value of how well

each document according to its index matches the information need in a query, and ranks

the objects according to this value. The user is then presented with a choice of those

objects in the index that most likely correspond to her information need.

Generally speaking, an IR system is software that helps its users to find the information

they need. It fulfills this information need not by delivering the information directly but

by pointing the users to the location of possible information sources (mostly documents).

The IR system will suggest possible answers. For the IR system, a document has not

got to be an answer to a query. It assigns weights as a measure how ‘likely’ a document

might be an answer to a query. Relevance measured by assigning weights is therefore

key in IR and denotes how well a user’s information need is met. In order to deliver an

effective weighting, an IR system will use all the information it can process, which might

also include the structure of documents that can be found in their XML representation,

or their associated metadata, etc.

An IR system tries to satisfy a user’s information need by interpreting the contents of

information objects, which may involve the interpretation of the syntactic and semantic

information in the document [Baeza-Yates and Ribeiro-Neto, 1999]. Structured document

retrieval aims to use the structure of the information to improve the retrieval of informa-

tion. For instance, instead of returning a whole book only a particularly relevant chapter

will be returned. Or, if a title element is about an information need, it can be assumed

that the following document parts are highly relevant to the information need. Structured

document retrieval is concerned with the development of models for querying and retriev-

ing from structured information [Manning et al., 2008]. XML retrieval can be seen as a

special case of structured document retrieval for texts marked up in XML.

XML retrieval is the attempt to use XML structure to improve the delivery of relevant

information from XML document repositories. Structure has always been very important

for the development of IR models. The document length, for instance, has proven to influ-

ence the overall performance of IR models [Manning et al., 2008]. Length is only a simple

example of structure that influences the results of an IR process. Modern applications in

structured document retrieval also include Internet applications that provide users with

structured information about their content such as blogs or wikis, and finally modern word

processing and other office technologies, which capture their texts, etc. in standardised

XML outputs [Manning et al., 2008].

It may be possible to call such IR practices based on structure semi-structured retrieval

techniques [Lalmas and Baeza-Yates, 2010] rather than structured retrieval, which would

distinguish them better from database retrieval. Yet, this is not the agreed terminol-
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ogy. When talking about structured retrieval, most researchers refer to the task of using

structure to improve the results of textual retrieval. Structured document retrieval was

first introduced in the mid 1990’s and has a history of various meanings from hypermedia

retrieval, passage retrieval to XML retrieval. We look at this history in Section 3.3, as

it provides a good background for the theoretical understanding of XML retrieval, the

subject of this thesis.

In this chapter we briefly introduce the concepts and ideas behind XML retrieval. In

the next section, we will discuss the document format XML (eXtensible Markup Lan-

guage), a W3C standard for marking up texts.1

2.2 XML and Related Concepts

XML retrieval systems aim to provide effective access to XML document repositories.

XML is a simplified version of the earlier standard of SGML, which itself stands for

Standard Generalized Markup Language [Manning et al., 2008]. Just like its predecessor

SGML, XML is a meta-language that can be used, for example, by developers to define

markup languages as a means to provide an explicit interpretation of texts independently

of devices and systems. It allows for a separation of content and appearance, where the ap-

pearance of content encoded in XML can be adopted to different systems using a stylesheet

encoded, for instance, in XSLT (Extensible Stylesheet Language Transformation).2

XML is used for descriptive markup, where the content and markup are held within

the same resource. In the case of XML retrieval, the markup is mainly used to annotate

the structure of documents such as paragraphs, sections, etc. Documents have not only

content but also structure. The content is the text the document contains while the

structure is its logical organisation. XML has become the most widely used standard to

encode structured documents.

Thus, XML, contrary to HTML3, separates the logical structure of documents from the

layout. According to the W3C definition of XML, XML documents are ordered, labelled

trees. The logical structure of an XML document forms a tree of elements, which starts

with a root element and has edges between elements. Content can be found normally

in the leaf elements of these XML trees, i.e. those elements that do not have further

descendants. The branch elements will contain the structure (e.g. title, paragraph, etc.).

The Document Object Model (DOM) is the official tree representation of elements and

text. Figure 2.1 is a representation of the XML text below.

<article>

<author>John Smith</author>

<date>01/01/1970</date>

<section>

<paragraph>

1http://www.w3.org/TR/xml
2http://www.w3.org/TR/xslt
3http://www.w3.org/html/
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Figure 2.1: DOM example

The garden is behind the house.

</paragraph>

The garage has no car in it.

<paragraph>

</paragraph>

</section>

<section>

<paragraph>

The bins are in the courtyard.

</paragraph>

</section>

</article>

The so-called Document Type Definitions (DTD) define the syntax and vocabulary of

an XML document.1 A DTD contains all possible names of elements and how they can be

combined. It defines how elements are related. But, DTD’s are written in an non-XML

syntax with limited amounts of types that can describe the semantics of elements. Hence,

the XML schema2 language was introduced as another way to define how well-formed

XML documents look like. XML schemas are themselves XML documents, which makes

them extensible and modifiable in the same way as other XML. An XML schema defines

what an allowable XML document is. It constrains the structure. In our example, this

could, for instance, mean that paragraphs can only appear as children of sections. We

say that an XML element is a child of another XML element if it is embedded in it. In

the example above, the paragraph element is a child of the section element. We then also

call the section element the parent of the section element. Both DTD and XML schema

provide valuable additional information about the structure of a document, which can be

used to improve retrieval results.

The final XML-related concept we need to introduce is the XPath.3 XPath is the non-

1http://www.w3.org/TR/REC-html40/sgml/dtd.html
2http://www.w3.org/XML/Schema
3http://www.w3.org/TR/xpath/
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XML language to select XML elements in a document tree. We do not need to go into the

details of the XPath syntax for this thesis. It is best explained simply using an example.

The XPath expression article will select the article element in the example above. The

expression article/author will find the author, article//paragraph will find all paragraphs,

while section/paragraph will return nothing.

XML schema, tree representation and XPath are concepts that define the theory of

XML. In practice, XML is most often used for encoding data [Lalmas, 2009]. This has

also been called data-centric XML [Manning et al., 2008], as the emphasis is here on the

structural aspects of XML, used to encode complex data values and attributes. Data-

centric XML is commonly used for encoding complex structures such as tables in database

and their relationships, which often contain non-textual data. Data-centric means reg-

ular structure and fairly little content. Examples include attempts to serialize legacy

databases in XML as well as data exchanges between databases or towards databases

from, for instance, scientific sensors. Both will contain highly structured information,

such as particular sensor readings. Data-centric documents are often for consumption by

machines, while document encodings are for human consumption. They will contain large

amounts of text within XML elements. In XML retrieval, we are interested in the latter.

In text-centric XML, XML is a way of treating texts as non-linear structures. From an

XML retrieval point of view, texts are ‘ordered hierarchies of content objects’ (Renear)

and their encoding in XML is a reflection of this fundamental principle. We will look into

this in more detail in Section 3.3.

In text-centric XML, structure supports the text analysis [Manning et al., 2008]. For

text-centric XML retrieval, we can adopt existing IR techniques, as we show in the next

section, where we provide a preliminary overview of concepts and challenges in XML

retrieval. XML structures help us analyse the information within the text, to improve

our relevance ranking of parts of the texts according to an information need. In XML

retrieval, we therefore look at XML from a text-centric point of view.

2.3 XML Retrieval

Generally speaking, XML retrieval uses the logical structure of elements and edges between

them to aim at returning more precise results to user information needs. It is therefore

about retrieving not only relevant document components,1 but those at the right level of

granularity, i.e. those that specifically answer a query. We cover these aims and objectives

in more detail throughout this thesis. In this section, we provide a preliminary overview of

XML retrieval and relate it to the basic XML retrieval concepts we have just introduced.

The aim of XML retrieval is to use the logical XML-encoded structure of documents

to retrieve special parts of documents instead of whole documents [Lalmas, 2009]. In

Figure 2.1, if we are looking for where the bin is we expect to retrieve not the whole

article but just the particular paragraph. A system should always retrieve the part of a

1Please note that we mainly use the term document component as another description of an XML
element
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document that is most concentrated on an information need. This has also been called the

‘structured document retrieval principle’ [Manning et al., 2008, p. 201]. Furthermore, we

do not just want to retrieve any element that gives the exact answer to our information

need but we want those elements that do not contain much else but the answer to our

information need. We are looking for the smallest possible element that still fully answers

our information need [Lalmas, 2009].

It has proven to be hard to implement systems that address the challenges of granu-

larity in XML retrieval appropriately [Lalmas, 2009]. In order to exemplify some of the

underlying challenges, let us have a look again at Figure 2.1. If we have a query looking

for the garden behind the house we might want to find only the first paragraph as a result

of the retrieval. If we are interested in the whole building, then the whole article gives a

better answer. Yet, we would only want the article, if it does not contain too many other

paragraphs with irrelevant information.

Therefore, the first major challenge of XML retrieval is to deliver only relevant infor-

mation and as little irrelevant information as possible. The second challenge is to deliver

relevant information only once. This means reducing the overlap in relevance rankings in

XML retrieval. Because of the structure of an XML document, if a child is relevant, so

will be its parent and further ancestors, as the child is contained by them. They overlap in

their information. Overlapping elements that contain each other such as the paragraphs

and section in Figure 2.1 are also referred to as ‘nested’ [Kazai and Lalmas, 2005]. Deal-

ing with these so that a user retrieves all the necessary information but not too much

redundant one, is — next to delivering the right level of granularity — the second major

challenge for XML retrieval.1

For a preliminary insight regarding the implementation issues to address the challenges

of returning the best possible XML element (on the right level of granularity and without

too much overlap), let us consider as an example the indexing process as part of any XML

retrieval system. As we will see throughout this thesis, an enhanced indexing strategy for

the documents is one proven way to return different granularities relevant to the user’s

information need. The XML structure is then exploited before ranking takes place.

An overview of indexing techniques for XML documents is given in [Manning et al.,

2008]. The authors collect indexing concepts and implementations of concrete systems. For

instance, different parts of an XML document can be indexed with a different value mea-

surement. One approach to enhance the indexing could be to index only non-overlapping

elements. If we construct our indexing items so that they do not contain redundant

information, we will be able to avoid confronting the user with redundant information.

The disadvantage of indexing only non-overlapping elements is that often an XML docu-

ment cannot be easily divided into good non-overlapping elements [Manning et al., 2008].

Pseudo-elements may need to be introduced. Returning these, however, might not make

1Further challenges in XML retrieval are discussed in detail in [Lalmas, 2009] and [Manning et al.,
2008]. They include heterogenous XML document collections with many different schemas incorporated
in them, or the challenge of building interfaces that help users formulate queries with a correct structure
according to a particular set of XML documents. These challenges do not directly influence our thesis,
as we concentrate on approaches working with one particular schema and on general retrieval strategies
rather than user interface design.
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Figure 2.2: Simplified DOM of INEX 2002

sense to the user.

The simplest indexing strategy is therefore often the most preferred one, as we will see

in Chapter 5, where we analyse actual XML retrieval systems. Using this simple strategy,

all XML elements are considered to be complete information sources in themselves and

entered into the index as separate and independent entries. Many XML retrieval systems

use this approach and put the burden of finding the most specific and least redundant

information therefore fully on the second part of the overall retrieval process, the relevance

algorithm.

XML retrieval also requires a different evaluation framework, within which new strate-

gies such as the one discussed for enhanced indexing can be developed, tested and evalu-

ated. In order to offer such a framework, the INitiative for the Evaluation of XML retrieval

(INEX) [Gövert et al., 2006] has been founded.1 INEX is a collaborative effort to create a

test environment for XML retrieval. It has delivered test collections with evaluation tasks

to find out whether retrieval systems fulfil the specific requirements of XML retrieval [Lal-

mas, 2009]. The early INEX 2002 collection consisted of about 12,000 articles from IEEE

journals. The IEEE journal collection was expanded in 2005. Since 2006 INEX has used

the much larger English Wikipedia as a test collection. INEX works with one description

of a type of XML document, of which we show a simplified version for 2002 in Figure 2.2.

We discuss the test collections in more detail in Section 6.2.

As a collaborative effort to enable evaluation, INEX stands in the tradition of the

experimental evaluation initiatives in IR with their robust history such as TREC [Voorhees

and Harman, 2005]2 and the ensuing evaluation campaigns such as CLEF3 and NCTIR4.

One of the major achievements of INEX has been the definition of new evaluation measures

to reflect the requirements of XML retrieval evaluation. Until INEX 2005, the general

relevance of an element to an information need was measured as topical exhaustivity, which

1http://inex.is.informatik.uni-duisburg.de/
2http://trec.nist.gov/
3http://www.clef-campaign.org/
4http://research.nii.ac.jp/ntcir/
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reflects the extent to which the information contained in a document component satisfies

the information need. More specific to INEX is a second evaluation dimension called

specificity, which reflects the extent to which an XML element focuses on the information

need. Exhaustivity and specificity indicate a system’s ability to deliver relevant elements

of the right granularity. Since 2005, specificity has become the focus of INEX evaluations

[Lalmas, 2009].

INEX [Gövert et al., 2006], in order to consider the additional functionality through

structure in XML retrieval, distinguishes between content-only (CO) queries and content-

and-structure (CAS) queries. These distinctions emphasize the specificity of XML re-

trieval, its aim to return parts of documents within an appropriate level of granularity.

CO queries describe the standard retrieval task, which searches only for the content con-

ditions ignoring the document’s structure. Those queries are necessary, as the users might

not know what the structure of documents they are searching for looks like. The system

will then decide what document or part of a document it returns. Content-and-structure

(CAS) topics include structural constraints as in the Figure 2.1. Here, the users specify

their target elements and their context.

Structural constraints in queries are specified in the INEX NEXI standard [Trotman

and Sigurbjoernsson, 2004]. NEXI (Narrowed Extended XPath)[Lalmas, 2009] is used in

INEX as a standard for XML queries. NEXI shares some elements with XPath but extends

it according to the requirements of XML retrieval. It is best explained by looking at an

example, as the syntax is very similar to XPath. Let us assume we have the following

NEXI query:

//article//section[about(.,courtyard)]

As in XPath double slashes indicate an arbitrary number of elements. Then, the example

query specifies a query for sections about severe weather that are part of articles. The dot

in the about clause references the section the clause modifies. The about clause is also

called the ranking constraint. The sections are ranked according to their relevance to the

information need expressed in the about clause.

NEXI is not full XPath, as the only relationship between nodes in a path is descendant

[Trotman and Sigurbjoernsson, 2004]. There is no way to specify the child relationship or

other XPath axes. Attributes cannot have descendant nodes so may only be specified at

the end of a path.

The distinctions made by INEX and related XML retrieval approaches demonstrate

that searching within XML documents — using CO queries or using CAS queries — is

more difficult than in unstructured documents as now the structural composition of the

documents comes into consideration. We argue that a theoretical evaluation, which we

introduce in the next chapter, is particularly useful to deal with the challenges, because

it offers flexible means of bringing together content and structure information.

The next chapter now turns to the background of the theoretical evaluation, used to

analyse XML retrieval. We first place theoretical evaluation in relation to experimental

evaluation before we discuss various approaches to perform theoretical evaluations. Our
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approach is based on aboutness, which is introduced in Section 3.1.1.3. The framework

used to define aboutness is then discussed in Section 3.2.
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Chapter 3

Theoretical Evaluation
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3.1 Introduction: From Experimental Evaluation to Theo-

retical Evaluation

An IR system as described in the previous chapter implements an IR model. The two

terms are sometimes used interchangeably, but there is nevertheless a clear distinction,

which is especially important in the context of IR evaluation [Baeza-Yates and Ribeiro-

Neto, 1999]. Just like a climate model is developed to help predict climate behaviour,

an IR model helps predict relevant answers to an information need. To this end, an IR

model consists of means to generate representations of document and query (its indexing

behaviour) and of a ranking function that orders documents with regard to the information

need [Baeza-Yates and Ribeiro-Neto, 1999]. An IR model is generally used as an abstract

blueprint to implement an actual IR system. The performance of an IR system can, for

instance, be measured according to its response time and the space it needs to process its

results. For IR, however, more interesting are often not such standard system evaluation

measures but performance measure of how precisely an information need is answered and

how good the ranking is. Thus, the IR model itself needs to be evaluated and not just its

actual implementation as an IR system.

The ranking performance of IR models is evaluated in standardised experimental eval-

uation procedures. Experimental evaluation in INEX and TREC [Voorhees and Harman,

2005] is used to study the behaviour of IR models [Huibers, 1996]. A typical question in

an experimental evaluation is to compare IR models with each other: Model A is tested

against model B using a collection C. This test is repeated by manipulating various pa-

rameters in A and B or by changing the collection C. For instance, new documents can be

added to the collection. After the experiments have been evaluated, a hypothesis is for-

mulated that could explain the experimental results. In order to support the hypothesis,

standardised statistical evaluation values such as recall and precision are employed. The

hypothesis often concludes with a specification of why and when A performs better than

B using precision/recall graphs.

Precision and recall are most commonly used to measure the experimental performance

of an IR model [Baeza-Yates and Ribeiro-Neto, 1999]. Precision is the fraction of document

retrieval that is relevant to an information need.

|relevantDocuments ∩ retrievedDocuments|

|retrievedDocuments|

Recall, on the other hand, describes the fraction of relevant documents retrieved.

|relevantDocuments ∩ retrievedDocuments|

|relevantDocuments|

Both precision and recall rely on the assumption that every document in a collection is

known to be either relevant or non-relevant [Baeza-Yates and Ribeiro-Neto, 1999]. It

seems, however, hardly possible that any model would have complete knowledge of all

relevant documents for each test query and small test collections can never be fully repre-
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sentative. Precision and recall do therefore entail well-researched issues, which we discuss

next.

Problems in experimental evaluation based on precision and recall are good indicators

of problems with experimental evaluation in general. Problems with precision and recall

include those more directly related to XML retrieval:

• Fundamentally precision and recall distinguish only retrieved and non-retrieved doc-

uments. But there might be more classes than that. This is particularly important

if we change the unit of retrieval as in XML retrieval. We discuss this in Chapter 4.

• The relevance measure, which is the foundation of precision/recall, does not cover

the utility of documents. We will see in Section 7.3.2, how the problem of utility

vs. relevance is mitigated in some XML retrieval models. In Section 6.4, we develop

user agent models, that directly represent XML retrieval information needs rather

than pre-formulated individual queries, as in standard evaluation measures.

Because of issues such as these, standardised test collections and experimental evalua-

tion using precision/recall do not always deliver sufficient information about a model’s

behaviour, in particular in the context of XML retrieval. There are clear disadvantages to

this kind of an experimental evaluation approach, if test collections are incomplete or if

precision and recall depend on knowledge about the set of all relevant documents [Huibers,

1996].

This thesis suggests another approach to help with the analysis of XML retrieval

models that can complement an experimental evaluation as the one in INEX. We present

an evaluation based on describing retrieval as a set of reasoning rules using a theoretical

framework that we have developed to specifically analyse XML retrieval model. We deliver

a more formal means of comparing system behaviour, with which we are able to go deeper

into the details of how particular INEX models achieve their results.

3.1.1 Theoretical Evaluation Approaches

Theoretical evaluation has a long tradition in IR research. [van Rijsbergen, 1989] sug-

gested that an experimental approach to IR should be complemented with a theoretical

evaluation to match the increasing complexity of the retrieval task in new areas of IR like

multimedia and XML retrieval. More recently the British EPSRC funded Renaissance

project1 has used new theoretical models to explain the complex behaviour in multimedia

and XML retrieval, while the long-term INEX participants Piwowarski and Lalmas apply

quantum theory to investigate structured document retrieval in some of their recent work

[Piwowarski and Lalmas, 2009]. All these approaches expect that a theoretical evaluation

can offer new insights into the deeper reasoning behaviour of complex retrieval tasks. In

their view, a theoretical evaluation is a complementary means to an experimental one if it

helps to clarify the assumptions of retrieval models and if it can identify the characteristics

1http://renaissance.dcs.gla.ac.uk/
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leading to a particular experimental behaviour. In this thesis, we intend to deliver both

in the analysis of XML retrieval models, developed and evaluated within INEX.

We focus on logic-based theoretical evaluation, an idea that goes back to an article of

Chiaramella and Chevallet About Retrieval Models and Logic, in which logic is regarded

as a means to investigate general IR models [Chiaramella and Chevallet, 1992]. Later in

this section, we present other approaches and justify our choice of a logic-based theoret-

ical evaluation. These logic-based evaluation approaches to IR are generally founded in

Cooper’s definition of ‘logical relevance’ from 1971 for a logical view on relevance [Cooper,

1971, p. 24].

‘A stored sentence is logically relevant to a representation of an information

need if and only if it is a member of some minimal premise set of stored

sentences for some component statement of that need.’

In this definition, logical relevance is characterised by the topical bearing of a document

on an information need.

In such a logical approach, documents are thought of as sets of sentences. If queries

are sentences too, then retrieval is the logical implication of the query by the document

[Van Rijsbergen, 1986a]. Thus, van Rijsbergen and others have expressed Cooper’s logical

relevance in terms of the implication D → Q [Van Rijsbergen, 1986b]. In [Cooper, 1971],

this means that if the query sentences can be derived by the stored document sentences,

then the information need can be satisfied. As an example, consider a query like ‘Did

Cooper coin his idea of logical relevance in 1971?’, then a document containing the sentence

‘Cooper coined his idea of logical relevance in 1971’ would satisfy it.

However, the representation of an information need and information as truth functional

sentences is problematic. Experimentally, the Boolean retrieval models, which are based

on D → Q [Huibers, 1996], have not performed as well as other standard models such as

the vector space model [Sebastiani, 1998].1 In IR, the implication of a document from a

query is never fully given, but documents are only likely answers to information needs. As

discussed in Section 2.1, there are two simple reasons for this intrinsic uncertainty. Firstly,

the representation of an information in queries and documents is not complete and secondly

the information need is subjective to the user’s opinions. Thus, van Rijsbergen introduces

a ‘probable implication’. D → Q becomes P (D → Q) in a new notation delivered in

[Van Rijsbergen, 1986a]. P is a probability function and means that the relevance of a

document D for an information need represented in Q is based on ‘the extent to which Q

might be inferred from D’ [Sebastiani, 1998].

[Van Rijsbergen, 1986a] has defined his logical uncertainty principle as follows:

‘Given any two sentences x and y: a measure of the uncertainty of y → x

relative to a given data set is determined by the minimal extent to which we

have to add information to the data set, to establish the truth of y → x.’

1Paradoxes of the material implication in IR reasoning are analysed in [Sebastiani, 1998].
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This principle does not specify where the additional information will come from. It can

be derived from the document set or can be established by more generic rule systems such

as thesauri.

The logical uncertainty principle is one way to avoid the reduction of using the material

implication for discussing relevance behaviour. We would like to go a step further and

take up van Rijsbergen’s [Van Rijsbergen, 1986a] translation of D → Q as D ‘answers’ Q,

where the topics in the documents are considered on the most abstract level as answers to

the topics formulated in the query. We say that on the most abstract level D is about Q.

Following Huibers’ formalism and approach [Huibers, 1996], we would like to extend

the idea of a topical implication between query and document to the concept of ‘about-

ness’ based on a logic-based framework. Topically speaking, on the most abstract level

documents are ‘about’ queries. With aboutness, we aim to theoretically capture an IR

model’s behaviour. In this approach, good IR models are those which have a well-defined

aboutness relation.

We follow the definition of theoretical evaluation in [Wong et al., 2001], according to

which a theoretical evaluation using aboutness

‘attempted to symbolically characterize qualitative aspects of the matching

function, which, up to that point, were normally hidden in the numeric ex-

pressions of these functions. In a broad sense an attempt was made to flesh

out the assumptions underpinning matching functions.’

As other forms of evaluation in IR, a theoretical evaluation therefore aims to understand

the behaviour of IR models. Before we cover our particular usage of logic for theoreti-

cal evaluation based on aboutness, we need to consider other theoretical evaluation ap-

proaches. We discuss their advantages and disadvantages to justify our decision to use

aboutness. There have been many theoretical evaluation approaches in the history of IR,

and we only present two more recent examples, one based on a probabilistic framework

and another one based on retrieval heuristics.

3.1.1.1 Embedding

Embedding formalises one particular IR model that covers several other models [Huibers,

1996]. For instance, in [Turtle and Croft, 1991] inference networks are used to analyse

other models. Inference Networks are known to combine several sources of evidence for

the relevance of a document to an information need [Turtle and Croft, 1991]. As such,

Inference Networks are instances of the more general idea of using probability theory to

analyse IR models. Hence, we concentrate on why embedding in probabilistic models is not

general enough to deliver a framework for our analysis. Using aboutness in a logic-based

framework, we offer a universal theory for evaluating IR.

Probability theory has frequently been used for a universal framework of IR (for in-

stance in [Nie, 1992]) if the uncertain truth in van Rijsbergen’s P (D → Q) is translated

as the probability that given D we can imply Q and the retrieval process as a whole is

seen as a probabilistic inference. Thus, faced with the intrinsic uncertainty of the query’s
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and document’s inference, we could be tempted to leave our representation as an implica-

tion or aboutness and simply write P (D|Q) [Sebastiani, 1998]. However, then we would

have already reached a concrete representation of D ‘answers’ Q in specific IR models, as

probability theories have also been used to compute whether a document is relevant for a

given query. Using probability for a theoretical evaluation, there will be a bias in favour

of probability models such as language models.

We also think that P (D|Q) cannot describe IR models in general, as, e.g., the im-

portant principle of transitive reasoning cannot be embedded in probabilistic reasoning

(Section 4.4.1). [Sebastiani, 1998] has shown that the assumptions P (B|A) and P (C|B)

do not generally lead to P (C|A). Transitivity, however, might be a quality of an IR model,

as it is for Boolean retrieval [Huibers, 1996]. Finally, and maybe most importantly, it is

not straightforward to embed XML structure in a probabilistic framework.

Therefore embedding in general and embedding in probabilistic frameworks in partic-

ular are not general enough to fit our purpose.

3.1.1.2 Retrieval Heuristics

More recent studies using a theoretical evaluation approach are the ones by Hui Fang,

Cheng Xiang Zhai and Tao Tao [Fang et al., 2004] [Fang and Zhai, 2005]. They present a

formal study and a universal framework for the analysis of IR models, using a set of basic

desirable constraints that any reasonable retrieval function should satisfy for good retrieval

performance. This is close to our approach but their constraints are based on intuitive

heuristics rather than formal logic. They use term frequency weighting, term discrimina-

tion weighting, document length normalisation, etc. Fang et al. design experiments to see

whether some standard IR models such as language modelling or vector spaces implement

these constraints and could show that, if a constraint is not satisfied, it often indicates

that the IR model could be improved. They are also able to make direct suggestions for

improvements. In summary, they see a tight coupling between the question ‘what would

be a good retrieval model’ and which ones of their constraints would then be satisfied.

At first sight, their approach looks similar to ours, their constraints could be seen

as similar to our reasoning rules introduced in Section 4.2. However, they do not imply

any reasoning of models with their constraints but rely on the generalisation of intuitions

mainly related to TF-IDF (term frequency and inverse document frequency) measures.1

These include the formalisation of a sensible interaction between TF-IDF: if given a fixed

number of occurrences of query terms, a document that has more occurrences of discrimi-

native terms (higher IDF) should achieve a better ranking. Such questions are interesting

to anybody working on a new IR model before starting the design process.

Their approach has advantages towards ours. Ours is more abstract and high-level, as

we will see. As the authors do not employ a high level of abstraction such as aboutness but

remain within the parameters of standard measures to improve retrieval directly, immedi-

ate recommendations for further improvements of models can be made. This advantage is,

however, also a disadvantage when it comes to the analysis of different and new retrieval

1TF-IDF is a weight used to evaluate how important a word is to a document in a collection or corpus.
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tasks such as XML retrieval. Here, we do not yet have commonly agreed foundations.

TF-IDF, for instance, is subject to discussions in XML retrieval, as it does not deal well

with the problem of overlap in XML retrieval [Lalmas, 2009], which we will discuss in

Section 5.2.

We would like to remain more abstract than both embedding and retrieval heuristics

and therefore use an aboutness-based approach. Furthermore, we will mainly use concepts

from logic such as monotonic behaviour. To us, on a very abstract level, a relevance

score is a function with various variables that include often terms and their frequency

values, but also other parameters. We suggest to study aboutness rules and monotonicity

and how they behave with respect to these variables. We will do that extensively in

Chapter 5, where we theoretically evaluate retrieval models using aboutness and the topical

implications between query and document.

3.1.1.3 Aboutness

Following Huibers’ formalism and approach to analyse IR models [Huibers, 1996], we de-

scribe how a document topically answers a query using ‘aboutness’. Aboutness is described

by formally deriving the reasoning process involved in IR models. Huibers has developed a

general IR framework based on aboutness that he uses to evaluate existing retrieval mod-

els rather than to develop new ones. Such a framework needs to have the formal means

to model the underlying concepts and behaviour of any information retrieval model. It

should therefore abstract from specific constructs and implementation details.

In this thesis, we present a framework based on aboutness that allows one to analyse

the characteristics of particular XML retrieval models. ‘Aboutness’ has been frequently

discussed in IR literature, most notably in the work of [van Rijsbergen and Lalmas, 1996],

[Bruza and Huibers, 1994] and [Wong et al., 2001]. Huibers demonstrated the power of an

aboutness-based framework for the theoretical evaluation of IR. He successfully derived

aboutness proof systems to capture several aspects of the reasoning process involved in

commonly used flat document retrieval models [Huibers, 1996].

[Wong et al., 2001] present theoretical evaluations of flat document retrieval systems

grounded in a well-defined set of steps as a complement to traditional experimental eval-

uation of IR systems. They found explanations for model behaviour that escaped more

traditional evaluation methods, e.g. the effect monotonicity has on aboutness, which we

will also discuss in this thesis in more detail. Furthermore, they derived the conditions

and thresholds many flat document IR models use to adjust their reasoning behaviour to

particular retrieval tasks. We will see in Section 5.2 how this method is also widely used

in XML retrieval to deliver more precise answers to an information need. [Wong et al.,

2001] also claim that aboutness-based evaluation is more open to debate, as sometimes

the underlying assumptions of IR performance can be hidden by tuning a priori assigned

parameters in such a way that they fit best the evaluation task. They discuss this for

performance differences of the general vector space model compared to the one that uses

thresholds. We identify similar strategies to deliver effective XML retrieval models.

We believe that these existing results of an aboutness-based theoretical evaluation
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in flat document IR indicate that it can also be a powerful methodology to analyse the

more complex tasks in XML retrieval. Our thesis is that particularly in the domain of

structured document retrieval, aboutness-based theoretical evaluation presents a powerful

methodology to analyse the complex interaction of structure and content in XML retrieval.

Aboutness is not equivalent to the more common IR notion of relevance [Manning

et al., 2008]. Aboutness captures an abstract topicality relation between document and

query. Relevance itself is subjective to a user’s perception of the information need. With

respect to aboutness, we say that a document can only be relevant to a query if it is also

about the query. Yet, a document can be about a query without a user acknowledging its

relevance. As a condition of relevance and as being independent of the subjectivity of an

information need, aboutness is ‘objective’.

Relevance is subjective and aboutness ‘objective’. They are not equivalent, as relevance

expresses also a user’s taste while aboutness is a topical relation between representations

of information. With aboutness, we state ‘once and for all, what relationship between a

document and a request is to hold to compute probable relevance.’ [van Rijsbergen, 2004].

We say without aboutness no relevance, but aboutness does not suffice to imply relevance.

Aboutness approaches consider the standard IR techniques such as indexing and match-

ing of query and document as something objective that can be described in a logic-based

framework. In the next section, we introduce our logic-based framework using Situation

Theory.

3.2 Situation Theory

We use Situation Theory, developed in [Barwise and Perry, 1983], to deliver our aboutness

framework for the analysis of XML retrieval. Situation Theory is a mathematical theory

of meaning and information with situations as primitives. It offers a logic of information

rather than truth assignments and is therefore closer to real-world applications in IR. In

the next sections, we are going to explain in more detail why we have chosen Situation

Theory.

3.2.1 Basic Concepts

Situation Theory is the mathematical theory of meaning and information and has its roots

in a book by Barwise and Perry, meant to present a new science of information [Barwise

and Perry, 1983]. Jon Barwise attempted to grasp perceptual messages such as ‘Jack saw

John running’. The intuition was to find a way to describe that Jack was not only seeing

John, but him running. John was doing something within the scope of a situation [Devlin,

1991]. In the language of Situation Theory, situations are structured parts of the world

(concrete or abstract) such as the running John individuated by an agent such as Jack.

Compared to other logical systems, Situation Theory does not rely on a full under-

standing of underlying ontologies but emphasizes strongly the notion of information. It

has been developed to support an analysis of the way things in the world can represent

and convey information. It starts from the particular challenge that information in any

23



message can never be uniquely determined. There is no single answer to what information

is contained in a message like ‘Jack saw John running’. It will depend among other things

on the receiver and the constraints on the representation of information.

For Situation Theory, information is the starting point not logical ‘truth’, which is

according to Wittgenstein a statement that is true in all possible worlds [Wittgenstein,

1922]. If Situation Theory is used for an aboutness analysis, inference then becomes a way

of processing information or ‘reasoning’, as we call it in this thesis, rather than concluding

the truth. The choice of Situation Theory for the analysis of IR processes is thus motivated

by the fact that we can use it to describe a document (or XML element) by the information

it carries, rather than by which ‘truths’ logically hold for it [Huibers, 1996], as we will see

in Section 3.2.4.

According to [Devlin, 1994], Situation Theory is not a theory of fixed information but

a framework for understanding information flow, as a way of understanding how agents

communicate a message like ‘Jack saw John running’ across time and space. In our case, we

use Situation Theory to understand the information flow in IR models between information

source and need expressed in a query. In Section 3.3, we will discuss in more detail the

relationship between Situation Theory and IR.

Dretske has developed the idea of information flow in [Dretske, 1981]. Based on his

notion of information flow, perception can be regarded as the process by which information

is delivered in an analogue form to a cognitive agent for its selective use. Cognition is

described by Dretske as the conversion of the information a cognitive agent receives into a

digital form, or as a digitisation. A cognitive agent in this process should aggregate three

properties. Firstly, it should have the capability of perception. Secondly, it should be able

to concentrate on its specific task. Thirdly, it also should have knowledge not only about

its system’s settings, but also about the environment [Lalmas, 1996]. Cognitive activity is

in this sense essentially a digitisation procedure, which cannot be done without loss. Loss

minimalisation is the target of a successful digitisation [Lalmas, 1997].

Finally, the idea of information flow emphasises that Situation Theory is based on

a relational theory of meaning. There is only an information flow if an object carries

information about itself or another object [Lalmas, 1996]. Lalmas gives an example of

the world wide web, in which a page A which is linked to by a page B can be thought of

as containing information about it. If a page has a link to itself, it contains information

about itself. It is the flow that allows us to understand the meaning of what we perceive

and to derive additional information [Huibers, 1996].

Situation Theory, as a theory of information flow between situations, offers an ontology

that consists of situations and their types, of their relations and basic information captured

in so-called infons [Devlin, 1991]. We first define situations, situation types and constraints,

before we cover infons in the following section.

3.2.2 Situations

Situations are the primitives in Situation Theory. They describe that asserting something

really means to assume that certain situations hold, i.e. that certain constellations are
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given with describable properties and with relations among these. In particular, content

can be represented as a set of situations, as those in which the content is given.

In Situation Theory, various objects are set up by joining situations, permitting com-

plex and abstract ways of classifying situations. Furthermore, a situation can provide

information about another situation if their types correspond [Devlin, 1994]. A situation

type is, for instance, a fire. It is something that might happen in many situations. Cog-

nitive agents use types to classify the world. A fire is happening somewhere, because we

see smoke, for instance.

In Situation Theory terminology agents relate types with constraints and thus build

an information flow between them. These constraints — a term introduced by Barwise —

can model any relationship between situations [Lalmas, 1996]. A constraint describes how

something can provide information about something else or in our example how smoke

can lead to knowledge about fire.

Constraints are defined as binary relations between situation types. If we have a

constraint C that links a situation type T1 to another type T2, then, given a situation S1

of type T1, there is also a situation S2 of T2. S2 may be equal to S1, or it may become S1

through some transformation in time and space, or it may just be a completely different

situation. IR systems produce these reasonings in their algorithms. If there is a document

having information about garden in it, then it will also be about a query asking for house

and garden. We use this kind of reasoning in Section 3.1 to define the functional behaviour

of IR models.

Constraints and types are the way IR models develop aboutness, or as we call it, the

way they reason about aboutness. Generally speaking, for Situation Theory, situations

are in the world, while types and constraints are the domain for a reasoning agent such as

the human mind or IR models. In IR, documents and queries are situations. Types and

constraints are defined by the IR model in the way it relates documents with queries.

Another key concept of Situation Theory is the infon, which we will discuss in the

following section. It further specifies situations as collections of items of information.

Infons collect the basic facts and ‘hold’ for a situation. In Situation Theory, an information

item is true, because of the situation in which it is embedded in or because of the infons

it has.

3.2.3 Infons

Situation Theory allows reasoning, although not all the information a situation carries is

known. There is a lot of information in the utterance situation ‘Has Jack come home, yet?

It looks like it, his bicycle has been moved from the front to the rear.’ There is obviously

someone talking, possibly two people talking to each other. They both know Jack. Jack

has a bicycle. If the receiver of this utterance also knows about Jack’s activities, it might

also know that Jack has come back from the post office and so on. In Situation Theory,

all these information items are described as infons.

In Situation Theory ‘infons’ are used as the representation of the information an agent

perceives [Devlin, 1991]. We say infons hold for a situation. Situations are the context of
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infons, infons the targets of situations. Reusing [Huibers, 1996]’s formalisation, which is

based on [Devlin, 1991] we describe infons as follows:

Definition 1 An infon is an item 〈〈R, a1, ..., an; i〉〉 that represents that the relation R

holds (if i = 1) or does not hold (if i = 0) between the objects a1, ..., an.

R is the relationship between the objects. The value i is the polarity of the infon. If the

polarity is 1, we call the infon positive; otherwise the infon is called negative. Throughout

this thesis, we do not often find the need to discriminate negative and positive infons. For

this reason, we will just omit the polarity if the infon is positive. Infons are denoted by

Greek letters: φ,ψ, etc.

In the example above, the infon describing that the bicycle is back could look like:

〈〈being, bike, back; 1〉〉 , where the polarity 1 corresponds to where the bike is at this mo-

ment. 〈〈being, bike, front; 0〉〉 expresses that the bike is not (anymore) at the front of the

house.

The following infons all describe activities of Jack:

〈〈Walking, Jack, sea; 1〉〉

〈〈Walking, Jack, land; 1〉〉

〈〈Walking, Jack, space; 1〉〉

The relationship ’walking’ denotes specific relationships between Jack and in this case

places where Jack is. These infons all come together as situation types of Jack’s activities.

Infons can be parametrised in order to capture such situation types1:

〈〈Walking, Jack, p; 1〉〉

The extensions are for p: {sea, land, space}. If we ‘anchor’ p with them, we will get from

the situation type to the actual situation.

Theoretical evaluation methodologies for information retrieval need formalisms that

are powerful enough to characterize the fundamental properties of retrieval models. We

use Situation Theory situations to describe documents and queries. Situation Theory is

not the only possible choice for a logical framework for a theoretical evaluation in IR (in

fact there are many others), but it matches our requirements well.

3.2.4 The Role of Situation Theory in this Thesis

Though Situation Theory does not directly discuss aboutness, some of its ideas are closely

related. How documents provide ‘answers’ to queries, for instance, can be related to the

Situation Theory concept of information flow. In their influential book Information Flow:

The Logic of Distributed Systems, [Barwise and Seligman, 1997] consider information flow

in distributed systems. The book presents a general architecture of information carriers

1According to standard Situation Theory formalism [Devlin, 1991], we would have to write ṗ. We
choose to simplify this notation and simply write p.
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and how they are connected as well as a theory of the information flow related to these

connections. The book is based on the work on signals and information in [Dretske, 1981],

who in his work looks for reliable correlations so that if object A has a property PA, object

B has property PB . Then, we can assume that A is PA carries the information that B is

PB .

Information Flow in Distributed Systems is rich in topics, formalisms and examples.

Here, we are particularly interested in the notion of inference for information flow [Barwise

and Seligman, 1997, p. 22], which we consider closely related to the idea of describing IR

models through the reasoning they involve [Song and Bruza, 2003]. In the book, inference

is considered to be key to information, while retrieving information requires inference.

Information inference is defined as:

‘To a person with prior knowledge k, r being F carries the information that s

is G, if the person could legitimately infer that s is G from r being F together

with k.’ [Barwise and Seligman, 1997, p. 22]

This definition makes inference dependent on an agent that is able to infer from knowledge

(for instance an IR model). Furthermore, the background knowledge k describes that

an IR model must have the capabilities to infer and form relevance decisions. The prior

knowledge k is what is realised in an IR model as a result of the indexing and the functional

behaviour of the ranking algorithm. For instance, an IR model might index the situation

r that Jack is walking with the two infons 〈〈Jack〉〉 and 〈〈walk〉〉 F . We can legitimately

infer the query expressing an information need about Jack s, represented by the single

query term ‘Jack’ G. Instead of talking about legitimate inference, we talk about aboutness

to describe how a document ‘answers’ a query. We say, the document with the information

that Jack is walking is about the information need in the query about Jack.

In our work, we bracket the question whether an IR model agent was right to infer a

certain piece of information. We take at face value everything an XML retrieval model

produces, and work from there to analyse aboutness behaviour bottom up. We are first

and foremost interested in the theoretical evaluation of XML retrieval and not in designing

a new and better model for XML retrieval.

We think that Situation Theory concepts offer a good choice for defining aboutness in

IR because Situation Theory starts with the way things convey information or in our case

the way XML retrieval is done by various models. From there, Situation Theory works

upwards to find regularities. In Modeling Real Reasoning [Devlin, 2009] asks the question

how information arises in real-life-reasoning. He states that we can only find information

where we find systematic regularities:

‘In general, then, information can arise by virtue of systematic regularities in

the world. People (and certain animals) learn to recognize those regularities,

either consciously or subconsciously, possibly as a result of repeated exposure

to them. They may then utilize those regularities in order to obtain information

from aspects of their environment.’ [Devlin, 2009]
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Using Situation Theory, we recognise that such regularities do not need to be consistent

in the logical sense of the word but agents in the world such as humans or IR models still

reason with whatever partial information they might have. This partialness is not wrong

but just the way things are, as all agents are situated. All agents must rely on limited

information to reason effectively.

As we are interested in Situation Theory as a framework for the analysis of existing

models, we are also not affected by the criticism in [Wong et al., 2001] that Situation

Theory as a symbolic theory is too complex for the development of new IR models. [Song

and Bruza, 2003] also think that Situation Theory is not useful for the development of

IR models, because for them it does not adequately represent human reasoning. [Song

and Bruza, 2003] therefore suggest to concentrate on a representational model of semantic

memory called Hyperspace Analogue to Language (HAL), which takes into account how

humans make inferences. A psychological theory might well be more suited to derive

heuristics on how to develop new IR models based on actual human reasoning. We,

however, are concerned with the discussion of how XML retrieval models reason that an

XML element is about a query. For our purpose, the Situation Theory framework works

well.

[Devlin, 1994] claims that for an analysis such as ours, which is trying to describe

systematic regularities of real-life phenomena, mathematics needs to be fitted to the data

and not the other way around. Situation Theory has been designed to work bottom up, in

our case from the real-life IR processes in XML retrieval to the more abstract mathematics.

According to [Devlin, 1994], logic becomes narrow-minded if it only concerns itself with

attempts to preserve the consistency of a notation system, rather than be open to actual

reasoning. If we consider information to be the grounds for reasoning, situations, for

instance, can be equal even though we are not able to deliver all information in them.

If we had to rely on a purely extensional definition of equality, two document situations

would only be equal if they contained the same information. Furthermore, to represent

information directly has the intrinsic advantage, that we do not need to worry about its

consistency. We only model the information content. This means that we can represent

information that might be logically meaningless like the existence of two opposing qualities

in the same document. Hamlet’s ‘to be’ or ‘not to be’ does not lead to confusions.

By employing Situation Theory to describe aboutness, we do not primarily use it to

invent new IR models or find a new reasoning, but to evaluate existing ones. A theoretical

evaluation needs to be conceived of as a tool to distinguish and complement existing

evaluation techniques. XML retrieval aboutness, defined in the next section, is at the

heart of this approach.
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3.3 Situation Theory Aboutness for XML Retrieval

An aboutness theory derived from Situation Theory offers a formal framework to express

the reasoning incorporated in IR models. The framework is general enough not to lead

to presumptions about models as the logical implication does, but at same time it is

specific enough to discriminate between models. This is done by exploring their reasoning

properties, as we will show in Chapter 5. We are confident that we can still call such an

abstraction a logical approach, as we follow Wittgenstein’s dictum [Wittgenstein, 1922]

about logic that logical reasoning expresses decisions for or against an object of interest.

In this section, we explore how this decision is made in XML retrieval as a combination

of information provided by the content and the structure of XML elements.

In Section 3.3.1, we define how structure is part of aboutness, before in Section 3.3.2

we will develop XML retrieval aboutness.

3.3.1 Structure as part of Aboutness

In a Situation Theory formal representation, we capture topical information in documents

with situations as aggregations of infons. In general, we need to define how the information

is aggregated for each retrieval approach. We show how this can be done in our analysis

of actual retrieval models in Chapter 5.

For XML retrieval, documents are aggregations of document components differentiated

according to XML element types. Document components do not simply describe smaller

documents, but are structured information units and replace documents as the targeted

information carrier in XML retrieval. Document components can be small, but what

really distinguishes them from documents is that they add structure to the aboutness

decision and therefore increase its reasoning complexity. Structures are new properties of

documents and add information to the aboutness decision.

In order to specify the nature of this aboutness reasoning using the interaction of struc-

ture and content, we now discuss three different structural document paradigms: passage

retrieval, hypertext retrieval and XML retrieval. We suggest to embed their reasoning in

the structured document retrieval paradigms of an IR model developed in [Chiaramella,

2001]. As seen in Section 3.1.1.1, ‘embedding’ describes a theoretical evaluation approach

in IR [Huibers, 1996] that formalises a model in order to describe other models.

In order to further analyse the influence of structure in passage, hypermedia and XML

retrieval, [Chiaramella, 2001] has presented an algorithm to represent particularly XML

retrieval by dividing it into a ‘fetch’ and ‘browse’ phase. In the fetch phase, a pre-selection

of document components takes places, which is narrowed down in the browse phase to

retrieve the best document component regarding structural constraints. We would like to

extend this paradigm to become a generic mechanism to describe the retrieval of document

components. To this end, we divide the reasoning process for structured document retrieval

into two analytical phases. In the first phase aboutness is decided, while in the second

phase aboutness is specified with the help of structural hints.

With the ‘fetch and browse’ paradigm, we run ‘abstract experiments’ on the three
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structured document retrieval approaches. In the fetch phase, we would like to evaluate a

pre-selection mostly based on the general relevance of document components, while in the

browse phase we consider the structure to better define aboutness in the retrieval process.

In the next section, we use the fetch and browse paradigm to describe different struc-

tured document retrieval approaches. For each of the three approaches we are able to

specify the general aboutness relation. We can explain differences in the aboutness be-

haviour as differences in how structure is considered in the browse phase — whether it is

not considered at all as in passage retrieval, whether it is considered as an independent

constant as in hypermedia retrieval or whether it is seen as an integral part of the content

in a document as in XML retrieval.

Passage retrieval, hypertext retrieval and XML retrieval are all examples of develop-

ments in IR [Chiaramella, 2001] that assume that structure can be used to further describe

the topicality of a document and therefore improve the determination of aboutness. Here,

they are taken as paradigmatic examples of structured document retrieval and analysed

in two steps. Firstly, they are mapped on to the model of fetch and browse. Chiaramella’s

model is used to clearly distinguish structure and content aspects of the retrieval process.

Secondly, the aboutness relation of the retrieval paradigm is related to the one of flat doc-

ument retrieval: If D describes the document and Q the query, then D � Q describes

how D answers the query Q. Table 3.1 summarises the results of our findings. We define

� more formally in Section 4.3.

3.3.1.1 Passage Retrieval

Passage retrieval [Mittendorf and Schäuble, 1994] is one of the earlier approaches to struc-

tured document retrieval. It is based on the assumption that a more focussed discussion

of information can be found in the passages of a document rather than the complete doc-

ument. The targeted document components are passages and the document is seen as

a sequence of passages. Passages only contain textual data and form a linear structure

to represent aspects of the document. Passages can be of fixed or variable length. The

indexing process creates the passage document component and either uses the existing doc-

ument structure or a fixed number of words for each passage [Mittendorf and Schäuble,

1994].

Most importantly, in passage retrieval passages are not regarded as being topically

interlinked. Each passage forms a distinct discourse, each document component is in-

dependent. Thus, in passage retrieval structure is only used during indexing and not

for retrieval. If we consider the fetch and browse paradigm, for passage retrieval in the

fetch phase passages Di are retrieved and no browsing or focusing of the results takes

place. Therefore, passage retrieval is expressed by the aboutness relation: Di � Q with

D ≡ D1 ⊗ ... ⊗ Dn, where ⊗ stands for the composition of document components. The

problem with passage retrieval is obviously that structure is not considered in each part

of the retrieval process, but only during the indexing. Moreover, passage indexing does

not necessarily try to reflect the discourse of a document.
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Table 3.1: Structured document retrieval paradigms
Structured Document Retrieval Paradigm Nature of aboutness relation

Passage retrieval Di � Q with D ≡ D1 ⊗ ...⊗Dn

Hypermedia retrieval D � pr (D � c Q)

XML retrieval R(D,Q) = F (Q � (D � Q))

3.3.1.2 Hypermedia Retrieval

Hypermedia retrieval is our second structured document retrieval paradigm. So-called

links and hyperdocuments form together a space of document components that are clus-

tered via internal and external hyperlinks [Huibers, 1996]. Hypermedia documents are

the basis of the world wide web. The retrieval of such documents uses the additional

information of those hyperlinks to confirm the relevance of document components. A

hyperstructure does not divide the individual document into smaller components, but

clusters documents according to hyperlinks.

Most successful for everyday use was the two step strategy of the original PageRank

algorithm [Page et al., 1998]. In a simplified view of PageRank, first a query Q is evaluated

against hyperdocuments D using conventional retrieval techniques: D � c Q. This step

can be called the fetch phase in the generic fetch and browse algorithm. After the fetch,

the browse step will consider the structure of the hyperlinks. The result list of the first

step will be sorted in descending order according to their so-called PageRank (pr), which

is a value calculated on the basis of the link authority of the page. The pages are displayed

in this order.

Overall two different and independent aboutness relations are calculated to determine

aboutness: F [D � c Q|D � pr Q]. F is a function representing the complete retrieval

process to push the results of the first retrieval stage into the arguments of the second:

D � pr (D � c Q). Aboutness is therefore based firstly on the topical relatedness of

documents and query and secondly on the authority of the hyperdocument — a value en-

tirely derived from structure. Hypermedia retrieval with such strategies lacks a combined

attempt to use structure and content. Fetch and browse follow two independent aboutness

relations. In the case of the original PageRank hypermedia retrieval algorithm, the browse

step is even calculated independent of content and before the fetch and authority step.

3.3.1.3 XML Retrieval

Out of these three structural retrieval approaches, only XML retrieval fulfils the full

paradigm of fetch and browse by integrating structure and content fully. As seen in

Section 2.2, XML specifies the discourse in documents by giving a formal representation

of their division into document components. As presented, XML documents form a tree

of information by using a recursive definition of document content. The advantage of the

hierarchical structure is clearly that many information carriers from texts and websites to

multimedia documents are commonly presented in a hierarchical structure. The discourse

in most texts is structurally organised in sections, subsections, titles, etc., all of which
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can be easily represented given the flexibility of XML, by creating corresponding XML

elements.

As defined in Section 3.2, we consider documents and queries to be situations with

infons representing the collection of information in them. The structure of the XML

representation of information allows us to focus the document situation on specific topics

in predefined components:

1. XML elements are the atomic information units in XML. We translate this into

our Situation Theory framework by stating that each XML element is an XML

situation. For hypertext retrieval, on the other hand, there is no need to change the

basic information unit, as the scope of the retrieval was still the full document.

2. Two or more such atomic information units can be linked. A link between two

XML elements is called an edge. The semantic content of two linked units is never

independent. Generally, XML elements have to be parents or children of other XML

elements. A second and special case are XML attributes that offer either information

about the specific element they are linked to or about the complete document tree.

In passage retrieval, on the contrary, passages were informationally independent and

therefore did not have relational infons. In hypertext retrieval the information flow

was strictly separated in a structure and a content flow.

XML attributes are special in that they are not simply children, but properties of other

XML elements [Gövert et al., 2006]. Furthermore, they might be informationally related

not just to the XML element they are properties of: e.g., an author attribute might be part

of an article element. This does not mean, however, that subelements of this article do

not have the same author. Unless otherwise specified they do. This example demonstrates

that for attributes at least the information in an XML tree is not just aggregated bottom

up or ascending. It depends on how the attribute is propagated [Chiaramella, 2001].

This propagation of an attribute’s information can be descending as just demonstrated

or ascending, as, e.g., in an edited book where the overall author is the sum of all authors

of all book sections. If two different information units have two different authors, then

their parent will have both as authors. Chiaramella calls those attributes static which only

apply to their specific element [Chiaramella, 2001]. XML element names are examples of

such static attributes of structured information units. A title element name only declares

its content to be a title. It fully depends on the power of the indexing model whether

this kind of distinction is translated into the information units representing the document

components. Our Situation Theory framework has to be expressive enough to consider all

three structural meanings of attributes.

Clearly attributes are special in so far as they do not aggregate information of their

context XML elements. They can make an answer to an information more focussed by

providing additional information, but this focus does not necessarily specify information

in the surrounding XML elements. Apart from the special case of attributes, the ‘natural’

information flow between XML elements indicates a hierarchy of information in XML
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documents. We will discuss this in more detail when we look at hierarchical inclusion for

XML retrieval in Section 4.7.1.

According to Chiaramella’s definition articles in INEX are informationally ‘maximal’,

as they are exhaustive, while the lowest level paragraphs are ‘minimal’ and very specific in

their information return [Chiaramella, 2001]. For Chiaramella, the aim of XML retrieval

is to avoid both maximal and minimal information units as answers to information needs

[Chiaramella, 2001]. The maximal unit is the document if not the complete document

collection, as the complete document collection can be regarded as one large (virtual) tree

of XML elements. A user most satisfied with the complete document can, however, hardly

be imagined. At the same time, the average user most likely requires more information

than given in just one paragraph. She needs to know more about the context by possibly

looking at surrounding paragraphs or by looking at information in other more distant

paragraphs. Users have to ‘browse’ around. Only a combination of fetch and browse gives

the best results, and XML retrieval integrates both.

Using this fetch and browse analysis of XML retrieval, we are now able to define XML

retrieval aboutness.

3.3.2 XML Retrieval Aboutness

As seen in Chapter 2, with XML retrieval come the new notions of specificity and exhaus-

tivity. Taking into consideration these two evaluation dimensions, both [Nie, 1988] and

[Chiaramella, 2001] have suggested to enhance van Rijsbergen’s original logical implication

for structured document retrieval. [Nie, 1988] extends the implication for XML retrieval

as follows:

‘Given a query Q and a document D, the matching R between D and Q is

determined by a function F of the exhaustivity of the document about the

query (measured by D → Q) and the specificity of the document about the

query (measured by Q → D): R(D,Q) = F [PK(D → Q), P
′

K(Q→ D)], where

PK , P
′

K are two functions that measure the implications’ uncertainty, F is a

function combining the two implications and K expresses that these functions

are evaluated according to knowledge K (...).’

