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Abstract 

Introduction 

Brain imaging using single photon emission computed tomography (SPECT) or positron 

emission tomography (PET) can be used to study the processes underlying neurological 

and psychiatric disorders. In addition, in vivo brain imaging using SPECT or PET may 

provide new approaches for drug target identification, pre-clinical testing and 

occupancy studies, and therefore improve drug discovery (1). The utility of in vivo brain 

imaging using SPECT or PET relies on the ability of different radiotracers (typically 

organic compounds labelled with radionuclides) to bind to a wide variety of targets, 

including receptors, transporters and enzymes (2-3). Therefore the development of 

novel radiotracers for in vivo brain imaging using SPECT of PET is of vital importance. 

This thesis is focused on the process of developing novel radiotracers as tools for 

imaging the human brain, where the radiotracer discovery and development pipeline is 

discussed and each step prior to clinical trials investigated. 

Radiotracer discovery 

Previously, discovery of novel brain radiotracers has largely relied on simplistic 

screening tools. Improved selection methods at the early stages of radiotracer discovery 

and an increased understanding of the relationships between in vitro physicochemical 

and in vivo radiotracer properties are needed. This thesis investigated if high 

performance liquid chromatography (HPLC) methodologies could provide criteria for 

lead candidate selection by comparing HPLC measurements with radiotracer properties 

in humans. In this study, ten molecules, previously used as radiotracers in humans, were 

analysed to obtain the following measures: partition coefficient (Log P); permeability 

(Pm); percentage of plasma protein binding (%PPB); and membrane partition coefficient 

(Km). Relationships between brain entry measurements (Log P, Pm and %PPB) and in vivo 

brain percentage injected dose (%ID); and Km and specific binding in vivo (BPND) were 

investigated. Results showed that HPLC measurements of Pm, %PPB and Km were 

potentially useful in predicting in vivo performance and hence allow evaluation and 

ranking of compound libraries for the selection of lead radiotracer candidates at early 

stages of radiotracer discovery. The HPLC tool developed provides information on in 

vivo non-specific binding and binding potential that is not possible using conventional 

screening methods. Another important finding reported in this thesis is that Log P 

should not be relied on as a predictor of brain entry. 
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The HPLC tool developed, together with competition binding assays, was used to 

characterise a newly synthesised library of compounds for imaging of the translocator 

protein (TSPO) in brain using SPECT. Results showed that compound LS 1 was the most 

likely to succeed within the library investigated, but the high %PPB observed for LS 1 

suggested novel compounds with improved %PPB were needed. Thus, a novel library of 

compounds for imaging of TSPO in brain using SPECT is currently been developed for 

future testing using the HPLC tool developed here and competition binding assays. 

Pre-clinical research: radiotracers for imaging the noradrenaline transporter (NAT) in 

brain using SPECT 

In this thesis, NKJ64, a novel iodinated analogue of reboxetine, was successfully 

radiolabelled via electrophilic iododestannylation and evaluated as a potential SPECT 

radiotracer for imaging the NAT in brain using rodents and non-human primates. 

Biological evaluation of the novel radiotracer, 123/125I-NKJ64, in rodents included: in 

vitro ligand binding assays; in vitro and ex vivo autoradiography; in vivo biodistribution 

studies and ex vivo pharmacological blocking studies. In rats, 123/125I-NKJ64 displayed 

saturable binding with nanomolar affinity for the NAT in cortical homogenates, regional 

distribution consistent with the known density of NAT in the rodent brain and high 

maximum brain uptake of around 2.93 % of the injected dose. The specific: non-specific 

ratio (locus coeruleus:caudate putamen) of 123I-NKJ64 uptake was 2.8 at 30 minutes post 

intravenous injection and prior administration of reboxetine significantly reduced the 

accumulation of 123I-NKJ64 in the locus coeruleus (> 50% reduction). Data obtained using 

rodents indicated that further evaluation of 123I-NKJ64 in non-human primates was 

needed to determine its utility as a SPECT radiotracer for imaging of NAT in brain. 

Consequently, in vivo kinetic modelling studies using SPECT imaging with 123I-NKJ64 and 

two baboons were carried out to determine 123I-NKJ64 brain binding kinetics, brain 

distribution and plasma metabolism in non-human primates. Even though a high brain 

uptake of around 3.0% of the injected dose was determined, the high non-specific 

binding observed throughout the brain, a low binding potential (BPND<2) in NAT rich 

regions and a brain distribution that was inconsistent with the known NAT distribution in 

non-human primate brain precludes the translation of 123I-NKJ64 into humans.  

Another NAT radiotracer, 123I-INER, developed by Tamagnan and colleagues at Yale 

University and Institute for Degenerative Disorders, New Haven, USA, was also 

investigated as part of this thesis. Kinetic modelling analysis of 123I-INER in baboon brain 

was investigated for different models, namely invasive and reference tissue models. 

Bolus plus constant infusion experiments with displacement at equilibrium using six 

different doses of atomoxetine and four different doses of reboxetine were carried out 
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in several baboons to obtain occupancy measurements as a function of injected dose 

(mg/kg) for the two NAT selective drugs. Results showed that reference tissue models 

were able to determine BPND values of 123I-INER in different brain regions. In addition 

the volume of distribution could be determined by dividing concentration in tissue by 

the concentration in venous blood at 3 hours post-injection. After administration of 

atomoxetine or reboxetine, dose-dependent occupancy was observed in brain regions 

known to contain high densities of NATs. Results supported the translation of 123I-INER 

into humans studies, despite the slow kinetics determined over the imaging period. 

Pharmacokinetic properties of 123I-INER described in this thesis may be used to simplify 

future data acquisition and image processing.  

Conclusion 

In conclusion, this thesis reported: (1) the development of novel radiotracers for brain 

imaging, namely NAT and TSPO; and (2) the development of a new methodology for 

aiding lead molecule identification at early stages of radiotracer discovery (i.e. prior to 

radiolabelling). In addition, an overview of radiotracer discovery and development 

process is provided in a single document, with a focus on brain radiotracers. 
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CI Chemical ionisation 
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NAT Noradrenaline transporter 
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PA Phosphatidic acid 

PAA Peracetic acid 

PAMPA Parallel artificial membrane permeability assay  
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PE Phosphatidylethanolamine 

PET Positron emission tomography 

PG Phosphatidylglycerol 

P-gp P-glycoprotein 

PIB [N-methyl]-2-(4’-methylaminophenyl)-6-hydroxybenzothiazole 

PK11195 
1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-

isoquinolinecarboxamide 
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PPB Plasma protein binding 

PS Phosphatidylserine 

Reboxetine 2-[α-(2-ethoxyphenoxy)benzyl]morpholine 

OHDMI 
1-(10,11-Dihydro-dibenzo[b,f]azepin-5-yl)-3-methylamino-

propan-2-ol 

ROI Region of interest 

Rpm Rotations per minute 

(R,R)I-QNB 3-quinuclidinyl-4-iodobenzilate 

RSA Rat serum albumin 

SB Specific binding 

SC Schwartz criterion 

SD Standard deviation 

SEM Standard error of mean 

SERT Serotonin transporter 

SNRI Selective noradrenaline reuptake inhibitor 

SPA Scintillation proximity assay 

SPE Solid phase extraction 

SPECT Single photon computed tomography 

SPR Surface plasma resonance 

SRTM Simplified reference tissue model 

SS Absolute sum of squares 
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SUV Standard uptake value 

SUVr SUV target region relative to SUV in occipital cortex 

Sy.x 
Standard deviation of the vertical distances of the points from 

the line 

TFA Trifluoroacetic acid 

TSPO Translocator protein 

tr Retention time 

t0 Retention time of the un-retained compound 

T1/2 Half-life 

T1/2 eff Effective half-life 

T1/2 bio Biological half-life 

UV Ultra-violet 

V Molar volume 

Vm Total volume of solvent within the IAM HPLC column 

VND Non-displaceable volume of distribution 

VOI Volume of interest 

Vs Specific volume of distribution 

Vs’ 
Volume of the IAM interface created by the immobilized 

phospholipids 

VT Volume of distribution 

VT app Apparent volume of distribution 

φ0 
Volume percent of organic phase concentration in the mobile 

phase when the retention time is twice the dead time 

1T One tissue compartmental model 

2T  Two tissue compartmental model 
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1 Introduction 

In vivo imaging can be used to evaluate structure and function non-invasively in a living 

subject. Multiple imaging techniques are available, including computerised tomography 

(CT), magnetic resonance (MR) imaging and radionuclide imaging (planar imaging, single 

photon emission computed tomography (SPECT) and positron emission tomography 

(PET)). Generally, imaging modalities can be divided in two main groups: those that 

primarily provide structural information (for example, CT and MR) and those that 

primarily provide functional and molecular information (for example, SPECT and PET) 

(4). This thesis will focus on the radionuclide imaging modalities, namely PET and 

SPECT. 

Radionuclide imaging involves the quantitative measurement of the distribution of a 

radiotracer (typically an organic compound labelled with a radionuclide), to provide 

information on a specific biological or biochemical process in the living body. Imaging 

with radiotracers is based on the principle that the radiotracer does not alter or perturb 

the biological system under investigation. For this to be possible, the injected mass of a 

radiotracer should be as low as possible so that it occupies only a small percentage of 

the target. For example, in brain receptor imaging, radiotracers should not occupy more 

than 1% of the available receptors (5). Radiotracers are therefore essential tools in 

radionuclide imaging and this thesis is focused on the process of novel radiotracer 

development for imaging the human brain. This introductory chapter outlines the 

process of radiotracer development and the characteristics required for an ideal 

radiotracer for brain imaging. The aims and objectives of the experimental work 

conducted for the thesis are provided at the end of the chapter.  

1.1 Radionuclide imaging 

Molecular imaging has been defined as the in vivo characterisation and measurement of 

biological processes at the cellular and molecular level (6). Radionuclide imaging is at 

the leading edge of molecular imaging as it enables the in vivo measurement of a 

biological process and changes in physiology (7). The use of a radiotracer allows 

exceptional target specificity at the molecular level that cannot be accomplished with 

other imaging techniques (8). Another advantage of radionuclide imaging is the ability 

to perform real time imaging studies, in order to increase understanding of physiological 

mechanisms underlying pathological processes or the effects of drug administration (9). 

A disadvantage of radionuclide imaging is the limited spatial resolution and poor 

anatomic context compared to other imaging techniques, such as CT and MR, which are 
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less sensitive and convey less specific molecular information, but have higher spatial 

resolution (8, 10-11).  

There are three main radionuclide imaging techniques: planar imaging, SPECT and PET. 

Tomographic techniques have a higher resolution than planar imaging. Nonetheless, 

planar imaging and particularly dynamic planar imaging can still provide some important 

biodistribution and kinetic information, either in clinical practice or research (12-13). 

Many have argued the superiority of PET over SPECT based on the ability of PET to 

measure, directly, the attenuation effect of the object being viewed; the greater 

number of PET radiotracers that have been synthesised and tested around the world 

over the past years, in comparison to SPECT radiotracers; and the higher resolution and 

higher accuracy involved in the quantitative assessment of the regional concentration of 

a radiotracer (5, 12). However, some limitations and challenges of PET have also been 

identified. The short lived PET radionuclides, such as 15O and 11C, require a cyclotron 

located in close proximity to the scanning site, presenting a challenge in terms of 

market distribution. PET is also associated with high scanning costs in comparison to 

SPECT scanning. It has been estimated that the total fixed costs associated per scanning 

minute is 3.82 € and 2.21 € for PET and SPECT, respectively (14).  Currently there is also 

limited access to PET scanners in comparison to SPECT scanners. SPECT can be 

performed using conventional gamma cameras that are present in the majority of 

nuclear medicine departments. In addition, the cost of a PET clinical scanner is 

1,200,000 € compared with 500,000 € for a SPECT clinical scanner (1, 14).  

Regardless of the radionuclide imaging technique used, the real challenge is to keep 

radionuclide imaging competitive and/or complementary with CT and MR. For this to be 

a reality, nuclear medicine needs to discover new ―work horses‖, in addition to 

currently commercially available 99mTc-radiotracers and 18F-Fluorodeoxyglucose (18F-

FDG), and to provide services at a lower cost in order to continue to have a crucial 

position in diagnostic and research imaging (13). As the physical limits of PET and SPECT 

detection are approached, the development of novel radiotracers becomes more 

important. Increasing the number of selective radiotracers available will increase the 

number of biological sites and processes that can be imaged in vivo (5, 13). 

Consequently, the development of novel radiotracers is necessary to study and 

understand multiple pathophysiological processes and also to accelerate and aid drug 

discovery (5, 7, 9, 13). It is clear, therefore, that discovery and development of novel 

radiotracers is essential in order to expand the utility of PET and SPECT. 
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1.2 The process of radiotracer discovery and 

development  

In order to develop novel radiotracers for SPECT or PET, three major steps need to be 

undertaken prior to product licensing, commercialisation and marketing: radiotracer 

discovery, preclinical research and clinical trials (Figure 1.1). 

The development of novel radiotracers is a lengthy and costly process, where the 

highest cost is associated with clinical trials. The cost of developing an in vivo imaging 

agent within a company was estimated to be 100-200 million dollars over 8-10 years. 

However, the small number of radiotracers successfully developed as a result is striking. 

For example, Schering and Amersham spent around 150 million dollars for the period of 

1999-2004 on imaging agents research, and as a result they did not obtain one new 

radiotracer, new drug or new indication approval in any modality in the USA (up to mid-

2007) (15). This high rate of failure is a concern whether developing novel radiotracers 

in industry or academia. In the following sections, the radiotracer discovery and 

development steps are outlined, including a discussion of the strategies that have 

attempted to reduce costs and failure rates. 

 

Figure 1.1 Typical radiotracer discovery and development pipeline. 

 

1.2.1 Target identification and lead molecule discovery 

The first step in the radiotracer discovery process is target identification. In this phase, 

evidence that the target plays an important mechanistic role in a disease (i.e. does the 

target have a functional impact?) is evaluated. This first phase forms the basis for the 

development of a specific radiotracer and outlines the clinical question that needs to be 

addressed. Following target identification, it is necessary to develop a library of 

compounds, or use an existing library of compounds, which can be tested for target 
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affinity in order to select the lead molecule to be radiolabelled i.e lead candidate 

selection. Ligand/target interactions can be investigated using various techniques, such 

as ligand-binding competition assays. Ligand-binding competition assays can be 

performed using tissue homogenates or cell lines and require a radiolabelled ligand for 

the target which is usually either tritiated or radioiodinated. By performing binding 

assays, the specificity and selectivity of candidate radiotracer compounds can be 

evaluated. The Ki value, which is the dissociation constant, of the candidate molecule is 

calculated to provide a measure of affinity to the site under investigation (9, 16). The 

determination of a compound’s specificity and selectivity for the target is an essential 

but simplistic measure that does not predict the other in vivo characteristics that are 

critical for a radiotracer to be successful (2). Thus, in order to improve molecule 

selection and reduce attrition during radiotracer discovery, other important 

characteristics of radiotracer candidates need to be investigated. One of the important 

characteristics for a brain radiotracer is its ability to penetrate the blood brain barrier 

(BBB). Previously this has been predicted using lipophilicity measurements, but it can 

also be investigated using other in vitro and in silico methods for the prediction of in 

vivo behaviour (2, 17-20). Over the years, these other in vivo properties have gained 

increasing importance for lead candidate selection, in order to reduce the risk and costs 

associated with radiotracer discovery and development. An overview of the in vitro 

methodologies that can be used for the prediction of the in vivo behaviour of a 

molecule will be presented in chapter 2, section 2.1.  

1.2.2 Pre-clinical research 

Once the lead candidate molecule has been selected, it needs to be radiolabelled and 

its biological properties evaluated in vitro and in vivo. At this stage, animal research is 

conducted in order to evaluate affinity, saturability, reversibility, pharmacokinetics, 

metabolism and biodistribution of the radiotracer candidate.  

Saturability and affinity are typically determined using saturation binding assays. These 

assays provide a Bmax value (maximum binding capacity), which is a measure of receptor 

density, and a KD value (the dissociation constant), which is the concentration of the 

radiotracer at which half of the total number of receptors is occupied (9, 21-23). In 

saturation binding assays, separation of bound and free radiotracer is usually 

accomplished by filtration, however this method has some disadvantages: (1) it relies 

upon ligand dissociation being much slower than the filtration step, an assumption that 

is not always true; (2) the protocol is time consuming; (3) the receptors may be present 

in membrane fragments that are too small to be retained by conventional filters; and 
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(4) the assay requires liquid handling and is thus not easy to automate (24-25). 

Alternative methods have been developed to improve and accelerate the determination 

of target affinity (compared to saturation binding assays and competition binding assays 

outlined in section 1.2.1) that are amenable to automation. Examples include the 

scintillation proximity assay (SPA) and surface plasmon resonance (SPR). SPA is a 

technique for performing binding assays without separation of bound and unbound 

radioligand, allowing quantification of binding reactions without washing or filtration 

procedures. On the other hand, SPR quantifies, in real time, reversible interactions of 

biological macromolecules through optical techniques (26-28). However, traditional 

saturation and competition binding assays using filtration are still the mainstay for the 

determination of target affinity. This is mainly due to the low cost of these traditional 

binding assays compared to SPA and SPR techniques. Furthermore, SPA and SPR are less 

flexible and therefore less readily available, since they require specific beads for 

scintillation or highly specialised optical equipment, respectively.  

In addition to in vitro assays, in vivo studies using rodents or non-human primates are 

required to evaluate a wide variety of parameters. The aims of the in vivo studies are to 

determine the uptake in the target organ, the signal to noise ratio, the kinetics and the 

metabolism of the radiotracer (16). Previously these in vivo properties were determined 

using static methods of imaging, such as autoradiography and ex vivo dissections at 

different time points following administration of the radiotracer. More recently, the 

development of dedicated SPECT and PET cameras for imaging of small animals and 

non-human primates has allowed longitudinal dynamic studies to be performed in vivo. 

Compared to autoradiography or dissection techniques, in vivo imaging reduces the 

number of animals used (up to 80% to 90% depending on the study) and provides real 

time imaging of the biodistribution and kinetics of a radiotracer (9, 29). Furthermore, 

imaging techniques in living animals provide the unprecedented ability to link detailed 

molecular information with the complexity of whole organism physiological responses 

over time (29). Nonetheless, multiple considerations need to be assessed when 

performing in vivo imaging of animals. Careful animal preparation is key to obtaining 

high quality images and producing reliable results. For example, gender can have 

significant effects on the pharmacokinetics and metabolism of a radiotracer and other 

physiological parameters. This can be due to the influence of hormones, glucose levels, 

sex hormones and hepatic enzymes. In addition, fasting and dietary conditions may 

influence the image obtained, depending on the target of the radiotracer under 

investigation. An example includes 18F-FDG imaging of glucose metabolism. Circadian 

cycles are another important consideration when imaging live animals. For example, 

when evaluating drug efficacy using imaging in rodents it is necessary to take into 

account the fact that rodents are nocturnal animals and most of their activity takes 
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place during the dark cycle. The injection volume and any effects of the radiotracer 

itself on the animal physiology also need to be considered, especially when performing 

sequential imaging in the same animal. The general recommendation for the maximum 

volume of an intravenous injection is around 4% to 5% of the animal’s blood volume. 

Therefore the volume injected should be no more than approximately 200 μL for a 

mouse and  1000 μL for a rat (8, 30). In addition, the administration of large amounts of 

radiotracer in terms of mass can result in pharmacological mass effects, contradicting 

the principle of tracer imaging (31-32). Anaesthesia is also a very important 

consideration when performing radionuclide imaging studies in experimental animals. 

Multiple studies have shown that the physiological effects of anaesthetic agents may 

confound the results of imaging studies, depending on the radiotracer and imaging 

target under examination. Under anaesthesia, changes in respiration and cardiac 

function can influence radiotracer uptake, distribution and kinetics. Rigorous control of 

anaesthesia is therefore crucial in in vivo imaging experiments to obtain highly 

reproducible results (8, 30, 33) and careful selection of the anaesthetic agent or, when 

possible, conscious imaging is essential when designing an in vivo imaging experiment. 

Further to in vivo studies that evaluate the target organ uptake, the signal to noise 

ratio, the kinetics and the metabolism of a radiotracer, toxicology studies in animals to 

assure radiotracer safety prior to translation into humans can also be performed.  

1.2.3 Clinical trials 

Once target identification, lead molecule discovery and pre-clinical research steps have 

identified a radiotracer candidate with suitable characteristics for imaging the target, 

studies establishing safety and dosimetry properties are performed to enable approval 

for human use (16). This stage represents the translation between pre-clinical research 

and clinical use, and involves clinical trials. Clinical trials, particularly at early stages 

(i.e. Phase I), have a high failure rate. This has been associated with species differences 

that result in problems translating the radiotracer from animals to humans. Parameters 

such metabolism, affinity to efflux pumps, receptor density, receptor distribution in 

brain and ability to cross the BBB can vary significantly between animals and humans 

(18). As a consequence, undesirable properties of radiotracers are frequently observed 

in early human studies (7, 18, 20). Therefore radiotracers that have ideal characteristics 

in animal studies may fail later in human studies.  

Until recently, rodent dosimetry was considered to be sufficient for predicting human 

dosimetry. However, it has been identified that human dosimetry predictions based on 

rodent data can be inaccurate for certain organs such as the liver and gallbladder. A low 
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human radiation dosimetry is essential for a radiotracer to pass regulatory approval, and 

therefore human dosimetry is one of the final determinants of the success of a 

radiotracer. Another important requirement of a radiotracer is that administration to 

humans will not elicit any toxicological effect. Despite the underlying tracer principle, a 

few radiotracers have failed due to toxicological issues. Examples include the 

epibatidine derivates developed as radiotracers for imaging of the nicotinic cholinergic 

receptors. The epibatidine derivates showed initial success in both rodent and non-

human primates, however in humans this class of compounds, even at tracer levels, had 

a very small safety margin that prevented their use (20).  

Generally, the design of phase I clinical trials includes safety studies in healthy human 

volunteers, such as dosimetry and toxicology studies. Phase II and III are designed to 

define the clinical setting where the radiotracer will be valuable. Each clinical 

indication must be supported by clinical trial data. Since clinical trials are a very 

expensive process and there is a compelling need for more radiotracers, previous 

studies have suggested that collaborative approaches may be of value. Partnering may: 

(1) reduce the risk associated with these later stages of radiotracer development by 

spreading the costs between different companies and/or universities, and (2) obtain 

more rapidly the necessary number of subjects (15).     

1.3 Novel radiotracers for imaging the human brain 

Radiotracer discovery and development is a multi-step process that requires fine-tuning 

depending on the imaging target (i.e. brain, heart, tumour, etc). Specific adjustments 

may need to be made at the molecule design step in order to obtain the desired 

characteristics for the imaging target. In this section the characteristics that have been 

proposed for an ideal radiotracer for brain imaging are outlined.  

The suggested criteria for the passive diffusion of a molecule across the BBB include 

(19-20, 34):  

 A molecular weight lower than 450 g/mol;  

 A polar surface area below 60-90 Å; 

 The number of hydrogen bond donors in a molecule lower than five or the sum of 

nitrogen and oxygen atoms less than ten;  
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 A Log P (partition coefficient) lower than 4, with an ideal range of 1 to 3.5. 

Typically, the ideal range for Log P is reported to be between 1 and 3.5, 

however, a calculated Log P value of ≥3 has also been suggested when in silico 

methods are used for lipophilicity determination.  

 Minimal affinity for efflux pumps (such as P-glycoprotein or P-gp);  

 No affinity for enzymes at the BBB.  

Other parameters that are thought to be required in order to obtain an ideal radiotracer 

for brain imaging include (19-20, 34):  

 Absence of functional groups that will strongly ionize at physiological pH;  

 No appreciable affinity for specific binding sites on high capacity peripheral 

sites, such as albumin and other plasma proteins;  

 Suitable kinetics quantifiable in vivo, preferably reversible or not completely 

irreversible binding;  

 Dissociation or inhibition constants for the target in vitro/in vivo in the 

nanomolar range;  

 Selectivity for the target site in comparison with other non-target sites; 

 Brain uptake in rodent and non-human primate of ≥0.5%; 

 Low or modifiable dosimetry for critical organs;  

 Radiolabelled metabolites inactive at the target organ and not rapidly generated 

in the imaging time frame.  

In addition to the parameters outlined above, the feasibility of radiolabelling the 

candidate molecule and the radiosynthesis route needs to be considered prior to in vitro 

testing (18, 20). Another important consideration when developing a radiotracer for 

imaging the brain is the potential differences in the target between species, such as 

density or protein structure. Determination of these differences at an early stage would 

help interpretation of results and potentially reduce problems when translating the 

radiotracer to human studies. The target site density and distribution pattern also needs 
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to be considered in terms of ―imageability‖. Imaging targets with a low density (low 

Bmax) and a widespread distribution can be problematic, compared to a target with a 

high density and localised distribution.  

1.4 Thesis aims and objectives 

To date the successful development of novel radiotracers for brain imaging has been 

limited. The long list of the ideal characteristics a brain radiotracer should possess 

reveals the complexity associated with developing novel radiotracers for imaging the 

brain. These characteristics are not definitive and they cause significant attrition during 

the process of radiotracer discovery and development. To date the development of 

novel radiotracers has essentially been conducted through a process of trial and error 

(2-3, 20). Consequently, two common errors in radiotracer development may occur: 

type I error, going too far through the development process with a radiotracer that 

ultimately fails; and type II error, not going far enough through the development 

process with a radiotracer that would have ultimately succeeded (20). Both errors are 

difficult to eliminate, since radiotracer development is a multi-step process, where 

biological evaluation is performed in different species prior to translation into humans.  

The careful characterisation of a radiotracer candidate prior to pre-clinical research has 

the potential to enable the more informed selection of lead candidate compounds, prior 

to expensive radiolabelling and subsequent evaluation studies. This may reduce the 

instance of radiotracers failing to meet the criteria set out in section 1.3 later on in the 

development process. However to date there has been a lack of methodology developed 

that enables the simple and fast characterisation of large libraries of compounds. In 

order to fill this gap in the field of radiotracer development, new approaches are 

required to aid lead candidate selection. The first part of this thesis aimed to develop a 

new tool for use in lead candidate selection during the early stages of radiotracer 

discovery in an attempt to fill this gap. There are a number of radiotracers that have 

been successfully used in SPECT or PET studies of the human brain. Despite this, the 

relationships between the physicochemical properties of compounds and the in vivo 

performance of the radiotracer are still not sufficiently understood (3). In this thesis a 

high performance liquid chromatography (HPLC) tool was investigated to gain 

information on the physicochemical properties of existing radiotracers and the 

relationship between these properties and in vivo performance was determined. The 

aim was to outline whether HPLC analysis could be used to predict the in vivo 

characteristics of a radiotracer. 
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As discussed above, section 1.1, the development of novel radiotracers for in vivo brain 

imaging using SPECT of PET is of vital importance. The increased demand for novel 

radiotracers for imaging the human brain is a consequence of the increased number of 

imaging targets that are continuously being identified. Two brain targets that are 

lacking suitable SPECT radiotracers are the translocator protein (TSPO) and 

noradrenaline transporter (NAT). Attempts to develop radiotracers for these targets 

have been made in the past, but with limited success. This thesis aimed to develop 

novel radiotracers for imaging the TSPO and NAT in human brain using SPECT.  

In brain, the TSPO is expressed by reactive glial cells and can therefore be used as a 

marker of neuroinflammation. Neuroinflammation is implicated in a number of brain 

disorders such as cerebral ischaemia, epilepsy, nerve injury, neurodegenerative diseases 

and immune system diseases. Therefore, the TSPO is an attractive target for molecular 

imaging of neuroinflammation in human brain diseases. In addition, a TSPO selective 

radiotracer would be valuable in imaging studies evaluating drugs targeting the TSPO 

(35). A novel library of compounds for imaging of the TSPO was developed at the School 

of Chemistry at the University of Glasgow. It was necessary to identify the lead 

candidate from this library of compounds and therefore the novel library of TSPO 

ligands was screened using the HPLC tool developed in the first part of this thesis and 

also using competition binding assays. The aim was to select the compound most likely 

to succeed as a radiotracer for imaging of the TSPO.   

Dysregulation of noradrenergic function has been implicated in a variety of psychiatric 

and neurodegenerative disorders, including depression, post-traumatic stress, anxiety, 

attention-deficit/hyperactivity disorder (ADHD) and Alzheimer’s disease (36-42). A NAT 

selective radiotracer would enable imaging studies investigating disease progression and 

treatment response in different psychiatric and neurodegenerative disorders. In addition 

a NAT selective radiotracer would also be extremely valuable in imaging studies 

evaluating drugs targeting NAT, such as drug occupancy studies, thereby aiding the drug 

discovery process. Therefore a radiotracer specific for in vivo assessment of changes in 

NAT density, either in disease states or as a consequence of drug treatment, is 

desirable. A library of compounds for imaging of NAT in brain was synthesised and 

tested at the University of Glasgow. Biological testing of these compounds indicated 

that one compound in particular, NKJ64, was the lead candidate (43-45). Following 

identification of the lead candidate, it was necessary to radiolabel NKJ64 and to 

perform the biological evaluation of the radiotracer in animals to determine the utility 

of NKJ64 as a radiotracer for imaging the NAT in brain. This thesis aimed to radiolabel 

NKJ64 and to test it in rodents and non-human primates. In addition another NAT SPECT 
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radiotracer, 123I-INER, was assessed in non-human primates as a radiotracer for imaging 

the NAT. 

1.5 Thesis outline 

This thesis is organised according to the typical radiotracer discovery and development 

pipeline, where each main step prior to human studies is addressed and discussed. This 

document is divided in five results chapters and a brief outline of each chapter is 

below: 

 Chapter 2. The development of a novel tool for selection of lead candidates to 

be taken forward as brain radiotracers and its application to a library of 

compounds developed for imaging the TSPO. 

 Chapter 3. The radiosynthesis of high specific activity 123/125I-NKJ64, a novel 

radiotracer for imaging the NAT in brain. 

 Chapter 4. Biological evaluation of 123/125I-NKJ64 in rodents including in vitro, in 

vivo and ex vivo studies for evaluation of affinity, biodistribution, kinetics and 

target-non target ratios. 

 Chapter 5. In vivo kinetic modelling studies using 123I-NKJ64 in non-human 

primate brain to determine brain binding kinetics, brain distribution and 

plasma metabolism. 

 Chapter 6. In vivo kinetic modelling studies and occupancy measures of the NAT 

in non-human primate brain using SPECT with 123I-INER. 

The chronological order of the experiments performed as part of this thesis was as 

follows: 1) radiosynthesis of NKJ64; 2) biological evaluation of 123/125I-NKJ64 in rodents; 

3) development of novel HPLC tool for selection of lead candidates during radiotracer 

discovery process; 4) biological evaluation of 123I-NKJ64 in non-human primates; and 5) 

kinetic modelling and NAT occupancy studies in non-human primate brain using SPECT 

with 123I-INER. All experiments were performed at University of Glasgow except for the 

non-human primate work that was performed at Molecular NeuroImaging, LLC and Yale 

University, CT-USA.   
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2 Development of a novel tool for brain radiotracer 

discovery 

2.1 Introduction 

Radiotracer development is a multi-step process and a variety of obstacles need to be 

overcome in order to obtain a successful radiotracer (see Chapter 1 for a review). One 

of the most important challenges in brain radiotracer discovery is delivery of the 

radiotracer to the brain parenchyma. To reach the brain, molecules that are to be 

developed as brain radiotracers must firstly be able to cross the BBB. A brief 

introduction to BBB characteristics and functions will be outlined in this chapter. Other 

in vivo processes, including metabolism and non-specific binding, also play an important 

role in determining the behaviour of a radiotracer in vivo and will also be briefly 

outlined in this chapter.  

The important role that the BBB plays in allowing radiotracer entry into the brain has 

gained increasing awareness over the years and different methods for predicting BBB 

penetration and the in vivo behaviour of molecules have been developed. In this 

introductory section, the different methods available for the prediction of BBB 

penetration and in vivo behaviour of molecules will be discussed. A particular emphasis 

will be on methodology investigated as part of the current chapter, including: octadecyl 

silica (C18) chromatography, immobilized artificial membrane (IAM) chromatography and 

plasma protein binding (PPB) chromatography. An overview of the principles underlying 

these techniques will be included in this introductory section along with the main 

concepts of lipophilicity and phospholipophilicity in order to facilitate the 

interpretation of results presented later in the chapter. 

2.1.1 Crossing the BBB and reaching the brain 

Despite its high blood flow, the brain is one of the least accessible organs for delivery of 

molecules. This is mainly due to the presence of two physiological barriers separating 

the brain from the blood supply and controlling the entry and exit of endogeneous and 

exogeneous compounds. One barrier is the BBB and the other is the blood cerebrospinal 

fluid barrier (BCSFB). Since the surface area of the human BBB is estimated to be 5000 

greater than the BCSFB, the BBB is considered the main obstacle to radiotracer brain 

uptake (Figure 2.1a) (46-49).  
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Transport across the BBB involves movement across two membranes in series: the 

luminal and the abluminal membranes of the capillary endothelium, which are 

separated by 200 nm of endothelial cytoplasm. Due to the existence of tight junctions 

(Figure 2.1b), through which adjacent endothelial cells adhere together and hence 

prevent paracellular transport, circulating molecules gain access to the brain 

interstitium via transcellular routes (50-51). Further to the transcellular route, several 

specific transport (carrier) proteins in endothelial membranes can shuttle necessary 

nutrients into the brain by means of uptake carriers. Such carriers can also remove 

molecules from the brain by way of efflux carriers, such as P-gp. Molecules that are too 

large for carrier-mediated transport, such as proteins and peptides, may cross the 

endothelium via a vesicular route, either by specific receptor-mediated transcytosis or 

following non-specific adsorption of cationic molecules to the membrane surfaces. The 

BBB also expresses several surface and intracellular enzymes (Figure 2.1c), such as, 

peptidases, monoamine oxidase and cytochrome P450 enzymes (51). The surface area 

available for passive diffusion in the individual BBB endothelial cell membrane is 

composed of only 15% lipid while typical cells contain 50% lipids. The relatively low lipid 

content in BBB endothelial cells can explain why passive diffusion is lower in these cells 

compared to others (47, 52). The BBB is a particularly difficult barrier for radiotracers 

to penetrate for two main reasons: first, radiotracer entry is minimised because of the 

BBB characteristics previously discussed; and second, once a compound enters the 

intracellular compartment of the BBB, it may be pumped out of the cell by efflux 

transporters. The complex nature of the BBB can explain why occasionally particular 

compounds cannot penetrate the barrier even though existing screens suggest they will 

(52). 

