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SUMMARY 

As an abstract group, the (2,3, n) triangle group has the presentation 

A 

This thesis is concerned with subgroups of finite index in 4 
91,411 and d 

13. 

With a subgroup of finite index, u, in the (2,3,11) triangle group, we 

associate a quintuple of non-negative integers (u, p, e, f, g), with u21 and 

Su - 132(p- 1) + 33e + 44f + 60g. 

We show in T eorem 1.4.6 that each quintuple, satisfying the conditions, 

corresponds to a subgroup of d 
11' 

With a subgroup of finite index, u, in the (2,3,13) triangle group, we 

associate a quintuple of non-negative integers (u, p, e, f, g), with uz1 and 

7u - 156(p - 1) + 390 + 52f +72g. 

We show in Theorem 3.3.6 that each quintuple, satisfying the conditions, 

corresponds to a subgroup of 413' 

With a subgroup of finite index, u, in the (2,3,9) triangle group, we 

associate a sextuple of non-negative integers (u, p)e, f, g1, g3), with u z: 1, 

u"f (mod 3) and u= 36(p - 1) + 9e + 12f + 16g1 + 12g3. 

We show in Theorem 2.3.9 that each sextuple, satisfying the conditions, 

corresponds to a subgroup of 49 with the following exceptions 

(a) (12n+9,0,1,0,0, n+3), Vni0 

(b) (24,0,0,0,0,5) 

(c) (24,0,0,0,3,1) 

(d) (24,0,0,3,0,2) 

Coset diagrams are used extensively in the proofs, although to prove 

exception (a) for 49, we make use of Hauptmodul equations (see [1] and [23]). 

Computer programs were developed to generate all quintuples satisfying the 

relevant conditions for (2,3,11) subgroups for uS 101, all quintuples 

satisfying the relevant conditions for (2,3,13) subgroups for u 110, and all 
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sextuples satisfying the relevant conditions for (2,3,9) subgroups for us 38. 

These programs and their output are presented in the Appendices. 

We show in Theorem 1.2.2 that quintuples, which satisfy the relevant 

(2,3,11) conditions, exist for each uZ 99. 

We show in Theorem 2.2.1 that sextuples, which satisfy the relevant 

(2,3,9) conditions, exist for each ui 36. 

We show in Theorem 3.2.1 that quintuples, which satisfy the relevant 

(2,3,13) conditions, exist for each u 104. 
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INTRODUCTION 

An introduction to triangle groups can be found in [10], pp 65-106. For 

additional background material, refer to Appendix D. 

The (2,3, n) triangle group has a fundamental domain consisting of two copies 

of a hyperbolic triangle with angles 
Z, 3 and 

ä (see [71, pg 236-238). 

M 
n 

a b 

C 
Let Ri represent hyperbolic-reflection in MI (i a 2,3, n). 

Let xaRnR3 and y= R2Rn, so that yx ex R2 Rß RaR3a R2 R3. 

Then, 

RnR3 is an anticlockwise hyperbolic-rotation of n about a, 

RzRQ is an anticlockwise hyperbolic-rotation of 
3 about b, 

zn R2R3 is an anticlockwise hyperbolic-rotation of n about c. 

Hence, xZ . y3 a (yx)° = 1, which agrees with the presentation for do given in 

the Summary. Note : the spaced 
D 

acts on is hyperbolic iff nz7. 

The results of the thesis can be regarded as results on the classical 

modular group. The modular group has presentation 

rm < x, Y : x2=-? =i> 
and there exists an epimorphism 8A: I' 4dA defined by X -4 x, Y'-* y. 

Equivalently, AA FiXer(e 
A 
), where BA is the smallest normal subgroup of r 

containing (yx)°. These associations between dA and r can be found in [7], pg 

300. 
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From [S], do is finite when n<6, and infinite when nx6.46 is 

soluble, but, for ni7, da is insoluble, Fuchsian and SQ-universal (see [S], 

[13], [1S]). 

d 
z. 

d 
3, 

d4 and ds are the rotation groups of a triangle, tetrahedron, 

octahedron and icosahedron, respectively (see [7], pg 300 and [9]). 

Stotbers ([20], [21], [221) has studied subgroups of infinite index in 

the modular group. Subgroups of finite index in the modular group have been 

studied by Millington (11] and Stothers ([16], [17], [191). Coset diagrams 

were used in most of these papers, and were also used in the study of the 

(2,3, n) groups and/or their subgroups of finite index by Conder ([3], [4], 

[S]), Mushtaq and Shaheen [12], and Stothers [181. 

Defining a spec cation to be a list of non-negative integers 

(u, p, e, f, g) with uz1 and u- 84(p- 1) + 21e + 28f + 36g, Stothers (18] 

showed that each specification corresponds to a subgroup of finite index of 

the (2,3,7) group with the three exceptions (16,0,0,1,2), (21,1,1,0,0) and 

(36,1,0,0,1). 

The symbol p in the specification of a subgroup ß denotes the genus of 

the Rieman surface associated with 0( see [7], [8] and [18] )" We observe 

from the exceptional specifications for the (2,3,7) and (2,3,9) subgroups, 

that the genus p is either zero or one. 

Using the genus formula for subgroups of finite index in the Modular 

group and results from [16], in particular Theorem 5.5 and its Corollary, it 

may be possible to show that any exception for (2,3, n) subgroups (with n2 7) 

must have pS1. 

The genus formula for subgroups of finite index in the Modular group is 

given by 

g= I+ 
12 u- 

+e2_ +e3-. I" 

using the notation in (16]. 

V 



Note that there is a misprint in this formula in [16], although a correct 

version is given in [11]. Here, g, e3, e3 in [16] correspond to p, e, f in 

this thesis. Therefore, gs1+1 (u - 6b), since ez0. 
12 Z, e3 

So, for example, if Iu- 6h < 12, then gs1. 

Jones and Singerman discuss map-subgroups of (2, m, n) triangle groups in 

[6]. 

The correspondence between subgroups of index u in dU and coset diagrams 

with u points, with the same specification, is a key result, given as Lemma 

2.1 in [181. We state this lemma here : 

LEMMA (i) There is a correspondence between subgroups of index u in do and u 

point diagrams ford 
n. 

(ii) A subgroup with specification (u, p, e, f, g) corresponds to a diagram with e 

red points, f blue points and g green points.   

Compare this lemma with Theorem 1 in [11], Theorem 2.3 in [16] and Theorem 2.1 

in [17]. 

Far more difficulties were experienced with the (2,3,9) group, dealt with 

In Chapter 2, than with the (2,3,11) group in Chapter 1 or the (2,3,13) group 

in Chapter 3. This was due to 11 and 13 being prime and 9 composite, and 

having to find proofs for the exceptions for the (2,3,9) group. 

The methods used here could be applied to (2,3, n) groups for larger 

values of n. We would conjecture that, for prime pk 11, there are no 

exceptions for (2,3, p) groups. 

It is worth noting Shimura's remark on pg 45 in 114], which implies that 

certain number theory techniques can be applied to (2,3, n) groups when 

n=7,9or11. 
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NOTATION 

dn (2,3, n) triangle group 

  end of theorem 

o end of proof 

m1n m dividc3 n 

ap degree of polynomial p 

m4n vertices m and n are joined by a red lino 

n-cycle a green cycle with n green lines 

n -cycle a green cycle with at least it green lines 

vi' 



CHAPTER 1 

(2,3,11) TRIANGLE GROUP 

§ 1.1 GENUS FORMULA 

Reference 118], Pg 323, for first two paragraphs. 

A subgroup of finite index u (k 1) in dtl has a fundamental domain 

consisting of u translates of that for d 
110 

The domain has, say, e (resp. f, g) inequivalent elliptic vertices of order 

2 (resp. 3,11). Denote the genus of the corresponding Riemann surface by p. 

Then, the genus formula can be derived from Theorem 2 in [15]. We get 

2p-2+e(1- z)+f(1- 
3)+g(1- 

I)uu(1 
z-3 is 

)' 

which simplifies to 

Su=132(p-1)+33c+44f+60g 

This is the genus formula for subgroups of index u in d 
Ito 

§1.2- SPECIFICATION 

Adopting the same approach as in [18], Pg 324, we define a spec(fi'catlon to 

be a list of non-negative integers (u, p, e, (, g), with u Z: 1, which satisfies 

(1.1.1). 

To determine which values of u provide a solution for (1.1,1), we will make 

use of the following result from 12], Pg 299 : 

RESULT 1.2.1 

If a and b are coprime positive integers then for each ni (a - 1)(b - 1), 

there exist integers x, yZ0 satisfying ax + by = n.   
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THEOREM 1.2.2 The genus formula (1.1.1) has a solution for each u2 99, but 

not for u= 98. 

Proof :u"e (mod 4), from (1.1.1). 

Without loss of generality, let p=0 and es3. 

Then there are four cases : 

(i) u= 4v , e=0 

(a) u-4v+1 , e=1 

(iii) u-4v+2 , e-2 

(iv) ua4v+3, e=3. 

In each case, vz0 and fa 5k + f0, where fo E (0,1,2,3,4), kk0. 

case (i) :u= 4v, c=0. Substitute values in (1.1.1). 

20v - -132 + 220k + 44f0 + 60g 

v+ 
33-s llf 

0 
a11k+3g 

f0a3 and v=llk+3g 

By Result 1.2.1, this is solvable if vZ 20, i. e. ui 80. 

cast (ii) :u- 4v + 1, e-1. Substitute values in (1.1.1). 

20v+5 a-132+33 +2201+44f0+60g 

v+ 
Z6-s 111 

0u Ilk+3g 

:. f0=1 and v+31-sllk+3g 

By Result 1.2.1, this is solvable if v+3k 20, i. e. VZ 17, i. e. ui 69. 

cast (iii) :u= 4v + 2, ca2. Substitute values in (1,1.1). 

20v + 10 a-132+66+220k+44f0+60g 

19 -5 11t 

". V+ -u 11k+3g 
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.. fo"4 and v-S-llk+3g 

By Result 1.2.1, this is solvable if v-5 20, i. e. vx 25, i. e. uk 102. 

case (iv) :u= 4v + 3, e=3. Substitute values in (1.1.1). 

2O + 15 =-132+99+2201 +44f0+60g 

12 - 

5 

111 

0- Ilk +3g 

.. f0=2 and v-2== llk+3g 

By Result 1.2.1, this is solvable if v-2z 20, i. e. vz 22, i. e. ui 91. 

From cases (i), (ii), (iii) and (iv), we deduce that (1.1.1) has a solution 

for each uZ 102. Using (1.1.1), a computer program was developed to 

determine all the solutions for (1.1.1) for us 101. This program and its 

output are shown in APPENDIX A. From the output, we see that solutions of 

(1.1.1) exist for u= 99,100 and 101, but not for 98. These four values can 

also be checked by hand using (1.1.1). 

The specifications listed in the program output for u= 99,100 and 101 do 

satisfy (1.1.1). 

For u= 98, we substitute this value into (1.1.1) and re-arrange to get 

622-60g- 11(12p+3c+41) (1.2.1) 

Now we can conclude that gs 10 since g, p, e, fi0. Next, we put each 

possible value of g (0,1, ..., 10) into (1.2.1). The RHS is divisible by 11, 

but the LHS is only divisible by 11 when g= 10, in which case we have 

2-12p+3e+4f (1.2.2) 

Now, P, e and f are non-negative integers, so clearly (1.2.2) has no solution. 

This implies that (1.1.1) has no solution for u= 98.13 
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§1.3 COSET DIAGRAMS 

As described in [16] and [181, a coset diagram corresponding to a subgroup H 

of finite index in d 
il 

is a directed edge-coloured graph with u vertices, 

corresponding to the cosets of H in d 
li. 

A red (resp. blue, green) line 

indicates the effect of left-multiplication of a coset by x (resp. y, yx). 

Thus the coset diagram is equivalent to the representation of do on cosets of 

H. A cosct diagram with specification (u, p, c, f, g) has u vertices, e red 

points, f blue points, g green points and genus p. 

Colour code :" blue point 

clockwise-orientated blue triangle 

anticlockwise-orientated blue triangle 

A vertex of a triangle, which has no other lines, indicates a red point. 

A triangle with two vertices joined by another (red) line, indicates that one 

of these vertices is a green point. 

For example, a coset diagram D with specification (23,0,3,2,1) is 

a, b, c represent red points; d and e are blue points; and f is a green point. 

The green lines have been omitted, but can be included by observing that a 

green line is determined by following a blue line and then a red line. 
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Composition of coset diagrams is described in Appendix E and in [18]. 

Lemma 2.2 in [181 will be used so often that its use will not be acknowledged, 

although we can assume the lemma will have been involved when composition takes 

place. However, this lemma is stated below : 

Lemma 2.2 in [18] Suppose that A and B are diagrams with specifications 

(u, p, e, f, g) and (u', p', e', f', g'), and are n(a) and n'(a) respectively. 

(i) If n, n' Z 1, then the (a)-composition of A and B has the specification 

(u+u', p+p', c+e'-4, f+f, g+g'), and is (n+n'-2) (a). 

(ii) If n 2, then the result of (a)-composition within A has 

spec cation (u, p+ 1, e-4, f, g) and is (n-2) (a).   

Using the notation in [181, we would describe the diagram D as 1(1) since 

there is one triangle with two adjacent red points (labelled b and c). 

A diagram with n triangles of this sort would be described as n(l). 

To demonstrate (1)-composition within the same diagram, we give diagrams 

for (12,0,4,0,1)2(l) and (12,1,0,0,1), the second diagram being obtained from 

the first by undoing the four red points (recall :a red point represents a 

red loop) and then joining one pair with the other. 

G (12,0,4,0,1) 2(1) 

(12,1,0,0,1) 

5 



§1.4 SUBGROUPS OF PINITE INDEX IN 41 
it 

Before we can prove Theorem 1.4.6, we will need the following five lemmas. 

LEMMA 1.4.1 If a specification S= (u, p, e, f, g) satisfies (1.1.1) with eZ4, 

then there exists a coset diagram D with specification S, which is n(1) for 

some az2. 

Proof : Let S be a counter-example with p+e+f+g minimal. We want to 

show that no such S exists. 

Consider the coset diagram 

B 

This has specification (66,0,14,0,0) and is 5(1) 2(2). A 2-composition B(2)B 

of two copies of B has specification (132,0,24,0,0) and is 10(1) 2(2). By 

2-composing this once and 1-composing it four times we get a diagram BI with 

specification (132,5,4,0,0) which is 2(1). We will use this to eliminate 

various possibilities for S. 

If pzS and D is a diagram with specification (u-132, p-5, e, f, g), which is 

n(1) for some ni2, then a 1-composition D+ B1 has specification 

S= (u, p, e, f, g) and is n(1) also. To put this another way, if our 

counter-example S has pz5 then (u-132, p-5, e, f, g) is also a counter-example, 

contradicting the minimality of S. Thus, S has p<S. 

Now consider the diagram 
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E 

This has specification (33,0,9,0,0) and is 2(1) 2(2). The 2-composition 

El a E(2) has specification (33,1,5,0,0) and is 2(1). 

If e9 and D is a diagram with specification (u-33, p, e-5, f, g) which is 

n(1) for some nz2, then D+E has specification S and is n(1), nz2. 

Therefore. S has c<9, by minimality. 

A (22,0,6,1,0) 3(1) 

K0 (22,0,2,4,0) l(1) 

10 = A(1) _ (22,1,2,1,0) 1(1). 1-composition of the bracketed triangles in A. 

A2 (44,1,4,2,0) 2(1) =A (22,0,6,1,0) 3(1) +1a (22,1,2,1,0) 1(1). 

For pz1, 

if f22 and D (u-44, p-1, o, f-2, g) satisfies (1.1.1), 

then D+ A2 has specification S which is n(1), n Z: 2, and 

if ei5 and D (u-33, p-1, c-1, f, g) satisfies (1.1.1), 

then D+ El has specification S wbicb is n(1), n22. 

Therefore, for pz1, S has f<2 and e<5 (i. e. e= 4). 

F=A+ Ko m (44,0,4,5,0) 2(1). 

If fz5 and D (u-44, p, e, f-5, g) satisfies (1.1.1), then D+F has 

specification S which is n(1), nz2. Therefore, S has f<S. 

7 



A diagram for 01(12,0,4,0,1)2(1) was exhibited in § 1.3. 

If gk1 and D (u-12, p, e, f, g-1) satisfies (1.1.1), then D+ ßi has 

specification S which is n(1), it z 2. 

Therefore, S has g<1. i. e. S has g=0. 

We now know that a minimal S would have one of the following two forms 

(u, p, 4, f, 0) :Is p< S, f< 2 

(u, 0, o, f, 0) 4 se<9, f<S 

(1.4.1) 

(1.4.2) 

Case (1.4.1) : Put c=4 and g=0 in (1.1.1) to get 

Su = 132p + 44f 

.. 0" 2p - 6f (mod S) 

:. p" 3f (mod 5) 

If f=0, then p=0 (mod 5), which does not have a solution for 1sp<S. 

If f=1, then p"3 (mod 5), so that p=3, since 1: p<S. 

If p=3, e=4, f=1 and g =0 thenu=88. 

(88,0,16,1,0) 6(1) 2(2) =A (22,0,6,1,0) 3(1) +B (66,0,14,0,0) 5(1) 2(2). 

Now, 2-compose once and 1-compose twice to get 

(88,3,4,1,0) 2(1). 

Case (1.4.2) Put p=0 and g == 0 in (1.1.1) to get 

Su - 44f 33(e - 4), 

Replacing e by 4 (resp. 5,6,7,8) in this equation and noting f<5, 

eý4: Su-44fu0 f-0(mod5) .. f-0. 

c-S : Su-44f-33 .. f-3(mod 5) fs3. 

ca6 : Su-44f-66 ;. f"1(mod 5) ;. f-1. 

cý7: Su - 44f - 99 .: f-4 (mod S) .. f-4. 

c-8 : Su-44f=132 :. f"2(mod S) .; fß-2. 
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E2 (33,0,5,3,0) 2(1) 

The remaining five cases for a minimal S are therefore 

(0,0,4,0,0) 

(33,0,5,3,0) 2(1) 

(22,0,6,1,0) 3(1) 

(55,0,7,4,0) 3(1) 

(44,0,8,2,0) 4(1) 

Hence, no such S exists. 13 

null diagram (zero pointslvertices) 

z "E 

A 

A+ E2 

A+A 

LEMMA 1,4.2 If S (u, p, c, f, g) satisfies (1.1.1) and c=3, then there exists 

a coset diagram with specification S which is 1(1). 

Proof Assume S is a counter-example with p+f+g minimal. We want to 

show that no such S exists. 

Diagrams for E (33,0,910,0) 2(1) 2(2) and B (66,0,14,0,0) 5(1) 2(2) have 

already been exhibited. 

E(2)B = (99,0,19,0,0) 7(1) 2(2). 

Now 2-compose once and 1-compose three times to get 

B2 (99,4,3,0,0) 1(1). 
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If p2: 4 and D (u-99, p-4,4, f, g) satisfies (1.1.1), then D can be 2(1) by 

Lemma 1.4.1 so that D+ B2 has spec cation S which is 1(1). 

Therefore, S has p<4. 

C (11,0,3,2,0) 1(1) 

If fi2 and D (u-11, p, 4, f-2, g) satisfies (1.1.1), then D can be 2(1) by 

Lemma 1.4.1 so that D+C has specification S which is 1(1). 

Therefore, S has f<2. 

We now know that a minimal S would have one of the following two forms 

(ß, p, 3,4,8) :p<4 (1.4.3) 

(u, p, 3,1, S) :p<4 (1.4.4) 

Applying (1.1.1) to the specification in (1.4.3), 

Su = 132p - 33 + 60g 

.0" 2p -8 (mod 5) 

.: p"4 (mod 5) 

But 0 --9 p<4, so there is no specification of the form in (1.4.3). 

Applying (1.1.1) to the specification in (1.4.4), 

5u-132p-33+44+60g 

0" 2p -4 (mod 5) 

. '. p"2(mod 5) 

:. p=2, since Osp <4. 

We now know that a minimal S would have the following form 

Hg (u, 2,3,1, g) :ua 12g + 55 (1.4.5) 
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The condition in (1.4.5) is obtained by substituting ps2, e=3 and f=I in 

(1.1.1). 

Diagrams have already been exhibited for A (22,0,6,1,0) 3(1), 

E (33,0,9,0,0) 2(1) 2(2) and G1 (12,0,4,0,1) 2(1) . 

A(1)E an (55,0,11,1,0) 3(1) 2(2). 

Now, 2-compose once and 1-compose once to get Ho (55,2,3,1.0) 1(1). 

For gz It HgaH 
g-1 

+0 
1w 

(12g+55,2,3,1, g)1(1). 

Hence, no such S exists. a 

LEMMA 1.4.3 If S (u, p, e, fg) satisfies (1.1.1) and e=2, then there exists 

a coset diagram with specification S which is 1(1). 

Proof : Assume S is a counter-example with p+f+g minimal. We want to 

show that no such S exists. 

A diagram has already been exhibited for B (66,0,14,0,0) 5(1) 2(2). 

With B, 2-compose once and 1-compose twice to got B3 (66,3,2,0,0) 1(1). 

If pZ3 and D(u-66, p-3,4, fg) satisfies (1.1.1), then D can be 2(1) by 

Lemma 1.4.1 so that D+ B3 has specification S which is 1(1). 

Therefore, S has p <, 3. 

If 0: 4 and D (u-22, p, 4, f-4, g) satisfies (1.1.1), then D can be 2(1) by 

Lemma 1.4.1 so that D+ K0 has specification S which is 1(1). 

Therefore, S has f<4. 

We now know that a minimal S would have one of the following three forms 

(u, 0,2, f, g) f<4 (1.4.6) 

(u, 1,2, fg) :f<4 (1.4.7) 

(u, 2,2, f, g) f<4 (1.4.8) 
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Applying (1.1.1) to the specifications in (1.4.6), (1.4.7) and (1.4.8), 

(1.4.6) Su - 44f = -66 + 60g 

f4 (mod S) 

Su - 44f = 66 + 60g 

f" 1(mod 5) 

(1.4.8) 5u - 44f 198 + 60g 

.: f"3(mod 5) 

But 0sf<4 in each case, so f-1 in (1.4.7), fm3 in (1.4.8), and there 

is noSoftheformin(1.4.6). 

