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ABSTRACT

Fatigue failure is generally the result of crack initiation at a

surface followed by stable crack propagation leading finally to

unstable fracture. The total fatigue life is often a random variable

due to the randomness of fatigue loading. the variability of

material properties and the final failure conditions. Fracture

mechanics provides a rational description of fatigue. based on which

an analytical method has been developed for assessing the

reliability of components under random loading. This method can be

used for predicting the distribution of crack lengths after a given

number of fatigue cycles have been applied to a initial crack; the

distribution of the number of cycles needed to grow a crack to a

specific length; or the distribution of fatigue lives terminated at

a random final crack length.

In order to assess the fatigue reliability of tubular welded joints.

the stress intensity factors of surface cracks have been determined

by shell analysis with the cracked section modelled by line springs.

The surface cracks are generally subjected to mixed mode loadings

and the line spring method allows the stress intensity factor for

individual modes to be assessed separately. The applicability of the

line spring method to stress concentration areas has been verified
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in plane strain T joints, which has provided the confidence to apply

this method to tubular welded joints. The calculations are compared

with available experimental data.

The fatigue life distributions of a tubular welded T joint for three

loading modes have been predicted based on an assumed initial crack

length. The S-N curve produced from the analytic prediction compares

favourably with experimental data in terms of an equivalent hot spot

strain range. In the cases studied, the hot spot strain range is

seen to be a reasonable but not very accurate parameter for

determining fatigue life. In conclusion, fracture mechanics has been

demonstrated to be a valid and important method for predicting the

residual fatigue life of damaged tubular welded joints.
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NOTATION

a crack length.

ao initial crack length.

ac critical crack length.

af final crack length.

c compliance, or "critical" or "correction" if used as a

subscript.

d a locally defined value or a nodal displacement.

e, exp exponential.

erf error function.

eff subscript for "effective".

f frequency, or any function, particularly the geometric

calibration function for the stress intensity factor of
cracks.

h relative frequency of realising an event, or the

subscript for "hot spot".
i,j integers.

k an integer, for number of repetitions.

1 length, or used as subscript to indicate "the logarithm
of" (In).

• subscript for "mean".

Cm) element stiffness matrix.

0·3



mn the nth moment of a power spectrum.

max subscript for "maximum".

min subscript for "minimum".

n one of the constants describing the material resistance

to fatigue crack propagation.

p

Px(y)

subscript for "opening".

probability density function.

this form of notation is for a probability density

function initially in terms of x which is replaced by y

P probability density function represented as a vector.

op

r radius, or the length of a plastic zone, or the stress

ratio: r=Smin/Smax.
s subscript for "stress".

t thickness or time.

u displacement in x direction.

v displacement in y direction.

w displacement in z direction, or work, or weight

function.

x a variable or a random si~nal.

y a variable.
z a variable or a complex variable: zcx+iy

A area.

B thickness of a three point bend speci.en, or a random

event.

Cc locally defined correction factor.

C. Ct. Cz••
constants used locally for describing different
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theories.

D fatigue damage.

E[ ] "the expectation of".

E Young's modulus.

F force.

G power spectrum. or elastic energy release rate.

Go a specific power spectrum value.

H Fourier transformation. or the hight of a tubular T
joint.

In[ the elliptic integration of the second kind.

K stress intensity factor.

KI.KII.KIII
the stress intensity factors for the three basic

cracking modes.

a matrix, particularly the global stiffness matrix.

the nth moment of stress range distribution.

number of fatigue cycles, sometimes used as subscript.

minimum fatigue life in terms of fatigue cycles.
cumulative distribution function.

the probability of a random event.

autoco-orelation function or resistance to cracking.

the ith differential of an autoco-orelation function.

plastic zone size.

stress range, or a particular stress if a subscript is

used.

So yield stress.

L

M

[M]

N

P

Pr

Ro

s

a relative crack length index.

moment.
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Sa stress amplitude.

U energy or the parameter defined by Eq 10.53.

v, VI' Vz

variables used locally in the text for describing

different theories.

Var variance.

W width.

Z a complex function or defined by Eq 10.47.

« a material constant representing the material

resistance to fatigue crack propagation, sometimes used

as a subscript.

o a root mean square value, particularly the root mean

square of random stress histories.

power spectrum width parameter.

norMalised stress range: o=S/o.

distance for a point in a plane crack to the crack

front.

fI 3.1416

tAl

a,.

Y,T,tJ

v

E

n

p

r.lI.sof Sn.

mean.

the lIeanof Sn.

the parameter defined by Eq 10.5.

angular frequency.

angles.

geometric paralleters of tubular joints.

Poisson's ratio.

Dirac's function or "increment"

O.b



• stress function.

6 "range of", or "increment of", or critical damage index

r Gamma function or an arbitrary curve.

t summation.



INTRODUCTION

Many engineering structures. such as the oil rigs in the North Sea

are subjected to random loading. In these cases, fatigue is a main

cause of damage and final collapse. As more materials are used in

severe environments, the ability to understand fatigue mechanisms

and predict the fatigue life is essential to improve human safety

and equipment reliability while using less material to obtain

economic benefits. In the case of offshore platforms, the integrity

of the structure as a whole is dependent on the reliability of its

joints. It is the object of this thesis to analyse the fatigue

behaviour of one common type of joint under realistic random

loadings. Although the work is concentrated on a single type of

joint, the method of analysis is general and can be easily applied

to other joints and geometries.

The fatigue life depends on lIany factors: loading: temperature;

environ.ent: as well as the geometry of the structure and the

material properties. Currently, there is no single comprehensive

analysis which accounts for all the relevant factors. An appropriate

way to tackle the problem Is to consider the parameters

individually.
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Loading is always considered. There are two main types of fatigue

loading: constant amplitude loading and random loading. The former

usually has a single frequency and constant amplitude cycles. The

later can be related to the former in terms of cycles which are

defined on the basis of equivalent fatigue damage. The amplitude of

the cycle in this case is random and can only be described

statistically. The distribution of cycles can be obtained from

measurements of the real or simulated random loading, although a

more efficient way to achieve this is to use power spectral
analysis.

In practical engineering situations, it is arguable that random

loading occurs more frequently than constant amplitude loading.

However, constant amplitude fatigue tests provide a basis for a

fundamental study of fatigue. Such tests can determine the relation

between the applied amplitude of the loading and the fatigue life,

which is known as the S-N curve. The conventional method of dealing

with the problem of random fatigue assesses the damage associated

with each cycle in the random loading by reference to the S-N
relation. Fatigue damage is accumulated linearly with time and is

thus used to predict the fatigue life of the structure.

Unfortunately this method sometimes produces inaccurate,

non-conservative results, and as there is no physical basis for the

method, it does not allow an assessment of the residual life by

examining the state of the structure.

The emergence of fracture mechanics provides a aore rational way of

analysing fatigue. In this method, fatigue damage takes the form of
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a growing crack under the fatigue loading, and when the crack

reaches a critical length which is a function of the applied load.

failure is expected. In many structures pre-existing crack-like

defects are almost inevitable and a major part of the fatigue life

is spent in crack propagation. The fatigue life is therefore

determined by the rate of crack growth per cycle which is frequently

expressed as a function of the stress intensity factor range AI{

during the stress cycle

da
dN f(AK)

The stress intensity factor K describes the stress field near the

crack t Ip , therefore the influence of loading. geometry and the

shape of the crack on the growth rate can be quantified through the

stress intensity factor. The determination of the function f is

usually a straightforward experimental problem. but the

determination of the stress intensity factor K is generally a

difficul t task. except for some simple planar situations. For a

surface crack in a tubular welded joint. the stress intensity factor

K varies along the crack front. and a three dimensional analysis is

required. If the finite ele.ent .ethod is used for such an analysis.

a large amount of computer memory and time is needed. which is often

not available for economic reasons. An alternative is to increase

the efficiency of the calculation so that the amount of computer

aemory and time can be reduced. This can be achieved by the line

spring method which enables part through cracks to be modelled in

shell finite element analysis with reasonable accuracy. The

efficiency of the method is enormous because the three dimensional

analysis can be replaced by a shell analysis.



Deterministic predictions of the fatigue life can be produced by

fracture mechanics analysis or by the conventional S-N method.

However, fatigue in offshore structures is usually a random event.

It is not surprising because even under well controlled laboratory

conditions, the variance in crack growth rate has been observed in

small fracture mechanics specimens subjected to simple sinusiodal

loading. In the case of complicated welded tubular joints under

random loading, a wider scatter of the fatigue life is inevitable.

Probabilistic and statistical techniques have been used in

conjunction with the conventional and fracture mechanics methods to

predict life distributions of components under constant amplitude

loading and random loading. Although a number of models have been

proposed, their application is yet to be universally recognised.

A review of the existing methods for assessing the fatigue

reliablli ty of tubular welded joints and their theoretical

foundations is given in Chapters 1 to 9. In planing the work, it was

believed that the variance in fatigue life should be considered, and

a new general method for predicting the random distribution of

fatigue life has been developed and presented in Chapter 10. The

variance due to the randall loading, material properties and the

random final crack length have been considered by this analytical

method. Predictions by this method are in good agreement both with

computer simulatiDns and expe~imental results. In order to apply the

.ethod, the stress intensity factors of selli-elliptical cracks in

tubular welded joints have been evaluated using the finite element

.ethod incorporating the line spring method. The cracks were



desinged to represent a growing fatigue crack which remains at a

position such that the deepest point is always at the original

maximum stress site. A comparison of the calculated stress intensity

factors with experimentally determined values and other numerical

results has been given. In the final chapter. the probabilistic

model for predicting fatigue life distribution has been applied to a

tubular welded T joint. This produced an estimate of fatigue life

distribution of the tubular joint based on an assumed initial crack.

This method is particularly useful for assessing the residual

fatigue life of an existing structure in which cracks are found. As

an illustration. the residual life distribution of the T joint

containing a half through crack has been predicted. The method has

also been used to produce S-N curves for different level of

probabili ty's of survival. which compare favourably with

experimental data.
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CHAPTER 1 STRUCTURAL RELIABILITY

In some engineering problems, the variance in experimental results

or observations is ignored for sillplicity. But statistics must be

considered whenever the difference between individual results

becomes significant in the context of the problem. For example,

failure of some critical coaponents before their expected fatigue

life must be prevented. In this case, fatigue life can be treated as

a random variable and the probability of failure before the designed

life represents the reliability of the components.

SECTION 1 Introduction to Reliability

It is generally recognised that structural failures during service

can not be completely prevented (Ref 1-3). The possibility of

failure of some crucial structures has become a major issue in

engineering. Currently, fatigue life can' not be predicted exactly

and can thus be regarded as a random variable. A random variable can

only be described in terms of probability or statistics, the basic

mathematical principles of these mathematic topics can be found in a

standard text such as that by DeGroot (Ref 4).



The variability in the fatigue life of a structure arises from the

randomness of both the material properties which includes the random

distribution of any pre-existing cracks and the applied loading. The

effect of environment is also a cause of the random distribution of

fatigue life. Additional uncertainty can result from the imperfect

state of the techniques used currently in design and fatigue life

prediction.

SECTION 2 Quantitive Representation of Reliability

The rel1abili ty of a structure or component can be quantlf ied in

terms of the probability of failure. Let B denote a failure event

for which the life of a certain component is less than a given time.

The likelihood that this event occurs can be estimated by conducting

experiments then determining the ratio of the number of times NI in

which failure happens during the specific period and the total

number of specimens N tested. This ratio is known as the relative

frequency h

h (1.1 )

The relative frequency approaches the probability when the number of

such experiments is infinite

11m h[B]" 11m
N~= N~~

Pr[B] (1.2)

where Pre ] indicates "the probability of".
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It is convenient to introduce the concept of a random variable when

studying the probability of an event. Depending on the nature of the

problem, random variables can be continuous or discrete. Let x be a

random variable representing the life of a coaponent and X be a

specific value of x. Since the event B includes all the cases in

which failure occurs before the specified period of loading is
completed, it .ay be represented as x£X.

The probability Pr[x£X] is known as the cumulative distribution

function P(x) which gives the total probability distributed in the
region -m up to X

x=X
Pr[B] = P(x) = J-m p(x) dx (1. 3)

p(x) is the probability density function which is always greater or

equal to zero. Its relation with the cumulative distribution

function can also be presented in the form

dP p(x) dx (1. 4)

From Eq 1.3, it can be seen that the probability of failure depends

on the fatigue life distribution and the given time. As an example,

the Weibull distribution (Ref 5) is considered in which the fatigue

life is expressed in terms of a number of cycles.

p(N) ..
- (

(1. 5)e

where No is the lIinilllulIlife, C and 15 are parameters chosen frail



curve fitting on the experimental results. In this simple situation,

the probability of failure at less than a given life N is the

cumulative distribution P(N) as shown in Fig 1.1

N-N CN - (~)
P(N) = J p(N) dN = 1 - e ~

No
(1. 6)

Furthermore, the reliability function is defined as the probability

of survival P(Nlsurvival) (Ref 6) which is simply 1-P(N)

P(Nlsurvival) e

N - N C_ ( __ --"0)
~ (1. 7)

In order to quantify the probability of failure during a particular

period, the failure rate, sometimes known as the hazard function can

be introduced. For the period between Nth and (N+l)th cycle, the

hazard function H(N+l) for the Weibull distribution is

H(N+l) 1 - Pr(survival at N+llsurvival from No to N)

1 -
Pr(survival from No to N+l)
Pr(survival from No to N)

1 - e

(N+I-No)C - (N-No)C
(~ - No)C (1. 8)

SECTION 3 Formulation of Reliability Assessment

In the view of probabilistic fracture mechanics (Ref 3), structures
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contain inherent cracks or crack 1ike defects of different sizes.

The failure condition can be represented by a crack of a critical

length ac which is a statistical function of the external loading.

The chance of realising the condition a~ac is the chance that the

structure fails. For fatigue situations, the distribution of crack

lengths changes with time due to crack propagation, and thus the

reliability of the structure declines as it remains in service.

However, the basic technique for reliability assessment starts by

looking at the probability of failure at a given time and

incorporates the decrease of the structural strength (Ref 7). It

works in terms of the strength Q and load Sr. Let the strength and

load have distributions of p(Q) and p(Sr) respectively, for the case

that the strength is between Q and Q+dQ, the probability of failure

is

Pr[failureIQ} = P(Q)dQJ~m p(Sr) dSr (1. 9)

The probability of failure at a time includes all the possible

states

J
+ex>Jex>Pr[failure} = -m Q P(SL) p(Q) dSL dQ (1. 10)

as shown schematically in Fig 1.2.

It can be seen that the distributions of the structural strength and

the loading are essential requirements for any reliability analysis.

The probability density function or the cumulative distribution

function describes the random variable completely. Unfortunately, it

10



is often very difficult to obtain such information experimentally,

since an infinite nu.ber of tests are required; and analytically. it

is possible only in very simple cases. In practice. characteristic

parameters are often used which describe the important features of

the distribution. Perhaps the most important parameter is the mean.

If y=f(x) and the possible values of x are Xl. X2 xk. the
mean of y is

E[Y) limN....,
f(xl)NI+f(x2)N2+ f(Xk)Nk

N

(1.11)

where E[ ) indicates "the mean of" and NI. N2 ... are respectively

the numbers of occurences of the k different values Xl. X2 '" in

the total of N experiments. An integration can be applied when x is
continuous

E[y) J:: f(x) p(x) dx (1.12)

The mean measures the central location of a distribution (Fig1.3)

whereas another important parameter. the variance Var[x) measures

the concentration about the mean

I+oo 2Var[x] = _.., (x - E[x]) p(x) dx (1. 13)

Often, the root mean square is preferred. which is defined as

o = ,/Var[x] (1. 14)

A small root mean square or r.m.s indicates that most occurrences of

"



the event occur close to the mean value. In general. both the mean

and variance are special cases of the nth moment Mn about a given

value X

Mn E[ (x_X)n ]= J:: (x - X)n p(x) dx (1.15)

When x=o and n=l. the moment is the mean; when X=E[x] and n=2. it is

the variance.

It is a common practice to assume that the distribution of load or

strength has a particular form based on experience. The distribution

is then completely determined using characteristic parameters

obtained experimentally. A popular form is the normal or Gaussian

distribution (Fig 1.3) whose probability density function is

p(x) 1 ] (1.16)
,/ ( 211) 0

where ~ is the mean and 0 is the r.m.s of the random variable x. The

cumulative distribution function is

(x 2

J:oo
1 exp[ -

- ~)
] dxp(x)

"I (211) 0 22 0

1 x - ~
[ 1 + erf( ) ] (1.17)

2 ,,12 0

where erf( ) is defined as

2
dx (1. 18)erf(X)

Ii



which is called the error function and is tabulated in many

handbooks (Ref 8).
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CHAPTER 2 RANDOM LOADING

Fatigue occurs in materials subjected to alternating stresses which

often comprise a random stress history. A random stress history can

be described by its statistic or probabilistic characteristics

efficiently. Experiments (Refs 9 and 10) have shown a close relation

between the fatigue life and some of the probabilistic

characteristics of the fatigue loading, thus it is important to be

able to analyse fatigue loadings and obtain the relevant statistical

information.

SETCTION 1 Introduction

In the offshore industry, it is usual to record the stress history

x(t) at specific points of the structure for maintenance and

research purposes. Each time history is regarded as a sample and

there is theoretically no limit to the number of samples that can be

taken. A random process consists of all such samples which are

collectively known as an ensemble (Fig 2.1).

However, when dealing with a random process, it is much more

convenient to take one of the samples as being representative of the

process as a whole, and this is appropriate only when the process is



ergodic, i.e. when any statistical characteristic measured along any

of the samples is the same as that measured across the ensemble. In

addition. some processes are called stationary. in which the

statistical characteristics across the ensemble are independent of

time. An ergodic process must be stationary while a stationary

process is not necessarily ergodic. Stationary processes should be

infinitely long having neither starting point nor end point,

otherwise they will depend on time at those points. In an

engineering sense, this condition is interpreted as "reasonably

long". depending on the context of the problem. In the following

text. random processes are assumed to be ergodic. if not otherwise

stated.

Further description of a random history requires the evaluation of

the mean, the root mean square and other characteristic parameters.

This can be achieved from a knowledge of the probability

distribution of the random variable. The probability density

function p(x) of a random variable is defined so that at an

arbitrarily chosen time, the probability of x(t) falling between X

and X+dx is given as (Fig 2.2)

P[Xt,xt,X+dx] p(x)dx =
tll.t
T

(2.1)

where tll.tis the sum of all the periods x(t) spends between X and

X+dx during the total time range T. If the probability density

function p(x) is known. the mean. root mean square and other moments

can be calculated according to Eqs 1.11 to 1.15.
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SECTION 2 The Spectral Density of Random Processes

An essential concept in the analysis of random processes is the

representation of a time history by the sum of an infinite number of

sine or cosine functions with random phases.

x(t) iIi. t Ci(coswi t - 0i)
i...... i=1

(2.2)

where 01. Oz 0i are independent random phase angles. Cl. Cz
...... Ci amplitudes and WI. Wz •..... wi angular frequencies.

2 11 i t:.f (2.3)

t:.f is the frequency difference between the harmonic components which

can be arbitrarily small. Based on this. S.D. Rice (Ref 11) and

later Cartwight and Longuet-Higgins (Ref 12) have established many

significant results. It was assumed that 0i is uniformly distributed
between 0 and 2". The amplitudes of the harmonic components Ci can

be determined through the power spectrum of the process G(f)

(2.4)

when t:.f is very small. A physical interpretation of the result is

that. if the random signal is a current flowing through a unit

resistance. the dissipated power arising from the components having

frequencies between fi and fi+t:.fis given by G(f)t:.f.The difference

between the samples of an ergodic random process is entirely due to

the random phase angles. whi Ie the power spectrum for t.hea is the

same.
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The relation between a random process and its power spectrum can be

illustrated in another way. This utilizes the autocorrelation

function which was first introduced by Taylor (Ref 13). The

autocorrelation R(T) of a randoa history is the average of the

product x(t)X(t+T), i.e:

R (T) = E [ x (t) x (t+T) ] (2.5)

where T is the ti.e gap between the sa.pling points. It is obvious
that

R(O) (2.6)

and

R(-T) (2.7)

S.D. Rice (Ref 11) has described the relation between the

autocorrelation and the power spectrum, as well as showing that the

Fourier transformation of the autocorrelation is identical to the

power spectrum. The Fourier transformation H(f) of a function x(t)

can be defined in complex form as

H(f) (2.8)

H(f) exists when

(2.9)

The coordinates for the magnitude of the signal can be adjusted so

18



that the mean of the signal is zero and the autocorrelation function

satisfy the above condition. The power spectrum can be given by

G(f) (2.10)

or

G(w) (2.11)

Since R(T) is a even function of T, the imaginary part of the right

hand side of the equation vanishes. The autocorrelation function can

be regained by an inverse Fourier transformation

1 coJ G(w) e iWT dw-- (2.12)
."

