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Pérot Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 The JIF Laboratory . . . . . . . . . . . . . . . . . . . . 59

3.3.2 Upgrading the Glasgow 10m Prototype . . . . . . . . . . 60

3.3.3 Mode Matching . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.4 Amplitude Stabilisation . . . . . . . . . . . . . . . . . . 63

3.4 Control and Length Sensing Signal Extraction . . . . . . . . . . 67

3.5 Modelling a Diffractively-Coupled Fabry-Pérot Cavity . . . . . . 69
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Preface

Chapter 1 details the nature of gravitational waves by developing Einstein’s

General Theory of Relativity. From this analysis potential sources of astro-

nomical origin are discussed, revealing the frequency bandwidth for which

gravitational wave detectors are optimised.

Chapter 2 outlines the different interferometric topologies currently used for

large baseline gravitational wave detectors. The length sensing scheme for

controlling the various separations between each optical component is also

discussed. A summary is given of the different noise sources that limit the

ground-based detectors and suitable expressions for quantifying these processes

are provided.

Chapter 3 contains the first experimental demonstration of a triple-suspended

diffractively-coupled Fabry-Pérot cavity utilising one of the arms in the Glas-

gow 10 m prototype interferometer. The motivation for employing grating

devices in future gravitational wave detectors is highlighted, followed by a dis-

cussion of the different fabrication techniques and a detailed summary of the

benefits related to different design choices. A full experimental design and

characterisation of the grating under investigation is presented, with a further

analysis performed on the effects associated to the dynamic behaviour of such

systems. The work included in this chapter was performed in collaboration

xviii



with Dr Bryan Barr, Dr Oliver Burmeister, Mr Jonathan Hallam, Dr John

Nelson and Dr Mike Plissi.

Chapter 4 presents the research on the modified dynamic behaviour of sus-

pended cavity mirrors when acted upon by sufficiently large radiation pressure

forces. The choice of design for the light-weight mirror and associated suspen-

sion that was required for this investigation is provided, including conclusions

on its construction and ease of installation. The observed results are discussed

in context with a numerical model that was derived. The work presented in

this chapter was carried out in collaboration with Dr Bryan Barr, Dr Mike

Plissi and Dr Sabina Huttner.

Chapter 5 summarises the results from both experiments, providing conclu-

sions on the research in context with challenges for the wider collaboration

and future work.
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Summary

In 1916 Einstein published his General Theory of Relativity, from which the

existence of gravitational waves was predicted. Gravitational waves are consid-

ered to be ripples or fluctuations in the curvature of space-time, propagating

isotropically from their source at the speed of light. However, due to the weak

nature of gravity, observing this phenomenon presents a great challenge to the

scientific community.

Small deviations in the apparent positions of stellar objects were measured

by Eddington during a solar eclipse in 1919, which confirmed the curvature of

space-time and its effect on light, and there have since been many astronomical

observations of gravitational lenses. In 1993 Hulse and Taylor were awarded

the Nobel Prize in Physics for their observations of a pulsar in a binary system,

providing strong evidence for energy loss by emission of gravitational waves.

However, the quest for a direct detection of gravitational waves is ongoing

through the development of ever more sensitive technology.

The development of laser interferometry, based on Michelson topologies, pro-

vides the most encouraging route to observing gravitational radiation. There is

currently a global network of first generation interferometric gravitational wave

detectors in operation, including GEO600 (UK/Germany), Virgo (Italy/France)

and TAMA (Japan) as well as several second generation detectors under con-

xx



struction such as Advanced LIGO (USA) and LIGO-Australia (Australia). In

the coming years GEO600 will also undergo a series of small sequential up-

grades to GEO-HF, while Virgo aims to become an order of magnitude more

sensitive across the entire frequency band, as Advanced Virgo.

The Institute for Gravitational Research (IGR) at the University of Glasgow

has for many years been in strong collaboration with the Albert Einstein In-

stitute in Hanover and Golm, the University of Hanover, the University of

Cardiff and the University of Birmingham. The Glasgow group have been in-

volved with developments on GEO600 since its initial construction in 1995,

from which a lot of technology has been subsequently adopted for use in other

large baseline detectors. There is a 10 m prototype interferometer housed in

the JIF laboratory at Glasgow, which is utilised for testing new technology

and optical configurations of interest to this and the wider collaboration.

The research contained in this thesis has been carried out on the Glasgow

prototype to investigate novel technology of potential importance to future

generations of gravitational wave detectors.

In Chapter 1 the history of gravitational radiation is discussed, along with

a summary of Einstein’s General Theory of Relativity to reveal the nature

of gravitational radiation production. From this analysis several potential

sources of astronomical origin are detailed for which the design of ground

based detectors are optimised.

Various interferometric solutions for detecting gravitational waves are described

in Chapter 2, beginning with the most fundamental Michelson topology and

thereupon key enhancements, such as Fabry-Pérot cavities, power recycling

and signal recycling are outlined. The Pound-Drever-Hall scheme used to

sense and control the relative distances between each optical component is

xxi



detailed, including modifications to this technique for controlling significantly

more complex systems with many optical elements.

The most important attribute in the overall design of an interferometric grav-

itational wave detector is the total noise limit to the sensitivity, which is com-

prised of both technical noise and fundamental noise. A summary is provided

of the seismic, thermal, and laser noise contributing to technical noise as well as

the fundamental quantum noise, consisting of photon shot noise and radiation

pressure noise. From this discussion, the author introduces the current global

network, and proposed future generations of ground-based detectors intended

to open a new field of gravitational wave astronomy.

In all proposed upgrades and future detectors the input power must be in-

creased to improve detector sensitivity. Two experiments were designed, con-

structed and completed at the Glasgow prototype interferometer related to

separate issues of concern for high power regimes.

In the first experiment, one of the arms of the Glasgow prototype was com-

missioned as an all-reflective optical cavity, whereby the partially transmissive

input mirror was replaced with a three-port diffraction grating mounted on the

bottom stage of a triple pendulum. This investigation was designed to char-

acterise the performance of the grating compared to the conventional input

mirror of a Fabry-Pérot cavity, whilst revealing issues related to the dynamics

of suspended grating input couplers on the control signals. The realisation

of grating devices for use in interferometric systems would open a pathway

to mitigating the otherwise limiting thermal noise associated to the mirror

coatings.

The other arm of the Glasgow prototype was chosen to investigate the modi-

fied dynamic behaviour of suspended cavity mirrors when signifiant radiation

xxii



pressure forces are incident. The experiment involved replacing one of the sus-

pended cavity mirrors with a light-weight counterpart designed specifically to

increase the overall sensitivity to radiation pressure. By probing the system

response for different cavity detunings, it was possible to observe and char-

acterise the opto-mechanical resonance, commonly termed an optical spring,

which induces optical rigidity at lower frequencies and enhanced sensitivity

around the resonant feature.

Although optical rigidity suppresses the system response, which is otherwise

undesired within gravitational wave detectors, it does however enable systems,

which under the right conditions can be self-locking, i.e. the mirror control

turned off. Furthermore, the enhanced detector sensitivity at the optical spring

frequency can be optimised for different frequencies of interest, and could po-

tentially be used to beat the limit imposed by the Heisenberg Uncertainty

Principle for independent cavity mirrors.

Together, these experiments may provide information useful to the design of

future interferometric gravitational wave detectors.

xxiii



Chapter 1

The History, Nature and

Sources of Gravitational

Radiation

1.1 Introduction

Gravity is a rather special force. This is because it is almost completely dif-

ferent from the other known forces. Gravity appears to have an infinite reach

upon the universe and is inherently connected with the geometrical properties

of space and time. The earlier notions of Newtonian gravity described it as

a simple force acting instantaneously between bodies with mass, from which

the dynamics of our own solar system could be understood. Newton’s inter-

pretation of this unique force was quite simple and yet also reasonably robust,

taking centre stage for several hundred years and proving its worth with, for

example, the prediction and eventual discovery of the planet Neptune based on

the orbital motions of Uranus. However, nearly one hundred years ago, when

1
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the concept of inertial frames had been introduced and Einstein was formulat-

ing the Special Theory of Relativity [1] it became obvious that the theory of

gravity was incompatible with the current understanding. This led Einstein to

develop the General Theory of Relativity in 1916 [2] where he described gravity

as a property of space-time. Einstein proposed that space-time was not flat

but instead curved by the presence of mass or energy. From this theory it was

shown that accelerating mass would generate gravitational radiation, which is

commonly termed gravitational waves, and these waves will propagate isotrop-

ically from their source at the speed of light. The relatively weak strength of

gravitational waves is important for two reasons; firstly, it means that they

can propagate where electromagnetic radiation would otherwise be blocked,

and second it requires very sensitive instrumentation in order to detect them.

The rest of this chapter is dedicated to the theory of relativity and generation of

gravitational waves, and highlights why laser interferometers are the optimum

tool for their detection. I will also include some detail on the types of source

that are likely candidates for generating strong enough levels of radiation for

detection and their associated noise limits.

1.2 A Brief Summary of Relativity

Einstein’s Special Theory of Relativity states that the space-time interval ds

between two points is given by:

ds2 = ηµνdxµdxν , (1.1)
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with the Minkowski metric of flat space-time, ηµν , given in cartesian coordi-

nates by

ηµν =





−c2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




. (1.2)

In General Relativity the presence of mass causes space-time to curve giving

a space-time interval defined by

ds2 = gµνdxµdxν , (1.3)

with all information about the space-time curvature described by the metric

gµν . It is the curvature of space-time that we experience which we call gravity.

In the absence of a gravitational field space-time is flat. We define a weak

gravitational field as one in which space-time is nearly flat and so can define

gµν = ηµν + hµν , (1.4)

where hµν is a small perturbation from Minkowski space-time. Equation 1.4

is known as a nearly Lorentz coordinate system. It can be shown that an ar-

bitrary small vector ξµ can be applied to xµ without altering our assumption

that space-time is nearly flat. It is therefore permissible to choose the compo-

nents of ξµ to make Einstein’s equations as simple as possible. This is known

as choosing a coordinate system, or gauge, for the problem and there is one in

particular in which the behaviour of gravitational waves becomes evident - the

Lorentz gauge. Therefore, we can write Einstein’s Field equations as a wave

equation [3], i.e. �
∇2 − 1

c2

δ2

δt2

�
hµν = 0, (1.5)

with the elements of hµν taking the form h(2πft− k.x), and the frequency of

the wave f = (|k|/2π)c, describing a plane wave propagating in the direction

k̂ ≡ k/|k| at the speed of light.
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To obtain the wave amplitude components in their simplest form, we can

choose the transverse-traceless gauge, which is a small adjustment to the orig-

inal Lorentz gauge transformation and satisfies the Lorentz condition. Then

by orientating our coordinate system so that the plane wave is travelling in

the positive z direction, this gives

hµν =





0 0 0 0

0 a b 0

0 b −a 0

0 0 0 0




. (1.6)

In other words, the propagating gravitational perturbation can be written as

the sum of two components, h = ah+ + bh×, where

h+ =





0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0




(1.7)

and

h× =





0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0




. (1.8)

Therefore, this analysis has shown that there are two distinct linear polarisa-

tions of the wave that are termed ‘plus’ (+) and ‘cross’ (×).

By inserting the solution to gravitational wave amplitude into Equation 1.4

we can obtain the space-time interval from Equation 1.3 to obtain

ds2 = (1 + h+)dx2 + 2(1 + h×)dxdy + (1− h+)dy2 − cdt2. (1.9)

As will be discussed later, laser interferometers are used for the detection of

gravitational waves. The quadrupolar nature of gravitational waves means
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that these relatively old precision instruments are ideal tools for their detec-

tion. The basic principle behind these detectors (a more detailed discussion

of this material can be found in Saulson 1994 [4]) is to measure the effect the

gravitational wave will have on two beams of light that are travelling in orthog-

onal directions. Considering the case when one beam is travelling along the

x-axis (dy = 0) and the other travelling along the y-axis (dx = 0), Equation

1.9 becomes:

(1 + h+)dx2 − cdt2 = 0 (1.10)

and

(1− h+)dy2 − cdt2 = 0 (1.11)

which can be easily rearranged to show the differential behaviour in orthogonal

axes by:
dx

dt
=

c�
1 + h+

(1.12)

and
dy

dt
=

c�
1− h+

. (1.13)

When considering the length of the two orthogonal arms of an interferometer

when there is no gravitational radiation present, the optical path length for

each axis can be defined by:

l = cτ, (1.14)

where τ is the time light takes to travel the length of the arm. However, in the

presence of gravitational radiation, using Equations 1.12 and 1.13 we obtain

lGWx =

�
τ

0

dx

dt
dt = cτ +

c

2

�
τ

0

h+(t) dt (1.15)

and

lGWy =

�
τ

0

dy

dt
dt = cτ − c

2

�
τ

0

h+(t) dt (1.16)

by expanding to first order. Therefore the presence of h+ polarised gravita-

tional radiation will cause a change in the optical path lengths, given by

dlx = lGWx − l =
h+

2
cτ (1.17)
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and

dly = lGWy − l =
−h+

2
cτ. (1.18)

Thus, with a slight rearrangement and substitution using Equation 1.14 we

obtain
dlx
l

=
h+

2
(1.19)

and
dly
l

= −h+

2
. (1.20)

This result highlights the differential nature of a passing gravitational wave

and its effect on the orthogonal arms of a laser interferometer. It can be

seen that the dimensionless strain amplitude of this polarisation is h = h+.

Figure 1.1 indicates how the two polarisations of a gravitational wave would

affect a ring of freely suspended test particles. It is worth noting that unlike

electromagnetic wave polarisation states, which are rotated by 900, the two

gravitational wave states are instead manifest at 450.

1.3 Sources of Gravitational Waves

Before detailing the various sources of gravitational waves it is important to

recognise the fundamental limits imposed on any ground-based detector. Seis-

mic activity on the surface of the Earth, and the subsequent gravitational cou-

pling to the detector, sets a lower limit of around 1 Hz for which detectors can

be sensitive. At frequencies above about 10 kHz it is photodetector shot noise

that sets an upper limit for laser interferometers. It is the band between these

limits in which ground-based detectors are sensitive. However, the proposed

Laser Interferometer Space Antenna (LISA), which is due to launch sometime

around 2020, will be capable of observing gravitational waves at frequencies
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hxh+

Figure 1.1: Illustration of the effect that a gravitational wave, which is propa-

gating along the direction of the arrow, will have on a ring of freely suspended

test particles over time.

of around 0.03 mHz to 0.1 Hz and will compliment the existing network of

ground-based gravitational wave observatories.

Following other proposed physics experiments on Earth, such as a neutrino

factory intended to study the fundamental properties of these weakly inter-

acting particles, one might propose building a source of gravitational waves in

the aim to then detect them. However, it can be shown that such experiments

would yield levels of gravitational radiation with an amplitude of h = 1×10−43

[5]. It is understood that this is about 20 orders of magnitude weaker than

the level of amplitude humans will realistically be able to detect. We therefore

turn our attention to astrophysical sources that might generate strong enough

levels of radiation that could be detected here on Earth, and of these there are

a great many.
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1.3.1 Burst Sources

Burst sources, as the name suggests, are those that emit gravitational radiation

for only a brief period. They happen and very quickly disappear so only

strong enough sources stand a chance to ever be detected with confidence.

Typical candidates include astronomical events such as supernova explosions

and coalescing binary systems.

Supernovae

A supernova explosion occurs when a stellar object very quickly ejects a con-

siderable proportion of its mass, normally resulting in a remnant compact

object. Throughout this process, which can last between a few milliseconds

and a few minutes, the star becomes extremely bright, sometimes outshining

their host galaxy and can often be observed by the human eye. There are

two types of supernovae, which are defined by the expected trigger processes.

Type I are believed to occur when a white dwarf star has accreted enough

mass from a companion star, or merged, causing the stellar core to exceed the

Chandrasekhar limit (Mch � 1.38M⊙ � 3× 1030 kg). The white dwarf can no

longer prevent gravitational collapse and explodes. If the core collapse is non-

symmetrical, due to inherent orbital angular momentum, then gravitational

radiation can be emitted.

Type II supernovae are the result of stars that are at least nine solar masses

and have undergone a complex sequence of fusion processes within the core

and outer layers. The nuclear fusion process will eventually reach a final stage

with the production of an Iron-Nickel core, when it is no longer capable of

generating energy to maintain hydrostatic equilibrium. This results in core-

collapse with the formation of neutron stars and stellar mass black holes.
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According to [3] the gravitational wave amplitude expected from a supernovae

is

h = 5× 10−22

�
E

10−3M⊙c2

� �
15Mpc

r

� �
1kHz

f

� �
1ms

τ

�1/2

(1.21)

where E is the total energy radiated, f is the frequency of the gravitational

signal, τ is the time taken for the collapse to occur and r is the distance to

source.

The event rate for Type I and II supernovae, out to the Virgo cluster (at a

distance of about 50 million light years � 15Mpc), has been estimated as a

few per year.

1.3.2 Coalescing Compact Binary Systems

A binary star system is one that contains two stars orbiting around their

common centre of mass. When considering compact binary systems there can

be various combinations such as neutron star/neutron star (NS/NS), neutron

star/black hole (NS/BH), and black hole/black hole (BH/BH). As these binary

systems evolve they lose energy, through the production of gravitational waves,

which eventually leads to them merging. Towards the final stage of coalescence,

the orbital frequency and the gravitational wave amplitude will increase with a

characteristic ‘chirp’, leaving a remnant black hole, most likely. These signals

should be observable by ground based detectors since the amplitude has been

determined [3] using the approximation

h = 1× 10−23

�
100Mpc

r

� �
Mb

1.2M⊙

�5/3 �
f

200Hz

�2/3

, (1.22)

where Mb = (M1 M2)3/5

(M1+M2)1/5 is the mass parameter of the binary system with M1

and M2 being the masses of the stellar objects.
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Estimates of the event rates of coalescing neutron stars [6, 7] are based on

extrapolations from observed binary systems in the Milky Way, which yields

a rate of 100 Myr−1. Based on data from some of the current ground based

detectors during the LIGO S5 and Virgo VSR2 science runs, (see Chapter 2)

this translates into a possible detection rate of 0.02 per year. Whilst projections

for the advanced detectors (the Advanced LIGO – Virgo network, see Chapter

2) suggest the event rate will increase to around 40 events per year [8].

1.3.3 Continuous Wave Sources

A continuous wave source is one which emits an almost sinusoidal gravitational

wave signal for a relatively long duration. Since these signals are present for

extended periods of time, it means that any monitoring of the source can

benefit from improved signal-to-noise ratio. Therefore, the detectors could be

sensitive to signals intrinsically weaker than other burst sources.

Binary Systems

Binary systems, well before becoming compact binaries and merging, will in-

spiral due to the loss of energy by way of gravitational radiation. Experimental

observations of this behaviour were reported by Hulse and Taylor [9, 10] after

monitoring the binary pulsar PSR 1913 + 16. They found that the orbital

period of the system decayed at 76.5µs each year with the semi-major axis

decreasing by 3.5 m each year, in precise agreement with a decay model that is

based on Einstein’s General Theory of Relativity. Hulse and Taylor’s work was

awarded the Nobel Prize for Physics in 1993 and has become the first indirect

evidence for the existence of gravitational waves.
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It is possible to approximate the gravitational wave amplitude, h, for two stars

in a binary system separated by R and of equal mass m (see [11]) using the

equation

h =
(GM)5/3Ω2/3

c4r
, (1.23)

where G is the universal gravitational constant (6.67 × 10−11m3kg−1s−2), M

represents the combined mass (M = 2m), Ω is the angular frequency, and r is

the distance from Earth. From this equation, it can be determined that the

gravitational wave amplitude of the binary pulsar PSR1913 + 16 should be

approximately h = 4× 10−23, which would be detectable with the current sen-

sitivity, however the frequency of this radiation is around f = 70µHz. Unfortu-

nately, signals of this frequency are way out of band for ground based detectors,

and even for the space-based gravitational detector (LISA). We therefore turn

our attention to more realistically detectable sources.

Neutron Stars

Neutron stars are thought to be a very strong candidate for the emission of high

frequency continuous gravitational radiation. These compact stellar objects

are extremely dense ( 8− 25M⊙) and since their discovery in 1967 by Hewish

and Bell [12], almost 2000 have been detected at the time of writing. However,

recent estimates suggest there could be as many as 200 000 in the Milky Way

alone [13], meaning there is an abundance of possible sources.

Pulsars are highly magnetised rotating neutron stars, which emit beams of

electromagnetic radiation from their magnetic poles. It is possible for the

magnetic axis of the pulsar to be inclined towards Earth’s line of sight, and if

the magnetic poles and the rotational axis are not co-aligned, then a periodic

pulse of radiation can be seen, commonly called the ‘light house effect’.
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Gravitational radiation will only be emitted from neutron stars and pulsars

that have some degree of asymmetry. The common term used to define the

amount of asymmetry is the equatorial ellipticity �. The gravitational wave

amplitude emitted from a pulsar is given by [14]

h = 6× 10−25

�
frot

500Hz

�2 �
1kpc

r

� � �

10−6

�
, (1.24)

where frot is the rotational frequency of the pulsar, and r is the distance

from Earth. The frequency of gravitational radiation emitted from pulsars

occurs at twice the spin frequency and covers a relatively wide range of around

0.1Hz− 1kHz.

1.3.4 Stochastic Sources

There is believed to be a cosmic background of gravitational radiation, anal-

ogous to the cosmic microwave background radiation. The stochastic back-

ground is expected to be composed of all the gravitational radiation sources

highlighted previously along with remnant radiation from the big bang itself.

Unlike electromagnetic radiation which is only visible in the transparent Uni-

verse (approximately 300 000 years after the big bang), gravitational radiation

could still permeate through a primordial dense plasma, due to its weakly in-

teracting nature. Detecting this background radiation could potentially lead

to a much fuller understanding of the physics in extreme conditions and the

origins of the Universe.

The gravitational wave amplitude for the stochastic background has been es-

timated to be [15]

h = 2.4× 10−25

�
f

100Hz

�− 3
2
�

B

2Hz

� 1
2
�

ΩGW

10−8

� 1
2
�

H0

75kms−1Mpc−1

�
, (1.25)
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where B is the bandwidth over the frequency f , ΩGW is the energy density

per logarithmic frequency interval required to close the universe and H0 is the

present value of the Hubble constant.



Chapter 2

Laser Interferometry for

Gravitational Wave Detection

In the previous chapter, we mentioned briefly the use of laser interferometers

for gravitational wave detection to understand the types of sources that mainly

ground-based detectors are optimised for. This chapter will now detail the

fundamentals behind the various types of interferometer topologies that make

up the current network and will also provide an overview of the technology

implemented.

2.1 Michelson Interferometer

The Michelson interferometer is the fundamental interferometric configuration

designed by Albert Michelson in the late 19th century. It has become the foun-

dation for almost all interferometric solutions to gravitational wave detection.