Therefore, the remaining cases for a minimal S are 

19 (u, 1,2,1, g) :u 12g + 22 

1g (u, 2,2,3, g) :u= 12g + 66 

Diagrams have already been exhibited for 10 1(1) and Az (2(1). 

Jo (66,2,2,3,0) 1 (1) 10 (22,1,2,1,0) 1 (1) + A2 (44,1,4,2,0) 2(1). 

(1.4.9) : For gz1, I2 = ßl + It-I - (12g+22,1,2,1, g) 1(1) 

(1.4.10) : For gk1, J9 = ßl + JS. 
1 in (12g+66,2,2,3, g) 1(1) 

Hence, no such S exists. 0 

(1.4.9) 
(1.4.10) 
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LEMMA 1.4.4 If S (u, p, e, f, g) anisfies (1.1.1) and e=1, then there exists 

it coset diagram with specification S. 

Proof : Assume S is a counter-example with p+f+g minimal. We want to 

show that no such S exists. 

If pi1 and D (u, p-1,5, f, g) sati cs (1.1.1), then D can be 2(1) by Lemma 

1.4.1, so we can 1-compose D once to get a diagram with specification S. 

Therefore, S has p<1. i. e. S has p=0. 

Putting e=1 and p=0 in (1.1.1) we have 

Su=-132+33+44f+60g 

:. Su - 44f 's 60g - 99 

:. f" 1(mod S) 

Therefore, a minimal S would be of the form 

(u, 0,1, f, g) f" 1(mod 5) and u= 12g + is (4f - 9) 

Therefore, the cases for a minimal S are 

(u, 0,1, l, g) :u 12g - 11 ,gz1 (1.4.11) 

(u, 0,1,6, g) u 12g + 33 

(u, 0,1,11, g) u= 12g + 77 

(u, 0,1,160g) u- 12g + 121 

and so on, adding 5 to f, and adding 44 to u. 
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Consider (1.4.11) (12g-11, O, 1,1, g) ,gx1. 

g=1 (1,0,1,1,1) The diagram consists of a red point with a blue loop. 

g2 (13,0,1,1,2) 

g3 {25,0,1,1,3) 

g-4 (37,0,1,1,4) 

g5 (49,0,1,1,5) 
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In general, for gZ3, there are g-3 sections of the form 

and the remainder of the diagram is the same. 

Let G= (12n, 0,4,0, n) ,ni1, and Ka = (44n+22,0,2, Sn+4,0) ,nk0. 

Then, 0n can be 2(1) by Lemma 1.4.1, and KQ can be 1(1) by Lemma 1.4.3. 

A diagram for C (11,0,3,2,0) 1(1) has already been exhibited. 

The remaining cases for a minimal S can now be dealt with as follows. 

C+ Ko , g=0, 
(128+33,0,1,6,8) 

(C+0 + Ka gi 1 

= 
(128+77,0,1,11,8) 

C+ K1 ,g0, 

(C + 0+ Kl ,gi1 

... and so on. In general, 

+ 
(12g+44a+33,0,1, Sn+6, g) aC 

Kn ,g=0, 
,n ; -* 0 

(C +0 
g) 

+ KA ,gZ1 

Hence, no such S exists. o 
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LEMMA 1.4.5 If S (u, p, e, (, g) satisfies (1.1.1) and e=O, then there exists 

a cosec diagram with specification S. 

Proof : Assume S is a counter-example with p+f+g minimal. We want to 

show that no such S exists. 

If pZ1 and D (u, p-1,4, f, g) satisfies (1.1.1), then D can be 2(l) by Lemma 

1.4.1, so we can 1-compose D once to get a diagram with specification S. 

Therefore, S has p<1. i. e. S has pa0. 

Putting eap ux 0 in (1.1.1) we have 

5u =-132+44f+60g 

:. f"3 (mod S) 

Therefore, a minimal S would be of the form 

(u, 0,0, f, g) :f"3 (mod 5) and us 12g + _! 
f(4f12) 

'Therefore, the casts for a minimal S are 

(u, 0,0,3, g) um 12g ,gk1 (1.4.12) 

(u, 0,0,8, g) u= 12g + 44 

(u, 0,0,13, g) u- 12g + 88 

(u, 0,0918,8) u an 12g + 132 

and so on, adding 5 to f, and adding 44 to u. 
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Consider (1.4.12) (12S, 0,0,3, g) i 1. 

g-1 (12,0,0,3,1) 

B-2 (24,0,0,3,2) 

g-3 (36,0,0,3,3) 

g-4 (48,0,0,3,4) 

In general, for gi2, there are g-2 sections of the form 

i"xx". and the remainder of the diagram is the same. 
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Recall that we have 

0e (12n, 0,4,0, n) 2(1) and Ra (44n+22,0,2, So+4,0) 1(1). 

The remaining cases for a minimal S can now be dealt with as foUows. 

0, A 

(12g+44,0,0,8, g) 
x0 + KO 'S 09 

(KO + 0+ Ko 9gk1 

K0+ K1 8"0, 
(128+88,0,0,13,8) 

(KO +0+ Kl ,gz1 

... and 3o on. In gcncral, 

ý+ 
Kn 

(12g+44n+44,0,0, Sn+8, g) -, ni0 

i (Ký + ßý) + Kn ,8Z1 

Hence, no such S exists. 13 

THEOREM 1.4.6 Every specification (u, p, e, f, g), satisfying the genus formula 

(1.1.1), corresponds to a subgroup of (finite) index u in d 
it, 

Proof ` From Lemmas 1.4.1,1.4.2,1.4.3,1.4.4 and 1.4.5, we know there 

exists a coset diagram for every specification (u, p, e, f, g) satisfying (1.1.1). 

From Lemma 2.1 in [18], there is a correspondence between subgroups of index u 

in d 
11 and u point coset diagrams for d, 

1. 
The theorem follows immediately. M 

18 



CHAPTER 2 

(2,3,9 TRIANGLE GROUP 

X2,1 GENUS FORMULA 

The genus formula can be derived from Theorem 2 in [15]. We get 

2p-2+e(1- 
Z)+f(1-3)+g1(1-9)+g3(1-9) 

239 

which simplifies to 

uý36(p-1)+9c+12f+16g1+12g3 (2.1.1) 

Note that with A11 we had g, but with 49 we have gl and g3. This is because 

9 is composite with divisor 3. 

However, although the condition u"f (mod 3) could be derived from (1.1.1), 

the genus formula for d,,, this is not the case for (2.1.1). 

u=36(p-1)+9e+12f+16g1+12g3 : u"f(mod 3) (2.1.2) 

Therefore, the genus formula for subgroups of index u in 49 is (2.1.2). 
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J2.2 SPECIFICATION 

For 49, we define a spec' ication to be a list of non-negative integers 

(u, p, e, f, gi, g3), with u 1, which satisfies the genus formula (2.1.2). 

If a coset diagram with specification (u, p, e, f, gl, g3) exists, then there 

will be g3 green 3-cycles and u vertices, including e red points, f blue 

points and gl green points. 

THEOREM 2.2.1 The genus formula (2.1.2) has a solution for each u 36, but 

not for u -- 35. 

Proof :u=e (mod 4), from (2.1.2). 

Without loss of generality, let ps0 and eS3. 

Then there are twelve cases, since 3%(u - f) and 41(u - e) 

(i) u- 12v , em0 ,f- 3k (vii) u- 12v +6, e=2, f -' 3k 

(ü) u_ 12v +1, e. 1 ,f zu 3k +1 (viii) u= 12v +7, e=3, f- 3k +1 

(üi) um12v+2, e-2 , f-3k+2 (ix) u-12v+8, em0, fas3k+2 

(iv) u-12v+3, em3 , fm31k (x) u-12v+9, e-1, f'3k 

(v) u=12v+4, ea0, f=3k+1 (xi) u=12v+10, ein 2 , f'3k+1 

(vi) u=12v+S, e=l, f-3k+2 (xii) um12v+11, e=3 , fa3k+2 

case um 12v, ew0, p=0, fw 3k. Substitute values in (2.1.2). 

12v+36m36k+ 16g1 + 12g3 

.. 3v+9 a3(3k+g3)+4g1 

By Result 1.2.1, this is solvable if 3v +9i6, i. e. 3v Z -3, i. e. uZ -12. 
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caso (ii) :um 12v + 1, e"1, p-0, f- 3k + 1. Put values in (2.1.2). 

12v + 16 = 36k + 16g1 + 12g3 

3v+4 = 3(3iß+g3)+4g1 

By Result 1.2.1, this is solvable if 3v +4i6, i. e. 3v i 2, i. e. u29. 

case (iii) :ua 12v + 2, e=2, p=0, f as 3k + 2. Put values is (2.1.2). 

12v-436k+1681+1283 

3v -1a 3(3k + g3) + 4g1 

By Result 1.2.1, this is solvable if 3v -1z6, i. e. 3v k 7, i. e. uZ 30. 

case (iv) :u= 12v + 3, e=3, p=0, f= 3k. Put values in (2.1.2). 

12v + 12 = 36k + 16g1 + 12g3 

3v +3 . 3(3k + g3) + 4g1 

By Result 1.2.1, this is solvable if 3v +3i6, i. e. 3v z 3, i. e. ui 1S. 

can (v) :u= 12v + 4, c=0, pw0, f" 3k + 1. Put values in (2.1.2). 

12v + 28 = 36k + 16g1 + 12g3 

3v+7 =3(3k+g3)+4g1 

By Result 1.2.1, this is solvable if 3v +7ý6, i. e. 3v Z -1, i. e. uz0. 

case (vi) :u= 12v + 5, cm1, p=0, fu 3k + 2. Put values in (2.1.2). 

12v+8=36k+16g1+1283 

3v+2==3(3k+g3)+4g1 

By Result 1.2.1, this is solvable if 3v +26, i. e. 3v z 4, i. e. uZ 21. 
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case (vii) :u= 12v + 6, e=2, p=0, f= 3t. Put values in (2.1.2). 

12v + 24 - 36k + 16gi + 12g3 

3v+6 -3(3k+c)+4g1 

By Result 1.2.1, this is solvable if 3v +6Z6, i. e. 3v ; -l- 
0, i. e. uz6. 

can (viii) :u= 12v + 7, e=3, p=0, f' 3k + 1. Put values in (2.1.2). 

12v +4- 36k + 16g1 + 12g3 

3v+1=3(3k+g3)+4g1 

By Result 1.2.1, this is solvable if 3v +1z6, i. e. 3v z 5, i. e. u2 27. 

cast (ix) :um 12v + 8, cm0, p=0, fm 3k + 2. Put values in (2.1.2). 

12v + 20 a 36k + 16g1 + 12g3 

3v+5 . 3(3iß+g3)+4gi 

By Result 1.2.1, this is solvable if 3v +5k6, i. e. 3v i 1, i. e. uk 12. 

case (x) :u= 12v + 9, c=1, p=0, fa 3iß. Put values in (2.1.2). 

12v + 36 m 36k + 16g1 + 12g3 

3v+9 s3(3k+g3)+4g1 

By Result 1.2.1, this is solvable if 3v +9Z6, i. e. 3v Z -3, i. e. uZ -3. 

case (xi) :u= 12v + 10, c=2, p=0, f= 3k + 1. Put values in 

12v + 16 = 36k + 16g1 + 12g3 

3v +4= 3(3k + g3) + 4g1 

By Result 1.2.1, this is solvable if 3v +4z6, i. e. 3v i 2, i. e. uz 18. 
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case (xii) :u= 12v + 11, ca3, ps0, f= 3k + 2. Put values in (2.1.2). 

12v-4-36k+16g1+12g3 

:. 3v- 1- 3(3k + g3) + 4g1 

By Result 1.2.1, this is solvable if 3v -1z6, i. e. 3v i 7, i. e. u 39. 

From cases (i), (ii), ..., (xü), we deduce that (2.1.2) has a solution for 

each uz 39. Using (2.1.2), a computer program was developed to determine all 

the solutions for (2.1.2) for us 38. This program and its output are shown 

in APPENDIX B. From the output, we see that solutions of (2.1.2) exist for 

ua 36,37 and 38, but not for 35. These four values can also be checked by 

hand using (2.1.2). 

The specifications listed in the program output for u= 36,37 and 38 do 

satisfy (2.1.2). 

For u= 35, we substitute this value into (2.1.2) and re-arrange to get 

71- (16g1 + 12g3) = 3(12p + 3e + 4f) : 35 "f (mod 3) (2,2.1) 

Now we can conclude that g1 54 and g3 5 5, since p, e, f, g1, g3 z 0. Next, 

we put each possible arrangement of gl and g3, such that 16g1 + 12g3 S 71, 

into the equation in (2.2.1). The RHS is divisible by 3, but the LHS is only 

divisible by 3 when gt s2 in which case g3 s 3. This leaves us with four 

equations (from an initial eighteen equations) to check : 

1= 12p+3c+4f 

Sa 12p+3e+4f 

9=12p+3e+4f 

13 = 12p+3e+4f 

35 -f (mod 3) 

35 "f (mod 3) 

35 "f (mod 3) 

35 -f (mod 3) 

(2.2.2) 
(2.2.3) 

(2.2,4) 

(2.2.5) 
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Noting that p, e and f are non-negative integers, it is clear that the 

equations in (2.2.2) and (2.2.3) do not have solutions, although the equations 

in (2.2.4) and (2.2.5) each have one solution. 

The conditions p=0, e=3 and f=1 satisfy the equation in (2.2.5), and 

the conditions e-3, and psf=0 satisfy the equation in (2.2.4). However, 

the congruence is not satisfied for either f=0 or f=1, so that (2.2.2), 

(2.2.3), (2.2.4) and (2.2.5) do not have solutions. 

This implies that (2.1.2) has no solution for u= 35.13 

§2.3 SUBGROUPS OF FINITE INDEX IN d9 

Before we can prove Theorem 2.3.9, we will need the following eight lemmas. 

Note that some specifications will be used in more than one lemma. 

Composition of coset diagrams with spec cation (u, p, c, f, gl, g3) 13 done in 

exactly the same way as with specification (u, p, e, f, g). 

LEMMA 2.3.1 There are precisely four inequivalent types of green 3-cycles; 

two of them closed, two of them open. 

The closed green 3-cycles are 

(2) (1) and 

The open green 3-cycles are 

(3) > and (4) 
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Proof : Recall that a green line is obtained by following a blue line and 

then a red line. We begin with a labelled blue triangle (labels 1,2,3 in 

clockwise order), and look at all possible green 3-cycles starting at label 1. 

For convenience, 341, for example, will represent a red line between vertex 

3 and vertex 1. 

There are five possible cases for a red line from vertex 2 :- 

Case (1) :242 (i. e. vertex 2 is a red point). 

If 341, then we get a 2-cycle. 

If 3 -4 3, then we must have a red point at vertex 1 to complete a 3-cycle. 

This gives a closed green 3-cycle of type (1). 

If 34 blue point, then we get a cycle of length i 4. 

If 34 blue triangle, then we get an open green 3-cycle equivalent to type (3) 

Case (2) :241. This creates a green 1-cycle (green point) at vertex 1. 

Cast (3) :243. 

If 141, then we get a 2-cycle. 

If 14 blue point, then we get a closed green 3-cycle of type (2). 

If 1-4 blue triangle, then we get a cycle of length z: 4. 

Case (4) :24 blue point. 

We must have 3 41 to complete the green 3-cycle of type (2). 

Case (5) :2 -*blue triangle ( with labels 4,5 ). 

If 444, then we must have 541 to complete the green 3-cycle, equivalent to 

type (3). 
i 4 

3 z 5 
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If 445, then we get a cycle of length 2 4. 

If 4+3, then we must have 141 to complete the green 3-cycle, equivalent to 

type (3). 

If 4 41, then we get a 2-cycle. 

If 44 blue point, then we get a cycle of length k 4. 

If 44 blue triangle, then this new triangle must join to vertex I to give a 

green 3-cycle, equivalent to type (4). D 

LEMMA 2.3.2 If S (u, p, e, f, gl, g3) satisfies (2.1.2) and ei5, then there 

exists a coset diagram with specification S which is n(1) where nk2. 

Proof : Assume S is a counter-example with p+e+f+ gl + g3 minimal. We 

want to show that no such S exists. 

N1 (36,0,8,0,0,0) 4(1) 

A0 = N1(1) _ (36,1,4,0,0,0) 2(1), 

If pz1 and D (u-36, p-1, e, f, gl, g3) satisfies (2.1.2), then D +A 
0 

has 

specification S which is n(1), nz2. 

T erefore, S has p<1. i. e. S has p-0. 

Bo (9,0,5,0,0,0) 2(l) 
>- 

ins -41 
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If ek6 and D (u-9, p, e- l, f, gl, g3) satisfies (2.1.2), then D+ Bo has 

specification S which is n(l), ni2. 

Therefore, S has e<6. i. e. S has es5. 

C0 (36,0,4,3,0,0) 2(1) 

If fz3 and D (u-36, p, e, f-3, g1, g3) satisfies (2.1.2), then D+ C0 has 

specification S which is n(1), n 2. 

Therefore, S has f<3. 

D0 (48,0,4,0,3,0) 2(1) 

If gl k3 and D (u-48, p, c, f, gl-3, g3) satisfies (2.1.2), then D+ Do has 

specification S which is n(l), n 2. 

Therefore, S has gj < 3. 

12 (24,0,4,0,0,2) 2(1) 
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If g3 22 and D (u-24, p, e, f, gl, g3 2) satisfies (2.1.2), then D+ 12 has 

specification S which is n(1), n22. 

Therefore, S has g3 < 2. 

From (2.1.2), we have -u"g. (mod 3) and u-f (mod 3). 

Therefore, f" gI (mod 3). 

We now know that a minimal S would have one of the following two forms 

(u, O, 5, f, g1,0) 

(u, O, 5, f, gi, 1) 

f=gýE{0,1,2) 

f==g1 E {0,1,2} 

(2.3.1) 

(2.3.2) 

F0 (28,0,4,1,1,0) 2(1) 

Consider (2.3.1). 

f= g1 mo (9,0,5,0,0,0) 2(1) m B0 

f gý 1 (37,0,5,1,1,0) 2(1) m B0 + F0 

fm gi uu 2: (65,0,5,2,2,0) 2(1) _ (B0 + Fo) + Fo 

B1 (2 1,0,5,0,0,1) 2(1) 

Consider (2.3.2). 

fa gi am 0: (21,0,5,0,0,1) 2(1) " B1 

f1 (49,0,5,1,1,1) 2(1) - B1 + F0 

fa gl 2: (77,0,5,2,2,1) 2(1) _ (B1 + F0) + Fa 

Hcncc, no such S exists. o 
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LEMMA 2.3.3 If S (u, p, e, f, g1, g3) satisfies (2.1.2) and c-4, then there 

exist two coset diagrams with specification S, one of which is 2(1) and the 

other 2(2), with the following exceptions : 

There exist cosec diagrams, which are 1(1)1(2), with specifications 

(12,0,4,0,0,1) and (36,0,4,0,0,3). 

Proof Assume S is a counter-example with p+f+ gi + g3 minimal. We want 

to slow that no such S exists. 

N2 (36,0,8,0,0,0) 4(2) 

Aö = N2(2) _ (36,1,4,0,0,0) 2(2). The superscript in Aö indicates that the 

diagram is 2(2). 

A diagram has already been exhibited for AO (36,1,4,0,0,0) 2(1). 

If pZ2 and D (u-36, p-1,4, f, gl, g3) satisfies (2.1.2), then A0 2(1) +D 2(1) 

and Aö 2(2) +D 2(2) each have specification S which are respectively 2(1) and 

2(2). Therefore, S has p<2. Note that we had to take pi2 rather than 1, 

to ensure that D could not equal an exception. 

Cö (36,0,4,3,0,0) 2(2) 
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A diagram has slready been exhibited for Co (36,0,4,3,0,0) 2(1). 

If fi4 and D (u-36, p, 4, f-3, gi, g3) aatisfiea (2.1.2), then C0 2(1) +D 2(1) 

and Cö 2(2) +D 2(2) each have specification S which are respectively 2(1) and 

2(2). Therefore, S hu f<4. 

Dö (48,0,4,0,3,0) 2(2) 

A diagram has already been exhibited for Do (48,0,4,0,3,0) 2(I). 

If gl i4 and D (u-48, p, 4, f, gj-3, g3) satisfies then D0 2(1) +D 2(1) 

and DQ 2(2) +D 2(2) each have specification S which are respectively 2(1) and 

2(2). 'Therefore, S has g1 < 4. 

As shown in Lemma 2,3.2, we have f"g, (mod 3). 

We now know that a minimal S would have the following form 

(u, p, 4, f, gl, g3) p<2, f<4, gl<4, f"gl(mod 3). 

This gives us twelve cases to consider : 

Case (1) : IQ (12n, 0,4,0,0, n) ,nz1. 

11 (12,0,4,0,0,1) 1(1) 1(2) 

'ýIýJ 
A diagram has already been exhibited for 12 (24,0,4,0,0,2) 2(1). 

13 (36,0,4,0,0,3) 1(1) 1(2) =1l 1(1)1(2)+l 
2 

2(1) 
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Is (60,0,4,0,0,5) 2(1) 

Is (60,0,4,0,0,5) 2(2) 

I(24,0,4,0,0,2) 2(2) s 

V even n 2t 4, 
In (12n, 0,4,0,0, n) 2(1) = In_Z 2(1)+l 

2 
2(1) 

Iä (12n, 0,4,0,0, n) 2(2) = 
en-2 2(2) + IZ 2(2) 

IA 
V odd nz 71, 

(12n, 0,4,0,0, n) 2(1) - Ia-2 2(1)+l 
2 

2(1) 

(12n, 0,4,0,0, n) 2(2) I 2(2) + Iz 2(2) 

Therefore, 2(l) and 2(2) diagrams for Ia exist V n, with the exceptions of 

I1 1(1) 1(2) and 13 1(l) 1(2). Proofs for these exceptions follow. 
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Case (IA) : Assume (12,0,4,0,0,1) has a coset diagram D wbicb is 2(1) or 2(2) 

D has 4 A. with four rod points, one green 3-cycle and one green 9-cycle. 