SECTION 3 Narrow Band and Broad Band Random Processes

A random process whose power spectrum occupies a narrow band of

frequencies 6f is naturally called a narrow band process. If the

frequency range occupied is considered to be large, the process is

known as broad band random. Furthermore, in the extreme case, if the

power spectrum covers the whole range from 0 to +co uniformly, the

process is called "white noise". In practice, narrow band processes

occur when a lightly damped structure is excited by a large band of

frequencies, and broad band processes are intermediate situations

between narrow band processes and white noise. Two typical examples

of narrow and broad band random histories are illustrated with their
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corresponding power spectra in Fig 2.3. It can be seen that in a

narrow band random history, there are clearly defined cycles and a

dominant frequency, which does not exist in broad band random

signals. The property of these random processes is very well

demonstrated in the following artificial situation (Ref 14). Suppose

a narrow band spectrum has a uniform height Go (Fig 2.3b)

G = [
Go Wl~ W /owz

(2.13)
o

The corresponding autocorrelation function is

2
1_ SIDOR(T) n G(w) COSWT dw

2Go cos( Wl+WZ)T sine WZ-Wl )T
1fT 2 2

(2.14)

For white noise, that is Wl=O, Wz ~ ID

lim sinwzT
1f T (2.15)WZ~ID

Following the argument in Ref 14, the autocorrelation function for

white noise is finally expressed as

1

2
(2.16)

where OCT) is the Dirac's delta function (Ref 15), which is zero

everywhere except at T=O where it is infinite in a way such that

1 (2.17)
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It can be concluded that for a narrow band random process, there is

a strong correlation when T is close to times of half mean period

2.../ (Wl +wz), while generally the correlation decays as the time T

becomes large. But for white noise, there is no correlation (R=O)

except at one point T=O. The correlation functions for both

situations are shown in Fig 2.4.

SECTION 4 The Distribution of Peaks and Cycle Counting

2.4.1 The Peak Distribution in Narrow Band Random Loading

The distributions of peaks, maxima, and level crossings are

frequently of interest in engineering. It has been shown (Ref 12)

that for a narrow band random process, if the p.d.f of the signal

x(t) is Gaussian, the distribution of peaks S. is

exp( - (2.18)

which is the well known Rayleigh distribution. Here 0 is the r.m.s

of x (t). The range S of a cycle can be assumed to be twice the

magnitude of the peak. In a normalised form

S (2.19)n =
o

the distribution of n is
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n
2

np(n) exp ( - (2.20)4 8

2.4.2 Cycle Counting

In broad band processes, however, cycles are not clearly defined. A

nu.ber of cycle counting methods have been proposed to allow broad

band loading to be related to narrow band or simple sinusoidal

loadings in terms of fatigue damage (Ref 16-19). Among them, the

rainflow method is popular (Ref 19).

The details of the rain flow method can be found in Ref 16. The

broad band random signal is plotted such that the time axis is

vertically downwards, and the lines connecting the stress peaks are

imagined to be a series of pagoda roofs (Fig 2.5). Each rain flow

begins successively at the inside of each stress peak and is allowed

to drip down vertically to another roof. This procedure is continued

until the flow stops when it comes opposite to a minimUlI more

negative than that from which the flow starts. Similarly, if the

flow initiates at a maximum, it stops when it comes opposite to a

maximum more positive than the one at which it starts. For example,

in Fig 2.5, a half cycle begins at peak 4 and stops opposite peak 8.

A half cycle is thus counted between the starting point and the end

point that the flow has covered. The over all rule is that every

part of the stress time history is counted once and only once, thus

a flow must stop when it meets the rain from a roof above. The final

step is to produce a rather artificial random cyclic history from

the half cycles counted.



2.4.3 Fatigue Cycles in Broad Band Loading

Froll the output of any cycle counting method applied to broad band

r-andoa loading. the distribution of cycles can be constructed. If

the cycles are defined in a simple manner such as by peak or range

counting,' analytical expressions for the distributions are
available.

The peak counting method identifies cycles by taking every positive

maxima (or maxima above the mean load) as the peak of a load cycle.

Based on the distribution of maxima by S. O. Rice (Ref 11). the

distribution of cycles has been shown to be (Ref 19 and 21)

2-n

[
8e2 2

p(n)= ~(2u) (I-C) e e + ~(I-e )

2_ 2 n~ (l-e ) 2
n L 2.

-x
n 8 2 dX]e e2

(2.21)

where C is the percentage of negative maxima and E the power

spectral width parameter. Both are defined in terms of moments of

the power spectrum

(2.22)

2 1

2 (0",«=",1) (2.23)«= = [1 - (---) ]mo m4

Generally. the nth moment is given as
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nf G(f) df (2.24)

For the range counting method in which the range of a cycle is

defined to be the rise from a minimum to the succesive maximum or

the fall from a maximu. to the following minimum, J.R. Rice (Ref 2~)

has shown that the average range is the mean of the absolute value

of the differential dx(t)/dt, divided by the mean number of maxima j

per unit time.

E[S] =
E[ I dx

dt (2.25)
which is j

E[S]
(2 )

- R(O) [ 2 11 ] (2.26)
(4)

R(O)

Here R(i) is the ith differential of the autocorrelation function of

the original random signal. An analytical procedure to calculate the

distribution of ranges has also been given in J.R. Rice's work (Ref

22) .

Apart from these analytic expressions, the distribution of ranges in

broad band random loading can be measured exper imentally from the

output of cyc!e counting methods. Different cycle counting methods

generally lead to different answers for a single random signal.

Hancock and Gall (Ref 21) have conducted an investigation into the

effect of cyc!e counting methods including peak, range and rainflow

methods. They suggested that for the ralnflow method, the

distribution of ranges can be approximated by a Weibull function in

which the range S is normalised by the r.m.s. of the stress signa!

24



o.

n "Pen) ~ 1 - exp[ - ( ~2 " ) ] (2.27)

For a given stress signal, " is a parameter defined as

" = (2.28)

Eq 2.28 reduces correctly to the Rayleigh distribution for narrow

band r-andoa loading when the spectral band width parameter E is

zero. However, the authors found that this expression severely

underestimates the number of small cycles when E is large. A better

equation for the distribution of cycles was proposed as

2

Pen) = Cl + (I-Cd [1 - exp[-(~)]) (2.29)

where

1

C = 1 - ( 1 - E2 ) 2
I

(2.30)
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CHAPTER 3 THE CONVENTIONAL ASSESSMENT OF RANDOM FATIGUE

For over a hundred years, a major problem in the design and

maintenance of engineering structures has been random fatigue which

is difficult to analyse because of the complicated nature of the

loading. Engineers have developed a conventional way of assessing

the fatigue life under random loading using Miner's law in

conjunction with S-N curves obtained from tests on small specimens

under constant amplitude loading. The conventional method is still

the basis of engineering design against fatigue today.

SECTION 1 Miner's Law

Despite the fact that random loading frequently occurs in practice,

it is often more convenient to perform tests using constant

amplitude loading. Fig 3.1 shows a typical example of constant

amplitude loading, which has a zero mean and a superimposed

sinusoidal stress. The Figure also indicates the notation which is
to be used henceforth.

Under sinusoidal loading, small smooth specimens may be tested to

determine the relation between the applied stress range S and the

number of cycles to failure N, which often has the form shown



schematically in the S-N curve in Fig 3.2. For some materials, the

life seems to approach infinity when S is less than a critical value

known as the fatigue limit. In practice when N is greater than an

arbitrarily chosen large number, the corresponding S is assumed to

reach a limit under which fatigue failure will not occur.

Fatigue under sinusoidal loading is a simple situation to analyse,

because the description of a loading involves only two parameters,

namely the .ean load and the amplitude. Under variable amplitude

loading, the fatigue life is predicted by referring to that under

constant amplitude loading. Palmgren (Ref 23) and later Miner (Ref

24) have suggested a relation which is now called the Palmgren-Miner

law or simply the Miner's law.

The Palmgren-Miner law indicates that a component experiences an

increment of damage Di when a cycle of range Si is applied

1
Ni (3.1)

where Ni is the life of the component under a constant amplitude
loading in which the stress range is Si. As more cycles are applied,

the damage accumulates linearly, for N cycles of different ranges

n
N
z 0ii=1

N 1
t

i=1 ~
(3.2)

When the damage 0 reaches unity, failure is expected.



SECTION 2 The Application of Miner's Law

In current design codes. such as that of the A.W.S (Ref 25). and the

D.n.V Rules for Offshore Construction (Ref 26). the S-N approach is

used. Its main advantages are simplicity and the fact that no other

proposed rules have been shown to be consistently better than it.

However. in coapar ison with the fracture aecham ce approach. the

shortcomings must be recognized. First of all. Miner's law has no

physical basis. therefore. it is not possible to assess the residual

strength by examining the state of the component. For the same

reason. the original design life of a structure given by Miner's law

can not be adjusted if the environment or the operation method have

been changed during service. Secondly. there is no reason to believe

that a cycle applied at different stages causes the same amount of

damage. Thirdly. in Miner's law. no consideration has been given to

overloads and sequential effects which can play a significant role

in the fatigue process (Ref 27).

The Miner's law approach has been checked against results from

experiments using randoll fatigue loading. Smith and Malme (Ref 28)

and Hillberry (Ref 29) found that Miner's law over-estimated the

fatigue life. while Barsom (Ref 30). Kowalewski (Ref 31) found it

agreed with the experillent results for random loading. Swanson (Ref

32) has collected a large amount of experimental data and shown that

some of the data agrees with Miner's law while the rest does not .
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Probably. the characteristics of the random loading used in the

experiments need to be considered more closely. It has been shown

(Ref 33) that in the case of constant amplitude loading which

includes occasional overloads. the fatigue life is affected strongly

by the frequency of the overloads. The fatigue life is longer than

the Miner's law prediction~when the interval for occasional overload

is more than 10· cycles, but shorter when the overload occurs every

100 cycles or more often. The usual explanation is based on the

residual stress field. If the overload is tensile, the residual

stress produced by it in the maximum stress areas, where the most

serious fatigue damage takes place. is in inverse sense to the

stress of the following load peaks. A relatively detailed

explanation is considered in Section 5.3 from the fracture mechanics

point of view.

Apart from the objections already mentioned, there are other

difficulties with the application of the Miner's law approach, for

instance, the definition of life N. This is somewhat arbitrary and

may be taken as either fracture or loss of stiffness. The

correlation of the S-N curve obtained from saalI smooth specimen

with the real structure Is also a major practical problem (Ref 34).

SECTION 3 Developments

3.3.1 Considering the Effect of the Mean Load and Overloads

Awareness of the shortcomings of the S-N curve approach has led to
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attempts to produce a better correlation between cyclic loading and

the fatigue life. S-N data can be amended in many ways to

accommodate parameters. such as the mean stress which is often

represented by the stress ratio r

r = (3.3)

where Smin and SlIax are the minimum and maximull respectively in a
stress cycle. One of the proposed formulae for assessing the mean

stress effect is the "modified Goodman equation" (Ref 35) in which

the range S for a given fatigue life is adjusted by

S

SI 1 (3.4)

Here SI is the fatigue strength for the given fatigue life when the

cycles are fully reversed (Sm=O, r=-l) and So is the yield stress of

the material. This equation is necessarily true at these two points.

When the range is zero, it reduces to

(3.5)

which is the monotonic failure condition: when Sm20.

s (3.6)

which is the definition of SI

As an example of a modifications to the Miner Is law approach to

include the influence of overloads. the Corten-Dolan theory (Ref 36)

may be considered. If Sa denotes the stress amplitude. this theory
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takes the form

N
k Sai d
I ci (--)

i=l Sal

(3.7)

Here, N is the total number of cycles to failure, ci the percentage
of cycles at Sai which is one of the k stress amplitude levels,
correspondingly, Nl is the fatigue life at stress Sal which is the
biggest amplitude which ever appears in the whole life, d is a

mater ial constant. The formula reduces to Miner I s law if the S-N

curve can be expressed as

N Sd = 1 (3.8)

3.3.2 Using Statistical Representation of Random Loading

Based on the assumption that the S-N curve has the form

N sd = C (3.9)

where C is a material constant, Wirshing and Light (Ref 37) have

described a model which aims at predicting fatigue life under either

narrow or broad band loading. No cyclic interaction was considered

and the damage by N cycles was given by

n N (3.10)
C

E [Sd] is the average of S to the power of d. For a narrow band

loading, the distribution of stress peaks is a Rayleigh distribution

and the normalised stress range S/o is given by Eq 2.20, the mean of
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Sd can be evaluated as

.r:SdpeS) dS

= (2~2 old r(~ + 1)
2

(3.11)

r( ) is the Gamma function tabulated in many texts. for instance. in

Ref 8. Let the dominant frequency be fo• the damage during a period

T is Dnb

Dnb (3.12)

A correction number Cc was introduced while estimating damage by

broad band loading Dbb

(3.13)

where Dnb is determined by Eq 3.10 in which the stress ranges are

identified by performing cycle counting on the broad band loading.

The rain flow counting method was used. Cc was found to be a

function of d and the spectral width parameter E. For the best curve

fitting to the experimental results. an empirical relation was
given

(3.14)

where

0.926 -0.033d

1.587 d - 2.323
) (3.15)



3.3.3 Accounting for the Variance in Fatigue Life

The theories described so far have tended to regard fatigue life as

a deterministic value. In fact, fatigue life exihibits variability.

In light of this, Shin and Lukens (Ref 38) and Shin (Ref 39) have

treated the cumulative damage D, called fatigue damage index in

their paper, as a random variable. A critical damage value A was

introduced as a random variable incurred from property differences

of specimens and environmental factors. For convenience in

presenting their results, another value Z was introduced which is

defined as

InZ InA - InD (3.16)

InO and InA are assumed to follow normal distributions thus lnZ also

has a nornar distribution. Failure was defined to occur when the

damage index exceeded the critical damage value A, thus the

probability of failure is

Pr[D~] Pr [lnUD]

1 e,/(2,,)0lnZ

(lnZ-E[lnZ])2
2

2 °lnZ d(lnZ) (3.17)

E[lnZ] and 0lnZ are respectively the mean and r.m.s of the
distribution of 1nZ, which have been expressed in terms of the

distribution parameters of D and A. The final form for the failure

probability was
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Pr (3.18)

where OD and 0A are the root mean square of 0 and A respectively.
The function ~( is the cumulative function of a standard normal

distribution which is a normal distribution with zero mean and unit

root mean square.
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CHAPTER 4 FRACTURE MECHANICS

Structural failure can be due to massive plastic deformation or

plastic collapse which is controlled by the yield stress of the

material. However, failure can also occur at loads much lower than

the limit load owing to the cracks in the structure. In many

engineering situations, cracks can appear as a result of fatigue.

Even the manufacturing process can introduce cracks or crack-like

defects. It is thus important to be able to predict the behavour of

cracks and defects to maintain the integrity of the structure, and

this is the principle purpose of fracture mechanics.

SECTION 1 Cracks in Linear Elastic Materials

A crack can be subjected to three basic forms of loading, namely the

opening mode or mode I, sliding mode or mode II, and the anti-plane

mode or mode I I I (Fig 4.1). Among the three, the opening mode is

most common, and is often the dominant mode in combined modes of

loading.

Westergaard (Ref 40) has studied the stress field of an infinite

plate of a linear elastic material containing a central crack under



remote tensile loading (Fig 4.2). The method of solution is to

construct a stress function which satisfies the appropriate boundary

conditions. Following the notation shown in Fig 4.2, the stress

field around the crack tip was found to be

S~~a 9 9 39
Sx= ~(2r) cos-;-[l- sin-;- sin---2-]

S~~a 9 9 39
cos-;- [1+ sin-;- sin---2-] (r<a) (4.1)Sy= ~(2r)

S~~a 9 9 39
Txy ~(2r) cos-;-sin-;-cos---2-

S~ is the remote stress. The restriction for plane stress or plane

strain applies. i.e.

Sz = Txy o (4.2)

for plane stress and

Sz \I (Sx+Sy) (4.3)

Txy = Tyz = 0 (4.4)

for plane strain. A stress singularity exists at r=O. In fact.

whatever the geometry and loading. the stress at a crack tip has a

singularity of the order l/~r as r approaches zero. Therefore, the

limit

lim J(2~r) Sy(r.O)
r~O+

(4.5)

has a finite value which is called the stress intensity factor. KI



so defined describes the stress field near crack tip for different

geometries and loadings. For the infinite plate in Fig 4.2

RI ..S", .I("a) (4.6)

It has been pointed out (Ref 41) that there is a mistake in the

Westergaard calculation, but this mistake does not affect the

solution of the stress intensity factor or the strength of the

stress singularity. Generally, for any case in which the loading is

represented by a stress Sn, the stress intensity factor can be
expressed as

RI f(_a ) s ( )n .I lTaw (4.7)

where f(a/w) is a general form of a dimensionless function of the

geometry. Expressions of f(a/w) for many cases have been collected

in Refs 42 and 43. For the popular three point bend specimen (Fig

4.3) often used in fatigue tests, KI can be presented as (Ref 44)

F L
__3_

B W 2

5 7
+ 21.8( :)2 _ 37.6( : )2

9
a 2

+ 38.7(--;-) (4.8)

where F is the applied load, B, Land Ware dimensions of the

specimen given in Fig 4.3. In a similar manner, the stress intensity

factors for cracks under sliding mode loading or anti-plane mode

loading have been defined using the r-1/2 singularity of the stress
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field at the crack tip. The stress intensity factors for the three

.odes are known as KI. KII and KIll. They have an energy
significance which arises from an original concept due to Griffiths

(Ref 45). The basic argunent is that as the crack extends in a

brittle .aterial such as glass. elastic energy in the material is

released to create the new crack area which absorbs energy. For
.etals. it has been noted (Ref 46) that a large part of the energy

released is consumed to form a new plastic zone ahead of the crack

as it propagates. Nevertheless. crack extension takes place only

when the energy release rate is greater or equal to the energy

consumption rate. If the elastic energy be Ue and its release rate

G

G (4.9)

the energy release rate G is related to the stress intensity factors

for plane strain by the equation

G

2 2
(l-v )Kl

E
+

2 2
(l-v )KII

E +

2
(1+v)KIIl

E
(4.10)

SECTION 2 KIC and the Validity of Linear Elastic Fracture

Mechanics

The stress intensity factor provides a quantitative measurement of

the effect of the crack through its abi Iity to characterise the

crack tip stress field. However. the whole argument is based on the

assumption of a linear elastic material. which is not possible in
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practice since the stresses Sx and Sy close to the crack tip can not
go to infinity as Eq 4.1 indicates. There must be a area ahead of

the crack tip where plastic deformation occurs as depicted in Fig

4.4. If the material yield stress is denoted So. the radius of the

plastic zone Ro along x axis can be estimated in a concise procedure
(Ref 47). The stress Sy evaluated fro. Eq 4.1 is approxi.ated as

KI (rca. 9=0) (4.11)
"(2 11 r)

A first estimation of the plastic zone in plane stress can be taken

as the area in which the stress given by Eq 4-.11 is more than or

equal to the yield stress So. Since Eq 4.11 represents a situation

in which the equilibrium between the external loading and the the

internal stresses is maintained and the part of Sy(r.O) which is

more than So does not appear in the material. the corresponding part

of the loading has to be carried by other areas. The effect of this

is to spread the plastic area. If the stress distribution profile in

the range Sy (r.0) ~So iss imply shifted away from the crack tip to

give space for the plastic zone. the radius of the plastic zone Ro

along the crack line is easily determined to be

Ro 1
11

(4.12)

for plane stress. For plane strain. the plastic zone is smaller

because of the constraint in the third direction. Usually it is

taken as one third of that in plane stress (Ref 48)

(4.13)
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Since the size of the plastic zone indicates the amount of energy

consumed by plastic deformation, it is not surprising that the

critical stress intensity factor Kc at fracture is lower in plane
strain than in plane stress. The limiting value of the stress

intensity factor for thick plates for which perfect plane strain

condition applies, is a aaterIal constant known as the material

toughness (Ref 49) and usually denoted as KIc. For a valid KIC test,
there are quantative requirements (Ref 50) concerning the specimen

dimensions to ensure that small scale yielding and plane strain

prevails. These requirements are usually defined as (Ref 50)

B (W) 2.5( KSIo )2. a, -a ~ (4.14)

where B. W. are the specimen dimensions. For a bend specimen. the

notation for B. Wand a are shown in Fig 4.3. As long as the plastic

zone at the crack tip is small in respect to the dimensions of the

body, the deformation is dominated by the surrounding elastic field.

For such small scale yielding situation, linear elastic fracture

mechanics is applicable. However, KIc may be affected by mode lIar

mode III cracking when there is a deviant angle of the crack in the
specimen as indicated by Pook (Ref 51)

SECTION 3 Methods for Determining Stress Intensity Factors

There are so many ways for assessing the stress intensity factors

that they can not be exhaustively mentioned here. However, some of

the methods are briefly described and the emphasis is placed on

those methods which are suitable to be applied to surface cracks in

tubular joints. Additional relevant information can be found in a
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paper by Cartwright and Rooke (Ref 52).

4.3.1 Experimental Methods

An obvious experimental approach to stress intensity factors is to

measure the stress or strain close to the tip of a crack. The

photoelastic technique is a popular method among those using this

approach (Ref 53).

An alternative is to measure the stress intensity factor indirectly

by making use of the relation between the compliance c and the

stress intensity factor (Ref 54)

(4.15)

where B is the thickness of the plate containing a crack of length

a. The compliance for several crack lengths needs to be measured so

that ac/aa can be evaluated.

James and Anderson (Ref 55) have proposed a method for determining

the stress intensity factor by using the relation between the stress

intensity factor and the measurable crack growth. This method is

theoretically simple and can be applied to any three dimensional

crack problems when crack growth measurements are possible. However,

it is generally regarded as unreliable (Ref 52) due to the

complicated physical process occuring in fatigue.

