

Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Papanastasiou, Stylianos (2006) Investigating TCP performance in
mobile ad hoc networks.
PhD thesis.

http://theses.gla.ac.uk/3068/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Investigating TCP Performance in Mobile Ad Hoc Networks

Stylianos Papanastasiou

A Dissertation Submitted for the Degree of

Doctor of Philosophy

to the Faculty of Information and Mathematical Sciences,

University of Glasgow

©Stylianos Papanastasiou, October 2006.

Abstract

Mobile ad hoc networks (MANETs) have become increasingly important in view of their

promise of ubiquitous connectivity beyond traditional fixed infrastructure networks. Such

networks, consisting of potentially highly mobile nodes, have provided new challenges by

introducing special considerations stemming from the unique characteristics of the wireless

medium and the dynamic nature of the network topology. The TCP protocol, which has been

widely deployed on a multitude of internetworks including the Internet, is naturally viewed as

the de facto reliable transport protocol for use in MANETs. However, assumptions made at

TCP's inception reflected characteristics of the prevalent wired infrastructure of networks at

the time and could subsequently lead to sub-optimal performance when used in wireless ad

hoc environments.

The basic presupposition underlying TCP congestion control is that packet losses are pre-

dominantly an indication of congestion in the network. The detrimental effect of such an as-

sumption on TCP's performance in MANET environments has been a long-standing research

problem. Hence, previous work has focused on addressing the ambiguity behind the cause of

packet loss as perceived by TCP by proposing changes at various levels across the network

protocol stack, such as at the MAC mechanism of the transceiver or via coupling with the

routing protocol at the network layer. The main challenge addressed by the current work is

to propose new methods to ameliorate the ill-effects of TCP's misinterpretation of the causes

of packet loss in MANETs. An assumed restriction on any proposed modifications is that re-

sulting performance increases should be achievable by introducing limited changes confined

to the transport layer. Such a restriction aids incremental adoption and ease of deployment by

requiring minimal implementation effort. Further, the issue of packet loss ambiguity, from a

transport layer perspective, has, by definition, to be dealt with in an end-to-end fashion. As

such, a proposed solution may involve implementation at the sender, the receiver or both to

address TCP shortcomings.

Some attempts at describing TCP behaviour in MANETs have been previously reported in

the literature. However, a thorough enquiry into the performance of those TCP agents popular

in terms of research and adoption has been lacking. Specifically, very little work has been per-

formed on an exhaustive analysis of TCP variants across different MANET routing protocols

and under various mobility conditions. The first part of the dissertation addresses this short-

coming through extensive simulation evaluation in order to ascertain the relative performance

merits of each TCP variant in terms of achieved goodput over dynamic topologies. Careful

examination reveals sub-par performance of TCP Reno, the largely equivalent performance of

NewReno and SACK, whilst the effectiveness of a proactive TCP variant (Vegas) is explicitly

stated and justified for the first time in a dynamic MANET environment.

Examination of the literature reveals that in addition to losses caused by route breakages,

the hidden terminal effect contributes significantly to non-congestion induced packet losses in

MANETs, which in turn has a noticeably negative impact on TCP goodput. By adapting the

conservative slow start mechanism of TCP Vegas into a form suitable for reactive TCP agents,

like Reno, NewReno and SACK, the second part of the dissertation proposes a new Reno-based

congestion avoidance mechanism which increases TCP goodput considerably across long paths

by mitigating the negative effects of hidden terminals and alleviating some of the ambiguity

of non-congestion related packet loss in MANETs. The proposed changes maintain intact the

end-to-end semantics of TCP and are solely applicable to the sender. The new mechanism is

further contrasted with an existing transport layer-focused solution and is shown to perform

significantly better in a range of dynamic scenarios.

As solutions from an end-to-end perspective may be applicable to either or both communi-

cating ends, the idea of implementing receiver-side alterations is also explored. Previous work

ii

has been primarily concerned with reducing receiver-generated cumulative ACK responses by

"bundling" them into as few packets as possible thereby reducing misinterpretations of packet

loss due to hidden terminals. However, a thorough evaluation of such receiver-side solutions

reveals limitations in common evaluation practices and the solutions themselves. In an effort

to address this shortcoming, the third part of this research work first specifies a tighter prob-

lem domain, identifying the circumstances under which the problem may be tackled by an

end-to-end solution. Subsequent original analysis reveals that by taking into account optimi-

sations possible in wireless communications, namely the partial or complete omission of the

RTS/CTS handshake, noticeable improvements in TCP goodput are achievable especially over

long paths. This novel modification is activated in a variety of topologies and is assessed using

new metrics to more accurately gauge its effectiveness in a wireless multihop environment.

111

Acknowledgements

I would like to thank my supervisors Dr. M. Ould-Khaoua and Dr. L. M. Mackenzie for their

support and guidance through the course of this research. Although strict at times, their criti-

cism and acute observations have been pivotal in improving this work and achieving meaning-

ful deliverables.

I must further extend my gratitude to my colleagues and staff in the Department of Com-

puting Science at the University of Glasgow for their help and advice. In particular, I would

especially like to thank the people I have collaborated and co-authored research papers with.

In no particular order these are Muneer M. Bani Yassein, Vassilis Charissis and Shaliza Wahab.

Also, eternal gratitude is owed to my family who have been supportive in everything I

have ever done. In particular, I would like to thank my father, Vasilios for his never-ending

patience and understanding. Also, I am highly and forever indebted to my mother, Euterpi,

for her unlimited moral support and for having much faith in me. Finally, I owe gratitude

to my brother Tasos for his acute commentary and unsolicited feedback on any non-research

related activity of mine. Without my family's continuous encouragement and tolerance this

work would not have been finished.

iv

Contents

Abstract i

Acknowledgements iv

Introduction 1

1.1 MANET characteristics 2

1.1.1 Channel characteristics 3

1.1.2 Characteristics of MANET nodes 7

1.1.3 Routing in MANETs 9

1.2 Related work 14

1.3 Motivation
.................................... 17

1.4 Thesis Statement 19

1.5 Contributions
................................... 20

1.6 Outline of the dissertation 21

2 Preliminaries 23

2.1 Fundamental TCP principles 23

2.1.1 TCP Reno 25

2.1.2 TCP NewReno
.............................. 26

2.1.3 TCP SACK
................................ 27

2.1.4 TCP Vegas 28

V

2.2 Routing principles in MANETS 30

2.2.1 Ad hoc On-Demand Distance Vector (AODV) routing
31

2.2.2 Dynamic Source Routing (DSR) 33

2.2.3 Optimized Link State Routing (OLSR)
................. 36

2.3 Random waypoint model 38

2.4 Assumptions
................................... 40

2.5 Justification of method of study 41

3 TCP performance in MANETs 43

3.1 Introduction
.................................... 43

3.2 TCP behaviour over AODV 45

3.3 TCP behaviour over DSR 51

3.4 TCP behaviour over OLSR 54

3.5 Performance evaluation of TCP variants 59

3.5.1 Simulation setup
60

3.5.2 Performance results and discussion 63

3.6 Discussion on TCP mechanisms 67

3.7 Conclusions
.................................... 70

4 TCP and spatial reuse in MANETs 72

4.1 Introduction
.................................... 72

4.2 TCP and spatial reuse 75

4.3 Proposed modifications to TCP 78

4.3.1 Slow start modification (SS TCP) 79

4.3.2 Congestion avoidance modification (SCA TCP)
............ 82

4.3.3 Cumulative modifications 84

4.3.4 Trace analysis of SCA TCP 85

4.4 Evaluation of SCA TCP 90
4.4.1 Performance analysis of SCA TCP 90

vi

4.4.2 Performance comparison of SCA TCP and adaptive CWL
98

4.5 Other considerations 107

4.5.1 Multiple flows
.............................. 107

4.5.2 Routing feedback - adaptive SCA
..........

115

4.6 Conclusions
.... 118

5 ACK-thinning techniques in MANETs 120

5.1 Introduction
.................................... 120

5.2 ACK-thinning in MANETs
122

5.2.1 Delayed acknowledgements 123

5.2.2 Dynamic Adaptive Acknowledgements 124

5.3 Existing evaluation of ACK-thinning techniques 126

5.3.1 Granularity of the TCP timer 127

5.3.2 Path length
131

5.3.3 RTS/CTS exchange 132

5.4 Performance impact of RTS/CTS 136

5.5 Performance evaluation 142

5.5.1 Simulation setup 142

5.5.2 Evaluation on string topologies 142

5.5.3 Evaluation on a mesh topology 153

5.6 Conclusions
.................................... 162

6 Conclusions and future directions 164

6.1 Introduction 164

6.2 Summary of contributions 165

6.3 Directions for future work 168

A Simulation parameters 171

A. 1 Routing agent parameters 171

vii

A. 2 TCP agent parameters
173

B Results supplement 174

B. 1 Topology characteristics
174

B. 2 SCA supplement
177

C Publications during the course of this research 178

viii

List of Tables

3.1 AODV parameters
47

3.2 DSR parameters
52

3.3 OLSR parameters
55

3.4 MPR set chosen by each node
56

3.5 Time spent in RTO for different TC intervals
...................

59

3.6 Simulation parameters
62

3.7 RTO inactivity and goodput for TCP agents
69

4.1 TCP parameters 79

4.2 Limiting the maximum congestion window (cwnd) 101

4.3 Time spent (in secs) in each phase for different TCP flows 107

4.4 Default SCA Reno parameter on string topologies for DSR
...........

117

5.1 Effects of timer granularity on the DAA technique 129

5.2 Frame collisions and drops for each RTS/CTS strategy 140

5.3 Average segments in flight for each RTS/CTS strategy 141

5.4 Goodput achieved for each RTS/CTS strategy 141

5.5 Common Simulation Parameters 143

5.6 Range of goodput difference for each RTS/CTS strategy vs the "Full RTS/CTS"

exchange for increasing number of TCP connections 149

ix

5.7 Detailed breakdown of segment loss due to repeated failed transmissions in a

4-hop string topology using a single TCP connection and delayed ACKs
151

5.8 Detailed breakdown of segment loss due to repeated failed transmissions in a

5-hop string topology using one TCP connection 152

5.9 Detailed breakdown of segment loss due to repeated failed transmissions in a

8-hop string topology using one TCP connection 152

5.10 Detailed breakdown of segment loss due to repeated failed transmissions in a

11-hop string topology using one TCP connection 152

5.11 Goodput results for mesh topology with 3 TCP flows
.............. 159

5.12 Goodput results for mesh topology with 6 TCP flows 160

5.13 Collisions recorded for the mesh topology using 3 flows 160

5.14 Collisions recorded for the mesh topology using 6 flows
160

5.15 Drops recorded for the mesh topology using 3 flows
..............

161

5.16 Drops recorded for the mesh topology using 6 flows
161

A. 1 AODV - Complete list of simulation parameters 171

A. 2 DSR - Complete list of simulation parameters 172

A. 3 OLSR - Complete list of simulation parameters 172

A. 4 TCP - Complete list of simulation parameters 4 173

B. 1 Default SCA Reno parameter on string topologies for AODV 177

X

List of Figures

1.1 The transmission, carrier sensing and interference ranges in a communicating

pair .. 4

1.2 Illustration of the hidden and exposed terminal effects
5

1.3 String topology setup where the capture effect may occur
7

1.4 Illustration of network partitioning 11

1.5 A protocol stack diagram highlighting in red the protocols considered in this

dissertation
.................................... 20

2.1 The main operations of AODV routing 31

2.2 Route discovery in DSR 34

2.3 Methods of distributing control messages 37

2.4 Illustration of the random waypoint mobility model 39

3.1 A scenario depicting AODV operations after a route break
...........

45

3.2 Goodput and RTT estimate of TCP Reno over AODV during a route break ... 49

3.3 A scenario depicting DSR operations after a route break
51

3.4 Goodput and RTT estimate of TCP Reno over DSR during a route break 53

3.5 Scenario depicting OLSR operations after a route break
............

55

3.6 Goodput and RTT estimate of TCP Reno over OLSR during a route break ...
57

3.7 Total TCP segments acknowledged over simulation time
59

3.8 Goodput against maximum node speed for different TCP agents over AODV ..
63

xi

3.9 Goodput against maximum node speed for different TCP agents over DSR ...
65

3.10 Goodput against maximum node speed for different TCP agents over OLSR ..
66

3.11 Simulation traces of a single TCP connection in a 5-hop string topology
68

4.1 Node D transmits to node E. Node A may transmit at the same time to B even if

node D has performed an RTS/CTS exchange, because A is outside the trans-

mission range of D (but B is inside the interference range of D). Node D is

"hidden" with respect to node A 77

4.2 Goodput vs length in string topologies for Reno and NewReno using SS and

SCA modifications
84

4.3 Goodput vs length in string topologies for Reno and NewReno using SSCA

modifications
85

4.4 Behaviour of SCA Reno vs Reno
86

4.5 cwnd evolution for the first 20 secs of simulation
88

4.6 Number of transmitted segments vs SCA parameter in a string topology of 1 to

15 hops using DSR
91

4.7 Number of transmitted segments vs SCA parameter in a string topology of 1 to

15 hops using AODV
92

4.8 Goodput of a single TCP flow vs maximum speed in dynamic topologies using

DSR .. 98

4.9 Goodput of a single TCP flow vs maximum speed in dynamic topologies using

AODV 99

4.10 Aggregate goodput of 5 TCP flows vs maximum speed in dynamic topologies

using DSR 99

4.11 Aggregate goodput of 5 TCP flows vs maximum speed in dynamic topologies

using AODV
................................... 100

4.12 Goodput for a single TCP flow vs maximum speed in dynamic topologies using

DSR (SCA vs adaptive CWL) 104

X11

4.13 Goodput for 5 TCP flows vs maximum speed in dynamic topologies using DSR

(SCA vs adaptive CWL) 105

4.14 Shared bandwidth between two flows in a 4-hop string topology
106

4.15 Flow share between plain Reno and adaptive CWL agents in a 5-node string

topology 107

4.16 Common hops for different flows 109

4.17 Aggregate goodput and SCA parameter in a string topology of 1 to 15 hops

with two TCP flows
110

4.18 Aggregate goodput and SCA parameter in a string topology of 1 to 15 hops

with three TCP flows
111

4.19 Average goodput for two TCP flows using NewReno and SCA NewReno ... 114

4.20 Average goodput for three TCP flows using NewReno and SCA NewReno .. 115

4.21 Goodput against node speed for the adaptive and static SCA Reno 117

5.1 Demonstration of Dynamic Adaptive ACKs
124

5.2 n-node string topology
127

5.3 Illustrating "heartbeat" timer granularity
128

5.4 Histogram of path lengths in a strip area (1500x300m) 133

5.5 Histogram of path lengths in a strip area (1000x 1000m) 134

5.6 Illustration of wireless communication with and without the RTS/CTS exchange 135

5.7 Segments in flight for different RTS/CTS strategies 139

5.8 Goodput against number of nodes in string topologies for a single TCP con-

nection 145

5.9 Number of collisions against number of nodes in string topologies for a single

TCP connection 146

5.10 Number of collisions against number of nodes in string topologies for two TCP

connections 147

xiii

5.11 Number of collisions against number of nodes in string topologies for three

TCP connections 148

5.12 Number of drops due to consecutive failed transmissions against number of

nodes in string topologies for a single TCP connection 150

5.13 Number of drops due to consecutive failed transmissions against number of

nodes in string topologies for two TCP connections 154

5.14 Number of drops due to consecutive failed transmissions against number of

nodes in string topologies for three TCP connections 155

5.15 Goodput against number of nodes in string topologies for two TCP connections 156

5.16 Goodput against number of nodes in string topologies for three TCP connec-

tions .. 157

5.17 25-node mesh topology
158

B. 1 Histogram (Sturge's rule) of path lengths in a strip area (1500x300m)
175

B. 2 Histogram (Sturge's rule) of path lengths in a strip area (1000xl000m) 176

xiv

Acronyms used in this dissertation

ACK ACKnowledgement

ADV Adaptive Distance Vector (routing)

AODV Ad hoc On-Demand Distance Vector (routing)

BER Bit Error Rate

BSD Berkeley Software Distribution

CTS Clear-to-Send

CWL Congestion Window Limit

cwnd congestion window

DAA Dynamic Adaptive Acknowledgements

DSDV Dynamic Destination-Sequenced Distance-Vector Routing

DSR Dynamic Source Routing

dupACK duplicate ACKnowledgement

FTP File Transfer Protocol

IETF Internet Engineering Task Force

LL Link Layer

xv

MAC Media Access Control

MANET Mobile Ad hoc NETwork

MPR MultiPoint Relay

OLSR Optimised Link State Routing

PDA Personal Digital Assistant

RFC Request For Comments

RERR Route ERRor

RREP Route REPly

RREQ Route REQuest

RTO Retransmission TimeOut

RTS Request-to-Send

RTT Round Trip Time

RTTVAR Round Trip Time VARiance

SACK Selective ACKnowledgements

SCA Slow Congestion Avoidance

SNR Signal-to-Noise Ratio

SRTT Smoothed Round Trip Time

SS Slow Slow start

SSA Signal Stability based Adaptive (routing)

SSCA Slow Slow start and Congestion Avoidance

xvi

TC Topology Control

TCP Transmission Control Protocol

UDP User Datagram Protocol

xvii

Chapter 1

Introduction

Wireless communications have experienced explosive growth in recent years due to the wide

availability and rapid deployment of wireless transceivers in a variety of computing devices

such as PDAs, laptop and desktop computers. The de facto adoption of the popular IEEE

802.11 [52] standard has further fuelled these developments by ensuring interoperability among

vendors thereby aiding the technology's market penetration. Initially, the deployment of these

wireless technological advances came in the form of an extension to the fixed LAN infrastruc-

ture model as detailed in the 802.11 standard. Therein a wireless client is associated with an

access point which acts as a router and arbiter between the mobile client and the rest of the

network, which may include several other mobile agents, forming a Basic Service Set [521. In

contrast to wired LANs, the mobile client is not physically constrained by cables and there are

even provisions for a seamless hand-off process for clients roaming in areas covered by coop-

erating access points, thereby ensuring extended wireless coverage. The latter configuration is

referred to as the Extended Service Set in IEEE 802.11 nomenclature [52].

As the processing power and transceiver capabilities of mobile clients increased, it became

feasible to use the clients themselves as forwarding agents. In particular, instead of using fixed

infrastructure in the form of access points, the mobile nodes may cooperate in a peer-to-peer

fashion to forward each other's messages. By acting as routers, willing hosts may form the

backbone of a spontaneous network which facilitates connectivity and services for interested

1.1. MANET CHARACTERISTICS 2

parties. The term Mobile Ad hoc NE1'work (or MANET for short) has been coined [911 to

describe such a network and the concept has proven significant enough for the IETF to form a

working group on the subject [80]. In fact, the IEEE 802.11 standard itself makes provisions

for a rudimentary ad hoc mode of operation between stations when an access point is not

present, in the form of the Independent Basic Service Set [52]. This defines the presence of

a communications link between two parties without the need of an access point to coordinate

and forward transmissions. However, such a configuration is only applicable to stations within

mutual communications range and requires the cooperation of higher level protocols for the

formation of multihop paths.

The potential significance of MANETs lies in the promise of ubiquitous connectivity pro-

vided that mobile hosts can communicate effectively, given the special constraints of the hosts

themselves as well as the unique dynamic topological characteristics of the formed network.

Particular applications of MANETs include scenarios where infrastructure is expensive to

set up and difficult or even impossible to deploy, such as battlefield or disaster relief opera-

tions [58]. Other uses include plugging "holes" in the coverage of wireless infrastructure [23]

or even integration with cellular 3G+ networks [9] to achieve wider connectivity.

1.1 MANET characteristics

Mobile ad hoc networks share many of the properties of wired-infrastructure LANs but also

possesses certain unique features which derive from the nature of the wireless medium and the

distributed function of the medium access mechanism. These constraints may be described in

turn as considerations stemming from the wireless channel, the mobile node and the routing

protocol used to establish and maintain communication paths. These characteristics affect the

functionality of mechanisms throughout the communication protocol stack and are considered

now in turn.

1.1. MANET CHARACTERISTICS 3

1.1.1 Channel characteristics

Signal attenuation: As the transmitted signal spreads out from the aerial in all directions it

attenuates as distance increases. As such, the intensity of the electromagnetic energy at the

receiver decreases with distance from the transmission; beyond a certain distance, the signal-

to-noise ratio (SNR) becomes so low that the receiver is not to able to decode the transmission

successfully.

Taking the above into account and for an omni-directional transceiver, three ranges may be

identified [103] as shown in Figure I. I. These are, from the sender's perspective:

Transmission Range (Rt.,) The range within which a transmitted frame can be successfully

received by the intended receiver. Within this range the SNR is high enough for a frame

to be decoded by the receiver.

Carrier Sensing Range (Ru) The range within which the transmitter triggers carrier sense

detection. When this happens, the medium is considered busy and the sensing node

defers transmission.

Interference Range (R2) The range within which an intended receiver may be subject to in-

terference from an unrelated transmission, thereby suffering a loss. This range largely

depends on the distance between the sender and the interfering node.

Those ranges are related to one another, with Rtx <A<J, as the energy required for a

signal to be decoded is greater than what is needed to cause interference [63]. The interference

and transmission ranges depend on the signal propagation model and the sensitivity of the

receiver, assuming that power constraints apply and all transmitters transmit at the maximum

allowed power level [1031.

Multipath fading: Multipath fading occurs because of different versions of the same signal

arriving at different times at the receiver. These versions effectively follow different paths from

the transmitter, with different propagation delays, due to multiple reflections off intervening

1.1. MANET CHARACTERISTICS 4

0 00 4b 4b
-w.

N
"""I ý 6WARN

oýAqg

" receiver tqansmissign
1

11
ränge R

txl irerference

ra `e Ri transmitter

000 ''rrý"..

". rrrrr"

carrier sensing range
Rcs =R I

Figure 1.1, The transmission, carrier sensing and interference ranges in a communicating pair

obstacles. The superposition of these randomly phased components can make the multipath

phenomenon a real problem especially if there are many reflective surfaces in the environment

and the receiver is situated in a fringe area of reception [64].

Transmission errors: Due to the volatile nature of wireless signal propagation, the wireless

medium potentially exhibits errors. The frame format in IEEE 802.11 networks is similar to

the 802.3 (Ethernet) format [98] and uses the same 48-bit MAC address fields. The specifica-

tion also includes the IEEE 802.3 32-bit CRC polynomial-based error detection mechanism.

However, the protection offered by this scheme only extends to data actually travelling on

point-to-point links (as opposed to end-to-end). It is still possible, though somewhat unlikely,

for corrupt data to be accepted by the receiver, but this is offset by the adoption of error discov-

ery, implemented at higher layers (such as the checksum fields in IP, TCP and UDP segments).

Hidden and exposed terminals: Consider the scenario illustrated in Figure 1.2(a). Node A

is transmitting to node B. Node C cannot receive the transmission and since its carrier sense

function detects an idle medium, it will not defer transmission to D and a collision will be

produced at node B. In this case, node A is hidden with respect to node C (and vice versa).

This problem is offset in 802.11 by using a short packet exchange of Request-to-Send (RTS),

Clear-to-Send (CTS) frames. This is a two-way handshake where the source terminal transmits

1.1. MANET CHARACTERISTICS 5

/ wpý r ft-ft
*%Ib

`C
cannot was A's

'
Al transmitting

'
cdUtbn

`trensn lsslon (2) B

® AO'CD

"m - 0000

CWontbbtrmnmmNbDMA

_..
n.... busy lum. nd d t«. (2)

Bra.
/

Is A (1)

ABCD
//

(a) The hidden terminal effect (b) The exposed terminal effect

Figure 1.2. Illustration of the hidden and exposed terminal effects

the RTS to the destination which then replies with a CTS frame. If there is no reply, then

transmission is deferred as presumably the medium at the area around the destination is busy. If

a CTS reply is received then DATA transmission follows. Since the duration of the transmission

is included in the RTS/CTS exchange, neighbouring nodes defer their transmissions for the

time the medium is occupied. Point-to-point transmission is reliable since the DATA frame is

followed by an ACK transmission from the destination if the frame is successfully received.

The exposed terminal effect occurs when a station that needs to transmit a message senses

a busy medium and defers transmission even though it would not have interfered with the

other sender's transmission. An instance of the exposed terminal effect is demonstrated in Fig-

ure 1.2(b). Here, node B is transmitting to node A. Node C senses node B's signal and defers

transmission. However, it need not have done so as C's transmission does not reach node A

and would not have interfered with D's transmission at the location of the intended destination

(node A). Node C is the exposed terminal in this case. Note that both the hidden and exposed

terminal effects are related to the transmission range. As the transmission range increases, the

hidden terminal effect becomes less prominent because the sensing range increases. Nonethe-

less, the exposed terminal effect then becomes more prominent as a greater area is "reserved"

for each transmission.

In the above examples, the transmission (Rtx), interference (11,) and carrier sense (R3)

ranges are all assumed to be equal. However, several research efforts have concentrated on the

effects of interference on the hidden and exposed terminal effects [25,26,104,106,107] when

1.1. MANET CHARACTERISTICS 6

I> Rtx. In particular, Xu et al. [1031 have shown that when the distance d between the

source and destination nodes is 0.56 * I1tz 5d< 1tx, where Rtx is the transmission range of

the sender, the effectiveness of the RTS/CTS exchange declines rapidly.

Spatial contention and reuse: Network links among hosts are commonly fixed in wired

networks and do not interact with each other as there is typically little interference between

physical cables. In contrast, wireless network links operate differently. Assuming omnidirec-

tional antennas, when a node transmits, it "reserves" the area around it for the transmission's

duration; i. e. no other transmission is to take place during that time interval as it will result in

a collision and waste of bandwidth. Spatial reuse refers to the number of concurrent transmis-

sions that may occur in a network without interfering with each other. It is the responsibility of

the MAC protocol to ensure that transmissions are coordinated in such a way so as to maximise

the property of spatial reuse.

For illustration purposes consider that in Figure 1.3 communication between nodes 0 -º 1

and 4 -+ 5 may happen simultaneously. Then, communication among other node pairs could

happen concurrently in turn, as long as each pair is 4 hops apart from the other. Since at most

two pairs can transmit at the same time without affecting each other, the spatial reuse of this

string topology is 2. It should be noted that the spatial reuse in a particular scenario represents

an optimal level of concurrency; it is not always achievable and it may be the case that with

enough nodes transmitting simultaneously packets will be lost due to interference. Such a

situation is referred to as spatial contention and it can become the main cause of packet drops

when a path is long enough as noted in [43]. This is in contrast with wired networks where

packet drops are mainly caused by buffer overflows at the routers.

Capture effect (interplay of TCP with 802.11 MAC): In wired networks, TCP has a well

documented bias against long (as in hop length) flows [39]. In 802.11 multihop networks, the

bias is much stronger and is manifested in the form of the channel capture effect. Essentially,

if two TCP connections are located in near vicinity of each other and, thus, interfere with one

1.1. MANET CHARACTERISTICS 7

.
ý.

" R. 25Om `""s

i TCP flow 1 TCP flow 2

56

an a

`""
".

" Ri"55Om
" `"

. distance. 200m
00000

1

Figure 1.3. String topology setup where the capture effect may occur

0
7

another, this effect favours the session that originated earlier or the one that flows over fewer

hops. The favoured session often starves the other almost completely with data transport not

being accomplished for the mistreated session until the other one has completed all of its data

transmission.

The bias is rooted in the exponential backoff of the Distributed Coordination Function of

the 802.11 MAC mechanism, which is inherently unfair and is further augmented by TCP's

own exponential backoff mechanism. The string topology scenario as shown in Figure 1.3

aptly illustrates the point. Even though the two TCP flows do not share the same path, flow

2 may starve because of flow 1; unfairness may also be present when the flows share some or

much of the same path [691. The phenomenon has become a focal point of research interest

and has been extensively explored in the literature [69,104,107].

1.1.2 Characteristics of MANET nodes

Mobile nodes that participate in a MANET operate under limitations which have to be con-

sidered in networking protocol design if new proposals are to be efficiently operable in such

environments. As participating nodes may be heterogeneous in nature (laptops, PDAs or even

desktop systems), to ensure mobility and some degree of autonomous operation, devices often

have limited power reserves and possibly limited processing capabilities [61]. These restric-

tions are typically discussed in the literature [29] in the context of proposals for new routing

algorithms or service-providing mechanisms over MANETs and are briefly outlined below.

1.1. MANET CHARACTERISTICS 8

In general, energy is a scarce and valuable commodity for MANET nodes and its consump-

tion can therefore be just as important a measure as throughput, latency and other traditional

performance metrics when evaluating MANET protocols at any layer. Several methods have

been proposed to conserve energy at various levels, including the operating system and appli-

cations. An overview of approaches to power conservation through energy-aware mechanisms

is included in [61]. Specifically, from a TCP perspective, power savings are best achieved by

minimising redundant retransmissions whenever possible [73]. The savings in this case are

twofold; the source conserves power by transmitting fewer packets but also every forwarding

node in the path benefits since fewer unnecessary retransmissions occur.

Although high speed wireless communications are possible [53], it is assumed that MANETs

are primarily characterised by relatively bandwidth-constrained wireless links [291 compared

to their hardwired counterparts and, furthermore, the capacity of such links is variable. In par-

ticular, after taking into consideration the effects of interference, multipath fading and so on,

as presented in Section 1.1, the transmission rate of a mobile node may be severely affected.

The design of any level in the protocol stack should take account of this constraint by minimis-

ing overhead where possible and any proposed mechanism should be usable across possibly

asymmetric links of different capacities.

Another important node characteristic is the potentially restricted CPU capacity at each

node. Routing algorithms in particular are designed to be simple so as to operate with little

processing and storage requirements [92]. It follows that any adjustments proposed to TCP, or

indeed any other networking protocol, should minimise complexity, so that CPU time costs do

not outweigh gains in other metrics (e. g throughput or latency). In addition, heavy CPU usage

requires more power which makes processor-intensive modifications even more costly. Sur-

prisingly, although power considerations are a key focus of routing and clustering techniques

in MANETS, proposed modifications are not always examined with respect to their overall

power and CPU demands [61].

1.1. MANET CHARACTERISTICS 9

Finally, security is a salient concern in MANETs as in most forms of wireless communica-

Lions. As messages are exchanged through a common transmission medium, it becomes diffi-

cult to prevent snooping on network traffic. Consequently, security provisions notwithstanding,

the network is vulnerable against replay attacks, eavesdropping and message redirection, even

more so than in the case of a wired infrastructure. Security measures normally applicable to

wired LANs are also largely applicable to MANETs, although special precautions are neces-

sary in the case of routing as balancing the security overhead and limited available bandwidth

is still a matter of ongoing research [88].

1.1.3 Routing in MANETs

MANETs are potentially characterised by significant node mobility which induces highly dy-

namic topologies and may even result in partitioned networks. In this section, network par-

titioning and the effects of routing failures are discussed in addition to current general ap-

proaches to routing protocol design in such multihop environments.

Network partitioning: Network partitioning occurs when, due to mobility, nodes which

were able to communicate directly or through the cooperation of other nodes at some time,

T1, are unable to do so at a later time, T2, because there is no longer a usable path between

them. It is further possible that at a still later time, T3, the nodes have placed themselves in

such a position that the network is again connected and every node can reach every other one,

either directly or indirectly. The scenario is illustrated in Figure 1.4.

TCP is not engineered to deal with network partitioning as it is not normally a frequent oc-

currence in wired networks. In effect, the exponential backoff of TCP's retransmission timeout

(RTO) mechanisms facilitates the exponentially delayed probing of a valid path. This may be

illustrated in the topology depicted in Figure 1.4(a) where the TCP source (node 1) is commu-

nicating with the destination (node 6) at time Tl through nodes [2-5]. Then, in Figure 1.4(b) at

'A detailed outline of TCP operations is included in Chapter 2

1.1. MANET CHARACTERISTICS 10

time T2, node 4 has travelled outwith the range of node 3 and their mutual link has become in-

valid; there is a network partitioning with two separate and isolated network partitions, namely

A and B. Packets in this time frame do not get forwarded to the destination and ACKs do not

reach the source as there is no usable path available. The TCP agent then enters an RTO phase

(due to packet loss) as the underlying routing protocol attempts to discover an alternate route.

A new TCP segment is sent every time the RTO timer expires. If this segment reaches the

destination, TCP continues with normal transmission and the route is utilised. However, since

the RTO is doubled after every timeout, those "probing" packet transmissions take longer each

time. Hence if the disconnection persists for consecutive RTOs, there might be long periods

of inactivity during which the network may be connected again, but TCP is still in the backoll

state [34]. As a result, throughput suffers.

Routing failures: In MANETS, unlike wired networks, route failures occur frequently due

to the mobile nature of the participating nodes. Route failures may also occur when repeated

point-to-point transmissions fail, for instance because of the effects of spatial contention [106].

When a link failure occurs, the routing protocol attempts to discover an alternate path, but the

duration of the restoration period largely depends on the mobility of the nodes, the mechanism

of the routing protocol itself and the network traffic characteristics.

The effects of route failures on TCP operation resemble those of network partitioning as

discussed previously. If the route takes some time to restore, TCP enters its backoff state and

sends "probes" for a restored route at increasingly longer time intervals. Hence, the route

might be restored for quite some time but TCP remains idle until it launches the retransmitted

packet after RTO expiration and receives a reply from the destination. Further complications

arise from TCP's round trip time (RTT) calculation. After the route has been re-established

the RTT measurements required for the RTO calculation should reflect the characteristics of

the new route. However, since the RTO is calculated using a weighted average of new and old

RTT measurements, for some time after the route restoration, the RTO value contains a mixed

estimate of the old and new route characteristics. The above concern applies in wired networks

1.1. MANET CHARACTERISTICS 11

Network

Z
4

9

oaýtlon

Path

Time T1

(a) An ad hoc network

Network Partition A

4 i

I25
3I 19DOnedw

Network Partition B

Time T2

(b) Network partitioning

Network

Scums 4
1

235

Path

Time T3

(c) Network is connected again

Figure 1.4. Illustration of network partitioning

1.1. MANET CHARACTERISTICS 12

as well but may be more severe in MANETs, where route reconstructions are expected to be a

frequent occurrence [16].

Routing approaches in MANETs: Due to the dynamic and unpredictable topologies of

MANETs, proposed routing algorithms have to operate by introducing little overhead, be light-

weight enough to meet the mobile node constraints and still be able to forward packets effi-

ciently to their designated destinations. Further, measures ensuring that packets are free from

looping behaviour should be present as route loops can occur frequently in such a continuously

changing topological landscape. Two main approaches to routing in MANETs currently exist

and are now outlined in turn.

Proactive Routing This approach involves the proactive discovery of paths to potential desti-

nations by preemptively building a view of the network. As soon as a node is introduced

in the network it attempts to discover as much as it can about the topology around it, i. e.

discover ways to route packets to different destinations, in anticipation of future com-

munication attempts. Note that as routes to all possible destinations are maintained at all

times there is no initial delay when setting up a connection.

The traditional Bellman-Ford [12] algorithm, as used in wired networks [471 has been

shown not to be efficient in a MANET environment [93]. Special considerations are

needed to ensure loop freedom such as including a monotonically increasing sequence

number in route updates, a technique adopted by several contemporary approaches [60,

92]. However, the overheads of table exchanges in proactive routing become increasingly

a point of concern as the network topology expands and/or grows more dynamic.

The Optimised Link State Routing (OLSR) mechanism [28] is a popular proactive rout-

ing protocol that has advanced through the procedures of the IETF to become a pro-

posed RFC standard. This introduces several optimisations to minimise the excessive

overheads associated with proactive routing whilst implementing a table driven route ex-

change mechanism. The node still maintains tables to multiple routes but special nodes

1.1. MANET CHARACTERISTICS 13

called multi point relays (MPRs) are chosen in the network and become the focal points

of organisation so as to minimise broadcast and route discovery/maintenance overheads.

Reactive routing In traditional hardwired networks routing failures are infrequent and hence

the cost of route discovery is negligible. The communication links are not expected to

change radically through time and so a fixed initial cost in terms of throughput and de-

lay as routes are being discovered is presumed negligible. In multihop wireless networks

with highly dynamic topologies (such as MANETs), however, this cost can increase sub-

stantially if route breakages are frequent enough, as the route discovery cost is incurred

multiple times.

To mitigate this overhead, it may be preferable for the routing agent to maintain and dis-

cover routes only on an as-needed basis. As such, alterations to link status that are of no

interest to a node's current communications operations are not taken into account, lead-

ing to significant overhead savings in the case of frequent route changes. The downside

of such an approach is the initial delay when discovering a route for a new connection

as well as the relatively high overhead of route discovery which requires a network-wide

broadcast in an effort to contact the desired destination. There are two notable reactive

routing protocols progressing through the IETF; Ad hoc On Demand Distance Vector

(AODV) [921 and Dynamic Source Routing (DSR) [60]. Several research efforts have

been reported in the literature in an attempt to keep the cost of route discovery at a

reasonable level [21,281.

There are also mixed/hybrid approaches which combine proactive route discovery and

maintenance for nodes within a given hop radius distance with a reactive approach [821 for

the rest of the network. The proactive/reactive dichotomy is a fundamental routing design

decision; the IETF has acknowledged both approaches as having merit and is maintaining pro-

posed experimental RFCs for both [80].

1.2. RELATED WORK 14

1.2 Related work

The vast majority of TCP evaluation studies over MANETs have been carried out with simu-

lations [2,6,24,25,31,34,42,43,49,65,70] and a few with limited experimental testbeds [7].

The complex interplay of TCP with the routing protocol and the wireless access mechanisms

makes the development of analytic models of TCP behaviour extremely difficult and, it would

be fair to say, an aspiration as yet unmet.

Ahuja et al. [2] have conducted the first evaluation of TCP performance under different

routing algorithms over MANETs, namely the Ad hoc On-Demand Distance Vector (AODV)

[92], the Dynamic Source Routing (DSR) [60], the Dynamic Destination-Sequenced Distance-

Vector Routing (DSDV) [93] and the Signal Stability based Adaptive (SSA) [33] routing pro-

tocols. This work has shown the detrimental effect of mobility on TCP Tahoe as well as the

relative merits of SSA routing which incorporates signal strength as a measure of path opti-

mality instead of hop distance.

An investigation of TCP Reno over AODV, DSR and the Adaptive Distance Vector (ADV)

[68] routing protocols has been performed by Dyer et at. [34]. The ADV routing protocol has

been shown to maximise TCP throughput, with AODV being the second best performer under

various mobility conditions. Further, the throughput penalty of utilising stale cache entries

under moderate mobility has been noted in the case of DSR. The authors have also proposed

the use of a heuristic named the fixed-RTO, which greatly improves TCP throughput in AODV

and DSR, as it aids TCP in utilising restored routes quickly without resorting to feedback

from the routing protocol. In the same work, however, the authors stress that this solution is

MANET oriented and not intended for use when there exists a gateway to other networks (such

as the Internet).

The effects of interference on TCP, as noted in Section 1.1, have also been widely studied

in the literature [6,25,31,43,65,70]. Xu et at. [106] have examined the throughput of TCP

Tahoe, Reno, NewReno, SACK and Vegas over multihop string topologies in an open space

environment under the 802.11 protocol. The authors have demonstrated that TCP Tahoe and

1.2. RELATED WORK 15

its variants (Reno, NewReno and SACK) exhibit throughput instability in such topologies, as

interference causes packet drops which are interpreted as congestion losses. TCP Vegas does

not suffer from this problem due to its conservative mechanism for increasing the sending rate.

Further investigation has revealed that other TCP variants may regain throughput stability by

limiting the maximum congestion window (i. e. the maximum number of packets in flight) to

four segments. The viability of using the delayed acknowledgement option has been discussed

in the same work and shown to improve throughput by 15-32% in the same static topologies.

The work in [106] has been complemented through further study by Fu et al. [43]. Here,

the authors have noted that for string, cross and mesh topologies there is an optimal congestion

window (cwnd) size which maximises throughput by improving spatial reuse, i. e. which facil-

itates the maximum possible non-conflicting simultaneous transmissions. It has been further

noted that since TCP continuously increases its cwnd size until packet loss is detected, it typi-

cally grows and operates at an average window size that is larger than optimal, thereby causing

spatial contention. The authors have also obtained the optimal window size for each of the

above mentioned topologies. Finally, they have proposed two link layer modifications named

"link RED" and "adaptive pacing" to aid optimal spatial reuse and improve TCP performance.

The issue of TCP throughput instability and effective spatial reuse has moreover been ad-

dressed in [25,26]. It has been shown that by making general MAC layer assumptions, i. e. not

802.11 specific, the bandwidth-delay product in multihop MANET paths cannot exceed the

product of the Round-Trip Hop Count (RTHC) of the path and the packet size. In the case of

the 802.11 protocol this bound is shown to reach no more than a fifth of the RTHC. According

to this adapted definition of the bandwidth delay product, the authors have then proposed an

adaptive mechanism which sets the maximum cwnd according to the route hop count, noting an

8-16% throughput improvement. In [261 the performance merit of TCP-pacing, which evenly

spaces a window's worth of packets over the current estimated round-trip time, has also been

evaluated but no worthwhile performance improvement was found.

