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ABSTRACT

This thesis is a dissemination of the experimental work I have carried out in

the last three and a half years, under supervision of Prof. Miles Padgett and

Dr. Sonja Franke-Arnold. Presented within are seven unique experiments

investigating the orbital angular momentum (OAM) states of light, and the

associated spatial modes. Six of these experiments relate to measurements

on quantum-entangled photon pairs produced in down-conversion.

The first chapter of my thesis is a brief review of the some of the contri-

butions made to the field of research of OAM, both involving classical and

quantum states of light. This chapter introduces some of the hallmark ex-

periments within the subject, from which my experimental work reported in

this thesis is inspired.

The second chapter details the set up of the down conversion experiment,

and the experimental techniques used to design a fully functioning quan-

tum measurement system. Most importantly, this includes the holographic

techniques used to measure the spatial states of the photon pairs. In ad-
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dition to holographic measurements, a system to holographically auto-align

the down-conversion experiment was developed. Due to the sensitive na-

ture of the experiments presented, this automated system has been crucial

to the success of all of the single photon experiments presented within this

document.

The experimental results are split into three separate categories. The

first (Chapter 3) describes measurements investigating the Fourier relation-

ship between OAM and angular position states, both at the classical and

quantum levels. The following chapter (Chapter 4) consists of four experi-

ments designed to quantify the degree of entanglement of states of OAM and

angular position. This includes the first demonstration of the historic EPR

(Einstein-Podolsky-Rosen) paradox for OAM and angle states, violation of

a Bell-type inequality for arbitrary OAM states, and characterisation of the

density matrices for a range of OAM state-spaces. The final chapter (Chap-

ter 5) reports a new type of ghost imaging using down-converted photon

pairs. In this experiment, we violate a Bell inequality within a ghost image,

demonstrating the entangled nature of our system and contributing a new

element to the long standing contention over quantum vs. classical features

within ghost imaging.

These experiments have seen a wide range of collaboration. The exper-

imental work on the Fourier relation on single photons was carried out in

collaboration with Dr. Anand Kumar Jha (University of Rochester). The

work on ghost imaging was performed with collaboration with Prof. Monika
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Ritsch-Marte (Innsbruck Medical University), and the angular EPR para-

dox work was carried out in collaboration with Prof. Robert Boyd (Univ. of

Rochester) and Prof. David Ireland (Univ. of Glasgow). The work I present

here is experimental, however any theoretical developments are in a large

part due to the support of Dr. Sonja Franke-Arnold and Prof. Steve Barnett

(Univ. of Strathclyde).
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I would call this not one but the characteristic trait of quantum mechanics,

the one that enforces the entire departure from the classical lines of thought

– Erwin Schrödinger on Quantum Entanglement
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CHAPTER

ONE

INTRODUCTION

1.1 Preamble

Perhaps the most significant paradigm shift in physics within the past cen-

tury occurred with the development of quantum theory. As a relatively young

field of study, the theoretical developments occurred at a rapid pace. Even

more recent are the experimental tests of quantum mechanics. The theoret-

ical foundations of quantum physics were laid down within the turn of the

20th century, around 100 years ago, whereas most experiments in quantum

mechanics became technologically possible only within the last 50 years. Ex-

perimental quantum optics - laboratory observations of the quantum states

of light, have only been technically possible within the last 30 years. With

technology advancing at such a rapid pace, new observations are still being
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made in quantum optics today. As technology continues to advance, even

more are we able to test previously untested theories and make observations

in new and different ways.

1.2 Light as a Scalar Wave Field

A full description of wave fields is essential to a description of light, both at

the classical and quantum level. The most readily observed property of light

is Fermat’s principle, that is, light behaving as rays. A ray contains only a

small amount of the information contained in the wave optical description;

the direction of a ray is perpendicular to the wavefronts of the wave, meaning

the ray has the same direction as the wave vector k, Fig. 1.1. However,

because rays contain no phase information, ray optics does not adequately

describe interactions at a distance scale of the order of the wavelength of

light. In particular, ray optics cannot describe interference phenomena, such

as diffraction.

An optical wave with a single direction component is a plane wave, and

can be represented in complex notation, as

ψ = A0e
iΦ (1.1)

where Φ = kz is the phase change of the plane wave upon propagation

through a distance z, with wavenumber k = 2π
λ

.

By Fourier analysis, any spatially distributed wave field can be decom-
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a) b)

Figure 1.1: a) The propagation direction of a well-collimated laser beam
can be described using ray optics (Image: http://www.electrosound.co.uk).
b) Illustration of water waves diffracting at an aperture. The wave-
length of the water waves is comparable to the size of the aperture. (Image:
http://www.upscale.utoronto.ca/PVB/Harrison/Diffraction/Diffraction.html)

posed into its plane wave components. In 1-D, any function f(z) can be

decomposed into a sum of sine waves with given amplitudes, frequencies and

phases. For sine waves with periodic boundary conditions, this is expressed

as the sum:

f(z) =
+∞∑

n=−∞
cne

iknz, (1.2)

or more specifically for our purposes:

f(z) =
1√
2π

∫ ∞
−∞

Ake
ikzdk, (1.3)
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where Ak describes the amplitude of each plane wave eikz component of

f(z). The equation above is the Fourier transform of the spatial distribu-

tion, translating a distribution in position to a distribution in momentum.

Symmetrically, a momentum distribution Ak can be expressed as a sum of

position states,

A(k) =
1√
2π

∫ ∞
∞

f(z)e−ikzdz. (1.4)

This relationship between z and k means that confining the wave within a

bounded region z introduces additional frequency components. For example,

a pulsed wave is confined spatially, but is composed of a range of frequencies,

as dictated by equations (1.3) and (1.4). These equations together form the

Fourier relationship between z and kz. Variables which are related by a

Fourier transform are called conjugate variables.

Variables which are related by a Fourier transform are also fundamentally

linked to each other with an uncertainty relationship. At the quantum level,

Heisenberg’s uncertainty principle relates quantum measurements of conju-

gate variables1, but classically, an uncertainty relation can be explained from

the principle of diffraction. Consider a plane wave travelling in 1 direction

in space, Fig. 1.2. This wave can be expressed by eikz, and has a wavevector,

k, in the direction of propagation. For this to be true, the plane wave must

extend to ±∞ in the transverse direction, x. Expressed in another way, the

wavevector k is known with absolute certainty, while the position x remains
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completely uncertain (or undefined). If we wish to locate the wave within the

transverse region ∆x, by an aperture for example, we inevitably spread the

transverse momentum by ∆k through diffraction at the aperture. From the

Fourier relationship above, as we restrict the aperture size ∆x we increase

the effect of diffraction, and spread ∆k.

Figure 1.2: Extreme cases of the uncertainty relation between position and
wavevector. a) A plane wave is unbound in space, and corresponds to a
single wavevector component. b) Confining the positional variable spreads
the momentum through diffraction, with the extreme case of a delta function
in position corresponding to an unbound momentum distribution.

By analysis of equations (1.3) and (1.4), one can evaluate that the po-

sition and wave number are related by ∆k = 1/2∆x. Thus the uncertainty

relationship between x and k is

∆x∆kx ≥
1

2
. (1.5)
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One can derive uncertainty relations for other conjugate variables using

the same Fourier analysis.

1.3 Angular Momentum of Light

It has been known since Maxwell’s equations, that light carries linear mo-

mentum2. A less well known property of light is its angular momentum,

which in most cases can be separated into spin angular momentum (SAM)3

and orbital angular momentum (OAM)4 components.

1.3.1 Spin Angular Momentum

The origin of SAM is the rotation of the electric field of light as it propagates.

The polarization of light is the direction of the electric field oscillation as it

propagates. If the field oscillates in a single plane, the light is linear polarized.

If it rotates around the propagation axis, then the light is circular polarized.

This rotation can be clockwise (right hand, σ = +1) or counter-clockwise

(left hand, σ = −1), with respect to the direction of propagation. The

polarization states of light can be represented as a point on the Poincaré

sphere5 Fig. 1.3.
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Figure 1.3: Polarization states can be represented on a Poincaré sphere. Each
point on the sphere corresponds to a different direction of the oscillating field
vectors. Typically, the chosen bases are circular polarization (north and south
poles) and the linear states (equatorial).
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Using this representation, right hand circular (r.h.c.) and left hand circu-

lar (l.h.c) polarization states lie at the north and south pole respectively. On

the equator lie the linear polarization states which carry no SAM (σ = 0).

States which lie between the equator and the poles correspond to states of

elliptical polarization. R.h.c. and l.h.c. polarizations can be expressed as

superpositions of linear polarization states and vice versa. Indeed, any gen-

eral point on the Poincaré sphere can be expressed as a superposition of two

other states.

1.3.2 Orbital Angular Momentum

Whereas spin arises due to the rotating electric field of the light wave, OAM

arises due to the direction of energy flow around the beam axis (described

by the Poynting vector6). Examples of light modes which carry OAM are

the Laguerre-Gaussian modes7, Fig. 1.4. A light field where the direction of

energy flow rotates around the beam axis upon propagation, has phase-fronts

(surfaces of constant phase) which are helical in form. A light field of this

form can be described in a cylindrical coordinate system:

Ψ(r, φ, z) = Ψ0(r, z)ei`φ, (1.6)

where the OAM is characterized by the phase term ei`φ 8. The ` term defines

how many times the phase rotates azimuthally from 0 to 2π in one full cycle

Fig. 1.5. The index ` is referred to as the azimuthal index. Unlike SAM
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Figure 1.4: The amplitude of a Laguerre-Gaussian field, LG`,p is described
by the equation (top). Shown below are examples of phase and intensity
distributions as a function of the azimuthal index ` and the radial index p.

(which has two unique modes of rotation), the azimuthal index, ` is unbound

and can take on any value.

Crucially for OAM, the phase rotates azimuthally, and the phase at the

centre of the rotation axis is undefined. These phase singularities are ubiqui-

tous in nature, and can occur through superpositions of random fields, such

as optical speckle9. Because the phase is undefined on-axis, there is com-

plete destructive interference in the vicinity of this point, and the intensity

distribution contains an optical vortex with zero intensity at the centre. Con-

versely, nodes in an intensity field indicate which are stable upon propagation
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Figure 1.5: a) Phasefronts of a helically phased beam carrying OAM charge
` = +1. b) Phase cross-section of a helical phased beam.

indicates singularities in the phase of the field.

The topological properties of light carrying OAM is a field of recent in-

terest. Because the spiral phase is preserved upon propagation, optical vor-

tices are remarkably stable, and are persist in all optical planes. Plotting

a phase singularity as propagated through space shows that in theory the

singular phase point, and the optical vortex, propagates from z = −∞ to

z = +∞, Fig. 1.6 (a). By superposing light modes of differing OAM charge

`, phase, and amplitude, it is possible to produces complex topological struc-

tures (such as loops, links and knots) of phase singularities which remain

stable in space10,11. Because each OAM eigenstate has a different phase

change upon propagation, due to the Gouy phase8 of the Laguerre-Gauss

modes, the constructive/destructive interference weaves the phase singular-

ities in 3-dimensional space Fig. 1.6 (b). These topological features are ex-

pected to have analogies in other 3-D wave fields, such as in superfluids12
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and Bose-Einstein condensates13.

Figure 1.6: a) Propagation of the phase singularity of a Laguerre-Gauss mode
with ` = 1. The singular point propagates from −∞ to +∞. b) A trefoil
knot is formed by the superposition of the modes shown. This light field
is stable in space, and many different topologically distinct features (knots,
loops and links) can be formed in this way. The phase cross-section shown
here is of the beam-waist plane.

A key difference between SAM and OAM is that OAM is a spatial prop-

erty of the light field. In circularly polarized light, the spin information

exists in every point of the field, i.e. it is a local property of the light. The

OAM state of light is a bulk, or global property of the field. This means, to

fully determine the OAM of a light field, the entire field has to be measured.

A small region of a helically phased beam measured independently appears
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just as an inclined plane wave, Fig. 1.7, which contains no information about

the OAM state. This property can in fact, be used to enhance security of

communication. If OAM is used to communicate information, an eavesdrop-

per cannot intercept the communication by measuring a small fraction of the

beam, only by collecting the entire field which disrupts the communication14.

Figure 1.7: To measure the OAM state of light, it is required that the entirety
of the field is measured. For this ` = 1 spiral phase beam, a small section of
the field appears as an inclined plane wave, carrying no OAM.

Pure OAM eigenstates can be superposed to create different spatial modes.

Due to the unbound nature of the OAM states, the number of possible super-

position states which can be formed is also infinite. A conceptually simpler

place to start would be to first look at a 2-D subspace of the unbound OAM

state-space. For example, consider a superposition of two opposite charged

modes of equal amplitude, say, the Laguerre-Gauss modes LG10 and LG−10,
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Fig. 1.8. The resulting superpositions no longer have a phase singularity,

but a phase step between 0 and π. This arises from the modulo 2π addi-

tion of modes with counter-rotating phases. Changing the phase between

these modes superposed corresponds to a rotation of the phase step. For

this case, a 2π phase shift corresponds to a 360◦ rotation of the mode. The

physical angle by which the phase step rotates as the phase angle changes is

` dependent. For example, for a superposition of ` = ±2, a 2π phase shift

corresponds to a 90◦ rotation of the mode.

These superpositions of two OAM eigenstates can be considered to be

in a 2-D subspace of the potentially unbound OAM state-space. Restricting

ourselves to these 2-D spaces, one can draw an analogy with the 2-D state-

space of polarization. This analogy was formulated by Padgett and Cour-

tial15 by forming a Poincaré sphere equivalent for Laguerre-Gauss modes of

LG10, LG−10, translating between the Laugerre-Gauss basis and the comple-

mentary Hermite-Gauss basis, Fig. 1.9.

This analogy is particularly true for the OAM state space of ` = ±1 be-

cause, like with the electric field of circular polarized light, the phase rotates

in a single helix around the propagation axis. It will also be useful to form

Poincaré sphere equivalents for higher order OAM state-spaces.

The polarization variable has long been considered as the variable of

choice in quantum systems such as quantum key distribution (QKD)16, in

part due to the ease of measurement (using polarizing filters or beam-splitters).

In quantum information processing (QIP), spin states are often used as infor-

14



Figure 1.8: Laguerre-Gaussian states of L = ±1 can be added together in
the same way as polarization states, as they exist within a 2-dimensional
state-space. The orientation of the phase step is determined by the phase of
the LG states superposed, analogous with polarization.

mation states, called quBits. The Poincaré sphere for polarization provides a

good mapping for quBits, where the poles represent the σ = ±1 spin states,

and the equator represents the equally weighted σ = 0 states. The Poincaré

sphere specifically describes the polarization states of light, however quBits

can be represented by any 2-state quantum system in general. The Bloch

sphere, named after physicist Felix Bloch, describes a 2-state quantum sys-
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Figure 1.9: The Bloch sphere for Laguerre-Gauss and Hermite-Gauss modes
of charge 1.

tem of states |0〉 and |1〉 (represented in Dirac notation17). A 2-D quantum

state characterised by its OAM could be represented in this notation. Shown

in Fig. 1.10 is a Bloch sphere equivalent18 for superpositions of OAM states

|+ `〉 and | − `〉.

Consider a point on this sphere, characterised by spherical coordinates of

θ and φ. A state |a〉 is described by

|a〉 = cos

(
θ

2

)
|+ `〉+ eiφsin

(
θ

2

)
| − `〉 (1.7)
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a

Figure 1.10: Generic Bloch sphere for OAM superposition states of ±`.

At the north and south pole (θ = [0, 2π]), we have either |+ `〉 or | − `〉.

At the equator (θ = π/2), there are equal amplitudes of each. The eiφ term

describes the phase of addition of the two states, between 0 and 2π. Less

commonly encountered states are those which lie neither on the equator or

at the poles of the Bloch sphere. These states are analogous to the elliptical

polarization states on the Poincaré sphere.

1.3.3 Fourier Relationship Between Angle and OAM

Much like the Fourier relation linking variables of position and momentum,

OAM is Fourier related with angular position. The amplitude of OAM states,

A` is related by the angular function Ψ(φ) by
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A` =
1√
2π

∫ +π

−π
Ψ(φ)e−i`φdφ (1.8)

Ψ(φ) =
1√
2π

∞∑
`=−∞

A`e
i`φ. (1.9)

An simple angular function is an aperture with an azimuthal opening

angle of width φ. This could be an aperture which varies in its transmission

(with 0 transmission out with the region φ and maximum transmission inside

the region), or a phase aperture (which shifts the phase within the defined

angular region). By the above Fourier relation, any azimuthally varying

angular function can be decomposed into a sum of harmonics with different

`. See Fig. 1.11.

There are some notable differences between the linear position-momentum

Fourier relation and this angular form. Firstly, the variables x and p are con-

tinuous and range from−∞ to +∞. An angular function, Ψ(φ) is continuous,

but is also 2π cyclic. This 2π periodicity has led to discussion over whether

or not angle can be an observable in quantum mechanics19 (a periodic func-

tion has an ill-defined standard deviation). For our purposes it is sufficient

to bound the function within the region ±π. The periodic nature of angle

is the reason that the OAM eigenstates ` are a discrete series of integers.

Although light can have a fractional net OAM, it can always be expressed in

terms of the integer OAM eigenstates20.
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Figure 1.11: Fourier decomposition of an angular function. The upper dia-
gram shows a narrow hard-edged angular amplitude function, which is com-
posed of the modes shown with the appropriate weightings. The lower di-
agram shows an angular mask with Gaussian transmission function. The
corresponding OAM spectrum is a Gaussian envelope of discrete eigenmodes.

1.3.4 Uncertainty Relationship Between Angle and OAM

From this angular Fourier relation, we can also consider an uncertainty re-

lation between variables of ` and φ. If we consider a light mode with no

uncertainty in OAM (i.e. a pure OAM eigenstate), then by definition it can-

not contain any angular information e.g. a Gaussian beam or a plane wave.
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If we wish to restrict the angular distribution of such a beam, we could pass

it through an angular aperture. In the position - momentum case restricting

the position spreads the momentum due to diffraction. Here, by restricting

the angle, we invoke the angular equivalent21. We know from the Fourier re-

lation that a mode with an azimuthal dependence can be decomposed into a

superposition of OAM states, given by the Fourier transform of the aperture.