According to [Nie, 1988], ‘exhaustivity refers to the complete fulfilment of a query by a doc-

ument, while specificity refers to the fact that the document fulfills only these constraints.’

He describes them using material implications. As we have noted in Section 3.1.1, we do

not want to limit the interpretation of an IR model to an implication, but remain at the

level of aboutness and a higher abstraction. Thus in our Situation Theory framework, Nie’s

formula becomes R(D,Q) = F [D � Q,Q � D] or R(D,Q) = F (Q � (D � Q)).

F is a unifying function. In Chapter 6 we will see that INEX has introduced such unifying

functions as so-called quantisations.

Just as Nie remains at the level of the implication, [Chiaramella, 2001] similarly uses ⊂

to describe a two-step fetch and browse algorithm for XML retrieval based on the hierarchy

of index expressions [Chiaramella, 2001]. In the first step D ⊃ Q evaluates exhaustivity
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and in the second step the most specific information unit is selected based on Q ⊃ D. The

selection of a more and more specific unit is continued until the most specific one is found

or exhaustivity is violated. This is an interesting approach and shows clearly the need to

distinguish the two sides of � in the reasoning of XML retrieval models.

Our aboutness approach points to an informational relation and not to a standard

mathematical one such as ⊂ or →. Informationally query and document can still be

related, although their representations are not subsets of each other or do not imply each

other. The additional information to satisfy the information need can come from other

sources than the information representation. It can be part, e.g., of the IR system’s

reasoning to link the topic ‘house’ always to the topic ‘garden’. Then a query about

gardens might be satisfied by a document about houses and D � Q though D ⊂/ Q.

Moreover, as our aim is to theoretically evaluate existing XML retrieval models in INEX,

we do not want to presuppose a particular reasoning behaviour, as explained in Section

3.1.1.3.

According to [Chiaramella, 2001] the most specific answers in XML retrieval are the

result of first fetching the exhaustive answers and afterwards browsing through these

answers to narrow down the focus. This assumes that (1) delivering specific answers is the

main objective of any XML retrieval approach, and that (2) specificity and exhaustivity

judgments are based on the same relevant information. As exhaustivity and specificity are

based on the same relevant information, the fetch and browse algorithm indicates that the

two values of exhaustivity and specificity are not independent. Only if we can conclude

exhaustivity are we able to find out about specificity. We will discuss this in more detail

in Chapter 6, where we explore the theoretical evaluation of the two INEX evaluation

dimensions.

With the fetch and browse algorithm for XML retrieval and Nie’s and Chiramella’s re-

definition of van Rijsbergen’s implication, it becomes clear that the ability to discriminate

specificity and exhaustivity during the retrieval process depends on the characteristics

of the aboutness relation of each XML retrieval model, as analysed in Chapter 5. Only

those models able to distinguish the left and the right hand side of � can make a

difference between D � Q for exhaustivity and Q � D for specificity. Let us take the

hypothetical example of a retrieval based on an exact match between the topics of query

and document, where � would be ≡. Then D ≡ Q would be equivalent to Q ≡ D

and exhaustivity and specificity are not distinguished. We see here again one of the major

differences between data-centric and text-centric XML retrieval, as analysed in Section

2.2. For data-centric XML retrieval, the distinction between exhaustivity (D � Q) and

specificity (Q � D) would make no sense, as it is based on the exact match between

search need representation and returned information unit.

In order to define the XML Situation Theory aboutness relation � , we use a

subsituation-based aboutness criterion, which we introduce next.
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3.3.3 XML Situation Theory Aboutness

Our analysis expresses the relationship of information need and information sources as

‘aboutness’ and uses the symbol � to describe a number of reasoning rules that allow

models to conclude aboutness. [Bruza and Huibers, 1996] present a general Situation

Theory aboutness criterion. They define it as:

Definition 2 A situation S is about a situation T if and only if T contains one infon i

such that situation S is about infon i.

This definition of aboutness avoids the problems of using the material implication or

subset relationship as in [Nie, 1988] and [Chiaramella, 2001]. Huibers and Bruza relax

the implication of aboutness in so far as it does not require that S fully satisfies T .

Furthermore i does not need to be contained in S, but only topically implied: S � {i}

does not generally mean S ⊃ {i}.

Definition 2 of situation aboutness relies on ‘at least one’ infon and does just specify

the existence of an aboutness relation between query and document [Bruza and Huibers,

1996]: S � T if and only if ∃i∈T [s � {i}]. Definition 2, however, does not measure

the intensity of aboutness, as van Rijsbergen’s logical uncertainty principle does [van Ri-

jsbergen, 2000]. We can extend Huibers’ and Bruza’s original model and interpret van

Rijsbergen’s logical uncertainty with the aboutness reasoning. We consider the extent to

which we have to change the information to make � hold and the extent to which we

need change � itself. That is why we cannot just talk about an implication between

query and document component anymore. A model, which only lacks according to van

Rijsbergen’s definition information in the training data set but otherwise has all the rea-

soning capabilities to evaluate a query, has got a better defined aboutness relation than a

model lacking some of these capabilities.

Definition 2 works well for flat document retrieval models. It, however, leads to prob-

lems if we consider XML retrieval aboutness. The one common infon i could be an infon

expressing structure, possibly itself bearing no information useful to a user. In XML

retrieval, two XML situations could share the same infons expressing structure, as they

share the same document type definition. This does not mean, however, that they are

about each other, as the following example demonstrates. Let us assume that two docu-

ments both consist of one paragraph embedded in a section. Then, the Situation Theory

model of both will have the same infons representing this structure. Furthermore, let us

assume that the paragraph in the first document is about dogs, whereas the paragraph in

the second document is about cats. Therefore they will not be about each other. About-

ness is a relationship of meaning. Structure in text-centric XML only supports meaning

but does not create meaning. Therefore, we need to find another, stricter aboutness cri-

terium in order to discriminate the scales more exactly. To do so, we will use the idea of

‘subsituations’.

We use the idea of ‘subsituations’ instead of simple infons and reformulate Definition

2’s aboutness criterion as a subsituation-based one. A subsituation is a situation Si that

is part of another situation S, where we count the situation as a part of itself, i.e. a
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situation is a subsituation of itself. Si is as a situation a combination of infons [Huibers,

1996] that has a meaning in itself. For an XML document, this implies XML elements

with content and therefore meaning. In the example from Section 2.1, the existence of a

paragraph within a section is not a subsituation. Only with the additional information

that the paragraph is about ‘rain’, etc., can we have meaning and a subsituation. In order

to conclude that a property like INEX specificity does not apply to a situation S, we just

need to show that a situation with that property is not a subsituation of S.

Si is called a ‘strict’ subsituation if it is not S: e.g., a situation containing information

about houses and garden could have as strict meaningful subsituations one about houses

and another one about garden. The situation itself is also a subsituation, but not a strict

one. By discriminating strict subsituations from non-strict subsituations, we are able to

differentiate aboutness decisions that demand a completely exhaustive or specific match

(non-strict subsituation) from those that only expect a partial match (strict subsituation),

which is useful to describe user agent reasoning according to INEX (see Section 6.4).

We say that exhaustivity and specificity are characteristics of a situation, because

one of its subsituations makes the situation exhaustive and/or specific. Thus, we assume

exhaustivity and specificity to be properties of a situation. We look at evaluation criteria

like exhaustivity and specificity from a topical aboutness point of view. We take them as

concrete properties of information objects, which are descriptions of the topics in XML

elements and query. Van Rijsbergen has a similar idea when discussing standard IR

evaluation measures like recall and precision [van Rijsbergen, 2004]. As discussed, he

believes that aboutness approaches consider properties of documents.

Based on subsituations and the assumption that exhaustivity and specificity are prop-

erties, we can now formulate a new Situation Theory aboutness criterion for XML retrieval,

which is based on subsituations:

Definition 3 Using subsituations, we can define exhaustivity and specificity for XML

retrieval:

1. Exhaustivity: A situation S is exhaustively about a situation T if and only if T has

a subsituation Ti such that situation S is about situation Ti.

2. Specificity: A situation S is specifically about a situation T if and only if S has a

subsituation Si such that situation T is about situation Si.

With this definition, we bring to an end our discussion of Situation Theory and aboutness

in XML retrieval. Using this theoretical framework, we are able to proceed to the actual

evaluation of XML retrieval and present in the next chapter our methodology for doing

so.

3.4 Conclusion

This chapter has offered the background on the second major component of our approach,

on theoretical evaluation. We showed how a theoretical evaluation can help overcome
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some of the shortcomings of experimental evaluations and deliver more formal means of

comparing an IR model’s behaviour theoretically, with which we are able to go deeper into

the details of how particular models within INEX achieve their results. Situation Theory

was introduced as our means to undertake a theoretical evaluation. We have particularly

drawn to the work of Huibers in [Huibers, 1996] who uses Situation Theory for an axiomatic

framework for IR. The basic ontology of Situation Theory was presented in Section 3.2.2

and related to general IR processes. We use situations to represent information carriers

in IR such as documents, XML elements and queries, while so-called infons are good to

represent individual information items such as keywords in a query.

We do not believe that Situation Theory is the only possible choice for a logical frame-

work for IR (in fact there are many others), but it matches well our requirements. Situation

Theory allows for reasoning on the grounds of incomplete information, as it models infor-

mation rather than ‘truth’. Using Situation Theory, we were finally able to derive a new

aboutness criterion for XML retrieval based on subsituations.
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Chapter 4

Theoretical Evaluation

Methodology for XML Retrieval
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4.1 Introduction

In this chapter, we show how to theoretically evaluate XML retrieval models. Our method-

ology works through four steps. The next section introduces the first three steps that our

framework shares with those that analyse flat document retrieval models like the ones in

[Huibers, 1996] and [Wong et al., 2001]. In the first step a formalism is delivered to express

aboutness symbolically. The second step specifies aboutness by deriving rules of reasoning

behaviour, while the third step derives a reflection of aboutness boundaries. Section 4.7

presents the fourth step, which is specific to XML retrieval and one of our additions to

the discussion of theoretical evaluation methodologies. The fourth step adds the pure

type XML retrieval model, which aims to capture the influence of the XML structure on

aboutness reasoning.

In Chapter 5, all these steps of the theoretical evaluation are applied to XML retrieval

models, which have been successful in the INEX evaluation. We concentrate on successful

models, as we would like to demonstrate that we can show differences in models that are

mature in the INEX experimental evaluation.

4.2 Theoretical Evaluation Steps

In this section, we introduce the three theoretical evaluation steps — starting with the

basic formalism. They are:

1. A formalism to translate the information representation of a particular model into

a formal symbolic representation (Section 4.3).

For this so-called translation, we first define what [Huibers, 1996] calls an about-

ness language. Information items in an XML retrieval model are produced by the

indexing process, as an abstraction of the information in documents. We use these

information items to translate documents into situations. The translation continues

with the definition of equivalence and composition. They define how two situations

of a particular aboutness language can be equivalent or composed. Finally, the defi-

nition of the more semantically oriented operators of preclusion ⊥ and containment

→ completes the translation. Preclusion expresses that two situations cannot be

combined, as their information content contradicts each other. Containment offers

the notion of nested information [Wong et al., 2001]. A situation S contains another

situation T if T has only information also found in S.

2. A set of reasoning rules to describe the functional behaviour of the XML retrieval

aboutness (Section 4.4).

The definition of the functional behaviour of an aboutness system using its aboutness

reasoning in Section 4.4 is the most important step in our theoretical evaluation. We

prove whether these reasoning rules are part of an aboutness system and if they are

whether there are sufficient rules to cover all aboutness decisions possible within an

XML retrieval model. The latter is shown in the completeness proof, which follows
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the derivation of the reasoning rules. By comparing the kind of rules a particular

system incorporates, we are able to give an overall comparison of the functional

behaviour of XML retrieval models.

3. A further investigation of aboutness boundaries for particular retrieval systems called

reflection (Section 4.5).

The reflection defines typical non-reasoning related boundary elements of retrieval

models.

In Section 4.7, we add another step, which is particular to the analysis of XML retrieval

systems. We deliver a comparison of an XML retrieval model’s formal characteristics with

its flat document equivalent and pure type XML retrieval. This qualifies the impact of XML

structure on the aboutness behaviour. In a theoretical evaluation approach, IR models

can be compared by looking at the different qualities models implement and by studying

their reasoning behaviour [Huibers, 1996]. However, we do not only want to compare

individual models with other models, but also to measure the impact of XML structure on

the reasoning. Most XML retrieval models are based on flat document retrieval models.

For each XML retrieval model, we develop the theoretical qualities of its flat equivalent.

By comparing each model’s reasoning behaviour with the one of pure type XML retrieval

and the model’s flat equivalent, we are able to measure the distance of the specific model

from its flat document retrieval equivalent. The derivation of a pure type XML retrieval

in Section 4.7 will enable us to measure this distance.

Translation, derivation of reasoning rules, reflection and comparison with the pure type

XML retrieval model contribute to our definition of the aboutness system for a particular

model. The following section introduces them all. We begin by defining translation and a

set of aboutness languages, which we reuse throughout this thesis.

4.3 Translation

Our Situation Theory formalism needs to be general enough to be applicable to any in-

formation retrieval model. In the most general definition, documents and queries can be

seen as ‘situations’ [Huibers et al., 1996b]. In these situations, we formally describe the

information representation that results from the indexing. This formal, more abstract

representation is seen by [van Rijsbergen, 2004, p. 20] as the distinctive feature of a

theoretical evaluation based on aboutness:

‘In discussing aboutness we come from the very concrete notion that index

terms represent properties of documents, which we are making more abstract,

whereas with relevance we have a very abstract notion which we make more

concrete.’1

1Van Rijsbergen’s book integrates the notion of aboutness and relevance into one theoretical framework
based on quantum mechanics. ‘So, we need to tackle “aboutness” differently and more abstractly, and our
proposal is that properties are modelled as observables by self-adjoint linear operators which when applied
to an object (image) produce results with probabilities depending on the geometry of the space within
which the objects are represented.’ [van Rijsbergen, 2004, p. 20]

40



Our formalism ‘translates’ the index representation into a general, abstract representation

as situations. We call the translation the symbolic representation of the model’s handling

of information. It uses a function map that translates the model’s information items into

situations. We will see many ways of applying translations in this thesis.1

The translation uses a Situation Theory aboutness language. In this section, we intro-

duce the syntax of aboutness languages and in particular the XML aboutness language.

We start by reusing [Huibers, 1996]’s definition of the aboutness language:

Definition 4 The aboutness language is the smallest subset so that if S and T are expres-

sions in the aboutness language, then so will be the expressions S � T, S � / T, S ≡

T, S ≡/ T, S ⊥ T, S 6⊥ T, S ⊗ T, S ⊠ T, S ⊠ / T, S → T and S 6→ T .

This aboutness language is a simplified version of the one developed in [Huibers, 1996].

We reuse many of his symbols to make comparisons between his and our work easier

and demonstrate the continuity of thought we consider ourselves to be part of. Finally,

throughout the thesis, we use upper-case letters from the middle of the alphabet such as

S or T for situations if we are not talking about queries and document components. In

that case we use Q and D. Any descriptors these situations represent like keywords but

later on also structured information is symbolised with letters from the beginning of the

alphabet like A or B.

According to the aboutness language, we represent the aboutness relation between

two situations with the symbol D � Q, using the same symbol as in [Huibers, 1996].

If we consider documents and queries to be situations, then D � Q means that the

information in D is about the information need expressed in Q. In standard IR models,

a document containing ‘garden’ and ‘house’ would be about a query asking for ‘garden’.

Query and document would share the term ‘garden’, and most IR models consider a

document to be relevant to a query if they overlap in index terms. However, there might

also be IR models that are not based on an information overlap in query and document

and would not consider D to be about Q.

If we have aboutness, we also need a symbol to express non-aboutness. According

to the aboutness language, D � / Q symbolises that D is not about Q. Most standard

IR models do not consider the information ‘garden’ to be about ‘house’, as they are two

different terms, even if possibly semantically related.

With ⊗, we formalise the composition of situations, e.g. ‘house’ and ‘garden’ can

be combined to ‘garden house’. Preclusion, symbolised by ⊥, expresses that information

in situations clashes, as we discuss further in Chapter 5. They cannot be meaningfully

combined such as ‘flying birds’ and ‘penguins’. If defined at all, preclusion describes mostly

semantic relationships [Wong et al., 2001]. Most models we have investigated have no

notion of information clashes. However, all models need to have a definition of situation

equivalence. ≡ states that two situations are equivalent, i.e. they contain the same

1These definitions of translation can be formally brought together in ‘information fields’ [Bruza and
Huibers, 1994] as building blocks for aboutness. Our focus is the use of the formalism in the theoretical
evaluation of XML retrieval reasoning processes.
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information. ≡ states that situations should be compared according to the meaning they

bear not just according to the names we give them such as D or Q. Lastly, containment

→ describes that a situation contains at least the same information as another one has.

In Boolean retrieval this corresponds to, e.g., the implication that for any valid expression

x ∧ y, x is also valid.

As discussed in Section 3.2.4, we use infons to model an IR model’s view of the in-

formation in documents and queries. We follow [Devlin, 1991] and formalise infons with

〈〈...〉〉 brackets, as seen in Section 3.2.3, where we have also seen examples of how infons

can formalise information in situations. This section defines the formalism for infons we

would like to use in the rest of the thesis to represent information that is returned by

the indexing of XML retrieval models. Our formalism is best explained using an example

of how to represent a ‘bag of keywords’ as situations and therefore the most common

representation of documents and queries in IR models.

A majority of IR models uses mostly keywords as their descriptors without specifying

their relationships. Keywords are easy to index but any knowledge of their relationships is

given up. We state that the are described by content infons: If t describes a keyword de-

scriptor from the set of all keywords T, then, generally speaking, its corresponding content

infon looks like { 〈〈V alue, t; j〉〉 |t ∈ T, j ∈ {0, 1}} or simply { 〈〈t〉〉 } if the infon has positive

polarity. Thus, the keyword descriptor garden would be 〈〈V alue, garden; 1〉〉 or simply

〈〈garden〉〉 . A set of descriptors is a situation: { 〈〈t1〉〉 , ..., 〈〈tn〉〉 }. A simple example for

a situation as a combination of simple content infons is { 〈〈house〉〉 , 〈〈garden〉〉 }. Follow-

ing [Huibers, 1996], we call the language that only contains content infons the basic infon

language. We see that many XML retrieval systems use the simple aboutness language in

Chapter 5.

An aboutness language can also contain relations, which we need in order to, for

instance, express XML structure. N-ary relationships R between descriptors tj are them-

selves infons and are modelled by 〈〈R, t1, ..., tn〉〉 . We call these relational infons. As we

are interested in XML retrieval, we need to look at the relationship between XML elements

that transports information from one XML element to another. As discussed in Section

3.3.1, there are two relations of interest to us in an XML document [Chiaramella, 2001]: the

attribute relationship and the parent-child relationship. Thus, R ∈ {Attribute, Parent}

(see also [Grossman and Frieder, 2004]).

As XML structure can also be considered to be information [Chiaramella, 2001], in

Situation Theory we do not have to change our representation, but can express the par-

ent and attribute structure in XML as infons, too. We further define the resulting XML

aboutness language when we look at actual indexing techniques to represent structure in

Chapter 5. For now, two further examples indicate how we can represent structure and

content as a combination of infons. A simple paragraph about ‘garden’ can be expressed as

{ 〈〈ElementType, Paragraph, p〉〉 , 〈〈V alue, garden, p〉〉 } using a parameter p. A section

with two paragraphs is { 〈〈ElementType, Section, s〉〉 , 〈〈Parent, s, p1〉〉 , 〈〈Parent, s, p2〉〉 ,

〈〈ElementType, Paragraph, p1〉〉 , 〈〈V alue, garden, p1〉〉 , 〈〈ElementType, Paragraph,

p2〉〉 , 〈〈V alue, house, p2〉〉 }. We use the relation Parent in order to express that the two
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paragraphs are the children of the section. We consider details of the XML aboutness

language and more complex examples in Section 4.7.2.

Next, we look at the rules that describe the reasoning in XML retrieval models.

4.4 Aboutness Rules

[Huibers, 1996] offers a detailed description of reasoning with aboutness. He introduces the

rules, according to which ‘intermediate decisions’ can be combined. These rules form the

centre piece of an aboutness proof system [Huibers, 1996], as they describe its functional

behaviour. The aboutness decision is specified by the reasoning rules it incorporates.

These can be either fully, partially, or not at all supported. A fully supported rule is one

that holds under any circumstances, while a rule that is not supported holds under no

circumstances.

Among other things, we add the notion of partially or conditionally supported rea-

soning, i.e. the one that holds under certain conditions to Huibers’ rule system. These

conditions constrain an otherwise fully supported rule. For instance, in a standard IR rea-

soning system, we would expect a document D containing ‘house’ and ‘garden’ to be about

a query Q about gardens. However, the reasoning system might constrain this aboutness

by stating that D must at least have more than one occurrence of the infon garden.

We use a subset of rules given by [Huibers, 1996] and by [Wong et al., 2001] to describe

aboutness proof systems. From our experience, this subset gives us an overview of XML

retrieval models, though we do not claim that this subset includes all the rules that might

be useful for analysing IR reasoning. A number of aboutness properties are discussed in the

literature without reaching an agreement on what could constitute a core set of aboutness

rules. E.g., Wong et al. do not include Transitivity, but Huibers does. This might be

due to the fact that Transitivity cannot be represented in any aboutness framework, as

explained in Section 3.1.1.1. Wong et al. compare different theoretical frameworks for

their use in the theoretical evaluation of IR model, while Huibers works more in depth

but uses Situation Theory as one standard logical framework.

We have used those rules that in our experience best describe the mixture of structure

and content typical to XML retrieval. There is an ongoing debate about which of the

rules best describe aboutness systems, but all of the cited rule sets are based on the

meta-theory of non-monotonic reasoning in [Kraus et al., 1990]. In this theory, a series of

non-monotonic reasoning rules are presented that have shown to be a good foundation for

the theoretical analysis of XML retrieval systems [Huibers, 1996]. We also see throughout

this thesis that support for various kinds of non-monotonic reasoning makes XML retrieval

models perform better in experimental evaluations.

We agree with [Huibers, 1996] and [Wong et al., 2001] and consider the careful consid-

eration of monotonicity to be an important feature of IR. This is especially true for XML

retrieval, where the task of identifying XML elements at the right level of granularity in-

cludes the ability of a reasoning system to revise the existing aboutness decision in favour

of more specific answers, as we will discuss in Chapter 5.
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Once the framework has been fixed, certain aboutness properties are implied by it. We

follow Huibers, as we have also decided to use Situation Theory, but we do not use his

complete set of rules, but only a subset, and add rules, which have been introduced by

Wong et al. and other authors and which, we believe, are better suited to analyse XML

retrieval. We also depart from Huibers’ approach by following Wong et. al’s inductive

evaluation framework. For each evaluation, we do not go through just a minimal set

of rules that proves the soundness of the reasoning system, but through all the rules.

As [Wong et al., 2001], we are interested in using the reasoning rules to benchmark the

functional behaviour of XML retrieval models.

Our analysis is related to the one by Huibers in that we re-use parts of his framework

and describe aboutness with Situation Theory. It is, nonetheless, very different from

Huibers in that we attempt to look at real existing models. [Huibers, 1996] analyses

classes of aboutness systems (such as coordinate retrieval), not those embedded in actual

models. We look at individuals, which makes it often more difficult to work out the

differences, as in the real world these can be less clear cut.

The following discussion of aboutness rules will first cover basic rules, then combination

and containment rules before finally discussing how non-aboutness reasoning can enhance

IR models.

4.4.1 Basic Rules

By comparing the rules each model incorporates and the way it does so, we are able to

give an overall comparison of the retrieval behaviour. We start with the basic rules, which

are often supported by aboutness systems. The first basic rule is Reflexivity:

Reflexivity (Re)

S � S

It describes that a situation is about itself. Many retrieval systems consider { 〈〈garden〉〉 }

to be about { 〈〈garden〉〉 }. To exclude empty-set aboutness decisions Reflexivity might

be expanded to Singleton Reflexivity, denoted by:

Singleton Reflexivity (SR)

{φ} � {φ}

We introduce Singleton Reflexivity, as for some aboutness proof systems pure Reflexivity

can lead to logical anomalies like a creation out of nothing. We will see what this means

when we come to the discussion of models in Chapter 5.

The next basic rule is Transitivity, which represents the following reasoning: If we use

a bar to separate assumptions and conclusions for more complex reasoning rules and S
T

means that if S then T , then the Transitivity rule states that if S � T and T � V

can be assumed, then S � V is also allowed.
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Transitivity (Tr)

S � T, T � U

S � U

Transitive relations play an important role in IR. For XML retrieval, for instance, as a

parent element is about the information in its child element and the child element is about

the information in the grandchild element, the parent will also be about the grandchild.

The next basic rule is Symmetry. Here, if one can claim that situation S is about

situation T one can also claim the reversal that T is about S. This is the case for many

basic aboutness systems if, for instance, a document about garden is about another about

garden and houses. Then, the latter will be also about the first.

Symmetry (Sy)

S � T

T � S

The Set Equivalence rule expresses that two set-equivalent sets have the same aboutness

decision. There is a Left Set Equivalence rule and a Right Set Equivalence rule. If two

situations are about garden and houses, and we know that one of them is also about a

document containing houses and courtyards, then the second one will also be about this

document.

Set Equivalence (SE)

S � U,S ≡ T

T � U

S � T, T ≡ U

S � U

With the Euclid rule all basic rules are laid out. It states that if S is about T and also U ,

T is also about U .

Euclid (Eu)

S � T, S � U

T � U

Euclid can be part of an aboutness system if a query with houses and garden was about

a document with houses and courtyards, and about a second one containing houses, then

the document about houses and courtyards is also about the one having information about

houses.

4.4.2 Combination Rules

Combination rules [Huibers, 1996] bring together new information from given premises

and do not simply exploit what is already in the premises.

An important principle in logical reasoning is monotonicity where given a set of for-

mulas X and a formula α from X ⊢ α and X ′ ⊇ X it can be derived that X ′ ⊢ α [Brown

et al., 1992]. Similarly, aboutness can be preserved when unifying situations.
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Left Monotonic Union (LMU)

S � T

S ⊗ U � T

This rule demonstrates that new information only leads to more conclusions and never

reverses existing ones. This is not necessarily desirable: a user does not want to receive

‘water melon’ if she asks for water. Having reached an information like ‘water’ does not

mean that we should always add new information.

There are also right variants of LMU, called Right Monotonic Union (RMU), where

the information is added on the right side of the aboutness relation.

Right Monotonic Union (RMU)

S � T

S � T ⊗ U

[Huibers, 1996] and [Wong et al., 2001] both argue that the careful consideration of mono-

tonicity is an important feature of IR. In order to explore the relationship of monotonic

unions to known issues in IR, we substitute S with D standing for document situations

and T with Q standing for query situations. With Left Monotonic Union (LMU), we can

say that if a document D is about a query Q, then so is the composition of D and D′.

LMU would look like:
D � Q

D ⊗D′ � Q

This substitution makes it obvious that aboutness systems supporting LMU have about-

ness decisions which are insensible to document length. In an aboutness model uncon-

ditionally supporting LMU, a query containing house is not only about documents with

house, but equally valid answers are components with house and garden. We can add doc-

ument component situations without changing the aboutness decision. Looking at RMU

with the same pattern of substitution reveals:

D � Q

D � Q⊗Q′

For systems supporting RMU, query expansion does not change the aboutness decision.

This means that models with RMU can expand the original query and gain a higher recall

base while at the same time not losing the set of document components the original query

was about. Both document and query length are decisive aspects of aboutness decisions,

which underlines the importance of monotonicity [Wong et al., 2001].

Cut is another combination rule. If a model allows for Cut reasoning then we can

conclude from knowing that two situations S and T together are about a third U and

that S is about T that S without T is also about U . We can ‘cut’ T off. Let us

assume a retrieval system for which { 〈〈garden〉〉 , 〈〈house〉〉 } and { 〈〈house〉〉 } are to-

gether about { 〈〈house〉〉 , 〈〈garage〉〉 }, then { 〈〈garden〉〉 , 〈〈house〉〉 } is also alone about

{ 〈〈house〉〉 , 〈〈garage〉〉 }, as it is about { 〈〈house〉〉 }.
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Cut (CU)

S ⊗ T � U,S � T

S � U

Cut implements the idea that the document information content can be shortened without

changing the aboutness decision. Right Weakening allows the query to be cut. A document

situation { 〈〈garden〉〉 , 〈〈house〉〉 , 〈〈garage〉〉 } can be about a query { 〈〈house〉〉 ,

〈〈car〉〉 } and its shorter equivalent { 〈〈house〉〉 }.

Right Weakening (RW)

S � T ⊗ U

S � T

The Mix rule states that if two independent situations are about a third, then their

combination is also about the third. It is a variant of Left Monotonic Union. If ‘garages’

are about ‘houses’, and ‘courtyards’ are about ‘houses’, then ‘courtyards’ and ‘garages’

will also be about ‘houses’.

Mix (MX)

S � U, T � U

S ⊗ T � U

The last of the basic rules we would like to discuss is called Context-Free And. If a

document is about ‘houses’ and also about ‘garages’, it will be also about the combination

of ‘houses’ and ‘garages’. Context-Free And is a variant of Right Monotonic Union.

Context-Free And (C-FA)

S � T, S � U

S � T ⊗ U

Basic and combination rules do not consider context, which might lead to problems. Mix,

for instance, allows paradoxical conclusions such as: if Socrates is about being mortal, and

dog is about being mortal, then also Socrates, the dog, is about being mortal. We need

to be careful about allowing such rules in IR reasoning systems.

Another potential disadvantage of these rules is that aboutness systems incorporating

several rules cannot exclude paradoxes as a result of the combined reasoning with these

rules. One would be the creation of meaning out of meaningless situations. Say ∅ stands for

the meaningless situation — the one without infons and information. If Reflexivity holds

then also for the empty-sets: ∅ � ∅. We therefore could prove a creatio ex nihilo, which

is to be avoided in any logical set [Huibers, 1996]: We start from ∅ � ∅. With LMU, we

can derive ∅ ⊗ T � ∅. Symmetry then delivers ∅ � ∅ ⊗ T . Using LMU again, we have

∅ ⊗ S � ∅ ⊗ T . Using Set Equivalence twice, we finally arrive at S � T . We should

avoid that any meaning (S � T ) be created out of no meaning (∅). Aboutness systems,

that include LMU, Symmetry and Set Equivalence reasoning, should be careful not to
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also allow for Reflexivity. In such cases, Reflexivity should be constrained to Singleton

Reflexivity, in order to start from something.

Section 4.4.3 rules go beyond simple reasoning, as they implement containment. It can

be useful for IR to infer additional information next to a given situation from one of its

subsituations. This inference can be either explicit like two different names for the same

information, or more deep and implicit like, for instance, the rule that a garden is part of

a house. Thus, texts about houses might also be interesting for users investigating garden.

Structure is another example of an explicit containment relation between parents and their

children. Parent XML elements contain at least the information of their children.

4.4.3 Containment Rules

Within a Situation Theory framework, information containment is a binary relation be-

tween two (sub-)situations: Following [Wong et al., 2001], we state that →s means a

surface containment, while →d means deep containment. If it is clear within the context

of the argument, whether we are speaking about surface or deep containment, we will just

use →. We read S → T as situation S contains situation T . Information containment

models that information is syntactically or semantically nested. We call a syntactic con-

tainment a surface containment. In XML retrieval, surface containment is essential, as

it models the information flow between children and parent XML elements. Sections are

surface-contained in articles, etc., as they are explicit subelements of articles.

Containment is a relationship between subsituations. As defined in Section 3.3.2, we

see any situation S or T to be a composition of its subsituations if S ≡ S1 ⊗ ... ⊗ Si ⊗

... ⊗ Sn and T ≡ T1 ⊗ ... ⊗ Tj ⊗ ... ⊗ Tm respectively, where S1...Sn and T1...Tm are all

possible subsituations in S and T respectively. Then, the containment rule states that: If

subsituation Si of a situation S contains Tj of T , then S is about T .

Containment (C)

Si → Tj
S � T

Let us assume that { 〈〈garden〉〉 , 〈〈house〉〉 } contains, according to our aboutness system,

the information { 〈〈house〉〉 }. Then, the situation { 〈〈garden〉〉 , 〈〈house〉〉 , 〈〈garage〉〉 }

is about { 〈〈house〉〉 } as well. Please note that if the subsituation is the child of a parent

situation and we would have a typical XML retrieval constellation.

In aboutness systems that allow for Absorption reasoning, a situation { 〈〈garden〉〉 ,

〈〈house〉〉 } that contains { 〈〈house〉〉 }, is equivalent to its combination with its subsitua-

tion.

Absorption (Ab)

S → T

S ⊗ T ≡ S

In Absorption, subsituation reasoning does not have to be discriminated from situation

reasoning, which means we can leave out the distinction between S and Si, because only
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the subsituation appears in the reasoning. Please note that, as according to Section 3.3.2

a situation is also a subsituation of itself, we can simply write S instead of Si, if there is

no need to explicitly distinguish S from Si in Absorption.

Containment has its own variant of monotonicity. If a situation { 〈〈garden〉〉 , 〈〈house〉〉 ,

〈〈garage〉〉 } is about { 〈〈garden〉〉 , 〈〈house〉〉 }, which contains { 〈〈house〉〉 }, then this sit-

uation will also be about { 〈〈house〉〉 }.

Right Containment Monotonicity (RCM)

S � T, T → U

S � U

Non-conflict-containment introduces for the first time preclusion in our rules, covered

in more depth when we discuss anti-aboutness rules in Section 4.4.4. Preclusion means

that information from two situations cannot be meaningfully composed: S ⊗ T ≡ ∅.

Non-conflict-containment states that information that is contained in one another cannot

preclude it.

Non-conflict-containment (NCC)

S → T

S ⊥/ T

On the contrary, Containment Preclusion allows us to state that if a situation S contains

another T and T precludes a situation U , then S also precludes U .

Containment Preclusion (CP)

S → T, T ⊥ U

S ⊥ U

[Barwise and Etchemendy, 2002] state that information can be partially ordered with

respect to containment. According to [Dretske, 1981], all containment relationships are at

least reflexive, anti-symmetric and transitive. Chapter 5 demonstrates how some of the

specific challenges for XML retrieval are directly linked to these properties and how some

XML retrieval models fail to capture containment and therefore fail to offer structural

hints to improve the retrieval results.

Non-aboutness rules exploit preclusion further.

4.4.4 Non-aboutness Rules

Non-aboutness stems from the fact that not all situations can be meaningfully combined.

As said, we use ⊥ to denote preclusion. Preclusion is often mutual as in { 〈〈dog〉〉 } ⊥

{ 〈〈cat〉〉 } and { 〈〈cat〉〉 } ⊥ { 〈〈dog〉〉 }.

Mutual Preclusion (MP)

S ⊥ T

T ⊥ S
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Preclusion is key for any theory of information and suggests that something cannot have

two contradicting properties at the same time. For the following rule we take the idea

of contradicting information a step further and discuss in more detail the idea of anti-

aboutness [Huibers, 1996]. We use S ⊠ T to state that situation S is in conflict with

situation T or S is anti-about T . Anti-aboutness can be a direct consequence of preclusion,

but it can also have other causes. If preclusion is given for two subsituations, then the

two situations involved are in conflict with each other and meaning is destroyed:

Si ⊥ Tj
S ⊠ T

[Huibers, 1996] clearly elaborates why anti-about ( ⊠ ) is not equivalent to not-about

( � / ). Opposition in logics is more than simple negation. As an example we consider

two documents, one containing ‘ice cream with vanilla and chocolate’, the second ‘ice

cream with vanilla but without chocolate’. A keyword query ‘ice cream vanilla’ finds

both. Support for anti-aboutness reasoning can help in such cases, using a retrieval engine

that would understand that ‘without’ usually states an opposition and should therefore

not be retrieved in this case. Anti-aboutness is an attempt to describe exactly those cases,

that should not be retrieved [Huibers, 1996]. We agree with Huibers that an IR model

should not only be good at determining aboutness, but also be good at distinguishing

anti-aboutness relations. For instance, [Widdows, 2003] analyses a theoretically motivated

approach to disregard unwanted information from the original query in vector models.

The following example is to show the difference between a situation S that is not about

another one T , compared to S being anti-about T [Huibers, 1996]. Let us assume, Si says

that the house has a garden: { 〈〈has, 〈〈house〉〉 , 〈〈garden〉〉 ; 1〉〉 }. Tj states the opposite:

{ 〈〈has, 〈〈house〉〉 , 〈〈garden〉〉 ; 0〉〉 }, while Uk describes a completely different situation

{ 〈〈has, 〈〈house〉〉 , 〈〈garage〉〉 ; 1〉〉 }. Now, we can say that with Si ⊥ Tj, also for their

supersituations S ⊠ T and S � / T . However, though we can state that Si � / Uk,

we cannot state that S ⊠ U . We simply do not know enough about the relationship

between S and U .

Simple Anti-Aboutness (SAA) in our opinion would make this strong assumption that

non-aboutness implies anti-aboutness.

Simple Anti-Aboutness (SAA)

S � / T

S ⊠ T

Negation Rational (NR) states that non-aboutness is preserved under composition. If a

situation is not about ‘houses’, it is not about ‘houses’ and ‘garden’, too.

Negation Rational (NR)

S � / T

S � / T ⊗ U
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Strict Negation Rational (SNR) goes further and states that if a situation about ‘nights’

is anti-about ‘days’ it will also be anti-about ‘days’ and ‘sun’. We have to be careful at

this point, as anti-aboutness is strict. There is, e.g., no law that would prevent anybody

from using day creams at night. Thus, a situation ‘night’ is not anti-about ‘day creams’,

though it is anti-about ‘day’.

Strict Negation Rational (SNR)

S ⊠ T

S ⊠ T ⊗ U

Generally speaking, we have to be careful with the use of anti-aboutness rules. An about-

ness system is inconsistent if it allows to conclude both S � T and its opposite S ⊠ T .

Let us assume we have a system that implements Right Monotonic Union (RMU) and

Strict Negation Rational [Huibers, 1996]. From S � T we can with RMU conclude

that S � T ⊗ U . While with SNR, we can with S ⊠ U also say that S ⊠ T ⊗ U .

Both conclusions are possible, but they contradict each other. The aboutness system is

inconsistent.

Many data-centric XML retrieval models include in their reasoning the Closed World

Aboutness Assumption (CWAA) — our last non-aboutness rule. This rule has been shown

to promote precision [Wong et al., 2001]. It states that only those situations S that contain

another situation T can also be about T . For instance, as the information ‘cat’ does not

include the information ‘mouse’, ‘cat’ is also not about ‘mouse’ according to CWAA.

Closed World Aboutness Assumption (CWAA)

S 6→ T

S � / T

CWAA helps improve precision but it does so potentially at the cost of recall, because it

ignores partial matching and other possible information flows, which could establish the

aboutness relationship between a document and a query. The potentially negative impact

of the Closed World Aboutness Assumption in IR has been well investigated [Van Rijsber-

gen, 1986a]. IR models using CWAA reasoning are often more appropriate for data-centric

XML retrieval [Wong et al., 2001].

4.4.5 Conservative Aboutness

Above, we have discussed the advantages and disadvantages of monotonic behaviour for

information aboutness. One of the main disadvantages can be seen in the loss of precision

leading potentially to inconsistencies. With query expansion, e.g., we are able to expand

a query ‘house’, which is about ‘garden’, to a query containing ‘house’ and ‘airplane’,

but still about ‘garden’. We lose precision or possibly even meaning, as the example

illuminates. Query expansion is an example for right monotonic behaviour. [Wong et al.,

2001] suspect that information retrieval reasoning is at least just conservatively monotonic,

it might even be non-monotonic.
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[Huibers, 1996] argues that at least in the mind of users IR reasoning is non-monotonic.

Users do not accept the loss of precision if their information need about ‘birds’ is answered

by a document about ‘bird cages’ rather than one that is focussed on ‘birds’ alone. As

discussed in Section 2.3, in XML retrieval finding the most focussed element means elim-

inating related elements from the ranking. If an XML retrieval aboutness system decides

that a parent element, though originally about a query, might be less focussed than a child

element about the same query, it can eliminate the parent element from the result list to

avoid unnecessary overlap. This means that the decision that the parent element is about

the query is reversed. Elimination of overlap in XML retrieval is therefore an example of

non-monotonic reasoning.

The next set of rules offers more conservative forms of monotonicity to constrain how

information is composed [Wong et al., 2001] and enable non-monotonic reasoning. We

say that the composition of information can only produce meaning if it does not violate

a condition, or if a preclusion is prevented and meaning therefore preserved. The first

two conservative monotonicity rules are conservative variants of left and right monotonic

composition, where the added information must pass a condition. For Guarded Left

Monotonicity we disallow adding the information ‘flying’ to the information ‘bird’, if the

query is about ‘Tweety’.

Guarded Left Monotonicity (GLM)

S � T, S ⊥/ U

S ⊗ U � T

Guarded Right Monotonicity controls query expansion if we disallow adding information

about ‘flying’ to the query ‘Tweety’, as { 〈〈fly〉〉 } ⊥ { 〈〈Tweety〉〉 }.

Guarded Right Monotonicity (GRM)

S � U, T ⊥/ U

S � T ⊗ U

The last two conservative rules further qualify the answers to queries. This is helpful in

order to avoid meaningless compositions. Qualified Left Monotonicity [Wong et al., 2001]

allows to exclude document components discussing ‘birds’ and the threats of ‘bird flu’ to a

query about ‘Tweety’, as { 〈〈bird〉〉 , 〈〈flu〉〉 } ⊥ { 〈〈Tweety〉〉 }. As a cartoon bird, Tweety

never catches the bird flu.

Qualified Left Monotonicity (QLM)

S � T, T ⊥/ U

S ⊗ U � T

Qualified Right Monotonicity qualifies query expansion. Here, we are not able to add the

information ‘bird flu’ to a query about ‘birds’ without changing the aboutness relation for

document components about ‘Tweety’.
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Qualified Right Monotonicity (QRM)

S � T, S ⊥/ U

S � T ⊗ U

The conservative aboutness rules complete our set of reasoning rules to analyse the func-

tional behaviour of IR and XML retrieval models. The next section introduces the reflec-

tion step before we cover pure type XML retrieval.

4.5 Reflection

[Huibers, 1996] developed a theoretical reflection as a means to find typical aspects of

retrieval models. These typical aspects are shared among all models and are therefore

qualitative properties like the reasoning rules that can be used to compare aboutness

behaviour. He defined four possible typical aspects of an aboutness system, which we use

and extend with XML retrieval specific ones in Section 4.7.6. Firstly, the top document

is about any query. Secondly, the top query is the one any document is about. Thirdly,

the bottom document is never about any query. Finally, the bottom query is the one no

document is about.

We simplify Huibers’ notation. Then, let D be the set of all documents and Q be the

set of all queries:

1. A top document Dj is always about any query Q: {Dj |Dj ∈ D,Dj � Q}.

2. A top query Qj is one any document D is about: {Qj |Qj ∈ Q,D � Qj}.

3. A bottom document Dj is never about any query Q: {Dj |Dj ∈ D,Dj � / Q}.

4. A bottom query Qj is one no document D is ever about: {Qj |Qj ∈ Q,D � / Qj}.

Reading through these reflections, it becomes obvious that some are alternative state-

ments. E.g., if we find a top document all queries are about, it is impossible that there is

a bottom query that will never find any answer in the document collections. We can use

this to effectively reduce the number of reflections we have to do, as we will see in Section

4.6, where we introduce the first example of an aboutness analysis including the reflection

step.

The reflection step indicates important characteristics of the index representation of

a retrieval model, as the aboutness rules show important characteristics of the aboutness

decision. In our case, we show in Section 5.18 that it will be enlightening to consider

whether the index representation of XML retrieval models can deliver a notion of the

element that would be always specific to a query. To deliver this in any case most specific

element, is a boundary of the XML retrieval decision.

In the next section, we look at a simple example from the world of flat document

retrieval. We use this simple example to illustrate all the traditional steps of a theoretical

evaluation — translation, derivation of reasoning rules and reflection. In Section 4.7, we
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finally introduce the pure type XML retrieval step, which is particular to the analysis of

XML retrieval systems.

4.6 Aboutness Systems: Example of the Flat Document

Vector Space Model

To illustrate our procedure we will now present the evaluation of a well-known flat doc-

ument IR model, the simple vector space model [Wong et al., 2001], where the indexing

uses a simple bag of keywords approach [Baeza-Yates and Ribeiro-Neto, 1999].

4.6.1 Background

In the plain vector space model, documents in a collection are viewed as vectors in a vector

space [Manning et al., 2008], in which there is one axis for each term in the collection.

If we represent each document in the collection by the bag of keywords it contains, it

can be considered as a point in this vector space and represented as a vector to this

point. In fact, such a vector space representation has been used as the foundation of

many types of information retrieval operations from calculating relevance rankings to

document clustering and has been very successful as a means to represent information

[van Rijsbergen, 2004].

In the model, d and q are vectors of weighted or binary index terms t. A term can be

a word or any other descriptor for the information the document contains. If the terms

are weighted, then these weights are normally based on term frequencies and are values

between 0 and 1. If they are unweighted, then the terms will be either 0 if the term

appears in a document, or 1, if it does not. However, the weighting scheme is immaterial

for our discussion. As we are just discussing an example for our methodology, we only

consider unweighted index terms. Weighted index terms can be analysed analogously.

With [Baeza-Yates and Ribeiro-Neto, 1999], let the query vector −→q be (u1, ..., um) and

the document vector
−→
d be (t1, ..., tm). m is the number of index terms in a collection

and the terms are given some canonical ordering so that each term can be found at a

particular index in all vectors. The similarity of −→q and
−→
d can be calculated in many

ways. In Salton’s original model [Salton et al., 1975], the relevance of a document d given

a query q is estimated using the cosine of the angle between the two vectors of d and q.

rsv(d, q) =

∑m
i=1 ti × ui

√

∑m
i=1 t

2
i ×

∑m
i=1 u

2
i

Since 0 ≤ ti ≤ 1 and 0 ≤ ui ≤ 1, rsv varies between 0 and 1.

Next, we translate the vector representations into situations.

4.6.2 Translation

In the translation part, we develop first themap function for the model we are analysing. In

this case, we need to express the behaviour of a simple bag of keywords indexing approach.
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To this end, we define χ(d) as the descriptor set that is returned by the indexing process

as a representation of document d. In our case, let χ(d) be a set of index terms, which

correspond to the n non-zero entries in the vector for d , while χ(q) corresponds to non-

zero entries for query q. For the translation of the simple vector space we use the basic

infon language, as defined on page 42. Index terms are then directly translated into infons

and the set of all index terms infons is the document situation.

map(χ(d)) = { 〈〈V alue, t; 1〉〉 |t ∈ χ(d)}

Any document situation S representing a document d is thus the set of value infons of

index terms of d. As presented in Section 4.3, a common shortform for such infons is to

use simply 〈〈t〉〉 . This translation is similar to the one for vector spaces in [Huibers, 1996].

The translation of a query to a query situation is defined in a similar way.

Next we need to define the operators used in the rules from Section 4.4: equivalence,

composition, containment and preclusion. Again, we can reuse what has already been

defined in [Huibers, 1996] and [Wong et al., 2001]. In particular, we reuse the algorithm

in [Huibers et al., 1996a] for parameter replacement:

Definition 5 The notation S(x,y) represents the replacement of the parameter x in S

with the parameter y. The properties of the parameters exchange are defined as follow:

S(w,x)(y,z) =def (Sw,x)y,z.

Using this notation, we can define the operators according to [Huibers et al., 1996a]:

• Equivalence: Given two situations S and T , S ≡ T =def (ϕ ∈ S ⇔ ϕ ∈ T ), where ϕ

is any infon based on all keywords in the document collection. In terms of vectors,

this means that the underlying vectors for S and T are identical.

• Composition: Given two situations S and T , S⊗T =def (S∪T )(p1,r1,...,pn,rn)(q1,s1,...,qn,sn)

with p,q and r,s being parameters used in S and T respectively. With respect to

vectors, we create a new vector using composition that has a non-zero entry wherever

either of the underlying vectors for S and T have a non-zero entry.

• Containment: Given two situations S and T , S → T =def (ϕ ∈ S → ϕ ∈ T ),

where ϕ is any infon based on all keywords in the document collection. In the vector

representation, where the underlying vector for S has a zero entry the underlying

vector for T also has a zero entry and there is at least one non-zero entry that both

share.

• Preclusion is not applicable. Preclusion is not applicable, as vectors always have

a distance to each other, and vectors into the negative information space are not

defined. rsv has to be larger or equal than 0 and smaller or equal than 1. The simple

vector space model is therefore not able to express anti-aboutness beyond simple non-

aboutness, as we will see later. Simple anti-aboutness would mean that we assume

that given a situation S and another situation T , the vectors are perpendicular, or
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S ⊥ T =def (ϕ ∈ S → ϕ 6∈ T ∧ ϕ ∈ T → ϕ 6∈ S). This would be equivalent to

S � / T .

According to the containment definition, any document is surface-contained in any other

if and only if it contains only infons from the other document. Deep containment is an

addition to the simple vector space model.

Next we discuss the rules, that help us define the behaviour of a model. [Huibers,

1996]’s approach is different from the one presented here, as it is not just some of the rules

that are repeated for the analysis of the model but all the rules from Section 4.4. Huibers

concentrates on the rules that prove completeness and soundness of the set of reasoning

rules that describe the model. As discussed in Section 4.4, the approach presented here is

therefore akin to [Wong et al., 2001]’s inductive analysis where all rules are considered to

be relevant as functional benchmarks of a model’s reasoning behaviour. It is important to

understand detailed aspects of the reasoning in terms of conservative monotonicity, anti-

aboutness behaviour, etc. In particular, one needs to understand which reasoning rules

are not given or only given in certain circumstances, as this reasoning behaviour is highly

conclusive for understanding experimental behaviour as outlined in Chapter 8.

4.6.3 Rules

The next step will be to define the aboutness proof system for the simple vector space

model. First the vector space aboutness decision needs to be defined. According to

[Huibers, 1996], given a document d represented by the set of descriptors χ(d) and a

query q represented by χ(q), d is about q if rsv(χ(d), χ(q)) > 0.1 In terms of the vector

space model, this implies that the vectors for d and q have at least one entry at the same

position. They share at least one index term. Both [Huibers, 1996] and [Wong et al.,

2001] have shown that a document is about a query in the simple vector space model if

they share information. For [Huibers, 1996]’s Situation Theory framework, this entails

the proposition that rsv(χ(d), χ(q)) > 0 if and if only χ(d) ∩ χ(q) 6≡ ∅. We reuse this

proposition in the discussion of the aboutness rules.

For vector space retrieval, we would like to exclude Reflexivity in order to avoid logical

anomalities as described in Section 4.4. Singleton Reflexivity is then given for vector

space retrieval. We have to show that assuming map(A) ≡ {φ} and map(B) ≡ {φ}, also

rsv(A,B) > 0, where A and B are sets of index terms. The latter is the case if there is

an index term both part of A and B. We have φ as a member of both. Thus A ∩B ≡/ ∅,

and Singleton Reflexivity is given according to the proposition.

Transitivity does not hold, as the example of S ≡ { 〈〈house〉〉 , 〈〈garden〉〉 }, T ≡

{ 〈〈house〉〉 , 〈〈garage〉〉 } and U ≡ { 〈〈garage〉〉 , 〈〈car〉〉 } shows. Then S � T and

T � U but not S � U , as their sets of index terms do not overlap. Thus, Transitivity

is not given.

1Strictly speaking, this is a different function from the rsv above as the arguments are different but
giving it a different name would have made the background less readable. Also in future aboutness
discussions, we use rsv for all functions that deliver the retrieval status value.
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Symmetry is given. Say, S ≡ map(A) and T ≡ map(B). With the premise S � T ,

we want to conclude that T � S. That is straight-forward, as ∩ in A ∩B for S � T

is commutative. Thus, Symmetry is given.

Set Equivalence is given. Let us assume that map(A) ≡ map(B) and map(A) � 

map(C) are given. We have to show that map(B) � map(C) is given. From the

premises, we know by the definition of map that A ≡ B and A ∩ C ≡/ ∅, which includes

B ∩C ≡/ ∅. This proves that Set Equivalence holds.

If Euclid would be a property of the aboutness system, from S � T and S � U

we would be able to derive that T � U . Say, that S ≡ map(A), T ≡ map(B) and

U ≡ map(C). Then, A ∩ B ≡/ ∅ and A ∩ C ≡/ ∅. However, this does not mean that B

and C overlap in information, as the following example demonstrates: Let us assume that

map(A) ≡ { 〈〈garden〉〉 , 〈〈house〉〉 }, map(B) ≡ { 〈〈garden〉〉 , 〈〈car〉〉 } and map(C) ≡

{ 〈〈house〉〉 }. Then B ∩C ≡ ∅, and Euclid is not given.

Next, the combination rules are demonstrated. In order to prove that Left Monotonic

Union holds, we need to find out whether S⊗U � T is given if we know that S � T .

Let us assume that S ≡ map(A), T ≡ map(B) and S ⊗ U ≡ map(C). Then, A ∩B ≡/ ∅,

as S is about T and C ⊇ A by definition of map. With the conclusion that C ∩ B ≡/ ∅,

Left Monotonic Union is given.

For Right Monotonic Union, we assume that from S � T also S � T ⊗ U .

Let us assume that S ≡ map(A), T ≡ map(B) and T ⊗ U ≡ map(C). A ∩ B ≡/ ∅, with

S about T . C ⊇ B follows from the definition of map. Therefore A ∩ C ≡/ ∅, and Right

Monotonic Union is given.

Cut would allow us to state S � U , given that S ⊗ T � U and S � T . Let us

assume that S ≡ map(A), T ≡ map(B) and U ≡ map(C). Then, (A ∪ B) ∩ C ≡/ ∅ and

A ∩B ≡/ ∅. Yet, this does not necessarily mean that A ∩ C ≡/ ∅. Cut is not given.

Right Weakening is also not given. From { 〈〈car〉〉 } � { 〈〈house〉〉 , 〈〈car〉〉 }, we

cannot say { 〈〈car〉〉 } � { 〈〈house〉〉 }. Right Weakening is not given.

Mix is supported if Left Monotonic Union is supported, as it is a special case of

LMU with the additional knowledge that the added information is about the query, too.

Similarly, Context-Free And is supported, as Right Monotonic Union is supported.

Deep containment is not given for our simple vector space model. Thus, Containment,

Containment Composition, Absorption, Right Containment Monotonicity, Non-conflict-

containment, Closed World Aboutness Assumption and Containment Preclusion are all

only supported for surface containment for the model. We defined that a situation S

contains a situation T if their underlying descriptor sets A and B share at least one

information item. Then, obviously A ∩B ≡/ ∅.

Absorption follows from the definitions of composition and containment in map.