4.3.2 Analytic Methods



Analytic methods are most successful in two dimensional problems for

which the Airy function If can be used. The stresses can be given
by

(4.16)

which satisfy the compatability and equilibrium requirements

automatically since the Airy function is a double harmonic function

o (4.17)

The exact form of the Airy function for a particular problea is

determined by applying the boundary conditions. A general forlllof

Airy function for opening mode crack configurations has been

proposed by Westergaard (Ref 40) in terms of a complex function

** *T = ReZ + y ImZ (4.18)

Here Z is a complex analytic function of the complex variable

z=x+iy, and

dZ**

dz Z* (4.19)

dZ*

dz Z(z) (4.20)

Several two dimensional crack problems have been studied using this

form of Airy function. The simplest case is that of a crack in an

infinite plate subjected to uniform biaxial tension Sm (Fig 4.2) for

which the function was given 8S



z = S.. z (4.21)

The stress intensity factor can be evaluated frail the calculated

stress field according to the definition (Eq 4.5). This approach has

been applied to other problems (Ref 56 and 57)

4.3.3 Direct Finite ElellentMethods

The finite element method is a powerful technique in determining

stresses (see Section 3. Chapter 7). A simple and direct approach

for assessing stress intensity factors is to evaluate the stress

distribution near the tip of a crack using the finite element

method. For the opening mode of a plane crack, the stress intensity

factor is related to the stress by the asymptotic solution

KI (4.22)

where fij is a function of 9. The evaluation of the stress intensity

factor can be carried out by substituting the stress and r, 9 and

fij for any point near the crack tip. It has been shown that this

procedure is not accurate when the elements around the crack tip are

not very small (Ref 58).

4.3.4 Elastic Line Spring Method

If a direct finite elellent method is used for evaluating the stress

intensity factor of surface cracks. a three-dimensional analysis is

necessary because of the variation of the crack depth and the



different stress distributions along the crack length. In theory,

the finite eIeaent lIethod lRakes it possible to calculate stresses

and fracture mechanics parameters for any combination of conceivable

geolRetries, cracks and loadings, but there are practical limitations

due to such factors as the computing power and the financial sources

available and efficiency is an important factor to be considered.

AI)"very efficient method is the line spring concept initiated by

Rice and Levy (Ref 59) in 1972. Fig 4.5 is presented to illustrate

the line spring concept for mode I stress intensity factor

calculations. Let the thickness of the plate be T and the depth of

the surface crack vary with the x coordinate, a=a (x). The cracked

section of the shell is modeled by a series of line springs (Fig

4.5C). The response of the line springs to the local loads F(x) and

M(x) can be represented by

[
6(x) ] = [ Cl1(x) C12(x) ] [F(X)]
e(x) C21(x) C22(x) M(x)

(4.23)

where [Cl is the compliance matrix whose elements can be determined

by reference to a simple plane strain strip having a crack of

identical depth of the surface crack at the point concerned. 6(x)

and e(x) are taken as the additional displacements of one end of the

strip to the other due to the presence of the crack. For

convenience, the above equation can be written as

[ :] [ (4.24)

The local loads and moments are now determined by shell analysis.

Rice and Levy also assumed that the stress intensity factor at a
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point in the cracked section is the same as in the reference strip

containing a crack of equal depth. In this case

KI= [ Cl F(x) + Cl M(x) ] (4.25)

where Cl and Cl can be determined from the known value of stress
intensity factor. such as that given by Gross and Srawley's results

(Ref 60).

In order to determine the matrix [Cl. consideration has been given

to the energy balance, from Eq 4.9

G + M ae
aa (4.26)

so,

G dCll
da + 2M F dC12

da
dC22 ]
da (4.27)

Also from Eq 4.10 and 4.25

G
1 - ,,2

E

(4.28)

Comparison of Eqs 4.27 and 4.28 gives the following result

Cll 2T J~ C12 da

C12 C12 = T I~Cl Cl da (4.29)

C22 ..2T I~ C/ da



The line spring method has been utilized (Ref 61) to assess the

opening mode stress intensity factors for semi-elliptic cracks in a

plate. In comparison with a three dimensional finite element

solution (Ref 62), it was found that the method is accurate

(difference less than 3%) in the central part of the semi-elliptical
cracks, whi Le not surprisingly, inaccurate in the two end regions

where the crack front is almost normal to the plate and the line

spring concept has a poor physical basis.

This line spring mode has been expanded to account for mode II and

mode III cracking by Desvaux (Ref 63). Using similar assumptions,

after introducing shear loads and one more moment (Fig 4.6) which

may occur in shells, the canst!tutive relation for the reference

strip is as follows

6Z Cll C12 C13 C14 C15 Fz
ex C21 C22 C23 C24 C25 Mx
6y C31 C32 C33 C34 C35 Fy (4.30)
6x C41 C42 C43 C44 C45 Fx
ez C51 C52 C53 C54 C55 Mz

The notation for this is shown in Fig 4.5, 6y and ex are seen the
equivalents of 6 and e in Rice and Levy I s model. Since the loads

contribute to individual modes of cracking, a number of the

coefficients in the compliance matrix are zero. By considering the

KI, KII and KIll modes separately, the remaining coefficients were

evaluated and the subsequent calculation of KII and KIll was

performed in the same manner of Rice and Levy.
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4.3.5 Virtual Crack Extension Method

The virtual crack extension method is a finite element technique

developed by Parks (Ref 64 and 65). The stress intensity factor is

determined from the Jintegral (see Section 5) which is equal to G,

the potential energy release rate of the solid containing the crack

in linear elastic cases. For plane strain

J - G (4.31 )

The potential energy can be expressed in terms of the global

stiffness matrix [M]. the nodal forces {F} and movements {V} (Ref

66)

1
2

{V}T [M] {V} - {V}T {F} (4.32)

where the superscript T indicates "transpose". The global stiffness

matrix [M] and the nodal forces {f} are related to the coordinates

(see Section 3, Chapter 7). Let the nodes surrounding the crack tip

be arranged in two contours fl and fz and the x coordinate be in the

direction of the crack as shown in Fig 4.7a. The virtual crack

extension can be modelled by moving the nodes at the crack tip and

at the first contour fl in x direction a small distance 6a such that

the elements between the two contours maintain a proper shape (Fig

4.7b). This causes a change in potential energy 6Up which divided by

the crack extension 6a gives the energy release rate

G -~ aa

so



-o{V}T [[M]{V}-{F}] __ l_{V}TO[M]{V}+{V}T ofF]oa 2 oa oa (4.33)

The equation can be reduced since the terms in the first pair of

brackets is zero (see Eq 7.4)

G __ l_{V}T oeM] {V} + {V}T o[F]
2 oa oa (4.34)

If there is no load applied to the crack surface, the second term in

Eq 4.34 is zero

o{F}
oa o (4.35)

The first term can be evaluated by

oeM]
oa

1
oa { [M]a+oa - [M]a} (4.36)

where the subscripts a and a+oa represents the state before and

after crack extension. The global stiffness matrix is dependent on

the individual element geometries, displacement functions and

material properties, which are unchanged after the crack extension,

except in the group of elements between the two contours. Let the

element group be numbered from 1 to k, the potential energy release

rate, and therefore the stress intensity factor can be determined

by

G (4.37)

where [mil represents the element stiffness matrix. {V}T* contains

the corresponding nodal displacements. The biggest advantage of this
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technique is that it avoids solving the global stiffness matrix

twice for the potential energy before and after crack extension.

Application of the virtual crack extension method to three

dimensional problems has been suggested (Ref 64). The change in

potential energy due to a virtual crack extension at a single crack

front node can be used to evaluate the potential energy release rate

for a virtual crack extension of the whole crack. The method is also

applicable to elastic-plastic problems (Ref 65).

4.3.6 Weight Function Method

The weight function method is a popular technique in determining the

stress intensity factor (Ref 67). As illustrated in Fig 4.8, the

stress intensity factor at the crack tip x=a due to a pair of point

forces FQ opening the crack is given as

(4.38)

where w is known as the weight function which depends on the

geometry and the relative position of the force and crack tip. This

can be used to evaluate the opening mode stress intensity factor of

a crack. If in the absence of the crack. the stress along the crack

line is -oz(x,O). the stress intensity factor under this external
loading is identical to the situation when only oz(x, 0) is applied

to the crack faces. The distribution of oz(x.O) can be regarded as

an infinite series of point loadings oz(x.O)dx and the stress

intensity factor is given by an integrating these loads over the

crack surface. For a crack of length 2a



Kr f-: w(x) Oz(X, O)dx (4.3H)

The weight function method has been applied to irregularly shaped

cracks embedded in an infinite solid (Ref 68) subjected to an

arbitrary normal stress field. For this case, it is necessary to

specify the point Q' (Fig 4.9) on the crack front where the stress

intensity factor is calculated.

KQo= ffA w(x, y) oz(x, y)dA (4.40)

where both the weight function wand the internal stress Oz are two

dimensional variables. The problem is to find the generalised weight

function. After considering the weight functions for three

particular cases, i.e. for a circular crack and a semi-infini te

straight crack front in an infinite solid (Ref 43), and for Cl

circular ligament in an infinite cracked solid (Ref 69), Dare and

Burns (Ref 68) have suggested a general form of weight function

wQQ'
1

J1

(4.41)

for the contribution to the stress intensity factor at Q' from a

point load applied at Q. lQQ' is the distance between Q and Q', p is
measured from Q to a point on the crack front r where an element of

r is taken as ds. There is no rigorous proof of this weight

function, but calculations for several cases using this weight

function gave results which show agreement with existing solutions.

For surface cracks, the stress distribution near the crack front is



different from the situation of an embedded crack discussed above.

It was assumed that the stress intensity factor for a surface crack

can be obtained from that of an embedded crack using a simple

correction factor Cc. The solid containing the reference embedded

crack has mirror symmetry with respect to the crack shape and

loading such that a hal f of the sol id is identical to the surface

cracked solid. Furthermore. the correction factor Cc was supposed to

be

Stress intensity factor at a point on the front
of the surface crack

Cc
Stress intensity factor at a corresponding point
of the embedded crack

function depending on geometry but not on loading

(4.42)

The assumption enables the stress intensity factor for surface

cracks to be evaluated (Ref 70). The discrepancy due to this can be

as high as 14%.

4.3.7 Other Methods

Parellel to the compliance experimental method (Section 4.3.1).

there is a finite element method which determines the stress

intensity factor from the compliance of the cracked plate (Ref 71).

Based on the relation expressed by Eq 4.15. accurate solutions can

be produced from rather coarse mesh. while in the direct finite

element method. a very fine mesh is required in the crack tip area.
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It is possible to improve the efficiency of the finite element

method by making use of special crack tip elements (Refs 72 and 73).

One of the techniques is to arrange second order isoparametric

elements to diverge from the crack tip and along the divergent

boundaries of the elements. the side nodes are located at positions

such that the distance from the side node to the corner node nearer

to the crack tip is one third of that to the other side node further

from the crack tip. This arrangement allows the displacement 1n the

crack tip elements to have the correct asymptotic form. The use of

such elements reduces the number of elements required fOI' a g Iven

level of accuracy.

There are other methods available such as the boundary collocation

method. In this method the stress function is represented by a

series which satisfies the boundary condition for the crack

surfaces. There are unknown parameters in the series which are

determined by matching the stress function to any remaining boundary

conditions (Refs 74 and 75). It is also proposed that stress

intensity factors can be determined from stress concentration

factors of notches by considering a crack as a notch whose curvature

at the tip approaches zero (Ref 76).

SECTION 4

Plates

The Stress Intensity Factors of Elliptic Cracks in

The surface crack 1s the most common type of crack found in



engineering structures, the shape of such cracks is usually

idealised as semi-ellipses. This kind of crack has been studied

extensively due to the importance of the problem, as has the

problems of embedded elliptical cracks.

4.4.1 An elliptical crack in an infinite plate

Irwin (Ref 77) considered a flat elliptic crack embedded in a solid

of infinite dimensions under a remote uniformly distributed stress

S", (Fig 4.10a). He derived an expression for the stress intensity

factor around the perimeter of the ell ipse from the stress and

displacement field reported previously (Ref 78)

2
(sin 9 +

2
cos 9

1

) 4 (4.43)

9, a, c are as specified in Fig 4.10a. In[k] is the elliptic

integral of the second kind.

J
"/2

In[k] = 0 (1- (4.44)

4.4.2 A Semi-elliptic Crack in a Semi-infinite Plate

If a cut is made along the major axis of the ellipse in Fig 4.108 the

crack intersects the surface as shown in Fig 4. lab. Suppose the

remote loading remains as the uniform tensile stress S",. corrections

must be made to the K[ evaluation of Eq 4.43 corresponding to the

geometrical change. This can be achieved for the deepest point

(9="/2) and the surface intersection point (8~0) by introducing a



the front face correction factor Cf

TT 500

Kr(8=-2-) In[k] J(TTa) Cf(e=~)

n Soo
Kr(8=-) In[k] J("a) Cf(8ooO)2

(4.45)

(4.46)

Adopting the result of Hartranft and Sih (Ref 79) which is the

preferred solution recommended by Scott and Thrope (Ref 80). Cf is
given by

TTCr[8=-2-] a 2
1 + 0.12(1 - --I2c (4.47)

a a 4 Ja[1.21 -O.l(-c-)+O.l(~) ]~ (4.48)

4.4.3 A Semi-elliptic Crack in a Plate of Finite Thickness

A. Under tensile loading

The correction for the crack in semi-infinite plate is sometimes

referred as the front face correction. As the plate thickness Is

reduced to finite thickness t. the influence of the back face should

be also accounted for. Newman (Ref 81) has proposed that for the

tension case

.Ie Cr> (~)Cb] S"" .I("a) (4.49)Kr =[Cf+(In[k]-- - In[k].la t

where Cb is the back face correction factor. One advantage of the

equation is that when a/tool.no matter what Cb is. it reduces to
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(4.50)

which is the exact KI expression for a through thickness crack of

length 2c. The value of Cb monitors how KI varies with the

fractional crack depth alt. Raju and Newman (Ref 62) have performed

a three dimensional finite element analysis in which a large number

of elements have been used, to represent their findings Cb is given

as (Ref 80)

ff a 3 a a 5 cCb(9=-2 ) =1.6+3(-) + 8(-)(-t-) +0.008(-)c c a (4.51)

(4.52)

The results of Raju and Newman (Ref 62) have been successfully used

to predict surface crack growth patterns and to correlate surface

crack fracture data for a brittle epoxy material (Ref 82).

B. Bending

In bending. KI at the deepest point should drop to zero somewhere as

the fractional crack depth increases. because the back face is in

compression. Let Smm denote the remote stress on tension side

surface due to the bending moment, the three dimensional solution of

Koterrazawa and Minamisaka (Ref 83) can be represented by

fT
KI(9=-2-)

_J[_ _a_ _a_ 0.1 ~Cf(e= 2 )[1-1.36( t )( c) lIn(k) I(fTa) (4.53)

KI(e=O)=[Cf(e=0)(1-0.3 _a_)(1 __4_)12
t t



12
+[0.394 In(k)(~) IC ~

~) In(k),(wa) (4.54)

4.4.4 A Semi-Elliptical Crack in a Finite Plate

It is often found in engineering that plates can not be treated as

"infinite". The finite area correction should be considered when the

crack dimensions are appreciable in comparison with the plate

dimensions (Fig 4.10c). This has been studied by Holdbrook and Dover

(Ref 84). The stress intens ity factors can be expressed by

introducing correction factors Ct anro Cb to the resul ts of Irwin

(Ref 85) for tensile loading cases and of Shah and Kobayashi (Ref

86) for bending. The correction factor et for tensile loading cases

is

1+
_a_ _c_ _a_

fd c )fz( w )f]( t )

0.05992
(4.55)

The empirical expressions for fl. fz and f3 are as follows

c
f (-)2 w

c-0.00252 + 0.274(-)w

-0.354(~)2 +1.008(-C_)3
W w

0.0126 -0.132(~) +0.857(~)2
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(4.56)

For bending. the equation for the correction factor Cb takes a

similar form

1 +

a c aft(c)fz(-w)f3(T)

0.27452
(4.57)

f4• f5 and f6 can be evaluated by using the empirical equations

a a 2
f (-) = 0.381- 0.141(-) - 0.366 (~)
4 c C C

f (_E_) =-0.0239 +1.434(_c-) _2.984(_c_)2+7.S22(_c_)35 w w W w

(4.58)

It has been indicated that (Ref 84) surface cracked plate subjected

to tension loading. undergoes bending when a considerable part of

the cross sectional area of the plate is taken by the crack. This is

because of the eccentric loading on the crack plane. A procedure for

assessing this effect has been given in Ref 84.

SECTION 5 Overview of Elastic/Plastic Fracture Mechanics

When the plastic zone is large compared to the dimensions of the

cracked body or the crack length. linear elastic fracture mechanics
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is no longer applicable and elastic/plastic fracture mechanics must

be applied. There are two current ductile fracture mechanics

parameters for assessing cracks associated with large scale plastic

deformation: the J integral and the crack tip opening displacement

(eTOO) .

4.5.1 The J Integral

The J integral was proposed by Ri ce (Ref 87) for a non~ I inear

elastic material and is defined as

J = LJ wdy F
au
ax ds 1 (4.59 )

r is an arbitrarily closed curve traversed in an anticlockwise

direction surrounding the crack tip in the stressed solid (Fig

4.11), w is the strain energy density defined as

(4.60)

The other parameters, F, u and ds are respectively the traction

vector along an outward uni t vector normal to the curve r , the

displacement vector and the element of the curve ~. The J integral

can be shown to be path independent (Ref 88) in non-linear elastic

materials.

Rice (Ref 87) has shown that for a non-linear elastic material, J is

equal to change in potential energy for a virtual crack extension

aa,

{,t



J (4.61)

Of course this conclusion holds for Cl linear elastic material. In

this case.

J G (4.62)

Assuming the stress-strain behaviour of a non--linear material can be

presented as

(4.63)

where Of and ef are the flow stress and strain respectively. Cl and

Cl are constants for a specific material. the stress and strain

singularity close to the crack tip are found in polar coordinates to

be

o(r) 1 (4.64)
r

and

e(r) (4.65)

r

by Hutchinson (Ref 89). Rice and Rosengren (Ref 90). Here C] and C4

are parameters determined by individual configuration and loading.

The singularities represented by these two equations are often

referred to as the HRR fields. In addition. Hutchinson (Ref 89) has

also shown that for this case the crack tip stress field can be
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expressed in terms of J

1
J )C2+1

o ij of ( fij(9)
Cz of €f V r

C2

J )Cz+l€ij Cl of ( gij(8)
Cz of €f V r

(4.66)

(4.67)

fij and gij are functions of 8 only and V is a parameter depends

only on the stress-strain relation. This indicates that the J

integral characterises the crack tip stress and strain fields and is

not only a energy parameter, but a] so a stress field parameter.

However, this argument is restricted to a non-linear elastic

material. If the .J integral is to be applied to elastic-plastic

materials, unloading is not permissible, because during the

unloading, the material follows a stress-strain route other than the

non-linear route which is followed in loading. When a crack

advances, unloading takes place in the wake of the crack and the

appl Lca t Ion of J concept becomes questionable. In practice however,

this does not appear to be a serious shortcoming for crack advance

of less than 10% of its initial length (Ref 91).

4.5.2 The Crack Tip Opening Displacement

An alternative to the J integral approach is the crack tip opening

displacement (CTOD) concept proposed by Wells (Ref 92). CTOD can be

shown related to the stress intensi ty factor for the case of a

linear elastic material. If the CTOD is defined as the displacement

at x=a for an original crack of 2a under remote tensile loading (Fig



4.2), using the Dugdale approach for assessing the displacement (Ref

93), it can be expressed as

CTOD G

E 00
(4.68)

for plane stress. The crack tip opening displacement however depends

upon the position where it is determined, and in general

G
CTOD C 00

(4.69)

Different values for C can be found in the literature (Refs 87, 94

and 95).

For elasto-plastic cases, CTOD can be determined from the measurable

crack opening displacement (Ref 96). It is assumed that COD or CTOD

is still a parameter controlling the crack tip stress and strain

field when extensive plastic deformation appears, thus its value at

failure represents the severity of crack tip deformation for a given

material, environment and loading, but does not depend on the

geometry of the structure. So far, exper iments (Ref 97) have been

shown to be broadly in agreement with this elastic-plastic fracture

mechanics model. The application of a critical value of COD as a

failure criterion has been demonstrated and a design curve has been

established (Ref 98).
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CHAPTER5 FATIGUEASSESSMENTBY FRACTUREMECHANICS

Fatigue fai lure is generally recognized to be the resul t of crack

initiation followed by crack propagation and final fracture. The

physical processes of fatigue at a crack tip are campI icated and

diff icul t to analyse. However. fracture mechanics can provi de a

phenomenological description of the crack growth rate which is

particularly important in developing inspection and repair

regulations for structures. It is also possible to predict the

fatigue life using fracture mechanics in cases in which crack

propagation occupies the dominant period of the life. A detailed

descritption of the various aspects of matel fatigue can be found in

a book by Pook (Ref 99)

SECTION 1 The Fatigue Process

5.1.1 Cracked Surface

Generally. fatigue has three stages which can be observed on typical

cracked surfaces (Ref 100). Crack initiation often accounts for a

very small portion of the whole cracked surface. which is difficult

to identify. The area which represents the propagation stage is
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often macroscopically smooth. but microscopically striations which

are the result of individual loading cycles can be detected. Any

change in the statistical characteristics of the loading alters the

average crack growth rate and thus leads to the formation of a

"beach mark" which can be utilized to indicate the crack front. (Ref

101). The final part of the surface is frequently rough. and fibrous

in appearance, which is produced by ductile tearing and ultimate

fracture.

5.1.2 The Fatigue Process in Metals

Most commercial metals and alloys are polycrystalline. Such

materials consist of many crystals with each crystal having its own

orientation and mechanical properties. Whenever a metal component is

subjected to a cyclic loading, some of the crystals may have their

slip plane oriented in the direction of maximum shear stress and the

first slip occurs in those crystals. Both slip band intrusions and

extrusions are formed where the sIip planes intersect the surface

(Ref 102). As the cyclic loading continues, some intrusion areas may

become more distinct and cracks grow from these persistent slip

bands.