This OAM distribution is a discrete distribution, with an envelope which is

determined by the Fourier transform of the aperture. For example, a hard

edged aperture (Heaviside function) will result in an OAM spectrum with

a sinc2 envelope, where as a Gaussian angular transmission will result in a

Gaussian envelope of OAM states.

The angle-OAM uncertainty relation has properties which make it re-

markably different form the familiar position-momentum uncertainty rela-

tion. The linear uncertainty relation ∆x∆k ≥ 1/2 is bound on the right

hand side by a constant, meaning the minimum possible value of the prod-

uct of the uncertainties of x and k is 1/2. States which saturate the inequality

are known as the intelligent states 22, and for the linear position-momentum

variables the intelligent states are gaussian.

The uncertainty relation between angle and OAM is less familiar23,

∆φ∆` ≥ 1

2
|1− 2πP (θ)| (1.10)

where P (θ) is the probability density of the light mode at the edge of
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the angular window. By setting boundary conditions at ±π, we define the

boundary θ = ±π and P (θ) = P (π). This angular form of the uncertainty

relation is notably different from the linear case as the right hand side of the

inequality depends on the state under consideration. As with the linear case,

there exist intelligent states of ` and φ such that the inequality is saturated,

i.e. ∆`∆φ = 1
2
|1− 2πP (π)|. The intelligent states for angle are Gaussian in

form, truncated at φ = ±π, with a corresponding intelligent state in OAM

which has an approximately Gaussian envelope.

For small values of ∆φ (small angular transmission region), the probabil-

ity P (π) is small, and the relationship simplifies to ∆`∆φ = 1/2. However,

for large values of ∆φ (large angular transmission region), the value of the

uncertainty product falls monotonically to zero. For a uniform angular dis-

tribution (no angular restriction), P (π) = 1/2π and the uncertainty product

becomes ∆`∆φ = 0. For no angular restriction, ∆φ = π/
√

3, which is the

minimum uncertainty for an angular state24. It may appear unusual that

the product of two conjugate variables can be equal to zero. However, this

is a direct consequence of the cyclic nature of angle; the Fourier transform

of a flat distribution in angular position is a delta function in OAM i.e. a

pure OAM eigenstate. A distinction should be made between the intelligent

states and the minimum uncertainty states 25. For the position momentum

case, the intelligent states which saturate the inequality are also the minimum

uncertainty states. For the angular uncertainty relationship, they are in fact

not the same, because the right hand side of the inequality depends on the

21



angular state. This angular uncertainty principle has recently been tested

both at the single photon level, and between entangled pairs of photons26.

1.4 Quantized Light

Evidence to support the quantization of electromagnetic radiation became

apparent around the turn of the 20th century. Experimental observation of

the photo-electric effect27, and consideration of the black-body spectrum28

necessitated light to possess discrete quantization of energy. Compton demon-

strated the first measurements of the momentum of photons through inelas-

tic scattering with matter29. Light as a quantized property of the electro-

magnetic field can be derived semi-classically from Maxwell’s equations. By

bounding an electromagnetic wave in a 1-D cavity it acts as a simple har-

monic oscillator. The energy states of this oscillator exists in discrete modes,

which is the basis of the photon.

Moving further away from classical physics is the notion of a probability

amplitude, as a physical interpretation of the quantum wavefunction. The

existence of probability amplitudes gives rise to the principle of quantum

superpositions, and it is consistent with observations of single-photon inter-

ference, as demonstrated with single photons interfering at a double slit31,

or passing through a Mach-Zender interferometer32.

The qualitative derivation of a Fourier relation between variables can be

modified to encompass quantized light. Equations (1.3) and (1.4) describe
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the Fourier relation between variables x and k, and ∆x∆k ≥ 1/2 is the

uncertainty relation which arises from this Fourier relation. From quantum

mechanics, momentum is expressed as p = h̄k. Thus, the wavenumber dis-

tribution expressed in terms of linear momenta, p, becomes:

ψ(x) =
1√
2πh̄

∫ ∞
−∞

Ape
ipx/h̄dp, (1.11)

and therefore the uncertainty relation between x and p is,

∆x∆p ≥ h̄

2
, (1.12)

which is Heisenberg’s Uncertainty relation between position and momen-

tum1.

1.4.1 Orbital Angular Momentum in Quantum Me-

chanics

It was shown theoretically in 1992 by Allen et al.8 that photons can be

described in terms of their OAM, as eigenmodes of the angular momentum

operator Lz, and carry an OAM of `h̄ per photon. It was also suggested

that mode transformations between the LG and HG bases could occur using

cylindrical lenses to invoke the appropriate phase transformation.

The first experiment to demonstrate that OAM is a property of single

photons was that of Mair et al.33 in 2001, where OAM measurements were
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made holographically on pairs of down-converted photons. They demon-

strated the quantum entanglement of OAM between the photons by showing

that correlations persisted not only when measuring pure OAM states, but

also for superpositions thereof. One year later, the same group went on to

violate a Bell-type inequality for OAM states, an explicitly quantum mechan-

ical result34. Since then there has been a great deal of interest in exploring

the quantum properties of OAM states, including methods to quantify the

degree of entanglement35,36,37, how to access high-dimensional OAM state-

spaces and the use of OAM in quantum information protocols (QIP)38,39.

1.5 Quantum Entanglement

Many observed phenomena can be at least qualitatively understood using

semi-classical theories or analogies. Quantum entanglement is an effect which

can only be described using quantum mechanics. It is a non-local phe-

nomenon, where separated systems have shared properties in such a way

that does not obey classical mechanics.

1.5.1 The Einstein-Podolsky-Rosen (EPR) Paradox

Note: The original EPR thought-experiment supposed measurements of spin

states in a Stern-Gerlach type experiment. The thought experiment here

utilises variables of position and momentum, which are equally valid, but

contextually more relevant within this thesis.
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The EPR paradox40 is a thought experiment (German: Gedanken-experiment)

which supposed that quantum entanglement cannot be realized without phys-

ical contradiction, and thus, quantum mechanics as a theory is insufficient

to describe the physical phenomenon under scrutiny. This paradox chal-

lenges the incompatibility of two of the largest contributions to 20th century

physics; Quantum mechanics and the Theory of Relativity. In formulating

the paradox, the authors make two fundamental assumptions about nature.

• Locality: That two sufficiently separated systems (or the wave functions

describing two separated quantum states) do not interact with each

other. This assumption relates to Einstein’s theory of relativity.

• Reality: That, if a state can be predicted with certainty (without mea-

surement), then it has a definite physical reality - suggesting that the

state was determined at birth (and before measurement).

Their proposal supposed the existence of a state of two particles (A and

B) that were perfectly correlated in both their positions (xA, xB) and mo-

menta (pA, pB). In a real experiment one would measure the mean position

or momentum with some experimental error, or variance, ∆xA,B and ∆pA,B.

However, in the thought experiment we have precise measurement systems.

Therefore, measurement of the position or momentum of state A would then

determine, instantaneously, the position or momentum of state B. By posi-

tioning the particles so that they could not interact, a measurement on one

particle should not influence the wavefunction of the other. If this is strictly
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Figure 1.12: EPR paradox for variables of position and momentum. The
source emits pairs of particles which are correlated in their position and
momentum. Precise measurement of the position/momentum of A leads to
precise knowledge of position/momentum of B. Both of these statements
being true suggests a contradiction to Heisenberg’s uncertainty relation.

true then it means that both the position and the momentum of the second

particle must have been predetermined.

In this case, we have measured/inferred a state with ∆xA,B = 0 and

∆pA,B = 0 - in direct contradiction of Heisenberg’s uncertainty relation.

Quantum theory does not allow the simultaneous exact knowledge of two

non-commuting observables, such as position and momentum and hence we

have a paradox. The suggestion made by EPR to resolve the paradox was

that quantum mechanics should be completed by some hidden variables to

fully describe the state under investigation.
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This then sets the challenge of how to quantify the statistics of quantum

measurements: how does one identify the presence of hidden variables when

they are, by definition, hidden from observation?

1.5.2 Bell’s Inequalities - Polarization Entanglement

In 1964, John Bell published the derivation of a statistical limit of an inequal-

ity now known as Bell’s inequality (modified versions of the inequality are

commonly called Bell-type inequalities), with an upper bound which applies

to specific measurements of systems exhibiting locality41. Bell’s inequality

therefore, would be violated for measurements in a non-local theory such as

quantum entanglement. Bell considers pairs of measurements (as in EPR)

correlated in a chosen property e.g. polarization. The original Bell inequality

is

1 + C(b, c) ≥ |C(a,b)− C(a, c)| (1.13)

where a,b,c correspond to different measurement settings (polarizer ori-

entations) corresponding to polarization states A,B,C respectively and C is

the expectation value of the product of the components (B,C),(A,B),(A,C).

This inequality is statistically consistent with any classical correlations, such

as those within local-realistic theories. Violation of this inequality would

correspond to some non-local interaction between the states A,B,C.

This vector form of the inequality is not perfectly suited for experimental
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conditions. There are a number of Bell-type inequalities, modified to be

experimentally tractable.

The polarization variable is a suitable candidate for testing Bell’s theo-

rem. Polarization is easily accessible using polarizing filters, which yield a

binary output for single photons (transmitted or not transmitted). Bell’s

theorem has been tested for sources of polarization entangled light, such as

radiative cascade decay in atoms42, and from parametric down conversion43.

One can measure the coincidences between polarization entangled pho-

tons by placing polarizing filters at each detector. The coincidence rate will

be a function of the relative angle between the polarizers, ∆θ (depending

on if the photons are correlated, anti-correlated or uncorrelated). For polar-

ization - correlated photon pairs, one can fix the polarizer in one arm and

rotate the other to observe how the coincidence rate varies as a function of

∆φ, Fig. 1.13. It is within these measurements that one can test whether or

not, the act of measuring one photon non-locally sets the state of the other,

i. e. if the photon pairs are entangled.
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Figure 1.13: Schematic of a polarization entanglement experiment. Pairs of
photons, correlated in their polarization, are emitted. If they are entangled,
the act of measuring one photon polarization will set the other polarization,
and correlations will occur as shown. If the polarization states are not en-
tangled, but a well-defined property of the state before measurement, only
conservation of spin will apply. The coincidence curve (bottom) is an ex-
ample of one possible case where only conservation applies, manifesting in a
reduced fringe contrast.
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One example of a suitable inequality for experimental measurements of

polarization is the Freedman inequality (Freedman and Clauser, 1972)42, who

performed the first of the experiments of Bell-type inequalities on entangled

photon pairs. Freedman’s inequality can be expressed as

δp =
|Cp(22.5◦)− Cp(67.5◦)|

Cp(0)
− 1

2
≤ 0 (1.14)

where C(φ) is the coincidence rate with a relative angle φ, between po-

larizing filters in signal and idler arms, and C(0) is the coincidence rate with

both polarizers removed from the system. The relative angles of 22.5◦ and

67.5◦ degrees are where the differences between local and non-local statistics

are most apparent, Fig. 1.14 (at relative angles of 0◦, 45◦ and 90◦, there is

no distinction between local and non-local predictions).

A further modification of the Bell-type inequality is the Clauser-Horne-

Shimony-Holt (CHSH) inequality44. This inequality has been violated in

a number of historically significant experiments, the first of which was by

Aspect et. al. in 198245. In violating the CHSH inequality Aspect was able

to exclude further types of local-hidden variable theories, thus favouring the

quantum mechanics interpretation even more strongly.

The CHSH inequality places a statistical bound on local hidden variable

theories with the parameter S, where

− 2 ≤ S ≤ +2, (1.15)
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Figure 1.14: Local vs. non-local statistics as a function of relative polarizer
angle to test the Freedman inequality. The deviation between local and non-
local is greatest for a difference in polarizer angles of 22.5◦ and 67.5◦. The
coincidence rate is normalized with respect to C(0) - the coincidence rate
with both polarizers removed from the system.

with,

S = E(a, b)− E(a, b′) + E(a′, b) + E(a′, b′), (1.16)

where a,a’,b,b’ are measurement settings, in this case the orientation an-

gles of polarizers in signal and idler beam paths. Each parameter E(a(′), b(′))

is a different measured outcome from an experimental run. A schematic

representation of the experiment is shown in Fig. 1.15, with detectors at

each beamsplitter output designated + or −. The parameters E above are

calculated as,
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E =
N++ +N−− −N+− −N−+

N++ +N−− +N+− +N−+

(1.17)

where N±± is the number of coincidence counts for a given output of the

beamsplitters. By calculating S from these measurements, for a given set of

polarizer angles, one can test whether or not the source produces non-local

correlations . Again, the relative angles for which the statistics differ the most

between local and non local correlations are 22.5◦ and 67.5◦. A suitable set

of polarizer angles to ensure this is a = 0◦, a′ = 45◦, b = 22.5◦ and b′ = 67.5◦.

The upper bound for a local-hidden variable system is |S| = 2, and it can be

shown that for a quantum entangled system the statistical bound is S = 2
√

2.

Loopholes in Quantum Mechanics

Aspect’s 1982 experiment differed from the previous experiments in that all

possible outcomes were measured i. e. the output from both ports of the

beamsplitters were recorded. This was significant because it excluded one of

the so called loopholes in quantum mechanics measurements. That is, one

could suggest that if only a subset of the entire state is measured (by only

collecting the positive correlations), then the hidden variables could still be

present, but masked by a statistical bias in measurement, suggesting that

the illusion of non-locality would disappear by measuring all the possible

outcomes. Aspect’s experiment closed this loophole for polarization. How-

ever there exist many more loopholes, some of which have been closed, and
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Figure 1.15: Aspect’s improved “2 channel” Bell test experiment. Using
polarizing beamsplitters, all possible measurement outcomes are observed,
allowing for a stronger claim to non-locality over local hidden variable the-
ories. Shown are the four measured coincidence curves for static polarizer
angles, φA. The black circles indicate the measurements which go into the
CHSH inequality, where the Bell parameter S is most strongly violated.
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some of which remain an experimental challenge. Many experimentalists

accept quantum mechanics to be a suitable description for the observed phe-

nomenon, as all experiments to date have been in favour of this. On the

other hand, non-locality is such a fundamentally unintuitive phenomenon,

that settling any challenges to quantum mechanics by closing the loopholes

would be a very good idea!

These loopholes include but are in no way limited to;

• The Fair Sampling loophole: Closing this loophole places a lower

limit on detection efficiency, and hence is a technological limitation.

Most high efficiency detectors (such as semiconductor single photon

avalanche diodes (SPAD) or photo multipliers) have a non-perfect de-

tection efficiency, and any optical components will also contribute to

loss. The suggestion is that by only measuring a fraction of the pho-

tons produced, there could be a statistical bias towards those which

appear to be entangled, and the crucial information stored in the pho-

tons which are not registered, is lost. Optically, the quantum effi-

ciency required to close the fair sampling loop hole is approximately

η = 0.846,47.This loophole has been closed once using ions48. Because

this is a technological difficulty for many experiments, the assumption

of fair sampling is often made.

• The Communication loophole: The claim of quantum entangle-

ment is that there is an instantaneous, non local effect between the
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separated systems under observation. However if the two detectors are

within the light cones of each other, then one cannot claim the effect

is instantaneous. The detectors must be separated from each other at

least c∆t, where c is the speed of light and ∆t is the timing resolution

of the coincidence counting device. In general, most experiments do

not close this loophole, as it can be inconvenient to separate the opti-

cal paths sufficiently. This loophole was perhaps most famously closed

in the 144km path-length experiment between the islands of Tenerife

and La Palma (although this was not the primary achievement of the

experiment)49.

• Freedom of Choice loophole This loophole suggests that the mea-

surement device can in some way influence the outcome of the pho-

tons measured state. This loophole has been addressed for polarization

by automating the polarizers to randomly choose a polarization state,

timed such that this occurs after the photon pairs leave the source.

There are suggestions of novel ways to close these loopholes, for example

making measurements in higher dimensional state spaces to violate a high-

dimensional Bell inequality50, in order to close the Fair Sampling loophole. It

is thought that by exploring correlations in a higher dimensional state space,

the required detection efficiency to close the Fair Sampling loophole falls. As

an experimental challenge, the OAM variable seems to be a good candidate

for addressing the Fair Sampling loophole, as it allows for correlations to be
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measured in a potentially unbound state space.

1.6 Spontaneous Parametric Down Conver-

sion

The nonlinear effects in certain crystals have been used widely within classi-

cal optics, to exploit phenomenon such as frequency doubling, optical para-

metric oscillation and spontaneous parametric down conversion51. These

phenomena can occur when an input electric field interacts with the dielec-

tric properties of the medium in a nonlinear way. SPDC is the process by

which, an input electric field (pump) interacts with a nonlinear medium,

resulting in two electric fields (signal and idler) whose combined energy is

equal to that of the pump. These fields can be degenerate (same frequency)

or non-degenerate, depending on certain conditions. In crystals, SPDC can

be Type-I, where the down-converted photons have the same polarization, or

Type-II, where they have orthogonal polarization.

It has only been in the past 20 years that SPDC has been shown to

produce photon pairs known to be in an entangled state43. Since then, SPDC

has become a popular method to produce entangled photon pairs. SPDC

provides a relatively cheap, robust, and convenient (if inefficient) method of

producing photon pairs.

Typically, the kinds of media used to produce down converted light are

crystals found to have large nonlinear coefficients, such as BBO (β BaB2O4)
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Figure 1.16: a) Type-I non-collinear down conversion. The emission cone
angle is determined by the angle of the pump beam with the crystal axis.
The entangled photon pairs in type-I are diametrically opposite as shown. b)
Type-II down conversion. In a type-II crystal two cones (shown degenerate
here) are produced. The entangled photon pairs are found in the region
where both cones overlap.

or KTP (KTiOPO4). The SPDC process is dependent on parameters such as

the frequency and direction of the input light, which determines the possible
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frequencies and momenta of the down-converted light, provided conservation

of energy and momentum is satisfied. These selection rules are the phase

matching conditions, Fig. 1.17. For BBO crystals, the phase matching is

determined by the frequency of the pump, and the orientation angle of the

crystal’s optic axis with respect to the pump.

