https://theses.gla.ac.uk/

Theses Digitisation:
https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given
PKA phosphorylation and compartmentalisation of cAMP-phosphodiesterases

A thesis submitted to the

FACULTY OF BIOMEDICAL AND LIFE SCIENCES

for the degree of

DOCTOR OF PHILOSOPHY

by

Theresa McSorley

Division of Biochemistry & Molecular Biology
Institute of Biomedical and Life Sciences
University of Glasgow

September 2004
Declaration

I declare that the work described in this thesis has been carried out by myself unless otherwise cited or acknowledged. It is entirely of my own composition and has not, in whole or in part, been submitted for any other degree.

Theresa McSorley

September 2004.
Abstract

cAMP is a ubiquitous second messenger which conveys its cellular effects mainly through the activation of protein kinase A (PKA). Within a cell, activated PKA serves to phosphorylate, and alter the conformational change of a wide variety of proteins. Cyclic-phosphodiesterases (PDEs) play a pivotal role in the regulation of cAMP signalling by determining the breakdown of cAMP to 5'-AMP. It is now well-accepted that cAMP signalling is a compartmentalised response, with PKA being tethered to distinct subcellular regions by A-kinase anchoring proteins (AKAPs). The PDE4 family exclusively hydrolyse cAMP.

I studied the PKA phosphorylation of the two sites within PDE4D3 and found that the phosphorylation of Ser54 (responsible for activation) precedes that of Ser 13. I showed, for the first time, that long form PDE4s from each subfamily can be phosphorylated and consequentially activated by PKA in intact cells. I used a novel approach to appreciate the functional consequences of the compartmentalisation of PDE4 cAMP-phosphodiesterases. To do this, I overexpressed different catalytically inactive long form PDE4s which, I hypothesised, would alter distinct cAMP 'pools' by displacing the cognate endogenous active PDE4s from their anchor sites. By detecting the phosphorylation of the inactive PDE4 by PKA, the catalytically inactive PDE4 itself acted as readout of localised PKA activity. Through this approach, I found that different PDE4 isoforms are capable of controlling distinct pools of cAMP generated by different Gs-coupled receptors. Specifically I showed that the PDE4D3 and PDE4C2 may be held in close proximity to, and play a role in the regulation of discrete sub-populations of PKA under basal levels of cAMP generation.

Through microarray analysis, I studied the effect of altering compartmentalised cAMP signalling on gene expression. This was again done by overexpressing catalytically inactive PDE4s in HEK293 cells. My experiments suggest that specific PDE4 isoforms can selectively influence gene regulation in these cells.
Additionally, I analysed the function of distinct PDEs within cardiac myocytes. I showed that manipulation of cAMP levels with PDE inhibitors alone, or with PDE inhibitors and selected GPCR activation, selectively altered ability of phospholamban (PLB) and ERK1/2 to be regulated by PKA, suggesting that PLB and ERK1/2 can be differentially controlled by specific PDE families.
Acknowledgements

I would like to thank my supervisor Prof. M. Houslay for allowing me to carry out this project in his laboratory, for guidance and support. A big thank you to Dr. George Baillie firstly for his guidance, and secondly for being a constant source of amusement and banter.

A thank you to Dr. Elaine Hill, Dr. Angela McCahill, Dr. Elaine Huston, Carolyne MacKenzie, Dr. Martin Lynch and Irene Gall for all their advice and putting up with my constant questions! Thank you to the rest of the Gardiner for all their help.

I would also like to mention and thank my supervisor at Novartis, Dr. Gino van Hecke for his support and providing me the opportunity to carry out this project. Also, thanks to Rachael Barber at Novartis for all her help.

Of course, I would also like to give very special thanks my fellow PhD student and good friend Jenni Millen. You helped me more than you know. Without you it would not have been as fun! I miss our evening tea and Double Decker/Boost ritual! Finally, I would like to thank my mum, dad and Heather for providing me with their support and encouragement. I couldn't have managed without!
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>Table of contents</td>
<td>v</td>
</tr>
<tr>
<td>List of figures</td>
<td>ix</td>
</tr>
<tr>
<td>List of tables</td>
<td>x</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xii</td>
</tr>
</tbody>
</table>

Chapter 1

1.1. Cyclic signalling
- G-proteins and G-protein coupled receptors: ... 2
- Adenylyl cyclases: ... 3
- Regulation of adenylyl cyclases: 3
- Localisation of adenylyl cyclases in caveolae and rafts: 4
- Effectors of cAMP: ... 4
- Protein kinase A (PKA): .. 5
- ERK and cAMP signalling interaction: .. 6
- Epac: .. 7
- Cyclic nucleotide-gated channels: .. 7

1.2. The phosphodiesterase superfamily
- The PDE1 family of phosphodiesterases: ... 8
- The PDE2 family of phosphodiesterases: ... 9
- The PDE3 family of phosphodiesterases: ... 9
- Regulation and targeting of the PDE3 family: .. 9
- The PDE4 family of phosphodiesterases: ... 10
- The PDE5 family of phosphodiesterases: ... 10
- The PDE6 family of phosphodiesterases: ... 11
- The PDE7 family of phosphodiesterases: ... 11
- The PDE8 family of phosphodiesterases: ... 12
- The PDE9 family of phosphodiesterases: ... 12
- The PDE10 family of phosphodiesterases: ... 13
- The PDE11 family of phosphodiesterases: ... 13

1.3. PDE4 cAMP-specific phosphodiesterases
- PDE4 isoforms: .. 13
- Catalytic domain: ... 14
- Regulation of PDE4 activity by PKA: ... 15
- Regulation of PDE4 by ERK: .. 17
- Activation of PDE4s by negatively charged phospholipids: 17
- Signalling complexes and PDE4s: .. 18
- PDE4 and AKAPs: .. 18
- ARgs: ... 19
- RACK1: ... 20
- Src, Lyn and Fyn: ... 20
- XAP2: ... 21
- TAPAS-I: ... 21
- Myomegalin: ... 22
1.4. cAMP signalling and PKA phosphorylation of proteins regulating cardiac function

1.4.1. Interaction of cAMP and Ca2+ signalling within the myocardium

1.4.2. Compartmentalisation of cAMP signalling within cardiac myocytes

1.5. Assessment of intracellular cAMP gradients

1.6. Objectives and aims

Chapter 2 Materials and methods

2.1. Mammalian cell culture

2.1.1. HEK-293 cell line

2.1.2. COS-1 cell line

2.1.3. Neonatal rat cardiac myocytes

2.2. Transfection of cells

2.2.1.1. COSl cell line

2.2.1.4. PolyFect© transfection of HEK-293 cells

2.2.1.5. DEAE-Dextran transfection of COS-1 cells

2.3. Protein analysis

2.3.1. Whole cell lysates

2.3.1.1. Protein quantification (Bradford assay)

2.3.2. Gel electrophoresis and Western blotting

2.3.2.1. Sample preparation

2.3.2.2. SDS Page gels

2.3.2.3. Nu-PageTM gel system

2.3.2.4. Protein transfer

2.3.3. Immunoprecipitation

2.3.3.1. Protein transfer

2.3.3.2. SDS Page gels

2.3.3.3. Binding of antibodies and target protein to beads

2.3.3.4. Protein transfer

2.3.4. Immunoblots

2.3.4.1. Protein transfer

2.3.4.2. SDS Page gels

2.3.4.3. Binding of antibodies and target protein to beads

2.4. Assays

2.4.1. Phosphodiesterase activity assay

2.4.1.1. Activation of enzymes

2.4.1.2. Assay preparation

2.4.1.3. Determination of PDE3 and PDE4 activity

2.4.2. cAMP assay

2.4.2.1. Extraction of cAMP and neutralization

2.4.2.2. Neutralisation of samples

2.4.2.3. Assay procedure

2.4.2.4. In vitro PKA phosphorylation assay

2.5. Laser Scanning Confocal Microscopy (LSCM)

2.5.1. Preparation of slides

2.5.1.1. Visualisation of cells

2.6. Molecular Biology techniques

2.6.1. Large scale production of plasmid DNA

2.6.2. DNA isolation

2.6.3. Quantification of DNA and RNA

2.6.4. Analysis of plasmid DNA

2.6.4.1. DNA restriction digest

2.6.4.2. Agarose gel analysis of DNA

2.6.5. Reverse transcription PCR

2.6.5.1. Denaturation
Chapter 3

3.1. Introduction

3.1.1. Protein kinase A (PKA)

3.1.2. PKA phosphorylation of PDE4D3

Results

3.2. Analysis of PKA phosphorylation of PDE4D3 and selected various other PDE4 long isoforms

3.2.1. The detection of PKA phosphorylated Ser 54 and Ser 13 sites by novel polyclonal antisera

3.2.2. PKA phosphorylation and activation of PDE4D3

3.2.3. Analysis of the putative PKA phosphorylation of PDE4 long isoforms

3.2.3.1. PKA can phosphorylate long isoforms from PDE4A, B, C and D sub-families

3.2.3.2. PKA phosphorylation of the novel rat PDE4 long isoform PDE4B4

3.2.4. Analysis of endogenous PDE4D3 and PDE4D5 in COS1 cells

3.3. Discussion

Chapter 4

4.1. Introduction

Results

4.2. A study of the differential susceptibility of dominant/catalytically inactive PDE4 isoforms to PKA phosphorylation in COS1 cells

4.2.1. The mRNA PDE4 profile of COS1 cells

4.2.2. The generation of catalytically inactive/dominant negative PDE4s

4.2.3. Phosphorylation status of catalytically inactive/dominant negative PDE4 isoforms

4.2.3.1. Phosphorylation status of inactive PDE4D3 and PDE4C2 following endogenous PDE4 and PDE3 inhibition

4.2.3.2. Action of GPCR stimulation by isoproterenol and PGE2 on the phosphorylation status of catalytically inactive/dominant negative PDE4 isoforms

4.2.3.3. cAMP levels following isoproterenol or PGE2 treatment in cells over expressing the inactive PDE4s

4.2.4. Quantification of expression levels of catalytically inactive/dominant negative PDE4A4 and PDE4D3

4.2.5. Pharmacological analysis to determine whether it is RI or RII PKA isoform that phosphorylates catalytically inactive PDE4C2 and assessment of AKAP involvement

4.3. Discussion

Chapter 5

Analysis of gene expression following overexpression of catalytically inactive PDE4 isoforms

5.1. Introduction

5.1.1. DNA microarray overview
Results

5.2. PDE4 mRNA expression profile of HEK293 cells
5.2.1 Overexpression of catalytically inactive PDE4s and microarray analysis of gene expression
 5.2.1.1. Changes in gene expression unique to the overexpression of catalytically inactive PDE4A4
 5.2.1.2. Changes in gene expression unique to the overexpression of catalytically inactive PDE4B2
 5.2.1.3. Changes in gene expression unique to the overexpression of catalytically inactive PDE4D3
 5.2.1.4. Changes in gene expression unique to the overexpression of catalytically inactive PDE4D5
 5.2.1.5. Common changes in levels of gene expression following overexpression of the catalytically inactive PDE4s

5.6. Discussion

Chapter 6

Compartmentalisation of cAMP phosphodiesterases in rat neonatal cardiac myocytes

6.1 Introduction

Results

6.1.1. cAMP phosphodiesterase activity in rat neonatal cardiac myocytes
 6.1.1.1. Selective PDE inhibition and phosphorylation of phospholamban and ERK1/2
 6.1.2. Time dependent changes in phosphorylation of ERK1/2 and phospholamban in response to selective β2 and β1 adrenergic receptor activation, adenosine activation and EP receptor activation

6.1.3. Global cAMP levels following selective GPCR activation
 6.1.4. Differential effects of selective PDE inhibition Gα-coupled agonist stimulation upon ERK1/2 and phospholamban phosphorylation status

6.2. Discussion

Chapter 7

General discussion and future directions

Appendix

References

Publications
List of figures

Chapter 1

Figure 1.1. General schematic of initiation of cAMP signalling by G-protein coupled receptor activation .. 26
Figure 1.2. General schematic of PKA activation and AKAP interaction and function ... 27
Figure 1.3. The domains of Epac1 and Epac2 ... 28
Figure 1.4. Schematic of PDE4 enzyme family ... 32
Figure 1.5. Regulation of PDE4 long forms by ERK2 .. 33
Figure 1.6. Crosstalk between cAMP and ERK signalling pathways ... 34
Figure 1.7. Compartmentalisation of PDE4s .. 35
Figure 1.8. The role of recruitment of PDE4 by β-Arrestin in the regulation of the switching of Gr-Gi 36
Figure 1.9. The interaction of cAMP and Ca²⁺ pathways in cardiac myocytes following β-agonist stimulation .. 37
Figure 1.10. An illustration of the location of AKAPs identified in cardiac myocytes .. 38
Figure 1.11. Schematic of a cAMP probe ... 39

Chapter 3

Figure 3.1. A schematic of long form PDE4D3 ... 72
Figure 3.2. Sequence alignment of selected long PDE4 isoforms from each PDE4 subfamily 73
Figure 3.3. Detection of PKA phosphorylated PDE4D3 ... 75
Figure 3.4. Determination of the time dependent mobility shift of PDE4D3 using the PS13-4D and PS4-UCR1 antisera .. 76
Figure 3.5. PDE4D3 activity in response to IBMX/forskolin challenge .. 77
Figure 3.6a. PKA phosphorylation of longform PDE4s .. 78
Figure 3.6b. PKA phosphorylation of longform PDE4s .. 79
Figure 3.7. PKA phosphorylation of the rat longform PDE4B4 ... 80
Figure 3.8. Analysis of the PKA phosphorylation of endogenously expressed PDE4D3 and PDE4D5 81

Chapter 4

Figure 4.1. mRNA PDE4 expression profile of COS1 cells .. 99
Figure 4.2. Schematic structure of the PDE4B2 core catalytic unit illustrating metal ion environment .. 100
Figure 4.3. Comparison of PDE activities of wild type and dominant negative/catalytically inactive PDE4s .. 101
Figure 4.4. cAMP concentration per 10⁶ cells following dominant negative overexpression in COS1 cells ... 102
Figure 4.5a. PKA phosphorylation of dominant negative/catalytically inactive PDE4 longforms at basal cAMP levels .. 103
Figure 4.5b. PKA phosphorylation of dominant negative/catalytically inactive PDE4 longforms at elevated levels of cAMP induced by forskolin .. 104
Figure 4.5c. PKA phosphorylation of dominant negative/catalytically inactive PDE4 longforms at near maximal cAMP levels .. 105
Figure 4.6. Differential PKA phosphorylation of dominant negative PDE4D3 and PDE4C2 following PDE4 or PDE3 inhibition .. 106
Figure 4.7a. PKA phosphorylation of dominant negative PDE4s in response to different Gs coupled agonists ...107
Figure 4.7b. Quantification of the level of PKA phosphorylation of catalytically inactive/dominant negative PDE4s in response to different Gs coupled agonists ... 108
Figure 4.7c. Comparison of cAMP levels following Gs coupled receptor activation in COS1 cells overexpressing the indicated catalytically inactive/dominant negative PDE4s ...109
Figure 4.8a. Quantification of expression levels of catalytically inactive/dominant negative PDE4D3 and PDE4A4 vectors transiently transfected into COS1 cells ...110
Figure 4.8b. Quantification of expression levels of catalytically inactive/dominant negative PDE4D3 and PDE4A4 vectors transiently transfected into COS1 cells ...111
Figure 4.9. Endogenous expression of protein kinase A regulatory subunits in COS1 cells112
Figure 4.10. Assessment of AKAP involvement and the identification of the PKA subtype responsible for the phosphorylation of catalytically inactive PDE4C2 at basal cAMP levels ...113
Figure 4.11 Pharmacological analysis and identification of the PKA subtype responsible for the PKA phosphorylation of PDE4C2 at basal cAMP levels ..115

Chapter 5

Figure 5.1. The PDE mRNA expression profile of HEK293 cells ...130

Chapter 6

Figure 6.1. cAMP PDE activity in rat neonatal cardiac myocytes ...159
Figure 6.2. Effect of selective PDE inhibition on ERK and phospholamban phosphorylation160
Figure 6.3a Determination of ERK and phospholamban phosphorylation following β1 and β2 agonist challenge ...161
Figure 6.3b. Determination of total PDE activity, PDE4 and PDE3 following β1 agonist challenge ...160
Figure 6.4a. Determination of ERK and phospholamban phosphorylation following adenosine A2a receptor or EP receptor activation ...161
Figure 6.4b. Determination of total PDE activity, PDE4 and PDE3 following adenosine A2a receptor or EP receptor activation ...161
Figure 6.5. Analysis of cAMP levels following different Gs coupled receptor activation163
Figure 6.6a. ERK and phospholamban phosphorylation following selective PDE inhibition and adenosine A2a receptor or EP receptor activation ...164
Figure 6.6b. ERK and phospholamban phosphorylation following selective PDE inhibition and following β1 and β2 adrenergic receptor activation ...165

List of tables

Chapter 1

Table 1.1. PDE families and their regulatory domains ...29
Table 1.2. Second-generation isozyme inhibitors ...30
Table 1.3. PDE4 isoforms ..31
Table 5.1. Changes in levels of mRNA levels following overexpression of catalytically inactive PDE4A4. .. 131
Table 5.2. Changes in levels of mRNA levels following overexpression of catalytically inactive PDE4B2. ... 133
Table 5.3. Changes in levels of mRNA levels following overexpression of catalytically inactive PDE4D3. ... 134
Table 5.4. Changes in levels of mRNA levels following overexpression of catalytically inactive PDE4D5. .. 135
Table 5.5. Common changes in mRNA levels following overexpression of catalytically inactive PDE4 isoforms .. 136
Table 5.6 Changes in levels of mRNA levels following treatment of HEK293 cells with rolipram (10μM). .. 137
Table 5.7. Changes in levels of mRNA levels following treatment of HEK293 cell with ariflo (10μM). .. 138
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>adenylyl cyclase</td>
</tr>
<tr>
<td>AKAP</td>
<td>A kinase anchoring protein</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine trisphosphate</td>
</tr>
<tr>
<td>Ca²⁺/CaM</td>
<td>calcium/calmodulin</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic 3'5' adenosine monophosphate</td>
</tr>
<tr>
<td>CRE</td>
<td>cAMP response element</td>
</tr>
<tr>
<td>CREB</td>
<td>cAMP response element binding protein</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>cGMP</td>
<td>cyclic guanosine monophosphate</td>
</tr>
<tr>
<td>DEAE</td>
<td>diethyl aminoethyl</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's modified Eagle's Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulphoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxyribonucleotide trisphosphate</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>ECL</td>
<td>Enhanced chemiluminescence</td>
</tr>
<tr>
<td>EDTA</td>
<td>Diaminoethane-tetra-acetic acid</td>
</tr>
<tr>
<td>EGF</td>
<td>epidermal growth factor</td>
</tr>
<tr>
<td>EGTA</td>
<td>Ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetra-acetic acid</td>
</tr>
<tr>
<td>Epac</td>
<td>Exchange protein directly activated by cAMP</td>
</tr>
<tr>
<td>BRK</td>
<td>Extracellular signal-regulated kinase</td>
</tr>
<tr>
<td>FCS</td>
<td>foetal calf serum</td>
</tr>
<tr>
<td>GEF</td>
<td>Guanine nucleotide exchange factor</td>
</tr>
<tr>
<td>GIRK1</td>
<td>G-protein coupled inwardly rectifying potassium channel</td>
</tr>
<tr>
<td>GPCR</td>
<td>G-protein coupled receptor</td>
</tr>
<tr>
<td>G-protein</td>
<td>guanine nucleotide binding regulatory protein</td>
</tr>
</tbody>
</table>
GRK G-protein receptor specific kinase
GST Glutathione S-transferase
GTP guanosine triphosphate
h hour
HEK Human embryo kidney
HEPES N-2-Hydroxyethylpiperazine-N’-2-ethanesulfonic acid
IBMX isobutylmethylxanthine
IC_{50} Concentration of inhibitor required to inhibit half the specific activity
K_{m} Michealis-Menten constant
kb kilobase
kDa kiloDalton
l litre
LB Luria-Bertoni
LR linker region
M molar
mg milligram
MAP kinase mitogen-activated protein kinase
MEK MAPK kinase
min minute
mRNA messenger RNA
PA phosphatidic acid
PAGE Polyacrylamide gel electrophoresis
PBS phosphate buffered saline
PCR polymerase chain reaction
PDE phosphodiesterase
PGE2 prostaglandin E2
PKA protein kinase A
PKC protein kinase C
PLB phospholamban
RACK receptor for activated C kinase
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>RT</td>
<td>reverse transcription</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>sec</td>
<td>second</td>
</tr>
<tr>
<td>SH2 domain</td>
<td>Src homology 2 domain</td>
</tr>
<tr>
<td>SH3 domain</td>
<td>Src homology 3 domain</td>
</tr>
<tr>
<td>TAE</td>
<td>tris/acetate/EDTA</td>
</tr>
<tr>
<td>TBS</td>
<td>tris buffered saline</td>
</tr>
<tr>
<td>TE</td>
<td>tris/EDTA</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N',N'-Tetramethyl-ethylenediamine</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin-layer cellulose</td>
</tr>
<tr>
<td>Ub</td>
<td>Ubiquitin</td>
</tr>
<tr>
<td>UCR</td>
<td>upstream conserved region</td>
</tr>
<tr>
<td>VSV</td>
<td>vesicular stomatitis virus</td>
</tr>
<tr>
<td>VSMC</td>
<td>vascular smooth muscle cell</td>
</tr>
</tbody>
</table>
General introduction

Cells respond to extracellular stimulatory molecules, such as hormones and neurotransmitters, through the activation of signal transduction cascades. Such stimulatory molecules, also known as first messengers, usually initiate the signal cascade at the level of the plasma membrane via a transmembrane receptor protein. Signal transduction involves the extracellular signal being propagated to its target effector via a defined signal transduction pathway. However, studies over the last few decades have revealed that no one signal transduction pathway acts in isolation, in fact a great deal of complexity exists through the integration of different signalling pathways. The range of possible networks of 'cross-talk', and the orchestration of compartmentalised signalling events within specialised cells, is only now becoming apparent. I will give a general overview of the cyclic AMP signalling system, focusing on the cyclic AMP-specific phosphodiesterases and finally discuss the importance of cAMP within the cardiovascular system.

1.1 cAMP signalling

The nucleotide cyclic adenosine 3', 5'-monophosphate (cAMP) was discovered in 1958 (Sutherland & Rall, 1958) and is regarded as the classical second messenger molecule. Cyclic AMP has been implicated in the mediation of many cellular processes such as certain metabolic events, muscle contraction, cytokine-inflammatory events, differentiation and growth (Houslay and Milligan, 1997). Various components are involved in its synthesis, detection and degradation (Houslay and Milligan, 1997). Over the decades, studies have defined some of the molecular machinery involved in the basic cAMP signalling system; many transmembrane receptors, heterotrimeric G-proteins, over nine different adenylyl cyclase (AC) species, multiple protein kinases/phosphatases and, to date, eight phosphodiesterase (PDE) families. All of the above enzymes are involved in the relay of the signal from the plasma membrane, conversion of the signal to the second messenger cAMP and the tailoring of the cellular response and also in signal termination through degradation of cAMP to 5' AMP (Houslay and Milligan 1997;
Houslay, 1998; Antoni, 2000). A cell can exploit this choice of multiple forms of cAMP signalling machinery to achieve a specific response to a variety of different ligands, or achieve different responses to the same ligand.

1.1.1 G-proteins and G-protein coupled receptors

G-protein coupled receptors (GPCRs) consist of a family of over 1000 receptors which mediate biological responses of a wide array of different stimuli. These receptors are often referred to as heptahelical or serpentine receptors, as the best-known family of GPCRs contains a conserved structure of seven transmembrane helices. Activation of GPCRs causes a change in the transmembrane α-helices, which unmasks G protein binding sites (Bourne, et al., 1997). The interaction of the GPCR-G-protein promotes the release of guanosine diphosphate (GDP) bound to the G protein α sub-unit and exchange for guanosine triphosphate (GTP). Gα and Gβγ sub-units of the G-proteins then dissociate and thus serve to initiate intracellular signalling responses by acting on a variety of different effector molecules (Bourne, et al., 1997).

To date, 20 different Gα sub-units have been identified, and, according to sequence similarity, can be divided into four families: Gαs, Gαi, Gαq and Gα12. The Gα sub-units can regulate the generation of several different second messengers (Bourne, et al., 1997; Wilkie, et al., 1992). Members of the Gαq family, for example, can control the regulation of phospholipase C-β (PLC-β) which hydrolyses phosphatidylinositol 4,5-bisphosphate to two second messengers, namely inositol 1,4,5-triphosphate (IP_3) and diacylglycerol (DAG) (Rhee & Bae, 1997). The generation of IP_3 and DAG can lead to an increase in free intracellular Ca^{2+}, and activation of a number of protein kinases including protein kinase C (PKC).

Members of the Gαs and Gαi family can regulate the adenylyl cyclases (AC) family of enzymes, and thereby control cAMP levels. Members of the Gαs activate ACs (figure 1.1), while members of the Gαi inhibit ACs. So far, nine different ACs have been cloned and each seems to be distinctly regulated by Gαs, Gαi βγ−sub-units, [Ca^{2+}] and PKCs (Sunahara,
et al., 1996). Thus, the impact of cAMP levels on the cell following stimulation of GPCRs will depend on which forms of AC are expressed in the cell.

However, cAMP signalling specificity may also be achieved at the level of the GPCR itself as it has been shown by various researcher groups that compartmentalisation exists at the level of the plasma membrane and GPCR. For example, in the cardiac myocytes, a different distribution patterns have been seen for the prostanoid receptor EP3, as well as the β1-Ad and β2-Ad receptors within the plasma membrane. This research shows that β2-Ad receptors are enriched in caveolae (defined as membrane invaginations and classed as a subset of lipid rafts) yet β1-Ad and EP3 receptors are excluded (Lasley & Smart, 2001; Xiang et al., 2002).

Additionally, 12 different Gy sub-units and 6 Gβ sub-units have been cloned. When Gβγ dimers are released upon Gα-activation, they can also regulate the activity of a variety of signalling molecules such as phosphatidylinositol kinases, ACs, phospholipases and receptor kinases (Bourne, et al., 1997).

1.1.2 Adenylyl cyclase

1.1.2.1 Regulation of adenylyl cyclases

Over nine different mammalian isoforms of the cAMP producing enzymes, named ACs, have been cloned and identified (Sunahara et al., 1996). The ACs can be broadly subdivided based on their relatedness and their responsiveness to Ca^{2+}. The first AC to be cloned was termed AC1 and was found to be stimulated by Ca^{2+}/calmodulin, with the similarly regulated AC3 and AC8 being cloned quite soon afterwards (Cali et al., 1994). However, the regulation of AC3 by Ca^{2+}/calmodulin remains uncertain, as reports have provided ambiguous results (Cooper, 2003). Certain adenylyl cyclases are inhibited by Ca^{2+} without the requirement of calmodulin, namely AC5 and AC6 (Cooper, et al., 1995). AC2, AC4 and AC7 are insensitive to Ca^{2+}, however they can be stimulated as a result of
the activation of the phosphoinositide signalling pathway and through PKC activation (Cooper, 2003). PKC has also been reported to inhibit the activity of AC6 by phosphorylation of its N-terminus (Lai et al., 1999).

Desensitisation of the AC system can occur at the level AC itself, as it has been shown that PKA can directly phosphorylate and reduce the activity of AC5 (Iwami et al., 1995). Nitric Oxide (NO) has also been reported to be a regulator of AC activity as NO donors inhibit the forskolin simulated activation of AC5/AC6 (Cooper, 2003).

1.1.2.2 Localisation of adenylyl cyclase in caveolae and rafts

The plasma membrane is comprised of ‘microdomains’ of different lipid and protein composition. The microdomains are often termed lipid rafts, with distinct G-protein coupled receptors (GPCRs) and transmembrane proteins including ACs being found enriched in such rafts. Caveolae are described as membrane invaginations and are regarded as a subset of lipid rafts. In cardiac myocytes, AC5/AC6 and β2-adrenergic are enriched in caveolae, and thereby provide the production of distinct pools of cAMP (Rybin et al., 2000; Ostrom et al., 2000).

1.1.3 Effectors of cAMP

1.1.3.1 Protein kinase (PKA)

Protein kinases are a family of enzymes, which can phosphorylate and alter the activation state of a plethora of protein targets (Krebs & Beavo, 1979). Protein phosphorylation is a fundamental mechanism through which cells can respond to, and transduce intracellularly, the effect of extracellular stimuli. One of the most studied and best-understood protein kinases is the cAMP-dependent protein kinase (PKA). First characterised in 1968 (Walsh et al., 1968) it is activated through the cooperative binding of cAMP (figure 1.2). The inactive holoenzyme consists of two regulatory (R) sub-units and two catalytic (C) sub-units. The cooperative binding of two cAMP molecules to each of the R sub-units exerts a conformational change which results in the release of the C
sub-units to phosphorylate their target proteins (figure 1.2) (Johnson et al., 2001). More and more proteins that can be phosphorylated and activated by PKA are still being identified; in fact, the list of PKA substrates has increased dramatically over the last two decades (Shabb, 2001). The consensus sites for PKA phosphorylation have been identified as: Arg-Arg-\(\phi\)-Ser/Thr (\(\phi\); hydrophobic), Arg/Lys-\(\phi\)-Ser/Thr (\(\phi\); hydrophobic) and Arg/Lys-\(\phi\)-Ser/Thr (\(\phi\); hydrophobic) (Kennelly & Krebs, 1991; Shabb, 2001).

It is now known that three different genes encode the catalytic sub-units of PKA: \(C\alpha, C\beta\) and \(C\gamma\), and four genes express the regulatory sub-units: \(R1\alpha, R1\beta, R1\alpha\) and \(R1\beta\) (Johnson et al., 1986; Scott et al., 1987; Chrivia et al., 1988). Two types of heterotetramers have been reported to exist in vivo: PKA holoenzyme type I (R1\alpha and R1\beta) and type II (R1\alpha and R1\beta). The type I PKA is predominantly cytosolic, while over 80% of type II PKA associates with cellular structures and organelles (Taylor et al., 1990; Michel & Scott, 2002). PKA, along with other signalling proteins, can be targeted to distinct subcellular regions through the interaction with A-kinase anchoring protein (AKAPs) (figure 1.2).

1.1.3.2 ERK and cAMP signalling cross-talk

It is now widely accepted that cross-talk between the cAMP and ERK mitogen-activated protein kinase pathways occurs at a number of distinct points (Houslay & Baillie, 2003). The effects of such cross-talk can be mediated in a cell-type specific manner by the selective expression of specific isoforms of enzymes positioned at specific control points (Houslay & Kolch, 2000).

The identification ERK/cAMP signalling cross-talk originated from studies based on the protein kinase Raf. The cell-type specific expression of the Raf isoforms, Raf-1 or B-Raf, allow either the inactivation or activation of ERK (Houslay & Kolch, 2000; Houslay & Baillie, 2003). Inhibition of Raf-1 and hence inhibition of ERK can be achieved by elevated cAMP and activation of PKA. On the other hand, elevation of cAMP can lead
the activation of B-Raf and hence activation of ERK. Although the precise mechanism for activation has still to be elucidated, it is suggested that activation of B-Raf in response to elevation of cAMP occurs via the activation of the monomeric G-protein Rap-1 (Houslay & Baillie, 2003). It was originally suggested that Rap-1 activation is achieved upon binding of cAMP to Epac (exchange proteins activated by cAMP), however, the recent emergence of an Epac-specific inhibitor indicates that this unlikely (Bos, 2003). Thus many questions regarding cAMP activation of the ERK pathway remain unanswered.

1.1.3.3 Epac

A general consensus exists that cAMP exerts its intracellular effects mainly by activating cAMP. However, cAMP can also act in a PKA-independent manner via the direct activation of ion channels (Slabbb, 2001) or by cyclic nucleotide-regulated guanine nucleotide exchange factors (cAMP-GEFS), also referred to as Epacs (exchange protein activated by cAMP) (Kawasaki et al., 1998; de Rooi et al., 1998).

Two Epac isoforms, Epac1 and Epac2, upon direct binding of cAMP activate the small G-proteins Rap-1 and Rap-2 (figure 1.3) (Kawasaki et al., 1998; de Rooi et al., 1998). Several studies have indicated that Rap-1 is a mediator in the cAMP-induced inhibition of Raf-1 (Schmitt & Stork, 2002; Bos, 2003). It was initially believed that Rap-1 antagonises Ras signalling towards ERK by trapping the Ras effector, Raf-1 in an inhibitory complex (Schmitt & Stork, 2002). However, it appears that Epac mediates the cAMP induced-activation of Rap-1, whilst the inhibition of Raf-1 is mediated by PKA (Bos, 2003). Additionally, studies using the Epac-specific activator 8-pCPT-2'-O-Me-cAMP did not result in an inactivation of the Ras-Raf1-ERK pathway (Enserink et al., 2002).

Rap-1 has also been implicated in the cAMP-induced activation of ERK (Vosslter et al., 1997). It is proposed that Epac mediates the binding of Rap-1 to, and activation of, B-Raf. However, that this effect also requires PKA and the use of 8-pCPT-2'-O-Me-cAMP activator casts doubt on the involvement of Epac (Bos, 2003).
Epac is known to be involved in the control of cAMP-regulated integrin-mediated cell adhesion (Rangarajan et al., 2003). There is also increasing evidence that Epac is involved in the cAMP-mediated modulation of insulin secretion (Ozaki et al., 2002; Bos, 2003). Since the development of the Epac-specific activator (8-pCPT-2'-O-Me-cAMP), it is anticipated that the recognised list of functions of Epac will grow rapidly.

1.1.3.4 Cyclic nucleotide-gated channels

Cyclic nucleotide-gated (CNG) cation channels on the cell membrane are biological effectors of cyclic nucleotide action. To date, over 20 genes encoding different subtypes of CNGs have been cloned from invertebrates and vertebrates (Wei et al., 1997). Functionally, CNG channels belong to the class of ligand-gated cation channels and are activated by the binding of cAMP or cGMP. The best-studied cAMP gated channel is the olfactory cyclic nucleotide channel, which is activated equally by both cAMP and cGMP (Shabb, 2001). This nonselective ion channel is activated in response to odorant binding to G protein-coupled olfactory receptors which, in turn, results in the activation of adenylyl cyclase (Shabb, 2001).

1.2 The phosphodiesterase superfamily

Cyclic nucleotide phosphodiesterases (PDEs) are represented by a large super family of enzymes which hydrolyze both cAMP and cGMP. To date, the PDE superfamily includes 21 different genes encoding over 30 different PDEs, which are sub-grouped into 11 different PDE families (Houslay & Milligan, 1997; Conti & Jin, 1999; Soderling & Beavo, 2000; Houslay & Adams, 2003). The nomenclature of the PDE superfamily is indicated as follows: the family is indicated as an Arabic numeral, a capital letter indicating a gene within the family and a second Arabic numeral indicating a splice variant e.g. PDE4D3: family 4, gene D and 3rd splicing variant. Each sub-family of PDE is distinguished by different enzymatic characteristics, different regulatory properties (table 1.1) and differential inhibitory pharmacological profiles (see table 1.2 for list of
available PDE inhibitors) (Houslay-review, 1998; Houslay and Kolch, 2000; Soderling and Beavo, 2000).

