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Abstract 

Mobile ad hoc networks (MANETs) have become increasingly important in view of their 

promise of ubiquitous connectivity beyond traditional fixed infrastructure networks. Such 

networks, consisting of potentially highly mobile nodes, have provided new challenges by 

introducing special considerations stemming from the unique characteristics of the wireless 

medium and the dynamic nature of the network topology. The TCP protocol, which has been 

widely deployed on a multitude of internetworks including the Internet, is naturally viewed as 

the de facto reliable transport protocol for use in MANETs. However, assumptions made at 

TCP's inception reflected characteristics of the prevalent wired infrastructure of networks at 

the time and could subsequently lead to sub-optimal performance when used in wireless ad 

hoc environments. 

The basic presupposition underlying TCP congestion control is that packet losses are pre- 

dominantly an indication of congestion in the network. The detrimental effect of such an as- 

sumption on TCP's performance in MANET environments has been a long-standing research 

problem. Hence, previous work has focused on addressing the ambiguity behind the cause of 

packet loss as perceived by TCP by proposing changes at various levels across the network 

protocol stack, such as at the MAC mechanism of the transceiver or via coupling with the 

routing protocol at the network layer. The main challenge addressed by the current work is 

to propose new methods to ameliorate the ill-effects of TCP's misinterpretation of the causes 

of packet loss in MANETs. An assumed restriction on any proposed modifications is that re- 

sulting performance increases should be achievable by introducing limited changes confined 



to the transport layer. Such a restriction aids incremental adoption and ease of deployment by 

requiring minimal implementation effort. Further, the issue of packet loss ambiguity, from a 

transport layer perspective, has, by definition, to be dealt with in an end-to-end fashion. As 

such, a proposed solution may involve implementation at the sender, the receiver or both to 

address TCP shortcomings. 

Some attempts at describing TCP behaviour in MANETs have been previously reported in 

the literature. However, a thorough enquiry into the performance of those TCP agents popular 

in terms of research and adoption has been lacking. Specifically, very little work has been per- 

formed on an exhaustive analysis of TCP variants across different MANET routing protocols 

and under various mobility conditions. The first part of the dissertation addresses this short- 

coming through extensive simulation evaluation in order to ascertain the relative performance 

merits of each TCP variant in terms of achieved goodput over dynamic topologies. Careful 

examination reveals sub-par performance of TCP Reno, the largely equivalent performance of 

NewReno and SACK, whilst the effectiveness of a proactive TCP variant (Vegas) is explicitly 

stated and justified for the first time in a dynamic MANET environment. 

Examination of the literature reveals that in addition to losses caused by route breakages, 

the hidden terminal effect contributes significantly to non-congestion induced packet losses in 

MANETs, which in turn has a noticeably negative impact on TCP goodput. By adapting the 

conservative slow start mechanism of TCP Vegas into a form suitable for reactive TCP agents, 

like Reno, NewReno and SACK, the second part of the dissertation proposes a new Reno-based 

congestion avoidance mechanism which increases TCP goodput considerably across long paths 

by mitigating the negative effects of hidden terminals and alleviating some of the ambiguity 

of non-congestion related packet loss in MANETs. The proposed changes maintain intact the 

end-to-end semantics of TCP and are solely applicable to the sender. The new mechanism is 

further contrasted with an existing transport layer-focused solution and is shown to perform 

significantly better in a range of dynamic scenarios. 

As solutions from an end-to-end perspective may be applicable to either or both communi- 

cating ends, the idea of implementing receiver-side alterations is also explored. Previous work 
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has been primarily concerned with reducing receiver-generated cumulative ACK responses by 

"bundling" them into as few packets as possible thereby reducing misinterpretations of packet 

loss due to hidden terminals. However, a thorough evaluation of such receiver-side solutions 

reveals limitations in common evaluation practices and the solutions themselves. In an effort 

to address this shortcoming, the third part of this research work first specifies a tighter prob- 

lem domain, identifying the circumstances under which the problem may be tackled by an 

end-to-end solution. Subsequent original analysis reveals that by taking into account optimi- 

sations possible in wireless communications, namely the partial or complete omission of the 

RTS/CTS handshake, noticeable improvements in TCP goodput are achievable especially over 

long paths. This novel modification is activated in a variety of topologies and is assessed using 

new metrics to more accurately gauge its effectiveness in a wireless multihop environment. 
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Chapter 1 

Introduction 

Wireless communications have experienced explosive growth in recent years due to the wide 

availability and rapid deployment of wireless transceivers in a variety of computing devices 

such as PDAs, laptop and desktop computers. The de facto adoption of the popular IEEE 

802.11 [52] standard has further fuelled these developments by ensuring interoperability among 

vendors thereby aiding the technology's market penetration. Initially, the deployment of these 

wireless technological advances came in the form of an extension to the fixed LAN infrastruc- 

ture model as detailed in the 802.11 standard. Therein a wireless client is associated with an 

access point which acts as a router and arbiter between the mobile client and the rest of the 

network, which may include several other mobile agents, forming a Basic Service Set [521. In 

contrast to wired LANs, the mobile client is not physically constrained by cables and there are 

even provisions for a seamless hand-off process for clients roaming in areas covered by coop- 

erating access points, thereby ensuring extended wireless coverage. The latter configuration is 

referred to as the Extended Service Set in IEEE 802.11 nomenclature [52]. 

As the processing power and transceiver capabilities of mobile clients increased, it became 

feasible to use the clients themselves as forwarding agents. In particular, instead of using fixed 

infrastructure in the form of access points, the mobile nodes may cooperate in a peer-to-peer 

fashion to forward each other's messages. By acting as routers, willing hosts may form the 

backbone of a spontaneous network which facilitates connectivity and services for interested 
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parties. The term Mobile Ad hoc NE1'work (or MANET for short) has been coined [911 to 

describe such a network and the concept has proven significant enough for the IETF to form a 

working group on the subject [80]. In fact, the IEEE 802.11 standard itself makes provisions 

for a rudimentary ad hoc mode of operation between stations when an access point is not 

present, in the form of the Independent Basic Service Set [52]. This defines the presence of 

a communications link between two parties without the need of an access point to coordinate 

and forward transmissions. However, such a configuration is only applicable to stations within 

mutual communications range and requires the cooperation of higher level protocols for the 

formation of multihop paths. 

The potential significance of MANETs lies in the promise of ubiquitous connectivity pro- 

vided that mobile hosts can communicate effectively, given the special constraints of the hosts 

themselves as well as the unique dynamic topological characteristics of the formed network. 

Particular applications of MANETs include scenarios where infrastructure is expensive to 

set up and difficult or even impossible to deploy, such as battlefield or disaster relief opera- 

tions [58]. Other uses include plugging "holes" in the coverage of wireless infrastructure [23] 

or even integration with cellular 3G+ networks [9] to achieve wider connectivity. 

1.1 MANET characteristics 

Mobile ad hoc networks share many of the properties of wired-infrastructure LANs but also 

possesses certain unique features which derive from the nature of the wireless medium and the 

distributed function of the medium access mechanism. These constraints may be described in 

turn as considerations stemming from the wireless channel, the mobile node and the routing 

protocol used to establish and maintain communication paths. These characteristics affect the 

functionality of mechanisms throughout the communication protocol stack and are considered 

now in turn. 
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1.1.1 Channel characteristics 

Signal attenuation: As the transmitted signal spreads out from the aerial in all directions it 

attenuates as distance increases. As such, the intensity of the electromagnetic energy at the 

receiver decreases with distance from the transmission; beyond a certain distance, the signal- 

to-noise ratio (SNR) becomes so low that the receiver is not to able to decode the transmission 

successfully. 

Taking the above into account and for an omni-directional transceiver, three ranges may be 

identified [103] as shown in Figure I. I. These are, from the sender's perspective: 

Transmission Range (Rt., ) The range within which a transmitted frame can be successfully 

received by the intended receiver. Within this range the SNR is high enough for a frame 

to be decoded by the receiver. 

Carrier Sensing Range (Ru) The range within which the transmitter triggers carrier sense 

detection. When this happens, the medium is considered busy and the sensing node 

defers transmission. 

Interference Range (R2) The range within which an intended receiver may be subject to in- 

terference from an unrelated transmission, thereby suffering a loss. This range largely 

depends on the distance between the sender and the interfering node. 

Those ranges are related to one another, with Rtx <A<J, as the energy required for a 

signal to be decoded is greater than what is needed to cause interference [63]. The interference 

and transmission ranges depend on the signal propagation model and the sensitivity of the 

receiver, assuming that power constraints apply and all transmitters transmit at the maximum 

allowed power level [1031. 

Multipath fading: Multipath fading occurs because of different versions of the same signal 

arriving at different times at the receiver. These versions effectively follow different paths from 

the transmitter, with different propagation delays, due to multiple reflections off intervening 
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Figure 1.1, The transmission, carrier sensing and interference ranges in a communicating pair 

obstacles. The superposition of these randomly phased components can make the multipath 

phenomenon a real problem especially if there are many reflective surfaces in the environment 

and the receiver is situated in a fringe area of reception [64]. 

Transmission errors: Due to the volatile nature of wireless signal propagation, the wireless 

medium potentially exhibits errors. The frame format in IEEE 802.11 networks is similar to 

the 802.3 (Ethernet) format [98] and uses the same 48-bit MAC address fields. The specifica- 

tion also includes the IEEE 802.3 32-bit CRC polynomial-based error detection mechanism. 

However, the protection offered by this scheme only extends to data actually travelling on 

point-to-point links (as opposed to end-to-end). It is still possible, though somewhat unlikely, 

for corrupt data to be accepted by the receiver, but this is offset by the adoption of error discov- 

ery, implemented at higher layers (such as the checksum fields in IP, TCP and UDP segments). 

Hidden and exposed terminals: Consider the scenario illustrated in Figure 1.2(a). Node A 

is transmitting to node B. Node C cannot receive the transmission and since its carrier sense 

function detects an idle medium, it will not defer transmission to D and a collision will be 

produced at node B. In this case, node A is hidden with respect to node C (and vice versa). 

This problem is offset in 802.11 by using a short packet exchange of Request-to-Send (RTS), 

Clear-to-Send (CTS) frames. This is a two-way handshake where the source terminal transmits 
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Figure 1.2. Illustration of the hidden and exposed terminal effects 

the RTS to the destination which then replies with a CTS frame. If there is no reply, then 

transmission is deferred as presumably the medium at the area around the destination is busy. If 

a CTS reply is received then DATA transmission follows. Since the duration of the transmission 

is included in the RTS/CTS exchange, neighbouring nodes defer their transmissions for the 

time the medium is occupied. Point-to-point transmission is reliable since the DATA frame is 

followed by an ACK transmission from the destination if the frame is successfully received. 

The exposed terminal effect occurs when a station that needs to transmit a message senses 

a busy medium and defers transmission even though it would not have interfered with the 

other sender's transmission. An instance of the exposed terminal effect is demonstrated in Fig- 

ure 1.2(b). Here, node B is transmitting to node A. Node C senses node B's signal and defers 

transmission. However, it need not have done so as C's transmission does not reach node A 

and would not have interfered with D's transmission at the location of the intended destination 

(node A). Node C is the exposed terminal in this case. Note that both the hidden and exposed 

terminal effects are related to the transmission range. As the transmission range increases, the 

hidden terminal effect becomes less prominent because the sensing range increases. Nonethe- 

less, the exposed terminal effect then becomes more prominent as a greater area is "reserved" 

for each transmission. 

In the above examples, the transmission (Rtx), interference (11, ) and carrier sense (R3) 

ranges are all assumed to be equal. However, several research efforts have concentrated on the 

effects of interference on the hidden and exposed terminal effects [25,26,104,106,107] when 
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I> Rtx. In particular, Xu et al. [1031 have shown that when the distance d between the 

source and destination nodes is 0.56 * I1tz 5d< 1tx, where Rtx is the transmission range of 

the sender, the effectiveness of the RTS/CTS exchange declines rapidly. 

Spatial contention and reuse: Network links among hosts are commonly fixed in wired 

networks and do not interact with each other as there is typically little interference between 

physical cables. In contrast, wireless network links operate differently. Assuming omnidirec- 

tional antennas, when a node transmits, it "reserves" the area around it for the transmission's 

duration; i. e. no other transmission is to take place during that time interval as it will result in 

a collision and waste of bandwidth. Spatial reuse refers to the number of concurrent transmis- 

sions that may occur in a network without interfering with each other. It is the responsibility of 

the MAC protocol to ensure that transmissions are coordinated in such a way so as to maximise 

the property of spatial reuse. 

For illustration purposes consider that in Figure 1.3 communication between nodes 0 -º 1 

and 4 -+ 5 may happen simultaneously. Then, communication among other node pairs could 

happen concurrently in turn, as long as each pair is 4 hops apart from the other. Since at most 

two pairs can transmit at the same time without affecting each other, the spatial reuse of this 

string topology is 2. It should be noted that the spatial reuse in a particular scenario represents 

an optimal level of concurrency; it is not always achievable and it may be the case that with 

enough nodes transmitting simultaneously packets will be lost due to interference. Such a 

situation is referred to as spatial contention and it can become the main cause of packet drops 

when a path is long enough as noted in [43]. This is in contrast with wired networks where 

packet drops are mainly caused by buffer overflows at the routers. 

Capture effect (interplay of TCP with 802.11 MAC): In wired networks, TCP has a well 

documented bias against long (as in hop length) flows [39]. In 802.11 multihop networks, the 

bias is much stronger and is manifested in the form of the channel capture effect. Essentially, 

if two TCP connections are located in near vicinity of each other and, thus, interfere with one 
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another, this effect favours the session that originated earlier or the one that flows over fewer 

hops. The favoured session often starves the other almost completely with data transport not 

being accomplished for the mistreated session until the other one has completed all of its data 

transmission. 

The bias is rooted in the exponential backoff of the Distributed Coordination Function of 

the 802.11 MAC mechanism, which is inherently unfair and is further augmented by TCP's 

own exponential backoff mechanism. The string topology scenario as shown in Figure 1.3 

aptly illustrates the point. Even though the two TCP flows do not share the same path, flow 

2 may starve because of flow 1; unfairness may also be present when the flows share some or 

much of the same path [691. The phenomenon has become a focal point of research interest 

and has been extensively explored in the literature [69,104,107]. 

1.1.2 Characteristics of MANET nodes 

Mobile nodes that participate in a MANET operate under limitations which have to be con- 

sidered in networking protocol design if new proposals are to be efficiently operable in such 

environments. As participating nodes may be heterogeneous in nature (laptops, PDAs or even 

desktop systems), to ensure mobility and some degree of autonomous operation, devices often 

have limited power reserves and possibly limited processing capabilities [61]. These restric- 

tions are typically discussed in the literature [29] in the context of proposals for new routing 

algorithms or service-providing mechanisms over MANETs and are briefly outlined below. 
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In general, energy is a scarce and valuable commodity for MANET nodes and its consump- 

tion can therefore be just as important a measure as throughput, latency and other traditional 

performance metrics when evaluating MANET protocols at any layer. Several methods have 

been proposed to conserve energy at various levels, including the operating system and appli- 

cations. An overview of approaches to power conservation through energy-aware mechanisms 

is included in [61]. Specifically, from a TCP perspective, power savings are best achieved by 

minimising redundant retransmissions whenever possible [73]. The savings in this case are 

twofold; the source conserves power by transmitting fewer packets but also every forwarding 

node in the path benefits since fewer unnecessary retransmissions occur. 

Although high speed wireless communications are possible [53], it is assumed that MANETs 

are primarily characterised by relatively bandwidth-constrained wireless links [291 compared 

to their hardwired counterparts and, furthermore, the capacity of such links is variable. In par- 

ticular, after taking into consideration the effects of interference, multipath fading and so on, 

as presented in Section 1.1, the transmission rate of a mobile node may be severely affected. 

The design of any level in the protocol stack should take account of this constraint by minimis- 

ing overhead where possible and any proposed mechanism should be usable across possibly 

asymmetric links of different capacities. 

Another important node characteristic is the potentially restricted CPU capacity at each 

node. Routing algorithms in particular are designed to be simple so as to operate with little 

processing and storage requirements [92]. It follows that any adjustments proposed to TCP, or 

indeed any other networking protocol, should minimise complexity, so that CPU time costs do 

not outweigh gains in other metrics (e. g throughput or latency). In addition, heavy CPU usage 

requires more power which makes processor-intensive modifications even more costly. Sur- 

prisingly, although power considerations are a key focus of routing and clustering techniques 

in MANETS, proposed modifications are not always examined with respect to their overall 

power and CPU demands [61]. 
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Finally, security is a salient concern in MANETs as in most forms of wireless communica- 

Lions. As messages are exchanged through a common transmission medium, it becomes diffi- 

cult to prevent snooping on network traffic. Consequently, security provisions notwithstanding, 

the network is vulnerable against replay attacks, eavesdropping and message redirection, even 

more so than in the case of a wired infrastructure. Security measures normally applicable to 

wired LANs are also largely applicable to MANETs, although special precautions are neces- 

sary in the case of routing as balancing the security overhead and limited available bandwidth 

is still a matter of ongoing research [88]. 

1.1.3 Routing in MANETs 

MANETs are potentially characterised by significant node mobility which induces highly dy- 

namic topologies and may even result in partitioned networks. In this section, network par- 

titioning and the effects of routing failures are discussed in addition to current general ap- 

proaches to routing protocol design in such multihop environments. 

Network partitioning: Network partitioning occurs when, due to mobility, nodes which 

were able to communicate directly or through the cooperation of other nodes at some time, 

T1, are unable to do so at a later time, T2, because there is no longer a usable path between 

them. It is further possible that at a still later time, T3, the nodes have placed themselves in 

such a position that the network is again connected and every node can reach every other one, 

either directly or indirectly. The scenario is illustrated in Figure 1.4. 

TCP is not engineered to deal with network partitioning as it is not normally a frequent oc- 

currence in wired networks. In effect, the exponential backoff of TCP's retransmission timeout 

(RTO) mechanisms facilitates the exponentially delayed probing of a valid path. This may be 

illustrated in the topology depicted in Figure 1.4(a) where the TCP source (node 1) is commu- 

nicating with the destination (node 6) at time Tl through nodes [2-5]. Then, in Figure 1.4(b) at 

'A detailed outline of TCP operations is included in Chapter 2 
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time T2, node 4 has travelled outwith the range of node 3 and their mutual link has become in- 

valid; there is a network partitioning with two separate and isolated network partitions, namely 

A and B. Packets in this time frame do not get forwarded to the destination and ACKs do not 

reach the source as there is no usable path available. The TCP agent then enters an RTO phase 

(due to packet loss) as the underlying routing protocol attempts to discover an alternate route. 

A new TCP segment is sent every time the RTO timer expires. If this segment reaches the 

destination, TCP continues with normal transmission and the route is utilised. However, since 

the RTO is doubled after every timeout, those "probing" packet transmissions take longer each 

time. Hence if the disconnection persists for consecutive RTOs, there might be long periods 

of inactivity during which the network may be connected again, but TCP is still in the backoll 

state [34]. As a result, throughput suffers. 

Routing failures: In MANETS, unlike wired networks, route failures occur frequently due 

to the mobile nature of the participating nodes. Route failures may also occur when repeated 

point-to-point transmissions fail, for instance because of the effects of spatial contention [106]. 

When a link failure occurs, the routing protocol attempts to discover an alternate path, but the 

duration of the restoration period largely depends on the mobility of the nodes, the mechanism 

of the routing protocol itself and the network traffic characteristics. 

The effects of route failures on TCP operation resemble those of network partitioning as 

discussed previously. If the route takes some time to restore, TCP enters its backoff state and 

sends "probes" for a restored route at increasingly longer time intervals. Hence, the route 

might be restored for quite some time but TCP remains idle until it launches the retransmitted 

packet after RTO expiration and receives a reply from the destination. Further complications 

arise from TCP's round trip time (RTT) calculation. After the route has been re-established 

the RTT measurements required for the RTO calculation should reflect the characteristics of 

the new route. However, since the RTO is calculated using a weighted average of new and old 

RTT measurements, for some time after the route restoration, the RTO value contains a mixed 

estimate of the old and new route characteristics. The above concern applies in wired networks 
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as well but may be more severe in MANETs, where route reconstructions are expected to be a 

frequent occurrence [ 16]. 

Routing approaches in MANETs: Due to the dynamic and unpredictable topologies of 

MANETs, proposed routing algorithms have to operate by introducing little overhead, be light- 

weight enough to meet the mobile node constraints and still be able to forward packets effi- 

ciently to their designated destinations. Further, measures ensuring that packets are free from 

looping behaviour should be present as route loops can occur frequently in such a continuously 

changing topological landscape. Two main approaches to routing in MANETs currently exist 

and are now outlined in turn. 

Proactive Routing This approach involves the proactive discovery of paths to potential desti- 

nations by preemptively building a view of the network. As soon as a node is introduced 

in the network it attempts to discover as much as it can about the topology around it, i. e. 

discover ways to route packets to different destinations, in anticipation of future com- 

munication attempts. Note that as routes to all possible destinations are maintained at all 

times there is no initial delay when setting up a connection. 

The traditional Bellman-Ford [12] algorithm, as used in wired networks [471 has been 

shown not to be efficient in a MANET environment [93]. Special considerations are 

needed to ensure loop freedom such as including a monotonically increasing sequence 

number in route updates, a technique adopted by several contemporary approaches [60, 

92]. However, the overheads of table exchanges in proactive routing become increasingly 

a point of concern as the network topology expands and/or grows more dynamic. 

The Optimised Link State Routing (OLSR) mechanism [28] is a popular proactive rout- 

ing protocol that has advanced through the procedures of the IETF to become a pro- 

posed RFC standard. This introduces several optimisations to minimise the excessive 

overheads associated with proactive routing whilst implementing a table driven route ex- 

change mechanism. The node still maintains tables to multiple routes but special nodes 
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called multi point relays (MPRs) are chosen in the network and become the focal points 

of organisation so as to minimise broadcast and route discovery/maintenance overheads. 

Reactive routing In traditional hardwired networks routing failures are infrequent and hence 

the cost of route discovery is negligible. The communication links are not expected to 

change radically through time and so a fixed initial cost in terms of throughput and de- 

lay as routes are being discovered is presumed negligible. In multihop wireless networks 

with highly dynamic topologies (such as MANETs), however, this cost can increase sub- 

stantially if route breakages are frequent enough, as the route discovery cost is incurred 

multiple times. 

To mitigate this overhead, it may be preferable for the routing agent to maintain and dis- 

cover routes only on an as-needed basis. As such, alterations to link status that are of no 

interest to a node's current communications operations are not taken into account, lead- 

ing to significant overhead savings in the case of frequent route changes. The downside 

of such an approach is the initial delay when discovering a route for a new connection 

as well as the relatively high overhead of route discovery which requires a network-wide 

broadcast in an effort to contact the desired destination. There are two notable reactive 

routing protocols progressing through the IETF; Ad hoc On Demand Distance Vector 

(AODV) [921 and Dynamic Source Routing (DSR) [60]. Several research efforts have 

been reported in the literature in an attempt to keep the cost of route discovery at a 

reasonable level [21,281. 

There are also mixed/hybrid approaches which combine proactive route discovery and 

maintenance for nodes within a given hop radius distance with a reactive approach [821 for 

the rest of the network. The proactive/reactive dichotomy is a fundamental routing design 

decision; the IETF has acknowledged both approaches as having merit and is maintaining pro- 

posed experimental RFCs for both [80]. 
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1.2 Related work 

The vast majority of TCP evaluation studies over MANETs have been carried out with simu- 

lations [2,6,24,25,31,34,42,43,49,65,70] and a few with limited experimental testbeds [7]. 

The complex interplay of TCP with the routing protocol and the wireless access mechanisms 

makes the development of analytic models of TCP behaviour extremely difficult and, it would 

be fair to say, an aspiration as yet unmet. 

Ahuja et al. [2] have conducted the first evaluation of TCP performance under different 

routing algorithms over MANETs, namely the Ad hoc On-Demand Distance Vector (AODV) 

[92], the Dynamic Source Routing (DSR) [60], the Dynamic Destination-Sequenced Distance- 

Vector Routing (DSDV) [93] and the Signal Stability based Adaptive (SSA) [33] routing pro- 

tocols. This work has shown the detrimental effect of mobility on TCP Tahoe as well as the 

relative merits of SSA routing which incorporates signal strength as a measure of path opti- 

mality instead of hop distance. 

An investigation of TCP Reno over AODV, DSR and the Adaptive Distance Vector (ADV) 

[68] routing protocols has been performed by Dyer et at. [34]. The ADV routing protocol has 

been shown to maximise TCP throughput, with AODV being the second best performer under 

various mobility conditions. Further, the throughput penalty of utilising stale cache entries 

under moderate mobility has been noted in the case of DSR. The authors have also proposed 

the use of a heuristic named the fixed-RTO, which greatly improves TCP throughput in AODV 

and DSR, as it aids TCP in utilising restored routes quickly without resorting to feedback 

from the routing protocol. In the same work, however, the authors stress that this solution is 

MANET oriented and not intended for use when there exists a gateway to other networks (such 

as the Internet). 

The effects of interference on TCP, as noted in Section 1.1, have also been widely studied 

in the literature [6,25,31,43,65,70]. Xu et at. [106] have examined the throughput of TCP 

Tahoe, Reno, NewReno, SACK and Vegas over multihop string topologies in an open space 

environment under the 802.11 protocol. The authors have demonstrated that TCP Tahoe and 
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its variants (Reno, NewReno and SACK) exhibit throughput instability in such topologies, as 

interference causes packet drops which are interpreted as congestion losses. TCP Vegas does 

not suffer from this problem due to its conservative mechanism for increasing the sending rate. 

Further investigation has revealed that other TCP variants may regain throughput stability by 

limiting the maximum congestion window (i. e. the maximum number of packets in flight) to 

four segments. The viability of using the delayed acknowledgement option has been discussed 

in the same work and shown to improve throughput by 15-32% in the same static topologies. 

The work in [106] has been complemented through further study by Fu et al. [43]. Here, 

the authors have noted that for string, cross and mesh topologies there is an optimal congestion 

window (cwnd) size which maximises throughput by improving spatial reuse, i. e. which facil- 

itates the maximum possible non-conflicting simultaneous transmissions. It has been further 

noted that since TCP continuously increases its cwnd size until packet loss is detected, it typi- 

cally grows and operates at an average window size that is larger than optimal, thereby causing 

spatial contention. The authors have also obtained the optimal window size for each of the 

above mentioned topologies. Finally, they have proposed two link layer modifications named 

"link RED" and "adaptive pacing" to aid optimal spatial reuse and improve TCP performance. 

The issue of TCP throughput instability and effective spatial reuse has moreover been ad- 

dressed in [25,26]. It has been shown that by making general MAC layer assumptions, i. e. not 

802.11 specific, the bandwidth-delay product in multihop MANET paths cannot exceed the 

product of the Round-Trip Hop Count (RTHC) of the path and the packet size. In the case of 

the 802.11 protocol this bound is shown to reach no more than a fifth of the RTHC. According 

to this adapted definition of the bandwidth delay product, the authors have then proposed an 

adaptive mechanism which sets the maximum cwnd according to the route hop count, noting an 

8-16% throughput improvement. In [261 the performance merit of TCP-pacing, which evenly 

spaces a window's worth of packets over the current estimated round-trip time, has also been 

evaluated but no worthwhile performance improvement was found. 

A number modifications to the TCP receiver for optimal spatial reuse have been proposed 
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in the literature [6,31] and are largely complementary to sender-side modifications. The pro- 

posed alterations invariably include some type of management of acknowledgement (ACK) 

transmissions. Such a line of enquiry is similar to work undertaken in the past for wired net- 

works [3] but whose premises and conclusions are not directly applicable to MANETs. In 

particular, work by Altman et at. [6] has revealed that the rate of ACK production in TCP can 

affect TCP throughput across long enough paths. It has been demonstrated therein that by 

making aggressive use of delayed cumulative ACKs, the number of ACK responses produced, 

which vie for transmission time with TCP data, may be reduced. This facilitates more efficient 

spatial reuse as fewer packets compete along the path for point-to-point transmissions. The au- 

thors have also proposed a new delayed ACK scheme which stretches the TCP ACK-clocking 

property (one ACK response per at most two segment receptions) and results in throughput 

improvements of 9-22% in string topologies when small data transfers occur. Further, Oliveira 

et at. [31] have suggested an alternative end-to-end technique that combines constraining the 

sender's congestion window and implementing a dynamic ACK delay window at the receiver. 

In this approach, the receiver delays an ACK response for 2-4 segments received but also 

maintains a dynamic timer which depends on segment inter-arrival time and which triggers 

an immediate ACK response upon expiration. Subsequent evaluation in static topologies has 

revealed reduced retransmissions and, in the case of multiple flows, a compelling throughput 

improvement of up to 50% over regular TCP. A different approach to the subject which forgoes 

the end-to-end modification constraint has been undertaken in work by Yuki et at. [112], where 

DATA and ACK segments are combined in intermediate nodes' transmissions so as not to oc- 

cupy two separate transmission slots; it is then up to their respective destinations to identify 

the portion of the combined packet addressed to them. 

Anastasi et at. [7] have conducted measurements on an actual testbed and have verified 

simulation results by showing that interference becomes a serious problem in ad hoc networks 

when TCP traffic is considered. Moreover, the authors have noted that during their experi- 

ments there was sufficiently high variability in channel conditions at different times to make 

comparison of results difficult. They have also observed that certain aspects of real wireless 
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transmissions are not effectively captured in simulation. These include the different sending 

rates of the preamble, the RTS/CTS and the DATA frames in 802.11 networks, as well as the 

variability of the transmission and physical sensing ranges (even within the same session). 

Plesse et al. [94] have conducted real life experiments with military scenarios in urban areas 

using OLSR and have confirmed TCP throughput problems as the hop count of the path in- 

creases, as well as the transient quality of the signal during trial runs. In the same work, it is 

noted that the RTS/CTS mechanism is not a prerequisite to achieving good spatial reuse in their 

2-hop path experiments, an observation in concert with earlier simulation results presented by 

Xu et al. [103]. 

1.3 Motivation 

A number of previous research studies have dealt with the behaviour of TCP in MANETs 

[2,35,74] and highlighted relevant problems. Some of these enquiries have focused on the 

differences between routing protocols and have made use of a single type of TCP agent to 

measure performance discrepancies amongst those protocols [2,34,49]. These types of stud- 

ies typically vary the topology conditions in terms of route breakage frequency and network 

partitioning time to simulate the degree of mobility present. Such attempts are of particular 

significance as it is not enough to utilise UDP (congestion unaware) traffic to fully evaluate 

the effectiveness of routing protocols in MANETs [108]. Further, since most TCP variants 

share similar congestion avoidance mechanisms, an observation particular to a specific vari- 

ant is likely to be applicable to others although potential applicability is usually not explicitly 

investigated. 

Other enquiries [ 10,24,46,66,77,1041 have focused on the particular interaction of TCP 

agents with a selected MANET routing protocol taking additional account of some general 

MANET trait (e. g. packet loss due to errors, or mobility). The potential shortcoming of such 

approaches is that as routing protocols may vary significantly (for instance consider on-demand 

vs proactive routing), resulting observations may not be applicable to different routing agents. 
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Further, since the potential TCP shortcoming is dealt with in isolation [26], it is not immedi- 

ately apparent whether an improvement may be seen in a more general setting. In a number of 

studies [26,95], such optimisations are applied to static TCP scenarios which may offer signif- 

icant improvements in special cases but whose performance merits may be reduced in a more 

typical MANET scenario. 

A study among TCP variants and, even more specifically, among reactive and proactive 

TCP agents has been lacking in the literature. Further, the absence of selective acknowledge- 

ment (SACK) enabled TCP agents in the different performance evaluation efforts is of particu- 

lar note as these are widely deployed and implemented in modern operating systems [4]. As a 

result it has long been an open research question whether the type of TCP agents proposed in 

the literature are competent and efficient performers in multihop wireless environments. 

A crucial observation on the fitness of the 802.11 standard as a basis for MANET infras- 

tructure has been made by Xu and Saadawi [1071. The authors have discovered fundamental 

throughput related inefficiencies in the widely adopted IEEE 802.11 MAC mechanism when 

used for multi-hop communications. The authors have further noted the severity of these per- 

formance reducing effects particularly when TCP is in use for end-to-end communications and 

have proposed a solution by modifying a simple TCP parameter (the maximum cwnd). Several 

researchers have expanded on the work in [107] by either applying changes in the MAC layer, 

and so potentially breaking 802.11 compatibility [43], or by keeping the MAC layer intact but 

using intra- and inter-layer communication to smooth out the MAC shortcomings [104]. Fu et 

al. [104] have shown that across long paths, packet drops due to MAC issues are overwhelm- 

ingly more numerous than buffer overflow induced losses, which are the main cause of packet 

loss in wired networks. The original end-to-end modification suggested by Xu et al. [106] and 

subsequent follow up work [43], have been initially evaluated in static topologies so as to study 

the effect in isolation, precluding the effects of mobility. As such the interplay of proposed so- 

lutions with other factors involved in projected mobile MANET scenarios, namely the effects 

of mobility and mobility-induced packet loss, have not been taken into consideration. 