A number modifications to the TCP receiver for optimal spatial reuse have been proposed

1.2. RELATED WORK 16

in the literature [6,31] and are largely complementary to sender-side modifications. The pro-

posed alterations invariably include some type of management of acknowledgement (ACK)

transmissions. Such a line of enquiry is similar to work undertaken in the past for wired net-

works [3] but whose premises and conclusions are not directly applicable to MANETs. In

particular, work by Altman et at. [6] has revealed that the rate of ACK production in TCP can

affect TCP throughput across long enough paths. It has been demonstrated therein that by

making aggressive use of delayed cumulative ACKs, the number of ACK responses produced,

which vie for transmission time with TCP data, may be reduced. This facilitates more efficient

spatial reuse as fewer packets compete along the path for point-to-point transmissions. The au-

thors have also proposed a new delayed ACK scheme which stretches the TCP ACK-clocking

property (one ACK response per at most two segment receptions) and results in throughput

improvements of 9-22% in string topologies when small data transfers occur. Further, Oliveira

et at. [31] have suggested an alternative end-to-end technique that combines constraining the

sender's congestion window and implementing a dynamic ACK delay window at the receiver.

In this approach, the receiver delays an ACK response for 2-4 segments received but also

maintains a dynamic timer which depends on segment inter-arrival time and which triggers

an immediate ACK response upon expiration. Subsequent evaluation in static topologies has

revealed reduced retransmissions and, in the case of multiple flows, a compelling throughput

improvement of up to 50% over regular TCP. A different approach to the subject which forgoes

the end-to-end modification constraint has been undertaken in work by Yuki et at. [112], where

DATA and ACK segments are combined in intermediate nodes' transmissions so as not to oc-

cupy two separate transmission slots; it is then up to their respective destinations to identify

the portion of the combined packet addressed to them.

Anastasi et at. [7] have conducted measurements on an actual testbed and have verified

simulation results by showing that interference becomes a serious problem in ad hoc networks

when TCP traffic is considered. Moreover, the authors have noted that during their experi-

ments there was sufficiently high variability in channel conditions at different times to make

comparison of results difficult. They have also observed that certain aspects of real wireless

1.3. MOTIVATION 17

transmissions are not effectively captured in simulation. These include the different sending

rates of the preamble, the RTS/CTS and the DATA frames in 802.11 networks, as well as the

variability of the transmission and physical sensing ranges (even within the same session).

Plesse et al. [94] have conducted real life experiments with military scenarios in urban areas

using OLSR and have confirmed TCP throughput problems as the hop count of the path in-

creases, as well as the transient quality of the signal during trial runs. In the same work, it is

noted that the RTS/CTS mechanism is not a prerequisite to achieving good spatial reuse in their

2-hop path experiments, an observation in concert with earlier simulation results presented by

Xu et al. [103].

1.3 Motivation

A number of previous research studies have dealt with the behaviour of TCP in MANETs

[2,35,74] and highlighted relevant problems. Some of these enquiries have focused on the

differences between routing protocols and have made use of a single type of TCP agent to

measure performance discrepancies amongst those protocols [2,34,49]. These types of stud-

ies typically vary the topology conditions in terms of route breakage frequency and network

partitioning time to simulate the degree of mobility present. Such attempts are of particular

significance as it is not enough to utilise UDP (congestion unaware) traffic to fully evaluate

the effectiveness of routing protocols in MANETs [108]. Further, since most TCP variants

share similar congestion avoidance mechanisms, an observation particular to a specific vari-

ant is likely to be applicable to others although potential applicability is usually not explicitly

investigated.

Other enquiries [10,24,46,66,77,1041 have focused on the particular interaction of TCP

agents with a selected MANET routing protocol taking additional account of some general

MANET trait (e. g. packet loss due to errors, or mobility). The potential shortcoming of such

approaches is that as routing protocols may vary significantly (for instance consider on-demand

vs proactive routing), resulting observations may not be applicable to different routing agents.

1.3. MOTIVATION 18

Further, since the potential TCP shortcoming is dealt with in isolation [26], it is not immedi-

ately apparent whether an improvement may be seen in a more general setting. In a number of

studies [26,95], such optimisations are applied to static TCP scenarios which may offer signif-

icant improvements in special cases but whose performance merits may be reduced in a more

typical MANET scenario.

A study among TCP variants and, even more specifically, among reactive and proactive

TCP agents has been lacking in the literature. Further, the absence of selective acknowledge-

ment (SACK) enabled TCP agents in the different performance evaluation efforts is of particu-

lar note as these are widely deployed and implemented in modern operating systems [4]. As a

result it has long been an open research question whether the type of TCP agents proposed in

the literature are competent and efficient performers in multihop wireless environments.

A crucial observation on the fitness of the 802.11 standard as a basis for MANET infras-

tructure has been made by Xu and Saadawi [1071. The authors have discovered fundamental

throughput related inefficiencies in the widely adopted IEEE 802.11 MAC mechanism when

used for multi-hop communications. The authors have further noted the severity of these per-

formance reducing effects particularly when TCP is in use for end-to-end communications and

have proposed a solution by modifying a simple TCP parameter (the maximum cwnd). Several

researchers have expanded on the work in [107] by either applying changes in the MAC layer,

and so potentially breaking 802.11 compatibility [43], or by keeping the MAC layer intact but

using intra- and inter-layer communication to smooth out the MAC shortcomings [104]. Fu et

al. [104] have shown that across long paths, packet drops due to MAC issues are overwhelm-

ingly more numerous than buffer overflow induced losses, which are the main cause of packet

loss in wired networks. The original end-to-end modification suggested by Xu et al. [106] and

subsequent follow up work [43], have been initially evaluated in static topologies so as to study

the effect in isolation, precluding the effects of mobility. As such the interplay of proposed so-

lutions with other factors involved in projected mobile MANET scenarios, namely the effects

of mobility and mobility-induced packet loss, have not been taken into consideration.

1.4. THESIS STATEMENT 19

Finally, most work on end-to-end approaches to reduce the number of packets from indi-

vidual connections on the same path has focused on sender-side restrictions [25]. These have

the advantage of effectively reducing the problem because the source is the main contributor to

spatial contention, as TCP DATA segments are typically much larger than ACKs and require

substantially greater transmission times. Nonetheless, recent efforts have concentrated on re-

ducing the number of ACKs produced by the receiver, which are vying for transmission time

and competing with DATA packets [6,3 1].

Evaluations of such techniques have been inadequate in certain aspects. Firstly, not all

options at the MAC layer have been exploited even though the 802.11 standard has defined

multiple modes of operation; in particular disabling the RTS/CTS mechanism during short

frame transfers, has not been considered. Further, since substantial progress has been made

on the simulation tools and MANET systems have been progressively better understood, con-

clusions reached in previous, early research may have actually been reflections of peculiarities

of the simulation tools used, or side-effects of misplaced simulation assumptions and may not

necessarily be representative of future MANET systems [75,110].

1.4 Thesis Statement

The goals set for this dissertation derive from the motivations as listed in the previous section

and may be summarised in the following thesis statement:

The aim of this work is to propose new methods to ease the negative effects of TCP's

misinterpretation of the causes of packet loss in MANETs. The changes introduced should

be as simple as possible with respect to implementation complexity and should not break the

end-to-end TCP paradigm.

The scope of this work may be better understood by considering Figure 1.5; the diagram

included therein depicts the layers in a typical MANET protocol stack and highlights in red the

particular protocols this dissertation deals with.

1.5. CONTRIBUTIONS 20

Application

[_Transport

FTP, HTTP, SMTP, SSH, SIP, etc...

TCP, UDP, DCCP, SCTP, etc...

Pv4, IPv6
includes routing protocol
e. g. AODV, DSR, OLSR,
DYMO, TBRPF, etc...

802 11. Bluetooth, Hlpertan

'fit

Figure 1.5. A protocol stack diagram highlighting in red the protocols considered in this
dissertation

1.5 Contributions

To address the above research concerns this dissertation undertakes an extensive performance

comparison between TCP variants and presents two new mechanisms to improve spatial reuse

and maximise TCP throughput in MANETs.

The first part of this dissertation contains a thorough and detailed analysis of simulation

traces of the basic TCP Reno agent in a controlled route-breakage scenario under three popular

routing protocols, namely AODV, DSR and OLSR. This demonstrates the complex interaction

of the TCP agent with the routing protocol under the conditions of route breakage in MANETs.

An extensive overview of the artifacts introduced by this interaction is presented and subse-

quently used to highlight the problems of traditional TCP agents in MANETs with regards to

non-congestion related losses. Further, extensive simulation results of the performance of three

reactive (Reno, NewReno and SACK) and one proactive (Vegas) TCP variants are viewed in

light of different routing protocols. These results reveal the difference in performance between

the variants across routing mechanisms and are accompanied by a detailed account tracing the

causes of this discrepancy. Notably, the merits of each variant are explained and evaluated in

the context of dynamic topologies. Further, TCP Vegas is shown to be decisively competi-

tive, throughput-wise, with regard to the modern reactive TCP agents, NewReno and SACK in

MANETs.

1.6. OUTLINE OF THE DISSERTATION 21

The second part of the dissertation introduces a novel sender-side technique, inspired by

the performance merits of the TCP Vegas congestion avoidance mechanism, which results

in better spatial reuse over standard 802.11 transceivers. As such the method mitigates the

effects of spatial contention caused by MAC-layer mis-coordination. The new technique is

derived by considering modifications to TCP's congestion avoidance without compromising

its fundamental principle of additive increase/multiplicative decrease. Subsequent performance

analysis of the enhanced agent is conducted using both static and dynamic topologies and the

new proposal is compared and contrasted with an existing solution from the literature. The

resulting discussion places both solutions in context of static and dynamic MANET scenarios

discussing their relative merits in each situation.

Finally, this dissertation also deals with receiver side modifications intended to achieve

better spatial reuse for the TCP agent. Although there has been some work in the literature on

the subject, careful examination of simulation traces, as well as experience drawn from past

MANET simulation research, reveals several shortcomings and omissions in both the solutions

themselves and their evaluation. Drawing on those lessons of the past, and through extensive

simulation, a more thorough evaluation of past approaches is conducted and, in addition, a new

technique is presented which improves performance through careful setting of MAC parame-

ters, without compromising the assumption of an 802.11 MAC mechanism. The dissertation

emphasises issues with existing evaluation techniques, widely used in literature, and aims to

place future performance evaluation of TCP in MANETs in the context of more varied scenar-

ios, offering suggestions for future research work.

1.6 Outline of the dissertation

The rest of the dissertation is organised as follows. Chapter 2 introduces in detail the reactive

and proactive TCP variants under examination, namely TCP Reno, NewReno, SACK and Ve-

gas. Further, a description of the routing protocols used in the simulations and subsequently

1.6.
_

OUTLINE OF THE DISSERTATION 22

relevant to the follow-up discussion are presented. Then, a list of common assumptions con-

cerning the subsequent simulation analysis is also included. Finally, justification is offered on

the method of study used in this dissertation and a rationale is given on the choice of simulation

tools employed.

Chapter 3 contains a simulation comparison of the aforementioned TCP variants in a vari-

ety of mobility scenarios and under different routing protocols. Moreover, detailed simulation

traces representative of the throughput behaviour of each transport protocol are included per

routing protocol and their differences are highlighted.

Chapter 4 discusses TCP's role in spatial reuse in MANETs. In particular, a new approach

which leads to goodput improvement through a sending rate reduction is discussed and anal-

ysed through simulation. The new technique is then evaluated against an existing end-to-end

modification and its relative merits are discussed and highlighted.

Chapter 5 presents an overview of techniques that reduce the rate of ACK responses in

MANETs to improve spatial reuse and outlines a new approach which uses widely imple-

mented features of the wireless transceiver to improve performance. A discussion on the limi-

tations of existing evaluation techniques is also included and the new results are presented in a

well-specified problem domain and context.

Finally, Chapter 6 summarises the results presented in this study and offers suggestions for

future research work.

Chapter 2

Preliminaries

The main objectives of this chapter are to provide some background on the characteristics of

TCP agents, offer an overview of MANET routing protocols and present the mobility model

and common simulation assumptions used in this dissertation. As such, the chapter is organised

as follows. Section 2.1 describes the TCP agents and congestion avoidance mechanisms this

dissertation deals with. Section 2.2 contains a succinct description of the main operations of

the MANET routing protocols used in subsequent chapters. Section 2.3 includes a description

of the random waypoint model, which is used in this work to simulate topological changes.

Section 2.4 lists the common simulation assumptions which apply throughout this dissertation.

Finally, Section 2.5 provides justification on the method of study and techniques used in this

dissertation.

2.1 Fundamental TCP principles

The Transmission Control Protocol (TCP) [15] is a widely used transport protocol in wired

and wireless communications, layered on top of IP networks to provide reliable end-to-end

congestion control. Apart from establishing, maintaining and dissolving connections between

communicating pairs, a TCP agent is responsible for behaving fairly towards other network

flows including other TCP agents whilst not exceeding network capacity. The way this fairness

23

2.1. FUNDAMENTAL TCP PRINCIPLES 24

and sensible resource usage is achieved though is not explicitly specified; as such there are

different TCP variants, each of which nevertheless obeys basic behavioural rules [97].

TCP sends data in segments which do not exceed a maximum segment size as negotiated

via a three-way handshake between the communicating agents during an initial connection

establishment phase. Each byte (octet) of data has a sequence number assigned to it. When

the receiver receives a segment, it notes the bytes of data (or sequence number range) of the

segment and responds by sending back a cumulative acknowledgement (ACK) which confirms

that all bytes up to the given sequence number have successfully arrived. The TCP sender also

maintains a retransmission timeout (RTO) timer, which on expiration indicates that a segment

has been lost and is to be retransmitted. The functionality offered by cumulative ACKs, the

RTO timer as well as a checksum on the segment header and data ensures reliability on top of

IF.

Another important functionality of TCP is flow and congestion control through the use of

a "sliding window" [98], measured in bytes. The sending rate is throttled by the congestion

window maintained at the sender and the receiving window advertised by the receiver. The

minimum of the two defines the maximum amount of outstanding (unacknowledged) data that

the TCP agent may maintain at any one time in the network and along the communications

path for a particular connection. The adjustment of the receiving window allows the receiver

to set the rate of incoming segments so that it is not overwhelmed by the load. On the other

hand, tweaking the congestion window is a means for the sender to adjust to varying network

conditions and avoid causing congestion in the network.

Recent traffic monitoring over the Internet [4] has confirmed the popularity of the Reno

[56] and NewReno [38] TCP variants as well as the increasing adoption of the TCP selective

acknowledgements (SACK) modification [14]. A promising reactive solution to the problem of

congestion control has further been presented in [16] with the introduction of TCP Vegas which

has received much attention in the literature [1,45,72,109]. These TCP variants are viewed as

likely candidates for adoption as reliable transport protocols for use over MANETs as they are

readily implementable and safe to use over small or large scale networks. The basic principles

2.1. FUNDAMENTAL TCP PRINCIPLES 25

of the aforementioned protocols, which form the focal point of this dissertation follow.

2.1.1 TCP Reno

TCP Reno refers to the implementation of the TCP protocol in the 4.3 Berkeley Software

Distribution (BSD) which includes the additive increase, multiplicative decrease congestion

control algorithm proposed in [561. Congestion control is accomplished using four distinct

mechanisms, namely slow start, congestion avoidance, fast retransmit and fast recovery.

The slow start phase is activated immediately after the initial handshake that establishes

the connection or following the expiration of the retransmission timer. Every time an ACK

is received the congestion window (cwnd) increases by one segment size and so effectively

per round trip time (RTT), cwnd is doubled (i. e. increases exponentially). Initially, the slow

start mechanism increases the cwnd until aa congestion indication event is triggered or the

maximum sending rate is reached. A congestion indication event could either be three duplicate

ACKs (dupACKs) or a retransmission timeout (RTO).

The slow start threshold (ssthresh) state variable stores the value of half the sending rate

(cwnd size) at which the last congestion indication event occurred. The congestion avoidance

phase is triggered when the cwnd reaches the ssthresh value during slow start or after the fast

retransmit/fast recovery phase. During the congestion avoidance phase, cwnd increases linearly

and up to one full sized segment per RTT. This phase attempts to gently feed segments into

the network after reaching half the rate when the previous segment delivery failure occurred.

Finally, the fast retransmit/fast recovery phase occurs when the sender receives three du-

pACKs which indicate that a TCP segment has been lost in flight. A dupACK is sent by

the receiver whenever it cannot acknowledge an arriving segment because it has not received

all the segments sent prior to that one. The fast retransmit algorithm requires an immediate

retransmission of the missing segment without waiting for the RTO timer to expire. Fast re-

covery sets ssthresh +-- * cwnd and sets cwnd F- ssthresh + (3 * max. segment size).

Then, the cwnd `inflates' for each additional dupACK received so that it is possible to con-

tinue sending segments in an attempt to keep the network `pipe' utilised while waiting for an

2.1. FUNDAMENTAL TCP PRINCIPLES 26

ACK to acknowledge new data. When such an ACK arrives cwnd `deflates' to ssthresh and

TCP enters the congestion avoidance phase. The linear increase of the sending rate (during the

congestion avoidance phase) as well as its radical decrease (after an RTO or three dupACKs)

form the additive increase/multiplicative decrease property of TCP which maintains fairness

between connections sharing the link, ensures fast convergence to a fair share state when other

flows need to utilise the available bandwidth and guards against the possibility of congestion

collapse [56].

The RTO timer in TCP Reno is computed by measuring the RTTs of transmitted segments.

In particular the RTO value is set to RTO +- SRTT + max(G, 4* RTTVAR) every time an

RTT sample is collected, where SRTT is a smoothed average of the RTT samples and RTTVAR

denotes the RTT variance. TCP features an RTO "heartbeat" counter which checks for RTO

expiration at time intervals of given length G; the interval length defines the RTO timer's

granularity and is set by default in several implementations to 100,200 or 500ms [11,17,76].

The collection of RTT samples and the reset of the RTO timer are activated on a per-window

basis.

2.1.2 TCP NewReno

The NewReno TCP variant [38] improves upon the congestion recovery mechanism of Reno

without requiring changes to TCP receivers or the TCP segment format. More specifically,

the existence of a selective ACK receiver is not assumed (as opposed to TCP SACK described

in Section 2.1.3). The NewReno algorithm is functionally very similar to TCP Reno. The

difference between the two variants can be distilled to the treatment of a loss event during the

congestion avoidance phase. When the TCP agent enters the fast recovery phase, provisions

are made so that the sender actually responds to ACKs that do "cover" new data but not all the

outstanding data in the pipe at the time the loss was detected. These are labelled partial ACKs,

and in the NewReno paradigm they prompt the retransmission of the first unacknowledged

segment by the partial ACK and the reset of the retransmission timer. This enables the TCP

sender to recover from multiple packet losses in a single window of data without resorting to

2.1. FUNDAMENTAL TCP PRINCIPLES 27

the coarse grained RTO, which is often detrimental to throughput.

Two TCP NewReno variants are specified in the relevant RFC [38], namely the "Careful"

and the "Less Careful" agents. The difference between the two is that due to the absence of

exact information on the receiver's buffer the "Careful" variant times out if a packet preceding

three other packets in flight in a window of data is lost, whilst the "Less Careful" one does not.

Essentially, there is a chance that the "Less Careful" variant will fast retransmit unnecessarily

on occasion but can also fast retransmit as desired in cases where the "Careful" variant has

to rely on RTO expiration. The NewReno RFC [381 suggests the "Careful" variant be imple-

mented, as it might be more conservative and at times sub-optimal but does not overburden

the network with spurious traffic in any case, unlike the "Less Careful" agent. The "Careful"

variant is evaluated in the simulation experiments included in this dissertation.

It is notable that the NewReno modification to TCP was widely deployed in most modern

operating systems [381 long before it was ratified as an IETF standard. Its popularity may be

attributed to its effectiveness in avoiding extensive RTO periods by intelligently filling gaps in

the receiving buffer caused by dropped or reordered packets.

2.1.3 TCP SACK

TCP Sack [14] is a Reno-based TCP variant which makes use of the facilities provided by the

Selective Acknowledgements (SACK) option of TCP [81]. In this fashion, SACK-enabled seg-

ments provide the TCP sender with some indication of the status of the destination's receiving

buffer. To achieve this, the data receiver generates SACK information for every ACK response

it produces that does not cover the highest sequence number in the data receiver's queue.

Hence, when reception of a non-contiguous segment occurs, instead of returning a du-

pACK, the receiver produces a reply which contains further information in the header of the

segment in the form of an option. The information embedded on the SACK response contains

a list (in the form of block pairs) of some of the isolated data blocks in the receiver's buffer,

which have not been passed on to the application layer, as additional data segments are required

to plug-in the gaps in the receiving sequence within the receiver's window. Hence, in the event

2.1. FUNDAMENTAL TCP PRINCIPLES 28

of packet loss the sender can re-send only the exact packets that have been lost in transit and

avoid producing spurious retransmissions.

The TCP SACK Option is widely supported on the Internet; even though not all agents

make use of the SACK information, many produce SACK-enabled responses [14]. There is

also an optional TCP D-SACK [41] mechanism (where D stands for Duplicate) that makes

use of Selective ACKs to help the sender infer the order of packets received at the destination

and thus realise when it unnecessarily retransmits a packet after a duplicate ACK has been

produced. This allows the sender to act more intelligently in the case of persistent reordering,

packet replication or early RTOs.

2.1.4 TCP Vegas

TCP Vegas [16] introduced several new mechanisms to TCP including a proactive congestion

avoidance technique which does not violate the congestion avoidance paradigm of TCP. In-

stead of increasing the sending rate until a segment loss occurs, TCP Vegas tries to prevent

such losses by decreasing the sending rate when it senses incipient congestion even if there is

no indication of segment loss. As such TCP Vegas can be classified as a "proactive" variant

as opposed to "reactive" Reno-based agents which respond to segment losses after they have

occurred. An overview of the main mechanisms of Vegas follows.

First, there is a different retransmission mechanism compared to TCP Reno. TCP Vegas

features two timeout values. The first is the regular coarse-grained RTO value similar to the

one in TCP Reno, which is limited in accuracy by the granularity of the "heartbeat" counter.

The other is a fine-grained RTO value based on a more accurate RTT estimate. Both the fine

and coarse-grained counters are calculated as in TCP Reno. The more accurate RTO estimate

is possible because TCP Vegas measures the RTT for every segment transmitted within the

sending window by reading the system clock at the segment's departure and then once more at

arrival of the corresponding ACK. Consequently, a more fine-grained RTO value is calculated

per RTT, which is only triggered, however, by the arrival of corresponding ACKs. Whenever

a dupACK is received TCP Vegas checks whether the difference between the current time and

2.1. FUNDAMENTAL TCP PRINCIPLES 29

the timestamp recorded for the relevant segment is greater than the fine-grained RTO. If this

is the case, that segment is retransmitted immediately without waiting for further duplicate

ACKs. Further note that for the first or second segment (depending on how many segments are

in transit) after the fast retransmission there is a fine-grained RTO expiration check even on

non-dupACKs.

Conversely, TCP Reno waits for 3 dupACKs before retransmission and so if enough du-

pACKs are lost on the way, and this is likely in case of congestion, Reno will fall back on its

coarse-grained timeout mechanism. Although the TCP Vegas retransmission mechanism can

be activated with a single dupACK, it is not necessarily more aggressive than Reno's as any

retransmission is in accordance with the TCP specification; the RTO timer for the retransmit-

ted segment has expired and so a retransmission is standards compliant. Since the fine-grained

RTO counter is only examined when a dupACK is received, TCP Vegas may have to fall back

on the coarse-grained RTO timer, like Reno, if dupACKs do not trigger the fine-grained timer.

Should multiple congestion indication events occur, TCP Vegas reduces the congestion window

only for the first fast retransmission as it tries is to avoid decreasing the sending rate for con-

gestion that was observed before the last window decrease. As such, Vegas does not penalise

the connection by further reducing the window's new size for effects that may be attributed

to the window's previous size. The trade-off in the case of this added fine-grained timer is

additional computational and storage demands on the TCP agent but these do not appear to be

significant [171.

The proactive congestion control behaviour of Vegas is based on RTT measurements. Once

per RTT, Vegas computes the current (actual) measured throughput and compares it with what it

considers to be the expected throughput. The expected throughput is computed as expected =

wi"doi ze, where the baseRTT is the smallest observed RTT measurement for the connection, se T

and windowsize is the number of bytes currently in flight. The actual throughput is computed

as actual = '"tT
, where RTT is the average RTT of the segments acknowledged during the

last RTT, whilst rttLen is the number of bytes transmitted during the last RTT. The difference

(di f f) between the two measurements is calculated in baseRTT segments as follows:

2.2. ROUTING PRINCIPLES IN MANETS 30

di ff- windowsize
_

rttLen
* baseRTT C

baseRTT RTT
(2.1)

If the difference is under a certain threshold, a, then the congestion window increases by

a full segment size since there is evidence that the expected throughput is achievable and so

the sending rate should increase. If the difference is above a (possibly different) threshold, ß,

then this is taken as a sign of incipient congestion and the congestion window decreases by a

full segment size. Otherwise, the congestion window (cwnd) remains unchanged. The decision

process used to adjust the sending rate per RTT is summarised below:

cwnd+1 ifdiff <a

cwnd = cwnd if a< di ff : 5,3 (2.2)

cwnd -1 if di ff>3

In the original Vegas papers [16,17], the a and ,Q thresholds were set to 1 and 3 respectively.

Finally, the slow start mechanism of Vegas uses a variation of its congestion avoidance

mechanism to decide when to switch to the congestion avoidance phase. Vegas monitors the

expected and actual rate per RTT and increases the congestion window only every other RTT

to make the comparisons valid. As soon as a queue buildup is detected (i. e. di ff> 1), Vegas

moves on to the congestion avoidance phase. Vegas is much more conservative during the slow

start phase compared to Reno-based variants and such behaviour is indicative of the "proactive"

philosophy of Vegas. Whilst TCP Reno initially tries to fill in the pipe with enough segments

to cause segment loss and thus probe the capacity of the bottleneck link, TCP Vegas chooses to

measure the pipe's reaction to added segments in order to realise the available capacity without

inducing segment loss.

2.2 Routing principles in MANETs

There are two main routing approaches in MANETs as expressed in IETF recommendations

through the RFC process, namely the reactive and proactive routing paradigms. The former

2.2. ROUTING PRINCIPLES IN MANETS 31

category includes the AODV [92] and DSR [60] protocols, whilst the latter is represented by

OLSR [28]. The main functionality of each of these is now presented in turn.

2.2.1 Ad hoc On-Demand Distance Vector (AODV) routing

The AODV routing algorithm is a popular reactive routing algorithm which has been ratified

by the IETF in an experimental RFC [921. The characterisation "reactive" or "on-demand"

routing refers to the fact that the routing protocol requires participants to maintain routes only

to destinations that are in active communication. Paths are established on an "as needed" basis,

and there is no proactive discovery of routes. This is beneficial in mobile environments as fully

up-to-date knowledge of all routes from every node implies large overhead with diminishing

returns if the routes are not utilised, since topology changes may be frequent.

source
0

destination

source

deatinatlon öý: m0
0

RREQ to be further transmitted ý.. ýý
RREQ not to be further transmitted

(a) Route Request (b) Route Reply

source

deatinatbn

"

(1) Node mobility causes route break
.. IN 0a DD

(2) RERR
ý4ý*

(3) BRED discovery of new path ý10

(c) Route Error

Figure 2.1. The main operations of AODV routing

(1) RREP sett reverse path ý.. ý,. ý.

(2) usable path .. ý., ý. ý

AODV makes use of a destination sequence number for each route entry. This sequence

2.2. ROUTING PRINCIPLES IN MANETS 32

number is produced by the endpoint of a communicating pair and is included with the route

information sent from the destination to requesting nodes during the route discovery process.

Using this simple mechanism loop-free routing is ensured and the sequence number is further

used as a metric of freshness for each route. Every time the destination notifies other nodes

of a route to itself, it increases the sequence number and, hence, when the route discovery

procedure presents a choice of several routes to the destination, the more up-to-date one may

be chosen. In contrast to the other popular reactive routing protocol, DSR [60], AODV only

maintains a single route entry per destination and in particular the freshest one as indicated by

the accompanying sequence number.

There are two main functions of the routing protocol to consider, namely route discovery

and route maintenance. Whenever a node is unaware of the route to its communicating des-

tination, it initiates the route discovery process. A probing message called the Route Request

(RREQ) is disseminated throughout the network via broadcasting and in a controlled fashion

using an expanding ring search. The message is in turn forwarded once by each node that re-

ceives it and hence a ̀ forward path' is established from source to destination by imprinting next

hop information onto intermediate nodes. An example of the network "flooding" with RREQ

packets is shown in Figure 2.1(a) for a given topology. When the RREQ reaches the destination

node or a node which is aware of a route to the destination, a Route Reply message (RREP) is

sent to the node that forwarded the RREQ. When the RREP originates from an intermediate

node and not the destination itself, it is referred to as a gratuitous RREP. For each RREQ cycle

a single RREP is generated and in particular as a response to the first RREQ received. The

RREP propagates back to the source thereby establishing a `reverse path' where all interme-

diate nodes have enough next hop information to route packets for the {source, destination}

communicating pair. Figure 2.1(b) depicts the process. Further, for each route entry at partici-

pating nodes there exists a list of neighbours that have made use of the route. This "precursors"

list is utilised whenever route failures occur to inform only relevant nodes (i. e those making

use of the route) of the route's breakage.

The second main function of AODV is its route maintenance process. After the route

2.2. ROUTING PRINCIPLES IN MANETS 33

discovery process and so long as the discovered route is used, the routing protocol does not

dictate any particular action. When the route becomes inactive, i. e. no data is sent over it,

a timer is activated, after the expiration of which the route is considered stale and expires.

Should the routing agent at a node become aware of a link breakage for an active route, a

Route Error (RERR) packet is generated at the point of breakage. This is then disseminated

to the appropriate nodes participating in the route's formation and those nodes actively using

the route. The latter is achieved via the precursors list as described previously. The nodes

affected by the invalid route mark it for expiration since it is no longer useful. In this fashion,

the RERR message propagates to the source node which can then initiate a new route discovery

phase. This operation is illustrated in Figure 2.1(c). Alternatively, the intermediate node at the

point of the link failure may opt to produce a RREQ itself in expectation that the destination is

still reachable. An alternate route may be discovered more quickly if the discovery process is

initiated at the point of breakage rather than at the source. Such an attempt at a "local repair"

is very efficient if the topology does not change radically and the destination is still reachable

at a relatively short distance from the point of failure.

Finally note that provisions are also made in AODV for the discovery and circumvention

of unidirectional links as well as for the use of AODV on IPv6 enabled networks.

2.2.2 Dynamic Source Routing (DSR)

DSR [601 is a distance vector routing protocol that makes use of sequence numbers to avoid

routing loops. However, it is a reactive algorithm and as such does not maintain routes to all

possible destinations but establishes them as the need arises. Each intermediate node does

not need to contain up-to-date information for a complete path to a destination because the

complete route a packet must follow to reach its destination is imprinted on its header by the

source. DSR makes extensive use of route caching and as such its table entries may contain

multiple routes for the same destination. Furthermore, there is no need for a mechanism to

detect routing loops as loop freedom is assured by source routing.

In order for the source to discover the path to a destination the network is controllably

2.2. ROUTING PRINCIPLES IN MANETS 34

flooded with Route Request (RREQ) packets. As a RREQ packet is rebroadcast by the inter-

mediate nodes, the hop sequence to the destination is recorded on the packet's header. When

the packet reaches the destination or a node that knows the route to the destination, a Route

Reply (RREP) is transmitted back to the source by reversing the path of the RREQ packet, thus

informing the source of the new route. In the case of a unidirectional link, it is necessary for

the destination to initiate its own route discovery process as the inverse of the original path is

not a valid path in itself. The process is illustrated in Figure 2.2.

RREQ Path (A, B, C, E)

E

© RREQ Path (A, B, C, D)

C 40 "
destination

BDFG
The RREQ packet contains In its header

A
source

the address of all Intermediate nodes

0 1. II no un dlrectionat links
E reverse RREQ Path

(A, B, C, D, F, G)-> (G, F, D, C, B, A)

C destination
B0FG

A
2. The RREP packet Is sent

source
by the destination to the source

(a) DSR Route Request (b) DSR Route Reply

Figure 2.2. Route discovery in DSR

The destination node replies to all RREQ packets received per route request cycle and,

consequently, the source may discover multiple routes to the destination. Following the route

discovery process, each data packet flowing from the source to the destination contains the

complete hop route to the target. Whenever a link failure occurs a Route Error (RERR) packet

is transmitted from the node where the link breakage occurred to the source. This is propagated

through the nodes that contain the failed route in their cache which, in turn, update their caches

to shorten the stored path up to the point of failure. Once the source receives the RERR packet

it re-initiates the route discovery process or may make use of alternate cached routes to the

destination.

It is possible to improve a node's ability to learn new routes at no additional traffic cost

by allowing promiscuous listening. In this case, the node is allowed to listen to traffic not

addressed to it and discover new routes from packet headers. Another use of promiscuous

2.2. ROUTING PRINCIPLES IN MANETS 35

listening is to optimise the routing path. The listening node may examine the untraveled portion

of the path in a packet header to check if its address is there. If it is, that means that the packet

need not go through any other hops preceding the node's own address in the route. To make

the source node aware of this, the promiscuous node then transmits a gratuitous RREP to the

packet's source that includes the shortest path without those intermediate nodes. Nonetheless,

intercepting all packets can be detrimental to the power reserves of the mobile node and there

are computational overheads of packet processing to be considered as well [61].

The DSR protocol further includes a packet ̀ salvaging' mechanism. When an intermediate

node forwarding a packet detects that the next hop along the route for that packet is broken

but contains another route to the packet's destination in its route cache, then the node should

attempt to `salvage' the packet rather than discard it. The packet's route is altered according to

the node's route cache entry for the destination and a RERR packet is sent back to the source

informing it of the new route. Overall, DSR is persistent in recovering from routing errors by

discovering alternate routes from the point of failure. In particular, the proposed standard [601

defines a maintenance buffer that caches packets which were unsuccessfully transmitted in

view of discovering an alternate route. This mechanism can be combined with the promiscuous

listening functionality as described previously so as to utilise alternate overheard (cached)

routes and eventually deliver the packet to its destination.

Two other mechanisms of interest in DSR are network layer acknowledgements (ACKs)

and passive ACKs. In particular; the former ensures DSRs ubiquitous nature while the latter

helps reduce overhead associated with point-to-point reliable transmission of packets. The two

mechanisms are now briefly described in turn.

Network layer ACKs may be demanded by the source via an option in the DSR options

header embedded in a packet sent. Upon reception of such a packet, the destination responds,

in turn, with a DSR ACK packet which verifies the successful data exchange. The advantage

of such network layer functionality is that it enables the deployment of DSR across systems

that do not feature equivalent lower layer provisions (IEEE 802.11 transceivers do, however,

2.2. ROUTING PRINCIPLES IN MANETS 36

include such functionality [521). Disadvantages of such a mechanism include higher ACK

response time and processing overhead than in the case of MAC layer responses.

Passive ACKs occur between the two entities of a point-to-point dyad, when the packet

originator overhears the neighbouring destination forwarding the packet after some time. This

implies that the destination had correctly received the packet earlier, but, on the downside it

requires omnidirectional antennas and both source and destination to be within transmission

range of each other. This requirement holds true even when the two nodes are not conversing

with each other, which in turn implies that the destination should transmit the packet using

the same power as used by the source when it first transmitted the message, to ensure that

the transmission will be overheard by the source. Hence, the destination node of the passive

ACK pair may not opt to limit its transmission range to conserve energy when talking to other

nodes [631.

It is worth nothing that the above two techniques are complementary, i. e. network layer

feedback may be combined with passive ACKs. In particular, the node may at first attempt to

transmit and wait for a passive ACK before resorting to the explicit request of a network layer

ACK [60]. If a passive ACK is successfully received after transmission, the network layer

ACK overhead is hence eliminated.

2.2.3 Optimized Link State Routing (OLSR)

The OLSR protocol [28] has been developed primarily with mobile ad hoc networks in mind,

although no assumptions are made about the underlying link layer. Its main operation resem-

bles table-driven, proactive protocols as used in wired infrastructure networks; in fact it is

similar to the previously introduced DSDV [93] protocol with respect to there being regular

topology information exchanges with other network nodes.

An OLSR network is built upon the concept of "multipoint relays" (MPRs). Each node

selects a set of its neighbouring nodes as MPRs, which are then responsible for forwarding

2.2. ROUTING PRINCIPLES IN MANETS 37

control traffic intended for distribution into the entire network. The MPRs provide a mecha-

nism to constrain the flooded control traffic by reducing the number of transmissions required,

hence mitigating DSDV's serious overhead problems [93]. Through the transmissions of its

MPR 1-hop neighbours, a node is able to reach all nodes within a 2-hop radius. Nodes selected

as MPRs have to feature bi-directional link status with their selector, which elegantly avoids

problems associated with uni-directional communication, such as the inability to exchange

link-level acknowledgements, a vital operation for 802.11 networks.

14" neighbours

2-hop nsöghboui.

tanemisdon

trIromitbng nods
0

1. ml, m2, m3 are
multipoint relays (MPRs)
as selected by the source

2. When the source floods
(broadcasts) a message
only Its MPRs retransmit lt

3. The MPRs of ml. m2, m3
retransmit and so on

(a) Flooding the message (b) Using MPRs

Figure 2.3. Methods of distributing control messages

MPRs are also critically responsible for announcing the link-state information of their se-

lectors in the network. Nodes which have been selected as multipoint relays by some neigh-

bouring node(s) announce this information periodically with topology control (TC) messages.

Essentially, each node announces to the network that it has reachability to the nodes which

have selected it as an MPR. When paths are calculated, the MPRs are used to form the route

from a given node to any destination in the network. For MPRs to be selected, information

about a node's neighbours must become available and this occurs through periodic exchanges

of HELLO messages. Figure 2.3 illustrates the operation of MPRs and the resulting savings

in transmissions compared to a simple flooding operation. In particular, in Figure 2.3(a) the

message is sent from the source to all nodes (that is the one and two-hop neighbours) through

5 transmissions. When MPRs are employed in the same topology in Figure 2.3(b) (incurring

the overhead of HELLO messages between the nodes so that MPRs may be chosen by the

2.3. RANDOM WAYPOINT MODEL 38

source) only 3 transmissions are needed for the complete dissemination of the message. It can

be intuitively understood that for dense and large networks the savings are quite substantial,

even after accounting for the overhead of HELLO packet exchanges.

OLSR is particularly well suited to scenarios of large and dense networks where the MPR

optimisation works well, in addition to instances where the communication pairs change over

time; in these cases there is no additional control traffic overhead as routes for all known

destinations are maintained at all times [94]. Further, OLSR maintains sequence numbers on

its control messages like AODV and DSR and periodically retransmits its control messages.

This makes it as resilient as the aforementioned reactive protocols to out-of-order delivery or

loss of control information.

2.3 Random waypoint model

The random waypoint mobility model [75] is one of the most popular mobility models in

MANET research and in itself a focal point of much research activity [75,83,110]. The original

version of the mobility algorithm was originally presented by Johnson et al. in [59] and refined

in follow-up work [19]. The model defines a collection of nodes which are placed randomly

within a confined simulation space. Then, each node selects a destination inside the simulation

area and travels towards it with some speed, s. Once it has reached the destination, the node

pauses for some time, p, before it chooses another destination and repeats the process. The node

speed, s, of each node is specified according to a uniform distribution with sE (0... Vmax],

where Vmax is the maximum speed parameter. Pause time is a constant p secs. The cycle is

illustrated in Figure 2.4. It is suggested in [19] that the simulation should be left to run for

some period of time before collecting data, effectively discarding the initial observations so as

to allow the probability distribution of both location and speed to converge to a "steady-state"

distribution.

In the initial use of the random waypoint model for evaluation [19], an increase in mobility

was simulated by increasing the maximum speed parameter or decreasing the pause time. In

2.3. RANDOM WAYPOINT MODEL 39

1
I2

(I

I node 1 node 1

destination
ý

192 pause time
at 5m/sec 20 secs

node 2 node 2 I
destination destination

I at 2misec "1I I at 2m/sec
I

L
--- ----ý ---- ----ý Time: Os Time: 15s

(a) Topology snapshot at 0 secs (be- (b) Topology snapshot at 15 secs
ginning)

node t
I

destination

at 3m/sec

02
I J

ý
I node 2

pause time
20s

L__
-- Time: 35s

(c) Topology snapshot at 35 secs

Figure 2.4. Illustration of the random waypoint mobility model

2.4. ASSUMPTIONS 40

fact, the authors in [19] assumed that the average node speed would be Vmax/2; an assumption

shared by later research work [2]. However, Yoon et at. [110] have revealed that the average

node speed in the random waypoint model is actually continuously decaying and further work

by Navidi et at. [83] has confirmed those findings. In order to ensure that an increase in the

maximum node speed parameter actually reflects an increase in average nodal speed (and by

extension increased mobility) this dissertation employs the solution proposed in [110] which

defines a non-zero minimum bound for the range of the uniform speed distribution and ensures

quick convergence to a steady state average node speed.

