Un1vers1ty

Qf Glasgow

Di Prodi, Paolo (2012) Artificial societies and information theory:
modelling of sub system formation based on Luhmann's autopoietic
theory.

http://theses.gla.ac.uk/2869/

Copyright and moral rights for this thesis are retained by the Author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Glasgow Theses Service
http://theses.gla.ac.uk/
theses@gla.ac.uk

http://theses.gla.ac.uk/2869/

Artificial societies and information theory: modelling of sub
system formation based on Luhmann’s autopoietic theory

Paolo Di Prodi

February 7, 2012

Submitted in fulfillment of the requirements for the degree of Doctor of
Philosophy (Ph.D.)

UNIVERSITY
of
GLASGOW

Electronics and Electrical Engineering
School of Engineering
College of Science and Engineering
University of Glasgow

Copyright (©Paolo Di Prodi

Abstract

This thesis develops a theoretical framework for the generation of artificial societies. In partic-
ular it shows how sub-systems emerge when the agents are able to learn and have the ability
to communicate.

This novel theoretical framework integrates the autopoietic hypothesis of human societies, for-
mulated originally by the German sociologist Luhmann, with concepts of Shannon’s information
theory applied to adaptive learning agents.

Simulations were executed using Multi-Agent-Based Modelling (ABM), a relatively new com-
putational modelling paradigm involving the modelling of phenomena as dynamical systems of
interacting agents. The thesis in particular, investigates the functions and properties necessary
to reproduce the paradigm of society by using the mentioned ABM approach.

Luhmann has proposed that in society subsystems are formed to reduce uncertainty. Subsys-
tems can then be composed by agents with a reduced behavioural complexity. For example in
society there are people who produce goods and other who distribute them.

Both the behaviour and communication is learned by the agent and not imposed. The simulated
task is to collect food, keep it and eat it until sated. Every agent communicates its energy state
to the neighbouring agents. This results in two subsystems whereas agents in the first collect
food and in the latter steal food from others. The ratio between the number of agents that
belongs to the first system and to the second system, depends on the number of food resources.
Simulations are in accordance with Luhmann, who suggested that adaptive agents self-organise
by reducing the amount of sensory information or, equivalently, reducing the complexity of the
perceived environment from the agent’s perspective. Shannon’s information theorem is used
to assess the performance of the simulated learning agents. A practical measure, based on the
concept of Shannon’s information flow, is developed and applied to adaptive controllers which
use Hebbian learning, input correlation learning (ICO/ISO) and temporal difference learning.
The behavioural complexity is measured with a novel information measure, called Predictive
Performance, which is able to measure at a subjective level how good an agent is performing
a task. This is then used to quantify the social division of tasks in a social group of honest,
cooperative food foraging, communicating agents.

I declare that this thesis is a record of the original work carried out solely
by myself in the School of Engineering at the University of Glasgow, during
the period October 2007 to March 2011. The copyright of this thesis
therefore belongs to the author under the terms of the United Kingdom
Copyrights acts. Due acknowledgement must always be made of the use of
material contained in, or derived from, this thesis. The thesis has not been
presented elsewhere in consideration for a higher degree.

Paolo Di Prodi
February 7, 2012

To my family: Carlo Di Prodi, Francesca Viozzi
and Marco Di Prodi.
To my love Pi-Yi Wei.

“One day I will hear the silence from the noise”

Contents

1 Introduction

1.1 A theory of social systems
1.2 Modelling approach ABM
1.3 Objectives and Motivation of the thesis
1.4 Alm . ..
1.5 Outline of thesis

2 Background literature

2.1 Introduction to the theory of Societies
2.2 A brief history of sociology
2.2.1 Autopoiesis: from biology to social systems
2.2.2 Neural systems L Lo
2.2.3 Breitenberg vehicles L oL oL
2.2.4 Communication
2.3 Social order generation by double contingency
2.3.1 Methods e
2.3.2 Results e
2.3.3 Discussion e
2.4 Agent Based Modelling L
241 SWARM and ABM e
2.4.2 Single agent VS multi agent learningo 0oL
2.5 Information theory for closed loop controllers
2.5.1 Introduction: closed loop controllers
2.5.2 Regulation and entropy Lo o
2.5.3 Direct regulation L Lo
2.5.4 Closed loop regulation,
2.5.5 The law of requisite variety
2.5.6 First law of requisite variety oL oL
2.5.7 Second law of requisite variety L oL

3 Research work

3.1 Introduction: Social Modelling
3.1.1 Methods: A Model of the World
3.1.2 Methods: ICO learning module

3.1.3 Methods: agent controller

23
23
24
24
26
26

29
29
29
30
31
37
38
40
40
44
44
46
46
47
48
48
92
93
54
54
55
56

3.2

3.3

3.4

3.5

CONTENTS

3.1.4 Methods: avoidance behaviour 61
3.1.5 Methods: Agents and satedness communication 62
3.1.6 Methods: Food attraction 64
3.1.7 Controller summary 65
3.1.8 Broadcasting signal mechanism 66
3.1.9 Results: analysis of formation in different cases 67
3.1.10 Discussion: sub system formation in the social model 7
Introduction: input based measure oL 78
3.2.1 Introduction to the maxcorr input measure 79
3.2.2 Methods: controller assumptions oo 79
3.2.3 Methods: complex model configuration 80
3.2.4 Methods: cross correlation and ICO learning 82
3.2.5 Methods: a simplified model 83
3.2.6 Methods: anticipatory information 83
3.2.7 Results: complex model results oL 86
3.2.8 Results: simple case results L oo 95
3.2.9 Results: simplified social model results 95
3.2.10 Results: differentiation and information measure 97
3.2.11 Discussion oL 100
Information flow for adaptive controllers 100
3.3.1 Introduction: Ashby’s theory 101
3.3.2 Methods: Ashby’s law of requisite variety 102
3.3.3 Methods: the law of adaptive requisite variety 104
3.3.4 Methods: information flow for adaptive predictive controllers 105
3.3.5 Methods: information flow applied to MISO controller 106
336 Results L 108
3.3.7 Discussiono 111
Introduction: information flow in Q-learning 111
3.4.1 Methods: reinforcement learning 112
3.4.2 Methods: Q-Learning algorithm 113
3.4.3 Methods: Q-Learning connectionist 114
3.4.4 Methods: the robot and the task 115
3.4.5 Results: avoidance case oo 115
3.4.6 Discussiono 119
The Predictive Performance measure 120
3.5.1 Introduction to closed loop measures 120
3.5.2 Methods: experimental setup L. 121
3.5.3 Methods: learning algorithm 123
3.5.4 Methods: symbols and conventions 124
3.5.5 Methods: Predictive Performance measure 127
3.5.6 Results: behavioural experiments 128
3.5.7 Results: application of PP to social systems 138
3.5.8 Discussion 140

CONTENTS 9

4 Conclusion 145
4.1 Summary of results o 145
4.1.1 Discussiono e 145
4.1.2 Modelling choices L e 147
4.1.3 A theory of language oo 148
4.1.4 Language model and control 150
4.1.5 What is going on in an animal’s head? 153
4.1.6 Do signals convey information about the external world? 153
4.1.7 Do signallers intend to alter the behaviour of receivers? 153

4.2 Future worko 154
4.2.1 Model based checking for property verification 155
4.2.2 Economic models of learning agents 155
4.2.3 Homogeneity in societies L oo 155
4.2.4 Symmetry breaking in collective decision-making 156

4.3 Information theory and control oL 157
4.3.1 On the perils of predictive learning 157
4.3.2 Prediction or evolutiono Lo 158
4.3.3 Prediction and learningo oo 159
4.3.4 How much information is required for prediction? 161
4.3.5 Predictive information and model complexity 161
4.3.6 Prediction and compression are related 161
4.3.7 Entropy reduction measure in learning agents 162

4.4 Industrial applications L L oo 166
5 Appendix 169
5.1 ICO learning parameters o 169
51.1 ICO learning o 169

5.2 Simulation detailso 171
5.2.1 Obstacle avoidance Lo 173
5.2.2 Food attraction parameters oL 173
5.2.3 Agent with food attraction parameters 173
5.2.4 Hysteresyseffect 174
5.2.5 Physical engine and kinematic modelo 174
5.2.6 Simplified social simulator oL oL 176
5.2.7 Screenshots e 176
5.2.8 Simulation details for information flow 176
5.2.9 Simulation details for Q-learning robot L. 177

5.3 Weight clustering L 178
5.4 Information theory 179
5.4.1 Variety oL 179

5.4.2 Entropy 179
5.4.3 Mutual information L oo 179
5.4.4 Motor output entropy 180
5.4.5 Retinal predictive entropy Lo 180
5.4.6 The law of requisite variety for predictive learning 180

5.5 Input correlation methodo oo 182

10

5.6

5.7

5.8
5.9

CONTENTS
5.5.1 Cross correlation corrections Lo 182
5.5.2 Coherence function 182
5.5.3 Energy and power of digital signal 182
5.5.4 Alternative measures for analog signals 182
5.5.5 Alternative measures for discrete time series 183
EMPASS: a parallel ABM simulator 184
5.6.1 Traditional computing paradigm 184
5.6.2 Parallel computing paradigm oL 184
5.6.3 Flynn’s Classical Taxonomy 186
5.6.4 Open MP 188
5.6.5 ABM simulation engine with OpenMp 190
5.6.6 Pruning the parallel simulator 194
5.6.7 Discussion 195
Implementation of a swarm system L L. 196
5.7.1 Theplayground Lo 196
5.7.2 Hardware platform and software development 196
5.7.3 Lego NXT mindstorm 197
5.7.4 Toppers e e 200
575 OSEK 200
576 OIL o e 201
5.7.7 LegoRobot 206
5.7.8 Pololu e 210
Symmetry breaking in social tasks oL 213
Bayesian inference L L 219
5.9.1 Gamma prediction function 219
5.9.2 Erlang prediction function L oo 220

5.9.3 Gaussian prediction function oL oL oL 220

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

4.1
4.2
4.3
44

5.1
5.2

Tabular results for self organisation property 70
Social System foraging performance 71
Social System food distribution oL oo 72
Foraging performance with unlimited resources 74
Foraging performance with limited resources 76
System stability for variation of agent population 7
Information flow for avoidance robot L. 118
Information flow for avoidance robot 118
Information flow ratios 119
Information flow ratios 119
Information values for the PP computation 127
Table with entropy values for simple robot, .. 131
Track deviation values for simple robot 132
Reflex input values for the 3 tracks 134
Mutual information values for maze track 138
Entropy values before learning. L. 165
Entropy values before learning. 165
Entropy values before learning. oL 166
Equivocation table. oo 166
Posix vs OpenMP standard 190
Parallel Simulator performance 194

11

12

LIST OF TABLES

List of Figures

1.1
1.2

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

Thesis research aim system L L o 25
Thesis research aim individual 0o 0. 25
Radical constructivism example oL 31
Biological definition of autopoiesis L L. 32
General definition of autopoiesis Lo 33
Closed loop reactive system Lo L 34
Closed loop reactive system with disturbance 35
Closed loop proactive system with disturbance 35
Double contigency L e 36
Braitenberg vehicles positive feedback o0 37
Braitenberg vehicles negative feedback oL 38
Communication is the basis for society 39
Communication between alter andego 41
Expectations and communication structures Lo 43
Classical proportional controller 48
Gibson cybernetic approach oL oL o 49
Information asymmetry in the organism 50
Bayes formulation in traditional control 51
Bayes formulation in predictive control 51
Empowerment from Polani 0. 52
Ashby requisite variety 53
Ashby law in predictive controllers L 54
Social computational model L 58
Agent learns with the ICO learning 59
Avoidance learning behaviour L0000 61
Energy state or hunger of the artificial agent 62
Attractive behaviour for other agents L. 64
Attraction learning behaviour for food00 65
Full schematic of the controller 66
Sub system formation in different conditions 69
Foraging performance comparison L. 73
Self organisation with honest behaviour and unlimited resources 74
Self organisation with honest behaviour and limited resources 75

13

14

3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

LIST OF FIGURES

Self organisation sensitivity to agent parameters 76
Avoidance ICO behaviour 81
Simplified control modelo 84
Temporal signal development during learning 85
Max correlation for non learning agents L. 87
Max correlation for two learning agents L. 89
Max correlation for two learning agents L L. 90
Max correlation for 4 learning agents A L L. 91
Max correlation for 4 learning agents A 92
Max correlation for 4 learning agents B o000 93
Max correlation for 4 learning agents B 0oL, 94
Max correlation variation analysis oo 95
Max correlation application to a simplified case 96
Max correlation and learning in the simplified case 98
Max corr computed on the social system 0oL 99
Law of requisite variety for learning and non learning agents 103
MISO controller with triple behaviour 107
Information flow before and after learning 109
Information flow and capacity o L o 110
Q learning robot L. 116
Q learning environment oL 117
Information flow in the adaptive controller 121
Retinal robot setup L 122
Track shape of increasing curvature 129
Simple retinal robot 130
Performance for the shallow track 135
Performance for the intermediate track 0. 136
Performance for the step track oo 137
Reflex only robot on the maze track 138
Full learning robot on the maze track 139
Predictive Measure computed for the social system 141
Ritualization model Lo 148
Luc Steels language model L 151
More advanced language model L. 152
Agent learns with the ICO learning 169
Bode diagrams for different Q values L. 171
Software simulation in Enki A oo 176
Software simulationin Enki Bo 0000000 177
Cluster analysis of the weights, 178
Von Neumann architecture L. 184
Serial Problem computation 185
Serial Problem computation L 185
SISD architecture 186

SIMD architecture 187

LIST OF FIGURES 15

5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34

MISD architecture 187
SISD architecture e 188
The Thread model 189
OpenMP language L 189
The message passing model oL 191
Empass simulator L Lo 192
OpenMP fork loop 193
Pruning parallel simulations L0 0 oL 195
Playground setup L e 197
Lego NXT robot implementation 198
ATMEL AVR architecture 199
Software interfaces inside ECU 201
Processing levels of the OSEK operating system 201
Example of development process for applications 202
Bluetooth log diagram Lo 207
Real time task allocation oo oo 208
Controller task allocation, 209
The bluetooth data logging structure. 210
Pololu robot up and bottom view L. 211
Multi Agent Gaussian 217
Multi Agent Erlango 218
Integration values for the Gamma function 220
Gaussian posterior distribution Lo Lo 221
Gaussian prediction function Lo 222

16

LIST OF FIGURES

Nomenclature

ABM Agent Based Modelling

Agent An autonomous intelligent unit able to cooperate with others and interact with the
environment

Al Anticipatory Information, an input measure based on the Shannon’s entropy measure
Alice A mobile robot produced by EPFL

API Application Programming Interface

Autopoiesis A self-reproducing system

Braitenberg Robot An automated mobile robot with differential driving

CMAC Cerebellar Model Articulator Controller

CPU Central Processing Unit

Enki An open source simulation engine for mobile robots developed by EPFL
GPU Graphical Processing Unit

ICO Input Correlation Only learning

ISO Isotropic Sequence Order learning

Kephera A mobile robot produced by KTeam

Lego A company producing modular robotic kits

MAS Multi Agent System

Maxcorr An input measure based on the the correlation of thee organism’s inputs
MI Mutual information between two signals

MISO Multiple Input Multiple Output controller

MLP Multi Layer Perceptron Network

OpenMP A standard library for parallel implementations

17

18 LIST OF FIGURES

PCA Principal Component Analysis

PID Proportional Integration Derivative control
Pololu 37 A mobile robot produced by Pololu

POSIX A standard library for parallel implementations
PP Predictive Performance

Q-learning Q-learning is a reinforcement learning technique that works by learning an action-
value function to predict future rewards

RBF Radial Basis Functions
RNN Recurrent Neural Networks

SWARM Collective behaviour of animals

LIST OF FIGURES 19

Acknowledgements

Firstly, I would like to express the deepest gratitude to my supervisor Dr. Bernd Porr for
giving me the opportunity to do a PhD in the field of computational neuroscience and artificial
intelligence. Secondly, I would like to thank Maria Thompson for being a a science colleague
with good critical thinking and Lynsey A. McCabe, the warmest Scottish person I have ever
met in Glasgow. I have enjoyed the company of many other PhD students who shared the
good and bad turns of my life: a nice hug to Colin Waddel, Mohammad AlRawani and the
like.

A special mention to the laboratory technician, Tom O’Hara who taught me lots of things
including how to play golf.

I hope the new rookies in my office will have an exciting career and live up to the standards
of our group.

The financial support for this research project, given by the Scottish Funding Council in
the name of Glasgow Research Partnership in Engineering (GRPE) is gratefully acknowledged.

I would also like to thank the Scottish Enterprise, the Scottish Gateway, the PSBYT and
the student Enterprise, in particular Greig Sinclair, for their support in taking forward my
business idea and giving me the opportunity to learn more about entrepreneurship.

Finally a big thanks to my girlfriend Pi Yi Wei who supported me in endless sessions of
late night writing and horrible time tables.

20 LIST OF FIGURES

Publications

This thesis describes the work I have done on the theory of social systems which produced the
following publications:

e Di Prodi, P. and Porr, B. and Wérgdtter, F. (2010) A Novel Information Measure for
Predictive Learning in a Social System Setting. From Animals to Animats 11, Lecture
Notes in Computer Science, editors: Doncieux, Stphane and Girard, Benot and Guillot,
Agns and Hallam, John and Meyer, Jean-Arcady and Mouret, Jean-Baptiste, Springer
Berlin / Heidelberg, pages 511-522, vol, 6226.

e Di Prodi, P. Porr, B. Worgotter, F. (2008) Adaptive Communication Promotes Sub-
system Formation in a Multi Agent System with Limited Resources. In: Learning and
Adaptive Behaviors for Robotic Systems, 2008. LAB-RS ’08. ECSIS Symposium, pages
86-96.

And the following abstracts:

e Di Prodi P, Porr B and Wérgétter F (2009). A novel information measure to understand
differentiation in social systems. Frontiers in Computational Neuroscience. Conference
Abstract: Bernstein Conference on Computational Neuroscience.

e Kulvicius T, Kolodziejski C, Prodi P, Tamosiunaite M, Porr B and Wérgdtter F (2008).
On the analysis and evaluation of closed loop learning systems. Frontiers in Computa-
tional Neuroscience. Conference Abstract: Bernstein Symposium 2008.

Additionally, T have done some research work in collaboration, with previous PhD stu-
dent Lynsey McCabe, in the field of computational neuroscience which produced the following
publications:

e Bernd Porr, Lynsey McCabe, Paolo Di Prodi, Christoph Kolodziejski, Florentin Worgotter,
How feedback inhibition shapes spike-timing-dependent plasticity and its implications for
recent Schizophrenia models, Neural Networks, In Press, Corrected Proof, Available on-
line 10 March 2011, ISSN 0893-6080.

e McCabe L., Porr B., Di Prodi P. & Wérgotter F. (2008) Observing STDP of pyramidal
cell and attached interneuron microcircuit using detailed CA2+4 dynamics, Fens Forum
2008, Poster session.

e McCabe, L., Di Prodi, P., Porr, B. and Worgotter, F. (2007) Shaping of STDP curve
by interneuron and Ca2+ dynamics. Proceedings of the sixteenth annual computational
neuroscience meeting CNS*2007, Toronto, Poster session.

I have also done some work on the application of machine user interfaces for health services
which produced the following publications however they are not relevant to my PhD:

e Di Prodi P, Power CF and Wei PY (2009). Extending the reach of Mental Health
Services through eLearning technology and other communication mediums centralized
on one Online ePlatform. Frontiers in Neuroengineering. Conference Abstract: Annual
CyberTherapy and CyberPsychology 2009 conference.

LIST OF FIGURES 21

e Power CF, Di Prodi P. Extending the reach of Mental Health Services through eLearn-
ing technology and other communication mediums centralized on one Online ePlatform.
ISBE 2008.

22

LIST OF FIGURES

Chapter 1

Introduction

1.1 A theory of social systems

The German sociologist Luhmann proposed, in his seminal work (Luhmann, 1984) a new
theory about how communications generate societies. Important to his work is the underlying
assumption that organisms act as closed loop systems (Wiener, 1961; von Glasersfeld, 1995)
who pursue their own goals and are not able to observe the internal states nor the inputs of
other organisms (Foerster, 1960). A central assumption is that agents are continuously trying
to reduce their own perceived uncertainty of their environment (perceived complexity from the
agent’s point of view). This is done by learning to anticipate events in the environment. For
example an agent can learn to use vision to prevent falling off a cliff (Verschure and Coolen,
1991). In other words agents aim to turn themselves from reactive into proactive closed loop
systems. In the social context this becomes more complex when learning agents try to predict
each other. Because agents cannot observe the internal states of the other agents, the system
becomes more unpredictable. Parsons called this the double contingency problem (Parsons,
1977): Ego is trying to predict Alter, but Alter does the same. In the case of two agents the
double contingency problem might still be treatable. However, when there are more than two
agents the uncertainty grows. In order to reduce the uncertainty Luhmann proposed that social
systems have to create subsystems which specialize (Luhmann, 1984) in the sense that they form
sub-groups by executing only a subset of behaviours and /or agents only perceive certain aspects
of the environment and not all. A fundamental condition for the formation of sub-systems is
communication, which Luhmann uses in a broader sense compared to the concept of language.
There have been attempts to model aspects of social system theory, which will be discussed in
Section 2.1. The first model which incorporated Luhmann’s principles belongs to Dittrich et al.
(2003) which used double contingency as the origins of social order. Luhmann’s communication
is the distinction between information, transmission and understanding, which is required if
the agents operate as autonomous close loop systems. Also agents show meaningful motivated
behaviour towards others, according to goals and a shared symbolic system, as proposed in
Parson’s models (Parsons, 1951, 1977). The next section describes a very important modelling
approach particularly suited for social systems.

23

24 CHAPTER 1. INTRODUCTION

1.2 Modelling approach ABM

Agent Based Modelling is a powerful tool where the researcher has to simulate a complex
system like a social system (W.Macy and Willer, 2002). A social system is composed of an
agent or entities which interact with each other and the environment. Every entity is described
by a set of behaviours or rules which can be static or dynamic. The interaction can be at the
action level or at the communication level. Traditional approaches are based on logic of formal
analysis) or on mathematical models of differential and partial equations. The formal analysis
- also known as model checking- can be used to verify if a property of the system is valid or not,
without the need of applying statistic on a large set of simulations. Model checking, if properly
used, can be a powerful tool for the analysis of social models and was also applied in parallel
to the ABM model (see the Conclusion for a more detailed explanation). The approach with
differential equations is only feasible when the model can be described analytically and has
been very effective to model the dynamic of biological populations like the well famous Lotke
Volterra equations (Volterra, 1931) that describes the evolution of predator-prey populations
The differential equations are formulated over the general behaviour of the system and do not
take into account individual interactions that are the main purpose of research in this study.
The model becomes even more complicated when each agent has an adaptive behaviour which
changes in time with the others: this means that every agent is initially identical but as time
progresses and interactions are performed, dissimilarities emerge and thus a new collective
behaviour emerges.

The ABM approach was chosen not only for the with the aim of implementing the simulated
system in a real robotic hardware. Thanks to the ABM approach an agent that has been
embodied in a software simulation, can be easily embodied in a real robot. The advantage is
then not only the time required to realise such a system, but also the expected behaviour of
the robot that will match the simulated behaviour. There are a numbers of potential software
frameworks that can be used to implement ABM systems and these will be discussed in Section
2.4.

1.3 Objectives and Motivation of the thesis

The motivation behind this research is the implementation of Luhmann’s principles for the
generation of artificial social systems. Luhmann formulated a theory that has produced a
considerable impact in sociology but there have only been a few attempts to validate the
theory experimentally. This is what has motivated this thesis in terms of experiment setup and
validation of the model. The validation of the model, even to a limited extent of sub-properties
of the original theory, is an important step for the understanding of not only artificial societies
but also of human like processes. It could help in the future to predict the effect of a policy
(normative order) on a human population or to build robots which are able to cooperate and
interact socially between themselves and human operators. This is why the modelling approach
used in this work is based on biological inspired behaviour which captures the natural behaviour
of simple animals and can easily be transferred into an embodied robotic system. A conceptual
diagram of the thesis and of the work is shown in Figure 1.1 and Figure 1.2.

1.3. OBJECTIVES AND MOTIVATION OF THE THESIS 25

Problem: complexity! - Solution: Luhmann theory . Communication is essential!
Complex .])]
| onvironment .| Theory: . My model: agents learn
Soziale Systeme (1984) to communicate
Agents learn . Agents become c
to react TR unpredictable (7]
. =z
) * Q- ' (0]
= .
=k Closed D HOW?
2 feedback Q . -
- - Agents self-organize| o > Input correlation
in subsystems . (ICO) learning
¢ ldirect produci
In every subsystem Seekers: active Parasites: steal
agents behave more . agents foraging food from the
predictably . from food disks || others

Figure 1.1: Thesis objective at the system level

Information theory

In every subsystem
agents behave more

predictably
How to quantify How to measure
behaviour selection? learning?

(4)—

A new information
measure

Figure 1.2: Thesis objective at the individual level

26

CHAPTER 1. INTRODUCTION

1.4 Aim

The aim of the thesis is to investigate the formation of sub-systems at a system level as
summarised in Figure 1.1 and to investigate the behaviour at an individual level as summarised
in Figure 1.2.

The objectives of the thesis can be then summarised:

implement a social system based on the Luhmann’s hypothesis
verify the self-organising property (autopoiesis principle) of the system
measure the self-organising property of the system

quantify the self-organising property at the individual level with an information theoretic
approach

apply the same approach to different models

1.5 Outline of thesis

The thesis is divided into the following chapters:

this Chapter is a general introduction to this thesis and a quick review of the existing
literature.

Chapter 2 is a detailed review of literature closely related to this thesis.

Chapter 3 contains the main research and results carried out by the author during his
Ph.D.

Chapter 4 contains a summary of the results, a critical comparison with the existing
literature, a description of future work and possible or existing industrial applications.

In Chapter 3, each Section was written to be a self-contained module structured in the famil-
iar order: Introduction, Methods, Results, and Discussion. To avoid too much fragmentation
a simple notation was used, for example in Chapter 3, Section 3.4 is divided as follows:

Introduction: the application of information flow to Q-learning
Methods: reinforcement learning

Methods: Q-Learning algorithm

Methods: Q-Learning connectionist

Methods: The robot and the task

Results: avoidance case

Discussion

1.5. OUTLINE OF THESIS 27

Each entry is then prefixed with the corresponding order. All the sections are ordered in a
logical manner, which does not correspond directly to the chronological order of the research.
This happened for example with the Predictive Performance measure, which was developed for
a retinal robot and only after was applied to the data generated for the social system. I have
chosen a logical order so that the reader will be introduced gradually to the topics.

28

CHAPTER 1.

INTRODUCTION

Chapter 2

Background literature

2.1 Introduction to the theory of Societies

This section contains an introduction to the theories about the generation of human like soci-
eties and existing models in literature which replicate artificial societies.

2.2 A brief history of sociology

Sociology is the study of society and aims to understand how social order is possible. In the last
350 years, sociologists have provided different explanations to the generation of social order:

e Thomas (1885) attributed the generation to a powerful state, the Leviathan

Smith (1776) attributed the generation to an “invisible hand”

Durkheim (1893) introduced the concept of norms

Parsons (1937) extended the Durkheim proposal by saying that norms are legitimated
by values located in a cultural system of a society

Axelrod (1984) suggested that the generation is possible by rational choice of action with
consideration for a long common future (shadow)

A cardinal point in the theory of social order generation was introduced by Parson as the the
problem of double contingency:

There are two crucial reference points for analysing interactions: (1) That each
actor is both acting agent and object of orientation both to himself and to the
others; and (2) that, as an acting agent orients to himself and to others, in all
primary modes of aspect. The actor is knower and object of cognition, utiliser of
instrumental means and himself a means, emotionally attached to others and an
object of attachment, evaluator and object of evaluation, interpreter of symbols and
himself a symbol. (International Encyclopedia of the Social Sciences,1968: 436)

29

30 CHAPTER 2. BACKGROUND LITERATURE

Following Talcott (1967), Luhmann (1995) identified the problem of double contingency
as the main problem of producing social order whilst expanding the idea with a new radical
biological principle called autopoiesis.

2.2.1 Autopoiesis: from biology to social systems

Luhmann based his social system theory on the concept of “autopoiesis® , originally formu-
lated in biology by the two biologists Varela and Maturana (1980). The biological concept of
autopoiesis (from the Greek autos=self, poiein= to produce) states that a living system recur-
sively reproduces its elements through its own elements. A living cell, for example, reproduces
its own elements, like proteins or and a plant grows its own leaves and roots. The autopoietic
system has 3 important properties and is described in Figure 2.2):

1. operative closure: no operations can enter nor leave the system within its boundary

2. interactional openness: the system has contact with its environment by means of distur-
bances

3. structural coupling: environmental events can trigger internal processes but the internal
processes triggered are determined by the structures of the system

The operative closure is symbolised by the partial feedback of the output to the input of the
cell. In essence autopoietic systems are at the same time open and closed systems; open because
they are influenced by their environment, but also closed because environment does not directly
influence the structure and elementary processes of the systems.

The first and second property are also the basis of cognition:

Living systems are cognitive systems, and living as process is a process of cognition.
(Maturana and Varela 1980:13)

The operations of an autopoietic system are defined as its cognitions: cognition is a self-
referential, autopoietic process. This assumption is known as Radical Constructivism: all ideas
are constructs of the cognitive system and are a by-product of reality. The most important
contribution to the development of constructivism to neuro biological systems was pioneered
by Von Foerster (2003). Every organism lives in a closed loop with its own environment and
works only with neural activity. The Figure 2.1 shows how the cognitive system produces neural
activity and perceives neural activity: the environment is constructed as part of the feedback
loop. This self-reference property also exists at other layers, for instance in a cell proteins create
other proteins but the environment is coded as the protein production to maintain a membrane
(made again by proteins). This assumption is also important in the work of this thesis because
artificial agents, as well as human beings, construct their own reality. For instance a common
behaviour between animals is the natural reflex reaction to pain: when the skin is touching
a hot surface, the nervous system produces the idea of pain or heat. The molecular property
of the flame, triggered an action potential in the pain receptor of the skin that then sent a
reaction command in the motor cortex. The physical event did not enter the cognitive system
but only generated a disturbance from the plateau state of the nervous system.

Later, in Section 3.1.2 there is a clear explanation of the implication of such an assumption.

The third property is the concept of self-organisation: the autopoietic system replicates its
elements by following a structure which is self-determined. Thus we can state that autopoiesis

2.2. A BRIEF HISTORY OF SOCIOLOGY 31

Radical Constructivism
i Environment Cognitive System

i Physical Brain

e >@ Neural system (¥ GG%

Pain Receptor

T

)

3

o
..ceupling,

sensory-motor feedback

Figure 2.1: Radical constructivism example: a burning flame is a physical system, regulated
by an oxygen reaction, when a finger touches it, a coupling is established between the neural
system and the flame. The pain receptor produces neural activity, the brain generates a motor
reaction, which then evokes an absence of sensory pain indicating that the reaction was good.
The sensor produces again a different neural activity to encode the absence of pain.

refers to the reproduction of the elements and self-organisation refers to the determination of
structures (Luhmann, 2000).

Luhmann (2000) generalises the principle of autopoiesis to be a general form of system
building thus declaring that a system is autopoietic when it reproduces its own elements.
Figure 2.3 describes the hierarchy of autopoietic systems:

1. level 1 contains the general definition
2. level 2 contains living systems, psychic systems, neural systems and social systems
3. level 3 contains societies, organisations and interactions

Each system is described by the unit self-reproducible elements, in particular neural systems
reproduces their own neural activity, living systems their own proteins and societies their own
communications. In this thesis I am going to focus on the study of Societies (Luhmann, 1995)
which reproduce themselves on the basis of communication and on the study of Neural Systems.
Moreover, Luhmann has also investigated the formation of organisations (Luhmann, 2000) and
social interactions (Luhmann, 1993).

The next sections contains a descriptions of the neural systems that constitutes the core of
our artificial agents or robots.

2.2.2 Neural systems

The fundamental component of almost every living organism is its nervous system which is
necessary for the the most vital activities like digestion, reproduction to the most complex
ones like locomotion and cognition. The most important assumption was made by Von Foerster

32 CHAPTER 2. BACKGROUND LITERATURE

Coupling with
another system

Environment i
G)C)QQ oloZes 6 Gop) ‘}
cfp f The System G) OOQ output,,

input
2 6). o005

Self producf(?%mﬁxm

boundary

Perturbation from
another system

feedback

Figure 2.2: The original definition given by Maturana and Varela: An autopoietic machine is a
machine organized (defined as a unity) as a network of processes of production (transformation
and destruction) of components which: (a) through their interactions and transformations
continuously regenerate and realize the network of processes (relations) that produced them;
and (b) constitute it (the machine) as a concrete unity in space in which they (the components)
exist by specifying the topological domain of its realization as such a network. [...] the space
defined by an autopoietic system is self-contained and cannot be described by using dimensions
that define another space. When we refer to our interactions with a concrete autopoietic system,
however, we project this system on the space of our manipulations and make a description of
this projection. From Varela and Maturana (1980) reproduced with permission of the publisher.

2.2. A BRIEF HISTORY OF SOCIOLOGY 33

Autopoiesis theory

Level 1 Autopoietic Systems

/N

SN N
Level2 ~ / \

Living Systems I Neural Systems I Social Systems Psychic Systems
/ LN

N
Level 3 yd N~

Societies Organisations Interactions

Figure 2.3: Autopoiesis becomes a general concept applied at different layers of system forma-
tion. This thesis is focusing on studying the Social Systems.

(1985), one of the founders of radical constructivism, who argued that the nervous systems is
operationally closed: neural activity generates other neural activity and thus the environment
is only a ”simulacra®. The most basic type of a neural system is the reactive system, in control
theory known also as a feedback system, which only reacts after a sensory event has occurred.
A feedback system can also be called a closed loop or self-referential system, but I am going to
use the most popular notation of closed loop system from now on.

The block diagram in Figure 2.4 represents a minimal system with feedback. Each block
contains the Laplace transform of the time domain function transfer:

e Hy(s) is the transfer function of the agent
e Py(s) is the transfer function of the environment

The transfer functions operates on neural signals which are the basic elements of the neurolog-
ical system. Because the systems is in closed loop form the following equations are valid:

V(s) = Ho(s) - Xo(s)
Xo(s) = Po(s) - V(s)

Such a closed loop system can be stable or unstable and (Von Foerster, 1985) assumes, like in
traditional control theory, that it must operate in the stable state by using a negative feedback.
Stability is necessary in a linear system if the organism wants to reach a desired state after a
finite time. The main issue with this closed loop model is that the organism cannot distinguish
itself from the environment because by dividing both the transfer functions by Py, the new
transfer function G(s) = Hy/ Py (see Figure 2.4, bottom) does not distinguish any more from
organism and environment due to the unity gain feedback. To avoid this issue, a disturbance
D must be defined as in Figure 2.5. The disturbance is anything which prevents the organism

34 CHAPTER 2. BACKGROUND LITERATURE

— HO
A SO LA 2! N agent_ . VIE)=H(S) %)
Py le— |

environment

combine the transfer functions as:

—> G=H,/P,

Po/Po=1 g

what is the agent and what is the environment?

Figure 2.4: A simple closed loop system. Top: The transfer function Hy transforms sensor
signals X into motor signals V. The transfer function P, transforms the motor signals V' back
into sensor signals Xy. Bottom: the system can be simplified by dividing everything by P,

to keep its stable desired state and was also formulated by (Ashby, 1956) in its law of requisite
variety which is going to be discussed in Section 3.3.

The disturbance this time cannot be eliminated by dividing the transfer functions by Py. A
simple reactive system then can only react after a change it the desired state, a simple example
is the motor reaction of our hand to a painful event like touching a flame. Another important
point made by the radical constructivism theory is that only actions which feed back to the
organism’s sensors can be observed by the organism. In the mentioned example then even a
more complex motor reaction will only generate two possible state at the sensory input, one
of pain and one of non pain. Any other action which simply disappears in the environment
cannot be observed by the organism. Thus, there is no other chance for the organism as to
analyse its inputs as this is the only aspect that the organism is able to observe. Even its own
actions are only observable through its inputs.

A more advanced organism is one which has an anticipatory input signal X; as shown
in Figure 2.6: when the agent is born only the inner loop Hy, Py is active but by using the
association between Xy and X; the agent can in the future avoid the painful signal by only
using the anticipatory information X;. The reex signal X represents the initial behavioural
goal (Verschure and Voegtlin, 1998) where X, = 0, while the predictive signal X is provided
naturally by the environment or the organism’s sensor setup.

The desired state, for example Xy = 0 cannot be maintained all the time as disturbances
D arrive at the loop occasionally. These disturbances enter the inner loop delayed by time 7T
The undelayed disturbances enter the organism via the sensor input X; which anticipates the
input X The signal at X; can now be used to observe the primary feedback loop (Xo,Pp) and
determine what is the effect of on the primary feedback loop. This observation can be used

2.2. A BRIEF HISTORY OF SOCIOLOGY 35

| Organism

Xo iy

A reactive system
desiredl_

o @)
state

i = V i Ouch!
! %=0 Motor | '@

Figure 2.5: The closed loop system now contains a disturbance from the environment. An
example is the classical natural reaction to a burning sensation: the hand retracts when the
pain receptor is activated by the contact with the flame. Original figure in Porr et al. (2006).

Figure 2.6: The inner feedback loop is established by the transfer functions Hy and Py. The
outer feedback loop is established by the transfer functions Hy, Py; and P;. D is the disturbance
and T delays the disturbance. The outer feedback loop observes the inner feedback loop and
adjusts so that the inner reex loop is no longer needed. Figure used with permisison from Porr
et al. (2006).

36 CHAPTER 2. BACKGROUND LITERATURE

to adjust H; in a way that the inner feedback loop does not feel the disturbance any more.
This approach was succesfully implemented by Porr and Worgotter (2003) where a robot was
using a camera system to learn the avoidance of obstacles. The camera provided the visual
anticipatory information required to predict the triggering of the touch avoidance sensor. The
robot used a learning statregy called ISO learning which uses the correlation between vision
and touch signals to learn the anticipatory reaction. A more advanced form of I.SO learning
called IC'O learning is used in this thesis as the main controller both for the software agent
and the embodied robot.

The most interesting implication of this model when using multiple agents is the double
contingency whereby each agent is disturbing the other as shown in Figure 2.7. Each agent is
nested in multiple closed loops, because it receives the outputs of all the other agents in the
environment via the disturbance summation with the environment itself. Double contigency
happens when all agents are learning continuously from each other. This learning loop was
defined by Luhmann as the problem of double contigency: an open ended interaction process
where each agent try to predict the other. First, contingency arises because agents are complex
systems that are ”black-boxes“ for each other. An agent will never know exactly what the other
will do next. A good metaphor is the game of chess where each player try to anticipate its
opponent moves in the future: in a way the chess game is a sort of communicative process
between the two players which eventually comes to an end when the desired state (check mate)
is achieved. This dynamic process constitutes for Luhmann the necessary base for social system
generation: the problem of double contingency is solved by mutual expectations. It is possible
also that learning will never stabilise due to such multiple nested closed loops.

Organism 1 Organism 2
1, | | H, "
B N v | | T
| | }

=l

Environment

Figure 2.7: Each organism output is summed to the motor feedback loop with the disturbance
from the environment.

2.2. A BRIEF HISTORY OF SOCIOLOGY 37

2.2.3 Breitenberg vehicles

A good controller is useless if it cannot be embodied in a physical robot. The ICO and
ISO controller were successfully implemented on a moving robot by adopting the approach
developed by Braitenberg (1984) who devised a simple yet effective method to implement
avoidance and attraction behaviours on simple robots. The most basic architecture is composed
by a couple of sensory inputs, a couple of motors and a matrix of connectivity which defines
the behaviour of the robot. The test case scenario is a vehicle moving on a planar surface
which contains a light source be projected from above. The vehicle has 2 light sensor which are
able to measure the scalar gradient of the light source on the surface. The motors are directly
connected to the sensors via positive or negative proportional controllers. Figure 2.8 shows
that an avoidance behaviour can be implemented by using positive feedback connections:

e a vehicle with symmetric connections from sensors to motors, dislikes the source of light
by constantly avoiding it.

e a vehicle with crossed connections from sensors to motors, dislikes the source of light but
constantly turns toward it at maximum speed, as if it wanted to destroy it.

\l/
oo -Ox
At)
|

K light source 5,
: : sensor
) - Y '

+ +] E wheel

coward aggressive

Figure 2.8: An example of a coward and aggressive vehicle with only positive feedback connec-

tions.

Figure 2.9 shows that an attraction behaviour can be implemented by using negative feed-

back connections:

38 CHAPTER 2. BACKGROUND LITERATURE
e a vehicle with symmetric connections from sensors to motors, likes the source of light by
carefully approaching it and reaching ideally zero velocity in proximity.

e a vehicle with crossed connections from sensors to motors, likes the source of light but
constantly search for other alternatives

....*
light source
g explorer
lover 7/ I N\
“v

g
Q
Q)
-
.
[

Figure 2.9: An example of a lover and explorer vehicle with only negative feedback connections.

The behaviour of such vehicles can be enriched by including more sensors and so mixing
positive and negative connections or by using non monotonic relationships between sensors
and motors. The agents that I used in the software simulations and robot implementations,
are based on the Braitenberg framework but with a minor difference in the implementation:
instead of having a direct connection between inputs and motors, an error signal is generated
between the left and right synapse which then generates the differential motor command for
the left and right wheel viat the ICO learning algorithm.

2.2.4 Communication

For Luhmann, the most important feature of a social system is that communication is the basic
form of the autopoietic reproduction of social systems. Social systems consist of communicative
processes (see Figure 2.10), not human beings.

Human beings are individuals in a society only when they communicate and thus the limit
of society is defined by the limit of communication. Communication has been defined by
Luhmann as a unity of 3 selective and independent processes:

2.2. A BRIEF HISTORY OF SOCIOLOGY 39

Self reproducing elements in systems

Level 2

Living Systems Neural systems Social Systems Psychic Systems

@ ¥

chemicals neural activity ~ communications thoughts

Structural coupling

> > >
\O coupling‘Q coupling O coupling O
pd pd &
~ ~ ~

Figure 2.10: Living systems are based on cellular mechanisms of reproduction and their ele-
ments are proteins and molecules. Social systems are based on communication processes which
reproduces themselves. Psychic systems are based on self-reproducing thoughts. Each sys-
tem is structurally coupled with each other. The structural coupling between psychic systems
and communications is established through Language. Language allows the ”synchronization
between the two systems but communication is also possible without it.

40 CHAPTER 2. BACKGROUND LITERATURE

e utterance: how do we utter it?
e understanding: how do we separate utterance from information?
e information: what was the utterance about?

Communication is an emergent property of the interaction between two psychic systems as
the three selections do not belong to each individual independently. Each step is considered by
Luhmann as a selection process from a set of possibilities, in accordance with the definition of
information of Shannon and Weaver (Shannon and Weaver, 1949). To explain the communi-
cation process Figure 2.11 contains an example of a communication session between Ego and
Alter. The psychic system embodied in Ego has the intention or desired state of being alone
because he/she is tired. The first step for Ego is to select the appropriate utterance which in
this case is the English sentence "go away“. At this point Alter receives the utterance and
needs to understand it by generating the information from it. Alter then can decide to leave or
to continue the conversation. Assuming that in the first case, he leaves Ego alone and emits an
utterance like ”Oky“, Ego will understand that its initial utterance ”go away “ was successful.
On the contrary if Alter persist and does not leave Ego alone, Ego will try indefinitely to
produce other utterances until Alter leaves.

In Figure 2.11 Ego can also accept or reject the meaning of the communication which implies
a dynamic selection mechanism for the continuation or interruption of the communication
process.

The Luhmann interpretation of communication is therefore far more advanced than the
simple channel communication theory where the purpose is to transfer meaning with minimal
errors. In this sense there is similarity with the work of (Berger and Calabrese, 1975) who
developed an axiomatic theory to explain people’s attempts to make sense of interpersonal
situations by reducing uncertainty through seeking information. Additionally the concept of
reducing uncertainty during the understanding process being a motivation to continue a com-
munication is not mentioned in the original work. There is also another interesting implication
of using Luhmann’s communication which fits recent theories of the mind. The use of expec-
tations is tightly linked with the idea of estimating each other’s state of mind as described
with greater detail in Section 4.1.7 and 4.1.3. So in summary, communications can reproduce
themselves but what communications are produced is related to the concept of expectation. In
the next section I am going to introduce the most relevant simulation model which captures
the social ordered generation by using such a model of communication based on expectations.

2.3 Social order generation by double contingency

The starting point for implementing a simulation which uses Luhmann’s communication ap-
proach, was developed by Dittrich et al. (2003) which implemented the situation of double
contingency as the origin of social order. The results produced by this approach were very
promising.

2.3.1 Methods

He started from a dyadic social interaction and then expanded it to a multi agent interaction.
Social order appears in the dyadic social interaction and also in the multi agent situation, but

2.3. SOCIAL ORDER GENERATION BY DOUBLE CONTINGENCY 41

Luhmann communication model

Ego FEREe Alter

8 | a

goal= | want to be alone

"go away!”)

(1) select utterance > (2) Understanding
Extract the information
from utterance

Information: | need to go away?
Ego Alter
action same as the utterance ‘1’

(4) If Alter leaves < (3) Acceptance

utterance was correct, "bye!” ... and he leaves

otherwise was not correct
That is information

Figure 2.11: Ego is a psychic system with a current goal or desired state. When Ego is in contact
with Alter in a contingent situation. he selects the utterance ”go away“ to be communicated
to Alter. Alter then needs to extract the meaning from such an utterance and infers that
Ego wants to be alone. Then Alter can decide to continue in the conversation or quit it by
just leaving Ego alone. The acceptance or rejection of the understanding is an option in the
communication.

42 CHAPTER 2. BACKGROUND LITERATURE

only in certain conditions that I am going to explain.

The double contingency problem exists when a dyad composed of 2 entities (ego and alter)
meet each other: each actor has a double role of knower and object of cognition.

Parsons solved the problem of contingency by asserting that a common shared symbol
system is a pre-condition for the formation of a social order. Therefore the dyad must share a
culture derived from a history of previous relationships.

Luhmann solves the problem of double contingency by using a self-organisation process
which develops in time based on mutual expectations. The only hypothesis he made was that
alter and ego (the actors in the dyad) have a necessity of predicting “expectation-certainty”,
which means Alter and Ego want to know what is going on in this interaction. Every entity
expects that the other entity has expectations about its next activity.

The desire -or goal- of every agent during the interaction is to reduce the entropy -
uncertainty- of the Alter’s actions given Ego’s actions.

To give a simple example, when I say “Hello” to a friend, I expect to receive a “Hello“
followed by a form of embrace, typically a handshake possibly followed by a conversation. My
friend will expect the same. This is useful as we don’t have to try out all our vocabulary every
time to get somebody’s attention! Figure 2.12 explains the model with a simple example where
Ego says ”Good morning“ and alter replies with ”Good morning“, then Ego asks "How are
you?” but Alter ask a question about time. This somehow puzzles Ego -delusion- because he
wasn’t expecting a question after his question.

So the model proposed by Dittrich begins with a simple dyad of 2 actors:

e Ego initializes the interaction by choosing a message from a set of N possible ones
e Alter receives the message and replies with another one from the set of N
e the conversation continues from Ego and so on

The activity of an actor is to decide which message has to be sent given a received message.
Each agent is motivated by 2 functions:

e Expectation-Expectation EE: an agent wants to meet the expectations of the other agent.
It does so by keeping a memory of what actions were chosen in response to other agents.

e Expectation-Certainty EC: the reaction of the other agent following its own activity
should be as predictable as possible.

o Activity Value: a linear combination of (1 — «)EE + aEC.

e Activity Probability: a parameterised version of the activity value v that can go from
deterministic vy — oo to probabilistic v — 0 .

Each agent chooses the activity which maximises the activity probability according to the
parameter . The parameter « accounts in a way the ”selfishness“ of the agent because when
a = 1 the agent will choose the action that will produce the most likely reaction from Alter
whereas when o = 0 the agent will choose the action that Alter will expect more.

The problem is then to measure Social Order and see if the dyadic condition is able to
produce high values of social order. There are 2 different points of view: a system view and
an individual view.

2.3. SOCIAL ORDER GENERATION BY DOUBLE CONTINGENCY 43

Expectations are social structures

Ego Alter

a "Good morning!" a

@ "Good morning!"

"How are you?" @

"What is the time?"

v

N

v

? &
. ~
delusion LT e
N
7z
Ego Alter
< "What he is going to do?” N
"What did | do before?”
EE Memory EC Memory double Gontingency EE Memory EC Memory

Figure 2.12: Upper block: an example of mutual expectation in a conversation. Lower
block: the simulation model with the Expectation-Expectation memory and the Expectation-
Certainty model.

44 CHAPTER 2. BACKGROUND LITERATURE

At the individual level we can re-use the EC function to compute how certain an agent is
when it selects a message. The average certainty O 4y has a high value when certainty is high
and thus indicates high social order.

At the system level we can measure:

e the average number of different activities Np selected during the time interval: the lower
the number the higher the order. An observer will deduce that high social order is
achieved if agents always select the same activities out of a vast selection set.

o predictability of an activity O, or social integration: it measures how predictable an
activity of a randomly drawn agent Ego is, given the activity presented on the sign by
another randomly drawn agent Alter.

We can interpret the O, value as an index of the pattern formation in the behaviour of
action selection. The actors formed a closed system of interaction because they are required to
develop mutually predictive trust, this closure indicates a first order separation degree between
a system and its environment.

2.3.2 Results

For the dyadic case social order as measured either by Np and O 4y emerges for any param-
eter setting in «,~, N with stable activity patterns following robust to small disturbances.
Measuring social integration for the dyadic case is trivial because there are only 2 agents who
interacted with each other and thus it will be O, = 1.

The big challenge is then to scale up the dyadic case to the multi agent case. If we have
a population of few M agents and we choose a random selection strategy to pair interactions,
social order is high in terms of Op because is possible to predict each agent’s reaction with a
high degree of accuracy. However at the individual level O 4y is low because each agent is using
the same memory to predict interactions with different agents. As a consequence increasing
M decreases the Op system order.

Dittritch discovered that there are 2 changes required to produce high social order with an
increasing number of agents:

e agents must calculate Expectation-Expectation from observation of the interaction of
other agents

e agents must use only Expectation-Expectation for activity selection (« = 0)

At the individual level agents are cognitive entities able to perceive, memorise, generalise
and to make predictions. For society to emerge they must be able to observe the interactions
between others.

2.3.3 Discussion
The results of such a model were quite promising but there are also some weaknesses:

e the system operates exclusively on a symbolic communicative system

e the system does not distinguish between actions which manipulate the environment and
communications

2.3. SOCIAL ORDER GENERATION BY DOUBLE CONTINGENCY 45

e the system is discrete and cannot operate in the analog domain

The mentioned issues were the main drives for the model described in this thesis because if
such a social system needs to be implemented in the real world, the agents or robots needs to
have a separate layer, one for the actions in the environment and one for the communicative
events which are essentially symbolics.