The Michelson topology is illustrated in Figure 2.1. Before we begin to exam-

14
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Figure 2.1: Basic layout for a Michelson interferometer. There is one input

port for a coherent light field (E1) and two possible output ports for light exiting

the system (E6 and E7). The input light splits (E2 and E3) upon incidence

with the beam splitter, travelling down two orthogonal ‘arms’. The light fields

(E4 and E5) then return to the beam splitter after reflection with each of the

end mirrors.

ine the interaction of the light fields within this interferometric topology and

others that follow, it is important to first describe the convention that will

herein be used. Any optical component, such as mirrors and beam splitters,

can be described by a complex valued n × n matrix Sn, where n input ports

are represented by a vector a, and the output ports are represented by the

vector b. Both a and b have components ai and bi respectively, which are

complex amplitudes at the ith port. The coupling of input and output ports
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Figure 2.2: Simple schematic of the input fields (Ea and Ed) and output fields

(Eb and Ec) upon interaction with a mirror.

for a mirror or beam splitter is then given by

b = S2p . a, (2.1)

such that the field interactions at a mirror, as shown in Figure 2.2, can be

described by 

 Eb

Ec



 =



 iτ ρ

ρ iτ



 .



 Ea

Ed



 , (2.2)

where ρ and τ are the amplitude reflectivity and transmitivity of the mirror

respectively. The input light field entering the Michelson interferometer at

time t can be represented by the scalar expression

E1 = E0e
iωt, (2.3)

where E0 is the amplitude of the field and ω is the angular frequency of the

light. Here we assume the beam splitter in Figure 2.1 is 50:50, meaning that

50% of the light is reflected along one arm, whilst 50% is transmitted along

the other arm, and we define

E2 = ρE1, (2.4)

and

E3 = iτE1. (2.5)
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These two light beams then travel down each arm and are reflected by the end

mirrors, arriving back at the beam splitter. Any difference in length between

the two arms ∆ l will result in the time taken to traverse the extra length

t = 2∆ l/c, so that the angular frequency of the returning light fields is out of

phase by an amount

φ = ω t =
2π c

λ

2∆ l

c
=

4π∆ l

λ
. (2.6)

The returning light fields, just before the beam splitter as depicted in Figure

2.1, are then given by

E4 = ρE1e
iφ
2 , (2.7)

and

E5 = iτE1e
−iφ

2 . (2.8)

At the beam splitter these two beams recombine to produce a single light field

exiting the ‘dark port’, given by

E6 = iτE4 + ρE5, (2.9)

and another light field returning to the ‘light port’, described by the expression

E7 = ρE4 + iτE5. (2.10)

Both light fields exiting the Michelson interferometer can be detected on pho-

todetectors in order to obtain information about the lengths of the orthogonal

arms. Photodetectors produce a current based on the amount of power in the

beam that is incident. Therefore, they are sensitive to the absolute square of

the amplitude as shown by

P ∝ |E|2 = E.E∗. (2.11)

Applying this to the output fields given by Equation 2.9 and 2.10 it is then

possible to obtain the relative power at each port dependent on the phase

difference between the two returning light fields:

P6

P0
= 2(ρτ)2 + 2(ρτ)2 cos φ, (2.12)
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and
P7

P0
= (ρ)4 + (τ)4 − 2(ρτ)2 cos φ. (2.13)

For the purpose of gravitational wave detection, the interferometer is held at

the operating point (as will be discussed later), which means that the dark port

is maintained at the point of destructive interference and therefore minimum

light exiting through this path. Meanwhile most of the light is returning along

the input path to the light port, meaning that the interferometer is effectively

a mirror. To achieve this operating point requires the phase difference, as

indicated by Equation 2.12 and 2.13, between each arm φ = π, i.e. a balanced

interferometer. The presence of a gravitational wave will thereby act to change

the relative phase between the returning light fields and result in a portion of

light exiting the dark port to be subsequently detected on a photodetector.

The above experimental apparatus and method for detecting gravitational

waves is fundamental to all current laser interferometric gravitational wave

detectors, however, several enhancements have been made in order to improve

the detector sensitivity as will now be discussed.

2.2 Fabry-Pérot Michelson Interferometer

The evolution from a basic Michelson interferometer to the current and future

states of these detectors all have the same goal, which is to maximise the

number of photons in the system and store them for as long as feasibly possible

before detection. One technique is to create off axis paths for light beams to

travel down the arms of the interferometer, known as ‘delay lines’, as indicated

by Figure 2.3. It’s worth noting that the largest detectors have kilometre scale

arm lengths, which is much smaller than the wavelength of gravitational waves

expected from typical astronomical candidates. Therefore by folding the arms
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Figure 2.3: The simplest delay line Michelson interferometer. The effective

arm length is doubled with the folding mirror and end mirror positioned off-

axis to obtain one reflection. Other off-axis positions of the mirrors can result

in multiple reflections of light within the arms.

until the effective length reaches half the gravitational wavelength, the phase

shift between the returning light from each arm will be maximised, and this

in turn will give rise to a larger detected signal exiting the dark port.

Another technique that is often adopted and follows the same principle as

delay line interferometers is an additional partially transmitting mirror at the

inner position of each arm. This results in the arms of the interferometer

forming optical cavities, called Fabry-Pérot cavities (see Figure 2.4), named

after a spectroscopy standard by Fabry and Pérot [16]. If the length of the

arm is tuned, such that exactly an integral number of half wavelengths of laser

light are stored within the cavity, then the cavity is on resonance. Maintaining
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Figure 2.4: Schematic of the Fabry-Pérot Michelson Interferometer.

the resonant condition means that incoming light is superimposed onto the

light inside the cavity many times, maximising the overall energy, which will

eventually leak out towards the beam splitter after a certain amount of time,

known as the cavity storage time τs. The storage time of a cavity is defined

by the properties of the cavity mirrors and their separation. It is possible

to measure the storage time of a cavity experimentally by removing the light

source and monitoring the time taken for the light level in the cavity to fall to

1/e from the initial cavity level. Alternatively, to understand the properties of

the cavity it is also useful to measure the cavity linewidth, which is inversely

proportional to storage time and also related to the mirror properties.
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2.3 Power Recycling

As previously discussed, the use of resonant optical cavities can be used to

enhance the interferometer sensitivity to differential changes in arm length,

but we have so far ignored the light that eventually does leak back to the light

port. In section 2.1 it was mentioned that the interferometer can be essentially

treated like a mirror. It is therefore possible to form another optical cavity with

the interferometer itself by placing an additional partially transmitting mirror

at the light port. This technique is known as power recycling because it acts to

re-use otherwise wasted light by feeding it back into the system, as shown by

Figure 2.5. With this technology, a higher level of power and therefore higher

number of photons are incident on the two arms of the interferometer, which

improves the output signal at the dark port.

2.4 Signal Recycling

Signal recycling is another complimentary technique to improve the detector

sensitivity, in that while power recycling acts to maximise the power in the

arms, signal recycling controls the resonance of the signal fields. The basic

principle is to add another partially transmitting mirror at the dark port as

shown by Figure 2.6. When the beam splitter is in the right position for power

recycling (to see the common mode of the arms), it also allows the signal

recycling mirror to see the differential mode, hence forming what is effectively

a cavity for the light in that mode, directed to the signal recycling mirror

by the beam splitter. Since the signal recycling cavity contains the signal

sidebands there is also the opportunity to tune the position of the mirror in

a way that enhances a specific band of resonant frequencies. The enhanced
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Figure 2.5: Schematic of the Fabry-Pérot Michelson Interferometer with the

addition of a power recycling mirror at the light port. The injected power is of

the order 1− 200W, the power inside the recycling cavity is of order kW and

the power inside the arm cavities is ∼ 10kW to 1MW in current or planned

instruments.

sensitivity can be achieved in three particular modes of operation; broadband

signal recycling, resonant sideband extraction and detuned signal recycling. In

order to describe the basic principles behind each of these operating conditions

it helps to consider the light fields in the frequency domain. The primary

laser light frequency injected into the interferometer is usually termed the

‘carrier’ frequency, and to this various modulation radio frequencies are added,

also known as ‘control sidebands’, in order to extract information about the

numerous cavity lengths.
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Broadband Signal Recycling

It has already been mentioned that the carrier light is resonant inside the

arm cavities to enhance the detector sensitivity. In broadband recycling the

position of the signal recycling mirror is maintained at a location such that the

carrier frequency is anti-resonant inside the cavity which is formed with the

inner mirrors of the interferometer arms. This technique increases the effective

reflectivity of the inner mirrors and thereby leads to an increased storage time

for the signal sidebands, i.e. allows more signal sideband amplitude to be

accumulated. An increase in storage time however leads to a smaller bandwidth

of operation.

Resonant Sideband Extraction

Conversely, in resonant sideband extraction, the position of the recycling mir-

ror is held at a location where the carrier frequency is resonant inside the

recycling cavity. This actually reduces the effective reflectivity of the arm cav-

ities, which reduces the time spent by the photons inside the system, however

this also increases the bandwidth of the detector. Therefore, by implementing

very high finesse arm cavities with ultra low loss, resonant sideband extraction

can be used to build a very broadband and sensitive detector.

Detuned Signal Recycling

This mode of operation relies on detuning the signal recycling mirror away

from the position where the carrier is resonant and consequently into a position

where the optical resonance occurs at a frequency which can be even higher

than the linewidth of the arm cavities. The position of the signal recycling
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Figure 2.6: Schematic of the Fabry-Pérot Michelson Interferometer with power

recycling and the addition of a signal recycling mirror at the dark port.

mirror can be tuned independently from the arm cavities and therefore the peak

in detector sensitivity can be optimised for different frequencies of radiation

at different times.

In addition to the well known optical resonance, there is a secondary resonance

which has been observed in signal recycled interferometers [17] [18]. This other

resonance is in fact optomechanical in nature due to the classical coupling

of the light field with the antisymmetric mode of the mirrors. When the

signal recycling mirror is maintained in a detuned mode of operation, the

phase modulated sidebands induced by a gravitational wave will be partially

converted into amplitude modulations that beat with the carrier light. This

light field induces a motion-dependent force acting back onto the arm cavity

mirrors [19]. More on the optomechanical nature of detuned cavities will be
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covered in chapter 4.

2.5 Length Sensing and Control

In order to hold the interferometer at the desired operating point requires

knowing the relative lengths between each of the component mirrors and con-

trolling their length by way of electromagnetic feedback. Each of the mirrors,

along with the feedback mechanism, must also be free to move, which is con-

ventionally achieved through the use of multistage pendulums as indicated by

Figures 2.7. This also very effectively isolates the mirrors from seismic activ-

ity above the pendulum resonant frequency. The electromagnetic feedback is

achieved by using an array of fixed magnets and copper wound coils that sit

close together as indicated by Figure 2.8. By sending continuous current sig-

nals through the copper coils and generating magnetic fields, the fixed magnets

will experience a force, which in turn will control the separation between the

test mass and the reaction mass. The current signals, usually termed control

signals, are derived from the interferometer output signals, which indicate the

relative length between each component mirror. The arrangement of sidebands

that are added to the carrier light are chosen to optimise the ability to observe

small length changes and the whole process is achieved through modulation

and demodulation.

2.6 Modulation and Demodulation

As interferometric systems become more complex, the number of optical com-

ponents increases, whose relative separations must be maintained at the correct
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Figure 2.7: Schematic of a triple-suspended test mass indicating the interme-

diate and upper mass stages. A reaction chain is also shown to illustrate the

feedback mechanism to the free suspension stages.

operating point. The technique used to monitor the cavity length relies upon

modulation to add frequency sidebands to carrier light. When propagated

inside a cavity the phase of the carrier component moves relative to non-

resonant sideband fields, resulting in a change to the relative strength of the

beat frequencies. Monitoring the fields exiting the cavity on photodetectors,

and demodulating at the modulation/beat frequency, reveals an antisymmet-

ric error signal. This length sensitive signal can then be applied with suitable

negative feedback through electromagnetic actuators to control the cavity mir-

ror positions. Modulation of the carrier light field can be achieved with two

different techniques; phase modulation and amplitude modulation.
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Reaction Mass
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Figure 2.8: Illustration of test masses and reaction masses that are located at

the bottom of a three or four stage pendulum. The magnets are rare earth met-

als, usually Nickel plated Neodymium Iron Boron (Nd:Fe:B), used because of

their high magnetic properties. The coils are constructed from vacuum compat-

ible material formas (in our system PEEK) wound with typically ∼ 100−1000

turns of insulated copper wire. The schematic also indicates the relative po-

sitions of the coils and magnets used for electromagnetic longitudinal feedback

in the Glasgow prototype.

Phase Modulation

As the name suggests, phase modulation changes the phase of the light field,

and the amount of phase change is dependent on the strength of the modu-

lation, known as the modulation index. To begin a mathematical analysis of
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this technique we must first start with an unmodulated light field, given by

E = E0e
iω0t. (2.14)

Applying phase modulation, with angular frequency ωm and modulation index

of m, onto this field yields

EPM = E0e
iω0teim cos ωmt. (2.15)

By expanding Equation 2.15 to first order using standard identities gives

EPM = E0e
iω0t

∞�

k=−∞

ikJk(m)eikωmt (2.16)

≈ E0e
iω0t

�
J0(m) + iJ1(m)eiωmt + iJ1(m)e−iωmt

�
, (2.17)

where Jk(m) are Bessel functions of the first kind of order k and defined by

[20]

Jk(m) =
∞�

j=0

−1j

j!(j + k)!

�m

2

�k+2j

(2.18)

and

J−k(m) = (−1)kJk(m). (2.19)

Here we consider only the first order expansion as we are concerned only with

the first order sidebands and not the higher harmonics.

Amplitude Modulation

Amplitude modulation is a periodic modulation of the amplitude of a light

field. Starting with an unmodulated light field, as before, and then applying

amplitude modulation gives

EAM = E0e
iω0t(1 + m cos ωmt), (2.20)

with a modulation index m ≤ 1. This can be expressed by exponentials as

EAM = E0e
iω0t(1 +

m

2
eiωmt +

m

2
e−iωmt), (2.21)

where the modulation sidebands are at ω0 ± ωm.
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Demodulation

Once the light has been modulated appropriately, it is then injected into the

interferometer to propagate. If there is an arm length difference or deliber-

ate offset to allow modulation sidebands to reach the output, this is known

as Schnupp Modulation [21]. The modulated light will then exit the interfer-

ometer through the dark port or the light port and be subsequently detected

on photodetectors. As discussed briefly earlier, the photodetectors used are

sensitive to power fluctuations which are related to the amplitude squared as

described by Equation 2.11. The power that is detected by the photodetector

now contains not only the DC signal that represents the carrier light and mod-

ulation sidebands, but it also contains a signal at the modulation frequency

ωm (generated by the beat between the carrier frequency and the modulation

sidebands) and also a signal at twice the modulation frequency, 2 ωm, (gener-

ated by the upper sideband beating with the lower sideband). The detected

power can therefore be written as

PDET = P0 + Pωm + P2 ωm . (2.22)

By detecting the light it is therefore possible to monitor the behaviour of the

interferometer. The information about the lengths of the interferometer arms

is contained in Pωm , but in order to extract this information, we must first

manipulate the signal in a procedure called demodulation. By beating PDET

with another signal at the same modulation frequency ωm, known as a local

oscillator, we shift all of the frequency components and obtain a DC signal

containing Pωm
1. The phase of the local oscillator can be adjusted to either

in-phase with the ωm component, which would maximise the demodulated

signal, or adjusted to quadrature-phase, thereby minimising the signal.

1Note that with detuned signal recycling it is more complicated as one sideband is larger

than the other resulting in each quadrature having different signals.
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2.7 Sources of Noise

This section will provide a description of the limitations to ground-based de-

tectors that arise from various possible sources of noise. There are two groups

of noise sources called technical noise and fundamental noise. Technical noise

is a result of the quality of technology used in interferometry such as the laser

light source, thermal noise associated with materials, seismic noise coupling

from the isolation system, and any actuation or damping unit that is em-

ployed. Whereas fundamental noise is related to the theoretical limitations

imposed on the measurement process by the quantum nature of the Universe.

This quantum noise primarily consists of two components in regards to inter-

ferometers: photon shot noise and radiation pressure noise. The remainder of

this section will focus on highlighting some of these sources of noise in order to

provide a better understanding of the limits to the current network and future

generations of ground-based detectors.

2.7.1 Seismic Noise

The external disturbances to the local environment of any ground-based detec-

tor is called seismic noise. It can couple into the detector through the mirror

mountings or the injected laser light. If the mirrors are directly mounted onto

an optical bench, seismic noise will directly couple into the light that trans-

mits or reflects. However, if the mirrors are suspended from a single pendulum

stage, then seismic noise at a frequency f will be attenuated to the order

(fp/f)2, above the resonant frequency of the pendulum fp, effectively filtering

out the seismic noise [22]. It is possible to further attenuate the seismic noise

by cascading the number of stages which will dramatically isolate vibrations

coupling into the lowest stage.
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Furthermore, it is also usual to add some kind of pre-isolation to supplement

the attenuation of the pendulum. One passive isolation technique that is often

used is a composite rubber stack sandwiched between two layers of the support-

ing structure. Another passive technique to isolate the vertical components of

seismic noise is to use cantilever springs, consisting of specially designed steel

blades, which can also be cascaded to improve performance. There are also

active isolation schemes that feed forward to minimise the motion caused by

measurable disturbances.

2.7.2 Thermal Noise

Thermal energy causes internal vibrations of the mirrors and the suspensions.

These vibrations can couple to the light and hence limit the sensitivity to

displacement. The amplitude of the thermal vibrations is maximal at the

resonant frequency of the vibration, in other words the internal modes of the

mirror masses, and the pendulum modes of the suspensions. This localises

thermal noise to primarily two regions: below 50Hz for the pendulum and

violin modes and above several kHz for the internal modes of the mirrors.

The contribution of the pendulum mode with a resonant angular frequency ω0

to thermal noise spectrum can be shown to be

x(ω) =

�
4kBT

ωM

ω2
0φ0(ω)

(ω2
0 − ω2)2 + ω4

0φ0(ω)2

� 1
2

, (2.23)

where kB is the Boltzmann constant, T is the temperature, ω is angular fre-

quency, M indicates the mirror mass and φ0(ω) represents the mechanical loss

of the resonance mode [4]. The loss of a material is inversely proportional to

the quality (Q factor) of the resonance mode, therefore by selecting high Q

mirror and suspension materials with inherent low mechanical loss, the ther-

mal energy can be concentrated inside a narrow frequency band and out of the
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detection band of the interferometer.

The contribution of the internal modes of the mirror with angular frequency

ωn to the thermal noise spectrum can be shown to be

x(ω) =

�
�

n

4kBT

αnMω2
n

φn(ω)

ω

� 1
2

, (2.24)

where φn(ω) is the loss associated to mode n, and αn represents the effective

mode mass coefficient describing the coupling of that mirror mode to the mirror

surface displacement [23].

2.7.3 Laser Noise

The laser itself is prone to noise which can limit the sensitivity of detectors.

These noise sources shall now be summarised.

Beam Geometry Fluctuations

The laser and the associated beam conditioning optics are usually located on

an optical bench. Seismic and acoustic noise can therefore couple through the

optical bench onto the laser beam and disturb the beam pointing or position.

These fluctuations to the beam geometry result in changes to the cavity mode

matching and therefore putting light into higher order spatial modes, which

can couple into the detector output signal due to deviations in optical path

lengths.
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Frequency Noise

Given that the principal operation of a gravitational wave detector is to mea-

sure the phase difference between the two returning light paths from the arms

of the interferometer, any process that might cause a variation on the rela-

tive phase between the two beams will eventually limit the overall sensitivity.

This can occur if the two arms are not of equal length and the frequency of

the light fluctuates over the time time spent inside the interferometer. The

spectral density for the required frequency stability can be expressed as

δx = δl

�
δf

f

�
, (2.25)

where δl is the difference between the two arm lengths, δf represents the

frequency fluctuations measured in units of Hz/
√

Hz, and δf/f is the fractional

frequency fluctuations in the laser light [4]. This can be overcome using a stable

frequency reference and feeding back to the length of the cavity or the laser

frequency.

Amplitude Noise

As gravitational wave detectors are designed so that the output is held at the

dark fringe position, the phtotodetector at this port must be very sensitive to

fluctuations in the intensity with the passing of a gravitational wave. However,

if there is a small offset in length away from optimum operating point and there

are fluctuations on the amplitude of the laser light, then these can couple into

the output port and limit the overall sensitivity. It can be shown [24] that the

spectral density for the required amplitude stability can be expressed as

δx = δl

�
δP

P

�
, (2.26)
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where δl is the length offset from the optimum operating point, and δP/P is

the fractional change in power fluctuations in the laser light.

2.7.4 Photon Shot Noise

The photons in the laser light used for interferometry are quantised, and there-

fore will be created and detected randomly giving rise to statistical fluctua-

tions in a measurement, which can best described by a Poisson distribution.

Therefore the photon shot noise in the signal detected will approach a normal

distribution when large numbers of photons are used and hence the uncertainty

in detecting N photons will improve as
√

N . The minimum detectable strain

sensitivity for a shot noise limited interferometer [25] is given by

hmin =

�
�λω2

g
∆f

2π�P0c
, (2.27)

where P0 is the maximum power detected at the dark port of wavelength λ, �

is the reduced Planck constant, ωg is the angular frequency of the gravitational

wave, ∆f is the measurement bandwidth, c is the speed of light in vacuum,

and the photodetector quantum efficiency is �. It can be seen from equation

2.27 that by increasing the laser power the level of shot noise can be improved.

However, there will eventually come a point at which the increase of laser

power results in radiation pressure noise becoming a limiting factor.

2.7.5 Photon Radiation Pressure Noise

The photons in the laser light incident upon the surface of the mirrors of an

interferometer will impart momentum. Although the incident force attributed

to a single photon is very weak, the use of high finesse optical cavities allows
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the storage of huge amounts of power such that the radiation pressure force

becomes a dominant effect in some of the detection band in ground-based

detectors. Therefore fluctuations in the relative power build up of the interfer-

ometer arms causes differential variations to the force exerted on the mirrors

and causes radiation pressure noise which couples to the output signal. For

a Delay-Line interferometer of length L and with N bounces, the radiation

pressure noise can be described as a strain sensitivity by [4]

hRP (f) =
N

mf 2L

�
2�Pin

π3cλ
, (2.28)

where m is the mirror mass, f is the measurement frequency, Pin is the input

power, and λ is the wavelength of the laser light. From 2.28, we note hRP ∝
√

P

f2 ,

therefore as frequency increases the radiation pressure noise decreases, while

increasing the input power results in an increase to the radiation pressure noise.

