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Abstract

Higher resolution biological data is now becoming available in ever greater quan-

tities, allowing the complex behaviour of fundamental biological processes to be

studied in much more detail. The area of Systems Biology is in desperate need of

methods for inferring the most likely topology of the underlying genetic networks

from this oftentimes noisy and poorly sampled data, to support the construction

and testing of new model hypotheses. Towards that end, Bayesian methodology

provides an ideal framework for tackling such challenges, and in particular of-

fers a means of objectively comparing competing plausible models through the

estimation of Bayes factors.

There are, however, formidable obstacles which must be overcome to allow

model inference using Bayes factors to be of practical use. Many important bi-

ological processes may be most accurately represented using nonlinear models

based on systems of ordinary differential equations (ODEs), however parameter

inference over these models often produces correspondingly nonlinear posterior

distributions, which are very challenging to sample from, often resulting in biased

marginal likelihood estimates with large variances. Such problems are commonly

encountered when modelling circardian rhythms, which exhibit highly nonlinear

oscillatory dynamics and play a central role in the overall functioning of most

organisms. In this thesis I investigate tools for calculating Bayes factors to dis-

tinguish between ODE-based Goodwin oscillator models of varying complexity,

which form the basic building blocks for describing this ubiquitous circadian be-

haviour.

The main result in Chapter 3 of this thesis demonstrates how Population

Markov Chain Monte Carlo may be employed in conjunction with thermodynamic

integration methods to estimate Bayes factors which may accurately distinguish

between two nonlinear oscillator models of varying complexity, given noisy ex-

perimental data generated from each of the models. In addition, it is shown how

alternative methods may fail drastically in this setting, in particular harmonic

mean based estimates. Suggestions are given regarding the optimal temperature

schedule which should be employed for Population MCMC, and several ideas for

future research extending this work are also discussed.
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Chapter 1

Introduction

A recent trend in the field of biology is the change of emphasis from studying

the individual components of a biological system, to studying the system as a

whole and examining how the interactions between individual components bring

about an observed phenomenon ([74]). When looked at from this holistic point of

view, determining the underlying network of interactions of a system becomes a

crucial task, for which new tools have to be developed. Such tools must be able to

accurately evaluate and compare plausible hypotheses regarding the structure of

a system, as this is essential for driving towards a more complete understanding

of the core biological mechanisms at work.

Mathematical models based on systems of ODEs (ordinary differential equa-

tions) can be considered codifications of these underlying network topologies and

associated dynamics, and they provide surprisingly accurate mechanistic repre-

sentations of biological systems (See e.g. [27]). There are however many difficul-

ties associated with modelling biological networks, particularly when investigat-

ing nonlinear systems such as those used to describe the very important circadian

control processes (Section 1.1). Circadian rhythms play a central role in the func-

tion of most organisms and will be focussed on in this thesis. The problem of

defining how well a model describes inherently stochastic and possibly incomplete

observations of biological systems may be dealt with in a consistent manner by

employing the Bayesian framework (Section 1.2). A particularly appealing aspect

of this approach is the possibility of calculating Bayes factors ([35]), which provide

an objective method of comparing model hypotheses. Monte Carlo methods (see

e.g. [70]) (Section 1.3) are often used to sample from the resulting non-analytic

posterior distributions, and this thesis is concerned with examining how best to

calculate Bayes factors over nonlinear systems using such techniques.
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1.1 Modelling Biological Processes

The rate at which biological genetic data can be produced is rapidly increasing

due to technological advances in high-throughput experimental methods. An im-

portant task is to translate this plethora of available genetic data into knowledge

regarding the structure of the underlying biochemical networks (see e.g. [78]).

One approach is to use mathematical models to shed light on the underlying

design principles of biological processes, which can greatly aid our understanding

of the relationship between the structure and function of complex systems ([66]).

A deterministic mechanistic mathematical model is a set of ordinary differential

equations1, the outputs of which may be interpreted as corresponding directly to

the levels of the various chemical species present in the biochemical system being

modelled. Although current technology allows great quantities of certain types

of data to be collected, measurements at the cell level are inherently stochastic

and most kinetic rate constants still cannot be measured directly for the major-

ity of biological systems under investigation ([38]). Given a mechanistic model

it is therefore necessary to find a set of parameters with which the model can

reproduce the observed behaviour. The increase in the amount of biochemical

data becoming available is making it possible to consider the feasibility of esti-

mating parameters for such models at a systems level using optimisation based

algorithms, with large groups of parameters being estimated simultaneously. Ac-

curately estimating parameter values for a nonlinear mathematical model can be

greatly challenging, however, as there are often multiple parameter sets offering

equally plausible solutions.

The problem of parameter estimation has been tackled in the past using var-

ious approaches, for example estimating the parameters for a model individually

or using linear approximations of the observed behaviour (for an overview see [3]),

however for more complex models it is known that the dynamics of individual

components or linear approximations do not necessarily match the dynamics of

a nonlinear system as a whole ([46]). Using a systems approach, all the param-

eters are estimated together in an attempt to capture all the possible types of

behaviour produced by a particular system, in which the complex interactions

and interdependencies produce a result which is more than just the sum of their

parts. It is of vital importance that the method employed accurately identifies

all of the most likely parameter sets, to be sure that any deficiencies a model has

in describing the experimental data are due to the chosen structure of the model

and not just a suboptimal choice of parameters. Once we are able to sample

1Stochastic differential equations also fall into the category of mechanistic mathematic mod-
els, however we focus here purely on ODEs since the observed behaviour being modelled is
averaged over populations of cells.
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from this optimal distribution of parameter values, it opens the door to being

able to feasibly compare models in a more objective manner using the Bayesian

framework, which shall be described later in this chapter. In the next section I

describe circadian networks in more detail, as they provide the focus through-

out this thesis for developing and evaluating tools to compare competing model

hypotheses.

1.1.1 Circadian Networks

Many important biological processes are oscillatory in nature and display highly

nonlinear dynamics. Oscillatory behaviour has been observed in many different

contexts in a great number of living organisms and the most easily observed

behaviour of this type is without a doubt the circadian rhythm ([12]). These

rhythms are due to the 24 hour cycles of light and darkness on this planet and

are possibly induced by organisms trying to gain a competitive advantage by

anticipating periods of change in their environment. Circadian rhythms are fun-

damental biological processes and their oscillatory nature is genetic in origin.

They have been discovered in almost all eukaryotic, and some prokaryotic, or-

ganisms and display very similar properties ([12]). Circadian rhythms impact on

numerous biological processes, ranging from transcription regulation in cyanobac-

teria to regulating sleep-wake cycles in humans. In the model plant Arabidopsis

Thaliana it has been estimated from oligonucleotide array experiments ([25]) that

at least 6% of the genome is under the influence of output pathways leading from

circadian biochemical networks. This equates to over 1000 genes being expressed

rhythmically. Over the past couple of decades, evidence has emerged showing

that the oscillatory behaviour of these circadian networks is based on underly-

ing negative feedback loops ([11]), with proteins forming autoregulatory systems

whereby their production rate is linked directly to their own levels of concentra-

tion. Such information has led to the knowledge driven construction of plausible

models describing this rhythmic behaviour, derived from an understanding of the

physical mechanisms involved (see e.g. [73, 83]).

Scientists have long speculated about the nature of oscillatory systems in liv-

ing organisms. Early on there were very few clues to help the construction of

hypotheses to describe this ubiquitous type of behaviour, and therefore the aim

of initial theoretical work was to characterise the observed common behaviour

mathematically without necessarily linking it directly to the physical biology. As

a result there were many different models proposed to describe the feedback loops

which might drive an internal clock, none of which was robustly backed up by

experimental findings ([12]). This was particularly true in the premolecular era

from around 1950 to 1970, during which time the tools and techniques available

3



at the molecular level were of little use for developing theory that linked par-

ticular functions with specific molecules. Now that experimental procedures at

the molecular level are feasible, the great amount of theory which has built up

regarding the mathematical and physical characteristics of oscillations is of great

use, indeed vital, for building a true understanding of their molecular foundation

(see e.g. [1], [12]).

It is known that all oscillators require three underlying features. They need a

positive input, which sets a change in motion, a feedback response, which sets up

an autoregulatory ability, and a time delay, which increases the range of possible

output dynamics. In biological systems there are however additional features

which are of great importance. A robustness of system response is vital for an

organism to adapt to small but constantly changing environmental factors, such

as temperature and light. Resettability is also important to enable an organism

to react to larger changes in the environment. The oscillations present in most

organisms roughly correspond to the length of a day and 24 hours is a very long

time when compared to typical interaction times at a molecular level ([80]), thus

stability of oscillations over such a long time period is essential. By coupling

simple oscillators, mathematical systems may be constructed which accurately

reproduce experimental observations with an appropriate period length, and this

increased complexity results in an increased stability within the system [39].

The challenge of elucidating the underlying molecular machinery driving cir-

cadian rhythms has been tackled using various approaches. One approach has

been to exploit the knowledge that light is an important and universal input

pathway to the internal clock. By trying to tie changes in light to changes in par-

ticular photoreceptors, the hope is that one can discover the relevant regulatory

pathways which describe clock function. Another approach has been to isolate

the regulatory pathways associated with a particular rhythmic process, such as

leaf movement in plants, and follow it back to the core clock network. This has

been successfully applied to the model plant Arabidopsis thaliana, indeed the

protein CCA1 (Circadian Clock Associated 1) was discovered in this way and is

now known to form a central part of its clock network ([82]).

Perhaps the most useful approach, however, has been the attempt to perturb

circadian oscillations by mutating particular genes and examining the ensuing

effect (see e.g. [10]). It is only relatively recently that this approach has been

possible; in the 1960s it was simply not an option. This method provides an

opportunity to gain data which can then be usefully compared to the output

predicted by a model. For example, a gene could be knocked out completely and

the resulting protein levels measured; if the corresponding gene-less model does

not correctly predict the effect, then some part of its topology must be wrongly

4



specified. Similar experiments may be repeatedly performed and their output

compared to the newly redefined model, thus improving the model in an iterative

manner, in an attempt to link the mathematical theory to the biological reality

([67]).

1.1.2 The Goodwin model

The complex dynamics of oscillatory networks may be modelled by highly nonlin-

ear dynamical systems based on the Goodwin model. The Goodwin model ([22])

is based on a negative feedback loop and has become the basic building block with

which to design circadian models. The main reason for the continued study of the

Goodwin model is that despite being relatively simple to construct, it can make

strong predictions regarding the basic relationship between the period length of

the oscillating system and the degradation of the clock protein and mRNA. The

basic n-variable Goodwin model is as follows,

dx1

dt
=

k1

1 + xρn
−m1x1

dx2

dt
= k2x1 −m2x2 (1.1)

. . .
dxn
dt

= knxn−1 −mnxn

where x1 and x2 correspond to the levels of mRNA and protein produced from a

clock gene in the system, respectively, and x3 to xn correspond to other proteins

involved in the system, with xn ultimately inhibiting mRNA production. The

number of variables in the system, n, corresponds to the time delay of the negative

feedback loop, which is believed to be the common underlying design responsible

for oscillatory behaviour in a large number of regulatory networks ([79]). Larger

values of n produce longer delays in the system, enabling a greater possible range

of output dynamics. ρ corresponds to the Hill coefficient, which is a measure of

the cooperativity or affinity of molecules to bind (see e.g. [57]). For the model

described in Equation 1.1, ρ must be larger than 8 for oscillatory output to be

possible. A biologically realistic model, however, should have a much smaller Hill

coefficient, and so one of the aims of extending this system has been to create a

model capable of similar cyclic behaviour but with a smaller value of ρ ([41]).

The Goodwin model has been extended in a knowledge driven manner, taking

account of known feedback loops and other such interactions between chemical

species, for various organisms ([12]) including the mouse, the fruit fly Drosophila

Melanogaster and the fungus Neurospora crassa. Properties such as light entrain-

ment and temperature compensation effects have also been modelled ([73, 40]),

5
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Figure 1.1: A diagram of the Goodwin model network. The arrows show which
chemical species encourage production of other species, the dashed arrows show
possible production routes which are not fully modelled, and the two parallel
dashes at the end of a line represent an inhibition of production. The ellipsis
represents other possible proteins that may play a role in the system.

however the complete set of dynamics and interactions of circadian networks are

poorly understood and the circadian clock has been examined in detail only for

still relatively few organisms ([12]).

1.2 The Bayesian Approach

Throughout the following chapters I make use of the Bayesian framework, which

offers a natural way of taking uncertainty into account. It also enables us to

easily incorporate prior information or beliefs about the system under study, in

a principled and consistent manner, and allows us to clearly see when problems

with system identifiability occur, since we calculate a posterior distribution over

each parameter instead of a single point estimate of the most likely value.

Furthermore, the use of the Bayesian framework allows us to update the

strength of our prior beliefs in the parameter values of the model, given the evi-

dence of experimental observations and enables objective comparison of compet-

ing model hypotheses by calculating Bayes factors ([35]). Bayes factors compare

the evidence in favour of two competing models, given a particular dataset, by

considering their marginal likelihoods which, if non-analytic, may be calculated

by numerically integrating out all the possible parameter values.

All the methods for estimating marginal likelihoods considered in this thesis

require samples from some form of posterior distribution, which may be mul-

timodal, as we shall see in Chapter 3. I therefore firstly investigate methods

for generating samples from complex distributions, and then use these samples

to compute Bayes factors, employing a variety of marginal likelihood estimation

methods, the relative accuracy of which is examined in detail. Generally we shall

consider a model, H, described by some system of differential equations, along

6



with an associated set of parameters θ. A series of N experiments are simulated

and the resulting measurements are denoted by y.

1.2.1 Posterior Distribution

The posterior distribution provides us with an updated measure of our beliefs for

each of the parameter values based on our prior beliefs. This distribution therefore

represents the range of parameter values which most likely allows the output of

a particular model to best describe the data. This can be calculated from the

likelihood and prior distributions using Bayes’ Theorem (see e.g. [34, 33, 15]),

p(θ | y, H) =

Likelihood︷ ︸︸ ︷
p(y | θ, H)

Prior︷︸︸︷
p(θ)∫

p(y | θ, H)p(θ)dθ︸ ︷︷ ︸
MarginalLikelihood

(1.2)

It can be difficult to compute the marginal likelihood in the equation above

as it is usually non-analytic, other than for conjugate priors and likelihoods (see

e.g. [15]). Fortunately, however, it is still possible to sample from the posterior

distribution by computing only the likelihood and prior distributions, since the

marginal likelihood is simply a normalising constant, which need not be explicitly

calculated.

1.2.2 Likelihood

The likelihood is a probability distribution which accounts for the many different

types of error, such as experimental variability, measurement error and the inher-

ent stochasticity of the system under consideration. In this work, the likelihood

of the experimental data given a set of parameter values is

p(y | θ, H) = Ny(ϕ(θ, H),Λ) (1.3)

where ϕ(θ, H) is the solution of a particular system of ODEs, Ny is a normal

distribution centred on ϕ(θ, H), and the covariance Λ represents the covariance of

the stochastic component of the system. If, for example, we assume independent

and identically distributed (i.i.d.) errors2 across all experiments, with variance σ2,

the likelihood reduces to the product over all experimental data points. In order to

avoid numerical problems when dealing with the products of small probabilities,

we work in log space when calculating likelihoods. The log likelihood, in this case,

2The errors suggested would include measurement error and model error/inadequacy.
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therefore reduces to the sum of the logs of the likelihoods over all N experimental

data points

log (p(y | θ, H)) =
N∑
n=1

log
(
Nyn(ϕn(θ, H), σ2)

)
(1.4)

where ϕn(θ, H) gives the model output corresponding to the nth data point, yn.

A discussion of alternative methods of characterising the stochastic components

of the model is given in Chapter 4.

1.2.3 Prior Probabilities

A prior probability distribution is defined for each parameter and encapsulates

the prior beliefs held about their most likely values. The fact that a prior must

be defined for every parameter is a strength of the Bayesian method, since all

previous information (or lack of information) about the parameters can be taken

into account. In a systems biology context, this is important, since there is a

significant amount of uncertainty regarding the hypothesised models, the actual

experimental observations, and the associated parameters. In the absence of

relevant experimental data, it may be possible to use information from published

research to help define prior distributions, π(θ), over parameter values.

Generally it is useful to use gamma priors for the kinetic rate parameters of

biological models, since they have positive support and may cover a wide range

of possible values (See Figure 1.2). The gamma probability density function, for

a single parameter θ with shape parameter a and scale parameter b, is defined as

γ = f(θ | a, b) =
1

baΓ(a)
θa−1e

−θ
b (1.5)

where the mean is ab, the variance is ab2 and Γ is the gamma function. Priors

may also be set over the systems of equations being compared to reflect the prior

preference (or otherwise), π(H), for a particular model hypothesis, H.

1.2.4 Calculating Bayes Factors

Bayes factors can be used to compute the posterior probabilities of two models,

given the prior probability of each model. Given a set of data y and two com-

peting model hypotheses H1 and H2, we wish to calculate the probability of each

model hypothesis given the data. Using Bayes’ theorem we obtain the following

expression (for n = 1, 2)

p(Hn | y) =
p(y | Hn)p(Hn)

p(y | H1)p(H1) + p(y | H2)p(H2)
(1.6)
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Figure 1.2: An example gamma distribution with a = 2 and b = 1. This distri-
bution has mean 2 and variance 2. The positive support and long tail are useful
for modelling biological systems with unknown kinetic rate parameters.

Given the prior probabilities p(H1) and p(H2) = 1 − p(H1), the posterior prob-

abilities p(H1 | y) and p(H2 | y) = 1 − p(H1 | y) may be calculated via some

likelihood function p(y | Hn). Therefore the denominators in Equation 1.6 cancel,

giving

p(H1 | y)

p(H2 | y)︸ ︷︷ ︸
Posterior Odds

=
p(y | H1)

p(y | H2)︸ ︷︷ ︸
Bayes Factor

p(H1)

p(H2)︸ ︷︷ ︸
Prior Odds

(1.7)

Often there is no preference a priori for a particular model, and so the prior

probabilities of the models are usually set to be equal, which shall be the case for

the experiments presented in the following chapters. Thus for P (H1) = P (H2),

the Bayes factor, denoted B12, is equal to the ratio of the posterior probabilities

of the two models.

The likelihood of the data given a model, known as the marginal likelihood,

is obtained by integrating over the parameter space

p(y | Hn) =

∫
p(y | θn, Hn)π(θn | Hn)dθn (1.8)

where θn is a vector describing the parameters for the model Hn, π(θn | Hn) is

the prior density of the parameters, and p(y | θn, Hn) is the likelihood function.