 

Figure 2.1 The brain vascular system and the blood brain barrier (BBB). 
(a) Representation of the brain vascular system, (b) the BBB (note the tight junctions) and (c) 
different mechanisms of transport, efflux pumps and metabolically active layer of the BBB.  



36 

 

Another important in vivo phenomenon that contributes to the challenge of getting a 

radiotracer into the brain is radiotracer metabolism. The nature and degree of 

metabolism can vary considerably across animal species, with less extensive metabolism 

expected in higher species such as primates. Metabolism of a radiotracer should ideally 

occur outside the brain, since less lipophilic radiometabolites in the periphery will have 

poor brain entry and minimal or no interaction with the target receptor. If radiotracer 

metabolism occurs outside the brain to produce non-BBB-penetrating radiometabolites, 

a faster elimination of the parent radiotracer from the plasma can be achieved, which 

can be beneficial for radiotracer washout from non-target tissues, as well as, from the 

brain. This means that not all metabolism is disadvantageous and may not limit a 

radiotracer’s performance in vivo. However, radioactive metabolites that are able to 

cross the BBB or those that are generated in the brain tissue are considered 

troublesome, as they will interfere with receptor brain imaging in vivo (18). Many 

successful radiotracers have between 50% to 90% metabolism towards the end of the 

imaging time. Problematic radiotracers are those that are fully metabolised within the 

first 10 minutes after injection, making quantification difficult. Although 

radiometabolites are typically unwanted, previous studies have shown that every so 

often, a radiolabelled metabolite may be more suitable for imaging of a certain target 

than the parent radiotracer itself. This could be because the radiosynthetic route for 

labelling the parent compound is inaccessible or the parent compound metabolises 

rapidly in vivo during the imaging time. Hence, pursuit of a radiolabeled metabolite 

that might be more stable or where the radiosynthesis may be more facile has been a 

successful strategy, provided that a substantial loss in affinity and/or selectivity did not 

occur (20). Furthermore, the careful design of chemical structure could minimise the 

probability of radiotracer metabolism. For example, the choice of position for 

radiolabelling may be key to avoiding troublesome radiometabolites (18).  

High non-specific binding is another common challenge to overcome when developing 

novel radiotracers for imaging the human brain. High non-specific binding to peripheral 

organs can significantly reduce brain uptake. For example, high non-specific binding to 

plasma proteins can increase deposition of radiotracers in peripheral organs including 

liver, lungs and spleen, reducing the amount of radiotracer available for brain 

penetration (19). In addition, high non-specific binding can also be caused by high levels 

of binding to non-target sites in the brain. This can be due to low selectivity of a 

radiotracer for the target site and results in a reduced target:non-target ratio. Defining 

an ideal in vivo specific to non-specific binding ratio for a PET and SPECT radiotracer is 

complex and dependent upon multiple factors, including target size, resolution of the 

detection instrument and radioactive concentration at the target site. Nonetheless, a 

minimum specific binding ratio of between 2 and 3 has been suggested to be desirable 
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in order to reliably analyse in vivo images (53-54). This means that the specific binding 

of a radiotracer in brain should be two to three fold higher than non-specific binding in 

order to obtain high quality images of the target using PET or SPECT.  

2.1.2 Methods for predicting BBB penetration  

There is a wide variety of methods available for prediction or measurement of BBB 

penetration. Examples include in vivo and in situ methods for measurement of brain 

penetration, rate of brain penetration, free molecule concentration in brain and P-gp 

efflux. These measurements can be collected using imaging techniques, such as SPECT 

and PET; ex vivo animal experiments, namely, in situ brain perfusion and brain/plasma 

ratio; ventricular sampling of cerebral-spinal fluid; tissue microdialysis; and knockout or 

gene deficient animals. In vitro techniques have also been used for assessment of brain 

penetration and include evaluation using specialised cell cultures (such as Madin-Darby 

canine kidney (MDCK) cell lines and Caco-2 cells), IAM chromatography, parallel 

artificial membrane permeability assay (PAMPA) (51, 55) and the traditional partition 

systems, like octanol-water partition and octanol-buffer distribution. Finally, in silico 

methods have been used to generate predictive rules or equations for BBB penetration, 

as a ―first screen‖ in the radiotracer discovery process (48, 51).  

Screens used to predict biologically relevant properties can be listed in order of 

experimental convenience as shown in Figure 2.2. Despite being the ―gold standard‖, in 

vivo methods are frequently expensive, labour intensive and are not suitable for high 

throughput screening (48, 51, 55). Also cell-based in vitro techniques are resource 

intensive, can potentially lose the in vivo BBB phenotype over the timeframe of the cell 

culture and are also unsuitable for high throughput screening. Physicochemical methods 

(such as, octanol-water partition, liposome partitioning, hydrophobicity measurements 

and membrane binding constants) are simpler to perform and can be used to predict 

passive transport across cell membranes in the early stages of molecule discovery. 

While molecule penetration also includes active and facilitated transport, passive 

transport is the most common screen because it is experimentally simpler and it is 

either completely or partially responsible for molecule uptake into cells (52). In silico 

methods are the simplest and fastest of all methods; however, frequently, the trade-off 

is that they are less accurate predictors (48, 51). 
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Figure 2.2 Main screening methods used for prediction of biological relevant molecule 
properties. 
Methods are ordered from the most experimentally convenient and highest throughput (in silico 
methods) to the least convenient and more labour intensive (in vivo methods).  

2.1.3 Lipophilicity and phospholipophilicity 

Cell membrane transport properties are frequently considered to be decisive during 

lead molecule discovery (52). Molecule lipophilicity measurements have been associated 

with molecule transport across the cell membrane and, consequently, across the BBB 

cells. However, lipophilicity can only model polar and non-polar interactions. Non-polar 

interactions are associated with hydrophobicity (expressed by molecular volume, molar 

refractivity and polarisability), while polar interactions include ion-dipole, dipole-dipole 

and hydrogen bond interactions (expressed in electronic constants, dipole moments or 

hydrogen bond parameters). This dual nature of lipophilicity can be expressed according 

to equation 2.1. However, when the aim is to study the lipophilicity in biological 

membranes another additional electrostatic interaction must be considered. Since 

phospholipids present a dipole field that is determined by the polar headgroups, the 

surface water molecules and the lipid carbonyls, a process denoted phospholipophilicity 

needs to be addressed. Thus, the traditional lipophilicity equation must be adjusted to 

phospholipophilicity, according to equation 2.2 (56). 

Lipophilicity = hydrophobicity —  polarity      (Eq. 2.1)  

Phospholipophilicity = hydrophobicity —  polarity + ionic bonds  (Eq. 2.2) 
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2.1.4 Partition systems 

Within the physicochemical methods that are available for prediction of radiotracer BBB 

penetration, partitioning systems are the most well known and established in vitro 

methodology (2). There are three main in vitro models of organic-solvent-aqueous 

partitioning systems: octanol-water partitioning systems, chromatographic partitioning 

systems using HPLC and liposome partitioning systems (57). 

At first, the octanol-water partition system was considered an advantageous system, 

due to its hydrophobic chain with polar head, as well as, to its moderate water 

saturation, which allowed relatively easy and reliable experimental determination. 

However, more recently, it was found that the water present in the octanol layer, 

seems to play a more complex role in the interaction with solute structures than 

anticipated for an isotropic system (56, 58). Nonetheless, since brain uptake and 

brain/blood concentration ratio of radiotracers have been reported to show a parabolic 

dependence on octanol-water partitioning (17, 19), it has been widely accepted that 

the octanol-water partition coefficient is the main design parameter for brain entry 

(with an ideal Log P value of 1—3.5 for optimised BBB penetration).  

More recently, HPLC methodology was proposed to model the octanol-water partitioning 

of a compound. Two lipophilicity indexes can be obtained from reverse-phase HPLC 

using C18 columns: the volume percent of organic phase concentration in the mobile 

phase when the retention time is twice the dead time (φ0) and the chromatographic 

hydrophobicity index (CHI). The main difference between these two measurements is 

that φ0 is derived from a series of isocratic measurements, while CHI is derived from the 

retention time in a calibrated generic HPLC gradient. Due to its greater versatility and 

short measurement time, the gradient method used for measurement of CHI was 

introduced as a high-throughput method for lipophilicity determination (59). Briefly, the 

CHI method is based on the relationship between the retention time and the percentage 

of acetronitrile required to achieve equal distribution of the compound between the 

mobile and stationary phase. The calibration curve, generated by using a set of 

reference compounds and by plotting their CHI values versus retention time, is then 

used to determine the CHI values of unknown compounds from their retention times 

(60-62). The CHI value can then be converted to the logarithmic scale, as Log P or Log 

D, which are parameters typically used by chemists. In comparison to the traditional 

flask method, determination of the CHI by means of HPLC is faster, easier to automate, 

suitable for a wider range of compounds and independent of impurities present in the 

test sample (60).  
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Octanol-water and C18 chromatographic partitioning systems can only model the 

hydrophobic contribution of molecule-membrane interactions. However, since the 

partition of a molecule into a cell’s membrane results from all possible interactions, 

including electrostatic interactions, some limitations have been identified when these 

methods are used for prediction of BBB penetration (57). Liposome suspensions 

prepared from phospholipids, exhibit structural similarities to the phospholipid bilayer 

and can be used to investigate all molecule-membrane interactions (52). Overall, 

liposome suspensions are a good model of the lipid environment in a cell and frequently 

predict the molecule passive transport through cell membranes. Nevertheless, the use 

of liposomes is labour intensive and it is difficult to establish routine methods for 

molecule screening, especially on a large scale. Additionally, liposome methodology is 

time consuming and requires correction for the amount of molecule that has partitioned 

into the aqueous space of the liposomes (52, 57). Thus, an alternative method using 

artificial membranes as column packing material and HPLC was developed, i.e. IAM 

chromatography. 

2.1.5 IAM chromatography 

The IAM surface imitates the lipid surface in fluid artificial liposome membranes and 

biological cell membranes (Figure 2.3). IAMs are prepared by covalently immobilising 

phospholipid analogs on chromatographic materials. Currently more than twenty 

different IAM surfaces are available; however, only three IAM surfaces have been 

extensively used to evaluate molecule-membrane interactions: esterIAM.PCC10/C3, 

etherIAM.PCC10/C3 and δGIAM.PCC10/C3 (IAM.PC.DD) (Figure 2.4) (52, 57). All three IAM 

surfaces are prepared from a phosphocholine (PC) ligand, which explains the acronym 

IAM.PC. In addition to PC, it may be possible to incorporate other phospholipids (minor 

components in natural membranes), such as phosphatidylethanolamine (PE), 

phosphatidylglycerol (PG), phosphatidic acid (PA) and phosphatidylserine (PS), in order 

to mimic membrane physiology more closely. For example, it could be useful to 

incorporate PS phospholipids in the HPLC column, because they are present in natural 

BBB cells in concentrations of approximately 15%. These mixed ligand IAM surfaces can 

minimise the differences between natural membrane and the IAM surface. The IAM 

surfaces containing zwitterionic PC headgroups, i.e. IAM.PC.DD (or δGIAM.PCC10/C3, Figure 

2.4c), are considered to be the best model of molecular interactions found in BBB cell 

membranes during molecule partitioning (52, 57). 
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Figure 2.3 Schematic representation of cell membrane, liposome and IAM structures. 

 

 

Figure 2.4 Schematic representations of the three major IAM.PC surfaces used for 
prediction of molecule properties. 
The left superscripts describe structural differences of the PC ligands. The superscript “ester” 
denotes an ester linkage between two acyl chains and glycerol backbone of the PC ligand; the 
superscript “ether” denotes an ether linkage between the alkyl groups tethered to the PC ligand; 
finally, the superscript “δG” denotes the deletion of the glycerol backbone from the PC ligand (the 
PC polar headgroup is linked directly to an alkyl group through a phosphoester bond). The right 
superscript “C10” indicates endcapping residual amino groups using decanoyl groups and “C3” 
means endcapping with propionic acyl group. 

For each compound-membrane lipid mixture it is possible to derive an equilibrium 

constant, Km, which is characteristic for a certain molecule interacting with a fluid 

membrane (Figure 2.5a). Since IAM chromatography can model both hydrophobic and 

electrostatic interactions between molecules and membranes, this technique can be 

used to estimate Km (Figure 2.5b)(52). 

In terms of molecule transport, the membrane partition coefficient, Km, does not 

directly predict membrane transport. This is because in intact cells, molecules must 

enter and exit the membrane to permeate into the cytosol and for molecules travelling 
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across cells, such as endothelial cells, a second membrane entry and exit event occurs. 

Thus, in order to consider this dynamic mechanism, besides the Km value, another 

measure needs to be considered: molecule permeability (Pm) (Figure 2.5a). Pm is linearly 

related to Km according to equation 2.3 (52, 57, 63): 

m m
m

D × K
P  = 

L
        (Eq. 2.3) 

where Dm is the membrane diffusion coefficient of the solute and L is the membrane 

thickness.  

 

Figure 2.5 Molecule interaction and transport in fluid membranes and IAM surfaces. 
(a) representation of membrane partition coefficient (Km) and permeability (Pm) in fluid membranes 
and (b) compound-IAM surface equilibrium constant (kIAM) and its correlation  with measure 
parameter (retention time – tr, unretained compound retention time – t0, total volume of solvent 
within the HPLC column – Vm and volume of the IAM interphase created by the immobilized 
phospholipids – Vs’. Further detail on these calculations will be presented in the section 2.2.3).  

The affinity of solutes to IAM surfaces can be due to the solute partitioning into IAM 

hydrocarbon region, solute adsorption on the surface of IAM or both. The most 

important lipid structure features needed for IAMs to model biological partitioning are 

phospholipid head groups, hydrocarbon chains and ordered membrane layers. All 

characteristics are present in IAMs surfaces and may explain why IAM chromatography is 

considered to be a superior method for prediction of BBB penetration compared to 

octanol-water and C18 partitioning systems (52). Compared to liposomes, IAM 

chromatography is experimentally much simpler, faster, easier to automate and 

reproducible (47, 52, 63). Thus, IAM chromatography can be a valuable tool for 

prediction of membrane permeability (47). However, this is not always the most 

appropriate method to model the biological membrane partition for a compound. For 

example, it has been shown that the BBB can be modelled well with IAM columns, but 

skin permeation seems to be better evaluated by C18 columns (64).  
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2.1.6 Plasma protein binding 

Various critical pharmacokinetic parameters, such as the rate of hepatic metabolism, 

renal excretion and biomembrane partition as well as the steady-state distribution 

volume, are a function of plasma protein binding (PPB). Thus, it is crucial to determine 

the percentage of protein binding (%PPB) during the radiotracer development process 

(65).  

Three main methodologies can be used to study molecule-plasma protein binding: 

equilibrium dialysis, ultrafiltration and HPLC. Equilibrium dialysis separates molecules 

across a semi-permeable membrane, according to molecular size, by using the driving 

force of concentration differences between two solutions on either side of a membrane. 

Ultrafiltration is a method that allows rapid, mechanical separation of free molecules 

from protein-bound ones using a membrane. These methods have some limitations: 

equilibrium dialysis requires a long analysis time and both methods require additional 

analytical steps. Thus, an alternative is to use HPLC and protein coated columns (65-

67). Typical examples of coating material include: human and rat serum albumin (HSA 

and RSA, respectively) and α-acid glycoprotein (AGP). HSA is the most extensively 

studied plasma protein, not only because it is the most common in plasma, but also due 

to its main functions in the human body that include binding and transport of various 

compounds, such as hormones, fatty acids and a wide variety of small molecules (65). In 

comparison to ultrafiltration and equilibrium dialysis, HPLC is a much simpler and faster 

method in terms of sample preparation, protocol and analysis (65-67). In Table 2.1 

HPLC-HSA and ultrafiltration methods are compared. 

Ultrafiltration HPLC – HSA 

Can work successfully with high PPB values 

(around 92-96%). 

High organic concentrations to elute strongly 

bound compounds may damage the column. 

Results comparable to in vivo process such as 

ultrafiltration of molecule in kidney. 
---- 

Time consuming and requires additional 

analytical steps. 

Suitable for routine PPB estimation in 

molecule discovery programs. 

Estimates protein binding to all plasma 

proteins. 
Estimates binding only to albumin. 

Measures all specific and non-specific binding 

to all plasma components. 

Measures only specific and non-specific 

binding to one particular protein. 

Table 2.1 Main advantages and disadvantages of ultrafiltration versus HPLC-HSA. 
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2.1.7 HPLC: advantages and limitations 

HPLC provides an automated platform for determination of multiple measurements 

(lipophilicity, phospholipophilicity and other biometric measures), based on the 

retention time of a molecule on different stationary phases. The acid-base character of 

a compound can also be determined by performing measurements at different pH. Some 

of the main advantages of HPLC over other in vitro techniques include: (1) high 

throughput characterisation of compound libraries at early stages of the molecule 

discovery; (2) facile automation, producing reliable and accurate measurements; and 

(3) the measurements are independent of compound concentration and impurities, 

therefore different properties of closely related analogues can be more easily 

distinguished (61, 68). Despite these advantages, there are some disadvantages of using 

HPLC retention times: (1) it may be difficult to build up a large database, due to 

different inter-laboratory methodologies; and (2) column aging requires the use of 

reference compounds for system corrections and calibrations (68). In addition, IAM and 

C18 chromatography only model passive diffusion across the BBB. It is well known that 

other transport mechanisms are involved in BBB penetration, such as active transport 

and endocytosis. Despite these disadvantages, IAM and C18 chromatography may have a 

potential role in the early stages of the radiotracer discovery process, when these 

techniques may be used to provide rapid and efficient methodology for the prediction of 

whether a compound has favourable BBB transport properties or not (52, 63). 

2.1.8 Hypothesis and aims 

The work presented in this chapter is divided in two parts. The first part investigated a 

novel in vitro HPLC tool for aiding brain radiotracer discovery. The second part used the 

in vitro HPLC tool for the selection of a lead radiotracer candidate from a library of new 

compounds designed for SPECT imaging of neuroinflammation. 

1. Investigation of HPLC analyses as a novel tool for brain radiotracer discovery 

Radiotracers that have been used successfully in human imaging studies were 

investigated and in vitro HPLC measures of Log P, Km, Pm and %PPB were compared to 

selected in vivo characteristics of the radiotracers reported from previous imaging 

studies in humans. It was hypothesised that: (1) HPLC measures of Log P, Pm and %PPB 

have the potential to provide information on the ability of the compound to enter the 

brain and therefore, on the amount of radiotracer uptake in vivo in the human brain; 

and that (2) a HPLC measure of compound–membrane interactions defined by Km may 
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have the potential to provide information on the non-specific binding of a radiotracer in 

vivo in the human brain. The aim was to determine whether in vitro HPLC techniques 

can be used early in the radiotracer development process to aid in the selection of the 

most promising molecule for further validation. Since there is a considerable lack of 

standardisation in the method used for Log P determination (2, 19-20, 34), a further aim 

was to establish how the methodology used influences the Log P value determined. Log 

P values obtained from the flask method, the HPLC method and computational 

algorithms were compared.  

2. HPLC analyses as a tool for the selection of a lead radiotracer candidate for 

SPECT imaging of TSPO in brain 

The HPLC methodology investigated as a tool for molecule selection early in the 

radiotracer discovery process was applied to a new library of compounds synthesised at 

the School of Chemistry at the University of Glasgow. The compound library consisted of 

iodinated PK11195 analogues that were synthesised with the aim of developing a novel 

SPECT radiotracer for imaging of TSPO. It was hypothesised that the in vitro HPLC 

techniques would provide selection criteria that could be applied to the newly 

synthesised library of compounds. The aim was to screen the novel library of compounds 

using in vitro HPLC analysis in order to select a lead radiotracer candidate for SPECT 

imaging of the TSPO in the brain.  

2.2  Material and Methods 

2.2.1 HPLC system and general preparation 

A Dionex Ultimate 3000 series HPLC (Dionex, UK) was used and data acquisition and 

processing were carried out using Chromeleon 6.8 Chromatography Software (Dionex, 

UK). All compounds were dissolved in mobile phase (50% aqueous and 50% organic), with 

a final concentration of 0.5 mg/mL. A 5 µL HPLC sample injection volume was used for 

all methodologies. The column temperature was 25 ºC and ultraviolet (UV) detection 

was performed using a diode array detector (190 nm-800 nm). The Abraham H-bond 

acidity parameter (A) used to calculate Log P was determined with ADME Suite 5.0 

software (Advanced Chemistry Development Inc., Canada). All chemicals, unless 

otherwise stated, were obtained from Sigma Aldrich, UK. Organic HPLC solvents were 

obtained from Rathburn Chemicals, UK and ethanol from Fisher Scientific, UK. Sodium 

hydroxide (NaOH) was purchase from VWR, UK.  
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2.2.2 C18 chromatography 

All HPLC measurements for determination of Log P were performed using a Phenomenex 

Luna 5 micron C18 100A (50 × 3mm) column. The C18 method used was based on 

previously developed methodology (Figure 2.6) (60, 62). Each compound was tested 

using an acetonitrile and 0.01 mM phosphate buffered saline (PBS) mobile phase at 

pH=7.4 and also adjusted pH for acidic/basic conditions (pH=4.0 and pH=10.0 

respectively) by adding hydrochloric acid (HCl) or 0.05 M sodium hydroxide (NaOH) 

solutions, respectively. CHI values were determined by measuring the compound 

retention time (tr) using the following conditions: 0-10.5 minutes, 0-100% acetonitrile; 

10.5-11.5 minutes, 100% acetonitrile; 11.5-12.0 minutes, 100-0% acetonitrile; 12.0-15.0 

minutes, 0% acetonitrile. The mobile phase flow rate was 1.0 mL/min.  

 

Figure 2.6 Schematic representation of C18 chromatographic principle for determination of 
Log P. 
(a) Determination of Log P by traditional flask methods is based on the partitioning of the molecule 
between the lipid (octanol - Oct) and aqueous (aqueous - Aq) phases. (b) Log P measured by 
HPLC is based on tr of compound, which is determined by the compound interaction between C18 

chains and the mobile phase. 

The system was calibrated by injecting the following compounds and plotting their CHI 

values against the obtained tr: theophyline (CHI = 15.76), phenyltetrazole (CHI = 20.18), 

benzimidazole (CHI = 30.71), colchicine (CHI = 41.37), acetophenone (CHI = 64.90), 

indole (CHI = 69.15), propiophenone (CHI = 78.41), butyrophenone (CHI = 88.49) and 

valerophenone (CHI = 97.67) (62). Log P of the compounds tested was calculated 

according to equation 2.4 and 2.5, previously validated (60), and by using Excel 2003 

software (Microsoft Office, Microsoft Corporation, USA).  
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CHI Log D = 0.054 CHI - 1.467       (Eq.2.4) 

where CHI Log D represents the CHI values projected to the logarithmic scale. 

Log P = 0.054 CHIN + 1.32 A - 1.88      (Eq.2.5) 

where CHIN = CHI values of unionised forms of the molecules and A = Abraham H-bond 

acidity parameter.  

2.2.3 IAM chromatography for Pm and Km determination 

IAM chromatography was carried out using a Registech IAM.PC.DD2 (15 cm × 4.6 mm) 

column and was used to determine Pm and Km, according to previously developed 

methodology (Figure 2.7) (52, 56-58, 63). Briefly, 0.01 mM PBS with pH=7.4 and 

acetonitrile were used as the mobile phase. For determination of both Pm and Km, the tr 

of compounds were obtained using an isocratic method and a mobile phase of 100% PBS 

over 30 minutes. For compounds that did not elute over 30 minutes using 100% PBS, 

isocratic mobile phases containing acetonitrile (between 40% and 70%) were used, 

where the tr was plotted against the concentration of acetonitrile and regression 

analysis was used to estimate the tr using 100% PBS. The flow rate was 1.0 mL/min and 

citric acid was used as an unretained compound for system corrections. Km and Pm were 

calculated using equations 2.6 to 2.12 and Excel 2003 software (Microsoft Office, 

Microsoft Corporation, USA) (52, 69).  

r 0
IAM

0

(t — t )
k =

t
         (Eq. 2.6) 

where kIAM = solute capacity factor on the IAM column, tr = retention time of the 

compound, t0 = tr of unretained compound.  

 
 
 

s
IAM m

m

V '
k =  × K

V
        (Eq. 2.7) 

where Vs’=volume of the IAM interphase created by the immobilized phospholipids, 

Vm=total volume of solvent within the IAM HPLC column and Km=membrane partition 

coefficient. 
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m r 0
V = f × t                 (Eq. 2.8) 

where fr = flow rate.  

PhC C10 C3
s

PhC C10 C3

W W W
V '= + +

δ δ δ
             (Eq. 2.9) 

where specific weight of PhC (δPhC) = 1.01779 g/mL and C10/C3 (δC10/C3) = 0.86g/mL; WPhC 

= 133 mg, WC10 = 12.73 mg and WC3 = 2.28 mg. 

The equation for the calculation of Pm (Eq. 2.3, section 2.1.5) can be simplified based 

on the assumption that membrane thickness (L) for a given cell is constant and does not 

contribute to the variability of Pm values for different compounds. In addition, it has 

been shown that the membrane diffusion coefficient (Dm) depends on molecular size (V) 

according to equation 2.10. 


m

1
D

V
               (Eq. 2.10) 

Assuming that molecular weight (MW) is proportional to molecular size, Dm will be: 


m

1
D

MW
               (Eq. 2.11) 

Consequently, equation 2.3 (Pm equation, section 2.1.5) is simplified to: 

m
m

K
P = 

MW
              (Eq. 2.12) 
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Figure 2.7 Schematic representation of IAM chromatography used for the determination of 
Pm and Km. 
IAM chromatography can model the solute capacity factor, kIAM, which is proportional to Km and Pm 
according to equations 2.7 and 2.12. 

2.2.4  HSA chromatography 

A ChromTech HSA 5 µm (3.0 × 50 mm) column was used for determination of %PPB 

(Figure 2.8) based on previously developed methodology (60-61, 66). Briefly, 0.01 mM 

PBS with pH=7.4 and isopropanol were used as the mobile phase and the tr was 

measured using the following conditions: 0-3 minutes, 0-30% isopropanol; 3-10 minutes, 

30% isopropanol; 10.5-11.0 minutes, 30-0% isopropanol; 11.0-15.0 minutes, 0% 

isopropanol. The mobile phase flow rate was 1.8 mL/min. The system was calibrated by 

injecting the following reference compounds: warfarin (%PPB=98.0), nizatidine 

(%PPB=35.0), bromazepan (%PPB=60.0), carbamazepine (%PPB=75.0), budesonide 

(%PPB=88.0), nicardipine (%PPB=95.0), ketoprofen (%PPB=98.7), indomethacin 

(%PPB=99.0) and diclofenac (%PPB=99.8). The %PPB for the reference compounds (taken 

from literature (66)) were converted to the linear free energy related log K values, 

according to equation 2.13; then the tr values obtained from the HSA column were 

plotted against the log K values. The line equation obtained by plotting log K values 

from reference compounds and their tr on a HSA column was used to obtain the log K 

values of the test compounds. Finally, the %PPB values were determined according to 

equation 2.14 (66). All calculations were performed using Excel 2003 software 

(Microsoft Office, Microsoft Corporation, USA).  
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Figure 2.8 Schematic representation of the measurement of compound binding to plasma 
proteins by HSA chromatography. 
1) the compound is injected onto a HSA column, 2) compound is retained on the HSA column and 
3) mobile phase elutes compound. The compound tr is proportional to %PPB.  

%PPB
Log k = Log 

(101-%PPB)

 
 
 

       (Eq. 2.13) 

log k

log k

(101×10 )
% PPB = 

(1+10 )

 
 
 

       (Eq. 2.14) 

2.2.5 Flask methods for Log P determination  

Partition coefficient values obtained using flask methodology were either taken from 

the literature or measured in the laboratory (70-79). Log P values measured in the 

laboratory were determined in triplicate by mixing in a test tube 10-20 μL of [123I] 

labelled radiotracer (>99% radiochemical purity) with 1.0 mL of octanol as the organic 

phase and 1.0 mL of water as the aqueous phase (Figure 2.6a). The test tube was 

vortexed for 1 minute at room temperature, then centrifuged for 60 minutes at 4000 

rpm. After centrifugation, the radioactivity in 200 μL samples of each phase was 

measured using Packard Cobra gamma counter. The partition coefficient was 

determined using equation 2.15. 
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cpm octanol
Partition coefficient = 

cpm water
     (Eq. 2.15) 

where cpm=counts per minute. 

2.2.6 In silico algorithms for Log P determination 

Two in silico packages were used for determination of Log P: ChemDraw 8.0 

(CambridgeSoft Corporation, USA) and ADME Suite 5.0 (Advanced Chemistry 

Development Inc., Canada). From the latter package, two different Log P values were 

obtained depending on the algorithm used for its calculation (ADC algorithm or Pharma 

algorithm). ChemDraw 8.0 also provided two different values: Log P and cLog P. 

2.2.7 HPLC analyses of existing radiotracer compounds 

Ten compounds, which have already been used as radiotracers in human studies (7 

SPECT and 3 PET) were examined (Figure 2.9): 2-((2-

((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine (ADAM), a gift from Dr. Hank 

Kung (Pennsylvania University, USA); 2β-carbomethoxy-3β-(4-iodophenyl)tropane (β-

CIT), from ABX (Advanced Biochemical Compounds, Germany); 3-amino-4-(2-

dimethylaminomethylphenylsulfanyl)benzonitrile (DASB), from ABX (Advanced 

Biochemical Compounds, Germany); 3-iodo-6-methoxybenzamide (IBZM), from ABX 

(Advanced Biochemical Compounds, Germany); ethyl 7-iodo-5,6-dihydro-5-methyl-6-

oxo-4H-imidazo[1,5-α][1,4]-benzodiazepine-3-carboxylate (Iomazenil), a gift from Dr. 

Frederic Bois (Yale University, USA); 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-

isoquinolinecarboxamide (PK11195), from Tocris Bioscience (Tocris Bioscience, USA); 1-

(2-iodophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (I-PK11195), a 

gift from Dr. Andrew Sutherland (University of Glasgow, UK); [N-methyl]-2-(4’-

methylaminophenyl)-6-hydroxybenzothiazole (PIB), a gift from Dr. Franklin Aigbirhio 

(Cambridge University, UK); (R)-3-quinuclidinyl-(R)-4-iodobenzilate [(R,R)I-QNB], from 

Target Molecules, UK; and 3-[2(S)-2-azetidinylmethoxy]pyridine (5-IA85380), from ABX 

(Advanced Biochemical Compounds, Germany).   
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Figure 2.9 Chemical structures of the radiotracer compounds evaluated. 

 
Whole brain peak percentage injected dose (%ID) and binding potential, BPND (defined at 

equilibrium as the ratio of specifically bound to non-displaceable radiotracer in tissue) 

[9], were used as in vivo measures of radiotracer performance. Both in vivo 

measurements were derived from studies using healthy human volunteers and were 

obtained from the published literature (Table 2.2) [10-29]. The literature review was 

performed by searching for radiotracer biodistribution, dosimetry and kinetic modelling 

studies in healthy human subjects using ISI Web of Knowledge and Ovid databases. Only 

radiotracers with reported data for whole brain peak uptake as %ID and binding 

potential as BPND were selected for HPLC analyses. BPND was either obtained directly 

from the publication or calculated using the published k3 and k4 values (BPND=k3/k4). The 

selection of the ten radiotracers included in the study was also determined by 

availability of the cold compounds. 
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Compound  %ID  Reference BPND Reference 

Iomazenil 13.70±2.40 (n=8) (80) 12.50±0.05 (n=10) (81) 

β-CIT 7.00±2.00 (n=6) (82) 6.66±1.54 (n=5) (83) 

5-IA85380 5.00 (n=10) (84) 4.43±0.06 (n=6) (85) 

(R,R)I-QNB 5.00* (86) 4.85 (n=11) (87) 

DASB 4.00 (n=7) (88) 2.68±0.68 (n=5) (89) 

IBZM 3.72±1.16 (n=9) (90) 0.86±0.11 (n=10) (91) 

ADAM 3.70 (n=11) (92) 1.62±0.57 (n=7) (93) 

PK11195 2.75 (n=5) (94) 1.60±0.40 (n=13) (95) 

I-PK1195 2.00±0.50 (n=5) (96) --- --- 

PIB --- --- 0.11±0.15 (n=13) (97) 

Table 2.2 In vivo measures of whole brain peak %ID and BPND obtained from previously published studies in healthy human volunteers. 
Values are mean ± standard deviation (if reported); n is number of healthy volunteers; *sample size not reported. 
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2.2.8 Data analysis and curve fitting 

The relationships between Log P, Pm and %PPB and in vivo peak %ID were investigated. 

The relationship between Km and specific binding in vivo (BPND) was also investigated. 