2.7.6 The Standard Quantum Limit

We have shown that as the laser power is increased, the photon shot noise

decreases while radiation pressure noise increases, thus revealing a fundamental

limit to the performance of interferometric gravitational wave detectors where

the test masses are free to move along the direction sensed by the interferometer

and the two optical noise sources are uncorrelated. Then, for any given power

there exists an optimum frequency for operating the detector, which is the

minimum point for the sum of both. This fundamental limit to the detector

sensitivity is known as the Standard Quantum Limit (SQL) as illustrated in

Figure 2.9, and corresponds to the Heisenberg Uncertainty Principle that sets

a formulation to the position and momentum of the mirrors [26, 27].

If all other noise sources are isolated, it is possible to reach the SQL for a

range of frequencies, by adjusting the noise distribution in each quadrature
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Figure 2.9: Modelled noise curves for the radiation pressure noise, photon shot

noise, and the sum for different input power levels. The SQL represents the

minimum sensitivity for any given power.

of the vacuum field. One technique to achieve this is to inject squeezed light

into the dark port of the detector [27]. The squeezing technique is another

advancement that has recently been successfully demonstrated experimentally

on the GEO600 detector [28] and is expected to be implemented within other

large baseline detectors, such as Advanced LIGO.

In principle, it should also be possible to not only reach the SQL, but also

to overcome the fundamental limit for free masses. This is made possible

by correlating phase and amplitude of the light fields in an interferometer.

There are various ways by which such correlations may be introduced. One

technique, where optical cavities are employed, is to induce an optomechanical

resonance (see Chapter 4), whereby motions of the suspended cavity mirrors
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are optically coupled. If that is achieved the masses are no longer free, and a

new uncertainty limit emerges.

2.8 The Current Network and Future Detec-

tors

The basic technology used in ground based gravitational wave detectors has

been described along with the sources of noise associated to various compo-

nents. It is therefore possible to investigate the types of systems that are

currently operational around the world along with the respective sensitivity

limits, also the planned upgrades to the detectors for the future network.

The laser interferometric gravitational-wave observatory (LIGO) is a ground-

based detector at two separate sites in the USA (Livingstone, Louisiana and

Hanford, Washington). LIGO has been operational since 2002 and has recently

finished its sixth data run known as S6. Each interferometer has been built

as a Fabry-Pérot Michelson interferometer with 4 km arm lengths and with

power recycling also being implemented. All of the optical components are

contained inside a vacuum with the main optics being suspended as multistage

pendulums. Together they are the largest and most sensitive detectors that

have yet been built with an upper sensitivity of 1× 10−23 m/
√

Hz at around

100 Hz as indicated by Figure 2.10.

At low frequencies, LIGO sensitivity is limited by suspension thermal noise

caused by the losses at the top and the bottom attachments of each suspension

fibre, whereas at high frequencies the detectors become limited by photon shot

noise, which is the Poissonian noise in the number of photons detected.
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Figure 2.10: LIGO strain sensitivity for a data run in May 2010 [29].

The last few years have seen a huge effort around the world working towards

the design, testing, construction and recently the installation of Advanced

LIGO which is due to be operational in 2014. Many improvements have come

from technology tested on GEO600, as will be discussed shortly, which help to

lower the noise floor by an order of magnitude and hence expand the volume

of space covered by ∼ 1000.

The French/Italian gravitational wave detector is called Virgo, located at

Cascina, Italy, and has been operational since 2007. All the optical com-

ponents are contained in ultra-high vacuum environments. To increase the

detector bandwidth at low frequencies the Virgo detector employs an array of

super attenuators suspending some of the optical components to isolate seis-

mic noise. The interferometer arms consist of 3 km Fabry-Pérot optical cavities

and the stored power is optimised using power recycling. The sensitivity limit
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Figure 2.11: Typical sensitivity curves for Virgo obtained during a late run in

2009, and theoretical sensitivity for Virgo+ [30].

of the latest scientific data run VSR2 is indicated by Figure 2.11.

Similarly the Virgo detector is limited by suspension thermal noise at low

frequencies and by photon shot noise at high frequencies. Over the next few

years Virgo will also enter a period of planned upgrades in order to improve

the overall sensitivity.

GEO600 is the joint UK/German gravitational wave detector located near

Hanover, Germany, and has been operational since 2002. Unlike the LIGO

and Virgo detectors it does not make use of Fabry-Pérot cavities but instead

uses a delay-line topology with folded 600 m arms, giving effectively 1.2 km arm

lengths. GEO600 makes use of power recycling and signal recycling, together

termed dual-recycling, to maximise the stored light level. A typical sensitivity

limit is provided in Figure 2.12.
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Figure 2.12: Typical and theoretical sensitivity curves for GEO600 from 2006

onwards [31].

Despite being much smaller compared to LIGO and Virgo, much of the second

generation technology such as suspension design, advanced optical techniques

and mirror materials have been developed and installed on GEO600 to help

it achieve a higher sensitivity. This technology could then be transferred onto

the larger detectors during their upgrading process. One of the advanced opti-

cal techniques recently tested on GEO600 and planned to be implemented on

advanced LIGO is the squeezing of light, where it should be possible to aim for

about 6 - 10 dB in sensitivity gain at frequencies where shot noise dominates

without the requirement for increased input light. Other technologies for ad-

vanced LIGO from the UK/German collaboration come in the form of high

power lasers and high Q suspensions for controlling the suspension thermal

noise.
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An even smaller scale detector called TAMA300 is the Japanese gravitational

wave detector with 300m arm lengths which was one of the first large-scale de-

tectors to achieve continuous lock at a maximum sensitivity of 1×10−20 m/
√

Hz

[32]. TAMA300 is essentially the prototype towards the recently approved fu-

ture project called Large-scale Cryogenic Gravitational-wave Telescope (LCGT).

The LCGT will be built in the Kamioka mine in Japan, implementing cryo-

genic mirror techniques to reduce the effects of mirror thermal noise.

Whilst LIGO and Virgo are undergoing various upgrades, GEO600 will remain

operational to ensure we are continuously observing the Universe in case of any

nearby supernova or other large events. When the large scale detectors become

operational once again, there are plans to upgrade GEO600 to GEO-HF, which

will improve its sensitivity at high-frequencies above ∼ 1 kHz.

2.9 Next Generation Ground-based Detectors

Beyond the current network and the already planned upgrades, there is scope

for the next generation of gravitational wave detectors, which are completely

open to new design topologies and the most advanced technology based on all

the lessons learned with large scale detectors to date. The Einstein Telescope

(ET) is a future third generation gravitational wave detector currently being

designed by many European institutions [33]. ET will circumvent many of

the limitations imposed on the second generation detectors with new infras-

tructures underground to limit the effects of seismic noise and with cryogenic

techniques being employed on the suspensions to reduce the thermal vibrations

of the test masses. Currently the preferred topology for ET is a triangular in-

frastructure consisting of three interferometers with 10 km arm lengths and the

use of similar length filter cavities. Each interferometer will be optimised for
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Figure 2.13: Proposed ET strain sensitivity for the xylophone topology (red

curve) comprised of a low frequency interferometer with low optical power,

cryogenic silicon optics and very tall suspensions, and a high frequency in-

terferometer using very high optical power, silica optics at room temperature

and standard suspensions. A single broad-band detector (black curve) is also

displayed for comparison, which highlights the improvement at low frequencies.

specific frequency bands, which together will maximise the overall bandwidth

of the detector. This so-called xylophone topology has been modelled with the

best possible parameters [34] to provide a proposed design sensitivity curve as

shown in Figure 2.13.
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2.9.1 Advanced Techniques and Technology

The research of technologies for future generations of gravitational wave de-

tectors is an exciting field with many opportunities coming from technology

only recently available. Small scale prototype interferometers provide a test

bed for these new technologies of which there are only a handful around the

world. At Glasgow there is a 10m prototype in which I conducted two exper-

imental projects investigating advanced technology and techniques. Chapter

3 contains the work that was carried out during 2007 - 2009 when the use

of suspended diffractively coupled optical cavities was experimentally demon-

strated. Chapter 4 describes the second experiment carried out during 2009 -

2010, investigating the dynamic behaviour and control requirements of optical

springs when radiation pressure effects are sufficient to cause opto-mechanical

coupling between cavity mirrors.



Chapter 3

Triple-Suspended,

Diffractively-Coupled

Fabry-Pérot Cavities

As discussed in chapter 2, there are a number of noise sources that can af-

fect ground-based gravitational wave detectors. In this chapter I focus on the

effect that high laser power can have on some of the primary optical com-

ponents inside interferometers. I consider alternative technology that could

be implemented within future gravitational wave detectors, whilst providing a

thorough experimental demonstration of such technology.

44
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3.1 Conventional Optical Components

3.1.1 Substrate Materials

Several criteria affect the choice of material used for the mirror and beam

splitter substrates in ground-based gravitational wave detectors; (i) the mate-

rial must have a low mechanical loss factor to constrain the effects of thermal

noise, as previously discussed, (ii) it should also be possible to manufacture

substrates in sizes suitable for the detectors, in mass up to tens of kilograms,

(iii) the substrate material must have high thermal conductivity and a low

thermal expansion to minimise thermo-mechanical distortions caused by any

heating that results from absorption of laser light. This leaves a small selection

of materials for consideration: in particular, fused silica and silicon, which are

both high quality materials that can be manufactured to suitable sizes. Fused

silica has favourable thermal conductivity and a thermal expansion coefficient

α = 0.5 × 10−6/K [35] at room temperature. On the other hand it has been

shown that the thermal expansion coefficient of silicon can reach zero at low

temperatures, suggesting that the thermoelastic noise contribution should also

become negligible [36]. Hence these two substrate materials have different re-

gions in temperature in which they should be utilised in operation.

However, there is another criterion which currently dictates the material se-

lection since current detector topologies require partially transmissive com-

ponents, therefore the material must be transparent at the appropriate wave-

length, normally 1064 nm. Since silicon is opaque at this frequency, this has led

to fused silica as the nominal substrate material for the current network, along

with the planned upgrades to the LIGO and Virgo detectors. The properties

of fused silica however set limits to the performance of all first and second

generation detectors, as will be discussed.
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Multi-layer
Dielectric
Coating

Substrate
ns

n2

n1

Figure 3.1: Schematic of a multiple layer dielectric stack coating with alter-

nating layers of refractive index n1 and n2 respectively, attached to a substrate

material with refractive index ns. Typical coatings have 20 to 32 pairs of layers.

3.1.2 Mirror Coating Materials

Once a substrate material has been chosen using the selection criteria, a num-

ber of steps are required to shape, figure, polish and finally coat the surface

to form a highly reflective mirror. Metallic mirror coatings are not suitable

because their optical absorption is too high. Instead, a highly reflective coat-

ing is achieved by applying multiple alternating dielectric layers through a

process known as ion-beam-sputtering. The layers are comprised of quarter

wavelength dielectric materials with differing refractive indices as indicated by

Figure 3.1.

For maximum reflection of the laser light with wavelength λ, from the contact

surface of the substrate, the standard approach is to choose each layer of the

dielectric material to be λ/4 in thickness. The relation between the optical

thickness of each layer of material having a refractive index n and the physical

thickness h is described by
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λ/4 = nh. (3.1)

For fused silica substrates used in interferometric gravitational wave detectors

where Nd:YAG laser light is implemented the coatings are formed from up

to 64 alternating layers of tantalum pentoxide (Ta2O5) and silica (SiO2) to

provide a highly reflective surface over a narrow frequency band [37].

3.1.3 Limitations of Conventional Materials in Future

Detectors

Although using fused silica as the substrate material which has low mechanical

loss on its own, it has been found that the addition of the multilayer coating

on the surface introduces additional thermal noise into the interferometer [38].

The thermal noise associated with the dielectric coating is due to the me-

chanical loss of the multiple layers, with a dominant contribution coming from

Ta2O5. There have been many studies into reducing the loss from the coatings

by way of doping the coating material [39]. For instance, it has been shown

that doping Ta2O5 with titania (TiO2) can reduce the mechanical loss of the

coating layers by a factor of 1.5 [40, 41], which, while encouraging for up-

grades of current detectors, falls short of the requirements for future projects

like the Einstein gravitational wave Telescope. It is therefore important to

study alternative technologies that have lower mechanical loss yet still achieve

the required high reflectivity for future detectors.

A further concern arises on consideration that the light power incident on some

of the optical substrates in the current network during their operation is of the

order 1 kW, while proposals for Advanced LIGO and Advanced Virgo require
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even higher circulating light power to meet ambitious sensitivity targets. This

also has troublesome implications, since a constant small fraction of incident

light is always absorbed in the optical substrates of partially transmissive op-

tics, causing localised heating which leads to thermal lensing due to a change

of refractive index with temperature[42]. The strongest thermal lenses that

will limit the detector sensitivity will occur inside the beam splitter and cavity

input couplers, hence investigations into new technologies and interferometer

topologies are currently underway to help overcome these concerns.

3.2 Diffractive Reflection Gratings

Diffractive reflection gratings offer a novel approach for splitting and recom-

bining light fields without requiring transmission through optical substrates.

Applying such devices in suitably modified interferometer topologies could po-

tentially mitigate problems concerning thermal lenses in high power systems.

It is possible to create gratings on both fused silica and silicon substrates,

therefore, these devices may also provide the solution for reducing the thermal

noise contributions in optical components and suspensions if cryogenic tech-

niques are adopted in the future. Otherwise, the use of silicon would require a

change of laser wavelength to, for example, 1550 nm, where it is transparent.

Diffraction gratings can be manufactured for a range of potential applications

within gravitational wave detectors such as cavity input couplers and beam

splitters. Hence, gratings are appealing counterparts to conventional optical

components.

Reflectivity approaching 100% has been obtained in gratings that are less than

one wavelength thick [40]. Initial measurements on the mechanical loss of



3.2 Diffractive Reflection Gratings 49

grating structures etched onto substrate samples have been carried out at

Glasgow, and in some tests show potentially lower loss than unetched sam-

ples [43]. Therefore, these encouraging initial tests have provided verification

that diffractive devices are promising new alternatives for reducing the ther-

mal noise inside interferometric gravitational wave detectors and should be

investigated further.

An analysis of the behaviour of gratings when used as input couplers for cavities

has revealed additional differences between gratings and traditional coupling

mirrors that may affect the application of gratings in gravitational wave de-

tectors. The most potentially damaging of these is the phase change due to

transverse translational motion of the diffractive coupler relative to the laser

beam when compared to an equivalent traditional cavity configuration [44]. A

second feature of gratings is that there may be extra coupling ports, requiring

changes to interferometer topology, and affecting the signals used to read out

cavity lengths for the purpose of control and signal readout. It is therefore

important to understand how to model diffractive couplers and validate such

simulations by experiment. Moreover, testing grating coupled cavities is es-

sential to inform design studies of 3rd generation gravitational wave detectors,

such as the Einstein gravitational wave Telescope.

3.2.1 Considerations for Grating Design

Diffraction gratings can be designed for many applications. To generate a

beam-splitter equivalent device, a four-port diffraction grating with appropri-

ate diffraction efficiencies is topologically identical, as indicated by Figure 3.2,

while a mirror equivalent can be generated by creating a two-port diffraction

grating, as indicated by Figure 3.3 (b) or a three-port grating Figure 3.3 (c).
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Figure 3.2: (a) Illustration of a beam splitter within a Michelson interferometer

topology and (b) a four-port diffractive reflection grating. There are four input

and output ports on both the beam splitter and the diffraction grating and are

thus topologically identical.

When considering diffractive devices for use in gravitational wave detectors

such as input couplers to Fabry-Pérot cavities, such as that described by 3.3

(c), it is important to understand the theoretical description for a standard

optical cavity. Typically high finesse optical cavities are desired in gravitational

wave detectors to maximise the detectors sensitivity to passing gravitational

waves. The finesse F of a cavity can be defined in terms of the cavity mirror

amplitude reflectivities ρ1 and ρ2 respectively as

F =
π
√

ρ1ρ2

1− ρ1ρ2
. (3.2)

At Glasgow we were investigating the use of three-port diffraction grating,

therefore I will use this device as an example for the following consideration of

the technique. Figure 3.4(a) shows the input light coupling into the cavity by

first order diffraction with an efficiency η1, while the returning light from the

end cavity mirror is coupled out by first and minus first order diffraction with

the same efficiency. The gratings are typically fabricated by electron-beam
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Figure 3.3: (a) Illustration of a mirror as a Fabry-Pérot cavity input coupler,

(b) a two-port diffractive reflection grating mounted as an input coupler, and

(c) a three-port diffractive reflection grating in second order Littrow mount as

input coupler to a Fabry-Pérot cavity.

lithography, and we can initially assume each grating groove to be rectangular

and therefore symmetric giving identical first order efficiencies. Therefore the

reflectivity of the grating at normal incidence RG (ρ2
G
), is determined by losses

such as residual transmission through the substrate TG (τ 2
G
), and scattering

SG due to minor imperfections of the grating, as well as the two first order

diffraction efficiencies as described by [45]

RG = 1− (2η1 + TG + SG) . (3.3)

From Equation 3.3 it can be seen that to obtain maximum cavity finesse F , it

is important to minimise the scattering loss, the transmitted loss, and the first

order diffraction efficiency in order to maximise the normal incidence grating

reflectivity RG.

The grating equation 3.4 describes the propagation angles of the diffracted

orders φm, given by,

sin φm = sin φi +
mλ

d
, (3.4)
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Figure 3.4: (a) Illustration of a three-port diffractive reflection grating in sec-

ond order Littrow mount as input coupler to a Fabry-Pérot cavity. The input

light is first order diffracted into the cavity, and second order diffracted back

along itself. (b) The intra-cavity light is first and minus first order diffracted

out of the cavity. Transmission and scattering also affect the normal incidence

reflection RG.

where φi is the angle of incident light, m is the diffracted order, λ is the

wavelength of the light and d is the grating period. For the arrangement de-

scribed by Figure 3.4 the incident beam requires the first order to be diffracted

normally to the grating, giving,

sin φi = −λ

d
. (3.5)

Therefore, this demands the grating period to be larger than the laser wave-

length, in our case d > 1064nm. Furthermore, to reduce scattering losses by

unnecessary diffraction orders propagating in this configuration, the grating

period is restricted to less than 2λ, hence the range of possible grating periods

are restricted to 1064nm < d < 2128nm. The grating period that was used in

our experiment was d = 1450nm, therefore given that φm = 00, the incident
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angle φi = 47.210.

The transmission losses of the grating are determined by the surface material

upon which the grating is formed. There are many techniques for generating

grating structures on the surface of substrate material and I will here provide

some fabrication details.

3.2.2 Grating Fabrication

Diffraction gratings can be manufactured through various fabrication tech-

niques, with each method having different advantages and drawbacks. I will

provide an overview of each technique and summarise the benefits and limita-

tions of each method.

Gratings With Dielectric Coatings

A commonly used method to create gratings with high-efficiency reflectivity is

to place the grating structure on top of a dielectric multilayer coating [46, 47]

as shown by Figure 3.5(a). Alternatively, the grating can be etched into the

substrate, upon which a multilayer coating is then applied as shown by Figure

3.5(b). The level of scattering losses in the device is determined by the quality

of the grating structure, the dielectric coating and the substrate material.

Investigations of both fabrication techniques for generating three-port low-

efficiency diffraction gratings show that applying the grating structure on the

substrate below the high reflectivity coating can effectively reduce the grating

scattering and transmission losses [45]. However, as the field progresses and

lithographic technology improves, the optimum process for fabricating gratings
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Figure 3.5: Schematic diagram of a diffractive reflection grating etched

above(a) and below (b) a dielectric multilayer stack of alternating layers of

material with different refractive indices n1 and n2 respectively.

will also evolve.

There are benefits to developing gratings with dielectric coatings onto fused

silica substrates, as previously described. These include (i) the ability to use

Nd:YAG laser light at 1064nm wavelength which is currently used within cur-

rent and immediate planned upgrades of gravitational wave detectors, and (ii)

the substrate and material choice are identical to conventional mirrors which

provides a good tool for purely exploring the dynamic effects associated with

gratings in optical cavities in comparison.

However, there are clear drawbacks to implementing dielectric coated gratings.

This is due to the mechanical loss associated with the coating materials leading

to thermal noise limitations in large baseline interferometers. Instead a dif-

ferent approach to obtaining high-reflectance low-loss low-efficiency diffractive

optics must be found.
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Realising Monolithic Gratings

A considerable amount of research in recent years has paved the way towards

fabricating a high-reflectance low-loss low-efficiency diffractive device for cou-

pling light into optical cavities. One suggested technique for generating these

devices required generating resonant waveguide gratings from a periodically

microstructured high refractive index layer attached to a low refractive index

substrate [48] as illustrated in Figure 3.6(a). The principle behind the design

requires higher diffraction orders to experience total internal reflection upon

contact with the boundary layer of the low index substrate, thereby exciting

resonant waveguide modes. In order to achieve resonant reflection at normal

incidence, there are three grating parameter inequalities that must be satisfied

[49]:

• p < λ (to permit only zeroth order diffraction in air),

• λ/nH < p (to ensure first order diffraction in the high index layer),

• p < λ/nL (to permit only zeroth order diffraction in the substrate),

where p is the grating period, λ is the wavelength of incident light, nH and nL

are the high and low refractive indices for the two dielectric layers respectively.

It is possible to ensure that all transmitted light interferes destructively, pro-

vided the grating period p, the groove depth d, the ratio between the high to

low refractive index media along with the ratio between the grating ridge b and

grating period are all chosen properly. It has been shown that the waveguide

layer thickness can even be zero as indicated by Figure 3.6(b), or alternatively

a minimum thickness, t, of the low refractive index substrate material can

provide zeroth order reflection with up to 100% grating reflectivity RG and

destructive transmission TG as indicated by Figure 3.6(c).
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Figure 3.6: Schematic diagram of a diffractive reflection grating etched onto a

high refractive index layer attached to a low refractive index substrate (a). An-

other grating with identical properties can be formed without the high refractive

index nH layer (b) and furthermore a minimum thickness of the low refractive

index nL layer can be found to give the same grating properties (c).

The overall reduction of the multi-layer dielectric coatings should greatly im-

prove the associated thermal noise contributions, however, the required use of

two materials in the fabrication could potentially decrease the high mechanical

quality factor of the substrate [50]. Therefore, fabricating a monolithic grating

design was pursued.

From the earlier grating designs it became apparent that a monolithic grat-

ing structure could be achieved by replacing the low refractive index layer

with an effective medium such as air as shown in Figure 3.7(a). Once the

difficult fabrication process had been overcome, it was possible to generate

the desired grating structure onto a single silicon crystal as shown in Figure

3.7(b) and through experimental investigations a reflectivity of 99.79± 0.01 %

at a wavelength of 1550 nm was observed [51], thus providing verification of

high-reflectivity monolithic gratings for use in optical cavities.

One limitation of this particular monolithic grating design is the complicated

fabrication process, requiring various techniques each working to very high

tolerance. Additionally, at the time of writing, it has been possible to produce
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Figure 3.7: Schematic diagram of a monolithic diffractive reflection grating (a)

with a distinct T shape structure to give the desired properties and an electron

microscope image (b) of such a grating formed onto a silicon crystal (image

courtesy of IAP Jena).

these gratings on relatively thin silicon substrates up to tens of centimetres

in area, however, fabrication on much greater surface areas would need to

be achieved before this technology becomes a realistic alternative to current

mirrors designs for ground-based gravitational-wave detectors. Moreover, the

exposed nano-structured grating surface is highly susceptible to damage and

pollution with only a limited range of suitable cleaning processes.