By Lemma 2.3.1, the 3-cycle must be of type (4), as otherwise the diagram 

could not possibly become 2(1) or 2(2). Let us start with a 3-cycle of type 

(4), and then build it up. The fourth triangle must join to one of the other 

three, and, by symmetry, it does not matter which one. Each of the four free 

vertices must be a red point. The resulting diagram, shown at the beginning 

of Case (1), is 1(1) 1(2). Contradiction. Hence, no diagram exists for I 

which is 2(1) or 2(2). 

Case (1B) : Assume (36,0,4,0,0,3) has a coact diagram D which is 2(1) 

D has 12 d, with four red points, three green 3-cycles and three green 

9-cycles. We will use the same notation as in Lemma 2.3.1. 

A cycle with at least n green lines will be denoted by an nf-cycle. 

If there is only one incomplete 9-cycle in the construction of a diagram, 

and we have an m+-cycle and an a+-cycle where m>3 and n>3, then both 

cycles must belong to the same 9-cycle. 

If m+a>9, then we must have a contradiction. This might be expressed ss 

"If i -ý b, then (7+-cycle through c, 4+-cycle through d) -+ 11 +-cycle,, 

where a, b, c and d refer to vertices. 

D is 2(1), so we can start with a 9-cycle as follows, and then build it up, 

noting that all 3-cycles are of type (4) by Lemma 2.3.1. 

Z 3 4 

1 

If 2 -* 1 or 243, then 2-cycle. If 242, then D cannot be 2(1). 
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Casa (1B&) : Assume 2 4. 

If 14 3, then D complete with only 6d. If 141 (red point), then 5-cycle. 

.: 1 -)d. 

2 3 
6 

1 
3 

If 546, then 1-cycle. If 5 -) 3, then 12+-cycle. 

If 545, then 646 -º 8-cycle. :. 54A. 

Z 3 4 
8 6 

1 

5 

If 748, then 1-cycle. If 746, then 8-cycle. If 7 -> 3, then 13+-cycle. 

If 7 -* 7, then 946 for 9-cycle, but 2-cycle created. 

:. 7 -) 446 to complete 9-cycle. 

If 10 -4 3, then 9 -) d and 11+-cycle. If 10 4 8, then 2-cycle. 

If 10 4 10, then D cannot be 2(1). :. 10 -+ d. 

973 
i 

If 114 3, then 8 -412 to complete 9-cycle, but D completed with only 10 A. 

If 114 8, then 4-cycle. If 114 12, then 1-cycle. 

If 11411, then 12 4 12 -" 8f-cycle through 8,4+-cycle through 3 -" 12+-cycle. 
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.. 11-*A. 

two 9-cycles, 3+-cycle through 12,4+-cycle through 3, S+-cycle through 8 

-º S 412 º 7+-cycle through 8,4+-cycle through 3 -º 11+-cycle. 

Contradiction. :. Cam (I Ra) not pouible. 

Hence, 2 -4 A. 

36 

Z3t 

-kz4 
If 3 .34, then 2-cycle. If 3 -3 3, then D cannot be 2(1). 

Case (1Bb) : Assume 345. 

If 14 4, then 5-cycle. If 14 6, then 12+-cycle. 

If 14 1, then D cannot be 2(1). ;. 14 A. 

If 444, then D cannot be 2(1). If 446, then 14+-cycle. 

If 4 -4 7, then 4-cycle. If 4 -) 8, then 6-cycle. :. 4 -+d . 

9 10 

ý_ 
1 

___.. 7 

2 

If 9 -ý 8, then 7-cycle. If 94 10, then 1-cycle. If 946, then 12+-cycle. 

If 9 -ý 9, then 10 4 10 "+ 13+-cycle. If 947, then 8 41 -+ 10+-cycle, 

. ". -*A. 
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12 9 10 

11 
ý17- 

7 

1 

If 114 119 then 12 412 -º 11+-cycle. If 11412, then 1-cycle. 

If 11-+ 8, then 8-cycle. If 11 -i 6 or 11410, then 13+-cycle. 

If 1147, then $49 as D is not 2(1). 

:. I14 d -* 9.:. two 9-cycles, 4+-cycle, 5+-cycle -+ 6 -4 7 as 11+-cycle. 

Contradiction. ;. Case (1Bb) not possible. 

Case (1Bc) : Assume 346. 

If 444, then D cannot be 2(1). If 4 -, 1 or 445, then 2-cycle. .. 44A. 

s 6 7 s 

2 3 < 

1 

If 8 41, then 4-cycle. If 8a7, then 1-cycle. 

If 848, then 747 -+ D 2(1), 14 S -+ 9-cycle -º D completed with only Bd. 

If 845, then 1-* d -º 1-cycle. .. 84A. 

5 6 7 $ 9 

10 
2 3 4 

1 

If 10 4 9, then 1-cycle. If 10-)1, then 5-cycle. 

If 10 4 10, then 9 -, 9,14 d -9 7 -º 54A -+ S+-cycle, 6f-cycle -+ 11+-cycle. 

If 10 4 5, then 14 d -+ 10+-cycle. 

If 10 4 7, then 1-9 5+ 9-cycle -+ D completed with only 9 d. :. 10 4 1. 
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s s 7 : 9 
10 

4 
il 

12 

If 12 41, tkn 6-cycle. If 12 4 11, then 1-cycle. 

If 12 4 5, then I -* 1 -º D cannot be 2(1). If 12 4 7, then 10+-cycle. 

If 12 4 9, then 14A47 -+ 54A -+ 5+-cycle, 6+-cycle -+ 11 f-cycle. 

If 124 12, then 11-) 11 -º D2(1) -+ 1-+9 -º 54A -º 11+-cycle. ;. 124A. 

567i9 

1 

2 
lo 

11 
13 

12 
14 

If 14 -ý 1, then 7-cycle. If 14 -i 5, then 10+-cycle. 

If 14 -ý 7, then 11+-cycle. If 14 -* 13, then 1-cycle. 

If 14 9, then 1-* 754A -º 2-cycle. 

If 14 -ý 11, then 1-4 9 -+ 5 -+ d -+ 5 -cycle, 6+-cycle -+ 11+-cycle. 

If 14 4 14, then 13 -> 13 -+ D 2(1) -º 10f-cycle. 

.: 14 -4 A. This new triangle must contain the other two red points to make 

D 2(1). This creates 11+-cycle. Contradiction. .. 
Case (lBc) not possible. 

Case (lBd) : Assume 341. 

If 4 -) 4 then D cannot be 2(1). If 445 or 4 -4 6, then 12f-cycle. 
. ". 4 -) d. 

If 745, then 8 -+ d -* 6 -" 10+-cycle. 117 -+ 6, then 13+-cycle. 
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If 747, then 848 no D 2(l) -+ 8-cycle. If 748, then 1-cycle. .. 7-, A. 

7$1 

9 

If 9 -4 5, then 648 -º 10 4d -º 11+-cycle. If 9 -i 6, then 14+-cycle. 

If 9 -+ 8, then 8-cycle. If 949, then 10 4 10 -" D 2(1) no 11+-cycle. 

If 94 10, then 1-cycle. .. 94, d -4 8, to complete 9-cycle. 

9 

If 10 -* S, then 6 -* 11 -+ D completed with only 10 A. 

If 10 4 6, then 4+-cycle, 8f-cycle -º 12+-cycle. 

If 10 410 then D cannot be 2(l). If 10 4 11, then 2-cycle. 

:. 10 4A. :. 4+-cycle, 6+-cycle Mº 10+-cycle. 

Contradiction. :. Case (1Bd) not possible. 

Hence, 3 -) d. 

567$ 

23 

1 

If 6 41, then 844 44, d-+A47 -+ 54A -+ S+-cycle, 6+-cycle -+ 11+-cycle. 

If 6-)6, then 545 -+ 74441 as 84A -º 44A -+ two Sf-cycles -º 10+-cycle. 

If 6 -ý 8, then 74d -º 5 -) d44 d» 4f-cycle, 6+-cycle -+ 10+-cycle. 

If 6 4, then 7 4A 4d48 -+ lid -+ 5+d -+ S+-cycle, 6+-cycle -+ 11 +_ cycle. 

If 6a7, then 4-cycle. If 64S, then 1-cycle. :. 64A. 
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10 

If 10-91, then 7 -) d445 -4 d8 -* 4 two S+-cycles -+ 10+-cycle. 

If 10 4 4, then 74d48 -º 94d -º 14 d -+ 4+-cycle, 6+-cycle -" 10+-cycle. 

If 10 4 5, then 7 -ý d -41 -º 4 -4 d -+ 4+-cycle, 5+-cycle -+ 9-cycle -º 2-cycle. 

If 10-4 8, then 9 -ý d -º 4 4A -+ 4+-cycle, 6-cycle -+ 10+-cycle. 

If 10410, then 949,7 -4 d -4 5 -º 1-* A -+ 4-)A -º two 5+-cycles -+ 10+-cycle. 

If 10 4 7, then 5-cycle. If 10 4 9, then 1-cycle. :. 10 4A . 

12 10 

11 
W5617g 

I 

If 7 41, then 5 412 9 4d -º 44d -+ two 4+-cyclca, 5+-cycle -+ 13+-cycle. 

If 744, then 1412 -+ 5 -+ d -º 11-i d -+ 4f-cycle, 6+-cycle -+ 10+-cycle. 

If 745, then 94A 412 -º 14 d with two red points -+ 10+-cycle. 

If 747, then 8 -) 8 -+ 10+-cycle. If 748, then 1-cycle. 

If 7 -4 9, then 114 d -* 12 -+ 14 d with two red points  + 445 -+ 6-cycle. 

If 7 -i 11, then 12 -*9 -+ 12+-cycle. If 7 412, then 6-cycle. :. 74A. 

12 10 13 

11 9S6[7 14 

i 

If 13 41 or 13 -9 4 or 13 48 or 13 411, tbcn 10+-cycle. 

If 13-4 5, then 9 412 -+ 14 -i d, 2 red points -+ 14 8 -º 44 11 -º four 9-cycles. 
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If 13 -ý 9, then 11412 -º 1-cycle. If 13 412, then 7-cycle. 

If 13 -ý 13, then 14 4 14 10+-cycle. If 13 4 14, then 1-cycle. :. 13 -- A. 

12 10 13 is 

il 9s67$ 1t 16 

3 

1 

To make D 2(1) we must have 11411 or 15 415. 

If 11411, then 12 412 -+ 11+-cycle. If 15 415, then 16 416 we 11+-cycle. 

Contradiction. Hence (36,0,4,0,0,3) does not have a diagram which is 2(1). 

Case (1C) : Assume (36,0,4,0,0,3) has a toset diagram D which is 2(2) 

D has 12, d, with four red points, three green 3-cycles and three green 

9-cycles. We will use the same notation as in Case (1B). 

D is 2(2), so either all four red points will be in the same 9-cycle or 

two 9-cycles will each contain two red points. 

Case (1C1) : Assume one 9-cycle contains all four red points 

We can start with a 9-cycle as follows, and then build it up noting that all 

3-cycles are of type (4) by Lemma 2.3.1. 

1 

A 
To save space, only one more diagram will be drawn. This next diagram can 

be referred to for vertex labels mentioned up until then. 

14 4. If 2 -i 3, then 1-cycle. .. 2 -9 A. .. 3 -3 4. :. 54A. 

If 647, then 1-cycle. :. 64A. If 8.4 7, then 6-cycle. 

If 8 -3 9, then 1-cycle. 8 4A. If 10 .37, then 7-cycle. 
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If 10 4 9, then 7. + 7 -º five red points. If 10 -411, then 1-cycle. .. 10 4 d. 

If 12.4 7, then 8-cycle. If 12-9 9, then 10+-cycle. 

If 12 4 11, then 10+-cycle. If 12 4 13, then 1-cycle. 12 4d -4 7. 

12 

iZ 
13 i44 7 

11 A9 16 14 

10 $ 

If 9 -i 11, then 2-cycle. If 9 413, then 11414 -+ four 9-cycles. 

If 9 -414, then 11413 -+ 2-cycle. 

Contradiction. Hence, Case (1C1) not possible. 

Case (1C2) : Assume one 9-cycle contains exactly two red points 

We can start with a 9-cycle as follows, and then build it up noting that all 

3-cycles are of type (4) by Lemma 2.3.1. 

1Z3 

A-- If 14 2, then 2-cycle. If 14 5, then 4-cycle. 

Case (1C2&) : Assume 143. 

If 542, then 12+-cycle. If 544, then 2-cycle. 

If 5-* 5, then 444 -+ 8-cycle. .. S-ýd. 
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If 642, then 12+-cycle. If 644, then 7-cycle. If 647, then 1-cycle. 

If 646, then D cannot be 2(2). .. 6 -3 A. 

If 942, then 13+-cycle. If 944, then 8-cycle. If 9-0, then 11+-cycle. 

If 948, then 1-cycle. If 9 -4 9, then D cannot be 2(2). .. 94, d -* 4. 

1 

4 

69 

If 7 -i 2, then 10+-cycle. If 7 -4 8, then 2-cycle. If 7 -410, then 4-cycle. 

If 747, then 848 -+ 10 ad -» 10+-cycle. .. 7 -ßd . 

Two 9-cycles, 5+-cycle, 4+-cycle -" 2a 12 -+ I0+-cycle. 

Contradiction. :. Case (1C2a) not possible. 

Case (1C2b) : Assume 1a1. 

242, to make D 2(2). If 344, then 2-cycle. If 34S, then 8-cycle. 

.3 -+ d4S. If 446, then D complete with only 8 A. ;. 44A. 

( See next diagram ). If 647 or 6 -+ 8, then 4-cycle. 

:. 6 -4 A.:. two S+-cycles -0 10+-cycle. 

Contradiction, ;. Case (1C2b) not possible. 
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Case (1C2c) : Assume 144. 

If 5 -4 2 or 543, then 12+-cycle. If 5 -3 5, then D cannot be 2(2). .. S4A. 

If 642, then 12f-cycle. If 643, then 10+-cycle. ( See next diagram ). 

If 646, then D cannot be 2(2). If 647, then 1-cycle. :. 6 -+ d -4 7. 

If 842, then 343D complete with only 9 A. 

If 8 -) 3, then 2 -4 2D complete with only 9 A. 

If 848, then D cannot be 2(2). :. 8 4A. 

" two 9-cycles, 5+-cycle through 10,4+-cycle through 3. 

.. 2 -ý 10 and 3 -* 9 -+ 9-cycle. :. D complete with only 104 . 

Contradiction. ;. Case (1 C2c) not possible. 

Hence, 14 A. 

67 

If 647, then 1-cycle. If 645, then 5-cycle. 
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Case (1C2d) : Assume 6 -* 2. 

If 3 -* 4, then 2-cycle. If 3 -4 5, then 7-cycle. If 347, then 13+-cycle. 

If 343, then 444 -+ 11+-cycle. .. 3aA. ( See next diagram ). 

If 848, then D cannot be 2(2). If 849, then 1-cycle. 

If 847, then 13+-cycle. If 8 -* 4, then 10+-cycle. 

If 9 -+ 5, then 8-cycle. ;. 94445. 

If 10 -i 4, then 9 -4 d -+ 4+-cycle, 7+-cycle * 11 f-cycle. 

If 10 4 7, then 449D complete with only 10 A. If 10 4 9, then 2-cycle. 

If 10 4 10, then 949 -º 4+-cycle, $+-cycle -" 12+-cycle. :. 10 4 A. 

If 7 -+ 7, then 4-cycle. If 744, then 11 +-cycle. If 749, then 10+-cycle. 

If 74 11, then 4 412 -º 9 -*, d -+ four 9-cycles. 

If 7 -4 12, then 4+-cycle, 8f-cycle -º 12+-cycle. .. 7 -4 A. 

4+-cycle, 6+-cycle -+ 10f-cycle. 

Contradiction. .. Case (IC2d) not possible. 

Case (1C2e) : Assume 6 -- 6. 

Then 744 and 848, to make D 2(2). ( See next diagram ). 
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If 992 or 9 -, 3 or 9 -4 4, then 10+-cycle. If 945, then 8-cycle. 

:. 9-4i5. 

If 10 4 2, then 5-cycle. If 10 -i 3, then 5+-cycle, 7+-cycle -+ 12f-cycle. 

If 1044, then 34d -42 1-cycle. .. 1044. 

" 4+-cycle, 6+-cycle 10+-cycle. 

Contradiction. :. Case (1C2e) not possible. 

Case (1C21) : Assume 643. 

If 4 -, 4, then 5 -, 5 -º 7 -) A -+ 24d -+ two 5 f-cycles 
-" 10+-cycle. 

If 445, then 2-cycle. If 442 or 447, then 10+-cycle. .. 4 -* A. 

If 5 -4 2 or 545 or 547, then 11+-cycle. If S49, then S-cycle. 

If 54 Si, then 9 -4 9 -+ D cannot be 2(2). :. 54d -4 9. 

44 
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If 2 -4 2, then D cannot be 2(2). 

If 2 -4 7, then 8 -4 d =º 10 4d -+ 4+-cycle, 6+-cycle -+ 10+-cycle. 

If 24 It or 24 10, then S+-cycle, 7+-cycle -+ 12+-cycle. 

.2 -+ d... two 9-cycles, three 4+-cycles as 12f-cycle. 

Contradiction. ;. Case (1C2f) not possible. 

Case 1C2g) : Assume 644. 

If 542 or 5.4 3, then 12+-cycle. If 5 -* 7, then 13+-cycle. 

If 545, then 7-cycle. If 54A. then 1-cycle. 

Contradiction. :. Case (1C2g) not possible. 

Hence, 64A. 

If 944, then 54d -+ 10+-cycle. If 9a8, then 1-cycle. 

If 945, then 6-cycle. 

Case (1C2h) : Assume 942. 

If 345, then 8-cycle. If 3 -+ 7, then 12+-cycle. If 3 .48, then 10f-cycle. 

If 3 -4 3, then 4a4 -º 12+-cycle. If 344, then 2-cycle. :. 3-)A45. 
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If 447 or 448, then 5+-cycle, 7+-cycle as 12f-cycle. 

If 444, then D cannot be 2(2). 

If 4 -ý 10, then 74d -º 84d -º 4+-cycle, 6+-cycle -º 10+-cycle. 

If 4 -ý 4, then three 4+-cycles ýº 12+-cycle. 

Contradiction. :. Case (1C2b) not possible. 

Case (1C2i) : Assume 943. 

If 442 or 447, then 11+-cycle. If 444, then 545 -+ 10-cycle. 

If 445, then 2-cycle. If 448, then 10+-cycle. :, 44d45. 

If 2 -* 2, then D cannot be 2(2). If 2.410, then 10+-cycle. 

If 247 or 248, then 104A -+ 5+-cycle, 6+-cycle -º 11+-cycle. 

If 2 -*A, then three 4+-cycles -+ 12+-cycle. 

Contradiction. :. Case (1C2i) not possible. 

Case (1C21) : Assume 9 -3 7. 

Then 245 to complete 9-cycle. If 848, then D cannot be 2(2). 

If 843, then 4-34 -" 11 +-cycle. If 844s, then 34A -+ 11 +-cycle. .. 84d. 
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4+-cycle, 5 -cycle -+ 9+-cycle -+ 3* 10 and 114 4 -º D complete with only 10A. 

Contradiction. :. Case (IC2j) not possible. 

Case (1C2k) : Assume 949. 

Then, 84d4S, where d has a red point. 

If 742, then 34d4d44 -+ 2-cycle. If 7a4, then 5-cycle. 

If 743, then 5+-cycle, 7+-cycle -º 12cycle. 

If 74d, then two 9-cycles, 4+-cycle, 6+-cycle -º 10+-cycle. 

Contradiction. :. Case (1C2k) not possible. 

Hence, 94A. 

If 11410, then 1-cycle. If 114 5, then 7-cycle. 

If 1147 or 11411, then 10+-cycle. If 114 3, then 445 -" 2-cycle. 

If 114 2, then 345 -+ 4 -* 4 a* 4+-cycle, 6+-cycle -* 10f-cycle. 

If 11-> 4, then 5 -, 5 -+ D cannot be 2(2). 

If 114 8, then 547 -+ 10 4d -+ two 5 +_ cycles -" 10f-cycle. 

.. 1144. 
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If 1392 or 1343 or 13->4 or 1348 or 13-+10, then 10+-cycle. 

If 13 4 5, then 8-cycle. If 13 -+ 7, then 11f-cycle. If 13 -412, then 1-cycle. 

If 13 413, then 5 412 -+ D cannot be 2(2). Hence, 13 4d4S. 

If 242, then 393 -+ 4-914 7412 8->10 -º 2-cycle. 

If 343, then 4 -4 42478 -) 14 -+ 10 a 12 -+ 2-cycle. 

If 4 -3 4, then 3 -+ 3 -+ 2-cycle. 

If 747, then 848 -º 44 14 -+ 4+-cycle, 7+-cycle -+ 11+-cycle. 

U14414, then 12-412 * 247 -" 4f-cycle, 7+-cycle -º 11+-cycle. 

If 12 -+ 12, then 10 -* 10 -º 74 14 as 6+-cycle, 8+-cycle -º 14+-cycle. 

.. 848 and 104 10. .. 74 2. :. 44 14. :. 3412. :. 4-cycle. 

Contradiction. Hence, Case (1C2) not possible. 

Therefore, Case (IC) is not possible. 

Hence, (36,0,4,0,0,3) does not have a diagram which is 2(2). 

Hence, no diagram exists for 13 which is 2(1) or 2(2). 
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Cue 2: Da (12n+48,0,4,0,3, n), nk0. 

Diagrams have already been exhibited for Do 2(1) and Do' 2(2). 

D1 (60,0,4,0,3,1) 2(1) 

Di (60,0,4,0,3,1) 2(2) 

Vn2t2, 
Do (12n+48,0,4,0,3, n) 2(1) = Da_z +12 (24,0,4,0,0,2) 2(1) 

DQ (12n+48,0,4,0,3, n) 2(2) a Dn_z + Iz (24,0,4,0,0,2) 2(2) 

Case (3) :F (12n+28,0,4,1,1, n), nZ0. 