The initial cracks grow under fatigue loading. The discontinuity due

to the crack tip causes a high stress concentration, and the main

factor driving the crack forward changes to the normal stress as

opposed to the shear stress. Therefore, the crack propagation

direction gradually turns from the direction of maximum shear stress

to a direction perpendicular to the biggest principal stress. Mode I
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cracking is usually the dominant mode although the other two modes

may also present. A crack can grow by a wide range of fatigue

mechanisms. Among the most common are striation formation. microvoid

coelescence and microcleavage which can be identified from the

cracked surface using a scanning electron microscope (Ref 103). As

the crack becomes longer. the growth rate usually increases. When

the stress intensity factor associated with the maximum in the

fatigue load cycle approaches Kc. the growth rate accelerates and
failure follows in a few cycles.

It has been argued that (Refs 104 and 105) there is no crack

initiation period and cracks are contained in the slip bands. Crack

propagation starts immediately as fatigue loading is applied and if

the loading is very small. the cracks stop at the grain boundaries.

This explains the fatigue limit behaviour of materials and

furthermore indicates the damage accumulation under a loading lower

than the fatigue limit. Fatigue life predictions have been produced

for tests using fatigue loadings which contain many stress cycles

lower than the fatigue limit (Ref 104). Such predictions were found

to be significantly closer to the experimental data than predictions

by either Miner's law (Ref 24) or Corten and Dolan's model (Ref 36)

which ignore the damage due to stress cycles lower than the fatigue

limit. However. this finding has yet to be widely confirmed.

SECTION 2 Crack Growth Rate Models

For engineering structures under fatigue loading. subcritical crack
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propagation often occupies a major part of the fatigue life. In

general. cracks tend to grow under mode I conditions and the current

study is restricted to this kind of crack propagation. However.

mixed mode fatigue crack propagation is also a major form of fatigue

(Ref 106).

For fatigue crack propagation involving a large number of cycles to

failure. the applied stress range is low. and the plastic zone at

the crack tip is small compared to all other dimensions. The stress

intensity factor in this case can be used to give a good description

of the crack tip stress field. Therefore. it is not surprising that

the crack growth rate can be correlated with stress intensity factor

range as originally proposed by Paris and Erdogan (Ref 107).

In the constant amplitude loading depicted in Fig 3.1. when the

minimum stress Smin~O. the stress intensity range AX associated with

each cycle is defined as

Kmax - Kmin (5.1)

where Kmax and Kmin are stress intensity factors corresponding to
the maximum and minimum stresses in a cycle. Smax and Smin' Let
da/dN be the crack growth per cycle. if In(da/dN) is plotted against
InAK. the curve will generally exhibit three regions as shown in Fig

5.1. When Kmax approaches Kc. a sharp increment in the crack growth

rate is observed because of the presence of ductile tearing. At the

other end of the curve. region I. when AX decreases to near a

threshold value t.Kth. the growth rate decreases abruptly. It is
thought that when the stress intensity range AX is less than the
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threshold value ~th. the crack does not grow. While the central

part of the curve. region II. can be approximated by a straight

line.

n ln~ + ex (5.2)

Therefore.

da
d'N

ex ~n (5.3)

where ex and n are material constants. This is the very popular

equation due to Paris and Erdogan (Ref 107). Originally. there were

some models which did not recognize the connection of the crack

growth rate to the applied stress intensity factor range. For

example. Liu (Ref 108) suggested

__da_
dN (5.4)

where C was thought to be a material constant. This kind of model

(Refs 108-110) has lost its popularity. because they only describe

the individual sets of experimental results studied by the authors.

Experimental data analysed using such models have been re-analysed

using the Paris law and the results were satisfactory (Ref 111).

However. the Paris law approximates only to the central part of the

crack growth behaviour. To represent the whole range of crack growth

rate, an inverse hyperbolic tangent model (Ref 112) can be used.

dalog(--)dN
-1

Cl + Cl Tanh [f(Keff)] (5.5)

71



where Cl' C2 are material constants, and f(Keff) is a function of
the effective stress intensi ty range which can be determined by

considering the crack closure stress (see 5.3.3). This equation

represents a sigmoidal curve in the In(da/dN) and lnAK coordinates,
therefore, by choosing appropriate parameters and the function

f(Keff), it can be used to express the fatigue crack growth
behaviour for the whole range of the applied AK.

Alternatively, Forman et al (Ref 113) have proposed an expression in

which the material behaviour in region III is accounted for.

da
dN KIC - Kmax (5.6)

Here the material parameters « and n are not necessarily the same as

in the Paris law.

The relation proposed by Walker (Ref 114) can be taken as a further

example of a similar model.

da
dN (5.7)

where m is a material constant. There have been attempts to relate

the crack growth rate to the crack opening displacement (Refs 115

and 116). Generally in the form of

da
dN

~K 2
C (--)

E
(5.8)

where E is Young's modulus.
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SECTION 3 Factors Affecting the Fatigue Crack Growth Rate

Many factors affect the crack growth rate, the temperature.

material, mean load. environment and sequence effects (including

overloads). Here however. discussion is 1imited to the effect of

mean stress, environment and random loading which are the dominant

factors for fatigue crack growth in offshore structures.

5.3.1 The Mean Stress

It has been found (Refs 117-119) that the influence of mean stress

on the crack growth rate is usually small in region II of the

In(da/dN) vs. ln~ sigmoidal curve (Fig 5.2). While in region 1. the

mean stress may have a substantial effect on the threshold stress

intensi ty range. In region III, the crack growth rate increases as

the Kmax of the stress cycle approaches Kc or KIc· Since Kmax is

directly connected to the mean stress through the relation

Kmax
a af(-) Smax J(lI'a)=f(-)(Sm+Sa)J(lI'a)w w (5.9)

it is not surprising that the upper transition region (region III)

shifts to a lower ~ value for large mean stresses. A modified form

of Forman model (Ref 113) can be used to estimate the influence of

the mean stress

da
dN

ex ~n

(l-r) Kc - ~ (5.10)



where r is the stress ratio.

5.3.2 Environment

Fatigue takes place in diverse situations in which the influence of

environment may be substantial. For offshore structures. the main

detrimental effect is the corrosive action of sea water. It has been

shown that on a metal surface submerged in sea water. pi ts are

formed which cause stress concentrations and reduce the crack

initiation time. Fresh material surfaces in the crack tip region are

continually exposed to the corrosive sea water as the protect ive

oxide layer is broken by the cyclic loading. Due to the interaction

between the external loading and the corrosive action. the crack

growth is generally enhanced. For one particular case in NaCI

solution. the enhancement of crack growth has been found to be about

2.5 to 3 times greater than that in air (Ref 120).

The frequency of the loading in corrosion fatigue is an important

parameter. Crooker et a I (Ref 121) have shown that the difference

between crack growth rates in sea water and air 1s smaller when the

frequency is high than when it 1s low. This can be explained by the

fact that there is less time available for the interaction between

corrosion and the repeated stress cycles in high frequency fatigue.

5.3.3 Interaction Between Cycles

It is generally agreed that occasional overloads have a marked

effect on the fatigue life (Refs 122 and 123). This effect is often
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referred to as a sequence effect or the interaction between cycles.

For narrow band random loading, Priddle (Ref 124) indicates that

calculations which do not consider the interaction between cycles

are in agreement with experiments. Barsom (Ref 30) found no

interaction effect in experiments using random amplitude loading.

Gall and Hancock (Ref 125) found increasing interaction effects with

increasing spectral band width. Their experiment shows that as the

band width of the power spectrum of a random loading increases, the

slope of the line representing the crack growth rate against stress

intensity range relation in logal'ithmic coordinates decreases.

Sequence effects in cyclic loading have been studied extensively and

a number of models have been proposed. There are two well known

models and their modified versions which represent the basic

features of such models (126-129).

In the model proposed by Wheeler (Ref 126), it is believed that the

plastic deformation at the crack tip during an application of a

tensile overload produces a residual compression stress which slows

down the subsequent crack growth. The assessment of retardation is

achieved by introducing an empirical parameter C in the crack

increment calculation

da
dN C f (AI<) (5.11)

f(~) is determined by crack growth laws, such as the Paris law. C

is determined according to the plastic zone sizes (Fig 5.3). For the

ith cycle, Ci=l if the instantaneous crack length plus the

associated plastic zone passes beyond the plastic zone left by a



previous over-load. If not, Cl is evaluated from the equation

[ q
(ad + rd) _ ai ]m (5.12)

where ad+rd is the furthest point in the plastic zone left by an
over 1(lad, ai and q are the crack I ength at ith eve I e and the
corresponding plastic zone size while m is an experimental shaping

parameter.

The model proposed by Elber (Ref 128) handles crack growth

retardation by introducing an effective stress concept to reduce the

applied stress and hence the stress intensity factor of the crack.

The effective stress range is defined as

Seff = Smax - Sop (5.13)

where Sop is the crack opening stress. This is based on the finding

that a crack tip closes before the applied load reduces to zero, in

other words, part of the applied stress is used to open the crack

tip. Sop has been found to be dependent on the material, thickness,
environment and the magnitude of previous stress peaks (Ref 128).

The effective stress range is employed in determining the range of

effective stress intensity factor which is used to replace the

stress intensity factor range in crack growth laws. For example, the

Paris law can be adjusted to

da
--aN

n
0: (tU<eff)

a n
o:[f(-;-)(Smax-Sop)~("a)] (5.14)

The crack length a after the application of a number of cycles N can
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be estimated by

N
a = ao + r ~aii=l (5.15)

6ai may be given by various crack growth models. This procedure is
simple if ~ai only depends on the current size of the crack a and
the stress cycles history. The models which consider interaction

effects, such as Wheeler's model (Ref 126) and Elber's model (Ref

128), almost inevitably use this procedure. The cycle by cycle

calculation method is thus time consuming and computer programs are

often used. Predictions of fatigue life with and without considering

the interaction effects have been compared by Chang et al (Ref 131)

and there was no significant improvement in the predictions by

introducing interaction effects.

SECTION 4 Single Parameter Crack Growth Models

5.4.1 ~Krms

It would be convenient to predict fatigue life if a single

statistical parameter of a random loading could fully describe the

fatigue process for a given specimen under random loading. One such

parameter is ~rms (Refs 9, 10 and 125). Barsom (Ref 9) used

variable-amplitude random-sequence stress loading, and defined ~rms

as the root mean square of the stress intensity factor ranges.

Hudson took ~rms as
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~rms (5.16)

Here Smax-rms and Smin-rms are the root mean square's of the maxima
and minima for fatigue loadings with zero mean load. and are given

as

Smax-rms (5.17)

and

Smin-rms (5.18)

In some fatigue crack growth models. the stress ratio is required.

This can be replaced by a rather artificial "root mean square stress

ratio" rrms

Smin-rms
Smax-rms (5.19)

In addition, ~rms can be defined as (Ref 125)

AKrms 2 f(_<:_) 0 "I('lTa)
w (5.20)

where 0 is the root mean square of the random stress. It has been

shown that in some steels. fatigue crack growth rates under constant

amplitude loading and variable amplitude loading are related in

terms of ~rms (Ref 9). This gave a basis for the application of the

~rms method to predict fatigue life.
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An alternative to ~rms is ~Kh which is defined as

1

~h
af(-) Mn[S]n
w (5.21)

where Mn[S] is the nth moment of the distribution of stress ranges

about zero, specified by Eq 1.11. The stress range can be given by

various definitions or cycle counting methods (Ref 125). The reason

for using ~Kh can be seen from the following argument. Suppose the

sequence effects negligible, the average crack growth rate can be

estimated for a given crack length a by the Paris law

da
dN

a n
0: [ f(-) .I (1I"a) ] Mn[S]w

(5.22)

By comparing with the previous equation

da
dN (5.23)

~h has been used to represent the results of fatigue experiments on
tubular welded joints by Dover and co-workers (Ref 132-133). The

fatigue life of these joints was estimated based on this

characteristic range of stress intensity factor. More details of the

experiments are given in Chapter 8.
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CHAPTER 6 PROBABILISTIC APPROACH

TO FATIGUE CRACK GROWTH AND LIFE PREDICTION

A difficulty with fatigue analysis is the experimentally observed

variance in crack growth rates and fatigue lives. This may be

attributed to the variability in material properties, environment,

and loading. These factors often occur simultaneously and the

interaction between them produces a complicated picture. A knowledge

of the mean crack growth rate or mean fatigue life is adequate for

some engineering problems. But in other cases, the chance of

premature failure is very important and the crack growth rate or the

fatigue life must be treated as a random variable.

SECTION 1 Monte-Carlo Simulation

In an engineering design, the life of a structure in terms of number

of cycles N can be defined by the loading, environment and material

parameters which are random variables. Let these parameters be VI,

V2 and V3 respectively, then

N (6. I)

The random variables VI, V2 and V3 may have normal, Weibull, or any

81



other kind of distribution, although in general, analytic

expressions for the distribution of N are too difficult to be

derived. However, a numerical approach can be used to determine the

distribution of N. The general scheme is to use a digital computer

to generate random numbers having the specified distribution, these

numbers are used as the input of Eq 6.1 to give a random sample of N,

so that the probabilistic distribution of N can be approximated by

the "empi r ical" distribution produced from the sample. The general

method is known as a Monte--Carlo simulation (Ref 134).

It can be seen that a wide range of probabilistic problems

concerning fatigue can be solved by Monte-Carlo simulation, provided

that the generated numbers follow the required distribution. It is

easy to find a computer capable of producing random numbers

uniformly distributed between 0 and 1. Let such a variable be x, it

can be transferred into other kind of distribution through the

mathematic technique called transformation (Ref 4).

The transformation involves two random variables x and y connected

by y=f(x). The distribution of y can be deduced through the

following relation if the distribution of x is known.

px(x) I :~ I when y is in a region
corresponding to the x domain

[ (6.2)

o other regions

*To employ this equation, the reciprocal function x=f (y), should be

single valued. If not, the function can be treated separately in

several intervals such that in any of the intervals it meets this



condition. The function y=f(x) can be manipulated to produce an

appropriate distribution of y for Monte-Carlo simulation.

SECTION 2 Constant Amplitude Loading Cases

6.2.1 The Scatter in Crack Growth Rate

It is generally recognized that crack growth under constant

amplitude loading exhibits sample variation (Refs 135 and 136). It

is useful to provide a description of this situation in a

probabilistic way rather than the usual mean crack growth rate

against ~ curve.

Virkler et al (Ref 135) have conducted 68 fatigue crack growth tests

on a 2024-T3 aluminum alloy using constant amplitude loading. The

general trend of the crack length a vs. N curves is shown

schematically in Fig 6.1. The crack growth rate distributions were

determined for a number of ~ levels. Five probability models were

used to fit the experimental data and the number of times that each

model was selected as the best at a AI< level was recorded. Itwas

found that each model gave a fair but not outstanding performance in

providing a fit to the experimental results, this was thought to be

due to the large amount of variability existing in the experimental

data. A Monte-Carlo simulation scheme was used to provide an

prediction of the crack length a against the number of cycles N

curve, in which the crack growth rate was simulated by computer

generated random numbers satisfying the given distribution. It was
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found that this scheme gave an accurate prediction of the mean crack

length but did not describe the variance well.

6.2.2. The Possible Influence of Measurement and Data Processing

Procedure

The differences in crack growth rate are probably mainly due to the

val'iabi1ity of the material properties. The signif icance of the

contributions from the measurement precision and data processing

procedure has been studied by Wei et al (Ref 136) and others (Ref

137). In Ref 136, the Paris law was integrated using an

experimentally determined 0: and n to yield an "error free" curve of

a versus N, from which the practical measurements of the crack

length a were simulated by introducing errors which were assumed to

have normal distributions with the appropriate variances. The

simulated data was then processed again to produce a Paris law

expression. The difference between this expression and the original

expression was therefore solely due to the measurement precision and

the data processing procedure used. By comparing the two sets of

data, the authors concluded that the measurement precision and the

associated data processing procedure may contribute considerably to

the variance in crack growth rate.

SECTION 3 Simplified Fatigue Life Distribution

It is a simple but useful idea to regard the fatigue life 8S a

random variable having a specific distribution, and the problem of

random fatigue life prediction is reduced to predict the controlling



parameters of the assumed distribution. There are two popular

models: the log-normal and Weibull distributions.

6.3.1 Log-normal

This model assumes the logarithm of fatigue life has a normal

distribution

1

(InN -tllnN)2
22 0lnN (6.3)....(2'11')0lnN e

where tllnN and 0lnN are respectively the mean and the r.m.s of InN.

The advantage of this model in comparison to normal distribution is

it does not allow negative values of fatigue life. In addition. it

has been found experimentally that the distribution of life N has a

long tail in the positive direction (Ref 122). thus the logarithm of

the life has a more symmetric distribution which is closer to a

normal distribution.

6.3.2 Weibull

The Weibull distribution has also been proposed to fit experimental

data (Ref 5). It is sometimes used in preference to the log-normal

distribution because of its flexibility. and is often expressed in a

three parameter form as

- (
(6.4)1 - e



N is the random variable. No represents the minimum life. f3 and C

are constants determined by curve fitting. When the minimum life is

zero. it has a simpler form known as a two parameter Weibull

distribution

PN (N) = 1 - e
(~) C

f3 (6.5)

The Weibull distribution has been used in analysing fatigue data and

predicting fatigue life (Refs 139 and 140) and transformation

between Weibull and log-normal distributions has been discussed by

Nash (Ref 141).

SECTION 4 Probabilistic Evaluation of Life Distribution

In order to develop probabilistic models of fatigue. it is

invariably necessary to make some simplfying assumptions. which

usually limit the general applicability of the models. Examples are

now discussed.

6.4.1 Bogdanoff's Model

Bogdanoff (Refs 7 and 142) has proposed an interesting model for

predicting the fatigue life distribution. Fatigue damage is assumed

to be associated with various levels which increase from 1 to b with

state b corresponding to failure or retirement. The probability of

the component being in the jth level of damage after N cycles is

represented as the jth element of a row vector PN



At the start of the test, the probability of being in the f a i lure

state is assumed to be zero

(6.7)

The fatigue loading is specified in terms of duty cycles. Each duty

cycle represents a repetitive period of fatigue loading. The

severity of the cycle is defined by a (bxb) matrix

Cl,l Cl. 2 0 0 · ..... 0 0

0 C2,l C2,2 0 · ..... 0 0

Cf (6.8)

0 0 0 0 · ..... Cb-l.2 Cb-l.2
0 0 0 0 · ..... 0 1

in which Ci,J are parameters determined from the loading. The

elements satisfy the condi tions: Ci '1~O, Ci ,2~O and to maintain the

total probability to be unit, C1,l=1-Ci,2' The fatigue process is

assumed to be a Markoff process (Ref 143) in which the probabilistic

characteristics of the future are independent of those in the past

if the probabilistic characteristics for present are known. In other

words, the probability distribution of damage states at the end of a

duty cycle can be determined from that at the beginning of the duty

cycle and the duty cycle itself. Thus the effect of applying a duty

cycle on the distribution of damage states is modelled such that the

probabi Ii ty of high damage levels is increased by mul tiplying the

damage vector by the severity matrix.

Pj Pj -I ef (6.9)
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If the severity of the duty cycles is constant

CfNPN = Po (6.10 )

From this the cumulative distribution of failure as a function of

cycles is given by the last element of the damage vectors, which can

be represented as

(6.11 )

The model has been adjusted to consider the possibility that failure

may take place in a number of damage states (Ref 142).

For cases in which the duty cycles are not the same, the probability

distribution of damage can be determined by treating the duty cycles

on a individual and average basis (Ref 144).

6.4.2. Lin and Yang's Model

Lin and Yang (Refs 145 and 146) have studied a model, in which the

crack growth rate was presented as

da
dt f(K, ~, S, a, r) x(t) (6.12)

where f was a function of the loading and the geometry which was

taken to be the Paris law in the model. t is the time and x(t) a

random variable introduced in the analysis. It was assumed that

x(t) N(t)
I Ck w(t, "rk)k=l

(6.13)



where N(t) is a homogeneous Poisson counting process, deno t ing the

total number of pulses which arrive in the period (-oo,t). Ck is the

random amplitude of the kth pulse which arrives at time Tk (Ref

143). It can be seen that if x(t) is independent of the time, the

model can be represented in statistical terms as a group of curves

with different « values in the Paris law (Fig 6.2). When x(t) is a

function of the time t, the model represents a situation in which «

value changes with time, thus the sample curves of a vs. N mix up in

a random manner similar to that observed in experiments, as shown in

Fig6.!'

The fatigue process is also assumed to be a Markoff process (Ref

143). Expressions have been given for the mean crack length and the

distribution of crack length at a given time t (Ref 146).

6.4.3 Payne and Graham's Model

An analysis by Payne (Ref 147) and Payne and Graham (Ref 148)

established a model for two distinct situations: the first is called

ultimate load failure; the other is failure in service. In the first

situation, the material resistance to cracking Q and the loading Sr

are both considered to be random variables. The failure probability

in the remaining population at the Nth cycle is specified as

Pr[ultimate failure] Pre QLSr]

Pf(N)dN

Pf(N) (6.14 )

where the interval dN is taken as one cycle and Pf(N) is the risk at



1ife N. If Q and Sr are both positi ve , Qo=Sr becomes the boundary

between safety and failure in the first quarter of the coordinate

system of Q and Sr. any points in the area between Qo=Sr and Q=O

represent failure, therefore

Pr(failure) I I PQ(Q.N) PSr(Sr) dQ dSr
8~5r

J~ PQ(Q.N) I~ PSr(Sr) dQ dSr (6.15)

It was assumed that p(Q.N) can be approximated by PQ(Q). which is

appropriate only when crack growth is negligible. So that Pf(N) is

independent of N

(6.16)

To obtain a non-dimensional expression let z=Q/~Q where ~Q is the

mean of Q. i.e the average level of resistance to cracking. ~Q is
supposed to be known from the design analysis. Eq 6.16 can be solved

by assuming that z has a Gaussian distribution with mean ~z and root

mean square oz. and Sr is distributed as

P(Sr) = e
Cl

- --Su (6.17)

where Su is the ultimate load at failure, Srnthe mean load and Cl is

a parameter introduced to adjust the equation to suit the real

behaviour. The calculation leads to the final form
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(6.18 )

where

(6.19 )

and

*z (6.20)

This is shown schematically in Fig 1.2.

