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Abstract   
Drosophila melanogaster has been an important model organism for over a 

century, cumulating in a vast array of mutant and transgenic stocks, the 

publication of the genome, its subsequent annotation and more recently the 

production of the online gene expression database, FlyAtlas. Much of what we 

know about developmental biology was pioneered in Drosophila and it is possibly 

the most well studied and understood model organism, in terms of development, 

genetics and physiology. The so-called ‘omics’ era of biology has resulted in a 

relatively data poor discipline quickly becoming a data rich one. Therefore the 

need for a good model organism, which offers the balance between genetic 

power and relevance has never been more important, as scientists begin to 

evaluate and analysis this data. We will argue that Drosophila melanogaster 

offers the best opportunity to study the relevance of omics data.  

FlyAtlas is an online resource, which allows scientists to look at tissue specific 

gene expression in the fruit fly Drosophila melanogaster. Unexpected expression 

patterns of previously characterised genes may hint at novel functions, thus 

helping to close the phenotype gap. To test this hypothesis we looked at the 

neuronal gene Fasciclin 2 (fas2), which has been exhaustively characterised 

(over 500 papers), with neural functions ranging from axonal growth in 

development to synapse stabilization in the adult. Surprisingly FlyAtlas showed 

fas2 is predominately expressed in the Malpighian tubule (a renal, rather than 

neural, tissue), hinting at a previously unreported function in this tissue. Results 

suggest fas2 may play an important role in apical microvilli development and 

stability in the principal cells of the tubules. We have also shown that Fas2 may 

be involved in actin localisation. Fas2 shows dynamic localisation in response to 

cAMP and over expression of the protein results in a significant increase in 

secretion when tubules are stimulated with cAMP. We also present evidence that 

Fas2 co-localises with F-Actin bundles in response to cAMP, hinting at a role for 

the actin cytoskeleton in secretion.  

Proteomics experiments carried out in order to determine Fas2’s, interacting 

partners proved problematic. For this reason 2D Blue Native PAGE and sucrose 

gradient techniques were optimised in order to facilitate this problem. 
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Unfortunately we were unable to isolate Fas2, however we have shown that BN-

PAGE offers a robust protocol for the isolation of protein/protein complexes. We 

can also conclude from these experiments that 2D BN-PAGE offers an ideal 

comparative data source for transcriptomics data such as FlyAtlas.  

The second gene tested in this study is the sex determination transcription 

factor Doublesex (dsx). Dsx has been extensively studied in its role in 

differentiation of both the soma and to some extent the nervous system in males 

and females. FlyAtlas results indicate that it is also expressed in the Malpighian 

tubules, again hinting at previously unknown function in this tissue. Further to 

this the male and female transcripts of dsx are expressed in a sex specific 

manner. Our results confirm these observations and dsx was localised to the 

principal cells of the main and lower segments of the tubules. Male tubules 

however do not express dsx in the transitional segment whereas females do, 

suggesting that perhaps this segment of the tubule constitutes a previously 

unknown sex specific function. We have determined that Tra RNAi is effective at 

knocking down the female transcript in female tubules, allowing for the study of 

masculinised tubules in an otherwise female fly. Experiments concluded that 

although males and females show differential survival in response to bacterial 

infection, this is not controlled by dsx expression in the tubules. Preliminary 

results also suggest that two genes CG8719 and YP3 are differentially expressed 

in male and female tubules and offer ideal candidates to study dsx role in 

sexually dimorphic gene expression in the tubules.  

In conclusion this study verifies the use of FlyAtlas to determine novel functions 

for well-known genes in D.melanogaster. In turn this indicates the importance of 

omics data, as a staring point for further functional analysis of both genes and 

proteins.  
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Chapter 1 



 

1 . Introduction  

1.1 Drosophila melanogaster  

The fruit fly Drosophila melanogaster has been an important model organism for 

over a century, resulting in a completed genome sequence and a vast array of 

transgenic and mutant lines (Adams and et.al, 2000). Drosophila melanogaster 

offer scientists the ideal balance between organismal complexity and genetic 

power, a combination often missing in other model organisms, such as the mouse 

(Dow, 2003a). This section discusses the power of the fruit fly as a model 

organism, with particular reference to the Malpighian tubules as a model system 

for epithelial biology. We will then go on to discuss its recent applications, 

including the development and uses of the online database FlyAtlas. 

1.1.1 History of Drosophila melanogaster  

From the earliest experiments D. melanogaster proved to be a powerful system 

in which to study genetics. The first mutation discovered in D. melanogaster was 

white: a simple change in eye colour from red to white, led to Morgan’s 

discovery of sex-linked inheritance and his description of chromosomes and 

genes (Morgan, 1910). Most of what we know about the control of early 

embryonic development was pioneered in Drosophila studies, resulting in Edward 

B. Lewis, Christiane Nuesslein-Volhard and Eric F. Wieschaus being awarded the 

1995 Nobel prize in medicine (Lewis, 1978; Nuesslein-Volhard and Wieschaus, 

1980). There are several reasons why D.melanogaster is an attractive model 

organism and they are listed below:  

• Short life cycle  

• Cheap and easy to rear in large numbers 

• Large stock centres  

• Extremely well studied and characterised  

• Genetic tools  

• Sequenced and well-annotated genome  

• 75% of known human disease genes have homologues in the fruit fly  

The following sections will go into some detail about each of these aspects.  
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1.1.1.1 Life cycle of the fly and rearing  

The fruit fly displays a holometabolous method of development: development 

stages are fourfold, embryonic, larval, pupal and adult (summarised in Figure 

1.1). The process from embryo to adult takes roughly 10 days, dependent on 

temperature, meaning several generations can be studied in just a few weeks 

(Bate, 1993). The high fecundity of female flies, roughly 100 eggs per day, also 

means that large numbers of offspring can be collected in a very short 

timeframe (Reeve, 2001). After eclosion, females do no become receptive to 

males for 8-10 hr, virgins can also be distinguished from mated flies by size, 

pigmentation and the presence of a dark spot on their abdomen (Ashburner, 

1989), thus facilitating genetic crosses. These aspects of the fly development, 

not only make them ideal models to study developmental biology but also to 

carry out genetic interaction studies. As a result of this D.melanogaster is one of 

the most well studied organisms with regards to development and genetics 

(Beckingham et al., 2005). 

 

Figure 1-1 Life cycle of Drosophila melanogaster 
Summary of all developmental stages of the fruit fly D.melanogaster http://flymove.uni-
muenster.de/ 
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1.1.2   Drosophila: useful genetic tools  

Perhaps one of the most important reasons for choosing D.melanogaster as your 

model organism, is the ability to easily manipulate the fly’s genome. Essential to 

this, is the presence of natural transposable elements in D.melanogaster, known 

as P elements (Charlesworth, 1989; Engels, 1992). Original P element 

experiments led to the discovery of many genes, which were involved in basic 

biological processes. Flies, which carry P elements inserted into these genes, 

often exhibit clear phenotypes and with the advent of plasmid rescue 

experiments it became possible to map these P elements to the gene in which 

they are inserted (Ballinger and Benzer, 1989; Bingham et al., 1982; Searles et 

al., 1982). Since this time however P elements, have been adapted in order to 

determine the expression profiles of thousands of genes, to produce thousands 

of genetically modified fly lines and to produce detailed genetic maps (Arias, 

2008).  

1.1.2.1 P elements and enhancer trapping experiments  

P elements represent a classical transposable system, whereby transposons are 

able to ‘jump’ around the genome, facilitated by the transposase enzyme 

(Robertson and Engels, 1989). Researchers hijack this system in order to map the 

expression of genes, via enhancer trapping: trapping a reporter construct within 

the genome (Rubin and Spradling 1983; Bellen, O'Kane et al. 1989). In this 

technique the transposase gene in the P element is replaced with a reporter 

gene, consisting of various genetic markers, such as GFP, downstream of a weak 

promoter. Transgenic flies carrying these P elements are then crossed to a line 

which carries a ∆2,3 P-element, a defective transposon that can only express 

transposase in the germ line, and which itself is unable to move. The progeny 

from these crosses produce transposase, which then allows the P 

element/genetic marker to ‘jump’ to a new position within the genome. 

Subsequent progeny which have not inherited the ∆2,3 P-element are then 

selected, thus producing a fly line, which has a genetic marker ‘stuck’ in a new 

and potentially interesting area of the genome (Bellen et al. 1989). These 

studies were of great interest to the Drosophila community as more often than 

not, the genetic marker would be trapped close to a gene, and thus facilitated 
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the mapping of expression profiles for that gene. The ability to carry out plasmid 

rescue of the P elements also allowed scientists to detect where in the genome 

the P element had been inserted, and this along with vast amounts of cloning 

and complementation experiments, made the detailed annotation of the genome 

sequence all the more simple.  

1.1.2.2 GAL4/UAS system 

In the 1990s enhancer trapping technology was taken a step further with 

development of the GAL4/UAS system (Brand and Perrimon, 1993). Figure 1-2 

summarises this system.  

 

Figure 1-2 GAL4/UAS system in Drosophila melanogaster 
In this system an enhancer-trap line expressing GAL4 in a tissue of interest is crossed to flies 
carrying a UAS-transgene. Expression of the transgene is subsequently driven in the GAL4 tissue 
in the resulting progeny (Dow, 2007).  

The reporter gene in this system is the yeast transcription factor GAL4, which 

importantly has been shown to have little or no activity in D.melanogaster 

(Duffy, 2002). The GAL4 transcription factor is placed downstream of a tissue 

specific promoter (often discovered and evaluated through previous enhancer 
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trap experiments), thus GAL4 is only expressed in tissues where this promoter is 

activated. This line is then crossed to a line carrying the GAL4 recognition 

sequence, UAS, which is placed upstream of a reporter construct. Resulting 

progeny, express GAL4 in the tissue of interest, GAL4 then binds to UAS and 

initiates transcription of the downstream reporter. Adaptations of the technique 

have included the production of RNAi constructs, which target the degradation 

of gene transcripts for a particular gene of interest, in a tissue specific manner 

(Fortier and Belote, 2000; Lam and Thummel, 2000). Similarly we can now 

actively over-express or mis- express a particular gene.  

1.1.2.3 Development of genetrap and EP lines  

More recently P element technology has allowed the more subtle modification of 

native genes and proteins. Most notable is the production of so-called protein 

trap lines and EP lines. A protein trap line consists of the insertion of a GFP (or 

EGFP) within the open reading frame of a given gene, via an exon acceptor 

(Buszczak et al., 2007). These lines can be extremely useful as not only do they 

mark the expression profile and localisation of the protein, they do so without 

affecting the natural expression levels of the gene/protein, as would be the case 

if one were to over-express a tagged construct via GAL4/UAS. EP lines also 

involve the modification of the native gene sequences, in this case with the 

addition of a UAS promoter upstream of gene start site, allowing for targeted 

over or mis-expression of the native gene (Rorth, 1996; Rorth et al., 1998).  

1.1.2.4 Sophisticated variants of the GAL4/UAS system  

More recent developments in the GAL4/UAS system have resulted in highly 

sophisticated variants of the technique, which allow for better spatial and 

temporal control of gene expression. These include the development of the 

GAL80 system, whereby GAL80 inhibits GAL4 expression by actively binding to 

the protein (Ma and Ptashne, 1987). Expression of GAL80 therefore can be used 

deplete GAL4 expression in a specific tissue (Lee and Luo, 1999). Temperature 

sensitive variants of GAL80 can be used to give a more detailed temporal control 

over GAL4 expression and therefore gene expression manipulation (McGuire et 

al., 2004). The production of the split GAL4 system has also made both temporal 

and spatial expression more accurate. In this case two separate lines are 
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generated, where one line carries half of the GAL4 sequence downstream of a 

tissue/cell specific promoter and the second line carries the second half 

downstream of a different promoter sequence. Once crossed GAL4 will only be 

expressed in tissue/cells, which express both halves of the GAL4, allowing for a 

more refined expression profile (Luan et al., 2006). 

1.1.3 Mosaics and Clonal analysis 

The development of genetic mosaic techniques, have been crucial to our current 

understanding of developmental biology in D.melanogaster. Genetic mosaics 

consist of flies, which contain clones of genetically distinct somatic cells. Over 

the past decades several approaches have been used to generate mosaic flies 

including chromosomal loss, mitotic recombination and cell transplantation 

(Kankel and Hall, 1976; Lawrence and Johnston, 1986). Traditional techniques 

relied on random recombination events, induced by irradiation, between 

homologous chromosomes. Figure gives an overview of irradiation-induced 

mitotic recombination between two chromosomes, one wt and one mutant. The 

resulting fly contains a group of cells within the wing blade, which are now 

mutant for a gene called shaggy surrounded by wt cells thus allowing a 

comparison of mutant and wt cells to be carried out (Blair, 2003). Unlike many 

mammalian genetic mosaics, which form a salt and pepper like formation of 

cells, daughter cells in Drosophila tend to for a close coherent clone of cells 

contained within one are of a tissue. The size of this area is dependant on the 

developmental stage at which the recombination takes place, the earlier the 

bigger the area. This allows for the subtle changes in a few cells by carrying out 

recombination at a later stage or change to a large number of cells by carrying 

out recombination at an earlier stage (Ashburner, 1989). Such experiments have 

been crucial in understanding the development of the wings, oocytes, and eye 

development (Ashburner, 1989; Brower et al., 1981).  

Like the Gal4/UAS system a more refined technique for producing mosaic flies 

has been developed. The most commonly used technique involves the targeted 

recombination of DNA at FLPase recombination targets y FLP recombinase, a 

summary can be seen in Figure 1-3 (b). In the 1990s stocks were developed 

containing FLPase under the control of the heat shock promoter, allowing for the 



Chapter 1  22 

induction of FLPase by heat-shock. Along with this came the development of 

stocks containing FRTs inserted in proximal locations on each of the chromosome 

arms. Thus it was possible to recombine specific areas of chromosomes, through 

the control of heat-shock induced FLPase activity. The benefit of this technique 

is two fold. Firstly, FRT-mediated recombination is slightly more efficient than 

irradiated recombination but still occurs at a low enough level to produce 

clones. Secondly, it offers a much less random technique whereby you know 

which areas with in the chromosome have recombined (Chou, 1993; Chou, 1996).  

Clonal or mosaic analysis have been and continue to be extremely important 

techniques for studying genetic changes in a specific tissue, that would 

otherwise be lethal to the fly. They therefore offer a vital role in understanding 

development at the genetic level at differential developmental time points. 

However in some tissues such as the Malpighian tubules mosaic analyses is more 

problematic. It would be possible to induce mosaics up until larval development 

but the use of clones after this point is limited by the arresting of cell division. 

Therefore if you wished to study a gene beyond embryonic development using 

clonal analysis the Gal4/UAS system offers a better system.  
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Figure 1-3 Summary of Mosaic analysis in Wing Disc Development  
(a). Chromosome behavior during and after irradiation-induced mitotic recombination. The clones 
produced by the two homozygotic daughter cells of a mitotic recombination event are shown below. 
The photograph shows a shaggy mutant clone, which lacks anti-Myc staining (green), and its sister 
‘twin spot’ (+/+), which has a double dose of the Myc epitope, in a pupal wing blade. (b)FRT-
induced mitotic recombination, catalyzed at FRTs by hs- FLPase. The photograph shows several 
engrailed clones, lacking anti-Myc staining (green), in a pupal wing blade. FRTs, FLPase 
recombination targets; hs-FLPase, heat-shockinduced FLP recombinase. (Blair, 2003) 

  

1.1.4 Physiological studies in D.melanogaster  

The development of these technologies has been instrumental in the rapid 

increase in physiological studies in D.melanogaster in recent years. As our 

understanding of physiology (how organisms work) has improved, it has become 

ever more apparent that traditional techniques, such as cell line experiments 

are limited in their scope. In order to understand a physiological process and the 

genes involved, it is important to study the process within its natural 
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physiological context i.e. the whole organism. By removing the process or the 

genes from their natural context you narrow the ability to truly understand their 

function within the whole organism. Dow and Davies have argued extensively 

that transgenic organisms, in which you can alter gene expression in a cell or 

tissue specific manner, will link this gap between gene, tissue and organism 

(Dow and Davies, 2003a). Choosing the right transgenic organism is ultimately a 

pay-off between biological relevance and genetic power and it can be argued 

that Drosophila offers the best trade-off between the two (Dow and Davies, 

2003a). It is for this reason that D.melanogaster has become an increasingly 

obvious choice for physiological studies, as we can now effectively manipulate 

gene expression in a tissue specific manner, thus allowing the study of many 

biological processes in vivo. One such area of study is that of the epithelial 

physiology of the Malpighian tubules (Dow, 2003b; Dow and Davies, 2003b).   

1.2 Malpighian tubules: a model system for epithelial 
biology  

1.2.1 Introduction 

Insect tubules have analogous functions to that of mammalian kidneys and to 

some extent livers (Dow et al., 1994b; Maddrell, 2004; Maddrell and Casida, 

1971; Maddrell, 1981; Yang et al., 2007). They form the main excretory and 

osmoregulating organs of the insect, and classically provide an excellent system 

for the study of epithelial physiology. D.melanogaster tubules are among the 

smallest studied, measuring ~2mm in length and 35µm in diameter (Dow and 

Davies, 2003a). There are two pairs of tubules in D.melanogaster, one anterior 

and one posterior. Each pair, is joined by a common ureter to the alimentary 

canal and consist of two major cell types, principal and stellate (Wessing and 

Elchelberg, 1978). Recent studies have shown how complex and versatile insect 

tubules are. In particular the knowledge and genetic power available in 

D.melanogaster has lead to the discovery that Malpighian tubules are also 

involved in immunity (Davies et al., 2008; McGettigan et al., 2005).  They have 

also been implicated in detoxification and metabolism (Chahine and O'Donnell, 

2009, 2011; Dow and Davies, 2006; Evans et al., 2005; O'Donnell, 2009). 

Moreover, microarray studies have shown that many human disease genes have 
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D.melanogaster homologues that are most highly enriched in the tubules 

(Chintapalli et al., 2007). Therefore the tubules constitute a versatile phenotype 

for an array of studies. This section discusses how the Malpighian tubules are 

formed, their key role in osmoregulation and ion transport and looks at what we 

can learn about the processes in tubules from other tissues. 

1.2.2 Embryonic development of the Malpighian tubules 

During embryogenesis the Malpighian tubules (MT) form from the evagination of 

cells from the junction between the hindgut and the midgut. The four tubules 

are derived from the shared hindgut primordium, through a sequence of cellular 

activities. The first step involves specification of the tubule specific cells within 

the hindgut. This involves the activation of genes such as transcription factors, 

krüppel (Kr) and cut (Ainsworth et al., 2000; Gloor, 1950; Hatton-Ellis et al., 

2007; Weigel et al., 1990). Ectopic expression of both these genes at the 

anterior midgut/foregut boundary is enough to result in cells being specified as 

tubule cells. The second stage of development, involves the eversion of the four 

tubules from the hindgut primordium. Once cell fate is determined, expression 

of Kr is limited to four cluster of cells, which start to re-arrange to form four 

small buds (Ainsworth et al., 2000). These buds mark the beginning of the 

formation of the four tubules. Two of the buds project in a ventral direction, 

eventually becoming the posterior tubules and the second pair project in a 

dorsal direction, becoming the anterior pair. The distinction between the 

anterior pair and the posterior is determined by differing levels of signalling 

between the two (Hatton-Ellis et al., 2007). As the tubule buds develop, the 

cells undergo several regulated cell divisions. Cell division during this stage is 

controlled by the EGFR signalling pathway (Baumann and Skaer, 1993). By the 

end of cell division four short tubules, each containing around 8-12 cells around 

their circumference are formed. These then elongate over several hours, with 

cells reorganising to form four long tubules each with a lumen surrounded by 

only two cells. Elongation at this stage is controlled by several key genes and 

includes the recruitment of the actin cytoskeleton (Bates et al., 2008; Bradley 

and Andrew, 2001; Denholm et al., 2003b; Hatton-Ellis et al., 2007; Jack and 

Myette, 1999; Kerman et al., 2008; Lekven et al., 1998; Shim et al., 2001; 

Simoes et al., 2006) During this phase, cells from the caudal mesoderm begin to 
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invade the tubules. These cells will eventually become the stellate cells of the 

tubules (Denholm et al., 2003b). By the end of embryogenesis the four tubules 

are fully formed and contain two main cell types located in the secretory region: 

the principal cells (derived from the primordium cells) and the stellate cells 

(derived from the caudal mesoderm cells). At this stage the tubules appear to be 

functionally active in the transport of organic solutes such as urates, but the 

high levels of fluid secretion activity are not seen until after hatching 

(Beyenbach et al., 2010).  

1.2.3 Larval and adult Malpighian tubules 

As described in the previous section, by the end of embryogenesis the four 

tubules are fully formed, and have the ability to secrete organic compounds. 

Several changes, however, still occur during larval, pupal and adult 

development. Firstly and possibly most importantly, the tubules develop the 

ability to carry out high levels of fluid secretion during early larval development, 

as shown in Rhodnius (Skaer et al., 1990). Secondly, during pupal development 

the tubules are no longer required to carry out secretion (Bradley and Snyder, 

1989). Studies also suggest that during this period cells undergo several changes, 

including the retraction of microvilli within the apical brush border of the 

principal cells (Bradley and Snyder, 1989; Ryerse, 1979). Thirdly, although 

stellate cells are formed during embryogenesis, they do not become ‘stellate’ 

shaped until several days after the adult fly has eclosed (Sözen et al., 1997). 

Little is understood about the processes behind these areas of tubule 

development, but perhaps the development of microarray studies and 

proteomics many help in elucidating the genes and proteins involved (Beyenbach 

et al., 2010). 

Once thought of as a rather simple epithelial tissue, the tubules have recently 

been shown to be much more complicated. Gene expression profiling has shown 

that although there are predominantly two types of cells within the adult 

tubules, these cells can be further subdivided by their expression profile (Sözen 

et al., 1997; Wang et al., 2004). Figure 1.4 summarises the functional domains 

of the adult tubules. Previous studies had indicated the tubules consisted of 

clear physiological domains and these gene array studies served to prove these 
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findings are controlled at a gene expression level. These findings suggest a 

complex tissue, which carries out multiple processes by taking advantage of 

differential gene expression.  

                                 

Figure 1-4 Summary of Functionally Distinct Regions of the Malpighian tubules (Sozen et al., 
1997) 
 

1.2.4 Ion transport and Osmoregulation  

As previously stated the tubules are the main excretory and osmoregulating 

organs of the insect. Fluid secretion in the tubules is primarily under the control 

of the second messengers, cAMP, cGMP and Ca2+, which act specifically on either 

cation or anion transport (A Riegel, 1998; Aston, 1975; Davies et al., 1995; Dow 

et al., 1994a; Dow et al., 1994b; Hegarty et al., 1991; Maddrell and Casida, 

1971; Morgan and Mordue, 1984; O'Donnell et al., 1996; Sawyer and Beyenbach, 

1985). The principal cells of the Drosophila tubules are responsible for the 

transepithelial secretion of Na+ and K+ while the stellate cells are responsible for 

the transport of Cl- (Terhzaz et al., 1999; Torrie et al., 2004) A summary of the 

proteins, ions and second messengers involved in tubule transport can be seen in 

Figure 1.4. Key to the fluid secretion phenotype of the tubules is the vacualor-

type H+-ATPase (V-ATPase).  
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Figure 1-5 Sensitivity map of tubule physiology in D.melanogaster (Dow and Romero, 2010) 
 

1.2.4.1 V-ATPase the primary ion pump 

As summarised in Figure 1.5 the V-ATPase is the primary active ion pump, 

controlling fluid secretion in the Malpighian tubules. They do this by pumping H+ 

into the lumen, setting up a proton gradient across the apical membrane. This 

then drives the movement of alkali cations from the cell to the lumen through 

apical Na+ /H+ and/or K+/H+ exchangers (Dow et al., 1994b; Klein, 1992; 

Wieczorek, 1992). The V-ATPase of D.melanogaster is located to the apical brush 

border of the principal cells (Davies et al., 1996) and is a made up of two 

complexes Vo and V1, each of which is made up of several subunits. Vo is a stator, 

which is anchored to the cell membrane and V1, a rotor, which translates H+ ions 

from one side of the membrane to the other (Beyenbach and Wieczorek, 2006; 

Meier et al., 2005; Murata et al., 2008). The Vo subunit is permanently anchored 

to the apical membrane, the V1 unit, however can dissociate and re-associate 

with the V0 unit, thus controlling H+ ion transport(Beyenbach and Wieczorek, 

2006; Sumner et al., 1995). Summarised in Figure 1-6 
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Figure 1-6 Summary of disassociation and re-association of V-ATPase subunits V0 and V1 
(Beyenbach et al., 2010) 
 
The activation of V-ATPase is highly energy consuming as is evident from the 

hydrolysis of ATP to ADP (Maddrell and O'Donnell, 1992; Wieczorek et al., 2000). 

It is not surprising therefore that cells require the ability to switch these 

enzymes on and off. The reversible association of the two complexes is just one 

level of control. There are several other levels. Firstly there is evidence in some 

organisms that V-ATPase subunit levels are transcriptionally controlled during 

certain stages of development. For example the cAMP-dependent signal 

transduction pathway is known to induce an up-regulation of subunit B during 

monocyte to macrophage differentiation in the mammalian haematopoetic 

system (Lee et al., 1997; Lee et al., 1995). There is also evidence in the tobacco 

hornworm, Manduca sexta, which shows that the promoter regions of the Vo and 

V1 complexes are differentially regulated, indicating another level of control 

(Gräf, 1996; Sumner and and Wieczorek, 1995). In the Malpighian tubules of D. 

melanogaster it has been shown that V-ATPase responds to increased levels of 

cAMP and cGMP (Dow, 1998). The next section will discuss the role of cAMP in 

more detail.  

1.2.4.2 Cyclic AMP induces fluid secretion  

Although it has been known for several years that increasing intracellular levels 

of cAMP lead to a V-ATPase controlled increase in fluid secretion by the MT in 

D.melanogaster, as of yet the exact mechanisms have not been determined. 

Recent studies however suggest several areas of interest.  
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1.2.4.3 Involvement of cAMP in V-ATPase accumulation and activation  

Several studies have indicated that increases in intracellular cAMP directly lead 

to the accumulation and activation of the V-ATPase complex within the 

microvilli (Beyenbach et al., 2009; Bradley, 1989; Bradley and Snyder, 1989; 

Dames et al., 2006; Karas et al., 2005; Wieczorek et al., 2000). As stated in 

section 1.2.4.1, one such mechanism is the direct transcriptional up regulation 

of V1 subunits via cAMP signalling (Lee et al., 1995). More recently Beyenbach et 

al, produced evidence that protein kinase A (PKA) may induce assembly of the V-

ATPase subunits via cAMP signalling, in Mosquito tubules (Beyenbach et al., 

2009). Recent studies in the salivary glands of the Blowfly, have increased our 

understanding of how cAMP activates secretion through the V-ATPase (Dames et 

al., 2006; Rein et al., 2008a). Dames et al showed that accumulation, assembly 

and activation of the V-ATPase complex at the apical microvilli occurred through 

cAMP signalling, independently of an increase in intracellular Ca+. This was of 

particular interest because previous studies had indicated that V-ATPase 

assembly and activation occurred through intracellular Ca+ increasing which in 

turn led to the phosoporolation of V-ATPase subunits allowing for their assembly 

and activation (Dames et al., 2006). The group also provided evidence that 

Subunit C of the V-ATPase in Manducta sexta is the only known subunit to be 

actively phosphorolated by PKA, This subunit is known to bind to both the V1 and 

Vo subunits suggesting that it many play a crucial role in V-ATPase assembly and 

activation (Rein et al., 2008b). Therefore the exact mechanism, by which cAMP 

induces V-ATPase assembly and activation, is still unknown.  

1.2.4.4 cAMP controls microvilli length and mitochondrial accumulation 

 V-ATPase activation is not the only mechanism governing fluid secretion in 

response to cAMP. Several studies, in both mammals and Diptera, indicate the 

importance of microvilli re-arrangement and the accumulation of mitochondria 

are also important (Bradley and Snyder, 1989; Paunescu et al., 2010). This is not 

surprising as microvilli provide the surface area required for V-ATPase 

accumulation and mitochondria are required to energise the V-ATPases. 

Interestingly studies suggest that during pupa development, mosquito tubules 

have a lowered response to cAMP, not due to desensitisation to cAMP, but more 

likely to a decrease in the length of microvilli and density (Bradley and Snyder, 
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1989). However recent studies have also indicated that cAMP plays an important 

role in the rearrangement of the actin cytoskeleton, which is key to the 

secretion phenotype (Karas et al., 2005). Bradley et al also showed that upon 

stimulation with 5HT (increases intracellular cAMP), microvilli in the tubules of 

Rhodnius prolixus extended by ~2.5 in length and 3 times in surface volume, in 

conjunction with the movement of mitochondria into the microvilli (Bradley and 

Satir, 1981). Interestingly mitochondrial movement was blocked by the actin 

inhibitor Cytochlasin B; suggesting that the rearrangement of actin cytoskeleton 

is involved. Along with this studies in Mosquito tubules indicated the role of 

actin in secretion phenotypes (Karas et al., 2005). 

1.2.4.5 Conclusions 

Much is known about the dynamics of fluid secretion in the Malpighian tubules in 

response to cAMP but the exact mechanisms underlying the response have yet to 

be fully understood. Studies in other Diptera indicate that cAMP may actively 

cause the phosphorolaiton of V-ATPase subunits, allowing for assembly of the 

active complex, via PKA. Others have suggested that other down stream 

effectors may be phosporalated. The re-arrangement of mitochondria may also 

play an important role in activating fluid secretion and this in turn may be aided 

by the re-arrangement of the actin cytoskeleton. Further analysis of cAMP, actin 

remodelling and microvilli rearrangement may help understand the underlying 

mechanisms of cAMP induced fluid secretion. More recent applications in 

Drosophila, such as genomic and transcriptomic analysis may hold the key to 

understanding these mechanisms.  

1.3 Recent applications in Drosophila  

1.3.1 Sequencing and subsequent annotation of the 
D.melanogaster genome  

The full genome of D.melanogaster was published in 2000, making it one of the 

first eukaryotic genomes to be fully sequenced (Adams and et.al, 2000). The raw 

genomic data acquired from a fully sequenced genome, is only useful to 

scientists if it can be accurately annotated. This inevitably requires previous 
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gene sequence data or an ability to accurately determine or predict where genes 

are in the genome (Stein, 2001). With this in mind the annotation of the 

Drosophila genome was aided by several factors. For example the Drosophila 

community have mapped new loci by recombination relative to known flanking 

data for many years, therefore already, in effect mapping the genome (Adams 

and et.al, 2000). Several tissues, notably the salivary gland, contain giant 

polytene chromosomes. These chromosomes have been studied in Drosophila 

since the 1930s, and consist of multiple identical sister chromatids, which have 

undergone many rounds of endoduplication. The resulting chromosome is easily 

seen under microscope conditions and forms distinct banding patterns, which are 

unique to each chromosome (Bridges, 1935). With the discovery of these giant 

chromosomes it became possible to map cloned genes to specific areas using in 

situ hybridisation (Langer-Safer et al., 1982). Many years of cloning genes also 

resulted in the production of large cDNA libraries. This made it possible for the 

Drosophila genome project to sequence the 5’ ends of over 80,000 random 

clones, generating expressed sequence tags (ESTs). Once studied, these 

sequences fell into clusters of clearly similar sequences. Representative genes 

for each of these clusters were selected for full sequencing and aligned to the 

genome sequence, thus marking the most abundantly transcribed areas of the 

genome (Adams and et.al, 2000). Plasmid rescue of P-element insertions as 

discussed in section 1.1.2.1 also aided the cloning and sequencing of many 

genes, allowing for their subsequent genome annotation. 

These reasons and the vast amount of cloned and previous sequenced data 

available for Drosophila, made the annotation of the genome sequence a much 

easier process than in other genome projects.  

1.3.2 New insights from the genome project  

With the production of the genome sequence came the realisation that although 

extremely well studied, much about D.melanogaster’s genes are unknown. Dow 

estimated that around a third of a million research years spent on Drosophila 

studies, predominantly developmental, only identified around 20% of genes 

before the production of the genome project (Dow, 2003a). Given the wealth of 

information gathered about development in the fly and the insights this has gave 



Chapter 1  33 

us into mammalian development, the prospects of determining what the other 

80% of genes do is enticing. There is also the realisation that if a gene functions 

in development it may also have functions in the adult fly. Indeed the detailed 

microarray study carried out by (Chintapalli et al., 2007) showed that 90% of 

genes shown to have embryonic expression by in situ analysis, were expressed in 

the same tissue in the adult. Determining the function of genes in the adult fly, 

which have previously been identified as having a role in development, is 

difficult. Many such genes have severe if not lethal phenotypes when mutated, 

therefore the ability to study and manipulate these genes in a tissue specific 

manner becomes all the more important.  

1.4 Drosophila and the post genomics era 

The completion of the genome project in 2000, gave the Drosophila community a 

huge leap forward in fully understanding the genomics of the fly. Scientist can 

now easily clone any gene in Drosophila in a matter of weeks, can predict gene 

function through sequence analogy and have a final calculation in the number of 

protein coding genes in the fly (Ashburner and Bergman, 2005). However the 

sequencing of an organism’s genome is only the advantages if we can fully 

understand the downstream mechanisms of genes i.e. transcripts, proteins, 

metabolism etc. For this reason the science community has seen an explosion in 

the number of so called ‘omics’ studies in recent years. These include the study 

of trasnscripts (transcriptomics), proteins (proteomics) and metabolites 

(metabolomics) to name a few (summarised in Figure 1.7) 
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Figure 1-7 Comparison of Year on Year Publications Containing the Word 'Omics' in their 
title 
Compiled using the online search engine ISI Web of Knowledge. Searches where carried out using 
the terms genomics, transcriptomics, proteomics and metabolomics and the year, in order to give 
an overview of the increase in ‘omics’ papers being published.  

Like their predecessor, genomics, these studies aim to analyses the full 

complement of a tissue or cell in a high throughput manner. For example many 

proteomic studies have focused on understanding the differential expression or 

modifications of all proteins in cancerous and non-cancerous cells (Stevens et 

al., 2004). The large scale of data produced from any ‘omics’ study, must be 

rigoursly analysed and confirmed, through more small-scale traditional methods 

and this often requires the ability to manipulate the genetics of an organism in a 

precise manner. For reasons discussed in Section 1.1 Drosophila studies have 

flourished in the post-genomic era. The ease with which the genome was 

annotated quickly led to the production of microarray genome chips allowing for 

whole transcriptomic analysis (discussed in more detail in section 1.4.1). 

Mutations in known metabolomic genes such as rosy also meant that tissue 

specific and whole fly metabolomic data could be gather, and a comparison of 

mutant and non mutant flies led to significant changes to previous publish 

metabolic maps (Kamleh et al., 2009).   
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1.4.1 Transcriptomics of the fly  

The ultimate goal of any genome project, is to understand how an organism 

works on a genetic level, which genes are protein coding/expressed and how 

mutations and polymorphisms affect individual organisms. However simply 

knowing the sequence is not enough. It has been known for many decades that 

nearly all cells in organisms carry identical genomes, therefore what makes an 

eye cell different, from say, a kidney cell is the genes which are expressed in 

the cells and thus the proteins produced. Understanding which genes control 

development of different tissues or are disease causing, therefore became the 

ultimate goal of science. With this in mind the study of whole cell or tissue 

transcript, or transcriptomics, became increasingly popular.  

1.4.1.1 Development of microarray technology  

Microarray techniques stem from the development of Southern blotting 

technology, where the hybridisation properties of DNA are utilised in order to 

determine if a gene is expressed in a given sample. Unlike Southern blot 

analysis, where a single probe is used in order to detect a cloned gene for 

example, microarrays use many probes that are immobilised on an array or a 

chip. Once a genome has been fully sequenced and at least partially annotated 

it becomes possible to produce a whole genome chip, corresponding to all the 

genes that can be expressed in a given cell. Figure 1.8 gives an overview of how 

a microarray is carried out. If a genome is well annotated it is possible to not 

only look at individual genes but design probes against specific transcripts. One 

of the first whole genome arrays to be made commercially available was the 

Affymetrix Drosophila Genome Chip and later second version Affymetrix 

Drosophila Genome Chip 2 (http://www.affymetrix.com). The reasons that this 

chip was made available so soon after the publication of the genome are two 

fold. Firstly, many of the genes found in D.melanogaster were already well 

characterised making the annotation of the genome relatively easy. Secondly, 

the availability of large amounts of mutant stocks makes the fruit fly an ideal 

candidate in order to study transcriptomics. The Affymetrix Drosophila Genome 

2 chip, consist of 18,880 probe sets, corresponding to 18,500 transcripts 

(http://www.affymetrix.com). Since its release 160 experiments and 3097 
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assays have been carried out using the chip (data from 

http://www.ebi.ac.uk/arrayexpress). 

 

Figure 1-8 Summary of microarray technique 
Whole tissue or cell RNA is extracted, mRNA is then synthesised to produce cDNA tagged with a 
fluorescence dye such as Cye5. Single stranded cDNA is then washed over genome chip, which 
contains an array of probes, representing the whole transcriptome of the fly. Several washes are 
then carried out before fluorescence is measured. The higher the amount of hybridisation, the 
higher the fluorescent signal. Therefore the signal directly proportional to mRNA levels of that given 
transcript. 

1.4.1.2 FlyAtlas  

FlyAtlas consists of 18 adult tissues, 8 larval and one S2 cell line (Chintapalli et 

al., 2007). As of August 2011, the full dataset consists of 44 Affymetrix chips, 

18770 transcripts and 8,228,000 individual data points (www.flyatlas.org).. The 

immense size of this data set is a perfect example of the mountains of data that 

microarray analysis can yield. One of the most valid outcomes of FlyAtlas was 

the realisation that when carrying out whole fly microarrays, many genes, which 

are actually extremely highly expressed in a specific tissue, are missed due to 

http://www.ebi.ac.uk/arrayexpress
http://www.flyatlas.org/
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high levels of background noise (Chintapalli et al., 2007). This once again 

highlights the importance of tissue/cell specific analysis when studying a gene or 

genes. Chintapalli et al showed that 90% of genes shown to have embryonic 

expression by in situ analysis, were expressed in the same tissue in the adult. 

Determining the function of genes in the adult fly, which have previously been 

identified as having a role in development, is difficult. Many such genes have 

severe if not lethal phenotypes when mutated. Again the GAL4/UAS system will 

be a valuable tool in overcoming this problem. However in order to do this we 

first need to now where the genes are expressed: FlyAtlas gives us the perfect 

staring point.  

1.4.1.3 Recent advances in FlyAtlas and Microarray studies  

Microarray technology not only allows scientists to analyse whole gene 

expression in a given tissue, but also allows us to study gene expression under 

different circumstances. Since the publication of FlyAtlas, Dow et al have 

continued to advance the use of microarray experiments, with particular 

attention to the Malpighian tubules. For example more recent studies have 

involved the assessment of differential gene expression between male and 

female tubules (Chintapalli et al manuscript submitted). They have also analysed 

gene expression in the response to different stimuli, such as cAMP and cGMP. 

Experiments such as these indicate the power of microarray analysis. If we take 

the example of cAMP stimulation of the Malpighian tubules, previous studies 

would have involved the identification of mutants, which lowered or increased 

the response of tubules to cAMP, looking for interactions with other genes and 

then mutating these and carrying out further studies. Using microarray analysis 

however, we are able to determine all genes that are up or down regulated in 

response to cAMP in the tubules. Both views are equally valid, but together offer 

a robust and complementary approach to determining downstream cAMP targets.  

More recently, new advances in microarray technology have allowed FlyAtlas to 

be extended to included RNAseq data. Unlike traditional microarrays, RNAseq 

does not rely on the hybridisation of cDNA to probes, but rather high throughput 

sequencing of total mRNA fragments from a given sample (Wang et al., 2009). 

This has several advantages over traditional microarray analysis. Firstly it does 

not require the need for a prior knowledge of gene sequences, as there is no 
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need to produce probes for hybridisation. This allows for previously unidentified 

genes or gene variants to be detected. Secondly the noise level from RNAseq is 

significantly lower than microarray analysis, simply because you remove the 

hybridisation step. RNAseq is also a much more sensitive technique, in that it 

can detect genetic variation such as single nucleotide polymorphisms (SNPs) and 

has the ability to determine exon boundaries.  Figure 1-9 gives a brief overview 

of RNAseq technology. With regards to FlyAtlas data from RNAseq analysis has 

been extremely useful in confirming previous expression profiles (as discussed in 

section).  

 

Figure 1-9 Overview of RNAseq 
Briefly, long RNAs are first converted into a library of cDNA fragments through either RNA 
fragmentation or DNA fragmentation (see main text). Sequencing adaptors (blue) are subsequently 
added to each cDNA fragment and a short sequence is obtained from each cDNA using high-
throughput sequencing technology. The resulting sequence reads are aligned with the reference 
genome or transcriptome, and classified as three types: exonic reads, junction reads and poly(A) 
end-reads. These three types are used to generate a base-resolution expression profile for each 
gene, as illustrated at the bottom; a yeast ORF with one intron is shown (Wang et al., 2009).  



Chapter 1  39 

1.4.1.4 Unexpected expression patterns  

Full analysis of FlyAtlas data, showed that some very well known and studied 

genes showed unexpected expression patterns. Many of these genes were 

involved in developmental processes and although showed expression in tissues 

previously indicated, they also showed extremely high expression in other 

tissues. Table 1-1 list some of these genes, their known function and their mRNA 

signal levels.  

Table 1-1 Some genes that are predominantly expressed in unexpected places 
Summary of genes which show unexpected expression patterns in FlyAtlas. Note boldface 
indicates maximum mRNA signal for each gene. (Adapted from Chintapalli et al  2007). Note table 
does not show all listed tissues on FlyAtlas, therefore if highest signal is not bold gene is expressed 
at a higher level in another tissue  

 

As we can see from this table, several genes show unexpected expression 

patterns in the MT. In particular fasciclin 2 and dsx genes, which have been 

studied extensively in development, show high expression levels in the adult MT. 

It is tempting therefore to believe that these genes may play an important role 

in the MT and if so determining these roles may give an insight into physiological 

mechanisms.  

