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Abstract 

Patients living with many cancers, including ovarian cancer (OC), often suffer 

from a lack of adequate treatment options. In the case of OC, primary debulking 

surgery followed by platinum and paclitaxel chemotherapy has led to a vast 

improvement in patient survival over the past few decades, however, rates of 

drug-resistant recurrence remain high. Research into new, experimental 

treatment options is therefore warranted for OC and other cancers.  

Oncolytic viruses (OVs) are replication-competent viruses that can selectively 

infect and destroy cancerous cell types, while leaving healthy cells unharmed. 

OVs do this by exploiting differences between cancer and normal cell 

phenotypes. Herpes simplex virus (HSV)-1, strain 1716 is one example of this 

type of virus that has shown selectivity for cancer cells in previous preclinical 

studies, as well as high levels of safety in humans. One prominent area of 

current OV study seeks to investigate the ability of OVs to induce immunogenic 

cell death (ICD) – this term describes multiple modes of programmed death 

pathways that culminate in release of proimmunogenic factors, which facilitate 

a modification of the host immune system. Two of the most prominent of these 

pathways are necroptosis and immunogenic apoptosis (IA). 

Here, I show that while many OV cell lines express the necessary components for 

necroptosis, they are unable to undergo classical necroptotic death (induced by 

TSZ). Despite this, HSV-1716 can infect and kill a range of OC lines successfully. 

I showed that HSV-1716-induced cell death displays two markers of IA yet does 

not seem to rely solely on apoptosis to kill cells. In addition, it appears not to 

rely on any components of the necrosome in order to kill cells, even in cells that 

are competent to typical necroptosis. However, when RIPK3 is overexpressed in 

HeLa cells, virus-induced cell death increases, as do markers of both necroptosis 

and IA. 

To investigate the role of ICP6 in HSV-1716-induced ICD, viral and cell mutants 

were made possessing various forms of the protein. Full-length ICP6 protein 

expressed in cell lines had the effect of blocking cellular response to TSZ, but 

constructs lacking a region known as the RHIM did not. A functionally similar 
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mutation was produced within the RHIM of live HSV-1716 using CRISPR/Cas9 

technology, which was shown to have the effect of disrupting ICP6/RIPK3 binding 

– thought to be the determinant of necroptotic cell death. Despite this, no 

changes in cell death signalling could be determined between the viruses at all.  

Interestingly, when cells were infected in combination with TNF-α, or TNF-α in 

addition to SMAC mimetic, the RHIM-modified virus produced significantly more 

death than HSV-1716. This suggests that while loss of RIPK3 inhibition is not 

sufficient to lead to increased necrosis alone, cells infected with this virus are 

more sensitive to further necrosis induction. This finding may prove to have 

great utility for producing the next generation of oncolytic viral therapeutics 

which can induce greater levels of proimmunogenic cell death. 

From this we can conclude that HSV-1716 is capable of inducing IA in OC cells. 

Death is not dependent on necroptosis, however additional RIPK3 seems to 

sensitise cells to death by other means. Cellular binding of viral ICP6 and RIPK3 

can be disrupted by modification of the RHIM, although this change has no 

bearing on ICD signalling alone but can sensitise cells to TNF-α-induced death. 
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pMLKL phosphorylated MLKL 
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PP1α protein phosphatase 1α 

PS phosphatidyl serine 

PSA prostate-specific antigen 

RAGE receptor for advanced glycation end products 

RCD regulated cell death 

RHIM RIP-homotypic interaction motif 

RHOA ras homolog family member A 

RIPK1/3 receptor-interacting serine/threonine-protein kinase 1/3 

RMI risk of malignancy index 

RNA ribonucleic acid 

ROS reactive oxygen species 

RPMI Roswell Park Memorial Institute (medium) 

RR ribonucleotide reductase 

RT reverse transcriptase 

s second(s) 

SD standard deviation 

SDS sodium dodecyl sulphate 

siRNA small interfering RNA 

SMAC second mitochondria-derived activator of caspase 

SSB single-strand break 

TAA tumour-associated antigen 

TAM tumour-associated macrophage 

TBS(T)  tris buffered saline (tween) 

TEM transmission electron microscopy 

TIC tubual intraepithelial carcinoma 

TIL tumour-infiltrating lymphocyte 

TK thymidine kinase 

TLR toll-like receptor 

TNF tumour necrosis factor 

TP53 tumour protein 53 

TRADD TNF receptor type 1-associated death domain protein  

TRAF TNF receptor-associated factor 

T reg suppressor T cell 

TRP transient potential receptor 

T-VEC Talimogene Laherparepvec 

UV ultraviolet 

VEGF(R) vascular endothelial growth factor (receptor) 

vIRA viral inhibitor of RIP activation 

VSV varicella zoster virus 

VV Vaccinia virus 

WT wild-type 

ZV zombie Violet 

zVAD-fmk carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]- 
fluoromethylketone 

β-ME β-mercaptoethanol 
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1 Introduction 
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Cancer is the second leading cause of death in the world, representing one in 

every six deaths. In 2015, there were 8.8 million deaths globally and there are 

roughly 14 million new cases of cancer each year. The number of cancer cases is 

expected to rise by as much as 70% over the next two decades, making it one of 

the greatest health crises of this century (WHO, 2017). 

Cancer is the term given to any disease caused by the uncontrolled regulation of 

cell growth and proliferation, leading to eventual spread of these cells 

throughout the body. Cancer is in fact not one disease, but a collection of 

diseases which differ greatly in their origins, behaviour, lethality and severity. In 

2000, Hanahan and Weinberg published their ‘hallmarks of cancer’, outlining the 

characteristics and steps involved in the development of malignancy from 

normal cells (Hanahan and Weinberg, 2000). In 2011, this overview was updated 

to include more recent developments in the biology of cancer (Hanahan and 

Weinberg, 2011). These papers identify 10 hallmarks that cells acquire during 

the multi-step path to malignancy (Figure 1.1). These consist of the following: 

sustaining proliferative signalling; evading growth suppressors; avoiding immune 

destruction; enabling replicative immortality; tumour-promoting inflammation; 

activating invasion and metastasis; inducing angiogenesis; genome instability and 

mutation; resisting cell death; and deregulating cellular energetics. 



19 

 

 

Figure 1.1 The ten hallmarks of cancer. Figure adapted from Cell 2011 144, 646-674  

 

This introduction will touch on a number of these hallmarks by exploring first 

how ovarian cancer forms, how it is treated, and what the remaining obstacles 

are for future therapies. I will then introduce the concept of oncolytic 

virotherapy and discuss how viruses can be used to directly destroy cancer cells 

via a number of regulated cell death mechanisms. Finally, I will discuss how 

different modes of cell death can have important consequences for how cancer 

is identified and targeted by the immune system. 
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1.1 Ovarian Cancer 

1.1.1 Epidemiology 

Ovarian cancer (OC) is the fifth most common form of cancer in women in the 

developed world (sixth in the UK, in particular), and is the leading cause of 

gynaecological cancer associated death. In the UK, this amounts to 7400 cases 

every year, with 4100 deaths. The lifetime risk of developing the disease in the 

UK for women is 1 in 52. The highest incidence occurs in women aged 75-79, 

with over half of cases in those over the age of 65. OC is the 15th most common 

form of cancer in the UK, but the 14th most common cause of cancer death; this 

amounts to 3% of all female cancer deaths. 

Survival rates are poor, with one, five and ten-year survival rates being 73%, 46% 

and 35% respectively. Younger age at diagnosis and earlier stage at presentation 

are both associated with greater survival rates. This effect is dramatic for those 

that present at an early age, with 90% surviving five years or more when 

diagnosed before age 40. 

It is estimated that 21% of OC can be attributed to lifestyle factors, including 

smoking (3%), hormonal replacement therapy (1%) or occupational exposures 

such as radiation (1%). There are also some links to use of talcum powder, height 

and obesity. Oral contraceptive use and breast feeding have been shown to have 

a protective effect against OC – as many as 18% of OC cases may be a result of  

breastfeeding for less than 6 months. 

The most recent data provided above for OC are from 2014 for incidence and 

mortality, and 2010-2011 for survival (CRUK, 2017). 

Genetic predispositions for OC exist, with germline BRCA1 and BRCA2 mutations 

being the best known. Carrying a BRCA1 mutation puts the individual at a 

roughly 39% chance of developing OC by age 70; for BRCA2 mutations, the 

probability is 11%, although the range of risk is very high and poorly understood 

(Antoniou et al., 2003). These mutations are common in Ashkenazi Jewish 

populations, putting these groups at higher risk of developing OC (Simchoni et 

al., 2006).  
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1.1.2 Molecular Pathology 

Once thought of as a single disease with histological subtypes, OC is now 

recognised as several distinct diseases with differing origins, behaviour, severity 

and molecular characteristics (Prat, 2012). The five OC types and their relative 

incidences are: high-grade serous (70%), endometrioid (10%), clear cell (10%), 

mucinous (3%) and low-grade serous (<5%) (Figure 1.2). 

 

Figure 1.2 Histological subtypes of ovarian cancer and common mutations.  The five main histological 
subtypes of epithelial ovarian cancer are shown. High grade serous is the most common subtype and has 
recently been proposed to originate from the fallopian tubes as well as the ovarian surface epithelium. 
Homologous recombination deficiency (HRD) is common in HGSOC, in addition to universal p53 loss, and Rb 
and PI3K/Ras mutation. Sites of origin other than the ovary are known for mucinous, endometrioid and clear 
cell subtypes. Mutational profiles also differ significantly between subtypes. Image adapted from Nature 
Reviews Cancer 2011 11, 719-725 by Iain McNeish. 
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1.1.2.1 High-Grade Serous 

High grade serous OC (HGSOC) makes up approximately 70% of epithelial OCs. 

Histologically, tumour cells appear intermediate in size, with the occasional 

giant cell containing a prominent nucleus (Figure 1.2). Nuclei of the cells vary in 

size by as much as three times, with this being a major differentiating 

characteristic from low-grade serous types. Mitotic activity is also much higher 

in HGSOC. Immunostaining is commonly positive for WT1, PAX8 and CK7 and 

negative for CK20 and CDX2. Staining for p16 should be strong and diffuse to be 

positive. Staining for p53 can vary based on the type of mutation seen in the 

specific tumour (e.g. missense/gain of function or null).  

Current evidence suggests that HGSOC is likely derived from fallopian tube 

precursor lesions (tubal intraepithelial carcinoma (TIC)) (Piek et al., 2001; 

Medeiros et al., 2006; Folkins et al., 2008), which can migrate to sites on the 

ovary itself. As most OCs present in such a late stage, it is difficult in many cases 

to tell what proportion of HGSOC is ovarian or tubal in origin.  

HGSOCs have universal TP53 mutations (Ahmed et al., 2010). Carcinomas arising 

in those with germline BRCA1 or BRCA2 mutations are almost always of high-

grade serous type. TP53 mutation is thought to be the earliest event in 

oncogenesis, occurring in p53 signature foci, leading to TIC in the distal fallopian 

tube. In non-germline carriers, BRCA1 and 2 mutations are thought to occur 

early, but after TP53 mutation (Bowtell, 2010), although BRCA1/2 mutation may 

help promote development of TIC. In addition to these, NF1, FAT3, CDK12, 

CSMD3 and GABRA6 are the next most common mutations, most of which 

occurring in fewer than 1% of cases (Bell, Berchuck and Birrer, 2011). Typically, 

mutations are caused by copy-number alterations and structural 

rearrangements, although TP53 mutations are frequently due to mis-sense point 

mutations (Patch et al., 2015). 

1.1.2.2 Low-Grade Serous 

Low-grade serous OC (LGSOC) accounts for fewer than 5% of all OC cases 

(Gershenson et al., 2006). Microscopically, LGSOC contain small papillae of 

tumour cells with uniform nuclei contained within hyalinized stroma, which 
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often contains psammoma bodies (Figure 1.2). LGSOC only very rarely progresses 

to HGSOC.  

LGSOC possesses similar histological markers to HGSOC, with the main difference 

being a lower level of Ki-67 staining (2.5% vs 22.4%) (Köbel et al., 2008) 

reflecting lower rates of cell division and growth and wild-type p53 staining 

reflecting the absence of TP53 mutations. Genetically, mutations in KRAS and 

BRAF are the most common, with prevalence of 19% and 38% respectively (Jones 

et al., 2012; Ardighieri et al., 2014). More recent evidence has identified NRAS 

as recurrently mutated in LGSOC, although the prevalence is low at 3.6%, 

suggesting it plays a minor role in disease progression (Xing et al., 2017). 

Deletions of 1p36 and 9p21 are associated with LGSOC progression, although 

LGSOC does not show chromosomal instability and do not possess the complex 

genetic abnormalities seen in HGSOC (Kuo et al., 2009).  

1.1.2.3 Mucinous 

Mucinous tumours account for 10-15% of ovarian tumours. However, 80% of these 

are benign, and many of the remaining 20% are borderline or metastases from 

the GI tract (Prat, 2012). The cells resemble those of GI origin, particularly 

gastric pylorus and intestine, or those from the endocervix (Figure 1.2). 

Malignant tumours are often heterogeneous, with invasive components present 

within borderline, benign-appearing surroundings (Rodríguez and Prat, 2002). 

Mucinous carcinomas (MCs) are often found to harbour mutations in genes 

involved in intestinal differentiation, such as CDX2 and KRAS (Cuatrecasas et al., 

1997), with KRAS mutations appearing early. Staining for cytokeratin (CK)7 and 

CK20 is present in 80% and 65% of MCs, respectively. CK20 and CDX-2 staining is 

fairly weak in true ovarian MC, which can help differentiate from strongly 

stained colorectal adenocarcinoma. CK7 is also absent in colorectal 

adenocarcinoma, allowing its use as an identifier (Park et al., 2002; Vang et al., 

2006). MCs also lack both WT1 and oestrogen receptor (ER) staining, which allow 

differentiation from both endometrioid (ER+, WT1-) and serous (ER+, WT1+) 

types.   
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1.1.2.4 Endometrioid 

Endometrioid carcinomas (ECs) account for 10% of OCs, primarily affecting 

women of perimenopausal age (~30-50 years old). ECs have a strong association 

with the endometrium, with 15-20% of cases occurring concurrently with  

endometrial carcinoma and others with endometriotic cysts (Irving et al., 2005). 

There is still some debate on whether these carcinomas represent separate 

diseases, or whether the ovarian disease is a metastasis from the endometrium 

(Anglesio et al., 2015). Many cases occur in tandem with ipsilateral pelvic or 

ovarian endometriosis. EC can be graded as high or low, with high grade 

appearing very similar to HGSOC histologically (Figure 1.2). Genetic profiling 

between grades is similar, suggesting that they are still a single tumour type 

(Tothill et al., 2008). 

Endometriosis has been shown to directly lead to EC in 15-32% of cases. KRAS 

and ARID1A mutations can appear in early endometriosis, with subsequent loss of 

PTEN shown to contribute to induction of invasive EC (Dinulescu et al., 2005). 

CTNNB1 and PTEN are the most commonly mutated genes (Catasús et al., 2004). 

Mutations in CTNNB1, which codes for β-catenin, occur in 38%–50% of cases. 

These mutations are associated with low tumour grade, squamous differentiation 

and favourable outcome (Gamallo et al., 1999). PTEN inactivation leads to 

activation of the pro-survival phosphatidylinositol 3 kinase (PI3K)-AKT signalling 

pathway, although the same effect is in some cases achieved through activation 

of PIK3CA, which codes for the p110 catalytic subunit of PI3K (Campbell et al., 

2004). PTEN is mutated in approximately 20% of ovarian ECs. PTEN mutations are 

also found in endometriotic cysts, providing further evidence for a precursor role 

(Sato et al., 2000).  

1.1.2.5 Clear Cell Carcinoma 

Clear cell carcinomas (CCCs) account for 10% of OCs. Presentation is often at 

stage I, with disease usually restricted to a single ovary. As with EC, there is a 

strong association of CCC with endometriosis, with such cases being associated 

with a better prognosis (Komiyama et al., 1999). As the name suggests, CCCs 

often appear as cells with a clear cytoplasm, although this phenotype is not 

restricted to just CCC, and can be seen in HGSOC and EC. Nuclei appear 
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eccentric, rounded and bulbous, and cells appear with multiple complex papillae 

with densely hyaline basement membranes (Figure 1.2). 

CCCs possess mutations in ARID1A in approximately 50% of cases with consequent 

loss of the protein product, BAF250a (Wiegand et al., 2010). In the same study, 

Wiegand et al. also found that ARID1A mutations can also be found in adjacent 

endometriosis, suggesting that this mutation may serve as an early step in 

transformation to CCC. CCCs are typically histologically positive for hepatocyte 

nuclear factor 1-β (HNF1-β) and negative for WT1 and ER (Köbel et al., 2009). 

HNF1-β is a transcription factor which regulates glycogen synthesis and so may 

also play a role in CCC pathogenesis (Kato, Sasou and Motoyama, 2006).  

CCCs are far less responsive to chemotherapy than HGSOC. This may be in part 

due to the fact that they are less proliferative and more genomically stable 

(Itamochi et al., 2002). 

1.1.3 Staging 

Following the recent developments in the theory that certain types of OC may 

originate from the fallopian tubes, The International Federation of Gynaecology 

and Obstetrics (FIGO) revised its staging criteria (Prat, 2014). This revision 

primarily sought to unify staging criteria for the ovary, peritoneum and fallopian 

tubes.  

Stage I tumours are limited to the ovary, fallopian tube or peritoneum. Stage IA 

defines cases where tumours are present in a single ovary, and IB refers to 

presence in both ovaries, although this is rare (Ataseven et al., 2016). In stage 

IC, tumour is present on the surface of the ovaries, possibly with a ruptured 

capsule, cytologically positive ascites, or positive peritoneal washings. Stage II 

tumours are limited to the pelvis and hold this designation regardless of origin. 

Uterine, fallopian or ovarian extensions are classed as stage IIA, and extensions 

to other pelvic regions are IIB.  

Stage III tumours extend beyond the pelvic brim, either to the peritoneum or the 

retroperitoneal lymph nodes. Lymph node-only metastasis is designated as stage 
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IIIA1 (previously stage IIIC) and is associated with better prognosis (Baek et al., 

2008). Lymph node metastases can be identified using [18F]-fluorodeoxyglucose 

positron emission tomography (FDG-PET), with metastatic nodes defined by 

increased uptake of tracer, regardless of size. In the case of extrapelvic 

peritoneal implants, those microscopic in nature are classed as stage IIIA2, those 

macroscopic but ≤2cm are stage IIIB, and those macroscopic and ≥2cm are stage 

IIIC. HGSOC often presents in stage III (84%), particularly stage IIIC, with tumours 

often spread across the peritoneal wall, including involvement of organs such as 

the liver and spleen (Prat, 2012). Survival rates for debulking followed by 

chemotherapy vs chemotherapy followed by debulking appear to be similar, with 

successful primary debulking being the most important prognostic factor 

(Vergote et al., 2010). 

Stage IV includes distant metastases. This stage is subdivided into IVA, which 

refers to pleural effusions containing malignant cells, and IVB, which includes 

lymph node metastases outside of the abdominal cavity. Transmural bowel 

infiltration, umbilical deposit, and parenchymal metastases in the liver and 

spleen or elsewhere are also classified as stage IVB.  

1.1.4 Presentation and Diagnosis 

Early stage disease is often asymptomatic and can go unnoticed for many months 

or potentially years before presentation. Symptoms typically include abdominal 

pain and distension, bloating, back pain, constipation, diarrhoea, frequent 

urination, irregular menstruation, loss of appetite and fatigue, among others. 

The gastrointestinal symptoms are often mistaken for irritable bowel syndrome 

(IBS). As the mass around the ovary grows, it can lead to twisting of the fallopian 

tube, known as torsion, leading to further pain. Eventually fluid begins to 

accumulate in the form of ascites and growing tumours can lead to partial or 

complete blockage of the intestines.  

Diagnosis begins with a physical examination, including pelvic examination, to 

feel for enlarged ovaries and/or presence of ascites fluid in the abdomen. 

Usually these initial tests will be performed if the patient’s symptoms have 

persisted or worsened in a manner that seems inconsistent with IBS or related 
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ailments. If all of these factors give reason to suspect OC, then cancer antigen 

(CA) 125 levels in the blood will be measured (Bast et al., 1981; Ledermann et 

al., 2013). CA 125 is the protein product of the MUC16 gene and is produced by 

many normal tissues, but is often elevated during OC, especially HGSOC. This is 

by no means a universal test however, as CA 125 levels are only elevated in 50% 

of stage I cases and 85% of advanced disease cases. CA 125 can also be elevated 

by non-gynaecological cancers such as breast, lung, colon and pancreatic, as 

well as non-malignant diseases such as endometriosis, ovarian cysts and pelvic 

inflammatory disease. If it is unclear at this point whether the cancer is of 

gynaecological or gastrointestinal (GI) origin, then additional measuring of 

carcinoembryonic antigen (CEA) or CA 19-9 can be used to differentiate, as these 

are higher in GI cancers, although neither CA125 nor CA19-9 is definitively 

diagnostic. The risk of malignancy index (RMI) is a combined index of serum level 

of CA 125, menopausal state and ultrasound findings (Jacobs et al., 1990). These 

criteria can predict the risk of malignancy for adnexal masses with a positive 

predictive value of 77.7% (Bouzari et al., 2011). 

Besides blood tests, ultrasonography of the abdomen and pelvis is often 

performed. The purpose of this is to look for morphological features in an 

ovarian cyst, such as large lesions, multi-locular cysts, solid papillary projections 

and irregular internal septations, as well as ascites, which are all highly 

suggestive of OC. By this stage, a diagnosis can usually be suggested, although 

further scans in the form of a computed tomography (CT) scan and MRI can help 

assess the extent of the disease and aid surgical planning as well as identifying 

pleural effusions and other potential distant metastatic disease.  

1.1.5 Ovarian Cancer Tumour Immunology 

The immune system forms a highly active part of the ovarian tumour 

microenvironment. While leukocyte infiltration forms a natural part of the anti-

tumour immune response, there is now plenty of evidence to suggest that 

certain immune cell populations can be tumour-promoting (Cai and Jin, 2017; 

Zhang et al., 2017). 
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Tumour associated macrophages (TAMs) form an important part of the 

microenvironment, and can be found as both M1 and M2 subtypes in HGSOC 

(Reinartz et al., 2014). OC cells are known to recruit circulating monocytes,  

through a high expression of the chemotactic protein CCL2 (Negus et al., 1995), 

which binds to the receptor CCR2, commonly found to be expressed by TAMs 

(Sica et al., 2000). M1 macrophages are associated with a more tumour 

suppressive phenotype, and have been shown to transform into M2 macrophages 

following treatment with colony-stimulating factor-1 (CSF-1), which is 

upregulated by OC cells and associated with a negative outcome (Chambers et 

al., 1997). OC cells can cause TAMs to upregulate mannose receptor (MR), which 

binds cellular mucins (including CA 125 and TAG-72), and promotes an immune-

suppressive phenotype, in addition to the immunosuppressive molecule, PD-L1 

(Allavena et al., 2010). Elevated IL-6 levels in the ascites and tumours of OC 

patients is associated with increased TAM formation (Duluc et al., 2007). 

Prognosis of cancer patients in general (and ovarian cancer in particular) has 

consistently been shown to be worsened in association with infiltrating TAMs, 

with TAM phenotype not appearing to matter (Zhang et al., 2012). 

It is now known that presence of CD3+ T cells within a tumour is correlated with 

better clinical outcome (Zhang et al., 2003), tumour specific T cells and 

antibodies can be found in the blood of OC patients (Goodell et al., 2006), and 

that T cells isolated from late-stage patients show specificity for and cytolytic 

activity against tumour cells (Santin et al., 2001). CD8+ T cells expressing the αE 

integrin subunit CD103 are associated with good prognosis and are suggested to 

directly contribute to anticancer killing (Sato et al., 2005; Webb et al., 2014; 

Komdeur et al., 2016). Suppressor T cells (Treg) have been identified as negative 

prognostic factors in OC. These cells are distinguished as being CD4+, forkhead 

box P3 (FOXP3)+ and CD25+, and have been shown to shorten median survival in 

patients with a high ratio of Treg: CD8+ T cells (Sato et al., 2005). Migration of 

Tregs into the microenvironment is promoted by CCL22, which binds to the CCR4 

receptor present on Tregs (Landskron et al., 2015). Tregs inhibit both CD8+ cell 

proliferation and release of IFNγ and IL-2 (Curiel et al., 2004).  

Myeloid-derived suppressor cells (MDSCs) have been found to be present in the 

ascites, attracted by CXCL12, which is produced in a PGE2-dependent manner 
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(Obermajer et al., 2011). One critical role of MDSCs is the production of IL-10, 

which is immunosuppressive and leads to a tumour-permissive microenvironment 

(Hart et al., 2011). 

Natural killer (NK) cells are another innate cell type, which are able to recognise 

and destroy cancer cells. Migration inhibitory factor (MIF) produced by tumours 

blocks NK cell cytotoxicity by downregulating the NK receptor NKG2D, which 

mediates the immune escape of OC (Krockenberger et al., 2008). Likewise, the 

tumour protein B7-H6 binds to NKp30 on the surface of NK cells, which triggers 

an anti-tumour response, with lower NKp30 expression correlating with lower 

IFNγ production and cytolytic activity (Pesce et al., 2015). Interestingly, higher 

levels of B7-H6 have also been associated with cancer progression and metastasis 

(Zhou et al., 2015). NK cells in the ascites have been shown to respond 

differently to IL-2 based on whether malignant cells are also present (da Silva et 

al., 2017). In ascites where OC cells are present, NK cells are less responsive to 

IL-2, showing less degranulation. This suggests that in the ascites, OC cells are 

contributing to a suppression of anti-cancer immune responses. 

NK cells have also been shown to recruit immature dendritic cells (iDCs) via the 

release of CCL3 and CCL4 (Wong et al., 2013). NK cells encourage the 

maturation of DCs via CCR5, which leads to upregulation of CCL5, CXCL10 and 

CXCL9 on the surface of DCs. These markers allow DCs to attract and activate 

CD8+ T cells mediating their positive effects (Wong et al., 2013). 

1.1.6 Current Treatment Standards 

The cornerstone treatment for OC remains debulking surgery, followed by 

platinum-based chemotherapy. Surgery is typically performed first, and serves to 

remove as much tumour as possible, acquire samples for histological diagnosis 

and establish the FIGO stage. Surgery should include a total hysterectomy, 

bilateral salpingo-oophorectomy, tumour debulking, and omentectomy (Jayson 

et al., 2014). Certain factors may affect resectability of tumours including upper 

abdominal disease, involvement of the porta hepatis, small bowel mesentery and 

diaphragm, extensive ascites, or spread beyond the abdominal cavity (Aletti et 

al., 2006), as well as the patient’s performance status and co-morbidities. 
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Laparoscopy may be done in advance of surgery in some cases to assess 

resectability. 

If the patient is in poor condition or with extensive unresectable disease, it may 

be beneficial to treat first with neoadjuvant (pre-operative) chemotherapy to 

help reduce the size and quantity of any tumours. Percutaneous biopsies must 

first be taken to enable reliable histological diagnosis. In these cases, debulking 

should be done after three cycles of a six-cycle chemotherapy regimen. Evidence 

that providing chemotherapy before surgery does not have a negative impact on 

overall survival in stage III and IV patents has been provided in the recent 

EORTC55971 and CHORUS trials (Vergote et al., 2010; Kehoe et al., 2015).  

Platinum-based chemotherapy agents have been the standard of care for first-

line chemotherapy against OC since the late 70s (Young et al., 1979). cis-

dichlorodiammineplatinum(II) (cisplatin) was the first of these drugs to be used. 

Cisplatin works by cross-linking DNA, which causes DNA adducts to form, 

resulting in physical stresses and DNA damage, as well as an inhibition of DNA 

replication and repair. When cisplatin enters the cell, lower chloride content 

favours aquation of one of the Cl- groups, allowing it to subsequently bind to 

DNA bases covalently (guanine in particular). This allows the second Cl- group to 

undergo a similar process, thereby leading to the binding of DNA in two places. 

Attempts to replicate the crosslinked DNA results in damage, which activates the 

DNA repair machinery, but as repair cannot occur, apoptosis signalling becomes 

active and the cell eventually dies (Kelland, 2007).  

Despite its effectiveness, cisplatin is notorious for its high nephrotoxicity, 

neurotoxicity, tinnitus and emetogenicity. For this reason, there has been a 

drive for development of safer analogues. The first of these, carboplatin (cis-

diammine-[1,1-cyclobutanedicarboxylato]platinum(II)) entered the clinic in the 

mid-1980s (Harrap, 1985). The reasoning behind carboplatin was that a more 

stable dicarboxylate leaving group would reduce toxicity, which has been shown 

to be the case (Knox et al., 1986). Carboplatin therefore works in the same way 

as cisplatin, with the leaving group affecting pharmacodynamics. Carboplatin is 

essentially devoid of nephrotoxicity, less toxic to the gastrointestinal tract and 

less neurotoxic. Carboplatin is dose-limited mainly by its myelosuppressive 
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effects. Carboplatin is now the standard treatment for OC over cisplatin 

worldwide (Jayson et al., 2014). 

In order to increase anti-tumour efficacy, carboplatin is now often given in 

combination with either paclitaxel or docetaxel (Ozols et al., 2003; Vasey et al., 

2004), which are both taxanes. Taxanes work by disrupting microtubule function 

during M phase of mitosis. They do this by binding to and stabilising GDP-bound 

tubulin molecules, preventing them from depolymerising. This has the effect of 

blocking cell division, which can in turn lead to induction of apoptosis (Abal, 

Andreu and Barasoain, 2003).  

1.1.7 New Therapies 

1.1.7.1 Angiogenesis blockers 

Angiogenesis plays a key role the later stages of tumour development and 

metastasis, and has been identified as an important target for OC. Angiogenesis 

is a multi-factor process involving interactions with endothelial cells, blood 

platelets, macrophages/lymphocytes, fibroblasts (Markowska et al., 2017). One 

of the best characterised pro-angiogenic pathways begins with the binding of 

members of the vascular endothelial growth factor (VEGF) family to VEGF 

receptors 1 and 2 on the surface of cells. This interaction can be blocked by the 

monoclonal IgG antibody Bevacizumab. Bevacizumab has now entered the clinic 

following several successful phase III trials for OC, in combination with 

carboplatin and paclitaxel (Burger et al., 2011; Aghajanian et al., 2012; Pujade-

Lauraine et al., 2012; Coleman et al., 2015; Oza, Cook, et al., 2015). The NHS 

England national cancer drug funds list currently recommends bevacizumab as a 

“1st line treatment of advanced (stage IIIc/IV) OC, suboptimally debulked either 

at primary or delayed primary (interval) surgery (including peritoneal and 

fallopian tube cancer) OR unsuitable for debulking surgery” (NHS, 2017).  

Some small-molecule antiangiogenic drugs have now entered trials, including the 

tyrosine kinase inhibitors pazopanib and cediranib. Pazopanib targets VEGF and 

platelet-derived growth factor (PDGF) receptors and c-Kit, and cediranib targets 

VEGFR1-3 (Markowska et al., 2017). Both drugs have been shown to increase 

progression-free survival (PFS) in patients with recurrent OC when given in 
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combination with standard treatment, although toxic side effects have been 

noted (Pignata et al., 2015; Ledermann et al., 2016; Reinthaller, 2016; Dinkic et 

al., 2017). In addition to these, the fusion protein trebananib has also shown 

success in phase III trials (Monk et al., 2014). Trebananib works by binding to the 

angiogenic signalling proteins Ang1 and Ang2, which inhibits their ability to bind 

and activate the Tie2 receptor. This offers an alternative to VEGF-dependent 

pathway blockers, to which tumours often become unresponsive (Mitamura et 

al., 2017). A recent meta-analysis has solidified the evidence that anti-

angiogenic drugs can improve PFS in OC, with bevacizumab and trebananib also 

showing an improvement in overall survival (Yi et al., 2017). 

1.1.7.2 PARP inhibitors 

For patients with germline BRCA1 and BRCA2 mutations, poly(ADP-ribose) 

polymerase (PARP) inhibitors have now entered routine clinical practice. The 

PARP family encompasses 17 proteins, of which PARP1 and PARP2 are known to 

be involved in DNA repair. In cell lines with competent DNA damage responses, 

DNA repair can be carried out by one of several pathways. The BRCA proteins are 

involved in promoting the homologous recombination (HR) pathway in response 

to double strand breaks (DSBs). HR can become defective in BRCA-mutated 

individuals, which increases cellular reliance on alternative, overlapping 

pathways, such as non-homologous end-joining and single strand break (SSB) 

repair, mediated by PARP. PARP inhibition therefore reduces the cell’s ability to 

rely on redundancy, and leads to an accumulation of lethal DNA damage (Yap et 

al., 2011).  

Olaparib was the first PARP inhibitor to be approved by both the FDA and EMA in 

2014 following data from two phase II clinical trials showing that olaparib 

maintenance therapy significantly prolonged PFS survival, compared with 

placebo, especially in patients with BRCA-mutated OC (Ledermann et al., 2012, 

2014). Olaparib is also under investigation for combination with chemotherapy. A 

phase II trial showed that adding olaparib maintenance treatment following 

carboplatin and paclitaxel therapy increased PFS (Oza, Cibula, et al., 2015). The 

ongoing phase III SOLO3 trial also aims to assess the efficacy of olaparib as an 

alternative to chemotherapy in BRCA-mutated patients with recurrent OC who 
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have failed two or more lines of chemotherapy (NCT02282020) whilst SOLO1 

assesses the efficacy of olaparib in first-line treatment in patients with germline 

BRCA1/2 mutations. 

The two other PARP inhibitors that have been well-studied in OC are niraparib 

and rucaparib. Both drugs are orally taken and inhibit PARP1 and PARP2, with 

rucaparib also inhibiting PARP3. Niraparib has shown increased PFS in platinum-

sensitive OC regardless of BRCA status, although those with BRCA deficiency see 

a greater benefit (Mirza et al., 2016). This study lead to approval of niraparib for 

maintenance therapy in patients with recurrent OC with at least a partial 

response to platinum by both the FDA and EMA in 2017. The efficacy of rucaparib 

has been proven in the ARIEL trials (NCT01891344, NCT01968213, NCT02855944), 

these studies have shown that rucaparib treatment improves PFS when used as a 

maintenance therapy, with BRCA-mutated and homologous recombination 

deficient patients seeing the greatest benefit (Coleman et al., 2017; Swisher et 

al., 2017). These studies have also helped show how loss of heterozygosity may 

be used to identify patients with BRCA wild-type platinum-sensitive OCs who 

might benefit from rucaparib. 

1.1.7.3 Immune Checkpoint Inhibitors 

Ovarian tumours can present several mechanisms of immune evasion (as 

discussed earlier), which makes immunotherapy a valid line of investigation. 

Although a recent meta-analysis on six different studies showed that 

immunotherapy gave no significant clinical benefit (Alipour et al., 2016), certain 

subsets of immunotherapy, such as immune checkpoint inhibitors, are beginning 

to show promise (Gaillard, Secord and Monk, 2016). 

Checkpoint proteins, such as cytotoxic T-lymphocyte associated protein 4 (CTLA-

4) and programmed cell death protein 1 (PD-1), function to protect the body 

against autoimmune activity on “self” tissues by attenuating T cell function 

(Gaillard, Secord and Monk, 2016). These proteins are often upregulated in 

cancer, with PD-1 expression shown to be negatively correlated with clinical 

outcome in OC (Hamanishi et al., 2007). PD-1 is a cell surface receptor that 

becomes active when bound to the corresponding ligands PD-L1 and PD-L2 
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Several antibodies specific for CTLA-4, PD-1 or its ligands are currently in early 

development for use against OC.  

Many checkpoint inhibitors are already approved for use in other cancers, which 

provides evidence for their safety. The majority of these therapies target PD-1 

(pembrolizumab, nivolumab) or its ligands (durvalumab, atezolizumab, 

avelumab), with ipilimumab available for inhibition of CTLA-4 (Gaillard, Secord 

and Monk, 2016). The earliest trial using checkpoint inhibitors in OC was 

performed in 2015 with nivolumab for patients with platinum-resistant OC 

(Hamanishi et al., 2015). In this phase II study, out of 20 patients, 40% 

experienced adverse events, with 10% experiencing severe events. While overall 

response was modest at 15%, this trial still represents a promising start for these 

treatments. Similar results were seen in a phase Ib, non-randomized, 

multicohort study for pembrolizumab in PD-L1-positive tumours, with objective 

response rate of 11.5% (Varga et al., 2015). 

1.1.7.4 Metformin 

The anti-diabetic drug metformin has recently gained some attention for its 

proposed actions against cancer stem cells in OC. A study by Dilokthornsakul et 

al. (2013) showed that metformin significantly decreased the incidence of OC in 

type 2 diabetic patients. Pre-clinical studies show a potential anti-tumour and 

anti-proliferative effect of metformin in OC cells (Cantrell et al., 2010; Rattan 

et al., 2011). Several phase Ib/II studies are now in progress in order to assess 

whether addition of metformin to standard carboplatin/paclitaxel therapy yields 

clinical benefit (NCT02312661, NCT02437812, NCT01579812, NCT02122185). 

1.2 Oncolytic Virotherapy 

1.2.1 Introduction 

Oncolytic viruses (OVs) are replication competent viruses that are able to infect, 

replicate selectively within, and kill malignant cells, whilst leaving healthy cells 

unharmed (Russell, Peng and Bell, 2012). During infection, new, mature virions 

are produced that can go on to infect neighbouring cells. This propagation of the 

therapeutic effect makes OVs unique to other forms of cancer treatment (Figure 
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1.3). Viruses also offer many other benefits that make them desirable tools for 

cancer therapy, such as the ability to exhibit tropism for particular cell types, 

high genetic manipulability and ability to engage the immune system.  

 

 

Figure 1.3 Oncolytic virotherapy concept.  Oncolytic viruses (OVs) are replication competent viruses that 
can infect cancer cells selectively. Viruses may be able to infect healthy cells successfully, but productive 
infection will always be impaired. This property allows OVs to continue infecting nearby cancer cells, thereby 
propagating the therapeutic effect. 

OVs exploit many viral properties that allow for targeting of appropriate cells. 

Some human viruses have natural tropism for tissues in which they normally 

cause disease, for example, human immunodeficiency virus (HIV), which 

naturally infects CD4+ T-lymphocytes and can be used as a treatment for T-cell 

specific lymphoblastic leukaemias (Jeeninga et al., 2005, 2006). Some viruses, 

including Newcastle disease virus (NDV), measles virus and reovirus, have a 

natural preference for replication within cancer cells, as many of the properties 

that promote successful tumorigenesis are also beneficial for viral replication. 

These include greater production of protein and replication of DNA, as well as 

cell cycle checkpoint abnormalities.  
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Viruses can be modified to infect cancerous tissues by making infection 

dependent on the presence of cancer-specific markers. Alteration of viral 

binding proteins represent one example of this, such as in measles virus where 

the haemagglutinin protein was modified, allowing it to bind epidermal growth 

factor receptor (EGFR) or insulin-like growth factor receptor (IGFR) (Schneider 

et al., 2000). Viral replication can also be limited to certain tissues by placing 

viral genes under the control of tissue or cancer-specific promoters. This has 

been done with the adenovirus E1A protein, which was placed under control of 

the prostate-specific antigen (PSA) promoter, which meant that replication was 

only possible in prostate tumours (Y. Yang et al., 2014). The same effect was 

achieved in HSV-1 by placing the essential viral gene ICP4 under translational 

control of the promoter for survivin, which is a commonly upregulated gene in 

glioma (Delwar et al., 2016). 

1.2.2 Oncolytic Viruses in Clinical Development 

There are currently three OVs that have gained clinical approval in various 

countries. The first of these was an unmodified strain of ECHO-7, known as 

Rigvir, which had been adapted to grow in melanoma cells. Rigvir was first 

approved for use in Latvia for melanoma therapy in 2004, and later approved for 

use in Georgia in 2015 and Armenia in 2016 (Chumakov et al., 2012).  

The second OV to be approved was H101, a strain of adenovirus that is deleted 

in the gene E1B55k. This virus has the same genetic make-up as dl1520 (ONYX-

015), which was created independently. H101 has been approved in China for 

treatment of head and neck cancer since 2005 following a phase III randomized 

trial that showed intratumoral injection of H101 in combination with cisplatin 

plus 5-flurouracil chemotherapy gave a significantly higher patient response rate 

than chemotherapy alone (Xia et al., 2004; Garber, 2006). During normal 

infection, E1B-55k has many functions, including blocking p53 function; this has 

the effect of blocking apoptosis and enabling the continuation of cell cycling 

(Debbas and White, 1993). Removing this gene from adenovirus was initially 

thought prevent the virus from replicating in p53 wild-type cells, which were 

thus able to curtail infection (Harada and Berk, 1999; Nemunaitis et al., 2000). 

However, it is now apparent that the tumour selectivity of viruses lacking E1B 
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55K stems from the loss of late viral RNA export that occurs in normal cells but 

remains intact in malignant cells (O’Shea et al., 2004).  

The third and most recently approved treatment is Talimogene Laherparepvec 

(T-VEC; also known as Imlygic, previously OncovexGM-CSF). T-VEC is a multi-gene 

modified version of the JS-1 strain of HSV-1 that was approved by the US FDA in 

2015 and by the EMA in 2016. T-VEC will be discussed in more detail later. 

In addition to those viruses with full clinical approval, several other OVs have 

been granted orphan drug designation by the FDA (Table 1.1). These are agents 

that are granted special approval based on their potential to treat rare 

disorders. Reolysin is the T3D strain of reovirus, an RNA virus that naturally 

replicates preferentially in transformed cells (Hashiro, Loh and Yau, 1977; 

Duncan, Stanish and Cox, 1978), and is currently the only wild-type virus in late 

phase clinical development. A phase III trial in head and neck cancer comparing 

Reolysin plus carboplatin and paclitaxel chemotherapy with chemotherapy alone 

has recently been completed (NCT01166542). While final results are not yet 

available, preliminary results have shown significantly higher overall survival in 

the groups given Reolysin (Gong et al., 2016). 
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Table 1.1: Nationally approved and orphan drug designated oncolytic viruses 

Agent Virus Gene 

modification 

Company Disease Status 

Oncolytic viruses granted full clinical approval: 

T-VEC 
(Imlygic, 
talimogen
e 
laherpare
pvec) 

Herpes 
Simplex 
Virus-1 

γ34.5, α47 
deletion. GM-CSF 
insertion 

Amgen Inoperable stage 
IIIb to IV melanoma 

Approved by 
the US FDA in 
2015 and by 
the EMA in 
2016 

H101 
(Oncorine) 

Adenovirus E1B-55k gene 
deletion 

Shanghai 
Sunway Biotech 

Head and neck 
cancer 

Approved by 
the China 
SFDA in 2005 

Rigvir ECHO-7 None RIGVIR Melanoma Approved in 
Latvia in 
2004, Georgia 
in 2015 and 
Armenia in 
2016 

Oncolytic viruses granted FDA orphan drug designation: 

G207 Herpes 
simplex 
virus-1 

γ34.5, UL39 
deletion 

Aettis, Inc. Glioma Designation 
since 2002 

NTX-010 Seneca 
Valley 
Virus 

None Neotropix Neuroendocrine 
tumours 

Designation 
since 2008 

DNX-2401 Adenovirus Partial E1A deletion 
in Rb binding 
domain. RGD-4C 
insertion 

DNAtrix Glioma Designation 
since 2014 

JX-594 Vaccinia 
Virus 

Thymidine kinase 
deletion. GM-CSF 
insertion, LacZ 
insertion 

Jennerex 
Biotherapeutics 
Inc. 

Hepatocellular 
carcinoma 

Designation 
since 2013 

ONCOS-
102 

Adenovirus Δ24 deletion. GM-
CSF insertion, 
serotype 3 AV knob 
protein 
replacement 

Oncos 
therapeutics 

Malignant 
mesothelioma, 
glioma and ovarian 
cancer 

Designation 
since 2013 

Reolysin Reovirus None Oncolytics 
Biotech Inc. 