The second situation is failure during service in which the

influence of fatigue crack growth is pronounced. Again, failure

during service was considered to have two forms: "static" failure

caused by an overload which is beyond the capacity of the structure

and failure due to "wear out". The second form represents a

situation in which the residual strength is lost continuously under

fatigue until the mean load can initiate the fracture. The total

risk is the sum of the two

Pf(N) pdN) + Pw(N) (6.21)

where pdN) and Pw(N) are the failure rates of the first and the

second type respectively. Let L denote the degree of "wear-out" and

be defined as
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a
L (6.22)

where af is the critical crack size at which the second mode failure

takes place. Since the relative wear-out after a number of cycles N

is a random variable. the risk of static failure is

fLfPt(N) = 0 ps(NIL) PL(L) dL (6.23)

pt(NIL) is the probability density function when the relative

wear-out is L. Lf corresponds to the value of L at fracture.

In comparison with ultimate load failure. it is clear that static

failure is simply ultimate failure at different wear-out levels.

Therefore. let z(L)=Q(L)/~Q(L)

Pw(N) = J:o Pw(Nlz) P(z) dz (6.24)

where Zo is the lower limit of z and Pw(Nlz) is the probability

density function of failure at the relative residual strength z when

the wear out is L. Eq 6.24 is true only under the assumption that

P(z) is the same for all L. although such an assumption is unlikely

to be appropriate for most practical fatigue situations.

Combining Eqs 6.23 and 6.24 gives the risk of failure. When applying

these equations. a large amount of input data is required as

illustrated in Ref 149.

An additional model by Shin and Lukens (Ref 39) is described in

Section 3 of Chapter 3. All the statistical models require a large
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number of input data and can be very sensitive to the input. thllS it

is hard to verify them. This is one of the reasons why none of these

probabilistic models has been generally accepted.
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CHAPTER 7 THE STRESS ANALYSIS OF TUBULAR WELDED JOINTS

In offshore structures. the connections between the tubes are

critical areas where a stress concentration is inevitable. A static

or fatigue assessment of the reI iabi 1ity of such tubular joints

requires a description of the stress state which is often

characterized by the stress concentration factor. Such information

can be obtained using analytical. numerical and experimental

methods. The procedures used and the results achieved are now

discussed.

SECTION 1 The Representative Stress and Strain

Welded tubular joints used in offshore structures can be generally

classified as T, K, X, TK and V types. Fig 7.1 shows a T joint with

the definitions of its geometrical parameters ex, f3, T and 'Y. The

horizontal member in Fig 7.1 is denoted the chord, and the vertical

member is the brace. A loading applied to the end of the brace can

be generally represented by the combinations of the three basic

cases, namely axial loading, in plane bending and out of plane

bending (Fig 7.2).



The stress concentrations for all loading modes occur in the

brace_chord intersection. The maximum stress arises from three main

sources (Ref 150): the basic response of the joint to the load

(nominal stresses). the stress due to maintenance of compatablllty

between tubes (geometr ic stresses) and the stress caused by the

local geometry. such as the weld profile (notch stresses). It seems

reasonable to use the maximum stress to characterize tubular joints.

However. the maximum stress appears in a region where the stress

gradient is very steep. and is thus experimentally difficult to

measure and reproduce. Furthermore. the notch stress is probably

only pronounced near the surface. During the fatigue life of the

joint, cracks are inevitably developed in the intersection area and

as the cracks grow into the wall the notch stress decays rapidly.

Therefore. the maximum stress is expected to determine the site

where fatigue cracks are initiated. but its subsequent effect on the

growth rate of part-through cracks is debateable.

An alternative to the maximum stress is the "hot spot stress" or

"hot spot strain". Based on the observation that the stress

distribution is fairly linear in a area near the chord-brace

intersection. the "hot spot stress" is defined to be the principal

stress extrapolated from this region to the weld toe. It is hoped

that the hot spot stress excludes the effect of the notch stress and

represents only the nominal and the geometric stresses. In tests of

steel models. the linear extrapolation of the stress can be achieved

from two strain gauges mounted at positions (indicated in Fig 7.3)

recommended by the E.C.S.C. Technical Working Party (Ref 150). These

points can be described in terms of the dimensions of the joint



(given in Fig 7.1) as follows:

A. At the saddle on the chord side: a point the greater of O.2Jrt or

4mm from the weld toe and a point which is a 5' arc of the chord away

from the weld toe.

B. At the crown on the chord side: a point the greater of O.2Jrt or

4mm from the weld toe and a point 0.5JRt from the weld toe.

C. At the saddle and crown on the brace: a point the greater of

0.2Jrt or 4mm from the weld toe and a point 0.65J(rt) from the weld

toe.

Due to the high stress concentration at the wall surface near the

chord-brace intersection. yielding may take place. therefore the

extrapolated hot spot strain is sometimes used in preference to the

hot spot stress (Ref 151).

SECTION 2 Theoretical Consideration of the Stress Distribution

The tubular joints used in offshore structures can be regarded as a

particular kind of shell. The ratio of thickness to the radius of

the tube is usually less than 1/20. and thin shell theories are

applicable. Thin shell theory involves two assumptions. which are

that the deflections are small compared to the thickness. and the

plane sections through a shell. taken normal to the midsurface.

remain normal to the deformed midsurface. The stresses in a thin

shell can be viewed as the combination of the membrane stresses and



the bending stresses (Refs 152 and 153). A membrane is identified as

a body of the same shape as the shell, but incapable of withstanding

moments or shear forces. A complete analysis comprises a membrane

solution, adjusted by accounting for the effect of bending in those

areas where there are abrupt changes in geometry or loading. The

superposi tion of the membrane and bending stresses results in a

linear distribution of stress across the shell wall from which the

forces and moments are easily identified as shown in Fig 7.4.

For a single tube, when the applied load is axisymetric with respect

to its central line, the solution is simple. Under general loading

the effect of bending must be recognised. For a tubular welded T

joint, there have been attempts to determine the stresses in an

analytic way, for example, by Scordelis and Bouwkamp (Ref 154). It

is possible by conventional shell theory to assess the stress in a

half circular shell segment subjected to a point force loading or

displacement loading. This situation becomes a tube under a point

loading by adding another half shell to the original half and

defining the boundary condition between the two halfs by an

appropriate Fourier series. A tubular T joint has been modelled as a

tube subjected to a group of point loadings which represent the

effect of the brace. It was considered that the effect of the brace

was best represented by a forces which produce a uniform

displacement along the intersection. The stress field under a group

of point displacements was determined by superimposing the streses

in the tube under individual point displacements. It can be seen

that analytical methods do not give a good simulation of the

connections between tubular members and the stress distribution



calculated in the intersection area is not expected to be accurate.

SECTION 3 Numerical Methods for Shell Analysis

The finite element method is the most successful numerical approach

to problems involving complicated geometries and loadings. The basic

principles of this technique remain unchanged from the early

description given by Zienkiewicz (Refs 66 and 155). To begin with.

the method may be viewed as an implementation of the pr inc iple of

minimum potential energy. If the potential energy Up for a system is

defined as the strain energy Ue stored in the mater ial minus the

work done by the external forces W

Ue - W (7. 1 )

The principle of minimum potential energy indicates that the change

in potential energy due to an arbitrary infinitesimal increment of

displacpment is zero

6(Ue - W) o (7.2)

This concept can be applied to any elastic situation provided that

the potential energy is expressed in terms of displacement. In

finite element analysis. the solid continuum is firstly discretized

by a number of elements connected at their hypothetical

inter-element boundaries. Within each of these elements the

displacement pattern related to the movements at the nodes is given

which automatically satisfies the compatibili ty condition between



and inside the elements. The stresses may not satisfy the

equilibrium condition but when the size of the elements become

small. this condition is approached. This is why, as the number of

the elements increases and the size of the elements decreases, the

results generally converge to the true values. The potential energy

corresponding to an individual element can be expressed by its nodal

displacements, after suming all these, the potential energy for the

whole continuum can be obtained in the form

(7.3)

where dij is the displacement of the ith node in the jth degree of

freedom. Because of the arbitrary nature of the virtual increment of

the displacements. the application of Eq 7.2 to each individual

degree of freedom at the nodes produces a equation. The total number

of the equations is thus the same as the number of the degrees of

freedom in the problem and the equation set can be written as

[M] {V} - {F}= 0 (7.4)

Here {V} is the vector representing the nodal displacements and {F}

is the vector representing the external loading applied at the

nodes. [M] is known as the global stiffness matrix. In stead of

carrying out the differentiation given by Eq 7.2. the global

stiffness matrix is often constructed from element stiffness matrix

which is produced by considering the relation between the nodal

force and displacement in the element. The equation set can be

solved for nodal displacement which are then used to calculate the
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stresses and strains in the elements.

The elements described above are known as the displacement elements

which are based on assumed displacement patterns. There are elements

known as equilibrium elements which are based on assumed stress

functions while hybrid elements are based on both assumed stress and

displacement patterns (Ref 156). However, the displacement element

is the most successful and popular kind for elastic analysis. For

the analysis of stresses in tubular welded T joints, the finite

elements can be constructed using the procedure described above

combined with shell analysis to simplify the process.

SECTION 4 Experimental Methods

To determine the stresses in tubular joints, the most commonly used

experimental methods involve strain gauging steel or acrylic models

and photoelastic techniques. These methods have different advantages

and can be used to conduct a check on any numerical solution.

7.4.1 Strain Gauge Tests on Steel Models

Strain gauges can be bonded to points of interest in steel tubular

joints. By measuring the change of the gauge resistance, the strain

at the points can be determined. Steel models may be fabricated by

the standard procedures to produce very realistic results. However,

such experiments are expensive and the steel models tested to

determine the static stresses are usually used for fatigue
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experiments at a later date (Ref 34).

7.4.2 Strain Gauge Tests on Acrylic Models

The use of acrylic models in static tests has a number of advantages

notably that the material is cheap and the model can be manufactured

rapidly. Other advantages are that only small loads and simple

facilities are required for the test due to the low Young's modulus
I

of the material, and that welds can be modelled by gluing acrylic

strips according to the weld shape. Seeing these advantages,

Wordsworth and Smedley (Ref 157) and Wordsworth (Ref 158) have made

an extensive use of acrylic models.

7.4.3 The Photoelastic Method

The value measured by a strain gauge is an average strain in the

area covered by the gauge. Thus it can not produce accurate results

in a region where sharp stress gradients occur. Photoelastic methods

can be used to overcome this difficulty, which is why photoclastic

techniques are frequently utilized to analyse the effect of welding

profile and thickness of the tube wall on the stress field in the

weld (Ref 159).

SECTION 5 Stress Concentration in Tubular Joints

In linear elastic structures, the hot spot stress is proportional to

the appl ied external loading. To be generalise, a stress

concentration factor Cs is introduced to characterize the response



of a tubular welded joint under external loading

(7.5)

where Shot is the hot spot stress at the chord-brace intersection

and Sn the maximum nominal stress in the brace remote from the

joint. Since the hot spot stress excludes the notch stress due to

the weld, the stress concentration factors are functions of only the

geometrical parameters.

(7.6)

For a T joint under axial loading or out of plane bending, the hot

spot is at the saddle point, while in the case of in-plane bending,

the hot spot is at the intersection somewhere between the saddle and

the crown. In most cases, the hot spot is at the chord side of the

intersection (Ref 157).

An early investigation into the stress concentration factors of

tubular joints carried out by Kuang et aI (Ref 160), which covers

not only T joints, but also K and KT joints. The hot spot stress was

evaluated by extrapolating to the brace-chord middle surface

intersection. The calculated stress concentration factors have been

utilized to deduce parametric equations in terms of the geometric

parameters. For stress concentration factors calculated from the

principal stress extrapolated from the chord side in T tubular

welded joints, the equations are

/f>J



(Axial load) (7.7)

( )0.6 -0.04 0.86Cs= 0.41 2 y ~ 7

(IPB) (7.8)

Cs=0.465 (2 y)1.014 /30.787 0.889
7

(OPB, 0.3<~<0.55 ) (7.9)

Cs=0.199(2 7)1.014 /3-0.619 0.889
7

(OPB, 0.5</3<0.75) (7.10 )

Gibstein (Ref 161) has carried out extensive finite element analyses

of tubulor welded T joints under the three basic loading conditions.

Consideration has been given to the stress concentration factor at

the brace side and chord side separately, thus two sets of

parametrical formulae are produced. The set for chord side is

Cs=[1.5 - 3.88(~_0.47)2]yO.87 71.37 ( ; )0.06

(Axial load) (7.11)

( 0 2)2 0.382 1.05Cs 1.65-1.1 /3-.4 Y T

(IPB) (7.12)

Cs =[1.01-3.36 (13 -0.64)2] 0.952 1.18Y 7

(OPB) (7.13)

The stress concentration factors have also been determined from

acrylic modelling (Ref 157) by Wordsworth and Smedley. Parametric

formulae for the hot spot stress concentration factors in T tubular

joints were produced from these experimental results.



(Axial. saddle position. chord side)

(IPB. crown position. chord side)

5
y T ~ (1.6-1.15 ~ )

(OPB. saddle position. chord side)

(7.14 )

(7.15 )

(7.16 )
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CHAPTER 8 THE ANALYSIS OF SURFACE CRACKS IN TUBULAR T JOINTS

In tubular welded joints, fatigue cracks are frequently initiated at

the weld toe of the chord-brace intersection where a stress

concentration occurs. The subsequent surface crack propagation takes

up a large part of the fatigue life, which can be predicted using

fracture mechanics if the stress intensity factor can be determined.

The stress intensity factors KI. KII and KIII for many relatively

simple cases have been evaluated and are well documented in

handbooks such as Ref 43. However, the evaluation of the stress

intensity factors for surface cracks in tubular T joints is a

significant challenge. due to the complex geometry of the

chord-brace intersection, the crack shapes and the load shedding

caused by the cracks.

SECTION 1 The Influence of Weldment

The influence of the weldment on fatigue cracks in tubular welded

joints should be considered at least for the crack initiation and

early propagation stages. Extensive experimental fatigue studies

have been carried out on various welded specimens (Ref 162) and a

simple specimen particularly relevant to the geometry of tubular

107



joints is the cruciform weldment (Fig 8.1).

The crack initiation site and propagation route depend on not only

the weldment. but also the loading. Fatigue cracks can initiate at

the weld toe due to the stress concentration or at internal slag

inclusions (Ref 163). Hayes and Maddox (Ref 164) have studied a

through crack at the weld toe in a plate of a cruciform joint and

the cracked plate was subjected to a tensile load (Fig 8.1). It was

proposed that the stress intensity factor of the crack could be

determined by introducing the front face correction Cf. back face

correction Cb and stress concentration correction Cs

(8.1)

Here Sn is the norlllinalstress in the load carrying plate. A finite

element method was used to calculate the stress intensity factor of

the through crack at the weld toe of the cruciform weldment which

was compared with the stress intensity factor of a through crack in

a plate of the same thickness T of the load carrying plate in the

weldment. The difference between the two cases is the stress

concentration. The results are shown in Fig 8.2. from which. it can

be seen ~llatthe influence of stress concentration decreases rapidly

as the crack becomes deeper. In addit ion , the angle of the fillet

makes a small difference for the range of angles which commonly

occur in engineering structures. Other finite element calculations

confirmed this finding (Ref 165).

Fatigue cracks which initiate from the weld root (inside the fillet

weldment) of a cruciform joint have been studied by Frank and Fisher



(Ref 166). This models the situation in which a fatigue crack

results from lack of penetration during welding. The finite element

method was used to evaluate the stress intensity factor, and the

fatigue life of the weldment was predicted based on fracture

mechanics.

SECTION 2 Fatigue Crack Development in Tubular Welded Joints

In tubular welded joints, the fatigue cracks often initiate at the

weld toe near the maximum stress site of the chord-brace

intersection. This can be explained (Refs 163 and 167) by the

presence of small defects at the weld toe in the form of slag

inclusions combined with the hot spot stress. The small defects are

randomly distributed, thus the initial cracks may be formed anywhere

in the hot spot region. These cracks have a high aspect ratio ale

and gradually coalesce to form a single crack of much lower ale

ratio as they propagate. Sometimes the early cracks are not in one

plane and there are unbroken ligaments even at the end of the

fatigue life.

At the surface the single crack propagates around the chord-brace

intersection. In the thickness direction, the surface crack

frequently does not grow perpendicular to the wall of the tube, but

rather in an angle to it. This was observed in Delft University (Ref

101) and in University College of London (Refs 168). After

penetration of the wall, the surface crack grows into a through

crack along the whole length of the crack before any significant
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growth occur in the length direction (Ref 167). Some propagation

away from the intersection may also take place to form branches of

the main crack.

The shape of the surface crack is important in the analysis of

fatigue life. Unfortunately. this is subjected to some variability

(Fig 8.3) due to the random growth behaviour of the crack. In an

out-of-plane bending fatigue test (Ref 168). the crack depth a

versus the number of cycles N was measured at five different points

around the hot spot region of the welded chord-brace intersection

(Fig 8.4). It was noted that when the crack was active at one point.

it might be stationary at other points and the active area

continually changed. Similar phenominon has been reported by Martin

(Ref 169). Additionally. asymmetry in the distribution of cracks as

well as stress distribution contribute to this variability. Evidence

of the asymmetry can be obtained from fatigue tests (Ref 101) on a

tubular welded T joint using constant ampl1tude axial loading. in

which only one dominant surface crack was found on one side of the

joint. while ideally. there should be a dominant crack on both sides

of the joint since the configuration is symmetric.

The dHf iculty of describing the shape of surface cracks can be

illustrated by the experimental data (Fig 8.5) published in a

U.K.O.S.R.P project report (Ref 170). The aspect ratio ale of cracks

for the crack depth range O.l,a/r'l covers virtually the whole range

between 0.05 and 0.3
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SECTION 3 Experimental Determination of Stress Intensity Factors

8.3.1 The Experiments

The experimentally observed development of semi-elliptical cracks in

plates ca~'indicate the stress intensity factor distribution along

the crack profile. This has been utilized to check the accuracy of

various numerical calculations (Ref 80). In principle, it is always

possible to evaluate the stress intensity factors for surface cracks

through their relation to the crack growth rate which can be

measured in complicated geometries and loading cases, although the

contributions from different crack modes can not be distinguished

for a mixed mode problem.

Dover et al (Ref 171) have applied this method to surface cracks in

tubular welded T joints. The relation between the crack growth rate

and the stress intensity factor range was obtained from tests on

standard fracture mechanics specimens made of the same material as

the tubular joints (8S4360 SOC steel).

da
dN

-121.09xlO ~3.85 (8.2)

The fatigue loading was 5Hz sine wave with a stress ratio r=O. In

comparison, the crack growth rate under a broad band random loading

in a T pipe joint of the same material was determined

experimentally

da
dN 8.76XIO-12 ~h3.29 (8.3)
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where AKh was calculated from the nth root of the nth moment of
individual rises S in the local stress on the crack site

1

f( ; )~(wa) {E[Sn l} n (8.4)

The local stress was estimated from a rosette about 8mm away from

the weld toe and because the crack was very long, it was initially

assumed to behave like an edge crack in the calculation of the

stress intensity factor. The crack growth rates given by Eq 8.2 and

8.3 were regarded as similar. However, it was pointed out that (Ref

172), the load shedding effect in the joint must be accounted for

when determining the stress intensity factor. This was achieved by

adopting a different geometric calibration function f(a/T) which was

taken as that of an edge crack in a plate under uniformly

distributed constant displacement loading. In this case, f(a/T)

decreases as the crack depth increases, while in the previous

calculation f(a/T) was taken as a constant 1.12 (Ref 171). As a

result, the stress intensity range became smaller and a better

correlation between the data from the in situ measurement and from

the test on precracked small specimens resulted (Fig 8.6).

8.3.2 The Results

The stress intensity factor for surface cracks in a tubular joint

can always be expressed in the general form (Eq 4.7)

af(-) Sh J(118)
T

(8.5)

where Sh is the hot spot stress and f(a/T) is a non-dimensional
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geometrical calibration function which has been determined

exper iJaentally for tubular T, V and K joints (Refs 173 and 174).

f(a/T) can also be given in a slightly different form

(8.6)

where Vst and Vsh were defined respectively as the correction factor
for the load transfer and crack shape, which vary during the life of

the tubular joint. The shape factor Vsh was considered to be
important only at the beginning of the Ii fe and was taken to be

unity. therefore

af(-) = VstT (8.7)

Vst for some tubular joints determined by fatigue tests have been

presented as a function of the geometric parameters and stress

concentration factors (Fig 8.7), and this allows a prediction of the

stress intensity factor.

An analysis of the data of these experiments has shown that (Ref

173) the crack growth rate for a T joint under axial loading is

higher than that under out of plane bending for a similar hot spot

stress. The crack growth rate under axial loading was taken from the

result of a constant amplitude fatigue test by Gibstein (Ref 175).