Figure 1.17: Phase matching conditions for wave vectors in collinear and
non-collinear degenerate down-conversion.

In Type-I down conversion with non-collinear phase matching, the photon

pairs are emitted with an angle between them and the direction of the pump

beam. Crystal manufacturers cut non linear crystals to specification such

that the phase matching is optimal for a certain angular separation between

signal and idler. The down conversion process is ideally isotropic as a function

of the azimuthal angle. This means the light is emitted in a cone, with the

diametrically opposite photon pairs being the correlated with each other. For

practical purposes, apertures are used to collect small portions of the ring

which are on diametrically opposite regions of the cone.

In the 1980’s, the Russian theoretician David Klyshko proposed a retrod-

38



iction interpretation52 as a novel way to predict the outcome of experiments.

In the retrodiction model, one treats the signal detector as a source of pho-

tons, propagated back through the system, to the crystal. These photons

then see the crystal as a mirror, and propagate back to the idler detector.

If a count is recorded at the idler detector in the unfolded system, then

the prediction is the quantum system will measure a coincidence count. Of

course, back-projecting from one detector to the other is not a quantum

process (retrodiction considers an “advanced wave” instead of a two-photon

wavefunction), but it does adequately predict the outcome of a given mea-

surement. Shown in Fig. 1.18 is an example of a down conversion system,

with it’s unfolded counterpart. It is this retrodiction model which will be

used to numerically simulate all of the experiments in this thesis.

In conjunction with the retrodiction model, one can also numerically pre-

dict the measured coincidences by calculating the overlap integral of sig-

nal, idler and pump fields53. It is calculated as the overlap between back-

projected signal and idler modes with the pump mode at the crystal plane.

The coincidence rate is proportional to the overlap intergal, i.e.

C ∝ |
∫

Ψ∗sΨ
∗
iΨpdA|2√∫

|Ψ∗sΨp|2dA
∫
|Ψ∗iΨp|2dA

(1.18)

where ψp, ψs and ψi are the modes of the pump and back projected signal

and idler respectively.
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Figure 1.18: a) Schematic of a down-conversion system with detectors mea-
suring in the far-field of the crystal. b) Unfolded retrodiction model of the
same system. Retrodiction allows one to predict the outcome of a given
measurement using classical optics.

1.6.1 Quantum Entanglement of OAM

The Austrian group of Zeilinger33 were the first to demonstrate the non-

separability of the OAM states of light, as a demonstration that OAM is an

intrinsic property of single photons. The OAM states of light were measured

holographically, by coupling the light into single mode fibers. By using holo-

grams to convert a nonzero OAM state to the fundamental gaussian mode,
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the group were able to measure the correlations between coherent OAM su-

perpositions, demonstrating the non-local phenomenon of entanglement (the

specific techniques used to measure OAM states of light are detailed in the

experiment chapter, as they relate to experiments within this thesis). The

photon pairs in this experiment were produced from SPDC, as it is a reliable

method for producing photon pairs entangled over a broad range of OAM

states.

In the same year, the Barcelona group of Torner developed a scheme to use

entangled OAM states in a quantum communication protocol. Much in the

same way that polarization can be used in quantum information protocols

(QIP) with dimension 254, OAM can in theory be used to communicate

quantum information, with dimension N - hence these high dimensional states

are known as quNits39.

Many recent experiments have been developed towards improving both

the method of producing multi-dimensional sources of entangled photons, and

the method by which operations are carried out on the photons, to improve

the efficiency of generation, operation and detection. One of the advantages

to using polarization in QIP is that, in principle, all possible states can be

detected without loss - in theory, a polarizing beam splitter sorts modes

of orthogonal polarization perfectly. Sorting OAM states with such fidelity

continues to be a significant experimental challenge. In the past, proposals

have been made for OAM mode sorting interferometrically with in principle, a

high efficiency55,56. However, these mode sorters have experimental stability
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issues, and distinguishing 2N distinct OAM modes requires, at the very least

N interferometers (the experiment in55 required 2N − 1 interferometers for

sorting 2N modes).

Holographic mode sorting by coupling light into a single mode fiber with

off-axis spiral phased holograms does not sort OAM states in an efficient way.

If the input light is in an ensemble of OAM states, the off axis hologram will

only sort the OAM state with the opposite phase of the hologram phase,

diffracting this mode into the +1 diffracted order (Fig. 1.19), however, this

only allows one state to be measured at a time. There have been a num-

ber of novel methods proposed for more efficient methods to measure OAM

states57,58,59,60. A recent proposed scheme is to use holographic methods to

unwrap a exp(i`φ) from cylindrical to cartesian coordinates, such that each

` state is transformed to a different spatial coordinate in the far-field61,62.

This scheme in principle can offer a high efficiency of mode conversion in a

high dimensional OAM state space.

Another method to increase the dimensionality of the state space is to

move from bi-partite to multi-partite entanglement. One scheme is the pro-

duction of GHZ (Greenberger - Horne - Zeilinger) states63,64, entangled states

of 3 or more particles. Multi-partite entangled photon states can be pro-

duced, for example, by cascading second-order nonlinear crystals65,66, or by

exploiting interactions with third-order nonlinear media67.

Remaining within bipartite entanglement systems, one can increase the

information in an entangled photon pair by preparing photons entangled
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Figure 1.19: a) Generation of OAM. Light leaves the single mode fiber as
a Gaussian beam (` = 0) and is converted by the hologram to ` = 2. b)
Detection of OAM. Light carrying OAM is converted by the hologram. If
the phase of the hologram is opposite to that of the incoming light, it will be
converted to ` = 0 and subsequently detected.

in many degrees of freedom - known as hyperentanglement 68. Preparing a

state entangled in, say, both OAM and spin simultaneously, increases the

dimensionality of the system as an alternative method to maximising the
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dimensionality of the state space. The method to produce hyperentangled

photon pairs was to use two adjacent non-linear crystals with orthogonal

polarizations, such that there exists complete uncertainty over the birth place

of the photon pairs69. This method produces a two-photon state entangled in

OAM, spin, time and energy degrees of freedom. This was verified by making

tomographic measurements of each parameter in turn to reconstruct a density

matrix showing that the two-photon state produced was in 36-dimensional

state space, vastly exceeding the 2-dimensional state space of polarization

entanglement alone. A Bell-type inequality is then violated for each of the

parameters, demonstrating the entangled nature of each parameter.

Entangled States of Light Produced in SPDC

In Type-I down conversion, polarization entanglement is not observed, as the

photons produced have the same polarization state. The spatial modes of

the down converted light however, can be in an entangled state. Expressed

purely in terms of the azimuthal phase index `, the entangled field produced

in Type-I SPDC, |ΨSPDC〉, is given by,

|ΨSPDC〉 =
+∞∑
`=−∞

c`|`〉s| − `〉i, (1.19)

provided the pump beam has a uniform phase distribution (i.e. `p = 0).

In the equation above, `s and `i are the azimuthal phase indices of signal and

idler beams respectively, and c` is the probability amplitude of a state being
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produced with a given `s and `i (and |c`|2 is the probability of such a state

being produced). This process is symmetric, i.e. c` = c−`. The precise form

of the probability distribution of the OAM spectrum produced in SPDC has

been investigated theoretically and experimentally70,71,72,73. The probability

amplitude for each mode c` is frequently constrained by experimental con-

ditions, and tends towards zero for high values of `. Shown in Fig. 1.20 are

examples of OAM mode spectra with different distributions of c`.

Figure 1.20: a),b) OAM spectra produced by SPDC for two different proba-
bility distributions c`. The probability amplitudes are normalized such that∑ |c`|2 = 1.

For an entangled state with a given c`, as above, one can then choose

to explore the entirety of this space, or to measure within a dimensionally

smaller subspace. While smaller state spaces do not utilize the full potential

of the OAM spectrum, these 2-D state-spaces can be understood by analogy

to the 2D state-space of polarization. An entangled OAM state in 2D can be

written as
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|Ψ+〉 =
1√
2

(|`〉s| − `〉i + | − `〉s|`〉i) (1.20)

which is the OAM equivalent to one of the four Bell states for polarization.

Quantum Entanglement of Angles

As an alternative to producing and measuring OAM states, preparing and

measuring states within the complementary basis - angle - may offer advan-

tages. By the Fourier relation, an angular distribution can be expressed as an

infinite sum of OAM eigenstates. An angular measurement basis may pro-

vide an intuitive picture to realizing high-dimensional OAM superposition

states.

Much in the same way that spiral phase plates can be used to gener-

ate/measure a single OAM mode, angular phase plates can be used to gener-

ate/measure states within a large OAM state-space. Entanglement between

the angular states of light has been a recent subject of interest for the purpose

of maximizing the dimensionality of the OAM space74,75,38.

Using SLMs in signal and idler arms, it is possible for us to measure cor-

relations between angular states, OAM states and complex superpositions of

both. The programmability of our holograms means that we can cycle be-

tween holograms in an automated way. This automation allows for novel uses

of SLMs within a down-conversion system, such as algorithms designed to au-

tomatically align the experiment, and to quickly replace holograms without
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the need for re-alignment, as necessitated by phase plates. These techniques,

and others, are detailed in the following chapter.
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CHAPTER

TWO

EXPERIMENTAL METHODS AND APPARATUS

The majority of the work presented in this chapter involves measuring the

OAM of photon pairs produced in SPDC, including the detail of experimental

techniques and equipment (both software and hardware) required to build a

down-conversion system, and how the SLMs are used to perform holographic

measurements. Over the course of the experiments carried out on this sys-

tem - as necessity and to improve understanding - there have been multiple

imaging configurations. Fundamentally these can be separated into two cat-

egories; where measurements are made in the near-field (image plane) of the

crystal, and where they are made in the far-field (Fourier plane).
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2.1 Type I Parametric Down Conversion with

a BBO crystal

The down converted light is produced by optically pumping a BBO crystal

with ultra-violet laser light. The laser (Xcyte) is a diode-pumped, solid state

(DPSS) laser, mode-locked at 355nm with an average power of 150mW, and

is a pulsed with a repetition rate of 100MHz. It is a turn-key system, and the

average power remains stable over very long periods of time, which makes

it an ideal choice for use in low light level conditions, where data may be

collected over long periods of time.

Both collinear and non-collinear phase matching conditions have been

used to perform experiments, with SLMs placed in both the image plane and

the Fourier plane of the source.

2.1.1 Non-Collinear Configuration

In the non-collinear configuration, the down converted photon pairs exit the

crystal with an angle between them determined by the orientation of the

crystal. The crystal used here is cut for a half angle of 8 degrees when phase

matched.

The laser source is plane incident on the crystal, which is mounted on a

rotation stage and goniometer. By adjusting the angle of the crystal with

respect to the incident laser beam, we determine the correct phase matching

angle by imaging the down converted light onto an intensified CCD camera

49



(Fig. 2.1).

Figure 2.1: a) Experimental setup to image down-converted light. The in-
tensified CCD camera is imaging the far-field of the crystal. b) Resulting
image of the down-converted light.

For alignment purposes, is experimentally convenient to only select the

photon pairs which are produced parallel to the laboratory bench, which

is achieved by adding adjustable apertures into the system (illustrated in

Fig. 2.1). Using the CCD camera to image the apertures, we can verify that

the desired light is propagating through the system. This light can then be
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coupled into optical fiber, where the count rates and coincidence rates are

measured.

Single mode optical fibers are used to discriminate between different spa-

tial modes. However, large aperture fibers can be used for alignment pur-

poses, as a means to collect more light and reduce the alignment sensitivity.

Lenses are used to re-image the light from the crystal to different planes.

Immediately after the crystal, large aperture lenses are desired in order to

collect as much light as possible from the source. A short focal length lens

is required to efficiently couple light into the fibers.

2.1.2 Collinear Configuration

The other mode of operation is where the down converted light is collinear

phase matched. A different BBO crystal cut for collinear phase matching is

used for this. The significant difference in this configuration is that the co-

propagating signal and idler beams have to be separated by a beam-splitter.

This means that the number of measured coincidences will be reduced by a

factor of 2 i. e. there are four possible ways the two photons can leave the

beamsplitter, and only two of those outcomes result in one photon in each

arm. However, contrary to non-collinear down conversion where a fraction

of the ring is collected, all of the collinear down converted light is localised

to a spot, meaning less light is being discarded.

Additional to detection efficiency, there are further advantages and disad-

vantages to both colinear and non-colinear configurations. One of which has
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already been discussed, which is the potential of loss of signal in each con-

figuration. A further consideration in each case is the spatial distribution of

the light which is imaged to the detector. In the collinear geometry, the sig-

nal and idler beams co-propagate. This means that, for example, projected

measurements of linear or angular position will be rotationally symmetric,

i.e. the overlap between the back projected positional (or angular) distri-

bution does not depend on the chosen starting angle. For the non-collinear

geometry, this is not the case. Because an apertured section of the ring is

collected, the distribution of light has a “long” and “short” axis, so that any

measurements of position will depend strongly on the chosen starting angle,

as the overlap varies as a function of angle, Fig. 2.2.

2.1.3 Spiral Bandwidth

An important consideration in measuring the OAM states produced in SPDC

is in understanding how to influence the number of modes being either gen-

erated or measured. The width of the distribution of OAM modes present in

a system is called the Spiral Bandwidth,70 and has a number of experimental

dependencies. In addition to the number of modes produced in SPDC, the

optical configuration can also have an effect of the number of modes observ-

able. For example, an aperture restriction within the experiment would place

an upper limit on the number of modes measurable, for example the numeri-

cal aperture of fibers, or the physical aperture of lenses present in the system

will determine the range of measurable OAM states. The spiral bandwidth
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Figure 2.2: a) “Short” and “Long” axes of angular distributions measured
in non-collinear down conversion. In this case where an angular state is
measured, the overlap of signal and idler modes depends on the absolute
orientation of the mask, as well as the relative angle between the signal and
idler states. b) Measured coincidence rates (polar coordinates) as a function
of starting angle of amplitude masks. In each case the masks are rotated
through 360◦ with the same relative angle between them. The signature of
asymmetry due to the down conversion ring becomes highly apparent for
small angles.
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of a system can therefore be separated into a “generation bandwidth” and a

“measurement bandwidth”, each dependant on separate parameters.

Generation Bandwidth

For BBO crystals, the number of modes produced depends primarily on

two parameters. Firstly, the thickness of the non-linear crystal (relative to

the Rayleigh range of the pump) will partly determine the phase matching

bandwidth, and thus the transverse momentum bandwidth. By making the

crystal thicker, one makes the phase matching conditions more restrictive,

and reduces the probability of higher order OAM eigenstates produced in

signal and idler photons. A thinner crystal will result in a greater number

of OAM modes produced. One must also consider that there is a trade off

between number of modes produced, and photon count rates for each of those

modes. Re-distributing a finite photon flux over a very large number of OAM

states will result in a very low count rate for each OAM mode measured - a

potential experimental problem.

The second parameter we will consider which has an effect on the gener-

ation bandwidth is the beam waist of the pump. A small pump beam waist

will result in few OAM modes being produced in the crystal. The extreme

case where the light is focused to a point; in this case, the down converted

state produced can only be `s = `i = 0, and no entanglement is present. By

increasing the beam waist, one increases the probability of a higher order

mode being produced. As light modes with a phase profile exp(i`φ) have a
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radial intensity distribution which is proportional to
√
` (for p=0)7, the size

of the pump beam sets an upper limit on `s and `i.

Detection Bandwidth

The detection bandwidth is primarily limited by the imaging system used,

and can be calculated from the overlap between pump and back-projected

signal and idler modes at the crystal. For a given size of pump beam, there

is a trade-off between the overlap between a given signal and idler mode, and

the range of modes over which the overlap is non-zero. For example, a back

projected `s = `i = 0 mode which is the same size as the pump beam will

have a strong overlap for ` = 0, but very little overlap for any higher order

modes (because the radius increases with `). On the other hand, a very small

back projected `s = `i = 0 mode will have far less overlap with the pump

beam, but there will be a non-zero overlap for a much larger range of modes.

It is essential to have the appropriate imaging conditions in order to

achieve a given experimental outcome, whether the requirement is for a large

range of measurable OAM states, or a high photon count rate over a smaller

range of OAM states.
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2.2 Measuring Photon Count Rates and Co-

incidences

It is important to be able to record both the single channel events in signal

and idler arms, and the coincidence events, with a high accuracy. This be-

comes especially important in situations where photon count rates are very

low, as noise may dominate the signal. There can be multiple contributions

to noise in a coincidence counting system. For example, background light

in the laboratory space can leak into the detector modules, and result in

increased background count rate. In single photon counting modules, there

are several characteristics which will affect the accuracy of measurements,

• Dark count rate: Every photon counting module will register some

events even when there is no light present. This can be due to thermal

effects on the active area of the detector. More modern devices offer

reduced dark count rates, and cooled photon counters also offer lower

dark count rates.

• Quantum Efficiency: The quantum efficiency is the ratio of photons

detected to photons incident on the detector. Typically, off-the-shelf

detectors will have a range of wavelengths over which they are usable,

but with a peak efficiency around a specific wavelength somewhere in

the visible spectrum. Solid state detectors can be customized for peak

efficiency at certain wavelengths, determined by parameters such as the
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doping material used and absorption layers within the diode.76

• Timing Jitter: The timing jitter of a detector is the uncertainty in

time of an event occurring. This can be tested by illuminating the

detector with a periodic source with very low jitter. A histogram of

recorded events within the period window can be recorded, and the

FWHM of this distribution is the jitter of the detector (provided the

source has negligible jitter). In many experiments where timing is

crucial, such as in LIDAR, it is important to have as little timing jitter

on the detection as possible77,78.

In measuring the coincidences between detection events in each detector,

sufficiently fast electronics are required to ensure that the correct events are

registered as a coincidence, as opposed to uncorrelated events. Two different

systems have been used to measure coincidences. In the first instance, the

outputs from each detector were connected to a multi-channel interface (Na-

tional Instruments PCI-6602), which was used to measure the single channel

outputs of both detectors, and the coincidences between each channel. This

device measures coincidences using a “start-stop” system - where the first

detector event initalizes the second channel. When the leading edge of the

pulse arrives on the second channel, a coincidence count is recorded.