The reported mean peak %ID and BPND values were used. Relationships between the 

different parameters were assessed using nonlinear regression models in GraphPad 

Prism version 4.0 (GraphPad Software, USA). Nonlinear regression was used to adjust 

the values of the variables in the model to find the curve that best predicts Y (%ID or 

BPND) from X (Log P, Pm, %PPB and Km). A variety of mathematical formulations were 

tested to determine the best fitting model that described the investigated relationships 

and included, Gaussian, polynomial, exponential and logarithmic functions. The best 

fitting model was determined by the following goodness of fit measures: r2 value, 

absolute sum of squares (SS), standard deviation of the vertical distances of the points 

from the line (Sy.x) and F-test.  

The variability of Log P measured using the internal flask and HPLC C18 methodology was 

determined by calculating the coefficient of variation (%COV), according to equation 

2.16. 

SD
% COV = ×100

Mean

 
 
 

               (Eq. 2.16) 

where SD = standard deviation. 

2.2.9 HPLC analyses of radiotracer candidates for SPECT imaging 

of the TSPO in the brain 

A novel library of PK11195 analogues (Figure 2.10) was synthesised by two collaborators, 

Louise Stevenson and Aurélie Brunet, under the supervision of Dr Andrew Sutherland in 

the School of Chemistry at the University of Glasgow. The PK11195 analogues were 

tested for binding affinity to TSPO using traditional competition binding assays by Louise 

Stevenson. Further screening of the library was conducted using the HPLC methodology 

described in sections 2.2.1-2.2.4 for the determination of Log P, Km, Pm and %PPB. 
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Figure 2.10 The chemical structures of novel PK11195 analogues. 

 

2.3 Results 

2.3.1 Investigation of HPLC analyses as a novel tool for brain 

radiotracer discovery 

The results from the HPLC analyses of evaluated radiotracer compounds are summarised 

in Table 2.3. ADAM had the highest Log P (5.13), while β-CIT had the lowest value 

(1.02). ADAM and Iomazenil had the highest and lowest Pm values, respectively (1.47 for 

ADAM and 0.04 for Iomazenil). The %PPB results demonstrate that ADAM had the highest 

binding to HSA (97%), while the lowest binding to plasma proteins was obtained with 5-

IA85380 (45%). ADAM had the highest Km (Km= 563.68), conversely, Iomazenil presented 

the lowest Km value of all evaluated compounds (Km=11.34).   
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Compound 

HPLC measure 

Log P 

(mean±SD, n=3) 
Permeability * 

%PPBHSA 

(mean±SD, n=3) 

Km* 

Iomazenil 1.58±0.00 0.04 55.51±1.25 11.34 

β-CIT 1.02±0.02 0.22 67.34±0.00 84.26 

5-IA85380 1.54±0.03 0.29 44.96±0.08 83.55 

(R,R)I-QNB 3.67±0.00 0.60 86.44±0.42 279.65 

DASB 4.10±0.00 1.20 83.35±0.00 341.06 

IBZM 4.39±0.00 1.04 90.15±0.14 421.71 

ADAM 5.13±0.00 1.47 97.79±0.22 563.68 

PK11195 3.85±0.03 0.64 92.28±0.01 225.78 

I-PK1195 4.03±0.04 0.50 93.94±0.02 223.60 

PIB 3.00±0.00 1.00 97.45±0.02 256.14 

Table 2.3 HPLC analyses for all radiotracer compounds evaluated. 
*regression analysis was used to estimate the result using 100% PBS. 

 
The best fitting model describing the association between Log P determined via HPLC 

C18 methodology and in vivo brain uptake is shown in Figure 2.11. The r2 of 0.47 

indicates that approximately half of the variance of in vivo brain uptake is explained by 

the equation which involves Log P determined via HPLC C18 methodology. A Gaussian 

curve described the relationship between %PPB and peak %ID (Figure 2.12). The best 

fitting model for the association between in vivo brain uptake and %PPB showed that 

approximately two-thirds of the variance of in vivo brain uptake is explained by the 

equation. Brain uptake had an inverse relationship with Pm, where the peak %ID in brain 

tended to decrease as Pm increased (Figure 2.13). The best fitting model for the 

association between brain uptake and Pm showed approximately three-quarters of the 

variance of in vivo brain uptake is explained by the equation. An inverse relationship 

was observed between Km and BPND (Figure 2.14), where almost 90% of the variance of 

BPND was explained by its modelled relationship with Km. 
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Figure 2.11 Relationship between Log P measured using HPLC C18 methodology and %ID. 

Best fitting curve was Gaussian. 
  
  

   

2
x - 1.656

y = 3.42 × exp - 0.5 × 
1.853

 

 

Figure 2.12 Relationship between %PPB measured using HPLC HSA methodology and %ID.  

Best curve fitting was Gaussian. 

2
x-60.63

y = 7.10 × exp - 0.5 × 
19.65

  
  

   
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Figure 2.13 Relationship between permeability measured using HPLC IAM methodology and 
%ID.  

Best curve fitting was logarithmic. y = - 2.74 ln (x) + 3.06  

 

Figure 2.14 Relationship between Km measured using HPLC IAM methodology and BPND.  

Best fitting curve was exponential.  - 4 - 2y = 4.66 exp (-3.15×10 x) + 12.27 exp (-1.66×10 x)-2.383  
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Log P values were highly variable, depending on the methodology used to determine 

them (Table 2.4). The values obtained using the traditional flask method tended to be 

lower than those obtained by the HPLC C18 method. Log P values determined using in 

silico methodology were highly variable, dependent on the algorithm used. Overall in 

silico methods tended to produce Log P values higher than those obtained by the HPLC 

C18 method. None of the methods investigated for Log P determination showed a good 

correlation with %ID (Figures 2.15 and 2.16), where the flask methods presented the 

weakest correlation with %ID. I-PK11195 and β-CIT, available in house, were used to 

compare the %COV for the flask and HPLC C18 method. The %COV was greater for the 

flask method than for the HPLC C18 method (Table 2.5). 



 
6
0

 

 

 

 

 

Compound 

Log P 

HPLC 

(mean±SD, n=3) 

Log P 

Flask methods 

(mean±SD)
 

Reference 
Log P ADC 

algorithms 

Log P Pharma 

algorithms 

cLog P 

ChemDraw 

Log P 

ChemDraw 

Iomazenil 1.58±0.00 1.48*
† 

(75) 1.70 1.32 2.07 2.30 

β-CIT 1.02±0.02 1.22±0.07 (n=3) Determined internally 3.40 3.65 4.50 4.11 

5-IA85380 1.54±0.03 0.44±0.01
† 

(79) 1.24 1.24 1.89 1.39 

(R,R)I-QNB 3.67±0.00 1.60*
†
 (78) 4.29 4.13 4.07 4.47 

DASB 4.10±0.00 2.38±0.03 (n=8) (72) 3.20 3.10 3.21 3.31 

IBZM 4.39±0.00 2.85*
†
 (74) 3.57 3.23 3.93 2.65 

ADAM 5.13±0.00 2.53*
†
 (70) 4.75 3.96 4.51 4.63 

PK11195 3.85±0.03 1.41±0.08 (n=4) (77) 4.58 5.18 4.62 5.30 

I-PK1195 4.03±0.04 2.37±0.46 (n=3) Determined internally 5.10 5.14 4.77 6.09 

PIB 3.00±0.00 1.30*
†
 (76) 3.33 3.72 3.99 3.41 

Table 2.4 Summary of Log P values obtained by different methodologies. 
*SD values not reported; 

†
n value not reported. 
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Figure 2.15 Comparison of relationship between Log P determined by HPLC or flask method 
and %ID. 
(a) Relationship between Log P determined by HPLC and %ID; and (b) relationship between Log P 
determined by flask method and %ID. Best fitting curve was Gaussian. 
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Figure 2.16 Comparison of the relationship between Log P calculated using different computational methods and %ID. 
(a) Log P determined by ADC/Pharma algorithms and (b) Log P determined by ChemDraw software. 
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Compound Log P flask method %COV Log P HPLC %COV 

β-CIT 1.22±0.07 (n=3) 5.90% 1.02±0.02 (n=3) 1.84% 

I-PK11195 2.37±0.46 (n=3) 19.27% 4.03±0.04 (n=3) 0.88% 

Table 2.5  The %COV of the Log P determined for -CIT and I-PK11195 using either 
traditional flask or HPLC C18 methodology. 
Values are mean ± standard deviation. 

2.3.2 HPLC analyses of radiotracer candidates for SPECT imaging 

of the TSPO in the brain  

The in vitro binding affinities (Ki) of PK11195 and the novel library of analogues to the 

TSPO in whole rat brain are shown in Table 2.6. Physicochemical properties determined 

using the HPLC techniques described are also shown in Table 2.6. 

Compound Ki (nM) Log P  %PPB Pm Km 

 

9.8±1.6* 3.85* 92.28 0.64 225.78 

 

12.0±1.3* 4.76* 96.64 0.31 136.51 

 

26.1±4.7* 5.39* 98.36 0.59 289.65 

Table 2.6 Affinity and physicochemical properties of PK11195 and the novel library of 
analogues. 
Affinity data shown as mean±SEM n=3, except where 

a
 is assigned n=2.  Compounds are listed in 

order of ascending Ki values. *Ki and Log P values published at (35). 
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Compound Ki (nM) Log P %PPB Pm Km 

 

27.8±2.9
a
 3.62 95.30 0.54 246.85 

 

 

173±35* 5.17* 97.35 0.41 189.83 

 

 

411±62* 

 
 
 
 
 
 
 

5.41* 98.21 0.83 418.14 

 

 

455±51* 5.02* 98.30 0.62 303.84 

 

491±154 4.50 96.63 0.50 214.49 

Table 2.6 (cont). 
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Compound Ki (nM) Log P %PPB Pm Km 

 

 

1255±218 2.91 92.32 0.30 120.18 

 

 

1339±168
a
 4.50 95.02 0.55 238.61 

 

 

1432±80* 5.16* 99.18 0.62 306.52 

 

 

3812±383
a
* 5.12* 99.15 0.63 302.22 

 

4026±256
a
* 5.11* 98.88 0.69 331.77 

Table 2.6 (cont). 
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Compound Ki (nM) Log P %PPB Pm Km 

 

 

4083±88
a
* 5.12* 98.27 0.68 333.59 

 

12675±647
a
* 5.21* 98.87 0.68 336.11 

Table 2.6 (cont). 

 

2.4  Discussion 

2.4.1 Investigation of HPLC analyses as a novel tool for brain 

radiotracer discovery 

In this chapter, HPLC methods were used to determine the physicochemical properties 

of radiotracers that have been characterised in vivo in humans and the predictive 

relationships between HPLC measures and in vivo brain measures were described. The 

HPLC methodology used has the potential to provide a high-throughput and cost-

effective approach that may improve lead candidate identification and reduce the 

current high level of attrition in radiotracer discovery. 

As previously outlined, Log P values between 1 and 3.5 have been considered optimal 

for brain penetration of a compound (section 1.3) and the Log P value is frequently used 

as a selection criterion to take compounds forward in the radiotracer development 

process (19, 34). Of the three HPLC-derived measurements examined as useful 

predictors of BBB penetration, Log P was the weakest; where the described association 

between it and peak %ID in brain had an r2 value of 0.47. The basis for this 

comparatively weak association may be that while Log P provides a measure of 

hydrophobicity and polarity interactions (i.e. lipophilicity), it does not reflect the ionic 

bonding that is also involved in compound-membrane interactions (52, 56-58). Log P is 
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therefore a relatively simplistic measure since it does not predict all aspects of BBB 

penetration. A number of different methods that can be used to determine Log P were 

investigated and the values varied considerably depending on the method used to 

measure or calculate it. Taken together the findings suggest that using Log P as a basis 

for lead candidate identification may contribute to the high attrition rate in radiotracer 

discovery. It was interesting to note that the reproducibility of the HPLC method was 

greater than that of the commonly used flask method. Log P values that are determined 

by the traditional flask method may be affected by very small amounts of impurities 

present in the sample. One advantage of HPLC is that impurities present in a test 

sample will not affect the retention time and therefore will not affect the Log P 

determined.  

In order for a molecule to penetrate the BBB, it has to cross brain capillary endothelial 

cells and thus permeability across the plasma membrane is a crucial factor in BBB 

penetration (98). It has been shown that artificial membranes, such as IAMs, are able to 

mimic compound-membrane interactions more reliably than octanol-water or C18 

chromatography (further detail in sections 2.1.3 to 2.1.5) (52, 56-58). Consequently, in 

this study, permeability (measured using IAM chromatography) was evaluated as a 

predictor of brain uptake. The results obtained show that there is a stronger association 

between permeability and peak %ID in the brain (r2 = 0.78) than between Log P and 

peak %ID in the brain (r2 = 0.47). Radiotracers with high permeability had the lowest 

brain uptake, which is in line with previous observations that highly diffusible molecules 

exit brain tissue rapidly by transport across local capillaries, thus resulting in low %ID 

measured in the brain (99). 

The best fitting curve describing the relationship between %PPB and brain uptake was 

Gaussian; the higher levels of brain uptake being observed when radiotracer binding to 

plasma proteins was approximately between 45 and 85%. This suggests that both lower 

and higher limits of PPB define a range within which brain uptake will be optimal. A 

consensus view is that to optimise brain uptake, radiotracer binding to plasma proteins 

should be lower than 95% based on findings that avid binding of compounds to plasma 

proteins (above 95%) results in low blood clearance and low brain penetration (66). High 

binding to plasma proteins is associated with high lipophilicity and this can increase 

deposition of radiotracer in peripheral organs including liver, lungs and spleen  (19). 

Thus, when PPB is high, brain uptake may be reduced as a consequence of both low 

blood clearance and increased peripheral organ deposition. The results  from this study 

show that low PPB is also associated with low brain uptake, which is consistent with 

drug pharmacokinetic studies demonstrating that molecule-protein complexes are less 

available to enzymes involved in first-pass metabolism (67). However, this 
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interpretation would be strengthened by future analysis including additional 

radiotracers with PPB lower than 45%. 

Two of the major factors in the phenomenon of BBB penetration, and hence brain 

uptake, are PPB and BBB permeability (50). The approach investigated in this study 

suggests that the determination of both %PPB and permeability for compounds would 

facilitate lead molecule selection during radiotracer discovery process. A guideline for 

selection of compounds may be proposed  based on the results obtained, where a low 

permeability value (< 0.5) and %PPB between 45-85% is suggested to most likely yield 

the highest brain uptake (Table 2.7). These proposed thresholds aim to provide further 

confidence in the selection of molecules to be taken forward as radiotracers. 

Another important consideration when developing a novel radiotracer is its 

specific/non-specific interactions, frequently expressed in vivo as binding potential. 

The competition binding assays that are typically used for screening compound affinity 

provide little insight into its non-specific binding in vivo.  Non-specific binding has been 

found to be a frequent limitation of novel radiotracers (100-101). A high throughput 

approach providing information on specific/non-specific binding interactions is 

therefore desirable to reduce attrition during radiotracer development. In this 

investigation IAM chromatography was used to model non-specific interactions with cell 

membranes and the relationship of the measured Km value with the selected in vivo 

measurement, BPND, was examined. There was a negative association between Km and 

BPND, such that for Km values higher than 250, the BPND was below 2 and for Km values 

higher than 150 the BPND was below 3. A minimum specific binding ratio between 2 and 

3 has been suggested to be desirable in order to reliably analyse in vivo images (53-54). 

Our findings suggest that a Km value of between 150-250, as determined by IAM 

chromatography, may be useful as lower cut-off threshold for selection of compounds 

for future development (Table 2.7). Defining an ideal specific to non-specific binding 

ratio in vivo by means of PET or SPECT is complex and dependent upon multiple factors, 

including target size, resolution of the instrument, radioactive concentration on the 

target site and signal to noise ratio. Measurement of Km using IAM chromatography can 

provide a simpler approach for estimation of specific to non-specific binding during 

early compound screening.  
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HPLC measurements Predicted in vivo measurements 

Pm<1.5 %ID> 2.0% 

Pm<0.5 %ID>4.0% 

PPB<95% %ID>2.0%* 

45%<PPB<85% %ID>4.0% 

Km<250 BPND>2.0 

Km<150 BPND>3.0 

Table 2.7 Proposed guidelines for aiding lead molecule identification using developed HPLC 
tool. 
*except highly hydrophilic compounds, where PPB < 30% = %ID < 2.0% 

The HPLC methodologies described in this chapter for determination of Pm, Km and %PPB 

may provide a high throughput approach that could be easily automated and used to 

build a large database of radiotracer characteristics. Nevertheless, given the complexity 

of radiotracer design and in vivo biological systems, there are several limitations to this 

approach. One of the weaknesses is that it assumes passive diffusion across the BBB, 

although it is well know that the BBB contains several active transport mechanisms, 

efflux pumps and metabolically active enzymes (46, 55). Currently a high-throughput 

method for prediction of active transport, such as P-gp mediated transport, remains to 

be developed (18, 51, 100, 102). Another limitation of the HPLC approach outlined is its 

inability to account for radiotracer metabolism. Increased probability for enzymatic 

metabolism in blood has been associated with very low binding to plasma proteins, 

while increased probability for metabolism in tissue has been linked with very high 

binding to plasma protein (19, 50, 66-67). However evaluation of plasma protein binding 

by means of HPLC provides only limited insight into the likelihood of radiotracer 

metabolism and additional in vitro methods, such as assays using liver microsomes, may 

also reduce attrition in radiotracer development. The HPLC methodology investigated 

here is also unable to mimic the effects of certain pathologies on the BBB function. For 

example, one of the radiotracers examined (11C-PIB) has been used for imaging of Aβ 

plaques in patients with dementia. Previous studies have shown that Aβ plaques are 

frequently present in the vicinity of the cerebral microvasculature and as consequence, 

the BBB function can be severely compromised (101). This may result in increased brain 

uptake of this tracer. Ideally, an in vitro model able to mimic effects of pathologies on 

BBB function would also further improve the HPLC approach proposed here.  

The evaluation of predictive relationships between the data derived from HPLC analyses 

and the in vivo characteristics of radiotracers only used %ID and BPND data obtained 

from normal human brain. Due to the availability of published values and compounds, 

this meant that only 10 radiotracers were included in the present analysis. This is due to 

two main reasons: (1) studies investigating radiotracers in human brain that fail to 
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produce the expected outcome are frequently not published; and (2) there is a lack of 

either human biodistribution and/or time-activity curves published in the literature. A 

multicentre approach making unpublished data available would add to this initial 

analysis. Future developments of the current approach using HPLC could include a 

computational model that incorporates the in vitro HPLC measurements reported along 

with other in vitro measurements (e.g. P-gp transport assays) so that the probability of 

a molecule being a successful radiotracer could be more accurately predicted. 

In summary, the results demonstrate that Log P should not be relied upon as a predictor 

of BBB penetration during brain radiotracer discovery. However the HPLC measurements 

of permeability, PPB and membrane interactions that are described here may have 

potential to predict in vivo performance and hence allow evaluation and ranking of 

compound libraries, improving selection of lead radiotracer candidates. No method is 

without its drawbacks; however, there is a compelling need for better selection of 

candidate molecules in the early stages of radiotracer development and therefore 

simple and cost-effective methodologies able to predict in vivo radiotracer 

characteristics are desirable. An approach employing the proposed HPLC measurements 

would enable screening of large libraries of compounds and identification of those most 

likely to succeed. 

2.4.2 HPLC analyses of radiotracer candidates for SPECT imaging 

of the TSPO in the brain 

The novel HPLC methodology investigated in this study as a tool for brain radiotracer 

discovery was applied to a new library of PK11195 analogues developed at the School of 

Chemistry at the University of Glasgow. The compound library was also tested for 

affinity to the target, TSPO, using the traditional competition binding assays (35). Over 

the past decades, a significant number of new radiotracers for imaging the TSPO in the 

brain were synthesised and evaluated, including the most well known TSPO radiotracer, 

PK11195. In spite of these efforts, the currently available radiotracers for imaging of 

the TSPO have considerable disadvantages, including low sensitivity, high non-specific 

binding and limited capacity to quantify subtle differences in TSPO expression in vivo 

(103). Therefore novel radiotracers for imaging of the TSPO with improved 

characteristics are required. The present study set out to aid the development of a 

novel SPECT radiotracer for imaging of the TSPO in the brain. 

The two compounds from the library of novel PK11195 analogues with the highest 

affinity for TSPO were LS 1 and LS 3 (Figure 2.17). The benzyl analogue LS 3 was found 
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to have a Ki value of 26.1 nM, while diethyl analogue LS 1 had a higher binding affinity 

that was comparable to that of PK11195 (Ki of LS 1 and PK11195 was 12.0 and 9.8 nM, 

respectively). The morpholine analogue, LS10 also had a sub-100 nM affinity (Ki value of 

27.8 nM). In general, the results showed that substantially increasing or decreasing the 

size of the side-chain of the amide results in a poor affinity for the TSPO.  The higher 

affinity of 3-methyl analogue LS 5 (Ki 455 nM) compared to the desmethyl analogue ABO 

3 (Ki >1000 nM) confirmed previous observations that semi-rigid compounds (restricted 

rotation of the amide carbonyl) bind with higher affinity to the TSPO (35). The use of 

competition binding assays to determine the affinity of a compound has a number of 

limitations, including a high dependency on the assay conditions used.  This limits the 

comparison of affinity data from novel compounds with affinity data from radiotracers 

in the literature. In this study, the binding affinity of PK11195 was determined in the 

same assay as the new library of analogues so that a direct comparison could be made. 

HPLC analyses showed that LS 1 and LS 7 had the most promising physiochemical 

characteristics of all evaluated compounds (Figure 2.17). LS1 and LS7 are the only 

compounds to have both Pm values of less than 0.5 and Km values of less than 150.  When 

taken together with affinity data, LS 1 is identified as the most promising PK11195 

analogue within the library of compounds developed for imaging the TSPO in the brain. 

LS 7 is suggested to be unsuitable for imaging of TSPO due to its low affinity for this 

target (Ki > 1000 nM), even though good physicochemical properties were determined 

by HPLC. LS 3 had the second highest affinity for TSPO; however the poor 

physicochemical properties determined by HPLC (Pm value  of greater than 0.5, Km value 

of greater than 150 and %PPB of > 98%) suggests this compound should not be taken 

forward as a candidate for further development. 

As mentioned above, LS1 had the highest affinity for the TSPO and also promising Pm 

and Km values.  In comparison with PK11195, LS 1 had a lower Pm and Km but the %PPB 

was higher than PK11195. The HPLC selection guidelines outlined in section 2.4.1 

suggest that the lower Km and Pm values of LS1 compared with PK11195 will result in a 

higher in vivo binding potential and brain uptake for LS1 compared with PK11195. 

However, the higher %PPB determined for LS1 in comparison to PK11195 is predictive of 

problems in radiotracer delivery to the brain.  
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Figure 2.17 Novel PK11195 analogues and the process of lead molecule selection. 
(a) Pm value determined by HPLC, (b) %PPB values determined by HPLC, (c) Km values measured by HPLC and (d) affinity values determined by competition binding 
assays. HPLC data show that LS 1 and LS 7 are the most likely to succeed candidates, while affinity data show LS 1 and LS 3 are the compounds with highest affinity 
for TSPO. Combined analysis of the data shows that LS 1 is the lead candidate. Solid black lines represent the guidelines proposed for lead molecule selection based 
on developed HPLC tool (further detail in section 2.4.1) and dashed black line represents the proposed limits used previously in the literature.  
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Binding to plasma proteins is saturable and therefore, drugs administered at high 

enough mass may still enter the brain, even when highly bound to plasma proteins. 

However, at radiotracer levels (<10 μg per dose) specific binding to albumin or other 

plasma protein binding sites can severely inhibit radiotracer entry into the brain. 

Nonetheless, some radiotracers with high %PPB (>95%), such as ADAM and PIB, are still 

able to cross the BBB and reach the brain. An explanation for this may be that non-

specifically bound radiotracer to plasma proteins may still enter the brain by free 

diffusion if the plasma proteins come into close contact with the endothelial membrane 

(19). The nature of the binding of LS 1 to plasma proteins, as determined by HPLC is 

unknown. Therefore without conducting in vivo studies it is not possible to definitively 

predict that the high %PPB measured in vitro will result in problems with radiotracer 

delivery to the brain.   

It is interesting to note that if the lead candidate selection was based on the current 

dogma of a desired Log P value between 1 and 3.5, interpretation of the results would 

have been considerably different. For example, using the Log P value determined by 

HPLC as measured in this study, PK11195 would have been excluded as a potentially 

useful compound. PK11195 has well known limitations as an brain imaging radiotracer, 

including high non-specific binding (103), however it is still currently the most useful 

radiotracer for imaging of the TSPO. LS 1 would rank below LS 8, LS 9 and LS 10 when a 

Log P value between 1 and 3.5 is used as a selection criterion (Table 2.6).  Nonetheless, 

LS 8, LS 9 and LS 10 showed higher Pm and Km values than LS 1, more similar to that of 

PK11195, suggesting these compounds would have poor uptake and high non-specific 

binding.    

The application of HPLC analyses to a library of PK11195 analogues has demonstrated 

the ability of HPLC to provide a simple method for the ranking of compound libraries. By 

examining compounds in a series, with minor changes in chemical structure, it is 

possible to gain insight into how structural changes affect physicochemical properties 

such as lipophilicity and permeability [7]. This insight can be used to influence and aid 

the future design of novel libraries targeting the TSPO.  In summary, from the library of 

compounds investigated LS 1 was identified as the lead candidate for imaging the TSPO 

in the brain using a combination of affinity data and the HPLC selection guidelines 

outlined in section 2.4.1. However, the high plasma protein binding measured for LS 1 

suggests that this compound may have problems with radiotracer delivery. Based on this 

finding, the further development of LS1 is not recommended. At the time of writing this 

thesis, a new library of compounds was being synthesised by the Glasgow radiotracer 

development group with the aim of obtaining a candidate with improved 

physicochemical characteristics, while maintaining affinity for the TSPO.  
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2.5  Conclusion 

In this chapter a novel tool for use in brain radiotracer discovery based on HPLC analysis 

was outlined. The results from this study showed that HPLC measurements of Pm and 

%PPB may have the potential to predict radiotracer brain uptake in humans, while Km 

may have the potential to predict binding potential and non-specific binding in the 

human brain. The results also showed that Log P should not be relied upon as selection 

criteria during brain radiotracer discovery. These results were used to propose 

guidelines from HPLC derived criteria for lead candidate selection. The proposed 

guidelines were applied to the HPLC measurements obtained from a new library of 

PK11195 analogues. Taken together with affinity data the results showed that LS 1 was 

the lead candidate from the library, however high %PPB precluded this candidate from 

further development.  

The developed HPLC tool can be applied to select the lead radiotracer candidate during 

brain radiotracer discovery by following four main steps: 

1) Synthesise or use an already existent library of compounds targeting a brain 

receptor, transporter or enzyme and determine the compound’s affinity to the 

target by means of competition binding assays. 

2) Test each compound using the HPLC methodology investigated in this chapter, in 

order to obtain %PPB (from the HSA column), Pm and Km (from the IAM column) 

values. 

3) The obtained values of %PPB, Pm and Km can then be used to predict the %ID in 

brain, BPND and non-specific binding by using the proposed selection criteria 

(Table 2.7). An example of application of the proposed thresholds was given in 

Figure 2.17, where the novel TSPO ligands were tested using the proposed tool. 

4) The lead candidate will be the compound with the highest affinity for the target 

combined with the more favourable physicochemical properties, i.e. lowest Pm 

and Km and %PPB between 45-85%.  

In summary, in vitro HPLC analysis can be used to provide useful information on the 

properties of compound libraries in the early stages of radiotracer discovery, offering 

increased confidence in the selection of a lead candidate for further in vivo evaluation.  
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3 Radiosynthesis of 
123/125

I-NKJ64: a novel SPECT 

radiotracer for imaging of NAT in brain 

In this thesis, the compound NKJ64 was investigated as a novel NAT radiotracer. This 

chapter introduces the rationale for developing a novel SPECT radiotracer for imaging of 

the NAT in brain by outlining the importance of the NAT in noradrenergic 

neurotransmission and the implications of its dyregulation on normal brain function. The 

current need for the development of a suitable radiotracer for imaging of NAT in brain 

is also outlined.  

NKJ64 is an iodinated analogue of reboxetine, a selective noradrenaline reuptake 

inhibitor (SNRI).  Initial work to develop a novel NAT radiotracer based on reboxetine 

involved the synthesis of a small library of compounds. This work was performed by 

Nicola Jobson, a PhD student in the School of Chemistry at the University of Glasgow, as 

part of a collaboration with the Glasgow radiotracer development group. These initial 

studies are outlined in the introduction section of the current chapter. A brief overview 

of different iodination techniques is also provided in the introduction section to 

facilitate interpretation of radiolabelling results and discussion of the radioiodination 

methodology used. 

3.1 Introduction 

3.1.1 The role of the NAT in noradrenergic neurotransmission and 

consequences of its dyregulation on brain function 

Noradrenaline and adrenaline are catecholamines formed along an enzymatic cascade 

that begins with tyrosine. Noradrenaline is the main sympathetic neurotransmitter in 

the periphery and is prevalent throughout the brain. Adrenaline, which is formed by the 

N-methylation of noradrenaline, is primarily released from the adrenal medulla and its 

role as a neurotransmitter in the CNS is relatively unknown. 

Tyrosine hydrolase is the rate-limiting enzyme in the production of noradrenaline, 

transforming L-tyrosine into L-DOPA in the neuronal cell body and its nerve terminals. 

DOPA-decarboxylase rapidly converts L-DOPA into dopamine, which is the precursor of 

noradrenaline. Dopamine is then transported inside storage vesicles to noradrenaline-

producing neurons via amine-specific transporters. Once inside noradrenaline-producing 

neurons, dopamine-B-hydroxylase within the vesicles transforms dopamine into 
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noradrenaline via hydroxylation of the β-carbon. On arrival of an action potential at a 

noradrenergic synapse, neurotransmission occurs by release of intravesicular 

noradrenaline into the synaptic cleft via exocytosis. After release into the synaptic 

cleft, noradrenaline is rapidly returned to the synaptic terminals via the NAT. The NAT 

is a specific transporter (69 kDa transmembrane protein with 617 amino acids, belonging 

to the Na+/Cl- dependent class of co-transporters) located in the outer membrane of the 

synaptic terminal. If noradrenaline is not rapidly removed from the synaptic cleft by the 

NAT, then it is biochemically degraded by monoamine oxidase (MAO) (104-105). Figure 

3.1 is a schematic representation of the noradrenergic transmission process. 

 

Figure 3.1 Schematic representation of the noradrenergic neurotransmission process. 
Note NAT reuptake function. 

The locus coeruleus, a dense cluster of noradrenergic neurons, is located in the 

brainstem and presents the highest density of NATs in the mammalian brain (41, 106). 

The locus coeruleus has been implicated in multiple brain functions, including: 

vigilance, attention, sensory processing, synaptic plasticity, network resetting, memory 

formation, memory retrieval, decision making and performance facilitation (107). 

Dysregulation of the noradrenergic system has been implicated in multiple psychiatric 

and neurodegenerative disorders, including: depression, post-traumatic stress, anxiety, 

ADHD, Alzheimer’s disease and Parkinson’s disease (36-41).  
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3.1.2 Radiotracers for imaging of NAT 

Non-invasive imaging using a selective NAT radiotracer and PET or SPECT could be used 

for in vivo investigations of disease progression and treatment response in different 

psychiatric and neurodegenerative disorders. In addition a NAT radiotracer would also 

be extremely valuable in imaging studies designed to evaluate drugs targeting NAT, such 

as drug occupancy studies, thereby aiding the drug discovery process. Therefore, a 

radiotracer specific for in vivo assessment of changes in NAT density, either in disease 

states or as a consequence of drug treatment, is desirable. It has been postulated that 

an ideal radiotracer for imaging of the NAT in brain should have (38, 40-41): 

1. high binding affinity for the NAT and high selectivity versus other brain 

receptors;  

2. moderate lipophilicity, usually lying in the log P7.4 range of 1-3.5 for good initial 

brain entry and low non-specific binding;  

3. high target to non-target ratio (≥1.5 in non-human primates) to provide a clear 

image of the NAT;  

4. specific binding to the NAT reaching peak equilibrium during SPECT/PET 

measurement to allow quantification of NAT occupancy;  

5. lack of radiolabelled metabolites in the brain (<5%);  

6. small molecular weight (lower than 450);  

7. high stability in plasma;  

8. easy radiolabelling for imaging; 

9. good initial brain uptake (>0.5% dose/organ) at 2 minutes after intravenous 

injection; 

10. a binding profile that reflects the NAT biodistribution, illustrated by ex vivo 

autoradiography or in vivo imaging. 

Multiple NAT-selective radiotracers have been developed over the years for in vivo and 

in vitro brain imaging, including: 11C-desipramine (11C-DMI) and its hydroxylated 
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derivate (R)-11C-OHDMI; 11C-nisoxetine and its derivates (125I-INXT and 125I-PYINXT); 11C-

thionisoxetine; 11C-oxaprotiline; 11C-lortalamine; 11C-talopran; 11C-talsupran; two 11C-

labelled analogues of mazindol; and 11C-labelled, 18F-labelled and 123I-labelled analogues 

of reboxetine (38-41). However, all radiotracers developed to date are considered to be 

far from ideal as NAT brain imaging agents. The most common limitations of previously 

developed NAT radiotracers include high non-specific binding, slow kinetics, low brain 

uptake and poor in vivo selectivity. 