   
Mean mRNA signal level 

Gen
e  

Described in  Brain Head Midgut Tubule Hindgut Ovary Testis  Accessor
y gland 

cry Circadian 
behavior  

279 575 267 1,972 868 7 25 205 

fas2 Neuronal 
fasciculation 

129 66 49 1,676 78 5 9 53 

opd5
6d 

Olfaction  71 4,045 1 1 5,663 1 106 5 

kelc
h 

Nurse cell  181 185 22 16 22 5 6 6 

rpk Sensory 
neurons  

1 0 1 7 0 904 47 0 

toe Eye, thorax 10 68 7 8 14 8 13 3,725 
vnd Embryonic 

CNS 
6 4 289 5 6 3 2 8 

dsx Sex 
determinatio
n 

21 119 89 140 106 9 1 8 
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1.5 Fasciclin 2  

1.5.1 Introduction  

Studies in grasshopper embryos had identified fas2 as being a possible pathway 

recognition molecule, which allows growth cones to distinguish between 

different axon pathways (Harrelson and Goodman, 1988; Snow et al., 1988). In 

order to determine its function in the developing organism, fas2 was cloned and 

characterised in D.melanogaster (Goodman et al., 1991). In situ hybridization 

mapped the gene to position 4B1-2 on the X chromosome. From this and 

subsequent studies it was determined that fas2 is alternatively spliced to give 

three transcripts, resulting in 3 distinct protein isoforms, Fas2-PA, Fas2-PB and 

Fas2-C (Fig 1-10). The proteins are identical up to amino acid 737 and contain 5 

Ig-like domains and 2 fibronectin type III domains. Fas2-PA and Fas2 -PB are 

transmembrane forms and the latter contains a PEST sequence in its cytoplasmic 

domain (Lin and Goodman, 1994), the function of which is unknown but other 

studies show the sequence acts as a target for rapid proteolytic degradation 

(Rogers et al., 1986). The third isoform, Fas2-PC is a glycosyl-

phosphatidylinositol (GPI) membrane anchor protein and contains no 

transmembrane domain. 
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(a) 

 

(b) 

 

Figure 1-10 Gene and protein structure of Fas2 
(a) Structure of fas2 transcript including functional domains. The gene is 
alternatively spliced to produce 3 distinct transcripts. (b) Structure and domains 
of three Fas2 isoforms, including likely position of antibody epitope. 
 
 
The protein is considered to be a homologue of the vertebrate protein NCAM 

(Goodman et al., 1991). However the proteins only share an amino acid identity 

of 26% across all seven extracellular domains, and they differ considerably in 
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their intracellular domains (Goodman et al., 1991). Interestingly the website 

database Homophila (www.superfly.ucsd.edu/homophila/) reports that fas2 is 

also closely related to the gene Nephrin: a gene associated with the kidney 

disease, Finnish congenital nephrosis (Blast search indicates a 26% overall 

identity between Nephrin and Fas2 www.flybase.org). Patients exhibit high 

levels of proteinuria, ultimately leading to kidney failure(Patrakka et al., 2000). 

Nephrin acts as a structural adhesion molecule compulsory for the formation of 

the slit diaphragm in glomerular podocytes in human kidneys. Slit diaphragms 

are partly responsible for the selective filtration of molecules from kidneys, in a 

size dependent manner (Rodewald and Karnovsky, 1974; Wartiovaara et al., 

2004). Indeed the classical Drosophila homologues of Nephrin sticks and stones 

(sns) and hibris (hbs), are found in nephrocytes, offering an attractive insight 

into the evolution of the glomerular kidneys (Weavers et al., 2009). Interestingly 

these nephorocytes are completely separate from the tubules. Therefore it is 

interesting that one possible homologue in flies, fas2, has not been investigated 

further, particularly now that we know that the gene is most highly expressed in 

the flies’ tubules. However fas2 does show functional similarities to NCAM and 

these may also give insights into its function in the tubules. 

1.5.2 Oogenesis 

Fas2 is first expressed during oogenesis. During mid oogenesis a cluster of six to 

eight border cells (BC) and two polar cells (PC), differentiate within the anterior 

follicular epithelium, causing the delamination of the BC (Niewiadomska, 1999; 

Szafranski and Goode, 2004). The polarity and movement of the cells is 

regulated by interactions between the proteins Fas2, Disc-large (Dlg) and Lethal-

giant-larvae (Lgl).  Fas2 expression is selectively lost in BCs but not PCs, this in 

turn leads to the reorganisation of the three proteins in the BCs to a motile 

polarity and maintains Dlg and Lgl in the BCs, which in turn inhibits the rate of 

migration (Szafranski and Goode, 2004). Fas2 COOH-terminus binds the PDZ 

domain of Dlg and this interaction is important in several other areas of 

development (see below). The protein also functions as a suppressor of 

epithelial invasion: along with several other proteins, such as Dlg, it actively 

suppresses invasion by organising the cooperative activity of distinct polarity and 

motility pathways (Szafranski and Goode, 2007). Interestingly it is believed that 

http://www.superfly.ucsd.edu/homophila/
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this process may be partially governed through interactions with the actin 

cytoskeleton.  

1.5.3 Axon growth and guidance  

As discussed in Section 1.5.1, fas2 was first cloned in order to understand its role 

in axon guidance during development. During development groups of axons 

known as growth cones extend out towards their intended synaptic target, aided 

by the adherence of growing axons to one another (Raper and Mason, 2010). The 

role of fas2 in motor neuron growth cone guidance is well documented 

(Goodman et al., 1991; Grenningloh et al., 1991; Lin and Goodman, 1994). 

Mutations in the gene cause several phenotypes, which are dependant on both 

the dosage of the gene and in which area the gene is affected (Lin and 

Goodman, 1994).  These include: the ‘bypass’ phenotype, where axons fail to 

enter their target and go past it; ‘detour’, where the axons enter their target at 

a different location; ‘stall’ where the once the axons enter their target they fail 

to then defasciculate; and ‘misroute’ where the axons meet a fas2 positive cell 

and then move off target (Lin and Goodman, 1994). Essential to this processes is 

Fas2 ability to not only form homophilc cell adhesion complexes but also 

heterophilic complexes, with proteins such as Dlg (Lin and Goodman, 1994), this 

is summarised in Figure 1-10 . Fas2 functions in growth cone guidance do not 

solely rely on its properties as a cell adhesion molecule but also its ability to 

stablize signalling of other molecules (Lin and Goodman, 1994).  

1.5.4 Synapse Stability and Plasticity  

The role of fas2 in the stabilization and plasticity of neuromuscular junctions 

(NMJ) is extremely well studied. In order for a larval NMJ to form, pre- and 

postsynaptic interactions are extremely important (Kohsaka et al., 2007a). 

Expression of Fas2 at the presynaptic junction leads to the accumulation of Fas2 

and Dlg at the postsynaptic junction, due to homophilic and heterophilic binding 

of Fas2,this in turn leads to the formation of the NMJ, as described in Figure 1-

11 (Kohsaka et al., 2007a). Fas2 and Dlg complexes are also essential for 

synaptic stabilization and growth at the mature larval NMJ (Thomas and C.C. 

Garner, 1997). Decreasing fas2 levels will also lead to an increase in synaptic 
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growth, showing that it also plays an important role here (Schuster et al., 1996). 

Structural plasticity is also controlled by fas2 (Schuster et al., 1996). 

Interestingly long-term synapse plasticity is governed by both activity and cAMP-

dependent process: cAMP-dependent plasticity requires a down-regulation of 

synaptic fas2. Indeed fas2 has been shown to act in parallel with cAMP response 

element binding protein (CREB) in order to control synapse plasticity (Schuster 

et al., 1996). It is thought that increases in cAMP, cause the active removal of 

fas2 from the synapse thus initiating synapse remodelling (Davis et al., 1996; 

Schuster et al., 1996). 

  

   

Figure 1-11 Schematic diagram describing a model of the postsynaptic assembly of Fas2 
and Dlg (Kohsaka et al., 2007a) 
 
1.5.5 Role in epidermal growth factor receptor (EGFR) and other 

signalling pathways 

More recently Fas2 has been implicated in roles other than cell adhesion. For 

example Fas2 has been shown to be an important inhibitor of EGFR signalling 

during eye development (Mao and Freeman, 2009). This study is significant in 

that it indicates the importance of scaffolding proteins in signalling cascades. 

Previous studies have also showed that Fas2 interacts with several other 

signalling pathways such as FGRF (Forni et al., 2004). These and other studies 
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suggest that Fas2 is not only an important scaffolding cell adhesion molecule but 

also may be important for signalling processes.  

1.5.6 Expression in the Malpighian tubules  

As we have discussed fas2 is extremely well characterised in terms of 

development and the nervous system and indeed there are over 500 references 

for fas2 listed on FlyBase. We would therefore expected FlyAtlas to show a high 

expression level in the CNS of the fly. Table 1.2 shows results obtained. 

Surprisingly it is predominantly expressed in the Malpighian tubules, a renal 

rather than neuronal tissue. Interestingly there is no known function for fas2 in 

the Malpighian tubules. 

Table 1-2 Summary of FlyAtlas results for all three transcripts of Fas2 
Numbers indicate mean mRNA signal level in given tissue, boldface represents highest transcrip 
level 

TISSUE Transcript A Transcript B Transcript C  Transcripts A, B 
and C  

Brain  166 129 298 193 
Head 58 67 234 114 
Thoracicoabdominal 
ganglion 

261 198 417 340 

Salivary gland 54 121 63 73 
Crop 38 57 175 81 
Midgut  51 49 63 35 
Tubule  153 1676 393 813 
Hindgut  46 78 147 79 
Ovary 23 5 47 19 
Testis  24 9 50 20 
Male accessory 
glands 

32 53 83 38 

Adult carcass 38 82 135 92 
Larval tubule 20 305 46 102 
Larval fat body  31 26 181 52 
Whole fly  28 79 78 51 
 

The results indicate that transcript B of fas2 appears to be tubule specific, with 

a ~10 fold increase in expression compared to other tissues. Transcripts A & C 

also show high levels of expression in the tubules. Previous studies have only 

hinted at fas2 expression in the tubules (Campbell et al., 2009; Grenningloh et 

al., 1991). Interestingly transcript B and indeed the resulting protein are not as 

well studied as transcript A, which dominates studies carried out in 
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development. This suggests that fas2-B may have a previously unidentified 

function in the Malpighian tubules.  

1.5.7 Possible role in the tubule  

Understanding Fas2’s interactions with other complexes and molecules can aid in 

determining its function in the tubules. For example it is interesting that Fas2 

has multiple interactions with Dlg (see above), as this gene is expressed in the 

tubules. Strikingly Dlg sits at the lateral border during embryogenesis (Campbell 

et al., 2009) and  the junctions between principal/stellate and 

principal/principal cells during larval development through to adulthood, where 

it acts to provide structural integrity. Secondly increases in cAMP levels in 

synapses lead to a decrease in Fas2 levels (Schuster et al., 1996). As cAMP is an 

important nucleotide involved with fluid secretion in the tubules then it may 

hint at a role for Fas2 in fluid secretion. EGRF signalling is also known to be 

essential for tubule formation and as fas2 is known to interact with EGFR 

signalling it may hint at a role for fas2 in tubule development (Baumann and 

Skaer, 1993; Kerber et al., 1998). 

1.6 Doublesex  

1.6.1 Introduction 

A second well-known gene, which is surprisingly abundant in the MT, is 

doublesex (dsx). Sex determination in the fruit fly is under the control of a sex 

determination hierarchy, which consists of several key genes. One such gene is 

the transcription factor doublesex (dsx). This gene is a member of the Dmrt 

protein family of transcription factors, which is an ancient conserved family 

found throughout the animal kingdom (Raymond et al., 2000; Raymond et al., 

1998; Zarkower, 2002). During early embryonic development dsx is alternatively 

spliced to produce 3 isoforms, one male specific (dsxm), one female specific 

(dsxf) and a third as of yet undefined transcript, which appears to be 

functionally similar to dsxf. The alternative splicing of dsx is controlled by the 

presence of other genes in the sex hierarchy as summarised in Figure 1-12. Dsx 

controls nearly all somatic sexual differences outside the nervous system, as 
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well as several nervous system characteristics (Lee et al., 2002; Mellert et al., 

2010; Ridout et al.; Robinett et al., 2010; Sanders and Arbeitman, 2008). 

1.6.2 Targets of dsx 

The transcription of dsx is highly regulated throughout development, showing 

strict spatial and temporal expression (Rideout et al., 2010; Robinett et al.). As 

dsx is known to be a transcription factor, it is thought to control sexual 

dimorphisms through the direct binding of promoter regions of downstream 

genes (Baker and Ridge, 1980; Cho and Wensink, 1997). Both isoforms share 

identical DNA binding domains but differ in their C-terminal sequence, 

suggesting both proteins have the ability to bind the same sequences, but may 

differ in their function there after (Burtis et al., 1991; Erdman and Burtis, 1993). 

The variant C-terminal domains contain sex-specific regulatory elements as well 

as a homotypic domain that may again mediate protein:protein interactions 

(Burtis et al., 1991). Thus each isoform mediates the promotion or inhibition of 

sex specific gene expression through, as of yet undetermined co-factors, which 

bind the C-terminal domain of Dsx. Discovering true targets of the Dsx proteins, 

however has proved difficult, mainly due to being unable to distinguish direct 

binding from indirect binding (Luo et al., 2011). Many studies have focused on 

microarray analyses, were transcript levels are measured with and without dsx 

this does not however give an indication of direct targeting. At present there is 

only one known direct target of dsx and that is the fat body enhancer (FBE), 

which sits between the two Yolk proteins, yp1 and yp2 (Burtis et al., 1991). DsxM 

actively represses yp1 and DsxF actively enhances expression. The Yolk proteins 

are important in female flies: they are involved in vitellogenesis, oogenesis and 

sex determination (Barnett et al., 1980; Soller et al., 1997; Yan and 

Postlethwait, 1990). There is however extensive evidence that dsx controls many 

other genes involved in sex determination (Lee et al., 2002; Mellert et al., 2010; 

Ridout et al.; Robinett et al., 2010; Sanders and Arbeitman, 2008).



 

Figure 1-12 Drosophila sex hierarchy and the splicing of dsx to produce male and 
female variants 
(a) Females: An equal ratio of X:A (X to autosome number) results in the expression of the 
gene sex lethal (sxl) this in turn leads to the active splicing of the gene transformer (tra) this 
splicing events results in an active form of tra which is then able to form a complex with 
transformer 2. This complex binds to the dsx gene and allows the splicing event, which leads 
to dsxF being produced. The production of Tra also results in splicing of the gene fru, resulting 
in an inactive form of the protein. Males: In males Sxl is not produced and therefore no active 
form of tra is spliced and no tra/tra2 complex forms, thus resulting in the default dsx transcript 
dsxM being produced. Without the presence of Tra, fru is not spliced and an active form of Fru 
is produce, leading to the development of a male nervous system (Dornan 2011).  

(b) Alternative splicing of dsx via the binding of tra/tra2 complex, results in dsxF non-binding of 
the complex results in dsxM ((Lynch and Maniatis, 1996) 



 

It is now understood that dsx controls sexual characteristics and behaviour by 

the active suppression of genes: DsxM actively suppresses female genes and DsxF 

suppresses male specific genes. A further level of complexity in determining 

targets, is that most studies indicate differential tissue specific targets and 

usually only determine indirect targets (Camara et al., 2008; Christiansen et al., 

2002).  

1.6.3 Expression in tubules and possible functions  

FlyAtlas reports that dsx is expressed at relatively high levels within the MT, 

again suggesting a previously unreported function for this gene summarised in 

Table 1.4.  

Table 1-3 Summary of doublesex expression in D.mealnogaster 
Numbers indicate mean mRNA signal level in given tissue. 

TISSUE Male Female 
Brain  18 21 
Head 44 119 
Thoracicoabdominal 
ganglion 

59 55 

Salivary gland 180 440 
Crop 102 325 
Midgut  51 89 
Tubule  147 140 
Hindgut  70 106 
Ovary 8 9 
Testis  21 1 
Male accessory glands 62 8 

Adult carcass 81 277 
Larval tubule 29 41 
Larval fat body  46 143 
Whole fly  32 67 

 

A recent, tubule specific microarray study, gave further insight into dsx 

expression in the tubules and also indicated that male and female tubules have a 

distinct set of sex specific genes, summarised in  (Chintapalli et al. manuscript 

submitted). The tubules of the fly are important for many different physiological 

processes and have been shown to be involved in osmoregulation, immune 

response, detoxification and metabolism (Dow et al., 1994b; Maddrell, 2004; 

Maddrell and Casida, 1971; Maddrell, 1981; Yang et al., 2007).  
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Table 1-4 Summary of some of the genes differentially expressed in males and females     
Dsx transcripts are highlighted in yellow. Immune genes are highlighted in green. Adapted from 
Chintapalli et al in press 

Probeset ID 
Gene 
Symbol Gene Title 

p-value(F 
vs. M) 

Fold-
Change(F 
vs. M) 

Up in female     
1629545_at Yp1 yolk protein 1 5.44661E-07 515.718 
1631419_at Yp3 yolk protein 4.41882E-07 514.01 
1623655_at Yp2 yolk protein 2 2.28907E-07 387.74 
1633540_at CG8147 CG8147 4.96236E-07 39.8852 

1630600_at Fst /// Scm 
Frost /// Sex combs 
on midleg 2.12495E-05 31.4196 

1637702_at CG34427 --- 1.1743E-07 28.8454 
1641419_at AttC attacin 0.000672278 25.1226 
1633820_at Fad2 Fad2 0.000354706 22.46 
1623776_s_at Dsx doublesex 1.42375E-10 19.3021 
1627613_at Mtk Metchnikowin 7.05154E-05 12.0313 

1627088_at Fit 

female-specific 
independent of 
transformer 0.000312061 9.92567 

Up in males     
1623478_at SPR CG16752 3.0994E-07 -6.61793 
1627653_at l(1)G0469 lethal (1) G0469 3.61357E-05 -6.66035 
1635189_at Drs drosomycin 0.00192381 -6.7587 
1638816_at CG3884 CG3884 0.00112492 -6.77181 

1628982_at NPFR1 
neuropeptide F 
receptor 6.98814E-07 -6.90513 

1632636_at CG2145 CG2145 3.14302E-09 -8.61692 
1638484_at Hsp67Bc Gene 3 0.000271373 -10.6377 
1640799_at Dsx doublesex 6.94307E-13 -10.837 
1628611_at CG11241 CG11241 3.50671E-09 -11.1295 
1637145_at CG14787 CG14787 6.38554E-10 -18.3459 
1633432_at CG9657 CG9657 4.86936E-12 -41.6033 
1633275_at CG31562 CG31562 7.75546E-10 -56.7831 
 

It is not surprising that sex specific genes are expressed in the tubules, as there 

are markedly different pressures on males and females with regards to 

physiology. For example, once mated, females are required to stage a higher 

level of immune response, as not only does the seminal package delivered by the 

male in itself pose an immune challenged, the increased time spent awake and 

eating needed to produce and lay eggs, also poses a higher chance of an immune 

challenge (Lazzaro et al., 2004; McKean and Nunney, 2005; Peng et al., 2005). 

Several recent studies have shown the importance of MT in immune response 

(Davies and Dow, 2009; McGettigan et al., 2005; Overend et al., 2011) 

High levels of egg production in females, often leads to an increase in 

metabolism, due to the increased uptake of food. This in turn leads to higher 
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levels of osmoregultion and thus putting female tubules under a higher level of 

pressure than males (McGraw et al., 2004). Interestingly several of the genes 

highlighted as being differentially expressed in males and females are genes 

involved in metabolic and immune processes Table 1-4. This pose an interesting 

hypothesis that the tubules not only need to know what sex they are but may 

also play an important part in the physiological differences seen between males 

and females. The presence of differentially expressed dsx also hints at a role for 

this gene in determining the differences in male vs female gene expression in 

the tubules. 

1.7 Aim of this study  

We have discussed the advantages of Drosophila melanogaster as a model 

organism and recent advances in transcriptoimcs within the field. The question 

remains though of how one goes about using and assessing the data generated 

from such large-scale data sets such as FlyAtlas. As discussed in 1.4.1.4, FlyAtlas 

hinted at unexpected expression patterns of several very well known genes. This 

study aims to look at the expression of two of these genes, fasciclin 2 and 

doublesex. Both of these genes show unexpectedly high expression patterns in 

the Malpighian tubules of the fruit fly hinting at previously unreported functions 

in this tissue. Therefore the aim of this study is to determine the function of 

these genes in the tubules. This study also aims to validate the use of FlyAtlas as 

a starting point in determining new functions for genes, and therefore the value 

of transcriptomics. 
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2 Materials and methods 

2.1 Drosophila melanogaster  

2.1.1 Drosophila stocks 

Strain Genotype Description Origin Reference 
Canton S Wildtype  Dow/Davies 

lab stock 
 

 

Gal4 Urate 
oxidase  

w; Gal4UO /Cyo 3rd instar larvae and adult 
GAL4 expression in main 
segment principal cells. 

Dow/Davies 
lab stock 

 

(Terhzaz et al., 2010) 

Actin Gal4  w; Gal4actin/Cyo Ubiquitous driver  Bloomington 
Stock centre  

FlyBase 

c42-Gal4 w-; +/+; c42/c42 Gal4 driver specific to the 
tubule principal cells 
 

Dow/Davies 
lab stock 

 

(McGettigan et al., 2005; 
Sözen et al., 1997) 

c724-Gal4 w-; +/+; c274/c724 Gal4 driver specific to the 
tubule stellate cells 

Dow/Davies 
lab stock 

 

(McGettigan et al., 2005; 
Sözen et al., 1997) 

UAS-fas2-YFP w-; +/+; fas2/fas2 UAS construct Fas2-PB 
fused to YFP  

Nose lab (Kohsaka et al., 2007a) 

UAS-fas2-YFP-
Intra 

w-; +/+; fas2intra 
/fas2intra 

UAS construct  
Intra-cellular domain of 
fas2 fused to YFP 

Nose lab (Kohsaka et al., 2007a) 

UAS-fas2-YFP-
Extra 

w-; +/+; fas2extra 
/fas2extra 

UAS construct  
Extra-cellular domain of 
fas2 fused to YFP 

Nose lab (Kohsaka et al., 2007a) 

UAS-fas2 RNAi-
KK 

w-; +/+; 
fas2RNAiKK/fas2RNAiKK 

UAS construct 
Produces target down 
regulation of fas2 under 
GAL4/UAS control 

Vienna 
Drosophila 
Research 
Centre 
(VDRC) 
KK libary 

VDRC 

UAS-fas2 RNAi-
V36351 

w-;  
fas2V36351/fas2V36351 

UAS construct 
Produces target down 
regulation of fas2 under 
GAL4/UAS control 

Vienna 
Drosophila 
Research 
Centre 
(VDRC) 
 

VDRC 

UAS-fas2 RNAi-
V36350 

w-;  
fas2V36350/fas2V36350 

UAS construct 
Produces target down 
regulation of fas2 under 
GAL4/UAS control 

Vienna 
Drosophila 
Research 
Centre 
(VDRC) 
 

FlyBase 

UAS-fas2 RNAi-
V8393 

w-;  
+/+;fas2V38393/fas2V8393 

UAS construct 
Produces target down 
regulation of fas2 under 
GAL4/UAS control 

Vienna 
Drosophila 
Research 
Centre 
(VDRC) 
 

 

UAS-fas2 RNAi-
V8392 

w-;  
+/+;fas2V38392/fas2V8392 

UAS construct 
Produces target down 
regulation of fas2 under 
GAL4/UAS control 

Vienna 
Drosophila 
Research 
Centre 
(VDRC) 
 

 

UAS-fas2-A-V5 w-; +/+; fas2AV5/Cyo Fas2-PA tagged with V5 
construct under Gal4/UAS 
control 

Generated 
for this 
study  
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UAS-fas2-B-V5 w-; +/+; fas2BV5/Cyo Fas2-PB tagged with V5 
construct under Gal4/UAS 
control 

Generated 
for this 
study  

 

fas2EB112 w-; +/+; 
+/+;fas2EB112/y 

Imprecise P-Element 
excision resulting in fas2 
null. Homozygous lethal  

Klämbt lab (Grenningloh et al., 1991) 

Fas2-EP  w-; +/+; +/+;fas2EP/y Targeted up-regulation of 
native fas2 via insertion 
of UAS upstream of fas2 

Bloomington 
Stock centre  

FlyBase 

fas2 
proteintrap 788 

w-; +/+; 
+/+;fas2genetrap/y 

Fas2 genetrap line. 
Resulting from insertion 
of GFP ORF in 3’ end of 
fas2 gene   

Klämbt lab  

fas2 
proteintrap 377 

w-; +/+; 
+/+;fas2genetrap/y 

Fas2 genetrap line. 
Resulting from insertion 
of GFP ORF in 3’ end of 
fas2 gene. Resulting in 
fas2-PA containing a GFP 

Klämbt lab   

UAS-tra RNAi  w-; +/+; fas2RNAi/ 
fas2RNAi 

UAS construct 
Produces target down 
regulation of tra under 
GAL4/UAS control 

VDRC VDRC 

dsx Gal4 +; +; 
dsxGAL4/TM3, Sb, 
Ser, e 

GAL4 element inserted 
into doublesex (dsx) 
locus via ends-in HR. 

Goodwin lab  (Rideout et al., 2010) 

UAS-stingerII W1118; +; P(w+mc=UAS-
StingerII) 

Stable insulated nuclear 
enhanced (GFP). 

Bloomington  

 

Table 2-1List of All Lines Used in This Study 
 

Table 2-1 lists all Drosophila melanogaster stocks used in this study. A 

description of each line is given along with the origin and reference for the line 

where applicable.  

 
2.1.2  Drosophila rearing  

Flies were reared in either vials or bottles containing standard Drosophila 

medium (Appendix 1) using a 12h/12h light/dark cycle. Flies were kept at either 

22ºC or 25ºC as stated in text.  

2.1.3  Dissection of Drosophila tissue  

Adult flies were briefly anesthetized on ice, prior to acute dissection of tubules, 

gut or CNS in sterile Schneider’s medium (Invitrogen, UK). For larval samples, 

larvae were dissected live. Whole flies were collected after briefly being 

anesthetized on either ice or CO2.  
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For RNA extraction at least 30 flies were dissected. Protein samples required 

larger volumes of tissue dependant on application. Briefly, >50 flies worth of 

tubules were dissected for Western blot analysis, >150 for IP experiments and 

3000 flies (3000 guts and 6000 pairs of tubules) were dissected for BN-PAGE 

analysis. Equal numbers of males and females were dissected unless otherwise 

stated. During all dissection protocols, 10 flies were placed on ice at a time in 

order to avoid prolonged exposure to cold temperatures. Tissue samples were 

also removed from Schneider’s and placed in appropriate buffers every 30 min in 

order to maintain protein and RNA stability. For all protein work Schneider’s 

medium was supplemented with Protease inhibitor as described in 2.11 

Where appropriate, samples were incubated in 3 ml of sterile Schneider’s 

medium contain the appropriate concentration of either cAMP, 8-Bromo-cAMP, 

CAPA, cGMP, forskolin or IBMX (all Sigma, UK).  

2.1.4 Embryo collection and preparation  

In order to collect Drosophila embryos, adult females were allowed to lay eggs 

on grape juice agar plates (Appendix 1) for approximately 16-24 hrs at 26ºC. 

Embryos were then detached from the egg laying plate using a paintbrush and a 

stream of distilled water, and collected in a fine-mesh sieve. In order to prepare 

embryos for visualization they were first dechorionated, by placing the sieve 

into a 50% solution of bleach in distilled water for exactly 3 min, prior to several 

more washes with water. The embryos were then transferred to 5 ml heptane in 

a glass container using a paintbrush, and 5 ml of 4% paraformaldehyde (in PBS) 

was added, and the solution was shaken vigorously. Embryos were then fixed for 

10-30 min at room temperature. After fixation, the aqueous bottom layer was 

completely removed, and a 5 ml solution of 95% methanol/5% EGTA (ethylene 

glycol tetra-acetic acid, pH 8.0) was added to the glass container, and swirled 

gently. De-vitellinized embryos sank to the bottom of the container. Embryos 

were then transferred to a clean 1.5 ml Eppendorf tube containing 1.0 ml of PBS 

using a Pipette with a cut tip. After the embryos had fallen to the bottom of the 

tube, most of the PBS was removed and several drops of PAT (PBS, 1% Triton-X, 

0.1% bovine serum albumin (BSA)) were added. The embryos were then washed 

an additional three times with PAT, followed by two washes in PBS. To mount, 
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the PBS was removed and VectaShield (Vector Lab) was added, and the embryos 

were transferred to a polylysine slide for viewing as described in Section 2.12 

 

2.2 RNA extraction  

RNA extraction was carried out using the QIAGEN® RNeasy® Mini kit and the 

QIAGEN® RNase-free DNase set as described in the manual (Qiagen, UK). 

Typically 60 tubule pairs (30 flies), 10 heads and 5 whole fly samples were 

dissected as described in section 1.1.3. Whole fly samples were homogenized 

using a sterile blue probe and then sonicated tubule and gut samples were 

briefly sonicated. RNA was eluted in 25µl of RNase-free water or TE buffer. RNA 

quality and quantity was assessed as described in Section 2.8. All RNA samples 

were stored at -80ºC and aliquoted to avoid repeated freeze/thawing. 

2.3 First strand cDNA synthesis  

Superscript™ II Reverse Transcriptase (Invitrogen, UK) was used in order to 

syntheses first strand cDNA from RNA. Reactions were carried out as 

manufacturer’s instructions. All samples were stored at -20ºC. Two samples were 

obtained from each RNA sample in order to facilitate in downstream applications 

and all samples were quantified as described in Section 2.8, thus allowing for 

equal concentrations of each sample to be used.  

2.4 Oligonucleotide Synthesis 

Primers for this study were designed using the application MacVector 11.1.1 or 

the online resource NCBI. Oligonucleotides were then synthesised by MWG 

Biotech custom primer service on a 0.01 μmol scale. All primers ordered where 

purified by High Purity Salt Free (HPSF®) technology, and their quality assessed 

by Matrix Assisted Laser Desorption Ionisation - Time of Flight (MALDI-TOF) 

analysis. A stock concentration of 100µM was obtained by re-suspending the 

lyophilised pellet in ddH2O and stored at -20ºC. A final working concentration of 
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6.6 µM was used in all experiments unless otherwise stated. All primers used in 

this study can be found in Appendix 2.  

2.5 Polymerase chain reaction (PCR) 

For all PCR procedures, cycling was performed using either, a Hybaid OmnE, 

Hybaid PCR Sprint or Hybaid PCR Express-Gradient thermocycler and DNA was 

subsequently separted by Agaorse gel elcetrophersis as described in Section 2.6 

2.5.1 Standard PCR using Taq DNA polymerase 

For standard PCR amplifications a pre-aliquoted Thermoprime with Readymix™ 

PCR Buffer (ABgene, UK) was used. A standard cycle is summarised in Table 2-2. 

For each reaction 1 µl of each primer was added along with 1 µl of template (up 

to 1 ng of plasmid DNA, 100 ng of genomic DNA or 500 ng of cDNA) or ddH2O for 

no-template controls, to 22 µl of mastermix.  

 

Table 2-2 Typical PCR Cycle 
 

Step Temperature Time Comments 
Initial 

Denaturation 
94 °C 3 min To ensure template denaturation 

Denaturation 94 °C 30 sec  
25 – 30 
cycles 

- 
Annealing 50 – 60 °C 30 sec Temperature is set depending on the 

melting temperature of the primers 
used; typically ~5 °C lower than Tm 

Extension 72 °C 30 sec 
– 5 min 

30 sec extension for each 500 bp of 
DNA to be amplified 

Final 
Extension 

72 °C 5 min - 

 

2.5.2  PCR using proof reading Herculase II Fusion DNA 
Polymerase 

For all cloning protocols it was important PCR products contained no mistakes in 

sequence therefore the proof polymerase kit Herculase® II Fusion DNA 

Polymerase (Agilent Technologies, UK) was used, according to the manufactures 
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guidelines. An additional, 5 min incubation at 72°C, with Taq polymerase was 

carried out, in order to obtain poly-A overhangs at the 5’ and 3’ ends of the PCR 

product. This facilitated downstream cloning reactions, as most plasmids used in 

this study require the poly-A overhangs in order to incorporate DNA into them.  

2.5.3 Reverse-Transcriptase  (RT)- PCR 

RT-PCR was required for cloning, primer testing and gene analysis and was 

carried out in two stages. The first stage, cDNA synthesis, is described in 2.3. 

The second stage was carried out via standard PCR protocols as described in 2.5. 

Prior to carrying out PCR, all cDNA was quantified as described in 2.8 and equal 

concentrations of each sample were used. In order to control for possible 

genomic contamination primers used in RT-PCR were designed to span 

exon/intron boundaries. Amplified sequences could range in size from 20bp to 

3.5kb. 

2.5.4  Quantatitive reverase transcritpase (QRT)-PCR 

Gene expression levels were quantified using QRT-PCR. Initially, two-step QRT-

PCR was carried out using the fluorescent double-stranded DNA dye DyNAmoTM 

SYBR® Green (Finnzymes, Finland). Prior to carrying out these experiments, 

cDNA was synthesised from the tissue of interest. Typically for each experiment 

4 biological replicates were generated and 3 technical replicates were loaded 

for each. Primers were designed to produce products <500bp and were possible 

spanned exon/intron boundaries of the gene of interest. Primers were also 

desgined against the gene alpha-tubulin in order that samples could be 

normalized against this gene. The cycle protocol can be seen in Table 2-3. The 

protocol was as manufacture recommends. Briefly, 25 µl 2x SYBR Green Master 

Mix, 2 µl each of primers (0.3 µM final concentration) and 1 µl of template cDNA 

(up to 500 ng) was made up to 50 µl using ddH2O for each sample. 
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Table 2-3 Typical Cycling Condition for Two-Step QRT-PCR 
 

Step Temperature Time Comments 
Initial 

Denaturation 
95 °C 10 min To ensure template denaturation 

Denaturation 95 °C 20 s  
 
35 – 45 
cycles 

- 
Annealing 55 °C 20 s Temperature is set depending on the 

melting temperature of the primers 
used; typically ~5 °C lower than Tm 

Extension 72 °C 5 – 20 s 5 s per 100 bp of product 
Data 

Acquisition 
- - Fluorescence data collection is 

performed after each cycle 
Final 

Extension 
72 °C 5 min - 

Melting Curve 60 – 90 °C 1 s hold per 0.3 °C Used to check the specificity of the 
amplified product 

 

Samples were prepared on ice and loaded into optical grade PCR tube strips (MJ 

Research (StarLab,UK). Two blanks of mastermix only and no template control 

were loaded in triplicate. Prior to the experiment template amplicons were 

generated for each primer pair and standards ranging from 10-1 – 10-7 ng were 

created by serial dilution, allowing for absolute quantification of gene 

expression. Cycling was performed in Opticon™ 3 thermal cycler (BioRad, UK) 

Following amplification Opticon™ 3 software was used in order to generate a 

standard curve. Absolute concentration was determined by placing the Cycle 

Threshold (Ct) value and the values from gene standards (RP49, Tubulin) onto 

the standard curve. Each sample of gene target was then normalized against 

alpha tubulin sample, resulting in a ratio of gene/alpha-tubulin. Results were 

then plotted as means + SEM (where control = 1) using GraphPad Prism 5.0 

software. Statistical significance of data was determined by 2-way ANOVA 

and/or Student’s t tests where appropriate.  

Subsequent reactions were carried out using Power SYBR® Green RNA-to-CT™ 1-

Step Kit. Essentially the protocol is similar to that of 2-step QRT-PCR but omits 

the need to produce cDNA and instead converts RNA during the run. A typical 

cycle can be seen in Table 2-4 
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Table 2-4 Typical Cycling Conditions for One-Step QRT-PCR 
 

Step Temperature Time Comments 
cDNA 

synthesis 
48°C 30 mins Synthesis of cDNA 

Initial 
Denaturation 

95 °C 10 min To ensure template denaturation 

Denaturation 95 °C 20 s  
 
35 – 45 
cycles 

- 
Annealing 55 °C 20 s Temperature is set depending on the 

melting temperature of the primers 
used; typically ~5 °C lower than Tm 

Extension 72 °C 5 – 20 s 5 s per 100 bp of product 
Data 

Acquisition 
- - Fluorescence data collection is 

performed after each cycle 
Final 

Extension 
72 °C 5 min - 

Melting Curve 60 – 90 °C 1 s hold per 0.3 °C Used to check the specificity of the 
amplified product 

 

2.6 Agarose gel electrophoresis 

After PCR was preformed, samples were assessed via Agarose gel 

electrophoresis. Typically a 1% agarose gel was obtained using 0.5x TBE [90 mM 

Tris, 90 mM boric acid (pH 8.3), 2 mM EDTA], containing 0.1 µg/ml EtBr as 

described in Sambrook and Russell, 2001. Once set, gels were loaded into a Mini-

Sub cell GT electrophoresis chambers (Bio-Rad, UK), containing 0.5% TBE. 

Samples were diluted in 6X loading dye [0.25% (w/v) bromophenol blue, 0.25% 

(w/v) xylene cyanol, 30% (v/v) glycerol in water] and a 1KB ladder was loaded in 

order to compare band size (Invitrogen, UK). Gels were typically run at 150V 

until desired distance and visualised using a UV light transilluminator. If 

required, gel extraction was carried out as described in 2.7.   

2.7 PCR Purification 

Gel extraction was carried out using the QIAGEN® QIAquick Gel Extraction Kit 

according to the manufacturers’ instructions. Alternatively PCR products were 

directly purified using QIAGEN® QIAquick PCR purification kit according to 

instructions. DNA was typically eluted in ddH2O and stored at -20ºC. 
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2.8 Quantification of Nucleic Acid  

Nucleic acid quantity and quality was assessed using the NanoDrop 1000TM 

spectrophotometer (Thermo Scientific, UK) according to manufacturers’ 

instructions. All samples were zeroed against a sample of the buffer in which 

they were diluted. Nucleic acid concentrations were measured at 260 nm (A260) 

and 280 nm (A280), quantity given as ng/µl. Purity was measured as a ratio of 

A260/A280, for RNA a value of 2.0 and for DNA a value of 1.8 indicated pure 

samples.  

2.9 DNA Cloning  

2.9.1  E.coli strains and plasmid  

Listed below are the E.coli and plasmid strains used in this study. 

Table 2-5 List of all E.coli strains and Plasmids used in this study 
 

E.coli 
Strain Genotype 
DH5αTM subcloning efficiency 
competent cells (Invitrogen) 

(F- φ80dlacZ ∆M15, ∆(lacZYA-argF), U169, deoR, recA1, 
endA1, hsdR17 (rK-,m

K+), phoA, supE44,λ-, thi-1, gyrA96, 
relA1). 

OneShot® TOP10 Competent 
cells (invitrogen) 

F– mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 
araD139 Δ(ara leu) 7697 galU galK rpsL (StrR) endA1 nupG 

Plasmids 
Name Purpose 
pCR2.1®-TOPO® TA vector Standard cloning and sub-cloning reactions 
pENTR™/D-TOPO® Gateway cloning  
pRISE Construction of RNAi constructs 
pUAST Cloning of fas2-V5 

 

2.9.2 Cloning of fas2-V5 tagged constructs 

To facilitate downstream experiments such as immunopercipitation and 

localisation of individual isoforms, cloning was carried out to generate fly lines 

carrying uas-fas2-PA and uas-fas2-PB tagged with the 25 amino acid epitope V5. 

This short tag allows for easy detection with commercially available antibodies, 

whilst not interfering with protein function.  
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2.9.2.1 Primer Design and PCR amplification 

Primers were designed to amplify the open reading frame (ORF) of fas2-PA and 

fas2-PB and include a 5’ V5 tag. Restriction enzyme sites were also included in 

the 5’ and 3’ region in order to facilitate directional cloning into the pUAST 

vector upstream of 5 UAS open reading frames. PCR products were generated 

and purified as described in Sections 2.5 & 2.7, respectively.  

A summary of the cloning procedure is given in Figure 2-1  
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Figure 2-1 Cloning procedure for production of UAS-fas2-PA-V5 & UAS-fas2-PB flies 
Summary of TA and direct cloning of fas2-PA-V5 and fas2-PB-V5.  (a) PCR product containing 
Poly-A overhangs is introduced into pCR2.1®-TOPO® TA vector via Poly-T overhangs. Once 
amplified the fas2-PA-V5/fas2-PB-V5 is cut  out with 2 distinct restriction enzymes (NotI & XbaI).(b 
& c) Sequentially the vector pUAST is also cut with these two enzymes thus allowing directional 
insertion of the fas2 construct into the vector(d). Once insertion and direction were verified plasmid 
DNA was isolated as described in 2.7 and sent to BestGene inc, for injection into embryos (e).  

2.9.2.2 DNA Ligation 

Initial cloning was carried out as manufactures guidelines 

(http://products.invitrogen.com/ivgn/product/K450002#manuals). Vector/insert 

ratio was worked out prior to the cloning reaction in order to obtain the 

http://products.invitrogen.com/ivgn/product/K450002#manuals
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optimum molar ratio of 3/1 using the following equation: 

 

DNA ligation reactions were carried using the Roche Rapid DNA Ligation Kit 

according to the manufacturers’ instructions. Reactions were incubated at room 

temperature for between 30 min and overnight were appropriate.  

2.9.2.3 Transformation into E.coli 

Plasmids were transfected into either DH5αTM subcloning efficiency chemically 

competent cells (Invitrogen) or TOP10 cells by the addition of 50-100 ng of 

plasmid to 50 µl of cells on ice. Following this samples were incubated on ice for 

15 min followed by a heat-shock at 37°C for 30 s. Samples were then transferred 

back to ice for a further 2 min in order to quench the reaction. 950 µl of L-broth 

(Appendix 1) was then added to each sample and incubated at 37°C for 30 min 

to allow expression of the ampR gene. 50-100 µl of each transformation was then 

spread onto L-Agar plates (Appendix 1) containing 100 µg/ml 

ampicillin/kanamycin and incubated overnight at 37°C. When required, plates 

were also made to contain 50 mg/ml of X-Gal.  

2.9.2.4 Identification of positive clones 

All plasmids used in this study carry an antibiotic resistance gene, either 

ampicillin or kanamycin. Therefore, all E.coli successfully transfected with 

plasmid will grow on plates or liquid culture containing 100 µg/ml of Ampicillin 

or 50 µg/ml of Kanamycin, thus acting as the first level of identification. The 

plasmid pCR2.1®-TOPO® TA also contains the LacZ-α gene ORF in the multiple 

cloning region of the plasmid. This gene encodes the enzyme β-Galactosidase, 

which cleaves X-GAl to produce galactose and 5-bromo-4-chloro-3-

hydroxyindole. This is then oxidized into 5,5'-dibromo-4,4'-dichloro-indigo, and a 

blue colour is produced. Therefore E.coli containing the plasmid will appear blue 

on agar plates containing 50 µg/ml of X-Gal. However if the fragment of interest 
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has been cloned into the vector this results in the disruption of the LacZ gene 

and thus a white colony is produced.   

2.9.3  Purification and Isolation of Plasmid DNA 

Small scale plasmid isolation was carried out using the QIAGEN® Qiaprep Spin 

Miniprep kit. For large scale isolation, as required for germline transformation, 

the QIAGEN® Qiagen Plasmid Maxi, Endofree Maxi kit was used, as 

manufacturer’s guidelines. DNA was eluted in ddH2O and stored at -20°C.   