The size of the coincidence detection window (set by the speed of the

electronics), is 25ns. This means that, after the first detection event, if

an event is recorded from the second detector within 25ns, a coincidence is
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registered. Because of this finite coincidence detection window, coincidence

events may be registered between uncorrelated photons, known as accidental

coincidences, or accidentals. The accidental coincidence rate for two single

channel count rates, S1 and S2 and a gate time ∆t is given by,

Racc = S1S2∆t (2.1)

A useful number to define the strength of the observed coincidence rate

above the accidental rate is the quantum contrast. The quantum contrast is

a normalized coincidence rate, and is defined as

Q.C. =
C

S1S2∆t
, (2.2)

where C is the coincidence rate for single channel rates S1, S2. This nor-

malized coincidence rate is perhaps a more accurate indicator of the strength

of the measured coincidences i.e. if all measured coincidences are accidental,

the quantum contrast will be 1. Increasing the quantum contrast of a given

measurement corresponds to improving the signal to noise ratio, either by

increasing the true coincidence rate, or decreasing the accidental coincidence

rate.

One way to improve the quantum contrast overall is to decrease the co-

incidence detection window, ∆t. As an alternative to the NI-6602, we use a

time-amplitude converter (TAC) for measuring the coincidences between the

detection events. This device is an Ortec TAC-566. Similarly, the TAC uses
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one detector as a starting trigger, and the other as a stop trigger. However,

the time window is set by the voltage readout of the TAC. This device oper-

ates with a gate time of 10ns, reducing the accidental coincidence rate by a

factor of 2.5.

2.2.1 Single Photon Counting Modules

Two different types of photon counters have been used for the experiments

in this thesis. Firstly, a pair photo-multiplier tubes (PMT) were used. After

the first experiment, these were replaced with avalanche photo-diodes(APD).

The detectors were replaced as the APDs have a higher quantum efficiency

than the PMTs at the desired wavelength (710nm).

Hamamatsu PMT (Photo-multiplier tube)

The PMT’s used were Hamamatsu H7421-50. The major advantage to these

detectors is that they are inexpensive single photon counting devices, which

exhibit a wide wavelength response. This model of PMT is shown below,

along with the measured performance characteristics, Fig. 2.3.

Because of the large active area of the photocathode (5mm2), care had

to be taken to isolate these devices from all external light. The background

count rate (dark count rate included) of these devices was measured to be

approximately 800 sec−1. This background count rate was measured after

all efforts were made to isolate the detectors from background light, and is

somewhat higher than would have previously been anticipated. These devices
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Figure 2.3: Hamamatsu PMT initially used for photon counting. The graph
shows the performance characteristics of the device. The timing jitter of the
device (FWHM) is 750ps. The large active area of the detector is indicated
by the presence of the noise floor.
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have an operating quantum efficiency which is estimated to be around 8-10%.

In conditions with sufficiently high photon flux, these detectors function well.

However, in extreme low-light situations, the low quantum efficiency becomes

a problem. It is worth noting that current off-the-shelf PMTs have a much

improved quantum efficiency and dark count rate than the ones used here.

PerkinElmer APD (Avalanche Photo-diode)

The second type of detectors used on this experiment were the PerkinElmer

(SPCM-14) avalanche photo-diodes. These - more modern - devices have

much improved performance characteristics compared to the model of PMTs

used. They operate with a quantum efficiency at 710nm of approximately

60%, with a background count rate of around 200 sec−1 because our labo-

ratory environment is not completely dark (the rated dark count rate is ap-

proximately 20 sec−1). The characteristics of the APDs is shown in Fig. 2.4.

The PMTs and the APDs interface simply with both the NI and the

Ortec coincidence counting devices.

2.3 Spatial Light Modulator

As an alternative to using phase plates, one may use an SLM. Because of

the anticipated difficulties of aligning a single photon experiment, having a

reprogrammable phase element in the system removes the need to frequently

replace optical elements - once a displayed hologram is aligned with respect
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Figure 2.4: PerkinElmer SPCM-14 avalanche photo-diode. These devices are
more robust, have reduced noise and reduced jitter compared to the PMTs.

to the beam, it’s phase distribution can be changed without misalignment.

This is a compelling reason to use SLMs, as opposed to phase plates in a
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down-conversion system.

The versatility of SLMs has been well established. Their use has been

demonstrated as spiral phase zone holograms79, as beam steering devices

in holographic optical tweezers80,81, for generating complex functions such

as Bessel and Laguerre-Gaussian functions82,83, and for producing complex

3-dimensional distributions of light84,85.

Using a spiral phase plane to convert the OAM state of a light beam is

a highly efficient process; all of the light passing through the phase plate

exhibits a phase retardation due to the refractive index of the material used.

Representing a spiral phased hologram on an SLM is less efficient. Conven-

tional SLMs work in reflection, so some loss can be attributed to absorption

by the liquid crystal, and reflection by the glass covering the LCD (this

effect is significant without wavelength-specific anti-reflection coating). In

addition, a non-unity fill factor (due to space between pixels) also results in

loss. For these reasons, the light directly reflected from a hologram displayed

on an SLM will result in a mixture of the desired hologram phase, and light

which has the same phase as the input light field. Due to the inherent ineffi-

ciencies of SLMs, there will always be a significant unmodulated component

to any light directly reflected off the SLM.

In 1991, Heckenberg et. al. demonstrated that by adding the phase of a

Fresnel lens modulo 2π to a given phase distribution, the light which is at

the focal plane will contain precisely the phase specified by the hologram79

and the unmodulated light remains unfocussed. In a similar way, by adding
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a blazed linear grating modulo 2π to a given phase distribution, the desired

phase information is found in the first diffracted order. This method of using

a blazed diffraction grating to shift the modulated light to the first diffracted

order will be the method we employ. By adding a blazed grating modulo 2π to

a spiral phase, we obtain a “forked” hologram,86 where the fork dislocation

indicates the phase singularity, and the number of “prongs” indicates the

charge ` of the hologram. Shown in Fig. 2.5 are example grayscale holograms

for spiral phase masks of different charge, and the same holograms modulated

by a blazed grating, to produce the desired light field in the first order.

Figure 2.5: Examples of modulo 2π addition of a blazed diffraction grating
with spiral phase of ` = 1 (top) and ` = 3 (bottom). These forked holograms
result in a first diffracted order light mode with phase corresponding precisely
to ` = 1 and ` = 3 respectively.

The SLMs we use are phase only modulators. However, they can also
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be used to shape the intensity of a light field. Modulating the intensity of

the light has been demonstrated previously as a method of producing light

modes with precise spatial intensity distributions, such as the LG and HG

modes. This is achieved by multiplying the phase hologram with an intensity

distribution corresponding to the desired intensity in the first order, given

by

Φ(x, y)holo = [(Φ(x, y)beam + Φ(x, y)grating)]mod2π sinc2 [(1− I(x, y)π)] ,

(2.3)

where Φ(x, y)beam is the desired phase distribution, Φ(x, y)grating is the phase

distribution of the blazed diffraction grating, and I(x, y) is the desired in-

tensity distribution. The sinc2 term accounts for the mapping of the phase

depth to the diffraction efficiency of the spatially dependent blazing function.

2.3.1 SLM Characteristics

As we will be using the SLM to act as an off-axis hologram (to couple light

from the first diffracted order into a single mode fiber), the primary concern

is the diffraction efficiency. This is related to several properties of the device,

such as the anti-reflection coating for the correct wavelength, the fill factor of

the pixels (the ratio of the inter-pixel area to the active area) and the ability

to fully modulate the phase over the full 2π range. Many SLMs offer fast

update rates (100 Hz or higher), which is very important for, say, adaptive
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Figure 2.6: Phase holograms multiplied with the appropriate intensity modu-
lation for a specific mode. As a result of the intensity modulation, a constant
phase region in the hologram results in a null of intensity in the first diffracted
order. This masking can be applied to the Laguerre-Gauss modes (top), and
the Hermite-Gauss (bottom), or indeed any spatial mode.

optics or in holographic optical tweezers, where conditions change at a high

frequency. However, any single photon experiment will involve collection of

data for at least several seconds, if not minutes. Therefore, the speed of the

phase modulator is not a primary concern. A final consideration is that the

SLM window should be as close to phase flat as possible. This is generally the

case for all modern SLMs, and any residual aberrations can be compensated

for with an aberration correction hologram.

We use a Hamamatsu LCOS (Liquid crystal on silicon) SLM, Fig. 2.8.

This SLM is electrically addressed and operates by the nematic liquid crystal
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effect on the phase of the input light.

Figure 2.7: Schematic of LCOS operation (from Hamamatsu website)

The phase modulation range 0-2π is set in 256 discrete voltage steps per

pixel (represented as a grayscale 0-255). Shown in Fig. 2.9 are the measured

count rates in the first diffracted order as a function of the phase contrast

of the SLM. If the SLM had perfect grayscale to phase response over the

entire 0-2π range, then the count rates should vary linearly as a function of

the phase modulation. As can be seen, the response is approximately linear

except at the extremities close to pixel values of 0 and 255. This characteristic

response is unique to each SLM, and this response can be used as a correction

curve with which to compensate for the inaccuracies in pixel value to phase

modulation. Once this correction is implemented, we can assume that the
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phase modulation given to the light is correct.

Figure 2.8: Hamamatsu LCOS electrically addressed SLM. These are placed
in each arm of the down conversion experiment.

2.4 Building a System to Prepare and Mea-

sure Entangled Photon Pairs

The necessary components required to make holographic measurements of

OAM states in SPDC are; a pump laser, BBO crystal, SLMs in signal and

idler arms, single mode fibers and photon counting modules. The SLMs can

be in one of two imaging planes - either in the far field or near field of the

crystal.
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Figure 2.9: Calibration curve of measured count rates in the first order,as a
function of the grayscale contrast of a blazed grating hologram. This curve is
used as a correction lookup table, to ensure the expected relationship between
pixel value and phase.

A far-field measurement system is where the SLMs are in the Fourier

plane of the crystal. In Fig. 2.10 the SLMs are in the approximate far-

field of the crystal. A near-field measurement system is where the SLMs

and detectors are in the image plane of the crystal, Fig. 2.11. In this case,

the back-projected light from the detectors is imaged to the SLMs, which is

subsequently imaged to a spot at the crystal.
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Figure 2.10: Experimental setup where measurements are made in the ap-
proximate Fourier plane of the crystal. The optional 1m focal length lens in
the pump beam results in an increased pair production rate, but at a cost of
reduced spiral bandwidth.
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Figure 2.11: Experimental setup of near-field crystal measurements for both
collinear and non-collinear systems.
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A necessary condition for measuring coincidences between photon pairs in

these experiments is that one of the single mode fibers can be back-projected

and imaged onto the other single mode fiber, treating the crystal as a mirror.

This condition is an effective predictor of the experimental outcome, and

indicates whether or not a given optical configuration will work. One such

unfolded system for measuring coincidences in the far field of the crystal is

shown in Fig. 2.12 (a). The unfolded experiment suggests that the imaging

conditions are met, and we would anticipate to measure coincidences in this

configuration.

Figure 2.12: Unfolded system for both near (a) and far (b) - field measure-
ment systems. The signal detector is imaged onto the idler detector in both
cases. We can expect both of these experimental systems to be suitable for
measuring coincidences.

The unfolded model with the SLMs in the image plane of the crystal is

shown in Fig. 2.12 b). As can be seen, the fibers, SLMs and crystal are all
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in conjugate planes.

It is worth noting the differences between linear position-momentum and

angle-OAM for the down-converted light. Measurements of linear position

correspond to near-field correlations, and measurements of linear momentum

correspond to far-field correlations. For OAM, the singular point of phase

is topologically stable in all planes. This means that in near field, far field

or any intermediate field we can still measure the OAM state of the light.

For angular distributions, the intensity distribution changes depending on

the plane, but given that we can decompose any angular distribution into its

spiral harmonics (from the Fourier relationship), we should be able to deduce

a given angular function by measuring its OAM spectrum.

A further consideration beyond meeting the imaging conditions is which

specific magnification/demagnification should occur and at which points. It

is essential that a sufficient number of pixels on each SLM is illuminated, in

order to avoid pixellation and loss of diffraction efficiency. However, com-

pletely filling the SLM window will necessitate aberration correction as the

SLM isn’t completely flat over the 20 mm2 active area. The desired outcome

is to illuminate an area large enough to avoid pixellation, but small enough

to avoid aberration compensation. This approximately sets the condition of

magnification between the fiber and the SLM. The single mode fibers have

an aperture size of 5 µm. Coupling into the fiber with a 100x Zeiss objective

(f=1.6), approximately 1200 mm away from the SLM gives a magnification

of approximately 750, hence the spot size at the SLM is between 3 mm and
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4 mm - small enough to avoid the need for aberration correction but large

enough to illuminate many pixels on the SLM. Another lens is needed be-

tween the SLM and the crystal face to satisfy the imaging conditions. This

means that a back-projected spot at the SLM has to be de-magnified onto

the crystal. The choice of focal length for this lens sets the size of the back-

projected signal and idler modes, and requires careful consideration in order

to properly determine the detection bandwidth of the experiment. There are

two extreme cases:

• The back-projected signal/idler beam is larger than the pump beam.

In this situation we would only see overlap with the pump for the ` = 0

mode because any back-projected mode with ` 6= 0 will have a nodal

point in the centre, and hence, zero overlap with the pump beam.

• The back-projected signal/idler beam is focussed very tightly. Here,

the back-projected beam will have overlap with the pump for a large

number of OAM states. However, we will only be collecting light from

a very small portion of the crystal, and can expect to measure a very

low count rate for all OAM measurements.

Using a 300mm focal length lens in a 4-f imaging configuration, sets the

back-projected spot size to around approximately 200µm, sufficiently smaller

than the pump beam to provide a good overlap for a large range of OAM

states.
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2.4.1 Alignment by Back-Projection

In a low photon flux regime, alignment of the optical path from the crystal

to the fibers can be a significant challenge. A method used to simplify this is

by aligning back-projected, visible laser light from each fiber to the crystal.

We do this by coupling a 710nm laser diode into the single mode fibers in

signal and idler arms, and propagating those back projected ` = 0 beams

to the crystal. Provided that both back projected beams propagate through

the correct optical path (determined by apertures placed in the system) and

overlap at the crystal, we can be assured that the down converted light will

be approximately aligned, and subsequent fine adjustments can be made to

fully optimize the system.

When initially aligning by back-projection, the SLMs are switched off.

With no power to the SLM, the liquid crystal behaves as a mirror. By

aligning the system with SLMs off, the down converted light coupled into

the fiber will follow the path of the zero order light. Once optimized with

the SLMs unpowered, the SLMs are powered, with blazed diffraction grating

holograms displayed in signal and idler arms. This will reduce the coincident

count rate to zero. This is because the light after the hologram will either be

diffracted to a different position to the fiber (if the SLMs are in the Fourier

plane of the fibers) or the light will be in the same position, but with an angle

exceeding the acceptance angle of the fiber (if the SLMs are in the image plane

of the fibers). In either case, one can recover the coincidences by adjusting

the angle of the SLM, such that only the +1 diffracted order is coupled into
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the fibers. Additionally, any hologram with a defined central axis (such as

a spiral phase plate) must be centred with respect to the beam axis. An

off-axis spiral phase hologram will couple a non-pure or superposition state

of light into the single mode fibers.34 Given that the holograms are addressed

by computer, adjusting the centre of the hologram is a simple process. There

are a number of ways one may choose find the optimal position of a hologram.

For example, an ` = 0 hologram has no central axis, so measuring `s = 0

against `i = 1 in signal and idler arms will yield zero coincidences if aligned,

and non-zero if misaligned. This method can be applied to both signal and

idler holograms to find the centres. Once the count rates are optimized in this

configuration, the system is ready to measure coincidence rates as a function

of any given spatial modes.

2.5 SLM control software

The SLMs are computer controlled through a DVI interface, effectively acting

as additional monitors of the computer display. By assigning the greyscale

holograms to display on these additional windows, each pixel of the LCD

takes on a voltage determined by the greyscale level of the calculated holo-

gram. The holograms are calculated within the LabView environment, which

provides a convenient interface for calculating and displaying 2D arrays of

data. The LCD displays on the SLMs have 512x512 active pixels. Arrays of

this size can be handled by LabView without any issues concerning efficiency
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and computation time.

We use a blazed diffraction grating to couple as much light as possible into

the +1 diffracted order i.e. a grating where each “line” is modulated with

continuous phase ramp from 0 to 2π. This phase distribution is analogous to

the phase change caused by a wedge of glass which is phase wrapped between

0 and 2π. The “height” of the ramp sets the angle of deviation of the light

which corresponds to increasing the number of lines across the grating. This

hologram is calculated pixel by pixel, with phase values determined by

φx,y =
−2π

λ
(xsin(α) + ysin(β)) (2.4)

where x, y are the horizontal and vertical pixel positions, α, β is the

diffracted angle in x−z and y−z planes respectively, and λ is the wavelength

of light.

Another commonly used hologram is the spiral phase hologram, charac-

terized by the azimuthal phase exp(i`φ). The phase φx,y for each pixel is

given by,

φx,y = arctan

(
x

y

)
, (2.5)

where x, y relate to the pixel position in horizontal and vertical directions,

and the on axis phase singularity is at x = 0, y = 0. Multiplying this phase

by a given integer m = ` determines the number of cycles φ rotates through

in the full 2π period.
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Figure 2.13: LabView code used to produce a blazed diffraction grating. a)
Front Panel showing input parameters, and output array. b) Block-diagram
algorithm used to generate the grating function.

With modulo 2π addition, any combination of phase masks can be added

to produce another valid mask.

There are many more specific hologram designs which are used in the

following experiments, which are all calculated using the same pixel-by-pixel

method in LabView.
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Figure 2.14: LabView code used to produce a spiral phase mask. a) Front
panel showing input parameters and output. b) Block diagram of spiral phase
algorithm.

2.5.1 General Purpose Control Software

It is useful to have a general purpose software tool, for the purposes of testing

and diagnostics. This software need not be completely generic, but functional

enough that one can run some simple experiments to test the system. For

these reasons, a general purpose program was written with the capabilities

79



to:

• Assign holograms with spiral phase, blazed diffraction gratings, and π

phase discontinuities to both signal and idler SLMs.