1.2.1 The PDE1 family

Variants of the PDE1 family are activated upon binding of Ca\(^{2+}\)/CaM. Three PDE1 genes encode PDE1A, PDE1B and PDE1C sub-families. The variants of PDE1C hydrolyse both cAMP and cGMP with high affinity, while variants of the PDE1A and PDE1B genes selectively hydrolyse cGMP. The PDE1A and PDE1B encode two splice variants each, PDE1A1 and PDE1A2, and PDE1B1 and PDE1B2 respectively. The PDE1C gene provides five products, PDE1C1-5.

Antagonists of CaM inhibit PDE1 activity but are not only selective for PDE1. Catalytic site inhibitors such as vinpocetine (table 1.2) inhibit all PDE1, but PDE1C with less potency, and are not specific for any individual variant (Kakkar et al., 1989; Zhao et al., 1997).

PDE1C variants have been implicated in VSMC proliferation (Rybalkin et al., 1997), insulin secretion (Han et al., 1999), and in cardiac tissue (Maurice et al., 2003). PDE1A variants have also been identified the cardiovascular system (Rybalkin et al., 1997; Zhao et al., 1997), while PDE1B2 has also been identified in VSMC (Rybalkin et al., 1997).

1.2.2 The PDE2 family

The splice variants of PDE2 are encoded by a single gene and these enzymes can hydrolyse both cAMP and cGMP (Yang et al., 1994; Rosman et al., 1997). The activation of PDE2 enzyme occurs following the binding of cGMP to the N-terminally located GAF domains (table 1.1) (Martinez et al., 2002). A few selective inhibitors exist, of which EHNA is the best recognised (Mery et al., 1995), although it does also serve as an inhibitor of adenosine deaminase (table 1.2). A role for PDE2 within the cardiovascular system has been proposed, and PDE2 has been shown to be expressed in cardiac myocytes, VSMC and vascular endothelial cells (Sandhu et al., 1999). One
PDE2A variant, PDE2A2, is expressed in cardiac myocytes (Sandhu et al., 1999). In cardiac myocytes, direct inhibition of PDE2 by EHNA increases L-type Ca\(^{2+}\) currents (Vandecasteele et al., 2001). cGMP-activation of PDE2, in conjunction with PDE3, has been implicated in the regulation of Ca\(^{2+}\) currents and contractility (Vandecasteele et al., 2001).

1.2.3 The PDE3 family

Two genes encode the PDE3 family, PDE3A and PDE3B. Through alternative start codons, three PDE3A isoforms exist (PDE3A1-3), while only one isoform of the PDE3B gene exists (Movsesian et al., 2002; Wechsler et al., 2002). The analysis of mRNA expression to determine tissue distribution has shown differential expression. PDE3A enzymes have been reported to be expressed in blood vessels, cardiovascular system and oocytes (Reinhardt et al., 1995; Maurice et al., 2002; Movsesian et al., 2002). The highest level of PDE3B has been reported in brain, renal collecting duct epithelium, hepatocytes, adipocytes and developing spermatocytes (Reinhardt et al., 1995; Maurice et al., 2002; Movsesian et al., 2002).

1.2.3.1 Regulation and targeting of the PDE3 family

Full length PDE3A and PDE3B possess two N-terminal hydrophobic membrane association domains, named NH1 and NH2. These regions allow the different PDE3A variants which possess NH1 and NH2, or only NH2, or neither, the ability to localise to different cellular regions. PDE3A1 possesses both NH1 and NH2 regions is found mainly in the particulate fraction, PDE3A2 possesses only NH2 is found both in the cytosol and the particulate fraction, and PDE3A3 which lacks both domains is cytosolic (Maurice et al., 2002; Movsesian et al., 2002; Wechsler et al., 2002). PDE3A and PDE3B enzymes can be phosphorylated and activated by PKA and PKB (Manganiello & Degerman, 1999). The hydrolysis of cAMP by PDE3 enzymes is directly inhibited by the binding of cGMP to the catalytic unit (Manganiello & Degerman, 1999). A number of PDE3 inhibitors exist, such as cilostamide, milrinone and amrinone (table 1.2). Inhibitors that
distinguish between PDE3A and PDE3B are not available, and given their similarity, are unlikely to be achievable.

The use of PDE3 inhibitors has been discussed in the treatment of type 2 diabetes and cardiac myopathies. Insulin-induced activation of PDE3B in 3T3-L1 adipocytes has been shown to occur via the phosphorylation of PDE3B by Akt/protein kinase B (PKB) (Kitamura et al., 1999). It has also been reported that the selective inhibition of PDE3 activity in pancreatic β-cells stimulates insulin secretion (Harndahl et al., 2002). In this study, PDE3B has been implicated in the cAMP-dependent insulin secretion from the β-cells of pancreatic islets (Harndahl et al., 2002). Enzymes of the PDE3 family also play an important role in the regulation of the cyclic nucleotide-mediated responses in cardiac and vascular smooth muscle myocytes (Movsesian, 2003). In the case of dilated cardiomyopathy, PDE3 inhibitors have both inotropic and vasodilatory properties, and were shown in early studies to have beneficial effects on myocardial contraction and vascular relaxation in clinical trials (Jaski et al., 1985; Movsesian, 2003). However, subsequently it was shown that chronic clinical application of these inhibitors, such as milrinone, resulted in an increase in mortality (Movsesian, 2003). From these trials, it has been suggested that increases in cAMP within cardiac myocytes have beneficial effects in the short term and adverse effects in the long term. It is now thought that milrinone exerts an effect on PDE4 as well as PDE3 (Shakur et al., 2002).

1.2.4 The PDE4 family

The PDE4 phosphodiesterase family exclusively hydrolyses cAMP. To date over 16 different isoforms of the PDE4 family have been identified (table 1.3) (Houslay et al., 1998; Conti et al., 2003). Four PDE4 genes (A, B, C, D) encode the PDE4 isoforms and can produce a number of different isoforms through alternative mRNA splicing and the use of alternative promoters. Within each PDE4 family, each isoform possesses unique N-terminal., common catalytic region, and a common C-terminal region. PDE4 isoforms can be classed as short or long forms depending on the absence of presence of upstream
conserved regions (UCRs). Long form PDE4s possess both UCR1 and UCR2, short forms lack UCR1 (figure 1.4).

1.2.5 The PDE5 family

The cGMP-specific PDE5 family plays a pivotal role in the control of smooth muscle relaxation (Corbin & Francis, 1999). PDE5 is highly specific for cGMP both in its catalytic site and within two allosteric binding sites within the N-terminal GAF domains of the protein (McAllister-Lucas et al., 1995). PDE5 is a multi-domain protein that is regulated by phosphorylation as well as by the allosteric binding of cGMP to the GAF domains. cGMP-binding to the GAF domains has been shown to be required for the phosphorylation of PDE5 by PKA or PKG (Thomas et al., 1995). The important physiological role of PDE5 in the regulation of smooth muscle tone has been shown by the clinical use of sildenafil (Viagra®) to treat erectile dysfunction (Ballard et al., 1998). Recently other drugs, such as tadafil (Cialis™) and vardenafil (Levitra™), which target PDE5 in vascular smooth muscle have been reported (de Tejada, et al., 2001; Eardley & Cartledge, 2002). It has also been reported that PDE5 plays a role in the development and maintenance of pulmonary hypertension. Murray et al. show that, following chronic hypoxic treatment of rats, PDE5A1/A2 and PDE3A mRNA transcript and protein levels are increased in the main intrapulmonary and resistance pulmonary arteries (Murray et al., 2002).

1.2.6 The PDE6 family

The cGMP-specific PDE6 family is also known as the photoreceptor cGMP phosphodiesterases. This family of PDEs are exclusively expressed in the rod and cone photoreceptors of the retina and play a pivotal role as an effector protein in vertebrate signal transduction, which is mediated by the rhodopsin-coupled G protein, transducin (Yarfitz & Hurley, 1994; Beavo, 1995). Retinal rod PDE6 is composed of two catalytic sub-units, α and β, each is tightly associated with the inhibitory γ sub-unit (Deterre et al., 1988). Cone PDE6 consists of two α sub-units associated with two of the cone-specific
The γ sub-units inhibit cGMP hydrolysis in the dark, and upon light stimulation of photoreceptors PDE6 is activated by GTP-bound transducin, which displaces γ from the catalytic domain (Beavo, 1995). PDE5 and PDE6 display a homology of 45-48% identity between catalytic domains and are similarly inhibited by competitive inhibitors, zaprinast, dipyridamole, and sildenafil (table 1.2) (Ballard et al., 1998; Turko et al., 1999).

1.2.7 The PDE7 family

The PDE7 family encodes a cAMP-specific PDE that is insensitive to cGMP, have an amino acid sequence that is distinct from the other cAMP phosphodiesterases, and are insensitive to PDE3 and PDE4 inhibitors (Michaeli, et al., 1993). Two genes, PDE7A and PDE7B encode, through alternative mRNA splicing, different PDE7 isoforms. Three isoenzymes, PDE7A1, PDE7A2 and PDE7A3 have been identified (Bloom & Beavo, 1996). PDE7A1 is expressed in multiple tissues, and PDE7A2 is expressed mainly in skeletal muscle and cardiac myocytes (Wang et al., 2000).

1.2.8 The PDE8 family

PDE8A has been shown to be expressed in testis, eye, liver, kidney, skeletal muscle and brain in mice and humans (Soderling et al., 1998; Fisher et al., 1998). The non-selective PDE inhibitor IBMX does not inhibit this cAMP-specific PDE (Soderling & Beavo, 2000). PDE8 has been shown to contain a PAS (Period, Arnt, Sim) domain, but the function of this domain has yet to be discovered.

1.2.9 The PDE9 family

PDE9 is specific for hydrolysis of cGMP and is not inhibited by the general PDE inhibitor, IBMX (Soderling et al., 1998). To date, four variants of the PDE9 family has been identified (Guipponi et al., 1998). PDE9 is expressed in the small intestine, kidney, liver, lung, brain, skeletal muscle, heart, thymus and spleen (Soderling & Beavo, 2000).

12
1.2.10 The PDE10 family

Studies have shown that the PDE10 family can hydrolyse both cGMP and cAMP, but may function as a cAMP-inhibited cGMP-hydrolysing phosphodiesterase (Loughney et al., 1999; Soderling et al., 1999). Like PDE2, PDE5, PDE6 and PDE11A, PDE10A contains two GAF domains. PDE10A transcripts have been found in the testis, caudate nucleus and putamen (Matsumoto et al., 2003).

1.2.11 The PDE11 family

The PDE11 family is represented by PDE11A and hydrolyses both cGMP and cAMP (Fawcett et al., 2000). It has unique splice variants, PDE11A1 possesses an incomplete GAF domain, PDE11A3 has one complete GAF domain and one incomplete GAF domain, and PDE11A4 contains two complete GAF domains (Yuasa et al., 2000; Fawcett et al., 2000). PDE11A3 transcripts are specifically expressed in the testis, and PDE11A4 transcripts are most abundant in the prostate (Yuasa et al., 2000).

1.3 PDE4 cAMP-specific phosphodiesterases

To date, eleven PDE families have been identified, of which PDE4, PDE7 and PDE8 specifically hydrolyse cAMP. However, it is the PDE4 family that accounts for the most cAMP hydrolysing activity of many cell types (Conti et al., 2002). The Drosophila dunce gene was the first PDE gene to be characterised, and soon thereafter four PDE4 paralogues were identified on different mammalian chromosomes (Houslay & Adams, 2003).

1.3.1 PDE4 isoforms

The four PDE4 genes encode four different sub-families, PDE4A, PDE4B, PDE4C and PDE4D. Over 16 different isoforms are generated through the use of different promoters and alternative mRNA splicing and each isoform is characterised by a unique N-terminal region (figure 1.4) (Houslay & Adams, 2003).
PDE4 isoforms also possess a C-terminal region, which is unique to each sub-family. The highly conserved catalytic region is flanked at its N-terminal side by regulatory domains termed Upstream Conserved Region 1 (UCR1) and Upstream Conserved Region 2 (UCR2) (Conti et al., 2003; Houslay & Adams 2003). The PDE4 isoforms can be divided into sub-groups; long forms, short forms or super short forms, depending on the presence or absence of UCR1 and the size of UCR2. Long forms possess both UCR1 and UCR2, short forms lack UCR1, whilst ‘super’ short forms possess only a truncated UCR2 (figure 1.4). In the case of long forms, the UCR1 is joined to the UCR2 by linker region 1 (LR1), and the UCR2 module is joined to the catalytic unit by linker region 2LR2 (Figure 1.4).

UCR1 and UCR2 appear to function as a regulatory module that controls the functioning of the catalytic region. Indeed, yeast two-hybrid analysis and pull-down studies have shown that UCR1 can interact with UCR2 (Lim et al., 1999; Beard et al., 2000), and UCR2 is thought to interact with the catalytic domain (Lim et al., 1999). The UCR1/UCR2 module is also considered to influence the quaternary structure of PDE4 whereby isoforms possessing both modules behave as dimers, yet isoforms lacking UCR1 behave as monomers (Richter & Conti, 2002).

1.3.2 Catalytic domain

A key insight into the structure of the catalytic site was provided following the determination of the crystal structure of the PDE4B2 isoform [Brookhaven Protein Data Bank (PDB) accession number 1FOJ] (Xu et al., 2000). The crystal structure of residues 152-528 of the active PDE4B2, which is conserved throughout the PDE4 family, revealed that the compact PDE4 catalytic unit is comprised of 17 helices folded into three subdomains. Helices 6-13 contain residues critical for substrate binding, bind tightly a Zn$^{2+}$ ion, and loosely bind an Mg$^{2+}$ ion (Xu et al., 2000; Houslay & Adams, 2003). Since the publication of the crystal structure of the catalytic site of PDE4B2, a number of other crystal structures of PDE4 isoforms have been published which provide further
understanding of the catalytic mechanism (Lee et al., 2002; Huai et al., 2003; Xu et al., 2004).

With regards to PDE4 activity, the physiological relevant state is thought to be an enzyme having both a tightly bound Zn\(^{2+}\) and exchangeable Mg\(^{2+}\) at sites within the catalytic site itself (Houslay & Adams, 2003). Thus, the Mg\(^{2+}\) ion binds to the metal ion binding site 2 (Me2) and is believed to be the subject to rapid exchange, which is attributable to the number of reported different conformational states of the catalytic domain (Lui et al., 2001; Conti et al., 2002). PDE4 inhibitors bind to the enzyme with kinetics suggesting the presence of multiple conformational states, and it is now accepted that prototype PDE4 inhibitor rolipram binds to two or more conformers of the catalytic domain (Conti et al., 2002). It has been suggested that the high affinity rolipram binding state requires the presence of Mg\(^{2+}\), whereas the low affinity rolipram binding state was seen in the apoenzyme, although this will be inactive (Laliberte et al., 2000; Conti et al., 2002). It is now well recognised that PDE4 enzymes can switch their conformational states through interacting with other proteins, such as PDE4A enzyme with SRC family tyrosyl kinases and the immunophilin, XAP2 and that PDE4D3 can alter its conformation and sensitivity to rolipram upon phosphorylation by PKA (McPhee et al., 1999; Hoffman et al., 1998).

1.3.3 Regulation of PDE4 activity by PKA

PKA phosphorylation of PDE4 long forms results in activation, altered rolipram sensitivity, altered Mg\(^{2+}\) sensitivity and the re-programming of the functional output of ERK phosphorylation (Houslay & Adams, 2003).

As discussed above, the UCR1/UCR2 of PDE4 functions as a regulatory module. It is now known that PDE4s from all four sub-families can be phosphorylated at a single serine residue within the UCR1 and activated (Sette et al., 1994; Sette & Conti, 1996; Hoffman et al., 1998; MacKenzie et al., 2002). UCR1 possesses the PKA consensus
sequence RRESF, and PKA activation of PDE4 can be mimicked by replacing the target serine with either aspartate or glutamate residues (Hoffman et al., 1998). In mammalian cells, PKA phosphorylation of PDE4 enzymes has been shown to increase their activity by some 60% (Hoffman et al., 1998). However, such PKA phosphorylation of PDE4D3 produces a much larger increase in activity (2-3 fold) than is seen in PDE4A4 (50%), which may suggest a regulatory role for their N-terminal regions, or they undergo an additional modification which enhances the ability of PKA phosphorylation to increase PDE4D3 activity (Houslay & Adams, 2003).

It has been postulated that the glutamate residue, adjacent to the target serine of PKA, is involved in an ion-pair interaction that holds the enzyme in a low affinity state (Hoffman et al., 1998). As a mutation of the glutamate residue to a neutral amino acid mimics activation, the phosphorylation of the serine residue is believed to disrupt the ion-pair interaction, resulting in activation (Hoffman et al., 1998). PKA phosphorylation of the UCR1 is also believed to cause a conformational change that disrupts the UCR1/UCR2 interaction (Beard et al., 2000) and, in the case of PDE4D3, this results in increase in its sensitivity to inhibition by rolipram (Sette et al., 1994; Hoffman et al., 1998; MacKenzie et al., 2002;).

UCR2 has been suggested to exert a tonic inhibitory function upon the PDE4 enzyme, and phosphorylation of the UCR1 by PKA has been suggested to disrupt the interaction of UCR2 and the catalytic domain (Lim et al., 1999). A similar activation of PDE4D3, as observed with PKA phosphorylation, was shown following the use of an antiserum generated to a C-terminal portion of the UCR2 (Lim et al., 1999). This antiserum is thought, like PKA phosphorylation, to disrupt the interaction of UCR2 and the catalytic domain (Lim et al., 1999).

PKA phosphorylation of PDE4D3 enhances the sensitivity of the enzyme to Mg²⁺ ions. The Mg²⁺ ion binds to the metal ion binding site 2 (Me2) within the catalytic domain and is essential for catalysis (Xu et al., 2000).
1.3.4 Regulation of PDE4 by ERK

The third subdomain of the catalytic unit of all PDE4 sub-families, with the exception of PDE4A, contains an ERK consensus motif (Pro-Xaa-Ser-Pro). It has been shown both in *vitro* and *in vivo*, that the serine residue within this sequence can be phosphorylated by ERK (MacKenzie *et al.*, 2000; Hoffman *et al.*, 1999). Further, the ERK consensus site within the catalytic domain has been shown to be flanked by a kinase docking site, namely KIM, and a FXF motif which allows ERK specificity (MacKenzie *et al.*, 2000) (figure 1.5).

The phosphorylation of long form PDE4s by ERK leads to inhibition of the PDE4, where the serine target within the ERK consensus sequence is the only phosphorylated residue (Hoffman *et al.*, 1999; MacKenzie *et al.*, 2000). Such inhibition of long form PDE4s can cause a localised increase in cAMP (Houslay & Adams, 2003). However, the ERK-mediated inhibition of PDE4 long forms is transient, as the localised increase in cAMP allows PKA phosphorylation and activation of the long PDE4 isoform (figure 1.6) (Hoffman *et al.*, 1999; Houslay & Kolch, 2000). In contrast, PDE4 short forms, which lack UCR1, are activated by ERK (MacKenzie *et al.*, 2000). It was shown that ERK phosphorylation of short form PDE4D1 caused a small increase in cAMP levels (MacKenzie *et al.*, 2000). Interestingly, ERK has been shown exert either no effect or inhibits the ‘super’ short from PDE4D2, which lacks UCR1 and possesses a truncated UCR2, and on a catalytic unit construct that is free of both UCR1 and UCR2 (MacKenzie *et al.*, 2000).

1.3.5 Activation of PDE4s by negatively charged phospholipids

Various studies have shown that negatively charged phospholipids such as phosphatidic acid (PA) or phospholipids phosphatidyl-serine (PS) can increase PDE4 activity (DiSanto *et al.*, 1995; Nemoz *et al.*, 1997). An increase in activation of some 0.7-3 fold was observed for various PDE4 long forms, but activation of PDE4 short forms or ‘super’ short forms was not observed (DiSanto *et al.*, 1995; Nemoz *et al.*, 1997). The UCR1
region of long forms is ideally suited to interact with PA or PS as it is an amphipatic structure with a polar N-terminal half (positive net charge) and an apolar C-terminal half (Houslay & Adams, 2003). Thus, it is the placing of a negative charge by PKA (phosphorylation of RRESF), or by the binding of an acidic phospholipid that causes a similar conformational change and leads to the activation of the PDE4 (Houslay & Adams, 2003).

1.3.6 Signalling complexes and PDE4s

PDE4s can be targeted to specific subcellular regions and can interact with other signalling proteins to form distinct signalling modules (Houslay & Adams, 2003). The formation of such spatially confined signalling modules allows the generation and monitoring of pools of cAMP (figure 1.7).

1.3.6.1 PDE4 and AKAPs

PKA can be held in discrete subcellular locations by interaction of the R sub-units with A-kinase anchoring proteins (AKAPs). AKAPs provide a means of compartmentalised signalling complexes which allow the close association of upstream signalling proteins with downstream targets. They were first discovered as contaminants of PKA type II holoenzyme preparations (Michel & Scott, 2002), and since this initial discovery, over fifty different members of the AKAP family have been identified (Michel & Scott, 2002).

The discrete localisation of type II PKA has mainly been attributed to association of the R sub-unit with an AKAP. Each AKAP contains an amphipatic helix that binds to the N-terminus of the RII sub-units and each contains a unique subcellular targeting domain, which allows localisation to discrete cellular regions (Carr et al., 1991; Colledge & Scott, 1999). Although the association of RII-AKAP occurs at 100-fold greater affinity than RI-AKAP interaction (Burton et al., 1997), AKAP interaction is not exclusive to the RII sub-unit. A number of “dual” specificity AKAPs which bind both RI and RII sub-units have
been identified, such as MAP2d expressed in rat ovarian granulosa cells (Salvador et al., 2004) and AKAP7γ in oocytes (Brown et al., 2003).

The ability of PDE4s to interact with AKAPs, and thus the overall signalling module, provides a control for the PKA activity. To date, the long form PDE4D3 has been shown to bind to several different AKAPs (Dodge et al., 2001; Tasken et al., 2001; Kapiloff et al., 2001). In cardiac myocytes, PDE4D3, through its unique N-terminal binds to muscle selective AKAP (mAKAP) (Dodge et al., 2001). The PDE4D3-mAKAP-PKA complex provides a self-regulatory module whereby cAMP levels rise, PKA bound to mAKAP is activated and will phosphorylate and activate PDE4D3. As the activity of PDE4D3 increases rapidly following PKA phosphorylation of UCR1, PDE4D3 amplifies the de-activation of the mAKAP-bound PKA and then PDE4D3 itself becomes de-phosphorylated (Houslay & Adams, 2003). Under hypertrophic conditions a redistribution of the PDE4D3-mAKAP-PKA complex from the cytosol to the perinuclear compartment is observed (Dodge et al., 2001). Such 'reprogramming' of PDE4D3 may contribute to altered cellular functioning in the hypertrophic process (Dodge et al., 2001; Houslay & Adams, 2003). It has also been suggested that PDE4D3 is part of the mAKAP complex associated with the Ca^{2+} channel RyR (ryanodine receptor) within cardiac myocytes (Mark et al., 1999; Kapiloff et al., 2001). A publication, which appeared while writing my thesis, indicates that the PKA phosphorylation of Ser13 within the N-terminal of PDE4D3 facilitates its binding to mAKAP (Michel et al., 2004).

In Sertoli cell primary complex, PDE4D3 has been found to co-immunoprecipitate with AKAP450 and Rllα sub-units (Tasken et al., 2001). The PDE4D3-AKAP450-Rllα signal complex is localised to the centrosomal area and implies a tight regulation of the phosphorylation state of centrosomal proteins.

1.3.6.2 Arrestin

Arrestins are scaffolding proteins, which play an important role in desensitisation of GPCR signalling. To date, four members of the arrestin family have been identified, β-arrestin1, β-arrestin2 and two visual arrestins (Luttrell et al., 2001). Following agonist occupancy of the β2-adrenergic receptor, desensitisation of the process of AC activation
has been shown by the means of the decoupling the Gs protein from the GPCR (Luttrell et al., 2001). In this process the rapid desensitisation occurs when G-protein-receptor kinases (GRK) phosphorylates the β-AR, allowing the recruitment of cytosolic β-arrestin to the β-AR and thus uncoupling the receptor from Gs (Luttrell et al., 2001).

Challenge of cells with a β-agonist shows a recruitment of a PDE4-arrestin complex to the β2-AR (Perry et al., 2002). This formation of a complex including β-arrestin1/2 and a PDE4 thus provides a means of cAMP degradation directly to the active site of cAMP synthesis (Perry et al., 2002). In cardiac myocytes the recruitment of PDE4D3 and PDE4D5 to the plasma membrane is shown following β-adrenergic stimulation (Baillie et al., 2003). Further, the recruitment of PDE4D to the β2-AR in cardiac myocytes regulates the switching of the receptor coupling from Gs to Gi (Baillie et al., 2003). In this report, it is suggested that the PDE4 controls the PKA-mediated switching of the β2-AR coupling to the Gs, thus activation of AC, to coupling to Gi and thus activation of ERK (figure 1.8).

1.3.6.3 RACK1

The scaffold protein RACK1 (receptor for activated C kinase 1) was originally shown to bind protein kinase C (Ron et al., 1994). However, RACK1 has now been shown to interact with a variety of proteins (McCahill et al., 2002) including PDE4D5, to which it binds through a helical domain named RAID1 (RACK1 interaction domain) in the unique N-terminal PDE4D5 (Yarwood et al., 1999; Bolger et al., 2002). The functional consequence of the interaction of PDE4D5 with RACK1 has yet to be determined. Although, it has been proposed that most probable role of the recruitment of PDE4D5 to the RACK1 complex, is to control cAMP levels in the vicinity of the complex and thereby the activity of any putative associated Epac/PKA (Houslay & Adams, 2003).

1.3.6.4 Src, Lyn and Fyn

Src, Lyn and Fyn are protein-tyrosine kinases, which play important roles in controlling a wide variety of cellular processes, and they contain SH3 domains. SH3 domains are globular units of ~60 residues which allow protein-protein interaction by binding proline-
containing motifs that have PXXP at their core (Pawson, 1995). The PDE4 isoforms, PDE4A4, PDE4A5 and PDE4D4 have been to interact with these tyrosine kinases via PXXP motifs (O'Connell et al., 1996; Beard et al., 1999; McPhee et al., 1999). A role of this interaction is intracellular targeting, such as the localisation of PDE4A5 to peripheral membrane ruffles, and also localisation to the perinuclear region (Beard et al., 2002).

It is believed that PDE4 enzymes exist in distinct conformational states that can be detected by alterations in sensitivity to rolipram (Houslay, 2003). Binding of Src family tyrosyl kinases through their SH3 domains to the LR2 region of PDE4A4 increases its sensitivity to rolipram (Beard et al., 1999; McPhee et al., 1999).

1.3.6.5 XAP2

XAP2, also known as ARA9 or AIP, is an immunophilin which has been shown to interact with Hsp90 as part of a complex containing the aryl hydrocarbon (dioxin) receptor (Carver & Bradfield, 1997). Recently, a novel function of XAP2 was identified, whereby it binds to PDE4A5 via its immunophilin domain. This interaction inhibits the activity of PDE4A5 and attenuates the ability of PDE4A5 to be phosphorylated by PKA (Boiger et al., 2003). The functional significance of such interaction has yet to be determined. However, as other immunophilin domains have been shown to interact with different signalling components, it is thought that the PDE4A5-XAP2 interaction may act as a means of recruitment to distinct cellular regions (Boiger et al., 2003).

The interaction of XAP2 with PDE4A5 may provide an additional mechanism of changing the conformation of this enzyme to alter its rolipram sensitivity (Boiger et al., 2003).

1.3.6.6 TAPAS-1

The unique N-terminal region of PDE4A1 contains a novel microdomain called TAPAS-1 which allows this PDE4 to be exclusively membrane-associated (Baillie et al., 2002). TAPAS1 selectively interacts with phosphatidic acid (PA), which has been shown to be Ca\(^{2+}\) dependent, and allows the anchoring of PDE4A1 to lipid bilayers (Baillie et al., 2002). This unique means of targeting may serve to shape gradients of cAMP. Also, the
unique structural feature of TAPAS-1 may also, in the future, play an important role in the identification and interpretation of other putative phospholipid binding domains (Baillie et al., 2002).

1.3.6.7 Myomegalin

Myomegalin is a scaffold protein which is localised to the Golgi/centrosomal region. It has a domain similar to that dynactin/contractin, which can bind to activator protein-1, a SH3-like domain, a leucine-zipper region and a helix-loop-helix domain (Houslay and Adams, 2003). Yeast two-hybrid analysis done on PDE4D3 identified myomegalin as a potential binding partner (Verde et al., 2001). Truncation analyses have shown that the extreme C-terminal of myomegalin interacts with N-terminal portion of UCR2 and confers targeting to perinuclear Golgi/centrosomal region (Verde et al., 2001). It has yet to be reported if other PDE4 isoforms can interact with myomegalin.

1.4 cAMP signalling and PKA phosphorylation of proteins regulating cardiac function.

The function of the heart is regulated by the sympathetic nervous system. During sympathetic stimulation, activation of β-adrenergic receptors by adrenaline and other β-agonists initiate the production of cAMP and hence activation of PKA.

1.4.1 Interaction of cAMP and Ca^{2+} signalling within the myocardium

Cardiac myocytes comprise the majority of the cellular mass of the heart, they also account for over 60% of the number of cells of the heart. In cardiac myocytes, PKA plays a central role in many cellular processes, including contraction and relaxation, ion fluxes and gene expression (Walsh & Van Patten, 1994; Kapiloff et al., 2002). PKA can phosphorylate and alter the function of several cardiac proteins, which in turn alters the overall function of the heart. PKA substrates in cardiac myocytes include the ryanodine
receptor (RyR), the cAMP-responsive element binding protein (CREB), troponin I (TnI), L-type Ca²⁺ channel or the dihydropyridine receptors (DHPR), and phospholamban to name but a few. In the case of relaxation and contraction, the cAMP signalling pathway can interact with and control some facets of the Ca²⁺ signalling pathway (figure 1.9).

Phospholamban (PLB) is an important protein, which is regulated by PKA and is involved in the regulation of cardiac contraction. This protein is found located in the cardiac sarcoplasmic reticulum (SR) and, depending on its phosphorylation state it regulates the Ca²⁺ pump SERCA2A; sarcoplasmic reticulum Ca²⁺ ATPase (MacLennan & Kranias, 2003). SERCA2A determines the rate of removal of Ca²⁺ from the cytosol into the SR, which is the intracellular Ca²⁺ ‘store’ (figure 1.9). This ATP-facilitated uptake of Ca²⁺ into the SR by SERCA2A accounts for over 70% of cytosolic Ca²⁺ removal, and determines the rate of relaxation of the heart (MacLennan & Kranias, 2003). SERCA2A can also influence cardiac contractility by determining the actual size of the Ca²⁺ store that is available for release for the next beat. Phospholamban (PLB), which means “phosphate receptor”, in its dephosphorylated state binds to and inhibits SERCA2A at resting Ca²⁺ concentrations. Phosphorylation of PLB by either PKA (Ser 16) or by CaM kinase (Thr 17) results in a disruption of the interaction between PLB and SERCA2A, thus relieving the inhibition of SERCA2A and enhancing the relaxation rate of the heart (Simmerman & Jones 1998; MacLennan & Kranias, 2003).

The trigger for cardiac contraction is the elevation of Ca²⁺ concentration in the cytosol. A number of different receptors and channels are involved in the elevation of cytosolic Ca²⁺, namely the ryanodine receptors (RyRs), the L-type Ca²⁺ channels (dihydropyridine receptors; DHPRs), plasma membrane Ca²⁺-ATPases (PMCA) and Na⁺/Ca²⁺ exchangers (NCXs). It is known that both the RyRs and the L-type Ca²⁺ channels are phosphorylated and their function altered by PKA. The L-type Ca²⁺ is a voltage channel which allows the influx of Ca²⁺ into the cytoplasm in response to membrane depolarisation (Bers, 2002). The ryanodine receptor opening is stimulated primarily by Ca²⁺ influx through the L-type Ca²⁺ channel (Bers, 2002). Both the conductance of the L-type Ca²⁺ channels and RyRs can be potentiated by PKA phosphorylation (Kapiloff, 2002).
1.4.2 Compartmentalisation of cAMP signalling within cardiac myocytes

With respect to cAMP signalling, cardiac myocytes appear to be highly compartmentalised. Zaccolo and colleagues have shown by use of a fluorescence-resonance-transfer (FRET) reporter, the presence of distinct pools of cAMP and the spatial confinement of PDEs (Zaccolo & Pozzan, 2002; Mongillo et al., 2004). To date, 13 different AKAPs, which play an important role in compartmentalisation, have been identified in cardiac myocytes. These include ezrin, AKAP-Lbc, AKAP15/18, mAKAP, AKAP79, gravin, yotiao, BIG2, AKAP220, AKAP95, AKAP149, AKAP121 and D-AKAP-1 (Ruehr et al., 2004). Figure 1.10 depicts the intracellular targeting of some of these AKAPs within cardiac myocytes. The PDE4 isoform, PDE4D3 is believed to interact with the mAKAP complex, which is targeted to the RyR (Kapiloff et al., 1999; Kapiloff et al., 2001). The conductance of Ca²⁺ from the SR into the cytosol is increased by the PKA phosphorylation of the RyR (Ruehr et al., 2003). The specific targeting of PDE4D3, via its interaction with mAKAP, provides a localised source of cAMP degradation and thus implicates PDE4D3 in the control of the phosphorylation status of RyR.

1.5 Assessment of intracellular cAMP gradients

The recent development of fluorescence resonance energy transfer (FRET) reporters provides a method studying the compartmentalisation of cAMP signalling in live cells. A sensor monitoring changes in cAMP has been generated and has played an important role in studying the compartmentalisation of cAMP signalling (Zaccolo & Pozzan, 2002; Mongillo et al., 2004). This sensor is based on FRET between a donor fluorophore (CFP) and an acceptor fluorophore (YFP) fused to the regulatory (R) and catalytic (C) sub-units of PKA (figure 1.11). Zaccolo et al have been able to show, following β-adrenergic stimulation, the generation of microdomains of cAMP in neonatal cardiac myocytes (Zaccolo & Pozzan, 2002). Furthermore, by the use of such a reporter, they revealed the prominent role of PDE4s in the regulation of increases in cAMP within cardiac myocytes (Mongillo et al., 2004).
A FRET reporter of PKA activity, named A-kinase activity reporter (AKAR), has also been developed (Zhang et al., 2001). This reporter consists of a cyan fluorescence protein, a phosphoamino acid binding domain (14-3-3-σ), a consensus substrate for PKA, and a yellow fluorescence protein. FRET changes are observed upon activation of PKA, and the phosphorylation of the substrate peptide within AKAR.

More recently, an Epac based FRET reporter, named Epac-camps has been used to gain further insight into the spatio-temporal organisation of cAMP signalling in live cells (Nikolaev et al., 2004). Unlike the PKA FRET-reporter developed by Zaccolo et al., which is restricted by the binding to AKAPs, Epac-camps is distributed throughout the cellular cytosol and provides a novel method to image free cAMP concentrations. By use of Epac-camps, it was shown that following isoprenaline stimulation of hippocampal neurons, cAMP propagates from the site of the β2-adrenergic receptor throughout the whole cell in a matter of milliseconds. Overall, FRET-reporters provide an important tool in the study of compartmentalisation of cAMP signalling.