The marginal likelihood is usually intractable in all but the simplest of scenarios,

in which case one must resort to numerical methods. Difficulties may arise when

integrating over a high-dimensional parameter space, since the integrand may

be highly peaked around its maximum, causing problems for certain types of

9



approximation. Quadrature methods, for example, may have difficulty finding

the region of greatest mass, resulting in a poor approximation. For this reason,

the use of Monte Carlo methods is often most appropriate (see e.g. [70]).

1.2.5 Interpreting Bayes Factors

Bayes factors have often been referred to as the “weight of evidence”, since they

give an indication of the relative success two models may have at predicting the

data. The following table shows a standard interpretation of the Bayes factor

B12 as first introduced by Jeffreys ([34]), which compares the model H1 with the

model H2. This is usually given in terms of evidence in favour of the first labeled

model over the second.

Table 1.1: Interpretation of Bayes Factors
B12 Evidence against H2

1 to 3 Not worth more than a bare mention
3 to 10 Substantial
10 to 100 Strong
> 100 Decisive

1.3 Monte Carlo Methods

For the purpose of computing Bayes factors to compare competing model hy-

potheses given a set of experimental data, it is generally necessary to calculate

the marginal likelihood. In other words we wish to evaluate, for a particular

model, the expectation

Eπ(θ) [p(y | θ)] =

∫
p(y | θ)π(θ)dθ (1.9)

From now on, conditioning on a particular model H will be omitted to improve

readability. As mentioned previously, this integral is usually intractable, although

there is an analytic solution when p(y | θ) and π(θ) form a conjugate pair (see

e.g. [15]). Intractable integrals may be estimated using Monte Carlo integration

methods (see e.g. [70]). Drawing independent samples

θ(1),θ(2), . . . ,θ(N) ∼ π(θ) (1.10)

it is possible to estimate the expectation as follows

Eπ(θ) [p(y | θ)] ≈ 1

N

N∑
t=1

p(y | θ(t)) (1.11)
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By the Law of Large numbers, this estimator converges to the true expectation

as the number of independent samples, N , tends to infinity

1

N

N∑
t=1

p(y | θ(t))→ Eπ(θ) [p(y | θ)] as N →∞ (1.12)

This estimator, however, is often very unstable and inefficient for a finite num-

ber of samples (see e.g. [14]) as many samples will fall outside regions of high

likelihood. An alternative is to use the harmonic mean estimator ([63]) which

requires independent samples from the posterior distribution p(θ | y). The iden-

tity used in this method states that the reciprocal of the marginal likelihood is

equal to the harmonic mean of the likelihood, using samples taken from the poste-

rior distribution. There are, however, also problems associated with this method

which will be discussed in Chapter 2 where marginal likelihood estimators are

examined in greater detail. An overview of some basic sampling methods is now

provided, which form the foundations for more advanced methods, also described

in Chapter 2.

1.3.1 Importance Sampling Methods

Generally it is not possible to sample directly from the particular distribution

required for calculating a Monte Carlo estimate. A very naive method of sampling

would be to uniformly sample from the target space, however this is usually

extremely inefficient, especially for higher dimensional spaces, since the majority

of the density is quite often condensed into small compact regions. Few samples

will fall into these sought after regions and the resulting expectation calculated

will be extremely inaccurate. (A more detailed discussion of this is given in e.g.

[50])

Importance sampling may help one more accurately calculate expectations

by employing some easy-to-sample-from distribution, q, which is in some way

similar to the true distribution, p, where both q and p are distributions over

some parameter space. q need not be normalised and its support should cover

the support of p, since each sample xi generated from q will be assigned an

importance weight wi to adjust for the difference between the two distributions.

This is calculated as follows

wi =
p(xi)

q(xi)
(1.13)

and an estimator takes the importance weight for each of the i samples into

account
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E [φ(x)] ≈
∑

iwiφ(xi)∑
iwi

(1.14)

where φ(x) is the function over which the expectation is calculated. Clearly if

q(xi) is less than p(xi) a large weight (wi > 1) will be assigned to the sample

xi, since it will not be sampled as often as it would have been from the correct

distribution. If q(xi) is greater than q(xi) a small weight (wi < 1) will be assigned,

since xi will be sampled too often compared to the true distribution.

Importance sampling is a very useful procedure, however the variance associ-

ated with such estimators tends to be very large for finite numbers of samples.

Estimators based on importance sampling, although unbiased, generally tend to

be unreliable because the true variance of such an estimator is difficult to as-

certain due to it being based on a quotient of two distributions, and care must

therefore be taken when using them. Indeed, research is still going on into how

to stabilise estimators based on importance sampling methods ([64]).

This instability is particularly a problem when using nonlinear ODE models,

which tend to induce multimodal posterior distributions. We shall see in the

next chapter, however, that this basic idea of importance sampling is at the heart

of the Sequential Monte Carlo framework ([6]), in which context it may then

usefully be applied to a range of complicated problems, which involve sampling

from nonlinear distributions.

1.3.2 Markov Chain Monte Carlo Methods

Obtaining independent samples from a nonlinear distribution may be difficult

to achieve efficiently using basic sampling techniques such as uniform sampling,

importance sampling or rejection sampling (see e.g. [50]). A more widely used

approach is to run a Markov chain to produce samples (see e.g. [70]). A Markov

chain is generated by moving a point, x, about a target space according to some

transition function p(x|xt), where xt denotes the position of the chain at time t.

Each move depends only on the current position of the chain, not on any of its

previous positions, so that

xt+1 ∼ p(x|xt), t = 1, 2, . . . (1.15)

Such a chain converges to a unique stationary distribution (assuming one exists)

if it is irreducible, i.e. the chain may reach any set of states from any other set of

states in a finite number of moves. If the chain is also aperiodic, i.e. the greatest

common divisor of the time taken to return to any particular state is equal to 1,

then an ergodic theorem holds (Equation 1.12), i.e. an estimator using samples
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generated by the Markov chain converges to the required expectation over time,

as t→∞.

Standard Metropolis-Hastings Sampling

A solution to the problem of how to create such a Markov chain was produced

in 1953 by Metropolis ([54]) using a symmetric proposal distribution for repo-

sitioning the chain, and this was then generalised in 1970 by Hastings ([26]) to

allow the use of nonsymmetric proposal distributions. The Metropolis-Hastings

algorithm generates a Markov chain whose stationary distribution is the target

distribution in which we are interested.

To apply the Metropolis-Hastings algorithm, all that is needed is a proposal

distribution q from which samples can easily be generated. A useful proposal

distribution to use when examining biological models is a lognormal distribution

centred around the current parameter value, since it only allows <+ space to be

explored; it would not make sense for biological rate constants to have negative

values. During each iteration, each parameter in each chain is sampled and either

accepted, in which case the current position is updated, or rejected, in which case

the current position is retained. Assuming we have a current parameter θc we can

draw a new parameter sample from the proposal distribution q(θn | θc) which is

accepted with probability

α(θn | θc) = min

[
1,
p(θn | y)q(θc | θn)

p(θc | y)q(θn | θc)

]
(1.16)

= min

[
1,
p(y | θn)p(θn)q(θc | θn)

p(y | θc)p(θc)q(θn | θc)

]
(1.17)

Note that in Equation 1.16 the first term, top and bottom, on the right hand

side of the min function is the posterior of the new parameter divided by the

posterior of the current parameter. Equation 1.17 is the expanded form of the

posterior in terms of the prior and likelihood functions, where the marginal likeli-

hoods have been conveniently cancelled out. If a symmetric proposal distribution

q(·|·) is used, then the proposal distributions also cancel out leaving just the prior

and likelihood functions, as in the original Metropolis algorithm.

The above calculation often takes place in log space to prevent the numerical

difficulties which sometimes occur when dealing with very small probabilities. In

this case the value 1 becomes log(1) = 0 in the left side of the min function in

the above equations.
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Practical Implementation Issues with Metropolis

The starting positions of chains are usually randomised by sampling from the prior

distribution, if it is in any way informative. At the start of a run, a chain will

therefore not necessarily be sampling from the correct target distribution and it

will take some time before it converges. The time taken for a chain to converge is

known as the burn-in time and samples recorded during this period are discarded.

When employing a Markov chain to sample from a complex distribution it is

important to consider the issue of how to monitor convergence. How can one be

sure that a chain is in fact sampling from the correct target distribution? Geyer

[18] proposes the use of a single chain being run for a very long time, with the

hope that it is more likely for such a chain to overcome any burn-in period. The

problem is, however, that it only supplies one set of data points, with nothing to

compare it to, so one can never be sure that all high density regions of the target

distribution have indeed been visited.

An alternative method is to run multiple chains in parallel with dispersed

starting positions (see [17]). For an equivalent amount of computational effort,

these chains will not be as long as a single chain run in isolation, however with

multiple chains one can see clearly whether they have converged to a common

distribution, likely, it is hoped, to be the target. The convergence of the chains

may be monitored by calculating an R̂ value for each parameter, as described by

Gelman in ([15]), which tends to 1 as the chains converge and as the number of

samples N tends to infinity. It is important to note that even if the R̂ values

are close to 1, the simulation may still be far from convergence if the chains have

not covered all areas of the target distribution. This risk may be minimised by

increasing the number of chains, or by running the simulation multiple times with

different initial parameter values.

Another challenge is that of choosing efficient proposal steps. Proposal scale

factors can be implemented to adjust the size of the steps made by a Markov chain.

These can be adjusted during the burn-in period, based on monitoring acceptance

ratios of the proposed steps, and then held constant once convergence has been

judged to have occurred and posterior samples are being taken. The proposal

distribution can also be adapted to the local topology of the target distribution

by sampling groups of proposed parameter values from a multivariate Gaussian

with an adaptive covariance matrix defining its shape. The covariance matrix can

be calculated every so often during the burn-in period based on the previously

accepted steps. This generally increases the probability of new proposal steps

being accepted, since information regarding correlations between parameters will

be discovered and exploited, which results in a more efficient algorithm with

shorter burn-in time if the algorithm is able to adapt quickly to the local topology.
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A proposal scale factor can be engineered manually to exactly suit many

target distributions, but only with prior knowledge of the topology of the target

distribution; it is however this topological knowledge that we are trying to obtain

in the first place using these sampling techniques, and therein lies the difficulty.

Even with engineering attempts, there are cases where the Metropolis algorithm

is unable to sample from the required target distribution in an amount of time

which makes its use feasible. For example, in multimodal distributions where

the modes are sufficiently far apart, a proposal distribution covering these modes

is likely to have a very low acceptance rate as it may frequently propose points

which fall in regions of low likelihood between the modes.

The efficiency of Metropolis is measured by the acceptance rate of proposed

parameters. If the proposal distribution is very wide, proposed step sizes may

be large, resulting in a high rejection rate since the posterior density is likely to

vary more over larger distances. On the other hand, if the proposal distribution

is very concentrated around the current point, then the acceptance rate will be

high, since the posterior density is not likely to vary much over short distances,

and as a result the burn-in time is likely to drastically increase.

Robert and Casella ([70]) suggest that the acceptance rate for a single param-

eter change should be between 20% and 40%. It is therefore necessary to tune

the variance of the proposal distribution in order to optimise the algorithm. The

acceptance rate should be closer to 25% when updating groups of parameters in

one go. Gelman ([15]) suggests the covariance of the proposal distribution for

such groups should be estimated by calculating the covariance of previous ac-

cepted parameters and scaling it. The scale factor may be initialised by using

the value 2.4/
√
d, where d is the number of parameters. An adaptive step size

algorithm may therefore be implemented, whereby the scale factor for each chain

is increased or decreased if the chain’s acceptance rate is too high or low, respec-

tively. Once the acceptance rate for each chain appears to be stable within the

required range, and all the R̂ values are close to 1, the scale factor is no longer

adapted, and samples may be assumed to be coming from the required stationary

distribution.

As dimensionality increases, the burn-in time generally increases as it takes

longer for the chains to discover the regions of high density. Thus the efficiency

of such sampling methods becomes a great concern. Many algorithms lend them-

selves to parallelisation, allowing for example multiple chains to be simulated

on multiple computer processors. Efficiency is especially an issue when dealing

with complex systems of ODEs, since in order to calculate the probability of a

proposed step being accepted, the system of equations must usually be solved3,

3There is a discussion in Chapter 4 regarding a possible method of inference without explic-
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which can be very time consuming for large numbers of iterations.

1.4 Conclusions

Modelling the interactions between the multiple components that drive the be-

haviour of a biological system is essential for gaining a deeper understanding of

both the underlying biological mechanisms at work and the organism as a whole.

Many forms of uncertainty, for example in the observations or even in the pro-

posed structure of the models, create great challenges when modelling biological

processes, especially when the dynamics are highly nonlinear, as in the case of

the Goodwin oscillator model. The Bayesian framework may be employed to deal

with this uncertainty in a consistent and principled manner, and it offers a method

of objectively comparing competing model hypotheses through the calculation of

Bayes factors.

In Chapter 2, I present a review of methods which are suitable for the purpose

of system identification and model comparison. I start by discussing a more naive

approach to system identification involving optimisation-based methods, and then

move on to methods for calculating Bayes factors using more advanced sampling

methods, which extend the basic ideas introduced in this chapter. Recent ex-

tensions to the original Metropolis-Hastings algorithm include ideas involving

temperature schedules and populations of interacting chains in an attempt to

improve sampling efficiency, especially when dealing with higher dimensional and

multimodal target distributions. These shall be examined in the next chapter

and will be put into practice in Chapter 3 to tackle the problem of sampling from

the posterior distributions generated by nonlinear Goodwin oscillator models.

itly solving the systems of ODEs.
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Chapter 2

Parameter Estimation and Model
Comparison Methods

Objectively distinguishing between models describing a particular biological pro-

cess can be very challenging. Many systems display highly nonlinear dynamics

with much stochasticity at a molecular level ([68]). Current methods of measur-

ing mRNA and protein levels, such as the use of western blotting, microarrays

and mass spectrometry, are still imprecise and although larger numbers of exper-

imental observations may be collected for particular proteins, many kinetic rate

constants do not permit themselves to be measured at all. There may be multiple

plausible solutions to explain these missing components, which must therefore be

inferred from the available data. As mentioned in Chapter 1, a mathematical

model may be considered a codification of the hypothesised underlying biochem-

ical network. Originally one was faced with the decision of whether to work with

analytically tractable mathematical models, which were amenable to analysis but

perhaps not very realistic, or to work with more complex models based on avail-

able knowledge of the underlying biology, which might be more likely to describe

the phenomenon under observation, but be faced with the problem of parameter

estimation and the risk that suboptimal parameter values might be chosen. In-

deed, the issue of parameter inference is still one of the main challenges today

when modelling biochemical networks ([75]).

How can one be sure of picking optimal, or even good, parameters for a model

in order to reproduce a particular type of behaviour observed in a dataset? Many

complex systems do not lend themselves to analytic mathematical examination

and, moreover, when the rate constants may assume the value of any positive,

albeit generally low, real number it becomes clear that the number of possible

choices is quite bewildering. The advent of greater, more easily available com-

puting power has allowed the use of parameter optimisation algorithms (see e.g.

[52]). Being able to discover the optimal parameters for a particular model to
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accurately describe biological data is useful for making predictions about the

possible behaviour of the system under different conditions.

Certainly one can easily see from the output whether a proposed mathemat-

ical model roughly reproduces a biological dataset or, more formally, one can

define some metric which quantifies the similarity, but given multiple models

which can roughly reproduce the correct behaviour, how can we decide which

underlying network topology most accurately reproduces the observed dynamics?

A naive method of system identification could be based on point estimates of

the “optimal” parameter values for a system. A model with a higher likelihood

value using the optimal set of parameters could be considered better than another

model with a lower likelihood value. However there is the obvious problem of the

more complex model always being favoured, since such models are usually capable

of a wider range of response dynamics and are therefore more likely to be able to

reproduce the observed “noisy” dynamics. Ideally we want to be able to identify

the simplest model capable of reproducing the observed behaviour, in order to

gain a clearer understanding of the potential underlying mechanisms at work.

The use of an overly complex model to describe data is known as overfitting,

and this problem could be tackled by incorporating some kind of penalty term

depending somehow on the “complexity” or number of free parameters used in

the model. The problem of overfitting, in the context of linear and nonlinear re-

gression models, is discussed in detail in e.g. ([8]). A consistent method of taking

all these uncertainties into account is to use the Bayesian framework ([34], [33]),

which intrinsically balances the descriptive power of a model with its complexity,

since the models are marginalised over all the possible likely parameter values.

This requires much more computational effort than simply finding a global set

of maximal parameters, since we are now required to solve an integral over the

whole parameter space.

When mechanistic ODE-based models are employed to describe a biological

process, the computational efficiency of such optimisation or sampling algorithms

becomes of vital importance, due to the time it takes to solve the system of

differential equations at each iteration of the search procedure. It is worth noting

that a similar problem crops up in the field of phylogenetics ([28]), where the

search space is large and the likelihood function is computationally expensive to

calculate, since all possible paths over a phylogenetic tree must be considered.

Additionally, a common problem is that many optimisation methods, such as

Simulated Annealing which will be described later in this chapter, often find

local optima in the search space, which hinders or even stops further exploration.

This occurs particularly over highly nonlinear models, as this nonlinearity often

translates into correspondingly complex search spaces, as we see in Chapter 3.
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Any method used to tackle these types of problems must therefore balance local

steps with effective global exploration strategies.

Firstly, I describe some optimisation algorithms which search for a single

point estimate of the global optimum. Parameter values may be estimated by

comparing the output of a model to some experimental data and using a cost

function to measure the mismatch, which must then be minimised. Equivalently,

a likelihood function may be employed, which must then of course be maximised

with respect to the experimental data. I then describe some more advanced

sampling methods which can be used within the Bayesian framework. These

produce samples from the whole target posterior distribution, which can then be

used to calculate marginal likelihoods by methods which are described in the final

section of this chapter. The statistical accuracy of such methods is examined in

Chapter 3.

2.1 Optimisation-Based Methods

In this section some optimisation-based algorithms are described which have been

developed over the last 20 years and have been previously applied to the area of

Systems Biology, with apparent success, estimating the “optimal” parameters for

a mathematical system by minimising a cost function based on some biological

data (See e.g. [36]). Optimisation methods differ from Bayesian methods in

that they search only for a global maximum and generally locate a degenerate

distribution around the optimal mode, as opposed to sampling from the complete

posterior distribution. These algorithms have been shown to produce very good

results when searching for such a global maximum (see e.g. [21]). However, as

they can only ever identify a single mode in a possibly complex distribution,

these methods will at best only paint a partial picture of how well a model is able

to reproduce a particular dataset. The algorithms can give no indication of the

confidence that the chosen mode is indeed the “correct” one, nor of the robustness

of the set of parameter values to small perturbations. When there are multiple

parameter sets which can reproduce the available data, the issue of identifiability

crops up, which manifests itself through a highly multimodal search space. Such

issues may also not be picked up on using optimisation methods if only one mode

can be identified. For a comparison of global optimisation methods applied to

biochemical system modelling see ([56]).