The most promising PET radiotracers developed for in vivo imaging of the NAT are 

analogues of reboxetine (further details on the properties of reboxetine can be found in 

section 3.1.3) and include: (S,S)-11C-MeNER, (S,S)-18F-FMeNER-D2 and (S,S)-18F-FRB-D4 

(108-109). Studies investigating (S,S)-11C-MeNER, an O-methyl derivate of reboxetine, 

showed a high hypothalamus-to-striatum uptake ratio of 2.5 at 60 minutes post-

injection in rats (110). PET imaging with (S,S)-11C-MeNER in cynomolgus monkeys and 

baboons demonstrated a regional distribution consistent with known distribution of 

NATs and a thalamus-to-striatum uptake ratio of 1.4-1.6. However, the specific binding 

of (S,S)-11C-MeNER to the NAT did not reach peak equilibrium during a 90 minutes PET 

measurement, hampering successful quantification of the biodistribution of this 

radiotracer in vivo. In addition, the relatively noisy signal at later time points further 

restricted the utility of (S,S)-11C-MeNER for the quantitative assessment of NAT binding 

occupancy in the brain (41, 111). O-Fluoromethyl and O-Fluoroethyl analogues, (S,S)-

18F-FMeNER-D2 and (S,S)-18F-FRB-D4, were subsequently synthesised to take advantage of 

the longer half-life of 18F (the half life of 11C and 18F is 20 and 110 minutes, 

respectively). (S,S)-18F-FMeNER-D2 was found to have a thalamus-to-striatum binding 

ratio of approximately 1.5 in PET imaging studies in cynomolgus monkeys and humans, 

which is comparable to the specific binding ratio of (S,S)-11C-MeNER (41, 111). 

Moreover, (S,S)-18F-FMeNER-D2 had a lower signal noise level compared to (S,S)-11C-

MeNER and the specific binding peak equilibrium was achieved at 15 minutes post-

injection, within the duration of PET study imaging time frame. Nevertheless, in vivo 

defluorination was detected and high skull uptake, especially in the late phases of 

image acquisition, was observed even though there was a deuterium substitution on the 

fluoroalkyl side chain (41, 112). Drug displacement studies with (S,S)-18F-FMeNER-D2 in 

non-human primates were performed to evaluate the dose-dependent occupancy of the 

NAT by atomoxetine, an SNRI used to treat mood disorder and ADHD. These studies 

showed that: (1) clinical doses of atomoxetine could occupy the NAT almost completely 

(113); and (2) (S,S)-18F-FMeNER-D2 was able to measure a dose-dependent change in NAT 

occupancy in the brain. These results encouraged the use of (S,S)-18F-FMeNER-D2 for 

human PET imaging, despite the high skull uptake observed (112). 
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Three NAT radiotracers for SPECT imaging have previously been developed: (R)-N-

methyl-(2-[125I]iodo-phenoxyl)-3-phenylpropylamine (125I-INXT); (R)-N-methyl-3-(3-[125I]-

pyridin-2-yloxy)-3-phenylpropan-1-amine (125I-PYINXT); and (S,S)-2-[α-(2-

ethoxyphenoxy)phenylmethyl]-morpholine (123I-INER) (37-38, 40, 114-116). 125I-INXT has 

a Ki value of 0.03 nM in rat frontal cortex membrane preparations, a KD value of 0.06 ± 

0.01 nM in membrane preparations of LLC-PK1 cells overexpressing NAT and a Bmax of 55 

fmol/mg in rat frontal cortex membrane preparations. Despite a high in vitro affinity, 

125I-INXT exhibited slow kinetics and high non-specific binding in vivo in rats. 

Consequently, it was concluded that further development of NAT radiotracers for SPECT 

imaging was required.  

In 2008, Lakshmi et al. developed a new series of derivates of iodonisoxetine. The most 

promising radioligand, 125I-PYINXT, displayed a high and saturable binding to the NAT in 

LLC-PK1 cells overexpressing NAT with a KD value of 0.53 ± 0.03 nM. Biodistribution 

studies in rats showed a moderate initial whole brain uptake of 0.54% injected dose at 2 

minutes post radiotracer administration. The hypothalamus-to-striatum ratio was found 

to be 2.14 at 4 hours post-injection (40). Although better compared to 125I-INXT, the in 

vivo kinetics of 125I-PYINXT is still not ideal for SPECT imaging of NAT in brain, due to 

the persistent slow kinetics in rats, where a target to non-target ratio above 2 was only 

reached at the late time point of 4 hours post-injection. Recently, a novel reboxetine 

analogue 123I-INER (also denoted (S,S)-IPBM) was radioiodinated (114-116). 123I-INER has 

a high affinity and selectivity for the NAT in rat forebrain, with a Ki value of 0.84 ± 0.12 

nM  and a selectivity for NAT versus DAT of 270 and for NAT versus SERT of 51 (114). In 

rat biodistribution studies, 123I-INER displayed good initial brain uptake with maximum 

accumulation in the rat brain at 30 minutes after injection (0.54% injected dose/g). The 

washout in rat brain was gradual and a high midbrain-to-striatum ratio was observed at 

180 minutes post-injection (116). In baboons, the maximum brain uptake (1.0% injected 

dose) was observed 10 minutes post-injection. A slow washout in baboon brain, over 

more than 2 hours, was observed. Despite the longer physical half-life of 123I being 

compatible with slower kinetics, the washout of 123I-INER over 2 hours in vivo in baboons 

suggested improvement of NAT radiotracers for SPECT was needed (40, 114).   

3.1.3 Design and synthesis of novel iodoreboxetine analogues for 

imaging of NAT in brain 

Due to the important role that the NAT plays in the control of brain function (section 

3.1.1) and the limitations of the previously developed SPECT radiotracers (section 

3.1.2), the radiotracer development group in Glasgow set out to develop a novel NAT 
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radiotracer for SPECT brain imaging based on the antidepressant drug, reboxetine. The 

antidepressant compound 2-[α-(2-ethoxyphenoxy)benzyl]morpholine or reboxetine is a 

SNRI that acts by binding to the NAT and blocking reuptake of noradrenaline back to the 

terminals. Table 3.1 compares the different binding affinities of four antidepressant 

drugs: reboxetine, nisoxetine, desipramine and mazindol. These drugs have been or are 

currently being investigated as parent structures for the design and development of 

novel radiotracers for PET or SPECT. Examples of radiotracers developed, based on 

these drugs structures were outlined in section 3.1.2. Reboxetine has the highest 

affinity for the NAT compared to nisoxetine, desipramine and mazindol. In addition, 

reboxetine’s low affinity for other brain receptors and transporters (Table 3.2) 

demonstrates its high selectivity for the NAT (104, 117-118). As a consequence of its 

high selectivity and high affinity for the NAT (117), reboxetine was chosen as a potential 

target for radiolabelling. Other favourable pharmacodynamic properties of reboxetine 

include: a half life in humans around 13 hours; full excretion after 96 hours; 10-15% 

excretion by faeces; 10% clearance by renal excretion; a primary route of elimination 

via hepatic metabolism, mostly by cytochrome P450 3A4 (118).  

Compound Chemical structure NAT Ki (nM) 

Reboxetine 

 

 

1.1±0.2 (5) 

 

Nisoxetine 

 

1.5±0.1 (3) 

Desipramine 

 

1.6±0.2 (3) 

Mazindol 

 

1.4±0.1 (3) 

Table 3.1 Binding affinity (Ki) of four antidepressant drugs for NAT reuptake sites in rat 
frontal cortical membranes. 
Adapted from (117) and (119). Values are mean±SEM (number of separate determinations). 
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Receptor Ki (μM) Receptor Ki (μM) Receptor Ki (μM) 

α1 adrenergic 

α2 adrenergic 

β1 adrenergic 

D2 dopamine 

D3 dopamine 

D4 dopamine 

10±2 

43±3 

10300 

9±5 

20±2 

>49 

H1 histamine 

Muscarinic 

5-HT1A 

5-HT2A 

5-HT2C 

1.4±0.2 

3.9±0.2 

18±3 

7.3±0.4 

1.5±0.5 

m1 

m2 

m3 

m4 

m5 

2.6±0.2 

2.8±0.5 

2.8±0.1 

4.2±0.8 

2.0±0.6 

Table 3.2 Affinity (Ki) of reboxetine for other brain receptors and transporters in rat whole 
brain homogenates.  
Adapted from (118). Values are mean±SEM of at least three separate determinations. 

Reboxetine is marketed as an antidepressant drug in a racemic mixture of (2R,3R)- and 

(2S,3S)-enantiomers, but it is (2S,3S)-reboxetine (Figure 3.2) that has the highest 

affinity and selectivity for the NAT (45). However, little was known about the potency 

of the other stereoisomers of reboxetine.  In 2006, the radiotracer development group 

in Glasgow set out to synthesise and evaluate all four stereoisomers of an iodinated 

analogue of reboxetine, in order to gain insight into the structure-activity relationship 

with the NAT (44-45). Competition binding assays using rat whole brain homogenates 

showed for the first time that the (2R,3S)-iodoreboxetine stereoisomer (Table 3.3 and 

Figure 3.2) was as potent as the (2S,3S)-stereoisomer. In 2007, Tamagnan and co-

workers published data on a range of iodinated analogues of (2S,3S)-reboxetine, one of 

which was INER (Figure 3.2), with high affinity for the NAT but some limitations as a 

SPECT imaging agent (as outlined in section 3.1.2) (114, 116). Together these findings 

prompted the radiotracer development group in Glasgow to prepare NKJ64 (Figure 3.2), 

a (2R,3S)-isomer of INER. NKJ64 was found to have low nanomolar affinity for the NAT 

against 3H-nisoxetine in rat whole brain (Table 3.3) (43).  NKJ64 was also shown to have 

good selectivity for the NAT; affinities for SERT or DAT  binding sites were 5 and 50 

times lower than for the NAT, respectively (Table 3.3)(43). Therefore, NKJ64 was 

chosen as lead candidate for future radiolabelling and biological evaluation and the 

results are presented in this thesis. It should be noted that the lead candidate, NKJ64, 

was selected prior to development of the HPLC tool previously described in chapter 2. 

Results from applying the HPLC developed tool to investigate NKJ64 physicochemical 

properties (Appendix 1) were obtained at later stages of NKJ64 biological evaluation and 

not during the radiotracer discovery stage, due to the chronological order that the 

experiments were performed (detail in thesis outline section 1.5). 
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Figure 3.2 Chemical structures of reboxetine and iodinated analogues for in vivo imaging of 
NAT. 

 
Compound Ki for NAT (nM) Ki for SERT (nM) Ki for DAT (nM) 

 

320.8±9.0 --- --- 

 

58.2±9.4 --- --- 

Table 3.3 Affinity (Ki) of iodoreboxetine analogues for NAT, SERT and DAT in rat whole brain 
homogenates. 
Adapted from (44) and (43). Results reported as mean±SEM (n=3, except for NKJ64 where n=5). 
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Compound Ki for NAT (nM) Ki for SERT (nM) Ki for DAT (nM) 

 

53.8±2.7 2793±480 1457.8±150 

 

64.0±2.4 646±142 176±20 

 

8.4±1.7 51.5±8.4 525.9±125.5 

Table 3.3 (cont). 

 

3.1.4 Introduction to radiosynthesis of novel radiotracers 

The radiosynthesis of novel radiotracers for SPECT imaging needs to result in the final 

radiolabelled product having a high specific activity, typically of the order of Ci/μmol or 

GBq/μmol. A high radiochemical yield and high radiochemical purity of the final product 

are also necessary (32, 120-121). High specific activity is an essential characteristic for 

a radiotracer to be used for in vivo imaging in humans and animals, as the presence of 

large amounts of cold ligand in low specific activity radiotracer formulations can 

potentially result in a pharmacological mass effect, contradicting the principle of 

radiotracer imaging (31-32, 121). Furthermore, the radiochemical yield from the 

radiosynthesis of a radiotracer should be as high as possible to minimise the cost 

associated with radioisotope production and to keep operator radiation exposure as low 
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as possible (32). Since both high specific activity and radiochemical yield are important 

characteristics in radiotracer production and use, Section 3.1.5 outlines different 

labelling strategies that could be used to obtain novel radioiodinated tracers with high 

specific activity and high radiochemical yield. High radiochemical purity is also 

desirable, in order to ensure that the image obtained in vivo reflects the interaction of 

the radiotracer with the target site, and not any impurities. In addition, high 

radiochemical purity is important in terms of dosimetry, as non-desirable radioactive 

species may bind to other structures, increasing unnecessarily the radiation exposure to 

non-target regions. For example, free radioiodine can bind to non-target tissues, such as 

the thyroid and stomach, increasing the radiation exposure of these organs. Different 

methodologies for the purification of novel radiotracers, in order to obtain the final 

radiolabelled product with high radiochemical purity, are outlined in section 3.1.6.  

3.1.5 Nucleophilic and electrophilic radiolabelling techniques 

The aliphatic carbon-iodine bond is relatively weak (222 kJ/mol), which results 

(especially in vivo), in a fast deiodination either by nucleophilic substitution (SN2) or β-

elimination. Thus, when a radioiodine atom has to be incorporated in a radiotracer, it is 

preferentially designed to be located on a sp2 carbon atom in a vinylic or aromatic 

moiety, since the carbon-iodine bond strength is higher (268 and 297 kJ/mol, 

respectively) than the aliphatic carbon-iodine bond. The first decision to be made when 

designing the radiolabelling methodology for a radiotracer is whether a nucleophilic or 

electrophilic approach should be used (120).  

In nucleophilic substitution reactions, the attacking reagent (an iodide anion) brings an 

electron pair to the substrate to form a new bond and the leaving group is eliminated 

with an electron pair. There are several mechanisms possible depending on the 

substrate (aliphatic or aromatic), the leaving group and the reaction conditions (for 

example, solvent and temperature) (32). The method of choice in nucleophilic 

radioiodination is typically the well-established Cu(I)-catalysed halogen-halogen 

exchange reaction in an acidic and aqueous medium. The versatility of this nucleophilic 

Cu(I) method is demonstrated by the possibility of non-isotopic exchange (*I/Br), which 

enables the synthesis of radiotracers with the high specific activity essential for brain 

receptor imaging. In general, nucleophilic exchange can be successfully applied on 

activated (electron-deficient substituent, e.g. carbonyl group) or non-activated (e.g. 

alkyl group) aromatic compounds. During iododebromination, it is important that the 

compound structure does not contain any other moieties that are functionally 

susceptible to iodination or reaction with the added reducing agents, as this could 
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reduce the radiolabelling yield or inhibit the reaction completely. For example, the 

presence of a thiourea group, which complexes copper (I,II)-species, inhibits the 

radiolabelling with radioiodide completely (120). Some other relevant experimental 

parameters involved in the Cu(I)-catalysed halogen-halogen exchange reaction are the 

Cu1+-concentration and the amount of substrate/precursor. Higher yields are obtained 

with higher amounts of precursor and the optimal precursor to Cu1+ ratio is at least 5-

10, for precursor in μmol amounts. Frequently, the amount of precursor is determined 

or limited by the required specific activity of the radiotracer being synthesised. Carrier-

free preparations necessitate non-isotopic exchange and the amount of precursor should 

be as small as possible in order to minimise the risk of breakthrough during the 

radiolabelling process. When using isotopic exchange reactions, a relatively high specific 

activity can be achieved by lowering the amount of precursor, although low 

radiolabelling yields are associated with lowering the amount of precursor (120).  

Electrophilic radioiodination is a process in which positively charged iodine (I+) attacks a 

system with high electron density such as an aromatic ring or an alkane. As a result a 

covalent carbon-iodine bond is formed with loss of a positively charged leaving group 

(32). Within electrophilic reactions, radioiododestannylation has increasingly become 

the method of choice. The weakness of the carbon-tin bond readily gives site-specific 

radioiodination, even at room temperature, while the precursor can be made from the 

bromo- or iodoaryl compound. Oxidising agents that are most commonly used include 

peracetic acid and the N-chloro-compounds, such as chloramine-T, iodogen and 

succinimides. Since the N-chloro compounds have relatively strong oxidising properties 

they often induce the formation of by-products and therefore it may be necessary to 

limit these oxidative side reactions. This can be achieved using various methods 

including immobilisation of chloramine-T on spherical polystyrene particles (iodobeads®) 

or by coating a thin layer of iodogen on the walls of a reaction vessel. Peracetic acid is 

often preferred for the radiolabelling of small organic molecules due to its mild 

oxidising properties (31, 120).  

In summary, the R-group(s) present on the aromatic ring that is to be radiolabelled is 

key in determining the radiolabelling methodology used for production of a radiotracer. 

The R-group(s) can either activate towards nucleophilic or electrophilic substitution 

(Figure 3.3).  
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Figure 3.3 Schematic of electrophilic and nucleophilic radioiodination methods. 

 
For both nucleophilic and electrophilic substitution the stability of the precursor needs 

to be verified. For example, nucleophilic substitution requires frequently higher 

reaction temperatures (100—180 °C) and longer reaction times (20—60 minutes), which 

may not be tolerated by a precursor. In contrast, electrophilic substitution exposes a 

precursor to an oxidising agent, but more favourably, requires short reaction times (5—

20 minutes) often at room temperature. In addition, for highly lipophilic precursors, 

nucleophilic substitutions tend to require higher amounts of precursor to assure a good 

labelling yield and the separation step when using isotopic exchange can be 

problematic. Conversely, electrophilic substitution only requires small amounts of 

precursor (μg-scale) and offers more versatility in terms of solvent choice. A summary 

of the main radiolabelling routes discussed is provided in Table 3.4 (32, 120). 
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 Electrophilic 

radioiodination 

Nucleophilic 

isotopic exchange 

Nucleophilic non-

isotopic exchange 

Type of precursor  

(substitution on 

aromatic) 

Electron-rich 

substituent, and/or 

modification of 

precursor: -SnMe3, 

-SnBu4, -SiMe3 

Electron-deficient 

substituent, Cu
1+

 

catalysis preferable 

Electron-deficient 

substituent, mostly 

Cu
1+

 catalysis 

 

   

Specific activity Non-carrier added 

(NCA) 

or carrier-added 

Low/moderate due to 

presence of carrier 

High/NCA (traces of 

precursor might act 

as pseudo-carrier) 

    

Reaction times 5—20 min 20—60 min 20—60 min 

    

Reaction 

conditions 

 Mostly room 

temperature 

 Presence of an 

oxidising agent 

 Amount of 

precursor: μg-scale 

 Labelling yield less 

proportional with 

amount of precursor 

 Elevated 

temperature (100—

180 °C) 

 Presence of a 

reducing agent 

(Cu
1+

-catalysis) 

 Amount of 

precursor: mg-scale 

 Labelling yield 

proportional with 

amount of precursor 

 Elevated 

temperature (100—

180 °C) 

 Presence of a 

reducing agent 

(Cu
1+

-catalysis) 

 Amount of 

precursor: mg-scale 

 Labelling yield 

proportional with 

amount of precursor 

    

Purification step Facile purification Often little, or no 

purification required 

Sometimes difficult to 

purify 

Table 3.4 Summary of the main radioiodination methods. 

 

3.1.6 Separation and purification of radiotracers 

Purification of radiotracers is frequently successfully accomplished by HPLC (122-126). 

Alternatively, radiotracer purification can be achieved using solid phase extraction 

(SPE) (38, 40, 127).  One advantage of preparative HPLC over SPE relates to the ability 

of HPLC purification to provide both radiodetection and UV analysis of all the 

constituents within the reaction. Furthermore, it is a robust and versatile technique, 

which is able to efficiently separate a wide range of compounds with high resolution. 
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Conversely, SPE is a more rapid and less expensive method, which can shorten the 

overall radiosynthesis and formulation time. This is of particular interest when working 

with short-life radionuclides, such as 11C for PET imaging (128). Figure 3.4 presents a 

schematic representation of each purification method, HPLC and SPE. 

 

Figure 3.4 Schematic representations of HPLC and SPE purification methods. 

 

3.1.7 Hypothesis and aims 

It was hypothesised that NKJ64 could be radiolabelled by iododestannylation in order to 

produce 123/125I-NKJ64. This chapter aims to develop the radiolabelling methodology for 

the production of high-specific activity 123/125I-NKJ64 for subsequent biological 

evaluation in rats. Iododestannylation of the corresponding trimethylstannyl precursor 

was investigated, via a two-step reaction, using peracetic acid as an oxidising agent. 

Two different agents (HCl and TFA) were investigated for the deprotection step and 

purification was investigated using HPLC. 

3.2 Material and Methods 

3.2.1 General 

All chemicals, unless otherwise stated, were obtained from Sigma Aldrich, UK. Sterile 

water and sodium chloride (0.9% NaCl) were obtained from Braun Medical, UK and 

Baxter, UK, respectively. Organic HPLC solvents were obtained from Rathburn 

Chemicals, UK and ethanol from Fisher Scientific, UK. Sodium hydroxide (NaOH) was 

purchase from VWR, UK. Na125I was obtained from Perkin Elmer, USA and Na123I from GE 

Healthcare, UK. The SnMe3-precursor of NKJ64, cold NKJ64 and cold BOC-intermediate, 
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used for testing the identity of the final product and for radiolabelling reactions, were 

produced by colleagues in the School of Chemistry at the University of Glasgow. 

3.2.2 Analytical HPLC system 

A Dionex Ultimate 3000 series HPLC (Dionex, UK) was used and data acquisition and 

processing was carried out using Chromeleon 6.8 chromatography software (Dionex, 

UK). All analytical HPLC was performed on a Phenomenex 4 μm Synergi Hydro RP80A 

(150 × 4.6 mm + 10 mm guard cartridge) column eluted with a 0.1% trifluoroacetic acid 

(TFA) in methanol and 0.1% TFA in water gradient described in Figure 3.5. UV detection 

was carried out at 220 nm and radiodetection was carried out using a Berthold FlowStar 

LB513 series radiodetector. The identity of the radioiodinated I-NKJ64 (tr=6 minutes) 

was confirmed by co-injection of the cold I-NKJ64. 

 

Figure 3.5 Analytical HPLC system used for radiosynthesis of NKJ64. 

 

3.2.3 Radiolabelling 

Radiolabelling of NKJ64 was investigated via electrophilic iododestannylation of the 

corresponding organotin precursor (SnMe3-precursor). To a vial containing 20-74 MBq of 

Na123/125I in 50 µl of 0.05 M NaOH was added 50 µl of 0.5 M phosphoric acid, 50 μg of 

SnMe3-precursor in 100 µl of ethanol and 10% v/v peracetic acid (PAA), (Figure 3.6 A). 

The reaction was mixed via vortex and incubated at room temperature for 5 minutes. 
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Removal of the BOC protecting group on the radiolabelled BOC-intermediate was 

investigated by adding either 50 µl of 2 M HCl or TFA, (Figure 3.6 B), followed by 

incubation at either room temperature or heating at 60 º C for different time intervals. 

The reaction mixture was then analysed by using the analytical HPLC (outlined in 

section 3.2.2) and/or purified by semi-preparative HPLC (outlined in section 3.2.4) to 

determine the incorporation radiochemical yield and/or the isolated radiochemical 

yield and specific activity, respectively. 

 

Figure 3.6 Radiolabelling of 
123/125

I-NKJ64 from the corresponding organotin precursor via a 
two step reaction.  
a. Na

123
I or Na

125
I, PAA, EtOH. b. 2 M HCl or TFA.   

3.2.4 Purification and specific activity determination  

A Dionex Ultimate 3000 series HPLC (Dionex, UK) was used and data acquisition and 

processing was carried out using Chromeleon 6.8 chromatography software (Dionex, 

UK). Radiolabelled 123/125I-NKJ64 was purified by injection of the total reaction mixture 

onto a Phenomenex 4 μm Synergi Hydro-RP80A (150 × 10 mm + 10 mm guard cartridge) 

column. Two HPLC semi-preparative methodologies were investigated using either 0.1% 

TFA in methanol and 0.1% TFA in water or 0.1% TFA in acetonitrile and 0.1% TFA in 

water as the mobile phase. Method A used a mobile phase of 0.1% TFA in methanol and 

0.1% TFA in water and the gradient described in Figure 3.7A (NKJ64; tr=6 minutes). 

Method B used a mobile phase of 0.1% TFA in acetonitrile and 0.1% TFA in water and 

gradient described in Figure 3.7B (NKJ64; tr=25 minutes). UV detection was carried out 

at 220 nm and radiodetection was carried out using a BioScan Flow Count radiodetector. 

The fraction containing 123/125I-NKJ64 was collected, and the solvent was removed by 

rotatory evaporation. Reconstitution of the purified 123/125I-NKJ64 was performed using 

0.9% saline solution. The radiochemical purity of the final product was measured using 

analytical HPLC (outlined in section 3.2.2). 
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Figure 3.7 Semi-preparative HPLC systems used for radiosynthesis of 
123/125

I-NKJ64. 
(a) Semi-preparative methodology A and (b) semi-preparative methodology B. 
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The specific activity of the final product was calculated using a concentration-response 

curve obtained from a range of concentrations of NKJ64. A concentration-response 

curve (Figure 3.8) was generated on both semi-preparative HPLC systems (methods A 

and B, outlined in section 3.2.4) and by injection of 10 μl of cold NKJ64 diluted in 

ethanol in different concentrations: 1 mg/mL, 0.5 mg/mL, 0.25 mg/mL, 0.1 mg/mL, 

0.05 mg/mL, 0.01 mg/mL and 0.005 mg/mL. The UV response for each concentration 

was plotted against the amount of NKJ64 in moles. The equation of the concentration-

response curve was used to convert the UV response co-eluting with 123/125I-NKJ64 into 

moles. The amount of radioactivity corresponding to 123/125I-NKJ64 was calculated using 

integration of the radioisotope trace peaks and the injected activity, assuming no loss 

of radioactivity on the HPLC semi-preparative system. The specific activity was 

determined as the amount of radioactivity per mol (Ci/μmol). 

 

Figure 3.8 Representative amount /response curve for I-NKJ64 (method B). 
X=UV response (millivolts/min) and Y=amount of I-NKJ64 in moles. 

3.2.5 Labelling using Na127I and mass spectrometry analysis 

Analysis of the product obtained during the synthesis of NKJ64 using cold Na127I was 

performed. The synthesis was performed using a slight modification of the protocols 

outlined above in section 3.2.3. Briefly, to a vial containing 1.26 ng of  Na127I in 50 µl 

0.05 M NaOH was added 50 µl of 0.5 M phosphoric acid, 50 μg of SnMe3-precursor in 100 

µl of ethanol and 10% v/v PAA. The reaction was mixed via vortex and incubated at 
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room temperature for 5 minutes. The Boc protecting group was then removed by adding 

50 µl of 2 M HCl, followed by heating at 60 °C for 45 minutes. The reaction mixture was 

purified using semi-preparative HPLC (Method B). The peaks were collected, the solvent 

was removed by rotatory evaporation and reconstitution of the purified sample was 

performed using ethanol. The peak of interest was then analysed by chemical ionisation 

(CI) mass spectrometry (MS). 

3.2.6 Stability testing  

Samples of the purified and reconstituted 123I-NKJ64 and 125I-NKJ64 were stored at 4 °C 

and radiochemical purity was determined using analytical HPLC (outlined in section 

3.2.2) over a 24 h and 8 days period, respectively. 

3.3 Results 

A typical HPLC trace obtained following co-injection of NKJ64 precursor, cold NKJ64 and 

Boc-intermediate onto the analytical HPLC is shown in Figure 3.9. The retention times 

of the cold compounds were used to identify the radiolabelled products after 

radiosynthesis steps a and b (Figure 3.6). Identity of the final radiolabelled product was 

confirmed by co-elution with cold NKJ64.  

Radioiodination of the SnMe3-precursor to obtain the Boc-intermediate (step a, Figure 

3.6) was achieved with an incorporation radiochemical yield of 91.2±6.0% (mean±SD, 

n=17). The results from the deprotection reactions investigated using analytical HPLC 

are summarised in Table 3.5. No deprotection of the radiolabelled Boc-intermediate 

occurred at room temperature. Maximum radiochemical yields of 123I-NKJ64 were 

obtained after 45 minutes incubation at 60 ºC for both evaluated deprotecting agents 

(TFA and 2 M HCl). 123I-NKJ64 was obtained with the highest radiochemical yield when 2 

M HCl was used as deprotecting agent. However, semi-preparative HPLC (method A) 

revealed that the specific activity of 123/125I-NKJ64 was lower when 2 M HCl was used as 

deprotecting agent (Table 3.6).  
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Figure 3.9 A typical analytical HPLC trace following co-injection of NKJ64 precursor, BOC-
intermediate standard and I-NKJ64 standard. 
I-NKJ64 tr=6.250 minutes, Boc-protected standard tr=21.763 minutes and SnMe3 precursor 
tr=25.863 minutes.  

Deprotecting Agent Incubation Method Radiochemical Yield (%) 

TFA 25 minutes at RT 0.00 

5 minutes at 60 ºC 38.54 

15 minutes at 60 ºC 

45 minutes at 60 ºC 

60 minutes at 60 ºC 

71.80 

81.94 

80.05 

2 M HCl 5 minutes at 60 ºC 32.39 

15 minutes at 60 ºC 58.47 

30 minutes at 60 ºC 97.45 

45 minutes at 60 ºC 99.01 

60 minutes at 60 ºC 99.02 

Table 3.5 Summary of analytical HPLC results showing the yield of 
123

I-NKJ64 from the small 
scale reactions investigated.  
Starting radioactivity 20-25 MBq, n=1. 
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Table 3.6 Summary of radiolabelling reactions for the preparation of 
123/125

I-NKJ64. 
Starting radioactivity 74 MBq, reaction temperature of 60 °C and reaction duration of 45 minutes, semi-preparative HPLC method A. 

Method of deprotection Radiochemical yield (%) Isolated radiochemical 

yield (%) 

Radiochemical 

purity (%) 

Retention 

time (min) 

Specific activity 

(Ci/μmol) 

123
I-NKJ64

  

Using TFA 

Using 2 M HCl 

83.95±13.24 (n=8) 

98.05±1.63 (n=9)  

68.40±13.50 (n=8) 

80.52±13.74 (n=9) 

>99 

>99 

25 

6 

1.76±0.60 (n=8) 

0.15±0.23 (n=9) 

125
I-NKJ64  

Using TFA 

Using 2 M HCl 

93.92 (n=1) 

99.44±1.25 (n=5) 

75.00 (n=1) 

73.45±18.08 (n=5) 

>99 

>99 

25  

6 

0.73 (n=1) 

0.15±0.04 (n=5) 
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Further analysis of the semi-preparative UV trace, showed that when using 2 M HCl as 

the deprotecting agent and HPLC semi-preparative method A, a single absorbance peak 

co-eluted with the 123I-NKJ64 radioactive peak (Figure 3.10a). However, the UV trace 

obtained after purification of a radiolabelling reaction using the same conditions (2 M 

HCl as a deprotecting agent) and HPLC semi-preparative method B showed two peaks 

(albeit not fully separated, tr peak A = 24.93 minutes and tr peak B = 25.34 minutes), 

both of which co-elute with the 123I-NKJ64 radioactive peak, (Figure 3.10b). The 

comparison between semi-preparative HPLC traces (method B) obtained when using TFA 

and 2 M HCl as deprotecting agents is shown in Figure 3.10c. The traces show the 

absence of the larger by-product (peak A) when using TFA, where the minor peak B 

eluted at 25 minutes. In order to determine the identity of the co-eluting peak A, MS 

analysis of purified by-product (Peak A) obtained from a cold synthesis with Na127I was 

performed. MS of the purified by-product (Peak A) revealed that the collected sample 

contained the deprotected protodestannylated precursor (Figure 3.11); m/z (CI) 270 

(MH+, 6%), 256 (29), 228 (29), 191 (5), 149 (7), 113 (6), 71 (14).  

The reconstituted 123I-NKJ64 in 0.9% saline had a radiochemical purity of >99% after 24 h 

of storage at 4 °C. 125I-NKJ64 in 0.9% saline was stable up to 8 days at 4 °C 

(radiochemical purity > 99%) (Figure 3.12). 
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Figure 3.10 Representative semi-preparative HPLC UV trace and radiotrace from a 
radiosynthesis of 

123
I-NKJ64.  

The final product elution is highlighted by red box. (a) deprotection with 2 M HCl and HPLC semi-
preparative method A; (b) deprotection with 2 M HCl and HPLC semi-preparative method B; (c) 
comparison between deprotection with 2 M HCl and TFA, using HPLC semi-preparative method B. 
Blue line=UV trace and black line=radiotrace.  
Note that by using semi-preparative HPLC method A, one single UV peak co-eluted with 

123
I-

NKJ64 (tr= 6.0 minutes), when using 2 M HCl for the deprotection step (a). However, by using 
semi-preparative HPLC method B it was possible to dissect the single UV peak (HPLC method A 
(a)), into two peaks (peak A, tr = 24.93 minutes and peak B, tr = 25.34 minutes) which co-eluted 
with 

123
I-NKJ64 (b and c).  Note the absence of the larger peak A when TFA was used as the 

deprotecting agent (c).    
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Figure 3.11 Deprotected protodestannylated precursor. 

 

 

Figure 3.12 Representative analytical HPLC trace of 
125

I-NKJ64 stability tests. 
Note stability of the formulation up to 8 days post radiosynthesis. 

 

3.4 Discussion 

The radiosynthesis of 123I-NKJ64 was investigated via electrophilic iododestannylation of 

the corresponding organotin precursor. The radioiodination step (step a, Figure 3.6) was 

successfully accomplished using PAA as an oxidant (91.2±6.0% radiochemical 

incorporation yield). Two different agents, TFA and 2 M HCl were evaluated for the 

removal of the Boc-protecting group (step b, Figure 3.6).  