1.4. THESIS STATEMENT 19 

Finally, most work on end-to-end approaches to reduce the number of packets from indi- 

vidual connections on the same path has focused on sender-side restrictions [25]. These have 

the advantage of effectively reducing the problem because the source is the main contributor to 

spatial contention, as TCP DATA segments are typically much larger than ACKs and require 

substantially greater transmission times. Nonetheless, recent efforts have concentrated on re- 

ducing the number of ACKs produced by the receiver, which are vying for transmission time 

and competing with DATA packets [6,3 1]. 

Evaluations of such techniques have been inadequate in certain aspects. Firstly, not all 

options at the MAC layer have been exploited even though the 802.11 standard has defined 

multiple modes of operation; in particular disabling the RTS/CTS mechanism during short 

frame transfers, has not been considered. Further, since substantial progress has been made 

on the simulation tools and MANET systems have been progressively better understood, con- 

clusions reached in previous, early research may have actually been reflections of peculiarities 

of the simulation tools used, or side-effects of misplaced simulation assumptions and may not 

necessarily be representative of future MANET systems [75,110]. 

1.4 Thesis Statement 

The goals set for this dissertation derive from the motivations as listed in the previous section 

and may be summarised in the following thesis statement: 

The aim of this work is to propose new methods to ease the negative effects of TCP's 

misinterpretation of the causes of packet loss in MANETs. The changes introduced should 

be as simple as possible with respect to implementation complexity and should not break the 

end-to-end TCP paradigm. 

The scope of this work may be better understood by considering Figure 1.5; the diagram 

included therein depicts the layers in a typical MANET protocol stack and highlights in red the 

particular protocols this dissertation deals with. 
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1.5 Contributions 

To address the above research concerns this dissertation undertakes an extensive performance 

comparison between TCP variants and presents two new mechanisms to improve spatial reuse 

and maximise TCP throughput in MANETs. 

The first part of this dissertation contains a thorough and detailed analysis of simulation 

traces of the basic TCP Reno agent in a controlled route-breakage scenario under three popular 

routing protocols, namely AODV, DSR and OLSR. This demonstrates the complex interaction 

of the TCP agent with the routing protocol under the conditions of route breakage in MANETs. 

An extensive overview of the artifacts introduced by this interaction is presented and subse- 

quently used to highlight the problems of traditional TCP agents in MANETs with regards to 

non-congestion related losses. Further, extensive simulation results of the performance of three 

reactive (Reno, NewReno and SACK) and one proactive (Vegas) TCP variants are viewed in 

light of different routing protocols. These results reveal the difference in performance between 

the variants across routing mechanisms and are accompanied by a detailed account tracing the 

causes of this discrepancy. Notably, the merits of each variant are explained and evaluated in 

the context of dynamic topologies. Further, TCP Vegas is shown to be decisively competi- 

tive, throughput-wise, with regard to the modern reactive TCP agents, NewReno and SACK in 

MANETs. 
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The second part of the dissertation introduces a novel sender-side technique, inspired by 

the performance merits of the TCP Vegas congestion avoidance mechanism, which results 

in better spatial reuse over standard 802.11 transceivers. As such the method mitigates the 

effects of spatial contention caused by MAC-layer mis-coordination. The new technique is 

derived by considering modifications to TCP's congestion avoidance without compromising 

its fundamental principle of additive increase/multiplicative decrease. Subsequent performance 

analysis of the enhanced agent is conducted using both static and dynamic topologies and the 

new proposal is compared and contrasted with an existing solution from the literature. The 

resulting discussion places both solutions in context of static and dynamic MANET scenarios 

discussing their relative merits in each situation. 

Finally, this dissertation also deals with receiver side modifications intended to achieve 

better spatial reuse for the TCP agent. Although there has been some work in the literature on 

the subject, careful examination of simulation traces, as well as experience drawn from past 

MANET simulation research, reveals several shortcomings and omissions in both the solutions 

themselves and their evaluation. Drawing on those lessons of the past, and through extensive 

simulation, a more thorough evaluation of past approaches is conducted and, in addition, a new 

technique is presented which improves performance through careful setting of MAC parame- 

ters, without compromising the assumption of an 802.11 MAC mechanism. The dissertation 

emphasises issues with existing evaluation techniques, widely used in literature, and aims to 

place future performance evaluation of TCP in MANETs in the context of more varied scenar- 

ios, offering suggestions for future research work. 

1.6 Outline of the dissertation 

The rest of the dissertation is organised as follows. Chapter 2 introduces in detail the reactive 

and proactive TCP variants under examination, namely TCP Reno, NewReno, SACK and Ve- 

gas. Further, a description of the routing protocols used in the simulations and subsequently 
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relevant to the follow-up discussion are presented. Then, a list of common assumptions con- 

cerning the subsequent simulation analysis is also included. Finally, justification is offered on 

the method of study used in this dissertation and a rationale is given on the choice of simulation 

tools employed. 

Chapter 3 contains a simulation comparison of the aforementioned TCP variants in a vari- 

ety of mobility scenarios and under different routing protocols. Moreover, detailed simulation 

traces representative of the throughput behaviour of each transport protocol are included per 

routing protocol and their differences are highlighted. 

Chapter 4 discusses TCP's role in spatial reuse in MANETs. In particular, a new approach 

which leads to goodput improvement through a sending rate reduction is discussed and anal- 

ysed through simulation. The new technique is then evaluated against an existing end-to-end 

modification and its relative merits are discussed and highlighted. 

Chapter 5 presents an overview of techniques that reduce the rate of ACK responses in 

MANETs to improve spatial reuse and outlines a new approach which uses widely imple- 

mented features of the wireless transceiver to improve performance. A discussion on the limi- 

tations of existing evaluation techniques is also included and the new results are presented in a 

well-specified problem domain and context. 

Finally, Chapter 6 summarises the results presented in this study and offers suggestions for 

future research work. 



Chapter 2 

Preliminaries 

The main objectives of this chapter are to provide some background on the characteristics of 

TCP agents, offer an overview of MANET routing protocols and present the mobility model 

and common simulation assumptions used in this dissertation. As such, the chapter is organised 

as follows. Section 2.1 describes the TCP agents and congestion avoidance mechanisms this 

dissertation deals with. Section 2.2 contains a succinct description of the main operations of 

the MANET routing protocols used in subsequent chapters. Section 2.3 includes a description 

of the random waypoint model, which is used in this work to simulate topological changes. 

Section 2.4 lists the common simulation assumptions which apply throughout this dissertation. 

Finally, Section 2.5 provides justification on the method of study and techniques used in this 

dissertation. 

2.1 Fundamental TCP principles 

The Transmission Control Protocol (TCP) [15] is a widely used transport protocol in wired 

and wireless communications, layered on top of IP networks to provide reliable end-to-end 

congestion control. Apart from establishing, maintaining and dissolving connections between 

communicating pairs, a TCP agent is responsible for behaving fairly towards other network 

flows including other TCP agents whilst not exceeding network capacity. The way this fairness 

23 
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and sensible resource usage is achieved though is not explicitly specified; as such there are 

different TCP variants, each of which nevertheless obeys basic behavioural rules [97]. 

TCP sends data in segments which do not exceed a maximum segment size as negotiated 

via a three-way handshake between the communicating agents during an initial connection 

establishment phase. Each byte (octet) of data has a sequence number assigned to it. When 

the receiver receives a segment, it notes the bytes of data (or sequence number range) of the 

segment and responds by sending back a cumulative acknowledgement (ACK) which confirms 

that all bytes up to the given sequence number have successfully arrived. The TCP sender also 

maintains a retransmission timeout (RTO) timer, which on expiration indicates that a segment 

has been lost and is to be retransmitted. The functionality offered by cumulative ACKs, the 

RTO timer as well as a checksum on the segment header and data ensures reliability on top of 

IF. 

Another important functionality of TCP is flow and congestion control through the use of 

a "sliding window" [98], measured in bytes. The sending rate is throttled by the congestion 

window maintained at the sender and the receiving window advertised by the receiver. The 

minimum of the two defines the maximum amount of outstanding (unacknowledged) data that 

the TCP agent may maintain at any one time in the network and along the communications 

path for a particular connection. The adjustment of the receiving window allows the receiver 

to set the rate of incoming segments so that it is not overwhelmed by the load. On the other 

hand, tweaking the congestion window is a means for the sender to adjust to varying network 

conditions and avoid causing congestion in the network. 

Recent traffic monitoring over the Internet [4] has confirmed the popularity of the Reno 

[56] and NewReno [38] TCP variants as well as the increasing adoption of the TCP selective 

acknowledgements (SACK) modification [14]. A promising reactive solution to the problem of 

congestion control has further been presented in [16] with the introduction of TCP Vegas which 

has received much attention in the literature [1,45,72,109]. These TCP variants are viewed as 

likely candidates for adoption as reliable transport protocols for use over MANETs as they are 

readily implementable and safe to use over small or large scale networks. The basic principles 
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of the aforementioned protocols, which form the focal point of this dissertation follow. 

2.1.1 TCP Reno 

TCP Reno refers to the implementation of the TCP protocol in the 4.3 Berkeley Software 

Distribution (BSD) which includes the additive increase, multiplicative decrease congestion 

control algorithm proposed in [561. Congestion control is accomplished using four distinct 

mechanisms, namely slow start, congestion avoidance, fast retransmit and fast recovery. 

The slow start phase is activated immediately after the initial handshake that establishes 

the connection or following the expiration of the retransmission timer. Every time an ACK 

is received the congestion window (cwnd) increases by one segment size and so effectively 

per round trip time (RTT), cwnd is doubled (i. e. increases exponentially). Initially, the slow 

start mechanism increases the cwnd until aa congestion indication event is triggered or the 

maximum sending rate is reached. A congestion indication event could either be three duplicate 

ACKs (dupACKs) or a retransmission timeout (RTO). 

The slow start threshold (ssthresh) state variable stores the value of half the sending rate 

(cwnd size) at which the last congestion indication event occurred. The congestion avoidance 

phase is triggered when the cwnd reaches the ssthresh value during slow start or after the fast 

retransmit/fast recovery phase. During the congestion avoidance phase, cwnd increases linearly 

and up to one full sized segment per RTT. This phase attempts to gently feed segments into 

the network after reaching half the rate when the previous segment delivery failure occurred. 

Finally, the fast retransmit/fast recovery phase occurs when the sender receives three du- 

pACKs which indicate that a TCP segment has been lost in flight. A dupACK is sent by 

the receiver whenever it cannot acknowledge an arriving segment because it has not received 

all the segments sent prior to that one. The fast retransmit algorithm requires an immediate 

retransmission of the missing segment without waiting for the RTO timer to expire. Fast re- 

covery sets ssthresh +-- * cwnd and sets cwnd F- ssthresh + (3 * max. segment size). 

Then, the cwnd `inflates' for each additional dupACK received so that it is possible to con- 

tinue sending segments in an attempt to keep the network `pipe' utilised while waiting for an 
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ACK to acknowledge new data. When such an ACK arrives cwnd `deflates' to ssthresh and 

TCP enters the congestion avoidance phase. The linear increase of the sending rate (during the 

congestion avoidance phase) as well as its radical decrease (after an RTO or three dupACKs) 

form the additive increase/multiplicative decrease property of TCP which maintains fairness 

between connections sharing the link, ensures fast convergence to a fair share state when other 

flows need to utilise the available bandwidth and guards against the possibility of congestion 

collapse [56]. 

The RTO timer in TCP Reno is computed by measuring the RTTs of transmitted segments. 

In particular the RTO value is set to RTO +- SRTT + max(G, 4* RTTVAR) every time an 

RTT sample is collected, where SRTT is a smoothed average of the RTT samples and RTTVAR 

denotes the RTT variance. TCP features an RTO "heartbeat" counter which checks for RTO 

expiration at time intervals of given length G; the interval length defines the RTO timer's 

granularity and is set by default in several implementations to 100,200 or 500ms [11,17,76]. 

The collection of RTT samples and the reset of the RTO timer are activated on a per-window 

basis. 

2.1.2 TCP NewReno 

The NewReno TCP variant [38] improves upon the congestion recovery mechanism of Reno 

without requiring changes to TCP receivers or the TCP segment format. More specifically, 

the existence of a selective ACK receiver is not assumed (as opposed to TCP SACK described 

in Section 2.1.3). The NewReno algorithm is functionally very similar to TCP Reno. The 

difference between the two variants can be distilled to the treatment of a loss event during the 

congestion avoidance phase. When the TCP agent enters the fast recovery phase, provisions 

are made so that the sender actually responds to ACKs that do "cover" new data but not all the 

outstanding data in the pipe at the time the loss was detected. These are labelled partial ACKs, 

and in the NewReno paradigm they prompt the retransmission of the first unacknowledged 

segment by the partial ACK and the reset of the retransmission timer. This enables the TCP 

sender to recover from multiple packet losses in a single window of data without resorting to 
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the coarse grained RTO, which is often detrimental to throughput. 

Two TCP NewReno variants are specified in the relevant RFC [38], namely the "Careful" 

and the "Less Careful" agents. The difference between the two is that due to the absence of 

exact information on the receiver's buffer the "Careful" variant times out if a packet preceding 

three other packets in flight in a window of data is lost, whilst the "Less Careful" one does not. 

Essentially, there is a chance that the "Less Careful" variant will fast retransmit unnecessarily 

on occasion but can also fast retransmit as desired in cases where the "Careful" variant has 

to rely on RTO expiration. The NewReno RFC [381 suggests the "Careful" variant be imple- 

mented, as it might be more conservative and at times sub-optimal but does not overburden 

the network with spurious traffic in any case, unlike the "Less Careful" agent. The "Careful" 

variant is evaluated in the simulation experiments included in this dissertation. 

It is notable that the NewReno modification to TCP was widely deployed in most modern 

operating systems [381 long before it was ratified as an IETF standard. Its popularity may be 

attributed to its effectiveness in avoiding extensive RTO periods by intelligently filling gaps in 

the receiving buffer caused by dropped or reordered packets. 

2.1.3 TCP SACK 

TCP Sack [14] is a Reno-based TCP variant which makes use of the facilities provided by the 

Selective Acknowledgements (SACK) option of TCP [81 ]. In this fashion, SACK-enabled seg- 

ments provide the TCP sender with some indication of the status of the destination's receiving 

buffer. To achieve this, the data receiver generates SACK information for every ACK response 

it produces that does not cover the highest sequence number in the data receiver's queue. 

Hence, when reception of a non-contiguous segment occurs, instead of returning a du- 

pACK, the receiver produces a reply which contains further information in the header of the 

segment in the form of an option. The information embedded on the SACK response contains 

a list (in the form of block pairs) of some of the isolated data blocks in the receiver's buffer, 

which have not been passed on to the application layer, as additional data segments are required 

to plug-in the gaps in the receiving sequence within the receiver's window. Hence, in the event 
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of packet loss the sender can re-send only the exact packets that have been lost in transit and 

avoid producing spurious retransmissions. 

The TCP SACK Option is widely supported on the Internet; even though not all agents 

make use of the SACK information, many produce SACK-enabled responses [14]. There is 

also an optional TCP D-SACK [41] mechanism (where D stands for Duplicate) that makes 

use of Selective ACKs to help the sender infer the order of packets received at the destination 

and thus realise when it unnecessarily retransmits a packet after a duplicate ACK has been 

produced. This allows the sender to act more intelligently in the case of persistent reordering, 

packet replication or early RTOs. 

2.1.4 TCP Vegas 

TCP Vegas [16] introduced several new mechanisms to TCP including a proactive congestion 

avoidance technique which does not violate the congestion avoidance paradigm of TCP. In- 

stead of increasing the sending rate until a segment loss occurs, TCP Vegas tries to prevent 

such losses by decreasing the sending rate when it senses incipient congestion even if there is 

no indication of segment loss. As such TCP Vegas can be classified as a "proactive" variant 

as opposed to "reactive" Reno-based agents which respond to segment losses after they have 

occurred. An overview of the main mechanisms of Vegas follows. 

First, there is a different retransmission mechanism compared to TCP Reno. TCP Vegas 

features two timeout values. The first is the regular coarse-grained RTO value similar to the 

one in TCP Reno, which is limited in accuracy by the granularity of the "heartbeat" counter. 

The other is a fine-grained RTO value based on a more accurate RTT estimate. Both the fine 

and coarse-grained counters are calculated as in TCP Reno. The more accurate RTO estimate 

is possible because TCP Vegas measures the RTT for every segment transmitted within the 

sending window by reading the system clock at the segment's departure and then once more at 

arrival of the corresponding ACK. Consequently, a more fine-grained RTO value is calculated 

per RTT, which is only triggered, however, by the arrival of corresponding ACKs. Whenever 

a dupACK is received TCP Vegas checks whether the difference between the current time and 
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the timestamp recorded for the relevant segment is greater than the fine-grained RTO. If this 

is the case, that segment is retransmitted immediately without waiting for further duplicate 

ACKs. Further note that for the first or second segment (depending on how many segments are 

in transit) after the fast retransmission there is a fine-grained RTO expiration check even on 

non-dupACKs. 

Conversely, TCP Reno waits for 3 dupACKs before retransmission and so if enough du- 

pACKs are lost on the way, and this is likely in case of congestion, Reno will fall back on its 

coarse-grained timeout mechanism. Although the TCP Vegas retransmission mechanism can 

be activated with a single dupACK, it is not necessarily more aggressive than Reno's as any 

retransmission is in accordance with the TCP specification; the RTO timer for the retransmit- 

ted segment has expired and so a retransmission is standards compliant. Since the fine-grained 

RTO counter is only examined when a dupACK is received, TCP Vegas may have to fall back 

on the coarse-grained RTO timer, like Reno, if dupACKs do not trigger the fine-grained timer. 

Should multiple congestion indication events occur, TCP Vegas reduces the congestion window 

only for the first fast retransmission as it tries is to avoid decreasing the sending rate for con- 

gestion that was observed before the last window decrease. As such, Vegas does not penalise 

the connection by further reducing the window's new size for effects that may be attributed 

to the window's previous size. The trade-off in the case of this added fine-grained timer is 

additional computational and storage demands on the TCP agent but these do not appear to be 

significant [171. 

The proactive congestion control behaviour of Vegas is based on RTT measurements. Once 

per RTT, Vegas computes the current (actual) measured throughput and compares it with what it 

considers to be the expected throughput. The expected throughput is computed as expected = 

wi"doi ze, where the baseRTT is the smallest observed RTT measurement for the connection, se T 

and windowsize is the number of bytes currently in flight. The actual throughput is computed 

as actual = '"tT 
, where RTT is the average RTT of the segments acknowledged during the 

last RTT, whilst rttLen is the number of bytes transmitted during the last RTT. The difference 

(di f f) between the two measurements is calculated in baseRTT segments as follows: 
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di ff- windowsize 
_ 

rttLen 
* baseRTT C 

baseRTT RTT 
(2.1) 

If the difference is under a certain threshold, a, then the congestion window increases by 

a full segment size since there is evidence that the expected throughput is achievable and so 

the sending rate should increase. If the difference is above a (possibly different) threshold, ß, 

then this is taken as a sign of incipient congestion and the congestion window decreases by a 

full segment size. Otherwise, the congestion window (cwnd) remains unchanged. The decision 

process used to adjust the sending rate per RTT is summarised below: 

cwnd+1 ifdiff <a 

cwnd = cwnd if a< di ff : 5,3 (2.2) 

cwnd -1 if di ff>3 

In the original Vegas papers [ 16,17], the a and ,Q thresholds were set to 1 and 3 respectively. 

Finally, the slow start mechanism of Vegas uses a variation of its congestion avoidance 

mechanism to decide when to switch to the congestion avoidance phase. Vegas monitors the 

expected and actual rate per RTT and increases the congestion window only every other RTT 

to make the comparisons valid. As soon as a queue buildup is detected (i. e. di ff> 1), Vegas 

moves on to the congestion avoidance phase. Vegas is much more conservative during the slow 

start phase compared to Reno-based variants and such behaviour is indicative of the "proactive" 

philosophy of Vegas. Whilst TCP Reno initially tries to fill in the pipe with enough segments 

to cause segment loss and thus probe the capacity of the bottleneck link, TCP Vegas chooses to 

measure the pipe's reaction to added segments in order to realise the available capacity without 

inducing segment loss. 

2.2 Routing principles in MANETs 

There are two main routing approaches in MANETs as expressed in IETF recommendations 

through the RFC process, namely the reactive and proactive routing paradigms. The former 
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category includes the AODV [92] and DSR [60] protocols, whilst the latter is represented by 

OLSR [28]. The main functionality of each of these is now presented in turn. 

2.2.1 Ad hoc On-Demand Distance Vector (AODV) routing 

The AODV routing algorithm is a popular reactive routing algorithm which has been ratified 

by the IETF in an experimental RFC [921. The characterisation "reactive" or "on-demand" 

routing refers to the fact that the routing protocol requires participants to maintain routes only 

to destinations that are in active communication. Paths are established on an "as needed" basis, 

and there is no proactive discovery of routes. This is beneficial in mobile environments as fully 

up-to-date knowledge of all routes from every node implies large overhead with diminishing 

returns if the routes are not utilised, since topology changes may be frequent. 
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Figure 2.1. The main operations of AODV routing 
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AODV makes use of a destination sequence number for each route entry. This sequence 
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number is produced by the endpoint of a communicating pair and is included with the route 

information sent from the destination to requesting nodes during the route discovery process. 

Using this simple mechanism loop-free routing is ensured and the sequence number is further 

used as a metric of freshness for each route. Every time the destination notifies other nodes 

of a route to itself, it increases the sequence number and, hence, when the route discovery 

procedure presents a choice of several routes to the destination, the more up-to-date one may 

be chosen. In contrast to the other popular reactive routing protocol, DSR [60], AODV only 

maintains a single route entry per destination and in particular the freshest one as indicated by 

the accompanying sequence number. 

There are two main functions of the routing protocol to consider, namely route discovery 

and route maintenance. Whenever a node is unaware of the route to its communicating des- 

tination, it initiates the route discovery process. A probing message called the Route Request 

(RREQ) is disseminated throughout the network via broadcasting and in a controlled fashion 

using an expanding ring search. The message is in turn forwarded once by each node that re- 

ceives it and hence a ̀ forward path' is established from source to destination by imprinting next 

hop information onto intermediate nodes. An example of the network "flooding" with RREQ 

packets is shown in Figure 2.1(a) for a given topology. When the RREQ reaches the destination 

node or a node which is aware of a route to the destination, a Route Reply message (RREP) is 

sent to the node that forwarded the RREQ. When the RREP originates from an intermediate 

node and not the destination itself, it is referred to as a gratuitous RREP. For each RREQ cycle 

a single RREP is generated and in particular as a response to the first RREQ received. The 

RREP propagates back to the source thereby establishing a `reverse path' where all interme- 

diate nodes have enough next hop information to route packets for the {source, destination} 

communicating pair. Figure 2.1(b) depicts the process. Further, for each route entry at partici- 

pating nodes there exists a list of neighbours that have made use of the route. This "precursors" 

list is utilised whenever route failures occur to inform only relevant nodes (i. e those making 

use of the route) of the route's breakage. 

The second main function of AODV is its route maintenance process. After the route 



2.2. ROUTING PRINCIPLES IN MANETS 33 

discovery process and so long as the discovered route is used, the routing protocol does not 

dictate any particular action. When the route becomes inactive, i. e. no data is sent over it, 

a timer is activated, after the expiration of which the route is considered stale and expires. 

Should the routing agent at a node become aware of a link breakage for an active route, a 

Route Error (RERR) packet is generated at the point of breakage. This is then disseminated 

to the appropriate nodes participating in the route's formation and those nodes actively using 

the route. The latter is achieved via the precursors list as described previously. The nodes 

affected by the invalid route mark it for expiration since it is no longer useful. In this fashion, 

the RERR message propagates to the source node which can then initiate a new route discovery 

phase. This operation is illustrated in Figure 2.1(c). Alternatively, the intermediate node at the 

point of the link failure may opt to produce a RREQ itself in expectation that the destination is 

still reachable. An alternate route may be discovered more quickly if the discovery process is 

initiated at the point of breakage rather than at the source. Such an attempt at a "local repair" 

is very efficient if the topology does not change radically and the destination is still reachable 

at a relatively short distance from the point of failure. 

Finally note that provisions are also made in AODV for the discovery and circumvention 

of unidirectional links as well as for the use of AODV on IPv6 enabled networks. 

2.2.2 Dynamic Source Routing (DSR) 

DSR [601 is a distance vector routing protocol that makes use of sequence numbers to avoid 

routing loops. However, it is a reactive algorithm and as such does not maintain routes to all 

possible destinations but establishes them as the need arises. Each intermediate node does 

not need to contain up-to-date information for a complete path to a destination because the 

complete route a packet must follow to reach its destination is imprinted on its header by the 

source. DSR makes extensive use of route caching and as such its table entries may contain 

multiple routes for the same destination. Furthermore, there is no need for a mechanism to 

detect routing loops as loop freedom is assured by source routing. 

In order for the source to discover the path to a destination the network is controllably 
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flooded with Route Request (RREQ) packets. As a RREQ packet is rebroadcast by the inter- 

mediate nodes, the hop sequence to the destination is recorded on the packet's header. When 

the packet reaches the destination or a node that knows the route to the destination, a Route 

Reply (RREP) is transmitted back to the source by reversing the path of the RREQ packet, thus 

informing the source of the new route. In the case of a unidirectional link, it is necessary for 

the destination to initiate its own route discovery process as the inverse of the original path is 

not a valid path in itself. The process is illustrated in Figure 2.2. 
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Figure 2.2. Route discovery in DSR 

The destination node replies to all RREQ packets received per route request cycle and, 

consequently, the source may discover multiple routes to the destination. Following the route 

discovery process, each data packet flowing from the source to the destination contains the 

complete hop route to the target. Whenever a link failure occurs a Route Error (RERR) packet 

is transmitted from the node where the link breakage occurred to the source. This is propagated 

through the nodes that contain the failed route in their cache which, in turn, update their caches 

to shorten the stored path up to the point of failure. Once the source receives the RERR packet 

it re-initiates the route discovery process or may make use of alternate cached routes to the 

destination. 

It is possible to improve a node's ability to learn new routes at no additional traffic cost 

by allowing promiscuous listening. In this case, the node is allowed to listen to traffic not 

addressed to it and discover new routes from packet headers. Another use of promiscuous 
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listening is to optimise the routing path. The listening node may examine the untraveled portion 

of the path in a packet header to check if its address is there. If it is, that means that the packet 

need not go through any other hops preceding the node's own address in the route. To make 

the source node aware of this, the promiscuous node then transmits a gratuitous RREP to the 

packet's source that includes the shortest path without those intermediate nodes. Nonetheless, 

intercepting all packets can be detrimental to the power reserves of the mobile node and there 

are computational overheads of packet processing to be considered as well [61]. 

The DSR protocol further includes a packet ̀ salvaging' mechanism. When an intermediate 

node forwarding a packet detects that the next hop along the route for that packet is broken 

but contains another route to the packet's destination in its route cache, then the node should 

attempt to `salvage' the packet rather than discard it. The packet's route is altered according to 

the node's route cache entry for the destination and a RERR packet is sent back to the source 

informing it of the new route. Overall, DSR is persistent in recovering from routing errors by 

discovering alternate routes from the point of failure. In particular, the proposed standard [601 

defines a maintenance buffer that caches packets which were unsuccessfully transmitted in 

view of discovering an alternate route. This mechanism can be combined with the promiscuous 

listening functionality as described previously so as to utilise alternate overheard (cached) 

routes and eventually deliver the packet to its destination. 

Two other mechanisms of interest in DSR are network layer acknowledgements (ACKs) 

and passive ACKs. In particular; the former ensures DSRs ubiquitous nature while the latter 

helps reduce overhead associated with point-to-point reliable transmission of packets. The two 

mechanisms are now briefly described in turn. 

Network layer ACKs may be demanded by the source via an option in the DSR options 

header embedded in a packet sent. Upon reception of such a packet, the destination responds, 

in turn, with a DSR ACK packet which verifies the successful data exchange. The advantage 

of such network layer functionality is that it enables the deployment of DSR across systems 

that do not feature equivalent lower layer provisions (IEEE 802.11 transceivers do, however, 
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include such functionality [521). Disadvantages of such a mechanism include higher ACK 

response time and processing overhead than in the case of MAC layer responses. 

Passive ACKs occur between the two entities of a point-to-point dyad, when the packet 

originator overhears the neighbouring destination forwarding the packet after some time. This 

implies that the destination had correctly received the packet earlier, but, on the downside it 

requires omnidirectional antennas and both source and destination to be within transmission 

range of each other. This requirement holds true even when the two nodes are not conversing 

with each other, which in turn implies that the destination should transmit the packet using 

the same power as used by the source when it first transmitted the message, to ensure that 

the transmission will be overheard by the source. Hence, the destination node of the passive 

ACK pair may not opt to limit its transmission range to conserve energy when talking to other 

nodes [631. 

It is worth nothing that the above two techniques are complementary, i. e. network layer 

feedback may be combined with passive ACKs. In particular, the node may at first attempt to 

transmit and wait for a passive ACK before resorting to the explicit request of a network layer 

ACK [60]. If a passive ACK is successfully received after transmission, the network layer 

ACK overhead is hence eliminated. 

2.2.3 Optimized Link State Routing (OLSR) 

The OLSR protocol [28] has been developed primarily with mobile ad hoc networks in mind, 

although no assumptions are made about the underlying link layer. Its main operation resem- 

bles table-driven, proactive protocols as used in wired infrastructure networks; in fact it is 

similar to the previously introduced DSDV [93] protocol with respect to there being regular 

topology information exchanges with other network nodes. 

An OLSR network is built upon the concept of "multipoint relays" (MPRs). Each node 

selects a set of its neighbouring nodes as MPRs, which are then responsible for forwarding 
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control traffic intended for distribution into the entire network. The MPRs provide a mecha- 

nism to constrain the flooded control traffic by reducing the number of transmissions required, 

hence mitigating DSDV's serious overhead problems [93]. Through the transmissions of its 

MPR 1-hop neighbours, a node is able to reach all nodes within a 2-hop radius. Nodes selected 

as MPRs have to feature bi-directional link status with their selector, which elegantly avoids 

problems associated with uni-directional communication, such as the inability to exchange 

link-level acknowledgements, a vital operation for 802.11 networks. 
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Figure 2.3. Methods of distributing control messages 

MPRs are also critically responsible for announcing the link-state information of their se- 

lectors in the network. Nodes which have been selected as multipoint relays by some neigh- 

bouring node(s) announce this information periodically with topology control (TC) messages. 

Essentially, each node announces to the network that it has reachability to the nodes which 

have selected it as an MPR. When paths are calculated, the MPRs are used to form the route 

from a given node to any destination in the network. For MPRs to be selected, information 

about a node's neighbours must become available and this occurs through periodic exchanges 

of HELLO messages. Figure 2.3 illustrates the operation of MPRs and the resulting savings 

in transmissions compared to a simple flooding operation. In particular, in Figure 2.3(a) the 

message is sent from the source to all nodes (that is the one and two-hop neighbours) through 

5 transmissions. When MPRs are employed in the same topology in Figure 2.3(b) (incurring 

the overhead of HELLO messages between the nodes so that MPRs may be chosen by the 
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source) only 3 transmissions are needed for the complete dissemination of the message. It can 

be intuitively understood that for dense and large networks the savings are quite substantial, 

even after accounting for the overhead of HELLO packet exchanges. 

OLSR is particularly well suited to scenarios of large and dense networks where the MPR 

optimisation works well, in addition to instances where the communication pairs change over 

time; in these cases there is no additional control traffic overhead as routes for all known 

destinations are maintained at all times [94]. Further, OLSR maintains sequence numbers on 

its control messages like AODV and DSR and periodically retransmits its control messages. 

This makes it as resilient as the aforementioned reactive protocols to out-of-order delivery or 

loss of control information. 