2.1.1 Simulated Annealing

Markov Chain approaches have been introduced in attempts to overcome the

many challenges associated with parameter estimation and in particular that of
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trying to find the global maximum in a space containing many local maxima.

Simulated Annealing ([37]) makes use of a temperature schedule to “melt out”

any roughness in the parameter landscape allowing the Markov chains to escape

from local maxima more easily. Note that if a cost function is employed, which

measures the error associated with the parameter estimation, it is then a local

minimum we wish to find, instead of a maximum.

The true target distribution is raised to a power, t, which can be thought of

as a variable inversely proportional to temperature. This temperature variable

generally starts at a very low number close to 0, i.e. at a high temperature, which

has the effect of “melting” and flattening the parameter landscape allowing for

easy exploration of the whole space. A Markov chain starts exploring the space

at this temperature and gradually the temperature is decreased. The slower the

rate of temperature decrease, the better the chances are of the Markov chain

finding the global maximum ([31]). The algorithm can be stopped once the

Markov chain stops accepting proposed steps, or once some other target criterion

has been reached, for example once the temperature parameter reaches a certain

value.

In the context of parameter estimation, assume we want to find the optimal

set of parameters, θ = [θ1, . . . , θD]T (θi ∈ R), for a model, f , used to describe

some experimental data, y = [y1, . . . , yN ]T (yn ∈ R). If we use a loss function,

then we wish to find the global minimum of exp {L(θ,y)}, where L is some loss

function which can be evaluated at each point and measures the error between the

model output and the data, for example using the mean squared error between

the simulated data, f(θ), and the experimental data, y. Using a simple simulated

annealing method, we could find the minimum of

exp

{
L(θ,y)

t

}
(2.1)

where t is gradually increased from near 0. As t becomes large, the algorithm

will sample from an increasingly degenerate distribution centred on a, hopefully

global, minimum. Algorithm 1 details the Simulated Annealing procedure in

greater detail.

The most obvious drawback of this method is its inability to explore multiple

modes simultaneously. Care must also be taken when constructing a cooling

schedule. If the temperature is reduced too quickly, there is a chance the chain

will get stuck in a local mode and be unable to escape. Generally, the more

complex the target distribution is, the slower the cooling schedule should be, but

unfortunately there are no hard and fast rules concerning the optimal size of

the temperature steps, although there have been attempts to introduce adaptive

temperature schedules ([81]). Usually they must be hand-picked for each search
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Algorithm 1 Simulated Annealing

1: Initialise starting position, θ, and temperature, t
2: repeat
3: Propose new position, θNew, based on the current position

4: Calculate cost function for new position, exp
{
L(θNew,y)

t

}
5: Accept or reject proposed move according the the Metropolis probability,

min
[
exp

{
L(θ,y)−L(θNew,y)

t

}
, 1
]

6: Increment temperature, t
7: until Termination criteria are met

space, and multiple runs with different temperature schedules can help confirm

whether the global maximum has been found. It should be noted that combining

multiple runs of a simulated annealing approach with importance sampling results

in an algorithm with similarities to Annealed Importance Sampling ([61]). This

can be considered under the Sequential Monte Carlo framework, which will be

examined later in this chapter.

The biochemical networks which drive circadian rhythms exhibit highly non-

linear behaviour and have been examined closely in an important recent paper

by Locke et al. ([48]). A great contribution of this work was to introduce the

use of a general optimisation method, in the form of Simulated Annealing, to

estimate parameters over mechanistic models describing the circadian networks

of the model plant Arabidopsis thaliana. The use of a simulated annealing ap-

proach is motivated by the nonlinear distributions produced when using a cost

function to optimise the parameters. The model employed in ([48]) consists of

23 free parameters, which equates to sampling from a 23 dimensional target dis-

tribution. The results using a simulated annealing algorithm are very dependent

on the chosen starting position in such a high dimensional space and therefore a

random search of the space was undertaken, before applying simulated anneal-

ing. A SOBOL random number generator ([77]) was used to spread out the search

starting points more evenly across the space, and a cost function was employed to

evaluate around 1,000,000 possible starting points, from which the top 100 solu-

tions were then refined further using a simulated annealing routine. One weakness

of this paper is the use of a hand-crafted cost function which is dependent on var-

ious measurements such as the period and amplitude of oscillations. It could be

argued that such a cost function is rather arbitrary, and it would be interesting

to see whether a cost function constructed slightly differently would affect the

results of the optimal parameters found. I suggest a more consistent approach

would be to model the data points directly, and infer the range of most likely pa-

rameters using Bayesian methods, assuming that the experimental observations

are contaminated by some stochastic process. This stochastic component could
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be modelled by the likelihood function, using for example a Gaussian process,

as discussed in Chapter 4. More advanced sampling methodology, with global

exploration capabilities, could also be employed, reducing the need for such a

large initial separate random search. This is described later in this chapter.

It should be noted that the goal of applying Bayesian methods to models of

this size is extremely challenging, both in terms of computational requirements as

well as tuning an algorithm to successfully explore such a large parameter space

and find all the regions of high likelihood.

2.1.2 Genetic Algorithms

Genetic Algorithms (GAs) were first created by trying to mimic ideas that were

emerging from advances in our understanding of genetics and the idea was to

mirror natural selection and evolution that occurs in real life. They have been

applied to a wide variety of optimisation problems and are generally successful

in seeking out good solutions ([55]).

The general principles of these types of algorithms is as follows. A group of

individuals, called a population, explore the parameter space using two different

methods. The first is mutation, whereby one of the coordinates describing the

position of an individual is perturbed, effectively moving the individual to a

new point in the local parameter space. The second is crossover, whereby the

coordinates of two individuals combine to produce two “offspring”, resulting in a

more global jump through parameter space. The individuals are usually chosen

proportional to their “fitness”, calculated by some cost or likelihood function.

For a more detailed overview of the algorithm, see ([29]).

Such algorithms are often used because they work well in practice, however

exactly why they work well is difficult to analyse mathematically. GAs are not

always guaranteed to find the “best” solution, although they do often find good

solutions with respect to the cost function they are trying to minimise. Concrete

analytical results regarding convergence and theoretical bounds on numerical es-

timates are available only for very specific problems and under certain restrictive

conditions ([2]).

Aside from the current lack of general theoretical results, Genetic Algorithms

suffer similar limitations as Simulated Annealing. They produce point estimates

of variables which generally correspond to good solutions, however they fail to

provide other types of useful information, such as the robustness of the system and

confidence levels on the solutions found. This is ultimately the reason I believe

they have limited potential for the purpose of system comparison. The methods in

the next section offer solutions to the shortcomings of these optimisation methods.
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2.2 Parameter Inference Methods

The algorithms I describe here extend the Metropolis and importance sampling

methods presented in Chapter 1. They are not simply optimisation methods, but

rather methods for parameter inference which generate samples from a posterior

distribution of the likely solutions. The ability to sample from and examine

the structure of such posteriors allows confidence levels to be calculated around

optimal parameter values, and permits a more global view of how well a model

describes experimental data.

In particular, the types of methods I look at involve the addition of two

main ideas, firstly the idea of using an auxiliary variable, representing an inverse

temperature for example, and secondly the idea of using a population of chains

which explore the target space simultaneously and “communicate” in order to

find regions of high density more efficiently. There are of course other methods

of sampling such as slice sampling ([62]) and nested sampling ([76]), and indeed

this is a very active research area which is constantly expanding. Given such a

vast literature on MCMC sampling methodology it would be impossible to give

a detailed review of every such method in this thesis, and therefore I focus solely

on population and temperature based methods which, having been successfully

employed in many areas of physics, have so far, to the best of my knowledge,

had very little impact in the area of Systems Biology. This is partly because

many models previously examined have either been linear in the parameters or

have not exhibited very complex posterior distributions and thus simpler meth-

ods have sufficed. Recently, however, more complex nonlinear models have been

examined using Simulated Annealing ([48]), and I would suggest that the follow-

ing methods would provide more useful information when estimating parameters

from multimodal posteriors and help highlight potential problems of identifiabil-

ity which may not appear using other simpler methods.

2.2.1 Advanced Markov Chain Monte Carlo Methods

The basic Metropolis-based sampling method described in Chapter 1 has been

developed extensively over the last couple of decades in an attempt to improve

the efficiency and accuracy of generating samples from a stationary multimodal

distribution. Indeed, an often used test for a newly proposed sampler is to use a

stationary distribution consisting of multiple Gaussian distributions, as in ([45]).

The two main ideas which have been used to advance the development of more

efficient sampling methods are the idea a population and the idea of a temperature

schedule.

One method of incorporating the idea of a population is Adaptive Direction
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Sampling ([71]), in which chains in the population are moved according to the

position of the other chains in the population. In order to implement ADS, one

chain is selected as an “anchor” point, and its proposal step is sampled from a line

going through both the “anchor” and another chain randomly selected from the

population. The idea is that iteratively finding the highest likelihood positions

on the lines joining the population of chains will result in the chains converging

to the target distribution. This method was improved upon by Liu et al. ([47]),

who suggested the use of local optimisation at the position of another randomly

chosen chain in the population, so that the sampling would be from a line through

the “anchor” pointing in the direction of a local mode. This method they named

Conjugate Gradient Monte Carlo (CGMC), since they proposed conjugate gra-

dient iterations to perform the local optimisation steps. This method also has

links to the Multiple-Try Metropolis (MTM) algorithm ([47]), as MTM provides

a possible method for sampling from the distribution on the line between two

chosen chains, which is almost never analytic. In the MTM algorithm, instead

of a single proposal step being made for a chain, a collection of possible proposal

steps are carried out. The weights for these multiple proposed steps are calcu-

lated, and one of these steps is then chosen with probability relative to its weight

and accepted according to a modified Metropolis-Hastings ratio. Generally the

MTM algorithm allows larger step sizes to be made, since it chooses the best

step from a collection of proposed steps, resulting in the algorithm being more

effective than basic Metropolis algorithms.

Another approach is to use a population in which the Markov chains try to

avoid each other, instead of being attracted to each other. So-called Pinball

Sampling was suggested by Robert and Mengersen ([53]). They base their idea

on a population in which chains perform random walks with corrections so that

they avoid the vicinity of other chains. This approach therefore emphasises not

only finding the regions of highest density, but also covering them as widely as

possible. The convergence of a population using Pinball Sampling, or indeed any

of the other methods mentioned above, is justified by ergodicity properties of

the Markov chains. They therefore all have similar advantages and drawbacks,

including the usual curse of dimensionality ; the inital points must be assumed to

provide a fair coverage of the support of the target distribution, which requires

the population size to increase dramatically as the dimensionality increases. For

a more detailed examination of the Pinball Sampling algorithm and the corre-

sponding stationarity results see ([53]).

The idea of temperature has also been incorporated into many sampling

schemes with great effect. Simulated Tempering is similar to Simulated An-

nealing ([37]) in that it makes use of intermediate distributions, associated with
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a temperature index, in order to gain more accurate samples from the target dis-

tribution. A Markov chain may jump between temperatures allowing it to escape

from local modes and explore the target space more widely. This method was

developed independently by Parisi and Marinari ([51]), and also by Lyubartsev et

al. ([49]) under the name of Expanded Ensembles. Samples may be obtained by

running the Markov chain to equilibrium and recording samples only when t = 1,

corresponding to the target distribution. It is hoped that the additional compu-

tational power spent moving between temperatures, redeems itself by exploring

the true distribution more globally and producing less correlated samples. Paral-

lel Tempering, also often known as Exchange Monte Carlo, ([19]) and Tempered

Transitions ([59]) are further methods involving temperature schedules which may

be employed to successfully explore multimodel distributions.

The idea of implementing a population in such a manner stems from Genetic

Algorithms, where each iteration produces a new population of particles, which

interact in ways mimicking natural selection, such as through mutation of the

position vectors. The main difference between Genetic Algorithms and Popula-

tion Markov Chain Monte Carlo (MCMC) methods however, is that while GAs

are used for optimisation problems, Population MCMC methods are concerned

not only with finding the global maximum of a target space, but also providing

samples from all other high density regions of the space. The use of temperature

ladders as a means of discovering high likelihood regions can also been seen as

a process of natural selection when compared to Genetic Algorithms; the fittest

samples move to a lower temperature, while the least fittest move to a higher

temperature, allowing them to traverse more easily into a different region within

the target space. Liang and Wong ([44]) give a good summary of the components

of a Population MCMC based algorithm and the influence Genetic Algorithms

have had on its development. Laskey and Myers ([43]) also provide interesting

insight into how biological language and metaphors have been incorporated into

stochastic search literature, as well as giving a comparison of GAs and population

based Monte Carlo methods.

2.2.2 Population Markov Chain Monte Carlo

In this section we look at an extension of standard Markov Chain Monte Carlo

algorithms, involving the ideas both of a population as well as a temperature

schedule. In such population methods, chains proceed on a random walk through

a product distribution space, and their movement is influenced by the position

of other chains at different temperatures. The idea is that chains in low density

regions will move towards chains in high density regions, so that the population

will converge more quickly on the target distribution, which is at the lowest
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temperature. Taking advantage of the information contained in current chains

must however be done in a careful manner in order to preserve the Markovian

structure of the chains.

Population Markov Chain Monte Carlo (also known as Evolutionary Monte

Carlo, see [45]) consists of a population of Markov chains which explore a tar-

get distribution by means of a series of intermediate distributions with varying

temperatures. A separate chain is run at each temperature and they are able

to interact by jumping between temperatures and exchanging positions, thus ex-

ploiting easier exploration at higher temperatures (See Algorithm 2). This is the

same as the parallel tempering method mentioned previously ([51, 60]). In addi-

tion, the chains may perform crossover steps which allow them to move to new

positions within their current temperature level based on the locations of other

chains, similar to the Adaptive Direction Sampling algorithm also mentioned

previously.

As with other MCMC methods, a burn-in period is necessary to allow the

chains to converge to the appropriate target distribution. Once the chains have

converged, the chain at the lowest temperature provides samples from the true

target distribution. There are quite severe restrictions on the kernels used to

reposition chains, since their Markovian structure must be preserved for the al-

gorithm to be valid. A current research area is the development of more efficient

transition kernels for use with this method ([23]).

Algorithm 2 Population Markov Chain Monte Carlo

1: Assign starting positions to each chain in a population, Θ = (θ1, . . . ,θN)
2: Define a temperature ladder attached to the population,

(Θ, t) = (θ1, t1, . . . ,θN , tN)
3: repeat
4: Apply local move or crossover operator (as described below) to each chain

in the population with probability pm, (1 − pm) (where pm is sometimes
known as the mutation rate)

5: Try to exchange θi and θj for N pairs (i, j), with i sampled uniformly on
(1, ..., N) and j = i ± 1 with probability pe(θj,θi), where pe(θi+1,θi) =
pe(θi−1,θi) = 0.5 and pe(θ1,θ2) = pe(θN ,θN−1) = 1

6: until Chains converge

A standard method of implementing Population Markov Chain Monte Carlo

is as follows. We assume we want to sample from a posterior distribution defined

on the real space,

p(θ|y) ∝ L(y|θ)π(θ) (2.2)

where L(y|θ) is the likelihood of the experimental data, y, conditioned on the pa-
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rameters, θ, and π(θ) is the prior distribution over the parameters. We first define

an N -step temperature schedule, t = (t1, . . . , tN), with 0 = t1 < . . . < tN = 1.

Note that for the metaphor of temperature to make sense, the parameter sched-

ule t is actually inversely proportional to temperature, with t1 considered a high

temperature and tN = 1 considered a low temperature. A sequence of distribu-

tions1, corresponding to each step i = 1, ..., N on the temperature schedule, is

then constructed

p(θi|y) =
L(y|θi)tiπ(θi)

Zti
(2.3)

where θi will be considered the position of the Markov chain running at temper-

ature, ti, and Zti is some, usually intractable, normalising constant

Zti =

∫
L(y|θi)tiπ(θi)dθi (2.4)

One can therefore picture a multimodal target distribution at tN = 1, which melts

at higher temperatures so that the distributions at tn < 1 are easier to explore.

The resulting distribution at each temperature is explored using an individual

Markov chain, so that the total number of Markov chains running simultaneously

is N . In Population Markov Chain Monte Carlo a product distribution is consid-

ered when moving individual chains, thus taking the entire population of chains

throughout the temperature schedule into account. We therefore sample from

p(Θ|y) =
1

Zt

N∏
i=1

L(y|θi)tiπ(θi) (2.5)

where Θ is the population of Markov chains, θ1, . . . ,θN , at the temperatures,

t1, . . . , tN respectively. The (intractable) normalising constant is now

Zt =
N∏
i=1

Zti (2.6)

Markov chains explore the distributions according to the temperature schedule

and they may also interact with one another and swap positions across temper-

atures. During each iteration, the algorithm updates the population by carrying

out one of the following moves:

Local Metropolis Move

A random Markov chain, θi, is selected from the population Θ, and a random

vector is added to it to create a new proposed position, θ′i. Thus a new population

1Other sequences are possible, see e.g. [16], but here we fix a geometric path between the
prior and the posterior.
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is defined as Θ′ = θ1, . . . ,θ
′
i, . . . ,θN , which is then accepted with probability

min(1, rm) according to the Metropolis-Hastings rule,

rm =
p(Θ′|y)

p(Θ|y)

T (Θ | Θ′)
T (Θ′ | Θ)

=
1
Zt

[L(y|θ1)
t1π(θ1)× . . .× L(y|θ′i)tiπ(θ′i)× . . .× L(y|θN)tNπ(θN)]

1
Zt

[L(y|θ1)t1π(θ1)× . . .× L(y|θi)tiπ(θi)× . . .× L(y|θN)tNπ(θN)]

×T (Θ | Θ′)
T (Θ′ | Θ)

=
L(y|θ′i)tiπ(θ′i)

L(y|θi)tiπ(θi)
× T (Θ | Θ′)
T (Θ′ | Θ)

(2.7)

where T (· | ·) denotes the probability of transition from one population to an-

other. A common choice for the transition density T is a Gaussian centred around

the current position of the chain, which is symmetric and thus allows the transi-

tion densities in the above equation to cancel.

Exchange

This is similar to a standard exchange move in temperature based Monte Carlo

methods. A new population Θ′ is created by swapping the positions of two chains,

θi and θj, on the temperature ladder so that,

(Θ′, t) = (θ1, t1, ...,θj, ti, ...,θi, tj, ...,θN , tN) (2.8)

The new population is accepted with probability min(1, re) according to the

Metropolis-Hastings rule,

re =
p(Θ′|y)

p(Θ|y)

T (Θ | Θ′)
T (Θ′ | Θ)

=
[L(y|θj)ti × L(y|θi)tj ]
[L(y|θi)ti × L(y|θj)tj ]

× T (Θ | Θ′)
T (Θ′ | Θ)

(2.9)

where many of the terms, including the normalising constants, have conveniently

cancelled out as shown previously for a local Metropolis step. Usually the two

selected chains are chosen to be direct neighbours in the temperature ladder to

increase the likelihood of the interaction being accepted.