Glioma, fallopian 
tube cancer, gastric 
cancer, ovarian 
cancer, pancreatic 
cancer 

Designation 
since 2015 

 

1.2.3 Oncolytic Viruses and Tumour Immunology 

Although direct lysis of tumour cells by OVs does contribute to the overall anti-

tumour effect, there is now substantial evidence that targeted infection of 

tumour cells with OVs has the potential to generate potent anti-tumour immune 

responses, both innate and adaptive. Virus-induced death has the benefit of 

combining the release and subsequent presentation of cellular damage-
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associated molecular patterns (DAMPs) and tumour-associated antigens (TAAs) 

with virus-derived pathogen-associated molecular patterns (PAMPs). This 

provides the immune system with an array of potential antigens that can assist 

in mediating a sustained anti-tumour response (de Gruijl, Janssen and van 

Beusechem, 2015). The full effects of OVs on the immune system are 

summarised in Figure 1.4. 

As mentioned earlier, the immune cells that contribute to formation of the TME 

can be broadly categorised as either immunosuppressive or immunostimulatory. 

Suppressive phenotypes include Tregs, MDSCs, and M2-macrophages, while CD8+ 

T cells, NK cells, DCs, and M1-macrophages all work to elicit an anti-tumour 

immune response. OVs can therefore mediate this switch in tumour 

microenvironment by inhibiting and depleting Treg cells and MDSCs, converting 

macrophage phenotypes, maturing DCs and recruiting NK and CD8+ T cells. This 

can be achieved by the nature of OV replication, or by additional arming of OVs 

with immunostimulatory genes.  
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Figure 1.4 Immune modulation of the tumour microenvironment by oncolytic viruses. OVs have been 
consistently shown to be able to induce a beneficial modulation of the immune microenvironment. Beneficial 
modulations include inhibition or depletion of Tregs and MDSCs, conversion of TAMs from an M2 to M1 
phenotype, promoting DC maturation and recruitment of effector NK and T cells. OVs can be armed to 
enhance this modulation with various anti-tumour and proinflammatory molecules such as antibodies, 
cytokines or BiTEs. Figure taken from Expert Opinion on Biological Therapy 2015 15 959-971. 

 

Numerous beneficial TME changes have been demonstrated with various OVs. 

NDV was shown to lead to an infiltration of CD8+ and CD4+ effector cells in a 

murine model of B16 melanoma when injected intratumorally (Zamarin et al., 

2014). This effect was extended to distant tumour sites with the addition of 

CTLA-4 blockade. Mice were also significantly more protected against 

subsequent tumour challenge. Analysis of tumours from nude (T-cell defective) 

mice after incubation with The Coxsackie virus strain B3 (CVB3)showed 

accumulation of macrophages, DCs, granulocytes and NK cells, which are 

important for the outcome of the treatment (Miyamoto et al., 2012). HSV-1 

enhanced systemic tumour immunity for squamous cell carcinoma (Meshii et al., 

2013). 
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OVs can be armed with various anti-tumour cytokines in order to help guide the 

immune response. For instance, Ad5 strains expressing IFN-α showed increased 

tumour growth suppression and increases in survival in a hamster model of 

pancreatic cancer (LaRocca et al., 2015). Addition of GM-CSF is a commonly-

used method of TME modulation. In addition to the previously mentioned T-VEC, 

strains of VV and MV containing a GM-CSF transgene have also shown enhanced 

killing over non-GM-CSF variants as well as an increase in neutrophil and 

macrophage (VV only) infiltration (Grote, Cattaneo and Fielding, 2003; 

Parviainen et al., 2015). Other examples of useful cytokines include IL-2, IL-12 

and IL-18, whose inclusion within a number of oHSV vectors leads to increases in 

both anti-tumour efficacy and CD8+ T cell infiltration and activation (Carew et 

al., 2001; Fukuhara et al., 2005; Derubertis et al., 2007).  

One hallmark of an immunosuppressive TME is the dampening of major 

histocompatibility complex (MHC) class I and II presentation of TAAs by both 

tumour cells and relevant antigen presenting cells (APCs). Several OVs, including 

VV, reovirus and MV have displayed an ability to promote DC maturation and 

subsequent presentation of antigens (Greiner et al., 2006; Gujar et al., 2010; 

Guillerme et al., 2013). This process occurred in combination with a release of 

IFN-α in the case of MV and reovirus, as well as an additional release of IL-1β, IL-

6, IL-12p40/70, IL-17, CD30L, CCL11, GM-CSF, KC, MCP-1, MCP-5, M-CSF, MIG, 

MIP-1α, CCL5, TNF-α, VCAM-1, VSGF, CXCL-16, AXL, and MCP-2 for reovirus.  

OVs are also useful in that they can utilise the bystander effect to kill cells not 

directly infected by them. One interesting example of this is via the use of 

bispecific T cell engagers (BiTEs). BiTEs consist of two linked single-chain 

variable antibody fragments (scFvs). The fragments have specificity for both the 

T cell receptor-signalling complex CD3 and a particular TAA (Iwahori et al., 

2015). This has the effect of linking T cells with tumour cells and mediating their 

tumour-specific activation. BiTEs can be expressed by OVs within tumours to 

accelerate the therapeutic effect (Scott et al., 2018). Another proposed benefit 

of arming OVs with BiTEs is that BiTEs may act as immunological “decoys”, by 

redirecting the immune response away from virus infected cells thereby 

preventing premature clearance of virus. The first virus to be armed with a BiTE 

was a double-tk-deleted strain of VV, which was equipped with a BiTE targeting 
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EphA2 (Yu et al., 2014). Other examples include an EGFR-targeting BiTE-

expressing adenovirus (Fajardo et al., 2017) and measles viruses (MV) encoding 

CEA- and CD20-targeting BiTEs (Speck et al., 2018). 

1.2.4 Oncolytic Viruses and Clinical Ovarian Cancer Studies 

There have been numerous studies investigating the effect of various OVs in 

ovarian cancer (Hartkopf et al., 2011; S. Li et al., 2012). In terms of clinical 

trials, there are three ongoing phase I/II studies for the use of MV. Two of these 

are exploring MV which possesses a gene encoding thyroidal sodium iodide 

symporter (NIS; NCT02364713 and NCT02068794), while one is investigating the 

addition of carcinoembryonic antigen (CEA; NCT00408590). No results are 

available yet for these studies. Other studies with VV stains have been started. 

One trial investigating the TK-deleted, GM-CSF-expressing strain JX-549 was 

withdrawn before completion (NCT02017678). Other phase I/II trials with GL-

ONC1 – a strain possessing TK and haemagglutinin modifications, and p53MVA – a 

strain possessing a p53 insertion are both being investigated in patients with 

recurrent ovarian cancer (NCT02759588 and NCT02275039). In this case, the 

wild-type p53 expressed by p53MVA acts to elicit an immune response specific to 

cells expressing high levels of aberrant p53 (Song et al., 2007, 2011).  

Several adenovirus-based vectors are also in early clinical development. 

Enadenotucirev is a chimera consisting of Ad11p/Ad3 strains being investigated 

in patients with recurrent platinum-resistant OC (NCT02028117). 

Ad5.SSTR/TK.RGD is a virus possessing a TK insertion, which acts as a suicide 

gene, priming it for co-treatment with the drug ganciclovir (Kim et al., 2012). A 

phase I study for this virus in a range of gynaecological cancers demonstrated its 

safety and efficacy (NCT00964756). In addition to this, disease was stabilised in 

several patients. Trials testing various replication-defective adenoviruses 

expressing wild-type p53 have been performed with little success (G.-X. Chen et 

al., 2014). In these instances, viruses are designed more to act as gene-delivery 

vectors, aiming to restore p53 function to tumours. Ad5Delta24RGD contains 

both an E1A deletion and an addition of an integrin binding RGD-4C motif into 

the HI loop which enables it to bind integrins αvβ3 and αvβ5, thereby enhancing 



43 

 

its infectivity (Bauerschmitz et al., 2002). This virus has undergone phase I 

testing for OC and shown to be well tolerated (NCT00562003). 

Finally, there is one current phase II study assessing reovirus in combination with 

paclitaxel in patients with recurrent or persistent ovarian epithelial, fallopian 

tube, or primary peritoneal cancer (NCT01199263). 

1.3 Herpes Simplex Virus 1 

1.3.1 Introduction and History 

Descriptions of genital lesions resembling herpes have been found as early as 

3000 B.C. It was Hippocrates, however, who first used the Greek word herpes to 

describe certain bodily lesions. Literally meaning to “creep and crawl”, this 

word may well have been used to describe lesions that had resulted from 

numerous viral and non-viral sources. This trend continued throughout most of 

early history. It was Emile Vidal, in 1893, who was the first to recognise that 

genital herpes was infectious in nature. This discovery coincided with the 

discovery of viruses by Dimitri Ivanovski, who identified tobacco mosaic virus as 

a filterable infectious agent, far smaller than bacteria.  

By 1913, Wilhelm Grüter had shown that herpes could be transmitted from 

human to rabbit and back again, forming the basis of the Grüter test, which 

became standard practice for diagnosis. For this, Grüter is widely sourced as the 

first to isolate HSV. Other milestones during the 20th century include the 

discovery that HSV travels through neurons by Ernest Goodpasture in 1925, the 

establishment of the theory of latency by Frank MacFarlane Burnet in 1939, and 

development of the first antiviral drug, acyclovir, in 1978.  

Herpes viruses are now classified under the viral family Herpesviridae. There are 

nine herpesviruses that are known to infect humans, each having a “human-

herpesvirus” designation 1-9 (Table 1.2). HSV-1 (HHV-1) occupies the subfamily 

known as alphaherpesviridae, along with HSV-2 and VZV (Davison et al., 2009). A 

list of all currently known human herpes virus species can be found in Table 1.2 

below. 
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Table 1.2: Human herpes virus species 

Human 
Herpesvirus 
Number 

Other Name Subfamily Major Associated 
Diseases 

HHV-1 Herpes simplex virus-1 
(HSV-1) 

Alpha Cold sores, genital warts 

HHV-2 Herpes simplex virus-2 
(HSV-2) 

Alpha Genital warts, cold sores 

HHV-3 Varicella-Zoster Virus 
(VZV)  

Alpha Chicken pox, shingles 

HHV-4 Epstein-Barr Virus (EBV) Gamma Infectious mononucleosis 

HHV-5 Human Cytomegalovirus 
(HCMV) 

Beta Infectious mononucleosis, 
pneumonia 

HHV-6A Human Herpes Virus-6A Beta Linked to CNS disorders 

HHV-6B Human Herpes Virus-6B Beta Exanthema subitum 

HHV-7 Human Herpes Virus-7 Beta Exanthema subitum, acute 
febrile respiratory disease 

HHV-8 Kaposi’s Sarcoma-
associated Virus (KSHV) 

Gamma Kaposi’s Sarcoma and 
Multicentric Castleman’s disease 

 

Symptoms of HSV-1 infection consist of watery blisters forming on the skin or 

mucous membranes of the mouth or genitals, often preceded by a tingly or itchy 

sensation; lesions heal with a characteristic herpetic scab. These symptoms 

often go by the common names of ‘cold sores’, ‘genital herpes’, ‘herpes’ or 

‘genital warts’. Disease progression of herpes can be complicated by the latency 

stage of the virus life cycle. HSV-1 and HSV-2 often lie dormant, primarily in the 

ganglia of the trigeminal nerve in the face and in the sacral nerve in the pelvis. 

Sporadic re-emergence of the virus leads to ‘outbreaks’ and allows the virus to 

shed. HSV infection can be dangerous for immunocompromised people, such as 

those with AIDS or those undergoing chemotherapy. Rarely, HSV-1 infection can 

lead to severe disease such as encephalitis or keratitis.  

1.3.2 Viral Structure 

All Herpesviruses consist structurally of four main components: a core; capsid; 

tegument; and envelope (Figure 1.5). The core is a tightly-wound toroid 

structure of linear double-stranded DNA, which serves as the virus’s genome. 

The capsid is an icosahedral protein structure surrounding the core, with a T=16 

symmetry, consisting of 162 capsomeres. The envelope is a lipid bi-layer which 
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surrounds the capsid and contains several key proteins embedded within it, 

many of which act to mediate viral cell entry.  

 

Figure 1.5 Simplified structure of Herpesvirus virion.  All herpesvirus species consist of a double-stranded 
DNA genome, complexed within an icosahedral protein capsid. The viral tegument is a component that is 
unique to herpesviruses and exists as a layer between the capsid and the envelope. The tegument contains 
many proteins that assist in early entry processes within the life-cycle. The envelope contains many 
embedded glycoproteins that mainly assist in mediating viral entry. 

 

Between the envelope and the capsid exists a semi-structured, proteinaceous 

layer called the tegument. So far, over 20 tegument proteins have been 

identified, with various roles mediating viral entry, replication and assembly. 

The largest tegument protein is VP1/2, which plays a key role in mediating 

capsid transport along microtubules (Sandbaumhüter et al., 2013). Another 

tegument protein, VP16, is key in inducing transcription of immediate-early viral 

genes, and is proposed to act as a central tegument organisation protein 

(Vittone et al., 2005). Viral particles tend to vary between 155 and 240 nm in 

diameter, with the capsid itself being 125 nm in diameter (Zhou et al., 2000).  

1.3.3 Viral Genome Organisation 

The full genome sequence of HSV-1 strain 17 was first completed in 1988, which 

found the length to be 152,260 bp with a G+C content of 68.3% (McGeoch et al., 
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1988). The current official length, last updated in 2016, stands at 152,222 bp 

(GenBank sequence accession number NC_001806). The HSV genome consists of 

two covalently-linked sections, known as the long (L) and short (S) regions. Each 

of these regions consists primarily of a central unique portion (UL and Us 

respectively) that is flanked by inverted repeats. These repeats are labelled “a-

c”, and arranged in a way so that ab and b’a’ flank UL and a’c’ and ca flank Us 

(Sheldrick and Berthelot, 1975; Wadsworth, Jacob and Roizman, 1975). The 

number of a repeats can vary between strains, as well as the number of 

repeated sub-sequences within each a, making the full genome length variable. 

The L and S sections of the genome can be found inverted relative to one 

another and therefore be found in four different configurations. Each 

configuration is found in roughly equimolar concentrations in any typical unit-

length DNA population in wild-type virus-infected cells (Hayward et al., 1975). 

 

Figure 1.6 Map of the HSV-1 genome.  Schematic representation identifies the key components of the HSV-
1 genome. The genome consists of two main segments, L and S, which each contain repeat (RL, RS) and 
unique (UL, US) regions. Genes are colour-coded by function, with the locations of some key genes shown 
above. Image taken from Gene Therapy 12, S170–S177 (2005). 

 

There are currently >90 unique transcriptional units identified within the HSV-1 

genome, with at least 80 of these coding for protein, and the vast majority of 

those coding for only a single protein. Therefore, the density of genes is roughly 

one gene per 1.5–2 kb of HSV DNA (McGeoch, Rixon and Davison, 2006). Genes 

are categorised broadly into either immediate early (α), early (β) or late (γ) 

genes (Honess and Roizman, 1975). The immediate early genes are typically 

involved in regulating expression of the early and late genes; early genes are 

responsible for regulating nucleotide metabolism, DNA synthesis and some 

surface glycoproteins; and late genes are almost entirely involved in producing 
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structural components of the virion. The genes α0 and α4 are found within the 

inverted repeat regions and so are present in two copies. β and γ genes are 

almost entirely within the unique regions, with the exceptions of γ34.5 and ORF 

P. Most genes have their own promoter, and introns occur in only a minority of 

genes. As an alphaherpesvirus, HSV-1 has a lower proportion of intron-containing 

genes than viruses of other subfamilies. A schematic overview of the structure of 

the HSV-1 genome is shown in Figure 1.6. 

While the majority of the HSV-1 genome contains sequences relating to protein-

coding genes, there are several important regions which code for RNAs that have 

roles outside of protein translation. The most recognised of these are known as 

the latency-associated transcripts (LATs) (Phelan, Barrozo and Bloom, 2017). 

LATs are long RNA fragments that have been strongly associated with inducing 

and maintaining the latency stage of HSV infection. However, their exact 

mechanisms are still under debate. Within the LAT region, several microRNA 

(miRNA) molecules have been identified, some of which have been shown to be 

important in the regulation of viral and host gene expression (Umbach et al., 

2008; Jurak et al., 2010; Kramer et al., 2011). 

1.3.4 Viral Life Cycle 

1.3.4.1 Cell Entry 

HSV-1 mediates cell entry via a series of direct interactions between envelope-

embedded proteins within the virion and extracellular membrane proteins. 

These interactions work to mediate fusion of the viral envelope with the cell 

membrane in order to create a channel through which the viral tegument 

proteins and capsid can enter the cytoplasm. Three viral envelope glycoproteins 

are essential for cellular entry, which are called gD, gB and the heterodimer 

gHgL (Turner et al., 1998). In addition to this, gC has been shown to contribute 

to cell entry but is not essential. The cellular membrane proteins that are 

responsible for permitting HSV-1 entry are 3-O sulphated heparan sulphate (3-O 

HS), herpesvirus entry mediator (HVEM) and nectin-1/2.   

The entry process is initiated when gC and/or gB encounter heparan sulphate 

proteoglycans (HSPGs), which are most densely found on filopodia. If gC is not 
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present, then overall binding efficacy is reduced, but still functional. This initial 

process serves to hold the virion in place, allowing fusion to follow. Fusion can 

occur either on the exterior of the membrane or once the virion has been 

internalised within an endosome, with the likelihood of each dependent on cell 

type (Clement et al., 2006). The fusion process is initiated by gD binding to the 

receptors above with gB and gHgL acting as fusogens to mediate the fusion of 

the viral and cellular membranes. On a molecular level, binding of gD to a 

receptor causes a conformational change in gD, which in turn alters the 

conformation of the gHgL complex, increasing its affinity for gB (Atanasiu et al., 

2007). The protein gB contains a spike region, which consists of a trimer of 

peptides, each possessing a movable arm region and a lipophilic fusion loop. The 

fusion loops are initially kept away from the outside of the virion by hydrogen 

bonds. When the affinity of gHgL for gB is increased, these hydrogen bonds are 

broken, allowing the arms to move and insert the fusion loops into the 

membrane of the cell (Clarke, 2015). Once the arms of gB are inserted, the 

membranes fuse, which allows the tegument proteins and capsid to enter the 

cell.  

1.3.4.2 Nuclear Trafficking   

Immediately after entry, the viral capsid becomes associated with a microtubule 

(MT)-dependent, minus end-directed motor, dynein (Sodeik, Ebersold and 

Helenius, 1997). This is the same process that HSV utilises in neurons, which 

allows it to travel impressive distances in both directions. The prevailing theory 

states that proteins of the outer tegument become detached from the capsid in 

order for it to bind microtubules, requiring the inner tegument to remain in 

place (Radtke et al., 2010). Once the capsid reaches the centre of the cell, it 

docks with the nuclear pore complex (NPC) in a specific orientation, with one of 

its penton vertices facing towards the nuclear pore (Ojala et al., 2000). Docking 

involves binding of capsid proteins to the NPC protein Nup358 and possibly 

Nup214 in a manner that is dependent on importin-β (Copeland, Newcomb and 

Brown, 2009). 

Uncoating of the viral DNA occurs through the capsid portal, which is formed by 

12 copies of tegument protein UL6, allowing the DNA to travel through the 



49 

 

nuclear pore and into the nucleus (Newcomb et al., 2001). The exact mechanism 

of this process is unclear, but it is thought that DNA is propelled through the NPC 

by pressure forces within the capsid (Liashkovich et al., 2011). It also seems that 

uncoating is somewhat dependent on cleavage of the viral protein VP1/2 and an 

interaction between UL25 and Nup214 (Rode et al., 2011).  

1.3.4.3 Replication 

Transcription, translation, replication and assembly all take place within the 

nucleus – during which, several large-scale structural changes take place. These 

include disruption of nucleolus, chromatin condensation and destruction of the 

nuclear lamina (Simpson-Holley et al., 2005). Cellular processes become 

inhibited such as transcription (Jenkins and Spencer, 2001), splicing (Hardy and 

Sandri-Goldin, 1994), protein synthesis (Matis and Kúdelová, 2001) and cellular 

immune responses (Neumann et al., 1997). 

Immediate early genes are the first to be transcribed using the host RNA-

polymerase II. This process requires the tegument protein VP16, which forms a 

complex along with the cellular Oct-1, HCF-1, LSD1, and the CLOCK histone 

acetyl transferase (Roizman, Zhou and Du, 2011). This complex works by 

selectively demethylating histones present in the α region of the HSV genome, 

with similar processes taking place for the subsequent β and γ genes. The 

immediate early genes are: ICP0, ICP4, ICP22, ICP27, ICP47, and US1.5. Many of 

these have roles in transcribing the early and late genes, and some are involved 

in controlling cellular processes. ICP0 acts as a ubiquitin-ligase, and can tag 

cellular proteins for destruction such as interferon-inducible protein 16 (IFI16), 

which helps the virus evade the immune response (Orzalli, DeLuca and Knipe, 

2012). 

The β gene proteins are involved in viral genome replication, regulation of 

nucleotide metabolism, suppression of early α genes, and activation of late γ 

gene. Examples of these include UL30, which acts as the viral DNA polymerase; 

UL23, a thymidine kinase which catalyses the formation of the nucleotide 

thymine; and US3, which is a multifunctional ser/thr kinase found to have roles 
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in apoptosis suppression, nuclear membrane rearrangement and capsid egress 

(Leopardi, Van Sant and Roizman, 1997; Mou, Wills and Baines, 2009).  

After β genes become translated, replication of the viral genome can begin. 

There are two origin of replication sites within Us (oriS) and one within UL (oriL), 

where replication is initiated by ICP8 and UL9. ICP8 binds to free ssDNA, while 

UL9 unwinds it further. Following this, the proteins UL5, UL8 and UL52 bind and 

initiate their helicase-primase activities. UL30, the polymerase, copies the 

genome with help from a processivity factor, UL42. Some cellular replication 

proteins such as DNA ligase and topoisomerase II are also involved in the process, 

as well as the cellular chaperone protein heat-shock protein (HSP)90 (Weller and 

Coen, 2012). The viral proteins that are responsible for nucleotide metabolism 

are: thymidine kinase (UL23), ribonucleotide reductase (RR; UL39, UL40), 

deoxyuridine triphosphatase (UL50), uracil N-glycosylase (UL2), and alkaline 

nuclease (UL12). These proteins are important for viral DNA synthesis and repair 

because of viral inhibition of the corresponding cellular isoforms (Weller and 

Coen, 2012). 

Genome replication involves first forming concatemeric DNA, which is 

subsequently divided into individual genomes. This was initially thought to be 

due to a simple rolling circle mechanism of replication, but more recent 

evidence suggests that this may not be possible. Numerous studies have shown 

that cellular DNA recombination mechanisms are highly active during HSV 

replication (Dutch, Bianchi and Lehman, 1995; Fu, Wang and Zhang, 2002) and 

may be a necessary part of replication and concatemerisation.  

1.3.4.4 Assembly and Egress 

Once replication has started, levels of γ genes begin to increase. These genes 

primarily code for structural proteins, such as the capsid proteins (UL38, UL35, 

UL18, UL19) and envelope glycoproteins (UL1, UL10, UL22, UL27, UL44, UL49A, 

UL53, US4, US6, US7, US8). In addition to these, there are also an array of 

tegument proteins and regulators of cellular function that are expressed within 

this group. One of the best-characterised is ICP34.5, which is coded for by the 
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gene RL1. ICP34.5 is a key protein involved in the inhibition of the cellular 

immune response and will be discussed in greater detail later.  

Once the capsid proteins have been expressed, they begin to assemble into fully-

formed capsids, entirely within the nucleus. Genomes are cleaved from their 

concatemers and packaged into the assembled capsids. From here, capsids 

travel across the nuclear membrane in a mechanism that is dependent on UL36 

and UL37 (Sandbaumhüter et al., 2013). The dual envelopment model suggests 

that virions first bud into the perinuclear space, which leads to the formation of 

a temporary envelope. Capsids then lose this primary envelope as they travel 

across the outer nuclear membrane into the cytoplasm. Tegument proteins and 

final envelopes are acquired by the budding of capsids into specialised vesicles 

which are thought to be produced by the Golgi or trans-Golgi network. This 

results in a double-enveloped capsid, with the inner membrane decorated with 

envelope proteins. The virion is then exocytosed by fusion of the outer 

membrane with the plasma membrane, leaving an external single-membraned 

particle (Owen, Crump and Graham, 2015). 

A summary of all the major events during the HSV-1 life cycle is shown in Figure 

1.7. 
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Figure 1.7 Life cycle of HSV-1.  The life cycle of HSV-1 begins with attachment and fusion at the surface 
mediated by several HSV envelope glycoproteins. The virion uncoats, and the capsid is shuttled to the 
nucleus along microtubules. DNA is shuttled into the nucleus via nuclear pores and proteins are translated 
beginning with the immediate early, followed by early and then late genes. Capsid assembly occurs in the 
nucleus, with the capsid then traversing the nuclear membrane before becoming enveloped by the Golgi and 
packaged with tegument and envelope proteins. Virions are either exocytosed or released passively upon 
lysis. Image taken from Elsevier. Murray: Medical Microbiology 7th Edition. 

 

1.3.4.5 Latency 

Latent infection occurs when the virus enters a sensory neuron. It is currently 

thought that the architecture of these cells prevents the virus from entering a 



53 

 

lytic cycle. Selective application of virus to the distal portion of a neuron leads 

to a lower rate of lytic infection than when virus is added to the ganglion 

component (Hafezi et al., 2012). This suggests that the greater distance the 

capsid must travel during neuronal infection affects its capability to infect 

lytically. This may be due to an inefficiency in transporting tegument proteins 

such as VP16 (Luxton et al., 2005), which prevents α genes from being 

transcribed due to histone-mediated epigenetic suppression (Lee, Raja and 

Knipe, 2016). 

During latency, the viral genome resides within the nucleus of the neuronal cell, 

where it becomes organised into nucleosomes (Deshmane and Fraser, 1989). 

Most of the genome is transcriptionally repressed with the exception of the LAT, 

which supresses lytic infection – although the exact mechanisms are still unclear 

(Phelan, Barrozo and Bloom, 2017). Physiological mechanisms can lead to 

cellular stress, which re-animates the virus from latency. Viral particles can 

travel back down the axon microtubules to the distal regions of the nerve and go 

on to shed and infect new cells and hosts. 

1.4 Herpes Simplex Virus 1 as an Oncolytic Agent 

1.4.1 Introduction 

HSV-1 has become a popular agent for use as an oncolytic virus. Despite the 

pathogenicity of the wild type virus, many modified HSV-1 strains have now been 

developed that show high tumour selectivity and overall safety. HSV-1 has 

several characteristics that make it a desirable choice for cancer therapy. First, 

HSV-1 infects almost all cell types, due to the ubiquity of the receptors it uses 

for cell entry (Karasneh and Shukla, 2011). The virus has also been shown to 

have a natural preference for tumour cells due to the changes in receptor 

accessibility that occur during tumorigenesis. For instance, the entry mediator 

nectin-1 is not accessible in most normal cells types due to its presence as a 

component of the adherens junction complex, but becomes more accessible in 

cancer cells with decreased intracellular adherence (Yoon and Spear, 2002; Yu 

et al., 2007).  
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HSV-1 also has a large genome, which includes several redundant genes, making 

modifications and insertions simple. The current standard method for making 

modifications to HSV-1 involves construction of a bacterial artificial chromosome 

(BAC) containing the entire genome, which can be amplified in E.coli and 

modified using standard molecular biology techniques (Bailer et al., 2017). 

Constructing a BAC can be laborious; however, once one has been made for a 

virus of choice, the work need not be repeated. However, methods of mutation 

can also be inefficient and inaccurate. One method that may offer several 

advantages over BACs is CRISPR/Cas9. The Cas9 nuclease can induce targeted 

DNA double-strand breaks, guided by a user-defined ~20 bp guide RNA (gRNA) 

(Sander and Joung, 2014). This enables precise induction of mutations, usually 

small insertions/deletions (indels) that result in a frameshift premature stop 

codon. Alternatively, mutations can be substituted by providing a donor strand 

encoding a specific mis-sense mutation for the cell to repair with using HR. 

There are now a few examples of this technology being utilised for HSV and 

other large viruses (Bi et al., 2014; Suenaga et al., 2014; Lin et al., 2016). 

CRISPR offers a much faster, less laborious and more precise method for inducing 

mutations than BAC-based methods and may soon become the standard of 

practice for certain types of modification. BACs still provide some advantages, 

as they can be combined with helper cell lines or viruses to produce non-

replicating viruses (Bailer et al., 2017). They may also be more efficient for 

large-scale gene insertions or deletions. A comparison summary of the two 

techniques is shown in Figure 1.8. 
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Figure 1.8 Comparison of BAC and CRISPR methods for modification of large viruses. BAC shuttle 
vectors allow for the circularisation of the viral genome. Cells bearing BACs must be selected for before 
isolating the BACs and inserting them into E.coli for amplification and applying modifications through 
homologous recombination or other molecular techniques. Viral production is subsequently induced in 
mammalian cells. CRISPR offers a simpler method for modification, requiring only a single transfection of cells 
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with a CRISPR plasmid, cells are selected for and infected with virus. The genomes of the incoming viruses 
are then selectively modified. 

 

One other benefit of HSV-based oncolytics is the added safety that comes from 

having readily-available antiviral compounds such as acyclovir, in case of 

unexpected negative side-effects (De Clercq, 2004). 

1.4.2 HSV-1716 

Herpes simplex virus-1716 (HSV-1716) is an engineered variant of HSV-1, made 

by modification to the Glasgow strain 17+. HSV-1716 is rendered oncolytic due to 

a 759 base pair deletion in both copies of the RL1 gene, which encodes ICP34.5 

(MacLean et al., 1991) (Figure 1.9). These RL1-deleted HSV variants represented 

the first generation of oncolytic HSV viruses. 

Tumour selectivity of HSV-1716 was initially thought to be determined by 

interaction with the host immune protein kinase R (PKR) pathway. PKR 

recognises cellular double-stranded RNA (a by-product of viral infection) and in 

response, phosphorylates the alpha subunit of eukaryotic initiation factor 2α 

(eIF-2α), inactivating it. This modification has the consequence of preventing 

protein translation within the cell, which includes translation of viral proteins, 

thereby protecting the host from further infection. ICP34.5 serves as one of HSV-

1’s tools for disarming this pathway, binding to and activating both protein 

phosphatase 1α (PP1α) and eIF-2α via the GADD34 homology domain. This 

bridges the two proteins, facilitating the reversion of the eIF-2α phosphorylation 

and allows translation of viral mRNA (He, Gross and Roizman, 1997; Li et al., 

2011). HSV-1 strains deficient in ICP34.5 therefore have impaired replication in 

mon-malignant cell types due to successful inhibition of protein translation by 

the cell. However, in Ras-transformed cells, PKR pathway activity has been 

shown to be inhibited (Mundschau and Faller, 1994), which presents one way in 

which replication of RL1-deleted HSV-1 progresses unimpeded in some tumour 

types. In addition, ICP34.5 binds to Beclin 1 in order to inhibit autophagy (Leib 

et al., 2009; Gobeil and Leib, 2012), a process that is often dampened in 

malignant cells and may contribute to tumorigenesis (Kroemer, Mariño and 

Levine, 2010). Other mechanisms for ICP34.5 involving PI3K signalling (Sarinella 

et al., 2006) and control of TANK-binding kinase 1-mediated signalling, which 
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mediates IRF3 phosphorylation and antiviral genes (Verpooten et al., 2009) have 

been identified. 

 

Figure 1.9 Gene modifications of several oHSV strains.  A large number of modified oHSV strains have 
been developed, possessing mutations that allow for tumour selectivity and, in some cases, enhanced anti-
tumour efficacy. Deletion of the RL1 genes is a common trait among oHSVs due to the resulting attenuation of 
neurovirulence. Deletion of gene promoters can have the effect of reducing or removing gene expression and 
placing genes under other promoters can be used to control expression. A GM-CSF insertion within T-VEC 
helps to promote an anti-tumour immune response. The strains from which oHSVs are derived can also have 
a bearing on specificity and efficacy. 

 

HSV-1716 has been shown to be non-neurovirulent when injected directly into 

the brains of mice (MacLean et al., 1991; McKie et al., 1998). In addition, the 

virus is unable to replicate in other primary tissues such as skin xenografts 

(Randazzo et al., 1996). The same can be seen in other strains harbouring the 
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same mutation, such as R3616 and R4009, which have restricted replication at 

peripheral sites, and greatly reduced incidence of latency with no 

neurovirulence (Whitley et al., 1993). Despite this restriction of virulence, HSV-

1716 still replicates well in glioma cell lines (Bolovan, Sawtell and Thompson, 

1994; McKie et al., 1996), and leads to significant increases in survival when 

used for the treatment of glioma in mice (Kesari et al., 1995; Lasner et al., 

1996). 

So far three phase I clinical trials of HSV-1716 for the treatment of glioblastoma 

have been completed, all of which have shown no toxicity, shedding or 

reactivation from latency, although detection of virus in tumours is seen in some 

cases (Rampling et al., 2000; Papanastassiou et al., 2002; Harrow et al., 2004). 

Other phase I/II trials have also been completed for the use of HSV-1716 to treat 

squamous cell carcinoma (Mace et al., 2008) and malignant melanoma (MacKie, 

Stewart and Brown, 2001). In the squamous cell study, while no toxic effects 

were seen, no virus was detected in the tumours. In the melanoma study, 

presence of viral replication and tissue necrosis was noted in three of the five 

patients. More recent data from a phase I trial in children and young adults 

showed presence of anti-HSV immune responses, areas of necrosis and presence 

of HSV DNA in the serum (Streby et al., 2017). One further trial for malignant 

pleural mesothelioma is currently underway (NCT01721018). 

While no trials of HSV-1716 in OC have been performed, several preclinical 

studies have shown positive results. The first of these studies looked at the use 

of teratocarcinoma PA-1 cells as virus carriers in a mouse xenograft model 

(Coukos et al., 1999). Treatment with HSV-1716 alone led to reduction of 

tumour volume and tumour spread and an increase in survival, with the use of 

carrier cells leading to further improvement. The first study to look at immune 

responses to HSV-1716 in ovarian mouse tumours found an upregulation of IFN-γ, 

MIG, and IP-10 by the tumour cells, as well as a migration of NK and CD8+ T cells 

(Benencia, Courrèges, Conejo-García, Mohamed-Hadley, et al., 2005). Monocytes 

and dendritic cells were found to be responsible for some of this cytokine 

release. Later studies have also shown that HSV-1716 is capable of promoting 

dendritic cell maturation and presentation, and reverse the immune-suppressive 

phenotype of OC (Benencia et al., 2008). The anti-angiogenic properties of HSV-
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1716 in OC have also been assessed, showing that HSV-1716 has the ability to 

replicate within and kill primary and non-primary endothelial cells (Benencia, 

Courrèges, Conejo-García, Buckanovich, et al., 2005). 

1.4.3 Other Notable HSV-based Oncolytic Viruses 

In addition to HSV-1716, several other first-generation oncolytic viruses involve 

modification of a single gene, to render the virus oncolytic. Dlsptk was the first 

oncolytic to harbour a mutation in the thymidine kinase (TK) gene (Martuza et 

al., 1991)(Figure 1.9). TK catalyses the conversion of (deoxy)thymidine to 

(deoxy)thymidine monophosphate, a step that is crucial for the production of 

nucleotides needed for DNA replication (Kit, 1985). Possession of a viral TK gene 

boosts HSV replication, especially in non-dividing cell types. Loss of this gene, 

therefore, leads to preferential infection of rapidly dividing cell types, such as 

cancer cells. Dlsptk showed anti-cancer efficacy and reduced neurovirulence in 

glioma (Martuza et al., 1991) and other brain tumour-types (Markert et al., 

1992). However, encephalitis was found to still be present at higher doses, 

which, in addition to the loss of susceptibility to acyclovir that comes with TK 

deletion, led to unacceptable safety concerns (Markert et al., 1993). 

The second generation of oncolytic HSVs started to incorporate more complex 

genetic alterations, to improve specificity, efficacy and safety. G207 is a double-

mutant of HSV-1 that possesses similar deletions in the γ34.5 gene to HSV-1716, 

but also possesses a LacZ insertion within the UL39 gene, which encodes ICP6 

(Figure 1.9)(Mineta et al., 1995). ICP6 forms the large subunit of the RR, 

required for deoxyribonucleotide synthesis (Street, 2016). Loss of this protein 

means that availability of DNA nucleotides is reduced in a manner similar to loss 

of TK. This improves the safety profile and reduces chance of reversion mutation 

(Mineta et al., 1995). The safety of G207 has been proven in a number of phase I 

trials for the treatment of glioblastoma (Markert et al., 2009, 2014), with no 

major toxicity at the doses used. One more recent study of a single patient, who 

was unresponsive to typical therapy even showed a dramatic increase in PFS 

(Markert et al., 2015). There are current plans for a phase I trial using G207 

alone or with single radiation dose in children with progressive or recurrent 

malignant supratentorial brain tumours (Waters et al., 2017). G207 has held 
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orphan drug designation since 2002 (Table 1.1) (Bilsland, Spiliopoulou and Evans, 

2016). 

There now exist a number of oncolytic HSVs with more complex arrangements of 

modifications, which include exogenous gene insertions. NV1020 is an example 

of this type of virus. NV1020 is derived from the HSV-1 strain R7020 and was 

originally designed to be a HSV-2 vaccine (Meignier and Roizman, 1985). NV1020 

contains numerous gene deletions that render it both safe and oncolytic, 

including one copy of each the diploid α0, α4, and γ134.5 genes, which encode 

ICP0, ICP4, and ICP34.5, respectively; one copy of UL56; a 700 bp deletion 

spanning the TK locus and the promotor for UL24; an insertion of exogenous tk 

under control of ICP4 promotor, and; an insertion of a 5.2-kb fragment of HSV-2 

DNA (Figure 1.9)(Kelly, Wong and Fong, 2008). Clinical trials with this virus have 

so far focused on adenocarcinoma of the colon, specifically in cases with hepatic 

metastases (Kemeny et al., 2006; Geevarghese et al., 2010). These studies have 

shown that NV1020 can stabilise liver metastases with limited toxic side-effects. 

It may also re-sensitise metastases chemotherapy and extend overall survival. 

Arguably the best-known herpes-based OV, and indeed most famous OV in 

general is T-VEC. Like previously discussed viruses, T-VEC is based around a 

double RL1 gene deletion, which renders the virus oncolytic (Figure 1.9). T-VEC 

originates from the strain of HSV-1 known as JS-1, which is a more potent 

clinical isolate, shown to induce more oncolysis than the laboratory 17+ strain 

(Hu et al., 2006). In addition, T-VEC possesses an extra deletion in the gene 

encoding ICP47, which normally blocks antigen presentation in HSV-infected 

cells (Mohr and Gluzman, 1996). This deletion has the additive effect of placing 

the downstream US11 gene under the control of the ICP47 immediate early 

promoter. This enhances tumour selective replication (Liu et al., 2003). Finally, 

a transgene encoding GM-CSF is inserted in place of ICP34.5, under the control 

of the cytomegalovirus immediate early promoter. Expression of GM-CSF induces 

myeloid precursor cells to proliferate and differentiate into dendritic cells (DCs) 

at the site of infection, further amplifying the anti-tumour immune response 

(Toda, 2000).  
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Clinical development of T-VEC began with a phase I trial in 30 patients with 

multiple tumour types, where the tumours were accessible by injection, and 

who had failed prior therapy (Hu et al., 2006). Treatment with T-VEC led to 

minor toxicities, which were mostly injection-site reactions. Disease stabilised in 

three patients. A further phase II study tested T-VEC in fifty patients with 

malignant melanoma (Senzer et al., 2009). The overall response rate was 26%, 

with eight of these experiencing a complete response. One-year overall survival 

was 58%, or >90% for those who experienced a complete response. Following 

these successes, testing was expanded to a phase III, multi-centre, randomised-

controlled trial for patients with injectable, unresectable melanoma (Andtbacka 

et al., 2015). This study included GM-CSF treatment alone as a control. Durable 

response rate was significantly higher in T-VEC treated patients than those 

treated with injected GM-CSF alone. T-VEC treatment also gave longer median 

overall survival. T-VEC has now been approved by the FDA since October 2015 

and the EMA since January 2016. 

1.5 Cell Death 

1.5.1 Introduction to Death Modalities 

The field of cell death has changed rapidly over the past few decades, and as 

such, has suffered from the persistence of inconsistent and contradictory 

nomenclature. The Nomenclature Committee on Cell Death (NCCD) has proposed 

a number of guidelines to attempt to unify the theories and definitions currently 

in use (Kroemer et al., 2009; Galluzzi et al., 2012, 2015).Figure 1.10 illustrates 

an attempt to place all well-known death mechanisms into their various 

categories. 

The first ‘formal’ classification of cell death types came shortly after the 

discovery of apoptosis as a form of ‘programmed’ cell death (Kerr, Wyllie and 

Currie, 1972) These early classifications were purely morphological, but still 

have relevance today. Type I cell death is apoptosis, which is characterised by 

cellular shrinkage, chromatin condensation (pykosis), nuclear fragmentation 

(karyorrhexis) and membrane blebbing, which consists of formation of 

cytoplasmic outgrowths, which eventually bud off to form apoptotic bodies 
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(Elmore, 2007). Type II cell death is referred to as ‘autophagic cell death’ (ACD). 

Autophagy is a catabolic cellular process for the degradation of cellular contents 

within lysosomes (Shimizu et al., 2014). Autophagy is classically recognised as a 

pro-survival pathway that acts to degrade superfluous or damaged cellular 

components, although hyperactivation of autophagy can lead to cell death. Type 

III cell death, necrosis, was initially defined as death in the absence of Type I or 

II features (Clarke, 1990). Thought to be ‘accidental’, it was postulated that 

necrosis only came about from mechanical forces, elevated temperatures and 

pressures or treatment with detergents or extreme pH. This leads to a 

morphology that is defined by cytoplasmic swelling, rapid loss of membrane 

integrity, and organelle swelling and loss. The other broad characterisation built 

into these definitions is that apoptosis is a strictly tolerogenic process, while 

necrosis is highly immunogenic.  

It is now recognised that these definitions are insufficient to describe the full 

range of death modalities that exist, and that several levels of operational, 

morphological, and molecular definitions are necessary. For instance, while a 

necrotic morphology can occur following physical processes, these 

characteristics can also result from a highly regulated series of molecular events 

(Galluzzi et al., 2014; Chan, Luz and Moriwaki, 2015). Several instances also 

exist whereby apoptosis can promote an inflammatory immune response 

(Kroemer et al., 2013)(Figure 1.10).  

The latest NCCD guidelines suggest that cell death should first be designated as 

either ‘accidental’ (caused by to physical/chemical/mechanical stresses) or 

‘regulated’ (caused by distinct molecular mechanisms brought about by internal 

or external cellular signals). Further to this, ‘programmed’ cell death should be 

recognised as a subset of regulated death, whereby the death occurs as part of 

development or maintaining tissue homeostasis (Galluzzi et al., 2015). 
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Figure 1.10 Visual map of cell death modalities.  The earliest definition of cell death modalities divided 
death into three types, which were apoptosis, necrosis and autophagic cell death. Newer insights have 
identified new pathways. Some of these fall under the previous broad categories and some are entirely novel. 
Defining death as accidental, programmed or regulated is an important distinction. Immunogenic cell death 
types are gaining a lot of attention lately, many of the newly identified pathways fall under the heading of 
‘immunogenic’. 

 

1.5.2 Apoptosis 

1.5.2.1 Classical Apoptosis 

The term apoptosis comes from the ancient Greek word meaning to ‘fall off’. 

Apoptosis is still partly defined by the presence of morphological features 

mentioned previously. The molecular mechanisms of apoptosis, however, remain 

one of the most widely characterised of any cell death pathway and should be 
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used primarily to confirm whether apoptosis is taking place (Galluzzi et al., 

2012).  

Apoptosis defines cell death that is dependent on the activity of caspases. 

Caspases are proteases that can cleave proteins (including other caspases) at 

aspartine residues (Thornberry and Lazebnik, 1998). Many caspases are 

expressed in their inactive, procaspase form, and become active upon cleavage 

by other caspases. This mechanism allows for rapid induction of cell death 

through a cascade-like amplification of signal (Elmore, 2007). Caspases -3, -6 

and -7 are the executioner caspases. Activation of these proteins is seen as the 

‘point of no return’, after which death of the cell will follow. The mechanisms 

that lead to executioner caspase activation can be divided broadly into the 

intrinsic and extrinsic pathways (Figure 1.11). Intrinsic pathway signalling is 

reliant on the mitochondria and is often triggered as a result of internal cellular 

stresses such as DNA damage. Extrinsic pathway signalling comes from signals 

received from the cell’s environment and can involve a number of ligands and 

receptors. A third pathway, known as the perforin/granzyme pathway is unique 

to cytotoxic T-lymphocyte-mediated killing of antigen-expressing target cells.  

