
PhD thesis

http://theses.gla.ac.uk/3102/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given
THESIS

submitted to the

UNIVERSITY OF GLASGOW

in fulfilment of the requirements for the

DEGREE OF DOCTOR OF PHILOSOPHY

by

ALISTAIR J. MCELNNAN B. Sc.

Department of Chemistry,
University of Glasgow.

October, 1983.
CYCLOPENTADIENYL PLATINUM COMPLEXES

AND ORGANIC GROUP TRANSFER REACTIONS
Acknowledgements

I should like to thank my supervisor, Dr. R. J. Cross for his advice and encouragement throughout the course of this work. I also wish to express my thanks to Dr. D. S. Rycroft for his aid in recording nmr spectra and his advice on their interpretation. I should also like to thank Mrs. F. Lawrie and her assistants for the recording of infra red spectra.

The award of a research studentship by the Science and Engineering Research Council is gratefully acknowledged.
cis-[PtX₂(CO)L] (X is Cl or Br, L is tertiary phosphine or arsine) reacts with TIC₅H₅ stereospecifically to produce the isomer of [PtX(η¹-C₅H₅)(CO)L] with C₅H₅ trans to L. The same isomer is produced when Hg(C₅H₅)₂ and Ph₃PAuC₅H₅ are used as the cyclopentadienylating agents. The second halide can be replaced when excess TIC₅H₅ is used, producing cis-[Pt(η¹-C₅H₅)₂(CO)L]. The η¹-bonded cyclopentadienyl groups of either mono- or di- substituted compounds can readily exchange in solution with a halide of cis-[PtX₂(CO)L] to produce exclusively the same isomers of [PtX(η¹-C₅H₅)(CO)L]. The cyclopentadienyl groups do not transfer as fast as halide ions between the same species, but do so considerably faster than an accompanying CO scrambling process. Substituted aryl complexes of the same geometry, [PtCl(Ar)(CO)L], Ar trans to L, behave similarly, exchanging the aryl group for a chloride of cis-[PtCl₂(CO)L']. Both TIC₅H₅ and Hg(C₅H₅)₂ react with [PtCl(C=CR)(CO)L] (R = Me, Ph), Cl trans to L, to produce [Pt(η¹-C₅H₅)(C=CR)(CO)L], C₅H₅ trans to L. The reaction with Hg(C₅H₅)₂ does not stop at this point, but continues to produce [PtCl(C₅H₅)(CO)L], C₅H₅ trans to L, and some cis-[Pt(C=CR)₂(CO)L]. TIC₅H₅ and [PtCl(Ar)(CO)L] similarly produce only one isomer (Ar trans to CO) of [Pt(η¹-C₅H₅)(Ar)(CO)L]. The mixed diorganoplatinum complexes [Pt(η¹-C₅H₅)(C=CR)(CO)L] and [Pt(η¹-C₅H₅)(Ar)(CO)L] react with cis-[PtCl₂(CO)L']. TIC₅H₅ in chloroform to transfer specifically the organic group trans to L (i.e. C₅H₅) to platinum. Cyclopentadienyl from the η¹-bonded complexes, and from [Pt(η⁵-C₅H₅)L₂⁺] X⁻ (X = Cl, SO₃CF₃) can also be readily transferred to mercury when treated with HgCl₂.
Reactions between \([\text{PtCl}(\eta^1\text{-C}_5\text{H}_5)\text{(CO)L}\]) and either
\(\text{Hg}(\equiv C\equiv R)\) or \(\text{HgPh}_2\) are complicated. The reaction with
\(\text{Hg}(\equiv C\equiv R)\) produces initially both \([\text{Pt}(\eta^1\text{-C}_5\text{H}_5)(\equiv C\equiv R)\text{(CO)L}\])
\(\text{C}_5\text{H}_5\ \text{trans to L}\), and \([\text{PtCl}(\equiv C\equiv R)\text{(CO)L}\]) \(\text{Cl trans to L}\), but
finally only \(\text{cis-}[\text{Pt}(\equiv C\equiv R)_2\text{(CO)L}]\). The reaction with \(\text{HgPh}_2\)
produces a number of species, including \([\text{Pt}(\eta^5\text{-C}_5\text{H}_5)(\text{COPh})\text{L}]\)
and \(\text{cis-}[\text{PtPh}_2\text{(CO)L}]\). The mixed bis-acetylide complex \([\text{Pt}
(\equiv C\equiv R)(\equiv C\equiv R')\text{(CO)L}]\), \(\text{CO cis to L}\), \(\equiv C\equiv R'\ \text{trans to L}\),
exchanges \(\equiv C\equiv R'\) with a \(\text{Cl}\) from \(\text{cis-}[\text{PtCl}_2\text{(CO)L}']\) to produce
\([\text{PtCl}(\equiv C\equiv R)\text{(CO)L}]\) and \([\text{PtCl}(\equiv C\equiv R')(\equiv C\equiv R)\text{(CO)L}']\), the isomers
with \(\text{Cl trans to L}\) in each case. The complex also reacts with
\([\text{PtCl}((\text{Ar})\text{(CO)L}]\), \(\text{Ar trans to CO}\), to produce \([\text{PtAr}(\equiv C\equiv R')(\equiv C\equiv R')\text{(CO)L}]\),
\(\equiv C\equiv R'\ \text{trans to L}\), and with \([\text{PtCl}(\text{Ar})\text{(CO)L}]\), \(\text{Ar trans to L}\),
to produce the other isomer of the mixed aryl acetylide
complex, \([\text{PtAr}(\equiv C\equiv R')(\equiv C\equiv R')\text{(CO)L}]\), with \(\text{Ar trans to L}\). An
isomerisation route operates for \([\text{Pt}(\equiv C\equiv R)(\equiv C\equiv R')(\equiv C\equiv R')\text{(CO)L}]\)
in the presence of \([\text{PtCl}(\equiv C\equiv R)\text{(CO)L}]\), \(\text{Cl trans to L}\).
\(\text{HgPh}_2\) reacts with \(\text{cis-}[\text{Pt}(\equiv C\equiv R)_2\text{(CO)L}]\) to produce the complex
\([\text{PtPh}(\equiv C\equiv R)\text{(CO)L}]\), \(\text{Ph trans to L}\).
\([\text{PtCl}(\equiv C\equiv R)\text{(CO)L}]\), \(\text{Cl trans to L}\), reacts with \(\text{HgPh}_2\) in
chloroform to produce \([\text{PtPh}(\equiv C\equiv R)\text{(CO)L}]\), \(\text{Ph trans to L}\),
which equilibrates in solution with a novel acetylide-bridged
dimer \([\text{Pt}_2(\text{COPh})_2(\mu-C\equiv R)_2\text{L}_2]\) when \(R = \text{Me}\). The reaction
between an equilibrated mixture of \([\text{PtCl}((\text{Ph})\text{(CO)L}]\), \(\text{Ph trans}
to L\), and \([\text{Pt}_2(\text{COPh})_2(\mu-C\equiv C\equiv R)_2\text{L}_2]\) with \(\text{HgPh}_2\) also produces,
initially, the acetylide-bridged dimer \([\text{Pt}_2(\text{COPh})_2(\mu-C\equiv R\equiv R)_2\text{L}_2]\)
for both \(R = \text{Me}\) and \(R = \text{Ph}\), but this equilibrates with
\([\text{PtPh}(\equiv C\equiv R)\text{(CO)L}]\), \(\text{Ph trans to L}\), and the equilibrium position
for \(R = \text{Ph} \) lies completely on the side of non-inserted material. The reaction between \([\text{PtCl}(\text{Ar})(\text{CO})L]\), Ar trans to \(L \) (\(\text{Ar} = \text{C}_6\text{H}_4\text{CO}_2\text{Me-p} \)), and \(\text{Hg}(\text{C}≡\text{CR})_2 \) leads directly to \([\text{PtAr}(\text{C}≡\text{CR})(\text{CO})L]\), Ar trans to \(L \), without the intermediacy of an acetylide-bridged dimer. \(\text{TlC}_5\text{H}_5 \) reacts with \([\text{PtCl}(\text{Ar})(\text{CO})L]\), Ar trans to \(L \), to promote carbonyl insertion and produces \([\text{Pt}(\eta^5-\text{C}_5\text{H}_5)(\text{COAr})L]\) when \(\text{Ar} = \text{Ph} \) and \(\text{C}_6\text{H}_4\text{CO}_2\text{Me-p} \), but not with a non-inserting aryl group such as \(\text{C}_6\text{H}_4\text{Cl-2} \), or with the group \(\text{C}_2\text{Cl}_3 \).

The decomposition of \([\text{PtX}(\text{C}_5\text{H}_5)(\text{CO})L]\), \(\text{C}_5\text{H}_5 \) trans to \(L \), in solution leads to the formation of a novel, asymmetrically substituted platinum dimer, which can be prepared in higher yield by the reaction between cis-\([\text{PtX}_2(\text{CO})L]\) and two equivalents of \(\text{TlC}_5\text{H}_5 \). The dimer contains a platinum-platinum bond with a bridging carbonyl ligand, and one \(\pi \)-bonded cyclopentadienyl ring. This "Asymmetric Dimer" has been identified as \([\text{LClPt}(\mu-\text{CO})\text{Pt}(\eta^5-\text{C}_5\text{H}_5)L]\). One of the phosphines is trans to the metal-metal bond and exhibits a very large two-bond platinum-phosphorus coupling constant, the size of which is remarkably independent of the identity of the phosphine. Reactions of the "Asymmetric Dimer" produce a number of other dimeric platinum complexes. Addition of \(L' \) (\(L' \) is phosphine or arsine) at low temperature displaces chloride and produces another platinum-platinum bonded dimer, \([\text{L}(L')\text{Pt}(\mu-\text{CO})\text{Pt}(\eta^5-\text{C}_5\text{H}_5)L]^+ \). The reaction between "Asymmetric Dimer" and \(\text{AgSO}_3\text{CF}_3 \) appears to produce a cyclopentadienyl-bridged, platinum-platinum bonded dimer, \([\text{Lpt}(\mu-\text{CO})(\mu-\text{C}_2\text{H}_5)^\mu\text{PtL}]^+ \), while a similar complex, \([\text{Lpt}(\mu-\text{Cl})(\mu-\text{C}_5\text{H}_5)^\mu\text{PtL}] \), seems to be formed by loss of CO.
In the presence of alcohols cis-[PtCl$_2$(CO)L] and two equivalents of TlC$_5$H$_5$ produce an unidentified dimeric π-cyclopentadienyl complex which converts slowly to "Asymmetric Dimer" in solution.

Reactions of platinum cyclopentadienyl complexes, [PtCl(C$_5$H$_5$)(CO)L], C$_5$H$_5$ trans to L, [Pt(η$_5$-C$_5$H$_5$)L$_2$]$^+$ X$^-$ and [Pt(η$_5$-C$_5$H$_5$)(CO)L]$^+$ X$^-$ with phosphine lead to the production of a remarkable number of trisphosphine complexes, [PtL$_3$Y]$^{n+}$ (Y = neutral or anionic ligand, L = phosphine, n = 1 or 2). Several of the tris-phosphine complexes are also obtained from the reaction between [PtClL$_3$]SO$_3$CF$_3$ and TlC$_5$H$_5$, and the possibility of five-coordinate intermediates and of isomerisation of η$_1$-C$_5$H$_5$ to its vinyl isomer are examined. A trisphosphine solveto complex, [PtL$_3$S]$^{2+}$, or a four- or five-coordinate complex, [PtL$_3$X$_n$]$^{m+}$ (X = SO$_3$CF$_3$, BF$_4$, PF$_6$, n = 1 or 2, m = n-1) is easily obtained by abstraction of Cl from [PtClL$_3$]$^+$ with a silver salt, and carbonylation of this unidentified species produces [PtL$_3$(CO)]$^{2+}$. The reaction between the species and TlC$_5$H$_5$ produces a different trisphosphine complex to that obtained with [PtClL$_3$]$^+$, as does the reaction with HgPh$_2$. [PtClL$_3$]$^+$ and HgPh$_2$ react in chloroform to produce [PtPhL$_3$]$^+$. Addition of halide to [PtXL$_3$]$^+$ produces [PtX$_2$L$_3$] for X = Br, I.

Attempts to promote carbonyl insertion in cyclopenta-dienyl platinum complexes appear to be unsuccessful. Addition of phosphine or halide to [PtCl(C$_5$H$_5$)(CO)L], C$_5$H$_5$ trans to L, produces a large number of complexes, most of which are unidentified, including metal-metal bonded dimers.
CONTENTS

Abstract (i)

Contents (v)

List of Tables (ix)

CHAPTER ONE : INTRODUCTION

Background to Organotransition Metal Chemistry 1
Structure and Reactivity 2
Nucleophilic Substitution 5
Oxidative Addition 6
β-Elimination 8
α-Elimination 9
Binuclear Elimination 10
Insertion Reactions 10
Trans-Effect and Trans-Influence 13
Cis-Effect and Cis-Influence 15
Organoplatinum Complexes 16

CHAPTER TWO : CYCLOPENTADIENYL PLATINUM COMPLEXES
AND \(\text{C}_5\text{H}_5 \) TRANSFER REACTIONS

Introduction
Cyclopentadienyl Complexes 22
Cyclopentadienylthallium 22
Dicyclopentadienylmercury 23
Dynamic Properties of \(\eta^1\text{-C}_5\text{H}_5 \) Rings 24
Isomers of \([\text{PtClR(CO)L}]\) 25
Transfer Reactions 26
Bimolecular Electrophilic Substitution Mechanisms 27
Oxidative Addition/Reductive Elimination 29
Distinction between Transfer Mechanisms 32

Results and Discussion
Preparation of \([\text{PtX(C}_5\text{H}_5)(\text{CO)L}]\) isomer (I) 39
Mechanism of Formation of \([\text{PtX(C}_5\text{H}_5)(\text{CO)L}]\)
isomer (I) 44
Transfer of \(\text{C}_5\text{H}_5 \) from Isomer (I) to Platinum and Mercury 49
Reactions of cis-bis (σ-cyclopentadienyl) platinum Complexes 60
Asymmetrically Substituted Cyclopentadienyl (organo) platinum Complexes 65
η5-Cyclopentadienyl Complexes 72

Experimental 76
Cyclopentadienyl Platinum Complexes:–
(a) \([\text{PtX}(\eta^1-\text{C}_5\text{H}_5)(\text{CO})(\text{ER}_3)]\) isomer (I) 78
(b) \(\text{C}_5\text{H}_5\) Transfer Reactions from Isomer (I) to Pt and Hg 82
(c) Bis-σ-cyclopentadienyl Complexes and Transfer Reactions 87
(d) Asymmetrically Substituted Cyclopentadienyl (organo) platinum Complexes 88
(e) π-Cyclopentadienyl Complexes 93

CHAPTER THREE: ACETYLIDE AND ARYL TRANSFER REACTIONS AND CARBONYL INSERTION

Introduction
Platinum Acetylides 96
Carbonyl Insertion at Square-Planar Platinum (II) 102

Results and Discussion
Reactions of \([\text{PtCl}(\eta^1-\text{C}_5\text{H}_5)(\text{CO})\text{L}]\) isomer (I) and Organomercurials 107
Cis-bisacetylide carbonyl phosphine platinum (II) Complexes 112
Reactions of \([\text{Pt}(\equiv\text{CR})(\equiv\text{CR^1})(\text{CO})\text{L}]\) with Platinum Complexes:–
(a) With \(\text{cis-[PtCl}_2(1^2\text{CO})\text{L}']\) 119
(b) With \([\text{PtCl}(\text{C}_6\text{H}_4\text{CO}_2\text{Me-p})(\text{CO})(\text{PMePh}_2)]\) isomer (I) 127
(c) With \([\text{PtCl}(\text{C}_6\text{H}_4\text{CO}_2\text{Me-p})(\text{CO})(\text{PMePh}_2)]\) isomer (II) 131
Reactions of \(\text{cis-[Pt(C≡CR)}_2(\text{CO})(\text{PMePh}_2)} \) with HgPh\(_2\) 134
Complexes \([\text{PtR(C≡CR)}(\text{CO})L] \), C≡CR\(_1 \) trans to L 138
\([\text{PtCl(C≡CR)}(\text{CO})(\text{PMePh}_2)} \) isomer (II) and HgPh\(_2\) 141
\([\text{PtCl(Ar)}(\text{CO})(\text{PMePh}_2)} \) isomer (I) and Hg(C≡CR)\(_2\) 147
\([\text{PtCl(R)}(\text{CO})(\text{PMePh}_2)} \) isomer (I) and TlC\(_5\)H\(_5\) 153

Experimental 161

CHAPTER FOUR: FORMATION AND REACTIONS OF A NOVEL ASYMMETRICALLY SUBSTITUTED, BINUCLEAR PLATINUM COMPLEX

Results and Discussion
The Decomposition of Cyclopentadienyl isomer (I) 181
Other Routes to "Asymmetric Dimers" 182
Structure of the "Asymmetric Dimers" from Spectroscopic Parameters 186
"Asymmetric Dimer" and AgSO\(_3\)CF\(_3\) 202
"Asymmetric Dimer" and added phosphine or arsine 205
"Asymmetric Dimer" and CO 210
Irreproducibility of "Asymmetric Dimer" Reactions 211
a) Stoicheometric Effects 212
b) Solvent Effects 213
c) Concentration Effects 219
d) Other Effects 220
Miscellaneous Reactions 220

Experimental 225

CHAPTER FIVE: TRISPHOSPHINE COMPLEXES OF PLATINUM

Results and Discussion
\([\text{PtCl(PMe}_2\text{Ph})_3]X \) and TlC\(_5\)H\(_5\) 247
Reactions between $[\text{PtCl}(\text{PMe}_2\text{Ph})_3]X$ and Silver Salts 248
Reactions of Complex D 250
TlC_5H_5 and $[\text{PtX}(\text{PMe}_2\text{Ph})_3]\text{SO}_3\text{CF}_3$ ($X = \text{Br, I}$) 252
Five-Coordinate Complexes $[\text{PtX}_2\text{L}_3]$ 253
Trisphosphine complexes from addition of phosphine to platinum complexes 256
Identities of trisphosphine platinum complexes 257

Experimental 265

APPENDIX: MISCELLANEOUS REACTIONS OF CYCLOPENTADIENYL PLATINUM COMPLEXES AND CYCLOPENTADIENYLATING REAGENTS

Results and Discussion

Attempts to Promote CO-insertion at Platinum Cyclopentadienyls 277
Reactions of Platinum Complexes with Cyclopentadienylating Reagents 279
$[\text{PtCl}(\eta^1-\text{C}_5\text{H}_5)(\text{CO})(\text{PPh}_3)]$ isomer (I) and AgF 281

Experimental 282

REFERENCES 291
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>1H nmr of $[\text{PtX}(\eta^1-\text{C}_5\text{H}_5])(\text{CO})\text{L}]$ isomer (I)</td>
<td>42</td>
</tr>
<tr>
<td>Table 2</td>
<td>31P nmr of $[\text{PtX}(\eta^1-\text{C}_5\text{H}_5])(\text{CO})\text{L}]$ isomer (I)</td>
<td>43</td>
</tr>
<tr>
<td>Table 3</td>
<td>31P and 1H nmr of cis-$[\text{Pt}(\eta^1-\text{C}_5\text{H}_5)_2$ (CO)L]</td>
<td>61</td>
</tr>
<tr>
<td>Table 4</td>
<td>1H nmr of $[\text{Pt}(\text{C}_5\text{H}_5)\text{R}(\text{CO})(\text{PMePh}_2)]$</td>
<td>69</td>
</tr>
<tr>
<td>Table 5</td>
<td>31P nmr of $[\text{Pt}(\text{C}_5\text{H}_5)\text{R}(\text{CO})(\text{PR}_3)]$</td>
<td>70</td>
</tr>
<tr>
<td>Table 6</td>
<td>1H nmr of $[\text{Pt}(\eta^5-\text{C}_5\text{H}_5)L^1L^2]^+X^-$</td>
<td>73</td>
</tr>
<tr>
<td>Table 7</td>
<td>31P nmr of $[\text{Pt}(\eta^5-\text{C}_5\text{H}_5)L^1L^2]^+X^-$</td>
<td>74</td>
</tr>
<tr>
<td>Table 8</td>
<td>Methods for promoting insertion of [PtCl(R)(CO)L] isomer (I)</td>
<td>106</td>
</tr>
<tr>
<td>Table 9</td>
<td>13C nmr of cis-$[\text{Pt}(\text{C}\equiv\text{CR})(\text{C}\equiv\text{CR'})(\text{CO})\text{L}]$</td>
<td>115</td>
</tr>
<tr>
<td>Table 10</td>
<td>1H nmr of $[\text{PtR}(\text{C}\equiv\text{CMe})(\text{CO})(\text{PMePh}_2)]$</td>
<td>116</td>
</tr>
<tr>
<td>Table 11</td>
<td>31P nmr of platinum acetylide complexes</td>
<td>120</td>
</tr>
<tr>
<td>Table 12</td>
<td>31P nmr of mixed arylacetylide platinum complexes</td>
<td>135</td>
</tr>
<tr>
<td>Table 13</td>
<td>31P nmr data on Platinum complexes</td>
<td>159</td>
</tr>
<tr>
<td>Table 14</td>
<td>31P nmr of "Asymmetric Dimer" complexes</td>
<td>185</td>
</tr>
<tr>
<td>Table 15</td>
<td>1H nmr of "Asymmetric Dimer" complexes</td>
<td>191</td>
</tr>
<tr>
<td>Table 16</td>
<td>13C nmr spectra of Cyclopentadienyl and Carbonyl Complexes of Platinum</td>
<td>195</td>
</tr>
<tr>
<td>Table 17</td>
<td>31P nmr of "Asymmetric Dimer" complexes in different solvents</td>
<td>203</td>
</tr>
<tr>
<td>Table 18</td>
<td>31P nmr of trisphosphine platinum complexes</td>
<td>262</td>
</tr>
<tr>
<td>Table 19</td>
<td>31P nmr of trisphosphine platinum complexes</td>
<td>264</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION
Background to Organotransition Metal Chemistry

Although the subject of organometallic chemistry began with platinum in 1827, when Zeise discovered the first organometallic complex ever prepared, K[PtCl₃(C₂H₄)], commonly referred to as Zeise's salt, it was the discovery of diethylzinc by Frankland which initiated the rapidly developing interest in organometallic compounds during the latter half of the nineteenth century. While organometallic chemistry of the main-group metals blossomed, attempts to make stable transition metal alkyls and aryls met with little success. The first transition metal alkyls were prepared in 1907, by Pope and Peachey, and again these were platinum compounds, trimethyl platinum complexes [PtMe₃X]₄. At about the same time Hofmann and von-Narbutt prepared a platinum complex of dicyclopentadiene in alcohol, which was recognised by Chatt et al. as the first example of a platinum (II) alkyl, in which the platinum complex was an alkoxydicyclopentadiene platinum chloride dimer, [(C₁₀H₁₂OMe)PtCl]₂. In the same paper they made reference to a simple alkyl, [PtIMe(PPr₃)₂], prepared by Chatt and Foss.

An upsurge in organometallic chemistry of the transition metals occurred in the 1950's with the discovery of ferrocene, the first pure hydrocarbon derivative of iron and the first cyclopentadienyl of a transition metal. Very soon after its discovery, the novel sandwich model for its structure had been proposed and confirmed by X-ray crystallography. Cyclopentadienyl transition metal compounds now have an extensive chemistry, and compounds of virtually every transition element are known.
The next important development was the preparation of an extensive series of alkyl and aryl complexes of palladium\(^9\) in 1958 and platinum\(^{10}\) in the following year. Since then organoplatinum chemistry has developed rapidly, and now has a very extensive and detailed literature.\(^{11,12}\)

Organotransition-metal complexes are important in homogeneous catalysis, with at least two dozen major processes in use in industry.\(^{13}\) Organometallic chemistry has grown more rapidly in scope than the classical divisions in chemistry in the last two decades. A large variety of compounds have now been synthesised, containing \(\pi\) and \(\sigma\)-bonded organic groups and metal-metal bonds.

Structure and Reactivity

The reactivity of transition-metal organometallic compounds is viewed as a kinetic phenomenon, related to the characteristic transition-metal properties of variable oxidation states and coordination numbers.\(^{14,15}\) The electron density at the metal atom is important as regards the stability of transition-metal complexes. The first attempt at rationalising this was the so-called "18-electron-rule", which required that the central metal in a complex should achieve the formal electron-count of the next noble gas.\(^{16}\) This 18-electron-rule was empirical, depending only on the observation that the nine outer orbitals of a transition-metal can accommodate 18 electrons, from the metal atom and donated by the ligands. It successfully explained the stability of metal carbonyls, e.g.; \(\text{Cr(CO)}_6\). It was also applicable to the stability of organometallic compounds, where elaborate electron counting rules have been
developed. The success of the 18-electron rule can be explained qualitatively. In a molecular orbital treatment of a complex, there will be nine bonding and non-bonding (or π-bonding) orbitals, derived from the metal ns orbital, three np and five (n-1)d orbitals. Filling all nine orbitals and leaving the antibonding orbitals empty confers greatest stability on the complex. If the nine bonding and non-bonding orbitals are filled, the compound is said to be coordinatively saturated; attack on the metal by a nucleophile would add electrons to an antibonding orbital, and is unfavourable.\(^{13}\) Thus, ligand substitution processes at 18-electron complexes usually proceed via initial dissociation to an unsaturated (16-electron) species, able to react with the incoming ligand.

Towards the end of the transition series the 18-electron rule breaks down and 16-electron molecules are common for Pd and Pt, while stable 14-electron molecules are common for the coinage metals.\(^{14}\) This is explained by the increase in nuclear charge causing a decrease in the energies of the metal d-orbitals, which results in increased promotion energies for the nd → (n+1)p electronic transition. Attainment of the full 18-electron configuration is less favourable. A consequence of the lanthanide contraction is that, on descending a group, the changes in the nd → (n+1)p promotion energies do not vary regularly. For the nickel triad the energies increase in the order Ni<Pt<Pd, thus the formation of 18-electron species is most difficult for palladium and easiest for nickel.\(^{17}\)
Tolman18 has proposed the 16 and 18 electron Rule for the diamagnetic organometallic complexes of Groups \textit{IVB-VIII}. This has as its basic premise that diamagnetic organometallic complexes of transition metals may exist in a significant concentration at moderate temperatures only if the metal's valence shell contains 16 or 18 electrons and that organometallic reactions, including catalytic ones, proceed by elementary steps involving only intermediates with 16 or 18 metal valence electrons, for example:

\[
\begin{align*}
\text{[IrH}_2\text{(CO)}_2\text{[P(C}_6\text{H}_11\text{)_3})_2]}^{+} \xrightarrow{\text{H}_2} \text{[Ir(CO)}_2\text{[P(C}_6\text{H}_11\text{)_3})_2]}^{+} \\
\text{18-electron} \quad \text{16-electron} \\
\downarrow + \text{P(OMe)}_3 \\
\text{[Ir(CO)}_2\text{[P(C}_6\text{H}_11\text{)_3})_2\text{P(OMe)}_3]} \\
\text{18-electron}
\end{align*}
\]

\[
\begin{align*}
\text{trans-[PtRC}_1\text{(PET}_3\text{)_2}]^{+} \xrightarrow{\text{py}} \text{[PtRC}_1\text{(PET}_3\text{)_2py]} \\
\text{16-electron} \quad \text{18-electron} \\
\downarrow - \text{Cl}^{-} \\
\text{trans-[PtRpy(PET}_3\text{)_2]}^{+} \\
\text{16-electron}
\end{align*}
\]

Recently 14-electron species have been proposed as intermediates in some reactions of 16-electron Pt and Pd complexes.19,20 These have been suggested as intermediates in the uncatalysed isomerisation of \textit{cis-[PtRXL}_2\text{],}21 in the thermolysis of \textit{cis-} and \textit{trans-[FdMe}_2\text{L}_2\text{]}22 and in carbonyl insertion at \textit{[PtX(R)(CO)L]}.23 It was proposed that such three-coordinate 14-electron intermediates remain T-shaped (and retain the geometry of the parent square planar complex)
and may be described as cis-like or trans-like.

Within the framework of the 16 and 18-electron Rule a number of important reaction pathways are possible.

Nucleophilic Substitution

Substitution reactions of square planar complexes are believed to proceed by an associative mechanism involving a trigonal bipyramidal transition state.²⁴–²⁶ Such substitutions proceed with retention of geometric configuration.

A second, solvent assisted route can also operate in which X is initially displaced by a solvent molecule which is then subsequently replaced by the incoming nucleophile Y.

This gives a rate law for substitution as follows:

\[
\text{Rate} = (k_s [S] + k_2 [Y]) \text{ [complex]}
\]
Oxidative Addition

The term "oxidative addition" is used to designate a type of reaction of low-spin transition metal complexes in which oxidation of the metal is accompanied by an increase in the coordination number.\(^{27}\) In effect, the complex behaves simultaneously as a Lewis acid and Lewis base. The reaction can be written generally as:

\[
L_yM^n + XY \rightarrow L_yM^{n+2}(X)(Y)
\]

This can be considered as the metal inserting into the X-Y bond.

The reverse reaction can be termed "reductive elimination". For transition metals, the most intensively studied reactions are those of complexes of metals with the d\(^8\) and d\(^{10}\) electron configuration, notably Fe\(^5\), Ru\(^3\), Os\(^5\); Rh\(^I\), Ir\(^I\); Ni\(^5\), Pd\(^5\), Pt\(^5\) and Pd\(^II\) and Pt\(^II\),\(^{24}\) in particular complexes such as Ir(CO)L\(_2\)Y and PtL\(_3\) (L = phosphine, Y = halide).\(^{27}\)

e.g.: trans-Ir\(^{III}\)Cl(CO)(PPh\(_3\))\(_2\) + HCl \rightleftharpoons Ir\(^{III}\)HCl\(_2\)(CO)(PPh\(_3\))\(_2\)

The tendency for d\(^8\) complexes to undergo oxidative additions depends markedly on the nature of the central metal ion and the ligands attached to it. In general, the tendency increases down a triad and on passing from right to left within group VIII.\(^{28}\)

When the XY molecule adds without severance of X from Y the two new bonds to the metal are necessarily in cis-positions,\(^{24}\) e.g.:--
When X and Y are separated the product may be one or more of several isomers with either cis- or trans-MX and -MY groups.

A number of different routes have been proposed for the oxidative addition reaction. These are:

1) An ionic mechanism involving a 5-coordinate cationic intermediate, especially in polar solvents with ionizable molecules such as HCl.

2) An SN2 type attack of the metal on alkyl halides, e.g.: [C₅H₅M(CO)(PPh₃)] + MeI \((M = \text{Co, Rh, Ir})^{29} \)

3) A one-step concerted addition which initially gives products with the new bonds in cis-positions. \(^{30} \)

\[\text{Cl} \quad \text{Ir} \qquad + \quad O_2 \quad \Leftrightarrow \quad \text{Cl} \quad \text{Ir} \quad \text{PPh}_3 \quad \text{CO} \]

\[\text{L}_1 \quad \text{L}_4 \quad \text{M} \quad \text{Y} \quad \text{L}_2 \quad \text{L}_3 \quad \quad \text{X} \quad \text{L}_1 \quad \text{L}_4 \quad \text{M} \quad \text{Y} \quad \text{L}_2 \quad \text{L}_3 \quad \quad \text{X} \quad \text{L}_1 \quad \text{L}_4 \quad \text{M} \quad \text{Y} \quad \text{L}_2 \quad \text{L}_3 \]

\[\text{OC} \quad \text{PPh}_3 \quad \text{Ir} \quad \text{Ph}_3 \text{P} \quad \text{Cl} \quad + \quad \text{H}_2 \quad \rightarrow \quad \text{H} \quad \text{PPh}_3 \quad \text{Ir} \quad \text{Ph}_3 \text{P} \quad \text{Cl} \quad \text{CO} \]
The cis-reductive elimination reaction has been shown to be concerted,31 viz:–

\[[(\text{PhMe}_2\text{P})_2\text{PtMe}_3\text{I}] \rightarrow [(\text{PhMe}_2\text{P})_2\text{PtMeI}] + \text{C}_2\text{H}_6 \]

The reaction being first order, and isotopic labelling showing that it is intramolecular.

The combination of an oxidative addition reaction, followed by a reductive elimination, provides a versatile route for reactions of transition metal complexes, and is limited to unsaturated, i.e. planar d8 complexes.28

\section*{β-Elimination}

This is a reaction involving no overall change of coordination number or formal oxidation state of the metal. The main requirement is a substituent on the β-carbon which may become bonded directly to the metal, usually a hydrogen atom, and a vacant coordination site on the metal.32 For simple alkyls it may be represented thus:

\[\text{MCH}_2\text{CH}_2\text{R} \rightleftharpoons \text{MH} + \text{H}_2\text{C} = \text{CHR} \]

The mechanism was elucidated by deuteriation studies.33

\[\text{CH}_3\text{CH}_2\text{CD}_2\text{CH}_2\text{CuPBu}_3 \rightarrow \text{DCuPBu}_3 + \text{H}_2\text{C} = \text{CDCH}_2\text{CH}_3 \]

The simplest reaction of this type is that in which ethylene is lost from an ethylmetal complex, and such reactions are often reversible.34,35
heat
\[
\text{trans-}[\text{PtX(C}_2\text{H}_5)(\text{PET}_3)_2] \rightleftharpoons \text{trans-}[\text{PtX(PET}_3)_2]+\text{C}_2\text{H}_4
\]

pressure

Ethylene may be retained in the coordination sphere of the metal in the β-elimination step, \(^{36}\)

\(\text{e.g.}\):

\[
[\text{C}_5\text{H}_5\text{Rh(C}_2\text{H}_5)\text{PMe}_3]^+ \rightleftharpoons [\text{C}_5\text{H}_5\text{RhH(C}_2\text{H}_4)\text{PMe}_3]^+
\]

The facility with which β-eliminations can take place often makes it necessary to use organic groups, such as methyl, benzyl and trimethylsilylmethyl, which can not undergo this reaction.

α-Elimination

α-Elimination involves elimination of two fragments, one bonded to the metal and one bonded to the α-carbon of a substituent, (the latter usually being a proton), thus:

\[
\text{R}_1\text{MCHR}_2 \rightarrow \text{R}_1\text{H} + \text{M=CR}_2
\]

This may involve hydride transfer to the metal followed by reductive elimination, or it may be a concerted process. α-Elimination is generally less well established than β-elimination throughout the periodic table, \(^{37}\) but some examples are known, for example:

\[
[(\text{C}_5\text{H}_5)_2\text{W-C-H}_3]^+ \rightleftharpoons [(\text{C}_5\text{H}_5)_2\text{W}^+\text{H}-\text{CH}_2]
\]

This equilibrium is proposed \(^{38}\) in the reaction between \([\text{W(μ}^5-\text{C}_5\text{H}_5)_2\text{Me(}^2\text{H}_4)^+]\) and \(\text{PMe}_2\text{Ph}\) to give \([\text{W(}^5\text{C}_5\text{H}_5)_2\text{H}^+\text{CH}_2\text{PMe}_2\text{Ph}]^+\). Recently a mechanism has been suggested
for stereospecific Ziegler-Natta catalytic olefin polymerisation involving α-transfer of hydride to titanium.

α-Elimination has sometimes been overlooked because of the facility with which β-eliminations occur. The rearrangement of platinacyclobutanes to platinum alkene complexes has recently been shown to occur by α-elimination rather than β-elimination as had previously been reported.

Binuclear Elimination

Binuclear elimination is a reductive elimination process involving two metal complexes, in which both metal atoms have their coordination numbers and oxidation states reduced by one, and the eliminated species is formed by two fragments, one from each metal centre, e.g.:

\[2 \text{CH}_3\text{Au(PPh}_3\text{)} \rightarrow \text{C}_2\text{H}_6 + 2\text{Au} + 2\text{PPh}_3 \]

Insertion Reactions

Insertion reactions are common in organometallic chemistry and may be defined as a reaction wherein any atom or group of atoms is inserted between two atoms initially bound together:

\[\text{L}_n\text{M}—X + \text{YZ} \rightarrow \text{L}_n\text{M}—(\text{YZ})—X. \]

Insertions into metal-hydrogen, metal-carbon, metal-oxygen, metal-nitrogen, metal-halogen and metal-metal bonds are all known. Some of the more common inserting molecules are CO, SO₂, SO₃, CO₂, carbenes, olefins and isonitriles.
The most detailed studies have been made on the "insertion" of CO into metal-carbon bonds. Carbon monoxide insertions are intramolecular and in all cases a 1,1 addition (M-C-R) product rather than a 1,2-addition (M-C-O-R) product is obtained.\(^{42}\)

The insertion of carbon-monoxide into a metal-carbon bond was first observed for alkylpentacarbonylmanganese systems.\(^{43}\) This reaction has been shown, by \(^{13}\)C nmr spectroscopy\(^{44}\) and molecular orbital studies\(^{45}\) to involve an alkyl migration to CO, rather than a CO insertion, which proceeds through a square-pyramidal intermediate with a basal acetyl group.

\[
\begin{align*}
\text{Me} & \quad \text{OC} \quad \text{CO} \\
\text{Mn} & \quad \text{OC} \quad \text{CO} \\
\text{OC} & \quad \text{CO}
\end{align*}
\]

\[
\begin{align*}
\text{OC} & \quad \text{CMe} \\
\text{Mn} & \quad \text{OC} \quad \text{CO} \\
\text{OC} & \quad \text{CO}
\end{align*}
\]

The intimate mechanism can be represented as:

\[
\begin{array}{c}
\text{R}_3 \quad \text{C} \\
\text{M}-\text{CO} \quad \rightarrow \quad \text{R}_3 \quad \text{C} \\
\text{M}-\text{CO} \quad \rightarrow \quad \text{M}-\text{C} \quad \text{CH}_3
\end{array}
\]

CO insertion has been shown to be an alkyl migration for the Me-Mn system and this was expected to be a general feature of such reactions.\(^{46}\) However, recently Brunner and Vogt found an example of insertion of CO into a Me-Fe bond which appeared to be a carbonyl insertion,
rather than a methyl migration.47

In this case, an intermediate η^2-acetyl complex is considered likely.

$\text{CO insertion is often reversible and many de-
}\text{carbonylation reactions have been studied, which also
}\text{involve alkyl migration.}48$
Trans-Effect and Trans-Influence

The trans-effect and trans-influence are sometimes confused in discussions of reactivity of metal complexes. The trans-effect in square planar substitutions, first recognised by Werner49 and elaborated on by Chernyaev50 refers to the effect of a ligand on the lability of a group trans to it. The best definition of the kinetic trans-effect is the following, by Basolo and Pearson:51

"The trans-effect is the effect of a coordinated group upon the rate of substitution reactions of ligands opposite to it."

A series, in order of decreasing trans-effect at square planar complexes, was found to be: \cite{24,25,51} CN−, CO, C\textsubscript{2}H\textsubscript{4}, NO \textgreater PR\textsubscript{3}, H− \textgreater Sc(NH\textsubscript{2})\textsubscript{2}, CH\textsubscript{3}− \textgreater C\textsubscript{6}H\textsubscript{5}−, NO\textsubscript{2} \textgreater I−, SCN− \textgreater Br− \textgreater Cl− \textgreater NH\textsubscript{3}, py, \textgreater OH− \textgreater H\textsubscript{2}O.

Ligands of high trans-effect were those which resulted in the most rapid substitution of the trans-group. The trans-effect is thus solely a kinetic phenomenon, depending on activation energies. Two mechanisms were recognised for the trans-effect. Strong π-accepting groups such as CO and C\textsubscript{2}H\textsubscript{4} have a high trans-effect by virtue of their ability to stabilise a 5-coordinate trigonal bipyramidal transition state, by withdrawing metal dπ-electron density into their own empty π or π* orbitals. Strong σ-donor ligands like H− have a high trans-effect by a strong interaction with a metal p-orbital, weakening and lengthening the bond trans to it in the ground state. This weakening of the trans bond is called the trans-influence, and is a thermodynamic phenomenon. Recent molecular orbital studies
have suggested that, for σ-bonding ligands, the ability to act as a donor in the transition state may also be important, but the trans-influence is more important when the two effects do not reinforce each other.

The trans-influence of a ligand has been defined as:
"the extent to which that ligand weakens the bond trans to itself in the equilibrium state of a substrate."

A structural trans-influence series was obtained by X-ray crystallographic studies as follows, in decreasing order of trans-influence:
\[\text{R}_3\text{Si}^-, \sigma-\text{C}, \text{H}^- \supset \text{carbenes}, \text{PR}_3 \supset \text{AsR}_3 > \text{CO}, \text{RNC}, \text{C} \equiv \text{C}, \text{Cl}^-, \text{NH}_3 > 0 \text{ (acac)}. \]

The trans-influence of a series of ligands can be determined by X-ray crystallographic measurement of the length of a metal-ligand bond trans to them in a series of analogous compounds. For example, in compounds \[\text{[PtX(PEt}_3\text{)_3]^+} \], the length of the Pt-P bond trans to X varies from 2.239 to 2.335 Å as X varies from F to H. Since X-ray crystallography measures ligand-metal bond lengths directly it takes account of both σ- and π-bonding contributions.

It has been shown in platinum (II) phosphine complexes that the value of \(^1J_{\text{PtP}} \) is dependent mainly on the Pt-P bond length. The variation of \(^1J_{\text{PtP}} \) as the ligand trans to phosphine changes has been correlated with the ligands' trans-influences, and a strong relationship between \(^1J_{\text{PtP}} \), Pt-P bond length and trans-influence of the ligand trans to phosphine was observed. It was found that the
platinum-phosphorus coupling constant depended mainly on the covalency and s-character of the Pt-P bond.

Cis-Effect and Cis-Influence

In square-planar complexes, cis-groups have only a very small effect on substitution rates, and are only important when comparing groups of nearly equal **trans**-effect.\(^{25}\) In contrast, however, it has recently been recognised that the **cis**-influence may be more important. Molecular orbital studies have indicated that ligands exert a bond-weakening **cis**-influence almost comparable with their **trans**-influence, and suggest that the bond-weakening ability of a \(\sigma\)-bonding ligand is not directed specifically to the **trans**-position.\(^{59}\) The order of **cis**- and **trans**-influences appeared to be the same. This theoretical result has not been substantiated, and in fact it has been shown experimentally that **nmr cis**- and **trans**-influences are not simply related.

\(^{13}\)C nmr studies on a series of complexes [DIARS Pt (CH\(_3\)) X] and [DIARS Pt (CH\(_3\)) L]\(^+\) where X is an anionic ligand and L a neutral ligand showed that there is no correlation between **cis**- and **trans**-influences.\(^{60}\) The **cis**-influence for a series of ligands was:-

\(\text{CO} > \text{CH}_3\text{CH}_2\text{NC} > \text{Ph}_3\text{As} > \text{p-MeOC}_6\text{H}_4\text{CN} > \text{Ph}_3\text{P} > \text{y-MeC}_5\text{H}_4\text{N}\)

while the **trans** influence in a series of **trans**-methyl-platinum derivatives was:-

\(\text{Ph}_3\text{P} > \text{CO}, \text{CH}_3\text{CH}_2\text{NC} > \text{Ph}_3\text{As} > \text{y-MeC}_5\text{H}_4\text{N} > \text{p-MeOC}_6\text{H}_4\text{CN}\)
The authors suggested that whereas the trans-influence is due to \(\sigma \)-orbital rehybridisation, the nmr cis-influence may in part be related to a ligand's steric bulk.

X-ray structural studies on a series of compounds cis-[PtCl\(_2\)(PET\(_3\))L] have shown that the ligands L exert a cis-influence on the Pt-P bond lengths (ca 0.06 Å) which is almost as large as their trans-influence on the Pt-Cl (trans to L) bond lengths (ca. 0.07 Å).\(^{61,62}\) However, the steric properties of L were considered to be at most a minor factor and the cis-influence is primarily an electronic effect. Strong cis-influence ligands tended to be strong \(\pi \)-acids, e.g.: CO and PF\(_3\), which could compete with PET\(_3\) for metal atom d\(\pi\)-electrons. (This assumed that PET\(_3\) was a weak \(\pi \)-acid). The structural and nmr (\(^1J_{PtP} \)) cis-influences did not correlate well, with \(^1J_{PtP} \) reflecting changes only in the s-component of the \(\sigma \)-bond while Pt-P bond lengths reflect overall bond order.

Organoplatinum Complexes

Platinum has a very extensive organometallic chemistry,\(^{63-65}\) and has been a particularly important element in this field because it forms a wide range of compounds that are kinetically sufficiently inert to enable them to be isolated and characterised. Its most common oxidation states are 0, +2 and +4, and of these, the +2 state is the most important.\(^{11}\) Complexes of the +1 state have recently become more common, but complexes with platinum in the +3 state are rare. Organometallic complexes of platinum with oxidation states of +5 or +6 are unknown.
Of the organometallic complexes formed by metals, platinum forms carbonyls, isonitriles, olefins and acetylenes in the 0 and +2 states, alkyls, aryls, acetylides, vinyls, ylides and cyclopentadienyls in the +2 and +4 states and allyls in the +2 state. 63

The zero oxidation state platinum complexes are mainly those containing phosphine ligands, either alone as \([\text{Pt}(\text{PR}_3)_n]_n, (n=2,3,4)\) or with olefins and acetylenes, as \([\text{Pt}(\text{PR}_3)_2(\text{olefin})]\) and \([\text{Pt}(\text{PR}_3)_2(\text{acetylene})]\). 66 Zerovalent platinum complexes readily undergo oxidative addition reactions to give platinum (II) species with a wide variety of substrates, for example:- alkyl halides, 67 aryl-chloride bonds 68 and mercury-aryl bonds 69:

\[
\text{[Pt}(\text{C}_2\text{H}_4)(\text{PPh}_3)_2]\] + \text{CH}_2\text{I}_2 \rightarrow \text{cis-}[\text{Pt}(\text{CH}_2\text{I})\text{I}(\text{PPh}_3)_2]
\]

\[
\text{[Pt}(\text{PPh}_3)_3] + \text{Ph}_3\text{PAuC}_6\text{Cl}_5 \rightarrow
\]

\[
\text{[Pt}(\text{PPh}_3)_3] + \text{HgR}_2 \rightarrow
\]

Platinum (0) complexes containing only olefins, \([\text{Pt}(\text{olefin})_n]_n\), have also been described 70 and are useful starting materials in the synthesis of other complexes.
Complexes of the +1 oxidation state are normally dimers with a platinum-platinum bond to allow electron pairing and a diamagnetic complex, for example \([\{(\eta^5-C_5H_5)(CO)Pt\}_2]\)\(^{71}\) and \([Pt_2X_4(CO)_2]\)^{2-}, \((X. = \text{halogen})\)\(^{72}\). Recently an increasing number of platinum (I) dimers with bridging dppm ligands have been reported, so-called "A-frame dimers"\(^{73-75}\).

![Diagram of A-frame dimers]

There are very few alkyl or aryl platinum (III) complexes known, and these are also dimers such as \([Pt_2(pop)_4(CH_3)I]^4-\), \((pop = P_2O_5H_2)^{2-}\)\(^{76}\) and complexes of the type \([\{PtL(O_2CR_1)R_2\}_2]\) of which the following is a typical example\(^{77}\):

![Diagram of alkyl or aryl platinum (III) complexes]

Platinum (IV) alkyls were amongst the earliest platinum organometallics known,\(^3\) and the trimethylplatinum (IV) unit is particularly stable. \([PtMe_3(\eta^5-C_5H_5)]\) is the only platinum (IV) cyclopentadienyl complex known.\(^{78}\) Platinum (IV) alkyl and aryl complexes are octahedral, 18-electron molecules and can be prepared from Grignard or lithium...
reagents, or by oxidative addition of halogen79 or alkyl halide80 to platinum (II) complexes.

\[
\text{trans-}[\text{Pt} \ X \ \text{Me(\text{PMe}_2\text{Ph})}_2] + X_2 \rightarrow \ \text{Me}_2\text{PhP} \quad \begin{array}{c}
\text{Pt} \\
\ X \\
\ P\text{PhMe}_2
\end{array} \\
\text{Me}
\]

\[
\text{cis-}[\text{PtMe}_2(\text{As} \ \text{As})] + \text{MeX} \rightarrow \ \text{Me} \\
\text{Pt} \\
\text{Me} \\
\text{Me} \\
\text{X}
\]

Platinum (II) forms both monomeric and dimeric organometallic complexes, cationic, anionic and neutral, with one or more organic groups per platinum. The complexes are usually 4-coordinate, square-planar 16-electron compounds. Platinum (II) organometallic compounds can be made in a variety of ways, including using Grignard, organolithium, organotin and organomercury reagents and oxidation of platinum (o) species.11,63 Platinum (II) – carbon σ-bond strengths have been measured for Pt–C\textsubscript{6}H\textsubscript{5} and Pt–CPh=CHPh as 264 and 215 kJ mol-1 respectively,81,82 and the platinum-methyl bond has been found to be of comparable strength to the platinum-iodide bond.83 These values are rather less than the strength of carbon–carbon or carbon–hydrogen bonds, suggesting that the stability of platinum-carbon σ-bonds is not thermodynamic, but kinetic, due to lack of a suitable decomposition pathway.11
Platinum-carbonyl bonds also involve σ-bonding, but because of the π-acceptor qualities of CO there is also considerable π-bonding. The two types of interactions are shown below:

\[
\begin{align*}
\text{M} & \quad + \quad \text{C} = \text{O} \quad \rightarrow \quad \text{M} \quad \text{C} = \text{O} \quad \text{σ-bond} \\
\text{M} & \quad + \quad \text{C} = \text{O} \quad \rightarrow \quad \text{M} \quad \text{C} = \text{O} \quad \text{π-bond}
\end{align*}
\]

The overlap of a filled sp-hybrid orbital on the carbon atom with a vacant hybrid orbital on the metal, complemented by π-back donation of electron density from filled metal d or dp hybrid orbitals to empty π* (antibonding) orbitals on the CO forms a bonding system which is synergic. The presence of electrons in the π* orbitals of CO weakens the C-O bond, reducing the stretching frequency from 2155 cm\(^{-1}\) in free CO.\(^{11}\)

The bonding between phosphorus and platinum is considered to be largely a σ-interaction, with little evidence for significant π-bonding.\(^{84}\) Variations in Pt-P bond lengths can be explained by variations in sp character. The variations of Pt-P bond lengths in the complexes \([\text{Pt(PR}_3]_2\), \([\text{Pt(PR}_3]_3\) and \([\text{Pt(PR}_3]_4\) are explained in terms of changes in formal σ-hybridisation of the metal from sp to sp\(^2\) to sp\(^3\).
Many π-bonded complexes of platinum (II) are also known, with olefins and acetylenes, as well as delocalised aromatic π-systems such as C₅H₅. The bonding in olefin complexes also consists of σ- and π-contributions. In this case, the olefin donates electron density from its filled π-orbital by a σ-bond to Pt and receives back-donation of electron density from filled orbitals on platinum into the empty π* orbital of the olefin.
CHAPTER 2
Cyclopentadienyl Platinum Complexes
And C5H5 Transfer Reactions
INTRODUCTION

Cyclopentadienyl Complexes

A large number of cyclopentadienyl complexes of platinum are now known. Early synthetic methods generally involved the use of NaC₅H₅, and were often low yield processes. 71,78,88,89 A more convenient preparation is via halide displacement by C₅H₅⁻ from TlC₅H₅ 86,90-93 or Hg(C₅H₅)₂. 86 The products are η¹-bonded 16-electron molecules, or η⁵-bonded 18-electron molecules, depending on the number and type of other ligands present. Interconversion between the two types have been reported. 90,93,86

\[
\text{[PtMe(η¹-C₅H₅)cod]} \xrightarrow{\text{L}} \text{[PtMe(η⁵-C₅H₅)L]}
\]

L = CO, P(OMe)₃, P(OPh)₃, P(OMe)Ph₂

\[
\text{[Pt(PBu₂CMe₂CH₂)(η⁵-C₅H₅)]} \xrightarrow{\text{PPh₃}} \text{[Pt(PBu₂CMe₂CH₂)(η¹-C₅H₅)⁻(PPh₃)]}
\]

\[
\text{[Pt(Ph)(η⁵-C₅H₅)(PET₃)]} \xrightarrow{\text{PPh₃}} \text{[Pt(Ph)(η¹-C₅H₅)(PET₃)(PPh₃)]}
\]

Cyclopentadienylthallium

Cyclopentadienylthallium is easily prepared by treatment of thallous sulphate in NaOH with cyclopentadiene. 94

\[
\text{Tl₂SO₄ + C₅H₆ + NaOH} \rightarrow (\text{C₅H₅})\text{Tl} + \text{Na₂SO₄ + H₂O.}
\]

The TlC₅H₅ is purified by vacuum sublimation to yield pale yellow crystals and is stable in air, although it darkens slowly on exposure to light. 95 A major advantage in using TlC₅H₅ is that the byproduct is TlCl, which is insoluble and is easily removed from the system.
The structure and bonding in TlC₅H₅ are thus of interest and much work has been done in this area. In the gas phase, it has a half-sandwich structure, with Cᵥ₅ symmetry, with the thallium atom situated centrally above the cyclopentadienyl ring. The nature of the bonding is still not clear, although covalent bonding is favoured. Crystalline, (polymeric) TlC₅H₅ has been shown to consist of infinite zig-zag chains made up of alternate thallium atoms and cyclopentadienyl rings. The chains are presumed to be held together by interactions between the metal atoms. In isostructural InC₅H₅ the metal-metal distance (3.99Å) is such that metal-metal bonding is possible. The ring-metal distance in the crystal (3.19Å) is considerably larger than that in the vapour. An infrared and laser Raman spectroscopic study of TlC₅H₅ showed that the symmetry in the crystalline state is Dᵥ₅₅, indicating that the bonding is predominantly ionic. Covalent bonding was expected to give a symmetry of Cᵥ₅, as in the vapour.

Dicyclopentadienylmercury

Dicyclopentadienylmercury was the first σ-bonded cyclopentadienylmetal complex reported which has been substantiated. It is a light yellow crystalline solid when pure, but is unstable. On the basis of its infrared spectrum and chemical behaviour, Piper and Wilkinson considered it to have σ-cyclopentadienyl rings, which was later substantiated. The compound was found to be fluxional; thus in the ¹H nmr spectrum at room temperature
all of the C\textsubscript{5}H\textsubscript{5} protons were found to be equivalent, but at low temperature the expected AA'BB'X type spectrum was obtained.102 The fluxional rearrangement was postulated to involve 1,2-shifts of the metal round the carbons of the ring.

Dynamic properties of η^1-C\textsubscript{5}H\textsubscript{5} rings

It is now well established that fluxional rearrangement of η^1-C\textsubscript{5}H\textsubscript{5} complexes involves 1,2-shifts for all systems examined, both of main group and transition metals,103 e.g.; $[(\eta^5$-C\textsubscript{5}H\textsubscript{5}$)$Fe(CO)$_2(\eta^1$-C\textsubscript{5}H\textsubscript{5})].104 This has been established by the consideration of line shapes in the 1H nmr spectra.103 The 1,2-shifts may be regarded as degenerate [1,5] sigmatropic rearrangements, since the transition state for the rearrangement of $[(\eta^5$-C\textsubscript{5}H\textsubscript{5}$)$Fe(CO)$_2(\eta^1$-C\textsubscript{5}H\textsubscript{5})]$ is essentially non-polar.105 Earlier proposals for the rearrangement to proceed through a dipolar metal-olefin transition state104 or a partially dissociated polar state106 were clearly invalidated. Woodward Hoffmann rules for pericyclic reactions can be used in studying the fluxional process in σ-bonded cyclopolyenyl metal complexes. Almost all of the known cases can be explained by [1,5] sigmatropic shifts.107 The Woodward Hoffmann rules require that an allowed 1,5 migration be suprafacial with retention of configuration at the migrating group, or antarafacial with inversion.108 Fabian and Labinger have recently shown that the fluxional process in complexes of type $[(\eta^5$-C\textsubscript{5}H\textsubscript{5})Fe(CO)L(\eta^1$-C\textsubscript{5}H\textsubscript{4}R)], (L = P(OPh)$_3$, PF$_2$NMe$_2$; R=H,Me) is suprafacial migration with retention of configuration of the migrating group.109
Isomers of $[\text{PtCl}_2(\text{CO})\text{L}]$

Previous work has shown that a wide variety of organomercurials, $R_2\text{Hg}$ ($R = \text{alkyl or aryl}$), react with cis-$[\text{PtCl}_2(\text{CO})\text{L}]$ (L is a tertiary phosphine or arsine) to produce quantitatively the isomer of $[\text{PtCl}_2(\text{CO})\text{L}]$ with L trans to R, isomer (I). The other two isomers, with CO trans to R, isomer (II), and Cl trans to R, isomer (III), were produced by CO cleavage of the halide-bridged dimers $[\text{Pt}_2R_2(\mu-\text{Cl})_2\text{L}_2]$. The reaction between cis-$[\text{PtCl}_2(\text{CO})\text{L}]$ and phenyl-lithium led to several products including some isomer (II) of $[\text{PtClPh}(\text{CO})\text{L}]$, but none of the isomer (I), (figure 1).

\[
\begin{align*}
\text{cis-}[\text{PtCl}_2(\text{CO})\text{L}] & \\
\text{R}_2\text{Hg} & \quad \text{PhLi} & \quad \text{CO} \\
\text{L} & \quad \text{Cl} & \quad \text{L} & \quad \text{R} & \quad \text{L} & \quad \text{R} & \quad \text{L} & \quad \text{Cl} & \quad \text{Cl} & \quad \text{CO} \\
\text{Pt} & \quad \text{Pt} & \quad \text{Pt} & \quad \text{Pt} \\
\text{OC} & \quad \text{R} & \quad \text{OC} & \quad \text{Cl} & \quad \text{Cl} & \quad \text{CO} \\
\end{align*}
\]

(figure 1)

Isomers (II) and (III) were shown to interconvert, the equilibrium favouring isomer (II).

The variation in products was rationalised in terms of the different reaction mechanisms. It was suggested that phenyl lithium would be most likely to react by a carbanion attack at platinum to produce a five-coordinate intermediate. The kinetic trans effect of CO would stabilise the intermediate with the entering and leaving
groups in the same trigonal plane as itself, thus ensuring loss of the Cl- trans to it. Diphenyl mercury was expected to react via an electrophilic attack on the mercury bound carbon atom (SE\textsubscript{2}) or by an oxidative addition/reductive elimination sequence. The high trans influence54 of tertiary phosphine would weaken the Pt-Cl bond trans to it, favouring its elimination.

Transfer Reactions

In this chapter, the exchange of a C\textsubscript{5}H\textsubscript{5} group between Ti, Hg and Au and Pt has been studied, as well as exchanges between two platinum complexes. In the following chapter, exchange reactions of other organic groups are considered. In view of the popularity in using organomercury113-117 and organotin reagents118-122 to prepare organoplatinum compounds, the transfer mechanism has been the subject of much comment.123 Two routes in particular have been singled out. The first is the SE\textsubscript{2} (cyclic) mechanism,119,121,123 which involves the simultaneous transfer of the two migrating groups, and is well documented for mercury.124 The second is consecutive operation of oxidative addition and reductive elimination,114,123,125-127 which is well known for square-planar d8 complexes.27,28 At this point, it will be useful to discuss the two types of mechanisms.
Bimolecular Electrophilic Substitution Mechanisms

The S_{E2} (cyclic) mechanism for organic group exchanges developed from the study of mercury systems. The exchange of organogroups between mercury compounds has generally been found to be a bimolecular process.\(^\text{124}\)

The S_{E2} (cyclic) mechanism involves a simultaneous transfer of the two migrating groups, and a 4-membered cyclic transition state. For example, in the following exchange of an organo group for a halide in the reaction,

$$R_2Hg + HgX_2 \rightleftharpoons 2RHgX$$

the transition state is:

![Transition State Diagram]

In this mechanism, as the electrophile (HgX_2) attacks the metal bonded carbon atom, the nucleophilic part (X) coordinates with the metal atom. Nucleophilic coordination with the metal atom can occur simultaneously with, or before, electrophilic attack at the carbon atom, but there is no kinetic difference between these mechanisms, and both may be classed as S_{E2} (cyclic)\(^\text{124}\).

It has been established experimentally that when an organic group is transferred, e.g.:— in the reaction between cis- and trans- methoxycyclohexylmercurychloride and $HgCl_2$ (^{203}Hg-labelled),\(^\text{128}\) the organic group is transferred with retention of configuration. In all
cases of bimolecular electrophilic substitution which were studied, the strict retention of configuration at saturated carbon was established. Retention of configuration is predetermined by coordination of the nucleophilic part of the electrophile with the metal atom.

The S_{E2} (cyclic) mechanism is not the only possible bimolecular electrophilic substitution mechanism. There are some examples of transfer reactions in mercury chemistry which proceed by an S_{E2} (open) mechanism, i.e., where there is no coordination of the nucleophilic part of the electrophile with the metal atom. The S_{E2} (open) mechanism can proceed with either retention or inversion of configuration at saturated carbon. No such inversions were found in mercury systems.

In the cleavage of organic groups from tin, Fukuto and Jensen have recently demonstrated some S_{E2} (open) reactions which proceed with inversion of configuration. They concluded that a system expected to promote S_{E2} (open) inversion would contain the following features: (1) A leaving group which is relatively stable when bearing a positive charge; (2) a leaving group with no low-lying vacant orbitals (hence the reason for using Sn instead of Hg); (3) steric hinderance to front-sided substitution and little hinderance to inversion; (4) a polar solvent.

The three transition states for S_{E2} cleavage of $\text{MCR}^1\text{R}^2\text{R}^3$ in the following reaction are shown in figure 2:
Oxidative Addition/Reductive Elimination

The possibility of transferring an organic group by an oxidative addition/reductive elimination sequence is well known, when the group is transferred between two transition metals. Oxidative additions are common with IrI and Pt5 complexes. Of particular interest are transfers of organic groups from mercury and tin reagents.

Addition of HgY$_2$ (Y=Cl, Br, I, OAc, CN, SCN) to Vaska's compound has been reported to produce octahedral IrIII complexes [$(\text{Ph}_3\text{P})_2(\text{CO})\text{Cl}(\text{Y})\text{Ir(HgY)}$], with an iridium-mercury bond, but the stereochemistry of the addition was not known.130 A similar study on the addition of HgCl$_2$ to trans-$[\text{(Ph}_2\text{MeP})_2\text{Ir(CO)}\text{Cl}]$ yielded a species with mercury perpendicular to the plane containing the phosphines and CO.131 (fig. 3).
Similarly Hg(C≡CR)₂ (R=Ph, C₅H₁₁) has been found to add oxidatively to \(\text{trans-Ir(PPh₃)₂(CO)Cl} \) to give a product with mercury in the plane of the phosphine and carbonyl ligands (fig. 4).

\[
\begin{align*}
\text{MePh₂P} & \quad \text{HgCl} & \quad \text{Ph₃P} & \quad \text{C≡CR} \\
\text{Ir} & \quad \text{Cl} & \quad \text{PPh₂Me} & \quad \text{HgC≡CR} \\
\text{OC} & \quad \text{OC} & \quad \text{Cl} & \quad \text{Cl}
\end{align*}
\]

Reactions of platinum (o) compounds with tin reagents have also been reported, with insertion of platinum into the Sn-C or Sn-Cl bond, depending on the reagent used. \([\text{Pt(C₂H₄)(PPh₃)₂}]\) reacts with SnR₃X (R = Ph or Me, X = halide) to give \(\text{cis-[PtR(PPh₃)₂(SnR₂X)]} \) for example, but with SnRC₁₃ it gave \(\text{trans-[PtCl(SnCl₂R)(PPh₃)₂]} \). With mixed methylaryl tin reagents, the platinum inserted into the tin-aryl bond:

\[
[\text{Pt(C₂H₄)(PPh₃)₂}] + \text{SnPhMe₂Cl} \rightarrow \text{cis-[PtPh(PPh₃)₂(SnMe₂Cl)]}
\]

There are also a number of oxidative addition reactions of platinum (II) known, involving tin reagents, and mercury reagents. The reaction of \([\text{PtMe₂(N-N)}] \) (N-N = 2,2'-bipyridine, 1,10-phenanthroline) with methyl tin or aryl tin-halogen compounds, SnRₙCl₄₋ₙ has been reported to proceed via a \(\text{trans-oxidative addition of the Sn-Cl bond to Pt} \). (fig. 5) A similar result was obtained.
with \(\text{PbPh}_n \text{Cl}_{4-n} \). The same author later showed that the analogous organogermainium-, organosilicon- and organocarbon-chlorides also oxidatively added to \([\text{PtMe}_2(\text{N-N})]\) with trans addition.126

![Figure 5](image)

The platinum complex \([\text{PtMe}_2(\text{N-N})]\) is one which has frequently been used in the study of oxidative additions to platinum (II). Recently, MeOH and EtOH have been oxidatively added to produce five coordinate, cationic platinum (IV) compounds, \([\text{PtMe}_2(\text{OR})(\text{N-N})]^+136\).

Mercury carboxylates have been oxidatively added to platinum (II) complexes to produce platinum (IV) complexes with a platinum-mercury bond.137,138 The mercury carboxylates gave a cis-oxidative addition with mercury in the positions shown, in the platinum (IV) products, (fig. 6)

![Figure 6](image)
The same authors have also reported complexes with proposed platinum (II) to mercury (II) donor bonds,138,139 (fig. 7).

\[
\text{Cl} \\
\text{Br} \\
\text{Hg} \\
\text{N} \\
\text{NMe}_2 \\
\text{Pt} \\
\text{NMe}_2 \\
\text{R} \\
\text{R}
\]

\textbf{figure 7.}

Analogous complexes containing a platinum-silver bond have also been prepared,140 with the first reported \(^{195}\text{Pt} - ^{109}\text{Ag}\) coupling constant showing that the two metal atoms are bonded.141

\textbf{Distinction between Transfer Mechanisms}

In organo group transfer reactions firm evidence for the type of mechanism operating is scarce. \(S_E^2\) (cyclic) mechanisms have been proposed for the reaction of \([\text{Pt(cod)}\text{Cl}_2]\) and \(\text{SnMe}_3\text{R}\) (\(\text{R} = \text{aryl}\)).119 A series of substituted aryl groups was studied and it was found that the transfer reaction was facilitated by an electron releasing substituent and retarded by an electron with-

drawing substituent, which is consistent with electrophilic aromatic substitution. In oxidative addition of \(\text{SnMe}_3\text{R}\) to \([\text{Pt(C}_2\text{H}_4)(\text{PPh}_3)_2]\), the rate of reaction was increased by electron-withdrawing substituents on the aryl group.122 Further support for the \(S_E^2\) (cyclic) mechanism came from the reactivity of \(\text{MMe}_3\text{R}\) (\(\text{M} = \text{group 4 element}\)) which was found to be \(\text{Pb} > \text{Sn} \gg \text{Ge} > \text{Si}\). Similarly,
SnRMe₃ was shown to react with [Pt(O₂CCF₃)₂L₂] with a related effect on reactivity with changes in the R group, although the authors postulated that this reaction could involve substantial Wheland intermediate character.⁷¹ A Wheland intermediate would be a transition state of type (a) in fig. 8, as opposed to the normal S₇E₂ (cyclic) transition state (b).²⁹

![Figure 8: (a) Wheland intermediate; (b) S₇E₂ (cyclic) intermediate.](image)

(cod)ClPtSnMe₃ Cl⁻ Cl⁻ C₁⁻

(cod)ClPtSnMe₃ C₁⁺

Table 8 : (a) Wheland intermediate; (b) S₇E₂ (cyclic) intermediate.

cis-[Pt(C₂H₄)Cl₂L] was also proposed to react with SnRMe₃ by an S₇E₂ mechanism, followed by loss of ethylene to give [Pt₂R₂Cl₂L₂].⁶⁰ cis-[PtCl₂(CO)L] reacted to produce the insertion product [Pt₂(COR)₂Cl₂L₂] and the authors considered this to be produced by an oxidative addition/reductive elimination sequence. They considered that the Cl trans to CO would be replaced by an S₇E₂ (cyclic) mechanism to produce [PtClR(CO)L], R trans to CO, because of the greater trans effect of CO.⁵⁴ This isomer is incapable of undergoing CO insertion and thus Eaborn et al. concluded that an S₇E₂ (cyclic) mechanism could not have operated. Whereas the Cl trans to CO would be replaced
in a nucleophilic substitution, it is considered by other authors that the chloride trans to phosphine would be replaced by an S_{E2} (cyclic) mechanism due to the greater trans influence of the phosphine. If this is the case, the product, $[\text{Pt}_2(\text{COR})_2\text{Cl}_2\text{L}_2]$ is perfectly consistent with an S_{E2} (cyclic) mechanism as $[\text{PtClR(CO)L}]$, R trans to L, is the isomer which inserts.

Oxidative addition/reductive elimination sequences have been shown to operate in some reactions of platinum (II) with mercurials where a platinum (IV) intermediate has been isolated. In the HgCl$_2$ cleavage of a methyl group from $[\text{PtMe}_2(\text{bipy})]$, a platinum (IV) intermediate was isolated. The authors favoured a cis-oxidative addition resulting in mercury in the plane of the bipy ligand (fig. 9).

\[
\begin{align*}
\text{Me} & \\
\text{N} & \\
\text{Pt} & \\
\text{N} & \\
\text{Cl} & \\
\rightarrow & \\
\text{Me} & \\
\text{N} & \\
\text{Pt} & \\
\text{N} & \\
\text{Cl} & \\
\end{align*}
\]

\text{figure 9.}

There was a slow reductive elimination on heating to give $[\text{PtClMe(bipy)}]$ and MeHgCl.

Similarly, the complex $[\text{PtCl}_2(\text{dppm})]$ reacts with two equivalents of Hg(SiMe$_3$)$_2$ to produce the platinum (IV) complex $[\text{Pt(SiMe}_3)_2(\text{HgSiMe}_3)_2(\text{dppm})]$, which was isolated and thought to have trans mercury atoms. Slow
elimination of Hg and Si$_2$Me$_6$ produced [Pt(SiMe$_3$)$_2$(dppm)]. A similar reaction with Ph$_2$Hg produced [PtPh$_2$(HgPh)$_2$ – (dppm)].

In most cases, attempts to differentiate between SE$_2$ and oxidative addition mechanisms prove ambiguous. The two reactions are as follows:

\[R^5-M^5+ + E^5+ \rightarrow E----N \rightarrow RE + MN \]
\[\text{SE}_2. \]

\[R-M + E-N \xrightarrow{K_1} \text{K}_2 \rightarrow RE + MN \]
\[\text{Oxid. Add}^N. \]

In the oxidative addition mechanism, if K$_1 \gg$ K$_2$ the intermediate adduct is isolable or detectable, but if K$_2 \gg$ K$_1$ this will not be possible. Thus, only if K$_1 \gg$ K$_2$ can oxidative addition mechanisms be proven. In other cases, it will be extremely difficult to distinguish between SE$_2$ and oxidative addition/reductive elimination (with no intermediate detectable). Oxidative addition followed by reductive elimination can yield the same product as an SE$_2$ (cyclic) mechanism, and this mechanism has been termed SE$_E$(oxidative).