Right Containment Monotonicity is given, as Right Monotonic Union is given. As

preclusion is not defined for the simple vector space model, Non-conflict-containment

and Containment Preclusion are both not applicable. The Closed World Assump-

tion is also not given, because two situations might be in no containment relationship but

still share index terms.
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Because preclusion is not defined for the simple vector space model, all the other

non-aboutness rules using it are not applicable: Mutual Preclusion, Guarded Left Mono-

tonicity, Guarded Right Monotonicity, Qualified Left Monotonicity and Qualified Right

Monotonicity. There is no inherent way for the simple vector space model to control or

qualify its monotonic behaviour. It cannot support conservative monotonicity.

For the non-aboutness rules, we have already excluded Mutual Preclusion. Simple

Anti-Aboutness is more of a statement than a rule. We state that we consider it to be

anti-aboutness, if two situations are not about each other. We can show that Simple Anti-

Aboutness is the only way for the simple vector space model to support anti-aboutness.

Negation Rational is clearly not given for the model. With it, from S � / T we

could conclude that S � / T⊗U . With, { 〈〈car〉〉 } � / { 〈〈house〉〉 }, we can still conclude

{ 〈〈car〉〉 } � { 〈〈house〉〉 , 〈〈car〉〉 }. Negation Rational is not given. Strict Negation

Rational is more of a statement, with which we would like to control the behaviour of

systems that support Negation Rational in order to avoid inconsistencies, as shown in

Section 4.4.4. As Negation Rational is not given, neither is Strict Negation Rational.

Therefore, the only non-aboutness rule that could hold is Simple Anti-Aboutness, if we

decide that a non-overlap of information would mean a contradiction in the information.

This would be, however, a rather strong assumption, as, e.g., 〈〈house〉〉 and 〈〈garden〉〉

do not ‘syntactically’ have an overlap, but can be informationally related.

Thus, we are not able to control the monotonic behaviour using preclusion or anti-

aboutness and other rules of the model. There are many other ways of controlling the

monotonic behaviour of an IR model. A commonly used method is to introduce a threshold

θ > 0 so that in the equation rsv(χ(d), χ(q)) > θ. We call such a vector space model a

thresholded vector space model [Wong et al., 2001]. Thresholds are an enhancement to

the original model developed by Salton. We now briefly analyse some reasoning changes

introduced by such a threshold.

Using the example of this model, we would like to introduce the notion of conditionally

supported rules, as presented in [Wong et al., 2001]. This time we only have to investigate

those rules that are already supported by the simple vector space model, as we said in

Section 4.1 that conditions do not create new aboutness behaviour but constrain existing

one.

Singleton Reflexivity is still fully supported by the thresholded vector space model.

We have to show that under the premises map(A) ≡ {φ} and map(B) ≡ {φ} then

rsv(A,B) > θ. Singleton Reflexivity is fully supported, as rsv(A,B) = 1, which has

to be larger than θ because it is the maximum rsv.

Similarly, for Symmetry if the overlap of information is big enough to guarantee

S � T , then it must be also big enough to ensure T � S, as in rsv ti and ui are

interchangeable without changing the overall rsv. Symmetry is still fully supported.

The last one of the simple rules supported by simple vector space is Set Equivalence.

It is fully supported by the thresholded vector space model because we have not changed

the equivalence relation. No formal proof is necessary.

For the combination rules, things are different. Regarding Left Monotonic Union,
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we can say that rsv(A,B) > θ, as S � T . The question is whether aboutness is

preserved if we extend to S ⊗ U � T . Looking at rsv from page 54, rsv could easily

fall below the threshold θ if the impact of the extension is stronger on the denominator
√

∑n
i=1 t

2
i ×

∑n
i=1 u

2
i than on the numerator

∑n
i=1 ti × ui. Thus, Left Monotonic Union is

now only conditionally given.

Right Monotonic Union is also conditionally supported for the thresholded vector

space model according to [Wong et al., 2001]. Both monotonic unions are only condition-

ally supported, as the respective threshold has to be passed. We have shown the impact

of thresholds on particular the combination rules, where we add information here. Having

shown the impact of thresholds, we skip the remaining rules from Section 4.4, as we only

discuss the plain vector space model an example for our method.

4.6.4 Reflection

In the reflection step, we would like to develop those queries and documents that are part

of no aboutness relation and those which are part of every aboutness relation.

First, we would like to show for the simple vector space model that the bottom query

is {∅} or the empty query. We prove this by showing that no document situation D will

ever be about the empty query situation Q. Say, D ≡ map(A) and Q ≡ map(∅). Then,

A ∩ ∅ ≡ ∅ and ∅ will be part of the bottom query. Next, we need to show that there is

no other situation that is part of this bottom query. Say this other situation is a single

information item {ψ}. Then according to Singleton Reflexivity {ψ} � {ψ} and {ψ}

will not be part of the bottom query. Any other situation S can be constructed from {ψ}

using Left Monotonic Union. Therefore, only {∅} forms the bottom query.

Next, we would like to prove that the bottom document that will never be returned is

also {∅}. The proof is similar to the one for the top query, but this time we assume that

Q ≡ map(A) and D ≡ map(∅). Then because of A ∩ ∅ ≡ ∅, ∅ will the bottom document.

Using Singleton Reflexivity and Right Monotonic Union, we can prove that there is no

other document.

One might think, that the top query situation Q is the one that includes all the

information in the document collection. Only then it seems to be guaranteed that for any

D, A∩B 6≡ ∅ with Q ≡ map(B) and D ≡ map(A). The same applies to the top document

D. It is the one that contains all the information in the document collections. This

would, however, contradict our earlier observation from Section 4.5 stating that bottom

query and top document are complementary, as well as top query and bottom document.

According to this observation there cannot be a top query, because we already have a

bottom document ({∅}). And indeed, as we allow empty documents to happen, these

would not be returned by queries that include all information from the collection. A

similar argument applies to the top document. For the simple vector space model, we do

not have top documents or top queries.

We continue the development of our theoretical evaluation methodology by introducing

pure type XML retrieval. This is the first inductive evaluation step that we especially

introduce to cover XML retrieval.
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4.7 Pure Type XML Retrieval

The steps covering translation, aboutness rules and reflection have been developed in

[Huibers, 1996] as parts of the theoretical evaluation of any retrieval system. They allow

the vertical comparison of retrieval systems with other retrieval systems. In XML retrieval,

however, we are not only interested in this vertical comparison, but also in a horizontal

one. We are interested in how much a retrieval system uses XML structure to support

the aboutness decision. Theoretically, we can measure this by comparing the aboutness

behaviour of the XML retrieval model with its ‘flat’ retrieval model equivalent and what

we call pure type XML retrieval.

‘Pure types’ have been developed by the sociologist Max Weber [Weber, 1997 (1903-

1917] and have proven to be useful tools for comparative studies of real-life phenomena

not only in sociology, for which they have been conceived originally. Weber speaks about

‘Idealtypen’ in German, which would literally translate to ideal types. We have chosen

to use the alternative English translation of pure types instead, as the term ideal carries

the additional meaning of something perfect; a confusion we would like to avoid, as does

Weber [Brunn, 2007].

Pure types are according to Weber not to be confused with normative recommenda-

tions. They are ‘Gedankenbilder’ (images of the mind) and not ideals in the English sense

of the world. For Weber, pure types emphasise a certain characteristic and are not a

generalisation of all possible characteristics. With them, we do not want to develop the

one and only prescriptive model for XML retrieval. In this sense, pure types are method-

ological concepts that develop ‘Gedankenbilder’ with the specific function to allow us to

compare ‘real-life’ XML retrieval models.

A pure type describes aspects of phenomena, but is not meant to describe perfect

things nor all aspects of any one particular case. Rather, it has the purpose to emphasise

aspects common to most cases of the observed object. In our case, the emphasis will be

on the impact of XML structure on the aboutness behaviour as seen through the INEX

evaluation dimensions. Weber’s pure types idea [Brunn, 2007] fits to our requirements

well, as it is a typological term, which we can use to build a classification to help analyse

the impact of XML structure onto reasoning processes in IR.

As noted in Section 3.2.4, we are looking to describe systematic regularities in XML

retrieval processes bottom-up using Situation Theory. Pure types are the things that make

us recognise XML retrieval processes and are analogous to Devlin’s ‘possible descriptions’

[Devlin, 1994], which in his terms enables us to recognise systematic regularities in the real

world. To find such regularities, we need some initial abstract structure, but this abstract

structure is neither necessary nor perfect in the sense of ‘natural laws’ or ‘normative

assumptions’. It is just something we have in the back of our mind if we think of something

such as XML retrieval models.

For each XML retrieval model, we compare its reasoning behaviour with those of other

models and look at its consideration of XML structure by determining its qualitative

distance to its ‘flat’ document equivalent and the pure type model. The latter step has not
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Figure 4.1: INEX View on Exhaustivity and Specificity

been considered yet in aboutness investigations and is particularly useful for the theoretical

evaluation of XML retrieval.

To develop pure type XML retrieval, we define its aboutness decision as hierarchical

inclusion next.

4.7.1 Hierarchical Inclusion

In this part, we attempt to develop a pure type XML retrieval model, using the two INEX

evaluation criteria of exhaustivity and specificity. As discussed in Section 2.3, INEX has

two evaluation dimensions:

• Topical exhaustivity reflects the extent to which the information contained in a

document component satisfies the information need.

• Component specificity reflects the extent to which a document component focuses

on the information need.

As also seen in Section 2.3, exhaustivity describes in how far the document component

contains all the information in a query, while specificity describes how little it is about

other information than the one in the query. This can be visualised in Figure 4.1. A

similar kind of visualisation has been used in [Gövert et al., 2006] to describe the INEX

evaluation scales based on exhaustivity and specificity, which we shall analyse in Section

6.3, where we discuss the INEX evaluation scales in more detail.

We use this INEX view on ideal performance in XML retrieval and its visualisation

in Figure 4.1 to define pure type aboutness: Say, that a document d is indexed with a

descriptor set χ(d) so that its XML structure is preserved. Then, it will be about a query

q (indexed by χ(q)) according to the INEX view if structure and content information of

χ(q) are contained in the structure and information of χ(d). In Section 4.7.3, we use

this relation to define the pure type aboutness operator. According to Figure 4.1, this

containment relation defines general relevance or exhaustivity, while specificity is defined

as follows: The query XML representation χ(q) will be about XML document component
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χ(d), if and if only we retrieve only the information demanded by the query and nothing

else.

The definition of aboutness for pure type XML retrieval is directly linked to the fact

that XML enforces a hierarchical information representation, which is why we call it

hierarchical inclusion. XML elements are either totally part of another XML element

or not at all. We can map an XML document to an XML tree by defining ancestors

and descendants of XML elements with the document being the root of the XML tree:

If in a document D a document component D1 is contained by component D2 then in

the corresponding XML tree D1 will be a descendant of D2. Ancestors can be defined

analogously.

Pure type XML retrieval is close to the INEX view of XML retrieval and is still text-

centric XML retrieval, as XML structure does not determine aboutness but is a necessary

condition of aboutness. To explain this difference, let us assume that we have a section

with two paragraphs, one having information about garden and houses, the other having

information only about houses. Furthermore, we have a query asking for information about

houses in paragraphs. The section is not an answer because the XML structure does not

match. Of the two paragraphs the second one is more focussed on the information need.

Both paragraphs are a match for the structure specification in the query but only one

is more focussed on the sought information. For data-centric XML retrieval, this would

be of no interest, as aboutness is decided by XML structure and exact match. For text-

centric XML retrieval, however, structure is only a necessary condition, which excludes

the section as an answer, but not as an indicator of relevance. For the aboutness decision

we need additional reasoning that includes XML structure as a necessary but not sufficient

condition of aboutness. Pure type XML retrieval is defined by an aboutness decision that

includes content and XML structure equally. We call this aboutness decision hierarchical

inclusion.

4.7.2 Translation

For the translation we make the assumption that in pure type XML retrieval the XML

structure is preserved during indexing. We want to express the translation of a model that

uses XML structure in its matching. To define the translation, we reuse the conceptual

graph translation, as defined by Huibers, Ounis and Chevallet in [Huibers et al., 1996a].

Their conceptual graphs map well onto XML trees.

The conceptual graph model has been developed in [Sowa, 1992] and analysed from an

aboutness point of view by [Huibers et al., 1996a]. In the model, a query q and a docu-

ment d are both seen as conceptual graphs. The knowledge in the document collection is

modelled as conceptual relationships between concept types. Content is found as referents

to concept types. For XML, we consider these concept types to be element types, while

we limit the set of relationships to the parent and the attribute relationship. Content is

found in XML as part of element types.

In the conceptual graph model from [Huibers et al., 1996a], an XML document d

indexed by a conceptual graph χ(d) is about a query q indexed by the conceptual graph
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χ(q), if the information in χ(q) is also contained in χ(d). As previously noted, instead

we define that a document d indexed by a descriptor set χ(d), which preserves the XML

structure, is about a query q indexed by χ(q), if the information in χ(q) is also contained

χ(d). [Huibers et al., 1996a] use ≤ as an aboutness, while we will use E, as we describe

later. We further define the aboutness operator in Section 4.7.3 but first we would like to

continue the translation with the definition of map.

4.7.2.1 Definition of Map

In this section, we define a translation that preserves the XML structure. We continue

to use the model developed in [Huibers et al., 1996a], as it makes the definition of map

for pure type XML retrieval straight-forward. As in [Huibers et al., 1996a], we want to

represent a graph (in our case an XML tree) as a set of infons in order to preserve the

XML structure. Intuitively, we can easily map a hierarchical organisation of information

(in an XML tree) to sets, if we consider the parent elements to be the supersets of all

sets of information that its children contain. What we need is a way of representing the

relationship between parents and children in the same framework. Fortunately for us, we

are considering sets of infons, which can either express content or relationships between

content in the same formalism.

[Huibers et al., 1996a] develop the approach we are using and state that a concep-

tual graph carries information and can be seen as a situation. We say that an XML

element carries information and can be seen as a situation. For [Huibers et al., 1996a],

the conceptual graph situation is constituted of the concepts, referents and relations that

define the information the conceptual graph carries. As already seen, we need to consider

instead element types, content in element types and parent and attribute relations. As

[Huibers et al., 1996a] propose to translate each item of a conceptual graph (concept, ref-

erent and relation) into a specific infon, we propose to do the same with XML elements.

Using element type, content and relation infons, we next define map for pure type XML

retrieval.

An XML tree consists of XML elements that have element types and associated content,

which we refer to as values. These elements are connected with edges. We now propose

to translate XML elements together with their values into set of infons and to distinguish

relational, content and element types.

Let us assume that d is an XML document. Then, it can be translated into situations

by using a map:

• For each XML element p with element type U in d, map has a result { 〈〈ElementType,

U, p〉〉 }, where p is the unique parameter. Such an infon is called an element type

infon.

• For each XML element p with a type U containing descriptors k1 to kn in d, map

is {map(U)⊗ 〈〈V alue, k1, p〉〉 , ..., 〈〈V alue, kn, p〉〉 }. p is the unique parameter that

identifies U . k1 ... kn is the set of n descriptors (for instance, index terms) that are
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values of the element type U . We call these infons value infons. ⊗ is explained later

on.

• Say R is an edge in d and a relationship between two subdocuments A and B of

d. Let E1 and E2 be element types and { 〈〈ElementType,E1, p〉〉 } ∈ map(A) and

{ 〈〈ElementType,E2, q〉〉 } ∈ map(B). p is an identifier for E1 and q for E2. We

can then say that map(R(AB)) = map(A) ⊗ { 〈〈R, p, q〉〉 } ⊗map(B). { 〈〈R, p, q〉〉 }

then determines that there is an edge between the elements p and q in d. This can

either be a parent edge or an attribute edge. We call such an infon a relational

infon. For both types of relations the parameters are ordered so that, for instance,

{ 〈〈Parent, i1, i2〉〉 , 〈〈ElementType,Article, i1〉〉 , 〈〈ElementType, Section, i2〉〉 }

reads as: Article is a parent of Section. Attributes are defined analogously. ⊗ is

explained later on.

This definition of map reuses the one in [Huibers et al., 1996a] for conceptual graphs.

XML documents will be represented as sets of infons where each of its XML elements is

an element type infon or a combination of value infons with element type infons. These

are connected using relational infons representing all edges in an XML document tree.

We further assume a pool of names for parameters that are identifiers for each XML

document. Above we use different letters (p and q). In the world of XML, URI’s are used

to uniquely identify any XML document on the web, while element types are linked to

namespaces [Lalmas, 2009]. We could have reused this concept of URI’s and namespaces

but this would have made our examples very complicated and unreadable. We assume

that each XML document is given a unique identifier from an unlimited pool of identifiers.

To translate any XML tree (for an XML document) into a set of infons, we traverse

the XML tree in a depth-first manner. Each time we visit an XML element we create an

element type infon that contains the type of the element as well as a new parameter from

our pool of identifiers. We call the second parameter also the identifier of the element type

infon. We make a note that we have visited this element so that the next time we visit the

element type we do not create another element type infon. If we reach a leaf we collect all

the descriptors in the leaf and create a value infon for each of them. The parameter of the

value infon will be the parameter of their element type. We then backtrack though the

tree and while backtracking we create relational infons where the first parameter is the

identifier of the parent element we are backtracking to, while the second parameter is the

identifier of the element type infon we are backtracking from. Following this algorithm,

we create a unique XML situation (set of infons) from each XML document.

Furthermore, we can re-create the tree of the XML document bottom up, starting

with the value infons to create the leaves and then reconnect the elements by following

the relational infons using the element type infons to define the types of the elements. We

only allow XML situations (set of XML infons), which lead in such a recreation to a valid

XML document according to the definition by the W3C and therefore conform to the rules

of a Document Type Definition (DTD) or an XML Schema (XSD) (in our case given by
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INEX).1

It is customary to create parameters in such a way that their first part identifies the

XML tree that is traversed while its second part identifies the XML element in the tree.

The example in the next section will demonstrate this.

4.7.2.2 Example

Let us assume we have the following XML document about a garden.

<Article>

<Section>

<Paragraph>

The garden is behind that door.

</Paragraph>

<Paragraph>

You arrive at a courtyard with a garden.

</Paragraph>

</Section>

</Article>

Let us assume that i is the parameter that identifies the whole XML document while i1

... i4 are the parameters to identify individual XML elements. Then, the translation will

be the set of infons in Table 4.1.

Figure 4.2: Pure type translation example

Next, we first present the remaining operators to complete the translation.

1This can be proven by running it against the official W3C markup validation service:
http://validator.w3.org/
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Table 4.1: Pure type translation example

Element Types 〈〈ElementType,Article, i1; 1〉〉
〈〈ElementType,Section, i2; 1〉〉
〈〈ElementType,Paragraph, i3; 1〉〉
〈〈ElementType,Paragraph, i4; 1〉〉

Relational Infons 〈〈Parent, i1, i2; 1〉〉
〈〈Parent, i2, i3; 1〉〉
〈〈Parent, i2, i4; 1〉〉

Values 〈〈V alue, door, i3; 1〉〉
〈〈V alue, garden, i3; 1〉〉
〈〈V alue, arrive, i4; 1〉〉
〈〈V alue, garden, i4; 1〉〉
〈〈V alue, courtyard, i4; 1〉〉

4.7.2.3 Operators

To perform our aboutness reasoning and to complete the translation, we need to define

simple operators between XML situations. These are the last definitions to complete the

pure type XML translation. For instance, as seen in Section 4.4, LMU assumes that two

situations can be composed. We use four operators in our reasoning rules: equivalence ≡,

composition ⊗, containment → and preclusion ⊥. We can reuse the definitions of these

operators for conceptual graphs in [Huibers et al., 1996a]. In particular, we reuse the

algorithm for parameter replacement, as described on page 55.

Let us assume that we have two XML situations S and T , and the translation function

map, as defined in Section 4.7.2.1. Then:

• Equivalence: Given two situations S and T with n parameters, equivalence is de-

fined by S ≡ T =def (ϕ ∈ (S ∪ T )(p1,q1)...(pn,qn)) ⇔ (ϕ ∈ T ) and (ϕ ∈ (T ∪

S)(r1,s1)...(rn,sn)) ⇔ (ϕ ∈ S). E.g.: S ≡ { 〈〈V alue, house, p; 1〉〉 } and T ≡ { 〈〈V alue,

house, q; 1〉〉 } are equivalent, because (ϕ ∈ (S ∪ T )(p,q)) ⇔ (ϕ ∈ T ) and (ϕ ∈

(T ∪ S)(q,p)) ⇔ (ϕ ∈ S).

• Composition: We have to consider two composition operators: ⊗rel and ⊗val. The

first one relates element types and the second one elements types with content. ⊗rel:

Given two situations S and T , they can be related as (S ⊗rel R⊗rel T ). Parameters

in R need to link the element types in S and T : (S ⊗rel { 〈〈R, p, q; 1〉〉 } ⊗rel T ) =
def

((S ∪ { 〈〈R, p, q; 1〉〉 }(s,p) ∪ T )(t,q). s and t are parameters in S and T respectively.

⊗val: Given a situation S, ({V alue, v, p; 1} ⊗val S) =def ({V alue, v, p; 1} ∪ S)(p,s),

with s being a parameter used to identify an element type infon of S and v a value.

• Containment: Based on the XML structure, we define that containment holds

between two element type infons ϕ and ψ, if the element type of ϕ is the an-

cestor of ψ according to an XML schema (e.g., the INEX one). Two situations

S and T contain each other if all the element type infons in S contain all ele-

ment type infons in T . E.g.: Section is a parent of paragraphs in texts. Then:

{ 〈〈ElementType, Section, p; 1〉〉 } → { 〈〈ElementType, Paragraph, q; 1〉〉 }, as there
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is a set of relational parent infons that defines the section to be an ancestor of the

paragraph. In this case this is { 〈〈Parent, p, q; 1〉〉 }.

• Preclusion: We would like to define preclusion as a conflict in the structure of two

XML documents according to their XML schemas. This implies that in our case

preclusion is not applicable, as we always argue on the basis of the common INEX

XML schema. But, generally speaking, two pieces of XML information clash, if their

XML schemas are incompatible, either because their element types differ in at least

one element type or because these element types are not structured in the same way.

For instance, a query looking for information in an XML element B that is the child

of an element A cannot find anything useful in a document having B, as the parent

of A.

We can define composition using ∪, as we express structure with relational infons, which

demonstrates the power of the representation, as we can apply set operators for complex

information calculations.

Some of these operators like composition allow us to create new situations. We need

to ensure that these will always correspond to valid XML documents. We do so by only

allowing XML situations that can be recomposed to a valid XML document according

to the algorithms described in Section 4.7.2.1. Next, we define formally the aboutness

decision as hierarchical inclusion.

4.7.3 Aboutness Decision: Hierarchical Inclusion

As described in Section 4.7.2.1, for pure type XML retrieval, we would like to use the two

INEX evaluation measures to define the aboutness decision and use E to define pure type

aboutness. Let us further assume that the descriptor set χ(d) contains information not

only on the content (using index terms) but also on all of the XML structure. We analyse

in Chapter 5 various indexing techniques, which realise this. Following the visualisation

in Figure 4.1, we define for pure type XML retrieval:

Definition 6 A document d represented by χ(d) is about a query q represented by χ(q)

if and if only χ(q) E χ(d), i.e., the information contained in q is also contained in d.

This defines exhaustivity, while specificity is defined by χ(d) E χ(q), i.e. d contains only

information from q.

Following [Huibers, 1996], we call the pure type system ‘strict’ in its aboutness behaviour,

as it excludes all elements that do not strictly match the structure requirements expressed

in the information need.

In Definition 6, we use structure and content at the same time. In order to make this

definition work for XML retrieval, we can rely on our situation theory based representation

that includes structure and content values. The following two examples for exhaustivity

and specificity aboutness using the pure type map illustrate the definition of hierarchical

inclusion aboutness. In the first example, a section containing a paragraph about house

and garden is an exhaustive answer to a query asking for a paragraph on house:
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Example { 〈〈ElementType, Section, i1; 1〉〉 , 〈〈Parent, i1, i2; 1〉〉 , 〈〈ElementType, Para−

graph, i2; 1〉〉 , 〈〈V alue,House, i2; 1〉〉 , 〈〈V alue,Garden, i2; 1〉〉 } is exhaustively about

{ 〈〈ElementType, Paragraph, i1; 1〉〉 , 〈〈V alue,House, i1; 1〉〉 }.

The paragraph about house and garden is, however, not a particularly specific answer

to the same query, as it contains additional unwanted information about garden. With

hierarchical inclusion, a paragraph just containing house would be a fully specific answer

to a query asking for house, as in the second example:

Example { 〈〈ElementType, Section, i1; 1〉〉 , 〈〈Parent, i1, i2; 1〉〉 , 〈〈ElementType, Para−

graph, i2; 1〉〉 , 〈〈V alue,House, i2; 1〉〉 } is specifically about { 〈〈ElementType, Paragraph,

i1; 1〉〉 , 〈〈V alue,House, i1; 1〉〉 }.

The aboutness system based on hierarchical inclusion describes the properties of an XML

retrieval model that only considers elements that are fully contained in each other to be

about each other. The two examples directly correspond to the INEX view on exhaustivity

and specificity, as visualised in Figure 4.1.

It is important to note that pure type aboutness (though using INEX evaluation di-

mensions to define its aboutness decision), is not ‘ideal’, as it, for instance, must ignore

elements that are near misses. Near misses have been extensively discussed in INEX and

are those elements that might still be seen as relevant to an information need but are not

included in the ranking, as they fall through filters to increase specificity (see Chapter 7).

We conclude our discussion of hierarchical inclusion in XML-based aboutness by look-

ing at functional properties hierarchical inclusion supports. Next, we use the definitions

of the operators from Section 4.7.2.3 to introduce the reasoning rules an aboutness system

based on the defined hierarchical inclusion E supports. These rules will later on be used

to estimate the impact of structure on the reasoning behaviour in XML retrieval.

4.7.4 Aboutness Rules

This section develops the reasoning properties of pure type XML retrieval. First, we

introduce a proposition that greatly simplifies the proofs we have to do in the analysis

of the pure type model. The proposition is based on our definitions for translation and

aboutness decision and Huibers’ analysis of conceptual graphs in [Huibers, 1996] and

[Huibers et al., 1996a]:

Proposition 4.7.1 For XML documents A and B, B EA if and if only

map(A) ⊇ map(B)

Proof ⇒: Let B E A. Then, we know that B has the content and the structure of

a subdocument of A. Using the algorithm from page 64, we construct two situations

S ≡ map(A) and T ≡ map(B). This means all relational, element types and value infons

from T are also in S. Thus, map(A) ⊇ map(B) with parameter renaming.

⇐: Let map(A) ⊇ map(B). Then, we know that map(B) has only infons also found in

map(A). If we apply the algorithm to transform situations into XML documents from
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64, B needs to have the structure and content of a subdocument of A and is therefore

hierarchically included in it: B EA.

The aim of our translation was to use the power of set theory in the aboutness proof.

Proposition 4.7.1 verifies that we can do aboutness proofs with a relatively simple set

operation on the situation representation of XML trees. The proof uses the proposition

proof for conceptual graphs in [Huibers, 1996]. In our case, however, proposition 4.7.1 is

also a straight-forward conclusion from the INEX view on XML retrieval aboutness, as

visualised in Figure 4.1, and the corresponding idea of hierarchical inclusion.

Using Proposition 4.7.1, we can now easily show thatReflexivity is given, asmap(A) ⊇

map(A) with S ≡ map(A). Transitivity holds, too. If we have S � T and T � U ,

then also S � U . Say, that S ≡ map(A), T ≡ map(B) and U ≡ map(C). Then,

map(A) ⊇ map(B) as well as map(B) ⊇ map(C). Thus, map(A) ⊇ map(C).

Transitivity holds, but Symmetry does not. From S � T , we do not derive that

also T � S. Again, S ≡ map(A) and T ≡ map(B). Then, map(A) ⊇ map(B) is not

equivalent to map(B) ⊇ map(A). The aboutness system is not symmetric.

Euclid is also not supported, as the following example demonstrates: Say S would be

{ 〈〈ElementType, Section, i1; 1〉〉 , 〈〈Parent, i1, i2; 1〉〉 , 〈〈ElementType, Paragraph, i2; 1〉〉 ,

〈〈V alue, house, i2; 1〉〉 , 〈〈V alue, garden, i2; 1〉〉 }, T would be { 〈〈ElementType, Section,

i1; 1〉〉 , 〈〈Parent, i1, i2; 1〉〉 , 〈〈ElementType, Paragraph, i2; 1〉〉 , 〈〈V alue, house, i2; 1〉〉 },

and U would be { 〈〈ElementType, Section, i1; 1〉〉 , 〈〈Parent, i1, i2; 1〉〉 , 〈〈ElementType,

Paragraph, i2; 1〉〉 , 〈〈V alue, garden, i2; 1〉〉 }. Then S � T and S � U , but not

T � U . Please note that we try to avoid using examples for our reasoning proofs

in the rest of the thesis, as they will easily get very complicated if we need to include

XML structure in them.

The basic rule left-over is Set Equivalence. Both Left and Right Set Equivalence

hold. We prove only Left Set Equivalence, as Right Set Equivalence is the mirror case. Let

us assume that S ≡ map(A), T ≡ map(B) and U ≡ map(C). Then, map(A) ≡ map(B)

and map(A) ⊇ map(C). From these we have map(B) ⊇ map(C). With map(B) ⊇

map(C), CEB also holds. Set Equivalence is given, again with no different behaviour for

exhaustivity and specificity. Substituting the document component situation or the query

situation does not change the behaviour in terms of the INEX evaluation dimensions.

Regarding the combination rules, Left Monotonic Union holds for pure type XML

retrieval. Given the assumption that any situation S is about another situation T (S � 

T ), LMU offers the conclusion that also S ⊗ U � T . For the proof, let us assume, that

S ≡ map(A), T ≡ map(B) and S ⊗ U ≡ map(C). Then, map(A) ⊇ map(B) according

to Proposition 4.7.1. With the definitions of map, we also have map(C) ⊇ map(A).

Therefore: map(C) ⊇ map(B). Thus, according to the proposition: B E C and LMU

is fully supported. Please note that we do not need to distinguish ⊗rel and ⊗val, as the

original part of the document that was about the query and that is described by S does not

change, whether we add new XML elements or content. Thus, always map(C) ⊇ map(A).

Similar arguments apply for the other reasoning rules, which is why we only speak of ⊗

for them.
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As LMU holds, exhaustivity aboutness is sustained when moving up the XML docu-

ment tree. Let us assume that we know that a component D is about a query Q. Then its

parent is D ⊗D′ with D′ representing the siblings. With LMU, then also D ⊗D′ � Q,

and exhaustivity is promoted to the ancestors. At the same time, we cannot increase

specificity by adding information to the document component, as Right Monotonic Union

does not hold, which we show next.

Regarding Right Monotonic Union, from S � T , we cannot conclude S � 

T ⊗ U . Say, that S ≡ map(A), T ≡ map(B) and T ⊗ U ≡ map(C). From the premises

and the definition of map, we then have map(B) ⊆ map(C) and map(A) ⊇ map(B). That

does not necessarily mean that map(A) ⊇ map(C). RMU is not supported.

Pure type XML retrieval is insensitive to the document length, but sensitive to the

query length. The former is the case as we can extend the XML document by appending

document components without changing the hierarchical inclusion of a query in a specific

document component. If we change the query, we change the inclusion.

That left monotonicity holds, but right monotonicity does not, has interesting con-

sequences for the behaviour of pure type XML retrieval with respect to the two XML

evaluation dimensions of specificity and exhaustivity. Regarding exhaustivity, left mono-

tonicity means that we can create more or at least as exhaustive answers by adding new

document components. This behaviour reflects the characteristics of XML retrieval that

parent elements are always as least as exhaustive answers as their children. We cannot

create more exhaustive answers, however, by adding information to the query situations,

as right monotonicity does not hold. By adding information to a query situation we create

a more specific answer. We increase the focus. This is what Left Monotonic Union tells us

if we take S and U to be query situations and T to be the document component situation.

At the same time, we cannot increase specificity by adding information to the document

component, as Right Monotonic Union does not hold.

The next combination rule Cut is also given. The assumption is in this case that

S ⊗ T � U and S � T are supported premises, while the conclusion is S � U . We

define S ≡ map(A), T ≡ map(B) and U ≡ map(C). According to map, we interpret ⊗ as

∪. Then,map(A)∪map(B) ⊇ map(C) andmap(A) ⊇ map(B) lead tomap(A) ⊇ map(C).

S � U is given and Cut holds. Both exhaustivity and specificity are equally influenced

by this quality. For exhaustivity, we can say that if one document D1 is about another

document D2 and both are about a query Q, the most exhaustive answer is D1. For

specificity the same applies for a query Q1 that is about another query Q2. Then D is

most specific to Q1.

Right Weakening does not hold, as the following example shows: Say S would be

{ 〈〈ElementType,Article, i1; 1〉〉 , 〈〈Parent, i1, i2; 1〉〉 , 〈〈ElementType, Paragraph, i2; 1〉〉 ,

〈〈V alue, garden, i2; 1〉〉 }, T would be { 〈〈ElementType, Paragraph, i2; 1〉〉 , 〈〈V alue,

courtyard, i2; 1〉〉 }, and U would be { 〈〈ElementType,Article, i1; 1〉〉 , 〈〈Parent, i1, i2;

1〉〉 , 〈〈ElementType, Paragraph, i2; 1〉〉 , 〈〈V alue, garden, i2; 1〉〉 }. Then, S � T ⊗ U ,

but not S � T .
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If Mix held, we would be able to conclude S⊗T � U , given S � U and T � U .

We define S ≡ map(A), T ≡ map(B) and U ≡ map(C). Then, with map(A) ⊇ map(C)

and map(B) ⊇ map(C), also map(A) ∪map(B) ⊇ map(C). Thus, Mix is given, which is

trivial, as Left Monotonic Union holds. For exhaustivity and specificity of interest is the

fact that if two document components are both exhaustive answers to a query, together

they form an exhaustive answer to the query. The same applies to specific document

components. They stay specific to the combination of two queries.

Context-Free And is given as well. We can say that from S � T and S � U

also S � T ⊗ U . Say, S ≡ map(A), T ≡ map(B) and U ≡ map(C). As map(A) ⊇

map(B) and map(A) ⊇ map(C), also map(A) ⊇ map(B)∪map(C). Context-Free And is

supported. It is supported, though Right Monotonic Union is not, as it controls the right

monotonic behaviour by demanding aboutness for the added information. The document

component must be about the expansion part of the query. This assumption ensures that

the expanded query is still hierarchically included in the document component. Therefore,

Context-Free And is supported by pure type XML retrieval. This means that we can

increase specificity by adding new information to the document component if we know

that this new information is also a specific answer in itself. Also, we can extend the query

and might increase exhaustivity if we know that the query expansion is as well about the

document component.

The Containment rule itself does not hold for pure type XML retrieval according to

the definition of Si → Ti. Let us assume that Si ≡ { 〈〈ElementType, Section, i1; 1〉〉 ,

〈〈Parent, i1, i2; 1〉〉 , 〈〈ElementType, Paragraph, i2; 1〉〉 , 〈〈V alue, garden, i2; 1〉〉 , 〈〈V alue,

house, i2; 1〉〉 } contains Ti ≡ { 〈〈ElementType, Paragraph, i2; 1〉〉 , 〈〈V alue, house, i2; 1〉〉 }.

Say, that Ti is a subsituation of a situation T and Si ≡ S. Then S is not about T . This

confirms what we have said above about hierarchical inclusion as the basic aboutness re-

lation for pure type XML retrieval. We cannot say that containment leads directly to

aboutness, as it is just a necessary condition.

Absorption does not hold, as containment is defined over the element types. T might

contain additional values compared to S, which are not absorbed under composition.

Right Containment Monotonicity does not hold. The assumptions that S � T

and T → U do not allow for the conclusion of S � U , because containment is only

defined as structural containment. We could easily give an example so that U would not

have a subset of the content of S though T → U .

Non-conflict-containment is obviously given, because the definition of containment

above implies the absence of preclusion. With respect to Containment Preclusion, if

U precludes T , which is contained in S, then S ⊥ U . As pure type preclusion is defined

over XML structure, S and U will together also not form a valid XML situation if S → T .

Containment Preclusion holds.

The first of the non-aboutness rules, Mutual Preclusion, is given, as document

component and query are both XML documents. Either their structure means that they

preclude each other, or there is no preclusion at all. Simple Anti-Aboutness allows to

say from S � / T that also S ⊠ T . This further statement can only be made using
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stronger semantics and is not covered by the XML structure. As said earlier, simple

anti-aboutness is more an additional requirement than a logical property.

Negation Rational is given as we cannot add information to a query so that the infor-

mation in the query is covered by the document component. E.g., a document component

situationD { 〈〈ElementType,Article, i1; 1〉〉 , 〈〈Parent, i1, i2; 1〉〉 , 〈〈ElementType, Para−

graph, i2; 1〉〉 , 〈〈V alue, garden, i2; 1〉〉 , 〈〈V alue, house, i2; 1〉〉 } is not about a query

{ 〈〈ElementType, Paragraph, i2; 1〉〉 , 〈〈V alue, f lat, i2; 1〉〉 }. Then it will also never be

about any extension of this query. If Negation Rational holds, so will Strict Negation

Rational.

The Closed World Assumption allows to conclude S � / T , given Si 6→s Tj . It

holds for pure type XML retrieval, because two XML documents that are not contained

in each other according to their XML structure cannot be about each other.

Guarded Left Monotonicity is interesting, as it is the first of what we called conser-

vative monotonicity rules. Here, information composition is ‘guarded’ to avoid combining

two precluding situations. As already stated semantic preclusion is beyond the scope of

an investigation into XML retrieval in INEX. We can, however, look into a surface preclu-

sion. Then, Guarded Left Monotonicity must hold, as left monotonicity holds as well.

With the guard, however, we can avoid adding meaningless information to either increase

exhaustivity by adding new information to the document side or increase the focus by

using more relevant information for the query. Guarded Right Monotonicity will not

hold, as Right Monotonic Union does not hold.

Qualified Left Monotonicity derives from the premises S � T and T ⊥/ U that

S ⊗U � T . As much as its sibling, Qualified Right Monotonicity, it is more interesting

in more semantically oriented reasoning. In our case nothing can be said about the rela-

tionship of S and T if T ⊥/ U is known. Therefore, Qualified Left Monotonicity is just a

special case of Left Monotonic Union and holds for pure type XML retrieval aboutness.

Thus, Qualified Right Monotonicity is also a special case of Right Monotonic Union

and is therefore not given for pure type XML retrieval aboutness.

Next, the completeness of the above rules needs to be proven.

4.7.5 Completeness

The completeness proof demonstrates that any possible aboutness situation is covered

within our reasoning system. We have to demonstrate that for any aboutness relationship

between two XML documents, their corresponding representation as situations leads to

� . For all valid XML documents A and B ∈ X: If A about B thenmap(A) � map(B).

Proof Let S ≡ map(A) and T ≡ map(B). Also, let C be the subdocument of A if we

remove B and U ≡ map(C). T � T , as Reflexivity is given. With Left Monotonic

Union, T ⊗ U � T . With Set Equivalence and the definition of map, S � T .

Having shown the completeness of our aboutness reasoning system, the reflection of pure

type XML retrieval completes our discussion.
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4.7.6 Reflection

For XML retrieval, we further specify the top and bottom document components and

queries from Section 4.5 by differentiating those that are either exhaustive (D � Q) or

specific (Q � D). We then have eight cases to cover, which we present in a simplified

notation. For a complete overview of all eight cases see Table 5.9 in Section 5.2.6. Here,

we only present four cases, which have an entry in the table for pure type XML retrieval.

Let D be a set of document components and Q be a set of queries:

1. A top exhaustive document component Dj is always exhaustively about any query

Q: {Dj |∀Q,Dj ∈ D,Dj � Q}. The (virtual) root of the document collection is

Dj , as exhaustivity is promoted up the document forest.

2. A top exhaustive query Qj is the one which all document components D are exhaus-

tive answers to: {Qj |∀D,Qj ∈ Q,D � Qj}. The top exhaustive query is {∅}. Let

us assume the document component D is itself {∅}. Then, the only query Q that

any D is always an exhaustive answer to is {∅}. Let us assume D ≡/ {∅}. Then,

with D ≡ map(A) the only always given subset to map(A) is {∅}. Therefore, {∅} is

the top exhaustive query.

3. A top specific document component Dj is always specifically about any query Q:

{Dj |∀Q,Dj ∈ D, Q � Dj}. The top specific document component is {∅}. The

proof is analogous to the one for top exhaustive queries.

4. A top specific query Qj is the one which all document components D are specific

answers to: {Qj |∀D,Qj ∈ Q, Qj � D}. The top specific query is again the

(virtual) root of the document collection.

All the other entries in Table 5.9 are missing, as they are complementary statements.

E.g., if a top exhaustive document component can be found, it is impossible that there is

a bottom exhaustive query that will never find any answer in the document component

set. We use this complementarity for our reflections of XML retrieval models to effectively

reduce the number of reflections we have to do.

It might be surprising that the top specific query is like the top exhaustive document

component the one that contains all the information in the document component set.

This is the case as we are not looking for the most specific query — a question impossible

to answer for all possible situations —, but we are looking for the one that delivers only

specific results. This can just be the complete document tree, as all document components

contain never more information than is present in the document tree.

4.8 Conclusion

This chapter has introduced our theoretical evaluation methodology. We have started with

existing theoretical evaluation methodologies and have adjusted them to the requirements

of XML retrieval. Our methodology is based on a well-defined number of steps, through
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which we iterate each time we analyse a model. The first step is the translation to define

a model’s symbolic representation of information as the result of its indexing mechanism.

It is formally represented by the function map.

The next step in our methodology derives aboutness rules to describe the functional

behaviour of XML retrieval systems. We have defined basic rules, combination and con-

tainment rules and also non-aboutness reasoning though the latter are seldom used in IR

reasoning.

Aboutness is defined as a relationship between situations. In a theoretical evaluation

framework, rules are used to define the reasoning aspects of this relationship. Rules are

the logical representation of how a system decides a document to be about a query. Rules

do not hold for all aboutness decisions but only for particular ones. Thus, an aboutness

decision can be specified by the reasoning rules it incorporates. The aboutness decision

can be further qualified by analysing how these reasoning rules are implemented by it:

fully, conditionally or not at all. [Wong et al., 2001] call this functional benchmarking.

By comparing the kind of rules a particular system incorporates and the way it does

so, we are able to give an overall comparison of the behaviour of XML retrieval systems.

A further investigation of aboutness boundaries for particular retrieval systems is called

reflection, our third step of each theoretical evaluation. Translation, reflection and about-

ness rules were developed in [Huibers, 1996] as part of the theoretical evaluation of any

retrieval model. In XML retrieval, we are also interested in how much a retrieval system

uses structure to support the aboutness decision. Theoretically, we measure this by deter-

mining the difference in reasoning of the XML retrieval model to its ‘flat’ retrieval model

equivalent (if there is one) and what we call pure type XML retrieval.The final step in our

theoretical evaluation is the development of the pure type XML retrieval model to qualify

the impact of structure on the retrieval performance.

The next chapter uses this methodology to investigate models from INEX.
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Chapter 5

Theoretical Evaluation of XML

Retrieval Models
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5.1 Introduction

This chapter goes through five XML retrieval models submitted to INEX and evaluates

them theoretically using the methodology developed in Chapter 4. We are looking only

at models that performed well in INEX and are therefore comparable. Furthermore, all

of the models performed not just during INEX 2005 but over a longer period of time so

that one can assume that models are well developed and potential problems we find are

not the result of a premature submission.

For each of the models, we first describe its background including its retrieval algorithm

and indexing mechanism. Secondly, we calculate an example that reflects various standard

retrieval situations. This allows us to understand better the overall behaviour of the model.

Thirdly, we proceed with our theoretical evaluation of XML retrieval by first presenting

the equivalent flat document retrieval model, before in the forth step, we iterate through

all the theoretical evaluation steps described in Section 4.2: translation, aboutness rules,

completeness and reflection. We repeat this procedure for each model, starting with the

XML vector space retrieval model (Section 5.2). In Section 5.3, we analyse two language

models and finally in Section 5.4 two structured models are introduced, which have been

specifically designed for INEX.

5.2 XML Vector Space Retrieval

5.2.1 Background

As early as for INEX 2003, Mass and Mandelbrod present in Retrieving the most relevant

XML Components an approach to XML retrieval that is based on the vector space model

[Mass and Mandelbrod, 2005]. During INEX 2004 and 2005, they added new functionality

to their original algorithm without changing its fundamental principles. Their idea is to

use the vector space model for XML retrieval and rank document components instead of

entire documents.

In order to adjust to the requirements of XML retrieval, [Mass and Mandelbrod, 2005]

create a different index for each pre-defined component type. Six indexes are created

according to the set of document components, most commonly seen as relevant in past

INEX assessments. These are {article, abs, sec, ss1, ss2, p, ip1}. The article contains the

complete XML document, sec all section elements and so on.

One advantage of this approach is its layered approach. It can be built on top of

almost any existing IR model, as it takes each document component to be a document

in itself. At runtime, queries can work on each index in parallel. One challenge is that

the indexing here destroys the unique position of an XML element. Therefore, we cannot

determine afterwards, which section element was the parent of which paragraph element,

etc. From the index structure there is no way back to rebuild the original XML structure.

The authors address this by storing all the structural information within the article index

and then do some post-processing on top of the initial retrieval results.

From INEX 2004 onwards [Mass and Mandelbrod, 2005], the retrieval status value is
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defined by, were D and Q are document components and query:

rsv(D,Q) =

∑

ti∈{Q∩D} wQ(ti) ∗ wD(ti) ∗ idf(ti)

‖Q‖ ∗ ‖D‖
(5.2.1)

idf(t) = log(
|D|

|D(t)|
)

wQ(t) =
log(TFQ(t))

log(AvgTFQ)

wD(t) =
log(TFD(t))

log(AvgTFD)

idf(t) = log(
NumberOfDocumentsInCollection

DocumentsContaining(t)
)

TFQ(t) stands for the number of occurrences of a term t in Q, while TFD(t) describes the

number of occurrences of t in D. AvgTFQ captures the average number of occurrences

of all query terms in Q and AvgTFD does the same for D. ||Q|| is the number of unique

terms in Q and ||D|| is the number of unique terms in D. Both are scaled by the average

document length in the collection.

For each index a query produces a list sorted by the relevance of the elements [Mass

and Mandelbrod, 2005]. The scores of the indexes are index-independent normalized into

the range [0;1]. This overall normalisation is achieved by a division with rsv(Q,Q), by

calculating the retrieval status value of the query as if it would have been part of the

document collection. Each index entry is normalised towards rsv(Q,Q) as the maximum

value. The sorted and normalised index entries are afterwards merged into one list that

combines all granularities.

A priori dividing the different XML elements into separate indexes, solves the problem

of nested components, but it lacks for each component index context information, as

each component is treated as if it would be a document in itself. This simplifies the

XML retrieval problem, but leads to a number of issues that have to be addressed by

additional processing. The authors found, e.g., that they had a problem due to malformed

index statistics [Mass and Mandelbrod, 2005]. The fine grained indices do not deliver

information outside their scope. For example, the articles index contains 42,578,569 tokens

while the paragraphs index contains only 31,988,622 tokens [Mass and Mandelbrod, 2005].

For paragraphs, 2̃5% of statistics is missing. Yet, a term with a low document frequency

(df) based on the indexed tokens may actually be quite frequent outside the paragraphs

so that its df should be higher. In 2004, Moss and Mandelbrod add a variation to their

original system, that provides a solution for this problem using a document pivot [Mass

and Mandelbrod, 2005]. They normalise each score by the containing article score with

the following formula where Sa is the containing article score and Sc the component score:

DocPivot ∗ Sa + (1−DocPivot) ∗ Sc. DocPivot is an additional constant.

On top ofDocPivot, Moss and Mandelbrod apply Automatic Query Refinement (AQR)
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to the component ranking algorithm. In their AQR, the query is run in two rounds, where

highly ranked results from the first round are used to add new query terms and to reweigh

the original query terms in the second round. Now, the rsv is calculated as follows:

1. For each index i

(a) Compute the result set Resi of running a query Q on index i.

(b) Apply Automatic Query Refinement on Resi.

(c) Normalize scores in Resi by applying rsv(Q,Q).

(d) DocPivot: Scale each rsv by its containing article rsv from Res0.

2. Merge all Resi to a single result set Res composed of all components sorted by their

score.

The Automatic Query Refinement, the authors apply, follows the idea of Lexical Affinity

(LA) terms. These amend the existing query to achieve better results. They are chosen

according to the degree they separate relevant from non-relevant document components.

Lexical Affinity describes pairs of terms where exactly one of the pair is part of the query

and both appear close in relevant documents. Four parameters (M,N,K,α) determine

the overall ranking, with M denoting the number of highly ranked documents to use for

constructing a list of candidate LA’s while N (N >> M) describes the number of highly

ranked components to be used for selecting the best K LA’s (among the candidate LA’s).

These are those which have the highest information gain (IG) (depending on the further

tuning parameter α).

IGD,Q(L) = HQ(D)− [
|D+|

|D|
HQ(D

+) +
|D−|

|D|
HQ(D

−)] (5.2.2)

HQ(x) = −pQ(x)log(pQ(x))− (1− pQ(x))log(1 − pQ(x)) (5.2.3)

The IG determines how much a lexical affinity L is able to discriminate relevant from

non-relevant documents. It is calculated using parameters D+ and D− denoting the set of

document components having the lexical affinity L or respectively not having it. HQ(x)

describes the level of disorder (entropy) of a document component. We are interested in

those elements that optimize the entropy of relevant documents. HQ(D) is a constant, as

it is independent of L, and can therefore be omitted. HQ(D
+) stands for the entropy of

relevant documents, which is determined by using pQ(x) =
|R+|
|D+| , where R

+ are the relevant

document components in D+. As we do not know R+, we need to estimate it. The scoring

function is used as an approximation. HQ(D
−) can be found analogously. The authors

take pQ(D
+) to be sum of scores of documents in D+ normalised by |D+|, and similarly for

pQ(D
−). This way the LA’s with the highest information gain are found and then added

to the query Q. The scores for the query are recalculated with wQ(t) ∗ wD(t) ∗ idf(t).

Next, we calculate an example to see in more detail the impact of the different steps of

the ranking function on the overall results. We use the same example for all our theoretical
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Table 5.1: Number of unique tokens
Q D1 D2 D3 P11 P12 P21 P22 P31 P32

3 4 5 4 2 2 2 3 1 3

evaluations, which ensures better comparability. The example has been chosen carefully

to reflect several standard retrieval situations such as a small document component that

is only about the query but does not cover all of it or a large document component that

is exhaustively about the query but has other additional information.

5.2.2 Example

In the example, let the query situation be about ‘house’, ‘garden’ and ‘courtyard’. Let

document situation D1 be the parent of the paragraphs P11 and P12. Furthermore, D2

is the parent of P21 and P22 and D3 is the parent of P31 and P32. P11 is about ‘garage’

and ‘house’, P12 about ‘damage’ and ‘fire’, and D1 about the combination of both. Let

P21 be about ‘door’ and ‘garden’ and P22 be about ‘arrive’, ‘garden’ and ‘courtyard’, with

D2 again being the combination of the two. Finally, P31 is about ‘house’ and P32 is about

‘garage’, ‘arrive’ and ‘courtyard’. This completes our example.

Table 5.2: WD(t)

arrive damage door fire house garage garden courtyard

wQ 0 0 0 0 1 0 1 1

wD1 0 1 0 1 1 1 0 0

wD2 0.77 0 0.77 0 0 0 1.73 0.77

wD3 1 0 0 0 1 1 0 1

wP12
0 0 0 0 1 1 0 0

wP22
0 1 0 1 0 0 0 0

wP21
0 0 1 0 0 0 1 0

wP22
1 0 0 0 0 0 1 1

wP31
0 0 0 0 1 0 0 0

wP32
1 0 0 0 0 1 0 1

Table 5.3: IDF(t)

arrive damage door fire house garage garden courtyard

Ind1 0.18 0.48 0.48 0.48 0.18 0.18 0.48 0.48

Ind2 0.48 0.78 0.78 0.78 0.48 0.48 0.48 0.78

Table 5.1 shows the number of unique tokens per document component. For wQ in (5.2.1),

we add the constant 0.5 to both parts of the fraction to avoid log(1) = 0, which is common

for our small example, where the term frequency of 1 is relevant. Therefore, we calculate:

wQ(t) =
log(TFQ(t) + 0.5)

log(AvgTFQ) + 0.5)

wD(t) =
log(TFD(t) + 0.5)

log(AvgTFD + 0.5)
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idf(t) = log(
NumberOfDocumentsInCollection

DocumentsContaining(t)
)

Table 5.4: rsv(D,Q)

D1 D2 D3 P11 P12 P21 P22 P31 P32

rsv(Q,D) 0.17 0.64 0.59 0.64 0.0 0.64 1.18 4.03 1.09

These calculations deliver the results shown in Tables 5.2 and 5.3.

Table 5.5: IG(D,Q)

(house,arrive) (garden,arrive) (courtyard,arrive) (garden, door) (house, garage) (courtyard,
garage)

-0.098 -0.096 -0.086 -0.096 -0.096 -0.098

Table 5.6: score(D,Q’)

D1 D2 D3 P11 P12 P21 P22 P31 P32

rsv(D,Q′) 0.08 0.67 0.42 0.50 0.0 0.50 1.18 1.01 0.92

Table 5.4 gives rsv(D,Q), where D is a document component and Q is the query.

As in [Mass and Mandelbrod, 2005], we assume M = 2. Then candidate LA’s come

from D3 and D2 and are part of the set: {(house, arrive); (garden, arrive); (courtyard,

arrive); (house, door); (garden, door); (courtyard, door); (house, garage); (garden, garage);

(courtyard, garage)}. [Mass and Mandelbrod, 2005] furthermore assumes that N = 2 and

thus rsv has to be n > 0.02. This leads us to the information gains IG, as in Table 5.5.

With K = 1 and α = 0.9 according to [Mass and Mandelbrod, 2005], we add ‘arrive’ to

the query. The enhanced query situation Q′ is { 〈〈house〉〉 , 〈〈garden〉〉 , 〈〈courtyard〉〉 ,

〈〈arrive〉〉 }. This is a better choice, as it clearly excludes D1. Yet, there is a problem

for more specific answers Q � D. The new LA can never be part of the original query

(according to the assumptions). Therefore, the added token cannot improve Q � D or

the focus. E.g.: If we add the query term ‘garden’ to a query, then this query will be less

specific about a component having information about ‘house’ and ‘car’. This is intrinsic

to the model according to the assumptions of AQR.

Table 5.6 shows the new scores for rsv(D,Q′). P32 is now regarded more relevant. This

has to be the case, as it contains ‘arrive’. Even more importantly, P22 now tops the list.

All its items are relevant and it contains more information than the former most relevant

element P31. Finally, we normalise the results by calculating rsv(Q′, Q′). Table 5.7 shows

the results.

The normalisation has clearly changed the order. The highly specific and exhaustive

document component P22 is still the highest ranked element. But D2 has now overtaken

P31 and P32 and is closer to P22. All of these changes are indications of the major im-

portance of normalisation in XML retrieval, as a way to compare components of different

information size.