Recently, there has been more research into new fabrication schemes that may

allow burying the nano-structured diffraction grating below the surface of the

substrate as illustrated by Figure 3.8. Such a device could be of enormous

interest, because it may potentially protect the diffraction grating from dam-

age and pollution and could allow the front flat surface to be polished. This

device known as an encapsulated grating is based on the same basic principles

for obtaining monolithic gratings as already mentioned, however the fabrica-

tion process for this device is based on a quasi-monolithic technique using

both crystalline and amorphous silicon. Experimental investigations of a pro-
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Fabry-Pérot Cavity 58

n
H

p

d

(A)

RG

TG

tn
eff

!1!1

(B)

Amorphous Si

Crystalline Si

Figure 3.8: Schematic diagram of an encapsulated quasi-monolithic diffractive

reflection grating (a) designed for high reflectivity and an electron microscope

image (b) of such a grating formed onto a silicon crystal with an amorphous

silicon flat surface (image courtesy of IAP Jena).

totype encapsulated quasi-monolithic grating has revealed a normal incidence

reflectivity of 93 ± 0.5 % at 1550 nm wavelength [50]. Although, this level of

reflectivity is low compared to the aforementioned mirror alternatives, it is

expected that with further research and development into the design and fab-

rication process, perfect reflectivity is possible. Therefore, we want to provide

more evidence to support this technology as a serious alternative for future

generations of high-precision gravitational wave laser interferometers.

3.3 Experimental Demonstration of a Diffrac-

tively Coupled Fabry-Pérot Cavity

During the period 2007 − 2009 the fabrication techniques of diffractive re-

flection gratings were showing promising signs for use in future gravitational

wave detectors and therefore numerous experimental investigations were re-
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quired to validate their potential or indeed highlight issues concerning addi-

tional noise or isolation requirements. A number of theoretical and table-top

experiments have examined the input-output amplitude and phase relations

for a three-port diffractively coupled Fabry-Pérot cavity [48, 52]. At Glasgow,

one of the prototype interferometer arms was commissioned as a diffractively

coupled Fabry-Pérot cavity to investigate these devices in a triple-suspended

environment. The primary aims of the experiment were to fully characterise

the control signals and to verify predicted dynamic effects when maintaining

the system at the operating condition.

3.3.1 The JIF Laboratory

The Glasgow 10 m prototype interferometer is housed in the Joint Infrastruc-

ture Facility (JIF) laboratory at Glasgow University as shown in Figure 3.9.

The room is maintained to a class 100 cleanroom environment to prevent par-

ticle contamination. The prototype consists of a 10 m length vacuum system to

remove any acoustic noise and all optical components are suspended as multi-

stage pendulums to provide seismic isolation and allow freedom of motion. The

mirrors used in the prototype are manufactured from fused silica substrates

and coated with multiple dielectric layers to provide a highly reflective surface.

A 2W Nd:YAG 1064 nm wavelength laser light source is input from an optics

bench, where mode-matching and cleaning optics are located, along with nec-

essary electro-optic modulators and photodetectors for interferometric length

sensing and control schemes as will be discussed later. The room suspended

above the interferometer houses the computer system to retrieve the suspen-

sion shadow sensor information and sensing signals for controlling the mirror

positions through electromagnetic actuators.
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Figure 3.9: (Clockwise from top) Panorama image of the JIF laboratory clean

room, tuned photo-detetctors located at the system output ports, passive seismic

isolation, JIF laboratory control room, shadow sensor and local control electri-

cal wiring, typical fused silica test mass stage with reaction mass and electro-

magnetic feedback actuators for global control, (middle) 10 m length vacuum

system containing interferometer arms.

3.3.2 Upgrading the Glasgow 10m Prototype

The diffraction grating under investigation was manufactured by etching a

binary structure into a fused silica substrate then coating with multiple alter-

nating layers of Tantala (Ta2O5) and Silica (SiO2), to give an ultra low-loss

low-efficiency three-port grating with a period d = 1450 nm [45] as shown by



3.3 Experimental Demonstration of a Diffractively Coupled
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Figure 3.10: Electron microscope image (a) of the three-port dielectric coated

diffraction grating etched onto a fused silica substrate, photograph of the 1 inch

diameter optic (b) with grating structure in centre, and photograph of grat-

ing mounted inside aluminium jig (c) attached to the front face of the triple-

suspended inner test mass.

Figure 3.10. The grating was mounted in second order Littrow configuration

onto a an aluminium jig attached to the cavity face of the suspended test

mass. The grating was illuminated at an angle of 47.2 0 with s-polarized light

at 1064 nm wavelength, from a Nd:YAG laser (Model Mephisto 2000NE from

Innolight). The configuration chosen, as illustrated by Figure 3.11, provides

weak coupling into and out of the cavity, ensuring that the resulting system is

directly comparable with a conventional Fabry-Pérot cavity.

3.3.3 Mode Matching

As with any large-baseline laser interferometer utilising optical cavities, the

light input from the optical bench must be well mode matched into the sys-

tem. This means that the propagating laser spatial mode should match the

resonating cavity mode, or equivalently that the radius of curvature of the

beam should be equal to the radius of curvature of the cavity mirrors at the

mirror positions. Therefore, to mode match the input light requires under-

standing how a laser beam expands as it propagates. In the Glasgow 10 m
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Figure 3.11: Topology of the Glasgow 10 m prototype (left) showing the tra-

ditional and diffractive interferometer arms and simplified schematic of the

three-port grating, used in second order Littrow configuration, as the input

coupler for a diffractive cavity. Tuned photodiodes (PD’s) are positioned at all

3 output ports to detect the DC power and RF component for derivation of the

control signals.

prototype system a Gaussian TEM00 beam profile is input, which expands

according to the relations [53]

πw2
0

λR
=

λ

πw2
(z − z0) (3.6)

and

1−
�w0

w

�2
=

1

R
(z − z0) , (3.7)

where w0 is the radius of the beam at the waist (narrowest point), z0 is the

position of the waist along the propagation axis of the beam, w is the beam

radius at point z along the propagation axis, R is the radius of curvature of the

beam at point z and λ is the wavelength of the light. The radius of a gaussian



3.3 Experimental Demonstration of a Diffractively Coupled
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beam is defined as the distance from the centre of the beam (point of maximum

intensity) at which the intensity has dropped to 1/e2 of the maximum.

In this experiment the end cavity mirror has a 15 m radius of curvature and

the inner cavity mirror, which is typically flat, was replaced with the aforemen-

tioned flat diffractive reflection grating. The parameters for the diffractively

coupled cavity (R = 15 m, z = 9.83 m, z0 = 0 m and λ = 1064 nm) were substi-

tuted into Equations 3.6 and 3.7 and the system was solved for w0. This gives

the optimum coupling of light into the cavity when the waist at the diffraction

grating w0 = 1.55 mm, as seen along the cavity axis. However, the beam ge-

ometry was altered using a steering mirror to ensure the beam was incident on

the face of the grating at an angle of 47.20. This required an elliptical input

beam to provide a circular projection of the beam inside the cavity. Through

elementary geometrical algebra, it can be shown that the x-waist (horizontal

axis) should be 68% of the y-waist (vertical axis) in order to obtain the desired

circular cavity beam.

The correct waist profile was achieved using two cylindrical lenses placed at

appropriate locations and separations on the optical bench after the electro-

optic modulators and before the steering of the beam into the system.

3.3.4 Amplitude Stabilisation

As the investigation began, some initial cavity tests were performed. By mon-

itoring the transmitted demodulated error signal on an oscilloscope and slowly

changing the laser frequency (known as sweeping the cavity) by at least one

free spectral range, the shape of all the resonance features and their separation

can be captured. The data indicated double carrier resonance features, which

should not be present in an optimised system. The laser light was subsequently
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monitored at a convenient pick-off point on the optical bench before entering

the system, using a simple photodiode arrangement powered with a 9 V DC

supply. Looking at the DC component on a spectrum analyser it was possi-

ble to observe amplitude spikes occurring at multiples of 100 Hz, therefore it

became apparent that the mains supply of the laser could be adding in strong

levels of amplitude noise.

Pump diode fluctuations cause heating and cooling of the laser crystal, gen-

erating fluctuations of the laser frequency analogous to modulation, and with

these lasers there is a strong correlation between amplitude and frequency

noise. In our experiment the 100 Hz frequency fluctuations potentially had a

significantly sized modulation index to split the carrier frequency into multiple

resonance features. This affects the entire modulation scheme and can result

in unstable cavity locking. It is worth noting that the laser supply problem was

only recognised at this point because the new cavity finesse was larger than

that of earlier experiments. The higher cavity finesse is directly related to a

narrower resonance linewidth and therefore it was possible to resolve narrower

frequency components.

Before changing the experimental setup, the level of 100 Hz fluctuation was

checked. Monitoring the light using the same photodiode as previously men-

tioned, a DC level of 60.5 mV and an AC fluctuation of 14.04 µVpk was ob-

served, giving a fractional voltage change of 2.32 × 10−4. This is also equal

to the fractional current change, and since the laser pump current was set

to 4.4 A, the fluctuation in the pump current was 1.02 mA. Based on earlier

experimental results [54], which indicated ∼ 0.3 MHz/mA response at 100 Hz,

this suggested there would be a laser frequency change of ∼ 306 kHz. Since the

separation of the resonance peaks observed on the oscilloscope during a cavity

sweep was approximately 300 kHz, this result satisfied the assumption that
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Figure 3.12: Circuit diagram for the amplitude stabilisation photodetectors and

servo system and the calculated servo response. The servo is a feedback system

with enough range to stabilise the amplitude by removing unwanted noise com-

ponents. A 360 degree correction has been applied to the phase data to remove

phase wrapping.

this problem was from the 100 Hz amplitude spikes due to the mains power

supply of the laser.
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A purpose-built amplitude stabilisation servo [20] was built using the design

illustrated in Figure 3.12 in order to reduce the mains supply peaks. The

photodetector used to monitor the light is a 2 mm InGaAs photodiodes from

EG&G operated with a reverse bias of 15 V and shielded from ambient light.

The photodetector has a bandwidth of 20 MHz and power dissipation of up to

250 mW.

The light level hitting the photodetector was around 9 mW giving an output

DC level of ∼ 6.15 V. This level was chosen as the suitable level before satu-

ration effects were observed on the photodetector output. The output signal

from the amplitude stabilisation servo was used for feedback onto the injection

current input located on the laser power supply. This feedback signal was also

directed to a spectrum analyser to provide an independent measurement of

the amplitude fluctuations. The amplitude noise spectrum up to 12.8 kHz was

monitored when the amplitude stabilisation servo was switched off and when it

was turned on, showing a reduction of the 100 Hz peaks by around 30 dBVrms

as shown by Figure 3.13.

With the amplitude stabilisation servo aligned to the pick-off light, with feed-

back onto the laser current supply and in operation, the multiple carrier peak

features had been removed. This allowed the chosen modulation scheme to be

implemented properly and allowed the system to be locked to TEM00 resonance

in a stable state.
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Figure 3.13: Fast Fourier Transform (FFT) measurement taken using a spec-

trum analyser showing the effect of amplitude stabilisation by injecting into

the laser current supply. An improvement of ∼ 35 dBVrms is observed on the

100 Hz peaks as well as a reduction in the overall noise floor.

3.4 Control and Length Sensing Signal Extrac-

tion

Conventionally, to maintain a gravitational wave detector at the operating

point, monochromatic laser light, known as the carrier light, is held resonant

inside the optical cavities of the interferometer by suitable feedback control.

Modulation sidebands are added to the carrier light before entering the system,

as prescribed in the Pound-Drever-Hall (PDH) technique [55], and the light
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Figure 3.14: Illustration of the different frequency components on the light field

with modulation at 10 MHz and 15.24 MHz. Note this diagram is not to scale.

exiting the cavity is subsequently detected on tuned photodetectors located

at the output ports. The detected light is demodulated with a local oscillator

at the modulation frequency to obtain information regarding the interaction

of the frequency components. The bi-polar error signal obtained indicates the

relative length between the cavity mirrors and can then be used to control the

cavity length through suitable electronic feedback.

From Figure 3.11 it can be seen that our system has three detection ports,

and to enable signal extraction from each output required the carrier light to

be modulated twice. As with the traditional PDH technique, the modulation

frequency for the forward- and back-reflected ports can be arbitrarily chosen,

and for convenience 10 MHz was used in our system. However, to monitor

the cavity length with the transmitted port required the use of sidebands just

off-resonance at 15.24 MHz, close to the free spectral range of our cavity of

15.27 MHz. An illustration of the various radio frequency (RF) components

on the light is provided in Figure 3.14 for clarity.
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3.5 Modelling a Diffractively-Coupled Fabry-

Pérot Cavity

The study of interferometer topologies is reasonably straight forward when

dealing with the simple relationships among linear light fields and numerical

techniques are routinely used to compute the signals obtained at various pho-

todetectors in response to changes in the relative positions of the optics. When

additional optical components or modulation sidebands are added, the use of

numerical simulations becomes vital since the equations describing the fields

become more and more complicated due to the increasing number of variables.

There are a number of software packages available for modelling the interac-

tions of light fields with optical topologies such as interferometers. FINESSE

[56] is one script driven optical simulation program that has been used in this

investigation to predict the various field amplitudes at different points in the

system. Another computer programming package that has been used exten-

sively throughout this work is MATLAB [57], which is a powerful and versatile

tool for numerically solving otherwise complicated equations. Utilising numer-

ical simulation packages such as these are necessary for the development of

length sensing and control schemes required to keep the interferometers at the

desired operating point and to read out the signals, including the gravitational

wave signal.

One of the most fundamental concepts for advanced interferometry is the two-

port Fabry-Pérot optical cavity consisting of two partially transmissive mirrors

(see Figure 3.15). The incident light field Ei interacts with the input mirror

giving the cavity fields Ec1 and Ec2. The cavity field leaks light through the

input mirror and superimposes with the directly reflected light to produce a

reflected light field Er, as well as the light leaking through the end mirror to
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Figure 3.15: Schematic diagram of a simple optical cavity showing the in-

cident light field Ei interacting with the input mirror giving the cavity fields

Ec1,c2 (Ec1�,c2� have gained an additional phase component due to traversing the

length of the cavity). The cavity field leaks light through the input mirror and

superimposes with the directly reflected light to produce a reflected light field

Er, as well as the light leaking through the end mirror to produce a transmitted

field Et.

produce a transmitted field Et. The input−output relations of such cavities

are well understood and can be derived from the amplitude reflectance ρ and

transmittance τ of the two-port mirrors as described by

S2p =



 ρ iτ

iτ ρ



 . (3.8)

Expressing the cavity length L as a tuning parameter φ = ωLc, where ω is the

angular frequency and c is the speed of light in vacuum, it can be shown that

the cavity fields satisfy

Ec1 = Eiiτ0d, (3.9)

and

Ec2 = Ec1ρ1e
iφ, (3.10)
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Back-reflected field 
amplitude, c1

End mirror

3-port 
diffraction 
grating

From laser and 
mode matching 
optics

Beam 
splitter

Forward-reflected field 
amplitude, c3

Transmitted field 
amplitude, c2t

Intracavity field amplitude, c2
PD

PD

PD

Figure 3.16: Simplified schematic diagram of the 3-port diffraction grating as

input coupler to a Fabry-Pérot cavity in 2nd order Littrow mount. There are

three output fields; forward reflected (c3), transmitted (c2t) and back reflected

(c1). Tuned photodetectors are located at each port to detect the DC and RF

components used for length sensing and cavity control.

which can be used to derive the reflected and transmitted field as

Er = Ei

�
ρ0 − τ 2

0 ρ1e
2iφ

�
d, (3.11)

and

Et = Ei

�
−τ0τ1e

iφ
�
d, (3.12)

where ρ0,1 and τ0,1 are the amplitude reflection and transmission efficiencies of

the input mirror and end mirror respectively and d represents the resonance

factor, defined by

d =
1

(1− ρ0ρ1e2iφ)
. (3.13)

Therefore it has been shown that a traditional two-port Fabry-Pérot cavity

couples one input field to two output fields and can be modelled using the
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amplitude reflection/transmission efficiencies of the mirrors. However, by re-

placing the input coupler with a three-port diffractive reflection grating, each

input field couples to three output fields as shown in Figure 3.16. Modelling the

configuration used in this investigation is achieved by implementing a second

order Littrow incident beam (θi = arcsin(λ/d)) coupling to the orders 0, 1, 2

and a normally incident beam coupling to the orders −1, 0, +1. This type of

coupling leads to more complex phase relations compared to a conventional

two-port cavity, which can be represented by a scattering matrix:

S3p =





η2eiφ2 η1eiφ1 η0eiφ0

η1eiφ1 ρ0eiφ0 η1eiφ1

η0eiφ0 η1eiφ1 η2eiφ2




, (3.14)

where η0,1,2 and φ0,1,2 are the amplitude diffraction efficiencies and phase

changes on diffraction for zeroth, first and second orders respectively, and

ρ0 is the amplitude reflectivity at normal incidence. For each output port of

the grating indicated by Figure 3.16, the field amplitudes have been investi-

gated [52] and thus the amplitudes arriving at each of our photodetectors can

be described by:

c1 = η2e
iφ2 + ρ1η

2
1e

2i(φ1+φ)d, (3.15)

c2t = iτ1η1e
i(φ1+φ)d, (3.16)

c3 = η0 + ρ1η
2
1e

2i(φ1+φ)d. (3.17)

By assuming the grating is symmetrical with respect to normal incidence and

that there is no optical loss attributed to it, the following energy-conservation

law can be derived from the unitarity condition of S3p:

ρ2
0 + 2η2

1 = 1. (3.18)

Hence, to obtain the maximum normal incidence reflection for use in high

finesse cavities, demands a low first order diffraction efficiency η1. Similarly,
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for second-order Littrow incidence it is possible to define

η2
0 + η2

1 + η2
2 = 1. (3.19)

Therefore, when considering an ideal grating, the upper and lower limits for

η0 and η2 for a given reflectivity ρ0 are determined by

η0,
max
min

= η2,
max
min

=
1± ρ0

2
. (3.20)

As mentioned in Section 3.2 there are two types of loss mechanisms from grat-

ings. The grating scattering loss is attributed to imperfections in the grating

structure that can cause light to couple to higher diffraction orders, while light

can also be absorbed by the grating coatings, resulting in transmission loss.

Together these can be treated as an overall power loss.

To model the power loss LG of a grating requires that the right hand side

of equations 3.18 and 3.19 be replaced by 1 − LG, in order to conserve en-

ergy. From the specifications of our grating, as presented in Table 3.1, and

the reflection/transmission efficiencies (ρ1/τ1) of the end mirror, all the cav-

ity properties can be determined numerically. Just as relatively high finesse

cavities are employed to obtain strong power buildup in conventional interfer-

ometers, weakly coupled and hence high finesse grating-coupled cavities are of

interest. This motivated our choice of grating. Furthermore, based on the field

equations 3.15, 3.16 and 3.17 a numerical simulation of the diffractive cavity

was built, using the MATLAB software package. This simulation allowed us

to compare experimental findings for the amplitude and power of output light

fields with modelled predictions.
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Parameter Value[%]

η2
0 99.714

η2
1 0.069

η2
2 0.018

ρ2
0 99.663

Table 3.1: Parameter values of the three-port diffraction grating, provided by

AEI in Hannover where it was first tested.

3.6 Characterisation of Output Signals

The FSR of our cavity is 15.27 MHz and by monitoring the DC signal from

the transmitted port, the corresponding full width half maximum (FWHM)

was determined to be 13.80 ± 0.64 kHz. The measured finesse of the cavity

was 1107±51, in agreement with the prediction of 1177±27 From the grating

parameters used in the model we were also able to calculate the expected

grating loss using the identity LG = 1− (ρ2
0 + 2η2

1), which was determined to

be 0.199%, closely matching a measured value of 0.177 ± 0.025% found in a

measurement at AEI-Hannover [58].

One way to establish whether the sensing signals predicted by the model agree

with experiment is to sweep the length of the cavity by at least one round-

trip wavelength (one FSR in frequency terms). The demodulated signal from

each port was subsequently compared to the prediction. The slope of this

signal at the operating point gives the effective optical gain for that output, as

is needed to calculate linearised servo system responses. In this experiment,

instead of sweeping the cavity length the laser frequency was swept. This has

the advantage that it does not risk causing alignment changes of the cavity

that could cause higher order cavity modes to become excited thus producing
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extra features in the result.

As discussed in Chapter 2, the RF signal from each detection port can be

demodulated in two orthogonal phases; ‘in-phase’ and ‘quadrature-phase’. The

demodulation phase in the ‘quadrature-phase’ case was adjusted to minimise

the detected signal, while the ‘in-phase’ signal was obtained by adding a 90

degree phase shift in the demodulation process. The demodulated signals

obtained in the experiment are shown in Figure 3.17 and are seen to be in

good qualitative agreement with modelled predictions [59]. The discrepancies

between the experiment and modelled length sensing signals can be attributed

to the finite rate of sweep in the experiment. The model is ‘quasi-static’ and

therefore does not predict the slight asymmetry in the patterns seen in the

experiment as stored light leaks out after a small delay. There is a practical

limit to how slow a sweep can be made due to uncontrolled 1 Hz motion of the

pendulums, since longitudinal, lateral and angular motion of the mirrors cause

small misalignments. These effects are almost unavoidable when dealing with

suspended optics but it is clear that the model matches the main features of

the observations.

It is necessary to calibrate the demodulated signals detected at each port

with the modelled signals to investigate the level of quantitative agreement.

This required comparison between the relative size of the in-phase slopes to

that of the transmitted port. The ratios of the signal responses indicate good

agreement and are presented in Table 3.2.

Analysis of Figure 3.17 indicates that only the transmitted signal will be

symmetrical around the centre of resonance. This is because light has been

diffracted into the cavity only once, and therefore all frequency components

receive the same phase shift before resonating. From previous investigations

with table-top cavities [48], the extent of the asymmetry was seen to be de-
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Figure 3.17: Normalised RF power for each output port; forward-reflected

(top), transmitted (middle), and back-reflected (bottom). The measured data

and modelled predictions of the length sensing signals are presented on the left

and right hand side respectively. The solid (black) trace indicates in-phase mea-

surements, and the dashed (red) trace indicates quadrature-phase. The abso-

lute scaling between modelled forward-reflected, transmitted, and back-reflected

ports is approximately 127 : 1 : 14.

termined by the values of the η0 and η2 diffraction efficiencies. With our

numerical simulation accurately validated by experiment, we were also able to

probe the effects of asymmetry on the demodulated output signals by altering

the grating parameters. An interesting result of this analysis is that, through

careful choice of demodulation phase, we can extract signals from each of the



3.7 Dynamic Grating Effects 77

Parameter Measured Value [dB] Modeled Value [dB]

back-reflected/transmitted −26.93 −26.99

transmitted/transmitted 0 0

forward-reflected/transmitted 43.07 44.74

Table 3.2: The measured and modelled signal response for each port normalised

to the response of the transmitted port.

reflected ports which sum together to reconstruct a traditional Pound-Drever-

Hall locking signal [60](see Figure 3.18). This has been compared to other

measurements carried out with different apparatus that show the same effect,

made at AEI [58].