Puddephatt has attempted to distinguish between SE$_2$(cyclic) and oxidative addition/reductive elimination reactions by studying mixed aryl methyl complexes of gold and platinum. He found that an aryl group was cleaved from [PtMeAr(cod)] and cis-[AuMe$_2$Ar(PPh$_3$)] but that a methyl group was cleaved from cis-[PtMeAr(PMePh$_2$)$_2$] by a wide range of electrophiles, including HCl, HgCl$_2$ and
platinum complexes. The results were interpreted as aryl cleavage being the result of an S_{E2} (cyclic) mechanism and methyl cleavage being the result of an oxidative addition/reductive elimination mechanism. He argued that, since aryl groups are cleaved much more rapidly than alkyl groups in the reactions of R_2Hg and R_4Sn with electrophiles144,145 the S_{E2} (cyclic) mechanism should selectively cleave an aryl group from platinum, or gold. On the basis of photoelectron spectra of the complexes146 it was suggested that the platinum phosphine complexes undergo oxidative addition and selective cleavage of a methyl group because their HOMO's are a 5d orbital localised on the platinum, and that in the gold and platinum complexes where an aryl group is cleaved, an S_{E2} mechanism operates because the HOMO's are σ (Me-Au) or σ (Me-Pt) orbitals. However, these conclusions have been challenged recently.147 It has been shown that mixed methyl aryl tin reagents will selectively transfer an aryl group to platinum by both S_{E2} (cyclic)119 and oxidative addition134 mechanisms. In the transfer of organic groups between platinum complexes or gold and platinum complexes, it has been suggested that mechanisms intermediate between the extremes of S_{E2} and oxidative addition/reductive elimination could operate.148 Great care should be taken in assignment of mechanisms. The methyl transfer reactions from platinum and gold complexes to platinum were originally designated as S_{E2} (cyclic)149 before eventually being proposed as oxidative
addition/reductive elimination reactions.123 It is, for example, stated that cleavage of an organic group from $[\text{AuMe}_3L]$ or $[\text{AuMe}_2\text{Ar}L]$ by a platinum complex must be by an S_{E2} (cyclic) mechanism because oxidative additions to Au (III) are unknown.123,149 However, the possibility that the Au complex could oxidatively add to the Pt (II) complex is completely neglected.

Other methods of mechanistic investigation also prove to be ambiguous. The transfer of alkyl from mercury to palladium has been shown to proceed with retention of configuration of the alkyl ligand by the reaction of threo- and erythro- $\text{MeCH(NMe}_2\text{)CH(HgCl)Me}$ with bisbenzonitrilepalladium chloride.115

![Chemical structure](image)

This was interpreted as being consistent with an S_{E2}(cyclic) or an S_{E2} (open) retention reaction. Indeed, retention of configuration at saturated carbon is demanded by the S_{E2} (cyclic) mechanism.124 However, retention of configuration would also occur in a concerted cis-oxidative-addition/reductive-elimination sequence. HgCl_2 cleaves the optically active alkyl group from threo-$\text{PhC}H\text{DCHDFe(CO)}_2(\eta^5-C_5\text{H}_5)$ and trans-(threo-R)-$\text{W(CO)}_2(\text{PEt}_3)(\eta^5-C_5\text{H}_5)$ with retention of configuration by the S_E (oxidative) mechanism,142 and with inversion from cis-(threo-R)$\text{Mn(CO)}_4(\text{PEt}_3)$ by an
SE₂ (open) mechanism involving a backside attack by the electrophilic agent on the α-carbon atom.

\[\text{threo-PhCHDCHDFe(CO)}_2(\eta^5-C_5H_5) + \text{HgCl}_2 \rightarrow \text{(η}^5-\text{C}_5\text{H}_5\text{)Fe(CO)}_2\text{Cl} + \text{threo-PhCHDCHDHgCl} \]

\[\text{cis-(threo-PhCHDCHD)}\text{Mn(CO)}_4\text{PET}_3 + \text{HgCl}_2 \rightarrow \text{cis-Mn(CO)}_4(\text{PET}_3)\text{Cl} + \text{erythro-PhCHDCHDHgCl} \]

\[\text{trans-(threo-PhCHDCHD)}\text{W(CO)}_2(\text{PET}_3)(\eta^5-\text{C}_5\text{H}_5) + \text{HgCl}_2 \rightarrow \text{cis-(η}^5-\text{C}_5\text{H}_5\text{)W(CO)}_2(\text{PET}_3)\text{Cl} + \text{threo-PhCHDCHDHgCl}. \]

This is also rationalised by considering the energy difference between the HOMO (metal carbon σ-bonding character) and the filled non-bonding metal d-orbitals.

 Aryl transfer reactions between platinum complexes, \([\text{Pt(cod)R}_2]\) and \([\text{Pt(cod)Cl}_2]\); and \([\text{Pt(cod)R}_2]\) and \([\text{Pt(cod)R}_2]\) have been reported¹¹⁹ and the mechanism proposed to be SE₂(cyclic) on the basis that the ease of transfer of aryl group was consistent with the ease of electrophilic attack on the carbon atom of the aryl-metal bond, but the authors were not totally confident that the product compositions reflected rates of migration rather than positions of equilibria.

Thus the difficulties encountered in mechanistic interpretation of transfer reactions involving transition metals can be seen.
RESULTS AND DISCUSSION

Preparation of \([\text{PtX(C}_5\text{H}_5)(\text{CO})\text{L}]\) isomer (I)

A suspension of cis-dichlorocarbonyl (triphenyl phosphine)-platinum (II) and cyclopentadienyl thallium in benzene reacted over one hour to yield \([\text{PtCl(C}_5\text{H}_5)(\text{CO})-\text{PPh}_3]\) and insoluble \(\text{TlCl}\). The cyclopentadienyl platinum complex was crystallised with difficulty from acetone/pentane mixtures to produce an orange powder. Although in the solid phase the compound appears to be indefinitely stable (samples have survived unchanged in air in diffuse light for more than 6 months), decomposition in solution proceeds over several days at ambient temperatures.

The \(^{31}\text{P}\) nmr spectrum of the platinum complex revealed a \(^{195}\text{Pt}^{31}\text{P}\) coupling constant of only 1780 Hz., which is typical of complexes with phosphine trans to an organic group in compounds of this type.\(^{23}\) The \(^1\text{H}\) nmr signals from the cyclopentadienyl group showed averaged proton signals with \(J_{\text{PtH}}=31.0\) Hz and \(J_{\text{PH}}=4.4\) Hz. This is consistent with a fluxional \(\eta^1\)-cyclopentadienyl trans to phosphine.\(^{86}\) The compound is therefore assigned the structure (I).

![Structure I](image)

A deuteromethylene chloride solution of \([\text{PtCl(C}_5\text{H}_5)-(\text{CO})(\text{PPh}_3)]\) (I) was examined by \(^1\text{H}\) nmr spectroscopy at low temperature (see fig. 10). At \(-90^\circ\text{C}\) the signal for the
Figure 10

Low-temperature 1H nmr spectra of C$_5$H$_5$ protons of [PtCl(η^1-C$_5$H$_5$)(CO)(PPh$_3$)] isomer(I) in CD$_2$Cl$_2$.
C$_5$H$_5$ protons had begun to broaden, and the 31P - 1H coupling could only be resolved in the main peak, the satellites being broad. At -105°C, neither 31P - 1H nor 195Pt - 1H coupling was resolved, the C$_5$H$_5$ resonance being a broad peak. At -110°C the peak was broader and flatter, but the solution froze at lower temperatures, thus the AA'BB'X spectrum for a non-fluxional η^1-cyclopentadienyl group could not be observed. The fluxional process in other η^1-cyclopentadienyl complexes has been shown to be a series of 1,2-shifts, where the metal-carbon bond moves around the ring, and has been termed "ring-whizzing". 102-109

The complexes cis-[PtX$_2$(CO)L] (X = Cl; L = PPh$_2$Me, PPhMe$_2$, PEt$_3$ or AsPh$_2$Me; X = Br; L = PPhMe$_2$) also reacted with one equivalent of TlC$_5$H$_5$ to produce quantitative yields of complexes with structure (I). The same materials were produced when TlC$_5$H$_5$ was replaced by Hg (C$_5$H$_5$)$_2$ (X = Cl; L = PPh$_2$Me or PPhMe$_2$) or [(Ph$_3$P)Au(C$_5$H$_5$)] (X = Cl; L = PPh$_3$), the byproducts in these cases being the soluble C$_5$H$_5$HgCl or Ph$_3$PAuCl.

These compounds (I) appear to be somewhat less stable than their PPh$_3$ analogue. Although they survive in solution for up to 24 hours, attempted isolation tended to lead to decomposition. [PtCl(η^1-C$_5$H$_5$)(CO)(PMe$_2$Ph)] was finally obtained as an impure yellow solid; no attempts were made to isolate the others, and they were examined in solution after TlCl had been removed by filtration.

Spectroscopic parameters are listed in tables 1 and 2.
Table 1. \(^1\)H nmr of \([\text{PtX} (\eta^1-\text{C}_5\text{H}_5)(\text{CO})L]\) in CDCl\(_3\) at 25°C.

<table>
<thead>
<tr>
<th>L</th>
<th>X</th>
<th>(\delta\text{C}_5\text{H}_5) (ppm)</th>
<th>(J_{\text{PH}}) (Hz)</th>
<th>(J_{\text{PtH}}) (Hz)</th>
<th>(\delta\text{CH}_3) (ppm)</th>
<th>(J_{\text{PH}}) (Hz)</th>
<th>(J_{\text{PtH}}) (Hz)</th>
<th>(\nu(\text{CO})) (cm(^{-1})) (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPh(_3)</td>
<td>Cl</td>
<td>+6.21</td>
<td>4.4</td>
<td>31.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2085</td>
</tr>
<tr>
<td>PMePh(_2)</td>
<td>Cl</td>
<td>+6.25</td>
<td>4.5</td>
<td>30.5</td>
<td>+2.25</td>
<td>10.0</td>
<td>20.0</td>
<td>2080</td>
</tr>
<tr>
<td>PMe(_2)Ph</td>
<td>Cl</td>
<td>+6.18</td>
<td>4.5</td>
<td>30.0</td>
<td>+2.00</td>
<td>11.0</td>
<td>22.0</td>
<td>2080</td>
</tr>
<tr>
<td>PMe(_2)Ph</td>
<td>Br</td>
<td>+6.23</td>
<td>4.5</td>
<td>30.0</td>
<td>+2.00</td>
<td>12.0</td>
<td>23.0</td>
<td>2080</td>
</tr>
<tr>
<td>PEt(_3)</td>
<td>Cl</td>
<td>+6.17</td>
<td>4.3</td>
<td>29.0</td>
<td></td>
<td></td>
<td></td>
<td>2075</td>
</tr>
<tr>
<td>AsMePh(_2)</td>
<td>Cl</td>
<td>+6.25</td>
<td>-</td>
<td>35.4</td>
<td>+2.09</td>
<td>-</td>
<td>12.9</td>
<td></td>
</tr>
</tbody>
</table>

(a) 0.02M solutions in CHCl\(_3\), path length 0.5mm, NaCl cells.
Table 2. 31P nmr of $[\text{PtX}^{\eta^1-C_5H_5}](\text{CO})L$ isomer (I) in CDCl$_3$ at 25°C.

<table>
<thead>
<tr>
<th>L</th>
<th>X</th>
<th>δP (ppm)</th>
<th>$^{1}J_{\text{PtP}}$(Hz)</th>
<th>$^{2}J_{\text{CP}}$(Hz) (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPh$_3$</td>
<td>Cl</td>
<td>+18.6</td>
<td>1780</td>
<td>10.0</td>
</tr>
<tr>
<td>PPh$_3$</td>
<td>I</td>
<td>+12.4</td>
<td>1847</td>
<td></td>
</tr>
<tr>
<td>PPh$_3$(a)</td>
<td>F</td>
<td>+22.0</td>
<td>1821(b)</td>
<td></td>
</tr>
<tr>
<td>PMePh$_2$</td>
<td>Cl</td>
<td>+ 6.3</td>
<td>1760</td>
<td>10.5</td>
</tr>
<tr>
<td>PMePh$_2$</td>
<td>Br</td>
<td>+ 2.9</td>
<td>1780</td>
<td></td>
</tr>
<tr>
<td>PMe$_2$Ph</td>
<td>Cl</td>
<td>- 5.0</td>
<td>1733</td>
<td>10.5</td>
</tr>
<tr>
<td>PMe$_2$Ph</td>
<td>Br</td>
<td>- 8.7</td>
<td>1749</td>
<td>9.5</td>
</tr>
<tr>
<td>PMe$_2$Ph(a)</td>
<td>I</td>
<td>-14.3</td>
<td>1804</td>
<td></td>
</tr>
<tr>
<td>PEt$_3$</td>
<td>Cl</td>
<td>+21.3</td>
<td>1763</td>
<td></td>
</tr>
</tbody>
</table>

(a) Measured at -60°C.

(b) $^{2}J_{\text{PF}} = 28.6$ Hz.

(c) In complexes labelled with 13CO.
Mechanism of Formation of \([\text{PtX(C}_5\text{H}_5\text{)(CO)L}]\) isomer (I)

The formation of \([\text{PtCl(C}_5\text{H}_5\text{)(CO)PR}_3]\) isomer (I) with \(\text{C}_5\text{H}_5\text{ trans}\) to \(\text{PR}_3\) was expected from the reaction of the organomercurial. Numerous organomercury compounds react to produce this geometry.\(^{23,110,112}\) Nucleophilic attack by anions on \(\text{cis-}[\text{PtX}_2\text{(CO)PR}_3]\) usually displaces the halide \(\text{trans}\) to CO, however,\(^{23}\) so the isomer with \(\text{C}_5\text{H}_5\text{ trans}\) to CO, (II), might have been expected from the reaction of \(\text{TIC}_5\text{H}_5\). The non-appearance of this isomer is interesting, and might indicate the operation of a non-ionic reaction mode for \(\text{C}_5\text{H}_5\text{Tl}\), an anomalous reaction of \(\text{C}_5\text{H}_5^-\) compared to other carbanions, or a rapid rearrangement of (II) to (I). If isomer (II) (\(\text{C}_5\text{H}_5\text{ trans}\) to CO) was the initial product from \(\text{TIC}_5\text{H}_5\) and \(\text{cis-}[\text{PtCl}_2\text{(CO)PR}_3]\) it could be converted rapidly to isomer (I) by intermolecular transfers (which does not occur with aryl complexes). Isomer (II) converts to (I) only very slowly and by a dissociative route.\(^{23}\) Neither is any reaction observed between (II) \(\text{R=C=CMe or C=CPh}\) and \(\text{cis-}[\text{PtCl}_2\text{(CO)PR}_3]\) to produce isomer (I).\(^{150}\) Reversible conversion to an \(\eta^5\)-bonded compound is another possibility. Attempts were made to detect intermediates during formation of isomer (I) by nmr spectroscopic investigation at low temperatures, but none were observed. The first detectable products from \(\text{TIC}_5\text{H}_5\) and \([\text{PtCl}_2\text{(CO)PR}_3]\) were (I), thus if such isomerisations are part of the preparative routes to (I), they must be faster than the initial formation of the precursor to (I).
Although intermolecular transfers of C_5H_5 between platinum complexes were found to be rapid, none of the investigated exchanges progressed at a sufficiently fast rate that it could not be monitored spectroscopically. The reversible conversion to an η^5-bonded C_5H_5, although possible, should not proceed at such a rate that intermediate η^5-C_5H_5 complexes were undetectable.

Thus, if isomer (I) is formed directly from TlC_5H_5 and cis-[PtCl$_2$(CO)L], it must mean either that C_5H_5^- reacts differently from other carbanions, or that a non-ionic reaction is occurring. There is no reason why C_5H_5^- should react differently from C_6H_5^-, which attacks cis-[PtCl$_2$(CO)L] to replace the Cl$^-$ trans to CO. Also, a cyclopentadienide carbanion might be expected to undergo H/D exchange with a deuterated solvent and no such exchange was detected in the reactions of TlC_5H_5 with cis-[PtCl$_2$(CO)L]. Nor was any CHCl$_3$ produced when TlC_5H_5 was suspended in CDC$_3$ for 24 hours.

Although solid TlC_5H_5 is ionic, it is perhaps unreasonable to expect free cyclopentadienide ions in solution. TlC_5H_5 is virtually insoluble in all organic solvents, although it does slowly react in CHCl$_3$ or CCl$_4$, forming TlCl. Thus the reaction of platinum complex with TlC_5H_5 could be a heterogeneous one, with the cis-[PtCl$_2$(CO)L] reacting at the surface of the TlC_5H_5. In this case, steric effects of the phosphine ligand may control the approach of the platinum complex to the surface.
such that the chloride trans to phosphine is replaced, (fig. 11).

A further possibility is that small molecular fragments of C₅H₅Tl could react with the platinum complex in a similar way to Hg(C₅H₅)₂. However, it is not possible to determine which, if any, of these mechanisms is actually operating.

Organomercurials have been postulated to react with platinum complexes via SE₂ (cyclic), mechanisms or oxidative addition/reductive elimination reactions. The reaction of Hg(C₅H₅)₂ with cis-[PtCl₂(CO)L] via an SE₂ (cyclic) mechanism would involve a transition state of type A.

With C₅H₅ a second type of SE₂ (cyclic) mechanism is also possible, utilising the π-system of the C₅H₅ ring,
and involving a transition state of type B.

Such a transfer mechanism has been postulated in the exchange of C₅H₅HgCl with HgCl¹⁵² and appears to operate in the exchange of η¹-allyl groups.

The reaction could also proceed via oxidative addition/reductive elimination cycles. Concerted cis-oxidative addition with approach of Hg in the plane of the Pt complex and trans to phosphine would give the same product as an S₆2 cyclic mechanism, and the intermediate, C, can be regarded as related to transition state A by a strong Pt-Hg interaction.

A concerted cis-oxidative addition/reductive elimination with an intermediate in which Hg approaches axial to the plane of the complex, is also possible, D.
A trans-oxidative addition to produce an intermediate of geometry E would have to be by an ionic route, which is unlikely under the conditions employed. Concerted trans-oxidative additions are not allowed thermal processes on symmetry considerations. Also, cis-reductive elimination of C\textsubscript{5}H\textsubscript{5}HgCl from E need not necessarily lead to one specific product, as either Cl could be eliminated.

Thus, a choice of three mechanisms remains. S\textsubscript{E2} (cyclic), oxid. add+/red. elim− with Hg in the plane of CO and phosphine ligands (intermediate C) or Hg perpendicular to the plane of CO and phosphine (intermediate D). In the preparation of analogous aryl platinum complexes, the reaction between HgAr\textsubscript{2} and cis-[PtCl\textsubscript{2}(CO)L] to produce [PtClAr(CO)L] (I) was considered to be S\textsubscript{E2} (cyclic), because of the effect of substituents on the aryl group. Electron-withdrawing substituents inhibited the reaction and electron-donating substituents favoured the reaction, which is the situation expected in S\textsubscript{E2} (cyclic) reactions. Only para-substituents were used, to avoid complications due to steric effects.

Thus, the most likely reaction mode for Hg(C\textsubscript{5}H\textsubscript{5})\textsubscript{2} is S\textsubscript{E2} (cyclic). The gold cyclopentadienyl [Ph\textsubscript{3}PAuC\textsubscript{5}H\textsubscript{5}] could react in exactly the same manner as was considered.
for Hg(C₅H₅)₂, i.e. by Sₑ₂ (cyclic) or oxidative addition/reductive elimination. The same types of intermediates, A, C and D would be involved (with HgC₅H₅ replaced by AuPPh₃). The gold complex is also more likely to react by an Sₑ₂(cyclic) mechanism, although there is less evidence against the alternatives.

Transfer of C₅H₅ from Isomer (I) to Platinum and Mercury

When CDCl₃ solutions of [PtCl(η¹-C₅H₅)(CO)(PMe₂Ph)] isomer (I) and cis-[PtCl₂(CO)(PPh₃)] were mixed at ambient temperatures, a rapid equilibrium occurred, in less than 30 minutes as shown by ³¹P nmr investigation.

This, and related systems revealed that, at equilibrium, the C₅H₅ group showed a preference for the less basic phosphine (or that with the smaller trans influence).¹¹⁰

\[
\begin{align*}
[PtCl(C₅H₅)(CO)(PPh₃)] + cis-[PtCl₂(CO)(PMe₂Ph)] & \rightleftharpoons \ cis-[PtCl₂(CO)(PPh₃)] + [PtCl(C₅H₅)(CO)(PMe₂Ph)] \\
[PtCl(C₅H₅)(CO)(PMe₂Ph)] + cis-[PtCl₂(CO)(PMe₂Ph)] & \rightleftharpoons \ cis-[PtCl₂(CO)(PMe₂Ph)] + [PtCl(C₅H₅)(CO)(PEt₃)] \\
[PtCl(C₅H₅)(CO)(PEt₃)] + cis-[PtCl₂(CO)(PEt₃)] & \rightleftharpoons \ cis-[PtCl₂(CO)(PEt₃)] + [PtCl(C₅H₅)(CO)(PEt₃)]
\end{align*}
\]
Equilibrium constants for the reactions were approximately 0.3, 0.2, and 0.45 respectively, and equilibration was complete in about 30 minutes.

That the migrating groups in these reactions were \(\text{C}_5\text{H}_5 \) and Cl, and not PR\(_3\), was established by using samples labelled with \(^{13}\text{C} \).

\[
\begin{align*}
\text{Ph}_2\text{MeP} & \quad \text{Cl} \quad \text{Pt} \quad \text{Ph}_3\text{P} \quad \text{Cl} \\
0^{13}\text{C} & \quad \text{C}_5\text{H}_5 \quad \text{OC} & \quad \text{Cl}
\end{align*}
\]

\[\text{Ph}_2\text{MeP} \quad \text{Cl} \quad \text{Pt} \quad \text{Ph}_3\text{P} \quad \text{Cl} \quad \text{OC} \quad \text{C}_5\text{H}_5 \]

\(^{31}\text{P} \) nmr spectra easily identified the coupling of \(^{13}\text{C} \) to \(^{31}\text{P} \) as of cis geometry,\(^{154} \) and showed that these parts of the molecule retained their integrity in the time of scrambling of \(\text{C}_5\text{H}_5 \) and Cl. Over 24 hours, however, a slower reaction was also observed, leading to scrambling of the CO (or PR\(_3\)) groups.

Experiments on compounds with different halides indicated that reactions of the type discussed were accompanied by exchange of halides. Thus, \(^{31}\text{P} \) nmr spectroscopic examination of the reaction between [PtCl(\(\text{C}_5\text{H}_5 \))(CO)PMe\(_2\)Ph] and cis-[PtBr\(_2\)(CO)(PMe\(_2\)Ph)] showed that it reached equilibrium in less than 10 minutes, producing [PtBr(\(\text{C}_5\text{H}_5 \))(CO)(PMe\(_2\)Ph)] and one isomer of [PtClBr(CO)(PMe\(_2\)Ph)] (\(\delta = 8.1 \) ppm, \(^1J_{\text{PtP}} = 2832 \) Hz: the
coupling constant suggests that a halide is trans to PMe₂Ph. This isomer is presumably thermodynamic, since it is the major product when solutions of cis-[PtCl₂(CO)(PMe₂Ph)] and cis-[PtBr₂(CO)(PMe₂Ph)] are mixed. The other isomer (δ-13.1, ¹¹Jₚₚ = 2841 Hz) is only a minor product. If it were the kinetic product resulting from a single exchange of two halide ions, it would mean the involvement of different specific sites on each Pt. The similarity of Cl and Br makes this unlikely. ³¹P nmr examination of the reactions between [PtBr(η¹-C₅H₅)(CO)-(PMe₂Ph)] and cis-[PtCl₂(¹³CO)(PMe₂Ph)] revealed that all the materials contained ¹³CO after only 15 minutes. Since it is unlikely that CO exchange would have progressed this far in such a short time, the scrambling must originate from rapid halide and C₅H₅ migration. Mixing [PtCl(η¹-C₅H₅)(CO)(PMePh₂)] and cis-[PtBr₂(CO)(PMe₂Ph)] resulted in rapid (in less than 10 minutes) conversion of half of the cyclopentadienyl complex to its bromide analogue before C₅H₅ had been transferred to any great extent to the other platinum atom. Halide exchange in these systems appears to be two or three times faster than cyclopentadienyl exchange.

These C₅H₅ transfer reactions appear to proceed quite rapidly compared to other organic group-transfers. Exchange reactions of methyl and aryl groups between platinum (II) bis-phosphine complexes have been reported to take anything up to a month for completion, for example. This comparison
may be misleading, however, as the nature of the other ligands is thought to exert as big an influence on the transfer rate as the organic groups themselves.148 No reaction was detected between $[\text{PtCl}(C_5H_5)(CO)(\text{PMe}_2\text{Ph})]$ and cis-$[\text{PtCl}_2L_2]$ ($L = \text{PMe}_2\text{Ph}$ or PPh_3) in 24 hours. Also, where the site trans to phosphine was blocked by another organic group, ($C_2\text{Cl}_3$ was chosen as it is fairly unreactive), in $[\text{PtCl}(C_2\text{Cl}_3)(CO)(\text{PMePh}_2)]$ isomer (I), no C_5H_5 transfer reaction from $[\text{PtCl}(C_5H_5)(CO)(\text{PPh}_3)]$ could be detected in 24 hours. This showed that there was no C_5H_5 transfer to the site trans to CO, and no exchange between either organic groups, or phosphines, occurred in this time. This implies that the reactions involved in scrambling the ^{13}CO label in a mixture of $[\text{PtCl}(C_5H_5)(CO)L]$ and cis-$[\text{PtCl}_2(CO)L]$ is more likely to involve CO exchange than phosphine exchange.

However, a slow phosphine exchange was observed in the reaction of cis-$[\text{PtMe}_2(\text{PET}_3)_2]$ with cis-$[\text{PtCl}_2(\text{PMe}_2\text{Ph})_2]$, taking about 30 times as long as the alkyl exchange reaction.148 In this system, it was also found that the alkyl group had a preference for the more basic phosphine.

The identity of the organic group also has a profound effect on the rate of transfer. Three analogous aryl platinum compounds, $[\text{PtClAr(CO)(PMe}_2\text{Ph})]$ isomers (I), ($Ar = C_6H_4\text{CO}_2\text{Me-2}$, $C_6H_4\text{OME-2}$, $C_6H_4\text{Cl-2}$) were studied. These aryl complexes were chosen because they exist in solution largely as isomer (I), whereas many other complexes exist largely as $[\text{Pt}_2(\mu-\text{Cl})_2(\text{COAr})_2L_2]$. (Most organic group isomer (I) type complexes undergo carbonyl insertion.
and exist in solution as an equilibrium mixture of isomer (I) and acyl or aroyl platinum dimers).23,110,112

The aryl group of \([\text{PtCl}(C_6H_4CO_2\text{Me-2})(\text{CO})(\text{PMe}_2\text{Ph})] \) isomer (I) was transferred to the platinum of \textit{cis-} \([\text{PtCl}_2(\text{CO})(\text{PPh}_3)] \) about 3 times more slowly than \(C_5\text{H}_5 \) was transferred, and equilibration was complete within 2\(\frac{1}{2} \) hours. The ortho-substituted aryl of \([\text{PtCl}(C_6H_4\text{OMe-o})(\text{CO})(\text{PMe}_2\text{Ph})] \) showed no substantial movement to the same dichloroplatinum complex until ca 12 hours had elapsed and required about 1 week to reach equilibrium. Interestingly, the exchange of \(C_6\text{H}_4\text{Cl-o} \) for Cl in the reaction between \([\text{PtCl}(C_6H_4\text{Cl-o})(^{13}\text{CO})(\text{PMe}_2\text{Ph})] \) and \textit{cis-} \([\text{PtCl}_2(\text{CO})(\text{PPh}_3)] \), which showed substantial transfer of \(C_6\text{H}_4\text{Cl-o} \) in 12 hours, was not accompanied by \(^{12}\text{CO}/^{13}\text{CO} \) scrambling in this time. Such scrambling would be appreciable in the analogous cyclopentadienyl system. \(^{12}\text{CO}/^{13}\text{CO} \) scrambling had occurred by the time equilibrium was reached, in ca 1 week. This suggests a link between the various transfers. As in the cyclopentadienyl system, the aryl groups showed a preference for the platinum atom with the less basic phosphine.

The \(C_5\text{H}_5 \) group was also cleaved from isomer (I) by
\[
\text{HgCl}_2^+: \quad \text{I(PMe}_2\text{Ph}) + \text{HgCl}_2 \rightarrow \text{HgCl}(C_5\text{H}_5) + \text{cis-}[\text{PtCl}_2(\text{CO})(\text{PMe}_2\text{Ph})]
\]

The transfer of \(C_5\text{H}_5 \) between platinum atoms could also be by either \(S_2 \) (cyclic) or oxidative addition/reductive elimination reactions, and both mechanisms have been proposed.
for other organic group transfers.119,123,143,149 In all of the C\textsubscript{5}H\textsubscript{5} transfers from (I) to \textit{cis}-[PtCl\textsubscript{2}(CO)L], the groups exchanged are \textit{trans} to phosphine, the expected result of an \textit{S}_{\text{E}2} (cyclic) mechanism. The transition state is shown by F.

\begin{center}
\begin{tikzpicture}
 \node (Pt) at (0,0) {Pt};
 \node (Cl) at (-1,-1) {Cl};
 \node (L) at (-1,1) {L};
 \node (C5H5) at (1,1) {C\textsubscript{5}H\textsubscript{5}};
 \node (CO) at (1,-1) {CO};
 \node (Pt2) at (2,0) {Pt};
 \node (Cl2) at (3,-1) {Cl};
 \node (L1) at (3,1) {L\textsubscript{1}};
 \draw (Pt) -- (Cl);
 \draw (Pt) -- (L);
 \draw (Pt) -- (C5H5);
 \draw (Pt) -- (CO);
 \draw (Pt2) -- (Cl2);
 \draw (Pt2) -- (L1);
 \draw (Pt2) -- (C5H5);
 \draw (Pt2) -- (CO);
 \draw (Pt) -- (Pt2);
 \draw (Cl) -- (Cl2);
 \draw (L) -- (L1);
 \draw (C5H5) -- (C5H5);
 \draw (CO) -- (CO);
 \draw (Pt) -- (Pt2) node[path Pozh, below] {F};
\end{tikzpicture}
\end{center}

Again, there are oxidative addition/reductive elimination routes which could lead to the same product.

\begin{center}
\begin{tikzpicture}
 \node (Pt) at (0,0) {Pt};
 \node (Cl) at (-1,-1) {Cl};
 \node (L) at (-1,1) {L};
 \node (C5H5) at (1,1) {C\textsubscript{5}H\textsubscript{5}};
 \node (Pt2) at (2,0) {Pt};
 \node (Cl2) at (3,-1) {Cl};
 \node (L1) at (3,1) {L\textsubscript{1}};
 \node (C5H52) at (1,-1) {C\textsubscript{5}H\textsubscript{5}};
 \node (Pt3) at (-2,0) {Pt};
 \node (Cl3) at (-3,-1) {Cl};
 \node (L2) at (-3,1) {L};
 \node (C5H53) at (-1,1) {C\textsubscript{5}H\textsubscript{5}};
 \draw (Pt) -- (Cl);
 \draw (Pt) -- (L);
 \draw (Pt) -- (C5H5);
 \draw (Pt) -- (Pt2);
 \draw (Pt) -- (Pt3);
 \draw (Pt2) -- (Cl2);
 \draw (Pt2) -- (L1);
 \draw (Pt2) -- (C5H52);
 \draw (Pt2) -- (Pt3);
 \draw (Pt2) -- (Cl3);
 \draw (Pt2) -- (L2);
 \draw (Pt2) -- (C5H53);
 \draw (Pt) -- (Pt2) node[path Pozh, below] {G};
 \draw (Pt) -- (Pt3) node[path Pozh, below] {H};
\end{tikzpicture}
\end{center}

G and H represent the two extremes of Pt-Pt bond formation from the transition state, F. Concerted \textit{cis}-oxidative addition of \textit{cis}-[PtCl\textsubscript{2}(CO)L\textsubscript{1}] to (I) gives the intermediate G, and addition of Pt-C\textsubscript{5}H\textsubscript{5} of (I) to \textit{cis}-[PtCl\textsubscript{2}(CO)L\textsubscript{1}] gives the intermediate H. That is, the platinum complex acting as the electrophile ends up with its platinum \textit{trans} to phosphine in the octahedral complex of the other platinum.

These are not the only possible intermediates from oxidative addition/reductive elimination routes.
cis-oxidative addition of cis-[PtCl₂(CO)L₁] to (I) to displace Cl trans to CO gives intermediate J, and addition of (I) to cis-[PtCl₂(CO)L₁] displacing Cl trans to L₁ gives intermediate K. That is, the platinum complex acting as the electrophile ends up cis to phosphine and CO in the octahedral coordination around the other platinum.

These are the only four intermediates which could lead to the product (by the reductive elimination indicated on each). The other four intermediates attainable by cis-oxidative additions would not yield the desired product on elimination, L,M,N,P.
L and M would arise from \(\text{cis-}[\text{PtCl}_2(\text{CO})L] \) acting as the electrophile and oxidatively adding to isomer (I), while N and P would be the result of isomer (I) acting as the electrophile and oxidatively adding to \(\text{cis-}[\text{PtCl}_2(\text{CO})L] \). None of these four intermediates would give the correct products on reductive elimination.

\text{cis}-\text{reductive elimination} of the groups indicated in intermediates L and N would require a twist mechanism to produce the observed products which is symmetry forbidden. Even if such a forbidden elimination were to take place, intermediate N could give a mixture of products. Intermediate M could only lead to the observed products by a \text{trans}-\text{reductive elimination}, which is also symmetry forbidden as a concerted process. \(\text{Cis}-\text{reductive elimination} \) from P would produce isomer (II) of \([\text{PtCl}(C_5H_5)(\text{CO})L] \), instead of isomer (I).

\text{Cis}-\text{oxidative additions} are not the only type known. A \text{trans}-\text{oxidative addition} of \(\text{cis-}[\text{PtCl}_2(\text{CO})L] \) to isomer (I) could also give intermediate K for example, but \text{trans}-\text{oxidative additions} are not allowed as a concerted process, and would have to proceed by an ionic route, which is unlikely under the conditions employed.

In the reaction between \(\text{cis-}[\text{PtCl}_2(\text{CO})L] \) and \(\text{Hg}(C_5H_5)_2 \) there were two possible oxidative addition intermediates, since it was clear that the mercurial was the electrophile. However, in the isomer (I) + \(\text{cis-}[\text{PtCl}_2(\text{CO})L] \) reaction, there were four possible oxidative addition/reductive elimination intermediates. This is because no
decision was made as to which complex (isomer (I) or cis-[PtCl₂(CO)L₁]) was acting as the electrophile and which was acting as the nucleophile. This depends on the nature of the ligands. As far as the phosphine is concerned, the more basic phosphine (that with a higher trans influence) increases the nucleophilicity of its platinum atom. An organic group also has a higher trans influence than a chloride, and should increase the nucleophilicity of its platinum atom. In isomer (I), however, the phosphine is trans to the organic group, so how the effects balance out is difficult to determine. There may also be steric effects.

Exactly the same transition states and intermediates (J-P) could be drawn for the transfer of an aryl group from [PtCl(Ar)(CO)L] isomer (I) to cis-[PtCl₂(CO)L₁], with Ar replacing C₅H₅. The three aryl groups studied, C₆H₄CO₂Me-p, C₆H₄OMe-o and C₆H₄Cl-o all transferred to give isomer (I), the C₆H₄CO₂Me-p being much faster than the two ortho-substituted aryls, although still slower than the C₅H₅. It was found that in the reaction of HgAr₂ with cis-[PtCl₂(CO)L] to produce isomer (I), para- and meta-substituted aryls were transferred at a rate that correlated roughly with their Hammett parameters and that electron donating substituents enhanced the reaction, which was consistent with Sₐ2 (cyclic) reactions. Ortho-substituted aryls were transferred only very slowly and steric reasons were considered to be the
important cause, overriding electronic effects of the substituents. It was also found, however, that HgCl₂ cleaved C₆H₄Me-o faster than C₆H₄CO₂Me-p from a mixture of the isomer (I)’s. This was rationalised in terms of oxidative addition/reductive elimination, since steric hinderance of the ortho group was considered to be less important than in Sₑ₂ (cyclic) reactions. The electron donating Me increased the nucleophilicity of platinum while the electron withdrawing CO₂Me decreased it. The more nucleophilic platinum thus underwent oxidative addition faster.

In the transfer of aryl from isomer (I) to cis-[PtCl₂(CO)L], the ortho substituents retard the reaction, despite being more electron donating than p-MeO₂C, thus apparently conforming to the Sₑ₂ (cyclic) mechanism rather than the oxidative addition/reductive elimination mechanism.

The C₅H₅ transfers are also probably via an Sₑ₂ (cyclic) mechanism, although obviously oxidative addition/reductive elimination cannot be ruled out.

The lack of reaction between [PtCl(C₅H₅)(CO)(PMe₂Ph)] and cis-[PtCl₂(PMe₂Ph)₂] may simply reflect the effect of different substituents. cis-[PtCl₂L₂] reacts more slowly with C₅H₅Tl than cis-[PtCl₂(CO)L]. However, the lack of a reaction between C₅H₅ isomer (I) and [PtCl(C₂Cl₃)(CO)(PMePh₂)] is interesting. Obviously the two organic groups being trans to phosphine, it might have been expected that some exchange would take place. However, C₂Cl₃ is a
very unreactive substituent and Hg(C₂Cl₃)₂ only reacts extremely slowly with cis-[PtCl₂(CO)L] to produce (I). This did show, however, that C₅H₅ would not transfer to the site trans to CO when the other site trans to phosphine was occupied. There was no exchange of phosphine between the two isomers (I) which may support the idea that scrambling, which occurred in both C₅H₅ and C₆H₄Cl–o transfers, was due to an exchange involving carbon monoxide and not phosphines.

The rapid halide exchange (ca. 3 times faster than C₅H₅) is not unexpected. Rapid halide exchanges have been reported for the reaction of [PdX₂(dpm)] and [PdY₂(dpm)] (X,Y = Cl,Br,I), and it was suggested that the mechanism involved formation of halogen bridges between palladium complexes. In reactions of isomer (I), only one mixed halide isomer was observed [PtClBr(CO)L] (CO and L cis), and this same isomer was the major product when cis-[PtCl₂(CO)L] and cis-[PtBr₂(CO)L] were mixed. Since this isomer is the thermodynamic one, rather than the kinetic one, and since it is not possible to assign which halide (Cl or Br) is trans to phosphine, detailed mechanistic information cannot be obtained. It is likely that the halide exchange occurs via halide bridges and that the transition state is analogous to the S₃E₂ cyclic (fig. 12).

![figure 12.](image-url)
HgCl₂ cleaved the C₅H₅ from [PtCl(C₅H₅)(CO)(PMe₂Ph)] to regenerate cis-[PtCl₂(CO)(PMe₂Ph)]. This could have been via either an Sₐ2 (cyclic) mechanism or oxidative addition/reductive elimination mechanism. The latter has been suggested for cleavage of an aryl group from aryl isomer (I). The reaction of HgCl₂ with a C₅H₅ isomer (I) was much slower than that of a cis-[PtCl₂(CO)L] complex, but no definite mechanistic information can be extracted from this.

Reactions of cis-bis (σ-cyclopentadienyl) platinum Complexes

The reaction of cis-[PtCl₂(CO)(PPh₃)] with excess TlC₅H₅ led to the formation of the bis(cyclopentadienyl) complex, cis-[Pt(η¹-C₅H₅)₂(CO)(PPh₃)]:

This decomposed much more readily than the monocyclopentadienyls, and could not be isolated. Spectroscopic data are given in table 3 for this bis (σ-cyclopentadienyl) complex and the analogous PPh₂Me and PMe₂Ph complexes. As with compounds (I), bis-cyclopentadienyl complexes of other phosphines appear to be even less stable, and relatively small amounts were obtained in solution before decomposition products became apparent. The reaction to produce [Pt(C₅H₅)₂(CO)L] complexes is unpredictable and non-reproducible, very often further reaction occurs to produce a dimeric platinum species,
Table 3. ^{31}P and 1H nmr of cis-$[\text{Pt}(\eta^1-C_5H_5)_2(\text{CO})L]$ at 25°C in CDCl$_3$.

<table>
<thead>
<tr>
<th>L</th>
<th>δC$_5$H$_5$</th>
<th>J_{PH}(Hz)</th>
<th>J_{PtH}(Hz)</th>
<th>δP(ppm)</th>
<th>$^1J_{PtP}$(Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPh$_3$ (a)</td>
<td>+5.90</td>
<td>3.5</td>
<td>33.0</td>
<td>+20.0</td>
<td>2127</td>
</tr>
<tr>
<td></td>
<td>+5.45</td>
<td>5.0</td>
<td>33.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMePh$_2$</td>
<td>+5.95</td>
<td>3.0</td>
<td>39.0</td>
<td>+ 3.0</td>
<td>2107</td>
</tr>
<tr>
<td></td>
<td>+5.45</td>
<td>5.0</td>
<td>32.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMe$_2$Ph</td>
<td>+5.89(b)</td>
<td>3.0</td>
<td>32.0</td>
<td>- 9.8</td>
<td>2095</td>
</tr>
<tr>
<td></td>
<td>+5.41</td>
<td>4.5</td>
<td>30.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEt$_3$</td>
<td>+6.02</td>
<td>2.9</td>
<td>32.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+5.38</td>
<td>4.2</td>
<td>30.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) IR in CHCl$_3$ (0.02M). $\nu_{CO} = 2075$ cm$^{-1}$.

(b) At -60°C.
which will be discussed in a later chapter.

When CDC$_3$ solutions of cis-$[\text{PtCl}_2(\text{CO})(\text{PPh}_3)]$ and cis-$[\text{Pt}(\eta^1$-$\text{C}_5\text{H}_5)_2(\text{CO})(\text{PPh}_3)]$ were mixed at ambient temperatures, a rapid redistribution reaction took place leaving only $[\text{PtCl(C}_5\text{H}_5)(\text{CO})(\text{PPh}_3)]$ isomer (I) in solution:

\[
\begin{align*}
\text{Ph}_3\text{P} & \quad \text{C}_5\text{H}_5 \quad \text{Ph}_3\text{P} & \quad \text{Cl} \quad \text{Ph}_3\text{P} & \quad \text{Cl} \\
\text{OC} & \quad \text{C}_5\text{H}_5 & \quad \text{OC} & \quad \text{Cl} & \quad \text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\text{Pt} + \text{Pt} \rightarrow 2 \text{Pt}
\]

A similar result was obtained from mixtures of cis-$[\text{Pt}(\sigma$-$\text{C}_5\text{H}_5)_2(\text{CO})(\text{PMe}_2\text{Ph})]$ and cis-$[\text{PtBr}_2(\text{CO})(\text{PMe}_2\text{Ph})]$. When complexes of different phosphines were employed, geometry (I) was observed for both products:

\[
\begin{align*}
\text{MePh}_2\text{P} & \quad \text{C}_5\text{H}_5 \quad \text{Me}_2\text{PhP} & \quad \text{Cl} \quad \text{MePh}_2\text{P} & \quad \text{Cl} \quad \text{Me}_2\text{PhP} & \quad \text{Cl} \\
\text{OC} & \quad \text{C}_5\text{H}_5 & \quad \text{OC} & \quad \text{Cl} & \quad \text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\text{Pt} + \text{Pt} + \text{Pt}
\]

In this case, C_5H_5 has been transferred from a site trans to CO on one platinum to a site trans to phosphine on the other platinum, i.e. the transfer reaction involves different specific sites on platinum. In the case of transfer of C_5H_5 from isomer (I) to cis-$[\text{PtCl}_2(\text{CO})L]$, the C_5H_5 was transferred from a site trans to phosphine on one platinum to the same site on the other platinum. Also, with the bisphenyl platinum complex, the transfer of Ph from cis-$[\text{PtPh}_2(\text{CO})L]$ to cis-$[\text{PtCl}_2(13\text{CO})L]$, involves the same specific sites on each platinum:
In this reaction, the phenyl trans to phosphine is transferred to the same site on the other platinum to produce a mixture of isomers (I) and (II). This was the expected result of an S_{E2} (cyclic) mechanism, although it could not be proven as the reaction could also have proceeded by a number of oxidative addition/reductive elimination routes.153,157

The reaction of cis-[Pt(C$_5$H$_5$)$_2$(CO)L] with cis-[PtCl$_2$-(CO)L] did not give the products expected of an S_{E2} cyclic mechanism. The C$_5$H$_5$ was either transferred from the site trans to CO to the other platinum complex to give two lots of isomer (I), or the cyclopentadienyl trans to phosphine was transferred leaving behind an isomer (II) which underwent rapid isomerisation. Rapid isomerisation of an isomer (II) cannot be disproven, but is not likely. An S_{E2} (cyclic) transfer is therefore only possible if it involves different specific sites on each platinum, which again appears unlikely. The transition state is shown in fig. 13.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{transition_state.png}
\caption{SE$_2$ (cyclic)}
\end{figure}
Oxidative addition/reductive elimination routes can explain the products. Assuming that \(\text{cis-}[\text{Pt}(C_5H_5)_2(\text{CO})L] \), with two \(C_5H_5 \) rings (high \textit{trans} influence) will have the more nucleophilic platinum, then \(\text{cis-}[\text{PtCl}_2(\text{CO})L] \) will act as the electrophile and add oxidatively to it. There will be only two intermediates capable of giving the products observed (and attained by \textit{cis}-oxidative additions). These are \(R \) and \(S \).

Reductive elimination from \(R \) and \(S \) as indicated gives the observed product. Elimination of the other \(C_5H_5 \) requires a symmetry forbidden twist to obtain the observed products.\(^{155} \) The other two possible intermediates, \(T \) and \(U \), give the wrong isomer of \([\text{PtCl}(C_5H_5)(\text{CO})L] \), isomer (II), \(C_5H_5 \textit{trans} \) to CO. Elimination of the other \(C_5H_5 \) from \(T \) also requires a symmetry forbidden twist, to give the observed products.
Asymmetrically Substituted Cyclopentadienyl (organo) platinum complexes

To explore these geometrical variations further, some asymmetrically substituted platinum complexes, [Pt(C₅H₅) - R(CO)L] were studied. The reaction between [PtCl(C≡CMe)-(CO)(PMePh₂)] (Cl trans to L), isomer (II), and TlC₅H₅ proceeds smoothly in CDCl₃ to produce [Pt(η¹-C₅H₅)(C≡CMe)-(CO)(PMePh₂)] after 10 minutes at room temperature. Observed by ³¹P nmr spectroscopy, the complex was indefinitely stable in solution at -60°C, but slowly decomposed at room temperature and no attempt was made to isolate it. Its identity was confirmed by ¹H nmr spectroscopy. The cyclopentadienyl protons at 66.27 ppm and Jₚₕ = 4.5Hz, Jₚₗₕ = 35.5Hz are typical of a fluxional σ-bonded species trans to tertiary phosphine. The ⁵Jₚₕ coupling of the methyl protons of the ethynyl (3.0Hz) matches values found for such groups cis to PMePh₂.

The same compound is produced from the reaction of [PtCl(C≡CMe)(CO)(PMePh₂)] isomer (II) and Hg(C₅H₅)₂, but the reaction proceeds further to give [PtCl(C₅H₅)(CO)(PMePh₂)] isomer (I) and small amounts of cis-[Pt(C≡CMe)₂(CO)(PMePh₂)], presumably from subsequent reactions of the organomercuric halide by-product. (This complication appears in several reactions of organomercurials when two or more organic groups are involved).
The formation of \([\text{Pt}(\text{C}_5\text{H}_5)(\text{C}≡\text{CMe})(\text{CO})\text{L}]\) can be explained by an \(S_{E2}\) (cyclic) mechanism, and a transition state such as \(V\) seems appropriate.

\[\begin{align*}
\text{L} & \quad \text{Pt} & \quad \text{C}≡\text{CMe} & + \text{Hg}(\text{C}_5\text{H}_5)_2 & \rightarrow & \text{L} & \quad \text{Pt} & \quad \text{C}≡\text{CMe} & + \text{C}_5\text{H}_5\text{HgCl} \\
\text{OC} & & \text{Cl} & & & \text{OC} & & \text{C}_5\text{H}_5 & & \downarrow \\
\end{align*}\]

\[\begin{align*}
\text{L} & \quad \text{Pt} & \quad \text{Cl} & & & & \text{OC} & & \text{C}_5\text{H}_5 & + \text{C}_5\text{H}_5\text{Hg}(\text{C}≡\text{CMe}) \\
\end{align*}\]

In this case, the only cis-oxidative addition/reductive elimination intermediate which could lead to \([\text{Pt}(\text{C}_5\text{H}_5)(\text{C}≡\text{CMe})(\text{CO})\text{L}]\) is the one which is related to \(S_{E2}\) (cyclic), i.e., intermediate \(W\), by a strong Pt-Hg interaction.

The reaction of \([\text{Pt}(\text{C}_5\text{H}_5)(\text{C}≡\text{CMe})(\text{CO})\text{L}]\) with the mercury containing by-product to cleave off \(\text{C}≡\text{CMe}\) could also be by an \(S_{E2}\) (cyclic) mechanism, but this would involve the site trans to CO which is perhaps unlikely. A more plausible mechanism would be an oxidative addition/reductive elimination. A cis-oxidative addition/reductive elimination mechanism suffers from the same drawback as the \(S_{E2}\) cyclic mechanism, in that the only allowed intermediate comes from attack of mercury trans to CO (the extreme of the other \(S_{E2}\)
cyclic mechanism with Pt-Hg bonding interaction), fig. 14.

![Cyclic mechanism diagram](image)

figure 14.

In this case, trans-oxidative addition should not be ruled out, and an intermediate, X, could also lead to the observed product.

![Intermediate X diagram](image)

Although trans-oxidative additions of organomercurials HgR₂ and of platinum complexes are considered unlikely under the conditions employed, a trans-addition of RHgCl or HgCl₂ is much more feasible by an ionic route. Nucleophilic attack by platinum at mercury could release Cl⁻ and lead to trans-oxidative addition. Oxidative addition of CH₃I and CF₃I to trans-[PtRI(PMe₂Ph)₂] and cis-[PtR₂L₂] goes by such a trans-route in chloroform.¹⁵⁸ Also HgCl₂ oxidative addition to trans-[Ir(CO)ClL₂] goes by trans-oxidative addition¹³¹ but Hg(C=CR)₂ undergoes cis-oxidative addition.¹³²

HgCl₂ cleaves the cyclopentadienyl group from [Pt(C₅H₅)-(C=CMe)(CO)L], (where C₅H₅HgCl apparently cleaved C=CMe).
This is perfectly consistent with an S_{E2} cyclic mechanism or the analogous extreme cis-oxidative-addition/reductive elimination. However, here also a trans-oxidative addition/cis-reductive elimination could operate.

There was no reaction between $[\text{Pt}(C_5H_5)(C\equiv C\text{Me})(\text{CO})-(\text{PMePh}_2)]$ and Ph_3PAuCl, except for normal decomposition of the platinum species, over 24 hours at room temperature. Thus the equilibrium for transfer of the organic groups C_5H_5 and $C\equiv C\text{Me}$ between Au and Pt must lie to the platinum side.

The chloride of $[\text{PtCl}(C\equiv C\text{Ph})(\text{CO})(\text{PMe}_2\text{Ph})]$ (Cl trans to phosphine) is also cleanly replaced by C_5H_5 on treatment with TlC_5H_5. Spectroscopic parameters for the new platinum complexes are in tables 4 and 5.

Followed by ^{31}P nmr spectroscopy, there was a rapid reaction between $[\text{Pt}(C_5H_5)(C\equiv C\text{Ph})(\text{CO})(\text{PMe}_2\text{Ph})]$ and cis-$[\text{PtCl}_2(\text{CO})(\text{PMePh}_2)]$ at room temperature.

In this reaction, the cyclopentadienyl was transferred to produce $[\text{PtCl}(C_5H_5)(\text{CO})L^1]$ isomer (I) and leave $[\text{PtCl}-(C\equiv C\text{Ph})(\text{CO})L]$ isomer (II). This exchange involves the site trans to phosphine on each platinum, and is consistent with an S_{E2} (cyclic) mechanism, with transition state Y. In this example, the bis organo complex will have a more nucleophilic platinum than the bis chloro complex since organic groups are more electron donating than chlorides and PMe_2Ph is more donating than PMePh_2. Thus, for oxidative addition,
Table 4. 1H nmr of $[Pt(C_5H_5)R(CO)(PMePh_2)]$ in CDCl$_3$

at 25°C. C_5H_5 trans to PMePh$_2$.

<table>
<thead>
<tr>
<th>R</th>
<th>δC_5H_5 (ppm)</th>
<th>$J_{Pt-H (Hz)}$</th>
<th>$J_{PH (Hz)}$</th>
<th>$J_{Pt-H (Hz)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+6.27</td>
<td>4.5</td>
<td>35.5</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>+6.14</td>
<td>4.0</td>
<td>39.5</td>
<td>4.0</td>
</tr>
</tbody>
</table>

(a) $\delta C=CH = 6 + 1.91$ ppm, $J_{PH} = 3.0$ Hz, $J_{Pt-H} = 16.0$ Hz.
Table 5. 31P nmr of [Pt(C$_5$H$_5$)R(CO)(PR$_3$)], C$_5$H$_5$ trans to PR$_3$, in CDC$_3$ at +25°C.

<table>
<thead>
<tr>
<th>PR$_3$</th>
<th>R</th>
<th>δF (ppm)</th>
<th>$^1J_{PtP}$ (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMePh$_2$</td>
<td>C≡CMe</td>
<td>-2.2</td>
<td>1848</td>
</tr>
<tr>
<td>PMe$_2$Ph</td>
<td>C≡CPh</td>
<td>-14.4</td>
<td>1799</td>
</tr>
<tr>
<td>PMePh$_2$</td>
<td>C$_6$H$_5$</td>
<td>0.0</td>
<td>2296</td>
</tr>
<tr>
<td>PMePh$_2$ (a)</td>
<td>C$_6$H$_4$CO$_2$Me-p</td>
<td>-0.7</td>
<td>2272</td>
</tr>
</tbody>
</table>

(a) Recorded at -60°C.
cis-[PtCl\(_2\)(CO)L\(_1\)] will act as the electrophile and there will be only one allowed intermediate, Z, capable of giving the observed products, i.e. the one related to the \(S_{\text{E}2}\) transition state.

Cyclopentadienylthallium and [PtClPh(CO)(PMePh\(_2\))\] (Ph\(\text{trans}\) to CO) also react readily at room temperature, the chloride on platinum being replaced by C\(_5\)H\(_5\).

A small amount of cis-[PtPH\(_2\)(CO)(PMePh\(_2\))] was also evident among the products, however.

The \(p\)-carbomethoxyphenyl complex, [PtCl(C\(_6\)H\(_4\)CO\(_2\)Me-p)(CO)(PMePh\(_2\))] reacts with C\(_5\)H\(_5\)Tl in a similar manner to afford [Pt(C\(_5\)H\(_5\))(C\(_6\)H\(_4\)CO\(_2\)Me-p)(CO)(PMePh\(_2\))]. This latter material reacts with cis-[PtCl\(_2\)(\(^{13}\)CO)(PMe\(_2\)Ph)] at room temperature to transfer the C\(_5\)H\(_5\) group.
The use of different phosphines, and 13C-labelled carbon monoxide show unambiguously that once again the sites trans to tertiary phosphine are involved in the transfer. A transition state or oxidative addition intermediate similar to those for the mixed $\text{C}=$CPh, C_5H_5 complex, (intermediates Y and Z), again are appropriate.

In both $[\text{Pt}(\text{C}_5\text{H}_5)(\text{C}=C\text{R})(\text{CO})\text{L}])$ and $[\text{Pt}(\text{C}_5\text{H}_5)(\text{Ar})(\text{CO})\text{L}])$ the C_5H_5 is cleaved from trans to phosphine to give C_5H_5 isomer (I) by cis-$[\text{PtCl}_2(\text{CO})\text{L}]^{-}$. The reaction is consistent with S_{E2} (cyclic) in each case, and seems to be similar to the transfer from C_5H_5 isomer (I) to cis-$[\text{PtCl}_2(\text{CO})\text{L}]^{-}$. There is only one possible oxidative addition/reductive elimination route, the route related to S_{E2} cyclic by a strong Pt-Hg interaction.

η^5-Cyclopentadienyl Complexes

The reaction of TiC_5H_5 with cis-$[\text{PtCl}_2\text{L}_2]$ ($\text{L} = \text{PPh}_3$, PMePh_2, PMe$_2\text{Ph}$) produced the η^5-bonded complexes $[\text{Pt}(\eta^5-\text{C}_5\text{H}_5)\text{L}_2]\text{Cl}$. ^1H nmr parameters were typical of compounds of this type (tables 6 and 7). Replacement of the chlorides by SO_3CF_3^- from AgSO_3CF_3 created no change in the nmr parameters, indicating no close association of Cl$^-$ with the cation in CDCl$_3$. Silver salts also abstracted halide from complexes (I) to yield η^5-bonded materials, $[\text{Pt}(\eta^5-\text{C}_5\text{H}_5)(\text{CO})\text{L}]\text{SO}_3\text{CF}_3$ ($\text{L} = \text{PMe}_2\text{Ph}$, PPh$_3$).

The complex $[\text{Pt}(\eta^5-\text{C}_5\text{H}_5)(\text{PMe}_2\text{Ph})_2]\text{Cl}$ reacts rapidly with HgCl$_2$ by C_5H_5 transfer.

$[\text{Pt}(\eta^5-\text{C}_5\text{H}_5)(\text{PMe}_2\text{Ph})_2]\text{Cl} + \text{HgCl}_2 \rightarrow \text{C}_5\text{H}_5\text{HgCl} + \text{cis-}[\text{PtCl}_2(\text{PMe}_2\text{Ph})_2]$
Table 6. 1H nmr of [Pt(η^5-C$_5$H$_5$)L1L2]$^+$ in CDCl$_3$ at +25°C.

<table>
<thead>
<tr>
<th>L^1</th>
<th>L^2</th>
<th>$\delta_{C_5H_5}$ (ppm)</th>
<th>δ_{CH_3} (ppm)</th>
<th>J_{PPH} (Hz)</th>
<th>J_{PH} (Hz)</th>
<th>J_{PH} (Hz)</th>
<th>ν_{CO} (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPh$_3$</td>
<td>PPh$_3$</td>
<td>+5.39</td>
<td>1.5</td>
<td>11.5</td>
<td>34.0</td>
<td>39.0</td>
<td>39.0</td>
</tr>
<tr>
<td>PPh$_3$</td>
<td>PMe$_2$Ph</td>
<td>+5.55</td>
<td>1.5</td>
<td>12.0</td>
<td>39.0</td>
<td>39.0</td>
<td>39.0</td>
</tr>
<tr>
<td>PPh$_3$</td>
<td>PMe$_2$Ph</td>
<td>+6.05</td>
<td>1.5</td>
<td>11.0</td>
<td>39.0</td>
<td>39.0</td>
<td>39.0</td>
</tr>
<tr>
<td>PPh$_3$</td>
<td>PPh$_3$</td>
<td>+6.95</td>
<td>1.5</td>
<td>11.0</td>
<td>39.0</td>
<td>39.0</td>
<td>39.0</td>
</tr>
<tr>
<td>PPh$_3$</td>
<td>CO</td>
<td>+6.15</td>
<td>1.25</td>
<td>13.25</td>
<td>42.5</td>
<td>42.5</td>
<td>42.5</td>
</tr>
<tr>
<td>PPh$_3$</td>
<td>CO</td>
<td>+6.00</td>
<td>1.25</td>
<td>13.25</td>
<td>42.5</td>
<td>42.5</td>
<td>42.5</td>
</tr>
<tr>
<td>PPh$_3$</td>
<td>SO$_3$CP$_3$</td>
<td>+6.00</td>
<td>1.25</td>
<td>13.25</td>
<td>42.5</td>
<td>42.5</td>
<td>42.5</td>
</tr>
<tr>
<td>PPh$_3$</td>
<td>SO$_3$CP$_3$</td>
<td>+6.15</td>
<td>1.25</td>
<td>13.25</td>
<td>42.5</td>
<td>42.5</td>
<td>42.5</td>
</tr>
</tbody>
</table>

(a) IR in CHCl$_3$ (0.02M) $\nu_{CO} = 2065$ cm$^{-1}$.

1H nmr of [Pt(η^5-C$_5$H$_5$)L1L2]$^+$ in CDCl$_3$ at +25°C.
Table 7. 31P nmr of $[\text{Pt}(\eta^5-C_5H_5)\text{L}^1\text{L}^2]^+ \text{X}^-$ in CDC1$_3$ at 25°C.

<table>
<thead>
<tr>
<th>L^1</th>
<th>L^2</th>
<th>X</th>
<th>δP(ppm)</th>
<th>$^1J_{\text{PtP}}$(Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPh$_3$</td>
<td>PPh$_3$</td>
<td>Cl</td>
<td>+ 3.9</td>
<td>4736</td>
</tr>
<tr>
<td>PMePh$_2$</td>
<td>PMePh$_2$</td>
<td>Cl</td>
<td>-14.1</td>
<td>4578</td>
</tr>
<tr>
<td>PMe$_2$Ph</td>
<td>PMe$_2$Ph</td>
<td>Cl</td>
<td>-28.2</td>
<td>4498</td>
</tr>
<tr>
<td>PMe$_2$Ph</td>
<td>PMe$_2$Ph</td>
<td>SO$_3$CF$_3$</td>
<td>-28.3</td>
<td>4504</td>
</tr>
<tr>
<td>PEt$_3$</td>
<td>PEt$_3$</td>
<td>Cl</td>
<td>+ 4.1</td>
<td>4383</td>
</tr>
<tr>
<td>PPh$_3$</td>
<td>CO</td>
<td>SO$_3$CF$_3$</td>
<td>+ 2.3</td>
<td>3972</td>
</tr>
<tr>
<td>PMe$_2$Ph</td>
<td>CO(a)</td>
<td>SO$_3$CF$_3$</td>
<td>-25.2</td>
<td>3724</td>
</tr>
</tbody>
</table>

(a) With 13CO, $^2J_{\text{CP}} = 15.1$ Hz.
It is possible that the transfer reaction may be preceded by an $\eta^5 \rightarrow \eta^1$ conversion of C$_5$H$_5$. A similar reaction was performed using $[\text{Pt}(\eta^5\text{-C}_5\text{H}_5)(\text{PMe}_2\text{Ph})_2]\text{SO}_3\text{CF}_3$ and HgCl_2, and in this case production of $\text{cis-}[\text{PtCl}_2(\text{PMe}_2\text{Ph})_2]$ was much slower. Transfer of $\eta^5\text{-C}_5\text{H}_5$ between cobalt atoms has been reported.\(^{159}\)

![Chemical Diagram]

The reaction is slow, and the mechanism is not known, although the authors considered a bridging transition state to be possible, or an $\eta^5 \rightarrow \eta^3$ rearrangement of the C$_5$H$_5$ ring.
EXPERIMENTAL

Nuclear magnetic resonance spectra were recorded in CDCl₃ solutions on a Varian XL100 spectrometer operating in the Fourier transform mode (³¹P and ¹H) or on a Perkin-Elmer R32 90 MHz continuous-wave spectrometer (¹H). Chemical shifts are positive to low field w.r.t. 85% H₃PO₄ (³¹P) and TMS (¹H). All measurements were made at 25°C unless otherwise stated. Infrared spectra were recorded on a Perkin-Elmer 580 or 257 spectrophotometer as KBr discs or as 0.02 mol dm⁻³ CHCl₃ solutions in NaCl cells (0.5mm path length).

Starting materials, TlC₅H₅, Hg(C₅H₅)₂, [Ph₃PAuC₅H₅], Hg(C≡CR)₂, HgAr₂, cis-[PtCl₂(PR₃)₂], cis-[PtCl₂(CO)(PR₃)] and cis-[PtCl₂(C₄H₄)(PR₃)] were prepared by literature methods.

TlC₅H₅

To Tl₂SO₄ (5.0g, 10mmol.) in 20ml of 4M NaOH solution was added 4ml of freshly distilled cyclopentadiene and the mixture was shaken for 20 minutes. The precipitate was filtered, dried in vacuo and then purified by vacuum sublimation at 80°C/0.1mm, to yield yellow needles of TlC₅H₅.

Hg(C₅H₅)₂

TlC₅H₅ (2.1g, 7.6mmol.) was suspended in dry THF (10ml) under a nitrogen atmosphere at 0°C. HgCl₂(0.8g, 3mmol) dissolved in THF (15ml) was added dropwise, the reaction was kept at 0°C for 1½ hours. The precipitate was removed by filtration, and washed with 5ml THF. The THF was removed in vacuo, the resulting solid was extracted with dry ether (25ml), which was filtered, then cooled to -40°C. Yellow needles formed and were filtered off to yield Hg(C₅H₅)₂ (0.25g, 25%).
[Ph3PAuC5H5]160

[Ph3PAuCl] (500mg, 1.0mmol.) was suspended in 20ml of dry ethanol and 5ml of a solution of NaOEt (46.5mg Na, 2.0mmol in 10ml EtOH) was added followed by a solution of freshly distilled C5H6 (73.6mg, 1.1mmol.) in 1ml EtOH. The solution was stirred at 0°C for 2 hours. The white precipitate was filtered to give [Ph3PAuC5H5] (316mg, 60%) which was stored in the dark at 5°C.

The organomercurials, Hg(C≡CR)2 (R = Me, Ph) and HgAr2 (Ar = C6H4CO2Me-o, C6H4OMe-o, C6H4Cl-o) were prepared by literature methods.161

The complexes cis-[PtCl2(CO)(PR3)] and [PtCl2(C2H4)(PR3)] were prepared by bridge-cleavage of [Pt2Cl4(PR3)2] by CO or C2H4. A typical procedure is shown below.

cis-[PtCl2(PMe2Ph)2]162

K2PtCl4 (10.0g, 24 mmol.) was suspended in 80ml H2O/120 ml ethanol under a nitrogen atmosphere. PMe2Ph (6.9ml, 48 mmol.) was added and the mixture stirred for 20 hours. The solid was filtered, dried with ether, and recrystallised from CH2Cl2 to yield cis-[PtCl2(PMe2Ph)2] (9.8g, 72%).

[cis-[PtCl2(PMe2Ph)2]]163

cis-[PtCl2(PMe2Ph)2] (6.8g, 12mmol.) was dissolved in 80ml. sym tetrachloroethane at 80°C. PtCl2 (3.3g, 12.3mmol.) was added, the mixture was heated at 120°C for 18 hours under N2, filtered while hot and reduced in volume. Addition of pentane precipitated a yellow powder, [Pt2Cl4(PMe2Ph)2] (9.4g, 94%).
Cis-[PtCl₂(CO)(PMe₂Ph)]

CO was bubbled through a suspension of [Pt₂Cl₄(PMe₂Ph)₂] (4.4g, 5.4mmol.) in benzene (100ml) until a colourless solution and white precipitate was obtained. The solution was reduced in volume, the solid filtered, and re-crystallised from benzene to yield cis-[PtCl₂(CO)(PMe₂Ph)] (4.31g, 93%).

Cyclopentadienyl Platinum Complexes
(a) [PtX(η¹-C₅H₅)(CO)(ER₃)] isomer (I)

Chloro(cyclopentadienyl)carbonyl(triphenylphosphine) platinum(II)

Cis-dichloro(carbonyl)triphenylphosphine platinum (II) (293mg; 0.53mmol.) and cyclopentadienylthallium (146mg; 0.54mmol.) were stirred together in benzene (5ml) under a nitrogen atmosphere for 1 hour. After removal of TlCl by filtration, the solvent was removed under vacuum leaving an orange semi-solid which was dissolved in acetone (3ml). Addition of pentane (10ml) precipitated the product, [PtCl-(η¹-C₅H₅)(CO)(PPh₃)] as an orange powder, m.pt. 106-108°C, 181mg, 59%. (Found; C, 49.35%; H, 3.5%: Required for C₂₄H₂₀C₁O₂Pt; C, 49.2%; H, 3.4%).

Chloro(cyclopentadienyl)carbonyl(dimethylphenylphosphine) platinum (II)

Cis-[PtCl₂(CO)(PMe₂Ph)] (306mg; 0.71mmol.) and TlC₅H₅ (193mg; 0.72mmol.) were stirred together in benzene (5ml) under a nitrogen atmosphere for 45 minutes. Removal of TlCl and the solvent left a sticky orange semi-solid. Attempts to crystallise the orange material from several solvents led
to decomposition and formation of brown or black solids or oils. Finally, the remaining material was dissolved in a minimum of benzene and the product precipitated as a slightly impure yellow powder on addition of pentane, m.pt. 73-79°C, 64mg, 20%. (Found; C, 35.5%; H, 3.0%; Required for C_{14}H_{16}ClOPpt; C, 36.4%; H, 3.5%).

No attempts were made to isolate other examples of these monocyclopentadienyls. Solutions were prepared in situ for examination of their reactions. Spectroscopic parameters are listed in tables 1 and 2.

Chloro(cyclopentadienyl)carbonyl(methyldiphenylphosphine) platinum (II)

\[\text{cis-}[\text{PtCl}_2(\text{CO})(\text{PMePh}_2)] \] (25.6mgs, 0.052 mmol) and TIC_{5}H_{5} (15.1mgs, 0.056mmol., 1.08 equiv.) were allowed to react in 0.5ml of CDC1_3 under an atmosphere of nitrogen for thirty minutes. The solution was then filtered and \(^1H\) and \(^{31}P\) nmr spectra were recorded, showing it to be \([\text{PtCl}(\text{C}_{5}\text{H}_{5})-(\text{CO})(\text{PMePh}_2)]\), \text{C}_{5}\text{H}_{5} \text{trans to phosphine}.