A diagram has already been exhibited for Po 2(1). 

F (28,0,4,1,1,0) 2(2) 
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F1(40,0,4,1,1,1) 2(1) 

Fi (40,0,4,1,1,1) 2(2) 

Fn (12n+28,0,4,1,1, n) 2(1) = Fn_Z 2(1)+l 
2 

(24,0,4,0,0,2) 2(1) 
VaZ2, 

FQ (12a+28,0,4,1,1, n) 2(2) = Fä_z 2(2)+e-(24,0,4,0,0,2)2(2) 

Case (4) :Kn (12n+56,0,4,2,2, n) ,nZ0. 

0- e 
xa (12n +56,0,4,2,29n) 2(1) m Po 2(1) + FA (12n+28,0,4,1,1, n) 2(1) 

VazO, 
K2 (12n +56,0,4,2,2, n) 2(2) - Fö 2(2) + Fn (12n +28,0,4,1,1, n) 2(2) 

Case (5) : Ca (12n+36,0,4,3,0, n) 9nZ0. 

Diagrams have already been exhibited for Co 2(l) and 
ö 2(2). 

C1(48,0,4,3,0,1) 2(1) 

so 



(48,0,4,3,0,1) 2(2) 

c0 (12n+36,0,4,3,0, n) 2(1) - Cn_2 2(1)+l 
2 

(24,0,4,0,0,2) 2(1) 
Vnz2, 

CQ (12n+36,0,4,3,0, n) 2(2) = Cn_z 2(2) + Iz (24,0,4,0,0,2) 2(2) 

Case :L (12n+84,0,4,3,3, n), nZ0. 

I La (12n+84,0,4,3,3, n) 2(1) - Ka (12n+56,0,4,2,2, n) 2(1) + F0 2(1) 
VnZO, 01 Lä (12n+84,0,4,3,3, n) 2(2) - Kä (12n+56,0,4,2,2, n) 2(2) + Fö 2(2) 

Cast (7) : An (12n+36,1,4,0,0, n), ni0. 

Diagrams for N1(36,0,8,0,0,0) 4(1) and N2 (36,0,8,0,0,0) 4(2) have already 

been exhibited. 

A0 (36,1,4,0,0,0) 2(1) = N1(1) 

Aö (36,1,4,0,0,0) 2(2) = N2(2) 

N3 (48,0,8,0,0,1) 2(1) 2(2) 

A1(48,1,4,0,0,1) 2(1) N3(2) 

Ai (48,1,4,0,0,1) 2(2) N3(1) 

51 



Va 2: 2, 
An (12n+36,1,4,0,0, n) 2(1) - Ao_2 2(1)+l 

2 
(24,0,4,0,0,2) 2(1) 

A2 (12n+36,1,4,0,0, n) 2(2) - A2 2(2)+'e-(24,0,4,0,0,2)2(2) 
a 2-2 

Case (8) : Es (12n+84,1,4,0,3, n), ni0. 

I Ea (12n+84,1,4,0,3, n) 2(1) = Da (12n+48,0,4,0,3, n) 2(1) + A0 2(1) 
YnZO, 

Eä (12n+84,1,4,0,3, n) 2(2) - Dä (12n+48,0,4,0,3, n) 2(2) + Aö 2(2) 

Case (9) :G (12n+64,1,4,1,1, n), nZ0. 

0. -1 
ßa (12n+64,1,4,1, I, n) 2(1) = Fn (12n+28,0,4,1,1, n) 2(1) + A0 2(1) 

YnzO, 
ß2 (12n+64,1,4,1,1, n) 2(2) _= Fä (12n+28,0,4,1,1, n) 2(2) + Aä 2(2) 

12 
Case (10) : Hn (12n+92,1,4,2,2, n), nZ0. 

V 
Ha (12n+92,1,4,2,2, n) 2(1) - Ka (12n+56,0,4,2,2, n) 2(1) + A0 2(1) 

aZO, 
ý HÄ (12n+92,1,4,2,2, n) 2(2) - K2 (12n+56,0,4,2,2, n) 2(2) +A2 2(2) 

Case (11) : Ja (12n+72,1,4,3,0, n), n 0. 

Jla (12n+72,1,4,3,0, n) 2(1) = Ca (12n+36,0,4,3,0, n) 2(1) + Ao 2(1) 
VnZO, 

Jä (12n+72,1,4,3,0, n) 2(2) - C2 (12n+36,0,4,3,0, n) 2(2) + Aö 2(2) 

Case (12) : Ma (12n+120,1,4,3,3, n), ni0. 

0- Q 
Mn (12n+120,1,4,3,3, n) 2(1) m La (12n + 84,0,4,3,3, n) 2(1) + A0 2(1) 

Vnz0, 

L 
Mä (12n+120,1,4,3,3, n) 2(2) - LQ (12n + 84,0,4,3,3, n) 2(2) + Aö 2(2) 

Hence, no such S cxists. o 
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LEMMA 2.3.4 If S (u, p, e, f, g1, g3) satisfies (2.1.2) and e"3, then theta 

exists a coact diagram with specification S which is 1(1). 

Proof : Assume S is a counter-example with p+f+ gl + g3 minimal. We want 

to show that no such S exists. 

N4 (18,0,6,0,0,0) 1(1) 2(2) 

Lot P0 N4(2) = (18,1,2,0,0,0) 1(1). 

If pI and D (u-18, p-1,5, f, gl, g3) satisfies (2.1.2), then D can be 2(1) by 

Lemma 2.3.2, so that D+ Po has specification S which is 1(1). 

Therefore, S hasp < 1. i. e. S hasp = 0. 

Q (18,0,2,3,0,0) l (l) 

If fz3 and D (u-18, p, 5, f-3, gi, g3) sstisfies (2.1.2), then D can be 2(1) by 

Lemma 2.3.2, so that D+Q has specification S which is 1(1). 

Therefore, S has f<3. 

R (39,0,3,0,3,0) 1(1) 
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R2 (39,0,3,0,3,0) 1(2) 

If gI i3 and D (u-39, p, 4, f, g, -3, g3) satisfies (2.1.2), then D can be cithcr 

2(1) or 1(1) 1(2) by Lemma 2.3.3, so that both D 2(1) +R 1(1) and 

D 1(1) 1(2) + Rz 1(2) have specification S. which is 1(1). 

Therefore, S has gl < 3. 

T0 (3,0,3,0,0,1) can be regarded as 1(1) or 1(2), since the diagram consists 

of one blue triangle with a red point on each vertex. 

If g3 i1 and D (u-3, p, 4, f, gi, g3-1) satisfies (2.1.2), then D can be either 

2(1) or 1(1) 1(2) by Lemma 2.3.3, so that both D 2(1) + To 1(1) and 

D 1(1) 1(2) + To 1(2) have specification S, which is 1(1). 

Therefore, S has g3 < 1. i. e. S has g3 = 0. 

As shown in Leman! 2.3.2, we have f" gi (mod 3). 

We now know that a minimal S would have the form 

(u, 0,3, f, g190) f- gl E (0,1,2 }. 

This gives us three cases to consider : 

f= g1 =0 -º u- -9 < 0, so that we can ignore this case. 

(19,0,3,1,1,0) 1(1) 
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(47,0,3,2,2,0) 1(1) 

Hence, no such S exists. o 

LEMMA 2.3.5 If S (u, p, e, f, gl, g3) satisfies (2.1.2) and can 2, then there 

exists a coset diagram with specification S which is 1(2), with the following 

exceptions : 

There exist cosec diagrams with spec cations 

(a) (18,1,2,0,0,0), which is 1(1) 

(b) (12n+6,0,2,0,0, n+2), ni0, 

Proof : Assume S is a counter-example with p+f+ gl + g3 minimal. We want 

to show that no such S exists. 

Ns (54,0,10,0,0,0) 3(1) 2(2) 

1-compose once and 2-compose once to get U (54,2,2,0,0,0) 1(1). 
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N6 (54,0,10,0,0,0) 4(1)1(2) 

1-compose twice to get U2 (54,2,2,0,0,0) 1(2). 

If pi2 and D (u-54, p-2,4, f, gi, g3) satisfies (2.1.2), then D can be either 

2(2) or 1(1) 1(2) by Lemma 2.3.3, so that both D 2(2) + U2 1(2) and 

D l(1)1(2) +U 1(1) have specification S. which is 1(2). 

Therefore, S has p<2. 

Q2 (18,0,2,3,0,0) 1(2) 

A diagram has already been exhibited for Q (18,0,2,3,0,0) 1(1). 

If fZ3 and D (u-18, p, 4, f-3, g1, g3) satisfies (2.1.2), 'then D can be either 

2(2) or 1(1) 1(2) by Lemma 2.3.3, so that both D 2(2) + Q2 1(2) and 

D 1(1) 1(2) +Q 1(1) have specification S, which is 1(2). 

Therefore, S has f<3. 

V0 (30,0,2,0,3,0) 1(2) 
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If gl z4 and D (u-30, p, 4, f, gi 3, g3) satisfies (2.1.2), then D can be 2(2) 

by Lemma 2.3.3, so that D 2(2) + VO 1(2) has specification S, which is 1(2). 

7terefore, S has gl < 4. 

As shown in Lemma 2.3.2, we have fm gi (mod 3). 

We now know that a minimal S would have the form 

(u, p, 2, f, gl, g3) :p<2, f<3, gi < 4, f" gl (mod 3) 

This gives us eight cases to consider : 

Case (1) : Wa (12n+6,0,2,0,0, n+2) ,ni0. 

Let To = (12n+3,0,3,0,0, n+ 1). 

T0 (3,0,3,0,0,1) 1(2) 

T1 (15,0,3,0,0,2) 1(2) 

Vni2, Ta 1(2) = Tn_21(2) + IZ (24,0,4,0,0,2) 2(2). 

:. Wl m To (3,0,3,0,0.1) 1(2) + To (12n+3,0,3,0,0, n+1)1(2), Vn20. 

Therefore, a coset diagram for Wa exists for each ni0. 

However, no diagram exists for Wa which is 1(2) Vni0, as then we could have 

Wa 1(2) + T0 (3,0,3,0,0,1) 1(2) _ (12n+9,0,1,0,0, n+3), Vnk0. 

But this would contradict Lemma 2.3.7. This is exception (b). 

Case (2) : Vn (12n+30,0,2,0,3, n) ,nZ0. 

A diagram has already been exhibited for Vo (30,0,, 2,0,3,0) 1(2). 

V1(42,0,2,0,3,1)1(2) 
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Vs 1(2) - VU-21(2) + 1z (24,0,4,0,0,2) 2(2), Vni2. 

Case 3: Xa (12n+ 10,0,2,1,1, n) ,nk0. 

, dk X0 (10,0,2,1,1,0) 1(2) 

Xi (22,0,2,1,1,1) 1(2) 

XQ 1(2) = XQ_Z 1(2) + Iz (24,0,4,0,0,2) 2(2), Vni2. 

Caste : Yn (12n+38,0,2,2,2, n) 1(2) 

- Xa (12a+10,0,2,1,1, x)1(2) + Fö (28,0,4,1,1,0) 2(2), VnZ0. 

Case (5) : PQ (12n+18,1,2,0,0, n) ,n at 0. 

A diagram has already been exhibited for N4 (18,0,6,0,0,0) 1(1) 2(2). 

P0 (18,1,2,0,0,0) 1(1) an N4 (2). This is exception (a), and its proof follows. 

Case (SA) : Assume (18,1,2,0,0,0) has a coset diagram which is 1(2) 

Then either there exists a diagram for X (18,0,6,0,0,0) 3(2), or there exists 

a diagram for Y (18,0,6,0,0,0) 2(1)1(2), both of which could then be composed 

to give a diagram for (18,1,2,0,0,0)1(2). 

Case (SA1) : Assume (18,0,6,0,0,0) has a coset diagram X which is 3(2) 

X has 6 d, six red points and two gran 9-cycles. We can start with a 1(2) 

part of the diagram as follows and then build this up noting that there are no 

blue points, 1-cycles or 3-cycles. 
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12 

If 2 41, then 2-cycle. If 242, then 1-i d -" X cannot be 3(2). :. 24A. 

A 
123 

If 1-+ 1, then X cannot be 3(2). If 14 3, then 3-cycle. 

If 14 4, then 5-cycle. .. 1-) d. 

5123 

If 4 -3 3, then 1-cycle. If 446, then 6-cycle. 

If 4 -+4, then 3 -*4 -+ 5 4d -+ 646 -+ 10+-cycle. 

If 4 -3 5, then 64d -+ 1-cycle. :. 44A. 

6 

7 

4 

$ 

5 1 2 3 

If 743, then 11+-cycle. If 746, then 7-cycle. If 748, then 1-cycle. 

If 747, then 84d with a red point -º X cannot be 3(2). 

If 745, then 6 -ßd -º 10+-cycle. :. 7 -+ d. 

9 7 $ 

10 4 

s 1 2 3 

If 543, then 4-cycle. If 5 -+ 6, then 1-cycle. 

If 545 then X cannot be 3(2). 

If 5 -+ 8, then 343,6 4 6,9 -* 9,10 4 10 -º 6-cycle. 

If 549, then 343,6 4 6,8 -9 8,10 4 10 8-cycle. 

If 5 -+10, then 3 -+3,6 -9 6,8 -4 8,9 49 -º X is not 3(2). 

Contradiction. .. Case(5A1) is not possible. 
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Case (SA2) : Assume (18,0,6,0,0,0) has a coset diagram Y which is 2(1) 1(2) 

Y has 6 A, six red points and two green 9-cycles. Any 1(1) part of a diagram 

contributes five green lines. Therefore, the two 1(1) parts of Y must belong 

to different 9-cycles. This takes care of 4 A. The other 2A must each have 

a red point. 

However, to obtain two 9-cycles, we must have the following diagram :- 

This diagram is 2(1), not 2(1)1(1). 

Contradiction. 
,. Casc(5A2) is not possible. 

Therefore, Case (5A) is not possible. Hence, Po does not have a 1(2) diagram. 

N7 (42,0,6,0,0,2) 2(1) 1(2) 

Ng (30,0,6,0,0,1) 2(l) 1(2) 

P2 (42,1,2,0,0,2) 1(2) = N7 (1). 

P1(30,1,2,0,0,1) 1(2) = N8 (1). 

For u 3, Pa 1(2) = PQ-2 1(2) + I- (24,0,4,0,0,2) 2(2). 
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Case 6: Zn (12n+66,1,2,0,3, x)1(2) 

= Aö (36,1,4,0,0,0) 2(2) + Vo (12n+30,0,2,0,3, n) 1(2), VnZ0. 

Case (7) : (12n+46,1,2,1,1, n) 1(2) 

m Aä (36,1,4,0,0,0) 2(2) + Xa (12n+ 10,0,2,1,1, n) 1(2), Vni0. 

Case (9) (12n+74,1,2,2,2, n) 1(2) 

A2 (36,1,4,0,0,0) 2(2) + Yn (12n+38,0,2,2,2, n) 1(2), VnZ0. 

Hence, no such S exists. 13 

LEMMA 2.3.6 If S (u, p, e, f, gl, g3) satisfies (2,1.2) and e=2, then there 

exists a coset diagram with specification S which is l(1), with the following 

exceptions : 

There exist coset diagrams with specifications 

(a) (30,0,2,0,3,0), which is 1(2) 

(b) (12n+6,0,2,0,0, n+2), ni0. 

Proof Assume S is a counter-example with p+f+ gl + g3 minimal. We want 

to show that no such S exists. 

In Lemma 2.3.5, we obtained 

U (54,2,2,0,0,0) 1(1) and U2 (54,2,2,0,0,0) 1(2). 

If pi2 and D (u-54, p-2,4, f, gl, g3) satisfies (2.1.2), then D can be either 

2(1) or 1(1) 1(2) by Lemma 2.3.3, so that both D 2(1) +U 1(1) and 

D 1(1)1(2) + U2 1(2) have specification S, which is 1(1). 

Therefore, S has p<2. 
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Diagrams have already been exhibited for 

Q (18,0,2,3,0,0) 1(1) and Q2 (18,0,2,3,0,0) 1(2). 

If fi3 and D (u-18, p, 4, f-3, g1, g3) satisfies (2.1.2), then D can be either 

2(1) or 1(1) 1(2) by Lemma 2.3.3, so that both D 2(1) +Q 1(1) and 

D 1(1)1(2) + Q2 1(2) have specification S, which is 1(1). 

Therefore, S has f<3. 

Diagrams have already been exhibited for 

N4 (18,0,6,0,0,0) 1(1) 2(2) and V0 (309092,0,3,0) 1(2). 

:. Dö (48,0,4,0,3,0)1(1)1(2) = N41(1) 2(2) + V0 1(2). 

If g1 z4 and D (u-48, p, 2, f, g1-3, g3) satisfies (2.1.2), then D can be 1(2) 

by Lemma 2.3.5, so that D 1(2) + D0112 1(1) 1(2) has specification S, which is 

1(1). Therefore, S has gl < 4. 

As shown in Lemma 2.3.2, we have fw gl (mod 3). 

We now know that a minimal S would have the form 

(u, p, 2, f, gl, g3) :p<2, f<3, gi < 4, f" gl (mod 3) 

This gives us eight cases to consider : 

Cast (1) :W (12n+6,0,2,0,0, n+2) ,ai0. 

In Lemma 2.3.5, Case (1), we showed that a diagram exists for each n20. 

However, no diagram exists for Wa which is 1(1) Vni0, as then we could have 

WA 1(1) + T0 (3,0,3,0,0,1) 1(1) a- (12n+9,0,1,0,0, n+3), VnZ0. 

But this would contradict Lemma 2.3.7. This is exception (b). 

Note that the diagram for To can be interpreted as either 1(1) or 1(2). 

Case (2) : Va (12n+30,0,2,0,3, n) ,ni0. 

A diagram has already been exhibited for Vo (30,0,2,0,3,0) 1(2). 

This is exception (a), and its proof follows. 
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Case (2A) : Assume (30,0,2,0,3,0) has a coset diagram D which is 1(1) 

D has 10 d, two red points on the same triangle, three green 1-cycles and 

three green 9-cycles. 

D is 1(1), ao we can start with a 9-cycle u follows, and then build this up 

noting that there are no blue points, 3-cycles or any more red points. 

1 A\3A\3IL\ 

HH 
If 2 -91 or 243, then 2-cycle. 

Case (2A1) : Assume 244 

If 1-) 3, then D has only 6 A. ,. 1-) d. 

36 

21ý 3 

4 

If 543, then 12+-cycle. If 546, then 7-cycle. .. 54d. 

7s6 
xly 

ý 

4 

To obtain three 1-cycles, we must have 3 -+ d, 64d -+ 6-cycle. 

Contradiction. .. Case (2A1) is not possible. Hence, 24A. 

S6 

IZ3 

4 
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If 3 -* 4, then 2-cycle. If 3 -+ 6, then 3-cycle. 

If 345, then 1-) d, 44A, 64A for three 1-cycles "+ 6-cycle. 

Case (2A2) : Assume 3 -4 1 

If 4a5 or 446, then 12+-cycle. :. 44A. 

If 745 or 7.4 6, then three 1-cycles not possible. 

If 7 -+ 8, then 7-cycle. .. 744 and 8 -+ A. But this creates a 6-cycle. 

Contradiction. :. Case (2A2) is not possible. 

Hence, 34A. 

s6: 

123 

t 

If 445, then 14 d and 64d -º 8-cycle. If 4 41 or 448, then 3-cycle. 

If 446, then 1-+ d and 54d -" 7-cycle. 

If 4 -97, then 14 d and 8 -ßd -º 6-cycle. .. 4 -ßd. 

ý 6 7 ý 

1 Z 3 

9 
4 

10 

If 1-4 5, then 3-cycle. If 14 10, then 4-cycle. 

If 1-4 6, then 54d -" 6-cycle. If 14 7, then 8 -4 A -º 7-cycle. 
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If 14 8, then 7 -4 d -º 8-cycle. If 14 9, then 10 -* d -" 7-cycle. 

If 1-+ d, then D has four 1-cycles. 

Contradiction. Therefore, Case (2A) not possible. 

Hence, no diagram exists for V0 which is 1(1). 

V1(42,0,2,0,3,1) 1(1) 

V2 (54,0,2,0,3,2) 1(1) 

Vn2: 3, VD 1(1) an Vn_Z 1(1) + I2 (24,0,4,0,0,2) 2(1). 

Hence, there exists a diagram for Va which is 1(1), Vni1. 

Case (3) : Xn (12n+ 10,0,2,1,1, n) ,n0. 

X0 (10,0,2,1,1,0) 1(1) C>- 
I 

--< 

X1(22,0,2,1,1,1)1(1) 

VnZ2, Xa 1(1) a Xa_2 1(1) +12 (24,0,4,0,0,2) 2(1). 
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Case (4) : Ya (12n+38,0,2,2,2, n)1(1) 

= Xa (12a+10,0,2,1,1, n)1(1) + F0 (28,0,4,1,1,0) 2(1), Vai0. 

Case (S : Pe (12n+ 18,1,2,0,0, n), ni0. 

A diagram has already been exhibited for N4 (18,0,6,0,0,0) 1(1) 2(2). 

N9 (30,0,6,0,0,1) 3(1) 

PO (18,1,2,0,0,0) 1(1) m N4 (2). P1(30,1,2,0,0,1) 1(1) a N9 (1). 

Vnk2, P12 1(1) = Pn_z 1(1) + 12 (24,0,4,0,0,2) 2(1). 

Case (6) : ZA (12n+66,1,2,0,3, n), n . -a: 0. 

N10 (66,0,6,0,3,0) 1(1) 2(2) 

Z0 (66,1,2,0,3,0) l(l) -a N10 (2). 

Vni1, Za 1(1) Q A0 (36,1,4,0,0,0) 2(1) + Va (12n+30,0,2,0,3, n) 1(1). 