1.6 Aims and objectives

For the first part of my study, I aimed to analyse the time-dependent PKA phosphorylation of Ser54 and Ser13 sites within PDE4D3. In addition, I studied the ability of other PDE4 long forms to be phosphorylated by PKA. Overall, the aim of my research was study the compartmentalisation of PDEs by means of a dominant negative strategy, and finally, to gain functional insight into the compartmentalisation of PDEs within cardiac myocytes.
Figure 1.1. General schematic of initiation of cAMP signalling by G-protein coupled receptor activation. A ligand binds to the G-protein coupled receptor (GPCR) and leads the dissociation of the Gsα subunit. The Gsα subunit can stimulate adenylyl cyclase (AC) to produce cyclic AMP (cAMP). cAMP can exert its cellular effects via the activation of protein kinase A (PKA), Epac, or cyclic nucleotide gated ion channels.
Figure 1.2. General schematics of PKA activation and AKAP interaction and function. (A) Binding of two molecules of cAMP to the regulatory (R) subunits of PKA induces the dissociation of the catalytic (C) subunits which are free to phosphorylate their target proteins. (B) (1) Represents the targeting domain which directs the AKAP to distinct subcellular regions (2) Represents other signalling complexes, of which include various PKA substrates (3) indicates the conserved amphipatic helix of AKAP which binds to the N-termini of the regulatory subunits of PKA.
Figure 1.3. The domains of Epac1 and Epac2. The REM (Ras-exchanger motif) and GEF (guanine nucleotide exchange factor) form the catalytic region of Epac. The other indicated domains are: cAMP, cyclic AMP-binding domain; DEP, dishevelled Egl-10 Pleckstrin domain; RA, Ras association domain (adapted from Bos, 2003).
<table>
<thead>
<tr>
<th>PDE family</th>
<th>Regulatory domains</th>
<th>Nucleotide Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDE1</td>
<td>Ca/CaM</td>
<td>cAMP/cGMP</td>
</tr>
<tr>
<td>PDE2</td>
<td>GAF</td>
<td>cAMP/cGMP</td>
</tr>
<tr>
<td>PDE3</td>
<td></td>
<td>cAMP</td>
</tr>
<tr>
<td>PDE4</td>
<td>UCR1/UCR2</td>
<td>cAMP</td>
</tr>
<tr>
<td>PDE5</td>
<td>GAF</td>
<td>cGMP</td>
</tr>
<tr>
<td>PDE6</td>
<td>GAF</td>
<td>cGMP</td>
</tr>
<tr>
<td>PDE7</td>
<td></td>
<td>cAMP</td>
</tr>
<tr>
<td>PDE8</td>
<td>PAS/PAC</td>
<td>cAMP</td>
</tr>
<tr>
<td>PDE9</td>
<td></td>
<td>cGMP</td>
</tr>
<tr>
<td>PDE10</td>
<td>GAF</td>
<td>cAMP/cGMP</td>
</tr>
<tr>
<td>PDE11</td>
<td>GAF</td>
<td>cAMP/cGMP</td>
</tr>
</tbody>
</table>

Table 1.1. PDE families and their regulatory domains. The PDE1-PDE11 families are listed including their regulatory domains and their nucleotide specificity (adapted from Houslay review, 2002).
Table 1.2. Second-generation PDE isozyme inhibitors. The "second-generation" PDE inhibitors listed exhibit about 100-fold selectivity of PDE isozymes of a particular family (Dousa, 1999). However, at higher concentrations, the selective inhibitors are not absolutely specific. (Please see Dousa review for potencies and selectivity of the PDE inhibitors listed). The general PDE inhibitor IBMX, effectively inhibits isoforms from all families (Kᵢ ~1-10μM), with the exception of the PDE8 and PDE9 families (adapted from Francis review, 2001).
<table>
<thead>
<tr>
<th>Human Clone</th>
<th>Rat Clone</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4A1 (hRD1)</td>
<td>U97584</td>
<td>4A1 (RD1)</td>
</tr>
<tr>
<td>4A4 (pde46)</td>
<td>L20965</td>
<td>4A4 (rpde6)</td>
</tr>
<tr>
<td>4A7 (2el)</td>
<td>U18088</td>
<td>4A7</td>
</tr>
<tr>
<td>4A8</td>
<td>U18088</td>
<td>4A8 (rpde39)</td>
</tr>
<tr>
<td>PDE4A11</td>
<td>L20967</td>
<td>PDE4A11</td>
</tr>
<tr>
<td>4A10</td>
<td>AF073745</td>
<td>4A10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4B1</td>
<td>L20966</td>
<td>4B1</td>
</tr>
<tr>
<td>4B2</td>
<td>L20971</td>
<td>4B2</td>
</tr>
<tr>
<td>4B3</td>
<td>U85048</td>
<td>4B3</td>
</tr>
<tr>
<td>4B4</td>
<td></td>
<td>4B4</td>
</tr>
<tr>
<td>4C1</td>
<td>Z46632</td>
<td>4C1</td>
</tr>
<tr>
<td>4C2</td>
<td>U88712</td>
<td>4C2</td>
</tr>
<tr>
<td>4C3</td>
<td>U88713</td>
<td>4C3</td>
</tr>
<tr>
<td>4D1</td>
<td>U50157</td>
<td>4D1</td>
</tr>
<tr>
<td>4D2</td>
<td>U50158</td>
<td>4D2</td>
</tr>
<tr>
<td>4D3</td>
<td>U50159</td>
<td>4D3</td>
</tr>
<tr>
<td>4D4</td>
<td>L20969</td>
<td>4D4</td>
</tr>
<tr>
<td>4D5</td>
<td>AF012073</td>
<td>4D5</td>
</tr>
<tr>
<td>4D6</td>
<td>AF536975</td>
<td>4D6</td>
</tr>
<tr>
<td>4D7</td>
<td>AF536976</td>
<td>4D7</td>
</tr>
<tr>
<td>4D8</td>
<td>AF536977</td>
<td>4D8</td>
</tr>
<tr>
<td>4D9</td>
<td>AY245567</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.3. PDE4 isoforms. All human and Rat PDE4 isoforms identified to date are listed (adapted from Houslay review, 2002).
Figure 1.4. Schematic of the PDE4 enzyme family. PDE4 isoforms can be divided into categories of long, short or super-short isoforms depending on the upstream conserved regions (UCR) regions. Long isoforms possess both UCR1 and UCR2, short isoforms lack UCR1 and super-short isoforms possess only a truncated UCR2.
Figure 1.5. The regulation of PDE4 long forms by ERK2. (A) Inhibitory regulation by ERK2 phosphorylation. (B) PKA phosphorylation uncouples the inhibitory regulation by ERK2.
Figure 1.6. Crosstalk between cAMP and ERK signalling pathways. This basic schematic shows the points at which cAMP can influence control of the ERK signalling pathway. Arrows indicated positive coupling; blunt ended lines indicate inhibitory coupling; p-ERK indicates phosphorylated ERK. (Adapted from Houslay & Baillie, 2003)
Figure 1.7. Compartmentalisation of PDE4s. A hypothetical cell to show the subcellular localisation of known PDE4 complexes. The yellow coloured ‘barrels' represent anchoring proteins. (Taken from Conti et al., 2003).
Figure 1.8. The role of recruitment of PDE4 by β-Arrestin in the regulation of the switching of Gs-Gi. Binding of ligand to the β2 receptor results in the coupling to Gs, activation of AC, elevation of cAMP and activation of PKA. The PKA phosphorylation of the β2 receptor facilitates switching from Gs to Gi and results in the activation of ERK1/2. The β-арrestin recruitment of PDE4 to the β2 receptor attenuates the ability of PKA to phosphorylate the receptor and thus is involved in the control of the 'switching' (Taken from Baillie et al., 2003).
Figure 1.9. The interaction of the cAMP and Ca^{2+} pathways in cardiac myocytes following β-agonist stimulation. SR: sarcoplasmic reticulum, Ca^{2+} store, RYR: ryanodine receptor, releases Ca^{2+} from SR to the cytosol, SERCA2A; ATP dependent transport of Ca^{2+} from cytosol to SR, PLB; phospholamban, -ve regulator of SERCA2A, DHPR; L-type, voltage dependent Ca^{2+}-entry channel (adapted from MacLennan & Kranias, 2003)
Figure 1.10. An illustration of the location of AKAPs identified in cardiac myocytes. AKAPs are associated with ion channels including the L-type Ca$^{2+}$ channel (L_{Ca}^{2+}), the KCNQ1 delayed rectifier potassium channel (KvLQT1), ryanodine receptors (RyR), the cystic fibrosis transmembrane conductance regulator (CFTR), with the β_2 adrenergic receptor, sarcomeric proteins such as Troponin I and myosin binding protein- C (MBC) (taken from Kapiloff, 2003).
Figure 1.11. Schematic of a cAMP probe. In low cAMP concentrations the GFP tagged PKA is in its inactive tetrameric form and the FRET signal is maximal. When cAMP rises, active PKA catalytic subunits (C) are released; CFP and YFP diffuse apart and FRET is abolished (taken from Zaccolo & Pozzan, 2002).
Chapter 2

Materials and methods
2.1 Mammalian cell culture

2.1.1 HEK-293 cell line

HEK-293 cell line (ATCC CRL 1573) is a human embryonic cell with epithelial cell morphology. Cells were maintained in Dulbecco’s Modified Eagles Medium (DMEM) supplemented with 2mM glutamine, 10% foetal bovine serum (FBS), 100 units/ml penicillin and 100 µg/ml streptomycin in an atmosphere of 5% CO₂ and 37 °C. Cells were passaged at 80-90% confluency, they were split 1:5. To passage the cells, they were rinsed with pre-warmed PBS and 1-2mls of pre-warmed 0.25% trypsine/0.03% EDTA solution was added. Flasks were incubated at 37 °C until cells detached. Cells were collected by adding 10 ml of culture media and centrifugation at 1000 g for 3 min. The cells were then resuspended in fresh culture media and transferred into new culture flasks at approximately 10⁶ cells/ml final volume.

2.1.2 COS-1/ COS-7 cell lines

The COS-1/COS-7 cell lines (ATCC CRL 1650) are an African green-monkey derived cell line, with fibroblast morphology and are transformed with the SV40 virus. These cell lines were maintained and passaged as with HEK-293 cell line.

2.1.3 Neonatal rat ventricular myocytes

The ventricles were isolated from 2-3 day old Spague-Dawley rat hearts enzymatically digested at 37 °C using 0.48 mg/ml collagenase type II (Worthington) and 0.6 mg/ml pancreatin (Sigma) and suspended in a mix of 4 :1 DMEM :M199 supplemented with 10% horse serum and 5% fetal calf serum (all Sigma or Life Technologies) and were plated for 1 h on plastic culture plates to deplete fibroblasts. The non-adherent myocytes were the plated out at concentration of 1 million cells/well in 1% (w/v) gelatin pre-coated 6-well plates. After 24 hs the medium was changed to low serum medium (DMEM:M199) containing 4% horse serum and no calf serum.
2.2 Transfection of cells

2.2.1 DEAE-Dextran transfection of COS-1 cell line

The cells were passaged the day prior to transfection and allowed to grow to 50-70% confluency. The plasmid DNA (10 µg) was diluted to 250 µl with sterile TE buffer (1 mM Ethylenediaminetetra-acetic acid (EDTA), 10 mM Tris/HCL, pH 7.5) in sterile 15 ml centrifuge tube. To this tube, 200 µl sterile DEAE Dextran (10 mg/ml in PBS) was added, mixed and incubated at room temperature for 15 min. 10 ml of media supplemented with 10 % FCS, 2 mM glutamine and 100 units/ml penicillin and 100 µg/ml streptomycin. 1 mM filter sterilised chloroquine was added to the DNA. This solution was mixed and added to the cells which were then incubated at an atmosphere of 5% CO₂ and 37 °C for 3-4 h. After incubation, the media was removed and replaced with 10 ml sterile PBS supplemented with 10 % DMSO. Cells were incubated for 2 min, washed with PBS and fresh culture media was added. The transfected cells were incubated at an atmosphere of 5% CO₂ and 37 °C for 24-48 h.

2.2.2 PolyFect® transfection of HEK-293 cells

Transfection of HEK-293 cells was carried using PolyFect® reagent (Qiagen). The cells were passaged into 100mm dishes the day prior to transfection and grown to 50%-80% confluency. DNA, 8µg was diluted to a total of 300µl in basal medium (DMEM) in a sterile 15ml centrifuge tube and mixed. 80 µl of PolyFect® was added to the DNA solution, and it was mixed by vortexing for 10 sec. The DNA solution was incubated at room temperature for 10-15 min. Growth medium, 1 ml was added to the DNA solution and mixed by gentle pipetting. The growth medium from the cells was aspirated and replaced with 7 ml of fresh growth medium. The total DNA mixture was then added to the cells and mixed by gentle swirling. The cells were harvested 24-48 h post transfection.
2.3 Protein analysis

2.3.1 Whole cell lysate

Cell culture dishes were maintained on ice and all buffers used were ice-cold to minimise protein degradation and denaturing of enzymes. The cell growth media was aspirated and the cells washed with PBS. The PBS was drained and approx 100μl/100 mm dish 3T3-lysis buffer (20 mM N-2-Hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES), pH7.4, 50 mM NaCl, 50 mM NaF, 10 % glycerol, 1 % triton X-100, 10 mM Ethyleneglycol-bis(P-aminoethylether)-N,N',N'',N'''-Tetra-acetic acid (EGTA), 30 mM sodium pyrophosphate, proteases inhibitor cocktail) was added. The cells were scraped, transferred to a 1.5 ml eppendorf tube and snap-frozen. The cell samples were then thawed at 4 °C and subjected to mechanical disruption using a micropesle (Eppendorf). The cell debris was removed by centrifugation for 3 min at 10000g (4 °C). The cell lysates were stored at -80 °C until required for use.

2.3.1.1 Protein quantification (Bradford assay)

All protein assays were carried on 96 well titre plates. A standard curve of protein concentration was generated using 0.5 mg bovine serum albumin (BSA) diluted to 1 ml in distilled water. A protein concentration range of 1 μg/μl - 5 μg/μl was used for the assay. The protein quantification was carried out by taking 2 μl of lysate and placing (each sample in triplicate) in the microtitre plate. Bio-Rad Assay reagent was diluted 1/5 with distilled water, 200 μl was added to each well of BSA and lysate sample. The 96 well plate was then analysed using the Revelation program and an MRX microtitre plate reader (absorbance read at 590 nm). Protein concentrations were obtained by plotting the standard curve and using the least squared regression analysis to obtain the line of best fit. The equation of the line was used to determine the protein concentration of samples.
2.3.2 Gel electrophoresis and Western blotting.

2.3.2.1 Sample preparation

Lysate obtained from cells were assayed for protein concentration and 25 –100 µg protein diluted 1/5 with 5 x laemmli sample buffer (260 mM Tris/HCl pH 6.7), 55.5 % Glycerol, 8.8 % SDS, 0.007 % Bromophenol blue, 11.1 % 2-mercaptoethanol (Laemmli, Beguin et al., 1970). The sample was boiled for 3-5 min to allow denaturation and reduction of the protein.

2.3.2.2 SDS PAGE gels

Gels were run on a Bio-Rad Protean II xi cell. A resolving gel containing the appropriate percentage of acrylamide (determined by the molecular weight of the protein of interest), usually 8 % unless otherwise stated, was cast between the two plates of the gel apparatus (8 % 29 :1 acrylamide:N,N'-methylenebisacrylamide mix, 375 mM Tris/HCl (pH8.8), 0.1 % SDS, 0.1 % Ammonium persulphate, 0.06 % N,N,N',N'-tetramethylethylenediamine (TEMED)). This was overlaid with 1ml water and allowed to polymerise at room temperature, the water was then removed, the resolving gel overlaid with stacking gel (5 % 29 :1 acrylamide:N,N'-methylenebisacrylamide mix, 125 mM Tris/HCl (pH6.8), 0.1 % SDS, 0.1 % Ammonium persulphate, 0.1 % TEMED). A comb was then placed into the stacking gel and it was left for 30 mins to polymerise. The comb was removed and the wells were washed out with tris-glycine running buffer (192 mM Glycine, 25 mM Tris, 0.15 % SDS) to remove un-polymerised acrylamide. The gels were then assembled onto the central running stand according to the manufacturer’s instructions and placed into the running tank containing tris-glycine running buffer. The pre-boiled samples were loaded into each well and a standard lane was loaded with 10 µl Bio-Rad pre-stained broad range precision protein markers to determine protein migration weight by gel electrophoresis. The top reservoir of the gel running tank was filled with running buffer and run for approximately 5 h at 35 mA per plate or 16 h at 8 mA per plate, until the dye front reached the bottom of the gel.
2.3.2.3 Nu-Page™ gel system

Pre-cast 4-12% Bis-Tris 1.0mm gels (Invitrogen) were used unless otherwise stated. The gels were assembled in Xcell SureLock™ tanks according to the manufacturer’s instructions. Depending on the molecular weight of protein of interest, either Nu-Page™ MOPS buffer or Nu-Page™ MBS buffer was used to fill the tank. The pre-boiled samples were loaded into each well and a standard lane was loaded with 5 µl Bio-Rad prestained broad range precision protein markers to determined protein migration weight. The gels were run at 190 V constant for 1 h.

2.3.2.4 Protein transfer

A piece of Whatmann 3 MM paper was soaked in transfer buffer (192 mM Glycine, 25 mM Tris, 20 % Methanol). The SDS gel was placed on this and overlaid with a piece of nitrocellulose paper (Schleicher & Schuell) soaked in transfer buffer, ensuring that all air bubbles were excluded from between all layers. The nitrocellulose was in turn covered by another piece of Whatmann 3MM paper and the resulting sandwich was placed in a cassette between two pieces of foam soaked in transfer buffer. The cassette was placed with the nitrocellulose to the positive electrode in the Hoefer TE series transphor electrophoresis unit, filled with transfer buffer. The proteins were transferred with an applied current of 0.7 amps for 90-120 mins or 0.05 amps overnight.

2.3.2.5 Immunoblotting

Once transferred onto the nitrocellulose, ponceau S stain (0.1% Ponceau S, 3 % Trichloracetic Acid) was used to visualise the proteins. The ponceau S was added to the nitrocellulose for a few mins until the proteins became stained, the nitrocellulose membrane was then washed with distilled water. The unoccupied protein binding sites on the nitrocellulose were blocked with 5 % skimmed milk powder in TBS-tween20 (137 mM NaCl, 20 mM Tris/HCl (pH7.6), 0.1% tween20) for 1 h at room temperature with agitation. After blocking the membrane was washed several times in TBS-tween20 and the appropriate primary antibody added to the membrane diluted 1:10000, unless
otherwise stated, in 1 % skimmed milk powder in TBS-tween20. This incubation was carried out for 2 hs with vigorous shaking. The nitrocellulose was washed several times in TBS-tween20 before adding the secondary antibody, diluted as with the primary, to the membrane. The secondary antibody was anti-immunoglobulin (IgG) antibody conjugated to horse-radish peroxidase (HRP) and directed against the primary antibody. This was incubated with the nitrocellulose membrane for 1 h with vigorous shaking, after which the nitrocellulose was washed several times in TBS-tween20. The membrane was then incubated with ECL reagents (Amersham), according to the manufacturer’s instructions. A piece of x-ray film (Kodak) was exposed to the membrane in a darkroom and then developed using a Kodak X-omat.

2.3.3 Immunoprecipitation

Depending on which antibody is used to immunoprecipitate the target protein, either protein G sepharose or protein A sepharose was used. If a monoclonal antibody or a polyclonal antibody raised in a sheep was required for the immunoprecipitation, protein G beads were used. Protein A beads were used when the target protein was being immunoprecipitated with any other polyclonal antibodies.

2.3.3.1 Pre-clearing

30 μl of the appropriate beads were washed in 200 μl of lysis buffer and recovered by centrifugation at 13,000 g for 2 min at 4 °C (Heraeus refrigerated bench-top centrifuge). This was carried out three times. The beads were then added to the cell lysate diluted to a total of 500 μl with lysis buffer (approx 300 μg of protein) and incubated with end-over-end rotation at 4 °C, for 30 mins. The samples were then centrifuged at 13,000 g for 2 min at 4 °C to recover beads.
2.3.3.2 Pre-Immune

If a pre-immune antibody was available, it was incubated with the cell lysate with end-over-end rotation at 4 °C for 30 mins. 30 μl of beads were then added to the lysate and again it was incubated with end-over-end rotation at 4 °C for 30 mins. The beads were recovered by centrifugation.

2.3.3.3 Binding of antibody and target protein complex to beads

After pre-clearing/incubation with pre-immune antibody the beads were collected by centrifugation at 13,000 g at 4 °C for 2 min, the supernatant was removed and placed into a fresh eppendorf tube. To this fresh tube 1-5 μl of the antibody was added and the tube rotated end-over-end at 4 °C for at least 2 hs, to enable the protein and antibody to bind. Then, 60 μl pre-washed protein beads was added to the sample and rotated end-over-end for at least 1 h at 4 °C. The beads were isolated from solution by centrifugation at 13,000 g at 4 °C for 2 min and washed to remove any non-specifically bound protein. The beads were washed at least five times in lysis buffer. A final wash of the beads was carried out with PBS if the isolated protein was to be used in SDS-PAGE or final wash was carried out in 20 mM Tris (pH 7.4), when the protein was used in a PDE assay.

2.4 Assays

2.4.1 Phosphodiesterase activity assay

A cAMP hydrolysis assay was used to measure phosphodiesterase activity. This used a modification of the two step procedure of Thompson and Appleman (Thompson and Appleman, 1971) as described previously by Marchmont and Houslay (Marchmont and Houslay, 1980). The assay worked on the basis that a ³H-cyclic nucleotide (8 position of the adenine or guanine ring) was hydrolysed to form labelled nucleotide mono-phosphate. The nucleotide mono-phosphate ring was converted to the corresponding labelled
nucleoside by incubation with snake venom which has 5'-nucleotidase activity. The conditions were such that complete conversion takes place within the incubation time. Unhydrolysed cyclic nucleotide was separated from the nucleoside by batch binding of the mixture to Dowex-1-chloride. This removes the charged nucleotides but not the uncharged nucleosides.

2.4.1.1 Activation of Dowex

To activate, 4 l of 1 M NaOH was added to 400 g of the Dowex 1 X8 resin, and the mixture was incubated for 15 mins at room temperature with gentle mixing. The resin was allowed to settle by gravity and the 1M NaOH removed. The resin was then extensively washed with 4 l distilled water (30 washes). After its last wash the resin was resuspended in 4 l 1 M HCl and incubated for 15 mins at room temperature with gentle mixing before being allowed to settle by gravity. The HCl was removed and the activated resin resuspended 1:1 in distilled water and stored at 4°C until required.

2.4.1.2 Assay preparation

Samples of cell lysate (0.1 -50 µg depending on activity) were placed into 1.5 ml eppendorf tubes and made up to a volume of 25µl with 20 mM Tris/HCl, pH7.4. Each sample was assayed in triplicate. All tubes were set up on ice, and remained on ice until all components for the assay had been added. To every tube 50 µl 2 µM cAMP containing 3 µCi [³H]cAMP in 20 mM Tris/HCl and 10 mM MgCl₂ pH7.4 was added, the tubes vortexed and incubated at 30 °C for 10 mins. After this time, the tubes were boiled for 2 mins to inactivate any PDE present and then cooled on ice. 25 µg snake venom (either Ophipnaghus Hannah or Crotalus atrox venom) in 25 µl 20 mM Tris/HCl, pH 7.4 was added to each tube, mixed by vortexing and incubated at 30 °C for 10 mins. The tubes were cooled on ice and 400 µl Dowex/ethanol/water, in a 1:1:1 ratio was added and mixed. The tubes were then further incubated on ice for at least 20 mins. The tubes were vortexed and the dowex separated from supernatant by centrifugation at
13000 g for 2 min (Heraeus bench top centrifuge). Finally, 150 μl of the clear supernatant was added to 1 ml Opti-scint scintillation fluid and counted on a Wallac 1409 liquid scintillation counter.

2.4.1.3 Determination of PDE4 and PDE3 activity

The PDE3 family is specifically inhibited by the drug cilostamide and the PDE4 family by rolipram. PDE inhibitors were dissolved in DMSO as 10 mM stocks and the inhibitors were diluted in PDE assay dilution buffer for use in assay. DMSO itself does not affect PDE activity at the concentrations used (Rena et al., 1995). Measurement of PDE activity with and without cilostamide (10 μM) and rolipram (10 μM) present gave the contribution of PDE3 and PDE4, respectively.

2.4.2 cAMP assay

Briefly, cells were stimulated and lysed, releasing the cyclic nucleotides. Following the release of the cyclic nucleotides, cAMP concentrations were determined using bovine crude PKA and 5'-8'-3H cAMP.

2.4.2.1 Extraction of cAMP and neutralisation

Cells, plated in 6-well culture dishes, were incubated in growth medium containing 100 μM IBMX for 10 min. The cells were then stimulated with the named agonist for the indicated time, the growth medium removed and 100 μl of chilled 2% perchloric acid (PA) added. The cells were incubated on ice for 15 min, scraped and transferred to 1.5 ml eppendorf tubes. The precipitated protein was pelleted by centrifugation at 13000 g at room temperature.
2.4.2.2 Neutralisation of sample

The supernatants were transferred to eppendorf tubes containing 5 µl of Universal Indicator (pH 4.0 – 11.0, BDH) and a pink colour was observed- indicating pH 4.0. Initially, 5 µl of a neutralisation solution (2 M KOH, 0.5 M Triethanolamine) was added and the samples vortexed. The neutralisation was then achieved by the gradual addition of the neutralisation solution and observation of a colour change of the sample to green, indicating pH 7.5. Samples were then stored at 4 °C for up to 1 week before continuation of next steps of the assay.

2.4.2.3 Reagent preparation

The following reagents were prepared on day of assay:

cAMP assay buffer: 50 mM Tris+ 4mM EDTA pH 7.4

Binding protein: (10 mg bovine crude fraction PKA (Sigma) + 125 mg BSA)/ 25 ml cAMP assay buffer. Dilute 5-fold in cAMP assay buffer on day of use.

[^H] 5', 3' cAMP: 8.7 µl of[^H] 5', 3' cAMP/ 10 ml of cAMP assay buffer

Charcoal solution: In assay buffer, 2% (w/v) activated charcoal and 1% BSA and was stirred on ice for at least 20 min before it was required.

cAMP standards: A starting concentration of 16 pmol of cAMP was required. To obtain this, 16 µl of 10 µM cAMP was diluted to 500 µl in assay buffer. A series of 2-fold dilutions were then made.
2.4.2.4 Assay procedure

A standard curve was obtained using a range of cAMP concentrations between 0.0625 pmol and 16 pmol. These tubes, along with the samples, were set up as follows:

<table>
<thead>
<tr>
<th>Tube no.</th>
<th>cAMP (pmol/50 µl)</th>
<th>Buffer (µl)</th>
<th>[³H] cAMP (µl)</th>
<th>Binding protein (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>-</td>
<td>200</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>3, 4</td>
<td>0.125</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>5, 6</td>
<td>0.0625</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>7, 8</td>
<td>0.250</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>9, 10</td>
<td>0.500</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>11, 12</td>
<td>1.00</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>13, 14</td>
<td>2.00</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>15, 16</td>
<td>4.00</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>17, 18</td>
<td>8.00</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>19, 20</td>
<td>16.0</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>23 -</td>
<td>samples</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

The tubes were set up as described on ice, adding the binding protein to the tubes last. Each tube was vortexed, incubated on ice for 2 h. Following incubation, 250 µl of charcoal solution was added and vortexed. The tubes where then centrifuged at 13000 g for 3 min, 300 µl of supernatant was decanted and added to 1 ml of scintillant. The [³H] cAMP was counted on a Wallac 1409 liquid scintillation counter. Curve-fitting software was used to calculate pmol unlabelled cAMP per sample.
2.4.3 In vitro PKA phosphorylation assay

The PKA phosphorylation assay was set up in eppendorf tubes on ice as follows; the required concentration of purified recombinant PDE4, 1 unit of active PKA catalytic subunit (Promega), phosphorylation buffer (100 mM Tris, 10 mM MgCl$_2$ pH 7.4) to a final volume of 45 μl. To each assay tube, 5 μl of radiolabelled substrate (10 μCi [γ32P-ATP], 2 mM ATP) was added and the tubes were incubated at 30 °C for 15 min. The samples were prepared for gel electrophoresis as described previously, and phosphorylation was detected using a Biorad Personal Fx phosphoinager. All densitometry was performed using Quantity One software.

2.5 Laser Scanning Confocal Microscopy (LSCM)

2.5.1 Preparation of slides

COS1 cells were transfected as described previously. 48 h post-transfection, the cells were plated onto coverslips (22 mm x 22 mm) in 6-well tissue culture plates. 72 h post-transfection, the cells were stimulated as stated and fixed for 10 min using 4 % paraformaldehyde (dissolved in Tris buffered saline (TBS) (150 mM NaCl, 20 mM Tris, pH 7.4). The coverslips were then washed three times, for 5 min each time, in TBS. The cells were then permeabilised by incubating each slide for 15 min in 0.2 % Triton dissolved in TBS. Cells were then blocked for 1 h using a blocking solution (10 % goat serum, 4 % BSA dissolved in TBS). The primary antibody was diluted to the required concentration in diluant (Blocking buffer diluted 2-fold in TBS), 200 μl the antibody solution was added to each slide and incubated at room temperature for 1 h. The coverslips were washed three times with 5 min incubations in blocking solution and then incubated for 1 h with the relevant fluorescent probes at 1:200 dilution (Alexa 594-conjugated anti-mouse IgG, Alexa 594-conjugated anti-rabbit or Alexa 488-conjugated
anti-rabbit (Molecular Probes). The cells were then washed five times in blocking solution before mounting the coverslips on slides with Immunomount (Sandon).

2.5.1.1 Visualisation of cells

The cells were visualised using a Plan-Apo 40 × 1.4 NA oil immersion objective and the Zeiss Axiovert 100 laser scanning confocal microscope (Zeiss, Oberkochen, Germany). The Alexa 594-conjugated antibody was excited at 543 nm and detected at 590 nm. The Alexa 488-conjugated antibody was excited at 495 nm and detected at 518 nm.

2.6 Molecular biology techniques

All molecular biology techniques were carried out with sterilised equipment and buffers, to prevent contamination.

2.6.1 Large scale production of plasmid DNA

The antibiotic Ampicillin or Kanamycin (100 mg/ml), depending on the antibiotic resistance of the plasmid, was added to sterilised 500 ml LB growth media (170 mM NaCl, 0.5 % (w/v) BactoYeast Extract, 1 % (w/v) Bacto-Tryptone, pH7.5). A sample of DNA of interest was taken from a glycerol stock of transformed cells and transferred to the 2 L flask of culture medium by means of a sterile pipette. The culture was incubated at 37 °C overnight with agitation. The cells were harvested the next day by centrifugation at 6000 g for 15 min using the JA-14 rotor in the Beckman refrigerated centrifuge. The DNA was extracted from the cell pellet using the Wizard Maxi-prep kit (Promega) according to the manufacturer’s instructions.

DNA was precipitated from the eluted solution by the addition of 0.7 volumes room temperature isopropanol. The solutions were mixed and centrifuged at 15000 g for 30
min at 4 °C. The DNA pellet was washed with 5 ml room temperature 70 % ethanol and air-dried for 5-10 min before being resuspended in 500 µl dH₂O.

2.6.2 RNA isolation

Mammalian cells were grown to 70 – 90% confluency in 75cm² tissue culture flasks. The cells were removed with Trypsin, transferred to 15 ml falcon tube and centrifuged at 1000 g. The supernatant was removed, the pelleted cells snap frozen and stored at – 80 °C until required. Total RNA was isolated from the cell pellet using a RNeasy Kit (Qiagen) and QIAshredders (Qiagen) in accordance to the manufacturer’s instructions.

2.6.3 Quantification of DNA and RNA

Both DNA and RNA concentrations were measured using a WPA lightwave spectrophotometer blanked with distilled water. 5 µl DNA or RNA was diluted to 1ml with distilled water and absorbance measurements were taken at 260 nM and 280 nM.

The concentration of nucleic acid was then calculated using the following approximations:

An absorbance of 1 at 260 nM corresponds to
- 50 µg/ml double stranded DNA
- 37 µg/ml single stranded DNA
- 40 µg/ml of single stranded RNA

The ratio between the absorbance measurements at 260 nM and 280 nM provided an indication of the purity of the nucleic acid. In solution, DNA or RNA have A₂₆₀ : A₂₈₀ ratios of 1.8 or 2.0, respectively. If the absorbance ratio is significantly less than this it indicates that the nucleic acid may be impure.
2.6.4 Analysis of plasmid DNA

2.6.4.1 DNA restriction digest

The restriction enzyme and the optimum restriction buffer used in the reaction depended on the site of digestion of the DNA for subsequent manipulations. If two restriction enzymes were used and the optimum restriction buffers were not compatible ethanol, precipitation of the DNA between restriction digests was carried out. Each digest was carried out on 300 ng DNA in a total volume of 10 µl per restriction enzyme used in the reaction. 1 unit of restriction enzyme was used and the appropriate volume of 10 x restriction added to the mix. The digests were carried out for 1-2 hs at the optimal temperature for the enzyme, usually 37 °C.

2.6.4.2 Agarose gel analysis of DNA

DNA was visualised using agarose gel electrophoresis, the percentage of agarose used in the gel was dependent on the size of DNA fragment to be identified. Generally 1 % agarose was dissolved in 1 x TBE (9 M Tris base, 20 mM EDTA, 0.9 M Boric acid acid) by heating until the agarose dissolved. To this 0.01 % ethidium bromide was added, which enables visualisation of the DNA under a UV light source. The molten agar was poured into the gel apparatus, set up according to the manufacturer’s instructions and allowed to set completely. The comb and end stoppers were removed, the gel tank filled with 1x TBE and the samples loaded into the lanes. All DNA samples were diluted 6:1 in Blue/Orange 6X loading dye (Promega). 5 µl standard 1Kb DNA ladder markers (Roche) were added to one of the lanes, which enabled prediction of the size of DNA fragments run on the gel. The gel was run at 50 V until the dye front had migrated along the gel and the fragments of DNA were separated. The gel was removed from the tank and the DNA observed under UV light.
2.6.5 Reverse transcription PCR

Total RNA was isolated as described previously. Frozen samples of total RNA were sent to Rachael Barber (Novartis) and she carried out the RT-PCR as follows:

Briefly, RNA samples were treated with Dnase (Qiagen) for 30 min at 37 °C and then tested by RT-PCR with and without reverse transcriptase. When this showed no contaminating DNA remained, samples were used to synthesise cDNA. 5μg of RNA was synthesised into first strand cDNA, and this was used for PCR profiling. Each PCR reaction mix used was tested with nuclease-free water as a negative control and brain cDNA as a positive control. All completed PCRs were run on 2 % agarose gels.

2.6.5.1 Dnase treatment

Each sample of RNA was made up to 75 μl with nuclease free water:

75 μl RNA
5 μl 20X DNase Buffer (0.6 mM Tris HCl, 72 mM MgCl₂, 120 mM NaCl)
20 μl RQ1 DNase

Reaction mix incubated for 30 min at 37 °C. Each sample was then re-purified up using Qiagen’s RNeasy Mini Kit (Clean-Up protocol). The RNA was measured for concentration.