2.3 Random waypoint model 

The random waypoint mobility model [75] is one of the most popular mobility models in 

MANET research and in itself a focal point of much research activity [75,83,110]. The original 

version of the mobility algorithm was originally presented by Johnson et al. in [59] and refined 

in follow-up work [19]. The model defines a collection of nodes which are placed randomly 

within a confined simulation space. Then, each node selects a destination inside the simulation 

area and travels towards it with some speed, s. Once it has reached the destination, the node 

pauses for some time, p, before it chooses another destination and repeats the process. The node 

speed, s, of each node is specified according to a uniform distribution with sE (0... Vmax], 

where Vmax is the maximum speed parameter. Pause time is a constant p secs. The cycle is 

illustrated in Figure 2.4. It is suggested in [19] that the simulation should be left to run for 

some period of time before collecting data, effectively discarding the initial observations so as 

to allow the probability distribution of both location and speed to converge to a "steady-state" 

distribution. 

In the initial use of the random waypoint model for evaluation [19], an increase in mobility 

was simulated by increasing the maximum speed parameter or decreasing the pause time. In 
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fact, the authors in [19] assumed that the average node speed would be Vmax/2; an assumption 

shared by later research work [2]. However, Yoon et at. [110] have revealed that the average 

node speed in the random waypoint model is actually continuously decaying and further work 

by Navidi et at. [83] has confirmed those findings. In order to ensure that an increase in the 

maximum node speed parameter actually reflects an increase in average nodal speed (and by 

extension increased mobility) this dissertation employs the solution proposed in [110] which 

defines a non-zero minimum bound for the range of the uniform speed distribution and ensures 

quick convergence to a steady state average node speed. 

It should be noted that the random waypoint mobility model is the most popular of the "en- 

tity" mobility models, where each node's motion is independent to that of others. Its popularity 

may be attributed to ease of implementation and intuitive appeal in view of the lack of widely 

deployed MANET testbeds where mobility patterns could be traced and then used in simula- 

tions. Other proposals in mobility models include several "group" mobility models [831, where 

the movements of nodes may be correlated, such as the motion of vehicles on the highway and 

so on. 

2.4 Assumptions 

In the subsequent chapters, extensive simulation results will be presented. The following 

assumptions are used throughout this research and have been widely adopted in the litera- 

ture [2,6,24,26,31,34,35,42,43,49,65,71,104,1111 
. 

" Mobiles nodes have sufficient power supply to function throughout the simulation time. 

At no time does a mobile node run out of power or malfunction because of lack of power. 

Equivalently, the wireless transceivers are active at all times, although promiscuous lis- 

tening (i. e decoding of all frames, even those not addressed to the node itself) is not 

active unless specifically noted. 

" The number of nodes in a given topology remains constant throughout the simulation 

time. Note that network partitioning may still be evident during simulation and so the 
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network may not be connected at all times. However, at no time does a node leave or 

gets added to the simulation area. 

" Transmissions are not affected by random errors. Transmissions may still interfere with 

each other (i. e. affect each other if they occur in close proximity); however a node will 

always successfully decode a transmission provided it is within transmission range of 

the source and there is no interfering transmission. 

9 All nodes are equipped with IEEE 802.11 transceivers. Unless otherwise stated the full 

RTS/CTS mechanism is employed on these wireless devices. 

It is worth noting that other assumptions will be stated in the following chapters as appro- 

priate. 

2.5 Justification of method of study 

In this work extensive simulations are conducted to explore issues in TCP performance in 

MANETs. This section discusses briefly the choice of simulation as the appropriate mode 

of study for the purposes of this dissertation, justifies the adoption of ns-2 as the preferred 

simulator and further provides information on the techniques used to minimise the possibility 

of simulation error. 

After some consideration, simulation was chosen as the mode of study in this dissertation. 

Notably, when this work was undertaken, analytical models with respect to multihop MANETs 

were considerably coarse in nature which made them unsuitable to aid the study of TCP with 

a reasonable degree of accuracy; it should be noted, however, that understanding of multihop 

wireless communications has improved in recent times [96]. Further, since the scope of this 

study of TCP in MANETs involves numerous mobiles nodes, even a moderate deployment of 

nodes as an experimental testbed could entail substantial and prohibitive cost. As such sim- 

ulation was chosen as it provides a reasonable trade-off between the accuracy of observation 



2.5. JUSTIFICATION OF METHOD OF STUDY 42 

involved in a testbed implementation and the insight and completeness of understanding pro- 

vided by analytical modelling. 

In order to conduct simulations the popular ns-2 simulator has been used extensively in 

this work. Ns-2 was chosen primarily because it is a proven simulation tool utilised in several 

previous MANET studies [31,35,43,49,104,111] as well as in other network studies [37]. 

While developing modifications to the simulator, special care was taken to ensure that the 

algorithms implemented would function as designed and that the simulator would not exhibit 

unwanted side-effects; this was accomplished through meticulous use of the validation suite 

provided with ns-2 as well as careful piecemeal testing of implemented features. Further, 

real-life implementations of routing agents were used for the simulations conducted in this 

dissertation, in order to achieve a close approximation of real system behaviour [48,79,84]. 

Finally, particular attention has been given in this work to ensure that the simulation results are 

fairly representative of possible real world systems [7] and to avoid shortcomings of previous 

research in MANETs [71]. 



Chapter 3 

TCP performance in MANETS 

3.1 Introduction 

Due to its extensive use and implementation maturity on most platforms, TCP has become 

the focal point of much research work in MANETs [31,35,43,49,104,111 ], especially with 

regard to the effects of non-congestion related packet losses [8,25]. However, these efforts have 

largely focused on special topological configurations and the evaluation of proposed solutions 

has mostly been performed in limited scenarios. Furthermore, research which specifically 

examines the behaviour of TCP variants across different routing protocols has been meagre [2, 

341 and was undertaken at a time when MANETs and their properties were not well understood. 

In particular, previous studies have been hampered by restrictive assumptions with regards to 

the mobility model used [34,49,95], or have been otherwise encumbered by the immaturity of 

available simulation tools [2,7 1]. 

Most previous evaluation efforts have only either measured performance in static topolo- 

gies [95] or through a limited number of trials insufficient to extrapolate general conclu- 

sions [2,34,49]. Recent work [I 101 has revealed an issue with the popular random waypoint 

mobility model, as used in the aforementioned works, concerning continuously decaying av- 

erage node speed over the course of a simulation run. These considerations would seem to 

43 
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justify a re-evaluation of the performance of TCP agents, as previous work has not clearly re- 

flected varying degrees of mobility [83]. Further, as the understanding of the wireless medium 

properties has progressed, the available simulation tools have matured and, after substantial 

fine-tuning, now incorporate significant detailed elements corresponding to practical imple- 

mentations [7]. 

Motivated by the above observations, this chapter makes the following contributions. It 

presents a study on the effects of mobility on TCP, through its interplay with three popular 

routing mechanisms, namely AODV, DSR and OLSR. This provides insight into the potential 

performance discrepancies between routing protocols and more significantly outlines the trade- 

offs involved in enabling optional features included in each routing protocol. Notably, the 

results show that routing protocol specific features, such as packet caching or route notification 

interval, can significantly affect TCP performance (e. g. throughput). 

This chapter also conducts a performance evaluation of three popular reactive and one 

proactive TCP variant, namely TCP Reno, NewReno, SACK and Vegas. Such an evaluation 

study is the first to examine the performance of TCP Vegas in MANETs and identify the cause 

of its competency. Overall, the results indicate that Vegas, SACK and NewReno maintain 

better goodput performance levels with respect to TCP Reno, with Vegas exhibiting the best 

overall goodput of the three. In contrast to previous work [49], detailed simulation traces are 

used to pinpoint the causes of the performance discrepancy of the TCP variants with respect to 

inactivity periods and reaction to packet losses. 

The rest of this chapter is organised as follows. Sections 3.2,3.3 and 3.4 include instructive 

simulation traces and a description of the behaviour of TCP Reno over a route break event in 

the presence of AODV, DSR and OLSR routing agents respectively. Section 3.5 contains the 

results of the performance comparison of the different TCP variants, namely Reno, NewReno 

Vegas and SACK, under various mobility conditions and discusses simulation parameters and 

assumptions. Detailed discussion of the interplay of TCP mechanisms with other layers, which 

accounts for the performance discrepancies observed in the simulation, are included in Sec- 

tion 3.6. Finally, Section 3.7 summarises this chapter. 
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3.2 TCP behaviour over AODV 

This section examines the behaviour of TCP Reno in a low mobility scenario. This example is 

instructive as to the challenges faced by TCP in a wireless multi-hop environment and provides 

insight into the interaction of TCP with the AODV routing mechanism. In particular, the 

discussion that follows aids comprehension when contemplating TCP goodput performance 

issues in the subsequent sections. Note that due to its simplicity TCP Reno is well suited 

for minute simulation trace analysis and as such, used here as the transport agent. However, 

comments made on its behaviour are pertinent to other types of TCP agents as the discussion 

largely involves TCP characteristics present in all variants. 
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Figure 3.1. A scenario depicting AODV operations after a route break 

Simulation setup The scenario involves a 5-node string topology (nodes A -* E) and an 

additional node, F, which stands in close proximity between nodes D and E, as shown in 

Figure 3.1(a). The nodes along the A -º E string are spaced 200m apart and feature standard 

Lucent WaveLan II [641 transceivers with bandwidth of 2Mbps. An FTP bulk transfer with an 
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infinite backlog is initiated at the beginning of the simulation between the end points of the 

string topology, namely nodes A and E. As mentioned above the TCP agent carrying the FTP 

traffic is Reno and the segment size is 1460 bytes. 

The transmission range of the transceivers is fixed at 250m using a flat, ideal signal prop- 

agation model which does not account for attenuation up to the transmission range limit and 

nullifies the signal strength beyond that threshold. Obviously, such a propagation model can- 

not occur in reality as some signal degradation is always present but it is utilised so as to 

isolate the effects of route breakage and disregard other effects such as those caused by inter- 

ference [107]. To deal with the standard hidden terminal effect the RTS/CTS mechanism [106] 

is active throughout the simulation run. The routing protocol used is AODV-UU [79] which 

is a working AODV implementation utilised in conjunction with the ns-2 simulator [37], and 

which is implemented according to the corresponding RFC [921. HELLO packets are used to 

detect route failures; in particular, if a node has not broadcast a HELLO packet for 5 seconds 

the link is considered stale. Link layer (LL) feedback is not considered in this experiment 

although its potential benefits and drawbacks are taken into account in the subsequent dis- 

cussion. A complete list of the AODV parameters used is presented in Table 3.1. These are 

set as recommended in the corresponding RFCs and have been used in previously reported 

research [26,34,79,921. 

The scenario proceeds as follows. Initially, the AODV agent at node A broadcasts a Route 

Request (RREQ) packet which is forwarded in sequence by each intermediate node until it 

reaches node E, which responds by issuing a Route Reply (RREP) towards A. As the RREP 

propagates to the source, each node that receives it obtains enough information to forward 

subsequent data, as a "reverse path" is formed to complement the "forward" path set by the 

RREQ [921. At the end of this phase the complete path has been setup in the form of the 

A -+ B -º C -+ D -+ E route. Note that node D is aware that E is its neighbour by the time 

the RREQ packet arrives. However, since the gratuitous RREP feature has been disabled in the 

AODV agents, only the intended destination may issue a reply to the discovery packet. After 

a few seconds and once the bulk transfer has been initiated, node F moves closer and gets 
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Table 3.1. AODV parameters 
Parameter Value Parameter Value 

Exp. ring search ON TTL start 2 

Local repair OFF TTL increment 2 

Active route timeout 5 secs LL feedback OFF 

Gratuitous RREQ OFF HELLO interval I sec 

stationed between nodes D and E, thus getting well established inside the transmission radii 

of both nodes. At the 30 second mark, node E starts moving horizontally away from Node D at 

10m/sec until at 35 seconds the signal of D no longer reaches E and the link becomes invalid. 

At its new destination node E is still a neighbour of node F but cannot be contacted by node D. 

Node D realises that its link to E has been invalidated when it notices the absence of HELLO 

packets (this is the only way to realise route breakage as MAC feedback has been disabled). 

A Route Error (RERR) packet is then sent back by node D to the source (node A) where a 

new route discovery cycle begins so as to probe for an alternate route to the destination. Note 

that as the RERR message propagates backwards along the route, all TCP segments buffered at 

each node using the invalidated route are dropped. Figure 3.1(b) outlines the repair procedure 

and depicts the route breakage. As soon as the RREQ packet reaches node E (through F), 

a RREP packet is launched from it towards the source (note once more that Node F could 

have generated the RREP packet but gratuitous RREPs are disabled in this scenario). At about 

the 39 second mark the route is restored and the TCP agent resumes transmission. There are 

no subsequent route breakages until the end of the simulation and the topology stands as in 

Figure 3.1(c). 

During this delivery effort, the TCP agent is unable to distinguish among the different 

causes of segment loss. Certain segment losses derive from the inability of the MAC protocol 

to properly coordinate packet transmissions among stations, which is mostly attributed to the 

exponential "waiting period" backoff of the 802.11 protocol as demonstrated in [26,104,1071. 

Further, the reaction of the routing protocol to route breakages explicitly causes packet loss 
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as each station processing the RERR packets empties its transmission queue of packets util- 

ising the invalid route. All such packet losses are interpreted by TCP as signs of congestion 

despite the fact that congestion does not occur at any point during the simulation (no node's 

transmission queue becomes full at any time). This misdiagnosis impedes TCP performance 

and its effects are further compounded by reliance on the coarse grained RTO timer becoming 

aware of the route's restoration (there is no explicit cross-layer notification from the routing 

protocol concerning the route's status). Several research studies [24,111] have shown that it is 

particularly desirable for TCP to maintain explicit awareness of the route's status, so that lost 

packets from route breakages do not spuriously activate congestion avoidance. 

Figure 3.2(a) displays the DATA-ACK exchange (and thus, indirectly, the throughput) of a 

TCP Reno agent in the string topology scenario. Each marked ACK point in the graph corre- 

sponds to a single ACK received at the source which acknowledges a range of bytes (segments). 

A value of 0 denotes a duplicate ACK (since it does not acknowledge any new segments); a 

value of 1 denotes the normal TCP cycle since every ACK acknowledges a single additional 

segment (delayed ACKs are not used in this simulation). A value greater than 1 denotes that 

a packet which filled-in a discontinuous series of received segments at the destination's buffer 

was received and successfully acknowledged. The DATA segment marks at the top of the 

graph indicate the times when a TCP DATA segment was launched by the sender. Of particu- 

lar interest is the region at 35-39 seconds (indicated by a dashed box in Figure 3.2(a)) where 

the ACK flow stops since the route is considered invalid. The period of disconnection, that is 

the period from when the routing protocol first determines that the route has became invalid 

until it registers its restoration, is denoted by the two solid vertical lines in the graph. Fur- 

ther note the discrepancy between the time of the actual route failure (at 35 seconds) and the 

time it takes for the routing protocol to detect it and initiate a new route discovery procedure 

(37.1 seconds mark). The delay is attributed to the absence of link layer feedback and the use 

of HELLO packets, which represents a trade-off between frequency of updates and overhead. 

When HELLO packets are absent for some time, the routing protocol may assume the link 

has been broken. However, with the link layer feedback, if a transmission fails then the route 
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may immediately be considered obsolete without waiting several seconds for the absence of 

HELLO feedback to register. However, this makes the routing protocol prone to false pos- 

itives from failed link layer transmissions due to interference effects or from other transient 

causes [251. Apart from a stray duplicate ACK received before the RERR notification could 

propagate to the source, there is no newly ACKed traffic during that period. 
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K 

An interesting interplay between the TCP's exponential RTO backoff can be observed in 

this case. The packets sent after the 35 second mark as well as ACKs in flight are mostly 

lost. These losses cause TCP to retransmit at the 36 second mark after experiencing an RTO. 

This retransmitted packet is lost on its way at node B, which by this time has received the 

RERR packet forwarded by node C. The new RTO timer backs off exponentially and is set 

to approximately 2 seconds. Thus, it expires shortly after the 38 second mark, by which time 

the AODV agent at node A is aware of the route breakage and has already initiated the route 

discovery process. The subsequent retransmitted TCP packet (after the RTO) is buffered at the 

source node whilst the route discovery process finds a new route. A new route is discovered 

70 ms later (by the discovery process which had started earlier) and the packet is launched 30 

ms afterwards by the routing agent. If a subsequent RTO had occurred, say because the route 

had become invalid once again, TCP's exponential back-off would have necessitated TCP to 
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remain inactive for a longer period of time than before (approximately 4 seconds in this case) 

even though the route might have been repaired in the mean time. The lack of useful feedback 

between the routing (AODV) and the transport agents is a well known problem in MANETS and 

has been discussed in previous work [34,1111. However, no previous research has mentioned 

that, at a rudimentary level, the negative effect of consecutive RTOs does not take place if 

the TCP agent launches the packet after a route breakage has been detected by the routing 

protocol (as in the example mentioned above). In such a case, the buffering of the packet by 

the routing entity circumvents the damaging effects of consecutive RTOs if the packet and its 

accompanying ACK are successfully transmitted once the route has been restored. 

Figure 3.2(b) shows the smooth round-trip time (SRTT) measurements as realised by the 

Reno TCP agent. The time frame for the route failure is denoted by a dashed box in the same 

graph. The RTT samples freeze for some time as the route is being restored (denoted by the 

plateau at around 35-38 seconds in the SRTT graph). After the route has been restored, the 

new SRTT measurements are not significantly different to previous ones as the path is only 

extended by a single hop. It is noteworthy, however, that the measurements vary significantly 

throughout which may not be ideal for delay or jitter sensitive applications. 

In the same figure, a graph of the average congestion window (cwnd) size is overlaid. Pre- 

vious research [26,43,107] has revealed that TCP does not behave optimally when used under 

distributed MAC mechanisms such as those employed by the 802.11 protocol. Specifically, it 

has been shown that TCP's cwnd stabilises at a large average which maintains more packets 

in the pipe than is optimal [43,107] for the MAC mechanism to function properly, especially 

when the path is long. In previous work [25], and for an IEEE 802.11 receiver, it has been 

shown that the optimal window size for a topology of 4 hops would be 1; here an average cwnd 

of 6 segments is observed. 

Finally, it is of particular note that during the course of the experiments packet loss is still 

evident, even for packets that are not broadcast (i. e. TCP DATA and ACK segments, not just 

HELLO packets and RTS/CTS frames). This is surprising considering that interference is not 

evident in this scenario (due to the signal propagation model chosen) but the MAC mechanism 
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nevertheless fails to coordinate transmissions effectively. Previous work has noted such losses 

when interference is present [321 but we confirm the phenomenon in this flat signal propagation 

scenario, which does not exhibit such interference. 

3.3 TCP behaviour over DSR 

In this section the behaviour of TCP Reno is illustrated over DSR in the same ad hoc scenario 

as the one in Section 3.2. The timing of the route breakage, the node movement and the settings 

of the TCP agent are identical to the previous section. The single difference in the simulation 

setup is that the routing agent active in every node is DSR. The particular DSR implementation 

used is DSR-UU [841, which is an actual testbed implementation interfacing with the ns-2 

simulator. Apart from noting the reaction of TCP to the DSR routing maintenance mechanisms, 

this special use case describes the deployment of passive and network layer acknowledgements 

which have not been discussed in the literature although they are part of the DSR draft 1601. 
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Table 3.2. DSR parameters 
Parameter Value Parameter Value 

Passive ACKs ON Flowstate OFF 

Promiscuous listening ON LL feedback OFF 

Packet salvaging ON Use alternate routes ON 

Snoop routes ON Send. Buffer Lifetime 30 secs 

The DSR protocol, like AODV, may utilise link layer (LL) feedback to discern route fail- 

ures but in this experiment such feedback is not taken into account. In particular, since LL 

feedback may not always be available or functioning as intended (i. e. may often result in false 

positives), in this simulation the DSR agent falls back to network layer and passive ACKs [60]. 

This combination of techniques is described in Section 2.2.2; a complete list of DSR parame- 

ters is presented in Table 3.2. 

In the case studied here, the topology is initially formed as displayed in Figure 3.3(a). The 

route discovery procedure is initiated by the source node (node A), as outlined in Section 2.2.2 

in order to find a usable path to the destination (node E). The focal point of interest is the route 

break that occurs at 35 seconds, as depicted in Figure 3.3(b). At that time, as in the AODV 

scenario in Section 3.2, node E has moved outwith the transmission range of node D, and node 

F is in position to act as the intermediary. The DATA-ACK packet exchanges during this time 

interval are shown in Figure 3.4(a) in the same format as the one used in the AODV case. 

The DSR protocol functions as follows after the link break. At 35.9 seconds and after 

several failed attempts to receive a network layer ACK, the routing agent at node D, realises 

that the link has been broken. Then it produces a RERR packet towards the source (node A) 

but, unlike AODV, does not drop packets. Instead, all the packets making use of the invalidated 

link are placed in the maintenance buffer and the routing agent consults its routing cache and 

discovers that node F is a neighbour of node E; i. e. there is an potential alternative route. The 

information on this route was obtained at around the first 2 seconds of the scenario when due 

to the inability of the MAC mechanism to coordinate transmissions, the network layer ACKs 
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between nodes D and E failed to be transmitted and node E erroneously believed its link to 

node D to have become invalid. So, at node E's subsequent discovery process for a route to 

A, both nodes D and F responded. Node E, then opted to utilise the path proposed by node 

D, which offered the shortest route, but as a side-effect node 1) became aware of node F's 

neighbouring status to node E. 

'U, 

Y) 

20 

I 

10 

o ACK ycgrnooI 
DATA segment 

0o 

.o® ýs mr so 
t1 tl i(. 3R JIl 

6 

S 

7t 4 

l 

T- T- _T-f T T_TT-T -T TT 

Avg w. d 

SRTT 

" 

01 10 15 20 25 w 15 40 43 30 SS (A) n5 71 

14 

D1 

02ý 

a LA 

Simulation time (gas) 

(a) Data segments sent and ACKs received 

<Z 

SimulWon ume (WCs) 

(b) Smoothed RTT and cwnd evolution 

Figure 3.4. Goodput and RTT estimate of TCP Reno over DSR during a route break 

Subsequently, at link breakage time there is no need for node D to initiate route discovery to 

eventually "salvage" buffered packets that had their route invalidated by the obsolete !) -+ E 

link. Instead, node D makes use of the alternate route through F by replacing the old path 

embedded in its packets' header with the new one. Node E also realises at 36.7 seconds that 

the link to D has been severed, but shortly after (at 37.2 seconds) receives the rerouted packet 

from node F and becomes aware of the new route (A -º B --+ C- I) -a i' -p E). This use 

of route caching results in some savings; in Figure 3.4(a), the area surrounded by the dashed 

box represents the time needed for the route to be re-established (approximately 2 seconds) 

which is lower than the one for AODV in the previous section (approximately 3 seconds). 

More importantly, the TCP agent does not experience subsequent RTOs; the route discovery 

and salvaging operation is fast enough for TCP to exhibit only one backoff. The caching 

of packets in the maintenance buffer during the route breakage as well as their subsequent 
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forwarding also helps avoid consecutive RTOs. The effect on TCP's SRTT estimator as well 

as the average cwnd size is shown in Figure 3.4(b). As compared to AODV, the plateau in 

the SRTT graph (denoted by the black dashed box) shortly after the 35 seconds mark is not as 

noticeable, since TCP inactivity due to RTO backoffs does not last as long. Note that although 

in this case the use of cached routes is beneficial, the utilisation of a stale route would have 

had the opposite effect; the routing agent would send the packet along a non-existent path and 

would have to wait for a period of time before realising that the path was invalid. 

During the 35-39 seconds time frame, the RERR response which was originally produced 

at approx. 36 seconds by node E (after the route breakage) is propagated toward node A and 

causes the intermediate nodes to place packets making use of the invalidated D -º E link 

in their respective maintenance buffers. When node D makes use of the alternate route (via 

node F), node C, which has already propagated the RERR on its way to the source, overhears 

the transmission and learns about the new route. When node A receives the RERR packet, 

it re-initiates the route discovery process and receives a gratuitous reply from node C. Then, 

subsequent packets launched from node A contain the new route and the route restoration is 

complete, as shown in Figure 3.3(c). 

To sum up, the particular point of interest in this experiment is the avoidance of consecutive 

TCP RTOs due to route caching and eavesdropping. By gathering information on neighbouring 

nodes and routes, a usable alternate path was quickly discovered in this scenario and TCP trans- 

missions were promptly restored. Note also, that retransmissions were avoided since packets 

were not dropped from the intermediate nodes but were forwarded through the alternate route 

when it was discovered later on. 

3.4 TCP behaviour over OLSR 

This section contains a description of TCP behaviour over OLSR as exhibited over the same 

scenario depicted in the previous two sections. All the simulation parameters are identical to 

the ones used previously except for the setting of the routing agent which is, in this case, OLSR. 
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Table 3.3. OLSR parameters 
Parameter Value Parameter Value 

HELLO interval I sec TC interval 5 secs 

Willingness to forward ALL Max. jitter 250ms 

Hysteresis monitor OFF MPR coverage l 

Neigh. hold time 6 secs Refresh interval 2 sec 

The OLSR implementation used [481 is a complete RFC [281 compliant routing daemon which 

interfaces with the ns-2 simulator. The particular parameters used in this scenario are depicted 

in Table 3.3 and are the defaults set by the reference implementation 1491 and cited in the 

RFC [281. 
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Figure 3.5. Scenario depicting OLSR operations after a route break 

As in the case of AODV and DSR, OLSR can optionally utilise link layer feedback to facil- 

itate quick realisation of a broken link. Such feedback is disabled in this simulation run so as 

to prevent false positives from invalidating existing, valid routes and, thus, allow examination 
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Table 3.4. MPR set chosen by each node 
Node MPR Set Node MPR Set Node MPR Set 

A B B C C 13, D 

D C E D F D 

of TCP behaviour in isolation from such effects. 

Initially, and during the first few seconds of the setup, HELLO packets are broadcast from 

each node, which declare their immediate neighbours. After the first exchange of these mes- 

sages, subsequent broadcasts also include 2-hop neighbour information. Eventually, after a 

short time interval, each node maintains enough information to declare a set of Multipoint Re- 

lays (MPRs) which cover its 2-hop neighbours and which is advertised using a network wide 

distribution of Topology Control (TC) packets. In this case, the MPR set of almost every node 

contains a single neighbour, as only one is necessary to reach all nodes within a two-hop ra- 

dius. A notable exception is node C which has two nodes in its MPR set, namely B and D. 

The MPR sets are shown in Table 3.4 and the overall process is depicted in Figure 3.5(a). 

Eventually, and at the 35 seconds mark, a link failure occurs between nodes D and E, 

due to E's movement away from its neighbour. The routing protocol's subsequent reaction 

is shown in Figure 3.5(b). Essentially, the absence of HELLO packets is noted in the given 

refresh interval (2 seconds) so the route D -º E is assessed to be invalid, by the routing 

agents of both D and E. Therefore, packets utilising the route in D and E are dropped which 

leads to consecutive RTOs on the TCP agent, as the route is not restored quickly enough for 

incoming segments to activate the duplicate ACK heuristic. In particular, TCP experiences 

the first RTO at 35.6 seconds and then consecutive ones at 36.9,39.5 and 44 seconds. The 

DATA-ACK exchange during that time period is shown in Figure 3.6(a), where the isolated 

DATA transmissions shown correspond to segment launches triggered by RTOs. Specifically, 

at the 35.6,36.9 and 39.5 time marks, the DATA segments transmitted are not followed by an 

ACK response as they are lost upon transmission from node D to E. These particular losses 
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are link layer losses; delivery is attempted but there is no lower level MAC-AC'K response 

from the destination node E, as it has moved outside D's transmission radius. The unACKed 

DATA segment launched at about 44 seconds is discarded by node (' which has yet to discover 

through TC exchanges the new route through node F. 

The long TCP inactivity period, as denoted by the dashed box between 35-55 seconds 

in Figure 3.6(a), corresponds to TCP inactivity noted immediately after the route failure and 

occurs for three reasons. Firstly, failed transmissions are realised with the granularity of the 

refresh interval (2 seconds, or the equivalent of two HELLO packet launch cycles), which leads 

to consecutive RTO's as segments are lost in failed MAC transmissions. Secondly, the route 

restoration period which happens with the dissemination of TC packets has by default a coarse 

granularity so that several TC transmissions may be "bundled" together to avoid excessive 

overhead as discussed below. Thirdly, the lack of packet caching compounds the RTO issue, 

as ongoing TCP transmissions end up in segment drops and cause further timeouts until a new 

route is found. Even upon the route's restoration, TCP's RTO timer has to expire before a new 

"probing" segment is launched, as TCP is unaware that previous segment losses were due to 

link failure and attributes them to congestion. 

40 

30 

20 

)0 

o ACK 
DATA ýeýmaM 

eoe 

{ 

0 

0 

34 36 38 40 42 44 46 48 50 32 54 56 59 60 
Simulation time (secs) 

(a) Data segments sent and ACKs received 

AvS. cwod 
6- 

S RTT (I I 

L 

A 

2"" 
01 

1 il 

00 0 
20 

1 

40 (A) 

Y 

SimuiaOon firm (. e s) 

(b) Smoothed RTT und cwnd evolution 

Figure 3.6. Goodput and RTT estimate of TCP Reno over OLSR during a route break 

Figure 3.6(b) denotes the smoothed RTT and ewnd evolution experienced by the TCP 
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agent. The time frame of inactivity due to the route failure is denoted by the dashed box 

(35-55 seconds). The plateaus in the cwnd and RTT diagrams are noticeably larger than the 

ones for AODV and DSR in the previous sections, as the transfer of data stalls for a relatively 

longer period of time. 

This long period of inactivity is due to the large TC update time interval (set to a default 

5 seconds) which in turns means that information on invalid links takes several seconds to 

propagate. The OLSR RFC [28] makes provisions for an immediate TC packet launch mech- 

anism which allows generation of TC packets as soon as the node's neighbourhood changes. 

However, since these transmissions are broadcast network-wide, there are significant overhead 

savings if they are "bundled" together, which makes delaying them desirable. The trade-off to 

consider is thus overhead against longer notification delay. 

To illustrate the above point more aptly we have conducted the same experiment with re- 

duced TC transmission interval and immediate notifications (i. e. no "bundling" of TC packets) 

in the same scenario. Figure 3.7 shows the total number of TCP segments acknowledged when 

the TC update interval changes from 5 to 3 seconds and when immediate TC updates are used. 

When there is a decrease in the update interval or immediate TC updates are allowed, consec- 

utive RTO's are avoided and total time spent in RTO backoff is reduced as shown in Table 3.5. 

Note that the default update period of 5 seconds severely under-performs in this case with no- 

ticeably longer periods of TCP inactivity (as denoted by the flat line segments of the graph in 

Figure 3.7). 

Since the reference implementation [481 does not incorporate the caching of packets, unlike 

DSR which features a maintenance buffer, there is no forwarding of "salvaged" packets which 

could help avoid consecutive RTOs. Finally, the two other plateaus in Figure 3.6(b) merit some 

explanation. The first one at 0-6 seconds is due to the startup period needed for the HELLO 

packets and TC exchanges to take place and setup the route. OLSR needs this warm-up period 

(unlike DSR and AODV which immediately start a short route discovery phase), and TCP 

activity does not occur until a valid path is discovered. The latter plateau at 26-33 seconds 

is due to dropped HELLO packets due to mis-coordination of the MAC protocol [107]. This 
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phenomenon has been observed in the other two routing agents but the slower route restoration 

and lack of packet caching of OLSR causes TCP to under-utilise the route for longer in such 

occurrences. 

Eventually, after the TCP RTO timer expires, transmission is resumed. At simulation's end 

the scenario topology has settled in the form presented in Figure 3.5(c). 

To sum up, the effects of consecutive RTOs are more pronounced in the case of OLSR 

since, by default, it features a conservative route restoration mechanism, which is tuned for 

dense networks servicing multiple connections. Shortening the refresh interval (by tuning the 

TC parameter) in this case can improve performance significantly, although there is a trade-off 

of extra overhead against improved throughput performance to consider. 

3.5 Performance evaluation of TCP variants 

This section contains the results of our evaluation of Reno, NewReno, SACK and Vegas in 

dynamic MANET topologies. First, the simulation parameters are presented and discussed in 

depth. Then, the simulation results on the performance of these TCP variants over different 

routing protocols are listed and examined in turn. 
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3.5.1 Simulation setup 

The general evaluation of the various TCP agents in this section is conducted with the ns-2 

simulator [37]. Although the simulation setup is verbosely described below, a complete list 

of the routing agents configuration as well as an outline of TCP parameters are included in 

Appendix A. 