The extrinsic pathway involves members of the tumour necrosis factor (TNF) 

receptor superfamily. These transmembrane receptors consist of extracellular 

cysteine-rich domains, and intracellular ‘death domains’ that are essential for 

transducing the signal to downstream proteins (Locksley, Killeen and Lenardo, 

2001). Well-known ligand and receptor pairs that are involved in this pathway 

include TNF-α/TNFR1, TRAIL/TRAIL-R, FasL/Fas, Apo2L/DR4, Apo2L/DR5 and 

Apo3L/DR3 (Ashkenazi and Dixit, 1998). Binding of these ligands leads to the 

formation of a death-inducing signalling complex (DISC). The constituents of the 

DISC are dependent on the preceding ligand-receptor interaction. For instance, 

FasL/Fas binding leads to recruitment of the adaptor protein FADD (Wajant, 

2002). TNF-α/TNFR1 binding leads to the recruitment of TRADD, which in turn 

recruits FADD and RIPK1. FADD can then recruit procaspase-8 through its death 

effector domain (DED), which causes it to auto-catalytically activate (Kischkel et 

al., 1995). This can be inhibited by the protein c-FLIP, whose expression is 

controlled by the pro-survival NFκB pathway (Scaffidi et al., 1999). This complex 

is also often referred to as complex IIa and is recognised as one of several 
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pathways that the cell can go down following TNF-α binding. Other potential 

pathways include necroptosis, which will be discussed later.  

The intrinsic pathway is mediated by members of the B-cell lymphoma-2 (BCL-2) 

family, which receive input from various pathways within the cell. The 

proapoptotic proteins (BAX, BAK, Bcl-XS, Bad, Bid, Bik, Bim, Hrk, Bok) are 

responsible for promoting mitochondrial pore formation. BCL-2, BCL-XL BCL-W, 

Mcl-1, A1/ Bfl-1 are key anti-apoptotic proteins, which act to prevent 

mitochondrial pore complex formation and permeabilization (Zamzami et al., 

1998). Pore formation within the mitochondria allow for the release of apoptotic 

mediators, known as second mitochondria-derived activator of caspase (SMAC, 

also called DIABLO) and cytochrome c. This release allows cytochrome c to form 

what is known as the ‘apoptosome’, a complex that also consists of seven 

molecules each of cytochrome c, apoptotic protease-activating factor-1 (APAF-

1), dATP and procaspase-9 (Hill et al., 2004). Once formed, procaspase-9 

becomes activated, and is able to cleave (and thus activate) executioner 

caspases, in particular caspase-3. SMAC is involved in a cross-talk mechanism 

with the intrinsic pathway by binding and inhibiting the cellular inhibitors of 

apoptosis (cIAP) proteins. These cIAPs are ubiquitinase proteins that can target 

members of the DISC, such as RIPK1, for degradation, thereby promoting cell 

survival (Deveraux et al., 1998). SMAC works by inducing the self-ubiquitination 

and therefore degradation of cIAPs. 
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Figure 1.11 Mechanisms of classical apoptosis.  Apoptosis consists of a highly regulated series of cellular 
events culminating in large-scale cellular modifications, degradation of DNA and organelles, and eventually 
death. Apoptosis can be induced (although not exclusively) via two main pathways. The extrinsic pathway is 
initiated by extracellular signals, including TNF-α, which activate membrane-bound receptors, leading to the 
formation of the DISC, which leads to caspase-8 activation and subsequent activation of the executioner 
caspases-3/6/7. Intrinsic death stimuli, such as DNA damage and other cellular stresses can activate 
members of the BCL-2 family of proteins. Members such as BH3, Bak and Bax promote death, whereas BCL-
2 and others are pro-survival. Successful activation of Bak and Bax leads to formation of pores within the 
outer membrane of the mitochondria. This leads to release of cytochrome c, which forms the apoptosome with 
Apaf1 and caspase-9. This activates caspase-9 which goes on to activate the executioner caspases-3/6/7 in 
the same way as caspase-8. SMAC is also released from the mitochondria following pore formation and 
serves as an additional tool to promote apoptosis via blocking the anti-apoptotic IAP proteins. Figure made by 
Melanie Weigert.  

 

Activation of either intrinsic or extrinsic pathways will lead into a common 

execution pathway. The execution pathway is mediated by the execution 

caspases-3, -6 and -7. Caspase-3 is seen as the main execution caspase, as it can 

be activated by either caspase-8, -9 or -10, feeding in from either of the three 

initiation pathways (Elmore, 2007). Caspase-3 causes the activation of the 

endonuclease caspase-activated DNase (CAD), by cleaving and releasing it from 

its inhibitor protein, ICAD (Sakahira, Enari and Nagata, 1998). CAD causes the 
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degradation and condensation of chromosomal DNA. Caspase-3 also affects actin 

organisation via the cleavage of gelsolin. Gelsolin is involved in promoting actin 

polymerisation by acting as a nucleus. However, when cleaved by caspase-3, 

gelsolin fragments then begin cleaving actin filaments, which results in large-

scale structural alterations, loss of cell division and transport (Kothakota et al., 

1997). 

In the final stages of apoptosis, cell fragments begin to be ingested by 

surrounding phagocytic cells. One of the well-recognised signals that initiate this 

is the externalisation of phosphatidyl serine (PS) that occurs in the later stages 

of apoptosis (Fadok et al., 1992). PS is an anionic phospholipid that typically 

exists in high concentrations on the inner leaflet of the plasma membrane. 

During apoptosis, changes in membrane fluidity contribute to the externalisation 

of PS, which can be directly recognised by receptors on the surface of 

phagocytes (Fadok et al., 2001).  

1.5.2.2 Immunogenic Apoptosis 

The first description of apoptosis proposed that it was, by definition, 

immunologically silent (Kerr, Wyllie and Currie, 1972). Decades later, there is 

now ample evidence that cells can die by an apoptotic phenotype, yet display 

signs of immunogenicity (Figure 1.10) (Heath and Carbone, 2001; Casares et al., 

2005). Immunogenic apoptosis (IA), therefore, broadly refers to a death modality 

that displays signs of apoptosis, such as caspase dependency, yet also shows 

signs of immunogenicity. Several hallmarks of ‘immunogenic cell death’, which 

seem to apply mostly to apoptosis, have been discovered (Green and Ferguson, 

2009; Kroemer et al., 2013). These include calreticulin (CAL), heat shock protein 

(HSP)70 and HSP90 exposure on the cell surface, and cellular release of high-

mobility group box 1 (HMGB1) and adenosine triphosphate (ATP) (Figure 1.12). 

These molecules have all been shown to have numerous pro-inflammatory roles 

as signals to the immune system.  
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Figure 1.12 Mechanisms of DAMP release from immunogenic apoptotic cells.  During immunogenic 
apoptosis (IA), various DAMPs are released from dying cells. HMGB1 typically resides within the nucleus, and 
during IA becomes released into the cytoplasm and subsequently exits via pores in the membrane. Once 
released, HMGB1 binds to TLR4 on DCs. ATP exists in a free form throughout the cytoplasm. During IA, ATP 
can exit the cell via pores or specialised cellular channels and act by binding to P2RX7 receptors. HSPs are 
chaperone proteins that act within the cytoplasm. HSPs first become inserted within the extracellular 
membrane and can then release freely into the cytoplasm or within extracellular vesicles. HSP70 has been 
shown to bind to TLR4. As chaperones, HSPs can assist in bringing other intracellular DAMPs into contact 
with immune cells. CAL is an ER protein that translocates to the extracellular membrane before being 
released in to vesicles which allows it to bind to CD91. All of these DAMPs work together to promote the 
action of DCs, among other cells, and generate a pro-inflammatory environment.  

 

HSP70 and HSP90 are both chaperone proteins with intracellular and 

extracellular roles. Intracellularly, the proteins are known for their roles in 

inhibiting apoptosis. For instance, HSP70 can bind to death receptors and 

prevent DISC formation (F. Guo et al., 2005), or limit CAD activity by regulating 

protein folding (Sakahira and Nagata, 2002), HSP90 can stabilise phosphorylated 

Akt, which leads to inactivation of the pro-apoptotic BAD and caspase-9 

(Cardone et al., 1998). During IA, HSPs translocate to the plasma membrane, 

where they are inserted and then released in a membrane-bound form, allowing 

them to interact with the immune system (Figure 1.12)(Vega et al., 2008). 
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Released HSPs can act directly as chemokines by stimulating APCs. HSP70 for 

instance, can bind directly to TLR2 and TLR4, promoting NFκB signalling and IL-

1, IL-6 and TNF release (Asea et al., 2002). HSPs can also be released bound to 

other tumour/pathogen-associated molecules, thereby facilitating the 

recognition of these molecules by antigen presenting cells (Zhu et al., 2016).  

CAL is the most abundant protein in the endoplasmic reticulum (ER) lumen. 

During IA, CAL can become translocated to the outer cell surface (Obeid et al., 

2007). Certain anticancer agents have been shown to achieve this by caspase-8-

mediated cleavage of the ER protein BAP31 and conformational activation of Bax 

and Bak (Panaretakis et al., 2009). This process is not caspase-3 dependent and 

occurs before PS is exposed on the outside of the cell. CAL exposure determines 

immunogenicity of the cell by binding directly to immune receptors, including 

CD49, CD69, CD91, integrins and laminin. CAL acts as an ‘eat-me’ signal by 

binding to LDL-receptor-related protein (LRP) on the surface of CD91-positive 

cells, which includes macrophages and DCs (Figure 1.12). This has the effect of 

promoting the production of proinflammatory cytokines, such as IL-6 and TNF-α, 

as well as programming Th17 cell responses (Pawaria and Binder, 2011). 

ATP is an important and abundant intracellular metabolite but has been shown 

to have equally important properties acting as an extracellular signal. Stresses 

such as mechanical distortion, plasma membrane damage, hypoxia, and 

exposure to cytotoxic agents can all result in ATP release, as well as 

programmed responses such as exocytosis of ATP-containing vesicles and 

secretion through various channels and transporters (Kroemer et al., 2013). ATP 

release has been shown to be both caspase-dependent and independent in some 

cases. It can also act as a chemoattractant for macrophages and monocytes 

(Elliott et al., 2009; Kronlage et al., 2010). Kronlage et al. also showed that ATP 

may promote lamellipodial protrusions in macrophages. Other roles for ATP 

include stimulating DC maturation, and promoting expression of class II MHC 

molecules and the cytokines IL-1β, IL-18 and IL-12 (Granstein et al., 2005; Idzko 

et al., 2007). ATP has been shown to mediate some of these effects by binding 

to P2RX7 receptors (Figure 1.12), which can in turn activate caspase-1 and the 

NLRP3 inflammasome, leading to IL-1β and IL-18 release (Lin and Zhang, 2017). 
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HMGB1 is an essential nuclear protein and is the most abundant non-histone 

chromatin protein. HMGB1 can be released from cells during both active (IA) and 

passive (necrosis) processes. Active HMGB1 release first requires translocation of 

the protein to the cytoplasm (Figure 1.12). This process is JAK–STAT-dependent 

and involves hyperacetylation of residues within the nuclear localisation 

sequences (NLS) of HMGB1, facilitating its accumulation in the cytoplasm (Lu et 

al., 2014). Release can occur secondary to this following exocytosis within 

vesicles or inflammasome mediated release (Gardella et al., 2002; Lu et al., 

2012). HMGB1 exerts its extracellular effects by binding to a diverse range of 

receptors, including several toll-like receptors (TLRs) and receptor for advanced 

glycation end products (RAGE), among others (Yang et al., 2015). The TLR4/MD-

2 complex is key for mediating cytokine release from macrophages in response 

to HMGB1, which binds directly to MD-2 (Yang et al., 2010). When it binds to 

RAGE, HMGB1 is endocytosed by the cell and can lead to induction of pyroptosis 

(Xu et al., 2014). Other receptor interactions with HMGB1 can occur while it is 

associated with other molecules such as CXCL12 or nucleosomes (Urbonaviciute 

et al., 2008; Schiraldi et al., 2012). 

1.5.3 Necrosis 

Following the recent shake-up of the cell death landscape, the terms ‘necrosis’, 

‘necroptosis’, ‘programmed necrosis’ and ‘regulated necrosis’ have in some 

cases found themselves being used interchangeably but erroneously (seeFigure 

1.10). As mentioned previously, necrosis is a general cell death modality that is 

defined on the basis of cytoplasmic granulation, organelle and/or cellular 

swelling, leading to the eventual leakage of intracellular contents from the cell. 

Necrosis is always immunogenic, in that it induces a pro-inflammatory response. 

This can be due to both the natural effect of intracellular content release and 

the result of molecular signalling pathways leading up to death that promote 

cytokine production and release. 

1.5.3.1 Necroptosis 

The number of recognised regulated necrotic pathways is growing. The original 

‘classical’ pathway of regulated necrosis to be discovered was necroptosis 
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(Vandenabeele et al., 2010). Necroptosis was originally defined as a cellular 

response to a combination of drugs designed to bring about a specific series of 

events: TNF-α, SMAC mimetic and zVAD-fmk (carbobenzoxy-valyl-alanyl-aspartyl-

[O-methyl]- fluoromethylketone). To be termed ‘necroptosis’, cell death must 

be caspase-independent, initiated by death receptors and dependent on the 

serine/threonine kinases RIPK1 and RIPK3 (Galluzzi et al., 2012).  

While several triggers of necroptosis are now known (Vanlangenakker, Vanden 

Berghe and Vandenabeele, 2012; Berghe et al., 2014), the best-characterised 

pathway follows the binding of TNF-α to TNFR1 (Figure 1.13). As mentioned 

earlier, stimulation with TNF-α leads to the formation of complex I, consisting of 

the proteins TRADD, RIPK1, cIAP1 and 2, TNF receptor-associated factor 2 

(TRAF2) and TRAF5. For necroptosis to occur, cIAPs need to become sufficiently 

depleted to counteract their anti-death effects. Autoubiquitination of cIAPs by 

SMAC or the class of drugs known as SMAC mimetics can achieve this. In addition 

to this, caspase-8 must be inhibited, which can occur following zVAD-fmk 

treatment or inhibition by viral proteins. When these conditions are met, the 

proteins RIPK1 and RIPK3 become associated with one another via direct 

interaction of their respective RIP-homotypic interaction motifs (RHIMs). This 

proximity allows for the proteins to auto- and transphosphorylate (Cho et al., 

2009), which leads to the formation of a filament-like complex known as the 

necrosome (J. Li et al., 2012). Phosphorylation of RIPK1 can only take place 

once it has been deubiquitylated by cylindromatosis (CLYD) (Moquin, McQuade 

and Chan, 2013). This leads to the recruitment of the mixed-lineage kinase 

domain-like (MLKL) protein, a process that is dependent on the Ser-227 

phosphorylation of RIPK3 (Chen et al., 2013; McQuade, Cho and Chan, 2013). 

Once recruited, MLKL itself becomes phosphorylated on residues Thr357 and 

Ser358 by RIPK3 (Sun et al., 2012). MLKL has been shown to form both trimers 

and following phosphorylation, which leads it to translocate to the plasma 

membrane to mediate necrosis effector mechanism (Cai et al., 2014; X. Chen et 

al., 2014).  
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Figure 1.13 Interconnected pathways of necroptosis and apoptosis.  Classical necroptosis signalling was 
first identified as a pathway resulting from binding of TNF-α to TNFR1. As shown previously, this leads to 
formation of a DISC, comprising of RIPK1, TRADD, TRAF2/5 and cIAP1/2. When cIAPs are depleted or 
inhibited, either by cellular SMAC or chemical homologues, A complex known as complex IIb is formed from 
RIPK1, RIPK3, FADD and caspase-8. At this point, the cell now has the option of committing to a necroptotic 
or apoptotic route. If caspase-8 remains activated, then apoptosis can occur via the extrinsic pathway. If 
caspase-8 becomes inhibited via chemical or viral mechanisms, then necrosome formation will occur, which 
consists of microfilaments comprised of RIPK3 and RIPK1. These proteins auto and trans phosphorylate, 
leading to the recruitment of MLKL. MLKL itself becomes phosphorylated by RIPK3, leading to oligomerisation 
and translocation to the membrane where it leads to death. Figure made by Melanie Weigert. 
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The precise mechanisms of MLKL action are still under debate. However, MLKL 

appears to be necessary for Na+ and Ca2+ ion influx, with the transient potential 

receptor (TRP) channel, TRPM7, under investigation (Cai et al., 2014). Other 

theories argue that MLKL has a more direct membrane permeabilising 

mechanism mediated by the direct insertion of the four-helix bundle region of 

the protein into the plasma membrane (Su et al., 2014). More recent evidence, 

however, suggests that MLKL may itself act as an novel type of ion channel, 

permissive to Mg2+, Na+ and K+ but not Ca2+ (Xia et al., 2016). 

1.5.3.2 Pyroptosis 

The term ‘pyroptosis’ was coined in 2000, describing a caspase-1 dependent 

form of necrosis induced by Salmonella typhimurium in macrophages (Brennan 

and Cookson, 2000). As a subtype of necrosis, pyroptosis is naturally 

immunogenic (Figure 1.10) Several more pathogen and non-pathogen inducers of 

this pathway have been identified, including myocardial infarction (Frantz et al., 

2003). TLRs and nod-like receptors (NLRs) are two mechanisms by which 

pyroptosis can be triggered. The best studied of these is the NACHT, LRR and 

PYD domains-containing protein 3 (NLRP3), which can respond to stimuli such as 

pore forming toxins, ATP, pathogenic DNA and UV damage (Mariathasan et al., 

2006; Feldmeyer et al., 2007; Muruve et al., 2008). NLRP3 associates with 

caspase-1 following activation, forming what is known as the inflammasome 

(Bergsbaken, Fink and Cookson, 2009). This leads to activation of caspase-1, 

which then acts as the death effector protein. Several downstream targets of 

caspase-1 do not contribute to death itself but can promote the inflammatory 

aspects of pyroptosis. The cytokines IL-1β and IL-18 are processed and released 

as a result of caspase-1 activation. IL-1β is a pyrogen that stimulates fever, 

migration of leukocytes into tissues and expression of other cytokines and 

chemokines. IL-18 induces IFNγ production and promotes production of T cells 

and macrophages (Delaleu and Bickel, 2004). Release of these proteins is not 

dependent on cell lysis (Fink and Cookson, 2006). The effector mechanisms that 

lead to death following caspase-1 activation are still poorly understood. One 

known effector is gasdermin D (GSDMD), which is cleaved by caspase-1, enabling 

it to insert into the plasma membrane and form ion non-selective pores (Shi et 

al., 2015; Chen et al., 2016). 
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1.5.4 Autophagy 

ACD was initially defined as cell death accompanied by large-scale autophagic 

vacuolisation (Schweichel and Merker, 1973). Macroautophagy (often and 

hereafter referred to as autophagy) is a physiological process that occurs in 

response to cellular stresses including starvation, mitochondrial damage, hypoxia 

and infection (Yin, Pascual and Klionsky, 2016). Autophagy exists as a mechanism 

for degrading long-lived proteins and organelles in bulk, as opposed to 

ubiquitination, which regulates short-lived proteins. Autophagy involves creation 

of double-membrane structures known as autophagosomes, which sequester 

material before fusing with lysosomes, whose contents mediate the degradation 

of material (Liu and Levine, 2015). 

The Atg proteins mediate many stages of autophagy. The process begins when 

pre-existing organelles or newly synthesised lipids form isolation membranes 

(also known as phagophores) in a process that involves the ULK/Atg1 protein 

complex, which activates PI3K complex, subsequently recruiting more Atg 

proteins to the site of nucleation (Liu and Levine, 2015). Further vesicle 

development is governed by the protein Atg12 and a conversion of microtubule-

associated protein 1A/1B light chain 3 (LC3)-I to LC3-II (Tanida, Ueno and 

Kominami, 2008). LC3 conversion is therefore a typical marker of autophagy.  

1.5.4.1 Autophagic Cell Death 

Circumstantial links between autophagy and cell death have been made 

historically over the last few decades (Kroemer and Levine, 2008). However, 

many now argue that these early reports of ACD lacked evidence linking the two 

processes. For death to be determined as ACD, evidence must now be provided 

that genetic inhibition of at least two autophagy components has a pro-survival 

effect (Galluzzi et al., 2012; Liu and Levine, 2015). Using these criteria, several 

instances of ACD have been noted in mammalian systems wherein key apoptotic 

proteins have been disabled (Shimizu et al., 2004, 2010; Pattingre et al., 2005). 

Other instances note presence of ACD in apoptosis-competent cells, induced by 

p19ARF(Reef et al., 2006), Ras (Elgendy et al., 2011), and various other 

cytotoxic agents (Sharma et al., 2014). 
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One distinct pathway of ACD, known as autosis, has been identified from death 

induced by treatment with a fusion protein consisting of 18 amino acids 

of Beclin-1 and 11 amino acids from the HIV Tat protein (Liu and Levine, 2015). 

This peptide acts by disrupting Beclin 1/GAPR-1 binding in the Golgi complex 

(Shoji-Kawata et al., 2013). Further inducers of this pathway have been found to 

be starvation and hypoxia/ischaemia (Liu et al., 2013). The unique features of 

autosis include focal plasma membrane rupture; focal concavity of the nucleus 

and ballooning of the perinuclear space; abnormal mitochondria, which become 

swollen and fragmented; and enhanced adhesion to the cellular substrate (Liu 

and Levine, 2015). The Na+-K+-ATPase pump has been shown to be a key autosis 

effector, with knockdown or inhibition of these protein leading to protection of 

cells against autosis (Liu et al., 2013). How exactly this protein acts to bring 

about the cell’s demise is yet to be uncovered. Na+,K+-ATPase has been shown to 

translocate to the perinuclear space and so may contribute to the swelling 

thereof (Galva, Artigas and Gatto, 2012). Na+-K+-ATPase has also been shown to 

have a role in cellular adhesion, and so it is possible that it mediates the 

enhanced adhesion seen in autosis (Contreras et al., 1999). 

Autophagy is closely linked with IA, due to its requirement as a precursor to ATP 

release (Kroemer et al., 2013). Inhibitors of any essential autophagy protein will 

reduce levels of ATP release from dying cells (Michaud et al., 2011). The exact 

mechanisms by which autophagy causes ATP release are still unclear. 

1.5.5 Non-Classical Cell Death Modalities 

Ferroptosis is a form of RCD that is induced by intracellular perturbations such as 

severe lipid peroxidation. This process is dependent on generation of reactive-

oxygen species and iron availability, hence the name (Stockwell et al., 2017). 

Ferroptosis has a necrosis-like morphotype but occurs independently of 

necrosome components (Dixon et al., 2012). Induction of ferroptosis results in 

the release of immunostimulatory DAMPS, which makes it immunogenic 

(Linkermann et al., 2014; Kim et al., 2016). Ferroptosis is under primary 

regulation of glutathione (GSH)-dependent enzyme glutathione peroxidase 4 

(GPX4), which is an endogenous inhibitor of the process. The ferroptosis inducer 

erastin indirectly disrupts activity of GPX4, which contributes to ferroptotic 
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death (W. S. Yang et al., 2014). Downstream of GPX4, accumulation of 

polyunsaturated fatty acids (PUFAs) can lead to their own fragmentation and 

ferroptosis, which is preventable by antioxidants such as ferrostatin-1 and 

liproxstatin-1 (Zilka et al., 2017). 

Parthanatos is a form of RCD that is driven by hyperactivation of PARP1 in 

response to severe DNA damage, oxidative stress, hypoxia, hypoglycaemia 

(Fatokun, Dawson and Dawson, 2014). Activation of PARP1 means an increase in 

cellular PAR production. This process causes a decrease in NAD+ and ATP levels, 

although this does not contribute to death. PAR then directly binds to apoptosis-

inducing factor (AIF), which facilitates its mitochondrial release and 

translocation to the nucleus. Here, AIF binds and activated migration inhibitory 

factor (MIF), a nuclease that causes large-scale nuclear degradation and death 

(Wang et al., 2016). Hexokinase 1 (HK1) is another contributor to parthanatos 

that is activated by PAR, allowing it to inhibit glycolysis and cause cellular 

bioenergetic collapse (Andrabi et al., 2014). 

Entosis is a peculiar form of cell “cannibalism” that occurs between non-

phagocytic cell types, where one cell engulfs the other, leading to its demise 

(Florey, Kim and Overholtzer, 2015; Krishna and Overholtzer, 2016). Engulfment 

has been shown to be dependent on cadherin 1 and catenin alpha 1, followed by 

actomyosin remodelling orchestrated by ras homolog family member A (RHOA) 

(Purvanov et al., 2014; Wang et al., 2015). Death of the endocytosed cell is 

somewhat dependent on autophagic proteins, which promote fusion of the cell 

with lysosomes (Florey et al., 2011). 

NETosis is a controversial form of cell death that appears to be, so far, 

restricted to haematopoietic cells (Q Remijsen et al., 2011). NETosis was first 

characterised in neutrophils, where it was associated with the formation of 

large-scale neutrophil extracellular traps (NETs) (Brinkmann et al., 2004). These 

NETs form from released chromatin and histone proteins that associate with 

granular and cytoplasmic proteins and are produced in response to microbial 

stimuli via TLRs. The mechanism of death is poorly understood, but thought to 

be dependent on formation of reactive oxygen species (ROS) (Quinten Remijsen 

et al., 2011). 
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1.6 Immunogenic Cell Death and Oncolytic Virus Therapy 

1.6.1 Oncolytic Viruses that Induce Immunogenic Cell Death 

Numerous studies have made investigations into the presence of ICD under 

different oncolytic virus infection models, and in some cases, investigated the 

consequences this has on the surrounding immune environment. ICD appears to 

be present in many of the major virus species that have been utilised for 

oncolytic virotherapy. 

Various adenovirus variants have been shown to induce markers of ICD. Ad5/3-

hTERT-E1A-hCD40L, which is an Ad5/3 strain in which E1A expression lies under 

the transcriptional control of an hTERT promoter, and also encodes human CD40 

ligand, was shown to induce HMGB1 release, CAL exposure and ATP release in 

endometrial carcinoma cells (Diaconu et al., 2012). The full effect was only seen 

in cells that expressed the CD40 receptor, with those lacking the receptor only 

responding with HMGB1 release alone. This had the consequence of recruitment 

and activation of antigen-presenting cells and increased interleukin-12 

production in vivo. Presence of macrophages and cytotoxic CD8+ T cells was also 

noted in tumours. In an in vitro murine colorectal model, the virus Ad881 

induced release of both HMGB1 and ATP in CT26 cells (Yamano et al., 2016). 

This led to an increased vaccination effect when these cells were injected into 

mice who were then later challenged with tumour cells. We recently showed 

that the necroptotic protein RIPK3 played a role in cell death induced by the Ad5 

virus strain dl922-947 (Weigert et al., 2017). Expression of RIPK3 enhanced virus 

activity both in vitro and in vivo. However, blockage of RIPK1 and MLKL function 

was shown not to affect cell death.  

An early study looking at VV showed presence of necrosis-like death, evidenced 

by HMGB1 release and PI staining (Z. S. Guo et al., 2005). The strain used for 

this study was deleted in the serpin proteins SPI-1 and SPI-2, which have been 

shown to have roles in inhibiting apoptosis via interactions with cathepsin G (SPI-

1) (Moon, Turner and Moyer, 1999) or Fas receptor, TNFR1, and IL-1β-converting 

enzyme-like enzymes (SPI-2) (Kettle et al., 1997). A comprehensive investigation 

of cell death induced by tk-deleted VV in OC cells identified a strong role for 
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regulated necrosis (Whilding et al., 2013). Here, necrotic morphology was 

identified by electron microscopy, as well as confirmation of a 

RIPK1/RIPK3/caspase-8 complex, with death attenuated following RIPK1 or MLKL 

blockade. This suggests that this mode of cell death is true necroptosis. HMGB1 

release was also confirmed, proving that death had an immunogenic component. 

The VV strain JX-GFP possesses a GFP insertion within the tk locus, thus leading 

to a TK-deficient phenotype, but also contains an additional insertion of GM-CSF. 

The efficacy and immunogenicity of this virus was explored in melanoma cells 

(Heinrich et al., 2017). Here, cells were shown to release HMGB1 upon death, 

with death also leading to an activation of both DCs and T cells when co-

cultured. In the same study, a VV strain known as TG6002 was tested in the same 

setting. TG6002 possesses both TK and ribonucleotide reductase-encoding gene 

deletions in addition to the expression of the suicide gene FCU1. FCU1 encodes a 

protein which catalyses the conversion of 5-fluorocytosine (5-FC) into the toxic 

chemotherapeutic 5-fluorouracil (5-FU). TG6002 was shown to induce the same 

release of HMGB1 as JX-GFP and was also shown to induce CAL exposure when 

combined with 5-FC, but not alone.  

Interesting evidence for the induction of ICD by Newcastle Disease Virus (NDV)  

was seen during infection of glioblastoma cells in vivo (Koks et al., 2015). GL261 

cells infected with NDV showed no signs of classic apoptosis, such as blebbing, 

PS externalisation and caspase-3 activation. There was a reduction in 

cytotoxicity seen during infection following treatment with the RIPK1 inhibitor 

necrostatin-1, which is suggestive of a necroptosis-like signalling pathway. NDV 

did induce membrane exposure of CAL and release of HMGB1 in vivo. However, 

no extracellular ATP was detected before death. 

Other non-modified OVs such as Parvovirus and Coxsackie virus have also shown 

presence of ICD. The strain CVB3 was shown to induce an apoptotic-dependent 

mode of cell death in non-small cell lung cancer cells based on inhibition with 

zVAD-fmk (Miyamoto et al., 2012). Evidence of IA was proven due to presence of 

HMGB1 release, CAL exposure and ATP release in vivo. Intratumoral 

administration also showed an increase in recruitment of natural killer cells and 

granulocytes. An investigation into oncolytic parvovirus H-1 (H-1PV) in 

pancreatic ductal adenocarcinoma (PDAC) cells showed that the virus induced 
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HMGB1 release but not CAL exposure or ATP release (Angelova et al., 2014). 

When used in combination with the apoptosis-inducing drug gemcitabine, H-1PV 

converted the subsequent death into an immunogenic form. This death coincided 

with IL-1β release which may suggest a role for pyroptosis, but this would need 

to be explored further.  

1.6.2 Herpesviruses and Immunogenic Cell Death 

Initial evidence for a link between herpesviruses and regulated necrosis was 

identified in murine CMV (MCMV), with its M45-encoded viral inhibitor of RIP 

activation (vIRA) (Upton, Kaiser and Mocarski, 2008). It is thought that cells have 

evolved a mechanism for inducing necrosis in response to viruses as a backup 

mechanism to eliminate pathogens that block caspase-8 signalling (Kaiser, Upton 

and Mocarski, 2013). DNA-dependent activator of interferon regulatory factors 

(DAI; also known as ZBP1 or DLM-1) is a cytosolic DNA sensor that induces type I 

IFN production (Takaoka et al., 2007). More recently, a role for DAI in inducing 

regulated necrosis by direct binding to RIPK3 has been uncovered (Upton, Kaiser 

and Mocarski, 2008). This pathway of necrosis interaction is RIPK3-dependent 

but independent of RIPK1 and TRIF. The protein vIRA, an inactive homologue of 

the viral RR, has been shown to possess a RHIM (Figure 1.14), which enables it to 

directly bind and inhibit the complex formed between RIPK3 and DAI (Upton, 

Kaiser and Mocarski, 2012). This region of the protein also mediates inhibition of 

apoptotic death by a mechanism independent of caspase-8 (Guo et al., 2015). 

Interestingly, the human CMV (HCMV) analogue of this protein, coded by UL45, is 

inactive (Patrone et al., 2003). Instead, HCMV blocks necroptosis in a step that 

occurs post-MLKL phosphorylation, using a IE1-regulated gene product (Omoto et 

al., 2015). 
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Figure 1.14 RIP-homotypic interaction motif sequences of cellular and viral proteins.  Many proteins 
have now been proven to possess a RIP-homotypic interaction motif (RHIM). These motifs show a high level 
of homology which allows them to bind with one another. Binding is dependent on a four-amino acid highly 
conserved region. Image adapted from Trends Biochem Sci. 2009 Jan;34(1):25-32. 

 

HSV-1 and HSV-2 have been shown to regulate necrosis signalling via their 

respective RR proteins ICP6 and ICP10, both coded by UL39 (Guo et al., 2015). 

Although these proteins are analogues of MCMV’s vIRA, both possess a distinct 

region within their RR domains that enable them to inhibit caspase-8 by binding 

directly to its DED (Dufour et al., 2011). The RHIMs of these proteins are present 

in the N-terminal domain, which allows for direct binding to both RIPK1 and 

RIPK3 in both murine and human cells (X. Wang et al., 2014; Huang, S. Wu, et 

al., 2015). Interestingly, in murine cells, the complexes ICP6 forms with RIPK1 

and RIPK3 lead to their activation and necrosis induction (Figure 1.15). In human 

cells however, this same interaction actually disrupts complex formation and 

leads to necrosis inhibition (Guo et al., 2015). The caspase-8-binding properties 

of ICP6 and ICP10 leads to a sensitisation of cells to TNF-α-induced necroptosis. 

In human cells, this has no impact, as necroptosis is concurrently inhibited by 

the RHIM. This was shown to be altered, however, when a version of ICP6 

containing a tetra-alanine substitution in the RHIM (mutRHIM) was overexpressed 

in human cells and complemented with a ΔICP6 mutant virus (Guo et al., 2015). 

This had the effect of maintaining caspase-8 inhibition while removing the 

necroptosis blockade and sensitising cells to TNF-α. 
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Figure 1.15 Various cell death roles of HSV-1 ICP6.  (A) ICP6 possesses two domains, the N-terminal and 
RR domains. The RR domain has long been known for its role as the large subunit of the viral ribonucleotide 
reductase. Recent evidence has uncovered an alternative role for the RR domain as an inhibitor of caspase-8, 
mediated via its direct interaction with the death effector domain (DED). At the other end, the N-terminal 
domain binds to both RIPK1 and RIPK3 via the proteins’ respective RHIMs. (B) The consequences of the 
interaction between ICP6 and RIPK1 and RIPK3 have been shown to differ between human and murine cells. 
In humans, ICP6 blocks RIPK1 and RIPK3 from interacting and therefore prevents their phosphorylation. In 
mice, ICP6 does the opposite by inducing phosphorylation and dimerization of RIPK3, which results in 
necroptosis. This dichotomy has the effect of more freely allowing HSV-1 to replicate in human cells. Image 
taken from Cell Host & Microbe 2015 17, 229-242DOI.  

 

Evidence for induction of alternative modes of cell death have been 

demonstrated for oncolytic HSV-1 and HSV-2 in various models. Strains of these 

viruses lacking functional ICP0 or a nuclear localization sequence were assessed 

for their ability to induce IA in breast cancer cell lines (Workenhe et al., 2014). 

The HSV-2 strains were shown to induce cleavage of caspase-3 and subsequently, 

cause HMGB1 release. In vivo, HSV-1 dICP0 showed a greater enhancement of 

immunogenic markers, such as elevated HSP70 expression compared with HSV-2 

dICP0. This was shown to have a correlation with greater CD8+ T cell and APC 

infiltration. The PK domain of HSV-2 ICP10 contains a PK domain that has been 

shown to inhibit various death pathways (Perkins, Pereira and Aurelian, 2003; 
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Wales et al., 2008). An oncolytic variant that contains a PK deficiency induced 

some evidence of apoptosis and pyroptosis in melanoma cells (Colunga, Laing 

and Aurelian, 2010). Death was dependent on cleavage and activation of 

caspase-3 and -7, and calpain, the latter of which has been shown to be a 

mediator of both apoptosis and necrosis (Cabon et al., 2012). In addition, 

activated caspase-1, CD11b, and TNF-α were all also present, which is indicative 

of pyroptosis. Evidence for ICD induction by an HSV-1 RH2 strain in squamous cell 

carcinoma has emerged (Takasu et al., 2016). RH2 is a recombinant virus formed 

by coinfection of Vero cells with strains R849 and HF, and possesses 

a γ34.5 deletion (Takaoka et al., 2011). All the classic signs of IA were present, 

including ATP and HMGB1 release and CAL exposure. Annexin-V/PI staining, PARP 

cleavage, and cell rescue following treatment with the pan-caspase inhibitor 

zVAD-fmk demonstrated presence of classical apoptosis as the driver of death. 

Further work on this system has shown that HSPs are present in the supernatant 

of infected cells as well as viral proteins, with extracellular matrix (ECM) 

components being released in smaller amounts (Tada, Hamada and Yura, 2018). 

This provides further evidence that induction of ICD is capable of altering the 

TME. 
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1.7  Aims of the Project 

1.7.1 Evaluate HSV-1716 as a treatment for ovarian cancer 

• Determine the ability of HSV-1716 to infect and kill ovarian cancer cell 

lines 

1.7.2 Produce novel models for assessing ICP6 function 

• Produce lentivirus-modified cell lines expressing a range of ICP6 

constructs with varying RHIM modifications 

• Use CRISPR/Cas9 to create an ICP6-null strain of HSV-1716 

• Use CRISPR/Cas9 to create an ICP6 RHIM-modified virus 

1.7.3 Determine the role of immunogenic cell death during HSV-
1716 infection 

• Assess the presence of various markers of immunogenic cell death 

following HSV-1716 infection  

• Assess the presence of various markers of necrosis and the effect of 

blocking components of the necroptosis pathway following HSV-1716 

infection 

1.7.4 Determine the roles of ICP6 and RIPK3 in HSV-1716-induced 
immunogenic cell death  

• Investigate the effect of RIPK3 overexpression on HSV-1716-induced cell 

death 

• Investigate the effect of ICP6-RIPK3 binding on HSV-1716-induced cell 

death and subsequent markers of immunogenic cell death 
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1.8 Hypothesis 

Based on what is known on the current biology surrounding the potential for 

induction of immunogenic cell death and necrosis by HSV-1, I hypothesise the 

following: First, I predict that following HSV-1 infection of cancer cells, some 

immunogenic cell death is likely to be triggered, illustrated by evidence of some 

combination of ATP or HMGB1 release and CAL exposure. In regard to 

necroptosis, I predict that cell death will not be dependent on necroptotic 

signalling or the activities of the proteins RIPK3, MLKL or RIPK1. From what is 

known about the activity of ICP6, I predict that disruptive modification of the 

RHIM will have the effect of increasing necroptotic signalling during infection, 

which should result in greater viral induced killing of cancer cells and a more 

favourable immunogenic profile. 
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2 Materials and methods 
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2.1 Cell and virus culture 

2.1.1 Cell lines 

All cell lines were cultured in T-75 flasks at 37°C, 95% humidity and 5% CO2. 

Almost all cell lines were maintained in Dulbecco’s Modified Eagle medium 

(DMEM; Thermofisher,12491-015) supplemented with 100 μg/ml Penicillin and 

100 μg/ml Streptomycin (P/S) (Thermofisher, 105070-063), 5 μg/ml L-Glutamine 

(Thermofisher, 25030-181) and 10% heat inactivated foetal bovine serum (FBS; 

Thermofisher) with the following exceptions: JHOC5, 7 and 9 cells were grown in 

DMEM/F-12 1:1 with glutamine (Thermofisher, 11320-033), supplemented with 

10% FBS, and 1x minimal essential medium (MEM) non-essential amino acids 

(NEAA; Thermofisher, 11140-035). A2780, OVTOKO, and OVMANA cells were 

grown in RPMI 1640 medium with added 100 μg/ml P/S, 5 μg/ml L-Glutamine and 

10% FBS. NK92 cells were grown in MEM-α supplemented with 12.5% FBS, 12.5% 

horse serum (Thermofisher, 26050-070), 5 μg/ml L-Glutamine and 5 ng/ml IL-2 

(added fresh with every medium change). These recipes are all hereby referred 

to as “complete medium” when appropriate, with full addition of supplements 

to be assumed unless otherwise stated, such as “serum-free medium”.  

All human cell lines were authenticated by 16 locus STR analysis (LGC Standards) 

prior to use and intermittently over the course of the project. Vero cells were 

the only non-human cell lines used and as such, could not be authenticated. 

Vero cells were a gift from Dr Sheila Graham, University of Glasgow; HeLa-RIPK3 

expressing cells and TOV21G MLKL CRISPR-edited cells were made using 

lentiviral transduction by Dr M. Weigert, University of Glasgow. 

All cells were kept in frozen stocks in liquid nitrogen in FBS containing 10% 

Dimethyl Sulfoxide (DMSO; Fisher Sci, D/4120) and defrosted by thawing quickly 

in a 37°C water bath, before resuspending in 10 ml of complete medium. Cells 

were then centrifuged at 1200 rpm for 5 min to pellet, supernatant aspirated, 

and cells resuspended once more in complete medium before plating into flasks. 

Passaging of cells was done by aspirating complete medium, washing once with 

phosphate buffered saline (PBS), and treating with 2X Trypsin EDTA 
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(Thermofisher,15400-054) in PBS at 37°C for approximately 5 min. Cells were 

dislodged by firm tapping and resuspended in culture media. 

Cells were routinely tested for presence of mycoplasma infection by the Beatson 

CRUK Centre Reagent Service, using the MycoAlert™ detection kit, (Lonza, LT01-

118).  

2.1.2 Viruses 

HSV-1716 is a genetically modified strain of HSV-1 and was received as a kind 

gift from Dr J. Connor, Virttu Biologics, Glasgow. HSV-1716 was stored in sodium 

lactate solution containing 10% glycerol and aliquoted to minimise freeze-thaw 

cycles.  

2.2 Cell infection and drug treatment 

2.2.1 Infection 

To assess the effects of HSV infection on various cell lines, cells were plated at 

the stated seeding density and left for 24 h before addition of virus. The amount 

of virus used was calculated as a measure of multiplicity of infection (MOI) 

meaning number of viable plaque-forming units (see below) per cell. 10-fold 

serial dilutions were made in serum-free culture medium to give desired single 

or multiple MOIs for use. Medium was aspirated from cells and replaced with 

appropriate dilutions of virus in serum free medium. Plates were then left for 2 

h before being re-fed with an equal volume of complete medium added on top 

and plates then left for the desired amount of time.                      

2.2.2 Drug treatment 

For experiments involving treatment of cells with drug, appropriate dilutions 

were made in complete medium and drugs were added either 24 h after cell 

plating if being used alone, or during re-feeding after cell infection when used in 

combination with virus. The working concentrations and source of various drugs 

are listed in Table 2.1. 
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Table 2.1: List of drugs used with working concentrations and suppliers. 

Name Working Conc* Company Cat # 

TNF-α 20 ng/ml Peprotech 300-01A 

LCL-161 (SMAC 

mimetic) 

1 μM ChemieTek CT-LCL161 

zVAD-fmk 25 μM APExBIO A1902 

Necrostatin-1 (Nec-1) 100 μM Enzo life sciences BML-AP309 

Necrosulfonamide 

(NSA) 

3 μM (refed after 

48 h) 

Calbiochem CAS 432531-

71-0 

GSK2791840B 

(GSK’840) 

2 μM GlaxoSmithKline - 

Cisplatin 3-10 μM Accord 
Healthcare, 
Harrow, UK via 
Beatson West of 
Scotland Cancer 
Centre 
chemotherapy 
pharmacy 

- 

* Unless otherwise stated 

2.2.3 Transfection of siRNA      

Working concentrations and time points for siRNA transfection were determined 

in cell lines of interest by treating at a range of siRNA concentrations and times 

and analysing samples by Western blot to check for protein knockdown.              

For the assay, 1×104 cells were seeded per well of a 24-well plate in antibiotic-

free culture medium and left for 24 h to adhere. In one tube, 0.75 μl (per well) 

of DharmaFECT 1 (GE Dharmacon) was added along with 300 μl (per well) of 

OptiMEM. In another tube, the appropriate amount of siRNA was added with 

enough OptiMEM to make a final volume of 300 μl (per well). These tubes were 

mixed gently by pipetting and left at room temperature for 5 min. Then the 

contents of both tubes were mixed and left at room temperature for 20 min. 