2.6.5.2 RT-PCR Test

The clean samples were then tested by RT-PCR with and without reverse transcriptase to ensure no contaminating DNA remained. Promega’s Access RT-PCR Kit was used. Only when a sample had passed this test was it used to synthesise cDNA. A small volume of each RNA sample was diluted to 20 ng/μl, and the following reaction set up in duplicate, one with AMV-RT and one with the same volume of nuclease-free water in replacement;
5 μl Reaction Buffer (kit)
0.5 μl dNTPs (kit)
1 μl 25mM MgSO₄ (kit)
0.5 μl Tfl DNA Polymerase (kit)
2.5 μl β-actin Forward primer at 10 pmol/μl
2.5 μl β-actin Reverse primer at 10 pmol/μl
5 μl Nuclease-free water
5 μl RNA 20 ng/μl
3 μl AMV-RT or Nuclease-free water

These were run on the following PCR program (RT-PCR60):

- Step 1 48 °C for 45 min
- Step 2 94 °C for 2 min
- Step 3 94 °C for 30 sec
- Step 4 60 °C for 1 min
- Step 5 68 °C for 2 min
- Cycle back to Step 3, 39 times
- Step 6 68 °C for 7 min
- Step 7 4 °C pause

Completed reactions were run on a 2% agarose gel and visualised using EtBr and UV light.

2.6.5.2 cDNA Synthesis

RNA was synthesised into first strand cDNA using Amersham Pharmacia Biotech’s First Strand cDNA Synthesis kit. 5 μl of each RNA was diluted to 20 or 40 μl with nuclease-free water, and then heated to 65 °C for 10 min to denature any RNA secondary structure. Then 14 or 28 μl of cDNA reaction mix was added, and incubated for 1 h at 37 °C. The
completed reactions were made up to 100 µl with nuclease-free water so they would represent 50 ng of RNA per µl.

2.7 Microarray

Total RNA was isolated as described previously. Frozen samples of total RNA were sent to Novartis (Basle, Switzerland) and microarray analysis using the U133A chip was carried out as follows:

There were a total of 27 chips, grouped into 9 groups, as follows:

- PDE4A4 (3 chips)
- PDE4D3 (3 chips)
- PDE4D5 (3 chips)
- PDE4B2 (3 chips)
- PDE4A_2EL (3 chips)
- Ariflo (3 chips)
- Rolipram (3 chips)
- pCDNA control (3 chips)
- HEK control (3 chips)

Each group was compared with each other. Regulated genes were identified based upon fold-change and p-value.
Data Upload:

The data was downloaded from the DEMON database and then uploaded into GeneSpring for analysis.

Data Evaluation:

The data was plotted on box-plots to visualise the normality. The raw data displayed considerable variation. The following normalisation techniques were implemented:

- Measurements below 0 were set to 0.
- Each chip was normalised to the 50th percentile.

The normalised data, when viewed on a box-plot showed much less variation. In order to reduce the number of false positive results, the normalised data was used for the analysis procedure.

Data Cleaning:

Probes showing no expression in more than 50\% of the experiments were excluded from the analysis.

The U133A chip contains probes for a total of 22283 genes. After filtering out the absent calls there were 14022 genes remaining. The analysis procedure is based upon these genes.

Data Analysis:

Fold-Change: Mean expression values for each group were used to calculate the fold change between any two groups.
P-Value: A T-test was used to compare the mean values of each single gene between groups. A heteroscedastic students t-test was used as this assumed unequal variances.
Chapter 3

PKA phosphorylation and activation of PDE4 cAMP phosphodiesterases
3.1 Introduction

3.1.1 Protein kinase A (PKA)

In eukaryotic cells, protein phosphorylation namely the introduction of one or more negatively charged phosphate groups, invariably produces a conformational change which can affect protein functioning. Within the cAMP signalling system, PKA serves to activate a plethora of specific target proteins which ultimately lead to altered cellular functions. Protein kinase A (PKA) is regarded as the main target and detector of cAMP, and through binding of cAMP is activated and can phosphorylate its target protein(s), which usually have a consensus motif of R-R-\(\psi\)-S (\(\psi\): hydrophobic).

In the absence of cAMP, PKA is an inactive enzyme consisting of two catalytic subunits (C) bound to a dimerised regulatory subunit (R). Upon the cooperative binding of two cAMP molecules to each of the R subunits, the active C subunits dissociate and are free to phosphorylate serine and threonine residues on target proteins (Tasken and Skalhegg, 2000). Multiple isoenzymes of PKA exist and are suggested to be targeted within the cell through association with different A kinase anchoring proteins (AKAPs). The R-I subunits are found mainly in the cell cytosol whilst the R-II subunits are mostly found associated with the cellular membranes and cytoskeleton. This association of R-II subunits with the cell membranes is generally considered to be mediated by interaction with AKAPs. Thus an anchored isoform of PKA R-II is able to sample gradients of cAMP created by localised adenylyl cyclase isoforms, and anchored and/or cytosolic PDEs (Houslay, 1998).

3.1.2 PKA phosphorylation of PDE4D3

The PDE4 family is encoded by four different genes (PDE4A, PDE4B, PDE4C and PDE4D) and can produce a number of different isoforms through alternative mRNA splicing and the use of different promoters. Within a specific PDE4 subfamily, each isoform possesses a common catalytic region and C-terminal region but each possesses a
unique N-terminal region. Each isoform of the PDE4 family can be classed as short or long form depending on the presence or absence of UCR1; long form PDE4s possess both UCR1 and UCR2, short form PDE4s lack UCR1. Truncation studies have shown that the UCR1 and UCR2 can influence catalytic activity (Bolger et al., 2000). It is thought that these regions of PDE4s can interact directly with each other via electrostatic interactions forming a regulatory module (Bolger et al., 2000) and this regulatory effect can be altered by ERK MAP kinase and PKA (MacKenzie et al., 2000). Extensive studies have shown that the PDE4D3 long isoform is rapidly activated and uniquely phosphorylated by PKA. Such phosphorylation occurs at two sites, namely Ser 13 in its unique N-terminal region and Ser 54 in the UCR1 (figure 3.1) (Conti and Sette, 1996; Hoffman et al., 1999; Lim et al., 1999; Liu and Maurice, 1999; Liu et al., 2000; MacKenzie et al., 2000; Baillie et al., 2000). Mutational studies have shown that only PKA phosphorylation of Ser 54 is however required for activation (Sette and Conti, 1996), with the role of Ser 13 unknown. Interestingly, several investigators have suggested that a decrease in mobility of PDE4D3 is observed upon PKA phosphorylation and that mobility shift is related to enzyme activation.

This chapter follows the time-dependent phosphorylation by PKA, of both Ser 13 and Ser 54 within PDE4D3. For the first time, a phospho-specific antiserum has been generated to assess the individual PKA phosphorylation state of each of these sites.

Sequence alignments (figure 3.2) have shown that the PKA consensus sequence (RRESF) found in the UCR1 of PDE4D3 is also found in the UCR region of all PDE4 longforms from all PDE4 subfamilies. An antiserum was generated to the phosphopeptide sequence: SQRRES*FLYSDSGYDLSP (which reflects the amino acid sequence 49-67 of PDE4D3). This antiserum was shown to be specific for Ser 54(P) and employed to assess the capability of long PDE4 isoforms from each of the subfamilies to be phosphorylated by PKA. The over-expression of the selected PDE4 isoforms in the COS1 cell line was chosen for all experiments.
Results

3.2 Analysis of PKA phosphorylation of PDE4D3 and selected various other PDE4 long isoforms.

In this study, phospho-specific antibodies were used to assess the PKA phosphorylation state of PDE4D3 and other selected PDE4 long isoforms. Concerning the PKA phosphorylation of PDE4D3, I showed that the phosphorylation of both the Ser 13 and Ser 54 sites are required to obtain the low mobility species of PDE4D3 commonly observed upon SDS-PAGE analysis (Sette and Conti, 1996). The PDE4D3 PKA phosphorylation data also suggests that the phosphorylation of the Ser 54 may even precede that of Ser 13. In this chapter, I show that long isoforms from each of the four sub-families can be phosphorylated by PKA.

3.2.1 The detection of PKA phosphorylated at Ser 54 and Ser 13 sites by novel polyclonal antisera.

The phospho-specific antibodies were generated to the phospho-peptide sequences SQRRES*FLYSDDSYDLSP (reflects amino acids 49-67 of PDE4D3; within UCR1) and FRRHS*WISFDVNGTSAGR (reflects amino acids 9-27 of PDE4D3; within unique N-terminal region). The antibodies were named PS54-UCR1 and PS13-4D3, respectively.

To test the novel antibodies for specificity, COS1 cells were first transfected to express PDE4D3. In order to raise cAMP levels and thereby activate PKA, the cells were treated for 10 min with the general PDE inhibitor IBMX (100 μM) together with the general adenyl cyclase activator forskolin (100 μM) prior to harvesting. Lysates from untreated cells (basal) and IBMX/forskolin (IBMX/fsk) treated cells were subjected to SDS-PAGE electrophoresis. The immunoblots were then used to test the PS54-UCR1 and PS13-4D3 antibodies (figure 3.3). Neither antibody detects any immunoreactive species of PDE4D3
under basal conditions. However, both antibodies clearly detect an immunoreactive species at the PKA at raised cAMP levels (IBMX/fsk treated cells), consistent with PDE4D3 being PKA phosphorylated. Indeed, the detection of this species is blocked by treating the cells with the PKA inhibitor, H89 (1 μM) and also by pre-incubating the antibodies with the peptide to which they were raised prior to blotting (MacKenzie et al., 2002).

3.2.2 PKA phosphorylation and activation of PDE4D3

As the antibodies appeared specific for both PKA consensus sites in PDE4D3, they were used to study further the PKA phosphorylation and regulation of this PDE. To follow the phosphorylation rates of both Ser 13 and Ser 54 sites, COS1 cell were transfected with VSV-tagged PDE4D3 and subjected to an IBMX/forskolin time course (0-20 min) (figure 3.4).

In the absence of IBMX/ forskolin, PDE4D3 migrated as a single ‘high-mobility’ species (panel A). At 1-2 min IBMX/forskolin challenge both a ‘high-mobility’ and ‘low-mobility’ (doublet) was evident. The blots were stripped and reprobed with the PS54-UCR1 and a very similar pattern was observed (panel B). At 0 min a phosphorylated species was not detected, at 1-2 min a doublet was observed and PDE4D3 migrated identically to the ‘high-mobility’ and ‘low-mobility’ identified with the VSV antibody. However, at 0 min the PS13-UCR1-4D3 antibody did not detect a phosphorylated species. Each film exposure from the PS54-UCR1, VSV and PS13-UCR1-4D3 blots were overlaid. According to the overlay, and the direct comparison of the VSV and PS13-UCR1-4D3 blots, only a single reduced mobility species of Ser 13 was evident (MacKenzie et al., 2002).

The cAMP hydrolysing activity of PDE4D3 for the IBMX/Fsk time course described in the previous figure was assessed. COS1 cell were transfected with VSV-tagged PDE4D3 and subjected to an IBMX/forskolin time course (0-20 min). Cells were harvested at the indicated time points and the specific PDE activity was measured by PDE assay from...
developed by Marchmont and Houslay (Marchmont and Houslay, 1980). This shows that the activity of PDE4D3 increased 2-3 fold in response to IBMX/forskolin treatment.

3.2.3 Analysis of the putative PKA phosphorylation of PDE4 long isoforms

It has been pointed out that an identical PKA consensus sequence to that found in the UCR1 of PDE4D3 is also found in the UCR1 of all long isoforms from each PDE4 subfamily (Sette & Conti, 1996; Souness & Rao, 1997) (figure 3.2). However, it had not been shown whether PKA could either phosphorylate or activate these various long isoforms from other PDE4 sub-families and it could not be simply be presumed that they are either able to be phosphorylated by PKA, and if so, activated. Indeed, the linker regions which connect the UCR1, UCR2 and catalytic regions have different primary amino acid sequences which may affect the accessibility of PKA to these enzymes and generation of an active state. I set out to assess whether PKA can phosphorylate long isoforms from each subfamily and if they were then activated.

3.2.3.1 PKA can phosphorylate long isoforms from PDE4A, B, C and D sub-families.

I wished to study if PKA did indeed phosphorylate the target serine within the UCR1 of long PDE4 isoforms from each sub-family in response to an IBMX/forskolin-induced increase in cAMP. COS1 cells were transfected with selected PDE4 long isoforms or mutants of these long isoforms where the putative target serine was mutated to alanine. The transiently transfected cells were pretreated with H89 or not and challenged for 10 min with IBMX/forskolin. The lysates analysed by western blot using PS54-UCR1 antibody to detect PKA phosphorylated species (figure 3.6a). In this experiment, after the challenge of the cells with IBMX/forskolin a PKA phosphorylated species was detected with the PS54-UCR1 antisum for PDE4A8 (96 kDa), PDE4B1 (104 kDa), PDE4C2 (80 kDa) and PDE4D3 (105 kDa). Phosphorylation was not detected at basal cAMP levels, following pretreatment with H89 or in mutant isoforms.
In a separate experiment (performed by Simon MacKenzie, Houslay laboratory), the in vitro PKA phosphorylation of the long isoforms used in the previous experiment was shown (MacKenzie et al., 2002). Here, COS1 cells were transfected with either wild type or mutant PDE4 long isoforms as in the previous experiment. Lysates were treated with activated PKA catalytic sub-unit and [\(^{32}\)P] ATP and analysed by SDS-PAGE and a phosphorimager (figure 3.6b). Phosphorylation was detected in the presence of the active catalytic PKA sub-unit, however, phosphorylation was not detected in the presence of the PKA inhibitor H89, in the PKA target serine mutants and in the absence of the PKA catalytic subunit.

3.2.3.2 PKA phosphorylation of the novel rat PDE4 long isoform PDE4B4.

During the study of the PKA phosphorylation of long PDE4 isoforms, a new cDNA termed pRPDE90 was cloned. This encoded a novel PDE4B isoform which we called PDE4B4. This PDE4B isoform is a long isoform, which possesses UCR1 and UCR2, and differs from the other PDE4B isoforms by a unique 17 amino acid N-terminal region (figure 3.7a). As it also possesses a PKA consensus sequence at the beginning of the UCR1, I set out to see if PKA phosphorylates PDE4B4 over-expressed in COS7 in response to treatment of the cells with either a cAMP analogue or to elevate cAMP levels with IBMX/fsk.

In this set of experiments, the PS54-UCR1 antibody was used to detect the PKA phosphorylated species of PDE4B4. COS7 cells were transfected with Flag-tagged PDE4B4 (C-terminal epitope tag), and were treated with the cAMP analogue dibutyryl cAMP (dbcAMP; 100\(\mu\)M) in the absence and presence of H89 (0.5 \(\mu\)M). Lysates were analysed by western blotting with PS54-UCR1 and anti-Flag antibodies (figure 3.7b&3.7c). A PKA phosphorylated species was observed in the presence of dbcAMP, and the phosphorylation was reduced upon pretreatment with H89. A phosphorylated species was not observed in resting cell (basal) or in the mock control.

To analyse the PKA phosphorylation and activation of PDE4B4 in response to an elevation in cAMP generated by adenylyl cyclase, COS7 cells were transfected with
Flag-tagged PDE4B4, subjected to 10 min with IBMX (100 μM)/forskolin (100 μM) challenge either with or without H89 (0.5 μM) pretreatment. The PDE4B4 isoform was immunoprecipitated with anti-Flag agarose beads, analysed for PDE activity and immunoblotted with PS54-UCR1 and anti-Flag antibodies (figure 3.7b). A phosphorylated species was observed in the presence of IBMX/forskolin and was ablated with H89. The PDE activity of PDE4B4 increased by approximately 50% in response to IBMX/forskolin challenge, and this activation was blocked with H89.

3.2.4 Analysis of endogenous PDE4D3 and PDE4D5 in COS1 cells.

It is now recognised that cAMP signaling is compartmentalized and many studies suggest that PDE4s can be distributed in distinct subcellular locations (Houslay and Adams, 2003) (See chapter 1). As compartmentalisation of PDE4s would allow the control of distinct pools of PKA, the PS54-UCR1 antibody may be useful in analysing the activation of different PDE4 long-forms phosphorylated and activated in response to the generation of distinct cAMP pools and gradients.

In this experiment, I set out to assess the possibility of using the PS54-UCR1 antibody to detect the phosphorylation status of endogenous PDE4D3 and PDE4D5 endogenously expressed in COS1 cells. To achieve near maximum cAMP levels and PKA activity, COS1 cells were subjected to an IBMX (100μM) /forskolin (100μM) challenge with analysis over the indicated time course (figure 3.8). As a control, cells were pretreated with H89 (0.5 μM) before being challenged for 10 min with IBMX/forskolin. Cells were lysed at the indicated time points, lysates analysed by SDS-PAGE and immunoblotting with PS54-UCR1 (panel A) and pan PDE4D antibodies (panel B). The PS54-UCR1 antibody appeared to detect many other ‘non-specific’ bands, however using the pan-PDE4 immunoblot as an overlay, phosphorylated PDE4D3 and PDE4D5 is indicated with arrows. A time-dependent increase in phosphorylation was observed, and phosphorylation of the 10 min time point was ablated by H89. Panel B shows a time-
dependent mobility shift of PDE4D3, which was blocked by H89. However, from 0 to 8 min of the time course (indicated by blue arrows), a non-specific phosphorylated band which migrated at the same weight of PDE4D3 was also observed.

3.3 Discussion

It had been previously established the long isoform PDE4D3 is a target for phosphorylation and activation by PKA (Sette and Conti, 1996; Hoffman et al., 1998). This isoform is ubiquitously expressed in a variety of different tissues and cells. The PKA phosphorylation of PDE4D3 has been shown to result in a rapid 2-3 fold activation of this enzyme (Sette et al., 1994; Alvarez et al., 1995; Sette and Conti, 1996; Hoffman et al., 1998) and this rapid activation has been suggested to act as means of desensitization to the cellular cAMP response (Sette and Conti, 1996; Housley review, 1998). Biochemical analysis has shown that Ser 13 within the unique N-terminal and Ser 54 within the UCR1 are phosphorylated by PKA (Hoffman et al., 1998; Sette and Conti, 1996). For the first time antiserum had been developed to two specific PKA sites in PDE4D3, namely, Ser 54 in the UCR1 and Ser 13 in the unique N-terminus. The development of these antiserum provided me with the means to study the PKA phosphorylation of PDE4D3.

PKA phosphorylation of PDE4D3 results in an altered electrophoretic mobility on SDS-PAGE. The reason for this mobility 'shift', which has been suggested to indicate the activation of this enzyme, has yet to be explained (Sette and Conti, 1996; Oki et al., 1998). I show, through activation of adenylyl cyclase, a time-dependent decrease in the mobility of PDE4D3. At 1 min of IBMX and forskolin challenge both a low mobility and high mobility species existed and for the remainder of the time points, the majority of PDE4D3 shifts to a low mobility species. Within the same time course and, this 'band shift' was paralleled using the antiserum specific for PKA phosphorylated Ser 54 (PS54-UCR1) within the UCR1. At the 1 min time point, PS54-UCR1 detected a 'band-shift' which, following the overlay of the film exposures of VSV and PS54-UCR1 blots, is akin to both de-phosphorylated and phosphorylated PDE4D3. However, the antiserum specific for PKA phosphorylated Ser 13 (PS13-4D3) within the unique N-terminal,
following the overlay of the film exposures of PS13-4D3 and VSV blots, only detected a single low mobility species at all time points. A time-dependent increase in phosphorylation was also observed with PS13-UCR1. This suggests that in COS1 cells the PKA phosphorylation of both sites are required for the mobility shift and that the phosphorylation of Ser 54 may even precede that of Ser 13. The notion that the phosphorylation of both sites is required for the ‘band-shift’ is further suggested by mutation of either these sites to alanine preventing the PKA mediated change in mobility of long-form PD4D3 (MacKenzie et al., 2002).

Other than the generation of PDE4D3 by the PDE4D gene, three other PDE4 gene families (A, B and C) also generate a range of long-form PDE4s. All long-forms contain a PKA consensus sequence Arg-Arg-Glu-Ser-Phe. I show, using selected long isoforms, that PKA can phosphorylate the cognate target serine within the UCR1 of long-form PDE4s from each sub-family. In intact cells the PS54-UCR1 antibody detected the PKA phosphorylation of transiently transfected PDE4A8, PDE4B1, PDE4C2 and PDE4D5 following the activation of adenylyl cyclase. For each long-form, this phosphorylation was ablated using the PKA inhibitor H89 and by mutating the putative target serine to alanine. The PKA phosphorylation of these isoforms has been demonstrated in vitro (figure 3.6b). In this experiment, recombinant active catalytic unit of PKA is shown to phosphorylate the wild type but not the mutated alanine forms. Further experiments from our research group have shown that these isoforms are activated by PKA. Thus, it has been shown by two approaches that PKA phosphorylates a cognate serine residue in UCR1, and that this phosphorylation results in an activation of the PDE4. This analysis may serve as a model of the phosphorylation and activation of endogenous PDE4s where PKA is activated in response to localised increases in cAMP.

During my PKA studies, as discussed above, a new PDE4B long form (pRPDE90) was cloned from cDNA isolated from rat brain and characterized (Shepherd et al., 2003). This novel PDE4B long form was named PDE4B4 and differed from the other previously isolated PDE4B long forms due to its 17 amino acid N-terminus. It had been found to be more active than PDE4B1 and exclusively found in the cytosol. As with all the other
previously characterized PDE4 long forms, PDE4B4 possesses a PKA consensus sequence within the UCR1, however, its unique N-terminal region might have conferred a conformational alteration which could prevent the access of PKA. I set out to ascertain if PDE4B4 was phosphorylated and activated by PKA in response to elevated levels of cAMP. Using the PS54-UCR1 antiserum I found in COS7 cells transiently transfected with PDE4B4, that this novel PDE4 long form was indeed phosphorylated by PKA in response to elevation of cAMP (via activation of adenylyl cyclase). This phosphorylation was ablated by pre-incubation with the general PKA inhibitor H89. An elevation in cAMP through the activation of adenylyl cyclase also resulted in a 1.5-2 fold increase in the activity of PDE4B4. Additionally, I show by treating cells with a cAMP analogue (dibutryl cAMP), PDE4B4 becomes phosphorylated by PKA and that H89 ablated this phosphorylation.

There is growing evidence that PDE4s are anchored to specific subcellular locations (Houslay & Miligan, 1997; Houslay et al., 1998; Houslay, 2001) and anchored, localised PKA can sample and respond to cAMP gradients (Colledge and Scott, 1999). Therefore, the PS54-UCR1 antiserum may provide an interesting tool to analyse the PKA phosphorylation status of endogenous long form PDE4s in response to generation of localized cAMP pools by different Gs-coupled agonists. As a prelude to examining the putative differential PKA phosphorylation of PDE4 longforms in response to localized cAMP gradients, I devised a basic experiment to test the PS54-UCR1. I chose the COS1 cell line which is known to endogenously express a range of PDE4 long forms including PDE4D3 and PDE4D5. In order to obtain a time-dependent near maximal increase in cAMP levels within these cells, I subjected them to IBMX/forskolin time course. The lysates were then analysed with the PS54-UCR1 antiserum in order to compare the phosphorylation PDE4D3 and PDE4D5. After many changes in experimental conditions, the PS54-UCR1 antibody was decided to be inappropriate to use for the detection of PKA phosphorylated PDE4s as it detected too many 'non-specific' bands upon western blotting.
Figure 3.1 A schematic of long form PDE4D3. The novel antisera PS13-4D3 and PS54-UCR1 were generated to the peptide sequences which represent amino acids 9-27 (unique N-terminus) and 49-67 (UCR1) of 4D3, respectively. Underlined are the PKA consensus sequences, and the phosphorylated serine is indicated as (S*).
Figure 3.2 Sequence alignment of selected long PDE4 isoforms from each PDE4 subfamily. The amino acid sequences of PDE4A4, PDE4B1, PDE4C2 and PDE4D3 are aligned. The PKA consensus sequence (RRSEF) is found in the upstream conserved region (UCR1) is highlighted in purple, the UCR1 and UCR2 regions are underlined. Sequences were obtained from Genbank and aligned using Clustal Program.
Figure 3.3 Detection of PKA phosphorylated PDE4D3. COS1 cells were transfected with wildtype PDE4D3 and were treated with IBMX (100 μM) and forskolin (100 μM) to increase cAMP levels. Cells were then harvested and analysed by western blot. Blots were probed with PS54-UCR1 antiserum (panel A) and PD13-4D3 (panel B). The antiserum was also treated with the phosphopeptide used to generate it (in 10 fold excess).

(A) PDE4D3

(B) PDE4D3
Figure 3.4 Determination of the time-dependent mobility shift of PDE4D3 using the PS13-4D3 and PS54-UCR1 antisera. COS1 cells were transfected with VSV-tagged PDE4D3 and treated with IBMX (100 μM) and forskolin (100 μM) over a time course of 0-20 min. Cells were harvested and analysed by western blot. Blots were probed with anti-VSV (panel A), PS54-UCR1 (panel B) and PD13-4D3 antisera (panel C). This data represents at three separate experiments using separate transfections.
Figure 3.5 PDE4D3 activity in response to IBMX/forskolin challenge. COS1 cells were transfected with VSV-tagged PDE4D3 and treated with IBMX (100µM) and forskolin (100 µM) over a time course of 0-20 min. Cells were harvested at the indicated time points for the analysis of PDE4 activity (pmol/min/mg). Data shown as the percentage of control represents three experiments +/- S.E.
Figure 3.6a PKA phosphorylation of longform PDE4s. COS1 cells were transfected with the indicated PDE4 isoform. The cells were treated with IBMX (100 μM) and forskolin (100 μM) (indicated as fsk). Also, Cells were pre-treated with H89 (0.5 μM) prior to fsk treatment. Wildtype (Wt) isoforms and isoforms were the putative serine target for PKA phosphorylation was mutated to alanine where used in this experiment. These mutants were (A) Ser 89 Ala- PDE4A8, (B) Ser 133 Ala- PDE4B1, (C) Ser 13 Ala- PDE4C2 and (D) Ser 126 Ala- PDE4D5. Data represents three experiments. Blots were stripped and re-probed for the appropriate isoform (data not shown).
Figure 3.6b PKA phosphorylation of long form PDE4s. COS1 cells were transfected with the indicated PDE4 isoform. The lysates were treated with a phosphorylation mixture including [32P] ATP in the presence or absence of active PKA catalytic subunit. Lysates were analysed by SDS-PAGE gel and phosphoimager. Isoforms where the putative serine target for PKA phosphorylation was mutated to alanine were used in this experiment. These mutants were as in previous figure (figure 3.6). Data represents three experiments performed by S.J. MacKenzie (S.J. MacKenzie et al, 2002).
Figure 3.7 PKA phosphorylation of the rat longform PDE4B4. (A) A schematic of rat PDE4 transcripts and their encoded proteins. The four dark boxes represent the unique N-terminal regions of each isoform (taken from Shepherd et al, 2003). (B) COS1 cells were transfected with Flag-tagged PDE4B4. The cells were treated with 100 μM dibutylri cAMP (dbcA) for 10 min with and without 0.5 μM H89, analysed by SDS-PAGE and immunoblotted with PS54-UCR1 (upper panel) and anti-flag antiserum (lower panel). (C) Also, transfected cells were treated for 15 min with IBMX (100 μM) and forskolin (100 μM) with and without H89 (0.5 μM), PDE4B4 was immunoprecipitated from the lysates using using anti-Flag agarose beads, and analysed by immunoblotting with PS54-UCR1 (upper panel) and anti-Flag antiserum (lower panel). Data represents n=3.
Figure 3.8 Analysis of the PKA phosphorylation of endogenously expressed PDE4D3 and PDE4D5. COS1 cells were treated with IBMX (100 μM) and forskolin (100 μM) for the indicated time points. Cell lysates were analysed by Western blot. Panel A was probed with PS54-UCR1 antiserum. The blot was stripped and re-probed with pan-PDE4D antiserum. In panel B, The arrows indicate endogenous PDE4D3 and PDE4D5. In panel A, the arrows indicate bands which may represent PKA phosphorylated PDE4D3 and PDE4D5. The blue arrow indicates a non-specific band which migrated at the same weight as PDE4D3 from 0 to 8 min of the time course.
Chapter 4

The differential susceptibility of dominant negative/catalytically inactive PDE4 isoforms to PKA phosphorylation in COS1 cells
4.1 Introduction

The idea of signalling molecules being tethered to distinct subcellular compartments has long been discussed in the field of second messenger signalling, in particular cAMP signalling where the first notion of compartmentalisation of a signalling system was formulated (Brunton et al., 1981).

Protein kinase A (PKA) is the main effector of cAMP. However, depending on the cellular response required, it has a large array of possible targets which are expressed in a cell-type specific fashion. Over the last decade, researchers have elegantly shown that a specific cellular response to cAMP can be achieved through the compartmentalisation of signalling proteins (Brunton et al., 1981; Zaccolo and Pozzan, 2002; Mongillo et al., 2004; Ruehr, 2004; Brunton). This requires that gradients of cAMP are formed and shaped within cells. Degradation of cAMP through PDE activity provides a clear route to achieve this, especially so as both soluble and membrane-bound PDE forms have been noted. It has been shown that various members of the PDE4 cAMP specific phosphodiesterase family are targeted to distinct intracellular locations (Houslay & Adams, 2003). As such they are poised to tailor pools and gradients of cAMP in cells and, thereby, 'control' the activation of localised PKA. The family of AKAPs (A kinase anchoring proteins) has been shown to act as signalling scaffolds, able to organise PKA, protein phosphatases, protein kinase C, various PKA substrates and even PDE4s. Thus AKAPs may serve to recruit and organise signalling proteins including PKA and PDE4 together in discrete regions of cells (Dodge et al., 2001; Tasken et al., 2001).

A large family isoforms provide adenylyl cyclase (AC) activity. Remarkably little detailed understanding is available concerning this important family. However, one key feature is their very different basal activity and different degrees of activation by Gs. That AC has a basal activity leads to the possibility that cells will slowly accumulate cAMP, thereby leading to the activation of PKA. Indeed, basal PKA activity is evident in many cells and investigators invariably assess the degree (fold) to which this is increased by the
action of G-protein coupled receptor (GPCR) agonist that activate AC through Gs. Of course the steady state level of cAMP that is reached in resting cells will depend not only on AC activity but also on the prevailing PDE activity in cells. Given that AC is localised to the cell plasma membrane, and even sub-domains within it, then anchored PDEs will have the role of creating and shaping cAMP gradients within resting cells. However, little is known about how PDEs may influence gradients of cAMP in unstimulated cells. This is despite the fact that PDE inhibitors are being developed for use therapeutically in, presumably attempting to regulate cell functioning under such conditions. The identification then of particular PDEs that may be specifically involved in regulating PKA activity in unstimulated cells may be of particular importance.

We hypothesised that in resting cells, PDE4s anchored either directly or indirectly to AKAPs may be particularly poised to regulate anchored PKA activity. For such anchored PDEs may be expected to exert spatial effects on signalling by controlling cAMP levels in the immediate vicinity of AKAP-anchored PKA, in this instance through the regulation of cAMP levels generated by basally active adenylyl cyclase. In order to investigate this possibility we need to have a specific readout for PDE action and for PKA activity. Fortunately, PDE4 long isoforms provide such a means for assessment. Firstly, they can be phosphorylated by PKA in their conserved UCR1, hence providing an immediate read-out for PKA action on a specific PDE. Secondly, we have developed an approach whereby a single minimal point mutation in the catalytic of PDE4 isoforms which can render them inactive. This has allowed us to develop a dominant negative strategy whereby catalytically inactive long PDE4 isoforms from each of the four sub-families can be chronically overexpressed in cells where they dominate native PDE4s by some 100-fold. Under such conditions we surmise that according to the law of Mass Action these inactive species will replace the cognate, active endogenous PDE4 isoforms from any signalling complexes they are involved in forming in the transfected cells. We surmised that if such signalosomes involved anchored PKA where cAMP is channeled in resting cells, PKA would now be active as there is no active anchored PDE4 to constrain its activity by lowering cAMP levels. Consequently, the catalytically inactive PDE4 would become phosphorylated by PKA. This approach may thus identify specific PDE4
isoform as being specifically involved in constraining the activity of a distinct pool of PKA from activating by basal AC activity in resting cells.

Results

4.2 A study of the differential susceptibility of catalytically/dominant negative PDE4 isoforms to phosphorylation by PKA.

Using the dominant negative strategy, I show that in the COS1 cell model system, certain, but not all, dominant negative/catalytically inactive PDE4 isoforms detect active PKA under basal/resting conditions.

4.2.1 The mRNA PDE4 profile of the COS1 cell model

Previously, western blot analysis has shown the endogenous expression of long form PDE4A4, PDE4C2, PDE4D3 and PDE5. Also short forms PDE4B2, PDE4D1 and PDE4D2 have been identified. I confirm the presence of these isoforms by mRNA transcript analysis (figure 4.1). Total RNA was isolated from COS1 cells and sent to Rachael Barber at Novartis (Horsham, UK) for analysis. PDE4 generic primers and primers designed to detect specific PDE4 isoforms (see Appendix for details) were used to build a PDE4 profile of this cell line. cDNA from brain tissue was used as a positive control and water as a negative control. Amplicons for generic PDE4A, PDE4B, PDE4C, PDE4D, PDE3B and PDE7A were observed. The isoform specific primers identified the following PDE4 isoforms: PDE4A4, PDE4A10, 2EL, PDE4B1, PDE4B2, PDE4B3, PDE4D1, PDE4D1/D2, PDE4D3 and PDE4D5 (figure 4.1).

4.2.2 The generation of catalytically inactive/dominant negative PDE4s

A range of catalytically inactive/dominant negative PDE4s were generated by the Houslay laboratory. The laboratory took advantage of the publication of the X-ray crystal structure of the active catalytic unit PDE4B2 (Xu et al., 2000). As the catalytic domain is highly conserved throughout the PDE4 family, the crystal structure (Brookhaven Protein
Data Bank (PDB) accession number IFOJ provides an insight into the structure of the catalytic site of the PDE4 enzyme. Using the information from IFOJ, it was determined that the catalytic centre comprises a binuclear motif with a tightly held Zn$^{2+}$ ion coupled to a more loosely held Mg$^{2+}$ (figure 4.2) (Houslay and Adams, 2003). A single point mutation of D392 to A392 disrupts the Zn$^{2+}$ ion binding and renders the enzyme inactive. This point mutation results in a very conservative change which prevents the hydrolysis of cAMP but does not alter the interaction of cAMP. It can be assumed that if the dominant negative species acts as a sink, cAMP-dependent processes would be inhibited and one would expect to observe a null effect. It has already been demonstrated by Baillie et al., that dominant negative PDE4D5 can enhance the PKA phosphorylation status of the β2-adrenoceptor (Baillie et al., 2003). To generate the dominant negative PDE4 isoforms used within this chapter, a point mutation was made in the cognate Zn$^{2+}$ ion binding aspartate residue for each isoform.

I selected a range of long form dominant negative PDE4s from each sub family to study in COS1 cell model system. Firstly, I tested the constructs for PDE activity, noting that wild type enzymes and their dominant negative counterparts are cloned into the same vectors (pcDNA3). COS1 cells were transiently transfected with dominant negative and wild type PDE4A4, PDE4B1, PDE4C2 and PDE4D3 isoforms. PDE activity of the cell lysates was determined by phosphodiesterase assay (Marchmont and Houslay, 1980) and is given here as pmol of cAMP hydrolysed per min per mg of PDE (pmol/min/mg). This PDE assay clearly shows that the overexpressed dominant negative PDE4s have minimal activity compared to the wild type enzymes. Indeed, the dominant negative species have an activity that is comparable to that of the mock control (empty vector transfection). In order to establish whether the over expression of the dominant negative themselves altered basal cAMP levels within the COS1 cells, cAMP assays were performed following the transfection of each dominant negative construct (figure 4.4). Total cAMP levels were measured for each population of cells over expressing each dominant negative and compared to a mock transfection. It was concluded from these assays, that the global, averaged cAMP levels did not significantly change following the expression.
of any of the dominant negatives. A total cAMP level of approximately 10 pmol per 10^6 cells was observed.