Simulation area and mobility model: Simulations take place over two types of flat areas; a 

flat square arena with dimensions set to 1000x 1000m and a flat strip area set to 1500x300m. In 

both cases, 50 nodes are placed randomly in the arena. This setup mirrors previously reported 

research [19,26,34,49,104]. The mobility model used is the random waypoint model [75] with 

parameters set to reflect mobility ranging from walking (approximately 2 m/s) to vehicular 

speeds (approximately 20 m/s). The simulation parameters are portrayed in Table 3.6. Note 

that an increase in the setting of maximum speed in the random waypoint mobility model 

is not necessarily indicative of a significant increase in the mean node speed as previously 

believed [49]. Research by J. Yoon et al. in [110] contains a thorough discussion of the issue 

and proposes a solution which is applied to the topologies used in these simulations. It is 

worth noting that previous TCP evaluations over MANETs [26,34,49] have not considered 

this limitation of the random waypoint model. For clarity, in these simulations, the mean node 

speed for the topologies used are shown in Table 3.6 inside parenthesis next to the maximum 

node speed parameter. 

TCP transfer setup and metric used: For each simulation run a TCP connection is set be- 

tween two randomly selected nodes to facilitate an FTP transfer session for the duration of the 

simulation. Hence, there is a single source of TCP regulated traffic in the network. The TCP 

segment size and other parameters are set as in Table 3.6. The performance metric is goodput 

which is defined as the number of packets successfully transmitted by the sender for which 

an ACK has been received. Retransmissions (spurious or otherwise) do not contribute to the 

metric; each segment's contribution to the advancement of TCP's "sliding window" is only 
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measured once. For each pause time and maximum node speed combination the average good- 

put of 50 topologies is calculated and a 90% confidence interval for each is produced (shown 

as standard error bars depicting standard deviation in the relevant figures). The different TCP 

variants are analysed on the same topologies, and the same source/destination pairs are chosen 

per trial so as to ensure fairness and relevance of the results. A paired t-test is performed on 

the observations to determine if there are statistically significant differences in the performance 

of the TCP agents. The t-test used in this case is Welch's t-test [44,101], which assumes that 

the means (but not the variances) of the normally distributed populations are equal; however, 

for the topologies used in this study, the results and subsequent conclusions also hold if the 

assumption of normality is dropped and the non-parametric Wilcoxon signed-rank test is used. 

As in previous studies [19,34,49], the overall simulation (and connection) time is set to 

900 seconds. 

The signal propagation model used is the Two-Ray Ground model where signals propagate 

from sender to receiver in an open environment and over two possible paths; one by a direct 

ray and one that is reflected from the ground [102]. Essentially, this model is representative of 

environments where a strong line of sight is present but ground reflections also influence path 

loss. This is the standard propagation model used in TCP evaluation over MANETs [43,65,106, 

107], although there are several others such as Shadowing and Ricean/Rayleigh fading [62,99]. 

For the sake of clarity, a few of the simulation parameters merit some discussion. The 

simulation time, set to 15 mins, is chosen in order to examine TCP performance over bulk 

file transfers also reflected by the choice of the traffic source (FTP with unlimited backlog). 

It is an open research question whether TCP variants in MANETs perform differently under 

other types of traffic load. However, the focus of this dissertation is the behaviour of different 

variants when the full spectrum of their congestion avoidance mechanisms is utilised over 

substantial time periods. Transferring small files such as web pages may only activate the slow 

start mechanism which is identical in all the examined variants apart from Vegas. Further, 

note that the simulation time and traffic patterns chosen are in harmony with previous related 

work [25,34,49,87]. 
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Table 3.6. Simulation parameters 

Parameter Value 

Pause Times 0 secs (continuous mobility) 

Max. Node Speed 2,5,10,15,20 m/s 

Mean Node Speed 2(1.44), 5(3.34), 10(6.62) m/sec 
15(9.10), 20(13.78) m/sec 

Simulation Time 900 secs 

TCP parameter Value 

Min. RTO 200ms 

Max. RTO 60secs (RFC 2988) 

RTO Timer 
Granularity 

l Oms 
(Linux kernel 2.4) 

Maximum burst 
per ACK received 

3 segments 

Delayed ACKs disabled 

Segment size 1460 bytes 

The choice of granularity of the RTO timer as well as the minimum and maximum RTO 

settings are also noteworthy since previous work has shown the detrimental effect of the RTO's 

exponential backoff mechanism in MANETs when consecutive losses occur due to spatial 

contention [43,107]. A proposed solution offered in [34] has been to freeze the RTO timer after 

3 consecutive backoffs, but such an action raises concerns of congestion if widely adopted. 

The RTO parameters chosen for the simulation in this chapter are representative of modern 

operating systems and conform with the relevant RFC [89]. Further, the choice of setting 

a maximum burst parameter, as shown in Table 3.6 defines the maximum number of packet 

launches an ACK may trigger upon reception. This helps reduce "burstiness" in TCP behaviour 

across the different variants, as has been discussed in detail in [36] and widely deployed in 

practice [4]. 

Finally, the choice of the particular TCP agents under examination may be justified as 

follows; TCP Reno is the earliest TCP variant which implements the fast retransmit/fast re- 

covery mechanism adopted by all its modern derivatives and, as such, is used as the baseline 
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Figure 3.8. Goodput against maximum node speed for different TCP agents over AODV 

for comparison. TCP NewReno and SACK are more modern Reno derivatives and are widely 

deployed, with the latter requiring both receiver and sender side modifications of the standard 

Reno mechanisms. TCP Vegas has been shown to have desirable properties for MANETS 11081 

but prior to this work has not been evaluated on dynamic topologies. Finally, note that recent 

research into the types of TCP agents deployed on the Internet 141 confirms the TCP parameters 

used in this study as widely deployed defaults in operating systems and, thus, representative of 

a typical client. 

3.5.2 Performance results and discussion 

The goodput results for the TCP agents under examination over the AODV, DSR and OLSR 

protocols, namely Reno, NewReno, SACK and Vegas, are depicted in corresponding graphs as 

a function of goodput over maximum node speed. 

TCP performance over AODV 

The graph in Figure 3.8(a) indicates the superior goodput of TCP Vegas as evident against the 

reactive variants in strip (1500x300m) topologies. This performance discrepancy is significant 

and ranges from 5-9% against TCP Reno, while it narrows against NewReno and SACK (to 

2-5% and 2-6% respectively). However, the difference in goodput between Vegas and the 
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other TCP agents remains significant particularly at low mobility conditions, i. e. for maximum 

speeds of 2 and 5m/sec, where it ranges between 5-6%. Note, however, that the performance 

gap could potentially diminish if the TCP agent is adversely affected by other factors, such as 

spatial contention caused by other traffic in the network. Nonetheless, the results presented 

here confirm the competent performance of Vegas under various mobility conditions when 

such interaction is not considered. This expands on previous work on static topologies [108] 

and reveals that Vegas' performance merits are equivalent or more pronounced (in the case of 

low mobility) to NewReno and SACK's when single connections are considered. It is further 

noteworthy that TCP Reno is a significantly worse performer compared to all other variants; 

an observation which holds true under all mobility conditions. NewReno and SACK perform 

comparably in terms of goodput as their respective difference in performance is at most N 1% 

(at 5m/s). Finally, it can be observed that for each TCP variant as link breakages become 

more frequent due to increased mobility, the achieved goodput is reduced. This is denoted 

by the declining trend of the graph in Figure 3.8(a) as the mean node speed increases. This 

observation corroborates previously reported research [34,49], and is also evident for the other 

routing protocols, i. e. DSR and OLSR, as will be revealed below. 

The goodput results for the square topologies are shown in Figure 3.8(b). The performance 

merits of TCP Vegas are still pronounced at lower mobility conditions (max. speeds of 2 and 

5m/sec), as it improves r 5% upon NewReno/SACK and N 10% over TCP Reno. This differ- 

ence becomes smaller at lOm/sec (to approx. Pj 3%) and diminishes at very high mobility (15 

and 20m/s) where there is no significant difference between the top three variants (SACK, Ve- 

gas and NewReno). Consistently, TCP Reno under performs with respect to the other variants 

in the range of 5-10%. 

TCP performance over DSR 

The simulation results for DSR, closely mirror those of AODV in the previous sub-section. 
In Figure 3.9(a) and 3.9(b) the goodput results for Reno, NewReno, SACK and Vegas are 

portrayed for simulation runs on a strip area. Vegas exhibits a substantial 7-12% goodput 
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Figure 3.9. Goodput against maximum node speed for different TCP agents over DSR 

improvement over TCP Reno and - 5% over SACK/NewReno across various mobility con- 

ditions. Conversely, TCP SACK and NewReno have statistically insignificant difference in 

performance, for all node speeds, whilst Reno achieves consistently the worst goodput of all 

variants; a disadvantage that ranges between 5 and 12% compared to the rest. 

In square topologies, the goodput trend of the TCP variants ranges as shown in Fig- 

ure 3.9(b). TCP Vegas maintains a 6-10% lead over Reno, 2-5% over NewReno and 2-6% 

over SACK. SACK and NewReno are again comparable to within ti 1% worth of performance 

discrepancy. Reno is significantly the worse performer incurring a 4-10% performance penalty 

over the other variants at various mobility conditions. 

TCP performance over OLSR 

Figure 3.10(a) shows the goodput performance of the TCP variants over OLSR in strip topolo- 

gies. TCP Vegas, as in the case of AODV and DSR, maintains a performance advantage over 

Reno at a 7-9% margin and over SACK/NewReno at 4-6% for low to medium mobility condi- 

tions (2,5 and 10 m/sec). SACK and NewReno, perform similarly, within a- 1`% difference 

margin of each other. TCP Reno is the worst performer, exhibiting a disadvantage of 3-9% 

throughout different node speeds over the other variants. A point worthy of note in this case 

is the closing of the performance gap between Vegas and the rest of the variants under high 
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Figure 3.10. Goodput against maximum node speed for different TCP agents over OLSR 

mobility (15m/s) which is - 2%. 

Figure 3.10(b) outlines the goodput results in square topologies. TCP Vegas exhibits 

again the highest goodput, with a 7-10% goodput improvement over Reno and 4-8% over 

SACK/NewReno. NewReno and SACK do not exhibit differences in performance of over 

1%. Finally, Reno achieves the lowest goodput by under-performing 4-10% compared to 

the other variants and for all mobility conditions. 

The results, as presented above, reveal a trend across routing protocols where TCP Vegas 

has superior goodput over the reactive variants especially under low mobility conditions. Pre- 

vious research 143,1071 has suggested that TCP agents suffer from throughput instability in ad 

hoc networks as packet loss are caused by the MAC mechanism's inability to properly utilise 

the shared medium. During the experiments above it was noted that all TCP agents suffered 

from frequent retransmission timeouts (RTOs), even at low mobility speeds. The next section 

discusses the impact of RTO's on each variants' performance and provides some insight on the 

performance merits of TCP Vegas. 
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3.6 Discussion on TCP mechanisms 

This segment aims to describe in detail the extensive retransmission timeout (RTO) phenomenon 

which decreases overall TCP goodput for all the variants examined in the section above. Sub- 

sequent conclusions are drawn after considering simulation traces in the scenario of a static 

topology. 

To facilitate discussion, a setup of a string topology of 5 hops is assumed as a special case 

of a long path. An FTP transfer is initiated between the end points at the start of the simulation 

and ceases at the 140 seconds mark. The routing agent used is AODV and the rest of the 

simulation parameters are as in Section 3.2. Even though the following discussion is limited 

to AODV, the principal observations are applicable to other routing protocols featuring similar 

packet caching or "salvaging" paradigms. 

Figure 3.11(a) shows the 100-moving (or running) average of the number of segments in 

flight during the duration of the FTP session. Note that the first and last 50 observations are 

not averaged, since an n-moving average of a sequence of N elements contains N -- n+1 

elements; i. e. in this case the initial and trailing 50 observations are not smoothed. Further, 

note that the graph in Figure 3.11(a) indicates the actual number of TCP data segments in 

flight as opposed to the cwnd value at each agent (i. e. how many segments the agent estimates 

as being in transit [5]). As depicted, the number of segments in flight maintained by Vegas 

are noticeably and significantly fewer than those of the other agents, i. e. Reno, NewReno and 

SACK. 

Figure 3.11(b) displays the discrepancy in the cwnd estimate and the actual segments in 

flight of the NewReno and Vegas agents. It is, hence, apparent that the NewReno agent mostly 

underestimates the number of segments in flight as opposed to the Vegas agent which mostly 

overestimates them. The trend is similar for Reno and SACK, both of which mostly overes- 

timate the segments in flight, but which are not portrayed in this figure for clarity. This over- 

estimation occurs because the routing protocol "salvages" packets when there is indication of 

route failure (in the case of AODV, the local repair mechanism has to be enabled in order for 
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"salvaging" to occur). In such an instance, Reno-based TCP agents, which are more aggressive 

in their transmission rate than Vegas 11081, often retransmit segments that are already in flight, 

after the RTO timer expires. This, in turn causes, more spatial contention, which results in an 

increase in the number of RTOs, leading to lower >ncidniit 
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Figure 3.11. Simulation traces of a single TCP connection in a 5-hop string topology 

To validate the above observation we consider the number of RTOs experienced by each 

variant in this scenario, as well as the time spent in inactivity (RTO backoff period) as shown 

in Table 3.7. On the same table a measurement of the goodput achieved by each variant is 

shown as a total number of segments delivered as well as the percentage of goodput improve- 

ment of each variant over the baseline performance of TCP Reno. It can be deduced that as in 

the case of the general topology scenarios examined in Section 3.5.2, the Reno agent spends 

substantially more time in RTO than Vegas, NewReno or SACK. Moreover, even though TCP 

NewReno maintains more segments in the pipe than Reno (as shown in Figure 3.6), its ability 

to recover from multiple losses within the same congestion window allows it to avoid multi- 

ple or consecutive RTOs. Hence, even though NewReno creates greater spatial contention, it 

nonetheless experiences less inactivity time, than Reno and even SACK. 

TCP Vegas, overall, exhibits the highest goodput as it experiences only 7 RTOs and incurs 

the least idle time of all variants. TCP SACK which makes use of more extensive feedback 

than the other variants, is still outperformed by Vegas and performs on par with NewReno. 
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Table 3.7. RTO inactivity and goodput for TCP agents 

TCP 
Agent 

Time spent 
in RTO 

Number of 
RTOs 

Total Goodput 
(in pkts) 

Perc. Increase 
comp. to Reno 

Reno 29.85 25 2253 N/A 

NewReno 11.33 9 2484 10% 

SACK 18.4 19 2431 8% 

Vegas 10.3 7 3290 22% 

Notably, the explicit knowledge of TCP SACK of which "gaps" in the destination's receiving 

buffer are to be filled does not result in noticeable improvement compared to NewReno. Closer 

inspection reveals that even though the SACK advice is utilised 138 times in this scenario, the 

average number of segments in flight and hence "spatial" contention are not significantly af- 

fected and are not substantially different from NewReno as shown in Figure 3.11(a). However, 

even though SACK experiences far more RTOs than NewReno (19 vs 9) and spends more time 

being idle (18 vs 11 seconds), it does not perform substantially worse; overall its retransmis- 

sion strategy is not noticeably better or worse than that of NewReno. It is worth considering 

that the duplicate ACK responses of a SACK TCP receiver, are larger in size than those of 

the other variants due to the to the extra space required to accommodate the SACK-block in- 

formation. As ACK segments compete with DATA segments for transmission time, the larger 

ACK size leads to greater spatial contention, however, this does not lead to significantly worse 

performance than NewReno. 

Finally, consider that in the case examined here the minimum RTO is set to 200ms; actual 

implementations may have this parameter set to 1 sec, adhering to the original RFC [54], which 

would aggravate the impact of RTOs on goodput and make the performance gap between Vegas 

and the reactive variants even more evident. 

To conclude, TCP Vegas has been explicitly shown to experience little inactivity time com- 

pared to the other TCP variants in this scenario which along with the observations made in 

Section 3.5.2, lead to this being identified as a source of its competent goodput performance. 



3.7. CONCLUSIONS 70 

NewReno and SACK perform equivalently to each other, even though SACK expends more 

time being inactive. All variants are substantially better that Reno which is penalised severely 

from sending inactivity caused by RTOs. These effects can largely account for the performance 

differences presented in Section 3.5.2. 

3.7 Conclusions 

This chapter has examined the performance of a proactive (Vegas) and three reactive (Reno, 

NewReno, SACK) TCP variants over dynamic topologies in MANETs under three popular 

routing protocols, namely AODV, DSR and OLSR. The discussion has included detailed sim- 

ulation traces of a route breakage scenario where it has been shown that the adverse effects 

of RTO back-offs may be mitigated through caching by the routing protocols. In particular, 

it has been shown that the AODV caching of packets at the source during the route discovery 

phase helps avoid multiple RTO backoffs when a route is being rebuilt. In the case of DSR, the 

caching of packets at intermediate nodes has been demonstrated to be beneficial if an alternate 

route is quickly established by the routing cache mechanism of an intermediate node after the 

route break. OLSR has been shown to cause significant inactivity periods for the TCP agent as 

its route update mechanism is, by default oriented for use over dense ad hoc networks charac- 

terised by multiple simultaneous flows. A solution was offered to this problem by reducing the 

time interval between route updates or disabling the "bundling" feature for such updates. 

TCP Reno, NewReno, Vegas and SACK have been evaluated in dynamic topologies over 

square and strip simulation areas. TCP Vegas has been shown to outperform Reno in terms of 

goodput by margins of 5-12% in low, medium and high mobility conditions under the AODV, 

DSR and OLSR routing protocols. Vegas also exhibits a smaller, but still noticeable perfor- 

mance advantage over TCP NewReno and SACK in the range of 6% in low mobility conditions 

and approximately 2-4% performance advantage in medium and high mobility environments. 

Moreover, all TCP agents have been shown to suffer from multiple RTO backoffs, but TCP 
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Vegas and NewReno have been noted to be affected the least in a string topology of moder- 

ate length. In this particular case, TCP Vegas exhibited the fewest RTO backoffs, whilst the 

better segment loss handling ability of NewReno was shown to be the decisive factor of its 

goodput superiority against Reno. Specifically, although NewReno maintained more segments 

in-flight than Reno, it nonetheless experienced fewer RTOs because of its ability to recover 

from multiple losses within a single window of data. TCP SACK was shown to deliver com- 

parable performance to NewReno, even though it experienced more idle time and more RTOs; 

the equivalence in performance merit was attributed to the former's better packet loss handling 

mechanism through the use of the extended SACK information. 

As the competent goodput performance of TCP Vegas in the experiments was driven by 

its conservative congestion avoidance mechanism which maintains fewer packets along the 

path than the reactive TCP variants, an enquiry may be made into whether the mechanism can 

be adapted into the reactive variants to yield similar benefits. Such an enquiry is of significant 

interest as reactive (Reno-based) TCP variants are less computationally intensive than proactive 

ones (such as Vegas) and more widely deployed. To this end, the next chapter proposes a Vegas- 

inspired mechanism applied to Reno-based variants which follows a more conservative policy 

of packet injection into the network. The implications of such a mechanism include a reduction 

of packet loss due to hidden terminals and an increase in TCP goodput. The proposed changes 

are further thoroughly discussed with respect to ease of deployment and are evaluated in a 

variety of mobility conditions. 



Chapter 4 

TCP and spatial reuse in MANETS 

4.1 Introduction 

In MANETs, access to the shared medium is coordinated with a distributed MAC mecha- 

nism [52], which includes provisions to avoid the hidden terminal effect. This occurs when 

two stations do not manage to coordinate their transmissions such that they overlap time-wise 

to some degree. The result is a collision as the superposition of the signals becomes mean- 

ingless and transmission bandwidth is wasted. The IEEE 802.11 protocol offsets this issue 

by using a virtual carrier sense indicator, which is set by short request to send/clear to send 

(RTS/CTS) frame exchange between communicating nodes [52]. However, these provisions 

are not always effective in practice and could become counterproductive [1031. In particular, 

the discrepancy between a node's transmission (range within which other nodes can properly 

decode a transmitted signal) and interference ranges (range within which the signal cannot 

properly be decoded but may interfere with other signals) produces hidden terminals even if 

the RTS/CTS mechanism is in use [103]. As noted in [107], this phenomenon can decrease 

TCP throughput severely for the sender even when there is only one connection present in the 

network and can further interfere with the operation of the underlying routing protocol [106]. 

When segments are dropped because of such effects and not buffer overflow, as is the case in 

wired networks, the loss is attributed to spatial contention [26,43,103,107]. 

72 
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Earlier research by Xu et al. [106,107] has demonstrated that when TCP commands back- 

to-back transmission of segments across a long enough path, hidden terminal effects become 

evident as segments are distributed along the path in a pipelined fashion. The authors in [107] 

have suggested that the degradation in TCP throughput caused by the spatial contention ag- 

gravated by these effects can be dealt with by limiting the TCP congestion window (cwnd) 

to approximately four segments in their considered scenarios. Follow up work by Kanth et 

al. [65] has confirmed these findings and suggested altering the 802.11 MAC backoff mecha- 

nism to give competing nodes a greater window of opportunity to gain access to the medium. 

Fu et al. [43] have also studied the phenomenon and produced an approximate estimate of 

the optimal TCP cwnd for string, cross and mesh topologies. The same study has suggested 

two link layer schemes to improve performance. The results in [43] and [26] have suggested 

that the optimal use of the wireless medium is dependent on the ability of nodes to transmit 

simultaneously as long as they are outside each other's interference range. Overall, as nodal 

coordination is not particularly effective in 802.11 multihop networks, the above cited work 

have demonstrated how the transport agent may be adjusted in such a way as to "coerce" the 

MAC protocol into more efficient operation. 

The previous chapter has revealed the relative merits of TCP Vegas over Reno-based vari- 

ants due to its conservative cwnd evolution, which maintains fewer segments-in-flight and 

avoids the detrimental (throughtput-wise) effect of consecutive RTOs. Motivated by this ob- 

servation, this chapter proposes reducing the sending rate of Reno-derived TCP variants during 

the slow start and congestion avoidance phases as an effective approach for dealing with the 

degrading effect of hidden terminals due to interference in MANETs. Such an approach mim- 

ics the conservative cwnd evolution of TCP Vegas, by adjusting a few parameters in standard 

Reno-based agents, and leads to higher goodput performance especially along lengthy paths, as 

will be shown below. The main motivation in choosing to improve Reno-based variants rather 

than explore Vegas further, is the popularity of the former [4] as well as its lower computational 

requirements [16] which, in turn, imply lower power demands on the possibly limited power 

reserves of the MANET nodes. 
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The contributions of this chapter are three-fold; first, an introduction is offered on the 

interaction of TCP agents and the routing protocol in the presence of hidden terminals, which 

provides insight and summarises conclusions of previous research on the subject [26,43,65, 

107,108]. Then, a study on emulating Vegas behaviour in standard Reno-based TCP variants 

is conducted, by adjusting TCP's behaviour during the slow start and congestion avoidance 

phases. This results in determining an effective combination of parameters leading to the 

Slow Congestion Avoidance (SCA) TCP variant. The new TCP agent is then compared to an 

existing solution to mitigate the effects of hidden terminals, proposed in [26], which suggests 

limiting the maximum cwnd value. This comparison is performed by applying both techniques 

in scenarios featuring dynamic mobility patterns and then interpreting the results. Finally, 

considerations on applying the technique to multiple TCP flows and utilising routing layer 

feedback are addressed. 

The rest of this chapter is organised as follows. Section 4.2 presents an overview of TCP 

behaviour with respect to the hidden terminal effect and its contribution to spatial contention. 

Section 4.3 presents an enquiry into ways of introducing a more conservative transmission rate 

increase in Reno-based TCP variants during the slow start and congestion avoidance phases. 

This investigation leads to an effective combination of "slowdown" mechanisms which is 

termed SCA TCP and used in the subsequent performance evaluation. Section 4.4 includes 

the results of a performance evaluation of the newly introduced conservative TCP variant in 

dynamic topologies and further entails a comparison against a popular existing solution to al- 

leviating spatial contention, namely the adaptive Congestion Window Limit (CWL) method. 

Then, Section 4.5 discusses the application of SCA to multiple TCP flows and includes con- 

siderations on incorporating feedback from the routing protocol to adjust the SCA slowdown 

parameter. Finally, Section 4.6 summarises the results of this chapter. 
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4.2 TCP and spatial reuse 

This section includes a brief description on the interaction of TCP agents with spurious seg- 

ment losses as caused by spatial contention due to hidden terminals. Subsequent discussion 

is distilled through an example on a string topology as commonly done in several previous 

research works [26,43,103,107]. 

For the purpose of the present discussion, consider five nodes arranged in a static string 

topology fitted with identical wireless devices and with the distance between any two suc- 

cessive nodes set to 200m, as shown in Figure 4.1. Each node can communicate with any 

neighbours inside its communication (transmission) range as indicated by the dotted lines. 

Moreover, each node exhibits a certain interference range which is the distance that its signal 

can be detected as a transmission but cannot be decoded properly [64]. The interference range 

depends on the sensitivity of the receiver as well as the wave signal propagation model used. In 

this example, the Two-Ray Ground signal propagation model is considered [102]. In this case, 

the interference range for each transmitter extends to 550m and is indicated in Figure 4.1 by 

a dashed line for node D. The transmission range of each wireless device is 250m and is indi- 

cated by dotted lines in the same figure. These device characteristics model the standard Lucent 

WaveLan H wireless transmitters [64] as used in previous research studies [26,43,65,106,107]. 

For the string topology, there exists only one path from any node to any destination, which 

includes all intermediate nodes. Hence, if node A were to communicate with node E, the 

transmission path A --- E would include every node in between (namely, nodes B, C and D). 

As segments travel between nodes, each segment transmission interferes with the transmissions 

by other nodes inside a 2-hop radius around the transmitter. The RTS/CTS exchange, as defined 

in the 802.11 standard [52], can only inform of impending transmission the nodes that are 

inside a 1-hop radius around the communicating parties, i. e. can only provide information to 

nodes inside the transmission range of the sender and the receiver. Hence, nodes outside the 

transmission range but inside the interference range of the sender or the receiver do not receive 

any information about pending transmissions which can cause them to transmit at the same time 
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and cause a collision. Furthermore, nodes inside the interference range of transmitters cannot 

correctly decode segments that originate from other senders (who are unaware that another 

conversation is taking place and their signal is not being received by the intended destination). 

Consider the case of an A -+ E transmission route depicted in Figure 4.1. As segments 

travel along the path, interference causes several segment drops, as shown in previous work 

[65,107]. For instance, if node D was transmitting to node E, node A would be unaware of 

the transmission and would attempt to transmit to B, even though B, which would be inside 

node D's interference range, could not obtain the transmitted frame. This is a typical case 

of the hidden terminal effect where node D is the hidden terminal with respect to A. Even if 

the frame was successfully received, it would be doubtful that B would be able to transmit a 

MAC layer ACK back to node A because it would detect D's communication (but be unable to 

decode it properly) and would defer transmission. As node D is part of the A -º E path, it is 

likely that it would subsequently attempt to forward several segments along the path to E, and 

thus compound the problem. The issue of interference under discussion in this case, would be 

the result of a single end-to-end conversation (A -º E) and in the case of the TCP protocol 

would be further aggravated by the delivery of ACKs from the destination to the source which 

also contend for access to the shared medium [107]. 

Note that it is not necessary for the interference range to be more than twice the size of the 

transmission range (as in the previous example) in order for interference effects to appear. It 

is enough, when a transmitting source/destination pairing is considered, for the destination to 

be inside the interference range of another node which is outside the destination's transmission 

range (so it cannot decode the CTS frame transmitted by the destination to the source). Possible 

transmissions from that "interfering" node result in signal conflicts at the destination which 

cannot properly decode segments sent from the source [63]. 

Fu et al. [43] have noted that segment collisions due to interference can be avoided if 

transmissions are coordinated in the path string of nodes in such a way so that the transmitting 

nodes are always outside each other's interference range. Successful transmission coordination 

is referred to as spatial reuse in the same work and it is desirable to maximise this property (i. e. 
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Figure 4.1. Node D transmits to node E. Node A may transmit at the same time to B even if 

node D has performed an RTS/CTS exchange, because A is outside the transmission range of 
D (but B is inside the interference range of D). Node D is "hidden" with respect to node A. 

perform as many simultaneous non-interfering transmissions as possible) in order to improve 

throughput. In the example used here, the maximum spatial reuse is achieved at 1/4 of the 

string length, i. e. simultaneous transmissions can occur if the transmitting nodes are 4 hops 

apart (eg. A -; B and E -4 F). The spatial reuse factor of a given path depends on the 

interference range which in turn is related to the propagation model used for the path loss of 

the signal. Xu et al. have demonstrated in [103] the universality of the interference issue by 

demonstrating that in an open space environment the RTS/CTS exchange becomes ineffective 

due to interference as the distance between transmitter and receiver exceeds 0.56 * Rtx, where 

Rt. is the transmission range. 

An important implication of the MAC layer frame drops caused by interference is the rogue 

feedback provided to the routing protocol. As noted in [107], the routing implementation is 

allowed to make use of link layer feedback to detect broken routes, and actual implementations 

do so [79]. In particular, if seven consecutive RTS/CTS (or four DATA) transmissions fail [52], 

the segment is dropped from the interface transmission queue of the sender and the routing 

protocol is allowed to interpret that event as a sign of route breakage. Normally, this enables 

the sender to realise that the link has been broken much quicker as opposed to noting the 

absence of "HELLO" packets from the receiver, which could take several seconds 1. I however, 

as the RTS/CTS (or DATA) frame drops may have been caused by hidden terminal interference, 

the route may not have truly become obsolete and route discovery need not be re-initiated as the 

1 HELLO packets are widely used in reactive routing protocols, and so this observation holds true for AODV [92] 

and DSR [60]. In practice, even proactive protocols use some type of infrequent handshake to ensure determination 

of link validity [28]. 
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original route can still be used. The case of the string topology in Figure 4.1 has been examined 

in the literature and it has been shown to lead to several spurious route breakages [1071. 

Overall, the hidden terminal effects caused by interference severely affect TCP perfor- 

mance leading to consecutive RTOs and underutilisation of the medium. Chapter 3 in this 

dissertation included detailed simulation traces of the phenomenon in string topologies and 

outlines the effects of segment drop on TCP for three popular routing protocols (AODV [92], 

DSR [60] and OLSR [28]). 

4.3 Proposed modifications to TCP 

Chapter 3 has revealed the relative performance merits of TCP Vegas with respect to Reno- 

based variants (Reno, NewReno and SACK). In the same chapter, it has been shown that Ve- 

gas' conservative cwnd increase allows it to make more optimal use of the wireless medium 

(by maximising spatial reuse), which corroborates previous related research [45,721. This 

section reveals the results of an enquiry into introducing a more conservative cwnd increase 

into Reno-based variants without compromising their reactive nature or congestion avoidance 

efficiency. Subsequent sections 4.3.1,4.3.2 and 4.3.3 examine the application of more conser- 

vative sending rate increase paradigms in the slow start phase, congestion avoidance phase or 

both in Reno-based TCP variants, respectively. At the end of the enquiry, the most suitable of 

the phases is chosen as an effective place to introduce a slowdown mechanism. 

Simulation setup: The subsequent examination entails string topologies set up as in Section 

4.2 and as used in the previous chapter. The signal propagation model and transceiver char- 

acteristics are also the same as outlined in Chapter 3. Detailed parameters with respect to the 

routing protocol used are included in Appendix A. 1. Common TCP parameters are outlined in 

Table 4.1. 
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Table 4.1. TCP parameters 

TCP Parameter Value 

Min. RTO 200ms 

Max. RTO 60secs (RFC 2988) 

RTO Timer 
Granularity 

lOms 
(Linux kernel 2.4) 

Maximum burst 
per ACK received 

3 segments 

Delayed ACKs disabled 

Segment size 1460 bytes 

4.3.1 Slow start modification (SS TCP) 

The slow start phase in Reno-based TCP variants commands an exponential increase in the 

congestion window (cwnd) size. Specifically, for every ACK received that acknowledges new 

data, cwnd may be incremented by at most the number of bytes in a full sized segment2 [5]. 

In standard TCP implementations the above directive leads to an increment in cwnd by 

the maximum allowed amount of bytes [11,76]. In order to "emulate" a more conservative 

increase in the sending rate during that phase, it is possible to define a smaller increase while 

still retaining RFC compliance. Mimicking the approach of TCP Vegas in this regard, where the 

sending rate increase during slow start occurs every other ACK received [16,17], we similarly 

define a delayed increase. 

Specifically, our modifications are shown in Algorithm 1. The variable sincreaseihresh 

sets the number of ACKs that need be received before cwnd increases by a full sized segment. 