After this, an appropriate amount of antibiotic-free medium was added to give 

enough for a final volume of 1 ml per well, which was then added following 

aspiration of the current cell media. Cells were then left for typically 24 h 

before infecting with HSV-1716 in the usual manner. After infection, cell 
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viability was determined by MTT assay, described below. Protein was harvested 

from some wells for protein quantification by Western blot.      

2.3 Cell Viability Assays 

2.3.1 MTT cytotoxicity assay 

Thiazolyl Blue Tetrazolium Bromide (MTT; Sigma) was used to assess cell viability 

after virus or drug treatment in flat cell culture. Once the desired end-point was 

reached, stock MTT (5 mg/ml) was added directly to cell supernatant to give a 

final dilution of 1:10 and then left at 37°C for 2 h. After 2 h, supernatant was 

removed from cells and a uniform volume of DMSO was added to all wells (0.5 ml 

for 24-well plate, 1 ml for 12-well plate, 2 ml for 6-well plate), and plates were 

shaken for approximately 5 min at room temperature before being read at 

570 nm on a TECAN plate reader. 

2.3.2 Sytox nuclear staining for NK cell co-culture 

To determine the cell-killing effects of co-culture with natural killer (NK) cells, 

TOV21G cells were seeded into 96-well plates at a density of 3000 cells per well 

in a volume of 100 μl and left for 24 h to adhere. Cells were then infected with 

virus as normal by aspirating medium and replacing with 50 μl of serum-free 

medium, left for 2 h, and then re-fed by supplementing the wells with a further 

50 μl of complete medium. Eight hours post infection, NK-92 cells were added at 

a ratio of 10:1 (NK-92:TOV21G) in an additional 50 μl complete RPMI medium. 

Green Sytox Cyanine Nuclei Acid dye (Cat number 4632; Essen Bioscience, USA) 

was added at the cell infection stage at a final volume of 150 nM. 

Plates were then loaded onto an Incucyte ZOOM imaging system for 75 h, with 

one 10x magnification image taken every hour per well. Data were extracted 

from images with a processing definition set using the IncuCyte Live Cell Analysis 

software. NK cell Sytox values were excluded from images using a two-

dimensional surface area cut-off of 125 μm2. Using this, green object count per 

well data was generated. Total area under the curve (AUC) analysis was done on 
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green object counts over time using Graphpad Prism to summarise cell death 

data over the duration of the experiment.  

2.4 HSV production, purification and titration 

2.4.1 Virus production 

Vero cells were seeded in 100 mm dishes with approximately 1×106 cells or until 

the dishes appeared more than 80% confluent. For virus purification, 20 dishes 

were used per virus. If there was not enough input virus to infect 20 dishes, then 

preliminary rounds of bulking were first performed using smaller cell amounts. 

Input viruses were only used if from a known pure source originating from a 

single plaque or well of a TCID50 plate. Cells were infected with virus in a final 

volume of 20 ml serum free medium at MOI of 0.1 if known. If MOI was not 

known, then amount of virus to add was estimated based on the source. After 

2 h, medium was removed and replaced with 20 ml of complete medium. Dishes 

were left for approximately 2–3 days or until 100% cytopathic effect is seen in 

the cells (rounding up and beginning to detach). Cells were scraped with a cell 

scraper to detach into the medium. Cell suspensions were then mixed together 

in to an appropriate number of 50 ml centrifuge tubes and snap frozen in liquid 

nitrogen. At this point, samples were either thawed immediately at 37°C to 

continue or stored at −80°C until ready to proceed. 

2.4.2 Virus Purification 

Once thawed, tubes were spun at 3000 rpm for 15 min and then supernatant 

passed through a 40 μm cell strainer to remove debris. Supernatant was then 

spun at 18,000×g on an Optima XPN-90 ultracentrifuge in Beckman Coulter Ultra-

Clear centrifuge tubes to pellet virions. Supernatant was removed by aspiration 

and the remaining viral pellets were resuspended in 1–10 ml of filter sterilised 

TSG buffer. TSG buffer consists of 70% Solution A (150 mM NaCl, 1 mM Na2HPO4, 

5 mM KCl and 30 mM Tris Base), 0.35% Solution B (200 mM MgCl−2 and 180 mM 

CaCl2) and 29.65% glycerol. Finally, virus samples were passed through a 

0.45 μm filter to purify. Titrations of purified stocks were performed to ensure 

accurate calculation of MOI when used later. 
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2.4.3 Titration of viral stocks 

Virus titres were determined by plaque assay. For this, 2×105 Vero cells were 

plated per well of a 12-well plate. After 24 h, a series of 10-fold dilutions were 

made for each virus sample in serum free medium by adding 450 μl medium to 

the current tube, adding 50 μl of sample from the previous tube, vortexing and 

repeating. The dilutions chosen for plating were based on the expected titre. If 

titre could not be estimated, then 6 dilutions ranging from 10−2–10−7 were used 

per sample. The medium was removed from the cells, replaced with 200 μl of 

each dilution and left for one hour. After this, 2 ml of overlay warmed to 37°C 

was placed on top, which consisted of a 50:50 mixture of 1.2% Avicel RC-

591(FMC), and 2X MEM (Invitrogen). Cells were then incubated for 72 h before 

removing overlay by tipping plates over a bucket containing Virkon and replacing 

with 3.7% paraformaldehyde (PFA) for 1 h to fix cells. PFA was removed and 

replaced with 0.2% crystal violet (Sigma Aldrich) for a further hour before 

washing in water and scoring. To score plates, dilutions containing 

approximately 20–100 plaques were selected and counted. Titres were 

calculated in terms of plaque-forming units (pfu)/ml and could be calculated by 

using the following formula: 

𝑇𝑖𝑡𝑟𝑒 (𝑝𝑓𝑢/𝑚𝑙) =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑙𝑎𝑞𝑢𝑒𝑠 𝑎𝑡 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛

𝐼𝑛𝑜𝑐𝑢𝑙𝑢𝑚 𝑖𝑛 𝑚𝑙 ×  𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟
 

2.5 Cloning techniques 

2.5.1 DNA extraction from cells and viruses 

DNA was extracted from cells using the Qiagen DNeasy Blood & Tissue Kit 

(69504). For this, cells were typically seeded into 6-well plates at a density of 

1×106 cells per well and left for 24 h to adhere. Cells were then treated with the 

appropriate drug or virus combination as outlined above. Once ready, cells were 

washed once with PBS and trypsinised, before first resuspending in complete 

medium. After this, cells were centrifuged to pellet, and then resuspended in 

200 μl PBS. To this, 20 μl proteinase k was added, before a further addition of 

200 μl Buffer AL. At this stage, samples destined for viral DNA analysis were 
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heated at 56°C for 10 min to encourage capsid degradation before proceeding. 

Next, an addition of 200 μl 100% ethanol was made, followed by further mixing. 

This mixture was transferred to a DNeasy Mini spin column and centrifuged at 

>6000×g for 1 min. Several washes were performed by repeating this process, 

first with 500 μl of Buffer AW1, then with 500 μl Buffer AW2. DNA was eluted 

into 30 μl water by pipetting onto the membrane and centrifuging for 1 min.  

For DNA extraction from pure virus concentrates, an appropriate volume of virus 

sample was diluted to a final volume of 200 μl with PBS before proceeding as 

outlined above. If the required volume of virus stock exceeded 200 μl, then 

volumes of all other reagents were increased correspondingly.  

2.5.2 Polymerase chain reaction for amplification of DNA 

fragments 

PCR amplification of DNA was used as a step for both creation of expression 

plasmids and diagnostic analysis of experiments. Most PCR reaction samples 

were made using a final concentration of GoTaq Green Mastermix (1X) (Promega, 

M712), 1 μM forward and reverse primers and 50 ng DNA, with optimisation 

performed if necessary. Components were mixed in individual reaction tubes and 

run on an Applied Biosystems Verti thermocycler. Cycling conditions were 

typically 2 min at 95°C, then 35 cycles of [30 s at 95°C; 30 s at 58°C; 60 s at 

72°C], and 5 min at 72°C. 

2.5.3 Restriction enzyme digestion of DNA 

Restriction enzyme digestion of plasmids and DNA fragments was performed for 

both diagnostic analysis and construction of new plasmid constructs. All 

restriction enzymes were purchased from New England Biosciences (NEB) and 

used following the manufacturer’s instructions. A typical 50 μl reaction consisted 

of 1 μg (for visualisation on gel) or 5 μg (for gel purification) of DNA, 1 μl 

restriction enzyme and 5 μl 10X buffer. The recommended buffers for single 

digests were used, and double digests were done based on the NEB double digest 

finder (http://tinyurl.com/zf4yypr). Enzymes used are shown in Table 2.2. 

http://tinyurl.com/zf4yypr
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Table 2.2: List of restriction enzymes used with buffer and supplier 

Enzyme Buffer Manufacturer 

BbsI 2.1 NEB 

BspHI CutSmart NEB 

EcoRI 2.1 NEB 

HindIII 2.1 NEB 

SpeI CutSmart NEB 

XbaI CutSmart NEB 

XhoI Cutsmart NEB 

2.5.4 Ligation 

Ligations were performed using a Rapid DNA Ligation kit version 10 (Roche, 

11635379001). A 3:1 ratio of insert to vector DNA was typically used but 

optimised as necessary. In addition to DNA fragments, 10 μl of 2X annealing 

buffer and 1 μl of T4 ligase were added together with water to make a total 

reaction volume of 20 μl. Tubes were incubated at room temperature for 5 min, 

before either freezing at −20°C or directly using by diagnostic digestion or 

transformation. 

2.5.5 TA ligation of PCR products into pCR TOPO 2.1 vector 

In order to sequence a DNA fragment, or for easy addition of restriction sites, 

PCR products were flipped into a pCR TOPO 2.1 vector (Invitrogen, K450002) by 

TA overhang ligation. The TOPO vector is pre-cut with thymidine overhangs, 

each bound to a molecule of topoisomerase. When combined, this enzyme 

recognises adenine overhangs left by the PCR reaction and recombines the 

fragments into a complete plasmid. To perform this reaction, 0.5–4 μl of PCR or 

gel extracted product was added to a 0.2 ml tube alongside 1 μl of provided salt 

solution and 1 μl of TOPO vector. The mixture was incubated at room 

temperature for 5–30 min and then directly transformed into TOP10 competent 

E.coli using the following protocol. 
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2.5.6 Separation and visualisation of DNA fragments on agarose 

gel 

Sizes of DNA fragments amplified by PCR were visualised by separation on an 

agarose gel. Gels were made by dissolving 2 g of agarose (Melford, M1200) in 

200 ml of TAE buffer (40 mM Tris pH 7.8, 20 mM glacial acetic acid, 1 mM EDTA 

in dH2O) to give a concentration of 1%. Agarose was heated in short bursts in a 

microwave until fully dissolved and left to cool slightly for 10 min at room 

temperature before addition of 4 μl ethidium bromide (1:50,000 dilution) (Sigma 

Aldrich, E1510) to visualise DNA. Gels were poured and set in a Sub-Cell GT Cell, 

(Bio-rad, 1704402). PCR product (typically 5 μl) was loaded into the gel wells 

directly in GoTaq solution alongside a 1 kb Plus DNA Ladder (Invitrogen, 01787), 

which was loaded at a 5:1 ratio with Blue/Orange Loading Dye (Promega, 

G1881). Gels were run in a tank containing 1X TAE buffer at 100 V for 

approximately 60 min and imaged using ChemiDoc MP, (Bio-rad). 

If bands were to be excised for purification, then gels were made at a 

concentration of 0.7% agarose, more PCR product was added, and gels were run 

at 25 V overnight for more discrete bands. 

2.5.7 Gel extraction and purification of DNA 

DNA was extracted from gels using a QIAquick gel extraction kit (Qiagen, 28706). 

First DNA bands were visualised on a UV transilluminator, and bands of 

appropriate sizes cut out using a sterile scalpel and placed in Eppendorf tubes. 

Weights of the gels were measured, and QG buffer was added at a 3:1 ratio v/w 

and heated at 50°C until melted. One volume isopropanol was then added and 

mixed before placing in a spin column. Columns were spun with DNA being 

caught by the membrane. Columns were then washed once each with buffers QE 

and PE respectively and eluted in to nuclease free water. 

2.5.8 Determination of nucleic acid concentration 

DNA or RNA concentration was measured using a Nanodrop 2000 

spectrophotometer (Thermofisher). Samples were used if the 260/280 
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wavelength ration was between 1.8 and 2.0 and the 260/230 ratio was greater 

than 1.7.  

2.5.9 Transformation of competent E.coli 

Circularised DNA plasmids were amplified by growth in transformed TOP10 

chemically competent E.coli cells (Invitrogen, C404010). Tubes of cells were 

thawed on ice, then either used directly or split between two Eppendorfs to use 

for two different samples. Per tube, 2 μl of DNA was added and mixed gently by 

flicking, before being left on ice for 30 min. After this, tubes were heat pulsed 

by leaving in a 42°C water bath for 45 s. Tubes were then left on ice for at least 

2 min to cool down and then mixed with 200 μl of the kit-provided SOC medium 

and incubated for 1 h on a shaker at 37°C. Between 20 and 200 μl of this was 

then added to agar plates based on estimated efficiency and incubated overnight 

at 37°C until colonies were formed. Agar plates were supplemented with either 

kanamycin or ampicillin, based on the antibiotic resistance gene in the plasmid 

being transformed.  

2.5.10 Mini and Maxi preparation of DNA from E.coli 

Transformed E.coli colonies were grown further by inoculation of tubes 

containing 4–5 ml of Lennox broth (LB) (Invitrogen, 12780-052) with 

supplemented antibiotic. LB consisted of 10 g/l peptone-140, 5 g/l yeast extract 

and 5 g/l NaCl, made up in dH20 and autoclaved before use. Inoculated tubes 

were cultured at 37°C overnight in a shaking incubator at 225 rpm. After this, 

cells were either pelleted by centrifugation for Mini-prep or used to further 

inoculate 200 ml of LB plus antibiotic for Maxi-prep.  

For Mini-preps, tubes were centrifuged at 1120×g for 5 min, LB was aspirated, 

then plasmid DNA extracted using a Qiagen 8000 Robot and quantified using a 

Biophotometer 6131 (Eppendorf). At this point, presence of desired sequence 

was either confirmed by diagnostic restriction enzyme digestion or Sanger 

sequencing with an appropriate primer. All Mini-prep processes and sequencing 

was performed by at the Molecular Technology Service, CRUK Beatson CRUK 

Institute. 
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For Maxi-preps, conical flasks containing 200 ml of inoculated LB were incubated 

overnight at 37°C on a shaking incubator at 225 rpm. Broth was then decanted 

into a 250 ml conical flask and centrifuged at 2000 rpm (rotor JS 4.2) for 15 min. 

Medium was then aspirated and plasmid extracted by Maxi-prep at the Molecular 

Technology Service, CRUK Beatson CRUK Institute. 

2.6 Creation of ICP6 expressing cell lines by lentiviral 

transduction 

2.6.1 Creation of lentiviruses from plasmid constructs 

Lentiviral plasmids containing cDNA for various ICP6 constructs were received as 

a kind gift from Prof E. Mocarski, Emory University (Table 2.3). Plasmids were 

prepped and purified using the protocols above before transfection into 293T 

cells in order to produce lentiviruses. Transfection was done in 10 cm plates, 

wherein 2×106 cells were seeded and left for 24 h. Plasmids were added together 

in the amounts shown below in one tube with 1.5 ml of Opti-MEM and vortexed. 

In another tube, 45 μl of Lipofectamine™ 2000 was added to the remaining 

1.5 ml of Opti-MEM and mixed gently. Tubes were left at room temperature for 5 

min before the two tubes were combined to give a plasmid/Lipofectamine™ mix 

and left for a further 20 min for micelles to form around the DNA. Medium from 

the 293T cells was then aspirated and replaced with 5 ml antibiotic-free 

medium. The Opti-MEM mix was then added on top and left for 16 h overnight. 

After this, medium was replaced with 10 ml complete medium. After another 32 

h, supernatant was harvested, spun to remove debris, and stored at −80°C or 

used immediately. Lentivirus reagent quantities are summarised in Table 2.4. 
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Table 2.3: ICP6-expressing plasmid information and naming. 

Plasmid Name Insert Vector 

pLV-ICP6_FL Flag tagged Full length ICP6 pLV-EF12-MCS-IRES-

Puro 

pLV-ICP6 (mutRHIM) Flag tagged Full length ICP6 with 

AAAA substitution in place of 

RHIM aa 75–78 

pLV-EF12-MCS-IRES-

Puro 

pLV-ICP6 (Δ1–243) Flag tagged ICP6 deleted in the 

first 729 nucleotides 

pLV-EF12-MCS-IRES-

Puro 

pLV-ICP6 (244–629) Flag tagged ICP6 deleted in the 

first 729 nucleotides and last 

1524 nucleotides 

pLV-EF12-MCS-IRES-

Puro 

 

Table 2.4: Lentivirus reagent quantities for cell line transduction. 

Component Amount 

pLV-cDNA vector 9 μg 

Gag-Pol + Rev expression vector (psPAX; 

Addgene) 

6 μg 

VSV-G expression vector (pCMV-VSV-G; 

Addgene) 

3 μg 

Total plasmid DNA 18 μg 

Lipofectamine™ 2000 45 μl 

Total Opti-MEM 3 ml 

2.6.2 Transduction of cell lines with lentiviruses 

Target cells were grown in 6-well plates at a density that allowed for 25–50% 

confluence at time of transduction. Lentiviral stocks were thawed and mixed 

with polybrene to give a final concentration of 5 μg/ml. Medium from cells was 

aspirated and replaced with approximately 3 ml lentiviral supernatant. The next 

day, supernatant was removed and replaced with 2 ml complete medium. After 

48 h of transduction, puromycin was added in fresh complete medium at a 
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concentration of 1 μg/ml and cells were monitored until complete death was 

seen in the untransduced control well. 

2.6.3 Dilution cloning of ICP6 cells 

Once selected for, transduced cells were expanded until presence of ICP6 could 

be confirmed by Western blot. Once confirmed, fresh cells were dilution cloned. 

First, a cell suspension was made and diluted using serial dilutions to form a 

total volume of 40 ml containing 400 cells. Of this, 200 μl was then dispensed 

into each well of a 96-well plate to give an average dilution of 2 cells per well. 

After a few days, wells were manually checked by microscope to identify wells 

with single colonies. These were later trypsinised and expanded before being 

checked for ICP6 expression by Western blot. 

2.7 CRIPSR/Cas9 gene editing of HSV-1716.  

2.7.1 Guide design  

Three gRNA sequences were designed to target three separate sites within the 

RHIM domain of ICP6, using the online http://crispr.mit.edu/ tool.  

2.7.2 Transfection 

Vero cells were plated in 6-well plates at a density of 1×105 cells/well and 

transfected with a px459 plasmid containing the Cas9 gene and the guide RNA 

sequence of interest. Cell media was changed 24 h following transfection. After 

48 h, media was replaced to contain 2.5 μg/μl puromycin and left for a further 

48 h, or until significant cell death was seen in untransfected wells. After this, 

two control wells were trypsinised and counted in order to calculate an MOI of 1. 

Cells were infected in 1 ml serum-free medium for 2 h and then supplemented 

with a further 1 ml of complete medium. After 48 h, cells were removed by 

scraping and kept suspended in medium, before being snap-frozen in liquid 

nitrogen and thawed in a 37°C water bath three times.  

http://crispr.mit.edu/
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2.7.3 Isolation of viral clones 

Vero cells were plated at a density of 1×104 cells/well in 200 μl in 96-well 

plates. Serial dilutions of the virus clonal pool were made across the plates to 

give a total of 6 dilutions of 12 replicates per plate. Four plates were used per 

guide to give a total of 48 replicates per dilution. The plates were incubated at 

37°C for 2–5 days until full cytopathic effect was seen in most wells. Plates were 

scored to determine which wells had been infected by a single viral particle and 

these wells were isolated by pipetting to dislodge cells and freeze-thawing three 

times in liquid nitrogen.  

2.7.4 Screening for gene edited viral clones 

Clones were first screened for presence of ICP6 protein expression by infecting 

Vero cells with 5 µl of virus for 24 h, harvesting protein and staining on an 

immunoblot for ICP6. To identify clones which contained mutations conferring 

no effect on protein expression, the surveyor assay was used. This involved 

mixing equal quantities of mutant and wild type DNA, amplified by primers 

spanning a 300 bp segment of the gene surrounding the target site. These were 

then denatured at 95°C for 10 min and allowed to hybridise by cooling gradually 

to 25°C. Afterwards, 400 ng of sample was mixed with 1 µl of nuclease and 

enhancer and left on ice for 1 h. The nuclease causes double strand breaks at 

regions that contain a mismatch, which can be visualised on an agarose gel.  

Sequencing 

PCR fragments that were amplified previously were cloned into pCR-TOPO 2.1 

plasmids by mixing 0.5–2 μl of DNA with 1 μl of enzyme in a 5 μl reaction and 

leaving for 5 min at room temperature. These sequences containing plasmids 

were transformed into TOP10 chemically competent E.coli, which were then 

Mini-prepped and sequenced in house by Sanger sequencing.  
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2.8 Quantitative PCR 

2.8.1 Viral replication 

Cells were seeded at a density of 1×105 per well in 6-well plates and left for 24 h 

to adhere. Cells were then infected with HSV-1716 at MOI 1 in serum free 

medium, refed with complete medium after 2 h. At 0, 8, 16, 24 and 48 h post 

infection, DNA was extracted using the Qiagen blood and tissue kit as described. 

A standard curve of purified HSV-1716 DNA was used to determine viral copy 

number. For this, DNA was extracted from purified viral stocks using the Qiagen 

blood and tissue kit, with concentration determined by Nanodrop. The following 

equation was used to calculate viral genome copy number from DNA 

concentration: 

𝐶𝑜𝑝𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 (𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠) =
𝐶 × 𝑁𝐴

(𝐿 × 660) × 109
 

Where: C = concentration of DNA in ng 

               NA= Avogadro’s constant (6.0221x1023) 

               L= length of DNA in bp (152,000 for HSV-1716 genome) 

              660 = average mass of 1bp in g/mole 

             109 = conversion of ng to g 

Appropriate dilutions of viral DNA were then made to form a standard curve 

spanning 1×108–6.4×103 genome copies. For the PCR reaction, 50 ng of DNA was 

added to each well of a 96-well qPCR plate (Bio-Rad) along with 18 μl of master 

mix, giving a final concentration of 1X Bio-Rad universal probes, 900 nM forward 

primer, 900 nM reverse primer, and 250 nM corresponding fluorophore-tagged 

probe. Nuclease-free water was added to make up reaction volumes to 20 μl. 

Plates were run with the cycling parameters described in Table 2.5. 
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Table 2.5: Standard qPCR cycling conditions. 

Temperature Time 

50°C 2 min 

95°C 3 min 

40 cycles of the 

following: 

95°C 10 s 

60°C 60 s 

2.8.2 RNA extraction for RT-PCR from cells 

RNA from cells in culture was extracted using the Qiagen RNeasy Plus mini-kit 

(74106). Cells were seeded in a 6-well plate at a density of 1×106 cells/well and 

left for 24 h to adhere. Cells were washed once with PBS and trypsinised before 

being resuspended in buffer RLT containing 1% β-mercaptoethanol (β-ME). Equal 

volume of 70% ethanol was then added to the samples. This is then transferred 

to an RNeasy Mini spin column, where it was spun at 8000×g for 1 min. Columns 

were washed by adding buffer and centrifuging 8000×g for 1 min. Washing was 

performed first with buffer RW1, before an on-column DNase digestion was 

performed using 80 μl of the prepared DNase solution at room temperature for 

15 min. One further wash was performed with RW1, followed by two washes with 

buffer RPE. RNA was eluted into 30 μl of RNA/DNase-free water, aliquoted and 

stored at −80°C.  

2.8.3 Complementary DNA (cDNA) generation 

For standard RT-PCR, cDNA was generated using the High-Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, 4368814). For this, 1 μg of RNA was 

diluted into a total of 10 μl per sample. RT 2X master mix was prepared by 

combining RT Buffer, dNTP Mix, RT Random Primers, and MultiScribe™ reverse 

transcriptase, diluted to 2X concentrations. 10 μl of master mix was added to 

each 10 μl sample to give a total reaction volume of 20 μl. Samples were run on 

an Applied Biosystems Veriti 96-well thermocycler under the conditions 

described in Table 2.6. 
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Table 2.6: cDNA generation thermocycler conditions. 

 Step 1 Step 2 Step 3 Step 4 

Temperature (°C) 25 37 85 4 

Time 10 min 120 min 5 min ∞ 

2.8.4 qPCR following reverse transcription  

The qPCR protocol outlined above for ‘Viral Replication’ was used, following 

cDNA generation.   

2.8.5 RT2 Profiler array 

The RT2 Cytokines and Chemokines array (Qiagen, PAHS-150ZE) was used to 

determine differences in transcript levels of 84 cytokines and chemokines 

between HSV-1716 and HSV-3D7 infected cells. Cells were seeded in a 6-well 

plate at a density of 1×106 cells/well and left for 24 h to adhere. Cells were 

infected following the standard protocol. RNA from cells was extracted using the 

Qiagen RNeasy Plus mini-kit. RNA was only used if it had a A260:A230 ratio of 

greater than 1.7 and a A260:A280 ratio of 1.8 to 2.0. In addition to this, RNA 

samples were required to have an RNA integrity number (RIN) of greater than 7 

Synthesis of cDNA for the array was done using the RT2 First Strand Kit (Qiagen; 

330401). For this, a genomic DNA elimination step was first performed by mixing 

800 ng of sample RNA per array (one sample per 384-well plate array) with 2 μl 

Buffer GE, then making up to a final volume of 10 μl with nuclease-free water. 

This mix was incubated for 5 min at 42°C and then immediately transferred to 

ice. For the reverse transcription, a mastermix was prepared containing Buffer 

BC3, Control P2, RE3 Reverse Transcription Mix as per manufacturer’s 

instructions, and then added in a 1:1 ratio with the 10 μl sample from the 

previous step. This was incubated at 37°C for 60 min, followed by a 95°C 

incubation for 5 min to stop the reaction.  

For the PCR, samples prepared in the previous steps were mixed with the 2X RT2 

SYBR Green Mastermix and water to give a final volume of 1300 μl per sample. 

Of this, 10 μl was dispensed into each well of the array plate before sealing the 
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plate with the provided cover and centrifuging for 1 min at 1000×g. The 

programme was run on an Applied Biosystems 7500 Fast Real-time PCR System 

consisting of the parameters described in Table 2.7. 

Table 2.7: RT2 cytokine and chemokine profiler array cycle conditions. 

Cycles Duration Temperature 

1 10 min 95°C 

40 15 s 95°C 

1 min 60°C 

2.9 Protein expression levels 

2.9.1 Preparation of whole cell lysates 

To extract protein from cultured cells, 1×106 cells were typically seeded in 6-

well plates and left for 24 h before treating. When ready, cells were trypsinised, 

centrifuged at 1200 rpm for 5 min to pellet, and lysed in RIPA buffer (150 nM 

NaCl, 10 nM Tris pH 7.8, 1 mM EDTA, 1% Triton X-100, 0.1% SDS) with freshly 

added protease inhibitor cocktail (Roche) at a concentration of 1 tablet per 10 

ml and 1% phosphatase inhibitor (Sigma; P5726). Samples were then centrifuged 

at 15000 rpm for 20 min at 4°C to remove cellular debris and transferred to a 

new 1.5 ml Eppendorf tube.  

2.9.2 Determination of protein concentration 

Protein concentration was measured by Bradford assay, whereby 5 μl of sample 

was diluted in 45 μl of PBS to create a 1:10 dilution. Protein standards were 

made by dissolving a known mass of bovine serum albumin (BSA; Sigma) in water 

and diluting to make concentrations ranging linearly from 0–0.5 mg/ml. Wells of 

a 96-well plate were loaded with 10 μl of either standard or diluted sample, with 

200 μl of working Bradford (Bio-rad; 1:5 dilution in dH2O) solution on top. Plate 

was left for approximately 5 min at room temperature to allow colour change to 

form, before being read at 595 nm on a TECAN microplate reader.  
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2.9.3 Preparation of polyacrylamide gels 

Gels were prepared using the Bio-rad Mini-Protean tetra Handcast System and 

consisted of 8% polyacrylamide (National Diagnostics, EC-890), 375 mM Tris HCL 

pH8.8 (Sigma), 0.1% SDS, 0.1% ammonium persulphate (APS) and 0.06% 

tetramethylethylenediamine (TEMED; Sigma) for the resolving portion and 5% 

polyacrylamide, 125 mM Tris HCL pH6.8, 0.1% SDS, 0.1% APS and 0.1% TEMED for 

the stacking portion. The above preparations were made up in dH20 in the order 

stated and mixed gently before pipetting into casts, one gel portion at a time, 

allowing approximately 20 min for setting of the resolving gel before adding 

stacking gel on top with well comb. Gels were either used immediately or stored 

at 4°C in dH2O.  

2.9.4 Preparation of samples 

To prepare protein samples for separation sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE), lysates were diluted to a 

concentration typically ranging from 0.5–1 μg/μl (depending on the amount of 

protein available) in lammeli buffer (300 mM Tris-HCL, 10% SDS, 50% glycerol, 

20% β-ME, 3.7 mM bromophenol blue) and boiled at 95°C for 10 min. Samples 

were cooled to room temperature before running. 

2.9.5 SDS-PAGE and Western blotting 

Of the boiled sample, 20 μl was loaded per well of the gel, alongside 8 μl of 

prestained protein standards (Novex) and run at 120 V for approximately 90 min, 

or until good separation at the target molecular weight was seen. Running buffer 

consisted of 20 mM Tris HCL, 190 mM Glycine, and 0.1% SDS made up in qH2O. 

After separation, proteins were transferred to a nitrocellulose membrane 

(Amersham) by wet blotting using a Bio-rad Mini-Protean Tetra Transfer System. 

Transfer buffer consisted of 20 mM Tris HCL, 190 mM Glycine, and 20% methanol 

made up in qH2O. Sponges, filter papers and nitrocellulose membranes were 

soaked in transfer buffer, before assembly of a sandwich, consisting of one 

sponge, one filter paper, gel, membrane, filter paper and sponge. At each point 

of assembly, a roller was used to ensure removal or air bubbles. The assembled 
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sandwich was placed into the transfer cassette, into the tank with 1 L of transfer 

buffer and an ice pack, and run at 100 V for 60 min. 

2.9.6 Antibody staining 

After membrane transfer, membranes were blocked by incubating for 1 h at 

room temperature in 5% (w/v) non-fat milk (Marvel) made up in TBST buffer (150 

mM NaCl, 20 mM Tris Base, 0.1% Tween20, pH7.6). After blocking, membranes 

were washed briefly in TBST before incubating with primary antibody diluted in 

TBST, either for 1 h at room temperature or overnight at 4°C. Membranes were 

then washed three times for 5 min with TBST before incubation with HRP-

conjugated secondary antibody made up in TBST for 1 h at room temperature. 

Membranes were washed again, three times for 5 min and then developed for 

detection by removing the liquid from the membrane and adding a 1:1 mixture 

of ECL (GE Healthcare, RPN2106) or ECL prime (GE Healthcare, RPN2232) 

detection reagent on top. Chemiluminescence was detected on a Bio-rad Chemi-

doc, with exposure time varying based on intensity of signal.   

2.9.7 Co-immunoprecipitation 

To prepare cell lysates for co-immunoprecipitation (CoIP), 1×106 HeLa-RIPK3 

cells were seeded in a 100 mM dish and left for 24 h to adhere. Cells were either 

mock infected, or infected with either HSV-1716, HSV-3B1, HSV-3D7 at MOI 1 in 

15 ml of serum-free medium, and re-fed 2 h later with complete medium. After 

24 h, media was removed from cells and transferred labelled 50 ml falcon tubes. 

The cells were washed once with 20 ml PBS, which was subsequently removed 

and added the same tubes, and treated with 3 ml trypsin per plate for 

approximately 5 min at 37°C. Trypsinised cells were dislodged by gently tapping 

the side of the dish, and resuspended in 10 ml of complete medium, before 

being added to the same falcon tubes. Collection of all medium and washes was 

done to ensure any floating or dead cells were still harvested.  

Tubes were spun at 1200 rpm for 5 min to pellet cells, resuspended in 10 ml PBS 

and spun again under the same conditions to pellet again. The pellet was then 

resuspended in 1 ml of Nonidet-P40 buffer (10 mM Tris pH8.0, 150 nM NaCl, 1% 
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Nonidet-P40) with freshly added protease inhibitor cocktail (Roche) at a 

concentration of 1 tablet per 10 ml and 1% phosphatase inhibitor (Sigma; P5726) 

and left to lyse on ice for 15 min. Lysates were spun at 14000 rpm for 20 min at 

4°C to pellet debris and transferred to fresh 1.5 ml Eppendorf tubes.  

Protein concentration was measured by Bradford assay as described previously 

and used to calculate the necessary dilutions needed to prepare 0.5–1 mg 

protein in 500 μl of Nonidet-p40 buffer. For this, 3 μg of the desired antibody 

was added directly and the tubes incubated on a rolling wheel at 4°C for 2 h. 

Afterwards, 15 μl of magnetic beads (Dynabeads Pan Mouse IgG; Invitrogen) were 

added to each sample and incubated for a further 2 h at 4°C on a shaker. 

Immunoprecipitation was then performed using a magnetic rack to separate the 

magnetic bead-bound material from the supernatant. Supernatant from this 

initial pull-down was kept and beads were resuspended in 500 μl Nonidet-P40 

buffer to wash. Three of these washes were performed in total before finally 

suspending beads in 20 μl of lammeli buffer. Samples were heated at 95°C for 10 

min to denature proteins and their interactions, before a final precipitation of 

the magnetic beads and transfer of supernatant to a new 1.5 ml Eppendorf. 

Protein samples were then analysed by following the above SDS gel and Western 

blot protocols. A list of all antibodies used for Western blotting and CoIP can be 

found in Table 2.8. 
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Table 2.8: List of antibodies and suppliers used. 

Primary antibodies 

 Origin Supplier Catalogue 

number 

Dilution in 

TBST for 

immunoblot 

Anti-human RIPK1 Mono-rabbit Cell Signalling 

Technology 

8737 1:1000 

Anti-human RIPK3 Poly-rabbit Novus NBP2-24588 1:200 

Anti-human MLKL Mono-rat EMD Millipore MABC604 1:1000 

Anti-human β-

actin 

Mono-mouse Sigma a1978 1:5000 

Anti-HSV1 Poly-rabbit Dako B0114 1:3000 

Anti-ICP6 Poly-rabbit Described, 

Conner et al., 

1993  

-  1:1000 

Secondary antibodies 

Anti-rabbit Poly-goat Dako P0448 1:3000 

Anti-mouse Poly-goat Dako P0447 1:3000 

Anti-rat Poly-rabbit Dako P0450 1:3000 

CoIP antibodies 

 Origin Supplier Catalogue 

number 

Amount 

used (μg) 

Anti-human RIPK3 Mono-mouse Santa Cruz Sc-374639 3 

IgG control Mono-mouse Abcam ab37355 3 

2.9.8 Fluorescent antibody detection array 

To analyse the levels of an array of chemokines following viral infection, 1×106 

of either TOV21G, HeLa-Lzrs or HeLa-RIPK3 cells were seeded into each well of a 

6-well plate for 24 h. After this, cells were infected with either HSV-1716 or 

HSV-3D7 at MOIs of 2 (TOV21G) or 2.5 (HeLa), giving a final volume of 2 ml/well. 

After 16 h, supernatants were harvested while simultaneously treating cells with 

MTT to determine viability. Supernatants were spun at 1200 rpm for 10 min to 

pellet any debris and then immediately frozen at −80°C until needed.  
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Once conditions were found which led to similar levels of cell death, 

supernatants were defrosted at room temperature and tested for presence of 

chemokines using a Raybio C-Series Human Chemokine Antibody Array C1 (AAH-

CHE-1). For this, the array chip was equilibrated to room temperature, and then 

blocked with 100 μl blocking buffer for 30 min at room temperature. Blocking 

buffer was then aspirated and replaced with 100 μl of each sample for 2 h at 

room temperature. The chip was then washed with each of the wash buffers 

provided for 2 min, three times and incubated with 70 μl biotin-conjugated 

anticytokines for 2 h at room temperature with gentle rocking. After a repeat 

wash, 2 ml of HRP-streptavidin was added to each well and incubated for 2 h at 

room temperature. After a further set of washing, 70 μl of streptavidin-fluor was 

added to each well and incubated for 2 h in the dark before more of the same 

washes. The chip was then removed from its casing and rinsed with dH2O, before 

leaving to air dry in a laminar flow hood. Once dry, the chip was packaged and 

sent to be read with an Innopsys’ InnoScan® using cy3 or “green” channel 

(excitation frequency = 532 nm). 

2.10 Flow cytometry 

2.10.1 Cell surface expression of Calreticulin 

To analyse the surface expression of calreticulin following virus or drug 

treatment, 8×105 cells were first seeded in to a 6-well plate and left for 24 h to 

adhere. Cells were infected or treated as described earlier for 1-24 h before 

fresh collection of samples for flow cytometry. 

First cell medium was removed and placed in a 14 ml Falcon tube. Cells were 

then washed with PBS and trypsinised, with all resulting waste fluid being added 

to the same tube. Each subsequent wash was made by spinning cells at 1200 rpm 

for 5 min, aspirating supernatant and resuspending cells. Cells were washed 

once in protein containing FACS buffer (PBS, 2% calf serum, 1 mM EDTA, 0.1% 

sodium azide) before being transferred to a 5 ml round bottom polystyrene FACS 

tube (Falcon; 352054). FACS buffer was removed and cells were resuspended in 

100 μl FACS buffer, before adding 10 μl of buffer containing 500 ng of PE-

conjugated CAL or isotype control antibody. Samples were left to incubate for 30 
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min at 4°C, then were washed once with protein-free FACS buffer before being 

resuspended in the same buffer containing a 1:1000 dilution of Zombie Violet™ 

viability dye. This was incubated for 10 min at 4°C. Samples were then washed 

once in protein-containing FACS buffer, fixed in 3.7% PFA for 5min at room 

temperature, washed once more in FACS buffer before analysing by flow 

cytometry.  

2.10.2 Annexin V/Zombie Violet staining for determination of cell 

death 

For this, 8×105 cells were seeded in a 6-well plate before receiving virus or drug 

treatment as described. First cell medium was removed and placed in a 14 ml 

Falcon tube. Cells were then washed with PBS and trypsinised, with all resulting 

waste fluid being added to the same tube. Each subsequent wash was made by 

spinning cells at 1200 rpm for 5 min, aspirating supernatant and resuspending 

cells. Cells were washed with protein-free FACS buffer, before suspending in a 

1:1000 dilution of Zombie Violet™ Viability dye, which was incubated for 10 min 

at 4°C. After this, cells were washed with protein-containing FACS buffer once 

and then once with 1X Annexin V binding buffer (Biolegend; 422201). Cells were 

then resuspended in 100 μl of 1X Annexin V binding buffer, with 5 μl of FITC-

conjugated Annexin V added on top and left to incubate for 15 min at room 

temperature. After this, cells were washed again in binding buffer, and fixed by 

suspending in 3.7% PFA for 5 min at room temperature. One more wash in 

binding buffer was done before analysis by flow cytometry.  

2.10.3 Analysis by flow cytometry 

Samples were analysed on a BD FACSVerse™ system. Cell debris was gated out 

based on FSC-A and SSC-A values. Doublets were removed by plotting FSC-A 

against FSC-H. In the case of the CAL assay, Zombie Violet™ staining was used 

first to eliminate dead cells before taking measurements. Data was analysed 

using FlowJo™ 10 software. A list of flow cytometry antibodies can be found in 

Table 2.9. 
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Table 2.9: List of flow cytometry antibodies used with suppliers 

Name Fluorophore Origin Supplier Catalogue 

number 

Quantity 

Anti-

Calreticulin 

PE Mouse 

FMC75 

IgG1 

Enzo Life 

Sciences 

ADI-SPA-

601PE 

500 ng/test 

Annexin V FITC - Biolegend 640906 450 ng/test 

Zombie 

Violet™ 

viability dye 

- - Biolegend 423113 1:1000 

dilution 

2.11 Transmission Electron Microscopy  

TOV21G cells were grown in T-75 flasks at a density of 5×106 for 24 h before 

treating or infecting following the protocols outlined above, using 7.5 ml serum-

free medium, then re-feeding 2 h later with complete medium. Cells were 

treated for 48 h before washing once with PBS, and then fixed with a 2.5% 

glutaraldehyde, 0.1 M sodium cacodylate buffer for 1 h at 4°C. Cells were 

scraped off the surface off the flask and suspended in 0.1 M sodium cacodylate 

with 2% sucrose, then spun to pellet. The pellet was then washed three times for 

5 min in the same buffer, making sure to keep the pellet intact each time. All 

future washes were performed by aspirating and replacing the liquid carefully, 

keeping the pellet intact. The remaining steps were performed either by, or 

with substantial help from Margaret Mullin, University of Glasgow. Samples were 

post-fixed in 1% osmium tetroxide, 0.1 M sodium cacodylate for 1 h at room 

temperature. Samples were washed three times in distilled water for 10 min 

before staining with 0.5% aqueous uranyl acetate for 1 h in the dark. Two more 

washes were performed in distilled water for 1 min each before beginning a 

dehydration series. For this, pellets were placed in solutions containing 30%, 

50%, 70%, and 90% ethanol respectively in ascending order and for 10 min each. 

Four washes were then performed in absolute ethanol, followed by three 5 min 

washes in propylene oxide. Samples were then left in 1:1 propylene oxide: 

araldite/epoxy812 resin overnight for the propylene oxide to evaporate. Samples 

were then transferred to pure araldite/epoxy812, with 2-3 changes made 

throughout the day, before leaving overnight. Once in a final set of resin, 
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samples were added to flatbed moulds and sealed in by polymerising the resin 

with a 60°C incubation for 48 h. Sections of about 6070 nm width were cut using 

a LEICA Ultracut UCT and DIATOME diamond knife at an angle of 6°. Sample 

sections were picked up on 100mesh formvar coated copper grids then contrast 

stained with 2% Methanolic Uranyl Acetate for 5 min, followed by Reynolds Lead 

Citrate for 5 min.  

Images were taken on a FEI Tecnai T20 (Zeiss, UK) at an accelerating voltage of 

200 kV, using the GATAM Digital Imaging system. 

2.12 Luminescence detection of ATP release 

ATP release following HSV-1716 or HSV-3D7 infection was measured using a 

luminescence-based assay kit (Abcam, ab113849). For this, 2×104 TOV21G cells 

were seeded per well of a 96-well plate and left for 24 h to adhere. Cells were 

then infected with a range of MOIs for HSV-1716 and HSV-3D7 in a volume of 

50 μl serum-free medium, and then refed with 50 μl complete medium 2 h later. 

Infected cells were incubated for 48 h before assessing ATP release. For this, 90 

μl of supernatant was harvested from each well and deposited into the 

corresponding well within a 96-well opaque white plate. A standard curve 

dilution series of purified ATP was made in complete medium ranging from 10 

pM-10 μM. Of each standard dilution, 90 μl was also added to the new white 

plate. To each of these wells, 50 μl of substrate solution was added. The plate 

was then covered and placed in a PHERAstar luminometer, where it was shaken 

for 5 min and left to dark adapt for 10 min before determining luminescence. In 

parallel, cell viability was determined by MTT on the cells remaining in each 

well. 

2.13 Statistical analyses 

Statistical tests were performed using Graphpad Prism software. Unless 

otherwise stated, all data points plotted represent mean values from technical 

repeats ± standard deviation (SD). In some cases, individual biological repeats 
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are displayed as dot plots, which include individual data points as well as mean ± 

SD.  

Exact statistical tests used are stated in each case. Student’s two-way t tests 

were used when comparing two conditions alone. When comparing a set of 

means in a single group, one-way ANOVA was performed. In order to control the 

Type I error rate, statistical significance was determined by doing a multiple 

comparisons test with an appropriate correction method. For comparing all 

means in a set with each other, Tukey correction was applied; for comparing 

every mean with one control mean, Dunnett’s correction was applied; for any 

other selected subset of means, Sidak correction was used. If two or more 

groups of data were to be compared, a two-way ANOVA was used. In all 

instances, cut offs for statistical significance were as follows: *, p <0.05; **, p 

<0.01; ***, p <0.001; ****, p <0.0001. Gaussian distribution was assumed in all 

tests. 