Novel radiosynthesis methodologies are commonly evaluated by carrying out small-scale 

radiosynthesis and sampling the different reaction mixtures (122, 129-130). HPLC 

analysis can be used to determine the radiochemical yield, enabling the selection of the 

best reaction conditions. For the radiolabelling of NKJ64, multiple small-scale reaction 

mixtures samples were tested using analytical HPLC, in order to determine the best 

incubation duration and temperature for the deprotection step. The highest 
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radiochemical yield of 123I-NKJ64 was obtained using 2 M HCl after 45 minutes incubation 

at 60 °C (Table 3.5), indicating that 2 M HCl was appropriate for the deprotection step.  

Following purification using semi-preparative HPLC (method A), the 2 M HCl 

deprotection method revealed the measured specific activity of 123/125I-NKJ64 to be low, 

compared with the higher specific activity measured when TFA was used as the 

deprotecting agent (Table 3.6). Moreover, the specific activity measured when using 2 

M HCl as the deprotecting agent was similar when the radiosynthesis was performed 

using Na125I or Na123I (Table 3.6). It is known that the specific activity of non-carried 

added Na125I is considerably lower than Na123I (the specific activity of Na125I and Na123I 

was typically around 2.6 Ci/mol and 240 Ci/mol, respectively). Therefore, the 

absence of a difference in the specific activity measured when using Na125I and Na123I 

contradicts the expected theoretical outcome. Subsequent investigation using 

alternative HPLC methodology containing less organic solvent in the mobile phase over 

time (method B) showed that two UV peaks could be visualized (Figure 3.10). Both UV 

peaks co-eluted with the radio-peak identified as 123/125I-NKJ64, indicating the presence 

of a by-product when 2 M HCl was used as the deprotecting agent. In an attempt to 

further improve separation of the peaks, multiple HPLC methodologies were 

investigated (Appendix 2), however, none of the evaluated methods allowed either of 

the peaks to be fully separated from the 123/125I-NKJ64 radio-peak. In contrast, when 

deprotection was performed using TFA, subsequent semi-preparative HPLC (method B) 

revealed the presence of only one minor peak, indicating the by-product observed with 

2 M HCl was not present. It was hypothesised that the by-product detected when using 2 

M HCl as a deprotecting agent, was likely to be the deprotected protodestannylated 

precursor, formed due to the high acidity of 2 M HCl. In order to confirm the identity of 

the by-product, MS analysis (chemical ionisation) was performed on the purified by-

product (Peak A) obtained from the synthesis of cold NKJ64 using Na127I. This analysis 

confirmed the presence of the deprotected protodestannylated precursor (Figure 3.11). 

This is consistent with the breakdown of the precursor, which is present in large excess 

in the radiolabelling reaction, under strong acidic conditions. The pharmacology of the 

deprotected protodestannylated precursor is unknown. However its similar chemical 

structure to reboxetine suggests this compound may have some action at the NAT, 

thereby potentially interfering with the pharmacology of 123/125I-NKJ64.  

The specific activity of a 123I-labelled radiotracer for SPECT imaging can range between 

1 and 2 Ci/μmol (131) to values as high as 5-20 Ci/μmol (124, 126, 131-132). Few 

studies, on the other hand, have reported lower specific activity in the range of 0.1 to 

0.2 Ci/μmol (127). As discussed in section 3.1.4, specific activity is an important 

parameter for a radiotracer since the presence of large amounts of cold ligand in low 
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specific activity radiotracer formulations can potentially result in a pharmacological 

mass effect. A range of methodologies are commonly used to measure specific activity.  

For example, specific activity measurements have been made by testing an aliquot of 

the final product on the analytical HPLC (122-123, 125, 133) or by measuring its value 

during HPLC purification in a semi-preparative system (126, 132). In addition, some 

researchers assume that the specific activity of the final product will be comparable to 

the specific activity of non carrier Na123/125I used (38). Often when using analytical HPLC 

sample testing, the specific activity of a radiotracer is stated to be greater than the 

known detection limits of the HPLC system, where no UV response could be detected 

(122-123, 125, 133). A more accurate method is to measure the specific activity during 

HPLC purification (following injection of the whole reaction mixture), by converting the 

UV response into mass of radiotracer using a concentration-response calibration curve 

(126, 132). Using this method our results showed an approximately tenfold difference in 

the calculated specific activity between the two deprotecting agents; the highest 

specific activity being obtained with TFA. The difference in the calculated specific 

activity values when using different deprotecting agents can be explained by the 

presence or absence of the by-product which co-eluted with the final product. These 

findings suggest that unless specific activity is accurately measured during HPLC 

purification (following injection of the whole reaction mixture), it may not be possible 

to identify potentially confounding impurities. 

Purification of novel radiotracers can be accomplished by HPLC (122-126) or SPE (38, 

40, 127) (for a review on the main characteristics of these two methods see section 

3.1.6). One advantage of preparative HPLC over SPE relates to the ability of HPLC to 

provide both radiodetection and UV analysis of the total reaction constitutes, thus 

allowing direct measurement of the specific activity of the final product. This is 

especially important when establishing the radiosynthesis methodology for novel 

radiotracers. In the present study, the use of semi-preparative HPLC for purification of 

123/125I-NKJ64 highlighted the presence of a by-product in the final product that 

otherwise would not have been identified. Despite its advantages over SPE, particularly 

when establishing radiosynthesis methodologies of novel radiotracer, the repeated use 

of a HPLC system for radiopharmaceutical purification can be the source of bacterial 

growth. Consequently, validation of HPLC purification for the production of 

radiopharmaceuticals for human use may be more difficult, involving cleaning 

procedures, in comparison to SPE, which uses a single disposable unit for each 

radiopharmaceutical preparation. Therefore, there is an argument that SPE can be the 

method of choice for human formulations if adequate radiotracer separation and 

purification can be achieved using SPE.   
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Despite multiple attempts to maximise the specific activity of 123I-NKJ64, its value was 

still below the theoretical specific activity of 123I (240 Ci/mol) (31). The oxidant PAA 

was used to initiate the radiolabelling reaction due to its mild oxidant properties (31-

32, 120), reducing the potential for by-product formation. The use of an organotin 

precursor reduces the risk of any intact precursor remaining co-eluting with the final 

radiotracer during the HPLC purification step. Furthermore, the purity of precursor was 

tested by colleagues in the School of Chemistry at the University of Glasgow and was 

found to be 100% with no presence of iodine impurities. This excludes the possibility of 

the precursor impurities being an explanation for the specific activity values being 

lower than possible theoretically. One potential explanation could relate to the high 

incubation temperature of 60 °C required in the deprotection step. As previously 

explained (section 3.1.5), electrophilic iododestannylation reactions, which are 

typically carried out at room temperature, require short incubation times and 

frequently provide the final radiotracer with high specific activities. Conversely, 

nucleophilic isotopic exchange reactions require higher incubation temperatures and 

typically provide lower specific activities (32, 120). Since higher temperatures have 

been associated with a degree of precursor instability and consequent low specific 

activities (32, 120), this could be a putative explanation for the specific activity 

obtained when preparing 123I-NKJ64. Although the specific activity of 123I-NKJ64 was 

below the calculated theoretical value, the radiolabelling using TFA as the deprotecting 

agent obtained 123I-NKJ64 with a high-specific activity for in vivo imaging of NAT. 

3.5 Conclusion 

The radiosynthesis of 123/125I-NKJ64, a novel radiotracer for imaging of NAT in brain, was 

successfully achieved. The radiochemical yield was higher when using 2 M HCl as the 

deprotecting agent, however a co-eluting by-product present in the final product means 

this radiosynthetic route would not be acceptable for production of 123/125I-NKJ64 for in 

vivo imaging or in vitro studies. In contrast, radiosynthesis of 123/125I-NKJ64 using TFA as 

the deprotecting agent produced the radiotracer without the co-eluting by-product, 

with a high specific activity and adequate radiochemical yield. The radiolabelling 

results highlighted that purification by HPLC and the accurate measurement of specific 

activity provides the opportunity to confirm the absence of impurities generated during 

radiolabelling.   

For evaluation in rodents, NKJ64 was radiolabelled via the electrophilic 

iododestannylation reaction outlined above, deprotection using TFA and purification 

using semi-preparative HPLC method B. According to the results obtained from stability 
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testing, all studies using 123I-NKJ64 and 125I-NKJ64 reported in subsequent thesis chapter 

were performed within 24 hours and 8 days of radiotracer preparation, respectively. 



103 

 

4 Biological evaluation of 
123/125

I-NKJ64 in rodents 

Following the successful radiolabelling of high specific activity 123/125I-NKJ64, reported 

previously in chapter 3, the next step was to evaluate the characteristics of 123/125I-

NKJ64 in rodents. This chapter reports the biological evaluation of 123/125I-NKJ64 in rats. 

4.1  Introduction 

This section provides an overview of the central noradrenergic system in rodents, 

describing the distribution of NAT binding sites in rat brain. The purpose of the 

introduction section is to outline information that will aid the interpretation of the 

results in this chapter. 

4.1.1 Central noradrenergic system in rodent brain 

In rats, the locus coeruleus is a prominent nucleus located in the brainstem reticular 

formation at the level of the isthmus. A quantitative analysis of the locus coeruleus 

indicates that it includes 43% of all the noradrenaline producing neurons in the rat brain 

and comprises approximately 1400-1800 neurons on each side of the brainstem (106-

107, 134).  

Extensive and widespread collateralisation throughout the neuroaxis by the neurons 

arising from the locus coeruleus, especially extensive innervation of the telencephalic 

structures, has been reported since the early 70’s (Figure 4.1). Autoradiography and 

histochemical techniques have been used to determine the major pathways that 

originate from the locus coeruleus. Terminal projections of locus coeruleus include: (1) 

all segments of the spinal cord, (2) brainstem, (3) cerebellum, (4) hypothalamus (the 

major hypothalamic innervation arises from the brainstem noradrenergic cell groups, 

except for the dorsomedial nucleus, the paraventricular nucleus and the supraoptic 

nucleus), (5) thalamus and telencephalon (the entire telencephalon appears to receive 

some input from locus coeruleus, except the basal ganglia, the olfactory tubercle and 

the nucleus accumbens), especially the anterior thalamic nuclei (particularly the 

anteroventral nucleus), the plexus of fibres in the stratum radiatum of CA3 and in the 

area dentata of the hippocampus; and (6) the entire neocortex, especially the cingulate 

and the frontal cortex (106, 134). Additionally, it was determined that: (1) at least 40% 

of all locus coeruleus neurons project to the olfactory bulb, which represents the sole 

source of noradrenergic innervation to the bulb; (2) the dorsal striatum is the only 
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major brain region essentially devoid of noradrenergic fibres (except the caudal medial 

shell of the nucleus accumbens, which showed considerable noradrenergic innervations) 

and (3) the amygdala receives topographically organised innervations by noradrenergic 

fibres throughout the various locus coeruleus subnuclei in addition to the locus 

coeruleus neurons (134).  

 

Figure 4.1 Anatomical distribution of the main noradrenergic projections in the rat brain. 
Adapted from (107). Abbreviations: locus coeruleus (LC), brainstem nuclei (BS), cingulum (C), 
corpus callosum (CC), cerebellum (CER), cortex (CTX), hypothalamus (H), hippocampal formation 
(HF), olfactory bulb (OB), spinal cord (SC), thalamus (TH). 

Tejani-Butt in 1992 used quantitative autoradiography and 3H-nisoxetine for 

quantification of NATs in rat brain (Table 4.1). Results showed that specific binding was 

highest in the locus coeruleus and anteroventral thalamic nucleus, while the lowest 

density was measured in the caudate putamen (135). 

Brain Region 
3
H-nisoxetine Binding (fmol/mg) 

Locus Coeruleus 

Anteroventral thalamic n., dorsomedial 

Bed n. of stria term., lat. div., ventral 

Dorsomedial hypothalamic n. 

Paraventricular hypothalamic n. 

Paraventricular thalamic n. 

Dentate gyrus 

Medial zona incerta 

Dorsal raphe 

Mammilothalamic tract 

1526±39 

1444±147 

1348±57 

1062±37 

847±81 

845±46 

716±40 

672±50 

639±27 

544±86 

Table 4.1 Distribution of specific binding of 
3
H-nisoxetine to NATs in rat brain. 

Results shown as mean±S.E.M, adapted from (135). 
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Brain Region 
3
H-nisoxetine Binding (fmol/mg) 

Bed n. of the stria term., lat. divl., dorsal 

Median raphe 

Basolateral amygdaloid n. 

CA 2 and 3 of the hippocampus 

Frontoparietal cortex 

Ventral posterior thalamic n. 

Central amygdaloid n. 

Centromedial thalamic n. 

Ventromedial hypothalamic n. 

Lateral dorsal thalamic n. 

Lateral amydaloid n. 

Centrolateral thalamic n. 

CA 1 layer of hippocampus 

Medial amygdaloid n. 

Caudate Putamen 

529±10 

500±77 

497±30 

375±32 

358±25 

321±21 

309±42 

307±10 

301±12 

297±26 

267±18 

205±7 

204±15 

180±10 

54±11 

Table 4.1 (cont). 

 

4.1.2 Hypothesis and aims 

It was hypothesised that 123/125I-NKJ64 distribution in rat brain was consistent with 

known NAT labelling. A secondary hypothesis was that 123/125I-NKJ64 had high affinity for 

the NAT in rat brain and whole body kinetics suitable for in vivo imaging. This chapter 

aims to evaluate 123/125I-NKJ64 as a novel NAT radiotracer for SPECT in rodents by 

performing studies to determine the affinity, biodistribution, kinetics and target:non-

target ratio of 123/125I-NKJ64 in rats using in vitro, in vivo and ex vivo imaging 

techniques. 

4.2 Material and Methods 

4.2.1 General 

All chemicals, unless otherwise stated, were obtained from Sigma Aldrich, UK. Sodium 

chloride (0.9% NaCl) was obtained from Baxter, UK. Sodium hydroxide (NaOH), 

potassium chloride (KCl) and sodium chloride (NaCl) used for buffer preparation were 

purchased from VWR, UK. Reboxetine was obtained from Tocris Bioscience, USA. 
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4.2.2 Rats 

All procedures were carried out at the University of Glasgow in accordance with the 

Animals (Scientific Procedures) Act, 1986 (United Kingdom). Male Sprague-Dawley rats 

(Harlan Olac Bicester, UK) weighing 250-300 g were housed in small groups (n≤4) under 

a 12 h light/dark cycle and allowed free access to laboratory diet and water.  

4.2.3 General preparation and monitoring of rats 

For in vivo studies rats were weighed and anaesthetised in a perspex chamber 

containing isoflurane (2.5-4.5% in a mixture of 40% O2/60% NO2), then maintained under 

isoflurane anaesthesia (1.5-3% in a mixture of 40% O2/60% NO2) using a face mask. 

Throughout the experiment period, respiration rate was monitored and rectal 

temperature was maintained at 37-38 °C by means of a heating lamp or heating blanket 

with feedback control. 

4.2.4 Saturation binding assays using 125I-NKJ64  

Rats were killed by an overdose of anaesthetic and the brains rapidly removed and 

dissected on ice. Cerebral cortex was homogenised in ice-cold 50 mM Tris-Base, 300 mM 

NaCl and 5 mM KCl buffer pH 7.4 and centrifuged at 39100 g for 10 minutes at 4 °C. The 

resulting pellet was washed twice by resuspension and centrifugation in buffer, then 

stored at – 50 °C until use. For KD and Bmax determination, aliquots of membrane 

suspensions (0.35-0.75 mg of protein) were incubated for 240 minutes at 4 °C in 50 mM 

Tris-Base, 300 mM NaCl and 5 mM KCl buffer, pH 7.4, in the presence of 8 different 

concentrations of 125I-NKJ64 (0.05-50 nM). Total incubation volume was 500 µL and non-

specific binding was determined in the presence of 10 µM of reboxetine. Assays were 

performed in triplicate. The reaction was terminated by rapid filtration through 

Whatman GF/B glass filters, presoaked in 0.3% w/v polyethylenimine, using a Brandel 

cell harvester. Filters were washed three times rapidly in ice-cold buffer and 

radioactivity on the filters determined by liquid scintillation counting. KD and Bmax 

values were determined by nonlinear regression analysis using GraphPad Prism Version 

4.0 (GraphPad Software, USA). The total protein content was determined by using the 

Bicinchoninic Acid (BCA)-based protein assay. Briefly, the Bio-Rad reagent was prepared 

using solutions A and B in a 50:1 ratio and 1 mL of the freshly prepared reagent was 

added to each test tube. The calibration curve was performed by adding 50 μL of bovine 

serum albumin (BSA) in the following pre-made concentrations 2000, 1500, 1000, 750, 

500, 250, 125, 25 and 0 µg/mL to the test tubes containing the Bio-Rad reagent. In 
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addition, 20 μL of brain homogenate was added to test tubes containing the Bio-Rad 

reagent. All test tubes were then vortexed and incubated at 37°C for 30 minutes. 

Following incubation, the test tubes were kept at room temperature for 5 minutes and 

then the absorbance was read on a spectrophotometer using a wavelength of 562 nm. 

Results from the BSA standards absorbance readings were plotted against the protein 

content. The calibration curve was subsequently used to determine the protein content 

in rat brain homogenates. 

4.2.5 In vitro rat brain autoradiography using 123I-NKJ64 

Coronal sections (20 μm thick) were cut in a cryostat at – 20 °C at 0.3 mm intervals 

from frozen rat brain and thaw-mounted onto poly-L-lysine-coated slides then dried at 

room temperature. All steps of the autoradiography procedure were performed in 50 

mM Tris-HCl, 300 mM NaCl and 5 mM KCl buffer (pH 7.4) at 4 °C. Sections were pre-

incubated in buffer for 30 minutes. The sections were then incubated for 240 minutes 

with 5 nM 123I-NKJ64. Non-specific binding to NAT was determined in adjacent sections 

in the presence of 10 μM reboxetine. At the end of the incubation period, sections were 

rinsed three times for 5 minutes in ice-cold buffer, and dipped for 10 seconds in ice-

cold distilled water. Sections were then dried at room temperature in a stream of cool 

air overnight and exposed to Kodak Biomax MR film (Sigma and Aldrich, UK) for 1 h 

(Figure 4.2). Films were developed and then analysed using a MCID with MCID Basic 7.0 

software (MCID, UK). Relative optical density measurements were obtained from brain 

regions defined with reference to the Paxinos and Watson rat brain atlas (136). 

 

Figure 4.2 Schematic representation of in vitro rat brain autoradiography using 
123

I-NKJ64.  
T=total binding; NS=non-specific binding. 
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4.2.6 Whole body dynamic planar imaging of rats following 

intravenous administration of 123I-NKJ64 

In vivo whole-body imaging in rats was accomplished using dynamic imaging protocols 

after tail vein injection of 25-30 MBq of 123I-NKJ64 (volume 0.3 to 0.4 mL). Rats were 

anaesthetised and prepared as described above (section 4.2.3). Immediately after 

injection of 123I-NKJ64, dynamic imaging was acquired on a large field of view gamma 

camera (Medical Imaging Electronics (MIE), Germany) using SCINTRON software (MIE, 

Germany). Total scan time was 4 hours, with four dynamic phases: 1) sequential images 

every 2 seconds for first 60 seconds; followed by 2) sequential images every 15 seconds 

for next 15 minutes; followed by 3) sequential images every 60 seconds for next 45 

minutes; and then 4) 120 seconds per frame at 75, 90, 105, 120, 150, 180, 210, 240 

minutes post-injection (Figure 4.3). A low energy high resolution collimator and an 

energy window of 15% centre at 159 keV were used on all four phases. Acquisitions were 

obtained using a 256×256 matrix and a zoom of one. Using the SCINTRON software, 

regions of interest (ROI) were drawn on the brain, lungs, intestine and left ventricle 

chamber of the heart, as well as a background region outside the rat. The total counts 

for each ROI were decay corrected and background corrected.  For each rat, images of 

the syringe used to administer 123I-NKJ64 (pre- and post- injection) were acquired over 1 

minute (Figure 4.3). ROIs of the syringe pre- and post-injection were used to calculate 

the total counts associated with the total injected dose. The %ID for each time point 

was calculated by dividing the total counts in each ROI by the total counts associated 

with the total injected dose, multiplied by 100. The chamber of the left ventricle of the 

heart ROI, used as an indirect measurement of blood clearance, was also normalised for 

area. To calculate the %ID in blood, the total counts per pixel in the heart ROI were 

divided by the total counts per pixel in the syringe pre-injection minus the total counts 

per pixel in the syringe post-injection, multiplied by 100. The peak %ID, the time of 

peak %ID, effective and biological half-life (Eq. 4.1) were calculated from the time-

activity curves generated. Elimination rate was determined using peak %ID minus %ID 

value of selected time points (5, 15, 30, 60 and 240 minutes) divided by peak %ID, 

multiplied by 100. Then the percentage of peak uptake was calculated by subtracting 

elimination rate value to 100.   
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Figure 4.3 Schematic representation of whole body dynamic planar imaging acquisition 
using 

123
I-NKJ64. 

1/2 phys 1/2 bio

1/2 eff

1/2 phys 1/2 bio

(T )×(T )
T =

(T )+(T )
       Eq. 4.1 

where T1/2 eff is effective half life, T1/2 bio is biological half-life and T1/2 phys is physical 

half-life. 

4.2.7 In vivo/ex vivo pharmacological blocking experiments using 

123I-NKJ64 

For pharmacological blocking studies, rats were anaesthetised as previously described 

(section 4.2.3). Rats received an intravenous injection via tail vein of either reboxetine 

(2 mg/kg in saline; 1 mL/kg body weight) or saline (1 mL/kg body weight) 15 minutes 

prior to the injection of 123I-NKJ64 (15-25 MBq in 0.4-0.5 mL saline). Thirty minutes 

following injection of 123I-NKJ64, animals were killed by an overdose of anaesthesia and 

the brain rapidly removed and frozen in isopentane at – 50 °C for subsequent 

autoradiography (Figure 4.4). Other organs were then excised, blotted and weighed and 

blood, urine and faeces collected. The amount of radioactivity in tissues and 123I 

standards was measured using an automated Packard Cobra gamma counter. Counts 

were decay-corrected to time of injection and converted into %ID/g. Coronal sections 

(20 μm thick) were cut in a cryostat at – 20 °C at 0.3 mm intervals from frozen rat 



110 

 

brains and thaw-mounted onto slides on the day following the in vivo experiment. 

Sections were dried quickly and exposed to Kodak Biomax MR film (Sigma Aldrich, UK) 

for 3 days. Films were developed and then analysed using a MCID with MCID Basic 7.0 

software (MCID, UK). Relative optical density measurements were obtained from regions 

defined with reference to Paxinos and Watson rat brain atlas (136). Target-to-caudate 

putamen ratios were calculated for the corpus callosum, locus coeruleus, hippocampus, 

anterior thalamus, ventricles, raphe and motor cortex. The caudate putamen was 

selected as representing an area of non-specific uptake as this brain region is known to 

have the lowest density of NAT (135). 

 

 

Figure 4.4 Schematic of in vivo/ex vivo pharmacological studies using 
123

I-NKJ64. 

 

4.3 Results 

Specific binding of 125I-NKJ64 to rat cortical homogenates at 4 °C was saturable (Figure 

4.5 a, b). Nonlinear regression analysis of saturation binding curves from three 

independent determinations produced a mean±SEM KD of 4.82±0.87 nM and a mean±SEM 

Bmax of 548±99 fmol/mg. The percentage non-specific binding, determined in the 

presence of reboxetine, in cortical homogenates was 77% at 6.25 nM 125I-NKJ64. The 

anatomical distribution of 123I-NKJ64 binding to rat brain sections revealed by in vitro 

autoradiography was consistent with the known distribution of the NAT (Figure 4.6). The 

highest level of radioactivity was observed in the locus coeruleus and anteroventricular 

thalamic nucleus, which are known to be rich in NATs. Conversely, there was less 

radioactivity in the cerebral cortex and caudate putamen regions known to have the low 

densities of the NAT. In brain sections there was minimal blocking of 123I-NKJ64 by 

reboxetine in majority of regions, although in the locus coeruleus 123I-NKJ64 binding was 

displaced by reboxetine (Figure 4.6). 
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Figure 4.5 In vitro binding of 
125

I-NKJ64 to rat cortex.  
(a) a representative saturation binding plot of 

125
I-NKJ64 binding to rat cortical homogenates; and 

(b) a representative specific binding curve for 
125

I-NKJ64. Note the high levels of non-specific 
binding, determined in the presence of reboxetine, (a). 
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Figure 4.6 Representative autoradiogram of in vitro binding of 
123

I-NKJ64 to rat coronal brain 
sections. 
Note the reduced levels of binding specifically in the locus coeruleus (LC) in the presence of 
reboxetine. Legend: CPu=caudate putamen and Ant Thal=anterior thalamus. 

The in vivo biodistribution of radioactivity after intravenous injection of 123I-NKJ64 is 

shown in Figures 4.7 to 4.12. In Figure 4.7 it is possible to visualise a sum image (a) of 

the first two seconds, showing the injection site and the heart/blood, where rapid 

delivery of the radiotracer to the heart is shown. From the heart, 123I-NKJ64 rapidly 

passes to the systemic circulation and consequently enters the remaining organs (Figure 
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4.7b). The effective half-life in blood was 0.32 minutes (Table 4.2), and the 

radioactivity in blood cleared rapidly, with less than 10% of injected dose remaining in 

the circulation at 240 minutes post-injection (Figure 4.8 to 4.10 ). 

 

Figure 4.7 
123

I-NKJ64 whole rat body sum images. 
(a) sum image from 0-2 seconds; and (b) sum image from 0-4 minutes post radiotracer 
administration. 

Organ T ½ effective (min.) T ½ biologic (min.) %ID max. 

Whole Brain 48.85±2.60 52.17±2.97 2.93±0.14 

Brain Anterior 35.97±2.76 34.34±2.52 1.23±0.05 

Brain Posterior 49.37±2.64 46.39±2.33 1.84±0.11 

Lung 2.30±0.29 2.31±0.29 6.01±0.78 

Blood 0.32±0.03 0.32±0.03 96.91±0.44 

Table 4.2 Elimination half-life and peak %injected dose of total radioactivity in rats. 
Values are derived from time-activity curves obtained by whole body dynamic planar imaging after 
intravenous injection of 

123
I-NKJ64. Data are expressed as mean±SEM, n=3 rats. 

A longitudinal analysis of 123I-NKJ64 biodistribution over time is provided in Figures 4.8 

and 4.9. Visual inspection of sum images, every 15 minutes (Figure 4.8) and every 3 

minutes (Figure 4.9) provided information on the regional distribution and clearance of 

the 123I-NKJ64 over time. The brain time-activity curve showed that 123I-NKJ64 rapidly 

entered the brain and the level of radioactivity was highest at 0.49±0.04 minutes post-

injection (mean±SEM, n=3) (Figure 4.10). The peak level of radioactivity in the brain 

was 2.93±0.14 %ID (Table 4.2).  
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In order to provide information on regional distribution of radioactivity in brain, 

dynamic planar whole brain images were divided into anterior and posterior brain 

regions. As previously mentioned (section 4.1.1), the locus coeruleus is located in the 

brainstem of the rodent brain, and so the posterior brain region was assumed to be the 

target region. Results from this regional analysis showed that there was higher uptake in 

the posterior region of the brain (peak %ID of 1.84±0.11%) in comparison with the 

anterior region of the brain (peak %ID of 1.23±0.05%) (Table 4.2 and Figure 4.11). 

Elimination from anterior brain was faster than in posterior brain (effective half life of 

34.34±2.52 minutes and 46.39±2.33 minutes, respectively) (Table 4.2) and around 15% 

of peak uptake was present in the anterior brain, in comparison with approximately 30% 

peak uptake in the posterior brain at 240 minutes post-injection (Figure 4.12). Whole 

brain washout was rapid, but slower than the washout from blood and lungs (Table 4.2). 

High uptake of radioactivity was observed in the lungs (Table 4.2), followed by a rapid 

clearance (Figure 4.10). Negligible radioactivity accumulated in the thyroid and did not 

increase until 240 minutes post-injection (Figure 4.8 and 4.9). The intestine was the 

main elimination route (Figure 4.10).   

 

Figure 4.8 Whole rat body in vivo 
123

I-NKJ64 images obtained by dynamic planar imaging.  
(a) A representative sum image obtained over the first 4 minutes after injection of 

123
I-NKJ64; (b), 

(c),(d),(e) sequential sum images, each summed over a 15 minute period, from 0-60 minutes. Note 
the initial high brain uptake which is reduced over time and the absence of significant thyroid 
uptake. 
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Figure 4.9 Whole rat body in vivo 
123

I-NKJ64 sequential images, each summed over a 3 
minute period, from 0-60 minutes.  
Note the initial high brain uptake which is reduced over time and the absence of significant thyroid 
uptake. 
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Figure 4.10 Time activity curves of 
123

I-NKJ64 uptake in different organs. 
(a) Time activity curves of 

123
I-NKJ64 uptake in brain, lung, blood and intestine expressed as % ID and (b) time activity curve in brain. Data are presented as 

mean±SEM (n=3). Note the fast clearance from blood and lungs, the increasing levels of radioactivity in the intestine and the fast wash out from the whole brain.
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Figure 4.11 Time activity curves of 
123

I-NKJ64 uptake in anterior brain, posterior brain and whole brain. 
Data are presented as mean±SEM (n=3). Note the higher percentage injected dose in the posterior brain in comparison with the anterior brain over time.
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Figure 4.12 Percentage of peak uptake of 
123

I-NKJ64 in anterior, posterior and whole brain and blood over time. 
Data presented as mean±SEM (n=3). Note the faster elimination of radioactivity from anterior brain in comparison with posterior brain.
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To further determine the regional distribution of 123I-NKJ64 in the brain following 

intravenous injection, ex vivo autoradiographic analysis was performed at 30 minutes 

post-injection (Figure 4.13a). The highest levels of radioactivity were in the locus 

coeruleus and anteroventral thalamus and there was relatively less radioactivity in the 

caudate putamen and cerebral cortex. The locus coeruleus to caudate putamen ratio 

was 2.84±0.01 (mean±SEM, n=3). Administration of reboxetine prior to that of 123I-NKJ64 

significantly reduced the radioactive signal in the locus coeruleus (Figure 4.13a). The 

locus coeruleus to caudate putamen ratio was significantly reduced by more than 50% in 

reboxetine- compared to saline-treated rats (Figure 4.13b). A comparison of in vivo/ex 

vivo and in vitro autoradiograms is shown in Figure 4.14. Results from in vitro studies 

are consistent with in vivo/ex vivo pharmacological studies, where the highest level of 

radioactivity was seen in the NAT rich structures (locus coeruleus and anteroventral 

thalamus) and the lowest level was seen in the caudate putamen. Reboxetine displaced 

the locus coeruleus signal in both in vitro and in vivo/ex vivo, but did not reduce the 

amount of radioactivity in any of the extra-cranial organs or fluids collected (Table 4.3). 
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Figure 4.13 In vivo/ex vivo pharmacological studies results of 
123

I-NKJ64 in rat brain. 
(a) Ex vivo autoradiograms of rat coronal brain sections 30 minutes post-injection of 

123
I-NKJ64. 

Rats were pre-treated with either saline or reboxetine (2.0 mg/kg; 15 minutes prior to 
123

I-NKJ64). 
The radioactive signal in the locus coeruleus of the reboxetine-treated rat is reduced compared to 
that in the saline-treated animal. (b) Target to non-target ratios in brain regions of rats pre-treated 
with either saline or reboxetine (data are presented as mean±SEM, n=3 per treatment group). The 
caudate putamen was selected as the non-target region due to the known low density of NAT 
binding sites. *p<0.05 (unpaired t-test). 
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Figure 4.14 Comparative analysis of 
123

I-NKJ64 rat brain autoradiograms. 
In vitro and in vivo/ex vivo autoradiographic results. Note reduction of signal in locus coeruleus in reboxetine treated sections (left side figures) and animals (right side 
figures). Also note absence of differences in brain distribution in vitro and in vivo suggesting no brain-generated metabolites are produced in vivo follow intravenous 

injection of 
123

I-NKJ64. 
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Organ Saline Reboxetine (2.0 mg/kg) 

Urine 

Blood 

Faeces 

Heart 

Lung 

Liver 

Spleen 

Stomach 

Small Intestine 

Large Intestine 

Adrenal 

Kidney 

Bladder 

Muscle 

Bone (femur) 

Testis 

Fat Tissue 

Cartilage 

Thyroid 

0.40±0.07 

0.09±0.003 

0.06±0.01 

0.39±0.04 

3.82±0.35 

0.95±0.02 

2.02±0.13 

1.04±0.10 

12.78±2.25 

0.47±0.04 

1.42±0.12 

0.87±0.08 

0.51±0.05 

0.29±0.05 

0.38±0.05 

0.45±0.05 

0.93±0.07 

0.31±0.04 

0.81±0.2 

0.36±0.09 

0.12±0.005 

0.08±0.02 

0.44±0.03 

4.85±0.05 

1.20±0.12 

1.98±0.08 

1.87±0.17 

8.35±0.85 

0.49±0.03 

1.85±0.19 

0.96±0.04 

0.52±0.07 

0.34±0.04 

0.49±0.03 

0.57±0.02 

1.21±0.02 

0.35±0.03 

1.03±0.18 

Table 4.3 Biodistribution of radioactivity in saline and reboxetine pre-treated rats at 30 
minutes post-injection. 
Data are expressed as %ID/g (mean±SEM, n=3). *p<0.05 (unpaired t-test). 