It was concluded that hot spot stress alone is not adequate to

describe crack growth in tubular joints. By further studies on the

stress distribution in the intersection area, it was revealed that

the average of stress concentration factor Cav over the chord-brace

intersection is a significant factor. It has been found that the



experimentally inferred Yst can be expressed as

Yst (8.8)

where Cl and Cl are constants for a given geometry and loading. The
effect of Cav and Cs is accommodated in the determination of Cl and
Cl through the relations

Cs0.73 - 0.18 --Cav (8.9)

0.24 + 0.06 ~Cav (8.10)

SECTION 4 Numerical Evaluation of the Stress Intensity Factor

The stress intensity factor calibration function f(a/T) can be

determined both experimentally and numerically. Scott and Thorpe

(Ref 176) have suggested that the load shedding and local compliance

change due to a surface crack in a tubular joint are similar to that

due to a crack in an infinite plate. Therefore, given that it is

possible to model the surface crack by such a cracked plate, then

the problem is to determine the relevant loading. In areas near the

chord-brace intersection in a tubular joint, the stress distribution

is not linear in the thickness direction, due to the local geometry.

A further simplification is to assume that the plate model is

subjected to a linear stress field. Strain gauging or two

dimensional finite element analysis can be used to obtain

information about the stress distribution in the joint from which

the relevant load, which consists of a bending stress and a membrane
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stress, can be determined.

In an analysis of a tubular Y joint (Ref 174), the ratio of the

bending stress to the membrane stress was assumed to be constant at

4.73. Using the hot spot stress Sh, the stress intensity factor has
been estimated. However whioh was consistently high in comparison

with the experimental results (Fig 8.8).

It was argued that the hot spot stress represents the stress state

at one point in the chord-brace intersection, but the influence of

stresses in the rest of the chord-brace intersection areas need to

be accounted for. The average stress concentration Cav over the

intersection of the tubes (Eqs 8.9 and 8.10) was considered. Using

the corresponding stress SnCav as the loading applied to the

infinite plate has improved the accuracy of the calculations.

However, the average stress concentration treats equally the stress

distribution away from and near to the hot spot and it was argued

that the stresses nearer the hot spot, where the crack initiates,

should have more influence. Therefore, a weighted average Cwa was

proposed as

Cwa
-Ill

es(l) e dl (8.11)

where 11-12 is the region along the chord-brace intersection for

which averaging is carried out, 1 is measured along the intersection

from the hot spot. It has been shown that using CW8 gives the best

result in the three calculations.
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The weight function method of Dore and Burns (Ref 68) has also been

employed for the evaluation of stress intensity factors of surface

cracks in the same Y joint (Ref 174). The crack was assumed to be

subjected to a stress field determined by using an assumed bending

to membrane stress ratio and the surface stress distribution along

the intersection between the tubes. The position of the crack in the

stress field was chosen to correspond its actual position in the

intersection. this implies that the deepest point of the crack was

not necessarily situated at the point of maximum stress. The cracked

area was divided into elements over which the integration (Eq 4.40)

was performed numerically. The stress intensity factor determined

by this method is better than all the three previous solutions using

the infinite plate model.
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CHAPTER 9 LIFE PREDICTION OF TUBULAR WELDED T JOINTS

The ability to predict the fatigue life of tubular joints is very

important in maintaining the safety of offshore structures. An

enormous amount of work has been carried out for this purpose, as

described in previous Chapters. However, procedures for predicting

fatigue life are still under development and there are factors such

as the influence of the lIarine environment which have yet to be

precisely accounted for.

SECTION 1 Assessment of Fatigue Life Based on Miner's Law

Much of the philosophy of the design of tubular joints against

fatigue is based on the conventional S-N curve approach in

conjunction with Miner's law. Here S is taken as the hot spot stress

range which is regarded as relevant to the stress state at which the

most serious cracks in the joint initiate and propagate. This method

needs a precise prediction of the load in the structure, the stress

concentration factors in the joints and an appropriate S-N curve for

welded tubular steel joints of realistic dimensions.

The experimental life of a large scale tubular welded joint consists

of three parts: NI is the number of cycles to the appearance of a



visible crack; Nz is the number of cycles to the penetration of the

wall of the tube; N3 is the number of cycles at the termination of
the test which is often determined by the maximum displacement the

testing machine can produce (Ref 167).

Experimental programs, such as the U.K. Offshore Steel Research

Project, have accumulated data about the fatigue strength of steel

joints. It was found (Ref 151) that fatigue strength of tubular

joints decreases as the chord dimensions increases. This indicates

that the hot spot stress range is not a very good parameter with

which to correlate fatigue lives of tubular joints if there is a big

difference in the scale of the joints. Some experimental data points

from tests on models of realistic dimensions were found to be on the

unsafe side of the American Welding Society S-N curve (Fig 9.1).

McDonald and Wylde (Ref 151) have als,? demonstrated that the hot

spot strain range can be used to characterize the fatigue strength

of tubular joints. This is essentially the same as using the hot

spot stress range when the material behaviour remains elastic. The

argument is that when there is a plastic deformation, the hot spot

strain range is a better parameter because it can indicate

plastici ty.

Fatigue experiments have increased the understanding of fatigue

behaviour of tubular joints. As a result improvements on previous

S-N curves such as the curve by the American Welding Society (Ref

25) have been made and new S-N curves and design guides are

constantly being published (Ref 177).
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SECTION 2 Assessment of Fatigue Life Based on Fracture Mechanics

In 1981, Clayton (Ref 178) outlined a fracture mechanics model of

crack growth in tubular joints. The main requirements were

recognized to be the stress distributions, including residual

stresses, the initial flaw size and shape, the material behaviour

and the effect of environment, while the crack shape variation

during propagation and the stress redistribution due to the presence

of the crack were regarded as part of the problem to be solved.

The work by Dover and co-workers was aimed at a scheme based on

fracture mechanics for predicting the fatigue life of tubular welded

joints (Refs 132 and 133). The large amount of information required

for a complete fracture mechanics assessment model has inevitably at

this stage led to simplifying assumptions, one of which usual}y

concerns the initial crack size. Nevertheless, it has been found

(Ref 179) that the initial size of the crack is not as sensitive to

the fatigue 1He as was thought. due to the load transfer that

prevents the crack growth from accelerating rapidly with crack

length, and the high local stress concentration (include notch

stresses) at the intersection which reduces the number of cycles for

crack initiation.

A simple fracture mechanics model of Dover and Hildbrook (Ref 168)

assumed the initial crack depth ai to be Imm. The end of the fatigue

1He was defined as the penetration of the chord wall, thus the

fatigue life is determined by the crack growth rate which was
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expressed as

da
dN ex Al(n (9.1)

where the constants ex and n were determined by experiment on

precracked simple specimens. For the 8S 4060 50C steel, they are

(Ref 168)

ex = 4.5 x 10-12

l (9.2)

n = 3.3

AK was determined simply using the stress intensity calibration for

an edge crack in a semi-infinite plate

AI( = 1.1 ~h ~(wai) (9.3)

where ai is the initial crack depth and ~Sh the hot spot stress
range. AK determined in this way is constant in the course of crack

propagation for a constant loading test, and the crack growth rate

given by Eq 9.1 is a constant, therefore

N
T - aj

__da_

dN
(9.4)

This has been called the linear model. It is claimed that the model

can be modified if more information concerning the crack growth rate

is available. Without giving verification, Dover et al (Ref 179)

have suggested the following expression for predicting the fatigue

life of 16mm chord thickness joints



T - a
N -13 0.75 31.39x10 (T-0.001)(T/O.016) (6Sh)

(9.5)

A rather aore complicated method was proposed by Dhar-aavaaan and

Dover (Ref 180). The fatigue life of a tubular joint was divided

into 3 stages. In the first stage. the crack initiation defined as

the period frollthe start of the test until a crack of 0.25mm deep

is formed. This can be estimated by using strain-life data as

proposed by Iida et al (Ref 181). The second stage involves crack

growth from O. 25mll to 1.3mm deep. In this stage small thumbnail

cracks coalesce to form a long semi-elliptical crack and the

corresponding part of fatigue life can be substantial. The crack was

treated as a edge crack in an infinite plate. Constant crack growth

rate was assumed. which was determined by

AKh = 1.1 ASh ~(wa) but a=0.25mm (9.6)

and the corresponding Paris crack growth law. The final stage

involves the growth of a long semi-elliptical crack to wall

penetration. ie. from a=1.3mm to T. the thickness of the wall. The

estimation of this part of life was given by

(9.7)

and the fatigue crack growth rate of the material. Here Vst is a
function of afT which can be estimated by Eq 8.10. The stress

intensity factor range is again constant. This bi-linear model

provides a better description of the relation between crack depth

and the number of cycles than the linear model (Fig 9.2).
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Fig 9.1

The experimental data (Refs 151 and 176) for tubular T joint of

chord diameter of 914mm and thickness 32mm, in comparison with a

AWS S-N curve.

Fig 9.2

Experimentally observed crack depth a against the number of

cycles curve, with "linear" and "bi-linaer" models (Ref 180)

The brocken line represents the linear model;

The doted line represents the bi-linear model;

The solid line is experimental data.
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CHAPTER 10 PROBABILISTIC ANALYSIS OP PATIGUE RELIABILITY

It has been shown in previous chapters that the analytic methods for

assessing fatigue reliability have explicit and iaplicit

assumptions. Since each set of asssumptions may only suit a

particular situation, or a particular group of tests, care must be

taken when applying these methods. It is believed that for offshore

structures, random loading and the variance of material properties

are two major factors which contribute to the scatter of the fatigue

life. A method which incorporates these factors in fatigue life

calculations was not available and has been developed in this work.

The new method has been designed to be analytic and adaptable to a

wide class of problems; to require simple input data and to account

for as many parameters as possible. The development of this model is

described in the current chapter.

SECTION 1 Crack Growth Rate due to Random Loading

In structures such as oil platforms, a basic mode of damage is crack

propagation. The present analysis therefore neglects crack

initiation and considers only fatigue crack growth. Generally. it is

recognised that the crack growth rate is related to the stress

intensity factor representing the stress field at the crack tip. A



widely known and simple form for the relation has been given by

Paris and Erdogan (Ref 107)

da
dN

n= er.: (AI() (10.1)

which has been adopted for the present study. AI( is the stess

intensity factor range which can always be expressed in the tora

AI(
af(-) S ~(1fa)w (10.2)

where t(a/w) is a function of the geometry of the component and the
crack length while S is the stress range for narrow band or constant

amplitude loading. For broad band loading, the stress range S can be

obtained from a cycle counting method.

In the following text, f will be used instead of f(a/w) for reasons

of brevity. The crack growth rate then becomes

da
dN = ee [ fS~(1fa) ]n (10.3)

For generality, the equation is written in a non-dimensional form in

which the crack length is normalized in respect ot its initial size

ao. the stress range S with respect to the root mean square of the

signal 0

n n

(~) 2ao (10.4)
8d( lao)

dN fn 2 (_s)n-). 11
o

Here ).is a non-dimensional value defined as

). = er.: on
n - 2

2 (10.5)

Since the applied stress range at any instant is a random variable.



the crack growth rate at a specific crack length is also a random

variable whose average value is denoted as E[da/dN}, from Eq 10.4

d(~)
E[ aO] =

dN

_.n.._

]
2 fmo S n S S(-) p(-)d(-)ao 0 0 0

a
(10.6)

The integration involves a non-dimensional nth moment of the stress

range which can be evaluated if the distribution of the ranges is

known. For the distribution given by Hancock and Gall (Ref 21)

sp(-)
o

)'-1
)' (~)

(.'2 )'»)' 0

s )'exp[ -(n)'o) ] (10.7)

where )' is a function of the power spectral width parameter E (Eq

2.23), the nth moment can be expressed as

~n (10.8)

where r ( ) is a Gamma function (Ref 8). The equation represents a

narrow band case when )'=2J2. Generally

_.n.._

]
2

ao (10.9)
a

Eq 10.9 thus gives the mean crack growth rate but it is important to

realise that under random loading both the crack growth rate and the
crack length are also random variables. As an example Fig 10.1 shows
relations between the crack length and the number of cycles which

could result from a central crack in an infinite plate under perfect

narrow band random loading, growing at the average rate and the

average plus and minus one and two standard deviations. The equation

In



for the central line is

n 2
a
ao [ 2 - n

2 (10.10)

In practice, the fatigue load does not approach infinity as the

ideal Rayleigh distibution of narrow band random loading requires.

Generally if the theoretical expression for the distribution of the

random stress range is represented as pth(n) where naS/o' the true
distribution pen) truncated at a position (, can be estimated as

[
pth(n) o .l n .l (

pen) 1 -J;Pth(n) dn (10.11)

0 otherwise

which maintains unity for the total probabili ty. In this case, a

numerical integration can be performed to determine ~n and the mean

crack growth rate.

SECTION 2 The Distribution of Crack Lengths under Random Loading

The final crack length af produced by random loading is given by

summing the increments of crack growth in each cycle. Eq 10.4 can be

rearranged to give

J1=: --fn----d-(~-:~o~)-----
n/2 (_a_)/2

71 ao

N S, n
r (___;_",.)

j=1 0
(10.12)

where N is the number of cycles in the fatigue loading, ao and af



are the initial and the final crack lenths. The summation on the

right hand side of this equation produces a random variable,

therefore, the left hand side of Eq 10.12 is a random variable which

.ay be denoted as X

X J1=: --f-n--_d--(=:~o~-)------
n/2 __a_ n/2

1f (ao)

(10.13)

X is a function of af/ao. For a central crack in an infinite plate
subjected to remote tensile loading, X has a simple form

2
(10.14)X

(2-n) n ~ 2 )

According to the central limit theorem, a summation of random

variables, here represented as the nth power of the stress range,

has a normal distribution whose mean and variance equal to N times

the mean and the variance of the population from which each

individual variable is drawn. Therefore, the distribution of X is

(10.15)p(X)

where ~n and on are respectively the mean and the root mean square
of nn. on is given as

°n n [2n 2 n(.'2,.) r(-- + 1) - r (- + 1)
)' )'

(10.16)

Since X is related to aft the distribution of the final crack length



af normalised in respect to the initial length ao, can be determined
by transforming the variable fro. X to (af/ao)

of
-( ~ - N~n)2/[2N 0n2] dX

p(--) e
d( at) (10.17)

ao ).on .I(21JN) 00

Physically, the crack can never become shorter under fatigue
loading. Eq 10.17 can be regarded as valid only when af/ao~l and the
probability distributed in the region af/ao~l is negligible as long

as the number of cycles N is large. For the simplest situation, f=l,

the equation has this form

dX
c: (10.18)

The probability density function can be evaluated by substituting

Eqs 10.14, 10.8, 10.16 and 10.18 in to Eq 10.7. For this case,

direct integration can be performed on Eq 10.7 to produce a

cumulative distribution function, but it is easier to use numerical

integration techniques.

Monte-Carlo simulations (see Appendix A) have been carried out to

check the prediction of Eq 10.17. Constants ).=1.5E-6 and n=3 were

chosen to give convenient numbers for a central crack in a infinite

plate after 5000 cycles. In the simulation, stress ranges for a

narrow band loading (having Reyleigh distribution) and for a broad

band loading (having a distribution determined by Eq 10.7 with the

spectral width parameter e=2/3) were generated by a digital

computer. The corresponding increments of crack length were
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calculated for each cycle according to the Paris law and summed to

give the crack length after 1000, 3000, 5000 cycles. This simulation

was performed 100 times and the results are presented together with

the analytic values in Figs 10.2 and 10.3 in which the agree.ent is

seen to be excellent. It can also be seen that as the crack length

increases the variance of crack length increases.

SECTION 3 Distribution of Number of Cycles to Reach a Given Crack

Length

If failure is defined to occur when the crack reaches a critical

length, the distribution of number of cycles to reach that length

provides a reliability assessment. Let a single sample ot the

fatigue process, say the jth sample, be considered, the product of

the number of cycles Nj and the average of (S/o)n in this particular

sample is the summation in Eg 10.12, therefore,

x
(10.19)

where ~j is the average of (S/o)n for the ith sample which has Nj

cycles. For different samples, ~j and Nj are different but the
product of the two is the same. Now let ,..be the random variable

representing the average of (5/0)n for every sample, the above

equation can be generalised as

x .. (10.20)
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In this case, the initial and the final crack lengths are given, X

is a de t.er-afnIst Ic value while '" and N are randall variables. A

variation of the central li.it theorem, sometilles described as the

Lindeberg-Levy theorem (Ref 8) indicates that '" has a normal

distribution with a mean valuel~n and a root mean square °n/JN'

.IN

[
-Nexp (10.21)

Nand '" are the two random variable correlated by Eq 10.20,

therefore the distribution of cycles N to a given crack length can

be deduced

x
[

u 2
exp ~

2 on

(..JL_ - N)2]).. "'n (10.22)p(N)
N

Monte-Carlo simulation (see Appendix A) has also been carried out to

check the validity of Eq 10.22 and the results are given in Figs

10.4 and 10.5. The probability for N£l is neglected, which does not

produce any significant error in practice.

x (10.23)

On the condition that

J..IN - N

J..IN
(10.24)

the exponent in Eq 10.22 can be sillplified as follows
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= (10.25)

Eq 10.22 can be silnplified further by replacing N by uN in the
denominator. This procedure results in an expression

p(N) x n
o U 2

n UN _ N )2 ]
UN

1 exp [...!.( _U...JN"__---:~:--,"_]2
2 oN

(10.26)

which is a normal distribution. Its root mean square is

(10.27)

In cases in which the difference between N and the mean life uN is

big (1n comparison with the mean life itself) I this approximation

may lead to substantial errors in terms of the probability density.

Nevertheless. the mean life UN and the root mean square oN so
defined can be used to evaluate the fatigue life distribution

because the approximation describes the part of the probability

density function arround the mean life where the probability

concentrates. The effect of n and ~ on the mean UN of the number of

cycles are shown in Figs 10.6 and 10.7 respectively with a

Monte-Carlo simulation which confirms the analytic calculation. It
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can be seen that factors which increase the crack growth rate

decrease both the mean number of cycles and the standard deviation.

but increase the coefficient of variation (Figs 10.2-6). This can be

seen from the limiting cases

lim oN = ... (10.28)
'"'N"'"

while
oN 1lim = lim 0 (10.29)

'"'N"oo '"'N '"'N"'" '"'n"''"'N

SECTION 4 Material Variance

10.4.1 The Distribution of Fatigue Life

Experiments such as those by Virkler et aI (Ref 135) indicate the

existence of variance in the fatigue crack growth rate under

constant amplitude loading. which is attributable to the the

variance in material properties. It is important to account for this

influence in predicting the fatigue life and this is achieved by

treating one of the material parameters. a as a random variable. a

is simply assumed to have a normal distribution

I
,/(2,,) °a

pta) = 0

1 e

(10.30)

where '"'a and °a are the mean and the root mean square respectively.

When a is reasonably concentrated about a mean value. the part of

probability in the area a'O can be neglected to avoid any negative
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crack growth rates. In order to separate the new random variable. Eq

10.20 is written as

11\ X = In. ~ + 11'\. '-' + InN (10.31)

By introducing a new notation. the above equation can be written as

(10.32)

It is convenient to introduce a convention at this ~t~ge that if a

probability density function is written as Px(y). where the suffix x
indicates the expression is a function of x but the variable x is

replaced by y. When the distribution of number of cycles needed to

grow a crack to a specific length is considered. Xl is constant. ~l.
'-'1and NI are random variables. The distribution of ~1 and ,..'1

determines the distribution of NI in such a way that (Ref 7)

(10..33)

The distribution of ~I can be obtained from that of «

[
~l

f)
e

n=...2
- jJ.«

~l e.o{- n 2e 0 aoP(~l)= (10.34)n=...2 2
,(211') N 0« n 2 2 0«0 ao

The distribution of jJ.lcan be deduced from the distribution of jJ.in

a similar manner

(10.35)



An expression for the distribution of NI can be obtained by
substituting Eq 10.34 and Eq 10.35 into equation 10.33. This can be

converted to produce the distribution of the fatigue life

x -}fext ~l 2
p(N)= N (e - "'0)

n::.2.

211Ca: on n 2 2 2
° ao N -Q) On

[
X e-"'l

- "«rn::2
n 2
° ao N

12 d"'l (10.36)
2 0a:

10.4.2 The Distribution of Crack Lengths after a Given Number of

Cycles

When considering the probability distribution of crack lengths af

after a initial crack ao has been subject to a given number of
cycles, Eq 10.32 can be rearranged into the form

Xl = >'1+ YI
Each of the three terms is a random variable with

(10.37)

YI = '-'I + NI (10.38)

Similar to the case of crack length distribution, a general form of

the distribution of Xl can be given as

(10.39)

The distribution of >'1is represented by Eq 10.34, the distribution

of YI is given by the central limit theorem through the relation
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logVl log(",N) N Si nlog t (--)
i=1 ° (10.40)

Therefore

P(VI) '"' (10.41)

The expression for the distribution of the final crack length af can
be obtained from Eq 10.39, 10.41 and 10.34

n+2
(2"~ fn 0« on on

VI 2
(e - "'nN)

2
2 N on

af
p(--)=<ao

[
X

-VI

- "ure
n-2

on ao"2 ) dYI (10.42)
2 2

0«

SECTION 5 The Variability of the Critical Crack Length

The distribution of the number of cycles to grow a crack from an

initial length to a given length has been studied for cases with and

without material property variability. These expressions can be

regarded as estimates of the fatigue life distribution given that

failure occurs when the crack reaches a constant critical length.

But failure may take place at various combinations of crack length

and the external randoa loading during a fatigue process. For a

refined method the variability of the critical length should be
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considered.