In instances where two sets of data were correlated, correlation coefficients are 

given, denoted by r. Linear regressions were also performed in tandem to display 

a line of best fit. Values for r were interpreted with the following boundaries: 0, 

no linear relationship; ±0.3, a weak linear relationship; ±0.5, a moderate linear 

relationship; ±0.7, a strong linear relationship; ±1, a perfect linear relationship.  
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3 Basic observations of HSV-1716 in cancer cells 
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3.1 Introduction 

To begin investigating the specifics of HSV-1716 infection in OC cells, it was first 

important to perform some basic characterisation experiments to determine the 

efficacy of HSV-1716 as a potential treatment for OC. For this, viral replication 

and killing was assessed in a range of cancer cell lines.  

In 2013, Domcke et al. assessed the suitability of a range of commonly used OC 

cell lines as models of HGSOC. Many of the cell lines that appear in this thesis 

were assessed in the study (OVCAR4, COV31G, JHOC5, OVTOKO, OVMANA, 

SKOV3, IGROV1, A2780, TOV21G). It was shown that some of the most cited cell 

lines (including SKOV3, IGROV1 and A2780) are in fact genomically unlike HGSOC 

primary tumours, due to lack of characteristic mutations in genes such as TP53, 

abnormally high copy-number alterations, and/or presence of hypermutated 

phenotypes (IGROV1). OVCAR4 and COV318 cells were shown to be highly 

representative of HGSOC, with both possessing mutations in TP53, and COV318 

possessing an additional CCNE1 amplification. TOV21G cells were found to be 

more representative of CCC, which was the histological designation given at the 

time of isolation. These cells possess a mutation in ARID1A, which is found in 

approximately 50% of CCCs, but are also hyper-mutated. This information will 

have to be carefully taken into consideration when analysing the clinical 

relevance of any findings outlined in this thesis. 

There have been a number of preclinical studies involving the use of HSV-1716 in 

OC (Coukos et al., 1999; Benencia, Courrèges, Conejo-García, Buckanovich, et 

al., 2005; Benencia et al., 2008). However, none of these has assessed the 

killing capabilities of the virus across such a large panel of ovarian cell lines, or 

in a panel that has been as well characterised.  

In addition, some basic experiments concerning the sensitivity of OC cells to 

necroptosis were performed. These experiments serve as a foundation for the 

cell death experiments to come and help to identify particular cell lines that 

may have desirable properties.  
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3.2 HSV-1716 replicates within human ovarian cancer 

cells 

To assess the infectious properties of HSV-1716 in OC cells, a panel of 

established OC cell lines was infected with HSV-1716 at an MOI of 1 and 

incubated for 24 h before extracting protein from the samples and analysing by 

immunoblot (Figure 3.1a). Blots were stained under these conditions using a 

polyclonal anti-HSV antibody. The presence of staining was evident in all cell 

lines tested under these conditions, suggesting that HSV-1716 could successfully 

infect and produce protein in these cell lines. The intensity of staining did not 

appear to vary greatly between lines, suggesting that their permissiveness to 

viral protein production was similar.  

 

Figure 3.1 Replication of HSV-1716 within ovarian cancer cells.  OC cell lines were infected with HSV-
1716 at an MOI of 1 and left for 48 h before harvesting lysates for immunoblot, stained for either HSV protein 
or β-actin. (B) TOV21G (left) or OVCAR4 (right) cells were each infected with either live or UV-inactivated 
(UV) HSV-1716 at MOI 1 and left for 8, 16, 24 or 48 h before extracting cellular DNA. Quantitative PCR was 
performed to determine number of HSV genome copies per μg of total DNA, following use of one of two 
primers targeting genes UL1 and UL23. Dotted line represents the lower limit of detection based on lowest 
standard curve concentration. Data points are represented as mean ± SD. MW, molecular weight; kDa, 
kilodaltons; hr, hour;  
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To further demonstrate that HSV-1716 was capable of replication within OC 

cells, two cell lines from this panel, TOV21G and OVCAR4 were infected with 

HSV-1716 at an MOI of 1 for up to 48 h to observe genome replication (Figure 

3.1b). For this, whole cell DNA was extracted at 8, 16, 24 and 48 h time points 

and qPCR was performed using primers for two distinct genome regions, which 

corresponded to the viral genes UL1 and UL23. UL1 encodes glycoprotein L, 

which resides within the external lipid bilayer of the virion and is crucial for 

viral entry. UL23 encodes a thymidine kinase that catalyses the conversion of 

thymidine to thymidine-5’-phosphate. Distinct genome regions were chosen to 

illustrate that replication of the entire genome was taking place, and not just 

certain regions. In both cell lines, HSV-1716 was shown to increase in genome 

copy number after 8 h of infection, with copy number continuing to increase up 

until 24 h. After 24 h, in TOV21G it plateaus, and in OVCAR4 the increase 

continues until 48 h at least. In comparison, cells infected with HSV-1716 that 

had been inactivated by exposure to UV light showed almost no replication 

above baseline. The entire life cycle of wild-type HSV-1 infection is 18–20 h 

(Knipe et al., 2014), so the fact that genome copy numbers were seen to remain 

at high levels and even increase past 48 h suggests that multiple rounds of 

replication and infection are taking place. There was no difference in copy 

number seen using either primer set, suggesting that the whole viral genome is 

replicated evenly. This provides further strong evidence that HSV-1716 is able to 

replicate within OC cells.  

3.3 HSV-1716 kills both continuous and primary human 

ovarian cancer cells 

To assess the oncolytic properties of HSV-1716 in OC cells, a panel of established 

OC cell lines was infected with HSV-1716 at a range of MOIs for 96 h, before cell 

viability was determined by MTT assay. The purpose of this experiment was to 

assess whether infection with this virus led to the death of cancer cells, thus 

proving the virus’s therapeutic potential in OC. HSV-1716 was able to cause 

complete death of most cell lines within the range of MOIs and time frame 

tested (Figure 3.2). The cell lines that were most sensitive to HSV-1716 infection 

where JHOC9 (IC50: 0.01) and TOV21G (IC50: 0.02), while the least sensitive were 
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UWB1.289 (IC50: 2.4) and PEO1 (IC50: 3.2). Cell lines therefore had quite a broad 

range of sensitivities. These cell lines represented distinct OC backgrounds, 

including both high-grade serous and clear cell carcinoma lines. Although the 

two most sensitive cell lines were both of clear cell carcinoma lineages, the 

other clear cell carcinoma cell lines OVTOKO, OVMANA and JHOC5 each had 

relatively high IC50 values (0.88, 2.4 and 2.1 respectively). It is therefore not 

possible to speculate from these results whether HSV-1716 has a preference for 

either cancer type.  
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Figure 3.2 HSV-1716 killing of primary and established ovarian cancer cell lines.  (A-B) Several OC cell 
lines were infected with HSV-1716 for 96 h at a range of MOIs before cell viability was determined by MTT 
assay. ‘A’ shows dose-response data from selected experiments, plotting mean ± SD; curves were calculated 
using Prism’s ‘sigmoidal dose-response’ function. ‘B’ shows pooled IC50 values from multiple experiments. (C) 
A selection of primary OC lines derived from patient ascites were infected with HSV-1716 at a range of MOIs 
for 96 h. Data points are represented as mean ± SD. IC50, half-maximal inhibitory concentration; MOI, 
multiplicity of infection. 

Primary OC cells were obtained from the ascites of patients after they had been 

drained. Ascites fluid was centrifuged to pellet the cells, which were then 

cultured briefly before experimentation. Overall, five different primary cell 

cultures were infected with HSV-1716 at a range of MOIs and left for 96 h before 
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determining cell viability. HSV-1716 was able to successfully kill to some degree 

in all cells, with a roughly similar range of sensitivity as the cell lines (Figure 

3.2). 20160527PP was by far the least sensitive cell line, while 20160425LH and 

20160502VF were both the most sensitive.  

3.4 Susceptibility of ovarian cancer cell lines to 

necroptosis 

In order to select suitable cell lines for experiments investigating effect on 

programmed necrosis, it was first necessary to assess the capacity for classical 

programmed necrosis induced by TSZ (TNF-, SMAC mimetic, zVAD.fmk) within 

these cells.  

Firstly, expression of major necrosome components, namely, RIPK3, RIPK1 and 

MLKL, was assessed by immunoblot (Figure 3.3). The purpose of this experiment 

was to determine both the ubiquity of expression of these proteins in OC cell 

lines, and to correlate expression with necrotic capacity. Interestingly, most cell 

lines appeared to express all the necessary components to some degree. Every 

cell line showed some RIPK1 expression, the highest being OVCAR4, and the 

lowest being OVMANA and COV318. MLKL expression was present in all cell lines; 

however, expression in COV318 was too low to reliably tell apart from 

background staining and so may not have been present at all. RIPK3 offered the 

greatest variation in expression across cell lines, yet all seemed to express it to 

some degree, with the lowest expression being in OVCAR5 cells and the highest 

in OVCAR4 and TOV21G. This ubiquity in RIPK3 expression is interesting, as it has 

previously been shown that the majority of cancer cell lines express no RIPK3 

(Koo et al., 2015). In this paper, over two thirds of the 60+ cancer cell lines 

tested expressed no RIPK3, which was shown to be due to methylation-

dependent silencing of RIPK3. None of the cell lines tested here appears in the 

panel shown in the paper, so a direct comparison is not possible.  
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Figure 3.3 Assessing the necroptosis-competency of ovarian cancer cell lines.  (A) Lysates were taken 
from several untreated OC cell lines and assayed by immunoblot for the necrosome proteins RIPK1, RIPK3 
and MLKL. (B) Ability of OC lines to undergo necroptosis was determined by treatment with either T, TS or 
TSZ for 48 h, with viability determined by MTT assay. Mean cell viabilities are plotted from selected 
experiments ± SD. MW, molecular weight; kDa, kilodaltons; T, TNF-α; S, SMAC mimetic; Z, zVAD-fmk.  

To assess the functional necroptotic potential of the OC cell panel, each cell line 

was treated with TNF-α, SMAC mimetic and zVAD-fmk – TSZ (Figure 3.3). By 

using different combinations of these three drugs, it is possible to induce cell 

death via a number of different pathways. In some cells, treatment with TNF-α 

alone can be enough to trigger cell death following the binding of TNF-α to 

TNFR1. This process is enough to cause the formation of complex I, which is a 

precursor to both apoptotic and necrotic forms of cell death (Vanlangenakker, 

Vanden Berghe and Vandenabeele, 2012). At this point, cIAP proteins are able to 

halt any further progression of death through their interaction with TRAF2 and 

TRAF5. Inhibition of cIAPs by ubiquitin/proteasome-mediated degradation 

induced by proteins such as SMAC therefore can allow the process of death to 

continue. Several SMAC mimetic drugs are available to mimic this process, and 

can help promote the induction of cell death when used in conjunction with 

TNF-α. The type of cell death caused by this combination can be either 

apoptotic or necrotic. Therefore, in order to induce a necrotic form of cell death 

specifically, caspases must also be inhibited. This can be done using a pan-

caspase inhibitor such as zVAD-fmk. Therefore, by using all three drugs in 
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combination (known as TSZ), necrosis can be triggered. It was this precise 

combination of treatments that first identified the classical necroptotic 

pathway.  

In the cell lines tested, a range of sensitivities to the TSZ combination were 

seen. OVTOKO, UWB1.289, PEO1, IGROV1 and JHOC5 showed no sensitivity at all 

to any combination of TSZ. OVCAR4 and PEO4 showed apoptotic cell death, 

whereby cell death is seen in the presence of TNF-α and SMAC mimetic, but 

addition of zVAD-fmk reversed this completely (Figure 3.3b). TOV21G and 

COV318 were the only cell lines that appeared to show any capacity for classical 

necroptotic cell death, with amount of cell death increasing or remaining the 

same when zVAD-fmk was added. Of these, TOV21G was by far the more 

sensitive, with a mean viability of 35% under TSZ treatment, compared to 73% 

for COV318. 

Interestingly, this shows that expression of necroptotic machinery does not 

appear to guarantee, nor correlate with susceptibility to necroptosis. COV318 

displayed marginal sensitivity to necroptosis despite having the lowest 

expressions of RIPK3 and MLKL, and OVCAR4 had the most marked resistance to 

necroptosis despite showing the highest expression of RIPK3. As the most 

necroptosis-sensitive cell line, TOV21G was subsequently used for the majority 

of experiments.  

3.5 Assessing the characteristics of a RIPK3 over-

expression model in HeLa cells 

To further probe the effect of necroptosis during HSV-1716 infection, an isogenic 

pair derived from HeLa cells was received as a gift from Dr M. Weigert in the 

host lab (Weigert et al., 2017). Earlier studies have also confirmed that HeLa 

cells categorically lack any RIPK3 expression (H. Wang et al., 2014; Schmidt et 

al., 2015). Here, several HeLa-RIPK3 over-expressing clones were assessed for 

expression of RIPK3 and the impact of this on necroptosis. Three RIPK3-

expressing clones were selected and compared to the empty vector control line, 

HeLa-Lzrs, as well as the parental wild-type cells (Par; Figure 3.4). Initially, 
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RIPK3 expression was determined by immunoblot. No expression was seen at all 

in the HeLa-Lzrs cells as expected. In all three clones expressing the RIPK3 

vector, clear bands were seen following RIPK3 staining. No clear difference in 

quantity of RIPK3 staining was visible in this image. To further determine 

whether this expression system had any impact on other elements of the 

necrosome, two clones – HeLa-D2 and HeLa-E4, were compared to parental and 

HeLa-Lzrs cells for expression of RIPK3, RIPK1 and MLKL. When comparing 

parental cells to HeLa-Lzrs control, similar levels of each protein were seen with 

loading control levels of β-actin taken into account. Slightly higher levels of 

MLKL do appear to be present in the HeLa-Lzrs cells compared to parental cells 

(Figure 3.4b), but it is hard to determine the significance of this.  

 

Figure 3.4 Assessing the characteristics of a HeLa-RIPK3 over-expression model.  HeLa cells that have 
been transduced to express RIPK3 were received as a gift and assessed to determine their protein expression 
and necroptotic characteristics. (A) Whole cell lysates from untreated cells were obtained and probed for 
RIPK3 expression by immunoblot. (B) Untreated lysates from a selection of clones were probed by 
immunoblot for additional necroptotic proteins and compared to unmodified, parental (Par) cells. (C) DNA 
samples were extracted from untreated TOV21G and HeLa cells and analysed by RTqPCR to determine 
mRNA levels of RIPK3 and MLKL. Statistical significance was determined by two-way ANOVA (Sidak’s 
multiple comparisons test). **** p < 0.0001, n.s, not significant. (D) Cells were treated with various 
combinations of TNF-α (T; 20 ng/ml), SMAC mimetic (S; 1 μM) and zVAD-fmk (Z; 25 μM) for 48 h before 
determining cell viability by MTT assay. MW, molecular weight; kDa, kilodalton. 
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RTqPCR was also performed on TOV21G, HeLa-Lzrs and HeLa-E4 cells. TOV21G 

was used as a positive control, as it has been shown previously to express these 

genes. Results in Figure 3.4c show these data, presented as fold-change 

compared to TOV21G. As expected, levels of RIPK3 mRNA were virtually 

undetectable in the HeLa-Lzrs cells (4.3×10−4× TOV21G expression). In 

comparison, levels present in HeLa-E4 cells were much higher (62×) than 

TOV21G. In terms of MLKL expression, no significant difference was seen 

between HeLa-Lzrs and HeLa-E4, which indicates that over-expression of RIPK3 

does not interfere with MLKL expression. In addition, levels of MLKL mRNA did 

not differ between either of the HeLa lines and TOV21G.  

To show that RIPK3 expression has the potential to alter cellular capacity to 

undergo necroptosis, the HeLa cell lines were treated with varying combinations 

of TSZ (Figure 3.4d). As shown already, treating cells with a combination of TNF-

α and SMAC mimetic enables cells to undergo cell death via the TNFR1 pathway, 

which can result in either apoptosis or necroptosis. Upon addition of zVAD-fmk, 

cells with a propensity to undergo necroptosis will see little rescue or no rescue 

from cell death, whereas death in cells that lack this ability will see complete 

rescue from death. In Figure 3.4d, HeLa-Lzrs cells can be seen to match the 

latter phenotype, with a drastic decrease in cell death following TS exposure 

that is nearly completely rescued after addition of zVAD-fmk. In contrast, all 

HeLa-RIPK3 lines see marked reductions in cell viability following all drug 

combinations. Crucially, there is little (E10) or no (E4, D2) rescue from cell 

death following addition of zVAD-fmk. Interestingly, there is also a large drop in 

cell viability following TNF-α treatment alone when comparing HeLa-RIPK3 cells 

to HeLa-Lzrs. 

Taken together, these results indicate that HeLa-Lzrs and HeLa-RIPK3 clones (E4 

in particular) represent a true isogenic cell pair, with no visible off target 

effects on other components of the necrosome. Any subsequent differences seen 

between these cells can therefore reliably be assumed to result from the 

presence or absence of RIPK3. 
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3.6 Discussion 

In this chapter, I have shown that HSV-1716 can infect and kill a large number of 

established and primary OC cell lines. HSV-1 has presented itself as an ideal 

candidate for the development of oncolytic viruses, in part, due to its ability to 

infect and replicate within a large number of cell types (Karasneh and Shukla, 

2011). One of the main reasons for this limited selectivity is the ubiquity of 

entry receptors across host cell types (Tiwari et al., 2005, 2006; Choudhary et 

al., 2011). While there are limited data on the presence of viral entry receptors 

in OC cells, molecules such as heparan sulphate proteoglycans are known to be 

near-ubiquitous (Fuster and Esko, 2005). There is also evidence that HVEM is 

upregulated in OC cells compared to benign ovarian tissues, which provides the 

possibility that OC cells could be particularly permissive to HSV-1 (Zhang et al., 

2016).  

While entry mediators for HSV are commonplace, the ability of the virus to 

replicate effectively within a cell is far more relevant to its clinical efficacy. 

Tumour selectivity of HSV-1716 is determined by the double-RL1 deletion, which 

encodes ICP34.5. While the potential mechanisms for how ICP34.5 deletion can 

influence tumour selectivity have been described, it is now clear that the exact 

mechanisms are likely to be multifactorial and are also likely to differ between 

cell types. It is therefore still important to fully characterise the replicative and 

cell killing abilities of HSV-1716 in this system. 

While studies with HSV-1716 in OC cells have been performed, these have in 

some cases focused on cell lines that are not typical of specific OC types, such 

as A2780, SKOV3 (Coukos et al., 2000) or ID8 (Benencia, Courrèges, Conejo-

García, Mohamed-Hadley, et al., 2005). The reasons behind the unsuitability of 

the first two lines has been discussed. The murine cells, ID8, have also proven to 

be less representative of HGSOC than previously thought. Our lab has previously 

shown using whole exome sequencing that the original ID8 cells possess no 

mutations in any of the genes commonly altered in HGSOC (Trp53, Brca1, Brca2, 

Nf1, Rb1), or any other OC subtype (Walton et al., 2016). For these reasons, it is 

important to characterise HSV-1716 in the most relevant OC cell lines available. 
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In a small range of OC cell lines infected with HSV-1716, anti-HSV staining was 

demonstrated in all lines after 24 h. The entire life cycle of HSV-1 in permissive 

tissue culture cells has been shown to be approximately 18–20 h (Knipe et al., 

2014). This provides strong evidence that HSV-1716 can successfully replicate 

within all cells tested, as the only HSV antigens detectable at this stage should 

be from replicating virus. In two selected cell lines, TOV21G and OVCAR4, HSV-1 

viral DNA copies were shown to increase with time in comparison to UV 

inactivated virus. This provides further evidence that HSV-1716 is capable of 

replicating within these cells.  

After 24 h in TOV21G cells, levels of viral DNA following UV-inactivated virus 

infection appear to rise above the defined lower limit of detection of 6400 

genomes/μg DNA. This number was determined as the highest dilution of 

purified HSV-1716 DNA used in the standard curve, below which a reliable 

inference of copy number from Ct value was not possible. This means that for 

any values above this value can be interpreted with a reasonable level of 

reliability. Values below the lower limit of detection, however, cannot be 

reliably assessed. Such measurements may represent true zero values or may 

just be too low to detect. This is a problem that can arise when trying to prove 

an expected value to be zero using a technique that does not allow for absolute 

zero measurements. In the instance of UV-inactivated virus replication, there 

may be some low levels of replication occurring due to live virions left over from 

an incomplete inactivation process, or that low reliability in measurements at 

such low levels of DNA has led to this discrepancy. Further experiments shown 

later in this thesis (Figure 4.9) using plaque assays as a measure of viral 

replication consistently showed no plaques in any samples infected with UV-

inactivated virus, which suggests that these viruses may well be fully 

inactivated.  

HSV-1716 killed all OC lines at MOIs ranging from 0.005 to 4. It also showed dose-

dependent killing effects in all primary cell lines tested too. However, many of 

these primary lines were not as sensitive as the cell lines. This provides some 

strong evidence that HSV-1716 could be an effective agent for treatment of OC 

in a situation where infection of primary tumours is successful.  
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While assessing the sensitivity of cell lines to TSZ, only TOV21G was shown to 

behave in a way typical of necroptosis-sensitive cells. This was despite most cell 

lines displaying some level of RIPK3 expression. I have already mentioned how 

cell lines have been commonly shown to lose RIPK3 expression due to selective 

methylation (Koo et al., 2015). However, little previous work has been done 

characterising the necroptotic expression of OC cell lines (McCabe et al., 2014). 

In this one study, OVCAR3, OVCAR4 and OVCAR5 cells were all shown to express 

some level of RIPK3, with OVCAR3 expressing the most. This, in part, matches 

with the results shown here, with the exception that OVCAR4 were the most 

highly-expressing line. The lines IGROV and SKOV3 both were shown to lack any 

expression of RIPK3 in the McCabe et al. paper, which directly contradicts the 

results shown here. A possible reason for these discrepancies may be that 

different primary antibodies were used for the detection of RIPK3 between this 

study and the one cited, which illustrates a major problem with using antibodies 

in biomedical research.  

The McCabe et al. study also showed that OVCAR3 were sensitive to necroptosis, 

shown by treatment with IAPa (equivalent to SMAC mimetic) and zVAD.fmk, 

while results here showed clearly that OVCAR3 had an apoptotic phenotype. 

Another possible explanation for these differences could be a mismatching in 

cell samples. However, all cell lines used in this study were validated by STR 

sequencing.  

Use of the isogenic HeLa-RIPK3 pair will provide valuable insights into the role of 

RIPK3 during HSV-1716 infection in subsequent chapters. HeLa cells were initially 

isolated from an unusually aggressive form of cervical cancer (Gey, Coffman and 

Kubicek, 1952). Any results derived from these cells cannot therefore be 

extrapolated to the disease of ovarian cancer. As a result, the work of this thesis 

will primarily focus on unravelling the core machinery of cell death and its role 

in HSV-1716 infection. 

RIPK3 expression was shown to be exclusive to the clones that were transduced 

with RIPK3-encoding lentiviruses, and not the empty vector-containing HeLa-Lzrs 

cells. This was shown by both immunoblot and RTqPCR. It should be noted that 

complete lack of mRNA expression can never be reliably confirmed using 
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quantitative PCR methods due to the limits on sensitivity at lower 

concentrations. Results here were expressed as fold change in comparison to 

TOV21G cells using the ΔΔCt method, from which, levels of RIPK3 mRNA in HeLa-

Lzrs were found to be 0.00043× that of TOV21G. Functionally, it is likely that 

this value can be considered as essentially zero. In addition, RIPK1 and MLKL 

expression was found to be the same between HeLa-Lzrs and HeLa-E4 cells by 

immunoblot, and MLKL the same by PCR, suggesting that no effect on other 

members of the necrosome complex have resulted from this modification.  

HeLa-RIPK3 cells were all found to be more sensitive to treatment with TNF-α 

alone than HeLa-Lzrs, which requires addition of SMAC mimetic to induce any 

death at all. This suggests that the presence of RIPK3 can by-pass the need for 

cIAPs to be depleted for death to proceed. This lies in contrast to TOV21G cells, 

which requires presence of both T and S for death to occur. The fact that RIPK3 

transcript levels are >60× higher (and protein levels visibly higher) in HeLa-E4 

cells compared to TOV21G may account, at least in part, for this difference. 

HeLa-E10 cells appeared to be unique among the RIPK3 clones in that they could 

be partially rescued from cell death by addition of zVAD-fmk, albeit far less than 

was seen with HeLa-Lzrs (increase in % cell viability of 69 vs 7 for HeLa-E10). 

This implies that some apoptotic signalling is still responsible for death following 

TS exposure in these cells in a way that cannot be switched to necrosis following 

caspase inhibition. This introduces an interesting question about the ability of 

cells to switch seamlessly between these types of cell death within a population, 

and whether the percentage of death attributable to either apoptosis or necrosis 

is fixed or variable dependent on conditions.  

Based on the overall similarity of the HeLa-RIPK3 cell lines, many of the 

proceeding experiments were performed in just one line, HeLa-E4, for 

simplicity. In these experiments, HeLa-E4 is denoted as simply “HeLa-RIPK3”. 
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4 Creation of ICP6 modified Virus and Cell Lines 
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4.1 Introduction 

As mentioned in Chapter 1, recent evidence has arisen that suggests that ICP6 

may play a key role in HSV-1 mediated cell death through its interactions with 

RIPK1 and RIPK3. In murine cells, ICP6 forms complexes with RIPK1 and RIPK3, 

leading to their activation and necrosis induction (Huang, S. Wu, et al., 2015). 

However, in human cells, this same interaction disrupts complex formation and 

leads to necrosis inhibition. Further evidence suggested that ICP6 mediated 

these interactions via its RHIM, which is present in the N-terminal portion of the 

protein (Guo et al., 2015). In the latter study, Guo et al. were able to show 

that, by modifying the RHIM of ICP6 in an ICP6-expressing cell line system, 

sensitivity to necroptosis was increased when cells were complemented with an 

ICP6 null virus.  

In this chapter, I sought to confirm the hypothesis that in a similar system, an 

ICP6-null HSV-1716 could trigger necroptosis when complemented with a RHIM 

deficient version of ICP6. I also sought to take this one step further, by creating 

a RHIM-deleted version of HSV-1716 itself.  

4.2 Creation of ICP6 modified viruses using a 

CRISPR/Cas9- based system 

4.2.1 Developing a CRISPR/Cas9 gene-editing technique for 

viruses 

Despite the now commonplace nature of the use of CRISPR/Cas9-based 

techniques for the editing of mammalian cell lines, this technique has still yet to 

be used routinely in the alteration of large viruses such as HSV-1. For small 

viruses, such as hepatitis C virus, simple methods for gene editing already exist, 

as entire virus genomes can be cloned into plasmids. For larger viruses, genomes 

have typically been edited by relying on homologous recombination, or cloning 

entire genomes into BACs (Post and Roizman, 1981). Both of these techniques 

are laborious, time-consuming and, in some cases, require addition of additional 

genes for selection purposes, which then need to later be removed or risk 
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interfering with cellular processes during amplification. CRISPR, much like in 

cells, offers a faster, more efficient and convenient way to edit genes in large 

viruses.  

To date, little has been published on the use of this technique in HSV-1 (Bi et 

al., 2014; Suenaga et al., 2014; Lin et al., 2016). Therefore, in order to utilise 

CRISPR for the editing of HSV-1716, I had to devise my own technique based on 

the available expertise in the host lab (Walton et al., 2016, 2017)(Figure 4.1).  

 

Figure 4.1 CRISPR-based method for HSV genome editing.  An outline of the method devised 
for editing the ICP6 gene of HSV-1716. Vero packaging cells were transfected with a px459 
plasmid containing the Cas9 gene, a gRNA element corresponding to the RHIM of ICP6, and a 
puromycin resistance gene. Plasmid-containing cells were then selected for with puromycin before 
infecting with HSV-1716 at an MOI of 1 for 48 h. Resultant viruses were collected and dilution 
cloned into 96 well plates containing Vero cells. Clones were screened for gene alterations by a 
combination of immunoblot, PCR for fragment size comparison and Surveyor assay.  

In standard CRISPR/Cas9 editing of cell lines, cells are transfected with a single 

plasmid containing Cas9, which induces double strand breaks in the DNA. The 

plasmid also contains a gRNA scaffold, into which the corresponding DNA 

sequence of interest can be inserted. There is typically also a eukaryotic 

antibiotic resistance gene, such as puromycin resistance, that can be used for 

transient selection of successfully transfected cells.  
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To see whether puromycin resistance could be used to select for cells in the 

presence of HSV-1716, it was important to first determine whether puromycin 

had any effect on HSV-1716 replication, which might affect efficiency. For this, 

TOV21G-pLV cells were used, which are TOV21G cells that had been stably 

transfected with a plasmid containing a puromycin resistance gene, and so could 

be treated with puromycin without negative effect on viability. TOV21G-pLV 

cells were infected with HSV-1716 and left for two hours before refeeding with 

medium containing puromycin. After 48 h, DNA was taken from cells to observe 

changes in viral genome copy number in response to puromycin. 

As can be seen in (Figure 4.2), addition of 2.5 µg/ml puromycin significantly 

reduced the number of total viral genome copies from 11.1 to 4.65×106/μg DNA 

(averaged across gene regions). This was equivalent to a reduction in genome 

copies by a factor of 1.72. I decided that despite a significant drop in virus 

replication in the presence of puromycin, the reduction was small enough to 

continue to use puromycin as the method of selection.  
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Figure 4.2 Assessing the suitability of puromycin and Vero cells for CRISPR gene editing of HSV-1716.  
(A) TOV21G-pLV cells were infected with HSV-1716 at an MOI of in the presence of puromycin for 48 h 
before analysing viral DNA levels by qPCR targeting two HSV genes, UL1 (left) and UL23 (right). Mean copy 
number /μg ± SD are plotted. Statistical significance was determined by one-way ANOVA (Dunnett’s multiple 
comparisons test). ** p < 0.01, *** p < 0.001. (B) Vero cells were treated with a range of puromycin 
concentrations for 48 h before cell viability was determined by MTT assay. (C) Vero cells were infected with 
HSV-1716 at a range of MOIs for 48 or 72 h with cell viability determined by MTT assay. MOI, multiplicity of 
infection; n.s., not significant.  

Next it was important to determine the suitability of the Vero cell line as a 

packaging line for the CRISPR protocol. Vero cells are one of the standard cell 

lines for the production of HSV-1 particles for a variety of applications including 

standard culture, vaccine and oncolytic virus production (Morgan, 2007). For this 

reason, it was preferable to use this cell line for the production of CRISPR-edited 

viruses, in order to maintain as much similarity as possible to previous virus 

generations.  First, the sensitivity of Vero to puromycin was determined by 

analysing cell viability after 48 h of treatment. Cell viability decreased in an 

expected dose-dependent fashion, with 5 µg/ml being enough to cause near 

complete death, and 2.5 µg/ml resulting in a cell viability of approximately 15%. 

Therefore, I concluded that puromycin was a suitable selective agent for use 
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with Vero cells, with 2.5 µg/ml being chosen as the dose to proceed with for the 

experiment.  

Finally, a dose-response experiment was performed in Vero with HSV-1716 to 

determine the sensitivity of Vero cells to infection. It has previously been shown 

that Vero cells are susceptible to infection with HSV-1 (Elion et al., 1977; Roehm 

et al., 2016; Abdoli et al., 2017), but it was important to choose an appropriate 

MOI that would cause a high enough number of virus particles to be released 

without inducing complete cytotoxicity. As shown in Figure 4.2, HSV-1716 shows 

dose-dependent and time-dependent cytotoxicity. The conditions chosen for 

subsequent experiments were MOI 1 for 48 h. Once the conditions for the 

experiment were selected, the CRISPR was performed as outlined in the 

methods. 

4.2.2 Design of Guide Sequences  

The two goals of the ICP6 CRISPR experiment were first, to create a virus 

completely lacking ICP6 expression for use in a complementation experiment 

with ICP6 expressing cell lines, and second, to create a virus containing a 

specific in-frame RHIM-deleted form of ICP6 to observe the effect of loss of the 

RHIM alone.  

Achieving the first of these goals simply required design of a guide targeted to a 

locus close to the beginning of the gene. This ensures that a successful 

frameshift indel would result in no functional protein expression. Luckily, the 

RHIM sits just 218 nt downstream from the start codon, making it a suitable 

location to target for both goals. Achieving the second goal required targeting of 

the RHIM itself and either relying on the spontaneous generation of an in-frame 

mutation or supplying a donor strand to create the exact mutation needed. Only 

the first of these strategies was needed, and thus no donor strand was used. 

To create a CRISPR plasmid specific to the region of interest, suitable sequences 

for the creation of guide RNAs were chosen using two online programmes: 

http://crispr.mit.edu and http://chopchop.rc.fas.harvard.edu. Both 

programmes use algorithms to choose sequences surrounding a region of interest 

http://crispr.mit.edu/
http://chopchop.rc.fas.harvard.edu/
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that meet the criteria for a guide RNA, such as being adjacent to an appropriate 

protospacer adjacent motif (PAM) (which for Cas9 is 5’NGG, where N is any 

nucleotide). In addition, the programmes recommend sequences that are not 

likely to lead to off-target effects elsewhere in the genome. Unfortunately, at 

the time of writing this thesis, the genome of HSV-1 is not available for use with 

either of these algorithms. To bypass this, all chosen sequences were 

crosschecked for any potential off-target binding against the HSV-1 strain 17 

genome using the program SnapGene. Guides were also selected based on 

sequences that were rated highly in both program. Each program ranks potential 

guides by their predicted binding affinity and potential for off-target binding. 

Three guides were chosen and cloned into px459 (see Figure 4.3) 

 

 

 

Figure 4.3 CRISPR guide sequences used for ICP6 gene editing.  The three guides that were designed for 
editing of ICP6 were chosen following selection by the programs ‘chopchop’ and crispr.mit.edu. The necessary 
‘NGG’ sequence for each guide is shown in bold. The RHIM is highlighted on the corresponding amino acid 
sequence in blue, with the four-amino acid highly conserved region in red. 

4.2.3 Isolating and identifying CRISPR viral clones 

After performing the CRISPR procedure, clones were isolated by performing 

dilutions in a 96-well plate. Once isolated, clones were screened for presence of 

an appropriate mutation in four stages. First, DNA extracted from infected Vero 

cells was amplified by PCR using primers spanning a 354 bp region either side of 

the RHIM. Samples were electrophoresed on an agarose gel to identify any 

samples with large deletions (approximately 100 bp or more). PCR lanes from 

part of this screen are shown in Figure 4.4a, which shows a selection of clones 

that were modified using two of the three guides. However, none of the selected 

clones harboured any large deletions. Next, an immunoblot was performed to 
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observe changes in functional protein expression. Here, the same viral clones 

were used to infect Vero cells, followed by extraction of protein 24 h later. 

Samples were analysed for the presence of both ICP6 and pan-HSV proteins. 

Using this method, three ICP6-null clones were identified – 1C5, 3B10 and 3B1. 

Despite lack of ICP6, productive HSV-1 infection was still evident, as pan-HSV 

staining was still present. To identify any clones that may still be expressing a 

near full-length form of ICP6, but had still undergone CRISPR-mediated 

mutation, a surveyor assay was performed.  

 

Figure 4.4 Isolation of CRISPR-edited viral clones.  (A) Initial screening of extracted DNA from isolated 
clones by PCR. Samples were acquired following infection Vero cells with an untitred volume of virus for 24 h.  
Primers spanning a 354 bp region flanking the RHIM of ICP6 were used to identify any large deletions within 
the gene. (B) Further screening for presence of whole ICP6 protein and HSV-1 proteins was performed by 
immunoblot following infection of Vero cells with an untitred volume of virus for 24 h. (C) Samples from ‘A’ 
were further analysed using surveyor assay, to observe presence of mismatches between WT and clone DNA. 
MW, molecular weight; kDa, kilodalton; bp, base pairs. 

The surveyor assay works by mixing PCR products from a sample of unmodified 

DNA with the test DNA in a 1:1 ratio. The mixture is then denatured and re-

annealed, which allows the formation of hybrid duplexes. At this point if the 

samples differ in sequence at all, then there will be mismatches within the 

duplexes. These mismatches can be recognised by the addition of the Surveyor 

nuclease, which will cleave the duplex if it detects them. These cleavages are 
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identifiable as additional bands at molecular weights lower than the full product 

on gel electrophoresis.  

The results of this screen can be seen in Figure 4.4c. Here, a selection of the 

same clones from the previous screens were analysed and compared to the 

clones known to contain mutations, which served as positive controls. There are 

faint extra bands visible below the main band for the clones 1C5, 3D7 and 3B1. 

Of these, the only new identification was 3D7. This clone expressed full length 

ICP6 by immunoblot but was still indicated to contain some form of mutation. 

To confirm the presence of mutations in the four identified clones, Sanger 

sequencing was performed on the region spanning the expected location of 

mutations. For all the clones, distinct changes in DNA sequence around the 

region of the RHIM were noted (Figure 4.6). As expected, the mutations seen in 

the viruses 1C5, 3B1 and 3B10 were all frameshift indels resulting in premature 

stop codons. In 1C5, a 2 bp deletion was identified in base pairs 225–226, which 

lies within the 4-amino acid highly conserved region of the RHIM. For both 3B1 

and 3B10, a single adenine insertion was identified between amino acids 222 and 

223. This meant that 3B1 and 3B10 were genetically identical. This may have 

occurred by chance or mean that two viruses from the same CRISPR-modified 

cell had become isolated separately. For this reason, 3B10 was excluded from 

further experiments. 
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Figure 4.5 Illustration of nucleotide changes in ICP6 virus mutants.  Three clones were isolated 
containing successful gene alterations in ICP6. The clones 1C5 and 3B1 both possessed frameshift mutations 
that resulted in gross changes is amino acid sequence downstream of the site of mutation (shown in red). 
Nucleotide deletions are illustrated with red dashes, with insertions shown in red bold. In the case of HSV-
3D7, a complete three base-pair deletion was seen within the highly conserved region of the RHIM, resulting 
in complete loss of the corresponding cytosine amino acid, with no further changes in the downstream 
sequence.  

The sequence data obtained from the clone 3D7 identified a 3 bp in frame 

deletion spanning amino acids 223–225. This mutation also sits within the 4-

amino acid highly-conserved region. This finding fits perfectly with the data 

from the Surveyor assay and immunoblot, which suggested that any mutation 

that 3D7 contained would not result in a premature stop codon. This deletion 

therefore has the functional effect of deleting one cysteine amino acid from the 

RHIM, with the remainder of the protein translating correctly. The fact that the 

ICP6 staining for 3D7 appears normal, suggests that the deletion does not affect 

the ability of the rest of the protein to fold correctly.  

4.3 Creation of a range of ICP6-modified cell lines 

To observe the effect of a range of mutations affecting the RHIM of ICP6, 

TOV21G and OVCAR4 cells were transfected with plasmids encoding various 

modified ICP6 open reading frames. Guo et al. have previously noted a change in 

response to TSZ and HSV-1 infection following modifications within the N-
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terminal domain of ICP6, and the RHIM in particular. They showed that when the 

cells contained a version of ICP6 lacking in a RHIM, there was greater sensitivity 

to TSZ than in those expressing a full version of ICP6. RHIM mutant cells were 

also more sensitive to infection with an ICP6-null virus.  

To determine the effect of these same mutations in the context of HSV-1716 

infection, we received the same plasmid constructs as used by Guo et al. as a 

kind gift. Specifically, the constructs received were: ICP6(1-1137), hereby 

referred to as “ICP6(FL)”; ICP6(1-1137, mutRHIM), hereby referred to as 

“ICP6(mutRHIM)”; ICP6(Δ1–243) and ICP6(244–629). All of these constructs were 

tagged with a Flag sequence and are summarised in Figure 4.6. These constructs 

were transduced into both TOV21G and OVCAR4 cells using a lentivirus vector.  

 

Figure 4.6 Schematic representation of ICP6 mutant constructs overexpressed in TOV21G and 
OVCAR4 cells. Various constructs based on HSV-1 ICP6 were put into both TOV21G and OVCAR4 cells. All 
constructs contained flag sequences at the N-termini. Different constructs were altered in different ways that 
affected the presence of either the RHIM, the C-terminal domain or both. ICP6(1-1137, mutRHIM) contains a 
tetra-alanine substitution within the four-amino acid highly-conserved region of the RHIM, which negates its 
action. ICP6(Δ1–243) achieves the same effect by deleting the entire first 243 amino acids from the protein. 
The GXGXXG site illustrated on the C-terminal domain represents the nucleotide binding region required for 
ribonucleotide reductase activity. Figure adapted from Cell Host Microbe 2015 Feb 11;17(2):243-51. 

To confirm the presence of the desired proteins, immunoblots were performed 

for each set of transduced cell lines (Figure 4.7). ICP6 staining was seen in all 

cell lines transduced with some construct of ICP6, but no staining was seen for 

cells transduced with the lentivirus backbone alone (pLV). For ICP6(FL) and 

ICP6(mutRHIM) constructs, staining was seen at the known ICP6 molecular 

weight of 124 kDa. For the constructs ICP6(Δ1–243) and ICP6(244–629), which 

were truncated, bands were seen at the predicted lower molecular weights of 

~100 kDa and ~43 kDa respectively.  
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Figure 4.7 Visualisation of ICP6-expressing cell lines by immunoblot.  TOV21G (A) and OVCAR4 (B) 
cells were stably transduced with various ICP6 constructs using a lentivirus-based system. Shown here are 
the resulting immunoblots from untreated cell lines showing staining with an ICP6 antibody. MW, molecular 
weight; kDa, kilodalton. 

4.4 Effect of ICP6 RHIM on sensitivity to TSZ 

Guo et al. showed that expression of full length ICP6 in HT-29 cells reduced 

death induced by TSZ treatment. However, when ICP6 lacking a functional RHIM 

was expressed, sensitivity to TSZ was restored. I sought to determine if this 

effect was also seen in OC cell lines.  

TOV21G cells were evaluated in these experiments because they were the only 

cells sensitive to TSZ-induced necroptosis (Figure 3.3). Upon treatment with 

TSZ, TOV21G-pLV behaved much the same as the parental TOV21G cells in that a 

large drop in cell viability to 47% was seen following TS treatment, which was 

decreased further to give a viability of 35% when treated with the full TSZ 

(Figure 4.8a). In comparison, viability of TOV21G-ICP6(FL) was 81% when treated 

with TSZ, suggesting that the presence of full-length ICP6 had afforded 

protection from necrosis induction. In contrast, when TOV21G-ICP6(mutRHIM) 

was treated with TSZ, sensitivity was restored to the same level as TOV21G-pLV. 

As the only difference between the ICP6 sequence of the FL and mutRHIM 

constructs is the presence of a AAAA substitution in place of the highly 

conserved region of the RHIM, it is clear that a functional RHIM is crucial for the 

mechanism of protection from necrosis by ICP6. A similar sensitivity was seen in 

TOV21G-ICP6(Δ1–243) cells, but to a lesser extent, with a significantly higher 

viability still than TOV21G-pLV. This indicates that by removing the entire N-

terminal domain, some, but not all sensitivity to TSZ can be restored.  
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Figure 4.8 Susceptibility of ICP6-expressing cell lines to TSZ treatment.  TOV21G (A) and OVCAR4 (B) 
cells were treated with varying combinations of the drugs TNF-α (T; 20 ng/ml), SMAC mimetic (S; 1 μM) and 
zVAD-fmk (Z; 25 μM) for 48 h before determining cell viability by MTT assay. Mean cell viabilities from single 
experiment are plotted ± SD. Statistical significance was determined by two-way ANOVA (Dunnett’s multiple 
comparisons test). * p <0.05, ** p < 0.01, **** p < 0.0001; n.s, not significant.  

It is interesting that removing this entire domain protects less than simply 

modifying the RHIM. It could be that there are other regions within the N-

terminal domain that are able to interact with part of the necroptotic machinery 

in some way, possibly facilitating necroptosis.  