2.9.4  Validation of Cloning by PCR and Restriction Digest 

As mentioned in the previous text all cloning reactions were validated by both 

PCR and restriction digest.  

2.9.4.1 Validation via PCR 

Primers were designed to anneal to the vector and insert respectively, thus 

confirming both the presence of the insert and the direction. Small amounts of 

individual clones were picked from plates using a sterile toothpick. This was the 

added to PCR reactions as stated in Section 2.5. PCR products were assessed via 

Agarose gel electrophoresis as described in Section 2.6 

2.9.4.2 Validation via Restriction Digest  

Restriction digest experiments were designed using the online resource 

NEBcutter (http://tools.neb.com/NEBcutter2/index.php). Either two enzymes 

were picked, where one cut within the insert and on within the vector 

Alternatively, one enzyme, which cut both areas, was used. Before restriction 

digests were carried out, selected colonies were grown overnight at 37°C in 5 ml 

of L-broth supplemented with 100 µg/ml ampicillin or 50 µg /ml of kanamycin. 

Protocols were as manufacturer’s instructions and reactions were typically 

incubated for several hours at 32ºC prior to running on a 1% agarose gel for 

assessment. Restriction digest was also carried out, when required for sub-

cloning.  

http://tools.neb.com/NEBcutter2/index.php
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2.9.5  Sequencing  

Once cloning was complete plasmid DNA was sent to The DNA Sequencing and 

Services™ at the University of Dundee. Results were analysed using the software 

MacVector. Once confirmation of positive clones was obtained plasmid DNA was 

isolated and samples sent to Bestgene Inc. for the generation of fly lines. 

2.10 Drosophila S2 cell culture 

Once cloning was complete plasmids were transfected into Drosophila S2 cells in 

order to determine the presence of functioning protein.  

2.10.1  Passaging of S2 Cells 

Drosophila S2 cells (Invitrogen, UK) were maintained in complete Schneider’s 

Medium (Invitrogen, UK) supplemented with 10% heat-inactivated Foetal Bovine 

serum) (CSM) at a temperature of 28 o C.  Cells were typically kept in a total 

volume of 15 ml in 75cm3 flasks.  For general maintenance, cells were passaged 

at a density of 107 cells/ml. To do this, cells were re-suspended by gentle 

pipetting and then diluted 1:2.5 by adding 6 ml of cells into 9 ml of fresh CSM. 

2.10.2   Transient Transfection of S2 Cells 

Transient transfection was carried out in tissue culture six-well plates.  24 hours 

before transfection 6 x 106 cells in a volume of 3 ml were placed into individual 

wells.  Each 600 µl transfection, 19 µg of each plasmid DNA and 36 µl CaCl2 (2 M 

- Invitrogen) were added to a sterile 1.5 ml eppendorf tube and made up to a 

total volume of 300 µl with dH2O.  This was mixed well and then added slowly 

over 1-2 min to 300 µl of 2 x Hepes buffered saline (HBS – 50 mM Hepes, 1.5 mM 

Na2HPO4, 280 mM NaCl, pH 7.1; Invitrogen, UK) with continuous mixing. Each 600 

µl reaction was then left to precipitate for 30 min at room temperature before 

being added drop-wise to the seeded S2 cells whilst swirling continually to mix.  

Cells were then incubated for 16 – 24 hr at 28 o C. Following incubation, cells 

were re-suspended by gentle pipetting and transferred to a 15 ml falcon tube. 

Each sample was then pelleted by centrifugation at 1500g for 1 min at room 
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temperature and re-suspended in 3 ml fresh CSM to wash.  This step was 

repeated twice more before cells were re-suspended in 3 ml of CSM and 

returned to the same six-well plate.  If a plasmid encoding a metal inducible 

promoter was used, protein expression was induced in each 3 ml culture by the 

addition of 15 µl of 100 mM CuSO4 and expression was allowed to proceed for 40-

42 hours. 

2.11 Protein Analyses  

2.11.1   Protein Extraction  

Several protocols were used in order to extract protein. For Western Blot 

analysis, typically 50 flies (100 pairs of tubule) or 10 heads were dissected. Once 

dissected tubules were removed from the Schneider’s medium every 30mins and 

transferred into SMART Buffer (Appendix 1). Once all tubules were collected 

samples were snap-frozen with liquid nitrogen and stored at -80°C. Whole flies 

where briefly anesthetised on CO 2 or ice and placed straight into SMART buffer 

before being snap frozen. Once required, samples were defrosted on ice and 

homogenised firstly with a blue probe and secondly with a Microson™ Ultrasonic 

Cell Disruptor. Samples were then centrifuged at 10,000 X g for 10 mins at 4ºC 

using an Accuspin™ Micro R from Fisher Scientific in order to remove cell debris. 

Supernatant was removed and placed in a sterile Eppendorf and stored at -20ºC 

or used directly for Western blot analysis.  

For co-immunopercipitation experiments, a larger quantity of protein was 

required (500-1,000 µg), so typically at least 150 fly tubules (300 pairs) were 

dissected and transferred into ~300-700 µl of 3T3 buffer (appendix). Initially 7 

different detergents were assessed for their ability to solubilise membrane 

proteins, with the hope of finding one that was harsh enough to solubilise the 

protein but not disrupt protein/protein interactions. n-Dodecyl-ß-maltoside 

(DDM) was determined to be the best and was used for all further applications.  

For Blue-Native (BN)-PAGE experiments a far greater quantity of protein was 

required, therefore the tubules and guts of 3000 flies were dissected, resulting 

in 9.49 mg of protein. Samples were collected every 30 min and placed in a 
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small amount of Schneider’s medium. They were then spun at 10,000 X g for 1 

min and the Schneider’s medium was removed before the samples were snap 

frozen in liquid nitrogen. Samples were then re-suspended in NATIVE-PAGE 

sample buffer (Invirtogen, UK), which contained 1% DM detergent and 1in 100 

dilution of protease inhibitor. All aliquots were then combined before sonication 

was carried out using the Microson™ Ultrasonic Cell Disruptor. Samples were then 

centrifuged at 20,000 X g for 30mins at 4°C. Supernatant was removed and 

placed in a sterile Eppendorf. Samples were then treated with Benzonase in 

order to remove any DNA contaminants. Briefly MgCl2 was added to each sample 

to a final concentration of 2 mM along with 1-2 units of benzonase (Sigma, UK). 

Samples were then incubated at room temperature for 60mins before a further 

centrifugation at 20,000 X g for 30 min at 4°C. Supernatant was removed and 

transferred into a sterile Eppendorf and stored at -80°C.  

All protein samples were quantified as outlined in 2.11.2 prior to further work. 

 

2.11.2  Quantification Via Bradford Protein Assay 

Protein levels were quantified using the Bradford protein assay. Typically, 1-5 µl 

of sample was loaded on a 96 well plate and made up to 50 µl with ddH2O. 200 

µl of Bradford reagent (BioRad, UK) was then added. Standards ranging from 0.5 

µg - 5 µg of protein standard (BSA, Sigma) were also loaded as above. Plates 

were then loaded into (plate reader) and absorption rate 590 nm was measured. 

A standard curve was generated from the standard and the protein samples 

plotted onto this curve.  

2.11.3   Isolation of Membrane Protein Fraction by Sucrose 
Gradient 

For BN-PAGE analysis membrane proteins were isolated by sucrose gradient 

centrifugation. Figure 2-2 summarizes this procedure. Briefly, 2.5 M, 2 M and 0.5 

M sucrose dilutions were prepared by diluting 5 M sucrose in TKMD buffer 

(Appendix 1). 15.2 ml of 2.5 M sucrose was gently poured into a 37.5ml 
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UltraClear centrifuge tubes (Beckman Coulter). 2 ml of protein sample was then 

gently laid over this and carefully mixed with the sucrose layer. 12.5 ml of 2.0 M 

sucrose was carefully layered on top of this and a final layer of 0.5 M sucrose 

was added. Ultracentrifugation was carried out at 100,000 X g for 5h, at 4°C. 

Once complete, the membrane fraction can be found between 0.5 M sucrose and 

2.0 M sucrose. This fraction was carefully removed by inserting a syringe into the 

side of the tube. The membrane fraction was washed with 2x lysis buffer before 

a further centrifugation at x 30,000 X g. The supernatant was carefully removed 

and the pellet re-suspended in 100 µl of lysis buffer. 
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Figure 2-2 Summary of Isolation of Membrane Proteins by Sucrose Gradient 
 
2.11.4   Protein Separation Via SDS-PAGE Electrophoreses 

Once samples were prepared and quantified, they were diluted in 6X loading dye 

to a final concentration of 1x and β-mercaptoethanol was added (1:20). Samples 

were then boiled for ~5 min and placed back on ice. Electrophoresis was carried 

out using the Bio-Rad Ready Gel Mini-PROTEAN II Cell Module. Gels were either 

freshly prepared as described in Appendix 1, with either 10 or 16 wells or pre-
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cast Bio-Rad Ready Gels 10-20% Tris-HCl buffered polyacrlyamide gels. A Tris-

Glycine running buffer was prepared as described in Appendix 1. Gels were run 

at 50V for ~30 min, or until the dye front had passed through the stacking gel at 

which point the voltage was increased to 150V and ran for a further 1h-1.5h. 2-5 

µl of ECL Plex Fluorescent Rainbow Marker (Amersham, UK) or BenchMark™ Pre-

Stained Protein Ladder (Invitrogen, UK) was used for sizing proteins on the gel.  

2.11.5   Western Blotting 

Western blotting was carried out in order to quantify a particular protein via 

binding of an antibody. Gels were blotted onto Hybond ECL membrane (GE 

Healthcare, UK), using a Novex Xcell II™ blot module. Briefly, the gel was placed 

on 3mm Whatmen paper, the membrane was then placed over the gel and 

topped with further Whatmen paper and placed in the blot module. Transfer 

buffer was freshly prepared as described in Appendix 1. Transfer was carried out 

at 50V for 1h and the module was packed with ice in order to keep the 

temperature low throughout transfer.  

2.11.6   Western Hybridisation 

After transfer was complete blots were removed and incubated at 4ºC overnight, 

in blocking solution (PBS 01% (v/v) Tween 20, 5% (w/v) Marvel milk). 3x 10 min 

washes with PBS-T (PBS & 0.1% Tween 20) followed. The blot was then incubated 

in primary antibody diluted in blocking solution (at various concentrations) for 

3h at room temperature or overnight at 4ºC.Washes were repeated as before. 

Secondary antibody, diluted 1:5000 in blocking buffer, was then added and 

incubated for 1h at room temperature, followed with 3 x 10min washes with 

PBS-T and a final wash with PBS.  

2.11.7   Western Signal Detection 

Two forms of detection were used in this study. The first utilized horseradish 

peroxide (HRP)-Conjugated antibodies. The signal from these antibodies can be 

detected using chemiluminescence using the ECL™ Western Blotting analysis 

system (GE Healthcare, UK). The blot was incubated at RT for approximately 

1min in equal volume of Reagent 1 and Reagent 2 before being wrapped in Saran 
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Wrap, and exposed to ECL film (GE Healthcare, UK). The blot was exposed for 

several time points in order to obtain optimal exposure and developed using the 

X-Omat film processor.  

The second system utilized ECL Plex conjugated antibodies (GE Healthcare, UK). 

These antibodies are conjugated to a fluorescent probe and blots were directly 

visualized using a Typhoon Trio Variable Mode Imager (GE Healthcare, UK).  

2.11.8   Co-Immunopercipitation (Co-IP) 

For Co-IP experiments, tissues were dissected as described in Section 2.1.3. The 

Pierce® Crosslink IP Kit (Thermo Scientific, UK) was used to carry out IPs. This 

protocol includes the cross-linking of antibody to a membrane, allowing the 

elution of protein without cross-contamination from antibodies. All steps were 

carried out as manufactures guidelines. Once eluted protein were loaded onto a 

standard SDS-PAGE gel and ran as described in Section 2.11.4. Gels were stained 

with SYPRO Orange (Sigma) as manufactures guidelines and visualized using the 

Typhoon. 

2.11.9    Protein separation by Blue Native (BN)-PAGE  

BN-PAGE involves the separation of proteins in 2 dimensions. It is particularly 

useful for the separation of membrane proteins as the proteins are coated with 

Commassie blue, thus hiding their negative charge, allowing proteins to separate 

more efficiently during electrophoresis. The first dimension in BN-PAGE 

separates proteins in their native state, allowing complexes to be kept together. 

The second dimension is carried out under denaturing SDS conditions as 

described in 2.11.4, therefore separating complexes into individual proteins, 

which are then separated by size and charge. Proteins, which may be forming 

complexes with each other, are therefore seen as a line of spots in the 2D gel (as 

seen in Figure 2-3).  
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Figure 2-3 Summary of BN-PAGE procedure  
 

The protocol used in this study was adapted from (Schagger and von Jagow, 

1991) and used the Invitrogen NativePAGE™ Novex® Bis-Tris Gel System. All 

reagents used were from Invitrogen as described in Appendix 1. NativePAGE™ 

Novex® 3-12% Bis-Tris Gels 1.0mm, 10 well gels were placed in the Novex Xcell 

II™ Cell Module and each well was filled with dark blue cathode buffer, samples 

were then loaded prior to filling the cathode chamber to allow easy visualization 

of the wells. NativeMark™ Un-stained ladder was loaded as a standard. Gels were 



Chapter 2  74 

 

ran in the cold room at 150V for 60 min and then 250V for 30-90 min, with an 

expected 12-16 mA at the start, reduced to 2-4 mA by then end of the run. 

When the dye front had reached 1/3rd of the way from the top of the gel, the 

cathode buffer was changed to light blue cathode buffer. Once the run was 

complete the lanes were carefully marked on the gel cassette prior to opening. 

Each lane of interest was then carefully cut out and placed in a sterile weigh 

boat. The gel strip was subsequently equilibrated for SDS-PAGE as follows:  

1. Gel strip was incubated for 15-30mins in 5ml Reducing Agent 

2. Reducing agent was removed and gel strip was incubated in 5ml Alkylating 

Solution for 15-30mins 

3. After decanting Alkylating Solution, 5ml of Quenching Solution was added and 

incubated for 15mins  

All steps were carried out at RT.  

Gel strips were then immediately used for 2D SDS-PAGE. This was done using 

Novex® 4-20% Tris-Glycine pre-cast Gels with a 2D well. Each strip was gently 

inserted into the 2D well prior to loading the gel into the Novex Xcell II™ Cell 

Module. ECL Plex Fluorescent Rainbow Marker (Amersham, UK), was loaded into 

the first lane as a marker for protein size. 1X NU-PAGE MOPS SDS buffer was 

loaded and the gel was run as standard. Once complete the gel was stained with 

SYPRO-RUBY (Invitrogen, UK) as manufacturer’s guidelines and visualized with 

the Typhoon.  

2.11.10 Identification of Proteins by Mass-Spectrometry  

Mass-spectrometry was carried out by proteomics department at the University 

of Glasgow. All peptide data was analysed using the online resource FlyBase and 

FlyMine.   
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2.12 Fluorescence Imaging of Tubules 

2.12.1   Live imaging of GFP fluorescence 

For live imaging of GFP expression in Drosophila, tissues were carefully dissected 

as described in Section 2.1.3 and mounted on pre-treated Poly-L-lysine-coated 

dishes in 100 µl PBS for immediate viewing using the Zeiss 510 Meta confocal 

system. Where several N numbers were required all images were captured at 

exactly the same excitation settings. Where appropriated, cAMP was added to 

dishes as stated in the text. Images were analysed using LSM Image Browser 

software.  

2.12.2   Fixed imaging of fas2-GFP when stimulated with cAMP 

Tubules were carefully dissected as described in Section 2.1.3. They were 

transferred into dishes containing 3 ml Schneider’s medium, with or without 10-4 

cAMP. Samples were incubated for 10 min intervals up to and including 60mins. 

Tubules where then carefully stuck to Poly-L-Lysine pre-treated dishes in 100 µl 

of PBS. PBS was then removed and replaced with ~200 µl of fixation buffer 

(appendix) and incubated for 12 min. This time was determined after several 

experiments to give adequate fixation without disruption to the delicate 

microvilli of the tubules. After 12 min the tubules were washed 3 x 10min in PBS 

solution (appendix). At this point samples were either directly viewed,stained 

with Phalloidin or an immunocytochemirty (ICC) was carried out.  

2.12.2.1 Phalloidin Satining 

Phalloidin is a fungal toxin, which binds to and inhibits F-actin. When conjugated 

to a fluorescence tag, Phalloidin can be used to visualise F-Actin within a tissue. 

In order to do this, tissues must be first perminbalised by incubating samples in 

0.2% Triton-100 diluted in PBS for 20-30 min. 100 nM of rhodamine tagged 

Phalloidin (supplier) was added and incubated for 30 min in the dark. Samples 

were then washed 3 x 10min with PBS. Finally samples were covered with 

VectoSheild and visualized as described in 2.12. 
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2.12.3   Immunocytochemistry (ICC) 

ICC was carried out in order to visualise native protein localization via antibody 

staining. Once fixed and permabilised as described above, samples were 

incubated in PAT solution (Appendix 2) for 2-3hrs in order to block. Primary 

antibody was diluted in PAT solution (varies concentrations as stated in text) and 

incubated with samples ON at 4°C. The following day samples were washed for 

2hrs in PAT solution, changing every 10mins. PAT supplemented with 2% Goat 

serum (Sigma) was then added and the samples were blocked for 4hrs. 

Secondary antibody was again diluted in PAT solution supplemented with 2% goat 

serum. Sample and secondary antibody were incubated ON at 4°C. Subsequently 

samples were washed as before, with the addition of a final wash in just PBS. If 

required, the nuclear stain DAPI was added to samples for 30sec and washed 

with PBS 3 times. Samples were final covered with VectoSheild and visualized as 

stated in Section 2.12.  

A list of all antibodies used in this study, are listed in Appendix 2.  

2.13 Fluid Secretion Assay 

Tubules from 7 day old males and females were dissected as described in Section 

2.1.3, taking extra care to avoid nicking the tubules. Fluid secretion assays were 

then carried out as described in (Dow et al. 1994 a; (Ramsay, 1954). Briefly, a 

Petri dish was filled with paraffin wax and depressions were made. A tiny metal 

pole was placed at equal distances from each depression. Petri dishes where 

then covered with Mineral Oil (Sigma). Each depression was filled with 9µl of 

bathing solution (1:1 Drosophila saline: Schneider’s medium). Pairs of tubules, 

still attached by the ureter, were placed in the bathing solution. One tubule was 

then pulled out of the bathing solution with a fine glass rod and wrapped around 

the metal pole. As the tubules secrete, a bubble forms at the ureter. These 

bubbles are removed every 10mins and measured using an ocular micrometer 

and thus the rate of secretion in nl/min was calculated. Tubules were stimulated 

with 10-4 cAMP, 10-7 Drosokinin and 10-7 cGMP diluted in Saline/Schneider’s 

solution.  
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Figure 2-4 Schematic representation of fluid secretion assay 
Data was analysed using Excel 12.9. and plotted using GraphPrism. Values were 

plotted as rate of secretion ±SEM over time in mins, or as a percentage increase 

in secretion after stimulation. As summary of this technique is seen in Figure 2.4 

2.14 Infection of adult flies with bacteria  

Cultures of E. coli or B. subtilis (Selectrol freeze-dried pellets, TCS Biosciences) 

were grown overnight in 5 ml LB-broth to stationary phase at 37 °C. Bacterial 

challenge of adult flies was carried out using centrifugation, and resuspended in 

an equal volume ofPBS. Flies were injected with 69 nl bacteria using a Nanoject 

II (Drummond Scientific) mounted to a micromanipulator. Microinjection needles 

(N-51-A glass capillaries) were pulled using a moving coil microelectrode puller 

(Campden Instruments limited). The tip of the needle was broken by touching to 

the flat plane of a pair of forceps, and the needle was backfilled with mineral oil 

prior to the uptake of bacteria. Where possible, the same needle was used for 

every fly. Flies were injected at the junction just below the first abdominal 

turgite.  
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3 Results 

3.1 Summary 

This chapter discusses the validation of microarray results for fas2 and the 

expression and localisation of the protein within the Malpighian tubules.  

Quantative Reverse Transcriptase Polymerase Chain Reaction (QRT-PCR), 

confirmed the microarray results, concluding that all three fas2 transcripts are 

highly expressed in the Malpighian tubules, with transcript B being the most 

highly abundant. RT-PCR also confirmed that only the three known transcripts 

are expressed. Protein expression was confirmed by Western blot analysis. We 

have also shown that Fas2 localisation is dynamic during development.  

Both ICC and proteintrap analysis were used to determine the localisation of 

Fas2 protein. Localisation of the two isoforms Fas2-PA and Fas2PB were 

determined using the UAS-GAL4 system. 

Fas2 is localised to the lateral between principal cells and between principal 

cells and invading stellate cells during late stages of embryonic development. 

During early larval development, Fas2 re-localises to the apical brush border in 

the principal cells of the tubule, with expression predominantly seen at the 

lower segment of the tubules. As development progresses, Fas2 expression 

moves up the tubule until all principal cells express Fas2 at their apical border. 

This expression stabilises and is seen in the adult tubules. 

3.2 Introduction 

As discussed in Section 1.4.1.4., FlyAtlas results suggested that fas2 is most 

abundantly expressed in the Malpighian tubules (Table 1.2). As there is currently 

no known function for the protein in the tubules, fas2 is an ideal candidate to 

test the ability of FlyAtlas to detect novel functions of genes and their products. 

FlyAtlas has been shown to be statistically robust and reproducible by QRT-PCR 
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(Chintapalli et al., 2007). However it is possible that probe sets many pick up 

non-canonical expression patterns. Typically there are several probe sets 

corresponding to known transcript sequences. Probe sets for fas2 can be seen in 

Table 3-1. 

Table 3-1 Affymetrix probe sets for fas2 
 

Probe 
Identificati

on 

Transcript Sequence 
Verified 

by 
FlyBase 

1630160_at B Yes 
1640163_at A Yes 
1638956_at C Yes 
1624774_at A, B & C Yes 

, 

Each of the probe sets for fas2 correspond to areas which have been either 

cloned or sequenced previously (Goodman et al., 1991). However it is important 

to validate this data.  

FlyAtlas utilised the Affymetrix Drosophila Genome 2 chips, consisting of 18,880 

probe sets for 18,500 transcripts (Chintapalli et al., 2007). With the completion 

of genome projects, has come the realisation that the complexity of an organism 

does not correlate to an increase in protein-coding sequence, that is the total 

number of genes found in a given genome (Taft et al., 2007). Indeed some have 

argued that it is naïve to believe that proteins control all developmental and 

regulatory events in an organism. For example C.elegans, consist of only 1000 

somatic cells but have essentially the same number of protein coding genes as 

vertebrates (Manak et al., 2006; Mattick, 2007; Mattick and Makunin, 2006; Taft 

et al., 2007). Therefore what makes a human more complex than a worm?  One 

possibility is that more complex organisms have evolved to re-use proteins in 

many different processes and that the introduction of alternative splicing aids 

this (Taft et al., 2007).  Tiling array studies such as that carried out by Manak et 

al have shown untranscribed regions of the genome may also play an important 

role. Their study detected newly predicted distal 5’ exons for annotated genes; 

un-annotated transfrags that don’t correlate with previously annotated areas 

and have little coding capacity and therefore may constitute new RNA classes; P 
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elements that insert into previously unidentified 5’ exons that may explain 

deleterious mutations and 5’ distal start sites (Manak et al., 2006). This along 

with the discovery of micro RNAs and long non-coding RNAs, has led many to 

believe that so-called non-coding regions of the genome are actually extremely 

important (Manak et al., 2006; Mattick, 2007; Mattick and Makunin, 2006; Taft 

et al., 2007).  

In the context of this study, this may be of some relevance, as microarray 

studies such as that carried out for FlyAtlas, by nature only tell you about the 

expression of particular parts of a gene. Therefore it may be that this part 

actually constitutes an RNA regulatory molecule or a previously unidentified 

transcript. It is important therefore to determine if indeed the enrichment of 

the three fas2 transcripts leads to similar levels of protein and if not are we 

perhaps seeing a form of non-canonical transcription. 

3.3 Validation of fas2 gene expression in the Malpighian 
tubules 

3.3.1  Validation of canonical transcription in the tubules  

As discussed in Section 1.4.1.3, RNA-seq is becoming the platform of choice for 

microarray analysis. Not only does the technique not require prior sequence 

information it also has the ability to detect previously unknown transcript 

variants. With the completion of FlyAtlas, a subsequent analysis was carried out 

using the Solexa Genome Analyzer II RNA-Seq system. The data generated can be 

found on the FlyAtlas server www.flyatlas.org. The results for fas2 can be seen in 

Figure 3-1 

 

http://en.wikipedia.org/wiki/RNA-Seq
http://www.flyatlas.org/
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Figure 3-1 RNA-seq data generated by FlyAtlas for fas2  
Known transcript data are compared to those generated from the Solexa RNA-seq run. RefSeq 
indicates all currently known and predicted exons within the fas2 open reading frame. Data shown 
for Malpighian tubules, Whole fly, Testis and Head indicates actual RNAseq data as peaks in 
multiple runs. Transcripts seen in bottom of figure indicate those found via RNAseq sequencing 
and confirm the presence of all three known transcripts within the tubule, as indicated by blue 
colour in all three transcripts 

The importance of this data is threefold. Firstly, the confirmation of the FlyAtlas 

data by an independent technology is very significant. Secondly, the Solexa data 

confirm that fas2 RNA is most highly abundant in the tubules. Thirdly, the data 

confirm the presence of all three transcripts and no non-canonical transcription. 

It is important to note here that the peaks for small exons, such as those seen 

the 3’ region of the gene, are smaller than those for larger exons. This confirms 

one of the caveats of RNA-Seq data, in that the ideal sequence length is ~50bp, 

anything below this size proves difficult to detect.  

To further validate these results, primers were designed to span all exon 

boundaries within the three transcripts. RT-PCR was carried out as described in 

Section 2.5.3. The results can be seen in Figure 3-2. 
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Figure 3-2 Exon boundaries of fas2  
KEY: H=Head; T=Tubule; G=Genomic; 1Kb= 1Kb ladder. Numbers below bands indicate which 
exon boundary is represented. A & B indicate primers designed against unique sequences in 
transcripts A & B  Genomic samples were taken as a control. Note presence of band in genomic 
sample for exon 5-6, this is due to a short intron of 83 nucleotides. The presence of only one band 
in each sample confirms that all expression is canonical. NB RT-PCR was also carried out for 
transcript C and exons 2-3 data not shown.  

These results indicate that only the three known transcripts of fas2 are found in 

the tubules. Further proof was obtained during the cloning of the three 

transcripts, as sequencing data perfectly aligned with the known transcript data 

(Appendix).  

We can conclude, with high confidence that tubules express cardinal transcripts 

of fas2 at high levels.  

3.3.2 Validation of expression levels by QRT-PCR 

The results obtained from FlyAtlas were further validated by QRT-PCR. Primer 

sets were designed to detect each of the transcripts individually and together. 

Whole fly, head and tubule samples were dissected from 7 day old Canton S flies 

(wild-type) and QRT-PCR carried out. Figure 3-3(a)-(c) shows the results 

obtained for transcripts A, B and C, transcript A, transcript B and transcript C, 

respectively and compares them with the FlyAtlas results. All biological 

replicates were dissected within a short period of time where possible in order 

to minimise variation. Figure 3-3 (b) compares the enrichment values for 

transcript A. Both the head and the tubule data show excellent correlation 

between the QRT-PCR results and the microarray results, indicating that 
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transcript A is indeed up-regulated in the tubule when compared to whole fly 

(see below for p-values significance). Figure 3-3 (a) and (c-d), show an 

enrichment of fas2 consistent or higher than that shown in the FlyAtlas data. 

The QRT-PCR data not only validates the array data but it is more robust, in that 

it shows more accurately the level of enrichment. Therefore we can conclude 

that fas2-B appears to be a tubule enriched transcript, with low levels seen in 

the whole fly and the head. Transcript A is enriched in the tubule when 

compared to whole fly but at a much lower level than B. Finally the results for 

fas2-C suggest that it is not significantly up-regulated in the tubule when 

compared to whole fly, but is present in the tubule. It is also important to note 

at this stage that these results do not rule out the possibility of high enrichment 

of fas2 in other tissues or cells within the fly, which is not detectable by these 

methods. For example there is the strong possibility that if it were possible to 

isolate given neurons with in the CNS and carry out a microarray analysis fas2 

would be significantly enriched. However such analysis requires precise 

dissecting and a significant amount of starting material, which at present is not 

achievable. Therefore a more detailed analysis of fas2 expression by in situ 

hybridisation would be preferable in order to detect all tissue/cells in which fas2 

is highly enriched. However for the purpose of this study we can conclude that 

fas2 is highly enriched within the tubule.  

Interestingly recent studies suggest that fas2-C may be more highly expressed in 

the initial segment of the anterior tubules (Chintepalli et al unpublished). A bias 

towards either pair of tubules in one sample may explain this variation. Ideally a 

QRT-PCR should be carried out looking at each set of tubules individually to 

asses these findings.  
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Figure 3-3 (a-d) Comparison of Q-PCR data and FlyAtlas data. 
Shows a comparison of enrichment values, obtained from Q-PCR analysis and FlyAtlas, for fas2 
expression in the head and tubule when compared to whole fly (all samples taken from 7 day old 
Canton S wt). Bars shown in purple indicate Q-PCR results and those in red show FlyAtlas. Figure 
1(a) shows results for all three transcripts (b) shows results for transcript A, (c) transcript B and (d) 
transcript C. Transcripts A and B and 3 transcripts together show significant differences in tubule 
and head enrichment compared to whole fly (*indicates P-value <0.05). C shows no significance 
difference in expression between the three tissues. 

3.3.3 Confirmation of Fas2 Protein Expression in the Malpighian 
Tubules  

In order to determine if high levels of fas2 transcript correlated to protein 

expression, Western blot analysis was carried out. There are two commercially 

available monoclonal antibodies against Fas2, 1D4 and 3B34 both of which were 

obtained from the Developmental Studies Hybridoma Bank (first described in 

(Goodman et al., 1991). The epitope for these antibodies is not published but 
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information provided by the supplier suggests that 1D4 attaches at the 

intracellular/cytoplasmic domains and 3B43 at the extracellular domain (see 

Figure 1-10 (b) for summary). Therefore we would expect that 1D4 detects 

isoform A and 3B43 to detect all three isoforms. The results from the western 

analysis can be seen in Figure 3-4 

 

Figure 3-4 Western Blot Analysis of Fas2 expression  
Western blot analyses were carried out using two commercially available antibodies. Results 
indicate that 3B34 detects isoform B and 1D4 isoform A. H= Head T=Tubule & W=Whole fly  

Whole fly, head and tubule samples were dissected from 7day old Canton S and 

aliquoted into SMART buffer, a buffer used to extract membrane proteins. Figure 

3-4 indicates that 3B34 shows a single clear band in each of the three samples. 

This is somewhat unexpected, as we would expect to see three bands in each of 

the samples corresponding to each of the three isoforms. The band that we do 

see however corresponds to isoform B, which has a predicted weight of 86.3kDa 

(weight cited by www.flybase.org). There are several reasons why we might see 

these results. Firstly this antibody may be specific to isoform B; this seems 

unlikely from the information given about the position of the epitope, as we 

know that the extracellular domain is identical in all three isoforms.  Secondly it 

may be that isoforms A and C may have partners that attach to the extracellular 

domain making the epitope unavailable to the antibody. The fact that there is a 

differential expression pattern for the three isoforms suggests different 

functions so that they may well have different binding partners. Figure 3-4 for 

1D4, shows a clear band ~90kDa in size in the head sample. Both the tubule and 

whole fly samples have no bands, suggesting no protein is present or there is too 

http://www.flybase.org/
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little to be detected.  FlyAtlas reports that fas2-A expression is most abundant 

in the brain and the QRT-PCR results show expression in the head is also high 

which may explain the resulting protein seen in the head sample. However these 

results show no protein in the whole fly or tubule sample. Interestingly there is a 

PEST motif, a motif that targets proteins for rapid degradation, in the C-

terminal domain of isoform A (Grenningloh et al., 1991). This is consistent with a 

protein that is involved in signalling, therefore if Fas2-A is involved in signalling 

in the tubules it may explain why we see no results with 1D4: the protein is 

degraded at a fast rate making detection by Western blot analysis difficult. It is 

also interesting to note here that there is only one example of Western blots 

being carried out with these antibodies, suggesting that perhaps they are not 

ideal for this technique (Pascual et al., 2005). The results for both antibodies 

are somewhat surprising and further controls should ideally be carried out. For 

example it would be beneficial to carry out a Western blot including samples 

from Fas2 null flies and flies over-expressing Fas2 as controls. However time did 

not permit the inclusion of these experiments in this study and the expression of 

the fas2 protein trap lines discussed in Section 3.4.2 confirmed the expression of 

Fas2 protein within the tubules.  

So we can certainly conclude that the B isoform of the Fas2 protein is present in 

the tubules, but must also conclude that Ab. 1D4 is not ideal for our purposes.  

3.4 Protein localisation  

Several techniques were used in order to determine the localisation of Fas2 

protein within the tubules. 

3.4.1 Immunocytochemistry (ICC) 

ICCs were carried out using the two monoclonal antibodies previously used for 

Western blot analysis. Figure3-5 shows the results obtained. ICCs were also 

carried out on larval brain, as a control, staining seen here was consistent with 

previous studies (Goodman et al., 1991). Staining was confined to the principal 

cells of all four tubules and was completely absent from stellate cells. Staining 

was concentrated at the apical surface of the tubules. 
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Figure 3-5 ICC showing localisation of Fas2 protein in the Malpighian tubules of adult flies 
and larval brain 
Malpighian tubules were dissected from 7-day-old Canton s flies and ICCs were carried out using 
either antibody 1D4 (a) or 3B34 (b) Control experiments were also done on brain samples for 1D4 
(not shown) and 3B43 (c) both of which confirmed that antibodies were working as staining was 
consistent with previous studies. Both antibodies show Fas2 is present in the tubules and appears 
to be concentrated at the apical membrane of the tubules. Staining was seen in the principal cells 
the length of both anterior and posterior tubules and was absent in all stellate cells. 

From these results we can determine that Fas2 is expressed only in the tubule 

principal cells and appears to be localised to the apical brush border. This result 

was not consistent with those published previously, showing Fas2 localising to 

the lateral membranes during embryonic development (Campbell et al., 2009). 

Indeed when this study was started the hypothesis was that Fas2 was involved in 

septate junction stability in adult cells, as many proteins which localise to the 

lateral membrane during embryogenesis are involved in septate junction 

stability in the adult tubules (e.g. Dlg). It is therefore possible that subcellular 

localisation of Fas2 changes throughout the course of development. In order to 

determine if Fas2 localisation was dynamic during different stages of 

development, further studies were carried out as described in Section 3.4.2 
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3.4.2 Validation of protein expression & localisation throughout 
development using fas2 protein trap line 

To further validate the expression of Fas2 protein and to determine the 

localisation of the protein throughout development, two protein trap lines for 

fas2 were obtained (kind donation from Klembt laboratory).Protein trap lines are 

generated in order to ‘trap’ a tag or sequence of choice within a native gene 

within the fly (see Section 1.1.3.3). Previous studies have confirmed that this 

protein trap line conforms to wild type fas2 as evident by it’s ability to rescue 

mutant phenotypes and co-localisation with wild type Fas2 (Silies and Klambt, 

2010). In this case an open reading frame for the GFP protein has been inserted 

into the native fas2 gene, allowing visualisation of the protein in vivo by 

confocal imaging.  

3.4.2.1 Localisation during embryonic development  

As mentioned previously, studies had indicated that during late embryonic 

development Fas2 localises to the lateral membrane of MT cells. To validate 

these results late stage embryos were collected as described in Section 2.1.4, 

from the fas2-protein trap line. The results obtained can be seen in Figure 3-6.  
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Figure 3-6 Localisation of Fas2 during late stage embryonic development 
Embryos were collected as described in (section 2.1.4). Once fixed and mounted fas2proteintrap 788 

was visualised using a confocal microscope and a full Z projection was obtained. Image shows a 
16 stage embryo.  

The results clearly show that Fas2proteintrap788 is localised to the lateral membrane 

in the developing tubule. This is consistent with previous studies such as those 

from the Skaer laboratory (Campbell et al., 2009). However as shown Section 

3.4.1 in adult tubules, Fas2 is actually localised to the apical brush border, 

therefore at some stage Fas2 protein must relocate to this area.  

3.4.2.2 Fas localisation during 1st instar to 3rd instar development 

In order to determine if Fas2 relocalises to the apical brush border during larval 

development, larvae were collected as described in Section 2.1.3. Larvae were 

aged by size and by development of mouth pieces as described in (Miller, 1950). 

Four stages of larval development were chosen, First Instar, Second Instar, Third 

Instar and Third Instar wandering larvae. Tubules were dissected, fixed and 

mounted as described in Section 2.12. The results obtained can be seen in Figure 

3-7
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Figure 3-7 (a-h) Localisation of Fas2 protein trap 788 during larval development 
Shows localisation of Fas2 protien trap line 788 (Green) nuclei stined with DAPI  (blue) During larval 
development. Initial expression is seen mainly in the principal cells of the main segment  (a-b). By 2nd 
instar development, expression has moved to the transitional segment were expression is intensified 
(c-d). By 3rd instar, expression of fas2 is seen in all principal cells, the full length of the tubule, with a 
peek in expression at the end of this stage (e-h) The pattern for adult tubules can be seen in Figure 3-
8.  

By early 1st Instar larval development, Fas2Protein trap 788 has already relocated from 

the lateral membrane to the apical brush border of the principal cells. Initially, 

expression is concentrated to the lower tubule and main segment Figure 3-7(a). As 

the larvae reach late 1st instar, Fas2 Protein trap 788  expression increases in the main 

segment Figure 3-7(b), however little staining is seen in the initial segment. By 2nd 

Instar localisation is concentrated in the transitional segment of the tubule and has 

stabilised in the main segment Figure 3-7(c). No staining is seen in the initial 

segment Figure 3-7(d). By 3rd Instar staining is consistent throughout the full length 

of the lower tubule, main segment and transitional segment, Figure 3-7 (e). At this 

stage we also start to see staining in the initial segment of the tubule, Figure 

3-7(f). By 3rd Instar wandering larvae Fas2 Protein trap 788 is seen the full length of the 

tubule and is localised to the apical brush border of the principal cells. These 

results are intriguing as they suggest that Fas2 Protein trap 788  ,expression moves from 

the proximal segment, through the main segment and transitional segment and 

finally to the initial segment, in conjunction with larval development.  

3.4.2.3 Fas2 localisation in the tubules in adult flies 

We have already shown by ICC experiments that in the adult fly, Fas2 localises to 

the apical brush border of the principal cells in the Malpighian tubules, here we 

show, using the protein trap line Fas2 Protein trap 788  ,that Fas2 Protein trap 788  is localised 

to the apical brush border. As discussed in Section 1.2.5.2 the brush border of 

principal cells is made up of long dense microvilli, which provide a large surface 

area in which V-ATPase complexes and mitochondria are densely packed, allowing 

for maximum secretion levels (Bradley and Snyder, 1989; Terhzaz et al., 2009). 

Microvilli are stabilised by F-Actin and can be easily visualised by the bindindg of 

Rhodomine labelled Phalloidin. Fas2 Protein trap 788   lines were dissected, fixed, 
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stained with phalloidin and mounted as described in the Section 2.12.2.1. The 

results can be seen in Figure 3-8. 

 

Figure 3-8 Adult tubule showing Co-localisation of Fas2 Protein trap 788   and F-Actin  
Red = Phalloidin; Green= Fas2; Blue= DAP I.  Phalloidin staining indicates F-Actin projects from the 
base of the microvilli towards the tip. Fas2 Protein trap 788   is localised at the tip and mid point of the 
microvilli, indicated by partial localisation with F-Actin.  

Phalloidin stains the base of the microvilli and staining extends partially towards 

the tip. We can also see F-Actin bundles at the basal side of the tubules. Fas2 shows 

a partial co-localisation with F-Actin from the basal end of the microvilli, however 

Fas2 staining extends to the tip of the microvilli, where F-Actin if not found. These 

data confirms that Fas2 is specifically localised to the microvilli of the brush 

border.  
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3.4.3 Cloning and localisation of Fas2-AV5 & Fas2-BV5 

In order to establish if the three isoforms of Fas2 localise to different areas within 

the tubules, each transcript was cloned upstream of UAS and a small V5 epitope 

was incorporated in order to aid visualisation. It is important to note here that such 

experiments are not completely conclusive in determining subcellular localisation, 

as often the over expression of a protein can lead to the miss localisation, or results 

which are not consistent with the behaviour of the native protein. The addition of a 

tag can also cause proteins to not fold correctly or to miss localise within the cell 

due to loss of binding partners for example. However the V5 tag used in this study is 

small at 25 amino acids and is unlikely to affect the protein. These experiments 

however can be used as a guide for further downstream experiments in order to 

determine isoform localisation. For example if there is a clear difference between 

tagged isoforms, expression of these proteins in a Fas2 null background would 

determine if the tagged proteins act as the Wildtype protein, via rescue 

experiments. Such experiments would also remove the issue of over expression. The 

development of flies over expressing individual isoforms would also aid downstream 

experiments such as those described in Chapter 4, by allowing the dissection of 

which isoform constituted which phenotype.  

As isoform C carries a signal peptide at the N terminus and a GPI linked anchor at 

the C terminus, cloning of this isoform, with a tag proved difficult. Several 

attempts to clone a V5 tag between the GPI signalling motif and the last binding 

domain, proved difficult and time did not permit the conclusion of this cloning. 

However, Fas2-AV5 and Fas2-BV5 were successfully cloned as described in Section 

2.9.2. The cloning protocol for these transcripts proved easier, however it was not 

with problems. Both transcripts, were extremely unstable within plasmids and often 

sequence re-arrangements and deletions occurred. Final cloning of these isoforms 

took several months and unfortunately time only permitted the evaluation of 

expression and localisation. Figure 3-9 shows the results obtained when each 

transcript is over expressed using the principal cell specific driver urate oxidase 

Gal4 (UO). Interestingly transcript A appears to localise to both the basal and apical 

membrane. This is unexpected as little or no basal staining is seen in previous 
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results. This may simply be due to artefact of over expressing the isoform, as it is 

not as highly expressed as Fas2-B: there is not sufficient space so Fas2-A localises to 

the basal membrane. Isoform B however localises to the apical brush border as 

expected.  

 Figure 3-9 Localisation of Fas2-AV5 & Fas2-BV5 

The principal cell driver UO was used in order to drive expression of Fas2-AV5 & Fas2-BV5. Tubules 
where then dissected and ICCs were carried out using an anti-V5 antibody. (a) Fas2-AV5 shows 
localisation to both the apical and basal membrane. The basal staining is somewhat unexpected but 
may be an artefact of over expression. (b) Clear apical staining of Fas2-BV5 is seen as expected. Flies 
were collected and dissected at 7 days old.  
 