Chloro(cyclopentadienyl)carbonyl(triethylphosphine) platinum (II)

\[\text{cis-}[\text{PtCl}_2(\text{CO})(\text{PEt}_3)] \] (27.0mgs, 0.066mmol.) and TIC_{5}H_{5} (0.066mmol. 1.01 equiv.) were allowed to react together in CDC1_3 (0.5ml) for 30 minutes under a nitrogen atmosphere. The solution was then filtered and \(^1H\) and \(^{31}P\) nmr spectra were recorded, showing the product to be \([\text{PtCl}(\text{C}_{5}\text{H}_{5})(\text{CO})(\text{PEt}_3)]\), \text{C}_{5}\text{H}_{5} \text{trans to phosphine}.\]
Bromo(cyclopentadienyl)carbonyl(dimethylphenylphosphine) platinum (II)

\[
cis-[\text{PtBr}_2(CO)(\text{PMe}_2\text{Ph})] \quad (30.5\text{mgs, 0.059mmol.})
\]
and

\[
\text{TlC}_5\text{H}_5 \quad (15.2\text{mgs, 0.056mmol., 0.96 equiv.})
\]
were allowed to react in CDC\textsubscript{13} (0.5ml) under a nitrogen atmosphere for 45 minutes, then the solution was filtered and 1H and 31P nmr spectra showed it to be \([\text{PtBr} (\eta^1-\text{C}_5\text{H}_5)(\text{CO})(\text{PMe}_2\text{Ph})], \text{C}_5\text{H}_5 \text{ trans to phosphine.}
\]

Chloro(cyclopentadienyl)(carbonyl)(methyldiphenylarsine) platinum (II)

\[
cis-[\text{PtCl}_2(CO)(\text{AsMePh}_2)] \quad (21.8\text{mgs, 0.040 mmol.})
\]
and

\[
\text{TlC}_5\text{H}_5 \quad (10.9\text{mgs, 0.040mmol., 1.0 equiv.})
\]
were allowed to react in CDC\textsubscript{13} (0.5ml) under a N\textsubscript{2} atmosphere. After 13/4 hrs. a 1H nmr spectrum showed that the solution contained mainly \([\text{PtCl} (\eta^1-\text{C}_5\text{H}_5)(\text{CO})(\text{AsMePh}_2)], \text{C}_5\text{H}_5 \text{ trans to arsine.}
\]

cis-dichlorocarbonyl(dimethylphenylphosphine) platinum (II) and biscyclopentadienylmercury

\[
cis-[\text{PtCl}_2(CO)(\text{PMe}_2\text{Ph})] \quad (25.2\text{mgs, 0.058 mmol.})
\]
dissolved in CDC\textsubscript{13} (0.4ml) in an nmr tube under a N\textsubscript{2} atmosphere. A solution of Hg(\text{C}_5\text{H}_5)_2 (19.6mgs, 0.059mmol. 1.02 equiv.) in CDC\textsubscript{13} (0.2ml) was added at -60°C. There was no reaction at this temperature, and a reaction occurred only on warming briefly to RT, to produce \([\text{PtCl}(\text{CO})(\eta^1-\text{C}_5\text{H}_5)(\text{PMe}_2\text{Ph})], \text{C}_5\text{H}_5 \text{ trans to phosphine, (identified by its 31P nmr spectrum).}
\]
cis-dichlorocarbonyl(methyldiphenylphosphine)
platinum (II) and bircyclopentadienyl mercury
cis-[PtCl₂(CO)(PMePh₂)] (30.0 mgs, 0.061 mmol.) and
Hg(C₅H₅)₂ (20.2 mgs, 0.061 mmol. 1.0 equiv.) were allowed to
react in CDCl₃ (0.5 ml) at RT, and ³¹P nmr spectra were
recorded, showing the product to be [PtCl(C₅H₅)(CO)(PMePh₂)].

cis-dichlorocarbonyl(triphenylphosphine) platinum (II)
and cyclopentadienyl(triphenylphosphine) gold (I)
Ph₃PAuC₅H₅ (26.1 mgs, 0.0498 mmol.) was dissolved in
CDCl₃ (0.3 ml) and a solution of cis-[PtCl₂(CO)(PPh₃)]
(27.6 mgs, 0.0498 mmol. 1.0 equiv.) in CDCl₃ (0.3 ml) was
added at RT. The reaction was rapid to produce Ph₃PAuCl and
[PtCl(C₅H₅)(CO)(PPh₃)], C₅H₅ trans to phosphine (identified
by ³¹P nmr).

cis-[PtCl₂(CO)(PMe₂Ph)] and C₅H₅Tl at low temperature
cis-[PtCl₂(CO)(PMe₂Ph)] (23.1 mg, 0.053 mmol.) was
dissolved in CDCl₃ (0.5 ml) and then added to TlC₅H₅ (16.1 mg,
0.060 mmol.) in a N₂-filled nmr tube at -60°C. After 2½
hours at -60°C, ³¹P nmr showed only a 5% reaction with
[PtCl(C₅H₅)(CO)(PMe₂Ph)] isomer (I) the only product. On
warming to -40°C for 2 hours, there was 30% reaction, but
only isomer (I) was detected.

Low temperature ¹H nmr of [PtCl(C₅H₅)(CO)(PPh₃)]
isomer (I)
[PtCl(η⁴-C₅H₅)(CO)(PPh₃)] isomer (I), (10.2 mgs, 0.017
mmol.) was dissolved in CD₂Cl₂ (0.4 ml) and ¹H nmr spectra
were recorded between +25 and -110°C.
(b) C_5H_5 Transfer Reactions from Isomer (I) to Pt and Hg

$[\text{PtCl}(C_5H_5)(\text{CO})(\text{PMe}_2\text{Ph})] \text{ and cis-}[\text{PtCl}_2(\text{CO})(\text{PPh}_3)]$

A solution of $[\text{PtCl}(C_5H_5)(\text{CO})(\text{PMe}_2\text{Ph})]$ isomer (I) was prepared from the reaction of cis-$[\text{PtCl}_2(\text{CO})(\text{PMe}_2\text{Ph})]$ (30.7mgs, 0.071 mmol.) and C_5H_5T1 (19.8mgs, 0.073 mmol.) in CDCl$_3$ (350µl) under a N$_2$ atmosphere and filtered. To it was added a solution of cis-$[\text{PtCl}_2(\text{CO})(\text{PPh}_3)]$ (18.2mgs, 0.033mmol.) in CDCl$_3$ (150µl). 31P nmr investigation of the solution revealed the presence of cis-$[\text{PtCl}_2(\text{CO})(\text{PMe}_2\text{Ph})]$, $[\text{PtCl}(C_5H_5)(\text{CO})(\text{PMe}_2\text{Ph})]$, $[\text{PtCl}(C_5H_5)(\text{CO})(\text{PPh}_3)]$, and cis-$[\text{PtCl}_2(\text{CO})(\text{PPh}_3)]$. Integration of the 31P nmr signals allowed the equilibrium constant to be calculated.

$[\text{PtCl}(C_5H_5)(\text{CO})(\text{PPh}_3)] \text{ and cis-}[\text{PtCl}_2(\text{CO})(\text{PMe}_2\text{Ph})]$

A solution of $[\text{PtCl}(C_5H_5)(\text{CO})(\text{PPh}_3)]$ (0.053mmol.) in CDCl$_3$ (350µl) and a solution of cis-$[\text{PtCl}_2(\text{CO})(\text{PMe}_2\text{Ph})]$ (12.6mgs, 0.029mmol.) in CDCl$_3$ (150µl) when mixed at ambient temperature gave a similar mixture as above. Again, integration of the 31P nmr signals allowed the equilibrium constant to be calculated and gave a value consistent with that obtained above.

$[\text{PtCl}(C_5H_5)(\text{CO})(\text{PET}_3)] \text{ and cis-}[\text{PtCl}_2(\text{CO})(\text{PMe}_2\text{Ph})]$

Similarly $[\text{PtCl}(C_5H_5)(\text{CO})(\text{PET}_3)]$ (0.079mmol.) and cis-$[\text{PtCl}_2(\text{CO})(\text{PMe}_2\text{Ph})]$ (15.2mgs, 0.031mmol) in CDCl$_3$ equilibrated to give a mixture of cis-$[\text{PtCl}_2(\text{CO})(\text{PET}_3)]$, $[\text{PtCl}(C_5H_5)(\text{CO})(\text{PET}_3)]$, $[\text{PtCl}(C_5H_5)(\text{CO})(\text{PMe}_2\text{Ph})]$, and cis-$[\text{PtCl}_2(\text{CO})(\text{PMe}_2\text{Ph})]$. The equilibrium constant was calculated as above.
\[\text{cis-}[\text{PtCl}(C_5H_5)(CO)(PPh_3)] \quad \text{and} \quad \text{cis-}[\text{PtCl}_2(CO)(PMePh_2)] \]

\[\text{cis-}[\text{PtCl}(C_5H_5)(CO)(PPh_3)] \quad (15.8 \text{ mg}, 0.027 \text{ mmol.}) \quad \text{in CDC}_3 \quad (200 \mu\text{l}) \quad \text{and} \quad \text{cis-}[\text{PtCl}_2(CO)(PMePh_2)] \quad (17.2 \text{ mg}, 0.035 \text{ mmol.}) \quad \text{in CDC}_3 \quad (200 \mu\text{l}) \quad \text{were mixed together under a nitrogen atmosphere at } -60^\circ \text{C}. \]

\[31^P \text{ nmr investigation showed that there was no reaction at } -60^\circ \text{C within 5 hours. Transfer of cyclopentadienyl occurred only on warming to } +25^\circ \text{C, giving a mixture of} \]

\[\text{cis-}[\text{PtCl}_2(CO)(PPh_3)], \quad [\text{PtCl}(C_5H_5)(CO)(PPh_3)], \]

\[[\text{PtCl}(C_5H_5)(CO)(PPh_3)], \quad \text{and} \quad \text{cis-}[\text{PtCl}_2(CO)(PMePh_2)]. \]

\[[\text{PtCl}(C_5H_5)(^{13}\text{CO})(PMePh_2)] \quad \text{and} \quad \text{cis-}[\text{PtCl}_2(CO)(PPh_3)]. \]

\[\text{cis-}[\text{PtCl}_2(^{13}\text{CO})(PMePh_2)] \quad (90\% \quad {^{13}\text{CO}; \quad 32.6 \text{ mg}, 0.066 \text{ mmol.}) \quad \text{and} \quad C_5H_5\text{Ti} \quad (18.9 \text{ mg}, 0.070 \text{ mmol.}) \quad \text{were allowed to react in CDC}_3 \quad \text{under a nitrogen atmosphere, and the solution was filtered.} \]

\[31^P \text{ nmr investigation revealed} \quad [\text{PtCl}(C_5H_5)^{(-^{13}\text{CO})}(PMePh_2)] \quad (\delta P = +6.3 \text{ ppm}, \quad 1J_{\text{PtP}} = 1759 \text{ Hz}, \quad 2J_{\text{CP}} = 10.5 \text{ Hz}). \]

A solution of \[\text{cis-}[\text{PtCl}_2(CO)(PPh_3)] \quad (19.6 \text{ mg}, 0.035 \text{ mmol.}) \quad \text{was added and} \quad 31^P \text{ nmr spectra were recorded at intervals. Initially the mixture equilibrated to} \]

\[\text{cis-}[\text{PtCl}_2(^{13}\text{CO})(PMePh_2)], \quad [\text{PtCl}(C_5H_5)(^{13}\text{CO})(PMePh_2)], \quad [\text{PtCl}(C_5H_5)(^{12}\text{CO})(PPh_3)], \quad \text{and} \quad \text{cis-}[\text{PtCl}_2(^{12}\text{CO})(PPh_3)], \quad \text{but scrambling of the specificity of the label was appreciable in 6 hours and total overnight. Integration of} \]

\[31^P \text{ signals allowed the equilibrium constant to be calculated.} \]

\[[\text{PtCl}(C_5H_5)(CO)(PMe_2\text{Ph})] \quad \text{and} \quad \text{cis-}[\text{PtBr}_2(CO)(PMe_2\text{Ph})] \]

\[[\text{PtCl}(C_5H_5)(CO)(PMe_2\text{Ph})] \quad (0.066 \text{ mmol.}) \quad \text{in CDC}_3 \quad (350 \mu\text{l}) \quad \text{and} \quad \text{cis-}[\text{PtBr}_2(CO)(PMe_2\text{Ph})] \quad (23.4 \text{ mg}, 0.045 \text{ mmol.}) \quad \text{in CDC}_3 \quad (150 \mu\text{l}) \quad \text{were mixed under a nitrogen atmosphere. Immediate spectroscopic investigation} \quad (31^P \text{ nmr}) \quad \text{revealed a mixture of} \]
[PtBr(C₅H₅)(CO)(PMe₂Ph)], [PtCl(C₅H₅)(CO)(PMe₂Ph)], cis-[PtBr₂(CO)(PMe₂Ph)], and one isomer of [PtBrCl(CO)(PMe₂Ph)], CO cis to phosphine, (δ = -8.1 ppm, ¹JₚtP = 2832 Hz), which had reached equilibrium within 10 minutes.

\[\text{[PtBr(C₅H₅)(CO)(PMe₂Ph)] and cis-[PtCl₂(¹³CO)(PMe₂Ph)]} \]

Similarly, [PtBr(C₅H₅)(CO)(PMe₂Ph)] (0.082 mmol) and cis-[PtCl₂(¹³CO)(PMe₂Ph)] (19.7 mgs, 0.045 mmol) were allowed to react in CDCl₃ under a nitrogen atmosphere. ³¹P nmr revealed the presence, within twenty minutes, of an equilibrium mixture of [PtCl(C₅H₅)(CO)(PMe₂Ph)], [PtBrCl(CO)(PMe₂Ph)] (same isomer as above), [PtBr(C₅H₅)(CO)(PMe₂Ph)], cis-[PtBr₂(CO)(PMe₂Ph)], and cis-[PtCl₂(CO)(PMe₂Ph)], in which the ¹³CO was randomly distributed amongst all of the products.

\[\text{[PtBr(C₅H₅)(CO)(PMe₂Ph)] and cis-[PtCl₂(CO)(PMe₂Ph)]} \]

[PtCl(C₅H₅)(CO)(PMe₂Ph)] (0.063 mmol) and cis-[PtBr₂(CO)(PMe₂Ph)] (25.8 mgs, 0.050 mmol) reacted similarly to produce, in less than 10 minutes, [PtBr(C₅H₅)(CO)(PMe₂Ph)] (δp = +2.9 ppm, ¹JₚtP = 1780 Hz), [PtCl(C₅H₅)(CO)(PMe₂Ph)], cis-[PtBr₂(CO)(PMe₂Ph)], [PtBrCl(CO)(PMe₂Ph)] (same isomer as above), [PtBr(C₅H₅)(CO)(PMe₂Ph)], [PtCl(CO)(C₅H₅)(PMe₂Ph)], cis-[PtBr₂(CO)(PMe₂Ph)] and [PtBrCl(CO)(PMe₂Ph)] (one isomer; CO cis to phosphine; δp = +1.6 ppm, ¹JₚtP = 2924 Hz), with equilibration complete in 30 to 45 minutes.
cis-[PtBr₂(CO)(PMe₂Ph)] and cis-[PtCl₂(CO)(PMe₂Ph)]

A solution of cis-[PtBr₂(CO)(PMe₂Ph)] (16.3mgs, 0.031 mmol.) in CDCl₃ (200µl) and a solution of cis-[PtCl₂(CO)(PMe₂Ph)] (13.5 mgs, 0.031 mmol.) in CDCl₃ (200µl) were mixed at -60°C. ³¹P nmr investigation showed that the reaction reached equilibrium in 1½ hours, producing mainly one isomer of [PtBrCl(CO)(PMe₂Ph)], (that seen in the previous 3 reactions), cis-[PtBr₂(CO)(PMe₂Ph)], cis-[PtCl₂(CO)(PMe₂Ph)] and the other isomer of [PtBrCl(CO)(PMe₂Ph)], (CO cis to phosphine) as only a minor product. On warming the solution to room temperature, the same ratio of isomers (5:1) was present. ³¹P nmr at RT: δ = -8.1ppm, ¹Jₚtₚ = 2832 Hz and δ = -13.1ppm, ¹Jₚtₚ = 2841 Hz. On performing the reaction at RT with 10.1 mgs of cis-[PtCl₂(CO)(PMe₂Ph)] (0.023mmol.) and 9.8mgs of cis-[PtBr₂(CO)(PMe₂Ph)] (0.019 mmol.) a similar result was obtained.

[PtCl(C₅H₅)(CO)(PMe₂Ph)] and cis-[PtCl₂(PMe₂Ph)₂]

[PtCl(C₅H₅)(CO)(PMe₂Ph)] (0.067mmol.) and cis-[PtCl₂(PMe₂Ph)₂] (21.5mgs, 0.040mmol.) were mixed in CDCl₃ under a N₂ atmosphere. ¹H nmr investigation showed that no reaction occurred; the only signals detected belonging to the initial complexes.

Similarly [PtCl(C₅H₅)(CO)(PMe₂Ph)] (0.069mmol.) and cis-[PtCl₂(PPh₃)₂] (6.6mgs, 0.008mmol.) were mixed in CDCl₃ under a N₂ atmosphere. ¹H nmr showed that there was no reaction within 2½ hours. On being left overnight, a ³¹P
nmr and 1H nmr investigation showed that some of the $[\text{PtCl}-(\text{C}_5\text{H}_5)(\text{CO})(\text{PMe}_2\text{Ph})]$ had decomposed to its normal decomposition products, and that the only PPh$_3$- containing material was cis-$[\text{PtCl}_2(\text{PPh}_3)_2]$. Thus there was no reaction.

$[\text{PtCl}(\text{C}_5\text{H}_5)(\text{CO})(\text{PPh}_3)]$ and $[\text{PtCl}(\text{C}_2\text{Cl}_3)(\text{CO})(\text{PMePh}_2)]$

$[\text{PtCl}(\text{C}_5\text{H}_5)(\text{CO})(\text{PPh}_3)]$ (11.1mg, 0.019mmol) in CDCl$_3$ (100μl) and $[\text{PtCl}(\text{C}_2\text{Cl}_3)(\text{CO})(\text{PMePh}_2)]$ (11.2mg, 0.019mmol) in CDCl$_3$ (200μl) were mixed at -60°C under a nitrogen atmosphere and the reaction was examined by 31P nmr spectroscopy. There was no reaction in 24 hours at RT, and over a period of 1 week $[\text{PtCl}(\text{C}_2\text{Cl}_3)(\text{CO})(\text{PMePh}_2)]$ remained unchanged, while $[\text{PtCl}(\text{C}_5\text{H}_5)(\text{CO})(\text{PPh}_3)]$ decomposed.

$[\text{PtCl}(\text{Ar})(\text{CO})(\text{PMe}_2\text{Ph})]$ and cis-$[\text{PtCl}_2(\text{CO})(\text{PPh}_3)]$

Solutions of various $[\text{PtCl}(\text{Ar})(\text{CO})(\text{PMe}_2\text{Ph})]$ isomers (I) in CDCl$_3$ were prepared by standard methods and characterised by their 31P nmr spectroscopic parameters. (Ar = o-MeOC$_6$H$_4$; δ = -5.4ppm, 1J$_{\text{PtP}}$ = 1487 Hz; Ar = o-ClC$_6$H$_4$; δ = -7.5ppm, 1J$_{\text{PtP}}$ = 1541 Hz, 2J$_{\text{CP}}$ = 8.5 Hz; Ar = p-MeO$_2$C$_6$H$_4$; δ = -5.8ppm, 1J$_{\text{PtP}}$ = 1410 Hz). To each solution was added one mol. equivalent of cis-$[\text{PtCl}_2(\text{CO})(\text{PPh}_3)]$ in CDCl$_3$, and the reactions followed by 31P nmr spectroscopy. Transfer of the aryl group to produce $[\text{PtCl}(\text{Ar})(\text{CO})(\text{PPh}_3)]$ isomer (I) took 2½ hours to reach the equilibrium position with Ar = p-MeO$_2$C$_6$H$_4$ (δ = +18.3 ppm, 1J$_{\text{PtP}}$ = 1483 Hz), but greater than 1 week for the other two cases. (Ar = p-MeOC$_6$H$_4$; δ = +18.8ppm, 1J$_{\text{PtP}}$ = 1552 Hz; Ar = o-ClC$_6$H$_4$, δ = +16.4ppm, 1J$_{\text{PtP}}$ = 1607 Hz). In the case
where $Ar = \sigma-C_6H_4$, $[PtCl(Ar)(^{13}CO)(PMe_2Ph)]$ was used, and the label was scrambled after 1 week, although there was no scrambling within 12 hrs., during which time there had been substantial transfer of the aryl group.

$[PtCl(C_5H_5)(CO)(PMe_2Ph)]$ and HgCl$_2$

$[PtCl(C_5H_5)(CO)(PMe_2Ph)]$ (0.065mmol.) and HgCl$_2$ (16.8 mgs, 0.062mmol.) were mixed in CDCl$_3$ under a N$_2$ atmosphere. 1H nmr examination showed that cis-$[PtCl_2(CO)(PMe_2Ph)]$ and C_5H_5HgCl were produced over a period of several hours.

(c) Bis-σ-cyclopentadienyl complexes and transfer reactions

$cis-[Pt(\sigma^1-C_5H_5)_2(CO)(PPh_3)]$

cis-$[PtCl_2(CO)(PPh_3)]$ (32.2mgs, 0.058mmol.) and C_5H_5Tl (63.0mgs, 0.234mmol.) were stirred together in CDCl$_3$ solution (0.5ml) under a nitrogen atmosphere. The reaction was monitored by 1H and 31P nmr spectrometry. Resonances assigned to $[Pt(C_5H_5)_2(CO)(PPh_3)]$ (table 3) grew in strength, as those due to $[PtCl(C_5H_5)(CO)(PPh_3)]$ diminished. Increasing quantities of decomposition products were also apparent in solution after 2 hours, and the bis-cyclopentadienyl complex could not be obtained in a pure state.

cis-$[Pt(C_5H_5)_2(CO)(PPh_3)]$ and cis-$[PtCl_2(CO)(PPh_3)]$

cis-$[PtCl_2(CO)(PPh_3)]$ (27.7mg, 0.050mmol.) and C_5H_5Tl (49.3mgs, 0.183mmol.) were stirred together in CDCl$_3$ (400µl) under nitrogen for 2 hours. After filtration, 1H nmr investigation of the orange solution revealed the main product to be cis-$[Pt(C_5H_5)_2(CO)(PPh_3)]$ (55%). A solution of cis-$[PtCl_2(CO)(PPh_3)]$ (15.2mg, 0.027mmol.) in CDCl$_3$ (100µl) was added. 1H nmr investigation now revealed
[PtCl(C₅H₅)(CO)(PPh₃)] as the main, and only cyclopentadienyl-containing product.

\[\text{cis-}[\text{Pt}(C₅H₅)₂(CO)(PMe₂Ph)] \text{ and cis-}[\text{PtBr}(C₅H₅)(CO)(PMe₂Ph)] \]

\[\text{cis-}[\text{PtBr}(C₅H₅)(CO)(PPhMe₂)] \text{ (26.4 mgs, 0.051 mmol.) and} \]
\[\text{C₅H₅Tl (18.4 mgs, 0.068 mmol.) were stirred together in CDCl₃ (500 µl) under nitrogen for 45 minutes. After filtration,} \]
\[31P \text{ nmr investigation revealed a mixture of [PtBr(C₅H₅)(CO)(PMe₂Ph)] and \text{cis-}[\text{Pt}(C₅H₅)₂(CO)(PMe₂Ph)] in the} \]
\[\text{approximate ratio of 5:3. \text{cis-}[\text{PtBr}(C₅H₅)(CO)(PMe₂Ph)] (15.9 mgs,} \]
\[0.031 \text{ mmol.) was added as a CDCl₃ (200 µl) solution and 31P \text{ nmr investigation showed only [PtBr(C₅H₅)(CO)(PMe₂Ph)]} \]
\[\text{and some excess \text{cis-}[\text{PtBr}(C₅H₅)(CO)(PMe₂Ph)] present.} \]

\[\text{cis-}[\text{Pt}(C₅H₅)₂(CO)(PMe₂Ph)] + \text{cis-}[\text{PtCl₂}(C₅H₅)(CO)(PMe₂Ph)] \]
\[\text{cis-}[\text{PtCl₂}(C₅H₅)(CO)(PMe₂Ph)] \text{ (31.3 mgs, 0.064 mmol.) and} \]
\[\text{C₅H₅Tl (22.2 mgs, 0.082 mmol.) were stirred in CDCl₃ (500 µl) under nitrogen for 45 minutes. After filtration, 31P \text{ nmr investigation revealed a mixture of [PtCl(C₅H₅)(CO)(PMe₂Ph)]} \]
\[\text{and \text{cis-}[\text{Pt}(C₅H₅)₂(CO)(PMe₂Ph)] in a ratio of 3:1. \text{cis-}[\text{PtCl₂}(C₅H₅)(CO)(PMe₂Ph)] (7.0 mgs, 0.016 mmol.) in CDCl₃ (100 µl) was added and 31P \text{ nmr investigation showed the presence of} \]
\[\text{only [PtCl(C₅H₅)(CO)(PMe₂Ph)] and [PtCl(C₅H₅)(CO)(PMe₂Ph)].} \]

(d) Asymmetrically Substituted Cyclopentadienyl (organo) platinum Complexes

Solutions of [PtCl(C≡CR)(CO)L], Cl trans to L (R = Me, L = PMe₂Ph₂; R = Ph, L = PMe₂Ph) and [PtCl(Ar)(CO)(PMe₂Ph₂)], Cl trans to PMe₂Ph₂, (Ar = Ph, C₆H₄CO₂Me-p) were prepared in situ as follows. 150
[PtCl(C=CMe)(CO)(PMePh₂)] (Cl trans to PMePh₂)

The complex cis-[PtCl₂(CO)(PMePh₂)] (20.0mg, 0.040 mmol.), [NEt₄]Cl (3.3mg, 0.020mmol.) and Hg(C≡CMe)₂ (5.7mg, 0.020 mmol.) were dissolved together in 0.5ml CDCl₃. A clear yellow solution and a silver grey precipitate formed. The precipitate, [Et₄N]₂[Hg₂Cl₆], was filtered off. ³¹P nmr investigation of the solution showed the presence of a single product, [PtCl(C≡CMe)(CO)(PMePh₂)] (Cl trans to PMePh₂), (see table 11).

[PtCl(C≡CPh)(CO)(PMe₂Ph)] (Cl trans to PMe₂Ph)

cis-[PtCl₂(CO)(PMe₂Ph)] (17.0mg, 0.039 mmol.), [NEt₄]Cl (3.3mg, 0.020mmol.) and Hg(C≡CPh)₂ (8.2mg, 0.020mmol.) reacted similarly in 0.5ml CDCl₃ to produce [PtCl(C≡CPh)-(CO)(PMe₂Ph)] (Cl trans to PMe₂Ph), (see table 11).

[PtCl(Ph)(CO)(PMePh₂)] (Cl trans to PMePh₂)

cis-[PtCl₂(C₂H₄)(PMePh₂)] (20.0mg, 0.040mmol.) and HgPh₂ (14.4mg, 0.040mmol.) were mixed in CDCl₃ solution (0.5ml) and allowed to react for 1 hour. The solution was filtered and a ³¹P nmr spectrum showed it to be a cis/trans mixture of [Pt₂Cl₂Ph₂(PMePh₂)₂], (³¹P nmr at -60°C δ = 0.0ppm, ¹Jₚₜₚ = 4940 Hz and δ = +0.1ppm, ¹Jₚₜₚ = 4993 Hz) in a ratio of 10:3. Carbon monoxide was bubbled through the solution, followed by N₂, and then the solution was allowed to stand at room temperature until ³¹P nmr spectroscopic examination showed that it was pure [PtCl(C₆H₅)(CO)-(PMePh₂)] (Cl trans to PMePh₂) (δ = 1.2ppm, ¹Jₚₜₚ = 3928 Hz at -60°C).
cis-[PtCl₂(C₂H₄)(PMePh₂)] (20.0mg, 0.040mmol.) and Hg (C₆H₄CO₂Me-p)₂ (19.1mg, 0.040mmol.) were allowed to react in 0.5ml CDCl₃ for several hours. The solution was filtered and a ³¹P nmr spectrum showed it to be [Pt₂Cl₂(C₆H₄CO₂Me-p)₂(PMePh₂)₂] (³¹P nmr at -60°C δ = -1.4ppm, ¹Jₚₚ = 4901 Hz and δ = -1.2ppm, ¹Jₚₚ = 4930 Hz). Carbon monoxide was bubbled through the solution, followed by N₂, and then it was allowed to stand at room temperature until ³¹P nmr spectroscopic examination revealed it to be the desired isomer of [PtCl(C₆H₄CO₂Me-p)(CO)(PMePh₂)] (δ = -2.6ppm, ¹Jₚₚ = 3826 Hz at -60°C).

[Pt(η¹-C₅H₅)(C≡CMc)(CO)(PMePh₂)] (C₅H₅ trans to PMePh₂)

A solution of [PtCl(C≡CMc)(CO)(PMePh₂)], (Cl trans to PMePh₂), (0.061mmol.) in 0.5ml CDCl₃ was allowed to react with TlC₅H₅ (16.4mg, 0.061mmol.) for 10 minutes at room temperature. Spectroscopic investigation (³¹P and ¹H nmr) of the solution revealed it to be pure [Pt(C₅H₅)(C≡CMc)(CO)(PMePh₂)]. (tables 4 and 5).

[Pt(η¹-C₅H₅)(C≡CPh)(CO)(PMe₂Ph)] (C₅H₅ trans to PMe₂Ph)

A similar reaction was performed using [PtCl(C≡CPh)-(CO)(PMe₂Ph)] (Cl trans to PMe₂Ph) (0.039 mmol.) and TlC₅H₅ (12.2mg, 0.045mmol.). ³¹P nmr examination of the solution showed that the only product was [Pt(C₅H₅)(C≡CPh)(CO)(PMe₂Ph)] (C₅H₅ trans to PMe₂Ph). (table 5).
A CDC$_3$ solution of [PtCl(\equivCMe)(CO)(PMePh$_2$)] (Cl trans to PMePh$_2$) (0.040mmol.) and a CDC$_3$ solution of Hg(C$_5$H$_5$)$_2$ (13.4mg, 0.040mmol.) were mixed at -60°C and allowed to react at room temperature. Initially, the complex [Pt(C$_5$H$_5$)(C≡CMe)(CO)(PMePh$_2$)](identified by 31P nmr) was produced, but subsequent reactions led to the production of [PtCl(C$_5$H$_5$)(CO)(PMePh$_2$)] isomer (I), and a small amount of cis-[Pt(C≡CMe)$_2$(CO)(PMePh$_2$)].

HgCl$_2$ (25.0mg, 0.093mmol.) was added to a solution of [Pt(C$_5$H$_5$)(C≡CMe)(CO)(PMePh$_2$)], (0.040mmol.) in 0.5ml. CDC$_3$ at -60°C. A 31P nmr investigation showed that within 45 minutes this had reacted to produce [PtCl(C≡CMe)(CO)(PMePh$_2$)] (Cl trans to PMePh$_2$).

HgCl$_2$ (25.0mg, 0.093mmol.) was added to a solution of [Pt(C$_5$H$_5$)(C≡CMe)(CO)(PMePh$_2$)], (0.040mmol.) in 0.5ml. CDC$_3$ at -60°C. A 31P nmr investigation showed that within 45 minutes this had reacted to produce [PtCl(C≡CMe)(CO)(PMePh$_2$)] (Cl trans to PMePh$_2$).

A CDC$_3$ solution of cis-[PtCl$_2$(CO)(PMe$_2$Ph)] (0.061mmol.) was added to a CDC$_3$ solution of Ph$_3$PAuCl (22.5mg, 0.046mmol.) at room temperature. 31P nmr investigation showed that there was no reaction, other than normal decomposition of the cyclopentadienyl platinum complex.

A solution of cis-[PtCl$_2$(CO)(PMe$_2$Ph)] (13.8mg, 0.028 mmol.) in 0.2ml CDC$_3$ was mixed with a solution of
[Pt(C₅H₅)(C≡CPh)(CO)(PMe₂Ph)] (0.039 mmol) at room temperature. ³¹P nmr investigation of the mixture revealed the presence of [PtCl(C≡CPh)(CO)(PMe₂Ph)] (Cl trans to PMe₂Ph), [PtCl(C₅H₅)(CO)(PMe₂Ph₂)], (C₅H₅ trans to PMe₂Ph), [Pt(C₅H₅)(C≡CPh)(CO)(PMe₂Ph)] and cis-[PtCl₂(CO)(PMe₂Ph₂)].

TIC₅H₅ (11.5 mg, 0.043 mmol) was added to a solution of [PtCl(Ph)(CO)(PMe₂Ph₂)] (Cl trans to PMe₂Ph) (0.0405 mmol) in 0.5 ml CDCl₃. After 15 minutes at room temperature, spectroscopic examination showed that the major product was [Pt(C₅H₅)Ph(CO)(PMe₂Ph₂)] (C₅H₅ trans to PMe₂Ph₂). ³¹P and ¹H nmr data are given in tables 4 and 5. A minor byproduct was identified by ³¹P nmr spectroscopy as cis-[PtPh₂(CO)(PMe₂Ph₂)] (³¹P nmr at 25°C, δ = +2.5 ppm, ¹JₚtP = 1611 Hz). ¹H nmr at 25°C, δ = +2.5 ppm, ¹JₚtP = 1611 Hz)

[Pt(C₅H₅)(C₆H₄CO₂Me-p)(CO)(PMe₂Ph₂)] (C₅H₅ trans to PMe₂Ph₂)

A similar reaction was carried out between TIC₅H₅ (10.9 mg, 0.040 mmol) and [PtCl(C₆H₄CO₂Me-p)(CO)(PMe₂Ph₂)] (0.040 mmol) to produce [Pt(C₅H₅)(C₆H₄CO₂Me-p)(CO)(PMe₂Ph₂)] (C₅H₅ trans to PMe₂Ph₂).

[Pt(C₅H₅)(C₆H₄CO₂Me-p)(CO)(PMe₂Ph₂)] and cis-[PtCl₂(CO)(PMe₂Ph₂)]

A solution of [Pt(C₅H₅)(C₆H₄CO₂Me-p)(CO)(PMe₂Ph₂)] (C₅H₅ trans to PMe₂Ph₂) (0.040 mmol) in 0.3 ml CDCl₃ was
mixed with a solution of cis-[PtCl₂(¹³CO)(PMe₂Ph)] (14.3 mg, 0.033 mmol.) in 0.3 ml CDCl₃ at room temperature. After 15 minutes, ³¹P nmr spectroscopic examination of the solution revealed the presence of equal amounts of [PtCl(C₆H₄CO₂Me-p)-(CO)(PMePh₂)] (Cl trans to PMePh₂) and [PtCl(C₅H₅)(¹³CO)-(PMe₂Ph)] (C₅H₅ trans to PMe₂Ph).

(e) ⁷⁵-Cyclopentadienyl Complexes

[Pt(⁷⁵-C₅H₅)(PMe₂Ph₂)]Cl

The complex cis-[PtCl₂(PMe₂Ph₂)] (30.2 mg, 0.054 mmol.) and TlC₅H₅ (16.9 mg, 0.063 mmol.) were stirred together suspended in CDCl₃ (0.5 ml) under a N₂ atmosphere for 2 hours. The orange-yellow solution was filtered (to remove TlCl and unreacted TlC₅H₅) into an nmr tube. ³¹P and ¹H nmr spectra (tables 6 and 7) indicated the presence in solution of only [Pt(H₅-C₅H₅)(PMe₂Ph₂)]Cl.

[Pt(⁷⁵-C₅H₅)(PMe₂Ph₂)]SO₃CF₃

AgSO₃CF₃ (30.0 mg, 0.117 mmol.) was added to a solution of [Pt(⁷⁵-C₅H₅)(PMe₂Ph₂)]Cl (0.049 mmol.) prepared as above, and allowed to react at room temperature for 5 minutes. The solution was then filtered and ¹H and ³¹P nmr spectra (tables 6, 7) showed that replacement of Cl⁻ by SO₃CF₃⁻ did not affect the parameters.

[Pt(⁷⁵-C₅H₅)(PMePh₂)]Cl

cis-[PtCl₂(PMePh₂)] (28.8 mg, 0.043 mmol.) and C₅H₅Tl (13.5 mg, 0.050 mmol.) similarly reacted in CDCl₃ in 2 hours to produce [Pt(⁷⁵-C₅H₅)(PMePh₂)]Cl. (tables 6, 7).
cis-[PtCl₂(PPh₃)₂] (28.8mg, 0.036mmol.) and TlC₅H₅ (10.6mg, 0.039mmol.) were mixed in CDCl₃ (0.5ml) under a N₂ atmosphere. After 3 days reaction, spectroscopic examination revealed the major species to be [Pt(η⁵-C₅H₅)(PPh₃)₂]Cl (tables 6, 7).

[Pt(η⁵-C₅H₅)(CO)(PMe₂Ph)]SO₃CF₃

AgSO₃CF₃ (17.0mg, 0.066mmol.) was added to a solution of [PtCl(C₅H₅)(CO)(PMe₂Ph)] isomer (I) (0.065mmol.) in CDCl₃ under N₂. After 1 hour, the solution was filtered and ¹H and ³¹P nmr spectroscopic examination revealed the presence of [Pt(η⁵-C₅H₅)(CO)(PMe₂Ph)]SO₃CF₃ as the only species present (tables 6 and 7).

[Pt(η⁵-C₅H₅)(PPh₃)]SO₃CF₃

AgSO₃CF₃ (20.5mg, 0.080mmol.) and [PtCl(C₅H₅)(CO)(PPh₃)] isomer (I) (0.057mmol.) reacted similarly in CDCl₃ to produce [Pt(η⁵-C₅H₅)(CO)(PPh₃)]SO₃CF₃ (tables 6, 7).

[HgCl₂ (8.4mg, 0.032mmol.) was added to a solution of [Pt(η⁵-C₅H₅)(PMe₂Ph)₂]Cl (0.054mmol.) in CDCl₃ (0.5ml) and the solution examined by ¹H nmr spectroscopy. As well as unreacted starting material, ([Pt(η⁵-C₅H₅)(PMe₂Ph)₂]Cl), resonances were observed from C₅H₅HgCl (δ 6.1ppm) and cis-[PtCl₂(PMe₂Ph)₂](Phosphine methyl resonance : δ 1.76ppm, J₉₅H₉₅ = 34.5 Hz, H₉₅H₂ = 11.0 Hz). within twenty minutes.
HgCl₂ (15.1 mg, 0.056 mmol.) was added to a solution of
$[\text{Pt}(\eta^5-C_5H_5)(\text{PMe}_2\text{Ph})_2]SO_3\text{CF}_3$ (0.065 mmol.) in CDCl₃ (0.5 ml)
and the solution examined by ^1H nmr spectroscopy. After
3 hours at room temperature, 50% of the π-complex
had reacted and been replaced by cis-$[\text{PtCl}_2(\text{PMe}_2\text{Ph})_2]$.

$[\text{Pt}(\eta^5-C_5H_5)(\text{PMe}_2\text{Ph})_2]SO_3\text{CF}_3$ and HgCl₂
CHAPTER 3

ACETYLIDE AND ARYL TRANSFER REACTIONS

AND CARBONYL INSERTION
INTRODUCTION

Platinum Acetylides

In the last thirty years a wide range of metal acetylide complexes have been prepared, and the chemistry of such compounds has been the subject of a recent review.164 Platinum acetylides are well-known, particularly complexes of the type trans-[Pt(C≡CR)\(_2\)]\textsubscript{165} and trans-[Pt(C≡CR)-(X)L\(_2\)],165,166 (L = tertiary phosphine, X = halide). Oxidative addition of I\(_2\), IBr, ICN, CF\(_3\)I and MeI to trans-[Pt(C≡CR)(X)L\(_2\)] has been demonstrated,167 where the ease of oxidative addition followed the order R = Me > H > CF\(_3\), X = C≡CR > Cl. The platinum acetylides were found to be less susceptible to oxidative addition reactions than their methyl platinum analogues.

Recently, complexes of the type cis-[Pt(C≡CR)\(_2\)(CO)L] and [PtCl(C≡CR)(CO)L], C≡CR trans to CO, have been prepared by a new preparative route utilising Hg(C≡CR)\(_2\) compounds, to give better selectivity.150,153 The production of [PtCl(C≡CR)(CO)L], C≡CR trans to CO, was surprising, since previous reactions of cis-[PtCl\(_2\)(CO)L] with phenyl, alkyl or substituted aryl mercurials appeared to produce only [PtCl(R)(CO)L], R trans to L.23,110-112 In fact it was found that the isomer with C≡CR trans to L was initially formed, but that further reaction occurred to produce cis-[Pt(C≡CR)\(_2\)(CO)L] which reacted with HgCl\(_2\) to form the isomer with C≡CR trans to CO (fig. 15).150,153
The $[\text{PtCl}(\text{C} \equiv \text{CR})(\text{CO})\text{L}]$, C$\equiv$CR trans to L, isomer (I), reacted very quickly with ClHgC\equivCR, and was virtually undetectable in CDCl$_3$, even at low temperature, but was observed as the first intermediate when the reaction was performed in THF. The cis-$[\text{Pt}(\text{C} \equiv \text{CR})_2(\text{CO})\text{L}]$ and HgCl$_2$ formed a fluxional system whose 31P nmr parameters varied with the extent of reaction and changed with temperature, broadening at low T, with one satellite broadening more than the other. This was interpreted as a rapid equilibrium between cis-$[\text{Pt}(\text{C} \equiv \text{CR})_2(\text{CO})\text{L}]$, HgCl$_2$ and an associated intermediate, A. The same equilibrium was obtained independently by mixing cis-$[\text{Pt}(\text{C} \equiv \text{CR})_2(\text{CO})\text{L}]$ and HgCl$_2$. The associated species A was thought to be a five or six-coordinate platinum complex, and a five-coordinate platinum mercury adduct was favoured, (fig. 16).
This was preferred since there are a number of precedents for such adducts of HgCl₂ and transition metals, for example \([\text{RhCl}(1,5-\text{C}_8\text{H}_{12})]_2 \cdot 2 \text{HgCl}_2\) which is completely dissociated in acetone solution.¹⁶⁸

When the reaction was performed in THF, conversion of the equilibrium in figure 16 into \([\text{PtCl}(\text{C}≡\text{CR})(\text{CO})\text{L}]\) isomer (II) was very slow compared to CDCl₃, thus it was suggested that good coordinating solvents would block the axial sites on cis\(-[\text{Pt}(\text{C}≡\text{CR})_2(\text{CO})\text{L}]\) and prevent formation of the associated adduct A.

It was also suggested that the production of \([\text{PtCl}(\text{C}≡\text{CR})-(\text{CO})\text{L}]\) isomer (II) from cis\(-[\text{Pt}(\text{C}≡\text{CR})_2(\text{CO})\text{L}]\) and \(\text{HgCl}_2\) occurs by an oxidative addition/reductive elimination mechanism. When a mixed acetylide complex, \([\text{Pt}(\text{C}≡\text{CR})-(\text{C}=\text{CR}^1)(\text{CO})\text{L}]\), \((\text{C}≡\text{CR} \text{ trans to L, CO cis to L})\), and \(\text{HgCl}_2\) were allowed to react, the initial products were \([\text{PtCl}(\text{C}≡\text{CR}^1)(\text{CO})\text{L}]\) isomer (II) and \(\text{ClHgC}≡\text{CR}\), showing that the acetylide trans to phosphine was cleaved directly. Both cis- and trans- oxidative additions of \(\text{HgCl}_2\) were considered possible (fig. 17).
The formation of cis-\([Pt(C\equiv CR)_2(CO)L]\) from \([PtCl(C\equiv CR)-(CO)L]\) isomer (I) and \(ClHg(C\equiv CR)\) was also considered to be via an oxidative addition/reductive elimination mechanism because a good coordinating solvent considerably slowed the reaction. Several intermediates resulting in the observed products are possible, but a trans-oxidative addition of \(ClHg(C\equiv CR)\) was favoured. The formation of \([PtCl(C\equiv CR)-(CO)L]\) isomer (I) from cis-\([PtCl_2(CO)L]\) and \(Hg(C\equiv CR)_2\) was suggested as being by an \(S_{E2}\) (cyclic) mechanism, principally because no substantial slowing of this step was observed when the reaction occurred in a good coordinating solvent, and it was believed that an \(S_{E2}\) (cyclic) mechanism might be less inhibited than an oxidative addition, by coordination of the solvent.

It was found that reactions of the bisethynylmercurials could be carried out in the presence of \([Et_4N]Cl\), which
symmetrises the ClHgC≡CR byproduct to Hg(C≡CR)\(_2\), (thus making both acetylide groups available for transfer to platinum) and \([\text{Et}_4\text{N}]_2\text{Hg}_2\text{Cl}_6\) (which, being insoluble in organic solvents, is easily separated from the desired product). In this way, by controlling the amount of Hg(C≡CR)\(_2\) and \([\text{Et}_4\text{N}]\text{Cl}\), solutions of cis-[Pt(C≡CR)\(_2\)(CO)L] and [PtCl(C≡CR)(CO)L] isomer (II) could be made free of ClHgC≡CR byproduct.

Exchange reactions of acetylides were also studied.\(^{150,153}\) The reaction of cis-[Pt(C≡CR)\(_2\)(CO)L] and Hg(C≡CR\(^1\))\(_2\) produced initially only one isomer of [Pt(C≡CR)(C≡CR\(^1\))-(CO)L], CO cis to L, and the same isomer was produced by the reaction between [PtCl(C≡CR)(CO)L] isomer (II) and Hg(C≡CR\(^1\))\(_2\).

\[
\begin{align*}
\text{Pt} & \quad \text{C≡CR} \\
\text{OC} & \quad \text{C≡CR}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C≡CR} \\
\text{OC} & \quad \text{C≡CR}
\end{align*}
\]

Both of these reactions were considered to proceed via an S\(_{E2}\)(cyclic) mechanism, although it was noted that the cis-oxidative addition/reductive elimination which is related to it by a strong Hg-Pt interaction was indistinguishable from the S\(_{E2}\) (cyclic) mechanism, fig. 18.
Figure 18. (X = Cl or C≡CR)

When Ph₃PAuC≡CR was used instead of the mercurial, reaction with cis-[PtCl₂(CO)L] was not stereospecific.¹⁶⁰

Low temperature nmr experiments showed that both isomer (I) and isomer (II) of [PtCl(C≡CR)(CO)L] were formed initially, and that they reacted preferentially with L¹AuC≡CR to form cis-[Pt(C≡CR)₂(CO)L], which then transferred an acetylide to unused cis-[PtCl₂(CO)L] to produce only isomer (II), (fig. 19).

\[
\begin{align*}
\text{L} & \quad \text{Pt} & \quad \text{C≡CR} & + \quad \text{Hg(C≡CR)} & \rightarrow \\
\text{OC} & \quad \text{X} & & & \\
\text{cis-oxidative addition} & & & & \\
\text{R¹} & \quad \text{C} & \quad \text{C≡CR} & & \\
\text{L} & \quad \text{Pt} & \quad \text{C≡CR} & + \quad \text{X-HgC≡CR¹} & \\
\text{OC} & \quad \text{HgC≡CR¹} & & & \\
\end{align*}
\]

Figure 19.
The lack of specificity in which chloride was initially replaced could not be explained, although it was pointed out that, in addition to an S_e2 (cyclic) reaction and cis-oxidative addition/reductive elimination at Pt, there was also the possibility of oxidative addition/reductive elimination at Au. It was suggested that competing reactions, with no one reaction favoured, were occurring.

Carbonyl Insertion at Square-Planar Platinum (II)

Anderson and Cross have shown that only one isomer of $[\text{PtCl(R)(CO)L}]$, isomer (I) with R trans to L, undergoes carbonyl insertion, and exists in equilibrium with the halide bridged inserted dimer (IV).\(^{169}\)

\[
\begin{align*}
\text{I} & \quad \text{IV} \\
\begin{array}{c}
\text{Pt} \\
\text{OC} \quad \text{R} \\
\text{L} \quad \text{X}
\end{array} & \quad \begin{array}{c}
\text{Pt} \\
\text{OC} \quad \text{R} \\
\text{L} \quad \text{CR}
\end{array}
\end{align*}
\]

The other two isomers of $[\text{PtX(R)(CO)L}]$, ((II) with R trans to CO and (III) with R trans to X) slowly interconvert via reversible CO loss and (I) and (IV) slowly interconvert via reversible loss of L\(^{23}\). Isomer (I) appeared to be the most thermodynamically stable form.

The position of the equilibrium between isomer (I) and inserted dimer (IV) is affected by the nature of the organic group, the halide and the phosphine. It was found that there was a decrease in the extent of insertion for the series $R = \text{Et} > \text{Ph} > \text{Me} > \text{CH}_2\text{Ph}$, with $R = \text{CH}_2\text{Ph}$ existing as 100% isomer (I) in solution.\(^{23}\) The inserted dimer, (IV), was
favoured by stronger bridging halides, $X = I > Br > Cl$. Neutral ligands, L, were found to exert an effect by both electronic and steric factors. The extent of insertion followed the trans-influence series for $L = P(\text{Et})_3 > P(\text{Me})_2\text{Ph} > P\text{MePh}, P\text{Ph}_3 > \text{AsMePh}, \text{AsPh}_3$, but bulkier phosphines, $P(\text{C}_6\text{H}_{11})_3$ and $P(\text{C}_6\text{H}_4\text{Me}-\text{a})_3$, which electronically resemble $P(\text{Et})_3$ and $P(\text{Ph})_3$ respectively, did not fit the sequence. With $L = P(\text{C}_6\text{H}_{11})_3$ and $P(\text{C}_6\text{H}_4\text{Me}-\text{a})_3$, isomer (I) was favoured for steric reasons, and it appeared that the trans influence dominated equilibrium positions up to a critical ligand size, when steric effects became important. This critical size apparently being a cone angle greater than 145° (for Ph_3) but less than 170° (for $P(\text{C}_6\text{H}_{11})_3$).

Recently more detailed work has been reported by Cross and Gemmill on a series of substituted aryl compounds, to investigate electronic and steric effects of the R-group on the equilibrium position. They found that in a series of meta- and para- substituted aryl isomer (I) complexes, $[\text{PtCl(}C_6H_4Y\text{)(CO)\text{L}}]$, insertion was inhibited by electron-withdrawing substituents and promoted by electron-donating substituents. The electronic effects of the aryl groups on the insertion reaction were found to be as important as any of the other factors (effect of X and L), with variations in the equilibrium from 0% (I) ($C_6H_4\text{NMe}_2-p$) to 100% (I) ($C_6H_4\text{CN}-p$). The order for promotion of carbonyl insertion of meta- and para- substituted aryl groups was found to follow the sequence of Hammett σ constants, showing that it is the overall electron-donating or -withdrawing properties which influence the reaction.
Ortho-substituted aryl groups did not insert, and thus do not fit in the sequence, and this was thought to be a steric effect. The bulky ortho group would block the migration of the aryl group.

Methods of promoting insertion by displacing the equilibrium have been used to make groups which appear to exist as 100% isomer (I) insert, by removing complex (IV). Thus, addition of phosphine to a solution of 2[PtCl(R)(CO)L] isomer (I) $\rightleftharpoons [Pt_2(COR)_2Cl_2L_2]$ (IV) removes the inserted dimer by bridge cleavage to form trans-[PtCl(COR)L_2].

When phosphine is slowly added to a solution of benzyl isomer (I), the insertion product trans-[PtCl(COCH_2Ph)L_2] is formed, indicating that there must be undetectable amounts of (IV) in equilibrium with (I). Fast addition of phosphine leads to nucleophilic substitution at (I), displacing CO and producing trans-[PtCl(CH_2Ph)L_2].

Phosphine addition, however, fails to promote insertion with some other organic groups and leads only to CO displacement. Added L can thus react with either side of the equilibrium, either by nucleophilic substitution at (I) or by dimer cleavage, depending on the position of the equilibrium and the size of the rate constants K_3L and K_2L (fig. 20).
A second nucleophile-assisted method involves the addition of \(\text{Cl}^- \) to displace the equilibrium, \(^{170}\) by cleaving inserted dimer (IV) and forming \(\text{cis-}[\text{PtCl}_2(\text{COR})\text{L}]^- \). Thus \(\text{C}_6\text{H}_4\text{CN-p} \) isomer (I) formed \(\text{cis-}[\text{PtCl}_2(\text{COC}_6\text{H}_4\text{CN-p})\text{L}]^- \) on addition of \(\text{Cl}^- \), but did not insert on addition of phosphine, losing CO to produce \(\text{trans-}[\text{PtCl}(\text{C}_6\text{H}_4\text{CN-p})\text{L}_2] \). \(^{153}\) \(\text{Cl}^- \) is a poorer nucleophile for substitution at square-planar Pt\(^{\text{II}} \) than phosphine, but is a good nucleophile for bridge-cleavage in Pt\(^{\text{II}} \) dimers, thus \(\text{Cl}^- \) addition can promote insertion in cases where phosphine addition fails.

The best method for promoting CO insertion at isomer (I), however, appears to be replacing \(\text{Cl}^- \) by \(\text{Br}^- \) or \(\text{I}^- \). The softer halides form stronger bridges in dimers, and organic groups which are reluctant to insert as \([\text{PtCl}(\text{R})(\text{CO})\text{L}] \) isomer (I) readily insert as \([\text{PtI}(\text{R})(\text{CO})\text{L}] \) isomer (I). A number of R-groups which exist as 100% isomer (I) in solution and methods to promote their insertion are shown in table 8.
Table 8. \([\text{PtCl}(R)(\text{CO})L]\) 100\% isomer (I) in solution (CDCl\(_3\) at Room temperature) and methods for promoting insertion to \([\text{Pt}_2(\text{COR})_2\text{Cl}_2L_2]\).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Insertion by :-</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Adding L</td>
<td>Adding Cl(^{-})</td>
<td>Changing halide to I(^{-})</td>
<td>Ref.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{L} = \text{P}(\text{C}_6\text{H}_4\text{Me}-2)_3)</td>
<td>Ph</td>
<td>No</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{AsMePh}_2)</td>
<td>Ph</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{AsPh}_3)</td>
<td>Ph</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{PMePh}_2)</td>
<td>CH(_2)Ph</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{PMePh}_2)</td>
<td>(\text{C}_6\text{H}_4\text{CN}-2)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{PMePh}_2)</td>
<td>(\text{C}_6\text{H}_4\text{Me}-2)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{PMePh}_2)</td>
<td>(\text{C}_6\text{H}_4\text{OMe}-2)</td>
<td>No</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{PMePh}_2)</td>
<td>(\text{C}_2\text{Cl}_3)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
RESULTS AND DISCUSSION

Reactions of $[\text{PtCl}(\eta^1-\text{C}_5\text{H}_5)(\text{CO})\text{L}]$ isomer (I) and Organomercurials

$[\text{PtCl}(\text{C}_5\text{H}_5)(\text{CO})(\text{PMePh}_2)]$ isomer (I) reacted with $\text{Hg}(\text{C}≡\text{Me})_2$ at -60°C to produce the same isomer of $[\text{Pt}(\text{C}≡\text{Me})(\text{C}_5\text{H}_5)(\text{CO})\text{L}]$ as did the reaction between $[\text{PtCl}(\text{C}≡\text{Me})(\text{CO})\text{L}]$ isomer (II), (Cl trans to L), and $\text{Hg}(\text{C}_5\text{H}_5)_2$, but a similar amount of $[\text{PtCl}(\text{C}≡\text{Me})(\text{CO})\text{L}]$ isomer (II) appeared simultaneously. Followed by ^{31}P nmr spectroscopy, the reaction continued until finally only cis-$[\text{Pt}(\text{C}≡\text{Me})_2(\text{CO})\text{L}]$ and $\text{C}_5\text{H}_5\text{HgCl}$ were present (fig. 21).

![Figure 21](image)

The formation of $[\text{Pt}(\text{C}_5\text{H}_5)(\text{C}≡\text{Me})(\text{CO})\text{L}]$ can be accounted for by a replacement of the S^E2 (cyclic) type, with transition state B. Although the halide replaced is trans to CO, it is the only halide present. Only one cis-oxidative addition/reductive elimination intermediate, C, could lead to this product, and that is the one where Hg displaces the
Cl and is trans to CO. No other intermediate except that obtained by a trans-oxidative addition of Hg(C≡CMe)$_2$ could lead to [Pt(C$_5$H$_5$)(C≡CMe)(CO)L] by a concerted cis-reductive elimination, and a trans-addition is unlikely under these conditions.

![Diagram A](image)

The formation of [PtCl(C≡CMe)(CO)L] isomer (II), if it is a one-step process, is possible by a single specific oxidative addition of Hg(C≡CMe)$_2$ to platinum to form intermediate D, followed by reductive elimination of C$_5$H$_5$HgC≡CMe.

![Diagram B](image)

Both ClHgC≡CMe and C$_5$H$_5$HgC≡CMe are presumably also present at the intermediate stages of this reaction, so a variety of steps are possible for the final processes.

The analogous reaction carried out between [PtCl(C$_5$H$_5$)-(CO)(PMePh$_2$)$_2$] isomer (I) and HgPh$_2$ was not as clean, or easy to interpret, possibly in part due to the fact that it took much longer. With HgPh$_2$ there was still a significant amount of cyclopentadienyl isomer (I) present after 7 hours.
at room temperature, whereas, with Hg(\(\text{C} \equiv \text{CMe}\))\(_2\) the reaction reached completion in 30 seconds at room temperature.

When HgPh\(_2\) was added to \([\text{PtCl(}\text{C}_5\text{H}_5\text{)(CO)L}]\) isomer (I), (L = PMePh\(_2\)), at -60°C there was no reaction. On brief warming of the mixture to room temperature and cooling again to -60°C, a peak was present in the \(\text{^31P}\) nmr spectrum at -1.2ppm. This is the chemical shift of \([\text{PtCl(Ph)(CO)L}]\) isomer (II) at -60°C, but the signal was too weak to observe \(^1J_{\text{PtP}}\) coupling. After about 1 hour at room temperature, there was about 10% reaction to produce cis-\([\text{PtPh}_2\text{(CO)L}]\). After this, a number of other platinum complexes were obtained, most of which could be identified by their \(\text{^31P}\) nmr parameters, (table 13). These included, \([\text{Pt(}\eta^5\text{-C}_5\text{H}_5\text{)(COPh)L}]\), trans-\([\text{PtCl(Ph)L}_2]\), trans-\([\text{PtCl(COPh)L}_2]\), a small amount of \([\text{PtCl(Ph)(CO)L}]\) isomer (I) and two unknown species, one at +5.3ppm whose \(^1J_{\text{PtP}}\) varied from 5026 to 5049 Hz, and one at -18.8ppm which appeared to be a triplet with coupling of 13.6 Hz.

The production of cis-\([\text{PtPh}_2\text{(CO)L}]\) could have occurred in a similar way to one of the routes to cis-\([\text{Pt(}\text{C} \equiv \text{CMe}\))\(_2\text{(CO)L}]\) with Hg(\(\text{C} \equiv \text{CMe}\))\(_2\), via \([\text{PtCl(Ph)(CO)L}]\) (II) if that was the species initially detected. No \([\text{Pt(}\text{C}_5\text{H}_5\text{)(Ph)(CO)L}]\), \(\text{C}_5\text{H}_5\text{ trans to L}\), was detected at any point during the reaction, so the other route through this may not have occurred. This would suggest the following reaction scheme as most likely:-
HgPh₂ has previously been shown to react with [PtCl(Ph)-(CO)L] (II) to form cis-[PtPh₂(CO)L]. The reaction of cyclopentadienyl isomer (I) to give phenyl isomer (II) would involve an oxidative addition/reductive elimination similar to that proposed for the reaction of Hg(C≡CMe)₂, with an intermediate similar to D.

Complexes trans-[PtCl(Ph)L₂] and trans-[PtCl(COPh)L₂] did not appear until more than four hours had passed, and presumably arose from subsequent reactions of cis-[PtPh₂-(CO)L], involving phosphine exchanges, and perhaps also organomercuric halide byproduct. The small amount of [PtCl(Ph)(CO)L] (I) was produced even later. [Pt(η⁵-C₅H₅)-(COPh)L] was produced to an appreciable degree earlier in the reaction. (After 3 hours there was as much of this as there was cis-[PtPh₂(CO)L] and [PtCl(C₅H₅)(CO)L]). This compound is also produced in the reaction between an equilibrium mixture of [PtCl(Ph)(CO)L] (I) and [Pt₂(COPh)₂Cl₂L₂] (IV) and TlC₅H₅. For carbonyl insertion the phenyl and carbonyl ligands should be cis to each other. The production of [Pt(η⁵-C₅H₅)(CO)L] could have come about by reactions involving cyclopentadienyl mercury byproduct and phenyl platinum complexes, but this is not likely. A more plausible reaction sequence is shown in fig. 22.
σ-π rearrangements of cyclopentadienyl rings are facile with a suitable leaving group, in this case a migrating phenyl group.

The unidentified species at δp = -5.3ppm is also produced early in the reaction. As the reaction progressed, the $^{1}J_{Pt,P}$ coupling constant increased from 5026 Hz (3 hrs. reaction) to 5037 Hz (7 hrs.) to 5049 Hz (overnight reaction). This variation in coupling constant is reminiscent of the situation found with cis-[Pt(C=CR)$_2$(CO)L] in the presence of HgCl$_2$; the transient species had a variable coupling constant with extent of reaction. It is possible, but not any more than speculation, that this species at -5.3ppm involves association of mercuric byproduct. The other unidentified species is unusual in that it appears to be a triplet, but there is no other signal in the 31P spectrum which accompanies it, as there should be if the triplet is a result of P-P coupling.
Cis-bisacetylide carbonyl phosphine platinum (II) Complexes

It was originally believed that site migrations of resident ethynyl groups occurred during formation and exchange reactions of \([Pt(C\equiv CMe)(C\equiv CPh)(CO)L]\), and that these indicated the operation of unique oxidative addition/reductive elimination reactions. Site migrations of the ethynyl groups were based on \(5J_{PH}\) values for \(C\equiv CMe\) protons. \([PtCl(C\equiv CMe)(CO)L]\) isomer (II) had a 5-bond phosphorus-proton coupling constant of 1.5 Hz, which was thought to be characteristic of a \(C\equiv CMe\) group cis to phosphine. The mixed-bisacetylide complex made from \([PtCl(C\equiv CMe)(CO)L]\) (II) and \(Hg(C\equiv CPh)_2\) was found to have \(5J_{PH} = 3.5\) Hz, and it was concluded that \(C\equiv CMe\) was now trans to phosphine. Similarly, the product from \([PtCl-(C\equiv CPh)(CO)L]\) (II) and \(Hg(C\equiv CMe)_2\) had \(5J_{PH} = 1.5\) Hz, which was considered to indicate that \(C\equiv CMe\) was cis to phosphine and \(C\equiv CPh\) was trans to phosphine.

However, the production of \([Pt(\eta^1-C_5H_5)(C\equiv CMe)(CO)L]\), \(C_5H_5\) trans to phosphine) from \([PtCl(C\equiv CMe)(CO)L]\) (II) and \(TlC_5H_5\), which had a 5-bond phosphorus-proton coupling of 3.0 Hz to a \(C\equiv CMe\) group cis to phosphine cast some doubt on this. The \(C_5H_5\) \(J_{PH}\) of 4.5 Hz was indicative of \(C_5H_5\) trans to L, and this was considered to be a reliable indication of the geometry of \([Pt(\eta^1-C_5H_5)(C\equiv CMe)(CO)L]\), and site migration was considered unlikely with \(TlC_5H_5\) as the organic group transfer reagent (see chapter 2).
A solution of cis-[Pt(C≡CMe)_2(CO)(PMePh_2)] was prepared by the symmetrisation method, using one equivalent of Hg(C≡CMe)_2 and one equivalent of [Et_4N]Cl to prepare a clean sample free of mercury containing byproduct. The 13C nmr spectrum was recorded and selective 1H decoupling experiments were performed, which showed that the methyl group with the smaller $^5J_{PH}$ value, (1.95 Hz), was on the acetylide trans to phosphine, and the methyl group with the larger $^5J_{PH}$ value (3.3 Hz) was on the acetylide cis to phosphine. The 13C and 1H nmr data for cis-[Pt(C≡CMe)_2(CO)(PMePh_2)] is shown in fig. 23. The two isomers of [Pt(C≡CMe)(C≡CPh)(CO)(PMePh_2)], CO cis to phosphine, were also prepared, by reacting [PtCl(C≡CR)(CO)L] isomer 'II' with 0.5 equivalents of Hg(C≡CR)(CO)L isomer 'II' with 0.5 equivalents of [Et_4N]Cl. 13C nmr spectra were recorded at -60°C to prevent isomerisation reactions, and selective 1H decoupling experiments were performed. These showed that the complex formed from [PtCl(C≡CMe)(CO)L] (II) and Hg(C≡CPh)_2, with $^5J_{PH}$ of 2.8 Hz, had C≡CMe cis to phosphine and C≡CPh trans to phosphine; and the complex formed from [PtCl(C≡CPh)-(CO)L] (II) and Hg(C≡CMe)_2, had C≡CMe trans to phosphine and C≡CPh cis to phosphine. The 13C nmr data for cis-[Pt(C≡CMe)_2(CO)L] and both isomers of [Pt(C≡CMe)(C≡CPh)-(CO)L] is given in table 9, and the 1H nmr data in table 10.

The results of the 13C nmr selective decoupling experiments showed that site migration of a resident ethynyl group did not occur; that in bis-acetylide complexes of this type, a C≡CMe cis to phosphine has a larger $^5J_{PH}$ value (typically > 3 Hz) than a C≡CMe trans to phosphine.
\subsection*{23.13C and 1H NMR Parameters of cis-[Pt(C-CMe)2(CO)(PMePh2)] on a Bruker VP 200 SY Spectrometer at 25°C}

\begin{align*}
\delta_H &= +2.26 \text{ ppm} \\
\delta_C &= +84.4 \text{ ppm} \\
\delta_C &= +107.5 \text{ ppm} \\
\delta_H &= +1.79 \text{ ppm} \\
J_{PtH} &= 29.3 \text{ Hz} \\
J_{PtC} &= 1161.8 \text{ Hz} \\
J_{PtC} &= 335.8 \text{ Hz} \\
J_{PtH} &= 15.8 \text{ Hz} \\
J_{PH} &= 10.6 \text{ Hz} \\
J_{PC} &= 18.9 \text{ Hz} \\
J_{PC} &= 3.6 \text{ Hz} \\
J_{PH} &= 3.3 \text{ Hz} \\
J_{PC} &= 144.9 \text{ Hz} \\
J_{PC} &= 32.8 \text{ Hz} \\
J_{PH} &= 1.95 \text{ Hz} \\
J_{PC} &= 1066.5 \text{ Hz} \\
J_{PC} &= 299.7 \text{ Hz} \\
\end{align*}
Table 2: 13C nmr data on complexes cis-[Pt(C≡CR)(C≡CR')CO)L], (R = R' = Me; R = Me, R' = Ph).

<table>
<thead>
<tr>
<th>Compound L = PMePh$_2$</th>
<th>δC$_{\alpha}$ (ppm)</th>
<th>δC$_{\beta}$ (ppm)</th>
<th>1J$_{PtC}$ (Hz)</th>
<th>2J$_{PtC}$ (Hz)</th>
<th>2J$_{PC}$ (Hz)</th>
<th>3J$_{PC}$ (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cis- [Pt(C≡CMe)$_2$(CO)L] $^{(a)}$</td>
<td>Acetylide trans to CO</td>
<td>+84.4</td>
<td>+107.5</td>
<td>1161.8</td>
<td>335.8</td>
<td>18.9</td>
</tr>
<tr>
<td></td>
<td>Acetylide trans to L</td>
<td>+78.8</td>
<td>+103.0</td>
<td>1066.5</td>
<td>299.7</td>
<td>144.9</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>+171.4</td>
<td>-</td>
<td>1146.8</td>
<td>-</td>
<td>7.5</td>
</tr>
<tr>
<td>[Pt(C≡CMe)(C≡CPh)(CO)L] $^{(b)}$</td>
<td>Acetylide trans to CO</td>
<td>+82.7</td>
<td>+108.3</td>
<td>1151</td>
<td>(c)</td>
<td>18.7</td>
</tr>
<tr>
<td>C≡CPh trans to L</td>
<td>Acetylide trans to L</td>
<td>+93.3</td>
<td>+108.0</td>
<td>1068</td>
<td>(c)</td>
<td>143.4</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>+170.7</td>
<td>-</td>
<td>1155.3</td>
<td>-</td>
<td>8.0</td>
</tr>
<tr>
<td>[Pt(C≡CMe)(C≡CPh)(CO)L] $^{(b)}$</td>
<td>Acetylide trans to CO</td>
<td>+97.0</td>
<td>+111.5</td>
<td>1172</td>
<td>(c)</td>
<td>18.5</td>
</tr>
<tr>
<td>C≡CMe trans to L</td>
<td>Acetylide trans to L</td>
<td>+78.3</td>
<td>+103.9</td>
<td>(c)</td>
<td>291</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>+170.9</td>
<td>-</td>
<td>1169.8</td>
<td>-</td>
<td>8.0</td>
</tr>
</tbody>
</table>

(a) At 25°C
(b) At -60°C
(c) Unresolved.
Table 10: 1H nmr of C≡CMe bis-organoplatinum complexes,
$[\text{Pt}R(\text{C≡CMe})(\text{CO})(\text{PMePh}_2)]$, in CDCl$_3$ at 25°C, on
a Perkin-Elmer R32 90 MHz spectrometer.

<table>
<thead>
<tr>
<th>Complex, ($L = \text{Ph-MeP}$)</th>
<th>δ (ppm)</th>
<th>J_{PH} (Hz)</th>
<th>δ_{PH} (Hz)</th>
<th>δ_{PH} (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{cis-[Pt}(\text{C≡CMe})(\text{CO})_2]L$</td>
<td>1.85 (a)</td>
<td>2.0</td>
<td>15.5</td>
<td>10.0</td>
</tr>
<tr>
<td>$\text{[Pt}(\text{C≡CMe})(\text{CO})_2]L$</td>
<td>1.85 (b)</td>
<td>3.0</td>
<td>16.0</td>
<td>10.3</td>
</tr>
<tr>
<td>$\text{[Pt}(\text{C≡CMe})(\text{CO})_2]L$</td>
<td>1.88</td>
<td>3.0</td>
<td>16.0</td>
<td>10.5</td>
</tr>
<tr>
<td>$\text{[Pt}(\text{C≡CMe})(\text{CO})_2]L$</td>
<td>1.79</td>
<td>3.0</td>
<td>16.0</td>
<td>10.5</td>
</tr>
</tbody>
</table>

(a) cis to phosphine; (b) trans to phosphine; (c) reference 153; (d) unresolved.
(typically <2 Hz). This meant that the original interpretation based on site migration of a resident ethynyl group was false, and this was later changed to include the possibility of S^2_E (cyclic) reactions. The reactions are now considered to be as described in the introduction to this chapter.

The reaction of $[\text{PtCl}(\text{C} \equiv \text{CMe})(\text{CO})(\text{PMePh}_2)]$ isomer (II) with $\text{Ph}_3\text{PAu}(\text{C} \equiv \text{CPh})$ progressed smoothly at -20°C to produce Ph_3PAuCl and one isomer of $[\text{Pt}(\text{C} \equiv \text{CMe})(\text{C} \equiv \text{CPh})(\text{CO})(\text{PMePh}_2)]$, that with $\text{C} \equiv \text{CPh}$ trans to phosphine.

$$\text{L} \begin{array}{c} \text{C} \equiv \text{CMe} \\ \text{Pt} \\ \text{Cl} \end{array} + \text{Ph}_3\text{PAuC} \equiv \text{CPh} \rightarrow \text{L} \begin{array}{c} \text{C} \equiv \text{CMe} \\ \text{Pt} \\ \text{OC} \end{array} \begin{array}{c} \text{C} \equiv \text{CPh} \\ \text{Cl} \end{array}$$

This is also the isomer produced by reaction of $\text{Hg}(\text{C} \equiv \text{CPh})_2$ (1:0 equivalent) or $\text{Hg}(\text{C} \equiv \text{CPh})_2$ and $[\text{Et}_4\text{N}]\text{Cl}$ (0.5 equivalents of each). The chloride trans to phosphine has been directly replaced by $\text{C} \equiv \text{CPh}$, which is consistent with an S^2_E (cyclic) mechanism, transition state E, or a cis-oxidative addition/reductive elimination reaction with intermediate F. Intermediate F is the one related to E by Pt-Au bond formation. In the case of $\text{Ph}_3\text{PAu}(\text{C} \equiv \text{CPh})$ there is also a possibility of oxidative addition of the Pt-Cl bond to Au, a route not open to mercury acetylides, and this would have an intermediate of type G.