4.4 Discussion 

The biological evaluation of 123/125I-NKJ64 in rodents showed that 125I-NKJ64 has low 

nanomolar affinity (<5 nM) for the NAT in rat brain cortical homogenates. This is in 

accordance with previously obtained data showing that the Ki of NKJ64 against the 

specific NAT ligand, 3H-nisoxetine, was less than 10 nM in rat whole brain homogenates 

(43). NJK64 is the (2R,3S)-stereoisomer of the previously reported NAT SPECT 

radiotracer INER (or IPBM), which is the (2S,3S)-stereoisomer of reboxetine (further 

detail in section 3.1). INER has a Ki for NAT against 3H-nisoxetine of less than 5 nM in rat 

whole brain homogenates and less than 1 nM in rat forebrain homogenates (114, 116). 

NKJ64 and INER are stereoisomers and therefore the determined KD for 125I-NKJ64 is 

consistent with the previous studies. However, this is the first report of the biological 

evaluation of the radiolabelled (2R,3S)-stereoisomer.  

The rapid elimination of radioactivity from blood following intravenous injection of 123I-

NKJ64 supports the efficient delivery of the radiotracer to the tissues. The brain uptake 

of 123I-NKJ64 measured by whole body dynamic planar imaging was 2.93% of injected 
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dose at 0.5 minutes post-injection, representing a rapid and marked accumulation of 

the radiotracer in the brain. This level of whole brain uptake compares favourably with 

other NAT radiotracers assessed in rats. For example, using 125I-2-INXT, Kung et al. 

2004, reported a maximum %ID/organ of  0.69 at 30 minutes post-injection (38) while 

Lakshmi et al. 2008, using 125I-PYINXT, reported a maximum uptake of 0.54% ID/organ at 

2 minutes post-injection (40). Other studies using (S,S)-125I-IPBM, (S,S)-[11C]-MeNER and 

(R)-125I-MIPP reported whole brain uptake of 0.89%, 0.53% and 0.45%, respectively, all at 

5 minutes post-injection (37, 110, 116).  

To obtain high resolution images of 123I-NKJ64 distribution in rat brain, autoradiographic 

techniques were used. The locus coeruleus has the highest density of NAT in rat brain, 

followed by the anteroventricular thalamic nucleus; the cerebral cortex has low 

densities and the lowest density of NAT is in the caudate putamen (106, 135). The 

regional distribution of 123I-NKJ64 binding sites as determined by in vitro 

autoradiography was similar to the known distribution of the NAT in the brain. The ex 

vivo distribution of 123I-NKJ64 brain uptake 30 minutes post-injection was consistent 

with the in vitro distribution and the known regional densities of the NAT. The highest 

level of radioactivity revealed by both in vitro and ex vivo autoradiography was in the 

locus coeruleus. High levels of non-specific binding were detected when 125I-NKJ64 was 

incubated with cortical homogenates in vitro, however, the labelling of the NAT by 123I-

NKJ64 in the locus coeruleus in vivo is supported by the finding that uptake of 

radiotracer was significantly reduced in this region following pre-treatment with the 

selective noradrenaline reuptake inhibitor, reboxetine. The present data are 

comparable to results reported by Wilson et al. 2003 using (S,S)-[11C]-MeNER showing 

that reboxetine pre-treatment significantly reduced the uptake of the radiotracer in rat 

brain (110). In baboons reboxetine pre-treatment resulted in up to 60% blocking 

displacement of 123I-INER in NAT rich regions at 210 minutes post-injection (114). Similar 

levels of in vivo pharmacological blocking were achieved with 123I-NKJ64 as have been 

reported previously with other NAT radiotracers. 

One of the important properties an imaging agent should possess is a target:non-target 

ratio greater than 2 (40). Amongst all of the NAT radiotracers developed to date for PET 

or SPECT imaging, the highest target:non-target ratio reported is for (S,S)-[11C]-MeNER, 

a potent PET radiotracer. In rats at 60 minutes post-injection the hypothalamic:striatum 

ratio for (S,S)-[11C]-MeNER was 2.5 (110). Kung et al., 2004 using 125I-2-INXT and Lakshmi 

et al., 2008 using 125I-PYINXT (SPECT radiotracers) reported a hypothalamus:striatum 

ratio of 1.5 at 3 hours post-injection and 2.1 at 4 hours post-injection, respectively (38, 

40). In the present study, using the NAT-rich locus coeruleus as the target region and 

the caudate putamen as the non-target region, the ratio for 123I-NKJ64 at 30 minutes 
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post-injection was 2.8, as measured by ex vivo autoradiography. Although it is not 

possible to directly compare, the target:non-target ratio for 123I-NKJ64 is greater than 2 

and therefore is in line with other potent NAT radiotracers. Target:non-target ratio was 

measured at 30 minutes post-injection, based on the planar images obtained from 

whole body dynamic planar imaging which showed faster elimination from the anterior 

in comparison to the posterior brain regions (half-live of 35 minutes for anterior brain 

and 49 minutes for posterior brain, Table 4.2). Furthermore, at 30 minutes time-activity 

curves showed a difference in signal between the anterior brain region (where NAT 

density is low) and the posterior brain region (where the highest NAT density region, the 

locus coeruleus, is located) that was more pronounced than at earlier imaging time 

points. However, further in vivo high resolution dynamic imaging studies of the brain 

are desirable to confirm the regional specific binding distribution of 123I-NKJ64 over 

time. Another important property of a radiotracer for brain imaging is the absence of 

substantial radiolabelled metabolites in the brain following intravenous injection. 

Comparison of 123I-NKJ64 images from in vitro autoradiography (carried out at 4 °C) to 

those generated from ex vivo autoradiography, revealed a similar pattern of 

distribution. This observation suggests adequate in vivo stability of the radiotracer, at 

least in rats.    

123I-NKJ64 rapidly entered the lungs, reaching a maximum of 6% of injected dose 

consistent with previous reports of significant lung uptake for other NAT radiotracers 

(37-40, 116, 137). Both Kiyono et al. (2004) and Kanegawa et al. (2006), reported 

significant uptake in the lungs of 125I-MIPP and 125I-IPBM, respectively (37, 116). A 

putative explanation proposed by these authors for the observed lung uptake is the 

expression of neuronal NAT in the pulmonary endothelium (138). In contrast, Takano et 

al. (2008) suggested that a possible mechanism underlying accumulation of (S,S)-

[18F]FMeNER-D2 in the lungs is non-specific uptake by macrophages (137). Ding et al. 

(2003) also observed significant lung uptake of [11C]MRB, however pre-treatment with 

desipramine failed to inhibit uptake into this organ (139). Similarly, the lung uptake of 

123I-NKJ64 was not reduced in reboxetine pre-treated compared to saline pre-treated 

rats. These findings demonstrate that radioactivity in the lungs following intravenous 

injection of 123I-NKJ64 does not represent binding to the NAT. This conclusion is also 

supported by the short biological and effective half-lives of 123I-NKJ64 in the lungs. 

Other peripheral organs such as the heart and the adrenals express NAT (38, 116, 139). 

However, uptake in these two organs was considerably lower than in the lungs, similar 

to previously developed NAT radiotracers that were also taken up minimally by the 

heart and adrenals (37-39, 116). Uptake in the heart and adrenals was not inhibited in 

reboxetine pre-treated compared to saline pre-treated rats suggesting that uptake in 

the heart and adrenals is predominantly non-specific and does not reflect binding to the 
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NAT. Low levels of radioactivity in the other organs examined, including testes and bone 

(with bone marrow) will result in low dosimetry for these radiosensitive tissues. 

The main elimination route of radioactivity was intestinal as assessed by both whole 

body dynamic planar imaging and ex vivo dissection. Reboxetine is metabolised by 

cytochrome P450 3A4 in the liver (118) and since 123I-NKJ64 is a reboxetine analogue it is 

possible it is metabolised by the same route. Therefore, the high levels of radioactivity 

in the small intestine could be due to rapid liver metabolism of 123I-NKJ64. Neither 

kidneys nor bladder were detected during the 4 hours dynamic image acquisition and 

these organs, as well as urine, contained minimal amounts of radioactivity measured by 

ex vivo dissection. These results are consistent with minimal 123I-NKJ64 elimination via 

renal filtration. Kung et al. 2004 and Lakshmi et al. 2008 also found a similar 

elimination pattern in their ex vivo dissection studies (38, 40). Other groups developing 

NAT SPECT radiotracers, however, have published results that suggest two elimination 

routes occurring simultaneously: the renal and the hepatointestinal route (37, 116). 

These observable differences in the elimination routes may be potentially explained by 

structural differences among the evaluated compounds. 

In vivo stability is a desirable characteristic for any radiotracer (40). Free iodine is 

captured by the thyroid gland (140) and therefore free radioiodine concentrations due 

to breakdown of iodinated radiotracers must be kept as low as possible to minimise the 

dosimetry of this radiosensitive gland. Following administration of 123I-NKJ64 the level of 

radioactivity in the thyroid was negligible which indicates minimal in vivo deiodination 

of the radiotracer. Further evidence supporting the in vivo stability of 123I-NKJ64 is 

indicated by the low level of radioactivity present in the stomach.  

Methodological considerations 

Different methods have been used for determination of radiotracers Ki and KD, including 

assays using cell lines overexpressing the brain transporter or receptor and assays using 

native tissues, namely rat and human brain tissue. Cell lines overexpressing NAT have 

been used to provide a convenient source of specific NAT protein for in vitro binding 

assays. For example, Lakshmi et al. 2008 used cells overexpressing NATs for 

determination of 125I-PYINXT KD (results outlined in section 3.1.2, Chapter 3)(40). 

However, homogenate binding assays in rat frontal cortex or striatum provides an in 

vitro assay for NAT affinity that is closer to the in vivo brain environment since other 

regulatory and structural proteins present on the cell membrane are included in the 

assay (38-41, 114). In fact, according to Kung et al. 2004, affinity results obtained with 

cell lines overexpressing NAT, SERT or DAT are conservative and do not account for the 
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potential for non-specific binding seen in brain (38). The variability of methods used to 

determine KD and Bmax by multiple groups makes comparisons between different 

radiotracers difficult. Even when the same assay methodology is used, inter-laboratory 

differences may influence the results. Therefore, care should be taken when comparing 

radiotracer affinity data. Based on the estimation of Bmax, it has been suggested that the 

KD of a useful NAT radiotracer should be approximately 40 times higher than the binding 

affinity of DAT radiotracers (38, 40). For example, if a successful DAT radiotracer has a 

binding affinity of 10 nM an equally successful NAT radiotracer would require a KD value 

of 0.25 nM (38). This estimation is based on the difference in the Bmax/KD ratio for DAT 

versus NAT. Since the target density for a DAT radiotracer is significantly higher than for 

a NAT radiotracer, the target/non-target ratio should be higher for a DAT radiotracer 

compared to a NAT radiotracer at a given level of non-specific binding. However, some 

studies have shown a weak correlation between in vitro affinity and in vivo binding. For 

example, McConathy et al. 2004 observed a high in vitro affinity of 11C-talopram and 

11C-talsupram for the NAT, however this high in vitro affinity did not translate to high 

specific binding in vivo (39). This highlights that radiotracer properties, other than 

affinity, including pharmacokinetics in vivo, metabolism and ability to penetrate the 

BBB, are also important for a radiotracer to be successful. Therefore, in vivo evaluation 

is essential for the characterisation of a novel radiotracer for use in human imaging. 

In vivo whole body dynamic planar imaging was performed in order to determine whole 

body biodistribution and kinetics, brain uptake and elimination and excretion routes of 

123I-NKJ64. Since the advent of the gamma camera, multiple studies using animals and 

whole body dynamic planar imaging have been conducted (141-150). Most of them used 

rats or mice, but other animals such as rabbits, dogs, cats and non-human primates 

have also been imaged with the gamma camera. Examples of applications include 

radiotracer discovery, tumour imaging and drug delivery studies. This is, therefore, a 

well validated method for evaluation of in vivo biodistribution and kinetics of either 

novel or already established radiotracers. The evaluation of the biodistribution and 

kinetics of a radiotracer by in vivo dynamic planar imaging has multiple advantages over 

ex vivo dissection studies at selected time points (detailed in Section 1.2.2). Hence, 

whole body dynamic planar imaging was selected for the evaluation of 123I-NKJ64 

biodistribution and kinetics in rodents.  

All in vivo and ex vivo experiments were carried out under anaesthesia. Although in vivo 

imaging is essential for evaluation of radiotracers in physiological and pathological 

systems, the use of anaesthesia, which is frequently necessary, creates some potential 

pitfalls in terms of data analysis, particularly when developing novel radiotracers (30, 

33). The most common physiological effect of anaesthetic agents is induction of 
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hypothermia, but other more specific effects may arise. Barbiturates used for short-

term anaesthesia have been shown to enter the brain rapidly and some negative effects 

have been linked to this particular type of anaesthetic, including respiratory depression, 

reduced stroke volume and hypotension. On the other hand, ketamine does not depress 

respiration or cardiac output, but has indirect sympathomimetic effects and increases 

noradrenaline plasma levels. These sympathomimetic effects may interfere with studies 

that involve sympathetic nervous system or experiments evaluating NAT. Using 

isoflurane, an inhalation anaesthetic agent, the cardiac function is better maintained 

than with injectable anaesthetics. Previous studies have shown an influence of 

anaesthesia on radiotracer uptake and other in vivo characteristics. For example, 

ketamine significantly increased binding of 11C-labelled dopamine D1 receptor agonist, 

11C-SCH23390, in the striatum compared to conscious control animals. Conversely, 

pentobarbital significantly decreases the 11C-SCH23390 binding in the striatum 

compared to conscious control animals. Animals anaesthetised with isoflurane showed 

significantly lower brain uptake of 11C-SCH23390 than either awake animals or 

ketamine/xylazine anesthetised animals (30). Urethane, on the other hand, produced a 

variety of endocrine effects and increase blood levels of glucose and adrenaline (151). 

Together, these studies demonstrated the importance of careful study design when 

considering the anaesthetic agent to be used. Ideally in vivo imaging in conscious 

animals would be preferable, particularly for imaging of brain receptors. Nevertheless, 

considerable technical challenges are still to be overcome prior to the general utility of 

in vivo imaging in the conscious state. For example, prior studies have shown that 

imaging while animals are awake may provoke acute stress, which has been implicated 

in the release of adrenaline and corticosteroids, leading to increase of heart rate and 

hyperthermia (30). All these previous studies show the complexity associated with the 

design of studies using living animals.  

4.5 Conclusion 

In summary, radiolabelled NKJ64 has a high affinity for NAT in rat brain. 123I-NKJ64 has 

adequate stability in vivo in rats indicated by negligible thyroid and stomach uptake, 

and high target:non target ratio and brain uptake compared to previously developed 

NAT radiotracers. The distribution of 123I-NKJ64 in the rodent brain after intravenous 

injection was consistent with that previously reported for NAT expression. Results 

showed that 123I-NKJ64 binding to the locus coeruleus is displaceable in vivo by the 

selective noradrenaline reuptake inhibitor, reboxetine. Due to the size of the locus 

coeruleus, if 123I-NKJ64 were to be used for SPECT, high resolution imaging would be 

required. In rats 123I-NKJ64 has high non-specific binding and rapidly eliminates from the 



128 

 

brain, particularly the forebrain. The fast kinetics and high non-specific binding in rats 

are issues that need to be further addressed in higher species and using high resolution 

brain imaging, in order to establish the utility of 123I-NKJ64 for SPECT imaging.  

Together, these findings suggest that 123I-NKJ64 possesses most of characteristics 

required for a successful NAT imaging agent (8 out of 10, section 3.1.2, Chapter 3) and 

therefore further evaluation of 123I-NKJ64 in non-human primates is warranted.   
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5 Biodistribution and pharmacokinetics of 
123

I-

NKJ64 in non-human primate brain 

Results from the preliminary evaluation of 123/125I-NKJ64 in rodents (Chapter 4) indicated 

that further evaluation in non-human primates was required in order to determine the 

utility of 123I-NKJ64 as a SPECT imaging agent for the NAT. In this chapter studies using 

non-human primates and 123I-NKJ64 were performed at Molecular NeuroImaging (MNI) 

LLC and Yale University, New Haven, Connecticut, USA.  

5.1 Introduction 

In this introductory section, the noradrenergic system in non-human primate brain is 

outlined, in order to facilitate the interpretation of the imaging results. In addition, a 

brief overview of the main principles of kinetic modelling is provided in this section, 

since modelling was used to quantify the biodistribution and pharmacokinetics of 123I-

NKJ64 in baboon brain.    

5.1.1 Noradrenergic system in non-human primate brain 

The normal topography of NAT in non-human primate brain was investigated by Smith et 

al. 2006 using autoradiography with 3H-nisoxetine (Table 5.1).  In rhesus monkey brain 

the locus coeruleus had the highest density of NAT, followed by the raphe complex, 

thalamus and hypothalamus, amygdala, cortex and cerebellum. The lowest NAT density 

was found in the striatum. Overall the regional distribution of NAT in non-human 

primate brain is similar to the distribution of NAT in rodent brain, with comparable 

relative binding densities in areas such as brainstem and hypothalamus. However, the 

maximum density of NAT measured by autoradiography with 3H-nisoxetine is 

considerably lower in non-human primates (Table 5.1) than in rodents (Chapter 4, Table 

4.1). Differences between non-human primate brain and rodent brain were found in the 

thalamus, hippocampus and amygdala. The highest NAT density in monkey thalamus was 

seen in the midline and intralaminar structures. Conversely, in rats the highest NAT 

density in the thalamus was found in the anteroventral thalamic nucleus. In rodents, 

there was moderate 3H-nisoxetine binding in the dentate gyrus of the hippocampus. On 

the contrary, in the monkey brain, the dentate gyrus showed low NAT density, 

indicating that contributions of noradrenaline to learning functions in primates may be 

different from rodents (152).  
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Brain Region 
3
H-nisoxetine Binding (fmol/mg) 

Cortex 

      Anterior cingulate (area 24) 

      Medial PFC (area 26) 

      Medial PFC (area 32) 

      Gyrus rectus (area 14) 

      Orbital PFC (area 13) 

      Dorsolateral PFC (area 46) 

      Somatosensory (area 3a) 

      Somatosensory (area 3b) 

      Motor (area 4) 

      Entorhinal 

Precommissural striatum 

      Anterior caudate 

      Anterior putamen 

      Anterior nucleus accumbens 

      Posterior caudate 

      Posterior putamen 

      Accumbens shell (ventral) 

      Accumbens core 

Bed nucleus of the striatus terminalis 

      Lateral dorsal 

      Medial 

      Lateral 

      Ventral 

 

13.49 ± 0.8 

21.20 ± 1.5 

13.34 ± 2.3 

12.80 ± 0.6 

11.03 ± 0.3 

10.23 ± 0.1 

11.98 ± 1.1 

12.96 ± 0.9 

11.68 ± 1.3 

9.91 ± 1.0 

 

5.80 ± 0.6 

5.42 ± 0.7 

5.67 ± 1.2 

4.91 ± 0.8 

5.18 ± 0.3 

13.01 ± 1.8 

9.31 ± 0.7 

 

45.63 ± 5.5 

25.88 ± 1.5 

23.24 ± 1.9 

35.00 ± 3.0 

Hypothalamus 

      Paraventricular 

      Periventricular 

      Medial preoptic 

      Lateral preoptic 

      Supraoptic 

      Arcuate 

      Ventromedial 

      Dorsomedial 

      Lateral 

 

53.87 ± 1.2 

50.39 ± 3.7 

23.40 ± 2.5 

28.45 ± 2.3 

40.23 ± 1.9 

36.86 ± 3.1 

30.06 ±5.3 

28.21 ± 1.8 

23.7 ± 2.8 

Hippocampus 

      CA1-4 

      Dentate gyrus 

      Subicular cortex 

 

9.19 ± 1.9 

12.77 ± 2.2 

7.86 ± 1.7 

Table 5.1 Distribution of specific 
3
H-nisoxetine binding to NATs in rhesus monkey brain. 

Data are mean±S.E.M, adapted from (152). 
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Brain Region 
3
H-nisoxetine Binding (fmol/mg) 

Thalamus 

      Paraventricular 

      Intermediodorsal 

      Mediodorsal, medial 

      Centromedial 

      Reuniens 

      Paracentral/centrolateral 

 

71.62 ± 3.9 

32.14 ± 5.9 

27.88 ± 4.5 

58.92 ± 7.2 

47.48 ± 8.3 

22.89 ± 1.1 

Raphe complex 

      Dorsal raphe 

           Intrafascicular division 

           Ventral division 

           Ventrolateral division 

           Dorsal division 

           Caudal division 

      Caudalinear nucleus 

      Median raphe 

 

 

135.69±10.6 

146.24±16.7 

61.64±16.6 

75.17±17.8 

120.37±1.9 

77.41±5.1 

70.44±4.7 

Brainstem 

      Locus coeruleus 

      Lateral parabrachial  

      Subcoeruleus nucleus 

      Dorsal tegmental area 

      A1 noradrenergic cell group 

 

219.63±9.6 

137.75±22.6 

146.94±11.7 

47.75±8.1 

27.88±2.0 

Cerebellum 10.41±1.7 

Table 5.1 (cont). 

 

5.1.2 Brain imaging and kinetic modelling - main concepts and 

considerations  

Different quantification methods can be applied to describe the brain kinetics, 

biodistribution and binding properties of radiotracers in vivo. Quantification of the 

binding of a radiotracer to molecular targets, such as receptors, with PET or SPECT is 

based on an understanding gained from in vitro ligand binding assays obtained over 

several decades, where the equilibrium binding reaction occurs between receptors (R) 

and free ligand (F) to form the bound ligand-receptor complex (B), with rate constants 

kon and koff (Equation 5.1). 

on

off

k

k
R + F  B      (Eq. 5.1) 
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Similarly, the concept of binding potential (BP), which can be defined as the ratio of 

Bmax to KD (Equation 5.2), was adopted as an outcome measure of in vivo imaging 

experiments. 

max
max max

D D

B 1
BP = = B × = B × affinity

K K
     (Eq. 5.2) 

Other measures have been adopted from clinical pharmacology. For example, volume of 

distribution (VT), which in pharmacology refers to the volume of blood (or plasma) that 

would be required to account for the amount of drug in the entire body, has been 

adapted in two ways in the field of in vivo imaging. First, the target region is a 

particular organ, for example the brain, rather than the whole body; and second, 

instead of referring to the amount of drug in the entire organ, the VT is expressed as the 

amount of radiotracer in a volume of tissue. For example, if the radiotracer 

concentration at equilibrium in the striatum is 100 kBq·cm-3 and in plasma is 5 kBq·cm-3, 

then its VT will be 20 mL·cm-3. VT in vivo is mathematically unitless, however it is 

important to assign mL·cm-3 to clarify that it is a ratio of millilitres of reference fluid to 

a volume of tissue. Thus, on the given example, a VT of 20 mL·cm-3 means that 20 mL of 

plasma are necessary to account for the radiotracer in 1 cm3 of the brain region.   

Another important quantification method for analysis of brain radiotracer imaging is the 

measurement of receptor occupancy and displacement in vivo (153). Occupancy can be 

determined by imaging the brain at baseline conditions and then again following pre-

administration of a non-radioactive drug that binds to the target receptor. The 

difference between radiotracer uptake and kinetics between the two measurements 

reflects the occupancy of the receptor by the drug (112-113). The measurement of 

radiotracer displacement by non-radioactive drugs can be determined in a single study. 

Following equilibrium, a non-radioactive drug is given as a bolus and the concentration 

in different brain regions before and after the drug administration is measured. The 

difference between radiotracer concentration before and after drug administration 

provides a measure of radiotracer displacement. Quantification of displacement can be 

used, for example, to investigate radiotracer affinity and selectivity for the target in 

vivo. In addition, displacement studies and occupancy measurements can be used to aid 

drug discovery, to investigate properties of currently available drugs and to determine 

best clinical dosing protocols. 

Quantification of BP, VT and occupancy in vivo can be achieved by applying 

mathematical models to correlate the time-activity curves obtained from in vivo 

measurements with the properties of the receptors and their interaction with the 
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radiotracer. The modelling approach that is widely used is compartmental analysis, in 

which a specified number of compartments communicate with each other via first-order 

kinetics (16). In order to apply kinetic models, some assumptions need to be made. The 

first is the ―tracer principle‖, which states that the physiological processes and 

molecular interactions are not influenced by the SPECT or PET measurement. This is 

considered to be an appropriate assumption since the injected mass of a high specific 

activity radiotracer is very low and therefore it is unlikely to have effects on physiology 

or molecular interactions (5). The second assumption states that physiological processes 

and molecular interactions are in a constant (or steady) state during the SPECT or PET 

measurement. This is an extension of the previous assumption and deals with the 

influence of the SPECT or PET measurement on the system. During the measurement 

period, the parameters of perfusion and metabolism should be constant. Finally, the 

compartmental model analysis relies on the assumption that the concentration in each 

compartment is homogenous (153).  

Multiple models can be used to describe in vivo data, including for example, a one-

tissue compartmental model (1T model) and a two-tissue compartmental model (2T 

model) (Figure 5.1). The 2T model is frequently used for modelling receptor binding of 

brain radiotracers. In this case, compartment 1 represents the vasculature, 

compartment 2 the exchangeable radiotracer pool and compartment 3 the trapped or 

bound radiotracer pool. The kinetics of the third compartment represent the exchange 

of the radiotracer on and off the receptor binding sites (16). Non-invasive alternatives 

to models that require arterial blood sampling, i.e. 1T and 2T models, are the reference 

tissue models (Figure 5.2). These models use a brain region devoid of specific binding as 

a reference tissue and calculate BP from VT for both the target (specific) tissue and the 

reference tissue. These models take into account differences in delivery and free 

concentration between the target (specific) and reference tissues. The reference region 

tissue curve is used as an indirect input function and therefore avoids the need for 

arterial blood sampling.    
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Figure 5.1 One tissue and two tissue compartmental model schematics. 

 

 

Figure 5.2 A reference tissue model schematic. 

 

5.1.3 Hypothesis and aims 

It was hypothesised that 123I-NKJ64 distribution and kinetics in baboon brain could be 

investigated by applying compartmental analysis. It was also hypothesised that 123I-

NKJ64 distribution in baboon brain would be consistent with known NAT labelling in non-

human primate. The main aim of this chapter was to investigate the distribution and 

kinetic properties of 123I-NKJ64 in baboon brain as measured by SPECT, in order to 

determine its utility as a radiotracer for imaging of NAT in brain. 
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5.2 Material and Methods 

Image acquisition and metabolite analysis were performed by colleagues at Yale 

University, USA and MNI LLC, New Haven, CT, USA, respectively. The radiosynthesis of 

123I-NKJ64 was performed by colleagues at MNI LLC, New Haven, CT, USA using 

previously described methodology for the production of 123I-INER (114) and the stannyl 

precursor of NKJ64 provided by Nicola Jobson, University of Glasgow (details in Chapter 

3). 

5.2.1 Non-human primates 

All procedures using non-human primates were conducted at Yale University, USA in 

accordance with institutional animal care protocols and in compliance with federal 

regulations. Two ovariectomised adult female baboons (Papio anubis, 14 and 18 kg) 

were used for in vivo evaluation of 123I-NKJ64 reported in this chapter. Handling of the 

animals during the procedures was performed by colleagues at Yale University, USA. 

5.2.2 Animal general preparation and monitoring 

Baboons were fasted for 24 hours prior to imaging studies. On the imaging day, the 

baboon was first anaesthetised with intramuscular ketamine (10 mg/kg) and 

glycopyrrolate (0.1-0.2 mg/kg), transferred to the SPECT camera and immediately 

intubated with an endotracheal tube for continued anaesthesia with 2.5% isoflurane 

administered through a re-breathing circuit. A period of at least 2 hours between 

induction of anaesthesia and radiotracer injection was allowed, in order to stabilise the 

baboons under anaesthesia and minimise the effects of the initial administration of 

ketamine on 123I-NKJ64 uptake, distribution and kinetics. An intravenous perfusion line 

was established in a femoral vein for injection of fluids for hydration and, if necessary, 

collection of blood samples for metabolite analysis. When arterial blood samples were 

required, a second line was established in a femoral artery. In the contralateral leg, an 

additional venous line was used for injection of the radiotracer. Body temperature was 

maintained using a heated water blanket and monitored by rectal thermometer. Vital 

signs, including heart rate, respiration rate, blood pressure and body temperature, were 

monitored every 15 minutes. 
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5.2.3 General SPECT acquisition protocol 

SPECT studies were performed using a Neurofocus SPECT camera (Neurophysics Inc., 

USA), with a ring of 12 wide-aperture pinhole collimator detectors. Data acquisition 

started immediately after radiotracer injection using consecutive dynamic SPECT scans, 

where detectors moved side-to-side and in and out to completely sample each slice 

(154-155). The duration of each scan was approximately 20 minutes and a total of up to 

18 slices were acquired. An energy window of 10% centred at 159 keV, 128×128×64 

matrix, zoom of 1 and slice thickness of 5.0 mm were used for acquisitions starting at 0 

minutes post-injection. Acquisition duration was 240 minutes for bolus baseline 

experiments and 420 minutes for bolus plus constant infusion studies with displacement 

drug. Raw SPECT data was reconstructed using Neurofocus proprietary software 

(Neurofocus Inc., USA) and the manufacturer’s recommended iterative reconstruction 

algorithm, which was based on maximum a-posteriori (MAP) reconstruction methods, 

similar to algorithms used for scanning microscopes (154). 

5.2.4 Administration of 123I-NKJ64 and displacer 

Two baboons were used for bolus baseline studies, in which arterial blood was 

collected, in order to perform kinetic modelling analysis (injected dose was 222 MBq for 

baboon 1 and 224.96 MBq for baboon 2). In addition, baboon 1 was also used for a 

displacement study (injected dose of 264.18 MBq) using reboxetine (Tocris Bioscience, 

USA), in which venous blood was collected (Figure 5.3). The displacement study was 

conducted using a bolus plus constant infusion protocol. The bolus/infusion (B/I) ratio 

(or Kbol) was calculated to be 2.5 hours using PMOD 3.203 software (PMOD Technologies, 

Switzerland) and results from bolus baseline studies. A Gemini PC 1 (IMED Inc., USA) 

infusion pump with 60 mL syringes was used for infusion of the radiotracer. Upon 

equilibrium, which was estimated to occur between 2.5 and 3 hours post radiotracer 

administration (based on estimations using PMOD 3.203 software), a single bolus of 2.0 

mg/kg of reboxetine was injected intravenously. 
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Figure 5.3 Schematic outline of the experimental procedure in baboons using 
123

I-NKJ64. 
Arterial blood was collected for baseline bolus experiments and venous blood was collected for 
displacement studies. Injection of reboxetine intravenously during the displacement study is 
represented by the black arrow (top right graph). 

5.2.5 Analysis of plasma pharmacokinetics  

For studies using the radiotracer bolus paradigm, i.e. baseline experiments, arterial 

blood samples (4-5 mL) were obtained from the femoral artery at baseline prior to start 

of the study (-5 minutes) and at 1, 3, 5, 10, 15, 30, 60, 120, 180 and 240 minutes post 

radiotracer injection. For displacement studies, where a bolus plus constant infusion 

paradigm was used, venous blood samples were collected at 15, 30 and 45 minutes prior 

to reboxetine injection and 15, 30, 45, 60 and 120 minutes following reboxetine 

administration. The samples were collected into ethylenediaminetetraacetic acid 

(EDTA)-coated tubes. Processing and analysis of blood was performed at the MNI LLC 

laboratories, using previously established methodology (156-159). Briefly, radioactive 

blood samples and blood samples incubated with radiotracer standards were centrifuged 

at 1800 g for 10 minutes. The concentration of radioactivity in plasma and in whole 

blood was counted in equal volume aliquots (50-200 μL) in an automatic well-type γ-

counter. All radioactivity measurements were decay corrected to the time of 

radiotracer injection. Plasma protein extraction was performed three times with equal 

volumes of ethyl acetate. The percentage of extraction was calculated from the activity 
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in the aqueous phase counted before and after extraction at a constant geometry and 

corrected for decay. Beginning with samples of lowest activity, selected organic 

extracts were evaporated to dryness on a rotary evaporator under argon in a 37°C water 

bath. The residue was dissolved in 82.5 μL methanol, diluted with 67.5 μL water and 

injected onto analytical HPLC for metabolite quantification (157).  

5.2.6 Image processing and co-registration with magnetic 

resonance images 

Reconstructed scans were imported into PMOD 3.203 software and merged into a single 

file for image processing (Figure 5.4a). All image processing was performed using PMOD 

tools, starting with decay correction (Figure 5.4b). Motion correction was performed by 

creating an average image of consecutive scans with absence of motion, which was then 

used as a reference for rigid matching co-registration to all scans in the current study 

(Figure 5.4c). Attenuation correction was performed by applying the Chang algorithm 

(attenuation coefficient = 0.011 mm-1) to a semi-automatically drawn volume of interest 

(VOI) of the object of study (Figure 5.4d) (160).  

 

Figure 5.4 Summary of the main steps of SPECT image analysis and processing. 

 
T1-weighted MR images were acquired with a GE Signa unit (General Electric, USA) at 

1.5 T. The T1 sequence was a spoiled gradient recall protocol with the following 

settings: TR=25 ms, TE=5 ms, NEX=2, matrix=256×256, field of view = 16 cm. T1-

weighted MR images were reduced from an initial matrix of 256×256 with 112 axial 

slices (axial slice thickness = 0.7 mm) to a 128×128 matrix, with 20 axial slices (axial 

slice thickness = 2.8 mm). Each animal used for the current study had a brain MR scan 

for purposes of image co-registration and placement of VOIs for SPECT quantification. 

All VOIs were drawn bilaterally; however due to the lack of considerable differences 

between VOIs in left and right hemispheres, the results for the average VOI are 

reported. For each animal, a standard VOI template included the following brain 
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regions: brainstem, midbrain, thalamus, caudate, putamen, frontal cortex, occipital 

cortex, cerebellum and subcortical white matter. 