The last step is DocPivot. We use DocPivot = 0.5, as the authors used for their 2005

experiments [Mass and Mandelbrod, 2005]. Table 5.8 summarizes the results.
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Table 5.7: Normalized rsv(D,Q’)

D1 D2 D3 P11 P12 P21 P22 P31 P32

rsv(D,Q′) 0.09 0.73 0.46 0.32 0.0 0.32 0.76 0.65 0.61

Table 5.8: Final rsv(D,Q)

D1 D2 D3 P11 P12 P21 P22 P31 P32

rsv(D,Q) 0.09 0.73 0.46 0.21 0.05 0.53 0.75 0.56 0.54

Obviously, with DocPivot = 0.5 the score for the containing articles does not change.

In the overall ranking, P22 has fostered its position. It has now clearly left P31 and P32

behind, as its containing article D2 is the most relevant one. P31 and P32 are still more

relevant than their containing article D3. The overall ranking is now:

P22,D2, P31, P32, P21,D3, P11,D1, P12

These are very good ranking results considering the original query (especially in the top

two places). But also, the preference for the more specific P31 and P32 rather than D3

is convincing. D1 and any of its subelements do not play a role at all. The scores have

clearly improved. We can also see, however, that with AQR more specific answers are

ranked lower than more exhaustive answers, as the newly added information is never part

of the original topic items. The most specific answer P31 has lost two places compared to

the original score.

The next step in our theoretical evaluation is the translation.

5.2.3 Translation

This section defines the translation given a set of XML elements D to a situation S. It

is based on the translation of the flat document vector space model, as defined in Section

4.6.2, because document components are taken as if they were full documents. Only the

most informative elements are indexed and all results are merged into a final result list.

Let d be an XML element in D. χ(d) is a set of descriptors, which contain the index

terms as well as all other information necessary to calculate rsv such as the term frequency.

These descriptors correspond to the non-zero entries in the vectors for d, while χ(q) corre-

sponds to non-zero entries for a query q. Then, map describes all element situations that

are most informative:

map(χ(d)) = { 〈〈ElementType, e, i; 1〉〉 , 〈〈V alue, t, i; 1〉〉 |e ∈ {article, abs, sec, ss1, ss2,

, p, p1}, t ∈ χ(d))}

e is an element type, t a term and i and identifier parameter. Terms can be found in

content infons of these element types, while each χ(d) describes document components

that are part of the most informative XML elements. That χ(d) describes components

instead of whole documents, marks the decisive difference from the traditional vector space

model. The translation of a query to a query situation is defined in a similar way.

Next we need to define operators used in the rules from Section 4.4: equivalence,
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composition, containment and preclusion. As our translation qualifies the simple vector

space one using element types and descriptors, we can reuse the ones for flat document

vector space retrieval from Section 4.6.2. Then, given two situations S and T , they are

equivalent if all their infons are identical, and they can be composed using ∪ and parameter

replacement. S contains T , if T has only infons from S. We thus define containment as

surface containment. Deep containment is an addition to this vector space model. Only

preclusion differs slightly from what we have seen in 4.4. Now, a situation S describing a

document component also precludes another situation T if one of them has an element type

that is not part of the most informative elements. This is a structural kind of preclusion,

similar to what we have seen in Section 4.7 for pure type XML retrieval.

5.2.4 Rules

As each XML element is inserted separately in the index, the main difference to flat vector

space retrieval is that we consider elements instead of full documents. Given a document

d and a query q (indexed by descriptor sets χ(d) and χ(q)), the XML retrieval vector space

aboutness decision is defined by:

d about q if and only if rsv(χ(d), χ(q)) ≥ n

For the AQR step only the top N documents are considered. We call the value that has

to be reached in order to be part of the top N documents n. Thus, the model implements

thresholded vector space retrieval [Wong et al., 2001], as described in Section 4.6.

We now continue with analysing the functional properties of the model. We cannot

find a proposition that would relate rsv to a set-theoretical equation, as we could do, for

instance, for the pure type model in Proposition 4.7.1. We therefore need to argue directly

with the aboutness decision based on rsv and look at its mathematical composition. We

need to discuss how the individual components of the rsv equation influence the overall

calculation when they are changed according to the assumptions of our reasoning rules.

This is a proven method, common to many social science analyses [Brunn, 2007].

For vector space retrieval in general, we would like to exclude Reflexivity in order to

avoid logical anomalities [Huibers, 1996]. Singleton Reflexivity is supported for XML

vector space retrieval. In fact, it will be the maximum retrieval status value rsv(χ(q), χ(q))

and is used for the normalisation, as seen in Section 5.2.1. Singleton Reflexivity is fully

supported.

The model is also symmetric. rsv(χ(d), χ(q)) > n is equivalent to rsv(χ(q), χ(d)) >

n, as in Equation (5.2.1) the numerator of the retrieval status value fraction is the sum

of products depending on q and d and the denominator is a purely symmetrical product.

Document component and query both have the same influence on the retrieval status

value, as both are equal parts of the sum.

Set Equivalence is also given. We only show it for Left Set Equivalence. Then, we

can conclude T � U from the assumptions S � U and S ≡ T . Let us assume that

S ≡ map(A), T ≡ map(B) and U ≡ map(C). A, B and C are sets of descriptors. Then,
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we know that rsv(A,C) > n. With B ≡ C (they are the same descriptor set), we can

state without contradiction that rsv(B,C) > n. Thus, T � U and Set Equivalence is

supported.

XML vector space retrieval, however, does not support Transitivity. We can eas-

ily construct an example so that rsv(χ(d), χ(q)) ≥ n and rsv(χ(d′), χ(q)) ≥ n but not

rsv(χ(d), χ(d′)) ≥ n. The terms ti in Equation (5.2.1) responsible for rsv(χ(d), χ(q)) ≥ n

and the terms tj responsible for rsv(χ(d
′), χ(q)) ≥ n do not have to be overlapping so that

rsv(χ(d), χ(d′)) ≥ n.

As the aboutness decision is based on overlap of terms ti and tj, Euclid is not given

either. With Euclid, from S � T and S � U we would be able to derive T � U . Let

us assume that S ≡ map(A), T ≡ map(B) and U ≡ map(C). For the counterexample, let

us assume that n = 0. Then obviously, rsv(A,B) > 0 as well as rsv(A,C) > 0. However,

this does not necessarily include rsv(B,C) > 0, as U and T might not share terms.

Next, we discuss Left Monotonic Union (LMU). Does for any situations S and

T , S � T imply that also S ⊗ U � T ? LMU is conditionally given. We split the

discussion of the involved calculations into two steps, the first step being the vector space

based relevance calculation rsv and the second being the AQR step.

For the first step, let us assume that S ≡ map(A), T ≡ map(B) and U ≡ map(C).

Then, S � T means that rsv(A,B) ≥ n. We are not interested in the details of the top

part of Equation (5.2.1) and rewrite rsv(A,B) = f(AB)
||A||∗||B|| . ||.|| stands for the number of

unique tokens, while f(AB) describes a function dependent on the informational overlap

of A and B. We can then progress by analysing how the individual components of the

Equation (5.2.1) relate to each other.

The behaviour of f depends on the following factors:

• f(AB) will always be larger if there is more information overlap in A and B.

• f(AB) will be larger if the frequencies forA andB are much higher than the averages,

accordingly.

• f(AB) will be larger if the elements in AB are not spread out across too many

documents.

Then, the overall behaviour of rsv(A,B) is determined by the size of f(AB) in relation to

the number of unique terms in A and B. It is clear that the more unique terms a document

component has and the less it has a significant overlap with the query, the more difficult

it is to pass the threshold n. This is appropriate for XML retrieval, as focussed document

components have less unique terms. Looking at LMU, the newly added information on the

left side of the aboutness relation can, however, have many unique terms. Then, amending

f(AB) with new terms could have a negative effect and the threshold would be missed.

Let us assume that QAQR is the added query part. In the example above it was

{ 〈〈arrive〉〉 }. This is the query subsituation that is added to refine the initial query.

The refined scores then deliver a larger overlap for those document components that were

relevant in the first step, but this emphasis on relevant components only has a positive
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effect as long as the newly added information does not contribute to a significant increase

of ||Q||. The latter can easily happen, as only information, not present in the original

query, is to be added in AQR. So, ||Q|| has to increase. This increase can be outweighed,

however, if the new information overlap is large enough. Being dependent on the number

of unique terms in Q and D, LMU is only conditionally supported.

LMU is conditionally supported, while for pure type XML retrieval and the simple

vector space model it was fully. This ensures a more conservative approach to monotonicity

which means that aboutness is only preserved under certain conditions [Wong et al., 2001].

This allows for a better control of this important quality and adds to the model’s convincing

performance in the INEX campaigns [Gövert et al., 2006], which we will discuss in more

detail in Chapter 8. However, the condition is chosen a priori by setting N , and is external

to the aboutness decision, as we will see when we discuss the further reasoning behaviour.

Because of the symmetric composition of the rsv function Right Monotonic Union

is just the mirror case of Left Monotonic Union. We say that S ≡ map(A), T ≡ map(B)

and U ≡ map(C). Again, rsv(A,B) ≥ n, means that Right Monotonic Union is only con-

ditionally supported. Both monotonic unions are therefore only conditionally supported.

Cut’s conclusion is S � U , given that S ⊗ T � U and S � T . We say

that S ≡ map(A), T ≡ map(B) and U ≡ map(C). According to the assumptions,

rsv(AC,B) ≥ n and rsv(A,B) ≥ n, where AC stands for the combination of A and

C. This does not necessarily lead to rsv(A,C) ≥ n, as the example of map(A) ≡

{ 〈〈ElementType, Paragraph, p; 1〉〉 , 〈〈V alue, house, p; 1〉〉 }, map(B) ≡ { 〈〈ElementType,

Paragraph, p; 1〉〉 , 〈〈V alue, courtyard, p; 1〉〉 , 〈〈V alue, house, p; 1〉〉 } and map(C) ≡ {

〈〈ElementType, Paragraph, p; 1〉〉 , 〈〈V alue, courtyard, p; 1〉〉 } demonstrates.1 Cut is not

supported.

Right Weakening is also not supported. Otherwise, we would be able to conclude

S � T given that S � T ⊗U . From { 〈〈ElementType, p; 1〉〉 , 〈〈V alue, garden, p; 1〉〉 }

about { 〈〈ElementType, p; 1〉〉 , 〈〈V alue, house, p; 1〉〉 , 〈〈V alue, garden, p; 1〉〉 } , we can-

not conclude { 〈〈ElementType, p; 1〉〉 , 〈〈V alue, garden, p; 1〉〉 } about { 〈〈ElementType, p;

1〉〉 , 〈〈V alue, house, p; 1〉〉 }. Right Weakening is not supported.

Mix was presented in Section 4.4.2 as a specific variant of Left Monotonic Union and

is therefore at least conditionally supported. It makes sure that the added information is

about the target situation. Investigating Left Monotonic Union, we have argued above that

a threshold n must be reached, though the added information might add too many unique

terms in query and document component. Let us assume that S ≡ map(A), T ≡ map(B)

and U ≡ map(C). Mix implies that rsv(A,C) ≥ n as well as rsv(B,C) ≥ n. In Equation

(5.2.1) only new terms are added that are part of Q ∩ D. Under no circumstance can

the sum in the denominator decrease. Yet, this does not change that ||Q|| and ||D||

might increase so that then rsv will fall below n. This demonstrates that Mix is only

conditionally supported as well as that the control of the monotonic behaviour for the

XML vector space retrieval model is not dependent on the actual information overlap, as

1To enhance readability, we ignore all additional information next to the index terms in the descriptors
such as term frequency, etc.
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N is chosen a priori.

While Mix is a variant of Left Monotonic Union, Context-Free And is a specific

variant of Right Monotonic Union. What has been said about Mix, also applies to Context-

Free And. It is conditionally supported, as the change in ||Q|| and ||D|| might outweigh

the information overlap increases.

Next, the containment rules will be looked at. Deep containment is not given for the

XML vector space model. The query refinement can be seen as introducing some kind

of semantics, but it remains on the level of co-occurrences of terms. Containment does

not hold for the XML retrieval vector space model. Let us assume that S ≡ map(A)

and T ≡ map(B), as well as Si ≡ map(C) and Tj ≡ map(D). Si is about Tj only if the

size of Tj is large enough to constitute an overlap that makes rsv(C,D) ≥ n. As Si is a

subsituation of S and Tj of T , also rsv(A,B) ≥ n only if rsv(C,D) ≥ n. Containment is

therefore not necessarily given for the model.

Absorption holds, too, for similar reasons as for the plain vector space model. As

containment means that all the infons in S can also be found in T , composing S and T

means absorbing the infons in T , as composition uses ∪. Absorption is therefore supported.

Right Containment Monotonicity is a variant of Right Monotonic Union. It

concludes that S � U , given that S � T and T → U . Say, S ≡ map(A), T ≡ map(B)

and U ≡ map(C). Then, it is not necessarily the case that S � U . Say rsv(A,C) = ac

and rsv(A,B) = ab. According to the assumption of containment ac ≤ ab. Thus, though

ab ≥ n, not necessarily also ac ≥ n. Right Containment Monotonicity is not supported.

Non-conflict-containment is trivially given, because we assume preclusion to be a

relation only between elements of different types where one is not informative. If two

subsituations contain each other, they cannot have different types and do not preclude

each other. Similarly, Containment Preclusion is given. If a situation S contains T ,

then they must have the same element type. If T precludes U , then they must have

different element types where one is not informative. Thus, S must also preclude U , and

Containment Preclusion is supported.

The first of the non-aboutness reasonings is Mutual Preclusion, which is trivially

given if we define preclusion only structurally. If S precludes T , one of them must represent

elements that are not informative. Thus, T also precludes S. Simple Anti-Aboutness,

however, is not supported. Just because two situations are not about each other, it does

not mean that their element types are not informative.

Negation Rational is not strict enough for the XML vector space retrieval model. We

need to have an overlap of significantly relevant information items. According to the as-

sumption of Negation Rational: With S ≡ map(A), T ≡ map(B) and U ≡ map(C),

we can without contradiction say that rsv(A,B) = 1 and therefore S � / T , while

rsv(AC,B) ≥ 2 and therefore S � / T ⊗ U . 1 could be below the threshold but 2

above. Thus, Negation Rational is not given. Strict Negation Rational cannot hold,

as Negation Rational does not.

The Closed World Assumption improves precision. It clearly does not hold for the

XML retrieval vector space model. Though two XML elements do not contain each other,
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they still might overlap enough in their information to pass the threshold in rsv.

The last set of rules that we are going to investigate are the conservative aboutness

rules. They are all trivial extensions of the unguarded monotonicity rules. Guarded Left

Monotonicity (GLM) will conclude S ⊗ U � T if S � T and S does not preclude

T . We assumed that S and T would only preclude each other, if they are situations of

different element types. Without this assumption, we would have no monotonicity rule

at all. Thus, GLM is just a specification of the reasoning assumptions already given

for left monotonicity and holds conditionally. The same applies for Guarded Right

Monotonicity. It holds conditionally, as it is a special case of Right Monotonic Union

that makes the assumptions in it explicit.

Qualified Left Monotonicity and Qualified Right Monotonicity both hold con-

ditionally as special cases of Left and Right Monotonic Union.

5.2.5 Completeness

Next, the completeness of the above rules needs to be proven. We have to show that if

rsv(A,B) ≥ n then map(A) � map(B).

First, let us assume that in order to achieve rsv(A,B) ≥ n, the overlap in items in

query and documents in Equation (5.2.1) must be at least of counting size t. Let us further

assume that A ∩ B ≡ C. Obviously, C ⊆ A and C ⊆ B, and |C| ≥ t. Let D ≡ A \ C and

E ≡ B \ C. Furthermore, let us assume that S ≡ map(A), T ≡ map(B), U ≡ map(C),

V ≡ map(D) and W ≡ map(E). Then also with Singleton Reflexivity and LMU:

U � U

U ⊗W � U

We can apply LMU without further condition, as we know from the assumptions that

|C| ≥ t. Then, also |C ∪ E| ≥ t. Next, we apply Set Equivalence:

U ⊗W � U, T ≡ U ⊗W

T � U

Using, Symmetry and LMU again, we can derive:

T � U

U � T

U � T

U ⊗ V � T

Again, LMU must again unconditionally hold. To arrive at S � T , we can use Set

Equivalence again:
U ⊗ V � T, S ≡ U ⊗ V

S � T

The aboutness proof system is complete, as we have a rule set to conclude that S � T ,

given rsv(A,B) ≥ n.

This proof is based on the coordinate retrieval one in [Huibers, 1996]. Yet, it is also

different at the same time, which clearly shows the difference in his aims and objectives
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towards ours. As discussed, Huibers is interested in showing the soundness and complete-

ness of principal retrieval models. We are interested in looking at actual retrieval models

from INEX. His completeness proofs do not include the conditional aboutness rules, as

these are unknown to his set of aboutness rules. In order to prove our completeness, we

need to show that the conditions in the rules we are applying are fulfilled in our particular

circumstances.

5.2.6 Reflection

For the reflection of XML vector space retrieval, we look at the eight cases developed in

Section 4.7.6. Our aim is to compare the behaviour of this model with the pure type

model based on hierarchical inclusion. The reflection gives us another measure of how

much hierarchial inclusion is realised in the model.

The first case we consider is (1) the bottom exhaustive query. Let us assume, the query

Q is itself {∅}. Then, the only document component D that is never an exhaustive answer

to Q is {∅}. Let us furthermore assume, Q ≡/ {∅}. In this case, we cannot guarantee that

no document component will ever be retrieved, as with Singleton Reflexivity Q will be

at least about itself. Therefore, there is no other situation than {∅} that is part of the

bottom exhaustive query set. Thus, the bottom exhaustive query is {∅}. In rsv, then

||Q|| = 0 and rsv becomes undefined. In an analogous manner, we can prove that (2) the

bottom specific document component, (3) the bottom exhaustive document component

and (4) the bottom specific query are all {∅}. The results are summarized in Table 5.9.

Table 5.9: Reflection of structural behaviour of XML vector space model
XML vector space Retrieval Pure type XML retrieval

Top Exhaustive Document Component (virtual) root

Top Exhaustive Query {∅}
Bottom Exhaustive Document Component {∅}

Bottom Exhaustive Query {∅}
Top Specific Document Component {∅}

Top Specific Query (virtual) root

Bottom Specific Document Component {∅}
Bottom Specific Query {∅}

Looking at the pure type XML retrieval and XML vector space model in Table 5.9,

where we have entries for the pure type XML retrieval, we miss them for the XML vector

space model and vice versa. The result of the reflection is therefore that XML vector

space retrieval does not include XML structure in its aboutness decision. This becomes

particularly clear if we compare the XML vector space retrieval reflection with the one

for pure type XML retrieval: The XML vector space retrieval model is first of all not

able to discriminate the behaviour for the cases where we find bottom exhaustive and

specific document components and queries. Everywhere the entry is {∅}. In particular,

the model does not deliver a concept of top specific document components, which would

be a theoretical version of a document component that is always a focussed answer. This

can be seen as a disadvantage if the declared aim of XML retrieval in general is to deliver

the most specific answers. XML vector space retrieval does not deliver an approximation
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of what is always top specific and therefore does not have an element describing the

boundaries of specificity.

The vector space model in itself has no means to express structure. The vectors do not

contain dimensions that reflect the structural composition of the information they repre-

sent. That the flat model lacks an inherent means to express structure, entails that also

the XML vector space retrieval model has no intrinsic way of expressing structure. This

has become particularly clear while comparing the XML vector space retrieval reflection

with pure type XML retrieval one.

The overall conclusion from Section 5.2.4 and this section is that the XML vector

space retrieval model does not substantially differ from the flat based one. We will see in

Chapter 8 how this fact manifests itself in the experimental evaluation.

5.2.7 Conclusion

Table 5.10 summarises the results of our theoretical evaluation for the vector space models.

We can clearly see that XML vector space retrieval differs strongly from pure type XML

retrieval. XML vector space retrieval is essentially based on information overlap between

D and Q, not on their structural relationship.

Reasoning behaviour Plain vector space XML vector space Pure Type

XML Retrieval

Singleton Reflexivity fully fully N/A

Reflexivity N/A N/A fully

Symmetry fully fully not

Set Equivalence fully fully fully

Transitivity not not fully

Euclid not not not

LMU fully ||D|| and ||Q|| fully

RMU fully ||D|| and ||Q|| fully

Cut not not fully

Right Weakening not not not

Mix fully ||D|| and ||Q|| fully

Context-Free And fully ||D|| and ||Q|| fully

Containment fully not not

Absorption fully fully not

Right Containment Monotonicity fully not not

Non-Conflict-Containment N/A fully fully

Containment Preclusion N/A fully fully

Mutual Preclusion N/A fully fully

Negation Rational N/A not fully

Closed World Assumption N/A not fully

Table 5.10: Vector space retrieval evaluation results

If we compare the reasoning behaviour of XML vector space retrieval with its flat

equivalent on the one hand side and with the pure type model on the other hand side,

various differences in Table 5.10 are significant. XML vector space retrieval is a symmetric

model following its flat equivalent, while pure type retrieval is asymmetric and supports

transitive reasoning. These two key reasoning properties that indicate advanced reasoning

using the XML structure are both not supported by the analysed vector space models.
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The same applies to Cut reasoning. On the other hand, XML vector space retrieval has a

monotonic reasoning behaviour that is in-between the ones for the flat vector space model

and the pure type vector space. We shall see in Chapter 8 how this is to its advantage,

when we analyse the experimental evaluation using our theoretical insights.

Although the conditional support for LMU and RMU helps with the experimental

performance, Mix and Context-Free And are not fully supported by XML vector space

retrieval. We have seen that the conditional support for these two reasoning properties is a

direct consequence of the fact that the conditions to the monotonic reasoning are external

to the aboutness decision. This is in contrast to pure type XML retrieval. It is finally

interesting that Containment and its monotonicity reasoning are both not supported by

the XML vector space model, which marks a difference to its flat equivalent and makes

its reasoning behaviour closer to pure type XML retrieval and its support of structural

reasoning. In all the applicable preclusion-induced reasoning, we also see a behaviour

closer to pure type XML retrieval than to the flat vector space retrieval. We come back

to this when explain experimental results in Chapter 8.

In the next section, we investigate another type of a successful flat document retrieval

model that has been adjusted to XML retrieval. For this purpose, we present two language

modelling approaches.
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5.3 Language Models

Language models have proven to be a popular method for XML retrieval. We will soon see

in more detail why this is the case. For the time being, it suffices to say that they introduce

an easy way of changing the unit for indexing. In XML retrieval different language models

are calculated, one per document component. Parents and children are then related by

combining their document component language models. We concentrate on two XML

retrieval models [Sigurbjörnsson and Kamps, 2005] and [Ogilvie and Callan, 2005]. We

shall call the first one XML Language Modelling I and the second one XML Language

Modelling II.

5.3.1 Background

Language models have been introduced in [Ponte and Croft, 1998]. Their research has

proven that language modelling is a powerful and flexible tool to provide solutions to

numerous problems in IR from ad-hoc information retrieval to modern web retrieval.

[Ponte and Croft, 1998]’s idea for language modelling was to measure which terms t

will probably be asked for when searching for a document d.

P (Q|Md) =
∏

t∈Q

p(t|Md)×
∏

t/∈Q

(1.0 − p(t|Md))

According to this formula based on the maximum likelihood estimate from [Ponte and

Croft, 1998] the language modelling ranking depends on the combined probabilities of

producing the terms t of a query Q and not producing other terms from the language

model Md of a document.

The approach is based on the modelling of the languages in documents and queries.

The retrieval task is under these circumstances to generate the query as a random process

from the documents’ language models. Hence, a language model for each document has

to be inferred and the probability of a query given that document has to be estimated.

Language models are part of the probabilistic approaches to IR. These have been

seen to be extremely powerful and elegant [van Rijsbergen, 2000]. The main argument is

that probabilistic methods best express the imperfect knowledge underlying the decision

whether a document component is about a query.

According to our methodology from Section 4.1, we need a flat document equivalent

for language models first, before we can continue with our examination of XML retrieval

approaches. We (briefly) present the aboutness decision in the flat document language

model based on a commonly used simplification of [Ponte and Croft, 1998].

5.3.2 Theoretical Evaluation of Flat Document Language Modelling

For our flat document equivalent we use the standard version of language modelling as

presented in [Manning et al., 2008]. This is a simplified version of [Ponte and Croft, 1998],

but it is the underlying model of many variations including those used in XML retrieval,

as we show later. In the model, words are determined that most likely appear in a relevant
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document. The documents are then ranked based on the probability whether they contain

the query words often.

In order to rank documents, we first need to infer a language model for a document

and estimate the probability of generating the query from there. In [Manning et al., 2008],

the language model of any document is based on the maximum likelihood estimate, which

estimates the language model of a document by considering how many times a term occurs

in the document: P (q|Md) = Πt∈q
tf,d
td

, where tf,d is the frequency of a term t in a document

d and td is the overall number of terms in the document. Md is the language model and

q the query.

As only the terms that are part of the query are considered, we suspect that the

model is also built on information overlap. This would correspond to our experience from

the other simple model based on information overlap, the plain vector space model from

Section 4.6. Furthermore, it seems that aboutness is also simply given by P (q|Md) > 0.

No external threshold is defined in the model.

However, looking at the example calculations in Section 5.3.3.2, we see that P (q|Md)

is never 0. This is the case, because smoothing takes place to mitigate the problem that

terms only appear sparsely in documents. Without smoothing, P (q|Md) would only be

larger than 0 if all query terms appear in the document. This is too strict. We need to

smooth the probabilities in a language model and discount non-zero probabilities.

There are many smoothing approaches according to [Manning et al., 2008]. We choose

the one that is also used in the XML language modelling approaches we analyse. It is

called the linear interpolation approach or Jelinek-Mercer approach [Manning et al., 2008].

Here: P (t|Md) = λP (t|Md) + (1 − λ)P (t|Mc). λ is a tuning constant between 0 and 1,

which we can ignore in our discussions. Mc is the collection language model of a term t

and the smoothing value. This means that P (q|Md) = Πt∈q(λP (t|Md) + (1− λ)P (t|Mc)).

As we only consider terms that are part of the collection, (1− λ)P (t|Mc) > 0. Then also,

P (q|Md) > 0.

According to the Jelinek-Mercer approach, the smoothing value is the smallest value

for estimating how much a term contributes to a language model. Then, the smallest

possible value for P (q|Md) will be a product of smoothing values if we ignore the constant

λ. In fact, it will be the product of smoothing values for all terms in the collection c:
∏

t∈c(1 − λ)P (t|Mc). We call this value θ. It describes an internal threshold and is the

retrieval status value of a document that has all collection terms but no query terms. The

document is therefore not able to generate the query language model, because the query

asks for information that cannot be found in the document collection.

[Manning et al., 2008] also discuss that the value of smoothing goes beyond a technical

correction to avoid problems with sparsely distributed terms t. It has an impact on the

performance of the model as an internal threshold of aboutness, as we shall see.

5.3.2.1 Translation

In [Manning et al., 2008], the document information is captured as terms used to generate

the language models. We are able to reuse parts of our vector space model translation
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from Section 4.6.2. In this case χ(d) describes the set of descriptors (again with index

terms and other information to calculate rsv), while χ(q) corresponds to the descriptors in

q. We again use the basic infon language, as defined on page 42. Index term are directly

translated into infons and the set of all index terms infons is the document situation.

map(χ(d)) = { 〈〈V alue, t; 1〉〉 |t ∈ χ(d)}

The operators equivalence, composition, containment and preclusion are defined analo-

gously to the ones for the simple vector space model.

• Equivalence: Given two situations S and T , S ≡ T =def (ϕ ∈ S ⇔ ϕ ∈ T ), where

ϕ is any infon based on all keywords in the document collection. This means that

the underlying language models for S and T are the same, which implies in our case

that they contain the same descriptors from a collection.

• Composition: Given two situations S and T , S⊗T =def (S∪T )(p1,r1,...,pn,rn)(q1,s1,...,qn,sn)

with p,q and r,s are parameters used in S and T respectively. The resulting new lan-

guage model using the composition operator is simply the combined set of descriptors

from a collection.

• Containment: Given two situations S and T , S → T =def (ϕ ∈ S → ϕ ∈ T ),

where ϕ is any infon based on all descriptors in the document collection. In terms

of language models, this means that S’s descriptors can all be found in T , too, and

T has no other descriptors.

• Preclusion is not applicable beyond simple non-aboutness, similarly to what we said

about the simple vector space model in Section 4.6.2.

The next step presents the rules for flat language modelling in order to process afterwards

the theoretical evaluation for the XML retrieval models.

5.3.2.2 Rules

Next, we introduce the flat document language modelling aboutness decision, based on

[Manning et al., 2008]. Let D be a set of documents and d be a document in it. q

represents a query and θ the internal threshold described above. The language modelling

aboutness decision is:

d about q if and if only P (q|Md) > θ

Then, our aboutness definition states that a document represented by χ(d) is about a

query (χ(q)) if the set of index terms that constitute the document’s language model

induces a large enough belief into the language model of the query. The large enough

belief is measured by θ, which is smallest possible value for rsv based on the product of

smoothing values.

We try and base our aboutness system on our existing analyses of other aboutness

systems, which is in this case the simple (non-thresholded) vector space retrieval model
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from Section 4.6. This way we can avoid having to go through all the rules. As explained in

Section 5.3.2, the language model is essentially built on information overlap (measured in

descriptors’ overlap) between document and query. We therefore claim that the following

Proposition holds with given sets of descriptors χ(d) describing a document d and χ(q)

describing a query q:

Proposition 5.3.1 P (q|Md) > θ ⇔ χ(d) ∩ χ(q) 6≡ ∅

Proposition 5.3.1 can be proven by:

Proof ⇒: Assume P (q|Md) > θ. This means also that P (t|Md) > 0 for some terms t. As

td > 0 according to its definition, this must then also imply that tf,d > 0, which counts

in P (q|Md) the number of times an index term from a query appears in a document. As

tf,d > 0, there has to be at least one descriptor, which is part of both document and query

or χ(d) ∩ χ(q) 6≡ ∅.

⇐: Assume χ(d) ∩ χ(q) 6≡ ∅, which implies there is at least one descriptor part of d and

q. Thus, tf,d > 0 and td > 0 and finally P (q|Md) > θ.

Proposition 5.3.1 shows that the aboutness decision for language models is based on infor-

mation overlap between query and document, which determines whether P (Q|Md) > θ.

This looks similar to the thresholded vector space model, for which we also have the same

basic infon language. However, the decisive difference is that the threshold in the vector

space model functions as a means to control aboutness behaviour, while here it is mainly

used to avoid undesired side effects in P . Looking at Proposition 5.3.1 the aboutness deci-

sion of the flat language model seems to be more related to the simple vector space model

one from Section 4.6. Both models are embedded in each other according to Huibers’

definition [Huibers, 1996]. Thus, for the analysis of language modelling, we can focus

on those rules that are either conditionally or fully supported by the simple vector space

model from Section 4.6.

Next, we prove the reasoning properties using Proposition 5.3.1. We can keep the

proofs very brief, as they are similar to the ones for the simple vector space model. As for

the vector space retrieval, we would like to exclude Reflexivity in order to avoid logical

anomalities. Singleton Reflexivity is supported for simple language modelling. Say,

that A and B are both sets of descriptors. We have to show that, with map(A) ≡ {φ}

and map(B) ≡ {φ}, then A∩B ≡/ ∅. The latter is the case as φ is part of both. Singleton

Reflexivity is given (according to the proposition).

Symmetry is supported, too. Say S ≡ map(A) and T ≡ map(B). Symmetry is given,

as ∩ in A ∩ B is commutative. Symmetry also clearly shows that the threshold θ does

not control the aboutness behaviour. According to Section 5.3.2, we assume θ not to be

a fixed value but the result of a function dependent on the number of descriptors in the

collection. Because all terms in the collections are considered, θ will not change if we make

the document the query, as implied by the Symmetry rule.

Set Equivalence is also supported. Then, map(A) ≡ map(B) and map(A) � 

map(C) are given according to the assumptions. We have to show that map(B) � 
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map(C) is supported. From the premises, we know by the definition of map that A ≡ B

and A ∩ C ≡/ ∅ which includes B ∩ C ≡/ ∅. This proves that the Set Equivalence rule is

given. We can omit those simple rules that were not supported for the plain vector space

aboutness such as Transitivity, etc.

Regarding the combination rules, we find again an identical behaviour to plain vector

space retrieval. Left Monotonic Union is supported if S⊗U � T given that S � T .

Say, that S ≡ map(A), T ≡ map(B) and S ⊗ U ≡ map(C). Then, A ∩ B ≡/ ∅, as S is

about T , and C ⊇ A by definition of map. Then, also C ∩ B ≡/ ∅ and Left Monotonic

Union is supported.

For Right Monotonic Union, we say that from S � T also S � T ⊗ U . Again:

S ≡ map(A), T ≡ map(B) and T ⊗ U ≡ map(C). A ∩ B ≡/ ∅, with S about T . C ⊇ B

follows from the definition of map. With A∩C ≡/ ∅, Right Monotonic Union is supported.

Cut and Right Weakening are not given, as they are not supported for plain vector

space retrieval. Mix is given, as Left Monotonic Union is, and Context-Free And is

supported, as Right Monotonic Union is.

Deep containment is not defined for the flat document language model. Containment,

Containment Composition, Absorption, Right Containment Monotonicity, Non-conflict-

containment, Closed World Assumption and Containment Preclusion are all only sup-

ported for surface containment for the model. S contains T if all descriptors in A can

also be found in B and no other, with S ≡ map(A) and T ≡ map(B). Then, obviously

A ∩B ≡/ ∅.

Absorption is given according to the definitions of composition and containment.

Right Containment Monotonicity concludes S � U from the assumptions S � T

and T → U . This means all elements in T can also be found in U . This does not imply

that the index terms that constitute an overlap between S and T can also be found in

both S and U . Right Containment Monotonicity is not given.

As preclusion is not defined for the flat language model, Non-conflict-containment and

Containment Preclusion are not applicable. All the non-aboutness rules are then not

applicable, too: Mutual Preclusion, Guarded Left Monotonicity, Guarded Right Mono-

tonicity, Qualified Left Monotonicity and Qualified Right Monotonicity. Language models

cannot control or qualify their monotonic behaviour. Without preclusion, non-aboutness

also does not make sense for flat language modelling.

In the following sections we use this flat language model to compare the behaviour

of language models for structured document retrieval. We begin with the model from

[Sigurbjörnsson and Kamps, 2005].

5.3.3 XML Language Models I

5.3.3.1 Background

[Sigurbjörnsson and Kamps, 2005] use language models for XML retrieval. They argue

that not all elements are equally likely to be seen as satisfactory answers to an information

need [Sigurbjörnsson and Kamps, 2005], and that too small elements should generally not
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be regarded as relevant answers. As in the XML vector space model, each XML element

is indexed separately: one index for overlapping elements, one length-based one, one for

elements frequently appearing in assessment sets (Qrel) and one for sections. The complete

article is kept in another index:

• Overlapping element index: This index contains all elements.

• Length-based index: Only those elements are kept that have an average length of

more than 25 terms.

• Qrel-based index: Only elements are indexed that have appeared relatively fre-

quently in previous assessment sets. These are article, bdy, sec, ss1, ss2, p, ip1

and fig in the context of the INEX test collections.

• Section index: Only section elements are indexed.

• Article index: The complete article is indexed.

• Fielded index: The complete article is kept together with some selected fields for

context restrictions in structured queries. In INEX 2005, they used the following

restrictions most common to INEX 2003 and 2004 queries: abs, fm//au, fm//atl,

kwd, st, bb//au, bb//atl, and ip1.

The ranking uses a variant of what we have described for the plain document language

model:

P (q|e) = P (e) ∗
k
∏

i=1

P (ti|e)

q is a query with terms t1, ..., tk. e is an element. The language model is determined by

interpolating element, document and collection language models:1

P (ti|e) = λe ∗ Pmle(ti|e) + λd ∗ Pmle(ti|d) + (1− λe − λd) ∗ Pmle(ti)

Pmle(.|e) refers to the language model of an element e, Pmle(.|d) of a document d containing

e, and Pmle(ti) is a language model of the collection. Two training parameters are used,

λe for the element model and λd for the document.

Table 5.11: dld
Q D1 D2 D3 P11 P12 P21 P22 P31 P32

3 4 5 4 2 2 2 3 1 3

Table 5.12: DocumentFrequency
house garden courtyard garage damage fire door arrive

dft 2 1 2 2 1 1 1 2

1Please note that for all discussed models we use their own notations.
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We can easily identify the similarity to the plain document language model. In par-

ticular, the maximum likelihood estimate Pmle is again defined as the number of times

a term occurs in a document component compared to the overall number of terms in

that document component. We can thus assume that the model is again essentially us-

ing information overlap between document component and query to determine aboutness.

Compared to Section 5.3.2, the linear interpolation smoothing approach is amended by

the immediate context of the document component, the article language model. Please

note that this interpolation does not relate a specific element to its direct context, to its

children or ancestors, but only to its overall context, its document and its collections. This

is important to later understand the way the model integrates structure. Finally, a length

prior of an element e in a collection c is calculated:

Pc(e) =
|e|

∑

i∈c |i|

Next, we discuss the example.

5.3.3.2 Example

Table 5.13: tf
house garden courtyard garage damage fire door arrive

D1 1 0 0 1 1 1 0 0

D2 0 2 1 0 0 0 1 1

D3 1 0 1 1 0 0 0 1

P11 1 0 1 0 0 0 0 0

P12 0 0 0 0 1 1 0 0

P21 0 1 0 0 0 0 1 0

P22 0 1 1 0 0 0 0 1

P31 1 0 0 0 0 0 0 0

P32 0 0 1 1 0 0 0 1

We use the same example as in Section 5.2.2. Table 5.11 shows the number of term

occurrences per document component.

Table 5.14: Pmle(.|e)
house garden courtyard garage damage fire door arrive

D1 0.25 0 0 0.25 0.25 0.25 0 0

D2 0 0.4 0.2 0 0 0 0.2 0.2

D3 0.25 0 0.25 0.25 0 0 0 0.25

P11 0.5 0 0.5 0 0 0 0 0

P12 0 0 0 0 0.5 0.5 0 0

P21 0 0.5 0 0 0 0 0.5 0

P22 0 0.33 0.33 0 0 0 0 0.33

P31 1 0 0 0 0 0 0 0

P32 0 0 0.33 0.33 0 0 0 0.33

In Table 5.12 we find the document frequency per term. Table 5.13 presents the term

frequency per document component. The maximum likelihood is presented in Table 5.14.
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Table 5.15: P (t|C)

house garden courtyard garage damage fire door arrive

0.15 0.15 0.15 0.15 0.08 0.08 0.08 0.15

Again, the Jelinek-Mercer interpolation smoothing method is used. The results are shown

in Table 5.15.

Table 5.16: Combinations
house garden courtyard garage damage fire door arrive

D1 0.19 0.09 0.09 0.19 0.15 0.15 0.05 0.09

D2 0.09 0.25 0.17 0.09 0.05 0.05 0.13 0.17

D3 0.19 0.09 0.19 0.19 0.05 0.05 0.05 0.19

P11 0.22 0.09 0.09 0.22 0.12 0.12 0.05 0.09

P12 0.17 0.09 0.09 0.17 0.17 0.17 0.05 0.09

P21 0.09 0.26 0.15 0.09 0.05 0.05 0.22 0.11

P22 0.09 0.23 0.21 0.09 0.05 0.05 0.07 0.21

P31 0.42 0.09 0.12 0.12 0.05 0.05 0.05 0.12

P32 0.12 0.09 0.21 0.21 0.05 0.05 0.05 0.21

Table 5.17: P (e)

D1 P11 P12 D2 P21 P22 D3 P31 P32

0.15 0.08 0.08 0.19 0.08 0.12 0.15 0.04 0.12

Following [Sigurbjörnsson and Kamps, 2005], we further assume λe = 0.1 and λd = 0.3.

Then, we can calculate the interpolation of element, document and collection:

P (ti|e) = λe ∗ Pmle(ti|e) + λd ∗ Pmle(ti|d) + (1− λe − λd) ∗ Pmle(ti)

This leads to the combinations as represented in Table 5.16. Finally, the length prior

P (e) = |e|∑
e |e|

is represented in Table 5.17.

The final probabilities are then: P (q|D2) = 0.0007266, P (q|P22) = 0.0005216, P (q|D3) =

0.0004874, P (q|P21) = 0.0002808, P (q|P32) = 0.0002722, P (q|D1) = 0.0002309, P (q|P31) =

0.0001814, P (q|P11) = 0.0001426 and P (q|P12) = 0.0001102.

Before continuing with the theoretical evaluation, it becomes clear by looking at the

example that a combination of the smoothing values is the lowest possible value in Table

5.16. This means that no element, even though it has no information overlap with the

query, will ever have a retrieval status value of 0, which has led us to a new form of

threshold, which is a threshold that is not external as in the XML vector space model but

internal.

5.3.3.3 Translation

The LM I model is similar to the XML vector space retrieval. Again, standard IR tech-

niques are applied to XML retrieval by separating out the XML elements in the indexing

step. The main difference is that the authors do not merge their retrieval results. Regard-
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ing the translation, the approach for the flat document language model has to be extended

to reflect the separation into different indexes.

With respect to these initial considerations, the XML retrieval model LM I is generally

built on the decision that a document d represented by a set of descriptors χ(d) is about

a query q (represented by χ(q)) if and if only the information in q can be found in the

indexes below. We therefore have to give a map function to translate information items

into situations for each of the above indexing methods.

1. mapfull(χ(d)) = { 〈〈ElementType, e, i; 1〉〉 , 〈〈V alue, t, i; 1〉〉 |t ∈ χ(d)}.

2. maplength(χ(d)) = { 〈〈ElementType, e, i; 1〉〉 , 〈〈V alue, t, i; 1〉〉 ||χ(d)| > κ}.

3. mapQrel(χ(d)) = { 〈〈ElementType, e, i; 1〉〉 , 〈〈V alue, t, i; 1〉〉 |e ∈ {article, bdy, sec, ss1,

ss2, p, ip1, f ig}, t ∈ χ(d)}.

4. mapsec(χ(d)) = { 〈〈ElementType, e, i; 1〉〉 , 〈〈V alue, t, i; 1〉〉 |e ∈ {sec}, t ∈ χ(d)}.

5. maparticle(χ(d)) = { 〈〈ElementType, e, i; 1〉〉 , 〈〈V alue, t, i; 1〉〉 |e ∈ {article}, t ∈ χ(d)}.

6. mapfielded(χ(d)) = { 〈〈ElementType, e, i; 1〉〉 , 〈〈V alue, t, i; 1〉〉 |e ∈ {abs, kwd, st,

fm//au, fm//atl, bb//au, bb//atl, ip1}, t ∈ χ(d)}.

e is an element type in the set of all element types of a collection, t is a descriptor in

the collection, i an identifier for infons and κ is a length threshold. Apart from the

article index, the major difference to the flat language model is the division into document

components instead of documents.

This translation appears similar to the one for the XML vector space model in Section

5.2.3, but for keeping separate indexes. In fact, we find a similar model repeated for

almost all translations we encounter. Conceptually, however, this model is very different

from the XML vector space model. Different indexes represent different experiences of the

importance and impact of particular document components. This is ‘hidden’ in the map

function which allows us to use straight-forward set operations.

Next we need to define the operators: equivalence, composition, containment and

preclusion. We can reuse the ones for flat language modelling retrieval from Section

5.3.2.1 but need to consider now that for all operators we need to assume that they only

relate situations, which are part of the same index. Then, given two situations S and T ,

they are equivalent if all their infons are identical and are part of the same index. S and

T can be composed using ∪ and parameter replacement — again only within the same

index. S contains T , if T has only infons from S. We thus define containment as surface

containment. Deep containment is an addition to the model. Only preclusion differs

slightly from what we have seen in 5.3.2.1. It is related to the preclusion for the XML

vector space model from Section 5.2.3. A situation S describing a document component

precludes another situation T if one of them is an element that is not part of conditions

of a particular index. For instance, it is not part of the most informative elements or not

a section or article or does not have the required length.

The next section investigates the aboutness rules.
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5.3.3.4 Rules

Let D be a set of document components and d a document component and q a query. The

LM I XML language model aboutness decision is then:

d about q if and if only P (q|Md) > θ

This formula looks like the flat language retrieval model one except for the interpolation,

which includes the relationship of each element with its collection and its containing article.

The internal threshold θ is still the product of the smoothing values for all terms in the

collection. The second major change is that d stands for document components instead

of documents. This similarity to the flat language model allows us to focus on those rules

that have been implemented by the flat language model and look at how they change their

behaviour for the different translations given above.

As the retrieval status value will only be θ, if any descriptor overlap between the

language model of query and document component is excluded, and is again dependent

on the collection language model plus this time the article language model, we can reuse

Proposition 5.3.1: We say for two situations S and T and sets of descriptors A and B

that S � T ⇔ map(A) ∩ map(B) ≡/ ∅ for S ≡ map(A) and T ≡ map(B). We use

map(A) ∩ map(B) instead of A ∩ B to reflect that we can only meaningfully combine

elements in the same index. The proof is analogous to the one for the flat language model,

as the maximum likelihood functions are the same. We do not need to repeat it here. This

time we would need to argue that according to rsv an element e is about a query q if they

both contain at least one common ti.

The model is therefore embedded in the flat language model. We can focus on its prop-

erties, but the discussion has to reflect the collection- and article-based internal threshold

and the introduction of structure by using different indexes. We can see here that our ap-

proach is different from the one by Huibers. In [Huibers, 1996], the focus is on proving the

soundness of aboutness systems. We are more interested in the actual behaviour of XML

retrieval models. For our inquiry, the formulation of the threshold θ and the interpolation

of XML elements with their neighbouring XML elements are key. This also means that we

cannot just rely on the proofs from Section 5.3.2.2 but have to start the discussion again.

Singleton Reflexivity is given for LM I. Letmap(A) ≡ {φ} andmap(B) ≡ {φ}, then

map(A) ∩map(B) ≡/ ∅. The latter is the case as φ is part of both. Singleton Reflexivity

is given.

Symmetry is a similar case. It is supported for all translations, too, for similar reasons

as it has been for flat language models, too. Set Equivalence is supported because it is

in the flat language model. Let us say that S ≡ map(A), T ≡ map(B) and U ≡ map(C).

Then, with map(A) ≡ map(B) and map(A) � map(C), also map(B) � map(C).

According to the definition of map we know that S ≡ T means that they both are part of

the same index and the same content. Thus, map(B)∩map(C) ≡/ ∅, which demonstrates

that Set Equivalence is given. The remaining simple aboutness rules do not apply.

Next, let us have a look at the combination rules. Regarding Left Monotonic Union
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(LMU), say that S ≡ map(A), T ≡ map(B) and S ⊗ U ≡ map(C). According to our

assumptions, we have map(A) ∩map(B) ≡/ ∅ and map(C) ⊇ map(A). Thus, map(C) ∩

map(B) ≡/ ∅, and LMU is unconditionally supported. LMU is even fully given, if the

element remains unchanged but the collection gets extended. Yet, the monotonic extension

can only take place within the same index. We cannot add an element from a different

index, as this would involve a completely changed aboutness decision. If, e.g., an article

element is added to a section, the section translation could not be used for the aboutness

decision anymore. Therefore, LMU is unconditionally given as long as we add information

only in the same index.

Looking at Right Monotonic Union, we define S ≡ map(A), T ≡ map(B) and

T ⊗ U ≡ map(C). If Right Monotonic Union would be given, then with S � T also

S � T ⊗ U . We therefore have map(A) ∩map(B) ≡/ ∅ and map(C) ⊇ map(B). Thus,

map(A) ∩map(C) ≡/ ∅, and Right Monotonic Union is supported. The same limitations

apply as for Left Monotonic Union.

Mix is a special case of Left Monotonic Union and is therefore also supported. Sim-

ilarly to Left Monotonic Union, only those situations can be combined, which are part

of the same index. This is interesting, as for XML retrieval parents and children are

about the same queries and Mix should therefore be an automatic property, because it ex-

tends Left Monotonic Union. However, this is not the case for this model, where children

and parents can be part of distinct indexes. Context-Free And holds, because Right

Monotonic Union does. The conditions are the same as for Mix.

Only surface containment is applicable to the model. If there is an overlap in index

terms of two subsituations, then their corresponding situations will be about each other.

As a subsituation is surface-contained in its situation, Absorption also holds. Finally,

Right Containment Monotonicity is not given, as it was not given for the flat language

model.

Preclusion is not defined for the LM I XML retrieval model. Therefore, all rules in-

volving preclusion are not applicable: Non-conflict-containment, Containment Preclusion,

Mutual Preclusion, Guarded Left Monotonicity, Guarded Right Monotonicity, Qualified

Left Monotonicity and Qualified Right Monotonicity. The Closed World Assumption does

not apply.

5.3.3.5 Completeness

To demonstrate completeness of the above rules, we have to show that for two descriptor

sets A and B (from the same index) if A contains descriptors from B, then map(A) � 

map(B). Let us say that C ≡ A∩B. C is the set of descriptors A and B have in common.

Let us assume that D ≡ A \ C and E ≡ B \ C. Furthermore, S ≡ map(A), T ≡ map(B),

U ≡ map(C), V ≡ map(D) and W ≡ map(E). As our aboutness proof system includes

the rules Left Monotonic Union, Right Monotonic Union and Set Equivalence we can make

the following conclusions. We begin with Reflexivity and state:

U � U
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With Right Monotonic Union, we can then also say:

U � U

U � U ⊗W

Using Set Equivalence, we can derive:

U � U ⊗W,T ≡ U ⊗W

U � T

Using an analogue combination of Set Equivalence and Left Monotonic Union finally de-

livers:
U � T

S � T

Therefore, the aboutness proof system has to be complete, as we have all the rules needed

to conclude that S is about T . Please note that we have stayed within the same index. It

is obvious that Completeness holds for all indexes.

5.3.3.6 Reflection

As demonstrated in Section 4.5, the reflection step determines those document components

and queries that are top or bottom exhaustive or specific.

1. A bottom exhaustive document component Dj is never exhaustively about any query

Q: {Dj |Dj ∈ D,Dj � / Q}. {∅} is Dj . The only D that is never exhaustively about

Q is {∅}, as ∅∩∅ ≡ ∅. Next, we assume that D is any other situation S with S ≡/ {∅}.

But then: S ∩ ∅ ≡/ ∅. Thus, D is always only {∅}. The value of its language model

is the interpolation of document and collection language model.

2. A bottom exhaustive query Qj is the one in which all document components D

are never exhaustive answers to: {Qj |Qj ∈ Q,D � / Qj}. The bottom exhaustive

query is {∅}. Let us assume the document component D is itself {∅}. Then, the

only query Q that any D is never an exhaustive answer to is {∅}. Let us assume

D ≡/ {∅}. Then, with D ≡ map(A) the only never given overlap to map(A) is {∅}.

Therefore, {∅} is the bottom exhaustive query. Its language model will again be the

interpolation of collection and document model.

3. A bottom specific document component Dj is never specifically about any query Q:

{Dj |Dj ∈ D, Q � / Dj}. The bottom specific document component is {∅}. The

proof is analogous to the one for bottom exhaustive queries.

4. A bottom specific query Qj is the one to which all document components D are

never specific answers: {Qj |Qj ∈ Q, Qj � / D}. The bottom specific query is again

{∅}.

As we found bottom exhaustive document component and query situations, we do not

have top exhaustive document component and query situations. Also, having a bottom
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Table 5.18: Reflection of structural behaviour
LM I XML Language Model Pure type XML retrieval

Top Exhaustive Document Component (virtual) root

Top Exhaustive Query {∅}
Bottom Exhaustive Document Component {∅}

Bottom Exhaustive Query {∅}
Top Specific Document Component {∅}

Top Specific Query (virtual) root

Bottom Specific Document Component {∅}
Bottom Specific Query {∅}

specific document component and query situation, we can exclude top specific document

component and query situations.

Like the XML vector space retrieval model, this model is distinctively different from

our pure type XML retrieval model. In fact, its reflection shows identical behaviour to the

XML vector space retrieval model, as both are built on information overlap. As in Section

5.2 for the vector space model, we see no way to incorporate structure in the aboutness

decision. Structure is included in the aboutness decision by a priori dividing elements

into several different indexes. [Sigurbjörnsson and Kamps, 2005] note as one of the main

complications with their approach, that they

‘are using widely different indexes, varying from an index containing all indi-

vidual elements or subtrees to indexes containing only the article or section

elements.’

Therefore, they conclude that ‘it is non-trivial to compare [...] over different indexes.’ In

the next section we look at a second language modelling approach that has found a way

to include XML structure in the aboutness reasoning.

5.3.4 XML Language Modelling II

5.3.4.1 Background

Another language modelling approach to XML retrieval has been presented in INEX 2004

[Ogilvie and Callan, 2004] and INEX 2005 [Ogilvie and Callan, 2005]. Documents are

modelled using a tree-based language model, which estimates the probability of the query

using the document compoments language models. Apart from a different notation, the

formula is again very similar to the flat document retrieval one in Section 5.3.2. Yet,

this time each language model (here called µe) is estimated by using evidence from the

document, its parent and the children:
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P (w|µe) = λP (w|θP (e)) + λD(w|θD(e)) + λC(w|θC)

+ λO
|s(e)|

|s(e)|+
∑

j′∈c(e) αt(j′)|j′|
P (w|θs(e))

+ λO
∑

j∈c(e)

αt(j′)|j|

|s(e)|+
∑

j′∈c(j) αt(j′)|j′|
P (w|θj) (5.3.1)

θx is the language model estimated for x, P (x) is the parent of x, D(x) the document

containing x, s(x) the element x, c(x) returns a list containing the children of x, t(x) is the

element type of the element x and C refers to the entire collection. The λ parameters in

the interpolation are set to be constant across all elements in the collection and estimated

beforehand using a training data set. The α parameters allow to provide additional weights

to particular types of children of elements.

The same formula is used again for the maximum likelihood estimation describing the

language model of each XML element:

P (w|θx) =
freq(w, x)

|x|

x is the observed text in the XML elements, freq(w, x) is the number of times the term

w occurs in x, and |x| is the length in terms of x.

Rankable items are finally ordered by:

P (Q|µe) =

|Q|
∏

i=1

P (qi|µe)

µe is the language model estimated for a particular element e. Finally, a linear length

prior is applied by multiplying the length of a relevant element with P (Q|µ).

Table 5.19: λC(w|θC)
house garden courtyard garage damage fire door arrive

0.07 0.07 0.07 0.07 0.04 0.04 0.04 0.07

Table 5.20: λD(w|θD(e))

house garden courtyard garage damage fire door arrive

D1 0.06 0 0 0.06 0.06 0.06 0 0

D2 0 0.09 0.04 0 0 0 0.04 0.04

D3 0.06 0 0.06 0.06 0 0 0 0.06

P11 0.06 0 0 0.06 0.06 0.06 0 0

P12 0.06 0 0 0.06 0.06 0.06 0 0

P21 0 0.09 0.04 0 0 0 0.04 0.04

P22 0 0.09 0.04 0 0 0 0.04 0.04

P31 0.06 0 0.06 0.06 0 0 0 0.06

P32 0.06 0 0.06 0.06 0 0 0 0.06
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Next we go through an example to show how the model works.