Case 
_(7) 

: (12n+46,1,2,1,1, n) 1(1) 

a Ao (36,1,4,0,0,0) 2(1) + Xa (12n+10,0,2,1,1, n)1(1), Ynz0. 
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Cu) : (12n+74,1,2,2,2, n) l(1) 

= A0 (36,1,4,0,0,0) 2(1) + Ya (12n+38,0,2,2,2, n) 1(1), Vni0. 

Hence, no such S exists. 11 

LEMMA 2.3.7 If S (u, p, e, f, gi, g3) satisfies (2.1.2) and c=1, then there 

exists a cosec diagram with specification S, with the following exception : 

(12n+9,0,1,0,0, n+3), nZ0. 

Proof : Assume S is a counter-example with p+f+ gl + g3 minimal. We want 

to show that no such S exists. 

If p1 and D (u, p-1, S, f, gi, g3) satisfies (2.1.2), then D can be 2(1) by 

Lemma 2.3.2, so we can 1-compose D once to get a diagram with specification S. 

Therefore, S hasp < 1. i. e. S has pm0. 

A diagram has already been exhibited for Q (18,0,2,3,0,0) 1(1). 

If fk3 and D (u-18, p, 3, f-3, g1, g3) satisfies (2.1.2), then D can be 1(1) by 

Lemma 2.3.4, so that D 1(1) +Q 1(1) has a diagram with specification S. 

Tbcrcforc, S has f<3. 

A diagram has already been exhibited for R2 (39,0,3,0,3,0) 1(2). 

If gl Z4 and D (u-39, p, 2, f, gi 3, g3) satisfies (2.1.2), then D can be 1(2) 

by Lemma 2.3.5, so that D 1(2) + R21(2) has a diagram with specification S. 

Therefore, S bas gi < 4. 

As shown in Lemma 2.3.2, we have f" gi (mod 3). 

We now know that a minimal S would have the form 

(u, 0, l, f, gl , g3) f<3, gl < 4, f" gl (mod 3) 

This gives us four cases to consider : 
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Case 1: (12n+1,0,1,1, l, n) ,nz0. 

n-0 (1,0,1,1,1,0) : The diagram consists of a blue point with a red loop. 

From Lemma 2.3.6, we can have Xa (12n+10,0,2,1,1, n)1(1), VnZ0. 

.. (12n+13,0,1,1,1, n+1) - X11(1) + To (3,0,3,0,0,1) 1(1), VnZ0. 

Hence, a diagram exists VnZ0. 

Case 2: (12n+29,0,1,2,2, n) ,nZ0. 

n=0 (29,0,1,2,2,0) 

From Lemma 2.3.6, we can have Ya (12n+38,0,2,2,2, n) 1(1), Vnz0. 

;. (12n+41,0,1,2,2, n+1) = Yn 1(1) + To (3,0,3,0,0,1) 1(1), Vni0. 

Hence, a diagram exists VnZ0. 

Case (3) : (12n+21,0,1,0,3, n) ,n20. 

a-0 (21,0,1,0,3,0) 

From Lemma 2.3.5, we can have V0 (12n+30,0,2,0,3, n) 1(2), Yn0. 

;. (12n+33,0,1,0,3, n+1) m Vo 1(2) + T0 (3,0,3,0,0,1) 1(2), Vni0. 

Hence, a diagram exists VnZ0. 

case (4) : (12n+9,0,1,0,0, n+3) ,n ? -- 0. 

This is the exception. Assume, with a view to obtaining a contradiction, that 

(12n+9,0,1,0,0, n+3) bas a coset diagram for some nz0. 
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u=12n+9, p: fus gl=0, o=1, g3=n+3, g9" 
9 (u-3g3-g1)=n. 

The diagram has °2°= 6a +4 red lines, and °= 4n +3 blue triangles. 

By Theorem 2 in [1], the following two equations are satisfied 

g9q3 i= p3 (2.3.3) 
a n+3' 4a+3 

gnqo+30 - 1728) = r6a+4a1 (2.3.4) 

pi, qi, ri, si are coprime polynomials of order 1, and j is a Hauptmodul. 

Subtract equation (2.3.4) from equation (2.3.3) to get 

9332 1728ga 
n+3 

p4a+3 - r6n+4s1 

2 3 3 r6n+4s1 = p4n+3 - (12q 
nga+3)3 

(2.3.5) 

Shift sl to become x, and then multiply equation (2.3.5) by 1/(x 12n+9) to get 

2 
r6n+4 

x12n+$ 

3 
Ptn+3 

x12n+9 

(12g 3 
aqa+3) 

3 

z 
" 

160+ 
4 

x6ý 

3 
p4 

ý4a+3 

x12n+9 

3 
129 3 

aq n+3 
4n+3 

x 

3 

"' ya1, t 
i6- p4°+3 12ga9 

a +3 
7C 

z6n+4 
p 

z4n+3 
4 

x4n+3 

Ilen, r, p3 - q3,2 

where 8r = 6n +4 and ap = aq = 4n +3 when expressed in terms of y. 

r2 = (p - q)(p -o q)(p - »2q) , where co = exp(2nii3) (2.3.6) 

Scale p and q so that the leading coefficients become 1. Then, 

p- yf°+3 + (polynomial in y of degree s 4n + 2). Similarly for q. 

Now, p- coq and p-t 
2q must both be of degree 4n + 3, and p-q must be at 

most of degree 4n + 2. However, r is of degree 12n + 8, so that p-q must 

be of degec 4n + 2. 
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Let f be a polynomial in y of degree e(1,2, ..., 4n+2 ). 

Then, for any distinct non-zero constants a and b, 

fl(p-aq) f1(b-a)q f%qf%q 

f1(p-bq) f12p-(a +b)q f12p-(a+b)q f%p 

But p and q are coprime ( since pi and qi are coprime ), so we can conclude 

that p-q, p- cwq and p- w2q must be mutually coprime. 

The LHS of equation (2.3.6) is a perfect square, and, therefore, so is the 

RHS. As the three terms in the RHS are mutually coprime, each of these terms 

must be a perfect square. However, both p- coq and p- W2q are of odd degree. 

This contradiction implies that the original assumption is false. Hence, 

the specification (12n+9,0,1,0,0, n+3) does not have a cosec diagram Vnk0. 

Hence, no such S exists. o 

LEMMA 2.3.8 If S (u, p, e, f, gl, g3) satisfies (2.1.2) and c=0, then there 

exists a toset diagram with specification S, with the following exceptions: 

(a) (24,0,0,0,0,5) 

(b) (24,0,0,0,3,1) 

(c) (24,0,0,3,0,2) 

Proof : Assume S is a counter-example with p+f+ g1 +8 3 minimal. We want 

to show that no such S exists. 

If pz1 and D (u, p-1,4, f, gj, g3) satisfies (2.1.2), then D can be either 

2(1) or 1(1) 1(2) by Lemma 2.3.3, so we can either 1-compose or 1,2-compose D 

once to get a diagram with specification S. 

Therefore, S has p<1. i. e. S has p=0. 
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A diagram has already been exhibited for Q (18,0,2,3,0,0) 1(1). 

If fz4 and D (u-18, p, 2, f-3, gi, g3) satisfies (2.1.2), then D can be 1(1) by 

Lemma 2.3.6, so that D 1(1) +Q 1(1) has a diagram with spec cation S. 

Therefore, S bis f<4. 

A diagram has already been exhibited for Vo (30,0,2,0,3,0) 1(2). 

If g1 i4 and D (u-30, p, 2, f, g1-3, g3) satisfies (2.1.2), then D can be 1(2) 

by Lemma 2.3.5, so that D 1(2) + V01(2) has a diagram with specification S. 

l bºerefore, S has gl < 4. 

As shown in Lemma 2.3.2, we have f" gi (mod 3). 

We now know that a minimal S would have the form 

(u, O, O, f, g1, g3) :f<4, gl < 4, fa gl (mod 3) 

This gives us six cases to consider : 

Case (1) : (12n, 0,0,0,0, n+3) ,n -e- 1. 

as1 (12,0,0,0,0,4) AB 

For n-3, we can expand the section between triangles A and B in the diagram 

for n=1 to change from 

A D---Q B to AB 

Similarly for aa5,7,9, ... 

n4 (48,0,0,0,0,7) 
A 

B 
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For n=6, we can expand the section between triangles A and B In the 

diagram for n=4, as we did with n=3. Similarly for n=8,10,12, ... 

Hence, a coset diagram exists for all n3 and for a=1. 

However, no coset diagram exists for n=2, as we now show. 

Assume, with a view to obtaining a contradiction, that there exists a toset 

diagram D for (24,0,0,0,0,5). 

Then, D has eight triangles, with one green 9-cycle and five green 3-cycles. 

By Lemma 2.3.1, all of these 3-cycles must be of type (4). Therefore, we can 

start with a 3-cycle of type (4), and then build this up, noting that there 

are no red, blue or green points. We will use the same notation as used in 

Lemmas 2.3.1 and 2.3.3. 

i 

2 3 

If 14 2 or 1-3 3, then 2-cycle. :. We must have 1- d. 

4s 

t 

ýý 

Case (la) : Assume 2 -4 4. 

43 

189 

I/S. 
Z37 

If 345, then D would be complete with only four triangles. 

If 645, then 4-cycle. If 6 -* 7, then 1-cycle. ,. 64A. 
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We have 4f-cycle through 7, and 5+-cycle through 5. To combine these cycles, 

vertex 5 would have to be a red point. 

Contradiction. :. Case (1a) not possible. 

Case (lb) : Assume 24S. 

If 3 -* 4, then D would be complete with only four triangles. :. 34A. 

7+-cycle through 7,4+-cycle through 4- 11+-cycle. 

Contradiction. :. Case (lb) not possible. 

If 243, then 2-cycle. .. 24A. 

43 

1 

6 

7T3 

If 647, then 1-cycle. If 6 -4 4, then 4-cycle. 

If 6 -* 3, then 7f-cycle through 5,4+-cycle through 7 -+ 11+-cycle. 

If 6 -- 5, then 447 and 443 both create 12+-cycles so that 44d, in which 

case we have a 7+-cycle through 4 and a 4+-cycle through 7 which would create 

an 11 f-cycle. :. 6 -+ d. 

4s 

981 

6 

723 
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If 44S, then 1-cycle. If 448, then 5-cycle. 

If 4 -+ 3, then 8+-cycle through 8,4+-cycle through S 1Z+-cycle. 

If 447, then 7+-cycle through 8,4f-cycle through 3 -" 11+-cycle. 

Case (lc) : Assume 449. 

4s 

981 

6 

723 

If 3 -* 5, then 6+-cycle through 7,6f-cycle through 8 -0 12+-cycle. 

If 347, then 6+-cycle through 5,6+-cycle through 8 -+ 12+-cycle. 

If 3a8, then 12+-cycle through 5. ;. 3 -3 d. 

Now, we have a 6+-cycle through 8 and a 4+-cycle through 5 which would create 

a 10+-cycle. Contradiction. ;. Case (1c) not possible. :. 44A. 

to es 

9S 
Yll 

6 

723 

If 3 -ý S, then S+-cycle through 10 , 6+-cycle through 8 -+ 11+-cycle. 

If 3 -ý 7 or 34 10, then S+-cycle through 5,6+-cycle through 8 -º 11+-cycle. 

If 348, then 54 11 to complete 9-cycle -º 4+-cycle through 9. 

If 349, then 4+-cycle through S, 6+-cycle through 8 -º 10+-cycle. 

If 34 11, then 7 -4 8 to complete 9 cycle -+ 4f-cycle through S. 

"34A. Now, we have a 6+-cycle through 8 and a 4+-cycle through 5 which 

would create a 10+-cycle. Contradiction. 

Therefore, there does not exist a coset diagram for (24,0,0,0,0,5). 
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Case 2: (12n, 0,0,0,3, n-1) ,nx1. 

n=1 (12,0,0,0,3,0) 

am3 (36,0,0,0,3,2) 

n=5 (60,0,0,0,3,4) 

For n=7, we can expand the section between triangles A and B in the 

diagram for n=5, as we did with Case (1). Similarly for a"9,11,13, ... 

n4 (48,0,0,0,3,3) 

For n=6, we can expand the section between triangles A and B in the 

diagram for n=4, as we did with Case (1). Similarly for n-8,10,12, .., 

Hence, a coset diagram exists for all ni3 and for n-1. 

75 



However, no coset diagram exists for n=2, as we now show. 

Assume, with a view to obtaining a contradiction, that there exists a coset 

diagram D for (24,0,0,0,3,1). 

Then, D has eight triangles, with two green 9-cycles, three green points and 

one green 3-cycle. By Lemma 2.3.1, the 3-cycle is of type (4). Therefore, we, 

can start with a 3-cycle of type (4), and then build this up, noting that 

there are no red or blue points. We will use the notation used in Case (1). 

1 

Z3 

If 14 2 or 143, then 2-cycle. .. We must have 1-3 d. 

ýs 

t 

Z3 

Case (2a) : Assume 245. 

Z36i l0 

If 3 -i 4, then D would be complete with only four triangles. .. 3 4A. 

If 647, then 7-cycle. If 644, then 12f-cycle. ;. 64A. 

If 844, then 13+-cycle. If 8 -; 7, then 8-cycle. 

If 949, then 10+-cycle. ;. 84e. 

.7 -4 10, to complete a 9-cycle, but then we cannot obtain three 1-cycles. 

Contradiction. :. Case (2a) not possible. 
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If 2 -+ 3, then 2-cycle. If 2 -* 4, then second 3-cycle. Hence, 24A. 

4s 

6 

723 

If 345 or 3 -* 7, then second 3-cycle. 

Case (2b) : Assume 344. 

11 7Z3 

If 647, then 7-cycle. If 6 -i 5, then 12cycle. :. 64A. 

If 7 -ý 8, then 2-cycle. If 7 -4 9, then 8-cycle. 

If 7 -ý 5, then 14+-cycle. 74A. 

.. 9a 11, to complete a 9-cycle, but then we cannot obtain three 1-cycles. 

Contradiction. .. Case (2b) not possible. 

By the symmetry of the diagram, we can therefore conclude that 346 is 

also not possible. .. 34A, 

6 

4 3 

9 

7 2 3 $ 

If 9 -* 4, then 5*4,8 -9 e, 6 -4 7 -" 7-cyclo. 

If 946, then 7 -3 4,8 -9 4,4 45 -+ 8-cycle. If 945, then 4-cycle. 

If 9 .97, then 644,8 4 4,4 45 "+ 7-cycle. 
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If 9+8, then 5 -* d47 to complete s 9-cycle. But now wo cannot obtain 

throe 1-cycles. .. 9 -*A . 

4 s 

10 it 

6 9 

7 Z 3 $ 

If 4 4d, then 10 -* 11,5 48 -+ 7-cycle. if 63A. then 7 -) 8 4-cycle. 

If 5 -- d, then 647,4 48 -" 8-cycle. If 10 4 d, then 8 -911 -+ 2-cycle. 

If 7-ßd, then 49 5,6-) 8,104 11 -º 11-cycle. 

If 8 4, d, then we obtain four 1-cycles. 

If 11-4 d, then 4a5,6 4 7,8 4 10 -º 13-cycle. Contradiction. 

Therefore, there does not exist a coset diagram for (24,0,0,0,3,1). 

Case (3) : (12n+4,0,0,1,1, n+1) ,ni0. 

n0 (4,0,0,1,1,1) >---* 

n2 (28,0,0,1,1,3) AB 

For a=4, we can expand the section between triangles A and B in the 

diagram for n=2, as we did with Case (1). Similarly for n=6,8,10, ... 

A 

n -  1 (1 6,0,0,1,1,2) 

For n=3, we can expand the section between triangles A and B in the 

diagram for a-1, as we did with Case (1). Similarly for n=S, 7,9, ... 

Hence, a cosec diagram exists for all nZ0. 
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Case (4) : (12n +20,0,0,2,2, n) ,nk0. 

Prom Lemma 2.3.6, we can have Xa (12n+ 10,0,2,1,1, n) 1(1), Vn0. 

Therefore, Xa 1(1) + Xo 1(1) an (12n+20,0,0,2,2, n), Vnk0. 

Hence, a coact diagram exists for aU ni0. 

Case (5) : (12n+48,0,0,3,3, n) ,nZ0. 

From Lemma 2.3.6, we can have Y0 (38,0,2,2,2,0) 1(1). 

Therefore, XD 1(1) + Y01(1) s (12n+48,0,0,3,3, n), Vni0. 

Hence, a cosec diagram exists for all nz0. 

Case (6) : (12n, 0,0,3,0, n) ,ni1. 

n=1 (12,0,0,3,0,1) 

n3 (36,0,0,3,0,3) A 

For n=5, we can expand the section between triangles A and B in the 

diagram for n an 3, as we did with Case (1). Similarly for a-7,9,11, ,,. 

n=4 (48,0,0,3,0,4) 
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For n-6, we can expand the section between triangles A and B in the 

diagram for n-4, as we did with Can (1). Similarly for n=8,10,12, ... 

Hence, a coset diagram exists for all ai3 and for n=1. 

However, no coact diagram exists for n-2, as we now show. 

Assume, with a view to obtaining a contradiction, that there exists a coset 

diagram D for (24,0,0,3,0,2), 

Tben, D has seven triangles, with two green 9-cycles, three blue points and 

two green 3-cycles. By Lemma 2.3.1, both 3-cycles must be of type (4). It is 

not possible to have all throe blue points in the same 9-cycle, as together 

they would contribute at least nine green lines. 

If they contributed exactly nine green lines, then the diagram would be 

completed with only three triangles. Therefore, we must have two blue points 

in one 9-cycle, and one blue point in the other. Let us start with the two 

blue points which are in the same 9-cycle. Either the two blue points emanate 

from the same triangle (contributing seven green lines) or from two separate 

triangles (contributing six green lines). We can then build this up, noting 

that there are no red or green points. Notation as in Case (1). 

Case (6a) : Assume two blue points emanate from the same triangle. 

To complete a 9-cycle, we must have 14 444 -* 2. 

3 
i 
Z4 

If 344, then 2-cycle. 

If 34a, then 4 -+ d4d, but to complete diagram, we must create a 1-cycle. 

:. 3->e. 
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33 

1 T 

If 546, then 1-cycle. If 5 -* 4, then 4-cycle. 

If 5 -, e, then 4 -*A,. so that 4f-cycle, 7+-cycle -+ 11+-cycle. 

.. 594. 

3 s ý 
i ý ý 

1 F: - 
If 7 -4 8, then 1-cycle. If 7 -* 4, then S-cycle. 

If 746, then 84d, 44v, and 1-cycle created. 

If 74", then 644 -" 84A -º 11-cycle. :. 744. 

3 3 7 9 

1 Y 
S 10 

2 4 

U4-+#, then 10+-cycle. 

If 6 -9 0, then 6+-cycle through 4,6+-cycle through 8 -» 12+-cycle. 

If S4", then 6+-cycle through 4, S+-cycle through 10 11+-cycle. 

If 94", then 4 -+ 6 -+ 8 -+ 10 -+ 2-cycle. 

If 10 4 ", then 6+-cycle through 4,4f-cycle through 9 -" 10+-cycle. 

Contradiction. :. Case (6a) not possible. 

Case (6b) : Assume each blue point emanates from a different triangle. 

One of the 9-cycles contains one blue point, and the other 9-cycle contains 

the other two blue points. A triangle with a blue point contributes three 

green lines to a cycle, so the 9-cycle with the two blue points will have 
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three triangioa emanating from it. There are two distinct cues for the 

positioning of these three triangles. 

Case (6b1) : Assume all three triangles lie between 1 and 2. 

L ZL Zý - 
1 

3 4 

If 344, then 2-cycle. If 3 -4 5, then 4-cycle. 

If 34., then 4 4d and 54d, which creates a 4-cycle. :. 34A. 

L-2 Xý 3t3ý 

67 

If 544, then 2-cycle. If S -+ 6, then S-cycle. 

If 547, then 44d -º 6+-cycle, 7+-cycle as 13+-cycle. 

If 54a, then 6 -*A 4 4, to complete the second 9-cycle, but this creates 

a 2-cycle. :. 54d0 

zoý 

6 7 H 9 

s 

If 64e, then the 8+-cycle through 7 cannot be converted to a 9-cycle, 

U7-**, then 6+-cycle through 6,5+-cycle through 4 -" 11+-cycle. 

If 440, then 6+-cycle through 6,7+-cycle through 8 -" 13-cycle. 

If 840, then 6+-cycle through 6,5+-cycle through 9 sº 1I+-cycle. 

If 9 -* 0, then the 8+-cycle through 6 cannot be converted to a 9-cycle. 

Contradiction. :. Case (6b1) not possible. 
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Case (6b2) : Assume two triangles lie between 1 and 2. 

1 
3 ` 

2 

If 344, then 2-cycle. If 345, then 44d -4 d -4 0 uº 2-cycle. 

If 3 -4 $, then 44d -º 4+-cycle, 7+-cycle -" Ii +-cycle. :. 34A. 

6 

X3 

7 

4 S 

If 647, then 1-cycle. If 645, then 4-cycle. 

If 644, then 4+-cycle, 7f-cycle -+ 11+-cycle. 

If 6 -91, then 7 4d -" 4 -35 -+ 1-cycle. .. 6id. 

I 

X ý 1ý 1 
9 

1 
3 i 

8 6 7 

If 4 40, then S+-cycle through 9,7+-cycle through 5 -+ 12+-cycle. 

If 5401, then 449 -º 748 -º 2-cycle. If 8-**, then 445 -+ 8-cycle, 

If 7+0, then 5 -cycle through 9,6+-cycle through 4 -+ 11 cycle. 

If 9i1, then 8 -i 4 -" 547 -º 15-cycle. 

Contradiction. ;. Case (6b2) not possible. 

Therefore, Case (6b) not possible. 

Therefore, there does not exist a coset diagram for (24,0,0,3,0,2). 

Hence, no such S exists. o 
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THEOREM 2.3.9 Every specification (u, p, e, f, gl, g3) satisfying the genus 

formula (2.1.2), corresponds to a subgroup of (finite) index u in d9, with 

the following exceptions : 

(a) (12n+9,0,1,0,0, n+3) ,YnZ0. 