It should be noted that the random waypoint mobility model is the most popular of the "en-

tity" mobility models, where each node's motion is independent to that of others. Its popularity

may be attributed to ease of implementation and intuitive appeal in view of the lack of widely

deployed MANET testbeds where mobility patterns could be traced and then used in simula-

tions. Other proposals in mobility models include several "group" mobility models [831, where

the movements of nodes may be correlated, such as the motion of vehicles on the highway and

so on.

2.4 Assumptions

In the subsequent chapters, extensive simulation results will be presented. The following

assumptions are used throughout this research and have been widely adopted in the litera-

ture [2,6,24,26,31,34,35,42,43,49,65,71,104,1111
.

" Mobiles nodes have sufficient power supply to function throughout the simulation time.

At no time does a mobile node run out of power or malfunction because of lack of power.

Equivalently, the wireless transceivers are active at all times, although promiscuous lis-

tening (i. e decoding of all frames, even those not addressed to the node itself) is not

active unless specifically noted.

" The number of nodes in a given topology remains constant throughout the simulation

time. Note that network partitioning may still be evident during simulation and so the

2.5. JUSTIFICATION OF METHOD OF STUDY 41

network may not be connected at all times. However, at no time does a node leave or

gets added to the simulation area.

" Transmissions are not affected by random errors. Transmissions may still interfere with

each other (i. e. affect each other if they occur in close proximity); however a node will

always successfully decode a transmission provided it is within transmission range of

the source and there is no interfering transmission.

9 All nodes are equipped with IEEE 802.11 transceivers. Unless otherwise stated the full

RTS/CTS mechanism is employed on these wireless devices.

It is worth noting that other assumptions will be stated in the following chapters as appro-

priate.

2.5 Justification of method of study

In this work extensive simulations are conducted to explore issues in TCP performance in

MANETs. This section discusses briefly the choice of simulation as the appropriate mode

of study for the purposes of this dissertation, justifies the adoption of ns-2 as the preferred

simulator and further provides information on the techniques used to minimise the possibility

of simulation error.

After some consideration, simulation was chosen as the mode of study in this dissertation.

Notably, when this work was undertaken, analytical models with respect to multihop MANETs

were considerably coarse in nature which made them unsuitable to aid the study of TCP with

a reasonable degree of accuracy; it should be noted, however, that understanding of multihop

wireless communications has improved in recent times [96]. Further, since the scope of this

study of TCP in MANETs involves numerous mobiles nodes, even a moderate deployment of

nodes as an experimental testbed could entail substantial and prohibitive cost. As such sim-

ulation was chosen as it provides a reasonable trade-off between the accuracy of observation

2.5. JUSTIFICATION OF METHOD OF STUDY 42

involved in a testbed implementation and the insight and completeness of understanding pro-

vided by analytical modelling.

In order to conduct simulations the popular ns-2 simulator has been used extensively in

this work. Ns-2 was chosen primarily because it is a proven simulation tool utilised in several

previous MANET studies [31,35,43,49,104,111] as well as in other network studies [37].

While developing modifications to the simulator, special care was taken to ensure that the

algorithms implemented would function as designed and that the simulator would not exhibit

unwanted side-effects; this was accomplished through meticulous use of the validation suite

provided with ns-2 as well as careful piecemeal testing of implemented features. Further,

real-life implementations of routing agents were used for the simulations conducted in this

dissertation, in order to achieve a close approximation of real system behaviour [48,79,84].

Finally, particular attention has been given in this work to ensure that the simulation results are

fairly representative of possible real world systems [7] and to avoid shortcomings of previous

research in MANETs [71].

Chapter 3

TCP performance in MANETS

3.1 Introduction

Due to its extensive use and implementation maturity on most platforms, TCP has become

the focal point of much research work in MANETs [31,35,43,49,104,111], especially with

regard to the effects of non-congestion related packet losses [8,25]. However, these efforts have

largely focused on special topological configurations and the evaluation of proposed solutions

has mostly been performed in limited scenarios. Furthermore, research which specifically

examines the behaviour of TCP variants across different routing protocols has been meagre [2,

341 and was undertaken at a time when MANETs and their properties were not well understood.

In particular, previous studies have been hampered by restrictive assumptions with regards to

the mobility model used [34,49,95], or have been otherwise encumbered by the immaturity of

available simulation tools [2,7 1].

Most previous evaluation efforts have only either measured performance in static topolo-

gies [95] or through a limited number of trials insufficient to extrapolate general conclu-

sions [2,34,49]. Recent work [I 101 has revealed an issue with the popular random waypoint

mobility model, as used in the aforementioned works, concerning continuously decaying av-

erage node speed over the course of a simulation run. These considerations would seem to

43

3.1. INTRODUCTION 44

justify a re-evaluation of the performance of TCP agents, as previous work has not clearly re-

flected varying degrees of mobility [83]. Further, as the understanding of the wireless medium

properties has progressed, the available simulation tools have matured and, after substantial

fine-tuning, now incorporate significant detailed elements corresponding to practical imple-

mentations [7].

Motivated by the above observations, this chapter makes the following contributions. It

presents a study on the effects of mobility on TCP, through its interplay with three popular

routing mechanisms, namely AODV, DSR and OLSR. This provides insight into the potential

performance discrepancies between routing protocols and more significantly outlines the trade-

offs involved in enabling optional features included in each routing protocol. Notably, the

results show that routing protocol specific features, such as packet caching or route notification

interval, can significantly affect TCP performance (e. g. throughput).

This chapter also conducts a performance evaluation of three popular reactive and one

proactive TCP variant, namely TCP Reno, NewReno, SACK and Vegas. Such an evaluation

study is the first to examine the performance of TCP Vegas in MANETs and identify the cause

of its competency. Overall, the results indicate that Vegas, SACK and NewReno maintain

better goodput performance levels with respect to TCP Reno, with Vegas exhibiting the best

overall goodput of the three. In contrast to previous work [49], detailed simulation traces are

used to pinpoint the causes of the performance discrepancy of the TCP variants with respect to

inactivity periods and reaction to packet losses.

The rest of this chapter is organised as follows. Sections 3.2,3.3 and 3.4 include instructive

simulation traces and a description of the behaviour of TCP Reno over a route break event in

the presence of AODV, DSR and OLSR routing agents respectively. Section 3.5 contains the

results of the performance comparison of the different TCP variants, namely Reno, NewReno

Vegas and SACK, under various mobility conditions and discusses simulation parameters and

assumptions. Detailed discussion of the interplay of TCP mechanisms with other layers, which

accounts for the performance discrepancies observed in the simulation, are included in Sec-

tion 3.6. Finally, Section 3.7 summarises this chapter.

3.2. TCP BEHAVIOUR OVER AODV 45

3.2 TCP behaviour over AODV

This section examines the behaviour of TCP Reno in a low mobility scenario. This example is

instructive as to the challenges faced by TCP in a wireless multi-hop environment and provides

insight into the interaction of TCP with the AODV routing mechanism. In particular, the

discussion that follows aids comprehension when contemplating TCP goodput performance

issues in the subsequent sections. Note that due to its simplicity TCP Reno is well suited

for minute simulation trace analysis and as such, used here as the transport agent. However,

comments made on its behaviour are pertinent to other types of TCP agents as the discussion

largely involves TCP characteristics present in all variants.

F I770, t10)

 w. rr Tevý r. ua nwr 0we

7omr. c

..............
". RE HELLO packet WOWcast

AC

110.101 plo, ty' I410AM (616.10) (814,10)

...................
...

-*"I

Tnnsm4sbn Radlua 2SOm 200m

()0
10 20 30 40 50 60 70

(a) Initial topology

(s) .. d. r . c* conw. n
(2) node a sermle 0. " fr a" Ib "'0- our as

e taw*nl the 1* F INy RAM ss hso s HELLO

RRER ki

O O

O
«OO-

(10,10) nlale) (4(0.10) (uo, lo) X (öo1o)

(1) troommil 4an fella

nm.
(s. c)

0 10 20 30 40 50 60 70

(b) Route breakage

(1) Nod. A rr00 va Rile mwp0 (2) No". r reps. wla OR... c"

Idnd
NogNo raute discovery cycle Roue through F

AC

(710.50)

(10.101 (210,10) (410.101 (010.10) (110.10)
(3)INd. A receiver SNIP
and us" now route

Tt

«ý0
10 20 30 40 SO 60 70

(c) Final topology

Figure 3.1. A scenario depicting AODV operations after a route break

Simulation setup The scenario involves a 5-node string topology (nodes A -* E) and an

additional node, F, which stands in close proximity between nodes D and E, as shown in

Figure 3.1(a). The nodes along the A -º E string are spaced 200m apart and feature standard

Lucent WaveLan II [641 transceivers with bandwidth of 2Mbps. An FTP bulk transfer with an

3.2. TCP BEHAVIOUR OVER AODV 46

infinite backlog is initiated at the beginning of the simulation between the end points of the

string topology, namely nodes A and E. As mentioned above the TCP agent carrying the FTP

traffic is Reno and the segment size is 1460 bytes.

The transmission range of the transceivers is fixed at 250m using a flat, ideal signal prop-

agation model which does not account for attenuation up to the transmission range limit and

nullifies the signal strength beyond that threshold. Obviously, such a propagation model can-

not occur in reality as some signal degradation is always present but it is utilised so as to

isolate the effects of route breakage and disregard other effects such as those caused by inter-

ference [107]. To deal with the standard hidden terminal effect the RTS/CTS mechanism [106]

is active throughout the simulation run. The routing protocol used is AODV-UU [79] which

is a working AODV implementation utilised in conjunction with the ns-2 simulator [37], and

which is implemented according to the corresponding RFC [921. HELLO packets are used to

detect route failures; in particular, if a node has not broadcast a HELLO packet for 5 seconds

the link is considered stale. Link layer (LL) feedback is not considered in this experiment

although its potential benefits and drawbacks are taken into account in the subsequent dis-

cussion. A complete list of the AODV parameters used is presented in Table 3.1. These are

set as recommended in the corresponding RFCs and have been used in previously reported

research [26,34,79,921.

The scenario proceeds as follows. Initially, the AODV agent at node A broadcasts a Route

Request (RREQ) packet which is forwarded in sequence by each intermediate node until it

reaches node E, which responds by issuing a Route Reply (RREP) towards A. As the RREP

propagates to the source, each node that receives it obtains enough information to forward

subsequent data, as a "reverse path" is formed to complement the "forward" path set by the

RREQ [921. At the end of this phase the complete path has been setup in the form of the

A -+ B -º C -+ D -+ E route. Note that node D is aware that E is its neighbour by the time

the RREQ packet arrives. However, since the gratuitous RREP feature has been disabled in the

AODV agents, only the intended destination may issue a reply to the discovery packet. After

a few seconds and once the bulk transfer has been initiated, node F moves closer and gets

3.2. TCP BEHAVIOUR OVER AODV 47

Table 3.1. AODV parameters
Parameter Value Parameter Value

Exp. ring search ON TTL start 2

Local repair OFF TTL increment 2

Active route timeout 5 secs LL feedback OFF

Gratuitous RREQ OFF HELLO interval I sec

stationed between nodes D and E, thus getting well established inside the transmission radii

of both nodes. At the 30 second mark, node E starts moving horizontally away from Node D at

10m/sec until at 35 seconds the signal of D no longer reaches E and the link becomes invalid.

At its new destination node E is still a neighbour of node F but cannot be contacted by node D.

Node D realises that its link to E has been invalidated when it notices the absence of HELLO

packets (this is the only way to realise route breakage as MAC feedback has been disabled).

A Route Error (RERR) packet is then sent back by node D to the source (node A) where a

new route discovery cycle begins so as to probe for an alternate route to the destination. Note

that as the RERR message propagates backwards along the route, all TCP segments buffered at

each node using the invalidated route are dropped. Figure 3.1(b) outlines the repair procedure

and depicts the route breakage. As soon as the RREQ packet reaches node E (through F),

a RREP packet is launched from it towards the source (note once more that Node F could

have generated the RREP packet but gratuitous RREPs are disabled in this scenario). At about

the 39 second mark the route is restored and the TCP agent resumes transmission. There are

no subsequent route breakages until the end of the simulation and the topology stands as in

Figure 3.1(c).

During this delivery effort, the TCP agent is unable to distinguish among the different

causes of segment loss. Certain segment losses derive from the inability of the MAC protocol

to properly coordinate packet transmissions among stations, which is mostly attributed to the

exponential "waiting period" backoff of the 802.11 protocol as demonstrated in [26,104,1071.

Further, the reaction of the routing protocol to route breakages explicitly causes packet loss

3.2. TCP BEHAVIOUR OVER AODV 48

as each station processing the RERR packets empties its transmission queue of packets util-

ising the invalid route. All such packet losses are interpreted by TCP as signs of congestion

despite the fact that congestion does not occur at any point during the simulation (no node's

transmission queue becomes full at any time). This misdiagnosis impedes TCP performance

and its effects are further compounded by reliance on the coarse grained RTO timer becoming

aware of the route's restoration (there is no explicit cross-layer notification from the routing

protocol concerning the route's status). Several research studies [24,111] have shown that it is

particularly desirable for TCP to maintain explicit awareness of the route's status, so that lost

packets from route breakages do not spuriously activate congestion avoidance.

Figure 3.2(a) displays the DATA-ACK exchange (and thus, indirectly, the throughput) of a

TCP Reno agent in the string topology scenario. Each marked ACK point in the graph corre-

sponds to a single ACK received at the source which acknowledges a range of bytes (segments).

A value of 0 denotes a duplicate ACK (since it does not acknowledge any new segments); a

value of 1 denotes the normal TCP cycle since every ACK acknowledges a single additional

segment (delayed ACKs are not used in this simulation). A value greater than 1 denotes that

a packet which filled-in a discontinuous series of received segments at the destination's buffer

was received and successfully acknowledged. The DATA segment marks at the top of the

graph indicate the times when a TCP DATA segment was launched by the sender. Of particu-

lar interest is the region at 35-39 seconds (indicated by a dashed box in Figure 3.2(a)) where

the ACK flow stops since the route is considered invalid. The period of disconnection, that is

the period from when the routing protocol first determines that the route has became invalid

until it registers its restoration, is denoted by the two solid vertical lines in the graph. Fur-

ther note the discrepancy between the time of the actual route failure (at 35 seconds) and the

time it takes for the routing protocol to detect it and initiate a new route discovery procedure

(37.1 seconds mark). The delay is attributed to the absence of link layer feedback and the use

of HELLO packets, which represents a trade-off between frequency of updates and overhead.

When HELLO packets are absent for some time, the routing protocol may assume the link

has been broken. However, with the link layer feedback, if a transmission fails then the route

3.2. 'I'CP BEHAVIOUR OVER AODV 49

may immediately be considered obsolete without waiting several seconds for the absence of

HELLO feedback to register. However, this makes the routing protocol prone to false pos-

itives from failed link layer transmissions due to interference effects or from other transient

causes [251. Apart from a stray duplicate ACK received before the RERR notification could

propagate to the source, there is no newly ACKed traffic during that period.

4"

w

20

10

n

o ACK packet
DATA Segment

0O
"O00 O

Olb- Oo4

12 44 36 38 40
Simuluion Time (secs)

(a) Data segments sent and ACKs received

. Ag CWNU
0.35 6

S
0.1

"
SRTT

0.25

41

02

J

ali
z1 f 0.1

Iý 0.03

00
5 10 15 20 23 30 31 40 41 SO SS 60 61 70

H

P

m
i

SlmuIit on Time (aas)

(b) Smoothed RTT and cwnd evolution

Figure 3.2. Goodput and RTT estimate of TCP Reno over AODV during a route break

K

An interesting interplay between the TCP's exponential RTO backoff can be observed in

this case. The packets sent after the 35 second mark as well as ACKs in flight are mostly

lost. These losses cause TCP to retransmit at the 36 second mark after experiencing an RTO.

This retransmitted packet is lost on its way at node B, which by this time has received the

RERR packet forwarded by node C. The new RTO timer backs off exponentially and is set

to approximately 2 seconds. Thus, it expires shortly after the 38 second mark, by which time

the AODV agent at node A is aware of the route breakage and has already initiated the route

discovery process. The subsequent retransmitted TCP packet (after the RTO) is buffered at the

source node whilst the route discovery process finds a new route. A new route is discovered

70 ms later (by the discovery process which had started earlier) and the packet is launched 30

ms afterwards by the routing agent. If a subsequent RTO had occurred, say because the route

had become invalid once again, TCP's exponential back-off would have necessitated TCP to

3.2. TCP BEHAVIOUR OVER AODV 50

remain inactive for a longer period of time than before (approximately 4 seconds in this case)

even though the route might have been repaired in the mean time. The lack of useful feedback

between the routing (AODV) and the transport agents is a well known problem in MANETS and

has been discussed in previous work [34,1111. However, no previous research has mentioned

that, at a rudimentary level, the negative effect of consecutive RTOs does not take place if

the TCP agent launches the packet after a route breakage has been detected by the routing

protocol (as in the example mentioned above). In such a case, the buffering of the packet by

the routing entity circumvents the damaging effects of consecutive RTOs if the packet and its

accompanying ACK are successfully transmitted once the route has been restored.

Figure 3.2(b) shows the smooth round-trip time (SRTT) measurements as realised by the

Reno TCP agent. The time frame for the route failure is denoted by a dashed box in the same

graph. The RTT samples freeze for some time as the route is being restored (denoted by the

plateau at around 35-38 seconds in the SRTT graph). After the route has been restored, the

new SRTT measurements are not significantly different to previous ones as the path is only

extended by a single hop. It is noteworthy, however, that the measurements vary significantly

throughout which may not be ideal for delay or jitter sensitive applications.

In the same figure, a graph of the average congestion window (cwnd) size is overlaid. Pre-

vious research [26,43,107] has revealed that TCP does not behave optimally when used under

distributed MAC mechanisms such as those employed by the 802.11 protocol. Specifically, it

has been shown that TCP's cwnd stabilises at a large average which maintains more packets

in the pipe than is optimal [43,107] for the MAC mechanism to function properly, especially

when the path is long. In previous work [25], and for an IEEE 802.11 receiver, it has been

shown that the optimal window size for a topology of 4 hops would be 1; here an average cwnd

of 6 segments is observed.

Finally, it is of particular note that during the course of the experiments packet loss is still

evident, even for packets that are not broadcast (i. e. TCP DATA and ACK segments, not just

HELLO packets and RTS/CTS frames). This is surprising considering that interference is not

evident in this scenario (due to the signal propagation model chosen) but the MAC mechanism

3.3. TCP BEHAVIOUR OVER DSR 51

nevertheless fails to coordinate transmissions effectively. Previous work has noted such losses

when interference is present [321 but we confirm the phenomenon in this flat signal propagation

scenario, which does not exhibit such interference.

3.3 TCP behaviour over DSR

In this section the behaviour of TCP Reno is illustrated over DSR in the same ad hoc scenario

as the one in Section 3.2. The timing of the route breakage, the node movement and the settings

of the TCP agent are identical to the previous section. The single difference in the simulation

setup is that the routing agent active in every node is DSR. The particular DSR implementation

used is DSR-UU [841, which is an actual testbed implementation interfacing with the ns-2

simulator. Apart from noting the reaction of TCP to the DSR routing maintenance mechanisms,

this special use case describes the deployment of passive and network layer acknowledgements

which have not been discussed in the literature although they are part of the DSR draft 1601.

F (710.210)

M. ý. rT.. ýwran. a. owe

10mlrc

............................

111 M[O M Ybdcmg WM rNM

'he mods MM FA--TH (AO, C, 0) iWi

AC

(10,10) (210,10 "ý" (41010) (010, (010.10)

. '" '"ý............

Tnnsm4slon I.
&dlus 250m 200m Ol Owe IuM noaw the KYoOm ft lmw

U. Mb rM W. M. MOP to A. wwn

(ßl0
10 20 30 40 so 60 70

(a) Initial topology

(3) NM. 0Y.. lh. no"F
r. M@40* MN MM e wM I-Mt

(4 n. d FMw«

WA Po" an F pw. t to I 1, m IC0FF 01710.501

O O Ö-ý
(1C1Y) (ßl0.10) N10.1C1_ (610.1 X (. eO. i0)

(1)N. NOI pM.... 0NFM.
t« ne" A (1) tr. bliss MY wo" tANN

"4 "tN t iys b. M. ct "m me"

nm.
1r nM nc. Mw byD

(0
0 10 20 30 40 SO 60 70

(b) Route breakage

111 N. M A boom . IU00 rw
111 M

WE

ýcwýrý . ir º. ct w
Ma «w rN. n.. tn. nwnutwnut.

fAA. out N. u1 the AS. nub OSm
F

no" C. rW. A T. kr uw M the
F

n. ý rwb.

B

(I $. Sol
(10.10) (710.101 (410.101 (010.101 1010.10)

(7) AN Nl.. qWM TCº At0. ft m
nw. I Il . uhe fw. º. In

Tim.
()0

10 20 30 40 50 i0 70

(c) Final topology

Figure 3.3. A scenario depicting DSR operations after a route break

3.3. TCP BEHAVIOUR OVER DSR 52

Table 3.2. DSR parameters
Parameter Value Parameter Value

Passive ACKs ON Flowstate OFF

Promiscuous listening ON LL feedback OFF

Packet salvaging ON Use alternate routes ON

Snoop routes ON Send. Buffer Lifetime 30 secs

The DSR protocol, like AODV, may utilise link layer (LL) feedback to discern route fail-

ures but in this experiment such feedback is not taken into account. In particular, since LL

feedback may not always be available or functioning as intended (i. e. may often result in false

positives), in this simulation the DSR agent falls back to network layer and passive ACKs [60].

This combination of techniques is described in Section 2.2.2; a complete list of DSR parame-

ters is presented in Table 3.2.

In the case studied here, the topology is initially formed as displayed in Figure 3.3(a). The

route discovery procedure is initiated by the source node (node A), as outlined in Section 2.2.2

in order to find a usable path to the destination (node E). The focal point of interest is the route

break that occurs at 35 seconds, as depicted in Figure 3.3(b). At that time, as in the AODV

scenario in Section 3.2, node E has moved outwith the transmission range of node D, and node

F is in position to act as the intermediary. The DATA-ACK packet exchanges during this time

interval are shown in Figure 3.4(a) in the same format as the one used in the AODV case.

The DSR protocol functions as follows after the link break. At 35.9 seconds and after

several failed attempts to receive a network layer ACK, the routing agent at node D, realises

that the link has been broken. Then it produces a RERR packet towards the source (node A)

but, unlike AODV, does not drop packets. Instead, all the packets making use of the invalidated

link are placed in the maintenance buffer and the routing agent consults its routing cache and

discovers that node F is a neighbour of node E; i. e. there is an potential alternative route. The

information on this route was obtained at around the first 2 seconds of the scenario when due

to the inability of the MAC mechanism to coordinate transmissions, the network layer ACKs

3.3. TCP BEHAVIOUR OVER DSR 53

between nodes D and E failed to be transmitted and node E erroneously believed its link to

node D to have become invalid. So, at node E's subsequent discovery process for a route to

A, both nodes D and F responded. Node E, then opted to utilise the path proposed by node

D, which offered the shortest route, but as a side-effect node 1) became aware of node F's

neighbouring status to node E.

'U,

Y)

20

I

10

o ACK ycgrnooI
DATA segment

0o

.o® ýs mr so
t1 tl i(. 3R JIl

6

S

7t 4

l

T- T- _T-f T T_TT-T -T TT

Avg w. d

SRTT

"

01 10 15 20 25 w 15 40 43 30 SS (A) n5 71

14

D1

02ý

a LA

Simulation time (gas)

(a) Data segments sent and ACKs received

<Z

SimulWon ume (WCs)

(b) Smoothed RTT and cwnd evolution

Figure 3.4. Goodput and RTT estimate of TCP Reno over DSR during a route break

Subsequently, at link breakage time there is no need for node D to initiate route discovery to

eventually "salvage" buffered packets that had their route invalidated by the obsolete !) -+ E

link. Instead, node D makes use of the alternate route through F by replacing the old path

embedded in its packets' header with the new one. Node E also realises at 36.7 seconds that

the link to D has been severed, but shortly after (at 37.2 seconds) receives the rerouted packet

from node F and becomes aware of the new route (A -º B --+ C- I) -a i' -p E). This use

of route caching results in some savings; in Figure 3.4(a), the area surrounded by the dashed

box represents the time needed for the route to be re-established (approximately 2 seconds)

which is lower than the one for AODV in the previous section (approximately 3 seconds).

More importantly, the TCP agent does not experience subsequent RTOs; the route discovery

and salvaging operation is fast enough for TCP to exhibit only one backoff. The caching

of packets in the maintenance buffer during the route breakage as well as their subsequent

3.4. TCP BEHAVIOUR OVER OLSR S4

forwarding also helps avoid consecutive RTOs. The effect on TCP's SRTT estimator as well

as the average cwnd size is shown in Figure 3.4(b). As compared to AODV, the plateau in

the SRTT graph (denoted by the black dashed box) shortly after the 35 seconds mark is not as

noticeable, since TCP inactivity due to RTO backoffs does not last as long. Note that although

in this case the use of cached routes is beneficial, the utilisation of a stale route would have

had the opposite effect; the routing agent would send the packet along a non-existent path and

would have to wait for a period of time before realising that the path was invalid.

During the 35-39 seconds time frame, the RERR response which was originally produced

at approx. 36 seconds by node E (after the route breakage) is propagated toward node A and

causes the intermediate nodes to place packets making use of the invalidated D -º E link

in their respective maintenance buffers. When node D makes use of the alternate route (via

node F), node C, which has already propagated the RERR on its way to the source, overhears

the transmission and learns about the new route. When node A receives the RERR packet,

it re-initiates the route discovery process and receives a gratuitous reply from node C. Then,

subsequent packets launched from node A contain the new route and the route restoration is

complete, as shown in Figure 3.3(c).

To sum up, the particular point of interest in this experiment is the avoidance of consecutive

TCP RTOs due to route caching and eavesdropping. By gathering information on neighbouring

nodes and routes, a usable alternate path was quickly discovered in this scenario and TCP trans-

missions were promptly restored. Note also, that retransmissions were avoided since packets

were not dropped from the intermediate nodes but were forwarded through the alternate route

when it was discovered later on.

3.4 TCP behaviour over OLSR

This section contains a description of TCP behaviour over OLSR as exhibited over the same

scenario depicted in the previous two sections. All the simulation parameters are identical to

the ones used previously except for the setting of the routing agent which is, in this case, OLSR.

3.4. TCP BEHAVIOUR OVER OLSR 55

Table 3.3. OLSR parameters
Parameter Value Parameter Value

HELLO interval I sec TC interval 5 secs

Willingness to forward ALL Max. jitter 250ms

Hysteresis monitor OFF MPR coverage l

Neigh. hold time 6 secs Refresh interval 2 sec

The OLSR implementation used [481 is a complete RFC [281 compliant routing daemon which

interfaces with the ns-2 simulator. The particular parameters used in this scenario are depicted

in Table 3.3 and are the defaults set by the reference implementation 1491 and cited in the

RFC [281.

F
(710.]10)

MM. /b-bw1r n. -orw

7. T. o4 q C. " (7C7 0 100

Y

W. Odum by eam 0" .. -VM
. en. uK. Wk w. ltr w w+

.....................
........ EWfIw111 Nt 1 Neu0 ý0 0U&0 b00 0 bm-

A 0
"" '""ý

na0.0, MsWYy I .M 7Jrý n. y1Ný. +
C

O O O

"
Ito, lol "" Plo, i'º% 1010.10) 1010.10) (010.10)

"'4: -"""""-"-_" ""1 !. MOOT 0 Iw. MtMM NU'. " W 0<rwý..
Tra Melon RW1u0 250m 20om

wuuy raw nnowM nmr . wlr M.

nl, t.
(ý0

10 20 30 40 so 60 70

(a) Initial topology

(3) Made 0 Mta/rnb a TC '. uw. I. its MM1 nod. C which denotes
the Urofen lint and which MM« propagated F

A eO
(71o. lo)

O O 6--01
(10,10) (310.10) (410a0) (610.10) X (100.10)

m Me" 0 bonswilts HELLO Packets
Indicator that FM no IonW " nMgMar

(1) HELLO INNS are not uchbngod between
0 and ff- that m. w that the I" Is sort

11mo
(s. cl

0 10 20 30 40 50 60 70

(b) Route breakage

(1) 1M TC inwp. whnco&b m&As A NOW can (2) C W*Sbm rwnw nem"y uno the

now Mond picks. ancc men tewb E WM N tM MInuMt*c tw"
F

p(o. fo1

(10.10) (110.10) Nloao) (110.10) nlo. lo(

Tlm*
)0

10 20 30 40 so d0 70

(c) Final topology

Figure 3.5. Scenario depicting OLSR operations after a route break

As in the case of AODV and DSR, OLSR can optionally utilise link layer feedback to facil-

itate quick realisation of a broken link. Such feedback is disabled in this simulation run so as

to prevent false positives from invalidating existing, valid routes and, thus, allow examination

3.4. TCP BEHAVIOUR OVER OLSR 56

Table 3.4. MPR set chosen by each node
Node MPR Set Node MPR Set Node MPR Set

A B B C C 13, D

D C E D F D

of TCP behaviour in isolation from such effects.

Initially, and during the first few seconds of the setup, HELLO packets are broadcast from

each node, which declare their immediate neighbours. After the first exchange of these mes-

sages, subsequent broadcasts also include 2-hop neighbour information. Eventually, after a

short time interval, each node maintains enough information to declare a set of Multipoint Re-

lays (MPRs) which cover its 2-hop neighbours and which is advertised using a network wide

distribution of Topology Control (TC) packets. In this case, the MPR set of almost every node

contains a single neighbour, as only one is necessary to reach all nodes within a two-hop ra-

dius. A notable exception is node C which has two nodes in its MPR set, namely B and D.

The MPR sets are shown in Table 3.4 and the overall process is depicted in Figure 3.5(a).

Eventually, and at the 35 seconds mark, a link failure occurs between nodes D and E,

due to E's movement away from its neighbour. The routing protocol's subsequent reaction

is shown in Figure 3.5(b). Essentially, the absence of HELLO packets is noted in the given

refresh interval (2 seconds) so the route D -º E is assessed to be invalid, by the routing

agents of both D and E. Therefore, packets utilising the route in D and E are dropped which

leads to consecutive RTOs on the TCP agent, as the route is not restored quickly enough for

incoming segments to activate the duplicate ACK heuristic. In particular, TCP experiences

the first RTO at 35.6 seconds and then consecutive ones at 36.9,39.5 and 44 seconds. The

DATA-ACK exchange during that time period is shown in Figure 3.6(a), where the isolated

DATA transmissions shown correspond to segment launches triggered by RTOs. Specifically,

at the 35.6,36.9 and 39.5 time marks, the DATA segments transmitted are not followed by an

ACK response as they are lost upon transmission from node D to E. These particular losses

3.4. TCP BEHAVIOUR OVER OLSR 57

are link layer losses; delivery is attempted but there is no lower level MAC-AC'K response

from the destination node E, as it has moved outside D's transmission radius. The unACKed

DATA segment launched at about 44 seconds is discarded by node (' which has yet to discover

through TC exchanges the new route through node F.

The long TCP inactivity period, as denoted by the dashed box between 35-55 seconds

in Figure 3.6(a), corresponds to TCP inactivity noted immediately after the route failure and

occurs for three reasons. Firstly, failed transmissions are realised with the granularity of the

refresh interval (2 seconds, or the equivalent of two HELLO packet launch cycles), which leads

to consecutive RTO's as segments are lost in failed MAC transmissions. Secondly, the route

restoration period which happens with the dissemination of TC packets has by default a coarse

granularity so that several TC transmissions may be "bundled" together to avoid excessive

overhead as discussed below. Thirdly, the lack of packet caching compounds the RTO issue,

as ongoing TCP transmissions end up in segment drops and cause further timeouts until a new

route is found. Even upon the route's restoration, TCP's RTO timer has to expire before a new

"probing" segment is launched, as TCP is unaware that previous segment losses were due to

link failure and attributes them to congestion.

40

30

20

)0

o ACK
DATA ýeýmaM

eoe

{

0

0

34 36 38 40 42 44 46 48 50 32 54 56 59 60
Simulation time (secs)

(a) Data segments sent and ACKs received

AvS. cwod
6-

S RTT (I I

L

A

2""
01

1 il

00 0
20

1

40 (A)

Y

SimuiaOon firm (. e s)

(b) Smoothed RTT und cwnd evolution

Figure 3.6. Goodput and RTT estimate of TCP Reno over OLSR during a route break

Figure 3.6(b) denotes the smoothed RTT and ewnd evolution experienced by the TCP

3.4. TCP BEHAVIOUR OVER OLSR 58

agent. The time frame of inactivity due to the route failure is denoted by the dashed box

(35-55 seconds). The plateaus in the cwnd and RTT diagrams are noticeably larger than the

ones for AODV and DSR in the previous sections, as the transfer of data stalls for a relatively

longer period of time.

This long period of inactivity is due to the large TC update time interval (set to a default

5 seconds) which in turns means that information on invalid links takes several seconds to

propagate. The OLSR RFC [28] makes provisions for an immediate TC packet launch mech-

anism which allows generation of TC packets as soon as the node's neighbourhood changes.

However, since these transmissions are broadcast network-wide, there are significant overhead

savings if they are "bundled" together, which makes delaying them desirable. The trade-off to

consider is thus overhead against longer notification delay.

To illustrate the above point more aptly we have conducted the same experiment with re-

duced TC transmission interval and immediate notifications (i. e. no "bundling" of TC packets)

in the same scenario. Figure 3.7 shows the total number of TCP segments acknowledged when

the TC update interval changes from 5 to 3 seconds and when immediate TC updates are used.

When there is a decrease in the update interval or immediate TC updates are allowed, consec-

utive RTO's are avoided and total time spent in RTO backoff is reduced as shown in Table 3.5.

Note that the default update period of 5 seconds severely under-performs in this case with no-

ticeably longer periods of TCP inactivity (as denoted by the flat line segments of the graph in

Figure 3.7).

Since the reference implementation [481 does not incorporate the caching of packets, unlike

DSR which features a maintenance buffer, there is no forwarding of "salvaged" packets which

could help avoid consecutive RTOs. Finally, the two other plateaus in Figure 3.6(b) merit some

explanation. The first one at 0-6 seconds is due to the startup period needed for the HELLO

packets and TC exchanges to take place and setup the route. OLSR needs this warm-up period

(unlike DSR and AODV which immediately start a short route discovery phase), and TCP

activity does not occur until a valid path is discovered. The latter plateau at 26-33 seconds

is due to dropped HELLO packets due to mis-coordination of the MAC protocol [107]. This

3.5. PERFORMANCE EVALUATION OF 'I'CP VARIANTS 59

ISO

3 I00

SO

TI1 10

1 secs TC interval, bundle updates

.S sccs TC interval, bundle updates
t4

'7

i ccv TC interval, immediate update, 00
-"5-, TC interval, un-thole update, 4/

/rte

111
: 11 40 60 80 IINI

OLSR parameter Time spent
in RIo (secs)

5 secs IC interval 55.57
bundle updates

5 sees TC interval 41.07
immediate updates

3 secs TC interval 41.26
bundle updates

3 secs TIC interval 40.38
SimulaaiunTime(uca) I immediate updates

Figure 3.7. Total TCP segments acknowl-Table 3.5. Time spent in RTO for different TC
edged over simulation time intervals

phenomenon has been observed in the other two routing agents but the slower route restoration

and lack of packet caching of OLSR causes TCP to under-utilise the route for longer in such

occurrences.

Eventually, after the TCP RTO timer expires, transmission is resumed. At simulation's end

the scenario topology has settled in the form presented in Figure 3.5(c).

To sum up, the effects of consecutive RTOs are more pronounced in the case of OLSR

since, by default, it features a conservative route restoration mechanism, which is tuned for

dense networks servicing multiple connections. Shortening the refresh interval (by tuning the

TC parameter) in this case can improve performance significantly, although there is a trade-off

of extra overhead against improved throughput performance to consider.

3.5 Performance evaluation of TCP variants

This section contains the results of our evaluation of Reno, NewReno, SACK and Vegas in

dynamic MANET topologies. First, the simulation parameters are presented and discussed in

depth. Then, the simulation results on the performance of these TCP variants over different

routing protocols are listed and examined in turn.

3.5. PERFORMANCE EVALUATION OF TCP VARIANTS 60

3.5.1 Simulation setup

The general evaluation of the various TCP agents in this section is conducted with the ns-2

simulator [37]. Although the simulation setup is verbosely described below, a complete list

of the routing agents configuration as well as an outline of TCP parameters are included in

Appendix A.

Simulation area and mobility model: Simulations take place over two types of flat areas; a

flat square arena with dimensions set to 1000x 1000m and a flat strip area set to 1500x300m. In

both cases, 50 nodes are placed randomly in the arena. This setup mirrors previously reported

research [19,26,34,49,104]. The mobility model used is the random waypoint model [75] with

parameters set to reflect mobility ranging from walking (approximately 2 m/s) to vehicular

speeds (approximately 20 m/s). The simulation parameters are portrayed in Table 3.6. Note

that an increase in the setting of maximum speed in the random waypoint mobility model

is not necessarily indicative of a significant increase in the mean node speed as previously

believed [49]. Research by J. Yoon et al. in [110] contains a thorough discussion of the issue

and proposes a solution which is applied to the topologies used in these simulations. It is

worth noting that previous TCP evaluations over MANETs [26,34,49] have not considered

this limitation of the random waypoint model. For clarity, in these simulations, the mean node

speed for the topologies used are shown in Table 3.6 inside parenthesis next to the maximum

node speed parameter.

TCP transfer setup and metric used: For each simulation run a TCP connection is set be-

tween two randomly selected nodes to facilitate an FTP transfer session for the duration of the

simulation. Hence, there is a single source of TCP regulated traffic in the network. The TCP

segment size and other parameters are set as in Table 3.6. The performance metric is goodput

which is defined as the number of packets successfully transmitted by the sender for which

an ACK has been received. Retransmissions (spurious or otherwise) do not contribute to the

metric; each segment's contribution to the advancement of TCP's "sliding window" is only

3.5. PERFORMANCE EVALUATION OF TCP VARIANTS 61

measured once. For each pause time and maximum node speed combination the average good-

put of 50 topologies is calculated and a 90% confidence interval for each is produced (shown

as standard error bars depicting standard deviation in the relevant figures). The different TCP

variants are analysed on the same topologies, and the same source/destination pairs are chosen

per trial so as to ensure fairness and relevance of the results. A paired t-test is performed on

the observations to determine if there are statistically significant differences in the performance

of the TCP agents. The t-test used in this case is Welch's t-test [44,101], which assumes that

the means (but not the variances) of the normally distributed populations are equal; however,

for the topologies used in this study, the results and subsequent conclusions also hold if the

assumption of normality is dropped and the non-parametric Wilcoxon signed-rank test is used.

As in previous studies [19,34,49], the overall simulation (and connection) time is set to

900 seconds.

The signal propagation model used is the Two-Ray Ground model where signals propagate

from sender to receiver in an open environment and over two possible paths; one by a direct

ray and one that is reflected from the ground [102]. Essentially, this model is representative of

environments where a strong line of sight is present but ground reflections also influence path

loss. This is the standard propagation model used in TCP evaluation over MANETs [43,65,106,

107], although there are several others such as Shadowing and Ricean/Rayleigh fading [62,99].

For the sake of clarity, a few of the simulation parameters merit some discussion. The

simulation time, set to 15 mins, is chosen in order to examine TCP performance over bulk

file transfers also reflected by the choice of the traffic source (FTP with unlimited backlog).

It is an open research question whether TCP variants in MANETs perform differently under

other types of traffic load. However, the focus of this dissertation is the behaviour of different

variants when the full spectrum of their congestion avoidance mechanisms is utilised over

substantial time periods. Transferring small files such as web pages may only activate the slow

start mechanism which is identical in all the examined variants apart from Vegas. Further,

note that the simulation time and traffic patterns chosen are in harmony with previous related

work [25,34,49,87].

3.5. PERFORMANCE EVALUATION OF TCP VARIANTS 62

Table 3.6. Simulation parameters

Parameter Value

Pause Times 0 secs (continuous mobility)

Max. Node Speed 2,5,10,15,20 m/s

Mean Node Speed 2(1.44), 5(3.34), 10(6.62) m/sec
15(9.10), 20(13.78) m/sec

Simulation Time 900 secs

TCP parameter Value

Min. RTO 200ms

Max. RTO 60secs (RFC 2988)

RTO Timer
Granularity

l Oms
(Linux kernel 2.4)

Maximum burst
per ACK received

3 segments

Delayed ACKs disabled

Segment size 1460 bytes

The choice of granularity of the RTO timer as well as the minimum and maximum RTO

settings are also noteworthy since previous work has shown the detrimental effect of the RTO's

exponential backoff mechanism in MANETs when consecutive losses occur due to spatial

contention [43,107]. A proposed solution offered in [34] has been to freeze the RTO timer after

3 consecutive backoffs, but such an action raises concerns of congestion if widely adopted.