For instance, a value of one for sjncreaselhresh precisely emulates the slow start behaviour of 

TCP Vegas by increasing the sending rate every other ACK received. Note that the new method 

takes advantage of the self-clocking property of TCP and does not introduce any overhead 

in the form of extra timer requirements. In actual implementations, this would translate to 

little overhead being introduced, which in turn would add little to power and computational 

2This is the size of the largest segment that the sender can transmit 
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requirements. 

To evaluate the effectiveness of the proposed changes, we have conducted experiments on 

string topologies. An FTP connection with infinite backlog is initiated between the end-points 

at the beginning of the simulation and lasts throughout. Two TCP agents are evaluated, namely 

TCP Reno, which exemplifies a base case scenario and TCP NewReno. The overall simulation 

time is set to 900 seconds and the metric collected at the end of the simulation is the average 

goodput (in bits per sec) achieved by TCP. The definition of goodput is as used in Chapter 3 

and expresses the bytes transmitted and ACKed at the sender, ignoring retransmissions. The 

routing protocol used is DSR. 

For the simulation runs, the s_increase-thresh parameter is set to 4 and as such cwnd 

increases only every 5 ACKs, effectively limiting the increase rate to 1/5 of the original TCP 

Reno (and NewReno) algorithm. The s increaseihresh variable was set to this value after 

several experiments with different values and having noted little effect in increasing the pa- 

rameter further. This adjustment is titled the "slow" slow start modification of TCP (SS TCP) 

and its application to Reno and NewReno is named SS Reno and SS NewReno respectively. 

Figure 4.2(a) depicts the goodput of Reno and SS Reno in string topologies as the hop count 

increases. The results in this case are mixed and the improvement in goodput not noteworthy 

in all cases. The most noticeable difference appears at 7 hops (8 nodes in the string topology) 

where there is a 6% increase in goodput whilst the worst case presents itself at 11 hops where 

there is a 4% decrease. For NewReno the equivalent results are included in Figure 4.2(b). In 

that case, the slow start modifications again provide mixed results with the best case noted 

at 8 hops (9 nodes in the topology), by exhibiting a 9% increase over the normal slow start 

procedure and the worst case indicated at 6 hops with a 4% decrease in goodput. 

The observed increase in goodput is explained as follows; as has been noted in [431 the 

segment drops caused by link contention due to hidden terminals become the main cause of 

segment loss in wireless networks when the hop count of the path is large enough. The SS 

Reno modification tries to reduce that effect by decreasing the increase rate of the slow start 

phase. For the sake of illustration, assume a given window, during the slow start phase, when 
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Algorithm 1 Slow start cwnd increase 
Require: s_increase-thresh is the number of ACKs between increases, s. increase is ini- 

tialised to 0 
1: If s_increase =0 then 
2: cwnd *-- cwnd +1 
3: s_increase +- s_increase +1 
4: else 
5: if s_increase = s_increase. thresh then 
6: s_increase 4- 0 

7: else 
8: s_increase +-- s_increase +1 
9: end if 

1o: end if 

a segment drop occurs due to link contention. Until that drop is noted by Reno (either through 

3 dupACKs or an RTO), cwnd keeps increasing exponentially due to ACKs returning to the 

sender for non-dropped segments. As extra segments are injected in the network and along the 

communications path, link contention is aggravated. 

The routing protocol may, further, include a packet caching mechanism in the event of 

packet loss due to mobility. For instance, the DSR protocol [601 specifies the use of a mainte- 

nance buffer which contains dropped packets due to route changes. A packet that is discarded 

by the MAC mechanism may be considered to be dropped due to mobility and hence may 

end up in the maintenance buffer while the routing protocol attempts to "salvage" it by asking 

neighbouring nodes to provide an alternate route. Thus, it is possible that the packet is retrans- 

mitted at a later time, when the new route, which in this case is the same as the old one, is 

discovered by DSR. An example of this behaviour in both the case of DSR and AODV has 

been extensively discussed in Chapter 3. Such retransmissions from the routing protocol can 

cause even more link contention. Eventually, TCP may have to retransmit a lost segment either 

by restarting with the slow start phase in case of an RTO, or by entering the fast retransmit/fast 

recovery state in the case of duplicate ACKs. The SS modification forces TCP to not increase 

the sending rate as quickly during the slow start phase, and thus allows the segments to advance 

without adding greatly to spatial contention. A segment will eventually be dropped again after 

the optimal sending window has been reached but this event will happen at a later time than 
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without the modifications. 

Overall, though measurable, the performance advantages of the proposed modification are 

not great. The reason for this is that the slow start algorithm is not activated often enough to be 

effective. The slow start threshold value, which dictates when the slow start phase gives way to 

the congestion avoidance phase, is usually low in the examined scenarios and there is scarcely 

any time for the new method to make a difference. The time spent in the congestion avoidance 

phase is much longer than that spent in slow start and so the effects of the modification are not 

greatly noticeable. 

4.3.2 Congestion avoidance modification (SCA TCP) 

The congestion avoidance phase of TCP dictates a linear increase in the cwnd size per round- 

trip time (RTT). To achieve this, every ACK received acknowledging new data increases cwnd 

by 1/cwnd segments3 [56]. 

In order to "slow down" this sending rate increase during the congestion avoidance phase 

a delay similar to the slow start modification presented above is introduced. The proposed 

algorithm is shown in Algorithm 2. The behaviour of this modified congestion phase is dic- 

tated by the value of the ca-increase-thresh variable, which specifies the level of delay added 

to the sending rate increase. Specifically, cwnd increases by a full segment's worth every 

ca_increase_thresh+l RTTs. The modifications are referred to as "slow" congestion avoidance 

of TCP (SCA TCP) and their application to Reno and NewReno are referred to as SCA Reno 

and SCA NewReno, respectively. 

To evaluate the scope of improvement offered by these changes, we have conducted ex- 

periments on string topologies by replicating the simulation setup in the previous section. The 

ca-increase-thresh parameter was set to 4, which in turn implies that the cwnd would grow 

only every 5 RTTs. 

The results of this modification for a Reno TCP agent are shown in Figure 4.2(a). The 

3In actual TCP implementations, windows and segment sizes are measured in bytes and so the increment is 
maxseg * wnd where mazseg is the maximum segment size and cwnd is expressed in bytes 
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improvement in average goodput compared to plain TCP Reno is consistent and ranges from 

33-71% in the case of the string topology. The explanation for the increase in goodput is the 

same as presented for the slow start modifications. However, the slowdown of the increase 

rate in the congestion avoidance phase occurs far more often than in the case of the slow start 

modifications in SS Reno, which introduces a more substantial cumulative effect. 

For NewReno the congestion avoidance modification results in a goodput increase in the 

range of 32-71 % for all path lengths. These are shown in Figure 4.2(b). 

Algorithm 2 Congestion avoidance cwnd increase 

Require: ca-increase-thresh is the no. of ACKs between increases, ca-increase is ini- 
tialised to 0 

1: if ca-increase =0 then 
2: cwnd F- cwnd +1 
3: ca-increase f- ca-increase +1 
4: else 
5: if ca-increase = ca-increase-thresh then 
6: ca-increase 4-- 0 

7: else 
8: ca-increase +- ca-increase +1 
9: end if 

lo: end if 

The following example illustrates the behaviour of the new mechanism and was encoun- 

tered several times during simulation. Assume that the TCP sender receives 3 duplicate ACKs. 

TCP then fast retransmits the missing segment, halves cwnd and enters the fast recovery phase. 

If the retransmitted segment reaches its destination without triggering a congestion indication 

event, cwnd will increase at a rate of 1 segment per RTT. By decreasing the cwnd increase 

rate to 1 segment per ca_increase_thresh +1 RTTs, the TCP sender does not add to the link 

contention problem significantly and is allowed to successfully transmit for longer around a 

large window close to the optimal one [43] than if cwnd were to be increased every RTT. The 

trade-off is that it is possible to transmit around a sub-optimal window for a longer period as 

well, as the increase rate does not reach optimal size as quickly; however, this is offset by the 

longer successful transmission of data around a larger optimal window. Another side-effect is 

that it is possible to transmit with cwnd of size 4 or more for longer and as such make use of 
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modifications 

dupACKs which can activate the fast retransmit/fast recovery algorithm and recover quickly 

from segment losses. 

It should be noted that the value of 4 for the ca_increase_thresh parameter, as introduced 

here, has been chosen only for illustration purposes. Section 4.4.1 includes an exploration of 

an effective ca-increase-thresh value. 

4.3.3 Cumulative modifications 

As the SS and SCA techniques introduce changes at different phases of a TCP sender, it is 

useful to examine if the combination of the two methods may yield a cumulative improve- 

ment. To this end, we have combined the two techniques and produced an all-encompassing 

increase-thresh parameter with sincrease_thresh = ca -increase -thresh = increase-thresh 

for a TCP agent utilising both the SS and SCA methods. 

To evaluate the effect of such a combination on the achieved goodput of a TCP sender, 

we have conducted experiments on string topologies as in the previous sections. Figure 4.2(a) 

shows the resulting average achieve goodput when the SS and SCA techniques are utilised in 

unison. This modification is titled SSCA and both the slow start and congestion avoidance 

increases are slowed down to 1/5 of the original Reno algorithm (i. e. increase-thresh is set to 



4.3. PROPOSED MODIFICATIONS TO TCP 85 

soo 

400 

300 
1200 

tao 

1}-F 8CA Reno 
P-V 5A Raoo 

04 
56799 10 11 12 13 14 15 

F+-+ 8CA N. WRan 
r-V 49CA NwIwn 

400 º 

700k 

2001 

100 k 

04 
S6769 10 11 12 13 14 IJ 

Na Nader 

I 
I 

Na Nod. 

(a) SCA Reno vs SSCA Reno (b) SCA NewReno vs SSCA NewReno 

Figure 4.3. Goodput vs length in string topologies for Reno and NewReno using SSCA modi- 
fications 

4). The end result is not a cumulative increase in goodput but rather equivalent performance to 

the SCA slowdown technique. This is explained by the fact that the congestion avoidance phase 

dominates over the slow start phase and as such modifications in the latter do not significantly 

affect goodput. It is deemed, hence, superfluous to combine the two techniques and the SCA 

method remains in focus for the rest of this study. 

Similarly to the Reno case, the mixed SSCA technique does not yield significant improve- 

ment over SCA for NewReno as can be seen in Figure 4.3(b). 

Finally, note that the cumulative SSCA modifications as outlined in this section assume 

equality of s_increase.. thresh and ca-increase-thresh. Several experiments have been con- 

ducted in view of considering the case where the two thresholds are set at different values, 

thereby dictating different degrees of sending rate increase during the Slowstart and Conges- 

tion Avoidance phases. The resulting goodput in those cases is not significantly better than 

using the SCA method as described above; thus, the SCA method remains the focal point of 

this study. 

4.3.4 Trace analysis of SCA TCP 

This section shows the effect of the proposed SCA method changes in a string topology of 

5 nodes (A, B, C, D, E). This discussion aids understanding and illustrates the workings of the 
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SCA technique. Although this example uses TCP Reno as an agent the resulting conclusions 

are applicable to other Reno-based variants (such as TCP NewReno and SACK). The routing 

agent used is DSR. The other simulation parameters are as used in the previous sections. 

For the purposes of this example and in the string topology, an FTP transfer is conducted 

from node A to node E (the end-nodes in the topology) and lasts for 100 seconds. The ex- 

periment is then repeated on the same topology with an SCA Reno agent with a threshold 

parameter of 4. As such cwnd during the congestion avoidance phase is increased by a full 

segment every 5 RTTs and not every RTT as in the case of TCP Reno. 

In Figure 4.4(a) the number of ACKed segments during simulation time is shown. At the 

end of the trial run SCA Reno has achieved significantly better goodput performance than 

Reno (approximately 38% improvement). It is also evident that the two variants perform com- 

parably only for the first few seconds; after that time period (approximately 14 seconds) SCA 

Reno clearly outperforms Reno. Furthermore, the congestion window evolution during that 

time, shown in Figure 4.4(b), reveals that SCA Reno has maintained, a relatively small cwnd 

throughout the connection time with a maximum of 5 segments in-flight at about the 65 sec- 

onds mark. In contrast, TCP Reno has maintained a larger cwnd, even reaching the value of 9 

segments after 88 seconds. 
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A closer study of the first 20 seconds of the simulation time provides insight on the per- 

formance discrepancy. As can be seen in Figure 4.5(a) the two mechanisms (plain and SCA 

Reno) behave identically during the initial slow start phase which lasts from the beginning of 

the connection until cwnd (cwnd) takes the value of 7 at 0.6 seconds. In this time slot the slow 

start mechanism, which is identical in both cases, is in effect. 

Figures 4.5(b) and 4.5(c) depict the cwnd evolution during simulation time for the Reno 

and SCA Reno method respectively. In those figures dropped segments are denoted with a 

cross on the top bar of the graph. A segment drop event in this case always refers to segments 

dropped by the routing agent due to the hidden terminal effect. Notably, during the simulation 

no segment drops were recorded to have been caused due to full buffer queues which verifies 

the findings in [43]. Also note that a segment drop is not always accompanied by a drop in the 

value of cwnd, because the routing algorithm salvages the segment and attempts to retransmit 

it later. From the simulation trace it is apparent that the hidden terminal effect causes node A to 

drop segment 5 at 0.21 seconds and declares a spurious route breakage. Soon after, out-of-order 

segments appear at the receiving end of the connection. In this case, segment 6 is spuriously 

retransmitted at 0.8 seconds, and cwnd halves from 7 to 3 segments as the fast retransmit/fast 

recovery algorithm is activated. Segment 6 was received by node E at 0.776 seconds but due 

to segment reordering 3 dupACKs were sent to node A (these were for segments 9,7 and 10). 

Segment reordering can result from the way the DSR maintenance buffer operates. According 

to the DSR draft [60] the maintenance buffer holds segments for which a new route is being 

sought. In the case of the string topology as presented here there is only one route for every 

segment (route A --º B -º C -º D -º E). When the MAC layer gives up on transmitting 

a segment, the node will try to salvage the segment and discover the route again by enquiring 

neighbouring nodes for alternate routes to the destination. However, more segments might 

arrive and be put in the maintenance buffer in the mean time. If the queueing paradigm is 

Last-In-First-Out (LIFO), as in this case, segments may be forwarded out of order. The issue 

of segment reordering is relevant in the case of AODV [92] routing as well, where the local 

repair function can produce similar results. 
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After the 3 dupACKs both algorithms halve the cwnd. However, the classic Reno algorithm 

increases the cwnd 5 times more quickly during congestion avoidance than SCA Reno. In this 

case (at around the 1 second mark) it makes little difference as both algorithms experience a 

timeout due to segment 12 and both involve a cwnd of 3 (rounded down). A similar situation 

occurs at around 5 seconds. At that time spatial contention is high between nodes A and E 

but the slower congestion avoidance phase of the SCA algorithm has not had any impact yet. 

In order for a new segment to enter the network, cwnd must be increased by a whole unit 

and as such although the value of cwnd at around 5 seconds is 2.5 for SCA Reno and 2.9 for 

Reno it makes no difference. The advantage of the SCA algorithm is shown very clearly at 

6-15 seconds. Plain Reno increases cwnd linearly and injects more segments into the network 

reaching up to 6 segments in flight. In contrast SCA Reno does not exceed 4 segments. Reno's 

extra segments are cached by the routing algorithm every time a route breakage occurs and 

are re-injected at a later time thus adding to the spatial congestion i. e. aggravate the hidden 

terminal effect. In the SCA case, there are fewer segments in the network and such effects are 

less pronounced after the inevitable timeout has been reached. 

The basic idea of the proposed changes is that by restricting the growth of cwnd, there are 

fewer segments in flight for some period of time. As such, by the time the hidden terminal 

problem appears there will not be as many segments in the pipe to compete for medium access. 

As a consequence, the serious spatial link congestion as described in [43] is not as extreme 

as in the case of plain Reno. Subsequent transmissions and retransmissions do not have as 

many segments in contention for access the medium. Overall, both TCP versions exceed their 

optimal window at some point, only it is likely that this point is of a smaller value or at least the 

time spent at a non problematic window zone is larger for SCA Reno. The previous statement 

implies that the time spent at smaller than optimal values is longer, as well, but this is more than 

offset by the fact that when a failure occurs at a high cwnd value, as is the case with TCP Reno, 

the spatial congestion is serious and is augmented by retransmissions from the maintenance 

buffer of the routing protocol. 
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4.4 Evaluation of SCA TCP 

In this section, the SCA technique is evaluated thoroughly and is further contrasted to a dif- 

ferent approach presented in the literature which deals with the effects of spatial contention on 

TCP, namely the adaptive Congestion Window Limit (CWL) method [26]. 

4.4.1 Performance analysis of SCA TCP 

Before a performance comparison of SCA with the adaptive CWL and other TCP strategies can 

be attempted, it is necessary to evaluate the effect of different SCA parameter (ca 
-increase -thresh) 

values on the performance of the SCA method when applied to TCP. Such a process would 

facilitate the setting of a "generally good" default parameter which will be used in the subse- 

quent performance evaluation. The next section outlines the results of this procedure and an 

evaluation in general mobility scenarios follows. 

Identifying a default SCA parameter 

To identify an adequate ca-increase-thresh parameter for the SCA method we have per- 

formed simulation experiments for different string topologies and noted the resulting goodput. 

Specifically, string topologies of various length have been considered, ranging from 3 to 15 

hops (4 to 16 nodes). String topologies of less than 4 nodes have not been evaluated as hidden 

terminals due to interference are not evident in such topologies [107]. For each simulation 

run, an FTP connection between the end-points is initiated at the beginning and lasts until the 

end of the simulation at 900 secs. Per string topology, a different SCA parameter was applied, 

ranging from 0 to 50, and the goodput at the end was recorded. Note that an SCA parameter of 

0 denotes plain Reno, i. e. no modifications to the Reno congestion avoidance algorithm. 

Figure 4.6 shows the result of the simulation runs for DSR. Notably, the number of trans- 

mitted segments for each hop count flattens or stabilises after the SCA parameter has reached 

the value of 10. This in turn implies that further possible improvement shown in the simula- 

tion metric is not significant beyond that value. This observation is true for all the hop counts 
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considered here (3-15 hops) and, hence, regardless of the string length, the choice of 10 as the 

value for the SCA parameter would appear to lead to overall "good" performance. 

The same behavior is evident in the graph in Figure 4.7 for the AODV routing protocol. 

Specifically, at around the 10 mark point, any further increase in the SCA parameter does not 

yield significant improvement in the performance metric. 

For clarity, it should be noted that when considering TCP performance in both Figures 

4.6 (DSR) and 4.7 (AODV), emphasis should be placed on the trend evident rather than the 

individual goodput values. Hence, in both cases it is of interest to note an approximate SCA 
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maximum. Further in this chapter (in Section 4.5.2) an enquiry is made into optimising the 

SCA technique by setting its parameter according path length; in that case, the parameter is set 

according to these global peaks rather than the trend of the goodput graph for each hop count. 

Finally, note that it is quite possible to make use of feedback from the DSR protocol or any 

other route length aware routing protocol so that the SCA mechanism is deactivated if the hop 

count is less than 4. This would offset the issue of activating the SCA modifications when it is 

not needed. 

Notes on the choice of SCA parameter 

The choice of a default SCA parameter, as performed in this section, may not lead to an optimal 

choice for every topology and mobility pattern, since different spatial reuse characteristics 

may be evident in a given path depending on the distance between successive nodes [26]. 

Nonetheless, the choice presented herein represents a "good" value for all path lengths as 

exhibited in typical string topologies and is expected to perform well, if not optimally, for 

other path types. This assumption is widely shared by previous related research [25,31,105] 

and is explicitly stated here. As such, adopting a formal approach on evaluating the precise 

effect of altering the SCA parameter, through parametric sensitivity analysis, would reveal a 

scenario specific optimisation but would provide little insight for the general case. Overall, it 

should be noted that the performance measurements in dynamic topologies presented in the 

following sections indicate that the choice of 10 as the default SCA parameter does result in 

significant goodput gains. 

Finally, it should also be stated that the choice of 10 as an SCA parameter represents a 

deliberately conservative decrease in the congestion window increase rate. Even though a 

larger SCA value may result in higher gains, such a value may negatively and severely impact 

TCP convergence, responsiveness and its ability to utilise its fair share of the bandwidth when 

interacting with other flows [571. A brief enquiry into those issues is included in Section 4.4.2. 
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Simulation setup 

To validate our choice of a default SCA parameter (set to 10), we have evaluated the perfor- 

mance of SCA Reno against plain Reno and Vegas over DSR and AODV in dynamic MANETs. 

The simulation results indicate whether the SCA strategy aids Reno in achieving Vegas-like 

performance or better, i. e. if it functions as intended, in dynamic scenarios. 

Simulation area and mobility model: The simulation area is defined tobe a strip of 1500x300m 

where 50 nodes are placed randomly. To create results comparable to previous TCP literature 

studies [19,25,34] node pause times of 0 and 40 seconds have been considered and maximum 

node speeds of 2,5 and 10 m/s. Mobility has been simulated using the random waypoint mo- 

bility model over 50 different mobility scenarios for each pause time/mobility combination. 

Each trial run lasted for 900 seconds. To ensure fairness in the results, the same topologies 

were used for the different TCP agents over the same pause times. 

TCP transfer setup and metric used: In each simulation run, a TCP connection is set up 

between two randomly selected nodes and an FTP transfer session was initiated for the duration 

of the simulation. A maximum window size of 64 is chosen for both the congestion (cwnd) 

and advertised (awnd) windows. During the course of the experiments the maximum sending 

window size (=min{cwnd, awnd}) was never reached and as such our performance metric was 

not limited by that bound. The performance metric measured in the simulation experiments is 

goodput and the average of the 50 topology results for each pause time/mobility combination 

is considered. Welch's t-test has been performed on the observations to determine if there are 

statistically significant differences in the performance of the TCP agents and 90% confidence 

intervals have been computed; however, these are not included in the graphs to avoid cluttering. 

Notably the retransmission timer's maximum value was set to 240 seconds as recom- 

mended in RFC 1122 [151. Other work in the literature which examines a different technique to 

deal with the issue of TCP and spatial contention [25] has used a lower maximum RTO value. 

However, the authors in [25] have acknowledged that their imposed RTO limit of 2 seconds 
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is low, but chosen so as to minimise the time the connection spends idle when a broken com- 

munications path may already have been re-established by the routing mechanism. However, 

we believe that a realistic outlook of typical TCP performance in MANETs has to maintain 

parameters in TCP as the standards recommend, which ensures that the congestion control 

mechanism functions as intended. 

In these simulation runs five TCP variants have been evaluated; plain Reno, Vegas, and 

three SCA agents with ca-increase-thresh (or SCA) parameters set to 1,5 and 10. The value 

of 1 is significant as it denotes the initial impact of the SCA mechanism (i. e. the impact of 

activating it with the lowest possible parameter). The value of 10 denotes how a "default" set 

agent (as determined by simulation in the previous section) would behave. Finally, the value 

of 5 was chosen as it represents the mid-point between the optimal and minimum parameters 

and its results allow for interesting observations in the subsequent discussion. 

Finally, we have considered AODV and DSR as routing protocols with parameters as used 

in Chapter 3 and as detailed in Appendix A. I. The simulation parameters with respect to 

the signal propagation model and wireless transceiver setup are the same as the ones used in 

Chapter 3 and throughout this chapter. 

Results and discussion 

The results under DSR routing for 0 seconds (continuous mobility) and 40 seconds pause time 

are presented in Figure 4.8. For maximum node speeds of 2,5 and 10 m/s, SCA Reno with 

parameter 10 outperforms plain Reno by 4%, 26% and 24% respectively for the topologies 

with 0 seconds pause time. Similarly, for 40 seconds pause time SCA Reno with parameter 

10 improves over plain Reno by 5%, 6% and 15% for maximum node speeds of 2,5 and 

lOm/s respectively. The decrease in improvement compared to continuous mobility scenarios 

is largely attributed to the random source/destination pairs which are chosen for each scenario. 

In certain scenarios, partitioning ensued in the network and it became impossible for the routing 

algorithm to find an alternate route and as such the SCA method could not "improve" upon the 

plain Reno variant. 
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Expanding on the last point, an interesting situation was observed during the experiments. 

The SCA technique did lead to RTOs due to spatial contention similar to the case of plain Reno, 

with the difference that SCA maintained fewer segments in the pipe on average. Notably, 

the RTOs occurred, generally, at a different time interval than plain TCP Reno. If an RTO 

occurred at an "inconvenient" time, such as when network partitioning was about to occur, 

TCP performance suffered under SCA compared to Reno, assuming Reno RTOs occurred at 

more "convenient" times. We believe that the adverse effect of RTOs on TCP performance due 

to interference/hidden terminals should not be understated and therefore neither took special 

precautions to avoid "badly timed" RTOs nor ensured that at the end of an RTO the routing 

path would be known to the source and ready for use. 

In general, although setting the SCA parameter to 10 consistently outperforms the SCA 

Reno with SCA parameter of 1 for all pause times, it is closely matched at certain pause 

time/node speeds by SCA Reno with parameter of 5 and can even present slightly worse results 

as in the cases of lOm/s speed at 0 seconds pause time and 5m/s speed at 40 seconds pause 

time. Such behaviour is somewhat expected as the performance of the SCA parameter of 5 

in Figure 4.6 suggests that it is a competent contender for different hop counts but on average 

should be worse than the SCA parameter 10 agent under different path lengths, which is what 

can be observed in this case. 

When noting the performance of SCA against Vegas, it is evident in the case of DSR that 

the difference in performance is only significant in a few cases, specifically at lOm/s for 40 

seconds pause time where it is about 7% and at 5m/s for 0 seconds pause time where it is about 

4%. At all other pause time/node speed combinations the discrepancy in performance is either 

very small (about 1-2%) or not statistically significant. Nonetheless, this is a clear indication 

that SCA achieves similar performance levels to Vegas, without incurring the computational 

overhead of the latter [16]. 

Figure 4.9 depicts the performance measurements of SCA Reno under the AODV routing 

protocol. The trend is similar to that of DSR, namely improved goodput ranging from 4%-10% 

for Os pause time and 6%-8% for 40s pause time over plain Reno. As is the case with DSR 
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routing, using 10 as the SCA parameter results in the highest and most consistent improvement 

over plain Reno in our simulations when compared to the parameter settings of 1 and 5. The 

decrease in improvement compared to DSR routing is attributed to the faster recovery of AODV 

from "false" route breakages (which reduces the impact of consecutive RTOs). Instead of 

asking neighbours for alternate routes, AODV actively searches for a new route by initiating 

a local route discovery process from the point of failure. The new route can be quickly re- 

established even in the case of a real route breakage as the route to the destination is likely to 

be easily rediscovered through other neighbouring nodes close to the point of failure. 

The simulation results in the case of Vegas indicate a similar pattern to that of DSR; Vegas 

is only outperformed in a few cases (4% at 10m/sec for Os pause time and 4% at 5m/s for 40s 

pause time) whilst the two methods are equivalent otherwise. Overall, the simulation results 

indicate that SCA Reno outperforms Reno in a single connection environment under both the 

DSR and AODV routing protocols while achieving equivalent performance to Vegas. 

To understand the performance of SCA Reno over a somewhat denser network traffic en- 

vironment we have also conducted experiments using multiple TCP flows with the same 50 

topologies. Specifically, five TCP connections were initiated for 900 seconds, carrying FTP 

traffic. The communicating pairs were randomly chosen for each scenario and the performance 

metric measured was the same as before. The results of the aggregate goodput are presented 

in Figure 4.10 for 0 and 40 seconds pause time and different node speeds for the DSR routing 

protocol. The improvement in goodput over plain TCP Reno ranges from 3-12% for 0 seconds 

pause time and 4-12% for 40 seconds pause time. Note that our SCA solution (not unlike the 

adaptive CWL solution examined in the next section) is not meant to solve the interference 

problem among different flows but improve performance when the interference is caused by 

the flow "onto" itself. Under the AODV routing protocol the performance increase is not as 

noticeable as in the case of DSR for multiple connections as can be seen in Figure 4.11. Specif- 

ically, the performance improvement over TCP Reno ranges from 2-5% for 0 seconds pause 

time and 2-4% for 40 seconds pause time. This is attributed to the ability of AODV to quickly 

recover from false route breakages and the fact that other factors affect TCP performance such 
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Figure 4.8. Goodput of a single TCP flow vs maximum speed in dynamic topologies using 
DSR 

as network partitioning which leads to repeated RTOs. In the case of network partitioning the 

faster congestion avoidance phase of Reno can be beneficial as it can inject more segments on 

the network for the time the route is valid compared to SCA Reno. Nonetheless, SCA Reno 

deals with the effects of spatial contention much better than plain TCP, and that results in a 

slight advantage for SCA Reno. 

Note that in this case the performance of SCA compared to Vegas is again comparable, 

with notable exceptions being the points at IOm/s for Os and 40s pause time in the case of DSR 

(where the difference in goodput is 7% and 5% respectively in favour of SCA) and I Om/s for Os 

pause time in the case of AODV (where the difference is approximately 5%). The performance 

increase achieved by SCA in scenarios with multiple flows provides some indication that the 

SCA modification functions as intended even between flows although we do not claim this is 

to be true in every scenario as the mechanism deals with intra and not inter-flow interference. 

4.4.2 Performance comparison of SCA TCP and adaptive CWL 

In this section, we evaluate the effectiveness of the SCA TCP strategy against an existing tech- 

nique in the literature aiming to alleviate the throughput-reducing effects of spatial contention, 

namely the adaptive CWL setting strategy. Since both the SCA and adaptive CWL strategies 
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Figure 4.11. Aggregate goodput of 5 TCP flows vs maximum speed in dynamic topologies 

using AODV 

are applicable to path length aware routing protocols, both are evaluated under DSR routing. 

Invariably, the adaptive CWL strategy cannot be used with a path length agnostic routing agent 

in contrast to the SCA technique, which requires no such coupling of the routing protocol with 

the transport agent. The next section introduces the adaptive CWL strategy and is followed by 

a performance evaluation comparison and discussion. 

Congestion Window Limit (CWL) method 

The Congestion Window Limit (CWL) approach enforces a restriction on the maximum con- 

gestion window (cwnd) of TCP, so as to maintain few outstanding segments in the pipe at any 

one time and minimise spatial contention. This spatial contention is caused by the flow onto 

itself and its main cause is, thus intra-flow interference. As such, the method addresses the 

same issue as the SCA technique and thus is similar in research scope. 

An outline of the method follows. TCP maintains for each connection a cwnd state variable 

which throttles the sending rate at the sender. Moreover, the sender receives flow control 

information from the receiver, which is maintained in a sender's advertised window (awnd) 

state variable for each connection. The amount of data that can be outstanding in the network at 

any one time is set by the sending-window = max{cwnd, awed} [98]. A limitation imposed 
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Table 4.2. Limiting the maximum congestion window (cwnd) 

flop Count(h) Max. cwnd 

h<2 2 

2<h<4 1 

4<h<6 2 

6<h<10 3 

10<h<13 4 

13<h<15 5 

h> 15 not obtained 

on the value of cwnd implies a limitation on the sending window and as such the number of 

outstanding segments that can be present in the pipe by the TCP sender. The authors in [107] 

and [43] have demonstrated that imposing a limit on the maximum sending/congestion window 

leads to improved throughput as fewer segments contend for access to the medium at any one 

time leading to better spatial reuse of the medium. As such, fewer link layer drops occur due 

to interference which leads to less spurious route breakages and TCP retransmission timeouts 

(RTOs). A technique following the above paradigm is labelled as a CWL method [25]. 

Work by Chen et al. has demonstrated a mechanism that dynamically adjusts the CWL 

according to the path length [26]. Instead of relying on analytical estimates of optimal values 

for cwnd (as done in [43]), the authors have instead opted for discovery through simulation of 

the optimal CWL value for several path lengths as shown in Table 4.2. This adaptive CWL 

strategy receives path hop count information provided by the DSR protocol to set the maximum 

cwnd value of the TCP agent. These changes have been shown to improve throughput 8-16% 

over TCP Reno in multiple flows scenarios, In this work we evaluate the performance of 

the adaptive CWL method as described in [25], which supersedes the original fixed CWL 

method [1081. 
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Evaluation results of SCA TCP vs adaptive CWL 

To evaluate the effectiveness of the SCA technique against the adaptive CWL strategy we have 

conducted further simulations. The simulation parameters and experimental setup are identical 

to the ones used in the previous SCA TCP evaluation (Section 4.4.1). In all experiments, 

the SCA parameter for SCA Reno was set to the default value of 10. The hop count values 

considered for dynamically adjusting the congestion window using adaptive CWL are the same 

as in [251 and are presented in Table 4.2. Measurements were also taken of a plain Reno 

implementation to be used as the baseline for comparison. The routing protocol used in the 

evaluation was DSR so as to make our results comparable to the ones in the adaptive dynamic 

CWL work [251. 