It is convenient to consider the probability that failure takes

place at an arbitrary ith cycle while the crack length is between a

specific crack length a' and a'+da'. This event consists of two

statistically independent events. That is to say that the crack

length is in a certain range given as a'£a£a'+da' and the failure in

the ith cycle. which is conditional on surviving the previous i-I

cycles. The failure condition can be represented as that the crack

length reach a critical length ac or simply ac£a. The probability

for realising the two events simultaneously is

Pr[failurela'£a£a'+da] p(a)da Pr[ac£a]

(10.43)

where i indicates the crack length distribution at the ith cycle. ac

is the critical crack length representing the crack length at

fracture and is a random variable independent of the number of

cycles i. Generally. failure can be regarded as possible at any

crack length between zero and infinity. To cover the whole range of

crack length an integration must be carried out

Pr[failure] = J~p(a) J~p(ac) dac da (10.44)

The probability of failure at the ith cycle can be presented in a

non-dimensional form with Pr[i] as an alternative notation

Pr[failure] P(i)
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a

= i1 p( a ) ~J 1 ao J 1
ac ac

p(--) d(--) d(~)ao ao ao (10.45)

An initial crack is assumed to exist at the beginning of the random

fatigue loading, thus the two lower integration limits are 1. This

gives the probability of failure, i.e the failure rate at the ith

fatigue cycle which can be utilized to determine the probability of

failure in the first N cycles of a randall loading. Let Bi be the
event of surviving the ith cycle

Pr[surviving N cycles] = Pr[Bl]Pr[BzIB1]Pr[B3IBlnBz] ...
N

= i~1 [l-P(i)] (10.46)

This indicates that fatigue is a Marcoff process (Ref 143). As a

fatigue life often comprises hundreds of thousands of cycles, it is

not practical to evaluate Eq 10.46 cycle by cycle and it is

necessary to perform a numerical integration

JN

1
Z(N) log[l-P(i)] di

= log[l-P(l)] + log[1-P(2)]+ .... (10.47)

where the integers Nand i have to be regarded as continuous In the

integration. Comparison of Eq 10.47 with 10.46 gives the probability

of surviving the first N cycles is

Pr[survive] = eZ(N) (10.48)

The probability of failure in the first N cycles is therefore



Pr[failure] = 1 _eZ(N) (10.49)

The essential part in this calculation is the determination of P(i)

given by Eq 10.45. It is necessary to be able to evaluate the

distribution of crack length which is a function of the number of

cycles i

a
p(-)ao

a
p(~. i) (10.50)

The methods described in previous sections are adequate for this

purpose. As regards the Question of the distribution of critical

crack lengths aCt it may initially be considered that the critical

crack length is a function of the external fatigue loading using a

linear elastic fracture mechanics criterion

K

f ./1, J (~ + Srn)
2

(10.51)

where Kc is the material toughness and Sm the mean stress. The

distribution of the critical crack length ac for this case can be

determined from a variable transformation and can be adapted if

other criteria are used

SECTION 6 The Implementation of the Probabilistic Calculation

Analytic evaluation of the proposed calculation is not possible due

to the complex form of the expressions for p(8/ao) and p(ac/ao).

therefore a numerical method has to be used A computer program

called PANA has been compiled in which particular attention has been

paid to accuracy and efficiency.
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10.6.1. The Main Structure of the Computer Program

The program was designed to evaluate the probabilistic distributions

described in the previous sections, so that sharing subroutines and

functions between different purposes is possible. A logic flow chart

of the program is presented in Fig 10.8. The program was compiled

and run on aIeL 2988 machine at Glasgow University. A typical

calculation, allowing both « and ac to be random variables, needs 4

cpu seconds.

10.6.2. Evaluation of X and P(ac)

The preliminary evaluation of X and the cumulative distribution

function p(ac/ao) are straight forward procedures using the

trapezoidal rule (Ref 182). However, two points require particular

care. The first concerns the geometric calibration function which

was defined such that f is extremely big when the crack length is

larger than a limiting value at at which the applied mean load

causes failure. The second point is that the limits of integration

of p(ac/ao) are restricted by the ability of computers to handle
very small numbers without underflow error. The integration area was

expanded by scaling the distribution of ac by an artificially large
number and the effect of this was corrected later in the

calculation.
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10.6.3. Evaluation of P(i)

The difficult part of the calculation is to evaluate P(i) according

to Eq 10.45. This requires two dimensional numerical integration, so

that accuracy is very critical. The logic of this part of the

calculation is shown in Fig 10.9.

The evaluation of P(i) needs the integration on p(ac)' It also needs
distribution of crack length p(a/ao, i) which can be given by Eq
10.42 using a and i instead of af and N. The calculation of the

distribution of crack lengths (Eq 10.42) involves another

integration and it was found to be important to perform integration

in the correct area, failure to do so leads to waste of computer

time and very poor precision. The exponential in the expression (Eq

10.42) for the probability density function p(af/ao) denoted as U

here

[ X
-VI

·"r
e
n.=.2.

exp {-
(eVl_ J.lnN)2 on a 2

U
Q } (10.53)2 2

2 N on 2 00:

was regarded as the parameter which determines the integration

interval out of which any input of VI causes under! low. The two

terms in the exponent were considered separately to give two regions

which exclude the under flow areas, and the integration domain was

taken to be the overlapped area of the two regions. The exponent has

been increased by an artificial factor which was compensated at the

end of the calculation.



The integration domain for crack length in the caculation of P(i)

(Eq 10.45) is the area in which the domain for the calculation for

p(a/ao. 1) exists. The main integration technique was the Romberger

method (Ref 182) and a subroutine for this integration procedure is

presented in Appendix 2. In this method the integral is estbated

from a number of integration points with equal intervals. After more

integration points are added to each interval. a new version of the

estimation can be obtained which is compared with the previous

estimate. More iteration .ay be necessary depending on whether the

difference between the estimations is smaller than the required

precision. In this way. by changing the criterion for accuracy,

confidence concerning the precision of the program can be obtained.

The Romberger method (Appendix B) has also been used in the

evalaution of distribution of crack length given by Eq 10.42 and the

distribution of number of cycles given by Eq 10.36.

SECTION 7 Comparison with Experimental Results

So far, this method for fatigue 11fe prediction has been compared

with Monte-Carlo simulation to verify the procedure. The comparison

can be extended to experiments by Talreja (Ref 183). In these

experiments, a narrow band random loading of stress r .11. s 0=182.4

MPa with a mean stress Sm=167 MPa was applied to Cr-Mo-V steel bars

of cross section 10x15mm dimensions. On one of the 1511.faces of the

specimen, an initial crack was introduced by electro-discharge

machining. The crack was 0.05mm deep and 0.15mm long on the surface.
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The failure of the specimen was defined as the fracture of the

specimen and the experimental data are presented in Table 1. The

fatigue life was measured in terms of the periods (each period

consists of 200x12.5 cycles). Since Groups 2, 3 and 4 are not

comparable, they are omitted.

TABLE 1 - Experimental data from Talreja's paper (Ref 183)

Group 5 and 6 were tested for 150 and 200 periods

"*" indicates "the rest of the group did not fail"

Group

No.

Periods of Loading to Failure

Specimen 1 2 3 4 5 6 7 8 9 10 11 12

1

(10 specimens)

5

(30 specimens)

6

(18 specimens)

95 101 144 145 160 163 171 220 235 296

137 149 *

132 136 151 152 159 159 176 180 184 188 199 *

To establish a basis for comparison between the probabilistic

calculation and the experiments, it is assumed that the exponent n

in the Paris law 1s 3 and the crack was always a semi-ellipse which

follows a preferred route given by Scott and Thorpe (Ref 80). The

stress intensity factors were determined dased on Raju and Newman's

results (Ref 62). The finite area correction due to Holdbrook and
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Dover (Ref 84) has also been introduced into the calculation of

stress intensity factors. The crack length at fracture in the

specimen is not available and in the probabilistic calculation, the

definition of failure is a crack penetration of three quarters of

the material thickness. Information on the randomness of the

material resistance to cracking is not known either, but the input

of ~«=3.2x10-12 and o«=0.95x10-12 into Eq 10.36 produces good curve
fitting to the data of Group 1 as shown in Fig 10.10. These values

of the parameters were used in the evaluation of the survival

probabilities based on Eq 10.41 after 150 and 200 periods of

loading, which were found to be 70.4% and 29.5% respectively. The

analytical results are in good agreement with the experiment data of

93.3% and 38.9%.

A comparison with a fatigue test by Gall (Ref 184) on a standard

three point bending specimen (Fig 4.3) has been conducted. The

material was as 4360 50D steel whose fatigue behaviour has been

reported by Gall and Hancock (Ref 125) as

__da_
dN 8.02 x 10-12 6K2.92 (10.54)

for the mean growth rate and

__da_
dN 1.12 x 10-11 6K2.92 (10.55)

for 95% upper band of the growth rate. A narrow band random loading

of r.m.s of 2.86 kN superimposed onto a mean loading of 30 kN has

been applied to the specimen containing an initial crack of length

ao=7 .1996mm. Failure initiated at a crack length of ac=30mm after
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3.l59xl06 cycles. The 95% upper band of the crack growth rate was

utilized to produce a root mean square growth rate assuming « has a

normal distribution

-12
0« = 1.59 x 10 (10.56)

This provides adequate information for a calculation according to Eq

10.36 which produces an estimation that the probability is 37% for

the crack to reach 30mm in less than 3.l59xl06 cycles (Fig 10.11).

To consider the variance of critical crack length ac, it is
appropriate to use the failure criterion of plastic collapse given

(Ref 185) for a bar of unit thickness

F 0.728 (10.57)

where So is the yield stress, which is 329 MN/m2 in this case, F is

the applied force, and Wand L are dimensions given in Fig 4.3. This

criterion has been used instead of the linear elastic fracture

mechanics criterion (Eq 10.51) and the distribution of critical

crack lengths was produced from that of the force F. Based on this

random final crack length, the probability of failure within

3.159x106 cycles was estimated according to Eq 10.49 to be 64% as

shown in Fig 10.11. The result has once more added confidence to the

present probabilistic analysis method.
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The open circles represent Monte-Carlo simulation data.
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specimen

The prediction of Eq 10.36 is represented by a broken line;
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CHAPTER 11 FRACTURE MECHANICS ANALYSIS OF A TUBULAR WELDED T JOINT

In order to use fracture mechanics to assess the fatigue life of a

tubular welded T joint. an analysis of cracks in the joint has been

carried out and is described in this chapter. The analysis considers

a number of crack depths representing different levels of crack

propagation. The technique used in the analysis is based on the

shell finite element method in conjunction with the line spring

concept of Rice and Levy (Ref 59). An investigation of the

applicability of this concept to the modelling of surface cracks in

sites of stress concentration has been conducted prior to

application of the technique to tubular welded joints.

SECTION 1 A T Plate Joint

Numerical analysis of structures such as the tubular joint shown in

Fig 7.1 using shell elements is computationally efficient in

comparison with three dimensional analysis. The line spring concept

allows the simulation of surface cracks near the chord-brace

intersection by a shell analysis. which otherwise requires three

dimensional analysis. However. a shell analysis does not provide a

model of any weld details such as the size or the curvature of the
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weldment which may affect the fracture mechanics parameters of a

crack at such sites.

To verify the applicability of line spring elements. part through

cracks in a plate T joint (Fig 11.1) have been studied using two

essentially different techniques. The analysis was carried out by

means of a finite element code known as ABAQUS (Ref 186) mounted on

a VAX 11/750 in the C.A.E. Centre of Glasgow University. A crack was

located in a horizontal plate at a position one vertical plate

thickness away from the central line of the vertical plate which is

approximately the position of the weld toe where cracks are

frequently found. The joint was designed to be a simple model of

part of the chord-brace intersection in a tubular T joint, and plane

strain was imposed. The ratio between the thickness of the vertical

plate t and the thickness of the horizontal plate Twas 0.79 which

is identical to the thickness ratio of the tubular T joint analysed

subsequently.

In the first technique, eight noded isoparametric quadrilateral

plane strain elements were used with which the local geometry of the

weldment was modelled. Three situations were considered: a sharp

corner joint, a 45· weld profile and a smooth circular profile as

shown in the meshes (Fig 11.2). 124 elements with 445 nodes were

used to model the sharp corner joint, and 150 elements with 529

nodes were used for the 45· weld profile and the smooth profile.

In the first loading case a pure couple was applied to each end of

the horizontal plate while allowing the end of the vertical plate to



be unrestrained. The J-integral was evaluated using the virtual

crack extension method of Parks (Ref 64) for crack depths of

a/T~0.2, 0.3, 0.5 and 0.8 as shown in Fig 11.3. Since the crack was

subjected to a purely mode I loading under perfectly elastic

conditions, the J-integral can be converted into the stress

intensity factor KI by

1

KI [ J E
2

1 - "
(11. 1)

The results are presented in Fig 11.4 in which RI is normalised in

respect to Sn~a where Sn is the maximum fibre stress in the

horizontal plate remote from the intersection and a is the crack

depth

Sn ~a (11.2)

In the second loading case, the two ends of the horizontal plate

were built in and the end of the vertical plate was subjected to a

vertical force loading. The crack was subjected to mixed mode

loading, thus the J integral contains contributions from mode I and

mode II stress intensity factors KI and KII which can be combined

J E 2 2Kr + KIr ) (11.3)
2

1 - "

Fig 11.5 shows the non-dimensional results but in this case Sn is

the stress in the vertical plate remote from the intersection.

A shell analysis of the same plate T joint has been conducted in

which 15 eight noded shell elements with 73 nodes were used (Fig



11.6) and the crack was represented by a line spring element (Ref

59). The plate was restrained in plane strain state and the same

loadings and crack depths as in the first analysis were considered.

The results are presented in Figs 11.4 and 11.5 together with those

from the first analysis. Although the second analysis using line

spring elements does not allow the modelling of weld details. the

results compare very favourably with that of the first. Generally.

the scatter is smaller for pure bending than that for vertical force

loading. For both loading cases. a/T=O.2 is the worst situation. For
vertical force loading. the difference at this crack depth between

the round corner T plate calculation and the line spring calculation

is less than 12%. If the line spring results are compared with that

of sharp corner plate T joint. the difference is less than 7%. The

difference between the 45· weld profile result and the line spring

calculation is the biggest. as much as 14%. This can be attributed

to the stress concentration at the point where the crack was

introduced. It is clear that the line spring model may not produce

accurate results when the surface crack concerned is very shallow.

But when the crack becomes deeper. the influence of the local

geometry decreases and as the stress field surounding the crack

becomes dominated by the membrane forces and the bending moments

which can be determined by a shell analysis of the overall goemetry.

the line spring element produces an accurate estimation.

In addition. it can be seen from the calculations that when there is

not a load shedding effect. the stress intensity factor naturally

increases as the crack becomes deeper (Fig 11.4). In the case of

load shedding. the stress intensity is determined by both the effect
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of decreased load passing through the cracked section and the

increased crack depth. In the load shedding case studied, the stress

intensity increases to a maximum then decreases (Fig 10.5).

SECTION 2 The Tubular Welded T Joint and Its Finite Element Model

Having established the validity of the method applied to plane

strain weldments, it is now natural to extend the analysis to three

dimensional problems such as the tubular welded T joint shown in Fig

7.1. The dimensions of the joint are given in the figure and are

identical to the joint Dover and Holdbrook (Ref 173) have tested

using random fatigue loading. The joint has been analysed under

three basic loading cases, namely axial loading, in-plane bending

and out-of-plane bending. For all the cases the two ends of the

chord were built in and force boundary conditions were applied to

the end of the brace.

Under in plane bending, half of the geometry is adequate for the

analysis. The half geometry concerned was idealized by 444 8 noded

linear elastic shell elements provided by ABAQUS as shown in Fig

11.7. The calculation of the stress distribution in the uncracked

geometry is a problem with 2664 degrees of freedom. For axial

loading, because of the symmetry of the loading, the problem can be

reduced further to a quarter of the geometry (Fig 11.8). The number

of elements along the chord-brace intersection has been increased

while the multi-point constrain technique (Ref 186) has been

utilized to reduce the number of elements elsewhere. The mesh
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presented in Fig 11.8 consists of 208 eight noded linear elastic

shell elements. This results in a problem with 4128 degrees of

freedom. Under out of plane bending, it is necessary to analyse half

of the geometry and the mesh in this case was generally produced by

adding another quarter of the geometry to that for axial loading

situation. 416 eight noded linear elastic shell elements were used

(Fig 11.9) and the number of degrees of freedom for the problem was

7932.

Surface cracks were introduced into the model at the site of maximum

stress concentration. Despite the somewhat irregular shape of cracks

in experiments, they were idealized as semi-ellipses with a surface

length of 2c and a depth a as shown in Fig 11.10. Although a variety

of crack shapes may occur in fatigue tests on tubular welded Joints

(Ref 168 and 172), the evolving shapes of the crack were taken as a

simple function of crack depth from an inspection of experimental

data (Ref 172)

a
c

a= 0.05 + 6T (11.4)

as illustrated in Fig 11.11. Crack shapes observed in a test on a

similar T joint (T=~=0.5) using constant amplitude loading (Ref 101)

are also shown in this Figure, and have been used to conduct a check

on the accuracy of the line spring method at a later date.

Surface cracks in tubular joints have been observed to propagate in

a direction at an angle to the surface of the chord wall (Ref 101),

while in the line spring element model, the crack is always assumed

to be nor-aal to the shell at every point. The numerical analysis



represents the cracks by discrete line springs in the chord

distributed along a perimeter which is on the chord side and one

brace wall thickness away from the chord-brace mid-surface

intersection. This perimeter is at approximately the position of the

weld toe where fatigue cracks are frequently found. The surface

length of the cracks was measured along the perimeter and the

centres of the cracks were assumed to remain at the original maximum

stress concentration sites under the individual loading cases.

SECTION 3 Results of the Numerical Analysis

11.3.1 In-Plane Bending

Analysis of the uncracked tubular welded T joint under in plane

bending gives the hot spot stress concentration factor, which is

defined as the hot spot stress divided by the maximum fibre stress

in the brace remote from the chord-brace intersection. The hot spot

stress is determined by extrapolating the principal stress at the

surface froID the linear distribution region to a point half wall

thickness away from the central line of the brace wall. It is

designed to achieve the same result as the recolDmended experimental

procedure (Ref 150). The calculated hot spot stress concentration

factor was 3.28 which compares favourably with 3.4 and 2.8 from the

parametric formulae of Wordsworth and Smedley (Ref 157) and Kuang et

al (Ref 160). In order to introduce surface cracks in the following

analysis, the position of the hot spot was determined to be 360 from

the crown on the chord side of the chord-brace intersection.
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Semi-elliptic cracks were introduced following the procedure

described in the previous section. To define positions along the

crack front. an angular coordinate system was defined such that the

origin was the centre of the brace, the 9=00 line passes through the

initial hot spot. and 9 increases in the anti-clockwise direction

(Fig 11.12), such that 9=-360 defines the crown position and 9=54°
defines the saddle point.

Stress intensity factors KI, KII and KIll along the perimeter of the
crack were normal ised by Sn.la and presented for different crack

depths in Figs 11.13-15. In all cases the results from the two end

points of the semi-elliptical crack have been neglected because of

the abrupt change in crack depth which can not be accurately

modelled by the spring elements.

The cracks were subjected to a mixed mode loading and the three

stress intensity factors can be combined through the J-integral

which is equivalent to G for linear elastic fracture mechanics

G = J
2

1 - 11

E
2 2KI + KII ) +

1 + 11

E
2

KIll (11.5)

The J-integral is presented along the crack length in Fig 11.16 in a

non-dimensional form.

The stiffness of the joint is given in an appropriate

non-dimensional for. in Fig 11.17 in which u Is the horizontal

displacement of the nodes on the end of the brace In x direction and

M the applied pure couple. The notation for di.ensional parameters
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such as Hand r and the Cartesian coordinate system are defined in

Fig 7.1. Although diplacements in the y and z directions exist, they

are negligible in comparison with the x direction displacement. The

stiffness of the joint has been shown to be maintained even after

the penetration at the original hot spot, but a marked loss of

stiffness occurs when penetration takes place at the crown

position.

11.3.2 Axial Loading

The hot spot in the axial load case is the saddle position.

Following the procedure described above, the hot spot stress

consentration factor was determined to be 9.35, while the values

given by the parametric formulae of Kuang et al (Ref 160) and

Wordsworth and Smedley (Ref 157) are 8.5 and 9.35 respectively.

The stress intensity factors KI, KII and KIll along the crack length

are presented in Figs 11.18-11.20.

The angular position is given by 0 which is more convenient for this

case. As shown in Fig 11.12, the coordinate system represented by 0

can be obtained from that represented by 9, by moving the 0° line to

the crown point, thus the difference between the two angles is 36°.

The half crack concerned is in the region 00~.'900. From Fig 11.20,

it can be seen that in general mode IIII~racking exists, but at the

saddle position, where both the symmetric planes of loading and

geometry pass, the corresponding stress intensity factor KIll

decreases to zero.



The magnitude of the J-integral along the crack front is presented

in Fig 11.21. Data concerning the stiffness of the joint is given in

Fig 11.22 in which v is the vertical displacement of the nodes on

the end of the brace. The crack shape after penetration at the

saddle is rather arbitrary. As in the case of in plane bending, the

stiffness of the joint is maintained before the penetration at the

original maximum stress concentration position and decays steadily

afterwards.

11.3.3 Out-of-Plane Bending

For the out of plane bending case, the maximum stress concentration

is located at the saddle on the chord side of the intersection. The

same procedure has been carried out to extrapolate the principal

stress to a point a half brace wall thickness from the mid-surface

intersection at the saddle. This produces a hot spot stress

concentration factor of 9.42, which is in good agreement with the

results given as 9.57 by Gibstein's (Ref 161) and 11.26 fro.

Wordsworth and Smedley's (Ref 157) parametric formulae.