Crossover

There are a few variations on the crossover operator. The original crossover

operators for Population Markov Chain Monte Carlo were defined for a finite
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binary space, however they were later extended for use in the real space ([45]).

A chain, θi, is selected uniformly from a population, Θ. A second, different

chain, θj, is also selected, either at random or for example with a probability

proportional to its current likelihood, fj(θj). Two new chain positions, θ′i and

θ′j, are then produced by so-called one-point, k-point or adaptive crossover. The

positions of the new chains replace the old positions to form a new population, Θ′,

which is then accepted or rejected according to a standard acceptance probability.

The one-point crossover takes place by uniformly selecting a crossover point, c,

from (1, ..., N), and then swapping all the values in the vectors θi and θj which

occur after position c. The k-point crossover is similar except there are multiple

uniformly selected crossover points, dictating which parts of the vector should be

swapped. The adaptive crossover is more complicated and the reader is referred

to ([44]) for the details.

The snooker crossover operator ([45]) is based on Adaptive Direction Sam-

pling (ADS) ([20]), and offers a method of moving a chain towards a region of

higher likelihood by sampling from a line going though the coordinates of the

current chain and some chosen second chain. For convergence of the algorithm to

occur, the proposal function used must be a Markov transition kernel satisfying

ergodicity requirements. A detailed examination of stationarity properties for the

Adaptive Direction Sampling algorithm may be found in ([71]). In the original

ADS the second chain, which sets the direction of the line from which to sample,

is chosen at random. The snooker operator improves on this by basing the choice

of the second particle on their current likelihoods, thus increasing the probability

of choosing a second particle near a region of high density.

A common feature of these real crossover operators is that the probability of

going from the current position to a proposed position is symmetric, P (Θ′ | Θ) =

P (Θ | Θ′), which makes the operator invariant with respect to the underlying

distribution. For the theorems, and corresponding proofs, that show the snooker

crossover operator is in fact a proper invariant transition, see ([45, 47]).

Obviously it is not advisable to use this type of operator too often otherwise

the chains will tend to cluster together, inhibiting the exploration of the wider

space.

Application

The Population Markov Chain Monte Carlo algorithm has relatively few param-

eters which must be set by the user. The size of the population, N , which is

equivalent to the number of steps on the temperature ladder, t, the spacing of

the steps on the temperature ladder, the effect of which is examined in Chapter

3, and the various probabilities, pm and pe, determining how often each of the dif-
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ferent types of moves are applied to the chains. By increasing N (and therefore t,

since each chain is associated with a temperature) we can improve the chances of

the population covering more areas of the target distribution, which is preferable

in order for the system to mix well, however there is of course a corresponding

decrease in speed, since there are more chains which must be moved through the

product space. On the other hand, a small population size results in a steeper

temperature ladder with lower acceptance probabilities, which although compu-

tationally faster may often result in poor mixing. Generally, the population size

should be chosen to be comparable to the dimension of the problem. For a more

detailed discussion of how best to choose these parameters see ([44, 45]).

It is useful to note that setting pm = 1 turns the Population MCMC algorithm

into a parallel tempering algorithm without the use of any crossover operator, and

setting pm = 1 and N = 1 turns it into a single-chain Metropolis-Hastings algo-

rithm. The effect of the crossover operator on the performance of the Population

MCMC algorithm is investigated in [32]. The authors examine autocorrelations

of the likelihoods of the samples produced, firstly when running the algorithm

without using the crossover operator, and then using two different variants of the

crossover operator. They conclude that the addition of such a crossover opera-

tor results in a decrease in the autocorrelation, which may be interpreted as an

increase in the exploration ability compared to a standard simulated tempering

approach, although the authors note that there is greater computational cost and

an increased complexity in coding the algorithm.

As with other MCMC algorithms, it is important to determine whether the

chains have reached their target distribution, and how well the chains are mixing.

These methods of diagnosis may also be described as “stopping rules”. A method

often used for this purpose is the R̂ statistic, proposed by Gelman ([15]). This

method looks at both the within-chain and between-chain convergence, and gives

a value, R̂, which tends to 1 as the chains converge. Using this method, multi-

ple runs of Population MCMC can be initiated simultaneously, and convergence

monitored using the multiple chains at each temperature to calculate R̂ values

for each step in the temperature schedule. Other types of convergence indicators

which could be employed include autocorrelation time, which may be used on

single chains, and visual aids such as histogram plots.

A slightly different approach is taken by Guihenneuc-Jouyaux et al. ([24]).

They suggest that the process of determining convergence be split up into 3

stages. Firstly, one wishes to ascertain that the chain is in fact sampling from

the stationary distribution. Secondly, it must be confirmed that the chain is

adequately exploring all regions of the distribution containing sufficient density.

Thirdly, the accuracy of any parameter estimations made must be quantified.
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Their paper takes a detailed look at this approach to convergence diagnostics,

and supplies some examples of their methods in action.

Laskey and Myers ([43]) compare a Metropolis-Hastings algorithm, an evo-

lutionary algorithm and a Population MCMC algorithm. They show that the

evolutionary algorithm and Population MCMC algorithm find the global max-

imum more efficiently than Metropolis-Hastings, with the Population MCMC

method having the added advantage that it samples from a distribution of likely

parameter values. This demonstrates the advantages of information exchange

between chains. Liang and Wong ([45]) also include three illustrative examples

showing the population based Evolutionary Monte Carlo (Population MCMC)

method outperforming a Metropolis-based simulated tempering method. The

simulation studies show how Population MCMC offers much better mixing on a

20-component two dimensional model and, most importantly, how it finds all of

the modes, whereas the Metropolis based version fails to find three of the outer

modes. In this thesis I will look at higher dimensional examples of multimodal

distributions, and in Chapter 3 I will show that Population MCMC may be used

to successfully sample from posteriors produced by nonlinear models of up to

seven dimensions.

As already mentioned, it is necessary to wait for the chains to mix well before

collecting samples, and this burn-in time varies in length according to the com-

plexity and dimension of the space being explored. Population MCMC requires

tuning of the temperature ladder and proposal kernels to individual problems in

order to improve efficiency, however this can be time consuming. Finally, it is

worth noting that the number of chains being simulated in a population (and

hence the gradient of the temperature ladder) must remain constant throughout

the simulation in order to achieve convergence and, in Chapter 3, I also exam-

ine how such a temperature schedule might be best chosen so as to make the

algorithm most efficient.

2.2.3 Sequential Monte Carlo

I now describe a framework proposed in ([6, 7]) which incorporates sequential

importance sampling ideas to justify the convergence of a population of samples

to a target distribution. It is important to note that the validity of this framework

does not rely on the ergodic properties of any Markov chains. This is a very

powerful methodology and can be regarded as a general case encompassing a

number of specific algorithms based on importance sampling ideas, including

Annealed Importance Sampling ([61]) and Population Monte Carlo ([4]) which

are described later.

The main idea is that of propogating a population of Θ samples through a
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collection of N distributions in sequence πn=1,...,N using some transition kernel.

The first distribution, π1, is typically easy to sample from, and the resulting

samples form the starting points as the second distribution is sampled from.

Intermediate distributions then help iteratively guide the samples towards the

high density regions of the final distribution, πN , which is the target we wish to

investigate. Usually sequential methods have been applied to problems where the

data arrives in a particular order, for example over time, however they may be

equally well applied to complex static problems with large datasets ([4]).

This methodology may be used in various ways. Employing the Bayesian

framework, each distribution could be taken to represent the posterior distribu-

tion of the parameters given the first p datapoints. This might well have the

effect of simplifying the posterior distributions early on, similar to a kind of tem-

perature schedule effect, and since less data is used in the calculations it may also

be computationally more efficient in some cases. Alternatively, the sequence of

intermediate distributions could be defined artificially, for example geometrically,

in a similar way to the temperature schedules encountered before. Traditional

importance sampling has generally not been used for more complex problems due

to the difficulty of choosing an importance distribution which approximates the

target distribution well enough for the method to work efficiently. A sequence of

distributions alleviates this problem by gradually moving towards the required

nonlinear target distribution.

Unlike Markov Chain Monte Carlo approaches, in which the convergence mon-

itoring of chains is vital, Sequential Monte Carlo (SMC) assigns weights to each

of the samples (summing to 1) as they develop over the iterations such that

their estimation of the expectation, with respect to any of the distributions, πn,

converges asymptotically

N∑
i=1

W (i)
n φ(θ(i)

n )→ Eπn(φ) (2.10)

where W
(i)
n are the weights attached to the ith sample in the nth distribution,

and φ is the function over which the expectation is calculated.

SMC is similar to most temperature-based MCMC approaches in that the

choice of intermediate target distributions and proposal mechanisms strongly in-

fluences how well such an algorithm performs. The main strength of SMC lies

in its flexibility, and it can be shown that many well-known and often used al-

gorithms can be considered special cases of SMC given a particular set of target

distributions and proposal functions.

Annealed Importance Sampling ([61]) is an example of such an algorithm

which fits into the SMC framework. It has similarities with Simulated Annealing,
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described previously, in that a sample is initially taken from an easy to sample

from distribution at a high temperature, and a cooling schedule is applied until

one has a sample from the required target distribution. These weighted samples

may then be used to estimate expectations, and so it is not necessary for the

chains to have converged fully at any of the intermediate distributions. This

algorithm can be considered a subset of the Sequential Monte Carlo framework

by taking the proposal mechanism to be a local Metropolis style random-walk,

and by choosing the intermediate distributions geometrically.

Population Monte Carlo

Population Monte Carlo (PMC) algorithms as described by Cappé ([4]) can also

be considered a subset of SMC methods ([9]). I now give an overview of the history

of Population Monte Carlo and make explicit the differences between this non-

Markovian method, which depends on importance sampling convergence argu-

ments, and the Population MCMC method described previously, which depends

on ergodicity properties of the Markov chains for convergence to a stationary

distribution. Since this method has been influenced by particle filter methods,

the terminology used to describe it sometimes differs slightly from that used to

describe MCMC methods. The members of a population are thus often called

particles, to distinguish them from Markovian “chains”.

The idea of incorporating a population of particles into Monte Carlo methods

has been around for a while. The first cross-disciplinary survey on population

Monte Carlo methods was first given in ([30]), in which the basic structure of such

algorithms is detailed. These algorithms have been developed in many different

fields simultaneously, and can be found applied to areas such as Lattice Spin

Systems, Quantum Many-Body problems and polymer science (see [30]).

Algorithm 3 Population Monte Carlo

1: Assign starting positions to each chain in a population, X = (x1, . . . ,xN)
2: repeat
3: Move each chain in the population according to some kernel and compute

its end weight
4: Resample according to the weights
5: until Chains converge

Pseudocode for a general non-Markovian Population Monte Carlo algorithm

is given by Algorithm 3. This provides the framework for developing Monte Carlo

algorithms based on iterated importance sampling. The flexible choice of kernel

allows for potentially easier exploration of the target distribution at both a local

and global level.
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Figure 2.1: Illustration of the general resampling procedure based on the impor-
tance weighting of chains. There is no restriction on the repositioning step, in
that it need not be Markovian. Such freedom however does not guarantee ef-
ficiency, and so the repositioning kernel must be carefully chosen. See ([4]) for
further information on the choice of kernels.

The driving force behind Cappé’s Population Monte Carlo method is the idea

of iterated generations of importance sampling. This approach has many advan-

tages over standard MCMC techniques. The algorithm consists of a population

of particles which explore the parameter landscape according to some reposition-

ing kernel. Importance sampling is then employed for resampling the population

according to their relative likelihoods (see Figure 2.1). A great advantage of this

importance sampling step is that it produces samples approximately simulated

from the target distribution and removes dependency on a Markovian requirement

of the repositioning step, making it easier to incorparate more varied reposition-

ing kernels that may, for example, take more global steps in the parameter space.

These relaxed conditions on the repositioning kernel may increase the chances

that multiple modes will be found. These samples can then be used to obtain

approximately unbiased estimates of expectations over the target distribution.

Adaptive proposal functions which depend on samples from past iterations

may also be employed, and the method is still valid without any alterations to

the rest of the algorithm, as demonstrated in ([4]). In addition, the number

of particles in a population need not be kept constant over the iterations; the

population size may be allowed to grow or shrink. Valid samples are still produced

after a resizing of the population due to the normalisation which occurs during

the importance resampling step.

The development of non-Markovian PMC methods has stemmed from several

ideas. The construction of proposal functions has been strongly influenced by

existing MCMC methodology. Sample equalisation and rejuvenation procedures

have come from the sampling importance resampling (SIR) literature (see e.g.
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[72]), while sample improvement has its roots in iterated particle systems ([5]).

Population Monte Carlo is clearly similar to the Sequential Monte Carlo frame-

work described previously, but in this case the emphasis is placed on the flexible

choice of proposal mechanism. SMC adds the idea of sampling from a flexible

sequence of distributions which converges to the target distribution.

2.3 Estimating Marginal Likelihoods

In this section I look at various methods of calculating marginal likelihoods. Being

able to calculate these accurately is of vital importance for computing meaning-

ful Bayes factors for model identification and, as will become evident, accurately

calculating marginal likelihoods over nonlinear posteriors is not straightforward.

The first methods I describe is based on the idea of importance sampling intro-

duced in Chapter 1. The second is based on sampling across a path connecting

the prior to the posterior.

2.3.1 Importance Sampling Methods

The simplest method of estimating the marginal likelihood of the data given a

particular model is a Monte Carlo estimate based on importance sampling, as

considered in Section 1.3.1. It has been documented that using the prior as

the importance sampling function is an inefficient estimator, especially if the

posterior distribution differs greatly from the prior from which the samples are

being generated.

Sampling from the Posterior

To get around the inefficiency of sampling from the prior, demonstrated in Chap-

ter 3, a common approach is to employ importance sampling. The Monte Carlo

estimate using posterior importance sampling is

MLIS =

∑S
i=1wip(y | θ

(i))∑S
i=1wi

(2.11)

where wi = p(θ)/π∗(θ), and the density function π∗(θ) is the importance sam-

pling function. (Note that π∗(θ) is not strictly required to be a normalised density

function). Choosing the importance sampling function to be the posterior, and

substituting this into the last equation gives

MLPosterior =

{
1

S

S∑
i=1

p(y | θ(i))−1

}−1

(2.12)
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which is the harmonic mean of the likelihood values, where the parameters are

sampled from the posterior, θ ∼ p(θ | y). It has been shown that this converges

almost surely to the correct value, however it does not always satisfy a central

limit theorem, which sometimes manifests itself in the form of unstable results

([64]).

2.3.2 Thermodynamic Integration

Thermodynamic integration is also known as path sampling and is based on a

more elaborate MCMC sampling scheme ([16, 13]). It is much more computa-

tionally expensive than the importance sampling estimators previously described

since it requires sampling from intermediate probability distributions at various

steps of a temperature ladder. Statistically however it behaves in a much more

consistent manner compared to methods involving prior or posterior sampling

([13, 42]), as will be demonstrated in Chapter 3.

Given an unnormalised density, q(θ), the normalised probability density is

given by,

p(θ) =
1

Z
q(θ) (2.13)

where

Z =

∫
θ

q(θ)dθ (2.14)

is the normalisation constant. Normally in the Bayesian framework we take

q(θ) = p(y | θ, H)p(θ | H), Z = p(y | H) and p(θ) = p(θ | y, H) for a particular

model H. In order to calculate the marginal likelihood using thermodynamic

integration, however, we define the so-called power posterior,

pt(θ) =
{p(y | θ, H)}t p(θ | H)

Zt
(2.15)

so that,

Zt =

∫
θ

{p(y | θ, H)}tp(θ | H)dθ (2.16)

We note that when t = 0, Zt is the prior marginalised over θ which is simply

equal to 1, and that when t = 1, Zt is the marginal likelihood. If we therefore

consider the log ratio of Z1 and Z0 we see that
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log

(
Z1

Z0

)
= log(Z1)− log(Z0)

= log

[∫
θ

p(y | θ, H)p(θ | H)dθ

]
− log

[∫
θ

p(θ | H)dθ

]
= log

[∫
θ

p(y | θ, H)p(θ | H)dθ

]
= log{p(y)}

The following identity is then used to calculate the marginal likelihood, where

the expectation is calculated with respect to the power posteriors,

log{p(y)} = log

(
Z1

Z0

)
=

∫ 1

0

Eθ|y,t log{p(y | θ)}dt (2.17)

which may be derived as follows,

d

dt
log(Zt) =

1

Zt

d

dt
Zt

=
1

Zt

d

dt

∫
θ

{p(y | θ)}tp(θ)dθ

=
1

Zt

∫
θ

{p(y | θ)}t log{p(y | θ)}p(θ)dθ

=

∫
θ

{p(y | θ)}tp(θ)

Zt
log{p(y | θ)}dθ

= Eθ|y,t log{p(y | θ)}

Equation (2.17) follows by integrating with respect to t.

Work in [13] demonstrates just how good an estimator thermodynamic in-

tegration is compared to other importance sampling based estimators. This is

also shown in ([42]), where thermodynamic integration is used in a phylogenetic

context.