• Measure single channel and coincidence count rates

• Scan a hologram property (grating angle, spiral phase, ... ) from one

value to another, and measure the count rates as a function of that

property.

Shown in Fig. 2.15 is the front-end user interface of the general pur-

pose LabView program. Various hologram parameters can be set, such

as diffracted angle in x and y, hologram centre in x and y, charge of spi-

ral phase, number of phase/intensity dislocations, width and starting angle

of phase/intensity dislocations. Each of these parameters can be scanned

through a range of values, and the count rates measured for each value. For

example, one can set SLM A to display an ` = 1 mask, thus coupling ` = −1

photons to the detector. By setting the program to scan the parameter L on

SLM B, with range from -5 to +5, one can see the peak in coincidences when

SLM B displays an L = −1 hologram, thus coupling ` = +1 photons to the

other detector.

80



Figure 2.15: General purpose LabView Control software. Specific parameters
can be assigned to both signal and idler holograms, and count rates measured.
Additionally, any one of these parameters can be scanned through a given
range, and count rates can be plotted as a function of the chosen parameter.
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The grating angle of each hologram can be scanned to find the maximum

coincidence rate, corresponding to the optimal angle in each case. Similarly,

by scanning the central location of a (for example) ` = 1 hologram on one

SLM, with respect to an ` = 0 in the other, one can find the optimal centre

location. This is, in essence, a procedure for automatically aligning the

down-conversion system.

2.5.2 Automatic Re-Alignment of the Optical System

by Scanning Holograms

In setting up and aligning the down-conversion system, the most time con-

suming process is not in the coarse adjustments, but in the fine tuning of

coupling the light into the fibers, and aligning the hologram centres. A sys-

tem utilizing SLMs lends itself to an automated alignment process. Provided

the SLMs are imaged onto the fibers, this can be done. If the fibers are in

the Fourier plane of the SLMs, adjusting the angle of a grating results in

a positional displacement of the diffracted order, which requires translation

of the fiber position. Optimization of the centre of a hologram can be done

in both near and far-field of the SLMs, as positional translation of a phase

singularity occurs in all optical planes.

A suitable auto - alignment program has been developed in LabView,

Fig. 2.16, which scans and measures coincidences as a function of eight pa-

rameters: x and y grating angles of SLMs A and B; x and y hologram centres
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of SLMs A and B. A suitable scanning range and size of step is chosen for

both angles and hologram centres. For the chosen parameters in this align-

ment method, scanning the angles will yield a maximum coincidence rate

when optimal, and scanning the hologram centre will yield a minimum coin-

cidence rate when optimal. Fitting a parabolic curve in each case is sufficient

to find the optimal value for each parameter.

Figure 2.16: System to automatically align signal and idler holograms. (a)
Setting the signal/idler hologram to measure ` = 0 while scanning an ` = 1
hologram in idler/signal results in zero coincidences when perfectly aligned.
(b) Similarly, the optimum coupling into the fibers can be found by scanning
the grating angle in one arm while keeping the other fixed. A parabolic curve
(red line) is then fitted to each distribution, and the maximum/minimum is
then taken to be the optimum value.

Using SLMs in this way to automatically align the optical setup is most
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useful, as considerable time can be spent manually aligning the holograms.

Additionally, thermal fluctuations result in misalignment of the optical path,

and are measurable over a timescale of 2-3 hours, but can be periodically

compensated for with automatic alignment. Automatic alignment allows

data to be collected for an indefinite amount of time (provided the system is

approximately aligned), meaning experiments with very low photon flux can

be carried out without continual interruption.
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CHAPTER

THREE

THE FOURIER RELATIONSHIP BETWEEN

ANGLE AND ORBITAL ANGULAR MOMENTUM

This chapter presents the detail of two experiments designed to examine the

Fourier relationship between OAM and angle variables. The first experiment

described here examines purely classical phenomenon, and does not utilize

the down-conversion system. It uses a Helium-Neon laser as a source, and a

photo-diode for measuring optical intensity. In the second experiment of this

chapter, similar holographic measurements are made, but the measurements

now in coincidences of photon pairs produced in the SPDC experiment. This

investigation of the Fourier relation between correlated photon pairs was

carried out in collaboration with Dr. Anand Jha and Prof. Robert Boyd

from the University of Rochester.
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3.1 Angular Diffraction: A Classical Test

It is now established that OAM and angular position are related by a Fourier

transform (Chapter 1).

This means that an angular restriction of the light profile modifies the

OAM spectrum, generating new OAM components. This has previously

been observed for classical light beams87, and it is this work which we will

expand on. Due to the analogy between the linear and angular Fourier

relations, we interpret the effect of an angular mask on a light beam as

“angular diffraction”.

In the conventional single or multiple slit experiment a restriction in lin-

ear position of a light beam causes interference between the various Fourier

components. This interference modifies the linear momentum and causes the

characteristic diffraction pattern in the far field. The angular analogue of

a single slit is a mask containing an angular step function, and the OAM

spectrum of the transmitted beam is a discrete spectrum enveloped by a sinc

square function, Fig. 3.1.
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3.1.1 Theory of Angular Diffraction

Consider a mask with a uniform transmission of t1 within an angle β and a

different transmission of t2 elsewhere,

M(φ) =


t1 for 0 ≤ φ < β

t2 for β ≤ φ < 2π
. (3.1)

The mask may be an amplitude mask, where the transmission takes on

real values between 0 and 1, or a phase mask with t = exp(iφ). The wave-

function of the transmitted beam is ψ(φ) = M(φ)ψ0(φ), where we assume the

initial mode ψ0(φ) to be a pure OAM mode ψ0 exp(i`0φ). The OAM spectrum

of the transmitted beam is then the Fourier transform of the wavefunction:

A` =
1

2π

∫ π

−π
dφM(φ)e−i`φψ0e

i`0φ. (3.2)

The integration can be evaluated to

A`+`0 = ψ0


β
2π

(t1 − t2)sinc(β
2
`) exp(−iβ

2
`) for ` 6= `0

β
2π

(t1 − t2) + t2 for ` = `0

(3.3)

This is equivalent to expressing the mask in terms of the OAM harmon-

ics exp(−i`φ). Note that the relative weighting of the OAM modes other

than ` = `0 remains the same irrespective of the values of t1 and t2, and in

particular irrespective of whether it is an amplitude or phase mask.

The OAM spectrum for an absorption mask with t1 = 1 and t2 = 0

87



Figure 3.1: The analogy between linear diffraction at a slit, and angular
diffraction at an angular aperture. Because of the cyclic nature of angle, the
OAM spectrum is a discrete series, with a sinc2 envelope determined by the
angular width.

simplifies to

|A`|2 = |ψ0|2
(
β

2π

)2

sinc2

(
β

2
`

)
. (3.4)

This bears similarities to the diffraction pattern from a linear single slit

experiment. While the diffraction pattern of a single slit is a continuous

intensity distribution of linear momentum, or position in the far field, angular

diffraction is a discrete distribution, enveloped by a sinc2 function.

This analogy can be extended to multiple slit diffraction. The angular

analogue of a double slit is a mask with two symmetrically placed opening
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angles, and a grating of N slits corresponds to an angle mask with N -fold

symmetry. The individual opening angle β corresponds to the single slit

width and the repetition angle α to the separation between the individual

slits, i. e. the grating constant, see Fig. 3.2.

Figure 3.2: The analogy between linear diffraction at a grating, and angular
diffraction with multiple angular slits. The N-fold symmetry of the angular
mask determines which OAM states are suppressed. For a twofold symmetric
mask, all odd OAM states cancel out.

As one may expect, in this case the sinc envelope of the single slit or

opening angle is convolved with a function that describes interference be-

tween the slits/opening angles. Due to the periodicity of the angle mask, the

repetition angle α is directly linked to the number of opening angles N by

α = 2π/N. The angular version of a diffraction grating with with N opening

angles of width β is described by the mask
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M(φ) =


1 fornα ≤ φ < (nα + β)

0 else
, (3.5)

where n = 0, 1, ...N − 1 and N = α/(2π).

As before we can find the OAM decomposition of the transmitted beam

from the Fourier transform:

A`+`0 =
1

2π

N−1∑
n=0

∫ nα+β

nα
dφe−i`φψ0 (3.6)

= ψ0
β

2π
sinc(

β

2
`) exp(−iβ

2
`)

N−1∑
n=0

e−i`2πn/N

= ψ0
β

2π
sinc(

β

2
`) exp(−iβ

2
`)

× exp[−i`α
2

(N − 1)]
sin(N α

2
`)

sin(α
2
`)

, (3.7)

in analogy to diffraction off a conventional multiple slit experiment, see

Fig. 3.2. A mask with two-fold symmetry causes cancelation of every odd

OAM component and in an N -fold geometry only every Nth OAM compo-

nent survives. It is worth pointing out that for rational fractions between

opening angle and repetition angle the typical cancelation of diffraction or-

ders can be observed in the angular case.
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3.1.2 Experimental Setup

We use a Helium-Neon (HeNe) laser tube producing a Gaussian beam, Fig. 3.3.

This illuminates an SLM, which is used to realize both the angular aperture

holograms and to measure the OAM spectrum of the light. This is done by

coupling the first diffracted order from the SLM into a single mode fiber.

The intensity of the coupled light at the output of the fiber is then measured

with a photodiode.

Figure 3.3: Experimental setup. The desired aperture is displayed on the
SLM, on which the forked holograms of differing charge ` are scanned through
a range of ` = −12 to ` = +12. Selective coupling to the fiber then allows
us to measure the OAM spectrum for a given angular mask.

Fig. 3.4 shows the measured OAM spectrum for an aperture mask with

a single opening angle. If no aperture is placed in the beam, the OAM

is not modified, and accordingly we detect almost all of the light in the
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state ` = 0. Figs. 3.4b)-d) show the characteristic sinc2 OAM spectrum

for aperturing half, a third and a sixth of the beam respectively. The OAM

spectrum is narrowest for an aperture of π and becomes larger if the aperture

angle increases or decreases. This is because for the periodic angle mask, the

transmitted modes do not change if a mask is replaced with its inverse mask.

Just like in a conventional single slit experiment, destructive interference

between the transmitted light results in dark fringes in the diffraction pattern.

A complete cancelation of OAM modes occurs if the opening angle β is a

rational fraction of 2π, for example for a mask that blocks a third (or two

thirds) of the beam, modes with ` = ±3,±6,±9, . . . are suppressed in the

OAM spectrum.

Alternatively, angular phase apertures can be realised with a π phase dis-

continuity across the beam. Phase gratings are more efficient than amplitude

gratings, as they do not discard any of the light. Phase gratings with opening

angles which are rational fractions of π completely suppress the zero order

transmission through destructive interference, shown in Fig. 3.5.

The angular analogue to multiple slit diffraction is shown in Fig. 3.6, dis-

playing the OAM spectrum of masks with 2, 3 and 4 symmetrically placed

blocked beam areas of π/3. An N -fold repetition of an angular pattern will

result in a spreading of the OAM modes just like an increase in the grat-

ing constant will result in a spreading of the diffraction pattern for a linear

grating. The sinc2 envelope of the single aperture of angular width π/3 is

convolved with the
sin2(N α

2
`)

sin2(α
2
`)

pattern arising from interference between the in-
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Figure 3.4: Measured OAM spectrum for single hard edged opening angles
of a) 2π, b) π, c) 4π/3 and d) 5π/3.

dividual angular opening angles. Fig. 3.6 visualises how an N -fold symmetric

mask causes constructive interference for modes with OAM being multiples

of N : The top row shows the phase profile of OAM modes with ` = 0 → 4

displaying `-fold symmetry. By blocking these light beams with a 2-fold sym-

metric mask, light emerging from the two opening angles has opposite phase

for odd values of OAM and equal phase for even values. Consequently, all

odd OAM components are missing from the OAM spectrum.

The description here applies to hard-edged apertures, however this does
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Figure 3.5: OAM spectra for two different phase masks. For each case, the
spectrum is the same, with the exception of the ` = 0 zero order, where
destructive interference occurs.

not need to be the case e.g. one could engineer a Gaussian envelope for a

Gaussian angular transmission function, or discrete sidebands for a sinusoidal

variation of the angular transmission.

Angular diffraction is a direct demonstration of the Fourier relation be-

tween OAM and angular position. By expanding on the work of87, we take

the angular analogue of conventional diffraction from single and multiple

slits, and we find excellent agreement with theory and experiment. These

results, while classical, demonstrate that holographic measurements of angle

and OAM states using both phase and amplitude masks can be made with

a high degree of precision.
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Figure 3.6: a),b),c), OAM spectra for multiple slits of varying number and
mark-space ratio. The number of modes present is determined by the num-
ber of slits, and the suppressed orders are determined by the width of the
apertures. d) Illustration of how certain apertures invoke total destructive
interference of certain OAM states. When the correct OAM state overlaps
with the correct aperture, the phase no longer cancels to zero, which deter-
mines the OAM spectrum.
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3.2 Angular Diffraction at the Quantum Level

As Angular Diffraction is now well established at the classical level, it will now

also be tested at the single photon level with down-converted photon pairs.

Because of the correlated nature of these photon pairs, we can also demon-

strate that the angular diffraction principle applies non-locally between signal

and idler photons. By setting an angular mask in signal photons, one can

then measure the effect on the OAM distribution non-locally in the idler

photons.

Because each of the down-converted beams - viewed independently - are

spatially incoherent88, the diffraction signature we are exploring exists only in

the coincidence measurements, and is not visible when considering the single

channel count rates of either arm of the system. In the classical experiment,

an angular mask was used to generate a superposition of OAM states, which

were subsequently measured using single mode fiber. In this experiment,

the light from the angular mask is coupled into single mode fibers, and is

measuring, as opposed to generating, an angular state. In this case, it can

be said that the angular mask in one arm filters out specific OAM modes in

the other arm, which are measured in coincidence. Again, SLMs are used to

realize holograms to set angular masks, and spiral phase masks to measure

the OAM states. The angular state holograms are of the same type used in

the classical experiment. The experimental setup is shown in Fig. 3.7.

In this experimental configuration, the down-converted light is emitted
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Figure 3.7: Experimental configuration. An angular aperture mask is dis-
played in one arm of the experiment, and the OAM measurement is per-
formed in the other arm. By measuring the correlations, one should be able
to non-locally measure the OAM spectrum in coincidences.

with a semi-cone angle of 4◦. The single mode fibers are imaged to the crystal

with a magnification of approximately 20:1, using 60mm focal length lenses.

The SLMs are placed in the approximate far-field of the crystal plane.

As discussed, the anticipated coincidence rates can be numerically pre-

dicted using the overlap integral53, which, for a large pump beam of `p = 0,

is proportional to

C ∝ |
∫

ΨsΨidA|2 (3.8)
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where Ψs,i are the wave-functions of the signal and idler states post-

selected using the SLMs. The holograms used are angular functions of the

same form as in the classical experiment, which can be phase or intensity

distributions. These masks can be expressed as a Fourier series of OAM

harmonics,

ψ(φ) =
∞∑

`=−∞
A`exp(i`φ) (3.9)

For hard-edged apertures of number N, with an open segment width β,

ψ(φ) = 1 for −β/2 < φ + 2πN/` ≤ β/2 and ψ(φ) = 0 otherwise. For an

m-fold symmetric mask, these non-zero A` components are,

A`=Nm =
mβ

2π
sinc

(
β

2
`

)
(3.10)

This mask, acting on an OAM eigenstate, produces a distribution of OAM

values with amplitudes for the induced change in ` given by the A`. As the

individual signal and idler beams are spatially incoherent, this distribution

is not visible in the single channel measurements. Conservation of OAM

requires that if one of the down-converted beams passes through the mask

and we measure the OAM of both beams, we should always find that the

sum of the recorded OAM values is an integer multiple of m. Specifically,

the coincidence rate will be proportional to

C`s=Nm ∝
∣∣∣∣∣mβ2π

sinc

(
`sπ

2m

)∣∣∣∣∣
2

. (3.11)
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3.2.1 Results

Figure 3.8: Coincidence measurements for no angular mask. Measuring sig-
nal OAM `s = 0 sets the idler OAM `i = 0. Any measured coincidences in
other channels is due to cross-talk from misalignment of the holograms.

Fig. 3.8 shows the single channel and coincidence measurements for the

case that no angular mask is present. The form of the single channel counts

relate to the efficiency of the down-conversion process to generate different

OAM states which decreases with increasing |`|. The single channel count

rate in the arm with the mask is not affected by the scanning holograms

in the signal arm, and is flat. The count rates on the two single channels

was approximately 25000s−1. For `s = 0 the coincidence count rate was

approximately 750s−1, implying an overall quantum efficiency of detection

of 3% and a pair production rate of around 106. The accidental coincidence
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rate here, from using the (NI PCI-6602) coincidence board is around 3s−1.

Figure 3.9: Coincidence measurements for a 2-fold symmetric angular inten-
sity mask. Note the signature of the angular mask is present in the coinci-
dence counts, but the single channel counts remain unaffected.

Fig. 3.9 shows the measured OAM distribution for a two-fold rotationally

symmetric angular intensity mask (m=2). As can be seen, the coincidence

measurements show sidebands at ` = ±2, with the suppressed OAM modes

at ` = ±4, in accordance with theory. It is also apparent that the information

in the single channel distribution has not changed - rather, that the mask in

the signal arm has filtered out the appropriate OAM modes in the idler arm

to be measured coincidentally.

Additionally, phase holograms can be displayed on the SLM to investi-

gate the phase relationship between the correlated modes. For the case in
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Figure 3.10: Coincidence measurements for a 2-fold symmetric angular phase
mask. The mask has the same width as in Fig. 3.9, but varies phase apposed
to amplitude. Note the cancellation of the ` = 0 mode in the coincidence.

Fig. 3.10, there is a complete destructive interference of the ` = 0 mode,

due to the symmetry of the phase mask. Because the phase masks are more

efficient than the intensity masks, the sidebands at ` = ±2 have twice the

coincidence count rate in each mode.