Another desired property is the use of analogic based controllers which can then be im-
plemented in very fast reactive electronic controllers or also digitized and implemented on a
micro controller. In the next section, I am going to describe the framework used to achieve
such targets.

46 CHAPTER 2. BACKGROUND LITERATURE

2.4 Agent Based Modelling

This Section contains a summary of current modelling strategies for the simulation of software
agents which interact with each other like animal groups or human societies.

2.4.1 SWARM and ABM

The simulations of artificial agents in this Thesis were done by using an ABM approach. In
literature there is, unfortunately, a conflict in notations as well as several debates in the dif-
ferences between MAS, ABM (agent based models) and SWARM intelligence. The expression
SWARM intelligence (Beni and J.Wang, 1989) was introduced by Gerardo Beni and Jing Wang
in 1989, in the context of cellular robotic systems. SWARM refers to a form of collective be-
haviour exhibited by groups of homogeneous animals: flocking is the swarm behaviour of birds,
herding is the swarm behaviour in quadrupeds, schooling is the swarm behaviour in fish. The
original term was introduced Dr.Marco Dorigo:

Swarm intelligence is the discipline that deals with natural and artificial systems
composed of many individuals that coordinate using decentralized control and self-
organization. In particular, the discipline focuses on the collective behaviours that
result from the local interactions of the individuals with each other and with their
environment. Examples of systems studied by swarm intelligence are: colonies
of ants and termites, schools of fish, flocks of birds and herds of land animals.
Some human artefacts also fall into the domain of swarm intelligence, notably some
multi-robot systems, and also certain computer programs that are written to tackle
optimization and data analysis problems (Dorigo and Birattari, 2007).

Swarm intelligence has been used to model the clustering behaviour of ants, the nest building
behaviour of wasps and termites, flocking and schooling in birds and fish. Particle swarm
optimisation (Kennedy and Shi, 2001) is a population based stochastic optimisation technique
for the solution of continuous optimisation problems and therefore is used more in the realm
of functional mathematics.

The simulations used in this Thesis cannot be considered as Swarm simulations because
the agents are active learners and share some features with human like societies rather than
animal societies like ants. Therefore the author will use the term ABM for referring to the
actual implementation. Nevertheless, there are some human behaviours like panic behaviour
that can be described as herding behaviour and thus can be still classified as Swarm behaviour
(Bonomi et al., 2009; Georgoudas et al., 2006; Kirchner and Schadschneider, 2002; Varas et al.,
2007; Zong et al., 2010). The choice of the ABM term for my simulations in this Thesis was
made for clarity and to classify the work in this fast growing sector.

Research in ABM involves the investigation of autonomous, rational and flexible behaviour
for entities such as software programs or robots, and their interaction and coordination in
several areas including: robotics (Hiroaki Kitano, 1997), information retrieval and management
(Wooldrige., 2002; Guttman et al., 1999) and simulation (Gilbert and Conte, 1995). When
designing agent systems, it is impossible to anticipate all the potential situations an agent
may encounter and to optimally specify an agent behaviour in advance. Agents therefore have
to learn from, and adapt to, their environment, especially in a multi-agent setting. This is
especially true for multi-agent systems where in many cases global behaviour emerges rather
than being pre-defined.

2.4. AGENT BASED MODELLING 47

ABM can be seen as the natural extension of the Ising model (Ernst, 1925) or Cellular
Automata-like models (Wolfram, 1994) which have been very successful in the past decades at
describing various physical phenomena like Ferromagnetic materials.

One important characteristic of ABMs, which distinguishes them from Cellular Automata,
is the potential asynchrony of the interactions among, and between, agents and their environ-
ments. In ABM agents typically do not simultaneously perform actions at constant time-steps,
as in CAs or boolean networks. Rather, their actions follow discrete-event cues or a sequential
schedule of interactions. The discrete-event setup allows for the cohabitation of agents with dif-
ferent environmental experiences. Also ABMs are not necessarily grid-based like the Conway’s
game of life (Gardner, 1970) and can also simulate analogic agent controllers. In particular, the
richness of detail one can take into account in ABM makes this methodology very appealing
for the simulation of biological, social and economic systems; where the behaviour and the
heterogeneity of the interacting components are not safely reducible to some reduced models
or differential equations.

In essence the two reasons for the choice of ABM in this thesis are:

e simulation in real time of parallel analog or discrete processes
e flexibility in the implementation of hardware based robots

To make a concrete case in Appendix 5.7, the software agent was implemented on a robotic
kit called Lego and on a small robot called Pololu 37 and in Appendix 5.2 there are some
code examples taken from the Enki simulator which is able to describe the mechanical and
electronical properties of a real Alice or Kephera robot including for example the motor noise
and the jerkiness of the stepper motor.

2.4.2 Single agent VS multi agent learning
There are two main approaches to ABM systems and learning:

e “single agent learning‘: existing multi-agent machine learning algorithms are applied
directly to single agents in a MAS setting. Consequently, multi-agent learning is only
seen as an emergent property.

e "multi agent learning“: agents need to cooperate and communicate in order to learn
effectively.

Single agent learning (Stone and Veloso, 1998; Porr and Worgdtter, 2006; Porr and Worgotter,
2003) focuses on how one agent improves its individual skills, regardless of the domain in which
it is situated. As discussed before, thanks to the closed loop property of such controllers the
organism can still learn from the others by means of their motor actions which feedback into
each others’ inputs: each agent perceives the others as part of the environment feedback loop.
Previous research studies have shown how is possible to create coordinated group behaviour
with pure single-agent learning (Sugawara and Lesser, 1998). This is also the case, as we are
going to see, for the model that is used in my research which contains also a communication
layer through which agents learn to cooperate in a foraging task. Thus in my model each agent
learns with a predictive controller (Porr and Worgdtter, 2006). We investigate the influence of
communication in the Section 3.1 where the property of double contingency is used succesfully
to reproduce social order in artificial societies.

48 CHAPTER 2. BACKGROUND LITERATURE

2.5 Information theory for closed loop controllers

This section contains the essential background for the application of information theory to
closed loop controllers. It will be used extensively for the computation of information measures
in the following sections.

2.5.1 Introduction: closed loop controllers

In control theory there are two main approaches: feed-forward and feedback control. Feed-
forward control is possible only when the law or transfer of the process I want to control is
known. Natural systems are very hard to control using the open loop approach because they
are dynamic non-linear processes and their parameters are subject to noise. Feedback control
does not require the full knowledge of the process and is based on the principle of action and
reaction. Adaptive controllers change their parameters according to the observed parameters
of the process to control: most biological organisms use the control loop approach. The daily
process of maintaining our body temperature is an example of such a system (Werner and
Buse, 1989). Until today cybernetics has provided a lot of adaptive controllers for the closed
loop: PID controllers (see Figure 2.13) and the Kalmann filter to mention the most important.

Classical proportional controller

A simple controller is a proportional one: y= K * x

control system

C | controller

perception x T i action y

S | controlled

Figure 2.13: A classical proportional controller described only by the gain K.

Artificial intelligence (AI) branched from cybernetics and used what was available from the
previous approaches, but it realised that designing artificial agents for the real world using
the previous approaches was not possible: agents should use biological inspired behaviour to
operate in the real environment without any harm for other persons or entities. Hebbian
learning, neural networks, Q-learning, fuzzy logic and many others are nowadays used in many
artificial agent systems. However using these adaptive controllers raises a big concern: how
can I assess the performance of the agents? The question is not as trivial as it seems: the
agent adapts to the environment, thus in general a more complex environment produce a more
complex behaviour (Nolfi, 2005). But agents essentially perform input control to keep their
desired state. The only solution to that problem is to develop input based measures and not

2.5. INFORMATION THEORY FOR CLOSED LOOP CONTROLLERS 49

output based measures as I will demonstrate in Section 3.2. Input contains the output of
the agent through the environment, therefore if the agent is learning, it means it is changing
the inputs to achieve a desired state (for example avoiding a painful signal). This approach
was introduced by Gibson and J. (1955) who rejected cognitivism and behaviourism for a
more direct realism. He argued that organisms perform only input control, one of his most
radical approach was the concept of “affordances” whereby the objects of our environment
tell implicitly how they want to be operated. Although there are some cases where organisms
perform open loop forward control, the general principles described by Gibson are valid. the
general model is described in Figure 2.14.

Gibson’s ecological approach
environment= actions that can be performed and perceived

o dtormation]

Goal

control system

Observed dynamic Affected c
Opsered | aynamic

A

pergeption

Disturbance controlled

Figure 2.14: Model of perception as described by Gibson in 1955: the agent performs input
control.

The theory of Shannon’s information cannot be applied directly in closed loop systems
because the information flow in an organism is asymmetric (see Figure 2.15). In the agent
perspective the action is sensed via a representation of the controlled process.

In fact the traditional notion of Shannon entropy was extended by Touchette and Lloyd
(2004) to closed loop systems by considering the sensory-motor loop as a communication chan-
nel which extends in time to propagate information from and to the environment. For instance
Touchette and Lloyd (2004) revisited the idea of a controller as an actuation channel that
transforms input states to desired output states. He also gives necessary and sufficient condi-
tions for a system to be perfectly controllable and perfectly observable in terms of information
and entropy. His model is a Bayesian network composed by a sensor channel S, an actuator
channel A, the initial state of the system X and the final state of the system X’. The model
as described in Fig. 2.16 both represented in Shannon’s terms by their probability distribution
matrix p(a|s), where s is the input random variable of the channel and a the output random
variable of the channel. The controller is modelled as a random variable C' that takes an initial
state X of the system to a final target state X’. A closed loop controller chooses a regulation
a; € A based on the state of the system x; € X, whereas an open loop controller chooses a
regulation a; € A that is independent of the sate of the system x; € X. Open loop control is
thus different from a closed loop control in terms of mutual information I(X, C) as described

50 CHAPTER 2. BACKGROUND LITERATURE

Organism controller

The actions of the Agent depends on the information “asymmetry”
C controls S but S does Not control C directly

control system

Representation | 1formaton [Agent | C

A

controlled

S

perception

Figure 2.15: The problem of information asymmetry in the closed loop control case.

in Eq. 2.2:

openloop : I(X;C)=0 (2.1)
closed loop : I1(X;C)>0

The controller can be extended for the predictive case introduced in section 2.2.2, by adding
an additional variable Y which is the predictor of X as in Fig. 2.17: Y conveys information
about X and is used by the controller to infer the temporal relation between the predictor Y
and the reflex X. This Bayesian model is investigated more in depth in section 4.3.7.

Other important tools were provided by Tishby et al. (1999) with the the information
bottleneck method which considers the ability of learning in predictive controllers related to
the compression achieved when two or more signals are mutually dependent.

The first practical application of information measures to closed loop controllers was intro-
duced by Polani et al. (2004) who used the Tishby’s framework to implement an information
based controller as described in Fig. 2.18. The approach used is similar to the one described
in Fig. 2.15 but with an optimization value provided by the information flow: the controller’s
transfer function is a model of the environment and the goal of the controller consists in max-
imizing the information flow from the motor output to the sensory input. With this very
general approach the controller is able to achieve meaningful states without even defining a
task objective. The disadvantage of the approach is that the controller needs to have a good
model of the environment and needs to be able to do simulations and choose the best path to
maximize the information flow.

A more general approach was introduced by Pfeifer et al. (2008) who used several infor-
mation based metrics to follow the learning curve of the robot in a visual foveation task: the
robot reduces the entropy around the centre of focus. Pfeifer et al. (2008) describe a closed loop
system as a system that decreases the entropy, increases the information structure (statistical
regularity), decreases the complexity.

A similar approach was used by Ay et al. (2008) to modify the proportional coefficient

2.5. INFORMATION THEORY FOR CLOSED LOOP CONTROLLERS o1

(A) Full control (B) Reduced open loop
X X’ X X’

L

S A C

(C) Reduced closed loop] (D) Single actuation channel
X X’ X X’
Oo—0

<]

C=c

Figure 2.16: Bayesian formulation of open and closed loop. A) Full control model. B) Reduced
open loop model. C) Reduced closed loop model. D) Single actuation channel model. The
only way to distinguish open loop from closed loop is by means of Eq. 2.2.

(A) Reduced closed loop (B) Predictive closed loop

X X’ Y X X’
»0O

<]

Cc

Figure 2.17: Extended Bayesian formulation. A) open loop case with sensor collapsed into
controller S = C. B) closed predictive loop with Y predictive signal on X.

52 CHAPTER 2. BACKGROUND LITERATURE

5 S_t S_t+1 S_t+2 S_t+3

z A v 4

o et e et e

g et e e

c Rt » R+) » R_H2 iy »R_t+3 s »

2 e 4 ¥ 4

o e e e

= At” A t+1 Ate2°

el

© / A=action state

= S=sensor state

8 R=environment state

Z t Z=source of randomness

C(At-> S_t+3)= max IALA_t+1,A_t+2;S_t+3

(-t+3) p(at,at+1.atg-2) - - -1+3)

Figure 2.18: The empowerment is defined as the maximum information flow from the action
Ay to the sensors Sy via the environment R;. The source of uncorrelated randomness Z; is
useful to assess the controllability when the organism is removed from the control law.

in the controller’s function to allow an optimal exploration strategy of an environment with
obstacles: the mutual information between past and future is used to tune the gain ¢ so that
the maximum of the predictive information defines the best exploratory behaviour.

The next section contains an overview of Ashby’s framework which will be used in this
thesis.

2.5.2 Regulation and entropy

The main contribution earlier than Tishby to the cybernetic theory of controllers was produced
by Ashby in 1956 and it will be used heavily in this thesis. Ashby (1956) defined clearly that
the essential feature of a good regulator is to block the flow of variety from disturbances to
essential variables. Ashby uses variety precisely as the number of different states a variable
can be and so it relates to Shannon’s entropy: if a variable has a variety of 4 states, then it
can be described with 2 bits in terms of Shannon’s entropy. Thus variety and entropy can be
used alternatively. I use the same notation by Ashby so that it will be more clear how those
concepts can be applied successfully to predictive learning:

e D is the domain of disturbances from the environment like a threat for an organism.

E is the domain of the essential variable, can be partitioned in £ = n U7, where 7 is
a partition of desired states or goals of the organism and its complementary partition 77
represents the non-desired states.

R is the domain of available regulations that the organism can perform

T is the domain of the possible states of the environment.

F is the combination of R and T.

2.5. INFORMATION THEORY FOR CLOSED LOOP CONTROLLERS 53

The disturbance D tends to drive E outside the set of desired states n. For open loop control
systems the relationship between the mentioned variables is shown in Fig.2.19(A). Fig.2.19(B)
describes how the disturbance is absorbed by the regulator and the environment to keep a
desired state.

(A) Open Loop (B)

ll - | RO
R

(C)Closed loop (D)

o}»T»E | ZPTERE]

(©)
R

Figure 2.19: Ashby’s law of requisite variety (Ashby, 1956) applied to the open loop case
(A),(B) and the closed loop case (C),(D).

Figure 2.19(C)(D) describes how the disturbance is absorbed by the regulator and the
environment to keep a desired state in a closed loop configuration.

The problem of regulation is defined as follows: given E,n, T, and D, to form the mechanism
R so that R and T, coupled, act to keep E within 7.

2.5.3 Direct regulation

Ashby described direct regulation as a control strategy similar to what engineers call open loop
control. The update rule for the direct regulation of Figure 2.19(A) follows:

e D generates a disturbance d(t)

e d(t) is the input to R which outputs r(t)

e the 2 values d(t),r(t) are inputs to T that produces e(t)

e the value e(t) is a state in E which can be a desired or non desired state

In the animal world, regulations in simple animals are direct: the organism reacts to the
disturbance D before it affects . A good example is in the life cycle of frogs: tadpoles reacts
to a touch stimulus (for example when a person poke them with a finger) with a swimming
reaction opposite to the direction of the stimulus. After some time the tadpole will stop
swimming: there is no way for the animal to check if the disturbance was still there.

54 CHAPTER 2. BACKGROUND LITERATURE

(A) B) ,

1 Z
D’ —: Agent R —

Environment T

Figure 2.20: Ashby law of requisite variety applied to the ICO learning controller

Most often in the animal world, the R’s action cannot be completed before the output
of T is known: the regulator does not know the disturbance directly but only through the
environment or after the organism has experienced the disturbance.

2.5.4 Closed loop regulation

The closed loop regulation is defined when R receives its input from E and not from T as in
Figure 2.19(C). The regulator does not receive directly the disturbance but only after it passed
the environment or the organism.

The special case of a predictive controller was not considered by Ashby and therefore it
will be necessary to formulate the necessary conditions for learning. A possible extension of
the Ashby’s variety for the ICO controller is in Fig. 2.20 on the right side there is the ICO
controller of the robot and on the left side there is the corresponding machine state model.
In Fig. 2.20(A) the disturbance D’ is a predictor of D and goes through the environment T°
affecting the essential variables E of the controller. In Fig. 2.20(B) the diagram of the ICO
controller This novel approach to predictive controllers is going to be investigated in Section
3.5. In the rest of this section, the original formulation of Requisite Variety is introduced.

2.5.5 The law of requisite variety

Please note that with the same notation D,E,R,T.F in the diagrams, I refer to the determinate
or indeterminate (Markovian) closed transformation whose allowed states are present in the
corresponding domains. Definition of regulation: an organism is a perfect regulator if is
able to keep the essential variables in a desired set 7 in spite of the disturbances. Regulation

2.5. INFORMATION THEORY FOR CLOSED LOOP CONTROLLERS 95

blocks the flow of entropy: if F is a regulator, the insertion of F between D and E
decreases the variety that is transmitted from D to E. How do we measure the performance of
R as a regulator? The function of the regulator R is to reduce the entropy that is
transmitted from D to E allowing the organism to be in the 7 partition of desired
states. Thus if F is missing the organism will likely experience the entire set E, with a variety
H(FE) but when F is introduced, the variety will be reduced to H(n) < H(E). Thus a perfect
regulator will prevent the organism from knowing in what state the disturbance was: the
information channel that goes from the disturbance to the essential variables is blocked totally
by the regulator.
The law of requisite variety in terms of Shannon’s entropy:

The law of requisite variety says that R’s capacity as a regulator cannot exceed
R’s capacity as a channel of communication. It can be formulated in Shannon’s
terms assuming that: D is the noise that is being transmitted to E the essential
variables of the organism by means of T the environment, R the regulator is a
correction channel whose input is D and whose output is 7" whose role is to reduce
the variety in the E channel. In an ideal case H(F) = 0 such that H(D) = H(R),
the regulator must have the same variety as the disturbance.

2.5.6 First law of requisite variety

Let D, R and E be three random variables. Hypothesis: when R is given, the entropy of E
cannot be less then that of D: H(E|R) > H(D|R). Then the role of the organism is to achieve
maximum control over its internal variable E, thus reducing the uncertainty. The minimum
possible regulation that can be achieved is H(D) + H(R|D) — H(R):

H(E)> H(D)+ H(R|D) — H(R) (2.3)
Corollary 1: if R is a determinate function of D: H(R|D) = 0, the minimum entropy of E
is H(D) — H(R). The first law of requisite variety says that E’s entropy can only be reduced
by an equal increase in R’s variety. Proof:
For the chain rule of entropy:

H(R,D) = H(D) + H(R|D) = H(R) + H(R|D) (2.4)

substitute H(F|R) for H(D|R) in previous equation gives:

H(D) + H(R|D) < H(R) + H(R|E) (2.5)
H(D)+ H(R|D) < H(R,E) (2.6)
H(R,E) < H(R) + H(E) (2.7)

H(D)+ H(R|D) < H(R) + H(E) (2.8)
H(E) > H(D) + H(R|D) — H(R) (2.9)

The corollary was demonstrated in Ashby (1956).

56 CHAPTER 2. BACKGROUND LITERATURE

2.5.7 Second law of requisite variety

Let D,R and E be three random variables. Hypothesis: when R is given, the entropy of
E cannot be less then that of D minus a constant K: H(E|R) > H(D|R) — K. Then the
minimum entropy of E is H(D) + H(R|D) — H(R) + K:

H(E) > H(D) + H(R|D) — H(R) + K (2.10)

The constant K is here used to model the “handicap” of the organism.

Chapter 3

Research work

3.1 Introduction: Social Modelling of Artificial Agents

The aim of this section is to develop an Agent Based Model which satisfies the autopoietic
property of Social Systems as introduced in the previous section 2.1. The assumption here
is that in an Artificial Society subsystems are formed to reduce uncertainty. Uncertainty
is faced by agents when learning in their environment. The simplest learning algorithm is an
appropriate reflex which guides the agent from or to a certain object, for example a wall or food,
as described in the previous section 2.2.3. Learning enables the agent to anticipate reflexes and
to generate anticipatory behaviour as discussed in the previous section 2.2.2. This, however,
poses a problem because when all agents learn, they change their behaviour all the time which
renders them more and more unpredictable to each other (Luhmann, 1995). Luhmann (1995)
proposed that the creation of subsystems will overcome this problem. Within these subsystems,
agents perform more predictably, by reducing their behavioural complexity. These subsystems
are formed by adaptive communication between the agents which seems to be essential to form
such subsystems. Both the behaviour and communication is learned by the agent and is not
imposed on the agent. The goal or motivation of each agent is to collect food, keep it and eat
it until consumed. Every agent broadcasts its hunger state, which can be used by other agents,
into the world. This results in two subsystems where agents in the first collect food and in the
latter steal food from others. The section is structured in this way: description of the agents,
world and signals involved, the learning rule used, agents’ behaviours, sub-system formation
and effects of different communication strategies followed by a conclusion.

3.1.1 Methods: A Model of the World

The simulation model is composed of a 2 dimensional world bounded by walls. It contains
two different objects: agents and food sources. The agents, referenced by their position as
a;(t),where a; has 2 components (x,y coordinates indexed by a;, and a;,), with j = 1,..,N.
Agents move with a differential drive system named after Braitenberg (Braitenberg, 1984).
Food sources are disks located at fixed position f;(¢) with j = 1,...,M. They can produce
constant food or limited food.

Agents have different sensors which enable them to sense obstacles, other agents’ presence

57

58 CHAPTER 3. RESEARCH WORK

distal

proximal /
obstacle (walls,food places)

avol
a) left
avoid

Figure 3.1: Overview of the different signals used in this simulation. Circles labelled with
G (avoid,food,sated) represent uniform potential fields, circles on the robot’s front are input
sensor, cones irradiating from them represent the field of view of sensors, proximal and distal
lines represent sensors range. Case a): an agent touches a food source or a wall with its proximal
left avoidance sensor avoidie st pros, & proximal signal is generated. Case b): an agent reads the
potential field Ggyoiq produced by another, with its right distal sensor avoid,;gh,qist- Case c):
an agent reads the potential field G,40iq produced by another agent, with both left and right
proximal sensors avoidic £+ prox, GV0Idright proz- Case d): an agent reads the potential field G fo0q
produced by a food source, with its right and left distal sensors food,ight,dist, foodieft.aise- Case
e): an agent reads the potential field G o504 produced by a close food source, with both left
and right proximal sensors foodieft prow, f00dright pros- Case f,g): a hungry agent f (with
Hunger = 1) reads the satedness signal Gsuteq produced by the sated agent g.

3.1. INTRODUCTION: SOCIAL MODELLING 99

and others’ broadcasted state of satedness, at different ranges (proximal and distal see Fig.
3.1). Every object labelled with a certain index j produces a signal carried by a uniform
potential field G type With a limited range, which is sensed by the corresponding sensor type
(type can be avoid,food or sated). The potential field G} ¢ype is described by the equation of a
circle which is centered on xq, y9 with a r radius:

Gjtype © (& —20)° + (y — yo)* = r? (3.1)

Every geometric point z,y including a sensor or object which falls inside the circle G ¢ype
assumes a unitary value. The signals from the proximal sensors (zg) are originally used to
drive the agents reflexes which can either be avoidance or attraction. The signals from the
distal sensors are used for learning so that the agent is able to generate anticipatory reactions
instead of the reflexes as introduced in section 2.2.2.

In the next section I am going to describe the learning algorithm enabling the agent to
replace the reflexes with the predictive actions. Once the learning algorithm is described, I will
describe the different reflexes and possible anticipatory reactions.

3.1.2 Methods: ICO learning module

The input correlation learning rule of Porr and Wérgdtter (2006) is a Hebbian learning rule, it is
unsupervised and performs a confounded correlation between a predefined reflex signal (z) and
a reflex predicting signal (z1). Hence, this learning algorithm identifies and exploits causalities
between temporal sequential signals. The ICO learning algorithm was chosen because it is one
of the simplest,fastest and computationally efficient approach to temporal learning. It can also
be easily implemented in analogic and digital systems without any particular modifications.

ICO

time,

4000 8000 12000
Time (steps)

Figure 3.2: Figure (a) shows the ICO learning basic block composed by 2 inputs g, 21 filtered
by hg, h; and the output v. The reflex is g with a fixed weight and the predictor is z; with
a variable weight. Figure (b) shows the weight change of w; during time. At the beginning
wy = 0, then for 5000 simulation steps z; anticipates xy and the w; grows until 1.0. After
5000 simulation steps reflex is suppressed z¢ = 0 and w; stabilises to 1-1073.

Figure 3.2 shows the ICO learning block which has two inputs xg,z; from the agent’s sensor
that are filtered by low pass filters hq, hy:

60 CHAPTER 3. RESEARCH WORK

h(t) = %e“tsin(bt) (3.2)
o= _ﬂg (3.3)
b= (27F)?2 —a? (3.4)

F is the oscillation frequency and @ the quality factor. The low passed signals u;(t) are
transferred with weight w; to the output neurons (for more details see Appendix 5.1).

uy = h * T (35)

ug = h*LEo (36

where * is the convolution operation which implement the filtering operation. In the output
neuron the output v(t) is calculated by summing up all incoming signals according to their
weights:

v(t) = wp - up + wy - Uy (3.7

which represent the input for the motor system. The unsupervised character of the ICO
learning rule is reached by the synaptic weight w; to be adapted by the weight change rule:

Owy Oug
T (38)

The weight change is dependent on the derivative of the reflex input signal ug, the input signal
u1 and a learning rate u. The learning rule has been shown to be useful for avoidance and
attraction mechanisms and has fast and stable convergence (Porr and Woérgotter, 2007).

3.1.3 Methods: agent controller

For the sake of simplicity, the agent’s neural controller is analysed block by block according to
the requested behaviours (avoidance and attraction) in Figs. 3.3,3.5,3.6. The core is composed
of two ICO neurons, labelled with L-eft and R-ight, connected to the motor outputs left and
right. Both ICO neurons have a constant bias input B with weight 4.0 that makes the robot
move forward if inputs are absent. Rectangular blocks labelled with L,R are low pass filters,
with parameters F, @Q referred to equations 3.3,3.4. Synaptic weights of the ICO block in Fig.
3.2(a) are labelled with W capital letter and two pedex that indicate the weight type (dynamical
for the predictor and fixed for the reflex) and the synapse position (left,right). ICO neurons
have recurrent synaptic connections, labelled as Wgar, Wror, Weeifr, Woerfr, to implement a
hysteresis effect, which causes the controller to not instantly follow signals (as in Hiilse 2004;
Hi and Pasemann 2002). It means reactions on an incoming signal are time shifted. This is
useful to enable agents to escape from acute angles: if an agent incurs in an concave acute
angle and has not a hysteresis mechanism, will generate a closed trajectory (loop), turning left
and right alternatively.

3.1. INTRODUCTION: SOCIAL MODELLING 61

3.1.4 Methods: avoidance behaviour

Agents and walls are obstacles. Agents produce obstacle signals (see Fig.3.1 (a) for obstacles
and Fig.3.1 (b),(c) for other agents). Every agent a;(¢) has a potential field associated (see
Eq.3.1):

Gavoid;(t) = G(z — a; (), y — a;4(t)). (3.9

that is sensed by the corresponding inputs of other agents ay(t) (with k # j) labelled as
avoidic st right. Walls and food sources do not produce Ggyoid, SO that agents sense them using
proximal signals that are generated by collisions: when 2 distinct agents j and [collide at
time ty, such that ||a;(t) — a;(t)||2 < D (D is the radius of the agent) an impulse is produced
at avoid; . The neural controller for the avoidance behaviour is shown in Fig. 3.3 (see also

—@ learning synapse » fixed synapse

Figure 3.3: Avoidance network: ICO left and right are two neurons implementing the ICO
learning rule, their output is a sigmoid and is connected (after normalization into [Vpmin, Vmax])
to the motor speed commands. Grey triangles represents distal inputs, while white triangles
represent proximal inputs. The learned synaptic weights are associated to the distal synapses
(thick lines) while the fixed are associated to the proximal synapses (dotted lines). To produce
a retraction behaviour left and right weights must be different such that Wy, egict, . > Wpredict,r
and Wreflea:,L > Wreflez,R7 if Wpredict,L = Wpredict,R and Wrefle:r,L = Wreflea:,R robot will
just go back without turning.

Stamm 2006), every ICO neuron (left and right) computes the following operations:

ICOL(t) = B — h*avoid, - Wyefiear, — h * av0idgist » - WpredictL, (3.10)
+Wserfr - ICOL(t — 1) + Wiagr - ICOR(t)
ICOR(t) =B—hx avoidl . WreflegcR — hx avoiddist,l . WpredictR (311)

+Wseifr - ICOR(t — 1) + Wga - ICOL ()

The parameters used for the weights, the bias and the recurrent connections are reported
in the Appendix sections 5.2.4,5.2. The recurrent connections between the left and right ICO
neuron, are necessary to implement a push-pull behaviour so that when the robot synchronously
activates both the left and the right input, only one ICO neuron will dominate thus evoking

62 CHAPTER 3. RESEARCH WORK

a turn-back response. Connections between input synapses and ICO neurons (motor neurons)
are negative to evoke a retraction. The motor output is calculated with a sigmoid activation
function on the ICO neuron membrane as follow:

1
VL = 1 _|_€7[C’OL (312)
1

Ve = {ro1con (3.13)

The weight update learning rule is calculated for the weights:

aW redic . Bavoid

% = - avozddist’lTl (3.14)
OW yredic . davoid,

% = u- a’uozddist’rT (3.15)

3.1.5 Methods: Agents and satedness communication

Every agent has an internal state: hunger and its complementary satedness.

Hunger model

0.8

0.6[

value

04 [

0.2

Figure 3.4: Hunger state in function of time. At time step 100 the agent touches a food place,
thus its hunger state is reset to 0 and so its complementary satedness to 1.

The energy level of each agent is an exponential function of time:

e HTstare if t >t
Hgateq(t) = - 3.16
real(t) {0 if £ <t (3.16)
and complementary its hunger state is:
Hhunger (t) =1- Hsated(t) (317)

where Tg1qr4 is the starvation factor and ¢, corresponds to the moment when an agent touches
a food source:

‘fOOderox,(h (tb) + fOOdT,prox,d1 (tb)| > 0p (318)

3.1. INTRODUCTION: SOCIAL MODELLING 63

or touches a sated agent (see Fig. 3.4):
|sated; pros,dy (tv) + sated, prog.d, (tn)| > 64 (3.19)
and agent is touching an obstacle
|avoidpron,1(ty) + avoidproe.(th)| > 00 (3.20)

where 0, 04,00 are thresholds for food, agents and obstacles respectively. In Fig. 3.5, internal
state Hpunger(t) is multiplied for food(t) (left,right and proximal,distal) and sated(t) (left, right
and proximal, distal).

Satedness internal state of agent a;, is broadcasted to other agents ax(t) (with k # j) by
means of a potential field (see Fig.3.1(g) and Eq.3.1):

Gi,sated(t) - Hsated(t) . G((E — @;,0,Y — CLz’,1)~ (321)

Agent ay(t) senses G sqted (see Fig.3.1 (f)) with 2 reflexive inputs sated; proz,q, (t) and sated, prog,d, (t)
whose difference feeds the reflexive input:

xo(t) = sated; pros,d, (t) — satedr prog,d, (t). (3.22)
and as predictive sated) pros,d, (t), sated, pros.d, (t) whose difference feeds the predictive input:
x1(t) = sated; gist,a, (t) — sated, gist,d, (). (3.23)

where dy > dy. The equations 3.11,3.12 of the ICO neurons are added to the following synaptic
inputs:

ICOL = —hx* (il?() . Hhunger) . Wreflem,A,L (324)
—h * (1'1 ' Hhunger) . Wpredict,A,L
ICOr = hx (170 : Hhunger) . Wrefle:c,A,R (325)

+h * (.’IIl . Hhunger) . Wpredict,A,R

The reason for the sign inversion for the weights is that the inputs are differential and thus is
necessary for the left ICO neuron have an input of opposite sign to the right ICO neuron. The
weight update rule this time is:

oW predict,A,L a-’L‘O
T T mmgy (3.26)
ow predict,A,R a-’L‘O
B T ey (3.27)

Inputs for the attraction task are shown in Fig. 3.5. When for example: z((¢) > 0 implies
that a sated agent is on the left sated) proz.d, (t) > 0, the neural controller produces vy < vg,
agents turns left until z¢(t) = 0 that means either xo(t) = 21(t) (a sated agent is in front)
or zo(t) = x1(t) = 0 (no sated agent in front). A hungry agent, is producing G; sqteq(t) = 0
therefore other agents will be repelled since it is emitting only the Ggy0iq signal.

64 CHAPTER 3. RESEARCH WORK

Aggressive agents If one wants to make an agent more aggressive Hguteq(t) can be multi-
plied for the distal sensors avoid(t) left, right (in Fig. the Hpunger block can be introduced
after each of the grey triangles).

Hgtea(t) - avoid(t) (3.28)

It implies that when an agent is not sated, it will ignore the obstacle signal G404 produced
by the other agent.

Distal sensors
unger

sated_| WselfL

sated_r

sated_|

sated_r
. WselfR
-9 learning synapse » fixed synapse

Figure 3.5: Attraction toward sated agents:two more inputs are added to the ico neurons.
Grey triangles represents distal inputs, while white triangles represent proximal inputs. The
learned synaptic weights are associated to the distal synapses (thick lines) while the fixed are
associated to the proximal synapses (dotted lines). Synaptic weights must be equal in module
and OppOSite in Sign |Wpredict,A,L| = IWpredict,A,Rl and |Wreflew,A,L| = ‘Wreflea:,A,R| where
A = agent. Hunger internal state is multiplied for proximal and distal input difference

3.1.6 Methods: Food attraction

Every food source f;(t) with j =1,..., M produces the signal (see Fig.3.1 (d),(e) and Eq.3.1):
Gj,food = G(l' - fj,ﬂca Yy — f])y) (329)

which is sensed by agents a; by the inputs labelled as foodie i right (see Fig.3.1 (d),(e)).

Constant food production Every food source contains a constant amount of food which
means G fooq is always emitted.

Limited food production Every food source contains a limited amount of food modelled
by the variable ¢ that is decremented every time an agent touches the food place at t:

;(ts +1) = q;(ts) — 0q (3.30)

where (g is fixed). When ¢; = 0 the food source j is exhausted and food signal is suppressed
Gj fooda = 0. After a random period the food source is restored g; = 1.

Required inputs for the attraction behaviour are introduced in Fig. 3.6 (see also Stamm
2006), for every ICO neuron an additional reflex is added:

zo(t) = foodi prog,d, (t) — foodr prog.d, (t). (3.31)

3.1. INTRODUCTION: SOCIAL MODELLING 65

Distal sensors

food_| WselfL

food_r

WselfR
- learning synapse » fixed synapse

Figure 3.6: Attraction toward food: two more inputs are added to the previous network. Grey
triangles represents distal inputs, while white triangles represent proximal inputs. The learned
synaptic weights are associated to the distal synapses (thick lines) while the fixed are associated
to the proximal synapses (dotted lines). Synaptic weights in the attraction task must be equal
in module and opposite in Sign: Wpradict,F,L = Wpredict,F,R and Wreflem,F,L = *Wreflez,F,R
where F' = food

xg it is the difference between the left and right proximal food input sensors. A predictive
input is added:

x1(t) = foody gist,dy — f0Ody dist,d, (1) (3.32)
x1(t) it is the difference between the left and right distal food input sensors. Thus ds > dy such
that the distal food sensor values are predictive on the proximal food sensors. The equations
3.25,3.26 of the ICO neurons are added to the following synaptic inputs:

ICOL = —hx (J;O . Hhunger) . Wrefle:z:,A,L (333)
—h * (xl ' Hhunger) : Wpredict,A,L
IOOR = hx (330 : Hhunger) ‘ Wrefle;c,A,R (334)

+h * <.'IJ1 . Hhunger) . Wpredict,A,R

The reason for the sign inversion for the weights is that the inputs are differential and thus is
necessary for the left ICO neuron have an input of opposite sign to the right ICO neuron. The
weight update rule this time is:

o predict,A,L al'()
e T ey (3:35)
8Wpredict,A,R - al'()
T mny, (3:30)

When for example: () > 0 implies that food source is on the left, the neural controller
produces vy, < vg, agent turns left until () becomes 0.

3.1.7 Controller summary

For clarity Fig. 3.7 contains the simplified but full structure of the controller whereby the
two ICO neurons receive synaptic inputs from each synaptic input described before. There

66 CHAPTER 3. RESEARCH WORK

avoid predictorl <.>
—_—

Left Motor

sigm

_1lll-“.

avoid " efiex

sated predictor|
—

food predictor|
—

............ O,

food : reflex |[wO

............ -
———————

Right Motor
sigm Ll

4----“’

Figure 3.7: The robot controller implements the 3 behaviours by using a linear summation of
all the synaptic inputs

are a total of twelve inputs because for every behaviour there are left and right sensors for
the distal and proximal case. Because there are three behaviours, multiplied by 4 makes 12
parallel inputs. The inputs are then low pass filtered as described before and summed at the
ICO neuron Y. The left and right ICO neurons are also responsible for updating the weights
for the predictors. The output of each ICO neuron is then fed into a sigmoid function which
normalizes the output in the [—1,1] range for controlling the robot motors.

3.1.8 Broadcasting signal mechanism

The main feature of a social system is the production and use of signals. Thus each agent
can emit the same field in equation 3.29 in the presence of a food source. A more detailed
discussion about signalling strategies is in the Conclusion section 4.1.7. There are only two
possible signalling strategies in my model, honest and dishonest strategies and are going to be
described in the following sections.

Honest food proximal signalling

In this scenario agents signal the presence of food when they sense it using their proximal
inputs and thus emitting Gsuteq when discovering a food source (as described in Eq.3.18). This
”genuine” social behaviour might increase the foraging performance of the colony, but might

3.1. INTRODUCTION: SOCIAL MODELLING 67

cost the signaller because it can result in higher robot density and increased competition and
interference nearby the food (i.e. spatial constraints around the food disk: only 9 agents can
forage at same time). Thus, although beneficial to other colony members, signalling of a food
location can constitute a costly act (Smith and Harper, 2003) because it decreases the food
intake of signalling robots. By observing the trajectories, one can notice that agents tend to
form lines around the food zones, this behaviour could boost the foraging performance as I will
show later.

Dishonest food proximal signalling

In this case the agent ”cheats” producing non predictable (using a uniform probability of
emitting p(e) = 0.6) food signals when they are far away from the food zones (food; 4ist,a, = 0
AND foody gist,d, (t) = 0) and of course when they are not sated (Hgqteq(t) < 0.2 a threshold).
The percentage of cheaters used in the test was: 10%, 50%,and 80%. Doing so an agent reduces
the competition around the food zones.

3.1.9 Results: analysis of formation in different cases
The following sections contain the most important test cases for our model:
e general overview about the sub-system property and the food signalling strategies

e a comparison of the food performance between adaptive communication and non com-
municative strategy

e an insight to the honest behaviour with unlimited resources

e an insight to the honest behaviour with limited resources and environmental changes

Sub-system formation and adaptive communication

During time agents learn to: avoid obstacles, search for food and search for other sated agents.
Because all the inputs (see Fig. 3.7) are used in parallel and summed linearly for the motor
behaviour, the weights will develop independently from each other in a competitive fashion.
For example when an agent sees a closer agent with food and a food source, the outcome of
the motor behaviour will depend on the weight status for each behaviour. Thus agents can be
classified in 2 classes, seekers and parasites, according to their weights !:

o ‘Wpredict,A(O) - WpredicuA (Tszm)|

(Sw agent — 3.37

agent Wpredict,A(O) ()
|Wpredict F(O) - Wpredict F(Tszm>|

Ow. food = 2 : 3.38

wofood Wpredict,F(O) ()

where the fraction is used to normalize the weight development, so in summary:

e An agent is a seeker dy qgent > Ow,food, if it is more attracted by food places than
other sated agents.

1 . .
Whpredict,A 18 the average of IWpredict,A,L|7‘Wpredict,A,R‘ and Wpyredict,r 1is the average of
|Wp7‘edict,F,L|7 ‘Wpredict,F,R‘

68 CHAPTER 3. RESEARCH WORK

e An agent is a parasite 0, qgent < 0w, food, if it is more attracted by sated agents than
food places.

The behaviour is only described by the predictive weights because the reflex weights are con-
stant and thus do not provide a useful classification. This classification will then be compared
to a subjective comparative analysis in section 3.5.7 where the Predictive Performance (short-
ened as PP) will allow the sub system analysis without the need of comparing the weights on
each agent.

Sub-system formation is analysed for 2 important test cases:

e adaptive communication: the agents learn using both proximal and distal signals
e non adaptive communication: the agents do no learn from the Gg4teq food signal.

e silence: the agents do no produce the Gguteq food signal necessary for the other agents
to know whether food is available or not.

The silence condition does not imply that in Eq. 3.23 distal signals are suppressed but rather
that agents will learn only when the neighbouring agent is enough close to be sensed by the
far sensors. This implicate that learning will be happening still but only when robots are
close to each other rather than via the broadcast field Gsuteq. Whereas in the non-adaptive
communication the learning on the receiver agent is totally disabled and thus the weights for
the parasitic behaviour are locked. For our simulation, a population of N = 20 agents is
provided with M = 4,10, 18 food sources sequentially. Population dynamic is observed for
a total duration of T, = 80000 (time step AT = 0.01s) and for a set of 100 simulations
with different initial starting condition. The simulation time is long enough for the system to
stabilise after an initial transitory phase. Each simulation is randomized regarding the food
disk and agents positions, this will guarantee 100 different trajectories. Fig.3.8 resumes a total
of 6 test cases: left column considers scarce resources (M = 4 food sources against N = 20
agents), right column considers abundant resources (M = 18 food sources against N = 20
agents). Each one of them reports the number of seekers (thick line) and parasites (dotted
line) in function of time. The number of seekers ns(t) is complementary to the number of
parasites n,(t):

ng(t) +np(t) =N (3.39)

When the simulation is over t = Ty;,, the ratio is still:
Ng (Tsrm) + np(Tsim) =N (340)
Considering the different cases in Fig.3.8, it can be said that :

e in non-adaptive communication: parasites are absent (also with aggressive configuration
see condition 3.28), the explanation is trivial because the agents cannot learn to differen-
tiate in the absence of a signal, therefore in all cases (a) to (f): ns(t) = 20 and n,(t) =0
at any time.

e in adaptive communication a stable condition is achieved: the numbers of seekers and
thus parasites stabilise after a transitory phase. For example in case (a) population
distribution reaches an equilibrium: ny(¢) = 5+ 1 and n,(t) = 15 £ 1 with ¢ > 400s.
After 800 seconds (data not shown) the population distribution oscillates around the
equilibrium.

3.1. INTRODUCTION: SOCIAL MODELLING

Population distribution N=20 M= 4

Population distribution N=20 M= 18 Actives= 5

20M - 20 -
non adaptive non adaptive
N SR B — B [
3 19 | A parasites
2 2 -
c o o
o @ —
10 210
* * h
B seekers _ seekers
50 ! 50
o o
0 200 400 600 800 0 200 400 600 800
Time (Sec) Time (sec)

(a) No food signal, ratio N =20, M =4

(b) No food signal, ratio N = 20, M = 16

Population distribution N=20 M= 18

Population distribution N=20 M= 4
20 - 20 -
7777777 1 non adaptive non adaptive
arasitos ' -
15} ; P ! 15
) [@ parasites
c | C
o) o] T e e T — e
10 210 2 e |
* W * e AR
; p seekers il
5 seekers 5 !
0 : :] o : : ‘ :
200 600 800 0 200 400 600 800
Time (sec)

400
Time (sec)

(c) Honest food signal, ratio N = 20, M =4

(d) Honest food signal, ratio N = 20, M = 16

Population distribution N=20 M= 18

Population distribution N=20 M= 4
20 - 20 -
non adaptive non adaptive
| -
————— parasites - ||
15+ - 15
T ! parasites
2 i 2
c ‘ = [—
[! O —_— o
10 ‘ £10 ‘ :
H* : #* — = [
- ! seekers
-
5Ll seekers 5 |
" n__11 i
i U !
oL . , . , o . . . ,
0 200 400 600 800 0 200 400 600 800
Time (sec) Time (sec)

(e) Dishonest food signal, ratio N = 20, M =

4, 18 cheaters

69

(f) Dishonest food signal, ratio N = 20, M =
16, 18 cheaters

Figure 3.8: A typical single run of the system which shows different cases. Population distri-
bution in different cases: x-axis is the simulation time expressed in seconds, y-axis reports the
number of seekers n(t) and of parasites n,(t) in function of time. There are 6 diagrams, and

for every diagram the adaptive communication strategy versus the non communicative strategy

is reported.

70 CHAPTER 3. RESEARCH WORK

e the population dynamic is depending on the ratio between agents N and food resources
M:

— with scarce resources (M = 4) in cases (a),(c),(e) parasites are prevalent
— with abundant resources (M = 18) in cases (d),(f) parasites are balanced with

seekers, whereas in case (b) parasites are prevalent.

Table 3.1 resumes the stabilisation property of the population for 3 main cases:

1. silence: agents do not use the food social signal and are still learning.
2. honest: agents signal the food presence honestly and are still learning.

3. dishonest: some agents signals the food presence dishonestly, the rest of them do not
signal (like the silence case) and are still learning.

There are 2 important observations to make:

1. the ratio of seekers over parasites (ns/n,) is not proportional (directly or inverseley) to
the ratio of agents over food sources in the silence and dishonest cases. For example in
the silence scenario (agents do not signal the food presence) ns = 5,3, 5 respectively for
M = 4,10,18. The table shows that the system reaches a stable state but is independent
from the proportion.

2. the ratio of seekers over parasites (ns/n,) depends proportionally to the ratio of agents
to food sources in the honest case. Number of seekers ng increases accordingly with the
food sources M such that ng = 4, 8,10 respectively for M = 4,10, 18.

Table 3.1: Table summarising self-organisation for 100 simulation runs: every element in the
table contains the average number of seekers ng after stabilisation, the average settling time
and the range of the oscillations after the settling time.

Ratio N/M 20:4 20:10 20:18
Silence 5250 £2 3280 £2 5156 £2
Honest 4390 £2 8246 £2 10 190 +2

Dishonest agents:2 7391 £2 4249 £2 8198 £2
Dishonest agents:10 | 5394 £2 6 253 £2 1 202 42
Dishonest agents:16 | 10 410 £2 3 289 £2 8 210 £2

A possible explanation for the prevalence of the parasitic population with scarce resources
is due to the space constraints of the food sources: only a few agents (in our case 9) can forage
at the same time, therefore the agents learn to transport food for the others. When resources
are abundant this constraint is removed therefore the parasitic strategy is no longer needed.

3.1. INTRODUCTION: SOCIAL MODELLING 71

Foraging performance and signalling strategies

If one wants to analyse the performance of the system in consuming food, one could measure
the number of the total bites can be measured:

Fiot = Foeer, + Fparasite (341)

where Flye.r is the number of total times agents touched food sources (Eq. 3.18) and Fpurasite
is the number of total times that agents touched other sated agents (Eq. 3.19). Having chosen
that index, table 3.2 shows the average Fj,; of 100 simulations for the different conditions and
underlines the value when dishonest is superior to the honest strategy. On the basis of total
bites, I can state that in average:

e honest signal is better then silence when food resources are M = 4,10, 18

e comparing the honest and the dishonest strategy: with 10 dishonest agents the Fj,; is
superior to the honest one when M = 4,10 but not when M = 18. With only 2 dishonest
agents, Fi,; is bigger only with scarce resources. With 16 dishonest agents, performance
is superior only in the intermediate case with M = 10 resources.

It is also obvious that the dishonest strategy pays only when resources are scarce, which is also
intuitive and has been shown in other simulation or behavioural experiments such as Brembs
(1996); Schwieren and Weichselbaumer (2010). The main idea is that if everybody is cheating
and is not punished, the information in the system is no more reliable and will punish everybody
indiscriminately.

Table 3.2: Table summarising the foraging performance for 100 simulations: every value rep-
resents the average Fi,: as well as the value’s range for each group of simulations.

Ratio N/M 20:4 20:10 20:18
Silence 370 &8 342 £9 371 8
Honest 488 £5 461 £6 476 +4

Dishonest agents:2 | 502 +4 366 +4 340 +4
Dishonest agents:10 | 509 +4 495 £4 342 4+4
Dishonest agents:16 | 365 £4 480 +4 362 +4

Another index for the system performance is the equality in the food distribution. It means
that, if I consider the mean p and standard deviation o of the food bites over the N = 20
agents, the food is better distributed ideally when the average u is high as well as the deviation
o is high. This indicate that a good distribution is when all agents in average have a good
amount of food when the deviation is high and average is high. But if the average is high
and the deviation is low, it means that few agents have collected a large amount of food and
thus is not desirable for a sustainable society. Table 3.3 contains the computed values for each
condition.

e for scarce resources M = 4 the best distribution comes with honesty because pponest =
20.00 and ohonest = 3.0.

72 CHAPTER 3. RESEARCH WORK

Table 3.3: Table summarising food distribution for 100 simulations: every element represent the
couple (u, o) where p is the average of the food bites+agents bites over the agent population,
and o is the standard deviation. They are calculated at the end of each simulation. The
max-min range is included for the average of the food bites, as well as the standard deviation.

Ratio N/M 20:4 20:10 20:18
Silence 18.65 £ 0.63,2.16 £ 0.77 17.35+£0.61,2.83 £ 0.77 (18.20 £ 0.64,3.11 + 0.77)
Honest 20.00 £ 0.43, 3.00 £ 0.65 19.50 + 0.42, 3.40 = 0.65 (20.10 + 0.4, 3.30 £ 0.65)

Dishonest (2 cheaters)
Dishonest (10 cheaters)

19.90 £ 0.43,2.13 £ 0.66

19.40 £+ 0.44,2.63 + 0.64

(17.35 £ 0.41,3.79 + 0.64)
(17.10 £ 0.41, 3.41 + 0.63)

() ()
() ()
(19.40 + 0.41,1.85 + 0.66) (17.50 & 0.41, 2.09 & 0.63)
() ()
() ()

Dishonest (18 cheaters) | (15.40 £ 0.40,5.34 & 0.66 18.65 +0.41,2.58 £ 0.63

e for abundant resources the honest and silence strategies are nearly equal, but with silence
the variance is bigger ogsijence = 4.11 VS Ohonest = 3.27.

e for abundant resources the honest strategy has the larger mean pponest = 20.10 and a
comparable variance with the other cases.