2.4 Conclusions

In this chapter I have presented a range of methods which may be useful for the

purpose of system identification and model inference. I started by describing the

difficulties associated with the process of parameter estimation when modelling

biochemical networks, and also the challenges of comparing competing model hy-

potheses. A naive optimisation-based approach to model comparison, using Sim-

ulated Annealing and Genetic Algorithms, was presented along with a discussion

of its limitations. More advanced methods for parameter inference were then
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introduced, in particular Population Markov Chain Monte Carlo, which extends

the original Metropolis algorithm using ideas of population and temperature to

allow sampling from nonlinear multimodal distributions. An overview was given

of importance sampling based methods of exploring a target distribution, and

it was noted that many existing algorithms may be viewed as special cases of

the more general Sequential Monte Carlo framework. Finally, three methods of

calculating marginal likelihoods were given, which are extremely useful for cal-

culating Bayes factors for a more objective form of model comparison, since all

the possible parameter values are marginalised. In the next chapter I shall pro-

vide a numerical comparison of some of these methods, with a particular focus

on how the Population Markov Chain Monte Carlo algorithm may be combined

with thermodynamic integration to estimate marginal likelihoods accurately over

both linear and nonlinear models.
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Chapter 3

Population Markov Chain Monte
Carlo in Action

This chapter considers the feasibility of employing Bayes factors to discriminate

between models with different topologies using various sampling and marginal

likelihood estimation methods. Firstly, linear regression models with conjugate

priors are investigated in Section 3.1, since they allow for an analytic expression

of the marginal likelihood to be calculated. This analytic expression then acts

as a benchmark against which we can make an accurate numerical comparison

of the various approaches considered in the previous chapter. Poor performance

of a sampling method on such a simple statistical model would then cast serious

doubt on the suitability of that method for the more demanding application of

ODE models. I examine how the number of samples used in the Monte Carlo

estimates affects the mean and variance of the end result. In addition, one of

the approaches I look at is thermodynamic integration, for which I investigate

possible choices of temperature schedules which may be employed, and suggest an

optimal scheme in terms of minimising the variance of the estimates produced. In

Section 3.2 an example is given of how drastically Metropolis methods of sampling

can fail when exploring a multimodal posterior induced by a nonlinear Goodwin

oscillator model, the canonical model for describing circadian rhythms, which

further motivates the use of more advanced sampling methodology. Finally I

show how Population Markov Chain Monte Carlo may be successfully employed

to gain estimates of marginal likelihoods, and demonstrate how its ability to

sample from multiple modes simultaneously results in the calculation of Bayes

factors accurate enough to discriminate between competing model hypotheses

described using nonlinear ODEs.
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3.1 Linear Regression Models

Linear regression models were used to determine the relationship between some

response variable y and a set of predictor variables or covariates x = (x1, . . . , xd),

where d is the dimension of the model. General models of the following form were

used,

g(x) =
k∑
i=1

βiBi(x) (3.1)

so that the function g comprised of a linear combination of basis functions Bi(x)

with coefficients βi. In particular the responses were assumed to be related to

the variables through the relationship

y = g(x) + ε (3.2)

where ε is a Gaussian distribution with zero-mean and known variance σ2. This

can also be written in matrix form,

y = Bβ + ε (3.3)

where y = (y1, . . . , ym)T , ε = (ε1, . . . , εm)T , and the so-called design matrix

B =

B1(x1) . . . Bk(x1)
...

. . .
...

B1(xm) . . . Bk(xm)

 (3.4)

For each pair of models, H1, H2, an “experimental” dataset of m points, D =

{yi,xi}mi=1, was produced by one of the linear models by calculating g(xi) at

some randomly selected positions and adding some noise, ε. The two models

were then compared by using this “observed”dataset to calculate P (y | X, Hn),

where X = [x1, . . . ,xm], from which the Bayes factors could be obtained.

3.1.1 Analytic Expressions

Priors

A conjugate prior distribution was used so that an analytic expression for the

marginal likelihood could be calculated. This was vital so that a benchmark was

available for assessing the accuracy of the approximate methods. Independent

Gaussian priors centred at zero with variance ζ2 were placed on each of the

unknown parameters (β1, . . . , βn).

π(βi) = N(0, ζ2) (3.5)
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and so,

π(β) =
n∏
i=1

Nβi(0, ζ
2) (3.6)

Likelihood

The likelihood for a model with a fixed design matrix B may be written as

p(y | X,β, σ). Since the errors are normally distributed so that ε ∼ N(0, σ2I),

where I is the identity matrix of dimension m, the likelihood function is given by

p(y | X,β, σ2) = (2πσ2)−m/2 exp

{
−(y−Bβ)T (y−Bβ)

2σ2

}
(3.7)

Posterior

Since both the priors and the likelihood function are Gaussian distributions, the

posterior is therefore also a Gaussian distribution for which there exists an ana-

lytic form. This Gaussian posterior is given by

p(β | X,y, σ2, ζ2) = N(µ,Σ) (3.8)

where

µ =

(
BTB +

σ2

ζ2
I

)−1

BTy

Σ = σ2

(
BTB +

σ2

ζ2
I

)−1

From now on, we do not condition explicitly on the covariates X in every

equation for reasons of clarity.

Marginal Likelihood

Similarly there is an analytic form for the marginal likelihood, which is also a

Gaussian distribution. The marginal likelihood of the experimental data given a

particular model, H, is given by

p(y | σ2, ζ2, H) =

∫
p(y | β, σ2)π(β | ζ2)dβ (3.9)

= (2π)−m/2
∣∣σ2I + ζ2BBT

∣∣−1/2
exp

{
−1

2
yT (σ2I + ζ2BBT )−1y

}
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Therefore a Bayes factor can be obtained analytically by using the above equation

to calculate the marginal likelihood for two competing linear regression models.

This analytical Bayes factor can be used as a benchmark against which other

methods of estimating marginal likelihoods may be compared.

Power Posteriors

One of the methods I look at for estimating marginal likelihoods and Bayes factors

is thermodynamic integration, which makes use of so-called power posteriors,

introduced in Chapter 2. These are the posteriors obtained at each level in the

temperature schedule used. The linear regression models that we use also admit

an analytic expression for power posteriors. Noting that the log of the likelihood

(Equation 3.7) is given by

log{p(y | β, σ2)} = −m
2

log(2πσ2)− 1

2σ2
(y−Bβ)T (y−Bβ)

The power posteriors, for a particular inverse temperature t ∈ [0, 1], are simply

given by Gaussian distributions

p(β | y, t, σ2, ζ2) = Nβ(µt,Σt) (3.10)

where the mean and covariance matrices are given by

µt =

(
BTB +

σ2

tζ2
I

)−1

BTy (3.11)

Σt =
σ2

t

(
BTB +

σ2

tζ2
I

)−1

(3.12)

The log of the marginal likelihood may be calculated by integrating the expec-

tation of the log of the likelihood with respect to a power posterior over time,

t ∈ [0, 1]. This expectation may be calculated analytically making use of the

analytic expression for the log likelihood and the power posterior

Eβ|y,t,σ2,ζ2
[
log{p(y | β, σ2)}

]
=

∫
β

Nβ(µt,Σt)

[
−m

2
log(2πσ2)− 1

2σ2
(y−Bβ)T (y−Bβ)

]
dβ

= − 1

2σ2
(y−Bµt)

T (y−Bµt)−
1

2
Tr(BTBΣt)−

m

2
log(2πσ2) (3.13)

Alternatively, we can estimate the above expectation by sampling β(j)s from

each of the power posteriors (using the analytic expression 3.10) and using the

following Monte Carlo estimate
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Eβ|y,t,σ2,ζ2
[
log{p(y | β, σ2)}

]
≈ 1

N

N∑
j=1

log
{
p(y | β(j), σ2)

}
(3.14)

The integral in equation (2.17) may then be calculated numerically by discretising

over the temperature, t ∈ [0, 1], and using the trapezoidal rule with n partitions.

So for a discretisation 0 = t0 < t1 < . . . < tn−1 < tn = 1, an approximation for

the log of the marginal likelihood, where we have dropped explicit dependence

on σ2, ζ2 and H, is given by

log{p(y)} ≈
n−1∑
i=0

(ti+1 − ti)
Eβ|y,ti+1

[log{p(y | β)}] + Eβ|y,ti [log{p(y | β)}]
2

(3.15)

There are therefore two sources of error in this estimation of the expectations

with respect to the marginal likelihood. Firstly there is the Monte Carlo error

when estimating the power posteriors themselves, which depends on the number

of samples used and the sampler accurately converging to the required stationary

distribution. Secondly there is the error in estimating the integral of the power

posteriors over t, which depends on the number and spacing of the partitions used

to discretise the integral. The effects and magnitude of both of these possible

errors are investigated in detail.

This discretisation of the unit line need not be uniform and so there are many

ways in which the tis may be chosen, which may affect the error associated with

the estimate. By defining a density p(t) over the temperature values we can obtain

a density over t which will minimise the Monte-Carlo variance ([16]). Introducing

p(t) obtains,

log p(y) =

∫ 1

0

Eβ|y,t,σ2,ζ2 [log{p(y | β, σ2)}] p(t)
p(t)

dt (3.16)

= Eβ,t|y,σ2,ζ2

[
log{p(y | β, σ2)}

p(t)

]
(3.17)

The variance associated with the Monte Carlo estimate of log p(y) can be min-

imised by finding the function p(t) which minimises

Eβ,t|y,σ2,ζ2

[
log{p(y | β, σ2)}2

p(t)2

]
=

∫ 1

0

Eβ|y,t,σ2,ζ2

[
log{p(y | β, σ2)}2

p(t)

]
dt (3.18)

Taking functional derivatives of the following Lagrangian
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∫ 1

0

Eβ|y,t,σ2,ζ2

[
log{p(y | β, σ2)}2

p(t)

]
dt+ λ

∫ 1

0

p(t)dt (3.19)

gives

p(t) =
p∗(t)∫ 1

0
p∗(t′)dt′

(3.20)

where

p∗(t) =
√

Eβ|y,t,σ2,ζ2
[
log {p(y | β, σ2)}2

]
(3.21)

For the linear regression model we may in fact compute p∗(t) analytically, which is

proportional to the normalised density function (Equation 3.20). The derivation

of this analytic form is rather long and so it is relegated to Appendix A. Thus

we may compute p∗(t) for t ∈ [0, 1] and use the results to guide our choice of

temperature schedule to minimise the variance of estimates. In particular, the

width of temperature partitions should be inversely proportional to the density,

p∗(t), so that the regions of greatest mass are most accurately estimated.

3.1.2 Experimental Results: Calculating Marginal Likeli-
hoods

In these experiments I used a standard linear model shown in Equation 3.3, where

B = X = [x1, . . . ,xm]T , to generate 30 experimental data points. I chose a set

of parameters, β, sampled from the prior distributions of mean 0 and variance

ζ2 = 1, and added Gaussian noise of variance σ2 = 1, for a variety of models with

dimension d = 2, 4, 6, 8, 10, 15, 20. For each model, H, the marginal likelihood,

p(y | H), was calculated analytically (see Equation 3.9) using the experimental

data points and then estimated using the prior and posterior sampling methods

and also thermodynamic integration, as described in Chapter 2. The marginal

likelihood was estimated 100 times using each method so that the means and

variances could be evaluated and compared. The sample sizes used during the

Monte Carlo estimations were also varied from 100 through to 100,000, increas-

ing by a factor of 10 each time, to see how this affected the accuracy of the esti-

mate, although with thermodynamic integration I used only up to 10,000 samples

due to computational time limitations. As previously mentioned, another error

which appears when using thermodynamic integration is that associated with the

temperature schedule. For the purposes of comparison with other methods, the

effect of various temperature schedules was examined and the optimal, in terms

of smallest variance, was used for all subsequent experiments.
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The mean, variance and relative error in the following sections were calculated

as follows,

Mean =
1

s

s∑
i=1

M̂i (3.22)

Variance =
1

(s− 1)

s∑
i=1

(M̂i −Mean)2 (3.23)

Rel. Err. =
1

Mtrue

√√√√1

s

s∑
i=1

(M̂i −Mtrue)2 (3.24)

where M̂i is the ith estimate of the marginal likelihood, and Mtrue is the true

analytical marginal likelihood. I show that sampling from the posterior generally

produces better estimates of the marginal likelihood than sampling from the

prior. However the use of thermodynamic integration offers a great improvement

in accuracy over both of the importance sampling based methods in terms of

lower variance and less bias, as can be seen in Figure 3.1, which provides an

overview of the results for a 6 dimensional linear regression model.
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Figure 3.1: Results summary of marginal log likelihood estimation methods for
6 dimensional linear regression model, where the red line indicates the analytic
value. In the left hand plot it can be seen that posterior-based estimates of the
marginal log likelihood, shown above the red line, have less bias and much tighter
variance than those estimated by sampling from the prior, shown below the red
line. In the right hand plot, the same posterior-based estimates are displayed
using a smaller scale. It is evident that the power posterior-based estimates of
the marginal log likelihood are even closer to the analytic value and exhibit less
variance than either of the other methods.
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Sampling from the Prior

Table 3.1 shows a comparison of the means and variances of the results generated

by sampling from the prior using various sample sizes.

Table 3.1: Marginal log likelihood estimates for linear regression model sampling
from prior.

100 Samples 1000 Samples 10000 Samples 100000 Samples Analytic
2D -75.06 ± 1460 -49.68 ± 6.39 -47.97 ± 0.18 -47.87 ± 0.015 -47.87
4D -171.59 ± 5394 -81.77 ± 363 -60.78 ± 36.8 -53.74 ± 3.42 -52.49
6D -366 ± 15863 -192 ± 3378 -114 ± 423 -80.77 ± 155 -54.82
8D -564 ± 18960 -336 ± 7742 -201 ± 2349 -137 ± 625 -62.69
10D -640 ± 7707 -417 ± 12088 -271 ± 3480 -188 ± 1208 -67.20
15D -692 ± 1477 -694 ± 815 -664 ± 6081 -519 ± 6666 -79.97
20D -695 ± (-) -698 ± (-) -698 ± 125 -672 ± 3340 -94.05

Table 3.2: Marginal log likelihood relative error for linear regression model sam-
pling from prior

100 Samples 1000 Samples 10000 Samples 100000 Samples
2D 97.6% 6.47% 0.90% 0.26%
4D 266% 66.4% 19.5% 4.23%
6D 612% 272% 114% 52.4%
8D 828% 457% 234% 126%
10D 862% 545% 315% 186%
15D 766% 768% 737% 558%
20D 639% 641% 642% 618%

The results show that as soon as the number of dimensions increases above four,

in terms of the bias and variance the accuracy of the marginal likelihood estimate

drastically decreases, even using a large number of samples. It was not feasible

to compute the estimate using more than 100,000 samples due to the extremely

long running times. From Table 3.1 we see that the variance is not computable

for twenty dimensions when there is a small number of samples. This is due to

computational limitations, as the calculated probabilities are extremely small.

Similarly the relative error, as shown in Table 3.2, greatly increases above four

dimensions, even for a large number of samples. An overview is given in Fig-

ure 3.2, where it is clear to see that the marginal likelihood estimates become

extremely inaccurate as the dimension increases.

Sampling from the Posterior

It has been previously observed that sampling from the posterior results in an

overestimation of the marginal likelihood, for example in the context of calculating
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Figure 3.2: Marginal log likelihoods for linear regression model calculated from
prior samples. As the number of samples increases, the estimates of the marginal
log likelihoods improve as expected. Prior-based estimates provide good results
for models of low dimension, however for models of greater than 6 dimensions
the estimates exhibit much greater bias and variance. The results are wildly
inaccurate for models of 15 and 20 dimensions.
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Bayes factors over phylogenetic networks (see [42]), and this is indeed seen to be

the case with these results. An important difference, however, is that in ([42])

there was no way to calculate the true marginal likelihood analytically, whereas

in this work an analytic marginal likelihood may be calculated using Equation

3.9, allowing for more confident observations to be made regarding the harmonic

mean estimates. Table 3.3 shows that the variances and biases are generally much

smaller than those of estimates using samples from the prior.

Table 3.3: Marginal log likelihood estimates for linear regression model sampling
from posterior

100 Samples 1000 Samples 10000 Samples 100000 Samples Analytic
2D -41.95 ± 0.47 -42.21 ± 0.38 -42.35 ± 0.19 -42.62 ± 0.34 -47.87
4D -42.69 ± 0.70 -43.15 ± 0.55 -43.56 ± 0.41 -43.84 ± 0.49 -52.50
6D -39.68 ± 0.94 -40.28 ± 0.69 -41.09 ± 1.27 -41.33 ± 0.49 -54.82
8D -43.15 ± 1.26 -43.93 ± 1.10 -44.59 ± 1.52 -45.18 ± 0.63 -62.69
10D -44.12 ± 1.95 -45.28 ± 1.62 -46.03 ± 1.60 -46.54 ± 0.80 -67.20
15D -44.77 ± 3.38 -45.83 ± 1.90 -47.08 ± 1.65 -47.80 ± 1.08 -79.97
20D -48.94 ± 4.11 -50.28 ± 2.86 -51.63 ± 1.63 -52.65 ± 1.14 -94.05

Table 3.4: Marginal log likelihood relative error for linear regression model sam-
pling from posterior

100 Samples 1000 Samples 10000 Samples 100000 Samples
2D 12.45% 11.89% 11.57% 11.03%
4D 18.74% 17.86% 17.07% 16.54%
6D 27.68% 26.57% 25.13% 24.65%
8D 31.23% 29.98% 28.95% 27.96%
10D 34.41% 32.68% 31.56% 30.78%
15D 44.08% 42.73% 41.17% 40.25%
20D 48.01% 46.58% 45.13% 44.04%

Although we see that the variance is quite small, at about 1%, the relative

error, shown in Table 3.4, starts off fairly large at roughly 10% for 2 dimensions

and increases as the number of dimensions increases, albeit not as drastically as in

our previous results using prior samples. It is also interesting to note that there is

not a great decrease in relative error as the sample size increases. As the harmonic

mean estimate tends to consistently overestimate the marginal likelihood, these

observations suggest that increasing the sample size has a much greater effect on

reducing the variance of estimates than reducing the bias. An overview is given

by Figure 3.3.
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Figure 3.3: Marginal log likelihoods for linear regression model calculated from
posterior samples. The bias of these estimates decreases as the number of samples
increases, however the variance is not very dependent on the number of samples
used, in contrast to the prior-based estimates. Again, as the dimensionality of the
model increases, so does the bias in the estimates of the marginal log likelihoods.
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Thermodynamic Integration

First of all I consider which types of temperature schedules should be employed

to achieve optimal results in terms of minimising the variance of Monte Carlo

estimates of marginal likelihoods. This complements and extends the insights

offered by Jasra et al.([32]) who examine various temperature schedules using

Population MCMC to sample from mixtures of Gaussians, but only measure

the accuracy induced by different spacings by considering how closely the mean

parameters for each mixture component are approximated. We may use the

analytic expression for the optimal density function (Equation 3.21) to visualise

where the bulk of the density lies and in which regions significant changes of

density occur. Since we are estimating the log of the marginal likelihood using

numerical integration (Equation 3.15), it makes sense to take more estimates near

regions of high density, since changes in density correspond directly to changes

in the log likelihood. This means that temperature partitions should be narrow

in such regions. This also makes sense when looked at from a sampling point of

view, since when using Population MCMC to sample from a ladder of temperature

distributions we want the transitions between densities to be as smooth as possible

to allow for a reasonable acceptance rate for exchange moves, so as to encourage

mixing.

Plots proportional to the optimal density functions for linear regression models

of varying dimension are shown in Figure 3.4. The shape of these suggest that

temperature schedules should be constructed with the intermediate temperature

levels very definitely clustered towards t = 0, perhaps according to some kind

of power law distribution, since this is where the density function most changes

shape. In order to investigate whether this holds true in practice, experiments

were run using a variety of temperature schedules. For these experiments the log

of the marginal likelihood was calculated using numerical integration (Equation

3.15) so as to include errors introduced by the type of partitioning used. In

order to exclude any other Monte Carlo errors, the expectations in this equation

were calculated analytically (Equation 3.13). Table 3.5 shows the relative error

of results from experiments using different partitions for estimating the power

posterior integral in 2 dimensions. The number of partitions used was also varied,

to see to what extent the accuracy of the estimates increases as the number of

partitions used becomes larger.
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Figure 3.4: Optimal density function p∗(t) plotted against temperature for linear
regression model, where the continuous line represents p∗(t) for a 2D model and
the dotted line p∗(t) for a 20D model. Notice that as the variance decreases, and
the prior confidence increases, the introduction of new information (equivalent to
increasing t) has less of an effect on the density, which defines the temperature
schedule.
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The following geometric-based temperature schedules, defining t1,...,N , were

used for the comparison

Table 3.7: Equations for generating the geometric-based temperature schedules
used in the experiments.