(b) (24,0,0,0,0,5) 
(c) (24,0,0,0,3,1) 

(d) (24,0,0,3,0,2). 

Proof : From Lemmas 2.3.2 to 2.3.8, we know there exists a coset 

diagram for every specification (u, p, e, f, gl, g3) satisfying (2,1.2), with 

exceptions (a), (b), (c) and (d). 

From Lemma 2.1 in [181, there is a correspondence between subgroups 

of index u in 49 and u point coset diagrams for 49. The theorem follows 

immediately. o 
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CHAPTER 3 

(2,3,13) TRIANGLE GROUP 

§3.1 GENUS FORMULA 

The genus formula can be derived from Theorem 2 in [15]. We get 

2p-2fe(l- z)+f(1- 3)+gil- 
13)°u(I- s--3). 

which simplifies to 

7u s 156(p - 1) + 39c + 52f + 72g 

This is the genus formula for subgroups of index u in d 
13. 

§3.2 SPECIFICATION 

(3.1.1) 

For d 
», we define a spec cation to be a list of non-negative integers 

(u, p, e, f, g), with uz1, which satisfies the genus formula (3.1.1). 

If a coset diagram with specification (u, p, e, f, g) exists, then there will 

be u vertices, including e red points, f blue points and g green points. 

THEOREM 3.2.1 The genus formula (3.1.1) has a solution for each uz 104, but 

not for u= 103. 

Proof u"e (mod 4), from (3.1.1). 

Without loss of generality, let p=0 and e :!; 3. 

Then there are four cases : 

(1) um4v , c=O 

(ii) u =4v+ 1, c == 1 

(iii) u =4v+2 9 e-2 

Ov) uw4v+3 , ßa3. 
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case (i) :u- 4v, e-p'0. Substitute values in (3.1.1). 

28v + 156 - 52f + 72g 

.. 7v + 39 a Of + 1Sg 

By Result 1.2.1, this is solvable if 7v + 39 i 204, i. e. ui 95. 

case (ü) :u= 4v + 1, e=1, p=0. Substitute values in (3.1.1). 

28v + 124 = 52f + 72g 

:. 7v+31m13f+18g 

By Result 1.2.1, this is solvable if 7v + 31 k 204, he. ui 100. 

case (iii) :us 4v + 2, e-2, p-0. Substitute values in (3.1.1). 

28v+92=52f+72g 

:. 7v+23=13f+18g 

By Result 1.2.1, this is solvable if 7v + 23 k 204, i. e. uz 106. 

case (iv) :u= 4v + 3, e-3, p=0. Substitute values in (3.1.1). 

28v f 60 a 52f + 72g 

.. 7v + 15 - 13f + 18g 

By Result 1.2.1, this is solvable if 7v + 15 z 204, i. e. uk 111. 

From cases (i), (ü), (iii) and (iv), we deduce that (3.1.1) has a solution 

for each uZ 111. Using (3.1.1), a computer program was developed to 

determine all the solutions for (3.1.1) for u 110. This program and its 
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output are shown in APPENDIX C. From the output, wo soe that solutions of 

(3.1.1) exist for u- 104,105, ..., 110, but not for 103. These values can 

also be checked by hand using (3.1.1). 

The specifications listed in the program output for u" 104,105, ..., 110 

do satisfy (3.1.1). 

For ua 103, we substitute this value into (3.1.1) and re-arrange to get 

877 - 72g - 13(12p + 3e + 41) (3.2.1) 

Now we can conclude that gS 12 since g, p, e, f 0. Next, we put each 

possible value of g (0,1, ..., 12) into (3.2.1). The RHS is divisible by 13, 

but the LHS is only divisible by 13 when g= 12, in which case we have 

1= 12p+3e+4f (3.2.2) 

Now, p, e and f are non-negative integers, so clearly (3.2.2) has no solution. 

This implies that (3.1.1) has no solution for u= 103.13 

§3.3 SUBGROUPS OF FINITE INDEX IN d 
13 

Before we can prove Theorem 3.3.6, we will need the following five lemmas. 

Note that some specifications will be used in more than one lemma. 

LEMMA 3.3.1 If S (u, p, e, f, g) satisfies (3.1.1) and e 4, then there exists 

a coset diagram with specification S which is n(1) where nk2. 

Proof Assume S is a counter-example with p+c+f+g minimal. We want 

to show that no such S exists. 
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E1 (78,0,18,0,0) 9(1) 

El + E1 = (156,0,32,0,0) 16(1). Now, 1-compose seven times to get 

Pi (156,7,4,0,0) 2(1). 

If p2!: 7 and D (u-156, p-7, e, f, g) satisfies (3.1.1), then D+ PI has 

specification S which is n(1), ný2. Therefore, S has p<7. 

E2 (39,0,11,0,0) 5(1) 

If ea 11 and D (u-39, p, e-7, f, g) satisfies (3.1.1), then D+ E2 has 

specification S which is n(1), ný2. Therefore. S has o< 11. 

E3 = E2(1) - (39,1,7,0,0) 3(1). 

Fi (26,0,6,2,0) 3(1) 

[>_>, p>--4 

F2 (26,0,2,5,0) 1(1) 

F3 (52,0,4,7,0) 2(1) = F13(1) + F2 1(1). 
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If f7 und D (u-52, p, c, f-7, g) satisfies (3.1.1), then D+ P3 has 

specification S which is n(1), ni2. Therefore, S has f<7. 

01(30,0,2,0,4) 1(1) 

ß2 (42,0,6,0,3) 3(1) 

03(72,0,4,0,7) 2(1) a0 1(1) + 02 3(1). 

If gz7 and D (u-72, p, e, f, g-7) satisfies (3.1.1), then D+ Ci3 has 

specification S which is n(1), nz2. Therefore, S has g<7. 

P` (52,0,12,1,0) 

Now, 1-compose F4 twice to get P2(52,2,4,1,0) 2(1). 

04 (28,0,4,1,2) 2(1) 

E4 (13,0,5,1,0)2(l) 
ins 

For f Zt 1, 

if p22 and D (u-52, p-2, c, f- l, g) 3sti3fics (3.1,1), 

then D+ P2 has spec cation S which is n(1), nZ2, 

and, if eZ5 and D (u-13, p, e-1, f-1, g) satisfies (3.1.1), 

then D+ E4 has specification S which is n(1), nZ2, 
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and, if gi2 and D (u-28, p, e, f-1, g-2) satisfies (3.1.1), 

then D+ 04 has specification S which is n(1), nk2. 

Therefore, for fz1, S has p<2, e-4 and g<2. 

We now know that a minimal S would have one of the following two forms 

(u, p, 4, f, g) p< 2, lsfs6, g< 2 

(u, p, e, 0)g) :p<7, e< 11, g<7 

(3.3.1) 

(3.3.2) 

Case (3.3.1) : Put e=4, p=ga0 in (3.1.1) to get 

7u = 52f :, f"0 (mod 7), which has no solution for 1fs6. 

With c-4, p-0, g-1, we get 7u vs52f + 72 :. fm4 (mod 7) .. f =4. 

Ps (40,0,4,4.1) 2(I) 

With ea4, pm 1, gRO0, we get 7uun52f+156 ;. f"4(mod7) ;. f-4. 

Fi + Fi m (52,0,8,4,0) 4(1). Now 1-compose once to get F6(52,1,4,4,0) 2(1). 

With e-4, p=g-1, we get 7u=52f+228 ;. f" 1(mod 7) :. f-1. 

(40,0,8,1,1) 4(1) 

Now 1-compose once to get P7(40,1,4, I, 1) 2(1). This completes Case (3.3.1). 

For pi1, 

if c27 and D (u-39, p-1, c-3, f, g) satisfies (3.1.1), 

then D+ E3 has specification S which is n(1), nk2. 

Therefore, for pz1, S has c<7. 
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Hence, Can (3.3.2) can be split into the following two cases 

(u, 0, e, 0, g) :4ses 10, g< 7 

(u, p, e101g) 1sps6,4 sas6, g< 7 

Case (3.3.3) : Put p=f=0 in (3.1.1) to get 7u = 72g + 39(e - 4). 

Replacing e by 4 (resp. 5,6, ..., 10) in this equation and noting g<7, 

(3.3.3) 

(3.3.4) 

e==4 : 7u 72g g"0(mod 7) .. g =0 ;. u< 1. 

c=S : 7u==72g+39 g"S(mod 7) g S .. u=57. 

e=6 : 7u72g+78 g"3(mod 7) g 3 u=42. 

ea7 : 7u72g+117 .: g"1(mod 7) g 1 :. u=27. 

cab : 7u72g+156 g"6(mod 7) :. g ==6 ., u=84. 

e=9 7u = 72g + 195 g"4 (mod 7) g =4 u= 69* 

e- 10 : 7u=72g+234 .; g"2(mod 7) g =2 . ̀, u=S4. 

05 (15,0,3,0,2) 1(1) 

eS: (57,0,5,0,5) 2(1) = O5 + ßz. 

e-6: (42,0,6,0,3) 3(1) =02. 

cum 7: E5 (27,0,7,0,1) 3(1) 

. c8: E6 (84,0,8,0,6) 4(1) ' 0z +0 
2 

ea9: E7 (69,0,9,0,4) 4(1) - Es +0 
20 
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e- 10 : E_ (54,0,10,0,2)5(l) 

This completes Can (3.3.3). 

Case (3.3.4) : This case can be split into three cases :- 

Case (1) :ea4 (u, p, 4,0, g) :15ps6,0 sg56. 

Put c-4, f-0 in (3.1.1) to get 7u - 72g + 156p. 

p -1 7u - 72g + 156 g"6 (mod 7) 

p -2 : 7u - 72g + 312 g"S (mod 7) 

p s3 : 7u - 72g + 468 g"4 (mod 7) 

p -4 : 7u - 72g + 624 :. g"3 (mod 7) . ', 

p -S : 7u - 72g + 780 g"2 (mod 7) 

p 6 7u - 72g + 936 :, g"1 (mod 7) 

p-1: P3(84,1,4,0,6) 2(1) = E6(1). 

1-compose E= twice to get P4(54,2,2,0,2) 1(1). 

pa2: (96,2,4,0,5) 2(1) =P4+ 02. 

E9 + E_ _ (108,0,16,0,4) 8(1). 1-compose three times to get 

pa3: P3(108,3,4,0,4) 2(1). 

Ei + 02 = (120,0,20,0,3) 10(l). 1-compose four times to get 

p-4: P6(120,4,4,0,3) 2(1). 

E1 + Ea s (132,0,24,0,2) 12(1). 1-compost five times to get 

p=5: P7(132,5,4,0,2) 2(1). 

g -6 :. um84. 

g -5 :. u-96. 

g -4 u=108. 

g -3 u"120. 

g at u- 132. 

g ß1 :, u-144. 
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Q1 (66,0,14,0,1) 7(1) 

QI + E1 - (144,0,28,03) 14(1). 1-compost six times to get 

p=6: P=(144,6,4, O, 1) 2(1). 

Case (2) :eaS (u, p, 5,0, g) : 15p56,0 sgs6. 

Put e=5, f=0 in (3.1.1) to get 7u - 72g + 156p + 39. 

p= 1: 7u==72g+195 . ̀. g4(mod 7) 

p=2: 7u = 72g + 351 .: g r" 3 (mod 7) 

p=3 7u=72g+507 :. g"2(mod 7) 

p=4: 7u = 72g + 663 :. g" 1(mod 7) 

p=S : 7u=72g+819 :. g"0(mod 7) .. 

pa6: 7u = 72g + 975 :. g"6 (mod 7) 

p=1: (69,1,5,0,4) 2(1) = E7(1). 

E3 +0 
2= 

(81,1,9,0,3) 4(1). 1-compose once to got 

p-2: %(81,2,5,0,3) 2(1). 

El + ßs = (93,0,17,0,2) 8(1). 1-compose three times to get 

p=3: Q3(93,3,5,0,2) 2(1). 

Ei + Es = (105,0,21,0,1) 10(l). 1-compose four times to get 

p=4: Q4(105,4,5,0,1) 2(1). 

El + E2 = (117,0,25,0,0) 12(1). 1-compose five times to get 

p=S: Q5(117,5,5,0,0) 2(1). 

EI + p7 _ (201,5,9,0,6) 4(1). 1-compose once to get 

p=6: Q6(201,6, S, 0,6) 2(1). 

g m4 .. u-69. 

g -3 u-81. 

g -2 u-93. 

g -1 .. u- IOS. 

g -0 ;. u- 117. 

g -6 .. u-201. 
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Case (3) :e=6 (u, p, 6,0, g) :Ss 

Put c m6, f =0 in (3.1.1) to get 7u-72g+ 156p+78. 

p =1 : 7u = 72g + 234 :. g"2 (mod 7) :. g=2 u= 54. 

p =2 : 7u=72g+390 .: g"1(mod 7) .: g=1 .: u=66. 

p =3 : 7u-72g+546 ;. g"0(mod 7) ;. g=0 u=78. 

p =4 : 7u = 72g + 702 g" 6(mod 7) .. g=6 ;. u= 162. 

p =S : 7u - 72g + 858 .. g"5 (mod 7) :. g=S ;. u- 174. 

p =6 : 7u=72g+1014 .: g"4(mod 7) . ', g=4 .: u=186. 

p=1: (54,1,6,0,2) 3(1) = E8(1). 

1-compose Q1(66,0,14,0,1) 7(1) twice to get 

p=2 (66,2,6,0,1) 3(1). 

1-compose E1(78,0,18,0,0) 9(1) three times to get 

p=3 (78,3,6,0,0) 3(1). 

E_ + P5 = (162,3,10,0,6) 5(1). 1-compose once to get 

p=4 (162,4,6,0,6) 3(1). 

E+ P6 s (174,4,10,0,5) 5(1). 1-compose once to get 

p=S: (174,5,6,0,5) 3(1). 

Ql + P6 = (186,4,14,0,4) 7(1). 1-compose twice to get 

p=6: (186,6,6,0,4) 3(1). 

Hence, no such S exists. 13 

LEMMA 3.3.2 If S (u, p, e, f, g) satisfies (3.1.1) and ea3, then there exists 

a coset diagram with specification S which is 1(1). 
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Proof : Assume S is a counter-example with p+f+g minimal. We want to 

show that no such S exists. 

P9(39,2,3,0,0) 1(1) = E3 (1). 

If pL2 and D (u-39, p-2,4, f, g) satisfies (3.1.1), then D can be 2(1) by 

Lemma 3.3.1 so that D+ P9 has specification S which is 1(1). 

Therefore, S has p<2. 

Fß(39,0,3,6,0) 1(1) = E4 + F2. 

If fi6 and D (u-39, p, 4, f-6, g) satisfies (3.1.1), then D can be 2(1) by 

Lemma 3.3.1 so that D+ Fa has specification S which is 1(1). 

Therefore, S has f<6. 

A diagram has already been exhibited for G5 (15,0,3,0,2) 1(1) . 

If gi2 and D (u-15, p, 4, f, g-2) satisfies (3.1,1), then D can be 2(1) by 

Lemma 3.3.1 so that D+ G5 has specification S which is 1(1). 

Therefore, S has g<2. 

We now know that a minimal S would have one of the following four forms 

(u, 0,3, f, 0) fs5 (3.3.5) 

(u, 0,3, f, 1) fs5 (3.3.6) 

(u, 1,3, f, 0) :fs5 (3.3.7) 

(u, 1,3, f, 1) fs5 (3.3.8) 

Case (3.3.5) (u, 0,3, f0) :0sfsS. 

Put c=3, p nxg a0 in (3.1.1) to get 7u =52f-39. .. f"6 (mod 7). 

This has no solution for 0fsS. 

Case (3.3.6) (u, 0,3, f, 1) :0sfs5. 

Pute=3, p=0, gm1 in (3.1.1) to get 7u = 52f + 33. :. f"3 (mod 7). 

.. (3.. 7u = 189 ;, u= 27. 
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(27,0,3,3,1) 1(1) 

Case (3.3.7) (u, 1,3, f, 0) :0sfS5. 

Pute = 3, ps1, g=0 is (3.1.1) to get 7u = 52f + 117. ,. f"3 (mod 7). 

:. f-3 :. 7u-273 :. ua39. 

E4 + Ft = (39,0,7,3,0) 3(1). Now 1-compose once to get (39,1,3,3,0) 1(1). 

Case (3.3.8) (u, 1,3, f, 1) :0fs5. 

Put c=3, p=g=1 in (3.1.1) to get 7u=52f +189. :. f"0 (mod 7). 

.. f-0.. 7u a 189 .. u= 27. 

(27,1,3,0,1) 1(1) = E5(1). 

Hence, no such S exists. 13 

LEMMA 3.3.3 If S (u, p, e, f, g) satisfies (3,1.1) and e=2, then there exists 

a coact diagram with specification S which is 1(1). 

Proof Assume S is a counter-example with p+f+g minimal, We want to 

show that no such S exists. 

A diagram has already been exhibited for E1 (78,0,18,0,0) 9(1). 

1-compose four times to get Q7 (78,4,2,0,0) 1(1). 

If pZ4 and D (u-78, p-4,4, f, g) satisfies (3.1.1), then D can be 2(l) by 

Lemma 3.3.1 so that D+ Q7 has specification S which is 1(1). 

Therefore, S has p<4. 
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A diagram has already been exhibited for Fs (26,0,2,5,0) 1(1). 

If fiS and D (u-26, p, 4, f-S, g) satisfies (3.1.1), then D can be 2(1) by 

Lemma 3.3.1 so that D+ F2 has specification S which is 1(l). 

Therefore, S has f<S. 

A diagram has already been exhibited for ßi (30,0,2,0,4) 1(1). 

If gi4 and D (u-30, p, 4, f, g-4) satisfies (3.1.1), then D can be 2(1) by 

Lemma 3.3.1 so that D+ Gil has specification S which is 1(1). 

Therefore, S has g<4. 

Qg (26,1,2,2,0) 1(1) as F1(1). ß6 (42,1,2,0,3) 1(1) = 02(1). 

For pz1, 

if fz2 and D (u-26, p- 1,4, f-2, g) satisfies (3.1.1), then D can be 2(1) 

by Lemma 3.3.1, so that D+ Qs has specification S which is 1(1), 

and, if gz3 and D (u-42, p-1,4, f, g-3) satisfies (3.1.1), then D can be 2(1) 

by Lemma 3.3.1, so that D+ ß6 has specification S which is 1(1). 

Therefore, for pz1, S has f<2 and g<3. 

We now know that a minimal S would have one of the following four forms 

(u, 0,2, f, g) f 4, gS3 (3.3.9) 

(u, 1,2, f, g) fs1, g2 (3.3.10) 

(u, 2,2, f, g) :fs1, g2 (3.3.11) 

(u, 3,2, f, g) f --c I, gS2 (3.3.12) 

Case (3.3.9) (u, 0,2, f, g) : O-& f s4, OSgS3. 

Put c=29 p=0 in (3.1.1) to get 7u = 52f + 72g - 78. 

g=0: 7u = 52f- 78 :. f-S (mod 7) 

gi1: 7u = 52f -6:. f-2 (mod 7) 

g=2 : 7u=52f+66 f"6(mod 7) 

g=3: 7u = 52f + 138 :, f"3 (mod 7) 

' No solution, 

:. f-2 :. u-14. 

:. No solution. 

:. fw3;, u-42. 
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ga1: Qq (14,0,2,2,1) 1(1) 

3: (42,0,2,3,3) 1(1) = 04 + Q9. 

Case (3.3.10) (u, 1,2, (, g) :0Sfs It 0Sgs2. 

Put e =2, p=1 in (3.1.1) to get 7u = 52f + 72g + 78. 

f=0: 7u=72S+79 ., g=3 (trod 7) .. No solution. 

f=1: 7u = 72g + 130 .. g"5 (mod 7) . '. No solution. 

Case (3.3.11) (u, 2,2, f, g) :05f It 0Sg52. 

Put e=2, p=2 in (3.1.1) to get 7u =52f + 72g + 234. 

f=0: 7u == 72g + 234 ,. g. 2 (mod 7) . ', g=2 . ', u us 54. 

(54,2,2,0,2) 1(l) = P4. 

f =' 1: 7u - 72g + 286 .. gw4 (mod 7) :. No solution. 

Case (3.3.12) (u, 3,2, f, g) :05f5 It 05g52. 

Put e-2, p-3 in (3.1.1) to got 7u - 52f +72g+390. 

f-0 : 7u-72g+390 :. g. 1(mod 7) g= 1 .. u m66. 

1-compose Q1(66,0,14,0,1) 7(1) three times to get (66,3,2,0,1)1(1). 

f-1: 7u - 72g + 442 ;, g"3 (mod 7) ;. No solution. 

Hence, no such S exists. o 

LEMMA 3.3.4 If S (u, p, e, f, g) satisfies (3.1.1) and e=1, then there exists 

a cosct diagram with specification S. 
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Proof : Assume S is a counter-example with p+f+g minimal. We want to 

show that no such S exists. 

If pi1 and D (u, p-1,5, f, g) satisfies (3.1.1), then D can be 2(1) by Lemma 

3.3.1, so we can 1-compose D once to get a diagram with specification S. 

Therefore, S hasp < 1. i. e. S leas p=0. 

A diagram has already been exhibited for F2 (26,0,2,5,0) 1(1). 

If fk5 and D (u-26, p, 3, f-5, g) satisfies (3.1.1), then D can be 1(1) by 

Lemma 3.3.2, so that D+ F2 has a diagram with specification S. 

Therefore, S has f<S. 

A diagram has already been exhibited for 05 (15,0,3,0,2) 1(1). 

If gz2 and D (u-1S, p, 2, f, g-2) satisfies (3.1.1), then D can be 1(1) by 

Lemma 3.3.3, so that D+ 0s has a diagram with specification S. 

Therefore, S has g<2. 

We now know that a minimal S would have one of the following two fo rms 

(u, 001, f, 0) :0sfs4 (3.3.13) 

(u, 0,1, f, 1) 0s(: 5 4 (3.3.14) 

Case (3.3.13) (u, 0,1, f, 0) :05fS4. 

Pute= 1, pmg=O in (3.1.1) to got 7u=52f- 117. 