Adaptive vs non communicative foraging performance

In this scenario the honest communication strategy is compared to the non communicative
behaviour. In figure 3.9 it is reported the the number of total bites Fy,: (see Eq. 3.41) on the
y-axis in function of the simulation time on the x-axis for two cases: adaptive and non com-
municative strategy when the agents use the social honest signal. In case (a), where resources
are scarce, before the sub-systems are formed (before 1x10*) Fy; is equal in both cases, but
during learning and, furthermore when the agents organise, the adaptive case overcomes the
non adaptive one. In case (b), where resources are abundant, Fy,; is equal during all the time,
because a strategy to optimize the food gathering is not essential.

Honest behaviour and unlimited resources

In this scenario the agent honestly signals the presence of food places which always produce
the Gfooq potential. For this simulation, a population of N = 20 agents is provided with
M = 4,10, 18 food places sequentially. Population dynamic is observed for a total duration
of Tsim = 80000 (time step AT = 0.01seconds). Figure. 3.10 reports the number of seekers
(thick line) and parasites (dotted line) in function of time. The number of seekers n(t) is
complementary to the number of parasites n,(t): ng(t) + n,(t) = N. The population ratios
of seeker to parasites (r(Ts;m)) at the end of the simulation for every case M = 4,10, 18 are
respectively r(Tg;m) = 4/16,8/12 and 10/10.

e in non-adaptive communication: parasites are absent (also with aggressive configura-
tion see 3.28), suggesting that adaptive communication is a necessary condition for the
generation of sub-systems.

(17.96 £+ 0.42,2.67 + 0.64)

3.1. INTRODUCTION: SOCIAL MODELLING 73

(@) Food bites for N=20 M=4 (b) Food bites for N=20 M=18
450 450 .) .
adaptive communication win! \ foraging performance is equivalent
400 p : 400
350 L 350
8 300 T 8 300 ;
2 55 - 2 250
o A o
@ 200 £ S 200
e} Pad Qo
€ 150 o’ E 150 2
S ol S -
Z 100 o Z 100

%3
=)
[
=)

<
=}

S
)
IS
(=)}
oo
<
8]
£
(=)
oo

Figure 3.9: Foraging performance comparison: thick line is the adaptive communication with
honest signalling and the dotted line is the non-adaptive communication case with honest
signalling. Case (a): scarce resources adaptive communication win. Case (b): abundant
resources, performances are equal

e in adaptive communication parasitism is a quasi-stable condition. With scarce resources
(M = 4), after 600 seconds, the number of seekers (see Fig. 3.10 (a)) stabilises to 4.
With abundant resources (M = 18), after 600 seconds, the number of seekers (see Fig.
3.10 (b)) stabilises to 10. After 800 seconds (data not shown) small oscillations around
the stable point occur in both cases, suggesting that the system has reached an attractor.

e the population ratio between seekers and parasites (Ts;y,) depends on the ratio between
the number of robots and the number of food places N/M:

— with scarce resources (M = 4) parasites are prevalent: n,(Tsm) = 16 £ 1 >

— with abundant resources (M = 18) seekers and parasites are in dynamical equilib-
rium (oscillate around the stable point after Ty, steps): n,(Toim) = 10 £ 1 and
ns(Tyim) = 10 £ 1.

An explanation for the prevalence of the parasitic population with scarce resources is due to
the space constraints of the food sources: only a few agents (in our case 9) can forage at the
same time, therefore agents ”transport” food for the others. When resources are abundant this
constraint is removed therefore parasitism is not essential.

To analyse the performance of the system in consuming food: the number of the total bites
Fiot = Fseer + Fparasite it is considered. Fier is the number of total times that agents touched
food sources (Eq. 3.18) and Fpurasite i the number of total times that agents touched other
sated agents (Eq. 3.19). In table 3.4 it is reported the foraging performance (average + range)
over 100 simulations and it can be noticed that adaptive communication provides the best
performance only for scarce resources and an equal performance for abundant resources.

Seekers,parasites number for N=20,M=4

CHAPTER 3. RESEARCH WORK

Seekers,parasites number for N=20,M=18

I I non adaptive 20 non adaptive
— 7’ ””” - seekers
150 . parasites ' 15
2 : @
c | 7 c
@ 5 , {mmmmm s -
210 <10 i i LA
* j * i G
5l seekers 51)
b | parasites
o~ ‘ ‘ : s 0— ‘ ‘ ‘ ‘
0 200 400 600 800 0 200 400 600 800
Time Time

(a) Case considering scarce resources: in
non adaptive-communication only seekers are
present (top line is constant to 20 agents), in
adaptive communication sub-system forma-
tion is achieved and parasites become more
than seekers after 80 seconds

(b) Case considering abundant resources: in
non adaptive-communication only seekers are
present (top line is constant to 20 agents),
in adaptive communication sub-system for-
mation is achieved and parasites are in equi-
librium with seekers after 200 seconds

Figure 3.10: A typical single run of the system which shows different cases.

Table 3.4: Table summarising foraging performance over 100 simulations. With scarce re-
sources, performance is superior using adaptive communication, with abundant resources per-
formances are equal since food distribution through parasites is not essential.
Ratio N/M 20:4 20:18
Adaptive communication Fiot =396 +2 Fipy =319+2
Non-adaptive communication Fy,; =355+2 Fyop =319+2

Honest behaviour and limited resources

In this scenario the agent honestly signals the presence of food which is limited in time. For
this simulation, a population of N = 20 agents is provided with M = 4,10, 18 food places
sequentially. Population dynamic is observed for a total duration of T;,, = 80000 (time step
AT = 0.01seconds). The population ratios of seeker to parasites (r(Tsm)) at the end of the
simulation for every case M = 4,10, 18 are respectively r(Ts;m) = 5/15,8/12 and 10/10.

e in non-adaptive communication: parasites are absent (also with aggressive configura-
tion see 3.28), suggesting that adaptive communication is a necessary condition for the

generation of sub-systems.

e in adaptive communication parasitism is a quasi-stable condition. With scarce resources
(M = 4), after 600 seconds, the number of seekers (see Fig. 3.11 (a)) stabilize to 5. With
abundant resources (M = 18), after 600 seconds, the number of seekers (see Fig. 3.11
(b)) stabilises to 10. After 800 seconds (data not shown) small oscillations around the
stable point occur in both cases, suggesting that the system has reached an attractor.

e the population ratio between seekers and parasites r(Ts;,,) depends on the ratio between

3.1. INTRODUCTION: SOCIAL MODELLING 7

Number of seekers and parasites for N=20,M=4 Number of seekers and parasites for N=20,M=18

20 - 20
non adaptive non adaptive
150 iU — 13
” : "' parasites ” ? parasites
g : g L T I 2
210 <10 I ! '
#* #* BRI
o seekers ’ seekers
5r i 5!
II :
; !
! i
05 : ; ‘ ‘ % 200 400 600 800
0 200 400 600 800
Time

Time
(b) Case considering abundant resources: in non

(a) Case considering scarce resources:

adaptive-communication only seekers are present adaptive-communication only seekers are present

(top line is constant to 20 agents), in adaptive (top line is constant to 20 agents), in adaptive

communication sub-system formation is achieved communication sub-system formation is achieved

and parasites become more than seekers after 200 and parasites are in equilibrium with seekers after
200 seconds

in non

seconds
Figure 3.11: A typical single run of the system which shows different cases: self organisation

with honest behaviour and limited resources

the number of robots and the number of food sources N/M:

4) parasites are prevalent: np(Tsim) = 1561 >

— with scarce resources (M =
Ns(Toim) =5+ 1.

— with abundant resources (M = 18) seekers and parasites are in dynamical equilib-
rium (oscillate around the stable point after Ty, steps): n,(Tsim) = 10 £ 2 and

s (Taim) = 10 £ 2.

An explanation for the prevalence of the parasitic population with scarce resources is due

to the space constraints of the food places: only few agents (in our case 9) can forage at the
same time, therefore agents ”transport” food for the others. When resources are abundant this

constraint is removed therefore parasitism is not essential.

To analyse the performance of the system in consuming food: the number of the total
bites Fiot = Fsecek + Fparasite it is considered. Fieqr is the number of total times that agents
touched food sources (Eq. 3.18) and Fjgrqsite is the number of total times that agents touched
other sated agents (Eq. 3.19). In table 3.5 the foraging performance (average + range) over
100 simulations is demonstrated and it can be noticed that adaptive communication provide
the best performance in term of food foraging for scarce and abundant resources. Why is the
performance better than the unlimited case? Because this time the food resources are limited
in time and space, so even when there are a lot of food resources the agents must collaborate

to maximise the food collection.

76 CHAPTER 3. RESEARCH WORK

Table 3.5: Table summarising foraging performance over 100 simulations. Adaptive communi-
cation has the best performance for both scarce and abundant resources.

Ratio N/M 20:4 20:18
Adaptive communication Fiop =439+2 Fip; =340+£2
Non-adaptive communication Fj,; =320+2 Fpoy =230+2

Stability analysis for changes in population

Every self organizing system should be stable to external variations in the parameter space, this
property is generally known as robustness to variation. If the number of agents are changed
during simulation the system reacts promptly and stabilize to a new state. In Fig.3.12 seekers
are stabilised in the range 4 + 1, when 6 more agents are added at time 400, seekers stabilize
again in the range 74 1. Table 3.6 contains a summary of the system reaction to different sets
of disturbances for 100 simulations.

Initial agents 16, 4 agents are added

T 4 agents added

0 200 400 600 800 1000
Time

Figure 3.12: Simulation starts with 16 agents, then 4 agents are added after 400 seconds.

This property indicates that the system is robust to a variation in the number of agents:
the system will adjust automatically to the new equilibrium with a certain response time. The
system is also robust to a variation in the food resources, although with a slower response time
(not shown in the Figure). This stability is a good feature especially for real implementation
of social systems where disturbances from the environment are likely to occur very often and
the designer is certain that the system will be stable enough to keep with the foraging task.

3.1. INTRODUCTION: SOCIAL MODELLING (s

Table 3.6: Table summarising system stability to different disturbances for 100 simulation runs.
Each cell contains the settling time and the number of seekers after the addition of n agents
at time step 400.

Ratio N/M 20:4 20:10 20:18
After adding 4 agents 503 £2 506 +2 50 7 £2
After removing 4 agents 657 +2 659 £2 65 10 +2
After adding 10 agents 762 +2 763 +2 765 £2

3.1.10 Discussion: sub system formation in the social model

The simulations of a social system based on pro-active learning agents has shown very promising
results. First of all the system self-organizes by means of individual specialization to the
environment conditions which are the number of agents and number of food resources. Agents
are based on a simple, yet effective learning mechanism called ICO which can be extended
to implement competitive behaviours. Because internal processing is avoided, agents respond
to the changes of their environment in a timely fashion. The system is able to generate sub-
systems as Luhmann proposed by means of communication: the agents reduces the complexity
of the environment by selecting only one behaviour out of two possiblee ones. This selection is
mediated by the communication of the food status which allows the agent to make a choice or
selection. By doing so every group of agents is more predictable in respect to each other thus
generating a self-organizing collective behaviour which can be identified by the two subsystems.
Other embodiments for the learning controller could have been chosen, for instance with Q-
learning (Watkins and Dayan, 1992) reactive agents are given a description of the current state
and have to choose the next action so as to maximise a scalar reinforcement received after each
action. The task of the agent is to learn from indirect, delayed reward, to choose sequences
of actions that produce the greatest cumulative rewards. Reinforcement learning algorithms
attempt to find a policy that maps states of the world to the actions the agent ought to
take in those states. In economics and game theory, reinforcement learning is considered as
a boundedly rational interpretation of how equilibrium may arise. Reinforcement models for
MAS suffers of 2 disadvantages:

1. complexity may be exponential in the number of environmental states.
2. discrete models: agents choose from a set of actions in a discretised world

This problem is crucial in MAS: when an agent is learning the value of its actions in the
presence of other agents, it is learning in a non stationary environment. In Haitao et al. (2000)
a novel exploration strategy, for the Q-algorithm applied in a predator-prey game to obtain
convergence, is introduced. Unfortunately the cost of communication in their model is very
expensive, so they discuss only the case without communication. Our learning rule 1ICO, is
unsupervised and is computationally efficient (since it does not rely on states) and inspired on
the evidence that organism tends to maintain a weak homoeostasis with the environment as
demonstrated by McFarland (1993). However some researchers argue that also ICO learning is
a simplified form of Q-learning by identifying the reward signal as the reflex of the organism:

78 CHAPTER 3. RESEARCH WORK

the biological difference here is that the reflex reward is something evolutionary wired whereas
the reward is usually artificially encoded in the environment. Therefore we could say that also
ICO learning is also supervised but more biologically plausible. In Tan (1997) Q-learning is
applied in a predator-prey game, where agents cooperate in different ways. It is interesting
to analyse the communication method called sharing sensation. The model is composed of 1
hunter, 1 prey and a scouting agent. At each step, the scout sends its action and sensation back
to the hunter: the hunter relies initially on his sensation and then on the scout’s sensation.
Therefore the scout can be compared in our model as the distal signal: hunter can see the
prey at longer distances. Performance (number of steps to capture a prey) is then compared in
the 2 cases: scouting versus no scouting. Performance is superior in the scouting case ,as well
as in our model performance, it is superior when agents use both proximal and distal signal
(see table 3.4). Another approach used to develop communication in MAS is in Floreano et al.
(2007) where a genetic-algorithm is used to evolve 1000 robots (divided in 100 colonies). The
control system used is a feed-forward neural network with 10 inputs and 3 output neurons.
The network was encoded using a genetic string of 240 bits. Synaptic weights are only evolved
and not learned and robots had a sensory-motor cycle of 50 ms. Our controller makes use of
12 inputs (2 more) and 2 motor neurons + 1 the Gsatedness signal, but does not use a sensory-
motor cycle allowing fast responses. Thus Floreano et al. (2007) makes use of genetic selection
and recombination to produce robots behaviours (communication strategies). Hence the agent
system do not self organise in classes. Other similar works, making use of evolved recurrent
neural networks (RNNs) are reported in Wischmann and Pasemann (2006) and Marrocco
and Nolfi (2006). In Marrocco and Nolfi (2006) a population of agents evolved for the ability
to solve a collective navigation problem develop individual and social/communication skills.
A particular evolved behaviour resembles our system differentiation: “a differentiation of the
modalities with which communication is regulated (... e.g. specialised asymmetrical interaction
forms in which one robot acts as a speaker and one robot acts as an hearer)”. In Wischmann and
Pasemann (2006) the evolutionary adaptivity of RNNs to varying environmental conditions,
such as the number of interacting robots is studied. In my model the system specializes in a
group that gets the food and distributes it (seekers) and the other one (parasites) collects it.
The communication strategy was robust only for small changes. In our model, agents adapt
continuously to the environment, they self-organise efficiently with varying robot number N
and varying M food sources. Moreover the system converges to a quasi-stable state thanks to
the stability provided by the learning rule. The system performance in terms of food foraging
behaviour was analysed for a honest and dishonest signalling strategy both in terms of food
distribution and in terms of total energy acquired. This study can be used to predict the
performance of a social robotic system in a real test case so that the designer can choose the
parameters according to the desired performance. In the following sections, I will introduce
input measures that quantify the agent performance and information selection as suggested by
Luhmann.

3.2 An input based information measure for adaptive con-
trollers

This Section describes the development of an information measure to assess the learning per-
formance of the, previously described, learning agents in the social system.

3.2. INTRODUCTION: INPUT BASED MEASURE 79

Therefore the main purpose of this Section is to introduce a couple of correlation based
performance measures which are computed at the sensory inputs of the agent. The first measure
is called maxcorr, is very simple and can be computed in real time without any probability
estimation. The Maxcorr measure can then be normalised by using a logarithmic approach
to express the learning performance in terms of bits and thus is called AI measure . The
simplicity of the Al measure derives from the dependency on the representation used by the
controller/agent, but it has the disadvantage of not being general, as described in the discussion.

3.2.1 Introduction to the maxcorr input measure

This section describes an information measure suitable for closed loop controllers that makes
use of temporal unsupervised learning. It can be applied for example to ICO/ISO learning,
differential and temporal Hebbian learning. This information measure estimates how much the
agent /controller has learnt and is directly correlated to the weight change of the learning rule
used. The measure is based on the agent’s perspective (at the input side) rather than at output
side as previous approaches. Looking at the output is equivalent to analysing behaviour and has
a disadvantage: agents adapt to the complexity of the environment thus even a simple reactive
agent has increasing complex behaviour in an increasingly complex environment (Nolfi, 2005).
As T argued before in the previous Section 2.5, organisms perform input control because neural
activity (motor output) generates other neural activity (sensory input) and so it is clear that an
input measure can capture the performance of any agent, especially the one that are based on
ICO/1ISO controllers which performs input correlation. Input control is a closed loop property
and is agent centric, whereas output control is observer centric. To my best knowledge, this
is the first approach for the closed loop case, which is not based on the traditional concept of
Shannon’s entropy. In this model agents are learning to avoid obstacles and each other using a
proximal signal (touch sensor as pain) and a predictive signal (vision). An information measure
is computed on these inputs to verify if the agents are learning. Firstly the author introduces
the information measure based on the cross correlation of the agent inputs, then he applies the
measure to two types of agent controllers (a complex and a simplified model) for an avoidance
task with multiple agents. Finally the measure is computed on the social setting described in
section 3.1.

3.2.2 Methods: controller assumptions

The following assumptions were made for the development of the measure:
e the controller is a MIMO (multi input multi output) or MISO (multi input single output)
e input signals can be analog or digital

The closed loop measure is based on the cross correlation to be applied to the input signals
(minimum is 2) of the adaptive controller. Cross correlation of two real analog signals z(t), y(t)
of a real variable ¢ (in our case time), denoted as corr(z,y) is defined by:

oo

corr(z,y,t) = / x(t+7),y(r)dr (3.42)

— 00

Cross correlation for realisable devices (software or hardware implementations) must be com-
puted in finite time, that means computing the cross correlation in a limited time window

80 CHAPTER 3. RESEARCH WORK

T
corr(z,y,t) = /t x(t+7),y(r)dr (3.43)

Cross correlation for digital signals (sampled analog signals) as two discrete time series z,,, yn,
with n = 1,.., N is defined as:

N—m—1
Ryy(m) = Z TntmYn m >0 (3.44)
n=0
Ryz(—m) =0 m <0 (3.45)
Coy(m) = Rgy(m —N) m=1,2,...,2N -1 (3.46)

The cross correlation give a measure of the linear synchronisation between = and y. Its
absolute values are normalised in the range from zero (no synchronisation) to 1 (maximum
synchronisation). The cross correlation is symmetric: cgy(m) = ¢y z(m). Peaks in the cross
correlation signal determine the phase delay between signals (for other cross-correlation varia-
tion see 5.5.1).

The next section describes a complex model for an avoiding robot using the ICO learning
rule.

3.2.3 Methods: complex model configuration

The simulation model is composed of a 2 dimensional world bounded by walls as described
before in Chapter 3.1.1. The agents are indexed by their position as a;(t), where a; has 2
components (x,y coordinates indexed by a; , and a;,), with j = 1,.., N. Agents move with a
differential drive system (two wheels).

In this configuration the agent has only an avoidance behaviour:

e left and right reflexes makes him retract when both synapses are active

e left and right distals are being used later on when the agent has learned the association
of distal to reflexes.

Agents and walls are obstacles. Agents produce obstacle signals. Every agent a;(t) has a
potential field associated (see Eq.3.1):

Gavoid;(t) = G(x — aj (), y — ajy(t)). (3.47)

that is sensed by the corresponding inputs of other agents a(t) (with & # j) labelled as
avoidie ftright- Walls don’t produce Guyoia, S0 that agents sense them using proximal signals
that are generated by collisions: when 2 distinct agents 7 and [collide at time ¢y, such that
l|aj(t) — ai(t)||2 < D (D is the radius of the agent) an impulse is produced at avoid;,. The
agent’s controller, (shown in Fig. 3.13) is composed of:

e two input synapses: left and right with one reflex and one distal signal per synapse.

e two ICO neurons: left and right cross connected as left synapse with right motor and
right synapse to the left motor.

3.2. INTRODUCTION: INPUT BASED MEASURE 81

) learning synapse » fixed synapse

Figure 3.13: Avoidance network: ICO left and right are two neurons implementing the ICO
learning rule, their output is a sigmoid and is connected (after normalisation into [Vmin, Vmaz])
to the motor speed commands. Grey triangles represent distal inputs, while white triangles
represent proximal inputs. The learned synaptic weights are associated to the distal synapses
(thick lines) while the fixed are associated to the proximal synapses (dotted lines). To produce
a retraction behaviour left and right weights must be different such that Wpy,egict,z. > Wpredict,r
and Wreflem,L > Wreflez,R7 if Wpredict,L = Wpredict,R and Wreflez,L = Wreflcm,R robot will
just go back without turning.

e two output motors: respectively for the left and right ICO neuron connected to the left
and right motor speed.

Every ICO neuron (left and right) has 2 corresponding reflexes (left, right short range
sensors) connected:

20,1(t) = avoidpropr(t) 20 (t) = av0idproq (1) (3.48)
and 2 corresponding predictive signals (left, right long range sensors) connected:
x1,(t) = avoidgist r.a,(t) x1,(t) = avoidgist,i.4, (). (3.49)

The neural controller for the avoidance behaviour is shown in Fig. 3.3 (Stamm, 2006), every
ICO neuron (left and right) computes the following operations:

ICOL(t) =B —hx* 20,0 * Wrefleal, — h 1, - WpredictL (3-50)
+WselfL . ICOL(t - 1) + WLQR . ICOR(t)
ICOR(t) =B-—-hx Zo,l - WreflezR — hx T1,1 WpredictR (351)

+WselfR . ICOR(t — 1) + Wga - IOOL(t)

The parameters used for the weights, the bias and the recurrent connections are reported
in the Appendix sections 5.2.4,5.2. The recurrent connections between the left and right ICO
neuron, are necessary to implement a push-pull behaviour so that when the robot synchronously
activates both the left and the right input, only one ICO neuron will dominate thus evoking

82 CHAPTER 3. RESEARCH WORK

a turn-back response. Connections between input synapses and ICO neurons (motor neurons)
are negative to evoke a retraction. The motor output is calculated with a sigmoid activation
function on the ICO neuron membrane as follow:

1
VL = 1 + eflcOL (352)
1

Ve = {ro1con (3.53)

The weight update learning rule is calculated for the weights:

OWpredict,L Oz,
) _ . J .54
5 pom— (3.54)

a predict,R o 8370,7"
W e = w2 (3.55)

3.2.4 Methods: cross correlation and ICO learning

Cross correlations are computed for the left and right synapse at fixed non overlapped time
windows AT expressed in seconds. Considering Eq.3.46 Ny = AT /dt is the number of samples
in a time window of AT with a 0t as sampling time. Left and right cross correlations are
computed for every non overlapping time window k£ = 1,2, ...

xeorriep (k) = corr(H(z1,), H(xo,)) = corr(ui,, uo,) (3.56)
xcorrrignt(k) = corr(H(x1,.), H(xo,r)) = corr(ui r, to,r) (3.57)

where k is the index of the time window where the cross correlation was computed, H is a
high pass filter that removes the constant component (generally referred as DC) from the
cross correlation diagram. Removing the DC' bias is necessary for the application of statistical
measures (see Appendix 5.5.1). In my the bias removal is already taken care by the high pass
filters as shown in Figure 3.13. For every time window k, I computed the maximum max,
energy E,power P of the left zcorrics:(m, k) and right xcorryign:(m, k) cross correlation plus
the average of the weight change for left and right Wp,cdict,r., Wpredict,r-

M(zcorries(k)) = max(xzcorriess(m, k)) (3.58)
m

M (zcorryigne(k)) = max(zcorrpigni(m, k)) (3.59)

E(xzcorricsi(k)) = S aeorriepi(m, k)? (3.60)

E(zcorrrigne(k)) = > xcorryigni(m, k)? (3.61)
> zcorneft(m,k:)z

P(xzcorricsi(k)) = o (3.62)
> xcorr,,yight(m,k)z

P(xzcorrrignt(k)) = Y AN (3.63)

ZWpred'ict‘left(m"'st)
Avg(Wpredict,lefta k) = - N, (3.64)

> Whredict,right (m+kNs)
Avg(Wpredict,rightv k) = = N, (365)

3.2. INTRODUCTION: INPUT BASED MEASURE 83

The reason why I have computed this values for the left and right synapse is that these weights
develop independently from each other as in Eq. 3.54,3.55. Since energy and power are related
measures only energy is computed (see Appendix 5.5.3). The average of the weight change
for the left and right distal synapses is computed to validate the information measure for the
result section.

3.2.5 Methods: a simplified model

The agent controller can be over simplified by using only one weight and thus one ICO controller
for the avoidance behaviour. The difference between the left and right far antennas provides
1 and the difference between the left and right near short antennas provides xy. The band
pass filters in Fig.3.14 generate ug,u; that are damped waves if xg,z; are delta pulses. The
transfer function of the band pass filter is specified in the Laplace-domain as:

1
h(t) < H(s) = GipGTr) (3.66)
h(t) = %e“tsin(bt) (3.67)
g
0« = (3.68)
b = JrfE—a (3.69)

where p* represents the complex conjugate of the pole p = a+1b, f is the oscillation frequency
and ¢ is the quality factor of the filter. ICO correlates the predictive signal u; with the reflexive
signal ug according to the formula:

dwl dU()

where wy functions now as the weights of the more complex model in Eq. 3.54,3.55. Then
the output z of the controller is used to control the steering angle of the robot such that an
obstacle on the left ug > 0 will produce an anticlockwise turn, whereas an obstacle on the right
ug < 0 will produce a clockwise turn. The controller learns to avoid the error signal ug using
the predictive signal u;. Fig.3.14(A) illustrates how the learning is achieved and (B) describes
how the agents interact with the world. A purely reactive agent has only a reflexive behaviour
via ug and will never learn to avoid the loop error signal ug: it will touch the obstacle and
produce a trajectory like (1). When the agent starts to learn (wy > 0) it will use the u; to
prevent ug, thus avoiding the obstacle before touching it like the trajectory in (2). Figure
3.14(C) shows how the reflex signal is shifted forward in time and reduced in amplitude due
to the anticipatory motor reaction of the controller.

3.2.6 Methods: anticipatory information

Within the simplified model, the equations in 3.58 and 3.59 collapse in a unique value which
is defined as cc(t) as in Eq. 3.71. Intuitively the information measure grows when the agent
is using anticipatory information and is zero when the agent is not able to predict its reflex.
Before learning the predictive signal u; is followed always by the reflex signal uy with the same

84 CHAPTER 3. RESEARCH WORK

B
)
. (1)
o -
\«"’\,:')
obstacle
.
<0 X,
antennas
motors
H
J

—
time shift T

Figure 3.14: A) Schematic diagram of the closed-loop learning system with inputs xg and 1,
synaptic weights wy and w; and motor output z. Py and P, are the transfer functions of the
reflexive and the predictive pathway. BP block is a 2 pole band pass filter. B) Agent setup with
short range antennas (reflexive inputs, () and long range antennas (predictive inputs, z1). The
agent is learning to avoid obstacles and walls using its short and long range antennas. The
motor reaction will reduce the intensity of the painful reflex zy as well as delay its occurrence.
C) Schematic diagram of the input correlation learning rule and the signal structure (Porr and
Worgdtter, 2006). The uy and uq are respectively the difference between the filtered values of
the left and right antennas of the agent. During learning the uy peak will be shifted in time
and reduced in amplitude.

3.2. INTRODUCTION: INPUT BASED MEASURE 85

amplitude, while after learning the amplitude of ug is likely reduced. An ideal learner will be
able to reduce totally the reflex ug to 0. One will also notice that generally, after learning, the
reflex ug will not only be reduced but also delayed in time.

A before learning learning

LA r\r\r\,
MR TR

g W/2 I«
C cc(0) D
""""""""""""""""" cc(t>0)
AN FA AT anflnaly
O————— W Of————— W

Figure 3.15: A) Illustration of the signals u1, ug of a non learning agent. The peaks are periodic
but off phase and with same amplitude. B) Same time diagram for a learning agent. C) Cross
correlation of u; and ug for the non learning case. D) Cross correlation of u; and wg for the
learning case.

Fig.3.15 shows a typical temporal diagram of events for a non learning agent A and for
a learning one B. If one takes the cross correlation between the u; and ug for both cases, it
is possible to understand by the cross correlation which agent is learning and which one is
not. For instance the non learning agent has a cross correlation that is not shifted in time
and reduced in amplitude like in Fig.3.15(C), while a learning agent has a cross correlation
that is shifted in time and reduced in amplitude like in Fig.3.15(D). My purpose is now to
quantify this performance by using an information based measure in terms of information bits.
Therefore a normalised version of cc(t),Al is computed in 2 steps:

ce(t) = max(i u1(t) - uo(t + 7)) (3.71)
AI(t) = —5092(25((3))) (3.72)
0< Zz((é)) <1 (3.73)

cc(t) is the maximum of the cross correlation between the error signal and the predictive signal
in the time window W that must be sufficiently large to take at least a pairing of w; with
ug when learning is off. cc(0) is the maximum of the cross correlation computed when the
agent is not learning, whereas AI(t) takes the ratio between the current and the initial cross
correlation, thus the argument of the logarithm will range from 0 to 1 because the correlations
following the first one can at least be equal to the first one. When learning is off, the agent’s
predictive signal precedes the reflex signal whose amplitude is not reduced hence AI ~ 0, when
learning is on, the agent learns to reduce the error ug, using an earlier motor reaction elicited

86 CHAPTER 3. RESEARCH WORK

by w1, thus the Al — oo in the ideal case of perfect learning. In terms of information bit, a
reduction of cc(t) by half can be interpreted as an improvement of 1 bit as discussed in the
results section. In terms of information, if the agent is learning continuously the number of
bits of the AI will increase in time until the agent has completely avoided the reflex. In the
next section I go back to the complex model and compute the cross correlation and energy for
the left and right synapses. After that I will perform a benchmark of Al for a the simplified
model. Both measures are taken in a multi agent scenario to see the effects of multiple learning
agents. I then compute the Al for the simplified model in the social system and draw some
conclusions.

3.2.7 Results: complex model results

Simulations with the complex model were executed with an increasing number of agents in a
rectangular two-dimensional world with obstacles. The software used to simulate the agents is
Enki an open source simulator for multiple robots interacting on a flat surface. The simulator
implements collisions, physics support (like slip, friction etc..) and features 4 realistic robots.
For our simulations I used a group of Alice robots and setup the experiment as follow:

e N =2 agents and M = 2 obstacles
e N =4 agents and M = 2 obstacles
e N =4 agents and M = 2 obstacles, and an introduction of an agent

Agents for every case are numbered from 0 to N — 1. The world’s area A4 is proportional
of a factor K to the sum of the agent’s area:

N M
Aworld - Ka . (Z Aagent) + Ko . (Z AObstacle) (374)
=1

i=1

where Ayorid;AagentsAobstacte are respectively the area of the world, the area of the agent and
the area of the obstacle. This normalisation technique is necessary to provide approximately
the same amount of sensory events when the area get more crowded. Intuitively speaking, if
I keep the same area and add an increasing amount of agents there will be a proliferation of
collision and thus reflexes as well as predictor events and thus comparison of the measures will
not be reliable. Simulation time for every setup was set to T},q, = 600000 steps, AT = 600,
with sampling time 6t = 0.01 seconds. Learning is switched on g > 0 for ¢ > AT = 600:
the cross correlation of the first time window is computed when agents are only using reflexes
(reactive agents). If I compute the measure for two purely reactive agents as in Fig. 3.16, I
can see that the values are constant for the left and right synapse: the agent is not learning
anything about the causal relations of distal and proximal signal. This is because the ul event
is followed always by a u0 with the same amplitude and thus xzcorr amplitude is steady as
described in the simplified model of Figure 3.15(A,C).

Another important property to notice in Fig. 3.16 is the difference in the offset between
the M (xzcorricsi(k)) left maximum cross correlation and the M (zcorrrign:(k)) right maximum
cross correlation. This is due to the initial bias of the avoiding behaviour for the agent, because
Woredict,L > Whpredict,r and thus the agent tends to turn on the left each time an obstacle is
encountered.

3.2. INTRODUCTION: INPUT BASED MEASURE 87

(A) Maximum value of xcorr window= 600 sec
7000
6000F = ~ RIS .. Lee L eem T el
-~ -” -~ .
~ - ~ - .
5000} AN P4 Left
5 000} = = = Right
2
% 3000}
£ /\/\/\/\/\
2000}
1000
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ |
1 2 3 4 5 6 7 8 9 10 1
(B) Time windows
Maximum value of xcorr window= 600 sec
7000
[01010] SRR .. PR Teelll PR
_ 5000} o
S 4000} = = =Right
g
% 3000}
£
2000
1000
0 L L L L L L L L L J
1 2 3 4 5 6 7 8 9 10 1
Time windows
Figure 3.16: Two agents are moving in the environment without learning u = 0. The

M (xcorriesi(k)), M(xcorrrgne(k)) are computed for each reactive agent, A and B. The measure
is constant: agents are not learning anything from the environment.

Experiment with 2 agents and 2 obstacles Figures 3.17,3.18 show the measures for
N = 2 learning agents and M = 2 obstacles.

o Fig.3.17(a) contains the M (xcorriesi(k)), M(zcorryigni(k)) in the upper panel and the
Avg(Wpredict,ieft, k)s Whpredict,right, k) in the lower panel for the first agent.

o Fig.3.17(b) contains the M (zcorricsi(k)), M(xcorryigni(k)) in the upper panel and the
Avg(Wpredict,ieft, k)s Whpredict,right, k) in the lower panel for the second agent.

e Fig.3.18(a) contains the E(zcorriesi(k), E(xcorrright(k)) in the upper panel and the
Avg(Wredict,iefts k), Wpredict,right, k) in the lower panel for the first agent.

o Fig.3.18(b) contains the E(zcorriesi(k), E(xcorryigni(k)) in the upper panel and the
Avg(Wpredict,ieft, k)s Whredict,right, k) in the lower panel for the second agent.

Each agent this time is learning p > 0 to avoid each other and so the weights are decreasing
Wredict,right, k) like in Fig.3.17(a) bottom, although not equally because the left input is
stronger and does not allow the same amount of learning on the right input. The weight change
reflects the corresponding correlation measure Fig.3.17(a) up, because the cross correlation for
the left M (zcorriesi(k)) = 0 and right M (xcorr,igni(k)) = 0 goes to zero when the weights are
stabilised, indicating that the reflex is not triggered any more when k& > 7.

88 CHAPTER 3. RESEARCH WORK

Oscillation of M (xcorric i right) are present because the agent is learning on average to avoid
the reflex: that means sometimes due to the complexity of the environment some unpredictable
events can still occur. For example agent 1 can appear suddenly in the range of agent 0 which
is already avoiding another obstacle and inevitably will hit either the obstacle or the agent 1.

The energy of the signal is useful to estimate the complexity of the environment composed
by the obstacles and the other learning agents: the more pairing of distal and proximal events
the bigger the energy. Energy is high E(zcorrisi(k)) and E(xcorr,ign:(k)) when all agents are
unpredictable (learning rate is not stable) k < 6 as in Fig.3.17(b),3.18(b) Indeed increasing the
number of agents to IV = 4 increases the level of energy and conversely, decreasing the number
of agents reduces the level of energy.

Experiment with 4 agents and 2 obstacles The same considerations apply to the case
of 4 agents with 2 obstacles. Figs.3.19,3.20 shows the measures for the first group of 2 agents
and Figs.3.21,3.22 shows the measures for the second group of 2 agents.

As with the previous case the maximum cross correlations of each agent go to zero when
the learning is stable. For example agent 2 in Fig.3.19(a,b) stabilises his learning weights
after £ > 6 time windows. Comparing the maximum of the cross correlation for left and right
synapses for all cases, on average it occurs that M (zcorricst(k)) > M (zcorrrign:(k)),Vk: agents
learn more to use the left synapse which therefore is more responsible for the motor behaviour.
As a result the left synapse is more exposed to obstacle signals. Instead the agent in Fig.3.21(a)
learns equally with both synapses and in this case M (zcorricsi(k)) = M(zcorryign: (k)).

An interesting property of the energy F(xzcorrq(k)) is that in all cases it tends to zero
E(zcorrq(k)) = 0 when the weight change is stable Avg(Wpredict,a;k) = 0. But there are
exceptions like cases in Fig.3.20(b),3.22(b) where E(zcorrq(k)) = 0 for k > 5 even if the agent
is still slowly learning. This is due to the fine tuning that happens after the initial learning
step, essentially there are still some minor weak collisions which adjust the weights by a small
factor.

The energy values can be used to for example agent 2 has a peak in the energy value as in
Fig.3.21(b) because there was a great learning experience at k = 4, where the weights’ values
jumped from —0.08 to —0.18. Because the energy value calculates the density of collision
events, it can be used to verify the learning speed of the weight development.

Adding one agent When one more agent is added in the simulation at the time window
k = 6s, the other agents are “surprised” by its behaviour thus they need to adjust their weights.
I am investigating to what extent this behaviour can constitute a basic mechanism of social
teaching: if there are some experienced robots the new ones do not have to learn a lot because
the others are compensating for their mistakes. I can make a hypothesis that there is a critical
mass of new agents when the new ones need to start to learn as well. The reader must remember
that this model is not based on knowledge transfer models of social colonies: the agents are
not learning by imitation. Learning by imitation requires rather complex functions which are
not present in simple organisms or agents like the one used in this simulation.

Fig. 3.23 shows the M (zcorricsi(k)), M (xcorryigni(k)) values for an experienced agent.
When the new agent is dropped in the arena at time window 6, the agent sees it by a peak in
the cross correlation and thus needs to adjust its weights. Unfortunately I did not have any
more time to carry extensive analysis, but it would have been interesting how the performance
of newly introduced agents is affected by the other experience agents. Probably the newly

3.2. INTRODUCTION: INPUT BASED MEASURE 89

Maximum value of xcorr window= 600 sec
7000

6000 ’

50005 A
4000 A

Xcorr)

3000

max

2000
1000

Time windows

Average weight change

-0.05

-0.1F S<
-0.15F ~o

Weight average
7

-0.25 SS

-0.35 L L L L L L L I I |

Time windows

(a) Cross correlation maximum M (cq(k)) for left (straight) and right (dashed)
synapses. Measures from agent 0.

x 10° Energy of cross correlation

L L 4_ L L)

T
1 2 3 4 5 6 7 8 9 10 11
Time windows

Weight change over windows

-0.05

-0.1r S
-0.15f ~
—0.2} ~ o

Weight average
1,

-0.25 S s
-0.31 =

-0.35 I I I I I I I I I |

Time windows

(b) Energy E(zcorrqy(k)) for left (straight) and right (dashed) synapses. Mea-
sures from agent 0.

Figure 3.17: Information measure analysis for N = 2 agents and M = 2 obstacles computed
in k=1,...,11 time windows. Learning is switched on for all agents when (k > 1).

90 CHAPTER 3. RESEARCH WORK

Maximum value of xcorr window= 600 sec

7000
6000
5000
4000
3000

max(xcorr)

2000
1000

Time windows

Average weight change
-0.05

-01| So
-0.151 ~
-0.2f <
-0.251 So

Weight average
4

-0.35

Time windows

(a) Cross correlation maximum M (cq(k)) for left (straight) and right (dashed)
synapses. Measures from agent 1.

x 10° Energy of cross correlation

L L L L L)
6 7 8 9 10 11
Time windows

Weight change over windows
-0.05

—01F ~o

-0.15 ~
-0.2 ~
—0.25} So

Weight average
4

-03f =~

S~
~ -

-0.35

0.4 | | | | | | | | |)
1 2 3 4 5 6 7 8 9 10 11

Time windows

(b) Energy E(zcorrq(k)) for left (straight) and right (dashed) synapses. Mea-
sures from the agent 1.

Figure 3.18: Information measure analysis for N = 2 agents and M = 2 obstacles computed
in k=1,...,11 time windows. Learning is switched on for all agents when (k > 1).

3.2. INTRODUCTION: INPUT BASED MEASURE 91

Maximum value of xcorr window= 600 sec
10000 -

N
8000
6000

4000

max(xcorr)

2000

Time windows

Average weight change

[

j=2

g ~

§ -0.15 N
© ~
z
k=)
S

Time windows

(a) Cross correlation maximum M (cq(k)) when N = 4 agents and M = 2
obstacles for left (straight) and right (dashed) synapses. Measures from agent

0.
x 10° Energy of cross correlation
12r-
N
08
~
~
8r N
> .
o
G 6 A
c A
| . \
r .
\ e’ N ~
2r g RS N
~
0 1 1 Il L L L I J
1 2 3 4 5 6 7 8 9 10 11
Time windows
Weight change over windows
[
j=2]
o
3
5]
=
(=2
©
=
-0.3 1 1 1 1 1 1 1 1 1 |

Time windows

(b) Energy E(wcorrg(k)) when N = 4 agents and M = 2 obstacles for left
(straight) and right (dashed) synapses. Measures from the agent 0.

Figure 3.19: Information measure analysis for N = 4 agents and M = 2 obstacles computed
in k=1,...,11 time windows. Learning is switched on for all agents when (k > 1).

92 CHAPTER 3. RESEARCH WORK
Maximum value of xcorr window= 600 sec

10000

8000

6000

max(xcorr)

4000

2000

Time windows

Average weight change
—-0.05

Left

—0.1f S~el - = =Right

-0.15F ~o

Weight average
’

i -

-0.3 ! ! ! ! ! ! ! I I]
1 2 3 4 5 6 7 8 9 10 11

Time windows

(a) Cross correlation maximum M (cq(k)) for left (straight) and right (dashed)
synapses. Measures from agent 1.

5 x 10° Energy of cross correlation
15F ”n
N
> 4 A}
o L ¢ \
g 1, \
] ’ \
4 \
05 \
/\“- - -
~
~
~
0 | == J
1 2 3 4 5 6 7 8 9 10 11

Time windows

Weight change over windows

Left
S~ - = =Right

Weight average
’

Time windows

(b) Energy E(zcorrg(k)) for left (straight) and right (dashed) synapses. Mea-
sures from the agent 1. Learning starts after the first window.

Figure 3.20: Information measure analysis for N = 4 agents and M = 2 obstacles computed
in k=1,...,11 time windows. Learning is switched on for all agents when (k > 1).

3.2. INTRODUCTION: INPUT BASED MEASURE 93

Maximum value of xcorr window= 600 sec
7000

6000

=
5000

4000
3000

max(xcorr)

2000
1000

Time windows

Average weight change
-0.04

-0.06

-0.08
-0.1
-0.12

Weight average

-0.14
-0.16

-0.18
1

Time windows

(a) Cross correlation maximum M (cq(k)) for left (straight) and right (dashed)
synapses. Measures from agent 2.

x 10° Energy of cross correlation

Time windows

Weight change over windows
-0.04

-0.06

-0.08
-0.1
-0.12

Weight average

-0.14
-0.16

-0.18

Time windows

(b) Energy E(xzcorry(k)) left (straight) and right (dashed) synapses. Measures
from the agent 2.

Figure 3.21: Information measure analysis for N = 4 agents and M = 2 obstacles computed
in k=1,...,11 time windows. Learning is switched on for all agents when (k > 1).

94 CHAPTER 3. RESEARCH WORK

Maximum value of xcorr window= 600 sec
7000 R

6000

5000
4000

xcorr)

3000

max

2000
1000

Time windows

Average weight change
-0.05

-0.1} ~ o

-0.15 S
-0.21 N

-0.25 ~

Weight average

-0.35

Time windows

(a) Cross correlation maximum M (cq(k)) for left (straight) and right (dashed)
synapses. Measures from agent 3.

x 10° Energy of cross correlation

10

L L L L L)
6 7 8 9 10 11
Time windows

Weight change over windows
-0.05

Left
-0.1fF S o = = =Right

-0.15 A

-0.2 .
-0.25 ~
_03 = ~

Weight average

-0.35

Time windows

(b) Energy E(zcorrq(k)) for left (straight) and right (dashed) synapses. Mea-
sures from the agent 3.

Figure 3.22: Information measure analysis for N = 4 agents and M = 2 obstacles computed
in k=1,...,11 time windows. Learning is switched on for all agents when (k > 1).

3.2. INTRODUCTION: INPUT BASED MEASURE 95

7000+ Maximum value of xcorr window= 600 sec An extra agent added at point 6

6000
5000

N
o
o
o

Left
- = =Right

max(xcorr)
w
o
o
(=]

2000

1000 |- ..

Time windows

Figure 3.23: A new agent is introduced for t=6, the other agents needs to adjust their weights
to the new “unpredictable” friend.

introduced agents wouldn’t require a lot of learning as the others are already successfully
avoiding.

3.2.8 Results: simple case results

In this simple case there are 2 agents navigating in a rectangular space with a number of 2
obstacles that are placed randomly in the environment (see Appendix 5.2.6). Every simulation
is run for T' = 30 minutes with a time step of A = 0.01s, the window for the correlation is
W = 10 seconds, therefore cc(t) is computed for ¢ = 1,2, ..., 180.

Anticipatory information is averaged over 100 simulations: every simulation is randomised
in terms of the robots’ and obstacles’ initial positions. In the first time window the learning
of the agents is switched off and cc(0) ~ 0.7071 because the reflex of the agent is already
preventing a full force impact, whereas for cc(t > 0) < 0.7071 because the impact of the
collision can only be equal or decreased.

Fig.3.24(B) shows that AI increases and stabilises to 6 bits when agents have learned suc-
cessfully: they are using 6 bits in the predictive loop to reduce the reflex. Instead non learning
agents are not using any bit to reduce the reflex. The noise visible in Fig.3.24 is due to the
random repositioning of the obstacles and random collisions. In a perfect world if agents were
able to avoid perfectly cc(t) ~ 0 and so AI(t) — oo.

3.2.9 Results: simplified social model results

I apply now the AI measure to a social system such as the one published in Di Prodi et al.
(2008) and described in section 3.1 where a social system whose task is cooperative food
foraging. As for the avoidance case the agents learn how to use the distal sensors to approach
food (to increase their energy) or other agents (to get their energy). Agents can forage directly
from the food patches (see Fig.3.25(B)) or reduce the energy of other agents who have previously
got food (see Fig.3.25(D)) .

Thus every agent has two competitive signals: one from the food patches and one indicating
the energy level of the other agents. Indeed when antennas are in contact with another agent

96 CHAPTER 3. RESEARCH WORK

A . _ convergence
no learning learning Al= 6 bits

AI=0.05 bits AI=3 bits

obstacle

......
O 0
.
o,

o
o
'.

Anticipatory Information

Agent1
= == = Agent2

6 . o 3

sk learning agents

il non learning agents

0 20 40 60 80 100 120 140 160 180
Time windows

Figure 3.24: A) Two agents are learning to avoid obstacles in a closed rectangular world. At
the very left the agent is only reacting to the obstacle thus Al ~ 0, at the very right the agent
has learnt successfully how to exploit the predictive signal u; to avoid the contact thus AT > 0.
B) Anticipatory information computed for 2 learning agents. When learning is stable it reaches
a baseline level, AI(t) ~ 6 bits. If agents are not learning the anticipatory information is low
AI(t) =~ 0.5 bits, because cc(0) ~ 0.7071.

3.2. INTRODUCTION: INPUT BASED MEASURE 97

with high energy they produce impulses on x; . for far contacts and on z¢ . for near contacts,
whereas when they are in contact with a food patch they produce impulses on z; ¢ for far
contacts and on xg s for near contacts.

Therefore the agent has 2 learning weights w; . for energy and w; s for food that both
contribute to the motor output. When the simulation starts, all agents have w; . = wy ¢ and
therefore they approach any object because according to the situation they will choose the food
or the nearby agent. Nevertheless during the simulation some agents (the seekers) will become
more attracted by the food wi . < wq s, while the others (the parasites) will become more
attracted by the other agents with energy wy . > wi r. An agent changes class or behaviour
when the weights are swapped i.e. a seeker wi . < wi,y becomes a parasite wi . > wi s (or
vice-versa) thus contributing to the system instability.

The bar diagram of Fig.3.25(E) shows for every time window how many times this swap
has happened.The system self-stabilises to a number of seekers and parasites whose number
depends on the available resources: in this case with 4 food resources there are 6 parasites and
4 seekers. With more resources e.g. 10, there will be 6 seekers and 4 parasites.

Luhmann theorised that sub-systems are formed to reduce the complexity of the perceived
environment: in this case this means that agents are discarding part of the closed loop informa-
tion. This process is shown in Fig.3.25 by computing AT for the energy and for the food signal.
The AI(u1 e, uo,e) = Alenergy represents the anticipatory information for the energy attraction
and the AI(ui f,u0,f) = Alfooq for the food attraction. For seekers the Alfooq > Alcnergy
increases as the system differentiates and conversely for the parasites Alepergy > Alfood- In
term of information it means that seekers are using Alf,0q — Alenergy = 2 bits more to reduce
the energy signal, whereas parasites are using Alenergy — Alfood = 2 bits more to reduce the
food.

3.2.10 Results: differentiation and information measure

I then computed the zcorr(k) measure in the same social model (Di Prodi et al., 2008). The
Fig.3.26 is the outcome of the computation on a group of N = 10 robots and M = 2 food
places, where the systems develops 6 parasites and 4 seekers. In Fig.3.26 (A) for the 4 seekers
the information measure of the food’s signal is smaller than the average information measure of
the agent signals. This means that the seekers learn to use only one signal out of two in order
to simplify the closed loop model. In Fig.3.26 (B) for the 6 parasites the information measure
of the agents’ signal is smaller than the average information measure of the food’s signals. This
means that the parasites learn to use only one signal out of two in order to simplify the closed
loop model. As I expected when the system is not stable Fig.3.26 (C) -the agents are switching
their class- the information measure for the food signals and the agent signals are crossing each
other, but when the system becomes stable - switching rate is approaching 0- I can see that
the two information measures start to separate.

The results shows how each agent selects only one input out of two and thus makes its
environment more predictable. Luhmann theorised that in society, specialised groups emerge
when they reduce the uncertainty of the environment-system boundary in a recursive process.
The model’s results validate his theory because agents are selecting to use one information
rather than the other one to simplify the model of the environment’s loop.

98 CHAPTER 3. RESEARCH WORK

A Parasites Al
8r B
z 6 o@
@ g ener: .
= gy AZTerne
Q 4L & te,
o4 O T TP L PR UP PR E e o,
N . °
2. A YES -
- parasite
0 i i i i i i i i i
0 20 40 60 80 100 120 140 160 180
Time windows
C Seekers Al D
8-
. m— Energy
n =msm Food
35 6r .yfwn'-‘;“.d'u\l\m¢wW\MJ:*ﬁ'a- ol (;food ‘y’
= G
-~ 4 o
iC))/ 4r "’ N A= A ’\‘ Q
ch; 2 2 ;
- seeker
0 i i i i i i i i i
0 20 40 60 80 100 120 140 160 180
Time windows
E Switching rate
10 T T T T T T
» 9r
5
> 8
©
o 7
k=
S e
‘% 5
2
o 4
2 s
E
= 2
4
0

20 40 60 80 100 120 140 160 180

Time Window

Figure 3.25: B) A parasite is an agent that prefers an energy signal to a food one. D) A
seeker is an agent that prefers a food signal to an energy one produced by another agent. B)
For parasites the anticipatory information for food is less than that one of the energy. C) For
seekers the anticipatory information for energy is less than that one of the food. E) There are
a total of N = 10 agents of whom 6 turn into parasites, and 4 turn into seekers after 20 time
steps. The system stabilisation is a function of time: at the very beginning agents are using
both signals and their behaviour is unpredictable because they are switching between the 2
competitive behaviours. After 20 time windows the agents have a more predictable behaviour
resulting by the selection of the information. Minor oscillations are again due to the noise
resulting from the interaction between learning agents.