The diffractive optic used in our investigation had a second order diffraction

efficiency close to the minimum possible, hence the forward reflected signal had

a shape that closely resembled the Pound-Drever-Hall signal. It was possible

to lock the cavity using the signal from this port, although not quite at the

centre of resonance, therefore the cavity was instead locked to the transmitted

error signal (which does exhibit symmetrical behaviour around the centre of

resonance). Locking to this port also makes it possible to investigate the dy-

namic behaviour and additional effects associated with suspended diffractively

coupled optical systems.

3.7 Dynamic Grating Effects

Investigations of grating interferometers have shown that additional phase

components attributed to the relative movements between the grating sur-

face and incident light fields couple to the detected output fields [44]. Unlike
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Figure 3.18: Modelled demodulated signals; back-reflected (red) and forward-

reflected (blue) indicated by dashed traces, and the combined back-reflected +

forward-reflected (black) indicated by a solid trace. The grating parameters

used here are for an ideal (lossless) grating with ρ0 = 0.99663, η1 = 0.0407,

and η0 = η2 = 0.7065.

conventional flat mirrors and beam splitters, the alignment of the grating ge-

ometry relative to the input beam, or conversely the alignment of the input

beam relative to the grating geometry also affects the diffracted beam pointing

differently, due to the reduced symmetry of these devices. The additional phase

and alignment noise due to geometry changes can indeed set limitations to sen-

sitivity of future detectors implementing diffractive optics whilst demanding

more stringent alignment and control requirements of the suspended optics.

The remainder of this section will summarise the theoretical framework to

describe the asymmetry of grating devices used as input couplers to cavities
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and the associated dynamic affects on grating motion and alignment.

3.7.1 Relative Grating and Input Beam Alignment

The direction of the outgoing diffracted light from a grating is dependent on

the grating orientation in relation to the input beam. Figure 3.19 illustrates a

three port grating in second order Littrow mount as used in this experiment

along with the required coordinate system that will be described. Here the

grating is located in the x− y plane, with the input beam located in the x− z

plane only and the grating grooves aligned parallel to the y axis. The input

beam can be represented by a vector a, while the outgoing beams can be

denoted by bm. In order to describe the effects resulting from changes to the

alignment of the grating and input beam it is useful to denote the coordinate

system of the input beam using the notation (x�, y�, z�) and likewise that of the

output beams using (x��
m

, y��
m

, z��
m

) as indicated by Figure 3.19. The relationship

between the input and output angles, relative to the grating normal, α and βm

respectively, can be described by the grating equation

sin α + sin βm =
mλ

d
, (3.21)

where m is the order of diffraction, λ is the wavelength of the light and d is

the grating period. By analogy, the vector form of the grating equation can

be written as

b×N + a×N =
mλ

d
G, (3.22)

where N represents the grating normal vector aligned along the z axis and G

represents the grating unit vector aligned to the y axis.

There are three degrees of freedom for changing the relative alignment between

the grating and the input beam that will be described independently.
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Figure 3.19: Illustration of a three port grating in second order Littrow mount,

indicating the input vector a and output vectors b0,b1, and b2. The grating

unit vector G is aligned out of the page and the grating normal vector N is

aligned along the z axis.

Roll Alignment

Using Equation 3.22 it can be shown that rotation of the grating around the z

axis by a small angle θ (see Figure 3.20), given the unit vector G = (sin θ, cos θ,0),

results in the output beam rotating around the x�� axis, also known as pitch,

by an amount

δ ≈ mλ

d
θ. (3.23)

Furthermore it can be shown that the corresponding change in the output

beam angle is represented by

∆β ≈ −mλ

d

θ2

2 cos βm

. (3.24)

Thus roll motion of the grating will change the pitch and the output angle of

the outgoing beam, hence the loss of symmetry when compared to mirrors.
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Figure 3.20: Illustration of (a) a diffraction grating with the grating grooves

aligned along the y axis and (b) the grating rotated around the z axis (out of

the page) by a small angle θ causing the output beam to be rotated in pitch and

yaw compared to (a).

Pitch Alignment

When considering the rotation of the grating around the x axis, pitch of the

grating, this is precisely equal to considering the pitch of the input beam

relative to the grating, in other words rotation of the input beam around the

x� axis as indicated by Figure 3.19. It has been shown that a change in the

pitch angle δ� will give rise to a change in the output angles of the diffracted

beams [44], described by

∆βm ≈
mλ

d

δ�2

2 cos βm

, (3.25)

and

δ� = δ��
m

. (3.26)
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Yaw Alignment

As with pitch alignment, when considering changes of the grating around the y

axis, known as yaw alignment, this is analogous to changes of the input beam

around the y axis. It can be shown that changes of input angle ∆α around

the y� axis will change the angle of the diffracted orders [44], described by

∆βm =
− cos α

cos βm

∆α, (3.27)

and

δ��
m

= 0. (3.28)

Furthermore, there is also an additional factor, which is not related to the

grating alignment, that causes changes to the output beam angles. From the

grating equation (3.21) it can be seen that changes to the laser frequency (and

wavelength) will cause changes to the output alignment, thus it can be shown

∆βm =
−mλ

d cos βm

∆f

f
. (3.29)

3.7.2 Translational Motion Between Grating and Input

Beam

Along with the three rotational degrees of freedom, there are three translational

degrees of freedom in which the grating can move, and the corresponding effects

to the optical path length (and therefore phase) of the output beams shall be

summarised.
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Translation along y axis

Translational motion of the grating or the input beam along the y axis affects

neither the alignment or phase of the diffracted output beams. Only trans-

lational changes along the x axis or the z axis will result in changes to the

optical path length ζ of the mth order diffracted beam. Translation along the

z axis results in the effects from translation along the x axis also, however, to

summarise the basic behaviour, combined effects have been omitted here.

Translation along z axis

In order to demonstrate the effects resulting from z translation it is useful to

consider just one input vector a as it interacts with the grating surface and

one output vector b. From the basic geometry illustrated in Figure 3.21, it is

possible to observe that translation of the grating ∆z along the z axis results

in an optical path length difference described by

ζ∆z = ζ1 + ζ2 = −∆z(cos α + cos βm). (3.30)

Since translation of the grating along the negative z axis must result in a

positive optical path length change, this demands the minus sign indicated in

Equation 3.30.

Translation along x axis

When considering the translation of the grating along the x axis, it is also

equivalent to consider the x axis translation of the input beam with respect to

the grating as indicated by the geometry shown in Figure 3.22. The change in

optical path length of the mth order diffracted beam ζ∆x is therefore related
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Figure 3.21: Illustration of a diffraction grating translated along the z axis.

Input and output vectors a∆z and b∆z have acquired an additional optical path

lengths ζ1 and ζ2 in comparison to a and b respectively. The additional optical

path length gained corresponds to a change of relative phase on the output

vector.

to the translational grating displacement ∆x by

ζ∆x = ζ4 − ζ3 = −∆x(sin α + sin βm) = −∆x
mλ

d
. (3.31)

It is worth noting that due to the symmetrical periodic nature of the grating,

the changes in optical path length must also be periodic for x axis translations

of 0 < ∆x < nd, where n represents an integer. Therefore Equation 3.31 is

defined for translation changes of less than one grating period. The corre-

sponding phase shift φ associated to the change in optical path length can be

represented by

∆φ = ζ∆x

2π

λ
. (3.32)
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Figure 3.22: Illustration of a diffraction grating translated along the x axis.

Input and output vectors a∆x and b∆x have acquired additional optical path

lengths ζ3 and ζ4 in comparison to a and b respectively. The additional optical

path length gained corresponds to a change of relative phase on the output

vector.

By driving the grating sinusoidally across the beam (along the x axis), the

phase of the diffracted beams will therefore be modulated. Optical systems

that exhibit phase shifting effects in this way are already well known [53] and

commonly utilised in acousto-optic modulators, where an acoustically gener-

ated travelling grating is used to change the frequency of a light beam.
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3.8 Coupling of Translational Grating Motion

to Output Signals

3.8.1 Theoretical Analysis

Theoretical investigations of the coupling of lateral grating displacement to

all output ports of a diffractively coupled optical cavity [61] used frequency-

domain analysis to derive the expected electric field responses. It was shown

that the complex field amplitude arriving at the forward-reflected port (c3) (as

indicated in Figure 3.16) generated in the prescribed modulating system can

be defined by

a3 = ip0η
2
1e
−2iφ1

π∆x

d
ρ2

�
e−2ikuL

1− ρ0ρ1e−2ikuL
− e−2ikcL

1− ρ0ρ1e−2ikcL

�
, (3.33)

where p0 represents the complex amplitude of the input carrier field, ku is

the wave-number of the upper sideband caused by lateral grating motion, kc

is the wave-number of the carrier field and L indicates the cavity length. A

similar expression can be written for the lower sideband caused by lateral

grating motion where the upper sideband wave number terms are replaced

with the lower sideband wave number kl. The first term inside the brackets in

Equation 3.33 defines the phase evolution of the upper sideband field and is

approximately constant while the frequency of motion is below the linewidth

of the cavity. This means that the lateral grating motion will result in an f

response to displacement compared to the flat frequency response generated

by longitudinal motion.

With the diffractively coupled cavity system fully characterised and locked to

the operating point using the transmitted port output signal, it was decided

to validate these theoretical predictions experimentally, as will be discussed.
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3.8.2 Experimental Demonstration of Lateral Grating

Motion Coupling to Output Signals

Using the three global control electromagnetic actuators positioned to the rear

of the test mass and installing a fourth at the side of the test mass perpendic-

ular to the centre of mass it was possible to deliberately inject grating motion

both along the cavity axis (longitudinal) and perpendicular (translational). By

monitoring the forward-reflected output signal (c3) it was possible to demon-

strate the effects associated with translational grating motion. It is worth

noting that the grating axis was chosen to be vertical because it is difficult to

shake the pendulum in this direction.

When the grating is static, the forward-reflected output signal contains the

upper and lower radio frequency sidebands (both at 10 MHz) undergoing ze-

roth order diffraction, and the carrier field, which has experienced first order

diffraction twice (coupling in and out of the cavity).

When the grating is undergoing sinusoidal translational grating motion, the

forward-reflected output signal still contains the same three frequency compo-

nents, however the carrier field that has undergone |m| = 1 diffraction twice

will also acquire lateral motion induced modulation.

Two methods for testing the coupling of lateral grating motion to the forward-

reflected port were devised. Figure 3.23(a) indicates method (a) for nearly

pure translational injection, where large driving signals are applied to the coil

4 and small driving signals are applied to coils 1−3 in order to remove residual

longitudinal motion. While Figure 3.23(b) indicates method (b) for rotating

the test mass around the centre of mass (parallel to the incident beam) by

applying large driving signals to coils 1 and 2 causing translational motion of

the front surface.



3.8 Coupling of Translational Grating Motion to Output Signals 88

Figure 3.23: Driving translational grating motion using coil-magnet actuators.

(a) pure side-to- side motion produced by actuating from the side and correcting

for any additional twisting motion using the rear coils, (b) rear coil actuation

drives the mass rotationally causing lateral motion of the front surface. In

the second case the small signal from longitudinal motion is dominated by the

larger translational signal produced.

When injecting a fixed amplitude driving signal from a spectrum analyser in

method (a), the displacement ∆x of the suspended test mass was measured

independently using a commercial vibration sensor (Polytec OFV 505 Vibrom-

eter). The vibration sensor was positioned inside the vacuum system and

optimised for sensing position changes of the test mass stage along the x-axis.

The forward reflected error signal (c3) was aligned onto a photodiode outside

of the vacuum system using a steering mirror, from which the signal could be

demodulated.

Using the spectrum analyser it is possible to inject sinusoidal signals through

the side mounted coil (coil 4 in Figure 3.23) and thus motion of the test mass

along the x-axis, whilst monitoring the frequency response of the forward-

reflected error signal. The measured frequency response is provided in Figure
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Figure 3.24: Measured translational grating motion injected primarily using

coil-magnet actuator (4) located at test mass side. A distinct 1/f 2 frequency

response expected for a freely suspended mass is observed. This data can be

used to infer the predicted coupling response of lateral grating motion to the

forward-reflected port defined by Equation 3.33.

3.24 and the expected 1/f 2 response is observed. This calibrated measure-

ment is required to predict the strength of the amplitude signals obtained at

the forward-reflected port for injected translational grating motion based on

Equation 3.33.

When injecting motion onto the grating using both methods the response of

the forward-reflected output signal was monitored on a 10 MHz tuned pho-

todetector and subsequently demodulated. Figure 3.25 shows the response of

the forward-reflected signal amplitude to translational motion, the predicted

response, and the response to longitudinal motion for comparison. It can be



3.9 Conclusions 90

seen that pure x translational motion agrees with the predicted response until

approximately 300 Hz, at which point the slope begins to rise due to an inter-

nal resonance of the cylindrical aluminium test mass to which the grating is

mounted [62]. The internal resonance was confirmed using the finite element

analysis package, Ansys [63], and monitoring the excited modes of an identi-

cal aluminium mass using an accelerometer. When rotating the test mass as

in method (b) the internal resonance is no longer excited, giving a larger fre-

quency span for monitoring the response, however smaller translational motion

is achieved compared to method (a) as indicated by the reduced signal ampli-

tude. Both driving methods verify the 1/f response to translational grating

motion compared to the typical 1/f 2 response for longitudinal driving.

3.9 Conclusions

In conclusion, we have constructed a triple-suspended diffractively-coupled

FabryPérot cavity within the Glasgow 10 m prototype interferometer and de-

veloped a numerical model for the system. From the simulation we were able

to investigate the use of conventional techniques for length sensing and con-

trol signal extraction from a diffractively coupled Fabry-Pérot cavity. Our

experimental results in Section 3.6 provided both qualitative and quantitative

verification of the theoretical framework supporting grating coupled interfer-

ometers. Additionally, it was possible to adapt the numerical model to show

the extent of asymmetry in both reflected demodulated signals and further-

more reconstruct a symmetrical PDH signal with these signals, irrespective of

their shape.

We demonstrated the effect of translational grating motion coupling into the

length sensing signal from a diffractively coupled cavity observing a charac-
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Figure 3.25: Predicted and measured signal responses at port c3 for several

grating motions. The theoretical response is calculated using Equation 3.33,

known cavity parameters and the measured displacement from Figure 3.24. The

longitudinal signal response is 1/f 2 as would be expected from a conventional

cavity topology. The pure-translational and rotational signals (driving methods

(a) and (b) respectively) demonstrate clear 1/f responses. Above 300 Hz the

pure-translational signal is dominated by an internal resonance of the test mass

mounting the diffractive coupler.

teristic 1/f slope in the signal response thus validating the theoretical pre-

dictions. An internal resonance dominated the signal response at frequencies

above 300 Hz and although this is far lower in frequency and broader than

would be expected for a gravitational wave interferometer mirror mass, it high-

lights an unavoidable coupling between internal vibrations and motion of the

grating surface when dealing with diffractively coupled cavities, particularly
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since translational grating signal responses are proportionally larger by a fac-

tor of the Fourier frequency than longitudinal signals. At low frequency the

signal obtained has a far smaller response than that observed for an equivalent

longitudinal length change but becomes more significant at higher frequencies.

Additionally, the magnitude of the coupling will depend on the grating proper-

ties and the length of the cavity such that a longer cavity will produce greater

coupling.



Chapter 4

Optomechanical Behaviour in a

Suspended Coupled Fabry-Pérot

Cavity

Thus far I have highlighted research efforts into an alternative technology and

topology to mitigate sources of noise from future gravitational wave detec-

tors when the intra-cavity power is increased. Meanwhile, with the advent

of second generation detectors, such as Advanced LIGO, and all associated

enhancements, the sensitivity is expected to improve by more than an order

of magnitude [64] revealing fundamental noise limitations that arise from the

measurement process. The quantum noise of such detectors is comprised of

shot noise at high frequencies and radiation pressure force acting on the mir-

rors at low frequencies as illustrated in Figure 4.1. The radiation pressure

acting on the suspended mirrors of optical cavities will become a dominant

force in high-power regimes, modifying the mechanical dynamics of the pen-

dulums. Opto-mechanical coupling is a well known effect [19, 65]. It has been

93



94

Figure 4.1: Amplitude spectral density of the strain detectable for the LIGO

detectors. Typical sensitivity observed in 2010 is illustrated in black and red,

along with the design sensitivity indicated in blue. The quantum noise is il-

lustrated for the current level of input power (yellow) and for an increase of

100 times (purple). The Standard Quantum Limit shown in green outlines the

minimum noise achievable when the Shot Noise (SN) at high frequencies and

Radiation Pressure noise (RP) at low frequencies are uncorrelated.

proposed for use in future gravitational wave detectors to increase the narrow-

band sensitivity [66, 67]. It is therefore important to gain practical experience

in the control of coupled cavity systems whose dynamics are dominated by

optical rigidity and to explore this in the context of typical suspended-optics

interferometers.

In this Chapter I investigate the fields and forces upon the mirrors of a sus-

pended Fabry-Pérot cavity and derive their dynamic behaviour numerically.

By revealing the conditions for which radiation pressure forces induce opto-

mechanical rigidity, I detail the design process behind the optical spring ex-
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periment at Glasgow. The theoretical foundations used herein are later im-

plemented in a numerical model in order to characterise the observed system

dynamics under experimental conditions.

4.1 Field Equations for a Static Fabry-Pérot

Cavity

The light fields of a suspended two-mirror cavity system are illustrated by

Figure 4.2. The external fields are the incident light field Ei, the reflected field

Er comprising of the light that has reflected directly from the input mirror

and superimposed with the leaked cavity field through the input mirror, and

the transmitted field Et generated by the cavity field that leaks through the

end mirror. The circulating internal field can be considered using the light

directly after the input mirror Ec1 and end mirror Ec2 as illustrated. Ec1� and

Ec2� indicate the cavity fields after traversing one cavity length L. We write

the reflected field as

Er = τaEc2� + ρaEie
−2iφ (4.1)

and the transmitted field by

Et = τbEc1� . (4.2)

The internal fields can be described using the same procedure as in Chapter

3, to show

Ec1 = Eiiτa + Ec2�ρa, (4.3)

Ec1� = Ec1e
−iφ = Eiiτae

−iφ + Ec2�ρae
−iφ, (4.4)

Ec2 = Ec1ρbe
−iφ, (4.5)

Ec2� = Ec2e
−iφ = Ec1ρbe

−2iφ. (4.6)
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Figure 4.2: Schematic diagram of a simple optical cavity showing the incident

light field Ei interacting with the input mirror giving the cavity fields Ec1,c2

(Ec1�,c2� have gained an additional phase component due to traversing the length

of the cavity). The cavity field leaks light through the input mirror and super-

imposes with the directly reflected light to produce a reflected light field Er, as

well as the light leaking through the end mirror to produce a transmitted field

Et.

It is more useful to describe a single internal field with one equation, thus by

assuming the cavity mirrors to be static and the input light amplitude to be

constant (Ei(t) = A), we write the forward propagating cavity field, Ec, as

Ec = Aτa + Ecρaρbe
−2iφ, (4.7)

for which the solution is

Ec =
Aτa

1− ρaρbe−2iφ
. (4.8)

The reflected field can be written as

Er = Aρab, (4.9)
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where ρab indicates the static reflectivity of the cavity as seen by the incoming

light, defined

ρab = ρa −
τ 2
a
ρbe−2iφ

1− ρaρbe−2iφ
. (4.10)

We have therefore shown that the reflectivity of a static Fabry-Pérot cavity is

a function of the detuning phase, and can be used effectively as a mirror with

variable reflectivity for monochromatic light as experimentally demonstrated

on an earlier Glasgow prototype[42].

Similarly, we can express the transmitted field as

Et = Ecτbe
−iφ, (4.11)

which can also be written as

Et =
Aτaτbe−iφ

1− ρaρbe−2iφ
. (4.12)

Hence, the transmitted field is directly proportional to the cavity field, and is

often used to determine the stored power.

The maximum amplitude of the cavity field 4.8 can be simplified to

E = gabA, (4.13)

where gab represents the maximum amplitude gain of the Fabry-Pérot cavity

defined by

gab =
τa

1− ρaρb

. (4.14)

4.2 Power Coupling in a Fabry-Pérot Cavity

For the static solution, the stored power (intensity) can be expressed using the

Airy intensity profile [68] as

P = |E|2 = g2
ab

Pin

1

1 + F sin2 θ
, (4.15)
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where Pin = |A|2, θ is the cavity tuning and F is the coefficient of finesse

defined by

F =
4ρaρb

(1− ρaρb)
2 ; (4.16)

where F is the cavity finesse. We see from Equation 4.15 that the resonances

of a Fabry-Pérot cavity correspond to when the Airy intensity profile is unity:

θ = nπ (4.17)

The FSR is the frequency separation between successive resonances and is

defined by

∆ω = 2π
c

2L
=

πc

L
, (4.18)

where c is the speed of light in vacuum, and L is the cavity length. The FSR

of the Glasgow 10 m prototype is approximately 2π(15.2 MHz).

The finesse, which is a measure of the quality of the cavity, can be defined by

the FSR and the resonance linewidth γω,θ, given by

F =
∆ω

γω

=
π

γθ

, (4.19)

where the cavity linewidth is expressed in frequency γω or tuning γθ and is

defined as the Full Width at Half Maximum (FWHM) of the resonance, as

illustrated in Figure 4.3. The finesse can also be evaluated based on the am-

plitude reflectivities of the cavity mirrors, given by

F =
π
√

F

2
=

π
√

ρaρb

1− ρaρb

. (4.20)

Figure 4.3 illustrates the normalised intracavity power defined by Equation

4.15 as a function of angular frequency.
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Figure 4.3: Illustration of the intracavity power as a function of angular fre-

quency based on the Airy intensity profile. The FSR, ∆ω, between successive

resonance’s is shown, along with the linewidth γ (FWHM).

4.3 Field Equations for a Three-Mirror Cou-

pled Cavity

Our previous analysis of the fields in two mirror Fabry-Pérot cavities can be

expanded upon in the context of three mirror coupled cavity systems. As men-

tioned in Chapter 1, these assemblies are used to recycle light leaking from the

longer arm cavities and maximise the time spent by the fields within the inter-

ferometer to improve detector sensitivity. At Glasgow a three mirror coupled

cavity system was employed throughout our investigations into optomechani-

cal dynamics and it is therefore useful to describe the relevant equations for

the fields in such systems.