4.2.3 Phosphorylation status of catalytically inactive/dominant negative PDE4 isoforms

In a COS1 cell model, I studied the ability of the dominant negative long PDE4 isoforms to provide targets for PKA action using the phospho-specific PS54-UCR1 antibody (as in previous chapter). This specifically detects the phosphorylation of a single serine in a conserved PKA consensus motif (RRESF), located in the UCR1 found in all long PDE4 isoforms. For this study, cells were transfected with the dominant negative and wild type long PDE4 isoforms. It was surmised that the dominant negative PDE4s, compared to their respective wild-types, would be more accessible to PKA as they displace the cognate active PDE4 and they lack cAMP-hydrolysing activity. As a consequence of this, the dominant negative PDE4s, unlike their wild type counterparts, would allow an increase in the compartmentalised cAMP pool, an activation of PKA would ensue and subsequently PKA phosphorylation of the dominant negative PDE4 would be observed.

Under resting conditions, cells transfected with either inactive PDE4A4 or PDE4A10, or wild type PDE4A4 or PDE4A10 show that none of the these species are phosphorylated by PKA (figure 4.5a). However, they clearly have the potential to be phosphorylated by PKA as such PKA phosphorylation of both wild type and inactive forms of PDE4A4 and PDE4A10 is clearly evident following the addition, to cells, of the general PDE inhibitor IBMX and direct activator of AC, forskolin (figures 4.5b&4.5c). In contrast, analysis of the phosphorylation status of catalytically inactive PDE4C2 and PDE4D3 showed that both of these species became highly phosphorylated under resting conditions (figure 4.5a). Treatment of cells with forskolin, in either the absence or presence of IBMX, led only to a small further increase in phosphorylation (figures 4.5b&4.5c). This suggests that in resting cells PDE4C2 and PDE4D3 come into contact with active PKA whereas PDE4A4 and PDE4A10 do not.
4.2.3.1 Phosphorylation status of inactive PDE4D3 and PDE4C2 following endogenous PDE4 and PDE3 inhibition

The other major PDE activity in COS1 cells is provided by PDE3. In order to address possibility that PDE3 activity could influence the phosphorylation state of inactive PDE4D3 and PDE4C2, transfected cells were treated with the PDE3 inhibitor cilostamide. Additional studies were also done with the PDE4 inhibitor rolipram. It was observed that upon inhibition of the entire PDE3 family, with cilostamide, the PKA phosphorylation status of the catalytically inactive PDE4C2 is increased, however, using rolipram to selectively inhibit the entire pool of active PDE4 enzymes causes little or no further increases in phosphorylation of catalytically inactive PDE4C2 (figure 4.6). In contrast to this, inhibition of the entire pool of active PDE4 enzymes markedly increases the phosphorylation state of catalytically inactive PDE4D3 and whilst inhibition of the entire pool of PDE3 has little effect. These data strongly suggest that different pools of active PKA are able to phosphorylate PDE4C2 and PDE4D3 in these cells and thus, presumably, are being separately controlled by these particular enzymes. In the case of PDE4C2 other endogenous PDE4 enzymes in COS1 cells do not feed into this, whilst PDE3 can. Whilst in the case of PDE4D3 other endogenous PDE4 enzymes in COS1 cells can feed into this, whilst PDE3 cannot.

4.2.3.2 Action of GPCR stimulation by isoproterenol and PGE2 on the phosphorylation status of catalytically inactive/dominant negative PDE4 isoforms

I wished to determine whether differential phosphorylation states of the inactive long PDE4 isoforms was evident following stimulation of different Gs-coupled receptors. I chose to evaluate one particular example of a catalytically inactive PDE4 from each subfamily and determined their phosphorylation status following stimulation of either β-adrenergic receptors with isoproterenol or prostacyclin receptors with PGE2. As a control, transfected cells were also treated with forskolin which can be expected to activate the entire pool of AC in cells. The phosphorylation status of catalytically inactive PDE4A4, PDE4B1, PDE4C2 and PDE4D3 is shown here in basal, forskolin,
isoproterenol and PGE2 stimulated cells (figure 4.7a). The western blots of the PS54-UCR1 were quantified using densitometry software, and the phosphorylation states of each isoform shown as percentage control of the maximum value observed upon stimulation with forskolin stimulation (figure 4.7b). It is clear that the agonist stimulation of these two different receptors both increase the phosphorylation of catalytically inactive PDEC2 and PDE4D3, where isoproterenol is as twice as effective as PGE2 in increasing the phosphorylation of both these enzymes. In contrast, isoproterenol causes a 5-fold increase in phosphorylation of inactive PDE4B1 compared to the PGE2 agonist. Both PGE2 and isoproterenol have a similar minimal effect on the phosphorylation of PDE4A4.

4.2.3.3 cAMP levels following Isoproterenol or PGE treatment in cells over expressing the inactive PDE4s

I wished to establish if the differences in phosphorylation states of the inactive PDE4s observed upon isoproterenol stimulation and PGE2 stimulation are due differences in the abilities of these ligands to increase global cAMP levels. Cells were transfected with the catalytically inactive PDE4 species, and then stimulated with either isoproterenol or PGE2 and subsequently cAMP levels measured (figure 4.7c). The data is shown here as fold change compared to basal cAMP levels. It is clear that the cells overall cAMP response to PGE2 stimulation is similar in cells that over express any of the catalytically inactive PDE4s. Cells over expressing PDE4A4, PDE4C2 and PDE4D3 also respond similarly with respect to global cAMP levels in response to isoproterenol challenge (5-fold greater than response to PGE2), whereas a slightly higher cAMP level was observed in cells transfected with inactive PDE4B1 and stimulated with isoproterenol. The upper graph shows the fold changes of cAMP levels observed in native COS1 cells following PGE2 or isoproterenol treatment (figure 4.7c). On comparing the cAMP levels observed following PGE2 or isoproterenol stimulation of COS1 cells and COS1 cells overexpressing each of the dominant negatives, it appears that the dominant negatives may reduce cAMP levels.
4.2.4 Quantification of expression levels of catalytically inactive/dominant negative PDE4A4 and PDE4D3

As western blot analysis of the expression levels of the transfected inactive PDE4s relied on the use of PDE4 pan sub-family antibodies, the expression levels of the inactive PDE4s could not be directly compared to each other. I, therefore, wished to establish if the observed differences in phosphorylation states between PDE4A4 and PDE4D3 may be simply due to different expression levels of these various catalytically inactive species expressed in cells. To quantify and compare the actual expression levels between these two isoforms I selected lysates used in the previous Gs-coupled agonist experiments. The lysates with the same protein concentration were subjected to electrophoretic separation alongside a range of protein concentrations of the pure recombinant form of the isoforms (figure 4.8a). From the range of purified recombinant PDE4, a standard curve was generated by densitometry analysis of the bands. The equation of the line and the densitometry analysis of the cell lysates were used to calculate the number of pmol of the catalytically inactive PDE4 species present in 5μg of lysates (figure 4.8b). The mean expression levels of 0.026 +/- 0.002 pmol for PDE4A4 and 0.024 +/- 0.014 pmol for PDE4D3 were calculated. These data showed that the expression level of these various catalytically inactive PDE4 species was at very similar levels. Thus the differences in phosphorylation seen in these studies are very unlikely to be due to any major differences in total concentration making one species rather than the other more likely to be phosphorylated by PKA.

4.2.5 Pharmacological analysis to determine whether it is RI or RII PKA isoform that phosphorylates catalytically inactive PDE4C2 and to assess AKAP involvement

From previous experiments, it was observed that inactive PDE4C2 and PDE4D3 were both phosphorylated by PKA at basal cAMP levels. The interaction of PDE4D3 with an AKAP, namely mAKAP, has already been reported in cardiac myocytes (Dodge et al., 2001). Also PDE4D3 has been shown to interact with AKAP 450 in Sertoli cells (Tasken...
et al., 2001). The basal phosphorylation of PDE4D3 may be an indication of the association of this isoform with an AKAP as this would provide an ideal platform for the anchoring of both the PDE4 and PKA in close proximity to each other. As inactive PDE4C2 is also phosphorylated at basal cAMP levels, I wished to examine the possibility of the involvement of an AKAP-bound PKA and to identify which type, RI or RII PKA phosphorylates this enzyme.

The type of PKA isoforms endogenously expressed in COS1 cell model was determined by western blot analysis with the isoform specific antibodies (Signal Transduction Laboratories) (figure 4.9). Whole cell lysate was probed for the presence of RIIα, RIIα, and RIIβ forms of the PKA regulatory sub-units (RIIβ specific antibody was commercially unavailable). Immunoreactive species corresponding to weights of RIIα (48kD), RIIα (51kD) and RIIβ (53kD) forms were observed following western blotting.

The preferential phosphorylation of inactive PDE4C2 by the RI agonist compared to the RII agonist was further examined. In this experiment, antagonists of the RI and RII forms were used, and the phosphorylation state of inactive PDE4C2 was analysed as with the previous agonist experiments. Cells were transfected with the inactive PDE4C2 and treated for 18-24 hr with the RI antagonist, R-Cl cAMPs or the RII antagonist R-Cpt cAMPs. Lysates were analysed by western blotting with the PS54-UCR1 antiserum and the phosphorylation state of the inactive PDE4s quantified by densitometry (figures 4.10a & 4.10b). This data shows that the RI antagonist reduces the basal phosphorylation level of PDE4C2 but the RII antagonist appears to have no effect on the phosphorylation level.

In the same experiment, the possibility of an AKAP-PKA complex regulating the phosphorylation of this PDE4 was examined. A widely used AKAP-PKA complex ‘disrupter’ was chosen to assess the involvement of any AKAP. If the PKA form responsible for the basal phosphorylation of inactive PDE4C2 was held in an AKAP complex, Ht31 would be expected to reduce this basal phosphorylation as PKA would no longer be ‘held’ in close proximity to the PDE. Inactive PDE4C2 was co-transfected with a plasmid which expressed a GFP-tagged Ht31 fragment. It was shown via western
blotting with anti-GFP and pan PDE4C antibodies (figure 4.10a), and immunofluorescence (figure 4.10c) that PDE4C2 and Ht31 were both expressed in the same cell. Following densitometry analysis and correction for expression levels of PDE4C2 (figure 4.10b), Ht31 appeared to reduce the phosphorylation. RI- and RII-specific agonists (Biolog, Germany) were then employed in order to establish which isoforms of PKA phosphorylated inactive PDE4C2 and inactive PDE4D3 at basal adenylyl cyclase activity. Cells over expressing the inactive PDE4s were treated with the RI synergistic agonists (8-PIP-cAMP and 6-MBC-cAMP; Biolog, Germany) or RII synergistic agonists (8-HA-cAMP and 6-MBC-cAMP; Biolog, Germany) for 10 min. The phosphorylation status of the PDE4 isoforms were then assessed by western blotting with the PS54-UCR1 antiserum and densitometry analysis (figure 4.11). The data is shown as fold change basal and indicates that a RI form, rather than a RII form of PKA preferentially phosphorylated inactive PDE4C2. In contrast, it appears that neither form of PKA preferentially phosphorylated PDE4B1 as both the RI and RII agonists caused similar, but minimal, increases in phosphorylation.

4.3 Discussion

In this chapter I show, by utilising catalytically inactive PDE4 isoform, that of the selected PDE4 long-forms studied, only PDE4C2 and PDE4D3 are able to be phosphorylated by PKA under basal adenylyl cyclase activity in COS1 cells. This selectivity suggests that PDE4C2 and PDE4D3 may be held in close proximity to discrete PKA sub-populations whereby they regulate such activities at basal cAMP levels.

For this study, COS1 cells were chosen as the model cell line. COS1 cells endogenously express PDE4s from each sub family (A, B, C and D) as shown by mRNA expression profile (figure 4.1) and by western blot analysis (unpublished data, Houslay laboratory). Dominant negative/catalytically inactive long-form PDE4s from each sub family were chosen, tested for activity and shown to be inactive compared to their wild-types (figure 4.3). As a control, to ensure that the catalytically inactive enzymes themselves do not alter basal adenylyl cyclase activity, global cAMP levels were measured following the
over-expression of the catalytically inactive species (figure 4.4). Here it was shown that the over-expression and transfection process itself do not significantly alter global cAMP level within COS1 cells.

Firstly, the PKA phosphorylation status of catalytically inactive PDE4A4, PDE4A10, PDE4C2 and PDE4D3 were compared to the respective wild types at basal cAMP levels (figure 4.5a). In this experiment, PKA phosphorylation of the UCR1 PDE4s were detected with the phospho-specific PS54-UCR1 antiserum, the blots stripped and probed with the pan PDE4 subfamily antibodies to show loading between catalytically inactive PDE4 long isoforms and the respective wild type species. The pan PDE4 antibodies are sub-family specific (generated to the C-terminal region) thus the level of over-expression between the PDE4A, PDE4C and PDE4D isoforms described in this experiment cannot be directly compared. This is addressed later in this chapter as is the possibility that the different PDE4 isoforms may have varying sensitivity to PKA. As shown in figure 4.5a, only the PKA phosphorylation of the catalytically inactive PDE4C2 and PDE4D3 isoforms was observed. A non-specific band was detected for the PDE4A4 standard and phosphorylation of the wild type isoforms was not detected. In the next set of experiments, global cAMP levels were raised by the activation of the entire pool adenylyl cyclase using forskolin, and also by the inhibition of the entire pool of PDEs together with activation of adenylyl cyclase (IBMX & forskolin treatment). Following the addition of forskolin, phosphorylation of catalytically inactive PDE4A4 was observed (figure 4.5b), and a small increase in phosphorylation of catalytically inactive PDE4C2 and PDE4D3 was evident compared to basal conditions (figures 4.5a and 4.5b). Finally, following IBMX and forskolin treatment, phosphorylation of all catalytically inactive and all wild type isoforms was observed (figure 4.5c), and increases in phosphorylation of the catalytically inactive PDE4C2 and PDE4D3 was observed. Although phosphorylation of dominant negative PDE4A4 and PDE4A10 was not observed at basal cAMP levels, phosphorylation was observed following the combination of forskolin and IBMX treatment. This suggests that PDE4A4 and PDE4A10 are accessible to PKA, but with reduced sensitivity. Overall, this 'selective' phosphorylation of PDE4C2 and PDE4D3
suggests that these isoforms may be sampling different pools of cAMP than PDE4A4 and PDE4A10, and may also be in close proximity to PKA.

As described in the previous experiment, catalytically inactive PDE4C2 and PDE4D3 were phosphorylated by PKA at basal adenylyl cyclase activity and this phosphorylation only increased slightly by forskolin treatment. As a larger increase in phosphorylation of these isoforms was evident following general PDE inhibition, with IBMX together with forskolin, I decided to investigate if the selective inhibition of entire pools of PDE3 and PDE4 activities affected the phosphorylation of PDE4C2 or PDE4D3. The mRNA profile (figure 4.1) showed that generic PDE3B and an array of PDE4s other than PDE4C2 and PDE4D3 were expressed endogenously in COS1 cells. If PDE3 isoforms or other PDE4 isoforms were also targeted to the same region as the catalytically inactive species, one would expect either the selective PDE3 inhibitor cilostamide or the selective PDE4 inhibitor rolipram to increase the phosphorylation of the catalytically inactive species. A simple experiment was performed where catalytically inactive PDE4C2 and PDE4D3 were overexpressed in the COS1 cell model, and the level phosphorylation analysed with the PS54-UCR1 (figure 4.6). It is clear from this data that inhibition of PDE3s resulted in an increase in phosphorylation of catalytically inactive PDE4C2 compared to basal. On the other hand, the inhibition of PDE4 resulted only in an increase in the phosphorylation of PDE4D3. This suggests that PDE4C2 may be targeted to a region of higher PDE3 expression or activity, whereas PDE4D3 may be targeted to a region of higher PDE4 expression or activity. As this data represents only two experiments, further experiments should be performed to provide fold changes in phosphorylation of statistical significance.

The differential effects of PDE3 and PDE4 inhibition on the phosphorylation of the catalytically inactive PDE4C2 and PDE4D3 suggest that these PDE4s may be sampling different pools of cAMP. To investigate this further by means of the catalytically inactive PDE4 strategy, the effect of activating different Gs-coupled receptors on the phosphorylation of selected catalytically inactive PDE4 species was studied. A catalytically inactive PDE4 long-form was selected from each sub-family and their
phosphorylation in response to the activation of the β-adrenergic receptor with isoproterenol or activation of the EP receptors with PGE2, was studied. It has been previously reported that these agonists can generate different cellular responses via the elevation on cAMP (Brunton, 2003), thus they provide an ideal way to investigate if the dominant negatives are indeed sampling distinct pools of cAMP. In this experiment, the effects of forskolin, PGE2 and isoproterenol stimulation on catalytically inactive PDE4A4, PDE4B1, PDE4C2 and PDE4D3 was studied (figures 4.7a & figure 4.7b). The western blot data was analysed by densitometry. As different basal phosphorylation levels were observed between isoforms, the response of each isoform to the agonists was compared to the forskolin induced phosphorylation state and this allowed each isoform to be compared to one another. It is clear that following agonist stimulation, the phosphorylation pattern of catalytically inactive PDE4D3 and PDE4C2 was almost identical. However, the phosphorylation pattern of catalytically inactive PDE4A4 and PDE4B1 appeared to be quite different; PGE2 and isoproterenol had similar effect on PDE4A4, yet only isoproterenol stimulation resulted in phosphorylation of PDE4B1. The differential effects of the Gs coupled agonists may indicate that these PDE4s are being targeted to different sub-cellular regions.

I also set out to investigate if the actual over-expression of the different isoforms impaired the generation of cAMP by agonist treatment. The cells over-expressing each of the isoforms were subjected to agonist stimulation and global cAMP level measured (figure 4.7c). The data is represented as fold change over basal cAMP levels, and it is evident that the over-expression of any of catalytically inactive PDE4s did not alter total cAMP levels significantly. However, it appears that following overexpression of inactive PDE4B1, a larger response to isoproterenol was observed. Thus, it appears that the differences in phosphorylation of catalytically inactive PDE4A4 and PDE4B1 compared to catalytically inactive PDE4C2 and PDE4D3 observed is not due to the catalytically inactive species either impairing or enhancing the receptor activation and subsequent generation of cAMP.
For the next control experiment I investigated the expression levels of the catalytically inactive species in COS1 cells. As a pan PDE4 antibody was not available, I could not compare expression levels of each the catalytically inactive constructs by using the pan PDE4 sub-family antibody (used for normalisation of data). To address this problem, I chose to calculate the number of pmol of the catalytically inactive PDE4A4 and PDE4D3 forms in whole cell lysates from the experiments involving GPCR challenge (isoproterenol stimulated lysates). Known concentrations of the lysates (calculated by Bradford assay) were subjected to SDS-PAGE analysis alongside a range of concentrations of recombinant *E.coli* expressed PDE4A4 and PDE4D3 (figure 4.8a). The purified *E.coli* expressed PDE4s were used to generate a standard curve and following densitometry analysis, the approximate number of pmol of the catalytically inactive enzyme present in the cell lysates were calculated. From the previous agonist experiments it was clear that isoproterenol stimulation caused quite different levels of phosphorylation of the catalytically inactive PDE4A4 and PDE4D3, however, it is evident that the expression levels of catalytically inactive PDE4A4 and PDE4D3 did not vary significantly (figure 4.8b).

In summary, the PDE4C2 and PDE4D3 data suggests that the over-expression of the dominant negatives did not alter the cAMP generation in response to agonist treatment, the expression levels of each did not vary markedly. Therefore, the differential phosphorylation of the catalytically inactive PDE4s observed at basal adenylyl cyclase activity and agonist stimulated adenylyl cyclase activity may be due to targeting and sampling of spatially distinct ‘pools’ or gradients of PKA that sample distinct gradients of cAMP.

It is now well established that PKA can be anchored to discrete sub-cellular locations by AKAPs, and can sample gradients of cAMP within the cell (Klauk & Scott, 1995; Colledge & Scott, 1999). The PDE4D3 isoform has also been shown to be anchored to AKAPs where it can regulate the activity of PKA by a feedback control mechanism involving the PKA phosphorylation of the PDE itself (Dodge *et al.*, 2001; Tasken *et al.*, 2001). At basal adenylyl cyclase activity in COS1 cells, I observed PKA phosphorylation of both catalytically inactive PDE3D3 and PDE4C2, and hypothesised that this may be due
to the close proximity of PKA. As mentioned above, PDE4D3 has already been reported to be anchored alongside PKA to an AKAP (Dodge et al., 2001; Tasken et al., 2001), yet no such anchoring has been reported for PDE4C2. I decided to investigate the possibility of an AKAP involvement in the PKA phosphorylation and control of activity of PDE4C2, and also to identify which PKA isoform phosphorylated this PDE4 isoform at basal cAMP levels. Firstly, I identified which isoforms of PKA were endogenously expressed in the COS1 cell model (figure 4.9). As both RI and RII isoforms were expressed I used PKA isoform specific antagonist and agonists to alter the phosphorylation of catalytically inactive PDE4C2 (figures 4.10 & 4.11). These data suggests that an RI-PKA isoform was the predominant form responsible for the phosphorylation of catalytically inactive PDE4C2. If an AKAP tethers the PKA responsible for the phosphorylation of PDE4C2, one would expect to see an ablation of this phosphorylation following the disruption of the AKAP-PKA interaction. To study the possible involvement of an AKAP, the catalytically inactive PDE4C2 was co-expressed with Ht31, a commonly used PKA-AKAP disrupter (figure 4.10). Although the over-expression of Ht31 reduced the level of expression of PDE4C2, following normalisation of the densitometry data, it appears that the disruption of all PKA-AKAP interactions did indeed ablate the phosphorylation of catalytically inactive PDE4C2. Therefore this simple experiment may be an indication that the PDE4C2 isoform can associate with a PKA-AKAP complex. If time had allowed, I would have performed the same co-transfections with the other catalytically inactive species at basal cAMP levels and agonist induced cAMP levels.

Following the Ht31 experiments, I investigated the possibility of an actual interaction of the PDE4C2 isoform with a PKA-AKAP complex. Immunoprecipitations of PDE4C2 were sent to two separate AKAP laboratories (Klussmann, FMP, Berlin & Tasken, Oslo.) for overlay analysis. Both RI and RII overlay assays were performed, and showed an AKAP of about 250 kD co-immunoprecipitated with PDE4C2. I have not shown the overlay results in this chapter as the blots were unclear, however they provided initial promising evidence of a possible PDE4C2-PKA-AKAP complex. Also, I would have liked to have pursued the study of the identification of the specific isoform of PKA which phosphorylated PDE4C2. My initial data suggests that an RI isoform was responsible, and I planned to further investigate using an approach involving PKA isoform specific
interfering RNA (siRNA). As a complex of a PDE4, RI-PKA and an AKAP has yet to be reported, a PDE4C2/RI PKA-AKAP complex would be potentially exciting. If the AKAP could be identified it may provide a functional role for PDE4C2 within a cell.
Figure 4.1 mRNA PDE4 expression profile of COS1 cells. The gel represents a typical PDE mRNA profile of COS1 cells. Total RNA was isolated from COS1 cells, synthesised to cDNA and subjected to PCR using primers designed to specific PDE isoforms (see appendix for primer details). The table shows a summary of 4 different PCR analyses; brain cDNA was used as a positive control, water as a negative control and 'w' indicates a weak band.
Figure 4.2 Schematic structure of the PDE4B2 core catalytic unit illustrating metal ion environment. The divalent cations (Zn$^{2+}$ and Mg$^{2+}$) involved in the catalytic mechanism are represented as balls. A singal point mutation of amino acid D392 disrupts the binding of the metal ions and renders the PDE4 inactive. Diagram adapted from a Houslay review (Houslay and Adams, 2003)
Figure 4.3. Comparison of PDE activities of wild type and dominant negative/catalytically inactive PDE4s. COS1 cells were transiently transfected with wild type (wt) and dominant negative (DN) PDE4 isoforms, and the PDE activity of lysates was analysed by PDE assay (Marchmont & Houslay, 1980). Mock indicates the transfection of empty vector (pcDNA3). Represents one PDE assay.
Figure 4.4 cAMP concentration per 10^6 cells following dominant negative over expression in COS1 cells. Mock indicates transfection of empty vector (pcDNA3). cAMP levels in COS1 cells transiently transfected with the indicated dominant negative. n=3 +/- S.E.
Figure 4.5a PKA phosphorylation of dominant negative/catalytically inactive PDE4 long form at basal cAMP levels. The indicated wild type and dominant negative PDE4 isoforms were overexpressed in COS1 cell. Lysates of HEK cells transfected with the relevant wt PDE4 isoforms are indicated as standards. Lysates were subjected to SDS-PAGE analysis and the PKA phosphorylation status was determined using PS54-UCR1 antiserum (upper panels). To check expression and loading, blots were stripped and re-probed with relevant pan PDE4 subfamily antibodies (lower panel).
Figure 4.5b PKA phosphorylation of dominant negative/catalytically inactive PDE4 long form at elevated levels of cAMP induced by forskolin. Lysates of HEK cells transfected with the relevant wt PDE4 isoforms are indicated as standards. The indicated wild type and dominant negative PDE4 isoforms were over expressed in COS1 cell. Two days post transfection, cells were treated with forskolin (100 μM) for 10 min. Lysates were subjected to SDS-PAGE analysis and the PKA phosphorylation status was determined using PS54-UCR1 antiserum (upper panels). To check expression and loading, blots were stripped and re-probed with relevant pan PDE4 subfamily antibodies (lower panel).
Figure 4.5c PKA phosphorylation of dominant negative/catalytically inactive PDE4 long form at near maximal cAMP levels. Lysates of HEK cells transfected with the relevant wt PDE4 isoforms are indicated as standards. The indicated wild type and dominant negative PDE4 isoforms were over expressed in COS1 cell. Two days post transfection, cells were treated with the general PDE inhibitor IBMX (100 μM) and forskolin (100 μM) for 10 min. Lysates were subjected to SDS-Page analysis and the PKA phosphorylation status was determined using PS54-UCR1 antiserum (upper panels). To check expression and loading, blots were stripped and re-probed with relevant pan PDE4 subfamily antibodies (lower panel).
Figure 4.6 Differential PKA phosphorylation of dominant negative PDE4D3 and PDE4C2 following PDE4 or PDE3 inhibition. (A) COS1 cells were transiently transfected with dominant negative/catalytically inactive PDE4D3 and PDE4C2 long forms. The cells were treated with the selective PDE4 inhibitor Rolipram (Rol) (10 μM), and the selective PDE3 inhibitor Cilostamide (Cil) (10 μM) for 10 min. Bsl indicates resting cells. Lysates were subjected to western blot analysis; PS54-UCR1 (upper panel) and pan PDE4 subfamily (lower panel) antibodies. (B) Quantification of the PKA phosphorylation from the western blots (Quantity One software). Data was normalised for loading and represented as fold change basal. N=2 +/- S.E.
Figure 4.7a PKA phosphorylation of dominant negative PDE4s in response to different Gs-coupled agonists. COS1 cells were transiently transfected with the indicated dominant negative PDE4 isoforms. Cells were treated for 5 min PGE2 (1 μM), Isoproterenol (Iso) (1 μM) and forskolin (Fsk) (100 μM). Bsl indicates basal adenylyl cyclase activity. Lysates were subjected to western blot analysis; PS54-UCR1 antibody (upper panels), pan PDE4 subfamily antibody (lower panels). Represents three separate transfections.
Figure 4.7b Quantification of level of PKA phosphorylation of catalytically inactive/dominant negative PDE4s in response to different G-coupled agonists. The western blots from the previous experiment (figure 4.6a) were scanned and the phosphorylated bands were analysed by densitometry (Quantity One software analysis). All data corrected for loading and represented as percentage control (forskolin). N=3 +/- S.E.
Figure 4.7c Comparison of cAMP levels following Gs-coupled receptor activation in COS1 cells overexpressing the indicated catalytically inactive/dominant negative PDE4s. Upper graph represents global increases in cAMP level in COS1 cells in response to Isoproterenol (10 μM) or PGE2 (1μM) stimulation. COS1 cells were transiently transfected with the indicated dominant negative PDE4s and subjected to 5 min stimulation with Isoproterenol (10 μM) or PGE2 (1 μM) (lower graph). Basal indicates resting cAMP levels. Results are shown as fold basal change. N=3 +/- S.E.
Figure 4.8a Quantification of expression levels of catalytically inactive/dominant negative PDE4D3 and PDE4A4 vectors transiently transfected into COS1 cells. A range of concentrations (µg) of lysates from a previous PKA phosphorylation experiment (figure 4.6) was subjected to SDS-PAGE analysis alongside a range of concentrations (ng) of purified recombinant E. coli expressed PDE4A4 (MBP tagged) and PDE4D3 (GST fusion protein). Western blots (top panels) were probed with the relevant pan PDE4 subfamily antibodies, and a standard curve was generated using densitometry software (Quantity One). This data represents one of two separate quantifications.
Figure 4.8b Quantification of expression levels of catalytically inactive/dominant negative PDE4D3 and PDE4A4 vectors transiently transfected into COS1 cells. Using the equation of the line calculated from the standard curves; (MBP-PDE4A4 $y = 4759.332\times\log(x) + 3447.173$ and GST-PDE4D3 $y = 2657.607\times\log(x) + 2760.134$), the number of pmol of overexpressed PDE4A4 and PDE4D3 present in 5 µg of COS1 lysate was calculated. Data represents two separate experiments.

<table>
<thead>
<tr>
<th>Expression (pmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDE4A4</td>
</tr>
<tr>
<td>PDE4D3</td>
</tr>
</tbody>
</table>
Figure 4.9 Endogenous expression of protein kinase A regulatory subunits in COS1 cells. COS1 lysates were separated by gel electrophoresis and subjected to western blotting with regulatory subunit specific antibodies.
Figure 4.10 Assessment of AKAP involvement and Identification of the PKA subtype responsible for the phosphorylation catalytically/dominant negative PDE4C2 at basal cAMP levels. See next page for full figure legend.
Figure 4.10 Assessment of AKAP involvement and identification of the PKA subtype responsible for the phosphorylation catalytically/dominant negative PDE4C2 at basal cAMP levels. (A) COS1 cells were transiently transfected with dominant negative PDE4C2 and subjected to 24 h treatment with RI and RII specific antagonists. Lysates were subjected electrophoresis and analysed with PS54-UCR1 (upper panel) and pan PDE4C (middle panel) antibodies. To assess AKAP involvement, GFP-tagged Ht31 was co-transfected with dominant negative PDE4C2 and the phosphorylation was assessed at basal conditions. The middle and lower panels show co-transfection. Control indicates mock transfection. (B) The densitometry of the bands was analysed, corrected for loading/expression and represented as a percentage change basal (n+3 =/- S.E.). (C) A confocal image indicating the co-expression of GFP-Ht31 and dominant negative PDE4C2. Transfected cells were stained with pan PDE4C antibody and excited at 488 nm to show the expression of Ht31 (green fluorescence) and PDE4C2 (rhodamine staining). The yellow colour shown in the overlay indicates co-expression. Represents one of three experiments.
Figure 4.11 Pharmacological analysis and identification of the PKA subtype which is responsible for the phosphorylation of catalytically inactive/dominant negative PDE4C2 and PDE4B2 isoforms. COS1 cells were transiently transfected with dominant negative PDE4B1 or PDE4C2. On day two of transfection, cells were subjected to 10 min incubation with selective agonists of RI and RII forms of PKA. (A) Lysates were analysed by western blot; PS54-UCR1 (upper panels) and the relevant pan PDE4 subfamily antibodies (lower panels). (B) Densitometry analysis was performed on the phospho bands and data corrected for loading. N=2 +/- S.E.
Chapter 5

Analysis of gene expression following overexpression of catalytically inactive PDE4 isoforms
5.1 Introduction

Protein-protein interaction is a reversible process subject to the law of Mass Action, where the rapidity at which equilibria can be altered depends upon the concentration of constituents and their affinity for each other. Our group (Houslay review, 2003) and various others (Tasken et al., 2001; Dodge et al., 2001) have previously demonstrated that specific PDE4 isoforms can interact with various anchor or signal scaffold proteins in cells. This is thought to be responsible for controlling compartmentalised cAMP signalling. Indeed, recent studies (Mongillo et al., 2004) using a genetically encoded cAMP sensor, show this to be the case at least for PDE4B and PDE4D in cardiac myocytes. My novel approach to evaluating this question has been using so-called 'dominant negative' constructs. This is where specific PDE4 isoforms have been subtly engineered, by a single point mutation in the catalytic site to be catalytically inactive and then overexpressed in cells. The philosophy of such an approach is that when the dominant negative PDE4s are chronically overexpressed in cells then, given reversible equilibrium occurring between endogenous examples of PDE4s and its particular anchor, the catalytically recombinant isoform should serve to displace and so replace endogenous active examples of that specific PDE4 isoform at its targeted anchor site. We hypothesise that such a catalytically inactive PDE4 would now ablate control of a distinct cAMP pool previously controlled by the displaced particular PDE4 isoform. This is different from a siRNA approach directed at a specific isoform where all of that isoform, be it anchored or not, would be ablated. With my dominant negative approach functional 'inactivation by displacement' would be restricted to the anchored fraction of that specific isoform only.

Here then I set out to study if catalytically inactive PDE4s might exert specific differential effects upon on the model HEK 293 cell line at the level of gene expression. The advent of DNA microarray technology allows a quantitative read-out of relative gene expression of tens of thousands of different genes. For the experiments discussed in this
chapter, U133A GeneChips® (Affymetrix, Inc, Santa Clara, CA) were used to analyse potential changes in gene expression following the overexpression of catalytically inactive PDE4s in HEK293 cells. The U133A oligonucleotide chip contained probes for a total of 22283 human genes.

5.1.1 DNA microarray overview

DNA microarray technology serves as an important tool to study regulation and function of genes, as it allows the generation of large amounts of data on thousands of genes in a single assay. Several methods have been described for producing microarrays (Harrington et al, 2000), with the most basic types including spotted microarrays and high-density oligonucleotide arrays. Generally, each array consists of thousands of different DNAs (PCR products or oligonucleotides) which are attached to a solid support (Schena et al, 1996; Harrington et al, 2000). The changes in gene expression are analysed by laser scanning, and thence the intensity of fluorescently labelled RNA or DNA (prepared from mRNA) hybridising to complementary DNA on the chip determined.

Spotted arrays allow the measurement of the relative gene transcript levels differing between control (reference) and experimental (test) RNAs. On spotted arrays, genes are represented by pre-synthesised single or double stranded DNA fragments of several hundred base pairs in length which are bound to glass slides (Harrington et al, 2000). Different fluorophores are incorporated into the cDNAs of control and test DNAs, and the labelled DNAs are mixed together prior to hybridisation to the array chip. By measuring the fluorophore signal intensities and calculating signal ratios, relative amounts of a gene transcript in the two samples can be calculated.

Commercially available oligonucleotide arrays consist of sets of oligomers synthesised in situ on glass wafers using a photolithographic manufacturing process (Harrington et al, 2000). Oligonucleotide arrays involve the labelling of the test mRNA via conversion to biotinylated cRNA and each sample is hybridised to a separate arrays. These transcript levels are calculated by reference to cRNA spikes of known concentration added to the hybridisation mixture. This method allows differences in mRNA levels between samples
Upon processing of the fluorescent array image, three basic steps are required for data analysis: data normalisation, data filtering, and pattern identification (Harrington et al., 2000). Following normalisation, data reduction can be achieved by filtering out uninformative genes. Patterns within the data are identified and interpreted by computer analysis via data mining programs.