Average images of SPECT data were generated by averaging the scans presenting the 

highest radioactivity from cortical and subcortical brain structures. The average image 

generated was then co-registered to a MR template from the same animal using an 

automatic rigid matching tool or when necessary manual alignment of both imaging 

modalities, by adjusting translation and rotation of the images (Figure 5.4e). The 

transformation matrix was saved and consequently applied to all individual dynamic 

scans of the corresponding co-registered SPECT study. Finally, the MR-derived VOIs 

templates were apposed to the final co-registered SPECT images for generation of time-

activity curves (Figure 5.4f). The data obtained was saved as an Excel spreadsheet or 

when kinetic modelling was performed (i.e. bolus studies) data was transferred to the 

PMOD kinetic modelling menu, to allow the application of different kinetic models to 

the data.  

5.2.7 Data analysis 

Time-activity curves were generated for each brain region and arterial plasma curves 

were corrected for metabolites. Standard uptake values (SUV) were calculated 

according to equation 5.3 and percentage injected dose (%ID) according to equation 5.4. 

The target:non-target ratio was expressed as SUVr, i.e. SUV value of target region 

divided by SUV of occipital cortex, which had been defined as the reference region. The 

percentage washout from the brain was determined using equation 5.5. 

Concentration VOI target
SUV=

Injected dose

Animal weight

      (Eq. 5.3) 

Concentration VOI target
%ID = ×calibration factor

Injected dose
   (Eq. 5.4) 

where the calibration factor = 1.35. The calibration factor was determined by 

colleagues at MNI LLC, CT, USA following cross calibration between the SPECT camera 

and a dose calibrator. 
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Initial conc. VOI target - Final conc. VOI target
% Washout = ×100

Initial conc. VOI target
   (Eq. 5.5) 

where conc. = concentration. The initial and final concentrations were the radioactive 

concentrations at beginning and end of acquisition.  

The kinetic properties of 123I-NKJ64 following bolus studies were calculated using PMOD 

and two different kinetic models: 1T and 2T compartmental models (153). The goodness 

of fit was assessed by evaluating the Akaike information criterion (AIC), the Schwartz 

criterion (SC, also denoted Bayesian information criterion) and the model selection 

criterion (MSC). The model presenting the lowest AIC and SC values and highest MSC 

value was defined as the preferred model. Arterial input functions were generated using 

the blood sampling results and were used to obtain kinetic parameters using 1T and 2T 

model. The displacement study data was plotted as kBq·cm-3 or SUVr against time, in 

order to identify and quantify the amount of displacement obtained post-administration 

of 2.0 mg/kg of reboxetine. GraphPad Prism 4.0 (GraphPad Software, USA) was used for 

curve fitting. 

5.3 Results 

The results from blood sampling following bolus injection of 123I-NKJ64 are shown in 

Figures 5.5 and 5.6. The elimination and metabolism patterns of 123I-NKJ64 in arterial 

blood were similar in both baboon 1 and 2. At 60 minutes post-injection the fraction of 

parent compound remaining in arterial plasma in baboon 1 was 31%, reaching a value of 

less than 14% at 240 minutes post-injection (Figure 5.5 and Table 5.2). In baboon 2 the 

fraction of parent compound remaining in arterial blood was 36% at 60 minutes post-

injection and less than 26% at 240 minutes post-injection (Figure 5.6 and Table 5.2). 

Examples of HPLC chromatograms obtained from analysis of arterial blood samples 

taken at multiple time points following bolus injection of 123I-NKJ64 are shown in Figure 

5.7. SPECT images demonstrating the distribution of 123I-NKJ64 in the brains of baboon 1 

and baboon 2 are shown in Figures 5.8 and 5.9, respectively. A homogeneous 

distribution of the radioactivity was observed, such that the uptake in the brainstem, 

the region of baboon brain richest in NAT, was similar to that in other brain regions. 

Following intravenous bolus injection of 123I-NKJ64, whole brain uptake peaked at 20 

minutes with a brain percentage injected dose of 2.86% and 3.47% for baboon 1 and 

baboon 2 respectively. A rapid washout from the brain was observed (Figure 5.10) and 

at 240 minutes post 123I-NKJ64 injection, 73% of whole brain initial uptake was 

eliminated (Table 5.3). The lowest uptake was found in the occipital cortex and 
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cerebellum, while the highest uptake was observed in the thalamus, caudate and 

putamen. The uptake in different brain regions was as follows: thalamus, caudate and 

putamen > midbrain, brainstem and subcortical white matter > frontal cortex, 

cerebellum and occipital cortex (Figure 5.10). The high level of radioactivity in the 

caudate and putamen compromised the quantification of 123I-NKJ64 binding ratios and 

therefore these regions were not used as a reference regions. Consequently, for 

calculation of target:non-target ratios, the occipital cortex was used as the  non-target 

region, as it was the brain region with the lowest radioactive concentration. 

Target:non-target ratios, expressed as target SUV relative to occipital SUV, were highest 

in the thalamus, caudate and putamen and lowest in the frontal cortex and cerebellum 

(Figure 5.11). 

 

Figure 5.5 Parent radiotracer fraction present in arterial plasma following bolus injection of 
123

I-NKJ64 in baboon 1. 

 

 

Figure 5.6 Parent radiotracer fraction present in arterial plasma following bolus injection of 
123

I-NKJ64 in baboon 2. 
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Time (min.) 
Percentage of parent in arterial blood (%) 

Baboon 1 Baboon 2 

30 47.11 62.04 

60 31.32 36.10 

240 13.00 23.96 

Table 5.2 Percentage of 
123

I-NKJ64 present in arterial blood over 4 hours. 

 

 

Figure 5.7 Examples of HPLC chromatograms obtained from analysis of arterial blood taken 
following bolus injection of 

123
I-NKJ64. 
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Figure 5.8 Brain SPECT images showing the distribution of 
123

I-NKJ64 in baboon 1. 
Top row: transverse, sagittal and coronal planes (left to right) of the acquired SPECT image. Middle 
row: MR images for corresponding SPECT brain levels in the same animal. Bottom row: co-
registration of SPECT and MR images. In SPECT images, the highest radioactive accumulation is 
showed in red and lowest in green. 
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Figure 5.9 Brain SPECT images showing the distribution of 
123

I-NKJ64 in baboon 2. 
Top row: transverse, sagittal and coronal planes (left to right) of the acquired SPECT image. Middle 
row: MR images for corresponding SPECT brain levels in the same animal. Bottom row: co-
registration of SPECT and MR images. In SPECT images, the highest radioactive accumulation is 
showed in red and lowest in green. 
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Figure 5.10 Time-activity curves for 
123

I-NKJ64 in multiple brain regions. 
(a) results from baboon 1 and (b) results from baboon 2. 
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Brain region 
% Washout 

Baboon 1 Baboon 2 

Whole brain 73.0 73.0 

Brainstem 63.5 72.1 

Midbrain 71.2 69.6 

Thalamus 71.2 67.9 

Caudate 64.7 67.4 

Putamen 69.0 70.2 

Frontal cortex 76.5 75.0 

Cerebellum 75.0 77.7 

Occipital cortex 80.6 79.8 

White matter 74.2 71.9 

Table 5.3 Percentage washout of 
123

I-NKJ64 from the whole brain and selected brain regions 
following radiotracer bolus intravenous injection. 

 

Figure 5.11 Binding ratios in brain regions over time following bolus injection of 
123

I-NKJ64. 
Binding ratios are expressed as SUV of target region relative to SUV in occipital cortex (SUVr 
occipital). (a) results from baboon 1 and (b) results from baboon 2. 
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Results from kinetic modelling showed that the 2T compartmental model was the 

preferred model to evaluate and quantify the pharmacokinetic properties of 123I-NKJ64 

in baboon brain (lowest AIC and SC values and highest MSC value were obtained with the 

2T model). The 2T compartmental analyses using arterial input function at baseline 

conditions for baboon 1 and baboon 2 are presented in Tables 5.4 and 5.5, respectively. 

The VT and BPND (BPND=k3/k4) values did not agree with known NAT distribution in non-

human primate, where VT and BPND values were highest for the putamen, caudate and 

thalamus (Figure 5.12, Tables 5.4 and 5.5).  



 
1
4
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Brain region 

Parameters 

K1 %COV k2 %COV k3 %COV k4 %COV VT %COV K1/k2 %COV BPND
* 

%COV 

mL·cm
-3
·min

-1 
 min

-1 
 min

-1
  min

-1
  mL·cm

-3 
     

Brainstem 0.174 26.91 0.098 45.52 0.023 40.86 0.013 15.83 4.794 3.11 1.765 19.45 1.716 30.71 

Midbrain 0.189 3.70 0.053 5.83 0.017 29.07 0.023 17.34 6.288 1.73 3.593 7.32 0.750 15.15 

Thalamus 0.393 57.03 0.176 40.66 0.039 49.87 0.018 27.91 7.112 3.82 2.231 18.94 2.189 23.27 

Caudate 0.199 4.18 0.070 11.93 0.032 8.94 0.021 16.84 7.192 2.39 2.856 8.05 1.518 10.09 

Putamen 0.288 8.74 0.092 19.93 0.024 19.63 0.016 4.60 7.568 1.36 3.113 11.34 1.431 17.50 

Frontal Ctx. 0.275 8.21 0.123 16.35 0.033 15.63 0.024 3.02 5.417 0.50 2.241 8.292 1.417 14.03 

Cerebellum 0.225 9.77 0.073 10.94 0.013 18.60 0.017 11.01 5.403 1.93 3.062 5.07 0.764 10.74 

Occipital Ctx. 0.250 5.24 0.093 11.39 0.009 34.10 0.016 20.39 4.110 2.27 2.689 6.97 0.528 17.52 

White matter 0.284 1.97 0.113 8.25 0.027 16.15 0.020 6.21 5.911 0.77 2.522 6.46 1.343 10.88 

Table 5.4 Summary of the kinetic parameters obtained from data following bolus injection of 
123

I-NJK64 in baboon 1. 
2T compartmental model and arterial input function.

*
BPND defined as k3/k4. Ctx=cortex. 
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Brain region 

Parameters 

K1 %COV k2 %COV k3 %COV k4 %COV VT %COV K1/k2 %COV BPND
* 

%COV 

mL·cm
-3
·min

-1 
 min

-1 
 min

-1
  min

-1
  mL·cm

-3 
     

Brainstem 0.226 2.35 0.056 9.13 0.014 26.27 0.017 14.15 7.498 1.78 4.070 7.42 0.842 14.45 

Midbrain 0.234 3.53 0.059 12.01 0.016 23.69 0.016 10.38 7.921 1.93 3.947 9.04 1.007 15.41 

Thalamus 0.201 4.83 0.035 14.21 0.008 56.34 0.015 36.02 8.719 3.22 5.690 10.29 0.532 25.44 

Caudate 0.233 3.74 0.054 18.40 0.018 37.25 0.018 14.04 8.663 2.71 4.282 15.36 1.023 26.21 

Putamen 0.231 4.65 0.040 11.53 0.006 42.86 0.011 33.90 9.109 4.36 5.777 7.75 0.577 16.17 

Frontal Ctx. 0.197 0.95 0.053 2.90 0.009 11.8 0.015 8.17 5.856 0.92 3.698 2.26 0.584 5.26 

Cerebellum 0.209 3.21 0.054 6.47 0.007 22.38 0.014 15.02 5.679 1.34 3.897 3.56 0.457 9.97 

Occipital Ctx. 0.228 13.47 0.067 22.55 0.007 51.94 0.016 27.88 4.975 2.22 3.413 9.45 0.458 27.69 

White matter 0.227 3.88 0.053 9.59 0.012 23.56 0.016 12.81 7.479 1.47 4.313 6.07 0.734 12.92 

Table 5.5 Summary of the kinetic parameters obtained from data following bolus injection of 
123

I-NJK64 in baboon 2. 
2T compartmental model and arterial input function.

 *
BPND defined as k3/k4. Ctx=cortex.
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Figure 5.12 VT values obtained using 2T compartmental model and arterial input function.  
Green bars are results for baboon 1 and orange bars for baboon 2.  

SPECT images of 123I-NKJ64 brain distribution pre- and post-administration of reboxetine 

are shown in Figure 5.13. Time-activity curves obtained from the displacement study 

are shown in Figure 5.14. Bolus injection of reboxetine did not reduce the levels of 

either radioactive concentration (Figure 5.14) or the target-non target ratio (Figure 

5.15) in any of the evaluated brain regions. Analysis of HPLC chromatograms from 

venous blood samples collected pre- and post- administration of reboxetine showed a 

similar metabolic pattern, such that no increase in the parent compound fraction was 

observed.  
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Figure 5.13 Brain 
123

I-NKJ64 SPECT images pre- and post-administration of reboxetine in 
baboon 1. 
Transversal, sagittal and coronal planes (left to right). Note the absence of reduction in radioactive 
accumulation in images post-administration compared with images pre-administration for any of the 
evaluated regions. The highest radioactive accumulation is showed in red and lowest in green. 
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Figure 5.14 Uptake of 
123

I-NKJ64 in baboon 1 brain pre- and post-administration of 
reboxetine. 
Time-activity curve obtained following bolus plus constant infusion of 

123
I-NKJ64. Reboxetine bolus 

given at 2.75 hours post radiotracer injection (shown in graph by black line and arrow).  Note the 
absence of change in radioactive concentration post-administration of reboxetine in any of the 
evaluated brain regions. 

 

Figure 5.15 Target:non-target ratio of 
123

I-NKJ64 pre- and post-administration of reboxetine 
in baboon 1 brain. 
Note the absence of change in target:non-target ratio following administration of reboxetine (shown 
in graph by black line and arrow) in any of the evaluated brain regions. 
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5.4 Discussion 

The pharmacokinetics and brain distribution of 123I-NKJ64 in non-human primates were 

investigated in this chapter. 123I-NKJ64 rapidly and avidly entered the baboon brain, 

reaching a peak %ID in whole brain of around 3.0% of the injected dose. The whole brain 

uptake of 123I-NKJ64 in baboons is either higher than or similar to the whole brain 

uptake seen for other SPECT and PET radiotracers for imaging the NAT in brain. In 2004, 

McConathy et al. showed that 11C-talopram and 11C-talsupram did not enter the rhesus 

monkey brain in adequate amounts to be used in PET imaging studies (%ID was 

determined to be 0.4 % in whole brain) (39). Intravenous injection of (R)-11C-OHDMI into 

cynomolgus monkeys showed that accumulation of radioactivity in brain was slow and 

reached only 1.1% of the injected radioactivity at 80 minutes (108). Tamagnan et al. 

reported that 123I-INER, a stereoisomer of NKJ64, had a peak %ID in baboon whole brain 

of around 1.0% of injected dose (114). The whole brain %ID of 123I-NKJ64 in baboons is 

similar to (S,S)-[18F]FMeNER-D2, where the measured %ID in whole brain was around 3.4% 

of injected dose in cynomolgus monkeys (112). In 2007, Schou et al. reported that 

intravenous injection of 11C-DMI resulted in about 2.7% of radioactivity in cynomolgus 

monkey brain after 24 minutes (108). Intravenous injection of (S,S)-11C-MeNER resulted 

in 3.0% of the injected dose in cynomolgus monkey brain at 18 minutes post radiotracer 

administration (161). 

The brain distribution of 123I-NKJ64 in baboons was found to be inconsistent with the 

known distribution of NAT in non-human primate brain (152). Quantification of the 123I-

NKJ64 SPECT images obtained in baboons by generation of time-activity curves and 

kinetic modelling showed that 123I-NKJ64 displayed high uptake in the caudate and 

putamen, regions that are known to have low NAT density (152). The uptake in the 

caudate and putamen was not due to specific binding to the NAT, since no displacement 

was observed in the caudate and putamen following intravenous administration of 

reboxetine. The mechanism underlying this relatively high uptake in the caudate and 

putamen remains unknown. However, some groups have hypothesised the existence of 

low-affinity binding sites in the striatum as an explanation of the high striatal uptake 

frequently observed with NAT radiotracers (139). The brainstem, where the NAT-rich 

locus coeruleus is located, had lower VT values than non-target regions, such as caudate 

and putamen. Analysis of binding ratios showed a similar trend where the highest values 

were seen in non-target regions as opposed to the target region, i.e. the brainstem. In 

vivo administration of a high dose of reboxetine resulted in no displacement of 123I-

NKJ64 uptake in the brainstem or any of the other evaluated brain regions. This 

suggests that the in vivo uptake of 123I-NKJ64 in baboons is not due to specific binding of 



154 

 

the radiotracer to the NAT. These findings, combined with the observations of a fast 

washout from the brain, kinetic rate constants similar in all brain regions and low k3 and 

BPND values, suggest 123I-NKJ64 has a low affinity for the NAT in vivo in baboon brain. In 

contrast, 123I-INER, a stereoisomer of NKJ64, showed a distribution pattern in baboon 

brain consistent with known NAT densities in non-human primate brain and a 60% 

displacement following intravenous bolus injection of 2.0 mg/kg of reboxetine (114). 

The lower in vitro affinity of 123I-NKJ64 in comparison with 123I-INER (KD in rat frontal 

cortex of 4.8 nM and 1.3 nM, respectively) (116, 162) may explain the differences in 

distribution and kinetics seen between 123I-NKJ64 and 123I-INER. The selectivity of 123I-

INER for NAT in vitro was also determined to be higher than 123I-NKJ64 (43, 114). This 

may explain the higher 123I-NKJ64 uptake measured in non-target regions in vivo in non-

human primate brain in comparison to 123I-INER.  

A study evaluating the distribution and kinetics of 11C-labelled (S,S)- and (R,R)-MRB, two 

reboxetine stereoisomers, also reported differences in distribution between 

stereoisomers. Of these, (S,S)-11C-MRB exhibited favourable characteristics for imaging 

of NAT in vivo. Conversely, no regional specificity or blocking effect by nisoxetine were 

observed for (R,R)-11C-MRB, suggesting the in vivo binding of MRB is enantioselective 

(139). In 2009, Zeng et al. also observed differences in the brain distribution and 

kinetics between different reboxetine analogues labelled with 11C or 18F. They 

postulated that although a high in vitro affinity does not guarantee the success of a 

radiotracer in vivo, it is desirable, particularly when imaging low density molecular 

targets such as NAT. Zeng and co-workers also suggested that radiotracers with low 

affinity for NAT will not allow the visualisation of a specific binding signal in NAT-rich 

regions using PET due to a low signal-to-noise ratio (41).   

In rodents, the brain distribution of 123I-NKJ64 was consistent with known NAT density 

and 123I-NKJ64 had a good target:non-target ratio (Chapter 4). The differences between 

rodent and non-human primate data may be explained by numerous factors, including 

the known differences in NAT density in rat brain in comparison to non-human primate 

brain (Table 4.1 – Chapter 4 and Table 5.1). In non-human primate brain, the locus 

coeruleus has a NAT binding site density of around 220 fmol/mg, while the rodent locus 

coeruleus has a density of around 1500 fmol/mg. This represents a seven-fold decrease 

in NAT binding site density in non-human primate brain compared to rodent brain. It is 

also known that the density of NATs in human cortex is about nine times lower than in 

rodents (109). Consequently, the results in baboons and the known differences in NAT 

densities across species preclude the translation of 123I-NKJ64 for use in humans.  
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In rodent studies, high non-specific binding and fast kinetics, particularly in the anterior 

brain, were observed following intravenous injection of 123I-NKJ64 (Chapter 4). The 

implications of these findings were, at that time, unclear and therefore non-human 

primate imaging studies were suggested in order to study further the potential of 123I-

NKJ64 as a NAT imaging agent. The results in baboons also showed 123I-NKJ64 to have 

high non-specific binding throughout the brain, since no displacement was observed 

following administration of reboxetine and a low BPND was determined. The inability of 

123I-NKJ64 to measure specific binding to the NAT could therefore be a due to a 

combination of both high non-specific binding and low NAT density.  

Results from blood sampling demonstrated that a single metabolite was present in 

plasma that was less lipophilic than the parent radiotracer. Since the metabolite is less 

lipophilic than the parent radiotracer it is unlikely to pass the BBB and contribute to 

brain radioactivity. Consequently, it is likely that the quantification of 123I-NKJ64 

kinetics and distribution in baboon brain was not affected by radiolabelled metabolites 

generated in blood. In addition, the time-activity curves obtained for all brain regions 

had a single initial peak followed by continuous elimination over the duration of the 

study, supporting the hypothesis that there were no metabolites present in the brain 

over time. Both these observations provide support for the interpretation that the 

uptake in baboon brain was not due to metabolites generated either in tissue or in 

blood. Analysis of blood collected during displacement experiments showed no 

difference in the parent compound fraction in plasma taken post-administration of 

reboxetine compared to plasma taken pre-administration of reboxetine. This suggests 

that there was no displacement of 123I-NKJ64 binding in other non-target organs 

indicating that there is no specific binding of 123I-NKJ64 to peripheral organs. A similar 

observation was found in rats where administration of reboxetine did not reduce 123I-

NKJ64 binding in any of the investigated organs (Chapter 4). 

5.5 Conclusion 

Investigation of the distribution and pharmacokinetics of 123I-NKJ64 in baboons showed a 

high non-specific binding throughout the brain and a binding pattern inconsistent with 

the known NAT distribution in non-human primate brain. The data suggests that 123I-

NKJ64 may lack affinity and selectivity for NAT in baboon brain, and the high levels of 

non-specific binding may be obscuring any 123I-NKJ64 specific binding that might be 

present in vivo. Species differences in NAT density in the brain may explain the 

differences observed between the results obtained from baboons and rats. The data 

obtained in this chapter from baboons showing high non-specific binding and a binding 
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pattern inconsistent with the known NAT distribution thus prevents the translation of 

123I-NKJ64 for use in human imaging studies. 
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6 Kinetic modelling and occupancy measures of 

NAT in baboons using SPECT with 
123

I-INER 

6.1 Introduction 

123I-INER was developed by Tamagnan et al. in 2007 as a SPECT radiotracer for imaging 

NATs in brain (for review refer to sections 3.1.2 and 3.1.3). The binding distribution of 

123I-INER in non-human primate brain was reported in 2007 and it was found to be 

consistent with the known distribution of NAT in baboon brain. Despite the reported 

slow kinetics in baboon brain (over a period of 2 hours) and a relatively low brain 

uptake of 1.0% injected dose (114), 123I-INER was considered, at that time, to be the 

most promising SPECT radiotracer developed for imaging the NAT in brain. In an 

attempt to obtain a radiotracer for SPECT imaging of the NAT with brain kinetics 

superior to those of 123I-INER, the Glasgow radiotracer group developed 123I-NKJ64. 

However in chapter 5, 123I-NKJ64 was found to have high non-specific binding and a 

binding pattern inconsistent with the known NAT distribution in non-human primate 

brain, preventing the translation of 123I-NKJ64 for use in human imaging studies. As a 

result no further evaluation of 123I-NKJ64 was warranted. Consequently, 123I-INER is still 

considered to be the most promising SPECT radiotracer for imaging of NAT in brain 

developed to date. 

Although the biodistribution of 123I-INER in baboon brain was reported in 2007, 

quantification of the brain pharmacokinetics of this radiotracer by compartmental 

modelling has not been reported. Studies investigating the occupancy of NATs using 

SPECT with 123I-INER and NAT selective drugs have also not been reported to date. 

Occupancy studies and full kinetic analysis are the next steps in the radiotracer 

development process after a radiotracer has shown promising results in preliminary non-

human primate studies, and may be seen as the final steps prior to translation into 

human studies. Studies investigating the full kinetic analysis and occupancy of 123I-INER 

in baboon were therefore conducted at MNI LLC and Yale University, New Haven, 

Connecticut, USA. In this chapter the analysis and processing of this data is reported. 

6.1.1 Hypothesis and aims 

It was hypothesised that the full kinetic analysis of 123I-INER in baboons could be 

performed using compartmental models. In addition, it was also hypothesised that 
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occupancy of the NAT by NAT-selective drugs could be imaged and quantified using 123I-

INER SPECT imaging.  

The present chapter aims to characterise the in vivo pharmacokinetic properties of 123I-

INER in non-human primate brain, including determination of the VT and BPND in 

different brain regions. This chapter also aims to quantify the occupancy of the NAT by 

two selective NAT inhibitors, atomoxetine and reboxetine, in baboon brain.  

6.2 Material and Methods 

Image acquisition and metabolite analysis studies with 123I-INER in non-human primates 

were performed by colleagues at Yale University, New Haven, CT, USA and MNI LLC, 

New Haven, CT, USA respectively. The radiolabelling and preparation of 123I-INER for use 

in non-human primate experiments was performed by colleagues at MNI LLC, New 

Haven, CT, USA using previously described methodology (114). 

6.2.1 Non-human primates 

All procedures using non-human primates were conducted at Yale University, USA in 

accordance with institutional animal care protocols and in compliance with US federal 

regulations. Seven ovariectomised adult female baboons (Papio anubis, 10 − 17 kg) were 

used in the 123I-INER SPECT imaging studies described below. 

6.2.2 Animal general preparation and monitoring 

Baboon preparation and monitoring was performed as previously described in chapter 5, 

section 5.2.2.  

6.2.3 General SPECT acquisition protocol 

The SPECT acquisition protocol for studies using 123I-INER in baboons was as described in 

the previous chapter 5, section 5.2.3.  
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6.2.4 123I-INER baseline and pre-blocking experiments in non-

human primates 

Baseline and pre-blocking experiments were performed using a single baboon and two 

SPECT measurements: one at baseline and a second following pre-blocking with 

atomoxetine (Tocris Bioscience, USA). 123I-INER was administered via a single bolus 

intravenous injection with an injected activity of 433.27 MBq and 472.49 MBq for 

baseline and pre-blocking SPECT scans, respectively. Arterial blood was collected during 

baseline measurements and venous blood was collected in both SPECT measurements in 

order to perform kinetic modelling analysis (Figure 6.1). Atomoxetine was given  via 

intravenous injection using a prolonged  infusion method that was designed to mimic 

the human oral absorption profile of the drug, based on previously described 

methodology (112). Briefly, intravenous administration of atomoxetine consisted of two 

successive infusions: a loading infusion over 10 minutes (0.25 mg/kg) followed by a 

maintenance infusion (0.15 mg/kg/h) until the end of the SPECT image acquisitions. The 

radiotracer was administered as a bolus 30 minutes after the start of atomoxetine 

infusion and images were acquired over 240 minutes. The infusion pump used was a 

Gemini PC1 (IMED Inc., USA) with 60 mL syringes.  

 

Figure 6.1 Experimental procedure for the baseline and pre-blocking experiments performed 
in a single baboon using 

123
I-INER and atomoxetine. 
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6.2.5 123I-INER displacement studies in non-human primates 

Six baboons were used for displacement studies. The aim was to obtain a dose-response 

curve for two NAT selective drugs: atomoxetine and reboxetine (Tocris Bioscience, 

USA). Six different doses of atomoxetine (0.03, 0.06, 0.15, 0.67, 0.69 and 0.85 mg/kg) 

and four different doses of reboxetine (0.5, 1.0, 1.5 and 3 mg/kg) were investigated 

(Table 6.1). Displacement studies were conducted using a bolus plus constant infusion 

protocol, where the Kbol (B/I ratio) was 1.30. The mean injected radioactivity of 123I-

INER was 392±132 MBq (range 206–549 MBq, n=10, 6 atomoxetine displacement studies 

plus 4 reboxetine displacement studies). A Gemini PC 1 (IMED Inc., USA) infusion pump 

with 60 mL syringes was used for infusion of the radiotracer. Upon equilibrium, which 

was estimated to occur between 3 and 4 hours post radiotracer administration, a single 

bolus of atomoxetine or reboxetine was injected intravenously (Figure 6.2). The 

displacement drug was administered at 212±48 minutes (mean±SD, n=10) post 

radiotracer injection.  

Baboon Atomoxetine dose (mg/kg) Reboxetine dose (mg/kg) 

1 N/A 1.0 and 1.5* 

2 N/A 0.5 and 3.0* 

3 0.67 and 0.15* N/A 

4 0.03 and 0.85* N/A 

5 0.06 N/A 

6 0.69 N/A 

Table 6.1 Summary of atomoxetine and reboxetine doses investigated using six baboons. 
N/A = not applicable. *Animal used for  two studies with 2 different doses of the drug, where each 
study was separated by at least 2 weeks. 

 

Figure 6.2 Experimental procedure for in vivo 
123

I-INER displacement studies in baboons 
using atomoxetine and reboxetine. 
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6.2.6 Analysis of plasma pharmacokinetics  

For studies using a single bolus injection of 123I-INER i.e. the baseline and pre-blocking 

experiments, venous and arterial (for the baseline scan only) blood samples (4-5 mL) 

were obtained from the femoral vein and femoral artery, respectively prior to the start 

of the study (- 5 minutes) and at 1-2, 3, 5, 10, 15, 30, 60, 120, 180 and 240 minutes 

post radiotracer injection. Processing and analysis of blood samples was performed by 

colleagues at the MNI LLC laboratories, using previously established methodology (156-

159). A brief description of the protocol used is provided in the previous chapter 

(Chapter 5) section 5.2.5.  

6.2.7 Image processing and co-registration with magnetic 

resonance imaging (MRI) 

Details of the image processing and co-registration with MRI methodology are outlined 

in section 5.2.6 (Chapter 5). 

6.2.8 Data analysis 

Time-activity curves were generated for each brain region in each study. Metabolite-

corrected arterial and venous plasma curves were also generated for each study. The 

kinetic properties of 123I-INER following bolus injection in the baseline and blocking 

study were calculated using PMOD and the 1T model and 2T model. The goodness of fit 

was assessed by evaluating the AIC, the SC and the MSC selection criteria. The model 

presenting the lowest AIC and SC values and highest MSC value was defined as the 

preferred model. In addition, the simplified reference tissue model (SRTM) and 

multilinear reference tissue model 2 (MRTM2) with k2’ fix at 0.02 were investigated 

(153, 163-164). For the 2T compartmental model, the VT defined as the specific volume 

of distribution (Vs) plus the non-displaceable volume of distribution (VND) was calculated 

using Equation 6.1, with the definition of Vs and VND given in Equation 6.2 and 6.3, 

respectively. 

 
 
 

31
T S ND

2 4

kK
V =V +V = 1+

k k
       (Eq. 6.1) 

1 3
S T ND

2 4

K k
V =V -V =

k k
        (Eq. 6.2) 



162 

 

1
ND T S

2
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V =V -V =

k
        (Eq. 6.3) 

The BPND was calculated by an invasive (2T) direct method and invasive (2T) indirect 

method, where BPND was defined as k3/k4 and as (VT – VND)/VND, where VND was the VT of 

the reference region, respectively. When non-invasive (SRTM and MRTM2) and invasive 

(2T) indirect methods were applied for quantification of BPND, the occipital cortex was 

used as reference region as this was the brain region with the lowest radioactive 

concentration.  

For the baseline study, the VT derived using an arterial input function was compared to 

the one derived using a venous input function. The aim of this comparison was to 

determine whether the venous blood sampling protocol would be suitable for kinetic 

modelling of 123I-INER. The tissue to venous plasma activity concentration ratio (Ct/Cp) 

was calculated and plotted against time to determine whether transient equilibrium 

was reached during the late scans when the rate of clearance of 123I-INER in tissue and 

in plasma is the same. The apparent volume of distribution (VT app) was calculated as an 

average over 3 time points of Ct/Cp at transient equilibrium. Subsequently, the 

correlation between the VT app and the VT from 2T compartmental model using a venous 

plasma input function was investigated.   

The NAT occupancy induced by the atomoxetine infusion in the 123I-INER pre-blocking 

study was calculated using two methods: percent change of BPND between baseline and 

atomoxetine pre-blocking experiments (Equation 6.4) and the Lassen plot method 

(Equation 6.5) (165).  

ND ND

ND

BP baseline - BP blocking
Occupancy (%) = ×100

BP baseline
   (Eq. 6.4) 

T T

T ND

V  baseline - V blocking
Occupancy (%) = ×100

V baseline - V
    (Eq. 6.5) 

which when represented graphically for several regions (x=VT baseline, y=VT baseline – 

VT pre-blocking) produces a linear relationship, where the x intercept equals VND and 

gradient equal to global target occupancy. A global occupancy was determined 

graphically as the slope of the line. Occupancy measurements in individual brain regions 

were also determined by deriving the VND from the Lassen plot and subsequently 

applying Equation 6.5 for occupancy determination. 
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For the displacement studies with bolus plus constant infusion of 123I-INER, the specific 

binding in different brain regions was obtained by subtracting the mean occipital cortex 

uptake. The percentage specific binding displacement was calculated as the specific 

binding prior to displacement minus the lowest specific binding post displacement, 

divided by the specific binding prior displacement, multiplied by 100 (Equation 6.6). 

SB prior displacement - SB post displacement
% Displaced = ×100

SB prior displacement
  (Eq. 6.6) 

where SB is specific binding.  

The percentage specific binding displacement was then plotted against reboxetine or 

atomoxetine doses and the dose-occupancy curve was fitted in GraphPad Prism 

(GraphPad Software, version 4.0, USA) with a single specific binding site model 

according to the following equation:  

max

50

O  × D
Occupancy (%) =  

D + ED
      (Eq. 6.7) 

where Omax is the maximum occupancy, ED50 is the drug dose for 50% occupancy and D is 

the dose of the drug. 