The goodput results for a single TCP flow appear in Figure 4.12. SCA TCP improves 

upon the performance of the adaptive CWL strategy by 4-9% and 7-20% for 0 and 40 seconds 

pause time respectively for all maximum speed scenario settings. The improvement offered 

over Reno ranges between 4-26% for 0 seconds pause time and 5-15% for 20 seconds pause 

time across different node speeds. The adaptive CWL strategy maintains a goodput average 

that is better than Reno but is in some negligible (2m/s at 0 seconds pause time and 5m/s at 

40 seconds pause time) and it even proves worse than plain Reno by 4% at 2m/s for 0 seconds 

pause time. 

In our experiments with single flows the CWL method performed comparably to SCA at 

some topologies and much less than optimally at others. The apparent discrepancy of our 

results to the ones presented in [25] is mostly attributed to the more accurate setting of the 

maximum RTO in our experiments. The maximum RTO setting was set to 240 seconds as 

recommended for Internet hosts [ 15] instead of 2 seconds as in [25]. Setting the maximum RTO 

to 2 seconds does improve the reaction of TCP to route re-establishment as the maximum time 

a (re-established) route may remain unnecessarily non-utilised is close to 2 seconds. However, 

as noted before, this setting is not recommended for interaction with Internet hosts [15]. In 

fact, by their own admission in [25] the authors identify their choice of value for the maximum 
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RTO as "small" and not recommended for widespread use. However, such a modification 

understates the effect of RTOs and skews the end results. 

To understand the effect of limiting the maximum RTO to a small value consider the follow- 

ing scenario. The SCA technique maintains on average more segments in flight than adaptive 

CWL as it is not limited by a cwnd bound. Although some segments are lost due to spatial 

contention in SCA, several of these are salvaged by DSR which retransmits them at a later 

time and can trigger a3 duplicate ACK (dupACK) response from the receiver which activates 

the fast retransmit/fast recovery phase of TCP at the sender. DupACKs are produced either 

because the segments arrive at the receiver out-of-order, or because there are "holes" (i. e. non 

consecutively sequenced segments) in the destination's receiving buffer. The adaptive CWL 

method does not need the dupACKs heuristic as it is designed to avoid segment drops due to 

spatial contention. However, if the route breakage is due to mobility the dupACKs heuristic 

can be a valuable tool and enable TCP to recover quickly from the route breakage. When the 

fast retransmit/fast recovery mechanism is in effect TCP immediately retransmits the segment 

"known" to be lost without waiting for an RTO. This quick retransmission and utilisation of a 

possible re-established route is impossible in the case of the adaptive CWL strategy when the 

maximum cwnd is smaller than 4 segments (which is true for paths shorter than 13 hops, as 

shown in Table 4.2). Hence the adaptive CWL technique has to rely on the expiration of the 

RTO timer for segment retransmissions. Furthermore the exponential RTO backoff aggravates 

the problem as it can lead to several seconds of inactivity, even if the route has been restored in 

the mean time (an analysis of this phenomenon is included in [49]). If the RTO is set to a small 

enough value, as in [25], this aspect of the problem is ignored and the performance evaluation 

results are deceptively favourable. 

To obtain insight on the effectiveness of both strategies with multiple flows, although nei- 

ther was particularly targeted to deal with the issue, we have applied both techniques to concur- 

rent TCP flows in MANET environments. The number of FTP flows (carried with TCP) was 

set to 5 with random source/destination pairs. The simulation setup parameters are the same as 

in the multiflow SCA evaluation in Section 4.4.1 and are not repeated here for brevity. 
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Figure 4.12. Goodput for a single TCP flow vs maximum speed in dynamic topologies using 
DSR (SCA vs adaptive CWL) 

The results of this evaluation appear in Figure 4.13. The SCA technique again proves 

superior to adaptive CWL (in terms of aggregate goodput) for all maximum speeds and at all 

pause times and at a margin of 2-10%. From these results it may be suggested that the SCA 

technique maintains its advantage over adaptive CWL under some multiflow network traffic. 

Limitations of adaptive CWL 

Although the adaptive CWL method may alleviate spatial contention in single flows it can be 

shown to have serious problems competing with plain TCP flows. To illustrate this, consider 

the following scenario as described below. 

We assume a string topology with 5 nodes and two FTP flows that have the same source 

and destination, specifically the end-nodes of the string topology. The simulation lasts 900 

seconds and the TCP flows carrying the FTP traffic are named flow A and B. Flow B uses 

the plain Reno algorithm whilst flow A uses the adaptive CWL adjustment. In this case the 

maximum cwnd is set to one segment as the route length is fixed to 4 hops (Table 4.2). DSR 

routing is used as the routing protocol and all the simulation parameters are as in the previous 

section. 

The grey shaded area in the graph in Figure 4.15 represents the total number of segments 

that have been transmitted by the sender and successfully acknowledged by the receiver (i. e. 
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Figure 4.13. Goodput for 5 TCP flows vs maximum speed in dynamic topologies using DSR 

(SCA vs adaptive CWL) 

goodput) for the adaptive CWL flow as a function of time. In this case, it is particularly 

noticeable that the Reno flow utilises much more than its fair share of the bandwidth. Tracing 

reveals that during the simulation run the maximum cwnd of one set by the adaptive CWL 

strategy leads to several RTOs for flow A because each segment loss cannot be recovered 

through the fast retransmit procedure as there are not enough segments in the pipe to utilise 

the dupACK heuristic. Flow B (Reno) is not restricted on the amount of segments it can 

inject in the pipe though, and has several segments at any one time competing with flow A's 

single segment for spatial usage of the medium. Hence, it becomes very likely that the single 

segment of flow A is dropped which leads to an RTO in the adaptive CWL sender before 

another segment is transmitted. The RTO timeout value doubles for each consecutive segment 

loss which further aggravates the situation for flow A. At the end of the simulation the average 

cwnd size for flow B is 7.3 whilst for flow A it is 1 (the maximum value). 

Figure 4.14 shows the goodput results (in total segments) for the same topology when the 

adaptive CWL agent of flow A is replaced with other types of TCP agents. Essentially the 

same experiment as described above is executed with flow B always being a Reno agent and 

flow A being one of the following TCP variants: Reno, SCA Reno with parameter 5 (SCA 5), 

SCA Reno with parameter 10 (SCA 10), a dynamic CWL agent (CWL) or an agent with a fixed 
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Figure 4.14. Shared bandwidth between two flows in a 4-hop string topology 

congestion window limit of 2 ... 6 segments (cwnd 2 
... 6). The simulations are run under both 

DSR and AODV to demonstrate the universality of this discussion. The Reno/Reno interaction 

ensures fair use of bandwidth for both flows. The SCA/Reno flow pair results reveal that the 

Reno agent "steals" some of the SCA bandwidth, which is expected as the SCA sender is not 

as aggressive during the congestion avoidance phase as Reno. In fact, in this case, fairness 

is an especially poignant issue in the adaptive CWL case where flow B (Reno) utilises 9 of 

the available bandwidth whilst flow A (adaptive CWL) makes use of the rest (for the SCA 

Reno/Reno case, the ratios are 3 and 3 for the respective flows). Increasing the maximum 

cwnd size to 6 improves fairness as is apparent in Figure 4.14 because the behaviour of plain 

Reno, which has an average cwnd size of 5.68 in the Reno/Reno scenario, is emulated as the 

maximum cwnd size increases. 

The time (in seconds) spent in each TCP phase for certain flows (Reno, SCA with parame- 

ter 10 and CWL) is shown in Table 4.3. Note, that the SCA agent experiences less overall RTO 

time than Reno and spends more time in the congestion avoidance phase, i. e. keeps transmitting 

for longer than Reno. Furthermore, for both Reno and SCA Reno, the congestion avoidance 

algorithm is active for most of the duration of the simulation run. This observation has been 

noted several times in this dissertation and it is the reason the SCA modification on the sending 

rate increase is applied to the congestion avoidance rather than the slow start phase. 
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Table 4.3. Time spent (in secs) in each phase for different TCP flows 

Phase Reno SCA Reno adaptive CWL 

Slow start 54.8 9.7 1000 

Congestion avoidance 842.9 957.1 0.0 

RTO 102.3 33.2 0.0 
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Figure 4.15. Flow share between plain Reno and adaptive CWL agents in a 5-node string 
topology 

4.5 Other considerations 

The following section contains discussion on the implications of the SCA method introduced, 

with respect to inter-flow spatial contention/interference (i. e. interference evident between sep- 

arate flows) and feedback from the routing protocol. Each topic is discussed in turn. 

4.5.1 Multiple flows 

In this section we evaluate the impact of the SCA method and its different parameters as applied 

to multiple connections between two nodes. Overall, the study of inter-flow interference and 

spatial contention at the transport layer level can only be conducted on multiple flows that use 

the same route as these are the ones the transport agent is directly aware of. It is not possible 

for a TCP agent (assuming that the end-to-end paradigm remains intact) to realise the number 

of other flows in the network sharing the same path, unless feedback is drawn from some 

other source, like the routing protocol. It is, however, possible from the end-to-end perspective 

of TCP to note the effect of other flows on available bandwidth and make inferences about 
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their interaction. Previous work on Internet transport dynamics has made it possible to infer 

the fair share of bandwidth that a connection should utilise by using RTT measurements or 

by appraising ACK feedback [17,22]. Such mechanisms, however, do not apply directly to 

ad hoc networks because of fundamental differences in the access mechanism of the shared 

medium [26,43]. 

The following analysis is based on the assumption that when several TCP connections 

are established in a {source, destination} pair, the corresponding flows share much of the 

same path. By conducting a series of experiments on string topologies of different length it is 

possible to isolate the effect on goodput of utilising different parameters for the SCA technique 

and make use of the resulting observations on dynamic topologies. By noting the optimal SCA 

parameter per hop count, for a given number of TCP connections that facilitate communication 

in the same {source, destination} pair, it is then possible to tune the agents so that goodput is 

optimised. 

Prevalent single path routing protocols like AODV [92], DSR [60] and OLSR [28], which 

have been used throughout this dissertation, guarantee that multiple flows of a {source, desti- 

nation} pair will utilise the same path. As such, there is a large scope of applicability for the 

method proposed. Notably, throughout this work the semantics of the transport layer are kept 

intact, i. e. the proposed enhancements only require changes at the end-points and specifically 

only at the sender. It should be noted that the discussion that follows does not apply in the case 

of multipath routing [74] as the {source, destination} pair does not guarantee a common path. 

Another special consideration is evident in the case of source routing and is explicitly 

discussed here. In the case of such protocols (like DSR [60]) , it is, in fact, possible for the 

TCP agent through interaction with the routing protocol to be aware of flows that share much of 

the same path even though they belong to different {source, destination} pairs. This holds true 

as long as the flows share the same source. Figure 4.16 depicts such an example, where TCP 

flows 1 and 2 share much of a common path, namely A -r LI --º C --º D and even exhibit the 

same hop count. In this case, the two flows interfere with each other and since node A is aware 

of the existence of both (being the originator of both), it can tune their SCA parameters so as 
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Figure 4.16. Common hops for different flows 

to optimise their combined goodput. However, if some kind of local route repair mechanism 

is used, it is possible for the routes to diverge without any notification to the source. In such 

a case, node A will be making decisions based on outdated information which might have a 

negative impact on goodput. In the case of flows with the same source and destination targets, 

no such case is possible; these cases are the focal point of the following discussion. 

Determining a suitable SCA parameter 

In a series of experiments we attempt to approach empirically and through simulation the 

optimal parameterisation of the SCA NewReno method according to the path hop count. The 

simulation parameters are identical to the ones used in the SCA evaluation (Section 4.4.1). 

Simulation scenarios are set as follows; in string topologies of various lengths (1-15 hops) 

FT? connections are established between the end-points (meaning the same {source, destination} 

pairs). These connections are facilitated by TCP agents with different SCA parameters, rang- 

ing from 0 to 50. The simulation lasts for 900 seconds and the aggregate goodput is recorded. 

Note that an SCA parameter of 0 denotes plain NewReno, i. e. no modifications to the NewReno 

congestion avoidance mechanism. This setup will help identify a suitable SCA parameter for 

multiple flows (the one exhibiting the highest goodput) which can then be set as the default 

value. 

Figure 4.17 shows the goodput performance of 2 parallel SCA NewReno flows along string 
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topologies of different length. Notice that there is no performance improvement in the case of 1 

and 2-hop string topologies as the hidden terminal effect cannot occur in such short strings and 

spatial contention is minimal. For 3-hops there is some goodput improvement (up to 19%), 

but it is limited, since the SCA mechanism only helps alleviate hidden terminal effects that 

derive from the transmissions of ACKs from the destination (the 4th node in the string; the 1st 

node is the hidden terminal in this case). Diminishing the sending rate increase when there 

is no effect from interference (for path length smaller than 3 hops) can lead to a performance 

penalty, especially in the presence of background traffic. However, as in the case of a single 

flow examined earlier, it is feasible to make use of feedback from DSR or any other route 

length aware routing protocol so that the SCA mechanism is deactivated if the hop count is less 

than 3. Such information (when available) offsets the issue of activating the SCA modifications 

during the sending rate increase if it is not necessary, although the impact of false activation is 

not great in the case of low traffic. 

There is a significant performance improvement for the hop counts examined, similar to 

that noted in single flows using SCA in Section 4.4.1. The number of transmitted segments 

for each hop count noticeably flattens or stabilises after the SCA parameter reaches the value 

of 25. This, in turn, implies that further possible improvement in the simulation metric is not 

significant beyond that value. The above observation applies to all the hop counts considered 

here (3-15 hops). Hence regardless of the string length the value of 25 would appear to be 

effective (in goodput terms) as an SCA parameter. 

We have also empirically approached the discovery of a sufficient default SCA parameter 

for up to 7 flows. For 3 flows the plateau of improvement for goodput is found again to be for 

an SCA parameter of 25, as shown in Figure 4.18. For more than 3 flows the impact of SCA on 

goodput is minimal mostly because there is heavy spatial contention for any cwnd larger than 

1. Essentially, there is insufficient time for the cwnd evolution to allow the SCA method to be 

useful since any cwnd increase beyond a single segment causes spatial contention. 
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Performance evaluation 

To validate the results of the previous section and examine the choice of a default SCA param- 

eter per number of simultaneous TCP flows, we evaluate, the performance of SCA NewReno 

against plain NewReno over DSR in dynamic MANET environments. 

Simulation setup: The simulation parameters are set as follows: The simulation area is 

1500x300m where 50 nodes are placed randomly. The simulation model, signal propagation 

characteristics and node configurations are as set as in the single flow SCA evaluation (Sec- 

tion 4.4.1). The mobility model considered is the random waypoint model with pause times of 

0 and 40 seconds and mean node speeds of 1,2,5 and 10 m/s. 

In each simulation run, multiple FTP connections are set between two randomly chosen 

nodes at the beginning of the simulation and the TCP connections facilitating the data transfer 

begin transmission. The VIP connections, and thus the TCP flows, are active throughout the 

simulation time, which is 900 seconds. The performance metric measured in the simulation 

experiments is goodput (in segments), averaged between the TCP flows. In these simulation 

runs the SCA NewReno with SCA parameter of 25 (the default) has been evaluated against 

plain NewReno. 

Discussion: The goodput results for 2 TCP flows and for 40 seconds pause time are pre- 

sented in Figure 4.19(b) for 2 parallel TCP flows. For mean node speeds 1,2,5 and 10 m/s 

SCA NewReno outperforms plain NewReno by 12%, 11%, 8% and 4% respectively. As the 

mean node speed increases, the performance improvement decreases as routes remain stable 

for less time on average due to increased mobility. The explanation for the decrease is as fol- 

lows; the SCA Reno mechanism needs time to activate as its effects take place after the slow 

start mechanism. The purpose of the slow congestion avoidance phase of SCA TCP is to pro- 

vide the pipe with additional time to resolve its spatial contention burden before injecting an 

extra segment. However, when the environment is highly dynamic, established routes are very 

ephemeral and the requirements of the SCA technique are not met, which in turn means that 
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the improvement in performance is not as apparent. 
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Figure 4.19. Average goodput for two TCP flows using NewReno and SCA NewReno 

Similarly in continuous mobility environments, the improvement in goodput of SCA NewReno 

over plain NewReno is 4-9% for mean node speeds of 1,2,5 and lOm/s as shown in Figure 

4.19(a) for 2 TCP flows. The improvement is significant under such conditions but not as 

prominent as in the case of 40 secs pause time. The reasoning for this drop in improvement 

lies in the fact that, similarly to a decrease in mean node speed, an increase in pause time 

favours the creation of longer lived routes than otherwise. 

The goodput results for 3 simultaneous TCP flows in the same topologies are included in 

Figure 4.20. The improvement in goodput ranges from 7-12% and 5-8% for 40 and 0 seconds 

pause time respectively. The previous observations on the discrepancy in improvement over 

different pause times for two flows are valid for 3 flows as well. For more than 3 simultaneous 

flows our experiments have shown that the SCA method has no discernible effect on good- 

put. As mentioned in the previous section, the optimal cwnd for TCP under such conditions is 

around one segment and it is not possible for the SCA mechanism to function properly. This 

is not an issue exclusive to the SCA method; multiple segments in-flight (as a result of mul- 

tiple TCP flows) along sufficiently long paths would cause deterioration in TCP performance 

regardless of the TCP agent used as there would be too many segments in the pipe at any one 

time for spatial reuse to be exploited [25,26,43,72]. 
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Figure 4.20. Average goodput for three TCP flows using NewReno and SCA NewReno 

4.5.2 Routing feedback - adaptive SCA 

In the previous sections, the evaluation of the SCA technique did not entail any feedback from 

the routing protocol. It is possible to determine an optimal SCA parameter for a given hop 

count and apply the optimised parameter to the TCP agent for any given path length. To 

determine such a parameter per hop count we utilise the same methodology as is done in [25] 

for the adaptive CWL method. Unless otherwise noted, the simulation parameters are as set in 

the previous section. 

Specifically, string topologies of various lengths are set up ranging from 4-15 hops. A 

TCP Reno connection carrying FTP traffic is established between the end-nodes. The FTP 

source is active from the beginning of the simulation until its end at the 900 seconds mark. 

The SCA strategy is applied by varying the SCA parameter in the range of 0 to 50. The value 

of the threshold parameter that yields the best goodput in each string topology is deemed to 

be efficient and is noted. Table 4.4 shows which parameter was optimal for each hop count 

when using the DSR protocol. We have also conducted the same experiments using the AODV 

protocol, which reveals that the optimal parameters per hop count are very similar to the ones 

for DSR. The relevant table is included in Appendix B. 2. 

The idea of an adaptive SCA strategy is similar in principle to the adaptive CWL method [26]. 

Using the route path length information provided by DSR, TCP can dynamically adjust the 
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SCA parameter whenever the length of the route changes. As DSR is a source routing proto- 

col, a cooperating TCP agent is guaranteed to be aware of the total hop count to the destination 

(as it sets the path in the packet header). 

We have evaluated this by performing simulation experiments in the following fashion. In 

a flat space of 1500x300m, 50 nodes were placed randomly. The random waypoint mobility 

model is used to simulate mobility by assuming continuous mobility (0 seconds pause time) 

and maximum node speeds of 2,5 and 10m/sec. For each pause time/maximum node speed 

combination 50 different topologies are created and each simulation lasted for 900 seconds. 

The metric collected at the end of the simulation run was goodput. 

Results from these experiments are included in Figure 4.21 for both static and adaptive 

SCA agents. The benefits of an adaptive SCA strategy were marginal at best (the difference 

between static and adaptive ranging from -1% to 1.5%), and not significant mainly because 

there was not much difference between the various SCA rates in terms of goodput in static 

topologies as evident in Figure 4.6. A much slower sending rate increase in the congestion 

avoidance phase can be unproductive in the case of frequent route breakages, though, because 

the TCP source cannot utilise the full capacity of the link in the little time it is available (i. e. 

before route breakages occur). The effects are especially noticeable if hidden terminal effects 

cannot possibly take place (i. e. the path is less than 4 hops long). At least in single flow 

environments, the adaptive SCA strategy does not appear to be beneficial over static SCA, 

however as noted before, it is possible to use route length feedback to deactivate the SCA 

mechanism when hidden terminals are not an issue (i. e. in this case, when the route length is 

less than 4 hops). 

Finally, note that although simulation results in the case of other pause time periods are 

not included, these would not be expected to denote different behaviour; the factor which 

precludes significant performance difference between static and adaptive SCA (i. e. that an 

SCA parameter of 10 is a "good enough" value) would still hold. 
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Figure 4.21. Goodput against node speed for the adaptive and static SCA Reno 

Table 4.4. Default SCA Reno parameter on string topologies for DSR 

Hop Count(h) parameter h parameter 

4 42 10 48 

5 45 11 35 

6 39 12 10 

7 49 13 50 

8 47 14 25 

9 29 15 10 
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4.6 Conclusions 

Inspired by the conservative sending rate increase of TCP Vegas, and motivated by its com- 

pelling performance advantage over Reno-based TCP variants, this chapter has introduced a 

new mechanism, named Slow Congestion Avoidance (SCA), which employs a more conserva- 

tive sending rate increase and which alleviates some of the intra-flow spatial contention caused 

by traditional TCP agents. To this effect, the new method employs a parametrised delay in 

the growth of the TCP congestion window, which is implementable in both the slow start and 

congestion avoidance phases of Reno-based variants. This work has examined the possible ap- 

plications of the new technique and has shown, with the aid of detailed simulation traces, that 

it is most effective when applied to the congestion avoidance phase of TCP as this is mostly in 

effect in long-lived TCP flows. The resulting technique has been named SCA TCP and is or- 

thogonal to link layer solutions to spatial contention as it is end-to-end applicable and involves 

only transport layer alterations. 

The technique has been shown to improve goodput by 4-26% in the case of TCP Reno 

in a variety of dynamic topologies matching and even surpassing TCP Vegas' performance 

without incurring the latter's computational overhead. Further, the new technique has been 

contrasted with an existing solution towards spatial contention alleviation, namely the adaptive 

Congestion Window Limit (CWL) method. Both methods were employed in dynamic ad hoc 

topologies, using long-lived TCP flows for both AODV and DSR protocols. The subsequent 

evaluation has revealed SCA to outperform adaptive CWL in terms of goodput under various 

mobility conditions by 4-20%. 

Since the SCA technique has been shown to result in goodput gains by alleviating intra- 

flow spatial contention, subsequent work in this chapter has also investigated its applicability 

to multiple TCP flows originating from the same sender. The SCA method has been further 

parametrised to deal with inter-flow spatial contention in the case of multiple TCP flows and 

was shown to outperform the plain TCP agent in the case of NewReno in dynamic topologies. 

Specifically, the performance improvement achieved in various dynamic topologies exhibiting 
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various degrees of mobility was 4-12%. 

The possibility of utilising feedback on the path length as realised by the routing protocol 

has also been examined with the prospect of customising the SCA parameter on a per hop- 

count basis. However, and in the case of the DSR protocol which provides such feedback, it 

has been shown that the utilisation of such a technique does not lead to significant improvement 

gains as the default SCA parameter provides an equivalent goodput improvement. 

In this chapter, the SCA technique has addressed the issue of alleviating spatial contention 

via modifications on the sending side in a communicating pair. However, spatial contention 

is also caused by the receiving entity in a TCP communicating tuple, which returns feedback 

to the sender through the injection of acknowledgement (ACK) segments in the network. The 

next chapter reviews the literature on the topic of reducing acknowledgement traffic caused 

by the receiver (termed "ACK-thinning" in research nomenclature [6]) and identifies previ- 

ously ignored problems with existing proposals. Then, a combination of MAC layer options in 

802.11 transceivers is evaluated in tandem with existing ACK-thinning techniques to result in 

goodput improvements. 



Chapter 5 

ACK-thinning techniques in MANETS 

5.1 Introduction 

As identified in previous work in MANETs [26,43,104,105,107], the issue of spatial con- 

tention in multihop wireless networks, which is aggravated by the existence of hidden termi- 

nals, is caused by the inability of the MAC mechanism to properly coordinate transmissions. 

Specifically, for unoptimised TCP agents, too many segments may be injected into the pipe 

at any one time and the MAC mechanism may be unable to handle those numerous elements 

competing for transmission time. As discussed in the previous chapter, spatial contention could 

be mitigated through alterations at the transport layer by applying changes to the TCP sender. 

Although changes at that level may not eliminate the problem in its entirety, it is, nonetheless, 

possible to enhance throughput especially across long transmission paths. 

In the context of a TCP communicating pair there are two elements contributing to spa- 

fiat contention; the sender's transmission of TCP DATA segments and the receiver's reciprocal 

ACK response. The SCA approach outlined in the previous chapter aims to reduce the amount 

of outstanding DATA segments, i. e. segments injected by the sender. By considering the com- 

plementary aspect of the problem, it would therefore be beneficial to reduce the amount of ACK 

traffic, as generated by the receiver. Mechanisms to that effect are named ACK thinning tech- 

niques. An optimisation of this nature has already been implemented in the TCP standard [541 

120 
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as, notably, TCP incorporates a piggyback mechanism for ACK segments by including the 

ACK byte sequence number in DATA segments exchanged between hosts. Intuitively, in the 

case where the DATA traffic derives mostly from one of the two communicating parties such a 

measure is ineffective as it does not come into effect frequently. Hence, it can be beneficial to 

introduce other, possibly orthogonal, end-to-end techniques to deal with the issue. 

Specifically, several previous research studies [6,26,31,112] have identified the receiver's 

ACK response as an important cause of spatial contention and have targeted its reduction, 

either by piggybacking TCP ACKs on other traffic along the same path [ 112] or by reduc- 

ing the ACK response frequency [6,311. Solutions present in the literature also include the 

activation of the optional delayed ACK TCP mechanism [105,107] and an appraisal of its 

effectiveness. However, these studies have only performed limited evaluation of their pro- 

posed changes in MANET topologies and have largely ignored limitations imposed by real- 

life TCP implementations such as the overhead of the TCP timer granularity. In particular, in 

several research works [6,26,31] it is assumed that the TCP ACK response may be delayed 

with exact precision, whilst in modem TCP implementations, delaying an ACK response en- 

tails some degree of granularity. Moreover, there has been little investigation into quantifying 

the level of spatial contention added by TCP ACK responses as opposed to contention con- 

tributed by DATA segments. Such an enquiry could provide insight on the degree of improve- 

ment that may be achievable with ACK-thinning methods. Finally, although the RTS/CTS 

exchange of the 802.11 protocol has been identified as a source of spatial contention [103], 

the MAC mechanism configuration as used in the literature with respect to spatial contention 

issues [6,26,31,43,71,85,104,105,108], does not include considerations of optimisations 

possible within the 802.11 specification. 

After having identified shortcomings in the evaluation conducted by previous research with 

regard to ACK-thinning mechanisms, our first contribution in this chapter is a discussion re- 

garding the effects of those limitations on the results derived in past works. Significantly, 

it is highlighted that previous attempts at reducing spatial contention by affecting ACK re- 

sponses have largely ignored inherent limitations of existing TCP implementations, which, in 



5.2. ACK-THINNING IN MANETS 122 

turn, make the proposed changes difficult to implement. As such, it has been assumed in past 

research [6,3 11 that ACK responses may be delayed for any finely defined time period, disre- 

garding the delay timer granularity. Further, concerns may be raised with respect to the path 

length characteristics assumed in existing literature [6,26,3 1], where large hop counts are em- 

phasised in importance, but which are unlikely given a reasonable network size [60,921 and 

appear rarely in popular research mobility models, like the random waypoint model [110]. Fur- 

ther, two 802.11 compatible MAC layer optimisations with respect to the RTS/CTS exchange 

are introduced. The first is applicable to the ACK-responses of the TCP agent, whilst the sec- 

ond applies to both ACK and DATA frames. Both are shown to result in a reduction of spatial 

contention and to have a positive impact on TCP goodput. 

The rest of the chapter is organised as follows. Section 5.2 describes two existing end-to- 

end ACK-thinning techniques (delayed ACKs and Dynamic Adaptive ACKs) and highlights 

their degree of efficiency as outlined in the literature. Then, Section 5.3 identifies problems 

and limitations on the evaluation of the previously outlined solutions. Three problem areas 

are identified, namely the requirements in temporal granularity of ACK responses, identifying 

which path length cases are more likely to occur and thus be targeted for optimisation, and 

the effect of making use of the RTS/CTS mechanism of the 802.11 protocol. Section 5.4 

presents a possible MAC layer optimisation on 802.11 compliant devices, which has been 

largely ignored in existing literature, and notes its positive result on goodput. Section 5.5 

analyses the performance gains of combining this optimisation with the implementable end- 

to-end ACK-thinning mechanisms introduced previously in a variety of topologies. Finally, 

Section 5.6 concludes the chapter and offers an overview of the presented results. 

5.2 ACK-thinning in MANETs 

This section presents two ACK-thinning mechanisms introduced previously [31,105]. The first 

one, delayed acknowledgements (ACKs), is an optimisation strategy which has been developed 
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for wired networks but which has also been shown to have significant merits in a MANET set- 

ting [105]. The second optimisation is named Dynamic Adaptive Acknowledgements and is 

intended for use in MANETs as an efficient ACK-thinning strategy [31], being applicable to 

both long-lived and short-lived flows. This section, thus, offers prerequisite background infor- 

mation on ACK-thinning methods which supports the discussion for the rest of this chapter. 

5.2.1 Delayed acknowledgements 

The delayed acknowledgements mechanism is an oft-enabled [4] feature of TCP, as first de- 

scribed in [27]. Its principal operation is simple and relies on the cumulative nature of TCP 

acknowledgements; instead of immediately replying with an ACK upon receiving a DATA 

segment, the TCP receiver waits a short time (usually 100-500ms [3]). If a subsequent DATA 

segment arrives, assuming it is consecutive and in-order, then it is possible to inject a single 

ACK into the pipe, which cumulatively verifies the receipt of both DATA segments. Fur- 

ther, since TCP connections are duplex, it is also possible to piggyback the ACK onto DATA 

segments being sent in the other direction, i. e. from the `receiver' to the `sender', thus saving 

bandwidth. To avoid confusing TCP estimates, such as the round trip time estimator and TCP's 

ACK-clocking mechanism, the relevant RFC [15] dictates that ACKs should not be delayed in 

any case for more than a single (extra) DATA segment, or for a time period of more than 500ms. 

It has been shown in the literature that delayed ACKs are beneficial for TCP throughput 

and should be enabled by default [3]. Subsequent research in wired networks, has investigated 

the possibility of increasing the delay response for TCP so as to alleviate the competition of 

ACKs for bandwidth space along with TCP DATA. However, it has been demonstrated that 

this might result in "burstiness" or has other shortcomings, especially with regard to wide 

deployment on the Internet [90]. In MANETs, the throughput enhancing property of delayed 

ACKs has been demonstrated repeatedly in static and dynamic topologies, with reactive [106] 

and proactive [86] TCP agents. In special cases the improvement in TCP throughput is in the 

range of 15-32% [105]. 
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Figure 5.1. Demonstration of Dynamic Adaptive ACKs 

5.2.2 Dynamic Adaptive Acknowledgements 

The Dynamic Adaptive Acknowledgement (DAA) method is a sender/receiver modification 

introduced by d' Oliveira et al. [31 ]. It aims to reduce the number of ACKs produced at the 

receiver by taking advantage of their cumulative property. The DAA method dictates changes 

to the TCP sender as well as the receiver with the delay of ACK responses being performed in 

a dynamic manner so as to adapt to changing network conditions. There is some processing 

overhead associated with DAA but the trade-off is a general increase in throughput and better 

utilisation of the wireless channel (improving on spatial reuse). 

The main operation of DAA is based around a mechanism of withholding ACK responses 

at the receiver. The only requirement at the sender is to restrict its congestion window (cwnd) 

between 2 and 4 segments, i. e. allow it to keep 2,3 or 4 segments outstanding in the network 

at any one time. The receiver maintains a dynamic delaying window (dwin) with size ranging 

from 2 to 4 full sized segments, which determines when an ACK will be produced. Whenever a 

consecutive DATA segment is received, an ack-count variable increases by one until it reaches 

the current value of dwin. When ack_count = dwin an ACK response is immediately pro- 

duced, ack_connt is reset to one segment and the value of dwin increases by one. This signifies 

the beginning of the next epoch, that is to say the next group of DATA segments for which the 

corresponding ACKs will be delayed. Note that the ackccount variable differentiates between 
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these epochs and is initially set to one segment. 