5.3.4.2 Example

Table 5.21: λP (w|θP (e))

house garden courtyard garage damage fire door arrive

D1 0 0 0 0 0 0 0 0

D2 0 0 0 0 0 0 0 0

D3 0 0 0 0 0 0 0 0

P11 0.01 0 0 0.01 0.01 0.01 0 0

P12 0 0.01 0.01 0 0 0 0.01 0.01

P21 0 0.02 0 0 0 0 0.02 0

P22 0 0.01 0.01 0 0 0 0 0.01

P31 0.04 0 0 0 0 0 0 0

P32 0 0 0.01 0.01 0 0 0 0.01

We use the same example, which we have already used for the LM I and the XML vector

space retrieval model (Section 5.2.2). Then, the maximum likelihood estimate is the same

as in Table 5.14. As linear priors, we use those which performed best in the experiments

in [Ogilvie and Callan, 2005]: λC = 0.475, λD = 0.222, λP = 0.035 and λO = 0.268, while

α is in our case 0.23, as we only have paragraph elements in the example. Tables 5.19 to

5.24 present the calculations.

Table 5.22: λO
|s(e)|

|s(e)|+
∑

j′∈c(e) αt(j′)|j
′|P (w|θs(e))

house garden courtyard garage damage fire door arrive

D1 0.06 0 0 0.06 0.06 0.06 0 0

D2 0 0.09 0.04 0 0 0 0.04 0.04

D3 0.06 0 0.06 0.06 0 0 0 0.06

P11 0.11 0 0.11 0 0 0 0 0

P12 0 0 0 0 0.11 0.11 0 0

P21 0 0.11 0 0 0 0 0.11 0

P22 0 0.07 0.07 0 0 0 0 0.07

P31 0.22 0 0 0 0 0 0 0

P32 0 0 0.07 0.07 0 0 0 0.07

Table 5.23: λO
|s(e)|

|s(e)|+
∑

j′∈c(e) αt(j′)|j
′|P (w|θs(e))

house garden courtyard garage damage fire door arrive

D1 0.02 0 0 0.02 0.02 0.02 0 0

D2 0 0.03 0.01 0 0 0 0.01 0.01

D3 0.02 0 0.02 0.02 0 0 0 0.02

P11 0 0 0 0 0 0 0 0

P12 0 0 0 0 0 0 0 0

P21 0 0 0 0 0 0 0 0

P22 0 0 0 0 0 0 0 0

P31 0 0 0 0 0 0 0 0

P32 0 0 0 0 0 0 0 0

Overall, the ranking is calculated using: P (Q|µe) =
∏|Q|

i=1 P (qi|µe). The results are (includ-

ing the length prior): P (Q|D2) = 0.01568, P (Q|P22) = 0.010584, P (Q|D3) = 0.012348,

104



Table 5.24: P (w|µe)
house garden courtyard garage damage fire door arrive

D1 0.21 0.07 0.07 0.21 0.18 0.18 0.04 0.07

D2 0.07 0.28 0.16 0.07 0.04 0.04 0.13 0.16

D3 0.21 0.07 0.21 0.21 0.04 0.04 0.04 0.21

P11 0.25 0.07 0.18 0.14 0.11 0.11 0.04 0.07

P12 0.13 0.08 0.08 0.13 0.21 0.21 0.05 0.08

P21 0.07 0.29 0.11 0.07 0.04 0.04 0.21 0.11

P22 0.07 0.24 0.21 0.07 0.04 0.04 0.08 0.19

P31 0.39 0.07 0.13 0.13 0.04 0.04 0.04 0.13

P32 0.13 0.07 0.21 0.21 0.04 0.04 0.04 0.21

P (Q|P11) = 0.0063, P (Q|P32) = 0.005733, P (Q|P21) = 0.004466, P (Q|D1) = 0.004116,

P (Q|P31) = 0.003549 and P (Q|P12) = 0.001664.

5.3.4.3 Translation

Regarding the translation, the model keeps the XML structure during indexing in order

to relate elements to each other in the aboutness reasoning. As the XML structure is

kept, we can reuse how, in general, XML trees can be translated into situations from

Section 4.7.2 and reuse its translation with new descriptors that contain the index terms

as well as their frequencies in a document component and the number of terms in that

document component. This is the case because LM II considers each XML element to

be a combination of its own language model with the language model of its parents and

children.1 We can also reuse the operators from pure type XML retrieval. Two situations

S and T are equivalent if they contain the same infons with parameter exchange. They

can be combined using ∪, while preclusion and containment are defined using element

type relationships.

The main difference between the Language Modelling I and Language Modelling II

as well as the XML vector space retrieval model is that structure is not just represented

during indexing but during the calculation of the retrieval status value. This can be done

given that for XML documents structurally related elements are also content related, as we

have seen in Section 5.2. Therefore, the language model of an element can be considered

to be dependent on the language model of its relatives — in the model by combining an

element’s and its descendents’ language models.

Each document component is considered to be a separate indexing unit. Structure

comes into play during the actual ranking while calculating the language models, not only

prior to the relevance calculation as in XML vector space and LM I. Hence, we have to

take into consideration structural constraints, while analysing the reasoning as represented

in the aboutness rules.

1 Please note that only the Parent relation is represented, while attributes are not defined.
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5.3.4.4 Rules

In order to decide whether an XML element d is about a query q the aboutness decision

for the LM II model is defined as follows:

d about q if and if only P (q|µe) > θ

As in the LM I model, θ is an internal condition. It is the background model retrieval

status value of an element. According to Tables 5.19 to 5.23, the smallest possible retrieval

status value is found in document components that are part of documents which contain

no query terms. One can clearly see this in Table 5.24. Just like in the flat document

retrieval model, θ is therefore the product of the smoothing values for all terms in the

collection.

We continue with examining which rules are included in the model. We can again

focus on those rules that were already supported by flat language modelling, as the LM II

model is an extension to it. The first rule to discuss is Reflexivity. Singleton Reflexivity

cannot be extended to Reflexivity in general to include calculations over empty sets, as

this can lead to undefined probability calculation. Otherwise, we would be in danger of

undefined divisions by zero [Ponte and Croft, 1998].

The question is whether for Singleton Reflexivity with map(A) ≡ {ψ} we can derive

PLM (q|µe) > θ. This has to be the case. We can ignore parent and children retrieval

status values, as we only consider a singleton element. P (q|µe) is larger than θ as the

language representation of ψ is about itself. Therefore, Singleton Reflexivity holds.

We could now continue with a detailed analysis of the rules and would soon discover

that the model does not differ from LM I in the rules it supports. It only differs in

the conditions. We therefore would just like to focus on a discussion of the monotonic

behaviour and the impact of θ on it.

Left Monotonic Union would be a property of the aboutness systems, if with S � 

T we could derive that S ⊗ U � T . The question we need to answer is whether the

extension to S ⊗ U will ever result in S ⊗ U � / T . This is not the case. We need to

distinguish between three cases:

1. S is extended with new content. This means that in Equation (5.3.1) the maximum

likelihood estimate might increase if new relevant terms are added. As, however,

in Equation (5.3.1) the existing set of relevant terms will not change, the retrieval

status value can only ever increase. The threshold is always passed.

2. U is the parent of S. Whatever the retrieval status value of this parent, we add it

in the parent part of Equation (5.3.1), which again means it cannot be reduced.

3. U is a child of S. Again, we only add retrieval status values of children without

changing S.

Thus, Left Monotonic Union is unconditionally supported.

In order to offer better control of monotonic behaviour, an improvement of the model

would be to introduce a threshold that would exclude elements with low retrieval status
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values such as P12 in the example from Section 5.3.4.2. However, it is difficult to describe a

threshold a priori. Furthermore, the inclusion of negative examples of irrelevant elements

seemed to have improved the model according to [Ogilvie and Callan, 2005]. This will

again influence the monotonic behaviour, as we show in Section 5.4.2, where we discuss a

similar strategy for another model. Another suggestion could be to put more emphasis on

XML structure. The approach in [Ogilvie and Callan, 2005] is still limited to unstructured

queries.

All XML retrieval approaches presented so far are not able to accommodate structure

without more fundamental changes to their models, as with them the queries can never

be given the same representation as the documents. Both deliver structure only in terms

of different indexes for different elements. As for the first time we have a translation that

allows for the inclusion of structure, it becomes interesting at this point to briefly look

at the potential impact of queries considering XML structure on the reasoning behaviour.

The advantages of this model, from a theoretical point of view, stem from the fact that

within its mathematisation it is possible to express structural constraints by using condi-

tional probabilities based on the element types. Contrary to that, in LM I we also had

interpolation of different XML elements, but never the direct context of an XML element

and only the overall document and collection values.

[Ogilvie and Callan, 2005] go into great detail to explain that in future work their

model would be able to accommodate the importance of different XML element types for

estimating the relevance of document components. They claim that this would include

XML structure in the aboutness relation. For the remainder of this section, we would like

to investigate this claim.

In the LM II model, information items are not only simply keywords anymore but

keywords bound to element types, where the latter are themselves part of particular XML

subdocuments. We have the possibility to query for subdocuments by adding XML element

type definitions to the query. Hence, d and q are now represented by a set of descriptors

χ(d) and χ(q) so that the XML structure is preserved. We define an aboutness relation

that includes XML structure as defined in the model, as a relationship of the language

models of XML elements. We use � to state that one language model can be constructed

from another one.

d about q if and only if χ(d) � χ(q)

� refers to the fact that we can construct the XML document language model of q starting

from d.

This time, we only discuss those reasoning properties we need for the completeness

proof in Section 5.3.4.5. Reflexivity is obviously given, because of the final ranking

formula in Section 5.3.4. It implies to only consider those terms t in the XML elements

that are also part of the query. Let us assume this is the set of descriptors T. One way of

constructing a new language model out of the terms in S is just to copy these descriptors.

Thus, Reflexivity is given. For similar reasons, Set Equivalence holds.

For similar reasons, Left Monotonic Union and Mix also hold. T is only set to

grow if we either extend S � T to S ⊗ U � T for Left Monotonic Union or S � 
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T and S � U to S � T ⊗ U for Mix. Constructing a new document language

model from one that is already about a query always implies that we preserve the existing

aboutness relation. Thus, Left Monotonic Union and Mix are given. The monotonic

behaviour, induced by the behaviour of T, also takes care that Right Monotonic Union

and Context-Free And hold.

The analysis of Language Modelling II demonstrates clearly that the inclusion of XML-

enhanced queries does not automatically lead to a closer consideration of XML structure.

The model includes structure in its reasoning as a relation between the contents of relatives

in an XML document, because the language models are defined over content relations only.

This is very different from the pure type XML retrieval model from Section 4.7, where

hierarchical inclusion as an aboutness decision means to consider structure as a condition

of a content relation.

5.3.4.5 Completeness

Regarding the completeness proof for XML Language Modelling II, the one for unstruc-

tured queries is the same as for XML Language Modelling I from Section 5.3.3.5, except

for changes in the translation.

For structured queries, we have to show that for the XML documents A and B: If

A � B then map(A) � map(B). A � B is given if the language model of A can be

constructed from B. Thus, we need to be able to decide map(A) � map(B) for each

way of constructing a new language model. All the ways of creating the language model

for A from the language model for B need to be covered by our derivation system. We

just sketch the proof here. B has to be a non-empty language model, as otherwise A could

not be constructed by it. First, we cover the case where A is the same language model

as B. Then, both will have the same index terms as descriptors. This also means their

corresponding situations will contain the same infons (with different parameters), which

leads to map(A) � map(B) using Reflexivity and Set Equivalence. If A is constructed

from B by adding new information (new index terms or new elements), we can prove that

map(A) � map(B) with Reflexivity, LMU, RMU and Set Equivalence using the set of

index terms that define A � B.

5.3.4.6 Reflection

The reflection for the LM II model is the same as the one for the LM I model with similar

problems as seen before.

5.3.5 Conclusion

Table 5.25 summarises the results of our theoretical evaluation for all our the language

models. We can clearly see that XML language modelling is different from the reasoning

behaviour of pure type XML retrieval. Contrary to the reasoning behaviour of XML

vector space retrieval, exhibited by Table 5.10, we find no real thresholded aboutness

behaviour for both language modelling approaches. Both language modelling approaches
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Reasoning behaviour Plain LM XML LM I XML LM II Pure Type

Singleton Reflexivity fully fully fully N/A

Reflexivity N/A N/A N/A fully

Symmetry fully fully fully not

Set Equivalence fully fully fully fully

Transitivity not not not fully

Euclid not not not not

LMU fully fully fully fully

RMU fully fully fully not

Cut not not not fully

Right Weakening not not not not

Mix fully fully fully fully

Context-Free And fully fully fully fully

Containment fully fully fully not

Absorption fully fully fully fully

Right Containment Monotonicity fully fully fully not

Non-Conflict-Containment N/A N/A N/A fully

Containment Preclusion N/A N/A N/A fully

Mutual Preclusion N/A N/A N/A fully

Negation Rational N/A N/A N/A fully

Closed World Assumption N/A N/A N/A fully

Table 5.25: Language modelling retrieval evaluation results

show identical reasoning behaviour to their flat model equivalent and fail to add. Though

there is an internal threshold, it does not help with advancing the structural reasoning

capacities.

In the next sections, we look at models specifically designed for XML retrieval and

how these include structure in their aboutness decision.
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5.4 Structured Models

In this section, we investigate two models, which have been specifically designed to meet

the challenges of XML retrieval. Both models use the XML structure of documents in their

aboutness decisions. The first one, Gardens Point, has been among the most successful

models presented at INEX.

5.4.1 Gardens Point XML Retrieval

5.4.1.1 Background

Gardens Point XML retrieval (GPX) is presented in [Geva, 2005], where five problems

were identified when it comes to using standard IR approaches against XML document

collections:

1. Adequate selection of elements that satisfy the query keywords’ constraints.

2. Adequate selection of elements that satisfy the structural constraints.

3. The assignment of scores to elements with matching keywords and structures.

4. The propagation of scores to antecedent or descendant elements.

5. The selection of ranked lists of results for specific tasks.

We believe that GPX offers an interesting solution to steps 3 and 4 and makes it therefore

different to the models we have investigated so far.

In [Geva, 2005], each XML element is identified by the XPath context. The model

differentiates aboutness for leaf from aboutness for branch XML elements. Leaf elements

are considered to be about the query if they contain at least one query term. A branch

element is about a query if its subtree contains at least one leaf element that is about the

query.

For leaf elements L:

rsvL = Kn−1
n
∑

i=1

ti
fi

(5.4.1)

n is the number of unique query terms. Kn−1 supports those components with multiple

distinct query terms, and K > 1. ti is the frequency of the i-th query term in the

component and fi its collection frequency. Thus, the formula favours components with

many unique query terms and penalises query terms frequent in the collection.

The weights of the leaf elements are propagated to form the weights for branch elements

R:

rsvR = D(c)

c
∑

i=1

rsvLi
(5.4.2)

c stands for the number of relevant children elements. A decay factor D(c) is used to

control the propagation [Geva, 2005], where D(c) = 0.49 for c = 1 and D(c) = 0.99

otherwise. Li is the relevance score of the ith child element. Finally, the corresponding
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article score is added to each component to improve the performance of elements in highly

relevant articles.

5.4.1.2 Example

Let us use again our example from Section 5.2.2. As a NEXI expression our query would

be //[about(., house, garden, courtyard)]. Using rsvL = Kn−1
∑n

i=1
ti
fi
, we get the results

in Table 5.26.

Table 5.26: L
D1 D2 D3 P11 P12 P21 P22 P31 P32

L 0 0 0 0.5 0 0.5 0.5 0.5 0.5

n 1 2 2 1 0 1 2 1 1

t1 1 0 1 1 0 0 0 1 0

t2 0 1 0 0 0 1 1 0 0

t3 0 1 1 0 0 0 1 0 1

The next calculation step is rsvR = D(n)
∑n

i=1 Li, which assigns values to the three branch

elements D1, D2 and D3. The results are represented in Table 5.27.

Table 5.27: R
D1 D2 D3 P11 P12 P21 P22 P31 P32

R 0.25 5.45 0.99 0.5 0 0.5 5 0.5 0.5

In the final step we add the article value to arrive at Table 5.28.

Table 5.28: Article Value
D1 D2 D3 P11 P12 P21 P22 P31 P32

0.5 10.9 1.98 0.75 0 5.95 10.45 1.49 1.49

The ranking is then D2, P22, P21, D3, P31, P32, P11, D1, P12.

The next section briefly considers the flat model equivalent in order to be able to

proceed with our theoretical evaluation.

5.4.1.3 Flat Model Equivalent

For the flat model equivalent, we just use the calculation of the relevance scores in the leaf

elements, as this is the equivalent of looking for content only without any consideration

of the document structure. Let D be a set of documents and d be a document in it. q

is a query. Both are represented by a simple bag of descriptors: χ(d) and χ(q). The flat

Gardens point retrieval aboutness decision is then defined by

d about q if and only if rsv(χ(d), χ(q)) > 0

rsv is defined by the leaf element calculations: rsv(χ(d), χ(q)) = Kn−1
∑n

i=1
ti
fi
.

For the translation, our standard basic infon language from Section 4.3 can be used:

map(χ(d)) = { 〈〈V alue, t; 1〉〉 |t ∈ χ(d)}
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No surprises also in terms of the operators equivalence, composition, containment and

preclusion. They are the same as in the plain vector space retrieval model from Section 4.6.

Singleton Reflexivity is given for the flat GPX model. With map(A) ≡ {φ} and

map(B) ≡ {φ}, rsv(A,B) > 0. Again, A and B are sets of descriptors. Kn−1 in Equation

(5.4.1) can never be 0 with K > 0. Therefore it does not influence the overall result. As

n = 1, it is 1. Looking at the sum in rsv, it has to be 1 with n = 1 and t1 = 1 as well as

f1 = 1. Singleton Reflexivity is given.

Transitivity is not supported. We can easily construct an example so that, with

S ≡ map(A), T ≡ map(B) and U ≡ map(C), rsv(A,B) > 0 and rsv(B,C) > 0 but

not rsv(A,C) > 0. Transitivity is not supported. For similar reasons, Euclid is also not

given.

If Symmetry would be given, then from S � T also T � S. Say, S ≡ map(A)

and T ≡ map(B). The ti value in Equation (5.4.1) describes the overlap of descriptors in

query and document component. This value does not change. If ti
fi
> 0 for S � T then

also ti
fi
> 0 for T � S. Symmetry is given.

Set Equivalence is also supported. Say, that map(A) ≡ map(B) and map(A) � 

map(C) are given, we have to show that map(B) � map(C) is given. Exchanging in

Equation (5.4.2) t1, ..., tn or f1, ..., fn with an equivalent set of terms t′1, ..., t
′
n or f ′1, ..., f

′
n

respectively does not change rsv(A,B) > 0. Set Equivalence is supported for both Left

and Right Set Equivalence.

Regarding the combination rules, Left Monotonic Union is fully supported. With

S � T , S⊗U � T is given. Say, that S ≡ map(A), T ≡ map(B) and S⊗U ≡ map(C).

We need to distinguish two cases. The increased document component represented by S

contains additional query descriptors. In Equation (5.4.1), the sum
∑n

i=1
ti
fi

is larger.

If it does not contain additional query descriptors, it will not change. In both cases

rsv(A,C) > 0 and Left Monotonic Union is supported.

Things are not different for Right Monotonic Union. The question is whether we

can from S � T also say that S � T ⊗U . If we add new term descriptors in T , n and

also the sum in Equation (5.4.1) will increase potentially, but never decrease. Therefore,

Right Monotonic Union is given.

Cut would allow to conclude S � T , given that D⊗U � T and S � U . Clearly,

we could eliminate all the occurrences of query descriptors in S ⊗ U without violating

S � U . Then, n = 0 in Equation (5.4.1), and Cut is not given. Right Weakening is

not given either. We can take away all the query terms occurring in a document to make

n = 0. Right Weakening does not hold. Mix will be supported as will be Context-Free

And if Left Monotonic Union and Right Monotonic Union are supported.

Absorption is supported, but Right Containment Monotonicity does not hold:

S � U does not necessarily hold if S � T and T → U .

As preclusion is not defined for the model, Non-conflict-containment and Containment

Preclusion are not applicable. As presented, then also all the non-aboutness rules using

preclusion are not applicable. The Closed World Assumption is also not given. We

continue with our theoretical evaluation of the full XML GPX model by defining the
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translation.

5.4.1.4 Translation

Let us assume that we have an XML document d for GPX retrieval. The translation

function map is defined as follows, where we reuse the one from Section 4.7.2.1:

• For each XML element p with element type U in d, map is { 〈〈ElementType, U, p〉〉 },

where p is the unique parameter.

• For each XML element p with a type U containing descriptors k1 to kn in d, map

is {map(U)⊗ 〈〈V alue, k1, p〉〉 , ..., 〈〈V alue, kn, p〉〉 }. p is the unique parameter that

identifies U . k1 ... kn is the set of n descriptors for rsv that are values of the element

type U .

• Say R is an edge in d between two subdocuments A and B of d. Let E1 and E2 be ele-

ment types, { 〈〈ElementType,E1, p〉〉 } ∈ map(A) and { 〈〈ElementType,E2, q〉〉 } ∈

map(B). We can then say that map(R(AB)) = map(A)⊗ { 〈〈R, p, q〉〉 } ⊗map(B).

p and q are unique parameters. p is an identifier for E1 and q for E2.

In the GPX model, the XML documents are stored in the inverted index using as a key

the location of each term identified by an absolute XPath expression [Geva, 2005]. This

way the complete XML tree structure is preserved in the index. It is not stored in a

dedicated index to be used in a post-processing step like in the XML vector space model.

The translation is therefore the same as in the pure type XML retrieval model.

However, hierarchical inclusion D is not implemented, because Proposition 4.7.1 is not

given: rsv(χ(d), χ(q)) > 0 does not mean map(χ(d)) ⊇ map(χ(q)). In the model, a leaf el-

ement containing ‘house’ and ‘garden’ is about a query asking for ‘house’. But according to

Proposition 4.7.1, { 〈〈ElementType, Section, i1〉〉 , 〈〈V alue,House, i1〉〉 , 〈〈V alue,Garden,

i1〉〉 } is not about { 〈〈ElementType, Section, i1〉〉 , 〈〈V alue,House, i1〉〉 }, as it has addi-

tional information about gardens. On account of the fact that we cannot use Proposition

4.7.1, we need to argue directly with the rsv function, as we have done for the XML vector

space model.

Again, the Situation Theory definition can be misleading here, as the translation looks

the same as for pure type XML retrieval. This is because the indexing creates a represen-

tation of the XML tree. However, the interpretation is completely different and closer to

the Language Modelling II model with structured queries. Structure is not considered in

itself but as a relationship between content in XML documents. This can be done, as there

is the already in Section 4.7.1 explicated direct relationship between content components

of an XML document and its corresponding XML tree.

The definitions of equivalence, composition and preclusion are the ones for pure type

XML retrieval (using descriptor sets that contain all necessary information to calculate

rsv) and can be omitted here. Containment will be different, because Proposition 4.7.1

does not hold. We need to include content in the containment relation and state a situation
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S contains another situation T if T has only infons also found in S. This implies that

containment is not just a condition of aboutness but leads directly to aboutness, as we see

in the discussion of the reasoning rules next.

5.4.1.5 Rules

First we define the aboutness relation as a combination of rsvL and rsvR:

• Leaf elements L: rsvL = Kn−1
∑n

i=1
ti
fi
.

• Branch elements R: rsvR = D(c)
∑c

i=1 rsvLi
.

Let X be a set of XML documents, with q and d ∈ X. Furthermore, let χ(d) and χ(q) be

descriptor sets for XML elements identified by their XPath. The descriptors again include

all information necessary to calculate rsv. The aboutness decision is then:

d about q if and only if rsv(χ(d), χ(q)) > 0

This is a significant difference from the pure type XML retrieval model for which we had a

similar translation reflecting structure but also a structure-based aboutness definition us-

ing hierarchical inclusion. As explained, in the GPX model, structure is mainly considered

as a relationship of content in an XML document. This leads us to this ‘unstructured’

aboutness definition. This combination of structured representation with ‘unstructured’

aboutness is a new creation for XML retrieval. Please also note, that this aboutness defi-

nition is equivalent to the flat model except that we additionally have to considere rsvR.

Next, we investigate the reasoning properties of the GPX model.

The model holds forReflexivity and other reasoning rules that demonstrate how close

it is to the pure type XML retrieval model. It does not support Symmetry or Transitivity.

We prove Reflexivity first. We need to show that S � S (S ≡ map(A)) and assess

whether we are talking about leaf or branch elements: (1) A leaf document component

would be about itself as ti > 0 and fi > 0. (2) For branch elements, all leaf elements are

about themselves. Then, also rsv(A,A) > 0, because D(c) > 0. Reflexivity holds.

The model preserves the structure of an XML tree in the index using XPath if the

document is stored in the index according to the full XPath expression. According to

[Geva, 2005], each term in an XML document is identified by three elements in the index:

File path, absolute XPath context and term position within the XPath context. As a query

language, however, GPX uses the INEX NEXI model [Geva, 2005], which is an (enhanced)

subset of XPath. Because NEXI is only a subset of XPath, GPX, storing terms according

to their full XPath expression, discriminates query and document representation without

having a transformation function to map one onto the other.

According to [Geva, 2005], content-only queries are expressed as a search over the

entire article element using NEXI. Therefore GPX, contrary to all the other XML retrieval

models we have explored so far does not treat content-only queries differently from those

using structural hints. Say, we have a query //article[about(house)] that is answered by an

element article[1]/bm[1]/bib[1]/bibl[1]/bb[13]/pp[1]. Then, we cannot swap them and use
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article[1]/bm[1]/bib[1]/bibl[1]/bb[13]/pp[1] as a query, as it is not a valid query expression.

Thus, GPX does not support the Symmetry rule: If S � T then not T � S. In some

of the previous models, NEXI was also used in the query but terms in XML documents

were identified not via an XPath expression but only with a single XML element like

a section or an article. Query and document component both had the shape of sets of

descriptors like {q1, ..., qn} for queries, which could be substituted by {d1, ..., d2} so that

the document component would serve as the query.

Next, we look at Transitivity. As rsv is larger than 0 if ti > 0 in Equation (5.4.1), the

overlap of terms in query and document component determines aboutness. As shown in

[Huibers, 1996], overlap aboutness decisions do not generally support Transitivity. Tran-

sitivity is part of the pure type XML retrieval and can be considered as part of those

reasoning properties that indicate advanced XML structural reasoning, i.e. that about-

ness is propagated from the leaves to the root of an XML document. Regarding pure type

XML retrieval, it indicates that not only the immediate parent of an XML elements is

taken into consideration but further ancestors, too.

It is interesting to see that GPX is not symmetric and also does not support Transi-

tivity, although the latter is part of pure type XML retrieval reasoning. We ascribe this

to the fact that for GPX XML structure is not considered in itself but as a relationship

between content in XML documents. That is why Proposition 4.7.1 does not hold. Instead

of XML structure directly the structure induced relationship between content informs the

aboutness decision. This leads to a combination of reasoning properties one would expect

from an aboutness decision fully incorporating hierarchical inclusion and one, which does

not consider XML structure. Furthermore, GPX does not support Symmetry while LM

II does, because in the latter model structure is only used to calculate the interpolation

of parent and children language models. In GPX, however, structure is also used for the

querying, and CO queries are taken to be a special case of CAS queries.

Set Equivalence is given, as the definition of equivalence means the subsituation

of either complete branch elements or just leaf elements. Only the proof for Left Set

Equivalence is presented. Say, that S ≡ map(A), T ≡ map(B) and U ≡ map(C). Then,

according to the assumptions rsv(A,C) > 0. If we exchange in Equation (5.4.1) all the ti

of A with the same set from B also rsv(B,C) > 0. Set Equivalence is given.

Left Monotonic Union (LMU) would be a property of the GPX aboutness systems,

if with S � T we could derive that S ⊗ U � T . Let us assume that S ≡ map(A),

T ≡ map(B) and S ⊗ U ≡ map(C). Thus, rsv(A,B) > 0. Three cases depending on

c in Equation (5.4.2) have to be discriminated to consider the impact of D(c): (1) For

c = 0, we would clearly be able to then also say that also rsv(A,C) > 0. The sum in

the calculation for leaf elements will at least stay the same when adding new information

items. Sums in relevance calculation (as in Equation (5.4.1)) generally promote monotonic

behaviour. Let us assume (2) c = 1. Several cases have to be considered. The interesting

one is that the added information makes a neighbouring element about the information

need. We therefore also boost the information contained in the parent elements with D(c)

increasing from 0.49 to 0.99, as c increases to 2. This can have a significant negative
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impact on the specificity value in content-only XML retrieval, as the following example

shows.

Let us assume that we have a query asking for house and garden. We have one

paragraph P1 containing exactly this information. This paragraph is part of a section S1

that is about ‘house’, ‘garden’ and ‘garage’. This means that the section contains at least

one more paragraph P2. The overall return is P1, as with c = 1 the decay factor will

be D(c) = 0.49, which makes S1 less than half the value of P1. Now, we add with LMU

another information about gardens to P2. D(c) for S1 becomes 0.99. The score for S1

will be larger than the one for P1. It will become the best to return. The section will

still give the most exhaustive information. Regarding specificity, however, the return of

S1 instead of P1 means a loss in focus. This is particularly relevant for the INEX user

model of finding the most focussed answers to content-only queries without overlap, as we

shall see in Section 8.4, where we discuss the corresponding experimental behaviour. For

GPX, this means that the system extracts from each path, leading from top-most element

to leaf, the highest ranking element, which would be in this case S1, which is clearly less

focussed (specific) than P1.

A possible improvement could be to penalise more branch elements for their number of

relevant children. Otherwise, there could be a tendency towards rewarding exhaustivity.

Another way would be to penalise the occurrence of non-relevant terms. That would

definitely improve specificity. To summarise, the aboutness relation would not be changed

for c = 1, as rsv(A,C) > 0, but the changes for specificity are possibly not desirable. For

(3) c > 1, this will not occur, because D(c) is 0.99 in any case. LMU is fully supported

by GPX, as in all three cases rsv(A,C) > 0 whatever the impact on specificity for case 2.

Right Monotonic Union (RMU) on the other hand is not supported in GPX, which

again shows how close it is to pure type XML retrieval. If RMU were supported, given

that D � Q we could conclude that D � Q⊗Q′. As the model uses CAS expressions

also for CO-queries, a typical query would look like //X[about(//A,C)]. We can merge

this query with another one Q1 //Y [about(//A,Z)] to become Qnew //X[about(//A,C)]

//Y [about(A,Z)].1 Then, it is not necessarily the case that if D � Q then also D � 

Qnew. RMU is not given. Cut and Right Weakening are both not supported, as they are

not given for the flat document retrieval equivalent.

Mix holds because it is a special case of Left Monotonic Union. We can say that

S ⊗ T � U , given S � U and T � U . More interesting is Context-Free And

at this point. Will it be supported, although Right Monotonic Union was not? Again, if

Context-Free And is supported, this can be seen as an indicator of advanced structural

reasoning in pure type XML retrieval. Are we allowed to assume that with S � T

and S � U , also S � T ⊗ U? Let us assume that S ≡ map(A), T ≡ map(B) and

U ≡ map(C). In addition to the assumptions for Right Monotonic Union, we know that

S � U or rsv(A,C) > 0. According to our map, the compositions of two situations,

which are about the same query, cannot lead to a situation, which is not about the query.

1In terms of the Situation Theory formalisation, we could add new element type and relational infons
in order to query for a different substructure in the XML document.
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Thus, with rsv(A,C) > 0, we know that both situations T ⊗ U together must also be

answered by S. This means Context-Free And is supported.

Yet, we do not necessarily foster specificity, as the following example shows. Let us

assume that we have a query about ‘house’ and ‘garden’ and a section also about ‘house’

and ‘garden’ as the fully focussed answer. Say, this section has a paragraph with ‘house’.

Now, we add to the query the further specification that we are looking for paragraphs.

Then, the answer is the paragraph with ‘house’, although the more specific answer would

have been the section. This is due to the fact that GPX XML retrieval is not based on

hierarchical inclusion of query and document component, as acknowledged in the following

quote [Geva, 2005]:

‘Our [...] interpretation was to ignore the structural constraint altogether. This

may not have been the wisest choice, and our CAS results were not quite as

good as the CO/COS results.’

Surface containment holds. If Si → Ti then also S � T . Say S ≡ map(A), Si ≡

map(A′), T ≡ map(B) and Ti ≡ map(B′). Then according to the definition of →, also

rsv(A′, B′) > 0. This implies that rsv(A,B) > 0, because we have for the ti in Equation

(5.4.1) common to A and B at least the ones in both A′ and B′, which proves Surface

Containment. Please note the distinct difference to pure type XML retrieval for which

Containment was rather a condition of aboutness, as demonstrated in Section 4.7.4.

Looking at Absorption next, with S → T given, we can conclude that S ⊗ T ≡ S

because of the definitions of composition and containment. Right Containment Mono-

tonicity is not given, as RMU is not supported. Non-conflict-containment and Con-

tainment Preclusion are obviously given because of the general definition of contain-

ment.

Mutual Preclusion is given. Simple Anti-Aboutness is a condition we would like

to exclude for this model. Negation Rational and Strict Negation Rational do not

hold. We demonstrate only the proof of Negation Rational, where a { 〈〈ElementType,

Section, i1; 1〉〉 , 〈〈Parent, i1, i2; 1〉〉 , 〈〈ElementType, Paragraph, i2; 1〉〉 , 〈〈V alue, house,

i2; 1〉〉 } is not about a query { 〈〈ElementType, Paragraph, i2; 1〉〉 , 〈〈V alue, courtyard,

i2; 1〉〉 }, but is about a query { 〈〈ElementType, Paragraph, i2; 1〉〉 , 〈〈V alue, courtyard,

i2; 1〉〉 , 〈〈V alue, house, i2; 1〉〉 }. For readability reasons, we ignore term frequency and

document frequency and just use index terms. We also do not assume the Closed World

Assumption. There can be other information than the one in Si and Tj that would make

S to be about T .

Guarded and Qualified Left Monotonicity hold because Left Monotonicity does.

Guarded and Qualified Right Monotonicity are not be supported, as Right Mono-

tonic Union is not.

5.4.1.6 Completeness

We have to show that for two XML documents A,B: If rsv(A,B) > 0 then map(A) � 

map(B). We do that for branch and leaf elements. Let us assume rsv(A,B) > 0 and
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that S ≡ map(A) and T ≡ map(B). We assume that U is the subsituation of S and T

that leads to rsv(A,B) > 0, i.e. it contains all infons of ti common to A and B. And, W

are all the other subsituations in S except for U . For leaf elements L: With Reflexivity

U � U . Then, with Left Monotonic Union (W ⊗U � U). Furthermore, with Left Set

Equivalence: S � U . According to the assumption rsv(A,B) > 0: If the situation T is

added to an existing situation, which S is about, this aboutness relation is not changed.

Thus, we can apply Context-Free And: S � U ⊗T . With the definition of subsituations

and Absorption: S � T . For branch elements R, the proof is the same as for leaves.

5.4.1.7 Reflection

The reflection properties are the same as for the language models from Section 5.3, but

their justification differs:

1. The bottom exhaustive document component is {∅}. {∅} is never exhaustively about

any query, as only in this case
∑n

i=1
ti
fi

in Equation (5.4.1) is guaranteed to be always

0.

2. The bottom exhaustive query is never exhaustively answered by any document com-

ponent and is also {∅}. The proof is the same as for the bottom exhaustive document

component.

3. The bottom specific document component is never specifically about any query and is

{∅}. The proof is analogous to the one for bottom exhaustive document components.

4. The bottom specific query is again {∅}.

This reflection clearly shows that content relations dominate the model. The difference in

specificity and exhaustivity reasoning stems directly from the way the query is formalised

compared to the document representation. In the rest of reasoning, however, specificity

and exhaustivity cannot be differentiated. A better specificity is not the result of identi-

fying the best focus in the content but of the filters in the NEXI queries.

5.4.1.8 Conclusion

Table 5.29 summarises the results of our theoretical evaluation for GPX. Comparing it to

Tables 5.10 and 5.25 and therefore XML vector space and XML language model retrieval,

we can clearly see how comparably close GPX is to pure type XML retrieval. As seen in

Table 5.25, both language modelling approaches, we have analysed, are largely identical to

their flat model equivalent. XML vector space retrieval exhibits more reasoning similarities

with pure type XML retrieval but is still symmetric. Though GPX is not supporting

Transitivity and therefore a key characteristics of XML-related reasoning behaviour, it

is not symmetric and thus able to distinguish exhaustivity (D � Q) from specificity

(Q � D).

According to Table 5.10, XML vector space retrieval uses thresholds to adjust its

monotonic reasoning behaviour to the requirements of XML retrieval. GPX does not need
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Reasoning behaviour Plain GPX XML GPX Pure Type

XML Retrieval

Singleton Reflexivity fully N/A N/A

Reflexivity N/A fully fully

Symmetry fully not not

Set Equivalence fully fully fully

Transitivity not not fully

Euclid not not not

LMU fully fully fully

RMU fully not not

Cut not not fully

Right Weakening not not not

Mix fully fully fully

Context-Free And fully fully fully

Containment fully fully not

Containment Composition fully fully fully

Absorption fully fully not

Right Containment Monotonicity fully not not

Non-Conflict-Containment N/A fully fully

Containment Preclusion N/A fully fully

Mutual Preclusion N/A fully fully

Negation Rational N/A not fully

Closed World Assumption N/A not not

Table 5.29: GPX retrieval evaluation results

to adjust its behaviour, as it has been specifically designed for XML retrieval. In fact, in

its monotonic reasoning abilities it shows almost identical behaviour to pure type XML

retrieval. Cut reasoning aside, both have the same behaviour for both monotonic unions

as well as Mix and Context-Free And. As we show in Chapter 8, this is one reason for

its convincing behaviour in the experimental evaluation. However, it does not always

experimentally outperform XML vector space retrieval, which shows that having the same

reasoning behaviour as pure type XML retrieval does not necessarily mean that a model is

better than other models, as we have already discussed in Section 4.7. That depends very

much on other factors, too. For instance, such factors are the experimental evaluation task

or the way the content of XML elements plays a role in the aboutness decision of a model.

In this case, we have seen that for GPX structure is a relationship of content in XML

documents in most of its reasoning. Table 5.29 shows that Containment, as a reasoning

property, that very much depends on content relationships, is supported by GPX, while

it is not supported by pure type XML retrieval and XML vector space retrieval.

In conclusion, it is this combination of a representation of structure in the translation

with an aboutness decision that neglects structure, that makes GPX so interesting. Again,

we can see the typical approach in XML retrieval to combine the evidence from XML

structure with content relationships known from flat document retrieval.

Next we analyse another model called contextualisation also specially designed for

XML retrieval.
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5.4.2 Contextualisation Model

5.4.2.1 Background

[Arvola et al., 2005a] and [Arvola et al., 2005b] introduce a new re-weighting method

called Contextualization. In this model, the ancestors of an element are considered to be

its context. The approach takes into account any level of hierarchy of ancestors and differs

therefore from any other XML retrieval model we have met so far. For the model, the

parent of an element is its first level context, the grandparent its second level context and

so on. Those elements in a strong context are rewarded by being higher ranked, while

those in a worse context are penalised by being lower ranked.

In [Arvola et al., 2005a], the weighting scheme is based on the probabilistic retrieval

framework BM25 [Robertson et al., 1992]:

w(k, ξ) =
kfξ

kfξ + v × ((1− b) + b ξfcξfk
)
×
log(Nm )

log(N)
(5.4.3)

kfξ is the number of times term k can be found in element ξ. The model indexes all

content elements and stores where they can be found in the XML document structure.

N is the total number of content elements in the collection, m the number of content

elements with k. ξfc is the number of all descendant content elements of ξ, while ξfk is

the number of descendant content elements of the ξ containing key k. v and b are tuning

constants.

A query term qt can be prefixed with + or − to increase or decrease its importance:

w(+qt, ξ) = +w(qt, ξ) (5.4.4)

w(−qt, ξ) = −w(qt, ξ)

Using these prefixes for query terms, the model implements a more conservative approach

to monotonicity, as we will see in Section 5.4.2.5. Overall the ranking is calculated for a

query q by averaging the query terms:

w(q, ξ) =

∑n
i=1w(qti, ξ)

n
(5.4.5)

Next to the basic weighting scheme, the authors employ their contextualisation method

to adjust basic retrieval to the needs of XML retrieval. Using this method, elements

are re-ranked based on the weights of their ancestors. [Arvola et al., 2005b] use four

contextualisation functions, based on the their experiences in [Arvola et al., 2005a], where

they developed a general contextualisation function C:

C(q, ξ, g) =











0 if w(q, ξ) = 0
∑len(ξ)

i=1 g[i]×w(q,δi(ξ))
∑len(ξ)

i=1 g[i]
, otherwise

(5.4.6)

w is a weighting function. g is called contextualisation vector, represented by a tuple,

consisting of values by which elements between the root element and the ξ element are

120



weighted. Contextualisation is applied only to those elements whose basic weight is not

0. The contextualised weights of elements are calculated by weighted average.

The first contexualisation method is called root contexualisation cr [Arvola et al.,

2005b]:

cr(q, ξ) =
w(k, ξ) + 1.5 ∗ w(q, δ1(ξ))

2.5
(5.4.7)

The second contexualisation method is called parent contexualisation cp. It is an average

of the weights of an element and its parent:

cp(q, ξ) =
w(k, ξ) + w(q, δlen(ξ)−1(ξ))

2
(5.4.8)

The third contextualisation is the tower contextualisation and an average of the weights

of an element and all its ancestors:

ct(q, ξ) =

∑len(ξ)
i=1 w(q, δi(ξ))

len(ξ)
(5.4.9)

The forth contexualisation is called root and tower contextualizaton and is a combination

of the two:

ct(q, ξ) =

∑w(q,δ1(ξ))+len(ξ)
i=1 w(q, δi(ξ))

len(ξ) + 1
(5.4.10)

Next, we look at our example calculation.

5.4.2.2 Example

Table 5.30: kfξ
D1 D2 D3 P11 P12 P21 P22 P31 P32

house 1 0 1 1 0 0 0 1 0

garden 0 2 0 0 0 1 1 0 0

courtyard 0 1 1 0 0 0 1 0 1

garage 1 0 1 1 0 0 0 0 1

damage 1 0 0 0 1 0 0 0 0

fire 1 0 0 0 1 1 0 0 0

door 0 1 0 0 0 0 1 0 1

arrive 0 1 1 0 0 0 0 0 1

Table 5.31: ξfk
D1 D2 D3 P11 P12 P21 P22 P31 P32

house 1 0 1 0 0 0 0 0 0

garden 0 2 0 0 0 0 0 0 0

courtyard 0 1 1 0 0 0 0 0 0

garage 1 0 1 0 0 0 0 0 0

damage 1 0 0 0 0 0 0 0 0

fire 1 0 0 0 0 0 0 0 0

door 0 1 0 0 0 0 0 0 0

arrive 0 1 1 0 0 0 0 0 0

We employ the same example as for all the other models (Section 5.2.2). We choose v = 2,
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Table 5.32: m
house garden courtyard garage damage fire door arrive

2 2 2 2 1 1 1 2

N = 6 and b = 0.1, as they have been chosen in the experiments in [Arvola et al., 2005b].

Then, in the first step kfξ is calculated as in Table 5.30.

Table 5.33: BM25 Results
D1 D2 D3 P11 P12 P21 P22 P31 P32

house 0.198 0 0.198 0.219 0 0 0 0.219 0

garden 0 0.307 0 0 0 0.219 0.219 0 0

courtyard 0 0.198 0.198 0 0 0 0.219 0 0.219

garage 0.198 0 0.198 0.219 0 0 0 0 0.219

damage 0.313 0 0 0 0.357 0 0 0 0

fire 0.313 0 0 0 0.357 0 0 0 0

door 0 0.313 0 0 0 0.357 0 0 0

arrive 0 0.198 0.198 0 0 0 0.219 0 0.219

Table 5.34: Tower Contexualisation
D1 D2 D3 P11 P12 P21 P22 P31 P32

house 0.198 0 0.198 0.209 0 0 0 0.209 0

garden 0 0.307 0 0 0 0.263 0.263 0 0

courtyard 0 0.198 0.198 0 0 0 0.209 0 0.209

garage 0.198 0 0.198 0.209 0 0 0 0 0.209

damage 0.313 0 0 0 0.335 0 0 0 0

fire 0.313 0 0 0 0.335 0 0 0 0

door 0 0.313 0 0 0 0.335 0 0 0

arrive 0 0.198 0.198 0 0 0 0.209 0 0.209

ξfc for D1, D2 and D3 is 2, while for the other elements it is 0. ξfk is given in Table

5.31 and m in Table 5.32. The overall results after calculating Equation (5.4.3) are in

Table 5.33. The ranking is then D2(0.168), P22(0.146), D3(0.132), P21(0.073), P31(0.073),

P32(0.073), P11(0.073), D1(0.066) and P12(0).

As an example for contextualisation let us apply tower contextualisation, which for

our limited example is equivalent to parent contextualisation. The results in Table 5.34

show a re-weighting of the children elements dependent on the strength of their context

(the weight of their parents).

After applying tower contextualisation, the ranking isD2(0.168), P22(0.157), D3(0.132),

P21(0.07), P31(0.07), P32(0.07), P11(0.07), D1(0.066) and P12(0). One can clearly see that

P22 is now stronger emphasized, which reflects the fact that it is in the strong context of

its parent D2.

5.4.2.3 Flat Model Equivalent

Following our methodology, let us first investigate the flat model equivalent, which equates

to a document level discussion of the underlying BM25 model. Let D be a set of documents

and d be a document in it, while q is a query. χ(d) and χ(q) are descriptor sets with keys
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and all the other information necessary to calculate the weight of a key in a document

component. Then:

d about q if and only if rsv(χ(d), χ(q)) > 0

rsv(χ(d), χ(q)) =
∑n

i=1 w(qti,ξ)
n , where w(k, ξ) =

kfξ

kfξ+v×((1−b)+b ξfc
ξfk

)
×

log(N
m
)

log(N) . The basic

infon language describes the transformation of keys into situations:

map(χ(d)) = { 〈〈V alue, t; 1〉〉 |t ∈ χ(d)}

Equivalence, composition, containment and preclusion are similarly defined as in the flat

model equivalent for GPX from Section 5.4.1.3, because we use the same basic infon

language and both models are based on information overlap.

Reflexivity holds. Let us assume that map(A) ≡ {φ} and map(B) ≡ {φ}. A and

B are descriptor sets. Then, rsv(A,B) > 0 only if N 6= m, as otherwise log(Nm ) = 0 and

rsv(A,B) = 0 in Equation (5.4.3). We assume that the collection contains more elements

than the one that has φ and Reflexivity holds.

With regard to Symmetry, we can also conclude from the assumption S � T that

T � S. S ≡ map(A) and T ≡ map(B). kfξ describes an information overlap, the

number of times a key can be found in document and query. It will be > 0 whether we

conclude S � T or T � S. Thus, Symmetry is given.

Transitivity is not given. The key k could be found in two indexes without being

found in a third. We could easily construct a counter-example to show that S � T

and T � U , but S � / U . Euclid is not supported either for similar reasons as in

other overlap-based models. Set Equivalence is supported for both Left and Right Set

Equivalence. We can substitute kfξ using an equivalent set of keys without changing the

aboutness relation.

Regarding the combination rules, Left Monotonic Union (LMU) is conditionally

supported. With S � T , we would be able to say S ⊗ U � T . Let us assume that

S ≡ map(A), T ≡ map(B) and S⊗U ≡ map(C). Looking at the overall ranking function

w(q, ξ) in Equation (5.4.4), it only becomes 0 if the
∑

becomes 0. According to the

assumptions therefore rsv(A,B) > 0. However, if the U is the document situation for

unwanted query terms then it could be the case that rsv(A,C) ≤ 0 according to Equation

(5.4.4). Thus, LMU holds only under the condition that the newly added information in

the document components does not negatively outweigh the existing information.

For Right Monotonic Union, we have the mirror case. This time, we extend the

query situation so that with D � Q also D � Q⊗Q′. Say, D ≡ map(A), Q ≡ map(B)

and Q ⊗ Q′ ≡ map(C). In case this new query situation is prefixed by ’-’, it could be

the case that rsv(A,C) ≤ 0. Therefore, Right Monotonic Union is only conditionally

supported.

If Cut were given, then D � Q, with D ⊗ D′ � Q and D � D′. Cut does

not hold, n could be become 0 in Equation (5.4.4) if all the relevant information were

in D′. Right Weakening is also not supported. We could change the query size so
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that n = 0. Mix and Context-Free And are supported, because Left Monotonic Union

and Right Monotonic Union both hold. They are unconditionally supported as the added

information has to be relevant for both.

Deep containment is not supported but only surface containment. As for the flat

GPX model, a subsituation would be a subset of the keywords forming the original sit-

uation. Containment Composition is then obviously supported as is Absorption.

Right Containment Monotonicity holds only conditionally as a special case of RMU.

All the non-aboutness rules are not applicable. The Closed World Assumption does

not apply either.

Next, we study the full Contextualisation model.

5.4.2.4 Translation

The translation and the definition of the operators such as equivalence, etc. are analogous

to XML vector spaces and can be omitted here.

Please note that we could assume that this translation should more look like the one

for pure types, as both models index the structure of XML documents. Therefore we

might think that we can again use the pure type map function, as we did for GPX.

In the model, however, this hierarchical nature is not used to constrain the retrieval of

content structurally, as it has been the case in the GPX model. Only content elements

are indexed and document components are simply identified by an XPath. The XML

relationships between elements, however, are not used in the Equation (5.4.3). They are

only used in the contextualisation step to interpolate elements with their ancestors. As

we shall see next, this has little to no impact on the reasoning behaviour. The model is

therefore comparable to XML vector spaces in that it indexes only particular elements. In

this case only the content elements.

5.4.2.5 Rules

Let d and q be a document component and a query, and let χ(d) and χ(q) be their

descriptor sets with all the information necessary for rsv. The contextualisation aboutness

decision is:

d about q if and if only rsv(χ(d), χ(q)) > 0

rsv is defined as in the flat equivalent, only that now the Contextualisation C(x) is added:

rsv(χ(d), χ(q)) =
∑n

i=1 wc(qti,ξ)
n and wc(k, ξ) = C(

kfξ

kfξ+v×((1−b)+b ξfc
ξfk

)
×

log(N
m
)

log(N) ). wc is the

contextualized weight.

We do not have to show that Singleton Reflexivity is still given, as the model does

not change the fundamentals of its flat equivalent. The contextualisation is an example

of re-weighting relevant and non-relevant elements, as we have seen with respect to P22 in

the example calculation from Section 5.4.2.2. It does not change the underlying aboutness

relations. Therefore again {φ} � {φ}. This is true for all contextualisations, because a

singleton document component cannot have a relevant context.

124



Symmetry is given, for the same reason as it is supported in the flat equivalent of

the model. The contextualisation step has no impact here. Transitivity does not hold,

as it is not given for the flat equivalent either.

Set Equivalence is given. Let us assume that S ≡ map(A), T ≡ map(B) and

U ≡ map(C). A, B and C are descriptor sets. Then, A ≡ B and rsv(A,C) > 0. The

element will not change if we substitute all information in A with the equivalent ones from

B. Thus, rsv(B,C) > 0.

Set Equivalence holds. However, considering the contextualisation function, the con-

text could play a decisive role to alter the behaviour. Just because S ≡ T is given, it

does not mean that the context of these two situations is still the same. Therefore, Set

Equivalence does not mean the same relevance result though aboutness might be given.

We can already see here that it might have been interesting to look at a different aboutness

decision that would have included a threshold θ for rsv. Then, Set Equivalence aboutness

could be changed through a different context and the contextualisation function. Euclid

does not hold, as it was not given for the flat model equivalent.

If Left Monotonic Union held, we could with S � T conclude that S⊗U � T .

Let us assume that S ≡ map(A), T ≡ map(B) and S ⊗ U ≡ map(C). It is again con-

ditionally supported, as the addition of a strongly not desired information could reduce

rsv(C,B) ≤ 0. The contextualisation has further impact onto this. Any of the above con-

textualisation functions could lead to a new context, in which rsv would become 0 or less

than 0. A document component that is about a query can be placed in a context of other

document components with highly unwanted document components. Regarding the par-

ent contextualisation, this would be the parent component, which would mean that some

of the siblings are about undesired query items. For the root contextualisation, the overall

article could contain too much undesired information. Regarding tower contextualisation,

the relatives of the elements could contribute too much undesired information.

Right Monotonic Union is again the mirror case of LMU. With S � T , we

can conditionally say that S � T ⊗ U . Cut is not supported for the XML retrieval

Contextualisation model, as it was not supported for the flat equivalent. Looking at

the impact of contextualisations, Cut — even if not directly leading to non-aboutness —

could leave us with a highly undesirable context, therefore negating an existing aboutness.

Right Weakening is not supported for similar reasons as why Cut is not given. It could

also have a decisive impact on the contextualisation.

If Mix held, we would be able to conclude S ⊗ T � U , given that S � U and

T � U . Say, S ≡ map(A), T ≡ map(B) and U ≡ map(C). Mix is a special case of

Left Monotonic Union. Thus, it is supported at least conditionally. Left Monotonic Union

was only conditionally supported, as the newly added information could have been either

undesirable information or undesirable context. Both cannot be the case for Mix, because

the added situation is also about U . Thus, Mix is unconditionally given. The situation

is similar for Context-Free And, a special case of Right Monotonic Union. We can say

that with S � T and S � U also S � T ⊗ U .

Surface containment holds for the same reasons as for the flat model equivalent.
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With Si → Ti, we also have S � T . Absorption is supported for similar reasons as

for GPX. Right Containment Monotonicity would conclude S � U , given that

S � T and T → U . Say, S ≡ map(A), T ≡ map(B) and U ≡ map(C). Right

Containment Monotonicity is only conditionally given. Again we must not add undesired

information. In this case, situation T could contain situation U and S � T , but still too

much undesirable information could be in U to conclude S � U . Right Containment

Monotonicity is only conditionally given.

Non-conflict-containment and Containment Preclusion are obviously given be-

cause of the general definition of containment. Mutual Preclusion is not given, because

of the definition of ⊗ and preclusion. For similar reasons, Negation Rational and Strict

Negation Rational also do not hold. We do not repeat the proofs here, as they are the

same as the one form Section 5.4.1.5 for GPX, which has the same translation and defini-

tion of preclusion. The model does not support the Closed World Assumption. There

can be other information than the one in Si and Tj that would make S to be about T .

Guarded and Qualified Left Monotonicity hold conditionally, because Left Mono-

tonicity does. Furthermore, Guarded and Qualified Right Monotonicity are condi-

tionally supported, as Right Monotonic Union is. The interesting point here is that the

guards and qualification in these monotonic reasoning rules are related to preclusion and

have therefore no impact on the conditions of LMU and RMU, which are based on negative

weights.

5.4.2.6 Completeness

The completeness proof is similar to the one for XML vector spaces from Section 5.2.5

and can be omitted here.

5.4.2.7 Reflection

The reflection is similar to GPX from Section 5.4.1.7 with different justifications. Bottom

exhaustive query and document component as well as the bottom specific query and

document component are all {∅}.

5.4.2.8 Conclusion

Table 5.35 summarises the results of our theoretical evaluation of the Contextualisation

method. The Table looks very similar to Table 5.10 for XML vector space retrieval.

Both Contextualisation and vector space retrieval support Symmetry and Transitivity.

They differ from the pure type reasoning not just in these rules but also in many other.