:, f"4 (mod 7) :, f=4. :. u= 13. 

(13,0,1,4,0) 

Case (3.3.14) (u, 0,1, f, 1) :05fs4. 

Put p-0, e-g- 1 in (3.1.1) to get 7u"52f-45 

:. fr"1(mod 7) :. f-1. :. u=1. 

(1,0,1,1,1) The diagram consists of a red point with a blue loop. 

Hence, no such S exists. 13 
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LEMMA 3.3.5 If S (u, p, e, f, g) satisfies (3.1.1) and e-0, then there exists 

a cosec diagram with specification S. 

Proof : Assume S is a counter-example with p+f+g minimal. We want to 

show that no such S exists. 

If p21 and D (up-1,4, f, g) satisfies (3.1.1), then D can be 2(1) by Lemma 

3.3.1, so we can 1-compose D once to get a diagram with specification S. 

Therefore, S has p<1. i. e. S has p=0. 

A diagram has already been exhibited for F2 (26,0,2,5,0) 1(1). 

If fz5 and D (u-26, p, 2, f-5, g) satisfies (3.1.1), then D can be 1(1) by 

Lemma 3.3.3, so that D+ F2 has a diagram with specification S. 

Therefore, S has f<S. 

A diagram has already been exhibited for ß1 (30,0,2,0,4) l(1). 

If S2: 4 and D (u-30, p, 2, f, g-4) satisfies (3.1.1), then D can be 1(1) by 

Lemma 3.3.3, so that D+G has a diagram with specification S. 

Therefore, S has g<4. 

We now know that a minimal S would have the following form 

(u, 0,0, f, g) :0 sfs4,0sgs3 

Put p=eu0 in (3.1.1) to get 7u =52f + 72g - 156. 

g=0: 7u-52f-156 f"3 (mod 7) f'3u< 

gw 1: 7u=52f-84 ,. f"0(mod 7) (ISO 
. '. u<1. 

g-2 : 7u=52f-12 .. f"4(mod 7) f-4 ;. uý28. 

(28,0,0,4,2) - Q9 + Q9. 

S=3: 7u = 52f + 60 .: to l (mod 7) .. fUs I . ̀. uß-16. 
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(16,0,0,1,3) 

Hence, no such S exists. o 

THEOREM 3.3.6 Every specification (u, p, e, f, g), satisfying the genus formula 

(3.1.1), corresponds to a subgroup of (finite) Index u In 413' 

Proof : From Lemmas 3.3.1,3.3.2,3.3.3,3.3.4 and 3.3.5, we know there 

exists a coset diagram for every specification (u, p, e, f, g) satisfying (3.1.1). 

From Lemma 2.1 in (18), there is a correspondence between subgroups of index u 

in d 
13 and u point coset diagrams for 413. The theorem follows immediately, a 
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APPENDIX A 

The following computer program is in BASIC. Its function is to give a Ust 

of all the specifications of the form (u, p, e, f, g), satisfying t ho genus 

formula (1.1.1) for each value of u such that us 101. We include u-0 for 

observation. The output aided the proof of Theorem 1.2.2. 

PROGRAM 

10 LPRINT " SPECIFICATIONS FOR (2,3,11) SUBGROUPS WITH U< 102": LPRINT 

20 LPRINT "N POINTS GENUS RED BLUE GREEN' 

30 N=0 

40 FOR Ua0 TO 101 

50 A= (S * U) + 132: GMAX = INT(A/60) 

60 FOR O=0 TO GMAX 

70 B= (A - (60 * G))/11 : IF B <> INT(B) OR B <0 THEN 230 

80 IF B=1 OR B=2 OR B=5 THEN 230 

90 FOR P=0 TO INT(B/12) 

100 FORE =0 TO INT(B/3) 

110 FOR F=0 TO INT(B/4) 

120 IF (12*P)+(3*E)+(4F) <> B THEN 200 

130 N=N+1 

140 H == N: K=4: GOSUB 260 : MINT 0 (11; 

150 H=U: K= 11 : GOSUB 260: LPRINT ", "; 

160 H=P: K= 16 : GOSUB 260 : LPRINT ", "; 

170 H=E: K= 22 : GOSUB 260: MINT 11,11; 

180 H=F: Km 28 : GOSUB 260: LPRINT ", "; 
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190 H=0: K- 34 : GOSUB 260: LPRINT 

200 NEXT F 

210 NEXT E 

220 NEXT P 

230 NEXT 0 

240 NEXT U 

250 END 

260 REM subroutine to align output 

270 IF H< 10 THEN X a= 1: GOTO 300 

280IFH< 100THEN X=2 : GOTO 300 

290X=3 

300 LPRINT TAB(K - X); H; 

310 RETURN 

RESULTS 

To save space the output will be arranged in four columns. 

1 (0,0,0,3,0) 2 (0,0,4,0,0) 3 (0,1,0,0,0) 4 (1,0,1,1,1) 

5 (1 1,0,3,2,0) 6 (12,0,0,3,1) 7' (12,0,4,0,1) 8 (12,1,0,0,1) 

9 (1 3,0,1,1,2) 10 (22,0,2,4,0) 11 (22,0,6,1,0) 12 (22,1,2,1,0) 

13 (23,0,3,2,1) 14 (24,0,0,3,2) '15 (24,0,4,0,2) 16 (24,1,0,0,2) 

17 (25,0,1,1,3) 18 (33,0,1,6,0) 19 (33,0,5,3,0) 20 (3 3,0,9,0,0) 

21 (33,1,1,3,0) 22 (33,1,5,0,0) 23 (33,2,1,0,0) 24 (34,0,2,4,1) 

25 (34,0,6,1,1) 26 (34,1,2,1,1) 27 (35,0,3,2,2) 28 (36,0,0,3,3) 

29 (36,0,4,0,3) 30 (36,1,0,0,3) 31 (37,0,1,1,4) 32 (44,0,0,8,0) 

33 (44,0,4,5,0) 34 (44,0,8,2,0) 35 (44,1,0,5,0) 36 (44,1,4,2,0) 

37 (44,2,0,2,0) 38 (45,0,1,6,1) 39 (45,0,5,3,1) 40 (45,0,9,0,1) 

41 (45,1,1,3,1) 42 (45,1,5,0,1) 43 (45,2,1,0,1) 44 (46,0,2,4,2) 
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45 (46,0,6,1,2) 

49 (48,0,4,0,4) 

53 (55,0,7,4,0) 

57 (55,2,3,1,0) 

61 (56,1,0,5,1) 

65 (57,0,5,3,2) 

69 (57,2,1,0,2) 

73 (59,0,3,2,4) 

77 (61,0,1,1,6) 

81 (66,0,14,0,0) 

85 (66,2,2,3,0) 

89 (67,0,7,4,1) 

93 (67,2,3,1,1) 

97 (68,1,0,5,2) 

101 (69,0,5,3,3) 

105 (69,2,1,0,3) 

109 (71,0,3,2,5) 

113 (73,0,1,1,7) 

117 (77,0,13,2,0) 

121 (77,2,1,5,0) 

125 (78,0,6,6,1) 

129 (78,1,6,3,1) 

133 (78,3,2,0,1) 

137 (79,1,3,4,2) 

141 (80,0,4,5,3) 

145 (80,2,0,2,3) 

149 (81,1,1,3,4) 

46 (46,1,2,1,2) 

50 (48,1,0,0,4) 

54 (55,0,11,1,0) 

58 (56,0,0,8,1) 

62 (56,1,4,2,1) 

66 (57,0,9,0,2) 

70 (58,0,2,4,3) 

74 (60,0,0,3,5) 

78 (66,0,2,9,0) 

82 (66,1,2,6,0) 

86 (66,2,6,0,0) 

90 (67,0,11,1,1) 

94 (68,0,0,8,2) 

98 (68,1,4,2,2) 

102 (69,0,9,0,3) 

106 (70,0,2,4,4) 

110 (72,0,0,3,6) 

114 (77,0,1,11,0) 

118 (77,1,1,8,0) 

122 (77,2,5,2,0) 

126 (78,0,10,3,1) 

130 (78,1,10,0,1) 

134 (79,0,3,7,2) 

138 (79,1,7,1,2) 

142 (80,0,8,2,3) 

146 (81,0,1,6,4) 

150 (81,1,5,0,4) 

47 (47,0,3,2,3) 

51 (49,0,1,1,5) 

55 (55,1,3,4,0) 

59 (56,0,4,5,1) 

63 (56,2,0,2,1) 

67 (57,1,1,3,2) 

71 (58,0,6,1,3) 

75 (60,0,4,0,5) 

79 (66,0,6,6,0) 

83 (66,1,6,3,0) 

87 (66,3,2,0,0) 

91 (67,1,3,4,1) 

95 (68,0,4,5,2) 

99 (68,2,0,2,2) 

103 (69,1,1,3,3) 

107 (70,0,6,1,4) 

111 (72,0,4,0,6) 

115 (77,0,5,8,0) 

119 (77,1,5,5,0) 

123 (77,3,1,2,0) 

127 (78,0,14,0,1) 

131 (78,2,2,3,1) 

135 (79,0,7,4,2) 
, 

139 (79,2,3,1,2) 

143 (80,1.0,5,3) 

147 (81,0,5,3,4) 

151 (81,2,1,0,4) 
. 
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48 (48,0,0,3,4) 

52 (55,0,3,7,0) 

56 (55,1.7,1.0) 

60 (56,0,8,2,1) 

64 (57,0,1,6,2) 

68 (57,1,5,0,2) 

72 (58,1,2,1,3) 

76 (60,1,0,0,5) 

80 (66,0,10,3,0) 

84 (66,1,10,0,0) 

88 (67,0,3,7,1) 

92 (67,1,7,1,1) 

96 (68,0,8,2,2) 

100 (69,0,1,6,3) 

104 (69,1,5,0,3) 

108 (70,1,2,1,4) 

112 (72,1,0,0,6) 

116 (77.0,9,5,0) 

120 (77,1,9,2,0) 

124 (78,0,2,9,1) 

128 (78,1,2,6,1) 

132 (78,2,6,0,1) 

136 (79,0,11,1,2) 

140 (80,0,0,8,3) 

144 (80,1,4,2,3) 

148 (81,0,9,0,4) 

152 (82,0,2,4,5) 



153 (82,0,6,1,5) 154 (82,1,2,1,5) 155 (83,0,3,2,6) 156 (84,0,0,3,7) 

157 (84,0,4,0,7) 158 (84,1,0,0,7) 159 (85,0,1,1,8) 160 (88,0,0,13,0) 

161 (88,0,4,10,0) 162 (88,0,8,7,0) 163 (88,0,12,4,0) 164 (88,0,16,1,0) 

165 (88,1,0,10,0) 166 (88,1,4,7,0) 167 (88,1,8,4,0) 168 (88,1,12,1,0) 

169 (88,2,0,7,0) 170 (88,2,4,4,0) 171 (88,2,8,1,0) 172 (88,3,0,4,0) 

173 (88,3,4,1,0) 174 (88,4,0,1,0) 175 (89,0,1,11,1) 176 (89,0,5,8,1) 

177 (89,0,9,5,1) 178 (89,0,13,2,1) 179 (89,1,1,8,1) 180 (89,1,5,5,1) 

181 (89,1,9,2,1) 182 (89,2,1,5,1) 183 (89,2,5,2,1) 184 (89,3,1,2,1) 

185 (90,0,2,9,2) 186 (90,0,6,6,2) 187 (90,0,10,3,2) 188 (90,0,14,0,2) 

189 (90,1,2,6,2) 190 (90,1,6,3,2) 191 (90,1,10,0,2) 192 (90,2,2,3,2) 

193 (90,2,6,0,2) 194 (90,3,2,0,2) 195 (91,0,3,7,3) 196 (91,0,7,4,3) 

197 (91,0,11,1,3) 198 (91,1,3,4,3) 199 (91,1,7,1,3) 200 (91,2,3,1,3) 

201 (92,0,0,8,4) 202 (92,0,4,5,4) 203 (92,0,8,2,4) 204 (92,1,0,5,4) 

205 (92,1,4,2,4) 206 (92,2,0,2,4) 207 (93,0,1,6,5) 208 (93,0,5,3,5) 

209 (93,0,9,0,5) 210 (93,1,1,3,5) 211 (93,1,5,0,5) 212 (93,2,1,0,5) 

213 (94,0,2,4,6) 214 (94,0,6,1,6) 215 (94,1,2,1,6) 216 (95,0,3,2,7) 

217 (96,0,0,3,8) 218 (96,0,4,0,8) 219 (96,1,0,0,8) 220 (97,0,1,1,9) 

221 (99,0,3,12,0) 222 (99,0,7,9,0) 223 (99,0,11,6,0) 224 (99,0,15,3,0) 

225 (99,0,19,0,0) 226 (99,1,3,9,0) 227 (99,1,7,6,0) 228 (99,1,11,3,0) 

229 (99,1,15,0,0) 230 (99,2,3,6,0) 231 (99,2,7,3,0) 232 (99,2,11,0,0) 

233 (99,3,3,3,0) 234 (99,3,7,0,0) 235 (99,4,3,0,0) 236 (100,0,0,13,1) 

237 (100,0,4,10,1) 238 (100,0,8,7,1) 239 (100,0,12,4,1) 240 (100,0,16,1,1) 

241 (100,1,0,10,1) 242 (100,1,4,7,1) . -243 (100,1,8,4,1) 244 (100,1,12,1,1) 

245 (100,2,0,7,1) 246 (100,2,4,4,1) 247 (100,2,8,1,1) 248 (100,3,0,4,1) 

249 (100,3,4,1,1) 250 (100,4,0,1,1) 251 (101,0,1,11,2) 252 (101,0,5,8,2) 

253 (101,0,9,5,2) 254 (101,0,13,2,2) 255 (101,1,1,8,2) 256 (101,1,8,8,2) 

257 (101,1,9,2,2) 258 (101,2,1,5,2): = 259 (101,2,5,2,2) 260 (101,3,1,2,2) 
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APPENDIX 8 

The following computer program is in BASIC. Its function is to give a list 

of all the specifications of the form (u, p, e, f, g1, g3), satisfying the genus 

formula (2.1.2) for each value of u such that u --!; 38. We include u-0 for 

observation. The output aided the proof of Theorem 2.2.1. 

PROGRAM 

10 LPRINT " SPECIFICATIONS FOR (2,3,9) SUBGROUPS WITH U< 39": LPRINT 

20 LPRINT "N POINTS GENUS RED BLUE GN(1) GN(3)" 

30 N-0 

40 FOR Um0TO 38 

50 A=U+ 36 :G1 MAX S0 INT(A116) : G3 MAX an INT(A/ 12) 

60 FOR G1 =0 TO G IMAX 

70 FOR G3 m0 TO 03MAX 

80 B= (A - (16 * G1)-(12 * 03))/3 : IF B<> INT(B) OR B<0 THEN 260 

90 IF Bs1 OR B- 2 OR B- S 
. 
THEN 260 

100 FOR P=0 TO INT(B112) V 

110 FOR E=0 TO INT(B/3) 

120 FOR F=0 TO INT(B/4) 

130 IF (12*P)+(3*E) +(4*F) <> B THEN 230 

140 IF (U - F)/3 <> INT((U. - F)/3). THEN 230 

150 N=N+1 

160 H=N: K=4 GOSUB 300 LPRINT 

170 H=U : K=II : GOSUB 300 : LPRINT 
. 
", "; :. 

180 H-P : K=z16 : GOSUB 300 : LPRINT ", "; 
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190 H=E: K= 22 : GOSUB 300 : LPRINT 

200 H=F: K= 28 : GOSUB 300: LPRINT 

210 H= 01 :Ka 34 : GOSUB 300 : LPRINT 

220 H- 03 :K= 40 : GOSUB 300: LPRINT 

230 NEXT F 

240 NEXT E 

250 NEXT P 

260 NEXT 03 

270 NEXT 01 

280 NEXT U 

290 END 

300 REM subroutine to align output 

310IFH< 10 THEN X=1 : GOTO340 

320 IF H< 100 THEN X=2: GOT0 340 

330X=3 

340 LPRINT TAB(K - X); H; 

350 RETURN 

RESULTS 

To save space the output will be arranged in four columns, 

1 (0,0,0,3,0,0) 

S (1,0,1,1,1,0) 

9 (9,0,1,3,0,0) 

13 (10,0,2,1,1,0) 

17 (12,0,0,0,0,4) 

21 (16,0,0,1,1,2) 

25 (18,0,2,0,0,3) 

2 (0,0,4,0,0,0) 
6 (3,0,3,0,0,1) 

to (9,0,5,0,0,0) 

14 (12,0,0,3,0,1) 

Is (12,0,0,0,3,0) 

22 (18,0,2,3,0,0) 

26 (19,0,3,1,1,0) 

3 (0,1,0,0,0,0) 

7 (4,0,0,1,1,1) 

11 (9,1,1,0,0,0) 

15 (12,0,4,0,0,1) 
19 (13,0,1,1,1,1) 

23 (18,0,6,0,0,0) 

27 (20,0,0,2,2,0) 

4 (0,0,0,0,0,3) 

8 (6,0,2,0,0,2) 
12 (9,0,1,0,0,3) 

16 (12,1,0,0,0,1) 

20 (15,0,3,0,0,2) 

24 (18,1,2,0,0,0) 

28 (21,0,1,3,0,1) 
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29 (21,0,5,0,0,1) 

33 (22,0,2,1,1,1) 

37 (24,0,0,0,0,5) 

41 (27,0,7,0,0,0) 

45 (28,0,4,1,1,0) 

49 (30,0,2,3,0,1) 

53 (30,0,2,0,3,0) 

57 (33,0,5,0,0,2) 

61 (34,0,2,1,1,2) 

65 (36,1,0,3,0,0) 

69 (36,0,4,0,0,3) 

73 (37,0,1,4,1,0) 

77 (3 8,0,2,2,2,0) 

30 (21,1,1,0,0,1) 

34 (24,0,0,3,0,2) 

38 (24,0,0,0,3,1) 

42 (27,1,3,0,0,0) 

46 (28,1,0,1,1,0) 

50 (30,0,6,0,0,1) 

54 (31,0,3,1,1,1) 

58 (3 3,1,1,0,0,2) 

62 (36,0,0,6,0,0) 

66 (36,1,4,0,0,0) 

70 (36,1,0,0,0,3) 

74 (37,0,5,1,1,0) 

31 (21,0,1,0,0,4) 

35 (24,0,4,0,0,2) 

39 (25,0,1,1,1,2) 

43 (27,0,3,0,0,3) 

47 (28,0,0,1,1,3) 

51 (30,1,2,0,0,1) 

55 (32,0,0,2,2,1) 

59 (33,0,1,0,0,5) 

63 (36,0,4,3,0,0) 

67 (36,2,0,0,0,0) 

71 (36,0,0,0,0,6) 

75 (37,1,1,1,1,0) 
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32 (21,0,1,0,3,0) 

36 (24,1,0,0,0,2) 

40 (27,0,3,3,0,0) 

44 (28,0,0,4,1,0) 

48 (29,0,1,2,2,0) 

52 (30,0,2,0,0,4) 

56 (33,0,1,3,0,2) 

60 (33,0,1,0,3,1) 

64 (36,0,8,0,0,0) 

68 (36,0,0,3,0,3) 

72 (36,0,0,0,3,2) 

76 (37,0,1,1,1,3) 



APPENDIX C 

ffilwý 

The following computer program is in BASIC. Its function is to give a list 

of all the specifications of the form (u, p, e, f, g), satisfying the genus 

formula (3.1.1) for each value of u such that us 110. We include u-0 for 

observation. The output aided the proof of Theorem 3.2.1. 

PROGRAM 

10 LPRINT " SPECIFICATIONS FOR (2,3,13) SUBGROUPS WITH U<1l1": LPRINT 

20 LPRINT "N POINTS GENUS RED BLUE GREEN' 

30 N=0 

40 FOR U=0 TO 110 

50 A= (7 * U) + 156: GMAX = INT(A/72) 

60 FOR G-0 TO GMAX 

70 B= (A - (72 * G))/13 : IF B<> INT(B) OR B<0 THEN 230 

80 IF B=I OR Ba2OR B=5 THEN 230 

90 FOR P=0 TO INT(B/12) 

100 FOR E=0 TO INT(B/3) 

110 FOR F=0 TO INT(B/4) 

120 IF (12 *P) + (3 *E) + (4 *F) <>B THEN 200 

130 NON+ 1 ý" ý: 

140 HaN: K=4: GOSUB 260: LPRINT 

150 H-U: K- 11 : GOSUB 260: LPRINT "; 

160 HP: K= 16 : GOSUB 260: LPRINT 

170 H == E: K= 22 : GOSUB 260 :- LPRINT 

180 H=F: K == 28 : GOSUB 260: LPRINT 
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190 H=0: K- 34 : GOSUB 260: LPRINT 

200 NEXT F 

210 NEXT E 

220 NEXT P 

230 NEXT 0 

240 NEXT U 

250 END 

260 REM subroutine to align output 

270 IF H< 10 THEN X-1: GOTO 300 

280 IF H< 100 THEN X == 2: GOTO 300 

290 X=3 

300 LPRINT TAB(K - X); H; 

310 RETURN 

RESULTS 

1 (0,0,0,3,0) 2 (0,0,4,0,0) 3 (0,1,0,0,0) 4 (1,0,1,1,1); 

5 (13,0,1,4,0) 6 (13,0,5,1,0) 7 (13,1,1,1,0) 8 (14,0,2,2,1) : -, 

9 (15,0,3,0,2) 10 (16,0,0,1,3) 11 (26,0,2,5,0) 12 (26,0,6,2,0) 

13 (26,1,2,2,0) 14 (27,0,3,3,1) 15 (27,0,7,0,1) 16 (27.1,3,0.1) 

17 (28,0,0,4,2) 18 (28,0,4,1,2) 19 (28,1,0,1,2) 20 (29,0,1,2,3) 

21 (30,0,2,0,4) 22 (39,0,3,6,0) 23 (39,0,7,3,0) 24 (39,0,11,0,0) 
.. 