Results

The U133A oligonucleotide GeneChip® (Affymetrix, Inc., Santa Clara, CA) allowed us to analyse the response of HEK293 cells to the chronic overexpression of different catalytically inactive PDE4s. Fold changes in gene expression were calculated by analysing the difference in gene expression between samples of mRNA isolated from HEK293 cells overexpressing a catalytically inactive PDE4 and mRNA isolated from HEK293 cells overexpressing empty vector (pcDNA) as the control sample.

I chose to study the individual effects of four different catalytically inactive PDE4s, namely PDE4A4, PDE4B2, PDE4D3 and PDE4D5 isoforms upon gene expression levels. These isoforms are all expressed endogenously in HEK293 cells which I set out to use here as a test case because the cells are easy to transfect and well characterised as far as PDE4s go. Furthermore, it has previously been shown that these specific PDE4 isoforms are expressed in human U937 monocyte cells where they provide distinct functional roles consistent with compartmentalisation of cAMP signalling (MacKenzie et al., 2000). If specific PDE4s control discrete functional ‘pools’ of cAMP, one could reason that overexpression of a catalytically inactive PDE4 would cause cAMP signalling through that specific ‘pool’ to increase. This local increase in cAMP could either, (I)
activate PKA, (ii) activate Epac, (iii) activate a cAMP gated ion channel or (iv) activate an unidentified cAMP signalling system. Therefore, I decided to investigate, by the use of catalytically inactive PDE4A4, PDE4B2, PDE4D3 and PDE4D5 constructs, the putative compartmentalisation of these PDE4 isoforms in a human derived cell line (HEK293 cells).

5.2 PDE4 mRNA expression profile of HEK293 cells

The expression of these chosen PDE4 isoforms in HEK293 cells has previously been shown by western blot in our laboratory (unpublished data, Houslay laboratory). I decided also to obtain evidence for transcripts of these specific PDE4 isoforms in this cell line. In order to do this, RNA was isolated from HEK293 cells and sent to Rachael Barber (Novartis, Horsham) for analysis by RT-PCR. PDE4 generic primers and primers designed to detect specific PDE4 isoforms (see Appendix for details) were used to build a PDE4 profile of this cell line. cDNA from brain tissue was used as a positive control and water as a negative control. Amplicons for generic PDE4A, PDE4B, PDE4C, PDE4D, PDE3B and PDE7A were observed. The isoform specific primers identified the following transcripts for PDE4 isoforms: PDE4A4, PDE4A10, 2EL, PDE4B1, PDE4B2, PDE4B3, PDE4D1, PDE4D1/D2, PDE4D3 and PDE4D5 (figure 5.1). PDE4 isoforms, namely PDE4A4, PDE4B2, PDE4D3 and PDE4D5 chosen for microarray analysis are expressed endogenously in HEK293 cells.

5.2.1 Overexpression of catalytically inactive PDE4s and microarray analysis of gene expression

HEK293 cells were transfected with the selected catalytically inactive PDE4 cloned into the pcDNA vector (Invitrogen), and, as a control, HEK293 cells were also transfected with empty pcDNA vector. The transfections were performed in triplicate, mRNA isolated and sent to Novartis (Genomics Dept, Basle, Switzerland). The microarray data was normalized, and statistical analysis performed also at Novartis (Genomics
Department Basle, Switzerland). The fold change in gene expression between cells overexpressing catalytically inactive and cells overexpressing the empty control vector (pcDNA) was calculated from the mean expression values. The p-values were calculated by performing a heteroscedastic student's t-test.

The tables of microarray data provided in this chapter list all fold-changes of gene expression of greater than 5-fold and of p-values less than 0.05 (tables 5.1 - tables 5.4). Furthermore, I have provided a CD within the appendix listing all fold changes of gene expression of p-values less than 0.05, and of p-values less than 0.01. However, from all the microarray data presented in this chapter, I will only discuss the most striking changes in expression of mRNA levels, including changes in levels of mRNA of proteins involved cAMP signalling.

5.2.1.1 Changes in gene expression unique to the overexpression of catalytically inactive PDE4A4

The changes in gene expression following the overexpression of PDE4A4 are shown in a tabular format (table 5.1). The left-hand column shows the fold-change in gene expression compared to the vector only control, the middle column provides the p-values and the last column details the gene description as provided by the manufacturer of the U133A oligonucleotide GeneChip® (Affymetrix, Inc, Santa Clara, CA). Up-regulation of gene expression is shown by a positive fold-change and down-regulation of gene expression is shown by a negative fold-change.

It can be seen that the overexpression of catalytically inactive PDE4A4 caused a greater than 5-fold up-regulation in levels of mRNA from 19 different genes and a down-regulation of mRNA expression levels of 8 different genes. Most strikingly, a 24-fold up-regulation in expression in mRNA for an inositol 1, 4, 5-triphosphate receptor (type 3) was observed. A change in the expression of mRNA for this receptor was not observed following the overexpression of catalytically inactive PDE4B2, PDE4D3 or PDE4D5.
The inositol 1, 4, 5-triphosphate receptors (IP3 receptors) constitute a family of Ca\(^{2+}\) channels which facilitate the mobilisation of intracellular Ca\(^{2+}\) stores. Cross-talk between cAMP signalling and Ca\(^{2+}\) has been reported in cardiac myocytes (MacLennan & Kranias, 2003). IP3 receptors can be directly phosphorylated by PKA which alters, depending on the cell or tissue type, the flux of Ca\(^{2+}\) (Patel et al, 1999). The promoter region of the IP3 receptors does not contain a CRE site. Therefore, the overexpression of catalytically inactive PDE4A4 may, unlike the other catalytically inactive PDE4s, have increased the levels of cAMP in a distinct ‘pool’ resulting in the up-regulation of gene expression the IP3 receptor.

Both up-regulation and down-regulation of different G-protein coupled receptors was observed following the overexpression of catalytically inactive PDE4A4 and PDE4D3 (tables 5.1 & 5.3). A change in the expression levels of mRNA of lysophosphatidic acid G-protein-coupled receptor 4 (EDG4) was only observed following the overexpression of catalytically inactive PDE4A4. The mRNA expression levels of EDG4 increased by some 12-fold (table 5.2). This G-protein coupled receptor belongs to the lysophosphatidic acid (LPA) receptor family, and couples to the G\(_{16}\), G\(_{12/13}\) and G\(_{4}\) proteins (Contos et al, 2000). LPA stimulates cell proliferation through the activation of tyrosine kinase and MAP kinase (Moolenaar et al, 1997), it has also been shown to increase intracellular Ca\(^{2+}\) levels and inositol phosphates (Contos et al, 2000). The promoter region of EDG4 has not been shown to possess a CRE site. As only the overexpression of catalytically inactive PDE4A4 provides a change in the gene expression of EDG4, this suggests that only endogenous expressed PDE4A4 in HEK293 cells maybe controlling a distinct ‘pool’ of cAMP which, when manipulated with catalytically inactive PDE4A4, alters the transcriptional regulation of EDG4.

A striking down-regulation, of some 20-fold, was seen for the mRNA expression levels of PACE4C (kexin-like protease) only following the overexpression of inactive PDE4A4. PACE4C is a member of the subtilisin/Kex2p family (Nakayama, 1997). The subtilisin/Kex2p family are a family of endoproteases which are responsible for the conversions of precursors of peptide hormones, neuropeptides and many other proteins into their biologically active forms (Nakayama, 1997). PACE4 is responsible for the
activation of transforming growth factor-β (TGFβ)-related factors such as bone morphogenetic proteins (Tsuji et al., 2003). The biological activity of TGFβ molecules can be regulated by PACE4 which anchors heparin sulphate proteoglycans to the extracellular matrix (ECM) (Tsuji et al., 2003). It is postulated that the interaction of PACE4 and heparin sulphate proteoglycans might play an important role in the spatial and temporal regulation TGFβ-related factor’s biological activity (Tsuji et al., 2003).

5.2.1.2 Changes in gene expression unique to the overexpression of catalytically inactive PDE4B2

Overexpression of catalytically inactive PDE4B2 in HEK293 cells only resulted in the up-regulation of mRNA expression greater than 5-fold of one gene, and the down-regulation of mRNA expression greater than 5-fold of four different genes (table 5.2).

Interestingly, a 7-fold decrease in the expression of mRNA encoding RING finger protein 22 (RNF22) was only observed following the overexpression of catalytically inactive PDE4B2 (table 5.3). Over the last 5 years, RING finger proteins have been identified as key mediators in the ubiquitinylation of proteins (Joazeiro & Weissman, 2000). Ubiquitinylation plays an important in the regulation of the levels of plasma membrane proteins through proteasomal degradation and by facilitating endocytosis (Joazeiro & Weissman, 2000). Protein ubiquitinylation begins with the formation of a thiol-ester linkage between ubiquitin (Ub) and the Ub activating enzyme (E1). Ub is then transferred, through a thiol-ester linkage, to an Ub conjugating enzyme (E2). Ubiquitin ligase (E3) interacts with E2 and the protein target allowing the transfer of Ub to the target protein, thus provide specificity to Ub conjugation (Joazeiro & Weissman, 2000). RING finger proteins now represent the largest class of E3s to date.

The overexpression of catalytically inactive PDE4B2 resulted in both the up-regulation and the down-regulation of a few genes. This suggests that the cAMP ‘pool’ controlled by endogenous PDE4B2 has little effect upon gene expression. However, the observation
that the mRNA levels of RING finger protein 22 (RNF22) are down-regulated, suggests that PDE4B2 may serve to influence the ubiquitinylation of an as yet unidentified protein.

5.2.1.3 Changes in gene expression unique to the overexpression of catalytically inactive PDE4D3

Following the overexpression of catalytically inactive PDE4D3, a greater than 5-fold up-regulation in levels of mRNA was observed from 8 different genes and a greater than 5-fold down-regulation of mRNA expression levels of 4 different genes was observed (table 5.3).

Interestingly, upon comparison of the microarray data generated following overexpression of each of the catalytically inactive PDE4s, a down-regulation in the gene expression of a GPCR was only observed following the overexpression of catalytically inactive PDE4D3 (table 5.3). A down-regulation of two different types of GPCR was observed, 5-fold down-regulation of G-protein coupled channel (hGIRK1) and a near 8-fold down-regulation of a GPCR (HG38).

G-protein coupled inwardly rectifying potassium channel (GIRK) are expressed in heart, the nervous systems and endocrine tissues where they control post-synaptic inhibitory signalling and hormone secretion by pertussis toxin sensitive GPCRs (Sadja et al, 2003). GIRK channels are modulated by a variety of different factors such as phosphatidylinositol-4, 5-biphosphate (PIP2), Na+, Mg2+, oxidation-reduction, phosphorylation and acidification (Sadja et al, 2003).

HG38 is an orphan G-coupled receptor, which when its sequence is compared to those of other G-protein coupled receptor families, shares an overall identity of ~ 35% with the FSH, TSH and LH/hGC of the glycoprotein hormone receptor subfamily (McDonald et al, 1998). As with all glycoprotein receptors, HG38 is predicted to have a large extracellular domain with Leucine-rich repeats (LRR) which would potentially allow protein-protein interactions (McDonald et al, 1998). The in vivo function of HG38 has yet to elucidated, but as the three other members of the glycoprotein receptor subfamily
play pivotal roles in growth, development and reproduction, it is expected that HG38 will have a similar role.

With respect to the regulation of GPCR gene expression, only the overexpression of catalytically inactive PDE4D3 resulted in the down-regulation of hGIRK and HG38 (table 5.3). However, in contrast, the overexpression of a different catalytically inactive PDE4, namely PDE4A4, resulted in an up-regulation of a GPCR, specifically EDG4 (tables 5.1). These data suggests that PDE4A4 and PDE4D3 may act on distinct pools of cAMP and thus act on different signalling pathways resulting in differential gene regulation of specific GPCRs.

5.2.1.4 Changes in gene expression unique to the overexpression of catalytically inactive PDE4D5

Overexpression of catalytically inactive PDE4D5 in HEK293 cells resulted in the up-regulation of mRNA expression greater than 5-fold of seven different genes and the down-regulation of mRNA expression greater than 5-fold of six different genes (table 5.4).

Although PDE4D3 and PDE4D5 are splice variants from the PDE4D subfamily, and are both long isoforms, they are known to interact with distinct signalling scaffold proteins. Interestingly, here we see that analysis of the microarray data produces some clear differences in the regulation of the levels of gene expression following the overexpression of the catalytically inactive species of each of these specific isoforms. Most interestingly, an 8-fold down-regulation of the gene expression of phospholipase D, and a 7-fold down-regulation of the gene expression of Glucose Transporter-like Protein (SLC2A9) were only evident following the overexpression of catalytically inactive PDE4D5.

Phospholipase D (PLD) enzymes constitute a family of phosphodiesterases that catalyse the hydrolysis of phosphatidylcholine (PtdCho) to generate choline and phosphatidic acid (PtdOH). Phospholipase D is involved a variety of physiological processes such as
endocytosis, exocytosis, vesicle coat recruitment, and budding from the Golgi apparatus (Liscovitch et al, 2000; Freyberg et al, 2003). Much of the research on has focused on the regulation of PLD activity by PKCα (Ca^{2+}-dependent form of PKC), PKCδ, rac- and Rho-GTPases, and small GTP-binding proteins such as ARF (Cockcroft et al, 1994; Hammond et al, 1997; Han et al, 2002; Freyberg et al, 2003; Liscovitch et al, 2000).

Facilitative glucose carriers such as members of the SLC2A family enable the transport of hexoses across the plasma membrane, and are important mediators in body sugar homeostasis. A novel member of the SLC2A family, SLC2A9 (GLUT9), was recently identified and characterised (Augustia et al, 2004). This study showed that SLC2A9 was expressed in human kidney proximal tubules, predominantly in the basal lateral membrane.

As an up-regulation of phospholipase D (PLD) mRNA and down-regulation of SLC2A9 mRNA was observed only following the overexpression of catalytically inactive PDE4D5, this suggests that the endogenous form of this PDE4 isoform, via control of cAMP levels, can influence the gene expression of signalling proteins of two different signalling pathways.

5.2.1.5 Common changes in levels of gene expression following overexpression of the catalytically inactive PDE4s.

Overexpression of catalytically inactive PDE4A4, PDE4D3 and PDE4D5 also provided identical changes in certain sets of genes that were either up-regulated or down-regulated. Common changes in gene expression are listed in table 5.5, along and I will discuss below a few examples of common changes of gene expression.

An 8-fold up-regulation in the expression of mRNA of secretogranin II (chromogranin C) was observed following the overexpression of catalytically inactive PDE4A4, PDE4D3 or PDE4E5 (table 5.5). Secretogranin II is a member of the secretogranin/chromogranin secretory protein family. Secretogranin/chromogranin secretory proteins are released from secretory vesicles together with hormones or neurotransmitters. Secretogranin II is
the precursor of the neuropeptide secretoneurin (Fischer-Colbrie et al., 1995). It has been reported that the regulation of synthesis of secretogranin II can be influenced by various different second messengers, including cAMP, Ca\(^{2+}\), cGMP (Fischer-Colbrie et al., 1995). Interestingly, up-regulation of the mRNA expression of secretogranin II was achieved in bovine chromaffin cells by forskolin treatment (Fischer-Colbrie et al., 1990). This up-regulation was thought to be due to presence of CRE in the promoter of secretogranin II (Schimmel et al., 1992). My observation of an up-regulation of the mRNA expression of secretogranin II following the overexpression of either catalytically inactive PDE4A4, PDE4D3 or PDE4E5 is most probably result of an increase of cAMP and subsequent activation of CRE.

The up-regulation of the mRNA expression of cytosolic phospholipase A\(_2\) gamma (cPLA\(_2\)) of 9-fold and 8-fold was evident following the overexpression of catalytically inactive PDE4A4 or PDE4D3 respectively (tables 5.1 & 5.4). Phospholipase A\(_2\) (PLA\(_2\)) is a key mediator, via the liberation of arachidonic acid, in the synthesis of eicosanoids which include prostaglandins, thromboxanes and leukotrienes. So far three different isoforms of cPLA\(_2\) have been identified, cPLA\(_{2\alpha}\), cPLA\(_{2\gamma}\) and cPLA\(_{2\beta}\). Each isoform of cPLA\(_2\) possesses a consensus MAPK phosphorylation site (PXSP motif) and it has been shown that MAPK phosphorylation of cPLA\(_{2\alpha}\) increases its intrinsic enzymatic activity, augmenting Ca\(^{2+}\)-induced arachidonic acid release (Hirabayashi & Shimizu, 2000). A variety of cytokines, IL-1, TNF\(_\alpha\), epidermal growth factor and interferon-\(\gamma\) have been shown to increase the synthesis of mRNA of cPLA\(_{2\alpha}\) in several cell models (Hirabayashi & Shimizu, 2000).

5.3 Discussion

A spatially distinct elevation of cAMP and/or PKA activation, as achieved by replacement of an endogenous PDE4 by a catalytically inactive PDE4 species, could alter gene expression by a number of different ways. Proof of the dominant negative/catalytically inactive principle has already been shown, whereby overexpression of inactive PDE4D5 in cardiac myocytes, saturated the \(\beta\)-arrestin sites for PDE and

PKA can exert long term effects on cellular functioning by altering the functions of a variety of nuclear proteins including a large number of transcription factors, nuclear hormone receptors, transcriptional activators/repressors and chromatin-associated proteins (Shabb, 2001). PKA can also indirectly exert effects upon transcriptional regulation via activation of the MAP kinase cascade. Also, it is possible that PKA may indirectly exert its effects upon transcription via the phosphorylation of another, unidentified signalling protein. In a recent review of physiological substrates of PKA (Shabb, 2001), it was shown that since the discovery of PKA in the 70s, the list of identified PKA substrates has quadrupled in the last decade and it is highly likely that many more PKA targets are yet to be identified. Research using the recently discovered Epac specific activator, 8-pCPT-2'-O-Me-cAMP, proposes that not all PKA-independent effects of cAMP can be attributed to Epac. This paves the way for the future discovery of further cAMP targets with cAMP binding domains not similar to that of Epac and PKA (Bos, 2003). Thus, there is a wide variety of identified and yet to be identified mechanisms by which cAMP can alter regulation of gene transcription, via direct or indirect actions.

My study, utilising the catalytically inactive PDE4 species as a form of manipulating different pools of cAMP did indeed provide data showing differential gene expression. The use of microarray technology allowed me to identify the changes in gene expression in a HEK293 cell model following the overexpression of catalytically inactive PDE4s. I identified, upon comparing the microarray data between the different inactive PDE4 species, many differences in gene expression. As we believe that the different catalytically inactive PDE4s alter different pools of cAMP, one would expect the general PDE4 inhibitors, namely rolipram and ariflo, to ‘knock’ out all PDE4s and thus result in a more global increase in cAMP. Therefore, we would expect the inhibition of all PDE4s by rolipram and ariflo to encompass all changes in gene expression, with regards to those changes observed following overexpression of the catalytically inactive PDE4s. However
this was not the case, as shown in tables 5.6 and 5.7. Here, the actual gene changes observed following 48hr treatment of HEK cells with rolipram or with ariflo are listed in tables. It is quite clear from these data that ariflo or rolipram treatment resulted in quite different changes in gene expression compared to those observed with any of the catalytically inactive PDE4 isoforms. This suggests that not only do overexpression of catalytically inactive PDE4s subtly alter distinct cAMP pools, but that one cAMP pool may control another.

However, the non-physiological effects of the overexpression of the inactive species must be taken into account. It is possible that overexpressed PDE4 species bind aberrantly to other proteins allowing non-specific, non-physiological effects. If time had allowed, I would have confirmed the changes in gene observed by RT-PCR and northern blot analysis. Furthermore, I would have studied the effects of such gene expression at the level of protein expression by SDS-PAGE analysis. Finally, it would be interesting to further assess gene changes following the manipulation of cAMP pools by means of siRNA. Designing PDE4 isoform specific siRNA would provide a different approach to ‘knocking out’ the PDE4 isoforms and studying their effects on gene expression.
Figure 5.1 The PDE mRNA expression profile of HEK293 cells. The gel represents a typical PDE mRNA profile of HEK293 cells. Total RNA was isolated from HEK293 cells, synthesised to cDNA and subjected to PCR using primers designed to specific PDE isoforms (see appendix for primer details).
<table>
<thead>
<tr>
<th>Fold change</th>
<th>p-value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.815</td>
<td>0.014907</td>
<td>gb:D26351.1 /DEF=Human mRNA for type 3 inositol 1,4,5-trisphosphate receptor, complete cds.</td>
</tr>
<tr>
<td>21.037</td>
<td>0.001538</td>
<td>Consensus includes gb;AK000847.1 /DEF=Homo sapiens cDNA FLJ20840 fis, clone ADKA02336. zinc finger protein 236</td>
</tr>
<tr>
<td>11.396</td>
<td>0.033203</td>
<td>gb;NM_004720.3 /DEF=Homo sapiens endothelial differentiation, lysosphatidic acid G-protein-coupled receptor, 4 (EDG4). mRNA.</td>
</tr>
<tr>
<td>9.510</td>
<td>0.001942</td>
<td>Consensus includes gb;NM_003530.1 /DEF=Homo sapiens H3 histone family, member B (H3F3), mRNA.</td>
</tr>
<tr>
<td>9.238</td>
<td>0.000683</td>
<td>gb;AF095214.1 /DEF=Homo sapiens cytosolic phospholipase A2 gamma (cPLA2 gamma) mRNA, complete cds.</td>
</tr>
<tr>
<td>7.724</td>
<td>0.000723</td>
<td>gb;NM_003469.2 /DEF=Homo sapiens secreotogranin II (chromogranin C) (SCG2), mRNA.</td>
</tr>
<tr>
<td>7.270</td>
<td>0.022009</td>
<td>gb;NM_005233.1 /DEF=Homo sapiens growth factor independent 1 (GFI1), mRNA.</td>
</tr>
<tr>
<td>7.262</td>
<td>0.001139</td>
<td>gb;AF133207.1 /DEF=Homo sapiens protein kinase (H11) mRNA, complete cds.</td>
</tr>
<tr>
<td>7.176</td>
<td>9.79E-05</td>
<td>gb;NM_030705.1 /DEF=Homo sapiens stathmin-like-protein RB3 (RB3), mRNA.</td>
</tr>
<tr>
<td>6.618</td>
<td>0.000201</td>
<td>Consensus includes gb;AA284829 /FEA=EST Weakly similar to Z139_HUMAN ZINC FINGER PROTEIN 13 H.sapiens</td>
</tr>
<tr>
<td>5.653</td>
<td>0.035828</td>
<td>gb;NM_005763.1 /DEF=Homo sapiens cytochrome P450, subfamily XXVIA, polypeptide 1 (CYP26A1), mRNA.</td>
</tr>
<tr>
<td>5.616</td>
<td>0.007183</td>
<td>gb;NM_005132.1 /DEF=Homo sapiens Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the rad21p family (REC8), mRNA.</td>
</tr>
<tr>
<td>5.393</td>
<td>5.19E-05</td>
<td>gb;NM_016039.1 /DEF=Homo sapiens type I transmembrane protein Fn14 (FN14), mRNA.</td>
</tr>
<tr>
<td>5.387</td>
<td>0.004982</td>
<td>gb;NM_001421.1 /DEF=Homo sapiens E74-like factor 4 (ets domain transcription factor) (ELF4), mRNA.</td>
</tr>
<tr>
<td>Fold change</td>
<td>p-value</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>5.378</td>
<td>0.004279</td>
<td>gb:NM_003543.2 /DEF=Homo sapiens H4 histone family, member H (H4FH), mRNA. Consensus includes gb:AK024281.1 /DEF=Homo sapiens cDNA FLJ14219</td>
</tr>
<tr>
<td>5.329</td>
<td>0.049043</td>
<td>gb:NM_016184.1 /DEF=Homo sapiens C-type (calcium dependent, carbohydrate-recognition domain) lectin, superfamily member 8 (CLECSF8), mRNA.</td>
</tr>
<tr>
<td>5.165</td>
<td>0.015766</td>
<td>gb:NM_016184.1 /DEF=Homo sapiens C-type (calcium dependent, carbohydrate-recognition domain) lectin, superfamily member 8 (CLECSF8), mRNA.</td>
</tr>
<tr>
<td>5.132</td>
<td>0.001163</td>
<td>Moderately similar to ALU7_HUMAN ALU SUBFAMILY SQ SEQUENCE CONTAMINATION WARNING ENTRY H.sapiens</td>
</tr>
<tr>
<td>-5.403</td>
<td>0.025832</td>
<td>gb:NM_017417.1 /DEF=Homo sapiens UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminytransferase 8 (GalNAc-T8) (GALNT8), mRNA.</td>
</tr>
<tr>
<td>-5.951</td>
<td>0.021371</td>
<td>CLONE=IMAGE:4478872 /UG=Hs.156530 interferon, gamma-inducible protein 16 /FL=gb:AF208043.1</td>
</tr>
<tr>
<td>-6.468</td>
<td>0.0219</td>
<td>Consensus includes gb:AL133015.1 /DEF=Homo sapiens mRNA; cDNA DKFZp43402417 (from clone DKFZp43402417</td>
</tr>
<tr>
<td>-7.418</td>
<td>0.009077</td>
<td>Consensus includes gb:AI816033 CLONE=IMAGE:2420736 /UG=Hs.55947 KIAA0085 protein</td>
</tr>
<tr>
<td>-9.581</td>
<td>0.018937</td>
<td>Consensus includes gb:D50604 /DEF=Human beta-cytoplasmic actin (ACTBP9) pseudogene /FEA=CDS /DB_XREF=gi:20947596</td>
</tr>
<tr>
<td>-12.693</td>
<td>0.020161</td>
<td>gb:NM_004571.1 /DEF=Homo sapiens PSXknotted 1 homobox 1 (PKNO1X1), mRNA.</td>
</tr>
<tr>
<td>-20.430</td>
<td>0.005259</td>
<td>gb:D28513.1 /DEF=Human mRNA for PACE4C (kexin-like protease), complete cds</td>
</tr>
<tr>
<td>-38.900</td>
<td>0.04771</td>
<td>Consensus includes gb:AF279774.1 /DEF=Homo sapiens clone N4 Ntera2D1 teratocarcinoma mRNA.</td>
</tr>
</tbody>
</table>

Table 5.1 Changes in levels of mRNA levels following overexpression of catalytically inactive PDE4A4. The fold change was calculated from the mean expression values between the PDE4A4 sample and the empty vector control sample (pcDNA). P-values were calculated by the heteroscedastic students t-test.
<table>
<thead>
<tr>
<th>Fold change</th>
<th>p-value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.367127496</td>
<td>0.0042</td>
<td>gb:NM_005132.1 /DEF=Homo sapiens Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the rad21p family (REC8), mRNA.</td>
</tr>
<tr>
<td>-5.730308219</td>
<td>0.0060</td>
<td>gb:NM_030769.1 /DEF=Homo sapiens hypothetical protein similar to swine acylneuraminate lyase (C1ORF13), mRNA.</td>
</tr>
<tr>
<td>-6.877356491</td>
<td>0.0009</td>
<td>Consensus includes gb:AF271088.1 /DEF=Homo sapiens deleted in azoospermia (DAZ) mRNA, partial cds.</td>
</tr>
<tr>
<td>-7.163461538</td>
<td>0.0004</td>
<td>gb:NM_006466.1 /DEF=Homo sapiens ring finger protein 22 (RNF22), mRNA.</td>
</tr>
<tr>
<td>-8.509616385</td>
<td>0.0074</td>
<td>Consensus includes gb:AW445640 CLONE=IMAGE:2733928 ^UG=Hs.300863 lethal (3) malignant brain tumor (3)mit protein Drosophila) homolog</td>
</tr>
</tbody>
</table>

Table 5.2 Changes in levels of mRNA levels following overexpression of catalytically inactive PDE4B2. The fold change was calculated from the mean expression values between the PDE4B2 sample and the empty vector control sample (pcDNA). P-values were calculated by the heteroscedastic students t-test.
<table>
<thead>
<tr>
<th>Fold change</th>
<th>p-value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3821</td>
<td>0.0007</td>
<td>gb:AF065214.1 /DEF=Homo sapiens cytosolic phospholipase A2 gamma (cPLA2 gamma) mRNA, complete cds.</td>
</tr>
<tr>
<td>8.2313</td>
<td>0.0011</td>
<td>Consensus includes gb:NM_003530.1 /DEF=Homo sapiens histone family, member B (H3FB), mRNA.</td>
</tr>
<tr>
<td>8.0620</td>
<td>0.0008</td>
<td>gb:AF133207.1 /DEF=Homo sapiens protein kinase (H11) mRNA, complete cds.</td>
</tr>
<tr>
<td>7.9606</td>
<td>0.0074</td>
<td>gb:NM_003469.2 /DEF=Homo sapiens secretogranin II (chromogranin C) (SCG2), mRNA.</td>
</tr>
<tr>
<td>6.2408</td>
<td>0.0001</td>
<td>gb:NM_030795.1 /DEF=Homo sapiens stathmin-like-protein RB3 (RB3), mRNA.</td>
</tr>
<tr>
<td>5.9783</td>
<td>0.0006</td>
<td>Consensus includes gb:AA284420 Weakly similar to Z139_HUMAN ZINC FINGER PROTEIN 13 H.sapiens</td>
</tr>
<tr>
<td>5.2637</td>
<td>0.0002</td>
<td>gb:NM_003543.2 /DEF=Homo sapiens H4 histone family, member H (H4FH), mRNA.</td>
</tr>
<tr>
<td>5.0220</td>
<td>0.0005</td>
<td>gb:NM_016639.1 /DEF=Homo sapiens type 1 transmembrane protein Fv14 (FN14), mRNA.</td>
</tr>
<tr>
<td>-5.4160</td>
<td>0.0015</td>
<td>gb:U39196.1 /DEF=Human clone hGIRK1 G-protein coupled inwardly rectifying potassium channel mRNA, complete cds.</td>
</tr>
<tr>
<td>-5.5022</td>
<td>0.0240</td>
<td>gb:AI0985120 CLONE=IMAGE:2494024 /UG=Hs.241257 latent transforming growth factor beta binding protein 1 /FL=gb:NM_000627.1</td>
</tr>
<tr>
<td>-7.5607</td>
<td>0.0141</td>
<td>gb:AF062006.1 /DEF=Homo sapiens orphan G protein-coupled receptor HG38 mRNA, complete cds.</td>
</tr>
<tr>
<td>-7.7203</td>
<td>0.0247</td>
<td>gb:BG255677 /CLONE=IMAGE:4478872 /UG=Hs.155530 interferon, gamma-inducible protein 16 /FL=gb:AF208043.1</td>
</tr>
</tbody>
</table>

Table 5.3 Changes in levels of mRNA levels following overexpression of catalytically inactive PDE4D3. The fold change was calculated from the mean expression values between the PDE4D3 sample and the empty vector control sample (pcDNA). P-values were calculated by the heteroscedastic students t-test.
<table>
<thead>
<tr>
<th>Fold change</th>
<th>p-value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1798</td>
<td>0.0045</td>
<td>gb:NM_018452.1 /DEF=Homo sapiens uncharacterized bone marrow protein BM033 (BM033), mRNA.</td>
</tr>
<tr>
<td>10.7629</td>
<td>0.0102</td>
<td>Consensus includes gb:AK000847.1 /DEF=Homo sapiens cDNA FLJ20840 DB_XREF=gi:7021188 /UG=Hs.283619 zinc finger protein 236</td>
</tr>
<tr>
<td>8.1675</td>
<td>0.0096</td>
<td>gb:NM_003468.2 /DEF=Homo sapiens secretogranin II (chromogranin C) (SCG2), mRNA.</td>
</tr>
<tr>
<td>7.2607</td>
<td>0.0014</td>
<td>gb:AF133207.1 /DEF=Homo sapiens protein kinase (H11) mRNA, complete cds.</td>
</tr>
<tr>
<td>7.1487</td>
<td>0.0127</td>
<td>gb:NM_005794.1 /DEF=Homo sapiens short-chain alcohol dehydrogenase family member (HEP27), mRNA.</td>
</tr>
<tr>
<td>5.4997</td>
<td>0.0033</td>
<td>gb:NM_001421.1 /DEF=Homo sapiens E74-like factor 4 (ets domain transcription factor) (ELF4), mRNA.</td>
</tr>
<tr>
<td>5.4270</td>
<td>0.0004</td>
<td>gb:NM_037651.1 /DEF=Homo sapiens stathmin-like-protein RB3 (RB3), mRNA.</td>
</tr>
<tr>
<td>-6.0505</td>
<td>0.0000</td>
<td>Consensus includes gb:U78581.1 /DEF=Human type I phosphatidylinositol-4-phosphate 5-kinase beta (STM7) mRNA, partial cds.</td>
</tr>
<tr>
<td>-6.5505</td>
<td>0.0199</td>
<td>Consensus includes gb:A583428 /CLONE=IMAGE:2510766 /UG=Hs.146428 collagen, type V, alpha 1</td>
</tr>
<tr>
<td>-7.0000</td>
<td>0.0480</td>
<td>gb:NM_020041.1 /DEF=Homo sapiens solute carrier family 2 (facilitated glucose transporter), member 9 (SLC2A9), mRNA.</td>
</tr>
<tr>
<td>-7.8070</td>
<td>0.0012</td>
<td>Consensus includes gb:AU147830 Homo sapiens cDNA FLJ12285 fos, clone MAMMA1001818</td>
</tr>
<tr>
<td>-8.2156</td>
<td>0.0440</td>
<td>gb:L11702.1 /DEF=Human phospholipase D mRNA, complete cds.</td>
</tr>
<tr>
<td>-17.5996</td>
<td>0.0198</td>
<td>Consensus includes gb:BG259877 interferon, gamma-inducible protein 16 /FL=gb:AF208043.1</td>
</tr>
</tbody>
</table>

Table 5.4 Changes in levels of mRNA levels following overexpression of catalytically inactive PDE4D5. The fold change was calculated from the mean expression values between the PDE4D5 sample and the empty vector control sample (pcDNA). P-values were calculated by the heteroscedastic students t-test.
<table>
<thead>
<tr>
<th>Description</th>
<th>Fold change</th>
</tr>
</thead>
<tbody>
<tr>
<td>secretogranin II (chromogranin C)</td>
<td>7.724</td>
</tr>
<tr>
<td>H3 histone family, member B (H3FB)</td>
<td>9.510</td>
</tr>
<tr>
<td>cytosolic phospholipase A2 gamma (cPLA2 gamma)</td>
<td>9.238</td>
</tr>
<tr>
<td>protein kinase (H11)</td>
<td>7.262</td>
</tr>
<tr>
<td>stathmin-like-protein RB3 (RB3)</td>
<td>7.176</td>
</tr>
<tr>
<td>Human zinc finger protein 13</td>
<td>6.618</td>
</tr>
<tr>
<td>Human zinc finger protein 236</td>
<td>21.037</td>
</tr>
<tr>
<td>short-chain alcohol dehydrogenase family member (HEP27),</td>
<td>5.899</td>
</tr>
<tr>
<td>Rec8p, a meiotic recombination and chromatid cohesion phosphoprotein</td>
<td>5.816</td>
</tr>
<tr>
<td>type 1 transmembrane protein Fn14</td>
<td>5.383</td>
</tr>
<tr>
<td>E74-like factor 4 (ets domain transcription factor) (ELF4),</td>
<td>5.387</td>
</tr>
<tr>
<td>H4 histone family, member H (H4FH)</td>
<td>5.387</td>
</tr>
<tr>
<td>interferon, gamma-inducible protein 16</td>
<td>-5.951</td>
</tr>
</tbody>
</table>