It is not possible to distinguish between these three routes. In this reaction, transfer of C≡CR from Au to Pt was stereospecific, unlike the reaction between cis-[PtCl₂(CO)L] and L¹AuC≡CR,¹⁶⁰ but in this case only one halide is present. The halide trans to L in cis-[PtCl₂(CO)L] would be the one expected to be replaced by an S₇₆₂ (cyclic) mechanism or a cis-oxidative addition to platinum, thus the isomer (II) initially formed in the reaction of cis-[PtCl₂(CO)L] and L¹AuC≡CR may have been by oxidative addition of platinum-chloride (trans to CO) to Au, although it might be expected that the platinum-chloride trans to L would be the one involved in this type of reaction also.

\[\text{[Pt(C≡CMe)(C≡CPh)(CO)L], C≡CMe trans to L, was much more stable when prepared from L¹Au(C≡CPh) than when prepared by action of Hg(C≡CPh)₂. The bis-acetylide was completely stable to isomerisation, even in the presence of Ph₃PAuCl, at } < 0°C \text{ overnight. This contrasts with its behaviour in the presence of other platinum complexes when isomerisation is extremely rapid or in the presence of even a small amount of mercury-containing byproduct, when} \]
isomerisation proceeds at a reasonable rate at ambient temperatures, and slowly at -60°C. There was no broadening of the 31P nmr signal of $[\text{Pt}(\equiv\text{CMe})(\equiv\text{CPh})(\text{CO})L]$ or cis-$[\text{Pt}(\equiv\text{CMe})_{2}(\text{CO})L]$ in the presence of L1AuCl, and there was no cleavage of acetylide. In the presence of HgCl$_2$, the 31P nmr signals broaden due to interaction between Pt and Hg, to form a 5-coordinate adduct, and an acetylide is cleaved to form ClHgC=CR and isomer (II). Clearly there is no such interaction between Pt and Au.

Reactions of $[\text{Pt}(\equiv\text{CR})(\equiv\text{CR}^1)(\text{CO})L]$ with Platinum Complexes

a) With cis-$[\text{PtCl}_2(13\text{CO})L^1]$

A solution of $[\text{Pt}(\equiv\text{CMe})(\equiv\text{CPh})(\text{CO})(\text{PMePh}_2)]$, C=CPH trans to phosphine, prepared from $[\text{PtCl}(\equiv\text{CMe})(\text{CO})(\text{PMePh}_2)]$ (II) by the symmetrization method was mixed at -60°C with slightly more than one equivalent of cis-$[\text{PtCl}_2(13\text{CO})-(\text{PMe}_2\text{Ph})]$. The mixture was observed for 6 hours at -60°C by 31P nmr spectroscopy, by which time a little under 50% of the $[\text{Pt}(\equiv\text{CMe})(\equiv\text{CPh})(\text{CO})(\text{PMePh}_2)]$ was used. Warming briefly to room temperature speeded the reaction, the reaction having proceeded to >70% with only 1 minute at room temperature. The initial products of reaction were $[\text{PtCl}(\equiv\text{CMe})(\text{CO})(\text{PMePh}_2)]$ isomer (II), $[\text{PtCl}(\equiv\text{CPH})-(13\text{CO})(\text{PMe}_2\text{Ph})]$ isomer (II) and cis-$[\text{Pt}(\equiv\text{CPH})_{2}(13\text{CO})-(\text{PMe}_2\text{Ph})]$ (parameters in table 11) and these remained the major products throughout the reaction.

Once more than 70% of the starting material had been used, the products were present in the proportions shown below.
Table 11: 31P nmr spectra of platinum acetylide complexes in CDCl$_3$ at -60°C.

<table>
<thead>
<tr>
<th>Complex</th>
<th>δ (ppm)</th>
<th>$^1J_{P^tP}$ (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PtCl(C=CM)(CO)(PMePh$_2$)] isomer (II)</td>
<td>-4.0</td>
<td>3240</td>
</tr>
<tr>
<td>[PtCl(C=CPh)(CO)(PMePh$_2$)] isomer (II)</td>
<td>-3.9</td>
<td>3185</td>
</tr>
<tr>
<td>[PtCl(C=CM)(CO)(PMe$_2$Ph)] isomer (II)</td>
<td>-15.1</td>
<td>3132</td>
</tr>
<tr>
<td>[PtCl(C=CPh)(CO)(PMe$_2$Ph)] isomer (II)</td>
<td>-15.2</td>
<td>3090</td>
</tr>
<tr>
<td>trans-[PtCl(C=CM)(PMePh$_2$)$_2$]</td>
<td>+5.6</td>
<td>2532</td>
</tr>
<tr>
<td>trans-[PtCl(C=CPh)(PMePh$_2$)$_2$]</td>
<td>+5.2</td>
<td>2508</td>
</tr>
<tr>
<td>cis-[Pt(C=CM)$_2$(CO)(PMePh$_2$)]</td>
<td>-2.8</td>
<td>2107</td>
</tr>
<tr>
<td>cis-[Pt(C=CPh)$_2$(CO)(PMe$_2$Ph)]</td>
<td>-2.7</td>
<td>2091</td>
</tr>
<tr>
<td>cis-[Pt(C=CPh)$_2$(CO)(PMe$_2$Ph)]</td>
<td>-15.4</td>
<td>2055</td>
</tr>
<tr>
<td>[Pt(C=CM)(C=CPh)(CO)(PMePh$_2$)] (C=CMe \text{ trans to PMePh}_2)</td>
<td>-2.6</td>
<td>2079</td>
</tr>
<tr>
<td>[Pt(C=CM)(C=CPh)(CO)(PMePh$_2$)] (C=CPh \text{ trans to PMePh}_2)</td>
<td>-2.7</td>
<td>2115</td>
</tr>
</tbody>
</table>
After this, minor products became apparent, and these were \([\text{Pt}(\equiv \text{CMe})(\equiv \text{CPh})(\text{CO})(\text{PMePh}_2)]\), \(\equiv \text{CMe}\) trans to phosphine, \([\text{PtCl}(\equiv \text{CPh})(\text{CO})(\text{PMePh}_2)]\) isomer (II) and \([\text{PtCl}(\equiv \text{CMe})(^{13}\text{CO})(\text{PMe}_2\text{Ph})]\) isomer (II). Throughout the experiment, the \(^{13}\text{CO}\) label remained specific to complexes of \(\text{PMe}_2\text{Ph}\). The lack of phosphine and CO scrambling suggests that the minor products arise from isomerisation of \([\text{Pt}(\equiv \text{CMe})(\equiv \text{CPh})(\text{CO})(\text{PMePh}_2)]\), and reaction of the new isomer with cis-\([\text{PtCl}_2(^{13}\text{CO})(\text{PMe}_2\text{Ph})]\). The amount of cis-\([\text{Pt}(\equiv \text{CPh})_2(^{13}\text{CO})(\text{PMe}_2\text{Ph})]\) decreases and the amount of \([\text{PtCl}(\equiv \text{CPh})(^{13}\text{CO})(\text{PMe}_2\text{Ph})]\) increases, presumably by reaction of the initial bis-acetylide with unreacted cis-\([\text{PtCl}_2(^{13}\text{CO})(\text{PMe}_2\text{Ph})]\).

The primary products must be \([\text{PtCl}(\equiv \text{CMe})(\text{CO})(\text{PMePh}_2)]\) (II) and \([\text{PtCl}(\equiv \text{CPh})(^{13}\text{CO})(\text{PMe}_2\text{Ph})]\) (II), formed by transferring \(\equiv \text{CPh}\) from the position trans to phosphine in \([\text{Pt}(\equiv \text{CMe})(\equiv \text{CPh})(\text{CO})(\text{PMePh}_2)]\) to the position trans to CO in cis-\([\text{PtCl}_2(^{13}\text{CO})(\text{PMe}_2\text{Ph})]\). Formation of cis-\([\text{Pt}(\equiv \text{CPh})_2(^{13}\text{CO})(\text{PMe}_2\text{Ph})]\) must be at least a two-step process. The transfer of \(\equiv \text{CPh}\) from \([\text{Pt}(\equiv \text{CMe})(\equiv \text{CPh})(\text{CO})L]\) to cis-
[PtCl\(_2\)(\(^{13}\)CO)L\(^1\)] could be by an S\(_E^2\) (cyclic) mechanism, however this would involve different sites on each platinum, with the acetylide trans to phosphine being transferred as expected for an S\(_E^2\) (cyclic) reaction, but the chloride trans to \(^{13}\)CO being transferred, which is unexpected, (fig. 24).

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CMe} \\
\text{OC} & \quad \text{C} \equiv \text{CPh}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{Cl} \\
\text{L} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CPh} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{Cl} \\
\text{L} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CMe} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CPh} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{Cl} \\
\text{L} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CMe} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CPh} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{Cl} \\
\text{L} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CMe} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CPh} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{Cl} \\
\text{L} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CMe} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CPh} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{Cl} \\
\text{L} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CMe} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CPh} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{Cl} \\
\text{L} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CMe} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CPh} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{Cl} \\
\text{L} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CMe} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CPh} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{Cl} \\
\text{L} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CMe} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CPh} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{Cl} \\
\text{L} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CMe} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CPh} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{Cl} \\
\text{L} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CMe} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CPh} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{Cl} \\
\text{L} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CMe} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CPh} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{Cl} \\
\text{L} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CMe} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CPh} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{Cl} \\
\text{L} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CMe} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CPh} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{Cl} \\
\text{L} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CMe} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CPh} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{Cl} \\
\text{L} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CMe} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{C} \equiv \text{CPh} \\
\text{OC} & \quad \text{Cl}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \quad \text{Cl} \\
\text{L} & \quad \text{Cl}
\end{align*}
\]
(C≡CPh)(CO)(PMePh₂) has two σ-donating organic groups, with higher trans influences than chlorides and hence more electron donating than chlorides, but cis-[PtCl₂(¹³CO)(PMe₂Ph)] has the more basic and electron donating phosphine. Also, since CO is a π-acceptor ligand in which the amount of π-back-bonding from metal to ligand can vary from complex to complex, depending on the other ligands, it is not possible to decide on which platinum atom is more nucleophilic. Oxidative addition of Pt–C≡CPh to cis-[PtCl₂(¹³CO)L₁] would produce intermediate H by displacement of Cl trans to ¹³CO by Pt and addition of Pt–Cl to [Pt(C≡CMe)(C≡CPh)(CO)L] would produce intermediate J by displacement of C≡CPh by Pt. These two intermediates are the ones related to the $S_{E2}(cyclic)$ transition state. A third intermediate, K, is also possible by addition of Pt–C≡CPh and displacement of Cl trans to ¹³CO by C≡CPh.

Intermediate J is unlikely, since C≡CMe could be reductively eliminated instead of C≡CPh, although in this case the elimination is symmetry restricted to produce [PtCl(C≡CPh)(CO)L] isomer (III), CO trans to L, which is not observed. The other two intermediates H and K involve
displacement of the group trans to 13CO in each case, and this is also not expected from an oxidative addition; the Cl trans to phosphine in cis-[PtCl$_2$(13CO)L$_1$] is the one expected to be attacked either by S_{E2} or oxidative addition reactions. Both H and K involve oxidative addition to cis-[PtCl$_2$(13CO)L$_1$] however, so it appears that the most probable oxidative-addition routes involve addition to cis-[PtCl$_2$(13CO)(PMe$_2$Ph)].

The production of a substantial amount of cis-[Pt(C=CPH)$_2$-(13CO)(PMe$_2$Ph)] must arise from a secondary reaction of [PtCl(C=CPH)(13CO)(PMe$_2$Ph)] (II) and [Pt(C=CMo)(C=CPH)(CO)-(PMePh$_2$)].

Acetylide isomer (II) complexes do not disproportionate, so the only source of C=CPh is starting material. In this case C=CPh is transferred from a site trans to phosphine in [Pt(C=CMo)(C=CPh)(CO)L], and Cl is transferred from a site trans to phosphine in [PtCl(C=CPh)(13CO)L$_1$], which is consistent with an S_{E2} (cyclic) mechanism with transition state L. The two possible cis-oxidative addition intermediates related to the S_{E2} (cyclic) transition state could produce more than one set of products on reductive elimination. The only intermediate with a unique reductive elimination to give the observed products is M.
Although the two S_{E2} (cyclic) transition states, fig. 24 and L, are different, the oxidative addition intermediates, K and M, are very similar.

Intermediate M is formed by addition of $\text{Pt}-\text{C}≡\text{CPh}$ (from the mixed acetylide complex) to $[\text{PtCl}(\text{C}≡\text{CPh})(^{13}\text{CO})\text{L}^1]$ with displacement of $\text{C}≡\text{CPh}$ trans to ^{13}CO. The analogous reaction with $[\text{PtCl}(\text{C}≡\text{CMe})(\text{CO})\text{L}]$ would provide a possible mechanism for the extremely rapid isomerisation of $[\text{Pt}(\text{C}≡\text{CMe})(\text{C}≡\text{CPh})(\text{CO})\text{L}]$, provided the reaction was an oxidative addition/reductive elimination involving an intermediate analogous to M. An S_{E2} (cyclic) reaction would exchange $\text{C}≡\text{CMe}$ for Cl directly, and would not cause isomerisation (fig. 25).
The isomerisation of \([\text{Pt}(\text{C}*=\text{Me})(\text{C}*=\text{Ph})(\text{CO})\text{L}]\) in this reaction is perhaps indicative of oxidative addition/reductive elimination reactions being more plausible than \(S_{\text{E}}\text{2 (cyclic)}\) reactions for transfer of \(\text{C}*=\text{CR}\) in the system \([\text{Pt}(\text{C}*=\text{CR})(\text{C}*=\text{CR}^1)(\text{CO})\text{L}] + \text{cis-}[\text{PtCl}_2(1^3\text{CO})\text{L}]\).
b) With \([\text{PtCl}(C_6H_4CO_2Me-p)(CO)(\text{PMePh}_2)]\) isomer (I)

A solution of \([\text{Pt}(C=\text{CMe})(C=\text{CPh})(CO)(\text{PMePh}_2)]\), C=\text{CMe} \text{ trans} to phosphine, prepared from \([\text{PtCl}(C=\text{CPh})(CO)(\text{PMePh}_2)]\) (II) by the symmetrization method was mixed at -60°C with a solution of \([\text{PtCl}(C_6H_4CO_2Me-p)(CO)(\text{PMePh}_2)]\) isomer (I). The reaction was observed by \(^{31}\text{P}\) nmr spectroscopy and after 7 hours at -60°C, 60% of the starting material was consumed. The initial products were \([\text{PtCl}(C=\text{CPh})(CO)(\text{PMePh}_2)]\) (II) and a species identified as \([\text{Pt}(C_6H_4CO_2Me-p)(C=\text{CMe})(CO)(\text{PMePh}_2)]\), C=\text{CMe} \text{ trans} to CO, (table 12). After this time, isomerisation of \([\text{Pt}(C=\text{CMe})(C=\text{CPh})(CO)(\text{PMePh}_2)]\) was becoming apparent, (ratio of isomers ca. 5 to 1).

\[
\begin{align*}
\text{Pt} & \quad \text{Pt} \\
L & \quad \text{C=\text{CPh}} & \quad \text{L} & \quad \text{Cl} & \quad \text{L} & \quad \text{C} & \quad \text{CPh} & \quad \text{L} & \quad \text{C}=\text{CMe} \\
OC & \quad \text{C}=\text{CMe} & \quad OC & \quad \text{Ar} & \quad OC & \quad \text{Cl} & \quad OC & \quad \text{Ar}
\end{align*}
\]

L = \text{PMePh}_2, \text{Ar} = C_6H_4CO_2Me-p.

\([\text{PtAr}(C=\text{CMe})(CO)L], \text{Ar} \text{ trans} to \text{L}, \) was the only mixed acetylide aryl complex observed. In this reaction, the acetylide trans to phosphine has been exchanged with a chloride trans to CO, but this is the only chloride present in the system. Assuming this to be a single-step process, the reaction can be accounted for by an SE\(2\) (cyclic) mechanism with transition state \(\text{N}\), or by a cis-oxidative addition/reductive elimination with intermediate \(\text{P}\). This is the oxidative addition/reductive elimination reaction related to SE\(2\) (cyclic), with addition of Pt–C=\text{CMe} to aryl
isomer (I) and displacement of chloride by Pt.

The other possible cis-oxidative addition intermediate related to the S_{E2} (cyclic) transition state, i.e. the intermediate formed by addition of Pt-Cl to the bis-acetylide complex with displacement of C≡CMe by Pt, need not produce only the observed products on reductive elimination. No other cis-oxidative additions could give the observed products on reductive elimination.

When the other isomer of $[\text{Pt}(\equiv\text{CMe})(\equiv\text{CPh})(\text{CO})(\text{PMePh}_2)]$, that with C≡CPh trans to phosphine, and $[\text{PtCl}(\text{C}_6\text{H}_4\text{CO}_2\text{Me}-\text{p})(\text{CO})(\text{PMePh}_2)]$ isomer (I) were allowed to react under similar conditions the same stereospecificity was not observed. Almost equal amounts of $[\text{PtCl}(\equiv\text{CMe})(\text{CO})(\text{PMePh}_2)]$ (II), $[\text{PtCl}(\equiv\text{CPh})(\text{CO})(\text{PMePh}_2)]$ (II), $[\text{PtAr}(\equiv\text{CMe})(\text{CO})(\text{PMePh}_2)]$, Ar trans to phosphine, and $[\text{PtAr}(\equiv\text{CPh})(\text{CO})(\text{PMePh}_2)]$, Ar trans to phosphine, were produced as initial products. After 5½ hours at -60°C, only 25% of the starting material was consumed.
At this time, isomerisation of $[\text{Pt}(\mathrm{C} \equiv \mathrm{CMe})(\mathrm{C} \equiv \mathrm{CPh})(\mathrm{CO})-(\mathrm{PMePh}_2)]$ was not appreciable (ratio of isomers ca. 10 to 1). On warming briefly to room temperature isomerisation was rapid, (less than 2 minutes to reach a ratio of isomers of 2 to 1) and the amount of $[\text{PtCl}(\mathrm{C} \equiv \mathrm{CMe})(\mathrm{CO})L]$ (II) and $[\text{PtAr}(\mathrm{C} \equiv \mathrm{CPh})(\mathrm{CO})L]$ increased faster than the other two products. These two species are the ones which would be expected by analogy with the previous reaction.

There are a number of possible explanations for this difference in the reaction of the two different isomers.

(i) The reaction could be the same as with the first isomer, producing $[\text{PtCl}(\mathrm{C} \equiv \mathrm{CMe})(\mathrm{CO})L]$ isomer (II) and $[\text{PtAr}(\mathrm{C} \equiv \mathrm{CPh})-(\mathrm{CO})L]$, Ar trans to L, but that these compounds are less stable than $[\text{PtCl}(\mathrm{C} \equiv \mathrm{CPh})(\mathrm{CO})L]$ isomer (II) and $[\text{PtAr}-(\mathrm{C} \equiv \mathrm{CMe})(\mathrm{CO})L]$ for some reason, and there is a second, fast aryl transfer reaction:
(ii) The two isomers of \([\text{Pt}(\equiv \text{CMe})(\equiv \text{CPh})(\text{CO})\text{L}]\) react at different rates, that with \(\equiv \text{CMe} \text{trans} \) to phosphine reacting faster than the rate of isomerisation, that with \(\equiv \text{CPh} \text{trans} \) to phosphine reacting at a comparable rate to isomerisation, by the mechanisms previously suggested. This would account for the stereospecific reaction of \([\text{Pt}(\equiv \text{CMe})-(\equiv \text{CPh})(\text{CO})\text{L}]\), with \(\equiv \text{CMe} \text{trans} \) to phosphine, as \(\equiv \text{CMe} \) would be transferred to aryl isomer (I) faster than the material could isomerise. \([\text{Pt}(\equiv \text{CMe})(\equiv \text{CPh})(\text{CO})\text{L}]\), \(\equiv \text{CPh} \text{trans} \) to phosphine, would react at a similar rate to its rate of isomerisation, but the minor isomer would react faster than the major isomer and lead to all four observed products.

(iii) With \([\text{Pt}(\equiv \text{CMe})(\equiv \text{CPh})(\text{CO})\text{L}]\), \(\equiv \text{CPh} \text{trans} \) to phosphine, another oxidative addition/reductive elimination route operates to give \([\text{PtCl}(\equiv \text{CPh})(\text{CO})\text{L}]\) (II) and \([\text{PtAr}(\equiv \text{CMe})(\text{CO})\text{L}]\) in addition to the \(S_{E2} \) (cyclic)/indistinguishable oxidative addition route for the production of \([\text{PtCl}(\equiv \text{CMe})(\text{CO})\text{L}]\) (II) and \([\text{PtAr}(\equiv \text{CMe})(\text{CO})\text{L}]\).

\[\text{Diagrams showing structures of complexes.}\]
Intermediate P' is the one equivalent to intermediate P for the reaction of the other isomer. Intermediate Q comes from oxidative addition of Pt - Cl to bisacetylide, with Cl displacing C≡CPh. Reductive elimination from P' would account for [PtCl(C≡CMe)(CO)L] (II) and [PtAr(C≡CPh)(CO)L], while reductive elimination from Q would account for [PtCl-(C≡CPh)(CO)L] (II) and [PtAr(C≡CMe)(CO)L].

Although any of the above reasons, (i), (ii) and (iii), may account for the difference observed in the reactions of the two isomers of [Pt(C≡CMe)(C≡CPh)(CO)L] with aryl isomer (I), this was the only example of such a difference in the reactions of the two isomers found, and perhaps this reaction should be repeated before such explanations are invoked.

The isomerisation of [Pt(C≡CR)(C≡CR')(CO)L] in the above reactions is possible by the same route proposed in the reaction with cis-[PtCl₂(CO)L], namely a reaction between starting material and acetylide isomer (II).

c) With [PtCl(C₆H₄CO₂Me-p)(CO)(PMePh₂)] isomer (II)

A solution of [Pt(C≡CMe)(C≡CPh)(CO)(PMePh₂)], C≡CPh trans to phosphine, was mixed at -60°C with a solution of [PtCl(C₆H₄CO₂Me-p)(CO)(PMePh₂)] isomer (II) and the reaction was observed by ³¹P nmr spectroscopy. The initial products were [PtCl(C≡CMe)(CO)(PMePh₂)] isomer (II) and a species identified as [Pt(C₆H₄CO₂Me-p)(C≡CPh)(CO)(PMePh₂)], C≡CPh trans to PMePh₂, (table 12). On brief warming of the mixture to room temperature, large amounts of the other isomer of [Pt(C≡CMe)(C≡CPh)(CO)(PMePh₂)] appeared, and also
some \([\text{PtCl}(\text{C}≡\text{Ph})(\text{CO})(\text{PMePh}_2)]\) isomer (II). The amount of \([\text{PtCl}(\text{C}≡\text{Me})(\text{CO})(\text{PMePh}_2)]\) (II) present was much more than the amount of \([\text{Pt}(\text{C}_6\text{H}_4\text{CO}_2\text{Me-p})(\text{C}≡\text{Ph})(\text{CO})(\text{PMePh}_2)]\) detected; presumably this latter species was decomposing or was not very soluble in CDC\(_3\) at -60°C.

When the same reaction was performed with the other isomer of \([\text{Pt}(\text{C}≡\text{Me})(\text{C}≡\text{Ph})(\text{CO})(\text{PMePh}_2)]\), i.e. the isomer with \(\text{C}≡\text{Me}\) \text{trans} to \(\text{PMePh}_2\), the initial products were \([\text{PtCl}(\text{C}≡\text{Ph})(\text{CO})(\text{PMePh}_2)]\) isomer (II) and a species, which was too weak to determine its platinum-phosphorus coupling constant, at +0.2 ppm. This was assigned as \([\text{Pt}(\text{C}_6\text{H}_4\text{CO}_2\text{-Me-p})(\text{C}≡\text{CMe})(\text{CO})(\text{PMePh}_2)]\), \(\text{C}≡\text{CMe} \text{trans} \) to \(\text{PMePh}_2\), by analogy with the reaction of the other isomer. Again, on warming to room temperature, isomerisation of \([\text{Pt}(\text{C}≡\text{CMe})(\text{C}≡\text{CPh})(\text{CO})(\text{PMePh}_2)]\) was rapid, and \([\text{PtCl}(\text{C}≡\text{CMe})(\text{CO})(\text{PMePh}_2)]\) isomer (II) also began to appear. The amount of \([\text{Pt}(\text{C}_6\text{H}_4\text{CO}_2\text{Me-p})(\text{C}≡\text{CMe})(\text{CO})(\text{PMePh}_2)]\) was again much less than the \([\text{PtCl}(\text{C}≡\text{Ph})(\text{CO})(\text{PMePh}_2)]\) (II).

This reaction involves an exchange of groups \text{trans} to phosphine, which is consistent with an \(S_{E2}\) (cyclic) mechanism:
The only cis-oxidative addition/reductive elimination routes capable of giving the products are the ones whose intermediates are related to the above transition state by Pt-Hg bond formation:

\[
\begin{align*}
\text{[PtCl(C≡CR)(CO)L]} & \quad \text{[PtCl(C≡CR\text{1})(CO)L]} \\
\text{R} & \quad \text{S}
\end{align*}
\]

Intermediate \(R \), formed by addition of Pt–C≡CR\text{1} to aryl isomer (II), with displacement of Cl by Pt gives the observed products. The other intermediate, \(S \), formed by addition of Pt–Cl to bisacetylide complex can give the observed products on reductive elimination of C≡CR\text{1}, but could also eliminate C≡CR to form [PtAr(C≡CR)(CO)L] and [PtCl(C≡CR\text{1})(CO)L] isomer (III), which are not observed. However, a specific reductive elimination of C≡CR\text{1} cannot be ruled out.

In these reactions [PtCl(C≡CR)(CO)L] isomer (II) is again present, providing a route for the rapid isomerisation of the mixed bis-acetylide complexes, [Pt(C≡CR)(C≡CR\text{1})(CO)-L], which are stable to isomerisation when pure, and in the absence of mercury byproduct. That this is the mechanism of isomerisation is supported by the fact that a mixture of cis-[PtPh\textsubscript{2}(CO)(PMePh\textsubscript{2})] and [Pt(C≡CMe)(C≡CPh)(CO)(PMePh\textsubscript{2})], C≡CPh trans to phosphine, not only does not react, but the
bisacetylide isomerises much more slowly, with only 30\% isomerisation in 20 minutes at room temperature. That any isomerisation is observed at all may be due to the cis-[PtPh₂(CO)(PMePh₂)] being contaminated with small amounts of [PtCl(Ph)(CO)(PMePh₂)] isomers (I) and (II), which should react in the same way as the corresponding C₆H₄CO₂Me- complex and provide a small amount of [PtCl(C≡CMe)(CO)-(PMePh₂)] isomer (II) to cause isomerisation.

Reactions of cis-[Pt(C≡CR)₂(CO)(PMePh₂)] with HgPh₂

When a solution of cis-[Pt(C≡CPh)₂(CO)(PMePh₂)], prepared by the symmetrization route using Hg(C≡CPh)₂ and [Et₄N]Cl, was mixed with a solution of HgPh₂ at -60°C there was no reaction in 2½ hours. On warming the mixture, a slow reaction proceeded, the initial product being [PtPh(C≡CPh)-(CO)(PMePh₂)], Ph trans to phosphine, (table 12). A second, unidentified product also became apparent, with ³¹P nmr parameters of δ = +0.8 ppm, ¹Jₚₚ₂ₜ = 2532 Hz at room temperature. After 3 hours at room temperature, 70\% of the starting material was consumed, and the products were in the ratio shown below, (based on the intensity of peaks in the ³¹P nmr spectrum).

\[
\begin{array}{c}
\text{Pt} \\
\text{C≡CPh} \\
\text{OC}
\end{array}
+ \text{HgPh₂} \rightarrow
\begin{array}{c}
\text{Pt} \\
\text{C≡CPh} \\
\text{Ph}
\end{array}
+ \begin{array}{c}
\text{L} \\
\text{C≡CPh} \\
\text{OC}
\end{array}
\]

80\% 20\%

On being left to react further overnight, cis-[PtPh₂(CO)-(PMePh₂)], trans-[PtCl(Ph)(PMePh₂)]₂ and trans-[PtCl(CO)(PMePh₂)]₂ were also produced; the amount of [PtPh(C≡CPh)-(CO)(PMePh₂)] decreased relative to the unknown species.
Table 12: 31P nmr parameters of mixed arylacetylide platinum complexes in CDCl$_3$ at -60°C.

<table>
<thead>
<tr>
<th>Complex, $L = \text{PMePh}_2$, Ar = C$_6$H$_4$CO$_2$Me-P</th>
<th>δ (ppm)</th>
<th>J_{PtP} (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\text{PtAr(C=CMe)(CO) L}], \text{C=CMe trans to L}$</td>
<td>+0.1</td>
<td>2418</td>
</tr>
<tr>
<td>$[\text{PtAr(C=CPh)(CO) L}], \text{C=CPh trans to L}$</td>
<td>+0.5</td>
<td>2439</td>
</tr>
<tr>
<td>$[\text{PtPh(C=CMe)(CO) L}], \text{C=CMe trans to L}$</td>
<td>+1.1</td>
<td>2449</td>
</tr>
<tr>
<td>$[\text{PtPh(C=CPh)(CO) L}], \text{Ph trans to L}(a)$</td>
<td>+0.2</td>
<td>1389</td>
</tr>
<tr>
<td>$[\text{PtPh(C=CMe)(CO) L}], \text{Ph trans to L}(b)$</td>
<td>+0.2</td>
<td>1398</td>
</tr>
<tr>
<td>$[\text{PtAr(C=CMe)(CO) L}], \text{Ar trans to L}(c)$</td>
<td>-0.1</td>
<td>1444</td>
</tr>
<tr>
<td>$[\text{PtAr(C=CPh)(CO) L}], \text{Ar trans to L}$</td>
<td>-0.2</td>
<td>1431</td>
</tr>
<tr>
<td>$[\text{Pt}_2(\text{COPh})_2(\mu-\text{C=CMe})_2L_2]$</td>
<td>(d)</td>
<td>4104</td>
</tr>
<tr>
<td>$[\text{Pt}_2(\text{COPh})_2(\mu-\text{C=CPh})_2L_2]$</td>
<td>+0.3</td>
<td>4176</td>
</tr>
</tbody>
</table>

Parameters at 25°C:–

(a) -0.1 ppm, 1368 Hz.
(b) 0.0 ppm, 1369 Hz.
(c) -0.4 ppm, 1419 Hz.
(d) +0.1 ppm, 4161 Hz.
The 31P nmr parameters of the unknown complex are typical of a trans-bisphosphine platinum complex, e.g.: $^{\text{trans-}}$[PtCl(C≡CPh)(PMePh$_2$)$_2$] has parameters $\delta = +5.1$ ppm, $^1J_{\text{PtP}} = 2546$ Hz and $^{\text{trans-}}$[PtCl$_2$(PMePh$_2$)$_2$] parameters $\delta = +4.3$ ppm, $^1J_{\text{PtP}} = 2541$ Hz. Acetylide groups appear to have a similar nmr cis-influence to chlorides, e.g.: $[^{\text{cis-}}]$[PtCl(Ph)(CO)(PMePh$_2$)] isomer (I), $\delta = +6.8$ ppm, $^1J_{\text{PtP}} = 1402$ Hz and $[^{\text{cis-}}]$[Pt(Ph)(C≡CPh)(CO)(PMePh$_2$)], $\delta = -0.1$ ppm, $^1J_{\text{PtP}} = 1368$ Hz. This suggests that the unknown species, $\delta = +0.8$ ppm, $^1J_{\text{PtP}} = 2532$ Hz, could be $^{\text{trans-}}$[Pt(C≡CPh)$_2$(PMePh$_2$)$_2$].

When solutions of cis-$[^{\text{cis-}}]$[Pt(C≡CMe)$_2$(CO)(PMePh$_2$)] were mixed, the reaction was more complicated. In one case, 30% of the starting material was consumed in 20 minutes at room temperature, producing, initially, only $[^{\text{cis-}}]$[Pt(Ph)(C≡CMe)(CO)](PMePh$_2$), Ph trans to phosphine, (table 12). Other products subsequently appeared and, after 3 hours at room temperature, all of the $^{\text{cis-}}$[Pt(C≡CMe)$_2$(CO)(PMePh$_2$)] had been consumed. $[^{\text{cis-}}]$[PtPh(C≡CMe)(CO)(PMePh$_2$)] accounted for 40% of the total 31P intensity of the products. Other products were: an unknown species, with $\delta = +8.0$ ppm, $^1J_{\text{PtP}} = 2428$ Hz (at RT), $^{\text{trans-}}$[PtCl(C≡CMe)(PMePh$_2$)$_2$], $^{\text{trans-}}$[PtCl(Ph)(PMePh$_2$)$_2$] and $^{\text{cis-}}$[PtPh$_2$(CO)(PMePh$_2$)], which were all of approximately equal intensity after the reaction had been left overnight, (tables 11, 13).

In a second reaction, which contained some excess (Et$_4$N)Cl, $[^{\text{cis-}}]$[PtPh(C≡CMe)(CO)(PMePh$_2$)], Ph trans to PMePh$_2$, was again the initial product, along with an unidentified
species with $\delta = +1.2$ ppm, $^{1}J_{PtP} = 2583$ Hz (at room temperature). This is similar to the unknown compound produced in the C≡CPh reaction, thus it could be trans-[Pt(C≡CMe)$_2$(PMePh$_2$)$_2$]. Other products also appeared later, including the anion cis-[PtCl$_2$(COPh)(PMePh$_2$)]$^-$, (presumably from reactions involving the excess chloride), and trans-[PtCl(C≡CMe)(PMePh$_2$)$_2$]. After 2 hours at room temperature, 80% of the cis-[Pt(C≡CMe)$_2$(CO)(PMePh$_2$)] had been consumed. After 4 to 5 hrs., cis-[PtPh$_2$(CO)(PMePh$_2$)] had become the major product, and trans-[PtCl(Ph)(PMePh$_2$)$_2$] had also appeared.

Complexes such as trans-[PtCl(Ph)L$_2$], trans-[PtCl(COPh)L$_2$], trans-[PtCl(C≡CR)L$_2$], trans-[Pt(C≡CR)$_2$L$_2$] etc. can be considered as decomposition products, since they are formed as a result of phosphine liberation. In each case, [PtPh-(C≡CR)(CO)L] is the initial product, and subsequent reaction of this with organomercury byproduct could form cis-[PtPh$_2$(CO)L]:

When a solution of cis-[PtPh$_2$(CO)(PMePh$_2$)] was mixed with a solution of Hg(C≡CMe)$_2$, there was no reaction within 12 hours at room temperature, except for some decomposition,
138.

and production of \(\text{trans-}[\text{PtCl(Ph)(PMePh}_2]_2 \), thus obviously any \(\text{cis-}[\text{PtPh}_2(\text{CO})(\text{PMePh}_2)] \) produced in the above scheme would be relatively stable in the presence of \(\text{Hg(C≡CMe)}_2 \) byproduct.

The reaction between \(\text{cis-}[\text{Pt(C≡CR)}_2(\text{CO})L] \) and \(\text{HgPh}_2 \) gives the product expected for an \(S_E^2 \) (cyclic) reaction, but several \(\text{cis-} \) oxidative addition/reductive elimination reactions would also lead to the observed product, \([\text{PtPh(C≡CR)}(\text{CO})L]) \), \(\text{Ph trans to L} \). The reaction of \([\text{PtPh(C≡CR)}(\text{CO})L] \) with \(\text{PhHgC≡CR} \) byproduct to produce \(\text{cis-}[\text{PtPh}_2(\text{CO})L] \) is less likely to be an \(S_E^2 \) (cyclic) mechanism, since the group \text{trans} to \(\text{CO} \) is replaced, than a \(\text{cis-} \) oxidative/reductive elimination sequence, of which several are possible.

Complexes \([\text{PtR(C≡CR') (CO)L}] \), \(\text{C≡CR} \text{ trans to L} \).

\(\text{Hg(C≡CMe)}_2 \) reacts rapidly at room temperature with \([\text{PtCl(Ph)(CO)(PMePh}_2] \), \(\text{Ph trans to CO} \), (isomer (II)), to form mainly \([\text{PtPh(C≡CMe)}(\text{CO})(\text{PMePh}_2)] \), the \(^{31} \text{P} \) nmr characteristics of which indicate that \(\text{Ph} \) is \text{trans} to \(\text{CO} \), (table 12).

\[
\text{L} \quad \text{Ph} \\
\text{Pt} \quad \quad + \quad \text{Hg(C≡CMe)}_2 \rightarrow \quad \text{L} \quad \text{Ph} \\
\text{OC} \quad \text{Cl} \quad \quad \quad \quad + \quad \text{MeC≡CHgCl} \\
\quad \quad \text{OC} \quad \quad \text{C≡CMe}
\]

The reaction did not stop at this point; a large amount of \(\text{cis-}[\text{Pt(C≡CMe)}_2(CO)(\text{PMePh}_2)] \) was produced, presumably by a reaction between \([\text{PtPh(C≡CMe)}(\text{CO})(\text{PMePh}_2)] \) and \(\text{MeC≡CHgCl} \) byproduct. Some \(\text{trans-}[\text{PtCl(Ph)(PMePh}_2]_2 \) was also produced later.
139.

\[\text{[PtCl(C}_6\text{H}_4\text{CO}_2\text{Me}-\text{p})(\text{CO})(\text{PMePh}_2)] \text{ isomer (II)} \] reacted similarly with Hg(C\equiv\text{CMe})_2 to produce \[\text{[Pt(C}_6\text{H}_4\text{CO}_2\text{Me}-\text{p})\text{C\equiv\text{CMe}}(\text{CO})(\text{PMePh}_2)] \], C\equiv\text{CMe} trans to PMePh$_2$, but with lesser amounts of side-products. Only a small amount of trans-[PtCl(C$_6$H$_4$CO$_2$Me-p)(PMePh$_2$)$_2$] was produced in this reaction, and no cis-[Pt(C\equiv\text{CMe})$_2$(CO)(PMePh$_2$)] was detected. The complex, \[\text{[Pt(C}_6\text{H}_4\text{CO}_2\text{Me}-\text{p})(\text{C\equiv\text{CMe}})(\text{CO})(\text{PMePh}_2)] \], C\equiv\text{CMe} trans to phosphine, is the one which was observed in the reaction between \[\text{[Pt(C\equiv\text{Me})(\text{C\equiv\text{CPh}})(\text{CO})(\text{PMePh}_2)]} \], C\equiv\text{CMe} trans to PMePh$_2$, and \[\text{[PtCl(C}_6\text{H}_4\text{CO}_2\text{Me}-\text{p})(\text{CO})(\text{PMePh}_2)] \] isomer (II).

The reaction of \[\text{[PtCl(Ar)(CO)L]} \text{ isomer (II), (Ar = Ph, C}_6\text{H}_4\text{CO}_2\text{Me}-\text{p}; L = PMePh}_2 \], with Hg(C\equiv\text{CMe})$_2$ to replace the chloride directly with C\equiv\text{CMe} is consistent with an SE$_2$ (cyclic) mechanism. A cis-oxidative addition of Hg(C\equiv\text{CMe})$_2$, with Hg displacing the chloride is also possible, and this is the oxidative addition/reductive elimination mechanism related to SE$_2$(cyclic) by Pt-Hg bond formation. However, in the reaction between cis-[PtCl$_2$(CO)L] and Hg(C\equiv\text{CR})$_2$, forming \[\text{[PtCl(C\equiv\text{CR})(CO)L]} \], C\equiv\text{CR} trans to L, (isomer (I)), it was considered that an SE$_2$ (cyclic) mechanism operated. This reaction is very similar to the one between \[\text{[PtCl(Ar)(CO)L]} \text{ (II) and Hg(C\equiv\text{CMe})$_2$, therefore an SE$_2$ (cyclic) mechanism is perhaps more plausible, (fig. 26).} \]
In the case where Ar = Ph, large amounts of cis-\([Pt(C≡CMe)_2(CO)(PMePh_2)]\) were produced; this is most likely to be an oxidative addition/reductive elimination reaction between \([PtPh(C≡CMe)(CO)L]\) and \(ClHg(C≡CMe)\).

Several intermediates leading to the observed products are possible, but in the analogous reaction of \([PtCl(C≡CMe)-(CO)L]\) isomer (I) with \(ClHg(C≡CMe)\) to give cis-\([Pt(C≡CMe)_2-(CO)L]\), a trans-oxidative addition/cis-reductive elimination route was favoured. In the reaction of \([PtPh(C≡CMe)(CO)L]\) and \(ClHg(C≡CMe)\) such a route, via intermediate \(T\) is possible, although cis-oxidative addition of \(ClHg-C≡CMe\) with displacement of Ph by Hg giving intermediate \(U\) or displacement of \(C≡CMe\) (on Pt) by \(C≡CMe\), which also leads to intermediate \(T\), would also lead to the observed products.
[PtCl(C≡CR)(CO)(PMePh₂)] isomer (II) and HgPh₂

[PtCl(C≡CPh)(CO)(PMePh₂)] isomer (II) reacts slowly at -20°C, rapidly at room temperature, with HgPh₂ to produce a species with 31P nmr parameters (at 25°C) of δ = -0.1 ppm, J_{PtP} = 1368 Hz. This is consistent with Ph trans to PMePh₂, and this species is assigned as [PtPh-(C≡CPh)(CO)(PMePh₂)], Ph trans to PMePh₂.

\[
\text{L} \quad \text{C≡CPh} \quad \text{Pt} \quad \text{OC} \quad \text{Cl} \quad + \text{HgPh₂} \rightarrow \quad \text{L} \quad \text{C≡CPh} \quad \text{Pt} \quad \text{OC} \quad \text{Ph} \quad + \text{PhHgCl}
\]

[PtPh(C≡CPh)(CO)(PMePh₂)] was the only product, initially, but on being left at room temperature it decomposed, producing considerable amounts of [Pt₂(COPh₂)₂Cl₂(PMePh₂)₂], cis-[PtPh₂(CO)(PMePh₂)], [PtCl(Ph)(CO)-(PMePh₂)] isomer (I) and trans-[PtCl(Ph)(PMePh₂)₂], (table 13).

[PtPh(C≡CPh)(CO)(PMePh₂)] is the product expected from an S_{E2} (cyclic) mechanism, via a transition state below:
S_{E2} (cyclic) transition state.

The decomposition products could arise from subsequent reactions of $[\text{PtPh}(\text{C} \equiv \text{CPh})(\text{CO})(\text{PMePh}_2)]$ with the PhHgCl byproduct, probably by oxidative addition/reductive elimination sequences. Oxidative addition of the Hg-Ph bond to $[\text{PtPh}(\text{C} \equiv \text{CPh})(\text{CO})(\text{PMePh}_2)]$ could produce cis-$[\text{PtPh}_2(\text{CO})(\text{PMePh}_2)]$, while oxidative addition of the Hg-Cl bond could produce $[\text{PtCl}(\text{Ph})(\text{CO})(\text{PMePh}_2)]$ (I) which would, in turn, produce $[\text{Pt}_2(\text{COPh})_2\text{Cl}_2(\text{PMePh}_2)_2]$ by insertion, (fig. 27).

(a) trans-oxidative addition of Hg-Cl.
(b) cis-oxidative addition of Hg-Ph.

Figure 27.
When a similar reaction was performed with $[\text{PtCl}(\text{C} \equiv \text{CMe})(\text{CO})(\text{PMePh}_2)]$ isomer (II) and HgPh$_2$, both $[\text{PtPh}(\text{C} \equiv \text{CMe})(\text{CO})(\text{PMePh}_2)]$, Ph trans to PhMe, (table 12) and cis-$[\text{Pt}(\text{C} \equiv \text{CMe})_2(\text{CO})(\text{PMePh}_2)]$ were initially produced, (in approximately equal amounts at 40% reaction). From then on, the amount of cis-$[\text{Pt}(\text{C} \equiv \text{CMe})_2(\text{CO})(\text{PMePh}_2)]$ decreased, while the $[\text{PtPh}(\text{C} \equiv \text{CMe})(\text{CO})(\text{PMePh}_2)]$ increased. After 3 minutes reaction at room temperature another species began to grow in which had ^{31}P parameters, at -60°C, of $\delta = +0.2$ ppm, $^{1}\text{J}^{\text{PtP}} = 4104$ Hz, and had broad platinum satellites. This material grew in slowly and appeared to be formed from $[\text{PtPh}(\text{C} \equiv \text{CMe})(\text{CO})(\text{PMePh}_2)]$. At 15 mins reaction (at RT), the ratio of $[\text{PtPh}(\text{C} \equiv \text{CMe})(\text{CO})(\text{PMePh}_2)]$ to unknown species (based on the intensities of their ^{31}P signals) was 2 to 1. The only other material present at this time was a small amount of $[\text{PtCl}(\text{Ph})(\text{CO})(\text{PMePh}_2)]$(I). After 1 hr. at 25°C, the ratio of the two species had changed to 1 to 2, approximately, but by then the solution contained large amounts of $[\text{PtCl}(\text{Ph})(\text{CO})(\text{PMePh}_2)]$ (I), $[\text{Pt}_2(\text{CO})_2\text{Cl}_2(\text{PMePh}_2)_2]$, trans-$[\text{PtCl}(\text{Ph})(\text{PMePh}_2)_2]$ and trans-$[\text{PtCl}(\text{CO})_2(\text{PMePh}_2)_2]$.

\[
\begin{array}{c}
\text{Pt} + \text{HgPh}_2 \rightarrow \text{Pt} + \text{Pt} \\
\text{OC} \text{Cl} \text{C} \equiv \text{CMe} \text{OC} \text{Ph} \text{C} \equiv \text{CMe} \\
\text{Pt} \text{Pt} \\
\text{OC} \text{Cl} \text{C} \equiv \text{CMe} \\
\end{array}
\]

$\delta = +0.2$ ppm, $^{1}\text{J}^{\text{PtP}} = 4104$ Hz.
The species with parameters $\delta = +0.2 \text{ ppm}$, $^{1}J_{\text{PtP}} = 4104 \text{ Hz}$ has a coupling constant indicative of a bridged platinum dimer. For example, $[\text{Pt}_2(\text{SCH}_2\text{Ph})_2(\text{COPh})_2(\text{PMePh}_2)_2]$ has $^{1}J_{\text{PtP}} = 4048 \text{ Hz}$.173 This, and the result of the reaction between $[\text{PtClPh(CO)(PMePh}_2)]$ isomer (I) and $\text{Hg(C} \equiv \text{CMe)}_2$, described later in this chapter, in which this species is also formed, suggests that it is a carbonyl inserted dimer with bridging acetylides, probably in equilibrium with the complex $[\text{PtPh(C} \equiv \text{CMe})(\text{CO})(\text{PMePh}_2)]$, Ph trans to PMePh$_2$, as shown below:

\[
\text{MePh}_2\text{P} \quad \text{C} \equiv \text{Me} \quad \text{O} \quad \text{CPh} \\
\text{PhC} \quad \text{MeC} \quad \text{C} \quad \text{PMePh}_2
\]

This type of acetylide-bridge is known, for example in the product formed from the reaction of $[(\eta^5-\text{C}_5\text{H}_5)^2\text{Ti}-(\text{C} \equiv \text{CPh})_2]$ and $[\text{Pt}(\text{C}_2\text{H}_4)(\text{PR}_3)]$ in which C_2H_4 is lost, and the $\text{C} \equiv \text{CPh}$ groups on Ti π-bond to platinum, and in the platinum-bonded complex, $[\text{Pt}_2(\sigma-\text{C} \equiv \text{CPh})(\mu-(1-\sigma,1,2-\pi-\text{C} \equiv \text{CPh}))(\mu-\text{SiMe}_2)(\text{PR}_3)_2]$ complex, which has been isolated and had its structure confirmed by X-ray crystallography.174
The reason for initial production of cis-[Pt(C≡CMe)₂(CO)(PMePh₂)] in the above reaction is not clear, nor indeed is the source of the extra C≡CMe, since no species are produced which do not contain C≡CMe (i.e., no species detectable by ³¹P nmr spectroscopy).

The symmetrization method has been used to prepare acetylide complexes, [PtCl(C≡CR)(CO)L] isomer (II) and cis-[Pt(C≡CR)₂(CO)L], because the reaction is clean, and mercury byproduct can be removed as the insoluble [Et₄N]₂[Hg₂Cl₆]. In the above reactions, the products rapidly decomposed, presumably as a result of reactions with PhHgCl byproduct. In an effort to prevent such decomposition, the reactions were repeated using 0.5 equivalents of HgPh₂ and 0.5 equivalents of [Et₄N]Cl, with the hope that all of the phenyl groups on mercury would be transferred to give [PtPh(C≡CR)⁻(CO)L] and [Et₄N]₂[Hg₂Cl₆].

When [PtCl(C≡CPh)(CO)(PMePh₂)] isomer (II) was mixed with 0.5 equivalents of HgPh₂ and [Et₄N]Cl, 50% of the isomer (II) reacted within 3 minutes at room temperature to produce only [PtPh(C≡CPh)(CO)(PMePh₂)], Ph trans to PMePh₂. After this, a species with parameters δ = -5.5 ppm, ¹J_PtP = 4955 Hz (at -60°C) grew in. This species is the anionic carbonyl insertion product, cis-[PtCl₂(COPh)⁻(PMePh₂)]⁻ which has previously been obtained by addition of Cl⁻ to [PtCl(Ph)(CO)(PMePh₂)] isomer (I).¹⁷⁰ cis-[PtCl₂(COPh)(PMePh₂)]⁻ became the major product after 3 hours at room temperature, with the only other observable species being trans-[PtCl(C≡CPh)(PMePh₂)₂] and the unknown
species, \((\delta = +0.8 \text{ ppm}, 1J_{PtP} = 2532 \text{ Hz})\) which was suggested to be \(\text{trans-}[\text{Pt}(\ce{C≡CPh})_2(\text{PMePh}_2)_2]\).

Similarly, when \([\text{PtCl}(\ce{C≡CMe})(\text{CO})(\text{PMePh}_2)]\) isomer (II) was mixed with 0.5 equivalents of \(\text{HgPh}_2\) and \([\text{Et}_4\text{N}]\text{Cl}\), \([\text{PtPh}(\ce{C≡CMe})(\text{CO})(\text{PMePh}_2)]\), \(\text{Ph trans to PMePh}_2\), was the first product, but both \(\text{cis-}[\text{PtCl}_2(\text{COPh})(\text{PMePh}_2)]^-\) and \(\text{cis-}[\text{Pt}(\ce{C≡CMe})(\text{CO})(\text{PMePh}_2)]\) soon began to be produced. \(\text{cis-}[\text{PtCl}_2(\text{COPh})(\text{PMePh}_2)]^-\) rapidly became the major product, and only a little \([\text{PtPh}(\ce{C≡CMe})(\text{CO})(\text{PMePh}_2)]\) was left. A small amount of the dimeric species, \([\text{Pt}_2(\text{COPh})_2(\mu-\ce{C≡CMe})_2(\text{PMePh}_2)_2]\) also appeared at the latter stages of the reaction.

\[
\begin{align*}
\text{Pt} & \quad \text{Cl} \quad \text{Cl} \\
\text{OC} & \quad \text{Cl} \quad \text{Cl} \\
\text{Pt} & \quad \text{C≡CR} \\
\text{Pt} & \quad \text{C≡CR} \\
\text{L} & \quad \text{HgPh}_2 \quad \text{L} \\
\text{Pt} & \quad \text{Cl} \quad \text{Cl} \\
\text{OC} & \quad \text{Ph} \quad \text{Ph} \\
\text{L} & \quad \text{Pt} \\
\end{align*}
\]

In these reactions, \(\text{Cl}^-\) does not merely symmetrize the \(\text{PhHgCl}\) byproduct, but instead seems to displace \(\text{C≡CR}\) from \([\text{PtPh}(\ce{C≡CGR})(\text{CO})(\text{PMePh}_2)]\) and promote carbonyl insertion. In this case, the symmetrization method has not worked as it was expected to.

In fact, when the symmetrization method was used to prepare \([\text{PtCl}(\text{CO})(\text{Ph})(\text{PMePh}_2)]\) isomer (I) by reacting \(\text{cis-}[\text{PtCl}_2(\text{CO})(\text{PMePh}_2)]\) with 0.5 equivalents of \(\text{HgPh}_2\) and \([\text{Et}_4\text{N}]\text{Cl}\), it was found that about 50% of the starting material did not react, and the rest produced \(\text{cis-}[\text{PtCl}_2(\text{COPh})(\text{PMePh}_2)]^-\). This means that \(\text{Cl}^-\) must have cleaved \([\text{Pt}_2(\text{COPh})_2\text{Cl}_2(\text{PMePh}_2)_2]\), (in equilibrium with
isomer (I)), faster than it symmetrized the PhHgCl. Thus it appears that the symmetrization method for preparing platinum complexes is limited to the preparation of complexes which can not react with Cl⁻.

\[[\text{PtCl}(\text{Ar})(\text{CO})(\text{PMePh}_2)] \text{ isomer (I)} \text{ and Hg(C≡CR)}_2 \]

\[[\text{PtCl}(\text{Ar})(\text{CO})(\text{PMePh}_2)] \text{ isomer (I)}, \text{ Ar trans to PMePh}_2, \]
exists in equilibrium with \[[\text{Pt}_2(\text{COAr})_2\text{Cl}_2(\text{PMePh}_2)_2] \] in solution. When Ar=Ph, the equilibrium position at 38°C is 54% dimer, 46% monomer and when Ar = C₆H₄CO₂Me-₉, it is 12% dimer and 88% monomer. Low temperature tends to displace the equilibrium towards the inserted dimer.

When a mixture of \[[\text{PtCl}(\text{Ph})(\text{CO})(\text{PMePh}_2)] \text{ isomer (I)} \] and \[[\text{Pt}_2(\text{COPh})_2\text{Cl}_2(\text{PMePh}_2)_2] \], which had been allowed to equilibrate, was mixed with Hg(C≡CM)₂ at -60°C, the initial product was a species with a very broad peak and satellites with \(\delta = +0.5 \text{ ppm}, 1J_{\text{PtP}} = 4113 \text{ Hz} \). The parameters of this species varied as the reaction progressed, changing to \(\delta = +0.3 \text{ ppm}, 1J_{\text{PtP}} = 4108 \text{ Hz after 1 hour at -60°C} \). This was the major product, and the spectrum did not change over a further 1½ hours at -60°C, and the peaks remained broad. However, when the solution was warmed very briefly to room temperature and cooled again, the peak was found to be sharp, although the satellites were broadened. The parameters had changed to \(\delta = +0.2 \text{ ppm}, 1J_{\text{PtP}} = 4106 \text{ Hz, which are those of the complex identified as [Pt}_2(\text{COPh})_2(\mu-C≡\text{CM})_2(\text{PMePh}_2)_2]. \) Some cis-
\[[\text{Pt}(\text{C≡CM})_2(\text{CO})(\text{PMePh}_2)] \] had also appeared. After 10 minutes at room temperature \[[\text{PtPh}(\text{C≡CM})(\text{CO})(\text{PMePh}_2)] \],
Ph trans to PMePh₂, had grown in, (to half of the ³¹P intensity of the dimer) and the amount of cis-[Pt(C≡CMe)₂(CO)(PMePh₂)] had also increased. Later, both [PtCl(Ph)-(CO)(PMePh₂)] isomer (I) and [Pt₂(COPh)₂Cl₂(PMePh₂)₂] began to appear.

The final ratio of [Pt₂(COPh)₂(μ-C≡CMe)₂(PMePh₂)₂] to [PtPh(C≡CMe)(CO)(PMePh₂)] obtained in this reaction was the same as that obtained in the reaction of [PtCl(C≡CMe)-(CO)(PMePh₂)] isomer (II) with HgPh₂, (a 2:1 ratio in the ³¹P intensities, which is equivalent to a 1 to 1 mixture of complexes). This implies that the two species are in equilibrium with each other.

When [PtCl(C₆H₄CO₂Me-镖)(CO)(PMePh₂)] isomer (I) was used, which is largely isomer (I) at equilibrium with [Pt₂(C₆H₄CO₂Me-镖)₂Cl₂(PMePh₂)₂], the initial product was [Pt(C₆H₄CO₂Me-镖)(C≡CMe)(CO)(PMePh₂)], C₆H₄CO₂Me-镖 trans to PMePh₂ (table 12). The geometry of this complex was substantiated by its ¹H nmr spectrum, with ⁵JₚH = 3 Hz showing that C≡CMe is cis to phosphine, (table 10).
Some \(\text{cis-}[\text{Pt}(\equiv\text{CMe})_2(\text{CO})(\text{PMePh}_2)] \) grew in later, but at no time was any species seen which would correspond to the acetylide bridged species obtained when \(\text{Ar} = \text{Ph} \).

![Chemical structure diagram]

The reaction between \([\text{PtCl(Ph)(CO)(PMePh}_2]] \) isomer (I) equilibrated with \([\text{Pt}_2(\text{COPh})_2\text{Cl}_2(\text{PMePh}_2)_2] \) and \(\text{Hg}(\equiv\text{CPh})_2 \) followed a similar course to the reaction with \(\text{Hg}(\equiv\text{CMe})_2 \). The initial products, at \(-60^\circ\text{C}\), were a species with broad peak and satellites, \(\delta = +0.9 \text{ ppm}, 1J_{\text{PtP}} = 4168 \text{ Hz} \), and a small amount of \([\text{PtPh}(\equiv\text{CPh})(\text{CO})(\text{PMePh}_2)] \), Ph trans to PMePh\(_2\). As the reaction progressed, the parameters of the new species changed to \(\delta = +0.3 \text{ ppm}, 1J_{\text{PtP}} = 4176 \text{ Hz} \) and the peak became sharp. This species is identified as the \(\equiv\text{CPh} \) bridged dimer, \([\text{Pt}_2(\text{COPh})_2(\mu-\equiv\text{CPh})_2(\text{PMePh}_2)_2] \). \text{cis-}[\text{Pt}(\equiv\text{CPh})_2(\text{CO})(\text{PMePh}_2)] \) also grew in. On warming the reaction mixture to room temperature, the amount of \([\text{PtPh}(\equiv\text{CPh})(\text{CO})(\text{PMePh}_2)] \) steadily increased and the \([\text{Pt}_2(\text{COPh})_2(\mu-\equiv\text{CPh})_2(\text{PMePh}_2)_2] \)
decreased until there was none left. Thus the equilibrium position in this reaction must lie completely on the side of \([\text{PtPh}(\text{C} \equiv \text{CPh})(\text{CO})(\text{PMePh}_2)]\), and this is supported by the fact that no \(\text{C} \equiv \text{CPh}\) bridged dimer was observed in the reaction of \([\text{PtCl}(\text{C} \equiv \text{CPh})(\text{CO})(\text{PMePh}_2)]\) (II) with \(\text{HgPh}_2\), only uninserted monomer.

\[
\begin{align*}
\text{species with} & \quad \text{broad } {^{31}}P \\
\text{signal} & \quad \rightarrow \quad \text{species with} \\
\end{align*}
\]

When \(\text{Ph}_3\text{PAu}(\text{C} \equiv \text{CPh})\) was used instead of \(\text{Hg}(\text{C} \equiv \text{CPh})_2\), the dimer \([\text{Pt}_2(\text{COPh})_2(\mu-\text{C} \equiv \text{CPh})_2(\text{PMePh}_2)_2]\) was produced directly, and had a sharp \({^{31}}P \) signal, \(\delta = +0.3 \text{ ppm} \), \({^1J_{PtP}} = 4172 \text{ Hz} \). There was no broadness associated with the dimer's signals at any time. The reaction followed a similar course, with \([\text{PtPh}(\text{C} \equiv \text{CPh})(\text{CO})(\text{PMePh}_2)]\), \(\text{Ph}\) trans to \(\text{PMePh}_2\) being produced, although in this case a second, unknown complex, with parameters \(\delta = -2.7 \text{ ppm} \), \({^1J_{PtP}} = 3297 \text{ Hz} \) was a minor (<20%) product.

The broad species obtained when \(\text{Hg}(\text{C} \equiv \text{CMe})_2\) and \(\text{Hg}(\text{C} \equiv \text{CPh})\) reacted with \([\text{PtCl}(\text{Ph})(\text{CO})(\text{PMePh}_2)]\) isomer (I) had \({^{31}}P \) parameters very similar to \([\text{Pt}_2(\text{COPh})_2(\mu-\text{C} \equiv \text{CR})_2(\text{PMePh}_2)_2]\), and indeed, eventually the signals sharpened to produce the
acetylide-bridged dimers. No broad species was obtained when \(\text{Ph}_3\text{PAu}(\equiv \text{CPh}) \) was used instead of the mercurial, \([\text{Pt}_2(\text{COPh})_2(\mu-\equiv \text{CMe})_2(\text{PMePh}_2)_2] \) being produced right away. This is similar to the situation when \(\text{cis-}[\text{PtCl}_{2}(\text{CO})(\text{PMePh}_2)] \) reacted at low temperature with \(\text{Hg}(\equiv \text{CMe})_2 \). A transient species, with broad \(^{31}\text{P} \) nmr peak and satellites, and parameters slightly different from \(\text{cis-}[\text{Pt}(\equiv \text{CMe})_2(\text{CO})(\text{PMePh}_2)] \) was obtained. The \(^{31}\text{P} \) nmr parameters of the transient varied with the course of the reaction, just as those of the broad species obtained in the above reactions do. The transient was suggested to be an equilibrium between \(\text{cis-}[\text{Pt}(\equiv \text{CMe})_2(\text{CO})(\text{PMePh}_2)] \), \(\text{HgCl}_2 \) and an adduct of these two compounds, thought to be 5-coordinate.

Since \([\text{Pt}_2(\text{COPh})_2(\mu-\equiv \text{CMe})_2(\text{PMePh}_2)_2] \) is the first product, it would appear that \(\text{Hg}(\equiv \text{CMe})_2 \) and \(\text{Hg}(\equiv \text{CPh})_2 \) react with the inserted dimer \([\text{Pt}_2(\text{COPh})_2\text{Cl}_2(\text{PMePh}_2)_2] \) rather than with isomer (I). The broad species first obtained in the \(^{31}\text{P} \) nmr could then be due to an interaction of \([\text{Pt}_2(\text{COPh})_2(\mu-\equiv \text{CMe})_2(\text{PMePh}_2)_2] \) with \(\text{ClHgC} \equiv \text{CPh} \), or an equilibrium between these two species and an associated adduct. The fact that no broadness was observed when \(\text{Ph}_3\text{PAuC} \equiv \text{CPh} \) was used would tend to support some sort of \(\text{Pt}-\text{Hg} \) interaction.

It is not only in cases where an equilibrium between platinum complex, mercury complex and an adduct occurs that shifts in the \(^{31}\text{P} \) parameters of platinum complexes are obtained. Parameter shifts, particularly in the case of bis-organoplatinum complexes containing an acetylide can occur in the presence of bisorganomercury or organomercuric
halide compounds. E.g:- \textit{cis}-[Pt(C≡CMe)_2(CO)(PMePh_2)] has 31P parameters, at -60°C, of $\delta = -2.8$ ppm, $^1J_{PtP} = 2107$ Hz, but in the presence of PhHgCl or C_5H_5HgCl these can vary to $\delta = -3.2$ ppm, $^1J_{PtP} = 2121$ Hz. Similarly, $[Pt(C_5H_5)(C≡CMe)(CO)(PMePh_2)]$ has 31P parameters of $\delta = -2.1$ ppm, $^1J_{PtP} = 1872$ Hz, but in the presence of C_5H_5HgCl this changes to $\delta = -2.3$ ppm, $^1J_{PtP} = 1880$ Hz. Whether this is a direct interaction between Pt and Hg, or an interaction between platinum-coordinated acetylide and Hg, it is not possible to say.

In contrast to phenyl isomer (I), the $C_6H_4CO_2Me-p$ complex did not give an acetylide-bridged dimer on reaction of Hg(C≡CMe)$_2$ with $[PtCl(C_6H_4CO_2Me-p)(CO)(PMePh_2)]$ isomer (I), not even as an intermediate on the way to $[Pt(C_6H_4CO_2Me-p)(C≡CMe)(CO)(PMePh_2)]$, aryl trans to phosphine. Instead, this seemed to be formed directly from isomer (I). The reason may be that, in this case, the equilibrium between $[Pt(C_6H_4CO_2Me-p)(Cl)(CO)(PMePh_2)]$ isomer (I) and inserted dimer, $[Pt_2(COC_6H_4CO_2Me-p)Cl_2(PMePh_2)]$ lies too far on the isomer (I) side, such that Hg(C≡CMe)$_2$ reacts with it preferentially. It is possible that Hg(C≡CMe)$_2$ reacts with inserted dimer to form an analogous C≡CMe bridged complex, but that this de-inserts to $[Pt(C_6H_4CO_2Me-p)(C≡CMe)(CO)(PMePh_2)]$ so quickly that it is not observed.

The combination of the results of these reactions, and those between $[PtCl(C≡CR)(CO)(PMePh_2)]$ (II) and HgPh$_2$, enable the scheme in figure 28 to be drawn up.
From the equilibrium positions between $[\text{PtPh(C}≡\text{CR})(\text{CO})\cdot\text{L}]$ and $[\text{Pt}_2(\text{COPh})_2(\mu-\text{C}≡\text{CR})_2\text{L}_2]$, it can be seen that a bridging $\text{C}≡\text{CMe}$ group is marginally worse, and a bridging $\text{C}≡\text{CPh}$ group is considerably worse, than a bridging Cl for promoting carbonyl insertion.

$[\text{PtCl(R)(CO)(PMePh}_2])$ isomer (I) and TlC$_5$H$_5$

When an equilibrated solution of $[\text{PtCl(Ph)(CO)(PMePh}_2)]$ isomer (I) and $[\text{Pt}_2(\text{COPh})_2\text{Cl}_2(\text{PMePh}_2)_2]$ was allowed to react with TlC$_5$H$_5$ at room temperature the major product was a species, with 31P nmr parameters at 25°C of $\delta = -6.2$ ppm, $^1J_{\text{PtP}} = 5687$ Hz. A small amount of trans-$[\text{PtCl(Ph)(PMePh}_2)_2]$ was also produced. Similarly, an equilibrated solution of $[\text{PtCl(C}_6\text{H}_4\text{CO}_2\text{Me}_p)(\text{CO})(\text{PMePh}_2)]$...
isomer (I) and \([\text{Pt}_2(\text{COC}_6\text{H}_4\text{CO}_2\text{Me-p})_2\text{Cl}_2(\text{PMePh}_2)_2]\) reacted with \(\text{TiC}_5\text{H}_5\) at room temperature to produce a species with \(\delta = -5.9\) ppm, \(_1\text{J}_{\text{Pt-P}} = 5659\) Hz as the major product, although some cis-\([\text{Pt}(\text{C}_6\text{H}_4\text{CO}_2\text{Me-p})_2(\text{CO})(\text{PMePh}_2)]\) was also produced. A \(^1\text{H}\) nmr spectrum showed that a \(\pi\)-cyclopentadienyl complex was present in solution, with the \(\text{C}_5\text{H}_5\) protons coupled to one phosphorus atom, \((\text{J}_{\text{PH}} = 2.0\) Hz\), and one platinum atom, \((\text{J}_{\text{Pt-H}} = 13.0\) Hz\). Wardle produced the complex \([\text{Pt}(\eta^5-C_5\text{H}_5)(\text{COPh})(\text{Bu}_3\text{P})]\), with \(^1\text{H}\) nmr parameters, \(\delta = +5.70\) ppm, \(\text{J}_{\text{PH}} = 1.5\) Hz, \(\text{J}_{\text{Pt-H}} = 13.0\) Hz, from the reaction of \([\text{Pt}_2(\text{COPh})_2\text{Cl}_2(\text{Bu}_3\text{P})_2]\) and \(\text{TiC}_5\text{H}_5\). Thus, the two new species produced in the above reactions are identified as \([\text{Pt}(\eta^5-C_5\text{H}_5)(\text{COPh})(\text{PMePh}_2)]\) and \([\text{Pt}(\eta^5-C_5\text{H}_5)(\text{COC}_6\text{H}_4\text{CO}_2\text{Me-p})(\text{PMePh}_2)]\) respectively, (nmr data in experimental section).

\[
\begin{array}{c}
\text{L} \quad \text{Pt} \quad \text{Cl} \\
\text{O} \quad \text{C} \quad \text{Ar}
\end{array}
\quad \rightleftharpoons
\begin{array}{c}
\text{L} \quad \text{Pt} \quad \text{Cl} \\
\text{O} \quad \text{C} \quad \text{L} \\
\text{Pt} \quad \text{Ar} \quad \text{Cl}
\end{array}
+ \text{TiC}_5\text{H}_5
\]

\(\text{TiC}_5\text{H}_5\) could have reacted, either by bridge-cleavage of \([\text{Pt}_2(\text{COAr})_2\text{Cl}_2(\text{PMePh}_2)_2]\) to give \([\text{Pt}(\eta^5-C_5\text{H}_5)(\text{COAr})-(\text{PMePh}_2)]\) directly, or with isomer (I) to give, initially a \(\sigma\)-cyclopentadienyl complex, \([\text{PtAr}(\eta^1-C_5\text{H}_5)(\text{CO})(\text{PMePh}_2)]\),
Ar trans to PMePh₂, which then inserted with a σ-π migration of the cyclopentadienyl ring to give \([\text{Pt}(\eta^5-C_5H_5)(\text{COAr})(\text{PMePh}_2)]\).

A similar reaction was attempted on two isomer (I) compounds which do not insert, \([\text{PtCl}(\text{C}_2\text{C}_3)\text{(CO)}(\text{PMePh}_2)]\) isomer (I) and \([\text{PtCl}(\text{C}_6\text{H}_4\text{Cl}-\text{o})\text{(CO)}(\text{PMePh}_2)]\) isomer (I). C₂Cl₃ isomer (I) does not insert, even on addition of Cl⁻ or PMePh₂, or on changing the Cl to I and adding phosphine. Other ortho-aryls have been made to insert by Cl⁻ addition, or by changing Cl to I, but no attempts have been made with C₆H₄Cl-₀ isomer (I).

The reaction between \([\text{PtCl}(\text{C}_2\text{C}_3)\text{(CO)}(\text{PMePh}_2)]\) isomer (I) and TlC₅H₅ was found to be non-reproducible. The reaction is not a simple substitution of Cl by C₅H₅, as more than 1 equivalent of C₅H₅Tl is required to consume all of the C₂Cl₃ isomer (I). When \([\text{PtCl}(\text{C}_2\text{C}_3)\text{(CO)}(\text{PMePh}_2)]\) isomer (I) and 1 equivalent of TlC₅H₅ were mixed at room temperature for 10 minutes, less than 30% of the isomer (I) reacted. The products, identified by \(^{31}\text{P} \text{nmr spectroscopy, were } \text{cis-[Pt(C}_2\text{C}_3)_2(\text{CO})(\text{PMePh}_2)]} \text{ and a species (at } -60^\circ\text{C}) \delta = -5.9 \text{ ppm, } ^1\text{J}_{\text{PtP}} = 5249 \text{ Hz. When more TlC}_5\text{H}_5 \text{ was added at room temperature and allowed to react for 20 minutes, this new species and } \text{cis-[Pt(C}_2\text{C}_3)_2(\text{CO})(\text{PMePh}_2)] (table 13) \text{ were the only complexes present, in a 3 to 1 ratio. A } ^1\text{H nmr spectrum showed that a } \pi\text{-cyclopentadienyl complex was present. } ^1\text{H parameters were } \delta = +5.62 \text{ ppm, } ^1\text{J}_{\text{PH}} = 1.5 \text{ Hz, } ^1\text{J}_{\text{PtH}} = 13.0 \text{ Hz, (doublet of triplets), typical of a } \pi\text{-C}_5\text{H}_5 \text{ ring, with phosphine methyl protons at } \delta = +2.00 \text{ ppm, } ^2\text{J}_{\text{PH}} = 11.5 \text{ Hz, } ^3\text{J}_{\text{PtH}} = 30.0 \text{hz. It is clear}
that the π-complex in the 1H nmr corresponds to the major species in the 31P nmr. The 1H nmr also showed that there was a large amount of C$_5$H$_6$ present.