These results demonstrate the extension of the classical investigation of

the angle-OAM Fourier relation into the single photon regime. Addition-

ally, the angular states represented are non-local with respect to the OAM

measurements. The results above show that, at the single photon level, it is

possible to engineer specific OAM superposition states in idler photons, by

realizing a specific angular state in signal photons. While these hard-edged
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masks might not be suitable for tests of the EPR paradox or quantum mea-

surements of the angular uncertainty principle, the results demonstrate that,

with the appropriate holograms, the system should be capable of performing

these types of experiment.
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CHAPTER

FOUR

TESTS OF THE QUANTUM ENTANGLEMENT OF

ORBITAL ANGULAR MOMENTUM

The previous chapter shows that our system can make single photon, holo-

graphic measurements of angle and OAM. This chapter will investigate quan-

titative measures of entanglement for the variables of angle and OAM. This

includes a new, angular version of the historic EPR paradox, the violation of

a Bell-type inequality for OAM subspaces, and tomographic measurements

to reconstruct the entangled state produced by down-conversion. Experi-

mental test of quantum entanglement firmly establish the variables of angle

and OAM as quantum observables, and thus suitable candidates in quantum

information protocols and quantum key distribution.
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4.1 The Einstein-Podolsky-Rosen Paradox for

Angles and Orbital Angular Momentum

In quantum systems, one of the hallmark tests is the violation of a Bell-type

inequality, by demonstrating the measured correlations are not due to local-

hidden variable theories. An alternative test of quantum entanglement is the

demonstration of the EPR paradox. This is achieved by making coincidence

measurements of conjugate variables with sufficient precision that - if the

measured properties were predetermined before measurement - they would

be in contradiction with Heisenberg’s uncertainty principle.

In contrast to violating a Bell-type inequality, which applies to discrete

state spaces, EPR correlations provide a demonstration of entanglement both

for discrete and for continuous variables. Experimentally, EPR experiments

have been demonstrated for polarization89, energy and time90, position and

linear momentum91 and with images92.

We will demonstrate the EPR paradox for variables of angle and OAM,

in analogy with the methods used by Howell et. al.91. In doing so, we will

show that entanglement, as manifest in the EPR paradox, applies not only

to linear, but also to angular variables93.

To measure the angular position states, we define a Gaussian-profile,

angular-sector transmission aperture that can be varied both in its width

and orientation. A narrower aperture gives an inherently more precise mea-

surement of angular position but with a reduced detection efficiency, as the
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Figure 4.1: Method of measuring angles and OAM correlation. For angles,
an aperture of fixed width is displayed on signal and idler SLMs. As the
orientation of the aperture is varied, the angular correlation width, ∆φ can
be measured. For OAM, scanning through all possible values of a range of
OAM states in signal and idler allows measurement of the OAM correlation
width.

apertures are lossy in nature. Although the Gaussian profile does not cor-

respond strictly to the minimum uncertainty state of angle94, the precise

profile and minimum width of the sector apertures are not central to this

demonstration.

105



We use the SLMs in signal and idler arms to select both the angular

orientation of each mask, and the charge, `, of the forked holograms, to

measure the OAM, Fig. 4.1.

In practice, measurements are always made with a finite precision and

hence the perfect correlations in both OAM and angular position are un-

obtainable. In order to demonstrate EPR correlations, we use the more

experimentally useful criterion based on measuring the conditional probabil-

ity of finding a particular outcome in one system given a measurement in the

other95. This form of EPR can be expressed in the form of a joint uncertainty

product,

[∆(`h̄)]2[∆φ]2 ≥ h̄2

4
. (4.1)

The violation of this inequality demonstrates the non-separability of the

angle and OAM measurements in signal and idler arms, and thus demon-

strates the EPR paradox.

The experimentally measured angle and OAM correlations are shown in

Fig. 4.2. Note that in both cases the actual value of the angular momen-

tum or position in the signal and idler beams is not important; rather it

is the difference between measurements in the signal and idler beams that

determines the widths of the probability distributions. Fig. 4.3 expresses the

measurements in terms of conditional probabilities P (`s| − `i) and P (φs|φi),

from which the widths ∆` and ∆φ are found.
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Figure 4.2: a) Measured coincidences for OAM measurements in signal and
idler. As expected, the coincidences follow the anti-diagonal line and are
anti-correlated. b) Coincidences for the angular measurements.

For the orbital angular momentum states we measure all combinations

of `s,i from -7 to +7 corresponding to the approximate spiral bandwidth of

our system. For the angular states we use an angular aperture width of π/10

and measure all combinations of φs,i in 60 equally-spaced angular bins. The

measured correlations shown in Fig. 4.2 are maximal whenever `s = −`i or

φs = φi, respectively.

Care must be taken when determining the standard deviations of the an-

gle and OAM distributions, ∆` and ∆φ. Small amounts of random noise,

particularly at large deviations from the mean, leads to a measured stan-

dard deviation which depends on the range of OAM states measured and is

therefore not physically meaningful. We attempt to minimize the noise level

by running the experiment at low flux (approx. 20 000 photons/second) to
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reduce the number of accidental coincidences. In addition, fitting a Gaussian

distribution to the data will provide a more realistic measure of the standard

deviation. A Gaussian fit is appropriate in this instance because the angular

distribution is a narrow Gaussian in transmission.

Figure 4.3: a) Conditional probabilities of the measurements in OAM. b)
The conditional probabilities of the angle measurements.

Fig. 4.3 shows the measured correlations in OAM and angle. As can be

seen, the peak in correlation is where `s + `i = 0 and φs − φi = 0. Fitting to
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a Gaussian distribution, we find [∆`]2 = 0.11h̄2 and [∆φ]2 = 0.04h̄2. Taking

these values for the variance, we get a variance product of

[∆(`h̄)]2[∆φ]2 = 0.0048h̄2. (4.2)

This product is clearly below the limit imposed by Heisenberg’s uncer-

tainty principle of 0.25h̄2, demonstrating the EPR paradox for the chosen

variables.

The results confirm that the EPR conclusion, namely that quantum me-

chanics is either incomplete or non-local, applies to angular position and

OAM. Unlike demonstrations of Bell-type inequalities, which are restricted

to discrete subspaces, EPR correlations simultaneously span an extended

range of OAM states and the continuous state space of angular position. The

demonstration of angular EPR correlations establishes that angular position

and angular momentum are suitable variables for applications in quantum

information processing, notably in protocols for quantum key distribution.

True to the original EPR argument, the presence of hidden variables would

resolve the system into one which fits a local-hidden variable theory.
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4.2 Violation of a Bell’s Inequality for Equally

Weighted OAM Superposition States in 2

Dimensions

While EPR is a good demonstration of the non-local correlations which occur

between entangled states, it does not rule out the possibility of hidden vari-

ables. In this section, we apply a Bell type inequality to OAM states, negat-

ing the presence of local-hidden variables as applied to the entanglement of

OAM states. We make measurements in 2D subspaces of the unbound OAM

space by drawing an analogy with the 2D state space of polarization.

We demonstrate the entangled nature of these OAM superposition states

through violation of the CHSH inequality.

As described in Chapter 1, a Bloch sphere equivalent can be constructed

for any superposition of ±` states, and provides a suitable description to

explore 2-D state spaces of OAM. These ±` Bloch spheres are defined such

that the north/south poles represent ±`, and the equator states are equally

weighted superposition “sector states” of differing orientation.

In order to quantify the degree of entanglement present between the cor-

related photons, we must measure correlations for a range of superposition

states. For polarization, one can violate a Bell-type inequality by measuring

the linear polarization states - the states on the equator of the Poincare
′

sphere. A direct analogy for OAM then, would be to measure the correla-
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tions between the sector states on the equator of the Bloch sphere. A sector

state |ψ〉 is described by

|ψ〉 =
1√
2

(|`〉s + ei`φ| − `〉i). (4.3)

These sector states have 2` sectors of phase alternating between 0 and π.

Combining the above equation with the SPDC state (Chapter 1), we

can calculate the anticipated coincidence rate C(ψs, ψi) for a signal photon

measured in equator state |ψs〉 and idler in |ψi〉 to be

C(ψs, ψi) = |〈ψs|〈ψi||Ψ〉|2 ∝ cos2[`(φs − φi)] (4.4)

where φs,i is the phase angle between sector states, represented as longi-

tude on the equator of the sphere.

We realize sector state holograms like those shown in Fig. 4.4 on signal

and idler SLMs, and measure coincidences as the angle between these holo-

grams is varied, analogous to making measurements of linear polarization -

by rotating polarizers in signal and idler arms. Historically, linear polariza-

tion states were measured to violate a Bell-type inequality and demonstrate

entanglement, by measuring high visibility fringes in coincidence for differ-

ent initial polarizer angles45. These high visibility sinusoidal fringes are the

signature of two dimensional entanglement.

The sector states are experimentally defined by phase apertures on the

SLMs. These phase apertures serve to select the two-dimensional subspace
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Figure 4.4: Examples of the sector state holograms used to violate the Bell
inequality, for ` = 2 and ` = 3. By displaying the same sector holograms in
each arm, and varying φ in one with respect to the other, one should observe
sinusoidal fringes in coincidence.

and act as analyzers for these states when their relative orientation is changed.

Using the SLMs as phase-only modulators results in measurements in a state-

space higher than 2. This is because the hard edge of the phase step cor-

responds to small contributions associated with higher order ` components.

These contributions however, are minimal.
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Figure 4.5: Bell curves for OAM subspaces of ` = 2, 3, 4. In each case, the
physical hologram is rotated through a full 2π, to demonstrate the relation-
ship between the phase angle and the physical orientation as ` increases.
In each case, we violate the CHSH inequality, demonstrating the non-local
correlations measured.
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Fig. 4.5 shows the recorded coincidence fringes for sector state measure-

ments for ` = 2, 3, 4, as a function of the angle between the signal and idler

states. The angles of the sector state holograms are equivalent to the orien-

tation of the polarizers used to violate the Bell inequality for polarization.

A frequently used Bell-type inequality is the Clauser-Horne-Shimony-Holt

inequality (CHSH). For this experiment we define the Bell parameter S to

be,

S = E(a,b)− E(a,b′) + E(a′,b) + E(a′,b′) (4.5)

where a, a′, b,b′ are vectors corresponding to different measurement

states selected by the appropriate holograms on the SLMs, and

E(a,b) =
C(a,b) + C(−a,−b)− C(a,−b)− C(−a,b)

C(a,b) + C(−a,−b) + C(a,−b) + C(−a,b)
(4.6)

where C(a,b) is the measured coincidence rate as a function of hologram

orientations a,b.

The CHSH inequality (−2 ≤ S ≤ +2) is violated for entangled systems,

and sets the statistical bounds for local-hidden variable systems. The statis-

tical upper limit for entangled systems in the CHSH inequality is |S| = 2
√

2.

As can be seen from Fig. 4.5 each of the measurements of the equator states

clearly violate the CHSH inequality, demonstrating the entangled nature of

these sector states. The failure to reach the maximum value of S = 2
√

2

comes from degradation of the measured signal, potentially due to imper-
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fections in alignment and accidental coincidences - resulting in a noise floor

which reduces the overall fringe contrast.

4.3 Violation of a Bell’s Inequality for Arbi-

trary Superpositions of OAM States in 2

Dimensions

One can further extend the analogy between polarization and 2-D OAM

spaces by measuring not just the equator states, but also the OAM states

analogous to circular and elliptical polarizations on the Poincare,
′

sphere.

The versatility of the SLMs used to post-select specific modes means we are

not restricted just to sector state measurements, but given the correct mea-

surement holograms, we can access the entire 2-D OAM state-space. Again

we measure the correlations between pairs of these modal superpositions to

violate a Bell-type inequality. By demonstrating that these superposition

states remain highly entangled, we are not only demonstrating the entangled

nature of the states, but also that our measurement system can precisely

measure correlations corresponding to arbitrary 2-D superpositions of OAM

states.

In the previous section the measurements varied only one angular coor-

dinate, φs,i as the equatorial angle on the Bloch sphere. In this section, we

extend these measurements to superpositions represented by both longitude,

115



φs,i, and latitude, θs,i for signal and idler states respectively.

Figure 4.6: A state |a〉 in the signal arm is maximally correlated with a state
|b〉 in idler, when it’s latitude is reflected about the equator, but the same
longitude. It’s minimum is when it has the same latitude but reflected in
longitude.

The coincidence rate C(a,b) for detecting one photon in state |a〉 and

the other in |b〉, where |a〉, |b〉 are vectors on the Bloch sphere, is,

C(a,b) ∝ |〈a|〈b||ψ〉|2 =
1

4

[
1− cos(θa) cos(θb)

+ sin(θa) sin(θb) cos (φa − φb)
]
. (4.7)

Therefore, we predict maximum coincidence for θb = π − θa and φb =

φa, corresponding to states with the same longitude but reflected about the

equator, and minimum coincidence for θb = θa and φb = φa−π, corresponding

to states with the same latitude but reflected about the vertical axis, as shown

in Fig. 4.6.
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Figure 4.7: A state in-between the equator and the poles is equivalent to an
elliptical polarization state. The example here shows the phase and intensity
profile of an ` = 1 superposition state which is halfway between the HG10

and the LG10 state. As a consequence, this state carries a fractional OAM
charge.

The design of our SLM holograms here is necessarily more sophisticated

than that of the previous holograms, which were either OAM eigenstates

or sector states. The holograms incorporate a spatially dependent blazing

function superimposed onto the phase distribution. This is necessary for the

measurements to remain within a 2-D subspace of OAM and avoid significant

mode contamination.

Our results, for the ` = ±2 subspace, are shown in Fig. 4.8. In each case

we plot the coincidence rate as one of the holograms is scanned around a great

circle of the Bloch sphere, while maintaining the other superposition at one

of four equally spaced states, represented by the black dots. The results from
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the previous section correspond to measurements in a great circle around the

equator of the Bloch sphere. The two examples shown here are those for

a great circle which crosses both north and south poles, and an arbitrarily

chosen great circle around the sphere. As expected, we observe sinusoidal

fringes in the coincidence rate, characteristic of entanglement in 2 dimensions.

In each case our results show a violation of a Bell-type inequality. We find

the values of S to be 2.56 ± 0.05 for the polar great circle, and 2.59 ± 0.05

for the arbitrary great circle in Fig. 4.8 – clearly violating the constraints of

a local, realistic hidden variable theory.

For the sector state measurements, one can approximate a 2-D OAM sub-

space by using phase-only holograms. The hard-edged phase step results in

sidebands of higher-order OAM modes, but given that the SPDC source pro-

duces higher order modes with a reduced amplitude, they can be neglected,

resulting in a minimal amount of mode contamination. However, measuring

states on the sphere which are in between the equator and poles can only be

effectively done with phase and intensity modulation of the holograms. To

illustrate this point, Fig. 4.9 below shows the measured correlations between

the same states as above in Fig. 4.8, but using phase-only holograms. In

this case, it is clear that the measured variation in coincidence is not sinu-

soidal, and hence the phase-only holograms are inadequate for restricting the

measurement space to 2 dimensions. It would be inappropriate to apply the

CHSH inequality to these results, as the number of participating modes is

no longer equal to 2.
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Figure 4.8: Bell curves within the ` = ±2 subspace for states crossing both
poles (top) and an arbitrarily chosen great circle (bottom). Note the close
agreement with theory and experiment in each case, which is largely due to
the precise intensity modulation of the states measured. This is reflected in
the strong violation of the parameter S in each case.

In our method, we are not restricted to only measuring correlation be-

tween modes corresponding to great circles around the sphere. We are able

to make coincidence measurements between any two superpositions of modes

described by points a(θa, φa) and b(θb, φb), giving us access to the entire 2D

state-space.

We demonstrate this by choosing one particular state, a, and varying

b over the full range of possible values (θb = [0, π];φb = [0, 2π]). We can
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Figure 4.9: Measured correlations for phase-only holograms (left) compared
with phase and intensity modulated holograms (right). As can be seen,
for phase only modulation the curves are not sinusoidal, meaning that the
number of modes selected by the holograms is not equal to 2.

then map out a sphere of coincidence rate between the static state in arm

A, with respect to the full range of states measured in arm B. Our results

are shown in Fig. 4.10 for reference holograms at a point on the equator

(θa = π/2, φa = 0), and at a pole (θa = 0, φa = 0). As expected, we find that

the coincidence rate varies sinusoidally in a great circle around the sphere

with maximum counts when θb = π − θa and φb = φa and minimum counts

when θb = θa and φb = φa − π.

We have now established a holographic method for the arbitrary manipu-
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bbb b

Figure 4.10: Measured correlations of the entire range of θb, φb with respect
to two different fixed reference holograms as shown. The coincidence count
rates are normalized with respect to the single channel count rates as C

S1S2∆t

where ∆t is the coincidence gate time.

lation of OAM states within a 2D state-space. By testing this method within

the context of violating a Bell-type inequality, we can confirm that we mea-

sure the desired states to a high degree of precision. Being able to measure

the entire 2D state space holographically allows for further quantum tests,

such as investigating the Leggett inequalities for OAM states96,97,98.
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4.4 Tomographic Reconstruction of Density

Matrices for 2-Dimensional Orbital An-

gular Momentum Sub-Spaces

Any quantum system is completely characterized by its density matrix99,

which thus predicts the outcome of any measurement. The density matrix

of a 2-state quantum system contains all the information on the degree to

which they are entangled. Hence, a measurement based reconstruction of the

density matrix with sufficient fidelity is a viable method to characterize any

2-state system as a resource for quantum information processing.

In this section we reconstruct the density matrices of the two-photon

states with respect to various 2D subspaces of +` and −`. It is important to

distinguish correlated measurement outcomes that may also arise for mixed

quantum states from quantum entanglement. We achieve this by reconstruct-

ing the complete density matrix of the two-photon system and evaluating

various degrees of entanglement (including negativity, linear entropy, con-

currence, tangle and entanglement of formation)100,101,18. These measures

of entanglement, while theoretically involved, give quantitative measures of

how pure/mixed our measured states are, and also how entangled/separable

they are.

Measurements of high-dimensional OAM superposition states would allow

for the practical implementation of quDits, which carry quantum information
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in a D-dimensional basis. However, tomographic reconstruction of density

matrices in large state spaces involves making a very large number of mea-

surements. Here we restrict ourselves to 2-D subsystems within the OAM

basis states of ±`, ranging from ` = 1 up to ` = 30. This allows us to draw

on tomographic methods developed for other 2-D bi-partite systems as in

the polarisation basis. While the process of parametric down-conversion be-

comes less efficient for higher order OAM modes, the reconstructed density

matrices here demonstrate that entanglement still persists for OAM states

up to above ` = 20.