The RTO parameters chosen for the simulation in this chapter are representative of modern

operating systems and conform with the relevant RFC [89]. Further, the choice of setting

a maximum burst parameter, as shown in Table 3.6 defines the maximum number of packet

launches an ACK may trigger upon reception. This helps reduce "burstiness" in TCP behaviour

across the different variants, as has been discussed in detail in [36] and widely deployed in

practice [4].

Finally, the choice of the particular TCP agents under examination may be justified as

follows; TCP Reno is the earliest TCP variant which implements the fast retransmit/fast re-

covery mechanism adopted by all its modern derivatives and, as such, is used as the baseline

3.5. PERFORMANCE EVALUATION OF TCP VARIANTS 63

b54»)

&XXX)

g 55Mr1

I V

45000

751X))

7(NNN)

hVNNI

MMMMI

ii(M

10000

i
F-" VrwRmý

"" Nena

" SACK

i

yý

U25 10 15 2l) O24 IU Is 21)
Max, node speed (Wh) Mu mxk 4mm lm/%)

(a) strip area - 1500x300m (b) square area -IO X)x I (XXJr

Figure 3.8. Goodput against maximum node speed for different TCP agents over AODV

for comparison. TCP NewReno and SACK are more modern Reno derivatives and are widely

deployed, with the latter requiring both receiver and sender side modifications of the standard

Reno mechanisms. TCP Vegas has been shown to have desirable properties for MANETS 11081

but prior to this work has not been evaluated on dynamic topologies. Finally, note that recent

research into the types of TCP agents deployed on the Internet 141 confirms the TCP parameters

used in this study as widely deployed defaults in operating systems and, thus, representative of

a typical client.

3.5.2 Performance results and discussion

The goodput results for the TCP agents under examination over the AODV, DSR and OLSR

protocols, namely Reno, NewReno, SACK and Vegas, are depicted in corresponding graphs as

a function of goodput over maximum node speed.

TCP performance over AODV

The graph in Figure 3.8(a) indicates the superior goodput of TCP Vegas as evident against the

reactive variants in strip (1500x300m) topologies. This performance discrepancy is significant

and ranges from 5-9% against TCP Reno, while it narrows against NewReno and SACK (to

2-5% and 2-6% respectively). However, the difference in goodput between Vegas and the

3.5. PERFORMANCE EVALUATION OF TCP VARIANTS 64

other TCP agents remains significant particularly at low mobility conditions, i. e. for maximum

speeds of 2 and 5m/sec, where it ranges between 5-6%. Note, however, that the performance

gap could potentially diminish if the TCP agent is adversely affected by other factors, such as

spatial contention caused by other traffic in the network. Nonetheless, the results presented

here confirm the competent performance of Vegas under various mobility conditions when

such interaction is not considered. This expands on previous work on static topologies [108]

and reveals that Vegas' performance merits are equivalent or more pronounced (in the case of

low mobility) to NewReno and SACK's when single connections are considered. It is further

noteworthy that TCP Reno is a significantly worse performer compared to all other variants;

an observation which holds true under all mobility conditions. NewReno and SACK perform

comparably in terms of goodput as their respective difference in performance is at most N 1%

(at 5m/s). Finally, it can be observed that for each TCP variant as link breakages become

more frequent due to increased mobility, the achieved goodput is reduced. This is denoted

by the declining trend of the graph in Figure 3.8(a) as the mean node speed increases. This

observation corroborates previously reported research [34,49], and is also evident for the other

routing protocols, i. e. DSR and OLSR, as will be revealed below.

The goodput results for the square topologies are shown in Figure 3.8(b). The performance

merits of TCP Vegas are still pronounced at lower mobility conditions (max. speeds of 2 and

5m/sec), as it improves r 5% upon NewReno/SACK and N 10% over TCP Reno. This differ-

ence becomes smaller at lOm/sec (to approx. Pj 3%) and diminishes at very high mobility (15

and 20m/s) where there is no significant difference between the top three variants (SACK, Ve-

gas and NewReno). Consistently, TCP Reno under performs with respect to the other variants

in the range of 5-10%.

TCP performance over DSR

The simulation results for DSR, closely mirror those of AODV in the previous sub-section.
In Figure 3.9(a) and 3.9(b) the goodput results for Reno, NewReno, SACK and Vegas are

portrayed for simulation runs on a strip area. Vegas exhibits a substantial 7-12% goodput

3.5. PERFORMANCE EVALUATION OF TCP VARIANTS 65

I

e

I

101MN1

exwwi

3

NMMMI

5LMM1

(a) strip area - 1500x300m (b) square area -I (XX)x I (XX)m

Figure 3.9. Goodput against maximum node speed for different TCP agents over DSR

improvement over TCP Reno and - 5% over SACK/NewReno across various mobility con-

ditions. Conversely, TCP SACK and NewReno have statistically insignificant difference in

performance, for all node speeds, whilst Reno achieves consistently the worst goodput of all

variants; a disadvantage that ranges between 5 and 12% compared to the rest.

In square topologies, the goodput trend of the TCP variants ranges as shown in Fig-

ure 3.9(b). TCP Vegas maintains a 6-10% lead over Reno, 2-5% over NewReno and 2-6%

over SACK. SACK and NewReno are again comparable to within ti 1% worth of performance

discrepancy. Reno is significantly the worse performer incurring a 4-10% performance penalty

over the other variants at various mobility conditions.

TCP performance over OLSR

Figure 3.10(a) shows the goodput performance of the TCP variants over OLSR in strip topolo-

gies. TCP Vegas, as in the case of AODV and DSR, maintains a performance advantage over

Reno at a 7-9% margin and over SACK/NewReno at 4-6% for low to medium mobility condi-

tions (2,5 and 10 m/sec). SACK and NewReno, perform similarly, within a- 1`% difference

margin of each other. TCP Reno is the worst performer, exhibiting a disadvantage of 3-9%

throughout different node speeds over the other variants. A point worthy of note in this case

is the closing of the performance gap between Vegas and the rest of the variants under high

3.5. PERFORMANCE EVALUATION OF TCP VARIAN'T'S 66

0
9

4a
ö V

690) F" N-Raw
"" Rcrw,

VeS

"-. SACK

60000

Sxxý ".
t

,. ý1

450X

025 10 15 2U

Max. node speed (nJt)

(a) strip area - 1500x300m

7i(XW)

11XX$)

I
6i(MM)

G

SS[XM)

02

Figure 3.10. Goodput against maximum node speed for different TCP agents over OLSR

mobility (15m/s) which is - 2%.

Figure 3.10(b) outlines the goodput results in square topologies. TCP Vegas exhibits

again the highest goodput, with a 7-10% goodput improvement over Reno and 4-8% over

SACK/NewReno. NewReno and SACK do not exhibit differences in performance of over

1%. Finally, Reno achieves the lowest goodput by under-performing 4-10% compared to

the other variants and for all mobility conditions.

The results, as presented above, reveal a trend across routing protocols where TCP Vegas

has superior goodput over the reactive variants especially under low mobility conditions. Pre-

vious research 143,1071 has suggested that TCP agents suffer from throughput instability in ad

hoc networks as packet loss are caused by the MAC mechanism's inability to properly utilise

the shared medium. During the experiments above it was noted that all TCP agents suffered

from frequent retransmission timeouts (RTOs), even at low mobility speeds. The next section

discusses the impact of RTO's on each variants' performance and provides some insight on the

performance merits of TCP Vegas.

? 111 IS 211
Mu mrk %peaf (W%)

(b) square area -I (XX)x I (XX)rn

3.6. DISCUSSION ON TCP MECHANISMS 67

3.6 Discussion on TCP mechanisms

This segment aims to describe in detail the extensive retransmission timeout (RTO) phenomenon

which decreases overall TCP goodput for all the variants examined in the section above. Sub-

sequent conclusions are drawn after considering simulation traces in the scenario of a static

topology.

To facilitate discussion, a setup of a string topology of 5 hops is assumed as a special case

of a long path. An FTP transfer is initiated between the end points at the start of the simulation

and ceases at the 140 seconds mark. The routing agent used is AODV and the rest of the

simulation parameters are as in Section 3.2. Even though the following discussion is limited

to AODV, the principal observations are applicable to other routing protocols featuring similar

packet caching or "salvaging" paradigms.

Figure 3.11(a) shows the 100-moving (or running) average of the number of segments in

flight during the duration of the FTP session. Note that the first and last 50 observations are

not averaged, since an n-moving average of a sequence of N elements contains N -- n+1

elements; i. e. in this case the initial and trailing 50 observations are not smoothed. Further,

note that the graph in Figure 3.11(a) indicates the actual number of TCP data segments in

flight as opposed to the cwnd value at each agent (i. e. how many segments the agent estimates

as being in transit [5]). As depicted, the number of segments in flight maintained by Vegas

are noticeably and significantly fewer than those of the other agents, i. e. Reno, NewReno and

SACK.

Figure 3.11(b) displays the discrepancy in the cwnd estimate and the actual segments in

flight of the NewReno and Vegas agents. It is, hence, apparent that the NewReno agent mostly

underestimates the number of segments in flight as opposed to the Vegas agent which mostly

overestimates them. The trend is similar for Reno and SACK, both of which mostly overes-

timate the segments in flight, but which are not portrayed in this figure for clarity. This over-

estimation occurs because the routing protocol "salvages" packets when there is indication of

route failure (in the case of AODV, the local repair mechanism has to be enabled in order for

3.6. DISCUSSION ON TCP MECHANISMS 68

"salvaging" to occur). In such an instance, Reno-based TCP agents, which are more aggressive

in their transmission rate than Vegas 11081, often retransmit segments that are already in flight,

after the RTO timer expires. This, in turn causes, more spatial contention, which results in an

increase in the number of RTOs, leading to lower >ncidniit

20

z

ýX
ý

0

Time (secs)

(a) Moving average of DATA segments in

flight maintained by each TCP agent

IS

m y
II)

0

S

71" (-o

(b) Estimated (rwn(l) vs actual segments in
flight for NewReno and Vegas

Figure 3.11. Simulation traces of a single TCP connection in a 5-hop string topology

To validate the above observation we consider the number of RTOs experienced by each

variant in this scenario, as well as the time spent in inactivity (RTO backoff period) as shown

in Table 3.7. On the same table a measurement of the goodput achieved by each variant is

shown as a total number of segments delivered as well as the percentage of goodput improve-

ment of each variant over the baseline performance of TCP Reno. It can be deduced that as in

the case of the general topology scenarios examined in Section 3.5.2, the Reno agent spends

substantially more time in RTO than Vegas, NewReno or SACK. Moreover, even though TCP

NewReno maintains more segments in the pipe than Reno (as shown in Figure 3.6), its ability

to recover from multiple losses within the same congestion window allows it to avoid multi-

ple or consecutive RTOs. Hence, even though NewReno creates greater spatial contention, it

nonetheless experiences less inactivity time, than Reno and even SACK.

TCP Vegas, overall, exhibits the highest goodput as it experiences only 7 RTOs and incurs

the least idle time of all variants. TCP SACK which makes use of more extensive feedback

than the other variants, is still outperformed by Vegas and performs on par with NewReno.

3.6. DISCUSSION ON TCP MECHANISMS 69

Table 3.7. RTO inactivity and goodput for TCP agents

TCP
Agent

Time spent
in RTO

Number of
RTOs

Total Goodput
(in pkts)

Perc. Increase
comp. to Reno

Reno 29.85 25 2253 N/A

NewReno 11.33 9 2484 10%

SACK 18.4 19 2431 8%

Vegas 10.3 7 3290 22%

Notably, the explicit knowledge of TCP SACK of which "gaps" in the destination's receiving

buffer are to be filled does not result in noticeable improvement compared to NewReno. Closer

inspection reveals that even though the SACK advice is utilised 138 times in this scenario, the

average number of segments in flight and hence "spatial" contention are not significantly af-

fected and are not substantially different from NewReno as shown in Figure 3.11(a). However,

even though SACK experiences far more RTOs than NewReno (19 vs 9) and spends more time

being idle (18 vs 11 seconds), it does not perform substantially worse; overall its retransmis-

sion strategy is not noticeably better or worse than that of NewReno. It is worth considering

that the duplicate ACK responses of a SACK TCP receiver, are larger in size than those of

the other variants due to the to the extra space required to accommodate the SACK-block in-

formation. As ACK segments compete with DATA segments for transmission time, the larger

ACK size leads to greater spatial contention, however, this does not lead to significantly worse

performance than NewReno.

Finally, consider that in the case examined here the minimum RTO is set to 200ms; actual

implementations may have this parameter set to 1 sec, adhering to the original RFC [54], which

would aggravate the impact of RTOs on goodput and make the performance gap between Vegas

and the reactive variants even more evident.

To conclude, TCP Vegas has been explicitly shown to experience little inactivity time com-

pared to the other TCP variants in this scenario which along with the observations made in

Section 3.5.2, lead to this being identified as a source of its competent goodput performance.

3.7. CONCLUSIONS 70

NewReno and SACK perform equivalently to each other, even though SACK expends more

time being inactive. All variants are substantially better that Reno which is penalised severely

from sending inactivity caused by RTOs. These effects can largely account for the performance

differences presented in Section 3.5.2.

3.7 Conclusions

This chapter has examined the performance of a proactive (Vegas) and three reactive (Reno,

NewReno, SACK) TCP variants over dynamic topologies in MANETs under three popular

routing protocols, namely AODV, DSR and OLSR. The discussion has included detailed sim-

ulation traces of a route breakage scenario where it has been shown that the adverse effects

of RTO back-offs may be mitigated through caching by the routing protocols. In particular,

it has been shown that the AODV caching of packets at the source during the route discovery

phase helps avoid multiple RTO backoffs when a route is being rebuilt. In the case of DSR, the

caching of packets at intermediate nodes has been demonstrated to be beneficial if an alternate

route is quickly established by the routing cache mechanism of an intermediate node after the

route break. OLSR has been shown to cause significant inactivity periods for the TCP agent as

its route update mechanism is, by default oriented for use over dense ad hoc networks charac-

terised by multiple simultaneous flows. A solution was offered to this problem by reducing the

time interval between route updates or disabling the "bundling" feature for such updates.

TCP Reno, NewReno, Vegas and SACK have been evaluated in dynamic topologies over

square and strip simulation areas. TCP Vegas has been shown to outperform Reno in terms of

goodput by margins of 5-12% in low, medium and high mobility conditions under the AODV,

DSR and OLSR routing protocols. Vegas also exhibits a smaller, but still noticeable perfor-

mance advantage over TCP NewReno and SACK in the range of 6% in low mobility conditions

and approximately 2-4% performance advantage in medium and high mobility environments.

Moreover, all TCP agents have been shown to suffer from multiple RTO backoffs, but TCP

3.7. CONCLUSIONS 71

Vegas and NewReno have been noted to be affected the least in a string topology of moder-

ate length. In this particular case, TCP Vegas exhibited the fewest RTO backoffs, whilst the

better segment loss handling ability of NewReno was shown to be the decisive factor of its

goodput superiority against Reno. Specifically, although NewReno maintained more segments

in-flight than Reno, it nonetheless experienced fewer RTOs because of its ability to recover

from multiple losses within a single window of data. TCP SACK was shown to deliver com-

parable performance to NewReno, even though it experienced more idle time and more RTOs;

the equivalence in performance merit was attributed to the former's better packet loss handling

mechanism through the use of the extended SACK information.

As the competent goodput performance of TCP Vegas in the experiments was driven by

its conservative congestion avoidance mechanism which maintains fewer packets along the

path than the reactive TCP variants, an enquiry may be made into whether the mechanism can

be adapted into the reactive variants to yield similar benefits. Such an enquiry is of significant

interest as reactive (Reno-based) TCP variants are less computationally intensive than proactive

ones (such as Vegas) and more widely deployed. To this end, the next chapter proposes a Vegas-

inspired mechanism applied to Reno-based variants which follows a more conservative policy

of packet injection into the network. The implications of such a mechanism include a reduction

of packet loss due to hidden terminals and an increase in TCP goodput. The proposed changes

are further thoroughly discussed with respect to ease of deployment and are evaluated in a

variety of mobility conditions.

Chapter 4

TCP and spatial reuse in MANETS

4.1 Introduction

In MANETs, access to the shared medium is coordinated with a distributed MAC mecha-

nism [52], which includes provisions to avoid the hidden terminal effect. This occurs when

two stations do not manage to coordinate their transmissions such that they overlap time-wise

to some degree. The result is a collision as the superposition of the signals becomes mean-

ingless and transmission bandwidth is wasted. The IEEE 802.11 protocol offsets this issue

by using a virtual carrier sense indicator, which is set by short request to send/clear to send

(RTS/CTS) frame exchange between communicating nodes [52]. However, these provisions

are not always effective in practice and could become counterproductive [1031. In particular,

the discrepancy between a node's transmission (range within which other nodes can properly

decode a transmitted signal) and interference ranges (range within which the signal cannot

properly be decoded but may interfere with other signals) produces hidden terminals even if

the RTS/CTS mechanism is in use [103]. As noted in [107], this phenomenon can decrease

TCP throughput severely for the sender even when there is only one connection present in the

network and can further interfere with the operation of the underlying routing protocol [106].

When segments are dropped because of such effects and not buffer overflow, as is the case in

wired networks, the loss is attributed to spatial contention [26,43,103,107].

72

4.1. INTRODUCTION 73

Earlier research by Xu et al. [106,107] has demonstrated that when TCP commands back-

to-back transmission of segments across a long enough path, hidden terminal effects become

evident as segments are distributed along the path in a pipelined fashion. The authors in [107]

have suggested that the degradation in TCP throughput caused by the spatial contention ag-

gravated by these effects can be dealt with by limiting the TCP congestion window (cwnd)

to approximately four segments in their considered scenarios. Follow up work by Kanth et

al. [65] has confirmed these findings and suggested altering the 802.11 MAC backoff mecha-

nism to give competing nodes a greater window of opportunity to gain access to the medium.

Fu et al. [43] have also studied the phenomenon and produced an approximate estimate of

the optimal TCP cwnd for string, cross and mesh topologies. The same study has suggested

two link layer schemes to improve performance. The results in [43] and [26] have suggested

that the optimal use of the wireless medium is dependent on the ability of nodes to transmit

simultaneously as long as they are outside each other's interference range. Overall, as nodal

coordination is not particularly effective in 802.11 multihop networks, the above cited work

have demonstrated how the transport agent may be adjusted in such a way as to "coerce" the

MAC protocol into more efficient operation.

The previous chapter has revealed the relative merits of TCP Vegas over Reno-based vari-

ants due to its conservative cwnd evolution, which maintains fewer segments-in-flight and

avoids the detrimental (throughtput-wise) effect of consecutive RTOs. Motivated by this ob-

servation, this chapter proposes reducing the sending rate of Reno-derived TCP variants during

the slow start and congestion avoidance phases as an effective approach for dealing with the

degrading effect of hidden terminals due to interference in MANETs. Such an approach mim-

ics the conservative cwnd evolution of TCP Vegas, by adjusting a few parameters in standard

Reno-based agents, and leads to higher goodput performance especially along lengthy paths, as

will be shown below. The main motivation in choosing to improve Reno-based variants rather

than explore Vegas further, is the popularity of the former [4] as well as its lower computational

requirements [16] which, in turn, imply lower power demands on the possibly limited power

reserves of the MANET nodes.

4.1. INTRODUCTION 74

The contributions of this chapter are three-fold; first, an introduction is offered on the

interaction of TCP agents and the routing protocol in the presence of hidden terminals, which

provides insight and summarises conclusions of previous research on the subject [26,43,65,

107,108]. Then, a study on emulating Vegas behaviour in standard Reno-based TCP variants

is conducted, by adjusting TCP's behaviour during the slow start and congestion avoidance

phases. This results in determining an effective combination of parameters leading to the

Slow Congestion Avoidance (SCA) TCP variant. The new TCP agent is then compared to an

existing solution to mitigate the effects of hidden terminals, proposed in [26], which suggests

limiting the maximum cwnd value. This comparison is performed by applying both techniques

in scenarios featuring dynamic mobility patterns and then interpreting the results. Finally,

considerations on applying the technique to multiple TCP flows and utilising routing layer

feedback are addressed.

The rest of this chapter is organised as follows. Section 4.2 presents an overview of TCP

behaviour with respect to the hidden terminal effect and its contribution to spatial contention.

Section 4.3 presents an enquiry into ways of introducing a more conservative transmission rate

increase in Reno-based TCP variants during the slow start and congestion avoidance phases.

This investigation leads to an effective combination of "slowdown" mechanisms which is

termed SCA TCP and used in the subsequent performance evaluation. Section 4.4 includes

the results of a performance evaluation of the newly introduced conservative TCP variant in

dynamic topologies and further entails a comparison against a popular existing solution to al-

leviating spatial contention, namely the adaptive Congestion Window Limit (CWL) method.

Then, Section 4.5 discusses the application of SCA to multiple TCP flows and includes con-

siderations on incorporating feedback from the routing protocol to adjust the SCA slowdown

parameter. Finally, Section 4.6 summarises the results of this chapter.

4.2. TCP AND SPATIAL REUSE 75

4.2 TCP and spatial reuse

This section includes a brief description on the interaction of TCP agents with spurious seg-

ment losses as caused by spatial contention due to hidden terminals. Subsequent discussion

is distilled through an example on a string topology as commonly done in several previous

research works [26,43,103,107].

For the purpose of the present discussion, consider five nodes arranged in a static string

topology fitted with identical wireless devices and with the distance between any two suc-

cessive nodes set to 200m, as shown in Figure 4.1. Each node can communicate with any

neighbours inside its communication (transmission) range as indicated by the dotted lines.

Moreover, each node exhibits a certain interference range which is the distance that its signal

can be detected as a transmission but cannot be decoded properly [64]. The interference range

depends on the sensitivity of the receiver as well as the wave signal propagation model used. In

this example, the Two-Ray Ground signal propagation model is considered [102]. In this case,

the interference range for each transmitter extends to 550m and is indicated in Figure 4.1 by

a dashed line for node D. The transmission range of each wireless device is 250m and is indi-

cated by dotted lines in the same figure. These device characteristics model the standard Lucent

WaveLan H wireless transmitters [64] as used in previous research studies [26,43,65,106,107].

For the string topology, there exists only one path from any node to any destination, which

includes all intermediate nodes. Hence, if node A were to communicate with node E, the

transmission path A --- E would include every node in between (namely, nodes B, C and D).

As segments travel between nodes, each segment transmission interferes with the transmissions

by other nodes inside a 2-hop radius around the transmitter. The RTS/CTS exchange, as defined

in the 802.11 standard [52], can only inform of impending transmission the nodes that are

inside a 1-hop radius around the communicating parties, i. e. can only provide information to

nodes inside the transmission range of the sender and the receiver. Hence, nodes outside the

transmission range but inside the interference range of the sender or the receiver do not receive

any information about pending transmissions which can cause them to transmit at the same time

4.2. TCP AND SPATIAL REUSE 76

and cause a collision. Furthermore, nodes inside the interference range of transmitters cannot

correctly decode segments that originate from other senders (who are unaware that another

conversation is taking place and their signal is not being received by the intended destination).

Consider the case of an A -+ E transmission route depicted in Figure 4.1. As segments

travel along the path, interference causes several segment drops, as shown in previous work

[65,107]. For instance, if node D was transmitting to node E, node A would be unaware of

the transmission and would attempt to transmit to B, even though B, which would be inside

node D's interference range, could not obtain the transmitted frame. This is a typical case

of the hidden terminal effect where node D is the hidden terminal with respect to A. Even if

the frame was successfully received, it would be doubtful that B would be able to transmit a

MAC layer ACK back to node A because it would detect D's communication (but be unable to

decode it properly) and would defer transmission. As node D is part of the A -º E path, it is

likely that it would subsequently attempt to forward several segments along the path to E, and

thus compound the problem. The issue of interference under discussion in this case, would be

the result of a single end-to-end conversation (A -º E) and in the case of the TCP protocol

would be further aggravated by the delivery of ACKs from the destination to the source which

also contend for access to the shared medium [107].

Note that it is not necessary for the interference range to be more than twice the size of the

transmission range (as in the previous example) in order for interference effects to appear. It

is enough, when a transmitting source/destination pairing is considered, for the destination to

be inside the interference range of another node which is outside the destination's transmission

range (so it cannot decode the CTS frame transmitted by the destination to the source). Possible

transmissions from that "interfering" node result in signal conflicts at the destination which

cannot properly decode segments sent from the source [63].

Fu et al. [43] have noted that segment collisions due to interference can be avoided if

transmissions are coordinated in the path string of nodes in such a way so that the transmitting

nodes are always outside each other's interference range. Successful transmission coordination

is referred to as spatial reuse in the same work and it is desirable to maximise this property (i. e.

4.2. TCP AND SPATIAL REUSE 77

Interference range (550m)

transmission range (250m) o- "' o
oooý

". -. 0 : 5.06 j, "I ý!. "}ß% ""

400 . ý"ý, ". ý" !ý.. ''`ý .. ýS' 'ýý -%"
1+e

"". "
", " "

10 D. ."E". ."F ,:.
"" Aa". *10 C "% ."

0 /f 00%. 00 0
a-A

.)0 .. 4".......

-00000 ": t... t:....... 1: 7. "1 'f... t:......... t... t:........:). : ý. "....: l... t:........... ".....

Figure 4.1. Node D transmits to node E. Node A may transmit at the same time to B even if

node D has performed an RTS/CTS exchange, because A is outside the transmission range of
D (but B is inside the interference range of D). Node D is "hidden" with respect to node A.

perform as many simultaneous non-interfering transmissions as possible) in order to improve

throughput. In the example used here, the maximum spatial reuse is achieved at 1/4 of the

string length, i. e. simultaneous transmissions can occur if the transmitting nodes are 4 hops

apart (eg. A -; B and E -4 F). The spatial reuse factor of a given path depends on the

interference range which in turn is related to the propagation model used for the path loss of

the signal. Xu et al. have demonstrated in [103] the universality of the interference issue by

demonstrating that in an open space environment the RTS/CTS exchange becomes ineffective

due to interference as the distance between transmitter and receiver exceeds 0.56 * Rtx, where

Rt. is the transmission range.

An important implication of the MAC layer frame drops caused by interference is the rogue

feedback provided to the routing protocol. As noted in [107], the routing implementation is

allowed to make use of link layer feedback to detect broken routes, and actual implementations

do so [79]. In particular, if seven consecutive RTS/CTS (or four DATA) transmissions fail [52],

the segment is dropped from the interface transmission queue of the sender and the routing

protocol is allowed to interpret that event as a sign of route breakage. Normally, this enables

the sender to realise that the link has been broken much quicker as opposed to noting the

absence of "HELLO" packets from the receiver, which could take several seconds 1. I however,

as the RTS/CTS (or DATA) frame drops may have been caused by hidden terminal interference,

the route may not have truly become obsolete and route discovery need not be re-initiated as the

1 HELLO packets are widely used in reactive routing protocols, and so this observation holds true for AODV [92]

and DSR [60]. In practice, even proactive protocols use some type of infrequent handshake to ensure determination

of link validity [28].

4.3. PROPOSED MODIFICATIONS TO TCP 78

original route can still be used. The case of the string topology in Figure 4.1 has been examined

in the literature and it has been shown to lead to several spurious route breakages [1071.

Overall, the hidden terminal effects caused by interference severely affect TCP perfor-

mance leading to consecutive RTOs and underutilisation of the medium. Chapter 3 in this

dissertation included detailed simulation traces of the phenomenon in string topologies and

outlines the effects of segment drop on TCP for three popular routing protocols (AODV [92],

DSR [60] and OLSR [28]).

4.3 Proposed modifications to TCP

Chapter 3 has revealed the relative performance merits of TCP Vegas with respect to Reno-

based variants (Reno, NewReno and SACK). In the same chapter, it has been shown that Ve-

gas' conservative cwnd increase allows it to make more optimal use of the wireless medium

(by maximising spatial reuse), which corroborates previous related research [45,721. This

section reveals the results of an enquiry into introducing a more conservative cwnd increase

into Reno-based variants without compromising their reactive nature or congestion avoidance

efficiency. Subsequent sections 4.3.1,4.3.2 and 4.3.3 examine the application of more conser-

vative sending rate increase paradigms in the slow start phase, congestion avoidance phase or

both in Reno-based TCP variants, respectively. At the end of the enquiry, the most suitable of

the phases is chosen as an effective place to introduce a slowdown mechanism.

Simulation setup: The subsequent examination entails string topologies set up as in Section

4.2 and as used in the previous chapter. The signal propagation model and transceiver char-

acteristics are also the same as outlined in Chapter 3. Detailed parameters with respect to the

routing protocol used are included in Appendix A. 1. Common TCP parameters are outlined in

Table 4.1.

43. PROPOSED MODIFICATIONS TO TCP 79

Table 4.1. TCP parameters

TCP Parameter Value

Min. RTO 200ms

Max. RTO 60secs (RFC 2988)

RTO Timer
Granularity

lOms
(Linux kernel 2.4)

Maximum burst
per ACK received

3 segments

Delayed ACKs disabled

Segment size 1460 bytes

4.3.1 Slow start modification (SS TCP)

The slow start phase in Reno-based TCP variants commands an exponential increase in the

congestion window (cwnd) size. Specifically, for every ACK received that acknowledges new

data, cwnd may be incremented by at most the number of bytes in a full sized segment2 [5].

In standard TCP implementations the above directive leads to an increment in cwnd by

the maximum allowed amount of bytes [11,76]. In order to "emulate" a more conservative

increase in the sending rate during that phase, it is possible to define a smaller increase while

still retaining RFC compliance. Mimicking the approach of TCP Vegas in this regard, where the

sending rate increase during slow start occurs every other ACK received [16,17], we similarly

define a delayed increase.

Specifically, our modifications are shown in Algorithm 1. The variable sincreaseihresh

sets the number of ACKs that need be received before cwnd increases by a full sized segment.

For instance, a value of one for sjncreaselhresh precisely emulates the slow start behaviour of

TCP Vegas by increasing the sending rate every other ACK received. Note that the new method

takes advantage of the self-clocking property of TCP and does not introduce any overhead

in the form of extra timer requirements. In actual implementations, this would translate to

little overhead being introduced, which in turn would add little to power and computational

2This is the size of the largest segment that the sender can transmit

43. PROPOSED MODIFICATIONS TO TCP 80

requirements.

To evaluate the effectiveness of the proposed changes, we have conducted experiments on

string topologies. An FTP connection with infinite backlog is initiated between the end-points

at the beginning of the simulation and lasts throughout. Two TCP agents are evaluated, namely

TCP Reno, which exemplifies a base case scenario and TCP NewReno. The overall simulation

time is set to 900 seconds and the metric collected at the end of the simulation is the average

goodput (in bits per sec) achieved by TCP. The definition of goodput is as used in Chapter 3

and expresses the bytes transmitted and ACKed at the sender, ignoring retransmissions. The

routing protocol used is DSR.

For the simulation runs, the s_increase-thresh parameter is set to 4 and as such cwnd

increases only every 5 ACKs, effectively limiting the increase rate to 1/5 of the original TCP

Reno (and NewReno) algorithm. The s increaseihresh variable was set to this value after

several experiments with different values and having noted little effect in increasing the pa-

rameter further. This adjustment is titled the "slow" slow start modification of TCP (SS TCP)

and its application to Reno and NewReno is named SS Reno and SS NewReno respectively.

Figure 4.2(a) depicts the goodput of Reno and SS Reno in string topologies as the hop count

increases. The results in this case are mixed and the improvement in goodput not noteworthy

in all cases. The most noticeable difference appears at 7 hops (8 nodes in the string topology)

where there is a 6% increase in goodput whilst the worst case presents itself at 11 hops where

there is a 4% decrease. For NewReno the equivalent results are included in Figure 4.2(b). In

that case, the slow start modifications again provide mixed results with the best case noted

at 8 hops (9 nodes in the topology), by exhibiting a 9% increase over the normal slow start

procedure and the worst case indicated at 6 hops with a 4% decrease in goodput.

The observed increase in goodput is explained as follows; as has been noted in [431 the

segment drops caused by link contention due to hidden terminals become the main cause of

segment loss in wireless networks when the hop count of the path is large enough. The SS

Reno modification tries to reduce that effect by decreasing the increase rate of the slow start

phase. For the sake of illustration, assume a given window, during the slow start phase, when

43. PROPOSED MODIFICATIONS TO TCP 81

Algorithm 1 Slow start cwnd increase
Require: s_increase-thresh is the number of ACKs between increases, s. increase is ini-

tialised to 0
1: If s_increase =0 then
2: cwnd *-- cwnd +1
3: s_increase +- s_increase +1
4: else
5: if s_increase = s_increase. thresh then
6: s_increase 4- 0

7: else
8: s_increase +-- s_increase +1
9: end if

1o: end if

a segment drop occurs due to link contention. Until that drop is noted by Reno (either through

3 dupACKs or an RTO), cwnd keeps increasing exponentially due to ACKs returning to the

sender for non-dropped segments. As extra segments are injected in the network and along the

communications path, link contention is aggravated.

The routing protocol may, further, include a packet caching mechanism in the event of

packet loss due to mobility. For instance, the DSR protocol [601 specifies the use of a mainte-

nance buffer which contains dropped packets due to route changes. A packet that is discarded

by the MAC mechanism may be considered to be dropped due to mobility and hence may

end up in the maintenance buffer while the routing protocol attempts to "salvage" it by asking

neighbouring nodes to provide an alternate route. Thus, it is possible that the packet is retrans-

mitted at a later time, when the new route, which in this case is the same as the old one, is

discovered by DSR. An example of this behaviour in both the case of DSR and AODV has

been extensively discussed in Chapter 3. Such retransmissions from the routing protocol can

cause even more link contention. Eventually, TCP may have to retransmit a lost segment either

by restarting with the slow start phase in case of an RTO, or by entering the fast retransmit/fast

recovery state in the case of duplicate ACKs. The SS modification forces TCP to not increase

the sending rate as quickly during the slow start phase, and thus allows the segments to advance

without adding greatly to spatial contention. A segment will eventually be dropped again after

the optimal sending window has been reached but this event will happen at a later time than

4.3. PROPOSED MODIFICATIONS TO TCP 82

without the modifications.

Overall, though measurable, the performance advantages of the proposed modification are

not great. The reason for this is that the slow start algorithm is not activated often enough to be

effective. The slow start threshold value, which dictates when the slow start phase gives way to

the congestion avoidance phase, is usually low in the examined scenarios and there is scarcely

any time for the new method to make a difference. The time spent in the congestion avoidance

phase is much longer than that spent in slow start and so the effects of the modification are not

greatly noticeable.

4.3.2 Congestion avoidance modification (SCA TCP)

The congestion avoidance phase of TCP dictates a linear increase in the cwnd size per round-

trip time (RTT). To achieve this, every ACK received acknowledging new data increases cwnd

by 1/cwnd segments3 [56].

In order to "slow down" this sending rate increase during the congestion avoidance phase

a delay similar to the slow start modification presented above is introduced. The proposed

algorithm is shown in Algorithm 2. The behaviour of this modified congestion phase is dic-

tated by the value of the ca-increase-thresh variable, which specifies the level of delay added

to the sending rate increase. Specifically, cwnd increases by a full segment's worth every

ca_increase_thresh+l RTTs. The modifications are referred to as "slow" congestion avoidance

of TCP (SCA TCP) and their application to Reno and NewReno are referred to as SCA Reno

and SCA NewReno, respectively.

To evaluate the scope of improvement offered by these changes, we have conducted ex-

periments on string topologies by replicating the simulation setup in the previous section. The

ca-increase-thresh parameter was set to 4, which in turn implies that the cwnd would grow

only every 5 RTTs.

The results of this modification for a Reno TCP agent are shown in Figure 4.2(a). The

3In actual TCP implementations, windows and segment sizes are measured in bytes and so the increment is
maxseg * wnd where mazseg is the maximum segment size and cwnd is expressed in bytes

4.3. PROPOSED MODIFICATIONS TO TCP 83

improvement in average goodput compared to plain TCP Reno is consistent and ranges from

33-71% in the case of the string topology. The explanation for the increase in goodput is the

same as presented for the slow start modifications. However, the slowdown of the increase

rate in the congestion avoidance phase occurs far more often than in the case of the slow start

modifications in SS Reno, which introduces a more substantial cumulative effect.

For NewReno the congestion avoidance modification results in a goodput increase in the

range of 32-71 % for all path lengths. These are shown in Figure 4.2(b).

Algorithm 2 Congestion avoidance cwnd increase

Require: ca-increase-thresh is the no. of ACKs between increases, ca-increase is ini-
tialised to 0

1: if ca-increase =0 then
2: cwnd F- cwnd +1
3: ca-increase f- ca-increase +1
4: else
5: if ca-increase = ca-increase-thresh then
6: ca-increase 4-- 0

7: else
8: ca-increase +- ca-increase +1
9: end if

lo: end if

The following example illustrates the behaviour of the new mechanism and was encoun-

tered several times during simulation. Assume that the TCP sender receives 3 duplicate ACKs.

TCP then fast retransmits the missing segment, halves cwnd and enters the fast recovery phase.

If the retransmitted segment reaches its destination without triggering a congestion indication

event, cwnd will increase at a rate of 1 segment per RTT. By decreasing the cwnd increase

rate to 1 segment per ca_increase_thresh +1 RTTs, the TCP sender does not add to the link

contention problem significantly and is allowed to successfully transmit for longer around a

large window close to the optimal one [43] than if cwnd were to be increased every RTT. The

trade-off is that it is possible to transmit around a sub-optimal window for a longer period as

well, as the increase rate does not reach optimal size as quickly; however, this is offset by the

longer successful transmission of data around a larger optimal window. Another side-effect is

that it is possible to transmit with cwnd of size 4 or more for longer and as such make use of

4.3. PROPOSED MODIFICATIONS TO TCP 84

Soo

400

300
1200

too

S00 k

t-+ SCA NýRan
M""-U $$ NswII al

400 k-N. wKaaa

300k

2Wk

took

04
56719 10 11 12 13 14 IS

I

Na Nach Na Nod"

(a) Reno vs SCA Reno vs SS Reno (b) NewReno vs SCA NewReno vs SS
NewReno

SCA Ran
*'K 99 RMO
A, & Reno

ý4
S67t9 10 11 11 13 14 IS

Figure 4.2. Goodput vs length in string topologies for Reno and NewReno using SS and SCA

modifications

dupACKs which can activate the fast retransmit/fast recovery algorithm and recover quickly

from segment losses.

It should be noted that the value of 4 for the ca_increase_thresh parameter, as introduced

here, has been chosen only for illustration purposes. Section 4.4.1 includes an exploration of

an effective ca-increase-thresh value.

4.3.3 Cumulative modifications

As the SS and SCA techniques introduce changes at different phases of a TCP sender, it is

useful to examine if the combination of the two methods may yield a cumulative improve-

ment. To this end, we have combined the two techniques and produced an all-encompassing

increase-thresh parameter with sincrease_thresh = ca -increase -thresh = increase-thresh

for a TCP agent utilising both the SS and SCA methods.

To evaluate the effect of such a combination on the achieved goodput of a TCP sender,

we have conducted experiments on string topologies as in the previous sections. Figure 4.2(a)

shows the resulting average achieve goodput when the SS and SCA techniques are utilised in

unison. This modification is titled SSCA and both the slow start and congestion avoidance

increases are slowed down to 1/5 of the original Reno algorithm (i. e. increase-thresh is set to

4.3. PROPOSED MODIFICATIONS TO TCP 85

soo

400

300
1200

tao

1}-F 8CA Reno
P-V 5A Raoo

04
56799 10 11 12 13 14 15

F+-+ 8CA N. WRan
r-V 49CA NwIwn

400 º

700k

2001

100 k

04
S6769 10 11 12 13 14 IJ

Na Nader

I
I

Na Nod.

(a) SCA Reno vs SSCA Reno (b) SCA NewReno vs SSCA NewReno

Figure 4.3. Goodput vs length in string topologies for Reno and NewReno using SSCA modi-
fications

4). The end result is not a cumulative increase in goodput but rather equivalent performance to

the SCA slowdown technique. This is explained by the fact that the congestion avoidance phase

dominates over the slow start phase and as such modifications in the latter do not significantly

affect goodput. It is deemed, hence, superfluous to combine the two techniques and the SCA

method remains in focus for the rest of this study.

Similarly to the Reno case, the mixed SSCA technique does not yield significant improve-

ment over SCA for NewReno as can be seen in Figure 4.3(b).

Finally, note that the cumulative SSCA modifications as outlined in this section assume

equality of s_increase.. thresh and ca-increase-thresh. Several experiments have been con-

ducted in view of considering the case where the two thresholds are set at different values,

thereby dictating different degrees of sending rate increase during the Slowstart and Conges-

tion Avoidance phases. The resulting goodput in those cases is not significantly better than

using the SCA method as described above; thus, the SCA method remains the focal point of

this study.