3.2. INTRODUCTION: INPUT BASED MEASURE 99

=
=4

x

Time windows

6 parasites 2 food places: max correlation

-
PR Al 7S average food corr

.
4 5 6 7 8 9 10 1
Time windows

number of agents switching class

- N W A~ o

1 2 3 4 5 6 7 8 9 10 "
Time windows

Figure 3.26: The information measure computed on a group of N = 10 robots. (A) information
measure computed on the 4 seekers and compared to the average measure of the 6 parasites.
(B) information measure computed on the 6 parasites and compared to the average measure
of the 4 seekers. (C) The switching rate: how many agents changes their class for every time
window. The system is stable when the switching rate is 0, in this case after 7 windows.

100 CHAPTER 3. RESEARCH WORK

3.2.11 Discussion

Devising a measure which affects learning in agents in a closed loop is a challenging task.
Therefore it is necessary to make the right assumptions: in my case the agent is performing
input control (as described in Section 2.2.2) and so is necessary to measure how the predictor
changes in respect of the reflex. The same maxcorr or AI measure cannot be applied
to agents which performs output control such as in the traditional artificial neural networks
trained on the desired output and not input. Shannon’s entropy was also applied to closed
loop controllers as in Touchette and Lloyd (2000b) which considers the perception action-loop
in terms of a communication channel-like model. Also Polani et al. (2004) recently has been
using the same approach: the perception-action loop enables an agent to use its actuators as a
channel to transmit information into the environment. The information can later be acquired
from the environment by the same agent or other agents. In our measure there is no such
transfer channel: temporal information relevant to the agent is computed only at the inputs
which contains the feedback of the outputs. It is simple and easy to compute and it does not
require the modelling of the agent’s controller as an information channel. Recently, Polani
et al. (2001) has been working on evolving sensors and has introduced an operational notion
of Shannon-type quantification of relevant information:

e it quantifies relevance with respect to a given agent or decision system.

e it yields a measure for the usefulness of sensors or about an agent’s state of knowledge
with respect to a POMDP (Partial Observable Markov Decision Process)

The problem of this approach is that it requires a discrete formulation of an agent, and its
application to a general controller is not possible. The limit of the maxcorr measure is that
it is dependent on the particular implementation of our controller and cannot be applied to
other adaptive algorithms unless they are based on a similar temporal input structure. The
second issue of the maxcorr is that - although normalised - it does not give an indication of
the capabilities of the agent. The AI measure was then introduced to quantify the learning
behaviour in terms of bits but it does not provide an axiomatic framework and thus is mathe-
matically weak. Therefore in Section 3.3, I developed a more advanced measure based on the
concept of information flow which is inspired by the work of Pfeifer et al. (2008).

3.3 Information flow for adaptive controllers

This Section describes an improvement of the previous information measure described in Sec-
tion 3.2. The new theoretical framework, based on Shannon’s communication theory and on
Ashby’s law of requisite variety, is suitable for artificial agents using predictive learning. The
framework quantifies the performance constraints of a predictive adaptive controller as a func-
tion of its learning stage. In addition, I formulate a practical measure, based on information
flow, that can be applied to adaptive controllers which use Hebbian learning, input correla-
tion learning (ICO/ISO) and temporal difference learning. The framework is also useful in
quantifying the social division of tasks in a social group of honest, cooperative food foraging,
communicating agents. Simulations are in accordance with Luhmann, who suggested that
adaptive agents self-organise by reducing the amount of sensory information or, equivalently,
reducing the complexity of the perceived environment from the agents perspective.

3.3. INFORMATION FLOW FOR ADAPTIVE CONTROLLERS 101

3.3.1 Introduction: Ashby’s theory

Information measures are usually defined for input/output systems where they determine the
quality of the transmission. Behaving agents, however, act as closed loop systems in which
there is no clearly defined difference between input and output. What matters most for the
organism is to compensate for disturbances introduced by the environment in the perception
action loop. If there is no disturbance, the organisms cannot differentiate between themselves
and the environment. Consequently, the concept of information in these systems needs to be
revised (Porr and Worgdtter, 2005).

A method for defining closed loop information has been proposed by Ashby (1956) as the so
called requisite variety . The measure is based on the premise that closed loop systems aim to
maintain a desired state. The goal of a feedback loop is then to minimise the deviation from the
desired state i.e. the number of bits required to successfully compensate a disturbance acting
on the forward loop. In this way, the method quantifies the variety, or bits, originating from
the disturbance. For example, if the disturbance has a variety of 10 bits and survival requires
a desired state of 2 bits, then the reaction to that disturbance must provide a variety of 8 bits.
Ashby then proved that error controlled closed loop systems (like PID controllers discovered by
Stuart 1984) cannot achieve perfect regulation. More recently, Touchette and Lloyd 2000b in
Theorem 10 proved that the entropy reduction achieved by a closed loop system is bounded by
the entropy reduction achieved by the open loop control plus the mutual information gathered
by the estimation of the state. However the advent of predictive controllers, such as Q-learning
(Sutton and Barto, 1998), that predict future states, requires an extension of the information
theory for predictive learning.

In this section, I present an extension to the law of requisite variety, called the predictive
requisite variety, that quantifies the theoretical limits of control (as well as providing a perfor-
mance index) for predictive adaptive controllers. I argue that a predictive adaptive controller
acts as a reactive system before learning and as an open feed-forward system after learning. A
reactive system comprises an error controlled closed loop and is non optimal because it only
reacts after a deviation from its desired state has happened. The environment usually contains
predictive signals which can help the agent to react before the error is presented (Verschure
et al., 2003). Thus, biologically inspired controllers can be provided with a predictive signal
(like vision) and a reflexive signal (like touch). Learning then has the task of avoiding the
trigger of the reflexive reaction - thus creating an open loop forward controller which discards
the information of the reflexive signal.

Learning is then quantified by the increase in the information flow of the predictive loop
and by a corresponding decrease in the information flow of the closed loop. Information flow,
or transfer entropy, is not a new idea (see for example (Polani, 2010; Schreiber, 2000)) but it
has never been applied to predictive agents in order to assess their learning performance. The
analysis of a predictive agent with a single behaviour, say for example obstacle avoidance, can
be done by calculating the information flow of the sensory-motor loop.

Analysis becomes more complicated when an agent is provided with a set of competitive
behaviours in a social scenario where agents use predictive learning- see, for example, ISO
(Porr and Worgétter, 2003) or ICO (Porr and Worgdtter, 2006) - and are therefore learning
from each other. The task of the social system in this analysis is cooperative food foraging in
which every agent has 3 adaptive behaviours which are: avoidance for obstacles, attraction to
food disks and attraction to others with food. Agents communicate honestly, always signalling
to others when they find food. When the social system is adapting, it self-organises into 2

102 CHAPTER 3. RESEARCH WORK

sub-systems each described by a dominant behaviour: seekers have a dominant attraction for
food disks, parasites have a dominant attraction to others with food. The information flow
explains how the social system divides itself into sub-systems by looking at the information
processing of every agent. Luhmann (1995) proposed that differentiation of social systems is
caused by a decrease in information processing of each subsystem and this is consistent with
my information flow measurements.

The following sections covers the topics: regulation and entropy (as defined originally by
Ashby), a new information measure for predictive learning, a simulation model with social
adaptive agents, results and a discussion.

3.3.2 Methods: Ashby’s law of requisite variety

First, it is necessary to review Ashby’s Law of Requisite Variety for the forward (see Fig.3.27(B))
and closed loop controller (see Fig.3.27(A)). Fig.3.27 uses the same notation introduced by
Ashby:

e D is the finite state machine whose states are the disturbances from the environment

e E is the finite state machine whose states are the essential variables partitioned in £ = nU
7, where 1 is a partition of desired states or goals of the organism and its complementary
partition 77 represents the non-desired states.

e R is the finite state machine whose states are the available regulations/actions that the
organism can perform

e T is the finite state machine whose states are the set of possible states of the environment

In this work I consider deterministic finite state machines but the analysis can also be extended
to Markov processes as in Booth (1967). It is very important for my analysis to understand that
only the forward controller can achieve perfect regulation whereas the closed loop controller
cannot because the reflex always comes too late. Ashby (1956) stated that a good controller
R blocks the flow of variety? from disturbances D to essential variables E: if R is a regulator,
the insertion of R between D and E decreases the variety that is transmitted from D to E.
An organism can be described by a body R with goals to be achieved 1 and an environment
T which forms a closed loop between actions and sensors. As an analogy, the organism is a
perfect regulator if is able to keep the essential variables E within a desired sub-set 7 in spite
of the disturbances D -thus having a null entropy for E, H(E) = 0.

Definition and properties If no regulator R is provided (see Fig.3.27(C)), the disturbance
D tends to drive Ey outside a set of desired states n by means of the environment 7. Thus, in
the worse case, the disturbance completely controls the status of the organism:

H(D) = H(Ey) (3.75)

which means all the disturbances is transferred intact to the organism. The regulator R can be
connected in a feed-forward configuration as in Fig.3.27(B) or in a closed loop configuration as

2Ashby defines variety precisely as the number of different states a variable can take and is equivalent to
Shannon’s entropy H measured in bits.

3.3. INFORMATION FLOW FOR ADAPTIVE CONTROLLERS 103

(A) Closed loop (B) Forward Ioop
(C) No Regulation (D) Adaptive controller
>[5 [0]

Figure 3.27: (A) The organism with a closed loop controller. (B) The same organism with an
forward controller.(C) The organism before regulation. (D) An adaptive controller is a mix
of forward and closed loop control. Every block is a finite state machine whose inputs are
indicated by incoming arrows and outputs are indicated by outgoing arrows.

in Fig.3.27(A). The performance of the forward regulator is measured by the maximum entropy

reduction AHF0T ., which is the difference between the entropy of the essential variable H (Eo)
before regulation and after regulation H(FE).

AH%?“’TUQTd = H(EO) - mlnH(E) (376)
The maximum entropy reduction in the forward condition AH}’;‘;ZZGM can be calculated by

using the Law of Requisite Variety:
H(E)> H(D)+ H(R|D) — H(R) (3.77)
where H(R|D) is the regulator noise®. Thus:

AH7eE = H(R) — H(R|D) (3.78)

forward —

because combining Eq.3.76 and Eq.3.77 gives:

AHT® — H(E,) — H(D) — H(R|D) + H(R) (3.79)

forward —

Considering the initial condition in Eq.3.75 I obtain Eq.3.78:

AHPE = H(D) — H(D) — H(R|D) + H(R) = H(R) — H(R|D) (3.80)

forward

The quantity AHFIY |, in Eq.3.78 tells us that better performance can be achieved by either
increasing the regulation entropy H(R) or by decreasing the controller noise H(R|D). A closed
loop controller cannot achieve perfect regulation (H(E) = 0) as it requires a deviation from
the desired state 7 to work H(E) > 0. Thus, the disturbance transmits all its entropy to the
essential variable H(D) = H(FE) and no entropy reduction can be achieved:

AHJE =0 (3.81)

close

31f the controller is not noisy H(R|D) = 0

104 CHAPTER 3. RESEARCH WORK

When H(E) =0, R blocks the information flow in the channel D — E and thus no information
is transmitted to R for the regulation task: the regulator R is asserting a perfect control on E
without knowing the status. This property was proved by contradiction in Ashby (1956). In
the next section I extend the law of requisite variety for adaptive controllers.

3.3.3 Methods: the law of adaptive requisite variety

An adaptive controller (see Fig.3.27(D)) is a mix of a forward (Wang et al., 2005) and closed
loop controllers (Stuart, 1984) because R now has 2 inputs: D and E. I can think of D
as a predictor of the deviation of E, because D transfers its entropy to E by means of the
environment 7.

In order to explain the new law, I introduce the mutual information I(E, R) for the closed
loop channel ¥ — R with the corresponding channel capacity Cg g:

I(E,R) = H(E) + H(R) — H(E, R) (3.82)
Cgr= Ir%%))<I(E7R) (3.83)

the mutual information I(D, R) for the forward channel D — R with the corresponding channel
capacity Cp r:

I(D,R) = H(D)+ H(R) — H(D, R) (3.84)
Cp.r = max (D,) (3.85)

The channel capacity of the regulator channel D — T is then Cg 7.

The adaptive controller (denoted ada) begins as a closed loop controller with AH"%* (be fore) =
HT% (see Eq.3.81) as it mainly uses the E — R reflex channel and blocks the D — R predictor
channel whose mutual information is very low. In summary:

0< I(E7R) < CE,R (386)
I(D,R) ~0 (3.87)
AH]ZE (before) =0 (3.88)

The adaptive controller achieves perfect regulation (see Eq.3.78) when

AHT (after) = HFO® (3.89)

ada forward

because it blocks the £ — R reflex channel and opens the D — R predictor channel. To
summarise:

0<I(D,R)<Cp.p (3.90)
I(E,R) ~ 0 (3.91)
AHS (after) = H(R) — H(R|D) (3.92)

If I assume realistically that the regulator has a common channel capacity Cr.r = Cp,r =
Cr,r, the constraint for learning becomes:

I(E,R)+I(D,R) < Crr (3.93)

3.3. INFORMATION FLOW FOR ADAPTIVE CONTROLLERS 105

thus an adaptive controller can achieve optimal regulation AH]%*(after) when it is able to
compensate the mutual information of the closed loop I(E, R) with the mutual information
of the forward controller I(D, R). An imperfect regulator will likely work in the sub-optimal
regime I(D, R) < I(E, R). So to quantify the performance of an adaptive predictive controller
I have to compute the mutual information I(D, R) and I(E, R). This is however not always
possible because it is hard to identify the reflex channel and the predictor channel. Therefore in
the next section I use an approximation of these 2 quantities using the concept of information

flow.

3.3.4 Methods: information flow for adaptive predictive controllers

Looking at Fig.3.27(D), I can estimate I(F, R) by computing the information flow of the reflex-
output channel Z" — Uy and I(D, R) by computing the information flow of the predictive-
output channel Z"™ — U;. I denoted them as:

MIjy = 1(Z",Up) <> I(E, R) (3.94)
Mg, = I(Z",Ur) < I(D, R) (3.95)

where UQ is the reflex input, U1 is the predictor input and Z™ the extended output:
Z" =lz(k)z(k+1)...2(k+n—1)] (3.96)

which contains n outputs of the agent and U the random variable describing the temporal
signal u(k 4+ n) which is the input of the agent resulting from n previous actions at time k
as described in Polani et al. (2004); Pegors et al. (2005). The double arrows indicate the
correspondence between the mutual information computed and the diagram in Fig.3.27(D).
Fig.3.28(A) shows an organism composed of 3 ICO (Porr and Worgétter, 2006) controllers
and the corresponding information flow measures for every controller. Each ICO controller
takes 2 continuous inputs U0, U1 and one continuous output Z,.
ICO correlates the predictive signal u;* with the derivative of the reflexive signal ug ac-
cording to the formula:
dwl duo
P
where wy is the gain of the predictive signal u; and p is the learning speed (see Fig.3.28(C)).
Since the ICO controller works in continuous mode, the input and output signals must
be discretised in order to compute the information flow and channel capacity (see Simulation
Details). The two measures MI(;,, M I}, are used to compute the channel capacities Cg r and
CD,R:

(3.97)

¢"(Z" - U0) = I?ZaX) MIj, < Cer (3.98)
(27

"zt = U1) = I?Zax) MIj, < Cpr (3.99)
p n

In the simulations in the next section, I will estimate the mentioned quantities for individual
agents of a social group.

441 and wuo indicates temporal signals uj (t) and u(t)

106 CHAPTER 3. RESEARCH WORK

3.3.5 Methods: information flow applied to MISO controller

The previous measures are applied to a social system where all agents learn continuously from
each other and from the environment. This scenario is very interesting because the social system
is able to self-organise by forming 2 sub-systems with task division. The social system described
in Di Prodi et al. (2008) is composed of N identical agents and M food disks randomly placed
in a square world for every simulation (for more details see Appendix 5.2.8). Food disks contain
a certain amount of food that is depleted when an agent finds it. The task is cooperative food
foraging. The simulated agent is shown in Fig.3.28(B) and has also been used by Kolodziejski
and Kulvicius (2009): it is a Braitenberg (Braitenberg, 1984) vehicle with 2 lateral wheels and
2 antennas. By default the agent drives straight forward, with speed v = 1 units per time step.
It has 2 sensor-pairs, near contact antennas and far contact antennas.

Every agent has a MISO (multiple inputs single output) controller and a variable of 1 bit
for the food status. The agent has 3 competitive tasks: avoid obstacles (empty food disks and
other agents without food), find food from the disks, find foods from other agents with food.
The MISO is composed of 3 parallel ICO controllers (see Fig.3.28(A)) which are provided with
a reflex input error ug, a predictive signal error u;, a learnt weight w; and an output z. The
outputs of the 3 ICO controllers are summed to z = 24, + 2Fo + 2af 5 which gives the steering
angle: z = 0 the robot goes straight forward at speed v, z > 0 the robot rotates clockwise,
z < 0 the robot rotates anti-clockwise. Every simulation is run for 0 < k < 6 - 10° time steps
and is divided in 3 stages. At every stage, each agent produces 6 input time series and 1
output time series z(k) which means that I can calculate the information flow for every pair of
reflex-output and predictor-output: MI{;,,MI{},. For a single simulation:

1. for 0 < k; < 2-10° all agents are reactive (u = 0). For each agent i = 1,..., N, I have 3
pairs of information flow:

(a) avoidance: M1}, 71, MI%, 1o
(b) food attraction: MIg, 71, MIg, 79
(c) others attraction: MI%, 1, M1, 1

2. for 2-10% < k < 4-105: every agent is learning 1 = le — 9 and the weight for every ICO
controller wi 4y,w1,Fo,w1,4y is increasing.

3. for 4-10% < k3 < 6-10°: every agent stops learning 1 = 0.0 and is using the last weight
set at k = 4-10°. For each agent I compute again the 3 pairs of the MI™.

The channel capacities for every agent are computed by providing each isolated output
Z = ZAuv,Z = ZFo,? = zZay With a source of independent randomness during a simulation of
2 - 10° time steps for every case. Then I apply the Blahut-Arimoto algorithm (Arimoto, 1972;
Blahut, 1972) with a bound error of ¢ = 107! and 5000 maximum iterations to estimate
the channel capacity for every agent in the reflex-output loop ("(Z; — UO0). There is no
difference between (" (Z}} — UO) of every agent so I define ¢;. To compute the capacity for
the predictor-output loop ("(Z} — U1), I use the same approach but preset the weights of
every agent to an arbitrary high value to simulate perfect learning;:

wi A = 10.0,w1,po = 10.0,w1 45 = 10.0 (3.100)

5Av stands for obstacle avoidance, Fo for food attraction and Af for attraction to others with food

3.3. INFORMATION FLOW FOR ADAPTIVE CONTROLLERS

(A) avoidance (B)
—>> [PN R—
— Up av e o _
attraction food &
Do
—> u1,Fo 'ézi;' O
obstacle
o e LR coooonoonooncoad B } %X,
attraction others antennas
motors ‘._
_> U1' JRCCECTITIIIILIL B (a ‘.::
) uO,Af

Environment

(©)

LA,

time shift T

107

Figure 3.28: (A) MISO controller composed of 3 stacked ICO controllers for avoidance, food
attraction and attraction to others. The output of every controller is summed to z. For every
controller /behaviour the pair of mutual information is computed between the output and the
input MIj,, MI{,. (B) Agent with short antennas (reflexive inputs, x¢) and long antennas
(predictive inputs, x1). The agent is learning to avoid obstacles. The motor reaction will
reduce the intensity of the painful reflex xo as well as delay its occurrence. (C) Schematic
diagram of the input correlation learning rule and the signal structure (Porr and Worgotter,
2006). The ug and u; are, respectively, the difference between the filtered values of the left and
right antennas of the agent. During learning the ug peak will be shifted in time and reduced
in amplitude as the agent learns successfully by increasing the predictor gain w;.

108 CHAPTER 3. RESEARCH WORK

and I obtain the same results
"(Zy - Ul) =" (2 - U0)=2.0 (3.101)

for n > 2 as anticipated in Eq.3.98,3.99.

3.3.6 Results

The results of this sections are based on a set of 100 simulations with NV = 10 agents and
M =5 food disks. All agents start with the same weights for every ICO controller wy, 4, = 0.1,
wi,Fo = 0.1,wy 4 = 0.1. In stage 3 there are 5 agents with wy af < wi,Fo and 5 agents with
w1,Af > w1,Fo. The first group of agents - identified by the indexes 1,7,3,9,2 - is characterized
by a strong attractive behaviour for the food disks (see Fig.3.29 (B)), whereas the second
group - identified by the indexes 5,8,4,10,6 - is characterized by a strong attractive behaviour
for others agent with food (see Fig.3.29 (E)).

I estimate the MI* in stage 1 and stage 3 for every agent by using the corrected standard
deviation formula (Roulston, 1999). Before learning (Fig.3.29 (A),(D)) the reflex-output loop
predominates over the predictor-output loop for both the food attraction behaviour and the
others attraction behaviour:

MIjp 1 < MIhg 0~ 0.0025 (3.102)
MI%‘O,Ul < MI??O,UO =~ 0001 (3103)

After learning (stage 3). the configuration is reverted and the predictor-output loop domi-
nates the reflex-output loop for both behaviours as in Fig.3.29(B), (E):

MIs 0 < MIhg (3.104)
MI?T‘O,UO < MI?;‘O,Ul (3105)

This result matches my expectations in terms of the increase of I(D, R) and decrease of
I(E, R). If T compare the M T}, in Fig.3.29(B) to M I}, 7, in Fig.3.29(E) I can see that the
agents with indices 1,2,3,4,5 (parasites) have a larger weight AW 47 ~ 2.0 (see Fig.3.29(C)) for
the attraction to others and, therefore, a larger information flow M I}, ;) > MIp, 1, whereas
agents with indices 6,7,8,9,10 (seekers) have a larger weight change AWpg, ~ 2.0 for the food
attraction and so a bigger MIj‘,l,O’U1 > Mij,Ul‘

Thus, the information measure is directly correlated with the weight change and can be
used to quantify the learning performance of a single agent before and after learning. However,
it can also be used to quantify the dominant behaviour and, consequently, the self-organising
properties of social systems.

In Fig.3.30, I measure the efficiency of the reflex-output and predictive-output loop MIffmU1 7MI§M,UO
for the avoidance behaviour in relation to the capacity for the agents ¢, = 2.0. Fig.3.30(A)
shows that before learning lexv,Uo is using 0.25% of the full channel capacity and Fig.3.30(B)
shows that after learning M Ifw,m is using about 0.45% of the channel capacity. The MT of
order n = 1, 2,3 does not provide enough discrimination for the previous analysis because the
output history of the agent is too short to be correlated with the inputs. The capacity (7,
takes its maximum of 2 bits when n > 2.

3.3. INFORMATION FLOW FOR ADAPTIVE CONTROLLERS 109

(

Z

- X 10° MI before learning for others attraction n=4
Bogr
o, I M reflex-motor
> 6 [M predictor-motor
e ——
S 2
0

3 8 4 10

2 5
Agent index
MI after learning for others attraction n=4

[MI predictor-motor
I V| reflex-motor

7 3 9 2 5 8 4 10 6
Agent index

—~ Entropy [Bits] —~

O

Weight difference comparison for W(Af),W(Fo)

I deltaWV Af
I deltaW Fo

—~
O
~ o

Agent index

= x10° MI before learning for food attraction n=4
LB
Qb o | EEEM reflex-motor
§4 - | N Ml predictor-motor
22 | ‘ | | |
L

0

1 7 3 9 2 5 8 4 10 6

(E) Agent index
o MI after learning for food attraction n=4
5 0.1 .| . MmI predictor-motor
= I V| reflex-motor
g 005 = ==
<
L

8 4 10 6

2 5
Agent index

Figure 3.29: (A) Information flow before learning for attraction to others M Iﬁf’m (grey
bars), M T} ;7o (black bars) expressed in bits. (B) Information flow after learning for attraction
to others in bits. (C) Weight difference for every agent: AWa; = wi a5 — 0.1, AWg, =
wi,ro — 0.1 (D) Information flow before learning for attraction for food M1If, 7, (grey bars),
M I%‘O,UO (black bars) in bits. (E) Information flow after learning for attraction for food in
bits. In this typical run from a group of 100 independent simulations, the error bars for each
agent indicates the range interval of the measure over the 100 simulations. In this group of
simulations the parameters were N = 10 and M = 5 as a result 5 agents become seekers and
5 agents become parasites. The x-axis contains the number identifying the agent.

110 CHAPTER 3. RESEARCH WORK

Efficiency for avoidance before learning

I V| reflex-motor
03l MI distal-motor

T 7 3 9 2 5 8 4 10 6

(B) Agent index

Efficiency for avoidance after learning

0.8
I V| predictor-motor
R 06l : : MI reflex-motor
z0
[}
€
o 041
=
5]
£
) 02AIl!II..lII
0 j
0 1 7 3 9 2 5 8 4 10 6

Agent index

Figure 3.30: (A) Efficiency for every agent of the reflex-output and predictive-output loop in

terms of capacity before learning (stage 1): Mlﬁv’UO/C;l”% (dark bars), MIﬁU’Ul/C;l”% (grey
bars). (B) Efficiency after learning (stage 3).

3.4. INTRODUCTION: INFORMATION FLOW IN Q-LEARNING 111

3.3.7 Discussion

In summary, I have introduced an extension to Ashby’s requisite variety theory called the law of
adaptive requisite variety, computed the information flow to measure the learning performance
for agents with competitive behaviours and found the relation between the efficiency of the
information flow M1 and the weight change of the adaptive controller Aws.

I also linked the information approach to the Luhmann theory that sub-systems are formed
to reduce the perceived complexity of the environment. In my simulations, after the learning
experience 5 agents have a dominant attraction behaviour for food disks (seekers) and 5 have
a dominant attraction behaviour for others (parasites). The seekers mainly use the predictive
information of the food disks while the parasites mainly use the predictive information of the
others who posses food. Thus, my measure of information quantifies the information selection
of the agents before and after learning which means I am able to discriminate which agent is
a parasite or a seeker without looking at the value of the weights.

While Polani et al. 2004, 2005 and Pfeifer et al. 2008; Klyubin et al. 2008 used the empower-
ment measure as a general cost function to optimise the agent’s behaviour or evolution, I use it
as the upper bound of the MI to measure the efficiency of the sensory-motor loop use. Ay et al.
(2008) use an adaptive controller which maximises the excess entropy (the mutual information
between past and present) at the input side to achieve a working regime exploratory and sen-
sitive to the environment. I can calculate the MI for this case by considering the reflex as the
present input and the predictor as the past history. My approach is not restricted to MISO
controllers. Kolodziejski and Kulvicius (2009) measures the temporal input development, the
output and path entropy of the adaptive agents to study the optimality of the antenna ratio
for an avoidance task, thus completing the tools required to evaluate a single task controller.

The following section 3.4 contains some experiment regarding the application of the mutual
information to a Q-learning agent to verify that this approach is feasible also with reward based
learning. After that, the section 3.5 introduces a mono-dimensional measure called Predictive
Performance which summarises the learning performance with a singular scalar measure. This
is necessary to avoid the multi dimensional analysis based on the mutual information of the
predictor and reflex pathway: for every behaviour, like the food attraction, I have to look
at both the values M I%O,UO,M I%o,w' Things get more complicate when it is necessary to
compare the performance of different agents, because then there is no normalisation basis for
doing so. Another issue is the absolute performance in terms of regulation: how can I identify if
one agent despite its efforts was able to keep its desired state. These questions will be answered
in the section 3.5.

3.4 Introduction: information flow in Q-learning

This Section applies the information flow to an artificial agent which uses reinforcement learn-
ing for an obstacle avoidance task. The purpose of the experiment is to prove that the same
principles introduced in the previous chapters apply to such a different on-line learning prin-
ciple. I will introduce first reinforcement learning, then describe the robot-environment task
with the learning controller and finally shows the result of the application of the information
flow.

112 CHAPTER 3. RESEARCH WORK

3.4.1 Methods: reinforcement learning

Reinforcement learning (Sutton and Barto, 1998) is characterised by a learning problem: an
agent learns from its interactions with the environment to achieve a goal. Any method that is
suited to solve this problem, is considered to be a reinforcement learning method. A reinforce-
ment learning system is composed by:

e the agent: the learner and decision maker decides to make an action a;

e the environment: what interacts with the agent. It is described by a state s; and gives a
reward ry;1 for each action.

e a policy m;: a mapping from perceived states of the environment to actions to be taken
when in those states

e a reward function: a mapping from perceived states (or state-action pairs) of the envi-
ronment to a reward (a number). The reward defines what are the good and bad events
for the agent.

e a value function V™: a mapping from perceived states to a value which represents the
expected total amount of reward that can be accumulated over the future.

optionally a model of the environment

The agent and the environment interact in time steps ¢t = 0,1,2,3,4 6. At each time step
t, the agent produces a representation of the environment’s state, s; € S, where S is the set of
possible states and on that basis it takes an action a; € A(s;), where A(s;) is the set of available
actions in the state s;. One step later, the agent receives a numerical reward 7,41 € R and
find itself in a new state s;11. At each time step the agent implements a mapping from states
to probabilities of selecting each possible action. The probabilities are computed thanks to the
agent’s policy, where m(s,a) is a mapping from each state s and action a to the probability
of taking action a; = a when in state s; = s. The vast majorities of reinforcement learning
algorithms are based on estimating the value function that estimates how good it is for the
agent to be in a given state. The positivity is defined in terms of future rewards. Thus, the
value function V™ (s), is the expected return when starting in s and following 7 thereafter:

V7 (s) = E(R¢|st = s) (3.106)

V7 (s) is the state-value function for policy w. There is also the complementary function Q™
called the action-value function for policy m: Q™ is the the expected return starting from s,
taking the action a, and thereafter following policy 7:

Qﬂ = Eﬂ-(Rt|5t = S8,a¢ = a) (3107)

Reinforcement learning methods specify how the agent changes its policy as a result of its
experience. This framework is quite flexible and can be applied to different scenarios: the
states can be low-level sensations or they can be more abstracts like symbolic descriptions,
the actions can be low level motor commands or high level decisions like mental choices. The

Sfor simplicity we assume a digital simulation but it can be extended to the continuous case see (Bertsekas
and Tsitsiklis, 1996)

3.4. INTRODUCTION: INFORMATION FLOW IN Q-LEARNING 113

general rule to define the boundary between the agent and the environment is that anything
that cannot be changed arbitrarily by the agent is considered to be the environment. The
agent-environment boundary represents the limit of the agent’s absolute control, not of its
knowledge. Indeed the agent may know everything about its environment but the reward
computation is out of the control of the agent because it cannot be influenced arbitrarily. The
agent goal is to maximise the total amount of reward it receives in the long run, in the simplest
case of an episodic task it is defined as:

R, = Tt41 + T2 +7rep3 + -+ 17 (3108)

where T is a final time step. An episodic task, like playing a chess game or solving a maze,
is characterised by a terminal state, when the agent ends up in this state, the environment
is reset to its starting state. If the goal requires a continuous-control, the final time T would
be infinite and therefore we cannot maximise an infinite time series, therefore equation 3.108
needs to be modified as:

o

Ri=rig1 +yreee + 77 + - = Z Vorerrt (3.109)
k=0
where the parameter v, 0 < v < 1 is called the discount rate. It determines the present value
of future reward:

o if v =0, the agent maximises only immediate rewards and so it chooses a; to maximise
only 7441

e as -y approaches 1, the agent consider future rewards more important.

The value functions V™ and Q™ are estimated from experience. For example, if an agent follows
the policy m and maintains an average, for each state encountered, of the actual returns that
have followed that state, then the average will converge to the state’s value, V7 (s), as the
number of times that state is encountered approaches infinity. If separate averages are kept
for each action taken in that states, it will converge to the action values, Q7 (s,a). The next
section describes the connectionist Q-learning approach that will be used by the agent for an
obstacle avoidance task.

3.4.2 Methods: Q-Learning algorithm

The Q-Learning algorithm suggested by Watkins in 1989 [1] is one of the most popular re-
inforcement learning algorithms. In Q-Learning the purpose of the agent is to find a control
policy m which maximises the value function defined as:

V(se) < EY 7" rig (3.110)
k=0

V(s¢) depends on the sequence of actions determined by the policy m. Q-Learning works on a
Q-function which is computed from the value function in such a way:

Q(st,at) — T —|—’)/'V(St+1) (3111)

114 CHAPTER 3. RESEARCH WORK

where a; is an action chosen at time t out of the set of possible actions A. Because the purpose
of the system is to maximise the sum of total reward, V (s;y1) is replaced by mazaeaQ(St41,a)
and thus the previous equation becomes:

Q(st,at) + e+ 7 - MmaxacaQ(St41,a) (3.112)

Q@ is a 2-D table where the rows contains actions and the columns contains states or vice-
versa. When the state-action space is large (especially in continuous cases) more resources are
required to store the table of evaluation. To solve those problems, the following approaches
were introduced in the literature:

e discretisation of the Q table: Q table of large size is split into several Q) tables of smaller
size (Barto et al., 1990)

e Hamming distance approach

e CMAC method by Albus

e RBF similar to CMAC

e Neural Networks as suggested by Lin (Lin and Mitchell, 1992)

The following section describes the use of a a multilayer perceptron as a Q- learning table
approximation. The joint use of MLP and the Q-learning algorithm is called connectionist
Q-learning method.

3.4.3 Methods: Q-Learning connectionist

The tabular representation of the Q-function is replaced by a set of neural networks, each for
every action. States are forwarded to the inputs of the neural network and outputs are the
estimates of the Q-values. During each iteration of the learning algorithm, the current state of
the system is forwarded to the inputs of each neural network, but the weights are only updated
for the network whose action was selected. The weight correction error for the single step
Q-learning is:

et =T+ max Q(zi11,a141) — Qe ar) (3.113)

The modified connectionist Q-Learning algorithm is summarised with the following pseudo
code:

1. Set eligibility traces equal to zero, eg = 0
2. Initialize time at t = 0.

Select an action, a;

=~ W

If ¢ > 0, update the weights

5. wy =wi—1 4o ([r—1+v-maxQr — Qi—1] - Vo Qi1+ [re—1 +7-max Qy —max Qr_1] - e;—1)
acA acA ac€A

6. e = V@ + vAer—1
Calculate the output gradient v,,Q; only for the network whose action was chosen

3.4. INTRODUCTION: INFORMATION FLOW IN Q-LEARNING 115

7. Execute action a; and receive reward 7

8. If the absorbing state is reached, then stop; otherwise ¢ <— ¢ + 1 update time and go to
Step 3.

3.4.4 Methods: the robot and the task

The robot is a Braitenberg vehicle as already described in Section 3.1.1 that can only execute
3 actions: move forward, turn left and right by a predefined angle. The robot is situated
in a square arena where 20 obstacles are placed randomly for each session. The task of the
robot is to minimise the number of collisions by learning appropriate motor responses from its
sensory information. The sensory information is generated by an array of floor binary sensors
numbered from 1 to 9 (see Figure 3.31) that detect the presence or absence of an obstacle on
the world (binary input information). The robot receives a reward signal r(¢) at time ¢ The
geometric simulation parameters are described in the Appendix 5.2.9. The parameters for the
MLP Q-learning algorithm are:

e the learning rate is & = 0.8
e the forgetting rate for the eligibility traces is v = 0.8
e the Q-learning factor A = 0.2

The robot must receive a reward signal from the environment to be able to discriminate between
good and bad actions. The reward structure was assigned in this way by the author:

e r(t) = 0.1 if at time ¢ the robot has moved forward successfully

e 1(t) = —0.2 if at time ¢ the robot has collided with an obstacle

e r(t) =0 if at time ¢ the robot has collided with a wall of the world

For each simulation (see Figure 3.32) the robot goes through three different stages:

e in Ty = [0,1-10%] the robot is purely reactive and does not learn by imposing A = 0.0
e int=(1-10%2-10) the robot is fully learning by imposing A = 0.8

e in T\, = (21054 - 109 the robot has learned from the previous section and now uses
his weights w to avoid the obstacles.

3.4.5 Results: avoidance case

The information flow is calculated as in the previous Section 3.3, but in this case it is very
easy because the output Z and the input S of the robot are already discrete. The input S is
a binary word of 9 bits:

S = 5152555455565758S9 (3.114)

where each bit indicates if the sensor has touched the obstacle. For example the string S =
100100000 indicates that the obstacle has collided with the input sensor in position 1 and 4
(see Figure 3.31). The output Z is encoded with a word of 2 bits:

Z = 717 (3.115)

116 CHAPTER 3. RESEARCH WORK

Perception

Forward

— (o]
=]

Sensors

I
VY VVVYVYVVYVYVYY

Neural Net

Right

Q-Learning

-

Reward—p»\L

Robot

;%Si(
o D

—IB

Obstacle 1

o o° o
o° oo g

Figure 3.31: Simplified diagram of the g-learning robot. The yellow dots represent a binary
input for the detection of the obstacle.

which encodes the 3 possible actions:
e move forward Zy,q = 00
o turn left Zj.p =01
o turn right Z,;gn; = 10

in this case 1 combination Z,,;; = 00 is not used because there are only 3 actions performed
by the robot. To apply the information measure described in the Section 3.3, it is necessary to
distinguish between the proximal or reflex signal X and the distal signal Y. The sensor inputs
numbered 1,4,7 are far from the robot and thus can be regarded as distal inputs, whereas the
inputs 3,6,9 are closer to the robot and thus can be regarded as proximal or reflex signals.

e MI(X,Z) is the mutual information between the output Z and the reflex input X
e MI(Y,Z) is the mutual information between the output Z and the distal input Y

X is thus encoded with a 3 bit word, Y is encoded as a 3 bit word and Z as described before as
a 2 bit word. The information flow is computed from the previous quantities, by concatenating
the output Z n times:

o MI™(X,Z) is the information flow of order n between the output Z and the reflex input
X

o MI™(Y,Z) is the information flow of order n between the output Z and the distal input
Y

I then calculated the reflex and distal information flow for the robot during the purely reflex
phase and after learning. Table 3.7 shows the relevant values for a typical simulation run before
and after learning:

3.4. INTRODUCTION: INFORMATION FLOW IN Q-LEARNING

Information flow for Q-learning

Average reward:

B & @8
Maode: Reflex
Collisions:4s

Pl

-

117

Figure 3.32: The obstacles are marked as yellow at the beginning. When an obstacle is touched
it becomes orange to keep track of the collision history. The number of collisions and the average
reward are shown in the simulation window. The red status label describes in what stage the

robot is.

118 CHAPTER 3. RESEARCH WORK

e because the agent has an instantaneous motor response, the order was computed for
n =4,5,6 actions

e Ry indicates the average reward received by the robot before learning

e R, indicates the average reward received by the robot after learning

Table 3.8 shows the same results for the same robot but with a 10% probability of choosing
random actions during learning. This strategy increases the exploration probability and results
in a better performance because Ry, = 0.0791 > 0.0688 for the case without random selection.
The clear result is that when the robot is learning is reducing the reflex information flow
MI(X,Z) and increasing the predictive information flow MI(Y, Z), even though this behaviour
was not designed but learned by the Q-learning approach. For example, if T consider the
information flow of order 5 from Table 3.8, before learning the robot is using MI°(X,Z) =
1.0446 bits in the reflex loop and only M I°(Y, Z) = 0.0376 bits in the predictive loop but after
learning, the robot is using less information from the reflex loop MI°(X, Z) = 0.0271 and more
information from the predictive loop MI°(Y, Z) = 1.8086 bits. Same interpretation applies to
the other cases described in the tables.

Order | MI(X,2)| MI(Y,Z)| Ry |MI(X,Z)|MI(Y.Z)| R
| —— | ——— —_——— | ——
n To To Too T
4 0.0965 0.0864 |0.0429 | 0.0102 0.3691 | 0.0688
5 1.0815 0.0864 | 0.0429 0.103 0.3747 | 0.0688
6 0.0965 0.0874 |0.0429 | 0.0104 0.3824 | 0.0688

Table 3.7: Table containing the information flow when the robot is avoiding the obstacles

without random selection of the actions.

Order [MI(X,2) | MI(Y,Z)| Ry |MI(X.Z)|MI(Y.Z)| R
| —— | N—— —_———— | ———
n To To Too Too
4 0.0521 0.0481 |0.0473| 0.0249 0.7861 |0.0791
5 1.0446 0.0376 |0.0473| 0.0271 1.8086 |0.0791
6 0.0523 0.0484 |0.0473| 0.0303 0.8240 |0.0791

Table 3.8: Table containing the information flow when the robot is avoiding the obstacles with

random selection of the actions at 10%.

The Tables 3.9 and 3.10 contain the statistical summary for 100 simulations computing the

following values:

e average and standard deviation of the measure MI(X, Z)n, /MI(X, Z)r,,

e average and standard deviation of the measure MI(Y, Z)5, /MI(Y,Z)r.,

e average and standard deviation of the measure Rr,/Rr._

The two cases with and withouth random selection of actions do not show a big difference in
the reward, however in the case with random selection the mutual information flow is greater
for the predictive pathway, suggesting that increasing exploration leads to a larger exploitation
of the distal signal.

3.4. INTRODUCTION: INFORMATION FLOW IN Q-LEARNING

Order | MI(X,Z) | MI(Y,Z) | Ro/To
] ——— | N——
" Too /To Teo/To
4 9.40 £0.13 | 0.25 £0.13 | 0.62 +0.2
5 10.50 £0.13 | 0.23 +£0.15 | 0.62 £0.2
6 9.20 £0.13 | 0.24 £0.12 | 0.62 +0.2

Table 3.9: Table containing the information flow for 100 simulations without random selection
of the actions. Each value in the table contains the average ration and plus,minus the standard

deviation of the ratio before and after learning.

Order || MI(X,Z) | MI(Y,Z) | Ro/To
| ——— | N——
" Tso /To Teo/To
4 2.12 +£0.13 | 0.66 £0.12 | 0.61 £0.2
5 38.54 £0.14 | 0.58 £0.15 | 0.61 0.2
6 1.78 +0.13 | 0.62 +0.11 | 0.61 £0.2

Table 3.10: Table containing the information flow for 100 simulations with random selection of
the actions. Each value in the table contains the average ration and plus,minus the standard
deviation of the ratio before and after learning.

3.4.6 Discussion

The application of the information flow to this simple case of obstacle avoidance, gives an
insight about the actual learning outcome of the robot. Before learning the robot uses a mixed
combination of close and far sensors, whereas after learning the robot decreases the use of
the close sensors for the benefit of the far ones. The initial use of the information flow is
different for the ICO learning case which is programmed to use the reflex stimuli as a sort of
wired behaviour. The Q-learning does not have any hard wired behaviour but only a random
initialisation of the weights in the neural network and thus there is no preference between
the stimuli. After learning the algorithm discovers that is not a good idea to react when the
obstacle is too close even though the rewards are identical for a close or far collision. Although
the computation of the information flow shows a clear development of behaviour from reactive
to predictive, in ICO the reflex acts as the “reward” or the punishment channel in relation
to Q-learning. Thus a more intuitive approach would have been to compute the two mutual
informations MI(R, Z) between output and reward as the reflex loop and MI(Y, Z) between
output and distal input. The main disadvantage of using this approach is that due to the
sparsity of the reward signal it is necessary to use a more complex information model and was
avoided to have a more behavioural based measure where we know how the agent is using its
input differently. In summary by comparing the ICO approach with the Q-learning approach,
there is similarity in terms of the strategy adopted by the robot in this particular scenario.
It would be interesting to investigate if the similar property holds for different experimental
setups where the task is not just attraction or avoidance. This investigation was not carried
further in the Thesis as it was far away from the main topic but it is certainly something that
can be investigated in the future.

120 CHAPTER 3. RESEARCH WORK

3.5 The Predictive Performance measure

In the previous Sections, I have demonstrated that information flow measurements provide an
index of how well each reflex and predictive pathway are used. In this Section, I will combine
the information flow measurements with the reflex entropy to generate a single value which
measures the learning performance. This scalar value is called Predictive Performance.

3.5.1 Introduction to closed loop measures

In my research study, I formulated a novel closed loop information measure - called predictive
performance - which quantifies the learning performance of a line following robot. The robot
is a classical Braitenberg vehicle (like the one described in Section 2.2.3) which has 2 retinal
inputs functioning as far sensors and 2 small sensors acting as reflexes. The robot learns
to follow tracks of different complexity by developing a retinal field using temporal sequence
learning (ICO). I argue that measuring only the retinal weights (input) or the angular motion
(output) provides a wrong estimate about the robot’s adaptation to the track curvature. Thus
an objective measure of the robot’s performance -track deviation- is compared against the
retinal field map and against the predictive performance measure. Simulations show that a
robot with poor track performance has low retinal weights and a low predictive performance.
Whereas a robot with a good track performance has high retinal weights and high predictive
performance. However a robot with a poor track performance could have high retinal weights
(I will explain why later), but the predictive performance will be low thus giving an objective
measure of the performance. Therefore the predictive performance is a subjective measure of
adaptation which reflects the objective performance of the robot. The measure can be extended
to other types of adaptive predictive controllers.

Information measures are usually defined for input/output systems where they determine
the quality of the transmission. Behaving agents, however, act as closed loop systems (see
Fig.3.33) in which there is no clearly defined difference between input and output because the
motor output influences the sensor input and so forth. What matters most for the organism
is to compensate for disturbances P introduced by the environment into the perception action
loop as in Fig.3.33(A). If there is no disturbance, the organism cannot differentiate between
themselves and the environment. Consequently, the concept of information in these systems
had to be revised (Porr and Worgdtter, 2005).

The new information measure called Predictive Performance is motivated by the theoretical
foundation of the Radical Constructivism as described by Porr and Worgdtter (2005) stating
that everything that every organism has a model of the environment described by his neural
activity. In essence the controller acts as a reactive system before learning and as an open loop
forward system after learning. In contrast to the previous work my new measure is independent
of the learning rule and is not using its weights to compute the predictive performance. Instead
I have employed a purely information theoretical approach.

I demonstrate my measure Predictive Performance in a simple robotics task where a robot
has to learn to follow a line which is laid out with different curvatures so that different levels
of difficulty can be evaluated. Learning drives the development of receptive fields in the robot
similar to Kulvicius et al. (2007).

The Predictive Performance applied in this case, not only quantifies the relative performance
of the robot for the 3 different tracks but also gives an index of the learning ability achieved

3.5. THE PREDICTIVE PERFORMANCE MEASURE 121

A only reflex B during learning © eafterlearning

&, (94 Organism
desired
state
€,=0

disturbance

Figure 3.33: A) The organism is connected to the environment via the motor output Z and the
reflex sensory input €y. The environment introduces a disturbance d via the transfer function
po which in turns change the reflex ¢y. The organism wants to keep the reflex to 0, so its desired
state is €9.B) An organism can learn to keep its desired state by using a predictive input e,
providing that the disturbance d acts on the reflex ¢y with a delay of ¢. C) After learning the
organism should have reduced the reflex to 0 by using the predictive information ;.

by the robot for every single track. Numerical simulations show that the robot reduces the
reflex information flow during learning and increases the retinal information flow if learning
was effective. More specifically I show that an increase of Predictive Performance of a pixel
in the receptive field is not equivalent to a high weight in the learning algorithm, which shows
that one cannot rely on the open loop property to predict the performance of the agent but
that instead it is necessary to use such a closed loop measure.

This rest of this section is divided as follows: setup of the robot, learning architecture, task
and performance, symbols and convention used, application of the predictive requisite variety
to a simple non learning robot, then to a full learning robot and finally the discussion.

3.5.2 Methods: experimental setup

The agent’s task is to follow a black track of constant width but variable curvature in a
2 dimensional white arena. The agent is provided with a controller with a reflex steering
behaviour which in most of cases (except of very shallow turns) will not be sufficient to steer
the curve. As a consequence the robot looses the track. The learning goal is thus to learn
predictive and smoother steering reactions in order to stay on the track and to avoid the initial
reflex.

The reflex is generated by using two pixels close to the bottom of the robot’s visual field
are are called z{ and z{* which generate a difference signal ¢y which is used as the reflex signal
for steering and also drives learning of the receptive fields.

The agent uses 2 predictive receptive fields lel ; and mﬁ ; for the left and right eye respec-
tively. The receptive fields have a size of N,y x N,y pzr (Fig. 3.34 A) where each pixel within
the receptive field represents an individual input x; ; ;. The left and right pixel intensities are

122 CHAPTER 3. RESEARCH WORK

o F—25 50 75 700 125
T Time (steps)

Figure 3.34: Physical and neuronal setup of the receptive field (RF) development using the
simple learning architecture. A) Left and right retinal fields. The receptive filed positions
are denoted by xff’, where ¢ = 1...N,f,j = 1... N,y are the indices of the RF pixels, and

sensor field positions a:OL R, B) The simple neuronal setup of the robot. Symbols u denote
filtered input signals x, p connection weights and v the output of the neuron used for steering.
v is calculated by the method shown in C and its corresponding Eq. 3.121 given in Eq. 3.123
and transforms v to the motor output. a is the acceleration gain and b is the braking gain.
Schematic diagram of the learning system. Inputs z, resonator filters h, connection weights p,
output v. The symbol ® denotes a multiplication, d/dt a temporal derivative. The amplifier
symbol stands for a variable connection weight. Dashed lines indicate that input x; is fed into
a filter-bank. C) Resonator filters hg (solid line) for the input signal xy and h; 5, (dashed lines)
for the x; given by parameters fi, = 2.5/k Hz, k = 1,...,10 for the filter-bank in the z;
pathway. Frequency of the zy pathway was fy = 1.25 Hz. Damping parameter of all filters
was @ = 0.6.

then combined into left and right difference signals pixel by pixel:

0 = xf(t)—af(t) (3.116)
fl,i,j(t> = l’fi,j(t)—xﬁ'i,j‘(ﬂ (3.117)

3.5. THE PREDICTIVE PERFORMANCE MEASURE 123

All difference signals are then filtered by low pass filters

UQ(t) = ho(t) * Eo(t) (3.118)
ulyi,jyk(t) = hl’k(t) * 61’i7j(t) (3119)

where ho(t) and hq j(t) are low-pass filters which I define by its impulse response:

h(t) = %evt sin(ft), (3.120)

where, v = —7f/Q and 8 = /(27f)? — 42, with f the frequency and @ > 0.5 the damping.
The index k in Eq. 3.119 denotes a filter bank for the predictive inputs so that every pixel of
the receptive field is fed into 1... K filters. This filter bank will be used for learning which is
described in the next section.