An additional mirror c is included between the laser and the input mirror

from the earlier analysis. All three mirrors share the same optical axis and the
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Figure 4.4: Schematic diagram of two co-aligned cavities coupled together by

the input mirror. The input field here is that of the laser Elaser, which interacts

with the recycling mirror to give a reflected field Ercc (including the external

cavity field transmitted through the recycling mirror) and the transmitted field

F (including the reflected external cavity field). The input light to the internal

cavity is Ei.

reflection coatings are located as indicated by Figure 4.4. The cavity formed

between mirror c and mirror a is referred to herein as the external cavity, while

the internal cavity is that formed between mirror a and mirror b.

If we first consider the case when there is no mirror motion, the internal cavity

can be treated as before with the transmitted, reflected, and cavity fields being

described by Equations 4.12, 4.9 and 4.8 respectively. However, the incident

field is now generated inside the external cavity rather than the laser. Using the

same procedure as before, we can describe the forward propagating external

cavity field by

F = Elaserτc − ρcρabFe−2iϕ, (4.21)

where ϕ is the phase acquired after traversing the external cavity length l. The
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solution to 4.21 is shown to be

F =
τcA

1 + ρcρabe−2iϕ
. (4.22)

Therefore the incident field on mirror a is given by

Ei = Fe−iϕ. (4.23)

Thus we can write the internal cavity field as

E =
τaFe−iϕ

1− ρaρbe−2iφ
, (4.24)

which expands to

E = A

�
τc

1 + ρcρabe−2iϕ

� �
τae−iφ

1− ρaρbe−2iφ

�
. (4.25)

The first term in brackets corresponds to the amplification of light in the

external cavity and the second term in brackets is that of the internal cavity.

For resonance to occur in the internal cavity the following phase condition

must be met:

φ = nπ, (4.26)

where n is an integer. And since e2niπ = 1, the phase components of the

internal field in 4.25 can be omitted. The resonance condition of the external

cavity depends on the state of the internal cavity, such that

ϕ = π

�
m +

1

2
+

arg(ρab)

2π

�
. (4.27)

When the internal cavity is exactly on resonance, the reflectivity ρab is real

and the phase condition is then written

ϕ = πm +
π

2
. (4.28)
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4.4 Power Coupling in a Three-Mirror Cou-

pled Cavity

It is considered optimal coupling when there is maximum power in the internal

cavity. We define the static power by

Pint = |E|2 =

����
τc

1 + ρcρabe−2iϕ

����
2 �

τa

1− ρaρb

�2

Plaser. (4.29)

Thus by ensuring the external cavity is exactly on resonance and static, Equa-

tion 4.29 can then be expressed, similarly to 4.15 in terms of the internal cavity

phase offset, as

Pint = g2
ca

g2
ab

Plaser

1

1 + Fc sin2 θ
, (4.30)

where gca and gab are the amplitude gains of the external and internal cavities

respectively, and Fc is the coefficient of finesse for the coupled cavity system.

When the internal cavity is exactly on resonance, corresponding to φ = 0, the

end term in Equation 4.30 becomes unity and we obtain the maximum cavity

power,

P0 = g2
ca

g2
ab

Plaser. (4.31)

The optimal power coupling occurs when both of these factors are maximised

for which there are three possible modes:

1. ρab = 0. The internal cavity is optimally coupled with no light reflected

and the amplitude gain would be determined as gca = τc.

2. ρab < 0. The internal cavity is termed overcoupled, meaning the reso-

nance of light in the external cavity takes place when ϕ = mπ.

3. ρab > 0. The internal cavity is undercoupled so that the resonance of

light in the external cavity occurs when ϕ = mπ + π

2 .
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To understand the significance of the above three conditions it is important

to consider the length of the arm cavities in current ground based detectors.

The arm cavity length leads to fixed transit time T for the light propagating

inside. Similarly, for a given detection bandwidth, there exists and optimum

storage time τ , which is also a fixed parameter. The fixed storage time places

a limit on the allowed reflectivities of the cavity mirrors, defined by [68]

ρaρb = e−2T/τ = constant. (4.32)

To ensure maximum gain in the arm cavity, the transmissivity of the end mir-

rors in the LIGO detectors, for example, are very low (typically τb = 20 ppm).

Thus, from Equation 4.32, we see that the choice of end mirror constrains the

choice of reflectivity for the input mirror. In many cases, it is found that the

resulting cavity is not optimally coupled to the input light. Therefore the use

of an additional mirror in front of this cavity forms a recycling cavity, whose

reflectivity can be selected to match the internal arm cavity reflectivity ρab,

given by

ρc = (1− L)|ρab|, (4.33)

such that the total reflectivity of the coupled cavity ρcab can reach zero, and

thus maximum transmission of light into the system is achieved.

We see from 4.29 that the external cavity acts essentially as an additional

source of power gain, and if controlled appropriately it is effectively decoupled

from the internal cavity. This is particularly the case if, as in our experiment,

the finesse of the internal cavity is much higher than that of the external

cavity. Even if the external cavity is not precisely on resonance, the effect of

this on the fields in the internal cavity is small. The details of the control of

the three mirror coupled cavity is covered later. For simplicity we will ignore

the external cavity and consider only the internal cavity for calculating the

equations of motion for suspended mirror, as this cavity is of primary interest.
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4.5 Suspended Mirror Equations of Motion

Two theoretical methods have been considered by the author to describe the

equations of motion for a suspended mirror. The Lagrangian technique uses

an energy method to determine the equations of motion and results in an

arguably more elegant and concise solution when compared to state-space

modelling, which utilises linear first order differential equations. However,

numerical software packages such as MATLAB [57] are better suited to model

problems designed in state space form. Therefore in this analysis we consider

the Lagrangian formulation to obtain concise equations of motion, and then by

applying Laplace transformation it is possible to describe the mirror motion

in matrix form for use in numerical simulation packages.

We begin by considering the six degrees of freedom for a suspended mirror.

There are three translational degrees of freedom along the x, y, and z axes,

in addition to three rotational degrees of freedom ζ, ψ, and φ about each axis

respectively, as illustrated in Figure 4.5. However, not all degrees of freedom

have consequences on the reflection of light from the surface. Rotations along

ζ, and translations along z and y axes can therefore be neglected for light

propagating along the x axis. For clarity we term motion along the remaining

degrees of freedom x, ψ, and φ as longitudinal, pitch and yaw respectively.

In general, the design of a mirror suspension is symmetrical about the xz-

plane, therefore yaw motion is decoupled from longitudinal and pitch motion.

Additionally, the mirror is typically suspended from four symmetrically spaced

wires separated in x and y, resulting in direct coupling between longitudinal

and pitch motion. Thus, there are primarily just two independent motions of

concern; planar motion along the x-axis and yaw motion, which will herein be

described.
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Figure 4.5: Schematic diagram of a suspended mirror indicating the three trans-

lational degrees of freedom (x,y,z) and the three rotational degrees of freedom

about each axis (ζ,ψ,φ).

The Lagrangian of the suspended system is defined to be the kinetic energy

minus the potential energy,

L = K − P. (4.34)

The kinetic and potential energies are expressed in terms of the coordinates

of the system, qi, which exist for each degree of freedom and in our case

represent x, ψ and φ. By obtaining the Lagrangian for the two aforementioned

independent motions, the equations of motion can then be described by the
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Figure 4.6: Schematic diagram of a suspended mirror acted upon by planar

motion, moving a distance x− xsp from the equilibrium suspension point, and

the centre of mass (highlighted by a red cross) has risen to z. The wire length

is denoted l, the separation between the break-off and centre of mass is denoted

by b. The suspension wires are at an angle α, whilst the mirror pitch is given

by ψ.

Euler-Lagrange equation,
d

dt

�
∂L
∂q̇i

�
=

∂L
∂qi

. (4.35)

When the mirror is acted upon by planar motion, as illustrated in 4.6, we

describe the resulting change in coordinates for the mirror centre of mass
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(x,0,z) as,

x = xsp + l sin α + b sin ψ ≈ xsp + lα + bψ, (4.36)

z = l + b− l cos α− b cos ψ ≈ lα2

2
+

bψ2

2
, (4.37)

where xsp denotes the x position of the suspension point, l denotes the wire

length, b denotes the wire break-off point above the centre of mass, and α rep-

resents the angle of the suspension wires to the vertical. It is worth noting that

we have made the small angle approximation. Furthermore, we can eliminate

one variable by substituting for

α =
1

l
(x− xsp − bψ) , (4.38)

to describe the elevation of the centre of mass as,

z =
(x− xsp − bψ)2

2l
+

bψ2

2
. (4.39)

When the mirror is acted upon by yaw motion, as illustrated in 4.7, we describe

the resulting change in coordinates for the mirror centre of mass (0,0,z�), where

z� = (z − zeq), by first defining the projection of the wire onto the xy-plane as

d2 = R2
1 + R2

2 − 2R1R2cos(φ− φsp), (4.40)

where R1 and R2 indicate the distance to the suspension point and break-off

point to the centre of mass, respectively. Since the wire remains the same

length, we can also state the constraint

l2 + (R1 −R2)
2 = (l − z�)2 + d2. (4.41)

It can therefore be shown that the equation for the centre of mass elevation is

z�2 − 2lz� + 4R1R2 sin2 (φ− φsp)

2
= 0. (4.42)

For small rotations, we can neglect z�2 and make the small angle approximation

to simplify the expression for the elevation in z to,

z� =
R1R2(φ− φsp)

2l
. (4.43)
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Figure 4.7: Schematic diagram of a suspended mirror acted upon by yaw mo-

tion. The suspension points have been rotated to an angle φsp, whilst the break-

off points of the suspension wire on the mirror, have been rotated by an angle

φ. R1 and R2 indicate the distance to the suspension point and break-off point

to the centre of mass respectively.

The kinetic energy of the suspended mirror is the sum of both the translational

and rotational motion, defined

K =
1

2
mẋ2 +

1

2
Iψψ̇2 +

1

2
Iφφ̇

2, (4.44)

where Iψ and Iφ are the moments of inertia of the mirror defined as

Iψ = Iφ = m

�
R2

4
+

L2

12

�
, (4.45)

where R and L are the radius and length of the cylindrical mirror.

The potential energy of the suspended mirror is defined

P = mg(z + z�), (4.46)
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where m is the mass of the mirror and g denotes the gravitational acceleration.

Hence, using Equations 4.39 and 4.43 the complete equation for both planar

and yaw motion is

P =
mg

2l
[(x− xsp − bψ)2 + blψ2 + R1R2(φ− φsp)

2]. (4.47)

Finally, from 4.34, the complete Lagrangian for the mirror under planar and

yaw motion is therefore

L =
1

2

�
mẋ2 + Iψψ̇2 + Iφφ̇

2 − m

l

�
(x− xsp − bψ)2 + blψ2 + R1R2(φ− φsp)

2
��

.

(4.48)

We therefore get the Lagrangian for all three degrees of freedom by substituting

4.48 into 4.35, giving

ẍ =
−g

l
(x− xsp − bψ), (4.49)

Iψψ̈ =
−mgb

l
[(l + b)ψ + (x− xsp)] , (4.50)

Iφφ̈ =
−mgR1R2

l
(φ− φsp). (4.51)

These equations are useful as they reveal the natural mode frequencies for each

degree of freedom:

ω2
x

=
g

l
, (4.52)

ω2
ψ

=
mgb

Iψl
(l + b), (4.53)

ω2
φ

=
mgR1R2

Iφl
. (4.54)

To fully describe the equations of motion for each degree of freedom we in-

troduce a loss mechanism to account for the presence of friction, which acts

as velocity dependent damping force β, termed viscous damping. With this
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loss mechanism taken into account the full equations of motion for a freely

suspended mirror can be obtained [68]:

ẍ + βxẋ + ω2
x
x = ω2

x
(xsp + bψ), (4.55)

ψ̈ + βψψ̇ + ω2
ψ
ψ =

ω2
ψ

l + b
(x− xsp), (4.56)

φ̈ + βφφ̇ + ω2
φ
φ = ω2

φ
φsp. (4.57)

As it is of interest to model each suspended pendulum in a numerical simula-

tion to analyse their dynamic behaviour, we must transform the equations of

motion 4.55-4.57 from the time domain into the frequency domain, in order to

efficiently utilise computer memory when running numerical simulations. By

describing the equations of motion in state space form, it is possible to obtain

multiple outputs from multiple inputs, and enable a numerical model to be

built in order to probe the system’s dynamic response.

The state space equations utilise four matrices, [A, B, C, D], to define the

equations of motion of the pendulum, and are written as

�̇r = A�r + B�u, (4.58)

�y = C�r + D�u, (4.59)

where the input and output vectors are respectively defined �u and �y, and r is

the state vector defined by,

�r =



 �q

�̇q



 , (4.60)

or explicitly in the above derivation as,

�r =
�

x, ψ, φ, ẋ, ψ̇, φ̇
�T

. (4.61)

Equation 4.60 contains the required identities for a single stage pendulum

system in order to maintain simplicity in this section, however, additional
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pendulum stages are easily included with the addition of components in the

state vector and the [A, B, C, D] matrices.

For many cases it is most useful to investigate the suspension dynamics in the

frequency domain, and therefore Equations 4.58 and 4.59 are required to be

Laplace transformed, resulting in

s�R(s) = A�R(s) + B�U(s), (4.62)

�Y (s) = C�R(s) + D�U(s), (4.63)

respectively, where s denotes the Laplace variable.

In this experiment the author utilised an existing state space model developed

extensively by M. Husman, C. Torrie, M. Barton, N. Robertson and K. Strain

at Glasgow [69, 70]. The model was amended to incorporate the effects due to

radiation pressure forces and associated viscous damping as will be discussed.

4.6 Radiation Pressure Effects in Suspended

Cavities

As the stored light in a three mirror coupled cavity interacts with the mir-

rors, it imparts a radiation pressure force and modifies the suspended mirror

dynamics as illustrated by Figure 4.8. In this section, we will highlight the

dependence of the mirror position, or more specifically the cavity detuning, to

the radiation pressure force acting upon the mirrors. In so doing, we determine

the suspended mirrors to be no longer strictly independent and reveal the state

required to induce a resonance of the cavity length, commonly referred to as

the optical spring effect.
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Figure 4.8: Illustration of Fabry-Pérot cavity on resonance with the cavity

mirrors held away from true vertical due to the radiation pressure force FRP

but maintained in equilibrium by external forces Fext, consisting of the restoring

force of the pendulum and the control force.

The radiation pressure force on the input cavity mirror, FRPa , and the end

mirror, FRPb
, is directly proportional to the power (P = |E|2) incident upon

it, derived from the net fields acting on it, described by

FRPa(t) =
1

c

�
|Ei(t)|2 + |Eref (t)|2 − |Ec1(t)|2 − |Ec2�(t)|2

�
, (4.64)

FRPb
(t) =

1

c

�
|Ec1�(t)|2 + |Ec2(t)|2 − |Et(t)|2

�
. (4.65)

In addition to the downwards force due to gravity, which acts to restore the

pendulum to equilibrium, the cavities of an interferometer are held on reso-

nance by applying a feedback force to the mirrors, thus controlling their relative

positions. In long baseline gravitational wave detectors and at the Glasgow

prototype, this force, known as global control 1 is generated by electromagnetic

actuators. An array of electromagnetic actuators is mounted on a reaction

1We distinguish local control, where the sensing and feedback signals are at a single

mirror from global control which affects the overall state of the interferometer by controlling

the relative positions of mirrors, based on optically derived signals.
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mass located at the rear of the main chain suspension. It is also suspended

as a pendulum in order to provide a seismically isolated platform from which

to apply control. Forces can also be applied at the location of the suspension

points in order to control motion below the resonant pendulum resonances.

This is used for local control and compensation for slow drifts (e.g. Earth tides

in km-scale interferometers). Both local and global control stages can be used

to damp unwanted excited pendulum modes arising from high Q suspension

designs. The details of the force feedback method for this experiment are given

below.

The effect of the feedback forces can be represented by a single external force

Fext, and included within our previously determined equations of motion in

the time domain,

ẍa + βẋa + ω2
p
xa =

1

ma

(FRPa(t) + Fext(t)) , (4.66)

ẍb + βẋb + ω2
p
xb =

1

mb

(FRPb
(t) + Fext(t)) , (4.67)

where β denotes the damping rate, ωp represents the pendulum frequency, and

m(a,b) denotes the mirror mass. This is a complete description of the suspended

mirror motions as they interact dynamically with incident light fields.

In high finesse Fabry-Pérot cavities, the internal radiation pressure incident

upon the cavity mirrors is much greater than the radiation pressure from the

incident light on the input mirror, and thus the magnitude of the radiation

pressure force incident upon the cavity mirrors is almost identical but acting

in the opposite direction, allowing us to write,

FRPa � −FRPb
(4.68)

As will become apparent, it is useful to decouple each of the mirrors by ex-

pressing the relative mirror motions as a change to the cavity length, such



4.6 Radiation Pressure Effects in Suspended Cavities 114

that

ξ = xb − xa. (4.69)

Using Equations 4.66, 4.67 and 4.68, we can re-write the equation of motion

for changes to the cavity length as

ξ̈ + βξ̇ + ω2
p
ξ =

1

mb

(FRPb
(t) + Fext(t))−

1

ma

(FRPa(t) + Fext(t)) , (4.70)

ξ̈ + βξ̇ + ω2
p
ξ =

1

mr

(FRPb
(t) + Fext(t)) , (4.71)

where ξ denotes the cavity length, and mr is the reduced mass, defined by

mr =
mamb

ma + mb

. (4.72)

We want to derive the principal concept of optical spring generation within a

cavity, and express the optical spring constant in useful parameters for compar-

ing experimental observations to the numerical model. The following analysis

begins by considering first the quasi-static solution - that for which mirror

motions are slow compared to the response time of the cavity. Later a time-

dependent description of the optical spring will be applied to account for ad-

ditional effects which occur when the frequency of mirror motion approaches

the cavity linewidth.

In our experimental setup we planned to investigate optical spring behaviour

within a cavity using an end mirror approximately 30 times lighter than the

input mirror. In this regime, it is reasonable to consider only the end mirror

movable, which helps to simplify the analysis of radiation pressure effects inside

the cavity. When the cavity is on resonance the end mirror can be held in a

state of equilibrium if the mechanical restoring force, gravity and radiation

pressure force are balanced and constant. From Equation 4.65 and the static

cavity field derived earlier 4.8 we can remove the subscript b and write the
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maximum radiation pressure force on the end mirror as,

FRPmax =
1

c

��
τaEi

1− ρaρb

�2

+

�
τaρbEi

1− ρaρb

�2

−
�

τaτbEi

1− ρaρb

�2
�

. (4.73)

From the field equations 4.23, and 4.24 we can further express the maximum

radiation pressure force in terms of internal cavity power, the reflection and

transmission efficiencies of the end mirror, and the cavity detuning,

FRPmax =
P (1 + ρ2

b
− τ 2

b
)

c

1

1 + F sin2 θ
. (4.74)

In most full scale gravitational wave detectors, and in the Glasgow prototype

ρ2
b
≈ 1 and τ 2

b
≈ 0, therefore acknowledging Equation 4.30, we obtain the

familiar expression for the maximum radiation pressure force on the end cavity

mirror

FRP0 =
2P0

c
. (4.75)

The author uses the expression 4.75 to develop the analysis of generating opti-

cal springs within cavities, however the model used for comparison later utilises

the full form described by 4.74, with reflection and transmission efficiencies

limited by real mirror loss.

Since the properties of the mirrors are assumed to be constant, we can express

the changes in radiation pressure force as a function of maximum cavity power

and cavity detuning as,

FRP =
2P0

c

1

1 + F sin2 θ
. (4.76)

Hence, for the static case we can write the equations of motion for the end

mirror described by 4.70 as

mrω
2
p
ξ − Fe(t) =

2P0

c

1

1 + F sin2 θ
. (4.77)
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Parameter Value Description

τ 2
c

0.0495000 recycling mirror transmission

τ 2
a

0.0122820 input mirror transmission

τ 2
b

0.0000024 end mirror transmission

ρ2
c

0.9504500 recycling mirror reflectivity

ρ2
a

0.9877180 input mirror reflectivity

ρ2
b

0.9999396 end mirror reflectivity

Mc 1.5 kg recycling mirror mass

Ma 2.7 kg input mirror mass

Mb 0.1 kg end mirror mass

Lext 5.16 m external cavity length

Lint 9.87 m internal length

γRC 29.05 MHz external cavity linewidth

γAC 31.88 kHz internal cavity linewidth

Plaser 0.15 W input power

λ 1064 nm laser light wavelength

Table 4.1: System properties for the Glasgow 10 m prototype in the optical

spring experiment.

If the mirror is statically shifted by an amount dx (or equivalently if the laser

frequency is changed by dω) the radiation pressure force will change,

dFRP =
2

c

∂P

∂x
dx. (4.78)

In other words, it is possible to treat the cavity mirrors as being connected

with an optical spring, having a spring constant

Kopt = −2

c

∂P

∂x
= −2

c

∂P

∂θ

∂θ

∂x
. (4.79)

The internal cavity power is a function only of detuning θ, which is small

relative to the FSR, thus we can make the small angle approximation (sin θ =
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θ) and write
∂P

∂θ
= − 2P0Fθ

(1 + Fθ2)2 . (4.80)

We can express the detuning parameter as θ = 2πx

λ
, resulting in the derivative

with respect to x as,
∂θ

∂x
=

2π

λ
. (4.81)

This allows us to present the optical spring constant explicitly as,

Kopt =
8πP0Fθ

cλ (1 + Fθ2)2 . (4.82)

Furthermore, a positive optical spring constant acts to enhance the rigidity of

the suspended mirror, thus the pendulum resonance frequency is increased,

which can be described using the relationship,

fopt =
1

2π

�
Kopt + Kmech

mr

, (4.83)

where Kmech is the mechanical spring constant of the lowest stage pendulum

with length l defined by

Kmech =
mbg

l
. (4.84)

However, in the Glasgow prototype system the mechanical spring constant of

the pendulum Kmech ≈ 3.3 N/m, which can be shown to be sufficiently smaller

than the expected optical spring constants and therefore can be ignored, mean-

ing we can write Equation 4.83 simply as

fopt =
1

2π

�
Kopt

mr

. (4.85)

It is worth noting that we use the reduced mass in this equation because the

two cavity mirrors are connected by the same optical spring with equivalent

spring constant.

Figure 4.9 shows the relationship between the cavity power and optical spring

constant as a function of cavity detuning for a single Fabry-Pérot cavity us-

ing the parameters for the cavity mirrors a and b detailed in Table 4.1. For
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Figure 4.9: Calculated intracavity power (blue curve) and the optical spring

constant (green curve) as a function of detuning for a single Fabry-Pérot cavity

defined by the parameters in Table 4.1.

convenience, the detuning is herein expressed in dimensionless units relative

the cavity linewidth δγ. As the cavity detuning is increased (positive) the op-

tical spring strength increases, while for negative detuning, the optical spring

constant is anti-restoring, meaning that the incident radiation pressure force

assists any change to mirror position. Therefore we have shown that negative

detuning results in an unstable system. This case is not of interest in our

experiment and is henceforth ignored.