When the same experiment was performed in OVCAR4 cells, as expected, 

OVCAR4-pLV cells showed high levels of cell death following TS treatment that 

was entirely protected against following further addition of zVAD-fmk (Figure 

4.8b). In contrast to the TOV21G cell lines, there was a smaller, albeit still 

significant rescue effect from cell death induced by TS in the OVCAR4 FL, 

mutRHIM and Δ1–243 lines compared to pLV alone. There was no significant 

change in cell death, however, in the OVCAR4-ICP6(244–629) line compared to 

pLV alone. This effect fits well with the hypothesis outlined by Guo et al. 

because the C-terminal domain of ICP6 contains a caspase 8 binding domain, 

which results in an inhibition of caspase 8 function. All constructs that contained 

this domain were able to offer some level of protection against TS-induced 

apoptosis. Interestingly, there did seem to be an extra level of protection given 

by the mutRHIM construct, compared to FL, which is not present in the Δ1–243 

construct.  
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4.5 Effect of CRISPR-mediated ICP6 mutations on viral 

activity 

4.5.1 Effect on viral replication 

Replication ability of the viruses HSV-3B1, HSV-1C5 and HSV-3D7 was analysed in 

TOV21G cells by plaque assay and compared to HSV-1716. The plaque assay uses 

viral killing as a basis for measurement of viral titre and so detects whole, viable 

virus particles. This method, therefore, provides an alternative estimation of 

viral replication than qPCR, which only measures genome copies. TOV21G cells 

were infected with each virus at MOI 1, and harvested 8, 16 and 24 h thereafter 

(Figure 4.9). 

Both ΔICP6 viruses were shown to have impaired growth compared to HSV-1716. 

Area under the curve (AUC) analyses of replication curves were performed to 

enable statistical comparison between samples. At 24 h, HSV-3B1 showed a 

significant decrease in AUC compared to HSV-1716 from 5.4×105 to 1.5×105 

(pfu/ml)×min (72%; p=0.0002). HSV-1C5 showed a smaller decrease in AUC to 

1.8×104 (pfu/ml)×min (67%; p=0.0004), compared to HSV-1716. However, there 

was no significant difference between HSV-3B1 and HSV-1C5. It is expected that 

we would see the same replication in these two viruses as they are 

phenotypically identical. HSV-3D7 performed similarly to HSV-1716, with an AUC 

of 4.4×105 (pfu/ml)×min, which was not significantly different from HSV-1716 

(Figure 4.9).  
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Figure 4.9 Replication of ICP6-modified viruses in TOV21G cells.  TOV21G cells were infected with each 
strain of HSV at an MOI of 1 and left for either 8, 16 or 24 h before permeabilising cells and extracting total 
whole virus for titration determination by plaque assay. 101 represents the lowest number of viruses detectable 
due to dilution factors and so any samples for which plaques were not seen are represented as this value. A 
replication curve demonstrating viral titre for each time point for a single experiment is shown in ‘A’. Here, 
mean titres are plotted ± SD. Separate area under the curve (AUC) analyses were done for each repeat 
experiment to enable statistical comparison between viruses (B). Individual data points are plotted alongside 
the means ± SD. Statistical significance was determined by one-way ANOVA (Tukey’s multiple comparisons 
test). *** p < 0.001; n.s, not significant. 

Therefore, the presence of complete ICP6 appears to be important for viral 

replication. This is not surprising, as ICP6 was initially identified as a viral 

ribonucleotide reductase (RR), which catalyses the production of 

deoxyribonucleotides from ribonucleotides. This is a major step in allowing the 

virus to replicate efficiently, especially in non-proliferating cells. A virus with a 

similar genotype, known as G207, has been created previously (Mineta et al., 

1995). G207 contains the same γ34.5 deletion as HSV-1716, but on an HSV-1 

strain R3616 background. G207 also contains an E.coli lacZ gene in place of the 

UL39 gene, which encodes ICP6 (Figure 1.9). Total loss of ICP6 is thought to have 

a disproportionately large effect on the ability of the virus to replicate in normal 

cell types, due to the lower abundance of free nucleotides. The presence of a 

double deletion also makes the virus safer for use as an oncolytic agent due to 

the decreased likelihood of a double reversion mutation. The data shown here, 

and in studies performed with G207, show that ICP6 is not necessary for viral 

replication, but complete ICP6 deletion significantly impairs replication. 

The fact that HSV-3D7 showed highly similar levels of replication to HSV-1716 

suggests that the single amino acid deletion within the RHIM has had no effect 

on the RR function of ICP6. This is expected as HSV-3D7 appears to still produce 

visibly-full-length protein by western blot. 
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4.5.2 Effect on viral killing 

To determine the effect of these mutations on virus-induced cell death, the 

viruses were used to infect a number of immortalised and primary OC cell lines, 

with resulting cell viability measured by MTT assay. In TOV21G cells, HSV-3B1 

and HSV-1C5 were both significantly restricted in their ability to cause cell 

death, requiring higher MOIs to achieve similar levels of killing as HSV-1716 

(Figure 4.10a). This restriction in killing ability could be due to the reduced 

replication of the virus. As would be expected, cell killing induced by HSV-3D7 

infection was seen to be no different than HSV-1716, as in this virus, the RR 

domain is still functionally intact. Interestingly, in OVCAR4 cells there appeared 

to be no difference in cell death between any of the viruses (Figure 4.10b).  
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Figure 4.10 Effect of CRISPR-mediated ICP6 alterations on viral killing in cell lines.  (A-C) TOV21G and 
OVCAR4 cells were infected with either HSV-1716, -3D7, -3B1, or -1C5 at a range of MOIs for 96 h before 
determining cell viability by MTT assay. ‘A-B’ show dose-response data from a single experiment in TOV21G 
(A) and OVCAR4 (B) cells, and ‘C’ shows pooled IC50 values from multiple experiments. Statistical 
significance was determined by one-way ANOVA (Sidak’s multiple comparisons test). n.s, not significant; **, 
p<0.01; ****, p<0.0001. (D) TOV21G cells were infected with HSV-1716 or HSV-3D7 at MOI 1 and left for 24, 
48, 72 or 96 h before determining cell viability by MTT assay. 

When primary cancer cells were infected with the viruses, a similar mixture of 

effects was seen. In the lines 20160503VF and 20160425LM, much like in TOV21G 

cells, lower levels of cell killing were seen with HSV-3B1 and HSV-1C5 when 

compared with HSV-1716 (Figure 4.11). In 20160525HH however, there seemed 

to be no difference in killing between any of the viruses, as was seen with 

OVCAR4. 
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Figure 4.11 Effect of CRISPR-mediated ICP6 alterations on viral killing in primary OC cells. Primary OC 
cells isolated from the ascites of patients were infected with either HSV-1716, -3D7, -3B1, -1C5 at a range of 
MOIs for 96 h before determining viability by MTT assay. Dose-response data from selected experiments are 
shown.  

Modification of the RHIM of ICP6 is predicted to affect the ability of the protein 

to bind to and inhibit RIPK3. The result of this is expected to be a greater 

amount of necroptotic signalling and necrotic death. So far, these results show 

that amount of overall cell death remains largely unchanged in the presence of 

this modification. This could mean that a single amino acid deletion in this 

location is not sufficient to significantly affect RIPK3 binding. Alternatively, it 

could be that disrupting this interaction does not affect overall quantity of cell 

death but may still be having other effects on cell signalling, type of death, and 

the consequences of this. 
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4.5.3 Effect on RIPK3 binding  

It has been shown that ICP6 and RIPK3 are able to interact via their respective 

RHIMs, and it is thought to be this interaction that leads to inhibition of necrosis 

by preventing RIPK3 phosphorylation and subsequent MLKL activation (Guo et 

al., 2015). It was therefore important to prove that by altering the RHIM in ICP6, 

we had subsequently altered its ability to interact with RIPK3.  

To achieve this, a RIPK3 coimmunoprecipitation (CoIP) on HeLa-RIPK3 cells 

infected with either HSV-1716 (WT ICP6), HSV-3D7 (RHIM modified) or HSV-3B1 

(ICP6 deleted) virus was performed (Figure 4.12). HSV-1716 was used as a 

positive control as a virus that should produce ICP6-RIPK3 binding and HSV-3B1 

was used as a negative control as a virus that produces no ICP6 at all, while HSV-

3D7 was the virus to be tested.  

Before this could be performed, a time course experiment was set up to 

optimise the chance of capturing a protein interaction (Figure 4.12a). For this, 

protein was extracted from HeLa-RIPK3 and TOV21G cells at 4, 8, 16 and 24 h 

following infection with HSV-1716. ICP6 and RIPK3 expression was examined by 

immunoblot. As expected, ICP6 expression increased gradually throughout the 

course of infection, with initial expression first visible at 8 h p.i for both TOV21G 

and HeLa cells. RIPK3 expression remained fairly constant throughout the course 

of infection, more so for TOV21G than HeLa-RIPK3 cells, where RIPK3 expression 

decreased slightly as infection progressed. Expression of RIPK3 in the HeLa-RIPK3 

cells is much higher overall than in TOV21G cells, even considering decrease in 

expression over time. For this reason, HeLa-RIPK3 cells were chosen as the cell 

line to use for the CoIP, due to a greater chance of capturing an interaction. In 

addition to this, 24 h was chosen as the appropriate time point for the same 

reason. 
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Figure 4.12 Co-immunoprecipitation of ICP6 and RIPK3 in HSV-infected cells.  (A) HeLa-RIPK3 or 
TOV21G cells were infected with HSV-1716 at an MOI of 1 and left for 4, 8, 16 or 24 h before extracting whole 
cell lysate for immunoblot staining against ICP6 and RIPK3. (B) HeLa-RIPK3 cells were infected with either 
HSV-1716, -3D7 or -3B1 at an MOI of 1 for 24 h before harvesting lysates and precipitating out RIPK3 with a 
specific monoclonal antibody. Input samples and the precipitated products were compared by immunoblot for 
presence of ICP6 and RIPK3 pull-down. UI, uninfected; MW, molecular weight; kDa, kilodalton. 

Figure 4.12b shows the result of the CoIP of RIPK3 in HeLa-RIPK3 cells infected 

with HSV-1716 or HSV-3D7 for 24 h. ICP6 expression is clearly seen in the lysate 

of cells infected with both HSV-1716 and HSV-3D7, but not HSV-3B1, as 

expected. However, when RIPK3 is precipitated, ICP6 is only detectable in the 

HSV-1716 and not HSV-3D7 samples. This proves that while full-length ICP6 is 

still produced by HSV-3D7, the interaction with RIPK3 is absent, indicating that 

loss of a single RHIM domain amino acid in HSV-3D7 is sufficient to disrupt the 

interaction with RIPK3. Based upon the data of Guo et al., the expected 

consequence of this would therefore be that more necrosis signalling is able to 

take place, as a key block to necrosis in human cells has been removed. 

 



148 

 

4.6 Complementation of ΔICP6 HSV-1716 with ICP6 

expressing ovarian cancer cells 

In order to recreate a system of viral infection, the ICP6 expressing TOV21G cells 

were infected with both ΔICP6 viruses, HSV-3B1 and HSV-1C5. In theory, this 

should create a complementary effect allowing us to understand the impact of 

RHIM function of HSV-1716 induced cell death. Consistently, there was seen to 

be a difference in sensitivity to cell death between the cell lines. Addition of 

ICP6(FL) appears to cause a slight reduction in sensitivity to cell death compared 

to pLV alone. Killing was decreased further in ICP6(Δ1–243) cells and even 

further in the ICP6(mutRHIM). If a full complementation effect was being seen, 

we would expect addition of ICP6(FL) protein into the cells to improve cell 

killing, restoring it to wild-type levels, as this should mimic standard HSV-1716 

infection. This is not the case, however, suggesting that constant expression of 

ICP6 does not have the same effect as in normal viral infection. This makes 

interpreting the results seen here difficult. The further inhibition of cell death 

seen when a functional RHIM is absent, suggests that in this system, the RHIM 

may have an important role in promoting cell death of some kind.  
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Figure 4.13 Complementation of ICP6-null viruses with ICP6-expressing cells.  TOV21G cells that had 
been transduced to express various forms of the viral ICP6 protein were infected with either HSV-3B1 or HSV-
1C5 at a range of MOIs for 96 h before determining cell viability by MTT assay. ‘A’ shows dose response data 
from a single experiment, with ‘B’ showing pooled IC50 values taken from multiple repeat experiments. In both 
cases, mean viability or IC50 is plotted ± SD. Statistical significance was determined by one-way ANOVA 
(Tukey’s multiple comparisons test). * p < 0.05, **** p < 0.0001; n.s, not significant; MOI, multiplicity of 
infection; IC50, half-maximal inhibitory concentration. 

4.7 Discussion 

In this chapter, I have described the creation and characterisation of both a 

range of ICP6-altered viruses and ICP6-expressing cell lines. To successfully alter 

the genome of HSV-1716, it was first necessary to devise a modified CRISPR-

based method tailored to large viruses. Developing efficient methods for genome 

editing of large viruses is necessary not just for the creation of oncolytic viruses, 

but also other gene therapy vectors as well as standard investigative virology. 

Genomes of smaller viruses such as adeno-associated virus or HIV are easily 

edited as entire genomes can be cloned into single plasmids. For larger viruses, 

however, construction of large BACs is necessary, which can be time-consuming 

and laborious. CRISPR therefore presents itself as a potential useful technology 

for this use. Another downside to the use of BACs is the fact that drug selection 
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genes need to be placed within the genome of the virus, as opposed to CRISPR 

where selection of cells takes place prior to viral infection. This can lead to 

undesirable changes in viral behaviour.  

At present, there are still relatively few studies that have described the use of 

CRISPR in HSV (Bi et al., 2014; Suenaga et al., 2014; Lin et al., 2016). In the first 

study, Suenaga et al. included the CD8 gene as a selection marker for cells 

successfully transfected with the CRISPR plasmid (pX330 backbone). Cells were 

then treated with magnetically-labelled anti-CD8 antibody and separated out 

from the rest of the population by magnetic-activated cell sorting (MACS). In this 

thesis, selection of successfully transduced cells was instead made with the 

inclusion of a puromycin resistance gene, included as part of the pX459v2 

plasmid construct. This offered a simpler and less time-consuming method of 

cellular selection, which also has the benefit of not requiring expensive 

specialist MACS equipment. Bi et al. demonstrated the first use of donor strands 

to create an insertion of a GFP gene within the tk locus. This enabled two ways 

in which successfully targeted clones could be identified quickly through 

screening, either by simple microscopy for presence of GFP-tagged cells or by 

selection with acyclovir, which only targets viruses that are TK-competent. 

While these methods allow for simple validation of the protocol, these types of 

selection cannot be used in all situations. One reason being that GFP may 

interfere with known or currently unknown cellular processes (Jensen, 2012).  

In this study, out of 24 clones screened, four were found to have undergone 

successful gene editing events, giving an efficiency rate of approximately 15%. 

While this is a small sample size, these figures do suggest that this method can 

achieve reasonably levels of efficiency of gene editing. The method of selection 

that I have described therefore has the benefits of being simple, while still 

avoiding any potential interference from selection genes and maintaining a 

practical level of efficiency. 

Another concern with CRISPR technology is that of off-target DNA-editing effects 

(Zhang, 2015). This has shown to be a bigger problem in human cells than in the 

relatively few studies in viruses. This is likely partly due to a larger human 

genome, which increases the probability of similarities between sites. It may 
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also be that the shorter timeframe over which viruses are exposed to the CRISPR 

machinery reduces the likelihood of off-target events. One of the more recent 

studies showed that when guides were chosen that exclusively aligned to one 

region (as was done in this study), occurrence of off-target events was reduced 

below the detection limits of deep sequencing (Lin et al., 2016). 

Of the four clones that were isolated, one was shown to possess a two bp 

deletion, one a three bp deletion, and two a two bp insertion. Of the three 

guides designed, only two were eventually used. The clones 1C5 and 3D7 were 

both isolated from a procedure using guide 1, while 3B1 and 3B10 were from a 

procedure using guide 2. The fact that 3B1 and 3B10 were both found to be 

identical could therefore be the result of two progeny from a single HR event 

becoming cloned out separately. It could also be that the same mutation event 

occurred twice. Mutations made with guide 1 were remarkably precise, spanning 

only a 4 bp region. Reliable conclusions about precision cannot be drawn from 

such small sample sizes however.  

When assessing replication and killing, clones possessing a total loss of ICP6 were 

shown to replicate and kill less effectively than HSV-1716 and HSV-3D7 in 

TOV21G cells. As discussed, this is likely due to the loss of RR activity, which is 

important for producing free nucleotides for replication. These findings illustrate 

the importance of probing different regions of proteins for their varied functions 

and taking these into consideration when making oncolytic vectors. It has been 

suggested that the RHIM may play an important role in suppressing necroptosis in 

human cells (Guo et al., 2015). If creating a virus that can optimally induce 

necroptosis is indeed a therapeutically beneficial goal, then altering ICP6 in such 

a way that modifies RHIM activity while maintaining the RR domain may be 

desirable. This same approach should be taken with other multifunctional 

proteins in HSV or other viruses, as the benefits of removing whole genes may be 

inferior to modifying select regions. This discussion also ties in to the problem of 

how to best balance efficacy with safety and specificity. As mentioned, ICP6 is 

commonly targeted as a means of rendering a virus safer and/or more specific 

for cancer cells (Mineta et al., 1995; Fukuhara et al., 2005). The replicative 

costs of deleting this gene must also be weighed up against the benefits of 

greater safety. 
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In OVCAR4 cells, loss of ICP6 showed no effect on viral killing. Continuing with 

the RR hypothesis, it could be that in certain cell lines, free nucleotides are 

abundant enough to maintain a high level of replication despite RR deficiency. 

This illustrates that data from different cell lines need to be interpreted 

carefully. It could mean that, in these cells, the benefits of removing the entire 

RL1 gene are higher than selective RHIM manipulation. However, as OVCAR4 

cells are not susceptible to death by necroptosis, further investigation into the 

effect of this is not possible.  

The CoIP results shown here demonstrate that a small in-frame deletion of a 

single amino acid within the highly conserved region of the RHIM is sufficient to 

prevent the interaction between ICP6 and RIPK3. This experiment was 

performed in the HeLa-RIPK3 overexpression model, which presents certain 

problems for interpretation. Firstly, higher than typical levels of RIPK3 may lead 

to non-specific binding patterns to proteins such as ICP6. Conversely, it could be 

argued that this fact would make the contrasting lack of binding seen with HSV-

3D7 more compelling.  

Lentivirus based expression systems were used to transduce TOV21G and OVCAR4 

cells with various ICP6 constructs (Figure 4.6). These overexpression systems can 

be useful for comparing the effect of binary presence or absence of a protein. 

However, when used to compare several different protein constructs to one 

another, certain considerations need to be noted. Achieving similar levels of 

protein expression between cell lines is important. Here, levels of expression 

were compared by western blot, which offers a semi-quantitative estimation of 

overall protein concentration, assuming that the ICP6 antibody binds with equal 

affinity. This could mean that small biological differences between cell lines 

may be due to this factor. Another issue with multiple comparisons is the risk of 

insertion within different sites of the genome due to the unselective nature of 

lentiviruses. One must also consider whether to isolate clones for each genotype 

before comparison. This increases the number of potential comparisons but can 

provide greater evidence of an effect due to the expressed protein. One issue 

with clones, however, is the risk of amplifying heterogeneities within the wild-

type cell population. Clones may behave differently to one another due to this 

fact, instead of due to the protein of interest. Maintaining transduced cells as 



153 

 

heterogeneous pools can therefore be a benefit by keeping differences in 

expression levels, insertion sites and heterogeneity averaged out over the 

populations. Clones were not made for these cell lines.  

In TOV21G cells, response to TSZ was shown to match the results seen with Guo 

et al. Expression of full-length ICP6 leads to a strong significant rescue from TSZ-

induced necroptosis. Presumably, this is because the RHIM of ICP6 is successfully 

blocking RIPK3 activation. This provides some evidence that the necroptotic 

machinery of TOV21G cells must operate in a way that is functionally similar to 

the HeLa-RIPK3 line, in which the CoIP was performed. As with the HeLa-RIPK3 

system, however, special consideration must be taken as to the reliability of this 

kind of protein expression. It may be that the higher level of ICP6 protein seen 

here is more likely to lead to binding and inhibition than during the course of 

typical viral infection. None of the cell lines expressing constructs lacking a 

functional RHIM (mutRHIM, Δ1–243 and 244–629) were shown to have similar 

levels of rescue than that of native ICP6, supporting the theory that the RHIM is 

directly involved in this process. Some significant rescue over the vector control 

line for the Δ1–243 and 244–629 lines was seen however. These constructs both 

contain deletions of the first 243 amino acids of the protein. This could mean 

that other regions within the N-terminal domain, outside of the RHIM, also have 

roles concerning sensitivity to necrosis, or it may be that differing expression 

levels between the cell lines is responsible for the slight difference.  

In OVCAR4 cells, no change in cell death was seen between cell lines in response 

to TSZ, with the exception of OVCAR4-ICP6(Δ1–243). Some significant changes 

were also seen between the ICP6(mutRHIM) and pLV cells in response to TS, 

which should have the effect of inducing apoptosis, as caspase-8 remains 

uninhibited (Chen, Yu and Zhang, 2016). Explaining these changes is difficult 

given the information available on this system. RIPK1 has been shown previously 

to have roles in promoting both apoptosis and cell survival following TNF-α 

stimulation (Gentle et al., 2011; Jin et al., 2016). RIPK1 can become 

ubiquitinated in a process mediated partly by cIAP1 and cIAP2, which leads to 

NF-κB activation and promotion of cell survival. RIPK1 can also associate with 

the proteins FADD and Caspase-8 in what is known as complex IIa, which leads to 
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apoptosis. This could mean that the RHIM or other regions within the N-terminal 

domain of ICP6 may interact with either of these processes.  

Complementation of ICP6-expressing cell lines with ICP6-null HSV-1716 was 

designed to recreate the effect of ICP6-mutant viruses. In this system, gene 

modifications can be made in plasmids using simple molecular biology 

techniques before reconstitution into lentiviruses and transduction in cell lines. 

Overall, this system is simpler and less laborious than the current BAC standard 

for editing viruses themselves. In this instance, lentivirus-ready plasmids were 

given as a kind gift from the Mocarski lab, which added to their convenience.  

Paradoxical results were seen when ICP6-null virus-infected TOV21G-ICP6 lines 

were assayed for cell viability. Patterns of activity were shown to be the same 

between the two viruses, confirming their phenotypic similarity. Addition of full-

length ICP6 had no effect on viability, whereas Δ1–243 and mutRHIM cells were 

less sensitive to viral killing (significant difference between pLV and Δ1–243 was 

only seen for 1C5). Given the results seen following TSZ treatment, we would 

expect to see an inhibition of viral killing in the cells expressing ICP6. The fact 

that we did not see this suggests that either RIPK3 activation is not necessary for 

viral killing or the RIPK3 inhibition that is taking place is not sufficient to affect 

cell death. It’s also important to understand the effect that the addition of a 

functional RR domain is having here, too. It could be that loss of killing resulting 

from RIPK3 binding is counteracted by gain of killing from RR ability. The real 

comparison therefore is that of ICP6(FL) and ICP6(Δ1–243)/ICP6(mutRHIM). 

Disruption of the RHIM here seems to inhibit the ability of the virus to kill. This 

goes against the theory that an uninhibited RIPK3 should be free to trigger 

necrosis, leading to more cell death. It may therefore be the case that unknown 

pro-survival roles of RIPK3 and RIPK1 maybe be taking precedence over necrosis 

induction. Viral infection consists of a much more complex series of interactions 

with the cell than TSZ treatment, and so it is possible to see contradicting 

results. 

The suitability of this model must also be taken into consideration. Expressing 

high levels of ICP6 constitutively is unlikely to mimic the cellular environment of 

viral infection. Protein production and regulation during infection is a tightly 
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orchestrated series of events, so potential unknown interactions between other 

viral proteins and the variance in their levels over time must be considered. For 

this reason, we chose to focus more heavily on the CRISPR-derived RHIM-

modified virus, HSV-3D7 for future experiments. This virus contains a RHIM 

modification that differs from the one contained within the ICP6(mutRHIM) cell 

lines, but this modification was still shown to be sufficient to abolish ICP6-RIPK3 

binding.  
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5 Understanding the Role of Immunogenic Cell 

Death in HSV-1716 infection 
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5.1 Introduction 

Immunogenic cell death broadly describes any type of death that has the 

ultimate effect of inducing some form of immune system reaction. An exact 

nomenclature for immunogenic cell death types has yet to be entirely agreed 

upon. The markers of ‘immunogenic cell death’ defined by Kroemer et al. are 

calreticulin exposure, ATP and HMGB1 release (Kroemer et al., 2013). As this is 

not strictly the only type of cell death that is immunogenic, this type of death 

has also been referred to as immunogenic apoptosis (Vandenabeele et al., 2016). 

It is also important to note that certain aspects of this are not limited to 

apoptotic death, with markers such as HMGB1 and ATP release having been seen 

in otherwise ‘necrotic’ cell systems (Whilding et al., 2013; Newton and Manning, 

2016). Other types of cell death that have been shown to be immunogenic are 

necrosis and pyroptosis and some forms of autophagy-induced cell death 

(Galluzzi et al., 2012, 2014; Pasparakis and Vandenabeele, 2015). These modes 

of death all represent distinct non-apoptotic processes and so should not be 

bundled together with immunogenic apoptosis. ‘Necroptosis’ is another label 

that is sometimes used clumsily. Necrosis is itself a type of immunogenic cell 

death, with necroptosis being a specific subset of this. Necrosis is defined by 

primarily visual and markers such as cell swelling and membrane 

permeabilization seen by TEM. To characterise cell death as being necroptotic, 

one must prove that formation of the necrosome complex, consisting of RIPK1, 

RIPK3, MLKL, FADD and caspase-8 is occurring.  

To characterise the type of cell death following infection with HSV-1716 and 

HSV-3D7, markers of different types of ICD were analysed. The goal of these 

experiments was to establish answers to the following questions: Does HSV-1716 

induce a form of immunogenic cell death in cancer cell lines? Does disruption of 

the interaction between ICP6 and RIPK3 alter the mode of cell death caused by 

the virus? The second question was addressed by comparing the difference in 

markers of cell death following HSV-1716 and HSV-3D7 infection. 
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5.2 Markers of immunogenic apoptosis following HSV-

1716 or HSV-3D7 infection 

5.2.1 Extracellular calreticulin exposure  

CAL is the most abundant protein present in the ER lumen. In response to 

induction of immunogenic cell death, a portion of this CAL is transported to the 

cell membrane within vesicles that are exocytosed, resulting in its expression on 

the outside of the cell. This phenomenon can be observed using flow cytometry 

by staining non-permeabilised cells. CAL is an important marker of immunogenic 

apoptosis mainly because of its ability to act as an “eat-me” signal by binding to 

CD91 on the surface of macrophages and DCs, which leads to phagocytosis of the 

CAL-exposing cell (Basu et al., 2001; Obeid et al., 2007; Chao et al., 2010).  

To determine whether CAL is exposed following HSV-1716 treatment, TOV21G 

cells were infected for 1, 4 and 24 h before analysis by flow cytometry (Figure 

5.1). At no time point did cells show any sign of extracellular CAL increase 

compared to baseline. This suggests that CAL does not translocate to the 

membrane during HSV-1716 infection, and that cells are therefore not subject to 

the immunogenic consequences that such a translocation entails. As a positive 

control, TOV21G cells were fixed before being treated with Triton-X, a 

membrane permeabilising detergent, for 5 min. These cells showed a distinct 

increase in CAL staining intensity, suggesting that this protein is still present 

within the cells. 
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Figure 5.1 Calreticulin release from HSV-1716-infected cells.  TOV21G cells were infected with HSV-1716 
at MOI 1 and left for 1, 4 or 24 h before suspending cells into FACS buffer and staining with a PE-conjugated 
CAL antibody and Zombie Violet viability dye. Samples were then analysed by flow cytometry. Zombie Violet 
staining was used to exclude already dead cells, leaving histogram plot data here for CAL.  

5.2.2 HMGB1 release  

HMGB1 is a chromatin-associated non-histone protein that is universally 

expressed (Kroemer et al., 2013). HMGB1 can be released from cells both 

actively and passively and so has become a hallmark of both immunogenic 

apoptosis and necrosis (Scaffidi, Misteli and Bianchi, 2002; Andersson and 

Tracey, 2011). HMGB1 is a relevant marker of ICD due to its role in directly 

stimulating the innate immune system, through binding to and stimulating 

receptors such as TLR4 and CD24.  

HMGB1 release was assessed by immunoblot on samples from cells that had been 

infected with virus at MOI 1 for 16 h. Supernatant from these samples was then 

concentrated. The volumes of these concentrates were then measured, and the 

samples diluted until all samples were of equal volume.  

HMGB1 present intracellularly, as measured by immunoblot in whole cell lysates, 

was unchanged across all conditions, with the exception of HSV-1716-infected 

HeLa-RIPK3 cells, in which levels were slightly lower (Figure 5.2). In TOV21G 

cells, HMGB1 was present in the supernatant following HSV-1716 and HSV-3D7 

infection but not in uninfected cells, indicating that HSV-1716 cytotoxicity in 

TOV21G cells demonstrates at least one immunogenic component. There was no 

difference in HMGB1 release seen between HSV-1716 and HSV-3D7 infected cells, 
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suggesting that disruption of ICP6-RIPK3 binding has no effect on HMGB1 release. 

 

Figure 5.2 HMGB1 release following HSV-1716 and HSV-3D7 infection of TOV21G and HeLa cells.  
TOV21G and the HeLa cell isogenic RIPK3 pair were each infected with either HSV-1716 or HSV-3D7 for 16 h 
before lysates were taken and supernatants were harvested and concentrated. Samples were then prepared 
and stained for HMGB1 and β-actin by immunoblot. MW, molecular weight; kDa, kilodalton; UI, uninfected.  

In the HeLa-RIPK3 overexpression model, HMGB1 levels were also shown to 

increase following infection of HeLa-Lzrs cells with HSV-1716. In comparison to 

TOV21G, HeLa-Lzrs cells appear to have higher levels of basal HMGB1 release, 

which reaches higher overall levels following infection. The difference in levels 

between infected and uninfected is also much greater in the HeLa, suggesting a 

greater overall sensitivity to ICD. It is possible, however, that the limit of 

detection of this assay is too small to determine a more pronounced change in 

release.  

Interestingly, in the HeLa-RIPK3 cells there is greater basal release of HMGB1 

compared to HeLa-Lzrs, indicating that expression of RIPK3 alone can force cells 

to undergo cellular release with no external stimulus. As HMGB1 can be 

associated with both necrosis and IA, it is not possible to determine from these 

data alone which mode of death is being activated. As expected, when HeLa-

RIPK3 cells are infected with HSV-1716, levels of HMGB1 increase further. It is 

not clear, due to the semi-quantitative nature of this blot, whether the increase 

following HSV-1716 infection is greater in HeLa-RIPK3 cells, or whether this just 

represents higher basal levels in both infected and uninfected cells. This 

provides further evidence to the theory that overexpression of RIPK3 can drive 

cells down a necrosis-like pathway, that is possibly further affected by HSV-

1716. 
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β-actin staining was present in the concentrated supernatants, which was 

unexpected. Levels of this did not seem to change across conditions as 

drastically as HMGB1, with levels appearing lower in uninfected lysates. 

5.2.3 ATP release 

ATP release is the third major DAMP released in association with IA. ATP, along 

with other nucleotides, is also commonly associated with non-specific release 

following necrosis (Dosch et al., 2018). TOV21G cells were infected with either 

HSV-1716 or HSV-3D7 at the selected MOIs of 0.03, 0.3 and 3 and incubated for 

48 h before harvesting supernatants to determine ATP concentration. ATP 

concentration was determined using a luminescence-based assay which relies on 

the chemical reaction of ATP with D-Luciferin. Cell viability was determined by 

MTT assay in parallel to confirm the presence and magnitude of cell death that 

was occurring.  
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Figure 5.3 Release of ATP from HSV-1716 and HSV-3D7 infected cells.  TOV21G cells were infected with 
HSV-1716 or HSV-3D7 at a range of MOIs for 48 h before determining cell viability by MTT assay. In parallel, 
supernatants from infected cells were harvested, with ATP concentration determined by luminescence-based 
assay. ‘A’ shows % cell viability following infection, ‘B’ shows parallel ATP supernatant concentrations. Mean 
values from a single experiment are plotted ±SD. Statistical significance was determined by one-way ANOVA 
(Sidak’s multiple comparisons test (A), Tukey’s multiple comparisons test (B)). n.s, not significant; *, p<0.05; 
***, p<0.001; ****, p<0.0001. (C) ATP concentrations and cell viability measures are correlated for individual 
data points, with r value displayed. Line of best fit based on linear regression is also shown. 

When comparing % cell viabilities, no significant difference in death was seen 

between HSV-1716 and HSV-3D7 at the MOIs of 0.3 and 3 (Figure 5.3a), which 

mirrors what has previously been seen when comparing death caused by these 

two viruses (Figure 4.10). There was, however, a marginal significant increase in 

mean death at the 0.03 MOI (99.2 vs 90.0, p=0.042). Similar levels of death allow 

for easy comparison of the parallel ATP release.  

In Figure 5.3b, ATP release can be seen to clearly increase as MOI increases. 

Statistically significant change compared to uninfected cells can only be seen in 

cells infected with MOI 3 of both viruses (HSV-1716, 63 vs 1.6, p=0.0006; HSV-

3D7, 126 vs 1.6, p<0.0001). Comparison between other MOIs and uninfected 

were not significant (annotation not shown).  
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When comparing differences in ATP release between the two viruses, again, a 

statistically significant higher level of release was seen following HSV-3D7 

infection compared to HSV-1716 – at MOI 3 only (126 vs 63, p=0.0003). This 

difference is important as it is seen at an MOI for which levels of cell death 

appear to be the same.  

To gain further confirmation that ATP release is a phenomenon that occurs 

following HSV infection, all individual values for cell viabilities were correlated 

against ATP release and plotted along with a line of best fit (Figure 5.3c). A 

strong negative linear relationship was seen between the two measures 

(r=−0.819).  

5.2.4 Response to inhibition of caspase-8 

Caspases are a group of cysteine-proteases that have become known largely for 

their roles in promoting and executing apoptosis (Elmore, 2007). Executioner 

caspases require cleavage by other proteases in order to become activated for 

apoptotic purposes. Classical apoptosis stems from two inter-connected 

pathways, known as the intrinsic and extrinsic pathways. Caspase-8 is involved 

towards the end of the extrinsic pathway and caspase-9 is involved toward the 

end of the intrinsic. Both caspases-8 and -9 are able to proteolytically cleave the 

key executioner caspase-3, which activates it, allowing it to initiate many of the 

physiological effects of apoptosis. The compound zVAD-fmk is able to block all 

caspase subtypes, although it does have higher affinities for some over others 

(Yang et al., 2004; Yee et al., 2006). It is also able to promote necroptotic cell 

death via its inhibition of caspase-8, which aids in the formation of the 

necrosome complex (Vandenabeele, Vanden Berghe and Festjens, 2006). 

To determine the role of apoptosis in HSV-1716 and HSV-3D7-induced cell death, 

cells were infected with either virus at a range of MOIs and treated with the 

pan-caspase inhibitor zVAD-fmk (25 μM) for 96 h, before measuring viability by 

MTT assay (Figure 5.4). The purpose of this experiment was to see if inhibition of 

caspases had an effect on viral-induced cell death. If a decrease in cell death is 

seen with zVAD-fmk, then that death is likely apoptosis-dependent; if no change 
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in cell death, or an increase in death is seen, then that death is not apoptosis-

dependent.  

 

Figure 5.4 Effect of caspase inhibition on HSV killing in TOV21G cells. (A) TOV21G cells were treated 
with either cisplatin (Cis) alone or in combination with zVAD-fmk (Z) at concentrations of 20 μM and 25 μM 
respectively and left for 48 h before determining cell viability by MTT. Significance was determined by 
unpaired, two-tailed t test; ****, p<0.0001. (B and C) TOV21G cells were infected with either HSV-1716 or 
HSV-3D7 at a range of MOIs and left for 2 h before refeeding with either untreated media or media containing 
zVAD-fmk (final conc, 25 μM). After 96 h, cell viability was determined by MTT assay. ‘B’ shows dose-
response data from a single experiment, while ‘C’ shows pooled IC50 data from several repeat experiments, 
with significance determined by Tukey’s one-way ANOVA multiple comparisons test: n.s, not significant. MOI, 
multiplicity of infection; IC50, half-maximal inhibitory concentration.   

Before this experiment could be performed, a positive control experiment was 

first necessary to see if 25 µM zVAD-fmk was sufficient to protect against 

apoptosis in TOV21G cells. Earlier experiments have shown that this 

concentration of zVAD-fmk is sufficient to entirely rescue certain cells from TS-

induced apoptosis (OVCAR4, Figure 3.3; HeLa-Lzrs, Figure 3.4), however, 

addition of zVAD-fmk in TOV21G only promotes necroptosis following TS 

treatment. 

Cisplatin is a well-known inducer of apoptosis, which acts by cross-linking DNA. 

This leads to activation of the DNA-damage pathway, which involves proteins 

such as ATR, p53, p73, and mitogen-activated protein (MAP) kinases, culminating 
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in induction of apoptosis (Tanida et al., 2012). Here, TOV21G cells were treated 

with 20 μM cisplatin with and without 25 μM zVAD-fmk (Figure 5.4). In the 

cisplatin-only condition, there was a significant reduction in viability to 25%, 

which was partially rescued by zVAD-fmk to give a mean survival of 39% (p < 

0.0001). This demonstrates that 25 μM zVAD-fmk is sufficient to cause some 

level of caspase inhibition.  

In contrast to cisplatin, when TOV21G cells were infected with either HSV-1716 

or HSV-3D7 in the presence of zVAD-fmk, no significant change in cell death was 

seen when compared to either virus alone (HSV-1716, p=0.8; HSV-3D7, p=1.0). 

This shows that caspases alone are not necessary for the induction of cell death 

by HSV-1716. There was also no effect on cell death when the same cells were 

infected with HSV-3D7. This shows that modification of the RHIM of ICP6 does 

not lead to any increase in reliance on apoptosis. It has been shown that a region 

within the RR domain of ICP6 is capable of binding to and inhibiting caspase 8 

(Dufour et al., 2011). This is thought to prevent the virus from inducing 

apoptosis. As no modifications to this domain are present in HSV-1716 or HSV-

3D7, it makes sense that adding in additional caspase blockade would do nothing 

to affect cell death induced by either virus. 

5.3 Markers of general necrosis following viral infection 

5.3.1 Annexin V/ Zombie Violet staining 

TOV21G cells were infected with either HSV-1716 or HSV-3D7 for 24-72 h and 

assayed for phosphatidylserine (PS) exposure and pore formation by flow 

cytometry. PS is a naturally occurring phospholipid that sits within the plasma 

membrane. During the initial stages of apoptosis, PS becomes exposed on the 

outer cell membrane. Outer membrane PS exposure can be detected by Annexin 

V (AV), a protein that binds to PS in the presence of Ca2+ ions. AV that is 

conjugated to a fluorophore such as fluorescein isothiocyanate (FITC) or 

phycoerythrin (PE), can be detected by flow cytometry. AV is typically used in 

conjunction with a membrane-impermeable nuclear stain, which can detect pore 

formation and therefore act as a viability/membrane integrity dye, such as 

propidium iodide (PI) or Zombie Violet (ZV), which is a dye that works similarly 
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to PI, but differs in that it retains fluorescence following fixation, and so is more 

easily utilised for virus experiments. 

 

Figure 5.5 Effect of HSV-1716 and HSV-3D7 infection on Annexin V exposure and pore formation.  
TOV21G cells were infected with either HSV-1716 or HSV-3D7 at an MOI of 1 for either 16, 24, 48, or 72 h 
before being trypsinised and suspended in FACS buffer, and then subsequently stained for either FITC-
conjugated Annexin V (AV) or Zombie Violet (ZV) nuclear viability dye. Cells were then fixed, and data 
obtained using a flow cytometer. (A) Individual dot plots of staining intensity for both AV and ZV are shown 
here. Cell doublets were first gated out based on forward and side scatter, and then cut-offs for a positive stain 
were made based on unstained samples (not shown). (B) Values from repeat experiments at the 72 h time 
point were pooled and plotted as a bar plot to calculate statistical differences. Statistical significance was 
determined by two-way ANOVA (Dunnett’s multiple comparisons test). **** p<0.0001; n.s, not significant. UI, 
uninfected.  
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Combining AV with a nuclear stain is an established method for monitoring the 

time course of apoptotic and necrotic death. In apoptotic cells, a period of 

positive AV staining is seen before the emergence of membrane pores, which 

indicates secondary necrosis; cells dying by a primarily necrotic form of cell 

death will display pore formation in conjunction with AV staining (Rieger et al., 

2011). The purpose of this experiment was to assay for the presence of necrosis 

and apoptosis in dying cells infected with HSV-1716 or HSV-3D7. 

TOV21G cells infected with either virus display what appears to be a period of 

positive AV staining before ZV staining becomes positive, which is suggestive of 

an apoptotic mechanism. However, staining of cells observed at 72 h, show a 

significantly higher proportion of double positive AV+ZV+ (late necrotic) cells in 

the HSV-3D7 infected population (p<0.0001) compared to HSV-1716, while 

proportions of AV+ZV- (apoptotic) cells show no significant difference. This 

means that there are a greater portion of permeabilised cells following HSV-3D7 

infection, which could mean that, despite similar levels of early apoptosis and 

similar levels of overall cell death, HSV-3D7 is inducing an altered mode of cell 

death that leads to greater cell permeabilization, such as necrosis.  

5.3.2 Visual evidence of necrosis by TEM 

To understand the visual aspect of the cell death process in both HSV-1716 and 

HSV-3D7-infected cells, electron micrograph images were taken following 

infection of TOV21G cells in culture at an MOI of 1 for 48 h (Figure 5.6-Figure 

5.9). As a positive control for a classic necrotic phenotype, one set of cells was 

treated with TSZ for 48 h. Multiple images were taken at two different 

magnifications to observe gross cell morphology, mitochondrial morphology and 

presence of whole virions. Figure 5.6 shows uninfected control cells – cells 

appear elongated with a diameter of approximately 8 μm. Nuclei are large, 

taking up much of the cell, but appear in tact with a well-defined electron-

dense nuclear membrane and visible nucleoli. Some filopodia are also visible 

along the flanks of the cells. Mitochondria can be seen in the more magnified 

images and appear unperturbed, with regular cristae. The diameter of the 

mitochondria is approximately 400-600 nm.  
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Figure 5.6 Electron micrograph images of uninfected TOV21G cells. (A-B) Low magnification images of 
uninfected TOV21G cells. Cells take on an elongated shape with in-tact nuclei and cell membranes. (C-D) 
Higher magnification image of mitochondria, which appear in-tact with regular cristae. Scale bars are shown in 
the bottom left of each image. 

Upon treatment with the necroptosis-inducing combination TSZ, cellular 

morphology begins to change drastically (Figure 5.7). Both cytoplasmic and 

nuclear swelling begin to occur. Cellular diameter appears to be approximately 

10-20 μm. Occurrence of pore formation in the plasma membranes of dying cells 

was seen (Figure 5.7; indicated by red arrows). Together these indicate a largely 

necrotic morphology. Higher magnification analysis of the mitochondria shows a 

slightly swollen and more deformed morphology than those of uninfected cells. 

Diameters of these mitochondria are larger on average ranging from 400 nm to 

1μm.  
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Figure 5.7 Electron micrograph images of TOV21G cells treated with TSZ.  (A-D) Low magnification 
images of whole cells following treatment with TSZ. Cells are showing typical signs of death and necrosis, 
illustrated by enlarged, swollen cytoplasms and nuclei, and loss of membrane integrity (red arrows). A later 
stage necrotic cell is shown in panel D, in which cellular contents have become released into the extracellular 
space and the nucelus has begun to degrade. There is a distinct lack of budding, chromatin condensation or 
vacuolisation, which would be indicative of apoptosis. (E-F) Higher magnification of mitochondria, showing 
swollen and deformed morphology.  
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When cells were infected with HSV-1716, broadly similar morphology changes 

were seen in comparison to TSZ treatment. Many cells were swollen and 

enlarged, with evidence of loss of plasma membrane integrity and cellular 

spillage (Figure 5.8a-b). There were instances of what appear to be more 

apoptotic cell morphologies (Figure 5.8c). This consisted of cellular shrinkage 

and condensation of the nuclear chromatin, accompanied by large-scale cellular 

vacuolisation and membrane ‘budding’. Cells with this kind of phenotype were 

relatively less abundant compared to the more necrotic types. In HSV-3D7-

infected cells, similar necrotic morphologies were noted in most cells. 