3.5 Discussion  

In this Chapter we have validated the FlyAtlas results and shown that fas2 mRNA is 

present at high levels (indeed higher than in the brain). We have also confirmed 

that the Fas2 protein is expressed in the tubules and shows dynamic localisation 

throughout development, shifting from the expected lateral membrane location in 

the embryo to a novel apical microvilli localisation in the larval and adult tubules. 

The multiple lines of evidence employed are important, as an extra non-neuronal 

role for fas2 goes against the body of published work on this gene, which heavily 

emphasises a developmental role in the CNS.  
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During late embryonic development Fas2 is localised to the lateral membrane 

between cells. There are several hypotheses as to the role, which Fas2 may be 

playing here. Firstly Fas2 is known to stabilise NMJ in the larval brain, in 

conjunction with Dlg, which it directly binds through a PDZ domain found in Dlg 

(Kohsaka et al., 2007a). Previous studies have shown that throughout development 

Dlg is localised to the septate junctions of the tubules therefore it may be possible 

that Fas2 is involved in directing Dlg here during embryogenesis, where it remains 

throughout all stages of development (Campbell et al., 2009). As the antibody 1D4 

works more efficiently in embryonic ICCs than larval or adult, we would argue that 

the isoform we see during embryogenesis is Fas2-A. If this is the case it may explain 

why Dlg does not re-localise with Fas2 during larval development: Fas2-A directs 

and tethers Dlg to the junctions, where it then attaches to other junctional proteins 

in order to remain attached to the membrane. Fas2-A is then degraded, but Dlg 

remains attached to other proteins. Dlg protein is highly abundant in adult tubules 

(own personal observations), however FlyAtlas data for adult tubules shows a very 

low level of expression, suggesting that protein levels are determined at 

embryogenesis and this protein remains throughout development and adulthood. 

Fas2 however shows both high levels of protein and transcript levels during larval 

development and adulthood. This further supports the argument that Fas2 may play 

a different role in embryogenesis than other stages. The small size of embryonic 

and indeed early larval tubules, make their inclusion in FlyAtlas impossible at 

present, however we would argue that if we could look at transcript levels and 

indeed protein levels at these early stages we would see a difference: fas2-A would 

be enriched in the embryonic tubules but fas2-B in larval tubules. We would 

therefore hypothesis that the expression of different isoforms of Fas2 during 

different stages of development, leads to different functions of Fas2. In order to 

verify this hypothesis, it would be crucial to carry out transcript specific in situ 

hybridisation throughout the different stages of development. Time however, did 

not permit the conclusion of such experiments in this study.  

We have shown that between embryonic and larval development Fas2 shifts from 

the junctions to the apical brush border. As discussed in Section 1.2.3 although the 

tubules are fully formed by the end of embryogenesis and are functionally active in 
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the transport of organic solutes, they don’t perform high levels of fluid secretion 

until after hatching (Skaer et al, 2005). There are several key reasons as to why this 

is the case. Firstly during embryogenesis the tubules are not only enclosed within 

the body cavity but also within the strong vitelline membrane of the embryo, 

making the excretion of fluids almost impossible. Therefore if the tubules were to 

carry out high levels of fluid secretion the fluid would become trapped within the 

membrane, eventually leading to death. Secondly evidence suggests that there is 

little or no expression of diuretic hormones/agonists, during embryogenesis. Thirdly 

and possibly most importantly the tubules are not fully mature at the end of 

embryonic development and are therefore likely to undergo further changes. We 

know that there are several key attributes required for the high level of secretion 

seen in larval and adult tubules, which are associated with the apical brush border. 

Firstly, the long dense microvilli allow for the large surface area required for fluid 

secretion to take place, along with this they also help control cell structure during 

secretion, when the cells expand and contract (Bradley and Snyder, 1989). One 

could argue that as there is no requirement for these microvilli during 

embryogenesis, they develop during early larval development. Indeed it has been 

shown in the in mosquito tubules, that changes in secretion rate throughout 

development are directly proportional to both the area and length of microvilli 

(Bradley and Snyder, 1989). Previous studies have also suggested that microvilli 

length and density are not static during different satges of the life cycle of insects 

and indeed during hormonal stimulation of the tubules. For example during the 

pupal stage of development in the lepidopteran Calpodes ethhus, there is a marked 

reduction in the need for fluid secretion, therefore the microvilli contract and 

shorten (Bradley and Snyder, 1989). 

The microvilli also play an important role in localisation of mitochondria, which are 

required to energise the V-ATPase activity essential to fluid secretion. Studies in 

both Mosquito and the Lepidopteran, Calpodes ethhus have indicated that during 

stimulation or particular stages of development the contraction or expansion of the 

microvilli is directly responsible for the recruitment of mitochondria to the apical 

brush border (Bradley and Snyder, 1989). During stimulation with cAMP in mosquito 

tubules the microvilli extend and increase in density, along with this more 
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mitochondria are recruited to the brush border via the actin cytoskeleton (Bradley 

and Snyder, 1989). The actin cytoskeleton is essential for microvilli structure and 

without it they would collapse under the strain imposed on the cell during high 

rates of fluid secretion.  

Perhaps the most important requirement for fluid secretion is the recruitment of V-

ATPase complexes to the apical brush border. Previous studies have shown that 

during certain stages of development, the amount of V-ATPase present in the brush 

border is markedly reduced when there is a reduced need for fluid secretion (Gräf, 

1996; Sumner and and Wieczorek, 1995). This is not surprising as the ion pump 

requires a vast amount of energy in order to work and it would be non-economical 

for the cells to constitutively activated. 

To summarise, in order for high levels of fluid secretion to take place, the principal 

cells require: 

1. Long dense microvilli, stabilised by the actin cytoskeleton 

2. Mitochondria recruitment in order to power the V-ATPase 

3. The presence of V-ATPase complexes at the apical brush border. 

With this in mind could Fas2 be involved in one or more of these processes? Perhaps 

the movement of Fas2 along the length of the tubules during larval development 

indicates the development of microvilli; indeed we will present evidence that this is 

indeed the case in Chapter 4.  
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Figure 3-10 Model of Fas2 localisation and function 1 
During embryogenesis Fas2 is localised to the lateral membrane between cells. In larval and adult flies 
Fas2, is localised to the apical microvilli showing some localisation with F-Actin  
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4 Effect of fas2 expression on the development of 
the Malpighian tubules  

4.1 Summary  

In this Chapter we discuss in more detail the use of the GAL4/UAS system and 

describe its use in manipulating the expression of a gene in both a systemic and 

tissue specific manner. Traditional mutational analyses relay on naturally occurring 

mutations and P element insertions in a gene of interest, or the creation of mutant 

libraries by random mutagenesis (e.g. x-ray, ems). Often these mutants pose 

problems when wishing to determine their function in a given developmental stage 

or tissue. In particular genes, which are important in developmental processes, are 

often lethal at an early age, making studies in the adult problematic. For reasons 

discussed in Section clonal analysis would ot be possible with regards to studying 

tubules, therefore the  GAL4/UAS system, is particularly important with regards to 

this study.  

Here we show that systemic down regulation of fas2, utilising fas2RNAiKk driven with 

actinGAL4, results in a lethal phenotype shortly after eclosion. A comparison of 

tubule specific GAL4 drivers indicated that UO was more suited to this study due to 

the expression of C42 in the developing brain, however this was not without 

limitations. Urate oxidase is only expressed in the principal cells of the main 

segment from 3rd Instar development, making embryonic knock down impossible. 

Secondly as fas2 is expressed in all principal cells the full length of the tubule, 

quantifying the level of knockdown was not accurate. Therefore in order to asses 

the true level of knockdown analysis of protein levels via Western blot analysis 

would have been beneficial. Secondly QRT-PCR analysis of larvae expressing 

ActinGal4, driving Fas2RNAiKK could also have been assessed for levels of knockdown.  

We have however found that knocking down fas2 in the principal cells results in the 

depletion and stabilisation of apical microvilli. These results were confirmed using 
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fas2EB112 a heterozygous null line. Further, targeted over expression of fas2 resulted 

in the opposite phenotype. Misexpression of fas2 in the stellate cells appears to 

confirm the role of Fas2 in microvilli development and indeed possibly in Actin 

localisation. The missexpression resulted in increased microvillar length and density 

and an increased actin levels. This in turn led to the apparent distortion of stellate 

cells. 

We also confirmed our previous observations that Fas2 does not alter Dlg 

localisation in larval or adult tubules, but were unable to demonstrate whether if 

there is an interaction between these molecules during embryonic development.  
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4.2 Down regulation of fas2  

4.2.1 Systematic down regulation of fas2 via RNAi, results in death 
shortly after or during eclosion  

In order to determine the effect of down regulating fas2 in the principal cells of the 

Malpighian tubules, several fas2 RNAi lines were obtained from the Vienna 

Drosophila RNAi Centre (VDRC). All lines are homozygotic and all experiments were 

carried out at 26º C unless otherwise stated. To assess the quality of these lines, 

they were first crossed to the ubiquitous Gal4 driver, ActinGal4. Table 4-1 lists the 

RNAi lines assessed and their resulting phenotypes. As ActinGal4 is balanced over 

Cyo, all crosses resulted in 50 % Cyo vs 50% Fas2RNAi. Therefore results indicated in 

Table 4-1 were compared to control offspring expressing CYO.  

VDRC Line  Resulting letahlity 
V8392 Lethality during late pupal 

development 
V8393 Lethality during late pupal 

development, with some escapers 
V36350 Death 3-4 days after eclosion  
V36351 Death 1-2 days after eclosion  
Fas2 KK Lethality during late pupal 

development 

Table 4-1 RNAi lines crossed to Actin Gal4 and resulting lethality 
This table summarises the VDRC lines used in this study and their resulting phenotypes when driven 
with the ubiquitous driver Actin Gal4.  

 

Previous studies have indicated the importance of fas2 in embryonic development, 

larval development and adult neuronal stability (Adam et al., 2003; Beumer et al., 

2002; Davis et al., 1996; Forni et al., 2004; Goodman et al., 1991; Grenningloh et 

al., 1991; Kohsaka et al., 2007a; Lin and Goodman, 1994; Rivlin et al., 2004; 

Szafranski and Goode, 2004). Indeed null mutations in fas2 result in homozygote 

lethality early in embryonic development (Goodman et al., 1991; Grenningloh et 

al., 1991). This is not surprising considering its role in embryonic polarity. 

Mutations, which affect the amount of gene expression, also result in several 

http://stockcenter.vdrc.at/control/product/~VIEW_INDEX=0/~VIEW_SIZE=100/~product_id=8392
http://stockcenter.vdrc.at/control/product/~VIEW_INDEX=0/~VIEW_SIZE=100/~product_id=36350
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different phenotypes, which vary dramatically (as discussed in Chapter 1). We 

would therefore expect a good RNAi, driven by a ubiquitous driver, to result in early 

lethality in the developing fly. As we can see from Table 4.1 none of the RNAi lines 

resulted in embryonic lethality when driven with the ubiquitous driver ActinGal4. 

This suggested that the knockdown level was not sufficient to hinder the roles of 

fas2 in embryonic development. However this may also be a result of the driver 

itself; although ActinGal4 is a ubiquitous driver, levels of transcription are not equal 

in all cells/tissue (our unpublished observations). The RNAi knockdown however was 

enough to cause lethality before eclosion in several lines and therefore the line 

fas2RNAiKK was selected for further analysis. The KK line represents a line with a 

known insertion site, allowing for maximum expression and theoretically less 

leakage (Dietzl et al., 2007).  

Figure 4-1 shows the results obtained from crossing the VDRC line, fas2RNAiKK to 

ActinGal4. The flies are clearly mutated suffering from several abnormal phenotypes, 

which result in death, before or during eclosion. These results suggest, that 

although the RNAi may not result in a substantial knockdown of fas2, the gene level 

is affected enough to elicit a phenotype, consistent with fas2 disruption.  
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Figure 4-1 Effect of down regulation of Fas2 via RNAi on pupal development and eclosion 
(a) shows typical WT development of eclosed fly; (b) Close up image of WT eye shape and 
development; (c) Actin Gal4 driving fas2RNAiKK results in non-eclosion from puapae and also; (d) as 
(c)  

 

4.2.1.1 Conclusion  

This section looks at the effect of down regulating fas2 using the Gal4/UAS system. 

By systemically knocking down fas2 with the ubiquitous driver Actin Gal 4 we have 

shown that the VDRC lines do affect fas2 expression, however or results suggest 

that early development is not affected. This may be the result of a low level of 

knockdown, resulting in several phenotypes but not the expected lethality, as 

evident by the importance of fas2 during early development. As discussed in Section 

1.5.3 the affect of fas2 mutations is both cell and dose dependant, suggesting that 

the affect of knocking down fas2 in different cells and by differing amounts would 

lead to different phenotypes.  
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The driver line may also have an effect on the efficiency of the knockdown, 

however in our experience ActinGal4 is efficient for the systemic knock down of 

genes, suggesting that the results we see here indicate that the RNAi is not at a 

sufficient level to cause similar effects to mutant lines. Indeed as heterozygote 

nulls of fas2 survive adulthood but these RNAi crosses do not, it suggests that some 

cells/tissues where fas2 is vital are expressing ActinGAL4 at a very high level, thus 

leading to death shortly after eclosion. These results suggest that fas2RNAiKK is 

indeed effective at knocking down fas2, but this in turn is dependant on the 

efficiency of the driver line. As shown in Figure 4-3 we went on to further analyse 

the affect of fas2RNAiKK expression in the MT and showed a low but significant level 

of knockdown of fas2 in the tubules. Howeer further analysis of transcript levels via 

in situ hybridisation or the quantification of protein levels by Western blot would 

be beneficial to this study. Time however did not permit the conclusion of such 

experiments.   

The most important observation in this section is the importance of cell specific 

knockdown of genes, in order to determine their function. If we wished to 

determine the function of fas2 in the adult Malpighian tubules for example, we 

could not use these crosses, as they die before they reach adulthood. Flies which, 

carry mutations in fas2, also may not be effective in studying its role in the tubules. 

For example we know the line fas2 EB112 is homozygous lethal, therefore 50% is 

enough to maintain the fly but several phenotypes are observed (Goodman et al., 

1991). We cannot be certain that this would be the case in the tubules. Therefore 

in an ideal world we would wish to knock down fas2 in the tubules ONLY, as much 

as possible, thus avoiding early lethality.  

4.2.2 Knockdown of fas2, specifically in the Malpighian tubule 
principal cells 

4.2.2.1 Determination of GAL4 driver line to be used in this study 

In order drive expression of fas2RNAiKK in the principal cells of the tubules, two 

driver lines are available; C42, which drives expression in the principal cells, the 
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full length of the tubule (Sözen et al., 1997) and UO which drives expression only in 

the main segment principal cells from larval stage 3 (Friedman and Johnson, 1977; 

Terhzaz et al., 2010). As fas2 is expressed in all principal cells in 3rd instar larvae, 

initial experiments concentrated on utilising C42. However it became apparent that 

theses flies were eliciting phenotypes not consistent with tubule specific 

abnormalities, such as locomotor defects and unusual eye pigmentation. This 

suggested that C42 was driving RNAi expression in cells/tissues other than the 

tubules. In order to assess this C42 was used to drive expression of nuclear GFP, the 

full CNS of 2 day old pupal flies were then dissected and counter stained with the 

neuropil stain, nC82. The results are seen in Figure 4-2 

 

Figure 4-2 c42GAL4 driven nuclear GFP expression in the CNS of 2 day old pupa 
(A) Maximal Z projection of a 2 day old pupal CNS exhibiting nGFP (green) expression in the 
developing photoreceptor lamina (arrows) and suboesophageal ganglion (arrowheads) within the brain 
and expression in the ventral nerve cord (VNC; white box). Dorsal view; anterior top. (B) Maximal Z 
projection of a 2 day old pupal VNC exhibiting extensive nGFP (green) expression in all ganglia. 
Ventral view; anterior top. neuropil counterstained with anti-nC82 (magenta). Scale bars = 50μm. 

Results clearly show expression in regions were fas2 is important, such as the 

developing photoreceptor lamina and several projecting neurons. For the purpose 

of this study it was decided that C42 would be excluded from further experiments 
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in order to eliminate any phenotype occurring from non-tubule expression. As 

crosses utilising UO showed no obvious phenotypes and previous observations 

suggested little expression of UO outside the tubules (data not shown), similar 

experiments were not carried out with UO in order to asses expression outside the 

tubule. In hindsight these experiments would prove useful in confirming UO as a 

tubule specific driver.  

The following experiments, therefore used the more tubule specific driver UO.  

4.2.2.2 QRT-PCR analysis confirms knockdown efficiency of fas2 is dependent 
on driver line  

As discussed in the previous section, experiments suggested that the knockdown 

efficiency of the VDRC lines was effective, but driver dependent, therefore 

fas2RNAiKK was crossed with UO, tubules were dissected and knockdown efficiency 

was measured via QRT-PCR. These experiments were carried out at two different 

temperatures, as the Gal4/UAS system is known to be more effective at higher 

temperatures (Duffy, 2002). Therefore flies were reared at 22°C and 26°C. The 

results obtained can be seen in Figure 4-3 . These results confirm the knockdown of 

fas2, but only at the higher temperature of 26°C. Although there appears to be only 

a 30% knockdown in tubules, these results are likely to underestimate the actual 

knockdown efficiency, as fas2 is still expressed in the transitional, initial and lower 

segments of the tubules. In retrospect the knockdown efficiency would have been 

better detected by analysis of fas2 expression in the larvae of flies expressing 

fas2RNAiKK driven with actinGAL4. Again assessment of protein levels via Western blot 

would also be beneficial.  

We can, however conclude that fas2RNAiKK is effective at knocking down fas2 in the 

principal cells of the main segment when driven with UO, as is evident by microvilli 

defects detailed in Section 4.3 
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Figure 4-3 Analysis of RNAi efficiency by QRT-PCR 
Comparison of the knockdown efficiency of fas2RNAiKK when driven with UO in the tubules at 22º.C 
(left) and 26ºC (right). Experiment compares the levels of fas2 transcript in both parental lines and the 
cross. Results indicate that at 26° there is a small but significant decrease in fas2 expression when 
compared to parental lines. P values are as follows UO parent compared to cross: P= 0.0457, Fas2 
parent compared to cross: P= 0.0345 (t test analysis)  

 

4.2.3 Down regulation of fas2 in the principal cells does not affect 
the localisation of Dlg 

As discussed in Chapter 3, it was initially thought that as Fas2 interacts with Dlg 

extensively throughout development, this would be the case in the Malpighian 

tubules. Indeed we have shown that during embryogenesis Fas2 localises to the 

lateral membrane of cells, consistent with Dlg staining (Campbell et al., 2009). 

However as is shown in Figure 4-4, Dlg remains localised to the junctional region in 

adult tubules unlike Fas2, which re-localises to the apical brush border. However as 

we can see in Figure 4-4 (b) Fas2 is always found directly apical to Dlg. We have 
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also discussed the possibility that Fas2 may be involved in the localisation of Dlg to 

the junctions during embryonic development. In order to test these hypotheses, we 

assessed the localisation of Dlg in adult tubules expressing fas2RNAiKK driven with 

UO Gal4. As can be seen in Figure 4-4 (b) the localisation of Dlg is unaffected and 

shows WT staining. From this we can conclude that it is probable that Fas2 does not 

interact with Dlg in the Malpighian tubules. These results do not however rule out 

the possibility that fas2 interacts with Dlg during embryogenesis. Perhaps it would 

be better to asses this using an embryo specific, tubule Gal4 line, as UO is only 

expressed from 3rd instar (Friedman and Johnson, 1977; Terhzaz et al., 2010). 
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Figure 4-4 Localisation of Dlg in WT and fas2RNAiKK tubules 
(a) Mid sectional scan of tubule. Localisation of fas2 (fas2 proteintrap778) is shown to be directly apical to 
Dlg, Dlg stained with Anti-Dlg (1 in 500).  (b) Tubules expressing fas2RNAiKK driven with UO Gal4 
show no mis-localisation of Dlg as is evident by its WT staining (see (c) for WT staining. SC = Stellate 
cell PC= Principal cell.  

4.3  Fas2 plays an important role in microvilli development 
and possibly Actin localisation  

As Fas2 localises to the apical brush border of the principal cells, we analysed the 

effect of down regulation on the structure of both the tubules and the microvilli. As 

Fas2 plays an important role in fasciculation in neuronal development, we can 

speculate that it may be involved in the fasciculation of the microvilli during 
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development. In order to determine if this was indeed the case, tubules from the 

following fly lines were dissected and their tubules stained with Rhodamine labelled 

Phalloidin (a fungal toxin which binds F-actin):  

• Canton S (WT)  
• Fas2 EB112 (Heterozygote null) 
• Fas2RNAiKK X UO 
• Fas2EP (Endogenous fas2 tagged with UAS) X UO 

 
All experiments were carried out at 26ºC. These lines were chosen in order to 

establish the affect of both over and under expression of fas2. The results can be 

seen in Figure 4-5. The line fas2EB112, is a 50% loss of function mutant, this line was 

included in order to determine if increasing the level of fas2 down regulation to 

50%, in all principal cells, would result in a more severe phenotype. As is evident in 

Figure 4-5, fas2 appears to be extremely important in both the development and 

stabilisation of the microvilli. Knocking fas2 expression down with fas2RNAiKK, results 

in less dense shorter microvilli, Figure 4-5 (c). Evidence suggests that fas2 EB112, 

elicits a stronger phenotype than fas2RNAiKK, suggesting that perhaps whether or not 

all cells are knocked down for fas2 may be important. Over-expression of fas2, 

using the fas2EP line crossed with actinGAL4 results in the opposite effect, in that 

microvilli are much longer and very dense. This line has been previously 

characterised and been shown to effectively over express endogenous fas2 (Kraut et 

al., 2001).  

We can also determine that in fas2 mutant and RNAi expressing tubules F-Actin 

staining appears to be reduced and the opposite is again true in the over-expressor. 

What cannot be determined from this analysis, is if Fas2 is involved directly in F-

Actin localisation, or if simply less, shorter microvilli result in less F-Actin. These 

results are intriguing as they suggest a very important role for fas2 within the 

principle cells of the tubules. Time did not permit a full analysis of these results 

and in order to fully determine the role of Fas2 in microvilli stabilisation a full 

quantitative analysis of microvilli length is required. For each experiment at least 9 

tubules were dissected and assessed. However, breakdown of the confocal 

microscope and software analysis resulted in incomplete scanning and generation of 

images for all tubules assessed. We can however conclude from these initial 
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experiments that the microvilli development and/or stabilisation was affected in all 

tubules assessed if fas2 was over expressed or knocked down.  

 

Figure 4-5 Effect of over-expression and under-expression of fas2 on microvilli development 
Adult tubules were dissected, fixed and stained and visualised on the same day. F-Actin staining with 
Rhodamine labelled Phalloidin. (a) Canton S tubule shows dense evenly spaced microvilli. However 
down regulating fas2 using a mutant (50% loss of function) or by RNAi results in less dense, shorter 
microvilli (b) & (c). Over-expressing fas2 results in the opposite effect, where microvilli are more 
densely packed and longer (d). Interestingly fas2 EB112 shows a much more striking phenotype than 
fas2RNAiKK, suggesting that increasing the knockdown by ~20% significantly increase the mutant 
phenotype. Each experiment consisted of ≥ 9 tubules and this figure represents a typical picture.  

4.3.1 Miss expression of Fas2 in the stellate cells results in 
oversized microvilli and misshapen cells  

In order to determine the effect of mis-expressing fas2 in the stellate cells, the 

stellate cell Gal4 driver C724 was used in order to drive isoform B of fas2YFP or 

fas2EP. As was the case with C42, C724 driven lines also showed evidence of non-

tubule expression (for example expression is seen in several axonal projections in 

the nervous system data not shown), however at present there is no stellate cell 

driver, which does not show some neuronal expression.  Although the stellate cells 
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contain apical microvilli they are much shorter in both length and width than the 

principal cells (Wessing and Eichelberg, 1972). If indeed fas2 is involved in 

microvilli development, it may be possible to induce longer denser microvilli in the 

stellate cells by mis-expressing fas2. Indeed this is the case as can be seen in Figure 

4-6. The microvilli are not only slightly longer but they also span a much wider area 

when compared to normal stellate cells. Interestingly however this phenotype is not 

consistent in every stellate cell as can be seen in Figure 4-6. This suggests that 

some stellate cells have the ability to utilise fas2 in order to develop longer 

microvilli and others within the same tubule do not. Further analysis of the stellate 

cells, which exhibit abnormal apical microvilli, also indicated that they were 

misshapen, appearing more principal shaped than stellate. There are several 

hypotheses for why this might be the case. Firstly simply the growth in width of the 

microvilli results in a distortion of the shape of the cell. Secondly fas2 may be 

involved in determining the polarity of the principal cell, therefore mis-expressing 

it in the stellate cell, results in the cell losing polarity, disrupting the growth of the 

stellate shape. Further analysis of fas2 mis-expression in the stellate cells is 

required. However time did not permit this to be undertaken in this study. Again 

quantification of microvilli length is also required. 

We can therefore conclude that mis-expressing fas2 in the stellate cells results in 

some cells developing longer wider microvilli, resulting in distortion of the cell 

shape.  
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Figure 4-6 Miss expression of fas2 in the stellate cells results in a border apical surface, with longer microvilli 
(a) Canton S tubule stained with Phalloidin, indicates the short microvilli present in the stellate cells (b) Shows localisation of miss expressed fas2 
within the stellate cells, localised to the microvilli. One stellate cell shows abnormally long and broad microvilli (b),(c) &(d). This experiment was 
carried out multiple times and similar results obtained each time.  
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4.4 Conclusions 

In this Chapter we discuss the effect of down regulating, over-expressing and 

mis-expressing fas2 on the structure and development of the tubules. Adopting 

the Gal4/UAS system, we were able to affect the expression of fas2 in the 

tubules. Our results indicate the importance of this technique, as global mutants 

of fas2 often die early in development or shortly after eclosion, making it 

impossible to fully study the effect of fas2 depletion in the tubules of adult flies.  

We have shown that over expressing fas2RNAiKK with the ubiquitous Gal4 driver 

ActinGal4, results in death shortly after eclosion. These results indicate that 

fas2RNAiKK line is effective at decreasing fas2 expression levels. However as the 

flies do develop to pupal stages, suggesting that knockdown is not sufficient to 

cause early lethality. This section indicates the importance of tissue specific 

regulation of gene expression in order to determine the function of a gene in an 

adult tissue.  

RNAi knockdown of fas2 in the tubule principal cells of the tubules results in 

significant knockdown of the gene transcript in comparison to control parental 

flies. We therefore assessed the tubules of knock down flies for abnormal 

development, with a particular focus on the microvilli, as this is where I have 

shown Fas2 to localise. Results indicated that fas2 is important for both the 

development and/or stabilisation of the microvilli. Where fas2 is down 

regulated, microvilli are shorter and less dense compared to control lines. We 

also show that the heterozygote null line fas2EB112 also elicits a similar, although 

more pronounced phenotype. Over-expression of fas2 in the principal cells 

results in the opposite phenotype: with longer and denser microvilli. Actin 

localisation also appears to be affected in these lines: however it is unclear if 

this is an indirect result of less or more microvilli, or if the localisation of Actin 

is directly affected by the loss or gain of fas2 expression. Further experiments 

are required in order to determine if Fas2 is required for the development of the 

microvilli in the tubules or simply for the stabilisation of the microvilli in the 

adult tubules. In order to distinguish between the two, experiments such as 

those shown in Figure 3-7 should be carried out in order to determine at which 

stage during development the microvilli are affected. If Fas2 is important for the 
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developing microvilli the we would expect to see a phenotype early in 

development. However if Fas2 is required for microvilli stabilisation then we 

may only see a phenotype in adult tubules.  

Mis-expression of fas2 in the stellate cells resulted in the development of slightly 

longer, border microvilli when compared to control lines. Interestingly, this 

effect was not evident in all stellate cells expressing fas2, suggesting that fas2 

mis-expression phenotypes are dependent on the cell they are expressed in. 

There are several hypotheses as to why this may be the case. Firstly studies 

suggest that although tubules predominantly consist of principal and stellate 

cells, these cells in them self show different gene expression profiles. Suggesting 

that although cells are named stellate cells there are actually atomically 

identical cells with different gene expression patterns. Therefore the affect, 

which Fas2 over expression has on a given stellate cell may be dependent on the 

expression of other genes in the cell. Secondly the level of drive expression 

often differs in cells with in the tubule. So it is likely that cells, which are not 

misshapen may be expressing lower levels of fas2. Cells, which exhibit the 

microvilli phenotype, also appear to be misshapen, exhibiting a more principal 

cell shape than stellate.  

In conclusion this chapter indicates an important role for fas2 in the 

development and stabilisation of apical microvilli in the principal cells of the 

Malpighian tubules. An updated model of Fas2 localisation can be found in Figure 

4-7 
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Figure 4-7 Model of Fas2 localisation and function 2 
During embryogenesis Fas2 is localised to the lateral membrane between cells. (a) In larval and 
adult flies Fas2, is found to be localised to the apical microvilli showing some localisation with F-
Actin.(b) When Fas2 is depleted this leads to disrupted, shorter less dense microvilli in the adult 
flies and F-actin.staining is also depleted. The opposite is true when Fas2 is over expressed.  
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5 Interactions of fas2 with cAMP & Actin and their 
relationship to fluid secretion  

5.1 Summary  

We have shown in the previous chapter that fas2 is important for microvilli 

development, stabilisation and possibly for Actin localisation. As discussed in 

Section 1.2.5.2, microvilli are extremely important for the secretion phenotype of 

the tubules (Bradley and Snyder, 1989). Microvilli provide the surface area and 

stability required for secretion to take place. Studies suggest that when tubules are 

stimulated with cAMP, microvilli elongate, actin reorganisation occurs and finally, 

V-ATPase and mitochondria are recruited and activated (Bradley and Satir, 1981; 

Bradley and Snyder, 1989; Brown et al., 1993; Paunescu et al., 2010). Without 

microvilli tubules would lack not only the surface area required for mitochondria 

and V-ATPase accumulation but also the flexibility required to contract at such a 

high level. Therefore we can hypothesis that as fas2 affects microvilli length, 

density and stabilisation we should see an effect on fluid secretion when fas2 

expression is up or down regulated.  

We have discussed the possibility that Fas2 acts as a cell adhesion molecule in order 

to stabilise the microvilli, however this may not be the only function of Fas2 in the 

tubules. Previous studies have indicated that Fas2 plays an important signalling role 

in the nervous system (Mao and Freeman, 2009). Fas2 is also responsible for the 

recruitment of proteins both to and from the NMJ, in response to cAMP (Beumer et 

al., 2002; Kohsaka et al., 2007a). As cAMP is known to stimulate the recruitment of 

mitochondria and V-ATPase to the microvilli, there is the possibility that Fas2 may 

also be involved in this process. Secondly actin remodelling is an important process 

during secretion and recent studies have indicated the importance of cAMP in this 

process (Beyenbach et al., 2009; Karas et al., 2005). Indeed recent studies have 
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indicated that Fas2 may interact with several actin proteins, hinting at the 

possibility that Fas2 may be involved in actin organisation in the tubules. 

This Chapter will discuss the experiments carried out in order to test these 

hypotheses and the results obtained. This study has concentrated on the role of 

cAMP in fluid secretion and has not looked at other stimuli such as cGMP or CAPA.  
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5.2 Wild type secretion response to cAMP  

It has been known for several years that cAMP stimulates fluid secretion in the 

Malpighian tubules of D.melanogaster (Dow et al., 1994b; Riegel et al., 1998). 

Studies carried out using the adapted Ramsay assay, as described in Section 2.13, 

determined that low molar concentrations of cAMP elicit a marked increase in fluid 

secretion (Riegel et al., 1998). The direct mechanisms by which cAMP illicit this 

response is as yet unclear, however several recent studies have suggested the 

involvement of actin rearrangement, V-ATPase and mitochondria recruitment and 

activation and microvilli growth/rearrangement. Tubules are thought to actively 

take up cAMP through, an as of yet unidentified membrane transporter (Riegel et 

al., 1998). Many studies involving cAMP stimulation utilise the cell permeable 

analogue Dibutyryl-cAMP (db-cAMP), allowing for full uptake of the nucleotide 

through the cell membrane. cAMP is actively taken up by the principal cells, but 

dbcAMP is thought to enter both the principal and stellate cells equally. As stellate 

cells are known to respond to intracellular cAMP (Kerr et al., 2004), cAMP is 

preferred, for use as an agonist, because of its cell-specific action of the fas2 

expressing principal cells. We therefore carried out Ramsay secretion assays 

(Section 2.13), to compare the effect of cAMP and db-cAMP on secretion in wild 

type Canton S tubules. The results can be seen in Figure 5-1. As there was no 

significant difference between cAMP and dbcAMP, cAMP was used for all further 

experiments.  
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Figure 5-1  Comparison of the effect of 10-6M cAMP & db-cAMP on the secretion of Canton S 
tubules 
Tubules were dissected from 7-day-old Canton S flies and basal secretion was measured for 30 min 
before the addition of 10-6 M cAMP or 10-6M db-cAMP. Secretion was then measured for a further 30 
min. (a) Represents secretion curve of both sets of tubules (b) The percentage increase in secretion at 
each time point after stimulation, compared to mean basal secretion rate. There is no significant 
difference in secretion response to cAMP & db-cAMP (P = >0.05). Figure represents typical secretion 
assay, assay repeated 3 times with ~9 tubules per assay.  
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5.2.1 Determination of optimal cAMP concentration 

Previous studies suggest a cAMP concentration of as little as 200nmol L-1 elicit an 

effect on fluid secretion (Riegel et al., 1998). In order to asses the dose response to 

cAMP in tubules, secretion assays were carried out using three different 

concentrations of cAMP. The results can be seen in Figure 5-2

 

Figure 5-2 Effect of different concentrations of cAMP on the fluid secretion rate of Canton S 
tubules 
Tubules were dissected from 7-day-old Canton S flies and basal secretion was measured for 30 min 
before the addition of 10-3M, 10-4 M & 10-7 M cAMP (as a final concentration in bathing solution). 
Secretion rate was then measured for a further 30 min. Represents secretion curve of all sets of 
tubules. 10-3 produced the highest response in secretion. Figure represents typical secretion assay, 
assays were repeated 3 times with ~9 tubules per assay.  

Results indicate that 10-3 M cAMP, induces the highest response, however as this is 

somewhat higher than the level of cAMP found in vivo, a lower level of cAMP would 

be more beneficial to experiments. As 10-4 M and 10-7 M gave a similar response a 

concentration of 10-6 M, was used for all subsequent experiments. This 

concentration in is line with that used in previous experiments (Dow et al., 1994b).  
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5.2.2 Conclusions  

We have confirmed previous observations that cAMP induces an increase in fluid 

secretion rate in the Malpighian tubules and that cell preamble analogues are not 

required, which may elicit a phenotype not consistent with in vivo mechanisms.  

5.3 Down regulation of Fas2 results in a decrease in fluid 
secretion response to cAMP  

5.3.1 Introduction 

We have shown that the down regulation of fas2 expression by RNAi or by mutation, 

leads to a decrease in microvilli length, density and stability. In order to assess if 

this phenotype affects fluid secretion, Ramsay assays were carried out as described 

in Section 2.13. As the microvilli are disrupted, we would expect to see not only a 

decrease in basal secretion but also in stimulated secretion. We therefore analysed 

both basal and cAMP stimulated fluid secretion in both RNAi and fas2EB112 mutant 

lines.  

5.3.2 Down regulation of Fas2 via fas2RNAiKK driven with UO 

The results obtained when fas2RNAiKK is driven with the principal cell driver UO, can 

be seen in Figure 5-3. There is no significant difference in basal secretion rates in 

the tubules of progeny of the cross, when compared to both parental lines. This is 

of interest as it suggests that the decrease in microvilli length and density does not 

seem to have an effect on basal fluid secretion.  
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Figure 5-3 Effect of down regulating Fas2, via RNAi, on fluid secretion rate of the tubules in 
response to cAMP 
Tubules were dissected from 7-day-old UO, Fas2RNAIKK and UO x Fas2RNAiKK progeny and basal 
secretion was measured for 30 min before the addition of 10-6 M cAMP. Secretion rate was then 
measured for a further 30 min. (a) Indicates secretion curve of three sets of tubules. (b) Indicates 
percentage increase in fluid secretion at each time point after addition of cAMP. For each time point 
the knock down tubules show a significantly smaller percentage increase when compared to parental 
lines. Figure represents typical secretion assay, assay repeated 3 times with ~9 tubules per assay. * in 
(b) indicates P value > 0.05 P values are indicated in table below statistical analysis student t test 
unpaired 

 P Value 
10 min 20 min 30 min 

UO parent vs cross  0.029 0.001 0.0016 
Fas2RNAiKK parent vs 
cross  

0.002 0.005 0.0002 

Parental vs parental  0.6459 0.5378 0.9885 
 
This result however may again be skewed, due to the driver line UO. UO is only 

expressed in the main segment of the tubules and indeed is not equally expressed 

in all cells (See Figure 5-8). Therefore not all cells will have a decreased microvilli 



Chapter 5  127 

 

structure and therefore may compensate for the knockdown cells. Although we do 

not see a decrease in basal secretion levels, there is a significant decrease in 

secretion response to cAMP. These results are intriguing as they suggest that 

perhaps the stability and surface area of the microvilli is more important after 

stimulation with cAMP. Indeed several studies have suggested that microvilli 

extension is crucial to cAMP induced secretion, if however the microvilli are shorter 

and less dense then perhaps they cannot extend. A reduction in microvilli length 

and density would also decrease the amount of space available for incoming 

mitochondria and V-ATPase subunits, again resulting in a decrease in fluid 

secretion. There is also the possibility that Fas2 may play another role in fluid 

secretion downstream of cAMP. We will present evidence that this is indeed the 

case.  

Therefore we can hypotheses that Fas2 knock down leads to an instability in 

microvilli, which does not affect basal secretion levels but is sufficient to disrupt 

accelerated fluid secretion induced by cAMP.  

5.3.3 Down regulation of fas2: EB112 heterozygous null.  

We have shown in the previous Chapter that the heterozygous null line fas2EB112, 

showed a more pronounced microvilli phenotype than the RNAi knock down of Fas2 

using UO. We therefore carried out secretion assays in order to determine if these 

lines also showed a defect in cAMP induced secretion response. The more 

pronounced phenotype may also elicit a decrease in basal secretion, which is not 

seen in the RNAi cross. The results obtained can be seen in Figure 5-4. The EB112 

line consists of a P-element insertion in the endogenous fas2 locus. This insertion 

leads to the loss of Fas2 production and therefore a Fas2 null fly. As the P-element 

insertion is homozygous lethal, the P-element insertion is balanced over the x 

chromosome balancer FM7w. With this in mind only female flies could be used for 

this experiment as males carrying the P element insertion die before eclosion. 

Interestingly fas2 mutant tubules, elicit a decreased response to cAMP but also have 

a highly increased basal secretion level. This was an unexpected result, as it 

suggests that these tubules are able to secrete at a higher basal level. It may 
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suggest that highly deformed microvilli lead to a ‘leaky’ tubule, which lacks the 

ability to control fluid secretion, without well-structured apical constraints.  

 

Figure 5-4 Effect of 50% reduction of Fas2 on fluid secretion response to cAMP 
Tubules were dissected from 7-day-old females, fas2EB112/Fm7 & Fm7 lines and basal secretion was 
measured for 30 min before the addition of 10-6 M cAMP. Secretion rate was then measured for a 
further 30 min. (a) Indicates secretion curve of three sets of tubules. (b) Indicates percentage increase 
in fluid secretion at each time point after addition of cAMP. There appears to be a slight increase in 
basal fluid secretion For, each time point the cross tubules show a significant decrease in percentage 
decrease when compared to parental lines. Figure represents typical secretion assay, assay repeated 
3 times with ~9 tubules per assay. P values are indicated in table below statistical analysis (student t 
test unpaired)  

 P Value 
10 min 20 min 30 min 

Fas2EB112  vs FM7 0.4551 <0.0001 0.0006 
 

5.3.4 Conclusions 

These results confirm that fas2 plays an important function in the Malpighian 

tubules, as halving the gene results in a significant decrease in fluid secretion 

response to cAMP. The results however indicate that fas2 may play a role other 

than microvilli stabilisation.  
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5.4 Over expression of fas2 in the principal cells of the 
tubule results in a significant increase in fluid secretion 
in response to cAMP  

5.4.1 Introduction 

In the previous section we showed that down regulation of fas2 results in a 

significant decrease in response to cAMP induced fluid secretion. We therefore 

hypothesised that the opposite would be true if we over expressed fas2 in the 

principal cells. In order to test this hypothesis we conducted the following crosses: 

UO x fas2YFP, UO x fas2EP and finally UO x fas2extraYFP. A description of each of these 

lines is given in Table 2-1. Briefly fas2YFP is a UAS line, consisting of several GAL4 

binding domains (UAS) upstream of the open reading frame of fas2-B fused to YFP. 

Therefore driving expression of this construct results in over expression of only 

isoform B of Fas2, where localisation and expression can be assessed by YFP 

visualisation. fas2EP consists of a insertion of UAS upstream of the endogenous fas2 

locus, resulting in expression of both endogenous Fas2 and over expression of 

endogenous Fas2 via a Gal4 driver line. fas2extraYFP is similar to fas2YFP but in this 

case only the extra cellular domain of isoform B is over expressed.  

5.4.2 Over expression of fas2-YFP with the principal cell driver UO 
results in a slightly increased response to cAMP 

In Chapter 3 we showed that over expression of isoform B of Fas2 tagged with YFP, 

resulted in increased microvilli length and density. In order to assess if this in turn 

leads to an increased fluid secretion rate we carried out equivalent experiments to 

those carried out in Section 5.3. The results obtained can be seen in Figure 5-6. The 

results indicate that there is no significant difference in basal secretion. There is 

however a small, but significant increase in stimulated response to cAMP. We can 

therefore conclude that we see the opposite effect as that seen when we decrease 

fas2 expression.  
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Figure 5-5 Effect of fas2YFP over expression in principal cells on fluid secretion in response to 
cAMP 
Tubules were dissected from 7-day-old UO, fas2YFP & UO X fas2YFP  lines and basal 
secretion was measured for 30 min before the addition of 10-6 M cAMP. Secretion 
rate was then measured for a further 30 min. Secretion curve of three sets of 
tubules are shown. For time points 40,50 & 60 min there is a significant increase in 
percentage increase in secretion in the tubules from the cross when compared to 
BOTH parent (as indicated by * = P<0.05 
 P Value 
 10 20 30 40 50 60 
UO parent 
vs cross  

0.3734 0.2758 0.0815 0.0429 0.0451 0.0451 

FasYFP vs 
cross  

0.4444 0.2228 0.0650 0.0124 0.0058 0.0058 

Parental vs 
parental  

0.9764 0.8051 0.8998 0.8652 0.6711 0.6711 
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5.4.3 Over expression of endogenous fas2 increases fluid secretion 
response to cAMP  

We have shown that over expressing endogenous fas2 with the principal cell driver 

UO leads to a marked increase in microvilli length and density. The line fas2EP, 

leads to an increase in expression of endogenous fas2 when driven with UO. 