The filtered signals Eq. 3.118 and Eq. 3.119 are then fed into a summation unit where every
signal have a weight associated to it:

U= potio + D ikt k (3.121)
N

where v is is the steering angle which is calculated as the robot’s position in the cartesian
bi-dimensional space (S5 (t), Sy(t)).
The robot has a constant speed of 1 Unit/s
s(t) = O]speed — |v|- b (3.122)
z(t) = zt—-1)—ov(t)-a (3.123)
where a is the acceleration gain a = 0.02, b is the breaking factor b = 0.005 and © is the

heaviside function. a controls the angular speed of the robot whereas b simulates breaking
during turning.

So(t) = Sp(t—1)+s(t) - cos(z(t)) (3.124)
S,(t) = S,(t—1)+s(t)-sin(z()) (3.125)

where z(t) and s(t) are computed in the previous equation Eq.3.123.

3.5.3 Methods: learning algorithm

The temporal sequence learning rule was used again for learning (Porr and Worgotter, 2006).
The general scheme of such learning algorithm is presented in Fig. 3.34 C.
Weights change according to an input-input correlation (ICO) rule :

Pijk = M jkto, J >0, (3.126)

which is a modification of the isotropic sequence order (ISO) learning rule (Porr and Worgotter,
2003). The behaviour of this rule and its convergence properties are discussed in (Porr and
Worgotter, 2006). The indices ¢ and j denote the different pixels and the index k is the filter
number of the filter bank.

124 CHAPTER 3. RESEARCH WORK

The filter bank is needed to establish a temporal overlap of the signals from the receptive
field and the reflex as demonstrated in Fig. 3.34C. Remember that the sensor fields mg H are
located at the bottom whereas sensor fields foP; are placed higher up from the reflex.

The time delay 7" between the predictive receptive field x1 ; ; and the reflex xOL’R depends
on the speed of the robot and direction angle with respect to the curvature. As shown in older
studies of Porr and Wérgdtter (2003); Porr and Worgétter (2006), the number of filters K is
not critical and here K = 10 was used. The simulated robot has a speed of 1 Unit/s with
filter coefficients fy—1..x = 0.1k, for the filter-bank in the z1; ;1 pathway. The frequency of
the ug = hg * xo pathway was fy = 1.25 Hz. Damping parameter of all filters was @ = 0.6.

3.5.4 Methods: symbols and conventions

Before introducing the new measure Predictive Performance, it is necessary to define the no-
tation, symbols and information measures on which it is built. I am first defining the used
symbols, then introduce the necessary information measures and finally, I will define my pre-
dictive performance.

Symbols and conventions

The symbols used in this section follows the convention:
e capital letters such as X indicate a random discrete variable.

e the symbols of the random variable are indicated by the set X = {z1, z2,...,z5} where
S is the number of symbols in this set.

e non capital letters such as x indicate the corresponding discrete time series z(k) from
which I estimate the density P(X) of the corresponding random variable X.

e a time series is an ordered sequence of symbols x(t) = {z(0),z(1),...,z(¢t)} for t > 0

e the estimated entropy of a random discrete variable X is identified by H(X) and is
measured in bits.

I then identify my controller with the following variables and measures:
e Fj: random variable for reflex input
e [y ;;: random variable for predictive input located at the retinal coordinate 7, j
e Z: random variable for motor output
e H(Ey),H(Ey),H(Z): entropy of the random variables Ey, F1, Z
e J(X,Y)= mutual information between variable X and variable Y’

e MI™(X,Y,7)= mutual information of order n between X and the delayed version of YV’
by factor 7 (see Appendix 3.5.4 for more details)

o MI(X,Y)=MI(X,Y,7=1)

3.5. THE PREDICTIVE PERFORMANCE MEASURE 125

In the following subsections I am going to describe the different information measures
which can be applied to the robot. I show that these measures by themselves are not a good
measure for the performance of the agent but combined will provide a measure which reflects the
performance of the agent in a normalised way. Initially I introduce the information measures,
then I apply it in the closed loop and finally I combine to form the Predictive Performance.

Input reflex entropy

The entropy H(FEp) is the uncertainty of the reflex input or the average description necessary
to encode the reflex input Dy. Before I am going to look at the actual values I need to recall
that the reflex input is part of the reflex loop (see Fig. 3.33) via the differences of 2} — z{,
V9, 2, the environment p and back to ¢y. This loop is disturbed by the perturbation d which
is then eliminated by the loop. Remember that ¢; is essentially an error signal which has to
be kept close to zero which is only the case for Eq. 3.128. However, because it is a reflex loop
the feedback loop always reacts too late so that the input €y can never reach a constant value.
Thus, the entropy at €y reflects the entropy originating from d. In my setup the reflex has an
alphabet of 3 symbols Fy = {—1,0,1} to encode the line position on the left, right or center.
The condition H(Ey) = 0 of null entropy, indicates that the closed loop controller has achieved
perfect regulation, however there are 3 possible conditions with equal null input entropy:

colt) ={1,1,1,1} — H(Ey) =0 (3.127)
60(t) = {O, 0, 0,0} — H(E()) =0 (3.128)
c(t) ={-1,-1,-1,-1} — H(Ey) =0 (3.129)

I can exclude condition Eq. 3.127 and Eq. 3.129 because they only arise when the feedback
loop has failed totally. In order to have a successful learning, it is required at least a working
feedback loop (Porr and Worgotter, 2005) as a starting point. A perfect organism would have
an input sequence identical to Eq. 3.128, however due to the causal nature of the sensory-motor
loop there will be always a delay between the reaction and the disturbance as in Eq. 3.130 and
Eq. 3.131. Thus there is never zero entropy at €y as long as the reflex keeps the robot on track:

€o(t) =
€o(t) =

,0,1,0,—1,1} — H(Ey) =16 (3.130)
~1,-1,0,0,1,1} — H(Ey) =16 (3.131)

the entropy reaches a maximum of 1.6 bits which means that the input has a uniform distribu-
tion and thus is not constant in time. The input entropy does not tell us anything about the
effort that the controller is doing to keep its desired goal, because it might be that the robot is
not moving at all or that the environment is very simple (e.g. straight line). For that reason I
need to define now truly closed loop measures.

Retinal predictive entropy

Remember that the goal of the learning algorithm is to make the reflex pathway redundant.
In order to achieve this it aims to predict the trigger of the reflex via the reflex input (see
Eq. 3.116) with the predictive inputs of originating from the difference of the receptive fields
(see Eq. 3.117).

126 CHAPTER 3. RESEARCH WORK

I define H(E, ; ;) as the uncertainty of the predictor inputs at the retinal position (i, j),
whereas

N,g
1
H(E,) = N > H(Ei;) (3.132)
rf =1

is the average entropy of the retinal differential input.

Mutual information

The previous sections described only input measures but I also need additional measures cal-
culated between the output and the input of the agent to measure the information flow in the
closed loop. The mutual information takes into account the performance of the controller by
measuring how the controller reacts to the error signals at the reflex and predictive inputs:

1. MI(Z, Ey, ,n): mutual information of the reflex loop
2. MI(Z,E,;;,7,n): mutual information of the predictive loop for the single input E ; ;

3. MI(Z,Ey,7,n): average mutual information of the predictive loop which is computed

as:
1 i,j=N,s
MI(Z,EI):NTQf. 421 I(Z,E1,,7,n) (3.133)
J 1,]=

where the parameter 7 is the temporal difference between the motor output z and the sen-
sory input €g,d;;; and n is the sensory integration window. For instance when computing
MI(Z,Ey,7,n), I am considering as the random variable Z the motor output z(k) and as
random variable Ej the sensory input sequence do(k + 7),do(k + 7+ 1),...,do(k+7+mn —1).
When 7 and n are omitted that indicates that the mutual information has been maximised
over the 2 parameters:

.Z\JI(Z7 EO/l,i,j) = max MI(Z, EO/l,i,j» T, TL) (3134)

The mutual information MI(Z, Ey), MI(Z, E1 ; ;) is a measure of the controllability of the
agent. To demonstrate this I show the two extreme cases:

o if MI(Z,Ey) =0 then Z and Ej are independent. It means that there is no correlation
between the actions and the inputs of the robot. Imposing a motor value does not give
a desired input. For example the series:

z(t) = {1,2,3,4,5,6} (3.135)
e(t) = {-1,0,—1,1,—1,0,1} (3.136)

have null mutual information MI(Z, Ey,7 = 1) = 0 bits.

o if MI(Z,Ey) = max(H(Z),H(Ey)) then Z and Ey are perfectly dependent. It means
that this time when the robot imposes a motor action it will have a better chance of
reading a desired input. For example if MI(Z, Ey) = 1.6 bits, then the robot can choose
a motor action and read a desired input in an average run. But if the robot looses 0.6 bit
and goes to MI(Z, Ey) = 1.0 then in the average run 1 particular motor action will yield
2 equiprobable inputs at Ey and thus the robot has less control over its environment.

3.5. THE PREDICTIVE PERFORMANCE MEASURE 127

An equivalent description of the mutual information can be done with the conditioned entropy:

MI(Z,Ey) = H(E,)— H(Eo|Z) (3.137)
MI(Z,Ey;;) = H(Ey,;)—H(E1,,;|2) (3.138)

Here H(Ey|Z) and H(E\ ; ;|Z) are the conditional entropies. Since H(Ey) > H(Ey|Z), this
characterization is consistent with the non negativity property of entropy. If entropy H(Ey)
is regarded as a measure of uncertainty about a random variable, then H(Ey|Z) is a measure
of how much the motor output Z has no influence over the input Ey. This is the amount of
uncertainty remaining about Ey after Z is chosen, and thus the right side of the first of these
equalities can be read as the amount of uncertainty in Ey, minus the amount of uncertainty
in Ey which remains after Z is chosen, which is equivalent to the amount of uncertainty in
Ey which is removed by imposing Z. In a broader sense the mutual information MI(Z, Ey)
measures the quantity of information that the robot is able to recover from its inputs given its
outputs. In control theory I can think about the MI(Z, Ey) as a measure of the controllability:
if it is maximum it means the robot can reach any desired input by a determined action, if not
the robot cannot reach certain desired states with absolute certainty.

However, the mutual information via the reflex or the predictive pathway itself is not
sufficient as a performance measure. Remember that I would like to measure the success of
learning, especially if it is using the predictive pathway via €1 ; ; to eliminate the pathway via
€o. In other words I need to verify if the mutual information is transferred from the reflex
to the predictive pathway and that the error of the reflex has been reduced to ¢y = 0 after
learning. I combine these requirements in one measure called “predictive performance” which
I am describing in the next section.

3.5.5 Methods: Predictive Performance measure

The predictive performance measure is computed by considering the information measures
introduced before. The subscript ¢ = 0 and ¢t = oo indicate respectively the measure computed
before learning and after learning after the weights have been stabilised. Table 3.11 contains
the four values that are relevant to the agent’s performance:

Table 3.11: Information measures used for the computation of Predictive Performance.

H(Eo) MI(Z, En,; ;) MI(Z, Eo)
before learning | H(Eo)i—o | MI(Z,E1,;)i—0 | MI(Z, Eo)i—o
after learning | H(Ep)i—co | MI(Z,E1,ij)t=c0 | MI(Z,Ep)i=co

The predictive performance is then computed as:

H(Ey)i=0 — H(Ep)1=c0 . MI(Z,E1; j)t=co
H(Ep)i=o MI(Z, Ey)t=o

PP, = (3.139)

The two factors of this equation need to be discussed now:

e The first factor of Eq. 3.139 provides a measure reflecting the reduction of entropy of
the error signal Fy which drives the reflex. Remember that the goal of learning is to

128 CHAPTER 3. RESEARCH WORK

avoid the reflex which in an ideal case will lead to no trigger of the reflex or ¢g = 0. In
a realistic scenario the reflex entropy will decrease but the never reach zero because the
agent might do mistakes from time to time. In general the entropy should be lower after
learning than before: H(Ep)i—o > H(Ep)t—oo. Thus, the first factor in Eq. 3.139 will be
one for perfect avoidance of the reflex and zero for no change in the reflex entropy.

e The second factor makes sure that the agent controls its own actions before (MI(Z, Ey):—o)
and after (MI(Z, E1 ; j)t=o00) learning. This factor makes sure that before and after learn-
ing the agent is able to generate actions which control its own inputs. Remember that
before learning this is done via the reflex input and that this is my starting point. After
learning the agent should be in control of its own actions via the predictive inputs. Ideally,
these two mutual information values should be similar which means that control before
and after is guaranteed. Or in other words, the controllability should be transferred from
the reflex (MI(Z, Ey)i=0) to the predictor (MI(Z, E1; j)t=co)-

An example of a perfect learner can be an agent with the following values:

MI(Z,Ey) | MI(Z,Ey;;) | H(Ep)
before learning | 2.5 bits 1.5 bits 3 bits
after learning 0 2.5 bits 0 bit

which results in a Predictive Performance of PP = 1 (see Eq. 3.139). The important values
here are in bold. The mutual information is completely transferred from the reflex pathway
to the predictive pathway and the error in ¢y is reduced to zero bits. In fact a necessary
but not sufficient condition for learning is that MI(Z, Ey)i—o = M1(Z, E1 ;i j)t=cc because the
predictor should be able to provide information that has to be learned or exploited by the
controller. The following section describes behavioural experiments conducted to demonstrate
the predictive performance.

3.5.6 Results: behavioural experiments
Task

The task of the robot is to follow a track. I designed tracks of increasing difficulty. There are
three simple tracks (see Fig.3.35(A)) with an increasing curvature ratio and a complicate track
(see Fig.3.35(B)) with left and right turns of different curvatures. The retinal field that will be
learned will have different structure for every track and the robot will show a different level of
performance.

Behavioural performance

In order to assess the Predictive Performance, it is necessary to introduce an objective or
behavioural performance. Learning is successful when the robot is not triggering the reflex
any more, thus minimising its distance from the track. Thus the deviation from the track is
simply defined as the average deviation of the robot’s position (defined by the mass centre of
the robot) from the track. It is obtained from the robot’s driving trajectory and is calculated

3.5. THE PREDICTIVE PERFORMANCE MEASURE 129

A Step B Maze track
y+ 3 Intermediate y+
; o ;
H > H
i Robot ° 9 Track :
1 o (0] 1
: Q ® 5 / :
:) :
' o ' L
i < i
' Shallow '
E] 20 degrees E
| 100 units
B e e e S EEESEEs————— > X B e e e S EEESEEs————— > X

Figure 3.35: A) Three tracks of increasing difficulty: shallow, intermediate and step. The
Cartesian coordinate system has origin in the bottom left corner. B) A maze track with
different curvatures, the robot starts in the middle.

by the Euclidean distance:

Nsim—
1 p

V=5 ; V(82(8) = 24(£)2 + (S, (8) — pe(1))? units, (3.140)

where S;(t) and Sy (t) are the coordinates of the robot’s position at time moment ¢, z,(¢) and
y+(t) are the coordinates of the track point from which the distance to the robot’s position is
minimal, and ¢t = 0... Ny, — 1 denote the driving duration and is measured in simulation
steps. This measure 1 will be used as an objective measure of the robot’s performance for each
track type.

A simple non-learning robot

Before applying the Predictive Performance to a complex retinal based robot, it is better to
measure it on a simplified robot with few parameters and an intuitive behaviour. The simpli-
fied robot is described in Fig.3.36 and to its parameters ki, ko, it is possible to show how the
predictive performance works when the robot switches between the reflex pathway €y to the
predictive pathway € ; ; by manually setting the gain of the reflex and predictor. The reflex
xo here is a digital b/w line sensor and the predictor x; ; ; is a b/w retina of 4x4 pixels. The
difference between the left and right reflex ¢; is fed into a band pass filter to produce ug. The
difference between the left and right retina x;;; is fed into 16 band pass filters to produce
u14,;. The distance between the reflex and the predictor is y and will assume the following
values (y = {6,12,24} units) to do a comparative analysis of the performance.

The neuronal output is computed as the synaptic input summation of the reflex and pre-

130 CHAPTER 3. RESEARCH WORK

1
)]

A robot setup B only reflex C only predictor
P e |
L R | : ;
X1iyj X1'i

Steering angle Steering angle

Figure 3.36: A) A simple non learning robot with a 4x4 retinal field. B) In this configuration
the robot uses only its reflex €y and ignores -while still experiencing- the predictor € ; ;. C) In
this configuration the robot uses only its predictor € ;; and ignores -while still experiencing-
the reflex €q.

dictor:
ij=4

U(t) =k1-ug+ ko Z U1
i,j

pw=20
Where the parameters ki, ko can be set to only test the reflex pathway when ko = 0 and test
the predictor pathway when k1 = 0. The robot is not learning anything because the learning
speed is set to zero -j1 = 0- thus the weights are steady. The parameters ki, kg, a,b, p1, ; are
tuned manually so that the robot is able to complete the track. The predictive information
flow here is a simple average over the individual retina channels because these channels have no
specific meaning as they have been chosen manually. The predictive information flow becomes:

(3.141)

i,j=4
MI(Z, Br) = > MI(Z Ey;) (3.142)

4,j=1

indicating that Eq.3.139 for the PP is essentially reduced to a single pixel for the reflex and a
single pixel for the predictor.

Table 3.12 contains the computed parameters for the PP measure in the maze track scenario.
The first column shows the different distances y between the predictor and the reflexes in pixels
which is used here to vary the level of difficulty for learning. I am going to argue that both
fractions in Eq.3.139 are needed to combine the measures which include mutual information
with the measure of the reflex entropy.

First of all the reflex input entropy H(FEp) is the standard measure to evaluate the per-
formance of a closed loop controller: the entropy is zero when the desired state is achieved
ideally after learning. The sixth and seventh column of Table 3.12 contain the input entropies
of the reflex before t = 0 and after ¢ = oo learning. When the distance is y = 6,10 the
reflex pathway is totally removed H(Ep)i=o, = 0, whereas for the distance y = 12 there is a
remaining error of H(Ep)i=~ = 0.00536, indicating that in very few occasions the robot sill

3.5. THE PREDICTIVE PERFORMANCE MEASURE

131

Table 3.12: Table measuring the predictive performance for different distances y of the predictor
as seen in Fig.3.36(C).

y | MI(Z,Eo) | MI(Z, Ev) | MI(Z, Eo) | MI(Z,Er) | H(Eo) | H(Eo) | PP
t=0 t=0 t=o00 t=00 t=0 t=o00

6 4.16 bits 3.99 bits 0 3.7 bits | 0.137551 0.89

10| 4.16 bits 4.12 bits 0 3.91 bits | 0.137551 0 0.939

12| 4.16 bits 4.17 bits 0.0453 3.91 bits | 0.137551 | 0.00536 | 0.902

needs to use its reflex even when the predictive pathway is performing most of the steering
reaction. This obviously contributes to a lower Predictive Performance in the last row of the
table. Nevertheless, a zero input entropy at €y does not mean that learning has been successful.
For example, the robot could have just driven into an easier section of a track like a straight
line where the absence of steering does not trigger any reflex. This issue can now be solved
by considering the mutual information between output and inputs (see columns 2-5 in Table
3.12). The first column shows the mutual information of the reflex pathway MI(Z, Ey)i—o
before learning which is identical for all cases. The next column shows the mutual information
of the predictive pathway MI(Z, E1)—¢ before learning that provides whether or not learning
is possible. A non-zero value indicates that the predictor is highly correlated with the output
z and therefore learning is possible. The next two columns contains the mutual information
for the reflex and predictive pathway after learning: a robot with an uncorrelated behaviour
will generate very low values for mutual informations. An agent which has learned to use the
predictive pathway will generate instead high values for the mutual informations.

It is impossible to use only the mutual information of the reflex loop after learning to deter-
minate the performance because, for example when the distance isy = 6,10 MI(Z, Ey)i=00o = 0.
This condition would indicate a total loss of control in the robot but the interpretation is am-
biguous because the reflex entropy H(Ep) ~ 0 is almost null because ¢, is converging to zero.
This basically means that the reflex pathway after learning M1(Z, Ey):—¢ ~ 0 becomes unused.

However there is an important property that has to be observed: when the agent transfer
its control from the reflex pathway to the predictive pathway the mutual information has
to be transferred as well from the reflex pathway MI(Z, Ey)i=o to the predictive pathway
MI(Z,Ep)t=co. Table 3.12 clearly show how the initial information flow of the reflex pathway
which is about 4.16 bits is transferred to the information flow of the predictor pathway almost
intact (just a little less than 4 bits) for the cases y = 10, 12. For the short configuration y = 6
the reduction was from 4.16 to 3.7 bits but this is due to the manual setup of the weights.

This is the reason why the predictive performance uses both the input entropy H(Ey) and
the mutual information MI(Z, Ey)i=o before learning and after learning MI(Z, Fg)t=oo-

The last column of Table 3.12 contains the predictive performance computed for each pa-
rameter setting of the y distance. The maximum value is achieved when y = 10 because there
is a good information transfer from the reflex to the predictor pathway 4.16 — 3.91 bits and a
null input entropy after learning H(E;) = 0. For y = 12 the performance is lower because the
input entropy after learning H(E;) = 0.00536 the input entropy is bigger then 0. The worse
performance is for y = 6 because of the lower information transfer 4.16 — 3.7 but with null
input entropy after learning H(F;) = 0. This shows that minimizing the reflex entropy it not

132 CHAPTER 3. RESEARCH WORK

sufficient to generate a controllable robot.

The best performance PP = 0.939 is achieved when the predictor-reflex distance is at
y = 10, but how does it relates to the real objective performance of the robot? Table 3.13
provides the answer by computing the track deviation when the robot is following the track.
For instance when the PP is maximum for y = 10 the track deviation ¥ ~ 4.038 is minimum,
whereas for the worse performance when y = 6 the PP is minimum and the track deviation
is maximum ¥ ~ 4.95. This relationship between PP and ¥ indicates that the predictive
performance is well correlated with the objective track performance of the robot. The first
row in Table 3.13 also measures the track deviation when the robot is only using the reflex
U ~ 1.93 and shows that after the robot switch to the predictive pathway the track deviation is
bigger rather then smaller as one would expect for a learning robot. Essentially a purely reflex
based robot has the best performance ¥ ~ 1.93 compared to the only predictor based case.
This is because I have chosen the gain of the predictor field to an arbitrary gain by “hand”
that produces over steerings even though the robot is always on track. Because the robot’s
retinal weights are manually set, it was not possible to achieve a better performance but for
an autonomous learning robots learning must provide a better track deviation.

Table 3.13: Table measuring the track deviation ¥ for the simple robot as seen in
Fig.3.36(B),(C) on the maze track.

Mode v

only reflex 1.936951
only predictor at y =6 | 4.959343
only predictor at y = 10 | 4.038652
only predictor at y = 12 | 4.119643

The adaptive receptive field solves exactly this problem: setting the gain of every pixel in
the retinal field to minimize the reflex error. In the following sub sections I am going to show
what happens in the learning case.

A learning robot

In this section the predictive performance for the learning robot described in Figure 3.34 is
computed. The robot has a retinal field of 15x15 pixels (see section 3.5.2), where each pixel
has a weight and a set of filter banks so that the retina can develop a receptive field. The PP
values are computed for each pixel and then compared to the synaptic weights of the receptive
fields. This section is divided in two sub cases:

e the predictive performance is computed as in the simplified case before and after learning
for the three standard tracks

e the predictive performance is computed during learning during the maze track
Predictive Performance after learning The robot completes each track NTjeore times

before learning (only reflex behaviour g = 0) and NT, s, times until weights pq; ;5 are
stabilised (> 0). The values NTpefore, NTyfier are different for each track because generally

3.5. THE PREDICTIVE PERFORMANCE MEASURE 133

speaking a more complex trajectory will required a longer stabilisation period. The following
list contains the observed values for each track:

1. for the shallow track NTpefore = 22,NTfter = 10.
2. for the middle track NTpctore = 22,NTg fter = 9.
3. for the step track NTyefore = 22,NTyfter = 17.

4. for the maze track NTpcrore = 1,NTgfter = 1.

The learning speed is set to g = 0.5 - 1078, there are K = 10 bank filters for each pixel
input and the distance between the retinal field and the reflex sensor is set to y = 6. There is
no need to freeze the ICO weights because learning quickly stabilises during the experiment.
Simulations are run with the learning robot and the following conditions:

1. for the shallow track in Figure 3.37.

2. for the middle track in Figure 3.38.

3. for the step track in Figure 3.39.

4. for the maze track in Figures 3.40,3.41.
Figures 3.37,3.38,3.39 contain 4 panels:

A The retinal field contains the learned weights p;, ; averaged over the n = 10 filters for each
retinal pixel within the coordinate ¢ = 1,..., N, ¢,j = 1,..., Ny.s

B The retinal flow MI(Z, E; ; ;) computed when the robot is only using the reflex Ey for every
pixel (i, /)

C The trajectories produced by the robot during learning. The small inset shows the average
weight development of the retinal field TOTALgrr =}, ; ;. p1, ;, over time.

D The predictive performance PP; ; is computed after the weights have been stabilised. The
values of the reflex input entropy used to compute the PF; ; for each track are summarised
in Table 3.14.

It is time to compare the weight development and the Predictive Performance for each track
from the shallow to the step one. The main message is that for the easier track the weights
and the Predictive Performance are nearly identical whereas for the most difficult track there
is a substantial difference because high weights does not mean better performance.

H(Ep)i=t+, = 0 means that the reflex is successfully eliminated in every case once learning
is stable. This indicates that apparently the robot performs well in each track type, but there
is a substantial difference in the retinal flow and hence in the predictive performance for each
case.

For the shallow track in Figure 3.37, stable learning is accomplished after twelve learning
experiences (LE = 12) and a retinal field with an average value of TOT' ALrp = 0.6 is devel-
oped. The average track deviation is ¢y = 5.0571 and the predictive performance is resembles
the retinal field to some extent. The predictive performance has a maximum of 0.8 < 1.0
lower than the maximum value of 1.0 which would indicate the complete elimination of the

134 CHAPTER 3. RESEARCH WORK

Table 3.14: Table of the reflex input entropy used for the calculation of the Predictive Per-
formance in Figs.3.37,3.38,3.39. t, is the time until the weights have stabilised. The distance
between the reflex pixels and the predictor was always set to y = 6.

track type | y | H(Ey) | H(Ey) tr,
N—— N——
t=0 t=tr
shallow 6 | 0.149802 0.0 1000
middle 6 | 0.152688 0.0 1250
step 6 | 0.154852 0.0 2500

reflex pathway and total controllability of the robot’s actions. In this case the weights (Fig-
ure 3.37(C)) and the Predictive Performance (Figure 3.37(D)) are nearly identical. The total
synaptic weights (Figure 3.37(B)) is lower compared to the middle and step track because the
robot manage the track without any particular effort. The shape of both the receptive field
and of the Predictive Performance show that the robot is using essentially a triangular group of
pixels on the top left of the retina. The highest weights are located close to the reflex and thus
will generate stable correlations between predictor and reflex. The robot does not attempt to
use the pixels on the top of the retina which does not generate reliable correlations.

For the middle track in Figure 3.38, stable learning is accomplished after nineteen learn-
ing experiences (LE = 19) and a retinal field with an average value of TOTALpp = 1.4 is
developed. The average track deviation is 1) = 3.8572 and the predictive performance has a
maximum of 0.91. In terms of weights the robot is using a diagonal and straight group of pixels.
Comparing the weights (Figure 3.38(C)) and the Predictive Performance (Figure 3.38(D)), it
is evident that while the weights are high along the diagonal line, pixels further up are not
strongly utilised as pixels closer to the robot. This is due to the already very steep angles
which can no longer be used to generate a smooth steering action. One could say that the
robot is taking a higher risk by increasing the weights further out but they do not contribute
as strongly to the Predictive Performance as the ones closer to the robot. However, overall the
robot still manages this track with ease which is reected in the high Predictive Performance
values and low track deviations.

For the step track in Figure 3.39, stable learning is accomplished after eighteen learning
experiences (LE = 18) however the robot is not able to stay on the track without learning.
A retinal field with an average value of TOT ALrr = 1.5 is developed. The average track
deviation is ¢ = 6.5 and the predictive performance is different from the retinal field. The
retinal flow before learning does not have any particular structure as the robot is not able to
stay in track with the only reflex. The predictive performance has a maximum of 0.45 and
indicates that the robot is using few pixels in the lower left corner. Here, I have greatest
difference between weight distribution (Figure 3.39(C)) and Predictive Performance (Figure
3.39(D)). While the weights are higher further away from the symmetry axis, the Predictive
Performance is only high close to the robots reex sensors indicating that the pixels further out
are not able to improve the robots behaviour. The last example demonstrates that there is a
distinct difference between Predictive Performance and weight distribution. It clearly shows
that high weights are no guarantee for success in terms of closed loop performance. Instead, the
Predictive Performance gives us a much better indication of whether a certain pixel contributes

3.5. THE PREDICTIVE PERFORMANCE MEASURE 135

(Shallow track retinal field LE=12 B) Retinal flow before learning
1 0.0103
2 2
3 3
4 .
5 5
6 6
— ;
8 8
9 9
0
n
2
3
"
15 5
2 3 4 5 6 7 B 9 10 11 12 13 14 3 4 5 6 7 x 9 101 12 13 14
(C Shallow track Average Deviation=5.0571 D Predictive Performance
240
0 1
=t
230 = .
oy
220 B f
210 < :
- R — -
190 : : : : :
.
180 "
; 12
170 ‘ 13
“
160 15
100 150 200 250 300 350 400

123456789101112131A]5

Figure 3.37: A) Retinal field developed during learning in the shallow track configuration
as in Figure 3.35(A). The learning experiences required to have stable learning were 12. B)
Retinal flow before learning 1 = 0 achieves a maximum of 0.35 bits. C) Trajectories produced
by the robot during learning. The controller stabilizes its average retinal weight at about
TOTALgr = 0.6 after 1000 time steps. The average deviation of the track is ¢ ~ 5.05 D)
Predictive Performance for every pixel. The robot is using mainly a diagonal strip with a peak
in the left bottom corner.

to the closed loop performance as shown by the simulations.

Predictive Performance during learning So far I have calculated the Predictive Perfor-
mance at the end of learning. However, while the robot traverses along the line it will learn
along the worst experience and then only continue to adjust its weights when it encounters a
more challenging turn. Fig. 3.40(A) shows the maze track experiment where the robot has to
master a track where it encounters different levels of difficulties. When the robot is learning
on the maze track as in Figure 3.41(B) there are 2 stages of learning:

e the first one happens from the beginning to point P1.

136 CHAPTER 3. RESEARCH WORK

(A) Middle track retinal field LE=19 (B) Retinal flow before learning
1 0.0128 1 0.32
15 1 2 3 4 5 6 7 8 9 10 11 1213 14 |§ 0 15 0

i
(C) Middle track Average Deviation=3.8572 (D) Predictive Performance

=

2 3 4 5 6 7 8 9 10 11 12 13 14

360

3401

320

300+

Avgretinal field

2801
> 260
240
220+
200+

1801

100

Figure 3.38: A) Retinal field developed during learning in the shallow track configuration
as in Figure 3.35(A). The learning experiences required to have stable learning were 19. B)
Retinal flow before learning p = 0 achieves a maximum of 0.35 bits. C) Trajectories produced
by the robot during learning. The controller stabilizes its average retinal weight at about
TOTALgr = 1.6 after 1250 time steps. The average deviation of the track is ¢ ~ 3.85. D)
Predictive Performance for every pixel shows that the robot is using a wider area compared to
the shallow case and with higher maximum of 0.9.

e the second one happens from point P2 to point P3.

Therefore the predictive performance and retinal field is computed for the 2 stages in
3.41(C,D,E,F). Remember that learning is error driven and it is only triggered when the reex
is utilised. The robot manages the track with and without learning, however learning reduces
the track deviation from ¥ = 5.20 before learning (Fig. 3.40) to v = 3.86 after learning (Fig.
3.41). In Fig. 3.40(A) the trajectory is approximated by a broken line whereas in Fig. 3.41(A)
the trajectory overlaps almost perfectly to the track thus indicating a high performance. The

values required to compute the Predictive Performance for the reflex case are reported in Table
3.15.

3.5. THE PREDICTIVE PERFORMANCE MEASURE 137

(A) Step track retinal field LE=18) Retinal flow before learning

1 0.0147 | 1.0
02
5 0

23456759101112131A 23456789101112131415

(C) Step track Average Deviation= 6.5 (D) Predictive Performance

3201

300 4= 14

280

Avg'retinal field

260 7

2|
3
4
5
8|
Time
8|
9

E i |

23456789101112131A15 0

220

200 -

180 -

160 L H i
100 150 200 250 300 350 400

Figure 3.39: A) Retinal field developed during learning in the step track configuration as in
Figure 3.35(A). The learning experiences required to have stable learning were 18. B) Retinal
flow before learning iz = 0 stays at about 0.1 bits. C) Trajectories produced by the robot during
learning. The controller stabilizes its average retinal weight at about TOT ALrp = 1.44 after
2600 time steps. The average deviation of the track is ¢ ~ 6.5. D) Predictive Performance for
every pixel. The robot is using a wider area but with lower values.

Fig. 3.41(A) shows how the mutual information of the retina looks like during a purely
reflex behaviour (¢ = 0) and is necessary to compute the Predictive Performance for the latter
case Fig. 3.41(B) when learning is enabled u > 0. Learning is happening whenever the reex
is triggered. From the start until P1 the robot learns continuously because the reex is used
heavily and the weights grow (see the total receptive weight value in Fig. 3.41(B)).

Then at P1 the receptive field controls learning without resorting to the reex and the weights
stabilise. This works fine until the robot drives into a very steep curve at P2 where the reex
had to be used again and learning kicks in until the robot reaches more shallower curves at
P3. In order to calculate the Predictive Performance at intermediate points I need to average
over a certain period of time. Looking at the total weight development (Fig. 3.41(B)), I can
therefore calculate the Predictive Performance for two sections defined as Stage 1 and Stage 2.

138 CHAPTER 3. RESEARCH WORK

track type Y H(Ey) H(Ey)
~—— S~——
t=0 t=tp
maze stage 1 6 0.130942 0.0
maze stage 2 6 0.130971 0.0

Table 3.15: Table containing the mutual information values for the reflex in the maze track
before and after learning.

The Predictive Performance increases from a maximum of 0.44 in stage one (Fig. 3.41(D))
to a maximum of 0.84 in stage two (Fig. 3.41(F)) thus indicating a relevant step in learning and
the level of difficulty. During the first stage the Predictive Performance shares some similarity
with the weights (Fig. 3.41(C)) but in stage 2 there is a strong difference (Fig. 3.41(C,F))
because the Predictive Performance is high in the upper left triangle of the receptive field. This
again demonstrates the added value of calculating the Predictive Performance to assess which
pixels of the retina are actually contributing to the success of the robot and which do not.

(A) Maze track reflex Average Deviation= 5.20 (B) Retinal flow before learning

1 352846
7001 py .
600 °
.
500t °
6
Y 400t 7
P2)
300 o
10|
00" "
12|
100+ 13,
"
! 1 100 200 300 400 500 600 15

- X) 700 2345678.91011121314150

1

Figure 3.40: A) Trajectory of the robot in the maze track when only the reflex is used (1 = 0).
B) Mutual information MI(Z, E; ;, j)t:() for the retina computed during a track run

3.5.7 Results: application of PP to social systems

The predictive performance can be applied then to the social system setting described in Section
3.3 where I already computed the required values. Figure 3.42, left column shows the outcome
of computing the predictive performance measure for the food and others attraction behaviour.
The white bars contain the PP measure for the attraction behaviour PPp,, whereas the black
bars contain the PP measure for the others attraction behaviour PP4y. I have applied the
measure for 3 different scenarios:

e a group of N = 10 agents and M = 5 food sources, generates five seekers and five
parasites. The agents identified with 1,7,3,9,2 have PPp, > PP,y therefore they are

3.5. THE PREDICTIVE PERFORMANCE MEASURE

(A) Maze track average deviation=3.86 (B) Learning phases in the maze track
1.
700 P3 6 I I I I
600 '-9‘ ! ! H H
2 it
" P2 e I [| |
Y o £ i i
o 08 I 1 1 1
300 en H H H H
s ol | Pl !
Sof ! Pl !
< | Stagel | | Stage2]
100 0.2 H H H H
P1 Pl 1P2 P3| | P4
o T00 200 300 200 500 600 700 o 500 1000 1500 1000. 2500 3000 3500 4000 4500
X Time
(C) Retinal field in stage 1 LE=15 (D) Predictive Performance in stage 1
0011703 0.444849
15 o 15. ‘
: 23655739mu12131415
(E) Retinal field in stage 2 LE=21 (F) Predictive Performance in stage 2
ootecoss 1
)
bowzr o
.
ooresoss 5
s
ooz
- il e
ooresoss
10
ooz
n o
|| ootssoss
1
15 ooz

1 2 3 4 5 6 7 8 9 1

1

oz 1w 45

2 3 4 5 6 7 8 9 10 1 12 1 14 45

139

Figure 3.41: A) Trajectory of the robot in the maze track during a full learning session. B)
The average retinal field plotted against time. The learning is stable in Stage 1 and Stage 2.
There are 2 phases during the run marked with [P1, P2] and [P3, P4] where the robot does not
learn anything new. C) Retinal field is constant during Stage 1. D) Predictive performance
in Stage 1. E) Retinal field is constant during Stage 2. F) Predictive performance in Stage 2.

seekers. The agents identified with 5,8,4,10,6 have PPr, < PPy therefore they are

parasites.

140 CHAPTER 3. RESEARCH WORK

e a group of N = 10 agents and M = 2 food sources, generates two seekers and eight
parasites. The agents identified with 6,5 have PPr, > PP,y therefore they are seekers.
The agents identified with 3,9,2,7,8,4,10,1 have PPp, < PP4s therefore they are
parasites.

e a group of N = 10 agents and M = 8 food sources, generates eight seekers and two
parasites. The agents identified with 5,9 have PPr, > PP, therefore they are seekers.
The agents identified with 4,10,3,1,2,7,8,6 have PPp, < PPuy therefore they are
parasites.

This outcome is compared with the weight development as shown in Fig.3.42, right column
where the weight level for each agent is shown. There is a critical observation between the
discrepancy of weight levels and predictive performance: high weights does not necessary mean
high performance. For each case one can notice that:

e a group of N = 10 agents and M = 5 food sources (see Fig. 3.42(a)): agents numbered
7 and 3 have an equal performance as agents 9,2 PPr 3(Af) ~ PPy o(Af) although their
weights are lower W7 3(Af) < Wy 2(Af).

e a group of N = 10 agents and M = 2 food sources (see Fig. 3.42(b)): agents numbered 6
and 5 have a different performance PP5(Af) > PPs(Af) although their weights are sim-
ilar W5(Af) ~ W5(Af). Agent 2 has Wy(Fo) > Wy(Af) but its predictive performance
is similar PPy(Af) ~ PPy(Fo)

e a group of N = 10 agents and M = 8 food sources (see Fig. 3.42(c)): agents numbered
5 and 9 have an equal performance PP5 g(Af) ~ PPs9(Fo) although their weights are
differently distributed Wy(Fo) > Wo(Af).

Again like the previous retinal field case, the weights are not a reliable measure of the
performance of the agents. Especially in a highly dynamical social system, agents can be lucky
and just find food by chance. One could be tempted to correlate the PP(Fo), PP(Af) with
the number of successful food bites or food stolen from other agents but this has the same
limits of looking at the weight. A corresponding verification via an objective measure like
1 in Eq. 3.140 would require a complex trajectory analysis for each agent in relationship to
each others’ trajectories and therefore was not attempted for computational issues and lack
of time. However basing my assumptions on the previous track follower, I am confident that
the predictive measure can be trust and so agents 5,1 are the best performing agents in Fig.
3.42(Db).

According to this new results, I can state that the weight are an actual representation of
the social division. However in the future if the developer wants to use more complex agents in
artificial societies, it will be necessary to compute the PP for each behaviour and then compare
the different behaviours rather then relying exclusively on the weight development.

3.5.8 Discussion

The original Shannon’s Information Theory (Shannon and Weaver, 1949) has been applied
to closed loop systems in several studies like Ashby (1956); Tishby et al. (1999); Touchette
and Lloyd (2000a). The scope of my predictive performance measure is to unify the Ashby’s
original theory of requisite variety Ashby (1956) with the recent frameworks based on mutual

3.5. THE PREDICTIVE PERFORMANCE MEASURE

PP for N=10 agents, M=5 foods Weight difference W(Af),W(Fo)

Delta W

PP value

Agent index Agent index
(a) When there are 10 agents and 5 food sources, 5 seekers and 5 parasites are generated

PP for N=10 agents, M=2 foods

PP (Fo)
C_rpPn

Weight difference W(Af),W(Fo)

PP value
Delta W

5 3 9 2 7 8 4 10 1
Agent index Agent index

(b) When there are 10 agents and 2 food sources, 2 seekers and 8 parasites are generated

PP for N=10 agents, M=8 foods Weight difference W(Af),W(Fo)

4.5

PP(Fo)
P(Af) ne
124 4

PP value
Delta W

Agent index Agent index

(c) When there are 10 agents and 8 food sources, 8 seekers and 2 parasites are generated

141

Figure 3.42: Predictive Measure (PP) computed in the social system for: (A) 10 agents and
5 food sources, (B) 10 agents and 2 food sources, (C) 10 agents and 8 food sources. Left
column contains the PP measures with white bars for the food attraction behaviour PP(Fo),
black bars for the other’s attraction behaviour PP(Af). Right column contains the weight

developed after the system is stabilised for the same behaviours W(Fo), W(Af).

142 CHAPTER 3. RESEARCH WORK

information (Tishby et al., 1999) and Bayesian models of perception-action loop Klyubin et al.
(2004, 2005, 2007, 2008). The Information Bottleneck (Tishby et al., 1999) is an information
theoretic framework that finds concise representations for an ‘input’ random variable that are
as relevant as possible for an ‘output’ random variable. This framework has been used suc-
cessfully in various supervised and unsupervised applications but cannot be used as a measure
of performance in closed loop controllers. Building on this initial theoretical work, additional
studies were done on closed loop-systems from an agent-perspective considering the information
processing properties of such system in the context of what would be beneficial for the agent it-
self (Klyubin et al., 2007, 2008; Prokopenko et al., 2006; Lungarella et al., 2005; Lungarella and
Sporus, 2006). An interesting agent-centric measure called “empowerment” was introduced by
Klyubin et al. (2005, 2008). Empowerment is defined as the maximum amount of information
that an agent could send from its actuators to its sensors via the environment, reducing in the
simplest case to the external information channel capacity of the channel from the actuators
to the sensors of the agent. The empowerment is then used as an utility function that can
be maximised by the agent’s behaviour or by genetic evolution to produce meaningful states.
The empowerment can also be measured to assess the performance of a general adaptive agent
but it is necessary to disregard the actual behaviour of the agent and to model how the agent
could behave in principle (disregarding the actual behaviour of the agent can be imagined as
removing the agent’s controller and studying the remaining empty shell which is the agent’s
body).

The fundamental difference between the Predictive Performance and empowerment is that
the first is used to quantify the performance of a general adaptive controller whereas the second
is used to drive the controller and at the same time to measure optimality.

Some other studies are focusing specifically on adaptive closed loop systems (Porr et al.,
2006; Tomas et al., 2010; Lungarella and Sporns, 2006). Lungarella et al. (2005) has proven
that for a saliency based attentional behaviour -based on a PT camera- the spatial mutual
information increases and entropy decreases around the foveation point. The information
measure was only computed for the visual input of the PT camera whereas my predictive
performance measure takes into account the interplay of the sensory motor loop for the driving
robot. Another essential difference with this study is the use of a purely reflex behaviour
whereas my approach includes both reflex and learning behaviour.

A similar approach was used by Der et al. (2008); Ay et al. (2008) where the authors defined
a predictive information measure PI as the mutual information between past and future sensor
values to estimate the adaptation of a mobile robot to its environment. The mobile robot used
in their study was a purely reflexive controller described by a parameter ¢ which was chosen
to simulate different behavioural regimes and how the PI was changing. Again this study is
similar to Lungarella et al. (2005) because is based on a reflex controller and considers only the
input: the transfer entropy is computed between the visual input S and the motor outputs M
for different robot implementations with and without learning. In the experiment, when the
robot is using reward-based learning, the transfer entropy is able to track the attention from
red objects to blue objects following a change in the reward signal. This result is consistent
with my observations on the visual flow which shows how the mobile robot has been adapted
to different track shapes. My Predictive Performance goes further than just measuring the
information flow because is able to identify if the agent is learning and being a scalar value
avoids the complexities associated with multi dimensional analysis.

Tomas et al. (2010) makes a very complete study about the adaptive properties of driving

3.5. THE PREDICTIVE PERFORMANCE MEASURE 143

robots in a square and circular environments. The mobile robots are using ICO learning but
have only 2 spring antennas rather then a retinal input like my experiment. The author is able
to predict the temporal development of the weights by using an analytical model which takes
into account the predictive and reflex timing of the input events. The author then measures
energy, input/output ratio and output entropy to estimate what is the best antenna ratio for a
given environment. Although their modelling approach is correct, to compute the input/output
ratio one must be able to separate the output contribution of the reflex from the predictor.
This is not possible in a black box scenario whereas the observer is not able to discriminate
the contribution of the reflex and predictor input. The speed of learning is then computed as
the maximum value of the input/output ratio and together with the path entropy is used to
measure the optimality of the robot. The path entropy is essentially the output motor entropy
and thus indicates the complexity of the trajectories generated. The main difference with my
work is that I summarize the performance of the agent to one value which tells us how good
the agent is learning.

The development of the predictive performance is motivated by the original paper of Porr
et al. (2006) where the predictive information is computed by summing the weights of the ICO
learning rule (Porr and Worgotter, 2003): the higher the weights the higher is the predictive
information. There are 2 issues with this approach: firstly I trust what the agent has learned
without looking at the environment’s feedback, secondly it can only be applied to ICO/ISO
learning agents. In the simple case of Porr et al. (2006) where the robot is using only one ICO
neuron the predictive information is reliable but it cannot be applied to my case where the
retinal input is multi dimensional.

The development of visual receptive fields, for example in the primary visual cortex, has
been an intriguing problem addressed in numerous studies (Olshausen and Field, 1996; Blais
et al., 1998; Weber and Obermayer, 1999; Hurri and Hyvéarinen, 2003; Krding et al., 2004; Wyss
et al., 2006). Whereas in these previous studies the agents operate in open-loop, my agent
learns in a closed loop manner as proposed by McKinstry et al. (2006). The development of
the receptive field has been investigated already by Kulvicius et al. (2007, 2010) which shows
that RF can drive the motors of the robot in order to create better and more stable behaviour,
and that development will stop as soon as the system has obtained behavioural stability after
learning.

In summary, in this study I have analysed an adaptive predictive controller with the in-
tention to quantify the information used effectively by the robot before and after learning. I
introduced the predictive performance to measure the learning ability of the robot in differ-
ent tracks. The robot is facing tracks with increasing difficulty -increasing curvature ratio-
and is always learning to follow the tracks. I demonstrated that the predictive performance
computed from the agent’s perspective is consistent with the objective performance on the
track. Additionally I argue that there is a limit in the potential information that an agent
can learn, that enable us to set an upper bound for normalisation purposes. So the predictive
performance help us to measure how much information flow the robot is using to achieve its
goal without being biased by the absolute weight development. The predictive performance
can be applied to every type of predictive adaptive control as long as the predictive and reflex
inputs can be identified and is a useful tool that can can be used to give an objective estimate
of the performance by evaluating information at the subjective level. The predictive perfor-
mance is also very useful to determine the performance in the social system scenario where the
highly dynamical setup does not allow the estimation of an agent performance by looking at

144 CHAPTER 3. RESEARCH WORK

the weights.

Chapter 4

Conclusion

4.1 Summary of results

This thesis has developed a computational model for the implementation of artificial societies
based on the theoretic foundation of Luhmann. The societies are based on software agents that
learn simple avoidance and attraction behaviours by means of a biologically inspired Hebbian
rule. The intra agent communication is based on a minimalist implementation of Luhmann’s
communication model and is simple enough to generate the self-organising behaviour of social
sub-division. The social division was assessed initially by looking at the synaptic weight de-
velopment of each agent individually. This approach implies that the agents are considered as
white or grey boxes, which means that the approach is not feasible if I consider a general agent
whose internal status is not accessible (black box). Therefore I have then firstly developed two
input measures called maxcorr and AI, secondly input/output measures MI to reflect the
complexity reduction in their agent’s behaviour and a single called Predictive Performance
to gauge the learning performance of the agent. The measure has proven successful in mea-
suring not only the behavioural reduction in a social setting but also the learning performance
of the agent. This measure is general enough to be applied also to other learning controllers,
for instance a Q-learning avoiding robot. The strength of this approach compared to previous
work is that it is an information based measure that can be applied to real agents as well as
simulated agents. Previous models in literature are based on discretised models or strategic
games. In the following section 4.1.1, there is a comparison of previous work done in terms
of information measures. In section 4.2 there is a description of possible extensions of the
social system model, a potential application and a better analysis based on model checking.
In section 4.3, I introduce some interesting topics as well as philosophical questions about the
relationship between information theory, the theory of mind, psychology, language and neuro-
science. In section 4.4 there is a small overview of the existing commercial systems relying on
social robotic systems.

4.1.1 Discussion

The most relevant work that was done in the past about the implementation of Luhmann’s
principle in a computational model is the one of Dittrich et al. (2003). The model is imple-

145

146 CHAPTER 4. CONCLUSION

mented as a language game where agents are learning during mutual interactions. The social
model that was developed in this thesis, although it does not include a complete communication
protocol described by Luhmann and used by Dittrich, it is capable of generating sub-systems.
It also has mainly 2 advantages:

e it is a real time simulator where the agents interact and learn continuously from each
other rather then being limited to a simulated game.

e it can be implemented on a real robotic system as described in the Appendix

The other advantage, compared to Dittrich et al. (2003), is that the agents integrate action
and communication in a very transparent manner thus facilitating a future expansion of the
system. The communication used in the model is mono directional and one to many: this has an
operative advantage in terms of fast response times if the system has to adapt to environmental
changes.

As a comparative analysis, previous works in information measures was performed by the
following authors, that used information theoretic cost functions to optimise the agent’s be-
haviour:

e Polani et al. (2004) evolves controllers to maximise the information transfer of the sensory-
motor loop (empowerment) and discovers that to use memory efficiently they perform
compression as in Figure 2.18.

o Pfeifer et al. (2008) uses mutual information to generate information structures by motor
feedback.

e Ay et al. (2008) maximises the excess entropy (the mutual information between past and
present) of the agent’s input thereby changing the controller’s parameter to achieve a
working regime (exploratory and sensitive to the environment) for the robot.