If every DATA (and ACK) segment is successfully delivered the DAA method allows even- 

tually 4 DATA segments to produce one ACK response from the receiver. However, as DATA 

segments may be lost or be overly delayed during transit it is useful to introduce a mechanism 

whereby a prompt ACK response could still be triggered without waiting for ack-Count to 

reach the current dwin. The proposed prompt response mechanism in DAA works as follows. 

For each DATA segment received, say i, i+1, i+2, ..., and for which an ACK is to be delayed, 

its inter-arrival time gap with the previous DATA reception is recorded, say J i, 8i+t, dt+Z1 
"" ")" 

Effectively, for each ACK delay epoch, the inter-arrival times of incoming DATA segments are 

noted. These collected time periods are used to calculate a smoothed average which signifies 

an "expected" inter-arrival time, say b; +j, for consecutive ACK segments. The calculation is 

performed using a low-pass filter and is used to assess a timeout interval for the ACK response. 

If 6i is the last average calculated, Sj+i is the DATA segment inter-arrival time sampled and a 

is an inter-arrival smoothing factor, with 0<a<1, then 

J1+1 =: a* 6- + 1- a) * 8i+l (5.1) 

As the relevant RFC suggests [5], in the case of out-of-order segments an ACK response is 

immediately prompted, but otherwise the receiver waits for a time period T1 before responding. 

This effective timeout interval is calculated with a timeout tolerance factor, K, with rc >0 as 

shown in equation (5.2), where Si is calculated by equation (5.1). 

Tj=(2+r,. )*3i (5.2) 

Note that for short file transfers it may be desirable to produce quick ACK responses so 

as to allow a increase of the sending rate during the slow start phase at the sender. To this 

end, there exists a mechanism in DAA method to account for variable, as opposed to fixed, 

increases in the dwin size. There is a speed increase factor, µ, with 0< is < 1. If maxdwin is a 

status indicator which turns true when the maximum possible value for dwin has been reached 
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(by default set to 4 segments) then dwin growth is set to 

dwin +z if maxdwin=false, 
dwin = (5.3) 

dwin +1 otherwise. 

Equation (5.3) allows the receiver to respond immediately with ACKs in the case when the 

TCP sender is in the slow start phase where each ACK increases cwnd by a single segment. If 

ACKs were delayed during this phase the sender would not receive enough ACKs to increase 

its sending rate effectively. Essentially, the maxdwin parameter signifies (at the receiver) when 

the slow start phase (at the sender) is over. Once the maxdwin is reached once, then this 

mechanism is not activated again for the same connection. Hence, this facility is intended for 

short file transfers. 

The DAA method has been evaluated on string and mesh topologies of varying length and 

different number of flows [31]. On string topologies of up to 8 hops and 20 flows the method 

increases throughput up to 50% over plain TCP NewReno. In particular it is noted that as the 

number of concurrent flows increases, the DAA method becomes increasingly effective. On 

mesh topologies, taking into account 3 and 6 cross traffic sources the performance improvement 

is of the same magnitude, but the difference diminishes against optimised (with respect to 

maximum congestion window size) Vegas and SACK agents. The method does not lead to a 

discernible performance advantage in the case of short-lived flows. 

From an implementation perspective the DAA method is an end-to-end sender/receiver 

modification. The sender needs to be tweaked with respect to initial cwnd size and the receiver 

needs to implement the ACK dynamic window. However, no modifications are required to 

other layers and no cross-layer feedback is assumed. 

5.3 Existing evaluation of ACK-thinning techniques 

This section outlines three factors with respect to the evaluation of ACK-thinning techniques 

that have either not been considered in their entirety in the existing literature or have been 
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ignored altogether [71]. In particular, the requirements of the TCP delayed ACKs timer gran- 

ularity [31], considerations of the hop-count in general simulation topologies [43,105] and 

issues with the implementation of the 802.11 RTS/CTS exchange in existing evaluation stud- 

ies [19,43,71,105] have only partially been addressed. This section, thus, presents arguments 

for a more complete approach in evaluating ACK-thinning techniques and forwards recom- 

mendations for a more comprehensive evaluation. 

Simulation Setup: The simulations performed in this section all share the following param- 

eters. The signal propagation model used is the Two-Ray Ground model, and the wireless 

transceivers are modelled after the Lucent WaveLan II models [64] (as done throughout this 

dissertation). The TCP agent used is NewReno and the segment size is set to 1460 bytes. The 

routing protocol used is AODV. A more complete list of parameters for both the routing and 

transport agents is included in Appendix A, and both mirror the setup used in previous chapters. 

Finally, the string topology simulations involve topologies arranged in the manner depicted in 

Figure 5.2 and thus, are set up as in the previous chapters in this dissertation. 

Node I Node 2 Node 3 Node 4 Node n 

000"'Oý, 0... 06' _ý' 

(10,10) (210,10) (410.10) (610,10) (2000(n-1)+10,10) 

E. ............. ä 
200m 

Figure 5.2. n-node string topology 

5.3.1 Granularity of the TCP timer 

Past research has focused on introducing delay when injecting ACK segments, as a means of 

bundling consecutive ACKs into fewer batches by taking advantage of their cumulative prop- 

erty [6,31,105]. The amount of delay introduced in such cases is variable and the techniques 

introducing it may be computationally intensive. However, there is scarcely a mention on how 

fine the control over such a delay need be [31,51,701. 

Specifically, it is assumed that upon deciding on a given delay, the receiver will be able to 
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delay the transmission of the ACK segment for precisely that amount of time [311. However, 

actual TCP implementations may not operate in such a fashion, but instead implement timers 

with certain granularity. Previous research on TCP implementations has identified issues aris- 

ing from using a coarse "heartbeat" timer for TCP agents, especially with respect to the RTO 

mechanism [78,89]. In general, the relevant RFC [15] demands an ACK response to be no later 

than 500ms, which is a rule compliant Internet hosts must adhere to and which is in fact imple- 

mented as standard in popular operating systems. Specifically, the granularity implemented is 

of the order of l Oms (Linux kernel 2.6 [76]), 100ms (FreeBSD v5.0 [I I ]), or even 500 ms [ 15]. 

Research dealing with ACK-thinning methods has not taken such a requirement into account 

and has instead opted for very fine (or even infinitely fine) ACK timers [31,51,70]. 
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Figure 5.3. Illustrating "heartbeat" timer granularity 

It may not be claimed that the granularity specified in the systems above is going to be a 

typical quantity in TCP agents deployed on MANET nodes. It should be stated nonetheless, 
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Table 5.1. Effects of timer granularity on the DAA technique 

Hops 
Granularity 

Oms lOms 5Oms 200ms 500ms 

3 6237 6299(1%) 6311(1%) 63050%) 6293(-0.8%) 

4 4370 4388(0.4%) 4295(-1.7%) 3900(-12%) 3504(-24.7%) 

5 3777 3727(-1.3%) 3621(-4.3%) 3517(-7.3%) 3011(-25.4%) 

6 3257 3320(1.8%) 3231(-0.8%) 3043(-7%) 2618(-24.4%) 

7 3129 3064(-3%) 2997(-4.4%) 2851(-9.7%) 2450(-27.7%) 

8 2910 2873(-1.2%) 2797(-4%) 2686(-8.3%) 2320(-25.4%) 

9 2800 2747(-1.9%) 2679(-4.5%) 2516(-11.2%) 2156(-29.8%) 

10 2652 2624(-1%) 2542(-4.3%) 2429(-9.1%) 1962(-35.1%) 

11 2465 2474(0.3%) 2517(-2%) 2459(-0.2%) 1963(-25.5%) 

that even if MANET agents implement sufficiently fine-grained timers so that their precision is 

not a performance altering factor, these would still have to interact with Internet hosts, which 

would not necessarily conform to such fine-grained timer requirements. As such, the issue 

is worthy of some research effort to determine how timer granularity may affect an existing 

implementation. 

To further explore the last point we have implemented the DAA method as outlined in 

Section 5.2.2 in the ns-2 simulator [37]. An FTP transfer session with an infinite backlog 

is initiated at the beginning of the simulation between the two end-points of a 7-hop string 

topology and lasts for the duration of the simulation, which is 120 secs. Figure 5.3 depicts the 

ACK responses from the receiver during the 90-92 secs interval. Each filled point indicates the 

number of ACK responses delayed before launching a cumulative ACK. A value of 0 denotes 

an immediate ACK, as a response to out-of-order segments. The dotted vertical lines indicate 

the ACK checkpoints of a "heartbeat" timer with 200ms granularity. If simulation were to 

allow for such granularity, the ACK responses would only occur on each "heartbeat", i. e. at the 

time points indicated by the vertical lines. However, in this case since such provisions are not 

made, ACK responses occur at any point in time (infinite timer granularity). 
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To quantify the effects of variable timer granularity, the DAA method was deployed on 

string topologies of variable length n, with 4<n< 12. An end-to-end FTP transfer with 

infinite backlog was set up as before for 120 secs. At the end of the simulation the achieved 

TCP goodput was noted. Each simulation was repeated by setting the "heartbeat" granularity 

to 0 (immediate response), 10,50,200 and 500 ms. The values were chosen to be representative 

of the ideal case (Oms), the case of existing operating systems (10,50,200) and the case of older 

systems (500ms - BSD 4.4 [18]). The effects of different granularity per hop-count on goodput 

can be examined in Table 5.1 where goodput as the total number of segments transmitted, 

without considering retransmissions, is indicated. The percentage in parenthesis indicates the 

difference in goodput for each granularity level as compared to the ideal case (Oms granularity). 

Note that as noted in the previous chapters, as the hop count increases, goodput decreases as a 

side-effect of spatial contention [26,106]. 

In general, there is little difference in performance between the ideal case of Oms granular- 

ity and those of 10 and 50ms for any hop count. For a receiver with a 200 ms level of granularity 

there is a penalty in goodput of approximately 7-12% for string topologies of length 5-11 nodes 

(4-10 hops). In the case of 500ms granularity the goodput performance is consistently worse 

by approximately 25%. Evidently, in the case of the string topology and especially over long 

paths, goodput suffers if the path is sufficiently long (over 5 hops) and the receiver ACK gran- 

ularity is over 200ms. In order to be representative of a modern operating system the rest of 

the chapter assumes a Linux kernel-like l Oms granularity for the receiver. Contrary to previous 

research efforts [6,3 1] this work explicitly states that assumption. 

Although the case of the string topology is a special case of a communications path, it can 

be representative of long lived path behaviour in a dynamic topological scenario and is, thus, 

instructive on how granularity requirements may effect goodput. The effects of granularity in 

this case are discussed with respect to the DAA method in particular but apply to any other 

method requiring fine-grained controlled delay in ACK responses [51,70]. 
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5.3.2 Path length 

Studies on ACK-thinning in MANETs have largely been conducted in the special case of the 

string topology [6,26,43,105,107] as this static setup offers a convenient environment to study 

the effects of spatial contention in isolation from from the effects of mobility. More recent 

research efforts [31,43] have also focused on analysing ACK reductions in the context of mesh 

topologies as these offer the benefit of studying spatial contention caused by several flows 

operating in tandem. 

The random waypoint model has been a popular mobility pattern template, used widely in 

previous MANET research [19,30,34,71,104]. Although other mobility models exist [20], it 

has been deemed generic enough to at least warrant some consensus as the standard parameter 

in an evaluation setup [75]. Since string topologies are the testbed for the evaluation of ACK- 

thinning techniques it becomes interesting to investigate an average value of the formed paths 

in topologies generated by the random waypoint model. Such an endeavour would illustrate 

which range of length for the string topology is of most interest assuming that a given path 

length range most frequently noted in random waypoint generated topologies is also one that 

would likely be encountered in real-life deployments. 

To investigate this aspect, we have conducted a set of path measuring experiments in a 

variety of dynamic topologies, set in motion according to the random waypoint model under 

low (2m/s), medium (5m/s) and high (15m/s) mobility conditions. The simulation time was set 

to 900 secs, as in the experiments considered in Chapter 3 and as widely practised in literature 

[25,34,49,87). For each mobility condition, 200 topologies consisting of 50 nodes each were 

taken into account, occupying both square (1000x l 000m) and strip (1500x300) areas. The 

transceiver and signal propagation model used is the same as in the string topology simulations 

above. 

The path length measurement was conducted in the following fashion. The average path 

length pi, j between nodes i and j was set as an average of the path length (distance in hops) 

between nodes i and j during simulation time when such a path did exist; in the case of a 
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disconnection (as long as that might have been) nothing was added or subtracted from the 

average. It should be indicated that pi, j= pj, i, Vi, j as the path length between two nodes 

is the same regardless of which end-node is considered as the beginning point for the hop- 

count. Further note that the shortest possible path in terms of hop distance was considered 

as the actual path length between nodes i and j at any one time. This is considered a fair 

representation of the actual path length, as all the routing protocols under examination in this 

dissertation, namely AODV [92], DSR [60] and OLSR [48], contain mechanisms to favour 

the shortest possible path for communications. However, there are cases where the shortest 

path may not be discovered by the routing protocol, for instance due to the broadcasting storm 

problem [100] or otherwise severe spatial contention which might lead to some route request 

drops, but we assume these cases to be relatively rare and expect our findings to hold true in 

the case when an actual routing agent is used. 

Figure 5.4 shows histograms for strip (1500x300m) topologies under low (2m/s), medium 

(5m/s) and high (15m/s) mobility. It is evident that the path length rarely exceeds 3 hops under 

these conditions. Figure 5.5 depicts the relevant histograms for square topologies (1000x 1000m), 

where the same conclusions may be extrapolated. Note that the breaks between the histogram 

cells (bins) were set according to the Freedman-Diaconis rule [55]. Appendix B. 1 also con- 

tains, for completeness, histograms produced with the Sturge's rule, which lead to the same 

conclusion. 

Overall, there is strong indication that short communicating paths are important enough 

to be emphasised during evaluation and simulation tracing experiments. For the rest of this 

chapter and in subsequent evaluation, our focus is equally distributed over long and short paths 

without bias, in contrast to previous research [6,26]. 

5.3.3 RTS/CTS exchange 

The Request to Send/Clear to Send (RTS/CTS) short frame exchange is defined by the 802.11 

specification [52] as a means to alleviate the hidden and exposed terminal effects, described in 

Section 1.1.1. 
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Figure 5.6. Illustration of wireless communication with and without the RTS/CTS exchange 

The principle operation of the RTS/CTS exchange is as follows; before transmitting a 

DATA segment to a particular neighbouring node, the sender first transmits an RTS frame 

which acts as an intent-to-transmit message containing the destination and duration of the in- 

tended transmission. The intended receiver, then, responds in turn with a CTS frame which 

includes similar timing information, informing neighbouring nodes of the length of the subse- 

quent intended transmission. The procedure is depicted in Figure 5.6. Specifically, the dotted 

lines in Figure 5.6(b) illustrate that a non-intended receiver of the DATA frame transmitted by 

the sender, simply defers transmission until the medium is perceived to be idle for sometime. 

Following the deferral, the node in question may again resume contending for transmission 

time. In the case where RTS/CTS is used (Figure 5.6(b)) the transmission time for the same 

frame size increases as there is the added overhead of the RTS/CTS frame exchange in ad- 

dition to the DATA and ACK frames. Note that in this case, however, nodes within both the 

transmission radius of the sender and the receiver are informed of the impending DATA frame 

exchange so as to withhold their own transmissions. This is in contrast to the previous case 

where the mechanism is not used, and only nodes within the sender's communications range 

are aware to refrain from transmitting at the same time and, thus, avoid causing a collision. 

As stated, the extra overhead of the RTS/CTS mechanism cannot always be justified for 
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every DATA frame transmission. This is acknowledged in the 802.11 specification [52], espe- 

cially with regards to short DATA frames. As such the 802.11 standard implements RTS/CTS 

control through the dot]l RTSThreshold attribute. This allows the use of RTS/CTS to be active 

for all frames, frames longer than a specified length or not at all. In particular, if the number 

of bytes in the segment to be transmitted is below the dotll RTSThreshold, then the RTS/CTS 

exchange is not performed. The default value in the 802.11 standard is 2347 bytes, which im- 

plies disabling the exchange altogether [52] (as it is typically not necessary in infrastructure 

wireless LANs). Nonetheless, it is useful to activate the feature when all frames need to be 

"protected" against the hidden terminal effect or even activate it selectively for large frames 

only whilst leaving it turned off for shorter frames (say TCP ACK segments), as these may be 

less at risk as they can be transmitted faster [103]. 

Previous research on ACK-thinning techniques has not taken into account the effects of 

the RTS/CTS mechanism, largely assuming that the mechanism would be active at all times 

[6,26,31]. However, for 802.11 conforming implementations, the RTS/CTS mechanism would 

be disabled by default for TCP DATA and ACK frames, since the encapsulating frame would 

not be of sufficient size (assuming that the dotll RTSThreshold was set to the default value). 

In this chapter we investigate the implications of disabling the RTS/CTS exchange and note 

the throughput performance implications. Disabling RTS/CTS may be done in the case of only 

ACK segments (using the dotll RTSThreshold parameter) or for both TCP DATA and ACK 

segments (by disabling RTS/CTS altogether). Either method may be used in tandem with 

ACK-thinning techniques and possibly lead to a cumulative performance improvement. 

5.4 Performance impact of RTS/CTS 

This section demonstrates with the aid of a simulation trace example the effect of disabling the 

RTS/CTS response for ACK segments, as well as for both ACK and DATA TCP segments. To 

this end, two new metrics on spatial contention are introduced and are further used in the next 

section for general string and mesh topology evaluation. 
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The experimental setup is as follows. A string topology of 5 nodes (4 hops) is assumed 

in the fashion depicted in Figure 5.2, and as used in the previous section. An FTP session is 

initiated at the beginning of the simulation between the two end-points of the string topology 

and continues for 120 secs at which point the simulation ends. As in the previous section, the 

TCP agent used to carry the FTP traffic is NewReno [38]. The rest of the TCP parameters are as 

noted in Appendix A. Note that although in this particular case delayed ACKs are not employed 

(which is a common optimisation enabled by default in some TCP implementations [4]), the 

observations made are applicable even in the case when such a mechanism is opted for. Section 

5.5 contains more discussion on this point and includes further results in the case of string and 

mesh topologies. 

To quantify the effects on spatial contention of the RTS/CTS exchange two metrics are 

introduced. The first metric is the number of DATA frames dropped due to repeated failed 

MAC layer retransmissions. Note that the maximum number of MAC layer retries for a frame 

is set to 4 attempts as per the 802.11 specifications [52]. The payload of these frames is ei- 

ther a TCP DATA or ACK segment and so a series of repeated transmission failures leading 

to a drop is marked as either FAILDATA or FAILACK respectively. The second metric is the 

number of failed RTS/CTS exchange procedures. It is worth mentioning that an RTS/CTS ex- 

change is attempted several times by the MAC mechanism before it is marked as having failed. 

The required number of such attempts is 7 in the 802.11 specification2. Such failed attempts 

are noted as FAILRTS/CTS drops. Further, the number of collisions is noted during the FTP 

transfer. Such collisions may be MAC frames containing TCP DATA, ACK or RTS/CTS pay- 

loads and so are marked COLDATA, COLACK and COL, S/CTs. It should be specified that 

a high number of collisions indicate an increasing degree of spatial contention, whilst a high 

number of failed negotiations, either in TCP DATA or ACK transfers, denotes an increasing 

inability of the distributed MAC mechanism (the Distributed Coordination Function in 802.11 

nomenclature [52]) to effectively cope with spatial contention. 

I In the 802.11 specification the parameter is named doll MongRetryUmit 
21n the 802.11 specification the parameter is named dotllShortRetryLimit 
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The simulation is run three times and with each iteration a different RTS/CTS strategy is 

employed. In the first round the RTS/CTS exchange is fully utilised in both TCP DATA and 

ACK segment exchanges. Subsequently, the RTS/CTS mechanism is only opted for "suffi- 

ciently large" TCP segments, i. e. only for DATA segments. Finally, in the third iteration, the 

RTS/CTS exchange is eliminated altogether. These three strategies are hereafter referred to 

as "Full RTS/CTS", "Partial RTS/CTS" and "No RTS/CTS" respectively. The discussion that 

follows is conducted with the aid of measurements of spatial contention expressed with the 

metrics introduced in this section. 

Figure 5.7 depicts a 101-running average of the number of segments in flight throughout 

the simulation for the three different strategies. The graphs depict the number of DATA and 

ACK segments existing along the path through the simulation time and also shows their com- 

bined (aggregate) presence. A visual inspection of the figures reveals that disabling RTS/CTS 

altogether (Figure 5.7(c)) results in the TCP agent being able to maintain more segments in 

the pipe at any one time in both its receiving and sending aspects, i. e. both for DATA and 

ACK segments. In this particular case, on average, 15.74 segments exist in the pipe at any one 

time using the "No RTS/CTS" strategy which is significantly higher (by 183.76% and 167.4%) 

than the averages of 5.548 and 5.886 segments achieved by the "Full RTS/CTS" and "Partial 

RTS/CTS" strategies, respectively. The complete numerical set of averages for all three strate- 

gies, categorised by type (DATA or ACK or both) is shown in Table 5.3. In this case, as for 

the rest of this section, table entries may be accompanied (where applicable) with a number in 

parenthesis denoting the numerical difference (percentage-wise) between the value examined 

for that particular strategy against the value achieved under the "Full RTS/CTS" strategy. 

Overall, the "No RTS/CTS" strategy allows the MAC mechanism to be more efficient in 

coordinating the transmissions of a higher number of outstanding TCP segments. Table 5.2 

contains the number of collisions and overall transmission failures for each RTS/CTS strategy. 

Note that no segment drops were recorded due to buffer overflows in the forwarding nodes. 

Further, Table 5.4 contains the goodput achieved (in total segments transmitted and ACKed) 

for each strategy. Both the "Partial" and the "No RTS/CTS" strategies suffer from fewer frame 
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Table 5.2. Frame collisions and drops for each RTS/CTS strategy 

Full RTS/CTS Partial RTS/CTS No RTS/CTS 

COLRTS/CTS 15047 8236 (-45%) 00 

COLDATA 79 240 3696 

COLACK 67 6318 8197 

COLTOTAL 15193 14794 11893 

FAILRTS/CTS 273 169 (-38%) 00 

FAILDATA 167 169(l. 1%) 35 (-79.04%) 

FAILACK 106 81(-23.5%) 310092%) 

FAILTOTAL 546 419 (-23.2%) 345 (-36.8%) 

collisions overall, but incur greater TCP and ACK frame collisions than the "Full RTS/CTS" 

method. Similarly, a greater number of RTS/CTS failed negotiations occur in the case of the 

"Full RTS/CTS" method as compared to the "Partial RTS/CTS" strategy ("No RTS/CTS" does 

not employ this exchange and thus records no such failures). This provides some indication of 

the overhead added spatial contention provided by the RTS/CTS exchange; collisions among 

segments increase and the MAC mechanism is unable to effectively coordinate transmissions 

(as denoted by the average number of TCP segments maintained in the pipe). 

It is evident that the increased number of RTS/CTS transmissions leads to several RTS/CTS 

collisions which have a detrimental effect on goodput. An indication of this is the number of 

failed TCP and ACK transmissions for the "Full RTS/CTS" method. The number of TCP 

DATA and ACK segment drops cannot be solely attributed to MAC frame drops containing 

DATA or ACK payloads. The number of collisions of those are too few (79 and 67 segments 

respectively) to account for the number of frame drops (167 for TCP and 106 for ACK pay- 

loads). Hence the increased number of RTS/CTS exchange failures as compared to the other 

methods (273 in the case of "Full RTS/CTS" as opposed to 169 for the "Partial RTS/CTS" 

method) as well as the number of RTS/CTS collisions (45% greater than the "Partial" strategy) 

can largely account for the discrepancy in goodput (where the Full RTS/CTS method incurs 
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Table 5.3. Average segments in flight for each RTS/CTS strategy 

Full RTS/CTS Partial RTS/CTS No RTS/CTS 

MeanTCP 3.278 3.602 (9.8%) 8.337 (154.3%) 

MeanAcx 2.148 2.156 (0.3%) 7.313 (240.4%) 

MeanTOTAL 5.548 5.886(6%) 15.74 (183.7%) 

Table 5.4. Goodput achieved for each RTS/CTS strategy 

Full RTS/CTS Partial RTS/CTS No RTS/CTS 

TCP Goodput 
(in total no. of segments) 

4476 
(-) 

4748 
(6%) 

5365 
(19.8%) 

performance hit of 6 and 19.8% compared to the Partial and No RTS/CTS techniques respec- 

tively). Note that an RTS/CTS exchange failure (that is 7 consecutive failed attempts) results 

in a TCP DATA or ACK segment drop corresponding to that transmission process. This fact 

explains why there are 273 segment drops recorded in the case of the "Full RTS/CTS" method 

and only 146 DATA and ACK bearing MAC frame collisions - many of the drops would be 

explained in terms of RTS/CTS exchange failure. 

In summary, this section has demonstrated that in the special case of the 5-node string 

topology, the increased spatial contention due to the RTS/CTS exchange results in a goodput 

penalty for the TCP agent. For the first time, spatial contention has been quantified in this 

special case, in terms of frame types (RTS/CTS, TCP DATA and ACK frames). It has been 

shown that an increase in collisions during the RTS/CTS exchange leads to increased segment 

drops and a decrease in achieved goodput. This example has also shown for the first time that 

a more conservative approach in the generation of RTS/CTS segments, through the "Partial 

RTS/CTS" method, results in goodput improvement. The next section, examines the implica- 

tions of employing such RTS/CTS methods in several string and mesh topology settings and 

in a variety of ACK-thinning techniques. The overall aim is to investigate if the noted perfor. 

mance improvement in this case will be applicable in a more generalised setting. 
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5.5 Performance evaluation 

This section expands on the scope of the previous examination of a specific string topology. 

The intent of this enquiry is to determine the merits in terms of goodput of the "Partial" and 

"No RTS/CTS" technique with respect to two ACK-thinning techniques in MANETs, delayed 

ACKs and DAA (as outlined in Sections 5.2.1 and 5.2.2 respectively). The dimension in focus 

for this performance analysis is, thus, the effects of each RTS/CTS strategy per ACK-thinning 

method. 

5.5.1 Simulation setup 

As with the analysis of the previous section, the same metrics of spatial contention are used in 

the following performance evaluation, namely the total number of frame collisions (COLTOTAL) 

and the total number of frame drops due to repeated failed MAC layer transmissions (FAILTOTAL). 

Further the achieved goodput of TCP is recorded. 

The topology setup of the simulation is outlined separately in each of the sections below. 

The simulation parameters, common to the performance evaluation conducted are outlined in 

Table 5.5 and are in agreement with previous ACK-thinning research work [6,311. Considera- 

tions on the ACK timer granularity are taken into account in this study in the manner outlined 

in Section 5.3.1. 

5.5.2 Evaluation on string topologies 

String topologies as commonly used to evaluate TCP performance in the presence of spatial 

contention [6,26,31,43,69,105], are the focal point of interest in this section. Similarly 

to previous sections in this chapter, an FTP connection is set up between the endpoints of the 

string topology and runs throughout the simulation time before results are collected. The string 

topologies considered are of size n, where 4<n< 12; these are illustrated shown in a general 

form in Figure 5.2. 

For this enquiry three ACK-handling paradigms have been evaluated with respect to achieved 
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Table 5.5. Common Simulation Parameters 

Parameter Value 

Channel Bandwidth 2Mbps 

Signal Propagation Two-Ray Ground 

Packet Size 1460 bytes 

TCP Agent NewReno 

ACK granularity 
response 

lOms 
(Linux kernel 2.4) 

Routing Protocol AODV 

Simulation Time 300 secs 

goodput and noted collisions and drops. These paradigms are a plain TCP receiver (plain 

ACKs), as the base case; delayed ACKs, as a popular optimisation of TCP [51, and the Dy- 

namic Adaptive ACK strategy [31]. 

The goodput results for a single connection may be considered, with respect to the effects 

of the RTS/CTS strategy used on each ACK strategy. Figure 5.8 shows the goodput results of 

a plain TCP receiver on topologies of increasing hop-count for each of the RTS/CTS strategies 

examined here. The achieved goodput regardless of the ACK strategy used decreases as the 

hop-count (number of nodes in the string topology) increases, hence altering the ACK strategy 

does not alter that TCP behavioural characteristic as noted in the case of the "Full RTS/CTS" 

mechanism in previous research work [26,43,107,108]. However, notably, goodput increases 

both when the "Partial RTS/CTS" and "No RTS/CTS" techniques are in use. In the case of 

the "Partial RTS/CTS" mechanism the increase is in the range of 6-9% for plain ACKs (Figure 

5.7(a)), 3-6% for delayed ACKs (Figure 5.7(b)) and approx. 3% for Dynamic Adaptive ACKs 

(Figure 5.7(c)). The improvement in the case of disabling the RTS/CTS exchange is high and 

ranges within 17-23% for plain ACKs, 15-22% for delayed ACKs and 9-19% for Dynamic 

Adaptive ACKs. As ACK-thinning techniques are employed, the effectiveness of both the 

"Partial" and "No RTS/CTS" strategies diminishes, most notably for the "Partial" RTS/CTS 

technique. This is because ACK-thinning alleviates some of the spatial contention and there is 
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less scope for improvement by this MAC layer modification. 

Figure 5.9 presents the number of total collisions recorded for each strategy in the same 

scenarios. In all the RTS/CTS techniques as the number of nodes in the string increases so 

does spatial contention (indicated by the increasing number of frame collisions). This fact is 

reflected on the declining goodput as the string topology length increases (Figure 5.8). Espe- 

cially in the case of the Dynamic Adaptive ACKs, the level of spatial contention is substantially 

less than the other two strategies, as there are no noted RTS/CTS exchanges and the TCP agent 

maintains a low congestion window (up to 4 segments), i. e. maintains few segments in flight. 

This results in few collisions as segments are few and tend to "spread" along the string. 

We have also noted the results of the above scenario in the case of multiple TCP connec- 

tions among the end-points. In this case, the aggregate goodput is considered. The results ver- 

ify observations made above and the relevant goodput graphs may be found in Figure 5.10 and 

Figure 5.11 for 2 and 3 TCP connections respectively. It is worthy of mention that the goodput 

advantage of both the "Partial" and "No RTS/CTS" methods against the "Full RTS/CTS" ex- 

change strategy remains consistent as more connections are employed on string topologies of 

the length used here. In particular, Table 5.6 presents the goodput performance improvement 

noted by employing the two RTS/CTS strategies against the full RTS/CTS exchange for the 

three types of ACK response methods (plain, delayed and Dynamic Adaptive ACKs). 

For a single connection, generally, disabling RTS/CTS decreases the number of collisions 

compared to the other two strategies, but as the hop count increases, this trend does not hold 

consistently across methods, notably for the delayed ACKs technique for 9,10 and 11 hops 

(Figure 5.9(b)) and the plain ACKs for 11 hops (Figure 5.9(a)). The overall results are pre- 

sented in Figure 5.9. For more than one connection, disabling RTS/CTS consistently reduces 

the number of collisions throughout different hop counts. The relevant graphs depicting this 

for 2 and 3 TCP connections are included in Figure 5.10 and Figure 5.11 respectively. It can 

therefore be deduced that in these cases disabling the exchange leads to reduction in spatial 

contention, which is in turn reflected in the goodput results. 

The last metric appraised for this section is the number of drops registered due to repeated 
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Table 5.6. Range of goodput difference for each RTS/CTS strategy vs the "Full RTS/CTS" 

exchange for increasing number of TCP connections 

ACK 
strategy 

Range of goodput difference 
against "Full RTS/CTS" 

2 TCP con. 3 TCP con. 4 TCP con. 

PARTIAL NO PARTIAL NO PARTIAL NO 

Plain ACKs 7-8% 19-23% 6-7% 20-27% 5-8% 20-27% 

Delayed ACKs 4-6% 19-22% 4-6% 19-24% 4-7% 20-28% 

Dyn. Ad. ACKs 3-9% 8-19% 4-10% 8-19% 4-7% 8-19% 

5 TCP connections 6 TCP connections 

PARTIAL NO PARTIAL NO 

Plain ACKs 6-8% 20-28% 6-8% 21-28% 

Delayed ACKs 4-6% 21-27; b 4-6% 22-28% 

Dyn. Ad. ACKs 5-7% 8-21% 4-7% 10-23% 

failed transmissions. Figure 5.12 depicts the recorded number of total drops (including both 

TCP DATA and ACK segments) for a single TCP connection for the three ACK strategies. 