Therefore all three transcripts will be over expressed in comparison to fas2YFP 

(transcript B). We may expect therefore to see a more pronounced secretion 

phenotype when driving the expression of fas2EP compared to fas2YFP. We once 

again carried out secretion assays, stimulating with cAMP.  

Figure 5-6 shows the results obtained when fas2EP is driven with UO. As with 

previous results we see no significant difference in basal secretion levels. However 

there is a highly significant increase in stimulated response to cAMP. This increase 

is extremely remarkable as it represents a ~400% increase when compared to 

parental response to cAMP. Interestingly this response is not evident until 20 min 

after stimulation, this timeframe allows for the recruitment of V-ATPase and 

mitochondria to the microvilli. However it is tempting to believe that fas2 may be 

playing a role other than microvilli development, as the secretion response is so 

markedly increased. A large surface area would allow increased space for 

mitochondria and V-ATPase recruitment, but without an increased signalling 

mechanism to recruit and activate the mitochondria and V-ATPase, this space 

would not be utilised. Therefore we would argue that fas2 is playing a further role 

down stream of cAMP. It is also interesting to note that marked difference between 

over expression of one transcript and all three. This result suggests that although 

transcripts A & C are expressed at lower levels in the tubules they too may play an 

important role. 
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Figure 5-6 Effect of over expression of fas2 via fas2EP x UO on cAMP induced fluid secretion in 
the Malpighian tubules  
Tubules were dissected from 7-day-old UO, Fas2EP and UO x Fas2EP lines and basal secretion was 
measured for 30 min before the addition of 10-6 M cAMP. Secretion rate was then measured for a 
further 30 min. (a) Indicates secretion curve of three sets of tubules. (b) Indicates percentage increase 
in fluid secretion at each time point after addition of cAMP. For each time point the tubules from the 
cross show a significant increase in percentage increase when compared to parental lines. Figure 
represents typical secretion assay, assay repeated 3 times with ~9 tubules per assay. P values are 
indicated in table below statistical analysis = unpaired t Test  * indicates where value is significant  
(P=< 0.05) when compared to BOTH parental lines.   

 P Value 
10 min 20 min 30 min 

UO parent vs cross  0.6860 0.0041 0.0011 
Fas2EP parent vs cross  0.0085 0.0001 0.0014 
Parental vs parental  0.2252 0.096 0.4644 
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5.4.4 Stimulation with Drosokinin increases response to cAMP  

In order to determine if the increase in cAMP involved activation of the V-ATPase, 

tubules were further stimulated with drosokinin after incubation with cAMP. 

Drosokinin activates the chloride shunt conductance of the stellate cells, when 

activated, this is rapidly followed by a collapse in the transepithelial potential 

(Beyenbach et al., 2010; Bradley, 1989; Maddrell and O'Donnell, 1992; Maddrell, 

1981; O'Donnell et al., 1996). The movement of Cl- across the membrane allows for 

the formation of a circuit, thus increasing secretion. Chloride movement is 

activated when V-ATPases are activated, thus giving an overall control of fluid 

secretion. When the tubules are stimulated with cAMP, H+ ions are pumped across 

the membrane via V-ATPase, this then forces the movement of Cl- out of the 

stellate cells. When drosokinin is added to the bathing solution, it effectively 

removes the brake from the Cl- shunt and Cl- then ‘floods’ across the membrane 

(Maddrell and O'Donnell, 1992). This in turn leads to an increase in V-ATPase 

activity and thus fluid secretion increases further. As we have only over expressed 

fas2 in the principal cells of the tubules any effect drosokinin has on fluid secretion 

would be through a secondary effect on V-ATPase activity. We therefore repeated 

the secretion assays carried out in Section 5.4.3, with the addition of 10-7 drosokinin 

at 60 min. If over expression of fas2 increases the activity of V-ATPase, either 

indirectly or directly then addition of drosokinin should further increase fluid 

secretion. The results obtained can be seen in Figure 5-7. Again we see a significant 

increase in fluid secretion response to cAMP in tubules over expressing fas2. With 

the addition of drosokinin at 60 min (30 min after cAMP stimulation), we see a 

further increase in secretion response when compared to parental lines. We can 

therefore speculate that fas2 acts upstream of V-ATPase activation, thus increasing 

either the amount of V-ATPase in the microvilli or indeed the amount of activated 

V-ATPase.  
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Figure 5-7 Effect of over expression of fas2 in the principal cells on fluid secretion response to 
cAMP and Drosokinin 
Tubules were dissected from 7-day-old UO, Fas2EP and UO x Fas2EP lines and basal secretion was 
measured for 30 min before the addition of 10-6 M cAMP. Secretion rate was then measured for a 
further 30 min. After 60 min 10-7 M drosokinin was added and secretion measured for a further 30 min. 
(a) Indicates secretion curve of three sets of tubules. (b) Indicates percentage increase in fluid 
secretion at each time point after addition of cAMP & drosokinin. For each time point the tubules from 
the cross show a significant increase in percentage increase when compared to parental lines. Figure 
represents typical secretion assay, assay repeated 3 times with ~9 tubules per assay. P values are 
indicated in table below. Student unpaired t Test  * indicates where value is significant when compared 
to BOTH parental lines.(P< 0.05)   

 P Value 
 10 20 30 40 50 60 
UO parent 
vs cross  

0.5042 0.0153 0.0592 0.929 0.0028 0.0342 

Fas2EP vs 
cross  

0.0225 0.0044 0.0332 0.1215 0.0342 0.0156 

Parental vs 
parental  

0.0092 0.0549 0.3247 0.5447 0.0719 0.2143 

 

It is important to note here that the response of tubules from the progeny of UO x 

fas2EP, over expressing fas2, is slightly decreased when compared to previous 

experiments. When compared to the parental line fas2EP, the cross exhibits a 
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significant increase in response to both cAMP and drosokinin at all time points 

except 40 min. However when compared to the UO parent, the cross is only 

significantly different at time points 20, 50 and 60. These experiments were carried 

out several months after the initial secretion assay experiments and it may be 

possible that the stock of cAMP was slightly degraded, resulting in an overall 

decrease in cAMP response. It is also possible that in these experiments UO was 

expressed at a lower level resulting in a decreased level of fas2 over expression. As 

can bee seen in Figure 5-8 the expression of UO in cells is not consistent throughout 

the tubule and indeed both temperature and feeding patterns of the flies will 

affect its expression. These experiments highlight the importance of day-to-day and 

fly batch variance in secretion assay experiments. Due to the decrease in response 

seen at this stage, new cAMP was ordered and previous experiments repeated in 

order to confirm the heightened response to cAMP in tubules over expressing fas2. 

Results indicated that secretion phenotypes seen in 5.4.3 were indeed a true 

phenotype. Unfortunately, time did not permit the repeat of the above experiment. 

Although slightly variable these results indicate that drosokinin does indeed have an 

additive effect on increased secretion response to cAMP, in tubules over expressing 

fas2. We would therefore argue that fas2 acts upstream of cAMP in order to directly 

or indirectly increase the recruitment and activation of V-ATPase.  

5.4.5 Expression of only the extracellular domain of fas2 results in 
increased response to cAMP when compared to controls  

Previous studies have suggested that the extracellular domain of fas2 is sufficient 

to cause accumulation of fas2 at the NMJ (Kohsaka et al., 2007b). These results 

were of great interest as they suggest that interactions with intracellular proteins, 

such as Dlg, are not required for the accumulation of Fas2 at the NMJ. These results 

also indicated the importance of homophilic cell adhesion, as the expression of Fas2 

at the postsynaptic region directly effected the accumulation of Fas2 at the 

presynaptic region (Kohsaka et al., 2007b). As the extracellular domain contains the 

PDZ binding domain of Fas2 it is not surprising that it is responsible for cell 

adhesion and targeting. In order to determine if the extracellular domain of Fas2 is 

responsible for the increased secretion response of tubules over expressing Fas2, 
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secretion assays were carried out as before. We utilised the line Fas2extraYfP (kindly 

provided by Prof.Nose lab) in order to over express the extracellular and the 

transmembrane domain of Fas2. These lines express fas2 extracellular domain 

tagged to YFP. As can be seen in Figure 5-8, Fas2extraYFP localises to the apical brush 

border as expected, suggesting that the lack of the full intracellular domain does 

not affect localisation.  

 

Figure 5-8 Localisation of Fas2extraYFP  when driven with UO 
fas2extraYFP was driven with the UO driver. The lack of a full intracellular domain does not affect the 
localisation of Fas2extraYFP. This figure also indicates the differential expression levels of UO as evident 
by differing levels of YFP. Flies reared at 26ºC 

This figure also indicates the differential levels of UO expression in different cells 

of the main segment, as indicated by differing levels of fas2extraYFP over expression. 

We can also see that areas where fas2 is more highly expressed appear to have 

denser microvilli.  

5.4.6 Secretion response to FasEXTRA over expression 

As fas2extraYFP localises to the apical brush border as expect, secretion assays were 

then carried out. As previously, fas2extraYFP was driven with the principal cell driver 

UO. Results obtained can be seen in Figure 5-9. These results indicate that only the 

extracellular domain of Fas2 is required to elicit a significant increase in fluid 

secretion rate in response to cAMP, when compared to parental controls. Although 

predicted due to evidence from previous studies, these results are somewhat 
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surprising. Figure 3-10 indicates the predicted position of Fas2 within the apical 

microvilli. As the extracellular domain is likely to be positioned within the lumen, it 

is surprising that this domain has an effect on fluid secretion. As cAMP is taken up 

by the tubules it acts to increase fluid secretion through several mechanisms within 

the cell. We would therefore expect proteins within the cell to affect fluid 

secretion rate. We will, however present evidence that Fas2 acts through a 

feedback mechanism in order to increase fluid secretion. It also interesting to note 

that the percentage increase in fluid secretion is again substantially lower than that 

seen when over expressing Fas2EP. This again highlights that over expression of 

more than one isoform of Fas2, as in Fas2EP , results in a more pronounced 

phenotype than the over expression of only one isoform, as seen in Fas2extraYFP and 

Fas2YFP.  
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Figure 5-9 Effect of over expression of fas2EXTRA on the secretion rate of Malpighian tubules in 
response to cAMP stimulation 
Tubules were dissected from 7-day-old UO, Fas2EP and UO x Fas2EP lines and basal secretion was 
measured for 30 min before the addition of 10-6 M cAMP. Secretion rate was then measured for a 
further 30 min. Af (a) Indicates secretion curve of three sets of tubules. (b) Indicates percentage 
increase in fluid secretion at each time point after addition of cAMP. For each time point the tubules 
from the cross show a significant increase in percentage increase when compared to parental lines. 
Figure represents typical secretion assay, assay repeated 3 times with ~9 tubules per assay. P values 
are indicated in table below statistical analysis = unpaired t Test  * indicates where value is significant 
(P=<0.05) when compared to BOTH parental lines.   

 P Value 
10 min 20 min 30 min 

UO parent vs cross  0.0039 0.0064 0.0002 
Fas2 Extra parent vs 
cross  

0.0038 0.0270 0.0014 

Parental vs parental  0.6271 0.3675 0.5510 
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5.5 Possible signalling mechanism for fas2 induced fluid 
secretion 

5.5.1 Introduction  

We have presented evidence here that fas2 is necessary to induce a stimulated fluid 

secretion response to cAMP. We have however not determined if this is simply due 

to microvilli integrity, or if other factors downstream of cAMP involve fas2. As we 

have discussed in previous sections, disruption of fas2 expression does not lead to 

significant changes in basal fluid secretion rates, hinting that it may also play 

another role, other than microvilli stabilisation. Indeed Fas2 has been shown to play 

an important role as a signalling molecule in the CNS (Mao and Freeman, 2009). It 

therefore may be possible that Fas2 plays a role in signalling the movement of other 

proteins to and from the microvilli in response to cAMP. As discussed in previous 

sections there are, several proteins, which are known to move in response to cAMP, 

including V-ATPase subunits and Actin(Beyenbach et al., 2009; Bradley and Satir, 

1981; Karas et al., 2005). In the CNS, Fas2 is known to actively move away from the 

NMJ, inducing the movement of other proteins both to and from the NMJ (Beumer 

et al., 2002). During embryogenesis Fas2 is also known to be crucial in determining 

polarity, also through its associations with other proteins (Szafranski and Goode, 

2004). It therefore may be possible that Fas2 moves away from the microvilli, in 

response to cAMP and thus allows the movement of actin and/or V-ATPase. In order 

to test this hypothesis, we utilised the fas2proteintrap788 line in order to determine if 

Fas2 protein moves in response to cAMP.  

5.5.2 Fas2 re-localises to the basolateral membrane and back in 
response to cAMP stimulation 

We utilised the fas2proteintrap788 line in order to visualise Fas2 protein localisation in 

response to cAMP. Initial experiments were carried out under live conditions, 

however this did not allow enough time to gather information from every focal 

plane, meaning that movement on the surface of the tubule may be missed. For 
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these reasons tubules were incubated for 10, 20, 30, 40, 50 and 60 min intervals in 

10-6  M cAMP or as a control Schneider's medium, fixed and visualised using a 

Confocal microscope . All samples were prepared on the same day and each image 

was acquired using the same Confocal settings. For each sample set, a Z-stack was 

taken in order to visualise the tubules at all focal planes. Each sample consisted of 

at least 9 tubules. Time however did not permit the imaging of each tubule per set, 

however the same phenotype was observed in each case. The results can be seen in 

Figure 5-10. 
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Figure 5-10 Localisation of Fas2 in the tubules in response to cAMP stimulation 
Tubules were dissected as described in Section 2.12.2. They were subjected to incubation with 10-

6 cAMP in Schneider’s medium or Schneider’s medium as a contorl,for the following time points 10, 
20, 30, 40, 50, & 60 min. Tubules were then fixed and mounted before being visualised using a 
confocal microscope. All images were acquired using the same settings and experiments were 
carried out on the same day. Controls for each time point showed no difference when compared to 
each other and first time point tubules. Each panel indicates a top (basal cortex), middle (lumen 
and apical brush border) and bottom (basal cortex) slice of the tubule.  

The results indicate that Fas2 movement is indeed induced by cAMP stimulation. 

After 10 min, Fas2Proteintrap 788 becomes much higher at the basal membrane than 

in control tubules. Fas2Proteintrap 788 is also increased at both surfaces of the 

tubule when compared to control. There also appears to be less Fas2 Proteintrap 788 

at the apical microvilli, suggesting that Fas2 Proteintrap 788 has been internalised 

and moved to the basal membrane. After 20 min of incubation Fas2 Proteintrap 788 

starts to appear in vesicles along the surface of the tubule and the basal 

membrane. By 30 min vesicle number has increased (as assessed by manual 

counting of vesicles) and Fas2 Proteintrap 788 appears to move back towards the 

apical brush border. After 40 min of incubation, little Fas2 Proteintrap 788 is seen at 

the basal membrane and vesicles appear to fuse with the apical brush border. 

Fas2 Proteintrap 788 in Vesicle also starts to appear in the lumen of the tubules 

suggesting that Fas2 Proteintrap 788 is being secreted into the lumen or the 

degradation of Fas2 Proteintrap 788 leads to YFP appearing in the lumen. By 50 min, 

luminal Fas2 Proteintrap 788 has increased and very little is seen at surface of the 

tubules. By 60 min, Fas2 Proteintrap 788 is only present at the apical brush border 

and staining resembles that of control tubules. These results may indicate a 

‘signalling’ role for Fas2 in response to cAMP movement. Intriguingly, a 

comparison of these results with secretion assay results, also indicate a 

signalling role. After a 10 min cAMP incubation tubules appear to show no 

significant increase in fluid secretion in tubules were fas2 is over expressed 

(Figure 5-6). If we compare this to the results seen in Figure 5-12, where after 

10 min Fas2 Proteintrap 788 has moved to the basal membrane, it suggests that the 

movement back to the apical brush border is more important for an increased 

fluid secretion rate. It is therefore possible that Fas2 may play an important role 

in trafficking a protein or proteins back to the apical brush border. Several 

studies indicate the importance of Fas2 as a ‘signalling’ protein in the nervous 

system, whereby the movement of Fas2 to and from the synapse or neural 

muscular junction leads to the signalling of other proteins to move towards or 
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away from the junction (Beumer et al., 2002; Kohsaka et al., 2007a; Szafranski 

and Goode, 2004). Therfore Fas2 acts a a signal for the accumulation or 

dissaosciation of other proteins either via cell adhesion or protein/protein 

interactions.  

As we can see from Figure 5-10 Fas2 Proteintrap 788 appears to be secreted into the 

lumen of the tubules after 50 min incubation with cAMP. As it would appear that 

Fas2 is important for the stabilisation of microvilli and it is present at all times, 

we would expect Fas2 which has been secreted, to be replaced. Indeed most 

proteins that are involved in trafficking are often recycled once used. We 

therefore determined the mRNA levels of fas2 after a 3hr stimulation with cAMP, 

at three different concentrations. Results can be seen in Figure 5-11 

 

Figure 5-11 Comparision of fas2 expression in response to different concentrations of cAMP 
Tubules from 7-Day-old Canton S were incubated for 3hr in varying concentrations of cAMP. 
Results are expressed as ratio compared to control, where control = 1. Fas2 expression 
significantly increases in a dose dependent manner. P values are as follows: 10-4M p = 0.0245; 10-6 
M = 0.0196; 10-9 M = 0.0085. N=4 mRNA levels were measured by QRT-PCR as described in 
Section 2.5.4 
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These results indicate that fas2 expression in the tubules is increased in 

response to cAMP, in a dose dependent manner. We can therefore conclude that 

fas2 may play a role in trafficking, as it appears to be up regulated in response 

to cAMP, suggesting the need to replenish protein concentrations. Although 

these results differ from those of the secretion assay seen in Figure 5-2, where 

there is no significant secretion response between 10-6 M 10-4 M cAMP, this does 

not undervalue these results. The main reason for this is that during secretion 

assay stimulation the tubules are exposed to cAMP for 30-40min and measured. 

In the case of the above experiment the tubules are exposed for 3 hr. It 

therefore may be possible that tubules exposed to higher concentrations of cAMP 

for a longer time require more Fas2 production in order to stabilise the microvilli 

and continue high levels of secretion. It would therefore by important to repeat 

these experiments in order to compare the results, by using similar time points. 

However time did not permit these experiments.  

5.5.3   Conclusions  

The results presented in this section suggest that Fas2 may play an important 

signalling or trafficking role in response to cAMP stimulation in the tubules. 

These results are intriguing, as we know that V-ATPase subunits are recruited to 

the apical brush border in response to cAMP stimulation (Beyenbach et al., 2009; 

Dames et al., 2006; Rein et al., 2008b). The vesicle staining seen in Figure 5-10, 

therefore may represent the movement of V-ATPase subunits back to the apical 

brush border along with Fas2. Interestingly a recent proteomics study suggested 

that Fas2, may interact with several Vo subunits of V-ATPase (Rees et al., 2011). 

Although we were able to show that Fas2 co-localises with V-ATPase in un-

stimulated tubules, time constraints meant that this could not be studied further 

with regards to cAMP stimulation (Figure 5-12).  
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Figure 5-12 Co-localisation of Fas2 & V-ATPase  
Tubules were dissected from 7-day-old Fas2proteinntrap788 flies and ICC was carried out as described 
in Section 2.12.3 using an antibody against the Vha55 subunit of V-ATPase. Image shows each 
channel separately and merged. Clear co-localisation of Fas2 and Vha55 is seen at the apical 
brush border 

 
 
 
A present these results only hint at a role for Fas2 in ‘signalling’ or trafficking 

and several key experiments are required in order to establish if this is the case. 

For example experiments such as those carried out in Chapter 6 would be 

beneficial to determining Fas2 interacting partner, both during stimulated and 

un-stimulated conditions. At present we can only conclude that cAMP cause 

dynamic changes in Fas2 Proteintrap 788 localisation, resulting in an increase in 

secretion rate.  
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5.6 Association of the Actin cytoskeleton and fluid 
secretion 

5.6.1  Introduction  

Another possible mechanisms, by which Fas2 induces fluid secretion is an 

interaction with the actin cytoskeleton. We have shown that actin appears to 

increase at the apical brush border when fas2 is over expressed in the principal 

cells of the tubule. Other studies have indicated the re-arrangement of the actin 

cytoskeleton is important for normal fluid secretion response to cAMP (Karas et 

al., 2005). We therefore studied the association of F-Actin with fluid secretion 

and its interactions with Fas2. Several studies in mammalian systems have hinted 

at the importance of the actin cytoskeleton, in recruitment of mitochondria and 

V-ATPase to the microvilli (Paunescu et al., 2010).  

5.6.2  Fas2 co-localises with F-actin after 10 min stimulation with 
cAMP  

In order to determine if Fas2 movement in response to cAMP stimulation may 

involve the movement of F-Actin as well, the experiment carried out in Section 

5.5.2 was repeated with the addition of Phalloidin staining, in order to visualise 

F-Actin localisation. Unfortunately due to the breakdown of the confocal 

microscope these experiments could not be completed. However preliminary 

results indicate that after a 10 min incubation with cAMP Fas2proteintrap788 re-

localises and co-localises with F-Actin filaments at the basal cortex of the 

tubule. These results can be seen in Figure 5-13. 



Chapter 5  150 

 

 

 

Figure 5-13 Localisation of Fas2proteintrap788 and F-Actin in response to cAMP stimulation for 10 
min 
Tubules were dissected and incubated for 10 min in 10-6 M cAMP., fixed and mounted. (a-c) 
Represent incubated tubules where green = fas2proteintrap788 red= Phalloidin and yellow = Co-
localisation. (d-f) are un-stimulated tubule expressing fas2proteintrap788 and stained with phalloidin. No 
Co-localisaitonis seen in the control tubule, but fas2 and F-actin clearly co-localise when stimulated 
with cAMP. (g) mid section of tubule shown in (d-f) in order to show Fas2proteintrap788 is present in the 
tubule Each image shows the basal cortex of the tubules. 
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5.6.3   Actin de-polymerization and polymerization are necessary 
for normal secretion phenotype.  

Previous studies have indicated the importance of actin polymerisation and de-

polymerisation in order to elicit a normal secretion phenotype. In response to 

cAMP or a blood meal, mosquito tubules re-organise their actin cytoskeleton. It 

has been suggested that this allows the movement of V-ATPase and mitochondria 

into the microvilli (Bradley and Snyder, 1989; Karas et al., 2005; Paunescu et 

al., 2010). Incubation with the F-Actin inhibitor Phalloidin led to no marked 

decrease in basal secretion in mosquito tubules. However there was a decrease 

in secretion response to cAMP. Cytochalasin D, which initiates de-polymerisation 

of F-actin, in contrast has both a reduced basal and cAMP stimulated secretion 

rate when compared to controls. In order to establish if this is the case in 

D.melanogaster tubules, secretion assays were carried out as before with the 

addition of Cytochalasin D and Phalloidin. The result can be seen in Figure 5-14 
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Figure 5-14 Effect of Cytochalasin D and Phalloidin on basal an cAMP induced fluid 
secretion 
Tubules were dissected from 7-day-old Canton S and basal secretion was measured for 30 min 
before the addition of Cytochalasin D, phalloidin or PBS+DMSO. Secretion rate was then 
measured for a further 30 min. After 60 min 10-6 M cAMP was added and secretion measured for a 
further 30 min. (a) Indicates secretion curve of three sets of tubules. (b) Indicates percentage 
increase in fluid secretion at each time point after addition of Cytochalsin D, phalloidin or Vector. 
Cytochalasin D appears to increase basal secretion and has no significant effect on cAMP induced 
secretion. Phalloidin however, significantly reduces both basal and stimulated response. The 
addition of the vector solution (PBS + 0.001% DMSO) had no effect on fluid secretion. Figure 
represents typical secretion assay, assay repeated 3 times with ~9 tubules per assay. P values are 
indicated in table below statistical analysis = unpaired t Test. * indicates where value is significant 
when compared to BOTH parental lines (p=<0.05) 

 P-value 
 10 20 30 40 50 
Cyto vs 
control 

0.0462 0.0616 0.0205 0.7740 0.9768 

Phalloidin 
vs control 

0.3739 0.2028 0.5219 0.0223 0.0006 
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Our results indicate that Phalloidin has both a significant effect on basal 

secretion and cAMP stimulated secretion. This result is consistent with the 

hypothesis that F-Actin filaments, de-polymerises in response to cAMP, in order 

for the actin cytoskeleton to re-organise and aid the recruitment of 

mitochondria and V-ATPase subunits to the microvilli. As Phalloidin inhibits this 

process it is not surprising that both basal and stimulated secretion rates are 

lowered. These results are somewhat similar to those found in mosquito tubules, 

but differ in that basal secretion is increased in response to Cytochalasin D and 

there is no apparent effect on stimulated response. This however may be due to 

differences in experimental procedure and must be repeated. It is possible that 

the initial treatment with Cytochalasin D results in a toxic response by the 

tubules, thus forcing an increase in fluid secretion to clear the tubules of the 

toxin. Further experiments would also included the staining of the tubules with 

Phalloidin after incubation in each of the above conditions, in order to assess the 

localisation and form of the F-actin i.e. polymerised or de-polymerised. It would 

also be prudent to repeat these experiments in tubules both over expressing and 

down regulating Fas2 in order to determine if Fas2 plays a role in actin re-

organisation.  

5.7 Discussion  

In this chapter we discuss the effect fas2 expression has on the secretion 

response of the tubules to cAMP. Initial experiments determined the wild type 

response to cAMP and dbcAMP. These experiments indicated that there was little 

difference in secretion response between cAMP and dbcAMP. We also established 

that a concentration of 10-6 M cAMP was adequate to elicit a response in wild 

type tubules.  

Utilising the lines discussed in Section 5.3.1, secretion assays were carried out in 

order to determine if fas2 expression affects the tubules secretion response to 

cAMP. The marked changes in microvilli structure and actin localisation, suggest 

that it may. Knocking down expression of fas2 resulted in a significant decrease 

in stimulated fluid secretion rate but not basal secretion. The line fas2EB112 

showed a slightly decreased basal rate and a decreased stimulated response. 
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Conversely, over expression of fas2 dramatically increased the stimulated 

secretion rate, but had no effect on basal secretion.  

Further analyses indicated that Fas2 is actively removed from the apical brush 

border in response to cAMP, and rapidly accumulates at the basal membrane, 

before moving back to the apical membrane in vesicle structures. In addition it 

would appear that this movement coincides with co-localisation with F-Actin 

bundles as shown in Figure 5-12.  

These findings suggest that Fas2 is not only involved in microvilli development 

and stabilisation, but also may play a ‘signalling’ and/or trafficking role in 

response to cAMP. This is evident by the dynamic localisation of Fas2 in response 

to cAMP. Evidence from the neural muscular junction suggests that the 

movement of Fas2 away from the membrane, in response to cAMP increases, 

‘signals’ the movement of other proteins either to or from the NMJ (Beumer et 

al., 2002; Kohsaka et al., 2007a). Results presented here suggest that there 

maybe a similar process occurring in the tubules. In particular we have 

presented evidence that this involves the co-localisation of Fas2 with F-Actin. It 

therefore is possible that the microvilli phenotype is in response to an increase 

or decrease in actin localisation to the microvilli. F actin and indeed the actin 

cytoskeleton in general has been indicated to play a role in both mitochondria 

and V-ATPase, recruitment and activation, and is therefore likely to be vital to 

stimulated fluid secretion (Bradley and Snyder, 1989; Dames et al., 2006; Karas 

et al., 2005; Ryerse, 1979). Further analysis of proteins involved in actin de-

polymerisation and polymerisation would be beneficial in studying this 

phenomenon. Analysis of the response of Fas2-B and Fas2-A would also have 

been significant, as it is unclear if both isoforms move in response to cAMP or 

just one. Time however did not permit these experiments. Most importantly, 

determining if other proteins are moving with Fas2 or not. We have shown that 

there is a movement of Fas2 to localise with F-Actin bundles at the basal cortex 

of the tubule, but there is a possibility that other proteins, such as V-ATPase 

subunits are also present. 

Figure 5-14 represents the final model for Fas2 function. In brief, Fas2 is 

localised to the apical brush border and co-localises with F-Actin. In response to 

cAMP Fas2 is internalised and moves to the basolateral membrane. During this 
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time Fas2 may also initiated the depolymerisation of F-Actin allowing for the 

movement of V-ATPase subunits and/or mitochondria into the microvilli. Fas2 

then moves back to the apical brush border, either alone or in complex with 

other proteins (e.g. actin or V-ATPase subunits), where it is secreted into the 

lumen or reinserted into the microvilli. When fas2 is depleted this results in 

shorter less dense microvilli and less F-Actin localisation. There is in turn less 

Fas2 to be internalised, possibly resulting in less actin depolymerisation and thus 

less movement of V-ATPase/mitchondria, resulting in a decreased secretion 

response. Alternatively less fas2 results in less protein complexes returning to 

the microvilli again resulting in a lowered secretion response. The opposite is 

seen when Fas2 is over expressed. The following lists the outcomes of this study 

for which we have presented good evidence of the hypothesis present in Figure 

5-14 

(a) We have shown that Fas2 has differential localisation in embryos 

compared to larval and adult tubules 

(b) Fas2 is involved in microvilli development/stabilisation (although further 

analysis and quantification required) 

(c) Fas2 depeletion or over expression results in significant changes to the 

cAMP induced secretion response, most probably due to the affect on 

microvilli 

The following hypotheses are based on limited data and preliminary data: 

(a) Fas2 is internalised in response to cAMP stimulation. It then re-localises to 

the basal cortex where it co-loalises with F-Actin bundles. Fas2 then 

moves back to the apical brush border. We hypotheses that this may 

suggest a further role for Fas2 in which it actively moves other proteins to 

or from the apical brush border through protein protein interactions or it 

triggers the movement by reducing the tight binding of microvilli through 

Fas2-Fas2 interactions. This in turn may trigger the re-arrangment of the 

Actin cytoskeleton, required for increase fluid secretion. However the 

evidence presented in this study, is not substantial enough to prove or dis-

prove this hypothesis and further experiments are required.  
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Figure 5-15 Model of Fas2 localisation and function 3 
During embryogenesis Fas2 is localised to the lateral membrane between cells (a) In response to 
cAMP Fas2 is internalised and moves to the basolateral membrane. During this time Fas2 may 
also initiate the depolymerisation of F-Actin allowing for the movement of V-ATPase subunits 
and/or mitochondria into the microvilli. Fas2 then moves back to the apical brush border, either 
alone or in complex with other proteins (e.g. actin or V-ATPase subunits), where it is secreted into 
the lumen or reinserted into the microvilli. (b) When Fas2 is depleted this results in shorter less 
dense microvilli 
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6 BN-PAGE analysis  

6.1 Summary  

The last decade has seen a marked increase in the number of proteomic studies, 

where high-throughput techniques are employed in order to analysis global 

protein expression. Before the advent of high-throughput techniques, scientists 

relied on antibody experiments, such as Western blot analysis, 

immunocytochemistry (ICC), immunoprecipitation (IP) and co-

immunoprecipitation (coIP). These techniques are extremely robust and can give 

valuable insights into protein/protein interactions (O'Farrell, 2008). However in 

conjunction with large-scale proteomics work we can gain a clearer picture of 

the global proteomics of a cell or tissue. This Chapter looks at the application of 

sucrose gradients for membrane separation and the optimisation of 2D Blue-

native PAGE in order to detect protein/protein complexes.  
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6.2 Co-Immunoprecipitation and membrane proteins  

In order to understand the function of a protein it is often beneficial to 

determine the proteins it interacts with. Indeed all mechanisms in biology are 

essentially controlled by which proteins interact with each other. Traditional 

techniques involve the use of antibodies in order to ‘pull-down’ protein 

complexes from a given sample. Immunoprecipitation (IP) is a technique 

whereby antibodies are bound to beads (covalently or not), these beads are then 

added to a given protein sample, where the antibody then attaches to the 

desired protein. Through a series of centrifugations, all other proteins are eluted 

and your desired protein is left bound to the beads. Under particular lysis 

conditions protein complexes can be left intact, allowing for the pull down of 

proteins along with your bait. The use of coIPs however is not without its 

problems. Membrane protein complexes can be particularly difficult to coIP, as 

harsh lysis conditions are required to remove proteins from the membrane, often 

leading to the disruption of complexes (Sambrook and Russell, 2006). A second 

drawback to coIP experiments is the need for a good antibody against at least on 

of the proteins in the complex. This can be problematic if for example you wish 

to determine novel interacting proteins, if an antibody is not available for your 

protein of interest (Santoni et al., 2000).  

6.3 Two dimensional (2D) gel electrophoresis  

2D gel electrophoresis was first developed in the 1970s (Klose, 1975; 

MacGillivray and Rickwood, 1974; O'Farrell, 1975). However the use of 2D gels 

did not reach its peak until the development of microanalytical techniques, to 

analysis the low levels of protein found in 2D gels. The first such technique was 

Edman sequencing (Aebersold et al., 1987; Matsudaira, 1987; Rosenfeld et al., 

1992), however this was quickly surpassed by the development of mass 

spectrometry (MS) (Cottrell, 1994; James et al., 1994; Yates et al., 1993). MS 

has since become an extremely sensitive technique with the ability to detect 

single post-translational modifications within a given protein (Gorg et al., 2000; 

Gorg et al., 2004; Wilkins et al., 1999). Traditional 2D gel electrophoresis 

consists of two separate 1D electrophoresis steps, separating proteins by their 

isoelectric point (pI) and then by their masses. This involves firstly the 
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application of isoelectric focusing (IEF) in the first dimension and the application 

of SDS-PAGE in the second dimension (Gorg et al., 2000).  This method is 

extremely effective, in that it allows for the separation of over 2000 proteins 

(Gorg et al., 2004). This therefore allows the separation and identification, 

through MS, of thousands of proteins from a given sample.  

6.3.1 Membrane proteins: 2D gel electrophoresis  

Although now the method of choice, for large-scale proteomic work, 2D gel 

electrophoresis is not without its problems. In particular, traditional 2D gels 

have a bias against hydrophobic membrane proteins (Santoni et al., 2000). 

Indeed the higher the hydrophobicity of a protein, the lower the efficiency of 

separation by conventional 2D methods. The main reason for this is the 

mechanisms involved in IEF separation in the first dimension. IEF separates 

proteins along a pH gradient until they reach a position where their overall net 

charge is equal to zero (Righetti et al., 1999). By nature proteins are 

polyampholytes, consisting of both positively and negatively charged molecules. 

Therefore each protein has a unique pH value, which it will migrate to, defined 

by its pI. Traditional 2D gels consist of a polyacrylamide matrix which contains 

an immobilised pH gradient (IPG) (Gorg et al., 2000; Gorg et al., 2004; Righetti 

et al., 1999). In order for efficient separation to take place in the IPG gel, low 

levels of ions must be present, because they migrate in the electric field and 

interfere with the focusing of the polyampholyic proteins in the pH gradient. For 

this reasons lysis buffers used for 2D analysis must not contain highly ionic 

detergents such as SDS (Braun et al., 2007). There are therefore three main 

reasons that traditional 2D gels hinder the efficient separation of membrane 

proteins: (i) membrane proteins require robust lysis buffers, containing ionic 

detergents, in order to extract them from their lipid biolayer and keep them 

solubilised in an aqueous solution. The lysis buffer required for 2D IPG gels is 

therefore less efficient at extracting membrane proteins; (ii) proteins become 

less soluble at their pI resulting in the aggregation of highly hydrophobic 

proteins; (iii) once the first dimension is complete, transfer of hydrophobic 

proteins from the IPG strip to the SDS gel is extremely difficult. It is therefore 

evident that in order to study membrane proteins another system is required.  
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6.4 Blue Native PAGE as an alternative to coIPs and 
traditional 2D gel electrophoresis 

Recent predictions suggest that up to one third of genes in many organisms 

encode membrane proteins (Stevens and Arkin, 2000; Wallin and von Heijne, 

1998). It is therefore not surprising that the pitfalls of membrane proteomics are 

beginning to be addressed. The development of 2D blue native gel 

electrophoresis (BN-PAGE) is just one example of this. Unlike conventional 2D 

analysis proteins are first separated on a native gel. Protein complexes are 

therefore kept in their native sate. 2D gel analysis, utilising a 1D native gel are 

not uncommon; however again the separation of hydrophobic membrane 

proteins is often inefficient, as protein complexes often form aggregates. BN-

PAGE electrophoresis overcomes this problem by masking the charge of all 

proteins with the binding of the chemical Commassie blue; thus making all 

protein complexes negatively charged. Importantly the addition of Commassie 

blue at low levels does not cause the disassembly of protein complexes 

(Schagger and von Jagow, 1991). Protein complexes then migrate to the positive 

electrode according to size and shape (Schagger et al., 1994; Schagger and von 

Jagow, 1991; Schamel, 2008). Protein complexes therefore migrate intact along 

the native gel. This method allows for a much higher resolution of membrane 

protein complexes. After completion of the first dimension protein complexes 

are then separated under SDS denaturing conditions. Figure 2-3 gives an 

overview of 2D BN-PAGE electrophoresis. As we can see protein complexes will 

migrate in a vertical straight line once the 2D has been run, allowing for the 

identification of all proteins in a given complex. BN-PAGE is therefore the 

method of choice when wishing to determine membrane protein-protein 

interactions for the following reasons: (i) membrane complexes can be separated 

with high resolution in the 1D and (ii) with a good 2D resolution protein 

complexes can be identified as a vertical line of spots allowing for the 

identification of proteins via MS, without the need for a working antibody.  

6.4.1 BN-PAGE in the context of this study 

As we have shown in the previous chapters the membrane protein Fas2 is 

extremely important in microvillar development and stabilisation and for a 
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normal fluid secretion response to cAMP. We have speculated that Fas2 may 

interact with both actin and V-ATPase subunits in order to increase the fluid 

secretion rate of the tubules in response to cAMP. In order to determine if this 

was indeed the case I initially wished to carry out coIP experiments in order to 

determine which proteins Fas2 interacts with under both stimulated and 

unstimulated conditions. However as discussed in Section 3.3.3, commercially 

available antibodies against Fas2 proved to be inefficient in both ICC and 

Western blot analysis of the tubules. It was therefore concluded that coIP 

experiments in the tubules would also prove difficult with these antibodies. I 

therefore carried out coIP experiments utilising the fas2proteintrap788 line and an 

antibody against GFP. Unfortunately these experiments failed to work and I was 

unable to purify Fas2 and any interacting partners. All control experiments were 

carried out and it would appear that antiGFP was unable to bind properly to Fas2 

proteintrap788, as the protein was often seen in the unbound fraction. This suggests 

that perhaps the epitope for GFP is unavailable, perhaps shielded by an 

interacting partner. This may have been overcome with the addition of harsher 

detergents in order to disrupt protein/protein interactions, but as the purpose of 

this experiment was to establish the interacting partners of Fas2 this was not 

carried out. I therefore decided to carry out BN-PAGE analysis in order to 

determine if it was possible to isolate Fas2 using this technique. Along with this 

the development and adaptation of BN-PAGE for D.melanogaster tissue samples, 

also offered the chance to characterise other protein complexes within the 

tubules. In the future this method could therefore be used in order to determine 

the membrane proteome of the Malpighian tubules.  

6.5 Results  

6.5.1 Determination of lysis buffer detergent  

Lysis conditions are extremely important, as we require a detergent that is harsh 

enough to extract proteins from the membrane but not disrupt protein/protein 

interactions. Often both the type and concentration of a detergent can prove 

vital to the success of a proteomic analysis. Effectively, a detergent, which 

extracts membrane proteins and solubilises them without affecting 

protein/protein interactions is required. Figure 6-1 summarises the process 
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involved in extracting and solubilising proteins in non-ionic detergents. 

Detergents remove proteins from the membrane by intercalating into the 

phospholipid bilayers and solubilising lipids and proteins (Seddon et al., 2004). 

Non-ionic detergents are preferred for membrane protein isolation, as they 

effectively extract the proteins without disrupting protein/protein interactions, 

whilst solubilising the proteins (Seddon et al., 2004). Importantly the detergent 

required is dependent on the protein or proteins and the membrane you are 

working with. Therefore ideally, a large-scale analysis of different detergents 

would be required in order to determine the best detergent for your 

experiment. This would include calculating the critical micelle concentration 

(CMC); that is the lowest concentration at which a detergent forms micelles, for 

all detergents to be tested. This is important as ideally one would wish to use a 

detergent at the lowest possible concentration (le Maire et al., 2000). 

 
Figure 6-1Solubilization of integral membrane proteins by non-ionic detergents 
At a concentration higher than its critical micelle concentration (CMC), a detergent solubilizes lipids 
and integral membrane proteins, forming mixed micelles containing detergent, protein and lipid 
molecules. At concentrations below the CMC, many detergents (e.g., octylglucoside) can dissolve 
membrane proteins without forming micelles by coating the membrane-spanning regions. From 
http://www.ncbi.nlm.nih.gov/books/NBK21589/  

Secondly, several detergents should be tested in order to assess their ability to 

both extract and solubilise the protein of interest. This would be done by 

carrying out multiple extraction protocols, including several detergents at 

differing concentrations. A Western blot analysis would then be carried out in 

http://www.ncbi.nlm.nih.gov/books/NBK21589/
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order to determine which lysis protocol produced the most abundant amount of 

your protein.  

In the case of this study, in order to initially optimise full protein solubilisation 

and extraction from D.melanogaster, a more crude approach was taken. Around 

100 whole flies were briefly anesthetised on CO2 before being homogenised into 

lysis buffer samples containing seven different detergents at an initial 

concentration of 1%. The detergents tested can be seen in Table 6-1 

Table 6-1List of commonly used detergents for membrane protein extraction and 
solubilisation 

Detergent Properties 

3-[(3-cholamidopropyl)dimethylammonio]-1-
propanesulfonate (CHAPS) 

Zwitterionic 

Triton X 100 Non-Ionic 

Cymal Non-Ionic 

n-Dodecyl-ß-maltoside (DDM) Non-ionic 

dodecyl maltoside (DM) Non-Ionic 

fos-choline Non-ionic 

n-octyl p-D-glucopyranoside (OG) Non-ionic 

 
A basic lysis buffer of 150mM NaCl, 50mM HEPES plus 1% detergent was chosen in 

order to asses the solubilisation and extraction efficiency of whole protein 

preps. Crude analysis was carried out where whole fly protein preps were 

measured by Bradford assay (as described in Section 2.11.2). This was carried 

out in order to determine the efficiency of each detergent at total protein 

extraction. The results can be seen in Table 6-2 

Table 6-2 Lysis buffer detergents and resulting total protein extraction efficiency 
 

Detergent Protein concentration mg/ml 

OG 2.863 

Fos-Choline 2.856 
DDM 2.704 
DM 2.697 

Cymal 3.306 
Chaps 3.195 

Triton X 100 2.787 
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These results indicate that Cymal and Chaps are the most efficient detergents. 