Some small, regularly-sized spherical structures were seen in both HSV-1716 and 

HSV-3D7-infected cells (Figure 5.8d, Figure 5.9d), but not in uninfected or TSZ-

treated cells. The diameters of these structures was approximately 120 nm for 

both viruses (SD=10), which corresponds with the known diameter of the HSV 

capsid, 125 nm (Knipe et al., 2014). 

In both HSV-1716 and HSV-3D7-infected cells, distinct mitochondrial changes 

were seen, which differed from those seen in TSZ-treated cells. The 

mitochondrial diameters were between 170 and 340 nm, much smaller than in 

both uninfected and TSZ-treated cells. This change appeared in combination 

with a more electron-dense appearance, and in some cases, appearing elongated 

or fused with one another.  
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Figure 5.8 Electron micrograph images of TOV21G cells infected with HSV-1716. (A-C) A selection of low 
magnification images of whole cells infected with HSV-1716. Panels A and B show classically necrotic cell 
morephologies, consisting of swollen cytoplasm and nuclei, and loss of membrane integrity (red arrow). In 
panel C, a more apoptotic phenotype is apparent, with chromatin condensation, mass vacuolisation and 
membrane budding. (D) Evidence of whole virions is denoted by the blue arrows. (E-F) higher magnification 
images of mitochondria show a distinct electron dense and condensed phenotype.  
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Figure 5.9 Electron micrograph images of TOV21G cells infected with HSV-3D7.  (A-C) A selection of low 
magnification images of whole cells infected with HSV-3D7. Classically necrotic cell morephologies, consisting 
of swollen cytoplasm and nuclei, and loss of membrane integrity (red arrows) are displayed. (D) Evidence of 
whole virions is denoted by the blue arrows. (E-F) higher magnification images of mitochondria show a similar 
electron dense and condensed phenotype to HSV-1716.  
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5.4 Markers of necroptosis following viral infection 

5.4.1 Phosphorylation of MLKL  

MLKL is the downstream effector protein of the necroptosis pathway and is 

recruited and phosphorylated by RIPK3 at residues Thr357 and Ser358. MLKL then 

forms trimers and translocates to the plasma membrane, where it has been 

shown to act as a Mg2+ ion channel in the presence of Na+ and K+ (Xia et al., 

2016). Overall calcium ion influx is recognised as a major downstream event of 

MLKL activation which may be linked to its channel function. Membrane rupture 

then eventually leads to cell death (Hildebrand et al., 2014). Phosphorylated 

MLKL (pMLKL) can therefore be used as a marker for the presence of 

necroptosis.  

TOV21G cells were infected with either HSV-1716 or HSV-3D7 for 24 h, before 

assaying for the presence of pMLKL by immunoblot. Treatment with TSZ was 

used as a positive control for necroptosis induction and was also given 24 h 

before cells were lysed. Under basal conditions, some pMLKL was apparent in 

the cells, which was increased following TSZ treatment. However, no increase in 

pMLKL staining was seen when TOV21G cells were infected with either HSV-1716 

or HSV-3D7. This suggests strongly that that HSV-1716 does not induce classical 

programmed necrosis identical to TSZ treatment in these cells, and also provides 

evidence that prevention of the binding of ICP6 and RIPK3 is not sufficient alone 

to drive cells down this specific pathway.  

 

Figure 5.10 Phosphorylation of MLKL following HSV-1716 or HSV-3D7 infection of cancer cells. 
TOV21G, HeLa-Lzrs and HeLa-RIPK3 cells were infected with either HSV-1716 or HSV-3D7 or treated with 
TSZ for 24 h before harvesting cell lysates and determining presence of MLKL or phosphorylated MLKL 
(pMLKL) by immunoblot. UI, uninfected; MW, molecular weight; kDa, kilodaltons.  
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In HeLa-Lzrs cells, similar levels of basal pMLKL were seen to TOV21G in 

untreated cells. In these cells however, treatment with TSZ was not sufficient to 

lead to an increase in pMLKL staining. I have already shown that HeLa-Lzrs cells 

are incapable of dying in response TSZ treatment due to their lack of RIPK3 

expression. When infected with either virus, pMLKL levels also remained 

unchanged from the uninfected control. This would be expected based on what 

is already known – that necroptosis is only possible in the presence of RIPK3 

Interestingly, some differences were seen when comparing HeLa-Lzrs to HeLa-

RIPK3. In HeLa-RIPK3 cells, basal levels of pMLKL staining were much higher. 

This implies that presence of RIPK3 alone is enough to cause cells to undergo 

some level of necroptotic signalling without any other stimulus beyond cell 

culture medium. This same effect was seen when looking at HMGB1 release, 

serving as further evidence that RIPK3 is perhaps able to self-activate at high 

expression levels. As expected, when HeLa-RIPK3 cells were treated with TSZ, 

pMLKL expression increased further, similar to that seen in TOV21G and in 

keeping with the critical role of RIPK3 in determining sensitivity to necroptosis. 

When these cells were infected with either HSV-1716 or HSV-3D7 however, no 

change in pMLKL was seen over basal expression. This suggests that the presence 

of high levels RIPK3 does not permit HSV-1716 to kill with greater induction of 

necroptosis. However, the amount of necroptosis activation is still higher than 

comparative infection of HeLa-Lzrs cells. Whether presence of RIPK3 and HSV-

1716 infection in combination can have useful additive effects in terms of 

immune system activation, will be interesting to explore. 

5.4.2 Response to necrosome inhibitors 

TOV21G cells were infected with either HSV-1716 or HSV-3D7 for 96 h in the 

presence of various inhibitors of necroptosis (Figure 5.11). These inhibitors each 

target one component of the necrosome machinery, with necrostatin-1 (Nec-1) 

being an inhibitor of RIPK1, GSK’840 an inhibitor of RIPK3 and 

necrosulphonamide (NSA) an inhibitor of MLKL (Degterev et al., 2005; Sun et al., 

2012; Rodriguez et al., 2016). The purpose of this was to determine whether any 

of these proteins alone were crucial for cell death induced by either virus. 
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Before investigating the effect of viral infection, TOV21G cells were first treated 

with TSZ in combination with each of the three drugs (Nec-1: 100 μM, GSK’840: 

20 μM, NSA: 3 μM) for 48 h to confirm that the doses used were sufficient to 

induce cell death (Figure 5.9a). As seen previously, treatment with TS was 

enough to reduce cell viability in TOV21G cells to 44%. Addition of zVAD-fmk had 

no significant effect on cell death (p=0.49). This TSZ-induced necroptosis was 

completely reversed by addition of either Nec-1, GSK’840 or NSA, with viabilities 

rising significantly to >99% for each (p<0.0001 in all cases). 

 

Figure 5.11 Effect of pharmacological necrosome inhibition on HSV-1716 and HSV-3D7-induced cell 
death.  (A) TOV21G cells were treated with various combinations of TNF-α (T; 20 ng/ml), SMAC mimetic (S; 1 
μM), zVAD-fmk (Z; 25 μM), Nec-1 (100 μM), GSK ‘840 (20 nM) and NSA (3 μM) for 48 h before determining 
cell viability by MTT assay. Statistical significance was determined by one-way ANOVA (Dunnett’s multiple 
comparisons test). **** p<0.0001, n.s, not significant. (B) Cells were infected with either HSV-1716 or HSV-
3D7 at a range of MOIs for 2 h, before refeeding with either Nec-1 (100 μM), GSK ‘840 (20 nM) or NSA (3 μM) 
and leaving for another 96 h. Cell viability was then determined by MTT. Dose-response data from single 
experiments are shown in B, while pooled IC50 values from multiple experiments are showed in C. Statistical 
significance was determined by one-way ANOVA (Tukey’s multiple comparisons test). n.s, not significant. 
Nec-1, necrostatin-1; NSA, necrosulfonamide; IC50, half-maximal inhibitory concentration; Ctrl, control (no 
drug); MOI, multiplicity of infection.  

The same compounds and doses were then tested during the course of 96 h viral 

infection for both HSV-1716 and HSV-3D7 (Figure 5.11b-c). No significant changes 

in IC50 were seen when RIPK1, RIPK3 or MLKL were inhibited in either HSV-1716 
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or HSV-3D7. IC50 values remained constant around the value of 0.01. These 

results are further evidence to the fact that HSV-1716 does not induce classical 

necroptotic cell death in TOV21G cells. These results also further show that HSV-

3D7 does not behave differently to HSV-1716 in terms of necroptotic signalling, 

despite lack of binding to RIPK3. 

5.4.3 Response to short interfering RNA knockdown of RIPK3 and 

MLKL 

To further investigate the role of RIPK3 and MLKL in HSV-1716-induced cell 

death, and to confirm results seen pharmacologically, short interfering RNA 

(siRNA) knockdown of these proteins during viral infection was performed. 

Preliminary experiments showed that RIPK3 was optimally knocked down by 24 h 

with 10 nM of RIPK3 siRNA in TOV21G cells. This knockdown was shown to be 

sustained for at least 72 h before beginning to increase. Cells were therefore 

transfected with either RIPK3 or scrambled sequence (Scr) siRNA for 24 h before 

infecting with HSV-1716 and left for a further 48 h. Viability was then measured 

by MTT assay. To confirm that protein was still knocked down at endpoint, cell 

lysates were taken from cells treated with each siRNA and stained for RIPK3 by 

immunoblot. At 72 h post-treatment, RIPK3 levels were still shown to be 

reduced. Despite this, at both MOIs tested there were no significant differences 

in death between cells with WT and knocked-down RIPK3. This would appear to 

fit with the results seen in the previous section, which suggests that RIPK3 is not 

necessary for HSV-1716-induced cell death.  
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Figure 5.12 Effect of siRNA knockdown of RIPK3 and MLKL on HSV-1716-mediated killing.  TOV21G 
(left, middle) or HeLa-Lzrs (right) cells were treated with equimolar amounts of either scrambled (Scr), anti-
RIPK3 or anti-MLKL siRNA for 24 h, infected with HSV-1716 and then left for a further 48 h, before harvesting 
lysates for immunoblot or determining cell viability by MTT. Quantities and duration of siRNA exposure were 
determined by assessing protein expression at different concentrations and time points. ‘A’ shows endpoint 
lysates taken after 72 h of siRNA treatment, stained for the proteins of interest. ‘B’ shows cell viabilities at two 
MOIs for each of the two conditions. Statistical significance was determined by two-way ANOVA (Sidak’s 
multiple comparisons test). *** p<0.001; n.s, not significant. MW, molecular weight; kDa, kilodaltons; MOI, 
multiplicity of infection. 

The same experiment was performed in TOV21G cells with siRNA targeting MLKL. 

In this instance, a 5 nM concentration of siRNA was used per condition with 

infection taking place after 24 h and analysis of cell viability at 72 h. Here, the 

immunoblot shows that MLKL was also highly knocked down, although to a lesser 

degree than RIPK3. As with RIPK3, no significant change in cell death was seen 

following infection at either MOI, although a small increase in viability was seen 

at MOI 0.3. This may be evidence that when cells are lacking in MLKL, cell death 

is more difficult to induce. As the change in death seen is so small and not 

significant, this argument is not too convincing. Regardless of whether MLKL may 

play a small role in HSV-1716-mediated death, it is clear that MLKL is not 

essential for death to occur. 

The same MLKL siRNA was used in HeLa-Lzrs cells determine whether cell death 

mechanics differ in a cell line that produces high levels of MLKL and lacks 

expression of RIPK3. These cells were treated with the same anti-MLKL siRNA 

regimen as TOV21G, but at a higher siRNA concentration of 30 nM, which 

produced a similar level of MLKL knockdown. Surprisingly, there was a significant 
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increase in killing when MLKL was knocked down, shown for both MOIs that were 

tested. Viability decreased from 54% to 33% in cells infected with MOI 1 and from 

15% to 11% in cells infected with MOI 3. Such a change in death suggests that 

presence of MLKL is actually detrimental to HSV-1716 killing in this system.  

5.4.4 Effect of RIPK3 overexpression on HSV-1716 and HSV-3D7-

induced cell death 

To further investigate the role of RIPK3 in HSV-1716-induced cell death, RIPK3-

overexpressing HeLa cells discussed earlier (Figure 3.4) were infected with 

either HSV-1716 or HSV-3D7 for 96 h and assessed for changes in cell viability by 

MTT assay ( Figure 5.13). Individual RIPK3-expressing clones (E4, E10 and D2) 

were each compared in addition to the empty-vector control line, HeLa-Lzrs. 

Both viruses were found to kill all cell lines at the range of MOIs tested (10-4-

102). Overall, HeLa cells were much less sensitive to viral infection than many of 

the OC lines investigated previously. In addition to this, the comparative change 

in cell death is higher over a narrower range of MOIs, with viability changing 

greatly between the MOIs of 100 and 101.  

 
Figure 5.13 Effect of RIPK3 overexpression on HSV-1716 and HSV-3D7-induced cell death.  HeLa cell 
clones that have been transduced with either empty vector (Lzrs) or RIPK3-expressing (E4, E10, D2) 
lentiviruses were infected with either HSV-1716 (left) or HSV-3D7 (right) and left for 96 h before determining 
cell viability by MTT. ‘A’ shows dose-response data from a single experiment for all RIPK3 genotypes. ‘B’ 
shows data for pooled IC50 values from all experiments, whereby RIPK3-overexpressing clones have been 
pooled into a single dataset. Statistical significance was determined by one-way ANOVA (Tukey’s multiple 
comparisons test). *, p<0.05; n.s, not significant; MOI, multiplicity of infection; IC50, half maximal inhibitory 
concentration.  

Sensitivity to death appears to be higher in the RIPK3-expressing cell lines 

compared to HeLa-Lzrs, in the case of both HSV-1716 and HSV-3D7 infection. No 

noticeable difference in sensitivity can be noticed between RIPK3-expressing 

genotypes. In order to determine the significance of these changes, IC50 values 
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from multiple repeat experiments were taken and compared together. To gain 

greater statistical power, data from the separate RIPK3 genotypes were pooled. 

A significant decrease in average IC50 value was seen in the RIPK3-expressing 

cells compared to Lzrs when infected with HSV-1716 (4.0 vs 2.9; p=0.031). A 

similar decrease could also be seen between the two cell types when infected 

with HSV-3D7 (3.7 vs 2.5; p=0.012). Despite this, no difference in killing between 

the two viruses could be determined in either HeLa-Lzrs or HeLa-RIPK3 cells (p = 

0.964 and 0.571 respectively). 

5.4.5 Effect of Genomic MLKL Knock-Down on Viral Killing 

To confirm the effect of a more permanent disruption to MLKL expression than 

siRNA can provide, MLKL-modified TOV21G cells were acquired from previous 

work done in the host lab (Weigert et al., 2017). These cells were made using 

CRISPR/Cas9 gene-editing technology but were only found to possess 

heterozygous loss of MLKL, resulting in reduced MLKL expression, but not total 

loss. To confirm MLKL reduction, lysates from untreated MLKL-modified clones, 

F9 and D6, were taken and compared for MLKL expression against parental MLKL 

cells by immunoblot. As expected, levels of MLKL were shown to be highly 

reduced, despite similar levels of β-actin loading control.  
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Figure 5.14 Effect of Genomic Knockdown of MLKL on HSV-1716 and HSV-3D7-mediated killing.  (A) 
Lysates from untreated TOV21G (parental and ΔMLKL) cell lines were harvested and assayed by immunoblot 
for presence of MLKL protein. (B) Each of the TOV21G cell lines were treated with a combination of either 
TNF-α (T; 20 ng/ml), SMAC mimetic (S; 1 μM) and zVAD-fmk (Z; 25 μM) for 48 h before determining cell 
viability by MTT assay. Mean viabilities are plotted ± standard deviation (SD). Statistical significance was 
determined by two-way ANOVA (Tukey’s multiple comparisons test). **** p<0.0001; n.s, not significant. (C and 
D) TOV21G (parental and ΔMLKL) cells were infected with HSV-1716 or HSV-3D7 at a range of MOIs and left 
for 96 h before determining cell viability by MTT assay. ‘C’ shows dose-response curves from a single 
experimental repeat, showing HSV-1716-infected cells on top and HSV-3D7-infected on the bottom (mean 
viabilities ± SD). ‘D’ shows pooled individual IC50 values from multiple experiments with bars representing 
means ± SD. Statistical significance was determined by one-way ANOVA (Sidak’s multiple comparisons test). 
MW, molecular weight; kDa, kilodalton; IC50, half-maximal inhibitory concentration; MOI, multiplicity of 
infection.   

To determine the effect of this phenotypic change on the ability of the cells to 

undergo necroptosis, cells were treated with either T, TS or TSZ and assessed for 

cell viability. As expected, parental cells showed a large, significant reduction in 

viability to 31% following either TS or TSZ treatment, indicating induction of 

necroptosis. In comparison, clones F9 and D6 experienced a much smaller 

reduction in viability to only 74% and 64% respectively (p<0.0001), with no 

significant difference between the clones. In the TSZ conditions, F9 and D6 both 

showed an even greater rescue from death, with viabilities returning to 98% and 
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97% respectively (p<0.0001 vs parental). The heterozygous loss of MLKL 

therefore lead to a complete rescue from TSZ-induced necroptosis.  

When compared for their ability to be killed by HSV-1716 or HSV-3D7 after 96 h 

of infection, MLKL-modified cells showed limited differences to the parental cell 

line. In HSV-3D7-infected cells, no significant differences were seen across any 

of the cell lines when IC50 values were compared across multiple experiments. 

For cells infected with HSV-1716, no change was seen between the IC50 averages 

either. Despite this, there does appear to be a trend towards inhibition of cell 

death following MLKL depletion. A further statistical test was performed after 

pooling the two clones to give a by-genotype analysis by t test. Following this, 

however, there was still no significant shift in IC50 seen in these cells.  

5.5 Effect of ICP6-RIPK3 binding on response to TNF-α  

Disruption of the interaction between ICP6 and RIPK3 alone appears to have no 

effect on cell death, as demonstrated by identical cell viabilities of various cell 

lines following infection with HSV-1716 and HSV-3D7 (Figure 4.10-Figure 4.11). 

Here, the effect of additional treatment of infected cells with TNF-α was 

investigated. For this, HeLa-RIPK3 cells were infected with either HSV-1716 or 

HSV-3D7 at MOI 10 and left for 2 h before refeeding with 10 ng/ml TNF-α and 

left for 24 h before determining cell viability by MTT assay.  
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Figure 5.15 Effect of co-treatment of HeLa-RIPK3 cells with virus and TNF-α on cell death.  (A) HeLa-
RIPK3 cells (clones D2 and E4) were infected with HSV-1716 or HSV-3D7 at an MOI 10 for 2 h before 
refeeding cells with complete media containing TNF-α alone to give a final concentration of 10 ng/ml. (B) 
HeLa-RIPK3 cells (clones D2 and E4) were infected with HSV-1716 or HSV-3D7 at an MOI 10 for 2 h before 
refeeding cells with complete media containing TNF-α and LCL-161 (SMAC mimetic) to give final 
concentrations of 1 ng/ml and 1nM respectively. Cells were then left for 24 h before determining cell viability 
by MTT assay. Cell viabilities are calculated as a percentage of untreated cells. In the case of drug treatment, 
viability is plotted as a percentage of uninfected, drug-treated cells. Mean cell viabilities are plotted ± SD. 
Statistical significance is determined by one-way ANOVA (Sidak’s multiple comparisons test). ****, p<0.0001; 
UI, uninfected. 

In both of the HeLa cell lines tested, cell viability was significantly higher for 

HSV-3D7-infected cells than HSV-1716 (E4, 48% vs 36%, p<0.0001; D2, 38% vs 34%, 

p<0.0001). Conversely, when 10 ng/ml TNF-α treatment was provided in addition 

to viral infection, cell viabilities (relative to TNF-α alone) became much lower in 

the HSV-3D7-infected cells compared to HSV-1716 (E4, 29% vs 42%, p<0.0001; D2, 

17% vs 35%, p<0.0001).  

Next, I explored whether this effect could be modulated by the addition of SMAC 

mimetic, which I have shown increases the level of cell death in HeLa-RIPK3 
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cells (Figure 3.4). Concentrations of both T and S were modified to find a 

concentration that induced about 50% death (not shown) – 1 ng/ml and 1 mM 

respectively. The same pattern of cell death changes was seen under these 

conditions as for T alone, with the exception that a slightly higher level of death 

was seen in HSV-3D7-infected HeLa-RIPK3 (D2) cells was seen compared to HSV-

1716 (36% vs 40%, p<0.0001). However, a much larger decrease in comparative 

cell viability was seen when these cells were treated with the drug combination 

(17% vs 34%, p<0.0001), indicating that the increased sensitivity to death 

stimulation remains. In the HeLa-RIPK3 (E4) line, a very similar pattern was seen 

to treatment with T alone, with cell viability appearing higher in HSV-3D7-

infected cells in the absence of drug (55% vs 43%, p<0.0001). In the presence of 

TS, death was increased in the HSV-3D7-infected cells to give relatively higher 

levels of death than HSV-1716 (32% vs 46%, p<0.0001). Together, these results 

demonstrate that HSV-3D7-infected cells appear to have a much larger 

sensitivity to treatment to further death stimulus in the form of TNF-α. 

5.6 Discussion 

Some markers of immunogenic apoptosis were noted following HSV-1716 

infection of TOV21G cells, namely HMGB1 and ATP release. CAL exposure was 

not seen following infection at the 1, 4 and 24 h time points tested. CAL 

exposure is an early process that occurs before PS exposure (Obeid et al., 2007). 

Determining appropriate time points over the long replication cycle of a virus is 

therefore difficult. PS exposure was shown to already begin increasing at the 

earliest time point tested here at 16 h, suggesting that the window for CAL 

exposure would exist sometime before this. The results shown here are a 

representation of several repeat experiments. Other data not shown assessing 

later time points such as 12 and 16 h also showed no evidence of CAL. Other 

studies looking for CAL exposure following virus infection find evidence of this as 

late as 96 h post-infection (Koks et al., 2015). By this time however, HSV-1716-

infected TOV21G cells are long dead. I am therefore confident that no CAL 

exposure takes place during HSV-1716 infection. CAL is an ER protein 

ubiquitously expressed across cell types. However, to confirm the activity of the 
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antibodies, a sample of cells were permeabilised with Triton-X before staining. 

This control confirmed the validity of the method.  

HMGB1 release was observed following HSV-1716 infection in both TOV21G and 

HeLa cells. This was the first evidence showing that HSV-1716-induced cell death 

has at least one immunogenic aspect. HMGB1 levels were determined by 

immunoblot of concentrated cell supernatant. Supernatants were concentrated 

by a factor of approximately 45, with parallel samples measured and diluted 

appropriately to ensure equal concentrations. This method had to be relied on to 

ensure loading uniformity. β-actin was still stained for as a control and appeared 

to be present in the supernatant alongside HMGB1. This correlates with a form of 

cell death displaying high membrane permeability. β-actin was still present in 

the supernatant of uninfected cells, probably due to basal cell turnover. Levels 

of β-actin did increase in the supernatant during infection, which is why it 

cannot be considered as a true loading control. Interestingly, release of HMGB1 

did appear to increase by a relatively larger amount compared to β-actin, which 

suggests a more active or permissive mechanism of release.  

The two hypotheses tested in the HMGB1 experiment were that HSV-3D7 would 

show greater HMGB1 release than HSV-1716, and that in HSV-1716-infected cells 

RIPK3 expression would result in greater release also. In the first instance, both 

viruses were shown to cause similar increases in levels of HMGB1 in the 

supernatant, suggesting that the ability of ICP6 to bind RIPK3 has no bearing on 

its release. HMGB1 is passively released from injured cells upon membrane 

permeabilization, and so has been described as both a marker of IA and necrosis 

(Kroemer et al., 2013). No studies so far have shown a molecular link between 

RIPK3 and HMGB1 release beyond simple increases in membrane permeability 

resulting from necroptosis. Therefore, it is reasonable to suggest that similar 

levels of death resulting from either virus lead to similar levels of HMGB1 

release. It could be that changes in levels of RIPK3 signalling, as a result of ICP6 

binding, lead to different molecular consequences, despite the same overall 

membrane permeability and subsequent death being seen. 

The second of these hypotheses is that RIPK3 overexpression leads to greater 

HMGB1 release, which has shown to be true. In addition to this, RIPK3 
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overexpression appears to lead to an increase in HMGB1 present in the 

supernatant even without further stimulation. Levels of RIPK3 seen in this 

system are much higher than native levels in any of the OC cell lines observed in 

this study. This could mean that overexpression of RIPK3 to this degree is able to 

have some form of ‘overdrive’ effect, whereby cells are forced down a 

necroptotic route without any outside stimulus. Due to the semi-quantitative 

nature of immunoblotting, it is hard to say whether this effect is entirely 

responsible for the additional increase in HMGB1 release seen following HSV-

1716 infection in HeLa-RIPK3 cells, or whether some level of synergism exists 

between viral-induced death pathways and necroptosis. 

A strong negative correlation was seen (r=−0.819) between ATP release and cell 

viability following infection with either HSV-1716 or HSV-3D7, suggesting that 

cell death leads to release of ATP from the cell. ATP release is associated with 

both IA and necrosis, yet it is unclear which mechanism is driving this release. 

This phenomenon does provide a second line of evidence that cell death 

following HSV-1716 infection is immunogenic in nature. Interestingly, ATP 

release was significantly higher following HSV-3D7 infection than for HSV-1716 in 

the MOI 3 condition. Cell viability in these conditions was in fact ~5% lower for 

HSV-3D7 compared to HSV-1716, although this difference was not statistically 

significant (p=0.52). In addition, no statistically significant difference in ATP 

release was seen at any other MOI. While the results shown here are from a 

single experiment, similar trends were seen in other repeats. It is therefore hard 

to say with certainty that ATP release is comparatively higher at equal levels of 

cell death for HSV-3D7 compared to HSV-1716. It would certainly be reasonable 

to posture that a decrease in ICP6-RIPK3 binding, leading to increased RIPK3 

activation, could lead to a higher proportion of cells in a population dying by 

necrosis and, therefore, releasing more ATP into the supernatant. 

TOV21G cells infected with either HSV-1716 or HSV-3D7 saw no change in death 

upon addition of the pan-caspase inhibitor zVAD-fmk. To confirm the appropriate 

concentration to use, cisplatin treatment was used as a positive control for 

apoptosis. Cisplatin is a well-known inducer of apoptosis, although it is possible 

that the mechanisms of apoptosis induction differ from those that may be 

employed by HSV-1716. A rescue effect seen in the presence of zVAD-fmk should 
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confirm that apoptotic mechanisms are totally blocked. Despite this, viability 

was only restored to 40% upon zVAD-fmk addition, implying that the pathway of 

death employed by cisplatin was not completely blocked and therefore, may 

involve other mechanisms. However, more complete blockage of death seen 

using the concentrations used here in other cell types suggest that a high level 

of caspase inhibition is taking place. It does therefore seem that while caspases 

may still play some role in HSV-1716-induced necrosis, they are not a primary 

requirement for death that can be circumvented. HSV-3D7 likewise showed no 

change in its ability to induce death when caspases were inhibited, suggesting 

that disruption of the RIPK3-ICP6 interaction does not alter the virus’s reliance 

on apoptosis.  

Combining annexin V staining with a membrane-impermeable dye such as 

propidium iodide, 7-AAD or, in this case, Zombie Violet is an established way to 

determine the apoptotic and necrotic portions of a cell population (Degterev et 

al., 2014). AV+ staining is a hallmark of early classical apoptosis (Vanags et al., 

1996; Rimon et al., 1997). The ZV+ cell populations are those which have 

become permeabilised, and can represent either true necrotic cells, or 

apoptotic cells that are entering the later stages of death and thus have become 

permeabilised. This is why the AV/PI assay often has limited usefulness in 

diagnosing cell death modalities, due to the high interconnectedness of these 

pathways. It is particularly important to pay attention to the timescales over 

which changes in cell staining occur. Initial PS exposure, followed by late cell 

permeabilization is characteristic of apoptosis, whereas direct permeabilization 

in combination with PS exposure is characteristically necrotic. In this case, 

frequencies of AV+ cells and AV+/ZV+ cells appeared to rise in concert over 

time, which would suggest that necrosis and apoptosis may be occurring 

simultaneously. Ultimately, this assay is of limited use unless the cell type in 

question adheres strictly to the established dogma. While one explanation for 

the increase in AV+/ZV+ cells in HSV-3D7-infected samples could be that more 

necrosis is taking place, it is also possible that flow cytometry is just a more 

sensitive method for determining cell death compared to the MTT assays used 

elsewhere in this study. Either way it is hard to conclude the meaning of this 

difference considering the contradicting data on immunogenic cell death. 
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To give a visual representation of the processes that occur following infection 

with HSV-1716 or HSV-3D7, or with TSZ treatment, electron micrograph images 

were taken of TOV21G cells. Electron microscopy has remained a gold-standard 

procedure for distinguishing apoptosis from necrosis, with each process being 

largely defined by the morphological features seen with this type of analysis. 

Necrotic cells undergo rapid membrane permeabilization, cell hydration and 

swelling, and organelle disruption. Nuclei also remain well-preserved in the early 

stages of death (Burattini and Falcieri, 2013). In comparison, apoptotic cells 

experience a decrease in cell size; fluid loss and cytoplasmic condensation; and 

convolution of nuclear and cellular membranes. Chromatin condenses and forms 

cup-shaped masses beneath the nuclear envelope in the early stages, with 

cellular fragmentation happening later. Many of the hallmarks of necrosis were 

shown to occur following treatment with all of the tested death stimuli for 48 h. 

One example of an apoptotic cell was found for HSV-1716 infection, but not for 

HSV-3D7 or TSZ treatment. Making conclusions about the relative abundance of 

apoptotic or necrotic cells is not possible with TEM, as a qualitative method. It is 

therefore possible, or perhaps likely, that cells undergoing apoptotic cell death 

were also present in the other samples. The images shown in the results were 

chosen to give a representative view of the types of dying cell that were 

identified in the experiment. Image quality for TEM can vary, partly due to 

variations in the sample preparation process. As a result, the images shown here 

are somewhat less detailed than those shown in other studies (Krysko et al., 

2008; Burattini and Falcieri, 2013), which limits the ability to distinguish more 

comprehensive changes in organelle structure.  

Identification of what appeared to be viral capsids was noted in cells infected 

with either HSV-1716 or HSV-3D7, but not other samples. As mentioned, clarity 

in these images is low and so picking out such small objects at these 

magnifications is difficult. The objects identified here are also few and sparsely 

distributed, which is not what would be expected during a productive viral 

infection (Le Sage and Banfield, 2012; Wild et al., 2015). The lack of temporal 

information given by this technique must also be considered. It may be that the 

cells observed here are too early in the infection cycle to catch large scale virion 

production and release. Of course, some cells within the same sample may 
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progress through the cell death process at different speeds, in which case, 

identifying the right processes becomes a matter of luck and persistence.  

Abnormalities in the mitochondria were seen following the various treatments, 

with TSZ leading to enlarged, swollen mitochondria, and either virus leading to 

condensed, elongated mitochondria. This condensed structure has been 

previously noted following HSV-1 infection in oligodendroglial cells (Bello-

Morales et al., 2005), and is well-known to be associated with a highly 

metabolically active state, typical of viral infection (Hackenbrock, 1966, 1968). 

Crucially, it seems that structural changes following HSV-3D7 infection do not 

differ in any noticeable way to HSV-1716 infection, with both viruses seeming to 

already kill via a visually necrotic mechanism.  

In order to determine the response of downstream necroptosis signalling to HSV-

1716 and HSV-3D7 in TOV21G and Hela cells, a pMLKL immunoblot was 

performed on cell lysates. MLKL is the key downstream regulator of necroptosis, 

and pMLKL has been well-described as a marker of necroptosis induction (Sun et 

al., 2012; Linkermann, Kunzendorf and Krautwald, 2014). In the necrosis 

competent cell lines TOV21G and HeLa-RIPK3, levels of pMLKL were expected to 

be higher following HSV-3D7 infection than for HSV-1716. No increase in pMLKL 

was seen for either virus in either cell line. This means that HSV-1716 does not 

appear to be able to induce necroptosis even in necroptosis-competent cell 

lines. It also means that the disrupted ICP6-RIPK3 interaction resulting from the 

HSV-3D7 genotype makes no difference to this either. In line with what has been 

shown in other experiments, pMLKL levels increased following TSZ treatment in 

TOV21G and HeLa-RIPK3 cells, but not HeLa-Lzrs controls, which confirms that 

both these cell lines are necroptosis-competent. Interestingly, basal pMLKL 

levels were higher in HeLa-RIPK3 cells compared to HeLa-Lzrs, which coincides 

with the hypothesis that overexpressed RIPK3 can ‘overdrive’ cells down a 

necroptotic pathway without further stimulus.  

Further careful analysis is needed for this experiment, again, due to the semi-

quantitative nature of immunoblot. However, pMLKL staining remains as one of 

the only true biomarkers for this process. This is primarily because necroptosis is 

defined by its signature activation of the proteins RIPK1, RIPK3 and MLKL. 



189 

 

Therefore, direct analysis of these proteins is the only way to properly confirm 

its activation.  

Further probing of the necroptosis pathway was achieved with targeted 

inhibition or knockdown of each of the individual necrosome components. The 

drugs Nec-1, GSK’840 and NSA are all well described for their ability to inhibit 

RIPK1, RIPK3 and MLKL respectively (Su et al., 2016). To confirm their effects at 

the concentrations tested in these cells, their abilities to rescue cells from TSZ-

induced necroptosis was confirmed. However, no effect on cell death was seen 

when cells were infected with either HSV-1716 or HSV-3D7. This appears to 

provide more evidence to the hypothesis that necroptosis is not an active 

process during HSV-1716 infection. Not only this, but it seems that none of the 

individual components of the necrosome plays a key role in the death process. 

This is an important distinction because both RIPK1 and RIPK3 have been shown 

to have proapoptotic or even pro-survival roles in certain circumstances (Ichim 

and Tait, 2015). In addition to this, it is important to consider that 

pharmacological inhibition of these proteins determines only the role of their 

kinase function. It has been shown that induction of apoptosis following RIPK3 

activation occurs in a kinase-independent manner that requires RIPK1, FADD and 

caspase-8. Therefore, if RIPK3 was having a proapoptotic effect in this system, 

then pharmacological inhibition would not help determine that.  

To help discern further whether necrosome proteins have any role in HSV-1716 

killing, siRNA knockdown was performed in both TOV21G and HeLa cells for 

RIPK3 or MLKL. Immunoblots were used to confirm that successful knockdown 

had taken place over the optimised time scale tested. In TOV21G cells no 

significant change in killing was seen when RIPK3 was knocked down, fitting with 

the limited role RIPK3 has appeared to have in previous experiments. A small 

non-significant increase in cell viability of ~5% was seen in one MOI for MLKL 

knockdown in TOV21G cells. The fact that this change occurred in only one MOI 

condition, and that the change was so small makes it seem likely that MLKL 

knockdown had no true functional effect on HSV-1716 killing. More convincing 

changes were seen following MLKL knockdown in HeLa-Lzrs cells. In these cells 

however, a further decrease in viability was seen following knockdown. This 

suggests that loss of a key death protein is actually driving further death, which 
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is counter-intuitive to what is known about MLKL. There have been reports that 

MLKL may play a role in promoting cell survival in some cases, particularly 

cancer (Liu et al., 2016); whether or not this is what is occurring here is unclear. 

As can be seen in the immunoblots, in all cell lines and conditions, complete 

knockdown of protein was never achieved. This illustrates one of the key 

disadvantages of siRNA as a method: it is often impossible to completely deplete 

levels of a protein target to zero. In many cases, large-scale knockdown may be 

sufficient to see a dose-dependent effect. In other instances, low levels of 

residual protein may be sufficient to maintain high levels of activity. In recent 

years, opting instead for permanent, absolute knockout with CRISPR/Cas9-based 

methods has proven to be more effective, reliable and convenient. The siRNA 

experiments performed here were done prior to the establishment of 

standardised CRISPR protocols within our lab. 

Further examination of the effect of RIPK3 in HSV-1716-induced cell death was 

explored with the HeLa-RIPK3 over-expression system. Overexpression of RIPK3 

led to a significant increase in cell death following infection. From what has 

been uncovered so far, this data seems to tie in to the theory that high RIPK3 

expression sensitises cells to further death stimuli, including viral death. This 

correlates well with the greater HMGB1 release seen following viral killing in 

HeLa-RIPK3 cells. Given that no change in pMLKL levels occur in these cells 

during infection, it seems that despite additional death, necrosis may still not be 

the sole driver. This information continues to suggest that high-RIPK3 cells may 

be more sensitive to death by any means, including the predominantly non-

necrotic death mode induced by HSV-1716. Additionally, there was no difference 

in cell killing between HSV-1716 and HSV-3D7 in either HeLa-Lzrs or HeLa-RIPK3 

cells. This mirrors what was seen in the RIPK-expressing TOV21G cells and 

suggests that even when RIPK3 is present in very high levels (Figure 3.4), a 

disruption in ICP6-RIPK3 interaction is not alone sufficient to drive cells down an 

increased necrotic pathway. It is worth noting the magnitude of the differences 

in IC50 is relatively small (1.1 and 1.2 pfu/ml for HSV-1716 and HSV-3D7 

respectively), with variability in measurements sometimes obscuring the change. 

Nonetheless, the difference is still of significance to this study. 
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Following CRISPR/Cas9-based gene editing of MLKL within TOV21G cells, the 

effect of having a more permanent knock-down of the gene could be explored. 

As mentioned, the MLKL-modified cell clones were received from previous work 

done in the lab. The clones were both shown to contain heterozygous mutations 

within the MLKL gene locus (not shown), which resulted in a reduced expression. 

This means that these experiments suffer from the same major drawback as 

those done with siRNA, in that small amounts of residual MLKL may have 

noticeable effects. One major benefit of having stably-edited cells is that 

expression remains at a constant level, allowing for longer experiments and 

improving consistency of results between experiments. When cells were treated 

with T, TS or TSZ and compared for their susceptibility to killing, both clones 

were markedly more resistant to death by TS or TSZ than the parental line, with 

the latter having almost no effect on cell viability. It is interesting that viability 

was so different between TS and TSZ treatment for the clones, when it rarely 

differs in the parental line. Resistance to the addition of the caspase inhibitor, 

zVAD-fmk is an indicator that death is operating on a primarily necroptotic basis. 

This suggests that when MLKL is depleted, death can still occur via an apoptotic 

route induced by TS. This could indicate that in parental cells, TS stimulation 

typically causes a combination of apoptotic and necroptotic outcomes, which 

gets switched to pure necroptosis following the addition of zVAD-fmk. It could 

also mean that death following TS exposure is purely apoptotic and becomes 

switched to a purely necroptotic pathway following addition of zVAD-fmk.  

Overall, the TSZ experiments in MLKL-modified cells prove that despite 

incomplete knock-out, these cells are still wholly resistant to necroptosis. This is 

important when interpreting the following experiments involving viral infection. 

Here, no overall change in average IC50 was seen between the cells infected with 

either HSV-3D7 or HSV-1716, but an overall trend towards inhibited death was 

seen. This means that cells expressing less MLKL died less than those with full 

expression. It may be that MLKL contributes to overall cell death caused by HSV-

1716, but this is hard to conclude. This would suggest that any such effect is 

independent of MLKL kinase activity, as evidenced from a lack of effect 

following NSA treatment.  
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To further probe the relationship between ICP6-RIPK3 binding and sensitivity to 

necroptosis, HSV-1716 and HSV-3D7-infected HeLa-RIPK3 cells were treated 

additionally with TNF-α and assessed for cell death. Remarkably, in both of the 

lines tested, HSV-3D7 was much more sensitive to additional treatment with 

TNF-α, as evidenced by a greater drop in cell viability than HSV-1716-infected 

cells. This fits perfectly with the notion that disruption of the interaction 

between ICP6 and RIPK3 can fundamentally change the ability of RIPK3 to 

activate and induce necroptotic death. Additional treatment with SMAC mimetic 

gave the same pattern of behaviour but did not seem to amplify any necrotic 

effect. This is hard to compare directly as much lower concentrations of the 

drugs needed to be used when added in combination. Overall, HeLa-RIPK3 cells 

are exceptionally sensitive to the TS drug combination, yet treatment with 

either T alone or TS is enough to induce higher levels of cell death when RIPK3 is 

free to activate. 

This matches with the other data shown in this study that shows HSV-1716 and 

HSV-3D7 to induce similar levels of cell death and necrosis under most 

conditions. It seems clear that presence of uninhibited RIPK3 is not sufficient to 

lead to increased levels of necrosis alone and that additional stimuli are 

required to drive cells down this pathway. It will therefore be interesting to 

explore further the effect of TNF-α treatment on these other necroptotic 

markers.  
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6 Immune system responses to HSV-1716 and 

HSV-3D7 infection 
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6.1 Introduction 

How HSV-1716 and HSV-3D7 interact with the immune system is one of the key 

questions concerning this project. The main benefit of inducing immunogenic 

cell death is the subsequent ability to engage and activate the immune system, 

ideally in a way that is beneficial for cancer clearance. I have shown so far that 

HSV-1716 can induce some form of immunogenic cell death through the increase 

of HMGB1 and ATP release; however, no necrotic signalling appears to be 

present during the course of infection. The mutation present in HSV-3D7 is 

sufficient to reverse the binding of ICP6 to RIPK3, which is expected to increase 

necrotic signalling, but this has not been shown to be the case so far. It may still 

be possible that this change in interaction can lead to changes in cytokine and 

chemokine regulation and release independently of necrosis. This chapter will 

explore both the capability of HSV-1716 to act on the immune system as an 

oncolytic virus and also any further changes to this that may exist due to the 

mutation present in HSV-3D7. 

6.2 Cytokine and chemokine regulation following viral 

infection 

6.2.1 mRNA regulation 

Measuring mRNA levels for various cytokines is a useful method for determining 

regulation of these genes under certain conditions. RNA extracted from 

uninfected TOV21G cells, or those infected with HSV-1716 or HSV-3D7 was 

analysed using the Qiagen RT2 profiler array to assess changes in cytokine and 

chemokine mRNA regulation (Figure 6.1). When comparing HSV-1716 infected 

cells over uninfected, 29 genes were significantly (fold-change ≥2, p<0.05) 

upregulated, and 4 genes were significantly downregulated. The most highly 

upregulated genes were adiponectin (ADIPOQ; log2(14.5)-fold), interferon-γ 

(IFNG; log2(12.9)-fold), interferon gamma-induced protein 10 (CXCL10; 213.2-

fold) and interleukin-17F (IL17F; log2(14.2)-fold). The most significantly 

downregulated gene was TNF Receptor Superfamily Member 11b (TNFRSF11b).  
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Figure 6.1 Effect of HSV-1716 or HSV-3D7 infection on cytokine and chemokine regulation.  TOV21G 
cells were infected with either HSV-1716 or HSV-3D7 at an MOI of 1 for 24 h before suspending cells and 
harvesting cellular RNA. Cellular RNA samples were then analysed using an RTqPCR-based 
cytokine/chemokine array for 80 different genes. (A) mRNA levels in HSV-1716-infected cells are plotted 
against uninfected cells as a volcano plot, with p value and fold-change cut-offs shown as dotted lines (0.05 
and 2 respectively). Selected chemokines are labelled. (B) mRNA levels in HSV-3D7-infected cells are plotted 
against HSV-1716-infected cells as a volcano plot. (C) Fold change values for both HSV-1716 and HSV-3D7-
infected cells over uninfected are plotted against each other and correlated. (D) Selected cytokines that 
showed significant differences in ‘B’ were quantified in individual RTqPCR assays under the same infection 
conditions. Statistical significance determined by two-way ANOVA (Sidak’s multiple comparisons test). n.s, not 
significant; UI, uninfected.  

When comparing differences between cells infected with HSV-1716 or HSV-3D7, 

only 8 genes were shown to be significantly different between the conditions, 

with the majority of these differences being of a much lower magnitude than 

shown in the previous figure, with all being less than 4-fold upregulated and only 

one (IL1β) becoming more than 4-fold downregulated. Despite this, three of 

these genes, CCL2, CXCL2 and IL-1β, were individually analysed by qPCR to 

confirm the difference between the viruses, where it was found that there was 

no significant difference in cytokine expression between HSV-1716 and HSV-3D7 

(p values =0.31, 0.47 and 0.79 respectively). Most interestingly, IL1β expression 

was now 23.8-fold upregulated by both viruses as opposed to 24.4-fold 
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downregulated. These data suggest quite strongly that there is no difference in 

the cytokine and chemokine mRNA profiles of cells infected with either of these 

viruses, and subsequently that ICP6-RIPK3 binding has no effect on cytokine 

regulation. 