When $[\text{PtCl}(\text{C}_2\text{Cl}_3)(\text{CO})(\text{PMePh}_2)]$ isomer (I) and 1 equivalent of TIC$_5$H$_5$ were mixed and left at room temperature, both $\text{cis-[Pt}(\text{C}_2\text{Cl}_3)_2(\text{CO})(\text{PMePh}_2)]$ and the π-cyclopentadienyl complex were produced, but in addition a species with $\delta = -0.3$ ppm, 1J$_{PtP} = 2015$ Hz was produced. This appeared to correspond to a σ-cyclopentadienyl complex in the 1H nmr, $\delta = +6.15$ ppm, 2J$_{PH} = 10.5$ Hz. Again, C$_5$H$_6$ was present in the 1H nmr spectrum. On addition of a second equivalent of TIC$_5$H$_5$, all of the isomer (I) disappeared and eventually $\text{cis-[PtCl}(\text{C}_2\text{Cl}_3)(\text{PMePh}_2)_2]$ and $\text{trans-[PtCl}(\text{C}_2\text{Cl}_3)(\text{PMePh}_2)_2]$ grew in (table 13). The parameters of the π-cyclopentadienyl complex at 25°C were $\delta = -6.6$ ppm, 1J$_{PtP} = 5289$ Hz.

The π-cyclopentadienyl complex could be either $[\text{Pt}(\eta^5-\text{C}_5\text{H}_5)(\text{COC}_2\text{Cl}_3)(\text{PMePh}_2)]$ or $[\text{Pt}(\eta^5-\text{C}_5\text{H}_5)(\text{C}_2\text{Cl}_3)(\text{PMePh}_2)]$, depending on whether C$_2Cl_3$ inserted on addition of TIC$_5$H$_5$, or on whether CO was simply displaced. The 1H nmr parameters of $[\text{Pt}(\eta^5-\text{C}_5\text{H}_5)(\text{COC}_6\text{H}_4\text{CO}_2\text{Me}-p)(\text{PMePh}_2)]$ are very similar, but little difference is expected between the parameters of inserted aroyl and uninserted aryl π-cyclopentadienyl complexes. The σ-cyclopentadienyl complex has parameters typical of a C$_5$H$_5$trans to phosphine, when it is expected that C$_5$H$_5$ would replace Cl, which is trans to CO. However, 2J$_{PH}$ in $\text{cis-[Pt}(\text{C}_5\text{H}_5)_2(\text{CO})(\text{PPh}_3)]$ for the two rings is 3.5 and 5.0 Hz, hence 2J$_{PH} = 4.0$ Hz is not
inconsistent with C₅H₅ trans to CO. $^{1}J_{PtP} = 2015$ Hz is consistent with a bis-organoplatinum complex with CO and PMePh₂ cis to each other, and either C₂Cl₃ or C₅H₅ trans to PMePh₂. Thus, the σ-cyclopentadienyl complex is probably [Pt(C₂Cl₃)(η¹-C₅H₅)(CO)(PMePh₂)], C₂Cl₃ trans to PMePh₂.

It is possible, then, that the reaction between C₂Cl₃ isomer (I) and TIC₅H₅ is as follows:

\[
\begin{align*}
L \quad Cl & \quad + \quad TIC₅H₅ \rightarrow \quad L \quad C₅H₅ \\
Pt \quad C₂Cl₃ & \quad + \quad Pt \quad C₂Cl₃ \\
OC & \quad Pt \quad C₂Cl₃ \\
\end{align*}
\]

The reaction does not simply replace Cl by C₅H₅ and then promote CO insertion, as had been hoped, by σ-π interconversion of the ring, although this may be occurring to a certain extent.

[PtCl(C₆H₄Cl-ο)(CO)(PMePh₂)] isomer (I) did not appear to react with TIC₅H₅ at all. The isomer (I) slowly disappeared, and other species grew in to the ^{31}P nmr spectrum, but one of these was [PtCl(C₆H₄Cl-ο)(CO)(PMePh₂)] isomer (II). The others had parameters $\delta = -3.9$ ppm, $^{1}J_{PtP} = 4879$ Hz, $\delta = -3.7$ ppm, $^{1}J_{PtP} = 4868$ Hz and $\delta = -0.4$ ppm, $^{1}J_{PtP} = 1833$ Hz. Isomers (II) and (I) can interconvert slowly by reversible loss of phosphine, although normally (II) → (I) rather than (I) → (II).
The other products are most likely to be \([\text{Pt}_2(C_6H_4Cl-o)_2] - Cl_2(\text{PMePh}_2)_2\), cis and trans isomers, and cis-[Pt(C_6H_4Cl-o)_2-(CO)(\text{PMePh}_2)], although it is also possible that \(\delta = -0.4\) ppm, \(^{1}J_{PtP} = 1833\) Hz could be \([\text{Pt}(C_6H_4Cl-o)(\eta^1-C_5H_5)(CO)-(\text{PMePh}_2)]\), but it is unlikely.

The results with \(C_2Cl_3\) and \(C_6H_4Cl-o\) isomers (I) would indicate that, with Ph and \(C_6H_4CO_2Me\), \(TIC_5H_5\) reacts with the inserted dimer, rather than the isomer (I) side of the equilibrium.

There does not appear to be any equilibrium between inserted and uninserted material. \([\text{Pt}(\eta^5-C_5H_5)(CO\text{Ar})-(\text{PMePh}_2)]\) appears to be 100% of the product, and no \([\text{PtAr}(\eta^1-C_5H_5)(CO)(\text{PMePh}_2)]\) is detectable, either in equilibrium, or as an intermediate. Thus this seems to be more favourable towards insertion than leaving isomer (I) to insert, but is not as good as Cl⁻ addition. This method depends on having some \([\text{Pt}_2(CO\text{Ar})_2Cl_2(\text{PMePh}_2)_2]\) in equilibrium with isomer (I).
Table 13: 31P nmr data; in CDCl$_3$ at 25°C.

<table>
<thead>
<tr>
<th>Complex</th>
<th>δ (ppm)</th>
<th>$^1J_{PtP}$ (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PtCl(Ph)(CO)(PMePh$_2$)] (I)</td>
<td>+6.8</td>
<td>1404</td>
</tr>
<tr>
<td>PtCl(C$_6$H$_4$CO$_2$Me-p)(CO)(PMePh$_2$)</td>
<td>+6.2</td>
<td>1435</td>
</tr>
<tr>
<td>PtCl(C$_6$H$_4$CO$_2$Me-p)(CO)(PMe$_2$Ph)</td>
<td>-5.8</td>
<td>1410</td>
</tr>
<tr>
<td>PtCl(C$_6$H$_4$CO$_2$Me-p)(CO)(PPh$_3$)</td>
<td>+18.3</td>
<td>1483</td>
</tr>
<tr>
<td>PtCl(C$_6$H$_4$Cl-o)(CO)(PMePh$_2$)</td>
<td>+4.2</td>
<td>1571</td>
</tr>
<tr>
<td>PtCl(C$_6$H$_4$Cl-o)(CO)(PMe$_2$Ph)</td>
<td>-7.5</td>
<td>1541</td>
</tr>
<tr>
<td>PtCl(C$_6$H$_4$Cl-o)(CO)(PPh$_3$)</td>
<td>+16.4</td>
<td>1607</td>
</tr>
<tr>
<td>PtCl(C$_6$H$_4$OMe-o)(CO)(PMe$_2$Ph)</td>
<td>-5.4</td>
<td>1487</td>
</tr>
<tr>
<td>PtCl(C$_6$H$_4$OMe-o)(CO)(PPh$_3$)</td>
<td>+18.8</td>
<td>1552</td>
</tr>
<tr>
<td>PtCl(C$_2$Cl$_3$)(CO)(PMePh$_2$)</td>
<td>+1.0</td>
<td>1801</td>
</tr>
<tr>
<td>[PtCl(Ph)(CO)(PMePh$_2$)] (II)</td>
<td>-1.7</td>
<td>3920</td>
</tr>
<tr>
<td>PtCl(C$_6$H$_4$CO$_2$Me-p)(CO)(PMePh$_2$)</td>
<td>-2.6</td>
<td>3826</td>
</tr>
<tr>
<td>[PtCl(C$_6$H$_4$Cl-o)(CO)(PMePh$_2$)] (II)</td>
<td>-2.7</td>
<td>3746</td>
</tr>
<tr>
<td>[Pt$_2$(COPh)$_2$Cl$_2$(PMePh$_2$)$_2$]</td>
<td>-3.3</td>
<td>5317</td>
</tr>
<tr>
<td>[Pt$_2$(COC$_6$H$_4$CO$_2$Me-p)$_2$Cl$_2$(PMePh$_2$)$_2$]</td>
<td>-3.1</td>
<td>5232</td>
</tr>
<tr>
<td>[Pt$_2$Cl$_2$Ph$_2$(PMePh$_2$)$_2$]</td>
<td>${ -1.1$</td>
<td>5010</td>
</tr>
<tr>
<td></td>
<td>${ -0.9$</td>
<td>5050</td>
</tr>
<tr>
<td>[Pt$_2$Cl$_2$(C$_6$H$_4$CO$_2$Me-p)$_2$(PMePh$_2$)$_2$]</td>
<td>${ -1.4$</td>
<td>4901</td>
</tr>
<tr>
<td></td>
<td>${ -1.2$</td>
<td>4930</td>
</tr>
</tbody>
</table>

cont./
Table 13 (contd.)

31P nmr data; in CDCl$_3$ at 25°C.

<table>
<thead>
<tr>
<th>Complex</th>
<th>δ (ppm)</th>
<th>$^{1}J_{PtP}$ (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cis-[PtPh$_2$(CO)(PMePh$_2$)]</td>
<td>+2.4</td>
<td>1604</td>
</tr>
<tr>
<td>trans-[PtCl(Ph)(PMePh$_2$)$_2$]</td>
<td>+8.7</td>
<td>3010</td>
</tr>
<tr>
<td>trans-[PtCl(C$_6$H$_4$CO$_2$Me-p)(PMePh$_2$)$_2$]</td>
<td>+8.6</td>
<td>2923$^{(a)}$</td>
</tr>
<tr>
<td>trans-[PtCl(COPh)(PMePh$_2$)$_2$]</td>
<td>+5.1</td>
<td>3212</td>
</tr>
<tr>
<td>cis-[Pt(C$_6$H$_4$CO$_2$Me-p)$_2$(CO)(PMePh$_2$)]</td>
<td>+1.3</td>
<td>1657</td>
</tr>
<tr>
<td>[Et$_4$N]cis-[PtCl$_2$(COPh)(PMePh$_2$)]</td>
<td>-6.1</td>
<td>5004</td>
</tr>
<tr>
<td>cis-[Pt(C$_2$Cl$_3$)$_2$(CO)(PMePh$_2$)]</td>
<td>-2.5</td>
<td>2053$^{(b)}$</td>
</tr>
<tr>
<td>cis-[PtCl(C$_2$Cl$_3$)(PMePh$_2$)$_2$]</td>
<td>(-4.6)</td>
<td>3992$^{(b)}$</td>
</tr>
<tr>
<td>cis-[PtCl$_2$(C$_2$Cl$_3$)(PMePh$_2$)$_2$]</td>
<td>(-0.2)</td>
<td>2040</td>
</tr>
<tr>
<td>trans-[PtCl$_2$(C$_2$Cl$_3$)(PMePh$_2$)$_2$]</td>
<td>+6.7</td>
<td>2772</td>
</tr>
<tr>
<td>cis-[PtCl$_2$(CO)(PMePh$_2$)]</td>
<td>-0.2</td>
<td>2946</td>
</tr>
<tr>
<td>cis-[PtCl$_2$(CO)(PMe$_2$Ph)]</td>
<td>-10.4</td>
<td>2847</td>
</tr>
<tr>
<td>cis-[PtBr$_2$(CO)(PMe$_2$Ph)]</td>
<td>-11.2</td>
<td>2820</td>
</tr>
<tr>
<td>cis-[PtCl$_2$(CO)(PET$_3$)]</td>
<td>+22.4</td>
<td>2792</td>
</tr>
<tr>
<td>cis-[PtCl$_2$(CO)(PPh$_3$)]</td>
<td>+9.8</td>
<td>3061</td>
</tr>
<tr>
<td>cis-[PtCl$_2$(PMePh$_2$)$_2$]</td>
<td>-0.9</td>
<td>3625</td>
</tr>
<tr>
<td>cis-[PtCl$_2$(PMe$_2$Ph)$_2$]</td>
<td>-15.3</td>
<td>3546</td>
</tr>
<tr>
<td>cis-[PtCl$_2$(PET$_3$)$_2$]</td>
<td>+9.1</td>
<td>3515</td>
</tr>
<tr>
<td>cis-[PtCl$_2$(PPh$_3$)$_2$]</td>
<td>+14.3</td>
<td>3673</td>
</tr>
<tr>
<td>cis-[PtCl$_2$(C$_2$H$_4$)(PMePh$_2$)]</td>
<td>+2.4</td>
<td>3191</td>
</tr>
</tbody>
</table>

(a) At -60°C.
(b) $^{2}J_{PP} = 19.2$ Hz.
EXPERIMENTAL

31P nmr spectra were recorded in CDCl$_3$ solution using a Varian XL-100 spectrometer operating in the Fourier Transform mode. Chemical shifts are positive to low field of external 85% H$_3$PO$_4$. 1H nmr spectra were recorded in CDCl$_3$ solution on a Perkin-Elmer R32 90MHz continuous wave spectrometer, with TMS locking signal. 13C nmr spectra were obtained on a Bruker WP200SY spectrometer operating at 50.32MHz in the Fourier transform mode. Chemical shifts were measured relative to CDCl$_3$ at +77.0 ppm.

Solutions of [PtCl(C≡CR)(CO)L] isomer (II), [PtCl(Ar)-(CO)L] isomer (II) and [PtCl(Ar)(CO)L] isomer (I) were prepared in situ as previously described. Other platinum complexes and organomercurials were prepared as previously described. Ph$_3$PAu(C≡CPh) was prepared by the same method as Ph$_3$PAuC$_5$H$_5$, namely by the reaction of Ph$_3$PAuCl with PhC≡CH and NaOEt in EtOH. 160
[PtCl(C_5H_5)(CO)(PMePh_2)] isomer (I) and Hg(C≡CMe)_2

To a solution of [PtCl(C_5H_5)(CO)(PMePh_2)] (0.040mmol.) in CDCl_3 (0.3 ml) was added a solution of Hg(C≡CMe)_2, (11.3mg, 0.040mmol.) in CDCl_3 (0.3ml) at -60°C under an atmosphere of nitrogen. Initially equal amounts of [Pt(C_5H_5)(C≡CMe)(CO)(PMePh_2)] (C_5H_5 trans to PMePh_2) and [PtCl(C≡CMe)(CO)(PMePh_2)] (Cl trans to PMePh_2) were produced, (identified by ^31P nmr), but eventually, after 4 hours at -60°C, the major products were cis-[Pt(C≡CMe)_2(CO)PMePh_2)] (^31P and ^1H nmr) and C_5H_5HgCl (δ_H = +6.16 ppm). The same reaction, when performed at 25°C, reached completion in 30 seconds, and passed through the same intermediates.

[PtCl(C_5H_5)(CO)(PMePh_2)] isomer (I) and HgPh_2

A solution of [PtCl(C_5H_5)(CO)(PMePh_2)] (0.061mmol.) in CDCl_3 (0.3ml) was mixed with a solution of HgPh_2 (21.6mg, 0.061mmol.) in CDCl_3 (0.3ml) under a nitrogen atmosphere at -60°C. Since no reaction occurred at this temperature the solution was warmed to room temperature, and examined periodically by ^31P nmr spectroscopy. After 1 hour, some cis-[PtPh_2(CO)PMePh_2)] was present, (ca. 10% of ^31P intensity). After 7 hours a number of complexes were present: [Pt(η^5-C_5H_5)(COPh)(PMePh_2)], cis-[PtPh_2(CO)(PMePh_2)], [PtCl(C_5H_5)(CO)(PMePh_2)] (I), a species with parameters δ = -5.3 ppm, J pt-p = 5037 Hz, a species at -18.8ppm, with no J pt-p visible, which appeared to be a triplet (13.6 Hz peak separation), trans-[PtCl(Ph)(PMePh_2)]_2, trans-[PtCl(COPh)(PMePh_2)] and a small amount of [PtCl(Ph)(CO)(PMePh_2)] (I). Overnight, the cyclopenta-
dienyl isomer (I) disappeared. Early in the reaction, before any cis-[PtPh₂(CO)(PMePh₂)] had formed, a peak was observed in the 31P nmr spectrum (recorded at -60°C) at -1.2ppm, which could have corresponded to [PtCl(Ph)(CO)(PMePh₂)] isomer (II), but this was too weak to observe 1J_{PtP} satellites.

\[
cis-[Pt(C≡CMe)₂(CO)(PMePh₂)]
\]

\[
cis-[PtCl₂(CO)(PMePh₂)] (100.0mg, 0.202mmol.),
\]

Hg(C≡CMe)₂ (56.5mg, 0.202mmol.) and [Et₄N]Cl (33.5mg, 0.202mmol.) were allowed to react in CDCl₃ (1.5ml) for 10 minutes, the yellow solution was then filtered to remove [Et₄N]₂[Hg₂Cl₆], and ¹H and ¹³C nmr spectra were recorded. Selective decoupling experiments were then performed. ¹³C nmr data is given in table 9, and in figure 23 with ¹H nmr data, which is also given in table 10. 31P nmr data is in table 11.

\[
[Pt(C≡CMe)(C≡CPh)(CO)(PMePh₂)], C≡CPh trans to PMePh₂
\]

cis-[PtCl₂(CO)(PMePh₂)] (100.0mg, 0.202mmol.), Hg(C≡CMe)₂ (28.3mg, 0.101mmol.) and [Et₄N]Cl (16.8mg, 0.101mmol.) were allowed to react in CDCl₃ (1.5ml) for 10 minutes. The solution was filtered and then a solution of Hg(C≡CPh)₂ (41.0mg, 0.101mmol.) and [Et₄N]Cl (16.8mg, 0.101mmol.) in CDCl₃ (0.5ml) was added. The solution was filtered after 2 minutes and then frozen to stop scrambling reactions. ¹H and ¹³C nmr spectra were recorded and selective decoupling experiments were performed at -60°C to slow down decomposition and ligand scrambling. ¹³C nmr data is given in table 9, ¹H nmr data in table 10, 31P nmr data in table 11.
Similarly, cis-[PtCl₂(CO)(PMεPh₂)] (100.0mg, 0.202mmol.), Hg(C≡CPh)₂ (41.0mg, 0.101mmol.) and [Et₄N]Cl (16.8mg, 0.101mmol.) were reacted in CDCl₃ (1.5m1), followed by Hg(C≡CMe)₂ (28.3mg, 0.101mmol.) and a further 16.8mg of [Et₄N]Cl (0.101mmol.). After filtration, ¹H and ¹³C nmr spectra were recorded at -60°C and selective decoupling experiments were performed. ¹³C nmr data is given in table 9, ¹H in table 10, ³¹P in table 11.

[PtCl(C≡CMe)(CO)(PMεPh₂)] isomer (II) and Ph₃PAu(C≡CPh)

[PtCl(C≡CMe)(CO)(PMεPh₂)] (II) was made in situ as previously described. To a solution of [PtCl(C≡CMe)(CO)-(PMεPh₂)] (0.040mmol.) in CDCl₃ (0.25m1) was added a solution of Ph₃PAu(C≡CPh), (25.0mg, 0.045mmol.) in CDCl₃ (0.25m1) at -60°C. The reaction was slow at -60°C with only 10% reaction in 1 hour. On warming to -20°C it reached completion in 1 hour, producing one isomer of [Pt(C≡CMe)-(C≡CPh)(CO)(PMεPh₂)]. (³¹P nmr at -60°C -2.6 ppm, ¹Jₚₚ = 2113 Hz) and Ph₃PAuCl (δ = +32.7 ppm). ¹H nmr at room temperature showed that the isomer of [Pt(C≡CMe)(C≡CPh)-(CO)(PMεPh₂)] was the one with C≡CPh trans to phosphine. (¹H nmr at 25°C; δC≡CMe = +1.88 ppm, ⁴Jₚₚ = 16.0 Hz, ⁵Jₚₚ = 3.5 Hz, δPMεPh₂ = +2.38 ppm, ³Jₚₚ = 30.0 Hz, ²Jₚₚ = 11.0 Hz). The bis-acetylide complex was stable at -40 to 0°C overnight, with no isomerisation occurring during this time.
cis-[Pt(C≡CMe)$_2$(CO)(PMePh$_2$)] and Ph$_3$PAuCl

A solution of cis-[Pt(C≡CMe)$_2$(CO)(PMePh$_2$)] (0.040 mmol.) in CDCl$_3$ (0.3 ml), prepared by the symmetrization method, was mixed with a solution of Ph$_3$PAuCl (20.0 mg, 0.040 mmol.) in CDCl$_3$ (0.3 ml) at room temperature. Followed by 31P nmr, there was no transfer of C≡CMe from Pt to Au in 2½ hours. The only reaction observed was the normal decomposition of cis-[Pt(C≡CMe)$_2$(CO)(PMePh$_2$)] to trans-[PtCl(C≡CMe)(PMePh$_2$)$_2$] overnight, accompanied by some exchange of phosphines. No Ph$_3$PAu(C≡CMe) was detected.

$^{[Pt(C≡CMe)(C≡CPh)(CO)(PMePh$_2$)], C≡CPh trans to L, and}$
cis-[PtCl$_2$(13CO)(PMe$_2$Ph)]

A solution of [Pt(C≡CMe)(C≡CPh)(CO)(PMePh$_2$)], C≡CPh trans to PMePh$_2$, (0.050 mmol.) in CDCl$_3$ (0.5 ml) was mixed at -60°C with a solution of cis-[PtCl$_2$(13CO)(PMe$_2$Ph)], 60% 13CO-labelled, (23.5 mg, 0.054 mmol.) in CDCl$_3$ (0.3 ml), and the reaction was followed by 31P nmr spectroscopy. After 6 hours at -60°C, 50% of the [Pt(C≡CMe)(C≡CPh)(CO)(PMePh$_2$)] had been consumed. The mixture was warmed to room temperature for 1 minute, then cooled again to -60°C. 31P nmr investigation revealed the presence of [PtCl(C≡CMe)(CO)-(PMePh$_2$)] isomer (II), [PtCl(C≡CPh)(13CO)(PMe$_2$Ph)] isomer (II) and cis-[Pt(C≡CPh)$_2$(13CO)(PMe$_2$Ph)] in a ratio of 3:1:1, along with unreacted cis-[PtCl$_2$(13CO)(PMe$_2$Ph)] and [Pt(C≡CMe)(C≡CPh)(CO)(PMePh$_2$)] (< 30% of the original amount). The other isomer of [Pt(C≡CMe)(C≡CPh)(CO)-(PMePh$_2$)] had begun to appear; the ratio of the two isomers,
C≡CPh \textit{trans} to L and C≡CMe \textit{trans} to L being approximately 4:1. On warming to room temperature for a further 2 minutes, all of the \([\text{Pt}(\equiv\text{CMe})(\equiv\text{CPh})(\text{CO})(\text{PMePh}_2)]\) was consumed. Reactions of the other isomer, with C≡CMe \textit{trans} to L, complicated the spectrum, however the amount of cis- \([\text{Pt}(\equiv\text{CPh})_2(\text{CO})(\text{PMe}_2\text{Ph})]\) decreased by reacting with cis- \([\text{PtCl}_2(\text{CO})(\text{PMe}_2\text{Ph})]\) to produce more \([\text{PtCl}(\equiv\text{CPh})(\text{CO})(\text{PMe}_2\text{Ph})]\). \([\text{PtCl}(\text{CO})(\equiv\text{CPh})(\text{PMePh}_2)]\) isomer (II) and \([\text{PtCl}(\equiv\text{CMe})(\text{CO})(\text{PMe}_2\text{Ph})]\) (II) were apparent among the products, as minor species, in a ratio of approx. 1:3 with the corresponding initial products \([\text{PtCl}(\text{CO})(\equiv\text{CMe})(\text{PMePh}_2)]\) (II) and \([\text{PtCl}(\equiv\text{CPh})(\text{CO})(\text{PMe}_2\text{Ph})]\) (II). (\text{^31P data is in table 11}).

\([\text{Pt}(\equiv\text{CMe})(\equiv\text{CPh})(\text{CO})(\text{PMePh}_2)], \text{C≡CMe trans to L, and}\]

\([\text{PtCl}(\text{C}_6\text{H}_4\text{CO}_2\text{Me-p})(\text{CO})(\text{PMePh}_2)]\) isomer (I).

Similarly, a solution of \([\text{Pt}(\equiv\text{CMe})(\equiv\text{CPh})(\text{CO})(\text{PMePh}_2)], \text{C≡CMe trans to PMePh}_2, \) (0.050mmol.) in CDC\(_3\) (0.3ml) was mixed at -60°C with a solution of \([\text{PtCl}(\text{C}_6\text{H}_4\text{CO}_2\text{Me-p})(\text{CO})(\text{PMePh}_2)]\), prepared in situ, (0.040mmol.) in CDC\(_3\) (0.3ml) and the reaction was followed by \text{^31P nmr spectroscopy}. The initial products were \([\text{PtCl}(\equiv\text{CPh})(\text{CO})(\text{PMePh}_2)]\) isomer (II) and a species with parameters \(\delta = -0.1 \text{ ppm}, \quad 1J_{\text{PtP}} = 1444 \text{ Hz}, \) identified as \([\text{Pt}(\text{C}_6\text{H}_4\text{CO}_2\text{Me-p})(\equiv\text{CMe})(\text{CO})(\text{PMePh}_2)]\), C≡CMe \textit{trans} to CO, (table 12). After 7 hours at -60°C, 60% of the starting material had been consumed, and isomerisation of \([\text{Pt}(\equiv\text{CMe})(\equiv\text{CPh})(\text{CO})(\text{PMePh}_2)]\) was becoming appreciable.
In a similar manner, a solution of \([\text{Pt}(\text{C}=\text{CMe})(\text{C}=\text{CPh})(\text{CO})(\text{PMePh}_2)]\), \(\text{C}=\text{CPh}\text{ trans to L}\), and

\([\text{PtCl}(\text{C}_6\text{H}_4\text{CO}_2\text{Me}-\text{p})(\text{CO})(\text{PMePh}_2)]\) isomer (I)

was mixed with a solution of \([\text{PtCl}(\text{C}_6\text{H}_4\text{CO}_2\text{Me}-\text{p})(\text{CO})(\text{PMePh}_2)]\) isomer (I), \((0.040\text{mmol.})\) in \(\text{CDCl}_3\) \((0.3\text{ml})\) at \(-60^\circ\text{C}\), and the reaction was followed by \(31^\text{P}\) nmr spectroscopy. Initial products (in almost equal amounts) were \([\text{PtCl}(\text{C}=\text{CMe})(\text{CO})(\text{PMePh}_2)]\) isomer (II), \([\text{PtCl}(\text{C}=\text{CPh})(\text{CO})(\text{PMePh}_2)]\) isomer (II), and species with parameters \(\delta = -0.2\ \text{ppm}, \ 1J_{\text{PtP}} = 1431\ \text{Hz}\) and \(\delta = -0.1\ \text{ppm}, \ 1J_{\text{PtP}} = 1442\ \text{Hz}\), identified as \([\text{Pt}(\text{C}_6\text{H}_4\text{CO}_2\text{Me}-\text{p})(\text{C}=\text{CPh})(\text{CO})(\text{PMePh}_2)]\)

and \([\text{Pt}(\text{C}_6\text{H}_4\text{CO}_2\text{Me}-\text{p})(\text{C}=\text{CMe})(\text{CO})(\text{PMePh}_2)]\) respectively, \(\text{C}=\text{CPh}\text{ trans to CO}\), (table 12). After 5\(\frac{1}{2}\) hours at \(-60^\circ\text{C}\), only 25\% of the starting material had been used up, and isomerisation of \([\text{Pt}(\text{C}=\text{CMe})(\text{C}=\text{CPh})(\text{CO})(\text{PMePh}_2)]\) was not appreciable. On warming briefly to room temperature (2 minutes) isomerisation was rapid (2 to 1 ratio of isomers) and the product ratio was about 2:1 in favour of \([\text{PtCl}(\text{C}=\text{CMe})(\text{CO})(\text{PMePh}_2)]\) (II) and \([\text{Pt}(\text{C}_6\text{H}_4\text{CO}_2\text{Me}-\text{p})(\text{C}=\text{CPh})(\text{CO})(\text{PMePh}_2)]\) over \([\text{PtCl}(\text{C}=\text{CPh})(\text{CO})(\text{PMePh}_2)]\) (II) and

\([\text{Pt}(\text{C}_6\text{H}_4\text{CO}_2\text{Me}-\text{p})(\text{C}=\text{CMe})(\text{CO})(\text{PMePh}_2)]\).

\([\text{Pt}(\text{C}=\text{CMe})(\text{C}=\text{CPh})(\text{CO})(\text{PMePh}_2)]\), \(\text{C}=\text{CPh}\text{ trans to L}\), and

\([\text{PtCl}(\text{C}_6\text{H}_4\text{CO}_2\text{Me}-\text{p})(\text{CO})(\text{PMePh}_2)]\) isomer (II)

A solution of \([\text{Pt}(\text{C}=\text{CMe})(\text{C}=\text{CPh})(\text{CO})(\text{PMePh}_2)]\), \(\text{C}=\text{CPh}\text{ trans to PMePh}_2\), \((0.050\text{mmol.})\) in \(\text{CDCl}_3\) \((0.5\text{ml})\) was mixed with a solution of \([\text{PtCl}(\text{C}_6\text{H}_4\text{CO}_2\text{Me}-\text{p})(\text{CO})(\text{PMePh}_2)]\) isomer (II)
(0.040 mmol.), prepared in situ, in CDCl₃ (0.3ml) at -60°C, and the reaction was followed by ³¹P nmr spectroscopy. Initial products were [PtCl(C≡CMe)(CO)(PMePh₂)] isomer (II) and a species with parameters δ = +0.5 ppm, ¹J_PtP = 2439 Hz, identified as [Pt(C₆H₄CO₂Me-p)(C≡CPh)(CO)(PMePh₂)]. C≡CPh trans to phosphine. On warming briefly to room temperature (for 2 minutes), isomerisation of [Pt(C≡CMe)-(C≡CPh)(CO)(PMePh₂)] became appreciable (5 to 3 ratio of isomers) and some [PtCl(C≡CPh)(CO)(PMePh₂)] isomer (II) was also produced (1 to 3 ratio with C≡CMe isomer (II)). The amount of [Pt(C₆H₄CO₂Me-p)(C≡CPh)(CO)(PMePh₂)] detectable was much less than the acetylide isomer (II), and no other species were present.

[Pt(C≡CMe)(C≡CPh)(CO)(PMePh₂)], C≡CMe trans to L, and

[PtCl(C₆H₄CO₂Me-p)(CO)(PMePh₂)] isomer (II).

Similarly [Pt(C≡CMe)(C≡CPh)(CO)(PMePh₂)], C≡CMe trans to PMePh₂, (0.050 mmol.) in CDCl₃ (0.3ml) was mixed with [PtCl(C₆H₄CO₂Me-p)(CO)(PMePh₂)] isomer (II), (0.040 mmol.) in CDCl₃ (0.3ml) at -60°C and the reaction was followed by ³¹P nmr spectroscopy. Initial products were [PtCl(C≡CPh)-(CO)(PMePh₂)] isomer (II) and a species at δ = +0.2 ppm, too weak to determine ¹J_PtP, which was assigned as [Pt(C₆H₄CO₂Me-p)(C≡CMe)(CO)(PMePh₂)], C≡CMe trans to PMePh₂. On brief warming to room temperature, isomerisation of the mixed bis-acetylide complex became appreciable, and [PtCl(C≡CMe)(CO)(PMePh₂)] (II) also began to appear.
[Pt(C≡CMe)(C≡CPh)(CO)(PMePh₂), C≡CPh trans to L, and cis-[PtPh₂(CO)(PMePh₂)]

Ph₂Hg (14.4 mg, 0.040 mmol.) was reacted with a solution of [PtCl(Ph)(CO)(PMePh₂)] isomer (II), (0.040 mmol.), prepared in situ, for 15 minutes. The solution was filtered and a ³¹P nmr investigation showed that it was mainly cis-[PtPh₂(CO)(PMePh₂)] (>90%), with small amounts of trans-[PtCl(Ph)(PMePh₂)₂], and [PtCl(Ph)(CO)(PMePh₂)] isomers (I) and (II) present. This was mixed with a solution of [Pt(C≡CMe)(C≡CPh)(CO)(PMePh₂), C≡CPh trans to PMePh₂, (0.050 mmol.) at -60°C. There was no reaction at -60°C in 2 hours, and on warming to room temperature no reactions except isomerisation of [Pt(C≡CMe)(C≡CPh)(CO)(PMePh₂)] (about 30%), disappearance of byproducts, [PtCl(Ph)(CO)(PMePh₂)] isomers (I) and (II), and formation of a small amount of [PtCl(C≡CMe)(CO)(PMePh₂)] isomer (II) and a species at δ = +0.2 ppm occurred in 20 minutes.

cis-[Pt(C≡CPh)₂(CO)(PMePh₂)] and HgPh₂

A solution of HgPh₂ (14.4 mg, 0.040 mmol.) in CDCl₃ (0.3 ml) was mixed with a solution of cis-[Pt(C≡CPh)₂(CO)(PMePh₂)] (0.040 mmol.), prepared by the symmetrization method, in CDCl₃ (0.3 ml) at -60°C and the reaction was followed by ³¹P nmr spectroscopy. After 2½ hours at -60°C there was no reaction. On warming to room temperature, there was a slow reaction to produce initially [PtPh(C≡CPh)(CO)(PMePh₂)], Ph trans to PMePh₂, (table 12). Subsequently, another species grew in with ³¹P parameters δ = +0.9 ppm,
11J_{PtP} = 2494 Hz (at -60°C). After 3 hours at room temperature, 70% of the starting material had been consumed; [PtPh(\text{C≡CPh})(\text{CO})(\text{PMePh}_2)] accounted for 80% of the products and the unidentified species for 20%. On leaving the solution overnight the products were: the unidentified species (31P nmr at RT: \(\delta = +0.8\) ppm, \(11J_{PtP} = 2532\) Hz), cis-[PtPh\textsubscript{2}(\text{CO})(\text{PMePh}_2)], trans-[PtCl(\text{Ph})(\text{PMePh}_2)\textsubscript{2}], [PtPh(\text{C≡CPh})(\text{CO})(\text{PMePh}_2)] and trans-[PtCl(\text{COPh})(\text{PMePh}_2)].

cis-[Pt(\text{C≡CMe})\textsubscript{2}(\text{CO})(\text{PMePh}_2)] and HgPh\textsubscript{2}

a) A solution of HgPh\textsubscript{2} (14.4mg, 0.040mmol.) in CDC\textsubscript{13} (0.3ml) was mixed with a solution of cis-[Pt(\text{C≡CMe})\textsubscript{2}(\text{CO})(\text{PMePh}_2)] (0.040mmol.) in CDC\textsubscript{13} (0.3ml) and the reaction was followed by 31P nmr spectroscopy. After 20 minutes at room temperature, 30% of the starting material had been consumed and the only detectable product was [PtPh(\text{C≡CMe})(\text{CO})(\text{PMePh}_2)], Ph trans to PMePh\textsubscript{2}, (table 12). Subsequently, other species grew in, all the starting material being consumed within 3 hours and [PtPh(\text{C≡CMe})(\text{CO})(\text{PMePh}_2)] accounting for 40% of the 31P intensity. Other products were an unidentified species with 31P nmr parameters \(\delta = +8.0\) ppm, \(11J_{PtP} = 2428\) Hz (at room temperature), trans-[PtCl(\text{C≡CMe})(\text{PMePh}_2)\textsubscript{2}], trans-[PtCl(\text{Ph})(\text{PMePh}_2)\textsubscript{2}] and cis-[PtPh\textsubscript{2}(\text{CO})(\text{PMePh}_2)], all of which were of equal intensity after the reaction had been left overnight.

b) When the reaction was repeated using the same quantities and conditions, except that there may have been excess [Et\textsubscript{4}N]Cl present, added in the production of cis-[Pt(\text{C≡CMe})\textsubscript{2}(\text{CO})(\text{PMePh}_2)] by the symmetrization method, (an excess of
2.8mgs, 0.4 equiv.), the reaction took a slightly different course. The first products were \([\text{PtPh}(\text{C} \equiv \text{CMe})(\text{CO})-(\text{PMePh}_2)]\), Ph trans to PMePh₂, and an unknown species with 31P parameters \(\delta = +1.2 \text{ ppm}, J_{\text{PtP}} = 2583 \text{ Hz (at RT)},\)

followed by cis-[PtCl₂(COPh)(PMePh₂)]⁻ and trans-[PtCl-(C≡CMe)(PMePh₂)₂]. After 2 hours at room temperature, 80% of the starting material had been consumed, and the above products accounted for 50%, 25%, 14% and 11% of the products respectively (measured as a % of the total 31P intensity of the products). On being left for a further several hours at room temperature, cis-[PtPh₂(CO)(PMePh₂)] became the major product, and trans-[PtCl(Ph)(PMePh₂)₂] also appeared.

 cis-[PtPh₂(CO)(PMePh₂)] and Hg (C≡CMe)₂

A CDCl₃ solution of \([\text{PtCl}(\text{Ph})(\text{CO})(\text{PMePh}_2)]\) isomer (II), (0.040 mmol.) was allowed to react with HgPh₂ (14.4mg, 0.040mmol.) until 31P nmr investigation revealed the solution to be cis-[PtPh₂(CO)(PMePh₂)]. The solution was filtered and mixed at -60°C with a CDCl₃ solution of Hg(C≡CMe)₂ (11.3mg, 0.040mmol.), and the reaction was followed by 31P nmr spectroscopy. After 12 hours at room temperature, 67% of the cis-[PtPh₂(CO)(PMePh₂)] was unchanged, and the only other platinum complex present was trans-[PtCl(Ph)-(PMePh₂)₂].

 cis-[PtPh₂(CO)(PMePh₂)] and Hg (C≡CMe)₂

\([\text{PtCl}(\text{Ph})(\text{CO})(\text{PMePh}_2)]\) isomer (II) and Hg(C≡CMe)₂

\([\text{PtCl}(\text{Ph})(\text{CO})(\text{PMePh}_2)]\) isomer (II), (0.040mmol.) and Hg(C≡CMe)₂ (11.4mg, 0.040mmol.) were mixed in CDCl₃ (0.5ml) at -60°C and the reaction was observed by 31P nmr spectroscopy. No reaction occurred in 30 minutes at -60°C, but on warming to room temperature, there was a rapid
reaction to produce initially \([\text{PtPh}(\text{C}≡\text{CMe})(\text{CO})(\text{PMePh}_2)]\), \(\text{C}≡\text{CMe} \text{ trans to PMePh}_2\), (table 12). However, large amounts of \(\text{cis-}[\text{Pt}(\text{C}≡\text{CMe})_2(\text{CO})(\text{PMePh}_2)]\) and some \(\text{trans-}[\text{PtCl}(\text{Ph})-(\text{PMePh}_2)_2]\) were produced in less than 10 minutes at room temperature.

\[
[\text{PtCl}(\text{C}_6\text{H}_4\text{CO}_2\text{Me-p})(\text{CO})(\text{PMePh}_2)] \text{ isomer (II) and Hg(\text{C}≡\text{CMe})}_2
\]

\[
[\text{PtCl}(\text{C}_6\text{H}_4\text{CO}_2\text{Me-p})(\text{CO})(\text{PMePh}_2)] \text{ isomer (II), } \text{(0.040 mmol.) and Hg(\text{C}≡\text{CMe})}_2 \text{ (11.4mg, 0.040mmol.) reacted similarly in CDCl}_3 \text{ (0.5ml) to produce } [\text{Pt}(\text{C}≡\text{CMe})(\text{C}_6\text{H}_4\text{CO}_2\text{Me-p})(\text{CO})(\text{PMePh}_2)], \text{ C}≡\text{CMe trans to PMePh}_2, \text{ (table 12). A small amount of } \text{trans-}[\text{PtCl}(\text{C}_6\text{H}_4\text{CO}_2\text{Me-p})(\text{PMePh}_2)_2] \text{ was also produced.}
\]

\[
[\text{PtCl}(\text{C}≡\text{CPh})(\text{CO})(\text{PMePh}_2)] \text{ isomer (II) and HgPh}_2
\]

A solution of \([\text{PtCl}(\text{C}≡\text{CPh})(\text{CO})(\text{PMePh}_2)] \text{ isomer (II), } \text{(0.040mmol.) prepared by the symmetrization method, in CDCl}_3 \text{ (0.3ml) was mixed with a solution of HgPh}_2 \text{ (14.4mg, 0.040 mmol.) in CDCl}_3 \text{ (0.2ml) at -60°C. There was no reaction detectable by } ^{31}\text{P} \text{ nmr spectroscopy at -60°C in 1 hour. Reaction began to proceed at -20°C, the initial product being a species with } \delta = +0.1 \text{ ppm, } J_{\text{Pt-P}} = 1381 \text{ Hz at -20°C, identified as } [\text{PtPh}(\text{C}≡\text{CPh})(\text{CO})(\text{PMePh}_2)], \text{ Ph trans to PMePh}_2, \text{ (table 12). After 1 hour at -20°C and a further 15 minutes at +25°C, this was the only product and all of the } [\text{PtCl}(\text{C}≡\text{CPh})(\text{CO})(\text{PMePh}_2)] \text{ (II) had been consumed. On being left at room temperature for 7 hours, there was considerable decomposition, other products being } [\text{Pt}_2-(\text{COPh})_2\text{Cl}_2(\text{PMePh}_2)_2], \text{ cis-}[\text{PtPh}_2(\text{CO})(\text{PMePh}_2)], [\text{PtCl}(\text{Ph})(\text{CO})-}
Similarly, a solution of \([\text{PtCl(C≡CMe)(CO)(PMePh}_2\text{)}]\) isomer (II), (0.040 mmol.) in CDC\(_3\) (0.3 ml) and a solution of HgPh\(_2\) (14.4 mg, 0.040 mmol.) in CDC\(_3\) (0.2 ml) were mixed at -60°C. There was no reaction in 1\(\frac{1}{4}\) hours at -60°C, so the mixture was warmed to room temperature. Initially, a species with \(\delta = +0.2\) ppm, \(^{1}J_{\text{PtP}} = 1399\) Hz (at -60°C), identified as \([\text{PtPh(C≡CMe)(CO)(PMePh}_2\text{)}] \text{ Ph trans to PMePh}_2\), and cis-\([\text{Pt(C≡CMe)}_2(\text{CO)(PMePh}_2\text{)}]\) were produced. After 1 minute at room temperature, ca. 40% of the \([\text{PtCl-(C≡CMe)(CO)(PMePh}_2\text{)}]\) (II) had been consumed, and the products were present in equal amounts. After a further 1 minute at room temperature, the amount of \([\text{PtPh(C≡CMe)-(CO)(PMePh}_2\text{)}]\) increased, relative to cis-\([\text{Pt(C≡CMe)}_2(\text{CO)-(PMePh}_2\text{)}]\), which appeared to have reached its maximum concentration. After 3 minutes at room temperature, another species began to appear, with parameters \(\delta = +0.2\) ppm, \(^{1}J_{\text{PtP}} = 4104\) Hz, which had broad \(^{195}\text{Pt-}^{31}\text{P}\) satellites. This material grew in slowly, and the cis-\([\text{Pt(C≡CMe)}_2(\text{CO)(PMePh}_2\text{)}]\) disappeared. After 15 minutes at room temperature, the solution contained mainly \([\text{PtPh(C≡CMe)-(CO)(PMePh}_2\text{)}]\) and +0.2 ppm, \(^{1}J_{\text{PtP}} = 4104\) Hz in a 2 to 1 ratio of \(^{31}\text{P}\) intensity, with a tiny amount of \([\text{PtCl(Ph)(CO)-(PMePh}_2\text{)}]\) isomer (I) present. After 1 hour at room temperature, the ratio of \(^{31}\text{P}\) intensities was approximately 1 to 2, and large amounts of \([\text{PtCl(Ph)(CO)(PMePh}_2\text{)}]\) (I),
[Pt₂(COPh)₂Cl₂(PMePh₂)₂], trans-[PtCl(Ph)(PMePh₂)₂] and trans-[PtCl(COPh)(PMePh₂)₂] were present.

[PtCl(C≡CPh)(CO)(PMePh₂)] isomer (II) and HgPh₂ (0.5 equiv.) and [Et₄N]Cl (0.5 equiv.)

A solution of [PtCl(C≡CPh)(CO)(PMePh₂)] isomer (II) (0.043mmol.) in CDCl₃ (0.3ml) was mixed at -60°C with a solution of HgPh₂ (10.0mg, 0.022mmol.) and [Et₄N]Cl (4.4mg, 0.022 mmol.) in CDCl₃ (0.3ml) and the reaction was observed by ³¹P nmr spectroscopy. After 3 minutes at room temperature, 50% of the isomer (II) had reacted to form [PtPh(C≡CPh)(CO)(PMePh₂)], Ph trans to PMePh₂. After a further 10 minutes at room temperature, a species with parameters δ = -5.5 ppm, J_ptp = 4955 Hz, identified as cis-[PtCl₂(COPh)(PMePh₂)]⁻ began to grow in. On standing for 3 hours at room temperature, this became the major product, with some trans-[PtCl(C≡CPh)(PMePh₂)₂] and δ = +0.8 ppm, J_ptp = 2532' Hz (at 25°C), proposed to be trans-[Pt(C≡CPh)₂(PMePh₂)₂], growing in later.

[PtCl(C≡CMe)(CO)(PMePh₂)] isomer (II) and HgPh₂ (0.5 equiv.) and [Et₄N]Cl (0.5 equiv.)

Similarly [PtCl(C≡CMe)(CO)(PMePh₂)] isomer (II), (0.040mmol.), HgPh₂ (7.2mg, 0.020mmol.) were mixed in CDCl₃ (0.6ml) at -60°C. There was no reaction until the mixture was warmed to -10°C, when [PtPh(C≡CMe)(CO)(PMePh₂)], Ph trans to PMePh₂, began to appear. After 30 minutes at
-10°C and a further 30 minutes at 0°C, there was still 80% of the isomer (II) present. On warming to +10°C for 15 minutes, cis-[PtCl₂(COPh)(PMePh₂)]⁻ and cis-[Pt(≡CMe)₂(CO)(PMePh₂)] appeared. After 50 minutes at +10°C, cis-[PtCl₂(COPh)(PMePh₂)]⁻ was the major product. After 1 hour 20 minutes at +10°C and 30 minutes at room temperature, very little [PtPh(C≡CMe)(CO)(PMePh₂)] was left, and a little of the dimeric species, [Pt₂(COPh)₂(μ-C≡CMe)₂(PMePh₂)]₂ was present.

cis-[PtCl₂(CO)(PMePh₂)] and HgPh₂ (0.5 equiv.) and [Et₄N]Cl (0.5 equiv.)

cis-[PtCl₂(CO)(PMePh₂)] (20.0mg, 0.040mmol.), HgPh₂ (7.2mg, 0.020mmol.) and [Et₄N]Cl (3.4mg, 0.020mmol.) were mixed in CDCl₃ (0.5ml) and after 10 minutes the solution was filtered and examined by ³¹P nmr spectroscopy. The solution was found to consist of cis-[PtCl₂(COPh)(PMePh₂)]⁻ (ca. 53%), cis-[PtCl₂(CO)(PMePh₂)] (42%) and [PtCl(CO)(Ph)- (PMePh₂)] isomer (I) (5%).

[PtCl(Ph)(CO)(PMePh₂)] isomer (I) and Hg(C≡CMe)₂

A CDCl₃ solution of [PtCl(Ph)(CO)(PMePh₂)] isomer (I), (0.040mmol.) was allowed to equilibrate with its insertion product, [Pt₂(COPh)₂Cl₂(PMePh₂)]₂ at -60°C. (The ratio of ³¹P intensities was 1 to 5). A solution of Hg(C≡CMe)₂ (11.4mg, 0.040mmol.) in CDCl₃ (0.3ml) was then added at -60°C and the reaction was followed by ³¹P nmr spectroscopy. Initially, a species with very broad satellites and main peak, with δ = 0.5 ppm, ¹Jₚₚ = 4113 Hz was produced. As the reaction progressed, the parameters changed to
$\delta = +0.3 \text{ppm}, \; ^1J_{PtP} = 4108 \text{ Hz}$, but the peaks remained broad. After 1 hour at -60°C this was the major product (>90%) and the spectrum did not change over a further 1 1/2 hours. On warming the solution to room temperature for 1 minute and then cooling again to -60°C, the peak had sharpened up, the satellites were a little broad and the parameters had changed to $\delta = +0.2 \text{ ppm}, \; ^1J_{PtP} = 4106 \text{ Hz}$, i.e. the parameters for $[\text{Pt}_2(\text{COPh})_2(\mu-\text{C}≡\text{CMe})_2(\text{PMePh}_2)_2]$. A little cis-$[\text{Pt}(\text{C}≡\text{CMe})_2(\text{CO})(\text{PMePh}_2)]$ had also appeared. After 10 minutes at room temperature $[\text{PtPh}(\text{C}≡\text{CMe})(\text{CO})(\text{PMePh}_2)]$, Ph trans to PMePh$_2$, had grown in (to half the ^{31}P intensity of the dimer) and the amount of cis-$[\text{Pt}(\text{C}≡\text{CMe})_2(\text{CO})(\text{PMePh}_2)]$ had also increased. On keeping at room temperature no further change occurred until $[\text{PtCl}(\text{Ph})(\text{CO})(\text{PMePh}_2)]$ (I) and $[\text{Pt}_2(\text{COPh})_2\text{Cl}_2(\text{PMePh}_2)_2]$ started to grow in again.

$[\text{PtCl}(\text{C}_6\text{H}_4\text{CO}_2\text{Me-p})(\text{CO})(\text{PMePh}_2)]$ isomer (I) and Hg($\text{C}≡\text{CMe})_2$

A CDC$_3$ solution (0.3ml) of $[\text{PtCl}(\text{C}_6\text{H}_4\text{CO}_2\text{Me-p})(\text{CO})(\text{PMePh}_2)]$ isomer (I), (0.040mmol.) was allowed to equilibrate with $[\text{Pt}_2(\text{CO}_6\text{H}_4\text{CO}_2\text{Me-p})_2\text{Cl}_2(\text{PMePh}_2)_2]$ at -60°C. (The ratio of ^{31}P intensities was 10 to 1). A solution of Hg($\text{C}≡\text{CMe})_2$ (11.4mg, 0.040mmol.) was added at -60°C and the reaction was followed by ^{31}P nmr spectroscopy. The initial product was $[\text{Pt}(\text{C}_6\text{H}_4\text{CO}_2\text{Me-p})(\text{C}≡\text{CMe})(\text{CO})(\text{PMePh}_2)]$, C≡CMe trans to CO, (identified by ^{31}P nmr and corroborated by ^1H nmr, tables 10, 12). After 4 hours at -60°C and 10 seconds at room temperature this was the only product. After 15 minutes at room temperature some cis-$[\text{Pt}(\text{C}≡\text{CMe})_2(\text{CO})(\text{PMePh}_2)]$ also appeared.
177.

\[\text{[PtCl(Ph)(CO)(PMePh\(_2\))] isomer (I) and Hg(C≡CPh)\(_2\)} \]

A CDCl\(_3\) solution (0.3mL) of \([\text{PtCl(Ph)(CO)(PMePh\(_2\)] isomer (I), (0.040 mmol.) was allowed to equilibrate with \([\text{Pt}_2(\text{COPh})_2\text{Cl}_2(\text{PMePh\(_2\))] at -60°C. (The ratio of \(^{31}\text{P}\) intensities was 1 to 5). A solution of \(\text{Hg(C≡CPh)}\(_2\) (16.4mg, 0.040mmol.) in CDCl\(_3\) (0.3mL) was added and the reaction was observed at -60°C by \(^{31}\text{P}\) nmr spectroscopy. The initial products were a species with parameters \(\delta = +0.9\) ppm, \(^1J\text{PtP} = 4168\) Hz, which was very broad, and a small amount of \([\text{PtPh(C≡CPh)}(\text{CO})(\text{PMePh\(_2\))}], \text{Ph\,trans to PMePh\(_2\). As the reaction progressed, the unknown species' peak sharpened up, and the parameters changed to \(\delta = +0.3\) ppm, \(^1J\text{PtP} = 4176\) Hz, and this is identified as \([\text{Pt}_2(\text{COPh})_2(\mu-C≡CPh)_2(\text{PMePh\(_2\))]_2\). \text{cis-[Pt(C≡CPh)}_2(\text{CO})(\text{PMePh\(_2\))] also grew in. After 2\(_\frac{1}{2}\) hours at -60°C and 3 minutes at room temperature \([\text{Pt}_2(\text{COPh})_2(\mu-C≡CPh)_2(\text{PMePh\(_2\))]_2\) and \([\text{PtPh(C≡CPh)}(\text{CO})(\text{PMePh\(_2\))] were present in a ratio of 2 to 1 (based on \(^{31}\text{P}\) intensities). On warming to room temperature for 45 minutes, only \([\text{PtPh(C≡CPh)}(\text{CO})(\text{PMePh\(_2\))]\) was present, and \([\text{PtCl(Ph)}(\text{CO})(\text{PMePh\(_2\))]\) isomer (I) and \([\text{Pt}_2(\text{COPh})_2\text{Cl}_2(\text{PMePh\(_2\))]\) started to grow in again. Eventually, these two complexes and \text{trans-[PtCl(C≡CPh)}(\text{PMePh\(_2\))]_2\) were the only species present.

\[\text{[PtCl(Ph)(CO)(PMePh\(_2\))] isomer (I) and Ph\(_3\)PAu(C≡CPh)} \]

A similar reaction was performed using an equilibrium mixture of \([\text{PtCl(Ph)}(\text{CO})(\text{PMePh\(_2\))]\) isomer (I) and \([\text{Pt}_2(\text{COPh})_2\text{Cl}_2(\text{PMePh\(_2\))] (0.040mmol. of Pt) with Ph\(_3\)PAu(C≡CPh) (23.2mgs, 0.041 mmol.) in CDCl\(_3\) (0.6mL) at -60°C. The initial products were \([\text{Pt}_2(\text{COPh})_2(\mu-C≡CPh)_2(\text{PMePh\(_2\))]_2\),
with sharp peaks and parameters $\delta = +0.3$ ppm, $^1J_{PtP} = 4172$ Hz, and $[\text{PtPh(C\equivCPh)(CO)(PMePh}_2)]$, Ph trans to PMePh$_2$, $\delta = +0.3$ ppm, $^1J_{PtP} = 1386$ Hz. As the reaction proceeded the amount of $[\text{PtPh(C\equivCPh)(CO)(PMePh}_2)]$ increased and dimer decreased. Another species, with parameters $\delta = -2.7$ ppm, $^1J_{PtP} = 3297$ Hz was also produced.

$[\text{PtCl(Ph)(CO)(PMePh}_2)]$ isomer (I) and TlC_5H_5

A solution of $[\text{PtCl(Ph)(CO)(PMePh}_2)]$ isomer (I) in equilibrium with $[\text{Pt}_2(\text{COPh})_2\text{Cl}_2(\text{PMePh}_2)_2]$ at room temperature was prepared (0.040 mmol. of Pt). The ratio of ^{31}P intensities was 1 to 2, which is equivalent to a 1 to 1 mole ratio. TlC_5H_5 was added (12.0 mg, 0.045 mmol.) at room temperature and after 20 minutes the solution was filtered and a ^{31}P nmr spectrum showed that it contained largely one species, $\delta = -6.2$ ppm, $^1J_{PtP} = 5687$ Hz, identified as $[\text{Pt(\eta}^5\text{-C}_5\text{H}_5)(\text{COPh})(\text{PMePh}_2)]$, with a small amount of trans-$[\text{PtCl(COPh)(PMePh}_2)_2]$.

$[\text{PtCl(C}_6\text{H}_4\text{CO}_2\text{Me-p})(\text{CO})(\text{PMePh}_2)]$ isomer (I) and TlC_5H_5

Similarly, TlC_5H_5 (11.6 mg, 0.043 mmol.) was added to an equilibrated mixture of $[\text{PtCl(C}_6\text{H}_4\text{CO}_2\text{Me-p})(\text{CO})(\text{PMePh}_2)]$ isomer (I) and $[\text{Pt}_2(\text{COC}_6\text{H}_4\text{CO}_2\text{Me-p})_2\text{Cl}_2(\text{PMePh}_2)_2]$, (0.040 mmol. of Pt) in CDCl$_3$ (0.5 ml) at -60°C. ^{31}P nmr showed that there was no reaction in 2 hours at -60°C. On warming to room temperature, the major product was a species, $\delta = -5.9$ ppm, $^1J_{PtP} = 5659$ Hz (at 25°C), identified as $[\text{Pt(\eta}^5\text{-C}_5\text{H}_5)\text{(COC}_6\text{H}_4\text{CO}_2\text{Me-p})(\text{PMePh}_2)]$. 1H nmr at 25°C, $\delta = +5.58$ ppm, $J_{PH} = 2.0$ Hz, $J_{PtH} = 13.0$ Hz (C$_5$H$_5$), $\delta = +3.90$ ppm, (CH$_3$ of C$_6$H$_4$CO$_2$Me-p) and $\delta_H = +2.03$ ppm, $^2J_{PH} = 11.0$ Hz, $^3J_{PtH}$
unresolved. Some cis-$[\text{Pt}(\text{C}_6\text{H}_4\text{CO}_2\text{Me}_2)_2](\text{CO})(\text{PMePh}_2)]$ was also produced, (table 13).

$[\text{PtCl}(\text{C}_2\text{Cl}_3)(\text{CO})(\text{PMePh}_2)]$ isomer (I) and TIC_5H_5

a) $[\text{PtCl}(\text{C}_2\text{Cl}_3)(\text{CO})(\text{PMePh}_2)]$ isomer (I), (24.4mg, 0.040mmol.) and TIC_5H_5 (10.9mg, 0.040mmol.) were mixed in CDCl$_3$ (0.5 ml) at room temperature. The solution rapidly became yellow, and was filtered, after 10 minutes and a 31P nmr spectrum was obtained at -60°C. This showed that ca. 70% of the isomer (I) was unreacted, and the only other species present were cis-$[\text{Pt}(\text{C}_2\text{Cl}_3)_2(\text{CO})(\text{PMePh}_2)]$ and $\delta = -5.9$ ppm, $^{1}J_{\text{PtP}} = 5249$ Hz. More TIC_5H_5 was added (21.8mg, 0.080 mmol.), and the mixture was reacted at room temperature for 20 minutes, filtered and 31P spectrum recorded at -60°C. The solution contained only $\delta = -6.0$ ppm, $^{1}J_{\text{PtP}} = 5254$ Hz and cis-$[\text{Pt}(\text{C}_2\text{Cl}_3)_2(\text{CO})(\text{PMePh}_2)]$ in a 3 to 1 ratio. A 1H nmr spectrum at room temperature showed the presence of C_5H_6 and a π-cyclopentadienyl species with $\delta = +5.62$ ppm, $^{3}J_{\text{PH}} = 1.5$ Hz, $^{3}J_{\text{PtH}} = 13.0$ Hz (d of t.), (C_5H_5) and $\delta = +2.00$ ppm, $^{2}J_{\text{PH}} = 11.5$ Hz, $^{3}J_{\text{PtH}} = 30.0$ Hz (d. of t.) (PMePh_2 methyl H's).

b) Similarly $[\text{PtCl}(\text{C}_2\text{Cl}_3)(\text{CO})(\text{PMePh}_2)]$ isomer (I), (24.4mg, 0.040mmol.) and TIC_5H_5 (10.9mg, 0.040mmol.) were reacted in CDCl$_3$ (0.5ml) at room temperature for 6 hours. A 31P nmr spectrum at -60°C revealed the presence of cis-$[\text{Pt}(\text{C}_2\text{Cl}_3)_2(\text{CO})(\text{PMePh}_2)]$, -5.8 ppm, $^{1}J_{\text{PtP}} = 5249$ Hz and a species with $\delta = -0.4$ ppm, $^{1}J_{\text{PtP}} = 2047$ Hz in a ratio of 4:3:2 approximately. A 1H nmr spectrum at room temperature showed that C_5H_6 was present.
c) Similarly \([\text{PtCl}(\text{C}_2\text{C}_1\text{Cl}_3)(\text{CO})(\text{PMePh}_2)]\) isomer (I), (24.4 mg, mg, 0.040 mmol.) and TlC$_5$H$_5$ (10.9 mg, 0.040 mmol.) were allowed to react in CDC$_3$ (0.5 ml) at room temperature.

After 10 hours there had been very little reaction although the solution was orange-yellow and contained TlCl. A 1H nmr showed the presence of C$_5$H$_6$. After 23 hours, isomer (I) was still 65% of the 31P intensity, with the most abundant product a species at $\delta = -0.3$ ppm, 1J$_{PtP}$ = 2015 Hz. A 1H nmr spectrum contained a large amount of C$_5$H$_6$, and a σ-cyclopentadienyl species, $\delta = +6.15$ ppm, $J_{PH} = 4.0$ Hz, $J_{PtH} = 36.0$ Hz (d of t.) (C$_5$H$_5$) and $\delta = +2.14$ ppm, 2J$_{PH} = 10.5$ Hz, 3J$_{PtH}$ unresolved (d), (PMePh$_2$ methyl H's). A further 10.9 mg of TlC$_5$H$_5$ (0.040 mmol.) was added, and after 12 hours at room temperature, a 31P nmr spectrum at -60°C contained $\delta = -0.4$ ppm, 1J$_{PtP}$ = 2045 Hz; cis-[Pt($\text{C}_2\text{C}_1\text{Cl}_3$)$_2$-(CO)(PMePh$_2$)]; $\delta = -5.8$ ppm, 1J$_{PtP}$ = 5249 Hz and cis-[PtCl($\text{C}_2\text{C}_1\text{Cl}_3$)(PMePh$_2$)$_2$]. Eventually some trans-[PtCl-($\text{C}_2\text{C}_1\text{Cl}_3$)(PMePh$_2$)$_2$] also grew in, (table 13).

\[
\text{[PtCl(C}_6\text{H}_4\text{Cl}-\text{o})(\text{CO})(\text{PMePh}_2)] \text{ isomer (I) and TlC}_5\text{H}_5
\]

TlC$_5$H$_5$ (10.9 mg, 0.040 mmol.) was added to a solution of \([\text{PtCl(C}_6\text{H}_4\text{Cl}-\text{o})(\text{CO})(\text{PMePh}_2)] \text{ isomer (I)}\) at room temperature.

The solution was investigated periodically by 31P nmr spectroscopy. In 3 days at room temperature there was no reaction, but after 1 week some other species began to grow in. By 2½ weeks, only 35% of the isomer (I) was left. Products were species with parameters $\delta = -3.9$ ppm, 1J$_{PtP}$ = 4879 Hz and $\delta = -3.7$ ppm, 1J$_{PtP}$ = 4868 Hz, a species with parameters $\delta = -0.4$ ppm, $J_{PtP} = 1833$ Hz and \([\text{PtCl(C}_6\text{H}_4\text{Cl}-\text{o})-\text{(CO)(PMePh}_2\text{)] isomer (II).}])
CHAPTER 4
FORMATION AND REACTIONS OF A NOVEL, ASYMMETRICALLY SUBSTITUTED, BINUCLEAR PLATINUM COMPLEX.
RESULTS AND DISCUSSION

The Decomposition of Cyclopentadienyl isomer (I)

The decomposition of cyclopentadienyl isomer (I) complexes in solution leads to the formation of a novel dinuclear platinum complex. When a CDCl₃ solution of

\[\text{[PtCl(\eta^1-C_5H_5)(CO)(PPh_3)] isomer (I), C}_5\text{H}_5 \text{trans to PPh}_3, \]

was left at room temperature for three days a ^{31}P nmr spectroscopic investigation showed that only 34% of the isomer (I) remained. The products of decomposition were

\[\text{cis-[PtCl}_2(\text{CO})(\text{PPh}_3)] (25\% \text{ of the } ^{31}\text{P intensity of the products}), \text{cis-[PtCl}_2(\text{PPh}_3)_2] (10\%), \]

a species with parameters $\delta = +20.7 \text{ ppm}$, $^1J_{\text{PtP}} = 3435 \text{ Hz}$ (8%) and a species whose ^{31}P nmr parameters showed it to be a dimer, probably with a platinum-platinum bond (57%). The parameters of the dimer are:

$\delta = +9.1 \text{ ppm}$, doublet $^3J_{\text{PP}} = 9.4 \text{ Hz}$, $^1J_{\text{PtP}} = 5006 \text{ Hz}$,

$^2J_{\text{PtP}} < 20 \text{ Hz}$.

$\delta = +34.0 \text{ ppm}$, doublet $^3J_{\text{PP}} = 9.4 \text{ Hz}$, $^1J_{\text{PtP}} = 5505 \text{ Hz}$,

$^2J_{\text{PtP}} = 862 \text{ Hz}$.

The dimeric nature of this complex is indicated by the coupling of each phosphine to two platinum atoms, and the size of the long-range platinum-phosphorus coupling to the low-field phosphine indicates that the complex probably has a platinum-platinum bond.

A similar dimer was obtained when \[\text{[PtCl(\eta^1-C}_5\text{H}_5)(\text{CO})-(\text{PMe}_2\text{Ph})] isomer (I) was allowed to decompose in solution. \]

After 1 day at room temperature in CDCl₃, only 33% of the ^{31}P intensity was isomer (I), the remainder being the
asymmetrically substituted dimer (33%), cis-[PtCl₂(CO)–(PMe₂Ph)] (20%) and cis-[PtCl₂(PMe₂Ph)₂] (10%). On being left for three days cis-[PtCl₂(PMe₂Ph)₂] became the major product.

![Chemical structure](image)

The ³¹P parameters of the "Asymmetric Dimer" obtained from [PtCl(C₅H₅)(CO)(PMe₂Ph)] are given in table 14. The formation of "Asymmetric Dimer" is not light-induced, since a solution of [PtCl(C₅H₅)(CO)(PMe₂Ph)] isomer (I) kept in the dark decomposed at the same rate, and to the same products, as a solution exposed to daylight. Neither is it dependant on CDC₁₃, since solutions of [PtCl(C₅H₅)(CO)(PMe₂Ph)] (I) in acetone and in benzene also produced "Asymmetric Dimer", cis-[PtCl₂(CO)(PMe₂Ph)] and cis-[PtCl₂(PMe₂Ph)₂]; although the decomposition was slower than in CDC₁₃.

The decomposition of [PtCl(C₅H₅)(CO)(PMe₂Ph₂)] isomer (I) is not accelerated by bubbling either nitrogen, oxygen, carbon monoxide or carbon dioxide through a CDC₁₃ solution, nor is it affected by addition of H₂O. This would seem to suggest that the decomposition of cyclopentadienyl isomer (I) complexes is via either intramolecular or intermolecular reactions of the platinum complexes alone, rather than reactions with air or moisture etc.

Other Routes to "Asymmetric Dimers"

The "Asymmetric Dimers" can be made in higher yield by allowing cis-[PtX₂(CO)L] to react with 2 equivalents of TIC₅H₅. cis-[PtCl₂(CO)(PPh₃)] on some occasions produced
cis-[Pt(C$_5$H$_5$)$_2$(CO)(PPh$_3$)] on reaction with 2 TlC$_5$H$_5$, but in the majority of attempts, the reaction led largely to "Asymmetric Dimer", usually 70-90% of the total 31P intensity. The species with parameters $\delta = +20.7$ ppm, $^1J_{PtP} = 3435$ Hz was also always produced. This was also obtained from the decomposition of [PtCl(C$_5$H$_5$)(CO)(PPh$_3$)], isomer (I).

The reaction of cis-[PtCl$_2$(CO)(PET$_3$)] with 2 equivalents of TlC$_5$H$_5$ also produced an "Asymmetric Dimer" complex, whose 31P nmr parameters are given in table 14. In this case, the "Asymmetric Dimer" was produced as 97% of the 31P intensity, with only one other, minor, species present in solution with parameters $\delta = +9.2$ ppm, $^1J_{PtP} = 5185$ Hz.

cis-[PtCl$_2$(CO)(PMe$_2$Ph)] reacted with 2 TlC$_5$H$_5$ in CDCl$_3$ to produce an "Asymmetric Dimer", the same one produced by decomposition of [PtCl(C$_5$H$_5$)(CO)(PMe$_2$Ph)] isomer (I). However, in this case a large number of other products was also obtained, and "Asymmetric Dimer" at no time accounted for more than 50% of the 31P intensity except on one occasion, when it accounted for 83% of the 31P intensity.

Normally [Pt(5C$_5$H$_5$)(PMe$_2$Ph)$_2$]$^+$, cis-[PtCl$_2$(PMe$_2$Ph)$_2$] and unidentified species with parameters $\delta = -5.3$ ppm, $^1J_{PtP} = 2827$ Hz and $\delta = -6.6$ ppm, $^1J_{PtP} = 3090$ Hz were also produced. Also cis-[Pt(1C$_5$H$_5$)$_2$(CO)(PMe$_2$Ph)] and a species with parameters $\delta = -13.9$ ppm, $^1J_{PtP} = 2211$ Hz were transient products en route to the "Asymmetric Dimer".

The reaction of cis-[PtBr$_2$(CO)(PMe$_2$Ph)] with 2 equivalents of TlC$_5$H$_5$ produced an "Asymmetric Dimer" with different
31P nmr parameters to the one produced from cis-[PtCl$_2$(CO)-(PMe$_2$Ph)], showing that the "Asymmetric Dimers" contain halide. The parameters are shown in table 14. Other products were [Pt(η^5-C$_5$H$_5$)(PMe$_2$Ph)$_2$]$^+$ and species with parameters $\delta = -7.4$ ppm, $^1J_{PtP} = 2802$ Hz and $\delta = -8.8$ ppm, $^1J_{PtP} = 3072$ Hz. These two species are presumably the Br analogues of $\delta = -5.3$ ppm, $^1J_{PtP} = 2827$ Hz and $\delta = -6.6$ ppm, $^1J_{PtP} = 3090$ Hz, since the latter two species begin to grow in after 2 days at room temperature. cis-[PtBr$_2$(PMe$_2$Ph)$_2$] is also produced and later cis-[PtBr(Cl)(PMe$_2$Ph)$_2$], thus there appears to be Br/Cl exchange in some of the species. The only source of Cl in this reaction is the CDCl$_3$ solvent. cis-[Pt(η^5-C$_5$H$_5$)$_2$(CO)(PMe$_2$Ph)] and the species with $\delta = -13.9$ ppm, $^1J_{PtP} = 2211$ Hz were again transient products en route to "Asymmetric Dimer".