Uniform: ti = i
N

Prior: ti =
(
i
N

)p
Posterior ti = 1−

(
i
N

)p
In addition, Centered clustered the temperature points around 0.5 and Ex-

tremes clustered the temperature steps towards both 0 and 1 and away from the

middle. Both of these schedules were generated based on scaling and combining

points produced by the prior and posterior schedules shown in Table 3.7. Higher

powers, p correspond to a more acute clustering of points.

From Table 3.5 it can be seen that methods which cluster more partitions

towards t = 0, corresponding to the prior, produce lower relative error in the

analytic estimates than those which cluster partitions towards t = 1, correspond-

ing to the posterior. This matches the prediction made using the optimal density

function. Partitions skewed towards the posterior end of the scale performed very

badly, indeed much worse than a uniform distribution, as would be expected. Ta-

ble 3.6 shows similar results but in 20 dimensions. The results are very conclusive;

even in 20 dimensions it is possible, using the right temperature schedule, to pro-

duce an estimate with a relative error of less than 1% using only 20 partitions of

the unit line.

It is interesting to see that using a simple uniform distribution of points to de-

fine the temperature partitions produces relatively poor estimates of the marginal

log likelihood integral, even for large numbers of partitions. This is in contrast

with suggestions made by Jasra et al. [32], who advise that a uniform tempering

schedule is generally a good choice when running population-based simulations.

There are differences, however, in the criteria used for determining how well a

temperature schedule performs, which may account for the drastic difference in

conclusions. In [32] the results are drawn on the basis of the resulting estimated

component means, whereas in this thesis the results are based on the estimates of

the marginal likelihoods. Clearly, it may be possible to have good mean estimates,

even if the samples used have quite a high variance, whereas estimates of marginal

likelihoods are not as forgiving if the samples used do not accurately cover the

regions of high density. In these examples the optimal results are obtained using

a power law distribution of temperature points skewed towards 0 and this also

makes sense when looked at from a population-based sampling viewpoint. The

shape of the power posteriors changes dramatically as the temperature, t, moves
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from 0 to 0.1, an illustration of which is given in Figure 3.8. For sampling pur-

poses, we wish the changes between adjacent power posteriors to be as smooth as

possible to encourage exchange proposals between temperatures to be accepted,

as hypothesised before.

Further experiments were then undertaken to calculate the analytic density

function p(t)∗ (Equation 3.21) for linear regression models using Gaussian priors

with different variances. Plots of the results are shown in Figure 3.4.

When the variance is greater than 1, the vague prior covers a large region

of the parameter space and the introduction of even a small amount of data,

equivalent to a small increase in temperature, results in a large change in the

density function. We observe that by setting the variance of the prior to a very

small number, we are in effect stating a huge confidence that the chosen restricted

region of the parameter space is the most likely. Thus it is no surprise that the

introduction of data, equivalent to increasing the temperature, has only limited

effects on the density function.

This can be examined from a sampling point of view. Since the density func-

tion is based on the log likelihood of the data, vague priors are likely to induce

sudden changes in the power posteriors when small amounts of data are intro-

duced. The spacing of the temperature steps should therefore be very small close

to t = 0, to make exchanges between chains of neighbouring temperatures more

likely, in order to encourage mixing. When a sharp prior is employed, adding

data has a much smaller effect on the power posteriors, and so mixing between

chains will be likely to occur even if the temperature steps are more uniformly

distributed. These results highlight the importance the choice of prior plays when

deciding on which temperature schedule should be employed. We note that when

modelling most kinds of systems, we will rarely be so certain of the expected

results as to be able to set such tight priors with variances of less than 0.01.

Thus the majority of the time, it is likely that vague, less confident priors will be

employed, and so it seems sensible to construct any temperature schedule using a

power law distribution with temperature points skewed towards the prior, t = 0.

Lartillot and Philippe ([42]) use uniform spacing and do not consider this issue at

all, and Friel and Pettitt ([13]) give some preliminary discussion on the subject.

Indeed, in the experiments the partition which produced the lowest variance

results was the one skewed towards the prior end of the temperature scale (towards

zero) and raised to the power 5, and so this was the temperature schedule I

employed for the next set of experiments, which focussed on estimating marginal

likelihoods over linear regression models using thermodynamic integration and

standard Metropolis MCMC.

Table 3.8 shows that the variances using thermodynamic integration are very
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low (all less than 0.09). They increase only slightly as the number of dimensions

increases and decrease as the number of Monte Carlo samples increases. The

relative errors, shown in Table 3.9, start off very low (all less then 0.9%) and,

as the number of Monte Carlo samples increases, these relative errors decrease

further towards the base error value caused by the partition estimate of the power

posterior integral. Thermodynamic integration is seen to be very stable to changes

in the number of dimensions of the model. This may also be seen in Table 3.8,

which shows that the mean values of the marginal likelihood estimates do not

change very much as the number of samples increases; they instead stay fairly

constant but with a decreasing variance. An overview is given by the boxplots in

Figure 3.5, where a small but systematic bias is clear to see, due to the trapezoidal

integration method employed. This issue is discussed in Chapter 4.

Table 3.8: Marginal log likelihood estimates using thermodynamic integration for
linear regression model

100 Samples 1000 Samples 10000 Samples Analytic
2D -48.04 ± 0.0168 -48.04 ± 0.0013 -48.04 ± 0.0001 -47.87
4D -52.70 ± 0.0306 -52.72 ± 0.0025 -52.71 ± 0.0002 -52.50
6D -55.15 ± 0.0403 -55.15 ± 0.0032 -55.15 ± 0.0003 -54.82
8D -63.07 ± 0.0527 -63.09 ± 0.0036 -63.08 ± 0.0004 -62.69
10D -67.62 ± 0.0555 -67.64 ± 0.0049 -67.64 ± 0.0005 -67.20
15D -80.63 ± 0.0690 -80.66 ± 0.0080 -80.66 ± 0.0005 -79.97
20D -94.84 ± 0.0815 -94.86 ± 0.0089 -94.86 ± 0.0008 -94.05

Table 3.9: Marginal log likelihood relative errors using thermodynamic integra-
tion for linear regression model

100 Samples 1000 Samples 10000 Samples
2D 0.44% 0.36% 0.36%
4D 0.51% 0.43% 0.42%
6D 0.69% 0.61% 0.59%
8D 0.71% 0.64% 0.63%
10D 0.72% 0.66% 0.66%
15D 0.88% 0.87% 0.86%
20D 0.89% 0.86% 0.85%

The experiments were also run in 50 and 100 dimensions using thermodynamic

integration. The results follow the trend of stable means, the variance decreasing

as the number of samples increases, and a very low relative error (less than 1.5%

in both cases). Importance sampling methods failed in 50 and 100 dimensions

due to computational limitations.
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Figure 3.5: Marginal log likelihoods for linear regression model calculated from
power posterior samples using 20 temperature steps. In all cases the variances
associated with the estimates are less than those produced using posterior and
prior-based sampling methods. Most importantly, even for models of 15 and 20
dimensions, estimates of the marginal log likelihood may be obtained with very
low variance and bias. The systematic bias observed is due to the numerical
integration using a finite number of temperatures.
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3.1.3 Experimental Results: Calculating Bayes factors

In these experiments we defined two models, generated “experimental” data from

one of them, and calculated the Bayes factor 100 times in order to see how accu-

rately we could predict which model produced the data. The Bayes factors were

calculated using importance sampling methods and also using thermodynamic

integration. The results were then compared to the analytically calculated Bayes

factors. The marginal likelihoods were calculated under the same experimental

conditions as they were previously in Section 3.1.2. Note that when thermody-

namic integration and sampling from the posterior were employed to calculate

Bayes factors, only up to 10,000 samples were used due to computational time

limitations.

Experiment A

Experiment A consisted of two models,

Model 1: y = β1x1 + β2x2 (3.25)

Model 2: y = β1x
2
1 + β2x1 + β3x2 (3.26)

Bayes factors were first calculated using data generated from the first model given

by Equation 3.25, and then using data generated from the second model given by

Equation 3.26. The parameter values used for generating the data were sampled

from their prior distributions. When model 2 was used to generate data however,

the experiments were run varying β1 manually in order to simulate a strongly non-

linear model (i.e. when β1 = 1) and also a more weakly non-linear model (i.e.

when β1 = 0.1). β1 values of 0.15 and 0.16 were also used, as these produced Bayes

factors which were not classed as “decisive” and therefore represented cases where

the accuracy of the estimate could most affect the interpretation of the evidence.

A summary of how Bayes factors should be interpreted was given previously in

Table 1.1.

Generating Data from Model 1:

Here we see that thermodynamic integration offers the most consistently accurate

results compared to the true analytic Bayes factor value of 28.3. Sampling from

the prior, see Table 3.10, results in completely uninformative results due to very

high variances. When using 100,000 samples the mean Monte Carlo estimate is

fairly accurate, although the variance is still high, as is the relative error at 39%.

We have already seen how sampling from the posterior results in an overesti-

mated marginal likelihood. When we calculate Bayes factors using samples from
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the posterior, we see that the Bayes factor is massively underestimated, as shown

in Table 3.11. Although the variance appears to be very small, the relative error

is too large for the results to be informative. Indeed, when interpreted using the

standard scale described in Section 1.2.5, the Bayes factor estimates based on

sampling from the posterior would suggest that the difference between the two

models is “Not worth more than a bare mention”, whereas the analytic Bayes

factor suggests that the difference between models is in fact “Strong”. This re-

sult therefore suggests that Bayes factor estimates based on posterior sampling

are unable to distinguish between even simple linear models.

Table 3.12 shows the results of using thermodynamic integration with 20 tem-

perature steps. The variance decreases rapidly as the number of Monte Carlo

samples used increase, and the relative error decreases to a level which would not

influence the interpretation of the Bayes factor.

Table 3.10: Experiment A, Bayes factor results, B1,2, sampling from prior

No. of Samples 100 1000 10,000 100,000 Analytic
Mean 1.90E+101 3.16E+16 968 30.5 28.3
Variance 2.70E+204 9.88E+28 46887509 118 -
Relative Error 5.9E+102% 1E+18% 24300% 39% -

Table 3.11: Experiment A, Bayes factor results, B1,2, sampling from posterior

No. of Samples 100 1000 10,000 Analytic
Mean 2.25 2.39 2.52 28.3
Variance 0.07 0.06 0.04 -
Relative Error 92% 92% 91% -

Table 3.12: Experiment A, Bayes factor results, B1,2, using thermodynamic inte-
gration

No. of Samples 100 1000 10,000 Analytic
Mean 33.21 33.46 33.72 28.3
Variance 35.72 3.26 0.42 -
Relative Error 27.4% 19.5% 19.5% -

Generating Data from Model 2:

Again thermodynamic integration appears to offer the most accurate results in

terms of relative error. Sampling from the prior produced reasonable results, but

only when using a very large number of samples. Sampling from the posterior

produced very poor results, with the estimated Bayes factors having relative
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errors greater than 1000% even when using a large number of samples. For β =

0.1, the difference between models based on posterior sampling are interpreted

as being borderline “Substantial”, when in fact it should be “Not worth more

than a bare mention”. For β = 0.15, the posterior-based estimates describe the

difference between models as “Decisive” instead of merely “Substantial” and, for

β = 0.16, as “Decisive” instead of just “Strong”. This reinforces our impression

that estimates based on sampling from the posterior should not be blindly trusted.

Table 3.13: Experiment A, Bayes factor results, B2,1, for β1 = 0.1

Sampling from
Prior
No. of Samples 100 1000 10,000 100,000 Analytic
Mean 1.67E+02 1.74E-01 0.166 0.150 0.156
Variance 2.39E+06 2.01E-01 0.018 0.002 -
Relative Error 991410% 286% 86.6% 26.7% -
Sampling from
Posterior
No. of Samples 100 1000 10,000 100,000 Analytic
Mean 3.38 3.00 2.69 - 0.156
Variance 0.18 0.09 0.05 - -
Relative Error 2083% 1837% 1632% - -
Thermodynamic
Integration
No. of Samples 100 1000 10,000 100,000 Analytic
Mean 0.1352 0.1315 0.1302 - 0.156
Variance 0.00048 0.00004 0.00001 - -
Relative Error 19.35% 16.20% 16.60% - -

Experiment B

Experiment B consisted of two linear models which were compared to evaluate

how well this methodology could distinguish between two very similar models.

Model 1: y = β1x1 + β2x2 (3.27)

Model 2: y = β1 + β2x1 + β3x2 (3.28)

Similarly, Bayes factors were first calculated using data generated from the first

model given by Equation 3.27, and then using data generated from the second

model given by Equation 3.28. The parameter values used for generating the

data were again sampled from their prior distributions. When model 2 was used

to generate data however, the experiments were run varying β1 manually in order
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Table 3.14: Experiment A, Bayes factor results, B2,1, for β1 = 0.15

Sampling from
Prior
No. of Samples 100 1000 10,000 100,000 Analytic
Mean 14.61 9.96 5.82 6.85 6.92
Variance 6702.88 387.75 14.88 2.07 -
Relative Error 1183% 287% 57.7% 20.7% -
Sampling from
Posterior
No. of Samples 100 1000 10,000 100,000 Analytic
Mean 153.46 133.75 117.90 - 6.92
Variance 372.42 180.86 98.22 - -
Relative Error 2137% 1844% 1611% - -
Thermodynamic
Integration
No. of Samples 100 1000 10,000 100,000 Analytic
Mean 6.335 6.200 6.147 - 6.92
Variance 0.855 0.069 0.009 - -
Relative Error 15.74% 11.05% 11.23% - -

Table 3.15: Experiment A, Bayes factor results, B2,1, for β1 = 0.16

Sampling from
Prior
No. of Samples 100 1000 10,000 100,000 Analytic
Mean 1.50E+02 7.59E+01 48.6 52.4 52.0
Variance 1.82E+06 5.39E+04 2907 272 -
Relative Error 2588% 447% 103.4% 31.6% -
Sampling from
Posterior
No. of Samples 100 1000 10,000 100,000 Analytic
Mean 1593 1343 1154 - 52.0
Variance 42779 19432 9822 - -
Relative Error 2988% 2496% 2127% - -
Thermodynamic
Integration
No. of Samples 100 1000 10,000 100,000 Analytic
Mean 45.1 44.1 43.7 - 52.0
Variance 51.7 4.09 0.58 - -
Relative Error 19.10% 15.63% 16.00% - -
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Table 3.16: Experiment A, Bayes factor results, B2,1, for β1 = 0.17

Sampling from
Prior
No. of Samples 100 1000 10,000 100,000 Analytic
Mean 1.29E+08 7.74E+06 6.13E+06 5.84E+06 5.80E+06
Variance 1.38E+18 6.75E+14 3.00E+13 2.63E+12 -
Relative Error 20289% 447% 94.2% 27.8% -
Sampling from
Posterior
No. of Samples 100 1000 10,000 100,000 Analytic
Mean 2.96E+08 2.54E+08 2.20E+08 - 5.80E+06
Variance 1.37E+15 6.53E+14 3.49E+14 - -
Relative Error 5038% 4300% 3715% - -
Thermodynamic
Integration
No. of Samples 100 1000 10,000 100,000 Analytic
Mean 4.94E+06 4.82E+06 4.79E+06 - 5.80E+06
Variance 6.08E+11 4.57E+10 6.60E+09 - -
Relative Error 19.92% 17.29% 17.51% - -

to simulate a more strongly differing model (i.e. when β1 = 4) as well as a weakly

differing model (i.e. when β1 = 2).

Generating Data from Model 1:

Using data generated from model 1, all three methods produce good results based

on 10,000 Monte Carlo samples. From Table 3.19, it is clear however that ther-

modynamic integration outperforms the other two, with a relative error of around

just 1.4%. The true analytic Bayes factor is 1.63 which should be interpreted as

meaning there is no difference between the models worth mentioning.

Table 3.17: Experiment B, factor results, B1,2, sampling from prior

No. of Samples 100 1000 10,000 100,000 Analytic
Mean 7.7E+13 4.12 1.71 1.640 1.643
Variance 5.9E+29 140 0.22 0.026 -
Relative Error 4.7E+16% 733% 28.4% 9.7% -

Generating Data from Model 2:

Some very interesting results were obtained using data generated from model

2 (Equation 3.28). β1 was varied to show how accurate Bayes factors are for

strongly and weakly differing models using these methods. Table 3.20 shows that
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Table 3.18: Experiment B, Bayes factor results, B1,2, sampling from posterior

No. of Samples 100 1000 10,000 Analytic
Mean 1.602 1.610 1.616 1.643
Variance 0.033 0.024 0.014 -
Relative Error 11.3% 9.5% 7.5% -

Table 3.19: Experiment B, Bayes factor results, B1,2, using thermodynamic inte-
gration

No. of Samples 100 1000 10,000 Analytic
Mean 1.640 1.636 1.646 1.643
Variance 0.057 0.006 0.001 -
Relative Error 14.4% 4.57% 1.37% -

with β1 set to 2, all three methods produced good results for 10,000 samples,

with means close to the analytic value of 1.203 and variance low enough as to

not affect the interpretation of the Bayes factors calculated, namely that there

is no significant difference between the models. For β1 set to 3, things begin

to get interesting. 100,000 samples from the prior are now required to obtain

an estimate with variance low enough as not to change the interpretation of the

Bayes factor as “substantial to strong” in favour of model 2. Sampling from the

posterior results in an overestimation of the Bayes factor, although it would still

suggest “strong” evidence that model 2 is preferred over model 1. Finally, for

β1 set to 4, sampling from the prior produces a mean value very close to the

analytic value, 83.5 compared to 82.5, however, with a variance of 606 little can

be inferred from the Bayes factor with any kind of confidence. Posterior sampling

once again produces an overestimate of the Bayes factor, describing the evidence

as “Decisive” instead of just “Strong”, however the variance is so high as to

render the result meaningless. This is further evidence that harmonic mean based

estimates should not be trusted for estimating Bayes factors. Thermodynamic

Integration is the only one of the three methods which calculates a mean value

close to the analytic value as well as having a low enough variance, 1.45, that one

can confidently interpret the result as being “strong” in favour of model 2.