Table 5.5 Common changes in mRNA levels following overexpression of catalytically inactive PDE4 isoforms. The fold change was calculated from the mean expression values between the PDE4 isoform sample and the empty vector control sample (pcDNA). The p-values are listed in the previous tables (tables 5.2-5.5).
<table>
<thead>
<tr>
<th>Fold change</th>
<th>p-value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9474</td>
<td>0.0003</td>
<td>gb:NM_021064.1 /DEF=Homo sapiens H2A histone family, member P (H2AFP), mRNA</td>
</tr>
<tr>
<td>6.2371</td>
<td>0.0035</td>
<td>gb:NM_014298.2 /DEF=Homo sapiens quinolinate phosphoribosyltransferase (nicotinate-nucleotide pyrophosphorylase (carboxylating)) (QPRT), mRNA.</td>
</tr>
<tr>
<td>5.2029</td>
<td>0.0071</td>
<td>gb:BC002439.1 /DEF=Homo sapiens, Tat-interacting protein (30kD), clone MGC:1318, mRNA,</td>
</tr>
<tr>
<td>-7.7763</td>
<td>0.032</td>
<td>gb:NM_020193.1 /DEF=Homo sapiens GL002 protein (GL002), mRNA</td>
</tr>
<tr>
<td>-8.3592</td>
<td>0.0059</td>
<td>Consensus includes gb:AK025352.1 /DEF=Homo sapiens cDNA: FLJ21699 fis, clone COL09829.</td>
</tr>
<tr>
<td>-19.1500</td>
<td>0.0081</td>
<td>gb:AY014283.1 /DEF=Homo sapiens NYD-SP6 mRNA, complete cds.</td>
</tr>
</tbody>
</table>

Table 5.6 Changes in levels of mRNA levels following treatment of HEK293 cells with rolipram (10μM). The fold change was calculated from the mean expression values between the rolipram sample and the HEK293 sample (untreated cells). P-values were calculated by the heteroscedastic students t-test.
<table>
<thead>
<tr>
<th>Fold change</th>
<th>P-value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.1667</td>
<td>0.0141</td>
<td>gb:NM_005410.1 /DEF=Homo sapiens Tat-interacting protein (30kD) (TIP30), mRNA.</td>
</tr>
<tr>
<td>6.3719</td>
<td>0.0287</td>
<td>gb:NM_021094.1 /DEF=Homo sapiens H2A histone family, member P (H2AFP), mRNA.</td>
</tr>
<tr>
<td>5.0319</td>
<td>0.0133</td>
<td>gb:BC002439.1 /DEF=Homo sapiens, Tat-interacting protein (30kD), clone MGC:1315, mRNA, complete cds.</td>
</tr>
<tr>
<td>-5.2119</td>
<td>0.0176</td>
<td>Consensus includes gb:AF509616 /FEA=ESTCLONE=IMAGE:361389 gene product</td>
</tr>
<tr>
<td>-6.5766</td>
<td>0.0234</td>
<td>gb:NM_021094.1 /DEF=Homo sapiens solute carrier family 21 (organic anion transporter), member 3 (SLC21A3), mRNA</td>
</tr>
<tr>
<td>-5.9844</td>
<td>0.0071</td>
<td>gb:AY014283.1 /DEF=Homo sapiens NYD-SP6 mRNA, complete cds, hypothetical protein /FL=go:AY014283.1</td>
</tr>
<tr>
<td>-6.4173</td>
<td>0.0321</td>
<td>Consensus includes gb:AA007721 /FEA=EST /DB_XREF=gi:1479910 DB_XREF=est:zs9911.s1 /CLONE=IMAGE:361389</td>
</tr>
<tr>
<td>-6.4737</td>
<td>0.0054</td>
<td>Consensus includes gb:AK025352.1 /DEF=Homo sapiens cDNA: FLJ21699 fis, clone COL00829. /FEA=mRNA</td>
</tr>
<tr>
<td>-7.0661</td>
<td>0.0181</td>
<td>gb:NM_007346.1 /DEF=Homo sapiens zinc finger protein 236 (ZNF236), mRNA. /FEA=mRNA</td>
</tr>
<tr>
<td>-7.1133</td>
<td>0.0017</td>
<td>Consensus includes gb:BG261679/CLONE=IMAGE:4544371 , Highly similar to YXHUT thymidylate synthase H.sapiens</td>
</tr>
<tr>
<td>-7.8990</td>
<td>0.0437</td>
<td>Cluster incl. AF007155:Homo sapiens clone 23763 unknown mRNA, partial cds /cds=(0,314) /gb:AF007155 /ug=2852935 /ug=Hs.186994 /len=1369</td>
</tr>
<tr>
<td>-9.2475</td>
<td>0.0026</td>
<td>Consensus includes gb:UR0771.1 /DEF=Human EST clone 25257 mariner transposon Hsmarl sequence.</td>
</tr>
<tr>
<td>-10.4778</td>
<td>0.0056</td>
<td>Consensus includes gb:AC004472 /DEF=Homo sapiens chromosome 9, P1 clone 11699 /FEA=CDS</td>
</tr>
<tr>
<td>-11.0456</td>
<td>0.0117</td>
<td>gb:BC002411.1 /DEF=Homo sapiens, Similar to laminin, alpha 4, clone MGC:10389, mRNA, complete cds.</td>
</tr>
<tr>
<td>-13.5385</td>
<td>0.0375</td>
<td>/CLONE=IMAGE:2421293 /UG=Hs.162832 golgin-67 /FL=gb:NM_015003.1 gb:AF204231.</td>
</tr>
<tr>
<td>-15.2347</td>
<td>0.0075</td>
<td>aryl hydrocarbon receptor nuclear translocator-like /FL=gb:AB000812.1 gb:AF044288.1</td>
</tr>
<tr>
<td>-32.1667</td>
<td>0.0071</td>
<td>Consensus includes gb:BE534895ATP-binding cassette, sub-family B (MDR/ABCB), member 9</td>
</tr>
</tbody>
</table>

Table 5.7. Changes in levels of mRNA levels following treatment of HEK293 cell with arflo (please see next page for full table legend).
Table 5.7 Changes in levels of mRNA levels following treatment of HEK293 cells with arflo (10µM). The fold change was calculated from the mean expression values between the arflo sample and the HEK293 sample (untreated cells). P-values were calculated by the heteroscedastic students t-test.
Chapter 6

Compartmentalisation of cAMP phosphodiesterases in rat neonatal cardiac myocytes
6.1 Introduction

Crosstalk between two second messenger pathways, Ca\(^{2+}\) and cAMP plays an important role in controlling cardiac function (MacLennan & Kranias; Nature reviews 2003) (General Introduction, figure 1.13). The majority of the mass of the myocardium is comprised of cardiac myocytes, and alterations in cytosolic Ca\(^{2+}\) concentrations allow cardiac myocytes to contract and relax in dynamic fashion. The rate of relaxation and force of contraction (chronotropic response and inotropic response) can be influenced by cAMP through the phosphorylation of specific target proteins by PKA. Several channels, pumps and receptors involved in the Ca\(^{2+}\) fluxes within the cardiac myocytes are controlled through their PKA phosphorylation status and thus are regulated by altered intracellular cAMP concentrations (Simmerman & Jones, 1998) (See main introduction).

Additionally, the cyclic nucleotide cGMP has been shown to increase Ca\(^{2+}\) currents via L-type Ca\(^{2+}\) channels and thereby exert a chronotropic effect (Haynes et al, 1996; Musialek et al, 2000; Vandecasteele et al, 2001).

Various studies have shown that a range of different PDE variants are expressed within the cardiac myocytes. These include the PDE1, PDE2, PDE3, PDE4 and PDE5 families (Maurice et al, 2003). However, it is the PDE3 and PDE4 families that are believed to provide the major cAMP-hydrolysing phosphodiesterase activities present in heart (Takahashi et al., 2002; Wechsler et al., 2002; Mongillo et al., 2004). In fact, it has been shown that enzymes of the PDE4 family provide over twice the cAMP-hydrolysing activity as the PDE3 family, with isoforms of the PDE4D sub-family providing over two thirds of the total PDE4 activity (Mongillo et al., 2004). Recently published studies utilising a fluorescence-resonance-energy-transfer (FRET) approach (Zaccolo & Pozzan, 2002; Mongillo et al., 2004) have elegantly shown the presence of distinct pools of cAMP within cardiac myocytes. Additionally, the spatial confinement of different PDEs to discrete compartments has been shown using immunofluorescence coupled to analysis by confocal imaging techniques. In order to gain insight into the functional compartmentalisation of particular PDEs within the cardiac myocytes, I chose to study the effect of the selective inhibition of specific cAMP-hydrolysing PDEs on two different
cAMP targets, ERK and phospholamban (PLB). These were chosen to probe distinct facets of cAMP signalling using spatially distinct target proteins as described below.

ERK can be both positively and negatively regulated by cAMP. This depends on the expression of various signalling networks including the presence of distinct isoforms of Raf. Thus, elevated cAMP levels can lead to ERK activation through the action of B-Raf. The mechanism through which this occurs is not unequivocally established, although current consensus is that it involves PKA action, possibly serving to phosphorylate Rap1, which then activates B-Raf (Dumaz et al, 2002; Dhillon et al, 2002; Bos, 2003). It had previously been suggested that activation of ERK can also occur in response to increased cellular cAMP level by a mechanism independent of PKA. This mechanism had been proposed to involve the activation of Rap-1 by cAMP-stimulated GTPase exchange proteins (Epac). Following the binding of Epac to Rap1, it was suggested that Rap-1 binds to and activates B-Raf, and also directly binds to and inactivates Raf-1 (Vossler et al, 1997; Schmitt & Stork, 2002). However, following the development of an Epac-specific cAMP analogue, these proposed mechanisms are doubted and remain controversial (Enserink et al, 2002; Bos, 2003). The use of this analogue supports the evidence that regulation Raf-1/B-Raf and ERK is mediated by PKA, in a manner independent of Rap-1. Also, the use of this analogue indicates that cAMP induced activation of Rap1 is indeed mediated by Epac, but doubts that this activation results in the activation of ERK (Bos, 2003). PKA can also exert an inhibitory effect on ERK and does this in cells where Raf-1 is present and coupled to ERK activation. In such a system then inhibition ensues via the direct phosphorylation of Raf-1 by PKA (De Rooij et al., 1998; Kawasaki et al., 1998).

The MAPK signalling cascade is thought to play a role in regulating gene expression during hypertrophy (Gillespie-Brown et al., 1995). The cardiac myocyte is a terminally differentiated cell, however, in response to pathophysiological stress, it adapts hypertrophically as an initial compensatory mechanism. A number of characteristic modifications distinguish the hypertrophic cardiac myocyte from normal maturational growth (Chien et al., 1991). Following hypertrophic stimulus, genes which are only normally expressed in the fetal ventricle are re-expressed such as atrial natriuretic factor.
(ANF), skeletal muscle \(\alpha \)-actin (SkM \(\alpha \)-actin) and \(\beta \)-myosin heavy chain (\(\beta \)-MHC) (Chien et al., 1991). Hypertrophic agonists, such as phenylephrine, activate ERKs and MEKs (Bogoyevitch et al., 1995). It has been shown that the activation of MEK/ERK cascade can stimulate ANF, SkM \(\alpha \)-actin, \(\beta \)-MHC and c-fos promoter activity, and thus may play a role in the development of the hypertrophic phenotype in the cardiac myocytes (Gillespie-Brown et al., 1995).

Phospholamban (PLB) is small transmembrane protein located on the sarcoplasmic reticulum (SR) and is involved on the regulation of \(\text{Ca}^{2+} \) uptake into the SR. It is a 6.1 kDa protein that forms a homopentamer, where it binds to and inhibits the sarcoplasmic reticulum \(\text{Ca}^{2+} \) ATPase (SERCA2a). Upon phosphorylation of PLB by either PKA (Ser 16) or CaM kinase (Thr 17), the inhibitory effect of PLB on SERCA2a is relieved and \(\text{Ca}^{2+} \) can now be pumped back into the SR (General introduction; figure 1.13). On a physiological setting, the dysfunction of PLB has been implicated in diminished contractility and cardiomyopathy (Hagemann & Xiao, 2002). Such studies have indicated that either enhanced phosphorylation of PLB or disruption of the PLB and SERCA2a interaction may prevent the progression of chronic heart failure (Minamisawa et al., 1999; Haghighi et al., 2001; Sato et al., 2001; MacLennan & Kranias, 2003).

Both PLB and ERK1/2 have quite different functional effects within cardiac myocytes, and their activity can both be regulated by PKA action. Briefly, the direct phosphorylation of PLB by PKA allows the release of the inhibitory constraint upon SERCA2 and is an important factor in controlling cytosolic \(\text{Ca}^{2+} \) concentrations. In contrast to this, PKA can exert an indirect effect upon phosphorylation and activation of ERK1/2 by MEK and is believed to regulate hypertrophy through the control of cardiac gene expression (Clerk et al., 1998). As the tethering of PKA to distinct subcellular compartments by AKAPs has also previously been reported within cardiac myocytes (Ruher, 2004), one could propose that the phosphorylation status of ERK1/2 and PLB is influenced by different ‘pools’ of cAMP. Therefore, for my study, I set out to alter selectively both cAMP degradation, through inhibition of specific PDEs, and also to activate selectively different GPCRs in order to generate cAMP distinctly. In doing so, I
hoped to either generate or manipulate functionally distinct pools of cAMP. As an output for these experiments I examined the effects upon ERK1/2 and PLB phosphorylation.

Results

For each experiment within this chapter primary cultures of cardiac myocytes were isolated from 2-3 day old neonatal rat (Sprague Dawley) hearts.

6.1.1 cAMP phosphodiesterase activity in rat neonatal cardiac myocytes

The PDE activity of homogenates of rat neonatal cardiac myocytes was assayed (figure 6.1), and total PDE activity was found to be 102 +/- 8 pmol min^{-1} mg protein (mean +/- SD; n=8) (Mongillo et al., 2004). In order to obtain a PDE activity profile, the PDE2, PDE3 and PDE4 was determined by the use of selective PDE inhibitors, EHNA (20μM), cilostamide (10μM) and rolipram (10μM), respectively. The presence of PDE1 activity was determined by the addition of Ca^{2+}CaM or addition of EGTA to assess whether this would cause an increase in PDE activity.

This approach showed that around 90% of total PDE activity was due to PDE3 and PDE4 activity, with around two thirds of the total being provided by PDE4 alone (figure 6.1). Less than 10% of total PDE activity was provided by other PDE families of which PDE2 provides over half (data not shown), PDE1 activity was negligible.

Mongillo et al also show that PDE4 provided almost 60% of total PDE activity and this was dissected into PDE4 sub-family specific activity. This was done by immunopurification using sub-family specific antisera. It was found that isoforms of the PDE4A and PDE4B family contributed less than 10% of total PDE4 activity, whereas PDE4D contributed some 60% and PDEB to some 30% (Mongillo et al., 2004)
6.1.1.1 Selective PDE inhibition and phosphorylation of phospholamban and ERK1/2

In the following experiments, the PKA phosphorylation status of phospholamban (PLB) was detected by a commercially available polyclonal antibody (Upstate Technology). This antibody is specific to PKA phosphorylated PLB and is generated to a synthetic peptide (RAS*TIEMPQQAR), where the phosphorylated Ser 16 is indicated by * . The phosphorylation status of Erk1 and Erk2 (ERK1/2) was detected by a commercially available antibody (New England Biolabs). This antibody detects the phosphorylation of Thr183 and Tyr185 of rat Erk2 by MAP kinase kinase (MEK) or the phosphorylation of Thr202 and Tyr204 of human Erk1. The use of such antibodies allowed me to study the direct effect of PKA upon the phosphorylation status of PLB, and the MEK mediated phosphorylation status of ERK1/2, thus the indirect possible effect of PKA upon ERK1/2.

Myocytes were incubated for 10 min with specific PDE inhibitors EHNA (20µM) for PDE2, cilostamide (10µM) for PDE3 and rolipram (10µM) for PDE4, or different combinations of these inhibitors (figure 6.2). The lysates were separated by electrophoresis and immunoblotted to detect phosphorylation of ERK1/2 by MEK and the phosphorylation of the monomeric form of PLB by PKA. So as to provide loading and normalization controls, blots were stripped and re-probed with antibodies specific ERK2 and antibodies specific to PLB. Densitometry analysis was performed with Quantity One software (BioRad) and normalized using the total ERK and total PLB control blots. With respect to PLB, a small increase in its phosphorylation was observed with PDE3 inhibition (cilostamide) or PDE4 inhibition (rolipram), whilst PDE2 inhibition (EHNA) had no effect. However, in contrast to this, a 3 to 5 fold increase in the PKA phosphorylation status of PLB was observed upon the addition of both PDE2 and PDE3 inhibitors together. Most strikingly, however, a 12 to 15 fold increase in the level of phosphorylation of PLB by PKA was seen upon PDE3 and PDE4 inhibition.

With respect to phosphorylation of ERK1/2 by MEK, selective inhibition of PDE2 (EHNA), PDE3 (cilostamide) or PDE4 (rolipram) alone had negligible effects (figure
6.2). However, a more pronounced effect was observed upon the inhibition of both PDE2 and PDE3, and upon inhibition of both PDE3 and PDE4. The inhibition of both PDE2 and PDE3 provided a 2-3 fold increase in ERK1/2 phosphorylation by MEK, and inhibition of both PDE3 and PDE4 also provided a 2-3 fold increase in the level of phosphorylation of ERK1/2 by MEK. In contrast, a small increase in ERK1/2 phosphorylation was observed following the inhibition of both PDE2 and PDE4.

6.1.2 Time-dependent changes in phosphorylation of ERK1/2 and phospholamban in response to selective β1 and β2 adrenergic receptor activation, adenosine receptor activation and EP receptor activation.

It has been reported by many laboratories that stimulatory β1 and β2 adrenergic receptors are coupled to different functional outputs in cells, although both receptors activate adenylyl cyclases. The β-adrenergic receptor (β-AR)-mediated cAMP signalling pathway is one of the best characterized signalling systems in cardiac myocytes. Catecholamines released by the sympathetic nervous system act through the β-ARs to influence the contractile state of the heart as a compensatory mechanism to preserve the function of the heart in response to stress. Both β1 AR receptors, and β2 AR receptors couple to Gs leading to the activation of adenylyl cyclase. However, it has been suggested that different signalling properties exist between the two receptors as only the pathway of β1-AR mediated activation of adenylyl cyclase can be inhibited by M2 muscarinic cholinergic receptor activation (Aprigliano et al., 1997). Differences in distribution of β AR-receptors to the plasma membrane of cardiac myocytes have been shown (Rybin et al., 2000). All β2 AR receptors have been shown to be enriched in caveolae (flask-shaped invaginations of the plasma membrane), whereas only a fraction of the β1 AR receptors are found in caveolae (Rybin et al., 2000).

Prostaglandin PGE2, which is released from a variety cells, can act on cardiac function via EP1, EP2, EP3 or EP4 receptors. It has been shown that PGE2 can increase cAMP levels within cardiac myocytes and thereby induce hypertrophic cell growth (Mendez & LaPointe, 2001). In contrast to this, adenosine has been reported to exert a contractile
effect on the heart through simulation of the Gs-coupled adenosine A2a receptor, expressed in cardiac myocytes (Liang & Morley, 1996; Marla & Mustafa, 1998). However, the stimulation of the A2a receptor has been shown to exhibit a distinct inotropic response compared to that of the β AR receptor, suggesting that although the β AR and A2a receptors are both Gs-coupled they exert distinct cellular actions, which may reflect actions exerted through compartmentalised cAMP signalling (Liang & Morley, 1996).

As a prelude to studying the phosphorylation status of ERK1/2 and PLB, following the manipulation of cAMP levels using either selective GPCR activation or selective PDE inhibition, I started by studying the time-dependent phosphorylation status of both PLB and ERK1/2 following β1 and β2 adrenergic receptor activation, adenosine activation and EP receptor activation. I also determined the total PDE activity, PDE4 activity alone and PDE3 activity alone over the time period of such β1 and β2 adrenergic receptor activation.

Cardiac myocytes were treated over the same time period with the selective partial β1 AR agonist, xametrol hexifumarate (10μM) (Tocris, USA) or with the specific β2 AR agonist, procaterol hydrochloride (10μM) (Tocris, USA) in order to study the time-dependent phosphorylation status of both PLB and ERK1/2 (figure 6.3a). Lysates were collected at the indicated times and subjected to electrophoretic separation. The antibodies specific to phosphorylated ERK1/2 and phosphorylated PLB (described in section 6.1.2) were used to detect the MEK phosphorylation status of ERK1/2 and the PKA phosphorylation status of PLB. So as to provide loading controls, blots were stripped and reprobed with antibodies specific ERK2 and antibodies specific to PLB.

Phosphorylation of ERK1/2 was seen in untreated cells and in the case of challenge of myocytes with either the β1 AR agonist (xameterol) and the β2 AR agonist (procaterol) agonists, a similar small time-dependent increase in ERK1/2 phosphorylation was observed (figure 6.3a).
PKA phosphorylated PLB species was not detected in untreated cells (figure 6.3a). However, following the challenge of the cardiac myocytes either the β1 AR agonist (xameterol) or the β2 AR agonist (procaterol), PLB appeared to undergo phosphorylation to similar levels (figure 6.3a).

In order to assess the total PDE activity, specific PDE4 activity and the specific PDE3 activity over the time period of treatment with the selective β receptor agonists, lysates were collected at the indicated time points and PDE assays performed (figure 6.3b) (Marchmont and Houslay, 1980). Compared to treatment of cardiac myocytes with xameterol, treatment with procaterol provided a larger change in PDE3 and PDE4 activities over the same time period (figure 6.3b).

In order to study time-dependent phosphorylation status of both PLB and ERK1/2 following adenosine A2a receptor activation and EP receptor activation, cardiac myocytes were challenged over the same time period with PGE2 (1μM) (SIGMA) and CGS 21680 (10μM) (SIGMA) (figure 6.4a). Cell lysates were collected at the indicated time points, subjected to gel electrophoresis and immunoblotted with the antibodies specific to MEK phosphorylated ERK1/2 and PKA phosphorylated PLB (figure 6.4a). To provide loading controls, blots were stripped and reprobed with antibodies specific ERK2 and antibodies specific to PLB.

After 5 min of stimulation with A2a receptor agonist (CGS 21680), it is clear that ERK1/2 becomes phosphorylated with a maximum phosphorylation achieved after 10 min (figure 6.4a). However, after 20 min challenge with CGS 21680, the phosphorylation status of ERK1/2 was attenuated (figure 6.4a). In contrast to this, a maximum level of phosphorylation of ERK1/2 was observed at some 2 min after challenge of cardiac myocytes with PGE2 and this level was maintained throughout the time period (figure 6.4a).

PKA phosphorylation of PLB was observed in lysates from untreated cells (figure 6.4a). However, treatment of cardiac myocytes over the same time period with either
CGS21680 or PGE2 resulted in a similar increase in phosphorylation state of PLB. This level was maintained using challenge with either CGS 21680 or PGE2 (figure 6.4a).

The total PDE activity, specific PDE4 activity and the specific PDE3 activity was assessed over the time period of CGS 21680 and PGE2 treatment. The lysates were collected at the indicated time points and PDE assays performed (figure 6.4b) (Marchmont and Houslay, 1980). Treatment of cardiac myocytes over a time period with CGS 21680 provided a minimal change in PDE3 activity (figure 6.4b). However, an initial decrease in PDE4 activity, was observed upon CGS 21680 treatment, which rapidly increased some 10 min after initial exposure to CGS 21680 treatment. In contrast, treatment of cardiac myocytes over the same time period with PGE2 provided a noticeable increase in PDE3 activity, as well as an increase in PDE4 activity (figure 6.5b).

6.1.3 Global cAMP levels following selective GPCR activation

Cardiac myocytes were subjected to treatment for the same time period with one of either procatelol, xameterol, CGS 21680 or PGE2 in order to assess changes in global levels of cAMP following the selective activation of β1 and β2 adrenergic receptors, adenosine A2a receptor and EP receptors, respectively. Lysates were collected at the indicated time points and cAMP assays performed (figure 6.5) (Materials and methods). The results are represented here as fold change over basal levels (figure 6.5) with cAMP concentration measured in pmol per well of myocytes. For each agonist 1-3 fold changes were observed at 5 min stimulation, and generally the changes in cAMP levels for treatment of each agonist over the same time period were very similar.
6.1.4 Differential effects of selective PDE inhibition and Gs-coupled agonist stimulation upon ERK1/2 and phospholamban phosphorylation status

Figure 6.2 of this chapter, shows the effect of selective PDE inhibition on phosphorylation of ERK1/2 by MEK and phosphorylation of PLB by PKA at resting cAMP levels (unstimulated cells). In order to manipulate distinct pools of cAMP in cardiac myocytes and study this effect upon the phosphorylation status of ERK1/2 and PLB, I chose to alter cAMP degradation through selective PDE inhibition with activation of distinct GPCRs.

Cardiac myocytes were pretreated for 5 min with either the PDE2 inhibitor (EHNA) (20μM), PDE3 inhibitor (cilostamide) (10μM) or the PDE4 inhibitor rolipram (10μM) (figure 6.6a). Following selective PDE inhibition, cardiac myocytes were subjected to 10 min stimulation with either the adenosine receptor agonist CGS 21680 or with PGE2 (figure 6.6a), and 10 min stimulation with the β1 or β2 agonists (figure 6.6b). Lysates were harvested, subjected to gel electrophoresis and analysed by immunoblotting with the antibodies specific to MEK phosphorylated ERK1/2 and PKA phosphorylated PLB (figures 6.6a & 6.6b). In order to provide loading controls, blots were stripped and reprobed with antibodies specific ERK2 and antibodies specific to PLB.

Following PDE4 inhibition (rolipram) and CGS 21680 treatment, a prominent increase ERK1/2 phosphorylation was observed. However, in contrast, a very small increase in ERK1/2 phosphorylation was observed following PDE4 inhibition and PGE2 treatment (figure 6.6a). The most striking increase in ERK1/2 phosphorylation was observed following PDE2 inhibition (EHNA) and PGE2 treatment (figure 6.6a).

In the case of PLB, contrasting results were observed following the analysis of the PKA phosphorylation status. An increase in the PKA phosphorylation status of PLB was observed following PDE2, PDE3 or PDE4 inhibition, upon a subsequent treatment of the cardiac myocytes with CGS 21680 (figure 6.6a). The largest increase in the PKA phosphorylation status PLB was observed following PDE4 inhibition and treatment with CGS 21680 (figure 6.6a). However, pretreatment of cardiac myocytes with the PDE3,
PDE3 or PDE4 inhibitors and subsequent PGE2 treatment resulted in minimal increases in PLB phosphorylation (figure 6.6a). Interestingly, upon the direct comparison of the phosphorylation of PLB to the phosphorylation of ERK1/2, it appears that only PGE2 treatment and inhibition of PDEs indicate differential regulation of the phosphorylation of PLB and ERK1/2 (figure 6.6a). Most strikingly, EHNA and PGE2 treatment resulted in a large increase in ERK1/2 phosphorylation, yet had no effect on PLB phosphorylation (figure 6.6a).

Cardiac myocytes were pretreated with PDE2, PDE3 or PDE4 inhibitors and then subjected to selective β1 and β2 adrenergic stimulation (procatelol and xameterol respectively). Lysates were separated by gel electrophoresis and the MEK phosphorylation status of ERK1/2 and PKA phosphorylation status of PLB was analysed by immunoblot (figure 6.6b). Only small differences were observed comparing the phosphorylation status of ERK1/2 following procatelol or xameterol treatments. PDE4 inhibition (rolipram) and xameterol or procatelol treatment, however, resulted in an increase in the phosphorylation status of ERK1/2 through the action of these β adrenergic agonists (figure 6.6b). Intriguingly, pretreatment of myocytes with the PDE3 inhibitor and subsequent stimulation with either procatelol or xameterol resulted in an attenuation of ERK1/2 phosphorylation compared to agonist only treatment (figure 6.6b). PDE2 inhibition (EHNA) of cardiac myocytes and treatment with procatelol or xameterol did not provide any increase in the phosphorylation of ERK1/2 compared procatelol or xameterol treatment alone (figure 6.6b).

Analysis of PLB phosphorylation identified some differences between treatment with selective β1 and β2 adrenergic agonists, procatelol and xameterol, but only with prior PDE inhibition. High levels of phosphorylation of PLB were observed with treatment of myocytes with either procatelol or xameterol. However, only upon the pre-incubation of cardiac myocytes with rolipram (PDE4 inhibition) and subsequent treatment with procatelol (β2 receptor agonist) was there an increase in PLB phosphorylation compared to procatelol only (figure 6.6b).
Pretreatment with the PDE3 inhibitor and procaterol or xameterol treatment resulted in a decrease in PLB phosphorylation compared to agonist only (figure 6.6b).

6.2 Discussion

It is now widely accepted that cAMP signalling in cardiac myocytes is compartmentalised (Steinberg & Brunton, 2001; Kapiloff, 2003). These studies originated from functional ones comparing the action of non-selective β-adrenergic receptor agonist isoproterenol with PGE2. More recently, studies using selective PDE inhibitors following Ca^{2+} signalling and direct visualization of cAMP have furthered the notion of compartmentalisation. In these studies, I have extended this notion to look and see whether compartmentalisation has relevance to important PLB and ERK1/2 signalling proteins. Furthermore, I have extended the range of GPCRs analysed to cover not only the adenosine A2a receptor and EP receptors, but also to discriminate between the β1 and β2 adrenergic receptors and undertaken an appraisal of regulation by the important PDE2/3/4 families.

Using this strategy I show that, depending on which PDE family is inhibited, or indeed depending on which PDE families are inhibited together, differential effects are observed upon phosphorylation of ERK1/2 by MEK and phosphorylation of PLB by PKA. I also show that the generation of distinct pools by selective PDE inhibition and subsequent activation of different G-protein coupled receptors provide differential effects upon ERK1/2 phosphorylation and PLB phosphorylation.

Cardiac myocytes account for approximately 60 percent of cell mass of the heart and the search for novel therapeutics to treat cardiac myopathies is of much current interest. The PDE profiles have been characterized for cardiac tissue from several different species. I chose to use the rat neonatal cardiac myocytes for my study as the well understood PDE1, PDE2, PDE3, and PDE4 isoforms have all been reported to be expressed there (Kostic et al., 1997; Zhao et al., 1997; Kakkar et al., 1999; Sadhu et al., 1999; Movsesian, 2002; Wechsler et al., 2002; Baillie et al., 2001; Heuslay & Adams, 2003; Maurice et al., 2002).
2003; Mongillo et al., 2004) and for which there are selective inhibitors (Francis et al., 2001).

Firstly, the total PDE activity was measured and by use of the selective inhibitors available for the PDE1, PDE2, PDE3 and PDE4 families, each family’s percentage contribution to total PDE activity in myocytes was calculated. PDE4 was found to contribute to approximately 60% of total PDE activity, PDE3 contributed to approximately 30%, PDE1 and PDE2 combining to provide less than 10% of total PDE activity. These data indicate PDE4, which exclusively hydrolysises cAMP, to be the most abundant PDE in rat neonatal cardiac myocytes.

By use of selective PDE inhibitors, I also studied the influence of PDE2, PDE3 and PDE4 families upon the regulation of different pools of cAMP under basal adenyl cyclase activity (figure 6.2). Treatment of cardiac myocytes with PDE2, PDE3 or PDE4 inhibitors resulted in minimal increases in phosphorylation of ERK1/2 by MEK. However, inhibition of both PDE3 and PDE4 enzymes together provided a clear increase in ERK1/2 phosphorylation. The inhibition of PDE2 and PDE3 together, also provided an increase in ERK1/2 phosphorylation. The selective inhibition of the PDE2, PDE3 or PDE4 families did not increase phosphorylation of ERK1/2 and suggests that at basal cAMP levels individual PDE enzyme families are not responsible for the regulation of the cAMP pool associated with the ERK MAP kinase cascade. However, the selected inhibition of combinations of the PDE families resulted in increases in ERK1/2 phosphorylation. PDE2 and PDE3, PDE3 and PDE4 inhibition provided increases in ERK1/2 phosphorylation but, interestingly, the inhibition of PDE2 and PDE4 had no effect on ERK1/2 phosphorylation. This suggests that the PDE3 enzymes act only in concert with enzymes of the PDE2 and/or PDE4 families to regulate ERK phosphorylation and activation.

Different effects of selective PDE inhibition on PLB phosphorylation by PKA were observed. The inhibition of the PDE3 enzymes only resulted in a small increase in PLB phosphorylation. PDE4 inhibition also provided an increase in phosphorylation but was less than that of PDE3 inhibition. Most strikingly, a 10-fold increase in phosphorylation
of PLB was evident following the inhibition of both PDE3 and PDE4 enzymes. Again, such an additive effect of PDE3 and PDE4 inhibition suggest that enzymes these two PDE families may act in concert to tailor the 'pool' of cAMP influencing the phosphorylation of PLB and may be involved in the regulation the uptake of Ca^{2+} into the SR.

The second messenger cAMP can influence, in the short term, the rate of excitation-contraction coupling of the heart. Several pharmacological effectors can activate Gs-coupled receptors on cells of the cardiovascular system and thus stimulate adenylyl cyclase (AC) to produce cAMP. In order to alter distinct 'pools' of cAMP, and thus to study the effect upon PLB phosphorylation by PKA and of ERK1/2 phosphorylation by MEK, I used selective PDE inhibitors and either the β1 or β2 receptor selective agonists (xametol and procatelor), or the adenosine A2a receptor agonist (CGS 21680) or the EP receptor agonist (PGE2) to activate AC.

I show, through treatment of cardiac myocytes over the same time periods, that xametol, procatelor, CGS 21680 and PGE2 agonists provided increases in the PKA phosphorylation of PLB and MEK phosphorylation of ERK1/2 (figures 6.2-6.5). Also, I show that treatment of cardiac myocytes with the same agonists over the same time periods resulted in similar increases (several fold) in global cAMP levels. Transient increases in the PDE3 and PDE4 activity are also observed following challenge of myocytes over the same time period with each of the agonists. These data indicate that selective activation of β1 and β2 adrenergic receptors, adenosine A2a receptor and EP receptors each stimulated the production of cAMP which results in the PKA phosphorylation of PLB and MEK phosphorylation of ERK1/2.

Distinct pools of cAMP in the cardiac myocytes were manipulated by selective PDE inhibition and activation of different GPCRs (figures 6.6a and figures 6.6b). The most striking differences in the phosphorylation of PLB and phosphorylation of ERK1/2 were observed following specific PDE inhibition and then subsequent treatment of cardiac
myocytes with either the A2a receptor agonist (CGS 21680) or the EP receptors agonist (PGE2).