31P nmr parameters of other "Asymmetric Dimers" were obtained in other types of reactions, and are shown in table 14. Addition of [Bu$_4$N]I to the "Asymmetric Dimer", produced by reaction of cis-[PtCl$_2$(CO)(PF$_3$)] and 2CpTl, formed a new "Asymmetric Dimer" with different 31P nmr parameters. Addition of [Bu$_4$N]I to a CDCl$_3$ solution of [Pt(η^5-C$_5$H$_5$)(CO)(PMe$_2$Ph)]SO$_3$CF$_3$ formed an "Asymmetric Dimer", whose parameters differed from those formed by cis-[PtCl$_2$(CO)(PMe$_2$Ph)] and cis-[PtBr$_2$(CO)(PMe$_2$Ph)]. Similarly, addition of [Et$_4$N]Cl to [PtCl(η^5-C$_5$H$_5$)(CO)(PMePh$_2$)] produced some "Asymmetric Dimer", as a minor product, along with cis-[PtCl$_2$(PMe$_2$Ph)$_2$] and some other unidentified species.
Table 14: \(^{31}\)P nmr of "Asymmetric Dimer" complexes in CDC\(_1\)\(_3\) at 25°C.

<table>
<thead>
<tr>
<th>Phosphine</th>
<th>Halide</th>
<th>(\delta P_1) (ppm)</th>
<th>(1J_{\text{P}t\text{P}}) (Hz)</th>
<th>(2J_{\text{P}t\text{P}}) (Hz)</th>
<th>(\delta P_2) (ppm)</th>
<th>(1J_{\text{P}t\text{P}}) (Hz)</th>
<th>(2J_{\text{P}t\text{P}}) (Hz)</th>
<th>(3J_{\text{PP}}) (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPh(_3) (a)</td>
<td>Cl</td>
<td>+34.0</td>
<td>5505</td>
<td>862</td>
<td>+9.1</td>
<td>5006</td>
<td>unresolved</td>
<td>9.4</td>
</tr>
<tr>
<td>PMePh(_2)</td>
<td>Cl</td>
<td>+19.5</td>
<td>5480</td>
<td>863</td>
<td>-8.4</td>
<td>4824</td>
<td>32.2</td>
<td>8.2</td>
</tr>
<tr>
<td>PMe(_2)Ph</td>
<td>Cl</td>
<td>+10.0</td>
<td>5367</td>
<td>872</td>
<td>-25.1</td>
<td>4690</td>
<td>31.0</td>
<td>7.2</td>
</tr>
<tr>
<td>PEt(_3)</td>
<td>Cl</td>
<td>+35.7</td>
<td>5302</td>
<td>858</td>
<td>+7.7</td>
<td>4618</td>
<td>unresolved</td>
<td>5.7</td>
</tr>
<tr>
<td>PPh(_3)</td>
<td>I</td>
<td>+33.8</td>
<td>5533</td>
<td>835</td>
<td>+8.1</td>
<td>4925</td>
<td>unresolved</td>
<td>9.3</td>
</tr>
<tr>
<td>PNe(_2)Ph</td>
<td>Br</td>
<td>+9.3</td>
<td>5399</td>
<td>852</td>
<td>-25.1</td>
<td>4683</td>
<td>24.4</td>
<td>7.3</td>
</tr>
<tr>
<td>PNe(_2)Ph</td>
<td>I</td>
<td>+7.7</td>
<td>5378</td>
<td>842</td>
<td>-25.3</td>
<td>4657</td>
<td>25</td>
<td>7.0</td>
</tr>
</tbody>
</table>

(a) \(^{13}\)C nmr at 25°C in CDC\(_1\)\(_3\): \(\delta C_0 = +191.1\) ppm, \(2J_{\text{P}t\text{C}} = 4.3\) Hz, \(1J_{\text{PtC}} = 1625\) and \(723\) Hz; \(\delta C_5H_5 = +95.3\) ppm, \(J_{\text{PC}} = 2.5\) Hz (d).

(b) Unresolved means that \(2J_{\text{PtP}}\) satellites were hidden under the main doublet.
Structure of the "Asymmetric Dimers" from Spectroscopic Parameters

The 31P nmr parameters of all of the "Asymmetric Dimers" show that these are all related species. The spectra of each are similar, as shown in figure 29.

The phosphine with the more downfield chemical shift has the larger one-bond platinum-phosphorus coupling constant (5300 to 5530 Hz) and also has a large, long-range platinum-phosphorus coupling (835 to 870 Hz). The upfield phosphine has the smaller one-bond platinum-phosphorus coupling (4620 to 5000 Hz), and has a very small long-range platinum-phosphorus coupling constant (less than 32 Hz). One-bond 195Pt-31P coupling constants vary as expected with changing the phosphine, i.e. $\text{PPh}_3 > \text{PMePh}_2 > \text{PMe}_2\text{Ph} > \text{PET}_3$. However, long-range 195Pt-31P coupling constants do not vary in this way, being 862, 863, 872 and 858 Hz respectively. Such large values are typical of a phosphine trans to a platinum-platinum bond. The other phosphine must then be cis to a platinum-platinum bond, since the long-range 195Pt-31P coupling is so small, viz:-
Such large $^{2}J_{PtP}$ values have been found in other platinum dimers with platinum-platinum bonds, for example in complexes of the type $[Pt_{2}(\mu-d_{ppm})_{2}L_{2}]^{2+}$, $^{2}J_{PtP} = 750$ Hz when $L = \text{PMePh}_{2}$ and 650 Hz when $L = \text{PMe}_{2}\text{Ph}$, for the phosphine, L, trans to the Pt-Pt bond, and only 120 Hz and 100 Hz respectively for the dppm phosphorus atoms cis to the Pt-Pt bond.

$L = \text{PMePh}_{2}$, PMe_{2}Ph
$\text{PR}_{3} = \text{P}(\text{C}_{6}\text{H}_{11})_{3}$, PMeBu^{t}

In this case, there are large changes in $^{2}J_{PtP}$ on changing the phosphine, unlike the "Asymmetric Dimer", but there are two phosphines, trans to the Pt-Pt bond, and to each other through the Pt-Pt bond. The acetylide-bridged dimer $[Pt_{2}(\sigma-\text{C}≡\text{CPh})(\mu-\text{C}≡\text{CPh})(\mu-\text{SiMe}_{2})(\text{PR}_{3})_{2}]$ has a non-linear P-Pt-Pt-P skeleton with P-Pt-Pt angles of 165.2° and 148.0°, and $^{2}J_{PtP}$ values of 308 Hz and 0 Hz for $\text{PR}_{3} = \text{P}(\text{C}_{6}\text{H}_{11})_{3}$ and 312 Hz and 11 Hz for $\text{PR}_{3} = \text{PMeBu}^{t}$. In this case, the phosphine with large $^{2}J_{PtP}$ is not fully trans to the Pt-Pt bond, and the other phosphine is not fully cis, yet there is a large difference in $^{2}J_{PtP}$ values.
When the "Asymmetric Dimers" are prepared from 13CO-labelled cis-[PtCl$_2$(CO)L], (L = PPh$_3$ and PMe$_2$Ph), the upfield phosphine signal in the 31P nmr spectrum is broadened by 13C - 31P coupling, and the downfield doublet is unaffected. The 13C - 31P coupling is not resolved, but is less than the 3J$_{PP}$ coupling of ca. 9 Hz, hence the carbon monoxide and phosphine ligands must be of approximately cis-geometry. A trans 13C - 31P coupling would be much larger; 2J$_{CP}$ values of 150 to 160 Hz for phosphine trans to CO are known. Thus, it appears that "Asymmetric Dimer" complexes contain only one CO per dimer, which shows 13C - 31P coupling to the phosphine with the small 2J$_{PP}$ value.

A 1H nmr spectrum of the "Asymmetric Dimer" produced by reaction of cis-[PtCl$_2$(CO)PPh$_3$] and 2 TlC$_5$H$_5$ in CDC$_3$ for two days contained C$_5$H$_6$ and a signal at δ = +5.75 ppm, a doublet of doublets, J_{PH} = 1.0 and 1.8 Hz with broad, unresolved platinum satellites, "J_{PtH}" = 11.5 Hz. This corresponds to a π-cyclopentadienyl ring coupling to two different phosphorus atoms. It is not possible to distinguish the platinum-proton couplings to see whether the C$_5$H$_5$ ring couples to only one, or to both, platinum atoms. The 1H nmr spectrum is shown in fig. 30, (π-cyclopentadienyl signal only). From integration of the amounts of C$_5$H$_5$ protons and C$_5$H$_6$ protons, there were approximately 1.5 equivalents of cyclopentadiene present for every π-cyclopentadienyl ring. A minor species was also present, at δ = +4.95 ppm, a triplet, J_{PH} = 3.0 Hz, J_{PtH} = 25.8 Hz.
figure 30. 1H nmr spectrum of C$_5$H$_5$ region of "Asymmetric Dimer" at $\delta = +5.75$ ppm.
When the reaction between cis-\([\text{PtCl}_2(\text{CO})(\text{PEt}_3)]\) and 2 TlC5H5 was followed by 1H nmr spectroscopy, the initial product was \([\text{PtCl}(\text{C}_5\text{H}_5)(\text{CO})(\text{PEt}_3)]\) isomer (I). After 3 hours, the solution also contained some cis-\([\text{Pt}(\text{C}_5\text{H}_5)_2(\text{CO})-(\text{PEt}_3)]\), (see table 3 for 1H nmr parameters) and a peak at \(\delta = +5.81\) ppm, a doublet of doublets, \(J_{PH} = 1.0\) and 1.7 Hz, with broad, unresolved platinum satellites, "\(J_{PtH} = 11.0\) Hz. After 24 hours, this was the major species in solution. As the "Asymmetric Dimer" grew in to the spectrum, so did C5H6. From integration, about 1.5 equivalents of C5H6 were present for every \(\pi\)-cyclopentadienyl ring. Integration of PEt3 signals showed that the "Asymmetric Dimer" contained only one C5H5 ring per dimer molecule. A minor species with parameters \(\delta = +5.70\) ppm, doublet, \(J_{PH} = 1.6\) Hz, \(J_{PtH} = 11.0\) Hz was also present. This corresponded to a species in the 31P nmr spectrum with parameters \(\delta = +9.2\) ppm, \(J_{PtP} = 5185\) Hz.

The 1H nmr parameters of the "Asymmetric Dimers" are in table 15. Comparison of the spectra with a spectrum of freshly cracked and distilled cyclopentadiene in CDCl3 showed that the C5H6 was not coordinated to platinum in "Asymmetric Dimer" solutions. Formation of "Asymmetric Dimers" by decomposition of isomer (I) is also accompanied by production of C5H6, as was formation of "Asymmetric Dimers" in the reactions of \([\text{PtCl}(\text{C}_5\text{H}_5)(\text{CO})(\text{PMePh}_2)]\) isomer (I) with Cl− and \([\text{Pt}(\pi^5\text{C}_5\text{H}_5)(\text{CO})(\text{PMe}_2\text{Ph})]^+\) with I−.
Table 15: 1H nmr of "Asymmetric Dimer" complexes in CDCl$_3$ at 25°C.

<table>
<thead>
<tr>
<th>Phosphine</th>
<th>Halide</th>
<th>1H$_2$ protons</th>
<th>δ (ppm)</th>
<th>J_{PH} (Hz)</th>
<th>$"J_{PtH}"$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPh$_3$</td>
<td>Cl</td>
<td></td>
<td>+5.75</td>
<td>1.8 and 1.0</td>
<td>11.5</td>
</tr>
<tr>
<td>PEt$_3$</td>
<td>Cl</td>
<td></td>
<td>+5.81</td>
<td>1.7 and 1.0</td>
<td>11.0</td>
</tr>
<tr>
<td>PMe$_2$Ph (a)</td>
<td>Cl</td>
<td></td>
<td>+5.73</td>
<td>1.6 and 1.0</td>
<td>11.0</td>
</tr>
<tr>
<td>PMe$_2$Ph</td>
<td>I</td>
<td></td>
<td>+5.64</td>
<td>1.7 and 0.8</td>
<td>(b)</td>
</tr>
</tbody>
</table>

(a) PMe$_2$Ph - methyl protons = δ = +1.93 ppm,
$^2J_{PH}$ = 11.0 Hz, $^3J_{PtH}$ = 45.0 Hz and δ = +1.78 ppm,
$^2J_{PH}$ = 10.5 Hz, $^3J_{PtH}$ = 44.0 Hz.

(b) Unresolved.
An impure solid sample of "Asymmetric Dimer" was isolated from the reaction of \([\text{PtCl}(C_5H_5)(CO)(PPh_3)]\) isomer (I) and \(\text{TlC}_5H_5\), by freeze-drying the \(\text{CDCl}_3\) solution diluted with benzene. A KBr disc i.r. spectrum of this solid had a medium strong, broad absorbance at \(1805\text{cm}^{-1}\), which is characteristic of a bridging CO ligand. No absorptions typical of a terminal CO could be observed. The i.r. spectrum of a \(\text{CHCl}_3\) solution was also obtained, and this too had a broad absorbance at \(1800\text{cm}^{-1}\), indicating that CO is bridging in solution as well as in the solid.

A \(^{13}\text{C}\) nmr spectrum of the solid material dissolved in \(\text{CDCl}_3\) contained a peak at \(\delta = +95.3\) ppm, a doublet, \(J_{PC} = 2.5\) Hz, and a large number of peaks at \(\delta = +127.6\) to \(+134.9\) ppm, attributable to aryl carbon atoms. No peak could be observed corresponding to a CO ligand, even on addition of \(\text{Cr(acac)}_3\) to decrease spin-relaxation times. When a sample of "Asymmetric Dimer" was made from cis-\([\text{PtCl}_2(^{13}\text{CO})(PPh_3)]\), (60% enriched with \(^{13}\text{CO}\)), an additional peak was observed at \(\delta = +191.1\) ppm, a doublet, \(J_{PC} = 4.3\) Hz, with two sets of platinum satellites, \(J_{PtC} = 1625\) Hz and 723 Hz. This peak was weak compared to the aryl carbon peaks, but was enhanced, (with a slight altering of parameters), on addition of \(\text{Cr(acac)}_3\).

The peak in the \(^{13}\text{C}\) nmr spectrum at \(+191.1\) ppm is in the range typical of a carbonyl ligand. The two platinum-carbon coupling constants, of 1625 Hz and 723 Hz, indicate that the CO is bridging, which is consistent with the i.r. spectrum. A coupling constant of 723 Hz is too large to be a two-bond coupling constant, e.g. in \([\text{Pt}_2(C_5H_5)_2(CO)_2]\),
Both platinum-carbon coupling constants are thus one-bond coupling constants, and the carbonyl ligand more or less symmetrically bridges the two platinum atoms, as below:

\[\text{L} \equiv \begin{array}{c}
\text{Pt} \\
\text{Pt}
\end{array} \]

The CO couples to only one of the two phosphine ligands, \(J_{\text{PC}} = 4.3 \text{ Hz} \), which is consistent with the \(^{31}\text{P} \text{ nmr data} \), where only the upfield phosphine (i.e., that cis to the Pt-Pt bond) couples to \(^{13}\text{CO} \). Neither phosphine can be in a position trans to the CO, since \(2J_{\text{PC}} \) values of 140 to 160 Hz are typical of this arrangement. An unsymmetrical bridging mode like that shown below is also unlikely.

In similar complexes, like \([\text{MnPt}(\mu-\text{CS})(\text{CO})_2(\text{PMe}_2\text{Ph})_2]^{-} (\eta^5-\text{C}_5\text{H}_5)\)], with a semi-bridging interaction of CO with Pt, a much smaller platinum-carbon coupling constant of 77 Hz was found.
A 13CO ligand trans to a halide has a J_{PtC} value in the range 1650 - 1900 Hz, while a 13CO ligand trans to an organic group typically has $J_{PtC} \approx 900$ Hz. An organic group cis to 13CO tends to increase J_{PtC}.

The peak at +95.3 ppm showed no platinum-carbon coupling, but is in the range for a π-bonded cyclopentadienyl ring. A wide range of platinum complexes containing a CO group or C_5H_5 rings are shown in table 16, and the chemical shifts lie in the range +90 to +95 ppm, for π-bonded rings, with J_{PtC} ranging from 3 to 30 Hz. This contrasts with σ-bonded C_5H_5 rings, with δ in the range +110 to +117 ppm, and coupling constants of 35 to 100 Hz. The C_5H_5 group in the "Asymmetric Dimer" is thus unlikely to be σ-bonded. There is a possibility that the C_5H_5 group could be bridging the two platinum atoms, as in complexes of the type below, studied extensively by Werner, which have a metal-metal bond and a C_5H_5 ring symmetrically bridging between the metals.178-181

\[
\begin{align*}
\text{L--Pd--Pd--L} & \quad \text{L--Pd--Pd--L} \\
\text{L--Pd--Pd--L} & \quad \text{L--Pd--Pd--L} \\
\text{L--Pd--Pd--L} & \quad \text{L--Pd--Pd--L}
\end{align*}
\]

$L = \text{tertiary phosphine}$

$X = \text{halide}$

In these complexes, the PPdPd bond angle is almost linear, and the coordination of the C_5H_5 rings has been shown, by X-ray structure determination, to be trihapto, i.e. $\eta^3-C_5H_5$, via an allylic type bonding system.182
<table>
<thead>
<tr>
<th>Complex</th>
<th>δ (ppm)</th>
<th>$^{1}J_{PtC}$ (Hz)</th>
<th>$^{2}J_{PtC}$ (Hz)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\text{Pt}(\text{C}{2}\text{H}{4})(\eta^{1}\text{-C}{5}\text{H}{5})(\eta^{5}\text{-C}{5}\text{H}{5})]$</td>
<td>$\eta^{5}\text{-C}{5}\text{H}{5}$</td>
<td>+94.5</td>
<td>17</td>
<td>-</td>
</tr>
<tr>
<td>$[\text{Pt}{2}(\eta^{5}\text{-C}{5}\text{H}{5}){2} \epsilon \text{-C}{10}\text{H}{10})]$</td>
<td>$\eta^{5}\text{-C}{5}\text{H}{5}$</td>
<td>+90.7</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>$[\text{Pt}(\text{CO})(\eta^{1}\text{-C}{5}\text{H}{5})(\eta^{5}\text{-C}{5}\text{H}{5})]$</td>
<td>$\eta^{5}\text{-C}{5}\text{H}{5}$</td>
<td>+94.8</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>+164.1</td>
<td>2446</td>
<td>102</td>
</tr>
<tr>
<td>$[\text{Pt}(\text{CO})(\text{Ne})(\eta^{5}\text{-C}{5}\text{H}{5})]$</td>
<td>$\eta^{5}\text{-C}{5}\text{H}{5}$</td>
<td>+94.1</td>
<td>8.4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>+163.4</td>
<td>2459</td>
<td>-</td>
</tr>
<tr>
<td>$[\text{Pt}{2} \text{Cl}{4}(\text{CO})_{2}]^{2-}$</td>
<td>CO</td>
<td>+159.2</td>
<td>2000</td>
<td>48</td>
</tr>
<tr>
<td>$[\text{Pt}(\text{Me})(\text{P(OMe)}{3})(\eta^{5}\text{-C}{5}\text{H}_{5})]$</td>
<td>$\eta^{5}\text{-C}{5}\text{H}{5}$</td>
<td>+93.2</td>
<td>3.8</td>
<td>-</td>
</tr>
<tr>
<td>$[\text{Pt}(\text{Me})(\eta^{1}\text{-C}{5}\text{H}{5})(\text{COD})]$</td>
<td>$\eta^{1}\text{-C}{5}\text{H}{5}$</td>
<td>+115.2</td>
<td>87.8</td>
<td>-</td>
</tr>
<tr>
<td>$[\text{Pt}(\eta^{1}\text{-C}{5}\text{H}{5})_{2}(\text{COD})]$</td>
<td>$\eta^{1}\text{-C}{5}\text{H}{5}$</td>
<td>+116.5</td>
<td>96.8</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 16 (contd.)

13C nmr spectra of Cyclopentadienyl and Carbonyl Complexes of Platinum.

<table>
<thead>
<tr>
<th>Complex</th>
<th>δ(ppm)</th>
<th>$^1J_{PtC}$ (Hz)</th>
<th>$^2J_{PtC}$ (Hz)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>trans-$[\text{Pt(CNBut}^+\text{)}_2$ $(\eta^1\text{-allyl})$ $(\eta^1\text{-C}_5\text{H}_5)]$</td>
<td>$^{1}\text{-C}_5\text{H}_5$</td>
<td>+111.4</td>
<td>35</td>
<td>-</td>
</tr>
<tr>
<td>cis-$[\text{Pt(CNBut}^+\text{)}_2$ $(\eta^1\text{-allyl})$ $(\eta^1\text{-C}_5\text{H}_5)]$</td>
<td>$^{1}\text{-C}_5\text{H}_5$</td>
<td>+114.9</td>
<td>76</td>
<td>-</td>
</tr>
<tr>
<td>$[\text{Pt}(\eta^3\text{-allyl})$ $(\eta^5\text{-C}_5\text{H}_5)]$</td>
<td>$^{5}\text{-C}_5\text{H}_5$</td>
<td>+90.7</td>
<td>31</td>
<td>-</td>
</tr>
<tr>
<td>$[\text{Pt}_2(\mu\text{-allyl})$ $(\mu\text{-C}_5\text{H}_5)(\text{PMe}_3)_2\text{]}$</td>
<td>$\mu\text{-C}_5\text{H}_5$</td>
<td>+84.6</td>
<td>25.7</td>
<td>-</td>
</tr>
<tr>
<td>$[\text{Pt}_2(\mu\text{-allyl})$ $(\mu\text{-C}_5\text{H}_5)(\text{PPr}_3)^i\text{]}_2\text{]}$</td>
<td>$\mu\text{-C}_5\text{H}_5$</td>
<td>+84.9</td>
<td>27.9</td>
<td>-</td>
</tr>
</tbody>
</table>
The 13C nmr spectra of bridging C_5H_5 groups in platinum complexes of the type $[\text{Pt}_2(\mu\text{-allyl})(\mu\text{-C}_5\text{H}_5)L_2]$ has chemical shifts in the range $+84$ to $+85$ ppm, and J_{PtC} values of 25 to 28 Hz, 183 (see table 16).

The 13C nmr data for the "Asymmetric Dimer" is most consistent with a π-bonded, terminal cyclopentadienyl ring. No platinum-carbon coupling could be observed, and some of the π-C_5H_5 rings in complexes in table 16 have low values of J_{PtC}, e.g. 3.8 Hz for $[\text{Pt(Me)}(\text{P(OME)})_3(\eta^5\text{-C}_5\text{H}_5)]$. A bridging C_5H_5 is also less likely in view of the bridging CO ligand, and the need for one phosphine to be bent away from the platinum-platinum bond. The 1H nmr spectrum of the "Asymmetric Dimer" is also most consistent with a π-bonded C_5H_5. In "Werner-type" complexes, like the two in table 16, J_{PtH} values are in the range 27 to 31 Hz, with J_{PH} in the range 1.8 to 2.4 Hz. 183 In the "Asymmetric Dimer", the 1H and 13C nmr spectra demonstrate that other types of bridging cyclopentadienyl, found in dimers of other metals, 184 can not be present. The bridging C_5H_4 units, either $\eta^1,\eta^1\mu\text{-C}_5\text{H}_4$, or $\eta^1,\eta^5\mu\text{-C}_5\text{H}_4$, in the complexes below do not have equivalent 1H or C atoms, as in the "Asymmetric Dimer".

\[\eta^1,\eta^1\mu\text{-C}_5\text{H}_4 \quad \eta^1,\eta^5\mu\text{-C}_5\text{H}_4 \]
A fluxional $\eta^1,\eta^2-\mu-C_5H_5$ group would be possible, but this would be expected to show a set of satellites with J_{PtH} typical of a σ-bonded C_5H_5 ring, 25 to 40 Hz, and to show a second set of platinum satellites due to coupling through the double-bond. "Ring-whizzing" of such a C_5H_5 group might also be expected to be a higher energy process than for a simple, σ-bonded ring in $[PtCl(C_5H_5)(CO)L]$ isomer (I). The low temperature 1H nmr spectrum of "Asymmetric Dimer" was obtained. At -60°C the C_5H_5 peak was broadened such that J_{PH} could not be resolved, but the broadening was no more than that expected due to solvent-stiffening. J_{PtH} could still be observed at this temperature. Furthermore, this bridging mode is very similar to that in the "Werner-type" dimeric complexes, and might have the same steric constraint that it would be difficult to bend a phosphine-platinum bond far enough away from the platinum-platinum bond to account for a small $^2J_{PtP}$ value.

Although the C_5H_5 protons couple to both phosphorus atoms in the "Asymmetric Dimer", the C_5H_5 carbon atoms only couple to one phosphine, $J_{PC} = 2.5$ Hz. Coupling to the other phosphorus atom is either zero or very small.

To summarise, the spectroscopic data gives the following information on the "Asymmetric Dimer".
The "Asymmetric Dimer" has a platinum-platinum bond with one phosphine trans to the platinum-platinum bond and one cis to it. The two phosphines are on different platinum atoms, since J_{pp} is too small for cis-phosphines on the same platinum atom. The "Asymmetric Dimer" has a bridging carbonyl, which is cis to both phosphines, and only couples to the phosphine cis to the platinum-platinum bond. There is only one C_5H_5 ring in the dimer, and this is a π-bonded terminal ring. The "Asymmetric Dimer" must also contain halide, since a change in the ^{31}P nmr parameters is obtained on changing the halide present.

A possible structure of the "Asymmetric Dimer" is shown in fig. 31.

![Figure 31](image)

A minor variation of the structure in figure 31 may also be a possibility, (figure 32), and this is more consistent with the ^{13}C data, having CO trans to X and the organic group.

![Figure 32](image)
The phosphine with the small $^2J_{PtP}$ value need not be bent at 90° to the platinum-platinum bond to achieve a value of < 30 Hz. In $[\text{Pt}_2(\sigma-\text{C}≡\text{CPh})(\mu-\text{C}≡\text{CPh})(\mu-\text{SiNe}_2)-(\text{PR}_3)_2]$, PPtPt angles of 165.2° and 148.0° lead to $^2J_{PtP}$ values of 308 Hz and 0 Hz respectively. The C$_5$H$_5$ ligand is fairly large and bulky; Tolman gives it a cone angle of 136°, and PPh$_3$ a cone angle of 145°. Also, whereas phosphines can frequently mesh with each other and occupy less space than their cone angles indicate, the C$_5$H$_5$ has a very large steric demand, e.g.: in complexes such as $[\text{RuCl(PPh}_3)_2(\eta^5-\text{C}_5\text{H}_5)]$, the geometry is pseudo-octahedral with C$_5$H$_5$ occupying 3 coordination sites, and PRuCl bond angles of 89.1° and 90.4° and a PRuP bond angle of 103.9° were found. Thus, in either structure proposed for the "Asymmetric Dimer", the C$_5$H$_5$ ring would have a large enough steric demand to bend the platinum-phosphorus bond away from the platinum-platinum bond.

The only inconsistency in the structures in figures 31 and 32 is the absence of a Pt-Cl absorbance in the i.r. spectrum. The i.r. spectrum of the impure "Asymmetric Dimer" isolated material was obtained as a KBr disc, but no Pt-Cl stretch was observed. The i.r. spectrum was also obtained as a nujol mull, in case there had been Cl/Br exchange with the KBr disc, but again no absorbance could be found. A polythene disc was also used, which allowed the i.r. spectrum to be observed down to 180 cm$^{-1}$, but there was no peak present.
Metal-chloride stretching frequencies increase as the oxidation state of the metal increases and the coordination number decreases.187 Thus, in the proposed structure for the "Asymmetric Dimer", the platinum-chloride stretch should be at lower frequency than in four-coordinate platinum (II) complexes, where v_{PtCl} lies in the range 270 - 340 cm-1, depending on the other ligands present.11 Some platinum (I) dimers with platinum-platinum bonds and terminal chlorides are known. For example, in $[\text{Pt}_2\text{Cl}_4(\text{CO})_2]^2-$, Pt-Cl stretches are 315 and 310 cm-1 for Cl trans to CO and 269 and 240 cm-1 for Cl trans to platinum.188 The complex $[\text{Pt}_2\text{Cl}_2(\mu-\text{CO})(\mu-\text{dppm})_2]$ has $v_{\text{Pt-Cl}}$ at 229 cm-1, and it is suggested that the presence of a carbonyl bridge decreases $v_{\text{Pt-Cl}}$.189 This latter complex has an unusually low v_{CO} of 1638 cm-1, and it is suggested that CO is acting as a 4-electron donor bridge.

\begin{center}
\begin{tikzpicture}
\node[shape=circle,draw,inner sep=0.5mm] (1) at (0,0) {Pt};
\node[shape=circle,draw,inner sep=0.5mm] (2) at (1.5,0) {Pt};
\node[shape=circle,draw,inner sep=0.5mm] (3) at (0.75,-1) {C=O};
\draw (1) -- (2);
\draw (2) -- (3);
\end{tikzpicture}
\end{center}

It seems unlikely that the Pt-Cl stretch in the "Asymmetric Dimer" could occur at less than 180 cm-1, yet no such absorbance can be observed. Even if the halide was bridging instead of terminal, and thus with a lower $v_{\text{Pt-Cl}}$, it should still be possible to observe the stretch in the i.r. spectrum. Another possibility is that the halide is not bonded to platinum, but is ionic. Although the ^{31}P nmr parameters change on altering the halide, the effect on the upfield phosphine, (on the same platinum as C_3H_5), is greater than the effect on the downfield phosphine, (on the
same platinum as the halide). This could be caused by a closely associated halide/dimer ion pair, where the two platinum atoms are formally platinum (0) and platinum (II), and would lead to a structure of the type in figure 33(a), or a semi-ionic bond between platinum and halide as in (b).

![Structures](image)

It is interesting to note that changing the solvent has a larger effect on the "Asymmetric Dimer" 31P parameters than changing the halide, (see table 17). In fact, changing from CDCl$_3$ to benzene has as large an effect on the downfield phosphine's 1J_{PtP} as changing the phosphine from PPh$_3$ to PMe$_2$Ph. However, there does not seem to be any rationalisation of this effect, since acetone, THF, benzene and methylene chloride all alter the 31P parameters in the same direction.

"Asymmetric Dimer" and AgSO$_3$CF$_3$

The addition of a silver salt to an ionic complex should remove the halide as AgX and leave the cationic complex unchanged. However, addition of AgSO$_3$CF$_3$ to a CDCl$_3$ solution of "Asymmetric Dimer" caused immediate decomposition to a number of species. These were: a species which appeared to be an AA'X pattern, 31P parameters $\delta = 0.2$ ppm, 1$J_{PtP} = 3774$ Hz, 2$J_{PtP} = -156$ Hz and 3$J_{pp} = 140$ Hz (signs
Table 17: 31P nmr of "Asymmetric Dimer" complexes in different solvents at 25°C.

<table>
<thead>
<tr>
<th>Phosphine</th>
<th>Halide</th>
<th>Solvent</th>
<th>δP_1 (ppm)</th>
<th>$^{1}J_{PtP}$ (Hz)</th>
<th>$^{2}J_{PtP}$ (Hz)</th>
<th>δP_2 (ppm)</th>
<th>$^{1}J_{PtP}$ (Hz)</th>
<th>$^{2}J_{PtP}$ (Hz)</th>
<th>$^{3}J_{PP}$ (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMe$_2$Ph</td>
<td>Cl</td>
<td>CDC1$_3$</td>
<td>+10.0</td>
<td>5367</td>
<td>872</td>
<td>-25.1</td>
<td>4690</td>
<td>31.0</td>
<td>7.2</td>
</tr>
<tr>
<td>PMe$_2$Ph</td>
<td>Cl</td>
<td>THF (a)</td>
<td>+8.7</td>
<td>5294</td>
<td>911</td>
<td>-24.4</td>
<td>4787</td>
<td>31.8</td>
<td>6.8</td>
</tr>
<tr>
<td>PMe$_2$Ph</td>
<td>Cl</td>
<td>(CH$_3$)$_2$CO (a)</td>
<td>+9.3</td>
<td>5334</td>
<td>903</td>
<td>-24.2</td>
<td>4712</td>
<td>30.0</td>
<td>6.5</td>
</tr>
<tr>
<td>PPh$_3$</td>
<td>Cl</td>
<td>CDC1$_3$</td>
<td>+34.0</td>
<td>5505</td>
<td>862</td>
<td>+9.1</td>
<td>5006</td>
<td>unres.</td>
<td>9.4</td>
</tr>
<tr>
<td>PPh$_3$</td>
<td>Cl</td>
<td>C$_6$H$_6$ (a)</td>
<td>+33.4</td>
<td>5369</td>
<td>878</td>
<td>+9.7</td>
<td>5084</td>
<td>unres.</td>
<td>9.4</td>
</tr>
<tr>
<td>PPh$_3$</td>
<td>Cl</td>
<td>CH$_2$Cl$_2$ (a)</td>
<td>+33.5</td>
<td>5455</td>
<td>869</td>
<td>+9.5</td>
<td>5015</td>
<td>unres.</td>
<td>9.6</td>
</tr>
</tbody>
</table>

(a) C$_6$D$_6$ added as a locking signal.

THF = tetrahydrofuran.

unres. = unresolved, (< 25 Hz).
are relative only); \([\text{Pt}(\eta^5-\text{C}_5\text{H}_5)(\text{CO})(\text{PPh}_3)]^+\) (table 7), an unidentified species at \(\delta = +4.9\) ppm and \([\text{Pt}(\eta^5-\text{C}_5\text{H}_5)(\text{PPh}_3)_2]^+\) (table 7). Some \(\text{Ph}_3\text{PO}\) was also produced.

AgSO\textsubscript{3}CF\textsubscript{3} removing the chloride from the "Asymmetric Dimer" structure in figure 32 would leave a coordinatively unsaturated molecule which might react in two ways. Either the molecule could break up, and \([\text{Pt}(\eta^5-\text{C}_5\text{H}_5)(\text{CO})(\text{PPh}_3)]^+\) is equivalent to one end of the proposed "Asymmetric Dimer" structure, or the \(\text{C}_5\text{H}_5\) might move into a bridging position and form a complex as shown in figure 34 below.

![Figure 34](image)

The compound in figure 34 is similar to those made by Werner with a bridging \(\text{C}_5\text{H}_5\) and metal-metal bond, and a complex such as fig. 34 would exhibit an \(AA'X\) pattern in its \(^{31}\text{P}\) spectrum. Although the reaction with AgSO\textsubscript{3}CF\textsubscript{3} was complicated, it can thus be interpreted on the basis of the "Asymmetric Dimer" having the structure shown in figure 32.

Should some of the "Asymmetric Dimer" break up on removal of chloride, \([\text{Pt}(\eta^5-\text{C}_5\text{H}_5)(\text{CO})(\text{PPh}_3)]^+\) could be produced along with an unsaturated fragment \([\text{Pt}\text{PPh}_3]\), which could release phosphine to produce \([\text{Pt}(\eta^5-\text{C}_5\text{H}_5)(\text{PPh}_3)_2]^+\), by CO displacement, and \(\text{Ph}_3\text{PO}\) by oxidation.
"Asymmetric Dimer" and added phosphine or arsine

When phosphine was added to a solution of "Asymmetric Dimer" at low temperature, the dimer was not cleaved, as normally happens on adding phosphine to a dimer. For example, on addition of PMe₂Ph to [Pt₂Cl₄(PMe₂Ph)₂], the dimer is cleaved to give, initially [PtCl(PMe₂Ph)₃]⁺ and [PtCl₃(PMe₂Ph)]⁻ at low temperature. Addition of PPh₃ to the "Asymmetric Dimer" made from cis-[PtCl₂(CO)(PPh₃)] produced a new dimeric platinum complex containing three phosphines and a metal-metal bond. Two of the phosphorus atoms had very similar chemical shifts, and gave rise to a 2nd order pattern for the central peaks (66% of Pt with I=0), but the ¹⁹⁵Pt satellites were 1st order. The other phosphine was far enough away in chemical shift from the other two to give a 1st order pattern. The ³¹P nmr parameters at -60°C of this species are:

δ = +27.5 and +27.3 ppm (2P atoms), with 1st order ¹⁹⁵Pt satellites:

P₁ ¹Jₚₚ = 3025 Hz, Jₚₚ = 23.7 Hz (doublets).
P₂ ¹Jₚₚ = 4646 Hz, ²Jₚₚ = 850 Hz, Jₚₚ = 23.7 and 11.9 Hz (d of d.).

δ = +10.1 ppm (1P), ¹Jₚₚ = 4738 Hz, ²Jₚₚ = 22.2 Hz, Jₚₚ = 9.8 Hz (d).

This new dimer is stable at -60°C in the presence of excess PPh₃, and the peaks for the dimer and PPh₃ are sharp, indicating that there is no phosphine exchange occurring.
A 1H nmr spectrum at -60°C had a broad signal at +5.40 ppm, neither phosphorus-proton or platinum-proton coupling being resolved. At +10°C, the signal began to show some doublet structure, with $J_{PH} = 1.2$ Hz, but each peak of the doublet appeared to be broadened by further couplings.

Although the new dimer is stable at -60°C in the presence of excess PPh_3, on warming to room temperature it reacts further. With a brief warming to room temperature the first cleavage products observed were $[Pt(\eta^5-C_5H_5)-(PPh_3)_2]^+$ and a species with parameters $\delta = +12.7$ ppm, $^1J_{PtP} = 3550$ Hz, (at -60°C) which is identified as $[Pt-(PPh_3)_3(CO)]$, (31P nmr in toluene at -80°C, +12.3 ppm, $^1J_{PtP} = 3537$ Hz). On warming to room temperature for 30 minutes, $[Pt(\eta^5-C_5H_5)(PPh_3)_2]^+$ was the major product.

"Asymmetric Dimer" \rightarrow "New Dimer" \rightarrow $[Pt(PPh_3)_3(CO)]^+$

$[Pt(\eta^5-C_5H_5)(PPh_3)_2]^+$

The 31P parameters show that the new dimer has one phosphine (P_2) trans to a platinum bond, with a second phosphine (P_1) cis to it on the same platinum atom. The third phosphine (P_3) is on the other platinum atom. P_2 couples to P_1 (23 Hz, typical coupling of cis-phosphines) and to P_3 (9.8 to 11.9 Hz), but P_1 and P_3 do not couple to each other. The new dimer still contains C_5H_5 (detected by 1H nmr) and CO, since both of these are present in the fragments after cleavage. This suggests the following structure for the new dimer,
This would then be obtained from "Asymmetric Dimer" by substitution of Cl by PPh₃. Cleavage of the dimer in figure 35 by excess phosphine could then produce [Pt(PPh₃)₃(CO)] and [Pt(η⁵-C₅H₅)(PPh₃)₂]⁺, which were the first species observed. The above structure is supported by the result of using ¹³C₀-labelled "Asymmetric Dimer". The spectrum of the new dimer obtained from PPh₃ addition to ¹³C₀-labelled "Asymmetric Dimer" (PPh₃ and Cl) was first order with the following parameters,

P₁ +27.6 ppm (d of d), ²J_CP = 113 Hz, ²J_PP = 23.4 Hz with ¹J_PtP = 3028 Hz.

P₂ +26.9 ppm, (d of d), ²J_PP = 23.0 Hz, ³J_PP = 11.8 Hz, with ¹J_PtP = 4625 Hz and ²J_PtP = 855 Hz.

P₃ +10.0 ppm, (broad d.), ²J_CP small and ³J_PP small, unresolved with ¹J_PtP = 4742 Hz.

The ¹³C - ³¹P coupling of 113 Hz between ¹³C₀ and P₁ shows that these two groups are almost fully trans to each other. The ¹³C - ³¹P coupling constant in [PtCl(R)(CO)L] isomer (III), CO trans to L, is about 150 Hz.¹⁵⁴ The small coupling of ¹³C₀ to P₃ suggests that the CO ligand is still in a bridging position, as this is the same phosphine that ¹³C₀ couples to in "Asymmetric Dimer".
Addition of PPh$_3$ to the "Asymmetric Dimer" produced from cis-[PtCl$_2$(CO)(PMe$_2$Ph)] at -60°C also produced a new dimer containing three phosphine ligands and a platinum-platinum bond, analogous to the previous one. This had parameters, at -60°C, of,

P$_1$ +29.2 ppm, 1J$_{PtP}$ = 2818 Hz, 2J$_{PP}$ = 22.0 Hz (d).

P$_2$ -3.1 ppm, 1J$_{PtP}$ = 4360 Hz, 2J$_{PtP}$ = 851 Hz, 2J$_{PP}$ = 22.0 Hz and 3J$_{PP}$ = 9.7 Hz (d of d).

P$_3$ -22.2 ppm, 1J$_{PtP}$ = 4320 Hz, 2J$_{PtP}$ = 14.2 Hz, 3J$_{PP}$ = 9.1 Hz (d).

From the chemical shifts of the phosphines, it is clear that P$_1$ is PPh$_3$ and P$_2$ and P$_3$ are PMe$_2$Ph. This species was also stable at -60°C in the presence of excess PPh$_3$ and was the major product after being left at < -60°C for 12 hours. During this time some [PtCl(PMe$_2$Ph)$_3$]$^+$, PhMe$_2$PO and some [Pt(η^5-C$_5$H$_5$)(PMe$_2$Ph)$_2$]$^+$ were produced, along with a species which is apparently either another isomer of the dimer with one PPh$_3$ and two PMe$_2$Ph ligands or the analogous dimer with three PMe$_2$Ph ligands. Only P$_1$ and P$_3$ could be observed, and these were obviously PMe$_2$Ph (by their chemical shifts). The parameters were:

P$_1$ -5.4 ppm, 1J$_{PtP}$ = 2670 Hz, 2J$_{PP}$ = 20.6 Hz (d).

P$_2$ unobserved.

P$_3$ -20.8 ppm, 1J$_{PtP}$ = 4370 Hz, 2J$_{PtP}$ not observed, 3J$_{PP}$ = 10.4 Hz (d).

On warming to room temperature, the major products were [Pt(η^5-C$_5$H$_5$)(PMe$_2$Ph)$_2$]$^+$ and cis-[PtCl$_2$(PMe$_2$Ph)$_2$].
A similar dimer was obtained on addition of AsPh₃ to the "Asymmetric Dimer" made from cis-[PtCl₂(CO)(PPh₃)]. In this case, only two phosphorus signals were obtained in the low temperature 31P nmr spectrum, corresponding to P₂ and P₃ in previous dimers, with AsPh₃ replacing P₁. The parameters at -60°C were:

P₂ +28.8 ppm, 1J_{PtP} = 4937 Hz, 2J_{PtP} = 795 Hz, 3J_{PP} = 11.6 Hz (d).

P₃ +9.4 ppm, 1J_{PtP} = 4669 Hz, 2J_{PtP} = 24.8 Hz, 3J_{PP} = 11.6 Hz (d).

Whereas addition of PPh₃ to "Asymmetric Dimer" was rapid, the addition of AsPh₃ was slow, and reversible. When a solution of the new dimer with one AsPh₃ and two PPh₃ was left standing at -60°C "Asymmetric Dimer" was regenerated, presumably via loss of AsPh₃ and oxidation of this to Ph₃AsO. This is consistent with added ligand (PPh₃ or AsPh₃) substituting the chloride which can return to coordinate to form "Asymmetric Dimer" if the added ligand is lost. Addition of AgSO₃CF₃ to the dimer containing one AsPh₃ and two PPh₃ ligands did not alter its parameters, and the compound was stable at room temperature. Its parameters at 25°C were:

P₂ +29.6 ppm, 1J_{PtP} = 4976 Hz, 2J_{PtP} = 834 Hz, 3J_{PP} = 11.6 Hz (d).

P₃ +8.9 ppm, 1J_{PtP} = 4705 Hz, 2J_{PtP} = 33.0 Hz, 3J_{PP} = 11.6 Hz (d).
These results show that the ligand added to "Asymmetric Dimer" is the one which is trans to CO in the new dimer formed, and the reaction is best described, as shown by figure 36, as a substitution reaction.

\[
\begin{align*}
\text{Cl} & \quad \text{Pt} \quad \text{Pt} \quad \text{CO} \\
\text{L} & \quad + \quad \text{L'} \quad \rightarrow \quad -60^\circ C \\
\text{L} & \quad \text{Pt} \quad \text{Pt} & \quad + \quad \text{Cl}^- \\
\end{align*}
\]

figure 36.

"Asymmetric Dimer" and CO

When carbon monoxide was passed through a solution of "Asymmetric Dimer", (made from cis-[PtCl₂(CO)(PPh₃)]), at -60°C, the dimer was cleaved to give a large number of products. The major products were [PtCl(C₅H₅)(CO)(PPh₃)] isomer (I), an unidentified species with ³¹P parameters \(\delta = +16.1 \text{ ppm}, \quad J_{\text{PtP}} = 3823 \text{ Hz,} \) and [Pt(η⁵-C₅H₅)(CO)(PPh₃)]⁺. Less abundant products were a species, \(\delta = +19.3 \text{ ppm,} \quad J_{\text{PtP}} = 3402 \text{ Hz,} \quad J_{\text{Ptp}} = 110 \text{ Hz,} \quad \delta = +7.8 \text{ ppm,} \quad J_{\text{PtP}} = 3203 \text{ Hz,} \) identified as [Pt(PPh₃)₂(CO)₂], (³¹P nmr in toluene at -80°C, +7.7 ppm, \(J_{\text{PtP}} = 3232 \text{ Hz,} \)) and the new dimer produced by PPh₃ addition to "Asymmetric Dimer". The byproduct with parameters +20.7 ppm, \(J_{\text{PtP}} = 3435 \text{ Hz,} \) produced when the "Asymmetric Dimer" is made, also seemed to increase in intensity. On warming the solution to room temperature this byproduct and [PtCl(C₅H₅)(CO)(PPh₃)] isomer (I) were the major species present, along with some "Asymmetric Dimer" which had been regenerated.
The reaction was repeated using \(^{13}\text{CO}\)-labelled "Asymmetric Dimer" to try and identify any products containing CO. However, on bubbling CO through a solution of \(^{13}\text{CO}\)-labelled "Asymmetric Dimer" at -60°C, all of the \(^{13}\text{CO}\) was lost from the dimer while 64% was still uncleaved. At this time, none of the cleavage products appeared to contain \(^{13}\text{CO}\) either. The same cleavage products were obtained as in the previous reaction.

\[
\text{"Asymmetric Dimer"} \quad \text{CO} \quad \text{Cl} \quad \text{L} \quad \text{Pt} \quad \text{C}_5\text{H}_5 \quad \text{OC} \quad \text{Pt} \quad \text{CO} \quad \text{L} \\
\quad \text{unidentified products.}
\]

The identified products are not inconsistent with the structure in figure 32 proposed for the "Asymmetric Dimer", but the complexity and large number of products makes it difficult to draw any definite conclusions about this reaction.

Irreproducibility of "Asymmetric Dimer" Reactions

It has already been stated that reactions producing "Asymmetric Dimer" are not reproducible, with both the yield and the byproducts being variable. Reactions between \text{cis-}[\text{PtCl}_2(\text{CO})(\text{PPh}_3)] and 2 equivalents of \text{TlC}_5\text{H}_5 gave, on occasion, a high yield of \text{cis-}[\text{Pt}(\text{C}_5\text{H}_5)_2(\text{CO})(\text{PPh}_3)] which was used in the cyclopentadienyl transfer studies, (chapter 2). More often the reaction gave "Asymmetric Dimer" as 70% to 90% of the total \(^{31}\text{P}\) intensity of the products when performed on an nmr scale, (ca. 0.055mmol, of
cis-[PtCl$_2$(CO)(PPh$_3$)] in 0.5ml CDC$_3$), and less on a larger scale. The most frequently encountered byproduct was the species with parameters $\delta = +20.7$ ppm, $^{1}J_{\text{PtP}} = 3435$ Hz. Other common byproducts were cis-[PtCl$_2$(PPh$_3$)$_2$] and Ph$_3$P=O, which indicate that some loss of phosphine from platinum can often occur during the reaction. The rate of formation of "Asymmetric Dimer" from cis-[PtCl$_2$(CO)(PPh$_3$)] and 2 equivalents of TlC$_5$H$_5$ also varied considerably, from as little as 4 hours to longer than 2 days in reactions where conditions appeared to have been the same.

a) Stoichiometric Effects

Varying the amount of TlC$_5$H$_5$ used, provided it was more than 1 equivalent, did not appear to affect the yield of "Asymmetric Dimer" ultimately obtained, although it may have had an effect on the rate of the reaction. cis-[PtCl$_2$(CO)(PPh$_3$)] and 2.17 equivalents of TlC$_5$H$_5$ in CDC$_3$ produced a solution containing "Asymmetric Dimer" (75% of the 31P intensity), the species with $\delta = +20.7$ ppm, $^{1}J_{\text{PtP}} = 3435$ Hz (19%) and [PtCl(C$_5$H$_5$)(CO)(PPh$_3$)] isomer (I) (6%) after 23 hours. cis-[PtCl$_2$(CO)(PPh$_3$)] and 1.50 equivalents of TlC$_5$H$_5$, in an identical volume of solvent and concentration of platinum complex, under identical conditions, produced a solution mixture after 2 days which was identical to that obtained from 2.17 equivalents of TlC$_5$H$_5$ after 23 hours. cis-[PtCl$_2$(CO)(PPh$_3$)] and 1.00 equivalents of TlC$_5$H$_5$, under identical conditions, produced, initially only [PtCl(C$_5$H$_5$)-(CO)(PPh$_3$)] isomer (I), but after 3 days produced a solution containing "Asymmetric Dimer" (37%), isomer (I)
(31%), \textit{cis-}[\text{PtCl}_2(\text{CO})(\text{PPh}_3)] (16\%), \textit{cis-}[\text{PtCl}_2(\text{PPh}_3)_2] (9\%) and \(\delta = +20.7 \text{ ppm} \).

b) \textbf{Solvent Effects}

\textit{CDCl}_3 and \textit{D}_2O were shaken together over a five hour period, then the solvents were separated and the \textit{CDCl}_3 was used without drying first. An nmr tube was filled with \textit{D}_2O and heated for the same period, then dried in an oven. When \textit{cis-}[\text{PtCl}_2(\text{CO})(\text{PPh}_3)] and \text{TiC}_5\text{H}_5 (2.07 equivalents) were allowed to react in this \textit{CDCl}_3, "Asymmetric Dimer" was produced as normal. The \(^1\text{H} \text{nmr spectrum showed that there was no deuterium present in either } \text{C}_5\text{H}_6 \text{ or the } \text{C}_5\text{H}_5 \text{ of } "\text{Asymmetric Dimer}, hence neither water present in the solvent, nor on the glass of the nmr tube, is the source of the proton in } \text{C}_5\text{H}_6, \text{ and does not influence the course of the reaction.}

Using \textit{CHCl}_3 which had been dried by passing down a column of silica gel and had been treated with \text{MgSO}_4, and then had \text{N}_2 bubbled through to remove dissolved \text{O}_2, gave the same result as using \textit{CDCl}_3 for the solvent. \textit{cis-}[\text{PtCl}_2(\text{CO})(\text{PPh}_3)] \text{ and } \text{TiC}_5\text{H}_5 (2.25 equivalents) in treated \textit{CHCl}_3 produced a mixture of "Asymmetric Dimer" (84\% of \(^{31}\text{P} \text{ intensity}) and the species with parameters +20.7 \text{ ppm, } \(^1J_{\text{Pt-P}} = 3435 \text{ Hz} \). However, when \textit{CHCl}_3 which was not treated in any way was used, the reaction between \textit{cis-}[\text{PtCl}_2(\text{CO})-(\text{PPh}_3)] \text{ and } \text{TiC}_5\text{H}_5 \text{ produced a mixture of } "\text{Asymmetric Dimer} \text{ and a new species with parameters +11.1 ppm, } \(^1J_{\text{Pt-P}} = 5644 \text{ Hz. The new species was initially the major product, but after 5 days } "\text{Asymmetric Dimer} \text{ had increased relative to it, and a second new species, with parameters +18.8 ppm,} \)
$^{1}J_{PtP} = 3092$ Hz had also appeared.

Since the presence of moisture in CDC$_3$ had no effect on the reaction, it could not be the presence of H_2O in the CHCl$_3$ which led to the production of the new complexes.

CHCl$_3$ contains 2% v/v ethanol as a preservative, while CDC$_3$ does not. When cis-[PtCl$_2$(CO)(PPh$_3$)] and 2 TIC$_5$H$_5$ were allowed to react in CDC$_3$ to which some EtOH had been added, the new species with parameters $+11.1$ ppm, $^{1}J_{PtP} = 5613$ Hz was the major product, with some "Asymmetric Dimer" and the other new species, $+18.8$ ppm, $^{1}J_{PtP} = 3075$ Hz.

Similar results were obtained when cis-[PtCl$_2$(CO)(PPh$_3$)] and 2 TIC$_5$H$_5$ were allowed to react in CDC$_3$ to which MeOH or Bu$_3$OH had been added. In each case, the new species, parameters $+10.9$ ppm $^{1}J_{PtP} = 5531$ Hz (in CDC$_3$ + MeOH), and $+11.2$ ppm $^{1}J_{PtP} = 5622$ Hz (in CDC$_3$ + BuOH) was the major product, and the other new species, parameters $+19.1$ ppm, $^{1}J_{PtP} = 3017$ Hz (in CDC$_3$ + MeOH) and $+18.7$ ppm, $^{1}J_{PtP} = 3075$ Hz (in CDC$_3$ + BuOH) was also produced. The highest yield of the new complex with large J_{PtP} was obtained in the presence of Bu$_3$OH. Either the presence of alcohol inhibits "Asymmetric Dimer" formation, or encourages the formation of a new platinum complex.

When a large scale reaction between cis-[PtCl$_2$(CO)(PPh$_3$)] and 2 TIC$_5$H$_5$ was performed in CHCl$_3$ no "Asymmetric Dimer" was produced. The only product was isolated as a yellow oil, and proved to be the new species, with parameters in CDC$_3$ of $\delta = +11.2$ ppm, $^{1}J_{PtP} = 5632$ Hz, contaminated with a small amount of Ph$_3$P. A 1H nmr spectrum of this yellow oil showed that the complex contained a π-C$_5$H$_5$ ring, coupled to one phosphine, at $+5.61$ ppm, $J_{PtH} = 13.2$ Hz,
On leaving this species in CDC$_3$ for 1 week, it reacted further to produce large amounts of "Asymmetric Dimer", Ph$_3$PO and a small amount of the other new species, +18.8 ppm, $^1J_{PtP} = 3089$ Hz. A similar species was obtained in a large scale reaction between cis-[PtCl$_2$(CO)(P$_3$Et$_3$)] and 2 TIC$_5$H$_5$ in CHCl$_3$ along with "Asymmetric Dimer". This had 31P parameters $\delta = +12.2$ ppm, $J_{PtP} = 5223$ Hz and 1H nmr parameters $\delta = +5.74$ ppm, $J_{PtH} = 11.5$ Hz, $J_{PH} = 1.4$ Hz (d).

The species, $\delta = +11.2$ ppm, $^1J_{PtP} = 5632$ Hz must be a complex which can change into "Asymmetric Dimer" with time, and hence must contain CO, and have Cl$^-$ present either coordinated, or as a counterion, in addition to PPh$_3$ and π-C$_5$H$_5$. The simplest compound fulfilling these requirements would be [Pt(\text{Ph$_3$})](CO)(PPh$_3$)]$^+$$Cl^-$, but the parameters for this complex are known, and this cannot be the new complex. Other, monomeric complexes are unlikely, since [Pt(\text{Ph$_3$})Cl(PPh$_3$)] is unknown, and there is no way in which this could convert to "Asymmetric Dimer" without CO being present.

An impure solid was obtained which was mainly the species with parameters $\delta = +11.2$ ppm, $^1J_{PtP} = 5632$ Hz (67% of the total intensity) which was contaminated with Ph$_3$PO (17%) and the other species, +18.8 ppm, $^1J_{PtP} = 3089$ Hz (16%). A KBr disc i.r. spectrum of this solid had a strong absorbance at 1630cm$^{-1}$ (broad). It seems likely that this species is a dimer, symmetrically substituted, with one phosphine and one C$_5$H$_5$ on each platinum. No two-bond platinum-phosphorus coupling could be observed, but this does not exclude the possibility of having a platinum-
platinum bond. The FPTp angle could be such that $2J_{PtP}$ is very small or zero. The most plausible structure for this compound is shown in fig. 37.

The structure in fig. 37 allows each platinum to conform to the 18-electron rule. However, the low value of ν_{CO} is not consistent with this, as a positive charge on the complex should increase ν_{CO} by reducing the amount of back-bonding from platinum. The absorbance is at 1630 cm$^{-1}$, which is very similar to the frequency for the complex $[\text{Pt}_2\text{Cl}_2(\mu-\text{CO})(\mu-\text{dppm})_2]$, where ν_{CO} is 1638 cm$^{-1}$, which was proposed to have a 4 electron CO bridge and platinum-platinum bond. This type of carbonyl bridge was first discovered in $[\text{Mn}_2(\text{CO})_5(\mu-\text{dppm})_2]$, which had $\nu_{CO} = 1645$ cm$^{-1}$ for the bridging CO, and was shown, by X-ray structural analysis to be a 4-electron bridge of the type below.

Such a bridging carbonyl was expected to be fluxional in the complex $[\text{Pt}_2\text{Cl}_2(\mu-\text{CO})(\mu-\text{dppm})_2]$, to explain why the
P atoms were equivalent in the ^{31}P nmr spectrum. However, a bridging carbonyl of this type, giving the structure shown in figure 38 (a) would make each platinum 19-electron for a platinum (II) species, which would be cationic with a charge of 2+, or 20-electron for a neutral platinum (I) species.

![Figure 38](image)

There is no evidence to support a platinum-platinum bond in this species, and it is possible to have a carbonyl bridge when no metal-metal bond is present, although this is extremely rare. The palladium (1) dimer, $\left[\text{Pd}_2\text{Cl}_2(\mu-\text{CO})(\mu-\text{Ph}_2\text{AsCH}_2-\text{AsPh}_2)\right]_2$ has been shown, by X-ray structural analysis, to contain a symmetrically bridging CO without a palladium-palladium bond,193 although the CO stretching frequency, at 1720 cm$^{-1}$, is somewhat higher. This would give a structure, shown in fig. 38 (b), which would be 17-electron and cationic for platinum (II) or 18-electron and neutral for platinum (I).

The platinum (I) dimer, with structure (b) in fig. 38 is a strong possibility, although the absence of chloride is a stumbling block. However, the complex, $+11.2$ ppm, $^{1}J_{\text{PtPt}} = 5632$ Hz, converts to "Asymmetric Dimer" only very
slowly in CDCl$_3$, and solvent participation cannot be ruled out as the source of Cl$^-$. It is unlikely that this compound, whatever its structure, is a direct intermediate in the route to "Asymmetric Dimer" from cis-[PtCl$_2$(CO)L]. It was observed only when alcohol was present in the reaction mixture and if the alcohol inhibited a final step to form "Asymmetric Dimer", the new species should react rapidly in CDCl$_3$, (with no alcohol present), but does not do so. However, with the information presently available it is not possible to definitely assign a structure to this compound, or to decide whether it is always an intermediate.

When cis-[PtCl$_2$(CO)(PPh$_3$)] and 2 TlC$_5$H$_5$ were allowed to react in benzene the reaction produced "Asymmetric Dimer" (parameters in table 17) and the usual byproduct, parameters in benzene $\delta = +20.7$ ppm, $^1J_{PtP} = 3467$ Hz, similar to the reaction in CDCl$_3$. However in benzene the reaction proceeded further to give a new dimeric species, which had a 2nd-order AA'X 31P nmr spectrum, with parameters +7.2 ppm, $^1J_{PtP} = 3806$ Hz, $^2J_{PtP} = -118$ Hz, $^3J_{PP} = 141$ Hz. The sizes of the coupling constants are similar to those of the dimer obtained by addition of AgSO$_3$CF$_3$ to "Asymmetric Dimer", which was considered to be a "Werner-type" dimer with bridging C$_5$H$_5$ and CO ligands. This new dimer is likely to be a similar complex, and it seems plausible that, since it is obtained on further reaction of "Asymmetric Dimer" over a period of days, it arises from CO loss and has the following structure.
This complex was also obtained as a byproduct in some reactions in CDCl$_3$, and its 31P parameters in CDCl$_3$ are:

- $\delta = +6.8$ ppm, $^{1}J_{PtP} = 3862$ Hz, $^{2}J_{PtP} = -118$ Hz, $^{3}J_{PtP} = 141$ Hz.

A 1H nmr spectrum of a solution of "Asymmetric Dimer" containing this species also contained a triplet at +4.98 ppm, with $J_{PH} = 2.9$ Hz and $J_{PtH} = 25.6$ Hz. These parameters are typical of a bridging C$_5$H$_5$ group in compounds of this type.

[Pt$_2$(µ-C$_5$H$_5$)(µ-allyl)(PMe$_3$)$_2$] has 1H parameters for the C$_5$H$_5$ group, +5.59 ppm, $J_{PH} = 2.4$ Hz, $J_{PtH} = 27$ Hz.

This dimer was present in a sample of "Asymmetric Dimer" prepared from cis-[PtC$_{12}$(CO)(PPh$_3$)] and exhibited no 13C - 31P coupling in the 31P nmr, and contained no terminal or bridging CO in the 13C nmr spectrum. This dimer appeared to decompose in CDCl$_3$ to produce C$_5$H$_6$, as its C$_5$H$_5$ signal disappeared from the 1H nmr spectrum to be replaced by that for C$_5$H$_6$, while the "Asymmetric Dimer" remained unchanged.

c) Concentration Effects

The concentration of reaction mixtures did not seem to affect the course of the reaction between cis-[PtCl$_2$(CO)(PPh$_3$)] and 2 TlC$_5$H$_5$. A 0.032M solution of cis-[PtCl$_2$(CO)(PPh$_3$)] reacted with 2 equivalents of TlC$_5$H$_5$ to produce "Asymmetric Dimer" (58% of the total 31P intensity), Ph$_3$PO (16%), the species proposed to be [Pt$_2$(µ-C$_5$H$_5$)(µ-C1)(PPh$_3$)$_2$]
(18%) and the other, usual byproduct with parameters $+20.7 \text{ ppm, } J_{PtP} = 3435 \text{ Hz (8%).}$ A 0.097M solution of the same sample of cis-$[\text{PtCl}_2(\text{CO})(\text{PPh}_3)]$ and 2 equivalents of the same sample of TlC$_5$H$_5$ reacted to produce "Asymmetric Dimer" (61%), the species with parameters $+20.7 \text{ ppm, } J_{PtP} = 3435 \text{ Hz (25%) and } [\text{Pt}_2(\mu-C_5\text{H}_5)(\mu-\text{Cl})(\text{PPh}_3)_2]$ (14%). The differences between the two reaction concentrations is very small, and is not significant compared to the wide variations obtained in "Asymmetric Dimer" reactions which appear to have identical conditions.

d) Other Effects

The age of the TlC$_5$H$_5$ sample used in the reaction also does not appear to have much effect on the outcome. The reaction above with the 0.097M solution of cis-$[\text{PtCl}_2(\text{CO})(\text{PPh}_3)]$ used a freshly prepared sample of TlC$_5$H$_5$, which consisted of bright yellow needles. A similar reaction was performed using an old sample of TlC$_5$H$_5$ which had been exposed to air for several months, and was a dull, fawn colour. This produced "Asymmetric Dimer" (74%), $+20.7 \text{ ppm, } J_{PtP} = 3435 \text{ Hz (13%) and } [\text{Pt}_2(\mu-C_5\text{H}_5)(\mu-\text{Cl})(\text{PPh}_3)_2]$ (13%).

Miscellaneous Reactions

An attempt was made to produce an "Asymmetric Dimer" with arsine ligands instead of phosphine ligands, by allowing cis-$[\text{PtCl}_2(\text{CO})(\text{AsMePh}_2)]$ to react with two equivalents of TlC$_5$H$_5$. Initially, $[\text{PtCl}(C_5\text{H}_5)(\text{CO})(\text{AsMePh}_2)]$ isomer (I) was produced, (table 1), followed by a species with 1H parameters $\delta = +5.85 \text{ ppm, } J_{PtH} = 13.4 \text{ Hz and } 5.7 \text{ Hz},$ and a species with parameters $\delta = +5.56 \text{ ppm, } J_{PtH} =$
12.6 Hz. Some C₅H₆ was also produced. The first of these two species has parameters typical of a \(\pi-C₅H₅ \) in a dimeric platinum complex with a platinum-platinum bond, but cannot be an "Asymmetric Dimer" analogue since the same species was found in the reaction of \([Bu₄N]₂[Pt₂(CO)₂Cl₄]\) with 2 TlC₅H₅. This may be \([Pt₂(C₅H₅)₂(CO)₂]\), which was reported by Fritz and Kreiter to have \(^1\)H nmr parameters, \(\delta = +5.5 \) ppm, \(J_{PtH} = 13.7 \) and 6.0 Hz.¹⁹⁴ The other species, which is typical of a monomeric \(\pi-C₅H₅ \) complex, was also observed in the reaction of \([Bu₄N]₂[Pt₂(CO)₂Cl₄]\) with 2 TlC₅H₅. This complex is not \([Pt(CO)(\pi^1-C₅H₅)(\pi^5-C₅H₅)]\), which is known,¹⁷⁶ and may be \([Pt(CO)(\pi^5-C₅H₅)]Cl\). In addition to these two species, the reaction of \([Bu₄N]₂[Pt₂(CO)₂Cl₄]\) and 2 TlC₅H₅ produced a \(\sigma \)-cyclopentadienyl complex with parameters \(\delta = +6.21 \) ppm, \(J_{PtH} = 41.0 \) Hz.

Addition of PPh₃ to the mixture of \(\sigma \)- and \(\pi \)-cyclopentadienyl species obtained in the reaction of \([Bu₄N]₂[Pt₂(CO)₂Cl₄]\) and 2 TlC₅H₅ produced the species with \(^{31}\)P parameters +20.7 ppm, \(J_{PtP} = 3435 \) Hz and \([Pt(\pi^5-C₅H₅)(PPh₃)₂]\)⁺, in a ratio of 2 to 1 (based on \(^{31}\)P intensities). This species, produced as a byproduct in many "Asymmetric Dimer" preparations, was also the major product when PPh₃ was added to \([PtCl(C₅H₅)(CO)(PPh₃)]\) isomer (I), with \([Pt(\pi^5-C₅H₅)-(PPh₃)₂]\)⁺ being produced as a minor product. Addition of AgSO₃CF₃ to a solution containing this unknown species had no effect, indicating that the complex probably does not contain Cl⁻. A \(^1\)H nmr spectrum of the mixture contained only very weak signals, one at +6.26 ppm, a triplet with
J_{PH} about 2 to 2.5 Hz, and $J_{\text{PtH}} = 40$ Hz, and the C$_5$H$_5$ signal of $[\text{Pt}(\eta^5-C_5\text{H}_5)(\text{PPh}_3)_2]^+$. These signals were very much weaker than the signals of the phosphine aryl protons, and there was also a strong signal at +7.27 oom amongst the aryl protons which could be CHCl$_3$. If this is the case it indicates that there may have been H/D exchange involving the solvent. If the signal at +6.26 ppm corresponds to the ^{31}P signal at +20.7 ppm, then this unidentified byproduct is a trans-bisphosphine species, and is most likely to be trans-$[\text{Pt}(\eta^1-C_5\text{H}_5)(\text{PPh}_3)_2\text{L}]$ where L is unknown, possibly Cl, C$_5$H$_5$ or CO.

A number of large-scale reactions were performed in an attempt to isolate "Asymmetric Dimer" in a pure state, but these always resulted in material which was contaminated, often with Ph$_3$PO or other platinum species, and they are briefly described in the experimental section. From a preparation of "Asymmetric Dimer", from cis-$[\text{PtCl}_2(\text{CO})(\text{PPh}_3)]$, a hydrogen-deficient, largely organic byproduct was isolated with composition: C 48.55%, H 2.76%, Cl 3.10% and P 4.11% which gives a ratio of 90C : 60H : 3P : 2Cl. Almost all of the TIC$_5$H$_5$ added is consumed, because most of the Tl is recovered as TlCl. This is also the case in reactions producing the material, +11.1 ppm, $^{1}J_{\text{PtP}} = 5634$ Hz instead of "Asymmetric Dimer".

The proton source for production of C$_5$H$_6$ seems most likely to be another C$_5$H$_5$, and the production of a hydrogen deficient, carbon rich material supports the earlier experiments which eliminate solvent and moisture as the source. Further work needs to be done on the "Asymmetric Dimer"
both to elucidate the mechanism of its formation and relationship to the other dimers mentioned in this chapter, and to corroborate the proposed structure, that in fig. 32. A tentative scheme relating the dimers is shown in fig. 40.
figure 40.
EXPERIMENTAL

31P nmr spectra were recorded on a Varian XL 100 spectrometer operating in the Fourier Transform mode with CDC$_3$ or C$_6$D$_6$ locking signal. Chemical shifts are downfield of external 85% H$_3$PO$_4$. 1H nmr spectra were obtained on a Perkin-Elmer R32 90 MHz continuous-wave spectrometer with TMS locking signal or on a Varian XL 100 spectrometer with CDC$_3$ locking signal. 13C nmr spectra were run on a Bruker WP 200 SY spectrometer operating in the Fourier-transform mode at 50.32 MHz, with CDC$_3$ locking signal. Chemical shifts were measured relative to CDC$_3$ at 77.0 ppm. Infra red spectra were recorded on a Perkin-Elmer 580 spectrophotometer. All reactions were carried out at room temperature under an atmosphere of nitrogen unless otherwise stated.

Complexes cis-[PtCl$_2$(CO)L] and TIC$_5$H$_5$ were prepared as previously described. [Bu$_4$N]$_2$[Pt$_2$Cl$_4$(CO)$_2$] was prepared by the literature method used to prepare [Pr$_4$N]$_2$[Pt$_2$Cl$_4$(CO)$_2$] and characterised by comparison of its infra red spectrum with the literature spectrum.
Decomposition of $[\text{PtCl}(\text{C}_5\text{H}_5)(\text{CO})(\text{PPh}_3)]$ isomer (I)

A solution of $[\text{PtCl}(\text{C}_5\text{H}_5)(\text{CO})(\text{PPh}_3)]$ isomer (I), (0.061mmol.) in CDC$_3$ (0.5ml) was left standing at room temperature for three days. The solution was examined by 31P nmr spectroscopy, and it was found that isomer (I) was now only 34% of the total 31P intensity. The products were cis-$[\text{PtCl}_2(\text{CO})(\text{PPh}_3)]$ (25% of the intensity of the products), cis-$[\text{PtCl}_2(\text{PPh}_3)_2]$ (10%), a species with $\delta = +20.7$ ppm, $^1J_{\text{PtP}} = 3435$ Hz (8%), and a species with parameters $\delta = +9.1$ ppm, (d) $J_{\text{PP}} = 9.4$ Hz, $J_{\text{PtP}} = 5006$ Hz and < 20 Hz, $\delta_{\text{P}} = +34.0$ ppm, (d) $J_{\text{PP}} = 9.4$ Hz, $J_{\text{PtP}} = 5505$ Hz and 862 Hz (57%). A 1H nmr spectrum showed that C$_5$H$_6$ was present, along with isomer (I) and "Asymmetric Dimer" (table 15).