There is a substantial difference between the afore mentioned approaches and the one used
in this thesis: the predictive performance discussed in Section 3.5 calculates the learning abil-
ity of a general adaptive controller based on the information flow. This is different from the
other study by Polani et al. (2004); Lungarella et al. (2005); Ay et al. (2008) which use the
information flow as a reward signal for the agent to learn. Nevertheless there are compatible
results that shows how the two approaches are complementary. For example the experiment
made by Lungarella et al. (2005) where he computed entropy measures on a saliency-driven
attention task, where a camera foveates red blocks. The entropy for the foveation case is less
than the random case: this means that a closed loop system induces statistical regularities
in the information flow. My results coming from the social system application yields a simi-
lar concept: agents regularise their inputs by selecting information which affects their motor
behaviour. There is a mutual relation between perception, information and action: agents
select the information which in turns change their behaviour and their predictability. Indeed
in Fig.3.25(D) the system is unstable when every agent is using all the information and thus
producing non predictive behaviour. But when agents start to select the relevant information,
they simplify their behaviour and intrinsically reinforce the stability of the system since agents
mutually benefit from the increased predictability. Therefore the Predictive Performance is also
used to measure the degree of behavioural selection of each agent during the social division as
also described in Section 3.5.7.

4.1. SUMMARY OF RESULTS 147

Another interesting experimental work in the field of performance measure was produced
by Kolodziejski and Kulvicius (2009) where the measure was the argument of the maximum
cross correlation between the antenna’s events 7 in a fixed time window. Kolodziejski and
Kulvicius (2009) show that for more complex environments 7 has a larger deviation compared
to the case of more simple environments.

The predictive performance can also be applied to reinforcement learning (Sutton and
Barto, 1998) as demonstrated in Section 3.4 where the information flow was computed for
a simple robot avoiding obstacles. Although the author did not have time to compute the
predictive performance, only the information flow, there are no evident limits that will stop
the computation of the predictive performance.

The predictive performance was finally applied to the social system scenario as demon-
strated in Section 3.5.7 to show how agents select either behaviour in terms of information
flow. This analysis show how the agents are selecting the information path and how is related
to their weights’ development. It also shows that performance cannot be based on the analysis
of the weights but can only be reliably assessed via the predictive performance.

An intuitive and potential extension of the predictive performance is to classify the type
of learning exploration or exploitation. So far I have only verified that the PP measure is
normalised between 0 and 1, because in the second term I assumed that the information
reflex flow before learning can be transferred totally to the information predictive flow after
learning. However theoretically an organism which explores the environment could discover
new relationships from the environment thus increasing the information flow after learning. In
this case one could say that if 0 < PP < 1 then the agent is only exploiting the environment,
whereas if PP > 1 then the organism is exploring the environment. I was expecting from the
Q-learning experiment to achieve something similar, but due to simplicity of the task I did not
observe PP > 1. A better designed task could prove this property and can certainly a reason
for a future study.

The Appendix 5.3 contains a more elaborate analysis of the weights’ development during
the sub-system formation by using a clustering analysis in the phase space of the weights. This
sort of analysis provide a better qualitative approach to the determination of the sub-system
separation.

The following section describes what modelling choices were done during the research and
how they were justified.

4.1.2 Modelling choices

In the theory of social communication Luhmann (1995) and previous cybernetic experts as-
serted that an artificial agent or organism have mutual expectations towards other agents. An
example which explains this condition is the difference interaction between a person and an
object or a person with another person. We have a direct expectation for an object because
we know that it only adheres to the laws of gravity and we know that throwing it will make a
parabolic trajectory in the air. We have a mutual expectation between “ego” me and “alter”
you, because we both try to predict what we are thinking. In a way that is more similar to a
chess game where each player tries to predict the next move of the other in order to maximize
his chance of victory. In the deterministic memory based model developed by Dittrich et al.
(2003), social order arose from the social interaction of agents. Therefore my choice in the
model was to separate the prediction of the world/environment from the prediction of other

148 CHAPTER 4. CONCLUSION

agent’s actions. The identification of alter and ego was not included in the model and is left
for future work, however most advanced organisms like mammals and primates are able to
recognize their interlocutor and so maintain different expectations according to their previous
interactions. The language used to communicate the food information is similar to a sign lan-
guage which is based on the action layer, the most simple example could be the everyday traffic
flow of cars. The left light arrow indicates that the car in front of us is going to turn left and
vice-versa. This kind of sign language is used in the animal world and has been extensively
studied by Smith and Harper (2003). A good example is the evolution of the ritualisation of
the mating and fighting behaviour as briefly described in Figure 4.1.

Evolution of communication for the Ethologists

CUES SIGNALS
: RITUALIZATION -

Non functional Functional
signals RITUALIZATION signals

Individual > Group Level R'TUAL'ZAT'O,N Acoustic

rization/SIGNALLING| Selection categorization
categorization| 20/ irion 9

RITUALIZATION ["Deceptive

Individual > Individual
Communication

categorization |g;gnacuing | Level] SIGNALLING
VOLUTION | Selection EVOLUTION

Figure 4.1: This diagram shows how Ethologist explain the evolution of animal signalling or
language

A more advanced communication language uses a symbolic language which is based on top
of the action or sign language: primates developed a more advanced mean of communication
using sound and developing specialized areas of the brain like the “Brocha area” in humans
and equivalent structures in the singing birds (Lai et al., 2001; MacDermot et al., 2005).

A sign or ritualised language is constrained by the environment and cannot develop further,
this is why a better model would require the use of a symbolic language which I am going to
describe in the next section.

4.1.3 A theory of language

This section contains first an introduction to the theories regarding the development of human
and animal languages. It contains a brief summary of the current knowledge about the biolog-
ical roots of language formation and experiments which try to replicate artificial language.
The communication model used in my artificial social system is very basic and mimics
essentially the simple mechanism of signals used in simple animals like primates or event insects.
The power of a more abstract or symbolic language has been assessed in lesion brain studies
where basically it was discovered that intelligence is rooted in language. The recent discovery
of the FOXP2 gene -dubbed the ”language gene”- has provided an astonishing example of the

4.1. SUMMARY OF RESULTS 149

importance of the Broca’s functional area; in humans, mutations of FOXP2 cause a severe
speech and language disorder (Lai et al., 2001; MacDermot et al., 2005).

A model of language development, was achieved by Steels (1998, 1999), the talking heads
experiment shows that a grounded language can indeed be evolved and contain many prop-
erties seen in natural languages like polysemy and synonyms. Steels (1999) has investigated
how artificial agents can self-organize languages with natural-language like properties and how
meaning can co-evolve with language. His hypothesis is that language is a complex adaptive
system that emerges through adaptive interactions between agents and continues to evolve in
order to remain adapted to the needs and capabilities of the agents. Thus a community of lan-
guage capable agents can be viewed as a complex adaptive system which collectively solves the
problem of developing a shared communication system. To achieve that, the community must
reach an agreement on a set of forms (a sound system in the case of spoken language), a set of
meanings (the conceptualisations of reality), and a set of form-meaning pairs (the lexicon and
grammar). The experiments implemented interactive robots that were programmed to play
language games and observed the characteristics of the languages that emerged; surprisingly
the agents were able to self organize and develop a common language, which resembled many
features of human like languages, without the help of an external teacher. The pre-requisite
for the emergence of language is the cognitive and sensory-motor ability at the individual level
because without the ad-hoc apparatus for exchanging information and the ability to categorize
the environment it is impossible to develop a language.

The experiments shows that for a language to emerge there are several conditions:

e a common frame of attention
e the ability of perspective change
e 3 reliable system of communication

e adaptive learning

A sign language can emerge by interacting agents in the world: organisms can develop an
alphabet of actions that will generate a predictive behaviour. Put simply, the agents have
mutual expectancies from each other: if agent A sees a red square in front of him, it will
produce a tone say at 150 Hz and agent B maybe will produce a tone say at 300 Hz. With
time the agents will use a common alphabet to indicate different geometric shapes. This is
possible because (A) both agents have the same or similar computational capacities and (B)
both agents can imitate each others actions. Imitation is very important for the development
of language and it has been discovered that this important function is implemented by mirror
neurons both in primates and humans (Buccino et al., 2004). Even non primates like birds,
must have a brain circuit generated by the gene PX64 to enable them to reproduce acoustic
sounds of similar pitch. Birds that doesn’t have this gene cannot develop a common language,
even children who lack this gene are not able to develop a proper language. It turns out that
if an agent is to be able to learn a language they must have a capacity to imitate and process
in memory actions performed by his peers.

My current communication model on the contrary is limited or bounded to the properties of
the environment: doing so limits the recursivity of a symbolic system. I need a higher process
that is able to abstract the embodied actions’ that happen in the world to a higher level of
actions (let’s call them symbols but they can be sounds or tones) that are able not only to
refer to the objects of the real world but also to each other.

150 CHAPTER 4. CONCLUSION

It is very easy to see the limit of an embodied language system: a well known studied effect
is that one of the foraging domestic pigeons (which google sarcastically claims use a new page
rankingsystem). Pigeons do have a good visual system but can detect food relatively well on
the ground, once a pigeon finds a possible source of food it goes on the ground and randomly
samples the ground to find the lucky spot! Another pigeon flying nearby will see his fellow
pigeon wondering around the interesting spot and with some probability it will go on the ground
and look for the food itself! If we repeat the step many times for each time a pigeon passes
nearby we can see an entire storm of pigeons eating imaginary food! This kind of behaviour
[reference] is a positive feedback mechanism which is based on a priory knowledge of the pigeon:
the fact that if a fellow pigeon is looking for food on the ground then there should be something
there! To some extent pigeons base their decisions on Bayesian inference. Surprisingly for very
simple behaviours this also humans base their choices on Bayesian inference. This was shown
in a very simple experiment that you can do when you feel bored: walk along the street with
a friend and at a given time stop and look up at a point in the sky. After 1 hour you will
get other 20 people doing that and so on. This primitive communication language happens
if, as we said before, all the necessary conditions are met: a joint frame of attention for the
pigeons looking for food on the ground and for the humans looking at some point in the sky,
the ability to imitate actions (here we suppose to move to the same point in the space) and
the ability to remember what the other are doing. How this a-priory knowledge has developed
could depend on many factors, it’s certainly due to the evolution mechanism as well as on our
personal experience. For us it’s very hard to get fooled by that trick more than one time as we
may infer that when a group of people gather in that situation it has no importance, but for the
pigeon it is another story. Pigeons will keep that behaviour because it is beneficial: on average
they will be able to find some food and therefore will keep their a-priory estimate so that next
time they will come back. For the unlucky pigeon that, by a series of unfortunate events,
will not get any food, there will be a life of solitude and eventually an early retirement! The
conclusion here is that language cannot be based solely on actions because, they are embodied
in the environment where they are performed. Thus to develop a more complex language, the
organism must be provided with an additional layer of sensory-motor loop designed or adapted
for the purpose of communication.

4.1.4 Language model and control

A control model which includes language was used in Steels (1999) and is summarised in Figure
4.2 where two artificial agents play the role of the speaker and the hearer each time they meet
each other in a rule based language game. The model adopted by Luc Steels includes similar
features to Luhmann, the intentionality is achieved by the goal to reduce uncertainty, the
utterance module also involves the information selection, and parsing the utterance is basically
the understanding process.

In the talking head experiment (Steels, 1999), every communication round is composed of
one speaker and one hearer. The speaker and hearer share a whiteboard (called “the context)
full of geometric coloured shapes (triangles, squares, circles). The speaker, uses image seg-
mentation to choose a topic like "the green triangle“ or ”the square in the top left corner*.
The speaker then, chooses a word from its dictionary to describe the topic, then it emits a
”linguistic hint*“ to the hearer. Based on the linguistic hint, the hearer tries to guess what
topic the speaker has chosen, and he communicates his choice to the speaker by pointing to

4.1. SUMMARY OF RESULTS 151

(Speaker) (Hearer)
perception and _[world]_ perception and |sensory
modelling modelling motor

system
U [goal | [model] [model] [action |
—
- . . conceptual
conceptualisation interpretation system
il
language
\production utterance parsing) sysgtiemg

Figure 4.2: Both the speaker and the hearer have a layered architecture: the language system
takes care of the production and parsing of the utterance, the conceptual system takes care
of the understanding, the sensory-motor system includes the modelling of the world and the
intention or goal of the agent.

the object. The hearer points by transmitting in which direction he is looking. The game is
considered successful if the topic guessed by the hearer is equal to the topic chosen by the
speaker. The game fails if the guess was wrong or if the speaker or the hearer failed at some
earlier point in the game. In case of failure, the speaker indicates the topic he had in mind, and
both agents try to ”"synchronize“ their dictionaries to be more successful in future games. The
talking head experiment shows that a grounded language can indeed be evolved and contains
many properties seen in natural languages, such as polysemy and synonyms.

In my simulations what the agents are missing is the conceptual system layer of Figure 4.2
which generated concepts and extract meanings from the language system. The world model
of my agents is quite simple because it basically reduces a multidimensional time series in a
single integrated value which is the ICO weight. The world model is of course a bottle neck
for the conceptual system but that does not imply that a simple conceptual layer cannot be
developed. For example part of the plan in my simulations was to introduce such a conceptual
layer (“telepathy” feature) whereby the agents shares their own weight with each other. When
the agent receives the weight from one if his fellow, it can decide whether to use it or not. If
the weight is beneficial, then is going to keep it otherwise is going to reject it. This simple
mechanism allow agents to share their representation of the world and assigning a simple binary
meaning: does it work or not? With this sort of communication, one would also expect a
faster convergence in the self-organization property because agents does not have to experience
everything but can just try to apply somebody’s else knowledge. This feature unfortunately
as explained in Figure 4.3 was not implemented for the lack of time but would be certainly
improve the model complexity and possibly generate more complex collective behaviour.

It is also equally important to study animal language and see what are the main differences
with the human language. Due to the complexity of the cognitive abilities of humans, in this
Thesis I used models of language closer to animals rather then humans, and so I am going to
describe in the following sections some experimental evidence of animal language.

152 CHAPTER 4. CONCLUSION

agent 2 V
successful
learning

\ _J

Figure 4.3: In this situation there are three agents. Agent 2 behaviour is to be attracted by
agent 3 due to its current weight status wl2. Agent 1 is going to learn the food attraction
behaviour and consequently transmitting his weight w1l to Agent 2. Agent 2 will receive the
communication from Agent 1 and will decide to try the new weight w12. If the operation is
successful it will keep the new weight w12 and overwrite its previous one wll.

4.1. SUMMARY OF RESULTS 153

4.1.5 What is going on in an animal’s head?

What do the signals given by primates, and their responses, tell us about how monkeys think?
When we see an animal do something, it is tempting to assume that it’s thinking as we would if
we behaved in the same way. But, as we explain in the context of alarm calls, this need not to
be so. Sometimes, however, by appropriate use of playback experiments, we can get answers.

4.1.6 Do signals convey information about the external world?

Some signals convey information about the signaller. For example the black and yellow stripes
on a Cinnabar Moth caterpillar carry the message "I am distasteful’, a fact about the signaller,
not about the world external to the signaller. In our model, agents show to the other, their state
of satedness: it’s the same concept. But other signals do carry such information: for example,
a bird alarm call carries the message “there is a predator close by” or in my framework, the
agent signals the presence of a food resource in front of it by changing its colour. So what is
the difference between the two cases? It’s about what, if anything, goes on in the mind of the
receiver of the signal. Is the receiver genetically programmed to react to the alarm (a pure
reactive agent) or is the receiver formulating a hypothesis of the external world (a non reactive
agent)? To be specific, when a Vervet Monkey hears a Leopard alarm, it climbs a tree. Does it
do so because it forms an image of a Leopard in its mind and behaves accordingly, or because
it follows the behavioural rule “when you hear that call, climb a tree” ? We know that a Vervet
will behave appropriately when it hears a Leopard alarm, even when no Leopard is present. But
what is going on in its head? Seyfarth and Cheney (2000) attempted to answer this question by
habituating experiments. Summarizing their conclusion “Vervet Monkeys, therefore, appear
to interpret their calls as sounds that represent, or denote, objects and events in the external
world”. Current imaging studies are shedding more light into the mechanism of humanoid
brains but there is still a lot of unknown processes.

4.1.7 Do signallers intend to alter the behaviour of receivers?

Moller (1988) argues that subordinate birds gave false alarms to drive away more dominant
individuals and thereby gain access to food. It requires only that individual birds learn that
giving an alarm note increases their access to food: the calling bird does not have to think “if
I give an alarm, other birds will think that there is a predator and fly away”. An even more
cautious interpretation is that the behaviour is not learnt at all: it’s innate in all situation in
which calling has been selectively favoured in the past. In my framework some agents cheat to
decrease food competition, but to keep the model simple this behaviour is not learned, only a
percentage of the population is cheating. In this example, there is no need to assume that an
animal ascribes thoughts and beliefs to others. Humans certainly do. What of other primates?
A summary of Dennett’s classification of “intentionality” (Dennett, 1987):

e Zero-order intentionality. The signaller holds no beliefs or desires: a black and yellow
caterpillar is a likely example.

e First-order intentionality. The signaller holds beliefs, but no beliefs about the beliefs of
others. A Great Tit giving an alarm does not believe that there is a predator (if the
signal is honest), or that the alarm will not increase its access to food (if the signal is a
lie), but in neither case need it have any beliefs about what other Great Tits are thinking.

154 CHAPTER 4. CONCLUSION

e Second-order intentionality. The signaller ascribes thoughts and beliefs to the receiver.

The existence of zero-order and first-order intentionality in animals should not be controversial.
One problem is relevant for the second-order intentionality: the influence on the signaller of
the presence of potential signal hearers. Vervets and others (including ground squirrels and
chickens) do not call when alone. This shows that animals may be aware of the presence of
other individuals before giving an alarm, but does not require that they ascribes thoughts
to others. To summarise, although animals are influenced, when signalling, by the presence
and relatedness of potential hearers, they do not seem to be influenced in their signals by the
knowledge that hearers might be supposed to possess (e.g. a monkey already giving the alarm
call is supposed to know that a leopard is present) Is there any evidence that signallers ascribe
beliefs to others? A theory called “Machiavellian Intelligence” was formulated by Byrne and
Whiten (1988). The specific thesis is that group-living primates have been selected to deceive
other group members, and that this requires that they develop a “theory of mind”: they are
able to ascribe beliefs to others. There is a general agreement that primates do sometimes send
signals which causes others to behave as if they have been deceived. However, as said before
about the hawk alarm call, this does not require that the signaller ascribes beliefs to others: it
is sufficient that the signaller learns by experience that the false signal has the desired effect on
the receiver’s behaviour. Human children, for example, develops the ability to ascribe beliefs
when they are 4 years old (Wimmer and Perner, 1983). There is no doubt that some animal
signals do potentially carry information about the external world, and that receivers of such
signals respond in a way that would be appropriate if they had acquired that information. It is
much harder to decide in particular cases whether the receiver in fact acquires the information,
or whether it merely responds appropriately. According to the theory of animal signals (Smith
and Harper, 2003), signals in my simulations can be regarded as:

1. the field Ggqateq in eq. 3.21 is an index signal, expressing a quality of the agent (its state
of satedness) which cannot be faked.

2. the field Gfo0q in eq. 3.29 could be regarded as a costly signal or a free signal

I did two different simulations considering, P, (t) as the efficacy cost needed to ensure that the
information can be reliably perceived, Ps(t) cost needed by the handicap principle (Zahavi,
1975) to ensure honesty. Efficacy cost is considered free in my simulation (see section 3.1.8):

1. Gooa as an honest signal with P.(t) = 0 and Ps(t) > 0 because competition for food will
increase

2. Gfooq as a dishonest signal with P.(t) = 0 and Ps(t) = 0 because the agent that hasn’t
food, does not have any disadvantage.

The model that I used is based on the zero order intentionality and one of the aim for future
research is to achieve the second order intentionality.

4.2 Future work

An important improvement for the model will be to use the symbolic language module as
described in section 4.1.3 with the double contingency feature described in section 2.3. With

4.2. FUTURE WORK 155

this kind of approach agents will show a motivated behaviour towards others, develop their
own language and not just share a symbolic system (as proposed in the Parson’s model). Thus
one can have the power of a grounded language model and the potential for social interaction
to build an accurate model of Luhmann’s society. The ICO/ISO learning controller could still
be used to implement the action layer, but other approaches will be required to implement the
symbolic communication layer. There are also some other extensions and considerations that
can be included in future models and are described in the following sections.

4.2.1 Model based checking for property verification

The research on agent-based learning systems currently relies on simulation results to infer the
correctness of system properties. These inferences are derived from averaging set of simulation
results. However an alternative approached based on model checking can be used to verify the
properties of a learning system without the need of a simulation. In a preliminary study with
a fellow PhD student Ryan Kirwan from the computer science department I have proved that
it is indeed possible, with the correct abstraction model, to apply model checking to a dynamic
learning agent and prove some properties for a multi agent non learning system and a single
learning agent. The application of model checking to autonomous learning agents is novel and
thus not straightforward.

4.2.2 Economic models of learning agents

Bayesian inference is a fundamental process behind human perception, memory and cognitive
judgement. While Bayesian inference has been investigated at the individual level, there are
few studies regarding the implications of using Bayesian decision making in a multi agent
social scenario. Verschure (1998) argues that bayesian inference is an equivalent formulation to
adaptive predictive control beacuse it is essentially a computational approach equivalent to the
dynamical approach of neural based systems. Thus it is possible to use Bayesian inference in
a decision making task which requires a selection between several actions i.e. an action policy.
An interesting economic social experiment can be setup where the goal of the artificial agent
is to win a virtual English auction. Every agent has a Bayesian predictive policy and/or an
expectation about the others to decide the next move. Therefore the simulated model takes
into account the mix of subjective and social knowledge. The social knowledge is based on
the mutual expectation, a fundamental property of social systems. Luhmann hypothesised
that high degree of behavioural dynamics can be achieved by using expectations as valuable
knowledge for reducing contingency about each others’ behaviour and goals. Therefore the
author expects that a social based approach will generate a realistic dynamic behaviour even
in auction based games. In the following sections the author describes a ABM system based
on auction bidding that considers social expectations.

4.2.3 Homogeneity in societies

Luhmann did not pose any constraints on the homogeneity of social systems, because his social
model is essentially “actor-free“. This choice theoretical choice is quite good because it allows
great flexibility to build heterogeneous societies. The only requirement is the need of a psychic
system coupled to the communication system. For Luhmann a psychic system is a system able
to generate thoughts, although there is a philosophical debate whether or not machines are able

156 CHAPTER 4. CONCLUSION

to think, dream or create, a psychic system can be implemented as a goal oriented behaviour
and a language module as proposed by Luc Steel. It is useful therefore to distinguish between:

e homogeneous societies: composed of identical entities, either artificial agents or humans
e heterogeneous societies: composed of mixed entities like artificial agents and humans

There was a period of excitement in research after science fiction writers envisioned the inte-
gration of artificial intelligence entities in human societies. Note that the very first "robots”
in fiction, the neologism ”"robots” from Karel Capek’s R.U.R. (Capek and Novack, 1920), were
actually Artificial Humans and not the clanking metal humanoids we now associate with that
term. A better and earlier term is Android from the greek andro- "human” + eides ”form,
shape” meaning an ”automaton resembling a human being”. The term was first mentioned by
St. Albertus Magnus in 1270 and was popularized by the French writer Villiers in his 1886
novel L'Eve future. There were and there still are efforts in producing androids which can be
accepted by humans, avoiding the famous “Uncanny Valley” introduced by Masahiro Mori as
“Bukimi no Tani Gensho”. The latest androids are able to mimic the human aspect thanks
to recent advantages in material structures (artificial hairs, silicon skin) The current problem
is then to provide the androids with the intelligence to interact socially and safely with hu-
mans. Many researchers attempted the direct approach of designing social robots by looking
at the single human-robot interaction with an engineering top-down approach. The design
of social robots contains a variety of disciplines including: mechatronic, science of materials,
psychology, neuroscience, haptic interfaces, voice recognition, speech synthesis, power systems
etc. It is certainly an interesting field, but it is mainly driven by technologist and behavioural
scientists,and thus is proceeding at a slow pace considering also the cost involved with building
androids.

4.2.4 Symmetry breaking in collective decision-making

The self-organising property of social systems can be formulated in terms of decision making
because effectively one can imagine that the agents has to make a collective choice about
their division. Collective decision making in social systems is often driven by self-organising
principles such as the choice of nest sites and food sources by ant colonies and the aggregation
of bees (Franks et al., 2003; Beekman et al., 2009; Meyer et al., 2008; Kernbach et al., 2009).
Similar dynamics are present in bacteria colonies (Reading and Sperandio, 2006) and even
economic markets (Weisbuch and Stauffer, 2000).

In my computational model the agent (individual) needs to decide whether to obtain some
food itself or steal the food from the others. Because each agent has no initial preference or
bias, the agent needs to make a decision at the individual level based on his memory (synaptic
weight) and actual sensory inputs (antennas). Symmetry breaking means that the society will
reach a majority or unanimous decision. In my case that implies that there will be a non equal
distribution of seekers and parasites. It may not be obvious why the social system must always
operate under symmetry breaking even when there are 2 equally good sources. This in fact
happens in nature where for example many species will converge on a single food source rather
then equally distributing between the 2 equally good food sources (Camazine et al., 2001).

Symmetry breaking in self-organised decision making usually arises from the interaction
between positive and negative feedback loops. The positive feedback in my model is the
progressive weight increase of the synapse which orientates the agent toward one behaviour,

4.3. INFORMATION THEORY AND CONTROL 157

for example food seeking. The negative feedback in my model is the collision resulting from
a crowded group of agents going for the food. The balance between these 2 systems has been
shown to be a stable and flexible enough decision system (Beekman et al., 2009; Meyer et al.,
2008).

The most common analysis of this coupled system is via differential equations, but as
stated before, the model is very complex to be described, especially because the agents are
active learner and thus their properties change during time.

The alternative is to use a reduced statistical model which captures only the relevant
property of the symmetry breaking. An early study in this field was done by Hamann et al.
(2010a) who described the symmetry breaking in the honeybee behaviour and an emergent
density classification task with a simple stochastic differential equation.

4.3 Information theory and control

4.3.1 On the perils of predictive learning

Predictive learning is not the best solution for every situation. Why? Because predictive
learning is based on our subjective knowledge about the world statistic in where we live. To
give a clear explanation about when predictive learning fails we can think in probabilistic terms.
Suppose we have a black box that generates a stream of data, this can be the stock market,
an auction on ebay or a football match. We don’t know anything about the model behind
the generation. It could be in the worst case a markov process that generates events with
maximum entropy. Nevertheless in the short run we only observe a causal relation between
event A and event B, predictive learning that in the general formulation finds the causal
relationships between two events, A and B, and will infer that event B follows event A with
probability 1! Predictive learning doesn’t know the statistics behind the process generator
because of its limited sampling capacities. If it was able to have an infinite sampling time
(say the organism is immortal) it would experience all the possible pairings, and due to the
ergodicity property of a markov process, it would infer that event A can be followed by event B
with the same probability of being followed by event C. This sampling problem can cause what
we define in daily life as hallucinations: a (conscious) perception in the absence of a stimulus.
In the absence of a stimulus, our predictive ability is reduced to zero and so everything can
be plausible and “real”. An extension of predictive learning models has been introduced by
Schmidhuber (2010):

“What’s interesting?” Many interesting things are unexpected, but not all un-
expected things are interesting or surprising. According to Schmidhuber’s formal
theory of surprise & novelty & interestingness & attention, curious agents are inter-
ested in learnable but yet unknown regularities, and get bored by both predictable
and inherently unpredictable things. His active reinforcement learners translate
mismatches between expectations and reality into curiosity rewards, or intrinsic re-
wards for curious, creative or exploring agents which like to observe or create truly
surprising aspects of the world, in order to learn something new.”

Schmidhuber rejects the original notion of the Boltzmann/Shannon surprise formulation
from the early 1990s by posing two significant examples of uninteresting, unsurprising, boring

158 CHAPTER 4. CONCLUSION

data. A vision-based agent that always stays in the dark will experience an extremely com-
pressible, soon totally predictable and unsurprising history of unchanging visual inputs. In
front of a screen full of white noise conveying a lot of information, "novelty” and ”surprise”,
in the traditional sense of Boltzmann (1800s) and Shannon (1948), however, it will experience
highly unpredictable and fundamentally incompressible data. In both cases the data gets bor-
ing quickly as it does not allow for learning new things or for further compression progress.
Neither the arbitrary nor the fully predictable is truly novel or surprising/interesting - only
data with still unknown but learnable statistical or algorithmic regularities are. This is a very
good argument and it would be interesting to integrate the notion of maximisation of learn-
ing speed in future social models. For a more mathematical formalisation between entropy,
learning and prediction, the Appendix in Sections 4.3.3,4.3.4.

4.3.2 Prediction or evolution

There are only two options to design artificial agents: either the designer can evolve reactive
systems or adapt predictive systems to the environment. Evolution has luckily selected organ-
isms which infer the causal structure of their environment to make predictions of their future
actions or equivalently of the future stimuli. Most researchers will argue that I'm talking about
different things, but a careful study of closed loop system can show that if the organism is able
to predict what the next stimulus will be if he chooses an action, then he is also able to predict
what the stimulus will be if he chooses not do anything. Imagine a cat observing a little mouse
running in front of it, the cat will estimate the trajectory taken by the mouse at a given time
and will decide if is worth trying to pounce on it or if the mouse is too fast and so waiting for
a closer trajectory wastes less energy. This is a well known probabilistic dilemma: when the
organism needs to be reactive and when the organism needs to learn?

The Shannon probability measure is a concave function of the distribution when expressed
as >, p-loga(p): H(p) =0 when p =0 or p = 1. However the property is not valid if one
only uses the logarithm as }_ logz(p) which is infinite at p = 0. So the best choice which
maximizes the information is always somewhere in the middle. This poses another question: if
an organism wants to have a maximally predictive state of the environment, why do anything
since a stationary state produces less possible entropy! If this assumption was correct we
would live in a stationary environment where organisms do very little as required by their
survivor instinct. Well in the animal world there are uncommon animals which live in very
boring environments like in the darkness of a deep ocean where their world is a flat surface
with rare events happening without any clues. It turns out that the best organism is the one
that is very fast to react to changes, prediction has little sense in this game. A star fish is the
best choice, there is no need for huge brains with lot of computational power because it will
be mainly wasted. Coming back to our land we can see how higher complex organism have
developed different senses and very complicated brains to cope not with a complex environment
but with a causal environment. The common mistake is to think that a complex environment
requires a complex organism. This is not true! Even a fairly simple organism can generate
a complex behaviour when placed in a complex environment. Ashby proved that even when
the inputs are connected to the outputs with a simple proportional rule, the the variety will
be transferred from input to output unchanged. A superficial observer will say that this
organism has a rather complicated behaviour! Moreover if we feedback the motor action into
the input according to a function f, coupling will generate an even more complex behaviour.

4.3. INFORMATION THEORY AND CONTROL 159

As already shown by Kolodziejski and Kulvicius (2009), output entropy was computed as the
ration between the reflex output and the predictor output, allowing the author to separate
the 2 contributions during learning. This approach of separating the different output types
was necessary to avoid the afore mentioned problem of the variety transmission from inputs
to outputs. The ICO/ISO learning, in terms of information theory, is an internal memory
which integrates sensory information and to some extent compress the sensory information by
discovering the causal relation between the predictor and the reflex. In this way then the total
output entropy will not vary significantly and thus cannot be used as a parameter of learning
as well as complexity.

4.3.3 Prediction and learning

The definition of predictive information: a quantity that measures how much our observations
of the past can tell us about the future. The predictive information describes the world we
are experiencing and has a direct link to its complexity. We as organisms collect sensory infor-
mation in order to choose our actions (including our verbal communication) but we are only
interested in the data that tells us something about the state of the world at the time of our
actions: non predictive information is useless to us. Surprisingly most of the information we
collect over a long period of time is non predictive, so that isolating the predictive information
must extract from the sensory stream those features that are relevant for behaviour. Defini-
tion of learning: finding a generalised model that explains or describes a set of observations.
Why generalised? Because we do not want to have an overfitted approximation of the data:
Vapnik (1998) states that an animal can gain selective advantage not from its performance on
the training data but only from its performance at generalisation. Learning a model is also
equivalent to encoding the data produced by it (Rissanen, 1989), thus predicting and com-
pressing are dual problems. Complexity is an intuitive property ascribed to physical systems
like turbulent flows, ferromagnets materials etc... Complexity can be defined in two manners:
intrinsic complexity and algorithimic complexity. The latter complexity was defined by and
states that a true random string cannot be compressed and hence requires a long description
(Kolmogorov, 1965), yet the physical process that generates this string may have a very simple
description. Intuitively and from now on we refer to the complexity of the underlying process
and not to the description length of the string generated from the process. Bialek et al. (2001)
proved that predictive information Ip..q(T") provides a measure of complexity of the model
underlying a time series. For small observation times:

Lyea(T, T')=H(T)+ H(T')— H(T +T") (4.1)
but in the limit of large observation times:

IPT‘Cd(T) = Tlgnoo Ipred(T7 T,) = Hl (T) (42)

H(T) is the entropy computed on the signal x(t) for —T < t < 0 denoted in short hand by
Zpast, H(T") is the entropy of the signal x(t) that will be observed in the future 0 < t < T”
denoted in short hand by @ fuiure. If the future and the past are statistically independent
P(x future|Tpast) = P(Zfuture) and viceversa P(Zpast|Tfuture) = P(Tpast), then we cannot
make any prediction: the random guess is the best choice to predict the future. All predictions
are probabilistic and so if the past tells us something about the future (and viceversa) we can

160 CHAPTER 4. CONCLUSION

use the conditional distribution of the future events on the past data: P(z futwe|xpast). Where
the density P(2 fyiure|Tpast) has smaller entropy compared to the prior distribution P(xpest)
means that there was a reduction in entropy and that the particular future event is more likely
to happen. The average of this predictive information is defined as:

P
Lppea(T,T") = P(fut t) - o duturepast 4.3
prea(T,T") Z (future, past) P(future)P(past) (4.3)
past, future
P(future, past) = P(future|past) - P(past) (4.4)
and can be rewritten as:
P(future|past)
Loa(T, T") =< logs[————2] > 4.5
P d() 092[P(future)] ()
= — < loga P(future) > — < loga P(past) > — < [—logs P(future, past)] > (4.6)

where < ... > denotes the average over the joint distribution of the past and the future. Because
the elements of the equation are all entropies we can rename the variables as:

o — < logs P(future) >= H(T")
o — < logsP(past) >= H(T)
o — <logeP(future,past) >= H(T,T")

thus using the new variables in 4.6 gives us the equation in 4.1. What the mutual information
tell us? Ipreq(T,T") is either the information that a data segment of duration T' provides about
the future length 7" or the information that a data segment of duration T” provides about
the immediate past of duration T. Now the entropy of a time series is proportional to its
duration asymptotically, so that limy_,., H(T')/T = Hp thus entropy is an extensive quantity
and predictability only depends on H; because:

Lyea(T,T')=Ho- T+ H\(T)+ Ho-T' + Hi(T') — Ho - (T +T") — Hi(T+T") (4.7)
and so Ipreq(T,T") = H1(T) + H1(T"). Giving that:

H(T) = HoT + H,(T) (4.8)
Jim H(T)/T = Hq (4.9)
Hy(T) >0 (4.10)

Jim L (T)/T =0 (4.11)

and extending the future forwards toward infinity 77 — oo or the past towards minus infinity
T’ < —oo the predictive information becomes:

Iprea(T) =H((T), T — o0 (4.12)
Ipred(T) =H; (T), T+ —0 (413)
This equality states that there is symmetry between prediction and postdiction L.q(T,T") =
Ipyrea(T', T) but also that the predictive information at time ¢ = T gives us the same amount

of information about the history of our observation as well as the same amount for the future
ones that will start from the present time.

4.3. INFORMATION THEORY AND CONTROL 161

4.3.4 How much information is required for prediction?

As we observe a time series for a long time T', we accumulate data which is measured by the

entropy H(T), and for T that goes to infinity H(T') ~ HyT. Because the predictive information

cannot grow linearly with time, only a small fraction of it is relevant for prediction:
PredictiveInformation Iyeq(T)

li = 0 4.14
7o Totallnformation H(T) - (4.14)

although we collect data in proportion to our time 7', a smaller and smaller fraction of this
information is useful in the problem of prediction. Nevertheless this property is true if the
model that generates the time series has not changed its parameters, but what happens if the
organism or somebody else “a deus ex” changes one of the parameters? The organism will
experience a discontinuity in the predictive information that indicates a novelty or better a
surprise.

4.3.5 Predictive information and model complexity
In the regime of infinite observation time T' — 00, Ipreqa(T) can:

e remain finite as H; = hq.

e grow logarithmically Hy = hy + k - log(T).

e grow as a fraction power law Hy = hy + ho - T.

The first possibility lim7_, o, = h1, means that no matter how long we observe, we gain only a
finite amount of information.

The second possibility limy_,o = k- log(T'), means that future observations depend on far
distant past ones: the model that generates the time series has a number of finite parameters.
The coefficient of the divergence k counts the number of parameters of the model.

The third possibility limp_,, oc T, means that the underlying model has infinite param-
eters. Estimation of the sub-linear component can be achieved using non-linear regression
methods or using evolutionary fitting.

4.3.6 Prediction and compression are related

Suppose now that one of our agents is deprived of his output with the environment so that it
can only observe a set of data: x1,za,...,zxy. When we can say that the agent has learned?
When the agent is able to predict the next observation x 1 in case of 1 step prediction. The
more an agent knows the more accurate the prediction is about 1 and the fewer bits are
required to describe the difference or error from the previous observations. The average length
of code required to describe the point xn 11 given the previous history:

l(N) =—-< lOgg(P(QSN+1|I’1,ZL‘2, ...,:EN)) Z P21, NN 1) bits (415)

is the averaged conditional probability over the joint distribution of all the N+41 points. Re-
membering that the average code that describes a random sequence of N samples is the entropy
H(N) of that sequence, we can write:

OH(N)
ON

I(N)=H(N +1) — H(N) ~ (4.16)

162 CHAPTER 4. CONCLUSION

We learn more when we use a smaller description for the time series. We can define a learning
curve that measures the cost of encoding the next sample. The ideal encoding’s length can be
known if the agent observes the stream of data for a infinite time: l;geq; = limp_ o [(IV), thus
the learning curve is the difference between the actual code length and the ideal length:

OLyred(N)
ON

The learning curve is the derivative of the predictive information and quantifies the information
learned so far, if zero means that the optimal description code of the time series is reached.

A= Z(N) — lideat = (417)

4.3.7 Entropy reduction measure in learning agents

Predictive learning can be reduced to a probabilistic model and reformulated in terms of
Bayesian learning. A simple model can be formulated using random discrete variables Y, X
and W. Y is a binary random variable that represents the distal signal (Y = 0,1) and X is a
binary random variable that represents the reflex signal (X = 0,1) where ¥ = 1 means that
the distal signal was active and Y = 0 was not active. In an open loop case when the agent
cannot feedback his actions to the environment, I can suppose that the reflex has the same
probability of being present and absent P(X = 0) = 0.5 and the same condition applies to the
distal signal P(Y = 0) = 0.5.
Using a non symmetric distribution like P(X = 0) = 0.58 implies the presence of a bias for
the reflex to appear and indicates that the agent will do much work to compensate for that.
When the organism is regulating in a closed loop, a perfect regulator achieves an entropy
reduction of the reflex as mentioned previously:

PX=0=1—-H(X)=0 (4.18)
An imperfect regulator will be identified on the contrary by:
0<PX=0<1—-HX)>0 (4.19)

A similar measure of the effectiveness of regulation could be the expectation of the variable X:

1

E(X) = Zﬂiz -p(zi) (4.20)

=0

Perfect regulation implies that F(X) = 0, whereas imperfect regulation implies F(X) # 0
because the expectation E(X) can be positive but also negative.

To be more clear, I can consider a better discretisation of the input space: X = {—1,0,1}
mapping in this case a negative error, a zero error, and a positive error. If before learning X
has a uniform distribution like:

P(Xpefore) = {1/3,1/3,1/3} (4.21)
1 1 1
E(Xbefore) = _1'§+0'§+1'§:O (4.22)

1
H(Xpepore) = —3- glog2(1/3) = log2(3) = 1.5850 bits (4.23)

4.3. INFORMATION THEORY AND CONTROL 163

But after learning or an equivalent successful perfect regulation where p(X) = {0,1,0}

E(Xafter) = —0+1-140=1 (4.24)
H(Xafter) = loga(1) =0 bits (4.25)

Why is this so? Because entropy is a concave function of the distribution function p, whereas
estimation is not able to distinguish between the two different steps of estimation. In my pre-
dictive performance, I have used the entropy to estimate the predictive performance because of
the properties of entropy like non-negativity, concavity and chain rules for mutual information.
However one does not have to exclude the expectation as a potential candidate for other useful
purposes.

Intuitively if X and Y are causally dependent the predictive controller can achieve optimal
prediction, whereas if if X and Y are only statistically dependent it will achieve sub-optimal
prediction.

When the agent experiences the world using his innate reflexes, it can observe that P(X|Y)
the probability of observing the reflex X is dependent on the probability of observing Y, in
order words X and Y are not conditionally independent (if they were independent P(X|Y) =
P(X)xP(Y)).

If the agent does not use the distal signal w; = 0, it will observe that P(X = 1]Y = 1) = k1 and
that the P(X = 0Y = 0) = k2 is possibly high. Learning is achieved when the agent selects the
best action so that P(X = 1|Y = 1) < k1, an important fact of predictive learning is although
it is desirable that P(X = 0]Y = 0) > k2 it is not possible to do that because of the impossibil-
ity of the correlator to evaluate the pairing of a missing distal event with a missing reflex event.

This problem of the correlation of missing events is a weakness in many learning algorithms,
but there have been some new models, like the one developed by Ian Glascher who is testing
a dual model based on the Wagner-Rescorla equation, which consider the positive rewarded
outcome complementary to the negative rewarded outcome. In other words the model also
considers what did not happen after the agent made a particular choice. Predictive learning
based on correlation therefore wants to choose actions so that the distribution of the events is:

e before learning Pyefore(X = 1Y =1) =0.6,P(X =0]Y =1) =0.4

o after learning P, (X =0Y =1) =08, P(X =1|Y =1) =0.2
So the change in the distribution of Px(X = 0|Y = 1) is an index of the agent predictive power.
However I need also to consider how well the agent has learnt to avoid the reflex or equivalently
to regulate itself. I need to find an information measure which combines:

e the predictive power of the agent

e the regulatory power of the agent

Since I want to use entropy for its attractive properties of concavity and non-negativity, I can
revisit the concept of conditioned entropy and mutual information and see if they suit our

164 CHAPTER 4. CONCLUSION

purposes. Conditioned entropy:

HXY) = => 3 pla.y)log(p(zly)) (4.26)
HY|X) = => 3 pla.y)log(plylz)) (4.27)
HX)Y) = H(X,Y)— H(Y) (4.28)
HY|X) = H(X,Y)—- H(X) (4.29)

(4.30)

Where the joint entropy H(X,Y) is formulated as:

H(X,Y)==> "> p(z,y)log(p(x,y)) (4.31)
and the mutual information as:

I(X,X) =0 (4.32)

I(X)Y) = I(X)Y) (4.33)

I(X,)Y) = H(X)-H(XIY) (4.34)

I(X,)Y) = HX)+H(Y)-H(X,Y) (4.35)

I(X)Y) >0 (4.36)

In the next section I am going to evaluate which measure captures the learning performance
of the agent considering typical probability distributions before and after learning. The joint
density can be represented as a matrix of 2 by 2 elements because in this case the variables X, Y
are binary. The table is constructed from the experimental data and must fulfil the properties
of probability distributions:

o the integral of the joint distribution: " > v p(z,y) =1
o the integral of marginal distribution X: >~ p(z) =1
e the integral of marginal distribution Y:)" p(y) =1

The Table 4.1 shows a typical density distribution before learning, considering the assump-
tion of a uniform distribution for the reflex X and distal events Y, and that the agent has
not yet learned to avoid the undesired state x = 1 using the distal event y = 1, thus
ply=1,2=1)=04.

From the table 4.1, I can compute the entropies in bits:

o H(X)=1bit

o H(Y)=1bit
e H(X,Y)=1.7219 bits

H(

X|Y) =1.7219 — 1 = 0.7219 bits

4.3. INFORMATION THEORY AND CONTROL 165

Table 4.1: Entropy values before learning.

XY |ply=0) ply=1) pX)
p(x =0) 04 0.1 0.5
p(z =1) 0.1 0.4 0.5

() 0.5 0.5 1.0

o [(X)Y)=1+1-1.7219 = 0.27810 bits

The Table 4.2 shows the density distribution after learning was achieved: the agent swaps the
rows in the column of y = 1:

Table 4.2: Entropy values before learning.

XY ply=0) ply=1) pX)
p(z =0) 0.4 0.4 0.8
plz =1) 0.1 0.1 0.2

p(Y) 0.5 0.5 1.0

From the table 4.2, I can compute the entropy measures:
e H(X)=0.72193

e HY)=1

e H(X,Y)=1.7219

e H(X|Y)=1.7219—-1=0.7219

e /[(X,Y)=1+0.72193 — 1.7219 = 0.00003

The mutual information after learning has been reduced to a very small number because
H(X,Y) is invariant to row or column permutations of the conditioned probability, but it
is not the case for the marginal distributions H(X) and H(Y') that are changed because in
this case p(X = 0) = 0.8 and p(X = 1) = 0.2. This means that the agent has learned to avoid
the undesired state X = 1. An agent with perfect learning has a probability distribution as in
Table 4.3:

When perfect learning is achieved the agent is always keeping the desired state p(X = 0) =
1.0 = H(X) = 0, no matter what the distal event was p(z = 0,y = 0) = p(x = 0,y = 1) = 0.5,
hence H(X,Y) = 1 and H(Y) = 0.5. However the entropy measure does not distinguish
how to equivocate between an agent that learned “a good thing” from the one who learned
“a bad thing”. For example in Table4.4, where the agent has swapped p(z = Oy = 0) with
p(xz = 1y = 0), it produces exactly the same values for the mutual information and the other
measures but means that the agent has learnt to produce an action that, when the distal is
present, evokes a reflex.

166

CHAPTER 4. CONCLUSION

Table 4.3: Entropy values before learning.

XY |py=0) |py=1 | p(X)
p(z =0) 0.5 0.5 1.0
plz=1) 0.0 0.0 0.0

p(Y) 0.5 05 1.0
Table 4.4: Equivocation table.

XY |py=0)|ply=1) | pX)
p(x=0)| 01 0.1 0.2
p(z=1) 0.4 0.4 0.8

p(Y) 0.5 05 1.0

Therefore when considering learning, I need to have a look at the action policy: how the
agent chooses an action to achieve the desired state. In our simulation the agent is properly
wired so that it will compensate for the distal event but an improperly wired agent or an
agent with a wrong action policy may reach non desired states while learning. Therefore for a
more general approach, I need to consider either the action policy or restrict the probability.
Intuitively, the combined system contains H(X,Y") bits of information: we need H(X,Y) bits
of information to reconstruct its exact state. If we learn the value of Y, we have gained H(Y)
bits of information, and the system has H(X|Y") bits of uncertainty remaining. H(X|Y) = 0 if
and only if the value of X is completely determined by the value of Y. The Bayes theorem can
be used to calculate the conditioned probabilities p(y|z) from p(z|y). This is more easy than
computing p(z|y) in our simulation because of the causal temporal relation between y and x
(y follows x).

P(X|Y =0)-P(Y =0)

P =01X) = P(X[Y =0) + P(X|Y =1) (437)

B _ P(X[Y=1)-P(Y =1)
P =11%) = P(X|Y =0)+ P(X[Y = 1) (4.38)
(4.39)

However this is not necessary if the estimation is made offline.

4.4 Industrial applications

There are two industrial applications of social systems in the market right now. One is the
Kiva System !, an automatic warehouse solution and the other is the Eporo system developed
by Nissan. The Kiva System is a group of robots which are placed in a warehouse and can
optimize the order fulfilment. The Kiva robots are able to communicate with each other and

Lhttp://wuw.kivasystems.com/

4.4. INDUSTRIAL APPLICATIONS 167

with a sort of control tower which assigns priorities to each robot. The system is a very
clear implementation of the advantages of using a social approach to a traditional warehouse
task. The Eporo ? system is essentially a swarm behaviour implemented in concept cars. The
main goal is to use the school fish behaviour to avoid accidents in high density traffic. In this
application there is no central controller and thus it is more distributed but the communication
is more on the action level. The author is confident that in the future there will be more and
more social robotics implementation in the industry.

?http://www.nissan-global.com/EN/NEWS/2009/_STORY/091001-01-e.html

168 CHAPTER 4. CONCLUSION

Chapter 5

Appendix

5.1 ICO learning parameters

5.1.1 ICO learning

The input correlation learning rule by Porr and Worgdtter (2006) is a Heterosynaptic learning
rule, it is unsupervised and performs a correlation between a predefined reflex signal (xg) and
a reflex predicting signal (z1). Hence, this learning algorithm identifies and exploits causalities
between temporal sequential signals.

time,

4000 8000 12000
Time (steps)

Figure 5.1: Figure (a) shows the ICO learning basic block composed by 2 inputs g, z1 filtered
by hg,h; and the output v. Figure (b) shows the weight change of w; during time. At the
beginning w; = 0, then for 5000 simulation steps z; anticipates xg but after that w, stabilize
to 1-1073.

Figure 5.1 shows the ico learning block which has two inputs ¢,z from the agent’s sen-
sor that are filtered by bandpass filters hg, h;. The transfer function h is a bandpass which
transforms a d-pulse input into a damped oscillation and is specified in the Laplace-domain:

1
(s +p)(s + p*)
where p+ represents the complex conjugate of the pole p = a + ib. It is important to note

that such a bandpass is only stable if its pole-pair is located on the left complex half-plane,
otherwise an amplified oscillation is obtained.

h(t) < H(s) = (5.1)

169

170 CHAPTER 5. APPENDIX

h(t) = %(ﬂtsin(bt) (5.2)
0 — _”g (5.3)
b = (27 F)2 — a2 (5.4)

F is the oscillation frequency and @ the quality factor. The damping characteristic of the
filter is reflected by @ (see Appendix A). Filtered signals u;(t) are transferred with weight w;
to the output neurons. In the output neuron the output v(¢) is calculated by summing up all
incoming signals according to their weights:

v(t) = Zwkuk (5.5)
k=0

which represent the input for the motor system. The unsupervised character of the ICO
learning rule is reached by the synaptic weight w; to be adapted by the weight change rule:

d d'LLO
—wi = Ul —— 5.6
i Hu1 di (5.6)
The weight change is dependent on the derivative of the reflex input signal ug, the input signal
u1 and a learning rate p. The learning rule has been shown to be useful for avoidance and
attraction mechanisms and has fast and stable convergence (Porr and Worgotter, 2006).

The filter response h is parametric in Q. If @ > oo it means that:

e a=20
e b=2nf

therefore the filter response becomes H(s) = W that is a resonator with frequency
2rf, see Fig. 5.2(a). When @ approaches 0, @ — 0 this is the result: H(s)
trinomial term with infinite cutoff frequency, see Fig. 5.2(b).

When Q =1/ ﬂZ) the filter has a maximally flat response without any overshoot. When
@ < 0.5 the filter has no undershoot in the impulse response.