However overall there was no substantial difference between the detergents. 

Samples were then diluted to a concentration of 2.7 mg/ml (the lowest 

concentration of protein in detergent test) and whole protein samples run out on 

a SDS gel. This was carried in order to determine if the proteins solubilised in 

the lysis buffer varied depending on the detergent used. The results can be seen 

in Figure 6-2 

 
Figure 6-2 Comparison of total protein extraction with different detergent lysis buffers 
Whole fly protein samples were prepared in lysis buffers containing 7 different detergents. Once 
diluted to a concentration of 2.7mg/ml each sample was ran on an SDS-PAGE gel in order to 
determine if detergents affect the abundance of in individual proteins. 

 The results indicate that there is a slight difference in the abundance of certain 

bands between detergents. For example in the area highlighted in the figure 

several bands appear to be stronger in the DDM sample; however, one band is 

significantly stronger in all other samples. These results again highlight the 
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importance of detergent selection, as your protein of choice may not be suitably 

solubilised with certain detergents.  

6.5.1.1 Conclusions 

This selection highlights the importance of detergent selection. We have shown, 

somewhat crudely, that with regards to whole fly samples each of the seven 

detergents was equally efficient at whole protein extraction. With more time 

these experiments would have been continued in order to determine the best 

detergent concentration for effective extraction and solubilisation of Fas2 and 

its interacting proteins. However for the purpose of BN-PAGE optimisation 

experiments DDM was chosen as the detergent, simply due to the presence of all 

highly abundant protein bands.  

 
6.5.2 Isolation of membrane proteins by sucrose gradient 

electrophoresis  

6.5.2.1 Introduction 

The concentration and chemical diversity of individual proteins within a given 

sample is so diverse and that in itself, poses one of the intrinsic problems of 2D 

proteomics. In a typical human cell for example, the most abundant protein is 

actin; which, can be found at around 108 molecules per cell. Other proteins 

however, such as, transcription factors are found at much lower levels, with 

around 100-1000 molecules per cell (Rabilloud, 2002). This makes identification 

of both sets of proteins extremely troublesome on the same 2D gel. It is 

therefore essential to prepare samples in a way which excludes unwanted 

proteins, but enriches desired proteins. The most common application used is 

that of separation of proteins by sucrose gradient centrifugation. Typically this 

process involves the enrichment of a particular membrane or organelle within 

the cell.  Most notably this technique has been used in order to isolate, 

mitochondria proteins (Taylor et al., 2003), chloroplast proteins (Singh et al., 

2008) and membrane proteins.  
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In the context of this study we wished to isolate membrane proteins from 

tubules and guts of D.melanogaster. If we were to run whole protein preps 

through the 2D BN-PAGE protocol, this is likely to result in aggregation of highly 

abundant proteins, such as actin: the staining procedure would fail to identify 

low abundant proteins. Initial experiments concentrated on optimisation of the 

protocol, using whole fly preps. Sucrose gradients were carried out, as described 

in Section 2.11.3. Traditional experiments rely on large-scale isolation of 

proteins from cell cultures. In this study however, tissue samples were prepared. 

This resulted in a much-decreased starting concentration of protein. Therefore 

the final concentration of protein after sucrose gradient centrifugation was 

much lower than ideally suited to 2D BN-PAGE electrophoresis. Results for one 

such prep can be seen in Table 6-3 

Table 6-3 Comparison of protein concentration before and after sucrose gradient 
centrifugation 
Samples from ~300 whole flies were prepared as described in Sections 2.1.3 & 2.11.1. Sucrose 
gradient centrifugation was carried out as described in Section 2.11.3 Protein concentration was 
measured both before and after separation.  

Starting concentration of 
samples (mg/ml) 

Membrane fraction 
concentration (mg/ml) 

Cytosol fraction 
concentration 

(mg/ml) 

25.0 0.4747 0.144 

28.55 0.5670 0.234 
24.08 0.3450 0.210 

 
These results indicate the significant loss of protein when carrying out sucrose 

gradient centrifugation. The most significant effect of this loss is the inability to 

detect low abundance proteins in downstream experiments. These results also 

indicated the importance of starting concentration and for this reason it was 

decided that both tubule and guts would be dissected for tissue specific 

experiments. With this in mind ~3000 flies were dissected and full alimentary 

canal and tubules were collected as described in Sections 2.1.3 & 2.11.1. This 

resulted in a final protein concentration of 9.493 mg/ml. 1.5 ml of this sample 

was then run through the sucrose gradient centrifugation protocol as described 

previously. Unfortunately however, all protein from this sample was lost during 

this protocol. It is likely that this may be due to a lack of separation during 

centrifugation and/or a low abundance of starting material. Time constraints 

meant that this experiment could not be repeated. Therefore all downstream 
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BN-PAGE experiments reported here used whole protein preparations (BN-PAGE 

was carried out using whole fly membrane preps but no detectable protein was 

found after running the second dimension).   

6.5.2.2 Conclusions  

Sucrose gradient centrifugation is the ideal protocol for separation of membrane 

fractions. However in this study we have highlighted the pitfalls of the 

procedure when starting material is low. With more time it would have been 

possible to optimise this protocol. It may also have been prudent to carry out a 

simple centrifugation step in order to pellet membrane proteins such as that 

carried out by Beynebach et al. This would perhaps of resulted in a significantly 

lower loss of starting material (Beyenbach et al., 2009).  

6.6 BN-PAGE results 

BN-PAGE experiments were carried out using whole fly and tubule/gut protein 

preps in order to optimise the protocol. Initial experiments were carried out 

using a protocol from several different sources. However these experiments 

proved inefficient as can be seen in Figure 6-3 

 

 
Figure 6-3 Inital 2D BN-PAGE results from whole fly protein samples 
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Whole fly protein samples were ran on 2D BN-PAGE gels and protein visualised with Sypro 
Orange (Sigma, town). Red boxes indicate possible protein complexes. However overall levels of 
protein are significantly lower than expected.  

Proteins were visualised in the 2D using the protein stain Sypro Orange. As we 

can see in Figure 1.3, there is an extremely low amount of overall protein on the 

gel. However there do appear to be several complexes shown. Further research 

indicated that Invitrogen (Invitrogen, Paisley), supplied a fully equipped kit for 

2D BN-PAGE analysis, we therefore purchased this kit in the hope that ready-

made solutions and gels would produce better results.  

The above stated samples were re-run using the Invitrogen kit (as described in 

M&M). The resulting 2D gel was stained with Sypro Orange (Invitrogen, Paisley) 

and visualised. Results can be seen in Figure 6-4 

 

 

 
 

 

 

Figure 6-4 BN-PAGE 2D gel using Invitrogen BN-PAGE kit and whole fly protein samples 
 
 
As we can see from this gel there is a significant increase in the number of 

proteins present in this gel. We can also clearly see the apparent separation of 
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protein complexes, as is evident by the presence of vertical lines of protein 

spots. In order to determine if this was indeed the case, samples were chosen 

from this gel and sent for MS.  Figure 1.5 indicates the area of the gel samples 

were taken from. This process proved difficult, as Sypro Orange only visible 

under fluorescent conditions. Therefore images were required using the Typhoon 

Trio image detector and printed to the exact size of the gel. Conventional MS 

runs also rely on an automated robot, which can pick spots at precise areas on 

the gel. Unfortunately, a malfunction meant that for these experiments this was 

not possible. Therefore strips were manually cut, divided into equally sized 

pieces and sent for Trypsin digest and MS at the proteomics unit at Glasgow 

University.  

 

 
Figure 6-5 Areas of 2D BN-PAGE sent for MS analysis 
Representation of areas sent for MS analysis, in order to determine whether vertical strips 
represent protein complexes. 

6.6.1.1 MS results suggest vertical lines represent protein complexes  

Peptide results from MS analysis were analysed using the online database 

FlyBase. Each peptide was assigned to a gene and a gene list compiled. A full list 

of all proteins found in each lane can be found in Appendix 3. Each lane was 
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then analysed using the online database FlyMine (http://www.flymine.org/). 

This software allows for the analysis of gene/protein list, giving various details 

of their relationship to one another. Included in this analysis is a calculation of 

tissue expression profiles, embryonic developmental expression profiles, gene 

ontology enrichment (GO) and pathway enrichment values. Each of one of these 

analyses can help us to determine the likelihood that proteins may act together 

in a complex. For example proteins involved in complexes must be expressed in 

the same tissues, are often expressed at the same developmental stages, will be 

involved in the same pathway and will often share GO terms. GO terms are a list 

of characteristics associated with a given gene. If there is significant enrichment 

of GO terms for a list of genes or proteins it suggests they may interact or at 

least be involved in similar processes. For each lane the above analyses were 

analysed and results are summarised in Figure 6-6 -  Figure 6-9 

 

 

Figure 6-6 Comparison of expression profile, GO term enrichment and pathway enrichment 
of proteins isolated from Lane 1 of BN-PAGE gel 
Summary of analysis carried out on proteins isolated from lane one of BN-PAGE gel. (a) 
Expression profile of genes (assumed from protein extraction) from FlyAtlas. Values indicated the 
number of genes (from protein list) expressed in each tissue. (b) Expression profile of gene 
(assumed from protein extraction), during different embryonic developmental stages. (c) summary 
of top five most enriched GO terms (d) summary of top five most enriched pathways  

http://www.flymine.org/
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Figure 6-7 Comparison of expression profile, GO term enrichment and pathway enrichment 
of proteins isolated from Lane 2 of BN-PAGE gel 
Summary of analysis carried out on proteins isolated from lane two of BN-PAGE gel. (a) 
Expression profile of genes (assumed from protein extraction) from FlyAtlas. Values indicated the 
number of genes (from protein list) expressed in each tissue. (b) Expression profile of gene 
(assumed from protein extraction), during different embryonic developmental stages. (c) summary 
of top five most enriched GO terms (d) summary of top five most enriched pathways  
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Figure 6-8 Comparison of expression profile, GO term enrichment and pathway enrichment 
of proteins isolated from Lane 3 of BN-PAGE gel 
Summary of analysis carried out on proteins isolated from lane three of BN-PAGE gel. (a) 
Expression profile of genes (assumed from protein extraction) from FlyAtlas. Values indicated the 
number of genes (from protein list) expressed in each tissue. (b) Expression profile of gene 
(assumed from protein extraction), during different embryonic developmental stages. (c) summary 
of top five most enriched GO terms (d) summary of top five most enriched pathways  
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Figure 6-9 Comparison of expression profile, GO term enrichment and pathway enrichment 
of proteins isolated from Lane 4 of BN-PAGE gel 
Summary of analysis carried out on proteins isolated from lane four of BN-PAGE gel. (a) 
Expression profile of genes (assumed from protein extraction) from FlyAtlas. Values indicated the 
number of genes (from protein list) expressed in each tissue. (b) Expression profile of gene 
(assumed from protein extraction), during different embryonic developmental stages. (c) summary 
of top five most enriched GO terms (d) summary of top five most enriched pathways  

 
The results presented in Figure 6-6 – Figure 6-9 indicate the strong possibility 

that the proteins in each lane are indeed complex forming proteins. The shear 

volume of proteins in some lanes was surprising, however it is likely that as the 

lanes were cut manually there is some cross over between adjacent lanes. What 

is more surprising is the observation that all proteins isolated from the four 

lanes, show significantly high enrichment in similar GO terms and pathway 

enrichment, most of which involve mitochondrial processes, summarised in 

Figure 6-10 There are several reasons why this may be the case. Firstly it is 

possible that mitochondrial and mitochondrial-associated proteins are simple 

highly enriched due their large abundance in the fly. Secondly it is possible that 

our lyses procedure did not fully lysis cells and vesicle compartments and/or 

mitochondria were left intact and thus enriched in downstream steps. Even so it 

appears that BN-PAGE has worked successfully to isolate and detect 

protein/protein interactions.  
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Figure 6-10 Summary of GO terms and protein pathways enriched in all four lanes 
Analysis was carried out to determine highly enriched (a) GO terms and (b), pathways in all four 
lanes. Most significantly lane 2 was the only lane to contain proteins involved in phagosomes.   

Figure -11 highlights the significance that, although proteins found in all four 

lanes function in similar pathways, there is still good separation of protein 

complexes across the gel. Of the 175 proteins isolated only 63 were found in 

more than one lane, whilst 112 were unique to an individual lane. It is likely that 
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the majority of those found in more than one lane are proteins, which function 

in more than one complex.  

 

Figure 6-11 Analysis of proteins found within one lane or more lanes 
 
 
6.6.2 String analysis of known and predicted protein/protein 

interactions  

The final analysis carried out on the BN-PAGE data utilised the online software 

programme String V 9.0. (http://string.embl.de/). Once a list of genes or 

proteins is integrated into the programme, a search is carried out against 

databases of known and predicted protein/protein interactions. A schematic 

representation of the evidence base for protein/protein interactions, between 

your lists is then generated. The program also includes proteins it deems 

‘missing’ from your list, in order to complete your interaction map. The results 

from each lane can be seen in Figure 6-12 – Figure 6-16 In each Figure (a) 

represents protein interactions inclusive of ‘missing’ proteins and (b) represents 

interactions with only the proteins extracted from each lane. The results from 

this analysis clearly confirm that each lane corresponds to likely protein 

complexes. Although diagrams appear more robust when ‘missing’ proteins are 

included, this does not diminish our results, as it is likely that these proteins 
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were simply missed in our analysis.  Figure 6-16 represents 38 randomly chosen 

proteins, which have been run through the same analysis. The low numbers of 

interactions validate our results conclusively.  

 

 

 

 

Figure 6-12 Analysis of known and predicted protein interactions using String of V. 9.0 
between proteins extracted from Lane 1 
Proteins extracted from Lane 1 were analysed using online software String V.9.0. Coloured lines 
correspond to evidence as indicated. (a) Protein interactions including those of ‘missing interaction 
partners (b) Protein interactions of only those proteins extracted from Lane 1  
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Figure 6-12 Analysis of known and predicted protein interactions using String of V. 9.0 
between proteins extracted from Lane 1 
Proteins extracted from Lane 1 were analysed using online software String V.9.0. Coloured lines 
correspond to evidence as indicated. (a) Protein interactions including those of ‘missing interaction 
partners (b) Protein interactions of only those proteins extracted from Lane 1  
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Figure 6-13 Analysis of known and predicted protein interactions using String of V. 9.0 
between proteins extracted from Lane 2 
Proteins extracted from Lane 2 were analysed using online software String V.9.0. Coloured lines 
correspond to evidence as indicated. (a) Protein interactions including those of ‘missing interaction 
partners (b) Protein interactions of only those proteins extracted from Lane 2  

 

 

 

 

 



Chapter 6  180 

 

 
Figure 6-13 Analysis of known and predicted protein interactions using String of V. 9.0 
between proteins extracted from Lane 2 
Proteins extracted from Lane 2 were analysed using online software String V.9.0. Coloured lines 
correspond to evidence as indicated. (a) Protein interactions including those of ‘missing interaction 
partners (b) Protein interactions of only those proteins extracted from Lane 2  
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Figure 6-15 Analysis of known and predicted protein interactions using String of V. 9.0 
between proteins extracted from Lane 4 
Proteins extracted from Lane 4 were analysed using online software String V.9.0. Coloured lines 
correspond to evidence as indicated. (a) Protein interactions including those of ‘missing interaction 
partners (b) Protein interactions of only those proteins extracted from Lane 4  
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Figure 6-14 Analysis of known and predicted protein interactions using String of V. 9.0 
between proteins extracted from Lane 3 
Proteins extracted from Lane 3 were analysed using online software String V.9.0. Coloured lines 
correspond to evidence as indicated. (a) Protein interactions including those of ‘missing interaction 
partners (b) Protein interactions of only those proteins extracted from Lane 3 
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Figure 6-15 Analysis of known and predicted protein interactions using String of V. 9.0 
between proteins extracted from Lane 4 
Proteins extracted from Lane 4 were analysed using online software String V.9.0. Coloured lines 
correspond to evidence as indicated. (a) Protein interactions including those of ‘missing interaction 
partners (b) Protein interactions of only those proteins extracted from Lane 4  
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Figure 6-15 Analysis of known and predicted protein interactions using String of V. 9.0 
between proteins extracted from Lane 4 
Proteins extracted from Lane 4 were analysed using online software String V.9.0. Coloured lines 
correspond to evidence as indicated. (a) Protein interactions including those of ‘missing interaction 
partners (b) Protein interactions of only those proteins extracted from Lane 4  
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Figure 6-16 Analysis of known and predicted protein interactions using String of V. 9.0 
between 38 randomly selected proteins extracted  
38 random proteins from were analysed using online software String V.9.0. Coloured lines 
correspond to evidence as indicated. (a) Protein interactions including those of ‘missing interaction 
partners (b) Protein interactions of only those proteins selected  
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Figure 6-16 Analysis of known and predicted protein interactions using String of V. 9.0 
between 38 randomly selected proteins extracted  
38 random proteins from were analysed using online software String V.9.0. Coloured lines 
correspond to evidence as indicated. (a) Protein interactions including those of ‘missing interaction 
partners (b) Protein interactions of only those proteins selected  
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6.7 Summation  

In this Chapter we have demonstrated the pitfalls associated with sucrose 

gradient centrifugation, when trying to isolate membrane proteins from tissue 

samples. We have also shown that BN-PAGE is a robust technique for the 

separation of protein complexes. The BN-PAGE procedure laid out in this study, 

was ultimately designed to help determine the protein interactions of Fas2 

under stimulated and unstimulated conditions, within the Malpighian tubules. 

However time constraints made this impossible. It took several months to 

optimise the BN-PAGE protocol, using whole fly total protein samples and indeed 

I was unable to successfully isolate tubule/gut proteins on BN-PAGE. However I 

have successfully demonstrated a proof of principle, in that BN-PAGE is a 

technique, which can be successfully used to isolate membrane protein 

complexes. With more time and the optimisation of sucrose separation, this 

technique could be used in order to determine the full proteome of the tubules 

and indeed protein complexes. Further to this we could extend the procedure 

further to look at protein complex formation in response to stimuli such as 

cAMP. These experiments, although time consuming and expensive could be 

instrumental in determining keep aspects of tubule physiology.  
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7 Doublesex 

7.1 Summary  

This chapter discusses experiments carried out in order to determine the 

function of dsx in the tubules. The results represented here are initial 

experiments and are not as extensive as those carried out on fas2. We do 

however confirm the presence of dsx in the tubules and show that they are 

expressed in a sex specific manner: dsxF is expressed in female tubules and dsxM 

is expressed in male tubules. Furthermore we show that expression is limited to 

the principal cells of main and lower segments of the tubule. In females 

expression is also seen in the transitional segment.  

We also tested the ability of traRNAi in knocking down both tra and dsxF in the 

tubules of female flies, with the aim of masculinising female tubules in an 

otherwise female fly. We then determined if this in turn had an effect on the 

immune response in the females.  

Several genes were selected from a sex specific microarray, in order to 

determine if dsx is responsible for the sexual dimorphic expression of genes in 

the tubules. Further microarray analysis suggested that dsxM and dsxF show 

differential responses to the neuropeptide CAPA in the tubules, we therefore 

assessed dsx mRNA in response to CAPA.   
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7.2 Introduction 

As discussed in Section 1.6.1 the gene dsx is instrumental in sex determination in 

the fruit fly D.melanogaster. It acts as the final ‘switch’ in the sex 

determination hierarchy and ultimately leads to both how a fly looks and acts, 

with regards to sex (Baker and Ridge, 1980; Billeter et al., 2006; Bownes et al., 

1983; Hildreth, 1965; Raymond et al., 2000; Rideout et al., 2010; Sanders and 

Arbeitman, 2008; Villella and Hall, 1996; Waterbury et al., 1999; Zarkower, 

2002). Alternative splicing of dsx results in two sex specific transcripts, the 

female transcript dsxF and the male transcript dsxM. A third transcript is also 

produced, dsxAlt, which results in the same protein isoform of dsxF, but shows 

expression in both males and females (Dornan et al. personal communication & 

our observations). The resulting transcription factors not only define whether a 

fly is male or female but also how they behave. FlyAtlas indicates that dsx is 

expressed in the MT, suggesting sex specific functions of the MT cells. Indeed a 

recent microarray analysis indicates several genes show sex specific expression 

in the MT (Chintapalli et al manuscript submitted). It is tempting therefore, to 

believe that dsx may at least, in part control sex specific gene expression. A 

recent microarray analysis has indicated that the tubules of the fly show 

differential gene expression between males and females. In order to determine 

if dsx transcripts play a role in this, it was necessary to specifically masculinise 

or feminise the tubules in the opposite background. RNAi lines against dsx target 

both transcripts, therefore producing an intersex phenotype (Rideout et al., 

2010). This line therefore is not beneficial to study dsxF and dsxM specific 

targets. This study therefore utilised the line traRNAi in order to specifically 

knockdown dsxF, and allow for dsxM to be spliced in the tubules of female flies. 

The protein Tra is required in order to form a complex with Tra2, which then 

binds to the dsx locus and allows for splicing of dsxF. Therefore knocking down 

tra should decrease dsxF and increase dsxM. The benefits of such a system are 

twofold. Firstly it allows for the study of direct and indirect targets of both dsx 

transcripts, by comparing expression in parental and RNAi driven lines. Secondly, 

in the context of the tubules it allows for the assessment of the physiological 

effect of masculinating tubules in an otherwise female fly. As the tubules form 

the main excretory and osmoregulating organs in the fly, there is a strong 

possibility that gene expression is controlled at a sex specific level, as males and 
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females are under different physiological stresses. Therefore if we masculinise 

female tubules, does this affect the response to pressures such as increased 

secretion due to increased food intake after mating? The tubules have also been 

indicated as an immune sensing system and have been shown to react in both 

independent and systemic infection (McGettigan et al., 2005). Females are 

known to be under a higher pressure with regards to immune response, as both 

mating and increased food intake expose them to higher levels of microbes 

(Lawniczak et al., 2007). Indeed females are known to respond better to 

bacterial infection than males (Lawniczak et al., 2007). If the tubules are 

involved in this response then they may require the need to communicate with 

other tissues, such as the gut. This Chapter will discuss dsx expression in the 

tubules, the specific knockdown of dsxF in the tubules and a possible role for dsx 

in sexually differential gene expression and immunity.  

7.3 Results  

7.3.1 Confirmation of differential dsx expression in male and 
female tubules  

As stated in Section 1.6.3, FlyAtlas results suggest that the male and female 

transcripts of dsx are expressed in a sex specific manner in the tubules. In order 

to confirm this report, primers were designed against dsxF and dsxM and QRT-PCR 

was carried out. Primers were also designed against the third transcript dsxAlt, 

currently thought to be an alternative variant of dsxF but also known to be 

expressed in males (Dornan et al, personal communication). The results can be 

seen in Figure 7-1 
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Figure 7-1 Expression of dsx transcripts in male and female tubules 
Tubules were dissected from 7-day-old flies male and female flies. QRT-PCR was then carried out 
in order to determine the expression of each transcript in either males or females. (a) male tubules 
(b) female tubules. N = 4 

The results confirm the presence of dsx transcripts in both males and females. 

They also confirm that dsxM is only expressed in male tubules and dsxF is only 

found in female tubules. Interestingly female tubules show much more variance 

in dsxF expression than male tubules, suggesting that perhaps dsx expression is 

dynamic in females and may be under different pressures. We also noted the 

expression of dsxAlt, in both male and female tubules, although in much lower 

amounts in the male. We can therefore confirm that dsx is indeed expressed in 

the tubules in a sex specific manner.  

7.3.2 Expression profile of dsxM and dsxF in the tubules  

In order to determine which cells express dsx in the tubules, a dsxGAL4 line was 

utilised to drive expression of dsxRFP, a nuclear marker. The dsxGal4  is n enhancer 

trap line consisting of a Gal4 insertion downstream of the dsx promoter, 

obtained by homologous recombination within the dsx open reading frame 

(Rideout et al., 2010). Several flies were dissected at 7-days-old and ≥ 9 tubules 

were assessed. Results can be seen in Figure 7-2, results indicate that dsx is only 

expressed in the principal cells of the tubules (as evident by nucleus size). 

Furthermore no expression is seen in the initial segment in either males or 

females. However females express dsx in the transitional segment and males do 

not. This is interesting as it suggest that perhaps the transitional segment in 

females may carry out a previously unidentified role, specific to females. 
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However as these results only represent one population of flies dissected on the 

same day it would be vital to repeat these results. Additionally pictures taken at 

a higher magnification would enable the determination of expression in the 

transitional segment more precisely. It would also be interesting to carry out 

experiments such as those described in Section 3.4.2, in order to determine dsx 

expression throughout development in the tubules. 
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Figure 7-1 Expression profile of dsx in adult tubules 
dsxGAL4 was utilised to drive expression of dsxRFP. (a) Female tubules express dsx in the lower main 
and transitional segment, only in principal cells (b) Males show no expression in transitional 
segment, but otherwise are the same as females 



Chapter 7  195 

 

7.3.3  Specific knock down of dsxF in the tubules of female flies  

Utilising UOGAL4 , traRNAi was driven in the principal cells of the tubules main 

segments. Female flies were then dissected at 7-days-old and QRT-PCR carried 

out. The results can be seen Figure 7-2. 

 

Figure 7-2 Efficiency of traRNAi at knocking down tra and dsxF 
7-day-old female tubules expressing  tra RNAi & UO, were dissected and compared to parental lines. 
Expression of tra and dsxF was compared in all sets. (a) expression of tra (b) expression of dsxF. In 
both cases expression was significantly lower than both parental lines. Student unpaired t test 
analysis. N=4 

 P values 
 tra dsxF 
UO vs cross  0.0086 <0.0001 
Cross vs traRNAi 0.0166 0.0033 
Parental vs parental  0.0624 0.0330 
 

Results indicate that traRNAi is extremely effective at knocking down both tra 

and dsxF. Further analysis is required in order to test if dsxM is also upregulated 

in the female tubules. We can conclude however that this line is effective at 

disrupting both dsxF and tra expression.  

 

7.3.4 Differential immune response in males and females  

Several studies have indicated that the pressure of mating in females has led to 

an increased immune response, resulting in females responding better than 
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males to microbe infection (Lawniczak et al., 2007; McGraw et al., 2004; 

McKean and Nunney, 2001; Peng et al., 2005). However there is debate in the 

field as to whether or not this is simply a matter of size, males being smaller 

than females, or if increased immune systems after mating prime females for a 

response to further infection (Lawniczak et al., 2007; McGraw et al., 2004; 

McKean and Nunney, 2001; Peng et al., 2005). In this study we wished to analyse 

whether or not masculinising the tubules of females, by down regulating tra and 

dsxF, affected immune response to Bacillus infection. Firstly we determined if 

indeed there was a difference between males, females and virgin females, as some 

studies suggest that virgin females respond in the same fashion as males (Lawniczak 

et al., 2007). 7-day-old females, virgin females and males were collected and injected 

with Bacillus, a Gram-positive bacterium known to kill Drosophila within 2-3 days of 

infection (Davies et al., 2009). The results obtained can be seen in Figure 7-4.  

Results confirm that males die significantly quicker than females. However in our 

findings, there was no significant difference between females and virgin females. If 

time permitted it would have been beneficial to determine if this was the case across 

a broad spectrum of bacteria and fungi. We can conclude therefore that males appear 

to be more sensitive to Bacillus infection than females.  

 

Figure 7-3 Analysis of male, female and virgin females response to Bacillus infection  
7-day-old males, females and virgin females were infected with Bacillus, as described in section. 
Flies were also mock infected with PBS. All three Bacillus groups die significantly quicker than mock 
controls (P <0.0001). In infected flies the males die significantly faster than both females and virgin 
females (P = 0.0113). N = 30 per set  
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7.3.5 Masculinisation of female tubules has no effect on survival 
of females infected with Bacillus 

As we have established that males are more sensitive to Bacilus infection than 

females, we assessed whether loss of dsxF expression in the tubules may play a role 

in this. Crosses carried out in Section 7.3.3 were repeated and lines subjected to 

infection with Bacillus. The results can be seen in Figure 7-5. Again there is a 

significant reduction in survival of mock versus infected flies. We also again see that 

males die significantly quicker than all infected females. There is however, no 

difference between female flies expressing traRNAi in the tubules and parental lines. 

These results suggest that dsxF expression, at least in the tubules does not govern 

female’s higher survival in response to Bacillus infection.  

 

Figure 7-4 Effect on survival to Bacillus infection when female tubules do not express dsxF 

7-day-old males and females from indicated crosses were infected with Bacillus, as described in 
section 2.14. Flies were also mock infected with PBS. All six Bacillus groups die significantly quicker 
than mock controls (P <0.0001). In infected flies the males die significantly faster than both females and 
virgin females (P = <0.0001). N = 30 per set  

7.3.5.1 Conclusions 

We have confirmed previous evidence that males and females show different 

viability in response to Bacillus infection, but virgin females show no difference to 
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mated females. We have also concluded that this is unlikely to be affected by the 

expression of dsxF transcripts in the tubules. The experiments conducted in this 

section are preliminary and by no means conclusive. Further analysis with more 

bacteria and fungi infections would be beneficial, before we can rule out a role for 

dsx in tubule immune response.  

7.3.6 Determination of sexually dimorphic gene expression in the 
tubules  

As discussed in Section 7.2, several genes have been shown to exhibit 

differential gene expression between male and female tubules. Table 1.4, 

summarises some of these genes. In order to test whether or not dsx plays a role 

in the expression of these genes, we planned to masculinise female tubules as 

described in Section 7.3.3 and assess the level of expression of several of these 

genes. However time did not permit this analysis. Genes were however selected, 

and RT-PCR was carried out in order to determine if these genes were 

differentially expressed in males and females. Unfortunately the genes selected 

for male up regulation failed to amplify in tubule samples at all and further 

analysis is required. Of the three genes selected for female up regulation, two 

showed a higher level of expression in female tubules, YP3 and CG8791. 

Therefore these genes would be ideal candidates for further analysis.  

 

 



Chapter 7  199 

 

 

Figure 7-5 Expression of female specific genes in tubules of males and females 
Gel represents expression of mRNA for each gene listed. Lane 1= male Lane 2 = female and lane 
3 = whole fly for each gene.  

7.4  Summation 

In this chapter we have presented early preliminary results on the expression 

and function of dsx in the tubules of the fly. We can conclude that dsx is 

expressed in a sex-specific manner in male and female tubules and indeed the 

expression of many genes is also sexually dimorphic. We have not however 

determined if this is due to dsx expression or not. We have shown that dsxF can 

be efficiently knocked down in female tubules and that this may in turn help to 

determine dsx function in downstream experiments. We have shown that 

immunity and survival in the fly is dependent on sex, but we cannot determine 

from our results if dsx expression in the tubules plays a role in this. In conclusion 

the results presented here tell us little about the function of dsx in the tubules, 

but prove that further experimentation is warranted.  
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8 Discussion, Future Work & Overall Conclusions  

8.1 Discussion and Future Work   

8.1.1.1 Different roles for fas2 in developmental stages  

In this study we have shown that Fas2 localises to the lateral membrane in the 

developing embryonic tubules. This is consistent with previous studies (Denholm 

et al., 2003a). However during early larval development fas2 re-localises to the 

apical brush border of the principal cells. Furthermore, it appears that fas2 is 

expressed in a progressive manner, starting at the base of the tubules and 

progressing to the initial segment, throughout larval development, until 

expression is stabilised and Fas2 is expressed in all principal cells the full length 

of the tubule. These results are intriguing for two reasons. Firstly they suggest 

two separate roles for Fas2 in the embryo and later development stages. We 

have argued that this is due to differential expression of two separate isoforms 

of Fas2, however we have not proved this conclusively. Secondly the progressive 

expression of Fas2 along the tubules hints at a role in the development of the 

microvilli, as is further evident by data presented here. We have also 

demonstrated that Fas2 does not interact with Dlg in larval or adult tubules but 

have not ruled out an interaction in the embryo.  

8.1.1.1.1 Future work 
 
In order to fully understand the role of fas2 in embryonic development further 

studies are required. One such study would be the analysis of Dlg localisation in 

fas2EP lines. If Fas2 is responsible for localisation of Dlg, then it is likely to be 

disrupted in embryos mutant in fas2. It would also be of interest to look at the 

effect of EGFR signalling in these embryos as not only is this important for 

tubule development but Fas2 is known to inhibit EGFR signalling (Baumann and 

Skaer, 1993; Denholm et al., 2003a; Jung et al., 2005; Mao and Freeman, 2009). 

A closer look at microvilli development in the larvae would also be of interest. In 

particular electron microscope analysis of developing microvilli in, wild type 

tubules, tubules over-expressing Fas2 and tubules depleted Fas2 would be of 

interest. Finally it would be interesting to look at fas2 expression and 
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localisation in the pupal tubules and indeed microvilli length, as it is known in 

some Diptera, that microvilli contract during this time. The hypothesis that Fas2 

movement in response to cAMP is involved in the secretion phenotype is based 

on extremely preliminary data and is by no means conclusive. However we feel 

that the data presented here warrants a further analysis of Fas2 movement, as 

evidence from Fas2 role in the nervous system suggest this may be of some 

importance.  

8.1.1.2 Fas2 is crucial to wild type microvilli development and stabilisation 
in adult flies 

We have shown clearly in this study that fas2 is key to normal microvilli length 

and that it may also play an important role in actin localisation. Over-expression 

of fas2 results in longer, denser microvilli than wild type tubules and indeed the 

opposite is true in tubules with depleted fas2 levels. Due to the continual 

breakdown of equipment, we were unable to fully quantify the length and 

density of microvilli, however the experiment was repeated in at least none 

tubules per genotype and the results were consistent in all tubules assessed. We 

are therefore confident that Fas2 is vital for microvilli stabilisation and/or 

development.  

Fas2 depletion or over-expression also results in an increase or decrease in F 

actin localisation. We presented evidence that this is possibly due to a direct 

interaction between F-Actin and Fas2, as Fas2 is found to co-localise with F-

Actin bundles on the surface of the tubule after stimulation with cAMP. However 

with more time and money this hypothesis would have been much more 

thoroughly examined as the evidence presented her is not conclusive enough to 

determine if this is the case.  

We also can conclude from this study the importance of tissue specific 

manipulation of genes involved in development, when wishing to study their role 

in adult flies.  

8.1.1.2.1 Future work  
Here, in particular, electron microscopy experiments would be beneficial, in 

order to quantify the length and density of microvilli in tubules with differing 
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levels of fas2 expression. Quantification of F-Actin fluorescence would also be 

advantageous, these experiments were in fact carried out but due to equipment 

failure final analysis could not be completed.  

8.1.1.3 Fas2 may play a signalling role in response to cAMP, which is crucial 
for Wildtype fluid secretion response  

Depletion or over-expression of fas2 in the tubule principal cells results in a 

decreased or increased cAMP induced fluid secretion rate. These results suggest 

that fas2 is vital for normal secretion response to cAMP. Indeed, only the 

extracellular domain of fas2 is required in order to illicit an increased response 

to cAMP. We have not however, determined if this is simply an affect of 

increased microvilli surface area or due to a signalling mechanism of fas2, such 

as the recruitment of proteins to or from the microvilli. We have however 

produced evidence that this increased response is likely to be due to increased 

V-ATPase activity as addition of Drosokinin to the bathing solution further 

increase secretion rate.  

We present evidence here that in response to cAMP, Fas2 is internalised and 

moved to the basolateral membrane before moving back to the apical brush 

border, where it is re-inserted into the microvilli or secreted into the lumen. 

This result suggests that a signalling mechanism is involved in the increased and 

decreased response to cAMP induced secretion. If this is the case it is intriguing 

that only the extracellular domain of Fas2 is required for increased fluid 

secretion, as this suggest a signalling mechanism to Fas2 in the lumen. 

Intriguingly, we have also shown that Fas2 movement in response to cAMP, 

results in co-localisation with F-Actin bundles at the basolateral membrane. This 

result is of significance as previous studies in mosquito tubules have suggested 

that actin cytoskeleton re-arrangement is crucial to increased fluid secretion in 

response to cAMP (Bradley and Snyder, 1989; Karas et al., 2005). Preliminary 

results have further validated this, by showing that F-actin inhibitors, phalloidin 

and Cytochalsin D affect both basal and cAMP induce fluid secretion. These 

results are preliminary and act as an indication of the need for further analysis 

of Fas2 movement in response to cAMP. Perhaps simply the release of Fas2 from 

the microvilli allows movement of other proteins into the microvilli, or the 
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microvilli become less structured allowing for the flexability required for fluid 

secretion to take place. 

 We have not however ruled out the possibility that Fas2 may be involved in the 

movement of other proteins such as V-ATPase subunits.  

8.1.1.3.1 Future work 
 
This study only looked at fluid secretion in response to cAMP, it would therefore 

also be beneficial to look at several other stimuli such as CAPA and cGMP. 

Further complete analysis of cAMP response would be strengthened by the 

inclusion of secretion assays, where CRF was used as a stimulus. CRF is a 

neuropeptide, which is known to increase intracellular cAMP levels. 

Ultimately, determining if Fas2 movement in response to cAMP involves the 

recruitment of other proteins such as V-ATPase subunit, or actin, will give us 

further insight into Fas2 role in fluid secretion. This would involve co-localisation 

experiments and BN-PAGE analysis of both stimulated and un-stimulated tubules. 

Determining if Fas2 works upstream or downstream of actin cytoskeleton re-

arrangement could also be determined by repeating secretion assays with F-

Actin toxins.  

8.2 BN-PAGE analysis: conclusions and future work  

In this study we have optimised a BN-PAGE protocol for use in detecting protein/ 

protein interactions in the fly. This procedure would be extremely beneficial in 

determining not only proteins, which form complexes with Fas2, after cAMP 

stimulation in the tubules, but could effectively be used to study the whole 

proteome of the tubule. In particular, stimulations with different second 

messengers and neuropeptides could be carried out and a full proteome protein 

complexome, comparison done. Although expensive and time consuming this 

could ultimately led to unparalleled insights into tubule physiology.  
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8.3 Doublesex: conclusions and future work  

We have confirmed, in this study, that dsx transcripts are differentially 

expressed in a sex specific manner in the tubules. Further to this we has 

localised expression to the principal cells of the lower and main segment of the 

tubule. One difference is seen between male and female expression patterns: 

DsxM is not found in the transitional segment but DsxF is. This result is of some 

interest as it suggests a previously unidentified, sex specific function of this 

segment in female tubules. We have also shown that tubules can effectively be 

‘masculinised’, in an otherwise female fly, by over expressing traRNAi. It would 

therefore be possible to carry out a microarray analysis on these tubules with 

the intention of discovering direct and indirect targets of DsxM and DsxF. We 

have also identified two genes, which could be used to validate these 

experiments.  

As the tubules are known to be involved in immune response, it was 

hypothesised that male/female difference in immune response may be governed 

by dsx expression in the tubules. However our results indicate that this is not the 

case, at least with regards to one bacterium. Further analysis of immune 

response in males and females is required though.  

8.4 Overall Conclusions and Importance of Study  

The aim of this study was to determine the value and use of large-scale ‘omics’ 

data in determining novel functions for well-known genes. As discussed in 

Chapter 1, the growth of large-scale omics studies has significantly increased 

over the last decade and is like to continue in growth as technology improves 

and becomes cheaper. Studies such as FlyAtlas are extremely beneficial at 

producing an over-all picture of the transcriptome of different tissues. 

Transcriptomic data has also become more widely used with regards to disease 

vs healthy or stimulated vs un-stimulated studies, whereby the transcriptome of 

one state is compared to the other in order to determine which genes are 

disease causing or responsive to stimuli. With such studies come terabytes of 

data, which then requires full analysis, quantification and verification through 

standard small-scale experiments such as mutant studies. In this study we have 
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shown that Drosophila melanogaster offers an ideal opportunity to carry out 

such experiments. This study in particular showed the benefit of ‘omics’ data in 

determining novel functions for genes that have been previously well 

characterised in developmental or with regards to other tissues. The 

unexpectedly high expression of fas2 and dsx in the Malpighian tubules hinted at 

a previously unknown function for these genes, in this tissue. This offered an 

ideal opportunity to determine the value of transcriptomic data with regards to 

expression vs function i.e. does high expression of a gene indicate a key function 

in that tissue. We opted to study genes, which had unusually high expression 

patterns in the MT, as this tissue offers a robust phenotype for epithelial 

physiology and as such there are several techniques, which one can use in order 

to help determine the function of a gene/protein within these tissues. Although 

the overall aim of this study was to determine novel functions for these two 

genes in the tubule, the importance of this study to the general science 

community is two-fold. Firstly, studies of gene function within the MT are 

extremely important. The MT offers a robust phenotype for the study of 

epithelial biology and can give biologist insights into the development and 

function of their human homologue, the kidneys. The MTs are also increasingly 

important tissues with regards to insecticide development as they are the key 

tissue involved in detoxification. As such several proteins expressed in the 

tubules are now targets for insecticides. Therefore discovering novel functions 

for genes within the MT is of interest to both the study of epithelial tissues and 

with regards to insecticide development. Secondly, this study offers an 

opportunity to determine the value and robustness of transcriptomic data with 

regards to determining novel functions for genes.  

We have shown with regards to fas2 that the high expression level do indeed 

indicate novel functions and as discussed in this Chapter we have evidence to 

suggest a key role for Fas2 in microvilli stabilisation and/or development in the 

Malpighian tubules. Depletion or over expression of Fas2 results in a decrease or 

increase in cAMP stimulated fluid secretion but not basal secretion levels. This 

suggests that the change to microvilli in mutant, over-expressors or RNAi lines 

against fas2, is not enough to disrupt basal secretion. This is not surprising in the 

case of lowering basal secretion, as it is likely that any mutation which affects 

basal secretion significantly would be lethal to the fly. A basal level of secretion 
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is required in order to maintain a balanced and functional metabolism and a 

basic level of osmoregulation, without which the fly would quickly die. We have 

also shown that Fas2 localisation is dynamic in response to cAMP stimulation and 

argue that this suggests Fas2 may be involved in a signalling mechanism, 

whereby it signals the movement of other proteins either to or from the apical 

brush border. The results presented here however are not conclusive enough to 

determine if this is the case and as discussed in the previous Sections several key 

experiments are required in order to determine if this is indeed the case. We 

have however shown that Fas2 co-localises with F-actin bundles on the basal 

cortex of the tubules ONLY after stimulation with cAMP. This is of some interest 

as F-Actin is known to undergo depolymerisation and re-polymerisation in 

response to cAMP in mosquito tubules. This re-arrangement of the Actin 

cytoskeleton is essential to the secretion phenotype. It would therefore be 

beneficial to determine the re-arrangement of F-Actin in Fas2 mutant or Fas2 

over-expressor lines, in order to determine if Fas2 plays a role in this mechanism 

and that also leads to changes to in cAMP induced secretion response. Perhaps 

the most exciting outcome of this study is the potential role of Fas2 in microvilli 

stabilisation and/or development. As discussed throughout this thesis the tubules 

offer a robust phenotype for the study of epithelial biology and D.melanogaster 

is a key model organism. Understanding development and stabilisation of 

microvilli in human epithelial cells is of increasing importance as several 

diseases are known to involve disruption of microvilli. For example celiac disease 

leads to the atrophy of microvilli within the small intestines. This is due to an 

immune response to gluten, consumed through diet (Alaedini and Green, 2005). 