A full list of genes included in the array with their relative fold-change for both 

HSV-1716/uninfected and HSV-3D7/HSV-1716 can be found in appendix 8.1, 

Table 8.1 and Table 8.2 respectively.  

6.2.2 Protein regulation 

To further investigate the findings from the previous chapter, it was necessary 

to determine levels of translated protein of chemokines that may be released 

into the supernatant following HSV-1716 and HSV-3D7-mediated death. As with 

previous experiments, the comparisons of interest in this experiment were HSV-

1716 and HSV-3D7 in RIPK3-expressing cells, as well as the effect of RIPK3 itself 

in the HeLa-RIPK3 cell pair. Analysis of chemokines at the protein level is 

important when investigating necrotic death: It is possible that while overall 

levels of death and cytokine transcription remain the same between HSV-1716 

and HSV-3D7, a shift to a more necrotic death modality could have the effect of 

greater cytokine release, due to the nature of death itself.  

To study this, the following infection conditions were used: TOV21G cells 

infected with either HSV-1716 or HSV-3D7 at an MOI 2, HeLa-Lzrs infected with 

HSV-1716 at an MOI 2.5, and HeLa-RIPK3 cells infected with either HSV-1716 or 

HSV-3D7 at an MOI 2.5. In this instance, cells were incubated for 16 h in serum 

free medium before harvesting supernatant for the assay. MTT data was taken in 

parallel to determine cell viability measures (Figure 6.2).  
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Figure 6.2 Cytokine and Chemokine protein release following infection of cell lines with HSV-1716 or 
HSV-3D7. TOV21G, HeLa-Lzrs and HeLa-RIPK3 cells were infected with either HSV-1716 or HSV-3D7 at 
MOI 2 (TOV21G) or 2.5 (HeLa) for 16 h in serum-free medium, before harvesting supernatants and 
determining viability by MTT assay. Supernatants were then analysed on a Raybiotech microchip array for 
cytokine and chemokine expression. ‘A’ shows cell viabilities plotted for each condition. Statistical significance 
was determined by one-way ANOVA (Tukey’s multiple comparisons test). n.s, not significant. ‘B’ shows 
images obtained from chip arrays. ‘C’ shows waterfall graphs plotting fold-change differences compared to 
uninfected cells.  
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Conditions were chosen to induce a level of cell death approximating 50-60% 

viability, which was largely achieved. Comparisons done between conditions to 

be analysed (TOV21G, HSV-1716 vs HSV-3D7; HeLa-Lzrs vs HeLa-RIPK3, HSV-1716; 

HeLa-RIPK3, HSV-1716 vs HSV-3D7) showed no significant differences in cell 

viability, implying that any subsequent difference seen in protein levels would 

likely be due to protein release mechanisms (Figure 6.2a).  

Supernatants were analysed using a Raybiotech chip array system, which 

provided a semi-quantitative means of comparing protein levels of 38 human 

cytokines via fluorescence signal, images of which can be seen in Figure 6.2b. 

Following this, waterfall graphs were produced by plotting fold-change of 

various conditions over uninfected cells (Figure 6.2c). A cut-off of ≥1.5-fold 

increase or ≤0.65-fold decrease was deemed to be significant and measurable as 

per the assay guidelines. This is illustrated in Figure 6.2c as horizontal dotted 

lines. In addition, data points were removed if they were not at least two 

standard deviations above background fluorescence, so as not to create 

artificially high differences in fold-change.  

In TOV21G cells, HSV-1716 infection led to significant decreases in the release of 

16 chemokines but increases in only two – CCL1 and CCL16. In comparison, levels 

of six chemokines, XCL-1, CCL19, CCL24, CCL22, CCL8 and CXCL13 were all 

increased when the same cells were infected with HSV-3D7, with six chemokines 

decreased. The largest increases in chemokine release between when comparing 

HSV-3D7 to HSV-1716 in TOV21G cells were - CCL11 (3.6-fold), CCL17 (3.1-fold), 

CCL8 (3.0-fold) and CCL24 (2.5-fold) (See appendix 8.2, Table 8.1). Overall, 31 

of the 35 chemokines for which comparisons were possible were higher for HSV-

3D7 than for HSV-1716.  

In HeLa-Lzrs cells, six chemokines, CCL3, CX3CL1, CCL24, CCL13, Ckb8-1 and 

CCL17 were found to be highly increased following HSV-1716 infection (Figure 

6.2c). CCL3 was the most increased with a 5.6-fold change over uninfected. Two 

chemokines were decreased (CXCL13 and CCL5). Comparatively, thirteen 

chemokines were increased in HeLa-RIPK3 cells, the highest being CCL3, CXCL11 

and XCL-1. With HSV-3D7 infection of HeLa-RIPK3 cells however, no chemokines 

were increased, seven decreased, with relatively large decreases of the 
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chemokines CCL2 and CXCL10, as well as CXCL6. Twenty-two chemokines were 

relatively higher in HeLa-RIPK3 cells infected with HSV-1716 than in HeLa-Lzrs 

cells. Of these, the largest differences were in CCL7 (2.4-fold) and CXCL11 (2.1-

fold) (See appendix 8.2, Table 8.4). In contrast to the TOV21G data, 28 out of 

the 34 chemokines for which comparisons were lower for HSV-3D7 than for HSV-

1716 (See appendix 8.2, Table 8.5). The most decreased chemokines in this 

comparison were CXCL10 and CXCL6. 

Of the 84 proteins tested in the mRNA screen, 26 of these appeared in the 

protein array, all of which were chemokines. To see if there was any consistency 

between the two arrays, a correlation and linear regression was performed 

between the two data sets for HSV-1716-infected over uninfected TOV21G cells 

(Figure 6.3). Only a moderate positive correlation was seen between the data 

(r=0.565; p=0.0027). Overall fold change was much lower for whole protein in 

the supernatant than for mRNA, with most protein levels decreased in 

comparison to uninfected cells, as mentioned previously. In contrast, 

transcription was upregulated for the vast majority (22/26) of the genes tested. 

 

Figure 6.3 Correlation between whole protein and mRNA expression of selected chemokines in 
TOV21G cells infected with HSV-1716. Data from the RT2 chemokine/cytokine profiler array and the 
Raybiotech chemokine array were combined and correlated. The correlation coefficient of r = 0.565 is 
displayed.  
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6.3 NK cell killing induced by viral infection 

To further touch upon the downstream immune consequences of HSV-1716-

induced cell death, a co-culture assay was set up to assess whether HSV-1716 

infection could promote tumour specific killing by NK-92 cells. NK-92 is an 

immortalised NK cell line isolated from the peripheral blood of a patient 

suffering from non-Hodgkin lymphoma, which has been shown to have activity 

against several malignant cell types in culture (Gong, Maki and Klingemann, 

1994).  

To get a better view of cellular killing over extended time periods, cells were 

analysed using an Incucyte cell imaging device. Cell death was determined by 

counting foci of a green, membrane impermeable, nuclear dye – Sytox. Presence 

of Sytox staining correlates with the number of permeabilised cells within the 

plate as each Sytox positive cell typically appears as a single focus. To avoid 

errant Sytox signalling from NK-92 cells, which are smaller than malignant cells, 

the processing definition was calibrated to exclude foci with a surface area 

below 125 μm2. In addition, green counts were normalised by subtracting any 

counts that were present in an NK-92 only well. Here, total Sytox foci counts per 

well are plotted (Figure 6.4). 
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Figure 6.4 Effect of co-treatment of TOV21G cells with NK92 cells and HSV-1716.  TOV21G cells were 
seeded into a 96-well plate and infected with HSV-1716 at MOI 1 for 8 h before adding NK92 cells at a 10:1 
ratio, before leaving for a further 67 h and analysing uptake of the membrane-impermeable dye, Sytox. (A) 
Data points taken every hour on an Incucyte system from a single experiment are shown here. (B) Area under 
the curve analysis for five separate experiments was performed and the resulting values plotted together. 
Statistical significance was determined by one-way ANOVA (Tukey’s multiple comparisons test). n.s, not 
significant; *, p<0.05; **, p<0.01. 

TOV21G cells were infected with HSV-1716 at MOI 1 and left for 8 h before 

adding in NK-92 cells at an effector: target (NK-92:TOV21G) ratio of 10:1. Cells 

were then placed in the cell imaging system with images and Sytox counts taken 

once an hour until 75 h post-infection. In Figure 6.4a, a single co-culture 

experiment is shown with green count per well plotted over time. Here, it can 

be seen that untreated cells produce essentially no green foci for the duration of 

the experiment, remaining in the region of several hundred counts/well. HSV-

1716 infection leads to a slow increase in green fluorescent count over time, 

ending at ~3000 at 75 h p.i. When NK-92 cells were added to mock-infected cells 

at a ratio of 10:1, some TOV21G cell killing was seen, with green count rising to 

a maximum of ~3000/well at 33 h, before gradually declining to <1000 by 75 h. 
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When NK-92 cells were co-cultured with infected TOV21G cells, green counts 

rise in parallel with the mock-infected 10:1 cells until ~18 h, where the counts 

begin to diverge. From here, levels of death continue to increase in the infected 

co-culture cells until reaching a maximum of 14,000 counts/well at 75 h.  

Similar patterns were observed across multiple experimental repeats. To 

determine whether changes in cell killing were of statistical significance across 

repeats, AUC analysis was performed on each data set, with resulting values 

plotted together (Figure 6.4b). For infected TOV21G cells co-cultured with NK-92 

cells, average AUC was significantly higher than both untreated and infected 

TOV21G cells alone (2.1×105 vs 5.8×103, p = 0.0027, and; 2.1×105 vs 5.9×104, p = 

0.024). However, there was no significant difference between infected and 

uninfected conditions with NK-92 cells present (2.1×105 vs 1×105, p = 0.12), or 

between any other conditions.  

6.4 Discussion 

In this chapter, I have briefly investigated some of the immunomodulatory 

aspects of HSV-1716 infection and touched on some of the roles that RIPK3 may 

play in this area. Analysing both mRNA expression and protein release of an 

array of cytokines and chemokines was important to get the full cell expression 

picture. Necrosis by definition involves permeabilization of the cell membrane 

and release of cellular contents. Change in mRNA expression may not therefore 

change the immunogenicity of cell death as significantly as protein release.  

Genes that were most highly upregulated following HSV-1716 infection of 

TOV21G cells included interferon-γ (IFNG), interferon gamma-induced protein 10 

(CXCL10), interleukin-17F (IL17F), and adiponectin (ADIPOQ). IFNG is a signalling 

protein that has long been known for its anti-viral effects on HSV-1 (Minami et 

al., 2002), as well as both pro and anti-tumorigenic roles in cancer (Zaidi and 

Merlino, 2011). CXCL10 is a protein released by a variety of cells, typically in 

response to IFNG, and has a range of tumour promoting and inhibitory roles, as 

well as roles in cell death and chemotaxis (Liu, Guo and Stiles, 2011). Presence 

of upregulated CXCL10 could therefore indicate an autocrine or paracrine 

signalling effect resulting from release of IFNG. IL17F and ADIPOQ are both 
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proinflammatory cytokines (Chang and Dong, 2009; Luo and Liu, 2016), whose 

roles in cancer are far less studied, with ADIPOQ being more widely known for its 

roles in fat metabolism. It is difficult to suggest with any certainty what the 

roles of these proteins might be within the context of oncolytic viral infection of 

a tumour, however, and much more research is needed. This suggests that 

during the course of infection, HSV-1716 induces a strong cellular immune 

response, probably as a means of combatting infection. 

When comparing HSV-1716 and HSV-3D7 infected cells for their cytokine and 

chemokine expression directly, little change was seen between the viruses. 

When correlated, fold change values for each virus were shown to a coefficient 

of determination value of 0.943, which shows that fold-change values were 

extremely similar between the viruses. When comparing values by volcano plot, 

only 8 out of 84 genes were shown to be significantly changed. Of these, the 

most obvious were CCL2, CXCL2 and IL-1β. CCL2 is a chemokine with roles 

primarily in attracting immune cells such as T cells, dendritic cells and 

monocytes (Carr et al., 1994; Qian et al., 2011); CXCL3 is a cytokine which binds 

CXCR2 and facilitates migration and adhesion of monocytes (Smith et al., 2005); 

IL-1β is a proinflammatory cytokine regulated by the NF-ΚB pathway with 

numerous roles in promoting proliferation as well as apoptosis. IL1β is associated 

with pyroptosis and has been shown to promote tumorigenesis in certain cases 

(Bergsbaken, Fink and Cookson, 2009; Lee et al., 2015). When validated 

individually however, all of these genes were shown to be equally regulated 

between the viruses (Figure 6.1d).  

From this it seems reasonable to confirm that there is no significant change in 

cytokine expression at all between HSV-1716 and HSV-3D7, of the genes tested. 

We can therefore conclude that the binding of RIPK3 to ICP6 does not seem to 

influence cytokine regulation. Links between RIPK3 function and cytokine 

regulation have been shown previously: RIPK3 has been shown to activate the 

NLRP3 inflammasome, independent of kinase activity, following LPS treatment 

(Lawlor et al., 2015). Downstream of RIPK3, MLKL has also been shown to 

activate NLRP3 in conjunction with caspase-8 scaffolding activity (Kang et al., 

2015). One of the major effects of this pathway is an increase in IL-1β expression 
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and release, which is why it is interesting to see that this cytokine remains 

unchanged.  

When chemokine protein release was observed, there were noticeable 

differences to what was seen in the RT2 experiment. Firstly, relatively low 

numbers of chemokines were seen to increase in the supernatant following HSV-

1716 infection compared to the large increase in cytokine/chemokine 

upregulation seen the former experiment in TOV21G cells. It is important to note 

that the genes studied in each experiment were not all the same; but in the 

subset of genes that overlapped between the data sets, there was a moderate 

correlation in fold change over uninfected (Figure 6.3). Overall fold changes 

were much higher for mRNA transcription compared to protein, which is to be 

expected as not all mRNA molecules will eventually become released protein. It 

is interesting that despite the correlation, most proteins were downregulated 

following infection compared to the majority of genes being upregulated. This is 

likely due to the fact that most of these proteins fell below the 0.65-1.5-fold cut 

off for significance in the protein array, and so should be interpreted as not 

having changed. This underscores the importance of not simply relying on mRNA 

regulation as a measure of the effect of a stimulus on cytokine production and 

the immune system.  

CCL1 was the only protein that was significantly increased in the supernatant 

following infection in TOV21G cells and was also highly upregulated in the RT2 

array. CCL1 is a chemokine that has important roles in attracting monocytes, NK 

cells, B cells and dendritic cells by acting via the CCR8 receptor (Miller and 

Krangel, 1992; Roos et al., 1997). This chemokine has been linked to HSV-1 

infection in corneal endothelial cells, but not cancer cells (Miyazaki et al., 

2011). 

A majority of chemokines were higher in HSV-3D7-infected cells than for HSV-

1716, both overall and among those that surpassed the 1.5-fold cut off. This 

provides some evidence that HSV-3D7 may be inducing a more immunogenic cell 

death modality than HSV-1716. Despite lack of any mechanistic evidence, this 

matches with what has been shown in terms of greater AV/ZV staining and ATP 

release following HSV-3D7 infection. Taken together, these results begin to 
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suggest that HSV-3D7 may in fact be causing a more necrotic type of cell death 

alone. The fact that gene regulation of cytokine and chemokine mRNAs appear 

to be identical between the viruses can still fit with this theory; it may be that 

decreased RIPK3 inhibition by ICP6 has no effect on gene regulation, but overall 

change in cell death results in the release of more cellular contents.  

The most pronounced differences between HSV-1716 and HSV-3D7 infected 

TOV21G cells in terms of chemokine release were in CCL11 (3.6-fold), CCL17 

(3.1-fold) and CCL8 (3.0-fold). CCL11 is a selective chemokine which recruits 

eosinophils by binding to the receptor CCR3, among others (Ponath et al., 1996; 

Forssmann et al., 1997). Cell types such as neutrophils and monocytes which 

lack this receptor are not affected, making it quite a specific chemokine. CCL17 

is a T cell chemoattractant, typically expressed in the thymus, which binds to 

CCR4 (Imai et al., 1997). CCL8 is quite a broad spectrum chemokine, known to 

attract mast cells, eosinophils and basophils, as well as monocytes, T cells and 

NK cells by binding to a range of receptors including CCR5, CCR1 and CCR2b 

(Gong et al., 1998; Blaszczyk et al., 2000). It is hard to say with any certainty 

what the downstream effects of such chemokine changes could be; it is known 

that infiltration of CD8+ T cells and NK cells are associated with positive 

outcomes in OC patients (Sato et al., 2005; Wong et al., 2013), so the effects of 

these chemokine changes warrant further investigation.  

A similar increase in number of upregulated chemokines was seen when 

comparing HSV-1716-infected HeLa-Lzrs cells to HeLa-RIPK3 cells. Twenty-two 

out of thirty four chemokines were found at higher levels in the HeLa-RIPK3 cell 

condition. This can similarly be interpreted as an increase in chemokine release 

following overexpression of RIPK3. This fits with the theory that high levels of 

this protein can drive cells down a more active necroptotic pathway – as 

previously evidenced by higher basal HMGB1 release and MLKL phosphorylation, 

as well as greater cell death following HSV-1716 infection. The three most highly 

increased proteins in the HeLa-RIPK3 supernatant were CCL7 (2.4-fold), CXCL11 

(2.1-fold), CCL8 (1.8-fold) and CCL11 (1.8-fold). CCL8 and CCL11 were both 

comparatively upregulated in HSV-3D7-infected TOV21G cells compared to HSV-

1716, which may suggest a similar role for increased RIPK3 activation and 

increased release in certain chemokines. CCL7 was originally identified as a 
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monocyte chemoattractant, but has also been shown to have roles in attracting 

CD8+/CD4+ T cells and NK cells (Allavena et al., 1994; Loetscher et al., 1994; Xu 

et al., 1995). CXCL11 can have multiple effects, mediated by CXCR3 binding; it 

can attract T cells NK cells and dendritic cells, but also promote invasiveness 

and resistance to apoptosis in tumour cells (Burns et al., 2006; Tokunaga et al., 

2018). CCL3 was the most increased chemokine in both HSV-1716-infected HeLa-

Lzrs and HeLa-RIPK3 cells compared to uninfected cells yet was still the most 

decreased protein when comparing HeLa-RIPK3 to HeLa-Lzrs directly (0.55-fold). 

How exactly some chemokines are decreased following RIPK3 overexpression is 

hard to explain. There may be some transcriptional or translational regulation 

that is applied to certain genes, despite an overall increase in release due to 

necrosis.  

Interestingly, there appeared to be an overall decrease in chemokine release 

when comparing HSV-3D7-infected HeLa-RIPK3 cells to HSV-1716. This goes 

against what was seen in TOV21G cells and suggests that the effect of RIPK3 

activation on chemokine release may be more complicated. The most decreased 

proteins were CCL11 (0.35-fold), CXCL10 (0.32-fold) and CXCL6 (0.28-fold). 

CCL11 was one of the most upregulated chemokines in TOV21G cells for both 

viruses, with HSV-3D7 leading to much greater levels, so it is interesting that 

these cells show the complete opposite. CXCL10 was also quite highly increased 

following HSV-3D7 infection of TOV21G cells compared to HSV-1716. 

It should be noted that while great effort was taken to ensure that cell 

viabilities did not differ between conditions, this was not perfect. Maintaining 

uniform levels of death is important when trying to compare changes that might 

be occurring due to the mechanism of cell death taking place. While there were 

no statistically significant differences in cell viability between the conditions 

being compared, slight differences were still noticeable and could still have a 

bearing on the changes in chemokine release observed. In particular, slightly 

reduced death in the HeLa-RIPK3/HSV-3D7 condition compared to HSV-1716 

infected cells, could explain the reduction in chemokine release seen in the HSV-

3D7 condition. If the differences in chemokine release were more marked than 

they are, then slight changes in overall death would have a smaller impact. This 
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needs to be taken into consideration when comparing relatively small fold-

changes in chemokine release.  

To more directly investigate the role of HSV-1716 on the immune system, a co-

culture experiment was set up to assess the capacity of HSV-1716 to affect NK 

cell killing. NK-92 cells are a NK cell line that have shown a strong propensity to 

attack cancer cell lines in vitro (Gong, Maki and Klingemann, 1994). Because 

MTT assays cannot differentiate between the viability of two cell types in one 

plate, cells were treated with a green fluorescent nuclear dye to assess death 

via an image-based approach. This allowed for subtraction of signal from NK 

cells in order to focus on TOV21G cell death alone, as well as a high level of 

temporal information not seen with other experiments in this study.  

Despite a high inter-experiment variability, a statistically significant increase in 

killing was seen when NK-92 cells were co-cultured with HSV-1716-infected cells 

compared to infected cells alone and compared to untreated cells. There was 

also no significant change in killing in the uninfected co-culture condition 

compared to untreated cells. This suggests that while NK cells are not capable of 

causing significant killing TOV21G cells alone, infection with HSV-1716 is 

sufficient to increase cell killing beyond the level of killing that the virus can 

induce alone. However, some level of killing is clearly visible in the NK only 

condition, which varied significantly between experiments – resulting in a lack of 

significant difference between the NK-only and the NK+HSV-1716 conditions. 

Overall, it seems that any benefit to co-treatment with HSV-1716 and NK-92 

cells is merely additive rather than synergistic. Despite this, this is still an 

interesting and significant result suggesting that HSV-1716 is capable of 

influencing NK cell killing 

This underlines the importance of CCL1 as a major upregulated and released 

chemokine following HSV-1716 infection. There may be an underlying mechanism 

between this protein and the ability of HSV-1716 to influence NK cells that 

would be interesting to explore.  

It is of course important to point out the clear differences between the NK-92 

cell line and primary NK cells. The process of transformation that has to occur 
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for a cell type to thrive in vitro could result in important functional differences 

that are not mirrored in vivo. This is, however, an interesting subject to pursue 

further. 
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7 Final Discussion 



210 

 

7.1 Results summary 

This thesis has sought to investigate the complex roles of immunogenic cell 

death during the course of infection with an oncolytic agent, HSV-1716. In 

particular, I have tried to explore how this virus behaves in ovarian cancer cell 

lines while also trying to gain general mechanistic insights. I have studied a 

range of transformed and primary ovarian cancer lines to assess how they 

respond to HSV-1716 infection and to necroptosis in general. In addition, this 

study has led me to build upon novel gene-editing methods and apply them to 

HSV-1716. 

Firstly, I sought to explore the suitability of HSV-1716 as an oncolytic agent for 

ovarian cancer. This involved showing that HSV-1716 is capable of successfully 

infecting, replicating within and killing a large range of ovarian cancer cell lines 

(Figure 3.1-Figure 3.2). This appears to be the largest panel of OC lines shown to 

be infected with HSV-1716. It is important to characterise potential treatments 

such as this is in as broad a range of cell lines as possible to gain the best 

possible idea of how efficacious it might be. I also assessed the susceptibility of 

a range of OC cell lines to necroptosis induction by TSZ and analysed their 

expression of components of the necrosome. Crucially, I showed that despite 

most cell lines expressing all components of the necrosome, only one cell line, 

TOV21G, showed a marked sensitivity to necroptosis.  

Next, I sought to create a range of genetically modified cell lines and viruses in 

order to fully explore the role of ICP6 in HSV-1716-induced cell death. ICP6 has 

been shown by others to play a key role in determining the fate of HSV-1-

infected cells (Guo et al., 2015; Huang, S.-Q. Wu, et al., 2015), but this role has 

never been explored in an oncolytic herpes virus. Several OC lines expressing 

various modified forms of ICP6 were created, including a Δ1–243aa version and 

one containing a tetra-alanine substitution in place of the RHIM (mutRHIM). I 

also adapted my own protocol to use CRISPR/Cas9 gene editing to create a range 

of ICP6-null and ICP6 RHIM-modified strains of HSV-1716, HSV-3B1, -1C5 and -

3D7, respectively. Importantly, I confirmed that overexpression of ICP6 has the 

capacity to block necroptosis in OC lines but not when the RHIM is absent. I also 
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showed that ICP6-null viruses replicate and kill less effectively than HSV-1716, 

but not when only the RHIM is modified. In addition, the RHIM-modified ICP6 of 

HSV-3D7 was not able to bind RIPK3, whereas HSV-1716 could. 

Further exploring the cell death-inducing properties of these viruses, I showed 

that HSV-1716 does induce immunogenic cell death in OC cells via the release of 

HMGB1 and ATP, but not CAL exposure. HMBG1 and ATP release have both been 

associated with IA and necrosis in the past, which gives little clue as to what the 

underlying mechanisms of this might be. Further evidence of an explosive 

necrosis-like morphology was found by EM analysis of infected cells. 

Functionally, HSV-1716 does not respond to caspase-8 inhibition or 

inhibition/knockdown of RIPK1, RIPK3, or MLKL suggesting that neither pure 

apoptosis or necroptosis is the driving force of death. In addition, there was no 

increase in MLKL phosphorylation following infection, showing that necroptosis 

definitely is not responsible for HSV-1716-induced death in OC cells. 

Crucially, none of these measures appeared to change when comparing HSV-1716 

and HSV-3D7-infected cells directly. This strongly suggests that disrupting the 

interaction between ICP6 and RIPK3 does not lead to death proceeding in a more 

necrotic manner.  

An interesting phenomenon was observed when assessing the HeLa-RIPK3 

overexpression model. All evidence presented here seems to suggest that high 

levels of RIPK3 seem to drive cells down a necrotic pathway, even in the absence 

of other stimuli. This can be seen in both higher levels of basal HMGB1 release 

and MLKL phosphorylation (Figure 5.2–Figure 5.3). In addition, these cells are 

more sensitive to HSV-1716-induced death, although this does not seem to 

increase the level of necroptotic signalling. Again, no difference between any 

stimuli was seen in these cells when comparing HSV-1716 and HSV-3D7 infection 

directly. This seems to suggest that even when levels of RIPK3 are exceptionally 

high, HSV cannot promote any additional necroptosis beyond what is already 

being induced by RIPK3 alone – this is even true when no ICP6-mediated 

blockade of RIPK3 is present. 
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To test this further, HeLa-RIPK3 cells were infected with HSV-1716 or HSV-3D7 in 

addition to the further death stimuli, TNF-α and SMAC mimetic. Here it was 

shown that HSV-3D7-infected cells were far more sensitive to these additional 

stimuli than HSV-1716-infected cells. This fits with the idea that release of the 

ICP6-RIPK3 blockade, can open cells up to further necroptotic stimuli.  

A large amount of information was gathered about the cytokine and chemokine 

regulation and release profiles of cell lines infected with HSV-1716 and HSV-3D7. 

A moderate correlation was seen between released protein and mRNA 

regulation, suggesting that these processes are somewhat linked. Importantly, 

only one chemokine was shown to be significantly raised in the supernatant, yet 

also highly upregulated at the transcriptional level – CCL1. No difference in 

cytokine regulation was seen when comparing HSV-3D7 to HSV-1716, which fits 

with the hypothesis that further stimulation is required to promote necroptosis. 

A difference was seen between the viruses in released protein, which taken 

together with increased ATP release and AV/ZV staining, may still suggest that 

some higher level of necrosis is present in HSV-3D7-infected cells, even without 

extra stimulus. Interestingly, NK-92 cells appeared to directly increase HSV-

1716-mediated killing in TOV21G cells, providing evidence of a downstream 

immunostimulatory consequence of HSV-1716 killing that will need to be 

explored further. 

7.2 Future directions 

Having shown that TNF-α can increase the cell death induced by HSV-3D7 to a 

larger degree than HSV-1716, it would now be important to follow up this finding 

with further analysis of the necroptotic signalling consequences of this. It is 

likely that this combination will produce some necroptotic signalling – as a result 

it would be interesting to see to what extent this process can be blocked, and 

whether cell death caused by this combination is synergistic. 

In vivo activity of these viruses is not something that has been explored in this 

thesis but will be important in determining the potential clinical benefit of HSV-

1716 in an appropriate OC model. The most widely used transplantable model 

for HGSOC involves the intra-peritoneal injection of the ID8 murine cell line in 
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syngeneic mice (Roby et al., 2000). Recently, these cells have been found to 

lack all of the major genetic mutations that characterise HSGOC, but new 

CRISPR/Cas9-generated variants of these cells have helped to correct for this 

(Walton et al., 2016, 2017). Despite these recent advances, use of murine cell 

lines still poses numerous challenges for OV validation: the most obvious of these 

being the fact that ICP6 has been shown to have precisely opposite roles in 

murine and human cell types (Huang, S.-Q. Wu, et al., 2015). Xenograft models 

based on human HGSOC cell lines have been used, including for the study of OVs 

(Coukos et al., 1999; Fujiwara et al., 2011). These models have limited 

applicability to the study of immune system responses, however, due to the 

requirement for immunocompromised mice to prevent rejection of human cells. 

Although, infected human cells in vivo can still be analysed for cytokine and 

chemokine regulation, which may be a potential future step for the comparison 

of HSV-1716 and HSV-3D7 infection.  

7.3 Translational significance 

OVs are emerging as a potentially useful treatment option in cancer types for 

which clinically beneficial drugs are not available, or in cancer types that 

respond particularly well to immunostimulatory agents. T-VEC was the first OV 

approved for clinical use for unresectable recurrent metastatic melanoma by the 

FDA in October 2015. T-VEC was shown to improve durable response rate in 

patients and has been shown to effectively control local disease, although 

systemic effects are still arguably weak (Andtbacka et al., 2015; Kaufman et al., 

2016). The success of T-VEC demonstrates the future utility that OVs may one 

day have in a range of cancer types; it also demonstrates the transformation 

that many current OV vectors still need to go through before they are able to 

interact with the body in a clinically meaningful way. Finding the right 

modifications to make to viral genomes and arming them with the right 

exogenous genes is a long and iterative process, but one that will be necessary 

to create a generation of OVs that can interact with cancer cells and the 

surrounding TME in the most optimal way.  
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Two elements of this project highlight ways in which this process may become 

more effective and streamlined in the future: firstly, I have shown that 

CRISPR/Cas9 gene editing can be a rapid and useful way to apply precise 

modifications to the genome of a large virus such as HSV-1. This process is far 

less time consuming and laborious than the current BAC cloning method and 

could become the new standard for large viral genome modification. Second, I 

have shown that even small modifications in the form of a single amino acid 

deletion can have significant impact on the way a virus responds to various 

stimuli. As well as highlighting the multifunctional nature of viral proteins, this 

could potentially open the door to an era where each region of a viral gene can 

be probed and modified in a way that optimises the virus for specific cancer 

killing and selective immune system engagement.  

Demonstration that additional TNF-α treatment can increase cell death 

preferentially in HSV-3D7-infected cells compared to HSV-1716 highlights one 

way in which further improvement upon this virus may be possible. As the name 

suggests, TNF-α was originally identified as a serum endotoxin that could cause 

necrosis of tumour cells (Carswell et al., 1975). While systemic toxicity of this 

protein has limited its use in cancer therapy, there has been interest in 

developing TNF-α-expressing OVs in order to contain expression to the desired 

therapeutic region (Han et al., 2007; Hirvinen et al., 2015). Using HSV-3D7 as a 

template may therefore amplify any beneficial effects that this combination 

might have and is one potential future avenue of interest. 

7.4 Final remarks 

The question of how OVs kill cancer cells and lead to robust anti-tumour immune 

responses continues to be of great importance. Here, I have shown that one such 

virus, HSV-1716 displays several markers of ICD, yet does not activate 

necroptosis. Importantly, the mechanisms that OVs employ to induce certain 

types of death appear to be modifiable. Much work still needs to be done to 

refine our definitions of cell death and identify which modes of death have the 

best anti-tumour immunogenic consequences. Only then can we start to build 

the next generation of OV therapeutics that are able to walk the immunological 
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tightrope – balancing the best possible mix of immune system activation and 

repression to give the best possible clinical outcomes.   
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8 Appendices 
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8.1 Fold-change values for RT2 chemokine/cytokine array 

Table 8.1: Log2 fold-change values for HSV-1716 compared to uninfected cells in TOV21G. 

Gene Log2 
Fold-
Change 

p 
Value 

Gene Log2 
Fold-
Change 

p 
Value 

Gene Log2 
Fold-
Change 

p 
Value 

ADIPOQ 14.49 4.2 CXCL10 13.22 3.27 IL23A 5.38 2.02 

BMP2 5.46 2.77 CXCL11 9.8 1.25 IL24 10.43 0.75 

BMP4 -0.83 1.62 CXCL12 11.1 2.14 IL27 3.02 0.65 

BMP6 8.68 1.12 CXCL13 10.25 1.76 IL3 12.91 0.72 

BMP7 6.72 0.67 CXCL16 0.29 0.43 IL4 5.76 0.47 

C5 -1.65 0.19 CXCL2 -1.56 0.79 IL5 9.37 1.5 

CCL1 11.32 2.43 CXCL5 -0.79 0.53 IL6 -0.74 0.84 

CCL11 4.7 0.97 CXCL9 7.83 1.33 IL7 5.55 0.8 

CCL13 9.6 0.41 FASLG 14.4 0.36 CXCL8 -0.42 0.34 

CCL17 10.04 0.74 GPI 1.85 4.34 IL9 8.47 0.51 

CCL18 11.97 2.44 IFNA2 13.25 0.51 LIF -3.29 0.52 

CCL19 5.24 0.9 IFNG 12.89 2.04 LTA 7.97 1.48 

CCL2 0.31 0.09 IL10 11.66 1.31 LTB 2.19 0.93 

CCL20 6.96 2.85 IL11 4.55 2.03 MIF -1.64 1.48 

CCL21 4.32 0.42 IL12A -0.31 0.22 MSTN 8.72 2.69 

CCL22 10.63 1.13 IL12B 10.79 0.94 NODAL 3.46 0.94 

CCL24 8.56 0.48 IL13 7.68 2.18 OSM 3.41 0.68 

CCL3 7.69 0.46 IL15 -1.38 0.86 PPBP 4.69 1.39 

CCL5 5.88 0.75 IL16 5.31 0.67 SPP1 -1.99 3.13 

CCL7 9.06 0.9 IL17A 8.62 0.46 TGFB2 4.48 1.72 

CCL8 8.38 2.91 IL17F 14.2 2.3 THPO 5.19 2.51 

CD40LG 8.48 2.75 IL18 -1.54 3.04 TNF 2.11 2.79 

CNTF 0.13 0.06 IL1A -0.44 1 TNFRSF11B -4.19 2.79 

CSF1 2.89 0.47 IL1B 4.69 1.2 TNFSF10 8.18 1.1 

CSF2 8.37 1.05 IL1RN 8.78 0.79 TNFSF11 8.38 2.1 

CSF3 9.47 1.94 IL2 8.56 0.52 TNFSF13B 1.21 0.7 

CX3CL1 4.44 4.37 IL21 7.04 2.81 VEGFA 2.94 3.91 

CXCL1 -1.09 0.88 IL22 8.27 1.89 XCL1 10.28 0.67 

 

 



218 

 

Table 8.2: Log2 fold-change values for HSV-1716 infection compared to HSV-3D7 in TOV21G cells. 

Gene 
Log2 
Fold-
Change 

Log2 p 
Value 

Gene 
Log2 
Fold-
Change 

Log2 p 
Value 

Gene 
Log2 
Fold-
Change 

p 
Value 

ADIPOQ 1.21 2.35 CXCL10 0.71 2.15 IL23A -0.36 0.22 

BMP2 0.2 0.37 CXCL11 -2.03 0.26 IL24 -2.83 0.7 

BMP4 1.21 1.47 CXCL12 0.97 1.13 IL27 -3.46 0.77 

BMP6 0.07 0.05 CXCL13 0.79 0.96 IL3 -3.13 0.7 

BMP7 -5.12 0.82 CXCL16 -1 0.19 IL4 1.43 0.62 

C5 1.1 0.18 CXCL2 1.36 3.27 IL5 -2.17 0.17 

CCL1 -2.25 1.14 CXCL5 0.2 0.24 IL6 0.54 1.14 

CCL11 0.56 0.5 CXCL9 -1.06 0.04 IL7 -0.9 0.33 

CCL13 -4.37 0.52 FASLG -5.77 0.45 CXCL8 0.14 0.04 

CCL17 -2.02 0.05 GPI 0.15 1.01 IL9 -1.85 0.49 

CCL18 -0.87 0.3 IFNA2 -2.64 0.3 LIF 0.76 0.23 

CCL19 -2.92 0.89 IFNG 1.12 1.55 LTA 1.19 0.97 

CCL2 -1.62 2.43 IL10 -1.27 0.78 LTB -0.12 0.53 

CCL20 1.25 2.03 IL11 -0.68 0.34 MIF 0.57 4.08 

CCL21 -0.56 0.13 IL12A -0.29 0.17 MSTN 0.1 0.08 

CCL22 0.14 0.22 IL12B -4.45 1.22 NODAL -1.7 0.11 

CCL24 -1.94 0.48 IL13 -1.22 0.63 OSM -3.49 0.5 

CCL3 -1.37 0.42 IL15 1.16 0.63 PPBP 0.11 0.15 

CCL5 0.09 0.3 IL16 -1.61 0.04 SPP1 0.81 2.8 

CCL7 -2.37 0.74 IL17A -0.29 0.19 TGFB2 1.01 0.94 

CCL8 -1.06 0.27 IL17F -0.04 0.04 THPO -1.43 0.19 

CD40LG -0.7 0.19 IL18 1.11 3.84 TNF 0.89 2.17 

CNTF 1.9 1.29 IL1A 2.32 1 TNFRSF11B 2.73 0.9 

CSF1 -1.1 0.01 IL1B -4.41 1.45 TNFSF10 -3.27 0.83 

CSF2 -1.67 0.62 IL1RN -1.1 0.14 TNFSF11 -0.73 0.24 

CSF3 1.07 1.52 IL2 -0.31 0.14 TNFSF13B 1.03 0.13 

CX3CL1 0.43 0.81 IL21 0.71 0.43 VEGFA 0.69 2.68 

CXCL1 0.12 0.4 IL22 0.82 0.77 XCL1 -2.23 0.38 

8.2 Fold change values for Raybiotech chemokine array 
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Table 8.3: Relative fold changes in chemokine expression for TOV21G 
cells infected with HSV-1716 or HSV-3D7. 

Chemokine 

TOV21G 

HSV-1716* HSV-3D7* HSV-3D7/HSV-1716 

CCL11 0.394 1.421 3.61 

CCL17 0.334 1.048 3.14 

CCL8 0.537 1.587 2.96 

CCL24 0.829 2.063 2.49 

CCL2 0.346 0.791 2.29 

CXCL5 0.336 0.706 2.10 

CXCL7 0.598 1.208 2.02 

CCL5 0.458 0.921 2.01 

CXCL10 0.69 1.328 1.92 

CXCL16 0.336 0.646 1.92 

GROa 0.449 0.848 1.89 

CCL19 1.134 2.125 1.87 

CXCL6 0.477 0.856 1.79 

CCL4 0.797 1.397 1.75 

CCL22 1.098 1.902 1.73 

CCL18 0.901 1.449 1.61 

CCL20 0.838 1.27 1.52 

CCL7 0.833 1.26 1.51 

CXCL12a 0.765 1.157 1.51 

CXCL1 0.348 0.5 1.44 

CCL23 1.03 1.437 1.40 

CCL3 1.005 1.396 1.39 

CCL27 0.881 1.171 1.33 

CXCL12b 0.77 1.02 1.32 

CXCL9 0.915 1.194 1.30 

CCL13 0.477 0.618 1.30 

CCL26 0.475 0.61 1.28 

CXCL13 1.183 1.513 1.28 

CX3CL1 0.347 0.437 1.26 

CCL28 1.03 1.161 1.13 

CCL25 0.947 1.037 1.10 

CCL16 1.36 1.324 0.97 

Ckb81 0.68 0.651 0.96 

CXCL11 0.642 0.553 0.86 

CCL1 1.729 1.43 0.83 

IL-8 0.897 1.264 1.41 

XCL-1 nil† 2.555 N/A 

CCL15 0.496 nil† N/A 
 

 

 

 

 

 

         

* Fold change values compared to uninfected cells 
† Fluorescence values < 2 SD above background            
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Table 8.4: Relative fold changes in chemokine expression for HeLa 
cells infected with HSV-1716. 

Chemokine 

HeLa - HSV-1716 

HeLa-Lzrs* HeLa-RIPK3* HSV-3D7/HSV-1716 

CCL7 0.809 1.942 2.40 

CXCL11 1.244 2.64 2.12 

CCL8 0.977 1.797 1.84 

CCL11 1.093 1.962 1.80 

CCL19 1.052 1.802 1.71 

CXCL7 0.882 1.347 1.53 

CCL23 0.753 1.124 1.49 

CXCL6 1.16 1.717 1.48 

CXCL12a 0.916 1.333 1.46 

CCL20 1.056 1.51 1.43 

CCL26 1.017 1.428 1.40 

CCL5 0.293 0.387 1.32 

CXCL12b 0.948 1.186 1.25 

CCL25 1.03 1.245 1.21 

CCL27 0.927 1.092 1.18 

CCL16 0.957 1.124 1.17 

CXCL16 0.494 0.573 1.16 

CCL2 0.67 0.777 1.16 

CCL18 1.026 1.186 1.16 

CXCL9 0.915 1.057 1.16 

CCL4 1.447 1.643 1.14 

CCL22 0.514 0.513 1.00 

IL-8 0.99 0.979 0.99 

CXCL13 0.492 0.472 0.96 

CXCL1 1.09 1.034 0.95 

GROa 1.022 0.933 0.91 

CCL17 1.571 1.398 0.89 

CX3CL1 1.809 1.607 0.89 

CCL24 1.739 1.51 0.87 

CXCL5 1.037 0.831 0.80 

CCL13 1.708 1.274 0.75 

CXCL10 1.316 0.943 0.72 

CCL28 1.467 0.955 0.65 

CCL3 5.576 3.082 0.55 

Ckb8-1 1.619 nil† N/A 

XCL-1 nil† 2.035 N/A 

CCL1 nil† 1.598 N/A 

CCL15 nil† nil† N/A 
 

           

* Fold change values compared to uninfected cells 
† Fluorescence values < 2 SD above background            
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Table 8.5: Relative fold changes in chemokine expression for HeLa-
RIPK3 cells infected with HSV-1716 or HSV-3D7. 

Chemokine 

HeLa RIPK3 

HSV-1716* HSV-3D7* HSV-3D7/HSV-1716 

CXCL13 0.472 0.735 1.56 

CCL5 0.387 0.556 1.44 

CCL28 0.955 1.08 1.13 

IL-8 0.979 1.033 1.06 

CCL18 1.186 1.2 1.01 

CXCL16 0.573 0.565 0.99 

CXCL9 1.057 1.041 0.98 

CXCL12b 1.186 1.159 0.98 

CXCL1 1.034 0.977 0.94 

CCL23 1.124 1.049 0.93 

GROa 0.933 0.866 0.93 

CCL27 1.092 1 0.92 

CCL25 1.245 1.111 0.89 

CCL16 1.124 0.997 0.89 

CCL2 0.777 0.671 0.86 

CXCL7 1.347 1.023 0.76 

CX3CL1 1.607 1.201 0.75 

CCL26 1.428 1.02 0.71 

CXCL5 0.831 0.578 0.70 

CXCL12a 1.333 0.92 0.69 

CCL1 1.598 1.101 0.69 

CCL4 1.643 1.096 0.67 

CCL7 1.942 1.288 0.66 

CCL8 1.797 1.122 0.62 

CCL19 1.802 1.067 0.59 

CXCL11 2.64 1.424 0.54 

CCL20 1.51 0.741 0.49 

CCL24 1.51 0.709 0.47 

CCL22 0.513 0.228 0.44 

CCL3 3.082 1.261 0.41 

CCL13 1.274 0.501 0.39 

CCL11 1.962 0.681 0.35 

CXCL10 0.943 0.299 0.32 

CXCL6 1.717 0.474 0.28 

CCL17 1.398 nil† N/A 

XCL-1 2.035 nil† N/A 

CCL15 nil† nil† N/A 

Ckb8-1 nil† nil† N/A 
 

           
* Fold change values compared to uninfected cells 
† Fluorescence values < 2 SD above background 
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