Based on the numerical model for a static cavity it can be shown that the maxi-

mum power build up of the internal cavity alone would be approximately 48 W,

and for a cavity detuning δγ ≈ 0.29 the maximum optical spring strength would

be around K = 396 N/m, with an optical spring frequency fopt ∼ 10.2 Hz.
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However, without optimum power coupling and maximum detuning the op-

tical spring frequency reduces rapidly and since the pendulum modes of the

triple suspensions occur up to several tens of Hz, it would be challenging to ob-

serve optomechanical behaviour in the Glasgow prototype with just one optical

cavity.

We can also investigate the expected level of spring strength and frequencies

for a three mirror coupled cavity system using the parameters from Table

4.1. It is found that the expected internal cavity power build up is around

1991 W, providing a resonant radiation pressure force on the cavity end mirror

FRP ≈ 13.3 µN. It follows that the maximum optical spring strength obtained

for a coupled cavity arrangement detuned to δγ ≈ 0.29 is K = 9.4× 105 N/m.

Correspondingly, the maximum optical spring frequency would be approxi-

mately fopt = 496 Hz. Hence the coupled cavity system would bring the optical

spring well into a range in which measurements are convenient.

Figure 4.9 illustrates the effect of cavity detuning on both the intracavity power

and the optical spring constant. The intracavity power has dropped to half the

maximum when the detuning is equal to the resonance linewidth. The optical

spring constant changes sign depending on which side of the resonance the

detuning occurs. It can be seen that exactly on resonance, the spring constant

is zero, while maximum optical spring constant is found when δγ ≈ ±0.29.

Note the maximum optical spring constant varies depending on the parameters

of the cavity. The intracavity power at this level of detuning corresponds to

Pδγ=0.29 ≈ 0.75P0, where P0 represents the intracavity power for zero detuning.

However, rearranging 4.19 the coupled cavity linewidth can be calculated as,

γω =
∆ω

F =
2c

L
√

F
. (4.86)

Using the system parameters detailed in Table 4.1, we find the expected



4.6 Radiation Pressure Effects in Suspended Cavities 120

Figure 4.10: Calculated intracavity power (blue curve) and the optical spring

constant (green curve) as a function of detuning for a coupled Fabry-Pérot

cavity defined by the parameters in Table 4.1.

linewidth of the coupled cavity to be approximately 2π(526)Hz. The cou-

pled internal cavity linewidth is therefore sufficiently narrower than the single

Fabry-Pérot cavity alone, any measurement process to obtain the optical re-

sponse would induce mirror motion at comparable frequencies. Therefore our

earlier assumption of quasi-static detuning is not sufficient for our experiment

and we must include the response time of the cavity within our analysis.

The frequency dependent optical rigidity has been studied [65, 71], and upon

simplification can be shown to be

Kopt(ω) = Kopt

1 + δ2
γ

(1 + iωγ)2 + δ2
γ

. (4.87)

Hence, the complete description of the frequency dependent optical rigidity is

complex with the real components attributed to rigidity and imaginary parts



4.6 Radiation Pressure Effects in Suspended Cavities 121

Figure 4.11: Optical spring strength as a function of cavity detuning and

frequency of observation, based on the complete frequency dependent spring

strength equation 4.87. The details are discussed in the text.

describing a velocity dependent damping force. The full form of the optical

spring constant is valid for all mirror frequencies, and we see that for sufficiently

slow mirror motion (ω → 0) the imaginary term disappears resulting in the

expression obtained earlier for static detuning.

Figure 4.11 shows the expected change to the strength of the optical spring

constant with respect to detuning and frequency of observation, based on the

numerical model. At frequencies greater than the cavity linewidth the spring

constant is predicted to change sign. In other words there is a fundamental

limit to the observation of an optical spring that is directly related to the

response time of the cavity.

At this point it is useful to look at the response of the mirror when coupled to
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a strong optical field under optomechanical conditions, in other words the dis-

placement per unit force. This analysis reveals the corresponding enhancement

and degradation to the system for gravitational wave sensing. The complex

susceptibility can be written as [72],

x

F
=

1

−ω2 + (2πfopt)2 + imrωβ
, (4.88)

where we define the damping rate of the system as the sum of the mechanical

damping rate, βm and the optical damping rate βopt,

β = βm + βopt. (4.89)

The imaginary part of 4.87 provides the optical damping coefficient, described

by

βopt =
�(Kopt)

mrω
=

−2Kopt

mrγ(1 + δ2
γ
− ω2

γ
)2 + 4ω2

γ

, (4.90)

where the sign change indicates the damping force opposes the direction of the

optical restoring force and therefore, depending on whether detuning is posi-

tive or negative the optical damping will counteract or enhance the mechanical

damping force. The optical damping rate is shown in Figure 4.12, for different

levels of detuning and frequency of observation. The former case can result

in a phenomenon known as parametric instability when the optical damp-

ing exceeds the mechanical damping, whereas negative detuning increases the

damping of the suspended mirror and can provide a useful mechanism towards

removing unwanted thermal energy from coupled mirror systems, known as

cold damping [73, 74]. In the Glasgow system there are two effects which act

to stabilise the spring. Firstly, as described below, the cavity length is con-

trolled by a servosystem. This has a pole (or pair of poles) associated with its

unity gain frequency. As that frequency is far above the optical spring reso-

nance, instability of the spring plays no significant role in the stability of the

closed-loop system. Additionally there is mechanical damping associated with
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Figure 4.12: The optical damping rate is shown for a range of cavity detuning

levels and the frequency of observation.

the mirror. The two dominant components of this damping are the loss in the

wires and their clamps which hold the mirror, and loss due to the attached

actuation magnets inducing currents in the associated coils.

Figure 4.13 shows the corresponding magnitude and phase response, derived

from 4.88 and 4.89 for various levels of cavity detuning, indicating an amplifi-

cation around the optical spring resonance features with a corresponding phase

change of 180 degrees. From the predicted optical response of the system, we

observe a 180 degree phase decrease as a stable optical spring regime, whereas

it can also be shown that in some cases a 180 degree phase increase reveals an

unstable optical spring state. Also shown in Figure 4.13 is the suppressed sys-

tem response at frequencies below the optomechanical resonance, suggesting

an increased rigidity acting against mirror motion.
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Figure 4.13: Suspended cavity end mirror response based on Equation 4.88 us-

ing system properties defined in Table 4.1 for different levels of cavity detuning.

The response is amplified around the location of an optical spring, while being

suppressed at lower frequencies. A characteristic 180 degree phase change is

observed at the locations of the optomechanical resonance.

4.7 Characterising Optomechanical Coupling

in a Triple-Suspended Recycled Cavity

Our aim was to develop a system capable of observing opto-mechanical be-

haviour within a prototype scale interferometer whose optical components are

suspended as multi-stage pendulums. The desired setup would allow future

experiments into various aspects of radiation pressure dominated cavities such

as the control requirements employed through analogue and digital feedback,

as well as characterising the dynamic behaviour associated to optical rigidity
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in coupled cavity systems. Furthermore, a working system would enable the

Glasgow prototype to become a test bed for proof-of-principle experiments into

alternative optical topologies utilising optical rigidity, such as optical bar and

optical lever interferometers.

4.7.1 Experimental Design and Implementation

In this section I will detail the analysis and choice of design for a replace-

ment mirror of low mass, and its suspension, to increase overall sensitivity to

radiation pressure effects.

Cavity End Mirror

To observe opto-mechanical coupling between the mirrors of an optical cavity,

the radiation pressure force exerted by the internal cavity field must be com-

parable to, or greater than, the mechanical restoring force of the pendulums

[65]. Since the radiation pressure force is inherently weak, this requires high

finesse cavities to maximise the amount of stored light. The mirror test masses

in the Glasgow prototype are approximately 2.7 kg, however reducing the mass

of one of the cavity mirrors it will become more sensitive to radiation pres-

sure effects. Previous experiments to observe and characterise the behaviour

of optical springs in prototype-scale optical cavities have been limited to test

masses of up to 1 g [75, 76, 65]. At Glasgow we aimed to generate optical

spring behaviour using significantly larger mirror masses of 100 g for the end

mirror and the existing 2.7 kg input mirror.

The mirror to be used in the experiment was 1 inch in diameter with a 15 m

concave radius of curvature. It was manufactured from a fused silica substrate,
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with a highly reflective coating designed to be 99.9950% reflective at normal

incidence (a very high quality ion-beam sputtering processed was used, and

the substrate had been polished to sub-Angstrom roughness to reduce scat-

ter). The mirror is then mounted inside an aluminium holder for suspending.

It was decided to maintain the standard cylindrical shape for the aluminium

holder but instead to miniaturise the overall design in order to bring the to-

tal mass of the lowest stage to approximately 100 g including the mirror, wire

clamps, screws, and magnets. The control over the position of the mass would

be achieved using an almost identical reaction mass housing coils for electro-

magnetic actuation. Figure 4.14 shows the final design drawing created in the

computer-aided-design engineering package SolidWorks [77], from which the

remainder of the design drawings have been generated.

Isolation and Control

The existing input mirror is mounted as the lower stage of a triple pendulum,

in order to effectively isolate seismic noise above the fundamental pendulum

mode. To ensure that any changes to the dynamic behaviour of the light-

weight mirror can be confidently attributed to increased sensitivity of radiation

pressure effects, a triple-stage suspension design was also chosen for this design.

Hence the end mirror will be seismically isolated above the resonant pendulum

frequency having a transfer function of the magnitude response falling off as a

1/f 6 slope.

As with the existing input mass suspension, in order to control the position of

the test mass electromagnetic actuators were located at the test mass stage,

as illustrated in Figure 4.14, for global alignment. The local control actuation,

located at the upper stage in the existing Glasgow prototype suspensions, is

achieved using an arrangement of six shadow sensors (positioned to control
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Figure 4.14: Computer-aided-design drawing of the assembled lower test mass

(left) and the lower reaction test mass (right). The test mass incorporates a

standard design to mount a mirror at its centre of mass, whilst clamping points

of suspension wires are positioned 1mm above the centre-of-mass plane. A

symmetric array of magnets at 3 locations are positioned at the rear of the mass

to be actuated upon by the co-located coils on the reaction test mass suspended

within proximity for control. The reaction mass is of similar design to meet

mass restrictions, and incorporates an extruded centre to allow transmitted

light to be monitored.

all degrees of freedom) and electromagnetic actuators, as indicated by Fig-

ure 4.15. This technique monitors the shadow of an illuminated flag upon a

photodiode to obtain information about the suspension behaviour and pro-

vide active damping and additional dynamic range to global control. For the

replacement end mirror suspension however, a passive eddy-current damping

technique was chosen because of overall size constraints, limitations in the

construction process, and simplicity to employ.

The choice for a 100 g test mass as part of a triple suspension imposes re-
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Figure 4.15: Illustration of the shadow sensor arrangement used to sense and

damp motion of the suspensions as well as control alignment of the each sus-

pension chain.

straints on the design of the other stages. Since all the rigid-body pendulum

modes need to be damped by the eddy-current dampers at the top stage, it is

necessary for the pendulum motion to efficiently couple into at least one de-

gree of freedom of that stage. The starting point to achieve this is to connect

the lower stages using 4 wires at each level. The efficiency of coupling from

the lower to the upper stage is then maximised by ensuring the masses and

moments of inertia of each pendulum stage about the corresponding axes are

within a factor of approximately 2, with the stiffness of each stage increasing

from upper to lower [70]. It was possible to integrate these restrictions within

the triple-suspension design by ensuring the intermediate and upper masses

were restricted to 100 g and designed with approximately the same moment

of inertia about the equivalent axis. The suspension wire break off point for

each stage was chosen to be 1 mm above and below the xy-plane of the corre-
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sponding centre-of-mass, providing stability. The constraints for stiffness are

met by having the wires for the upper stage angled inwards along the y-axis,

and similarly for the intermediate stage, by way of a clamping unit between

the front and rear faces.

The eddy-current damping unit design was chosen by locating a suitable strength

magnet within proximity to a copper surround (calculated in the numerical

simulation package Mathematica [78]), and at a suitable distance from the

centre of mass (to increase the lever arm), such that the state-space simula-

tion indicated a sufficient damping force to damp excited modes. The require-

ments for eddy-current damping and mass constraints of the upper stage led

to the overall design as pictured in Figure 4.16. Note that the relatively strong

damping applied at the top mass is decoupled from the final pendulum stage

supporting the mirror at all frequencies above the highest pendulum resonance

(a few Hz).

The chosen intermediate stage design is similar to the upper stage, to restrict

the overall mass to 100 g, whilst also incorporating clamping point displace-

ments along the y-axis for upper and lower wires to ensure angled wires increase

the suspension stiffness from upper to lower stages as shown in Figure 4.17.

Moreover, the break-off points are similarly located 1 mm above and below the

centre-of-mass plane along the xy-axis.

The end mirror suspension was chosen to have equal 30 cm wire lengths, be-

tween each stage, with an adjustable upper-most clamping position to maintain

the same overall suspension length as the input mirror suspension and ensure

the incident cavity beam to be central on the end mirror.

Both the choice of wire for suspending the mirror and the location of suspen-

sion points for each stage affect some of the pendulum modes. Explicitly, for
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Figure 4.16: Different views for the computer-aided-design assembly of the up-

per mass and eddy-current damping unit. The upper mass (left hand side of

each view) incorporates angled wire clamping, suitable locations for magnets

on the front and upper faces, fine tuning pitch adjustment screw, and overall

mass/inertia restrictions met. The eddy-current damping unit (right hand side

of each view) has copper surrounds for each magnet. The front face also incor-

porates copper wound coils for alignment. Adjustment to vertical, longitudinal

and pitch position is possible as indicated.
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Figure 4.17: Computer-aided-design assembly of the intermediate mass.

a given material, the pitch modes of each stage are reduced in frequency when

the wire thickness is reduced. The choice of wire was selected through an iter-

ative process using the state space numerical model to restrict the pendulum

modes within the desired bandwidth. It was found that 55 µm radius stainless

steel wire was a suitable candidate to balance the requirement for sub-100 Hz

pendulum modes whilst remaining large enough for handling during construc-

tion.

The upper-most wire clamping points on the existing triple-stage suspensions

in the prototype are fixed to a series of cantilever-mounted blade springs to

enhance the vertical isolation. The cantilever blades are constructed from
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maraging steel (processed to pin its dislocations giving it a very high elastic

limit). The springs are pre-curved such that under load they are approximately

flat, such that small displacements of their tips as they flex are almost purely

vertical. However, in working with triple suspensions suspended from these

springs, it had been noticed that the clamping points are seldom aligned on the

same plane. Although offsets at the upper clamping point are not a concerning

issue for large masses, these perturbations would potentially limit the range

for alignment of a light-weight suspension. Therefore, it was decided to clamp

the upper-most suspension points to a fixed support, which itself would be

isolated by way of a passive seismic isolation stack. As noted above damping

of all suspension modes is facilitated by having two wires suspend the upper

mass, followed by four wires to suspend the intermediate mass, and a final

four wires suspend the test mass as shown in Figure 4.18. The separations of

the wires along the x-axis are optimised using the state space model to ensure

the (coupled) pitch and longitudinal modes are within the desired bandwidth.

This has become a standard approach to suspension design at Glasgow and

brings the additional benefit of allowing control of the lower stages from the

top-most mass, similar to the operation of a marionette.

The pendulum modes for the overall suspension design were obtained from the

state space model are detailed in Table 4.2. To characterise the suspension

modes two initial tests were performed: (i) attempt to lock the cavity on

resonance with global control and without the eddy-current damping unit (no

local control) in order to monitor the cavity response transfer function and (ii)

repeat the measurement but with the damping unit in place. The first test was

unsuccessful as the cavity could not be held locked for a duration substantial to

monitor low frequencies, indicative of undamped pendulum modes. However,

the second test, whilst the local control damping is applied, showed that the

cavity could be locked indefinitely throughout measurements and a low, mid
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Figure 4.18: Schematic of the entire main suspension chain as front view (left)

and side view (right). The eddy-current damping unit has been omitted for

clarity. Two angled wires suspend the upper mass, four angled wires suspend

the intermediate mass, and four vertical wires suspend the test mass.

range and high frequency cavity response signal could be obtained. When

the cavity field is maintained in a TEM00 resonance, the detected output

signal from a photodiode is monitored by a signal analyser (model Stanford

Research Systems SR785), to reveal the longitudinal/pitch and rotational mode
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Normal Mode Predicted Mode Frequencies [Hz] Quality Factor

Longitudinal/Pitch 0.60, 1.52, 1.95, 8.20, 2.59, 2.45,

2.59, 17.89, 30.88 1.07, 12.28, 17.96

Rotational 1.10, 2.12, 2.36 2.37, 0.97, 17.40

Translational/Roll 0.60, 1.52, 1.95, 8.38, 2.59, 2.48,

44.89, 102.87, 151.91 47.59, 87.20, 1018.28

Vertical 26.69, 81.04, 133.40 82.34, 93.09, 528.91

Table 4.2: Mode properties for the light-weight end mirror triple-suspension

design.

frequencies of the cavity mirrors. As indicated by Figure 4.19, all resonant

features are in good agreement with the model and outside the bandwidth of

interest for observing optical spring behaviour.

Suspension Assembly and Implementation

Having chosen the overall suspension design, it is essential to devise an assem-

bly process that will meet the desired tolerance. One key advantage of the

entire suspension is low mass, which enables an alternative assembly proce-

dure, much simpler than that used for the larger mass suspensions. Since the

total suspension length is less than 1 m, it is possible to construct the entire

suspension with the eddy-current damping unit within a single aluminium jig

on a table-top. By assembling the suspension this way, the position accu-

racy of each element is comparable to the manufacturing machine tolerance

(±0.5 mm) as the individual separations are well defined. The suspension wires

can also be clamped to high precision in this way. Once the entire suspension

is assembled, it can be manoeuvred into position inside the vacuum system

for the upper-most clamping stage to be fixed to the supporting structure.
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Figure 4.19: Low frequency response indicating features that can be attributed

to the expected longitudinal/pitch modes of the suspension. The feature located

at 50 Hz is most likely the result of a ground loop.

The suspension is subsequently unlocked from the jig, which is then removed,

leaving only the suspension hanging. This process was remarkably successful

as well as being efficient in construction time, since both the main suspension

and reaction suspension hung as intended in the first instance, as shown in

Figure 4.20.

However, this unique design is not without its own problems. The clamping

piece for the upper and lower stages must pin two wires, therefore each wire

position has to be correctly aligned at the same time. In addition, the upper

and intermediate wires are clamped to a piece of stainless steel connecting the

front and back cross pieces, which are difficult to adjust once each stage is

assembled. This restricts future amendments, such as replacing broken wires,
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Figure 4.20: Photographs of the full triple stage suspension (right) located at

the end of the arm cavity, the upper stage and surrounding eddy-current (EC)

damping unit (top left), the 100 g test mass and reaction mass (middle left),

and comparison of light-weight end mass and input mirror mass (bottom left).

without placing the suspension inside the assembly jig and removing from the

system entirely.
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4.7.2 Experimental Method

In this section the length sensing and control scheme used to maintain the

coupled cavities at the operating point is first highlighted. Following on from

the control scheme, the method employed for detuning of the internal cavity

in order to induce optical spring behaviour is discussed.

Coupled Cavity Control Scheme

As with any large scale laser interferometric gravitational wave detector util-

ising coupled optical cavities, it is necessary to control the relative positions

of the mirrors in the Glasgow prototype to maintain the desired resonant con-

ditions in each cavity. The typical procedure for length sensing and control

is based on the Pound-Drever-Hall technique whereby various radio frequency

(RF) modulation sidebands are imposed onto the carrier light, with a particular

modulation index. By splitting the carrier into various frequency components

that resonate in different cavities, and monitoring the reflected light on pho-

todetectors through demodulation, it is possible to sense the beat between the

frequency components after traversing through the system. The beat between

each frequency component reveals any phase shift that it acquired resulting

from changes in the cavity length.

In this experiment it was important to obtain a flexible control scheme and

to completely decouple the length sensing signals from both optical cavities.

Ensuring the sensing signals from each cavity to be completely independent

required both amplitude and phase modulation sidebands to be imposed onto

the carrier light. Figure 4.21 illustrates the system for modulation and demod-

ulation used for the experiment.
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The arm cavity length-sensing signal can be derived by applying phase mod-

ulation (PM) onto an electro-optic modulator (EOM) to generate phase side-

bands. The light returning from the cavity is then passed through a Faraday

isolator to pick the light off the beam path, where it is then split on a 50 : 50

beamsplitter; one path to an 18 MHz tuned photodiode and the other path to

a 4.525 MHz tuned photodiode (discussed shortly). The light detected on the

18 MHz photodiode is then mixed with a local oscillator (LO) at 18 MHz, thus

demodulating the signal to be filtered through feedback servo electronics to

control the high frequency motion via the piezo-electric-transducer (PZT) on

the laser and control low frequency motion via the temperature input to the

laser crystal. The PM sidebands were chosen arbitrarily to be non-resonant in

both cavities.

Meanwhile, the recycling cavity (RC) length-sensing signal is derived by ap-

plying PM sidebands at 10 MHz, which is non-resonant in both cavities, and

amplitude modulation (AM) sidebands at 14.525 MHz, which is exactly half

the free spectral range of the recycling cavity and resonant only in the recy-

cling cavity. The control of the recycling cavity is performed by feeding back to

electromagnetic actuators positioned on the rear of the recycling mirror mass.

A similar length sensing and control scheme for the three mirror coupled cavity

system had been previously demonstrated on the Glasgow 10 m prototype [79].

In this experiment, it was demonstrated that even without an auto-alignment

system installed it was possible to optimise the local oscillator phase and mod-

ulation frequency to achieve purity of orthogonal sensing from both cavities.

Hence, the arm cavity can be subjected to detuning without affecting the

sensing and control signals used for the recycling cavity, a key feature in this

experiment.
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Figure 4.21: Illustration of the amplitude modulation (AM) and phase modu-

lation (PM) scheme used for length sensing and control of the recycling cavity

(RC) and arm cavity (AC) whilst maintaining decoupling.

Characterising the Coupled Cavity

Before characterising the dynamic effects associated to opto-mechanical cou-

pling of cavity mirrors in detuned cavities, it is important to measure the

response of the resonant cavity to external forces, to reveal any unwanted fea-

tures. Using a signal analyser to inject motion via actuators on the cavity

mirror for a fixed laser frequency, or equally the laser frequency input to a

static cavity, the response of the coupled arm cavity signal can be monitored.