Both disabling RTS/CTS for ACK segments ("Partial RTS/CTS" method) and disabling the 

exchange completely ("No RTS/CTS") result in fewer drops than the "Full RTS/CTS" method 

by a margin of 16-55% for the former and 19-50% for the latter when no ACK optimisations 

are employed (Figure 5.12(a)). Notably, as ACK optimisation methods are utilised, the num- 

ber of recorded drops decreases as the ability of the MAC layer to cope with spatial contention 

improves. When delayed ACKs are used, as shown in Figure 5.12(b) there are notably less 

drops in the case of employing "Partial RTS/CTS" compared to the "Full" method, but dis- 

abling RTS/CTS altogether leads to higher segment drops in many instances (string topologies 

of 5,6,9 and 12 nodes in Figure 5.12(b)). This discrepancy reveals that not all "final" drops 

have an equal impact on goodput, i. e. certain segment drops are more damaging to goodput 

than others (note that in all cases, the goodput record for the "Full RTS/CTS" technique is less 

than the one recorded for the other methods). 

The above observation may be explained once the nature of TCP segment loss is examined. 
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Table 5.7. Detailed breakdown of segment loss due to repeated failed transmissions in a 4-hop 

string topology using a single TCP connection and delayed ACKs 

RTS strategy FAILRTS/CTS FAILDATA FAILACK FAILTOTAL 

No RTS/CTS 0 35 608 643 

Full RTS/CTS 275 201 74 550 

In the case of a 5-node string topology in Figure 5.12(b) a total of 643 segment losses are noted 

for the "No RTS/CTS" strategy and 550 for "Full RTS/CTS" method. It would therefore seem 

that the latter handles spatial contention better than the former; an observation not reflected in 

goodput as the "Full RTS/CTS" technique transfers, in total, 25% less segments. A breakdown 

of these losses reveals that most losses in the case of "No RTS/CTS" are ACK segments (608 

out of 643) whilst the "Full RTS/CTS" records only 74 such losses. Further, the "No RTS/CTS" 

method experiences 35 TCP DATA drops as opposed to 201 for "Full RTS/CTS". Table 5.7 

contains the complete data on the types of loss. 

Intuitively, TCP DATA losses have a greater impact on goodput than ACK losses. Due to 

their cumulative nature, an ACK loss may be inconsequential if a subsequent ACK is received 

in time, i. e. before an RTO timeout is registered. For such an effect to occur, the average 

congestion window (cwnd) has to be sufficiently large so that several segments in the pipe 

would trigger ACK responses, some of which might be lost, but some of which would be 

received in time so as not to trigger an RTO. In the case of "No RTS/CTS" such a condition 

exists as the average value of cwnd is noted at 6 segments. Hence, it is the nature of segment 

loss which affects goodput in this case in tandem with the amount of segment loss. This 

statement holds true in all the other cases where the discrepancy occurs (6,9,12 node-string 

topologies). The corresponding losses breakdown in those cases are included in Tables 5.8,5.9 

and 5.10. 

Two more points are worthy of note. Firstly that the Dynamic Adaptive ACK method 

significantly reduces the number of segment losses in all cases, as noted in previous research 

work [31], and especially in the case of a single TCP connection, eliminates them altogether 
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Table 5.8. Detailed breakdown of segment loss due to repeated failed transmissions in a 5-hop 

string topology using one TCP connection 

ACK strategy FAILRTS/CTS FAILDATA FAILAcK teXtFAILTOTAL 

No RTS/CTS 0 37 427 464 

Full RTS/CTS 228 168 60 456 

Table 5.9. Detailed breakdown of segment loss due to repeated failed transmissions in a 8-hop 

string topology using one TCP connection 

ACK strategy FAILRTSICTS FAILDATA FAILACK teXtFAIL OTAL 

No RTS/CTS 0 17 322 339 

Full RTS/CTS 164 113 51 328 

Table 5.10. Detailed breakdown of segment loss due to repeated failed transmissions in a 
1 1-hop string topology using one TCP connection 

ACK strategy FAILRTS/CTS FAILDATA FAILAOK textFAII. roTAL 

No RTS/CTS 0 9 311 320 

Full RTS/CTS 127 91 36 254 
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when using the "NO RTS/CTS method", as shown in Figure 5.12. Secondly, it should be noted 

that the relevant segment drop results for 2 and 3 TCP connections follow the same trend as 

those for a single connection, with the added note that the inverse relationship between total 

number of drops and total achieved goodput holds in every case. The relevant segment drop 

results for 2 and 3 TCP connections are shown in Figures 5.13 and 5.14 whilst goodput is 

shown in Figures 5.15 and 5.15. 

In conclusion, this section has examined the effect of the three RTS/CTS strategies on two 

popular ACK-thinning optimisations, namely delayed Acknowledgements and the Dynamic 

Adaptive Acknowledgements method on string topologies. The results indicate a substantial 

improvement in goodput in using either technique in all cases, with disabling the RTS/CTS 

exchange having the greatest impact in every case. The results have been explained in the 

context of frame losses (RTS/CTS or ACK/DATA TCP payloads) and using the two metrics 

introduced in the previous section. The next section examines the RTS/CTS handling methods 

with respect to intra-flow interference in a mesh topology as done previously in the literature 

[31,431. 

5.5.3 Evaluation on a mesh topology 

The mesh topology as used in this section has been commonly used in literature to examine 

spatial contention and its effect on TCP when multiple interfering flows are present (31,43, 

1041. The focus of the simulation experiments is to identify whether the RTS/CTS exchange 

strategies affect throughput with respect to the ACK-thinning methods employed. As such, the 

scope of the investigation is similar to the previous section. However, the different topology 

setting offers insight into the interaction of TCP with the MAC layer mechanisms in the case 

of moderate inter flow interference. 

For the purposes of the following evaluation and discussion, the topology setup is set as 

shown in Figure 5.17. The setup involves a 5x5 (25-node) mesh topology, where the horizontal 

and vertical distance of successive nodes is set to 200m. This setup mirrors that of previous 

work [31]. Two separate simulation scenarios are considered. First, three horizontal flows 
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Table 5.11. Goodput results for mesh topology with 3 TCP flows 

ACK Strategy Goodput Achieved 
Full RTS/CTS Partial RTS/CTS No RTS/CTS 

Plain ACKs 15953 16683(5%) 18798(18%) 

Delayed ACKs 16115 1676(4%) 20968(30%) 

Dyn. Ad. ACKs 16456 17260(5%) 19416(18%) 

are active, as denoted by the solid arrows in Figure 5.17. This configuration offers inter- 

flow spatial interference alone; the flows do not share any common path but still interfere 

with each other due to the discrepancy between the interference and transmission ranges of 

their transceivers as described in Section 1.1.1. The second simulation scenario involves three 

additional vertical flows as depicted by the dashed arrows in Figure 5.17. This setup allows 

for both buffer space and spatial sharing between the flows; each flow shares its source and 

destination with another as shown in Figure 5.17. 

Table 5.11 contains the goodput results for the plain, delayed and Dynamic Adaptive TCP 

ACK strategies for the different RTS/CTS methods, when 3 TCP flows are used. The values in 

parenthesis next to the numerical values for the "Partial" and "No RTS/CTS" methods indicate 

the performance improvement compared to the "Full RTS/CTS" method. For all three ACK 

strategies using an alternate strategy to the "Full RTS/CTS" exchange results in substantial 

improvement in goodput. As in the case of the string topologies, the "No RTS/CTS" method 

yields greater goodput improvement (18-30%) compared to the "Partial RTS/CTS" method (4- 

5%). In the case of 6 TCP flows, as shown in Table 5.12, the same observation holds true. It 

can be deduced that in both cases, i. e. whether spatial or buffer contention at the forwarding 

nodes is evident or otherwise, the alternative RTS/CTS strategies are beneficial goodput-wise 

compared to the "Full RTS/CTS" paradigm. 

Table 5.13 presents the number of frame collisions noted for the mesh topology scenario 

using three TCP flows. It is noteworthy that the number of total collisions decreases for both the 

"Partial" and "No RTS/CTS" strategies, with the latter registering a more noteworthy decrease 
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Table 5.12. Goodput results for mesh topology with 6 TCP flows 

ACK Strategy Coodput Achieved 
Full RTS/CTS Partial RTS/CTS No RTS/CTS 

Plain ACKs 16884 17879(6%) 23185(37%) 

Delayed ACKs 16676 17171(3%) 21822(30%) 

Dyn. Ad. ACKs 15848 19238(21%) 20601(30%) 

Table 5.13. Collisions recorded for the mesh topology using 3 flows 

ACK Strategy 
Full RTS/CTS 

Collisions Recorded 
Partial RTS/CTS No RTS/CTS 

Plain ACKs 44155. 43391(2%) 38905(12%) 

Delayed ACKs 38593 38383(1%) 30312(21%) 

Dyn. Ad. ACKs 36889 29564(19%) 23990(35%) 

(12-35% as opposed to 1-19%). These improvements mirror the improvement noted in the 

case of multiple TCP connections in string topologies as discussed in the previous section. 

The equivalent results for the cross-traffic pattern of 6 TCP flows demonstrate show a similar 

trend and can be found in Table 5.14. Overall, the reduction in collisions indicate that spatial 

contention is reduced in this case, particularly when the RTS/CTS mechanism is disabled. 

As indicated by the results in the string topology and the simulation trace examination in 

Section 5.4, the number of drops due to repeated failed transmissions is a useful indicator of 

the ability of the MAC mechanism to deal with spatial contention, i. e. to effectively coordinate 

Table 5.14. Collisions recorded for the mesh topology using 6 flows 

ACK Strategy 
Full RTS/CTS 

Collisions Recorded 
Partial RTS/CTS No RTSICTS 

Plain ACKs 57080 55964(2%) 43629(23%) 

Delayed ACKs 50492 49290(3%) 41806(17%) 

Dyn, Ad. ACKs 57080 55964(2%) 43629(24%) 
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Table 5.15. Drops recorded for the mesh topology using 3 flows 

ACK Strategy Drops Recorded 
Full RTS/CTS Partial RTSICTS No RTS/CTS 

Plain ACKs 2237 1596(28%) 1772(20%) 

Delayed ACKs 1413 1083(23%) 1325(6%) 

Dyn. Ad. ACKs 711 534(24%) 224(68%) 

Table 5.16. Drops recorded for the mesh topology using 6 flows 

ACK Strategy Drops Recorded 
Full RTS/CTS Partial RTS/CTS No RTS/CTS 

Plain ACKs 2762 2363(14%) 1122(59%) 

Delayed ACKs 2122 1846(13%) 920(56%) 

Dyn. Ad. ACKs 2186 1473(32%) 424(80%) 

transmissions. In the case of 3 TCP flows the number of such recorded drops is substantially 

decreased for both the RTS/CTS strategies. The results may be found in Table 5.15. The 

percentage of reduction in drops, is consistently high regardless of the ACK strategy used, 

with an exception in the case of delayed ACKs. In that case, the "No RTS/CTS" registers only 

a 6% decrease. However, it should be noted that in that case the vast majority of drops (1251 

out of 1325) are frames bearing an ACK payload, which has a smaller impact in goodput than 

the loss of TCP DATA segments. This phenomenon has been accounted for in the case of the 

string topologies in the previous section. Note that for the other two RTS/CTS techniques, that 

is the "Full" and "Partial RTS/CTS" methods, in the case of the delayed ACKs strategy, DATA. 

bearing frame losses severely dominate ACK-bearing ones (433 vs 217 in the case of "Partial 

RTS/CTS" and 429 vs 275 in the case of "Full RTS/CTS"). This fact is reflected in the recorded 

goodput for each method. When 6 TCP flows are employed the reduction in drops noted when 

using the RTS/CTS handshake alternatives as opposed to "Full RTS/CTS" is consistent across 

ACK strategies as can be seen in Table 5.16. 

In summary, in the case of the mesh topology examined employing either the "Partial" or 
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"No RTS/CTS" strategies has a positive impact in goodput as either method helps alleviate and 

handle spatial contention, compared to the "Full RTS/CTS" handshake. It has been shown that 

this observation remains valid regardless of the ACK strategy employed. 

5.6 Conclusions 

This chapter has investigated the impact, of introducing 802.11 -compliant MAC layer optimi- 

sations on a TCP agent making use of ACK-thinning strategies in MANE-Ts. The examina- 

tion has considered both a traditional ACK-thinning paradigm used widely in wired networks, 

namely delayed ACKs and the recently introduced, MANET-specific Dynamic Adaptive ACKs 

method. 

As a preamble to the performance evaluation, issues with respect to existing evaluation 

of ACK-thinning techniques were inspected and for the first time, otherwise implicit or hid- 

den simulation parameters were made explicit. In particular, the feasible granularity of ACK- 

responses has been identified so as to ensure that subsequent simulation analysis corresponds 

to an implementable system. Further, the average path length produced by a popular mobil- 

ity model in the literature (and throughout this study) has been examined. This analysis has 

identified the hop-count range of interest for the string topology simulation as utilised in the 

subsequent performance analysis. Finally, a MAC layer mechanism as employed in previ- 

ous research studies has been explicitly examined with respect to other modes of operation, 

previously ignored in the literature. Specifically, an optimisation in the RTS/CTS exchange 

function of the 802.11 specification has been determined to be usable in tandem with plain and 

ACK-thinning enabled TCP agents. 

Having identified different modes of the 802.11 MAC operation previously unexamined 

in the literature, this study has examined their effect on ACK responses in a special case of 

the string topology. First, two new metrics were introduced, measuring both the amount of 

spatial contention on TCP data exchanges and the ability of the MAC mechanism to effectively 

coordinate transmissions (maximise spatial reuse). Using these metrics and with the aid of 
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simulation trace analysis, the alternative RTS/CTS functions have been shown to improve on 

spatial reuse. 

This study has furthermore employed the new metrics and MAC layer optimisations to 

identify the latter's effect on TCP goodput in the general case of the string topology. The 

RTS/CTS optimisations were employed in tandem with ACK-thinning strategies to appraise 

the net throughput gain. The evaluation results verified that both spatial contention and the 

ability of the MAC mechanism to deal with it can improve with the deployment of the RTS/CTS 

alternative behaviour. Further, TCP goodput has been shown to improve substantially in the 

case of a plain TCP agent (up to 28%) as well as when delayed or Dynamic Adaptive ACKs 

are deployed (up to 28% and 23% respectively). The throughput gain has been shown to be 

consistent for single and multiple TCP connections. 

In order to examine the effect of the RTS/CTS optimisations in the presence of inter-flow 

interference, simulations on a mesh topology have also been conducted. The simulation results 

have shown that the RTS/CTS optimisations at the MAC layer have a significant positive effect 

on TCP, resulting in improved goodput (up to 37%) for a plain TCP receiver. The improvement 

has been shown to exist for both delayed or Dynamic Adaptive enabled ACK receivers (up to 

30% in both cases). The flow patterns under investigation have included scenarios of both 

isolated and path-sharing flows. 

This chapter has been complementary to the previous one as it has examined mechanisms 

to improve TCP performance from the TCP receiver's perspective. As such, the two chapters 

may be viewed in conjunction with the prospect of combining their orthogonal suggestions to 

note cumulative goodput gains. 



Chapter 6 

Conclusions and future directions 

6.1 Introduction 

Mobile Ad hoc Networks (MANETs) have enjoyed significant research attention in the last 

few years as the increased popularity of wireless devices has brought the promise of ubiqui- 

tous connectivity closer to fruition. MANETs are in many ways ideally suited to facilitate such 

all-encompassing communications by acting as standalone, spontaneous networks or as im- 

promptu gateways offering access to the Internet via collaborating access points. The layered 

approach principle in networking implies that development in MANETs can leverage on the 

experience and solutions developed for wired or wireless infrastructure networks in order to 

achieve rapid and reliable deployment. 

However, existing protocols and mechanisms devised for wired networks have been based 

on assumptions challenged in a MANET setting, mainly due to the wireless nature of the 

shared medium and the requirement for mobility. Such discrepancies may lead to unpre- 

dictable behaviour and even a performance penalty in MANETS compared to their wired 

counterparts. The Transmission Control Protocol (TCP) is one such widely used mecha- 

nism, suited for reliable, end-to-end communications, which exhibits sub-optimal performance 

when used in a MANET. TCP has received early attention in the literature with respect to 

164 
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MANETs [13,19,24,34,35,501, and its problems with regard to throughput in such an envi- 

ronment have been well documented [26,40,43,105,1081. 

Early work has been reported in the literature with respect to TCP performance in MANETs 

[19,34]. However, as TCP has been shown to be greatly influenced by its interaction with the 

routing protocol [43,107], such early studies did not account for performance issues with re- 

cent routing proposals. This dissertation has extended performance evaluation in the area by 

considering the goodput performance of popular TCP variants in concert with recently pro- 

posed routing protocols following the two trends in MANET routing, namely both proactive 

and reactive protocols. 

Building on the results of the TCP performance analysis, we have investigated altering the 

congestion avoidance mechanism of TCP so as to improve goodput by making better use of 

the capacity of the wireless medium. The main consideration in the design of the mechanism 

has been ease of deployment, achievable by maintaining the end-to-end semantics of TCP and 

avoiding cross-layer dependencies. This work has shown that it is possible to introduce such 

changes and affect goodput positively without introducing overly intrusive changes to the TCP 

stack or significantly increasing the protocol's complexity. 

As TCP conversations exhibit a sender/receiver dynamic with both ends being required to 

transmit through the wireless medium, our work has discussed and evaluated TCP optimisa- 

tions for either perspective. Such considerations have led to the use and appraisal of an 802.11 

optimisation at the MAC level which leads to better use of the wireless channel and an overall 

increase in TCP goodput. Throughout this work, special attention has been given to the explicit 

statement of assumptions made during simulation and, where appropriate, criticism has been 

offered to assumptions previously used in the literature. 

6.2 Summary of contributions 

This dissertation has focused on the examination of TCP behaviour in MANETS and has fur- 

ther introduced new mechanisms in the protocol stack aiming to enhance goodput in such 
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environments. The major contributions made in this research work are summarised below. 

" The first part of this dissertation has focused on examining the behaviour of TCP in 

a MANET setting. As a preliminary step to the actual TCP performance evaluation 

in dynamic topologies, simulation trace analysis is employed on a static topology over 

three popular routing protocols, namely Ad hoc On-Demand Distance Vector (AODV), 

Dynamic Source Routing (DSR) and Optimised Link State Routing (OLSR). The sim- 

ulation trace analysis over AODV has revealed that buffering of segments at the rout- 

ing layer can help avoid consecutive retransmission timeouts (RTOs) and thus better 

utilise the wireless medium. Further, although previous research has identified the in- 

ability of the 802.11 protocol to coordinate transmissions in multihop networks (such 

as MANETs), this work has also confirmed this issue to exist in an ideal signal propa- 

gation setting where interference is not evident. Trace analysis of simulation over DSR 

has noted and demonstrated the positive effect on TCP goodput of the route caching and 

eaves-dropping functionality of the protocol. Finally, the analysis of TCP behaviour over 

OLSR has exposed its default routing parameters, as suggested in the RFC [281, to be 

sub-optimal with respect to TCP goodput for a small number of connections. We have 

offered an optimisation in the setting of the routing update interval which balances the 

trade-off between overhead and improved goodput performance when few TCP flows 

are present. 

" TCP goodput has been examined in the context of dynamic topologies by taking into ac- 

count limitations of the mobility model which have been resolved by recent research but 

not considered by previous performance evaluation studies. Four popular TCP variants, 

namely TCP Reno, NewReno, SACK and Vegas, have been considered in topologies de- 

picting low, moderate and high mobility conditions. Overall, the results present a trend 

across routing protocols where TCP Vegas exhibits superior goodput over the reactive 

TCP variants especially under low mobility conditions. For instance, the difference in 

performance against Reno reaches 10% for AODV and OLSR and up to 12% for DSR. 
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Through further careful tracing this performance advantage has been attributed to the 

less aggressive transmission policy of Vegas which leads to fewer segments in transit 

at any one time and thus reduces spatial contention. As such Vegas experiences less 

consecutive RTOs than the other variants and its goodput is not as severely affected. 

" In view of the last observation above, the second part of the dissertation has examined 

methods of adopting a Vegas-like conservative sending rate for Reno-based TCP variants 

in order to improve goodput by mitigating spatial contention without compromising their 

reactive nature to packet loss. After considering changes in both the slow start and 

congestion avoidance phases of TCP, this work has proposed a slowdown parameter for 

reactive TCP variants as part of a method called Slow Congestion Avoidance (SCA). 

The proposed optimisation has been deliberately confined to the sending side of the TCP 

communicating pair and is implementable through simple alterations to the transport 

layer in order to facilitate ease of deployment. The new method has been evaluated in 

dynamic topologies and has been contrasted to another method existing in the literature, 

referred to as the adaptive Congestion Window Limit (CWL) technique. Simulations 

have shown that SCA can improve goodput by up to 20% over both standard TCP and 

the adaptive CWL variant in various mobility conditions. 

" Further, this work has examined an adaption of the SCA method to improve TCP good- 

put in the case of multiple flows. Through simulation analysis an effective parameter for 

SCA has been determined and has been shown to improve goodput by up to 12% over 

plain TCP in dynamic topologies. Also, as the effectiveness of the slowdown parameter 

in SCA depends on the path length, we have considered utilising feedback from the rout- 

ing protocol to adjust it dynamically. To this end, we have implemented and evaluated 

an adaptive SCA mechanism, which, however, does not lead to noticeable improvement 

over the standard SCA method. 

" The third part of the dissertation has examined TCP optimisations for MANETS, appli- 

cable at the TCP receiver, which control the flow of ACK segments along the wireless 
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path and are generally termed as ACK-thinning techniques. Through simulation exam- 

ples it is noted that previous work in the literature has not taken a whole system view 

on the simulation parameters and has made assumptions which may not be applicable 

in practice. In particular, previous work has ignored the granularity requirements of the 

ACK responses and has not justified the choice of a hop-count range as the focal tar- 

get for improvements in subsequent evaluation. Furthermore, other 802.11 MAC layer 

modes of operation have been largely ignored, even though they are part of the original 

protocol specification. This dissertation has shed more light on the issues relevant to the 

performance evaluation of ACK-thinning techniques and has also presented two 802.11 

compliant optimisations adoptable at the MAC layer, which can improve TCP goodput. 

" The new MAC level optimisations have been evaluated along with ACK-thinning tech- 

niques in a specific string topology scenario by introducing new metrics which help 

explain and quantify, in great detail, the level and causes of the observed goodput im- 

provement. Finally, a broader scope of evaluation has been adopted where the new MAC 

optimisations have been appraised in a variety of string and mesh topologies. Notably, 

all recorded improvement has been accounted for and justified with the aid of the newly 

introduced metrics. In string topologies the goodput improvement exhibited by ACK- 

thinning methods using the MAC optimisations reaches 28% compared to employing the 

default MAC mechanism; the corresponding improvement in goodput in mesh topolo- 

gies is 37%. 

6.3 Directions for future work 

In the course of this research and on reflection of the presented results, several prospects for fu- 

ture work are evident and some issues may be subject for further study. These are summarised 

below. 

" The performance evaluation in Chapter 3 has compared four TCP variants popular in 

literature and commonly encountered in wired networks, namely TCP Reno, NewReno, 
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SACK and Vegas. However, in recent times, there have been several other proposals in 

wired networks, which significantly alter TCP's congestion avoidance mechanism such 

as TCP Westwood [22,45]. It would be an interest prospect to examine the impact 

of non-congestion related losses on those variants and note if the performance penalty 

incurred (if any) is of the same order as in the variants considered in this work. 

" The random waypoint model was been used extensively in this dissertation to simulate 

mobility and its performance effect on TCP. Although this particular mobility model 

has been widely used in the literature there are several other models which account 

for different possible motion patterns. Considering the potentially ubiquitous nature 

of MANETs, such models could capture the mobility aspects of future MANET deploy- 

ments and hence be representative of reality in some cases. A viable research prospect 

would be to examine TCP behaviour with regard to such other mobility models. 

" In this work, the reaction of the congestion-aware reliable transport protocol (TCP) has 

been examined with relation to its application in a MANET setting. Recent research 

work, such as the Datagram Congestion Control Protocol (DCCP), has focused on in- 

troducing congestion awareness mechanisms to unreliable transport protocols, which 

exhibit TCP-friendliness [671. A possible research avenue in the future could be the ex- 

amination of the behaviour of such protocols in MANETs as these (similarly to TCP) 

are influenced by non-congestion related losses. 

"A wide variety of mechanisms to enhance TCP throughput have been proposed in MANETs 

[34,43,1041. However, much of the subsequent evaluation has occurred in a homoge- 

neous context, i. e. where implementations are well functioning and in agreement with 

each other. In reality, proposed alterations are deployed gradually in a network and 

communicating clients are expected to function adequately in a mixed environment. A 

research prospect along this lines would involve examining existing solutions in such 

heterogeneous settings and declaring whether gradual adoption is a viable option. 
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" The majority of research efforts with respect to MANETs have used simulation as a tool 

of extrapolating conclusions for issues under consideration. As in other research endeav- 

ours, simulation cannot (due to time and complexity considerations) predict results and 

provide insight for all possible scenarios. As such, a natural extension to the research ef- 

forts described in this dissertation would be to develop analytical models that can capture 

the performance behaviour of MANETs. 

" There has been little activity in the deployment and performance measurement of ac- 

tual MANET systems. Provided sufficient resources were available to materialise an 

actual MANET configuration, it would be useful to conduct measurements and verify 

simulations results reported in the literature. Apart from instilling confidence in existing 

work, such a deployment might reveal issues ignored in the simplifying assumptions of 

simulation or otherwise not captured in present simulation tools. 



Appendix A 

Simulation parameters 

A. 1 Routing agent parameters 

Table A. 1. AODV - Complete list of simulation parameters 

Parameter Value Parameter Value Parameter Value 

Unidirectional IIack OFF Gratuitous RREQ OFF Expanding Ring Search ON 

Local Repair ON Receive n HELLOs OFF Jitter HIELLOs OFF 

Wait on Reboot OFF Optimized HELLOs OFF Rate Limit ON 

LL Feedback ON Active Route Timeout 3 secs TTL Start 2 
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Table A. 2. DSR - Complete list of simulation parameters 

Parameter Value Parameter Value Parameter Value 

Flush Link Cache ON Promiscuous Listening ON Broadcast Jitter 20rns 

Route Cache Timeout 300 Send Buffer Timeout 30 Send Buffer Size 100 

Request Table Size 64 Request Table IDs 16 Maximum Request 
Retransmissions 

16 

Maximum Request 
Period 

10 Request Period 500 Non Propagation 
Request Timcout 

30 

Retransmission Buffer 
Size 

50 Maintenance Holdoff 
Time 

250 Maximum Maintenance 
Retransmissions 

2 

Network Layer ACKs OFF Use Passive ACKs ON Passive ACK Timeout 100 

Gratuitous Reply 
Holdoff 

ON Maximum Salvage 
Count 

15 

Table A. 3. OLSR - Complete list of simulation parameters 

Parameter Value Parameter Value Parameter Value 

Hello interval 1 sec Refresh Interval 2 secs TC Interval 5 secs 

MID Interval 5 secs IINA Interval 5 secs Neighbourhood Ifold rime 6 sees 

Topology Hold Time 15 secs Duplicate Hold rime 30 secs MID I fold Time 15 secs 

HNA Hold Time 15 secs Max. Jitter 250ms Willingness(WILL. DEFAULT) 3 

TC Redundancy OFF MPR Coverage I Hysteresis Monitoring OFF 

Singal Moniroting OFF Delay Generation OFF Fast Route Calculation OFF 

Free Space Splitting 
Proportion Limit 

OFF Global Splitting 
Proportion Limit 

0.5 Immediate Message 
Transmission 

OF F 
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A. 2 TCP agent parameters 

Table A. 4. TCP - Complete list of simulation parameters 

Parameter Value Parameter Value Parameter Value 

Num. dupACKs 3 ECN OFF Timer Granularity lOms 

Max. RTO 60 secs Min. RTO 200ms FRTO OFF 

Delayed ACKs ON Max. Burst 3 segments Lim. transmit OFF 

Vegas a I Vegas P 3 Vegas y 1 

No. SACK blocks 3 DSack generation OFF Seg. size 1460 bytes 
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Results supplement 

B. 1 Topology characteristics 
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B. 2 SCA supplement 

Table B. I. De taut Nt; A tceno parameter on st un to oto i 
Hop Count(h) parameter h parameter 

4 48 10 48 

5 46 11 31 

6 50 12 37 

7 48 13 30 

8 46 14 39 

9 48 15 39 

es for AODV 



Appendix C 

Publications during the course of this 

research 

Book Chapters 

" S. Papanastasiou, M. Ould-Khaoua, L. M. Mackenzie, ACK-thinning techniques for TCP 

in MANETS, under review for publication in a collection. Prof. A. Boukerche, Editor. 

" S. Papanastasiou, M. Ould-Khaoua, L. M. MacKenzie, A performance study of TCP in 

Mobile Ad Hoc Networks. Performance Evaluation of Parallel, Distributed and Emergent 

Systems. (Volume 1 in Distributed, Cluster and Grid Computing), Nova Publishers, 

2006. 

" S. Papanastasiou, M. Ould-Khaoua, and L. M. MacKenzie. TCP Developments in Mo- 

bile Ad hoc Networks. Chapter 30, Handbook of Algorithms for Wireless and Mobile 

Networks and Computing. CRC Press, 2005. 

Journal Papers 

" S. Papanastasiou and M. Ould-Khaoua. Adjusting the sending rate of TCP for MANETS. 

Revised version under review for Computer Communications journal, Elsevier Publish- 

ing, Aug 2006. 
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9 S. Papanastasiou and M. Ould-Khaoua. TCP Congestion window evolution and spa. 

tial reuse in MANETS. Journal of Wireless Communications and Mobile Computing, 

4(6): 669-682,2004. 

" S. Papanastasiou and M. Ould-Khaoua. Exploring the performance of TCP Vegas in 

Mobile Ad hoc Networks. International Journal of Communication Systems, 17(2): 163- 

177l, 2004. 

" M. Bani-Yassein, M. Ould-Khaoua, L. M. Mackenzie and S. Papanastasiou, Performance 

Analysis of Adjusted Probabilistic Broadcasting in Mobile Ad IJoc Networks, appearing 

in the International Journal of Wireless Information Networks, Pages 1-14, Springer 

Netherlands, Mar 2006. 

Conference Papers 

" S. Papanastasiou, V. Charissis, Exploring the ad hoc network requirements of an au- 

tomotive Head-Up Display interface. To appear in Fifth International Symposium of 

Communication Systems, Networks and Digital Signal Processing, Patras, Greece, July 

2006. 

" S. Papanastasiou, L. Mackenzie, M. Ould-Khaoua, and V. Charissis. On the interaction 

of TCP and Routing Protocols in MANETS. In Proceedings of International Conference 

on Internet and Web Applications and Services/Advanced International Conference on 

Telecommunications (AICT ICIW '06), pages 62-69, Guadeloupe, French Caribbean, 

February 2006. IEEE Computer Society Press. 

" S. Papanastasiou, M. Ould-Khaoua, and L. M. Mackenzie. On the evaluation of TCP 

in MANETS. In Proceedings of International Workshop on Wireless Ad-hoc Networks 

(IWWAN 2005), London, United Kingdom, May 2005. 

" S. H. A. Wahab, M. Ould-Khaoua, S. Papanastasiou, Performance Analysis of the LWVQ 

QoS Model in MANETS, in proceedings of the 21st annual UK Performance Engineering 

Workshop (UKPEW '05), Newcastle, United Kingdom, July 14.15,2005. 
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" S. Papanastasiou, M. Ould-Khaoua, and L. M. Mackenzie. Exploring the effect of inter. 

flow interference on TCP performance in MANETs. In Proceedings of Second Interna- 

tional Working Conference of Performance Modelling and Evaluation of heterogeneous 

Networks (HET-NETs 04), page P41. Bradford Print, 2004. 

" S. Papanastasiou, L. M. MacKenzie, and M. Ould-Khaoua. Reducing the degrading ef- 

fect of hidden terminal interference in MANETs. In Proceedings of the 7th ACM interna- 

tional symposium on Modeling, analysis and simulation of wireless and mobile systems 

(MSWiM), pages 311-314. ACM Press, 2004. 

" S. Papanastasiou and M. Ould-Khaoua. On the performance of TCP Vegas in Afobile 

Ad hoc Networks. In Proceedings of the 2003 International Symposium on Performance 

Evaluation of Computer and Telecommunication Systems (SPECTS '03), pages 417- 

422,2003. 
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