Decomposition of $[\text{PtCl}(\text{C}_5\text{H}_5)(\text{CO})(\text{PMe}_2\text{Ph})]$ isomer (I)

(a) A solution of $[\text{PtCl}(\text{C}_5\text{H}_5)(\text{CO})(\text{PMe}_2\text{Ph})]$ isomer (I), (0.068mmol.) in CDC$_3$ (0.5ml) was left standing at room temperature for one day. 31P nmr spectroscopic examination showed that isomer (I) was now only 33% of the total 31P intensity, with "Asymmetric Dimer" a further 33% (31P parameters are in table 14), cis-$[\text{PtCl}_2(\text{CO})(\text{PMe}_2\text{Ph})]$ 20% and cis-$[\text{PtCl}_2(\text{PMe}_2\text{Ph})_2]$ 10% of the total intensity. On leaving the solution for 3 days, cis-$[\text{PtCl}_2(\text{PMe}_2\text{Ph})_2]$ became the major species present.

(b) An identical solution of $[\text{PtCl}(\text{C}_5\text{H}_5)(\text{CO})(\text{PMe}_2\text{Ph})]$ isomer (I), (0.068mmol.) in CDC$_3$ (0.5ml) decomposed at the same rate to the same products when kept in the dark at room temperature.
(c) A solution of \(\text{[PtCl(C}_5\text{H}_5)(\text{CO})(\text{PMe}_2\text{Ph})] isomer (I), (0.075\text{mmol.}) \) in acetone (0.5ml) with 6 drops of \(\text{C}_6\text{D}_6 \) as locking signal was left standing at room temperature for 38 hours. At this time 57\% of the \(^{31}\text{P} \) intensity was still isomer (I), the other species present being \text{cis-[PtCl}_2(\text{PMe}_2\text{Ph})_2] \((11\%) \), \text{cis-[PtCl}_2(\text{CO})(\text{PMe}_2\text{Ph})] \((9\%) \) and "Asymmetric Dimer" \((23\%) \), (see table 17).

(d) A solution of \(\text{[PtCl(C}_5\text{H}_5)(\text{CO})(\text{PMe}_2\text{Ph})] isomer (I), (0.077\text{mmol.}) \) in benzene (0.5ml), with \(\text{C}_6\text{D}_6 \) added as a locking signal, was left at room temperature for 38 hours. \(^{31}\text{P} \) nmr examination showed that 65\% of the \(^{31}\text{P} \) intensity was still isomer (I), with the other species present being \text{cis-[PtCl}_2(\text{CO})(\text{PMe}_2\text{Ph})] \((9\%) \), \text{cis-[PtCl}_2(\text{PMe}_2\text{Ph})_2] \((13\%) \) and "Asymmetric Dimer" \((12\%) \).

Decomposition of \(\text{[PtCl(C}_5\text{H}_5)(\text{CO})(\text{PMePh}_2)] isomer (I) \)

(a) Nitrogen gas was passed through a solution of \(\text{[PtCl-C}_5\text{H}_5(\text{CO})(\text{PMePh}_2)] isomer (I), (0.052\text{mmol.}) \) in CDC\(_13\) (0.5ml) at room temperature for 2\(\frac{1}{2} \) hours. A \(^{31}\text{P} \) nmr spectrum of the solution showed that it contained only isomer (I). Oxygen gas was passed through the solution for 30 minutes, and the solution was found to contain, in addition to isomer (I), \text{cis-[PtCl}_2(\text{CO})(\text{PMePh}_2)] \((3\%) \) and "Asymmetric Dimer" \((9\%) \). A drop of \(\text{H}_2\text{O} \) (approx. 50\(\mu \text{l} \)) was added and, after 1 hour, \(^{31}\text{P} \) nmr spectroscopic examination of the solution revealed no change in its composition. CO\(_2\) was bubbled through the solution for 2 to 3 minutes (by adding solid CO\(_2\) to the solution), but the composition of the solution did not change. On being left overnight at
room temperature, 63% of the 31P intensity was still isomer (I), with cis-[$\text{PtCl}_2(\text{CO})(\text{PMePh}_2)$] (12%) and "Asymmetric Dimer" (25%) also present.

(b) Carbon monoxide was bubbled through a solution of [PtCl$_2$(C$_5$H$_5$)(CO)(PMePh$_2$)] isomer (I) (0.060mmol.) for 30 minutes at room temperature. A 1H nmr spectrum showed only the presence of isomer (I). The solution was left under an atmosphere of CO overnight, when 31P nmr examination showed the presence of cis-[$\text{PtCl}_2(\text{CO})(\text{PMePh}_2)$] (6% of 31P intensity), a species at $\delta = +6.8$ ppm, $^1J_{\text{PtP}} = 3261$ Hz (12%) and isomer (I) (82%).

cis-[$\text{PtCl}_2(\text{CO})(\text{PPh}_3)$] and 2 equivalents of T1C$_5$H$_5$

cis-[$\text{PtCl}_2(\text{CO})(\text{PPh}_3)$] (35.1mg, 0.063mmol.) and T1C$_5$H$_5$ (35.0mg, 0.130mmol.) were mixed in CDCl$_3$ (0.5ml) under a nitrogen atmosphere. After 2 days at room temperature, 31P nmr examination of the solution showed that it was largely "Asymmetric Dimer" (89% of the total 31P intensity). Other products were the species with parameters $\delta = +20.7$ ppm, $^1J_{\text{PtP}} = 3435$ Hz and cis-[$\text{PtCl}_2(\text{PPh}_3)_2$].

cis-[$\text{PtCl}_2(\text{CO})(\text{PET}_3)$] and 2 equivalents of T1C$_5$H$_5$

cis-[$\text{PtCl}_2(\text{CO})(\text{PET}_3)$] (20.0mg, 0.049mmol.) and T1C$_5$H$_5$ (38.1mg, 0.141mmol.) were allowed to react in CDCl$_3$ (0.5ml) under an atmosphere of nitrogen. After 1 day at room temperature a 31P nmr spectrum showed that an "Asymmetric Dimer" species had been produced, (parameters in table 14), which accounted for 97% of the 31P intensity. A species with $\delta = +9.2$ ppm, $^1J_{\text{PtP}} = 5185$ Hz was also produced.
cis-[PtCl₂(CO)(PMe₂Ph)] and 2 equivalents of TlC₅H₅

cis-[PtCl₂(CO)(PMe₂Ph)] (26.3 mg, 0.061 mmol.) and TlC₅H₅ (29.0 mg, 0.108 mmol.) were allowed to react in CDCl₃ (0.5 ml) under an atmosphere of nitrogen and the reaction was followed by ³¹P nmr spectroscopy. Initially large amounts of [PtCl(C₅H₅)(CO)(PMe₂Ph)] isomer (I) and cis-[Pt(η¹-C₅H₅)₂(CO)(PMe₂Ph)] were produced, along with a species, δ = -13.9 ppm, ¹J_PtP = 2211 Hz. Eventually products were [Pt(η⁵-C₅H₅)(PMe₂Ph)₂]⁺ (28% of the total ³¹P intensity), cis-[PtCl₂(PMe₂Ph)₂] (24%), δ = -5.3 ppm, ¹J_PtP = 2827 Hz (14%), δ = -6.6 ppm, ¹J_PtP = 3090 Hz (12%) and an "Asymmetric Dimer", (17%), (parameters in table 14).

cis-[PtBr₂(CO)(PMe₂Ph)] and 2 equivalents of TlC₅H₅

cis-[PtBr₂(CO)(PMe₂Ph)] (26.6 mg, 0.051 mmol.) and TlC₅H₅ (25.3 mg, 0.094 mmol.) were allowed to react in CDCl₃ (0.5 ml) under a nitrogen atmosphere and the reaction was followed by ³¹P nmr spectroscopy. Initially [PtBr(C₅H₅)(CO)(PMe₂Ph)] isomer (I) and cis-[Pt(η¹-C₅H₅)₂(CO)(PMe₂Ph)] were produced, along with a species, δ = -13.9 ppm, ¹J_PtP = 2211 Hz. Eventually, (after 7 hours), the solution contained [Pt(η⁵-C₅H₅)(PMe₂Ph)₂]⁺ (34% of total ³¹P intensity), δ = -7.4 ppm, ¹J_PtP = 2803 Hz (23%), δ = -8.8 ppm, ¹J_PtP = 3076 Hz (15%) and an "Asymmetric Dimer", (22%), (parameters in table 14). After two days at room temperature the species δ = -5.3 ppm, J_PtP = 2828 Hz and δ = -6.6 ppm, ¹J_PtP = 3090 Hz, obtained in the previous reaction, also began to appear, followed by cis-[PtBr₂(PMe₂Ph)₂] and cis-[PtBr(Cl)(PMe₂Ph)₂], (³¹P parameters: -13.1 ppm (d))
1J\textsubscript{PtP} = 3523 Hz and -17.1 ppm, 1J\textsubscript{PtP} = 3524 Hz (d) 2J\textsubscript{PP} = 16.6 Hz).

"Asymmetric Dimer" (PPh\textsubscript{3} and Cl) and [Bu\textsubscript{4}N]I

A solution of "Asymmetric Dimer" was prepared from cis-\[PtCl\textsubscript{2}(CO)(PPh\textsubscript{3})\] (33.6mg, 0.061mmol.) and TlC\textsubscript{5}H\textsubscript{5} (32.8mg, 0.126mmol.). 31P nmr spectroscopic examination showed that "Asymmetric Dimer" was 70% of the total 31P intensity. A solution of [Bu\textsubscript{4}N]I (22.4mg, 0.061mmol.) was then added, and a new "Asymmetric Dimer" with different 31P parameters, was produced immediately, (table 14).

\[\text{[Pt(\eta^5-C_5H_5)(CO)(PMe_2Ph)]SO}_3CF_3 \text{ and [Bu}_4\text{N]}\text{I}\]

A solution of \[\text{[Pt(\eta^5-C_5H_5)(CO)(PMe_2Ph)]SO}_3CF_3\] (0.069 mmol.) in CDC\textsubscript{13} (0.3ml) was prepared as previously described. A solution of [Bu\textsubscript{4}N]I (25.4mg, 0.069mmol.) was then added, and a 31P nmr spectrum showed the presence of a new "Asymmetric Dimer", parameters in table 14, as 70% of the total 31P intensity. A 1H nmr spectrum was also obtained, (table 15), and indicated the presence of C\textsubscript{5}H\textsubscript{6}.

\[\text{[PtCl(C}_5\text{H}_5)(CO)(PMePh\textsubscript{2})\text{] isomer (I) + [Et}_4\text{N]}\text{Cl}\]

[Et\textsubscript{4}N]Cl (9.8mg, 0.059mmol.) was added to a solution of \[\text{[PtCl(C}_5\text{H}_5)(CO)(PMePh\textsubscript{2})\text{] isomer (I), (0.051mmol.)}\] in CDC\textsubscript{13} (0.5ml). After 19 hours, a 31P nmr investigation of the solution showed the presence of an "Asymmetric Dimer", (parameters in table 14), as 32% of the total 31P nmr intensity. The major product was \textit{cis-}[PtCl\textsubscript{2}(PMePh\textsubscript{2})\textsubscript{2}] (45%). A 1H nmr spectrum showed that C\textsubscript{5}H\textsubscript{6} was present.
cis-[PtCl₂(¹³CO)(PPh₃)] and 2 equivalents of TlC₅H₅

Similarly, cis-[PtCl₂(¹³CO)(PMe₂Ph)] (60% labelled), (25.5mg, 0.059mmol.) and TlC₅H₅ (33.5mg, 0.124mmol.) were allowed to react in CDCl₃ (0.5ml). ³¹P nmr examination revealed the upfield doublet at δ -25.1 ppm to be broadened by ¹³C - ³¹P coupling, while the downfield doublet of the "Asymmetric Dimer", at δ +10.0 ppm, was unaffected.

cis-[PtCl₂(CO)(PPh₃)] and 2 equivalents of TlC₅H₅

followed by ¹H nmr.

cis-[PtCl₂(CO)(PPh₃)] (25.1mg, 0.045mmol.) and TlC₅H₅ (26.4mg, 0.098mmol.) were allowed to react in CDCl₃ (0.5ml) for 2 days as previously described. A ¹H nmr spectrum showed the presence of C₅H₆, a peak at δ = +5.75 ppm, (doublet of doublets). JₚH = 1.8 and 1.0 Hz, with broad, poorly resolved platinum satellites, "JₚₚₜH" = 11.5 Hz, attributed to "Asymmetric Dimer", and a minor species at δ = +4.95 ppm, (triplet) JₚH = 3.0 Hz, with platinum.
satellites, $J_{\text{Pt}H} = 25.8 \text{ Hz}$. The relative integrations of C_5H_6 olefinic protons to $+5.75 \text{ ppm}$ protons was 1.2 to 1.

$\text{cis-}[\text{PtCl}_2(\text{CO})(\text{PET}_3)]$ and 2 equivalents of C_5H_5

followed by $^1\text{H} \text{nmr}$

The reaction between $\text{cis-}[\text{PtCl}_2(\text{CO})(\text{PET}_3)]$ and 2 equivalents of C_5H_5 previously described was followed by $^1\text{H} \text{nmr}$ spectroscopy. The initial product was $[\text{PtCl}(\text{C}_5\text{H}_5)(\text{CO})-(\text{PET}_3)]$ isomer (I), (table 1). After 3 hours reaction, $\text{cis-}[\text{Pt}(\text{C}_5\text{H}_5)_2(\text{CO})(\text{PET}_3)]$, (table 3), C_5H_6 and a species at $\delta = +5.81 \text{ ppm}$, (doublet of doublets) $J_{\text{PH}} = 1.7$ and 1.0 Hz, with broad platinum satellites, $J_{\text{Pt}H} = 11.0 \text{ Hz}$, began to appear. This latter species was identified as "Asymmetric Dimer". After 1 day, "Asymmetric Dimer" was the major platinum-containing product, with integration of phosphine ethyl protons and C_5H_5 protons indicating there were 2 phosphines present for each C_5H_5 ring. The ratio of C_5H_6 olefinic protons to C_5H_5 was 1.2 to 1. A minor species, $\delta +5.70 \text{ Hz}$, (doublet) $J_{\text{PH}} = 1.6 \text{ Hz}$, $J_{\text{Pt}H} = 11.0 \text{ Hz}$ was also present.

$[\text{PtCl}(\text{C}_5\text{H}_5)(\text{CO})(\text{PMe}_2\text{Ph})]$ isomer (I) and C_5H_5

A solution of $[\text{PtCl}(\text{C}_5\text{H}_5)(\text{CO})(\text{PMe}_2\text{Ph})]$ isomer (I) (0.066mmol.) was allowed to react with C_5H_5 (0.063mmol.) with vigorous shaking at room temperature for 5 minutes, the solution was then filtered and left standing for 3 days. A ^{31}P nmr spectrum indicated that 83% of the total ^{31}P intensity was "Asymmetric Dimer". A ^1H nmr spectrum was obtained, (table 15), and showed that C_5H_6 was present in addition to "Asymmetric Dimer".
Isolation of "Asymmetric Dimer"

cis-[PtCl₂(CO)(PPh₃)] (198mg, 0.356mmol.) and TlC₅H₅ (96mg, 0.355mmol.) were allowed to react in CDCl₃ (3ml) until a 31P nmr spectrum indicated that [PtCl(C₅H₅)(CO)-(PPh₃)] isomer (I) was the major species present. The solution was filtered and treated with a further 94mg of TlC₅H₅ (0.349mmol.). After 6 hours reaction at room temperature, 31P nmr showed that "Asymmetric Dimer" was the most abundant product (55% of the total 31P intensity). The solution was filtered, diluted with benzene and freeze-dried to yield 180mgs. of brown solid. A KBr disc i.r. spectrum contained no terminal CO absorptions, but had a peak at 1805cm⁻¹, which was broad, and medium strong. A 1H nmr spectrum was obtained, showing "Asymmetric Dimer" to be the major species. 80mgs. of the material was dissolved in CDCl₃ and a 13C nmr spectrum was recorded, with peaks at $\delta = +95.3$ ppm, doublet $J_{PC} = 2.5$ Hz, and a complex series of peaks at +127.6 to +134.9 ppm. Even on addition of 0.04M Cr(acac)₃, no other peaks could be observed. An i.r. spectrum in CHCl₃ solution also had the broad absorption at 1800 cm⁻¹, seen in the KBr disc spectrum.

cis-[PtCl₂(13CO)(PPh₃)] + TlC₅H₅; followed by a second equivalent of TlC₅H₅

Similarly, cis-[PtCl₂(13CO)(PPh₃)] (29.1mg, 0.052mmol.), 60% 13CO labelled, and TlC₅H₅ (17.4mg, 0.065mmol.) were allowed to react in CDCl₃ (0.5ml) under a nitrogen atmosphere for 1½ hours. The solution was filtered and allowed to react with TlC₅H₅ (13.5mg, 0.050mmol.) for 5 hours, then filtered. A 1H nmr spectrum showed that
"Asymmetric Dimer" was the major product. A 13C nmr spectrum was obtained and showed a peak at $\delta = +191.1$ ppm, $J_{PtC} = 1625$ and 723 Hz, $J_{PC} = 4.3$ Hz (doublet), weak compared to peaks at $+127.6$ to $+134.9$ ppm, and a peak at $+95.4$ ppm. Addition of 0.04M Cr(acac)$_3$ enhanced the peak at low field, changing its parameters slightly to $+190.8$ ppm, $J_{PtC} = 1621$ and 723 Hz, $J_{PC} = 3.7$ Hz.

"Asymmetric Dimer" (PPh$_3$ and Cl) and AgSO$_3$CF$_3$

A CDCl$_3$ solution of "Asymmetric Dimer" was prepared from cis-[PtCl$_2$(CO)(PPh$_3$)] (30.3mg, 0.055mmol.) and T1C$_5$H$_5$ (41.4mg, 0.154mmol.) as previously described. The solution was filtered after 50 hours at room temperature when a 31P nmr spectrum showed that "Asymmetric Dimer" was 82% of the total 31P intensity. The major byproduct was the species with parameters $\delta = +20.7$ ppm, $^1J_{PtP} = 3435$ Hz (14%). AgSO$_3$CF$_3$ (7.8mg, 0.030mmol.) was then added and a 31P nmr spectrum was obtained. The species with $\delta = +20.7$ ppm was unchanged, but the "Asymmetric Dimer" had disappeared to be replaced by a species at $+0.2$ ppm, with 2nd order satellites in an AA'X pattern which analysed as $^1J_{PtP} = 3774$ Hz, $^2J_{PtP} = -156$ Hz, $^3J_{PP} = 140$ Hz, which was 34% of the total intensity of the products. Other products were [Pt(η^5-C$_5$H$_5$)(CO)(PPh$_3$)]$^+$ (17%), a species at $+4.9$ ppm whose satellites could not be found (17%), Ph$_3$PO (+29.3 ppm) (15%) and [Pt(η^5-C$_5$H$_5$)(PPh$_3$)$_2$]$^+$ (10%).
"Asymmetric Dimer" (PPh\textsubscript{3} and Cl) and PPh\textsubscript{3}

A CDC\textsubscript{13} solution "Asymmetric Dimer" was prepared from cis-[PtCl\textsubscript{2}(CO)(PPh\textsubscript{3})] (31.3mg, 0.056mmol.) and TlC\textsubscript{5}H\textsubscript{5} (31.0mg, 0.115mmol.) under a nitrogen atmosphere as described previously. 31P nmr examination of the solution showed that "Asymmetric Dimer" was 86\% of the total 31P intensity. Other products were [PtCl(C\textsubscript{5}H\textsubscript{5})(CO)(PPh\textsubscript{3})] isomer (I) (6\%), cis-[PtCl\textsubscript{2}(PPh\textsubscript{3})\textsubscript{2}] (5\%) and δ = +20.7 ppm (3\%). The solution was filtered and a solution of PPh\textsubscript{3} (9.3mg, 0.036mmol.) in CDC\textsubscript{13} (0.1ml) was added at -60°C. The major product was a dimeric species with 3 phosphines, with the following parameters:

δ = +27.5 ppm and +27.3 ppm (2P atoms, 2nd order pattern with 1st order satellites), P\textsubscript{1} 1J\textsubscript{PPh} = 3025 Hz, 31P = 23.7 Hz (d).

P\textsubscript{2} 1J\textsubscript{PPh} = 4646 Hz, 2J_{PPh} = 850 Hz, 31P = 23.7 and 11.9 Hz (d of d).

δ = +10.1 ppm (1P atom), 1J_{PPh} = 4738 Hz, 2J_{PPh} = 22.2 and 31P = 9.8 Hz (d).

Some PPh\textsubscript{3} was also present, and the peak was sharp indicating that there was no exchange process occurring. On warming to room temperature for 5 minutes and cooling again to -60°C, the solution contained [Pt(η5-C\textsubscript{5}H\textsubscript{5})(PPh\textsubscript{3})\textsubscript{2}]+ (13\% of the total 31P intensity), and [Pt(PPh\textsubscript{3})\textsubscript{3}(CO)] (15\%) in addition to the new dimer (50\%). On warming the solution to room temperature for 30 minutes the major product was [Pt(η5-C\textsubscript{5}H\textsubscript{5})(PPh\textsubscript{3})\textsubscript{2}]+ (81\%) with some +20.7 ppm, 1J_{PPh} =
3435 Hz also present (12%) and some Ph₃PO (7%).

A similar reaction was followed by 1H nmr spectroscopy. On addition of PPh₃ to "Asymmetric Dimer" at -60°C the 1H nmr spectrum showed a broad peak at $\delta = +5.40$ ppm. On warming to +10°C some coupling began to be resolved, and the peak was a broad doublet at $\delta = +5.43$ ppm, with $J_{PH} = 1.2$ Hz.

13CO-labelled "Asymmetric Dimer" (PPh₃ and Cl) and PPh₃

A similar reaction was performed using "Asymmetric Dimer" prepared from $\text{cis-[PtCl}_2(13\text{CO})(\text{PPh}_3)]$ (31.5 mg, 0.056 mmol.), 60% 13CO-labelled, and TlC₅H₅ (29.3 mg, 0.109 mmol.). The solution was examined by 31P nmr and was found to contain "Asymmetric Dimer" (88% of the total 31P intensity) with minor amounts of +20.7 ppm $J_{PtP} = 3435$ Hz (2%), $\text{cis-[PtCl}_2(\text{PPh}_3)_2]$ (8%) and Ph₃PO (2%). On addition of PPh₃ (9.4 mg, 0.036 mmol.) in CDCl₃ (0.1 ml) at -60°C the major product was a dimeric species with parameters:
- $+27.6$ ppm (d of d) $J_{CP} = 113$ Hz, $J_{PP} = 23.4$ Hz,
- $J_{PtP} = 3028$ Hz,
- $+26.9$ ppm (d of d) $J_{PP} = 23.0$ Hz, $J_{PP} = 11.8$ Hz, $J_{PtP} = 4625$ Hz and $J_{PP} = 855$ Hz,
- $+10.0$ ppm (broadened d,) $J_{PtP} = 4742$ Hz, J_{CP} and J_{PP} unresolved.

$\text{cis-[PtCl}_2(\text{PPh}_3)_2]$, +20.7 ppm, PPh₃ and Ph₃PO were also present.
"Asymmetric Dimer" (PMe₂Ph and Cl) and PPh₃

A similar reaction was carried out using "Asymmetric Dimer" prepared from cis-[PtCl₂(CO)(PMe₂Ph)] (28.5mg, 0.066mmol) and TlC₅H₅ (2 lots, 18.6mg, 0.069mmol) followed by 16.9mg, 0.063mmol) as described previously. ²³P nmr investigation indicated that "Asymmetric Dimer" was 83% of the total ²³P intensity, other products being cis-[PtCl₂(PMe₂Ph)₂] (12%) and [Pt(η⁵-C₅H₅)(PMe₂Ph)₂]⁺.

A solution of PPh₃ (8.9mg, 0.034mmol) was added at -60°C and ²³P nmr showed that a new dimer with 3 phosphine ligands was the major product (74% of ²³P intensity). The parameters for the new dimer were:

+29.2 ppm (d) ²Jᵦₚ = -22.0 Hz, ¹Jₚₚ = 2818 Hz.
-3.1 ppm (d of d), ²Jᵦₚ = 22.0 Hz, ³Jᵦₚ = 9.7 Hz, ¹Jₚₚ = 4360 Hz and ²Jₚₚ = 851 Hz.
-22.2 ppm (d) ³Jᵦₚ = 9.1 Hz, ¹Jₚₚ = 4320 Hz, ²Jₚₚ = 14.2 Hz.

On being kept overnight at less than -60°C, further reactions produced some [PtCl(PMe₂Ph)₃]⁺ (15%), PhMe₂PO (6%) and another dimer with three phosphines (8%) as well as the dimer above (63%). The new dimer with 3 phosphines (8% of the total intensity) had parameters for two phosphines, (the third not being observed), as follows:

-5.4 ppm, (d) ²Jᵦₚ = 20.6 Hz, ¹Jₚₚ = 2670 Hz.
-20.8 ppm (d) ³Jᵦₚ = 10.4 Hz, ¹Jₚₚ = 4370 Hz.

On warming to room temperature the major products were [Pt(η⁵-C₅H₅)(PMe₂Ph)₂]⁺ and cis-[PtCl₂(PMe₂Ph)₂].
"Asymmetric Dimer" (PPh₃ and Cl) and AsPh₃

Similarly, a solution of "Asymmetric Dimer" was prepared from cis-[PtCl₂(CO)(PPh₃)] (31.8mg, 0.057mmol.) and TIC₅H₅ (31.0mg, 0.115mmol.) and was shown, by ³¹P nmr, to be 82% of the ³¹P intensity. The other product was the species, δ = +20.7 ppm, ¹JPtP = 3435 Hz (18%). A solution of AsPh₃ (8.8mg, 0.029mmol.) in CDCl₃ (0.1ml) was added at -60°C and this reacted slowly to produce a dimer with the following parameters:

+28.8 ppm, (d) ³JPP = 11.6 Hz, ¹JPtP = 4937 Hz, ²JPtP = 795 Hz (1P).
+9.4 ppm, (d) ³JPP = 11.6 Hz, ¹JPtP = 4669 Hz, ²JPtP = 24.8 Hz (1P).

On being left overnight at -80°C, a substantial amount of "Asymmetric Dimer" was regenerated. A further solution of AsPh₃ (8.8mg, 0.029mmol.) in CDCl₃ (0.1ml) was added at -60°C to give the new dimer as the major product (69% of ³¹P intensity).

AgSO₃CF₃ (8.1mg, 0.032mmol.) was added and the parameters of the new dimer were unchanged. The new dimer was stable at room temperature in the presence of AgSO₃CF₃, and had parameters at +25°C of:

+29.6 ppm, ³JPP = 11.6 Hz, ¹JPtP = 4976 Hz, ²JPtP = 834 Hz,
+8.9 ppm, ³JPP = 11.6 Hz, ¹JPtP = 4705 Hz, ²JPtP = 33.0 Hz.
"Asymmetric Dimer" (PPh₃ and Cl) and CO

Similarly, a solution of "Asymmetric Dimer" was prepared from cis-[PtCl₂(CO)(PPh₃)] (37.7mg, 0.068mmol.) and TlC₅H₅ (33.7mg, 0.125mmol.) in CDCl₃ (0.4ml). A ³¹P nmr spectrum showed that "Asymmetric Dimer" was 88% of the ³¹P intensity, the rest being the species with δ = +20.7 ppm, J_{PtP} = 3435 Hz, (8%) and cis-[PtCl₂(PPh₃)₂] (4%). Carbon monoxide was bubbled through the solution at -60°C for 4 minutes producing the following species:-

[PtCl(C₅H₅)(CO)(PPh₃)] isomer (I) (16% of the ³¹P intensity), +20.7 ppm, J_{PtP} = 3435 Hz (17%), +16.1 ppm, J_{PtP} = 3823 Hz (16%), [Pt(η⁵-C₅H₅)(CO)(PPh₃)]⁺ (14%), +19.3 ppm, J_{PtP} = 3402 Hz (9%), +5.5 ppm, J_{PtP} = 3079 Hz, J_{PP} = 110 Hz (6%), [Pt(PPh₃)₂(CO)₂] (6%), cis-[PtCl₂(PPh₃)₂] (4%), and the new dimer produced in PPh₃ addition to "Asymmetric Dimer" (7%). On warming the solution to room temperature for 2 minutes, only +20.7 ppm, J_{PtP} = 3435 Hz; [PtCl(C₅H₅)(CO)-(PPh₃)] isomer (I) and "Asymmetric Dimer" were present, in a ratio of ³¹P intensities of 2:2:1.

The reaction was repeated using ¹³CO-labelled "Asymmetric Dimer" (60% ¹³CO). On bubbling CO through the solution briefly at -60°C, the "Asymmetric Dimer" lost the ¹³CO completely while 64% of it was still uncleaved. None of the products, which were the same as above, showed ¹³C - ³¹P coupling.
Variations in Conditions in "Asymmetric Dimer" Reactions

Reactions producing "Asymmetric Dimer" from \(\text{cis-}[^{\text{PtCl}_2}(\text{CO})(\text{PPh}_3)] \) were performed, varying some of the conditions, and were followed by \(^{31}\text{P} \) nmr spectroscopy, unless otherwise stated.

(i) \(\text{cis-}[^{\text{PtCl}_2}(\text{CO})(\text{PPh}_3)] \) (31.4mg, 0.057mmol.) and TlC\(_5\)H\(_5\) (33.2mg, 0.123mmol.) were allowed to react in CDCl\(_3\) (0.5ml).

(ii) \(\text{cis-}[^{\text{PtCl}_2}(\text{CO})(\text{PPh}_3)] \) (29.4mg, 0.053mmol.) and TlC\(_5\)H\(_5\) (21.5mg, 0.080mmol.) were allowed to react in CDCl\(_3\) (0.5ml).

(iii) \(\text{cis-}[^{\text{PtCl}_2}(\text{CO})(\text{PPh}_3)] \) (29.5mg, 0.053mmol.) and TlC\(_5\)H\(_5\) (14.2mg, 0.053mmol.) were allowed to react in CDCl\(_3\) (0.5ml).

(iv) \(\text{cis-}[^{\text{PtCl}_2}(\text{CO})(\text{PPh}_3)] \) (25.2mg, 0.045mmol.) and TlC\(_5\)H\(_5\) (25.2mg, 0.093mmol.) were allowed to react in 0.5ml CDCl\(_3\), which had been mixed with D\(_2\)O for 5 hours, in an nmr tube which had been filled with D\(_2\)O at 80°C for 5 hours, then dried in an oven, before use. The reaction was examined by \(^1\text{H} \) nmr spectroscopy.

(v) CHCl\(_3\) was dried by passing it down a silica gel column, then by treatment with anhydrous MgSO\(_4\). Dissolved oxygen was removed by flushing the CHCl\(_3\) with N\(_2\) gas. \(\text{cis-}[^{\text{PtCl}_2}(\text{CO})(\text{PPh}_3)] \) (28.9mg, 0.052mmol.) and TlC\(_5\)H\(_5\) (31.7mg, 0.118mmol.) were allowed to react in 0.5ml of this CHCl\(_3\) with 5 drops of C\(_6\)D\(_6\) added as a locking signal for \(^{31}\text{P} \) nmr.
(vi) cis-\([\text{PtCl}_2(\text{CO})(\text{PPh}_3)]\) (27.0mg, 0.049mmol.) and TlC\(_5\)H\(_5\) (27.0mg, 0.100mmol.) were allowed to react in CHCl\(_3\) (0.5ml) which had not been treated in any way.

(vii) cis-\([\text{PtCl}_2(\text{CO})(\text{PPh}_3)]\) (27.4mg, 0.049mmol.) and TlC\(_5\)H\(_5\) (30.5mg, 0.113mmol.) were allowed to react in CDCl\(_3\) (0.5ml) to which 50µl of EtOH had been added.

(viii) Similarly, cis-\([\text{PtCl}_2(\text{CO})(\text{PPh}_3)]\) (28.6mg, 0.052 mmol.) and TlC\(_5\)H\(_5\) (29.7mg, 0.110mmol.) were allowed to react in CDCl\(_3\) (0.5ml) to which MeOH (50µl) had been added.

(ix) Also, cis-\([\text{PtCl}_2(\text{CO})(\text{PPh}_3)]\) (28.5mg, 0.051mmol.) and TlC\(_5\)H\(_5\) (30.5mg, 0.113mmol.) were allowed to react in CDCl\(_3\) (0.5ml) to which Bu\(^3\)OH (50µl) had been added.

(x) cis-\([\text{PtCl}_2(\text{CO})(\text{PPh}_3)]\) (29.6mg, 0.053mmol.) and TlC\(_5\)H\(_5\) (30.9mg, 0.115 mmol.) were allowed to react in benzene (0.5ml) to which a few drops of C\(_6\)D\(_6\) was added as a locking signal for \(^{31}\)P nmr.

(xi) cis-\([\text{PtCl}_2(\text{CO})(\text{PPh}_3)]\) (9.0mg, 0.016mmol.) and TlC\(_5\)H\(_5\) (9.3mg, 0.034mmol.) were allowed to react in CDCl\(_3\) (0.5ml).

(xii) cis-\([\text{PtCl}_2(\text{CO})(\text{PPh}_3)]\) (27.0mg, 0.049mmol.) and TlC\(_5\)H\(_5\) (26.2mg, 0.097mmol.) were allowed to react in CDCl\(_3\) (0.5ml).

(xiii) cis-\([\text{PtCl}_2(\text{CO})(\text{PPh}_3)]\) (25.6mg, 0.046mmol.) and an old sample of TlC\(_5\)H\(_5\) (24.4mg, 0.090mmol.) were allowed to react in CDCl\(_3\) (0.5ml).
cis-[PtCl₂(CO)(AsMePh₂)] and 2 TlC₅H₅

 cis-[PtCl₂(CO)(AsMePh₂)] (21.8mg, 0.040mmol.) and TlC₅H₅ (10.9mg, 0.040mmol.) were allowed to react in CDCl₃ (0.5ml) under an atmosphere of N₂ for 1 3/4 hours, when ¹H nmr examination of the solution revealed it to be largely [PtCl(C₅H₅)(CO)(AsMePh₂)] isomer (I) (parameters in table 1). A further 10.9mg of TlC₅H₅ (0.040mmol.) was added, and after 18 hours at room temperature the solution contained, in addition to isomer (I), a C₅H₅ signal at +5.85 ppm, with two sets of platinum satellites, JₚtH = 13.4 and 5.7 Hz, and a C₅H₅ signal at +5.56 ppm, JₚtH = 12.6 Hz.

[Bu₄N]₂[Pt₂(CO)₂Cl₄] and 2 TlC₅H₅

[Bu₄N]₂[Pt₂(CO)₂Cl₄] (40.0mg, 0.037mmol.) and TlC₅H₅ (20.0mg, 0.074mmol.) were allowed to react in CDCl₃ (0.5ml). A dark solution was formed immediately and this was filtered and examined by ¹H nmr spectroscopy. There were initially two species present, a σ-C₅H₅ species at +6.21 ppm, JₚtH = 41.0 Hz and a π-C₅H₅ dimeric species, δ = +5.85 ppm, JₚtH = 13.3 and 6.0 Hz, in equal intensities. A third species appeared with δ = +5.54 ppm, JₚtH = 12.5 Hz, within 2 hours. Addition of PPh₃ (19.9mg, 0.074mmol.) in CDCl₃ (0.2ml) to this solution produced the byproduct obtained in "Asymmetric Dimer" reactions with ³¹P parameters δ = +20.7 ppm, ¹JₚtP = 3435Hz, and [Pt(η⁵-C₅H₅)(PPh₃)₂]⁺ in a ratio of 2 to 1. No C₅H₅ resonances could be observed in the ¹H nmr spectrum.
[PtCl(C₅H₅)(CO)(PPh₃)] isomer (I) and PPh₃

[PtCl(C₅H₅)(CO)(PPh₃)] (0.053mmol.) in CDCl₃ (0.3ml) and PPh₃ (13.8mg, 0.053mmol.) in CDCl₃ (0.2ml) were mixed at room temperature under a nitrogen atmosphere. The ³¹P nmr spectrum of the mixture contained the species with parameters +20.7 ppm, ¹Jₚₚ = 3435 Hz as the major product (90% of the intensity) and [Pt(η⁵-C₅H₅)(PPh₃)₂]. A ¹H nmr spectrum of this solution contained only weak signals in addition to PPh₃ protons, a triplet at +6.26 ppm, ³JₚH = 2 to 2.5 Hz, ³JₚᴵH = 40 Hz and ²C₅H₅ of [Pt(η⁵-C₅H₅)(PPh₃)₂]⁺ in a relative ratio of 5 to 1. The relative intensity of PPh₃ aryl protons on this scale was 165, which is much too large. However, in amongst these signals was one at +7.27 ppm, which may be due to CHCl₃. Addition of AgSO₃CF₃ (16.6mg, 0.065mmol.) had no effect on the ³¹P nmr spectrum.

Attempted Isolation of "Asymmetric Dimers"

(i) cis-[PtCl₂(CO)(PET₃)] (204mg, 0.495mmol.) and TlC₅H₅ (274mg, 1.010mmol.) were stirred together in CHCl₃ which had been passed down a silica gel column (5ml) under a nitrogen atmosphere for 20 hours. The orange-brown solution was filtered to remove TlCl, and the solvent was removed to yield an oil. The oil was extracted with pentane (50ml) to give a yellow solution and an insoluble black oil. Removal of the pentane produced a yellow-orange oil. Both oils were soluble in CDCl₃ and ¹H nmr spectra were recorded. The only species in the solution of the black oil was "Asymmetric Dimer". The yellow
oil contained both "Asymmetric Dimer" and a species with \(\delta = +5.72 \) ppm, doublet \(J_{PH} = 1.5 \text{ Hz} \), \(J_{PtH} = 11.0 \text{ Hz} \), which had \(^{31}P \) parameters \(\delta = +12.2 \) ppm, \(J_{PtP} = 5223 \text{ Hz} \), and was 67% of the \(^{31}P \) intensity.

(ii) \textit{cis-}[PtCl}_2(CO)(PPh}_3] \((500\text{mg}, 0.902\text{mmol})\) and TlC}_5H}_5 \((500\text{mg}, 1.855\text{mmol})\) were similarly allowed to react in CHCl\(_3\) \((10\text{ml})\) for 25 hours. A \(^{31}P \) spectrum showed that the species with parameters \(\delta = +11.1 \) ppm, \(J_{PtP} = 5644 \text{ Hz} \) and "Asymmetric Dimer" were present, in an intensity ratio of 2 to 1. The solution was filtered to remove TlCl, and was then chromatographed on a silica column. A fraction was eluted with a 1 to 2 mixture of diethyl ether and CHCl\(_3\) which on evaporation of the solvent yielded a yellow-brown oil. On treatment with hexane a solid was obtained, \((75\text{mg})\) whose \(^{31}P \) spectrum indicated that it was mainly "Asymmetric Dimer" (69% of the intensity) with Ph\(_3\)PO (22%) and the byproduct, +20.7 ppm, \(J_{PtP} = 3435 \text{ Hz} \) (9%). The other species was either retained or destroyed on the column.

(iii) Similarly \textit{cis-}[PtCl}_2(CO)(PPh}_3] \((504\text{mg}, 0.909\text{mmol})\) and TlC}_5H}_5 \((528\text{mg}, 1.959\text{mmol})\) were allowed to react in CDCl\(_3\) \((5\text{ml})\) for 1 day, when a \(^{31}P \) nmr spectrum showed the solution to be mainly "Asymmetric Dimer" (64%) and Ph\(_3\)PO (24%). The solution was filtered and the solvent removed to yield a black oil. The oil was extracted with ether to give an orange solution and an insoluble brown solid \((153\text{mg})\).
A 31P nmr spectrum of the brown solid had no detectable signals and a 1H spectrum only a broad peak in the aryl region, +7.0 to 7.8 ppm. A microanalysis of this material gave a composition of: C 48.55%, H 2.76%, Cl 3.10% and P 4.11%, which gives a C/H ratio of 1.48, a C/P ratio of 30.2 and a P/Cl ratio of 1.5 and a relative ratio of 2Cl : 3P : 90C : 60H. Repeated attempts to crystallise the orange solution, which was mainly "Asymmetric Dimer", resulted in an orange semi-solid, contaminated with Ph$_3$PO.

(iv) cis-[PtCl$_2$(CO)(PPh$_3$)] (235mg, 0.424mmol.) and TlC$_5$H$_5$ (221mg, 0.820mmol.) were similarly allowed to react in CDCl$_3$ (5ml) for 1½ days, when a 1H nmr spectrum indicated the solution was mainly "Asymmetric Dimer". The solution was filtered and 178mgs. of TlCl (0.744mmol., 91% of Tl) was recovered. The solvent was removed to give a black oil which was extracted with pentane to give an orange solution and a brown solid (155mg). The brown solid contained "Asymmetric Dimer" (47% of 31P intensity) and Ph$_3$PO (30%) as the major species, while the orange-solution yielded 44mgs. of solid which contained "Asymmetric Dimer" (40%) and an unknown at δ = +26.1 ppm (47%).

(v) cis-[PtCl$_2$(CO)(PPh$_3$)] (504mg, 0.909mmol.) and TlC$_5$H$_5$ (488mg, 1.810mmol.) were allowed to react in CHCl$_3$ for 1 day. A 31P spectrum of the solution contained the species at +11.1 ppm, 1J$_{PtP}$ = 5640 Hz as the major product (82% of the intensity) with a
species at +6.6 ppm. The solution was filtered and 380 mg of TlCl (1.585 mmol, 88% of Tl) was recovered. The solvent was removed to give a black oil which, on extraction with ether, yielded an orange solution and a golden brown solid. An i.r. spectrum of this solid contained no CO stretch. The orange solution yielded a yellow oil which resisted all attempts at crystallisation. A 1H nmr spectrum of the yellow oil contained a π-C$_5$H$_5$ signal at +5.6 ppm, (doublet) with $J_{PH} = 1.3$ Hz and $J_{PtH} = 13.2$ Hz while a 31P nmr contained the species, $\delta = +11.2$ ppm, $^{1}J_{PtP} = 5632$ Hz as 89% of the intensity along with Ph$_3$PO. Eventually, a light brown solid that was largely this material was obtained from an ether solution, and an i.r. spectrum had a strong, broad absorbance at 1630 cm$^{-1}$. A CDC$_3$ solution of this species slowly produced "Asymmetric Dimer" and Ph$_3$PO over a period of 1 week.
CHAPTER FIVE

TRISPHOSPHINE COMPLEXES OF PLATINUM
RESULTS AND DISCUSSION

$[\text{PtCl}(\text{PMe}_2\text{Ph})_3]X$ and TlC_5H_5

TlC_5H_5 reacted with $[\text{PtCl}(\text{PMe}_2\text{Ph})_3]SO_3\text{CF}_3$ in CDC$_1_3$ to produce initially a trisphosphine platinum complex, A (parameters in table 18), as an intermediate, followed by another trisphosphine platinum complex B, (table 18). Complex B was the major product, but a third trisphosphine complex C (table 18) was also produced, along with $[\text{Pt}(\eta^5-\text{C}_5\text{H}_5)(\text{PMe}_2\text{Ph})_2]SO_3\text{CF}_3$. The 1H nmr spectrum of this mixture did not contain any signals which could be identified as a σ-bonded C_5H_5 ring. Clearly the simple replacement of Cl by C_5H_5, which might have been expected from this reaction to give only $[\text{Pt}(\eta^1-\text{C}_5\text{H}_5)(\text{PMe}_2\text{Ph})_2]SO_3\text{CF}_3$ has not occurred.

The parameters of B and C are very similar to each other, and are typical of a square-planar trisphosphine platinum complex with a σ-bonded organic group as the fourth ligand. For example, $[\text{PtMe}(\text{PMe}_2\text{Ph})_3]BF_4$ has 31P parameters: $\delta = -5.7$ ppm, $^1J_{\text{PtP}} = 2682$ Hz (d) and $\delta = -13.1$ ppm, $^1J_{\text{PtP}} = 1831$ Hz (t), $^2J_{\text{PP}} = 24$ Hz. The first produced trisphosphine complex, A, has parameters very different from this.

\[
\begin{array}{c}
\text{L} \\
\text{Pt} \\
\text{Cl} \\
\text{L}
\end{array} \xrightarrow{\text{TlC}_5\text{H}_5} \begin{array}{c}
\text{L} \\
\text{Pt} \\
\text{Cl} \\
\text{L}
\end{array} \rightarrow \begin{array}{c}
\text{L} \\
\text{Pt} \\
\text{L}
\end{array} \quad \begin{array}{c}
\text{L} \\
\text{Pt} \\
\text{L}
\end{array}
\]

A similar result was obtained when CHCl$_3$ was used as the solvent, thus one possible explanation for the similarity of B and C can be eliminated, namely that B is $[\text{Pt}(\eta^1-\text{C}_5\text{H}_5)-\text{L}_3]^+$ and C is the same compound in which the ring has been
deuterated, i.e. [Pt(η³-C⁵D₅)L₃]⁺. Furthermore complex B is produced first, and complex C appears to be formed from it.

When [PtCl(PMe₂Ph)₃]Cl and TlC₅H₅ were allowed to react, the reaction was more rapid, and although some trisphosphine complex B was produced, it rapidly decomposed. The major products in this case were [Pt(η⁵-C₅H₅)(PMe₂Ph)₂]⁺, [Pt(PMe₂Ph)₄]²⁺ (³¹P nmr at 25°C: δ = -15.0 ppm, ¹JPtP = 2369 Hz) and PhMe₂PO (δ = +34.5 ppm).

[PtCl(PMe₂Ph)₃]SO₃CF₃ does not react with Hg(C₅H₅)₂ within 3 days at room temperature. Possibly the three phosphine ligands around platinum create enough steric hindrance to block approach of Hg(C₅H₅)₂ via an Sₑ₂ (cyclic) mechanism.

Reactions between [PtCl(PMe₂Ph)₃]X and Silver Salts

The chloride of [PtCl(PMe₂Ph)₃]SO₃CF₃ was removed by AgSO₃CF₃ to produce a trisphosphine complex, D, with very different ³¹P parameters to the starting material. The doublet for the two phosphines trans to each other has moved downfield although ¹JPtP is practically unchanged; while the triplet has moved upfield and ¹JPtP has increased by 330 Hz, indicating that the ligand trans to this phosphine has a lower trans-influence than Cl. Similar complexes, E and F, were produced when [PtCl(PMe₂Ph)₃]Cl was treated with two equivalents of AgBF₄ and AgPF₆ respectively. The ³¹P parameters of complexes D, E and F are very similar. There is only a slight difference between ¹JPtP values for the doublet, although there is a variation of almost 100 Hz in ¹JPtP for the triplet.
Although coordination of SO_3CF_3^- to platinum has been claimed,196 for the complex $[\text{PtCl}(\text{OSO}_2\text{CF}_3)(\text{PR}_3)_2]$, produced by halide abstraction from cis-$[\text{PtCl}_2(\text{PR}_3)_2]$ by HOSO_2CF_3, this could have been $[\text{Pt}_2(\mu-\text{Cl})_2(\text{PR}_3)_4][\text{SO}_3\text{CF}_3]_2$, and evidence in favour of coordination is inconclusive. BF_4^- and PF_6^- are generally considered to be non-coordinating anions. The reaction between $[\text{PdCl}_2\text{L}_2]$ ($\text{L} =$ phosphine, arsine or stibine) and AgPF_6 in acetone leads to the formation of a complex $[\text{Pt(Me}_2\text{CO})_2\text{L}_2][\text{PF}_6]_2$,197 thus $[\text{Pt(PMe}_2\text{Ph})_3(\text{CDCl}_3)]^{2+}$ is a possibility for complexes D, E, and F, but if this is the case there should be virtually no difference in ^{31}P parameters between the complexes. The parameters of complex D in acetone are very similar to those in CDCl$_3$. Since the parameters vary as the anion varies, it is more plausible that there is an interaction between the anion and platinum. SO_3CF_3^- could bond via oxygen as in the example above, but BF_4^- and PF_6^- presumably interact through fluorine. This would give the structures shown in figure 41 as most probable for complexes D, E and F, with 4-coordinate complexes $[\text{PtL}_3\text{X}]\text{X}$ if one anion interacts, or five-coordinate complexes if both interact, $[\text{PtL}_3\text{X}_2]$. No $^{19}\text{F} - ^{31}\text{P}$ coupling is observed, so any interaction must be weak.
Reactions of Complex D

When carbon monoxide was bubbled through a solution of [PtCl(PMe₂Ph)₃]Cl in the presence of 2 equivalents of AgSO₃CF₃, complex D was initially formed and reacted further to produce [Pt(CO)(PMe₂Ph)₃][SO₃CF₃]₂, (parameters in table 19). Both [Pt(PMe₂Ph)₄]²⁺ and trans-[PtCl(CO)(PMe₂Ph)₂]⁺ were also formed, thus AgSO₃CF₃ could not have removed all of the Cl from solution.
TIC₅H₅ reacted with tris-phosphine platinum complex D very rapidly and almost quantitatively to produce a new tris-phosphine complex, G, (parameters in table 18). Minor products were [Pt(PMe₂Ph)₄][SO₃CF₃]₂ and an unknown species, δ = -17.4 ppm, J₁P₁Pt = 3479 Hz (at -60°C). Complex G reacted slowly, over 2 days, to produce complex B and complex G, [Pt(η⁵-C₅H₅)(PMe₂Ph)₂]SO₃CF₃ and more [Pt(PMe₂Ph)₄][SO₃CF₃]₂. The 3¹P parameters of G are similar to those of A and it is likely that the two complexes are related.

Since [Pd(Me₂CO)₂L₂][PF₆]₂ reacts rapidly with C₅H₆ to form [Pd(η⁵-C₅H₅)L₂][PF₆], ¹⁹⁷ C₅H₆ was added to a CDC₁₃ solution of trisphosphine complex D. Although the solution became deeply coloured, very little reaction was detectable by ³¹P nmr spectroscopy, and the products were [Pt(PMe₂Ph)₄]²⁺ and [Pt(η⁵-C₅H₅)(PMe₂Ph)₂]⁺. C₅H₆ must react with complex D to produce [Pt(η⁵-C₅H₅)(PMe₂Ph)₂]⁺ and liberate a molecule of phosphine which then attacks another molecule of complex D, to form [Pt(PMe₂Ph)₄]²⁺.

[PtCl(PMe₂Ph)₃]SO₃CF₃ and HgPh₂ reacted slowly in CDC₁₃ to produce only one trisphosphine complex, identified as [PtPh(PMe₂Ph)₃]SO₃CF₃, (³¹P parameters in table 19), as the major product and a complex with parameters δ = -17.7 ppm, J₁P₁Pt = 3529 Hz. The analogous trisphosphine complex of
PMePh₂, \([\text{PtPh(PMePh}_2\text{)}_3]\text{ClO}_4\), has been reported\(^{198}\) and has similar \(^{31}\text{P}\) parameters.

\[\text{L-Pt}^++\text{Cl} \xrightarrow{\text{HgPh}_2} \text{L-Pt}^+\text{Ph} + \text{PhHgCl} \]

The trisphosphine complex D also reacted with HgPh₂, but in this case a new trisphosphine complex, H, was produced (\(^{31}\text{P}\) parameters in table 18), along with the unidentified complex produced in the previous reaction, and PhMe₂PO which seemed to have been displaced to higher field and to be coupled either to platinum or to mercury, although the intensity of the satellites favours Hg, (\(\delta = +30.3\) ppm, \(J_{\text{HgP}} = 2198\) Hz). Complexes D and H appeared to undergo exchange reactions at room temperature. After 1 month, the solution had reacted to form [PtPh(PhMe₂)₃]SO₃CF₃ and the unidentified complex, with parameters \(\delta = -17.7\) ppm, \(J_{\text{PtP}} = 3529\) Hz. Thus complex H appears to be an intermediate en route to [PtPh(PhMe₂)₃]⁺, analogous to complex G, formed as an intermediate in the reaction of TiC₅H₅ with complex D.

TiC₅H₅ and [PtX(PhMe₂)₃]SO₃CF₃ (X = Br, I)

[PtBr(PhMe₂)₃]SO₃CF₃ and [PtI(PhMe₂)₃]SO₃CF were prepared by treating trisphosphine complex D with one equivalent of [Bu₄N]Br and [Bu₄N]I respectively. These complexes reacted with TiC₅H₅ in a manner similar to [PtCl(PhMe₂)₃]SO₃CF₃, producing [Pt(η⁵-C₅H₅)(PhMe₂)₂]⁺ and complex B initially, with complex C also appearing later, along with PhMe₂PO. The \(^{31}\text{P}\) signals for [PtBr(PhMe₂)₃]⁺
and \([\text{PtI}(\text{PMe}_2\text{Ph})_3]^{+}\) were broadened at room temperature by exchange with liberated phosphine, but were sharp at \(-60^\circ\text{C}\). There was one difference in these reactions, however. As the reaction progressed, the parameters for the trisphosphine complexes changed, both the triplet and doublet moved downfield while \(^1J_{\text{PtP}}\) also changed. The \(^{31}\text{P}\) parameters seemed to move closer to those for \([\text{PtCl}(\text{PMe}_2\text{Ph})_3]^{+}\) as the reaction progressed. This can be explained by a halide exchange of \(\text{Br}\) or \(\text{I}\) for \(\text{Cl}\) from the solvent. Such halogen exchanges have been observed for some other platinum complexes in CDC\(_3\) (see chapter 4). Halogen exchange between \([\text{PtIL}_3]^{+}\) or \([\text{PtBrL}_3]^{+}\) and \([\text{PtClL}_3]^{+}\) might be expected to be rapid, with only one, averaged signal being obtained in the \(^{31}\text{P}\) spectrum, even at \(-60^\circ\text{C}\).

\[
\begin{align*}
\text{L} & \quad \text{Pt}^+ \\
& \quad \text{X} \\
\text{L} & \quad \text{L} \\
\text{L} & \quad \text{L} \\
\text{L} & \quad \text{Pt}^+ \\
& \quad \text{Cl} \\
\end{align*}
\]

Five-coordinate complexes \([\text{PtX}_2\text{L}_3]\)

Addition of excess \([\text{Bu}_4\text{N}]\text{I}\) to \([\text{PtI}(\text{PMe}_2\text{Ph})_3]\text{SO}_3\text{CF}_3\) caused a shift in the \(^{31}\text{P}\) parameters of the platinum complex. The peaks were broad at room temperature, but sharp at \(-60^\circ\text{C}\). Successive additions of \(\text{I}^-\) displaced both the doublet and triplet to higher field, and dramatically increased \(^1J_{\text{PtP}}\) for the triplet by over 270 Hz. Similar behaviour was observed on addition of \([\text{Bu}_4\text{N}]\text{Br}\) to \([\text{PtBr}(\text{PMe}_2\text{Ph})_3]\text{SO}_3\text{CF}_3\),
although the increase in $^1J_{PtP}$ for the triplet was less
dramatic, being only 150 Hz. Most of the shift in nmr
parameters occurred on addition of only one equivalent of I$^-$
or Br$^-$. Addition of further halide modifying the parameters
only slightly. By contrast $[PtCl(PMe_2Ph)_3]Cl$ has very
similar ^{31}P parameters to $[PtCl(PMe_2Ph)_3]SO_3CF_3$. This
suggests that five-coordinate trisphosphine complexes $[PtI_2$-
$(PMe_2Ph)_3]$ and $[PtBr_2(PMe_2Ph)_3]$ have been formed (parameters
in table 19).

The formation of the complexes $[PtBr_2(PMe_2Ph)_3]$ and
$[PtI_2(PMe_2Ph)_3]$ has been claimed in the reaction between
$[Pt(PMe_2Ph)_4]$ and 1-bromo-ethylbenzene and 2-iodobutane
respectively, carried out in benzene,199 and by addition of
PMe_2Ph to $[PtBr_2(PMe_2Ph)_2]$ or $[PtI_2(PMe_2Ph)_2]$ in pentane/
CH_2Cl_2.200 Evidence in favour of five-coordinate complexes
was a band at 400 nm in the visible spectrum of $[PtBr_2L_3]$
which was absent in a spectrum of $[PtBrL_3]ClO_4$, and
differences between the 1H nmr parameters of the phosphine
methyl protons of $[PtX_2L_3]$ and $[PtXL_3]^+$. However, conflicting
results have been obtained, and Cooper and Powell have claimed
that addition of PMe_2Ph to $[PtCl_2(PMe_2Ph)_2]$ or $[PtI_2(PMe_2Ph)_2]$ in chloroform produces the four coordinate ionic complexes,
$[PtCl(PMe_2Ph)_3]Cl$ and $[PtI(PMe_2Ph)_3]I$.201 The analogous
five-coordinate palladium complex $[PdCl_2(PMe_2Ph)_3]$ has been
isolated and its crystal structure obtained. This was found
to be square-pyramidal with three phosphines and one chloride
in the basal plane.202

Recently, Roulet has shown that addition of PMe_3 to
$[PtX_2(PMe_3)_2]$ produces the four-coordinate ionic complex
[PtX(PMe$_3$)$_3$]$^+$X$^-$ when X is Cl or Br, and the five-coordinate neutral complex [PtX$_2$(PMe$_3$)$_3$] when X is I. That [PtI$_2$-(PMe$_3$)$_3$] is five-coordinate in solution was shown by its 31P nmr spectrum, which differs considerably from that of [PtI-(PMe$_3$)$_3$]PF$_6$. The doublet and triplet of [PtI$_2$(PMe$_3$)$_3$] are shifted to high field, and 1J$_{PtP}$ for the triplet is increased by 700 Hz. The authors favoured a square-pyramidal geometry with one PMe$_3$ in the apical position and two basal iodides trans to each other.

An extensive series of complexes [PtX$_2$L$_3$] (X = Cl, Br, I; L = 1-R-3,4-dimethyl phosphole) have also recently been reported, and these are all five-coordinate, neutral complexes in solution. A square-based pyramidal geometry was also favoured for these complexes.

Thus, it seems likely that [PtBr$_2$(PMe$_2$Ph)$_3$] and [PtI$_2$-(PMe$_2$Ph)$_3$] are five-coordinate complexes, with the most likely geometry being that shown in figure 42 below.

figure 42.
Trisphosphine complexes from addition of phosphine to platinum complexes

When PMe$_2$Ph was added to [Pt(η^5-C$_5$H$_5$)(PMe$_2$Ph)$_2$]SO$_3$CF$_3$ the products were complex B and Ph$_2$MePO, along with a broad peak due to an exchanging system. Addition of sulphur to abstract any free phosphine present removed the broad peak and replaced it with PhMe$_2$PS and [PtCl(PMe$_2$Ph)$_3$]SO$_3$CF$_3$, plus small amounts of cis-[PtCl$_2$(PMe$_2$Ph)$_2$] and an unidentified complex, $\delta = -5.2$ ppm, $^1J_{PtP} = 2828$ Hz which was previously observed in the reaction of cis-[PtCl$_2$(CO)(PMe$_2$Ph)] with two equivalents of TlC$_5$H$_5$. On adding PMe$_2$Ph to [Pt(η^5-C$_5$H$_5$)(PMe$_2$Ph)$_2$]SO$_3$CF$_3$ in acetone, complex B was the major product, but this was eventually replaced by [Pt(PMe$_2$Ph)$_4$]$^{2+}$.

Addition of PMe$_2$Ph to [Pt(η^5-C$_5$H$_5$)$_2$]Cl in CDCl$_3$ also produced complex B and PhMe$_2$PO, along with a broad peak due to an exchanging system. Complex C also appeared later and addition of AgSO$_3$CF$_3$ removed the broad peak, replacing it with [PtCl(PMe$_2$Ph)$_3$]SO$_3$CF$_3$ and another, minor trisphosphine complex, J.

PMe$_2$Ph reacted with [Pt(η^5-C$_5$H$_5$)(CO)(PMe$_2$Ph)]SO$_3$CF$_3$ in CDCl$_3$ to produce two tris-phosphine complexes J and K, (parameters in table 18), [PtCl(PMe$_2$Ph)$_3$]SO$_3$CF$_3$, an unknown complex (parameters in experimental section), [Pt(η^5-C$_5$H$_5$)-(PMe$_2$Ph)$_2$]SO$_3$CF$_3$ and PhMe$_2$PO. The $^1J_{PtP}$ values for complex J are very similar to those of complexes B and C, although both the doublet and triplet are further upfield. Complex K has a remarkably low value of $^1J_{PtP}$ for the phosphine cis to two phosphines. The parameters of complex K are typical of a trisphosphine platinum complex with a carbonyl-inserted
organic group as the fourth ligand. For example \([\text{Pt}(\text{COPh})\left(\text{PMePh}_2\right)_3]\text{ClO}_4\) has \(^{31}\text{P}\) parameters, \(\delta = -4.3\ \text{ppm}, 1J_{\text{PtP}} = 3015 \text{ Hz (d)}\) and \(\delta = -8.7\ \text{ppm}, 1J_{\text{PtP}} = 1475 \text{ Hz, (t)}, 2J_{\text{PP}} = 26 \text{ Hz}\). \(^{198}\)

Two other trisphosphine complexes, \(L\) and \(M\), were obtained as two of many products when neat phosphine was added to a solution of \([\text{PtCl}(\text{C}_5\text{H}_5)(\text{CO})(\text{PMe}_2\text{Ph})]\) isomer (I). Other products were the unknown complex obtained in the previous reaction, \([\text{PtCl}(\text{PMe}_2\text{Ph})_3]\text{Cl}, [\text{Pt}(\eta^5-\text{C}_5\text{H}_5)(\text{PMe}_2\text{Ph})_2]\text{Cl}, another unknown complex (parameters in experimental section) and other, minor products. A \(^1\text{H}\) nmr spectrum showed that some \(\text{C}_5\text{H}_6\) had been produced.

Identities of trisphosphine platinum complexes

The chemical shifts of the doublet and triplet signals in the \(^{31}\text{P}\) spectra of complexes, \(A\), \(G\) and \(H\) are similar to those for complexes \(D\), \(E\) and \(F\). The latter complexes were considered to be four- or five-coordinate trisphosphine complexes in which the other ligand, or ligands, was the anion \(\text{SO}_3\text{CF}_3, \text{BF}_4\) or \(\text{PF}_6\). Complex \(A\) was obtained in the reaction between \([\text{PtCl}(\text{PMe}_2\text{Ph})_3]\text{SO}_3\text{CF}_3\) and \(\text{TlC}_5\text{H}_5\) while complex \(G\) was obtained in the reaction between complex \(D\) and \(\text{TlC}_5\text{H}_5\). Both \(A\) and \(G\) were intermediates en route to complexes \(B\) and \(C\). Complex \(H\) was obtained in the reaction between complex \(D\) and \(\text{HgPh}_2\) as an intermediate en route to
[PtPh(PMe₂Ph)₃]SO₃CF₃. Complexes Δ, Ω and Η have parameters which differ considerably from those of a four-coordinate trisphosphine complex with a σ-bonded organic group as the fourth ligand. It is possible that these complexes are five-coordinate intermediates with either σ-bonded organic groups (C₅H₅ and Ph) or with the organic groups still coordinated to Tl or Hg. Possible structures with σ-bonded organic groups are shown in figure 43 below.

![figure 43](attachment:image.png)

Intermediates in which molecules of TlC₅H₅ or HgPh₂ are bonded to platinum, either via a π-bond from the organic group or σ-bonds from both organic group and metal, are also possible, but these would also have to be five-coordinate.

Trisphosphine complexes B, C and J all have very similar ³¹P parameters, and these are similar to many trisphosphine complexes with a σ-bonded organic group as the fourth ligand. Complex B was produced from the reaction between [PtCl(PMe₂Ph)₃]⁺ and TlC₅H₅ and the reaction between [Pt(η⁵-C₅H₅)(PMe₂Ph)₂]⁺ and PMe₂Ph. Thus the most probable identity for complex B is [Pt(η¹-C₅H₅)(PMe₂Ph)₃]⁺.
Complex C is produced in the same reactions as complex B, but always after complex B. Complex J was obtained as a major product in the reaction between $[\text{Pt}(\eta^5-C_5H_5)(\text{CO})(\text{PMe}_2\text{Ph})]^+$ and PMe$_2$Ph, and as a minor product in $[\text{Pt}(\eta^5-C_5H_5)(\text{PMe}_2\text{Ph})_2]^+$ and PMe$_2$Ph. Complexes C and J could thus be the two vinyl isomers of complex B, which could be formed from B by successive [1,5] sigmatropic rearrangements.

Such an isomerisation of σ-bonded C$_5$H$_5$ rings has been observed with $[\text{Pt}(\text{CO})(\eta^1-C_5H_5)(\eta^5-C_5H_5)]$, which slowly converts to its vinyl isomer (a) in solution, which in turn equilibrates with the other vinyl isomer (b). 176 (fig. 44).
Similar behaviour was observed with \([\text{Pt}(\eta^7-C_2H_4)(\eta^1-C_5H_5)(\eta^5-C_5H_5)]\).

Cyclopentadienyl silane, \([(\eta^1-C_5H_5)SiH_3]\), also undergoes such isomerisation to vinyl isomers,\(^{205}\) and theoretical calculations indicate that a 1,2-\(H\) shift (equivalent to a [1,5] sigmatropic rearrangement) is the mechanism of isomerisation, and that the vinyl isomers are more stable.\(^{206}\)

Surprisingly, the cyclopentadienyl isomer (I) complexes, \([\text{PtCl}(\eta^1-C_5H_5)(\text{CO})L]\), appear not to undergo such isomerisation reactions. No \(^{31}P\) or \(^1H\) signals were observed in solutions of isomer (I) which can be attributed to vinyl isomers, although such species could be involved in the decomposition of isomer (I). A vinyl \(C_5H_5\) might react with \(C_5H_5\) from Pt or Tl to abstract a proton and produce \(C_5H_6\), which is obtained in a number of reactions, particularly in the formation of "Asymmetric Dimer".

Complex \(K\), formed from the reaction between \([\text{Pt}(\eta^5-C_5H_5)(\text{CO})(\text{PMe}_2\text{Ph})]^+\) and \(\text{PMe}_2\text{Ph}\) has \(^{31}P\) nmr parameters which bear a similar relationship to those of complex \(B\) as the parameters of \([\text{Pt(COPh})(\text{PMe}_2\text{Ph})_2]^+\) bear to \([\text{Pt(Ph)}(\text{PMe}_2\text{Ph})_3]^+\).\(^{198}\) The phenyl complex has \(^1J_{\text{PtP}}\) values of 2798 Hz for the doublet and 1792 Hz for the triplet, while the COPh complex has values of 3015 Hz and 1475 Hz. This suggests that complex \(K\) could be a carbonyl inserted species, \([\text{Pt(COC_5H_5)(PMe}_2\text{Ph})_3]^+\). It was also observed in acetone, thus it cannot have been derived from solvent, and the organic group which can have inserted is \(C_5H_5\).
Complexes \(L \) and \(M \) produced when neat phosphine was added to [PtCl\((\eta^1-C_5H_5)(CO)(PMe_2Ph) \)] isomer (I) may be analogous carbonyl insertion products of the two vinyl isomers of \(C_5H_5 \), the differences in \(^{1}J_{PtP} \) in this case could be due to conjugation of the double bonds of the \(C_5H_5 \) ring with the carbonyl double bond.

The identities of the trisphosphine complexes in table 19 are well established, but those in table 18 are only speculative. Of the unknown complexes in table 18, the identifications of \(B \) as [Pt(\(\eta^1-C_5H_5 \))(PMe_2Ph)_3]^+, \(C \) as a vinyl isomer of this and \(K \) as [Pt(COC_5H_5)(PMe_2Ph)_3]^+ seem to be the best established, the rest are less well so. More experiments need to be performed before definite identities can be established for the complexes in table 18, and further studies of the relationships between some of the complexes would also be worthwhile.
Table 18: 31P nmr of trisphosphine platinum complexes in CDCl$_3$ at 25°C. (Phosphine is PMe$_2$Ph).

<table>
<thead>
<tr>
<th>Complex</th>
<th>δ(ppm)</th>
<th>1J_{PtP}(Hz)</th>
<th>2J_{PP}(Hz)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-0.7</td>
<td>2490</td>
<td>d</td>
<td>possibly five-coordinate with C$_5$H$_5$ and Cl.</td>
</tr>
<tr>
<td></td>
<td>-24.3</td>
<td>3000</td>
<td>t</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>-7.6</td>
<td>2620</td>
<td>d</td>
<td>probably this is [Pt(η^1-C$_5$H$_5$)(PMe$_2$Ph)$_3$]+</td>
</tr>
<tr>
<td></td>
<td>-15.8</td>
<td>1818</td>
<td>t</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-8.6</td>
<td>2610</td>
<td>d</td>
<td>this is probably a vinyl isomer of B</td>
</tr>
<tr>
<td></td>
<td>-16.1</td>
<td>1814</td>
<td>t</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>+1.0</td>
<td>2360</td>
<td>d</td>
<td>four or five-coordinate with solvent or SO$_3$CF$_3$.</td>
</tr>
<tr>
<td></td>
<td>-25.6</td>
<td>3826</td>
<td>t</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>+1.2</td>
<td>2357</td>
<td>d</td>
<td>analogous to D with BF$_4$.</td>
</tr>
<tr>
<td></td>
<td>-25.8</td>
<td>3896</td>
<td>t</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>+2.0</td>
<td>2368</td>
<td>d</td>
<td>analogous to D with PF$_6$.</td>
</tr>
<tr>
<td></td>
<td>-25.0</td>
<td>3802</td>
<td>t</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>+0.4</td>
<td>2466</td>
<td>d</td>
<td>analogous to A with C$_5$H$_5$ and SO$_3$CF$_3$.</td>
</tr>
<tr>
<td></td>
<td>-23.4</td>
<td>3135</td>
<td>t</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-0.4</td>
<td>2397</td>
<td>d</td>
<td>possibly similar to A with Ph and SO$_3$CF$_3$.</td>
</tr>
<tr>
<td></td>
<td>-24.5</td>
<td>3575</td>
<td>t</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>-12.2</td>
<td>2612</td>
<td>d</td>
<td>this is possibly a vinyl isomer of B.</td>
</tr>
<tr>
<td></td>
<td>-21.8</td>
<td>1788</td>
<td>t</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>-11.7</td>
<td>2914</td>
<td>d</td>
<td>possibly this is [Pt(COC$_5$H$_5$)(PMe$_2$Ph)$_3$]+</td>
</tr>
<tr>
<td></td>
<td>-21.5</td>
<td>1495</td>
<td>t</td>
<td></td>
</tr>
</tbody>
</table>

Cont./
Table 18: continued

<table>
<thead>
<tr>
<th>Complex</th>
<th>(\delta) (ppm)</th>
<th>(^1J_{PtP}) (Hz)</th>
<th>(^2J_{PP}) (Hz)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>-10.6</td>
<td>3289</td>
<td>d</td>
<td>21.4</td>
</tr>
<tr>
<td></td>
<td>-20.9</td>
<td>(b)</td>
<td>t</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>-11.0</td>
<td>3219</td>
<td>d</td>
<td>22.3</td>
</tr>
<tr>
<td></td>
<td>-21.1</td>
<td>1365</td>
<td>t</td>
<td></td>
</tr>
</tbody>
</table>
Table 19: 31P nmr of trisphosphine platinum complexes in CDC$_3$ at 25°C.