4.3.4 Trace analysis of SCA TCP

This section shows the effect of the proposed SCA method changes in a string topology of

5 nodes (A, B, C, D, E). This discussion aids understanding and illustrates the workings of the

4.3. PROPOSED MODIFICATIONS TO TCP 86

-UCAI I., I.

pes.. -- os 1o u
7%w (me)

It A MCA It-

10 x Rwo

9
a

i

£dxl1 IGxAcAka,

10

tA*AXa x xSA £AAA AAA

I" £&7AXA) C4kA" 4tx4cA&&&A AAAAAA ANA!

00
S 10 IS 70 2S 30 33 40 43 SO Si 60 65 70 73001139093 I..

Tins (no.)

(a) Segments acknowledged over time - af- (b) Congestion window (cwnd) evolution -
ter a few secs SCA Reno outperforms plain SCA Reno reaches smaller max. cwnd than
Reno Reno

Figure 4.4. Behaviour of SCA Reno vs Reno

SCA technique. Although this example uses TCP Reno as an agent the resulting conclusions

are applicable to other Reno-based variants (such as TCP NewReno and SACK). The routing

agent used is DSR. The other simulation parameters are as used in the previous sections.

For the purposes of this example and in the string topology, an FTP transfer is conducted

from node A to node E (the end-nodes in the topology) and lasts for 100 seconds. The ex-

periment is then repeated on the same topology with an SCA Reno agent with a threshold

parameter of 4. As such cwnd during the congestion avoidance phase is increased by a full

segment every 5 RTTs and not every RTT as in the case of TCP Reno.

In Figure 4.4(a) the number of ACKed segments during simulation time is shown. At the

end of the trial run SCA Reno has achieved significantly better goodput performance than

Reno (approximately 38% improvement). It is also evident that the two variants perform com-

parably only for the first few seconds; after that time period (approximately 14 seconds) SCA

Reno clearly outperforms Reno. Furthermore, the congestion window evolution during that

time, shown in Figure 4.4(b), reveals that SCA Reno has maintained, a relatively small cwnd

throughout the connection time with a maximum of 5 segments in-flight at about the 65 sec-

onds mark. In contrast, TCP Reno has maintained a larger cwnd, even reaching the value of 9

segments after 88 seconds.

43. PROPOSED MODIFICATIONS TO TCP 87

A closer study of the first 20 seconds of the simulation time provides insight on the per-

formance discrepancy. As can be seen in Figure 4.5(a) the two mechanisms (plain and SCA

Reno) behave identically during the initial slow start phase which lasts from the beginning of

the connection until cwnd (cwnd) takes the value of 7 at 0.6 seconds. In this time slot the slow

start mechanism, which is identical in both cases, is in effect.

Figures 4.5(b) and 4.5(c) depict the cwnd evolution during simulation time for the Reno

and SCA Reno method respectively. In those figures dropped segments are denoted with a

cross on the top bar of the graph. A segment drop event in this case always refers to segments

dropped by the routing agent due to the hidden terminal effect. Notably, during the simulation

no segment drops were recorded to have been caused due to full buffer queues which verifies

the findings in [43]. Also note that a segment drop is not always accompanied by a drop in the

value of cwnd, because the routing algorithm salvages the segment and attempts to retransmit

it later. From the simulation trace it is apparent that the hidden terminal effect causes node A to

drop segment 5 at 0.21 seconds and declares a spurious route breakage. Soon after, out-of-order

segments appear at the receiving end of the connection. In this case, segment 6 is spuriously

retransmitted at 0.8 seconds, and cwnd halves from 7 to 3 segments as the fast retransmit/fast

recovery algorithm is activated. Segment 6 was received by node E at 0.776 seconds but due

to segment reordering 3 dupACKs were sent to node A (these were for segments 9,7 and 10).

Segment reordering can result from the way the DSR maintenance buffer operates. According

to the DSR draft [60] the maintenance buffer holds segments for which a new route is being

sought. In the case of the string topology as presented here there is only one route for every

segment (route A --º B -º C -º D -º E). When the MAC layer gives up on transmitting

a segment, the node will try to salvage the segment and discover the route again by enquiring

neighbouring nodes for alternate routes to the destination. However, more segments might

arrive and be put in the maintenance buffer in the mean time. If the queueing paradigm is

Last-In-First-Out (LIFO), as in this case, segments may be forwarded out of order. The issue

of segment reordering is relevant in the case of AODV [92] routing as well, where the local

repair function can produce similar results.

4.3. PROPOSED MODIFICATIONS TO TCP 88

y
ä

r-

Reno CA
eno �[F

x
!xx

&A x
XQX

XX

4 xxe xAAx
X X)6 xAAx
i x1h xAXAx
"x Mh xAXAx

" fx A xA Ax

:" ix Xd xA xAx

1"lx0 be XAxA

0n
s In ýS 20

19me (aec)

(a) cwnd evolution of R. -nn and CrA Rann

a
1

a

Tines (Nc)

! hl Renn . ', nd Pvolution

t
4 SCA Rao
+ Dwp

3

44_
AAA

AAA
AAAA

34AAA
AAAAA
AAAAA

AAAAA

°o s 10 is 20
Mm (see)

(c) SCA Reno cwnd evolution

X xnw

xx

xx
xx

4 xx x
xx x

x xx
x xx x

3xx xx xx
x xx xx

Zx xx xxxx

ixxxxx

°°
10 20

Figure 4.5. cwnd evolution for the first 20 secs of simulation

4.3. PROPOSED MODIFICATIONS TO TCP 89

After the 3 dupACKs both algorithms halve the cwnd. However, the classic Reno algorithm

increases the cwnd 5 times more quickly during congestion avoidance than SCA Reno. In this

case (at around the 1 second mark) it makes little difference as both algorithms experience a

timeout due to segment 12 and both involve a cwnd of 3 (rounded down). A similar situation

occurs at around 5 seconds. At that time spatial contention is high between nodes A and E

but the slower congestion avoidance phase of the SCA algorithm has not had any impact yet.

In order for a new segment to enter the network, cwnd must be increased by a whole unit

and as such although the value of cwnd at around 5 seconds is 2.5 for SCA Reno and 2.9 for

Reno it makes no difference. The advantage of the SCA algorithm is shown very clearly at

6-15 seconds. Plain Reno increases cwnd linearly and injects more segments into the network

reaching up to 6 segments in flight. In contrast SCA Reno does not exceed 4 segments. Reno's

extra segments are cached by the routing algorithm every time a route breakage occurs and

are re-injected at a later time thus adding to the spatial congestion i. e. aggravate the hidden

terminal effect. In the SCA case, there are fewer segments in the network and such effects are

less pronounced after the inevitable timeout has been reached.

The basic idea of the proposed changes is that by restricting the growth of cwnd, there are

fewer segments in flight for some period of time. As such, by the time the hidden terminal

problem appears there will not be as many segments in the pipe to compete for medium access.

As a consequence, the serious spatial link congestion as described in [43] is not as extreme

as in the case of plain Reno. Subsequent transmissions and retransmissions do not have as

many segments in contention for access the medium. Overall, both TCP versions exceed their

optimal window at some point, only it is likely that this point is of a smaller value or at least the

time spent at a non problematic window zone is larger for SCA Reno. The previous statement

implies that the time spent at smaller than optimal values is longer, as well, but this is more than

offset by the fact that when a failure occurs at a high cwnd value, as is the case with TCP Reno,

the spatial congestion is serious and is augmented by retransmissions from the maintenance

buffer of the routing protocol.

4.4. EVALUATION OF SCA TCP 90

4.4 Evaluation of SCA TCP

In this section, the SCA technique is evaluated thoroughly and is further contrasted to a dif-

ferent approach presented in the literature which deals with the effects of spatial contention on

TCP, namely the adaptive Congestion Window Limit (CWL) method [26].

4.4.1 Performance analysis of SCA TCP

Before a performance comparison of SCA with the adaptive CWL and other TCP strategies can

be attempted, it is necessary to evaluate the effect of different SCA parameter (ca
-increase -thresh)

values on the performance of the SCA method when applied to TCP. Such a process would

facilitate the setting of a "generally good" default parameter which will be used in the subse-

quent performance evaluation. The next section outlines the results of this procedure and an

evaluation in general mobility scenarios follows.

Identifying a default SCA parameter

To identify an adequate ca-increase-thresh parameter for the SCA method we have per-

formed simulation experiments for different string topologies and noted the resulting goodput.

Specifically, string topologies of various length have been considered, ranging from 3 to 15

hops (4 to 16 nodes). String topologies of less than 4 nodes have not been evaluated as hidden

terminals due to interference are not evident in such topologies [107]. For each simulation

run, an FTP connection between the end-points is initiated at the beginning and lasts until the

end of the simulation at 900 secs. Per string topology, a different SCA parameter was applied,

ranging from 0 to 50, and the goodput at the end was recorded. Note that an SCA parameter of

0 denotes plain Reno, i. e. no modifications to the Reno congestion avoidance algorithm.

Figure 4.6 shows the result of the simulation runs for DSR. Notably, the number of trans-

mitted segments for each hop count flattens or stabilises after the SCA parameter has reached

the value of 10. This in turn implies that further possible improvement shown in the simula-

tion metric is not significant beyond that value. This observation is true for all the hop counts

4.4. EVALUATION OF SCA TCP 91

40

35

9
e

0

gu

6 20

15

k

pOýpýpW ý0ý1: 7pOapp000ýOOýOýýýýýM
k

00c0ý0ý
p ý_ý, popý06gr0ý4

ýýO

, 101 aO 4-hop

*-O 5-hop

a& 7-hup

k0
5 10 15 20 25 30 35 40 45 51

SCA p. rnxter

(a) 3-7 hops

s

I a

b

z

SCA ParuMcr

(b) 8-11 hops

9kF

7k T-- -ko ,q 'W 13,6
6k

Sk

4k

13k 0-0 12-hop

aO 13-hop

2k 0-O 14-hop

t 13-bop

Ik

10k0
It 10 IS 20 25 30 73 40 4i if

SCA Panmeler

(c) 12-15 hops

22 k

20k

18k

d 166

14 6

Figure 4.6. Number of transmitted segments vs SCA parameter in a string topology of I to 15
hops using DSR

4.4. EVALUATION OF SCA TCP 92

40

35

30

25

d 20
7

IS

10

ooooO°
, Baum aoodeooao

k 1 -hop
0op

k

k0
10 IS 20 25 30 35 40 45 50

SCA puameter

(a) 3-7 hops

20

19

lö

17

16

I IS

14

13

12

11

ä
s
B
I

I
ö

SCA paromeler

(b) 8-11 hops

e.

ýx- ýe-,

k (>-O 12-h op
O0 13-hop

t O-O 14-hop

t- 15-hop
k

k0 5 10 13 20 25 30 35 40 45 50
SCA punmeler

(c) 12-15 hops

Figure 4.7. Number of transmitted segments vs SCA parameter in a string topology of I to 15
hops using AODV

considered here (3-15 hops) and, hence, regardless of the string length, the choice of 10 as the

value for the SCA parameter would appear to lead to overall "good" performance.

The same behavior is evident in the graph in Figure 4.7 for the AODV routing protocol.

Specifically, at around the 10 mark point, any further increase in the SCA parameter does not

yield significant improvement in the performance metric.

For clarity, it should be noted that when considering TCP performance in both Figures

4.6 (DSR) and 4.7 (AODV), emphasis should be placed on the trend evident rather than the

individual goodput values. Hence, in both cases it is of interest to note an approximate SCA

threshold where the graph "flattens" rather than note global "peaks" where goodput is at a

k

dopýo°"ooo k @oil

k+

k
(gyp N-hop

a4Mv

k
O-O 10-hop

++I IAOp

k0
5 10 IS 20 25 30 35 40 45 54

4.4. EVALUATION OF SCA TCP 93

maximum. Further in this chapter (in Section 4.5.2) an enquiry is made into optimising the

SCA technique by setting its parameter according path length; in that case, the parameter is set

according to these global peaks rather than the trend of the goodput graph for each hop count.

Finally, note that it is quite possible to make use of feedback from the DSR protocol or any

other route length aware routing protocol so that the SCA mechanism is deactivated if the hop

count is less than 4. This would offset the issue of activating the SCA modifications when it is

not needed.

Notes on the choice of SCA parameter

The choice of a default SCA parameter, as performed in this section, may not lead to an optimal

choice for every topology and mobility pattern, since different spatial reuse characteristics

may be evident in a given path depending on the distance between successive nodes [26].

Nonetheless, the choice presented herein represents a "good" value for all path lengths as

exhibited in typical string topologies and is expected to perform well, if not optimally, for

other path types. This assumption is widely shared by previous related research [25,31,105]

and is explicitly stated here. As such, adopting a formal approach on evaluating the precise

effect of altering the SCA parameter, through parametric sensitivity analysis, would reveal a

scenario specific optimisation but would provide little insight for the general case. Overall, it

should be noted that the performance measurements in dynamic topologies presented in the

following sections indicate that the choice of 10 as the default SCA parameter does result in

significant goodput gains.

Finally, it should also be stated that the choice of 10 as an SCA parameter represents a

deliberately conservative decrease in the congestion window increase rate. Even though a

larger SCA value may result in higher gains, such a value may negatively and severely impact

TCP convergence, responsiveness and its ability to utilise its fair share of the bandwidth when

interacting with other flows [571. A brief enquiry into those issues is included in Section 4.4.2.

4.4. EVALUATION OF SCA TCP 94

Simulation setup

To validate our choice of a default SCA parameter (set to 10), we have evaluated the perfor-

mance of SCA Reno against plain Reno and Vegas over DSR and AODV in dynamic MANETs.

The simulation results indicate whether the SCA strategy aids Reno in achieving Vegas-like

performance or better, i. e. if it functions as intended, in dynamic scenarios.

Simulation area and mobility model: The simulation area is defined tobe a strip of 1500x300m

where 50 nodes are placed randomly. To create results comparable to previous TCP literature

studies [19,25,34] node pause times of 0 and 40 seconds have been considered and maximum

node speeds of 2,5 and 10 m/s. Mobility has been simulated using the random waypoint mo-

bility model over 50 different mobility scenarios for each pause time/mobility combination.

Each trial run lasted for 900 seconds. To ensure fairness in the results, the same topologies

were used for the different TCP agents over the same pause times.

TCP transfer setup and metric used: In each simulation run, a TCP connection is set up

between two randomly selected nodes and an FTP transfer session was initiated for the duration

of the simulation. A maximum window size of 64 is chosen for both the congestion (cwnd)

and advertised (awnd) windows. During the course of the experiments the maximum sending

window size (=min{cwnd, awnd}) was never reached and as such our performance metric was

not limited by that bound. The performance metric measured in the simulation experiments is

goodput and the average of the 50 topology results for each pause time/mobility combination

is considered. Welch's t-test has been performed on the observations to determine if there are

statistically significant differences in the performance of the TCP agents and 90% confidence

intervals have been computed; however, these are not included in the graphs to avoid cluttering.

Notably the retransmission timer's maximum value was set to 240 seconds as recom-

mended in RFC 1122 [151. Other work in the literature which examines a different technique to

deal with the issue of TCP and spatial contention [25] has used a lower maximum RTO value.

However, the authors in [25] have acknowledged that their imposed RTO limit of 2 seconds

4.4. EVALUATION OF SCA TCP 95

is low, but chosen so as to minimise the time the connection spends idle when a broken com-

munications path may already have been re-established by the routing mechanism. However,

we believe that a realistic outlook of typical TCP performance in MANETs has to maintain

parameters in TCP as the standards recommend, which ensures that the congestion control

mechanism functions as intended.

In these simulation runs five TCP variants have been evaluated; plain Reno, Vegas, and

three SCA agents with ca-increase-thresh (or SCA) parameters set to 1,5 and 10. The value

of 1 is significant as it denotes the initial impact of the SCA mechanism (i. e. the impact of

activating it with the lowest possible parameter). The value of 10 denotes how a "default" set

agent (as determined by simulation in the previous section) would behave. Finally, the value

of 5 was chosen as it represents the mid-point between the optimal and minimum parameters

and its results allow for interesting observations in the subsequent discussion.

Finally, we have considered AODV and DSR as routing protocols with parameters as used

in Chapter 3 and as detailed in Appendix A. I. The simulation parameters with respect to

the signal propagation model and wireless transceiver setup are the same as the ones used in

Chapter 3 and throughout this chapter.

Results and discussion

The results under DSR routing for 0 seconds (continuous mobility) and 40 seconds pause time

are presented in Figure 4.8. For maximum node speeds of 2,5 and 10 m/s, SCA Reno with

parameter 10 outperforms plain Reno by 4%, 26% and 24% respectively for the topologies

with 0 seconds pause time. Similarly, for 40 seconds pause time SCA Reno with parameter

10 improves over plain Reno by 5%, 6% and 15% for maximum node speeds of 2,5 and

lOm/s respectively. The decrease in improvement compared to continuous mobility scenarios

is largely attributed to the random source/destination pairs which are chosen for each scenario.

In certain scenarios, partitioning ensued in the network and it became impossible for the routing

algorithm to find an alternate route and as such the SCA method could not "improve" upon the

plain Reno variant.

4.4. EVALUATION OF SCA TCP 96

Expanding on the last point, an interesting situation was observed during the experiments.

The SCA technique did lead to RTOs due to spatial contention similar to the case of plain Reno,

with the difference that SCA maintained fewer segments in the pipe on average. Notably,

the RTOs occurred, generally, at a different time interval than plain TCP Reno. If an RTO

occurred at an "inconvenient" time, such as when network partitioning was about to occur,

TCP performance suffered under SCA compared to Reno, assuming Reno RTOs occurred at

more "convenient" times. We believe that the adverse effect of RTOs on TCP performance due

to interference/hidden terminals should not be understated and therefore neither took special

precautions to avoid "badly timed" RTOs nor ensured that at the end of an RTO the routing

path would be known to the source and ready for use.

In general, although setting the SCA parameter to 10 consistently outperforms the SCA

Reno with SCA parameter of 1 for all pause times, it is closely matched at certain pause

time/node speeds by SCA Reno with parameter of 5 and can even present slightly worse results

as in the cases of lOm/s speed at 0 seconds pause time and 5m/s speed at 40 seconds pause

time. Such behaviour is somewhat expected as the performance of the SCA parameter of 5

in Figure 4.6 suggests that it is a competent contender for different hop counts but on average

should be worse than the SCA parameter 10 agent under different path lengths, which is what

can be observed in this case.

When noting the performance of SCA against Vegas, it is evident in the case of DSR that

the difference in performance is only significant in a few cases, specifically at lOm/s for 40

seconds pause time where it is about 7% and at 5m/s for 0 seconds pause time where it is about

4%. At all other pause time/node speed combinations the discrepancy in performance is either

very small (about 1-2%) or not statistically significant. Nonetheless, this is a clear indication

that SCA achieves similar performance levels to Vegas, without incurring the computational

overhead of the latter [16].

Figure 4.9 depicts the performance measurements of SCA Reno under the AODV routing

protocol. The trend is similar to that of DSR, namely improved goodput ranging from 4%-10%

for Os pause time and 6%-8% for 40s pause time over plain Reno. As is the case with DSR

4.4. EVALUATION OF SCA TCP 97

routing, using 10 as the SCA parameter results in the highest and most consistent improvement

over plain Reno in our simulations when compared to the parameter settings of 1 and 5. The

decrease in improvement compared to DSR routing is attributed to the faster recovery of AODV

from "false" route breakages (which reduces the impact of consecutive RTOs). Instead of

asking neighbours for alternate routes, AODV actively searches for a new route by initiating

a local route discovery process from the point of failure. The new route can be quickly re-

established even in the case of a real route breakage as the route to the destination is likely to

be easily rediscovered through other neighbouring nodes close to the point of failure.

The simulation results in the case of Vegas indicate a similar pattern to that of DSR; Vegas

is only outperformed in a few cases (4% at 10m/sec for Os pause time and 4% at 5m/s for 40s

pause time) whilst the two methods are equivalent otherwise. Overall, the simulation results

indicate that SCA Reno outperforms Reno in a single connection environment under both the

DSR and AODV routing protocols while achieving equivalent performance to Vegas.

To understand the performance of SCA Reno over a somewhat denser network traffic en-

vironment we have also conducted experiments using multiple TCP flows with the same 50

topologies. Specifically, five TCP connections were initiated for 900 seconds, carrying FTP

traffic. The communicating pairs were randomly chosen for each scenario and the performance

metric measured was the same as before. The results of the aggregate goodput are presented

in Figure 4.10 for 0 and 40 seconds pause time and different node speeds for the DSR routing

protocol. The improvement in goodput over plain TCP Reno ranges from 3-12% for 0 seconds

pause time and 4-12% for 40 seconds pause time. Note that our SCA solution (not unlike the

adaptive CWL solution examined in the next section) is not meant to solve the interference

problem among different flows but improve performance when the interference is caused by

the flow "onto" itself. Under the AODV routing protocol the performance increase is not as

noticeable as in the case of DSR for multiple connections as can be seen in Figure 4.11. Specif-

ically, the performance improvement over TCP Reno ranges from 2-5% for 0 seconds pause

time and 2-4% for 40 seconds pause time. This is attributed to the ability of AODV to quickly

recover from false route breakages and the fact that other factors affect TCP performance such

4.4. EVALUATION OF SCA TCP 98

70k

60 k

tl

00 k

40 k

30k

20 k

c ~O RENO
o OSCAPam
O-O SCA Pann S
»-K SCA Parte 10
+-+ Vegas

25 10

70 k

60 k

50 k

140
k

I
30k

20 k

RFNO
x Oa SCA Pum1

O-O SCA Pum 5
ýý`ý. ýý.

ý -« SCA Pam 10
Velo

., O

O

2S 10
Mu. Speed (mis) Max. Speed (ms)

(a) 0 secs pause time (b) 40 secs pause time

Figure 4.8. Goodput of a single TCP flow vs maximum speed in dynamic topologies using
DSR

as network partitioning which leads to repeated RTOs. In the case of network partitioning the

faster congestion avoidance phase of Reno can be beneficial as it can inject more segments on

the network for the time the route is valid compared to SCA Reno. Nonetheless, SCA Reno

deals with the effects of spatial contention much better than plain TCP, and that results in a

slight advantage for SCA Reno.

Note that in this case the performance of SCA compared to Vegas is again comparable,

with notable exceptions being the points at IOm/s for Os and 40s pause time in the case of DSR

(where the difference in goodput is 7% and 5% respectively in favour of SCA) and I Om/s for Os

pause time in the case of AODV (where the difference is approximately 5%). The performance

increase achieved by SCA in scenarios with multiple flows provides some indication that the

SCA modification functions as intended even between flows although we do not claim this is

to be true in every scenario as the mechanism deals with intra and not inter-flow interference.

4.4.2 Performance comparison of SCA TCP and adaptive CWL

In this section, we evaluate the effectiveness of the SCA TCP strategy against an existing tech-

nique in the literature aiming to alleviate the throughput-reducing effects of spatial contention,

namely the adaptive CWL setting strategy. Since both the SCA and adaptive CWL strategies

4.4. EVALUATION OF SCA TCP 99

70k

60k

ffi

g50k

Jä:

öp

6o40k

30k

O-O RENO
OO SCA Pann 1
O-0 SCA Parm 5
 -% SCA Pami 10
4-+ Vega.

25 t0

70

60

30

30

20

«O RENO
11 U SCA Perm 1
O-OSCAPwm5

[
-x SCAPum10

ý +-+ Vesu

------------ ---------------------

20k
is 10

Max. Speed (mis) Max. Speed (mh)

(a) 0 secs pause time (b) 40 secs pause time

Figure 4.9. Goodput of a single TCP flow vs maximum speed in dynamic topologies using
AODV

130k

120k

ti

trot

look
I

90 k

80 k

o-o esw0
DC SCA PUm I
t-OSCAPm5
r-r SCA Pam 10
4-4 Veils

`wem

x.
13

M" spud (mb)

(a) 0 secs pause time

0-o RENO
0 USCAPumI

20k 0-0 SCA Pu. 5
»-« SCA Pam 10

---- ------------------
....................

90t

to t
2 10

Max. spud (M)

(b) 40 secs pause time

Figure 4.10. Aggregate goodput of 5 TCP flows vs maximum speed in dynamic topologies
using DSR

4.4. EVALUATION OF SCA TCP 100

II0k

1 0, >t
a

90k

80 k

70 k

110 k

loot

I
I

90k

xot

70k

()-0 Ku NO
a aSCAPumI
O-O SCA PU
x-. SCA P. IO
+.. -+ Veps

2S 10

0-0 RENO I SC o- 3 APumI R"o
O-O SCA Pum 5
»-« SCA Pu u 10

+_4 ves"

-st

25 10
Max. Sped (mA) Max. Speed (m.)

(a) 0 secs pause time (b) 40 secs pause time

Figure 4.11. Aggregate goodput of 5 TCP flows vs maximum speed in dynamic topologies

using AODV

are applicable to path length aware routing protocols, both are evaluated under DSR routing.

Invariably, the adaptive CWL strategy cannot be used with a path length agnostic routing agent

in contrast to the SCA technique, which requires no such coupling of the routing protocol with

the transport agent. The next section introduces the adaptive CWL strategy and is followed by

a performance evaluation comparison and discussion.

Congestion Window Limit (CWL) method

The Congestion Window Limit (CWL) approach enforces a restriction on the maximum con-

gestion window (cwnd) of TCP, so as to maintain few outstanding segments in the pipe at any

one time and minimise spatial contention. This spatial contention is caused by the flow onto

itself and its main cause is, thus intra-flow interference. As such, the method addresses the

same issue as the SCA technique and thus is similar in research scope.

An outline of the method follows. TCP maintains for each connection a cwnd state variable

which throttles the sending rate at the sender. Moreover, the sender receives flow control

information from the receiver, which is maintained in a sender's advertised window (awnd)

state variable for each connection. The amount of data that can be outstanding in the network at

any one time is set by the sending-window = max{cwnd, awed} [98]. A limitation imposed

4.4. EVALUATION OF SCA TCP 101

Table 4.2. Limiting the maximum congestion window (cwnd)

flop Count(h) Max. cwnd

h<2 2

2<h<4 1

4<h<6 2

6<h<10 3

10<h<13 4

13<h<15 5

h> 15 not obtained

on the value of cwnd implies a limitation on the sending window and as such the number of

outstanding segments that can be present in the pipe by the TCP sender. The authors in [107]

and [43] have demonstrated that imposing a limit on the maximum sending/congestion window

leads to improved throughput as fewer segments contend for access to the medium at any one

time leading to better spatial reuse of the medium. As such, fewer link layer drops occur due

to interference which leads to less spurious route breakages and TCP retransmission timeouts

(RTOs). A technique following the above paradigm is labelled as a CWL method [25].

Work by Chen et al. has demonstrated a mechanism that dynamically adjusts the CWL

according to the path length [26]. Instead of relying on analytical estimates of optimal values

for cwnd (as done in [43]), the authors have instead opted for discovery through simulation of

the optimal CWL value for several path lengths as shown in Table 4.2. This adaptive CWL

strategy receives path hop count information provided by the DSR protocol to set the maximum

cwnd value of the TCP agent. These changes have been shown to improve throughput 8-16%

over TCP Reno in multiple flows scenarios, In this work we evaluate the performance of

the adaptive CWL method as described in [25], which supersedes the original fixed CWL

method [1081.

4.4. EVALUATION OF SCA TCP 102

Evaluation results of SCA TCP vs adaptive CWL

To evaluate the effectiveness of the SCA technique against the adaptive CWL strategy we have

conducted further simulations. The simulation parameters and experimental setup are identical

to the ones used in the previous SCA TCP evaluation (Section 4.4.1). In all experiments,

the SCA parameter for SCA Reno was set to the default value of 10. The hop count values

considered for dynamically adjusting the congestion window using adaptive CWL are the same

as in [251 and are presented in Table 4.2. Measurements were also taken of a plain Reno

implementation to be used as the baseline for comparison. The routing protocol used in the

evaluation was DSR so as to make our results comparable to the ones in the adaptive dynamic

CWL work [251.

The goodput results for a single TCP flow appear in Figure 4.12. SCA TCP improves

upon the performance of the adaptive CWL strategy by 4-9% and 7-20% for 0 and 40 seconds

pause time respectively for all maximum speed scenario settings. The improvement offered

over Reno ranges between 4-26% for 0 seconds pause time and 5-15% for 20 seconds pause

time across different node speeds. The adaptive CWL strategy maintains a goodput average

that is better than Reno but is in some negligible (2m/s at 0 seconds pause time and 5m/s at

40 seconds pause time) and it even proves worse than plain Reno by 4% at 2m/s for 0 seconds

pause time.

In our experiments with single flows the CWL method performed comparably to SCA at

some topologies and much less than optimally at others. The apparent discrepancy of our

results to the ones presented in [25] is mostly attributed to the more accurate setting of the

maximum RTO in our experiments. The maximum RTO setting was set to 240 seconds as

recommended for Internet hosts [15] instead of 2 seconds as in [25]. Setting the maximum RTO

to 2 seconds does improve the reaction of TCP to route re-establishment as the maximum time

a (re-established) route may remain unnecessarily non-utilised is close to 2 seconds. However,

as noted before, this setting is not recommended for interaction with Internet hosts [15]. In

fact, by their own admission in [25] the authors identify their choice of value for the maximum

4.4. EVALUATION OF SCA TCP 103

RTO as "small" and not recommended for widespread use. However, such a modification

understates the effect of RTOs and skews the end results.

To understand the effect of limiting the maximum RTO to a small value consider the follow-

ing scenario. The SCA technique maintains on average more segments in flight than adaptive

CWL as it is not limited by a cwnd bound. Although some segments are lost due to spatial

contention in SCA, several of these are salvaged by DSR which retransmits them at a later

time and can trigger a3 duplicate ACK (dupACK) response from the receiver which activates

the fast retransmit/fast recovery phase of TCP at the sender. DupACKs are produced either

because the segments arrive at the receiver out-of-order, or because there are "holes" (i. e. non

consecutively sequenced segments) in the destination's receiving buffer. The adaptive CWL

method does not need the dupACKs heuristic as it is designed to avoid segment drops due to

spatial contention. However, if the route breakage is due to mobility the dupACKs heuristic

can be a valuable tool and enable TCP to recover quickly from the route breakage. When the

fast retransmit/fast recovery mechanism is in effect TCP immediately retransmits the segment

"known" to be lost without waiting for an RTO. This quick retransmission and utilisation of a

possible re-established route is impossible in the case of the adaptive CWL strategy when the

maximum cwnd is smaller than 4 segments (which is true for paths shorter than 13 hops, as

shown in Table 4.2). Hence the adaptive CWL technique has to rely on the expiration of the

RTO timer for segment retransmissions. Furthermore the exponential RTO backoff aggravates

the problem as it can lead to several seconds of inactivity, even if the route has been restored in

the mean time (an analysis of this phenomenon is included in [49]). If the RTO is set to a small

enough value, as in [25], this aspect of the problem is ignored and the performance evaluation

results are deceptively favourable.

To obtain insight on the effectiveness of both strategies with multiple flows, although nei-

ther was particularly targeted to deal with the issue, we have applied both techniques to concur-

rent TCP flows in MANET environments. The number of FTP flows (carried with TCP) was

set to 5 with random source/destination pairs. The simulation setup parameters are the same as

in the multiflow SCA evaluation in Section 4.4.1 and are not repeated here for brevity.

4.4. EVALUATION OF SCA TCP 104

eok I

0-0 RHNO
CWL

%ý K-K SCA

Wk

Go k

Isok

I
40k

1(}O PP. NO
CWL w-ißt
SCA

20 V2s
Mac. speed (mh)

30k

Max, lpmd (mft)

(a) 0 secs pause time (b) 40 secs pause time

Figure 4.12. Goodput for a single TCP flow vs maximum speed in dynamic topologies using
DSR (SCA vs adaptive CWL)

The results of this evaluation appear in Figure 4.13. The SCA technique again proves

superior to adaptive CWL (in terms of aggregate goodput) for all maximum speeds and at all

pause times and at a margin of 2-10%. From these results it may be suggested that the SCA

technique maintains its advantage over adaptive CWL under some multiflow network traffic.

Limitations of adaptive CWL

Although the adaptive CWL method may alleviate spatial contention in single flows it can be

shown to have serious problems competing with plain TCP flows. To illustrate this, consider

the following scenario as described below.

We assume a string topology with 5 nodes and two FTP flows that have the same source

and destination, specifically the end-nodes of the string topology. The simulation lasts 900

seconds and the TCP flows carrying the FTP traffic are named flow A and B. Flow B uses

the plain Reno algorithm whilst flow A uses the adaptive CWL adjustment. In this case the

maximum cwnd is set to one segment as the route length is fixed to 4 hops (Table 4.2). DSR

routing is used as the routing protocol and all the simulation parameters are as in the previous

section.

The grey shaded area in the graph in Figure 4.15 represents the total number of segments

that have been transmitted by the sender and successfully acknowledged by the receiver (i. e.

4.4. EVALUATION OF SCA TCP 105

Ik

*20 k

not

tý tao k

9o k

00 k

o-o awvo
v CWL

M-K SCA

b

130 k

120k

I IIOk

t ß 100 k

90k

lo k

o-o týroo
p0 cwi.
M-K SCA

to
Mu. speed (mu) Mitt. Speed (d.)

(a) 0 secs pause time (b) 40 secs pause time

Figure 4.13. Goodput for 5 TCP flows vs maximum speed in dynamic topologies using DSR

(SCA vs adaptive CWL)

goodput) for the adaptive CWL flow as a function of time. In this case, it is particularly

noticeable that the Reno flow utilises much more than its fair share of the bandwidth. Tracing

reveals that during the simulation run the maximum cwnd of one set by the adaptive CWL

strategy leads to several RTOs for flow A because each segment loss cannot be recovered

through the fast retransmit procedure as there are not enough segments in the pipe to utilise

the dupACK heuristic. Flow B (Reno) is not restricted on the amount of segments it can

inject in the pipe though, and has several segments at any one time competing with flow A's

single segment for spatial usage of the medium. Hence, it becomes very likely that the single

segment of flow A is dropped which leads to an RTO in the adaptive CWL sender before

another segment is transmitted. The RTO timeout value doubles for each consecutive segment

loss which further aggravates the situation for flow A. At the end of the simulation the average

cwnd size for flow B is 7.3 whilst for flow A it is 1 (the maximum value).

Figure 4.14 shows the goodput results (in total segments) for the same topology when the

adaptive CWL agent of flow A is replaced with other types of TCP agents. Essentially the

same experiment as described above is executed with flow B always being a Reno agent and

flow A being one of the following TCP variants: Reno, SCA Reno with parameter 5 (SCA 5),

SCA Reno with parameter 10 (SCA 10), a dynamic CWL agent (CWL) or an agent with a fixed

4.4. EVALUATION OF SCA TCP 106

30k

25k

20k

i3k

10 k

5k

0

35k

lo k

25k

20 k

lik

iok

sk

® fl A
Q Floe B (Rem)

® Floe A
Q Flo. / lRanl

TCP Ag

(a) DSR routing

TCP Akan

(b) AODV routing

Figure 4.14. Shared bandwidth between two flows in a 4-hop string topology

congestion window limit of 2 ... 6 segments (cwnd 2
... 6). The simulations are run under both

DSR and AODV to demonstrate the universality of this discussion. The Reno/Reno interaction

ensures fair use of bandwidth for both flows. The SCA/Reno flow pair results reveal that the

Reno agent "steals" some of the SCA bandwidth, which is expected as the SCA sender is not

as aggressive during the congestion avoidance phase as Reno. In fact, in this case, fairness

is an especially poignant issue in the adaptive CWL case where flow B (Reno) utilises 9 of

the available bandwidth whilst flow A (adaptive CWL) makes use of the rest (for the SCA

Reno/Reno case, the ratios are 3 and 3 for the respective flows). Increasing the maximum

cwnd size to 6 improves fairness as is apparent in Figure 4.14 because the behaviour of plain

Reno, which has an average cwnd size of 5.68 in the Reno/Reno scenario, is emulated as the

maximum cwnd size increases.

The time (in seconds) spent in each TCP phase for certain flows (Reno, SCA with parame-

ter 10 and CWL) is shown in Table 4.3. Note, that the SCA agent experiences less overall RTO

time than Reno and spends more time in the congestion avoidance phase, i. e. keeps transmitting

for longer than Reno. Furthermore, for both Reno and SCA Reno, the congestion avoidance

algorithm is active for most of the duration of the simulation run. This observation has been

noted several times in this dissertation and it is the reason the SCA modification on the sending

rate increase is applied to the congestion avoidance rather than the slow start phase.

4.5. OTHER CONSIDERATIONS 107

Table 4.3. Time spent (in secs) in each phase for different TCP flows

Phase Reno SCA Reno adaptive CWL

Slow start 54.8 9.7 1000

Congestion avoidance 842.9 957.1 0.0

RTO 102.3 33.2 0.0

2'

m

13
1p

to
A

- RENO
Cwt

mo
40D
smrur. m b- (-.)

Figure 4.15. Flow share between plain Reno and adaptive CWL agents in a 5-node string
topology

4.5 Other considerations

The following section contains discussion on the implications of the SCA method introduced,

with respect to inter-flow spatial contention/interference (i. e. interference evident between sep-

arate flows) and feedback from the routing protocol. Each topic is discussed in turn.

4.5.1 Multiple flows

In this section we evaluate the impact of the SCA method and its different parameters as applied

to multiple connections between two nodes. Overall, the study of inter-flow interference and

spatial contention at the transport layer level can only be conducted on multiple flows that use

the same route as these are the ones the transport agent is directly aware of. It is not possible

for a TCP agent (assuming that the end-to-end paradigm remains intact) to realise the number

of other flows in the network sharing the same path, unless feedback is drawn from some

other source, like the routing protocol. It is, however, possible from the end-to-end perspective

of TCP to note the effect of other flows on available bandwidth and make inferences about

4.5. OTHER CONSIDERATIONS 108

their interaction. Previous work on Internet transport dynamics has made it possible to infer

the fair share of bandwidth that a connection should utilise by using RTT measurements or

by appraising ACK feedback [17,22]. Such mechanisms, however, do not apply directly to

ad hoc networks because of fundamental differences in the access mechanism of the shared

medium [26,43].

The following analysis is based on the assumption that when several TCP connections

are established in a {source, destination} pair, the corresponding flows share much of the

same path. By conducting a series of experiments on string topologies of different length it is

possible to isolate the effect on goodput of utilising different parameters for the SCA technique

and make use of the resulting observations on dynamic topologies. By noting the optimal SCA

parameter per hop count, for a given number of TCP connections that facilitate communication

in the same {source, destination} pair, it is then possible to tune the agents so that goodput is

optimised.

Prevalent single path routing protocols like AODV [92], DSR [60] and OLSR [28], which

have been used throughout this dissertation, guarantee that multiple flows of a {source, desti-

nation} pair will utilise the same path. As such, there is a large scope of applicability for the

method proposed. Notably, throughout this work the semantics of the transport layer are kept

intact, i. e. the proposed enhancements only require changes at the end-points and specifically

only at the sender. It should be noted that the discussion that follows does not apply in the case

of multipath routing [74] as the {source, destination} pair does not guarantee a common path.

Another special consideration is evident in the case of source routing and is explicitly

discussed here. In the case of such protocols (like DSR [60]) , it is, in fact, possible for the

TCP agent through interaction with the routing protocol to be aware of flows that share much of

the same path even though they belong to different {source, destination} pairs. This holds true

as long as the flows share the same source. Figure 4.16 depicts such an example, where TCP

flows 1 and 2 share much of a common path, namely A -r LI --º C --º D and even exhibit the

same hop count. In this case, the two flows interfere with each other and since node A is aware

of the existence of both (being the originator of both), it can tune their SCA parameters so as

4.5. OTHER CONSIDERATIONS 109

...
Flow 1

Flow 2"

ec cý1

... ý Flow1

-ý Flow 2. "

""c"

A0iiO

i"
Cý"ý f

(a) Original flow path (b) Flow path after topology changes

Figure 4.16. Common hops for different flows

to optimise their combined goodput. However, if some kind of local route repair mechanism

is used, it is possible for the routes to diverge without any notification to the source. In such

a case, node A will be making decisions based on outdated information which might have a

negative impact on goodput. In the case of flows with the same source and destination targets,

no such case is possible; these cases are the focal point of the following discussion.

Determining a suitable SCA parameter

In a series of experiments we attempt to approach empirically and through simulation the

optimal parameterisation of the SCA NewReno method according to the path hop count. The

simulation parameters are identical to the ones used in the SCA evaluation (Section 4.4.1).

Simulation scenarios are set as follows; in string topologies of various lengths (1-15 hops)

FT? connections are established between the end-points (meaning the same {source, destination}

pairs). These connections are facilitated by TCP agents with different SCA parameters, rang-

ing from 0 to 50. The simulation lasts for 900 seconds and the aggregate goodput is recorded.

Note that an SCA parameter of 0 denotes plain NewReno, i. e. no modifications to the NewReno

congestion avoidance mechanism. This setup will help identify a suitable SCA parameter for

multiple flows (the one exhibiting the highest goodput) which can then be set as the default

value.