Pretreatment with the PDE4 inhibitor (rolipram) and then treatment of cardiac myocytes with CGS 21680, provided a pronounced increase in phosphorylation of ERK1/2 by MEK and phosphorylation of PLB by PKA (figure 6.6a). Whereas, PDE2 or PDE4 inhibition and treatment with CGS 21680 had a small effect on PLB phosphorylation but had no effect on ERK1/2 phosphorylation (figure 6.6a). However, in contrast, only pretreatment of cardiac myocytes with the PDE2 inhibitor and subsequent treatment with PGE2 resulted in an increase in ERK1/2 phosphorylation. Interestingly, PDE2 inhibition and PGE2 treatment did not provide an increase in PLB phosphorylation (figure 6.6b). Pretreatment with PDE3 or PDE4 inhibitors and subsequent PGE2 challenge did not provide an increase in ERK1/2 phosphorylation although small increases in PLB phosphorylation were observed (figure 6.6b).

To gain functional insight into the compartmentalisation of PDEs within cardiac myocytes, I manipulated levels of cAMP within distinct ‘pools’ by using selective PDE inhibitors to alter cAMP degradation and activated different GPCRs to stimulate adenylyl cyclase. I chose to study the PKA phosphorylation of PLB and MEK phosphorylation of ERK1/2 (indirectly activated by PKA) as outputs. The differences in phosphorylation of PLB and phosphorylation of ERK1/2 I observed following such manipulation of cAMP with PDE inhibitors alone, or with PDE inhibition and selected GPCR activation, provides further evidence of PDE compartmentalisation within cardiac myocytes.
Figure 6.1 cAMP PDE activity in rat neonatal cardiac myocytes. Graph is taken from published data (Mongillo et al., 2004). Data are means +/- SD of 6 separate experiments from different cardiac myocyte preparations. Lysates from neonatal myocytes (1-3 day old) were assayed for PDE activity. Lysates expressed a level of cAMP PDE activity of 102 +/- 8 pmol min^{-1}mg protein^{-1}. PDE3 activity was calculated from the fraction of total PDE activity inhibited by cilostamide (10\mu M) and PDE4 activity was calculated from the fraction inhibited by rolipram (10\mu M).
Figure 6.2 Effect of selective PDE inhibition on ERK and phospholamban phosphorylation. See next page for full figure legend.
Figure 6.2 Effect of selective PDE inhibition on ERK and phospholamban phosphorylation. Neonatal cardiac myocytes were incubated for 10 min with the indicated PDE inhibitors; cilostamide (1μM), rolipram (10μM), EHNA (30μM). Lysates were separated by electrophoresis. (A) The phosphorylation of ERK1/ERK2 and phospholamban was analysed by western blotting. (B) Densitometry analysis of western blots was performed with Quantity One software. Data was normalised by the 'total' ERK and 'total' phospholamban bands. The effect of the inhibitors are compared to basal (untreated cells). N=3 +/- S.E.
Figure 6.3a Determination of ERK and phospholamban phosphorylation following β_1 and β_2 agonist challenge. Neonatal myocytes were incubated with Xameterol hemifumarate (10μM) (a β_1 selective partial agonist) and Procaterol hydrochloride (10μM) (a specific β_2 agonist) for the indicated time points. Lysates were separated by electrophoresis. The phosphorylation of ERK1/ERK2 and phospholamban was analysed by western blotting. Blots represent typical time courses.
Figure 6.3b Determination of total PDE activity, PDE4 and PDE3 activity following β₁ and β₂ agonist challenge. Neonatal cardiac myocytes were harvested at the indicated time points and whole cell lysates were analysed for PDE activity. PDE3 activity was calculated from the fraction of total PDE activity inhibited by cilostamide (10μM) and PDE4 activity was calculated from the fraction inhibited by rolipram (10μM). N=3 +/- S.E
Figure 6.4a Determination of ERK and phospholamban phosphorylation following adenosine A2a receptor and EP receptor activation. Neonatal myocytes were incubated with CGS 21680 (10μM) (selective A2a receptor agonist) and PGE2 (1μM) (EP receptor agonist) for the indicated time points. Lysates were separated by electrophoresis. The phosphorylation of ERK1/ERK2 and phospholamban was analysed by western blotting. Blots represent a typical time course which were performed at least three times.
Figure 6.4b Determination of total PDE activity, PDE4 and PDE3 activity adenosine A2a receptor and EP receptor activation. Neonatal cardiac myocytes were harvested at the indicated time points and whole cell lysates were analysed for PDE activity. PDE3 activity was calculated from the fraction of total PDE activity inhibited by cilostamide (10μM) and PDE4 activity was calculated from the fraction inhibited by rolipram (10μM). The activity following agonist challenge is compared to basal (untreated cells) and is represented here as a percentage change. N=3 +/- S.E
Figure 6.5 Analysis of cAMP levels following different Gs-coupled receptor activation. Neonatal cardiac myocytes were incubated with the following agonists: Procaterol (10μM), Xameterol (10μM), PGE2 (1μM) and CGS 21680 (10μM) for the indicated time points. cAMP levels per well (6 well plate) were measured and the data represented as fold change basal. N=3 +/- S.E.
Figure 6.6a ERK and phospholamban phosphorylation following selective PDE inhibition and adenosine A2a receptor activation or EP receptor activation. Neonatal myocytes were pretreated with the specific PDE inhibitors and incubated with CGS 21680 (10μM) and PGE2 (1μM) for the indicated time points. Lysates were separated by electrophoresis. The phosphorylation of ERK1/ERK2 and phospholamban was analysed by western blotting. data n=2
Figure 6.6b ERK and phospholamban phosphorylation following selective PDE inhibition and \(\beta_1 \) or \(\beta_2 \) adrenergic receptor activation. Neonatal myocytes were pretreated with the specific PDE inhibitors and incubated with procaterol (10\(\mu \)M) or xameterol (10\(\mu \)M) for the indicated time points. Lysates were separated by electrophoresis. The phosphorylation of ERK1/ERK2 and phospholamban was analysed by western blotting. Data \(n=2 \)
Chapter 7

General discussion and future directions
Discussion

The phosphorylation of cellular proteins by protein kinases produces a conformational change which can affect the protein's function. Within the cAMP signalling system, cAMP is detected by protein kinase A (PKA) which serves to phosphorylate, and alter the function of a wide array of proteins.

It had been previously established that the long isoform PDE4D3 is a target for phosphorylation and activation by PKA, and this rapid activation has been postulated to act as means of desensitization to the cellular cAMP response, (Sette et al., 1994; Alvarez et al., 1995; Sette and Conti, 1996; Hoffman et al., 1998). Biochemical analysis of PDE4D3 has shown that the Ser 13 within the unique N-terminal and Ser 54 site within the UCR1 are phosphorylated by PKA (Sette and Conti, 1996; Hoffman et al., 1998). However, mutational studies have also shown that only PKA phosphorylation of Ser 54 is required for activation (Sette and Conti, 1996), with the role of Ser 13 unknown. Also it has been reported that the PKA phosphorylation of PDE4D3 results in an altered electrophoretic mobility on SDS-PAGE (Sette and Conti, 1996; Hoffman et al., 1998). The reason for this mobility 'shift', which has been suggested to indicate the activation of this enzyme, has yet to be explained (Sette and Conti, 1996; Oki et al, 1998). For the first time antiserum has been developed to the two specific PKA sites in PDE4D3, (namely Ser 54 and Ser 13), providing the means to study the PKA phosphorylation of PDE4D3 at these two sites in response to cell activation.

In chapter 3, I show, subsequent to activation of adenylyl cyclase, a time-dependent decrease in the mobility of PDE4D3. At 1 min of IBMX and forskolin challenge both a low mobility and high mobility species existed and for the remainder of the time points, the majority of PDE4D3 shifts to a low mobility species. Within the same time course, this 'band shift' was paralleled by a similar one detected using the antisera specific for PKA phosphorylated Ser 54 (PS54-UCR1) within UCR1. At the 1 min time point, PS54-UCR1 detected a 'band-shift' which is akin to both de-phosphorylated and
phosphorylated PDE4D3. However, the antisera specific for PKA phosphorylated Ser 13 (PS13-4D3), within the unique N-terminal, only detected a single low mobility species at all time points. A time-dependent increase in phosphorylation was also observed with PS13-UCR1. This suggests that in COS1 cells the PKA phosphorylation of both sites are required for the mobility shift and that the phosphorylation of Ser 54 may even precede that of Ser 13. The notion that the phosphorylation of both sites is required for the 'band-shift' is further suggested by mutation of either of these sites to alanine preventing the PKA mediated change in mobility of long-form PDE4D3 (MacKenzie et al, 2002). The mobility shift observed indicates a conformational change. This is extremely interesting as a recent paper (Michel et al., 2004) suggests a function of this conformational change. This paper suggests that PKA phosphorylation of Ser 13 within the N-terminal of PDE4D3 facilitates the interaction of PDE4D3 with mAKAP. They propose a model where under resting conditions PDE4D3 binds to mAKAP and following hormonal stimulation of the cell, mAKAP-bound PKA is activated. The catalytic subunits of PKA phosphorylate local substrates including the mAKAP bound PDE4D3. The phosphorylation of Ser 13 increases the affinity of PDE4D3 for mAKAP and phosphorylation or Ser 54 causes a 2-fold increase in the activity of PDE4D3, resulting in hydrolysis of cAMP. The signalling system is reset with the return to basal cAMP levels. As my data indicates that Ser 54 is phosphorylated before Ser 13, it could be possible that PDE4D3 is phosphorylated and activated in the cytosol and is then recruited to mAKAP to lower local cAMP levels. Thus, I would like to have studied the recruitment of PDE4D3 to mAKAP in whole cells.

Three other PDE4 gene families (A, B and C) generate a range of long-form PDE4s and all long-forms contain a PKA consensus sequence Arg-Arg-Glu-Ser-Phe. I show that PKA can phosphorylate the cognate target serine within the UCR1 of long-form PDE4s from each sub-family. In COS1 cells the PS54-UCR1 antibody detected the PKA phosphorylation of transiently transfected PDE4A8, PDE4B1, PDE4C2 and PDE4D5 following the activation of adenylyl cyclase. For each long-form, this phosphorylation was ablated using the PKA inhibitor H89 and by mutating the putative target serine to alanine. This analysis may serve as a model of the phosphorylation and activation of
endogenous PDE4s where PKA is activated in response to localised increases in cAMP. As it is now known that PKA can phosphorylate and activate long forms from each of the four subfamilies, and different PDE4 isoforms can be targeted to specific subcellular regions, one could suggest that this PKA-mediated activation could serve to control distinct pools of cAMP. In cardiac myocytes, the recruitment of PDE4D3 and PDE4D5 by β-arrestin (Perry et al., 2002, Baillie et al., 2003) to the β2-adrenergic receptor upon isoproterenol stimulation provides a source of cAMP degradation directly to the site of cAMP generation. The interaction of PDE4D3 with mAKAP (Kapiloff et al., 1999; Dodge et al., 2001; Michel et al., 2004) allows a negative feedback loop whereby local increases in cAMP result in activation of PKA, phosphorylation of the local PKA substrates, including phosphorylation and activation of PDE4D3, which in turn degrades cAMP and allows a return to resting cAMP levels. It is also possible that other long PDE isoforms also serve to function as a means of desensitisation to local increases in cAMP. As AKAPs play a pivotal role in the compartmentalisation of signalling modules, and PDE4D3 has already been reported to interact with several AKAPs, one could assume that other PDE4s interact with such signalling complexes to provide control of local cAMP pools.

Over the decades, researchers in the field of cellular signalling have been posed with the question of 'how do diffusible second messengers such as cAMP achieve specificity of their action?' (Brunton, 2003). Growing evidence of compartmentalisation seems to address this question. An early series of experiments performed cardiac myocytes led the hypothesis that (i) not all cAMP gains access to all PKA, (ii) not all PKA has access to all possible substrates and (iii) not all cAMP has access to all cellular PDEs (Steinberg & Brunton, 2001; Brunton, 2002). These experiments involved stimulating different GPCRs on cardiac myocytes with two different agonists, PGE1 and isoproterenol. Both agonists resulted in an activation of adenylyl cyclase (AC) and subsequent production of cAMP. However the down-stream effects of PKA activation was quite different for each agonist. Isoproterenol treatment resulted in phosphorylation of troponin I and proteins involved in glycogen metabolism, whereas PGE1 treatment resulted in cAMP accumulation and PKA activation, but phosphorylation of troponin I or glycogen metabolism proteins was not
observed (Brunton et al., 1981). The addition of PDE inhibitors and PGE1 allowed the PKA-dependent phosphorylation of such proteins. These basic observations paved the way for the postulate of compartmentalisation of cAMP signalling molecules. The structural basis for sub-cellular compartmentalisation underpinning cAMP signalling in cells is only, now, beginning to be understood.

Recently, it has been shown that GPCRs, G-proteins and AC may be localized to specific membrane compartments by the enrichment in or exclusion from caveolae (invaginations of the plasma membranes classed as a subset of lipid rafts) (Dodge et al., 2001; Ostrom et al., 2004). PKA can be confined to distinct subcellular compartments, along with phosphatases, different substrates of PKA, and other proteins, by association with A-kinase anchoring proteins (AKAPs) (Scott Review, 2003). The spatially distinct localisation of PDEs, in particular PDE4s, has been shown to be achieved through their interaction with a variety of subcellular structures. For example, PDE4 isoforms can interact with phosphatidic acid, the immunophilin XAP2, receptor associated with C kinase 1 (RACK1), β-arrestin, AKAPs, myomelanin and also SRC family tyrosine kinases through their SH3 domains (Perry et al., 2002; Baillie et al., 2003; Houslay Review, 2003; Bolger et al., 2003).

The steady state levels of cAMP that is reached in resting cells will depend not only on AC activity but also on PDE activity. As AC is localized with its active site at the cytosol surface of the plasma membrane, in some cases to different compartments of the plasma membrane, PDEs will have the key role in generating and tailoring intracellular cAMP gradients from the point source(s) of cAMP produced by AC. These gradients can then be expected to control selectively anchored Epac and PKA activity within the cell. We hypothesized that in resting cells, PDE4s anchored indirectly or directly to AKAPs will be poised to control cAMP levels and thus exert effects on AKAP-anchored PKA. In order to investigate this possibility, I needed a read out specific for PDE4 isoform action and for PKA activation. What better target to choose than long PDE4 isoforms, whose UCR1 can be phosphorylated by PKA and whose activity one would surmise could regulate cAMP gradients. In order to specifically gauge phosphorylation at this site by
PKA I took advantage of the PS54-UCR1 antibody which detects PKA phosphorylation of all long PDE4 isoforms, hence providing an immediate readout for the action of PKA on a specific PDE.

Secondly, we developed an approach to render PDE4s catalytically inactive by a single point mutation, which allowed us to develop a dominant negative strategy. We surmised that such a discrete mutation should have little or no effect on the gross structure of the PDE4. Thus the chronic overexpression of the inactive PDE4s can be expected to displace and thereby replace, the cognate, active endogenous PDE4s. In doing this, there now would be no active anchored PDE4 to constrain PKA activity and the recombinant inactive PDE4 would itself provide a readout of this by offering a localised specific substrate to be phosphorylated by the appropriately active PKA. This approach allowed me to identify particular PDE4 isoforms as being specifically involved in constraining the activity of a distinct pool of PKA. Cells have been suggested as being either ‘low’ or ‘high’ cycling conditions for cAMP signalling (Houslay & Milligan, 1997). This reflects cells that vary in their basal levels for adenylyl cyclase activity. Thus, low cycling cells have low basal AC activity, whereas upon challenge with PDE inhibitors has little effect on global cAMP levels, whilst these are elevated upon GPCR stimulation of AC. In contrast to this, high cycling cells have active cAMP generation, with levels kept low by active PDE activity. In these cells even at basal conditions PDE inhibitors cause a profound increase in cAMP levels. In both instances, however, little is known about what regulates basal cAMP levels compared to GPCR-stimulated cAMP levels. This is despite the fact that in most cells there is a measurable PKA activity that, perhaps, reflects compartmentalised activation. Here then I set out to evaluate the ability of PKA to phosphorylate catalytically inactive/dominant negative PDE4 isoforms under basal and stimulated conditions to obtain an insight into the possible importance of various PDE4 isoforms to these distinct scenarios and thus identify selective actions.

My study, utilising a range of catalytically inactive PDE4 isoforms, shows that in the model COS1 cell line then the dominant negative PDE4C2 and PDE4D3 are able to be phosphorylated by PKA by basal adenylyl cyclase activity. This suggests that out of the
four different PDE4 isoforms evaluated here, namely PDE4A4, PDE4A10, PDE4C2 and PDE4D3, only PDE4C2 and PDE4D3 are held in close proximity to and regulate discrete sub-populations of PKA under basal levels of cAMP generation. Interestingly, it has been suggested that at least in some cells the actions of PDE3 and PDE4 may synergise with each other (Dousa, 1999). In order to explore this I decide to evaluate whether the PDE3 selective inhibitor, cilostamide could alter the phosphorylation of these two isoforms under basal conditions. In doing this I found out that the selective PDE3 inhibitor cilostamide increased the PKA phosphorylation of inactive PDE4C2 but not of inactive PDE4D3. This suggests that under conditions of basal cAMP production the actions of PDE4C2 and PDE3 may act synergistically on the same cAMP pool, but this is different from the pool regulated by PDE4D3. Interestingly, whilst addition of the selective PDE4 inhibitor had potentiating effect on the phosphorylation status of PDE4C2, it selectively increased the phosphorylation status of PDE4D3. This suggests that PDE4D3 controls a pool of cAMP that is also regulated by an endogenous PDE4 species in COS1 cells that is not PDE4C2. Thus, both PDE4C2 and PDE4D3 appear to be anchored close to PKA that is able to access cAMP in resting cells. Thereby, the activity of these PDE4 species must be crucial in controlling the associated PKA activity. It would seem that these two isoforms control distinct pools, one of which is shared with PDE3 and another shared with a different PDE4 isoform in these cells.

Next, I set out to investigate whether the activation of different Gs-coupled receptors could selectively perturb the phosphorylation status of individual catalytically inactive PDE4 isoforms. The two different Gs coupled agonists were used here, namely isoproterenol and PGE2 were selected, as it had previously reported that these agonists can activate AC and PKA but generate different cellular responses at least in cardiac myocytes (Steinberg & Brunton, 2001; Brunton, 2003). Interestingly, I found that the PKA phosphorylation status of inactive PDE4A4 and PDE4B1 was quite different depending agonist stimulation. In doing this I found that PGE2 and isoproterenol had a similar effect on PDE4A4 phosphorylation status, on isoproterenol stimulation, there resulted an increased phosphorylation of PDE4B1 that was not seen with PGE2. This data
indicates that these PDE4s are able to sample different pools of cAMP controlled by PGE2 and isoproterenol stimulation.

As discussed previously, the PDE4D3 isoform has been shown to be capable of interacting with the AKAP, mAKAP in cardiac myocytes where it can regulate the activity of PKA (Dodge et al., 2001, Tasken et al., 2001). As I observed PKA phosphorylation of both inactive PDE4D3 and inactive PDE4C2 at basal cAMP levels, I hypothesised that this may be due to the close proximity of PKA. Thus, I decided to investigate the possibility of an AKAP involvement in the PKA phosphorylation and control of PDE4C2 activity. To do this I utilised Ht31, an established tool that has been used to disrupt PKA-AKAP anchoring specifically. Thus, using this I set out to try and disrupt the PKA phosphorylation of inactive PDE4C2. Using this, I found that the co-expression of Ht31 and inactive PDE4C2 did indeed reduce the ability of PKA to phosphorylate inactive PDE4C2 species at basal cAMP levels. This suggests that PDE4C2 is either anchored to an AKAP complex, or is in close proximity to a PKA-AKAP complex able to regulate this PKA isoform or is able to reversibly and specifically interact with an active AKAP bound PKA fraction. I also show that, by utilising a selective RI-PKA agonist and a selective RII-PKA agonist, that the RI-PKA form is the predominant form responsible for the PKA phosphorylation of PDE4C2.

Following the Ht31 experiments, I investigated the possibility of an actual interaction of the PDE4C2 isoform with a PKA-AKAP complex. Immunoprecipitates of PDE4C2 were sent to two separate AKAP laboratories (Klussmann, FMP, Berlin. & Tasken, Oslo) for overlay analysis. Both RI and RII overlay assays were performed, and these tentatively identified a putative AKAP of about 250 kD co-immunoprecipitated with PDE4C2. I have not shown the overlay results in this chapter as these are preliminary data done by others and the results are not clear. Nevertheless, they provide initial promising evidence of a possible PDE4C2-PKA-AKAP complex. To date, the only PDE4 isoform to be shown to interact with an AKAP is long form PDE4D3. The PDE4C2 isoform is also a long form which has shown to be phosphorylated and activated by PKA (MacKenzie et al., 2001), thereby an interaction with an AKAP would allow another means of specific
targeting and degradation of local cAMP. In order to clarify such a complex, immunoprecipitations of PDE4C2 should be repeated and the presence of any AKAPs should be clarified by overlay assay. If an AKAP of a defined size is present, one could first see if this AKAP is a known AKAP by western blotting with commercially available antibodies. The co-immunoprecipitation of an AKAP with PDE4C2 could be further clarified by SDS PAGE and analysis of any bands present in the gel by mass spectrometry.

If I was able to pursue this project then I would have liked to identify the specific type of PKA isoform which serves to phosphorylate PDE4C2 in these cells. My initial data suggests that an RI isoform was responsible, and I would plan to further investigate this further using an approach involving small interfering RNA (siRNA) to knock down specifically and selectively each PKA isoform. As very few RI binding AKAPs have been characterized, the identification of a PDE4C2/RI-PKA-AKAP cellular complex would potentially be very exciting. The identification of such a complex would show for the first time an AKAP-PDE4 interaction involving a PDE4 isoform other than PDE4D3, it also would show for the first time a RI-PKA-AKAP to bind a PDE4.

As a means to study the compartmentalisation of cAMP signalling and regulation of gene expression, I overexpressed selected catalytically inactive PDE4 isoforms in HEK293 cells, and subsequent microarray analysis to determine changes in levels of the transcripts of a wide range of genes. I hypothesised that, according to the dominant negative strategy discussed earlier, if I overexpressed an inactive PDB4 it would replace its endogenous counterpart. This displacement of an anchored pool of active endogenous PDE4 by the cognate inactive recombinant PDE4 might, in certain situations, result in increases in levels of distinct pools of cAMP and thus subsequent activation of specific sub-populations of PKA. In phosphorylating sets of anchored target proteins this might lead to changes in the expression of distinct subsets of genes.

A spatially distinct elevation of cAMP and/or PKA activation might be expected to alter gene expression in a number of different ways. PKA can exert long term effects on cellular functioning by altering the functions of a variety of nuclear proteins including
various transcription factors, nuclear hormone receptors, transcriptional activators/repressors and chromatin-associated proteins (Shabb, 2001). The most common promoter element to exert transcriptional effects via cAMP is the cAMP-responsive element CRE. Nevertheless, this would be expected to give a single output irrespective of the source of PKA acting to phosphorylate CREB, unless the compartmentalised signal exerted effects on other signalling factors that impinged on CRE-bearing promoters such as to alter their functioning. NF-κB is another transcriptional factor regulated by PKA phosphorylation (Shabb, 2001). In its inactive state, NF-κB is tethered to the inhibitor protein IκB in the cytosol. IκB also binds to the C subunit of PKA. Activation of NF-κB is triggered when IκB is targeted for degradation by in a phosphorylation-dependent manner by the ubiquitin-26S proteosome pathway. NF-κB is then free to translocate to the nucleus and its transcriptional activity is stimulated by PKA phosphorylation by the PKA released from IκB. PKA can also indirectly exert effects upon transcriptional regulation via activation of the MAP kinase cascade. PKA-dependent activation of ERK1/2 can occur via B-Raf. Once ERK is activated it phosphorylates RSK and both translocate to the nucleus where they activate CREB (Wang et al., 2003). Also, it is possible that PKA may indirectly exert effects upon transcription via the phosphorylation of other, as yet, unidentified signalling protein(s). In a recent review of physiological substrates of PKA (Shabb, 2001), it was shown that since the discovery of PKA in the 70’s, the list of identified PKA substrates has quadrupled over the last decade. It is highly likely that many more PKA targets are yet to be identified. Recently, Epacs have been discovered as new routes through which cAMP can exert effects on cells. However, the precise way in which Epacs signal into cells is not clear and, its effects on gene expression have yet to be elucidated. Furthermore, since the discovery of the Epac specific activator, 8-pCPT-2'-O-Me-cAMP, it has now been postulated that not all PKA-independent effects of cAMP can be attributed to Epac but may involve as yet unknown additional cAMP signalling entities. In the future, this might lead to the discovery of further cAMP targets with cAMP binding domains not similar to that of Epac and PKA (Bos, 2003). Thus, there are a number of distinct way through which cAMP may be able to alter gene expression in cells via both direct and indirect actions.
My study utilising the catalytically inactive PDE4 species as a form of manipulating different pools of cAMP does indeed provide data indicating differential gene expression. This suggests that different pools of cAMP controlled by specific PDE4 isoforms may exert differential effects upon transcriptional regulation. However, it must be taken to account that the overexpression of the inactive PDE4 species may bind aberrantly to other proteins, allowing non-physiological effects. Additionally, as the half-lives of mRNA differ, the efficiency and efficiency of translation and other post-translational events affecting mRNA also differs, one cannot simply assume that the mRNA levels correlates directly to protein levels. Thus, the next step of my study would have been to investigate whether the implied changes in mRNA expressions levels observed here caused changes at the level of protein expression. I would also like to confirm the indicated changes in transcript levels using Northern blotting and RT-PCR.

As mentioned at the start of this discussion, a set of simple experiments involving treatment of cardiac myocytes with different Gs-coupled agonists and the subsequent read-out of PKA action, led to the postulate that compartmentalisation of signalling molecules exists within a physiologically relevant cell model. Recently data published by Zaccolo et al, has elegantly shown the spatial confinement of PDEs and the presence of distinct pools of cAMP within cardiac myocytes (Zaccolo & Pozzan, 2002; Mongillo et al., 2004). Therefore a growing body of convincing evidence is accruing to show that cardiac myocytes, which comprise the majority of the mass of the myocardium, are highly compartmentalised cells as regards to cAMP signalling.

To gain functional insight into the compartmentalisation of PDEs within cardiac myocytes, I decide to perform a set of experiments where I manipulated levels of distinct 'pools' of cAMP. I did this by using selective PDE inhibitors to alter cAMP degradation and then activated different GPCRs to stimulate adenylyl cyclase. In order to probe distinct facets of cAMP signalling, I chose to study the PKA phosphorylation of PLB and the MEK phosphorylation of ERK1/2 (indirectly activated by PKA) as outputs. In short, I observed differences in phosphorylation of PLB and phosphorylation of ERK1/2 following such manipulation of cAMP with PDE inhibitors alone, or with PDE inhibition
and selected GPCR activation. My data provides further evidence of PDE compartmentalisation within cardiac myocytes. If time had prevailed, I would have liked to have used catalytically inactive PDE4 species, or siRNA to observe the functional effects of specific PDE4 isoforms upon the regulation of PKA phosphorylation of phospholamban. The PKA phosphorylation of phospholamban (PLB) is an important mediator of Ca\(^{2+}\) uptake into the sarcoplasmic reticulum (SR), and it is involved in the regulation of relaxation and contraction (MacLennan & Kranias, 2003). This small protein binds to and inhibits the sarcoplasmic reticulum Ca\(^{2+}\) ATPase (SERCA2A). Following hormonal stimulation of the β-adrenergic receptors, PLB has been shown to be phosphorylated by PKA. A conformational change then ensues, and the inhibition of SERCA2A is relieved, allowing an increase of conductance of Ca\(^{2+}\) into the SR and it is the removal of Ca\(^{2+}\) from the cytosol which triggers relaxation. With respect to contraction and relaxation, signalling events in cardiac myocytes in response to hormonal stimulation must occur on a millisecond timescale. Several channels and pumps involved in the regulation of the cytosolic Ca\(^{2+}\) transients can be phosphorylated by PKA, also contractile proteins such as Troponin I have been shown to be substrates of PKA. Therefore, with such a short timescale, one could propose that pre-programmed signalling modules may serve to allow a distinct and rapid response to the elevation of cAMP. A specifically anchored PDE, in the case of PDE-AKAP interaction, may provide a means of cAMP degradation direct to the site of PKA action. As PLB plays such an important role in the regulation of relaxation, it would be very exciting to show that PDE(s) are involved in the regulation of the phosphorylation status of PLB.

Initially, I studied the PKA phosphorylation of the two PKA sites found with PDE4D3 and found that the phosphorylation of the Ser 54 (responsible for activation) precedes that of Ser 13. Then, I show by using the using the antisera specific for PKA phosphorylated UCR1 (PS54-UCR1) that long form PDE4s from each subfamily are phosphorylated by PKA in vivo. Overall, I hoped to show by a novel approach, the compartmentalisation of cAMP phosphodiesterases within a cellular system. I hypothesised that different catalytically inactive long form PDE4s would alter distinct cAMP ‘pools’ by displacing their endogenous active counterparts. By detecting the PKA phosphorylation of the
inactive PDE4 through use of the novel PS54-UCR1 antibody, I employed the catalytically inactive PDE4 itself as a readout of PKA activity. In doing so, I found that different PDE4s are capable of sampling different pools of cAMP generated by different Gs-coupled agonists. Also, my data indicates that PDE4D3 and PDE4C2 may be held in close proximity to, and play a role in the regulation of discrete sub-populations of PKA under basal levels of cAMP. Furthermore, I studied the effect of altering the concentration of discrete compartments of cAMP on gene expression by overexpressing catalytically inactive PDE4s in HEK293 cells and performing microarray analysis. This study demonstrated the influence of specific PDE4 isoforms on gene regulation controlled by compartmentalised cAMP signalling. Finally, on a more physiological scale, I chose to study the function of compartmentalised PDEs within cardiac myocytes. In doing so, I selected two different PKA targets as outputs (PLB and ERK1/2) and show that manipulation of cAMP levels with PDE inhibitors alone, or with PDE inhibitors and selected GPCR activation, that the PKA status of PLB and ERK1/2 are differentially controlled by specific PDE families.
Appendix
<table>
<thead>
<tr>
<th>Primer Variant</th>
<th>Primer Name</th>
<th>Primer Sequences (5' - 3')</th>
<th>Fragment Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>4A</td>
<td>4A(2)F</td>
<td>GTA TCA AGG GCC GAG GTA CCC G</td>
<td>338</td>
</tr>
<tr>
<td></td>
<td>4A(2)R</td>
<td>DCA TGC TCT GAA ACA GAC AGS</td>
<td></td>
</tr>
<tr>
<td>4B</td>
<td>4A(3&5)F</td>
<td>CAC AAA GGA GCT TCT CTC TG</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>4A(3&5)R</td>
<td>AGT GCT GAG GAA GGA AGG C</td>
<td></td>
</tr>
<tr>
<td>4C</td>
<td>4A(2&3)F</td>
<td>AGT GCC GTC AGC TGC GAG GCA G</td>
<td>281</td>
</tr>
<tr>
<td></td>
<td>4A(2&3)R</td>
<td>AGT GAG TGG CTA GGA AGC C</td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td>3A(2)F</td>
<td>GTA GCA GCA CAT GAG CAG C</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>3A(2)R</td>
<td>CGC GAG CTC TAC CAG AGA C</td>
<td></td>
</tr>
<tr>
<td>4D</td>
<td>4D(3)F</td>
<td>GCC TCA GCA CCT GAS AGC G</td>
<td>546</td>
</tr>
<tr>
<td></td>
<td>4D(3)R</td>
<td>ACA CCA GCT GCC AGA GAA AGS</td>
<td></td>
</tr>
<tr>
<td>3B</td>
<td>4D(4)F</td>
<td>GAA GCA GCA GTC TCA TGA CGG</td>
<td>236</td>
</tr>
<tr>
<td></td>
<td>4D(4)R</td>
<td>CTT TCT CAA AGC GAG TGT GCT</td>
<td></td>
</tr>
<tr>
<td>4E</td>
<td>4E(5&6)F</td>
<td>CTT GCA CTT GCC AGA AGA AGA</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>4E(5&6)R</td>
<td>AGC AGC CAT GCA TGC TCA CAG</td>
<td></td>
</tr>
<tr>
<td>4F</td>
<td>4F(5&6)F</td>
<td>GCG AAC ATG ATG CAC GTG AA</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>4F(5&6)R</td>
<td>TGG CCA AGA CCT GAG CAA AT</td>
<td></td>
</tr>
<tr>
<td>4G</td>
<td>4G(5&6)F</td>
<td>AGA AAT CCA GGA TGT CCT GGC</td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>4G(5&6)R</td>
<td>TGC TAG GTC CTC GAT CCT GCA</td>
<td></td>
</tr>
<tr>
<td>4H</td>
<td>4H(3)F</td>
<td>CCT TCC TCT TCT CCT GGC AGA</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>4H(3)R</td>
<td>GTC AGC GCC CCA TTA AGC AGC</td>
<td></td>
</tr>
<tr>
<td>4I</td>
<td>4I(5)F</td>
<td>GTA TCA AGG AGC AGC CCT CAT G</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>4I(5)R</td>
<td>CCA GAC CGA CTC TGC CAA C</td>
<td></td>
</tr>
<tr>
<td>4J</td>
<td>4J(5)F</td>
<td>GCG AAC ATG ATG CAC GTG AA</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>4J(5)R</td>
<td>TGG CCA AGA CCT GAG CAA AT</td>
<td></td>
</tr>
<tr>
<td>4K</td>
<td>4K(5&6)F</td>
<td>AGA AAT CCA GGA TGT CCT GGC</td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>4K(5&6)R</td>
<td>TGC TAG GTC CTC GAT CCT GCA</td>
<td></td>
</tr>
<tr>
<td>4L</td>
<td>4L(5&6)F</td>
<td>GCC TCC TCT TCT CCT GGC AGA</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>4L(5&6)R</td>
<td>GTC AGC GCC CCA TTA AGC AGC</td>
<td></td>
</tr>
<tr>
<td>4M</td>
<td>4M(5&6)F</td>
<td>GTA TCA AGG AGC AGC CCT CAT G</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>4M(5&6)R</td>
<td>CCA GAC CGA CTC TGC CAA C</td>
<td></td>
</tr>
<tr>
<td>4N</td>
<td>4N(5&6)F</td>
<td>GTA TCA AGG AGC AGC CCT CAT G</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>4N(5&6)R</td>
<td>CCA GAC CGA CTC TGC CAA C</td>
<td></td>
</tr>
<tr>
<td>4O</td>
<td>4O(5&6)F</td>
<td>GTA TCA AGG AGC AGC CCT CAT G</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>4O(5&6)R</td>
<td>CCA GAC CGA CTC TGC CAA C</td>
<td></td>
</tr>
<tr>
<td>4P</td>
<td>4P(3)F</td>
<td>GTA GCA GCA CAT GAG CAG C</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>4P(3)R</td>
<td>CGC GAG CTC TAC CAG AGA C</td>
<td></td>
</tr>
<tr>
<td>4Q</td>
<td>4Q(2&4)F</td>
<td>TCT GAA GGA CCT GAG AAG GAG</td>
<td>546</td>
</tr>
<tr>
<td></td>
<td>4Q(2&4)R</td>
<td>AGT GCC ACT ATG CAC AGC ATG</td>
<td></td>
</tr>
<tr>
<td>4R</td>
<td>4R(3)F</td>
<td>TCA CAA TGG CAT TGT GCT G</td>
<td>401</td>
</tr>
<tr>
<td></td>
<td>4R(3)R</td>
<td>TGC TCT CAT GGA AGC TAT GAA</td>
<td></td>
</tr>
</tbody>
</table>

Primer sequences used for mRNA expression profiles of HEK293 cells and COS1 cells