This induced immune response leads to the damage of microvilli within the 

intestines leading to several symptoms in patients including vitamin and mineral 

deficiencies, due to the inability to malabsorption of nutrients from food 

(Alaedini and Green, 2005; Dyduch et al., 1993; Shiner and Birbeck, 1961). 

Figure 8-1 shows an example of a biopsy from the small intestine of a celiac 

patient (Shiner and Birbeck, 1961). Each biopsy shows differing degrees of 

atrophy and interestingly several show similar images to those seen in our study. 

For example microviilli appear less dense, shorter and less well packed. 

The only current treatment for Celiac disease involves the exclusion of gluten 

from the diet. Although effective, it can take up to 6 months for microvilli to 



Chapter 8  208 

 

heal and in some case the damage is beyond repair. Therefore it would be 

beneficial to develop drugs in order to speed up or increase the development of 

microvilli in these patients in order to overcome the effects of years of 

malabsorption. This is just one example of the importance of microvilli in 

epithelial disease in humans, there are several other, including bacterial 

infections which can be devastating if not treated adequately. Studying how to 

treat microvillli damage and potentially speed up the process in human 

epithelial tissue would be extremely beneficial would therefore be extremely 

beneficial. With this in mind the further analysis of Fas2 involvement in 

microvilli development or stabilisation is extremely important as it may, in part 

lead to a fly model to study microvilli stabilisation and perhaps a model to study 

the effects of microvilli damage and repair. 

 

Figure 8-1 Comparison of Microvilli in the Small Intestine of Patients with Celiac Disease 
(a) Electron micrograph from control case C.B. showing normal microvilli and upper part of 

small intestinalsurface cell. (b)Electron micrograph from coeliac patienit J.N. showing 
short, irregular and loosely packed microvilli (c) Electron micrographfrom control case F.T. 
showing short, though regular microvilli with variation in length. Adapted from (Shiner and 
Birbeck, 1961) 
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We have also shown that BN-PAGE analysis offers an opportunity to carry out 2D 

gel analysis on membrane protein complexes. This part of the study however was 

not fully completed due to time constraints. However we have shown that the 

procedure can be used in whole fly samples in order to detect protein-protein 

complexes and in theory with several more months of work could be used to 

study protein-protein interactions in the tubule. These experiments would also 

be beneficial in determining any interacting partners that Fas2 may have in the 

tubule, under both cAMP stimulated and un-stimulated conditions. As discussed 

in Chapter 1 transcriptomic data is only valid if used in conjunction with protein 

analysis, as the expression of a gene does not always lead to a functional 

protein. Therefore combining FlyAtlas data with a full proteome of the fly would 

be extremely beneficial to the science community. Traditional proteomic 

analysis is problematic with regards to membrane proteins, therefore BN-PAGE 

could offer a opportunity to look at membrane proteins. This again underlines 

the importance of a combination of large scale and small scale studies in order 

to obtain the most accurate and appropriate results. During the proteomic work 

in this study, it became apparent that obtaining large amounts of starting 

material for fly tissues can be problematic. With more time and money however 

this can be easily overcome, by increasing the number of dissections and the 

isolation procedure.  

The results presented here for the role of dsx in the tubules are preliminary. 

Time did not permit the completion of many of the experiments planned at the 

begining of the study. However we have shown that dsx is expressed in the 

tubules and we have determined several sex specific genes which are 

differentially expressed between males and females and therefore may be 

targets of dsx. Understanding differences between male and female tubules may 

be of importance with regards to immunity and metabolism and again underline 

the importance of sex biased in all experiments. Our experiments neither, 

indicated or ruled out a role for dsx expression in tubules effecting male/female 

differences in immunity and therefore with more time and money the role of dsx 

in the tubules would have been much more thoroughly examined. In particular 

the masculisation of female tubules in an otherwise female fly or vice versa 

would have been of particular interest. Overall these experiments would have 

given an insight into the role of physiological dimorphism in the whole fly, i.e. 



Chapter 8  210 

 

does every tissue in the fly require the ‘knowledge’ of which sex it is? For 

example if one tissue is masculinised in a female fly can it still interact with 

other tissues in a normal manner? These are basic questions in physiology which 

have still to be answered and may help to understand some of the difference 

between males and females, in particular in response to disease.  

Overall this study has proved the ability of transcriptomic data to indicate the 

potential of novel functions for well-known genes. We have also shown the 

importance of follow up experiments in order to asses such data. Most 

importantly we have shown that even with an ideal model in which to test the 

robustness of transcriptomics data, there are many pitfalls. Determining the role 

of fas2 and dsx in the tubules was not fully realised, within the time constraints 

of this study and several key experiments still are required. Showing, therefore 

that ‘omics’ data in some organisms is still in its infancy, as follow up 

experiments would prove even more difficult. However we believe we have 

shown the robustness and value of ‘omics’ with regards to Drosophila 

melanogaster, a organism which has been extensively studied and much is known 

about developmental, neurobiology, physiology and gene function, in that we 

have shown that with the aid of FlyAtlas we were able in part to determine a 

novel function for fas2 within the tubules. The importance of which is validated 

by the study of fas2 for over a decade, without the discovery of a function in the 

Malpighian tubules. To conclude with more money and more time perhaps 

FlyAtlas would have aided the discovery of more gene/protein function by 

highlighting the tissue in which to study the gene.
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Appendices 
 
Appendix 1: Media and solutions used in this study  
 
Drosophila Media 
Standard growth media per litre of water 
                                                  10 g agar 
     15 g sucrose 
     30 g glucose 
     35 g dried yeast 
     15 g maize meal 
     10 g wheat germ 
     30 g treacle 
     10 g soya flour 
 
 
 
 Escherichia coli growth media 
 
L-broth per litre of water 
     10 g Bacto-tryptone 
     5 g dried yeast  
     10 g NaCl 
 
L-agar per litre of water 
     10 g Bacto-tryptone 
     5 g dried yeast  
     10 g NaCl 
     15 g Bacto-agar 
 
12% SDS PAGE recipe  
  5 ml  10 mL 15 mL 20 mL 25 mL 30 mL 40 mL 50mL 

H2O 1.7 3.4 5.1 6.8 8.5 10.2 13.6 17.0 

4x Stacking 1.25 2.5 3.75 5.0 6.25 7.5 10.0 12.5 

30% 
Acryl/0.8%bis-
Acryl 

2.0 4.0 6.0 8.0 10.0 12.0 16.0 20.0 

10% APS 0.050 0.100 0.150 0.200 0.250 0.300 0.400 0.500 

TEMED 0.002 0.004 0.006 0.008 0.010 0.012 0.016 0.020 

 
 
 
 
 
 
 
 
 
 
 
Stacking Gels 
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  1 mL 2 mL 3 mL 4 mL 5 mL 6 mL 8 mL 10 mL 

H2O 0.573 1.147 1.72 2.29 2.87 3.44 4.59 5.73 

4x Stacking 0.25 0.5 0.75 1.0 1.25 1.5 2.0 2.5 

30% 
Acryl/0.8%bis-
Acryl 

0.167 0.333 0.5 0.667 0.833 1.0 1.33 1.67 

10% APS 0.010 0.020 0.030 0.040 0.050 0.060 0.080 0.100 

TEMED 0.001 0.002 0.003 0.004 0.005 0.006 0.008 0.010 

 
SDS PAGE Buffers  
 
4x Resolving Buffer: 
1.5 M Tris-Cl, pH 8.8 
0.4% SDS 
4x Stacking Buffer: 
0.5 M Tris-Cl, pH 6.8 
0.4% SDS 
2x Sample Buffer: 
125 mM Tris-Cl, pH 6.8 
20% Glycerol 
4% SDS 
10% BME 
0.04% Bromophenol Blue 
0.4% SDS 
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Appendix 2: Primers used in this study  
 
Primers:  
 
 Forward  Reverse  
Fas2 primer list   
QRT-PCR primers  
3 
transcripts  TCAGTCGGCGTCTTTTTGGC CTTGGGCAGCCTGGTGTTGTTC 
transcript 
B  CGACAATGCTGCTGATTTTGC AACGGAAACAGAAAGAAACCC 
transcript 
A CACGCCATTGGACGAAAAGG ATTCAAGTGCTCTTCCCCCAGC 
transcript 
C ACCGTTGAGGTGATGGAGACC TGTGAACAGTCGTTTGTGTAGCG 
RT-PCR   
exon 2-3 GCAATGGAAGGACAATCGGAAC ACAGCGAGGTAATCATCAGGGC 
exon 3-4 CCCTGATGATTACCTCGCTGTC GCCTTTACCTCGCACATTACCAC 
exon 5-6 TCCAGCACGACAAAGAGGAACC ATGCGATAGTATGTGTTGCCCAC 
Doublsex    
Alternative  GCAGCAGCAGAAGCAAAAAAGC TGATTCCAGCACCGATAGCAACG 
Female  AGGTGGTAGGTCATCGGGAACATC TCGGGGCAAAGTAGTATTCGTTAC 
Male  GTGGAAATAAATCGCACTGTAGCC GAGTCGGTGGACAAATCTGTGTG 
Tra CCCAGCATCGAGATTCCCGTGG GGAGCGAGTGCGTCTGGTGG 
CG8791 GGCCTGGAGGTCTTGGCGTG AAGCAGTCCTGCCGGCACCT 
YP3 GCCCGGATTCGGCGAGGATG TGGTCAGGGTGGAGCCGAGG 
ATD GGAGCGGTCAACGCCAATGGT CGGCGGTCATGCCGAACTGA 

 
V5 PRIMERS  

 

Start site ATAAGAATGCGGCCGCTAAACTATATGGGTGAATTGCCGCCAAATTCAGTCG 

Isoform A V5 
GCTCTAGAGCTTACGTAGAATCGAGACCGAGGAGAGGGTTAGGGATAGGCT 
TACCCACCGCCGAATTCTTCCC 

Isoform B V5 
GCTCTAGAGCTTACGTAGAATCGAGACCGAGGAGAGGGTTAGGGATAGGCT 
TACCAGCAGTGTGCGTCGTCGG 

Isoform C V5 
GCTCTAGAGCTTACGTAGAATCGAGACCGAGGAGAGGGTTAGGGATAGGCT 
TACCGGCTAACATTGAGGCTAG 
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Appendix 2 
 

Sequencing results from fas2-V5 cloning aligned to Flybase sequence  

10        20        30        40        50        60        70        80 
Untitled   
ATGGGTGAATTGCCGCCAAATTCAGTCGGCGTCTTTTTGGCGCTGCTCCTCTGCAGCTGCTCTTTAATAGA
ACTGACCCG 
           -------------------------------------------------------------------------------- 
Consensus: 
ATGGGTGAATTGCCGCCAAATTCAGTCGGCGTCTTTTTGGCGCTGCTCCTCTGCAGCTGCTCTTTAATAGA
ACTGACCCG 
           -------------------------------------------------------------------------------- 
04_005.ab1 
aTGGGTGAATTGCCGCCAAATTCAGTCGGCGTCTTTTTGGCGCTGCTCCTCTGCAGCTGCTCTTTAATAGAA
CTGACCCG 
03_006.ab1                     
aaaaatgaactttatTTTGGCGCTGCTCCTCTGCAGCTGCTCTTTAATAGAACTGACCCG 
05_004.ab1                                                                                  
06_003.ab1                                                                                  
08_001.ab1                                                                                  
07_002.ab1                                                                                  
 
                   90       100       110       120       130       140       150       160 
Untitled   
TGCGCAGTCCCCCATCCTGGAGATTTATCCCAAACAAGAAGTCCAGCGCAAGCCAGTGGGCAAGCCCCTGA
TCCTCACCT 
           -------------------------------------------------------------------------------- 
Consensus: 
TGCGCAGTCCCCCATCCTGGAGATTTATCCCAAACAAGAAGTCCAGCGCAAGCCAGTGGGCAAGCCCCTGA
TCCTCACCT 
           -------------------------------------------------------------------------------- 
04_005.ab1 
TGCGCAGTCCCCCATCCTGGAGATTTATCCCAAACAAGAAGTCCAGCGCAAGCCAGTGGGCAAGCCCCTGA
TCCTCACCT 
03_006.ab1 
TGCGCAGTCCCCCATCCTGGAGATTTATCCCAAACAAGAAGTCCAGCGCAAGCCAGTGGGCAAGCCCCTGA
TCCTCACCT 
05_004.ab1                                                                                  
06_003.ab1                                                                                  
08_001.ab1                                                                                  
07_002.ab1                                                                                  
 
                  170       180       190       200       210       220       230       240 
Untitled   
GCCGGCCCACAGTTCCCGAGCCGTCCCTGGTCGCCGATCTGCAATGGAAGGACAATCGGAACAACACCATT
CTGCCCAAG 
           -------------------------------------------------------------------------------- 
Consensus: 
GCCGGCCCACAGTTCCCGAGCCGTCCCTGGTCGCCGATCTGCAATGGAAGGACAATCGGAACAACACCATT
CTGCCCAAG 
           -------------------------------------------------------------------------------- 
04_005.ab1 
GCCGGCCCACAGTTCCCGAGCCGTCCCTGGTCGCCGATCTGCAATGGAAGGACAATCGGAACAACACCATT
CTGCCCAAG 
03_006.ab1 
GCCGGCCCACAGTTCCCGAGCCGTCCCTGGTCGCCGATCTGCAATGGAAGGACAATCGGAACAACACCATT
CTGCCCAAG 
05_004.ab1                                                                                  
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06_003.ab1                                                                                  
08_001.ab1                                                                                  
07_002.ab1                                                                                  
 
                  250       260       270       280       290       300       310       320 
Untitled   
CCGAATGGACGCAACCAGCCGCCGATGTACACGGAAACGCTGCCCGGCGAAAGTTTGGCCCTGATGATTAC
CTCGCTGTC 
           -------------------------------------------------------------------------------- 
Consensus: 
CCGAATGGACGCAACCAGCCGCCGATGTACACGGAAACGCTGCCCGGCGAAAGTTTGGCCCTGATGATTAC
CTCGCTGTC 
           -------------------------------------------------------------------------------- 
04_005.ab1 CCGAATGGACGCAACCAGCCGCCG                                                         
03_006.ab1 
CCGAATGGACGCAACCAGCCGCCGATGTACACGGAAACGCTGCCCGGCGAAAGTTTGGCCCTGATGATTAC
CTCGCTGTC 
05_004.ab1                                                                                  
06_003.ab1                                                                                  
08_001.ab1                                                                                  
07_002.ab1                                                                                  
 
                  330       340       350       360       370       380       390       400 
Untitled   
GGTGGAAATGGGCGGCAAGTACTACTGCACCGCCTCCTATGCAAATACGGAGATCCTCGAGAAGGGCGTCA
CAATTAAAA 
           -------------------------------------------------------------------------------- 
Consensus: 
GGTGGAAATGGGCGGCAAGTACTACTGCACCGCCTCCTATGCAAATACGGAGATCCTCGAGAAGGGCGTCA
CAATTAAAA 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1 
GGTGGAAATGGGCGGCAAGTACTACTGCACCGCCTCCTATGCAAATACGGAGATCCTCGAGAAGGGCGTCA
CAATTAAAA 
05_004.ab1                                        tGCAAATACGGAGATCCTCGAGAAGGGCGTCACAATTAAAA 
06_003.ab1                                                                                  
08_001.ab1                                                                                  
07_002.ab1                                                                                  
 
                  410       420       430       440       450       460       470       480 
Untitled   
CTTACGTGGCCATCACCTGGACAAATGCCCCTGAGAATCAGTACCCCACTCTTGGCCAAGACTATGTGGTAA
TGTGCGAG 
           -------------------------------------------------------------------------------- 
Consensus: 
CTTACGTGGCCATCACCTGGACAAATGCCCCTGAGAATCAGTACCCCACTCTTGGCCAAGACTATGTGGTAA
TGTGCGAG 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1 
CTTACGTGGCCATCACCTGGACAAATGCCCCTGAGAATCAGTACCCCACTCTTGGCCAAGACTATGTGGTAA
TGTGCGAG 
05_004.ab1 
CTTACGTGGCCATCACCTGGACAAATGCCCCTGAGAATCAGTACCCCACTCTTGGCCAAGACTATGTGGTAA
TGTGCGAG 
06_003.ab1                                                                                  
08_001.ab1                                                                                  
07_002.ab1                                                                                  
 
                  490       500       510       520       530       540       550       560 
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Untitled   
GTAAAGGCCGATCCCAATCCAACAATCGACTGGCTGCGCAACGGAGATCCGATCCGCACGACCAACGACAA
GTATGTGGT 
           -------------------------------------------------------------------------------- 
Consensus: 
GTAAAGGCCGATCCCAATCCAACAATCGACTGGCTGCGCAACGGAGATCCGATCCGCACGACCAACGACAA
GTATGTGGT 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1 
GTAAAGGCCGATCCCAATCCAACAATCGACTGGCTGCGCAACGGAGATCCGATCCGCACGACCAACGACAA
GTATGTGGT 
05_004.ab1 
GTAAAGGCCGATCCCAATCCAACAATCGACTGGCTGCGCAACGGAGATCCGATCCGCACGACCAACGACAA
GTATGTGGT 
06_003.ab1                                                                                  
08_001.ab1                                                                                  
07_002.ab1                                                                                  
 
                  570       580       590       600       610       620       630       640 
Untitled   
GCAAACCAATGGCCTGCTAATCCGAAATGTCCAGGAGAGCGATGAAGGCATCTACACTTGCCGTGCAGCCG
TTATCGAAA 
           -------------------------------------------------------------------------------- 
Consensus: 
GCAAACCAATGGCCTGCTAATCCGAAATGTCCAGGAGAGCGATGAAGGCATCTACACTTGCCGTGCAGCCG
TTATCGAAA 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1 
GCAAACCAATGGCCTGCTAATCCGAAATGTCCAGGAGAGCGATGAAGGCATCTACACTTGCCGTGCAGCCG
TTATCGAAA 
05_004.ab1 
GCAAACCAATGGCCTGCTAATCCGAAATGTCCAGGAGAGCGATGAAGGCATCTACACTTGCCGTGCAGCCG
TTATCGAAA 
06_003.ab1                                                                                  
08_001.ab1                                                                                  
07_002.ab1                                                                                  
 
                  650       660       670       680       690       700       710       720 
Untitled   
CTGGTGAGCTATTGGAACGCACCATTCGCGTGGAGGTCTTCATTCAGCCGGAGATCATATCGCTACCCACC
AATCTGGAG 
           -------------------------------------------------------------------------------- 
Consensus: 
CTGGTGAGCTATTGGAACGCACCATTCGCGTGGAGGTCTTCATTCAGCCGGAGATCATATCGCTACCCACC
AATCTGGAG 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1 
CTGGTGAGCTATTGGAACGCACCATTCGCGTGGAGGTCTTCATTCAGCCGGAGATCATATCGCTACCCACC
AATCTGGAG 
05_004.ab1 
CTGGTGAGCTATTGGAACGCACCATTCGCGTGGAGGTCTTCATTCAGCCGGAGATCATATCGCTACCCACC
AATCTGGAG 
06_003.ab1                                                                                  
08_001.ab1                                                                                  
07_002.ab1                                                                                  
 
                  730       740       750       760       770       780       790       800 
Untitled   
GCCGTCGAGGGCAAGCCGTTTGCAGCCAACTGCACAGCAAGAGGCAAACCAGTACCGGAGATTAGTTGGAT
TCGAGATGC 
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           -------------------------------------------------------------------------------- 
Consensus: 
GCCGTCGAGGGCAAGCCGTTTGCAGCCAACTGCACAGCAAGAGGCAAACCAGTACCGGAGATTAGTTGGAT
TCGAGATGC 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1 
GCCGTCGAGGGCAAGCCGTTTGCAGCCAACTGCACAGCAAGAGGCAAACCAGTACCGGAGATTAGTTGGAT
TCGAGATGC 
05_004.ab1 
GCCGTCGAGGGCAAGCCGTTTGCAGCCAACTGCACAGCAAGAGGCAAACCAGTACCGGAGATTAGTTGGAT
TCGAGATGC 
06_003.ab1                                                                                  
08_001.ab1                                                                                  
07_002.ab1                                                                                  
 
                  810       820       830       840       850       860       870       880 
Untitled   
CACACAACTGAACGTGGCGACCGCCGATCGCTTCCAAGTGAATCCCCAAACTGGCCTGGTTACCATCAGCTC
CGTTAGCC 
           -------------------------------------------------------------------------------- 
Consensus: 
CACACAACTGAACGTGGCGACCGCCGATCGCTTCCAAGTGAATCCCCAAACTGGCCTGGTTACCATCAGCTC
CGTTAGCC 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1 
CACACAACTGAACGTGGCGACCGCCGATCGCTTCCAAGTGAATCCCCAAACTGGCCTGGTTACCATCAGCTC
CGTTAGCC 
05_004.ab1 
CACACAACTGAACGTGGCGACCGCCGATCGCTTCCAAGTGAATCCCCAAACTGGCCTGGTTACCATCAGCTC
CGTTAGCC 
06_003.ab1                                                                                  
08_001.ab1                                                                                  
07_002.ab1                                                                                  
 
                  890       900       910       920       930       940       950       960 
Untitled   
AGGATGATTATGGCACATACACATGCTTGGCCAAGAATAGGGCCGGTGTAGTGGATCAGAAGACCAAGCTG
AATGTTTTG 
           -------------------------------------------------------------------------------- 
Consensus: 
AGGATGATTATGGCACATACACATGCTTGGCCAAGAATAGGGCCGGTGTAGTGGATCAGAAGACCAAGCTG
NATGTTTTG 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1 
AGGATGATTATGGCACATACACATGCTTGGCCAAGAATAGGGCCGGTGTAGTGGATCAGAAGACCAAGCTG
-ATGTTTTG 
05_004.ab1 
AGGATGATTATGGCACATACACATGCTTGGCCAAGAATAGGGCCGGTGTAGTGGATCAGAAGACCAAGCTG
AATGTTTTG 
06_003.ab1                                                                                  
08_001.ab1                                                                                  
07_002.ab1                                                                                  
 
                  970       980       990      1000      1010      1020      1030      1040 
Untitled   
GTGCGTCCGCAGATCTATGAGTTGTACAATGTGACCGGGGCCAGGACCAAGGAGATTGCCATAACCTGCCG
TGCCAAAGG 
           -------------------------------------------------------------------------------- 
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Consensus: 
GTGCGTCCGCAGATCTATGAGTTGTACAATGTGACCGGGGCCAGGACCAAGGAGATTGCCATNACCTGCCG
TGCCAAAGG 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1 
GTGCGTCCGCAGATCTATGAGTTGTACAATGTGACCGGGGCCAGGACCAAGGAGATTGCCAT-
ACCTGCCGTGCCAAAGG 
05_004.ab1 
GTGCGTCCGCAGATCTATGAGTTGTACAATGTGACCGGGGCCAGGACCAAGGAGATTGCCATAACCTGCCG
TGCCAAAGG 
06_003.ab1                                                                                  
08_001.ab1                                                                                  
07_002.ab1                                                                                  
 
                 1050      1060      1070      1080      1090      1100      1110      1120 
Untitled   
ACGTCCGGCACCAGCGATTACCTTCCGTCGTTGGGGAACACAGGAGGAGTACACGAACGGGCAGCAGGAT
GACGATCCCC 
           -------------------------------------------------------------------------------- 
Consensus: 
ACGTCCGGCACCAGCGATTACCTTCCGTCGTTGGGGAACACAGGAGGAGTACACGAACGGGCAGCAGGAT
GACGATCCCC 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1 ACGTCCGGCACC                                                                     
05_004.ab1 
ACGTCCGGCACCAGCGATTACCTTCCGTCGTTGGGGAACACAGGAGGAGTACACGAACGGGCAGCAGGAT
GACGATCCCC 
06_003.ab1                                                                                  
08_001.ab1                                                                                  
07_002.ab1                                                                                  
 
                 1130      1140      1150      1160      1170      1180      1190      1200 
Untitled   
GCATCATTTTGGAGCCGAATTTCGATGAGGAGCGCGGCGAGAGCACCGGCACCCTTCGCATCTCCAATGCC
GAGCGTTCC 
           -------------------------------------------------------------------------------- 
Consensus: 
GCATCATTTTGGAGCCGAATTTCGATGAGGAGCGCGGCGAGAGCACCGGCACCCTTCGCATCTCCAATGCC
GAGCGTTCC 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1                                                                                  
05_004.ab1 
GCATCATTTTGGAGCCGAATTTCGATGAGGAGCGCGGCGAGAGCACCGGCACCCTTCGCATCTCCAATGCC
GAGCGTTCC 
06_003.ab1                                                       tTCGCATCTCCAATGCCGAGCGTTCC 
08_001.ab1                                                                                  
07_002.ab1                                                                                  
 
                 1210      1220      1230      1240      1250      1260      1270      1280 
Untitled   
GACGATGGACTTTACCAGTGTATTGCCCGGAACAAGGGAGCCGATGCCTACAAGACTGGACACATTACCGT
TGAATTTGC 
           -------------------------------------------------------------------------------- 
Consensus: 
GACGATGGACTTTACCAGTGTATTGCCCGGAACAAGGGAGCCGATGCCTACNAGACTGGACACATTACCGT
TGAATTTGC 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1                                                                                  
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05_004.ab1 GACGATGGACTTTACCAGTGTATTGCCCGGAACAAGGGAGCCGATGCCTAC-
AGACTGGACACATTACCGTTGAATTTGC 
06_003.ab1 
GACGATGGACTTTACCAGTGTATTGCCCGGAACAAGGGAGCCGATGCCTACAAGACTGGACACATTACCGT
TGAATTTGC 
08_001.ab1                                                                                  
07_002.ab1                                                                                  
 
                 1290      1300      1310      1320      1330      1340      1350      1360 
Untitled   
TCCGGACTTTAGCCACATGAAGGAGCTGCCTCCGGTTTTCTCATGGGAGCAGCGCAAGGCGAATCTCAGCT
GCCTGGCCA 
           -------------------------------------------------------------------------------- 
Consensus: 
TCCGGACTTTAGCCACATGAAGGAGCTGCCTCCGGTTTTCTCGTGGGAGCAGCGCAAGGCGAATCTCAGCT
GCCTGGCCA 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1                                                                                  
05_004.ab1 TCCGGACTTTAGCCACATGAAGGAGCTGCCTCCGGTTTTCTCg                                      
06_003.ab1 
TCCGGACTTTAGCCACATGAAGGAGCTGCCTCCGGTTTTCTCGTGGGAGCAGCGCAAGGCGAATCTCAGCT
GCCTGGCCA 
08_001.ab1                                                                                  
07_002.ab1                                                                                  
 
                 1370      1380      1390      1400      1410      1420      1430      1440 
Untitled   
TGGGTATTCCGAATGCCACAATCGAATGGCACTGGAATGGTCGTAAGATCAAGGATCTGTACGATACCAAT
CTAAAGATT 
           -------------------------------------------------------------------------------- 
Consensus: 
TGGGCATCCCGAATGCCACAATCGAATGGCACTGGAATGGTCGTAAGATCAAGGATCTGTACGATACCAAT
CTAAAGATT 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1                                                                                  
05_004.ab1                                                                                  
06_003.ab1 
TGGGCATCCCGAATGCCACAATCGAATGGCACTGGAATGGTCGTAAGATCAAGGATCTGTACGATACCAAT
CTAAAGATT 
08_001.ab1                                                                                  
07_002.ab1                                                                                  
 
                 1450      1460      1470      1480      1490      1500      1510      1520 
Untitled   
GTCGGCACTGGACCCCGCAGCGATTTGATTGTGCATCCCGTAACGAGGCAGTATTACTCTGGATACAAGTG
CATTGCGAC 
           -------------------------------------------------------------------------------- 
Consensus: 
GTCGGCACTGGACCCCGCAGCGATTTGATTGTGCATCCCGTAACGAGGCAGTATTACTCTGGATACAAGTG
CATTGCGAC 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1                                                                                  
05_004.ab1                                                                                  
06_003.ab1 
GTCGGCACTGGACCCCGCAGCGATTTGATTGTGCATCCCGTAACGAGGCAGTATTACTCTGGATACAAGTG
CATTGCGAC 
08_001.ab1                                                                                  
07_002.ab1                                                                                  
 
                 1530      1540      1550      1560      1570      1580      1590      1600 
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Untitled   
CAACATCCATGGAACCGCTGAACATGATATGCAACTGAAGGAGGCACGTGTCCCTGATTTTGTGTCCGAAG
CCAAACCCA 
           -------------------------------------------------------------------------------- 
Consensus: 
CAACATCCATGGAACCGCTGAACATGATATGCAACTGAAGGAGGCACGTGTCCCTGATTTTGTGTCCGAAG
CCAAACCCA 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1                                                                                  
05_004.ab1                                                                                  
06_003.ab1 
CAACATCCATGGAACCGCTGAACATGATATGCAACTGAAGGAGGCACGTGTCCCTGATTTTGTGTCCGAAG
CCAAACCCA 
08_001.ab1                                                                              cCA 
07_002.ab1                                                                                  
 
                 1610      1620      1630      1640      1650      1660      1670      1680 
Untitled   
GTCAACTGACCGCCACCACGATGACCTTCGACATTCGCGGCCCATCAACCGAACTAGGCCTGCCCATTCTGG
CGTACAGT 
           -------------------------------------------------------------------------------- 
Consensus: 
GTCAACTGACCGCCACCACGATGACCTTCGACATTCGCGGCCCATCAACCGAACTAGGCCTGCCCANTCTG
GCGTACAGT 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1                                                                                  
05_004.ab1                                                                                  
06_003.ab1 
GTCAACTGACCGCCACCACGATGACCTTCGACATTCGCGGCCCATCAACCGAACTAGGCCTGCCCATTCTGG
CGTACAGT 
08_001.ab1 
GTCAACTGACCGCCACCACGATGACCTTCGACATTCGCGGCCCATCAACCGAACTAGGCCTGCCCA-
TCTGGCGTACAGT 
07_002.ab1                                                                                  
 
                 1690      1700      1710      1720      1730      1740      1750      1760 
Untitled   
GTGCAGTATAAGGAGGCCCTAAATCCGGACTGGTCGACGGCCTATAACCGCAGTTGGTCACCAGATTCGCC
GTACATTGT 
           -------------------------------------------------------------------------------- 
Consensus: 
GTGCAGTATAAGGAGGCCCTAAATCCGGACTGGTCGACGGCCTATAACCGCAGTTGGTCACCAGATTCGCC
GTACATTGT 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1                                                                                  
05_004.ab1                                                                                  
06_003.ab1 
GTGCAGTATAAGGAGGCCCTAAATCCGGACTGGTCGACGGCCTATAACCGCAGTTGGTCACCAGATTCGCC
GTACATTGT 
08_001.ab1 
GTGCAGTATAAGGAGGCCCTAAATCCGGACTGGTCGACGGCCTATAACCGCAGTTGGTCACCAGATTCGCC
GTACATTGT 
07_002.ab1                                                                                  
 
                 1770      1780      1790      1800      1810      1820      1830      1840 
Untitled   
GGAGGGACTGCGACCACAGACGGAGTACAGCTTCCGATTTGCCGCCCGCAACCAGGTGGGATTAGGAAATT
GGGGCGTCA 
           -------------------------------------------------------------------------------- 
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Consensus: 
GGAGGGACTGCGACCACAGACGGAGTACAGCTTCCGATTTGCCGCCCGCAACCAGGTGGGATTAGGAAATT
GGGGCGTCA 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1                                                                                  
05_004.ab1                                                                                  
06_003.ab1 
GGAGGGACTGCGACCACAGACGGAGTACAGCTTCCGATTTGCCGCCCGCAACCAGGTGGGATTAGGAAATT
GGGGCGTCA 
08_001.ab1 
GGAGGGACTGCGACCACAGACGGAGTACAGCTTCCGATTTGCCGCCCGCAACCAGGTGGGATTAGGAAATT
GGGGCGTCA 
07_002.ab1                                                                                  
 
                 1850      1860      1870      1880      1890      1900      1910      1920 
Untitled   
ATCAGCAACAGTCGACACCACGACGATCGGCTCCCGAGGAGCCCAAGCCATTGCATAATCCCGTCCAGCAC
GACAAAGAG 
           -------------------------------------------------------------------------------- 
Consensus: 
ATCAGCAACAGTCGACACCACGACGATCGGCTCCCGAGGAGCCCAAGCCATTGCATAATCCCGTCCAGCAC
GACAAAGAG 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1                                                                                  
05_004.ab1                                                                                  
06_003.ab1 
ATCAGCAACAGTCGACACCACGACGATCGGCTCCCGAGGAGCCCAAGCCATTGCATAATCCCGTCCAGCAC
GACAAAGAG 
08_001.ab1 
ATCAGCAACAGTCGACACCACGACGATCGGCTCCCGAGGAGCCCAAGCCATTGCATAATCCCGTCCAGCAC
GACAAAGAG 
07_002.ab1                                                                                  
 
                 1930      1940      1950      1960      1970      1980      1990      2000 
Untitled   
GAACCGGTGGTCGTGTCGCCCTATTCCGATCATTTCGAGCTGCGCTGGGGCGTGCCCGCCGACAACGGAG
AGCCTATTGA 
           -------------------------------------------------------------------------------- 
Consensus: 
GAACCGGTGGTCGTGTCGCCCTATTCCGATCATTTCGAGCTGCGTTGGGGCGTGCCCGCCGACAACGGAG
AGCCTATTGA 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1                                                                                  
05_004.ab1                                                                                  
06_003.ab1 
GAACCGGTGGTCGTGTCGCCCTATTCCGATCATTTCGAGCTGCGTTGGGGCGTGCCCGCCGACAACGGAG
AGCCTATTGA 
08_001.ab1 
GAACCGGTGGTCGTGTCGCCCTATTCCGATCATTTCGAGCTGCGTTGGGGCGTGCCCGCCGACAACGGAG
AGCCTATTGA 
07_002.ab1                                                                                  
 
                 2010      2020      2030      2040      2050      2060      2070      2080 
Untitled   
TAGGTACCAGATCAAATACTGTCCGGGCGTTAAGATCAGCGGCACCTGGACGGAACTGGAGAACTCCTGCA
ACACCGTTG 
           -------------------------------------------------------------------------------- 
Consensus: 
TAGGTACCAGATCAAATACTGTCCGGGCGTTAAGATCAGCGGCACCTGGACGGAACTGGAGAACTCCTGCA
ACACCGTTG 
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           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1                                                                                  
05_004.ab1                                                                                  
06_003.ab1 
TAGGTACCAGATCAAATACTGTCCGGGCGTTAAGATCAGCGGCACCTGGACGGAACTGGAGAACTCCTGCA
ACAC      
08_001.ab1 
TAGGTACCAGATCAAATACTGTCCGGGCGTTAAGATCAGCGGCACCTGGACGGAACTGGAGAACTCCTGCA
ACACCGTTG 
07_002.ab1                                                                                  
 
                 2090      2100      2110      2120      2130      2140      2150      2160 
Untitled   
AGGTGATGGAGACCACATCCTTCGAGATGACCCAGCTGGTGGGCAACACATACTATCGCATTGAACTGAAG
GCGCACAAC 
           -------------------------------------------------------------------------------- 
Consensus: 
AGGTGATGGAGACCACATCCTTCGAGATGACCCAGCTGGTGGGCAACACATACTATCGCATTGAACTGAAG
GCGCACAAC 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1                                                                                  
05_004.ab1                                                                                  
06_003.ab1                                                                                  
08_001.ab1 
AGGTGATGGAGACCACATCCTTCGAGATGACCCAGCTGGTGGGCAACACATACTATCGCATTGAACTGAAG
GCGCACAAC 
07_002.ab1                                                                                  
 
                 2170      2180      2190      2200      2210      2220      2230      2240 
Untitled   
GCCATCGGCTATTCATCGCCTGCTTCCATTATCATGAAGACGACACGAGGAATTGACGTCATCCAAGTGGCT
GAGCGACA 
           -------------------------------------------------------------------------------- 
Consensus: 
GCCATCGGCTATTCATCGCCTGCTTCCATTATCATGAAGACGACACGAGGAATTGACGTCATCCAAGTGGCT
GAGCGACA 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1                                                                                  
05_004.ab1                                                                                  
06_003.ab1                                                                                  
08_001.ab1 
GCCATCGGCTATTCATCGCCTGCTTCCATTATCATGAAGACGACACGAGGAATTGACGTCATCCAAGTGGCT
GAGCGACA 
07_002.ab1                                                                                  
 
                 2250      2260      2270      2280      2290      2300      2310      2320 
Untitled   
GGTCTTCTCCTCGGCGGCCATCGTGGGCATCGCAATCGGCGGTGTCCTCCTGCTTCTGTTCGTGGTCGACC
TACTCTGCT 
           -------------------------------------------------------------------------------- 
Consensus: 
GGTCTTCTCCTCGGCGGCCATCGTGGGCATCGCAATCGGCGGTGTCCTCCTGCTTCTGTTCGTGGTCGACC
TACTCTGCT 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1                                                                                  
05_004.ab1                                                                                  
06_003.ab1                                                                                  
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08_001.ab1 
GGTCTTCTCCTCGGCGGCCATCGTGGGCATCGCAATCGGCGGTGTCCTCCTGCTTCTGTTCGTGGTCGACC
TACTCTGCT 
07_002.ab1                                                                                  
 
                 2330      2340      2350      2360      2370      2380      2390      2400 
Untitled   
GCATCACCGTCCACATGGGCGTCATGGCCACGATGTGCCGCAAGGCCAAGCGATCGCCTTCCGAAATCGAC
GACGAGGCC 
           -------------------------------------------------------------------------------- 
Consensus: 
GCATCACCGTCCACATGGGCGTCATGGCCACGATGTGCCGCAAGGCCAAGCGATCGCCTTCCGAAATCGAC
GACGAGGCC 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1                                                                                  
05_004.ab1                                                                                  
06_003.ab1                                                                                  
08_001.ab1 
GCATCACCGTCCACATGGGCGTCATGGCCACGATGTGCCGCAAGGCCAAGCGATCGCCTTCCGAAATCGAC
GACGAGGCC 
07_002.ab1                                                                                  
 
                 2410      2420      2430      2440      2450      2460      2470      2480 
Untitled   
AAGCTGGGCAGTGGCCAGCTGGTAAAGGAGCCACCGCCGTCACCGTTGCCACTGCCGCCGCCCGTCAAACT
GGGCGGTTC 
           -------------------------------------------------------------------------------- 
Consensus: 
AAGCTGGGCAGTGGCCAGCTGGTAAAGGAGCCACCGCCGTCGCCGTTGCCACTGCCGCCGCCCGTCAAACT
GGGCGGTTC 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1                                                                                  
05_004.ab1                                                                                  
06_003.ab1                                                                                  
08_001.ab1 
AAGCTGGGCAGTGGCCAGCTGGTAAAGGAGCCACCGCCGTCGCCGTTGCCACTGCCGCCGCCCGTCAAACT
GGGCGGTTC 
07_002.ab1                                                                                  
 
                 2490      2500      2510      2520      2530      2540      2550      2560 
Untitled   
GCCCATGAGCACGCCATTGGACGAAAAGGAGCCGCTCCGCACGCCAACAGGCAGCATCAAACAGAACTCGA
CCATCGAAT 
           -------------------------------------------------------------------------------- 
Consensus: 
GCCCATGAGCACGCCATTGGACGAAAAGGAGCCGCTCCGCACGCCAACAGGCAGCATCNAACAGAACTCGA
CCATCGAAT 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1                                                                                  
05_004.ab1                                                                                  
06_003.ab1                                                                                  
08_001.ab1 
GCCCATGAGCACGCCATTGGACGAAAAGGAGCCGCTCCGCACGCCAACAGGCAGCATCAAACAGAA               
07_002.ab1                                     tggccccgccacatgCAGCATC-AACAGAACTCGACCATCGAAT 
 
                 2570      2580      2590      2600      2610      2620      2630      2640 
Untitled   
TCGACGGGCGATTCGTGCACTCGCGCAGTGGCGAGATAATCGGGAAGAATTCGGCGGTGGGTAAGCCTAT
CCCTAACCCT 
           -------------------------------------------------------------------------------- 
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Consensus: 
TCGACGGGCGATTCGTGCACTCGCGCAGTGGCGAGATAATCGGGAAGAATTCGGCGGTGGGTAAGCCTAT
CCCTAACCCT 
           -------------------------------------------------------------------------------- 
04_005.ab1                                                                                  
03_006.ab1                                                                                  
05_004.ab1                                                                                  
06_003.ab1                                                                                  
08_001.ab1                                                                                  
07_002.ab1 
TCGACGGGCGATTCGTGCACTCGCGCAGTGGCGAGATAATCGGGAAGAATTCGGCGGTGGGTAAGCCTAT
CCCTAACCCT 
 
                 2650      2660                                                             
Untitled   CTCCTCGGTCTCGATTCTACG                                                            
           ---------------------                                                            
Consensus: CTCCTCGGTCTCGATTCTAC                                                             
           ---------------------                                                            
04_005.ab1                                                                                  
03_006.ab1                                                                                  
05_004.ab1                                                                                  
06_003.ab1                                                                                  
08_001.ab1                                                                                  
07_002.ab1 CTCCTCGGTCTCGATTCTACt                                                            
 
 

Sequencing results for fas2-B-V5 aligned to FlyBase sequence 

10        20        30        40        50        60        70        80 
Untitled_3 
ATGGGTGAATTGCCGCCAAATTCAGTCGGCGTCTTTTTGGCGCTGCTCCTCTGCAGCTGCTCTTTAATAGA
ACTGACCCG 
           -------------------------------------------------------------------------------- 
Consensus: 
ATGGGTGAATTGCCGCCAAATTCAGTCGGCGTCTTTTTGGCGCTGCTCCTCTGCAGCTGCTCTTTAATAGA
ACTGACCCG 
           -------------------------------------------------------------------------------- 
10_015.ab1 
aTGGGTGAATTGCCGCCAAATTCAGTCGGCGTCTTTTTGGCGCTGCTCCTCTGCAGCTGCTCTTTAATAGAA
CTGACCCG 
09_016.ab1                        
cacgtaacttatTTTGGCGCTGCTCCTCTGCAGCTGCTCTTTAATAGAACTGACCCG 
11_014.ab1                                                                                  
12_013.ab1                                                                                  
14_011.ab1                                                                                  
13_012.ab1                                                                                  
 