We reconstruct the density matrices by making measurements of the pure

OAM states and the equally weighted superpositions (sector states). Sector

states which differ by a phase angle of π/2 are orthogonal and provide an

alternate basis to the OAM basis. The sector states of interest here are the

states |φ〉 = |0〉, |π/4〉, |π/2〉 and |3π/4〉, which are the equator states of the

Bloch sphere analogous to the linear polarization basis states.

In the ±` state-space, the maximally entangled (Bell state) in both OAM

and angle bases would be,

|Ψ〉 =
1√
2

(|+ `〉s| − `〉i + | − `〉s|+ `〉i) (4.8)

=
1√
2

(|φ〉s|φ〉i − |φ+ π/2〉s|φ+ π/2〉i), (4.9)

meaning that the photons are anti-correlated in OAM, and correlated in
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angular position. Ideally, our holographic measurements should measure this

entangled state, and we will compare our experiment with this perfect case.

Any quBit density matrix can be written as,

ρ =



A11 A12e
iφ12 A13e

iφ13 A14e
iφ14

A12e
−iφ12 A22 A23e

iφ23 A24e
iφ24

A13e
−iφ13 A23e

−iφ23 A33 A34e
iφ34

A14e
−iφ14 A24e

−iφ24 A34e
−iφ34 A44



where Ai,j are the amplitudes and φi,j the phases of the matrix elements.

The diagonal elements of the density matrix describe the probability to

detect simultaneously each of the twin photons in one of the states |+ `〉 and

| − `〉. Determining the off-diagonal matrix elements requires measurements

in superpositions of these states. The density matrix is reconstructed from

projection measurements onto the 6 (non-orthogonal) states |0〉, |π/4〉, |π/2〉,

|3π/4〉, |+ `〉 and | − `〉. We measure the probability to find simultaneously

each of the twin photons in one of these 6 states (36 measurements in total).

Each projection measurement can be expressed in terms of the density

matrix elements ρi,j , providing a set of 36 coupled equations to determine

the 16 density matrix elements. In principle, a set of 16 measurements is

sufficient if the corresponding transformation matrix is non-singular100. This

procedure is favourable if a minimum number of potential measurements is

required102, however it is convenient for us to make all 36 measurements, as

we can quickly switch holograms on the SLMs. This allows us to perform a
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least square fit and the option to determine the largest and smallest degree

of entanglement that is compatible with our measurements.

Figure 4.11: Characterization of the two-photon state by the 36 correlation
measurements used to reconstruct the density matrices. These measurements
demonstrate which states are correlated, anti-correlated, and only partially
correlated for each basis. The example given here is for measurements in the
` = ±3 subspace.

We measure the coincidences as we cycle the holograms in signal and
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idler beam paths through the 36 possible permutations of the 6 modes in

each arm.

For determining the density matrix we normalize the measured coinci-

dence count rates with the single channel counts. This gives us the quantum

contrast QC = C/(S1S2∆t) which gives the ratio of coincidences, C to acci-

dental coincidences S1S2∆t. The 36 measurements which form the basis of

the tomography are shown in Fig. 4.11 for the ` = ±3 subspace.

4.4.1 Reconstructing the Density Matrix

A physically allowed density matrix needs to fulfil certain criteria: It must

have a trace equal to unity and it must have positive eigenvalues, as these

correspond to probabilities. This is not automatically guaranteed if we calcu-

late the density matrix from measurements with finite precision. While the

trace criterion can guaranteed with the appropriate normalization, other er-

rors of the matrix obtained due to imperfect measurements such as negative

eigenvalues cause more problems. In fact, for a strongly entangled system

being close to a pure state, for which one eigenvalue is typically close to

one and all the others close to zero, such errors are particularly likely. This

can be caused simply by noise, but it may also sometimes indicate contribu-

tions from additional states in a larger Hilbert space, which are not perfectly

filtered out in the measurements.

With the over-complete set of N = 36 measurements for the 16 unknowns,

we can determine the density matrix that provides the best agreement with
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Figure 4.12: Graphical representation of the real part of the density matrix
for several OAM subspaces. For |`| ≤ 22 the four central entries of the
density matrix dominate, indicating entanglement. For subspaces of larger `,
the signal to noise ratio decreases, and the quantum conditions deteriorate.

the measured outcomes. This is done by numerically searching for the 10

independent amplitudes Ai,j and 6 phases φi,j of the density matrix which

minimizes,
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χ2 =
36∑
i=1

C(M)
i − C(P )

i√
C

(M)
i + 1

 (4.10)

In this χ2 function103, C(M) is the experimentally recorded coincidence

count rates, and C(P ) are those predicted by the ideal density matrix. This

minimization routine does not necessarily result in a matrix with positive

eigenvalues. We therefore require the condition for positive eigenvalues as an

additional constraint in the search algorithm. As an example, for the |`| = 3

subspace, this gives the density matrix with the minimum value of χ2, shown

in Fig. 4.12,

ρ =



0.008 −0.027 −0.026 −0.003

−0.027 0.457 0.484 −0.005

−0.026 0.484 0.530 0.004

−0.003 −0.005 −0.004 0.004


+i



0 −0.002 0.000 0.004

0.002 0 0.012 0.000

0.000 −0.012 0 0.002

−0.004 0.000 −0.002 0



which has one large positive eigenvalue of 0.981, the three other eigen-

values being 0.013, 0.006 and 0.000. The sum of the squared eigenvalues is

Tr(χ2) = 0.963. The large first eigenvalue, indicative of a Bell state, shows

that our system is almost a pure entangled state.

While our χ2 minimisation procedure gives a valid density matrix, there

are other correct solutions to the minimization which lie within our confi-

dence limits. For a system such as ours which exhibits shot noise one would

anticipate that χ2/N ≈ 1. More precisely, one would expect χ2 to lie in the
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range N ±
√

2N 104. Within this range of possible χ2 we use a secondary

criterion to find the density matrix yielding the maximum or minimum en-

tanglement that is consistent with the measurements, thereby establishing

upper and lower confidence limits for the degree of entanglement.

For sub-spaces where the total number of counts are high, the statistical

uncertainty is very low and even when minimised, the value of χ2 does not

fall below the upper bound of the N ±
√

2N range. In these cases, any

degradation of the experimental measurements are due to systematic noise

sources such as alignment errors. In this case we simply take the χ2 minimised

matrix as the optimum solution.

For higher order OAM sub-spaces where the overall count-rates are lower,

the random statistical noise becomes dominant and χ2 can be reduced below

the upper bound. It is in these cases that we can identify possible density

matrices that yield the largest or smallest degree of entanglement. As one

might expect, in the cases of extremely low count-rates the dominant sta-

tistical fluctuations mean that the least squares fit can be compatible with

both large and no entanglement. Due to the presence of statistical noise in

the detection system, the quality of the entangled state degrades for higher

OAM sub-spaces.

4.4.2 Measures of Entanglement

From the two-photon density matrices we can obtain various measures of

entanglement for a wide range of |`| subspaces (linear entropy, fidelity, neg-
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ativity, concurrence, tangle and entanglement of formation). A selection of

these are shown in Fig. 4.13. A state is entangled if it cannot be described as

the product state of its subsystems or as an incoherent mixture of such states.

This feature can be quantified by evaluating the partial transpose of a two-

photon state, transposing only one of the subsystems, and then identifying

the eigenvalues of the partial transpose. If the system was a product state,

the partial transpose would be simply the transpose of one of the subsystems,

which is a valid density matrix. However if the system was entangled, the

partial transpose exhibits one or more negative eigenvalues.

The linear entropy105 SL = 4
3
(1− Tr(ρ2)) quantifies the “mixed-ness” of

the state, with a pure state characterized by SL = 0, and a completely mixed

state by SL = 1. We find that the measurements made within sub-spaces of

small |`| correspond closely to that of a pure state. For OAM subspaces from

|`| = 1 to 20, we find values between SL = 0.050 and SL = 0.350. Photons

generated with a higher OAM are found in an increasingly mixed state. The

main reason for this is that the holographic post-selection technique is less

efficient for high OAM states, due to pixellation on the holograms.

The fidelity106 of a density matrix with the ideal state, the maximally

entangled Bell state Φ− is given by F (ρ, ρT ) = [Tr(
√√

ρTρ
√
ρT )]2, where

ρT is the density matrix of the ideal state. In our case, the target state is

the Bell state, so the fidelity measure simplifies to F = 〈Ψ|ρ|Ψ〉. For OAM

sub-spaces from |`| = 1 to 20, we find a fidelity ranging from F = 0.978

(at |`| = 3) to F = 0.826 (at |`| = 20). The fidelity with the maximally
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Figure 4.13: Measures of entanglement and state purity of OAM state-spaces
from |`| = 1 to |`| = 30. Error bars show the maximum and minimum values
of the measures which are consistent with the results. Strong entanglement
persists up to around |`| = 20.

entangled Bell-state may be taken as a measure to quantify the degree of

entanglement. A two-photon state cannot be described as the product state

of its subsystems if the fidelity of the density matrix sinks below 2/3. In this

sense, entanglement persists in our system up to the OAM subspace |`| = 22.

The negativity is defined as half the modulus of the smallest eigenvalue.

For a maximally entangled state the negativity is 0.25 and is zero for a

completely mixed state. For our system we find the largest negativity of
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0.241 for the |`| = 3 subspace which decreases to 0.174 at |`| = 20 and

almost vanishes for higher OAM subspaces as shown.

The concurrence is C(ρ) = max(0, λ1 − λ2 − λ3 − λ4), where λ are the

eigenvalues, in decreasing order of the Hermitian matrix
√√

ρρ̄
√
ρ, where

ρ̄ is obtained from ρ by an OAM flip on both states101. For a maximally

entangled state, the concurrence is equal to 1, whereas for an un-entangled

state it is 0. From our measurements we calculate a concurrence ranging

from C = 0.969 to C = 0.700 (at |`| = 20).

The entanglement of formation ε is expressed as a function of the con-

currence C which also is a measure of entanglement. The entanglement of

formation characterises the entanglement of a given state by the resources

needed to create it. It is defined as ε = −xlog2(x) − (1 − x)log2(1 − x),

where x = 1/2(1 +
√

1− C2). For this parameter, we find values ranging

from ε = 0.956 to ε = 0.591.

For each of the measures of entanglement, we observe the greatest degree

of entanglement for low ` states, decreasing as ` increases. We observe the

largest values for |`| = 3 which can be explained by the fact that the contri-

bution of higher order sidebands generated by our segment masks are more

dominant for the OAM subspaces of |`| = 1 and |`| = 2. The coincidence

counts become comparable to the accidental coincidences for OAM subspaces

of |`| > 22, and consequently, quantum correlations deteriorate towards this

cut-off.

This method of reconstructing the density matrix of a state allows us
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to calculate the degree of entanglement within each chosen ±` sub-space

of OAM. Confirming that entanglement persists for OAM states as high as

|`| = 20 gives an indication of the effective dimension of the usable Hilbert

space defined by the OAM states in our experiment.
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CHAPTER

FIVE

GHOST IMAGING USING ORBITAL ANGULAR

MOMENTUM

5.1 Introduction

This final chapter considers a potential application of the correlated nature of

down-converted photons beyond the basis of what has been considered so far.

Imaging with correlated light sources allows for some interesting phenomena,

such as ghost imaging, to be investigated. Ghost imaging was first proposed

as an illustration of the quantum correlations between pairs of photons pro-

duced in SPDC107. The unique characteristic of ghost imaging is that the

image emerges from the coincidences between the photon pairs, while not

being present in either single arm of the system. There have been a number

of experiments since the first observations over a decade ago108,109, inves-
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tigating ghost imaging using both quantum and classical light sources110.

Although ghost imaging requires only correlated light, the phenomenon has

remained controversial, and has led to much debate about which features

of ghost imaging are quantum and which are not111,112,113,114,115. A recent

analysis of this question may be found in reference116.

Our down conversion experiment is suitable for implementing a ghost

imaging system for two reasons. Firstly, it allows for high precision quantum

measurements on states, which would allow us to test for certain quantum

features. Secondly, our holographic techniques allow us to measure OAM

states and spatial modes, both of which are closely related to images.

As our system has been designed for making holographic quantum mea-

surements, as opposed to imaging, our system will be markedly different from

other ghost imaging systems. We can use the nature of our experiment to

make quantum measurements of a ghost image - to measure the entangled

nature of the images our system produces. One way to determine whether a

ghost image has quantum properties would be to test against a Bell inequal-

ity. As is now established, experimental investigation of Bell’s inequality is

the standard method to test whether results can be explained through local

hidden-variable theories. Previous to this investigation, a Bell test approach

has not been applied to the analysis of ghost images.

In classical imaging, various techniques give enhanced images. Many of

these techniques were developed within microscopy and include dark-field and

phase-contrast117. Traditionally each technique required different objective

135



lenses or phase filters within the microscope. However SLMs have recently

been incorporated into a microscope to introduce specific phase filters so

that all of these imaging modes can be sequentially implemented without any

change of hardware. For example, the use of spiral phase plates introduces

modes with OAM which can result in images with edge enhancement118.

Our experiment applies these edge enhancement techniques to a down-

converted ghost imaging system. Because of the non-local nature of the

photons, the object can be non-local with respect to the enhancement filter,

yet enhanced images can be recovered in the coincidence measurements.

5.2 Recording a Ghost Image

The major difference between our ghost imaging system and previous ghost

imaging systems is that, while most systems incorporate a camera in one arm

and a single pixel detector in the other, we incorporate single mode fibers

in each arm. This is overcome by raster scanning the object in one arm to

build up the image, pixel by pixel.

Images are produced from the correlations between the down-converted

photons, and the spatial resolution and contrast of such images is set by

the size of the detection aperture. In our experiment, the single-mode fibers

ensure both high resolution and single mode selectivity.
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Figure 5.1: “Object” holograms used to perform ghost imaging with down-
converted light. The signal SLM is used to filter out a specific OAM or sector
state from the light. The idler SLM is used to represent the object, which is
either a) a “ghost” b) a circular disc. The objects are a π phase step. The
objects are represented much larger than the SLM window, such that the
detector only sees a small portion of the object, which - at the edge of the
object - appears as a phase step with a particular orientation.
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If the down-converted light is used as the illumination source for an imag-

ing system, the spatial incoherence results in images that generally have

low spatial resolution and poor contrast. However, coherent imaging can be

achieved by using the correlations between the down-converted photons. The

precise measurement of the position of either photon gives spatial informa-

tion about the other photon, and therefore, images formed using coincidence

measurements will have high spatial resolution and good contrast. Note that,

for simple imaging of this type, these correlations need not be quantum in

nature: all that is required is conservation of transverse momentum between

the photon pairs.

In our system the object is larger than the point spread function of de-

tection, such that we see only a small portion of the object at any one time.

The image is acquired by stepping the object in the transverse plane and

recording the corresponding coincidence count. For a phase object, the spa-

tial incoherence of the source means that the image derived from the object

arm alone has a very low contrast, see Fig. 5.2 (b), which decreases with

increasing modal bandwidth of the down-conversion and detection processes.

When a spiral phase filter, with index `ref , is placed in the reference arm,

the resulting coincidence count is proportional to the modal component of

the object that corresponds to `obj = −`ref . Any part of the object described

by a uniform phase corresponds to `obj = 0, which gives a high coincidence

count for `ref = 0 and zero coincidence count for `ref 6= 0. For a part of

the object containing a π-phase step, an expansion in terms of exp(i`objφ)
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gives non zero components for `obj = ±1. Such a phase step therefore gives a

high coincidence count for `ref = ±1. Hence both `ref = 0 and `ref = ±1 give

images with high-contrast edges, but with dark and bright edges respectively.

A phase filter of `ref = 0 results in high coincidence counts wherever the phase

of the object is uniform and zero coincidence at the edge, see Fig. 5.2 (c).

Also, a phase filter with `ref = ±1 results in high coincidence counts only at

positions of the phase steps, giving bright edges, see Fig. 5.2 (d). The high

contrast of the images (there is no background subtraction) relies upon the

spatial mode selectivity of detection and, in this case, the same images could

not be obtained by using a multi-mode “bucket” detector in either the object

or reference arm. (Note, in general, `ref = ±1 will give edge enhancement to

all images irrespective of the precise height of the phase step).
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Figure 5.2: a) Phase object b) Single channel counts in the object arm, c)-
f) Coincidence images of the phase object shown in (a) with each different
phase filter (inset).
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Although the coincidence images have features that are not present in

images derived from the object detector alone, the correlations required to

produce the image need not be uniquely quantum. All that is required is

conservation of OAM between the photon pairs. The signature of quantum

entanglement is not that correlations exist for a particular variable, but that

these correlations persist when measured in a complementary basis. In the

linear position-momentum case, the quantum signature is that both the im-

age and diffraction pattern from a slit can be observed, without background

subtraction91. For OAM, the correlations must persist between the OAM

states and their superpositions. Hence, within our imaging system the com-

plementary basis is a reference hologram formed from the linear superposition

of ` = 1 and ` = −1, a π phase step orientated at an angle θ - determined by

the phase difference. Using this phase step as the reference hologram gives

coincidence images where the contrast of the edge detection depends on the

relative orientation of the edge with respect to the reference phase step, see

Fig. 5.2 (e), (f).

The high contrast between parallel and orthogonal states in complemen-

tary basis sets seems to be a qualitative demonstration of the non-local cor-

relations. However it is not sufficient to distinguish between quantum and

local-realistic theories. This can be achieved by violating a Bell inequality.

For this we record the coincidence rate as a function of the relative angle

θs − θi between the orientation of the edge in the object and phase step in

the reference arm. Our measurements detect only superpositions of ` = 1
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and ` = −1 and therefore our observations are sensitive only to this subspace

of the OAM states; hence the two-photon entangled state is

|ψ〉 =
1√
2

[|1〉s| − 1〉i + | − 1〉s|1〉i]. (5.1)

To violate a Bell inequality the coincidence rate C must vary sinusoidally.

The coincidence rate is predicted to be

C = K cos2(θs − θi), (5.2)

where K is a constant. Such a violation can be quantified with the previously

used CHSH Bell-type inequality.