Figure 4.22 indicates that the response closely matches the expected 1/f 2 slope

for a suspended mass up to approximately 200 Hz where the signal becomes

limited by the noise floor of analyser at the expected frequency range for op-

tical spring generation. Additionally, a 27 kHz resonant feature is evident,

indicating there was an instability in the control servo path due to the unity

gain point, which at the time of this measurement could be easily excited if an

unsuitable level of gain was used to lock the system. This instability feature

was later fixed by replacing one of the resistors in the feedback path to change

the location of the unity gain point.
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Figure 4.22: Full-span frequency response of the coupled arm cavity indicating

a 1/f 2 shape at low frequencies. A distinct feature at approximately 27 kHz

corresponds to the unity gain point, which at the time of this measurement

could be made unstable without careful choice of the overall gain, however this

problem was later fixed by increasing the unity gain frequency with additional

filtering.

Furthermore, on close inspection of the measured DC signal from the photo-

diode located behind the cavity end mirror to monitor the transmitted light,

it was noted that the light level appeared to reduce when the overall gain of

the feedback path to the PZT was increased. This behaviour suggested that

there was an oscillation in the error signal being used to hold the system at

the operating point. However, this was not evident from frequency response

measurements, therefore suggesting that it was located outside the observable

bandwidth of the cavity and the spectrum analyser (the SR785 is limited to

around 100 kHz). Therefore a high frequency spectrum analyser was used to

monitor the demodulated error signal, revealing a resonant feature at 273 kHz,
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Figure 4.23: High frequency FFT frequency response of the internal cavity error

signal used in the PZT feedback path. A distinct resonant feature at 273 kHz

is observable when the overall gain in the feedback path is increased. A notch

filter was subsequently implemented to remove the oscillation and enable high

gain to be used for stability during cavity lock.

which became more pronounced when the PZT gain was increased, as indi-

cated by Figure 4.23. A notch filter was later added to the feedback path in

order to remove the high frequency oscillation, thus enabling higher overall

gain to be used for increased operational stability and resulting in maximum

stored power in the internal cavity.

Form these characterisation steps it was shown that there was no pendulum

mode frequencies or unstable feedback resonances perturbing the optical re-

sponse within the frequency band of interest, thus permitting further investi-

gations into opto-mechanical behaviour induced via cavity detuning.
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A suitable gain was chosen for the PZT feedback path to hold the three mirror

coupled cavity system locked and stable for extensive periods in order to obtain

measurements of optical response. However, it is also necessary to validate the

system parameters, such as the mirror properties, the coupled cavity finesse,

and the resonant linewidth.

A complete characterisation of a single Fabry-Pérot cavity is relatively trivial

to perform, for which there are several techniques. The following details one

method used in this experiment. Firstly, an accurate measurement of the

transmission efficiencies of each mirror can be obtained using a calibrated

power meter and a known laser source. In addition, since an accurate estimate

on length of the cavity is known, the FSR is easily obtained using Equation

4.18. Thus by obtaining the resonance linewidth the cavity finesse can be

calculated using Equation 4.19.

One technique to determine the resonance linewidth accurately, requires sweep-

ing either the laser frequency or the cavity length through one FSR, whilst

monitoring the transmitted or reflected DC signal from a photodetector on an

oscilloscope. It is also possible to inject an additional signal, with a known

frequency from a signal generator, into the feedback path whilst scanning the

length of the cavity and monitoring the reflected/transmitted light on a pho-

todetector. This technique acts to impose frequency sidebands with a well

defined frequency separation, and thus the DC signal observed on an oscillo-

scope can be subsequently calibrated accurately. In this experiment the latter

approach was performed by injecting a 200 kHz frequency signal on the PZT

feedback path and monitoring the reflected DC signal on an oscilloscope (Tek-

tronix TDS2000C Series) as shown by Figure 4.24.

The finesse measurement and associated error margin places a lower limit on
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Figure 4.24: Data from one of the oscilloscope measurements used to calculate

the internal cavity finesse. The injected light has additional frequency sidebands

applied using the PZT feedback path and a signal generator, whilst the light

that is reflected from the cavity is monitored on a photodetector and the DC

component monitored on the oscilloscope.

the sum of the total loss for the cavity mirrors as described by

F =
2π

τ 2
a

+ La + τ 2
b

+ Lb

(4.91)

where La and Lb are the power losses of the input mirror and end mirror

respectively. Thus it is possible to make reasonable assumptions about the

loss of each mirror and compare a numerical model with the experimental

results.

However, in systems where cavities are coupled together, such as the three

mirror coupled cavity used in this experiment, the precise parameters of the
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mirrors when the system is held at the operating point are not easily obtained.

The aforementioned technique can not be used for the direct measurement of

the cavity linewidth and finesse due to the limitations of our photodetectors

and the overwhelming size of the coupled cavity length sensing signal. Instead,

it was necessary to characterise each cavity alone in order to determine the

total losses, and calculate the properties of the three mirror coupled cavity

system numerically.

A series of linewdith and finesse measurements were obtained when the internal

and external cavity mirrors were aligned separately. The measured finesse of

the internal cavity was 478.1 ± 25.8, while the external cavity finesse was

found to be 86.5 ± 11.0. The loss from each cavity was determined using

Equation 4.91. In order to simplify the task of setting the appropriate loss on

each mirror in the model, no loss was placed on the input mirror, while the

recycling mirror and end mirror were allocated a power loss that was restricted

by the margin of error for the total loss measured in each cavity.

Measuring Optical Springs

From the system analysis, discussed in Section 4.6, a maximum frequency

range for an optical spring feature is expected to be approximately 500 Hz,

which means it is located within the bandwidth of the control servo system.

In order to characterise an optical spring feature in the Glasgow prototype,

it is therefore necessary to measure the PDH error signal in response to in-

jected excitations of the mirror position or, equivalently, laser frequency, as

the control loop forces one to follow the other.

In the design of this experiment a low noise pre-amplifier is implemented inside

the control servo loop. The pre-amplifier of choice (Stanford Research Systems
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Figure 4.25: Feedback loop block diagram. An M1 measurement (top) is ob-

tained with the loop closed, and an M2 measurement (bottom) contains only

the component used to inject and monitor signals (in this case a dual channel

pre-amplifier).

SR560) has two input channels (A and B) and two outputs of the same signal

and is useful in characterising the optical response. It is possible to describe

each of the components in the system as part of a block diagram in the complex

frequency domain, denoted s, as indicated by Figure 4.25, where F (s) indicates

a force applied to the optical path, G(s) represents the optical response, P (s)

represents the shape of the pre-amplifier and H(s) represents the feedback

response. As we are interested in the optical response of the system when the

cavity mirrors are opto-mechanically coupled, several transfer functions are of
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interest:

• A closed-loop transfer function, which describes the net result from each

feedback component in the loop, when the system is operating (closed).

This should therefore be unity across all frequencies within the range of

the servo loop.

• An open-loop transfer function, containing the sum of all the elements

inside the loop: the optical cavity response, the servo electronics and the

feedback actuator response.

• The feedback frequency response H(s), which contains the entire effect

of the feedback servo and the actuation response.

Using the pre-amplifier, the open and closed-loop transfer functions are ob-

tained from two measurements, M1 and M2, described in Figure 4.25. Math-

ematically, we can describe M1 by,

M1 =
P (s)

1 + G(s)H(s)
, (4.92)

and M2 is simply the effect of the pre-amp used to inject and monitor signals,

M2 = P (s). (4.93)

Thus, we can write the open-loop transfer function, GH, as

G(s)H(s) = 1− M2

M1
. (4.94)

The closed-loop transfer function G(s)H(s)
1+G(s)H(s) , is obtained by,

G(s)H(s)

1 + G(s)H(s)
=

M1

M2
− 1. (4.95)

In a working feedback system, the closed-loop transfer function should remain

unity over the frequency band of the servo, which was validated in our exper-

iment by performing this analysis, shown in Figure 4.26.
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Figure 4.26: Closed-loop frequency response for the coupled arm cavity showing

unity over the entire frequency band. A 360 degree correction has been applied

to the measured phase data to account for phase wrapping.

By obtaining the open-loop function, it is possible to remove the measured

response of the servo and feedback actuator, H(s) to obtain only the optical

response of the coupled cavity system.

In this experiment the arm cavity was held resonant by feeding back to the

laser frequency. By applying feedback signals onto the laser PZT in response

to changes of cavity length, it is possible to avoid disturbing the beam position

on the cavity optics which could potentially lead to additional fluctuations of

the cavity power, disrupting the measurements. The PZT response stated by

the manufacturer is 1.4 MHz/V and constant across the frequencies of interest,

therefore the actuator response can be ignored. It was possible to inject signals

into the input of the feedback servo electronics and monitor the output on
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Figure 4.27: Measured (blue) and modelled (green) frequency response for the

feedback servo to the PZT show close comparison. The discrepancy around

27 kHz is likely due to the unity gain feature.

the signal analyser over a frequency band of interest, known as a swept-sine

measurement. The expected signal response closely matches a numerical model

built in LISO [80] to simulate the effect of the servo, illustrated by Figure 4.27.

The signal analyser, used to measure the response of the various components

in the loop, also has the ability to apply a DC offset to the injected swept-sine

signals. Therefore, once the loop is closed and the system is locked to the

centre of resonance, the arm cavity can be detuned by injecting a DC offset

from the signal analyser to shift the laser frequency. After applying a chosen

offset the signal analyser is then used to measure the frequency response of

the entire loop.
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4.7.3 Experimental Results

The optical response of the coupled cavity was measured for different levels of

detuning, indicated by Figures 4.28 and 4.29. Several important features of

the system were observed when injecting different levels of offset to detune the

coupled arm cavity:

• The transmitted power that was being monitored on an oscilloscope,

which is directly proportional to the internal cavity power (as shown

by Equation 4.12), was observed to reduce for increasing levels of both

positive and negative detuning. Such behaviour is expected, since the

cavity is being moved away from exact resonance, and will therefore store

less light.

• Only positive levels of cavity detuning induced a 180 degree phase flip

in the measured optical frequency response at locations of optical spring

features. This is also expected as only the positive side of the resonance

should induce an optical restoring force, whereas the negative side of

the resonance should result in an unstable optical anti-spring. In other

words, lengthening the cavity, blueshifting the laser frequency, induces

an optical spring, while redshifting the laser frequency results in an anti-

spring.

• When the laser frequency is blueshifted, to induce optical rigidity, mea-

surements of the optical response at frequencies below the optical spring

resonance became increasingly more difficult to perform. As a result,

and without increasing the level of the swept-sine signal, lower frequency

measurements required increasing the number of averages the analyser

used to observe the signal above the background noise. This issue is well

explained if optical rigidity is suppressing the response of the mirror.
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• The optical spring links, in a non-linear (parametric) sense, the static

offset applied to set the detuning and the instantaneous frequency in-

jected to perform the transfer function measurement. Ideally the latter

would be kept very small (i.e. no more than a few percent of the offset)

but unfortunately in our experiment that was not generally possible as

the transfer function measurement had to compete against background

noise. Part of this noise, e.g. random laser frequency fluctuations, was

Gaussian and amenable to reduction by increasing the averaging time

(within reasonable limits set by the duration of the system remaining

operational), but other components, e.g. residual acoustic noise coupling

in at various places, including resonances of the suspensions, cannot be

averaged out. The results presented here take the current method to its

practical limit, and an improved method is identified below, as a subject

for future investigation.

In order to characterise the optical spring effect at frequencies greater than

100 Hz and approaching the linewidth of the coupled internal cavity, it was

found necessary to inject large amplitude driving signals to make transfer

function measurements as well as using many averages. The effect of the large

amplitude driving signals acts to modulate the strength of the optical spring,

thus changing the frequency location and resulting in a smearing of its absolute

position. In Figure 4.28 one of the reflected error signal response measurements

taken with a detuning δγ = 0.08 clearly indicates a smeared optical spring ef-

fect and indicates approximately two 180 degree phase changes, revealing the

apparent change in the detuning over the period of the measurement.

Furthermore, based on the two numerical models derived in Section 4.6 for

static and dynamic detuning, we would expect the strength and frequency of

the optical spring to be considerably reduced due to the mirror motion, when
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Figure 4.28: Full-span frequency response of the coupled arm cavity for different

levels of detuning. The optical response for δγ = 0 is indicated by a black dashed

line. For positive detunings a distinctive peak is observed above, corresponding

to the optical spring resonance, with larger spring frequencies proportional to

larger detuning. The phase plot below also indicates a 180 degree phase flip at

the optical spring locations as expected. When the cavity detuning is negative,

the magnitude of the optical response is reduced. The shape of the green trace

is presumed to originate from a change in cavity detuning over the period of

measurement. A 360 degree correction has been applied to the measured phase

data to account for phase wrapping.

compared to the static case. However, the results suggest that when using

large averaging the effects from modulation of the detuning can be mitigated,

allowing for the measurement of the maximum optical spring effect predicted

from the static detuning regime.
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Figure 4.29: Full-span frequency response of the coupled arm cavity for no

detuning (black) and at maximum detuning (red) before the cavity would fall

out of lock. A clear resonance feature at approximately 500 Hz is observed with

the phase plot below indicating a distinct 180 degree phase flip at the optical

spring frequency. The measured optical spring feature and frequency agree well

with the modelled response for equivalent detuning (red dashed).

Figure 4.29 presents the largest observed optical spring frequency, fos, located

at around 496 Hz. As the reduced mass of the coupled two mirror system is

known, mr = 96.4 g, we can determine the rigidity for an optical spring at this

frequency by,

K = (2πfos)
2mr = 9.4× 105 N/m. (4.96)
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Figure 4.30: Measured optical spring locations (red) for known injected offsets

to laser frequency, and modelled predictions (blue).

Furthermore, using a beam analyser directly after the input mirror, the approx-

imate beam area was found to be A = 8.24 µm2. By neglecting the expansion

of the beam inside the cavity, which has a total length LAC = 9.87 m, we can

attribute an effective Young’s modulus to the stiffness of the light coupling the

two cavity mirrors as,

E =
KLAC

A
≈ 1.0× 1012 Pa. (4.97)

To put the result from Equation 4.97 into perspective, we can compare it to the

Young’s modulus of natural diamond Ediamond = 1.05×1012 Pa [81], indicating

that our investigations on optical rigidity with a fully suspended coupled cavity

enabled a effective coupling medium of about the same stiffness as diamond.

We can investigate the locations of measured optical spring frequencies with the

cavity detuning, by noting the locations of the 90 degree point in the resonant

feature of the phase response and comparing with the numerical model. We
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noted that, as is often the case, the 90 degree phase point could be quite

well estimated even if the magnitude of the transfer function was distorted.

However, it is important to correctly scale the injected offset with the effect

that cavity detuning has on the measured error signal. This is achieved by

accounting for the change to the internal cavity power for each detuning, since

this will reduce the overall size of the peak-peak error signal relative to the

injected offset, i.e. adjusting the magnitude of injected signals relative to the

size of the error signal.

With the above consideration in the numerical model we obtain Figure 4.30,

which shows the modelled range of optical spring frequencies expected for a

given detuning, along with measured results. The agreement between the

model and experiment indicates that the effects resulting from induced op-

tical rigidity are well understood. Discrepancies between the measured and

modelled data in Figure 4.30 can be attributed to slight fluctuations in the

location of the measured spring during the measurement process, and ther-

mal changes in the laboratory over the time scale of the entire data collection

period (approximately 1 hour).

4.8 Conclusions

In conclusion, we have derived the mathematical framework supporting the

production of optical springs, optical rigidity and the associated damping ef-

fects in mirror systems that are suspended as pendulums, as with gravitational

wave detectors. From the analysis a numerical model was developed to inves-

tigate the expected behaviour within the Glasgow prototype interferometer

where the end mirror and suspension has been modified to enhance sensitivity

to radiation pressure effects. The design of a light-weight end mirror mass
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and triple-stage suspension was aided using the state space simulation that

describes the mirror motion. The reliability of the state space simulation was

later validated when observing the expected low frequency pendulum modes

in cavity response when the cavity is maintained at the operating point.

A modified triple-stage mirror suspension design was manufactured and in-

stalled into one of the prototype interferometer arms to allow experimental

investigations into optomechanical behaviour. As is the case for suspended

optics interferometers, a significant amount of time was spent making fine ad-

justments to the system alignment in order to maximise the radiation pressure

incident on the cavity mirrors. Furthermore, an adequate method for mea-

suring the optical response was acquired after gaining suitable experience to

understand the limitations of cavity detuning and the measurement process.

The experimental results indicate a quantitative agreement between the loca-

tions of optical spring resonance features and the predictions of the numerical

model. In as much as resonances were observed to have a clear phase lead

(as opposed to the normal phase lag) behaviour, we also provide qualitative

confirmation of the anti-damping associated with a (positive) optical spring.

The largest optical spring observed at fopt = 496 Hz corresponds to an optical

spring constant of Kopt = 9.4×105 N/m, for which an effective coupling medium

between the cavity mirrors would have a Young’s modulus essentially that of

diamond. By implementing such strong rigidity between cavity mirrors it could

be possible in future experiments to turn off the control to the cavity mirrors,

or laser frequency, whilst maintaining a stable system for lock.

For future experiments, the key is to measure against a laser that is locked to an

on-resonance cavity, in order to reduce the background noise. It should be easy

to reduce the noise around 500 Hz from the current level of 1 to 10 Hz/
√

Hz by

a factor of more that 1000, thus allowing far more accurate probes of the opti-
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cal spring behaviour, particularly in more complicated systems. Additionally,

reducing mirror loss and achieving higher circulating power would also provide

stronger springs with resonances at even higher frequencies, where noise is also

less. However, any increase to the optical spring frequency must at least be

restricted to the cavity linewidth, otherwise no characterisation the resonant

feature can be performed due to the inherent delay in the cavity response

time.



Chapter 5

Conclusions and Future Work

At the time of writing this thesis, many of the laser interferometric ground

based gravitational wave detectors that make up the global network have been

operating close to or beyond the initial design sensitivity across some of the

detection band. Recently there have been engaging and successful tests of the

detectors and the subsequent data analysis pipeline by way of hardware injec-

tions, validating the operation of the network. Although the current network

is yet to make its first direct detection of gravitational waves, there has already

been valuable contributions made to the field of observational astronomy as

upper limits are placed on several potential sources, such as the stochastic

gravitational-wave background [82] and many known radio pulsars [83].

The next steps towards the detection of gravitational radiation and the birth

of gravitational wave astronomy depend on implementing new technology suc-

cessfully within some of the core components of these detectors. LIGO in the

US has recently been decommissioned and has entered the first phase of up-

grades to Advanced LIGO with the replacement of several key elements such

as larger mirror masses, fused silica suspension fibres, increasing the input
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laser power and adding a signal recycling mirror to the existing configuration.

The combination of each upgrade is expected to make significant progress

towards reaching the fundamental limits of these detectors, imposed by quan-

tum nature, which is the result of continuous research and development of new

technology and operational techniques performed on prototype systems.

Working at the Glasgow 10 m prototype facility has shown it to be an excel-

lent test bed for rapidly implementing new experiments of importance to the

field of laser interferometry. The research presented on diffractively coupled

cavities contributes to the necessary characterisation of diffraction gratings in

suspended systems and helps to inform the evaluation of such devices for use in

future generations of gravitational wave detectors. The numerical model that

we developed from the theoretical foundations of grating components shows

close agreement with the experimental results, verifying that the system was

well characterised and understood. Since our experimental demonstration on

three port coated gratings, there have been a host of different novel grating

devices, made possible through improvements to the fabrication process, that

are currently under investigation and the Glasgow prototype has been a key

facility in their final stage testing [84].

The input power to the next generation of detectors, such as Advanced LIGO,

is expected to be approximately 200 W, which is an order of magnitude greater

than that used in their most recent operation. As the power levels in the arm

cavities of the detectors approach 1 MW, radiation pressure will significantly

modify the dynamics of the suspended mirrors and it will become necessary to

upgrade the control system appropriately. The prototype system at Glasgow

has now a fully operational equivalent arm cavity sensitive to radiation pres-

sure effects such as optical spring behaviour, and as the system is upgraded

to full digital control, it will be possible to explore optomechanical effects on
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the control servo system in greater detail. These investigations will be of value

to the recently constructed prototype system in Hannover, where response

measurements below the standard quantum limit are soon to commence. Fur-

thermore, throughout the research and development of the triple stage light-

weight mirror suspension, several technical issues regarding the small design

were highlighted, which were brought to the attention of those involved in the

Hannover prototype light-weight suspension. These include:

• Acknowledging the limitations of standard cleaning procedures when

concerned with small threaded holes of around 2.5 mm diameter. The

standard procedure used at Glasgow relies upon soaking ferris and non-

ferris materials separately in an ultra-sonic bath to create microscopic

bubbles in an aqueous cleaning solution, which releases contaminants

from the surface of submerged material. However, it was noted that the

conventional bathing solution was still too viscous to suitably submerge

M2.5 threaded holes, resulting in a residue that remained inside several

elements. Great care was required to ensure each suspension element

was free of oils and trapped material, and provide a vacuum compatible

assembly.

• The choice of wire size used to apply signals to the global control actua-

tors is limited by the level of current required for suitable control. In this

case the mass and rigidity of each coated copper wire was not negligible,

and there was a significant influence on the light-weight reaction mass,

resulting in careful positioning to avoid misalignment.

A future experiment at the Glasgow prototype concerned with optomechanical

effects from radiation pressure, will involve swapping the input mirror and end

mirror, such that a light-weight mirror is coupled between the external and

internal cavity. This arrangement is analogous to the optical lever topology.
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By implementing a light-weight mirror between two larger cavity mirrors, de-

tuning each cavity to induce an optical spring, and by including an additional

measurement device (e.g. an small interferometer) to monitor the position of

the light-weight mirror, it is expected that detector sensitivity at frequencies

around the optomechanical resonance will be enhanced. Performing such inves-

tigations would demonstrate an important proof-of-principle experiment to the

wider collaboration and help to inform future designs for the next generation

of gravitational wave detectors.

The goal for the current network in the years to come is to isolate the sus-

pension thermal noise, which dominates the low frequency band and higher

frequency limiting noise arising from the mirror coatings and internal modes.

With these noise sources overcome it may be possible to reach the SQL by

squeezing the vacuum state entering the dark port. Over the past few years

there has been considerable progress towards the realisation of squeezing tech-

nology [85, 86] showing up to 10 dB improvement across much of the detection

band that is otherwise limited by photon shot noise. Recently, this technology

has been applied to GEO600 [28], and initial testing was undertaken at the

LIGO site before it entered a series of upgrades to Advanced LIGO over the

next few years.

The employment of squeezing technology would also enable lower laser power

to obtain the level of noise performance required, thus addressing concerns

regarding the thermal compensation in high power designs. Future designs of

gravitational wave detectors may look to employ both strong optical springs

and squeezing to overcome the SQL. In large scale systems, and with greatly

improved performance over at least some of the detection band, it is hoped the

first direct detection of gravitational waves will follow shortly after and open

a new field of gravitational astronomy.
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