                   90       100       110       120       130       140       150       160 
Untitled_3 
TGCGCAGTCCCCCATCCTGGAGATTTATCCCAAACAAGAAGTCCAGCGCAAGCCAGTGGGCAAGCCCCTGA
TCCTCACCT 
           -------------------------------------------------------------------------------- 
Consensus: 
TGCGCAGTCCCCCATCCTGGAGATTTATCCCAAACAAGAAGTCCAACGCAAGCCAGTGGGCAAGCCCCTGA
TCCTCACCT 
           -------------------------------------------------------------------------------- 
10_015.ab1 
TGCGCAGTCCCCCATCCTGGAGATTTATCCCAAACAAGAAGTCCAACGCAAGCCAGTGGGCAAGCCCCTGA
TCCTCACCT 
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09_016.ab1 
TGCGCAGTCCCCCATCCTGGAGATTTATCCCAAACAAGAAGTCCAACGCAAGCCAGTGGGCAAGCCCCTGA
TCCTCACCT 
11_014.ab1                                                                                  
12_013.ab1                                                                                  
14_011.ab1                                                                                  
13_012.ab1                                                                                  
 
                  170       180       190       200       210       220       230       240 
Untitled_3 
GCCGGCCCACAGTTCCCGAGCCGTCCCTGGTCGCCGATCTGCAATGGAAGGACAATCGGAACAACACCATT
CTGCCCAAG 
           -------------------------------------------------------------------------------- 
Consensus: 
GCCGGCCCACAGTTCCCGAGCCGTCCCTGGTCGCCGATCTGCAATGGAAGGACAATCGGAACAACACCATT
CTGCCCAAG 
           -------------------------------------------------------------------------------- 
10_015.ab1 
GCCGGCCCACAGTTCCCGAGCCGTCCCTGGTCGCCGATCTGCAATGGAAGGACAATCGGAACAACACCATT
CTGCCCAAG 
09_016.ab1 
GCCGGCCCACAGTTCCCGAGCCGTCCCTGGTCGCCGATCTGCAATGGAAGGACAATCGGAACAACACCATT
CTGCCCAAG 
11_014.ab1                                                                                  
12_013.ab1                                                                                  
14_011.ab1                                                                                  
13_012.ab1                                                                                  
 
                  250       260       270       280       290       300       310       320 
Untitled_3 
CCGAATGGACGCAACCAGCCGCCGATGTACACGGAAACGCTGCCCGGCGAAAGTTTGGCCCTGATGATTAC
CTCGCTGTC 
           -------------------------------------------------------------------------------- 
Consensus: 
CCGAATGGACGCAACCAGCCGCCGATGTACACGGAAACGCTGCCCGGCGAAAGTTTGGCCCTGATGATTAC
CTCGCTGTC 
           -------------------------------------------------------------------------------- 
10_015.ab1 CCGAATGGACGCAACCAGCCGC                                                           
09_016.ab1 
CCGAATGGACGCAACCAGCCGCCGATGTACACGGAAACGCTGCCCGGCGAAAGTTTGGCCCTGATGATTAC
CTCGCTGTC 
11_014.ab1                                                                                  
12_013.ab1                                                                                  
14_011.ab1                                                                                  
13_012.ab1                                                                                  
 
                  330       340       350       360       370       380       390       400 
Untitled_3 
GGTGGAAATGGGCGGCAAGTACTACTGCACCGCCTCCTATGCAAATACGGAGATCCTCGAGAAGGGCGTCA
CAATTAAAA 
           -------------------------------------------------------------------------------- 
Consensus: 
GGTGGAAATGGGCGGCAAGTACTACTGCACCGCCTCCTATGCAAATACGGAGATCCTCGAGAAGGGCGTCA
CAATTAAAA 
           -------------------------------------------------------------------------------- 
10_015.ab1                                                                                  
09_016.ab1 
GGTGGAAATGGGCGGCAAGTACTACTGCACCGCCTCCTATGCAAATACGGAGATCCTCGAGAAGGGCGTCA
CAATTAAAA 
11_014.ab1                                              tACGGAGATCCTCGAGAAGGGCGTCACAATTAAAA 
12_013.ab1                                                                                  
14_011.ab1                                                                                  
13_012.ab1                                                                                  
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                  410       420       430       440       450       460       470       480 
Untitled_3 
CTTACGTGGCCATCACCTGGACAAATGCCCCTGAGAATCAGTACCCCACTCTTGGCCAAGACTATGTGGTAA
TGTGCGAG 
           -------------------------------------------------------------------------------- 
Consensus: 
CTTACGTGGCCATCACCTGGACAAATGCCCCTGAGAATCAGTACCCCACTCTTGGCCAAGACTATGTGGTAA
TGTGCGAG 
           -------------------------------------------------------------------------------- 
10_015.ab1                                                                                  
09_016.ab1 
CTTACGTGGCCATCACCTGGACAAATGCCCCTGAGAATCAGTACCCCACTCTTGGCCAAGACTATGTGGTAA
TGTGCGAG 
11_014.ab1 
CTTACGTGGCCATCACCTGGACAAATGCCCCTGAGAATCAGTACCCCACTCTTGGCCAAGACTATGTGGTAA
TGTGCGAG 
12_013.ab1                                                                                  
14_011.ab1                                                                                  
13_012.ab1                                                                                  
 
                  490       500       510       520       530       540       550       560 
Untitled_3 
GTAAAGGCCGATCCCAATCCAACAATCGACTGGCTGCGCAACGGAGATCCGATCCGCACGACCAACGACAA
GTATGTGGT 
           -------------------------------------------------------------------------------- 
Consensus: 
GTAAAGGCCGATCCCAATCCAACAATCGACTGGCTGCGCAACGGAGATCCGATCCGCACGACCAACGACAA
GTATGTGGT 
           -------------------------------------------------------------------------------- 
10_015.ab1                                                                                  
09_016.ab1 
GTAAAGGCCGATCCCAATCCAACAATCGACTGGCTGCGCAACGGAGATCCGATCCGCACGACCAACGACAA
GTATGTGGT 
11_014.ab1 
GTAAAGGCCGATCCCAATCCAACAATCGACTGGCTGCGCAACGGAGATCCGATCCGCACGACCAACGACAA
GTATGTGGT 
12_013.ab1                                                                                  
14_011.ab1                                                                                  
13_012.ab1                                                                                  
 
                  570       580       590       600       610       620       630       640 
Untitled_3 
GCAAACCAATGGCCTGCTAATCCGAAATGTCCAGGAGAGCGATGAAGGCATCTACACTTGCCGTGCAGCCG
TTATCGAAA 
           -------------------------------------------------------------------------------- 
Consensus: 
GCAAACCAATGGCCTGCTAATCCGAAATGTCCAGGAGAGCGATGAAGGCATCTACACTTGCCGTGCAGCCG
TTATCGAAA 
           -------------------------------------------------------------------------------- 
10_015.ab1                                                                                  
09_016.ab1 
GCAAACCAATGGCCTGCTAATCCGAAATGTCCAGGAGAGCGATGAAGGCATCTACACTTGCCGTGCAGCCG
TTATCGAAA 
11_014.ab1 
GCAAACCAATGGCCTGCTAATCCGAAATGTCCAGGAGAGCGATGAAGGCATCTACACTTGCCGTGCAGCCG
TTATCGAAA 
12_013.ab1                                                                                  
14_011.ab1                                                                                  
13_012.ab1                                                                                  
 
                  650       660       670       680       690       700       710       720 
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Untitled_3 
CTGGTGAGCTATTGGAACGCACCATTCGCGTGGAGGTCTTCATTCAGCCGGAGATCATATCGCTACCCACC
AATCTGGAG 
           -------------------------------------------------------------------------------- 
Consensus: 
CTGGTGAGCTATTGGAACGCACCATTCGCGTGGAGGTCTTCATTCAGCCGGAGATCATATCGCTACCCACC
AATCTGGAG 
           -------------------------------------------------------------------------------- 
10_015.ab1                                                                                  
09_016.ab1 
CTGGTGAGCTATTGGAACGCACCATTCGCGTGGAGGTCTTCATTCAGCCGGAGATCATATCGCTACCCACC
AATCTGGAG 
11_014.ab1 
CTGGTGAGCTATTGGAACGCACCATTCGCGTGGAGGTCTTCATTCAGCCGGAGATCATATCGCTACCCACC
AATCTGGAG 
12_013.ab1                                                                                  
14_011.ab1                                                                                  
13_012.ab1                                                                                  
 
                  730       740       750       760       770       780       790       800 
Untitled_3 
GCCGTCGAGGGCAAGCCGTTTGCAGCCAACTGCACAGCAAGAGGCAAACCAGTACCGGAGATTAGTTGGAT
TCGAGATGC 
           -------------------------------------------------------------------------------- 
Consensus: 
GCCGTCGAGGGCAAGCCGTTTGCAGCCAACTGCACAGCAAGAGGCAAACCAGTACCGGAGATTAGTTGGAT
TCGAGATGC 
           -------------------------------------------------------------------------------- 
10_015.ab1                                                                                  
09_016.ab1 
GCCGTCGAGGGCAAGCCGTTTGCAGCCAACTGCACAGCAAGAGGCAAACCAGTACCGGAGATTAGTTGGAT
TCGAGATGC 
11_014.ab1 
GCCGTCGAGGGCAAGCCGTTTGCAGCCAACTGCACAGCAAGAGGCAAACCAGTACCGGAGATTAGTTGGAT
TCGAGATGC 
12_013.ab1                                                                                  
14_011.ab1                                                                                  
13_012.ab1                                                                                  
 
                  810       820       830       840       850       860        870          
Untitled_3 CACACAACTGAACGTGGCGACCGCCGATCGCTTCCAAGTGAATCCCCAAACTGGCCTGG-
TTACCATCAGCTCCGTTAGC 
           -------------------------------------------------------------------------------- 
Consensus: 
CACACAACTGAACGTGGCGACCGCCGATCGCTTCCAAGTGAATCCCCAAACTGGCCTGGNTTACCATCAGCT
CCGTTAGC 
           -------------------------------------------------------------------------------- 
10_015.ab1                                                                                  
09_016.ab1 
CACACAACTGAACGTGGCGACCGCCGATCGCTTCCAAGTGAATCCCCAAACTGGCCTGGGTTACCATCAGC
TCCGTTAGC 
11_014.ab1 CACACAACTGAACGTGGCGACCGCCGATCGCTTCCAAGTGAATCCCCAAACTGGCCTGG-
TTACCATCAGCTCCGTTAGC 
12_013.ab1                                                                                  
14_011.ab1                                                                                  
13_012.ab1                                                                                  
 
         880       890       900       910       920       930       940       950          
Untitled_3 
CAGGATGATTATGGCACATACACATGCTTGGCCAAGAATAGGGCCGGTGTAGTGGATCAGAAGACCAAGCT
GAATGTTTT 
           -------------------------------------------------------------------------------- 
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Consensus: 
CAGGATGATTATGGCACATACACATGCTTGGCCAAGAATAGGGCCGGTGTAGTGGATCAGAAGACCAAGCT
GAATGTTTT 
           -------------------------------------------------------------------------------- 
10_015.ab1                                                                                  
09_016.ab1 
CAGGATGATTATGGCACATACACATGCTTGGCCAAGAATAGGGCCGGTGTAGTGGATCAGAAGACCAAGCT
GAATGTTTT 
11_014.ab1 
CAGGATGATTATGGCACATACACATGCTTGGCCAAGAATAGGGCCGGTGTAGTGGATCAGAAGACCAAGCT
GAATGTTTT 
12_013.ab1                                                                                  
14_011.ab1                                                                                  
13_012.ab1                                                                                  
 
         960       970       980       990      1000      1010      1020      1030          
Untitled_3 
GGTGCGTCCGCAGATCTATGAGTTGTACAATGTGACCGGGGCCAGGACCAAGGAGATTGCCATAACCTGCC
GTGCCAAAG 
           -------------------------------------------------------------------------------- 
Consensus: 
GGTGCGTCCGCAGATCTATGAGTTGTACAATGTGACCGGGGCCAGGACCAAGGAGATTGCCATAACCTGCC
GTGCCAAAG 
           -------------------------------------------------------------------------------- 
10_015.ab1                                                                                  
09_016.ab1 
GGTGCGTCCGCAGATCTATGAGTTGTACAATGTGACCGGGGCCAGGACCAAGGAGATTGCCATAACCTGCC
GTGCCAAAG 
11_014.ab1 
GGTGCGTCCGCAGATCTATGAGTTGTACAATGTGACCGGGGCCAGGACCAAGGAGATTGCCATAACCTGCC
GTGCCAAAG 
12_013.ab1                                                                                  
14_011.ab1                                                                                  
13_012.ab1                                                                                  
 
        1040      1050      1060      1070      1080      1090      1100      1110          
Untitled_3 
GACGTCCGGCACCAGCGATTACCTTCCGTCGTTGGGGAACACAGGAGGAGTACACGAACGGGCAGCAGGA
TGACGATCCC 
           -------------------------------------------------------------------------------- 
Consensus: 
GACGTCCGGCACCAGCGATTACCTTCCGTCGTTGGGGAACACAGGAGGAGTACACGAACGGGCAGCAGGA
TGACGATCCC 
           -------------------------------------------------------------------------------- 
10_015.ab1                                                                                  
09_016.ab1 GACGTCCGGCACCAGCGATTACCTTCCGTCG-TGGGGACCACAGGA-GAGTACACG-
ACGGGCAGCA-GATGACGAT-CC 
11_014.ab1 
GACGTCCGGCACCAGCGATTACCTTCCGTCGTTGGGGAACACAGGAGGAGTACACGAACGGGCAGCAGGA
TGACGATCCC 
12_013.ab1 gACGTCCGGCACCAGCGATTA-CTT-CGTCGTTGGGG-
ACACAGGAGGAGTACACGAACGGGCAGCAGGATGACGATCCC 
14_011.ab1                                                                                  
13_012.ab1                                                                                  
 
        1120      1130      1140      1150      1160      1170       1180      1190         
Untitled_3 CGCATCATTTTGGAGCCGAATTTCGATGAGGAGCGCGGCGAGAGCACCGGCACCC-
TTCGCATCTCCAATGCCGAGCGTT 
           -------------------------------------------------------------------------------- 
Consensus: 
CGCATCATTTTGGAGCCGAATTTCGATGAGGAGCGCGGCGAGAGCACCGGCACCCNTTCGCATCTCCAATG
CCGAGCGTT 
           -------------------------------------------------------------------------------- 
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10_015.ab1                                                                                  
09_016.ab1 CGCATCA-TTT-GAG-CG-ATTTC                                                         
11_014.ab1 CGCATCATTTTGGAGCCGAATTTCGATGAGGAGCGCGGCGAGAGCACCGGCACCC-
TTCGCATCTCCAATGCCGAGCGTT 
12_013.ab1 
CGCATCATTTTGGAGCCGAATTTCGATGAGGAGCGCGGCGAGAGCACCGGCACCCTTTCGCATCTCCAATG
CCGAGCGTT 
14_011.ab1                                                                                  
13_012.ab1                                                                                  
 
         1200      1210      1220      1230      1240      1250      1260      1270         
Untitled_3 
CCGACGATGGACTTTACCAGTGTATTGCCCGGAACAAGGGAGCCGATGCCTACAAGACTGGACACATTACC
GTTGAATTT 
           -------------------------------------------------------------------------------- 
Consensus: 
CCGACGATGGACTTTACCAGTGTATTGCCCGGAACAAGGGAGCCGATGCCTACAAGACTGGACACATTACC
GTTGAATTT 
           -------------------------------------------------------------------------------- 
10_015.ab1                                                                                  
09_016.ab1                                                                                  
11_014.ab1 
CCGACGATGGACTTTACCAGTGTATTGCCCGGAACAAGGGAGCCGATGCCTACAAGACTGGACACATTACC
GTTGAATTT 
12_013.ab1 
CCGACGATGGACTTTACCAGTGTATTGCCCGGAACAAGGGAGCCGATGCCTACAAGACTGGACACATTACC
GTTGAATTT 
14_011.ab1                                      gGGAGCCGATGCCTACAAGACTGGACACATTACCGTTGAATTT 
13_012.ab1                                                                                  
 
         1280      1290      1300      1310       1320      1330      1340      1350        
Untitled_3 GCTCCGGACTTTAGCCACATGAAGGAGCTGCCTCCGG-
TTTTCTCATGGGAGCAGCGCAAGGCGAATCTCAGCTG-CCTG 
           -------------------------------------------------------------------------------- 
Consensus: GCTCCGGACTTTAGCCACATGAAGGAGCTGCCTCCGG-
TTTTCTCGTGGGAGCAGCGCAAGGCGAATCTCAGCTG-CCTG 
           -------------------------------------------------------------------------------- 
10_015.ab1                                                                                  
09_016.ab1                                                                                  
11_014.ab1 
GCTCCGGACTTTAGCCACATGAAGGAGCTGCCTCCGGGTTTTCTCGTGGGAGCAGCGCAAGGCGAATCTCA
GCTG-CCTG 
12_013.ab1 GCTCCGGACTTTAGCCACATGAAGGAGCTGCCTCCGG-
TTTTCTCGTGGGAGCAGCGCAAGGCGAATCTCAGCTG-CCTG 
14_011.ab1 GCTCCTGACTTTAGCCACATGAAGGAGCTGCCTCCGG-TTTTCTCG-
GGGAGCAGCGCAAGGCGAATCTCAGCTGTCTTG 
13_012.ab1                                                                                  
 
           1360      1370      1380      1390      1400      1410      1420      1430       
Untitled_3 
GCCATGGGTATTCCGAATGCCACAATCGAATGGCACTGGAATGGTCGTAAGATCAAGGATCTGTACGATAC
CAATCTAAA 
           -------------------------------------------------------------------------------- 
Consensus: 
GCCATGGGCATCCCGAATGCCACAATCGAATGGCACTGGAATGGTCGTAAGATCAAGGATCTGTACGATAC
CAATCTAAA 
           -------------------------------------------------------------------------------- 
10_015.ab1                                                                                  
09_016.ab1                                                                                  
11_014.ab1 GCCATGGGCATCCCG-ATG-CAC-ATCGAATGGCACTGGAATGGTCGT-AGATC-A-GATCTGT                 
12_013.ab1 
GCCATGGGCATCCCGAATGCCACAATCGAATGGCACTGGAATGGTCGTAAGATCAAGGATCTGTACGATAC
CAATCTAAA 
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14_011.ab1 
GCCATGGGCATCCCGAATGCCACAATCGAATGGCACTGGAATGGTCGTAAGATCAAGGATCTGTACGATAC
CAATCTAAA 
13_012.ab1                                                                                  
 
           1440      1450      1460      1470      1480      1490      1500      1510       
Untitled_3 
GATTGTCGGCACTGGACCCCGCAGCGATTTGATTGTGCATCCCGTAACGAGGCAGTATTACTCTGGATACA
AGTGCATTG 
           -------------------------------------------------------------------------------- 
Consensus: 
GATTGTCGGCACTGGACCCCGCAGCGATTTGATTGTGCATCCCGTAACGAGGCAGTATTACTCTGGATACA
AGTGCATTG 
           -------------------------------------------------------------------------------- 
10_015.ab1                                                                                  
09_016.ab1                                                                                  
11_014.ab1                                                                                  
12_013.ab1 
GATTGTCGGCACTGGACCCCGCAGCGATTTGATTGTGCATCCCGTAACGAGGCAGTATTACTCTGGATACA
AGTGCATTG 
14_011.ab1 
GATTGTCGGCACTGGACCCCGCAGCGATTTGATTGTGCATCCCGTAACGAGGCAGTATTACTCTGGATACA
AGTGCATTG 
13_012.ab1                                                                                  
 
           1520      1530      1540      1550      1560      1570      1580      1590       
Untitled_3 
CGACCAACATCCATGGAACCGCTGAACATGATATGCAACTGAAGGAGGCACGTGTCCCTGATTTTGTGTCC
GAAGCCAAA 
           -------------------------------------------------------------------------------- 
Consensus: 
CGACCAACATCCATGGAACCGCTGAACATGATATGCAACTGAAGGAGGCACGTGTCCCTGATTTTGTGTCC
GAAGCCAAA 
           -------------------------------------------------------------------------------- 
10_015.ab1                                                                                  
09_016.ab1                                                                                  
11_014.ab1                                                                                  
12_013.ab1 
CGACCAACATCCATGGAACCGCTGAACATGATATGCAACTGAAGGAGGCACGTGTCCCTGATTTTGTGTCC
GAAGCCAAA 
14_011.ab1 
CGACCAACATCCATGGAACCGCTGAACATGATATGCAACTGAAGGAGGCACGTGTCCCTGATTTTGTGTCC
GAAGCCAAA 
13_012.ab1                                                                                  
 
           1600      1610      1620      1630      1640      1650      1660      1670       
Untitled_3 
CCCAGTCAACTGACCGCCACCACGATGACCTTCGACATTCGCGGCCCATCAACCGAACTAGGCCTGCCCATT
CTGGCGTA 
           -------------------------------------------------------------------------------- 
Consensus: 
CCCAGTCAACTGACCGCCACCACGATGACCTTCGACATTCGCGGCCCATCAACCGAACTAGGCCTGCCCATT
CTGGCGTA 
           -------------------------------------------------------------------------------- 
10_015.ab1                                                                                  
09_016.ab1                                                                                  
11_014.ab1                                                                                  
12_013.ab1 
CCCAGTCAACTGACCGCCACCACGATGACCTTCGACATTCGCGGCCCATCAACCGAACTAGGCCTGCCCATT
CTGGCGTA 
14_011.ab1 
CCCAGTCAACTGACCGCCACCACGATGACCTTCGACATTCGCGGCCCATCAACCGAACTAGGCCTGCCCATT
CTGGCGTA 
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13_012.ab1                                                                                  
 
           1680      1690      1700      1710      1720      1730      1740      1750       
Untitled_3 
CAGTGTGCAGTATAAGGAGGCCCTAAATCCGGACTGGTCGACGGCCTATAACCGCAGTTGGTCACCAGATT
CGCCGTACA 
           -------------------------------------------------------------------------------- 
Consensus: 
CAGTGTGCAGTATAAGGAGGCCCTAAATCCGGACTGGTCGACGGCCTATAACCGCAGTTGGTCACCAGATT
CGCCGTACA 
           -------------------------------------------------------------------------------- 
10_015.ab1                                                                                  
09_016.ab1                                                                                  
11_014.ab1                                                                                  
12_013.ab1 
CAGTGTGCAGTATAAGGAGGCCCTAAATCCGGACTGGTCGACGGCCTATAACCGCAGTTGGTCACCAGATT
CGCCGTACA 
14_011.ab1 
CAGTGTGCAGTATAAGGAGGCCCTAAATCCGGACTGGTCGACGGCCTATAACCGCAGTTGGTCACCAGATT
CGCCGTACA 
13_012.ab1                                                                                  
 
           1760      1770      1780      1790      1800      1810      1820      1830       
Untitled_3 
TTGTGGAGGGACTGCGACCACAGACGGAGTACAGCTTCCGATTTGCCGCCCGCAACCAGGTGGGATTAGG
AAATTGGGGC 
           -------------------------------------------------------------------------------- 
Consensus: 
TTGTGGAGGGACTGCGACCACAGACGGAGTACAGCTTCCGATTTGCCGCCCGCAACCAGGTGGGATTAGG
AAATTGGGGC 
           -------------------------------------------------------------------------------- 
10_015.ab1                                                                                  
09_016.ab1                                                                                  
11_014.ab1                                                                                  
12_013.ab1 
TTGTGGAGGGACTGCGACCACAGACGGAGTACAGCTTCCGATTTGCCGCCCGCAACCAGGTGGGATTAGG
AAATTGGGGC 
14_011.ab1 
TTGTGGAGGGACTGCGACCACAGACGGAGTACAGCTTCCGATTTGCCGCCCGCAACCAGGTGGGATTAGG
AAATTGGGGC 
13_012.ab1                                                                                  
 
           1840      1850      1860      1870      1880      1890      1900      1910       
Untitled_3 
GTCAATCAGCAACAGTCGACACCACGACGATCGGCTCCCGAGGAGCCCAAGCCATTGCATAATCCCGTCCA
GCACGACAA 
           -------------------------------------------------------------------------------- 
Consensus: 
GTCAATCAGCAACAGTCGACACCACGACGATCGGCTCCCGAGGAGCCCAAGCCATTGCATAATCCCGTCCA
GCACGACAA 
           -------------------------------------------------------------------------------- 
10_015.ab1                                                                                  
09_016.ab1                                                                                  
11_014.ab1                                                                                  
12_013.ab1 
GTCAATCAGCAACAGTCGACACCACGACGATCGGCTCCCGAGGAGCCCAAGCCATTGCATAATCCCGTCCA
GCACGACAA 
14_011.ab1 
GTCAATCAGCAACAGTCGACACCACGACGATCGGCTCCCGAGGAGCCCAAGCCATTGCATAATCCCGTCCA
GCACGACAA 
13_012.ab1                                                                                  
 
           1920      1930      1940      1950      1960      1970      1980      1990       
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Untitled_3 
AGAGGAACCGGTGGTCGTGTCGCCCTATTCCGATCATTTCGAGCTGCGCTGGGGCGTGCCCGCCGACAAC
GGAGAGCCTA 
           -------------------------------------------------------------------------------- 
Consensus: 
AGAGGAACCGGTGGTCGTGTCGCCCTATTCCGATCATTTCGAGCTGCGTTGGGGCGTGCCCGCCGACAAC
GGAGAGCCTA 
           -------------------------------------------------------------------------------- 
10_015.ab1                                                                                  
09_016.ab1                                                                                  
11_014.ab1                                                                                  
12_013.ab1 
AGAGGAACCGGTGGTCGTGTCGCCCTATTCCGATCATTTCGAGCTGCGTTGGGGCGTGCCCGCCGACAAC
GGAGAGCCTA 
14_011.ab1 
AGAGGAACCGGTGGTCGTGTCGCCCTATTCCGATCATTTCGAGCTGCGTTGGGGCGTGCCCGCCGACAAC
GGAGAGCCTA 
13_012.ab1                                                                                  
 
           2000      2010      2020      2030      2040      2050      2060      2070       
Untitled_3 
TTGATAGGTACCAGATCAAATACTGTCCGGGCGTTAAGATCAGCGGCACCTGGACGGAACTGGAGAACTCC
TGCAACACC 
           -------------------------------------------------------------------------------- 
Consensus: 
TTGATAGGTACCAGATCAAATACTGTCCGGGCGTTAAGATCAGCGGCACCTGGACGGAACTGGAGAACTCC
TGCAACACC 
           -------------------------------------------------------------------------------- 
10_015.ab1                                                                                  
09_016.ab1                                                                                  
11_014.ab1                                                                                  
12_013.ab1 
TTGATAGGTACCAGATCAAATACTGTCCGGGCGTTAAGATCAGCGGCACCTGGACGGAACTGGAGAACTCC
TGCAACACC 
14_011.ab1 
TTGATAGGTACCAGATCAAATACTGTCCGGGCGTTAAGATCAGCGGCACCTGGACGGAACTGGAGAACTCC
TGCAACACC 
13_012.ab1                                                                                  
 
           2080      2090      2100      2110      2120      2130      2140      2150       
Untitled_3 
GTTGAGGTGATGGAGACCACATCCTTCGAGATGACCCAGCTGGTGGGCAACACATACTATCGCATTGAACT
GAAGGCGCA 
           -------------------------------------------------------------------------------- 
Consensus: 
GTTGAGGTGATGGAGACCACATCCTTCGAGATGACCCAGCTGGTGGGCAACACATACTATCGCATTGAACT
GAAGGCGCA 
           -------------------------------------------------------------------------------- 
10_015.ab1                                                                                  
09_016.ab1                                                                                  
11_014.ab1                                                                                  
12_013.ab1                                                                                  
14_011.ab1 
GTTGAGGTGATGGAGACCACATCCTTCGAGATGACCCAGCTGGTGGGCAACACATACTATCGCATTGAACT
GAAGGCGCA 
13_012.ab1                                                                                  
 
           2160      2170      2180      2190      2200      2210      2220      2230       
Untitled_3 
CAACGCCATCGGCTATTCATCGCCTGCTTCCATTATCATGAAGACGACACGAGATAATCCCCATCCCTCGAC
GAGTGGCG 
           -------------------------------------------------------------------------------- 
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Consensus: 
CAACGCCATCGGCTATTCATCGCCTGCTTCCATTATCATGAAGACGACACGAGATAATCCCCATCCCTCGAC
GAGTGGCG 
           -------------------------------------------------------------------------------- 
10_015.ab1                                                                                  
09_016.ab1                                                                                  
11_014.ab1                                                                                  
12_013.ab1                                                                                  
14_011.ab1 
CAACGCCATCGGCTATTCATCGCCTGCTTCCATTATCATGAAGACGACACGAGATAATCCCCATCCCTCGAC
GAGTGGCG 
13_012.ab1    
cGCCATCGGCTATTCATCGCCTGCTTCCATTATCATGAAGACGACACGAGATAATCCCCATCCCTCGACGAG
TGGCG 
 
           2240      2250      2260      2270      2280      2290      2300      2310       
Untitled_3 
CTGCACCCCTGGCCCAACTGCTTGTAATTTTCACTGCTCTGCCGACAATGCTGCTGATTTTGCCGCCGACGA
CGCACACT 
           -------------------------------------------------------------------------------- 
Consensus: 
CTGCACCCCTGGCCCAACTGCTTGTAATTTTCACTGCTCTGCCGACAATGCTGCTGATTTTGCCGCCGACGA
CGCACACT 
           -------------------------------------------------------------------------------- 
10_015.ab1                                                                                  
09_016.ab1                                                                                  
11_014.ab1                                                                                  
12_013.ab1                                                                                  
14_011.ab1 CTGCACCCCT                                                                       
13_012.ab1 
CTGCACCCCTGGCCCAACTGCTTGTAATTTTCACTGCTCTGCCGACAATGCTGCTGATTTTGCCGCCGACGA
CGCACACT 
 
           2320      2330      2340      2350      2360                                     
Untitled_3 GCTGGTAAGCCTATCCCTAACCCTCTCCTCGGTCTCGATTCTACGTAA                                 
           ------------------------------------------------                                 
Consensus: GCTGGTAAGCCTATCCCTAACCCTCTCCTCGGTCTCGATTCTACGTAA                                 
           ------------------------------------------------                                 
10_015.ab1                                                                                  
09_016.ab1                                                                                  
11_014.ab1                                                                                  
12_013.ab1                                                                                  
14_011.ab1                                                                                  
13_012.ab1 GCTGGTAAGCCTATCCCTAACCCTCTCCTCGGTCTCGATTCTACGTAA                                 
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Appendix 4 
Full list of proteins extracted from BN-PAGE  

Lane 1 

Gene > 
Secondary 
Identifier 

Gene > 
Symbol Gene > Name 

CG10691 l(2)37Cc lethal (2) 37Cc 

CG11064 Rfabg 

Retinoid- and 
fatty acid-binding 
glycoprotein 

CG11129 Yp3 Yolk protein 3 

CG11154 
ATPsyn-
beta 

ATP synthase-
beta 

CG11963 skap 
skpA associated 
protein 

CG12079 CG12079  
CG12203 CG12203  
CG12233 l(1)G0156 lethal (1) G0156 
CG13240 l(2)35Di lethal (2) 35Di 

CG1435 CBP 

sarcoplasmic 
calcium-binding 
protein 

CG15081 l(2)03709 lethal (2) 03709 

CG15848 Scp1 

Sarcoplasmic 
calcium-binding 
protein 1 

CG1640 CG1640  

CG1683 Ant2 

Adenine 
nucleotide 
translocase 2 

CG16944 sesB stress-sensitive B 

CG17246 SdhA 
Succinate 
dehydrogenase A 

CG17369 Vha55 

Vacuolar H[+]-
ATPase 55kD B 
subunit 

CG17654 Eno Enolase 

CG2171 Tpi 
Triose phosphate 
isomerase 

CG2286 ND75 

NADH:ubiquinone 
reductase 75kD 
subunit precursor 

CG2979 Yp2 Yolk protein 2 
CG32031 Argk Arginine kinase 

CG34073 mt:ATPase6 
mitochondrial 
ATPase subunit 6 

CG3481 Adh 
Alcohol 
dehydrogenase 

CG3523 CG3523  
CG3612 blw bellwether 
CG3683 CG3683  

CG3725 Ca-P60A 
Calcium ATPase at 
60A 

CG3747 Eaat1 
Excitatory amino 
acid transporter 1 
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CG3762 Vha68-2 

Vacuolar H[+] 
ATPase subunit 
68-2 

CG3861 kdn knockdown 

CG3944 ND23 

NADH:ubiquinone 
reductase 23kD 
subunit precursor 

CG3972 Cyp4g1 
Cytochrome 
P450-4g1 

CG4169 CG4169  
CG4769 CG4769  

CG5320 Gdh 
Glutamate 
dehydrogenase 

CG5389 CG5389  

CG5670 Atpalpha 
Na pump alpha 
subunit 

CG6020 CG6020  

CG6030 ATPsyn-d 
ATP synthase, 
subunit d 

CG6050 EfTuM 
Elongation factor 
Tu mitochondrial 

CG6058 Ald Aldolase 
CG6647 porin porin 
CG6871 Cat Catalase 
CG7070 PyK Pyruvate kinase 
CG7430 CG7430  
CG7470 CG7470  

CG7610 
ATPsyn-
gamma 

ATP synthase-
gamma chain 

CG7998 Mdh2 
Malate 
dehydrogenase 2 

CG8189 ATPsyn-b 
ATP synthase, 
subunit b 

CG8251 Pgi 
Phosphoglucose 
isomerase 

CG8844 Pdsw Pdsw 

CG8893 Gapdh2 

Glyceraldehyde 3 
phosphate 
dehydrogenase 2 

CG9042 Gpdh 

Glycerol 3 
phosphate 
dehydrogenase 

CG9090 CG9090  
CG9140 CG9140  

CG9277 betaTub56D 
beta-Tubulin at 
56D 

CG9334 Spn3 
Serine protease 
inhibitor 3 

 
Lane 2 

Gene > 
Secondary 
Identifier 

Gene > 
Symbol Gene > Name 

CG10550 CG10550  

CG1088 Vha26 
Vacuolar H[+]-ATPase 
26kD E subunit 

CG11129 Yp3 Yolk protein 3 
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CG11963 skap 
skpA associated 
protein 

CG12233 l(1)G0156 lethal (1) G0156 

CG12403 Vha68-1 
Vacuolar H[+] ATPase 
subunit 68-1 

CG15848 Scp1 
Sarcoplasmic calcium-
binding protein 1 

CG16936 CG16936  
CG16944 sesB stress-sensitive B 
CG1721 Pglym78 Phosphoglyceromutase 

CG17369 Vha55 
Vacuolar H[+]-ATPase 
55kD B subunit 

CG1743 Gs2 
Glutamine synthetase 
2 

CG17870 14-3-3zeta 14-3-3zeta 
CG1803 regucalcin regucalcin 
CG1913 alphaTub84B alpha-Tubulin at 84B 
CG2985 Yp1 Yolk protein 1 
CG3001 Hex-A Hexokinase A 

CG31196 
14-3-
3epsilon 14-3-3epsilon 

CG3127 Pgk 
Phosphoglycerate 
kinase 

CG3481 Adh 
Alcohol 
dehydrogenase 

CG3731 CG3731  
CG3835 CG3835  

CG4665 Dhpr 
Dihydropteridine 
reductase 

CG4696 Mp20 Muscle protein 20 
CG4847 CG4847  
CG4869 betaTub97EF beta-Tubulin at 97EF 
CG5028 CG5028  
CG6084 CG6084  

CG6988 Pdi 
Protein disulfide 
isomerase 

CG8280 Ef1alpha48D 
Elongation factor 
1alpha48D 

CG8938 GstS1 
Glutathione S 
transferase S1 

CG9042 Gpdh 
Glycerol 3 phosphate 
dehydrogenase 

CG9277 betaTub56D beta-Tubulin at 56D 
CG9364 Treh Trehalase 
CG9429 Crc Calreticulin 
CG9466 CG9466  
CG9476 alphaTub85E alpha-Tubulin at 85E 
CG9579 AnnX Annexin X 
CG9916 Cyp1 Cyclophilin 1 

 

Lane 3  

Gene > 
Secondary 
Identifier 

Gene > 
Symbol Gene > Name 
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CG10664 CG10664  

CG11064 Rfabg 

Retinoid- and 
fatty acid-binding 
glycoprotein 

CG11154 ATPsyn-beta 
ATP synthase-
beta 

CG15081 l(2)03709 lethal (2) 03709 
CG1640 CG1640  
CG16944 sesB stress-sensitive B 

CG17246 SdhA 
Succinate 
dehydrogenase A 

CG17654 Eno Enolase 
CG1970 CG1970  

CG2286 ND75 

NADH:ubiquinone 
reductase 75kD 
subunit precursor 

CG2968 l(1)G0230 lethal (1) G0230 

CG3161 Vha16-1 

Vacuolar H[+] 
ATPase subunit 
16-1 

CG3446 CG3446  

CG3481 Adh 
Alcohol 
dehydrogenase 

CG3523 CG3523  
CG3524 v(2)k05816 v(2)k05816 
CG3612 blw bellwether 

CG3725 Ca-P60A 
Calcium ATPase 
at 60A 

CG3861 kdn knockdown 
CG4169 CG4169  

CG4264 Hsc70-4 
Heat shock 
protein cognate 4 

CG4307 Oscp 

Oligomycin 
sensitivity-
conferring 
protein 

CG4692 CG4692  

CG4869 betaTub97EF 
beta-Tubulin at 
97EF 

CG5548 CG5548  

CG5670 Atpalpha 
Na pump alpha 
subunit 

CG6020 CG6020  
CG6058 Ald Aldolase 
CG6105 l(2)06225 lethal (2) 06225 
CG6186 Tsf1 Transferrin 1 

CG6343 ND42 

NADH:ubiquinone 
reductase 42kD 
subunit precursor 

CG7070 PyK Pyruvate kinase 
CG7145 CG7145  

CG7176 Idh 
Isocitrate 
dehydrogenase 

CG7430 CG7430  

CG7610 
ATPsyn-
gamma 

ATP synthase-
gamma chain 

CG7998 Mdh2 
Malate 
dehydrogenase 2 

CG8251 Pgi Phosphoglucose 
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isomerase 

CG8893 Gapdh2 

Glyceraldehyde 3 
phosphate 
dehydrogenase 2 

CG9042 Gpdh 

Glycerol 3 
phosphate 
dehydrogenase 

CG9277 betaTub56D 
beta-Tubulin at 
56D 

CG9762 l(3)neo18 lethal (3) neo18 
CG9916 Cyp1 Cyclophilin 1 

 

Lane 4  

Gene > 
Secondary 
Identifier 

Gene > 
Symbol Gene > Name 

CG10664 CG10664  

CG1088 Vha26 

Vacuolar H[+]-
ATPase 26kD E 
subunit 

CG11064 Rfabg 

Retinoid- and 
fatty acid-binding 
glycoprotein 

CG11129 Yp3 Yolk protein 3 

CG11154 ATPsyn-beta 
ATP synthase-
beta 

CG11793 Sod 
Superoxide 
dismutase 

CG12055 Gapdh1 

Glyceraldehyde 3 
phosphate 
dehydrogenase 1 

CG12403 Vha68-1 

Vacuolar H[+] 
ATPase subunit 
68-1 

CG1469 Fer2LCH 
Ferritin 2 light 
chain homologue 

CG1516 CG1516  

CG15848 Scp1 

Sarcoplasmic 
calcium-binding 
protein 1 

CG1640 CG1640  
CG16944 sesB stress-sensitive B 

CG17369 Vha55 

Vacuolar H[+]-
ATPase 55kD B 
subunit 

CG17654 Eno Enolase 

CG18495 Prosalpha1 
Proteasome 
alpha1 subunit 

CG1913 alphaTub84B 
alpha-Tubulin at 
84B 

CG2171 Tpi 
Triose phosphate 
isomerase 

CG2216 Fer1HCH 
Ferritin 1 heavy 
chain homologue 

CG2968 l(1)G0230 lethal (1) G0230 
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CG30191 Gr59b 
Gustatory 
receptor 59b 

CG32031 Argk Arginine kinase 
CG3446 CG3446  

CG3481 Adh 
Alcohol 
dehydrogenase 

CG3523 CG3523  
CG3612 blw bellwether 

CG3725 Ca-P60A 
Calcium ATPase 
at 60A 

CG3747 Eaat1 
Excitatory amino 
acid transporter 1 

CG3861 kdn knockdown 

CG3944 ND23 

NADH:ubiquinone 
reductase 23kD 
subunit precursor 

CG3972 Cyp4g1 
Cytochrome 
P450-4g1 

CG4233 Got2 

Glutamate 
oxaloacetate 
transaminase 2 

CG4307 Oscp 

Oligomycin 
sensitivity-
conferring protein 

CG4347 UGP UGP 
CG4692 CG4692  

CG4869 betaTub97EF 
beta-Tubulin at 
97EF 

CG5670 Atpalpha 
Na pump alpha 
subunit 

CG6020 CG6020  

CG6030 ATPsyn-d 
ATP synthase, 
subunit d 

CG6058 Ald Aldolase 
CG6186 Tsf1 Transferrin 1 
CG7070 PyK Pyruvate kinase 

CG7254 GlyP 
Glycogen 
phosphorylase 

CG7610 
ATPsyn-
gamma 

ATP synthase-
gamma chain 

CG7920 CG7920  

CG8189 ATPsyn-b 
ATP synthase, 
subunit b 

CG8251 Pgi 
Phosphoglucose 
isomerase 

CG8256 Gpo-1 
Glycerophosphate 
oxidase-1 

CG8280 Ef1alpha48D 
Elongation factor 
1alpha48D 

CG8893 Gapdh2 

Glyceraldehyde 3 
phosphate 
dehydrogenase 2 

CG9042 Gpdh 

Glycerol 3 
phosphate 
dehydrogenase 

CG9090 CG9090  

CG9277 betaTub56D 
beta-Tubulin at 
56D 

CG9334 Spn3 Serine protease 
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inhibitor 3 
CG9762 l(3)neo18 lethal (3) neo18 

 

Random protein selection  

Gene > 
Secondary 
Identifier 
CG11290 
CG14000 
CG14005 
CG14006 
CG14007 
CG14010 
CG14011 
CG14013 
CG14014 
CG14015 
CG14017 
CG17002 
CG17003 
CG17005 
CG1701 
CG17010 
CG17012 
CG17018 
CG17019 
CG1702 
CG17024 
CG2200 
CG2201 
CG3342 
CG3344 
CG3345 
CG33453 
CG33454 
CG33458 
CG5315 
CG5316 
CG5321 
CG5322 
CG5323 
CG5325 
CG5326 
CG5327 
CG5334 
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