3.1.4 Discussion

When employing prior sampling, estimates of marginal likelihoods are generally

poor. For a wide prior the region of high density is relatively small, resulting

in fewer samples landing in this region. Therefore the estimates are smaller

than analytic values. Additionally, as the dimension increases the region of high

density becomes smaller relative to the size of the prior, and the estimates become
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Table 3.20: Experiment B, Bayes factor results, B2,1, for β1 = 2

Sampling from
Prior
No. of Samples 100 1000 10,000 100,000 Analytic
Mean 2.20E+10 2.067 1.208 1.192 1.203
Variance 4.27E+22 9.355 0.139 0.010 -
Relative Error 1.72E+13% 263% 30.8% 8.1% -
Sampling from
Posterior
No. of Samples 100 1000 10,000 100,000 Analytic
Mean 1.334 1.298 1.267 - 1.203
Variance 0.024 0.013 0.009 - -
Relative Error 16.8% 12.4% 9.47% - -
Thermodynamic
Integration
No. of Samples 100 1000 10,000 100,000 Analytic
Mean 1.221 1.209 1.201 - 1.203
Variance 0.0273 0.0029 0.0003 - -
Relative Error 13.75% 4.46% 1.33% - -

Table 3.21: Experiment B, Bayes factor results, B2,1 for β1 = 3

Sampling from
Prior
No. of Samples 100 1000 10,000 100,000 Analytic
Mean 3.25E+12 29.02 11.41 11.81 11.76
Variance 1.05E+27 8847 27.53 3.79 -
Relative Error 2.75E+14% 810% 44.5% 16.5% -
Sampling from
Posterior
No. of Samples 100 1000 10,000 100,000 Analytic
Mean 21.39 18.21 16.27 - 11.76
Variance 7.48 3.46 1.74 - -
Relative Error 85.1% 57.1% 40.0% - -
Thermodynamic
Integration
No. of Samples 100 1000 10,000 100,000 Analytic
Mean 11.82 11.77 11.69 - 11.76
Variance 2.54 0.24 0.02 - -
Relative Error 13.50% 4.18% 1.44% - -
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Table 3.22: Experiment B, Bayes factor results, B2,1, for β1 = 4

Sampling from
Prior
No. of Samples 100 1000 10,000 100,000 Analytic
Mean 5.65E+10 166 95 83.5 82.5
Variance 2.86E+23 390462 8333 606 -
Relative Error 6.49E+11% 761% 111% 29.7% -
Sampling from
Posterior
No. of Samples 100 1000 10,000 100,000 Analytic
Mean 226 176 147 - 82.5
Variance 937 379 160 - -
Relative Error 178% 116% 80% - -
Thermodynamic
Integration
No. of Samples 100 1000 10,000 100,000 Analytic
Mean 82.46 82.38 81.80 - 82.5
Variance 135 12.22 1.45 - -
Relative Error 13.99% 4.22% 1.67% - -

correspondingly worse.

Estimates based on posterior sampling were seen to be very unstable. The

analytic marginal likelihood values used to calculate the Bayes factors were of

the order of 10−9 and so even small errors in the estimation of these had the

effect of creating large biases in the Bayes factors, which are calculated as the

ratio of two marginal likelihood values. It was observed that generally the larger

the true marginal likelihood, the greater the overestimation of the estimated

marginal likelihood using posterior sampling. This explains the results in Table

3.16, which show that sampling from the prior actually produces slightly better

numerical results than sampling from the posterior, however both methods do

produce estimates with so much variance as to render them virtually meaningless.

It is known that using this harmonic mean based estimator often results in over-

estimations, since every so often a sample with very small likelihood will be

chosen and it will have an disproportionate effect on the overall estimate due to

the calculation being based on reciprocals. Indeed a very recent paper attempts

to circumvent this problem by suggesting the use of a modified harmonic mean

based estimator (see [64]) and future work could investigate this method in the

context of linear regression models, to see to what extent it alleviates the problems

observed when calculating Bayes factors.

In conclusion, although estimators based on prior and posterior importance

sampling are unbiased in the limit, the results exhibit strong biases using compu-
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tationally feasible number of samples, and this effect becomes more pronounced

as the number of dimensions increases.

It was demonstrated that thermodynamic integration performed the best in

terms of having the lowest variance and the lowest relative error. It was also

shown that the choice of prior may affect the optimal temperature schedule which

should be used, in terms of minimising the variance of the resulting Monte Carlo

estimates. Generally, for a wide prior a power law distribution should be em-

ployed, in which the temperature steps are smaller towards t = 0, in order to

make a more accurate measurement of the region in which the greatest changes

in likelihood take place. By investigating the estimates obtained using a variety

of temperature schedules, it was seen that the lowest variance results were indeed

produced using those based on the theoretical optimal density function.

In this section, methods of estimating Bayes factors were investigated using

simple linear regression models. They are now applied in the following section

to the problem of distinguishing between complex nonlinear models of varying

dimension.

3.2 Nonlinear ODE Models

It is perhaps not surprising that the estimates obtained from the thermody-

namic integral (Table 3.8) are so good considering the linear regression model

induces relatively simple log-concave posterior densities. When each power pos-

terior p(θ|y, t) is multimodal, however, we immediately face the danger of obtain-

ing poor estimates for each Eθ|y,t[log p(y|θ)] when using a standard Metropolis

method. The conditional posterior surface over two parameters of a 2 variable

Goodwin circadian oscillator model is shown in Figure 3.6. This model used was

introduced by Goodwin ([22]) and the exact details of its equations and param-

eter values are given in Appendix B. The nonlinearity of the model results in

sharp ridges of high posterior values. Chains sampled using a Metropolis method

easily get caught in these local modes, even when engineering techniques, such

as an adaptive step size, are employed. Figure 3.7 shows the paths taken by 20

independent Markov chains generated by a Metropolis sampler. Their starting

points, indicated by a ×, were generated randomly in the parameter space from

a prior distribution, and their end positions are denoted by a ◦. The localisation

of the chains on the ridges is evident from the figure and we will see how this

adversely affects the estimation of Bayes factors for the purpose of model com-

parison in the following sections. As discussed in Chapter 2, recent advances in

MCMC methodology suggest a possible solution to this problem in the form of

the Population MCMC method, which we shall now see applied to these nonlinear

66



Figure 3.6: Log posterior surface conditioned on two parameters of a 2-variable
Goodwin oscillator model. Details for reproducing this plot are given in Appendix
B.

Goodwin models.

Population MCMC

Population-based MCMC enables samples to be drawn from a target density

p(θ|y) by defining a product form of target density indexed by a temperature

parameter t such that

p(Θ|y, t) =
N∏
n=1

p(θn|y, tn) (3.29)

and the desired target density p(θ|y) is defined for one value of tn. A time homo-

geneous Markov transition kernel which has p(θ|y) as its stationary distribution

can be constructed from both local proposal moves and global moves between

the tempered chains of the population, thus allowing free exploration within the

parameter space. Figure 3.7 shows how each of the independent chains of a

Metropolis sampler get stuck at various local modes in the posterior density, as

they can only make moves within the local parameter space. In contrast, Figures

3.9, 3.10 and 3.11 show three tempered chains at t = {0, 0.5, 1} respectively, i.e.
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Figure 3.7: The progress of twenty independent Metropolis samplers across the
posterior induced by a Goodwin model. The trapping of chains in local modes is
most apparent.

ranging from the prior, to an intermediate power-posterior, to the posterior itself,

at t = 1. At t = 0 the samples are drawn from a gamma prior, and thus cover a

large area of the parameter space. At the intermediate temperature a free traver-

sal of the parameter space is still possible, while the posterior shows large global

mode-hopping steps at t = 1. Clearly the estimates of Eθ|y,t{log p(y|θ)} at each

temperature will be superior to those obtained from an independent Metropolis

sampler at every temperature, which will be highlighted later in this chapter. Fi-

nally, Figure 3.8 shows the conditional power posterior of the 2-variable Goodwin

oscillator model at a range of temperatures. Notice that the shapes of the power

posteriors change most rapidly between between t = 0 and t = 0.28, which rein-

forces the suggestions made in the previous section that the temperature schedule

should be skewed towards the prior, t = 0.

The Goodwin Model of Biochemical Oscillatory Control

As an illustrative example of a mechanistic dynamic system and the associated

challenges of performing Bayesian inference of model parameters and assessing

the validity of alternative model structures we employ models of oscillatory enzy-

matic control, specifically the Goodwin model ([22]). Note that this model differs

from the model given in Appendix B, in that it has a greater number of variables,

corresponding to chemical species, which more closely matches the real circa-

dian systems being modelled. Indeed, this model has become the standard basic
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mechanism for periodic protein expression, driven by a negative feedback loop

which inhibits mRNA transcription. Recent experimental evidence has shown

that essential elements of the circadian clock in many organisms consist of neg-

ative feedback loops, similar to those in Goodwin’s original model. See Section

1.1.2 for a description of the Goodwin model.

It has been shown that this Goodwin model has unstable steady states only

when ρ > 8, and we therefore set ρ = 10 so that we may be certain of oscillatory

responses for a wide variety of parameter values. As n increases, so does the

time taken for the negative feedback to propagate through the system, enabling

a more dynamic range of responses. An n-variable Goodwin model therefore has

n+ 2 tunable parameters.

3.2.1 Experimental Results

An oscillatory system response, consisting of 80 noisy observations of each of the

chemical species made at equally spaced time intervals, was obtained from an

n-variable Goodwin Model, for n = {3, 5} with x1,...,n = 0 at time t = 0. The

observations were made from t = 40 to allow the system to settle into a possible

steady state from the initial conditions. It is noted that instead of allowing the

system time to settle, the initial conditions could alternatively be inferred as

additional parameters, although this could potentially increase the complexity of

sampling. The specific values of the parameters for both models were drawn from

gamma prior distributions with mean 2 and variance 1, and Gaussian noise with

variance σ = 0.2 was added to the observations.

For a particular set of parameters, the error between the model output and the

data set was measured using a Normal distribution with variance σ = 0.2. When

using real experimental data, however, the noise variance σ would be unknown

and could also be inferred as an additional parameter. The overall likelihood was

therefore the product of these errors over all data points.

Parameter Identification via Posterior Inference

Consider first the problem of model identification by posterior sampling. In the

first case, a Metropolis sampler with an adaptive proposal distribution was em-

ployed to obtain samples from the posterior. In the second case, a population of

ten Metropolis samplers, set along a quintic temperature ladder were used. In

addition to standard Metropolis moves, exchange and crossover moves between

temperatures were proposed, and these were tuned to ensure an acceptance rate

in the range of 30% to 40%. Figure 3.12 shows the estimated marginal posteriors

for the n = 3 oscillator model obtained using the Population MCMC scheme and
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it is clear the regions of highest density are positioned around the actual param-

eter values. On the other hand the posteriors obtained from standard Metropolis

sampling have biased estimates of the posteriors, as can be seen from Figure 3.13.

Model Comparison using Bayes Factors

Perhaps the most important tool which the Bayesian methodology can offer to

computational systems biology is the objective assessment of competing mod-

els. Bayes factors were calculated for both Goodwin models, firstly using data

generated from the 3 variable model, and then using data generated from the

5 variable model. This allows us to test the discriminating capability of Bayes

factors in this setting. The required marginal likelihoods were estimated using

power posteriors, with a temperature ladder consisting of 10 discrete steps using

a quintic power law spacing. Monte Carlo estimates of the required expecta-

tions were obtained using both an adaptive Metropolis sampler and a population

MCMC method. Marginal likelihoods were calculated 5 times using each method

for each combination of model and data used. Averages and variances were then

calculated.

Table 3.23: Bayes Factors & Marginal Log-Likelihoods for Goodwin Models Using
Metropolis

Simple Data Complex Data
Simple Model −586± 22, 715 −1623± 40, 710
Complex Model −782± 116, 869 −600± 891, 103
logBS,C 195± 205, 745 -
logBC,S - 1022± 802, 184

Table 3.24: Bayes Factors & Marginal Log-Likelihoods for Goodwin Models Using
Population MCMC

Simple Data Complex Data
Simple Model −426± 31 −1432± 37
Complex Model −536± 67 −190± 47
logBS,C 110± 93 -
logBC,S - 1242± 117

Convergence of the Markov chains to a stationary distribution was carefully

assessed for each sampling method using the Gelman R̂ statistic. Normally this

statistic is calculated with samples from parallel running chains, however we

may also use this on single chains by comparing each 1000 iterations with the

previous 1000 iterations to evaluate when the chain has reached an equilibrium.

1000 samples were stored once R̂ < 1.10 for each parameter at each temperature.
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The burn-in time was found to be around 10,000 iterations for the Metropolis

method, and 40,000 to 50,000 iterations for the population MCMC method.

Figures 3.14 and 3.15 show the traces obtained from the model using the

parameters at the maximum of the inferred posteriors. The original noisy exper-

imental data is also shown in these plots in red.

In Tables 3.23 and 3.24, the 3 variable Goodwin model is referred to as the

Simple model, and the 5 variable Goodwin model as the Complex model. From

the estimated Bayes factors we observe that the ‘true’ models can be discrim-

inated, however, the variances of the estimates obtained using only Metropolis

sampling at each temperature are enormous (Table 3.23) making these estimates

of little practical value when using these for evidential based reasoning. These

huge variances resulted from the calculated Bayes factor sometimes favouring the

‘true’ model and sometimes the ‘wrong’ model.

The variance of the estimates obtained when inter-chain moves are introduced

through the population MCMC procedure are at a hugely reduced level making

these low variance estimates such that they can be employed with high confidence

when assessing the evidential support in favour of a particular model.

It is also interesting to note that when using the complex data the mean Bayes

factor is much higher than when using the simple data. This may explained by

examining the predicted model outputs, shown in Figures 3.14 and 3.15. Notice

how both models are able to roughly reproduce the simple data, and so the

Bayes factor in favour of the simpler model is the result of the complexity of the

complex model being penalised. In contrast, the simple model is simply unable

to reproduce the complex data, and the much larger Bayes factor in favour of the

complex model reflects this.

3.2.2 Discussion

In this section I have demonstrated the problems which can occur when try-

ing to sample from a complex posterior distribution using a standard Metropolis

sampler. It was seen how multiple independent chains would not converge and

got stuck in different areas of the parameter space. This resulted in marginal

likelihood and Bayes factor estimates with variances so large that the results

were meaningless. In stark contrast, the Population Markov Chain Monte Carlo

method produces well mixed samples from each of the required power posteriors

and produces Bayes factors which correctly identify the model which the experi-

mental data came from, as well as having low enough variance for the results to

be credible. One criticism often made of sampling methods such as Population

MCMC, which employ a temperature schedule, is that there are a lot of wasted

samples drawn from intermediate distributions. The use of thermodynamic in-
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tegration counters this argument by utilising all of the samples from every in-

termediate distribution to obtain stable estimates of marginal likelihoods, thus

minimising computational wastage, and samples from the posterior are automat-

ically obtained at the same time giving estimates of the most likely parameters.

One drawback of using the Population MCMC method is the amount of time

that is required for it to run to convergence on such nonlinear models. This is

due to the time spent solving many systems of ODEs at every iteration of the

algorithm. This will become a greater problem when larger models are considered

and motivates further work on both improving the efficiency of the method so that

the time to convergence decreases, as well as looking into ways of parallelising

the algorithm to take advantages of computer clusters as a way of gaining an

increase in speed. In the next chapter I discuss, as an alternative approach, the

possible use of Sequential Monte Carlo, which offers a very flexible framework for

sampling from complex distributions, and it will be interesting to see what kind

of an impact this flexibility will have on its efficiency in such a application.
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Figure 3.8: Power posterior surfaces conditioned on two parameters of a 2-variable
Goodwin oscillator model, details of which are given in Appendix B. The shapes
of the power posteriors change most rapidly between between t = 0 and t = 0.28,
and the overall transition from smooth prior to spiky posterior allows chains to
globally explore the parameter space through exchanges between temperatures.
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Figure 3.9: Samples obtained from a chain at t = 0, which is effectively sampling
from the prior. The free movement within the parameter space is clear to see.
The iso-contours of the posterior are also plotted in this case.

Figure 3.10: Progress of samples drawn from a chain at temperature t = 0.5 are
shown against the iso-contours of the full posterior. The free movement across
modes is most apparent and this is mainly due to the exchange proposals between
temperatures.
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Figure 3.11: Samples drawn from the posterior, when t = 1. There are great
differences between this and the highly localised sticky exploration in Figure 3.7.
The Population MCMC algorithm clearly has a much greater ability to move
between modes in order to find the most likely one.

1.6 1.8 2 2.2 -1 0 1 2 1.3 1.4 1.5 1.6 0.12 0.14 0.16 0.18 0.45 0.5 0.55 0.62.4

Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5

1.7

Figure 3.12: The marginal posteriors obtained from population MCMC for each of
the parameters of a Goodwin oscillator model. The values of the true parameter
values are indicated by a black vertical line which coincides very well with the
highest density regions of the posteriors.
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Figure 3.13: The posteriors obtained from a Metropolis sampler with adaptive
proposal distributions. The woeful bias in the estimates of the posteriors is most
apparent.
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Figure 3.14: Traces obtained using data generated from the 3 variable Goodwin
model. The left-hand plot shows the traces using the most likely parameters
inferred from the 3 variable Goodwin model. The right-hand plot shows the
traces using the most likely parameters inferred from the 5 variable Goodwin
model. Experimental data is shown in red and the predicted data in black.
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Figure 3.15: Traces obtained using data generated from the 5 variable Goodwin
model. The left-hand plot shows the traces using the most likely parameters
inferred from the 3 variable Goodwin model. The right-hand plot shows the
traces using the most likely parameters inferred from the 5 variable Goodwin
model. Experimental data is shown in red and the predicted data in black.
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Chapter 4

Discussion

The need to perform Bayesian inference over ODE-based models is being driven

by advances in systems biology. In this thesis I have investigated the challenges

associated with calculating Bayes factors over nonlinear models describing impor-

tant circadian control processes. We have seen how standard MCMC method-

ology is inappropriate for such applications, since marginal likelihood estimates

based on samples generated from independent chains using a Metropolis algo-

rithm are of such high variance as to render the Bayes factors produced from

them useless. An alternative approach was suggested using a combination of

Population MCMC and thermodynamic integration, which was shown to pro-

duce much lower variance results than other importance sampling based methods

of estimating marginal likelihoods.