_ 1
 (s242as+2a2) a

5.2. SIMULATION DETAILS 171

Bode Diagram Bode Diagram

Magnitude (dB)

Phase (deg)

-180 -180
" 10 10° 10" 10%
Frequency (radisec) Frequency (radisec)

(a) Bode diagram of h filter when Q > oo (b) Bode diagram of h filter when Q — 0

Figure 5.2: Bode diagrams for different Q values.

5.2 Simulation details

World size is directly proportional to the agent and food area. The agent size is [W,, H,] =
2.50U - 2U with an area Aqgent = 502, where U is the unit of measure used in the simulations.
Food sources are regular polygons composed by efo0q = 32 edges with an apothem of ap oo =
3U corresponding to an area of

Afood = ap?cood - €fo0d - tan() = 28.36U°. (5.7)

€food

It means that only Nyas, fooa = 9 robots can lie on the food disk boundary, because

52 -ef d
Amam agents — = = 24. 2 .
agents = g LR 73U (5.8)

Nmaz, food
where S = 2.0U. The area of the world is proportional to the areas of agents and food disks,
and on their numbers.

Aworld = (Kl ‘ Afood : M) + (KQ N Aagent : N) + (KQ N Aagent : N) (59)

where K, = 50, K, = 60. The world is a square with a side of L = /Aworg. The
robot boundary surface is delimeted by the following points: < —1.25, -1 >, < 1.25,—-1 >, <
1.25,1 >, < —1.25,1 >

Robot parameters:

o differential 2 wheeled driving system

e 2 infrared sensors: placed in front of the robot, one left one right, oriented with a(l,r) =
+45°, an aperture of IRf;eq = 30° , a range of rangerg refiex = 2.5U and ray = 3.

e 2 infrared sensors: placed in the back of the robot, one left one right, oriented with
a(l,r) = £160°, an aperture of IRy;q = 60° , a range of rangerr refies = 2.5U and
ray = 3.

172 CHAPTER 5. APPENDIX

e 2 circular RGB cameras ccam; progimar With a visibility range of 10.0U: placed in front
of the robot, one left one right, h = 2.0U from the ground, oriented with o = £30°, an
aperture of fieldprozimar = 60° and a resolution of ccamy,.s = 16 pixels.

o 2 circular RGB camers ccam; e e With a visibility range of 8.0U: placed in front of the
robot, one left one right, oriented with with av = £30°, aperture of fieldprozimar = 60°
and a resolution of ccam,.s = 16 pixels.

Sensors’ and actuators’ response functions are modeled on the Alice robot by EPFL! into
the ENKI simulator environment. Motors have a normalised speed of [Umin, Vmaz] = [—1,1]
within an inversely proportional motor noise to the speeds in [—1, 1], the noise is of the order of
+5% for the maximum speed, for :&:% it is £10% The objects in the world have different colours
that represent their type. The agent can see colors using their RGB circular cameras. A color is
represent by 3 components: red,blue and green as a triplet < r, g,b > where r,g,b C [0.0,1.0].
For example red is represented by < 1.0,0.0,0.0 >. The rule for the colors are:

e the agent’s color is:color(agent) = < 1.0,0.0, Hgqteq(t) > as described in eq.3.16. Thus

an agent has a fixed red component and a blue component that expresses its internal
state of satedness.

o the food place’s colour for the unlimited case is:color(foodin finite) = < 0.0,1.0,0.0 >

o the food place’s colour for the limited case is:color(foodfinite) =< 0.0,1.0,¢(¢) > as in
eq.3.30.

e an object with green component is a food source.
According to the ICO terminology the agent’s configuration is:

e left and right infrared sensors are the reflex for obstacles: world’s walls, other agents,
food sources

o left and right long range camera filtering the red component are the proximal for obstacles:
other red agents, or food sources before learning

e left and right long range camera filtering the blue component are the distal signals for
agent attraction: other agents consuming food.

o left and right short range camera filtering the blue component are the proximal signals
for agent attraction: other agents consuming food.

e left and right long range camera filtering the green component are the distal signal for
food attraction.

o left and right short range camera filtering the green component are the proximal signal
for food attraction.

1Ecole Polytechinique Fdrale de Lausanne

5.2. SIMULATION DETAILS 173

The back left and right infrared sensors are useful when the robot is going backwards and
bumps into an obstacle: in that case the speed is inverted. The left,right camera inputs must
be transformed from a vectorial format to a scalar one for the input synapses. Every circular
camera produces a matrix Vecamnyprxgrs,s where npizels = 16, the scalar filtered input is

computed as:
npizels

veam = Z Veam, feol (5.10)
i=1
where fcol is the chosen color component to be filtered.
The ICO network topology is described step by step, adding the relative features: obstacles

avoidance first, food attraction and then agent with food attraction. Tthe configuration used
for the network parameters follows.

5.2.1 Obstacle avoidance

The obstacles have a red component therefore in eq. 5.10 fcol = 0. The agent must avoid
obstacles: it means that the left input is connected with the right output with a negative
weight, and the left input is connected with the left output with a negative weight. In this way
when an obstacle is on the left side the robot will go back turning left.

e IR sensors: Wprozimal,L = *0~93Wpromimal,R =-1.0
e short range camera: Wyistar,r = 4.0,Waistar,r = —4.2

o Filter parameters: Fopimal = 0.5,Fgistar = 0.6,
Qprozimal = \ﬂ2);Qdistal = ﬂQ) Q is chosen to have a maximum flat response

5.2.2 Food attraction parameters

The food sources have a green component therefore in eq.5.10 fcol = 1. The agent must
approach the food, therefore the left and right synaptic input values must be equal: it means
that the difference between the left and right input must be 0.

L4 proximal,L = 2~67Wpr0mimal,R =238
o Waista,r = 3.0,Wyistat,r = —3.2

o Filter parameters: Fopimal = 0.6,Fgista1 = 0.6,

Qrefle;c = ﬂQ)vaT'owinml = \ﬂ2)

5.2.3 Agent with food attraction parameters

The agents have a red and blue component therefore in eq.5.10 fcol = 0,2. The agent must
approach the other agent, therefore the left and right synaptic input values must be equal: it
means that the difference between the left and right input must be 0.

L4 proximal,L = 3~07Wproximal,R =-3.2

° Wdistal,L = 3~05Wdistal,R =—-3.2

174 CHAPTER 5. APPENDIX

o Filter parameters: Fopimal = 0.6,Fgistar = 0.6,

Qreflex = \/(2)7szoximal = \/(2)

5.2.4 Hysteresys effect

If an agent is in proximity of an acute angle (it could be an angle of the scenario or a particular
spatial agent configuration) without the hysteresys it will starve turning left and right, within
the hysteresys the responses will be delayed so it will turn first left and after some time right.
The weight connections are asymmetric to balance the outputs (using the same weights makes
the robot run in circular pathways). Parameters are:

® self,L = 0'4aWself,R =04
® Wleft,right = _0'427W’right,left =-0.3

The bias for the network is: bias = 2.4.

5.2.5 Physical engine and kinematic model

Every object in the world has the following physical properties:
1. position is 2 dimensional vector
2. height: the height of the object, used for interaction with robot’s sensors.
3. angle: the orientation of the object in the world, standard trigonometric
4. vector speed: The speed of the object
5. angle: the orientation of the object in the world, standard trigonometric orientation.
6. angular speed: the rotation speed of the object, standard trigonometric orientation.
7. mass: the mass of the object. If below zero, the object can’t move (infinite mass).

8. static friction threshold: the static friction threshold of the object. If a force is smaller
than it, the object will not move

9. viscous friction tau: the viscous friction time constant. Half-life of speed when object is
free. If lower than timestep, speed is forced to zero.

10. viscousMomentFrictionTau: the viscous friction moment time constant. Half-life of an-
gular speed when object is free. If lower than timestep, angular speed is forced to zero.

11. collisionAngularFrictionFactor: upon collision with static objects. The amount of rota-
tion transmitted to the moving object. If zero, moving object slides over static one. If
one, moving object is fully rotated.

The function that updates the state of the object is:

5.2. SIMULATION DETAILS 175

void PhysicalObject :: step (double dt)
{
pos += speed * dt;
angle += angSpeed x* dt;
angle = normalizeAngle (angle);
// TODO : optimise this using ExpDecay from external math lib !
if (viscousFrictionTau < dt)

{
}

else

{

speed = 0.0;

double factor = (viscousFrictionTau — dt = 0.5) /
(viscousFrictionTau + dt * 0.5);
speed *= factor;

}

if (viscousMomentFrictionTau < dt)

{
}

else

{

angSpeed = 0;

//std::cerr << 70 f:” << angSpeed << std::endl;

double factor = (viscousMomentFrictionTau — dt * 0.5) /
(viscousMomentFrictionTau + dt % 0.5);

angSpeed x= factor;

//std::cerr << ”"angSpeed:” << angSpeed << std::endl;
//std::cerr << "factor:” << factor << std::endl;

The kinematic model used for the differential driving system is fairly simple:

void Alice::step(double dt)

{

double realLeftSpeed, realRightSpeed;
// applied inversely proportional motor noise
realLeftSpeed = 1 * leftSpeed * (0.95 + random.getRange (0.05));

// same as above
realRightSpeed = 1 * rightSpeed * (0.95 + random.getRange (0.05));

// forward component

double forwardSpeed = (realLeftSpeed+realRightSpeed) / 2;
double wheelDist = 1.9;

// Khepera code:

speed = Vector (

forwardSpeed * cos(angle + angSpeed x dt * 0.5),
forwardSpeed * sin(angle + angSpeed x dt x* 0.5));

176 CHAPTER 5. APPENDIX

// angle
angSpeed += (—realLeftSpeed+realRightSpeed) / wheelDist;

For collision detection and collision interaction, detailed information is provided in the source code.

5.2.6 Simplified social simulator

There are N = 2,4 and M = 2 food sources. The agent’s area Aqgent = 5U27 where U is the unit
of measure used in the simulations. Food source’s area Afooq = 28.36U2. The area of the world is
proportional to the areas of agents and food disks, and on their numbers.

Aworld - (Kl . Afood . M) + (K2 . Aagent . N) + (KZ . Aagent . N) (511)
where K, = 50, K, = 60. The world is a square with a side of L = &/Ayorq. For N =2 and M = 2:

Aworia = 3436U? and L = 58.617.

5.2.7 Screenshots

In figures 5.3,5.4 there are some screenshots of the simulator environment: the graphic interface makes
use of the OpenGL API to draw the scene.

]
Ve s
® .

Figure 5.3: A simulation with 10 agents and 4 food disks.Yellow agents signals the food pres-
ence, violet agents are sated, red agents are starving. Food disks are the green disks.

5.2.8 Simulation details for information flow

The world is a toroidal square of 300x300 units (Um), the agent has a diameter of 10 Um, the reflex
antennas have a range of 40 Um, the predictor antennas have a range of 60 Um, every food disk has
a diameter of 20 Um, the agent consumes food after 30 time steps. Every food disk starts with 100
food units and, if depleted, is reset after 5 time steps. To compute the entropy, the input space is
discretised into 4 equally spaced bins and normalised in the range [-1,1] both for the predictor U; and
the reflex Uy signal, the output signal Z is discretised in 8 directions.

5.2. SIMULATION DETAILS 177

Figure 5.4: A simulation with 10 agents and 4 food disks. Yellow agents signals the food pres-
ence, violet agents are sated, red agents are starving. Food disks are the green disks, when the
food disk is exhausted tit urns black and agents are not attracted.

5.2.9 Simulation details for Q-learning robot

The world is a square of 200x200 units (Um). The world can be wrapped in toroidal coordinates or
not. If the world is toroidal that means there are no walls and thus no collisions, whereas when the
world is non toroidal the robot bounces off the wall but does not take any negative reward. In each
learning session there are 20 obstacles placed randomly in the world. The radius of the agent is 6 Um.
The radius of the obstacle is 20 Um. The robot turns angle in multiples of 8 = 0.4rads.

178 CHAPTER 5. APPENDIX

5.3 Weight clustering

A better way to quantify the seekers and parasites in the social system is to do a clustering analysis
based on the two dimensional space of the weight. Each agent can be represented as a point in a two
dimensional space where the x-axis represents the weight of the food seeking behaviour and the y-axis
represents the weight of the parasitic seeking behaviour. Initially because all the agents have the same
predictive weight, there will be IV points in the same location, during the specialization process there
will be a cloud of points. The cloud will have a different shape according to the proportion of seekers
and parasites. For instance seekers will be described as points spread on an horizontal cluster, whereas
parasites will be spread on a vertical cluster. The larger the variance, the better the specialization,
therefore PCA can be used to quantify the degree of specialization by looking at the main component
of the space. For example in Fig.5.5 I have plotted the evolution of the points during learning for two
different cases:

e N = 20 agents and M = 4 food sources: at the end of the simulation there are 16 parasites
identified by the horizontal cluster

e N = 20 agents and M = 18 food sources: at the end of the simulation there are 16 seekers
identified by the vertical cluster

When the system differentiates in half seekers and half parasites, there is only one cluster with a
circular shape.

Weight evolution and stabilization (20 agents 4 foods)

Weights evolution t=20 sec Weights evolution t=40 sec oot Weights evolution t=end sec

H H o . H
L o5 85z o om cow wom o2 CHfEon ows o0 oo ooe 008
W agent W agent W agent

Weight evolution and stabilization (20 agents 18 foods)

Weights evolution t=20 sec Weights evolution t=40 sec Weights evolution t=end sec

00971 005 0095
o 1 -
a0 -
Boroos
0ml- k3
at01

W food

0015

.01

0102

. 5
017 e Twm oowe 'WGoroow ar omes owes ooos W a4 @ s 007
W agent W agent W agent

Figure 5.5: Weight evolution in a two-dimension space for two important cases: on the first
row there are 20 agents for only 4 food sources, on the second row there are 20 agents for 18
food sources. Each plot contains on the x-axis the synaptic weight for the seeking behaviour
and on the y-axis the synaptic weight for the food seeking behaviour.

5.4. INFORMATION THEORY 179

5.4 Information theory

5.4.1 Variety

Variety was defined by Ashby as the number of different elements in a set. A set composed by its
alphabet has maximum variety of: A = a1, ..., @, then the variety is n: V4 = n Variety can also be
expressed as the number of bits required to describe the set, thus VLa = log, Va. Example: V4 = 24
then VL4 = 4, meaning that an alphabet of 4 different symbols can be encoded as a string of 4
binary digits. So the logarithm in base 2 of variety is equivalent to the entropy measure which is the
average length of the shortest description of the corresponding random variable (Shannon and Weaver,
1949): the expected length L(C) of a source code C(z) for a random variable X with probability mass
function p(z) is given by:

L) = 3 pl)i(a) (5.12)

zeX

where [is the length of the codeword associated with x. Then an optimal code L* is bounded by:
Ha(X)<L"<Ha(X)+1 (5.13)

where A is the afore mentioned alphabet. A binary alphabet is composed by 2 symbols: A =0, 1.
If the set of disturbances D is D = {d1,d2,d3,ds}, then Vp =4,V Lp = 2.
If the set of disturbances D is D = {d1, d2,d3,ds}, then Vp =3,V Lp = 1.58.

5.4.2 Entropy

Entropy estimates the average uncertainty (or information) of a variable (Shannon and Weaver, 1949)
The most common form to compute the discrete entropy of a stochastic variable X is calculated
according to:

H(X) = =3 p(@i) - logap(w:) > 0 (5.14)

where the probability p(z;) of X being in state x; (there are in total N states) is estimated from the
time series with one of the methods described in the following section. When the logarithm of base 2
is used, as in this case, the units are bits. The entropy is maxima, for a uniform distribution which
means p(z;) = 1/N for Vi, then H(X) = logaN

5.4.3 Mutual information

Mutual information measures the deviation from statistical dependence of two variables and is sensitive
to any relationship between 2 variables, not only linear dependencies. The mutual information of two
discrete variables, X and Y, can be expressed as:

MI(X,Y) = 722]?(:&,%)[092% (5.15)

The mutual information can also be expressed as:
MIX,)Y)=H(X)+ H(Y)—-H(X,Y) (5.16)

thus the mutual information is high if both X and Y have high entropy (high variance), and hare
highly correlated (high covariance); it is zero if X and Y are statistically independent, and thus
p(zi,y;) = p(z:)p(y;). Similar to the difference between observed and true entropy, as a result of the

180 CHAPTER 5. APPENDIX

finite size of the data sets, a difference exists between observed mutual information and true mutual
information (Roulston,1999). The correction formula is:

PxPy — Px — Py +1

MIirue = M1opserveda — IN +*or (517)

where Px and Py are the number of states in which X and Y are discretised, N is the size of the time
series (supposed equally long), and o is the “logarithm in base two” corrected standard deviation
of the estimate as explained in (Roulston, 1999) Eq.42. A good heuristic is to choose N > 3Px Py.
Mutual information is an index of statistical dependence and does not indicate causal relationships or
directional information transfer. A candidate measure for the temporal dependence is then:

MI(t) = MI(X:,Ys—r) = H(X:) + HY:—,) — H(X:,Yi—1)) > 0 (5.18)

where 7 denotes the delay. It is common practice to compute the mutual information for different
taus 7; and then find the max MI(7;). Whereas the mutual information is symmetrical MI(X,Y) =

MI(Y, X) the temporal information is not MI(X:,Yi—-) # MI(Yy, X¢—7).

5.4.4 Motor output entropy

The entropy H(Z) is the uncertainty of the motor output or the average description necessary to
encode the motor output. In our case the controller produces a continuous output angle in the range
z = [0, 360] degrees (see Section 3.5).

To compute the H(Z) we have to discretise the angle z by choosing a bin width of AZ = 1 degree
for example. So the alphabet of Z = {1,2,...,360} contains 360 symbols and in term of entropies:

e If H(Z) = 2 bits, it means that the robot is able to steer with 4 different angles with 1 degree
resolution.

e If H(Z) = 8.5 bits, it means the robot is using the full range of available steering angles.
The robot could be generating a variety of different patterns such as circular motions, snake
trajectories or a mix of the 2.

e If H(Z) = 0 bits, it means that the robot is heading always in the same direction.

The output entropy does not tell us anything about the effort of the controller, even a simple controller
in a complex environment will produce a high H(Z).

5.4.5 Retinal predictive entropy

The predictor is composed of a left and right retina arranged as a grid of N,yxN,; inputs, but to
simplify the computation of the entropy we are going to use the retinal difference x1;; which is
the difference between the left and right retinal input at position (z,7). Therefore H (X1, ;) is the
uncertainty of the predictor input at position (4, j), whereas H(X1 ;) is the average entropy of the
retinal differential input

Npg
1

H(X1) = 55 D H(X1ig) (5.19)
=1

5.4.6 The law of requisite variety for predictive learning

To apply the law of requite variety for a predictive controller we need to add another source of
information D’ before the disturbance D. The regulator will have an additional source of information

5.4. INFORMATION THEORY 181

D’ rather than having only the disturbance D. Thus the additional information that D’ provides about
the disturbance D is the mutual information between D and D’, I(D, D’).

H(E) > H(D) - I(D,D") + H(R|D) — H(R) (5.20)

If D’ is not predictive of D, this means that D’ and D are independent thus I(D, D") = 0 because the
joint distribution p(D, D) = p(D) * p(D"). If Y is predictive of D, then I(D, D’) > 0 thus allowing
a reduction in the required entropy for the desired states of the regulator. The equation is consistent
because :

H(D|D') = H(D) - I(D,D") (5.21)
H(E) > H(D|D') + H(R|D) — H(R) (5.22)

Thus, for instance if the organism has 4 possible actions H(R) = 2 and a variety of 8 disturbances
H(D) = 3, if there is no predictive information the minimum variety we can reach for the state variable
is H(F) =3—2 =1, and E must have at least a variety of 2. However if a predictive signal is available
so that it provides more information about the disturbance I(D|D’) = 1, the minimum variety that we
can achieve with the state variable is Hmin(F) = 3 — 1 — 2 = 0, that means we can achieve a perfect
regulation to 1 state! The term I(D, D') can also be considered as the predictive capacity of the agent
or how much the agent has compressed the environment model. Supposing that agents have a limited
memory then the mutual information cannot be used totally because compression is not perfect. The
parameter 0 < o < 1 indicates the compressive capacity of the agent. Thus the minimum entropy for
the desired states is increased:

H(E) > H(D) — aI(D,D') + H(R|D) — H(R) > H(D) — I(D,D’) + H(R|D) — H(R) (5.23)

For example in our previous example if & = 0.5 then the minimum entropy becomes Hpin(E) =
3 —0.5—2=0.5 bits.

182 CHAPTER 5. APPENDIX

5.5 Input correlation method

5.5.1 Cross correlation corrections

Cross correlation measure cannot be applied directly to variable time windows, thus correction terms
based on the number of samples N must be included. Corrected cross correlation measures are: biased,
unbiased, normalised. Biased estimate of the cross correlation function is:

_ L

Ray biased(m) Nny(m) (5.24)
Unbiased estimate of the cross-correlation function is:
Ray unbiased(m) = N%WRW(M) (5.25)
Normalised cross correlation is:
1 K ri—zyi—g
Coy(m) = 57— > p— (5.26)

1

where (z) and o, denotes mean and variance of z, and m is a time lag.

5.5.2 Coherence function

In Laplace domain cross correlation is defined as:
Cay(w) = (Fz)(w)(Fy) * (w) (5.27)

where (Fz) is the Fourier transform of x, w are the discrete frequencies (—N/2 < w < N/2) and
* means complex conjugation. The cross spectrum Cgy(w) is a complex number whose normalised
amplitude:
Lay(w) = | < Cayw) > |

V< Crn(w) >1/< Cyy(w) >
is called the coherence function and gives a measure of the linear synchronization between x and y as
a function of the frequency w. This measure is very useful when synchronisation is limited to some
particular frequency band, as it’s usually the case of EEG signals (for a review see Niedermeyer and
da Silva (2004)).

(5.28)

5.5.3 Energy and power of digital signal

For the digital signal cq(m, k), where d is the synapse direction (d = {left,right}), m is the value of
the cross correlation in the time window of index k = 0,1, .. with N, samples:

e Energy: E(ca(k)) = YN, (ca(m, k)’

N 2
e Power: P(cq(k)) = Zm=1(Calmk)”

N,

5.5.4 Alternative measures for analog signals

One can apply for instance synchronisation measures for EEG signals (for a review see Quiroga et al.
(2002)) even if we are not interested to detect the (driver-response) relationships between signals.
Indeed we already know that x1 precedes xo in the avoidance case because this relation is a physical
causal property of the environment. However these measures should equally work, with an extra
computational cost:

5.5. INPUT CORRELATION METHOD 183

1. linear measures:
(a) normalized cross-correlation
(b) coherence function
2. non-linear measures:
(a) S;HN
(b) Mutual information and transfer entropy
(c) Hilbert phase analysis
(d) Wavelet phase analysis

According to these EEG studies it has been shown that cross correlation is less sensible than non-
linear measures because EEG signals are produced by non-linear systems, so actual simulations are
investigating if this property is true so too in our multi agent system.

5.5.5 Alternative measures for discrete time series

If we are dealing with discrete signals like spike trains, temporal information can be computed by: IST
distance, Rosendal distance,Euclidean distance, cross-correlograms, joint peristimulus PSH.

184 CHAPTER 5. APPENDIX

5.6 EMPASS: a parallel ABM simulator

This Chapter contains an introduction to parallel computing and explains why it is important to
adopt a parallel approach to ABM with the recent boom in the market of parallel CPU and GPU. The
approach used in this Thesis was to implement a parallel ABM engine to speed up the simulations by
using a software framework called OpenMP which lets the user exploit the recent multi core processors
from Intel or similar.

5.6.1 Traditional computing paradigm

Traditionally, software has been written for serial computation to be run on a single computer having
a single Central Processing Unit (CPU). A problem is solved by an algorithm described by a discrete
series of instructions, which are executed one after another - see Figure 5.7. The bottleneck is that
only one instruction may execute at any moment in time and is radicated in the original Von Neumann
architecture -see Figure 5.6 that was designed in the 1945. The control unit fetches instructions or data
from memory, decodes the instructions and then sequentially coordinates operations to accomplish the
programmed task.

Control Arithmetic

Unit Logic
Unit

Figure 5.6: The von Neumann architecture is based on 4 components: the memory, the control
unit, the arithmetic logic unit and an input and output channel.

Parallel computing adopts a new architecture to bypass the bottleneck of serial execution.

5.6.2 Parallel computing paradigm

Parallel computing is the simultaneous use of multiple computing resources to solve a computational

problem. To avoid serial execution the algorithm is executed on multiple CPUs. To do so the problem

must be broken into discrete parts that can be solved concurrently like in Figure 5.8 . Each part is

further broken down to a series of instructions which are executed simultaneously on different CPUs.
The distribution of the computational load can be achieved by:

e A single computer with multiple processors

5.6. EMPASS: A PARALLEL ABM SIMULATOR 185

problem

l instructions
N 3 2 t

Figure 5.7: The problem is divided in a set of instructions which are executed at sequential
time steps.

instructions

N t3 t2 1

Figure 5.8: The problem is divided into blocks which are then divided in a set of instructions
allocated to different CPUS.

Vol

186 CHAPTER 5. APPENDIX

e A computer network

e A combination of both

The problem needs to fulfil the basic property

e Broken apart into discrete pieces of work that can be solved simultaneously;
e Execute multiple program instructions at any moment in time;

e Solved in less time with multiple compute resources than with a single compute resource.

5.6.3 Flynn’s Classical Taxonomy

Flynn’s Taxonomy was introduced in 1966 to rationalise and classify the different type of parallel
hardware architectures. The taxonomy contains 4 categories:

e Single Instruction Single Data: the CPU executes a single stream of instructions on a single
stream of data like in Figure 5.9

e Single Instruction Multiple Data: each CPU executes the same stream of instructions on different
streams of data like in Figure 5.10

e Multiple Instruction Single Data: each CPU executes different streams of instructions on the
same stream of data like in Figure 5.11

e Multiple Instructions Multiple Data: each CPU executes different streams of instructions on the
same stream of data like in Figure 5.12

sSIsSD Instruction Pool

load A
load B
C=A+B ~

aw|

store C
A=B*2

Data Pool

store A

(a) SISD diagram (b) SISD program

Figure 5.9:

On top of this hardware layer, it was necessary to define a set of parallel programming models.
The most common ones used are:

e Shared Memory
e Threads

o Message Passing

5.6. EMPASS: A PARALLEL ABM SIMULATOR

SIMD Instruction Pool
PU|—
§ ’ PU pa prev instruct prev instruct prev instruct
o load A(1) load A(2) load A(n)
g load B(1) load B(2) load B(n)
[PU|—
C(1)=A(1)*B(1) C(2)=A(2)*B(2) C(n)=A(n)*B(n)
store C(1) store C(2) store C(n)
— PU - next instruct next instruct next instruct
P1 P2 Pn
(a) SISD diagram (b) SISD program
Figure 5.10:
MISD Instruction Pool
o) ;)
E P U P U prev instruct prev instruct prev instruct
3 load A(1) load A(1) load A(1)
C(1)=A(1)*1 C(2)=A(1)*2 C(n)=A(1)*n
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 P2 Pn

(a) SISD diagram

Figure 5.11:

(b) SISD program

sawiy

awy

187

188 CHAPTER 5. APPENDIX

MIMD | Instruction Pool |
§ prev instruct prev instruct prev instruct
o load A(1) call funcD do 10 i=1,N
g load B(1) x=y*z alpha=w**3 -
o 3
C(1)=A(1)*B(1) sum=x"2 zeta=C(i) °
store C(1) call sub1(ij) 10 continue
next instruct next instruct next instruct
T P1 P2 Pn
(a) SISD diagram (b) SISD program
Figure 5.12:

e Data Parallel
e Hybrid

Those models are not dependent on any particular machine or memory architecture. There is no
absolute best nor absolute worse, but surely there are better implementations or open source solutions.
One of the most successful model in the consumer level entry is is the Thread model, which is
adopted both by Unix and Microsoft operative systems. In the threads model of parallel programming,
a single process can have multiple, concurrent execution paths as in the Figure 5.13.
Threads are commonly associated with shared memory architectures and operating systems. The
UNIX standard is POSIX and OpenMP.

5.6.4 Open MP

OpenMP stands for Open Multi-Processing but the original acronym was Open specifications for Multi-
Processing via collaborative work between interested parties from the hardware and software industry,
government and academia.

OpenMP is an application program Interface (API) that may be used to explicitly direct multi-
threaded, shared memory parallelism. It is comprised of three primary API components (see Figure
5.14):

e Compiler Directives

e Runtime Library Routines

e Environment Variables
Open MP is Portable because the API is specified for C/C + +, Fortran and most major platforms
have been implemented including Unix/Linux platforms and Windows NT Open MP is standardised
and endorsed by a group of major computer hardware and software vendors The following table 5.1
compares the POSIX with the OpenMP standard.

The author decided to use OpenMP for implementing parallelism in the simulator because it is the
most convenient choice in terms of language support and implementation.

5.6. EMPASS: A PARALLEL ABM SIMULATOR

a.out

189

awiy

b

Figure 5.13: In the Thread Model a sequential program a.out can be executed as several threads
T1,T2,T3,T4 which executes concurrently the sub routines of the program.

OpenMP language
extensions

runtime
parallel control hari data hroni functi
structures work ng environment zation ons, env
variables
govems flow of distributes work scopes coordinates thread runtime environment
control in the among threads variables execution
program
omp_set_num_threads()
do/parallel do sharedand criticaland omp_get_thread_num(
paralleldirective and atomicdirectives OMP_NUM_THREADS
sectiondirectives clauses barrierdirective OMP_SCHEDULE

Figure 5.14: OpenMP language structure: a set of pragma directives and keywords.

190

CHAPTER 5. APPENDIX

Standard Posix OpenMP
Language supported | C only C,C + + and Fortran
Programming API | Library based requires | Compiler directive
parallel coding based

standard (1995)

Usability Requires complex ex- | Easy and simple to
plicit coding use, incremental paral-

lelism
Standard IEEE POSIX 1003.1c | The OpenMP Fortran

API was released Oc-

tober 28, 1997. The
C/C++ API was re-
leased in late 1998.

Table 5.1: Table comparing the two most common standards

5.6.5 ABM simulation engine with OpenMp

The author developed an ABM engine called “Multi Parallel Agent” with codename “Empass” which
is a minimalist particle engine written in C'\ C' + +. The scope of this software project is to use
OpenMP and thus have a fully portable parallel implementation. The motivation for developing a
new simulator is that existing softwares did not do well in terms of language support, flexibility and
scalability. The most popular engines for multi agent robot simulations are:

RePast: A popular Java-based social complexity simulation toolkit.
Ascape: Another popular Java-based social complexity simulation toolkit.

Swarm: the venerable Objective-C and TCL-based social complexity simulator, from which
RePast and Ascape (and MASON) owe much.

TeamBots: A Java-based high-level, 2D abstract robotics simulator and hardware API.

Player/Stage: A C++ based (but language-independent) 2D and 3D abstract robotics simulator
and hardware API.

Breve: A 3D simulation toolkit for MacOS X, Linux, and Windows using an interpreted language
called Steve. Very impressive.

StarLogo: A simulation toolkit in Logo, ostensibly for educational purposes, but extensible and
powerful.

NetLogo: Another, somewhat newer member of the Logo simulation family. Very nice!

Processing A beautiful Java/OpenGL environment for simulation, animation, multimedia, and
playing around.

Enki: a fast 2D robot simulator in C++

MASON: fast discrete-event multiagent simulation library core in Java, designed to be the
foundation for large custom-purpose Java simulations

The most detailed simulators in terms of robot implementation are MASON and Player/Stage. Net-
Logo is similar in nature but the programming interface is based on a customised language grammar.
Enki is minimalist and has a very fast implementation for collision detection and robot interaction.
In terms of computational efficiency Player/Stage seems the best but is based on the Message Passing
model (see Figure 5.15)for dividing the pure simulation details from the visualisation and control

5.6. EMPASS: A PARALLEL ABM SIMULATOR 191

Machine A Machine B

task 1

task 0

network

Figure 5.15: The message passing model can be implemented on the same machine or on several
machines connected in the network. Each task has his own data and shares the intermediate
results with messages across the network.

192 CHAPTER 5. APPENDIX

logic. All the Java based simulators trade off speed with compatibility because they are all based on
the Java Virtual Machine which is good for portability but offers poor performances in execution time.

This design choice the author adopted was thus to develop a bare bones simulator which is Thread
safe and can be used with OpenMP. The simulator Empass contains the following features:

e world environment can have a circular or square geometry
e robotic agent and obstacle entities modeled as disks

e particle physic computation for elastic and non elastic collisions

efficient distance calculation with sparse matrixes in Boost library

logging data in CSV format

support for Gnuplot for visualizing data

The main use of this simulator is to run parametric simulations of the social system. For example
in Figure 5.16 there are N different configurations of the social system where the black disks are
the obstacles and the white disks are the agent. Each configuration will run for Ts;n steps and is
independent from the others.

Simulation 1 Simulation 2 Simulation N
O 0 ||0®g © g0
® O
OCeO||lO © IO
) ® ®)
Ceo ||o o o ®o
CeC|| oo o®
v \. J . J/ \. J

Figure 5.16: Graphical representation of a typical simulation with Empass. There are N
simulations which differs for the initial configuration of the agents and obstacle location. Each
simulation is independent from the others and thus can be parallelised.

The following code is a sequential implementation for a typical simulation run where there are 10
agents and 4 obstacles in a square world of 100 for 100 units. There are a total of Nsim = 100 different
simulations that have to be run for Ts;,, = 10000 time steps. Each configuration will generate different
results because the initial conditions are randomised.

N=10; // agents

5.6. EMPASS: A PARALLEL ABM SIMULATOR

M=4, // obstacles
simtime=10000; // simulation time

for (int conf=0;conf<Nsim;conf++)

//create 100x100 unit square worlds

world [conf]=World2DCartesian (100,100);

}

for (int conf=0;conf<Nsim;conf++)

{

world [conf]. run(N,M, simtime , false);

193

The previous code is the implementation of the same simulation code but using the parallel region

construct and the work sharing construct as in Figure 5.17.

master thread

FORK

H.Hm

JOIN

master thread

Figure 5.17: How OpenMP fork and join a while loop.

N=10; // agents

M=4; // obstacles
simtime=10000; // simulation time
int chunk=10;

int conf=0;

for (int conf=0;conf<Nsim;conf++)

{

//a 100100 unit square world

world [conf]=World2DCartesian (100,100);

194 CHAPTER 5. APPENDIX

}

#pragma omp parallel shared (N,M,simtime ,world ,chunk) private(conf)
{
#pragma omp for schedule(dynamic,chunk) nowait
for (conf=0;conf<Nsim; conf++)
{
world [conf]. run(N,M, simtime , false);

}

The tests were performed on two Linux machines, one with an Intel Core2 Quad CPU Q6600 at
2.40GHz with 4GB RAM DDRII memory and another one with Intel Core Duo at 2.40 GHz with
2 GB RAM DDR memory. The Table 5.2 shows how the execution time is drastically reduced by a
factor of 3.25, ideally one could achieve a factor of 4.0 because there are virtually 4 CPU but this is not
possible due to the actual hardware implementation. For Ng;,, = 10000 the experimenter could easily
have waited 1 minutes and 13 seconds whereas with the parallel implementation only 35.63 seconds. It
is also interesting to note that there was not any significant difference in terms of performance between
the Intel Core Duo and the Intel Quad CPU.

Table 5.2: Table with some benchmarking measures

Configuration Processor Sequential ~OpenMP
Nsim = 1000 Intel Quad CPU 0m13.285s 0m4.082s
Ngim = 10000 Intel Quad CPU 1m13.178s 0m35.637s
Nsim = 1000 | Intel Core Duo CPU 0m7.088s 0m3.584s
Ngim = 10000 | Intel Core Duo CPU 1m10.840s 0m35.647s

This is only a very simple optimisation included in the simulator but there are other possible
optimisation strategies for the collision computation or the communication protocol. The next section
describes a very important optimisation which was not implemented for time constraints but is very
important for future simulators.

5.6.6 Pruning the parallel simulator

Another optimisation that can be introduced is to “prune” the task execution. In some occasions for
a particular set of parameters a simulation can reach a a looping stage where the agents are repeating
their trajectories due to an unfortunate positioning of the obstacles. In this condition the simulation
can be terminated because , the data produced is of no use. In Figure 5.18, the simulation X + 1 must
be terminated because the agent has incurred in a trajectory loop due to the obstacle configuration.
Simulation X instead does not contain any loop condition. If the detection of the loop is shared
between the simulation tasks this will improve even more dramatically the performances by essentially
removing the tasks which are not useful. This feature was not implemented as it required a more
advanced inter communication between tasks and is left as a future function. There is also a novel
approach that can be used to predict if an initial configuration of agents will reach a loop condition
and is described in Chapter 4.2.1.

5.6. EMPASS: A PARALLEL ABM SIMULATOR 195

Simulation X Simulation X+1
(N\ 4 N\

Simulation X \, Simulation X+1

0) Yo

Figure 5.18: The agent in the simulator labelled with X 4 1 incurred in a trajectory loop, and
thus the simulation is stopped.

5.6.7 Discussion

The importance of supporting the Thread model in computer simulation is becoming of more impor-
tance within the consumer desktop industry. Intel multi core technology is a clear example, the Core
2 Duo CPU was released on July 2006 and the latest version Core i7 EE with 6 cores was release in
January 2011. This means that more and more researcher have access to multi core hardware but do
not have the tools to speed up their simulations. There is also another interesting growing branch of
optimisation based on the use of the CUDA SDK based on the Nvidia GPU hardware. For example,
CUDA now accelerates AMBER, a molecular dynamics simulation program used by more than 60,000
researchers in academia and pharmaceutical companies worldwide to accelerate new drug discovery.
It seems that computing is evolving from ”central processing” on the CPU to ”co-processing” on the
CPU and GPU. To enable this new computing paradigm, NVIDIA invented the CUDA parallel com-
puting architecture that is now shipping in GeForce, ION, Quadro, and Tesla GPUs, representing a
significant installed base for application developers. The company producing AMD and ATI hardware
are also trying to catch up with this field but they are still behind a useful implementation. This is
certainly an interesting trend for future researchers as well as videogame producers.

196 CHAPTER 5. APPENDIX

5.7 Implementation of a swarm system

There are several reasons to realise a swarm system:
1. proof of concept
2. technology showcase during open events
3. solve a business task

Software simulations don not take into account the complexity of the real world and uncertainty intro-
duced by mechatronic systems, therefore a real implementation is likely to spot unexpected behaviour
of the system. A live swarm system can be used to sponsor research and attract new students/re-
searchers in this area and is also fun to watch. Additionally it can be extended to solve real business
tasks, for example the company “Kiva Systems” used a swarm system to improve the performance of
order fulfilment 2. Nevertheless there are 3 main challenges:

e scaling down the costs for large systems
e operating conditions
e replicability

A swarm systems is likely composed of many agents, otherwise it doesn’t make sense to call it a swarm:
therefore the price of every single unit must be very low. Hence the unit must have different hardware
according to the task it was designed for: if the task is to move boxes we need grip actuators to move
them and cameras to determine their location. I designed my system to be easy to replicate on the
hardware and software side, this is important for other researchers if they want to test new algorithms
or replicate the results. The robots/agents are positioned on a rectangular playground with a white
background, a food patch is painted in the centre as a graded circle. The robots must have reflective
sensors pointing down to detect food signals, contact sensors to avoid each other as well as walls and
a communication method to exchange information.

5.7.1 The playground

The playground is printed on a grey scale A3 paper. The playground dimensions are reported in the
figure. The robot we are using, called 3pi, from Pololu has the same diameter has the inner black
spot. The background and the wall are at high contrast white/black and the blob at the centre has a
gradient texture: the robot will pass over it to calibrate the minimum, maximum and average readings
from its reflective sensors looking down to the floor.

5.7.2 Hardware platform and software development
There were two main choices about the hardware implementation:
e custom design: designing the electronic and mechanical part
— advantages: total control on choice of processor, sensors, actuators, communication

— disadvantages: manufacturing can become an issue: assembly errors, testing and labour
cost. Not easy to be used by external researchers, documentation and materials must be
provided but mechanical parts are easy to find etc...

e open design:

— advantages: available virtually to everybody, easy to use and to obtain

— disadvantages: limited control on the hardware

2The company website is: http://www.kivasystems.com/index.html

5.7. IMPLEMENTATION OF A SWARM SYSTEM 197

Wall North Playground v1.0 by Paolo

i
=
3
E

Wall East

260 mm

1066 mm

Wall South

Figure 5.19: The playground dimensions

According to the table above I decided to use 2 commercial popular robots so that virtually
everybody can use them and replicate my results. The first choice is the lego mindstorm nxt which
was released by Lego as a fully open source documented platform on 1 May 2006. Lego sold 150,000
units in 2007 worldwide. The second choice is the 3pi from Pololu (see specifications here 5.7.8). 1
have chosen these two because they are in a different price range (150 and $60 respectively) and have
a different hardware complexity. To simplify the software development I:

1. developed a common C++ library called UICO

2. compiled, tested and debugged under x86 (a common desktop pc)

3. adapted to the programming environments of the lego nxt and pololu 3pi

4. verified again the program behaviour in the real application

All the libraries I developed are available on-line and can be easily installed and compiled by any
other user.

5.7.3 Lego NXT mindstorm

Lego has 10 years experience in producing educational robot kits, NXT? is an updated version of
the RCX* kit. With this product Lego has released full hardware and software specification of the
kit® so that users can develop their own firmware and interface different hardware NXT controller.
Recently Professor Masaaki Mizuno (Department of Computing and Information Sciences, Kansas
State University) did a port of the TOPPERS/ATK to the NXT naming it nxtOSEK. nxtOSEK ¢

Shttp://mindstorms.lego.com/
4http://www.lego.com/eng/education/mindstorms/home.asp?pagename=rcx
Shttp://mindstorms.lego.com/eng/Overview /nxtreme.aspx

6http:/ /lejos-osek.sourceforge.net/

198 CHAPTER 5. APPENDIX

=

B
Higt

Pawer Blustoath
supply Bluecore "™ 4.0

Display Ham—nur IUMT-B

hdain Processor
Atmel* ARMT

Buttons 41 I..c.gus

A Co-Processor o
Hmel AVR

i

-

Output drouft
Input o roult

Figure 5.20: Hardware block diagram of the NXT brick. For a better description see Appendix
5.7.7

consists of device driver of leJOS NXJ C/Assembly source code, TOPPERS/ATK (Automotive Kernel,
formerly known as TOPPERS/OSEK) and TOPPERS/JSP Real-Time Operating System source code
that includes ARM7 (ATMEL AT91SAM7S256) specific porting part, and glue code to make them
work together. nxtOSEK can provide:

e ANSI C/C++ programming environment by using GCC tool chain

e C API for NXT Sensors, Motor, and other devices

e C++4 API for NXT Sensors and Motor which include many third party sensors

e TOPPERS/ATK provided real-time multi tasking features proven in automotive industry

e TOPPERS/JSP provided real-time multi tasking features that complied with Japan original
open RTOS specification uITRON4.0

e Fast execution and less memory consumption

e There are three ways to upload the nxtOSEK application to the NXT

1. Using John Hansen’s Enhanced NXT firmware (multiple nxtOSEK programs can be up-
loaded to a NXT. However, a nxtOSEK program has to be less than 64Kbytes)

2. Using NXT BIOS (max. 224Kbytes single nxtOSEK program uploaded to Flash)

3. Direct boot from RAM (max. 64Kbytes single nxtOSEK program uploaded to RAM, no
Flash write)

e Many examples (including NXTway-GS and NXT GT...)

The robot has been built using lego technic pieces from the kit: it has 2 motors with rubber wheels
and a casting wheel on the back to allow differential steering. Two reflective sensors are placed on
the bottom to detect food sources. Two contact sensors are placed on the front so that the robot can
avoid walls and other robots.

The control program of the robot is using the already mentioned UICO library, and is composed
of 4 tasks. They are scheduled using rate-monotonic full-preemptive scheduling (RMS): a scheduling
algorithm used in real-time operating systems with a static-priority scheduling class. The static pri-
orities are assigned on the basis of the cycle duration of the job: the shorter the cycle duration is, the

5.7. IMPLEMENTATION OF A SWARM SYSTEM 199

[

W USB/Biuetooth
«ﬁ] 2c Main Processor _ Pulses
- ATMEL ARM7 i
&

h 4

i AD Co-Processor Litdioch i |
ATMEL AVR 4

Figure 5.21: This figure tells that communication between the main ARM?7 processor (ATMEL
AT91SAMT7S5256) and Sensors/Servo Motors is done via the co-processor (ATMEL AVR) except
for the Ultrasonic Sensor and acquisition of Servo Motor revolutions. For nxtOSEK, the most
important factor to access Sensors/Servo Motors is the communication with the co-processor via
12C serial bus. This system architecture definitely influences the software run-time environment
of nxtOSEK. The main ARMY processor accesses Sensors (to read sensor A /D value) and Servo
Motors (to set PWM duty ratio and break mode) independently every 2 msec through a 1 msec
periodical Interrupt Service Routine (ISR) of LEJOS NXJ platform. Servo Motors revolutions
are directly captured by pulse triggered ISRs of LEJOS NXJ platform. Ultrasonic Sensor has
its brain directly communicate with the main ARM?Y processor via another 12C communication
channel. TOPPERS ATK is similar to the following version of OSEK OS/OIL according to
the TOPPERS project. nxtOSEK restricts several TOPPERS ATK features due to the system
architecture. User should not use ISR definitions and Interrupt handling APT 8.

F 3
Y

3

v
£

&
|

F 3
v
v

ry
v

S

i y
[

200 CHAPTER 5. APPENDIX

(00i0/0/0i0TH)

N

r,

(a) LegoRobot bottom view: left and right
light sensors

higher the job priority. In the diagram the higher priority 4 is assigned to the Control task with a 10
mseconds period, then in ascending order priority 3 to the Avoid Task, priority 2 to the DataLog task
and priority 1 to the LCD task.

5.7.4 Toppers

TOPPERS? is an acronym for Toyohashi OPen Platform for Embedded Real-time Systems. Toyohashi
is a city located in Japan, and the name was selected based on project leader Professor Takadas
association with Toyohashi University of Technology when the project was started. It is based on
Open Source and Free Software and thus easy to port on any embedded platform.

5.7.5 OSEK

OSEK/VDX is a joint project of the automotive industry. It aims at an industry standard for an open-
ended architecture for distributed control units in vehicles. The specification of the OSEK operating
system represents a uniform environment which supports efficient utilisation of resources for automotive
control unit application software. The OSEK operating system is a single processor operating system
meant for distributed embedded control units. One of the goals of OSEK is to support the portability
and re-usability of application software. Therefore the interface between the application software and
the operation system is defined by standardised system services with well-defined functionality. Use
of standardised system services reduces the effort to maintain and to port application software and
development cost. This is why it was so easy to port OSEK onto the Lego NXT plaftorm. The OSEK
operating system serves as a basis for application programs which are independent of each other, and
provide their environment on a processor. The OSEK operating system enables a controlled real-time
execution of several processes which appear to run in parallel. The OSEK operating system provides
a defined set of interfaces for the user. These interfaces are used by entities which are competing for
the CPU. There are two types of entities:

1. Interrupt service routines managed by the operating system.
2. Tasks (basic tasks and extended tasks).

The hardware resources of a control unit can be managed by operating system services. These op-
erating system services are called by a unique interface, either by the application program or internally
within the operating system. OSEK defines three processing levels:

9http://www.toppers.jp/en/index.html

5.7. IMPLEMENTATION OF A SWARM SYSTEM 201

module 1 module 2 module 3 module n

application
software ||

. . 4 g
4 o/ \‘ _ f
OSEK operation system

Input/Cutput System |

v

pController |

Figure 5.22: Software interfaces inside ECU

e Interrupt level
e Logical level for scheduler
o Task level

interrupt level
=
priority witi 0562 uices [~
igh —————
logical level for scheduling activities —I—'
task level watthg-yes /10
2]
f e S
™™~
lows] [~
- premption: 101 /A1l \/_\
runtime
OSEK operating system context

Figure 5.23: Processing levels of the OSEK operating system

For better portability of application software, the OSEK defines a language for a standardised con-
figuration information. This language ”OIL” (OSEK Implementation Language) supports a portable
description of all OSEK specific objects such as ”tasks” and ”alarms” etc. Website: http://www.osek-
vdx.org/

5.7.6 OIL

To reach the OSEK goal of portable software, a way has been defined to describe the configuration of
an application using OSEK. This specification only addresses a single central processing unit (CPU) in

202 CHAPTER 5. APPENDIX

an electronic control unit (ECU'®), not an ECU network. The goal of OIL is to provide a mechanism

optional
OSEK Builder

Application
configuration files

(OIL)

C code

B
2

Ccode

OSEK 0S
Kernel '

Object libraries

|:‘ Files produced by SG

1
I 1 Make tool
P!

Compiler

I:‘ Third party tools & related files

I:I OSEK components, tools & related files

l:‘ User written/defined Executable file ‘

Figure 5.24: Example of development process for applications

to configure an OSEK application inside a particular CPU. This means for each CPU there is one
OIL description. All OSEK system objects are described using OIL objects. The OIL description of
the OSEK application is considered to be composed of a set of OIL objects. A CPU is a container
for these OIL objects. OIL defines standard types for its objects. Each object is described by a
set of attributes and references. OIL defines explicitly all standard attributes for each OIL object.
Each OSEK implementation, like nxtOsek, can define additional implementation-specific attributes
and references. The OIL configuration I'm using in my robots:

#include ”implementation. oil”
CPU ATMEL_AT91SAM7S256

0S LEJOS_OSEK

{
STATUS = EXTENDED:;
STARTUPHOOK = FALSE;
ERRORHOOK = FALSE;
SHUTDOWNHOOK = FALSE;
PRETASKHOOK = FALSE;
POSTTASKHOOK = FALSE;
USEGETSERVICEID = FALSE;
USEPARAMETERACCESS = FALSE;
USERESSCHEDULER = FALSE;

10Engine Control Unit

5.7. IMPLEMENTATION OF A SWARM SYSTEM 203

}s

/+* Definition of application mode */
APPMODE appmodel { };

EVENT SensorEventMask {

MASK = AUTO;

e

EVENT SleepEventMask {
MASK = AUTO;

b

/* Show status information x/
TASK TaskLCD
{
AUTOSTART = TRUE {
APPMODE = appmodel;
g
EVENT = SensorEventMask;
EVENT = SleepEventMask;
PRIORITY = 1; /+* Smaller value means lower priority */
ACTIVATION = 1;
SCHEDULE = FULL;
STACKSIZE = 512; /x Stack size x/

IE

TASK TaskDataLog
{
AUTOSTART = TRUE {
APPMODE = appmodel ;
b
EVENT = SensorEventMask;
EVENT = SleepEventMask;
PRIORITY = 2; /+* Smaller value means lower priority */
ACTIVATION = 1;
SCHEDULE = FULL;
STACKSIZE = 512; /+ Stack size x/

}s

TASK TaskAvoid
{
AUTOSTART = TRUE {
APPMODE = appmodel ;
}s
EVENT = SensorEventMask;
EVENT = SleepEventMask;
PRIORITY = 3; /x Smaller value means lower priority */
ACTIVATION = 1;

204 CHAPTER 5. APPENDIX

SCHEDULE = FULL;
STACKSIZE = 512; /x Stack size x/

};

/+* Reak time task with the digital controller x/
TASK TaskControl
{
AUTOSTART = TRUE {
APPMODE = appmodel;
b
EVENT = SensorEventMask;
EVENT = SleepEventMask;
PRIORITY = 4; /+x Smaller value means lower priority */
ACTIVATION = 1;
SCHEDULE = FULL;
STACKSIZE = 512; /x Stack size x/

TASK SensorMonitorTask {
AUTOSTART = FALSE;
PRIORITY = 1;
ACTIVATION = 1;
SCHEDULE = FULL;
STACKSIZE = 512;

};

/+* Definition of OSEK Alarm Counter x/
COUNTER SensorMonitorCounter

{

MINCYCLE = 1;

MAXALLOWEDVALUE = 10000;

TICKSPERBASE = 1; /% One tick is equal to Imsec x/
b

/+x Definition of SensorMonitorTask exzecution timing */
ALARM cyclic_alarm
{

COUNTER = SensorMonitorCounter ;

ACTION = ACTIVATETASK

TASK = SensorMonitorTask;
};
AUTOSTART = TRUE
{
ALARMTIME = 1;
CYCLETIME = 10; /* Task is exzecuted every 10msec */
APPMODE = appmodel;

};

5.7. IMPLEMENTATION OF A SWARM SYSTEM 205

}s

/* Definition of TaskLCD ezxzecution timing */
ALARM cyclic_alarmLCD
{

COUNTER = SensorMonitorCounter;

ACTION = ACTIVATETASK

{
TASK = TaskLLCD;
b
AUTOSTART = TRUE
{
ALARMTIME = 1;
CYCLETIME = 500; /+x LCD display is updated every 500 msec */
APPMODE = appmodel ;
IS

IE

/+* Definition of TaskDataLog exzecution timing */
ALARM cyclic_alarmDataLog

{
COUNTER = SensorMonitorCounter ;
ACTION = ACTIVATETASK
TASK = TaskDatalLog;
s
AUTOSTART = TRUE
{
ALARMTIME = 1;
CYCLETIME = 100; /* Data is logged every 100 msec %/
APPMODE = appmodel;
IS
s

/* Definition of TaskAvoid execution timing */
ALARM cyclic_alarmAvoid
{

COUNTER = SensorMonitorCounter;

ACTION = ACTIVATETASK

{
TASK = TaskAvoid;
IS
AUTOSTART = TRUE
{
ALARMTIME = 1;
CYCLETIME = 8; /+ Awoiding task is ezecuted every 8 msec x/
APPMODE = appmodel ;
b

}s

206

CHAPTER 5. APPENDIX

/+ Definition of TaskControl ezecution timing */

ALARM cyclic_alarmControl

{

}s

5.7.