<table>
<thead>
<tr>
<th>Complex</th>
<th>δ (ppm)</th>
<th>$^{1}J_{PtP}$ (Hz)</th>
<th>$^{2}J_{PP}$ (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Pt(CO)(PMe${2}$Ph)${3}$][SO${3}$CF${3}$]$_{2}$</td>
<td>-16.1</td>
<td>2059</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>-21.5</td>
<td>2931</td>
<td>t</td>
</tr>
<tr>
<td>[PtPh(PMe${2}$Ph)${3}$][SO${3}$CF${3}$]</td>
<td>-8.8</td>
<td>2660</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>-18.0</td>
<td>1757</td>
<td>t</td>
</tr>
<tr>
<td>[PtCl(PMe${2}$Ph)${3}$][PF$_{6}$]</td>
<td>-4.1</td>
<td>2309</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>-17.3</td>
<td>3489</td>
<td>t</td>
</tr>
<tr>
<td>[PtCl(PMe${2}$Ph)${3}$][SO${3}$CF${3}$] (a)</td>
<td>-4.0</td>
<td>2312</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>-16.9</td>
<td>3496</td>
<td>t</td>
</tr>
<tr>
<td>[PtBr(PMe${2}$Ph)${3}$][SO${3}$CF${3}$]</td>
<td>-7.4</td>
<td>2300</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>-16.5</td>
<td>3523</td>
<td>t</td>
</tr>
<tr>
<td>[PtI(PMe${2}$Ph)${3}$][SO${3}$CF${3}$]</td>
<td>-12.9</td>
<td>2293</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>-20.4</td>
<td>3491</td>
<td>t</td>
</tr>
<tr>
<td>[PtBr${2}$(PMe${2}$Ph)$_{3}$] (b)</td>
<td>-7.8</td>
<td>2311</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>-18.3</td>
<td>3675</td>
<td>t</td>
</tr>
<tr>
<td>[PtI${2}$(PMe${2}$Ph)$_{3}$] (b)</td>
<td>-15.8</td>
<td>2310</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>-25.3</td>
<td>3764</td>
<td>t</td>
</tr>
<tr>
<td>[PtCl(PMe${2}$Ph)${3}$]Cl (b)</td>
<td>-3.5</td>
<td>2300</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>-16.7</td>
<td>3515</td>
<td>t</td>
</tr>
</tbody>
</table>

(a) Parameters at -60°C
- $\delta = -3.2$ ppm, $^{1}J_{PtP} = 2287$ Hz (d) $^{2}J_{PP} = 21.1$ Hz
- $\delta = -17.0$ ppm, $^{1}J_{PtP} = 3489$ Hz (t)

(b) At -60°C.
EXPERIMENTAL

31P nmr spectra were recorded on a Varian XL 100 spectrometer operating in the Fourier Transform mode with a CDCl$_3$ locking signal. 1H nmr spectra were recorded on a Perkin-Elmer R32 90 MHz spectrometer with TMS locking signal. Chemical shifts are positive downfield of external H$_3$PO$_4$ (31P) or TMS (1H).

$\text{[PtCl(PMe}_2\text{Ph)}_3\text{]}\text{Cl}$

K_2PtCl_4 (9.96g, 0.024 moles) and PMe$_2$Ph (6.9ml, 0.048 moles) were allowed to react in H$_2$0/ethanol (80ml/120ml) as previously described to yield cis-$\text{[PtCl}_2\text{(PMe}_2\text{Ph)}_2\text{]}$ (9.75g, 72%). Material later crystallised in the H$_2$O/ethanol solution, and this was filtered off and found to be $\text{[PtCl(PMe}_2\text{Ph)}_3\text{]}\text{Cl}$ (2.78g, 17%), identified by its 31P nmr spectrum. I.r., Pt-Cl stretches at 300 cm$^{-1}$ (w) and 370 cm$^{-1}$ (vw).

$\text{[PtCl(PMe}_2\text{Ph)}_3\text{]}\text{SO}_3\text{CF}_3$

$\text{[PtCl(PMe}_2\text{Ph)}_3\text{]}\text{Cl}$ (208mg, 0.306mmol.) was dissolved in CHCl$_3$ to give a pale yellow solution. AgSO$_3$CF$_3$ (103mg, 0.400mmol.) was added and the solution became colourless. The AgCl and excess AgSO$_3$CF$_3$ was removed by filtration to leave a solution which eventually yielded a grey-white powder, found to be $\text{[PtCl(PMe}_2\text{Ph)}_3\text{]}\text{SO}_3\text{CF}_3$ (162mg, 67%). I.r. $\nu_{\text{Pt-Cl}} = 310$ cm$^{-1}$.
(i) \([\text{PtCl}(\text{PM}_{2}\text{Ph})_{3}]\text{SO}_{3}\text{CF}_{3}\) and \(\text{TlC}_{5}\text{H}_{5}\)

\([\text{PtCl}(\text{PM}_{2}\text{Ph})_{3}]\text{SO}_{3}\text{CF}_{3}\) (30.0 mg, 0.038 mmol.) and \(\text{TlC}_{5}\text{H}_{5}\) (11.0 mg, 0.041 mmol.) were allowed to react in CDCl\(_3\) (0.5 ml) under a N\(_2\) atmosphere and the solution was periodically examined by \(\text{31P}\) nmr spectroscopy. After 1 hour, a second trisphosphine platinum complex, complex \(A\), had appeared, \(\text{31P}\) parameters in table 18, (12% of the total \(\text{31P}\) intensity), along with \([\text{Pt}(\text{\textgreek{n}5-}\text{C}_{5}\text{H}_{5})(\text{PM}_{2}\text{Ph})_{2}]^{+}\) (1%) and a species identified as \([\text{Pt}(\text{PM}_{2}\text{Ph})_{4}]^{2+}\), (2%). On being left overnight at room temperature the major product was a new trisphosphine complex, \(B\), (parameters in table 18), (70% of the intensity of the products), along with \([\text{Pt}(\text{\textgreek{n}5-}\text{C}_{5}\text{H}_{5})(\text{PM}_{2}\text{Ph})_{2}]^{+}\) (13%) and another trisphosphine complex, \(C\), (table 18), (17%). There was still some \([\text{PtCl}(\text{PM}_{2}\text{Ph})_{3}]^{+}\), but its peaks were broadened by exchange with another species. A \(\text{1H}\) nmr spectrum contained no identifiable \(\text{C}_{5}\text{H}_{5}\) signals.

(ii) \([\text{PtCl}(\text{PM}_{2}\text{Ph})_{3}]\text{SO}_{3}\text{CF}_{3}\) (33.5 mg, 0.042 mmol.) and \(\text{TlC}_{5}\text{H}_{5}\) (14.2 mg, 0.053 mmol.) were allowed to react in CHCl\(_3\) (0.5 ml), containing a few drops of C\(_6\)D\(_6\), in a similar manner. After 1 day, the solution contained \([\text{PtCl}(\text{PM}_{2}\text{Ph})_{3}]^{+}\) (58%), trisphosphine platinum complex \(B\) (23%), \([\text{Pt}(\text{\textgreek{n}5-}\text{C}_{5}\text{H}_{5})(\text{PM}_{2}\text{Ph})_{2}]^{+}\) (8%) and trisphosphine complex \(A\), (11%). After 4 days, all of the starting material had been consumed, and the solution consisted of a mixture of \([\text{Pt}(\text{\textgreek{n}5-}\text{C}_{5}\text{H}_{5})(\text{PM}_{2}\text{Ph})_{2}]^{+}\) (21%), complex \(B\) (34%), complex \(C\) (36%) and \(\text{PhMe}_{2}\text{PO}\), (\(\delta = +34.5\) ppm), (9%).
[PtCl(PMe₂Ph)₃]Cl and TlC₅H₅

[PtCl(PMe₂Ph)₃]Cl (33.5mg, 0.049mmol.) and TlC₅H₅ (14.6mg, 0.054mmol.) were allowed to react in CDCl₃ under a nitrogen atmosphere at −60°C and the reaction was observed by ³¹P nmr spectroscopy. After 3 minutes at room temperature [Pt(η⁵-C₅H₅)(PMe₂Ph)₂]⁺ accounted for 20% of the ³¹P intensity, the remainder being starting material. On allowing the solution to warm to room temperature for a further 2 minutes, some of the trisphosphine platinum complex B was also produced, along with [Pt(PMe₂Ph)₄]⁺ and PhMe₂PO. After 25 minutes at room temperature, [PtCl(PMe₂Ph)₃]⁺ again became the major species present.

[PtCl(PMe₂Ph)₃]SO₃CF₃ and Hg(C₅H₅)₂

[PtCl(PMe₂Ph)₃]SO₃CF₃ (22.8mg, 0.029mmol.) and Hg(C₅H₅)₂ (10.5mg, 0.032mmol.) were mixed in CDCl₃ (0.5ml) under a nitrogen atmosphere at −60°C. ³¹P nmr spectra showed that no reaction occurred at −60°C in 2½ hours, and on warming to room temperature, no reaction occurred within 3 days.

[PtCl(PMe₂Ph)₃]SO₃CF₃ and AgSO₃CF₃

[PtCl(PMe₂Ph)₃]SO₃CF₃ (22.5mg, 0.028mmol.) and AgSO₃CF₃ (9.0mg, 0.035mmol.) were mixed in CDCl₃ (0.5ml) and a ³¹P nmr spectrum of the solution showed that it contained only one species, a trisphosphine platinum complex D, (parameters in table 18).
20.5 mg of [PtCl(PMe₂Ph)₃]Cl (0.030 mmol) and AgBF₄ (14.0 mg, 0.074 equiv.) were mixed in CDCl₃ (0.5 ml) and a ³¹P nmr spectrum of the solution showed that it contained only one species, a trisphosphine complex E, whose parameters are in Table 18.

[PtCl(PMe₂Ph)₃]Cl and excess AgPF₆

[PtCl(PMe₂Ph)₃]Cl (21.6 mg, 0.032 mmol) and AgPF₆ (22.4 mg, 0.088 mmol) were allowed to react in CDCl₃ (0.5 ml), and on examination by ³¹P nmr spectroscopy, the solution was found to contain only one species, a trisphosphine platinum complex, F, (see Table 18 for ³¹P parameters), on being left overnight at room temperature.

[PtCl(PMe₂Ph)₃]SO₃CF₃ + AgSO₃CF₃ + CO

Carbon monoxide was passed through a solution of [PtCl(PMe₂Ph)₃]SO₃CF₃ (25.2 mg, 0.032 mmol) in CDCl₃ (0.5 ml) in the presence of AgSO₃CF₃ (11.3 mg, 0.044 mmol) at room temperature. After 1½ hours all of the starting material was consumed, and the ³¹P nmr spectrum of the solution contained [Pt(PMe₂Ph)₄]²⁺ (30% of ³¹P intensity), a trisphosphine complex, identified as [Pt(CO)(PMe₂Ph)₃]²⁺ (58%) and trans-[Pt(PMe₂Ph)₂(CO)Cl]⁺ (12%). The trisphosphine complex D was formed as an intermediate; after 30 minutes it was the major product, but it completely disappeared after 1½ hours. The ³¹P nmr parameters of [Pt(CO)(PMe₂Ph)₃]²⁺ are given in Table 19.
Complex D and T1C5H5

A solution of trisphosphine complex D was prepared, using [PtCl(PMe2Ph)3]Cl (31.7mg, 0.047mmol.) and AgSO3CF3 (32.8mg, 0.128mmol.) as previously described. The solution was filtered and allowed to react with T1C5H5 (14.2mg, 0.053mmol.) under a nitrogen atmosphere. The starting material totally disappeared within 2 minutes at room temperature, being replaced mainly by a new trisphosphine platinum complex, G, (parameters in table 18), (83\% of the total 31P intensity). Some [Pt(PMe2Ph)4]2+ (12\%) and a species with parameters (at -60°C) \(\delta = -17.4 \text{ ppm}, \quad ^1J_{PtP} = 3479 \text{ Hz} \). On being at room temperature the amount of [Pt(PMe2Ph)4]2+ increased, trisphosphine complex B appeared, and also some [Pt(\eta^5-C5H5)(PMe2Ph)2]+. After 2 days at room temperature the solution was composed of [Pt(PMe2Ph)4]2+ (34\%), complex G (34\%), [Pt(\eta^5-C5H5)(PMe2Ph)2]+ (17\%), complex B (9\%) and complex C (7\%).

Complex D and C5H6

Similarly, a CDCl3 solution (0.5ml) of complex D was prepared using [PtCl(PMe2Ph)3]Cl (35.7mg, 0.052mmol.) and AgSO3CF3 (0.154mmol.). The solution was filtered and C5H6 (freshly cracked and distilled), a total of 45µl (0.557mmol.) was added. The solution became a deep blue colour, but even after 7 hours its 31P nmr spectrum contained only small amounts of [Pt(PMe2Ph)4]2+ (5\%) and [Pt(\eta^5-C5H5)(PMe2Ph)2]+ (5\%) in addition to complex D.
A solution of \([\text{PtCl(PMe}_2\text{Ph)}_3\text{]}\text{SO}_3\text{CF}_3\) was prepared in situ from \([\text{PtCl(PMe}_2\text{Ph)}_3\text{]}\text{Cl}\) (28.9mg, 0.042mmol) and \(\text{AgSO}_3\text{CF}_3\) (14.1mg, 0.055mmol) in \(\text{CDCl}_3\) (0.5ml), filtered and checked by \(^{31}\text{P}\) nmr spectroscopy. A solution of \(\text{HgPh}_2\) (15.1mg, 0.043mmol) in \(\text{CDCl}_3\) (0.1ml) was added and the reaction was followed by \(^{31}\text{P}\) nmr spectroscopy. After 2 days at room temperature \([\text{PtCl(PMe}_2\text{Ph)}_3\text{]}\text{SO}_3\text{CF}_3\) still accounted for 69% of the \(^{31}\text{P}\) intensity, the remainder being a trisphosphine complex identified as \([\text{PtPh(PMe}_2\text{Ph)}_3\text{]}\)^+, (\(^{31}\text{P}\) parameters in table 19). After 1 month \([\text{PtPh(PMe}_2\text{Ph)}_3\text{]}\)^+ was 94% of the \(^{31}\text{P}\) intensity, the remainder being a species with parameters \(\delta = -17.7\) ppm, \(^1J_{\text{PtP}} = 3529\) Hz.

Complex \(\text{D}\) and \(\text{HgPh}_2\)

A solution of complex \(\text{D}\) in \(\text{CDCl}_3\) (0.4ml) was prepared as previously described from \([\text{PtCl(PMe}_2\text{Ph)}_3\text{]}\text{Cl}\) (30.7mg, 0.045mmol) and \(\text{AgSO}_3\text{CF}_3\) (36.4mg, 0.142mmol). After filtering, a solution of \(\text{HgPh}_2\) (18.3mg, 0.052mmol) in \(\text{CDCl}_3\) (0.1ml) was added and the reaction was observed by \(^{31}\text{P}\) nmr spectroscopy. No reaction occurred in 1.5 hours at -60°C. On being left overnight at room temperature, the solution was found to consist of complex \(\text{D}\) (72% of the intensity), the species with parameters \(\delta = -17.6\) ppm, \(^1J_{\text{PtP}} = 3529\) Hz (16%) and \(\text{PhMe}_2\text{PO}\) (12%). On running the \(^{31}\text{P}\) spectrum at -60°C after 2 days reaction at room temperature, the spectrum contained complex \(\text{D}\) (37%), a new trisphosphine platinum complex, \(\text{H}\), (parameters in table 18), (17%), the species with parameters at -60°C, \(\delta = -17.5\) ppm, \(^1J_{\text{PtP}} = 3488\) Hz, and what appeared to be \(\text{PhMe}_2\text{PO}\), \(\delta =\)
+30.3 ppm, which appeared to have low intensity satellites with J_{PtP} or $J_{HgP} = 2198$ Hz. At room temperature only trisphosphine complex D was observed, and its upfield satellite was collapsed; complex H was not visible. After 1 month at room temperature, the solution contained the species with parameters $\delta = -17.7$ ppm, $^1J_{PtP} = 3529$ Hz and $[PtPh(PMe_2Ph)_3]^+$ as the major signals.

$[PtBr(PMe_2Ph)_3]SO_3CF_3$ and TlC_5H_5

$[PtCl(PMe_2Ph)_3]Cl$ (29.8mg, 0.044 mmol.) and AgSO_3CF_3 (32.4mg, 0.126mmol.) were allowed to react in CDC_13 (0.4ml) to produce complex D. The solution was filtered and checked by ^{31}P nmr spectroscopy, then a solution of $[Bu_4N]Br$ (14.7 mg, 0.046mmol.) in CDC_13 (0.1ml) was added to form $[PtBr(PMe_2Ph)_3]SO_3CF_3$ (^{31}P parameters in table 19). TlC_5H_5 (13.4mg, 0.050mmol.) was then added to the solution at room temperature and the reaction was followed by ^{31}P nmr spectroscopy. After 2½ hours reaction the ^{31}P spectrum at room temperature contained $[Pt(n^5-C_5H_5)(PMe_2Ph)_2]^+$, trisphosphine complex B and a broad signal at +6.2 to +7.7 ppm and +15.3 to +17.0 ppm. At -60°C, the broad signal was resolved as a trisphosphine complex with parameters:

$\delta = -5.6$ ppm (2P) $^1J_{PtP} = 2290$ Hz, $^2J_{PP} = 20.9$ Hz (d).
$\delta = -17.0$ ppm (1P) $^1J_{PtP} = 3549$ Hz, $^2J_{PP} = 20.9$ Hz (t).

After 1 day at room temperature the amount of $[Pt(n^5-C_5H_5)(PMe_2Ph)_2]^+$ and complex B had increased, complex C had also appeared and the parameters of the trisphosphine species, (which gave broad peaks at room temperature), were, at -60°C, :-
\(\delta = -4.2 \text{ ppm}, \quad 1J_{\text{PtP}} = 2293 \text{ Hz}, \quad 2J_{\text{PP}} = 21.4 \text{ Hz} \) (d),

\(\delta = -17.2 \text{ ppm}, \quad 1J_{\text{PtP}} = 3523 \text{ Hz}, \quad 2J_{\text{PP}} = 21.3 \text{ Hz} \) (t).

Some \(\text{PhMe}_2\text{PO} \) had also been produced.

\[
\text{[PtI(PMe}_2\text{Ph)}_3]SO_3\text{CF}_3 \quad \text{and} \quad \text{TIC}_5\text{H}_5
\]

\[
\text{[PtCl(PMe}_2\text{Ph)}_3]Cl \quad (34.0\text{mg}, \quad 0.050\text{mmol}) \quad \text{and} \quad \text{AgSO}_3\text{CF}_3 \\
(35.2\text{mg}, \quad 0.137\text{mmol}) \quad \text{were allowed to react in CDCl}_3 \quad (0.4\text{ml})
\]
to produce complex \(D \). The solution was filtered and then

\[
\text{[Bu}_4\text{N}]I \quad (20.9\text{mg}, \quad 0.056\text{mmol}) \quad \text{in CDCl}_3 \quad (0.1\text{ml}) \quad \text{was added to}
\]
form \(\text{[PtI(PMe}_2\text{Ph)}_3]SO_3\text{CF}_3 \) (\(^{31}\text{P} \) parameters in table 19).

\(\text{TIC}_5\text{H}_5 \quad (14.1\text{mg}, \quad 0.052\text{mmol}) \) was added at room temperature and the reaction was observed by \(^{31}\text{P} \) nmr spectroscopy.

After 3 hours at room temperature the solution contained

\(\text{[Pt(}\eta^5\text{-C}_5\text{H}_5)(\text{PMe}_2\text{Ph})_2]^+ \), trisphosphine complex \(B \) and a trisphosphine complex with broad peaks at room temperature and parameters, at \(-60^\circ\text{C}\) of:

\(\delta = -9.6 \text{ ppm}, \quad 1J_{\text{PtP}} = 2282 \text{ Hz}, \quad 2J_{\text{PP}} = 19.6 \text{ Hz} \) (d)

\(\delta = -19.7 \text{ ppm}, \quad 1J_{\text{PtP}} = 3520 \text{ Hz}, \quad 2J_{\text{PP}} = 19.6 \text{ Hz} \) (t).

The peaks were broadened even at \(-60^\circ\text{C}\).

After 1 day at room temperature the solution contained complex \(B \) (33% of intensity), the trisphosphine species with broad peaks at room temperature (27%), trisphosphine complex \(C \) (16%), \(\text{[Pt(}\eta^5\text{-C}_5\text{H}_5)(\text{PMe}_2\text{Ph})_2]^+ \) (16%) and \(\text{Ph}_2\text{MePO} \) (8%). The parameters of the trisphosphine species had changed to:

\(\delta = -5.3 \text{ ppm}, \quad 1J_{\text{PtP}} = 2293 \text{ Hz}, \quad 2J_{\text{PP}} = 21.0 \text{ Hz} \) (d),

\(\delta = -18.2 \text{ ppm}, \quad 1J_{\text{PtP}} = 3519 \text{ Hz}, \quad 2J_{\text{PP}} = 21.0 \text{ Hz} \) (t).
A solution of complex D (0.048 mmol.) in CDCl₃ (0.4 ml) was prepared as previously described. On addition of [Bu₄N]I (18.1 mg, 0.049 mmol.) in CDCl₃ (0.1 ml) the solution became a deep yellow colour and a ³¹P nmr spectrum contained only one species, [PtI(PMe₂Ph)₃]SO₃CF₃ (table 19). Addition of more [Bu₄N]I altered the parameters and broadened the spectrum at room temperature. After addition of 21.4 mg [Bu₄N]I (0.058 mmol.) the ³¹P nmr parameters (at -60°C) were:

- δ = -14.9 ppm, ¹Jₚₜₚ = 2302 Hz, ²Jₚₚ = 19.6 Hz (d)
- δ = -24.1 ppm, ¹Jₚₜₚ = 3713 Hz, ²Jₚₚ = 19.6 Hz (t)

On addition of a further portion of [Bu₄N]I (39.0 mg, 0.110 mmol.) these altered to:

- δ = -15.6 ppm, ¹Jₚₜₚ = 2308 Hz, ²Jₚₚ = 19.7 Hz (d)
- δ = -25.0 ppm, ¹Jₚₜₚ = 3759 Hz, ²Jₚₚ = 19.7 Hz (t).

Finally, on addition of more [Bu₄N]I (67.0 mg, 0.180 mmol.) there was very little change in the parameters, to:

- δ = -15.8 ppm, ¹Jₚₜₚ = 2310 Hz, ²Jₚₚ = 19.6 Hz (d)
- δ = -25.3 ppm, ¹Jₚₜₚ = 3764 Hz, ²Jₚₚ = 19.6 Hz (t).

A solution of [PtBr(PMe₂Ph)₃]SO₃CF₃ (0.046 mmol.) was prepared in the same way and [Bu₄N]Br (13.7 mg, 0.043 mmol.) was added to it. The ³¹P nmr parameters, at -60°C, changed to:

- δ = -7.4 ppm, ¹Jₚₜₚ = 2302 Hz, ²Jₚₚ = 20.7 Hz (d)
- δ = -17.7 ppm, ¹Jₚₜₚ = 3640 Hz, ²Jₚₚ = 20.7 Hz (t).
On addition of a further portion of \([\text{Bu}_4\text{N}]\text{Br}\) (54.6 mg, 0.170 mmol.) these changed to:

\[\delta = -7.8 \text{ ppm, } J_{\text{PtP}} = 2311 \text{ Hz, } J_{\text{PP}} = 20.8 \text{ Hz (d)}, \]
\[\delta = -18.3 \text{ ppm, } J_{\text{PtP}} = 3675 \text{ Hz, } J_{\text{PP}} = 20.8 \text{ Hz (t)}. \]

\([\text{Pt}(\eta^5\text{-C}_5\text{H}_5)(\text{PMe}_2\text{Ph})_2]\text{SO}_3\text{CF}_3\) and \(\text{PMe}_2\text{Ph}\)

(i) A solution of \([\text{Pt}(\eta^5\text{-C}_5\text{H}_5)(\text{PMe}_2\text{Ph})_2]\text{SO}_3\text{CF}_3\) (0.062 mmol.) was prepared as described in chapter 1 and checked by \(^{31}\text{P}\) nmr spectroscopy. A solution of \(\text{PMe}_2\text{Ph}\) in \(\text{CDCl}_3\) (calculated to be 1.0 equivalents) was then added at room temperature. The \(^{31}\text{P}\) spectrum contained trisphosphine complex \(\text{B}\), some \([\text{Pt}(\eta^5\text{-C}_5\text{H}_5)(\text{PMe}_2\text{Ph})_2]^+\), some \(\text{PhMe}_2\text{PO}\) and a broad peak between -8.0 and -25.0 ppm, presumable species undergoing exchange processes. Excess \(\text{S}_8\) was added to the solution, the broad peak disappeared and some \(\text{PhMe}_2\text{PS}\) \(\delta = +33.0 \text{ ppm}\), \([\text{PtCl}(\text{PMe}_2\text{Ph})_3]\text{SO}_3\text{CF}_3\) (the major species), a little \(\text{cis-[PtCl}_2(\text{PMe}_2\text{Ph})_2]\) and a small amount of the species with parameters \(\delta = -5.2 \text{ ppm, } J_{\text{PtP}} = 2828 \text{ Hz appeared.}\)

(ii) A similar reaction was performed in acetone containing a few drops of \(\text{C}_6\text{D}_6\). \([\text{Pt}(\eta^5\text{-C}_5\text{H}_5)(\text{PMe}_2\text{Ph})_2]\text{SO}_3\text{CF}_3\) (0.058 mmol.) and \(\text{PMe}_2\text{Ph}\) (0.054 mmol.) were mixed in acetone (0.5 ml) at room temperature. Initially, the major product was trisphosphine complex \(\text{B}\), (parameters in acetone were:

\[\delta = -7.0 \text{ ppm, } J_{\text{PtP}} = 2624 \text{ Hz, } J_{\text{PP}} = 23.6 \text{ Hz (d)}, \]
\[\delta = -15.0 \text{ ppm, } J_{\text{PtP}} = 1860 \text{ Hz, } J_{\text{PP}} = 23.6 \text{ Hz (t)}. \]
On being left overnight, this disappeared, to be replaced by a complex with parameters $\delta = -13.8$ ppm, $\text{^1J}_{\text{PtP}} = 2349$ Hz, identified as $[\text{Pt(PMe}_2\text{Ph)}_4]^{2+}$.

cis-[PtCl}_2(P\text{Me}_2\text{Ph)}_2] and P\text{Me}_2\text{Ph}

$cis-[\text{PtCl}_2(P\text{Me}_2\text{Ph)}_2] (32.7 mg, 0.060 \text{mmol})$ was dissolved in acetone (0.4 ml). $\text{AgSO}_3\text{CF}_3 (32.1 mg, 0.125 \text{mmol})$ and a solution of P\text{Me}_2\text{Ph} (15 ml, 0.109 \text{mmol}) in acetone (150 ml) was added and a ^31P nmr spectrum showed the presence of one species, $\delta = -13.6$ ppm, $\text{^1J}_{\text{PtP}} = 2345$ Hz, $[\text{Pt(PMe}_2\text{Ph)}_4]$ $[\text{SO}_3\text{CF}_3]_2$.

[Pt(\text{η^5-C}_5\text{H}_5)(P\text{Me}_2\text{Ph)}_2]Cl and P\text{Me}_2\text{Ph}

A solution of $[\text{Pt(\text{$\eta^5$-C}_5\text{H}_5)(P\text{Me}_2\text{Ph)}_2]Cl (0.056 \text{mmol})$ in CDC$_3$ (0.4 ml) was prepared as described previously. A solution of P\text{Me}_2\text{Ph} (7.5 ml; 0.054 \text{mmol}) in CDC$_3$ (150 ml) was added at room temperature. After 2½ hours, the spectrum contained trisphosphine complex B, some PhMe$_2$P0 and a broad peak between 0 and -25 ppm, due to species undergoing exchange reactions. Overnight trisphosphine complex C also appeared. Addition of $\text{AgSO}_3\text{CF}_3 (20.7 mg, 0.081 \text{mmol})$ removed the broad peak and replaced it with $[\text{PtCl}(\text{PMe}_2\text{Ph)}_3]$ SO_3CF_3, as the major species present. Another, minor species also appeared, which may have been tris-phosphine complex J, (see table 18 for ^31P parameters).

[Pt(\text{η^5-C}_5\text{H}_5)(\text{CO})(P\text{Me}_2\text{Ph)}]SO}_3\text{CF}_3 and P\text{Me}_2\text{Ph}

A solution of $[\text{Pt(\text{$\eta^5$-C}_5\text{H}_5)(\text{CO})(P\text{Me}_2\text{Ph)}]SO}_3\text{CF}_3 (0.065 \text{mmol})$ in CDC$_3$ (0.4 ml) was prepared as described in chapter 1. A solution of P\text{Me}_2\text{Ph} (7.5 ml; 0.054 \text{mmol}) in CDC$_3$ (150 ml)
was added at room temperature and the reaction was followed by 31P nmr spectroscopy. Within 30 minutes virtually all of the starting material was consumed and the major products were trisphosphine complex K, (33% of the total 31P intensity), trisphosphine complex J (24%), $[\text{PtCl(PMe}_2\text{Ph)}_3]\text{SO}_3\text{CF}_3$ (16%), a species with parameters $\delta = -64.6$ ppm, $^1J_{\text{PtP}} = 3091$ Hz (10%), $[\text{Pt(}\eta^5\text{-C}_5\text{H}_5\text{)}(\text{PMe}_2\text{Ph})_2]\text{SO}_3\text{CF}_3$ (5%) and PhMe$_2$PO (5%). On being left overnight at room temperature the amount of complex J decreased and $[\text{PtCl(PMe}_2\text{Ph)}_3]\text{SO}_3\text{CF}_3$ increased.

$[\text{PtCl(C}_5\text{H}_5\text{)(CO)(PMe}_2\text{Ph)}_2]$ isomer (I) and PMe$_2$Ph

A solution of $[\text{PtCl(C}_5\text{H}_5\text{)(CO)(PMe}_2\text{Ph)}_2]$ isomer (I), (0.063mmol.) in CDC$_3$ (0.5ml) was prepared as described previously. Neat PMe$_2$Ph (8.8µl, 0.063mmol.) was added and the reaction was observed by 31P nmr spectroscopy. The products were, a species with parameters $\delta = -6.6$ ppm, $^1J_{\text{PtP}} = 3092$ Hz, seen in the previous reaction, (18% of the total 31P intensity), $[\text{Pt(}\eta^5\text{-C}_5\text{H}_5\text{)}(\text{PMe}_2\text{Ph})_2]\text{Cl}$ (14%), a species with parameters $\delta = -6.3$ ppm, $^1J_{\text{PtP}} = 3395$ Hz, (11%), trisphosphine species L (16%), trisphosphine complex M (16%), (parameters of both are in table 18), $[\text{PtCl(PMe}_2\text{Ph)}_3]\text{Cl}$ (16%), the species with parameters $\delta = -5.3$ ppm, $^1J_{\text{PtP}} = 2829$ Hz (5%), encountered in the previous chapter, and PhMe$_2$PO (4%). A 1H nmr spectrum contained some C$_5$H$_6$.

APPENDIX

MISCELLANEOUS REACTIONS OF CYCLOPENTADIENYL PLATINUM COMPLEXES AND CYCLOPENTADIENYLATING REAGENTS.
RESULTS AND DISCUSSION

Attempts to Promote CO-insertion at Platinum Cyclopentadienyls

Attempts were made to promote carbonyl insertion at \([PtX(C_5H_5)(CO)L]\) isomer (I) by the addition of L or Cl\(^-\). The reactions are described in detail in the experimental section, and none of the reactions were simple or straightforward. A large number of products, many of which remain unidentified, were observed. The addition of phosphine to \([PtX(C_5H_5)(CO)L]\) (L = PMePh\(_2\), X = Cl; L = PMe\(_2\)Ph, X = Cl, Br) always produced some \([Pt(\eta^5-C_5H_5)L_2]^+\), but the most straightforward of the reactions produced at least another two unidentified complexes which were observed in each reaction. These had parameters as follows,

\[\delta = -8.8 \text{ ppm}, \quad ^1J_{PtP} = 3073 \text{ Hz and } \delta = -8.8 \text{ ppm}, \quad ^1J_{PtP} = 2781 \text{ Hz} \]

when L was PMe\(_2\)Ph and X was Br.

\[\delta = -6.6 \text{ ppm}, \quad ^1J_{PtP} = 3092 \text{ Hz and } \delta = -5.3 \text{ ppm}, \quad ^1J_{PtP} = 2829 \text{ Hz} \]

when L was PMe\(_2\)Ph and X was Cl.

\[\delta = +6.8 \text{ ppm}, \quad ^1J_{PtP} = 3262 \text{ Hz and } \delta = +7.8 \text{ ppm}, \quad ^1J_{PtP} = 2970 \text{ Hz} \]

when L was PMePh\(_2\) and X was Cl.

Possible identities of these complexes are trans-[PtX-(CO\(_n\)C\(_5\)H\(_5\))L\(_2\)] and trans-[PtX(C\(_5\)H\(_5\))L\(_2\)]. For example, trans-[PtCl(CO\(_C\)Ph)(PMePh\(_2\))\(_2\)] has \(\delta = +5.1 \text{ ppm}, \quad ^1J_{PtP} = 3215 \text{ Hz and}\)

trans-[PtClPh(PMePh\(_2\))\(_2\)] has \(\delta = +8.7 \text{ ppm}, \quad ^1J_{PtP} = 3010 \text{ Hz} \).\(^{173}\)

\(^1\)H nmr spectra of the reactions showed that C\(_5\)H\(_6\) was liberated, so it is also possible that the complexes above do not contain C\(_5\)H\(_5\). When L was PMe\(_2\)Ph and X was Cl, a complex, thought to be [Pt(CO\(_n\)C\(_5\)H\(_5\))L\(_3\)]\(^+\) was observed, and with X = Br an i.r. absorption at 1630 cm\(^{-1}\) was obtained, thus the possibility that some carbonyl insertion has occurred must be considered.
Addition of $[\text{Et}_4\text{N}]\text{Cl}$ to $[\text{PtCl}(\eta^1-\text{C}_5\text{H}_5)(\text{CO})L]$ isomer (I), ($L = \text{PMePh}_2, \text{PMe}_2\text{Ph}$) produced a large amount of cis-$[\text{PtCl}_2L_2]$. When L was PMePh_2, "Asymmetric Dimer" was also obtained, along with a complex which appeared to be a symmetrically substituted, platinum-platinum bonded, dimer, with $\delta = -5.7$ ppm, $^1J_{PtPt} = 5088$ Hz, $^2J_{PtPt} = 683$ Hz. When L was PMe_2Ph a species with parameters $\delta = -19.7$ ppm, $^1J_{PtPt} = 4916$ Hz was obtained, along with a small amount of a symmetrically substituted dimer, also with a platinum-platinum bond, $\delta = -8.8$ ppm, $^1J_{PtPt} = 4730$ Hz, $^2J_{PtPt} = 413$ Hz, $^3J_{PP} = 8$ Hz (d). This is probably a different type of dimer from the one above. In both reactions C_5H_6 was liberated.

Addition of $[\text{Et}_4\text{N}]\text{Cl}$ to $[\text{Pt}(\eta^5-\text{C}_5\text{H}_5)(\text{CO})(\text{PMe}_2\text{Ph})\text{SO}_3\text{CF}_3$ initially produced $[\text{PtCl}(\text{C}_5\text{H}_5)(\text{CO})(\text{PMe}_2\text{Ph})]\text{SO}_3\text{CF}_3$ isomer (I), cis-$[\text{PtCl}_2(\text{PMe}_2\text{Ph})_2]$, "Asymmetric Dimer" and the two complexes obtained by adding Cl^- to isomer (I). Addition of $[\text{Bu}_4\text{N}]\text{I}$ to $[\text{Pt}(\eta^5-\text{C}_5\text{H}_5)(^{13}\text{CO})(\text{PMe}_2\text{Ph})]\text{SO}_3\text{CF}_3$ produced only one species initially, with parameters at -60°C of $\delta = -16.2$ ppm, $^1J_{PtPt} = 3487$ Hz. On warming to room temperature the products were "Asymmetric Dimer", cis- and trans-$[\text{PtI}_2(\text{PMe}_2\text{Ph})_2]$ (identified by ^{31}P nmr) plus the analogous, iodide containing, symmetrical dimer, with $\delta = -8.6$ ppm, $^1J_{PtPt} = 4698$ Hz, $^2J_{PtPt} = 372$ Hz, $^3J_{PP} = 9.4$ Hz (d) and the species with $\delta = -19.7$ ppm, $^1J_{PtPt} = 4846$ Hz. The symmetrically substituted dimer was found not to contain C_5H_5 groups, and C_5H_6 was liberated in the reaction. No coupling to ^{13}CO was observed in either complex. The symmetrically substituted dimer may be a complex of the type below.
The other complex at ca. -19.7 ppm, could be cis-[PtX_{2}-(COC_{5}H_{5})L]^{-}, or cis-[PtCl_{2}(C_{5}H_{5})L]^{-}. The complex cis-[PtCl_{2}(COPh)(PMePh_{2})]^{-} has \(\delta = -6.0 \) ppm, \(^{1}J_{PtP} = 5006 \) Hz and cis-[PtCl_{2}Ph(PMePh_{2})]^{-} has \(\delta = -1.4 \) ppm, \(^{1}J_{PtP} = 4757 \) Hz. Addition of [Bu_{4}N]I to [Pt(\eta^{5}-C_{5}H_{5})(CO)(PPh_{3})]SO_{3}CF_{3} produced, initially [PtI(C_{5}H_{5})(CO)(PPh_{3})] isomer (I), but "Asymmetric Dimer" and other unidentified complexes were subsequently produced.

Reactions of Platinum Complexes with Cyclopentadienylation Reagents

trans-[PtCl_{2}(CO)(PMe_{2}Ph)] reacted with TIC_{5}H_{5} or Hg(C_{5}H_{5})_{2} to initially produce a complex with \(\delta = -7.5 \) ppm, \(^{1}J_{PtP} = 3274 \) Hz. Replacement of Cl by C_{5}H_{5} would produce [PtCl-(C_{5}H_{5})(CO)(PMe_{2}Ph)] isomer (III), C_{5}H_{5} trans to Cl, :-

[PtBr(Ph)(CO)(PMe_{2}Ph)] isomer (III) has \(^{1}J_{PtP} = 3359 \) Hz, and C_{5}H_{5} has a lower trans-influence than Ph, but a higher cis-influence, thus a \(^{1}J_{PtP} \) value of 3274 Hz would not be unexpected for [PtCl(C_{5}H_{5})(CO)(PMe_{2}Ph)] isomer (III). With TIC_{5}H_{5} subsequent reactions led to the formation of a large number of products. With Hg(C_{5}H_{5})_{2} only cis-[PtCl_{2}(CO)-
from isomerisation of trans-[PtCl₂(CO)(PMe₂Ph)]
and isomer (I) were produced.

trans-[PtCl(CO)(PMe₂Ph)₂]SO₃CF₃ and TlC₅H₅ reacted in
CDCl₃ to produce [PtCl(PMe₂Ph)₃]SO₃CF₃, [Pt(η⁵-C₅H₅)(PMe₂Ph)₂]
SO₃CF₃ and an unknown complex. Substantial decomposition
must have occurred to liberate phosphine.

The cationic, dimeric complexes [Pt₂(μ-Cl)₂L₄][SO₃CF₃]₂
reacted with TlC₅H₅ to produce mainly [Pt(η⁵-C₅H₅)L₂]⁺
and an unidentified complex with parameters δ = -17.7 ppm,
\(1J_{PtP} = 3529 \text{ Hz (L = PMe₂Ph)} \) and δ = -6.0 ppm, \(1J_{PtP} = 3667 \text{ Hz (L = PMeP₂)} \). The unknown complexes can not contain C₅H₅,
since the complex with δ = -17.7 ppm was a product in the
reaction between trisphosphine complex D and HgPh₂.

\[
\begin{align*}
\text{L} & \quad \text{Pt} & \quad \text{Cl} & \quad \text{L} \\
\text{L} & \quad \text{Pt} & \quad \text{Cl} & \quad \text{L}
\end{align*}
\]

\(\text{TlC}_5\text{H}_5 \) \(\text{Pt} \)

\(+ \text{unknown complex}\)

\([\text{Pt}(\eta^5-\text{C}_5\text{H}_5)(\text{PMe}_2\text{Ph})_2]^+\) was formed by the reaction between
cis-[PtCl₂(PMe₂Ph)₂] and Hg(C₅H₅)₂ as might be expected, but
the reaction was very slow. At room temperature the reaction
between TlC₅H₅ and cis-[PtCl₂(PMe₂Ph)₂] is rapid, and produces
\([\text{Pt}(\eta^5-\text{C}_5\text{H}_5)(\text{PMe}_2\text{Ph})_2]^+\), but at low temperature only two minor
products were obtained. These had parameters δ = -21.1 ppm,
\(1J_{PtP} = 3512 \text{ Hz and a species with two doublets, δ = -7.5 ppm,} \)
\(1J_{PtP} = 1776 \text{ Hz and δ = -20.4 ppm, } 1J_{PtP} = 3539 \text{ Hz, } 2J_{PP} = \)
14.6 Hz. On warming to room temperature some \([\text{Pt}(\eta^5-\text{C}_5\text{H}_5)-(\text{PMe}_2\text{Ph})_2]^+\) was also formed.
[Pt₂Cl₄(PMe₂Ph)₂] reacted with TlC₅H₅ (both 2 and 4 equivalents) to form a large number of products, including [PtCl₃(PMe₂Ph)]⁻, trans-[PtCl₂(PMe₂Ph)₂] and a dimeric complex with δ = -24.8 ppm, ¹J_PtP = 3865 Hz, ³J_PtP = 20.5 Hz, presumably halide-bridged. This complex was also a minor product in the reaction between [Et₄N][PtCl₃(PMe₂Ph)] and TlC₅H₅. The reaction between [Et₄N][PtCl₃(PMePh₂)] and TlC₅H₅ produced, among other products, an asymmetrically substituted dimer with a platinum-platinum bond, δ = +4.2 ppm, ¹J_PtP = 4965 Hz, ²J_PtP = 135 Hz (d) and δ = -8.2 ppm, ¹J_PtP = 4806 Hz, ²J_PtP = 83 Hz (d), ³J_PtP = 3.0 Hz.

The reaction between cis-[PtCl₂(CO)(PMe₂Ph)] and LiC₅H₅, which was expected to produce [PtCl(η¹-C₅H₅)(CO)(PMe₂Ph)] isomer (II), Cl trans to PMe₂Ph, yielded a larger number of complexes, including isomer (I), and "Asymmetric Dimer", but none of the numerous products could be assigned as isomer (II).

[PtCl(η¹-C₅H₅)(CO)(PPh₃)] isomer (I) and AgF

AgF could replace the Cl of isomer (I) by F, but the F was then rapidly lost and the C₅H₅ ring underwent an η¹→η⁵- conversion to produce [Pt(η⁵-C₅H₅)(CO)(PPh₃)]⁺. AgF did not react with [PtCl(Ph)(CO)(PMePh₂)] isomer (I), nor with "Asymmetric Dimer".
EXPERIMENTAL

\[\text{[PtCl}(\eta^1-\text{C}_5\text{H}_5)(\text{CO})(\text{PMePh}_2)] \text{ and PMePh}_2 \]

A solution of \([\text{PtCl}(\eta^1-\text{C}_5\text{H}_5)(\text{CO})(\text{PMePh}_2)]\) isomer (I), (0.051 mmol.) in CDC\(_3\) (0.5 ml) was prepared as described previously. PMePh\(_2\) (9.4 µl, 0.051 mmol.) was added under a nitrogen atmosphere at room temperature. A \(^{31}\text{P}\) nmr spectrum after 30 minutes, (recorded at \(-60^\circ\text{C}\)) showed that the solution contained \([\text{Pt}(\eta^5-\text{C}_5\text{H}_5)(\text{PMePh}_2)_2]^+\) (46% of the \(^{31}\text{P}\) intensity), a species with parameters \(\delta = +9.0\) ppm, \(^1J_{\text{PtP}} = 3203\) Hz (42%) and a species with parameters \(\delta = +7.9\) ppm, \(^1J_{\text{PtP}} = 2940\) Hz (12%). A \(^1\text{H}\) nmr spectrum showed that C\(_5\text{H}_6\) was present, along with the \(\pi\)-cyclopentadienyl complex, but no other recognisable signals were observed. On leaving overnight at room temperature, the solution, dark red in colour, contained \([\text{Pt}(\eta^5-\text{C}_5\text{H}_5)(\text{PMePh}_2)_2]^+\) (46%), a species with parameters \(\delta = +6.8\) ppm, \(^1J_{\text{PtP}} = 3262\) Hz (46%) and a species, \(\delta = +7.8\) ppm, \(^1J_{\text{PtP}} = 2970\) Hz (at 25°C).

\[\text{[PtCl}(\eta^1-\text{C}_5\text{H}_5)(\text{CO})(\text{PMe}_2\text{Ph})]\text{ and PMe}_2\text{Ph} \]

The reaction between \([\text{PtCl}(\eta^1-\text{C}_5\text{H}_5)(\text{CO})(\text{PMe}_2\text{Ph})]\) isomer (I) and neat PMe\(_2\)Ph has already been described.

A solution of \([\text{PtCl}(\eta^5-\text{C}_5\text{H}_5)(\text{CO})(\text{PMe}_2\text{Ph})]\) isomer (I) (0.058 mmol.) in CDC\(_3\) (0.3 ml) and a solution of PMe\(_2\)Ph (7.9 µl, 0.057 mmol.) in CDC\(_3\) (0.2 ml) were mixed at \(-60^\circ\text{C}\) under a nitrogen atmosphere. Initially \([\text{PtCl}(\text{PMe}_2\text{Ph})_2]^+\) was produced, and after 1 hour at \(-60^\circ\text{C}\) the solution was composed of \([\text{PtCl}(\eta^5-\text{C}_5\text{H}_5)(\text{CO})(\text{PMe}_2\text{Ph})]\) isomer (I) (28% of \(^{31}\text{P}\) intensity), cis-[\text{PtCl}_2(\text{PMe}_2\text{Ph})_2] (27%), \([\text{Pt}(\eta^5-\text{C}_5\text{H}_5)-(ext{PMe}_2\text{Ph})_2]^+\) (17%), a species with parameters, \(\delta = -5.7\) ppm,
1⁸PtP = 3012 Hz (8%), trisphosphine complex \(\text{K} \) (7%), \([\text{PtCl}(\text{PMe}_2\text{Ph})_3]^+\) (6%) and \(\text{PhMe}_2\text{PO}\) (3%). After 2 hours at room temperature the major products were \([\text{Pt}(\eta^5-\text{C}_5\text{H}_5)(\text{PMe}_2\text{Ph})_2]^+\) \(\text{cis-}[\text{PtCl}_2(\text{PMe}_2\text{Ph})_2]\) and the species at \(\delta = -5.7\) ppm. A \(^1\text{H}\) nmr spectrum showed that \(\text{C}_5\text{H}_6\) had been produced.

A similar reaction in acetone solution at room temperature produced mainly \(\text{cis-}[\text{PtCl}_2(\text{PMe}_2\text{Ph})_2]\), with a small amount of \([\text{Pt}(\eta^5-\text{C}_5\text{H}_5)(\text{PMe}_2\text{Ph})_2]^+\) and a species with parameters \(\delta = -6.6\) ppm, \(1^\text{J}_{\text{PtP}} = 3137\) Hz.

\([\text{PtBr}(\eta^1-\text{C}_5\text{H}_5)(\text{CO})(\text{PMe}_2\text{Ph})]\) and \(\text{PMe}_2\text{Ph}\)

Similarly, a solution of \([\text{PtBr}(\eta^1-\text{C}_5\text{H}_5)(\text{CO})(\text{PMe}_2\text{Ph})]\) isomer (I) (0.058mmol.) in \(\text{CDCl}_3\) (0.4ml) and a solution of \(\text{PMe}_2\text{Ph}\) (8µl, 0.058mmol.) in \(\text{CHCl}_3\) (160µl) were mixed at room temperature under an atmosphere of nitrogen. Immediately after mixing, a \(^{31}\text{P}\) nmr spectrum showed the presence of species with parameters \(\delta = -8.8\) ppm, \(1^\text{J}_{\text{PtP}} = 3073\) Hz (38%), \(\delta = -8.8\) ppm, \(1^\text{J}_{\text{PtP}} = 2781\) Hz (26%), \([\text{Pt}(\eta^5-\text{C}_5\text{H}_5)(\text{PMe}_2\text{Ph})_2]^+\) (29%) and \(\text{PhMe}_2\text{PO}\). A \(^1\text{H}\) nmr spectrum contained \(\text{C}_5\text{H}_6\) and an i.r. spectrum, a broad absorbance at 1630cm\(^{-1}\).

\([\text{PtCl}(\eta^1-\text{C}_5\text{H}_5)(\text{CO})(\text{PMePh}_2)]\) and \([\text{Et}_4\text{N}]\text{Cl}\)

\([\text{Et}_4\text{N}]\text{Cl}\) (9.8mg, 0.059mmol.) was added to a \(\text{CDCl}_3\) solution of \([\text{PtCl}(\text{C}_5\text{H}_5)(\text{CO})(\text{PMePh}_2)]\) isomer (I) (0.051mmol.) under a \(\text{N}_2\) atmosphere. After 18 hours a \(^{31}\text{P}\) spectrum showed that the solution contained \(\text{cis-}[\text{PtCl}_2(\text{PMePh}_2)_2]\) (43% of \(^{31}\text{P}\) intensity), "Asymmetric Dimer" (30%), isomer (I) (11%), a species with two sets of \(^{195}\text{Pt}\) satellites, \(\delta = -5.7\) ppm,
$^{1}J_{PtP} = 5088 \text{ Hz}, \ 2^{1}J_{PtP} = 683 \text{ Hz (11\%)}$. \ A \ ^1H \ nmr \ spectrum

\begin{equation}
\text{[PtCl(η}-^1\text{C}_5\text{H}_5\text{)(CO)(PMe}_2\text{Ph})] \text{ and [Et}_4\text{N}]Cl}
\end{equation}

\begin{equation}
\text{[Et}_4\text{N}]\text{Cl (13.1mg, 0.079mmol.) was added to a CDC}_{13}
\end{equation}

\begin{equation}
\text{solution of [PtCl(C}_5\text{H}_5\text{)(CO)(PMe}_2\text{Ph})] \text{ isomer (I) (0.070mmol.)}
\end{equation}

\begin{equation}
\text{under a N}_2 \text{ atmosphere. After 18 hours a }^{31}P \text{ spectrum of the}
\end{equation}

\begin{equation}
\text{solution comprised cis-[PtCl}_2\text{(PMe}_2\text{Ph)}_2\text{] (45\% of }^{31}P \text{ intensity),}
\end{equation}

\begin{equation}
a \text{ species with parameters } \delta = -19.7 \text{ ppm, } ^{1}J_{PtP} = 4916 \text{ Hz}
\end{equation}

\begin{equation}
(36\%), \text{ a dimeric species with } \delta = -8.8 \text{ ppm, } ^{1}J_{PtP} = 4730 \text{ Hz,}
\end{equation}

\begin{equation}
2^{1}J_{PtP} = 413 \text{ Hz, } ^{3}J_{PP} = 8 \text{ Hz (doublets) (12\%). \ A } ^1H \text{ nmr}
\end{equation}

\begin{equation}
spectrum \text{ contained } C_5\text{H}_6.
\end{equation}

\begin{equation}
\text{[Pt(η}^5\text{-C}_5\text{H}_5\text{)(CO)(PMe}_2\text{Ph})]SO}_3\text{CF}_3 \text{ and [Et}_4\text{N}]\text{Cl}
\end{equation}

\begin{equation}
\text{[Et}_4\text{N}]\text{Cl (14.8mg, 0.089 mmol.) was added to a CDC}_{13}
\end{equation}

\begin{equation}
\text{solution of [Pt(η}^5\text{-C}_5\text{H}_5\text{)(CO)(PMe}_2\text{Ph})]SO}_3\text{CF}_3 \text{ (0.068mmol.)}
\end{equation}

\begin{equation}
\text{under a N}_2 \text{ atmosphere. The initial products were [PtCl-}
\end{equation}

\begin{equation}
(C}_5\text{H}_5\text{)(CO)(PMe}_2\text{Ph})] \text{ isomer (I), cis-[PtCl}_2\text{(PMe}_2\text{Ph)}_2\text{],}
\end{equation}

\begin{equation}\text{the two complexes in the previous reaction and "Asymmetric Dimer".}
\end{equation}

\begin{equation}
\text{[Pt(η}^5\text{-C}_5\text{H}_5\text{)(}^{13}\text{CO)(PMe}_2\text{Ph})]SO}_3\text{CF}_3 \text{ and [Bu}_4\text{N}]\text{I}
\end{equation}

\begin{equation}
\text{[Bu}_4\text{N}]\text{I (24.4mg, 0.066mmol.) was added to a CDC}_{13}
\end{equation}

\begin{equation}
\text{solution of [Pt(η}^5\text{-C}_5\text{H}_5\text{)(}^{13}\text{CO)(PMe}_2\text{Ph})]SO}_3\text{CF}_3 \text{ (0.066mmol.),}
\end{equation}

\begin{equation}60\% \text{ }^{13}\text{CO}-\text{labelled, under an atmosphere of N}_2 \text{ at -60°C. A}
\end{equation}

\begin{equation}31P \text{ nmr spectrum at -60°C contained only one species, } \delta =
\end{equation}

\begin{equation}-16.2 \text{ ppm, } ^{1}J_{PtP} = 3487 \text{ Hz, (56\% of }^{31}P \text{ intensity) in addition}
\end{equation}

\begin{equation}\text{to starting material. On warming to room temperature, the}
\end{equation}

\begin{equation}\text{solution contained "Asymmetric Dimer" (32\%), a symmetrical}
\end{equation}

\begin{equation}\text{dimer, } \delta = -8.6 \text{ ppm, } ^{1}J_{PtP} = 4698 \text{ Hz, } 2^{1}J_{PtP} = 372 \text{ Hz,}
\end{equation}

\begin{equation}3^{1}J_{PP} = \text{ further experiments.}
\end{equation}
9.4 Hz (d) (32%), a species with parameters $\delta = -19.7$ ppm, $^{1}J_{PtP} = 4846$ Hz, (16%) and cis- and trans- $[PtI_2(PMe_2Ph)_2]$ (-16.9 ppm, $^{1}J_{PtP} = 3373$ Hz and -22.5 ppm, $^{1}J_{PtP} = 2315$ Hz).

After several hours, the symmetrical dimer had increased to 40% of the intensity and "Asymmetric Dimer" had decreased to 18%. A 1H nmr spectrum contained C_5H_6, but no other C_5H_5 signals except "Asymmetric Dimer".

$[Pt(\eta^5-C_5H_5)(CO)(PPh_3)]SO_3CF_3$ and $[Bu_4NI]$.

$[Bu_4NI]$ (21.2mg, 0.057mmol.) was added to a CDCl$_3$ solution of $[Pt(\eta^5-C_5H_5)(CO)(PPh_3)]SO_3CF_3$ (0.057mmol.) under a N_2 atmosphere. The initial product was $[PtI(C_5H_5)(CO)-(PPh_3)]$ isomer (I), (see table 2 for 31P parameters), but other species appeared later, including "Asymmetric Dimer", and species with parameters $\delta = +8.1$ ppm, $^{1}J_{PtP} = 2934$ Hz; $\delta = +5.0$ ppm, $^{1}J_{PtP} = 3183$ Hz; $\delta = +7.4$ ppm, $^{1}J_{PtP} = 3775$ Hz and $\delta = +17.7$ ppm, $^{1}J_{PtP} = 3360$ Hz, all except the first of which were minor products.

trans-$[PtCl_2(CO)(PMe_2Ph)]$ and TlC_5H_5

$[Pt_2Cl_4(PMe_2Ph)_2]$ (17.0mg, 0.021mmol.) was suspended in CDCl$_3$ (0.4ml.) at -60°C. Carbon monoxide was passed through the suspension for 20 minutes, followed by nitrogen for 1 minute. A 31P nmr spectrum of the solution showed that trans-$[PtCl_2(CO)(PMe_2Ph)]$ ($\delta = -10.2$ ppm, $^{1}J_{PtP} = 2874$ Hz) was the only platinum complex present. TlC_5H_5 (15.0mg, 0.056mmol.) was added at -60°C and the reaction was observed by 31P nmr spectroscopy. After 30 seconds at room temperature, 50% of
the trans-\([\text{PtCl}_2(\text{CO})(\text{PMe}_2\text{Ph})]\) had reacted, the major product being a species with parameters \(\delta = -7.5 \text{ ppm, } J_{\text{PtP}} = 3274 \text{ Hz.}\) After a further 30 seconds at room temperature this species was ca. 28% of the \(^{31}\text{P}\) intensity, but a large number of minor products, none more than 7% of the \(^{31}\text{P}\) intensity, were present. These included [\(\text{PtCl}_3(\text{PMe}_2\text{Ph})\)]\(^-\) (\(\delta = -21.0 \text{ ppm, } J_{\text{PtP}} = 3735 \text{ Hz}\)), trans-\([\text{PtCl}_2(\text{PMe}_2\text{Ph})_2]\) (\(\delta = -7.5 \text{ ppm, } J_{\text{PtP}} = 2412 \text{ Hz}\)), [\(\text{Pt}(\eta^5-C_5\text{H}_5)(\text{PMe}_2\text{Ph})_2\)]\(^+\), cis-\([\text{PtCl}_2(\text{CO})(\text{PMe}_2\text{Ph})]\), \([\text{PtCl}(\eta^5-C_5\text{H}_5)(\text{CO})(\text{PMe}_2\text{Ph})]\) isomer (I), Ph\(\text{Ne}_2\text{P0}, \) "Asymmetric Dimer", and species with parameters \(\delta = -12.4 \text{ ppm, } J_{\text{PtP}} = 4660 \text{ Hz and } \delta = +0.2 \text{ ppm, } J_{\text{PtP}} = 2498 \text{ Hz.}\)

trans-\([\text{PtCl}_2(\text{CO})(\text{PMe}_2\text{Ph})]\) and Hg\((\text{C}_5\text{H}_5)\)_2

A solution of trans-\([\text{PtCl}_2(\text{CO})(\text{PMe}_2\text{Ph})]\) (0.065 mmol.) in CDCl\(_3\) (0.3 ml) was prepared as above. Hg\((\text{C}_5\text{H}_5)\)_2 (23.1 mg, 0.070 mmol.) in CDCl\(_3\) (0.2 ml) was added at -60\(^\circ\)C, but there was no reaction within 1 hour at this temperature. On warming to room temperature the species with parameters \(\delta = -7.5 \text{ ppm, } J_{\text{PtP}} = 3274 \text{ Hz, cis-}[\text{PtCl}_2(\text{CO})(\text{PMe}_2\text{Ph})]\) and \([\text{PtCl}(\eta^5-C_5\text{H}_5)(\text{CO})(\text{PMe}_2\text{Ph})]\) isomer (I) were all produced. Eventually, isomer (I) was the only product.

cis-\([\text{PtCl}_2(\text{PMe}_2\text{Ph})_2]\) (32.7 mg, 0.060 mmol.) and AgSO\(_3\)CF\(_3\) (16.0 mg, 0.062 mmol.) were mixed in CDCl\(_3\) (0.5 ml) and CO was passed through the solution for \(1\frac{1}{2}\) hours to produce trans-\([\text{PtCl}(\text{CO})(\text{PMe}_2\text{Ph})_2]\)SO\(_3\)CF\(_3\) (\(\delta = -1.4 \text{ ppm, } J_{\text{PtP}} = 1913 \text{ Hz.}\)). TIC\(_5\)H\(_5\) (16.2 mg, 0.060 mmol.) was added and the reaction was followed by \(^{31}\text{P}\) nmr spectroscopy. The products were
$\text{[PtCl(PMe}_2\text{Ph)}_3]\text{SO}_3\text{CF}_3$ (58\% of ^{31}P intensity), $\text{[Pt(}\eta^5\text{-C}_5\text{H}_5\text{-})\text{(PMe}_2\text{Ph)}_2]\text{SO}_3\text{CF}_3$ (22\%) and a species with parameters $\delta = -9.0$ ppm, $^1J_{\text{PtP}} = 2427$ Hz (20\%).

$\text{[Pt}_2(\mu\text{-Cl})_2(\text{PMe}_2\text{Ph})_4]\text{][SO}_3\text{CF}_3$]$_2$ and TiC_5H_5

$\text{cis-[PtCl}_2(\text{PMe}_2\text{Ph})_2]$ (30.2mg, 0.056mmol.) and AgSO_3CF_3 (15.8mg, 0.061mmol.) were mixed in CDCl_3 (0.5ml) under a nitrogen atmosphere. A ^{31}P nmr spectrum showed the presence of only one species, $\text{[Pt}_2\text{Cl}_2(\text{PMe}_2\text{Ph})_4]\text{][SO}_3\text{CF}_3$]$_2$ ($\delta = -11.5$ ppm, $^1J_{\text{PtP}} = 3758$ Hz; ^1H nmr PMe_2Ph methyl protons, $\delta = +1.84$ ppm, $^2J_{\text{PH}} = 11.0$ Hz, $^3J_{\text{PtH}} = 39.0$ Hz). TiC_5H_5 (15.4 mg, 0.057mmol.) was added and the reaction followed by ^{31}P nmr spectroscopy. The major product was $\text{[Pt(}\eta^5\text{-C}_5\text{H}_5\text{-})(\text{PMe}_2\text{Ph)}_2]$ SO_3CF_3, with the species with parameters $\delta = -17.7$ ppm, $^1J_{\text{PtP}} = 3529$ Hz and $\text{cis-[PtCl}_2(\text{PMe}_2\text{Ph})_2]$ as minor products.

$\text{[Pt}_2(\mu\text{-Cl})_2(\text{PMePh}_2)_4]\text{][SO}_3\text{CF}_3$]$_2$ and TiC_5H_5

A solution of $\text{[Pt}_2\text{Cl}_2(\text{PMePh}_2)_4]\text{][SO}_3\text{CF}_3$]$_2$ (0.048mmol.), ($\delta = 0.0$ ppm, $^1J_{\text{PtP}} = 3821$ Hz) in CDCl_3 (0.5ml) was prepared as above. Addition of TiC_5H_5 (19.6mg, 0.073mmol.) produced $\text{[Pt(}\eta^5\text{-C}_5\text{H}_5\text{-})(\text{PMePh}_2)_2]$ SO_3CF_3 and a species with parameters $\delta = -6.0$ ppm, $^1J_{\text{PtP}} = 3667$ Hz.

$\text{cis-[PtCl}_2(\text{PMe}_2\text{Ph})_2]$ and $\text{Hg(C}_5\text{H}_5)_2$

A solution of $\text{cis-[PtCl}_2(\text{PMe}_2\text{Ph})_2]$ (26.0mg, 0.046mmol.) in CDCl_3 (0.3ml) and a solution of $\text{Hg(C}_5\text{H}_5)_2$ (16.4mg., 0.049 mmol.) in CDCl_3 (0.2ml) were mixed at -60°C, but no reaction occurred within 1 hour. On warming to room temperature there was a slow reaction to produce $\text{[Pt(}\eta^5\text{-C}_5\text{H}_5\text{-})(\text{PMe}_2\text{Ph)}_2]^+$.

cis-[PtCl₂(PMe₂Ph)₂] and TiC₅H₅ at low temperature

cis-[PtCl₂(PMe₂Ph)₂] (19.6 mg, 0.036 mmol.) and TiC₅H₅ (13.7 mg, 0.051 mmol.) were mixed in CDCl₃ under a N₂ atmosphere at -60°C. The solution was warmed from -60°C to 0°C by incremental increasing of the temperature but no reaction occurred. On being left at less than -30°C for 12 hours the solution contained cis-[PtCl₂(PMe₂Ph)₂] (92%), a species with parameters δ = -21.1 ppm, ¹J_PtP = 3512 Hz (at -60°C), ¹J_PtP = 3539 Hz (d) and -7.5 ppm, ¹J_PtP = 1776 Hz (d), ²J_PP = 14.6 Hz (4%). There was little change in five days at less than -30°C, with the above two species growing in to 6% and 9% respectively. After being left overnight at room temperature the solution consisted of cis-[PtCl₂(PMe₂Ph)₂] (40%), the species with δ = 21.6 ppm, ¹J_PtP = 3509 Hz (at 25°C), (30%), [Pt(η⁵-C₅H₅)₂(PMe₂Ph)]⁺ (20%) and the species, δ = -7.5 ppm, and -20.3 ppm, (d) ²J_PP = 13.6 Hz, (10%). (¹J_PtP was not resolved).

[Pt₂Cl₄(PMe₂Ph)₂] and TiC₅H₅

(i) [Pt₂Cl₄(PMe₂Ph)₂] (30.3 mg, 0.037 mmol.) and TiC₅H₅ (21.6 mg, 0.080 mmol.) were mixed in CDCl₃ (0.5 ml) under a N₂ atmosphere. A ³¹P nmr spectrum, recorded immediately, showed the presence of a large number of species. These included [PtCl₃(PMe₂Ph)]⁻ (δ = -23.9 ppm, ¹J_PtP = 3742 Hz at 25°C), (18%) , a species with δ = -24.8 ppm, ¹J_PtP = 3865 Hz, ³J_PtP = 20.5 Hz (16%), trans-[PtCl₂(PMe₂Ph)₂] (-8.5 ppm, ¹J_PtP = 2454 Hz), (10%), a species with δ = -14.9 ppm, ¹J_PtP = 4090 Hz (14%) and a large number of unidentified minor species.
(ii) Similarly \([\text{Pt}_2\text{Cl}_4(\text{PMe}_2\text{Ph})_2]\) (27.2mg, 0.034mmol.) and \(\text{TIC}_5\text{H}_5\) (36.7mg, 0.136mmol.) were allowed to react in \(\text{CDCl}_3\) under an atmosphere of nitrogen. The initial products were \([\text{PtCl}_3(\text{PMe}_2\text{Ph})]^-\) (26%), the complex with \(\delta = -24.8\) ppm, \(1\text{J}_{\text{PtP}} = 3865\) Hz, \(3\text{J}_{\text{PtP}} = 20.5\) Hz (21%), and trans-\([\text{PtCl}_2(\text{PMe}_2\text{Ph})_2]\) (9%) plus a large number of minor species.

\([\text{Et}_4\text{N}][\text{PtCl}_3(\text{PMe}_2\text{Ph})]\) and \(\text{TIC}_5\text{H}_5\)

\([\text{Et}_4\text{N}]\text{Cl}\) (10.9mg, 0.066mmol.) and \([\text{Pt}_2\text{Cl}_4(\text{PMe}_2\text{Ph})_2]\)
(26.8mg, 0.033mmol.) were mixed in \(\text{CDCl}_3\) (0.5ml) to produce \([\text{Et}_4\text{N}][\text{PtCl}_3(\text{PMe}_2\text{Ph})]\). \(\text{TIC}_5\text{H}_5\) (22.3mg, 0.083mmol.) was added at room temperature, but there was little reaction within 1\(\frac{1}{2}\) hours. On being left overnight a small amount of the species with \(\delta = -24.8\) ppm, \(1\text{J}_{\text{PtP}} = 3865\) Hz, \(3\text{J}_{\text{PtP}} = 20.5\) Hz and a species with \(\delta = -16.6\) ppm, \(1\text{J}_{\text{PtP}} = 4575\) Hz were formed.

\([\text{Et}_4\text{N}][\text{PtCl}_3(\text{PMePh}_2)]\) and \(\text{TIC}_5\text{H}_5\)

A solution of \([\text{Et}_4\text{N}][\text{PtCl}_3(\text{PMePh}_2)]\) (0.064mmol.) in \(\text{CDCl}_3\) (0.5ml) was similarly prepared (\(\delta = -11.4\) ppm, \(1\text{J}_{\text{PtP}} = 3837\) Hz). \(\text{TIC}_5\text{H}_5\) (16.9mg, 0.063mmol.) was added and, on leaving overnight a \(3\text{P}\) nmr spectrum showed that more than 60% of the intensity was starting material, products being species with parameters \(\delta = -2.6\) ppm, \(1\text{J}_{\text{PtP}} = 4698\) Hz; \(\delta = -4.9\) ppm, \(1\text{J}_{\text{PtP}} = 5465\) Hz; a dimer, \(\delta = +4.2\) ppm, \(1\text{J}_{\text{PtP}} = 4965\) Hz, \(2\text{J}_{\text{PtP}} = 135\) Hz (d) and \(\delta = -8.2\) ppm, \(1\text{J}_{\text{PtP}} = 4806\) Hz, \(2\text{J}_{\text{PtP}} = 83\) Hz (d), \(3\text{J}_{\text{PP}} = 3.0\) Hz and cis-\([\text{PtCl}_2(\text{PMePh}_2)_2]\).
Freshly distilled C\textsubscript{5}H\textsubscript{6} (616 µl, 7.5 mmol) was dissolved in THF (10 ml) under a N\textsubscript{2} atmosphere, and 4 ml of 1.88 M MeLi solution was added at -40°C and the solution was stirred for 2 hours at less than -30°C. 80 µl of the resultant LiC\textsubscript{5}H\textsubscript{5} solution (i.e.: -0.043 mmol, LiC\textsubscript{5}H\textsubscript{5}) was added to a solution of cis- [PtCl\textsubscript{2}(C\textsubscript{O})(PMe\textsubscript{2}Ph)] (22.3 mg, 0.052 mmol) in CDCl\textsubscript{3} (0.5 ml) at -60°C. Initially a large number of mostly unidentified complexes was produced. These were a species with parameters \(\delta = -22.2 \) ppm, \(^{1}J_{PtP} = 5284 \) Hz, (21% of \(^{31}P\) intensity), [PtCl(C\textsubscript{5}H\textsubscript{5})(CO)(PMe\textsubscript{2}Ph)] isomer (I) (13%) and species with \(\delta = -4.2 \) ppm, \(^{1}J_{PtP} = 1915 \) Hz (11%); \(\delta = -4.4 \) ppm, \(^{1}J_{PtP} = 2072 \) Hz (11%); \(\delta = -11.0 \) ppm, \(^{1}J_{PtP} = 5487 \) Hz (13%); \(\delta = -20.7 \) ppm, \(^{1}J_{PtP} = 5780 \) Hz (11%) and species whose \(^{1}J_{PtP} \) could not be resolved, at -21.5 ppm (8%), -20.2 ppm (6%) and -16.6 ppm (6%). On being left overnight at less than 0°C and then being warmed to room temperature, the composition changed to "Asymmetric Dimer" (30%); species with parameters \(\delta = -17.6 \) ppm, \(^{1}J_{PtP} = 4779 \) Hz (22%); \(\delta = -17.3 \) ppm, \(^{1}J_{PtP} = 5122 \) Hz (18%); \(\delta = -13.6 \) ppm, \(^{1}J_{PtP} = 5587 \) Hz (15%), isomer (I) (8%) and cis-[PtCl\textsubscript{2}-(PMe\textsubscript{2}Ph)\textsubscript{2}] (7%).

\([PtCl(\eta^{1}-C_{5}H_{2})(CO)(PPh_{3})]\) isomer (I) and AgF

A large excess of AgF was added to a solution of [PtCl\textsubscript{2}(C\textsubscript{5}H\textsubscript{5})(CO)(PPh\textsubscript{3})] isomer (I) (0.055 mmol) in CDCl\textsubscript{3} (0.5 ml) under a N\textsubscript{2} atmosphere. Initially some [PtF(\eta^{1}-C_{5}H_{2})(CO)-(PPh\textsubscript{3})] isomer (I) was produced (\(^{31}P\) parameters in table 2), followed by [Pt(\eta^{5}-C_{5}H_{5})(CO)(PPh\textsubscript{3})]+.

\textbf{cis-[PtCl\textsubscript{2}(CO)(PMe\textsubscript{2}Ph)] and LiC\textsubscript{5}H\textsubscript{5}}
REFERENCES