Contextualisation, too, uses conditions to adjust its monotonic reasoning behaviour for

LMU and RMU as well as Mix and Context-Free And. They are also external conditions

but this time they are even more external to the aboutness reasoning than the XML vector

space retrieval ones, as they mostly depend on direct intervention by users stating which

information they do not want. The sum of the relevance weights for negative queries terms

must not be larger than the one for positive query terms.
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Reasoning behaviour BM25 Contextualisation Pure Type

Method XML Retrieval

Singleton Reflexivity fully fully N/A

Reflexivity fully fully fully

Symmetry fully fully not

Set Equivalence fully fully fully

Transitivity not not fully

Euclid not not not

LMU
∑

−w <
∑

+w
∑

−w <
∑

+w fully

RMU
∑

−w <
∑

+w
∑

−w <
∑

+w not

Cut not not fully

Right Weakening not not not

Mix fully fully fully

Context-Free And fully fully fully

Containment fully fully not

Absorption fully fully not

Right Containment Monotonicity
∑

−w <
∑

+w
∑

−w <
∑

+w not

Non-Conflict-Containment N/A fully fully

Containment Preclusion N/A fully fully

Mutual Preclusion N/A fully fully

Negation Rational N/A not fully

Closed World Assumption N/A not fully

Table 5.35: Contextualisation retrieval evaluation results

Looking back at Equation (5.4.3), one more time, a better threshold seems to be a

good option for the model to further increase performance:

w(k, ξ) =
kfξ

kfξ + v × ((1− b) + b ξfcξfk
)
×
log(Nm )

log(N)

We could introduce a threshold similar to the one for XML vector space retrieval. We could

introduce this threshold in Equation (5.4.6) and state that C(q, ξ, g) = 0 if w(q, ξ) < θ.

Then, we could use some more of the reasoning in the model. Looking at the first part

of Equation (5.4.3), it is clear the fraction is closer to 1 the smaller v × ((1 − b) + b ξfcξfk
)

is. The size of v × ((1 − b) + b ξfcξfk
) depends on the tuning parameters b and v, but also

on ξfc
ξfk

or whether many descendants of ξ also contain k. This is an interesting statement,

as it implies that an element ξ is more relevant if it has many relevant children. That

is why D2 is strongly emphasized as the most relevant element in the ranking of our

example calculation from Section 5.4.2.2. However, in Equation (5.4.6), the reasoning that

elements with many relevant children are themselves even more relevant is lost, because

there is no threshold deciding whether an element is relevant enough to contribute to

the aboutness decision. As long as it is somewhat relevant, an element with less relevant

children will be as much about a query as an element with many relevant children. As

the contextualisation functions re-weigh the importance of elements, the contextualisation

could also have more impact on the aboutness decision, if a threshold like the XML

vector space one is introduced. In the current aboutness decision this is not the case, as

Contextualisation does not decide on an element being relevant or not but only on the

degree of relevance. This degree is currently not included in the aboutness decision, while
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in XML vector space retrieval it is.

Let us just briefly discuss, how, for instance, Left Monotonic Union reasoning would

be influenced by such a change. For LMU, we also know that S ⊗ U � T if S � T .

Furthermore, let us assume we have two highly relevant elements, where one is the parent

(S ⊗U) of the other (S). Yet, this parent also has many irrelevant children in U . With a

thresholded aboutness decision, this means that ξfc
ξfk

can become so large that the overall

threshold θ might be missed. Using θ, we can therefore differentiate the aboutness of a

highly relevant and focussed element from the non-aboutness of its also highly relevant

but non-focussed parent element. This is the kind of reasoning XML retrieval systems

should support.

Contextualisation and XML vector space retrieval support Symmetry, Transitivity and

other properties, which make them different from pure type XML retrieval. Contextualisa-

tion, just like XML vector space retrieval, uses external conditions to adjust its monotonic

reasoning behaviour. Yet, contrary to XML vector space retrieval, these conditions depend

on intervention by users, stating which information they do not want. Contextualisation

is the only INEX model we investigate that has tried to make use of the ability to assign

negative weights to query terms. All the others have decided to ignore negative weights

for the query. There are further detailed differences between the reasoning behaviour of

XML vector space retrieval and Contextualisation, which help explain the worse experi-

mental performance of the latter (see Chapter 8). One example is that Contextualisation

supports Containment, while XML vector space retrieval does not.

5.5 Conclusion

This chapter has applied our methodology to theoretically compare XML retrieval be-

haviour to five strong models from INEX. We have been able to show commonalities as

well as differences between those models. The main commonality is that none of the pre-

sented models radically breaks with methods applied in flat document retrieval. XML

structure is never directly included in the aboutness decision. The main difference in the

models then is how they attempt to adjust a flat document retrieval model to the specific

requirement of XML retrieval to deliver focussed answers. Here, the control of monotonic

reasoning behaviours and other standard reasoning rules like Symmetry and Transitivity,

have been found to be particularly important.

In our theoretical evaluation of five XML retrieval models, we could see how XML

retrieval work is concentrated on the control of monotonic behaviour and other reasoning

like Symmetry that heavily influence the primary aim of XML retrieval aboutness deci-

sions, which is to find the most focussed answer. The importance of making the reasoning

conservatively monotonic can be found in many retrieval strategies using internal and

external thresholds. Thresholds have been a successful strategy to adjust the behaviour

of flat document retrieval models towards the requirements of XML retrieval, as we have

seen, e.g., in Section 5.2.

We finally assess in Chapter 8 how the reasoning behaviour of XML retrieval models
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leads to particular experimental performance at INEX. Yet, before we can discuss this

experimental performance we first need to analyse the important XML retrieval method

of filtering in Chapter 7, as it is used to support the delivery of only the most focussed

elements in the experimental evaluation. Furthermore, we need to understand more about

the underlying reasoning principles of the experimental evaluation when we aim to the-

oretically evaluate experimental evaluation in XML retrieval. To this end, we turn to

Chapter 6.
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Chapter 6

Theoretical Evaluation of the

INEX Experimental Evaluation

Methodology
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Figure 6.1: Content-only topic in INEX 2003

6.1 Introduction

In this chapter, we explore a new domain for a theoretical evaluation. We investigate how

to evaluate existing experimental evaluations. To my knowledge, this has not been done

before. We proceed as follows: In Section 6.2 we briefly recall the basics of the INEX test

collections while in Section 6.3, we discuss in more detail the relationship of the INEX test

collections to the evaluation scales. In Section 6.4, we introduce models for reasoning that

comply with these evaluation scales, before we bring all the introduced concepts together

in the actual theoretical evaluation of the experimental evaluation in INEX 2004 and 2005

in Section 6.5.

6.2 INEX Test Collections

As already briefly discussed in Section 2.3, INEX created a test collection consisting of

predefined query topics, a document collection and relevance assessments [Kazai and Lal-

mas, 2005]. The INEX 2005 collection uses the full texts of more than 10,000 IEEE articles

— all marked up in XML. 12 magazines and 6 transactions are collected — from 1995

to 2002. The collection of INEX document components has a total size of 494 megabytes

in size. The articles have varying length, with an average of 1,532 XML components and

an average component depth of 6.9 [Kazai and Lalmas, 2005]. All in all, eight millions

document components come together from table entries to whole articles. From INEX

2006 onwards, the much larger wikipedia collection has been used.

As discussed in Section 2.3, the INEX query language NEXI allows for the specification

of structural query conditions, and INEX has defined two types of topics to reflect this.

Content-only (CO) queries are standard IR retrieval tasks similar to those used in TREC.

Content and structure (CAS) queries use both structure and content for formulating an

information request. The structure might refer to the content of specific elements. An

example would be a request demanding a paragraph about an information need. Further-

more, the query might ask for a certain element type like sections that are supposed to
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be retrieved. As in TREC, an INEX topic consists of the standard title, description and

narrative fields. Figure 6.1 shows an example of such a CO query from [Kazai and Lalmas,

July 2005]. One can see the similarity to standard TREC query types.

Next we introduce the INEX evaluation scales based on the evaluation dimensions of

exhaustivity and specificity.

6.3 INEX Evaluation Scales

As seen in Chapter 2, for INEX the aim of XML retrieval is to retrieve not only relevant

document components, but those at the right level of granularity, i.e. those that specifically

answer a query. To evaluate how effective XML retrieval approaches are, it is necessary to

consider whether the ‘right’ level is correctly identified. For this purpose, two evaluation

criteria have been the basis for INEX to consider the structure when evaluating XML

retrieval effectiveness, which we now want to look at in more detail.

As seen in Section 2.3, INEX has two evaluation dimensions:

• Topical exhaustivity reflects the extent to which the information contained in a

document component satisfies the information need.

• Component specificity reflects the extent to which a document component focuses

on the information need.

Specificity and exhaustivity are first used in IR literature to describe properties of the set

of indexing terms assigned to a document [Kazai and Lalmas, July 2005]. INEX uses them

more in an aboutness sense to name properties of document components. The history of

the evaluation criteria and INEX in general is described in [Kazai and Lalmas, 2006].

As discussed in Chapter 2, we use INEX 2005 as a baseline and refer to INEX 2004

results in this part only to explain INEX 2005. That is why we need to discriminate

exhaustivity and specificity. Since 2005, specificity has become the focus of INEX evalua-

tions. It was found to reflect the requirements of XML retrieval better.

In order to capture varying degrees of exhaustivity and specificity, INEX has modelled

them using graded scales following an investigation by Kekäläinen and Jarvelin [Järvelin

and Kekäläinen, 2002]. Some advantages of such a scale are discussed in [Gövert et al.,

2006]. Using two measures of relevance, in particular, allows to discuss various degrees of

exhaustivity against various degrees of specificity. And, a document component can be

compared to its subcomponent. It might be seen to be more exhaustive than its children.

Prior to 2005, INEX has developed a four-point ordinal scale:

1. Not exhaustive (0): The document component information is not about the topic of

request (query).

2. Marginally exhaustive (1): The topic of request according to the query is mentioned,

but no more than in passing.
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3. Fairly exhaustive (2): The document component discusses many aspects about the

topic of request of the query, but not all. This includes those requests which have

several subtopics and only some of them are considered.

4. Highly exhaustive (3): The document component is fully about the aspects of the

query.

For specificity the same principles apply. XML retrieval systems should be rewarded if

they deliver focussed document components. A retrieval system that locates the exact

relevant paragraph in a document is likely to trigger higher user satisfaction than one that

returns a too large component. Again, a binary scale was seen to be not sufficient.

1. Not specific (0): The topic as suggested in the query is not about a theme of the

document component.

2. Marginally specific (1): The topic (query) is only a minor theme of the document

component.

3. Fairly specific (2): The topic is a mostly covered in the document component.

4. Highly specific (3): The topic is about the document component.

These are the evaluation scales for INEX 2004. INEX 2005 continues to use degrees of

exhaustivity and specificity during the evaluation process, but not on an ordinal scale

such as the one above. In Section 6.5.3, we discuss the implication in the changes of how

the values for exhaustivity and specificity are derived for INEX 2005. Before that, we

elaborate the relationship of the evaluation scales of exhaustivity and specificity.

In order to show the relationship between exhaustivity and specificity, we employ

the idea of an ideal concept space developed in [Wong and Yao, 1995]. Concepts are

the elements in such a concept space, and document components and topics containing

concepts are subsets of that concept space. Following this approach in [Gövert et al., 2006],

a so-called component coverage matrix is developed that symbolises the differing degrees

of overlap in concepts between topic and component for exhaustivity and specificity. This

visualisation is very close to aboutness determination, as it treats information represented

by a number of concepts as properties of document component and query (topic). The

relationship of such concepts in query and documents allows us to determine specificity

and exhaustivity.

[Kazai and Lalmas, July 2005] explain specificity and exhaustivity with the ideal con-

cept space. Exhaustivity and specificity can be interpreted with the following formulas:

Say T is a topic, C is a component, and |.| is a measure of the size or a counting measure,

as van Rijsbergen calls it [van Rijsbergen, 2004] (e.g., the total number of words in a

document). Then:

exh =
|C � T |

|T |

spec =
|T � C|

|T |
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Please note the difference between C � T and T � C, which reflects the difference be-

tween exhaustivity and specificity according to Chiaramella’s fetch and browse paradigm,

as explained in Section 3.3.2.

The concept matrix is a powerful abstraction. It lacks, however, means to represent

relationships between the concepts. We would therefore like to reinterpret it as an ideal

infon space. As convincing as the abstraction of a concept space for traditional IR seems

to be, concepts themselves are not able to express relationships among them. For XML

retrieval this is not satisfactory, as structure cannot be represented. The relations between

the concepts are neglected in favour of a simplified semantic model. A Situation Theory

framework is more powerful. We suggest to use infons instead of concepts in order to

include relational infons and therefore structure. With Situation Theory, there is no need

to assume independence of the elementary elements.

Figure 6.2: Infon coverage matrix with INEX 2004 scale

In the infon coverage Figure 6.2, the upper left square of each entry represents the

document component situation, whereas the bottom right square represents the query

situation. Together they form an abstract visualisation of an aboutness relation between

a query and document component situation. The shaded area symbolises the existence

of aboutness. The larger the shaded area the higher the corresponding specificity or

exhaustivity value. E.g., a (3,3) combination leads to a full shading, while (2,1) and (2,2)

differ in that for (2,1) larger parts of the query situation are not covered by the document

component.

Exhaustivity is measured by the size of the overlap of query and document component

information in the shaded grey areas. On the other hand, specificity is determined by

counting the rest of the information in the component that is not about the query. The

less additional, non-useful information can be counted in the component, the higher the

specificity value. Thus, specificity measures the relation of relevant to non-relevant content

within a single document component.

For the INEX scales, all possible combinations of query and document component

situations on the basis of an ideal infon space are shown in Figure 6.2. Each square
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Table 6.1: Quantisations in INEX 2004
Function f(e, s) User model

Strict4 f(e, s) =

{

1 if e=3 and s=3

0 otherwise
UU

Gen4 f(e, s) =































1 if (e,s) = (3,3)

0.75 if (e,s) ∈ {(2,3),(3,2),(3,1)}

0.5 if (e,s) ∈ {(1,3),(2,2),(2,1)}

0.25 if (e,s) ∈ {(1,2),(1,1)}

0 if (e,s) = (0,0)

EU

SOG f(e, s) =



















































1 if (e,s) = (3,3)

0.9 if (e,s) = (2,3)

0.75 if (e,s) ∈ {(1,3),(3,2)}

0.5 if (e,s) = (2,2)

0.25 if (e,s) ∈ {(1,2),(3,1)}

0.1 if (e,s) ∈ {(2,1),(1,1)}

0 if (e,s) = (0,0)

SU

AnyRel f(e, s) =

{

0 if (e,s) = (0,0)

1 otherwise
TU

represents a situation within a two dimensional space spanned over the three different

exhaustivity and specificity values. We have therefore 10 defined positions in this space,

as we can discard any combination of (0, i) or (i, 0) with i ∈ [0, 3]. There can be no

specificity without exhaustivity and vice versa.

In Figure 6.2 we can see that the discrimination of scale 1 and 2 for exhaustivity and

specificity is based on the relatively larger parts that are not shaded. It is therefore a

quantitative difference in degree. We suspect that the discrimination does not add value

to an approach investigating aboutness, as it looks at qualitative properties. We shall

investigate this in Section 6.5.2.

Figure 6.2 visualises the relationship of the INEX specificity and exhaustivity scales.

This chapter considers the changes in the scales used in INEX 2004 and 2005 from a

theoretical point of view. Section 6.4 relates them to models for agent reasoning, as they

are expressed in the so-called INEX quantisation functions which map the graded scales

onto scalar values. Quantisations in INEX reflect the importance attached to exhaustivity

and specificity as well as user standpoints as to what constitutes a relevant component

[Gövert et al., 2006]. For example, the strict quantisation functions evaluate whether

a given retrieval method is capable of retrieving highly exhaustive and highly specific

document components.

By representing the agent reasoning in a formal logical framework we will be able to

relate them to exhaustivity and specificity. As shown in [Huibers, 1996] rational agents,

whether computer systems or human, have the ability to gather information and reason

about this gathered information. In Section 6.5, we analyse the aboutness decisions behind

the graded scales for INEX 2004 and 2005. We demonstrate how to reason about the

changes in the graded scales within our theoretical logic-based framework.
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6.4 Agent Representations in INEX Quantisations

In INEX [Gövert et al., 2006] the scales for exhaustivity and specificity are mapped onto

ratio scales. To this end, INEX uses quantisation functions over the two parameters of

exhaustivity (e) and specificity (s): f(e, s). A single relevance scale [0,1] is the result, as

presented in Table 6.1 for INEX 2004 and Table 6.2 for INEX 2005. The first two columns

in both tables are taken from [Ogilvie and Lalmas, 2006].

The quantisation functions order the combinations of exhaustivity and specificity val-

ues. In Tables 6.1 and 6.2, the strict functions (Strict4 and Strict5) are used to evaluate

XML retrieval methods with respect to their capability of retrieving highly exhaustive and

highly specific components. The generalised functions (Gen4 and gen5) also reward only

fairly relevant elements. Other quantisation functions have more specific aims. AnyRel

in Table 6.1 evaluates whether INEX approaches can return any relevant element, regard-

less of their exhaustivity and specificity value. In Table 6.2, FullySpec and BinExh are

functions that reward elements independently of exhaustivity. The ? stands for elements

that are too small to allow an aboutness conclusion. This value of f(e, s) is new to INEX

2005 reflecting the specific problem with XML document components that are too small

to bear information. Further discussion of the quantisations will follow below.

In order to deliver agent representations for the INEX quantisations, we need to express

these first in a Situation Theory framework. To do so, we divide the document component

and query situations into subsituations, with D ≡ D1 ⊗ ... ⊗Dn and Q ≡ Q1 ⊗ ... ⊗Qm.

Please recall that according to Section 3.3.3, a subsituation is a situation Si that is part

of another situation S, where we count the situation as a part of itself, i.e. a situation is a

subsituation of itself. Thus, a situation S is about a situation T if and only if T contains

a subsituation Ti such that situation S is about situation Ti. Also, we distinguish strict

subsituations, i.e. those Si that are not S.

Using the subsituation-based aboutness criterion from Section 3.3.3, we assume that

if D is an exhaustive answer to Q, then it is due to one of the situations Di that D is

composed of. With our subsituation-based aboutness criterion, we are able to represent

agent reasoning according to INEX in Section 6.4 and the INEX assessment methodology

in Section 6.5 within a single theoretical framework. We speak of rational agent reasoning

to include both system and user reasoning.

Quantisations in INEX reflect the importance attached to exhaustivity and specificity.

As such they can be used to describe user agent reasoning about results that system

agents should return. E.g., Strict4 in Table 6.1 as much as Strict5 in Table 6.2 only

credit highly exhaustive and highly specific elements and thus express very demanding

user requirements. Within our Situation Theory framework, we have the advantage of

being able to express a user’s need and a system’s attempt to satisfy it within the same

framework. Both are reasoning processes that follow rules. This can be considered to be

one of the major advantages of a logical theoretical evaluation approach. User assessments

are as much as system assessments results of reasoning processes [Huibers, 1996]. In

this section, we demonstrate the reasoning of user agents, as we are concerned with the
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Table 6.2: Quantisations in INEX 2005
Function f(e, s) User model

Strict5 f(e, s) =

{

1 if e=2 and s=1

0 otherwise
UU

FullySpec f(e, s) =

{

1 if s = 1

0 otherwise
SDRU

Gen5 f(e, s) =

{

e ∗ s if e ∈ {1,2}

0 otherwise
EU

GenLifted f(e, s) =











(e+ 1) ∗ s if e ∈ {1,2}

s if e = ?

0 otherwise

EU

BinExh f(e, s) =

{

s if e ∈ {?,1,2}

0 otherwise
SDRU

representation of the INEX evaluation methodology.

In the following formalisations Dj and Qj denote one of n unique subsituations of an

XML situation such as an XML element or a query. Dex marks the subsituation that

determines a component to be an exhaustive answer, while Qsp states that the component

is a specific answer.

The quantisation of Strict4 as much as its INEX 2005 equivalent Strict5 simulates

those user agents only interested in highly exhaustive and highly specific answers. These

unanimous users will only be satisfied if aboutness systems return the highest exhaustivity

and specificity values [Huibers, 1996]. The Unanimous User (UU) will only be happy if

she can find nothing else, but the two subsituations Dex and Qsp. She wants them to be

equivalent to the situations D and Q, respectively, in order to conclude either D � Q

or Q � D.

Unanimous User (UU)

Dex � Q,Dex ≡ D,Qsp � D,Qsp ≡ Q

D � Q,Q � D

A user looking for specific answers but at the same time not wanting to entirely lose

out on exhaustivity can be called a Specificity-oriented User (SU) represented by SOG in

INEX 2004, but without a real equivalent in INEX 2005. SOG only gives preferences to

specificity by assigning higher quantisation values to higher specificity values.

Specificity-oriented User (SU)

D1 ⊠ / Q, ...,Dn ⊠ / Q,Qsp � D,Qsp ≡ Q

D ⊠ / Q,Q � D

The complement to SOG with a tendency to favouring exhaustivity is Gen4. It values

higher exhaustivity and represents the Exhaustivity-oriented User (EU). As long as most

aspects of the query are discussed, the focus is secondary. The Exhaustivity-oriented User

(EU) does not neglect specificity fully. The focus, however, is to have D � Q. For INEX

2005, Gen5 and GenLifted both place an emphasis on exhaustivity and their Situation
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Table 6.3: INEX 2005 exhaustivity and specificity situations
Scale Exhaustivity Specificity

D � Q Q � D

0 D1 � / Q, ..., Dn � / Q Q1 � / D, ..., Qm � / D

D � / Q Q � / D

1 D1 ⊠ / Q , ... , Di � Q , ... , Dn ⊠ / Q Q1 ⊠ / D , ... , Qi � D , ... , Qm ⊠ / D

D ⊠ / Q , ... , D � Q , ... , D ⊠ / Q Q ⊠ / D , ... , Q � D , ... , Q ⊠ / D

2 D1 ⊠ / Q, ..., Di � Q, ..., Dn ⊠ / Q Q1 ⊠ / D, ..., Qi � D, ..., Qm ⊠ / D

D � Q Q � D

3 D1 � Q, ..., Dn � Q Q1 � D, ..., Qn � D

D � Q Q � D

Theory representation reflects this by demanding D � Q as an overall conclusion and

rewarding those XML elements that include exhaustivity subsituations.

Exhaustivity-oriented User (EU)

Dex � Q,Dex ≡ D,Q1 ⊠ / D, ..., Qn ⊠ / D

D � Q,Q ⊠ / D

In INEX 2004, the AnyRel-function captures the typical user of mass information

systems, happy with any relevant component. There is no equivalent in INEX 2005. The

Typical User (TU) would like to see any kind of subsituations, allowing to conclude either

exhaustivity or specificity. She is not interested in an overall conclusion of D � Q or

Q � D, but in partial conclusions indicating either an exhaustive or a specific answer.

Typical User (TU)

D1 � Q

D � Q
, ... ,

Dn � Q

D � Q
,
Q1 � D

Q � D
, ... ,

Qn � D

Q � D

Instead of a direct equivalent to SU , INEX 2005 comes up with two new user types

BinExh and FullySpec. Both only look for specificity, as long as exhaustivity is not

impossible. BinExh is not as strict with respect to the exhaustivity value. In this sense,

it corresponds to Chiaramella’s earlier suggestions that describe the focus of the answer

as the specific interest of XML retrieval. [Chiaramella, 2001] has demonstrated within a

theoretical experiment that Structured Document Retrieval Users (SDRU) are interested

in specificity as long as the answer remains exhaustive enough. This is why we call this

model SDRU:

Structured Document Retrieval User (SDRU)

D1 ⊠ / Q, ...,Dn ⊠ / Q,Qsp � D,Qsp ≡ Q

Q � D

SDRU’s differ from SU’s only in that their overall conclusion is only influenced by

specificity. SDRU’s are looking to find a Qsp � D in order to conclude Q � D. Not

all users of XML retrieval systems have to be SDRU’s, but the particular interest of XML
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Table 6.4: INEX 2004 exhaustivity and specificity situations
Scale Exhaustivity Specificity

D � Q Q � D

0 D1 � / Q, ..., Dn � / Q Q1 � / D, ..., Qn � / D

D � / Q Q � / D

1 D1 ⊠ / Q, ..., Dn ⊠ / Q Q1 ⊠ / D, ..., Qn ⊠ / D

D � Q Q � D

2 D1 ⊠ / Q, ..., Dn ⊠ / Q,Dex � Q Q1 ⊠ / D, ..., Qn ⊠ / D,Qsp � D

D � Q Q � D

3 Dex � Q,Dex ≡ D Qsp � D,Qsp ≡ Q

D � Q Q � D

retrieval compared to flat document retrieval is better represented by SDRU’s than by

other agent models, as the overall conclusion is focussed on specificity only.

To better see the overall use of these agent reasoning models, let us briefly investigate

what is possible if we can express system and user reasoning in the same framework. We

can combine, for instance, Left Monotonic Union (LMU) and Unanimous User (UU) model

in:

UU:
Dex � Q,Dex ≡ D

D � Q

LMU:
D � Q

D ⊗D1 � Q

⇒
D ⊗D1 � Q

D ⊗D1 6≡ Dex

The conclusion that D ⊗ D1 � Q clearly contradicts the assumption of the UU that

Dex ≡ D, which means UU’s will not be served well by aboutness reasoning systems that

include LMU.

In this section, we have presented agent reasoning models, as expressed in the INEX

quantisations for XML retrieval, based on Chiaramella’s differentiation of D � Q and

Q � D. We have added a third column to Tables 6.1 and 6.2 to summarise these results.

We have shown the new focus in INEX 2005 on specificity and would like to investigate

this issue further by looking at the transition in terms of the system agents’ rewards from

INEX 2004 to INEX 2005.

The next section places the INEX exhaustivity and specificity assessment scales into

the context of Situation Theory. We will show that system agents are rewarded if they

reflect the user agent reasonings. For example, in order to reach the highest values for

exhaustivity and specificity, they must support the reasoning of unanimous users.
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6.5 Exhaustivity and Specificity Assessments in INEX 2004

and 2005

We start by presenting the reasoning behind the INEX 2004 and 2005 relevance scales and

user models within a Situation Theory framework, to afterwards relate the user models

and quantisations to this reasoning. We show that exhaustivity and specificity are two

sides of the same aboutness relation and not two independent criteria. We follow a similar

argument as in [Ogilvie and Lalmas, 2006], where the authors argue for a focus on speci-

ficity, as this is the specific interest in XML retrieval and sufficient to evaluate it. Since

INEX 2006 only specificity has been used to measure retrieval effectiveness.

We continue our modelling of how an agent perceives how exhaustive and specific a

component is. We argue that an agent, either a system or a user, assesses the relevance of

a component according to the information contained in both Q and D. In the next two

subsections, we develop two tables representing reasoning models according to INEX 2004

and 2005 definitions of graded scales of relevance, respectively. In the third subsection,

we explore the relationship of exhaustivity and specificity for INEX 2005 and argue for a

better integrated assessment showing that, for both specificity and exhaustivity, it is the

same relevant information that decides on its values.

6.5.1 INEX 2004 Reasoning

We aim to show how INEX 2004 reasoning is based on the subsituation-based aboutness

decision from Section 3.3.3. In order to do so, we start discussing the INEX 2004 ex-

haustivity and specificity situation on the background of the liberal aboutness criterion

by Huibers and Bruza first. Afterwards we demonstrate that we achieve a more consistent

view with a subsituation-based aboutness decision. We build upon work in [Blanke and

Lalmas, 2006] that has used Situation Theory to formally represent assessment decisions

in INEX 2004.

Table 6.3 demonstrates our translation of Figure 6.2 into INEX 2004 exhaustivity and

specificity situations. It summarises aboutness decisions for INEX 2004 with a liberal

aboutness decision demanding any common information to derive aboutness. We argue

that a user assesses the relevance of a component according to the information contained

in both Q and D.

In Table 6.3, the document component and query situations are divided into other

subsituations, with D ≡ D1 ⊗ ... ⊗ Dn and Q ≡ Q1 ⊗ ... ⊗ Qn. Scale 1 states that only

some of its subsituations are about the query but none involves anti-aboutness. With this,

we can, e.g., formalise what is meant by a marginally exhaustive document component

(1): the topic is only mentioned in passing, leading to very small indications about the

document components relevance.

Table 6.3 shows that for scale 1 multiple conclusions are possible, demonstrating un-

decidedness about the component’s relevance. For scale 2, the overall conclusion can be

derived that D � Q or Q � D. For specificity, the topic is a major theme of the

document component and Q � D can be concluded. Scale 0 indicates that no Di is
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about the query making the whole document component not about the query. The highest

satisfaction is achieved with scale 3. For exhaustivity, all subsituations of the component

are about the query, while for specificity all subsituations of the query are about the

document component.

A combination of (0,3), e.g., is impossible, as our perception of exhaustivity and speci-

ficity is based on the overlap between the query and document component situation ac-

cording to Figure 6.2 and the shaded areas in it. With D ≡ map(A) and Q ≡ map(B),

the conclusions of D � / Q (and therefore A ∩ B ≡ ∅) and Q � D (and therefore

B ∩ A ≡/ ∅) contradict each other. The same argument obviously applies to all combina-

tions of exhaustivity and specificity where one has the value 0 and the other has not. The

infon coverage matrix 6.2 is right to exclude these.

Table 6.4 describes the INEX 2004 reasoning with a subsituation-based aboutness

criterion. For scale 0, we cannot find any subsituation that would justify an aboutness

conclusion. Scale 1 states that we are undecided whether we can call this aboutness.

For this scale, there is no strict subsituation that would allow us to conclude aboutness.

For scale 2, Dex is a strict subsituation that makes D exhaustive, while the rest of the

subsituations of D are numbered from 1 to n. For 3, there is no other information in the

assumption than the subsituation having the property exhaustivity or specificity. Users

expect to see only information that is relevant, i.e. Qsp ≡ Q for specificity and Dex ≡ D

for exhaustivity.

Table 6.4 corresponds to the in Section 6.4 defined user agent models. An UU agent

model expects a system agent to react only to the assumptions of no other information

than the relevant one for both exhaustivity and specificity. In order to support a SU, a

value of at least 1 for exhaustivity is required to be delivered by the system agent. Within

the reasoning of the system agent, the assumptions D1 ⊠ / Q, ...,Dn ⊠ / Q must be

achieved. Exhaustivity must not have the value 0, as this would make specificity have a

value of 0 as well. Analogously, for a system agent to reflect an EU the specificity value

counts only as far as it is not 0.

The TU is not really represented in the INEX 2004 exhaustivity and specificity situ-

ations. Her conclusions are binary and not scaled — either an answer is relevant or not.

Therefore the non-representation of the typical user does not affect our representation and

is rather an indication that it is separate from the other INEX agent reasoning models.

The typical user does not appear again in later INEX assessments. For a logical reasoning

model also difficult to discriminate are degrees of reasoning. In particular, without exten-

sion to our Situation Theory framework it seems impossible to discriminate an assessment

of 1 or 2. We will later see that this does not pose a problem, as for INEX 2005 assessments

the two middle-valued assessments are merged into one.

Let us briefly discuss examples of how such agent reasonings behind the INEX 2004

scales are reflected in combined exhaustivity and specificity assessments. For demonstra-

tion purposes, we focus on combinations of very high expectations for specificity or exhaus-

tivity. A combined assessment of (3,3) clearly means an exact match, asDex ≡ D according

to the exhaustivity judgment’s assumptions, as well as Qsp ≡ Q according to the specificity
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Table 6.5: INEX 2005 exhaustivity and specificity situations
E-Scale Exhaustivity Specificity S-Scale

D � Q Q � D

0 D1 � / Q, ..., Dn � / Q Q1 � / D, ..., Qn � / D 0

D � / Q Q � / D

1 D1 ⊠ / Q, ..., Dn ⊠ / Q,Dex � Q Q1 ⊠ / D, ..., Qn ⊠ / D,Qsp � D
|Qsp|

|D|

D � Q Q � D

2 Dex � Q,Dex ≡ D Qsp � D,Qsp ≡ Q 1

D � Q Q � D

judgment’s assumptions. Furthermore, (3,2) implies that the subsituation Qsp must be

about the subsituation Dex: Qsp � Dex, with Qsp � D according to the assumptions

about a scale 2 specificity judgment and Dex ≡ D according to full exhaustivity. This

insight is confirmed by an example, where the query is { 〈〈house〉〉 } and { 〈〈garden〉〉 },

while the document component has { 〈〈house〉〉 }, { 〈〈garden〉〉 } and { 〈〈car〉〉 }. For this

example D ≡ Dex⊗D1, with Dex ≡ { 〈〈house〉〉 , 〈〈garden〉〉 } and D1 ≡ { 〈〈car〉〉 }. Thus,

the subsituation Qsp must be about Dex and must be { 〈〈house〉〉 , 〈〈garden〉〉 }. A com-

bined assessment of (1,3) implies that none of the other subsituations of the exhaustivity

judgment contradicts the information in Qsp, with Dk ⊠ / Q and Qsp ≡ Q.

In this subsection, we have shown how a subsituation-based aboutness criterion can be

used to formalise INEX 2004 assessment decisions. In the next subsection, we present the

transition from INEX 2004 to INEX 2005, where the focus is much more on specificity.

6.5.2 INEX 2005 Reasoning

According to several studies investigating agreements in the relevance assessments, e.g.

[Trotman, 2005], the discrimination of scale 1 and 2 in INEX 2004 does not add value

and could potentially lead to confusion. This is also confirmed from a subsituation-based

aboutness point of view. For INEX 2004 in Table 6.4, either a subsituation Qsp or Dex

exists (scale 2 and scale 3) or not (scale 0 and scale 1) and if it exists it is either a

strict subsituation (scale 2) or the complete situation (scale 3). Three-valued scales cover

all the differences in a subsituation-based aboutness, with 0 meaning no subsituation for

relevance exists, 1 meaning a strict subsituation exists and 2 meaning the complete XML

situation is relevant. INEX 2005 [Ogilvie and Lalmas, 2006] has such a three-valued scale

for exhaustivity.

For specificity, a continuous scale is applied in INEX 2005 with values in [0,1], where 1

represents a fully specific component. The specificity value is derived as follows: In a first

phase, assessors highlight text fragments containing relevant information, so that in the

end each XML element has highlighted parts and non-highlighted parts. In a second step,

the ratio of highlighted text and total text per XML element delivers a specificity value

between 0 and 1. This procedure was adopted following the outcome of studies showing

it to be a more natural way for assessing relevance with more consistent assessments

[Pehcevski and Thom, 2006]. This new procedure is interesting, as for the first time

in INEX, it fulfills the inherent mathematical relationship between query and document
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component, as visualised in Figure 6.2 and used to define pure type aboutness in Section

4.7.1.

The new INEX 2005 specificity measure was developed according to the formalism in

[Gövert et al., 2006] describing specificity as the focus of a document component on the

topic in the query. This focus is exemplified by using the relationship of the size of those

parts of a document component that are about the query to the size of those that are not

about the query. [Gövert et al., 2006] describes specificity as the relationship of a topic

and a component. As for the aboutness relation a topic is in IR defined by the query,

we can use the relationship of query and document component as a specificity measure.

Furthermore, instead of using concepts as the carriers of meaning as in [Gövert et al.,

2006], we use situations. To do so, we first need a measure for the size of a situation’s

information.

Let |S| represent such a measure of the information size of a situation S. In INEX

2005, assessors highlight those parts of the document component that are about the query.

In INEX 2005 characters are counted to determine the length of highlighted text and its

relation to the total size of the element. By using the character ratio of highlighted and

non-highlighted text for the specificity judgment, INEX 2005 demands that the specificity

value should be a direct reflection of the counting size of the aboutness situation in relation

to the document component situation: spec = |Q � D|
|D| .

By committing itself at least for specificity to a strict relationship between highlighted

and non-highlighted text, INEX 2005 uses the extent to which the query topic is a subset

of the component topic as an aboutness criterion for the specificity assessment. Therefore,

the highlighting of the assessors forms an aboutness reasoning, where the highlighted parts

describe the subsituation Qsp that makes the document component a specific answer.

Thus, the size of |Q � D| is identical to the size of Qsp producing specificity, as Qsp

describes exactly those parts of a document component that are making a component

relevant to the query: spec =
|Qsp|
|D| . Obviously, the fraction would be 0, if Qsp would not

exist or 1 if Qsp ≡ D.

Table 6.5 summarizes the way INEX 2005 assigns values to agent reasoning. The

specificity value is directly linked to the difference of |Qsp| and |D|. Regarding exhaustivity,

we follow the above explained logic of subsituation-based aboutness. Then, 0 expresses

that we cannot find a subsituation to conclude exhaustivity. For scale 1 such a subsituation

exists and for scale 2 Dex is the complete situation. As an example for a combined

assessment, the new user type in INEX 2005, the SDRU would like to see thatDex � Qsp,

with a specificity value of 2 requiring Qsp ≡ Q and an exhaustivity value of at least 1

demanding Dex � Q. Dex � Qsp is a requirement to satisfy the SDRU, which proves

Chiaramella’s assumption: In order to achieve the best focus for answers, we have to

choose from those XML elements that are exhaustive answers. Their subsituations must

be about the specificity subsituation.

Even more than Table 6.4, Table 6.5 is derived from the above described agent reason-

ing models, as here the three-scaled assessments correlate to the idea of subsituation-based

aboutness. The UU is still best represented in system agents that deliver just relevant
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Table 6.6: Example with new exhaustivity and specificity measures
Q1 Q2 Q3 Q4 Q5

spec exh spec exh spec exh spec exh spec exh

D1 0.73 1 0.33 1 0.4 1 1 1 1 0.79

D2 0.31 0.45 0.31 1 0 0 0.31 0.33 0.31 0.33

information and nothing else but non-strict subsituations for specificity and exhaustiv-

ity. The EU is still favoured by system agents that avoid the value 0 for specificity, but

whose reasoning demands at least Q1 ⊠ / D, ..., Qn ⊠ / D,Qsp � D. In INEX 2005,

it becomes clear that this implies finding any kind of subsituation with the exhaustivity

property. Lastly, the SDRU demands from system agents any kind of subsituation with

the exhaustivity property allowing her to focus on the conclusion of specificity. Con-

trary to INEX 2004, all agent models are covered in Table 6.5 and no problems occur in

discriminating the different degrees.

Theoretically, we have demonstrated in detail that specificity and exhaustivity are not

independent values while discussing the fetch and browse paradigm in Chapter 2. Both

XML evaluation dimensions can only be discriminated by aboutness systems that can

distinguish the left and right hand side of an aboutness relation. An example for such a

relation would be the subset relation, as used in the INEX 2005 assessments or pure type

aboutness.

To recall, the representation of specificity as Q � D originates from the fetch and

browse paradigm of Chiaramella. The specificity decision is directly dependent on the

exhaustivity one, as first D � Q is evaluated and from this set the most specific in-

formation can be found by allowing only Q � D. This paradigm already shows that

exhaustivity and specificity are not two independent values, but rather two dimensions

of the same relation. That, according to Chiaramella, there is no specificity without ex-

haustivity, makes us suspect that we might be able to drop one of the dimensions for the

evaluation — not because it is not analytically interesting, but because it might not add

value to the aboutness decision. We analyse this question in the next section by investi-

gating the use value of the different quantisation functions in INEX 2005. Is the separate

assessment of exhaustivity and specificity necessary? After all, specificity is the focus of

XML retrieval. Structure is used to add focus to the general retrieval task.

In the next subsection, we investigate one of the reasons why INEX 2006 has decided

to focus only on specificity in order to evaluate retrieval effectiveness. We show that,

according to INEX 2005, specificity and exhaustivity values are inseparable and represent

two views of the same relationship of query and XML element. This becomes clear as a

result of INEX 2005, because specificity follows such a well-defined assessment strategy.

Another paper stressing the primary importance of specificity for XML retrieval from

a completely different angle than Chiaramella is [Ogilvie and Lalmas, 2006]. In this paper,

Ogilvie and Lalmas use extensive statistical tests to perform an analysis of the exhaustivity

and specificity dimensions used in two rounds of INEX. Their conclusion is that specificity

is a sufficient evaluation dimension for XML retrieval. We arrive at similar conclusions
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from a theoretical perspective in the next section.

6.5.3 The Relation of Exhaustivity and Specificity in INEX

First, we would like to show that with respect to the different quantisations in INEX

2004 and 2005 exhaustivity and specificity are not two independent values. If we say in

agreement with the judgment correcting the INEX 2004 scale that we can ignore all those

judgments involving a 1 in INEX 2004, we can reduce the complexity of Gen4 and SOG

radically. Furthermore, we ignore the extreme cases of a (3,3) or (0,0) assessment, as they

do not differ in Gen4 and SOG. What remains is the following combination of scale 2,

scale 3, and (2,2) assessments:

fgen4(e, s) =







0.75 if (e,s) ∈ {(2,3),(3,2),(3,1)}

0.5 if (e,s) ∈ {(1,3),(2,2),(2,1)}

fSOG(e, s) =



















0.9 if (e,s) = (2,3)

0.75 if (e,s) ∈ {(1,3),(3,2)}

0.5 if (e,s) = (2,2)

Thus, the specificity-oriented fSOG and the exhaustivity-oriented fgen4 differ only in that

fSOG rewards (2,3) more than (3,2), as it focuses on specificity. We would like to argue that

for most retrieval models this does not deliver the discrimination desired. We confirm the

observation in [Ogilvie and Lalmas, 2006] that both quantisations behave similarly when

ranking systems. At least, they do not have the strong discriminatory effect hoped for.

We use our Situation Theory framework to show that the reasoning for (2,3) and (3,2)

does not differ for most cases of aboutness systems. According to Table 6.4 (3,2) leads to

the conclusion that Dex � Qsp. The subsituation making D � Q must be about the

subsituation making the aboutness relation specific. Analogously, for (2,3) Dex � Qsp

holds. Thus, it is only for models based on aboutness decisions that can discriminate

Dex � Qsp and Qsp � Dex, that these two values really make a difference.

Most INEX models rely on information overlap to decide aboutness, as seen in Chapter

5. As also seen in the chapter, information-overlap based systems do not support Sym-

metry and therefore do not discriminate Dex � Qsp from Qsp � Dex. Overlap is the

basis of many successful models like the vector space models, etc. That these models are

also used for XML retrieval, is one reason why different quantisations for (2,3) and (3,2)

do not deliver a significant difference in ranking systems.

[Ogilvie and Lalmas, 2006] also conclude that the model differences identified by the

AnyRel quantisation tend to be also identified by the Gen4 and SOG functions. Please

recall that in Table 6.4 a value of 2 for exhaustivity or specificity means that a subsituation

allowing these judgments can be found, but that there are other subsituations. These

subsituations seem to play only a secondary role for the agents’ assessments. We have

seen in the previous subsection that the subsituation deciding specificity is exactly defined

in INEX 2005 rather than being the result of a more intuitive agent decision. It was taken
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out of the hand of the user to decide on degrees after studies that showed highlighting to

be a more natural way for assessors to decide on degrees [Kazai and Lalmas, 2005].

The question of the relation of exhaustivity and specificity values for INEX has been

intensely discussed. [Ogilvie and Lalmas, 2006] go as far as to suggest that after INEX 2005

only specificity should be used for the evaluation, as the specificity-oriented quantisation

BinExh can be used to predict exhaustivity-oriented quantisations such as GenLifted.

This indicates that exhaustivity and specificity are not independent values. Additionally,

[Chiaramella, 2001] declares that a specificity judgment should be seen as a more narrow

focus of an exhaustivity assessment. As discussed in Section 3.3.1, in his theoretical frame-

work, Q � D is only evaluated against those document component situations D that

are about the query Q: D � Q. We cannot go as far as Chiaramella. By validating our

assumption that the same relevant information is used for the exhaustivity and specificity

assessment within an example, we can, however, state that these two assessment values

offer two views on the same aboutness relation between query and document component.

We need to look at both evaluation measures in terms of one being the condition of the

other. In particular, without exhaustivity no specificity aboutness.

From this point of view, it is interesting to see how the INEX 2005 quantisations

behave. In particular, the above quoted relationship of the exhaustivity-oriented quan-

tisations Gen5 and GenLifted to BinExh is telling, as the latter exactly expresses the

above condition: Without exhaustivity no specificity, but specificity delivers the end re-

sult. The other two reward higher exhaustivity values by multiplying a variant of that

value with the specificity value for the overall result. Again, we can say that those models

able to deliver Dex are favoured. Yet, we have just argued that most of these models are

at the same time able to deliver Qsp, as overlap between information is such an impor-

tant feature of aboutness systems according to Chapter 5. Also, as shown, the assessors

orientate themselves on the overlap of query and document situation while highlighting

relevant document parts. Therefore, the discriminative power of the quantisations Gen5

and GenLifted is not much better than BinExh, though their absolute results might be

higher. They value the same aboutness relations with higher values.

Thus, [Ogilvie and Lalmas, 2006] rightly contest the value of a graded exhaustivity

value for INEX 2005. A graded scale does not seem to be necessary to treat exhaustive

elements as relevant. Looking at Strict5 in the INEX 2005 quantisations, there is no way

for us to include it in other quantisations. Its exhaustivity assumption is too strict. It only

considers fully exhaustive elements. Yet, [Ogilvie and Lalmas, 2006] argue that Strict5

has anyway not convinced with its ability to discriminate systems and should be discarded

for future evaluations. Let us now look at an alternative to a scaled exhaustivity measure,

an alternative which is close to the way specificity is already measured.

As exhaustivity and specificity in INEX express the relationship between one document

component and one query, they bear a direct mathematical interpretation, which have

used to define pure type aboutness. Within our Situation Theory framework, the factor

by which one document component covers only aspects of one query (specificity), and the

factor by which one document component is about all aspects of a query (exhaustivity), can
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be interpreted as follows: Say Q is a query situation, D is one given component situation,

and |D � Q| stands for the degree/size to which D is about Q. In INEX 2005, this could

be measured using the same character counting method, as used for specificity (see Section

6.5.2). In fact, as the information determining exhaustivity and specificity is the same,

the same characters can be used. We shall discuss this in more detail later. According to

the formalism in [Gövert et al., 2006], exhaustivity can be defined as the degree to which

all aspects of the query are covered by comparing the size of the parts of the aboutness

relation that make the document component an exhaustive answer with the size of the

query topic: exh = |D � Q|
|Q| . As shown specificity is spec =

|Qsp|
|D| .

The relevant information in the document component is the same for exhaustivity and

specificity. Exhaustivity and specificity only differ in representing whether this relevant

information covers all aspects of the topic for exhaustivity or whether for specificity the

relevant information does not come with irrelevant information in the same document

component. Therefore the highlighting of the INEX 2005 assessors for specificity will also

have identified the parts of the document components that determine how exhaustively it

answers to the topics in the query. Highlighting is about what is relevant. Specificity and

exhaustivity are only two different views on how this relevant information relates to other

information — either in the query or in the document component.

As already discussed, in INEX 2005 the exhaustivity value is independently chosen

from the specificity one.1 It is not formally based on highlighting. For exhaustivity,

assessors are ‘free’ to choose a value between 0 and 2, while specificity is determined by

calculating the relation of highlighted to non-highlighted text. The deliberation that the

relevant information stays the same offers a mathematical relationship of the INEX 2005

specificity value towards exhaustivity. Instead of judging exhaustivity without using the

highlighted text, an alternative idea for exhaustivity would be to use the second formula

from [Gövert et al., 2006]: exh = |D � Q|
|Q| , as for specificity the complementary equation

spec =
|Qsp|
|D| is used. Looking at it from a subsituation-based aboutness point of view, exh

has a clear mathematical interpretation similarly to spec by relating the counting size of

the exhaustivity subsituation to the counting size of the query: exh = |Dex|
|Q| . This relation

measures the degree to which a document component covers the concepts requested by a

topic.

In the following paradigmatic example, using exh = |Dex|
|Q| and spec = |Q � D|

|D| as

evaluation measures, we demonstrate that the results are the expected preferences in terms

of exhaustivity and specificity. To keep the aboutness relation simple, we assume that the

information in query and document components is constituted by their keywords and by

their keywords only. Furthermore, we assume that the assessors only use the overlap

between these keywords as an aboutness decision. A document component stating ‘Dogs

are not cats’ is relevant to a query about the topic ‘cats’, as the keyword cats is part of the

document component. This keyword will be the only highlighted part in the component.

In a Situation Theory framework the document component is { 〈〈dogs〉〉 , 〈〈cats〉〉 } and

1The exception is non-aboutness: A value of 0 for specificity has to mean a 0 for exhaustivity and vice
versa.
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the query is { 〈〈cats〉〉 }. The highlighted text will have 4 characters, the non-highlighted

13 characters. In order to simplify our calculations and keep the overview in our example,

we assume that the document components only consist of keywords. Then the counting

size of a document situation in the INEX 2005 assessment will be the number of characters

each keyword information item has plus one whitespace separating the keywords in the

text. Like this we avoid confusion about the counting size when describing the document

components and query in our example as situations.

Let us therefore assume the following assessment situation: { 〈〈house〉〉 , 〈〈garden〉〉 ,

〈〈flat〉〉 } is document component situation D1 with a counting size of 15. Let D2 be

{ 〈〈house〉〉 , 〈〈close〉〉 , 〈〈garage〉〉 } with |D2| = 16. We have 5 query situations: Q1 is

{ 〈〈house〉〉 , 〈〈garden〉〉 }, Q2 { 〈〈house〉〉 }, Q3 { 〈〈garden〉〉 }, Q4 { 〈〈house〉〉 , 〈〈garden〉〉 ,

〈〈flat〉〉 }, and Q5 { 〈〈house〉〉 , 〈〈garden〉〉 , 〈〈flat〉〉 , 〈〈car〉〉 }. Then, |Q1| = 11, |Q2| = 5,

|Q3| = 5, |Q4| = 15 and |Q5| = 19. This example is paradigmatic, as we cover all 4 possi-

ble combinations following Figure 6.2: either the information in the query is fully covered

in the document component, or the document component has no other, but not all infor-

mation of the query, or both document component and query share information, but both

also have other information, or query and document component do not share information

at all.

Table 6.6 summarizes the assessment outcomes for exh = |Dex|
|Q| and spec =

|Qsp|
|D|

in this example. It clearly presents the expected preferences in terms of exhaustivity

and specificity assessments. Also, a 0 assessment in one of the measures leads to a 0

assessment in the other. The example of Q4 and D1 offers a complete match. The

assessment results are always between 0 and 1, as the size of the information overlap

of query and document component can never be larger than either the counting size of

the query situation or the counting size of the component situation. An empty query or

an empty document component will lead to an undefined assessment result. For XML

retrieval, an empty document component is an XML element without content, which we

defined above as meaningless and therefore no subsituation. We could at this point easily

introduce a threshold for the counting size of the subsituation that would exclude those

that are too small and therefore meaningless, as it has been done for INEX 2005. Finally,

Table 6.6 shows that it is possible to use the same relevant information as a basis for the

exhaustivity and specificity assessments without changing their outcomes in the INEX 2005

assessment procedure. This supports Chiaramella’s idea of specificity and exhaustivity as

two dependent values.

6.6 Conclusion

In this chapter, we have delivered a new perspective deriving from the possibilities of

theoretical evaluation. We have presented a theoretical evaluation to evaluate existing

experimental evaluations. Rational agents, whether computer systems or humans, have

the ability to gather information and reason about this gathered information. We use our

Situation Theory framework to represent an information need and a system’s evaluation
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of it as a result of reasoning processes, because Situation Theory does not just apply to

machine reasoning but also human reasoning. This can be considered to be one of the

major advantages of a logic-based theoretical evaluation approach.

Finally, our theoretical evaluation of the INEX experimental evaluation expresses speci-

ficity and exhaustivity as properties of aboutness. If we consider exhaustivity and speci-

ficity to be properties of situations, we arrive at a new way of determining the INEX

2005 exhaustivity dimension. We can apply the same mathematical rigour to it as has

been done for INEX 2005 specificity. We suggested that exh = |Dex|
|Q| is a complementary

measure to specificity defined by spec =
|Qsp|
|D| for INEX 2005.

As a result, we conclude that it is possible to use a theoretical evaluation to evaluate

experimental evaluations. This is particularly true for the case of INEX, where we have a

well-defined mathematical relation for the main evaluation measure of specificity. The next

chapter introduces another new dimension of a theoretical evaluation if we use Situation

Theory to analyse specificity aboutness.

149



Chapter 7

Determining Specificity Aboutness
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7.1 Introduction - Being Specific

In INEX the retrieval task that aims at finding the most specific answers has been referred

to as the focussed task [Kazai and Lalmas, 2005]. This is to be compared to the thorough

task, that aims at estimating the relevance of document components to a query. In this

latter task, all relevant document components are to be identified, and then ranked ac-

cording to their degree of relevance. In the focussed task, the result set should consist of

non-overlapping document components, ranked according to how specific they are to the

query.

As discussed in Section 4.7.1, overlap occurs if a document component (e.g. a sec-

tion) and one of its descendents (e.g. a paragraph in this section) or ascendents (e.g. the

chapter containing that section) are both returned as answers. The aim of the focussed

task is therefore to identify the component that is the most specific to the query among

overlapping document components, and to return it as what is referred to as a focussed

answer.

INEX models to implement the focussed retrieval task can be viewed as filters. Indeed,

these models mostly consist of the post-processing of an answer set produced by models

aimed at implementing the thorough retrieval task. The post-processing phase consists of

eliminating all but the most focussed document components from the answer set. Several

types of filters have been developed in INEX, but two main types of strategies have been

proposed for overlap removal: a simple method that keeps the highest ranked element of

each path and more complex algorithms that take into account the relations in the tree

hierarchy between the highly ranked elements. These more advanced techniques exploit

the recursive structure of an XML tree.

As we shall see in Chapter 8, almost all models from Chapter 5 perform well at INEX.

However, all models and in particular the XML vector space one and the language mod-

elling ones, perform better for the thorough retrieval task than for the task aiming at

returning the most focussed elements, i.e. the focussed retrieval task. We now provide a

theoretical explanation for this behaviour by investigating specificity aboutness realized

through XML retrieval filters in more detail. For this purpose, we first present an addition

to our theoretical methodology in Section 7.2, which allows us to describe the reasoning

of two INEX filters in Section 7.3.

7.2 Defining Specificity Aboutness

In this section, we develop our theoretical methodology to evaluate filters. We rely on

some initial work by Huibers on the relationship between the filter aboutness system

(characterizing the focussed task) and the corresponding underlying aboutness system

(characterizing the thorough task) [Huibers, 1996], which we adapt to the requirements

of XML retrieval. We go beyond his work by actually applying his theoretical work to

analyse filters developed at INEX in Section 7.3.

As already explained, the task of finding the most focussed elements consists of filtering
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the ranked result list produced by an XML retrieval model like the ones described in

Chapter 5. Generating this ranked result list is itself based on an aboutness decision

system, which characterizes the model used to deliver that list. Thus, with filtering, a

further aboutness decision is applied, one which removes overlapping elements from the

result list.1

[Huibers, 1996] argues that one aboutness decision system is a filter to another about-

ness decision system if the two corresponding aboutness systems are embedded — meaning

their reasoning behaviour is related by supporting the same or sufficiently similar prop-

erties. In the context of XML retrieval, this translates to having to relate the aboutness

decision system associated with the model for the focussed task to that of the underlying

aboutness system associated with the model used to generate the ranked list (the thorough

task) to then be filtered.