Here

COUNTER = SensorMonitorCounter ;
ACTION = ACTIVATETASK

{

};
AUTOSTART = TRUE

{

TASK = TaskControl;

ALARMTIME = 1;
CYCLETIME = 10; /* Neural control is sampled at 10 msec */
APPMODE = appmodel;

};

7 LegoRobot

is a summary list of hardware specifications for the NXT brick:

Main processor: Atmel 32-bit ARM processor, AT91SAM75256, 256 KB FLASH, 64 KB RAM.
Bluetooth: CSR BlueCoreTM 4 v2.0 +EDR System
USB 2.0 communication: full speed port (12 Mbit/s)

4 input ports: 6-wire interface supporting both digital and analog interface and 1 high speed
port, IEC 61158 Type 4/EN 50170 compliant

3 output ports: 6-wire interface supporting input from encoders

Display: 100 x 64 pixel LCD black. white graphical display

Loudspeaker: sound output channel with 8-bit resolution, supporting a sample rate of 2-16 KHz
user interface: 4 rubber buttons

power source: batteries or usb

Task functions

The Task Control is the most important one: is composed by a 5 states machine.

Init: initialisation of the software library and hardware controller

Calibration: the robot crosses the food patch in the playground to calibrate its sensors. It
calculates minimum, maximum and average reflectance of the ground. These values will be used
to scale the proximal and distal food signals.

Reflex: the agent is purely reactive.

Learning: the agent is learning to associate the distal signal to the proximal stimulus.

5.7. IMPLEMENTATION OF A SWARM SYSTEM 207

The Task Avoid is responsible for the avoidance task: the contact sensors are connected to 2 IIR filters
which produce a delayed back-turning motor response. It’s also responsible to produce a tone relative
to the energy of the robot. The Task Data Log is used for 2 purposes:

e to upload the signals of the robot to a user desktop via the bluetooth SPP (serial port protocol)
interface

e to communicate via bluetooth with the other robots

The data logging function was crucial for debugging the robot and will be used to compute the
information measure for every agent. On the Desktop side, a simple program written in C++ - at the
moment only for windows, is available on the website - it reads the data from the serial COM port
and visualises it. There are 2 programs doing it:

e one operates in off-line mode: it saves all the incoming data in the computer in a file. This file
-in CSV format- is then importend in Matlab to plot the relative signals

e one operates in on-line mode: it receives the data and plot it in almost real time in an oscilloscope
like manner

Both programs are available on the website to download (see Appendix D).

I
BB

=[] \ ‘f‘ 4 \r}ﬁ\' vaLue I X Tioge: | EXHERHER
\’\H*I"l Beams | [Hes [Jagges [—

=nu| _Hide panel | Disconnect

Figure 5.25: The bluetooth logger developed for windows. It has an interface similar to an
oscilloscope. It logs the signal of interest. In this case the energy and the motor outputs.

How to guarantee real time operations?

In Osek the task model is composed by 4 states as described in Fig.5.26.
A rate monotonic analysis is necessary to guarantee that for a particular application every task
will be executed and completed in time. In Fig.5.27 there’s a simple explanation about how it works:

e after the system boot all tasks are in ready state
e the task 4 with higher priority and is put in running state

e task 4 is terminated, the task with lower priority, 3, is put in running state

208 CHAPTER 5. APPENDIX

wait

running
: / . terminate

suspended

waiting preempt start

release o " activate
A ’
mady/

Figure 5.26: A task must be able to change between several states, as the processor can only
execute one instruction of a task at any time, while several tasks may be competing for the
processor at the same time. The OSEK operating system is responsible for saving and restoring
task context in conjunction with task state transitions whenever necessary.

e after 10 ms task 4 is put again in run mode
e task 4 is terminated and task 2 is put in run mode
e task 1 is finally in run mode after task 2 is terminated

e nevertheless because task 4 with higher priority is due at 20 msec, task 2 is pre-empted (waiting
state) in favour of task 4

e task 4 terminates and task 1 finishes etc.

Rate monotonic scheduling considers the 4 threads in the system and determines how much time
is needed to meet the guarantees for the set of threads in question. It assumes that:

e No resource sharing (processes do not share resources, e.g. a hardware resource, a queue, or any
kind of semaphore blocking or non-blocking (busy-waits))

e Deterministic deadlines are exactly equal to periods

e Static priorities (the task with the highest static priority that is runnable immediately preempts
all other tasks)

e Static priorities assigned according to the rate monotonic conventions (tasks with shorter peri-
ods/deadlines are given higher priorities)

e Context switch times and other thread operations are free and have no impact on the model

Liu and Layland (1973) proved that for a set of n periodic tasks with unique periods, a feasi-
ble schedule that will always meet deadlines exists if the CPU utilization is below a specific bound
(depending on the number of tasks). The schedulability test is:

U:Z% <n(V/(2)-1). (5.29)

where C; is the computation time, and T; is the release period (with deadline one period later). For
example U = 0.8284 for n = 2. When the number of processes tends towards infinity this expression

will tend towards:
lim n({/(2) —1) = In(2) ~ 0.693147 (5.30)

n—>00

5.7. IMPLEMENTATION OF A SWARM SYSTEM 209

So a rough estimate is that RMS in the general case can meet all the deadlines if CPU utilization
is 69.3%. The other 30.7% of the CPU can be dedicated to lower-priority non real-time tasks. It is
known that a randomly generated periodic task system will meet all deadlines when the utilization is
85% or less, however this fact depends on knowing the exact task statistics (periods, deadlines) which
cannot be guaranteed for all task sets. In my implementation in order to calculate U, C1,2,3,4 must be
computed using the Timer of the controller: execute every singular task individually and time it.

Full preemptive rate monotonic scheduling

Poll
antenna

0 10 20
[4 |3 Ja]ofviafe] | |

at 20 ms Display task is
preempted in favour of the higher
priority task 4

Priority=4

@ @ Calibration

Lt

10 ms
. | Reflex

Figure 5.27: The control program task diagram. There are 4 tasks scheduled in full-preemption
mode.

Learning

Communication and identification

The most important aspect in our experiment is communication and identification. We would like test
2 types of communication:

e 1 to many: every agent broadcasts its state to everybody else

e 1 to 1: every agent communicates its state to a close peer

210 CHAPTER 5. APPENDIX

Communication is achieved by using the BluetoothCore and is structured as master-slave: in a
swarm slaves sends their phonemes (language primitives) to the master which has the role to dispatch
them to the addressed receivers. Every robot is identified by an ID which is inserted in every com-
munication data packet. The packet is 32 byte long and its structure is in Fig.5.28. In this simple

Bluetooth Data Packet Log format

|Length| TimeStamp | Data1| Data2| Battery |
+— P 4t— P — P —

2 bytes 4 bytes 1 byte 1 byte 2 bytes
| MotorL | Data3 | MotorR |
«—— p——————————»
4 bytes 4 bytes 4 bytes

[Adco [Adet [Ade2 [Adc3 | Datas |

— P>
2 bytes 2bytes 2bytes 2 bytes 4 bytes

master

Slave1 says
/) "Hi, how]are you?
SPP|interface @y v/
N .4 >)

slave1 Ny
LY o

>
1y

Bluetooth Data Communication Packet

| ID |Energy| LeftWeight RightWeight| unused|

— PP ——————— P ——>
1 bytes 1 bytes 2 byte 2 byte 26 bytes

Figure 5.28: The bluetooth data logging structure.

setup every robot is communicating its ID energy level to others. The robot also communicates his
energy level by producing a sound so that a human observer can have feedback about what’s going
on. The lego speaker can play a tone, given its frequency, duration and volume. Frequency is audible
from about 31 to 2100 Hertz and different frequencies are associated to different robots. The duration
is in hundreds of a seconds (centiseconds, not milliseconds) and is truncated at 256, so the maximum
duration of a tone is 2.56 seconds. The volume of the tone is proportional to the robot’s energy which
is normalised from 0 to 100 (internally is a float from 0.0 to 1.0).

5.7.8 Pololu

The Pololu 3pi 5.7.8 robot is a complete, high-performance mobile platform featuring two micro metal
gearmotors, five reflectance sensors, an 8x2 character LCD, a buzzer, and three user pushbuttons, all
connected to a C-programmable ATmegal68 microcontroller. Capable of speeds exceeding 3 feet per
second (100cm/second), 3pi is a great first robot for ambitious beginners and a perfect second robot
for those looking to move up from non-programmable or slower beginner robots. Dimensions: Size:

5.7. IMPLEMENTATION OF A SWARM SYSTEM 211

9.5¢m /3.7 diameter, Weight: 83¢g/2.90z without batteries General specifications
e Processor: AT'megal68Q20M H z
e Motor driver: TB6612FNG
e Motor channels: 2
e User I/0 lines: 21
e Minimum operating voltage: 3 V2
e Maximum operating voltage: 7 V2
e Maximum PWM frequency: 80 kHz
e Flash program memory: 16KB
e Extra 512 bytes of persistent flash memory'*
e Data memory: 1KB
e Reverse voltage protection?: Y
e External programmer required?: Y
[]
Notes:

1. Digital I/O lines PDO and PD1 are available; two more analog inputs and one analog/digital
pin can be made available by removing jumpers and disabling special features of the board.

2. Designed for use with 4 x AAA NiMH or Alkaline cells. A step-up regulator boosts the motor
voltage to 9.25 V.

optional user LEDs
on pins PD1 and PD7

integrated QTR-RC reflectance sensors
on digital pins PCO - PC4

battery charger _g
connector

piezo buzzer
(on pin PB2)

green user LED red user LED

o diitlics (on pin PD7) (on pin PD1)
4 AAA . Metal
batteries Gearmotors

(not included) user

ATmega168 5
potentiometer

microcontroller
running at
20 MHz

LCD contrast

optional adjustment

power LED

push-on/push-off

bl LED
power button ue power

(tied to 9.25 V VBoost)

blue power LED

15 progranming (tied to ~5 V VBat)

connector pin 1
N removable 8x2

user pushbuttons character LCD light-weight plastic
(on pins PB1, PB4, and PB5) ball caster

(a) Pololu robot bottom view: left and right light (b) Pololurobot up view: left and right contact senros
Sensors and LCD display

Figure 5.29: Pololu robot up and bottom view

The processor is programmed using an external AVR ISP programmer such as the Orangutan USB
programmer. The popular, free GNU C/C++ compiler works perfectly with the 3pi, Atmels AVR

His provided on the microcontroller for data logging or long-term learning applications

212 CHAPTER 5. APPENDIX

Studio provides a comfortable development environment, and an extensive set of libraries provided by
Pololu makes it a breeze to interface with all of the integrated hardware. The 3pi is also compatible

with the popular Arduino development platform.

5.8. SYMMETRY BREAKING IN SOCIAL TASKS 213

5.8 Symmetry breaking in social tasks

The approach can be also applied to my model, with a few variations, and I can describe the procedure
that could be used in the future to verify the symmetry breaking property. By keeping the same
notation N agents are faced with a binary decision between being a S (seeker) or a P (parasite). The
symmetry parameter is defined as s(t) = L(t)/N, where L is the number of agents which became
seekers at time t. A majority decision is any steady state of the system where at least L > JN agents
have became seekers with 0.5 < § < 1.0. That means that s > ¢ and s is the only parameter required
because s + p = N and thus p(t) is not required. If s(¢) converges as demonstrated in the previous
experiments, it is always possible to find the steady state probability density function (PDF) for s(t)
noted as p*(s). The PDF p*(s) estimates how many agents will become seekers. By integrating the
PDF function we can estimate the proportion P of experiments in which a majority decision with at
least § majority occurs:
) 1
/ p*(s)ds + / p*(s)ds =P (5.31)
0 1-5

To find p*(s) is necessary to run a large number of parallel simulations with different initial conditions
and then to run a statistical analysis. To avoid this computational cost, the author Hamann et al.
(2010a) makes an assumption about the nature of s(t) by assuming that is described by a mono
dimensional Langevin equation, which is a form of stochastic differential equation:

ds
i als,t) + B(s, t)E(t) (5.32)

where:
e (is the deterministic development or drift

e ¢ is the Gaussian noise |£(t)] = 1, with mean < £(t) >= 0, and uncorrelated in time <
EMEE) >=6(t —t)
e (3 is the fluctuation of the the noise amplitude

It is not possible to assume that such a mono dimensional description exists for every high dimensional
system, thus the approach assumes that such a description exists and then an estimation of «, § is
feasible with some heuristic formula or with some numerical fitting strategies. Once the two parameters
are estimated we need to accept or reject the hypothesis by comparing the statistical property of s(t)
generated by the detailed simulations with the solution s(¢) of the Langevin equation with the estimated
parameters.

The most common heuristic to estimate the parameters was used in Hamann et al. (2010b) and is
based on two features of s(¢). The first is the mean of the absolute changes:

As™(s,t) = % Z |si(t) — si(t —1)] (5.33)

averaged over K samples s;(t) from many independent simulations runs. The second is the mean of
the relative changes:
rel _ 1 . N

As™(s,1) = 4 Zsl(t) —si(t—1) (5.34)
which is an approximation of the derivative because it contains the difference between two time steps.
Unfortunately the author did not have any time left for running additional simulations and computing
the mean and absolute and relative change so he can only speculate about what their outcome would
be. The As"(s,t) gives an indication of the stability of the system by computing how many zero
crossings the function has. Each zero crossing indicates that the derivative is zero and thus a steady

214 CHAPTER 5. APPENDIX

state was achieved for that particular configuration. The heuristic to estimate «, 8 is built on the
discretised version of the Langevin equation 5.32:

Ser1 = 5t + As"(s) + (As™(s1) — |As™ (s1)]) & (5.35)

where & is again the Gaussian white noise. The white noise is a general approximation but one could
calculate the second moments of A like variance for each time step. The FokkerPlanck equation can be
used for computing the probability density for a stochastic process described by a stochastic differential
equation: X

e = 2 a5 0)00) + 5 oy (85 1)ps) (5.36)
to obtain the time development of the probability density function for s and thus its steady state PDF.

The parameters (drift and diffusion coefficient) are thus:

afs,t) = As™ (s)B(s, 1) = As™(s:) — | As™ (s1)]

To validate the model, one needs to compute the PDF from the simulations and from the solution of
the Fokker-Plank equation. If the model is valid we should see a bifurfaction diagram. If the model is
not valid, there are several possible explanations:

e the heuristic to compute «, 8 was not valid
e the system cannot be described by a mono dimensional Langevin equation

The Fokker-Planck equation -if valid- can then be used to quantify the effectiveness of the symmetry
breaking by computing the steady state p*(s) = 0 and the stability of the decision by computing the
splitting probabilities 7y, ().

In summary, the statistic modelling approach is a powerful tool for the analysis of self-organising
systems. However it cannot be applied to systems where there are more then two decisions.

5.8. SYMMETRY BREAKING IN SOCIAL TASKS 215

Introduction

Every day we make predictions based on our personal subjective experiences. Our predictions about
durations or extent of everyday phenomena such as human life spans and the box-office take of movies
are based on an optimal Bayesian model (Griffiths and Tenenbaum, 2006). Human perceptions, mem-
ory, inferring a 3D structure from a 2D structure, judging when a particular fact is likely to happen
in the future are also based on approximate statistical inference.

It is possible then, that we use Bayesian inference when bidding on the final price of an auction.
There are 3 main type of auctions known in literature(Shor, 2012):

e First Price Auction: an auction in which the bidder who submitted the highest bid is awarded
the object being sold and pays a price equal to the amount bid.

e Second Price Auction: an auction in which the bidder who submitted the highest bid is awarded
the object being sold and pays a price equal to the second highest amount bid.

e English Auction: a type of sequential second price auction in which an auctioneer directs partic-
ipants to beat the current, standing bid. New bids must increase the current bid by a predefined
increment. The auction ends when no participant is willing to outbid the current standing bid.
Then, the participant who placed the current bid is the winner and pays the amount bid.

First and Second Price Auctions follow a Bayesian Nash Equilibrium, but there are no models of
English price auction based on ABM (agent based model) where agents make prediction about the
final price and also about other’s expectations.

I assume that in English price auctions, players uses Bayesian inference to estimate the final price
Vfinal Of an auction b. For clarity of notation I will use p to indicate probabilities, v to indicate prices
(values), a; to indicate an agent with 7 = 1,...,m, b to indicate an auction. The task of the agent Va;
is to estimate vfinas from the current price v of the auction b. The Bayesian predictor computes a
probability distribution over v¢ina; given v, by applying the Baye’s rule:

P(vsinat|v) o< p(v[vsinat)p(vinat) (5.37)

The conditioned probability of the event vfinar given the actual price v is proportional to likelihood
p(v|vfinat) and the prior probability p(vfinae:). The likelihood is the probability of observing during an
auction b a bid of price v given that the final price of the auction is vfinai. We assume that agents are
equally likely to observe any price of an auction in the range [0, vfinai], which means using a uniform
random sampling rate.

p(vlvfinal) - 1/Ufina171} < Vfinal (538)
p(vlvf’inal) - 077} > Vfinal (539)

The same assumption was also used in (Griffiths and Tenenbaum, 2006) for the duration of life spans
but also in Bayesian models of visual perception. The prior probability p(vfina) models the agent’s
expectation about the final price of the auction b. A statistical analysis of online ebay auctions shows
that there are two main classes of final price distributions. A class of products -such as cars- follow a
Gaussian distribution with mean p and standard deviation o where others -such as handy crafts- follow
a gamma distribution with scale parameter 6 and shape parameter k. The difference in distribution
could be caused by the fact that the price of commodity gods such as cars can be assessed precisely,
whereas for other niche gods the price distribution has a long tail due to over estimation. Combining
the prior with the likelihood according to Eq.5.39 yields a probability of p(vfinai|v) over all possible
final prices for an auction with a current value of v. A good guess for vfinq; is thus the median of this
distribution, called a Bayesian prediction function which estimates the final price of an auction given
the current price. Every agent a; has thus a prediction function:

Pred; : v = Vfinal (5.40)

216 CHAPTER 5. APPENDIX

which allows the estimation of the final price of an auction given the current price. Gaussian prior
have non linear prediction functions, whereas Erlang priors have linear prediction functions. Evert
agent has also an expectation function:

Ezpi;j 1 v = Vfinal (5.41)

which models the expectation that the agent 7 has toward the prediction function of the agent j. The
expectation function is computed by the agent during the auction and is a point estimate of the others’
prediction functions. It also necessary to introduce an energy function FE; : t — ppia for every agent 4
which models the risk associated with the bidding:

Pmax
E, = ar 42
1+ exp(—m; - t) (542)

where pyae = 1 for normalization, pp;q is the probability of bidding and m; is the sensitivity to the
risk. The logit function is based on the typical behaviour of online auctions where the rate of bidding

is increasing toward the end of the auction. The energy function is essentially a reward signal similar
to the one used in the Q-learning learning agent.

Virtual auction model

In a virtual auction there are N agents modelled as grey boxes. Every agent ¢ = 1,...,N has a
prediction function Pred; and an expectation function Exp;; with ¢ # j. Agents bid in sequence at
regular intervals, the auction starts with an initial price of 0 and stops after T time steps. At each
time step the agent can decide whether to bid or not. Every agent has equal buying power but could
have different prediction functions according to their subjective knowledge (a priori distribution). Each
agent’s goal is to win the bid, which means to predict or estimate the final price of the bid according to
the actual price. The disturbance is generated by other agents bidding in temporal sequence. Agents
are not allowed to communicate with external channels or to bid on multiple auctions. Every auction
is independent from each other and agents learn from each auction experience. As an explicative
example I show that by choosing an Erlang prediction function (see Eq.5.57) for N = 2 agents without
expectations, the time series has a linear behaviour. In the second example if I choose a Gaussian
prediction function (see Fig.5.33) for N = 2 agents without expectations, the time series has a non
linear behaviour.

Discussion

The model could be validated in accuracy over 2 parameters:
e final price prediction: prediction of the final price of an item when N human agents are bidding
e time series similarity: trajectories of price evolution during bidding

Firstly one could measure the ability of the model to predict the final price of an an auction by only
providing the parameter N and the coefficient of dissimilarity between players C'. In particular given
a new ebay auction where we only know the initial price and the number of bidders the model would
predict the final price with a confidence interval of &.

Secondly one could measure the similarity of the trajectories produced by the model with real
online auctions. For this purpose, it is possible to collect auction data from Ebay, one of the biggest
online auction websites. The data should be filtered to remove multiple bidders (the same player bids
on different auctions) and automated “snipers® (softwares agent that bid at the last moment before
an auction closes). It should not be necessary to filter the automatic bidding function: a player can
set a limit budget and the ebay system will incrementally bid until the limit is reached. These are
special cases of bidding behaviour which are not reproduced in the model:

5.8. SYMMETRY BREAKING IN SOCIAL TASKS 217

Agent priors Gaussian

Bid Price
S o o
N N (o)) @ [
T T 1

o

L L L L L)
10 15 20 25 30 35 40 45 50
Final Price
Agent predictors Gaussian

o

o
(&)

w
o
1

N
o
T

Predicted price
=
o
T

0 I I I I I
0 5 10 15 20 25

Prices
Price evolution Gaussian
T T T

N
o

Bid Price

N w
o o
T T
Il Il

[
o
T
L

0 2 4 6 8 10 12 14 16 18 20
Time

Figure 5.30: Two virtual agents using a Gaussian prediction function

218

CHAPTER 5. APPENDIX

Agent priors Erlang

0.05
[
Q
a
h=l
m
0 ‘ ‘ ‘ ‘
0 50 100 150 200 250
Final Price
Agent predictors Erlang
(O]
9 501
a
°
2
o
2
8 O i i i i j
& 7o 10 20 30 40 50
Prices
Price evolution Erlang
200 T T T T
(]
Q
o 100 |
B
m
0
0 25

Time

Figure 5.31: Two virtual agents using an Erlang prediction function.

5.9. BAYESIAN INFERENCE 219

e multi bid: agents bets on parallel auctions thus maximising their chances of winning the same
item at lower prices

e uniform sampling of prices

e offline learning: during the auction, the agents uses the static predictive function and expecta-
tions, they only update their a priori distribution between bidding sessions

A priory biasing is an important factor for symmetry breaking, when all the players have the same
subjective knowledge the time series are linear, in the case of Erlang distributions and to some extent in
the Gaussian distributions. But expectations will play an important role in generating the necessary
dynamic during the bidding process. In summary, this simplified learning model could predict the
outcome of ebay auctions and therefore can be extended to similar economic games where prediction
is essential like the stock market.

5.9 Bayesian inference

Baye’s rule for a uniform random distributed price [0, v finai]

p(vlvfinal)p(vfinal)
P(Vfinal|V) = 5.43
(vfinat|v) o) (5.43)
where: -
p(v) :/ p(v‘vfinal)p(vfinal)dvfinal (544)
0
Because v is sampled uniformly at random (See Eq.3.2), the previous equation becomes:
i Vfina
p(U) :/ p(! l)dvfinal (545)
v Vfinal

and is only dependent on the prior distribution.
Once we have computed p(vyinai|v), the prediction function can be generated by finding the pos-
terior median v*:

P(vfina > v*|v) = 0.5 (5.46)

P(vfina > v"|v) :/ P(Vfinat|v)dvfinal (5.47)

The point v* can be computed analytically for the gamma or Erlang distribution and numerically for
the Gaussian distribution.

5.9.1 Gamma prediction function

The Gamma prior distribution follows:

P(Vfinat) & Vf e inet/? (5.48)
The posterior distribution is:
p(v) & / Ve T By il (5.49)
_ v
= o B k() (5.50)

Where the E5_j is the exponential integral function as in Fig.5.32.

220 CHAPTER 5. APPENDIX

Figure 5.32: Integration values for the Gamma function

5.9.2 Erlang prediction function

The Erlang prior distribution is a Gamma prior with k£ a chosen integer. For example a k = 2 gives:

P(Vfinat) O Vfinare” e/’ (5.51)
The posterior distribution is:
oo}
p(U) O</ eivfinal/ﬁdvfinal (552)
= _ﬁe_vtotal/ﬁlio (5.53)
=pe /" (5.54)
The posterior median is:
. L @rina)/8
P(vfina > v'|v) = Be fina dvfinal (5.55)
= (/P (5.56)

And we can find v* by imposing e~W"=v/8 — 0.5, thus obtaining a linear prediction function with
unitary slope and intercept Slog2:
v* = v+ Blog2 (5.57)

5.9.3 Gaussian prediction function
The Gaussian prior distribution:
finat—#)?2

p(Vfinar) e 207 (5.58)

The posterior distribution of the Gaussian prior has no simple analytical form:

o0 1 7(“f'inal_”)2
p(’U) & / € 202 dvfinal (559)
v Vfinal
Therefore to compute p(v) we need to use a numerical integration method, Fig.5.33 shows the numerical
integration results:
The prediction function is also computed with numerical integration, plus optimisation. Some
prediction functions are shown in Fig.5.34.

5.9. BAYESIAN INFERENCE

Gaussian posterior with mu=28

w
=]

N
o

10

Probability

W‘“ ‘ =
e 80

Final Price Price

Gaussian posterior with mu=25

Y [«2]
o =]

n
[=1

Probability

-
w
oo

100

Final Price Price

Figure 5.33: Gaussian posterior distribution computed via numerical integration.

221

222 CHAPTER 5. APPENDIX

Prediction functions for Gaussian
40

351

price final

104

—— mu=8 sigma=2

coor mu=18 sigma=2
mu=30 sigma=2
= = =mu=28 sigma=2

price

Figure 5.34: Gaussian predictions functions computed via numerical integration.

Bibliography

Arimoto, S. (1972). An algorithm for computing the capacity of arbitrary memoryless channels. IEEE
Transactions on Information Theory, 18(1):14-20.

Ashby, W. R. (1956). An introduction to Cybernetics. Chapmann and Hall Ltd.
Axelrod, R. (1984). The Evolution of Cooperation. Basic Books.

Ay, N., Bertschinger, N., Der, R., Giittler, F., and Olbrich, E. (2008). Predictive information and
explorative behavior of autonomous robots. The Furopean Physical Journal B - Condensed Matter
and Complex Systems, 63:329-339. 10.1140/epjb/e2008-00175-0.

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1990). Neuronlike adaptive elements that can solve
difficult learning control problems, pages 81-93. IEEE Press, Piscataway, NJ, USA.

Beekman, M., Nicolis, S., Meyer, B., and Dussutour, A. (2009). Noise improves collective decision-
making by ants in dynamic environments. In Proceedings in Biological Science, volume 22.

Beni, G. and J.Wang (1989). Swarm intelligence in cellular robotic systems. In NATO Advanced
Workshop on Robotics and Biological Systems, pages 26-30.

Berger, C. R. and Calabrese, R. J. (1975). Some explorations in initial interaction and beyond: Toward
a developmental theory of interpersonal communication. Human Communication Research, 1(2):99-
112.

Bertsekas, D. P. and Tsitsiklis, J. (1996). Neuro-Dynamic Programming. Athena Scientific.

Bialek, W., Nemenman, 1., and Tishby, N. (2001). Predictability, complexity, and learning. Neural
Computation, 13(11):2409-2463.

Blahut, R. (1972). Computation of channel capacity and rate distorsion functions. IEEE Transactions
on Information Theory, 18(4):460-473.

Blais, B. S., Intrator, N., Shouval, H., and Cooper, L. N. (1998). Receptive field formation in natural
scene environments: Comparison of single cell learning rules. Neural Computation, 10:1797-1813.

Bonomi, A., Manzoni, S., Pisano, A., and Vizzari, G. (2009). Experimenting situated cellular agents
in indoor scenario: Pedestrian dynamics during lecture hall evacuation. In Web Intelligence/IAT
Workshops, pages 591-594. IEEE.

Booth, T. L. (1967). Sequential Machines and Automata Theory. John Wiley and Sons Inc., 1 edition.

Braitenberg, V. (1984). Vehicles: Experiments in Synthetic Psychology. Bradford, Colorado.

223

224 BIBLIOGRAPHY

Brembs, B. (1996). Chaos, cheating and cooperation: potential solutions to the prisoner’s dilemma.
Oikos: A Journal of Ecology, 76(1):14-24.

Buccino, G., Vogt, S., Ritzl, A., Fink, G. R., Zilles, K., Freund, H.-J., and Rizzolatti, G. (2004).
Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron,
42(2):323-334.

Byrne, R. W. and Whiten, A. (1988). Machiavellian intelligence: Social expertise and the evolution of
intellect in monkeys, apes, and humans. Oxford Science Publications.

Camazine, S., Franks, N. R., Sneyd, J., Bonabeau, E., Deneubourg, J.-L., and Theraula, G. (2001).
Self-Organization in Biological Systems. Princeton University Press, Princeton, NJ, USA.

Dennett, D. C. (1987). The Intentional Stance. MIT Press.

Der, R., Giittler, F., and Ay, N. (2008). Predictive information and emergent cooperativity in a chain
of mobile robots. In Bullock, S., Noble, J., Watson, R., and Bedau, M. A., editors, Artificial Life
XI: Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living
Systems, pages 166-172. MIT Press, Cambridge, MA.

Di Prodi, P., Porr, B., and Wérgotter, F. (2008). Adaptive communication promotes sub-system
formation in a multi agent system with limited resources. LAB-RS ’08: Proceedings of the 2008
ECSIS Symposium on Learning and Adaptive Behaviors for Robotic Systems, pages 89-96.

Dittrich, P., Kron, T., and Banzhaf, W. (2003). On the scalability of social order - modeling the
problem of double and multi contingency following Luhmann. Journal of Artificial Societies and
Social Simulation, 6.

Dorigo, M. and Birattari, M. (2007). Swarm intelligence. Scholarpedia, 2(9):1462. URL: www.
scholarpedia.org/article/Swarm_intelligence, Last Checked: 7 Jan 2012.

Durkheim, E. (1893). The Division of Labor in Society. The Free Press, 1230 Avenue of the Americas,
New York.

Ernst, I. (1925). Beitrag zur theorie des ferromagnetismus. Physik, 31:253-258.

Floreano, D., Mitri, S., and Magnenat, S. (2007). Evolutionary conditions for the emergence of
communication in robots. Current biology, 17(17):514-519.

Foerster, H. (1960). On self-organizing systems and their environments. In Yovits, M. and Cameron,
S., editors, Self-Organizing Systems, pages 31-50. Pergamon Press, London.

Franks, N. R., Mallon, E. B., Bray, H. E., Hamilton, M. J., and Mischler, T. C. (2003). Strategies for
choosing between alternatives with different attributes: exemplified by house-hunting ants. Animal
Behaviour, 65(1):215-223.

Gardner, M. (1970). Mathematical Games: The fantastic combinations of John Conway’s new solitaire
game "life”. Scientific American, 223:120-123.

Georgoudas, 1. G., Sirakoulis, G. C., and Andreadis, I. (2006). A simulation tool for modelling pedes-
trian dynamics during evacuation of large areas. In Maglogiannis, 1., Karpouzis, K., and Bramer,
M., editors, AIAI, volume 204 of IFIP, pages 618-626. Springer.

Gibson, J. J. and J., E. (1955). Perceptual learning: differentiation or enrichment? Psychological
Review, 62:32-41.

BIBLIOGRAPHY 225

Gilbert, N. and Conte, R. (1995). Artificial Societies: The Computer Simulation of Social Life. Rout-
ledge.

Griffiths, T. and Tenenbaum, J. (2006). Optimal predictions in everyday cognition. Psychological
Science, 17(9):767-727.

Guttman, R. H., Moukas, A. G., and Maes, P. (1999). Agents as mediators in electronic commerce.
In Intelligent Information Agents, pages 131-152.

Haitao, O., Weidong, Z., Wenyuan, Z., and Xiaoming, X. (2000). A novel multi-agent Q-learning
algorithm in cooperative multi-agentsystem. Intelligent Control and Automation. Proceedings of the
8rd World Congress, 1:272 — 276.

Hamann, H., Meyer, B., Schmickl, T., and Crailsheim, K. (2010a). A model of symmetry breaking
in collective decision-making. In Proceedings of the 11th international conference on Simulation of
adaptive behavior: from animals to animats, SAB2010, pages 639-648, Berlin, Heidelberg. Springer-
Verlag.

Hamann, H., Schmickl, T., Wrn, H., and Crailsheim, K. (2010b). Analysis of emergent sym-
metry breaking in collective decision making. Neural Computing & Applications, pages 1-12.
10.1007/s00521-010-0368-6.

Hiroaki Kitano, S. H. (1997). The virtual biology laboratories: A new approach of computational
biology. Proceedings of the Fourth European Conference on Artificial Life, pages 274—283.

Hii, M. and Pasemann, F. (2002). Dynamical Neural Schmitt Trigger for Robot Control. Lecture Notes
in Computer Science, 2415:142—142.

Hilse, W. P. (2004). Structure and function of evolved neuro-controllers for autonomous robots.
Connections Science, 16(4):249-266.

Hurri, J. and Hyvérinen, A. (2003). Simple-cell-like receptive fields maximize temporal coherence in
natural video.

Kennedy, J. N. and Shi, Y. (2001). Particle swarm optimization: developments, applications and
resources. Proceedings of the 2001 Congress on Evolutionary Computation, 1:81-86.

Kernbach, S., Thenius, R., Kornienko, O., and Schmickl, T. (2009). Re-embodiment of honeybee
aggregation behavior in an artificial micro-robotic swarm. Adaptive Behavior, 17:237-259.

Kirchner, A. and Schadschneider, A. (2002). Cellular automaton simulations of pedestrian dynamics
and evacuation processes. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
8.9008, Last Visited 7 Jan 2012.

Klyubin, A. S., Polani, D., and Nehaniv, C. L. (2004). Organization of the information flow in the
perception-action loop of evolved agents. In 2004 NASA/DoD Conference on Evolvable Hardware.
IEEE Computer Society, pages 177—-180.

Klyubin, A. S., Polani, D., and Nehaniv, C. L. (2005). Empowerment: A universal agent-centric
measure of control. In IEEE Congress on Evolutionary Computation (CEC 2005), pages 128-135.

Klyubin, A. S., Polani, D., and Nehaniv, C. L. (2007). Representations of Space and Time in the
Maximization of Information Flow in the Perception-Action Loop. Neural Comp., 19(9):2387-2432.

Klyubin, A. S., Polani, D., and Nehaniv, C. L. (2008). Keep your options open: An information-based
driving principle for sensorimotor systems. PLoS ONE, 3(12):e4018.

226 BIBLIOGRAPHY

Kolmogorov, A. (1965). Three approaches to the quantitative definition of information. Problems of
Information and Transmission, 1(1):1-7.

Kolodziejski, C. and Kulvicius, T. (2009). On the analysis of differential hebbian learning in closed-
loop behavioral systems. Frontiers in Computational Neuroscience. Conference Abstract: Bernstein
Conference on Computational Neuroscience.

Kulvicius, T., Kolodziejski, C., Tamosiunaite, M., Porr, B., and Worgotter, F. (2010). Behavioral
analysis of differential hebbian learning in closed-loop systems. Biological Cybernetics, 103:255-271.

Kulvicius, T., Porr, B., and Worgotter, F. (2007). Development of receptive fields in a closed-loop
behavioural system. Neurocomputing, 70(10-12):2046-2049. Computational Neuroscience: Trends
in Research 2007, Computational Neuroscience 2006.

Krding, K. P., Knig, P., P, K., Kayser, C., Kayser, C., Einhuser, W., and Einhuser, W. (2004). How
are complex cell properties adapted to the statistics of natural stimuli? Journal of Neurophysiology,
91:2004.

Lai, C. S. L., Fisher, S. E., and Hurst, J. A. (2001). A forkhead-domain gene is mutated in a severe
speech and language disorder. Nature, 6855:519-23.

Lin, L.-J. and Mitchell, T. M. (1992). Memory approaches to reinforcement learning in non-markovian
domains. Artificial Intelligence, 8(CMU-CS-92-138):293-321.

Liu, C. L. and Layland, J. W. (1973). Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM, 20:46-61.

Luhmann, N. (1984). Soziale Systeme. Suhrkamp, Frankfurt am Main.

Luhmann, N. (1993). Soziologische aufklarung 3: Soziales system, gesellschaft, organisation. Opladen:
Westdeutscher Verlag.

Luhmann, N. (1995). Social Systems. Stanford University Press, Stanford, California.
Luhmann, N. (2000). Organisation und entscheidung. Opladen: Westdeutscher Verlag.

Lungarella, M., Pegors, T., Bulwinkle, D., and Sporns, O. (2005). Methods for quantifying the infor-
mational structure of sensory and motor data. Neuroinformatics, 3:243-262. 10.1385/NI:3:3:243.

Lungarella, M. and Sporns, O. (2006). Mapping information flow in sensorimotor networks. PLoS
Computational Biology, 2(10):e144.

MacDermot, K., Bonora, E., and Sykes, N. (2005). Identification of FOXP2 truncation as a novel
cause of developmental speech and language deficits. The American Journal of Human Genetics,
6:1074-80.

Marrocco, D. and Nolfi, S. (2006). Origins of communication in evolving robots. From Animals to
Animats, 1(9):789-803.

McFarland, D. J. (1993). Intelligent behavior in animals and robots. MIT Press, Cambridge, MA.

McKinstry, J. L., Edelman, G. M., and Krichmar, J. L. (2006). A cerebellar model for predictive
motor control tested in a brain-based device. Proceedings of National Academic Science U S A,
103(9):3387-3392.

BIBLIOGRAPHY 227

Meyer, B., Beekman, M., and Dussutour, A. (2008). Noise-induced adaptive decision-making in ant-
foraging. In SAB’08, pages 415-425.

Moller, A. (1988). False alarm calls as a means of resource usurpation in the Great Tit Parus-Major.
ETHOLOGY, 79(1):25-30.

Niedermeyer, E. and da Silva, L. F. (2004). FElectroencephalography: Basic Principles, Clinical Appli-
cations and Related Fields. Lippincott Williams & Wilkins, fifth edition.

Nolfi, S. (2004/2005). Behaviour as a complex adaptive system: On the role of self-organization in the
development of individual and collective behaviour. Complezus, 2:195-203.

Olshausen, B. A. and Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning
a sparse code for natural images. Nature, 381(6583):607-6009.

Parsons, T. (1937). The Structure of Social Action. McGraw-Hill, New York, second edition.
Parsons, T. (1951). The Social System. Routledge & Kegan Paul Ltd, London and Henley.
Parsons, T. (1977). Social systems and the evolution of action theory. The Free Press, New York.

Pegors, T., Bulwinkle, D., and Lungarella, M. (2005). Methods for quantifying the information struc-
ture of sensory and motor data. Neuroinformatics, 3:343-262.

Pfeifer, R., Lungarella, M., Sporns, O., and Kuniyoshi, Y. (2008). On the information theoretic
implications of embodiment - principles and methods. Proc. of the 50th Anniversary Summit of
Artificial Intelligence, pages 76-86.

Polani, D. (2010). Information flows in causal networks. Social Science Research Network Working
Paper Series.

Polani, D., Kim, J. T., and Martinetz, T. (2001). An information-theoretic approach for the quantifi-
cation of relevance. In Kelemen, J. and Sosik, P., editors, Advances in Artificial Life. Springer.

Polani, D., Klyubin, A. S., and Nehaniv, C. L. (2004). Organization of the information flow in the
perception-action loop of evolved agents. Evolvable Hardware, Proceedings., pages 177-180.

Polani, D., Nehaniv, C. L., and Klyubin, A. S. (2005). Empowerment: A universal agent-centric
measure of control. Proceedings of the IEEE Congress on Evolutionary Computation, 1:128—-135.

Porr, B., Egerton, A., and Worgotter, F. (2006). Towards closed loop information: Predictive infor-
mation. Constructivist Foundations, 1(2):83-90.

Porr, B. and Worgotter, F. (2003). Isotropic sequence order learning. Neural Computation, 15:831-864.

Porr, B. and Worgotter, F. (2003). Isotropic sequence order learning in a closed loop behavioural
system. Roy. Soc. Phil. Trans. Math., Phys. & Eng. Sciences, 361(1811):2225-2244.

Porr, B. and Woérgétter, F. (2005). Inside Embodiment - What means Embodiment to Radical Con-
structivists? Kybernetes, pages 105-117.

Porr, B. and Worgotter, F. (2006). Strongly improved stability and faster convergence of temporal
sequence learning by utilising input correlations only. Neural Computation, 18(6):1380-1412.

Porr, B. and Worgotter, F. (2007). Fast heterosynaptic learning in a robot food retrieval task inspired
by the limbic system. Biosystems, 89:294-299.

228 BIBLIOGRAPHY

Prokopenko, M., Gerasimov, V., and Tanev, I. (2006). Evolving spatiotemporal coordination in a
modular robotic system. In SAB 2006, pages 558-569.

Quiroga, R. Q., Kraskov, A., Kreuz, T., and Grassberger, P. (2002). Performance of different synchro-
nization measures in real data: A case study on electroencephalographic signals. Physical Review
E, 65(4):041903.

Reading, N. C. and Sperandio, V. (2006). Quorum sensing: the many languages of bacteria. FEMS
Microbiology Letters, 254(1):1-11.

Rissanen, J. (1989). Stochastic Complexity in Statistical Inquiry. New Jersey: World Scientific Pub-
lishing Company.

Roulston, M. (1999). Estimating the errors on measured entropy and mutual information. Physica D,
125:285-294.

Schmidhuber, J. (2010). Formal theory of creativity, fun, and intrinsic motivation. IEEE Transactions
on Autonomous Mental Development,, 2(3):230-247.

Schreiber, T. (2000). Measuring information transfer. Phys Rev Lett, 85:461-464.

Schwieren, C. and Weichselbaumer, D. (2010). Does competition enhance performance or cheating? a
laboratory experiment. Journal of Economic Psychology, 31(3):241 — 253.

Seyfarth, R. M. and Cheney, D. L. (2000). Social awareness in monkeys. American Zoologist, 40(6):902—
909.

Shannon, C. E. and Weaver, W. (1949). The mathematical theory of communication. University of
Illinois Press, Urbana.

Shor, M. (2012). Dictionary of game theory terms. http://www.gametheory.net/. Last visited 9 Jan
2012.

Smith, A. (1776). The Wealth of Nations. Bantam Classics (March 4,2003).
Smith, J. M. and Harper, D. (2003). Animal Signals. Oxfold University Press.

Stamm, K. (2006). Individual learning and the dynamics in predator-prey populations. Géttingen
informatic journal, (ZFI-NM-2007-08):243-259.

Steels, L. (1998). The origins of ontologies and communication conventions in multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 2(1):169-194.

Steels, L. (1999). The Talking Heads Ezperiment. Laboratorium, Antwerpen, Belgium. Limited Pre-
edition.

Stone, P. and Veloso, M. (1998). A Layered Approach to Learning Client Behaviors in the RoboCup
Soccer Server. Applied Artificial Intelligence, 12:165—188.

Stuart, B. (1984). Nicholas Minorsky and the automatic steering of ships. Control Systems Magazine,
IEEE, 4(4).

Sugawara, T. and Lesser, V. (1998). Learning to Improve Coordinated Actions in Cooperative Dis-
tributed Problem-Solving Environments. Machine Learning, 33:129-153.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. A Bradford Book.

BIBLIOGRAPHY 229

Talcott, P. (1967). Sociological Theory and Modern Society. Free Press, first edition.

Tan, M. (1997). Multi-Agent Reinforcement Learning: Independent vs. Cooperative Learning. Morgan
Kaufmann, San Francisco, CA, USA.

Thomas, H. (1885). Leviathan, or, The matter, forme, and power of a common-wealth ecclesiasticall
and civil. G. Routledge and sons.

Tishby, N., Pereira, F., and Bialek, W. (1999). The information bottleneck method. In Proceedings of
the 37-th Annual Allerton Conference on Communication, Control and Computing, pages 368-377.

Tomas, K., Christoph, K., Minija, T., Bernd, P., and Florentin, W. (2010). Behavioral analysis of differ-
ential hebbian learning in closed-loop systems. Biological Cybernetics, 103:255-271. 10.1007/s00422-
010-0396-4.

Touchette, H. and Lloyd, S. (2000a). Information-theoretic approach to the study of control systems.
Physica A, 331:140-172.

Touchette, H. and Lloyd, S. (2000b). Information-theoretic limits of control. Physical Review Letters,
84(6):1156-1159.

Touchette, H. and Lloyd, S. (2004). Information-theoretic approach to the study of control systems.
Physica A, 331:140-172.

Vapnik, V. N. (1998). Statistical Learning Theory. Wiley-Interscience.

Varas, A., Cornejo, M., Mainemer, D., Toledo, B., Rogan, J., Munoz, V., and Valdivia, J. (2007).
Cellular automaton model for evacuation process with obstacles. Physica A: Statistical Mechanics
and its Applications, 382(2):631-642.

Varela, F. J. and Maturana, H. R. (1980). Autopoiesis and Cognition: The Realization of the Living,
volume 42. D. Reidel Publishing Company.

Capek, K. and Novack, C. (1920). R.U.R. (Rossum’s universal robots). Penguin Classics.

Verschure, P. and Coolen, A. (1991). Adaptive fields: Distributed representations of classically condi-
tioned associations. Network, 2:189-206.

Verschure, P. and Voegtlin, T. (1998). A bottom-up approach towards the acquisition, retention,
and expression of sequential representations: Distributed adaptive control III. Neural Networks,
11:1531-1549.

Verschure, P. F. (1998). Synthetic epistemology: The aquisition, retention, and expression of knowledge
in natural and synthetic systems. In Proceedings of the 1998 IEEE World Congress on Computational
Intelligence, pages 147-153, Anchorage. IEEE.

Verschure, P. F. M. J., Voegtlin, T., and Douglas, R. J. (2003). Environmentally mediated synergy
between perception and behaviour in mobile robots. Nature, 425:620-624.

Volterra, V. (1931). Variations and fluctuations of the number of individuals in animal species living
together. Animal Ecology, pages 48-409.

Von Foerster, H. (1985). Sicht und Finsicht: Versuche zu einer operativen Erkenntnistheorie. Vieweg,
Braunschweig.

230 BIBLIOGRAPHY

Von Foerster, H. (2003). Understanding understanding: essays on cybernetics and cognition. Springer-
Verlag.

von Glasersfeld, E. (1995). Radical Constructivism. A way of knowing and learning. Falmer Press,
London.

Wang, G., Zhang, J., and Bi, D. (2005). Novel learning feed-forward controller for accurate robot
trajectory tracking. Lecture Notes in Computer Science, 3611/2005:266—269.

Watkins, C. and Dayan, P. (1992). Q-learning. Machine Learning, 8(3-4):279-292.

Weber, C. and Obermayer, K. (1999). Orientation Selective Cells Emerge in a Sparsely Coding Boltz-
mann Machine. In Proceedings ICANN, pages 286—291.

Weisbuch, G. and Stauffer, D. (2000). Hits and flops dynamics. Working Papers 00-07-036, Santa Fe
Institute.

Werner, J. and Buse, M. (1989). Closed loop control of human body temperature: results from a
one-dimensional model. Biological Cybernetics, 61:467-75.

Wiener, N. (1961). Cybernetics — or control and communication in the animal and the machine. The
M.I.T. Press, Cambridge, Massachusetts, 2 edition.

Wimmer, H. and Perner, J. (1983). Beliefs about beliefs: Representation and constraining function of
wrong beliefs in young children’s understanding of deception. Cognition, 13:103-128.

Wischmann, S. and Pasemann, F. (2006). The emergence of communication by evolving dynamical
systems. From Animals to Animats, 1(9):777-788.

W.Macy, M. and Willer, R. (2002). From factors to actors: Computational sociology and agent-based
modeling. Annual Review of Sociology, 28:143-166.

Wolfram, S. (1994). Cellular Automata and Complezity: Collected Papers. Stephen Wolfram, LLC.

Wooldrige., M. (2002). An introduction to multiagent systems. Proceed. NATO Advanced Workshop
on Robots and Biological Systems, pages 243-266.

Wyss, R., Konig, P., and Verschure, P. (2006). A model of the ventral visual system based on temporal
stability and local memory. PLoS Biology, 4(5):€120.

Zahavi, A. (1975). Mate selection - a selection for a handicap. Journal of Theoretical Biology, 53:205—
214.

Zong, X., Xiong, S., Fang, Z., and Li, Q. (2010). Multi-objective optimization for massive pedestrian
evacuation using ant colony algorithm. In Tan, Y., Shi, Y., and Tan, K. C., editors, ICSI (1),
volume 6145 of Lecture Notes in Computer Science, pages 636—642. Springer.