By imaging a circular phase object which is much larger than the imaging

point spread function, and using a π phase step as the reference hologram,

we can generate images containing all orientations of edges and measure the

coincidence rate at the edges as a function of orientation. In this situation,

our state-space for the transverse mode comprises the OAM states `ref = ±1

of an equally weighted superposition. Hence we can test a Bell inequality on

the ` = ±1 subspace of transverse modes. It is known that tests on such sub-

spaces reveal the quantum features of the full high-dimensional system119.

Fig. 5.3 shows images of the circular phase object with the reference hologram

orientation at 0◦, 45◦, 90◦ and 135◦ respectively. The variation in count rates

for each image is shown in Fig. 5.3 (a)-(d). These curves are calculated from

the azimuthal variation in count rate around the coincidence image. From
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these measurements, we determine the value of S to be 2.69 ± 0.10, clearly

exceeding the local-hidden-variable bound of 2 and revealing the quantum

nature of our ghost imaging arrangement. It should be noted that the cal-

culated value of S depends on the chosen radial range and in this case we

average over the width of the measured signal, see dashed lines in Fig. 5.3 e).

The failure to reach maximal entanglement of 2
√

2 reflects both finite fringe

contrast, and possible contamination of the single-mode detection by higher

order modes (|`| > 1). Both of these effects which reduce the value of S.
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0

2π

Figure 5.3: a)-d) Coincidence images for reference orientations of 0◦, 45◦, 90◦

and 135◦. By plotting the azimuthal intensity variations in each image (e),
one can see the sinusoidal pattern in coincidence, and appropriate phase shift
for each analyzer hologram.
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It is important to consider what results could be achieved if our entangled

source was replaced with a classical, thermal light source. Coincident images

obtained with thermal light have a finite background112,114,111 which reduces

the observable contrast to the level at which there will be no violation of

Bell’s inequality. An explicit demonstration of this is a potential topic for

future research.

We have proposed a new form of ghost imaging, where the introduction

of a phase filter into one of the arms can non-locally modify the coincidence

image such that its edges have enhanced contrast. The use of single mode

detectors means that the images have high contrast without need for back-

ground subtraction. Although similar types of images could be generated

through means of a non-entangled source, they would not have sufficient

contrast to violate a Bell-type inequality. Indeed, satisfying or violating a

Bell inequality as demonstrated here might reasonably be used to distinguish

between classical and quantum ghost-imaging systems.
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CHAPTER

SIX

CONCLUSIONS

This thesis presents several unique experiments designed to explore both the

nature of the orbital angular momentum of light, both at the classical and

quantum levels. This includes an angular analogue to linear diffraction (An-

gular diffraction), verified classically and non-locally on entangled photons.

Following this, are a series of quantitative tests of quantum entanglement,

including a new form of the EPR paradox, violation of a Bell inequality for

OAM states, and fully characterising these states through tomographic recon-

struction of density matrices. The final chapter reports a new form of Ghost

Imaging using both OAM states and entangled photons, and highlights key

quantum features in a ghost image, in a field where quantum vs. classical

effects is a topic under debate. The techniques developed throughout the

course of my PhD have the potential for widespread use, such as the devel-
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opment of a holographic automatic alignment system for down-conversion

experiments. This system allowed for measurements to be made over very

long timescales, without the need for manual intervention, and has the po-

tential to be made into a general purpose software package.

As is common in the experimental sciences, in the process of answering

one question, many more questions are uncovered. In uncovering these ques-

tions, it is clear what lies ahead for future experiments. This includes the

potential of further and more advanced tests of quantum mechanics (beyond

the Bell inequality), a solid understanding of how to control the OAM band-

width in down conversion, and how entangled ghost imaging could be used

to image biological samples. These are a few of the many avenues of poten-

tial research which could be explored using the down conversion system, and

holographic techniques that I developed over the past three and a half years.
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Unveiling a truncated optical lattice associated with a triangular aper-

ture using lights orbital angular momentum. Physical Review Letters,

105(5):53904, 2010.

[59] S.N. Khonina, V.V. Kotlyar, R.V. Skidanov, V.A. Soifer, P. Laakko-

nen, and J. Turunen. Gauss-laguerre modes with different indices in

155



prescribed diffraction orders of a diffractive phase element. Optics

Communications, 175(4-6):301–308, 2000.

[60] E. Nagali, F. Sciarrino, F. De Martini, B. Piccirillo, E. Karimi, L. Mar-

rucci, and E. Santamato. Polarization control of single photon quan-

tum orbital angular momentum states. Arxiv preprint arXiv:0902.0740,

2009.

[61] G.C.G. Berkhout, M.P.J. Lavery, M.J. Padgett, and M.W. Beijersber-

gen. Measuring orbital angular momentum superpositions of light by

mode transformation. Optics Letters, 36(10):1863–1865, 2011.

[62] G.C.G. Berkhout, M.P.J. Lavery, J. Courtial, M.W. Beijersbergen, and

M.J. Padgett. Efficient sorting of orbital angular momentum states of

light. Physical Review Letters, 105(15):153601, 2010.

[63] J.W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and

A. Zeilinger. Experimental test of quantum nonlocality in three-photon

greenberger–horne–zeilinger entanglement. Nature, 403(6769):515–519,

2000.

[64] D. Bouwmeester, J.W. Pan, M. Daniell, H. Weinfurter, and

A. Zeilinger. Observation of three-photon greenberger-horne-zeilinger

entanglement. Physical Review Letters, 82(7):1345–1349, 1999.

[65] H.C. Guo, Y.Q. Qin, and S.H. Tang. Parametric downconversion via

156



cascaded optical nonlinearities in an aperiodically poled mgo: Linbo

superlattice. Applied Physics Letters, 87:161101, 2005.

[66] H. Hubel, D.R. Hamel, A. Fedrizzi, S. Ramelow, K.J. Resch, and

T. Jennewein. Direct generation of photon triplets using cascaded

photon-pair sources. Nature, 466(7306):601–603, 2010.

[67] J. Douady and B. Boulanger. Experimental demonstration of a pure

third-order optical parametric downconversion process. Optics letters,

29(23):2794–2796, 2004.

[68] J.T. Barreiro, N.K. Langford, N.A. Peters, and P.G. Kwiat. Gen-

eration of hyperentangled photon pairs. Physical Review Letters,

95(26):260501, 2005.

[69] P.G. Kwiat, E. Waks, A.G. White, I. Appelbaum, and P.H. Eberhard.

Ultrabright source of polarization-entangled photons. Physical Review

A, 60(2):773–776, 1999.

[70] J.P. Torres, A. Alexandrescu, and L. Torner. Quantum spiral

bandwidth of entangled two-photon states. Physical Review A,

68(5):050301, 2003.

[71] F.M. Miatto, A.M. Yao, and S.M. Barnett. Full characterization of the

quantum spiral bandwidth of entangled biphotons. Physical Review A,

83(3):033816, 2011.

157



[72] A.M. Yao. Spectral decomposition of entangled photons with an arbi-

trary pump. Arxiv preprint arXiv:1012.5021, 2010.

[73] H. Di Lorenzo Pires, H.C.B. Florijn, and M.P. Van Exter. Measurement

of the spiral spectrum of entangled two-photon states. Physical Review

Letters, 104(2):20505, 2010.

[74] SSR Oemrawsingh, A. Aiello, ER Eliel, G. Nienhuis, and JP Woerd-

man. How to observe high-dimensional two-photon entanglement with

only two detectors. Physical review letters, 92(21):217901, 2004.

[75] A. Aiello, S.S.R. Oemrawsingh, E.R. Eliel, and J.P. Woerdman. Non-

locality of high-dimensional two-photon orbital angular momentum

states. Physical Review A, 72(5):052114, 2005.

[76] A.Y. Loudon, P.A. Hiskett, G.S. Buller, R.T. Carline, D.C. Herbert,

WY Leong, and J.G. Rarity. Enhancement of the infrared detection ef-

ficiency of silicon photon-counting avalanche photodiodes by use of sil-

icon germanium absorbing layers. Optics Letters, 27(4):219–221, 2002.

[77] R.E. Warburton, A. McCarthy, A.M. Wallace, S. Hernandez-Marin,

R.H. Hadfield, S.W. Nam, and G.S. Buller. Subcentimeter depth res-

olution using a single-photon counting time-of-flight laser ranging sys-

tem at 1550 nm wavelength. Optics Letters, 32(15):2266–2268, 2007.

[78] M.J. Stevens, R.H. Hadfield, R.E. Schwall, S.W. Nam, R.P. Mirin,

and J.A. Gupta. Fast lifetime measurements of infrared emitters using

158



a low-jitter superconducting single-photon detector. Applied Physics

Letters, 89(3):031109–031109, 2006.

[79] N.R. Heckenberg, R. McDuff, C.P. Smith, and A.G. White. Generation

of optical phase singularities by computer-generated holograms. Optics

Letters, 17(3):221–223, 1992.

[80] J.E. Curtis, B.A. Koss, and D.G. Grier. Dynamic holographic optical

tweezers. Optics Communications, 207(1-6):169–175, 2002.

[81] D.G. Grier. A revolution in optical manipulation. Nature, 424:810–816,

2003.

[82] C. Paterson and R. Smith. Higher-order bessel waves produced by

axicon-type computer-generated holograms. Optics Communications,

124(1-2):121 – 130, 1996.

[83] J Arlt, K Dholakia, L Allen, and M. J. Padgett. The production

of multiringed laguerre-gaussian modes by computer-generated holo-

grams. Journal of Modern Optics, 45(6):1231–1237, 1998.

[84] J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett. Vortex knots

in light. Nature, 7:55, 2005.

[85] J. Leach, G. Sinclair, P. Jordan, J. Courtial, M. J. Padgett, J. Cooper,

and Z. Laczik. 3d manipulation of particles into crystal structures using

holographic optical tweezers. Optics Express, 12(1):220–226, Jan 2004.

159



[86] V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin. Laser beams with

screw dislocations in their wavefronts. Optical Angular Momentum,

52(8):152, 1990.

[87] E. Yao, S. Franke-Arnold, J. Courtial, S. M. Barnett, and M. J. Pad-

gett. Fourier relationship between angular position and optical orbital

angular momentum. Arxiv preprint physics/0606142, 2006.

[88] R. Ghosh, C.K. Hong, Z.Y. Ou, and L. Mandel. Interference of two

photons in parametric down conversion. Physical Review A, 34(5):3962,

1986.

[89] Y.H. Shih and C.O. Alley. New type of einstein-podolsky-rosen-bohm

experiment using pairs of light quanta produced by optical parametric

down conversion. Physical Review Letters, 61(26):2921–2924, 1988.

[90] P.G. Kwiat, A.M. Steinberg, and R.Y. Chiao. High-visibility inter-

ference in a bell-inequality experiment for energy and time. Physical

Review A, 47(4):2472–2475, 1993.

[91] J.C. Howell, R.S. Bennink, S.J. Bentley, and R.W. Boyd. Real-

ization of the einstein-podolsky-rosen paradox using momentum-and

position-entangled photons from spontaneous parametric down con-

version. Physical Review Letters, 92(21):210403, 2004.

[92] V. Boyer, A.M. Marino, R.C. Pooser, and P.D. Lett. Entangled images

from four-wave mixing. Science, 321(5888):544, 2008.

160



[93] J.B. Gotte, S. Franke-Arnold, and S.M. Barnett. Angular epr paradox.

Journal of Modern Optics, 53(5-6):627–645, 2006.

[94] D.T. Pegg, S.M. Barnett, R. Zambrini, S. Franke-Arnold, and M. J.

Padgett. Minimum uncertainty states of angular momentum and an-

gular position. New Journal of Physics, 7(05):62–62, 2005.

[95] M. D. Reid, P. D. Drummond, M. D. Reid, and P. D. Drummond.

Quantum correlations of phase in nondegenerate parametric oscillation.

Physical Review Letters, 60(26):2731, 1988.

[96] A. J. Leggett. Nonlocal hidden-variable theories and quantum mechan-

ics: An incompatibility theorem. Foundations of Physics, 33(10):1469–

1493, 2003.

[97] J. Romero, J. Leach, B. Jack, S.M. Barnett, M.J. Padgett, and

S. Franke-Arnold. Violation of leggett inequalities in orbital angular

momentum subspaces. New Journal of Physics, 12(123007), 2010.

[98] S. Groblacher, T. Paterek, R. Kaltenbaek, C. Brukner, M. Zukowski,

M. Aspelmeyer, and A. Zeilinger. An experimental test of non-local

realism. Nature, 446:871–875, 2007.

[99] U. Fano. Description of states in quantum mechanics by density matrix

and operator techniques. Rev. Mod. Phys., 29(1):74–93, Jan 1957.

[100] D.F.V. James, P. G. Kwiat, W. J. Munro, and A. G. White. Measure-

ment of qubits. Physical Review A, 64(5):052312, Oct 2001.

161



[101] W.K. Wootters. Entanglement of formation of an arbitrary state of

two qubits. Physical Review Letters, 80:2245, 1998.

[102] A. Ling, A. Lamas-Linares, and C. Kurtsiefer. Accuracy of minimal

and optimal qubit tomography for finite-length experiments. ArXiv:

0807.0991, page 5, 2008.

[103] W.H. Press, S. A Teukolsky, W. T. Vetterling, and B. P Flannery.

Numerical recipes in C (2nd ed.): the art of scientific computing. Cam-

bridge Univ Press, New York, NY, USA, 1992.

[104] C. I. Osorio, G. Molina-Terriza, and J. P. Torres. Correlations in orbital

angular momentum of spatially entangled paired photons generated in

parametric down-conversion. Physical Review A, 77(1):015810, Jan

2008.

[105] N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde,

A. Gilchrist, S. D. Bartlett, and A. G. White. Measuring entangled

qutrits and their use for quantum bit commitment. Physical Review

Letters, 93(5):053601, Jul 2004.

[106] R. Jozsa. Fidelity for mixed quantum states. Journal of Modern Optics,

41:2315–2323, 1994.

[107] A.V Belinskii and D.N. Klyshko. Two-photon optics. Soviet Physics

Uspekhi, 78, 1994.

162



[108] T.B. Pittman, Y.H. Shih, D.V. Strekalov, and A.V. Sergienko. Opti-

cal imaging by means of two-photon quantum entanglement. Physical

Review A, 52(5):3429–3432, 1995.

[109] DV Strekalov, AV Sergienko, DN Klyshko, and YH Shih. Observa-

tion of two-photon ghost interference and diffraction. Physical review

letters, 74(18):3600–3603, 1995.

[110] D. Magatti, F. Ferri, A. Gatti, M. Bache, E. Brambilla, and L.A.

Lugiato. Experimental evidence of high-resolution ghost imaging

and ghost diffraction with classical thermal light. Arxiv preprint

quant-ph/0408021, 2004.

[111] R.S. Bennink, S.J. Bentley, R.W. Boyd, and J.C. Howell. Quantum and

classical coincidence imaging. Physical Review Letters, 92(3):33601,

2004.

[112] A. Gatti, E. Brambilla, M. Bache, and L.A. Lugiato. Correlated imag-

ing, quantum and classical. Physical Review A, 70(1):013802, 2004.

[113] R.S. Bennink, S.J. Bentley, and R.W. Boyd. two-photon coinci-

dence imaging with a classical source. Physical Review Letters,

89(11):113601, 2002.

[114] M. D’Angelo, Y.H. Kim, S. P. Kulik, and Y.H. Shih. Identifying en-

tanglement using quantum ghost interference and imaging. Physical

Review Letters, 92(23):233601, Jun 2004.

163



[115] B. I. Erkmen and J. H. Shapiro. Ghost imaging: from quantum to clas-

sical to computational. Advances in Optics and Photonics, 2(4):405–

450, Dec 2010.

[116] A. Gatti, E. Brambilla, M. Bache, and L.A. Lugiato. Quantum

Imaging. Springer, New York, NY, USA, 2007.

[117] E. Hecht. Optics. Pearson Education, Essex, United Kingdom, 2001.

[118] S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte. Spiral

phase contrast imaging in microscopy. Optics Express, 13(3):689–694,

Feb 2005.

[119] N. Gisin. Bell’s inequality holds for all non-product states. Physics

Letters A, 154(5-6):201 – 202, 1991.

164


	Introduction
	Preamble
	Light as a Scalar Wave Field
	Angular Momentum of Light
	Spin Angular Momentum
	Orbital Angular Momentum
	Fourier Relationship Between Angle and OAM
	Uncertainty Relationship Between Angle and OAM

	Quantized Light
	Orbital Angular Momentum in Quantum Mechanics

	Quantum Entanglement
	The Einstein-Podolsky-Rosen (EPR) Paradox
	Bell's Inequalities - Polarization Entanglement

	Spontaneous Parametric Down Conversion
	Quantum Entanglement of OAM


	Experimental Methods and Apparatus
	Type I Parametric Down Conversion with a BBO crystal
	Non-Collinear Configuration
	Collinear Configuration
	Spiral Bandwidth

	Measuring Photon Count Rates and Coincidences
	Single Photon Counting Modules

	Spatial Light Modulator
	SLM Characteristics

	Building a System to Prepare and Measure Entangled Photon Pairs
	Alignment by Back-Projection

	SLM control software
	General Purpose Control Software
	Automatic Re-Alignment of the Optical System by Scanning Holograms


	The Fourier Relationship Between Angle and Orbital Angular Momentum
	Angular Diffraction: A Classical Test
	Theory of Angular Diffraction
	Experimental Setup

	Angular Diffraction at the Quantum Level
	Results


	Tests of the Quantum Entanglement of Orbital Angular Momentum
	The Einstein-Podolsky-Rosen Paradox for Angles and Orbital Angular Momentum
	Violation of a Bell's Inequality for Equally Weighted OAM Superposition States in 2 Dimensions
	Violation of a Bell's Inequality for Arbitrary Superpositions of OAM States in 2 Dimensions
	Tomographic Reconstruction of Density Matrices for 2-Dimensional Orbital Angular Momentum Sub-Spaces
	Reconstructing the Density Matrix
	Measures of Entanglement


	Ghost Imaging Using Orbital Angular Momentum
	Introduction
	Recording a Ghost Image

	Conclusions