Figure 4.17 shows the goodput performance of 2 parallel SCA NewReno flows along string

4.5. OTHER CONSIDERATIONS 110

50

40

30
51 7

1m

co a 2-hops

"--o 3-taps

7

i

l

2

k

4
pý.

4

k

9--* 4-Mp

k 6-hops
7-MQ+

0
05 10 15 20 25 10 35 40 45 5(

I0

I5

10 15 20 25 30 33 40 45
SCA Puuaia

(a) 1-3 hops

8k

7k

t;: 14k

3k

2k

1k

0
0

SCA Puan t

(b) 4-7 hops

k

k

k

k

a-ý I LAopý
koa 13-bops

14-hop

k "-+ ISanp

II
3 10 15 20 25 30 33 40 45 50

SCA P[r[raeier

(d) 12-15 hops

Figure 4.17. Aggregate goodput and SCA parameter in a string topology of I to 15 hops with
two TCP flows

SCA Pvmm er

(c) 8-11 hops

4.5. OTHER CONSIDERATIONS 111

30 I

20

I
I0

Jk

l2k

I 41

Ik

5k

4k

3 k,

2k

e--n

Lc: i-e4 p
i

P` k
pp

0
05 to is 20 25 30 33 40

SCA Pt er a

(b) 4-7 hops

4

3

z

k

k 11 art

k

o--ý Ib6opý

*--o 144hbopt
'-a IS- ops

ý0
5 10 15 IO 25 30 33 40 lS Sa

SCA Punaiu

(d) 12-15 hops

Figure 4.18. Aggregate goodput and SCA parameter in a string topology of 1 to 15 hops with
three TCP flows

SCA Puameta

(a) 1-3 hops

00
S 10 15 20 25 30 33 40 45

SCA Pao0Aer

(c) 8-11 hops

4S. OTHER CONSIDERATIONS 112

topologies of different length. Notice that there is no performance improvement in the case of 1

and 2-hop string topologies as the hidden terminal effect cannot occur in such short strings and

spatial contention is minimal. For 3-hops there is some goodput improvement (up to 19%),

but it is limited, since the SCA mechanism only helps alleviate hidden terminal effects that

derive from the transmissions of ACKs from the destination (the 4th node in the string; the 1st

node is the hidden terminal in this case). Diminishing the sending rate increase when there

is no effect from interference (for path length smaller than 3 hops) can lead to a performance

penalty, especially in the presence of background traffic. However, as in the case of a single

flow examined earlier, it is feasible to make use of feedback from DSR or any other route

length aware routing protocol so that the SCA mechanism is deactivated if the hop count is less

than 3. Such information (when available) offsets the issue of activating the SCA modifications

during the sending rate increase if it is not necessary, although the impact of false activation is

not great in the case of low traffic.

There is a significant performance improvement for the hop counts examined, similar to

that noted in single flows using SCA in Section 4.4.1. The number of transmitted segments

for each hop count noticeably flattens or stabilises after the SCA parameter reaches the value

of 25. This, in turn, implies that further possible improvement in the simulation metric is not

significant beyond that value. The above observation applies to all the hop counts considered

here (3-15 hops). Hence regardless of the string length the value of 25 would appear to be

effective (in goodput terms) as an SCA parameter.

We have also empirically approached the discovery of a sufficient default SCA parameter

for up to 7 flows. For 3 flows the plateau of improvement for goodput is found again to be for

an SCA parameter of 25, as shown in Figure 4.18. For more than 3 flows the impact of SCA on

goodput is minimal mostly because there is heavy spatial contention for any cwnd larger than

1. Essentially, there is insufficient time for the cwnd evolution to allow the SCA method to be

useful since any cwnd increase beyond a single segment causes spatial contention.

4.5. OTHER CONSIDERATIONS 113

Performance evaluation

To validate the results of the previous section and examine the choice of a default SCA param-

eter per number of simultaneous TCP flows, we evaluate, the performance of SCA NewReno

against plain NewReno over DSR in dynamic MANET environments.

Simulation setup: The simulation parameters are set as follows: The simulation area is

1500x300m where 50 nodes are placed randomly. The simulation model, signal propagation

characteristics and node configurations are as set as in the single flow SCA evaluation (Sec-

tion 4.4.1). The mobility model considered is the random waypoint model with pause times of

0 and 40 seconds and mean node speeds of 1,2,5 and 10 m/s.

In each simulation run, multiple FTP connections are set between two randomly chosen

nodes at the beginning of the simulation and the TCP connections facilitating the data transfer

begin transmission. The VIP connections, and thus the TCP flows, are active throughout the

simulation time, which is 900 seconds. The performance metric measured in the simulation

experiments is goodput (in segments), averaged between the TCP flows. In these simulation

runs the SCA NewReno with SCA parameter of 25 (the default) has been evaluated against

plain NewReno.

Discussion: The goodput results for 2 TCP flows and for 40 seconds pause time are pre-

sented in Figure 4.19(b) for 2 parallel TCP flows. For mean node speeds 1,2,5 and 10 m/s

SCA NewReno outperforms plain NewReno by 12%, 11%, 8% and 4% respectively. As the

mean node speed increases, the performance improvement decreases as routes remain stable

for less time on average due to increased mobility. The explanation for the decrease is as fol-

lows; the SCA Reno mechanism needs time to activate as its effects take place after the slow

start mechanism. The purpose of the slow congestion avoidance phase of SCA TCP is to pro-

vide the pipe with additional time to resolve its spatial contention burden before injecting an

extra segment. However, when the environment is highly dynamic, established routes are very

ephemeral and the requirements of the SCA technique are not met, which in turn means that

4.5. OTHER CONSIDERATIONS 114

the improvement in performance is not as apparent.

ISk ISk

a'
o- 13 SCA 11 Reno
o-o NewReno

110k
.................

110k

5k 5k

A
ua SC.
0-o Ne

25 10
Mean Node Speed (m/s)

(a) 0 secs pause time

zs
Mean Node Speed (ms)

(b) 40 secs pause time

Figure 4.19. Average goodput for two TCP flows using NewReno and SCA NewReno

Similarly in continuous mobility environments, the improvement in goodput of SCA NewReno

over plain NewReno is 4-9% for mean node speeds of 1,2,5 and lOm/s as shown in Figure

4.19(a) for 2 TCP flows. The improvement is significant under such conditions but not as

prominent as in the case of 40 secs pause time. The reasoning for this drop in improvement

lies in the fact that, similarly to a decrease in mean node speed, an increase in pause time

favours the creation of longer lived routes than otherwise.

The goodput results for 3 simultaneous TCP flows in the same topologies are included in

Figure 4.20. The improvement in goodput ranges from 7-12% and 5-8% for 40 and 0 seconds

pause time respectively. The previous observations on the discrepancy in improvement over

different pause times for two flows are valid for 3 flows as well. For more than 3 simultaneous

flows our experiments have shown that the SCA method has no discernible effect on good-

put. As mentioned in the previous section, the optimal cwnd for TCP under such conditions is

around one segment and it is not possible for the SCA mechanism to function properly. This

is not an issue exclusive to the SCA method; multiple segments in-flight (as a result of mul-

tiple TCP flows) along sufficiently long paths would cause deterioration in TCP performance

regardless of the TCP agent used as there would be too many segments in the pipe at any one

time for spatial reuse to be exploited [25,26,43,72].

4.5. OTHER CONSIDERATIONS 115

[O k

5k

0

1o a SCA NewRc ,

0-O NewRero

IOk

4oa tit'.
L" Ne,

...... e 43 a ýSk

A

25 10 25
Mean Node Speed OM) Man Node Speed (ms)

(a) 0 secs pause time (b) 40 secs pause time

l0

Figure 4.20. Average goodput for three TCP flows using NewReno and SCA NewReno

4.5.2 Routing feedback - adaptive SCA

In the previous sections, the evaluation of the SCA technique did not entail any feedback from

the routing protocol. It is possible to determine an optimal SCA parameter for a given hop

count and apply the optimised parameter to the TCP agent for any given path length. To

determine such a parameter per hop count we utilise the same methodology as is done in [25]

for the adaptive CWL method. Unless otherwise noted, the simulation parameters are as set in

the previous section.

Specifically, string topologies of various lengths are set up ranging from 4-15 hops. A

TCP Reno connection carrying FTP traffic is established between the end-nodes. The FTP

source is active from the beginning of the simulation until its end at the 900 seconds mark.

The SCA strategy is applied by varying the SCA parameter in the range of 0 to 50. The value

of the threshold parameter that yields the best goodput in each string topology is deemed to

be efficient and is noted. Table 4.4 shows which parameter was optimal for each hop count

when using the DSR protocol. We have also conducted the same experiments using the AODV

protocol, which reveals that the optimal parameters per hop count are very similar to the ones

for DSR. The relevant table is included in Appendix B. 2.

The idea of an adaptive SCA strategy is similar in principle to the adaptive CWL method [26].

Using the route path length information provided by DSR, TCP can dynamically adjust the

4.5. OTHER CONSIDERATIONS 116

SCA parameter whenever the length of the route changes. As DSR is a source routing proto-

col, a cooperating TCP agent is guaranteed to be aware of the total hop count to the destination

(as it sets the path in the packet header).

We have evaluated this by performing simulation experiments in the following fashion. In

a flat space of 1500x300m, 50 nodes were placed randomly. The random waypoint mobility

model is used to simulate mobility by assuming continuous mobility (0 seconds pause time)

and maximum node speeds of 2,5 and 10m/sec. For each pause time/maximum node speed

combination 50 different topologies are created and each simulation lasted for 900 seconds.

The metric collected at the end of the simulation run was goodput.

Results from these experiments are included in Figure 4.21 for both static and adaptive

SCA agents. The benefits of an adaptive SCA strategy were marginal at best (the difference

between static and adaptive ranging from -1% to 1.5%), and not significant mainly because

there was not much difference between the various SCA rates in terms of goodput in static

topologies as evident in Figure 4.6. A much slower sending rate increase in the congestion

avoidance phase can be unproductive in the case of frequent route breakages, though, because

the TCP source cannot utilise the full capacity of the link in the little time it is available (i. e.

before route breakages occur). The effects are especially noticeable if hidden terminal effects

cannot possibly take place (i. e. the path is less than 4 hops long). At least in single flow

environments, the adaptive SCA strategy does not appear to be beneficial over static SCA,

however as noted before, it is possible to use route length feedback to deactivate the SCA

mechanism when hidden terminals are not an issue (i. e. in this case, when the route length is

less than 4 hops).

Finally, note that although simulation results in the case of other pause time periods are

not included, these would not be expected to denote different behaviour; the factor which

precludes significant performance difference between static and adaptive SCA (i. e. that an

SCA parameter of 10 is a "good enough" value) would still hold.

4.5. OTHER CONSIDERATIONS 117

60k

50 k

40k

0-0 adaptive SCA
)--c static SCA

Max. Speed (mh)

Figure 4.21. Goodput against node speed for the adaptive and static SCA Reno

Table 4.4. Default SCA Reno parameter on string topologies for DSR

Hop Count(h) parameter h parameter

4 42 10 48

5 45 11 35

6 39 12 10

7 49 13 50

8 47 14 25

9 29 15 10

4.6. CONCLUSIONS 118

4.6 Conclusions

Inspired by the conservative sending rate increase of TCP Vegas, and motivated by its com-

pelling performance advantage over Reno-based TCP variants, this chapter has introduced a

new mechanism, named Slow Congestion Avoidance (SCA), which employs a more conserva-

tive sending rate increase and which alleviates some of the intra-flow spatial contention caused

by traditional TCP agents. To this effect, the new method employs a parametrised delay in

the growth of the TCP congestion window, which is implementable in both the slow start and

congestion avoidance phases of Reno-based variants. This work has examined the possible ap-

plications of the new technique and has shown, with the aid of detailed simulation traces, that

it is most effective when applied to the congestion avoidance phase of TCP as this is mostly in

effect in long-lived TCP flows. The resulting technique has been named SCA TCP and is or-

thogonal to link layer solutions to spatial contention as it is end-to-end applicable and involves

only transport layer alterations.

The technique has been shown to improve goodput by 4-26% in the case of TCP Reno

in a variety of dynamic topologies matching and even surpassing TCP Vegas' performance

without incurring the latter's computational overhead. Further, the new technique has been

contrasted with an existing solution towards spatial contention alleviation, namely the adaptive

Congestion Window Limit (CWL) method. Both methods were employed in dynamic ad hoc

topologies, using long-lived TCP flows for both AODV and DSR protocols. The subsequent

evaluation has revealed SCA to outperform adaptive CWL in terms of goodput under various

mobility conditions by 4-20%.

Since the SCA technique has been shown to result in goodput gains by alleviating intra-

flow spatial contention, subsequent work in this chapter has also investigated its applicability

to multiple TCP flows originating from the same sender. The SCA method has been further

parametrised to deal with inter-flow spatial contention in the case of multiple TCP flows and

was shown to outperform the plain TCP agent in the case of NewReno in dynamic topologies.

Specifically, the performance improvement achieved in various dynamic topologies exhibiting

4.6. CONCLUSIONS 119

various degrees of mobility was 4-12%.

The possibility of utilising feedback on the path length as realised by the routing protocol

has also been examined with the prospect of customising the SCA parameter on a per hop-

count basis. However, and in the case of the DSR protocol which provides such feedback, it

has been shown that the utilisation of such a technique does not lead to significant improvement

gains as the default SCA parameter provides an equivalent goodput improvement.

In this chapter, the SCA technique has addressed the issue of alleviating spatial contention

via modifications on the sending side in a communicating pair. However, spatial contention

is also caused by the receiving entity in a TCP communicating tuple, which returns feedback

to the sender through the injection of acknowledgement (ACK) segments in the network. The

next chapter reviews the literature on the topic of reducing acknowledgement traffic caused

by the receiver (termed "ACK-thinning" in research nomenclature [6]) and identifies previ-

ously ignored problems with existing proposals. Then, a combination of MAC layer options in

802.11 transceivers is evaluated in tandem with existing ACK-thinning techniques to result in

goodput improvements.

Chapter 5

ACK-thinning techniques in MANETS

5.1 Introduction

As identified in previous work in MANETs [26,43,104,105,107], the issue of spatial con-

tention in multihop wireless networks, which is aggravated by the existence of hidden termi-

nals, is caused by the inability of the MAC mechanism to properly coordinate transmissions.

Specifically, for unoptimised TCP agents, too many segments may be injected into the pipe

at any one time and the MAC mechanism may be unable to handle those numerous elements

competing for transmission time. As discussed in the previous chapter, spatial contention could

be mitigated through alterations at the transport layer by applying changes to the TCP sender.

Although changes at that level may not eliminate the problem in its entirety, it is, nonetheless,

possible to enhance throughput especially across long transmission paths.

In the context of a TCP communicating pair there are two elements contributing to spa-

fiat contention; the sender's transmission of TCP DATA segments and the receiver's reciprocal

ACK response. The SCA approach outlined in the previous chapter aims to reduce the amount

of outstanding DATA segments, i. e. segments injected by the sender. By considering the com-

plementary aspect of the problem, it would therefore be beneficial to reduce the amount of ACK

traffic, as generated by the receiver. Mechanisms to that effect are named ACK thinning tech-

niques. An optimisation of this nature has already been implemented in the TCP standard [541

120

5.1. INTRODUCTION 121

as, notably, TCP incorporates a piggyback mechanism for ACK segments by including the

ACK byte sequence number in DATA segments exchanged between hosts. Intuitively, in the

case where the DATA traffic derives mostly from one of the two communicating parties such a

measure is ineffective as it does not come into effect frequently. Hence, it can be beneficial to

introduce other, possibly orthogonal, end-to-end techniques to deal with the issue.

Specifically, several previous research studies [6,26,31,112] have identified the receiver's

ACK response as an important cause of spatial contention and have targeted its reduction,

either by piggybacking TCP ACKs on other traffic along the same path [112] or by reduc-

ing the ACK response frequency [6,311. Solutions present in the literature also include the

activation of the optional delayed ACK TCP mechanism [105,107] and an appraisal of its

effectiveness. However, these studies have only performed limited evaluation of their pro-

posed changes in MANET topologies and have largely ignored limitations imposed by real-

life TCP implementations such as the overhead of the TCP timer granularity. In particular, in

several research works [6,26,31] it is assumed that the TCP ACK response may be delayed

with exact precision, whilst in modem TCP implementations, delaying an ACK response en-

tails some degree of granularity. Moreover, there has been little investigation into quantifying

the level of spatial contention added by TCP ACK responses as opposed to contention con-

tributed by DATA segments. Such an enquiry could provide insight on the degree of improve-

ment that may be achievable with ACK-thinning methods. Finally, although the RTS/CTS

exchange of the 802.11 protocol has been identified as a source of spatial contention [103],

the MAC mechanism configuration as used in the literature with respect to spatial contention

issues [6,26,31,43,71,85,104,105,108], does not include considerations of optimisations

possible within the 802.11 specification.

After having identified shortcomings in the evaluation conducted by previous research with

regard to ACK-thinning mechanisms, our first contribution in this chapter is a discussion re-

garding the effects of those limitations on the results derived in past works. Significantly,

it is highlighted that previous attempts at reducing spatial contention by affecting ACK re-

sponses have largely ignored inherent limitations of existing TCP implementations, which, in

5.2. ACK-THINNING IN MANETS 122

turn, make the proposed changes difficult to implement. As such, it has been assumed in past

research [6,3 11 that ACK responses may be delayed for any finely defined time period, disre-

garding the delay timer granularity. Further, concerns may be raised with respect to the path

length characteristics assumed in existing literature [6,26,3 1], where large hop counts are em-

phasised in importance, but which are unlikely given a reasonable network size [60,921 and

appear rarely in popular research mobility models, like the random waypoint model [110]. Fur-

ther, two 802.11 compatible MAC layer optimisations with respect to the RTS/CTS exchange

are introduced. The first is applicable to the ACK-responses of the TCP agent, whilst the sec-

ond applies to both ACK and DATA frames. Both are shown to result in a reduction of spatial

contention and to have a positive impact on TCP goodput.

The rest of the chapter is organised as follows. Section 5.2 describes two existing end-to-

end ACK-thinning techniques (delayed ACKs and Dynamic Adaptive ACKs) and highlights

their degree of efficiency as outlined in the literature. Then, Section 5.3 identifies problems

and limitations on the evaluation of the previously outlined solutions. Three problem areas

are identified, namely the requirements in temporal granularity of ACK responses, identifying

which path length cases are more likely to occur and thus be targeted for optimisation, and

the effect of making use of the RTS/CTS mechanism of the 802.11 protocol. Section 5.4

presents a possible MAC layer optimisation on 802.11 compliant devices, which has been

largely ignored in existing literature, and notes its positive result on goodput. Section 5.5

analyses the performance gains of combining this optimisation with the implementable end-

to-end ACK-thinning mechanisms introduced previously in a variety of topologies. Finally,

Section 5.6 concludes the chapter and offers an overview of the presented results.

5.2 ACK-thinning in MANETs

This section presents two ACK-thinning mechanisms introduced previously [31,105]. The first

one, delayed acknowledgements (ACKs), is an optimisation strategy which has been developed

5.2. ACK-THINNING IN MANETS 123

for wired networks but which has also been shown to have significant merits in a MANET set-

ting [105]. The second optimisation is named Dynamic Adaptive Acknowledgements and is

intended for use in MANETs as an efficient ACK-thinning strategy [31], being applicable to

both long-lived and short-lived flows. This section, thus, offers prerequisite background infor-

mation on ACK-thinning methods which supports the discussion for the rest of this chapter.

5.2.1 Delayed acknowledgements

The delayed acknowledgements mechanism is an oft-enabled [4] feature of TCP, as first de-

scribed in [27]. Its principal operation is simple and relies on the cumulative nature of TCP

acknowledgements; instead of immediately replying with an ACK upon receiving a DATA

segment, the TCP receiver waits a short time (usually 100-500ms [3]). If a subsequent DATA

segment arrives, assuming it is consecutive and in-order, then it is possible to inject a single

ACK into the pipe, which cumulatively verifies the receipt of both DATA segments. Fur-

ther, since TCP connections are duplex, it is also possible to piggyback the ACK onto DATA

segments being sent in the other direction, i. e. from the `receiver' to the `sender', thus saving

bandwidth. To avoid confusing TCP estimates, such as the round trip time estimator and TCP's

ACK-clocking mechanism, the relevant RFC [15] dictates that ACKs should not be delayed in

any case for more than a single (extra) DATA segment, or for a time period of more than 500ms.

It has been shown in the literature that delayed ACKs are beneficial for TCP throughput

and should be enabled by default [3]. Subsequent research in wired networks, has investigated

the possibility of increasing the delay response for TCP so as to alleviate the competition of

ACKs for bandwidth space along with TCP DATA. However, it has been demonstrated that

this might result in "burstiness" or has other shortcomings, especially with regard to wide

deployment on the Internet [90]. In MANETs, the throughput enhancing property of delayed

ACKs has been demonstrated repeatedly in static and dynamic topologies, with reactive [106]

and proactive [86] TCP agents. In special cases the improvement in TCP throughput is in the

range of 15-32% [105].

5.2. ACK-THINNING IN MANETS 124

Sender

dwin=4
AC K

\ VV /.
-

L\ / dwin=2

sample ti oo segment (oo=out of order)
interval ack

immediate
,

count

dwin=4 acks due to
0 produced

k
00 dwin=2

.... ý o.... , time

Figure 5.1. Demonstration of Dynamic Adaptive ACKs

5.2.2 Dynamic Adaptive Acknowledgements

The Dynamic Adaptive Acknowledgement (DAA) method is a sender/receiver modification

introduced by d' Oliveira et al. [31]. It aims to reduce the number of ACKs produced at the

receiver by taking advantage of their cumulative property. The DAA method dictates changes

to the TCP sender as well as the receiver with the delay of ACK responses being performed in

a dynamic manner so as to adapt to changing network conditions. There is some processing

overhead associated with DAA but the trade-off is a general increase in throughput and better

utilisation of the wireless channel (improving on spatial reuse).

The main operation of DAA is based around a mechanism of withholding ACK responses

at the receiver. The only requirement at the sender is to restrict its congestion window (cwnd)

between 2 and 4 segments, i. e. allow it to keep 2,3 or 4 segments outstanding in the network

at any one time. The receiver maintains a dynamic delaying window (dwin) with size ranging

from 2 to 4 full sized segments, which determines when an ACK will be produced. Whenever a

consecutive DATA segment is received, an ack-count variable increases by one until it reaches

the current value of dwin. When ack_count = dwin an ACK response is immediately pro-

duced, ack_connt is reset to one segment and the value of dwin increases by one. This signifies

the beginning of the next epoch, that is to say the next group of DATA segments for which the

corresponding ACKs will be delayed. Note that the ackccount variable differentiates between

5.2. ACK-THINNING IN MANETS 125

these epochs and is initially set to one segment.

If every DATA (and ACK) segment is successfully delivered the DAA method allows even-

tually 4 DATA segments to produce one ACK response from the receiver. However, as DATA

segments may be lost or be overly delayed during transit it is useful to introduce a mechanism

whereby a prompt ACK response could still be triggered without waiting for ack-Count to

reach the current dwin. The proposed prompt response mechanism in DAA works as follows.

For each DATA segment received, say i, i+1, i+2, ..., and for which an ACK is to be delayed,

its inter-arrival time gap with the previous DATA reception is recorded, say J i, 8i+t, dt+Z1
"" ")"

Effectively, for each ACK delay epoch, the inter-arrival times of incoming DATA segments are

noted. These collected time periods are used to calculate a smoothed average which signifies

an "expected" inter-arrival time, say b; +j, for consecutive ACK segments. The calculation is

performed using a low-pass filter and is used to assess a timeout interval for the ACK response.

If 6i is the last average calculated, Sj+i is the DATA segment inter-arrival time sampled and a

is an inter-arrival smoothing factor, with 0<a<1, then

J1+1 =: a* 6- + 1- a) * 8i+l (5.1)

As the relevant RFC suggests [5], in the case of out-of-order segments an ACK response is

immediately prompted, but otherwise the receiver waits for a time period T1 before responding.

This effective timeout interval is calculated with a timeout tolerance factor, K, with rc >0 as

shown in equation (5.2), where Si is calculated by equation (5.1).

Tj=(2+r,.)*3i (5.2)

Note that for short file transfers it may be desirable to produce quick ACK responses so

as to allow a increase of the sending rate during the slow start phase at the sender. To this

end, there exists a mechanism in DAA method to account for variable, as opposed to fixed,

increases in the dwin size. There is a speed increase factor, µ, with 0< is < 1. If maxdwin is a

status indicator which turns true when the maximum possible value for dwin has been reached

5.3. EXISTING EVALUATION OF ACK-TIIINNING TECHNIQUES 126

(by default set to 4 segments) then dwin growth is set to

dwin +z if maxdwin=false,
dwin = (5.3)

dwin +1 otherwise.

Equation (5.3) allows the receiver to respond immediately with ACKs in the case when the

TCP sender is in the slow start phase where each ACK increases cwnd by a single segment. If

ACKs were delayed during this phase the sender would not receive enough ACKs to increase

its sending rate effectively. Essentially, the maxdwin parameter signifies (at the receiver) when

the slow start phase (at the sender) is over. Once the maxdwin is reached once, then this

mechanism is not activated again for the same connection. Hence, this facility is intended for

short file transfers.

The DAA method has been evaluated on string and mesh topologies of varying length and

different number of flows [31]. On string topologies of up to 8 hops and 20 flows the method

increases throughput up to 50% over plain TCP NewReno. In particular it is noted that as the

number of concurrent flows increases, the DAA method becomes increasingly effective. On

mesh topologies, taking into account 3 and 6 cross traffic sources the performance improvement

is of the same magnitude, but the difference diminishes against optimised (with respect to

maximum congestion window size) Vegas and SACK agents. The method does not lead to a

discernible performance advantage in the case of short-lived flows.

From an implementation perspective the DAA method is an end-to-end sender/receiver

modification. The sender needs to be tweaked with respect to initial cwnd size and the receiver

needs to implement the ACK dynamic window. However, no modifications are required to

other layers and no cross-layer feedback is assumed.

5.3 Existing evaluation of ACK-thinning techniques

This section outlines three factors with respect to the evaluation of ACK-thinning techniques

that have either not been considered in their entirety in the existing literature or have been

53. EXISTING EVALUATION OF ACK-THINNING TECHNIQUES 127

ignored altogether [71]. In particular, the requirements of the TCP delayed ACKs timer gran-

ularity [31], considerations of the hop-count in general simulation topologies [43,105] and

issues with the implementation of the 802.11 RTS/CTS exchange in existing evaluation stud-

ies [19,43,71,105] have only partially been addressed. This section, thus, presents arguments

for a more complete approach in evaluating ACK-thinning techniques and forwards recom-

mendations for a more comprehensive evaluation.

Simulation Setup: The simulations performed in this section all share the following param-

eters. The signal propagation model used is the Two-Ray Ground model, and the wireless

transceivers are modelled after the Lucent WaveLan II models [64] (as done throughout this

dissertation). The TCP agent used is NewReno and the segment size is set to 1460 bytes. The

routing protocol used is AODV. A more complete list of parameters for both the routing and

transport agents is included in Appendix A, and both mirror the setup used in previous chapters.

Finally, the string topology simulations involve topologies arranged in the manner depicted in

Figure 5.2 and thus, are set up as in the previous chapters in this dissertation.

Node I Node 2 Node 3 Node 4 Node n

000"'Oý, 0... 06' _ý'

(10,10) (210,10) (410.10) (610,10) (2000(n-1)+10,10)

E. ä
200m

Figure 5.2. n-node string topology

5.3.1 Granularity of the TCP timer

Past research has focused on introducing delay when injecting ACK segments, as a means of

bundling consecutive ACKs into fewer batches by taking advantage of their cumulative prop-

erty [6,31,105]. The amount of delay introduced in such cases is variable and the techniques

introducing it may be computationally intensive. However, there is scarcely a mention on how

fine the control over such a delay need be [31,51,701.

Specifically, it is assumed that upon deciding on a given delay, the receiver will be able to

5.3. EXISTING EVALUATION OF ACK-THINNING TECHNIQUES 128

delay the transmission of the ACK segment for precisely that amount of time [311. However,

actual TCP implementations may not operate in such a fashion, but instead implement timers

with certain granularity. Previous research on TCP implementations has identified issues aris-

ing from using a coarse "heartbeat" timer for TCP agents, especially with respect to the RTO

mechanism [78,89]. In general, the relevant RFC [15] demands an ACK response to be no later

than 500ms, which is a rule compliant Internet hosts must adhere to and which is in fact imple-

mented as standard in popular operating systems. Specifically, the granularity implemented is

of the order of l Oms (Linux kernel 2.6 [76]), 100ms (FreeBSD v5.0 [I I]), or even 500 ms [15].

Research dealing with ACK-thinning methods has not taken such a requirement into account

and has instead opted for very fine (or even infinitely fine) ACK timers [31,51,70].

ACK response granularity

v

Cl)

N

U

m
p
Co N
E

E
ca
0
Z

0

"

00 "}

90.0 90.5 91.0 91.5 92.0

Time (secs)

Figure 5.3. Illustrating "heartbeat" timer granularity

It may not be claimed that the granularity specified in the systems above is going to be a

typical quantity in TCP agents deployed on MANET nodes. It should be stated nonetheless,

5.3. EXISTING EVALUATION OF ACK-THINNING TECHNIQUES 129

Table 5.1. Effects of timer granularity on the DAA technique

Hops
Granularity

Oms lOms 5Oms 200ms 500ms

3 6237 6299(1%) 6311(1%) 63050%) 6293(-0.8%)

4 4370 4388(0.4%) 4295(-1.7%) 3900(-12%) 3504(-24.7%)

5 3777 3727(-1.3%) 3621(-4.3%) 3517(-7.3%) 3011(-25.4%)

6 3257 3320(1.8%) 3231(-0.8%) 3043(-7%) 2618(-24.4%)

7 3129 3064(-3%) 2997(-4.4%) 2851(-9.7%) 2450(-27.7%)

8 2910 2873(-1.2%) 2797(-4%) 2686(-8.3%) 2320(-25.4%)

9 2800 2747(-1.9%) 2679(-4.5%) 2516(-11.2%) 2156(-29.8%)

10 2652 2624(-1%) 2542(-4.3%) 2429(-9.1%) 1962(-35.1%)

11 2465 2474(0.3%) 2517(-2%) 2459(-0.2%) 1963(-25.5%)

that even if MANET agents implement sufficiently fine-grained timers so that their precision is

not a performance altering factor, these would still have to interact with Internet hosts, which

would not necessarily conform to such fine-grained timer requirements. As such, the issue

is worthy of some research effort to determine how timer granularity may affect an existing

implementation.

To further explore the last point we have implemented the DAA method as outlined in

Section 5.2.2 in the ns-2 simulator [37]. An FTP transfer session with an infinite backlog

is initiated at the beginning of the simulation between the two end-points of a 7-hop string

topology and lasts for the duration of the simulation, which is 120 secs. Figure 5.3 depicts the

ACK responses from the receiver during the 90-92 secs interval. Each filled point indicates the

number of ACK responses delayed before launching a cumulative ACK. A value of 0 denotes

an immediate ACK, as a response to out-of-order segments. The dotted vertical lines indicate

the ACK checkpoints of a "heartbeat" timer with 200ms granularity. If simulation were to

allow for such granularity, the ACK responses would only occur on each "heartbeat", i. e. at the

time points indicated by the vertical lines. However, in this case since such provisions are not

made, ACK responses occur at any point in time (infinite timer granularity).

5.3. EXISTING EVALUATION OF ACK"THINNING TECHNIQUES 130

To quantify the effects of variable timer granularity, the DAA method was deployed on

string topologies of variable length n, with 4<n< 12. An end-to-end FTP transfer with

infinite backlog was set up as before for 120 secs. At the end of the simulation the achieved

TCP goodput was noted. Each simulation was repeated by setting the "heartbeat" granularity

to 0 (immediate response), 10,50,200 and 500 ms. The values were chosen to be representative

of the ideal case (Oms), the case of existing operating systems (10,50,200) and the case of older

systems (500ms - BSD 4.4 [18]). The effects of different granularity per hop-count on goodput

can be examined in Table 5.1 where goodput as the total number of segments transmitted,

without considering retransmissions, is indicated. The percentage in parenthesis indicates the

difference in goodput for each granularity level as compared to the ideal case (Oms granularity).

Note that as noted in the previous chapters, as the hop count increases, goodput decreases as a

side-effect of spatial contention [26,106].

In general, there is little difference in performance between the ideal case of Oms granular-

ity and those of 10 and 50ms for any hop count. For a receiver with a 200 ms level of granularity

there is a penalty in goodput of approximately 7-12% for string topologies of length 5-11 nodes

(4-10 hops). In the case of 500ms granularity the goodput performance is consistently worse

by approximately 25%. Evidently, in the case of the string topology and especially over long

paths, goodput suffers if the path is sufficiently long (over 5 hops) and the receiver ACK gran-

ularity is over 200ms. In order to be representative of a modern operating system the rest of

the chapter assumes a Linux kernel-like l Oms granularity for the receiver. Contrary to previous

research efforts [6,3 1] this work explicitly states that assumption.

Although the case of the string topology is a special case of a communications path, it can

be representative of long lived path behaviour in a dynamic topological scenario and is, thus,

instructive on how granularity requirements may effect goodput. The effects of granularity in

this case are discussed with respect to the DAA method in particular but apply to any other

method requiring fine-grained controlled delay in ACK responses [51,70].

5.3. EXISTING EVALUATION OF ACK"THINNING TECHNIQUES 131

5.3.2 Path length

Studies on ACK-thinning in MANETs have largely been conducted in the special case of the

string topology [6,26,43,105,107] as this static setup offers a convenient environment to study

the effects of spatial contention in isolation from from the effects of mobility. More recent

research efforts [31,43] have also focused on analysing ACK reductions in the context of mesh

topologies as these offer the benefit of studying spatial contention caused by several flows

operating in tandem.

The random waypoint model has been a popular mobility pattern template, used widely in

previous MANET research [19,30,34,71,104]. Although other mobility models exist [20], it

has been deemed generic enough to at least warrant some consensus as the standard parameter

in an evaluation setup [75]. Since string topologies are the testbed for the evaluation of ACK-

thinning techniques it becomes interesting to investigate an average value of the formed paths

in topologies generated by the random waypoint model. Such an endeavour would illustrate

which range of length for the string topology is of most interest assuming that a given path

length range most frequently noted in random waypoint generated topologies is also one that

would likely be encountered in real-life deployments.

To investigate this aspect, we have conducted a set of path measuring experiments in a

variety of dynamic topologies, set in motion according to the random waypoint model under

low (2m/s), medium (5m/s) and high (15m/s) mobility conditions. The simulation time was set

to 900 secs, as in the experiments considered in Chapter 3 and as widely practised in literature

[25,34,49,87). For each mobility condition, 200 topologies consisting of 50 nodes each were

taken into account, occupying both square (1000x l 000m) and strip (1500x300) areas. The

transceiver and signal propagation model used is the same as in the string topology simulations

above.

The path length measurement was conducted in the following fashion. The average path

length pi, j between nodes i and j was set as an average of the path length (distance in hops)

between nodes i and j during simulation time when such a path did exist; in the case of a

5.3. EXISTING EVALUATION OF ACK"THINNING TECHNIQUES 132

disconnection (as long as that might have been) nothing was added or subtracted from the

average. It should be indicated that pi, j= pj, i, Vi, j as the path length between two nodes

is the same regardless of which end-node is considered as the beginning point for the hop-

count. Further note that the shortest possible path in terms of hop distance was considered

as the actual path length between nodes i and j at any one time. This is considered a fair

representation of the actual path length, as all the routing protocols under examination in this

dissertation, namely AODV [92], DSR [60] and OLSR [48], contain mechanisms to favour

the shortest possible path for communications. However, there are cases where the shortest

path may not be discovered by the routing protocol, for instance due to the broadcasting storm

problem [100] or otherwise severe spatial contention which might lead to some route request

drops, but we assume these cases to be relatively rare and expect our findings to hold true in

the case when an actual routing agent is used.

Figure 5.4 shows histograms for strip (1500x300m) topologies under low (2m/s), medium

(5m/s) and high (15m/s) mobility. It is evident that the path length rarely exceeds 3 hops under

these conditions. Figure 5.5 depicts the relevant histograms for square topologies (1000x 1000m),

where the same conclusions may be extrapolated. Note that the breaks between the histogram

cells (bins) were set according to the Freedman-Diaconis rule [55]. Appendix B. 1 also con-

tains, for completeness, histograms produced with the Sturge's rule, which lead to the same

conclusion.

Overall, there is strong indication that short communicating paths are important enough

to be emphasised during evaluation and simulation tracing experiments. For the rest of this

chapter and in subsequent evaluation, our focus is equally distributed over long and short paths

without bias, in contrast to previous research [6,26].

5.3.3 RTS/CTS exchange

The Request to Send/Clear to Send (RTS/CTS) short frame exchange is defined by the 802.11

specification [52] as a means to alleviate the hidden and exposed terminal effects, described in

Section 1.1.1.

5.3. EXISTING EVALUATION OF ACK-THINNING TECHNIQUES 133

Histogram of path length Histogram of path length

N

O'
N

C

Q
LL

LL

O

ýý

9- N

ý-

I

ý'

(a) Low mobility 2m/s (b) Medium mobility 5m/s

Histogram of path length

N

LL

ýý

9'

1.0 1.5 2.0 2.5 3.0 3.5

Path L. npth

(c) High mobility 15m/s

Figure 5.4. Histogram of path lengths in a strip area (1500x300m)

12345

Path Length

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Path Length

5.3. EXISTING EVALUATION OF ACK-THINNING TECHNIQUES 134

Histogram of path length Histogram of path length

ý-

8_

ý. N

LL

ý-

CY
N

O
N

LL

ý-

OJ

T

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Path Length

(a) Low mobility 2m/s (b) Medium mobility 5m/s

3-

I-

I
§

0-

Histogram of path length

(c) High mobility 15m/s

Figure 5.5. Histogram of path lengths in a strip area (1000x 1000m)

12345

Path Length

1.5 2.0 2.5 3.0 3.5

Path LMpth

5.3. EXISTING EVALUATION OF ACK-THINNING TECHNIQUES 135

OTHER
SOURCE DESTINATION

Within DATA transmission range)

rn

TIME (

TH

Defer rMll
Transmission

cil °iMi
I

May I DI

A
time

firma a" MOW4 1
(a) Transmission management without (b) Transmission management with
RTS/CTS RTS/CTS

Figure 5.6. Illustration of wireless communication with and without the RTS/CTS exchange

The principle operation of the RTS/CTS exchange is as follows; before transmitting a

DATA segment to a particular neighbouring node, the sender first transmits an RTS frame

which acts as an intent-to-transmit message containing the destination and duration of the in-

tended transmission. The intended receiver, then, responds in turn with a CTS frame which

includes similar timing information, informing neighbouring nodes of the length of the subse-

quent intended transmission. The procedure is depicted in Figure 5.6. Specifically, the dotted

lines in Figure 5.6(b) illustrate that a non-intended receiver of the DATA frame transmitted by

the sender, simply defers transmission until the medium is perceived to be idle for sometime.

Following the deferral, the node in question may again resume contending for transmission

time. In the case where RTS/CTS is used (Figure 5.6(b)) the transmission time for the same

frame size increases as there is the added overhead of the RTS/CTS frame exchange in ad-

dition to the DATA and ACK frames. Note that in this case, however, nodes within both the

transmission radius of the sender and the receiver are informed of the impending DATA frame

exchange so as to withhold their own transmissions. This is in contrast to the previous case

where the mechanism is not used, and only nodes within the sender's communications range

are aware to refrain from transmitting at the same time and, thus, avoid causing a collision.

As stated, the extra overhead of the RTS/CTS mechanism cannot always be justified for

5.4. PERFORMANCE IMPACT OF RTS/CTS 136

every DATA frame transmission. This is acknowledged in the 802.11 specification [52], espe-

cially with regards to short DATA frames. As such the 802.11 standard implements RTS/CTS

control through the dot]l RTSThreshold attribute. This allows the use of RTS/CTS to be active

for all frames, frames longer than a specified length or not at all. In particular, if the number

of bytes in the segment to be transmitted is below the dotll RTSThreshold, then the RTS/CTS

exchange is not performed. The default value in the 802.11 standard is 2347 bytes, which im-

plies disabling the exchange altogether [52] (as it is typically not necessary in infrastructure

wireless LANs). Nonetheless, it is useful to activate the feature when all frames need to be

"protected" against the hidden terminal effect or even activate it selectively for large frames

only whilst leaving it turned off for shorter frames (say TCP ACK segments), as these may be

less at risk as they can be transmitted faster [103].

Previous research on ACK-thinning techniques has not taken into account the effects of

the RTS/CTS mechanism, largely assuming that the mechanism would be active at all times

[6,26,31]. However, for 802.11 conforming implementations, the RTS/CTS mechanism would

be disabled by default for TCP DATA and ACK frames, since the encapsulating frame would

not be of sufficient size (assuming that the dotll RTSThreshold was set to the default value).