Our theoretical analysis of filter is done in three steps. We first formalise the translation

process, as we have in Section 4.1 for retrieval models. Secondly, we identify the reasoning

rules associated with the filter. Finally, we analyse the relationship between the filter and

the underlying aboutness systems. For the later, we make use of the filtering function

f-answer defined in [Huibers, 1996], which we adapt to XML retrieval:

Definition 7 Let Ap and Bp be aboutness systems and D be a set of documents and

Q be a query. The filtering function f-answer of Ap with respect to Bp is defined by:

f-answer(Ap;Bp;Q;D) = answer(Ap;Q; answer(Bp;Q;D)), where answer describes a

function that delivers an answer set from the set D based on query Q.

Using this definition, we can investigate the filtering process by looking at the rela-

tionship between f-answer and answer. [Huibers, 1996] has identified three important

distinctions between f-answer and answer:

• A filtering function f-answer(Ap;Bp;Q;D) is called useless if for all sets of docu-

ments D and queries Q f-answer(Ap;Bp;Q;D) = answer(Bp;Q;D). An example of

a useless filter is the application of the coordinate retrieval model as a filter to an

answer set generated by simple vector space retrieval [Huibers, 1996], as both are

based on the same aboutness decisions, according to which a document D is about

a query Q if both share information items.

• Two aboutness systems preclude each other if f-answer(Ap;Bp;Q;D) = ∅.

• The aboutness systems Ap and Bp are said to be f-equivalent if and only if f-answer(

Ap;Bp;Q;D) = answer(Ap;Q;D). An example of an f-equivalent filter is to use pure

type XML retrieval to filter a result set generated by vector space retrieval from

Section 5.2. Pure type XML retrieval defines that a document D is about a query

1It should be pointed out that the use of filters is not exclusive to XML retrieval. Filters are used in
IR to improve performance [Huibers, 1996], if, for instance, at first a fast but less accurate approach is
used to identify relevant documents from a very large set documents, and then a second retrieval system is
used to search the initial result set more accurately. Pseudo-relevance feedback and passage retrieval are
examples of such processes.
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Q if and only if the information items of Q are a subset of the information items in

D. This delivers a subset of the answer set from simple vector space retrieval, for

which D is about Q if they share information. Pure type XML retrieval therefore

fully determines the final answer set.

• Ap and Bp are said to intersect if and only if the filter is neither useless nor

f-equivalent.

In our analysis of the relationship between f-answer and answer, we first determine

whether a filter is ‘useless’, i.e. the filtering function does not change the original answer

set. If this is not the case, next we investigate whether the filter f-answer uses f-equivalent

aboutness systems. We call a filter aboutness system to be f-equivalent, if its Ap alone

determines the final result set. If the filter is neither useless nor f-equivalent with regard to

the underlying aboutness system, we then define how the filter and underlying aboutness

system ‘intersect’ by comparing their aboutness properties.

We therefore slightly change our general methodology to investigate aboutness systems.

Firstly, we introduce an additional step, that analyses the relationship of f − answer and

answer. Secondly, we can leave out the reflection and completeness steps, as we are

only interested in estimating the impact of the reasoning behaviour of the filter on the

underlying system’s reasoning behaviour. In this sense, we do not consider filter presented

in XML retrieval to be fully independent aboutness systems but always dependent on an

underlying system. This makes them different from the filters Huibers has analysed.

The following section will demonstrate the presented methodology for the analysis of

three filters implemented at INEX.

7.3 Applying Specificity Aboutness in INEX

Two main types of filters have been proposed for the focussed task at INEX: a simple model

that keeps the highest ranked element of each XML path and a more complex model that

takes into account the relations in the tree hierarchy between retrieved elements. For the

latter, we distinguish two different approaches. The first one uses an utility prior to not

simply filter out those that have been considered least relevant but to filter those which

are least useful according to the prior. The second one uses a re-ranking approach to

discriminate whether children elements have highly relevant parents or not.

7.3.1 Brute-force Filter

Our first method of removing overlap in the result set of an XML retrieval model has also

been referred to as ‘brute-force filter’, because only the highest ranked element from each

of the XML paths is selected. The advantage of this filter is that it is relatively easy to

implement and that it can be used on top of any kind of underlying aboutness system. It

is independent of the specification of the underlying aboutness relation. The disadvantage

is of course that it is not always the case that the highest ranked element in a path is also

the most useful one [Mihajlovic et al., 2005].
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7.3.1.1 Aboutness Decision

Given a document d and a query q as well as set of descriptors χ(d) and χ(q):

d about q if and only if rsv(χ(d), χ(q)) = max(rsvu(χ(d), χ(q)))

max(rsvu(χ(d), χ(q))) is delivering the XML element with the maximum retrieval sta-

tus value for the underlying aboutness system. For the translation, let d be a document

component, en element types, kn values in an element and i an identifier to enumer-

ate all {1, ..., n} elements in an XML tree in a depth-first traversal manner: map(χ(d)) =

{ 〈〈ElementType, e1, i1〉〉 , 〈〈ElementType, e2, i2〉〉 , 〈〈Parent, i1, i2〉〉 , ..., 〈〈ElementType,

en, in〉〉 , 〈〈Parent, in−1, in〉〉 , 〈〈V alue, en, k1〉〉 , ..., 〈〈V alue, en, kn〉〉 }|∀ii ∈ { 〈〈Parent, ii,

ik〉〉 }, count(ii) = 1}.

The translation expresses that we only consider elements on the same XPath, meaning

each element is the parent and the child of exactly one other element, unless it is the root

or leaf element.

Ifmax(rsv(χ(d), χ(q))) is the maximum retrieval status value in any relevance decision

on an XML path, then for the Gardens Point model, e.g., this is max(D(c)
∑c

i=1 rsvLi
),

where Li = Kn−1
∑n

i=1
ti
fi
.

7.3.1.2 Reasoning Behaviour

We now continue analysing the functional behaviour of brute-force filtering using the

reasoning rules from Section 4.4. Regarding the reasoning behaviour, filters are different

from what we have seen before. We need to argue about them in relation to the underlying

answer system answer(Ap;Q;D) and see whether they produce contradictions. Please

note that for all filters neither containment nor preclusion are defined, because filters do

not consider one piece of information to be contained in another piece of information nor

do they analyse information clashes. Thus, we ignore all the rules related to them.

Reflexivity holds for brute-force filtering. A maximum element will be about itself.

Set Equivalence is also given. We only prove Left Set Equivalence. Assuming that

S ≡ T and S � U hold, we have to show that T � U is given. From the premises,

we know that S is the highest ranked document component situation on the path for U .

As S and T are equivalent, T will have the highest rank, too. Set Equivalence will be

supported.

For Symmetry, there is no contradiction in the statement that if S � T or S is the

highest ranked answer to T then also T � S or T will be the highest ranked answer to S.

It is possible that the same aboutness system allows this. Brute-force filtering is symmetric.

Let us use the example of Symmetry to look at how the second aboutness system of filters

influences underlying aboutness systems. As Symmetry is fully supported, it does not

change the underlying aboutness behaviour. All systems, for instance, that are based

on overlap aboutness, are symmetric. Examples include the XML vector space retrieval

model and XML language modelling presented in Chapter 5. All these systems remain

symmetric if brute-force filtering is applied on top of them. Underlying non-symmetric
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aboutness systems remain non-symmetric. This means that those reasoning properties

that are fully supported by a filter do not change the underlying aboutness behaviour of

the system that produced the original ranking. If, however, a reasoning property such as

Symmetry is not fully supported by a filter or, for instance, a threshold is applied, then this

naturally changes the underlying aboutness behaviour, as we shall see with Transitivity

next.

Most interesting are those reasoning rules that are not supported. These definitely

change the underlying aboutness behaviour. The Transitivity rule, for instance, is not

supported for brute-force filtering, as two situations cannot be the highest ranked answers

towards the same query. If T is the highest ranked answer to U , S cannot be the highest

ranked answer to U , too. This means whatever the status of Transitivity in an aboutness

system, if we apply brute-force filtering on top of it, it will not be supported. An example of

a fundamentally changed model would be pure type XML retrieval, for which Transitivity

was fully supported. The same applies for Euclid: If S is the highest ranked answer to

U , how could T be the highest ranked answer to the same U , too? This means Euclid is

never supported.

Left Monotonic Union (LMU) would imply in the context of brute-force filtering

that if one extends S to S ⊗ U and aboutness would be preserved for both, both S and

S⊗U would be highest ranked answers, which is a contradiction. This means LMU is not

supported either. That LMU is not supported, is a change of the aboutness behaviour of

all XML retrieval systems from Chapter 5. Right Monotonic Union (RMU), however,

is given and the underlying aboutness system’s behaviour is not altered. S can be the

highest ranked answer to both T and T ⊗ U . This is, for instance, the case for any

aboutness system where U does not contribute to the aboutness. We have not seen such

a case in Chapter 5, but it is at least theoretically possible.

Mix is another rule that cannot be supported, with again a strong impact on the

reasoning behaviour of many models from Chapter 5, which support it. It states that with

the assumptions S � U and T � U , we can also say that S ⊗ T � U . S and T ,

however, cannot be at the same time the maximum answer to U , unless S and T are on

different XML paths. Then, however, it is a contradiction that both S and S ⊗ T are

maximum scores to U . Mix is not supported.

Regarding Cut, from S ⊗ U � T and S � U , we can only conditionally conclude

that S � T . If S ⊗ U is the highest ranked answer to T , then only S and S alone

can be the maximum answer. This means S � T if and if only S ⊗ U ≡ S. This

would be the case as Left Set Equivalence holds for brute-force filtering. This would

be, however, a very special and somewhat degenerated version of Cut. Thus, we do not

consider Cut to be supported. Similar arguments apply to Right Weakening. With

S � T ⊗ U , we are able to conclude S � T if U does not contribute to the fact

that S is the maximum retrieval status value to the topic T ⊗ U . For Gardens Point

(Section 5.4.1), for instance, using brute-force filtering, this is the case if, e.g., none of the

information needs in U is answered by S so that for all terms in C (with U ≡ map(C))

ti = 0 in rsvL = Kn−1
∑n

i=1
ti
fi
. As this is again only an extreme case, we consider Right
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Weakening to be not given.

Regarding Context-Free And, with S � T and S � U , we could also say

that S � T ⊗ U . Context-Free And is fully supported, as it is an extension to Right

Monotonic Union. So the underlying behaviour is not changed. We assume that S is the

highest scoring answer to T and U . Then, combining T ⊗ U does not change that. It

either increases or does not change the overall relevance of S. Context-Free And is fully

supported.

All the rules analyzed in this section are important for the analysis of XML retrieval

models’ behaviour. When we analyze the experimental results related to brute-force fil-

tering in Section 8.4, we shall see the impact of excluding the rules’ reasoning behaviour.

We continue with analyzing f − answer.

7.3.1.3 F-answer

In this section, we look at the relation between f-answer and answer. First, we need to

show that the brute-force filter is not useless. This can be formally proven by demonstrat-

ing that the aboutness systems of a filter and its underlying system differ in at least one

reasoning characteristics — be it a certain rule, be it a single condition of this rule. We

have just seen that brute-force filtering disallows LMU, Transitivity, etc., which means it

is not useless as a filter for XML retrieval models from Chapter 5. As max(rsvu(D,Q))

is dependent on the underlying retrieval status value rsvu, brute-force filtering is also not

f-equivalent.

As the filter is neither useless nor f-equivalent, neither brute-force filtering nor the

underlying aboutness systems from Chapter 5 fully determine the outcome of combining

both. They ‘intersect’, and we need to look at the differences in reasoning behaviour, the

filter creates: E.g., LMU reasoning is excluded, which changes any aboutness system that

follows the strict structural constraints of XML documents: If an element is a child, it

shares information with its parent. This means for language modelling from Section 5.3,

for instance, that both are about the same queries. Yet, such aboutness due to overlap in

information is what is supposed to be excluded by brute-force filtering. It just does not

discriminate whether the overlap is due to new relevant information or due to redundant

information.

We continue with our investigations with models, which argue that brute-force filtering

is not fine-grained enough. First, we analyse how a utility prior shall improve the outcome

of brute-force filtering before finally we look at an alternative approach based on re-

ranking.

7.3.2 Utility Prior

In [Mihajlovic et al., 2005], again brute-force filtering is used to remove all overlapping

elements in a path. However, the authors argue that this cannot be done by simply

selecting the highest ranked element on a path, and one needs to consider the ‘usefulness’

of an element compared to other elements on the same path. They suggest to measure the
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‘usefulness’ with a function U(d). This function is equivalent to giving an utility prior to

the retrieval status values by considering the original relevance, the element’s size and its

irrelevant information. Smaller elements, e.g., potentially have less useful information.

The utility prior of any element is estimated by [Mihajlovic et al., 2005] as follows:

U(d) = (1−

∑

i∈nrch(d) size(i)

size(d)
) ∗ rsv(d, q) ∗ size(d)

rsv(d, q) is the original relevance. nrch(d) is the set of non-relevant children of d, for

which P (d) ∗ size(d) is lower than a quality threshold. The authors used several standard

retrieval models in their experiments.1

U(d) can be rewritten as U(d) = (size(d)−
∑

i∈nrch(d) size(i)) ∗ rsv(d, q). This shows

clearly how the original relevance score is influenced by the prior. The more non-relevant

children there are and the larger their size, the smaller the resulting retrieval status value

after applying the filter. All thresholded aboutness decisions (rsv(d, q) > θ) are changed.

As seen in Chapter 5, examples include the XML vector space model and the language

modelling approaches.

7.3.2.1 Aboutness Decision

As we are considering a prior to brute-force filtering, the brute-force aboutness decision is

not changed with the exception of the inclusion of the prior. The calculation of the final

retrieval status value is then based on the prior influenced relevance score of d. Thus,

d about q if and only if rsv(χ(d), χ(q)) = max(rsv(U(χ(d)), χ(q))), in order to keep just

the highest ranked elements in a path. We do therefore not investigate how the utility

prior is a new filter aboutness decision, but how it influences the brute-force one. As the

final aboutness decision is still the one for brute-force filtering, we only need to investigate

those reasoning properties that hold for it.

7.3.2.2 Reasoning Behaviour

Reflexivity is fully supported by brute-force filtering. With the prior, it is conditionally

supported, as the prior is only applied to the document component but not to the query.

Then, it is possible that though a document component would be about itself that, with

the prior, a document component would be not about itself, as χ(d) 6≡ U(χ(d)). This is

the case, if, for instance, the prior lowers the aboutness relation below its threshold. Only

under the condition that the element is useful, it is also about itself.

Transitivity and Euclid did not hold for brute-force filtering. Set Equivalence is

given. We only prove Left Set Equivalence. If the assumptions of S ≡ T and S � U

hold, then also T � U . If S and T are equivalent, they have the same non-relevant

children with the same size. Thus, U(A)=U(B) with S ≡ map(A) and T ≡ map(B). As

S and T are equivalent, Set Equivalence is supported.

1Please note, that we were not able to find an exact definition for size in [Mihajlovic et al., 2005], so
that we assume that it is implemented with some standard such as counting the number of information
items in the element.
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Symmetry does not hold for the utility prior. We can easily give an example so

that S � T but not T � S. Let us, for instance, assume that we have an aboutness

system based on information overlap such as the LM I system from Section 5.3.3.4. Let us

furthermore assume that S ≡ map(A) and T ≡ map(B). Then, though rsv(U(A), B) > 0,

it can still be the case that rsv(U(B), A) ≤ 0.

Left Monotonic Union (LMU) does not hold for brute-force filtering, while Right

Monotonic Union (RMU) does. With RMU, we would be able to say that S � T ⊗U

given that S � T . Say, S ≡ map(A), T ≡ map(B) and S ⊗ U ≡ map(C). How

does RMU change with the utility prior? Let us as an example study thresholded over-

lap decisions such as in the Contextualisation model from Section 5.4.2. With respect to

U(d) = (size(d) −
∑

i∈nrch(d) size(i)) ∗ rsv(d, q), the newly added information can have a

lot of non-relevant children with large sizes and with high impact on the Contextualisa-

tion retrieval method. We have investigated in Section 5.4.2.3 how the seemingly simple

extension to include negative weights has a strong impact on the monotonicity behaviour.

Similar arguments apply here.

We have to discriminate two cases: (1) The newly added information is content added

to D. Then, even if this content is irrelevant or highly undesired, the size of the element

will increase while no changes to the number of non-relevant children happen. This means

that (size(d) −
∑

i∈nrch(d) size(i)) increases for any kind of newly added content. This

might be counter-productive if we would like to control the monotonic behaviour with a

threshold as in the Contextualisation method. We could imagine the case where the added

content lowers the overall retrieval status value below the threshold but the utility prior

raises it again above the threshold. This is the case, as the utility prior is not dependent

on content changes apart from the size measure, which for newly added information has

to increase.

Now let us take the second case: (2) We add new document components and not

just content. As seen in Section 5.4.2, with Contextualisation an element that is about a

query can be put into a context of other document components with many non-relevant

children or large sizes. The threshold could be missed. Here, the monotonic behaviour

is controlled by adding undesired document components, but not by adding undesired

content. Otherwise, similar arguments apply as for case 1.

If RMU is fully supported by an XML retrieval model, the utility prior might change

this behaviour by introducing a new level of control. This explains why it worked better

in the experiments with language modelling than with Gardens Point [Mihajlovic et al.,

2005]. Gardens Point does not support RMU, so no changes apply. The language models

in Section 5.3, on the other hand, fully support RMU, and now have an additional means

of controlling the monotonic behaviour better.

Cut and Right Weakening are only under a very particular condition part of the

aboutness model for brute-force filtering so that we can ignore them here. Mix has not

been given for brute-force filtering. Regarding Context-Free And, with S � T and

S � U , we could also say that S � T ⊗U . Context-Free And is an extension to Right

Monotonic Union, so we suspect that it is at least conditionally given. Here, however, we
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still have the second assumption that S � U , which makes it impossible that the newly

added information in U might lead to a threshold in the underlying aboutness decision

to be missed. Context-Free And is therefore fully given and the underlying aboutness

behaviour not changed.

7.3.2.3 F-answer

The utility prior is based on brute-force filtering. This means it inherits most of the

underlying filter characteristics of it. It is not useless, as our discussions of thresholded

retrieval models show. It changes most of the thresholds. It also forces systems to be

non-symmetric. However, not in all cases it also changes the aboutness behaviour. For

instance, it still fully supports Set Equivalence, which is also supported by all models

from Chapter 5. This means it is not necessarily contradicting the underlying aboutness

decision. The utility prior is not f-equivalent either, as it depends on brute-force filtering.

Thus, it is ‘intersecting’ with the behaviour of the underlying aboutness system. In the

discussion of the reasoning behaviour, we have seen that the main influence of the utility

prior stems from its impact on thresholds or from introducing thresholds.

We do not need to discuss again the impact of the brute-force filter on the changes in

reasoning behaviour. We can focus on the impact of the utility prior. Its main impact

is that it ‘conditionalises’ reasoning properties that would otherwise be fully supported.

This is particularly noticeable for Reflexivity. An element is not just about itself anymore.

It has to be useful, too, which not only depends on its relevance but also on its size,

as these are the two main factors to influence its usefulness. This is a clear change

to any of the considered aboutness systems for which Reflexivity was given. It is only

the Contextualisation model that does not support Reflexivity. Thus, the prior has no

influence on it at this point. But generally speaking, all models are changed if Reflexivity

or its sister rule Singleton Reflexivity are influenced by the prior.

Most of the prior’s impact on the monotonic behaviour has already been discussed so

that we do not need to repeat it here. Let us additionally look at the impact on a threshold

of one of the models from Chapter 5. For LM I (Section 5.3.3.3), the threshold θ is an

internal one or based on the smoothing value, which depends on the collection language

model Pmle(ti). θ does now change. It becomes dependent on the size of the non-relevant

document components, too.

Furthermore, Right Monotonic Union is only conditionally given for the prior. This,

e.g., influences the aboutness decision of the LM II language model (Section 5.3.4). The

internal condition θ there is ‘externalised’ with the prior being an additional external

condition.

[Mihajlovic et al., 2005] conclude that their approach to re-rank retrieval scores using

an utility function seems to improve effectiveness when removing overlap, but does not

outperform the simple approach of selecting the paragraph elements. This might be the

case, as their approach is not actually based on the structure of a document, but on the

information overlap between different components. The structure is therefore only indi-

rectly exploited with similar consequences as discussed for various models from Chapter

159



5.

The next filtering approach considers overlap as something that is not always to be

avoided.

7.3.3 Controlling the Overlap: Re-ranking

The next approach [Clarke, 2005] we are going to present re-ranks the elements with a

new context-dependent retrieval status value and does not entirely eliminate overlapping

elements. It is iterating through the following three steps to control overlap:

1. Report the highest ranking element.

2. Adjust the retrieval status values of the unreported elements.

3. Repeat steps 1 and 2 until m elements are reported.

Overlap is controlled by reducing the relevance of elements parenting highly ranked ele-

ments in step 2, as they might be highly relevant only because they have so many relevant

children. Controlling overlap like this is a more conservative approach than radically elim-

inating it by just allowing the highest ranking element in any one path. For this reason,

we have chosen to discuss this approach here. [Clarke, 2005] rightly argues that some

overlap might be beneficial.

In [Clarke, 2005], the input into the re-ranking method is a list of n elements each

associated with x.
−→
f as the term frequency vector per query term, with x.−→g as an ad-

justment vector, with x.l as the element length, with its current score x.score as well as

other information required to process the algorithm such as the set of children per node.

Please note that the score field in [Clarke, 2005] is based on BM25, hence the adjustment

of xt = ft − α ∗ gt in the score function:
∑

t∈Q w ∗ qt
(k1+1)xt

K+xt
.

We focus on the intention of the algorithm to lower the weights of those document

components containing highly relevant children. The adjustment of xt to xt = ft − α ∗ gt

works in the presented algorithm in two ways. For parents y containing a highly relevant

child x their adjustment score y.−→g is increased for those terms previously reported: y.−→g =

y.−→g + x.
−→
f − x.−→g . With xt = ft − α ∗ gt, this means in effect that the overall retrieval

status value of such parents is reduced for already recorded terms depending on α. For the

children of highly ranked parents, we know that its terms have already been considered

in the reported parent element. Hence, its x.−→g becomes y.
−→
f . The retrieval status value

is recomputed with xt = ft − α ∗ gt, and the impact of reported terms reduced by (1− α)

as xt = ft − α ∗ ft.

The overall algorithm has as an input a priority queue S, containing XML elements

ranked by their initial scores, and returns its results in a priority queue F , which contains

the top m ranked elements. There are two tree traversal routines: Up and Down. The Up

routine removes each ancestor node from S, adjusts its term frequency values, recomputes

its retrieval status value and adds it back into S. The adjustment of the term frequency

values adds only the previously unreported term occurrences. The Down routine performs
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a similar operation on each descendant. However, since the contents of each descendant

are entirely contained in a reported element, its final score is computed. Finally, the

element is removed from S and added to F .

7.3.3.1 Aboutness Decision

Only m top-ranked elements are considered to be included in S. This might lead us to the

assumption that we need to consider a thresholded aboutness decision. However, according

to the algorithm, no element is filtered out of the result list F unless the adjusted score

becomes 0. Therefore:

d about q if and only if rsvadjusted(χ(d), χ(q)) > 0

rsvadjusted is based on the algorithm just described. χ(d) and χ(q) are again the set of

descriptors for document component d and query q. rsv is particularly dependent on α, as

the discussions below show. The adjusted score becomes 0 if for all existing query terms

their frequency is 0. This applies to all underlying aboutness decisions we have covered

this far, as they all use the sum of all query terms scores to determine the overall score.

This means for the rsvadjusted that ft = α ∗ gt.

Structure comes into play when considering the next element to look at by moving up

and down in the tree. The model is based on a full tree traversal and registers children

and parents of elements, but does not consider attributes. The translation function is

therefore the same as for pure type XML retrieval from Section 4.7.

7.3.3.2 Reasoning Behaviour

The first reasoning property to demonstrate is Reflexivity, which states that S � S.

Reflexivity is not given. With S � S, then ft = gt . If in xt = ft − α ∗ gt, and α = 1

according to [Clarke, 2005], then xt = ft−1∗gt, which means rsvadjusted = 0, with ft = gt.

Thus, Reflexivity is not supported.

However, Reflexivity is a special case and the exception. Generally speaking, re-ranking

does not fundamentally change the aboutness decision of the XML retrieval models but

adds emphasis to the ranking of elements. For our analysis of the impact of filters we

therefore need to relate it directly to the models we have developed in Chapter 5. Re-

ranking’s main effect is on thresholded aboutness decisions, which we have not met for

many aboutness rules but mainly for rules related to monotonic reasoning. Two examples

of rules that were either fully or not at all supported are Symmetry and Transitivity.

Re-ranking has no influence on both reasoning behaviours.

We want to therefore concentrate on Left Monotonic Union (LMU), as it is a

reasoning property in Chapter 5 controlled by thresholds. LMU would be given if S⊗U � 

T and S � T are given. For the XML vector space model from Section 5.2, re-ranking

with xt = ft − α ∗ gt can of course reduce the extension to fall below the threshold n.

This mainly affects the children of the highly ranked parents. LMU is only conditionally

supported if re-ranking does not lower the retrieval result to fall below n. An interesting
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case forms the language modelling approach in Section 5.3.3.3. Its internal threshold based

on the smoothing value might be missed if the added information leads to a re-ranking

with a lower retrieval status value. Therefore, applying re-ranking on top of LM I means

that LMU is now conditionally supported, while LM I alone fully supports LMU. Similar

arguments apply to Right Monotonic Union.

Next, we consider Mix and Context-Free And as derivatives of LMU and RMU,

respectively. Mix adds to LMU that S � U and S � T and therefore S � T ⊗ U .

It is fully supported by re-ranking as the additional assumption that S � U take cares

that S � T ⊗ U is not an element to reduce below a threshold after adjusting with

xt = ft − α ∗ gt. Regarding Context-Free And, with S � T and S � U , we could also

say that S � T ⊗ U . Just like Mix, it is fully given.

7.3.3.3 F-answer

Re-ranking is certainly not useless, because the LMU thresholds for vector space retrieval

and language modelling, for instance, have been changed. It is not f-equivalent either, as

it is dependent on the underlying aboutness decision, because re-ranking is a function of

the original retrieval status value. Thus, re-ranking is also ‘intersecting’. Reflexivity is

changed through the impact of α. That Mix behaviour is preserved is a clear advantage

towards the brute-force filtering approach, as it is an important property of XML retrieval.

The support for Mix adds to the better performance in the experimental results, which

we shall look at in Section 8.4.

Looking at re-ranking, it is difficult to make general statements regarding its impact

on XML retrieval, as it has been developed for a particular model. The authors of the

re-ranking approach, however, report limitations of their algorithm according to their

experimental evaluation [Clarke, 2005]. From a theoretical evaluation point of view, an

immediate recommendation on how to potentially improve the ranking would be to intro-

duce a threshold to control the monotonic behaviour of the re-ranking aboutness decision:

Only if rsvadjusted(χ(d), χ(q)) > θ, the element would be reported. We have seen in

Chapter 5, that thresholds effectively add to the control of the monotonic behaviour and

improve performance. The advantage would be that also those reasoning properties, that

are either fully or not at all given, could be influenced through re-ranking, if a threshold

were introduced.

We have considered filters as a second layer aboutness decision and asked whether they

are able to influence the underlying aboutness system for the better. We could do so, as

we regarded them as aboutness decisions in their own right and looked at how they change

the specificity context.

7.4 Conclusion

In this chapter, we have asked how filters can be suitable extensions to the underlying

aboutness decision so that just most relevant elements are returned. We could show

the impact of the brute-force filter. It almost completely changes, e.g., the monotonic
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behaviour. The XML vector space retrieval model, for instance, has been overall very

successful in the experimental evaluation in INEX [Mass and Mandelbrod, 2005], but its

performance decreases for the tasks to deliver only non-overlapping document components,

ranked according to how specific they are to the query. The situation is similar for the

XML retrieval model based on language modelling [Sigurbjörnsson and Kamps, 2005]. Its

performance decreases, too, when brute-force filtering is used to filter the original language

modelling retrieval results.

Reasoning behaviour Brute-force filtering Prior Re-ranking

Reflexivity fully not not

Symmetry fully not N/A

Set Equivalence fully fully N/A

Transitivity not not N/A

Euclid not not N/A

LMU not not xt = ft − α ∗ gt
RMU fully U(D) xt = ft − α ∗ gt
Cut not not N/A

Right Weakening not not N/A

Mix not not fully

Context-Free And fully fully fully

Table 7.1: Filter aboutness

If we try to understand why brute-force filtering decreases performance in XML re-

trieval, two changes in reasoning properties are highly conclusive:

1. LMU is not supported by brute-force filtering. The XML vector space retrieval

model, for instance, successfully uses conditions on LMU reasoning to adjust the be-

haviour of flat document vector space retrieval to the requirements of XML retrieval.

This ability is lost once the brute-force filter is applied, which explains a decrease in

performance.

2. Mix is not supported by brute-force filtering. Among other things, Mix describes

that, if two children D and D′ are about a query, then their parent item D⊗D′ will

also be about the same query. This behaviour is typical of XML based resasoning.

If it is not supported, problems might arise, such as the elimination of potentially

highly relevant children. We shall discuss this point in more detail in Chapter 8 when

we discuss the interaction of brute-force filtering with all the models from Chapter

5 and its impact on experimental results in INEX.

The utility prior might change the monotonic behaviour by introducing a new level of

control if Left Monotonic Union is fully supported by a model. It works more effectively

with models that originally fully supported Left Monotonic Union. Lastly, the re-ranking

method did not offer the expected impact on monotonic behaviour in that it added a new

level of control to the reasoning.

Table 7.1 summarizes the results of our theoretical evaluation for XML retrieval fil-

ters. As discussed, for filters to support a reasoning property means not to change their
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underlying reasoning behaviour. If filters conditionally support a reasoning property, they

will add a condition to it or change an existing one. If they do not support a reasoning

property, they will eliminate it from the overall aboutness behaviour. In Table 7.1, we

can clearly identify the strong impact of brute-force filtering on the XML retrieval models

from Chapter 5.

In the next chapter, we use all the results from Chapters 5, 6 and 7 to try to understand

the experimental results obtained at INEX.
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Chapter 8

Theoretical Analysis of the INEX

Experimental Evaluation Results
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8.1 Introduction

Chapter 3 argued that experimental and theoretical evaluations can be complementary.

We would now like to specify the complementarity of experimental and theoretical eval-

uation by demonstrating how our theoretical evaluation results can explain experimental

behaviour. We mainly look at how results from the INEX 2005 experimental evaluation

can be explained using insights from our theoretical evaluation. We use INEX 2005 only

in order to have a baseline and because many models have not changed fundamentally

since then.

As the work would otherwise be too extensive, we concentrate on the INEX 2005 ad-

hoc content-only (CO) tasks and on the comparison of the XML vector space model with

the XML language model, the Gardens Point model and the Contextualisation method,

all of which were extremely successful in the INEX 2005 campaign and consistently ranked

among the top models [Fuhr et al., 2006]. Concentrating on successful models helps us

demonstrate the ability of a theoretical evaluation to analyse also minor differences in

performance.

In this chapter, we proceed as follows: Firstly, we introduce all strategies in Section

8.2. Secondly, we go through each of them one by one and look at the results of the models

from Chapter 5. Finally, we draw conclusions on their individual performance also with

respect to their relative performance compared to other models.

8.2 Retrieval Strategies

The main retrieval task in INEX 2005 was the ad-hoc retrieval of XML elements [Kazai

and Lalmas, 2005]. This task involves searching a given amount of documents based on a

varying sets of topics. In INEX, XML elements may be retrieved instead of documents.

For INEX 2005, several retrieval strategies were defined for ad-hoc subtasks based on CO

queries:

1. Thorough: In this strategy the problem of overlap is to be ignored by models. Over-

lapping elements are supposed to be mainly a presentation issue, and an interface

would offer the user various ways of browsing through a set of relevant but potentially

overlapping elements. Due to the hierarchical inclusion of elements, large number

of overlapping elements are returned. This task is a challenge for models, as their

ranking is supposed to return highly exhaustive and specific elements first.

2. Focussed: According to this evaluation strategy, retrieval models are rewarded most

for the best return of focussed XML elements, i.e. those at the right level of gran-

ularity. Overlapping elements should not be returned. This means that the most

exhaustive and specific element on a path is to be delivered by the model. Generally

speaking, in the task preference is given to specificity.

3. FetchBrowse: This strategy investigates achieving the best mixture of document

retrieval and element retrieval strategies. In the fetching phase, relevant articles are
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identified in order to return the most exhaustive and specific elements from within

these relevant articles in the browsing phase.1

We now continue with suggestions on how to explain experimental test results using our

insights from the theoretical evaluation in Chapters 5, 6 and 7. In the following sections,

we go through several snapshots of performances for the retrieval models; first in the

Thorough strategy, then in the Focussed strategy and finally in the FetchBrowse one. The

order is important here, as Focussed is often a post-processing of the initial retrieval in

Thorough using filters, while FetchBrowse is a mixture of the first two evaluation strategies.

For Thorough, we are mainly interested in finding some important reasoning rules that

help explain experimental behaviour, while for Focussed we are interested in how reasoning

rules interact with filters from Chapter 7. Here, the most important filter is the brute-force

one from Section 7.3.1, for which we have already proven that it intersects with underlying

reasoning behaviour in Section 7.3.1.3. Each performance snapshot is then represented in

Tables 8.1 to 8.7, which each contain a relative comparison of Gardens Point, XML vector

space, XML language modelling and Contextualisation method for various tasks in INEX

2005. We are going to use our theoretical evaluation results to explain the absolute and

relative performance of models within these snapshots of INEX 2005 performance results

and start with INEX 2005 Thorough.

8.3 Thorough

For the Thorough task in INEX 2005, we concentrate on the metrics effort-precision/gain-

recall (ep− gr). Effort-precision [Kazai and Lalmas, 2005] is based on the idea to measure

the amount of relative effort that a user has to make to find the right information in

the real ranking compared to the effort an ideal ranking would take. We proceed as

follows. First we introduce some of the background of the metrics for the thorough task.

Next, we analyse which of the aboutness reasoning properties influence the results under

these particular metrics. Finally, we investigate the way in which models from Chapter

5 implement these reasoning properties helps explain their experimental performance for

effort-precision.

Effort-precision ep is defined in [Kazai and Lalmas, 2005] by ep[r] = iideal
isubmission

. iideal

is measured as the rank position at which the cumulated gain of r is reached by the

ideal curve of the ranking. isubmission is measured by the same rank position in the real

submission.

iideal and isubmission are best explained with an example. Let us assume that we have a

ranking of three elements i1, i2 and i3. i1 has the retrieval status value 2, i2 1 and i3 0. A

real model returns {i3, i1, i2}. In an ideal model we had the following ranking: {i1, i2, i3}.

The cumulated gain of 2 would be reached by the ideal model at rank 1, while the real

model delivers it only at rank 3. This means ep[r] = 1/3.

ep is captured at gain-recall points gr [Kazai and Lalmas, 2005], where gain-recall is

calculated as the cumulated gain value divided by the total achievable cumulated gain.

1During INEX 2006, the FetchBrowse task was renamed to ’Relevant in Context’.
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The similarity to traditional precision/recall evaluation models is obvious. ep−gr therefore

measures where the most relevant XML elements are found in the ranking produced by a

model. As one would expect, the more they are concentrated in the tail of the result list,

the worse the performance.

Secondly, ep− gr measures how completely the set of most relevant elements is repre-

sented at the top of the ranking. As the formula stands, a small number of highly relevant

elements that appear at the tail of the ranking have a strong impact on the performance.

This is the case, because the cumulative gain measure penalises anything that is not in

perfect order and because we divide by isubmission, which, for instance, would give an

element that was the most relevant one but only appeared at position 1000 a value of

1/1000.

The formula of cumulative gain is constructed in such a way that all elements following

an element that is not correctly placed according to its ideal rank are penalized. This

becomes clear, if we look at an example taken from [Kazai and Lalmas, 2005]. In the

example, an ideal ranking would return on top a list of elements with {3, 3, 2} as retrieval

status values. Now, let us assume two less perfect models, the first one produces an element

ranking with {3, 2, 2}, while the second one produces a ranking with the retrieval status

values {2, 3, 3}. For the first model the gain vector xG is {1, 0.86, 0.875} with an average

of 0.91, while it is {0.66, 0.86, 1} for the second one with an average of 0.84. Though

the second model returns more quickly all the most relevant elements, it performs worse

according to ep, as it misjudges the most relevant element.

The effects of the cumulated gain behaviour is amplified by the way effort-precision ep

is defined by ep[r] = iideal
isubmission

, where r is the rank. Then, in the above two examples if

we consider each element as a cut-off point for ep and use a regular growth of iideal, the

first one has as ep[r] {1, 0.83, 0.83} with an average of 0.89. For the second example, it

is {0.66, 0.83, 1} with an average of 0.83, which again makes the second model perform

worse than the first. Thus, ep − gr punishes those models more that do not deliver the

most relevant elements on top of the rankings though their overall ranking might still be

good.

Such behaviour of the ep− gr measure has its roots in the relationship of the series for

the cumulated gains in numerator and denominator. Both series are sequences of partial

sums (cumulated gains) that converge towards the maximum cumulated gain. In our

example the maximum cumulated gain is 8. The denominator series of the ideal submission

grows quickly and regularly for lower ranks, as here the most relevant elements are found.

It converges more quickly to the maximum cumulated gain than the numerator, which

measures the cumulated gain of the real submission. Differences between numerator and

denominator are therefore more significant in lower ranks. Thus, (1) all elements after

a wrongly placed element in the ideal submission are penalised, and (2) those models

perform worst that do not deliver all most relevant element on top of their ranking.

In the next section we introduce three (example) reasoning rules and how they are

relevant to performance in ep − gr.
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Table 8.1: INEX 2005 Thorough with the ep− gr metric and generalised quantisation
S.No Affiliation RunId MAep

1 XML vector space no-phrase-... 0.0867

2 XML vector space no-phrase-... 0.0841

4 Language Model UAmsCOTQrelbasedIndex 0.0829

5 Language Model UAmsCOTLengthbasedIndex 0.0802

6 Language Model UAmsCOTElementIndex 0.0793

7 Gardens Point QUT 1-Thorough 0.0757

12 Contextualisation Method Tampere-b01-o-root 0.0726

13 Contextualisation Method Tampere-b003-o-tower 0.0725

14 Gardens Point 2-Thorough 0.0706

15 XML vector space with-phrase-... 0.0698

17 Contextualisation Method Tampere-exp10-b01-root 0.0686

8.3.1 Rules Relevant to Effort-precision/Gain-recall

We want to find the reasoning rules that help models deliver the most relevant elements

as early as possible. To this end, we need to look at how models can preserve aboutness.

Those elements that are about a query are related in the information they have — oth-

erwise they would not be about the same query. Then, the question of how to deliver

those elements first that are about the same query becomes a question of the ability to

preserve aboutness over all the most relevant elements. Having found a relevant element,

aboutness for all its related relevant elements has to be preserved for ep− gr.

Related relevant XML elements differ in how much relevant information they have. A

relevant element that has at least the same relevant information or more can be found by

either applying Left Monotonic Union and Mix reasoning. As defined in Section 4.4, LMU

concludes that D⊗D′ � Q, given D � Q. With respect to Mix, we can conclude from

the assumptions D � Q and D′ � Q that also D � D′⊗Q, where D, D′ and Q are

situations. Cut reasoning, on the other hand, derives those related relevant elements that

have at least the same relevant information or less. Cut states that with D ⊗D′ � U

and D � D′, then also D � Q.

LMU, Mix and Cut are important rules, that determine how a model decides whether

those elements D that share relevant information are also about the same query. But,

supporting these rules does not automatically help with a good performance under ep−gr.

In the case of LMU, for instance, we already know from our discussions in Chapter 5, that

the added information Q′ does not necessarily have to be about the query. Models, which

support LMU, have therefore problems returning only highly relevant elements early in

the ranking. We would expect that models that are at least conservative in their (left)

monotonic behaviour perform better than those which fully support LMU. Regarding Mix,

the added D′ is also about Q. Therefore, Mix generally supports better performance in

ep− gr. Yet, we still need to be careful that next to information that is about Q not too

much other information is also added that is not about Q.

Finally, Cut describes whether smaller elements related to larger relevant elements

are also about the same query. Moreover, we know that the smaller element D is about

the cut-off information D′. Cut identifies, e.g., the case where a model returns a parent

element D⊗D′ about Q and its two children D and D′, which share relevant information
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and are therefore about each each other and the query. Yet, Cut can also mean that

D � D′, as they share irrelevant information and D ⊗ D′ � Q only because either

child is about Q. In order to perform well, models should therefore not unconditionally

support Cut but only if it is ensured that the remaining smaller elements are still about

the query.

If conditional support for Cut leads to the best performance, models that do not

support Cut still perform better than those that support it. Not to support Cut, has the

advantage that potentially irrelevant smaller elements that are related to larger relevant

elements are never considered to be relevant and can therefore also never be found early in

the ranking. This excludes in particular those smaller elements that are less relevant than

their related larger element. For ep−gr, we do not want to find these early in the ranking.

Because ep − gr mainly punishes models that too early return irrelevant elements, it is

better not to support Cut than to support it. This is contrary to LMU where we would

expect better behaviour from models that support LMU rather than not support it at all.

Here, it is more likely that we find the smaller (potentially more focussed) elements earlier

in the ranking, while the larger related ones, which contain at least the same relevant

information, can be found later.

Next, we look at the performance of each model analysed in Chapter 5 with respect

to ep− gr. We show how to explain experimental test results using our insights from the

theoretical evaluation and with reference to LMU, Mix and Cut. Table 8.1 presents the

results for INEX 2005 Thorough ep−gr for the generalised quantisation, on which we would

like to concentrate here as an example. In Section 6.3, we introduced the quantisations.

Strict quantisation functions are used to evaluate XML retrieval methods with respect

to their capability of retrieving highly exhaustive and highly specific components. The

generalised functions also reward only fairly relevant elements. We could also see how strict

quantisations tend to focus on specificity, while general quantisations favour exhaustivity.

We can clearly see how well most of our models do for these particular tasks. Generally

speaking, both models based on proven-to-be-good flat retrieval models, XML vector space

and LM I language model, perform well and better than in other evaluation tasks in ep−gr

for INEX 2005 Thorough. Gardens Point performs overall not as well in this task as it

does in other tasks. This is particularly visible in the generalised quantisations, where it

is outperformed by both XML vector space and LM I language model.

For all models in ep− gr, we look at the aboutness reasoning properties of LMU, Cut

and Mix and what they explain in terms of the experimental outcomes. We start with the

best performing model, the XML vector space model.

8.3.2 XML Vector Space

The XML vector space model particularly dominates the system-oriented metrics and

generalised quantisation for INEX 2005. It has three approaches submitted for each CO

subtask differing in whether they do or do not consider phrases. Regarding the XML vector

space retrieval aboutness decision in Section 5.2.4, we developed that rsv(A,B) = f(AB)
||A||∗||B||,

||.|| stands for the number of unique tokens, while f(AB) describes a function dependent

170



on the information overlap of A and B. Then, the overall behaviour of rsv(A,B) is

determined by the size of f(AB) in relation to the number of unique terms in A and B.

With respect to LMU, we have seen in Section 5.2.4 that the condition on the monotonic

behaviour is not very strong, because it does not consider whether the added information

is relevant or not but only whether it adds too many unique terms. As the XML vector

space model does not discriminate whether new information in a monotonic extension of

an element is relevant or not, it is not surprising that, if we find on top of the ranking

relevant elements, we also find at least some irrelevant ones. LMU takes care of that.

The vector space model does not control monotonic behaviour in that the newly added

information has to be relevant but in that it must not reduce the focus, as we have seen

in Section 5.2.4.

However, at least XML vector space controls monotonic behaviour in that it prevents

the addition of too much unfocussed information. Also, its second AQR step reinforces the

results for those elements already relevant by adding terms from those elements as surplus

query terms. Considering the effect AQR has on concentrating on the most relevant

elements and increasing their ranking, it is therefore not surprising that XML vector

space retrieval delivers the most relevant XML elements early in the ranking. This is also

the main reason why XML vector space retrieval comes first in comparison with the other

models from Chapter 5.

The good ep − gr performance of the model can furthermore be explained by the

fact that it does (conditionally) support Mix and does not support Cut according to

Section 5.2.4. For XML vector space retrieval, Mix describes, for instance, the case of

two children elements merged into their parent. We shall discuss this in more detail in

Section 8.4, as some interesting interactions with brute-force filtering follow. As Mix is

conditionally supported for XML vector space retrieval, aboutness is preserved for this

important characteristics. If children elements are highly relevant, their parents will be,

too. Both can then be found on top of the ranking.

As seen in Chapter 5, Mix is supported by all investigated XML retrieval models. Only

for vector space retrieval, it is just conditionally given. As just discussed for LMU, this

condition on Mix in particular is one of the main reasons why the model outperforms others

in ep − gr, as it ensured that those elements that contain many relevant but also many

less relevant elements are not automatically added early in the ranking. These are, for

instance, parent elements of mixed highly relevant and less relevant children. Through the

condition on Mix, it is ensured that also this reasoning property does not have undesired

side effects if relevant children are displaced from the top of the ranking by their parents.

LMU and Mix are both conditionally given for the XML vector space model. The next

model, XML language modelling I, does not offer such a condition and performs overall

worse than XML vector space.

8.3.3 XML Language Modelling I

The XML language modelling approach LM I equally performs well for ep − gr. For the

Thorough task, [Sigurbjörnsson and Kamps, 2005] look at reductions of the number of in-
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dexing units with two special indexes: one based on element-length (UAmsCOTLength−

basedIndex in Table 8.1) and another one based on past relevance assessments Qrel

(UAmsCOTQrelbasedIndex in Table 8.1). These two indexes perform particularly well

and come 4th and 5th in the overall assessment ranking.

LMU is fully supported by the LM I approach, which marks one significant difference

to the XML vector space retrieval model. This means again that the aboutness decision is

preserved across elements that share the same relevant information with smaller elements

but also contain other information. Contrary to the XML vector space model, however,

no distinction is made regarding the relevance or the focus of the additional information.

That LMU is fully supported without control over the newly added information, is one

factor why the model performs worse than the vector space one for ep− gr.

Looking at LMU, it is also no surprise that Qrel is the model’s best submission by

some distance. Here, the side effect of unwanted information added by LMU reasoning

occurs less likely, as Qrel contains only those elements that according to the experience of

previous INEX years are more likely to be relevant.

Mix is fully supported by LM I, too. We have already seen for the vector space

model how support for Mix helps explain the overall good performance of XML language

modelling for ep− gr.

The reasoning behaviour for Cut, on the other hand, helps explain further differences

in the submissions of XML language modelling, which are all using different indexes as

explained in Section 5.3.3.4. The best performing indexes are the element-length one and

the Qrel one, which both exclude elements with little content [Sigurbjörnsson and Kamps,

2005]. Length-based indexing uses only elements with at least 25 words, while Qrel limits

the result list to element types from branch elements.

Regarding the results of Thorough task for language modelling, the relative perfor-

mance of the length-based index and Qrel is strongly improved for the generalized quan-

tisation according to Table 8.1. Both indexes outperform the general language model

element-index-based submission (UAmsCOTElementIndex), which in most other tasks

is the best submission [Sigurbjörnsson and Kamps, 2005]. Our theoretical evaluation of-

fers an explanation. As seen in Section 5.3.3.4, the model supports Cut, as long as not all

relevant information is cut away. But, this also means that there are cases when too much

relevant information is cut out. In these cases, though the smaller element is still about

the query, it is not considered to be still relevant. These elements will, however, appear

less frequent, if the set of returned elements is limited to those of a certain size. Thus, the

ep− gr ranking is improved for the index.

The XML retrieval models based on standard flat document retrieval models perform

well in Thorough. Next, we analyse the submissions of the two models from Section 5.4

specifically designed for XML retrieval.

8.3.4 Gardens Point

The overall performance of Gardens Point is relatively worse for the Thorough tasks than

for the Focussed ones [Kazai and Lalmas, 2005], as we shall see in Section 8.4. Though its
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overall performance is still very good, it is outperformed by several other retrieval models,

especially in the generalised quantisations, although its overall performance is still very

good. Let us examine again the three reasoning rules we have identified to be decisive

for the performance in ep− gr. Gardens Point fully supports LMU and Mix with similar

consequences as just analysed for language modelling. It also does not support Cut.

According to our theoretical evaluation in Section 5.4.1, the model differs from language

modelling and other models in its decay factor D(c) among other things. We can explain

the model’s behaviour for Thorough with the impact of D(c) on LMU and Mix. D(c) aims

to control the impact of parent elements by putting more relevance onto their retrieved

children. However, these parent elements might still have a higher retrieval status value

than their relevant children and should therefore appear on top according to the ideal

ranking. If they do not appear on top in the real submission, they reduce the overall

performance in ep− gr significantly.

Using Mix, we can demonstrate the behaviour induced by the factor D(c), which leads

to a worse performance. Let us assume that we have a component D1 with a retrieval

status value of 3 for a query Q and a component D2 with a score of 2. Then according to

Mix, with D1 � Q and D2 � Q also their parent D1⊗D2 � Q. Without D(c) the

retrieval status value of D1⊗D2 would be 5, with D(c) it is 2.45, which reduces its rank

in the actual submission, increasing its distance from the ideal rank and therefore making

worse ep[r] = iideal
isubmission

.

A similar argument can be made using LMU twice, considering a highly retrieved

grandchild and child of a parent. As Gardens Point reduces the retrieval status values of

parents with highly retrieved children, it is not surprising that its performance decreases

for the Thorough task — particularly in the ep − gr measure. The authors identify this

behaviour in their experimental results, but do not offer an explanation:

‘In the Thorough submission on the other hand, by increasing the value of

D(c) we were able to extract more scoring elements from the ancestors of

highly scoring leaf elements.’

With our theoretical evaluation, we can derive the impact of D(c) on the ep− gr measure.

8.3.5 Contextualisation Method

For the Contextualisation method, all submissions to Thorough are not among the best

according to Table 8.1, but the root one performs best. As seen in Section 5.4.2.1, root

contextualisation means that the contextualized weight of an element is a combination of

an element’s and its root’s weights. In the model’s submissions the root is weighted by the

value 1.5 and then averaged with the actual weight of the element. For the Contextuali-

sation method, we do not want to compare it with the performance of other models, but

show how our theoretical evaluation can help explain differences in the several submissions

of that one model alone.

According to Section 5.4.2.5, LMU and Mix are both conditionally given for the Con-

textualisation method with a highly independent condition, while Cut is not at all sup-
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ported. Contextualisation is special, in that LMU is only conditionally supported by the

model, as is has a means of expressing undesired information using negative weights in

queries. We have described this in Section 5.4.2.5, and we have also discussed how a

threshold might improve the model’s performance.

For the ep− gr measure, we have the same query for all elements and want to explain

why certain elements are delivered higher in the ranking given a test query Q. These test

queries have no negative weights. Thus, Left Monotonic Union is unconditionally given, as

we have the same weights for all queries. With LMU, we can conclude that D1⊗D2 � Q

given that D1 � Q. From the fact that LMU is unconditionally given for ep − gr and

the fact that Mix is then also unconditionally given, we can derive the conclusion that

larger elements, which are about the same query as smaller ones, generally appear higher

in the ranking (as it is the case for LM I). For XML documents, those elements closest

to the root and the root itself tend to be the largest elements in a document tree. As

the largest elements are higher in the ranking and can be found closer to the root, the

root contextualisation performs well and better than the tower ones, which combine all

ancestor elements.

Cut is generally not supported by the model. This tells us something about the

behaviour of smaller elements that are also retrieved compared to larger ones. All models

essentially based on information overlap disallow Cut — XML vector space, XML language

modelling, but also Contextualisation. It tends to disadvantage smaller elements, which

tend to have less information overlap as they contain less information, if the retrieval

status values are not normalised as in the XML vector space model. Equation (5.4.3)’s

kfξ does not seem to include a normalisation, therefore smaller retrieved elements that are

related to larger retrieved elements are not returned on top of the ranking. The overall

performance under ep − gr becomes worse.

Next, we shall analyse the Focussed task and in particular the complex interaction of

filter reasoning with underlying reasoning, as analysed in Chapter 7.

8.4 Focussed

In this section, we consider results from the Focussed task and concentrate on the evalu-

ation using the eXtended Cumulated Gain (XCG) Metrics as the official metrics. These

are based on the cumulated gain (CG) based metrics of [Järvelin and Kekäläinen, 2002],

which consider the dependency of XML elements (e.g. overlap and near-misses) within the

evaluation. The user-oriented measures of normalised extended cumulated gain (nxCG)

complement the system-oriented effort-precision/gain-recall measures (ep/gr) in INEX

2005, which we have discussed in the Thorough parts in Section 8.3.

Given a rank i, the value of nxCG(i) reflects the relative gain the user accumulated

up to that rank, compared to the gain she could have attained if the model would have

produced the optimum best ranking. Several other parameters define how overlap is to be

handled. Similarly to ep− gr, for which models are penalised if they deliver anything else

but the most relevant document components first, better performance under nxCG also
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Table 8.2: INEX 2005 Focussed with the nxCG metric, strict quantisation and rank 10
S.No Model RunId nxCG[10]

4 Gardens Point 3-focussed-highest-VVCAS 0.1324

7 Gardens Point 1-focussed-Leaves-VVCAS 0.1074

8 Gardens Point 2-focussed-highest-VVCAS 0.0959

10 Language model I UAmsCOFocElements 0.0901

14 Contextualisation Model Tampere-b09-tower 0.0593

18 XML vector space focussed-with-phrase... 0.0478

21 XML vector space focussed-no-phrase... 0.0423

24 Contextualisation Model Tampere-b09-root 0.0420

28 XML vector space focussed-no-phrase... 0.0324

29 Contextualisation Model Tampere-exp5-b09-root 0.0324

31 Language model I UAmsCOFocSections 0.0231

39 Language model I UAmsCOFocArticle 0.0077

Table 8.3: INEX 2005 Focussed with the nxCG metric, strict quantisation and rank 50
S.No Model RunId nxCG[50]

1 Gardens Point 3-focussed-highest-VVCAS 0.1902

6 XML vector space focussed-no-phrase... 0.1317

7 Gardens Point 2-focussed-highest-VVCAS 0.1261

8 XML vector space focussed-no-phrase... 0.1240

11 Contextualisation Model Tampere-b09-root 0.1137

12 Contextualisation Model Tampere-exp5-b09-root 0.1094

13 Gardens Point 1-focussed-Leaves-VVCAS 0.1087

17 Language model I UAmsCOFocElements 0.1014

18 XML vector space focussed-with-phrase... 0.0918

30 Contextualisation Model Tampere-b09-tower 0.0442

31 Language model I UAmsCOFocSections 0.0433

38 Language model I UAmsCOFocArticle 0.0115

means that models are able to deliver relevant elements first. This means we can rely on

similar reasoning rules to Section 8.3.1 to identify the conditions for better performance.

However, under nxCG the overall ranking is not as strongly influenced by highly

ranked but less relevant document components. Here, it is more important to find all

relevant document components in order to steadily increase the gain at each rank. The

overall ranking is more important. In the example from Section 8.3 taken from [Kazai and

Lalmas, 2005], the second model performs better than the first one under nxCG.

This section also brings together the analysis of filters from Chapter 7 with the analysis

of Chapter 5’s underlying aboutness systems, that are filtered. Filters are the main strat-

egy used in Focussed to provide focussed and non-overlapping results sets. We can now

take up our idea from Section 7.2 and investigate how the combination of two aboutness

systems changes performance. Starting with the XML vector space model from Section 5.2,

we investigate for each XML retrieval model how the filter aboutness behaviour changes

the performance of the overall model. We proceed in a similar way we did for Thorough.