A comparison of various methods was first made using linear regression mod-

els, for which analytic marginal likelihoods could be calculated in order to gain

deeper insights into the factors affecting the statistical accuracy of marginal like-

lihood estimates, before applying them to more complex nonlinear Goodwin style

oscillator models. Several methods of calculating marginal likelihoods were com-

pared using varying numbers of samples and temperature partitions on models

of increasing dimension. It was shown that thermodynamic integration offered

the most stable results, even for models of 20 dimensions using only 20 parti-

tions in the temperature schedule. An analytic expression was then derived for

the optimal density function for the temperature profile bridging the prior to the

posterior, in terms of minimising the variance of marginal likelihood estimates,

which was used to guide the choice of temperature partition spacing. The impact

that the spacing in a temperature schedule has on the variance of marginal like-

lihood estimates was investigated and it was found that power law distributions,

with the partitions heavily skewed towards the prior, generally offer consistent

results, as predicted by the analytic optimal density function. Finally, two experi-

ments were presented demonstrating how Bayes factors can be used to distinguish
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between linear models of varying complexity, and again thermodynamic integra-

tion was seen to offer the most stable estimates resulting in meaningful Bayes

factors.

I then applied the insights gained from the investigations using linear models

to the problem of estimating parameters and Bayes factors over two nonlinear

models of varying complexity, using data generated from first the simpler model

and then the more complex model. Using oscillatory Goodwin models, commonly

employed to build descriptions of circadian rhythms in a wide range of organisms,

it was shown how such nonlinear models induce extremely multimodal posterior

distributions, and that standard Metropolis samplers fail drastically, even using

engineering techniques such as adaptive step size proposals. It was then demon-

strated how Population MCMC may successfully be employed to sample from a

sequence of distributions between the prior and posterior, with the inferred pos-

terior samples closely approximating the actual parameters which had been used

to generate the data. It was shown how the samples obtained at each temper-

ature using Population MCMC could be used to estimate marginal likelihoods,

and thus Bayes factors, using thermodynamic integration. Experiments were then

presented comparing two nonlinear Goodwin models of varying complexity, which

demonstrated how standard Metropolis sampling combined with thermodynamic

integration produces estimates of Bayes factors with such high variance as to ren-

der the results meaningless. Population MCMC on the other hand produced low

variance estimates of Bayes factors using thermodynamic integration, such that

the true models could be successfully identified.

Stochastic Process Models

In Section 1.2.2, the assumption that the noise across consecutive data points is

i.i.d. is perhaps not very realistic in a biological setting, especially when consid-

ering oscillatory systems. A better way of modelling the noise might then be to

define a likelihood function using some kind of stochastic process model, such as a

Gaussian process (GP) (see e.g. [69]). A GP produces multiple instances of func-

tions, the means of which are given by some defined underlying function, and the

covariance functions model dependencies between time points. The implementa-

tion of such a GP introduces added complexity in terms of finding the correct

underlying covariance function to describe data with specific characteristics, e.g.

oscillatory data with a particular period and amplitude. The parameters describ-

ing the covariance function of a GP could also be inferred, along with the other

parameters, so that it adapts to the data. This would however add a number of

extra dimensions to the space over which the Bayesian inference takes place. For

the purposes of this thesis I assumed independence between data points and left
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the implementation of GP noise models in this context as future work.

4.1 Considerations for Population MCMC and

Thermodynamic Integration

The marriage of Population MCMC and thermodynamic integration has the po-

tential to be a very fruitful one. However there are still a number of areas which

need to be investigated further, before these methods may be usefully employed

to further our knowledge of the circadian system.

4.1.1 Scalability of Population MCMC

The two nonlinear Goodwin models considered in Chapter 3 were of 5 and 7 di-

mensions. Current state of the art models describing circadian networks consist of

up to 50 parameters, the majority of which must be estimated without any mea-

surable biological data. Indeed, as mentioned previously, the measurements which

are available are likely to have large amounts of variance due to the stochastic

effects at a molecular level and other experimental sources of uncertainty. The

scalability of Population MCMC for sampling from nonlinear distributions in-

ferred using larger models must therefore be investigated before these methods

are able have an impact on the frontier of knowledge in the area of circadian

research.

The length of time taken to solve the systems of differential equations which

describe a biological process also becomes an important factor as the size of the

models increase. Larger models result in longer running times for the algorithms,

presenting new computational challenges. One approach is to code the algorithms

in a low level compiled language, as a means of increasing speed, however this

advantage is still limited by the processing capacity of the computer used. Paral-

lelisation of these sampling algorithms is an attractive option, as computational

requirements of simulations could then be spread out over a cluster of computers,

which could drastically cut running times. Population based sampling meth-

ods appear particularly suited to parallelisation and this approach could become

increasingly important in the future as larger models are considered. Another so-

lution might be to use an alternative method of inference which avoids the need

to solve the system of ODEs explicitly, and this is discussed in Section 4.3.

4.1.2 Thermodynamic Integral Approximation

One issue to be aware of when using thermodynamic integration is the fact that

there will be a systematic, albeit small (see Section 3.1.2), bias in the results when
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approximating the thermodynamic integral using a finite temperature schedule

(Equation 3.15). We have already seen how the variance may be minimised

by making use of the expression for the optimal density function to guide our

choice of discrete spacing for the temperature schedule, however it would be

interesting to investigate the feasibility of also minimising the bias by sampling

jointly from the parameters and temperature, i.e. from the distribution p(θ, t | y).

This is mentioned in ([16]), and would result in an unbiased estimator of the

marginal likelihood, however the feasibility of performing this in practice over

high dimensional multimodal distributions remains to be seen.

4.2 Alternative Sampling Methods

The computational time required to perform inference could be decreased by mak-

ing the sampling methods themselves more efficient. For example, new kernels

could be developed for the Population MCMC approach adopted in this thesis,

or other sampling methods altogether could be adopted. Indeed, there are a cou-

ple of alternative sampling methodologies currently available which promise to

efficiently sample from multimodal distributions, and these are discussed in the

following sections.

4.2.1 Sequential Monte Carlo

Sequential Monte Carlo (SMC) offers a general framework for sampling, as already

described in Chapter 2, and indeed many algorithms may be seen to be special

cases of this method.

The most appealing aspect of the SMC framework is its flexibility. This

in itself does not result in an efficient sampling algorithm, but rather it allows

efficient samplers to be designed. More research is needed into how an efficient

sampler may be constructed with respect to choosing an appropriate sequence

of target distributions and to taking advantage of the free choice of transition

kernels. One interesting idea is to create the sequence of distributions based on

increasing amounts of experimental data, as suggested in [6, 7]. The presumption

being that the posterior distribution induced from a model given small amounts

of data will be less complex and easier to sample from than when the complete

dataset is used. It would also be interesting to investigate, for a particular system,

the impact of reordering the data when using sequential methods. An artificial

sequential reordering of the data would be possible since all the data will already

have been collected beforehand, and introducing certain types of data earlier than

others might have the effect of restricting the searchable parameter space. This
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possible reduction in complexity may present computational advantages, allowing

the algorithms to converge in a smaller number of iterations.

Another often-cited advantage of the Sequential Monte Carlo approach is the

fact that, when using a Markovian transition function, there is no need to run

the population of Markov chains to convergence, since the validity of this frame-

work is based on importance sampling arguments, and therefore independent of

any ergodicity properties. This would however obviously have an impact on the

variance of the marginal likelihood estimates produced from the non-converging

Markov chains. It would be interesting to investigate how the convergence of

the chains corresponds to the variance of the resulting marginal likelihood esti-

mates, and perhaps some computational gains would be possible by relaxing the

convergence requirements.

4.2.2 Nested Sampling

Nested Sampling ([76]) may be used to directly calculate marginal likelihoods,

and is based on sampling within a “hard constraint” on the likelihood function,

so that the algorithm focusses more on the “nested” shapes of the contours as

opposed to constantly changing likelihood values normally produced during a

random exploration of the parameter space. Claims about its ability to sample

from multimodal distributions without requiring the introduction of any auxilliary

variables, such as temperature, sound very appealing. Recent results published

in a PhD thesis by Murray ([58]), however, suggest that there is very little differ-

ence in performance over mixtures of Gaussian models when compared to some

temperature based sampling methods, such as Annealed Importance Sampling,

raising the question of whether there is indeed anything to be gained by employ-

ing such a nested sampling approach. Another question meriting investigation,

is whether Nested Sampling would be able to cope with the highly nonlinear

posterior distributions induced by the types of ODE models commonly used to

describe complex biological processes, and so it would be interesting to examine

this potentially useful method in a systems biology context.

4.3 Alternative Methods of Inference

The main computational cost of sampling from distributions induced by nonlinear

models is incurred solving the systems of ODEs for each proposed set of parame-

ters. As mentioned previously, one possible solution to this is the parallelisation

of the sampling algorithm, allowing the computational cost to be spread accross

multiple computers.
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Another solution is to infer the parameters using the time derivatives described

by the system of ODEs. Such collocation methods (see e.g. [65]) can be used to

avoid the computationally expensive requirement of explicitly solving systems of

ODEs in order to obtain the posterior P (θ | y).

For example, as mentioned in Section 4, a Gaussian Process (GP) may be

used as a likelihood function to model some experimental data y with dependent

noise. These experimental observations at T discrete time points are represented

by y(t) = x(t) + ε(t), where x(t) = [x1(t), . . . , xN(t)] represents the levels of

each of the N chemical species present in the system at time t, and ε is an

appropriate noise process with some variance σ. By denoting the time courses for

the N chemical species as the N×T matrix X, and the experimental observations

for the N chemical species as the N × T matrix Y, we may place a GP prior,

which has a covariance function with parameters ϕ, over the time course of each

chemical species so that Xn,· ∼ GP (ϕ). The dynamics of N chemical species may

be modelled by a system of ODEs such that Ẋ·,t = f(X·,t,θ, t). The posterior

p(Xn,· | Yn,·, σ, ϕ) is therefore also a GP of the standard form, indeed samples

may be obtained from the conditional posterior p(Xn,·, σ, ϕn | Yn,·, Ẋn,·) in the

usual manner.

We will also obtain a posterior of the time derivatives of the levels of the

chemical species, p(Ẋn,· | Xn,·,θ, γ). This then allows us to define a posterior

over the parameters of the system θ in terms of the time derivatives described by

our system of ODEs, Ẋ·,t = f(X·,t,θ, t). Assuming Normal errors with variance γ

and some prior over the parameters π(θ), the posterior over the parameters may

be written as

p(θ | Y, Ẋ,X, γ) ∝ exp

{
− 1

2γ

T∑
t=1

∣∣∣Ẋ·,t − f(X·,t,θ, t)
∣∣∣2}π(θ)

Therefore samples from the joint posterior p(θ, Ẋ,X, γ, ϕ, σ | Y) can be ob-

tained by a Metropolis within Gibbs routine, ignoring details of hyper-parameters,

so that

Xn,· ∼ p(Xn,· | Yn,·, Ẋn,·)

Ẋ·,t ∼ p(Ẋ·,t | X·,t,θ, γ)

θ ∼ p(θ | Y, Ẋ,X, γ)

where p(Xn,· | Yn,·, Ẋn,·) is a conditional predictive posterior GP, and p(Ẋ·,t |
X·,t,θ) = NẊ·,t

(f(X·,t,θ, t), γI). Therefore θ may be sampled using some Markov

Chain Monte Carlo method, such as Popoulation MCMC, without having to

explicitly integrate the system of ODEs at each iteration. The computational
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costs involved in this approach consist of sampling each X and Ẋ, as well as the

hyper-parameters, but this will be dominated by scaling of order O(NT 3), and

when T is relatively small this may prove to be substantially faster than explicitly

solving a system of N ODEs.

This is a very exciting approach which has the potential to drastically speed

up parameter inference over large nonlinear models. There may well be challenges

to overcome in a practical implementation of this method, possibly regarding a

loss of information in the observations as we are inferring the parameters based

on the time derivatives as opposed to just the observations themselves, although

I believe the approach is a very promising one.

4.4 Conclusions

This thesis has focussed on investigating how Bayes factors can be accurately

estimated for nonlinear ODE-based models, such as those commonly used to

describe circadian control. As described in this chapter, there are many exciting

possible avenues of research still to be explored, and while there is still much work

to be done before these methods may be usefully applied to extending state of

the art models using real experimental data, such methodology has the potential

to have a great impact on the area of systems biology in the near future.
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Appendix A

Derivation of Optimal Density
for Temperature Schedule

Here I derive an analytic expression for Equation 3.21. This equation is directly pro-
portional to the optimal density function, p(t), introduced when investigating how to
minimise the variance of marginal likelihood estimates for linear regression models us-
ing thermodynamic integration. This expression may therefore be used to choose the
optimal distribution of points in a temperature schedule, by concentrating them around
on the regions of highest mass. I make use of the following identities1 for the expecta-
tion operator, where β is a stochastic vector drawn from a Gaussian distribution with
mean µ, and covariance Σ

E [Aβ + b] = Aµ + b (A.1)
E
[
(Aβ + a)(Bβ + b)T

]
= AΣBT + (Aµ + a)(Bµ + b)T (A.2)

E
[
βTAβ

]
= Tr(AΣ) + µTAµ (A.3)

E
[
(Aβ + a)(Aβ + a)T (Aβ + a)

]
=

(
2AΣAT + (Aµ + a)(Aµ + a)T

)
(Aµ + a)

+Tr(AΣAT )× (Aµ + a)
(A.4)

E
[
(Aβ + a)T (Bβ + b)(Cβ + c)T (Dβ + d)

]
(A.5)

= Tr
(
AΣ(CTD + DTC)ΣBT

)
+
(
(Aµ + a)TB + (Bµ + b)TA

)
Σ
(
CT (Dµ + d) + DT (Cµ + c)

)
+
(
Tr(AΣBT ) + (Aµ + a)T (Bµ + b)

) (
Tr(CΣDT ) + (Cµ + c)T (Dµ + d)

)
We wish to find an analytic expression for the following expectation (A.6) with

respect to a power posterior distribution for a particular temperature. For the linear
regression model considered in Chapter 3, the power posterior distributions are Gaus-
sian, with mean µ, and covariance Σ (see equations 3.11, 3.12). We proceed by first
multiplying out the brackets and noting that the expectation operator is linear

1See The Matrix Reference Manual, http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html,
2005.
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E

[(
−m

2
log 2πσ2 − 1

2σ2
(y−Bβ)T (y−Bβ)

)2
]

(A.6)

=
m2

4
(log 2πσ2)2 + E

[
m

2σ2
log 2πσ2(y−Bβ)T (y−Bβ)

]

+E

[
1

4σ4
(y−Bβ)T (y−Bβ)(y−Bβ)T (y−Bβ)

]

An analytic expression for the second term in A.6 may be found using identity A.2

E
[ m

2σ2
log 2πσ2(y−Bβ)T (y−Bβ)

]
=

m

2σ2
log 2πσ2

[
Tr(BΣBT ) + (y−Bµ)T (y−Bµ)

]
The third term also has an analytic form, however a bit more work is required to
calculate it. We start by multiplying out the middle two brackets and then multiplying
the result by the outer two brackets, which splits the third term down into the following
three expressions

1
4σ4

E
[
(y−Bβ)T (y−Bβ)(y−Bβ)T (y−Bβ)

]
=

1
4σ4

E
[
(y−Bβ)T [yyT − 2BβyT + BββTBT ](y−Bβ)

]
=

1
4σ4

E
[
(y−Bβ)TyyT (y−Bβ)︸ ︷︷ ︸

Expression 1

− 2(y−Bβ)TBβyT (y−Bβ)︸ ︷︷ ︸
Expression 2

+ (y−Bβ)TBββTBT (y−Bβ)︸ ︷︷ ︸
Expression 3

]

The expectation of Expression 1 may be calculated by multiplying out the brackets and
using the identities A.1 and A.2

E
[
(y−Bβ)TyyT (y−Bβ)

]
= E

[
(yTyyT − βTBTyyT )(y−Bβ)

]
= E

[
yTyyTy− yTyyTBβ − βTBTyyTy + βTBTyyTBβ

]
= (yTy)2 − 2E

[
yTyyTBβ

]
+ E

[
βTBTyyTBβ

]
= (yTy)2 − 2yTyyTBµ + Tr(BTyyTBΣ) + µTBTyyTBµ

The expectation of Expression 2 may be broken down into four further expressions
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E
[
−2(yT − βTB)BβyT (y−Bβ)

]
= −2E

[
(yTBβyT − βTBTBβyT )(y−Bβ)

]
= −2E

[
yTBβyTy− yTBβyTBβ − βTBTBβyTy + βTBTBβyTBβ

]
= −2 E

[
yTBβyTy

]︸ ︷︷ ︸
Expression 2a

+2 E
[
yTBβyTBβ

]︸ ︷︷ ︸
Expression 2b

+2 E
[
βTBTBβyTy

]︸ ︷︷ ︸
Expression 2c

−2 E
[
βTBTBβyTBβ

]︸ ︷︷ ︸
Expression 2d

Expression 2a admits an analytic form trivially as follows

E
[
yTBβyTy

]
= yTyE

[
yTBβ

]
= yTyyTBµ

Expression 2b admits an analytic form using identity A.3

E
[
yTBβyTBβ

]
= E

[
βTBTyyTBβ

]
= E

[
βTBTyyTBβ

]
= Tr(BTyyTBΣ) + µTBTyyTBµ

Expression 2c may be written analytically also using identity A.3

E
[
βTBTBβyTy

]
= yTyE

[
βTBTBβ

]
= yTyE

[
βTBTBβ

]
= yTy(Tr(BTBΣ) + µTBTBµ)

Expression 2d admits an analytic form making use of identity A.4

E
[
βTBTBβyTBβ

]
= E

[
(Bβ)T (Bβ)yT (Bβ)

]
= E

[
yTBβ(Bβ)TBβ

]
= yTE

[
Bβ(Bβ)TBβ

]
= yT

(
2BΣBT + Bµ(Bµ)T

)
Bµ + Tr(BΣBT )× (Bµ)

Finally, the expectation of Expression 3 may be written analytically using identity A.5

E
[
(y−Bβ)TBββTBT (y−Bβ)

]
= Tr

(
2BΣ(BTB)ΣBT

)
+
[
(−Bµ + y)TB− (Bµ)TB

]
Σ
[
BT (−Bµ + y)−BTBµ

]
+
[
Tr(−BΣBT ) + (−Bµ + y)T (Bµ)

] [
Tr(−BΣBT ) + (Bµ)T (−Bµ + y)

]
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Appendix B

Details for a 2-Variable Goodwin
Oscillator Model

The posterior surfaces shown in Figures 3.6, 3.7, 3.8, 3.9, 3.10 and 3.11 were induced
using the following Goodwin model, also described in ([22])

dx

dt
=

k1

36 + k2y
− k3

dy

dt
= k4x− k5

where k1 = 72, k2 = 1, k3 = 2, k4 = 1 and k5 = 1, and the initial values were x(0) = 7
and y(0) = −10. 120 data points were simulated using these settings, between t = 0
and t = 60 in steps of 0.5, to which Gaussian noise was added with variance σ = 0.5.
The posterior was then calculated conditionally over the parameters k3 and k4 and
plotted from 0 to 5 on each axis.
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