In this chapter we investigate the implications of disabling the RTS/CTS exchange and note

the throughput performance implications. Disabling RTS/CTS may be done in the case of only

ACK segments (using the dotll RTSThreshold parameter) or for both TCP DATA and ACK

segments (by disabling RTS/CTS altogether). Either method may be used in tandem with

ACK-thinning techniques and possibly lead to a cumulative performance improvement.

5.4 Performance impact of RTS/CTS

This section demonstrates with the aid of a simulation trace example the effect of disabling the

RTS/CTS response for ACK segments, as well as for both ACK and DATA TCP segments. To

this end, two new metrics on spatial contention are introduced and are further used in the next

section for general string and mesh topology evaluation.

5.4. PERFORMANCE IMPACT OF RTS/CTS 137

The experimental setup is as follows. A string topology of 5 nodes (4 hops) is assumed

in the fashion depicted in Figure 5.2, and as used in the previous section. An FTP session is

initiated at the beginning of the simulation between the two end-points of the string topology

and continues for 120 secs at which point the simulation ends. As in the previous section, the

TCP agent used to carry the FTP traffic is NewReno [38]. The rest of the TCP parameters are as

noted in Appendix A. Note that although in this particular case delayed ACKs are not employed

(which is a common optimisation enabled by default in some TCP implementations [4]), the

observations made are applicable even in the case when such a mechanism is opted for. Section

5.5 contains more discussion on this point and includes further results in the case of string and

mesh topologies.

To quantify the effects on spatial contention of the RTS/CTS exchange two metrics are

introduced. The first metric is the number of DATA frames dropped due to repeated failed

MAC layer retransmissions. Note that the maximum number of MAC layer retries for a frame

is set to 4 attempts as per the 802.11 specifications [52]. The payload of these frames is ei-

ther a TCP DATA or ACK segment and so a series of repeated transmission failures leading

to a drop is marked as either FAILDATA or FAILACK respectively. The second metric is the

number of failed RTS/CTS exchange procedures. It is worth mentioning that an RTS/CTS ex-

change is attempted several times by the MAC mechanism before it is marked as having failed.

The required number of such attempts is 7 in the 802.11 specification2. Such failed attempts

are noted as FAILRTS/CTS drops. Further, the number of collisions is noted during the FTP

transfer. Such collisions may be MAC frames containing TCP DATA, ACK or RTS/CTS pay-

loads and so are marked COLDATA, COLACK and COL, S/CTs. It should be specified that

a high number of collisions indicate an increasing degree of spatial contention, whilst a high

number of failed negotiations, either in TCP DATA or ACK transfers, denotes an increasing

inability of the distributed MAC mechanism (the Distributed Coordination Function in 802.11

nomenclature [52]) to effectively cope with spatial contention.

I In the 802.11 specification the parameter is named doll MongRetryUmit
21n the 802.11 specification the parameter is named dotllShortRetryLimit

5.4. PERFORMANCE IMPACT OF RTS/CTS 138

The simulation is run three times and with each iteration a different RTS/CTS strategy is

employed. In the first round the RTS/CTS exchange is fully utilised in both TCP DATA and

ACK segment exchanges. Subsequently, the RTS/CTS mechanism is only opted for "suffi-

ciently large" TCP segments, i. e. only for DATA segments. Finally, in the third iteration, the

RTS/CTS exchange is eliminated altogether. These three strategies are hereafter referred to

as "Full RTS/CTS", "Partial RTS/CTS" and "No RTS/CTS" respectively. The discussion that

follows is conducted with the aid of measurements of spatial contention expressed with the

metrics introduced in this section.

Figure 5.7 depicts a 101-running average of the number of segments in flight throughout

the simulation for the three different strategies. The graphs depict the number of DATA and

ACK segments existing along the path through the simulation time and also shows their com-

bined (aggregate) presence. A visual inspection of the figures reveals that disabling RTS/CTS

altogether (Figure 5.7(c)) results in the TCP agent being able to maintain more segments in

the pipe at any one time in both its receiving and sending aspects, i. e. both for DATA and

ACK segments. In this particular case, on average, 15.74 segments exist in the pipe at any one

time using the "No RTS/CTS" strategy which is significantly higher (by 183.76% and 167.4%)

than the averages of 5.548 and 5.886 segments achieved by the "Full RTS/CTS" and "Partial

RTS/CTS" strategies, respectively. The complete numerical set of averages for all three strate-

gies, categorised by type (DATA or ACK or both) is shown in Table 5.3. In this case, as for

the rest of this section, table entries may be accompanied (where applicable) with a number in

parenthesis denoting the numerical difference (percentage-wise) between the value examined

for that particular strategy against the value achieved under the "Full RTS/CTS" strategy.

Overall, the "No RTS/CTS" strategy allows the MAC mechanism to be more efficient in

coordinating the transmissions of a higher number of outstanding TCP segments. Table 5.2

contains the number of collisions and overall transmission failures for each RTS/CTS strategy.

Note that no segment drops were recorded due to buffer overflows in the forwarding nodes.

Further, Table 5.4 contains the goodput achieved (in total segments transmitted and ACKed)

for each strategy. Both the "Partial" and the "No RTS/CTS" strategies suffer from fewer frame

5.4. PERFORMANCE IMPACT OF RTS/CTS 139

g

R

1R

0

Tot
DATA

- ACK

S

R

ý'
R

0

To
DATA
ACK

,, .ý

0 50 100

71ms (sea)

(a) Full RTS/CTS

r

i

150 zoo 0 50 100

Tim. (Ncm)

(b) Partial RTS/CTS

(c) No RTS/CTS

Figure 5.7. Segments in flight for different RTS/CTS strategies

150 200

5.4. PERFORMANCE IMPACT OF RTS/CTS 140

Table 5.2. Frame collisions and drops for each RTS/CTS strategy

Full RTS/CTS Partial RTS/CTS No RTS/CTS

COLRTS/CTS 15047 8236 (-45%) 00

COLDATA 79 240 3696

COLACK 67 6318 8197

COLTOTAL 15193 14794 11893

FAILRTS/CTS 273 169 (-38%) 00

FAILDATA 167 169(l. 1%) 35 (-79.04%)

FAILACK 106 81(-23.5%) 310092%)

FAILTOTAL 546 419 (-23.2%) 345 (-36.8%)

collisions overall, but incur greater TCP and ACK frame collisions than the "Full RTS/CTS"

method. Similarly, a greater number of RTS/CTS failed negotiations occur in the case of the

"Full RTS/CTS" method as compared to the "Partial RTS/CTS" strategy ("No RTS/CTS" does

not employ this exchange and thus records no such failures). This provides some indication of

the overhead added spatial contention provided by the RTS/CTS exchange; collisions among

segments increase and the MAC mechanism is unable to effectively coordinate transmissions

(as denoted by the average number of TCP segments maintained in the pipe).

It is evident that the increased number of RTS/CTS transmissions leads to several RTS/CTS

collisions which have a detrimental effect on goodput. An indication of this is the number of

failed TCP and ACK transmissions for the "Full RTS/CTS" method. The number of TCP

DATA and ACK segment drops cannot be solely attributed to MAC frame drops containing

DATA or ACK payloads. The number of collisions of those are too few (79 and 67 segments

respectively) to account for the number of frame drops (167 for TCP and 106 for ACK pay-

loads). Hence the increased number of RTS/CTS exchange failures as compared to the other

methods (273 in the case of "Full RTS/CTS" as opposed to 169 for the "Partial RTS/CTS"

method) as well as the number of RTS/CTS collisions (45% greater than the "Partial" strategy)

can largely account for the discrepancy in goodput (where the Full RTS/CTS method incurs

5.4. PERFORMANCE IMPACT OF RTS/CTS 141

Table 5.3. Average segments in flight for each RTS/CTS strategy

Full RTS/CTS Partial RTS/CTS No RTS/CTS

MeanTCP 3.278 3.602 (9.8%) 8.337 (154.3%)

MeanAcx 2.148 2.156 (0.3%) 7.313 (240.4%)

MeanTOTAL 5.548 5.886(6%) 15.74 (183.7%)

Table 5.4. Goodput achieved for each RTS/CTS strategy

Full RTS/CTS Partial RTS/CTS No RTS/CTS

TCP Goodput
(in total no. of segments)

4476
(-)

4748
(6%)

5365
(19.8%)

performance hit of 6 and 19.8% compared to the Partial and No RTS/CTS techniques respec-

tively). Note that an RTS/CTS exchange failure (that is 7 consecutive failed attempts) results

in a TCP DATA or ACK segment drop corresponding to that transmission process. This fact

explains why there are 273 segment drops recorded in the case of the "Full RTS/CTS" method

and only 146 DATA and ACK bearing MAC frame collisions - many of the drops would be

explained in terms of RTS/CTS exchange failure.

In summary, this section has demonstrated that in the special case of the 5-node string

topology, the increased spatial contention due to the RTS/CTS exchange results in a goodput

penalty for the TCP agent. For the first time, spatial contention has been quantified in this

special case, in terms of frame types (RTS/CTS, TCP DATA and ACK frames). It has been

shown that an increase in collisions during the RTS/CTS exchange leads to increased segment

drops and a decrease in achieved goodput. This example has also shown for the first time that

a more conservative approach in the generation of RTS/CTS segments, through the "Partial

RTS/CTS" method, results in goodput improvement. The next section, examines the implica-

tions of employing such RTS/CTS methods in several string and mesh topology settings and

in a variety of ACK-thinning techniques. The overall aim is to investigate if the noted perfor.

mance improvement in this case will be applicable in a more generalised setting.

5.5. PERFORMANCE EVALUATION 142

5.5 Performance evaluation

This section expands on the scope of the previous examination of a specific string topology.

The intent of this enquiry is to determine the merits in terms of goodput of the "Partial" and

"No RTS/CTS" technique with respect to two ACK-thinning techniques in MANETs, delayed

ACKs and DAA (as outlined in Sections 5.2.1 and 5.2.2 respectively). The dimension in focus

for this performance analysis is, thus, the effects of each RTS/CTS strategy per ACK-thinning

method.

5.5.1 Simulation setup

As with the analysis of the previous section, the same metrics of spatial contention are used in

the following performance evaluation, namely the total number of frame collisions (COLTOTAL)

and the total number of frame drops due to repeated failed MAC layer transmissions (FAILTOTAL).

Further the achieved goodput of TCP is recorded.

The topology setup of the simulation is outlined separately in each of the sections below.

The simulation parameters, common to the performance evaluation conducted are outlined in

Table 5.5 and are in agreement with previous ACK-thinning research work [6,311. Considera-

tions on the ACK timer granularity are taken into account in this study in the manner outlined

in Section 5.3.1.

5.5.2 Evaluation on string topologies

String topologies as commonly used to evaluate TCP performance in the presence of spatial

contention [6,26,31,43,69,105], are the focal point of interest in this section. Similarly

to previous sections in this chapter, an FTP connection is set up between the endpoints of the

string topology and runs throughout the simulation time before results are collected. The string

topologies considered are of size n, where 4<n< 12; these are illustrated shown in a general

form in Figure 5.2.

For this enquiry three ACK-handling paradigms have been evaluated with respect to achieved

5.5. PERFORMANCE EVALUATION 143

Table 5.5. Common Simulation Parameters

Parameter Value

Channel Bandwidth 2Mbps

Signal Propagation Two-Ray Ground

Packet Size 1460 bytes

TCP Agent NewReno

ACK granularity
response

lOms
(Linux kernel 2.4)

Routing Protocol AODV

Simulation Time 300 secs

goodput and noted collisions and drops. These paradigms are a plain TCP receiver (plain

ACKs), as the base case; delayed ACKs, as a popular optimisation of TCP [51, and the Dy-

namic Adaptive ACK strategy [31].

The goodput results for a single connection may be considered, with respect to the effects

of the RTS/CTS strategy used on each ACK strategy. Figure 5.8 shows the goodput results of

a plain TCP receiver on topologies of increasing hop-count for each of the RTS/CTS strategies

examined here. The achieved goodput regardless of the ACK strategy used decreases as the

hop-count (number of nodes in the string topology) increases, hence altering the ACK strategy

does not alter that TCP behavioural characteristic as noted in the case of the "Full RTS/CTS"

mechanism in previous research work [26,43,107,108]. However, notably, goodput increases

both when the "Partial RTS/CTS" and "No RTS/CTS" techniques are in use. In the case of

the "Partial RTS/CTS" mechanism the increase is in the range of 6-9% for plain ACKs (Figure

5.7(a)), 3-6% for delayed ACKs (Figure 5.7(b)) and approx. 3% for Dynamic Adaptive ACKs

(Figure 5.7(c)). The improvement in the case of disabling the RTS/CTS exchange is high and

ranges within 17-23% for plain ACKs, 15-22% for delayed ACKs and 9-19% for Dynamic

Adaptive ACKs. As ACK-thinning techniques are employed, the effectiveness of both the

"Partial" and "No RTS/CTS" strategies diminishes, most notably for the "Partial" RTS/CTS

technique. This is because ACK-thinning alleviates some of the spatial contention and there is

5.5. PERFORMANCE EVALUATION 144

less scope for improvement by this MAC layer modification.

Figure 5.9 presents the number of total collisions recorded for each strategy in the same

scenarios. In all the RTS/CTS techniques as the number of nodes in the string increases so

does spatial contention (indicated by the increasing number of frame collisions). This fact is

reflected on the declining goodput as the string topology length increases (Figure 5.8). Espe-

cially in the case of the Dynamic Adaptive ACKs, the level of spatial contention is substantially

less than the other two strategies, as there are no noted RTS/CTS exchanges and the TCP agent

maintains a low congestion window (up to 4 segments), i. e. maintains few segments in flight.

This results in few collisions as segments are few and tend to "spread" along the string.

We have also noted the results of the above scenario in the case of multiple TCP connec-

tions among the end-points. In this case, the aggregate goodput is considered. The results ver-

ify observations made above and the relevant goodput graphs may be found in Figure 5.10 and

Figure 5.11 for 2 and 3 TCP connections respectively. It is worthy of mention that the goodput

advantage of both the "Partial" and "No RTS/CTS" methods against the "Full RTS/CTS" ex-

change strategy remains consistent as more connections are employed on string topologies of

the length used here. In particular, Table 5.6 presents the goodput performance improvement

noted by employing the two RTS/CTS strategies against the full RTS/CTS exchange for the

three types of ACK response methods (plain, delayed and Dynamic Adaptive ACKs).

For a single connection, generally, disabling RTS/CTS decreases the number of collisions

compared to the other two strategies, but as the hop count increases, this trend does not hold

consistently across methods, notably for the delayed ACKs technique for 9,10 and 11 hops

(Figure 5.9(b)) and the plain ACKs for 11 hops (Figure 5.9(a)). The overall results are pre-

sented in Figure 5.9. For more than one connection, disabling RTS/CTS consistently reduces

the number of collisions throughout different hop counts. The relevant graphs depicting this

for 2 and 3 TCP connections are included in Figure 5.10 and Figure 5.11 respectively. It can

therefore be deduced that in these cases disabling the exchange leads to reduction in spatial

contention, which is in turn reflected in the goodput results.

The last metric appraised for this section is the number of drops registered due to repeated

5.5. PERFORMANCE EVALUATION 145

Plain ACKs Delayed ACKs

$O

C!

Fu/ RTSICTS $, '",
", "- Pwdal RTSICTS R` '"

o No RTS/CTS Full RTS/CTS
Pwfal RTS/CTS
No RTS/CTS

JS Ji $

° o.

4567B9 10 11 12 4567a9 10 11 12

No. rods No. nodes

(a) Normal TCP Receiver (b) Delayed ACK TCP Receiver

Dynamic Adaptiv. ACKs

Ful RTS/CTS
-o-P. 11 RTS/CTS

o"e" No RTS/CTS

iS
1Ysiýaa........

o 6`4

456769 10 11 12

No. nod..

(c) Dynamic Adaptive ACK TCP

Figure 5.8. Goodput against number of nodes in string topologies for a single TCP connection

5.5. PERFORMANCE EVALUATION 146

Plain ACKs Delayed ACKs

V0

0o

0/d
O8ý/ "

°

"ýý . sus/ý
Full RTSIcTs

ö- °Q°-"- PwW RTS/CTS

aR No RTSICTS
w

"/
°' Full RTS/CTS

°"- Prral RTSCTS 0.. " °
8.. No RTS1CTS

4567B9 10 11 12 459789 10 11 12

No. nodn No. nod"

(a) Normal TCP receiver (b) Delayed ACK TCP receiver

V
0-- -40ý ,

a..

WI RTSCTt
Pwft RT&CT{
No RTICTS

45{7t" 10 11 it

NO, ýWn

(c) Dynamic Adaptive ACK TCP

Figure 5.9. Number of collisions against number of nodes in string topologies for a single
TCP connection

5.5. PERFORMANCE EVALUATION 147

Plain ACKs

0

O/ o

aý"
a

aý"/,

l o

o' + FW RTS! CTS
""'o- Parral RTS/CTS
a.,

I'.

s No RTSICTS

458789 10 11 12

No. nodes

(a) Normal TCP receiver

Dynsmlc Adoptive ACKs

(b) Delayed ACK TCP receiver

°
Fug RTS/CTS

0 -. - P. MU RTS/CTS
No RTS/CTS

4S47! 9 10 11 12

No. rad. 8

(c) Dynamic Adaptive ACK TCP

Delayed ACKs

o

o-

0
° Ful RTSICTS

°' " PII RTS/CTS
"

.. o" o NoRTS/CTS

,
Rf °.. ,t

ö

456789 10 11 12

No. nod".

Figure 5.10. Number of collisions against number of nodes in string topologies for two TCP
connections

5.5. PERFORMANCE EVALUATION 148

Plain ACKs Delayed ACKs

$°0

°

"

nö o/

ýv/

Ns

ý
Full RTS/CTS

° Ful RTS(CTS /
........

a' -0- PMIU RTS/CTS
"° _"- PwI RTS/CTS o: `. ° NoRTS/CTS
o No RTS! CTS

SS °' ö

456769 10 11 12 456709 10 11 12

No. nods. No. nod""

(a) Normal TCP receiver (b) Delayed ACK TCP receiver

Dynamic Admpdv. ACKs

Ful RTS/CTS
Pwl RTS/CTS
No RTS/CTS

o

597"9 10 11 12

No. rods.

(c) Dynamic Adaptive ACK TCP

Figure 5.11. Number of collisions against number of nodes in string topologies for three TCP
connections

5.5. PERFORMANCE EVALUATION 149

Table 5.6. Range of goodput difference for each RTS/CTS strategy vs the "Full RTS/CTS"

exchange for increasing number of TCP connections

ACK
strategy

Range of goodput difference
against "Full RTS/CTS"

2 TCP con. 3 TCP con. 4 TCP con.

PARTIAL NO PARTIAL NO PARTIAL NO

Plain ACKs 7-8% 19-23% 6-7% 20-27% 5-8% 20-27%

Delayed ACKs 4-6% 19-22% 4-6% 19-24% 4-7% 20-28%

Dyn. Ad. ACKs 3-9% 8-19% 4-10% 8-19% 4-7% 8-19%

5 TCP connections 6 TCP connections

PARTIAL NO PARTIAL NO

Plain ACKs 6-8% 20-28% 6-8% 21-28%

Delayed ACKs 4-6% 21-27; b 4-6% 22-28%

Dyn. Ad. ACKs 5-7% 8-21% 4-7% 10-23%

failed transmissions. Figure 5.12 depicts the recorded number of total drops (including both

TCP DATA and ACK segments) for a single TCP connection for the three ACK strategies.

Both disabling RTS/CTS for ACK segments ("Partial RTS/CTS" method) and disabling the

exchange completely ("No RTS/CTS") result in fewer drops than the "Full RTS/CTS" method

by a margin of 16-55% for the former and 19-50% for the latter when no ACK optimisations

are employed (Figure 5.12(a)). Notably, as ACK optimisation methods are utilised, the num-

ber of recorded drops decreases as the ability of the MAC layer to cope with spatial contention

improves. When delayed ACKs are used, as shown in Figure 5.12(b) there are notably less

drops in the case of employing "Partial RTS/CTS" compared to the "Full" method, but dis-

abling RTS/CTS altogether leads to higher segment drops in many instances (string topologies

of 5,6,9 and 12 nodes in Figure 5.12(b)). This discrepancy reveals that not all "final" drops

have an equal impact on goodput, i. e. certain segment drops are more damaging to goodput

than others (note that in all cases, the goodput record for the "Full RTS/CTS" technique is less

than the one recorded for the other methods).

The above observation may be explained once the nature of TCP segment loss is examined.

5.5. PERFORMANCE EVALUATION 150

Plain ACKs

R

ýg 0
Ful RTSICTS

- Partlal RTS/CTS
o" No RTSICTS

456789 10 11 12

No. nodes

(a) Normal TCP receiver

Dynamic Adoptive ACKs

s

(b) Delayed ACK TCP receiver

P,

+- Fu/ RTS/CTS
-0-

e. No RTS/CTS

9

. 41 RTS/CTS

S679 10 11 12

No. nod..

(c) Dynamic Adaptive ACK TCP

Delayed ACKs

Full RTS/CTS
o" PwAd RTS/CTS

No RTS/CTS

o 1': ' ý"

4597e9 10 11 12

No. nod..

Figure 5.12. Number of drops due to consecutive failed transmissions against number of nodes
in string topologies for a single TCP connection

5.5. PERFORMANCE EVALUATION 151

Table 5.7. Detailed breakdown of segment loss due to repeated failed transmissions in a 4-hop

string topology using a single TCP connection and delayed ACKs

RTS strategy FAILRTS/CTS FAILDATA FAILACK FAILTOTAL

No RTS/CTS 0 35 608 643

Full RTS/CTS 275 201 74 550

In the case of a 5-node string topology in Figure 5.12(b) a total of 643 segment losses are noted

for the "No RTS/CTS" strategy and 550 for "Full RTS/CTS" method. It would therefore seem

that the latter handles spatial contention better than the former; an observation not reflected in

goodput as the "Full RTS/CTS" technique transfers, in total, 25% less segments. A breakdown

of these losses reveals that most losses in the case of "No RTS/CTS" are ACK segments (608

out of 643) whilst the "Full RTS/CTS" records only 74 such losses. Further, the "No RTS/CTS"

method experiences 35 TCP DATA drops as opposed to 201 for "Full RTS/CTS". Table 5.7

contains the complete data on the types of loss.

Intuitively, TCP DATA losses have a greater impact on goodput than ACK losses. Due to

their cumulative nature, an ACK loss may be inconsequential if a subsequent ACK is received

in time, i. e. before an RTO timeout is registered. For such an effect to occur, the average

congestion window (cwnd) has to be sufficiently large so that several segments in the pipe

would trigger ACK responses, some of which might be lost, but some of which would be

received in time so as not to trigger an RTO. In the case of "No RTS/CTS" such a condition

exists as the average value of cwnd is noted at 6 segments. Hence, it is the nature of segment

loss which affects goodput in this case in tandem with the amount of segment loss. This

statement holds true in all the other cases where the discrepancy occurs (6,9,12 node-string

topologies). The corresponding losses breakdown in those cases are included in Tables 5.8,5.9

and 5.10.

Two more points are worthy of note. Firstly that the Dynamic Adaptive ACK method

significantly reduces the number of segment losses in all cases, as noted in previous research

work [31], and especially in the case of a single TCP connection, eliminates them altogether

S. S. PERFORMANCE EVALUATION 152

Table 5.8. Detailed breakdown of segment loss due to repeated failed transmissions in a 5-hop

string topology using one TCP connection

ACK strategy FAILRTS/CTS FAILDATA FAILAcK teXtFAILTOTAL

No RTS/CTS 0 37 427 464

Full RTS/CTS 228 168 60 456

Table 5.9. Detailed breakdown of segment loss due to repeated failed transmissions in a 8-hop

string topology using one TCP connection

ACK strategy FAILRTSICTS FAILDATA FAILACK teXtFAIL OTAL

No RTS/CTS 0 17 322 339

Full RTS/CTS 164 113 51 328

Table 5.10. Detailed breakdown of segment loss due to repeated failed transmissions in a
1 1-hop string topology using one TCP connection

ACK strategy FAILRTS/CTS FAILDATA FAILAOK textFAII. roTAL

No RTS/CTS 0 9 311 320

Full RTS/CTS 127 91 36 254

5.5. PERFORMANCE EVALUATION 153

when using the "NO RTS/CTS method", as shown in Figure 5.12. Secondly, it should be noted

that the relevant segment drop results for 2 and 3 TCP connections follow the same trend as

those for a single connection, with the added note that the inverse relationship between total

number of drops and total achieved goodput holds in every case. The relevant segment drop

results for 2 and 3 TCP connections are shown in Figures 5.13 and 5.14 whilst goodput is

shown in Figures 5.15 and 5.15.

In conclusion, this section has examined the effect of the three RTS/CTS strategies on two

popular ACK-thinning optimisations, namely delayed Acknowledgements and the Dynamic

Adaptive Acknowledgements method on string topologies. The results indicate a substantial

improvement in goodput in using either technique in all cases, with disabling the RTS/CTS

exchange having the greatest impact in every case. The results have been explained in the

context of frame losses (RTS/CTS or ACK/DATA TCP payloads) and using the two metrics

introduced in the previous section. The next section examines the RTS/CTS handling methods

with respect to intra-flow interference in a mesh topology as done previously in the literature

[31,431.

5.5.3 Evaluation on a mesh topology

The mesh topology as used in this section has been commonly used in literature to examine

spatial contention and its effect on TCP when multiple interfering flows are present (31,43,

1041. The focus of the simulation experiments is to identify whether the RTS/CTS exchange

strategies affect throughput with respect to the ACK-thinning methods employed. As such, the

scope of the investigation is similar to the previous section. However, the different topology

setting offers insight into the interaction of TCP with the MAC layer mechanisms in the case

of moderate inter flow interference.

For the purposes of the following evaluation and discussion, the topology setup is set as

shown in Figure 5.17. The setup involves a 5x5 (25-node) mesh topology, where the horizontal

and vertical distance of successive nodes is set to 200m. This setup mirrors that of previous

work [31]. Two separate simulation scenarios are considered. First, three horizontal flows

5.5. PERFORMANCE EVALUATION 154

Plain ACKs Delayed ACKs

°"'

\"

"
-r Full RTS! CTS
-" Pad al RTS/CTS

RTS/CTS N

+ FulRTS/CTS
°- Pi#1 RTS/CTS

o.
,\

o o No RTSICTS

o....... o....... °-- o---- g

4s679

No. nod..

9 10 1+ 12 6s7eOw 1ý 12

No. noa..

(a) Normal TCP receiver (b) Delayed ACK TCP receiver

Dynamic Adaptlvs ACKs

7p o"

,
', " Ful RTSCTS

ý PýRTS/CTS
o. TS/CTS

Q.,

- o.

0
0

4567eY 10 11 12

No. nod. 6

(c) Dynamic Adaptive ACK TCP

Figure 5.13. Number of drops due to consecutive failed transmissions against number of nodes
in string topologies for two TCP connections

5.5. PERFORMANCE EVALUATION 155

Plain ACKS Delayed ACKS

7i

Ful RTS/CTS

"\6" Pedal RTS/CTS
o. No RTSICTS

---o
Q o

. or
o__. "

OS
"--,

ý FuIRTS! CTS
o, \"ý o_ ' "ý -S" PwIRTS/CTS

Q
ö

°a "ý"ý,
"

Q
ö

.: o.
° `'`

"" NoRTS/CTS

" .. 0.................
" ." 0..

"
ý

Q ''
°.......

p....... °....... °....... ° g
X

... °........
°....... o........

0....... 0

456769 10 11 12 456 769 10 11 12

No. nodes No. nod..

(a) Normal TCP receiver (b) Delayed ACK TCP receiver

Dynamic Adaptiv. ACKs

Fu1 RTSOCTS
P&fW RTS/CTS

°, " No RTSCTS

0
C.. -ý----Cý

45S7"0 10 11 1'2

No. eodn

(c) Dynamic Adaptive ACK TCP

Figure 5.14. Number of drops due to consecutive failed transmissions against number of nodes
in string topologies for three TCP connections

5.5. PERFORMANCE EVALUATION 156

Plain ACKs

Ful RTS/CTS
"p- PaMd RTSSCTS

o No RTSrCTS

ö

456769 10 11 12

No. nodes

(a) Normal TCP receiver

Dynamic Ad. ptlvw ACKs

(b) Delayed ACK TCP receiver

°

Ful RTS/CTS

a" RTS/CTS

-ib No RTS/CTS

"o.....

45e7 e0 10 11 12

No. rube

(c) Dynamic Adaptive ACK TCP

Delayed ACK,

°

o.

Ful RTS/CTS
-0- P. Ad RTSICTS

No RTSSCTS

0

"sa7e9 10 ii iz

No. nod..

Figure 5.15. Goodput against number of nodes in string topologies for two TCP connections

5.5. PERFORMANCE EVALUATION 157

Plain ACKs

ýg

o'.
Ful RTS/CTS

""- ParMJ RTSICTS
+ No RTS/CTS

,'

,1

,O

O

`O
\O,

56789 10 11 12

No. nodsi

(a) Normal TCP receiver

Dynsmlc Adspdvw ACKs

(b) Delayed ACK TCP receiver

C!

'"
-+- Ful RTSICTS
-- Pwrlw TS/CTS
.o. No RTSrCTS

Sd
a5e7e

No. node.

" 10 11 12

(c) Dynamic Adaptive ACK TCP

Delayed ACK,

o'.

Ful RTS/CTS
"- PaAId RTS/CTS

No RTS/CTS

4587B9 10 11 12

No. nodes

Figure 5.16. Goodput against number of nodes in string topologies for three TCP connections

S. S. PERFORMANCE EVALUATION 158

(10,10)

"

6

"
(10,210)

"

11

(10,410)

"
"

"

16

(10.610)

" "
"
"

(210,10)

7

(210.210)

Q!

)- (210,410)

17

(210,610)

(410,10)

" "
"

8

#(410,210)

"

.

13

(610.10)

9

(610,210)

Q.!

)- (610.410)

f (810,10)

"

0
"
. "(810,210)

200m

ý5 y

. (81o, Ilo)

"

20

(810.610)

.

: (410,410)

"
"

le

"
(410,610) (E) (620,610)

Figure 5.17.25-node mesh topology

(10.810) (210,810) (410,810) (610,810) (810,810)

horizontal }lows 3

_ vertical flows 200m

5.5. PERFORMANCE EVALUATION 159

Table 5.11. Goodput results for mesh topology with 3 TCP flows

ACK Strategy Goodput Achieved
Full RTS/CTS Partial RTS/CTS No RTS/CTS

Plain ACKs 15953 16683(5%) 18798(18%)

Delayed ACKs 16115 1676(4%) 20968(30%)

Dyn. Ad. ACKs 16456 17260(5%) 19416(18%)

are active, as denoted by the solid arrows in Figure 5.17. This configuration offers inter-

flow spatial interference alone; the flows do not share any common path but still interfere

with each other due to the discrepancy between the interference and transmission ranges of

their transceivers as described in Section 1.1.1. The second simulation scenario involves three

additional vertical flows as depicted by the dashed arrows in Figure 5.17. This setup allows

for both buffer space and spatial sharing between the flows; each flow shares its source and

destination with another as shown in Figure 5.17.

Table 5.11 contains the goodput results for the plain, delayed and Dynamic Adaptive TCP

ACK strategies for the different RTS/CTS methods, when 3 TCP flows are used. The values in

parenthesis next to the numerical values for the "Partial" and "No RTS/CTS" methods indicate

the performance improvement compared to the "Full RTS/CTS" method. For all three ACK

strategies using an alternate strategy to the "Full RTS/CTS" exchange results in substantial

improvement in goodput. As in the case of the string topologies, the "No RTS/CTS" method

yields greater goodput improvement (18-30%) compared to the "Partial RTS/CTS" method (4-

5%). In the case of 6 TCP flows, as shown in Table 5.12, the same observation holds true. It

can be deduced that in both cases, i. e. whether spatial or buffer contention at the forwarding

nodes is evident or otherwise, the alternative RTS/CTS strategies are beneficial goodput-wise

compared to the "Full RTS/CTS" paradigm.

Table 5.13 presents the number of frame collisions noted for the mesh topology scenario

using three TCP flows. It is noteworthy that the number of total collisions decreases for both the

"Partial" and "No RTS/CTS" strategies, with the latter registering a more noteworthy decrease

S. S. PERFORMANCE EVALUATION 160

Table 5.12. Goodput results for mesh topology with 6 TCP flows

ACK Strategy Coodput Achieved
Full RTS/CTS Partial RTS/CTS No RTS/CTS

Plain ACKs 16884 17879(6%) 23185(37%)

Delayed ACKs 16676 17171(3%) 21822(30%)

Dyn. Ad. ACKs 15848 19238(21%) 20601(30%)

Table 5.13. Collisions recorded for the mesh topology using 3 flows

ACK Strategy
Full RTS/CTS

Collisions Recorded
Partial RTS/CTS No RTS/CTS

Plain ACKs 44155. 43391(2%) 38905(12%)

Delayed ACKs 38593 38383(1%) 30312(21%)

Dyn. Ad. ACKs 36889 29564(19%) 23990(35%)

(12-35% as opposed to 1-19%). These improvements mirror the improvement noted in the

case of multiple TCP connections in string topologies as discussed in the previous section.

The equivalent results for the cross-traffic pattern of 6 TCP flows demonstrate show a similar

trend and can be found in Table 5.14. Overall, the reduction in collisions indicate that spatial

contention is reduced in this case, particularly when the RTS/CTS mechanism is disabled.

As indicated by the results in the string topology and the simulation trace examination in

Section 5.4, the number of drops due to repeated failed transmissions is a useful indicator of

the ability of the MAC mechanism to deal with spatial contention, i. e. to effectively coordinate

Table 5.14. Collisions recorded for the mesh topology using 6 flows

ACK Strategy
Full RTS/CTS

Collisions Recorded
Partial RTS/CTS No RTSICTS

Plain ACKs 57080 55964(2%) 43629(23%)

Delayed ACKs 50492 49290(3%) 41806(17%)

Dyn, Ad. ACKs 57080 55964(2%) 43629(24%)

S. S. PERFORMANCE EVALUATION 161

Table 5.15. Drops recorded for the mesh topology using 3 flows

ACK Strategy Drops Recorded
Full RTS/CTS Partial RTSICTS No RTS/CTS

Plain ACKs 2237 1596(28%) 1772(20%)

Delayed ACKs 1413 1083(23%) 1325(6%)

Dyn. Ad. ACKs 711 534(24%) 224(68%)

Table 5.16. Drops recorded for the mesh topology using 6 flows

ACK Strategy Drops Recorded
Full RTS/CTS Partial RTS/CTS No RTS/CTS

Plain ACKs 2762 2363(14%) 1122(59%)

Delayed ACKs 2122 1846(13%) 920(56%)

Dyn. Ad. ACKs 2186 1473(32%) 424(80%)

transmissions. In the case of 3 TCP flows the number of such recorded drops is substantially

decreased for both the RTS/CTS strategies. The results may be found in Table 5.15. The

percentage of reduction in drops, is consistently high regardless of the ACK strategy used,

with an exception in the case of delayed ACKs. In that case, the "No RTS/CTS" registers only

a 6% decrease. However, it should be noted that in that case the vast majority of drops (1251

out of 1325) are frames bearing an ACK payload, which has a smaller impact in goodput than

the loss of TCP DATA segments. This phenomenon has been accounted for in the case of the

string topologies in the previous section. Note that for the other two RTS/CTS techniques, that

is the "Full" and "Partial RTS/CTS" methods, in the case of the delayed ACKs strategy, DATA.

bearing frame losses severely dominate ACK-bearing ones (433 vs 217 in the case of "Partial

RTS/CTS" and 429 vs 275 in the case of "Full RTS/CTS"). This fact is reflected in the recorded

goodput for each method. When 6 TCP flows are employed the reduction in drops noted when

using the RTS/CTS handshake alternatives as opposed to "Full RTS/CTS" is consistent across

ACK strategies as can be seen in Table 5.16.

In summary, in the case of the mesh topology examined employing either the "Partial" or

5.6. CONCLUSIONS 162

"No RTS/CTS" strategies has a positive impact in goodput as either method helps alleviate and

handle spatial contention, compared to the "Full RTS/CTS" handshake. It has been shown that

this observation remains valid regardless of the ACK strategy employed.

5.6 Conclusions

This chapter has investigated the impact, of introducing 802.11 -compliant MAC layer optimi-

sations on a TCP agent making use of ACK-thinning strategies in MANE-Ts. The examina-

tion has considered both a traditional ACK-thinning paradigm used widely in wired networks,

namely delayed ACKs and the recently introduced, MANET-specific Dynamic Adaptive ACKs

method.

As a preamble to the performance evaluation, issues with respect to existing evaluation

of ACK-thinning techniques were inspected and for the first time, otherwise implicit or hid-

den simulation parameters were made explicit. In particular, the feasible granularity of ACK-

responses has been identified so as to ensure that subsequent simulation analysis corresponds

to an implementable system. Further, the average path length produced by a popular mobil-

ity model in the literature (and throughout this study) has been examined. This analysis has

identified the hop-count range of interest for the string topology simulation as utilised in the

subsequent performance analysis. Finally, a MAC layer mechanism as employed in previ-

ous research studies has been explicitly examined with respect to other modes of operation,

previously ignored in the literature. Specifically, an optimisation in the RTS/CTS exchange

function of the 802.11 specification has been determined to be usable in tandem with plain and

ACK-thinning enabled TCP agents.

Having identified different modes of the 802.11 MAC operation previously unexamined

in the literature, this study has examined their effect on ACK responses in a special case of

the string topology. First, two new metrics were introduced, measuring both the amount of

spatial contention on TCP data exchanges and the ability of the MAC mechanism to effectively

coordinate transmissions (maximise spatial reuse). Using these metrics and with the aid of

5.6. CONCLUSIONS 163
- Irýý

simulation trace analysis, the alternative RTS/CTS functions have been shown to improve on

spatial reuse.

This study has furthermore employed the new metrics and MAC layer optimisations to

identify the latter's effect on TCP goodput in the general case of the string topology. The

RTS/CTS optimisations were employed in tandem with ACK-thinning strategies to appraise

the net throughput gain. The evaluation results verified that both spatial contention and the

ability of the MAC mechanism to deal with it can improve with the deployment of the RTS/CTS

alternative behaviour. Further, TCP goodput has been shown to improve substantially in the

case of a plain TCP agent (up to 28%) as well as when delayed or Dynamic Adaptive ACKs

are deployed (up to 28% and 23% respectively). The throughput gain has been shown to be

consistent for single and multiple TCP connections.

In order to examine the effect of the RTS/CTS optimisations in the presence of inter-flow

interference, simulations on a mesh topology have also been conducted. The simulation results

have shown that the RTS/CTS optimisations at the MAC layer have a significant positive effect

on TCP, resulting in improved goodput (up to 37%) for a plain TCP receiver. The improvement

has been shown to exist for both delayed or Dynamic Adaptive enabled ACK receivers (up to

30% in both cases). The flow patterns under investigation have included scenarios of both

isolated and path-sharing flows.

This chapter has been complementary to the previous one as it has examined mechanisms

to improve TCP performance from the TCP receiver's perspective. As such, the two chapters

may be viewed in conjunction with the prospect of combining their orthogonal suggestions to

note cumulative goodput gains.

Chapter 6

Conclusions and future directions

6.1 Introduction

Mobile Ad hoc Networks (MANETs) have enjoyed significant research attention in the last

few years as the increased popularity of wireless devices has brought the promise of ubiqui-

tous connectivity closer to fruition. MANETs are in many ways ideally suited to facilitate such

all-encompassing communications by acting as standalone, spontaneous networks or as im-

promptu gateways offering access to the Internet via collaborating access points. The layered

approach principle in networking implies that development in MANETs can leverage on the

experience and solutions developed for wired or wireless infrastructure networks in order to

achieve rapid and reliable deployment.

However, existing protocols and mechanisms devised for wired networks have been based

on assumptions challenged in a MANET setting, mainly due to the wireless nature of the

shared medium and the requirement for mobility. Such discrepancies may lead to unpre-

dictable behaviour and even a performance penalty in MANETS compared to their wired

counterparts. The Transmission Control Protocol (TCP) is one such widely used mecha-

nism, suited for reliable, end-to-end communications, which exhibits sub-optimal performance

when used in a MANET. TCP has received early attention in the literature with respect to

164

6.2. SUMMARY OF CONTRIBUTIONS 165

MANETs [13,19,24,34,35,501, and its problems with regard to throughput in such an envi-

ronment have been well documented [26,40,43,105,1081.

Early work has been reported in the literature with respect to TCP performance in MANETs

[19,34]. However, as TCP has been shown to be greatly influenced by its interaction with the

routing protocol [43,107], such early studies did not account for performance issues with re-

cent routing proposals. This dissertation has extended performance evaluation in the area by

considering the goodput performance of popular TCP variants in concert with recently pro-

posed routing protocols following the two trends in MANET routing, namely both proactive

and reactive protocols.