It is not surprising that the stress intensity factors KI, KII and
KIll along the crack length shown in Figs 11.23-25 vary in a si.iIar
way to that in the axial loading case. The variation of the

J-integral along the crack length is presented in Fig 11.26 and the

stiffness of the joint in Fig 11.27.
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11.3.4 Summary of the Results

Under the three basic load cases, the analysis of the uncracked T

tubular joint gives hot spot stress concentration factors which are

in good agreement with parametric formulae derived from the

measurements on acrylic models (Ref 157) and from finite element

analysis (Refs 160 and 161). The difference between the results of

the present analysis for in-plane bending and that from the formulae

of Kuang et al (Ref 160) can be attributed to among other factors,

the fact that Kuang et al used the stress concentration at the crown

position to construct their parametric formula for this loading

case.

The opening mode stress intensity factor is generally the dominant

component of the mixed mode cracking. Fig 11.28 shows the opening

mode stress intensity factor at the deepest point of the cracks

under the three loading cases. The stress intensity factor does not

increase rapidly as the crack becomes deeper. This can be explained

by the load shedding effect in the tubular welded joint which

reduces the load carried by the damaged section.

The evaluated mode two and mode three stress intensity factors are

not stable in some cases, and this may be probably attributed to the

mathematical techniques used in the extended model of the line

spring element (Ref 63). However, mode two and mode three stress

intensity factors are small in comparison with the mode one stress

intensity factor. In addition, the mode three stress intensity

factor is zero at the saddle point under both axial loading and



out-of-plane bending as shown in Figs 11.20 and 11.25, which is

physically correct.

SECTION 4 Discussion

The opening mode stress intensity factor at the deepest point of the

crack is compared with experimentally inferred data by Dover et al

(Refs 172 and 173) in Fig 11.29 for the three loading cases studied.

Despite the fact that the crack in a joint is subjected to a mixed

mode loading, the experimental method basically determines a stress

intensity factor by comparing the crack growth rate in the tubular

welded T joint and the crack growth rate in pure mode I loading in

simple fracture mechanics specimens. Therefore the comparison is not

on an exactly equivalent basis.

For very small cracks, for example, when a/T,O.l, the cracks are in

the process of coalescing to form a single long crack, the

experimental data are not comparable. For very deep cracks, plastic

tearing can be substantial as the crack propagates through the

remaining ligament, thus the experimental data is questionable in

this area. In the central range of crack depth, satisfactory

agreement has been achieved in axial loading case. For out-ot-plane

bending case, the results from the two methods are closer (as also

shown in Fig 11.30) when alT is. about 0.3 or O.S. While around

a/T=0.5, where the line spring element is expected to pertorm well,

the experimental data is low in comparison with the finite element

analysis. The experIaerrtal results for the in-plane bending case
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increase as alT approaches about 0.5 and experimental data for

a/T~0.5 is not available. There is an obvious difference which may

be attributed to the stress concentration factor. The stress

concentration factor used in deriving the experimental function

f(a/T) was 6.67 and the dimensions for the tubular T joint have not

been given (Ref 172). While in the current study, the hot spot

stress concentration factor was 3.32. If the stress intensity factor

is presented as K/(Sn~w~a), there is a general agreement between the
experimental data and the current study (Ref 187).

The corelation between the finite element results and the

experimentally inferred results is better in the axial loading case

than in the other two cases. This is because the experimental data

for in-plane and out-of-plane bending is much lower than that in the

axial loading case. In the range a/T~O.I, the difference between the

axial loading case and the out-of-plane bending case is consistently

more than 36%. This implies that if the exponent in the Paris law n

is 3, the part of fatigue life corresponding to crack propagation

from a visible crack to a through crack under out-of-plane bending

test is 2.5 times longer than that in axial loading case for a

similar hot spot stress range. This can be partly attributed to the

nature of the experimental method. The evidence is that (Ref 174)

the function f(a/T) determined from two nominally similar cracks in

a fatigue test of a K joint using constant amplitude loading were

significantly different (Fig 11.31). The K joint has two braces with

same angle to the chord and diameter, the braces were loaded 1n the

plane on the brace and chord such that the material between the

braces was subjected to a fatigue loading of r--l.



Three main factors which contribute to the difference between the

current study and the experimental data can be identified. Firstly,

differences in the crack shape. Exact information on the crack

shapes in the experiments with which the current study is compared

are available. The crack shapes used were rather arbitrarily chosen

and a variety of crack shapes is expected to occur in the

experiments. In order to illustrate the influence of the crack

shape, a calculation has been carried out for out-of-plane bending

using a different crack shape. The alc ratio was increased from 0.15

given by Eq 11.4 for a/T=0.6 to a/c=0.2, and the corresponding value

of f(a/T) for the deepest point draped by 13%. In the test reported

by Delft Universi ty (Ref 101), the ratio a/c for the same crack

depth ratio a/T was observed to be 0.3, and if this value was used,

an even larger decrease in the function f(a/T) is expected.

The second factor is the assymetry in crack shapes and stress

distribution. In the numerical analysis symetrical situations were

always assumed, and this is not always true in reality. For

instance, in the experiment conducted in Delft University (Ref 101),

on one side of the tubular T joint under axial fatigue loading there

was a major crack while on the other side, there was not. The

assymetry of crack shape and position enhances the assymetry of

stress distribution, and this results in a more biased distribution

of cracks. A third factor which can be considered is the variance in

material resistance to cracking. Assuming the variance In growth

rate in tests using constant amplitude loading Is attributed to

variance of the applied stress intensity factor range In the
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experiment. the likely scatter band of the inferred stress intensity

factor can be determined. The 95% scatter band in crack growth rate

under constant amplitude loading has been determined by Gall and

Hancock (Ref 125) for BS 4360 50D steel. which indicates that such a

scatter corresponds to a scatter band of about *10% in stress

intensity factor. When using random loading as the experimental case

by Dover and co-workers (Refs 171 and 172). an even larger scatter

can not be avoided as shown in the last chapter.

Ideally it would be desireable to track surface cracks on an

individual basis. although to achieve this. detailed information is

required which involves both financial resources and time. For the

experiment performed in Delft University (Ref 101). the information

about the configuration of the joint and the crack position and

shapes are available. A line spring calculation has been carried out

and the results are compared with experimental data given by Ritchie

(Ref 188). The experimental results have a scatter band (Fig 11.32):

if the line spring calculation is compared with the mean

experimental data. the difference is less than 12.5% for the range

of cracks considered. Ritchie (Ref 188) has also indicated that a

finite element analysis using solid element for modelling the

intersection area and shell elements for modelling the rest of the

tubular joint yield a value of K/Sn/~az6.29 for crack

a/T-O.563. and the corresponding line spring result is

depth

6.91.

Obviously the line spring calculation has achieved a satiafactory

agreement baring in mind that it does not allow modelling of the

weld detail.
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In comparison with the experimental method and three dimensional

analysis, the main advantage of line spring element method Is its

efficiency, without which it would be impossible to carry out such

an analysis at low cost and in a short time. Al though the line

spring element model of surface cracks is a simple simulation of the

real structure, it can be used to evaluate the stress intensl ty

factors KI, KII and KIll with a reasonable accuracy when the crack

in hot spot region is more than 20% of Vie the thickness of the

plate.
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bending. Tne creek i~on.e element- aw().:J from. the ~n.t€lfsectfon.

Fig 11.10

Notation of a semi-elliptic crack.

Fig 11.11
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Original experimental data of shape ratio from an fatigue test

on a tubular T joint (Ref 172), the crack shapes used in current

study and crack ratios observed in Delft University (Ref 101)

Experimental data (Ref 172): closed circles;

Experimental data (Ref 101): crosses;

Crack shapes used in the current study: straight line.

Fig 11.12

Definitions of e and ~.

Fig 11.13

Opening mode stress intensity factor of semi-elliptic cracks in

tubular T joint subjected to in-plane bending.

Fig 11.14

Sliding mode stress intensity factor of semi-elliptic cracks in

tubular T joint subjected to in-plane bending.

Fig 11.15
Anti-plane mode stress intensity factor of s~mi-elliptjc cracks

in tubular T joint subjected to in-plane bending.

Fig 11.16

In-plane bending: J-integral as a function of the angular

position for cracks in the tubular T joint.

Fig 11.17

Stiffness of the tubular welded T joint under in-plane bending.



Fig 11.18

Opening mode stress intensity factor of semi-elliptic cracks in

tubular T joint subjected to axial loading.

Fig 11.19

Sliding mode stress intensity factor of semi-elliptic cracks in

tubular T joint subjected to axial loading.

Fig 11.20

Anti-plane mode stress intensity factor of semi-elliptic cracks

in tubular T joint subjected to axial loading.

Fig 11.21

Axial loading: J-integral as a function of the angular position

for cracks in the tubular T joint.

Fig 11.22

Stiffness of the tubular welded T joint under axial loading.

Fig 11.23

Opening mode stress intensity factor of semi-elliptic cracks in

tubular T joint subjected to out-of-plane bending.

Fig 11.24

Sliding mode stress intensity factor of semi-elliptic cracks in

tubular T joint subjected to out-of-plane bending.



Fig 11.25

Anti-plane mode stress intensity factor of semi-elliptic cracks

in tubular T joint subjected to out-of-plane bending.

Fig 11.26
Out-of-plane bending: J-integral as a function of the angular

position for cracks in the tubular T joint.

Fig 11.27
Stiffness of the tubular welded T joint under out-of-plane

bending.

Fig 11.28

Opening mode stress intensity factor at the deepest point of the

semi-elliptic cracks for the three loading cases.

The solid line represents in-plane bending;

The broken line represents axial loading;

The dotted line represents out-of-plane bending.

Fig 11.29
Comparison of the results of the line spring analysis of surface

cracks and experimentally inferred results.

Fig 11.30

Comparison of the results of the line spring analysis of surface

cracks for out-of-plane case and experimentally inferred results

showing random characteristics.

Current study: crosses



Experimental results (Ref 172): closed circles

Fig 11.31
Experimentally inferred function f(a/T) for two cracks in a test

on a tubular K joint.

Fig 11.32
Comparison between experimental data (Ref 188) and line spring

results.

The so~·J llt'les Y~pfeSertt" the ex.pertmentu( data j
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CHAPTER 12 PROBABILISTIC ANALYSIS OF THE FATIGUE LIFE

OF A TUBULAR JOINT

It is now possible to perform a probabilistic fatigue analysis on

the tubular T joint given in Fig 7.1 using fracture mechanics. The

randomness of fatigue life was studied using the analytic method

presented in Chapter 10. The application of this method requires

specific information concerning the fatigue crack propagation in the

joint. which is provided by the finite element analysis in Chapter

11.

SECTION 1 Fatigue Life Distribution of a Tubular Joint

In this fracture mechanics assessment of the fatigue 11fe of a

tubular joint. the following assumptions have been made:

a. The initial crack depth was arbitrarily assumed to be 10\ of the

chord wall.

b. The failure criterion was taken as 90% penetration of the chord

wall. because beyound this point. plastic tearing may occur which

can not be described by the stress intensity factor.

/1.2.



c. The crack shape during propagation is assumed to follow Eq 11.4.

d. There is no interaction between cycles in narrow band randoa

loading. For broad band random loading, it Dlay be possible to

account for th~ interaction effect by introducing a single parameter
into the present method. But such an adj ustjsent has not yet been

carried out.

Considerations have been given to the tubular welded T joint shown

in Fig 7.1 and analysed in Chapter 11. Since the fatigue life was

defined by the crack propagation, the deepest point of the crack is

of Dlain interest. The opening mode stress intensity factor at the

deepest point can be expressed as

Kr
af(-) Sn Cs -'(l1a)
T

(12.1)

where Cs is the hot spot stress consentration factor. f(a/T) can be

given as a function of afT by the polynomial

f + (12.2)

where Ct. C2• Cl and C4 are constants. For each loading case. four

pairs of values of afT and corresponding opening mode stress

intensity factor at the deepest point of the crack are required to

input into Eq 12.2. so that a equation set can be produced from

which Ct. C2• Cl and C4 can be determined. The values of afT and the

corresponding Kr were obtained from Chapter 11. The stress intensity

factor has been extrapolated to a/TLO.2 by Eq 12.2.
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The material of the T joint was assumed to be BS 4360 50D steel.

Para.eters for describing fatigue crack growth rate under constant

amplitude loading were given by Gall and Hancock (Ref 125, also see

Section 7 in Chapter 10)

8.02 x 10-12 (12.3)

and

0« = 1.59 x 10-12 (12.4)

The unit for da/dN is m/cycle and for the stress intensity factor is

MN-m-3/2. The fatigue loading was assumed to be narrow band random,

and the effect of mean load was assumed negligible. In order to make

the predictions for different load modes comparable, the fatigue

load has been presented in terms of hot spot stresses. In this case,

the root mean square of the hot spot stress is a parameter to

represent the fatigue loading and was taken as 50MN/m2.

These data have been used as input of the computer program PANA

(Section 5 in Chapter 10) which predicts the fatigue life

distribution and the results are shown in Fig 12.1. The T joint

under axial lading, in-plane and out-of-plane bending were

considered separately. It can be seen that the life distributions

for different modes are similar. For the tubular joint and crack

growth route analysed, the present study shows that the hot spot

stress can give an approximate indication of the fatigue life.

Perhaps the most important application of the present .ethod is for
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assessing the residual life of a cracked joint. A 90% through crack

in a tubular joint can be regarded as intolerably dangerous so that

for a part through defect. the residual fatigue life can be taken as

the period in which the defect propagates to 90% wall penetration.

To demonstrate the prediction of residual fatigue life. a half

through crack was assumed and other conditions in the prediction of
fatigue life were unchanged. The calculated residual life

distribution is shown in Fig 12.2

SECTION 2 Corelation with S-N Curve

It is useful to relate the current new method to the traditional

methods. therefore the appl1cability of the present method can be

shown immediately. The present method has been used to analyse some

experimental S-N data presented by Wylde and McDonald (Ref 167).

These data were obtained from constant amplitude fatigue tests on

tubular welded T joints. The dimensions of the joints are realistic.

for instance the diameter of the chord is 457mm. The fatigue life

against loading curve has been presented in terms of hot spot strain

range Eh which can be converted into hot spot stress range Sh by

Sh = Eh x E

E is the Young's modulus and has been taken as

(12.5)

E 210 x 109 N/m2 (12.6)

For random fatigue. an equivalent hot spot strain range Ee can be

defined as
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(12.7)

which reduces to the hot spot strain range for constant amplitude

situations.

Based on this equivalent hot spot strain range and the assumptions

made in the last section. the present analysis has been utilized to

produce fatigue life predictions which are presented in the form of

an Ee against life curve for in plane bending cases. The 95%

confidence limits for the Ee vs. N curve have also been compared in

Fig 12.3 with the DD55Q curve and experimental data (Ref 167). There

is a general agreement between the prediction and the experimental

data. although there are a number of differences. One is the

difference in the definition of the fatigue life since in the

prediction. an initial crack size was assumed. while in experiment.

the fatigue life is regarded as the whole experimental period

terminated when the limit of the actuating capacity of the machine

is reached. The percentage of life to through thickness cracking is

about 45% of the total fatigue life in the experiments (Ref 167).

Another difference is that the experimental data were collected from

experiments using various Smin/Smax ratios and different loading
modes. The third can be identified as differences in the geometry of

the tubular joints.

Nevertheless. it can be seen that the theoretical analysis generally

describes the relation between hot spot strain range and fatigue

life. For longer fatigue life. the analysis is conservative. A



potential use of the analysis is to assist in the production of an

S-N curve. In this case, the theoretical prediction can be backed up

by a few experimental points. Furthermore, the present analysis can

produce S-N curves for different levels of failure probability. Such

infor.ation is sometimes important as well as enormously costly if

experimental methods are used.

In many cases, there are no indications about the scatter of S-N

curves and many designs are based on conventional mean S-N curves.

Thus the probability of failure of the structures during service can

not be eliminated. It can be analysed using the above technique

however. This technique can be combined with experiments to produce

S-N curves cheaply for different reliability levels which is

necessary in full structural analysis.

( 7)
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Fig 12.1

Probability distribution of fatigue life of the tubular welded T

joint.

The solid line represeNts in-plane bending;

The broken line represents axial loading;

The dotted line represents out-of-plane bending.

Fig 12.2

The distribution of residual fatigue life of the tubular welded

T joint with a half through crack.

The solid line represents in-plane bending;

The broken line represents axial loading;

The dotted line represents out-of-plane bending.

Fig 12.3

The S-N curve produced by the current analysis for mean life and

95% probability band in comparison with experimental data (Ref

167) and DD55Q curve (Ref 177). One solid line represents the

mean life from the current analytic prediction. with two broken

lines indicating the 95% confidence
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Appendix A

The Monte-Carlo Siaulation of Fatigue Crack Propagation

If no interaction effects are considered. the crack length is given

by sUlIlRingthe crack increment due to each cycle of the fatigue

loading

af = ao +
N
E ~al'i=1 (AI)

where the ~i indicates the crack growth in the ith cycle. The Paris

law can be used to determine the crack growth increment for each

cycle

(A2)

For a simple situation such as a central crack in a infinite plate

the geometrical calibration function f is unity. For other cases

such as the stress intensity factor for the deepest point of a

surface crack in a tubular joint. the geometrical function can be

evaluated and represented by 8 polynomial

_..IL _..IL 2
C+CdT)+Cz(T) +". (A3)
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The next information needed for the simulation is the stress range

in the ith cycle Si' Random numbers representing Si can be generated

based on the ability of computers to supply random numbers uniformly

distributed between 0 and 1. Denoting such a random number as V,

p(V) = 1 (O£V£l) (A4)

The required distribution of S in a non-dimensional form is

(A5)p(n)

where

S (AB)n = o

The two variables are related by a function which meets the

following condition

(A7)

For the simulations conducted during this research work, a suitable

function was found to be

IS = ~ 0 [ - In( I-V)] /~ (AB)

Fatigue crack propagation under random loading described by Eq Al

has been used to generated a number of samples, for either a given

number of cycles N, or a given crack length. The statistical

distribution of the samples are compared with analytical predictions

(see Sections 2 and 3 in Chapter 10)
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Appendix B

The Ro.berger Method of Nu.erical Inteeration

The Romberg integration method is one of the automatic integration

schemes which do not require manual intervention during the excution

of the integration. Basically, an estimate from the values of the

integrand at a number of points in the interval is compared with the

estimate after one more point has been added to the middle of each

of the sub-intervals. When the two estimates are within the

prescribed tolerance, the number of intervals Is not increased

further. If the estimates are not close enough, another iteration is

conducted in which more evaluation points are added. Since the

procedure automatically adds more evaluating points, it is necessary

to give a maximum number of iterations if the tolerance condition

can not be met.

There are two major advantages of the method. Firstly it avoids

defining the divisions of the integration sub-intervals beforehand

and secondly. the method uses a particular formula which allows a

fast convergence as represented by the decreasing difference between

the estimates of the integration in two succesive iterations. For

the integrations presented in Eq 10.45. it is very difficult to

prescribe a division for the integrations. After the trapezoidal



rule failed to perform the numerical integration. the Romberg method

was chosen and the results are satisfactory.

The Ro.berg method was developed from the trapezoidal rule. Let rex)

be a integrand on [a,b] and the integral be

I fab f(x) dx (81)

If

h [
1

2
fCa) + fCa+h) +....

k+ f(a+2 h - h) + 1
2

f (b) ] (82)

where h is the length of subdivisions in the interval and

h (83)

To (k) converges to I as the number k increases. It has been proved

(Ref 170) that if f(x) has an infinite degree of differentiation.

for a estimate by the trapezoidal rule T(h)

T(h) = I + Cth (84)

where Ct, Cz .... are independent to h. Therefore

I + £L h2 + ....s. h4 + ~ 64 16 64 h . (85)

Eq B4 and B5 can be used to speed up the convergence process. By

cancelling the term h2, a new version of the estimate can be



obtained

Tdh)
4

3

hT(-)
2

1

3
T(h) (B6)

The procedure can be then extended into a general for•. Let

T
(k+1)
m-1 - 411

- 1

__ 1_ T(k)
111-1 (87 )

a table can be constructed as follows

The Tl(j) which has the highest i in the table is taken as the final

Romberg estimate.

Por the two dimensional integration in Eq 10.45, two subroutines for

the implementing of the Romberg method are needed. In fact, for

convenience. they are in the form of functions, one of which is

presented here as an example.

REAL PUNCTION ROM(Dl,D2.TOLAR)

DIMENSION T(2.50)

C THE LIMITS OF THE INTEGRATION INTERVAL IS GIVEN BY Dl AND D2

C THE INTEGRAND IS FUN( )

(3'4



C THE MAXIMUM NUMBER OF INTERATIONS IS 12

C THE MINIMUM NUMBER OF INTERATIONS IS 6

N=2

M=2

T(1.1)=(Dl-D2)*(FUN(Dl)+FUN(D2»/2.
801 HALF=O.

DO 810 I=1.N.2

VALl=(D2-Dl)*FLOAT(I)/FLOAT(N)+Dl

810 HALF=HALF+(D2-D1)/FLOAT(N)*FUN(VALl)

T(2.l)=T(1.1)/2.+HALF

DO 820 J=2.M

820 T(2.J)=(4.**(FLOAT(J)-1.)*T(2.J-l)-T(1.J-l)

1/(4.**(FLOAT(J)-1.)-1.)

IF(M.LT.6) GOTO 833

IF(ABS(T(2.M)-T(1.M-l».LT.(TOLAR*T(2.M») GOTO 850

IF(M.LT.12) GOTO 833

WRITE(1.900)

900 FORMAT(' THE INTEGRATION FAILS TO REACH THE GIVEN

1 TOLERANCE ONCE)

GOTO 850

833 DO 830 J=l.M

830 T(1.J)=T(2.J)

M=M+l

N=N*2

GOTO 801

850 ROM=T(2.M)

RETURN

END
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