25 (39,1,3,3,0) 26 (39,1,7,0,0) 27 (39,2,3,0,0) 28 (40,0,0,7,1) 

29 (40,0,4,4,1) 30 (40,0,8,1,1) 31 (40,1,0,4,1) 32 (40,1,4,1,1) 

33 (40,2,0,1,1) 34 (41,0,1,5,2) 35 (41,0,5,2,2) 36 (41,191,2,2) ::. 

37 (42,0,2,3,3) 38 (42,0,6,0,3) 39 (42,1,2,0,3) 40 (43,0,3,1,4)-.,, 
l,: 

41 (44,0,0,2,5) 42 (45,0,1,0,6) 43 (52,0,0,10,0).., 44 (52,0,4,7,0) 

45 (52,0,8,4,0) 46 (52,0,12,1,0) 47 ' (52,1,0,7,0) 48 (52,1,4,4,0) 

49 (52,1,8,1,0) 50 (52,2,0,4,0) 51 (52,2,4,1,0) ; 52 -- (52,3,0,1,0) _.: 
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53 (53,0,1,8,1) 

57 (53,1,5,2,1) 

61 (54,0,10,0,2) 

65 (55,0,3,4,3) 

69 (56,0,4,2,4) 

73 (57,1,1,0,5) 

77 (65,0,5,8,0) 

81 (65,1,5,5,0) 

85 (65,3,1,2,0) 

89 (66,0,14,0,1) 

93 (66,2,2,3,1) 

97 (67,0,7,4,2) 

101 (67,2,3,1,2) 

105 (68,1,0,5,3) 

109 (69,0,5,3,4) 

113 (69,2,1,0,4) 

117 (71,0,3,2,6) 

121 (73,0,1,1,8) 

125 (78,0,14,3,0) 

129 (78,1,10,3,0) 

133 (78,2,10,0,0) 

137 (79,0,3,10,1) 

141 (79,1,3,7,1) 

145 (79,2,7,1,1) 

149 (80,0,8,5,2) 
153 (80,1,8,2,2) 

157 (81,0,1,9,3) 

54 (53,0,5,5,1) 

58 (53,2,1,2,1) 

62 (54,1,2,3,2) 

66 (55,0,7,1,3) 

70 (56,1,0,2,4) 

74 (58,0,2,1,6) 

78 (65,0,9,5,0) 

82 (65,1,9,2,0) 

86 (66,0,2,9,1) 

90 (66,1,2,6,1) 

94 (66,2,6,0,1) 

98 (67,0,11,1,2) 

102 (68,0,0,8,3) 

106 (68,1,4,2,3) 

110 (69,0,9,0,4) 

114 (70,0,2,4,5) 

118 (72,0,0,3,7) 

122 (78,0,2,12,0) 

126 (78,0,18,0,0) 

130 (78,1,14,0,0) 

134 (78,3,2,3,0) 

138 (79,0,7,7,1) 

142 (79,1,7,4,1) 

146 (79,3,3,1,1) 

150 (80,0,12,2,2) 

154 (80,2,0,5,2) 

158 (81,0,5,6,3) 

35 (53,0,9,2,1) 56 (53,1,1,5,1) 

59 (54,0,2,6,2) 60 (34,0,6,3,2) 

63 (54,1,6,0,2) 64 (52,2,2,0,2) 

67 (55,1,3,1,3) 68 (56,0,0,5,4) 

71 (57,0,1,3,5) 72 (57,0,5,0,5) 

75 (60,0,0,0,8) 76 (63,0,1,11,0) 

79 (65,0,13,2,0) 80 (65,1,1,8,0) 

83 (65,2,1,5,0) 84 (65,2,5,2,0) 

87 (66,0,6,6,1) 88 (66,0,10,3,1) 

91 (66,1,6,3,1) 92 (66,1,10,0,1) 

95 (66,3,2,0,1) 96 (67,0,3,7,2) 

99 (67,1,3,4,2) 100 (67,1,7,1,2) 

103 (68,0,4,3,3) 104 (68,0,8,2,3) 

107 (68,2,0,2,3) 108 (69,0,1,60'4) 

111 (69,1,1,3,4) 112 (69,1,5,0,4) 

115 (70,0,6,1,5) 116 (70,1,2,1,5) 

119 (72,0,4,0,7) 120 (72,1,0,0,7) 

123 (78,0,6,9,0) 124 (78,0,10,6,0) 

127 (78,1,2,9,0) 128 (78,1,6,6,0) 

131 (78,2,2,6,0) 132 (78,2,6,3,0) 

135 (78,3,6,0,0) 136 (78,4,2,0,0) 

139 (79,0,11,4,1) 140 
. 
(79,0,15,1,1) 

143 (79,1,11,1,1) 144 (79,2.3,4,1) 

147 (80,0,0,11,2) 148 (80,0,4,8,2) 

151 (80,1,0,8,2) 152 , (80,1,4,5,2) 

155 (80,2,4,2,2) .,. ; 
: 
156 (80,3,0,2,2) 

159 (81,0,9,3,3)_,, 160 (81,0,13,0,3) 
. 
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161 (81,1,1,6,3) 

165 (81,2,5,0,3) 

169 (82,0,10,1,4) 

173 (83,0,3,5,5) 

177 (84,0,4,3,6) 

181 (84,2,0,0,6) 

185 (86,0,2,2,8) 

189 (91,0,7,10,0) 

193 (91,1,3,10,0) 

197 (91,2,3,7,0) 

201 (91,3,7,1,0) 

205 (92,0,8,8,1) 

209 (92,1,4,8,1) 

213 (92,2,4,5,1) 

217 (92,4,0,2,1) 

221 (93,0,13,3,2) 

225 (93,1,9,3,2) 

229 (93,2,9,0,2) 

233 (94,0,2,10,3) 

237 (94,1,2,7,3) 

241 (94,2,6,1,3) 

24$ (95,0,11,2,4) 

249 (96,0,0,9,5) 

253 (96,1,0,6,5) 

257 (96,2,4,0,5) 

261 (97,0,9,1,6) 

265 (98,0,2,5,7) 

162 (81,1,5,3,3) 

166 (81,3,1,0,3) 

170 (82,1,2,4,4) 

174 (83,0,7,2,5) 

178 (84,0,8,0,6) 

182 (85,0,1,4,7) 

186 (87,0,3,0,9) 

190 (91,0,11,7,0) 

194 (91,1,7,7,0) 

198 (91,2,7,4,0) 

202 (91,4,3,1,0) 

206 (92,0,12,5,1) 

210 (92,1,8,5,1) 

214 (92,2,8,2,1) 

218 (93,0,1,12,2) 

222 (93,0,17,0,2) 

226 (93,1,13,0,2) 

230 (93,3,1,3,2) 

234 (94,0,6,7,3) 

238 (94,1,6,4,3) 

242 (94,3,2,1,3) 

246 (95,1,3,5,4) 

250 (96,0,4,6,5) 

254 (96,1,4,3,5) 

258 (96,3,0,0,5) 

262 (97,1,1,4,6) 

266 (98,0,6,2,7) 

163 (81,1,9,0,3) 

167 (82,0,2,7,4) 

171 (82,1,6,1,4) 

175 (83,1,3,2,5) 

179 (84,1,0,3,6) 

183 (85,0,5,1,7) 

187 (88,0,0,1,10) 

191 (91,0,15,4,0) 

195 (91,1,11,4,0) 

199 (91,2,11,1,0) 

203 (92,0,0,14,1) 

207 (92,0,16,2t 1) 

211 (92,1,12,2,1) 

215 (92,3,0,5,1) 
. 

. 219 (93,0,5,9,2),, 

223 (93,1,1,9,2) 

227 (93,2,1,6,2) 

231 (93,3,5,0,2) 

235 (94,0,10,4,3), " 

239 (94,1,10,1,3) 

243 (95,0,3,8,4) 
. 

247 (95,1,7,2,4) 

251 (96,0,8,3,5) 

255 
(96,1,8,0,5) 

259 (97,0,1,7,6) 

263 (97,1,5,1,6) 

267 (98,1,2,2,7) 

112, 

164 (81,2,1,3,3) 

168 (82,0,6,4,4) 

172 (82,2,2,1,4) 

176 (84,0,0,6,6) 

180 (84,1,4,0,6) 

184 (85,1,1,1,7) 

188 (91,0,3,13,0) 

192 (91,0,19,1,0) 

196 (91,1015,1,0) 

200 (91,3,3,4,0) 

204 (92,0,4,11,1) 

208 (92,1,0,11,1) 

212 (92,2,0,8,1) 

216 (92,3,4,2,1) 

220 (93,0,9,6,2) 

224 (93,1,5,6,2) 

228 (93,2,5,3,2) 

232 (93,4,1,0,2) 

236 (94,0,14,1,3) 

240 (94,2,2,4,3) 

244 (95.0,7,5,4) 

248 (95,2,3,2,4) 

252 (96,0,12,0,5) 
256 (96,2,0,3,5) 

260 (97,0,5,4,6) 

264 (97,2,1,1,6) 

268 (99,0,3,3,8) 
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269 (99,0,7,0,8) 

273 (100,1,0,1,9) 

277 (104,0,4,14,0) 

281 (104,0,20,2,0) 

285 (104,1,12,5,0) 

289 (104,2,8,5,0) 

293 (104,3,8,2,0) 

297 (105,0,1,15,1) 

301 (105,0,17,3,1) 

305 (105,1,9,6,1) 

309 (105,2,5,6,1) 

313 (105,3,5,3,1) 

317 (105,5,1,0,1) 

321 (106,0,14,4,2) 

325 (106,1,10,4,2) 

329 (106,2,10,1,2) 

333 (107,0,3,11,3) 

337 (107,1,3,8,3) 

341 (107,2,7,2,3) 

345 (108,0,8,6,4) 

349 (108,1,4,6,4) 

353 (108,2,4,3,4) 

357 (108,4,0,0,4) 

361 (109,0,13,1,5) 

36S (109,2,1,4,5) 

369 (110,0,6,5,6) 

373 (110,2,2,2,6) 

270 (99,1,3,0,8) 

274 (101,0,1,2,10) 

278 (104,0,8,11,0) 

282 (104,1,0,14,0) 

286 (104,1,16,2,0) 

290 (104,2,12,2,0) 

294 (104,4,0,5,0) 

298 (105,0,5,12,1) 

302 (105,0,21,0,1) 

306 (105,1,13,3,1) 

310 (105,2,9,3,1) 

314 (105,3,9,0,1) 

318 (106,0,2,13,2) 

322 (106,0,18,1,2) 

326 (106,1,14,1,2) 

330 (106,3,2,4,2) 

334 (107,0,7,8,3) 

338 (107,1,7,5,3) 

342 (107,3,3,2,3) 

346 (108,0,12,3,4) 

350 (108,1,8,3,4)- 

354 (108,2,8,0,4) 

358 (109,0,1,10,5) 

362 (109,1,1,7,5) 

366 (109,2,5,1,5) 

370 (110,0,10,2,6) 

271 (100,0,0,4,9) 

275 (102,0,2,0,11) 

279 (104,0,12,8,0) 

283 (1(4,1,4,11,0) 

287 (104,2,0,11,0) 

291 (104,3,0,8,0) 

295 (104,4,4,2,0) 

299 (105,0,9,9,1) 

303 (105,1,1,12,1) 

307 (105,1,17,0,1) 

311 (105,2,13,0,1) 

315 (105,4,1,3,1) 

319 (106,0,6,10,2) 

323 (106,1,2,10,2) 

327 (106,2,2,7,2) 

331 (106,3,6,1,2) 

335 (107,0,11,5,3) 

339 (107,1,11,2,3) 

343 (108,0,0,12,4) 

347 (108,0,16,0,4) 

351 (108,1,12,0,4) 

355 (108,3,0,3,4) 

359 (109,0,5,7,5) 

363 (109,1,5,4,5) 

367 (109,3,1,1,5)' 

371 (110,1,2,5,6) 

272 (100,0,4,1,9) 

276 (104,0,0,17,0) 

280 (104,0,16,5,0) 

284 (104,1,8,8,0) 

288 (104,2,4,8,0) 

292 (104,3,4,5,0) 

296 (104,5,0,2,0) 

300 (105,0,13,6,1) 

304 (105,1,5,9,1) 

308 (105,2,1,9,1) 

312 (105,3,1,6,1) 

316 (105,4,5,0,1) 

320 (106,0,10,7,2) 

324 (106,1,6,7,2) 

328 (106,2,6,4,2) 

332 (106,4,2,1,2) 

336 (107,0,15,2,3) 

340 (107,2,3,5,3) 

344 (108,0,4,9,4) 

348 (108,1,0,9,4) 

352 (108,2,0,6,4) 

356 (108,3,4,0,4) 

360 (109,0,9,4,5) 

364 (109,1,9,1,5) 

368 (110,0,2,8,6)- 

372 (110,1,6,2,6) 
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APPENDIX D 

Additional Background Material 

Although the methods used are group-theoretic (except for the argument on 

pp 69-70), it is important to realise that the groups 1' and 4a can be viewed 

in a variety of ways. In this appendix, we discuss these ways and indicate 

bow they relate. 

1. Geometry. 

The group PGL2(! R) acts on the extended complex plane (C U (oo )) in the 

following way : 

ab az +b [Ic d (z) 
cz d' 

with the obvious modifications when z= CO or cz +d=0. The map is 

orientation-preserving (resp. reversing) according as ad - be is positive 

(resp. negative). 

The subgroup of orientation-preserving is PSL2(U). This acts on the 

upper half-plane :HzEC: Im(z) >0}. 

In fact, it is the isometry group for the Poincare model of hyperbolic 

geometry (the "lines" being vertical Euclidean lines and arcs of Euclidean 

circles orthogonal to the real axis). 

Our groups r and do and their subgroups are Fuchsfan groups (i. e. act 

discretely on H). It is thus possible to choose a set of representatives of 

the orbits in a "nice" way, viz we have a closed connected set Do for 0 such 

that 

(1) VzEH, awE Do, gEß with g(w) Z. 
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(2) If z, wE Dä, z*w, then there is no gE0 with g(w) = z. 

(Here X° denotes the interior of X). 

With care, we can choose Da to be a hyperbolic polygon. From (1), (2) 

above, we note that it is possible for an element of 0 to map boundary points 

of D0 to other boundary points. In fact, 0 is generated by such elements, and 

a presentation can be obtained in this fashion. (In this there is one 

generator for each pair of edges identified by a g, and one additional one). 

If we identify the sides of Da as suggested by the g above, then we get a 

Riemann surface of some genus p. 

Example r has Dr as shown 

1 
-Z +iß3 

B/1 . 
43 

2ACs f'z 

z: Z -4 Z+1 identifies the vertical edges, 

x: Z -4 -1/Z identifies the arcs AB, BC. 

It is easy to see that x2=10 y3' 1 where p= tu-1 and we have the 

presentation 

< X, y, Z: xz = y3 a xyz so 1>. 

The "fundamental domain" shown in the Introduction" is for the group 

generated by reflections R2, R3, R These are orientation-reversing, so 

generate a group 4n PGL2(R). 

We call this the extended (2,3, n)-triangle group. The name "triangle group' 

comes from this picture. 

Our group 4 consists of all the orientation-preserving elements of 4 
n 

(so comprises the products of an even - number of RI). It is clearly generated 

by x= RaR3, y= R2R., z= R2R3 (ý yx) of orders 2,3, no 
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If 0 is a discrete group, and Ha subgroup of index u in Q, then we may 

take as DH a (connected) collection of u images of D0. In particular, if C3 is 

1' or 4n, then the images of Da triangulate the surface obtained from DH. 110 

"genus formula" is just the usual formula which computes the Euler 

characteristic using a triangulation. 

Since 4n has index 2 in 4 
n, 

we can take a fundamental domain DA 

B 

zx 

X( 1t 
33 

ADC 

where ABD is a domain for Ao (with angle z at D) and BDC is the reflection of 

ABD in BD. 

Now suppose that 0s 4n has index u. Then we may take Da as u images of 

D4 
Q. 

The elements "g" which identify the sides of Da are of two types : 

(1) g identifies an adjacent pair of edges of Da. Then g fixes the common 

vertex V (obviously 4a-equivalent to A, B, C or D). The order of g is then 

(a) 2 if V. D 
(b) 3 if VMA or C 

(c) k (where kin) if V-B. 
_, 

In the last case, Da has ° copies of Dd 
n 

at V so angle is 2X 
. 

(2) g identifies a pair with at least one - edge intervening in each direction, 

Then there is a "companion" gC0, where g identifies a pair Interlocking 

those for e. 

. ". 
r8 

. ,v 

(the dotted lines denote a sequence, possibly null, of edges of Da) 
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After a bit of rearrangement, we get a presentation 

<N 
AI 

Ä!, 
..., 

xe, y}, 
..., 

ye lit 
..., `, 

sit Sit 
..., 

gP, gn 

231a 
xi = y, a ZiA> =1TxiHy, Hz1JTlgmºgm] > i") 

where [a, b] denotes the commutator, and each k(1) is a divisor of n. 

NB (1) The constants e, f, p are those in the genus formula. 

(2) The "h" is the b for the associated subgroup of level u in r. 

(3) The 
k--ý are the cusp-widths for the associated subgroup. 

2. Group Theory. 

Here we stick mainly to r, since the group structure is simpler. We have 

r= c2xc3 
where x denotes the free product. Standard result then shows that each 

subgroup ß has the form 

GIm Czx... xCzxC3x... xC3xC(»x... xC00 

Here, e and f are as usual, and t- 2g +h-i. 

With care, h and the cusp-widths can be recovered (there are h conjugacy 

classes in ß which are 1-conjugate to <zm> for some m, etc. ). 

NB This is not a particularly nice way to obtain the genus formula, or the 

standard presentation (*). 

It is not so easy to deal with 4 in this fashion; it is easier to recaU 

that 4a is a homomorphic image of r and handle it this way. 

3. Complex Analysis. 
N 

Here we again use the action of a discrete group 0 on C "" CU{ co ), 

We say that f is an automorphic function for 0 if 

(1) Vz6C, SEß, f(g(z)) - f(z) 
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(2) f is "analytic" (with suitable definitions at co). 

Clearly, the automorphic functions for 0 form a field Ca. If Hý0, then each 

automorphie function for 0 will be automorphic for H (see (1) above), so CH 

will be an extension field of Ca. In fact, if H has index u in 0, then CH is 

an extension of degree u of C0. 

Once again, the genus formula can be recovered by looking at how CH 

ramifies over Ca. In general, this is not an attractive way to obtain e, f, 

etc.! 

One special case we use is that when the group 0 has genus 0. In this 

case, the field can be generated by a single function 4, i, e. Ca = C(c). 

Such af is a Hauptmodul. There arc many choices for Z, but each is a 

bilinear transform of any other. The situation we meet in p69 is where a has 

genus 0, and has index u in 1'. Let j denote the usual Hauptmodul for 1' 

(normalised so j(1 ±14 3) 0, j(i) = 1728, j has a pole at, co), and let 
22 

denote a Hauptmodul for 1'. As in [1], since jE Co = C(C), 

j ý. 
P:. 
Q(') 

where P, Q are polynomials, aP, öQ u, and at least one is of degree u. 

The ramifications must be over points where j 0,1728 or, co and so must 

correspond to factorisation of P (j = 0), P- 1728Q (j = 1728) 
' 
or Q (j "" co). In 

this case the "genus formula" is quite easy to obtain., 

Footnote If 0sF is of index u, let 
- 
c(G) denote the intersection of all 

conjugates of G. Then, 

(1) c(G) is the largest subgroup of 0 normal in T. 

(2) c(G) has index at most u! (i. e. finite) which can be seen by looking at 

action on cosecs. 

(3) r1c(G) is isomorphic to the Calais group of Ca as an extension of Cr 
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APPENDIX E 

In this Appendix we define n (a) and describe composition of diagrams. 

1. n(a) 

A diagram with specification (u, p, e, f, g), which has n pairs of red points 

which are separated by a green lines in some direction, is defined to be n(a). 

For example, the diagram on p6 for B with specification (66,0,14,0,0) can 

be described as 5(1) 2(2), since there are rive pairs of red points which 

would each be separated by one green line, and two pairs of red points which 

would each be separated by two green lines. 

2. Composition 

(i) 1-composition (where the two diagrams to be composed each have a triangle 

with two red points) 

Recall :A green line is obtained by following a blue line, then a red line. 

A green line will be represented thus : --- -- -. -- -- ' 

i 

lý 

i 14 

4 

Segment of diagram A Segment of diagram B 

Vertices 1 and 2 in diagram A, and vertices 1' and 2' in diagram. B, are red 

points (loops). 

We now demonstrate 1-composition of diagrams A and B. 
. 
The red points are 

unravelled and then vertex 1 (resp. 2) is joined with vertex 2' 
. 
(resp. Z'). 
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11" "'' 

The green cycle from diagram A only is shown here, 

Notes : (1) One green cycle in each diagram is affected. Two green lines in 

each of these cycles pass through a vertex from the other diagram, but the 

cycle lengths remain the same. 

(2) No other green cycles are affected. 

(3) Alternatively, we could have composed diagrams A and B by reversing the 

orientation of all the triangles in either A or B, and then joining vertex 1 

(resp. 2) with vertex 1' (resp 2'). 

(ii) 2-composition (where the two diagrams each have a pair of red points 

separated by two green lines) 
r 

ý) IT 

. 01 

tZ 

Z. ill - 

Segment of diagram A Segment of diagram B 

Vertices 1,1', 2,2' are red points. 

We can 2-compose diagrams A and B by joining I with 2, and 2 with 1', 

%ft 00 
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Only the green cycle from diagram A is shown in the composition. 

Notes : (1) One green cycle in each diagram is affected. Three green lines in 

each of these cycles pass through new vertices, but the cycle lengths remain 

the same. 

(2) No other green cycles are affected. 

(3) Alternatively, we could have composed diagrams A and B by reversing the 

orientation of all the triangles in either A or B, and then -joining vertex 1 

(resp. 2) with vertex 1' (rasp 2'). 

We have shown cases where two separate diagrams are composed. It is not 

difficult to see that cycle lengths 
. will also be preserved if we compose 

within a single diagram. This is even true when all vertices affected lie In 

a single cycle. 
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