Building on the results of the TCP performance analysis, we have investigated altering the

congestion avoidance mechanism of TCP so as to improve goodput by making better use of

the capacity of the wireless medium. The main consideration in the design of the mechanism

has been ease of deployment, achievable by maintaining the end-to-end semantics of TCP and

avoiding cross-layer dependencies. This work has shown that it is possible to introduce such

changes and affect goodput positively without introducing overly intrusive changes to the TCP

stack or significantly increasing the protocol's complexity.

As TCP conversations exhibit a sender/receiver dynamic with both ends being required to

transmit through the wireless medium, our work has discussed and evaluated TCP optimisa-

tions for either perspective. Such considerations have led to the use and appraisal of an 802.11

optimisation at the MAC level which leads to better use of the wireless channel and an overall

increase in TCP goodput. Throughout this work, special attention has been given to the explicit

statement of assumptions made during simulation and, where appropriate, criticism has been

offered to assumptions previously used in the literature.

6.2 Summary of contributions

This dissertation has focused on the examination of TCP behaviour in MANETS and has fur-

ther introduced new mechanisms in the protocol stack aiming to enhance goodput in such

6.2. SUMMARY OF CONTRIBUTIONS 166

environments. The major contributions made in this research work are summarised below.

" The first part of this dissertation has focused on examining the behaviour of TCP in

a MANET setting. As a preliminary step to the actual TCP performance evaluation

in dynamic topologies, simulation trace analysis is employed on a static topology over

three popular routing protocols, namely Ad hoc On-Demand Distance Vector (AODV),

Dynamic Source Routing (DSR) and Optimised Link State Routing (OLSR). The sim-

ulation trace analysis over AODV has revealed that buffering of segments at the rout-

ing layer can help avoid consecutive retransmission timeouts (RTOs) and thus better

utilise the wireless medium. Further, although previous research has identified the in-

ability of the 802.11 protocol to coordinate transmissions in multihop networks (such

as MANETs), this work has also confirmed this issue to exist in an ideal signal propa-

gation setting where interference is not evident. Trace analysis of simulation over DSR

has noted and demonstrated the positive effect on TCP goodput of the route caching and

eaves-dropping functionality of the protocol. Finally, the analysis of TCP behaviour over

OLSR has exposed its default routing parameters, as suggested in the RFC [281, to be

sub-optimal with respect to TCP goodput for a small number of connections. We have

offered an optimisation in the setting of the routing update interval which balances the

trade-off between overhead and improved goodput performance when few TCP flows

are present.

" TCP goodput has been examined in the context of dynamic topologies by taking into ac-

count limitations of the mobility model which have been resolved by recent research but

not considered by previous performance evaluation studies. Four popular TCP variants,

namely TCP Reno, NewReno, SACK and Vegas, have been considered in topologies de-

picting low, moderate and high mobility conditions. Overall, the results present a trend

across routing protocols where TCP Vegas exhibits superior goodput over the reactive

TCP variants especially under low mobility conditions. For instance, the difference in

performance against Reno reaches 10% for AODV and OLSR and up to 12% for DSR.

6.2. SUMMARY OF CONTRIBUTIONS 167

Through further careful tracing this performance advantage has been attributed to the

less aggressive transmission policy of Vegas which leads to fewer segments in transit

at any one time and thus reduces spatial contention. As such Vegas experiences less

consecutive RTOs than the other variants and its goodput is not as severely affected.

" In view of the last observation above, the second part of the dissertation has examined

methods of adopting a Vegas-like conservative sending rate for Reno-based TCP variants

in order to improve goodput by mitigating spatial contention without compromising their

reactive nature to packet loss. After considering changes in both the slow start and

congestion avoidance phases of TCP, this work has proposed a slowdown parameter for

reactive TCP variants as part of a method called Slow Congestion Avoidance (SCA).

The proposed optimisation has been deliberately confined to the sending side of the TCP

communicating pair and is implementable through simple alterations to the transport

layer in order to facilitate ease of deployment. The new method has been evaluated in

dynamic topologies and has been contrasted to another method existing in the literature,

referred to as the adaptive Congestion Window Limit (CWL) technique. Simulations

have shown that SCA can improve goodput by up to 20% over both standard TCP and

the adaptive CWL variant in various mobility conditions.

" Further, this work has examined an adaption of the SCA method to improve TCP good-

put in the case of multiple flows. Through simulation analysis an effective parameter for

SCA has been determined and has been shown to improve goodput by up to 12% over

plain TCP in dynamic topologies. Also, as the effectiveness of the slowdown parameter

in SCA depends on the path length, we have considered utilising feedback from the rout-

ing protocol to adjust it dynamically. To this end, we have implemented and evaluated

an adaptive SCA mechanism, which, however, does not lead to noticeable improvement

over the standard SCA method.

" The third part of the dissertation has examined TCP optimisations for MANETS, appli-

cable at the TCP receiver, which control the flow of ACK segments along the wireless

6.3. DIRECTIONS FOR FUTURE WORK 168

path and are generally termed as ACK-thinning techniques. Through simulation exam-

ples it is noted that previous work in the literature has not taken a whole system view

on the simulation parameters and has made assumptions which may not be applicable

in practice. In particular, previous work has ignored the granularity requirements of the

ACK responses and has not justified the choice of a hop-count range as the focal tar-

get for improvements in subsequent evaluation. Furthermore, other 802.11 MAC layer

modes of operation have been largely ignored, even though they are part of the original

protocol specification. This dissertation has shed more light on the issues relevant to the

performance evaluation of ACK-thinning techniques and has also presented two 802.11

compliant optimisations adoptable at the MAC layer, which can improve TCP goodput.

" The new MAC level optimisations have been evaluated along with ACK-thinning tech-

niques in a specific string topology scenario by introducing new metrics which help

explain and quantify, in great detail, the level and causes of the observed goodput im-

provement. Finally, a broader scope of evaluation has been adopted where the new MAC

optimisations have been appraised in a variety of string and mesh topologies. Notably,

all recorded improvement has been accounted for and justified with the aid of the newly

introduced metrics. In string topologies the goodput improvement exhibited by ACK-

thinning methods using the MAC optimisations reaches 28% compared to employing the

default MAC mechanism; the corresponding improvement in goodput in mesh topolo-

gies is 37%.

6.3 Directions for future work

In the course of this research and on reflection of the presented results, several prospects for fu-

ture work are evident and some issues may be subject for further study. These are summarised

below.

" The performance evaluation in Chapter 3 has compared four TCP variants popular in

literature and commonly encountered in wired networks, namely TCP Reno, NewReno,

63. DIRECTIONS FOR FUTURE WORK 169

SACK and Vegas. However, in recent times, there have been several other proposals in

wired networks, which significantly alter TCP's congestion avoidance mechanism such

as TCP Westwood [22,45]. It would be an interest prospect to examine the impact

of non-congestion related losses on those variants and note if the performance penalty

incurred (if any) is of the same order as in the variants considered in this work.

" The random waypoint model was been used extensively in this dissertation to simulate

mobility and its performance effect on TCP. Although this particular mobility model

has been widely used in the literature there are several other models which account

for different possible motion patterns. Considering the potentially ubiquitous nature

of MANETs, such models could capture the mobility aspects of future MANET deploy-

ments and hence be representative of reality in some cases. A viable research prospect

would be to examine TCP behaviour with regard to such other mobility models.

" In this work, the reaction of the congestion-aware reliable transport protocol (TCP) has

been examined with relation to its application in a MANET setting. Recent research

work, such as the Datagram Congestion Control Protocol (DCCP), has focused on in-

troducing congestion awareness mechanisms to unreliable transport protocols, which

exhibit TCP-friendliness [671. A possible research avenue in the future could be the ex-

amination of the behaviour of such protocols in MANETs as these (similarly to TCP)

are influenced by non-congestion related losses.

"A wide variety of mechanisms to enhance TCP throughput have been proposed in MANETs

[34,43,1041. However, much of the subsequent evaluation has occurred in a homoge-

neous context, i. e. where implementations are well functioning and in agreement with

each other. In reality, proposed alterations are deployed gradually in a network and

communicating clients are expected to function adequately in a mixed environment. A

research prospect along this lines would involve examining existing solutions in such

heterogeneous settings and declaring whether gradual adoption is a viable option.

63. DIRECTIONS FOR FUTURE WORK 170

" The majority of research efforts with respect to MANETs have used simulation as a tool

of extrapolating conclusions for issues under consideration. As in other research endeav-

ours, simulation cannot (due to time and complexity considerations) predict results and

provide insight for all possible scenarios. As such, a natural extension to the research ef-

forts described in this dissertation would be to develop analytical models that can capture

the performance behaviour of MANETs.

" There has been little activity in the deployment and performance measurement of ac-

tual MANET systems. Provided sufficient resources were available to materialise an

actual MANET configuration, it would be useful to conduct measurements and verify

simulations results reported in the literature. Apart from instilling confidence in existing

work, such a deployment might reveal issues ignored in the simplifying assumptions of

simulation or otherwise not captured in present simulation tools.

Appendix A

Simulation parameters

A. 1 Routing agent parameters

Table A. 1. AODV - Complete list of simulation parameters

Parameter Value Parameter Value Parameter Value

Unidirectional IIack OFF Gratuitous RREQ OFF Expanding Ring Search ON

Local Repair ON Receive n HELLOs OFF Jitter HIELLOs OFF

Wait on Reboot OFF Optimized HELLOs OFF Rate Limit ON

LL Feedback ON Active Route Timeout 3 secs TTL Start 2

171

A. 1. ROUTING AGENT PARAMETERS 172

Table A. 2. DSR - Complete list of simulation parameters

Parameter Value Parameter Value Parameter Value

Flush Link Cache ON Promiscuous Listening ON Broadcast Jitter 20rns

Route Cache Timeout 300 Send Buffer Timeout 30 Send Buffer Size 100

Request Table Size 64 Request Table IDs 16 Maximum Request
Retransmissions

16

Maximum Request
Period

10 Request Period 500 Non Propagation
Request Timcout

30

Retransmission Buffer
Size

50 Maintenance Holdoff
Time

250 Maximum Maintenance
Retransmissions

2

Network Layer ACKs OFF Use Passive ACKs ON Passive ACK Timeout 100

Gratuitous Reply
Holdoff

ON Maximum Salvage
Count

15

Table A. 3. OLSR - Complete list of simulation parameters

Parameter Value Parameter Value Parameter Value

Hello interval 1 sec Refresh Interval 2 secs TC Interval 5 secs

MID Interval 5 secs IINA Interval 5 secs Neighbourhood Ifold rime 6 sees

Topology Hold Time 15 secs Duplicate Hold rime 30 secs MID I fold Time 15 secs

HNA Hold Time 15 secs Max. Jitter 250ms Willingness(WILL. DEFAULT) 3

TC Redundancy OFF MPR Coverage I Hysteresis Monitoring OFF

Singal Moniroting OFF Delay Generation OFF Fast Route Calculation OFF

Free Space Splitting
Proportion Limit

OFF Global Splitting
Proportion Limit

0.5 Immediate Message
Transmission

OF F

A. 2. TCP AGENT PARAMETERS 173

A. 2 TCP agent parameters

Table A. 4. TCP - Complete list of simulation parameters

Parameter Value Parameter Value Parameter Value

Num. dupACKs 3 ECN OFF Timer Granularity lOms

Max. RTO 60 secs Min. RTO 200ms FRTO OFF

Delayed ACKs ON Max. Burst 3 segments Lim. transmit OFF

Vegas a I Vegas P 3 Vegas y 1

No. SACK blocks 3 DSack generation OFF Seg. size 1460 bytes

Appendix B

Results supplement

B. 1 Topology characteristics

174

B. I. TOPOLOGY CHARACTERISTICS 17S

Histogram of path length Histogram of path length

ýý

S

R

I.

ý.

V

0

(a) Low mobility 2m/s (b) Medium mobility Sm/s

Histogram of path length

1"
I-

a-

(c) High mobility 15m/s

Figure B. 1. Histogram (Sturge's rule) of path lengths in a strip area (1SOOx300m)

iZ3s3

Path Length

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Pith L&Vh

I. o I. a 2. o 2.5 3.0 3,5

Path L. nplh

B. I. TOPOLOGY CHARACTERISTICS 176

Hlstogrnm of path length

F

I'

01 na"""rr. '

1234b

Path L. ng h

(a) Low mobility 2m/s

Histogram of path I. ngth

F

1.0 1, s 9.0 2.5 3.0 3.6 4.0 4.5

Path lwgth

(b) Medium mobility Smis

Hlitogram of path length

I i.

U

o.

(c) High mobility 15m/s

Figure B. 2. Histogram (Sturge's rule) of path lengths in a strip area (1000x I OOOm)

1.5 2.0 :. e 5.0 3.5

Path Lang h

B. 2. SCA SUPPLEMENT 177

B. 2 SCA supplement

Table B. I. De taut Nt; A tceno parameter on st un to oto i
Hop Count(h) parameter h parameter

4 48 10 48

5 46 11 31

6 50 12 37

7 48 13 30

8 46 14 39

9 48 15 39

es for AODV

Appendix C

Publications during the course of this

research

Book Chapters

" S. Papanastasiou, M. Ould-Khaoua, L. M. Mackenzie, ACK-thinning techniques for TCP

in MANETS, under review for publication in a collection. Prof. A. Boukerche, Editor.

" S. Papanastasiou, M. Ould-Khaoua, L. M. MacKenzie, A performance study of TCP in

Mobile Ad Hoc Networks. Performance Evaluation of Parallel, Distributed and Emergent

Systems. (Volume 1 in Distributed, Cluster and Grid Computing), Nova Publishers,

2006.

" S. Papanastasiou, M. Ould-Khaoua, and L. M. MacKenzie. TCP Developments in Mo-

bile Ad hoc Networks. Chapter 30, Handbook of Algorithms for Wireless and Mobile

Networks and Computing. CRC Press, 2005.

Journal Papers

" S. Papanastasiou and M. Ould-Khaoua. Adjusting the sending rate of TCP for MANETS.

Revised version under review for Computer Communications journal, Elsevier Publish-

ing, Aug 2006.

178

179

9 S. Papanastasiou and M. Ould-Khaoua. TCP Congestion window evolution and spa.

tial reuse in MANETS. Journal of Wireless Communications and Mobile Computing,

4(6): 669-682,2004.

" S. Papanastasiou and M. Ould-Khaoua. Exploring the performance of TCP Vegas in

Mobile Ad hoc Networks. International Journal of Communication Systems, 17(2): 163-

177l, 2004.

" M. Bani-Yassein, M. Ould-Khaoua, L. M. Mackenzie and S. Papanastasiou, Performance

Analysis of Adjusted Probabilistic Broadcasting in Mobile Ad IJoc Networks, appearing

in the International Journal of Wireless Information Networks, Pages 1-14, Springer

Netherlands, Mar 2006.

Conference Papers

" S. Papanastasiou, V. Charissis, Exploring the ad hoc network requirements of an au-

tomotive Head-Up Display interface. To appear in Fifth International Symposium of

Communication Systems, Networks and Digital Signal Processing, Patras, Greece, July

2006.

" S. Papanastasiou, L. Mackenzie, M. Ould-Khaoua, and V. Charissis. On the interaction

of TCP and Routing Protocols in MANETS. In Proceedings of International Conference

on Internet and Web Applications and Services/Advanced International Conference on

Telecommunications (AICT ICIW '06), pages 62-69, Guadeloupe, French Caribbean,

February 2006. IEEE Computer Society Press.

" S. Papanastasiou, M. Ould-Khaoua, and L. M. Mackenzie. On the evaluation of TCP

in MANETS. In Proceedings of International Workshop on Wireless Ad-hoc Networks

(IWWAN 2005), London, United Kingdom, May 2005.

" S. H. A. Wahab, M. Ould-Khaoua, S. Papanastasiou, Performance Analysis of the LWVQ

QoS Model in MANETS, in proceedings of the 21st annual UK Performance Engineering

Workshop (UKPEW '05), Newcastle, United Kingdom, July 14.15,2005.

180

" S. Papanastasiou, M. Ould-Khaoua, and L. M. Mackenzie. Exploring the effect of inter.

flow interference on TCP performance in MANETs. In Proceedings of Second Interna-

tional Working Conference of Performance Modelling and Evaluation of heterogeneous

Networks (HET-NETs 04), page P41. Bradford Print, 2004.

" S. Papanastasiou, L. M. MacKenzie, and M. Ould-Khaoua. Reducing the degrading ef-

fect of hidden terminal interference in MANETs. In Proceedings of the 7th ACM interna-

tional symposium on Modeling, analysis and simulation of wireless and mobile systems

(MSWiM), pages 311-314. ACM Press, 2004.

" S. Papanastasiou and M. Ould-Khaoua. On the performance of TCP Vegas in Afobile

Ad hoc Networks. In Proceedings of the 2003 International Symposium on Performance

Evaluation of Computer and Telecommunication Systems (SPECTS '03), pages 417-

422,2003.

Bibliography

[1] J. S. Ahn, P. B. Danzig, Z. Liu, and L. Yan. Evaluation of TCP Vegas: emulation and cx.

periment. In Proceedings of the conference on Applications, technologies, architectures,

and protocols for computer communication, pages 185-195. ACM Press, 1995.

[2] A. Ahuja, S. Agarwal, J. P. Singh, and R. Shorey. Performance of TCP over different

routing protocols in mobile ad-hoc networks. In Proceedings of IEEE Vehicular Tech-

nology Conference (VTC 2000), pages 2315-2319, May 2000.

[31 M. Allman. On the generation and use of TCP acknowledgments. SIGCOAMA! Computer

Communication Review, 28(5): 4-21,1998.

[41 M. Allman, S. Floyd, and A. Medina. Measuring the evolution of transport protocols in

the Internet. http: //ýww. ictiý'"cýq/t3ýt/ - C4. pff .

[5J M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control. Internet Draft, hUTc
lbw.

,
/rte/ Axt April 1999. Request For Comments.

[6] E. Altman and T. Jimenez. Novel Delayed ACK Techniques for Improving TCP Perfor.

mance in Multihop Wireless Networks. In Personal Wireless Communications, volume

2775, pages 237-250. Springer-Verlag Heidelberg, September 2003.

[7] G. Anastasi, E. Borgia, M. Conti, and E. Grego. IEEE 802.11 Ad Hoc Networks: Per-

formance Measurements. In Proceedings of the 23rd International Conference on Dis.

tributed Computing Systems Workshops (ICDCSW'03), pages 758-763, May 2003.

181

BIBLIOGRAPHY 182

[81 F. Anjum and L. Tassiulas. Comparative study of various TCP versions over a wireless

link with correlated losses. IEEE�ACM Transactions on Networking, 11(3): 370-383,

2003.

[9] I. Armuelles, H. Chaouchi, T. R. Valladares, I. Ganchev, M. O'Dromn, and M. Siebert.

On ad hoc networks in the 4g integration process. In Proceedings of the third Annual

Mediterranean Ad Hoc Networking Workshop (Med-Hoc 2004), June 2004.

[10] B. Bakshi, P. Krishna, N. Vaidya, and D. Pradhan. Improving performance of TCP

over wireless networks. In Proceedings of the 17th IEEE International Conference on

Distributed Computer Systems (ICDSC), 1997.

[I I] The FreeBSD Project. Ytp: /M w. fre
. cg/

[12] D. Bertsekas and R. Gallager. Data Networks, volume 1. Prentice Hall, 1987.

[13] S. Biaz and N. Vaidya. Discriminating congestion losses from wireless losses using

interarrival times at the receiver. In Proceedings of IEEE Symposium on Application-

Specific Systems and Software Engineering and Technology (ASSET'99), pages 10- 17.

March 1999.

[14] E. Blanton, M. Allman, K. Fall, and L. Wang. A Concertºatrve SelectivýeAcknowledgment

(SACK)-based Loss Recovery Algorithm for TCP. Internet Draft, ht : //ýraýw. ie f.

crg/zfh, / 7. txtr , April 2003. Experimental RFC.

[15] R. Braden. Requirements for Internet Hosts - Communication Layers. Internet Draft,

1 : /Aa w. id f. c /r/rfr: 1722. td , October 1989.

[16] L. Brakmo and L. Peterson. TCP Vegas: End to End Congestion Avoidance on a global

Internet. IEEE Journal on Selected Areas in Communications, 13(8): 1465-1480, Octo-

ber 1995.

BIBLIOGRAPHY 183

[17] L. S. Brakmo, S. W. O'Malley, and L. L. Peterson. TCP Vegas: new techniques for con-

gestion detection and avoidance. In Proceedings of the conference on Communications

architectures, protocols and applications, pages 24--35. ACM Press, 1994.

[18] L. S. Brakmo and L. L. Peterson. Performance problems in USD4.4 TCP. S! GCOM M

Computer Communications Review, 25(5): 69-86,1995.

[19] J. Broch, D. A. Maltz, D. B. Johnson, Y: C. Hu, and J. Jetcheva. A performance com-

parison of multi-hop wireless ad hoc network routing protocols. In Proceedings of the

fourth annual ACM/IEEE international conference on Mobile computing and network-

ing, pages 85-97. ACM Press, 1998.

[20] T. Camp, J. Boleng, and V. Davies. A Survey of Mobility Models for Ad H ioc Net.

work Research. Wireless Communication & Mobile Computing (WCMC), 2(5): 483-502,

2002.

[21] J. Cartigny, D. Simplot, and I. Stojmenovic. Localized minimum-energy broadcasting

in ad-hoc networks. In Proceedings of Twenty-Second Annual Joint Cori ference of the

IEEE Computer and Communications Societies (INFOCOM 2003), volume 3, March

2003.

[22] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R. Wang. TCP Westwood: end-to.

end congestion control for wired/wireless networks. Wireless Networks, 8(5): 467-479,

2002.

[23] R. Chandra, V. Bahl, and P. Bahl. Multinet: connecting to multiple We 802.11 networks

using a single wireless card. In Proceedings of Twenty-Third Annual Joint Co?! ermce of

the IEEE Computer and Communications Societies (INFOCOM 2004), volume 2, pages

882 - 893, March 2004.

[24] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash. A feedback based scheme

for improving TCP performance in ad-hoc wireless networks. In Proceedings of the 18th

BIBLIOGRAPHY 1 84

annual International Conference on Distributed Computing Systems, pages 472-479,

May 1998.

[25] K. Chen, Y. Xue, and K. Nahrstedt. On Setting TCP's Congestion Window Limit in

Mobile Ad Hoc Networks. In Proceedings of the 38th annual IEEE International Con.

ference on Communications ICC 2003, pages 1080-1084, May 2003.

[26) K. Chen, Y. Xue, S. H. Shah, and K. Nahrstedt. Understanding bandwidth-delay product

in mobile ad hoc networks. Computer Communications, 27(10): 923-934, June 2004.

[271 D. D. Clark. Window and acknowledgment strategy in TCP. Internet Draft, http:

//www. itf. crg/r6r/r 13. t<t , July 1982.

[28] T. Clausen and P. Jacquet. Optimized Link State Routing Protocol (OLSR). httS

/
.
id fc /rt /rL3625. bd: , October 2003. Experimental RFC.

[29] S. Corson and J. Macker. Mobile Ad hoc Networking (MANET): Routing Protocol Per-

formance Issues and Evaluation Considerations. Internet Draft, Y: /, i.

ag/r,. txt , January 1999. Informational RFC.

[30] S. Corson and J. Macker, Mobile Ad hoc Networking (MANET); Routing Protocol

Performance Issues and Evaluation Considerations. ham: //w. ietf. Yf /

dcM. tt , January 1999. Informational RFC.

[31] R. de Oliveira and T. Braun. A Dynamic Adaptive Acknowledgment Strategy for TCP

over Multihop Wireless Networks. In Proceedings of Twenty-Fourth Annual Joint Con.

ference of the IEEE Computer and Communications Societies (1NF000M 2005), vol.

ume 3, March 2005.

[321 0. Dousse, F. Baccelli, and P. Thiran. Impact of interferences on connectivity in ad hoc

networks. In Twenty-Second Annual Joint Conference of the IEEE Computer and Com-

munications Societies, JNFOCOM 2003, volume 3, pages 1724-1733. IEEE Computer

Society Press, March 2003.

BIBLIOGRAPHY 185

[33] R. Dube, C. Rais, K. -Y. Wang, and S. Tripathi. Signal stability-based adaptive routing

(SSA) for ad hoc mobile networks. In IEEE Personal Communications, volume 4, pages

36-45, Feb 1997.

[34] T. D. Dyer and R. V. Boppana. A comparison of TCP performance over three routing

protocols for mobile ad hoc networks. In Proceedings of the 2001 ACM international

Symposium on Mobile ad hoc networking & computing, pages 56-66. ACM Press, 2001.

[35] H. Elaarag. Improving TCP performance over mobile networks. ACM Computing Sur-

veys (CSUR), 34(3): 357-374,2002.

[36] K. Fall and S. Floyd. Simulation-based comparisons of Tahoe, Reno and SACK TCP.

SIGCOMM Comput. Commun. Rev., 26(3): 5-21,1996.

[371 K. Fall and K. Varadhan. The ns manual - the VINT project.

i /rWm- cbonutatjmltnl
[38] S. Floyd, T. Henderson, and A. Gurtov. The NewReno Modification to TCP's Fast Recov.

ery Algorithm. Internet Draft, ht±p: // t. i tf. amyzfr'zfr3M. txt , April

2004. Standards Track.

[39] S. Floyd and V. Jacobson. Traffic phase effects in packet-switched gateways. SICCOAIAA

Computer Communications Review, 21(2): 26-42,1991.

[40] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance.

IEEE�ACM Transactions on Networking (TON), 1(4): 397-413,1993.

[41] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An Extension to the Selective Ac-

knowledgement (SACK) Option for TCP. Internet Draft, Yom: //www, k f. cx /

rfiý^/rf3. txt , July 2000. Experimental RFC.

[421 Z. Fu, X. Meng, and S. Lu. How Bad TCP Can Perform In Mobile Ad Hoc Networks.

In ISCC '02: Proceedings of the Seventh International Symposium on Computers and

BIBLIOGRAPHY 186

Communications (ISCC'02), page 298, Washington, DC, USA, 2002. IEEE Computer

Society.

[431 Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla. The impact of multihop wireless

channel on TCP throughput and loss. In Proceedings of Twenty-Second Annual Joint

Conference of the IEEE Computer and Communications Societies (INFOCOM 2003),

volume 3, pages 1744-1753, March 2003.

[44] D. Goldsman. Simulation output analysis. In WSC '92: Proceedings of the 24th confer-

ence on Winter simulation, pages 97-103, New York, NY, USA, 1992. ACM Press.

[45] L. A. Grieco and S. Mascolo. Performance evaluation and comparison of westwood+,

new reno, and vegas tcp congestion control. SIGCOMM Comput. Commun. Rev.,

34(2): 25-38,2004.

[46] M. Gunes and D. Vlahovic. The performance of the TCPIRCWE enhancement for ad-

hoc networks. In Proceedings of the Seventh International Symposium on Computers

and Communications (ISCC 2002), pages 43-48. IEEE Computer Society Press, July

2002.

[47] C. Hedrick. Routing Information Protocol. Internet Draft, http; //wwd. idf. crg/

r /±1QEB, txt , June 1988.

[48] High Performance Communications (HIPERCOM) Project. Object-Oriented Optimized

Link State Routing Protocol (OOLSR). // #emmJ
, fr, , g/

[491 G. Holland and N. Vaidya. Analysis of TCP performance over mobile ad hoc networks.

In Proceedings of the fifth annual ACM/IEEE international conference on Mobile com.

puting and networking, pages 219-230. ACM Press, 1999.

[50] G. Holland and N. Vaidya. Analysis of TCP Performance over Mobile Ad Iloc Net.

works. Technical Report 99-004, Texas A&M University, February 1999.

BIBLIOGRAPHY 187

[51] P. -H. Hsiao, H. T. Kung, and K. -S. Tan. Active Delay Control for TCP. In Global

Telecommunications Conference, 2001. GLOBECOM'01, volume 3, pages 25-29. IEEE

Computer Society Press, November 2001.

[52] IEEE Standards Association. IEEE P802.11, The Working Group for Wireless LANs.

1tp: // . ieee. crg/ C2/fl /irk
. 1#m1.

.

[53] IEEE Standards Association. IEEE P802.16, The Working Group for Broadband

Wireless Access (BBWA). tt x//graVx. ieee. c /grzx ý8Q2ý1 W/ircb x.

Itrnl
.

[541 U. o. S. C. Information Sciences Institute. Transmission Control Protocol. Internet

Draft, 1tp: /Aww. idtf. a 'Ifr/t& 3. txt , September 1981. Request For

Comments.

[55] A. J. Izenman. Recent developments in nonparametric density estimation. Journal of

the American Statistical Association, 86(413): 205-224,1991.

[561 V. Jacobson. Congestion avoidance and control. ACM SIGCOMM Computer Commu.

nication Review, 18(4): 314-329,1988.

[57] S. Jin, L. Guo, I. Matta, and A. Bestavros. A spectrum of tcp-friendly window-based

congestion control algorithms. IEEE/ACM Trans. Netw., It (3): 341-355,2003.

[58] P. Johansson, T. Larsson, N. Hedman, B. Mielczarek, and M. Degermark. Scenario-

based performance analysis of routing protocols for mobile ad-hoc networks. In Pro-

ceedings of the fifth annual ACM/IEEE international conference on Mobile computing

and networking, pages 195-206. ACM Press, 1999.

[591 D. B. Johnson and D. A. Maltz. Dynamic Source Routing in Ad hoc Wireless Network`

chapter 5, pages 153-181. Mobile Computing. Kluwer Academic Publishers, 1996.

BIBLIOGRAPHY 188

[60] D. B. Johnson, D. A. Maltz, and Y. -C. Hu. The Dynamic Source Routing Protocol for

Mobile Ad Hoc Networks (DSR). Internet Draft, draft-ietf-manet-dsr- I O. txt, July 2004.

Work in progress.

[61] C. E. Jones, K. M. Sivalingam, P. Agrawal, and J. C. Chen. A Survey of Energy Efficient

Network Protocols for Wireless Networks. Wire!. Netw., 7(4): 343-358,200t.

[62] G. Judd and P. Steenkiste. Repeatable and realistic wireless experimentation through

physical emulation. SIGCOMM Comput. Commun. Rev., 34(1): 63-68,2004.

[63] E. -S. Jung and N. H. Vaidya. A power control MAC protocol for ad hoc networks. In

Proceedings of the eighth annual international conference on Mobile computing and

networking, pages 36-47. ACM Press, 2002.

[64] A. Kamerman and L. Monteban. WaveLAN II: A high-performance wireless LAN for

unlicensed band. Bell Labs Technical Journal, 2(3): 118-133, Summer 1997.

[651 T. K. Kanth, S. Ansari, and M. H. Mehkri. Performance enhancement of TCP on mul-

tihop ad hoc wireless networks. In Proceedings of IEEE International Conference on

Personal Wireless Communications, pages 90-94, October 2002.

[66] D. Kim, C. -K. Toh, and Y. Choi. TCP-BuS: Improving TCP Performance in Wireless Ad

Hoc Networks. Journal of Communications and Networks, 3(2): 175-186, June 2001.

[67] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol. Internct

Draft, Ittp: /A ww. ir#f. crgýrfCBM. t xt, March 2006. Standards Track.

[681 R. B. S. Konduru. An adaptive distance vector routing algorithm for mobile, ad hoc

networks. In Proceedings of Twentieth Annual Joint Conference of the IEEE Computer

and Communications Societies (INFOCOM 2001), volume 3, pages 1753-1762, April

2001.

BIBLIOGRAPHY 189

[69] S. Kopparty, S. Krishmniurthy, M. Faloutsos, and S. Tripathi. Split TCP for mobile

ad hoc networks. In Global Telecommunications Conference, 2002. GLOBECOM '02,

volume 1, pages 138-142. IEEE Computer Society Press, November 2002.

[701 H. Kung, K. -S. Tan, and P. -H. Hsiao. TCP with sender based delay control. Computer

Communications, 26(14): 1614-1621, September 2003.

[71] S. Kurkowski, T. Camp, and M. Colagrosso. Manet simulation studies: the incredibles.

SIGMOBILE Mob. Comput. Commun. Rev., 9(4): 50-61,2005.

[72] Y. -C. Lai and C. -L. Yao. Performance comparison between TCP Reno and TCP Vegas.

Computer Communications, 2002.

[731 Q. Li, J. Aslam, and D. Rus. Online power-aware routing in wireless Ad-hoc networks.

In Proceedings of the 7th annual international conference on Mobile computing and

networking, pages 97-107. ACM Press, 2001.

[741 H. Lim, K. Xu, and M. Gerla. TCP Performance over Multipath Routing in Mobile Ad

Hoc Networks. In Proceedings of the 38th annual IEEE International Conference on

Communications ICC 2003, pages 1064-1068, May 2003.

[75] G. Lin, G. Noubir, and R. Rajamaran. Mobility Models for Ad hoc Network Simula.

tion. In Proceedings of Twenty-Third Conference of the IEEE Communications Society

(INFOCOM 2003), volume 1, pages 454-463, March 2004.

[761 The Linux Kernel Archives. htip: /, 4ww. el.. c /

[77] J. Liu and S. Singh. ATCP: TCP for Mobile Ad Hoc Networks. IEEE Journal on
Selected Areas in Communications, 19(7): 1300-1315, July 2001.

[781 R. Ludwig and K. Sklower. The Eifel retransmission timer. SIGCOAth! Computer

Communications Review, 30(3): 17-27,2000.

BIBLIOGRAPHY 190

[79] H. Lundgren, E. Nordström, and C. Tschudin. Coping with communication gray zones

in ieee 802.11b based ad hoc networks. In WOWMOM'02: Proceedings of the 5th ACM

international workshop on Wireless mobile multimedia, pages 49-55. ACM Press, 2002.

[801 I. MANET. Mobile ad-hoc networks (manet) ietf working group. ham: /AW. k f.

IYIý .- Cý. YýTYÜ.

[81] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Acknowledgment

Options. Internet Draft, hfp: /
. idf. c / S. txt

, October 1996.

Proposed Standard.

[82] T. W. Mehran Abolhasan and E. Dutkiewicz. A review of routing protocols for mobile

ad hoc networks. Ad Hoc Networks, 2(l): 1-22, January 2004.

[83] W. Navidi and T. Camp. Stationary distributions for the random waypoint mobility

model. IEEE Transactions on Mobile Computing, 3(l): 99-108,2004.

[84] E. Nordstrom. DSR-UU: A Dynamic Source Routing protocol implementation. l

//are. it. uu.

[85] S. Papanastasiou, L. Mackenzie, M. Ould-Khaoua, and V. Charissis. On the interaction

of TCP and Routing Protocols in MANETs. In International Conference on Internet and

Web Applications and Services/Advanced International Conference on Telecommunica-

tions (AICT-ICIW '06), pages 62-69, Guadeloupe, French Caribbean, February 2006.

IEEE Computer Society Press.

[861 S. Papanastasiou and M. Ould-Khaoua. Exploring the performance of TCP Vegas in

Mobile Ad hoc Networks. International Journal of Communication Systems, 17(2): 163-

177,2004.

[87] S. Papanastasiou and M. Ould-Khaoua. TCP and Interference in Mobile Ad hoc Net.

works. Technical Report No. TR-2004-160, Department of Computing Science, Uni.

versity of Glasgow, February 2004.

BIBLIOGRAPHY 191

[88] A. Patwardhan, J. Parker, A. Joshi, M. Iorga, and T. Karygiannis. Secure Routing and

Intrusion Detection in Ad Hoc Networks. In Proceedings of the 3rd IEEE International

Conference on Pervasive Computing and Communications (PERCOM). IEEE, March

2005.

[89] V. Paxson and M. Allman. Computing TCP's Retransmission Timer. Internet Draft,

Yom: /Aww. ii f. ag/x/ .t, November 2000.

[90] V. Paxson, M. Allman, S. Dawson, W. Fenner, J. Griner, I. Heavens, K. Lahey, J. Semke,

and B. Volz. Known TCP Implementation Problems. Internet Draft, It p: //www.

ietf. c rg/rV . txt , March 1999. Request For Comments.

[91] C. E. Perkins. Ad Hoc Networking. Addison Wesley Professional, 2001.

[92] C. E. Perkins, E. M. Belding-Royer, and S. R. Das. Ad hoc On-Demand Distance Vector

(AODV) Routing. Request For Comments, h: //ýaww. ietf, üxý/rfi^/rfýfil.

t:)-- , July 2003. Experimental RFC.

[93] C. E. Perkins and P. Bhagwat. Highly dynamic Destination-Sequenced Distance-Vector

routing (DSDV) for mobile computers. In Proceedings of the conference on Canmuni.

cations architectures, protocols and applications, pages 234-244. ACM Press, 1994.

[94] T. Plesse, J. Lecomte, C. Adjih, M. Badel, and P. Jacquet. Olsr performance measure.

ment in a military mobile ad-hoc network. In Proceedings of the 24th International

Conference on Distributed Computing Systems Workshops (ICDCSW'04), volume 6,

pages 704-709. IEEE Computer Society, 2004.

[95] V. Ramarathinam and M. A. Labrador. Performance Analysis of TCP over Static Ad Hoc

Wireless Networks. In Proceedings of the 12th International Conference on Parallel and

Distributed Computing Systems (PDCS-2000), pages 410-415. ACTA Press, 2000.

[961 R. Sollacher, M. Greiner, and I. Glauche. Impact of interference on the wireless ad-hoc

networks capacity and topology. Wireless Networks, 12(1): 53-61,2006.

BIBLIOGRAPHY 192

[97] W. Stevens. TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recov-

ery Algorithms. Internet Draft, : /Mw. ktf. ctg/rWrf ..
txt. , Jan-

uary 1997.

[98] W. R. Stevens. TCP/IP Illustrated, volume 1. Addison-Wesley, Reading, MA, 1994.

[99] M. Takai, J. Martin, and R. Bagrodia. Effects of wireless physical layer modeling in

mobile ad hoc networks. In MobiHoc '01: Proceedings of the 2nd ACM international

symposium on Mobile ad hoc networking & computing, pages 87-94, New York, NY,

USA, 2001. ACM Press.

[100] Y. -C. Tseng, S. -Y. Ni, and E. -Y. Shih. Adaptive Approahes to Relieving Broadcast

Storms in a Wireless Multihop Mobile Ad Hoc Network. In ICDCS 'O1: Proceedings of

the The 21st International Conference on Distributed Computing Systems, pages 481-

488, Washington, DC, USA, 2001. IEEE Computer Society.

[101] P. D. Welch. The statistical analysis of simulation results. In S. Lavenberg, editor, The

Computer Performance Modeling Handbook, pages 268-328. Academic Press, 1983.

[102] H. Westman. Reference Data for Radio Engineers. Howard W. Sams Co., 6th edition

edition, 1997.

[1031 K. Xu, M. Gerla, and S. Bae. How effective is the IEEE 802.11 RTS/CTS handshake in

ad hoc networks? In Global Telecommunications Conference, 2002. GLODECOM '02,

volume 1, pages 72-76, November 2002.

[104] K. Xu, M. Gerla, L. Qi, and Y. Shu. Enhancing TCP fairness in ad hoc wireless networks

using neighborhood RED. In Proceedings of the 9th annual international conference on

Mobile computing and networking, pages 16-28. ACM Press, 2003.

[105] S. Xu and T. Saadawi. Evaluation for TCP with delayed ACK option in wireless multi.

hop networks. In Proceedings of IEEE Vehicular Technology Conference (VTC 2001)ß

volume 1, pages 267-271,2001.

BIBLIOGRAPHY 193

[106] S. Xu and T. Saadawi. Performance evaluation of TCP algorithms in multi-hop wire-

less packet networks. Wireless Communications and Mobile Computing, 2(1): 85-100,

March 2002.

[107] S. Xu and T. Saadawi. Revealing the problems with 802.11 medium access control

protocol in multi-hop wireless ad hoc networks. Computer Networks, 38(4): 531-548,

March 2002.

[108] S. Xu, T. Saadawi, and M. Lee. Comparison of TCP Reno and Vegas in wireless mobile

ad hoc networks. In Proceedings of 25th Annual IEEE Conference on Local Computer

Networks (LCN'00), pages 42-43, November 2000.

[109] E. L. Yan. Empirical Analyses of SACK TCP Reno and Modified TCP Vegas. Yttp;

//citma r. nj. nec. V246506. ttt

[110] J. Yoon, M. Liu, and B. Noble. Random waypoint considered harmful. In Proceedings

of Twenty-Second Annual Joint Conference of the IEEE Computer and Communications

Societies (INFOCOM2003), volume 2, pages 1312-1321, March 2003.

[111] X. Yu. Improving TCP performance over mobile ad hoc networks by exploiting cross-

layer information awareness. In MobiCom '04: Proceedings of the 10th annual inter.

national conference on Mobile computing and networking, pages 231-244. ACM Press,

2004.

[1121 T. Yuki, T. Yamamoto, M. Sugano, M. Murata, H. Miyahara, and T. Hatauchi. Per.

formance Improvement of TCP over an Ad Hoc Network by Combining of Data and

ACK Packets. In The 5th Asia-Pacific Symposium on Information and Telecommunica"

tion Technologies (APSI7l2003), pages 339-344. IEEE Computer Society, November

2003.

i1k ?I

. -.