As in Section 8.3, we look at several key reasoning behaviour properties per model and

investigate their impact on the experimental performance.
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Table 8.4: INEX 2005 Focussed with the nxCG metric, generalised quantisation and rank
50

S.No Model RunId nxCG[50]

1 XML vector space focussed-no-phrase-... 0.2190

2 Gardens Point 3-focussed-highest-VVCAS 0.2122

8 XML vector space focussed-no-phrase-... 0.1985

11 Gardens Point 1-focussed-Leaves-VVCAS 0.1870

12 XML vector space focussed-with-phrase-... 0.1828

15 Gardens Point 2-focussed-highest-VVCAS 0.1756

16 Contextualisation Model Tampere-exp5-b09-root 0.1691

19 Contextualisation Model Tampere-b09-root 0.1615

20 Language model I UAmsCOFocElements 0.1592

23 Language model I UAmsCOFocSections 0.1531

27 Contextualisation Model Tampere-b09-tower 0.1243

34 Language model I UAmsCOFocArticle 0.0988

Table 8.5: INEX 2005 Focussed with the nxCG metric, generalised quantisation and rank
10

S.No Model RunId nxCG[10]

2 Gardens Point 3-focussed-highest-VVCAS 0.2561

8 XML vector space focussed-no-phrase-... 0.2290

9 Gardens Point 1-focussed-Leaves-VVCAS 0.2275

12 XML vector space focussed-with-phrase-... 0.2214

13 Gardens Point 2-focussed-highest-VVCAS 0.2214

14 XML vector space focussed-no-phrase-... 0.2163

17 Language model I UAmsCOFocElements 0.1943

20 Language model I UAmsCOFocSections 0.1711

21 Contextualisation Model Tampere-exp5-b09-root 0.1657

22 Language model I UAmsCOFocArticle 0.1650

23 Contextualisation Model Tampere-b09-root 0.1648

24 Contextualisation Model Tampere-b09-tower 0.1648

8.4.1 XML Vector Space

The XML vector space retrieval model has been very successful in the experimental eval-

uation in INEX 2005 [Mass and Mandelbrod, 2005], but its performance decreases when

it comes to returning the single most relevant document component along any path in the

INEX 2005 Focussed retrieval task for CO queries.

In order to comply with these requirements, the authors have amended the original

model by two additional filters to remove overlapping elements. First a regular Thorough

run is performed and then elements are removed in a ‘smart filtering’ step, in which clusters

of highly ranked results in the XML tree are identified. Only the most relevant element

in a cluster is picked. A second ‘brute-force’ step removes all remaining overlap.

One run [Mass and Mandelbrod, 2005] with both stages and a second submission with

only the second stage were put forward by the XML vector space model. The submission

with both stages performed better. In this section, our aim is to find out why brute-force

filtering led to a significant decrease in performance.

Section 7.3.1 has analysed the brute-force filter and shown how it changes the aboutness

behaviour of its underlying models by fundamentally changing some of the most important

reasoning properties such as Left Monotonic Union. In the case of the XML vector space

model, we could show in Section 5.2.4 how, as XML vector space’s thresholds are changed,
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its abilities to adjust to the tasks of Focussed are heavily influenced. In the case of the

XML vector space model, potentially advantageous XML reasoning abilities are lost as

thresholds are taken out of their context if instead of the N top documents for which

rsv(D,Q) > n only those with top scores on a path are taken into account.

XML vector space retrieval successfully uses conditions on Left Monotonic Union rea-

soning to adjust the behaviour of flat document vector space retrieval to the requirements

of XML retrieval under nxCG. Especially, the left monotonic behaviour is controlled by

disallowing the addition of verbose content, as seen in Section 5.2.4. Yet, this control over

left monotonic reasoning is lost for XML vector space modelling, once the brute-force filter

is applied, as seen in Section 7.3.1. LMU reasoning is completely eliminated. The XML

vector space retrieval model’s performance therefore decreases, and it loses its advantage.

The authors have experienced the fundamental change in the reasoning behaviour

through the introduction of brute-force filtering in their experimental results. However,

they relate it to the overall impact of structural hints in XML retrieval generally instead

of the the way their model integrates structural hints. They claim [Mass and Mandelbrod,

2005]:

‘Structural hints are valuable only when used as a real filter, and not when

used merely as recommendations as defined by the CO+S tasks.’

Our theoretical evaluation has delivered another explanation by showing that it might

be the particular type of filter that reduces performance, as it changes the reasoning of

(among other rules) LMU and its related rules such as Mix.

With LMU, we have just discussed an example of an individual reasoning behaviour

that leads to an overall decrease in performance in combination with the brute-force filter.

Next, we consider different submissions of the XML vector space retrieval model and

support for various user reasoning models from Section 6.4. The model performs better

for the generalised quantisations than for the strict ones in Focussed for lower ranks,

according to Tables 8.5 and 8.2. As shown in Section 6.5.2, the overall retrieval status

value is largely determined by the exhaustivity value for the generalised quantisations, as

the exhaustivity value dominates the overall quantisation value.

The improvement for XML vector space retrieval in this exhaustivity-oriented quan-

tisation is significant with an average ranking of 11 in the generalized quantisations for

lower ranks compared to 22 in the equivalent ranking for strict quantisation (Tables 8.2

and 8.3). Looking at the results from our theoretical evaluation, we anticipate this kind

of better performance for exhaustivity-oriented user quantisations from a model, which is

on the one hand side strongly based on a flat document document retrieval model (as seen

in Section 5.2) and on the other hand does not discriminate D � Q from Q � D,

as Symmetry is part of its aboutness reasoning. Still we would not expect such a strong

difference, which must have further reasons. Looking back at our analysis of the XML

vector space aboutness decision in Section 5.2.4, we think the reason for the dominance

of the exhaustivity-oriented quantisation lies in that fact that the document components
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weights clearly dominate in the main rsv function 5.2.1:

rsv(D,Q) =

∑

ti∈{Q∩D}wQ(ti) ∗ wd(ti) ∗ idf(ti)

‖Q‖ ∗ ‖D‖

In rsv(D,Q), D dominates for both for the numerator and the denominator. Particularly,

the number of unique terms in the document component ‖D‖ is generally much larger

than the number of unique terms in the query ‖Q‖. The composition of the document

component has thus a much stronger influence on whether the threshold is passed. The

model therefore performs better for those user agents that are concentrated on the ex-

haustivity dimension, as the measure is here on how much information is covered in Dex

according to Section 3.3.3.

If we consider filters to be another aboutness decision in themselves, we can see how

they fundamentally change the original aboutness decision with new rules and reflection

properties. Already [Wong et al., 2001] have identified as one of the biggest advantages of a

theoretical evaluation that it is more open to debate, as underlying assumptions (of an IR

model’s performance) can be sometimes hidden by the overall mathematical models. Such

new transparency leads to new insights about the behaviour of models in general and not

only for particular evaluation tasks. For the XML vector space model, this means that we

can disclose its underlying reasoning assumptions by identifying the filter as an additional

reasoning step, which is external to the original XML vector space aboutness reasoning.

We can therefore open up the debate on the general usefulness and configuration of such

filters.

8.4.2 XML Language Modelling I

For language modelling I, we have identified two advantages compared to the vector space

model in Section 5.3. Firstly, some structural context of an XML element (though limited)

is taken into account in the aboutness decision, because the language model is combined

with collection and document model. Secondly, the threshold in the aboutness decision is

internal. Nonetheless, as this threshold is only related to the overall collection language

model, the aboutness decision is still derived from the overlap of information in document

components and query, and not really considering structure. We concluded in Section 5.3

that structure is only indirectly considered in XML language modelling.

Language modelling I [Sigurbjörnsson and Kamps, 2005], had three runs in the INEX

2005 Focussed task:

1. UAmsCOFocArticle is a baseline submission created using the article index.

2. UAmsCOFocSections uses a mixture model of the section index and the article

index.

3. UAmsCOFocElements is a submission created using a mixture model of the over-

lapping element index and the article index. Overlap is removed by going through

the index list and removing elements overlapping with an element appearing previ-
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ously in the list. This is a type of brute-force filter. It is this run we would like to

concentrate on.

According to Tables 8.2 and 8.5, LM I performs well for the elements’ index in lower ranks

but not for section and article indexes. In higher ranks (Tables 8.3 and 8.4) even the

performance for the elements’ index falls behind the performance of other models [Kazai

and Lalmas, 2005]. For LM I, we would like to answer in more detail why its performance is

worst for higher ranks and relate this to the way structure is not considered in its aboutness

decision. Furthermore, we would like to concentrate on the performance decrease in the

element-based index, as the overall best submission for LM I.

For the lower ranks of the INEX 2005 Focused task, it is not surprising that the

best performing run for the language modelling I approach is the element-based one.

As according to Section 5.3.2.2 LMU is fully supported, it returns all the most relevant

elements first — independent of whether they are larger articles or sections.

The elimination of LMU reasoning through brute-force filtering has to lead to a de-

crease in performance for higher ranks (Tables 8.4 and 8.3). Here, we would find those

XML elements that overlap in information with more relevant and therefore higher ranked

elements. That such also relevant elements are eliminated must lead to a performance de-

crease under nxCG, as we have also observed for XML vector space retrieval. Under

nxCG, larger elements that contain relevant and irrelevant information at the same time

are expected to be found later in the ranking, where they, however, would still add to the

expected gain of information later in the ranking and therefore improve performance.

Next to such general reasons for a performance decrease, it is also important to add

that LM I does not use the XML structure in its aboutness decision. LM I performs

worse for higher ranks, as it is not able to deliver in the lower ranks those elements that

have similar content to highly ranked XML elements but might be on a different XML

path. As seen in Section 5.3.2.2, LM I uses structure only to allocate elements into several

different indexes and does not use it in the actual aboutness decision. The brute-force filter

for UAmsCOFocElements, which is applied on top of the language modelling aboutness

model and thus intersects with it according to Section 7.3.1.3, is based solely on the overlap

in information and not the structural relatedness of two elements. This has more negative

consequences for the performance under nxCG, as we shall explain next.

In order to elucidate the negative impact of brute-force filtering intersecting with a

model essentially based on unconditional information overlap aboutness such as LM I, let

us assume that we have a document component D1 and a document component D2 on

two XML paths. Let D1 have achieved a higher score for LM I than D2. Let us further

assume that D1 ≡ D2⊗D2′. Then, both D1 and D2 is about the same query Q and can

be found somewhere in the element index. That D1 and D2 are structurally different only

plays a role if they would also be allocated into different indexes. The element index on

the other hand combines all elements. Using brute-force filtering, once D1 is traversed in

the lower ranks, D2 is removed from the index, too. This means that it is not delivered

anymore as an alternative answer and nxCG performance decreases for higher ranks. This

effect is noticed particularly in higher ranks, as the relevant XML elements, which have
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been eliminated through the brute-force filter, would have been found here.

Further experimental performance issues for a model based on information overlap can

also be seen by comparing the generalised quantisations in Tables 8.5 and 8.4 with the strict

quantisations in Tables 8.2 and 8.3. For all these, the performance of LM I is similarly not

among the best, but the performance is on average better for the exhaustivity-oriented

quantisations. We have just discussed for XML vector space retrieval that we expect

a better support for exhaustivity-oriented users from a model that includes Symmetry,

Transitivity, etc. in its aboutness reasoning. In fact, also for LM I, which has a similar

reasoning behaviour for these rules to the XML vector space model, exhaustivity-oriented

users seem to be better served. As document components, however, do not dominate its

retrieval status P (ti|e) in Section 5.3.3.1 as much, the difference is not as significant as for

XML vector space retrieval.

The next model Gardens Point is closer to pure type reasoning according to Section

5.4.1. We will see how this expresses itself in its performance.

8.4.3 Gardens Point

The Gardens Point model is overall a top performer at INEX 2005. It performs better for

the specificity-oriented strict quantisations, as it attempts to imitate the mathematical

relation for the specificity assessment. We could show in Section 5.4.1 how close its about-

ness decision is to the aim of retrieving just those document components, which contain

only relevant information. It judges each document component on the basis whether it

contains distinctive query terms and only considers those to be relevant for the overall

aboutness decision. According to Section 5.4.1, its aboutness decision is based on those

parts of XML elements that are also part of the query, which is close to the character

counting method that determines specificity in INEX 2005 (Section 6.5.2).

Gardens Point makes use of the fact that in INEX 2005 for the first time, specificity is

described in purely mathematical terms using a continuous scale and a counting measure

for the overlap in XML element and query. It expresses this mathematical relationship

in a simple and clear calculation for aboutness, which is based on a sum of those terms

overlapping in document component and query. Yet, Gardens Point performs almost

equally well in Focussed for the exhaustivity-oriented generalized quantisations, as it has

for the specificity-oriented strict quantisations (Tables 8.2 and 8.3). This good support

for exhaustivity-oriented users must have further reasons than for XML vector space and

LM I, as Gardens Point does not include Symmetry reasoning in its aboutness decision.

We believe Gardens Point performs well under all quantisations in the Focussed task,

as the impact of query and document is the same in its simple aboutness decision for leaf

elements in Equation (5.4.1): rsvL = Kn−1
∑n

i=1
ti
fi
. This contrasts to XML vector space

retrieval, where exhaustivity-oriented users and document components are advantaged.

Please recall our analysis from Section 6.4, where we defined Dex to be the subsituation

that determines a component to be an exhaustive answer, and Qsp to be the one that

makes a specific answer. Gardens Point is obviously equally able to identify both Qsp and

Dex, as its aboutness decision (according to Equation (5.4.1)) is mainly influenced by ti,
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which is defined as those terms common to Q and D.

This explains the equally good performance of Gardens Point for all quantisations.

Next, we investigate why the model performs slightly worse for higher ranks in Tables

8.4 and 8.3, which is an indicator for the impact of D(c) on branch elements according

to Equation (5.4.2), and again shows how a detailed theoretical analysis can open up the

debate on some reasoning assumptions in models, which might be otherwise hidden in the

overall mathematical calculations.

As analysed in Section 5.4.1.5, with its parameter D(c), Gardens Point does not pe-

nalise enough branch elements with many retrieved children. These become more impor-

tant for higher ranks, as in those higher ranks exactly those branch elements with more

retrieved children will appear. They have been eliminated from the lower ranks by the em-

phasis on their retrieved children through D(c). However, they still appear in the higher

ranks, where the impact of D(c) is outperformed by their higher retrieval status values.

[Geva, 2005] takes notice of the potential issues with D(c) in Focussed:

‘In the focussed retrieval task it became clear from both qualitative analysis

and from experimentation with 2004 data, that it would be advantageous to

select elements slightly higher in the tree than the leaves – on account of

increased exhaustivity – but not too high since specificity tends to drop. We

could control the bias towards the leaves or the internal nodes by increasing or

decreasing the decay factor for score propagation. By choosing smaller values

for D(c) we were able to increase the relative scores of leaf elements.’

With our theoretical evaluation, we are able to provide a possible explanation for the

impact of D(c) on the aboutness behaviour. We expected this behaviour for higher ranks

according to our analysis of the monotonic behaviour of Gardens Point in Section 5.4.1.5.

Gardens Point fully supports Mix reasoning. We can generally say that Mix reasoning

elimination through brute-force filtering adds to a performance decrease for the focussed

tasks. In order to exemplify desired reasoning behaviour that is eliminated with Mix,

let us consider the following example: Among other things, Mix describes that, if two

children D1 and D2 are about a query, then their parent item D1⊗D2 is also about the

same query. This behaviour is typical to XML-based reasoning. If this behaviour is not

supported, problems might arise, such as the elimination of potentially highly relevant

children. Say, we have one relevant child and a more relevant parent, then the child is

eliminated from the result set after applying brute-force filtering. Another child of the

same parent that is about the same query, is also eliminated, as the parent is already

chosen for its path. However, this child might be highly relevant, too.

8.4.4 Contextualisation Method

In the Contextualisation model’s INEX 2005 submissions, the contextualisation step im-

proves performance [Kazai and Lalmas, 2005], in particular root and tower contextualisa-

tion. As discussed in Section 5.4.2.1, tower contextualisation is an average of the weights

of an element’s ancestors. Root contextualisation means that the contextualised weight of
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an element is a combination of the weight of an element and its root. The parent contextu-

alisation, for which only the direct parent is considered, delivers the smallest improvement,

as it offers too small a context [Arvola et al., 2005b].

The model’s Focussed experimental performance delivers mixed results. The tower

contextualisation performs well for lower ranks, better than XML vector space retrieval.

However, we can clearly see in Tables 8.4 and 8.3 that the performance of the tower

contextualisation decreases for higher ranks and falls behind XML vector space retrieval.

The performance of the root contextualisation remains roughly the same. Its ranking

is improved, as the performance of other models is falling further behind. These mixed

results are linked to the way overlap is removed in the model and how those elements that

have similar content but are on different paths in the XML document tree are removed

from the results.

Let us consider an example and assume that an element D1 and its nephew D2 are

both about Q. Let us further assume on its path to the root D1 has the highest relevance,

while for D2 its ancestor D3 has a higher relevance. D3 is also the parent of D1, but less

relevant than D1. In the attempt to remove overlap D3 will have been removed from the

result list, as it is less relevant than D1. For its path D2 is therefore returned, as the higher

ranking D3 has been removed. This leads to the worse performance for higher ranks in the

tower contextualisation, where the contextualisation step further punishes those elements

that have lost more relevant ancestors such as D1 through brute-force filtering. This

explains tower contextualisation’s decrease in performance for higher ranks. The root

contextualisation is not affected by this, as the root is the same for all elements in a

document tree.

We have examined the reasoning behaviour that leads to this kind of worse perfor-

mance, while looking at the Cut aboutness reasoning for the Contextualisation model in

Section 5.4.2.5. Cut assumes that S � T , with S⊗T � U and S � T . Let S be D2

from the example above, U be Q andD1 be T . Then, according to our assumption that D1

and D2 contain similar information: D1 � D2. Therefore the two assumptions of Cut

are given: D1⊗D2 � Q and D1 � D2. As Cut is not part of the aboutness reasoning

for the Contextualisation model, we cannot conclude that D1 � Q. This describes the

experience from the experimental behaviour, we have just analysed. It also shows that

elements that are subsituations of other elements, which are about a particular query, do

not necessarily have to be about the same query. This becomes more important when

we look at the behaviour of the Contextualisation model for the generalised quantisations

next.

According to Tables 8.5 and 8.2, the Contextualisation model performs worse for the

generalized quantisations in lower ranks than for the strict quantisations. Let us return to

Equation (5.4.3): w(k, ξ) =
kfξ

kfξ+v×((1−b)+b ζfc
ζfk

)
×

log(N
m
)

log(N) . In the model large values for b are

used in the weighting scheme to eliminate larger elements for focussed tasks [Arvola et al.,

2005b]. Larger elements are generally closer to the root in an XML document tree. Instead

of these elements, subsituations of them or elements closer to the leaves are chosen. We

have, however, just seen that these do not necessarily have to be about the same query, as
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Table 8.6: INEX 2005 FetchBrowse with the ep− gr metric and generalised quantisation
S.No Affiliation RunId MAep

3 Gardens Point 1-FetchBrowse-VVCAS 0.0850

4 Gardens Point 2-FetchBrowse-SVCAS 0.0850

9 XML vector space no-phrase-... 0.0573

12 XML vector space no-phrase-... 0.0453

15 XML vector space no-phrase-... 0.0399

23 Contextualisation model Tampere-FB-b09 0.0172

25 Contextualisation model Tampere-FB-b09-parent 0.0147

26 Contextualisation model Tampere-FB-b09-tower 0.0140

29 Gardens Point QUT 3-FetchBrowse-focussed 0.0093

32 Language model I UAmsCOFBElements 0.0056

34 Language model I UAmsCOFBSections 0.0033

38 Language model I UAmsCOFBArticle 0.0016

Cut is not supported, which explains the loss in the ability to return the most exhaustive

elements in the generalised quantisations.

In the final section of this chapter, we now analyse FetchBrowse as an indication of

the ability to correctly identify elements within relevant documents.

8.5 Fetch & Browse (FetchBrowse)

The FetchBrowse task [Gövert et al., 2006] is inspired by the work of Chiaramella in

[Chiaramella, 2001]. In the task, at first relevant articles are identified in a fetching step

in order to afterwards find in the browsing step the most exhaustive and specific elements

within those fetched articles. Both steps produce rankings according to the two evaluation

dimensions of exhaustivity and specificity, once for the articles in a collection and then for

the elements within these articles. In the end, we have an article-level and an element-level

retrieval status value.

Though inspired by it, FetchBrowse is quite different from [Chiaramella, 2001], which

we used to define aboutness for exhaustivity and specificity. Here, fetching in particular is

not limited to article elements but is done over the complete element base. In the browsing

step, a compromise is then sought between most effective exhaustivity and specificity. We

have described this in Section 3.3.1. In INEX 2005, FetchBrowse retrieval is oriented

towards the user. Ranked documents are the output, together with all relevant elements

within those documents. This simulates a user browsing for the most relevant elements

within relevant articles.

For FetchBrowse, in the fetching phase all articles Dart about a query Q are returned:

Dart � Q. Then, in the browsing step any relevant element Dk is returned: Dk � Q

and Q � Dk, where Dart ≡ D1 ⊗ ... ⊗ Dk ⊗ ... ⊗ Dn. For the FetchBrowse task, not

only the queries are the same but also the documents components, as we consider each

article Dart separately. This means that, for this retrieval task, the document components

are all related and are all about the query in scope. They differ, however, in size and

in their relevance. So, the task investigated by FetchBrowse is the ability to split up

an article situation into its relevant subsituations, while at the same time avoiding those

subsituations that are not relevant. As the elements only differ in size but not in their
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Table 8.7: INEX 2005 FetchBrowse with the ep− gr metric and generalised quantization
S.No Affiliation RunId MAep

7 XML vector space no-phrase-... 0.0180

8 XML vector space no-phrase-... 0.0176

9 Gardens Point 1-FetchBrowse-VVCAS 0.0164

10 Gardens Point 2-FetchBrowse-SVCAS 0.0164

15 XML vector space no-phrase-... 0.0121

22 Contextualisation model Tampere-FB-b09-tower 0.0072

23 Contextualisation model Tampere-FB-b09-parent 0.0071

24 Contextualisation model Tampere-FB-b09 0.0071

27 Gardens Point 3-FetchBrowse-focussed 0.0044

29 Language model I UAmsCOFBElements 0.0023

34 Language model I UAmsCOFBSections 0.0013

40 Language model I UAmsCOFBArticle 0.0002

aboutness relation, we return again to the monotonic behaviour and how it helps to identify

the right subsituations.

8.5.1 XML Vector Space

Let us once more commence with the XML vector space retrieval model. It uses a straight-

forward approach to implement the FetchBrowse task [Mass and Mandelbrod, 2005]. First

a standard Thorough submission is run, without any filter. In a second step, the relevant

articles are identified. Within these, elements are ranked according to their retrieval status

value.

As according to Tables 8.6 and 8.7 XML vector space retrieval performs overall better

for the generalized quantisations, the interesting question seems to be why it is able to

provide a better return for exhaustivity-oriented users than for specificity-oriented users

in FetchBrowse. This behaviour is linked to the model’s ability to influence aboutness

of larger elements (or larger subsituations) by its conditional support for LMU, which

supports a good performance under the generalised quantisations, as already discussed in

Section 8.3.2. At the same time Cut reasoning is not supported by the model (according

to Section 5.2.4), which means smaller relevant subsituations are not necessarily about a

query if their larger relatives are.

XML vector space retrieval therefore supports to retrieve those relevant subsituations

that are exhaustively about a query, as they are larger, while it does not support well the

return of smaller, potentially more specific subsituations. Its performance has to be better

for the generalised quantisations.

The worst performing model for FetchBrowse is with some distance LM I language

modelling. We will not further analyse it here, as it has reported some major problems

with its submission for FetchBrowse. Instead, we concentrate on the Gardens Point and

the Contextualisation models.
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8.5.2 Gardens Point

Gardens Point’s approach to FetchBrowse includes sorting the set of relevant subsituations

by article relevance and afterwards per article by element relevance [Geva, 2005]. Contrary

to XML vector space retrieval, Gardens Point performs worst for all its submissions for

FetchBrowse generalized but outperforms all other models in scope in the strict quantisa-

tion according to Tables 8.6 and 8.7. This is interesting, as Gardens Point fully supports

Left Monotonic Union, which means that always with D � Q also D1⊗D2 � Q. A

support for this kind of reasoning would lead us to expect a worse performance for the

strict quantisation for Gardens Point, as elements with more children and therefore larger

and closer to the root benefit more from full support for LMU.

So, why is Gardens Point’s performance then so good for the strict quantisations? We

relate this to the fact that right monotonic reasoning is not supported. For the strict

quantisation, we are interested in the specificity-oriented user return of Q � D. Our

interest is Q � Dk, where Dart ≡ D1 ⊗ ... ⊗ Dk ⊗ ... ⊗Dn. According to Section 8.5,

this describes the browsing step. As Gardens Point does not support Right Monotonic

Union, it disallows the growth of relevant document components to Dk ⊗D′, as it is not

guaranteed that Q � Dk ⊗D′.

XML vector space retrieval at least conditionally supports Right Monotonic Union and

can therefore not prevent the inclusion of undesired subsituations in the answer set, which

comparably lowers its performance for strict quantisations in FetchBrowse. Gardens Point

allows right monotonic behaviour only when it is safe and should be supported in the case

of Context-Free And. According to Context-Free And, from Q � D1 we can only say

that Q � D1⊗D2 if also Q � D2. This means the added element information must

be relevant.

Gardens Point seems to particularly perform in the strict quantisations also in the

FetchBrowse task, as it is the only analysed model that does not support Right Monotonic

Union and is therefore at least for this reasoning ability closer to pure type XML retrieval.

In Section 4.7.4 we showed that pure type XML retrieval does not support Right Monotonic

Union, as with a change in the composition of the query, the hierarchical inclusion is

changed, too.

8.5.3 Contextualisation Method

For the FetchBrowse task, Contextualisation also fully supports monotonic reasoning, as

just like for Focussed its ability to control monotonic behaviour by using negative weights

to identify undesired elements does not apply. For Contextualisation, we are interested

in finding out why the contextualisation step itself does not seem to have an impact on

FetchBrowse performance. According to Tables 8.6 and 8.7, the Contextualisation runs

are in both quantisations very close to each other, which we take as an indication that

the actual contextualisation step is not very useful to discriminate relevant subsituations

of different size within the same article, which is tested in FetchBrowse.

We explain this with the fact that the contextualisation steps are based on averaging
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an element’s weight with either some or all of its ancestors [Arvola et al., 2005b]. The

method of taking an average does not seem sufficient to influence the ranking of elements,

if differences in estimated relevance are mainly linked to differences in element sizes for

FetchBrowse. This is the case as the average is taken over related elements, over children

and their ancestors, which must be counter-productive for FetchBrowse. It must make it

more difficult to determine which of the elements that are part of the average calculations

are the most relevant ones.

8.6 Conclusion

In this chapter, we showed how results from the theoretical evaluation help explain exper-

imental results. Such work can obviously not cover all possible explanations but has to

focus on certain significant properties coming out of the experimental evaluation.

For the experimental evaluation of the INEX 2005 Thorough task we derived how Left

Monotonic Union, Mix and Cut influence a good performance. For the remaining two

INEX 2005 tasks, Focussed and FetchBrowse, we determined which reasoning properties

support a good performance. For the Focussed task, in particular, we investigated how

filter reasoning and underlying reasoning behaviour work together. We could see how

especially the changes to the monotonic reasoning behaviour enforced by the brute-force

filter influence retrieval performance.

We left out other significant results from our theoretical evaluations in Chapter 5, as we

wanted to concentrate on demonstrating the particular importance of monotonic reasoning

for experimental performance. Containment is one example for a reasoning property we

did not consider in this chapter. It is significant, as only XML vector space retrieval does

not support it and therefore mimics the behaviour of pure type XML retrieval in this case

(see Table 5.10). We would expect this to contribute to its overall convincing performance.

Containment states that if two subsituations contain each other, their parent situations

are also about each other. From Si → Ti, we can conclude that S � T . This is not

necessarily a desirable reasoning characteristic in XML retrieval. Let us assume that

Si ⊗ Sj ≡ S. Then, Sj might well contain a lot of information that is not about T , which

makes S less relevant and less focussed to T . This example shows that (again depending

on the experimental task) a full support for Containment is not necessarily desirable.

We could go on with other results from Chapter 5 but as we said at the beginning

of this chapter, we can only ever provide a snapshot of possible explanations that are

derived from the theoretical evaluation and help understand the experimental evaluation.

As there are potentially many results from an experimental evaluation we can never offer

all the explanations from a theoretical point of view.

In this chapter monotonic reasoning has proven once more to be key to a model’s

success. In many ways, the importance of monotonic reasoning is also reflected in the

successful work of [Fang et al., 2004], where the authors work with retrieval heuristics

and basic desirable constraints that any reasonable retrieval function needs to satisfy for

good retrieval performance. We come back to a discussion of monotonic reasoning in the
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concluding chapter of this thesis.
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Chapter 9

Conclusion and Future Work
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In this concluding chapter, we list the main contributions this thesis has made and our

conclusions. We also present some perceived limitations of our current approach as well

as how future work might address these and amend our current framework.

9.1 Contributions

This thesis has delivered a new theoretical framework to analyse XML retrieval based on

aboutness approaches to theoretical evaluation. We believe that a theoretical evaluation

approach is particularly suitable for the complex XML retrieval tasks, as its challenges

are directly linked to difficulties in describing the complex nature of the interaction of

structure and content in XML retrieval. Our approach offers a methodology to bring

together XML content and structure as well as reasoning behaviour using them into a

unified framework.

Our contributions can be broadly summarised as firstly those that developed a theo-

retical evaluation methodology for XML retrieval. These include the definition of XML

aboutness as well as the refinement of existing theoretical evaluation methodologies to

match the requirements of XML retrieval. The second main set of contributions stems

from the evaluation of actual XML retrieval models in INEX. We could identify important

reasoning properties that help with good XML retrieval performance as well as translation

and adjustment strategies used to redefine flat document retrieval for use in XML retrieval.

Finally, with the analysis of filters, the explanation of experimental results and the evalu-

ation of XML retrieval experimental evaluation methodologies, we have intervened in the

discussions in the INEX XML retrieval community.

9.1.1 Theoretical Evaluation Methodology for XML Retrieval

This thesis has presented a framework based on aboutness that allows to analyse the

characteristics of particular XML retrieval models. We have shown that existing results

of an aboutness-based theoretical evaluation in flat document IR indicate that it can be

a powerful methodology to also analyse the more complex tasks in XML retrieval. Our

hypothesis has been that particularly in the domain of structured document retrieval, an

aboutness-based theoretical evaluation presents a powerful methodology to analyse how

the inclusion of XML structure in the aboutness decision leads to the best performances in

the experimental evaluation. In order to support this hypothesis, we have first developed

a new aboutness criterion to match the requirements of XML retrieval, and have then

delivered a new methodology to analyse XML retrieval models based on this new aboutness

criterion.

9.1.1.1 XML Retrieval Aboutness Criterion

The main contribution of Chapter 3 is the definition of Situation Theory aboutness for

XML retrieval in Sections 3.3.2 and 3.3.3. We have shown how [Chiaramella, 2001] and

[Nie, 1988] have used the conditional d → q by van Rijsbergen to model the general
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relevance (exhaustivity) of an element to an information need, and added to this a second

one q → d to model the focus of an element (specificity). In our framework, this distinction

becomesD � Q orD aboutQ for exhaustivity andQ � D orQ aboutD for specificity.

Only those XML retrieval models able to differentiate the left and the right hand side of

� can also make a difference between D � Q for exhaustivity and Q � D for

specificity.

Further to the introduction of the second dimensionQ � D, we also needed to amend

existing Situation Theory definitions of aboutness. Standard Situation Theory aboutness

claims that situation S is about a situation T if and only if T contains one infon i such

that situation S is about infon i. This works well for flat document retrieval models.

It, however, leads to problems if we look at XML retrieval aboutness. The one common

infon i could be an infon expressing structure, possibly itself bearing no information useful

to a user. In XML retrieval, two XML situations could share the same infons expressing

structure, as they share the same document type definition. Structure in text-centric XML

only supports meaning but does not create meaning. Therefore, we needed to find another,

stricter aboutness criterion that uses ‘subsituations’ instead of simple infons (Section 3.3).

A subsituation is a situation Si that is part of another situation S with content and

therefore meaning. In order to conclude that a property like INEX specificity does not

apply to a situation S, we just need to show that a situation with that property cannot

be a subsituation of S.

9.1.1.2 XML Retrieval Evaluation Methodology

Building on the XML aboutness criterion, we have offered a new theoretical evaluation

methodology to analyse XML retrieval. Our theoretical methodology works through four

steps. Section 4.1 has introduced the first three steps that our framework shares with those

that analyse flat document retrieval models. In the first translation step a formalism

is delivered to express aboutness symbolically. The second step specifies aboutness by

deriving rules of reasoning behaviour. It uses a set of reasoning rules to describe the

functional behaviour of the XML retrieval aboutness and to discriminate specificity and

general relevance reasoning (Section 4.4). The third step derives a reflection of aboutness

boundaries (Section 4.5). It defines typical non-reasoning related boundary elements of

retrieval systems.

Section 4.7 has presented the forth step, which is specific to XML retrieval: the pure

type XML retrieval model to capture the influence of XML structure on aboutness. While

the first three steps have been taken from the work of Huibers and others and adjusted

to the requirements of XML retrieval, pure type XML retrieval is our addition in order to

qualify the impact of XML structure on aboutness behaviour.

In order to develop pure type XML retrieval, we first needed its aboutness decision.

To this end, we have developed hierarchical inclusion in Section 4.7.1 as an expression of

the fact that XML enforces a hierarchical representation of a document, as elements are

organised into a tree structure. We finally needed a workable definition of pure type XML

retrieval aboutness using our Situation Theory framework. To this end, Section 4.7.2.1
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has defined a set-based translation.

In Section 4.7, we were able to derive translation and reasoning properties for pure

type XML retrieval, which we could then use in Chapter 5 to analyse the impact of XML

structure on the reasoning behaviour of individual XML retrieval models.

9.1.2 Evaluation of XML Retrieval Models

In Chapter 5, all the steps of the theoretical evaluation are applied to XML retrieval

models, which have been successful in the INEX evaluation. We have concentrated on

successful models, in order to demonstrate that we can show differences in models that

are mature. We do not want to repeat here individual results for particular models, but

rather concentrate on some re-occurring topics we found to be relevant for the analysis of

all XML retrieval models. We cover first those reasoning properties that have proven to

be important for XML retrieval.

9.1.2.1 Important Reasoning Properties

In our theoretical evaluation of XML retrieval models, we could see how XML retrieval

work is concentrated on the control of monotonic behaviour and other reasoning proper-

ties like Symmetry, which heavily influence the primary aim of XML retrieval aboutness

decisions to find the most focussed answer. For instance, a full support for Left Monotonic

Union can be counterproductive for the identification of the right level of granularity. If

an XML element D is about a query so will be its parent D ⊗ D1 according to LMU.

However, in XML retrieval we would like to make exactly this distinction between D and

D ⊗D1.

Almost none of the analysed XML retrieval models is close to the monotonic reasoning

exhibited by pure type XML retrieval. No model supports Cut reasoning and can therefore

maintain aboutness if larger relevant elements that are about a query are reduced to

smaller ones. It is also very interesting that all but the Gardens Point model support

right monotonic reasoning. RMU does not necessarily support better retrieval results.

RMU allows us to conclude from the assumption D � Q that also D � Q ⊗ Q′.

However, in XML retrieval Q might well include a structural condition. For instance, Q

alone might point to a section while Q⊗Q′ might point to a paragraph within a section,

which would completely change the aboutness relation.

It is this kind of desirable behaviour that implies that XML retrieval systems should

be able to change an aboutness decision if the XML context changes. This entails that

the non-monotonic reasoning rules we have presented in Section 4.4 are a good foundation

for the theoretical analysis of XML retrieval systems. They allow to describe aboutness

as a (non-)monotonic reasoning function with various variables that often include terms

and their frequency values, but also other parameters. The description of the monotonic

reasoning behavior of XML retrieval models is key to the distinction of flat document

retrieval.
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9.1.2.2 Relationship to Flat Document Retrieval

Even for the models specifically designed for XML retrieval and discussed in Section 5.4,

we found many commonalities with underlying flat document retrieval models. This has

been particularly apparent when looking at the translations and reflections of the models

analysed in Chapter 5.

For the translation, the main difference to the underlying flat document retrieval model

was often that XML elements were indexed instead of full documents. The individual

elements, however, were taken to be independent of each other. Even models that consider

the XML relationship between elements in Chapter 5 do not do so directly. Structure is

not considered in itself but as a relationship between content in XML documents. This

can be done, as there is the direct relationship between content components of an XML

document and its corresponding XML tree: If in a document D a document component

D1 is contained by component D2 then in the corresponding XML tree D1 will be a

descendant of D2, etc.

This content relationship is used in the language modelling approaches from Section

5.3 if language models of XML elements are interpolated, but also in Gardens Point.

Thus, in Section 5.4.1.5 we could see the typical approach in XML retrieval that combines

the evidence from XML structure with content relationships known from flat document

retrieval. Gardens Point goes furthest in this approach and therefore is very successful in

INEX.

For all models in Chapter 5, the reflections differ heavily from the reflection of pure

type XML retrieval. All models are not able to discriminate the behaviour for the cases

where we find bottom exhaustive and specific document components and queries. No

model has developed a concept of top specific document components, which would be a

theoretical version of a document component that is always a focussed answer. These

important boundaries elements are left out by all models, and we could see how this has

an impact on performance.

9.1.2.3 Adjustments

It has become apparent in our theoretical evaluations that most XML retrieval models are

based on successful flat document retrieval models and adjust them to the new require-

ments of XML. Thresholds then seem to have been the most successful way of adjusting

the behaviour of retrieval models to the requirements of XML retrieval. Others like the

interpolation of the relevance of elements with the one of their ancestors have been less

convincing. Throughout this thesis, we have seen how thresholds at various levels of the

aboutness decision might improve the performance.

We have identified two types of thresholds, internal ones and external ones. The XML

vector space retrieval model has an external threshold, chosen a priori. Here, the threshold

has been successfully used to adjust the (monotonic) reasoning behaviour, which has in

turn led to a better experimental performance.

Language Modelling I (LM I) is also based on a thresholded aboutness decision. This
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time, however, the threshold is internal and derived from the collection and article con-

text. In the vector space model the threshold functions as a means to control aboutness

behaviour, while here it is used to avoid undesired side effects in language modelling

approaches.

9.1.3 INEX Specifics

This section looks to summarise the evaluation results of specific developments within the

INEX evaluation campaign. It summarises results from Chapters 6, 7 and 8, which have

covered the evaluation of XML retrieval evaluation, the analysis of XML retrieval filters

and finally the experimental evaluation in INEX.

9.1.3.1 Evaluation of XML Retrieval Evaluation

Chapter 6 has offered a new perspective using the possibilities of theoretical evaluation. We

presented a theoretical evaluation of existing experimental evaluations. Our subsituation-

based aboutness criterion led us to an integrated model for user expectations and as-

sessment methodologies in INEX 2004 and 2005. We could first represent how different

INEX quantisations express user expectations and use Situation Theory to formalise these

expectations as reasoning processes. In a second step, we were able to relate these user

models to the INEX evaluation scales and show what patterns of reasoning are involved

in these.

Finally, we have pointed at a theoretically consistent alternative treatment of exhaus-

tivity and specificity for INEX 2005 and have suggested to consider both not as inde-

pendent values, but as based on the same relevant information. We have shown how to

strengthen the exhaustivity judgment in INEX 2005 by applying the same mathematical

rigour to it as to specificity. We suggested to look at exh = |Dex|
|Q| , as probably a better

measure for exhaustivity than the INEX 2005 scale. By using the same highlighting for

exhaustivity that was used for specificity, we have theoretically demonstrated that it is

possible to look at exhaustivity and specificity as two views of the same aboutness property

and not as two different aboutness relations.

9.1.3.2 Filters as second-layer Aboutness Decisions

In Chapter 7, we concentrated on filters in INEX and how they attempt to deliver speci-

ficity aboutness. Filters are the predominant form in INEX to achieve most focussed

answers in retrieval. We looked at how filters for focussed retrieval have an impact on

aboutness behaviour of the underlying aboutness system they are filtering. We introduced

filters as a second aboutness reasoning on top of an underlying aboutness reasoning spe-

cific to the model. Then, the question is whether the two types of aboutness reasoning

are in accord with each other.

In order to answer this question, we have developed a new methodology that allows

us to formally relate filter aboutness decisions to the ones of the underlying aboutness

system. Our theoretical analysis of filters has been done in three steps. We have first
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formalised the translation process. Secondly, we have identified the reasoning rules associ-

ated with the filter. Finally, we have analysed the relationship between the filter and the

underlying aboutness systems. For the latter, we have made use of the filtering function

f-answer (Section 7.2), which we have adapted to XML retrieval. We have found that all

analysed filters intersect with their underlying aboutness systems. They reflect therefore

the specific XML retrieval idea to focus the underlying aboutness system’s result set and

not to fundamentally change it.

Overall, we have analysed three types of filters used in INEX 2005, a simple brute-

force filter that keeps the highest ranked element of each XML path and two more complex

filters that take into account the relations in the tree hierarchy between retrieved elements.

The brute-force filter, as the most commonly used one, almost completely changes, e.g.,

monotonic behaviour. For XML vector space retrieval model, for instance, we could show

how the brute-force filter eliminates many of its advanced reasoning capabilities.

9.1.3.3 Experimental Evaluation

In the final chapter, we wanted to demonstrate another use of theoretical evaluation. The

fact that we consider actual IR models from INEX 2005, distinguishes our work from many

other theoretical evaluation approaches. We compared our theoretical evaluation results

with the experimental ones for XML retrieval in INEX 2005 to find out how the adjustment

of existing flat document retrieval models compares to the creation of completely new ones,

especially designed to meet the requirements of XML retrieval. We went through each of

the three INEX 2005 XML retrieval evaluation tasks and determined reasoning properties

that supported good performance for these tasks. Again, the monotonic reasoning rules

have played an important role here. To our knowledge, there has not been a similar

attempt to use theoretical evaluation to explain actual experimental results for XML

retrieval models.

Yet, particularly in this final chapter, we could note some disadvantages that need to

be discussed in relation to the strengths of our approach.

9.2 Strengths and Limitations of the Approach

In this section, we reflect on our experience with a theoretical evaluation approach. We

first discuss some strengths to afterwards talk about perceived weaknesses. One remark,

however, should be made from the outset. That we can easily reflect on the advantages

and disadvantages of the approach is also linked to the approach itself. As we operate on

a high-level of abstraction, weaknesses seem to be more apparent than in other evaluation

approaches, where statistics only seemingly present a convincing abstraction of how well

an IR matching function is able to describe what human users perceive as relevant.

The first advantage of a theoretical evaluation is the widened perspective. Aboutness

characteristics qualify XML retrieval functions, which are represented by the number of

properties they implement and they do not implement. This is certainly not as obvious

for a purely statistical evaluation of a scoring function.
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Logic-based evaluation is more open to debate, as underlying assumptions of IR per-

formance can sometimes be hidden by tuning a priori assigned parameters in such a way

that they fit best the evaluation task. This transparency leads to new insights about the

behaviour of models in general and not only for particular evaluation tasks. If we, e.g.,

would like to come up with a new XML retrieval system, we should be carefully considering

the degree to which we allow monotonic behaviour. The control of such behaviour could

be done by defining exactly what precludes an information from being a misinformation.

These were some of perceived advantages of a logic-based theoretical evaluation. How-

ever, there are also drawbacks. Some of them might prevent researchers from further

engaging with the approach. Much of XML retrieval work is currently done by adjusting

weights to meet the different requirements. It has been noted [Wong et al., 2001] that the

proposed theoretical evaluation formalisms often deliver too high an abstraction to cover

specific cases. For XML retrieval, this will be particularly noticed when dealing with fil-

ters and when comparing experimental and theoretical evaluation results. Filters are often

relatively simple mathematical operations rather than advanced reasoning. We have tried

to address these problems by introducing some mathematics into the Situation Theory

framework delivered by Huibers and others. As discussed in Section 4.4, to this end, we

have added to his analysis the notion of conditionally supported reasoning properties.

Where we have analysed concrete XML retrieval systems, Huibers has looked at classes

of different IR approaches. Heavily numeric models, however, are also difficult to represent

with our methodology, as the conditions on reasoning behaviour are often not simple. In

summary, we think that further research needs to be done into possible frameworks of

theoretical evaluations. It might turn out that logic-based frameworks fall behind frame-

works based, e.g., on retrieval heuristics. As XML retrieval is a relatively young discipline

compared to traditional IR, such heuristics, however, do not seem to be established yet.

Thus, we could not use them in this thesis, but this might change for the future.

To do further research into possible frameworks of theoretical evaluation, we would

need a framework to evaluate theoretical evaluation frameworks, similarly to the way

we have evaluated XML retrieval evaluation with our logic-based framework. Such a

framework might have been suggested by [van Rijsbergen, 2004].

9.3 Further Results

Some of our conclusions are not directly the result of developing a new theoretical method-

ology and afterwards applying it to XML retrieval models. These conclusions often develop

from discussing a particular topic of interest in detail and are specific to its research con-

text. They are easy to miss, but are important interventions in ongoing debates.

In terms of further results, we consider one example for additional explanations with

regard to experimental behaviour, one example for discussing further INEX specifics, one

example about how the analysis has helped understand better the interaction of content

and structure in INEX, one example of how we help improve existing models, one example

of how we go beyond existing aboutness approaches and finally one example of where our
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analysis intervenes in general IR debates.

• Considering further explanations for experimental behaviour in INEX, while dis-

cussing the idea of an utility prior and the implied reasoning in Section 7.3.2.2, we

analysed how the prior can have a strong impact on monotonic reasoning, espe-

cially if thresholds are involved. We were able to relate this to improvements in the

experimental behaviour of particular models.

• Several suggestions were made how to improve existing INEX evaluation procedures.

In Section 6.5.3, we could (a) explain in more detail and from an aboutness point of

view why the focus on specificity from INEX 2005 onwards was correct. We could

(b) derive which INEX quantisation functions focus not just on general or strict

evaluation results but favour either exhaustivity or specificity judgments. Finally,

we could (c) derive an alternative view on exhaustivity aboutness that would have

strengthened this evaluation measure, because it would be based on the same relevant

information as specificity.

• The impact of XML structure on the aboutness behaviour of INEX models has been

one of the main themes in this thesis. In Chapter 5, we could progress through a

series of models and starting from language modelling II and then GPX and con-

textualisation present how XML structure is not considered in itself but as a part of

the underlying aboutness behaviour. For instance, only GPX considers CAS queries

to be the standard query input. Also, the integration of XML structure by inter-

polating language models of neighbouring document components does not seem to

improve the reasoning behaviour of language modelling II, because it is too close

to the Jelinek-Mercer approach to smoothing and therefore close to standard flat

document language modelling.

• Throughout Chapter 5, we discussed at several places how to improve existing mod-

els. For instance, we could discuss for contextualisation in Section 5.4.2.8 how the

introduction of a threshold would have improved monotonic reasoning behaviour

(especially in the contextualisation step) and would have led to a behaviour that

one would expect from XML retrieval models.

• Our new theoretical evaluation framework allows us to move beyond existing theoret-

ical evaluation approaches. For instance, our analysis of experimental behaviour was

also helped by understanding why reasoning rules are not supported in an aboutness

system. Cut reasoning is not supported for many of our models, because relevant

elements can be cut away. In Section 8.3.3, we could identify that the Cut-induced

reduction of relevant information appears less frequent in the language modelling I

index which excludes small elements. This helped us explain an improved experi-

mental performance.

• Our investigations can aid the explanations of experimental results beyond XML re-

trieval. For instance, during our discussion of language modelling’s internal thresh-

olds from Section 5.3, we could confirm the observation by [Manning et al., 2008]
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that smoothing has an influence on the aboutness behaviour and is not neutral. We

have shown how important it is to ensure that the internal threshold of language

modelling is the smallest possible value. In the original language modelling paper

[Ponte and Croft, 1998], the collection language model of a term t is used in case the

term is not found in the document. This implies the paradox that for all terms in the

document that have a lower document term frequency than the collection language

frequency of t their language model contribution will be lower than t. This cannot

happen, if we interpolate with the collection language model, as in XML language

modelling I and II, which apply the Jelinek-Mercer approach. Then, those terms

that do not occur will contribute their collection language value and all those that

do occur will contribute their collection and document language model. Thus, the

contribution of the latter is always larger than the contribution of the former. It

is therefore not surprising that the Jelinek-Mercer approach improves experimental

performance of models [Manning et al., 2008].

This concludes our discussion of our results. In the final section, we offer some possible

future work.

9.4 Future Work

This thesis has proposed at a theoretical evaluation of XML retrieval. Although in many

parts the work might look only theoretical, most of it is characterised by the attempt to

apply theory in new ways and to new problems that have emerged in recent years in IR. As

a foundational work, we could only show snapshots of possible ways to progress. To this

end, we have chosen only some XML retrieval models. For these, we have concentrated

on some telling aboutness behaviour characteristics. Finally, we have used only some of

the derived aboutness characteristics to explain experimental behaviour. Thus, there are

many ways to continue the work of this thesis. It could be continued either by building

on the foundations to develop new theoretical analyses (just like we have used Huibers’

work) or by going into more depth with some of the existing explanations. Possible areas

for future work include:

9.4.1 Enhancement of the Existing Theoretical Framework

As it is built upon proven existing theoretical frameworks, the approach presented in this

thesis has already got a certain degree of maturity. Nevertheless, there remain further

open questions. The most obvious one and the one we have touched upon already in

our discussion of the results in the conclusion is the question how to determine exactly

which aboutness rules help best with a pragmatic analysis of XML retrieval systems. We

have found the analysis of monotonic reasoning rules to be particularly useful. In the

future, one could further specify which rules were the most useful ones and concentrate

on those. Some rules such as the conservative aboutness rules have not contributed to the

analysis of XML retrieval systems because none of the analysed systems uses the more
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semantically oriented preclusion. We could have therefore left out these rules completely.

We needed to be careful not to disregard rules prematurely. The Containment rule, for

instance, has proven to be useful to understand the performance of the XML vector space

model. Models also evolve. Rules that have been neglected so far could be more useful in

the future. The enhancement of the existing framework should start with analysing more

carefully the aboutness rules that have proven to be useful, while remaining careful not to

prematurely dismiss rules.

9.4.2 Expansion of the Current Theoretical Analysis

We have mainly concentrated on mature and successful models from INEX in this thesis.

We have done so in order to demonstrate the power of our theoretical analysis to also

determine minute differences. It would have also been interesting to find our more about

the reasons why the performance of certain models is much worth than others. We have

left out the group of worst performing models altogether as we have found that they either

entered only one or two years of the INEX evaluation or they reported particular problems

with the implementation. As a control group to explain good and bad performance, how-

ever, they would have been useful. A second expansion of the current theoretical analysis

could be the richer integration of Section 6.4’s user models into the theoretical analysis,

for which we have shown how Situation Theory can be used to express the reasoning be-

hind specificity and exhaustivity assessments. We have only demonstrated very briefly

how the reasoning of agents and systems could be brought together. Afterwards, we have

concentrated on addressing specific INEX problems such as the exhaustivity evaluation

dimension and filters by developing a theoretical justification. Our user models are, how-

ever, more generic and could be used to develop new theories about the performance of

XML retrieval systems. Finally, throughout the thesis, we have only offered snapshots of

possible ways to proceed with theoretical evaluations. We could easily expand the current

theoretical analysis by systematising this approach and developing new versions of par-

ticular parts of our theoretical analysis. The analysis of filter, for instance, could benefit

from a more in-depth comparison of XML retrieval filters as well as from a comparison

with filters as they are used in other fields of IR.

9.4.3 Evaluation of Theoretical Frameworks

If theoretical evaluation frameworks are to expand their reach, we will need better ways

to effectively evaluate them. At the beginning of our work, we did an ad-hoc examination

of existing frameworks and decided to use an aboutness-based one and to use Situation

Theory to express aboutness. Furthermore, we decided to take up not just one particular

existing approach but to use parts of various successful models. For instance, we have en-

hanced Huibers’ work by adding the notion of conditionally supported rules. Such decisions

on the framework would benefit from a systematic investigation into best theoretical evalu-

ation strategies. These would include the comparison of theoretical evaluation approaches

and the determination of decision rules for employing various theoretical evaluation frame-

198



work components. We see great potential in theoretically analysing the relevance score

as a function with various variables that often include terms and their frequency values,

but also other parameters. We suggest to study aboutness rules and monotonicity and

how they behave with respect to these variables, but we need better ways of determining

which theoretical evaluation approaches have been successful in describing this aboutness

behaviour.

9.4.4 Integration of Experimental Evaluation

We had decided early to concentrate on a theoretical evaluation. As we covered a new

field for theoretical evaluation with the analysis of XML retrieval systems, we first had

to develop a methodology for the theoretical evaluation and afterwards show that this

methodology covers the important research areas in XML retrieval. This meant that

we decided not to include experimental evaluation in our work, although at some points

during our analysis we were able to give concrete recommendations for the improvement of

XML retrieval models. It would have been useful to verify these suggestions by including

an experimental evaluation alongside our theoretical evaluation and thus prove that a

theoretical evaluation is useful to understand and improve existing systems. Integrating

experimental evaluation will be the focus of our immediate follow-on work. This should

also help convince a larger IR community of the usefulness of our aboutness approach.

Finally, a closer tie to experimental evaluation will lead to the ability to theoretically

think through a model during its design phase. Throughout the thesis, we have made

various suggestions on how to improve existing models. Some of these can be generalised

and should help with the development of new models. These new models would be theo-

retically sound and would show an expected experimental behaviour by using the insights

from the theoretical pre-evaluation during the model design phase.

9.4.5 New Application Areas

One of the advantages of the approach presented here is that it helps an emerging field

before it is mature enough to develop its own evaluation strategies that reflect its specific

requirements. XML retrieval is by now very mature and has its own evaluation regime with

INEX. Other fields are not as mature or not yet big enough to include dedicated evaluation

strategies. The presented methodology can help in the early stages to structure design

approaches and develop evaluation strategies. Of particular interest will be in the near

future to develop new information retrieval strategies for the emerging web of things, i.e. a

web where devices and objects are directly interlinked. Because the web of things relies on

a graph-based data model using the W3C standard RDF, our approach, which combines

structure and content, could be useful and easily adopted. In fact, there are many other

emerging fields in information retrieval, which use evidence from a network of information

to enhance the retrieval process. These include opinion mining or expert systems, which

both use networks of related information (reviews, expert assessments, etc.), to return

relevant results. Here, our approach could help with design decisions for emerging models

199



but also help to understand how traditional information retrieval techniques could be

reused for the new approaches.

200



9.5 Declaration

I herewith declare that I have produced this thesis without the prohibited assistance of

third parties and without making use of aids other than those specified; notions taken

over directly or indirectly from other sources have been identified as such. This thesis has

not previously been presented in identical or similar form to any other national or foreign

examination board.

LONDON, 30/8/2011

Tobias Blanke

201



References

Paavo Arvola, Marko Junkkari, and Jaana Kekäläinen. Generalized contextualization
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