6.3 Results 

6.3.1 123I-INER baseline and pre-blocking experiments 

Following intravenous bolus injection of 123I-INER at baseline conditions, a high 

accumulation of radioactivity was found at the level of the brainstem (where the locus 

coeruleus is located) and the midbrain (where the raphe complex is located), regions 

that are known to contain high densities of NATs (Figure 6.3 and Figure 6.4). A low 

accumulation of radioactivity in the rest of the brain was found as follows: cerebellum > 

caudate > occipital cortex. A relatively slow washout of radioactivity from the whole 

brain over 4 hours was observed, where 64% of the whole brain uptake was eliminated 

at 4 hours post-injection. The specific binding of 123I-INER peaked at around 3 hours post 

radiotracer injection. Sixty minutes post-injection, the parent fraction of 123I-INER in 

venous and arterial plasma was 30% and 26%, respectively, reaching less than 15% at 240 

minutes post-injection (Figure 6.5). 
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Figure 6.3 MRI co-registered SPECT images of 
123

I-INER distribution in baboon brain at 
baseline. 
Transverse, sagittal and coronal planes from left to right. Highest radioactivity accumulation is 
showed in red and lowest in green. 
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Figure 6.4 Time activity curves of 
123

I-INER uptake in multiple baboon brain regions.  
Solid lines and closed symbols represent the uptake of 

123
I-INER during the baseline scan. 

Dashed lines and open symbols represent the uptake of 
123

I-INER following pre-blocking with 
atomoxetine. 

 

Figure 6.5 Time–activity curves of the parent fraction present in both venous and arterial 
plasma after intravenous injection of 

123
I-INER in the baseline study. 
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Kinetic modelling showed that the 2T compartmental model was the preferred model to 

evaluate and quantify 123I-INER pharmacokinetic properties in baboon brain in 

comparison with the 1T model (lowest AIC and SC values and highest MSC value were 

obtained with the 2T model). Kinetic modelling using the 2T compartmental analysis of 

the baseline study using either arterial or venous input functions showed that the 

highest VT values were found in the NAT rich regions, the brainstem and midbrain, with 

lower VT values in the caudate, white matter, cerebellum and occipital cortex. 

Similarly, the BPND and the Vs values were higher in the brainstem, midbrain and 

thalamus and lower in the other brain regions. VT values determined from the baseline 

study using the venous input function correlated well with VT values determined from 

the baseline study using the arterial input function (Figure 6.6). As a result, only venous 

samples were collected in the subsequent pre-blocking study. The results from kinetic 

modelling of the 123I-INER time-activity curves using 2T compartmental analysis at 

baseline and after pre-blocking with atomoxetine are presented in Table 6.2. Pre-

treatment with atomoxetine reduced the uptake, VT, Vs and BPND values in NAT rich 

regions to the levels seen in non-target regions (Figure 6.4, Figure 6.7 and Table 6.2). 

SRTM and MRTM2 analysis also showed a reduction of brainstem and midbrain BPND 

following pre-treatment with atomoxetine (Table 6.3). BPND values determined by SRTM 

correlated with BPND values calculated with MRTM2 with a r2 value of 0.98 (Figure 6.8a) 

and for both methods at baseline conditions the highest BPND values were seen in the 

brainstem and midbrain (Table 6.3). The BPND values obtained using the SRTM and 

MRTM2 models correlated with the BPND values determined using the invasive (2T) direct 

compartmental model with r2 values of 0.50 and 0.45, respectively. However, when the 

BPND values determined by the invasive 2T indirect compartmental model were plotted 

against BPND values determined by SRTM and MRTM2 models, r2 values of 0.92 and 0.86 

were determined, respectively (Figure 6.8b and 6.8c).  
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Figure 6.6 VT values in baboon brain determined during the baseline study using the 2T 
compartmental model. 
VT values obtained using 2T compartmental model and arterial input function (x axis) compared 
with VT values obtained by using 2T compartmental model and venous input function (y axis). 
Dashed line represents the line of identity. Note that the VT calculated using the venous input 
function is lower in comparison with the VT calculated using arterial input function. 

 



 
1
6
8

 

 

 

Table 6.2 Kinetic analysis of the results obtained from the baseline and pre-blocking experiments following bolus injection of 
123

I-INER. 
The data presented were obtained from the 2T compartmental model analysis using the venous plasma input function. Note the reduction in the VT, Vs and BPND 
values of NAT rich regions when atomoxetine pre-treatment was given in comparison with the baseline measurements. 

a
BPND determined using direct method 

(BPND=k3/k4). 
b
BPND determined by indirect method (BPND=(VT-VND)/VND). Data derived using a single animal. 

Brain Regions 

Parameters 

K1 

mL·cm
-3
·min

-1 

% 

COV 

k2 

min
-1 

% 

COV 

k3 

min
-1 

% 

COV 

k4 

min
-1 

% 

COV 

VT 

mL·cm
-3 

% 

COV 

VS 

mL·cm
-3

 

% 

COV 
BPND

a
 

% 

COV 
BPND

b 

Brainstem 

Baseline 

Atomoxetine 

 

0.082 

0.231 

 

11.14 

5.48 

 

0.048 

0.083 

 

32.22 

9.96 

 

0.026 

0.009 

 

37.08 

22.82 

 

0.008 

0.012 

 

18.86 

16.53 

 

7.192 

4.781 

 

5.86 

2.49 

 

5.504 

2.007 

 

7.25 

6.25 

 

3.260 

0.723 

 

25.93 

10.21 

 

0.914 

0.160 

Midbrain 

Baseline 

Atomoxetine 

 

0.072 

0.284 

 

7.34 

23.27 

 

0.038 

0.101 

 

24.46 

27.93 

 

0.018 

0.013 

 

33.12 

26.79 

 

0.007 

0.017 

 

19.03 

13.42 

 

6.341 

4.988 

 

6.57 

2.64 

 

4.469 

2.190 

 

6.63 

10.83 

 

2.387 

0.783 

 

19.95 

17.00 

 

0.688 

0.210 

Thalamus 

Baseline 

Atomoxetine 

 

0.082 

0.235 

 

28.86 

4.95 

 

0.064 

0.101 

 

38.43 

8.58 

 

0.040 

0.016 

 

30.40 

11.39 

 

0.014 

0.142 

 

39.09 

5.83 

 

4.943 

4.928 

 

3.23 

1.00 

 

3.652 

2.595 

 

4.43 

3.27 

 

2.831 

1.112 

 

14.42 

6.94 

 

0.315 

0.196 

Caudate 

Baseline 

Atomoxetine 

 

0.073 

0.210 

 

11.93 

5.58 

 

0.030 

0.096 

 

37.50 

11.33 

 

0.012 

0.018 

 

78.16 

16.34 

 

0.011 

0.016 

 

45.63 

7.38 

 

5.106 

4.813 

 

8.00 

1.21 

 

2.703 

2.545 

 

17.73 

4.81 

 

1.124 

1.122 

 

41.93 

10.66 

 

0.359 

0.167 

Occipital cortex 

Baseline 

Atomoxetine 

 

0.073 

0.206 

 

5.87 

3.16 

 

0.045 

0.073 

 

16.54 

5.69 

 

0.015 

0.006 

 

24.54 

20.29 

 

0.012 

0.012 

 

10.68 

16.48 

 

3.757 

4.122 

 

2.43 

1.87 

 

2.131 

1.310 

 

5.93 

5.78 

 

1.310 

0.466 

 

16.46 

7.81 

 

--- 

--- 

Cerebellum 

Baseline 

Atomoxetine 

 

0.077 

0.250 

 

1.85 

4.72 

 

0.038 

0.085 

 

7.04 

8.87 

 

0.018 

0.008 

 

19.10 

26.07 

 

0.014 

0.016 

 

10.69 

17.00 

 

4.599 

4.437 

 

1.71 

1.77 

 

2.580 

1.485 

 

4.41 

8.14 

 

1.277 

0.503 

 

10.71 

12.27 

 

0.224 

0.076 

White matter 

Baseline 

Atomoxetine 

 

0.074 

0.221 

 

3.28 

4.66 

 

0.047 

0.091 

 

10.21 

9.01 

 

0.020 

0.014 

 

15.04 

15.62 

 

0.010 

0.015 

 

7.70 

8.41 

 

4.781 

4.606 

 

1.96 

1.26 

 

3.206 

2.181 

 

3.05 

4.59 

 

2.035 

0.899 

 

9.58 

8.97 

 

0.272 

0.117 
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Figure 6.7 
123

I-INER brain SPECT images co-registered with MRI (transverse, sagittal and 
coronal planes from left to right), showing the distribution at baseline (a) and following pre-
blocking with atomoxetine (b). 
The highest radioactive accumulation is shown in red and the lowest in green. 
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Brain Regions BPND SRTM %COV BPND MRTM2 %COV 

Brainstem 

       Baseline 

       Atomoxetine 

 

0.731 

0.184 

 

14.98 

45.47 

 

0.670 

0.142 

 

3.59 

5.54 

Midbrain 

       Baseline 

       Atomoxetine 

 

0.537 

0.237 

 

14.06 

38.96 

 

0.469 

0.234 

 

3.24 

3.36 

Thalamus 

       Baseline 

       Atomoxetine 

 

0.325 

0.231 

 

7.04 

15.49 

 

0.330 

0.201 

 

3.22 

4.92 

Caudate 

       Baseline 

       Atomoxetine 

 

0.342 

0.202 

 

12.33 

10.42 

 

0.338 

0.191 

 

2.84 

5.30 

Cerebellum 

       Baseline 

       Atomoxetine 

 

0.248 

0.105 

 

8.82 

--- 

 

0.248 

0.096 

 

3.10 

6.42 

White matter 

       Baseline 

       Atomoxetine 

 

0.215 

0.147 

 

18.34 

12.75 

 

0.151 

0.130 

 

6.11 

6.48 

Table 6.3 BPND values for 
123

I-INER in baboon brain determined using analysis with SRTM 
and MRTM2 models. 
Note that the SRTM model did not fit the cerebellum data from the blocking study. 
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Figure 6.8 Comparison of the BPND values for 
123

I-INER in baboon brain calculated using different methods. 
Correlation between (a) SRTM and MRTM2, (b) SRTM and 2T compartmental model, where BPND was calculated using the indirect method and (c) MRTM2 and 2T 
compartmental model, where BPND was calculated using indirect method. A total of 20 values are plotted (2 SPECT measurements × 10 regions). 



172 

 

The Ct/Cp values were plotted against time for the baseline (Figure 6.9a) and blocking 

studies (Figure 6.9b) and transient equilibrium was found to occur around 3 hours post-

injection. The VT app was calculated at equilibrium, and the correlation between the VT 

determined by the 2T compartmental model analysis and the VT app was calculated and 

found to have r2=0.94 for the baseline study and r2=0.81 for the atomoxetine pre-

blocking study (Figure 6.10a and 6.10b). 

 

Figure 6.9 Ct/Cp values calculated for 
123

I-INER in baboon brain over time. 
Ct/Cp values at baseline (a) and following pre-treatment with atomoxetine (b). Note a reduction of 
Ct/Cp in brainstem and midbrain following pre-blocking with atomoxetine. Ct/Cp was determined 
using the venous blood samples values. 
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Figure 6.10 The relationship between VT app and VT values calculated for 
123

I-INER in baboon 
brain. 
Relationship between VT values obtained by 2T compartmental model (x axis) and VT app values at 
equilibrium (y axis) at baseline (a) and following pre-blocking with atomoxetine (b).  

 
The occupancy of NATs by atomoxetine (0.85 mg/kg), determined from the baseline and 

pre-blocking experiments using the 2T compartmental model analysis and the change in 

BPND (∆BPND) calculated via the direct method, was 77% and 67% in brainstem and 

midbrain, respectively (Table 6.4). Similar occupancy values were obtained when using 

the BPND values calculated via the indirect method, where the occupancy was 83% and 

69% in the brainstem and midbrain respectively. When the Lassen plot method was used 

to measure occupancy using the VT values calculated from the 2T compartmental model 

analysis, the global occupancy of NATs by atomoxetine was 76%. Applying the Lassen 

plot equation to derive VND for subsequent calculation of occupancy in individual brain 

regions showed that 89% and 72% of brainstem and midbrain transporters were occupied 

by atomoxetine respectively. By using the Lassen plot and VT app values, a global 

occupancy of 78% was determined, while the brainstem and midbrain occupancy was 

found to be 82% and 78% respectively (Table 6.4). 



 
1
7
4

 

 

 

 

 

 

Brain regions 
% Occupancy 

ΔBPND direct method
a 

ΔBPND indirect method
b 

Lassen Plot – VT from 2T model Lassen Plot – VT app 

Brainstem 77.8 82.5 88.5 82.0 

Midbrain 67.2 69.4 72.3 78.4 

Thalamus 60.7 38.0 3.0 69.0 

Caudate 0.2 53.3 46.0 63.7 

Occipital 64.4 --- 51.3 103.6 

Cerebellum 60.6 66.0 124.6 82.4 

White matter 55.8 56.9 56.1 73.7 

Global occupancy --- --- 76.44 77.97 

Table 6.4 The percentage NAT occupancy by atomoxetine in baboon brain determined by SPECT imaging with 
123

I-INER and different calculation methods. 
ΔBPND:  occupancy calculated according to Eq. 6.4. Lassen plot:  regional occupancy calculated according to Eq. 6.5 following determination of VND using the Lassen 
plot; and global occupancy determined graphically as the slope of the line. 

a
BPND=k3/k4. 

b
BPND=(VT-VND)/VND where VND=VT in occipital cortex (used as reference region 

for indirect method calculations).  
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6.3.2 123I-INER displacement studies 

The displacement of 123I-INER by atomoxetine varied in a dose-dependent fashion 

(Figure 6.11). The estimated ED50 values for atomoxetine were 0.15 mg/kg in the 

brainstem (r2=0.61), 0.09 mg/kg in the midbrain (r2=0.71) and 0.10 mg/kg when using a 

mean of both regions (r2=0.75) (Figure 6.11). The maximum occupancy was estimated to 

be 22% and 37% for the brainstem and midbrain respectively (Figure 6.11), while the 

average occupancy of both NAT rich regions was estimated to be 29%. When the 

maximum occupancy is normalised to 100%, an occupancy value of 81%, 88% and 87% in 

the brainstem, midbrain and combined brainstem and midbrain, respectively, was 

obtained for the highest dose of atomoxetine tested (0.85 mg/kg).  

 

Figure 6.11 NAT occupancy by atomoxetine in baboon brain measured by SPECT with 
123

I-
INER. 
Note that a one site hyperbola function fits well the experimental values (r

2
=0.61, 0.71 and 0.74 for 

brainstem, midbrain and combined, respectively).  

For reboxetine, the measured occupancy was also found to be dose-dependent with an 

ED50 of 2.33 mg/kg (r2=0.95) in the brainstem, of 0.44 mg/kg (r2=0.57) in the midbrain 

and of 1.07 mg/kg using a mean of both regions (r2=0.94) (Figure 6.12). The maximum 

occupancy determined from the curve fitting was 104% and 56% for the brainstem and 
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midbrain, respectively (Figure 6.12), while the average maximum occupancy for both 

NAT rich regions was estimated to be 74%. 

 

Figure 6.12 NAT occupancy by reboxetine in baboon brain measured by SPECT with 
123

I-
INER. 
Note that a one site hyperbola function fits well the experimental values (r

2
=0.95, 0.57 and 0.94 for 

brainstem, midbrain and combined, respectively).  

6.4 Discussion 

In this chapter, studies investigating the pharmacokinetic properties of 123I-INER in non-

human primate brain using SPECT were described. The uptake of 123I-INER in vivo at 

baseline conditions was found to be consistent with the known distribution of NAT in 

baboon brain, in agreement with findings previously published (114). Furthermore, 

following pre-blocking or displacement with NAT selective drugs a reduction in 123I-INER 

uptake confirmed the selectivity of 123I-INER for the NAT in vivo, supporting its use as 

tool for imaging of the NAT in brain.  

The occipital cortex had the lowest 123I-INER uptake and the lowest VT and was 

therefore a more reliable reference region than the caudate. Furthermore, the VT of the 

occipital cortex was not reduced following pre-blocking with atomoxetine, providing 

further assurance that this region is suitable as a reference region for indirect 
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estimations and reference tissue models quantification. The choice of reference region 

for imaging studies of the NAT in brain has been controversial. Some authors have 

argued that there is no suitable reference region since the mapping of NAT in human 

brain is far from complete (139). The caudate and putamen have previously been 

considered as reference regions, due to the low density of NATs present (152). The 

occipital cortex has also been used as a reference region for the quantification of NAT 

radiotracer binding in non-human primates. Despite the controversy, both the striatum 

(caudate and putamen) and the occipital cortex have proven to be successful as 

reference regions for quantification of NAT radiotracer binding in vivo both in humans 

and non-human primates (41). 

In an attempt to assess the suitability of the reference tissue models for the analysis of 

123I-INER data, a correlation analysis was performed between the BPND determined using 

the SRTM and MRTM2 and the BPND determined using the invasive 2T compartmental 

model analysis. The correlation between the BPND determined using each reference 

tissue model and the BPND determined using the invasive indirect 2T compartmental 

model was stronger than the correlation with BPND determined using the invasive direct 

2T compartmental model. This can be explained by the error associated with estimation 

of k3 and k4 parameters by the 2T compartmental model, which will consequently affect 

the BPND results. The %COV determined for k3 and k4 was higher than the %COV 

measured for VT (Table 6.1). Consequently, the smaller error associated with the 

calculation of VT in comparison with the error associated with the determination of k3 

and k4 by the 2T compartmental model shows that the indirect method for estimation of 

BPND is preferred over direct estimations based on k3 and k4. Taking this into account, 

the strong correlation between the BPND determined via the SRTM and MRTM2 methods 

and BPND determined via the indirect 2T compartmental model (r2=0.92 and r2=0.86, 

respectively) suggests that non-invasive reference tissue methods can be used to 

estimate the binding potential of 123I-INER, eliminating the need for arterial blood 

sampling. To date, 123I-INER is the only NAT SPECT radiotracer for which quantification 

using reference tissue models has been shown to be useful. Using SRTM and MRTM2 

models, the BPND for 123I-INER in the baseline study was calculated to be around 0.7 and 

0.5 in the brainstem and midbrain, respectively. This is in line with previously reported 

values measured using other NAT radiotracers currently used for human brain imaging 

using PET (113). The use of anaesthetics has been reported to increase the levels of 

noradrenaline in rat brain resulting in a reduction of the number of available receptors 

for binding (Bavail) (30, 113). It is therefore possible that the BPND was underestimated 

due to the effect of using anaesthesia in these imaging studies, and that in conscious 

animals BPND values may be higher.  
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Analysis of blood samples showed that the metabolic profile of 123I-INER was similar in 

arterial and venous blood. The VT calculated using an arterial plasma input function 

showed a correlation of 0.99 with the VT calculated using a venous plasma input 

function. This suggests that quantification using the 2T compartmental model may be 

successfully achieved using data from venous blood sampling, rather than more invasive 

arterial blood sampling. The use of the venous plasma input function resulted in a lower 

VT compared to that calculated using the arterial input function. However, when the 

aim is to compare baseline scans with disease state or drug treatment scans, the use of 

venous sampling may provide a reliable quantification of 123I-INER pharmacokinetic 

parameters, reducing the risk of complications associated with arterial sampling. Also, 

results showed that a transient equilibrium was reached at around 3 hours post-

injection, and the VT app correlated well with the VT from 2T kinetic modelling (r2=0.94 

for the baseline study and r2=0.81 for the atomoxetine pre-blocking study), suggesting 

that an estimation of the VT can be made using a simple ratio between the activity 

concentration in tissue and in venous plasma at 3 hours post-injection, without the use 

of kinetic modelling. This simple approach may be valuable for use in clinical studies 

conducted in hospitals or research institutions that do not have access to kinetic 

modelling software needed for non-invasive reference tissue methods.  

Using the displacement study data, the occupancy plateau for atomoxetine was 

estimated to be around 30%, corresponding to atomoxetine doses of around 0.85 mg/kg. 

In contrast, using the pre-blocking protocol, 0.85 mg/kg of atomoxetine was able to 

block 80% of NATs in baboon brain. This considerable difference in the occupancy 

determined from the displacement studies compared to the blocking study may be due 

to technical difficulties in reaching equilibrium in the displacement study, resulting in 

an underestimation of occupancy. Inaccuracies in the occupancy determined using the 

displacement data may also result from inadequate sampling following displacement. 

Another factor that may contribute to the underestimation of occupancy using 

displacement data is the small difference between radioactive concentrations in regions 

of interest compared to the reference region, resulting in an error in the calculation of 

specific binding. Normalisation of occupancy data from displacement studies to 100% 

resulted in occupancy values in the brainstem and midbrain for 0.85 mg/kg of around 

80%, which is in line with pre-blocking data.  

Atomoxetine has been used for the treatment of ADHD in both adults and children (166-

168). The half life of atomoxetine in plasma was determined to be around 3 hours, 

although studies have also reported longer elimination times, as a function of the 

degree of metabolism (166-167). The results from the displacement studies using 

multiple doses of atomoxetine showed that NAT occupancy by atomoxetine was dose 
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dependent with an estimated ED50 of 0.15 and 0.09 mg/kg for brainstem and midbrain, 

respectively. This suggests that for doses of 0.10 mg/kg, around half of the transporters 

are occupied by atomoxetine. In addition, around 80% occupancy of NATs in the brain by 

atomoxetine (0.85 mg/kg) was determined using both the pre-blocking study and the 

displacement study (when normalised to 100%).  In contrast however, previous clinical 

trials with atomoxetine have found that doses of 1.2 mg/kg were required for clinical 

efficacy and the effect of 0.5 mg/kg was not significantly different from that of a 

placebo (168). This discrepancy may be explained by differences in the modelled 

situation in this present study compared to the clinical situation. The present study only 

evaluated NAT occupancy at peak atomoxetine levels, whereas in the clinical situation 

drug levels peak and trough over the course of a day. Takano and co-workers in 2009, 

reported similar levels of NAT occupancy by atomoxetine when using (S,S)-[18F]FMeNER-

D2 and PET imaging. The implications of these observations need further investigation, 

but it was suggested by Takamo et al. 2009 that a sustained high NAT occupancy by 

atomoxetine at trough levels could lead to different clinical outcomes (113).  

Reboxetine has been used for the treatment of depression and therapeutic doses 

typically range between 4.0 and 10.0 mg per day (117-118). Reboxetine has been shown 

to be rapidly absorbed, with peak plasma concentrations being reached within 2 hours 

and an elimination half-life of approximately 13 hours (118). Studies investigating the 

therapeutic efficacy of reboxetine are contradictory and controversial. Recently 

published reviews showed reboxetine to have similar clinical effects to placebo using 

doses ranging between 4.0 and 10.0 mg per day (169-170). Conversely, others have 

found significant improvements in reboxetine-treated patients compared to placebo 

using doses between 4.0 and 10.0 mg per day (171-172). In this study reboxetine was 

shown to occupy the NAT in a dose-dependent manner, where an estimated ED50 of 2.33 

and 0.44 mg/kg was found for the brainstem and midbrain, respectively. Maximum 

occupancy of NATs by reboxetine was found to be 104% and 57% for the brainstem and 

midbrain, respectively. This difference between high NAT density sites is likely to be 

due to the occupancy at 3.0 mg/kg driving the curve fit. When combining the brainstem 

and midbrain, the measured occupancy at 3.0 mg/kg of reboxetine was 54%, allowing a 

more reliable estimation of the maximum occupancy of 74%. It is unknown whether high 

NAT occupancy is required for clinically-effective treatment of depression; however this 

study shows that high doses of reboxetine are required to reach maximum occupancy of 

NAT in the baboon brain. Further in vivo evaluation of NAT occupancy by reboxetine 

using 123I-INER may provide insight into the pharmacokinetic profile of reboxetine and 

hence, potentially improve the current understanding of the contradictory observations 

seen clinically with reboxetine.          
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The estimated ED50 values of reboxetine were higher than the estimated ED50 values of 

atomoxetine. Using membranes from MDCK cell lines transfected with human NATs, the 

Ki of reboxetine was determined to be 11 nM, while the Ki of atomoxetine was 

determined to be 5 nM (173). The atomoxetine and reboxetine ED50 values determined 

in vivo using SPECT with 123I-INER are in agreement with in vitro observations, showing 

atomoxetine to have a higher affinity for the NAT than reboxetine. 

In this thesis the Lassen plot was applied to obtain the global occupancy in brain 

following pre-blocking with atomoxetine, as previously described in the literature (165). 

The Lassen plot is a method typically used for quantification of global occupancy when 

no suitable reference region is available. In addition, the Lassen plot was also used to 

obtain the VND, which was then applied to the Lassen plot equation for determination of 

NAT occupancy in individual brain regions. For regions with high density of NATs, such 

as brainstem and midbrain, the occupancies determined using the Lassen plot were 

similar to the occupancies determined using the change in BPND indirect method (2T), 

further supporting the use of the occipital cortex as a suitable reference region for 

SPECT imaging using 123I-INER. There was, however, higher variability in occupancy 

measurement in the other brain regions investigated, depending on the method used. 

The lower NAT density in these regions may explain this high variability, suggesting a 

limited use of 123I-INER for the successful quantification of NAT occupancy in regions 

with low densities of the transporter. In regions such as the thalamus and caudate, 

which are relatively small size and are in close proximity, the high variability may also 

be due to the partial volume effects.  

The small sample size of the current study is a particular limitation and therefore data 

should be interpreted with caution and additional studies with more animals may be 

required to allow further interpretation of the results. In addition, the study design for 

the dose-occupancy experiments could be improved. As highlighted above, bolus plus 

constant infusion experiments in different animals may incur errors in the estimation of 

specific binding. Baseline and blocking experiments in the same animal may provide 

more reliable results than bolus plus constant infusion experiments in different animals, 

as these are technically difficult to perform without incurring errors in reaching steady-

state equilibrium.  

6.5 Conclusions 

In conclusion, the results from this study showed that non-invasive reference tissue 

models can be used to quantify the binding potential of 123I-INER in vivo using SPECT and 
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the occipital cortex can be used as a reference region. In addition, an estimation of the 

VT may be obtained by dividing the concentration in tissue by the concentration in 

plasma from venous samples at transient equilibrium to give the VT app. Both these 

methods simplify the data acquisition and image analysis for 123I-INER, providing a 

feasible and easy protocol for future studies in non-human primates. Furthermore, this 

study showed that SPECT imaging with 123I-INER could be used to measure the dose-

dependent occupancy of the NAT by atomoxetine and reboxetine in the non-human 

primate brain. Therefore SPECT imaging with 123I-INER could be used to aid the 

development of novel drugs targeting the NAT and also improve current knowledge on 

existing drugs for treatment of ADHD, depression and other disorders associated with 

dysregulation of the NAT system. 
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7 Final conclusions and future work 

This thesis focused on the process of developing novel radiotracers as tools for imaging 

the human brain. The radiotracer discovery and development pipeline was discussed 

and each step prior to clinical trials was investigated.  

Brain radiotracer discovery and development is a rapidly expanding area but limited 

success has been achieved over the years. This thesis investigated some of the reasons 

for the high failure rate in brain radiotracer discovery and concluded that careful 

characterisation of the lead candidate prior to radiolabelling can reduce attrition in the 

early stages of radiotracer discovery. In the past, a radiotracer candidate progressed to 

the radiolabelling stage based only on simplistic measures such as affinity and 

lipophilicity. In addition, there was limited knowledge of the relationships between the 

physicochemical properties of a radiotracer and the in vivo characteristics ultimately 

observed. In order to address this issue a novel tool for aiding lead candidate 

identification was developed.  

The HPLC tool developed for aiding lead molecule selection was applied to a library of 

compounds and the lead candidate was successfully identified. Compound LS 1 was 

shown to be the most likely to succeed within the library investigated, but the high PPB 

observed for LS 1 advised against taking this compound forward to further evaluation 

studies in vivo. Based on this finding, the Glasgow radiotracer development group went 

on to synthesise a novel library of PK11195 analogues with the aim of obtaining a 

candidate with improved characteristics for in vivo imaging of TSPO using SPECT. Future 

work will include testing of the new library using the HPLC tool developed here and 

competition binding assays.  

Future work is required to confirm the utility of the developed HPLC tool in aiding the 

selection of compounds to be taken forward as radiotracers. This can be achieved by 

using the tool to select compounds as potential radiotracers and then comparing the 

HPLC predicted values with the measured in vivo imaging outcomes. This type of 

comparison was performed using the data obtained with NKJ64, the novel radiotracer 

for NAT developed as part of the present thesis. NKJ64 was selected prior to 

development of the HPLC tool and the affinity was used as the only selection criteria. 

When NKJ64 was analysed using the HPLC tool and guidelines outlined in Chapter 2, a 

%ID in human brain between 2 and 4% was predicted (Appendix 1). In baboons the %ID of 

NKJ64 in brain was determined to be around 3%, in agreement with the predicted %ID 

using the HPLC tool. Furthermore, the analysis of NKJ64 using the HPLC methodology 
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and guidelines resulted in a predicted BPND ≤ 2 (Appendix 1), suggesting that high non-

specific binding may be an issue with this radiotracer. In vivo data in baboons revealed 

high non-specific binding and a BPND between 1 and 2, in agreement with the predicted 

values using the HPLC tool. Although the in vivo data on NKJ64 is from baboon studies 

and not human studies, this provides some confidence that the new HPLC tool can 

predict in vivo characteristics and therefore aid lead molecule selection. However, 

further investigation is required with more radiotracers for this HPLC technique to be 

fully validated. Future work may also include establishing collaborations with other 

research centres in order to extend this analysis to include more radiotracers that are 

both successful and unsuccessful in humans. 

The second part of this thesis focused on the development of a novel radiotracer for 

imaging of the NAT in brain. Radiolabelling of NKJ64 was successfully accomplished by 

iododestannylation and preliminary biological evaluation in rodents showed promising 

results. However, imaging in baboons showed a distribution that was inconsistent with 

the known NAT distribution and therefore studies using NKJ64 were halted and 

translation into humans was not recommended. As discussed in many parts of this 

thesis, radiotracer discovery and development is lengthy process, where multiple steps 

need to be taken prior to human studies. These steps typically involve the use of 

animals and frequently differences between species significantly affect whether the 

radiotracers can be translated into humans. NKJ64 is a good example of the influence of 

species differences on radiotracer performance in vivo. In fact, once the radiotracer 

enters the pre-clinical stage the failure rate is difficult to control as success is highly 

dependent on the species used and the behaviour of the radiotracer in the in vivo 

environment. At this stage, type I errors (going too far) and type II errors (not going far 

enough) are usually difficult to minimise, as species differences can hamper the 

successful separation of useful radiotracers from useless radiotracers.   

The NAT radiotracer INER, developed by Tamagnan and colleagues at Yale University 

and the Institute for Degenerative Disorders, New Haven, USA, was also investigated as 

part of this thesis. Unlike NKJ64, initial studies with INER in baboons had been promising 

(114). This thesis presented the kinetic modelling analysis of INER, as well as data from 

further occupancy studies in baboons. The results supported the translation of INER into 

humans studies, despite the slow kinetics determined over the imaging period. Future 

studies in humans would represent the final step in determining the utility of INER as a 

SPECT radiotracer for imaging of NAT.   

The studies evaluating NKJ64 and INER suggest that further work may be required to 

develop an ideal radiotracer for imaging of NAT in brain using SPECT. High affinity and 
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selectivity are required of a radiotracer for brain imaging, particularly when imaging 

low density sites, such as the NAT. A radiotracer with lower non-specific binding than 

NKJ64 and faster kinetics than INER is desirable. Testing of future libraries using the 

HPLC tool developed could enable the predicted non-specific binding to be compared to 

NKJ64, aiding the identification of a lead candidate to be taken forward to 

radiolabelling studies.  

During the process of developing NKJ64, a para-iodophenoxy analogue of NKJ64 that 

was part of the original library of NAT candidates showed a moderate affinity for SERT 

(Ki=34.5±1.7 nM, n=3) (43). As a result of this finding, the Chemistry group at the 

University of Glasgow set out to design a library of compounds based on this analogue 

with the aim of obtaining a high affinity SERT radiotracer. The resulting library of 

compounds will be tested for SERT affinity and the HPLC tool developed will be utilised 

as part of the lead candidate selection process.  
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Appendix 1 

Using the HPLC tool developed as part of this thesis (Chapter 2), the physicochemical 

properties of NKJ64 were measured, including Pm, %PPB and Km (Table A1.1). The 

relationships between in vitro HPLC measures and in vivo %ID and BPND in combination 

with proposed guidelines for lead molecule selection (Chapter 2, section 2.4.1) were 

used to estimate in vivo properties for NKJ64 (Table A1.2).  

Compound name Pm %PPB Km 

NKJ64 0.66 91.00 260.34 

Table A1.1 NKJ64 physicochemical properties determined by HPLC. 

 
HPLC measures Predicted in vivo measures NKJ64 

Pm<1.5 %ID> 2.0%  

Pm<0.5 %ID>4.0%  

PPB<95% %ID>2.0%  

45%<PPB<85% %ID>4.0%  

Km<250 BPND>2.0  

Km<150 BPND>3.0  

Summary 
Predicted BPND < 2.0 

Predicted %ID between 2.0% and 4.0% 

Table A1.2 Proposed guideline for lead molecule selection applied to NKJ64. 
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Appendix 2 

HPLC method HPLC gradient 

Method 1 

 

Method 2 

 

Method 3 

 

Table A2.1 Different HPLC methods investigated for separation of by-product peaks 
obtained during 

123/125
I-NKJ64 radiosynthesis using 2M HCl as deprotecting agent. 
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HPLC method HPLC gradient 

Method 4 

 

Method 5 

 

Method 6 

 

Table A2.1 (cont). 
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HPLC method HPLC gradient 

Method 7 

 

Method 8 

 

Method 9 

 

Table A2.1 (cont). 

 

 

 

 

 

 



189 

 

HPLC method HPLC gradient 

Method 10 

 

Method 11 

 

Method 12 

 

Table A2.1 (cont). 
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HPLC method HPLC gradient 

Method 13 

 

Method 14 

 

Table A2.1 (cont). 
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